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Abstract

In recent years significant effort was put into developing analytical worst-case

analysis tools to supplement the Verification & Validation (V&V) process of

complex industrial applications under perturbation. Progress has been made

for parameter varying systems via a systematic extension of the bounded real

lemma (BRL) for nominal linear parameter varying (LPV) systems to IQCs.

However, finite horizon linear time-varying (LTV) systems gathered little at-

tention. This is surprising given the number of nonlinear engineering problems

whose linearized dynamics are time-varying along predefined finite trajectories.

This applies to everything from space launchers to paper processing machines,

whose inertia changes rapidly as the material is unwound. Fast and reliable an-

alytical tools should greatly benefit the V&V processes for these applications,

which currently rely heavily on computationally expensive simulation-based

analysis methods of full nonlinear models.

The approach taken in this thesis is to compute the worst-case gain of the

interconnection of a finite time horizon LTV system and perturbations. The

input/output behavior of the uncertainty is described by integral quadratic

constraints (IQC). A condition for the worst-case gain of such an interconnec-

tion can be formulated using dissipation theory. This utilizes a parameterized

Riccati differential equation, which depends on the chosen IQC multiplier. A

nonlinear optimization problem is formulated to minimize the upper bound of

the worst-case gain over a set of admissible IQC multipliers. This problem

can then be efficiently solved using custom-tailored meta-heuristic (MH) al-

gorithms. One of the developed algorithms is initially benchmarked against

non-tailored algorithms, demonstrating its improved performance. A second

algorithm’s potential application in large industrial problems is shown using
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the example of a touchdown constraints analysis for an autolanded aircraft

as was as an aerodynamic loads analysis for space launcher under perturba-

tion and atmospheric disturbance. By comparing the worst-case LTV analysis

results with the results of corresponding nonlinear Monte Carlo simulations,

the feasibility of the approach to provide necessary upper bounds is demon-

strated. This comparison also highlights the improved computational speed of

the proposed LTV approach compared to simulation-based nonlinear analyses.
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Chapter 1

Introduction

1.1 Motivations

In recent years significant resources have been invested into developing guar-

anteed worst-case analysis tools as a supplement for Verification & Validation

(V&V) processes of complex industrial applications. As a model can only rep-

resent the actual system to a certain degree, a particular emphasis was put

on respecting the influence of perturbations on the system’s dynamics. These

include, e.g. neglected higher-order dynamics, nonlinearities such as satura-

tions, or infinite-dimensional systems such as time delays. Nevertheless, the

centerpiece of V&V processes remained so-called simulation-based approaches

such as Monte Carlo simulations or worst-case optimizations conducted on the

nonlinear model [1–5]. These methods can be directly deployed on high-fidelity

nonlinear system models. However, they require significant computational re-

sources and time as they must cover a large set of possible dynamics. Even

more critical, they cannot provide guaranteed worst-cases, but only a proba-

bility distribution or a lower bound of the worst case, respectively.

In contrast, linear analysis methods can calculate guaranteed worst-cases.

Over the last decade, significant progress has been made for parameter-varying

systems, such as (flexible) aircraft whose parameters depend on altitude and

airspeed. In this regard, the key development was the systematic extension of

1
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the bounded real lemma (BRL) for nominal linear parameter-varying (LPV)

systems to integral quadratic constraints (IQCs) [6]. These allowed the user to

specify worst-case gain analysis conditions for LPV systems in interconnection

with perturbations. The LPV-IQC framework was then successfully applied

for worst-case analyses of, e.g. gust loads on flexible aircraft ([7]).

Systems with strictly time-varying dynamics have received significantly less at-

tention, although they are closely related to parameter-varying systems. This

is surprising given the fact that this class of systems covers various engineering

and control problems. This includes all systems following predefined trajecto-

ries between a specified start and endpoint. The linearization of their dynamics

along such a specific trajectory results in so-called finite horizon linear time-

varying (LTV) systems. Hence, their system matrices are bounded functions of

time, defined only between the trajectory’s respective start and end point. For

these systems, the behavior along the trajectory and their conditions at the

final point are of great interest. Prominent aerospace examples are autolanded

aircraft in the final approach and space launchers during atmospheric ascent.

Focusing on the aircraft example, the final approach and landing is statisti-

cally the most dangerous flight segment, accounting for more than 49% of all

disastrous accidents, see, e.g. [8]. Autoland systems (AS) were introduced to

moderate the risk, primarily for poor visual conditions, at the beginning of the

1950s [9]. These generally employ a runway-based instrument landing system

(ILS) to produce a localizer and glideslope signal. These signals provide a

reference trajectory tracked by the aircraft’s autopilot during the approach.

Following the ILS signals presents a classical reference signal tracking prob-

lem, which aims to reduce the offset between reference and the corresponding

tracked signals. The autoland systems are, in general, designed for specific

reference (nominal) dynamics corresponding to a typical aircraft configuration

and environmental conditions. However, during the approach and landing, the

aircraft’s dynamics change depending on the altitude due to the ground effect

and altitude-triggered control law changes. This altitude dependence maps
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to a strict time dependence given the ILS trajectory rendering the problem

strictly time-varying over a finite horizon concluded by the touchdown. For

certification, the autoland system must satisfy touchdown performance con-

straints over a large set of different aircraft configurations and environmental

conditions. This means for non-nominal dynamics and external disturbances

such as wind turbulence. In summary, the autoland problem requires evaluat-

ing performance metrics at the end of the trajectory for uncertain time-varying

dynamics under wind disturbance.

Given the atmospheric ascent problem, not only the terminal conditions at the

separation of the launcher stages are of interest, but also at every point along

trajectory. A significant amount of time in the pre-launch preparation of space

launchers is spent optimizing the ascent trajectory and the respective tuning of

the launcher’s controller. One of the primary optimization objectives is reduc-

ing the maximal aerodynamic loads on the launcher due to wind disturbance.

Additionally, most launch sites impose tight constraints on ascent corridors

in the yaw plane to limit or avoid land overflight [10–12]. Until hours before

launch, updates are made based on wind data gathered by wind-balloons or

launch side specific wind charts to identify a load minimizing trajectory which

provides enough safety range regarding land overflight [13]. During the ascent,

the launcher’s dynamics are highly time-varying as it accelerates through dif-

ferent layers of the atmosphere along the calculated trajectory. At the same

time, the launcher’s aerodynamic parameters are difficult to estimate, espe-

cially in the transonic region. Furthermore, perturbations in the launcher’s

thrust due to irregularities in the combustion process significantly influence its

dynamics. This renders the launcher ascent a tracking problem for which the

lateral offset and aerodynamic loads for significantly uncertain time-varying

dynamics under wind disturbance must be evaluated for certification.

However, the recent LPV analysis approaches fail to evaluate (strictly) time-

varying dynamics as they, by definition, cover an infinite amount of possible

trajectories inside the defined parameter set [14]. In addition, their analysis
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conditions are specified for infinite time horizons, i.e. the systems (steady)

behavior approaching infinite times is analyzed. Thus, (terminal) conditions

at a certain point of a finite trajectory cannot be evaluated with these meth-

ods. These limitations render them insufficient for finite horizon LTV problems

such as the mentioned launcher ascent or autolanded aircraft. Thus, the cur-

rent V&V processes of both autoland systems and space launchers rely solely

on simulation-based methods [1, 15]. Both problems alone justify research

in the development of suitable LTV analysis tools. For example, more than

44000 flights are covered every day by the FAA alone [16]. Most of the han-

dled approaches are automated, requiring elaborate and very reliable autoland

systems, which trigger ongoing research [17, 18]. With an expected growth in

revenue from the current $424 billion to more than $1.4 trillion by 2030, space

launcher research and development are of renewed interest. This growth has

been driven by the emergence of private companies providing advanced space

transportation technology [19, 20]. Hence, developing fast and reliable tools

to analyze finite horizons LTV under uncertainty and external disturbances

is mandatory to support future V&V processes of time-varying systems over

finite horizons.

1.2 Literature Review

The introduction of an analysis framework for systems with highly time-

varying dynamics over finite trajectories requires a deep understanding of the

control problem itself and the evolution of linear system analyses. Particularly

when identifying the limitations and shortcomings of the existing linear (worst

case) analysis methods. Hence, this Section starts with a short summary of

progress in stability and robustness analysis methods for linear systems, from

their emergence in the late 19th century to the most recent advances. Af-

terwards, the rise in prominence of nonlinear optimization methods due to

the ever-growing computational power will be discussed. Here, the focus is
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on meta-heuristics, which present an efficient and flexible approach to solve

complex nonlinear problems. Hence, the state-of-the-art analysis of aircraft in

final approach and space launchers in atmospheric ascent will be detailed.

1.2.1 History and Recent Developments in Linear Sys-

tem Analysis

Initially formulated for linear time invariant (LTI) systems the following terms

are commonly used in the context of system analysis [21]:

1. Nominal stability: The nominal, i.e. unperturbed, system is stable

2. Nominal performance : The nominal system complies with the imposed

performance criteria.

3. Robust stability: The perturbed system remains stable up to the worst

case model perturbations.

4. Robust performance: The perturbed system fulfills the performance cri-

teria up to the worst case model perturbations.

In general, these criteria are checked in the order given above, as each sub-

sequent point can only be assessed if the previous holds true, i.e. nominal

stability is a necessary condition for nominal performance and so forth.

Hurwitz and Lyapunov Stability Criteria

Methods for determining the nominal stability of a linear time-invariant sys-

tem date back as early as 1876 when Edward Routh showed that a system’s

stability can be determined via the roots of the characteristic polynomial [22].

Independently, an equivalent approach was proposed by Adolf Hurwitz. This

stability criterion is now known as the Routh-Hurwitz stability criterion and

is an easy tool to evaluate the stability of an LTI system [23].

In the context of the theory applied in this thesis, the year 1892 is significant

as it is when Aleksandr Lyapunov first treated the stability theory of solutions
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of ordinary differential equations (ODE) in his dissertation [24] and later in

[25]. His theory did not analyze a nonlinear system directly. Instead, the

linear surrogate’s behavior is analyzed. He proposed two methods to prove the

stability of a system. Lyapunov’s second method is now commonly known as

Lyapunov stability criterion, or the direct method [25, 26]. The direct method

states that if a system starts close to a set point xs and remains close to it

for all times, the system is Lyapunov stable. In the cases where it approaches

xs, the system is called asymptotically stable. Note that this approach is not

limited to continuous-time and linear systems but covers nonlinear systems as

well. Given the scope of the thesis, the focus going forward is mainly on linear

systems.

For almost half a century, these groundbreaking results on system stability

were forgotten until rediscovered by Nikolay Chetaev in the 1930s. Chetaev

himself significantly contributed to the mathematical stability theory in [27].

It was further shown in [28] that when a system is Lyapunov stable, it also

remains stable under the influence of small disturbances d. This marks the

origin of the common bounded input bounded output (BIBO) stability, and

performance analyses. Lyapunov’s second method rose to prominence in the

1950s. Primarily for use in the stability analysis of guidance systems as it was

able to respect their significant system nonlinearities.

Classical Frequency Domain Criteria

In contrast to Lyapunov’s time-domain approach, frequency-domain methods

analyzing transfer functions of linear systems emerged in western control the-

ory in the 1930s. In 1930 and 1932, independently, the same stability criteria

were proposed by Felix Strecker [29, 30] and Harry Nyquist [31], respectively.

It presents a graphical method to prove a dynamic system’s stability and is

widely known as the (Strecker-) Nyquist stability criterion. This criterion is

suitable for systems represented by non-rational functions, e.g. including time

delays. It allows for the stability analysis of closed-loop (negative) feedback
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interconnections based on the open-loop transfer. It was later generalized to

include multi input multi output (MIMO) systems, see e.g. [32], and sys-

tems with time-varying parameters in, see e.g. [33]. Although a very general

approach, determining the stability and the respective margins is not very

intuitive using the Nyquist criterion.

In 1938, asymptotic phase and magnitude plots were proposed by Hendrik

Bode [34]. These showed the stability of systems using frequency domain con-

cepts and quickly assess phase and gain margins, although in two separate

plots. Due to their accessibility and fastness, so-called Bode plots are up to

now one of the main approaches for LTI system analyses and control design.

However, Bode plots cannot handle non-rational functions and transfer func-

tions with right half-plane singularities. Furthermore, it is strictly limited to

single input single output (SISO) systems.

In 1947, Nathanial Nichols introduced another graphical method, now com-

monly known as Nichols plots [21]. Derived from the Nyquist plots, but dis-

played in real coordinates, they combined most of the Bode and Nyquist Plots’

advantages.

Kalman-Yakubovich-Popov Lemma

Based on Lyapunov’s second method, the Kalman-Yakubovich-Popov (KYP)

lemma, also known as positive real lemma, was formulated in the early 1960s.

Firstly, it was stated and proved by Vladimir Yakubovich in [35] ([36]; English

reprint) as strict frequency inequality. It can be seen as a generalization of

Lyapunov’s equations. In [37], Rudolf Kalman proved the lemma for the non-

strict frequency inequality. This paper also made a connection to the solution

of the Lur’e equation. The extension to MIMO systems was prosed in [38] and

independently by Vasile Popov in [39]. A recent summary on the advances of

the KYP can be found in [40].

However, all approaches mentioned so far consider the nominal stability and

performance of an LTI system. Kalman’s proof of the KYP including the Lur’e
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equation laid the foundation to included uncertainties/perturbations into the

analysis. The Lur’e type equations were introduced 1951 by Anatoliy Lure in

[41] after introducing the theory of absolute stability earlier in [42]. Solvability

conditions on this type of equations appear in the context of dissipativity of

linear systems [43, 44], the spectral factorization [45], and balancing-related

model reduction [46]. Furthermore, they are central in the solution of the

infinite horizon linear optimal control problem [47–49]. Hence, they are one of

the cornerstones from which the work in this thesis originates.

Lur’e Problem

Crucial in the context of robust stability analysis is the so-called Lur’e prob-

lem. For its thorough historical treatment, the reader is referred to [50]. It

describes an LTI system in feedback interconnection with a memoryless, sector

nonlinearity. Two absolute stability criteria are directly connected to the Lur’e

problem, the circle criterion [51–53] and the Popov criterion original proposed

in [54, 55]) and generalized by [56]. The circle criterion can be understood as

a generalization of the Nyquist criterion covering Lur’e type problems, see e.g.

[57] and thus presents a graphical analysis method.

A generalization to solve the Lur’e problem was proposed in 1966 by R.P

O’Shea in [58] and improved in [59] using a class of multipliers. These multipli-

ers are transfer functions, which translate a nonlinear (passivity-type) problem

into a linear (passivity-type) problem that is easier to solve. For a historical

context and the significance of the approach, the reader is referred to [60]. A

formalization of the approach was introduced in 1968 by George Zames and

Peter Falb in [61]. Generally, the multiplier approach aims to identify multipli-

ers that hold for a broad range of nonlinearities. Contrarily to the multiplier

theory’s popularity in combination with Lyapunov theory in the 1960s, see e.g.

[62, 63], the textbook approach regarding absolute stability became the circle

and Popov criteria. Especially, the work of O’Shea was widely forgotten until

the mid-1990s, see e.g. [64].
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Small Gain Theorems

Regarding the stability between two interconnected stable systems, another

significant analysis method are small gain theorems introduced in e.g. [65]

and [66]. This is a crucial theorem concerning the robust stability and perfor-

mance analysis of systems in interconnection with an uncertainty/ perturba-

tion/ nonlinearity. It is defined by the boundedness of the connections L2 gain

by 1. In [66], a passivity theorem was proposed, which provides an equivalent

stability statement, as shown in [67]. A more general small gain theorem was

later introduced in [68] by Desoer and Vidyasagar.

Structured Singular Value

In the early 1980s, there was a resurgence of frequency-domain methods based

on the singular value analyses (H∞-performance/optimal control) focusing on

the question of stability and achievable performance under uncertainty for

LTI mulit-input multi-output (MIMO) systems, see e.g. [69–72]. The most

considerable impact regarding the robustness analysis of LTI MIMO systems

was in 1982 by John Doyle [73] and Michael Safonov [74]. The proposed

structured singular value is commonly denoted by µ [75]. It allowed for the

first time to evaluate both the robust stability and performance in a single

robustness framework. Technically, Safonov’s margin ks was formulated inverse

to Doyle’s, i.e. ks = 1/µ, making it more intuitive to interpret. Generally, the

value of µ cannot be calculated exactly, only its lower [76, 77] and upper bound

[75]. The former states the guaranteed uncertainty value for which the system

becomes unstable/violates performance requirements. The latter defines the

smallest uncertainty for which instability/performance violations can occur.

The lower bounds are especially useful as they provide the values for the most

troublesome uncertainty combinations.

Initially, the framework was formulated for structured complex (dynamic) un-

certainties (see e.g. [78] for an extensive discussion), and efficient computa-

tional tools were commercially available by 1991 [79]. The latter is significant
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as this was the first time elaborate robustness analysis tools were made readily

available for a broad range of engineering problems. It is also a driving factor

for its vast popularity and acceptance in control engineering. The framework

and computational tools were later extended to cover parametric uncertain-

ties [80], i.e. the uncertainty is bounded and constraint real, and problems

with mixed uncertainties [81, 82]. The µ-framework is limited to dynamic and

real perturbations/ uncertainties and cannot handle nonlinearities or infinite-

dimensional systems (e.g. time delays).

Integral Quadratic Constraints in the Frequency-Domain

In 1995, the integral quadratic constraint (IQC) framework for LTI systems un-

der perturbation was introduced by Alexandre Megretski and Anders Rantzer

in [83]. It provides a unified frequency-domain approach to cover various types

of perturbations, such as dynamic and real uncertainties, time delays, and real

nonlinearities such as saturations. Explicitly, it covers the Lur’e problem, for

which it analyzes multiple perturbations at the same time. The proposed

stability argument is based on passivity/dissipation arguments, which can be

easily tested in the linear matrix inequality (LMI) framework ([84]). It can be

understood as the unification of Yakubovichs work with the western multiplier

approach e.g. [66].

Numerous computational tools exist for the IQC based stability and perfor-

mance analysis of LTI systems, see e.g. [85–88]. It has to be noted that an

IQC approach can be dated back to Yakubovich [63] who applied frequency

and time domain conditions but is strictly limited to Lur’e’s problem, see [60]

for more information. The dissipation theory was introduced in 1972 by Jan

Willems in [43, 89]. It proposes a storage function that functions as a Lya-

punov function of the closed-loop system. However, the advantages of Megret-

ski’s and Rantzer’s approach in [83] are numerous., as it covers multipliers with

non-canonical factorization due to a homotopy argument, Zame-Falb multipli-

ers [83], and Popov multipliers [90]. For the latter, it also provides further
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properties, such as slope restrictions [91] or conic sector conditions [92]. In

[83], a library containing IQC multipliers Π is given covering common types of

perturbations.

Nevertheless, the analysis condition in [83] is limited to LTI systems due to its

formulation in the frequency domain. Thus, they are not directly applicable

to cover linear parameter-varying systems or linear time-varying systems. The

former became a focal research subject robustness analysis in the early 1990s,

due to the work of Jeff Shamma and Michael Athans [93, 94]. These systems

are (more) naturally investigated in the time domain.

Linear Time-Varying Systems

Linear time-varying systems are usually divided into the linear time-periodic

(LTP) and finite horizon case. The former is covering systems whose system

matrices are periodic matrix functions of time. In general, they cover infinite

time horizons. Typical examples of this kind of dynamics are the flapping

of helicopter rotor blades in forward flight [95, 96], wind turbines [97], and

spinning satellites [98]. Results for the nominal stability and performance

can be found in [99–102], mainly using a combination of Floquet’s [103] and

Lyapunov’s [25] work on the solution of LTP systems. They are now known as

Floquet-Lyapunov theory [104]. The literature covering these systems is rich,

mainly due to comparable behavior to LTI systems. This is in sharp contrast

to the finite horizon case.

Control systems which can be approximated by finite horizon LTV systems

are all nonlinear systems following predefined finite trajectory with changing

dynamics along said trajectory. This includes terminal guidance systems [105],

controlled swarm robots [106], robotic manipulators with varying loads [107],

newspaper presses as the inertias change during unwinding, or the atmospheric

flight phase of space launchers [108]. The linearization of these systems leads

to a linear system whose system matrices are bounded, continuous matrix

functions of time. As opposed to LTI and LTP systems, stability is no longer
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a meaningful criterion to assess for finite horizon LTV systems. This is a

consequence of the finite time extent of the analysis, as no (linear) system can

grow unbounded in finite time.

Nevertheless, determining if the system’s states stay in prescribed bounds over

a given horizon, i.e. that non-observed/observable states grow arbitrarily large,

still provides practical information. In this context, practical stability was

proposed and investigated by Joseph La Salle, and Solomon Lefschetz in [26]

using Lyapunov’s direct method.

A similar concept, but with a different analysis horizon, called finite-time-

stability (FTS) was proposed earlier by Kamenkov in [109] (generalized in

[110]) and [111]. Both approaches cover nonlinear as well as linear systems.

Focusing explicitly on finite horizon LTV systems, FTS was investigated in

e.g. [112, 113] and [114] under the notation short-time-stability and finite-time

stability, respectively. However, these approaches are limited to autonomous

systems and do not provide information on the system’s input/output behav-

ior.

Leonard Weiss overcame this limitation in [115] by introducing perturbation

signals into the finite-time analysis of nonlinear systems. This led to the intro-

duction of finite-time BIBO stability. A comparable approach for LTV system,

called finite-time-bounded (FTB) stability, was introduced in [116] based on a

LMI feasibility problem. The approach respects non-zero initial conditions but

is limited to constant disturbances. It further shows strong similarities to the

linear parameter varying systems introduced later in this literature review. A

significant drawback are the extremely short time horizons analyzed by the

method (max. 1s). In the context of analysis of industrial examples like space

launchers, this approach does not appear promising. Moreover, they are not

formulated in a worst-case context, which is imperative for the provision of

strict upper bounds on the worst-case performance. For interested readers, a

thorough review of FTS and FTB is given in [117] as the overview here is for

completeness only.
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A more suitable approach for industrial problems covered in this thesis is de-

rived from the advances of finite horizon LTV H∞ stabilizing controllers in

[118–120]. These results are based on the solvability of two Riccati differential

equations. In the context of H∞ input/output operator norms, the induced

input/output norms for general linear systems with L2 input/output signals

are developed in [121]. Hence, the proposed induced norms relate to worst-case

problems, which is key for the analyses conducted in this thesis. The results

are based on the classical maximum principle [122] for which it is shown that

the solution is equivalent to the solvability of a boundary value Hamiltonian

system or an equivalent indefinite Riccati differential equation. Note that the

application of linear quadratic costs/optimization problems for finite horizon

problems and related solvability conditions on RDEs trace back to the linear

quadratic regulator (LQR) optimal control problem, see e.g. [123]. However,

the definiteness of the matrix functions concerned are hugely different, render-

ing a significant amount of the available existence theorems for (time-varying)

RDEs infeasible [124–126]. Thus, they require the explicit integration of the

RDE.

The results in [121] influenced the extension of the BRL to (finite horizon)

LTV systems [127, 128], also called the strict BRL. It provides a condition for

the upper bound on the worst-case gain from any norm bounded disturbance

input to the performance output. This relates the LTV analysis to an actual

BIBO performance approach, more suitable for an engineering problem than

FTS/FTB. This upper bound’s existence is connected to the existence of a

time-varying RDE over the complete analysis horizon. Note that due to the

finiteness of the analysis, the gain should always exist. However, especially for

unstable systems, the RDE can be hard to solve. This matter was recently

addressed in [129] by proposing new algorithms solving the analysis condition.

The approach in [127] is already closer to the KYP lemma and dissipation

theory. Moreover, the approach shows better applicability over larger horizons

compared to the FTB approach. Furthermore, the use of bounded rather than
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constant inputs allows for modeling a broader range of disturbance signals.

Hence, the approach in [127] presents the logical foundation for an extension

to robust performance analyses in this thesis.

Linear Parameter-Varying Systems

LPV systems are a special case of LTV systems whose system matrices depend

on time-varying parameters over an infinite horizon.

Typical examples for engineering problems which can be modeled/approximated

as LPV systems are aircraft or helicopters parameterized over altitude and/or

velocity or the dynamic pressure, see e.g [130–132], aircraft-servo-elastics and

flutter over the same scheduling parameters, e.g. [133, 134], or turbofan en-

gines over thrust levels, e.g. [135].

A typical example of an engineering problem that can be approximated as an

LPV system is an aircraft parametrized over altitude, velocity, and dynamic

pressure ranges [130–132]. Other common examples include aircraft-servo-

elastics and flutter over the same parameters [133, 134], as well as turbofan

engines over thrust levels [135].

LPV systems are distinguished into three categories. Firstly, polytopic LPV

systems, whose parameters are only bounded in polytopes, e.g. [136]. Secondly,

linear fractional transformation (LFT) LPV systems, whose system matrices

depend rationally on the parameters, e.g. [137–139]. Thirdly, so-called gridded

LPV systems where the system matrices can arbitrarily depend on the param-

eters, e.g [14, 140]. The latter are the most general and consequently sparked

the largest research interest. A generalization of the LTI BRL for gridded LPV

systems was proposed by Fen Wu in [14], which shows obvious similarities to

the LTV BRL.

Integral Quadratic Constraints in the Time-Domain

Nevertheless, the analysis frameworks introduced so far for both finite horizon
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LTV and LPV systems are limited to their nominal dynamics. A major step

in resolving this limitation were the advances in connecting the IQC and pas-

sivity/dissipation theory translating the IQC framework into the time-domain.

Starting with a new definition of dissipativity with respect to quadratic forms

in [141], Lyapunov theory was loosened from its absolute stability and au-

tonomous characteristics to a more general form to analyze the input/output

behavior of interconnections. In [142], the use of multipliers in both the dis-

sipativity and Lyapunov framework were compared and their equivalence for

certain multipliers were proven. By using mild assumptions on the multipli-

ers the work to merge IQC frequency methods and time-domain Lyapunov

conditions was started in [143] for dynamic uncertainties. A link between the

dissipation theory and Lyapunov’s theorem was established in [144]. The final

step to translate the IQC frequency domain argument into the time domain

was provided by Peter Seiler in [145]. It proves that for most IQC multipliers

found in the literature e.g. [83], a J-spectral factorization [146] exists. Given an

adequate factorization, the time domain IQC holds for all finite times, and the

frequency domain inequality can be transformed using the KYP LMI ([147])

into an LMI with a positive semidefinite solution P ≥ 0. Consequently, the

frequency domain IQC theorem can be written as an equivalent dissipation

inequality test. The derived IQCs are called hard IQCs, i.e. they have to be

fulfilled for every finite time horizon. This in contrast to so-called soft IQCs,

which only hold over infinite time horizons.

Based on the results in [145] and [148] a worst-case gain analysis for uncer-

tain (gridded) LPV systems was proposed, covering their robust stability and

performance. It provides an upper bound on the worst-case gain based on a

dissipation inequality. The upper bound condition can be stated as a semidef-

inite program, which can be efficiently solved via convex optimization tools,

e.g. [149]. It is feasible to use this approach to cover parameter varying IQCs

[150]. Its feasibility was also demonstrated for different types of perturbations,

such as time delays in [150] and sector nonlinearities in [7].
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Advanced Methods for Linear Time-Varying System Analysis

Based on the results in [148] an equivalent analysis condition based on LMIs

and an equivalent RDE was proposed for uncertain finite horizon LTV systems

in [151]. The LMI and RDE conditions are solved iteratively to mitigate the

gridding’s effect and calculate a less conservative upper bound. However, the

initial computational approach given in [151] is flawed and was recently revised

in [152].

Nevertheless, this theoretic approach is more promising for the considered

problems ahead than the robust analysis approaches presented so far for fi-

nite horizon LTV robustness analyses. The work in [153] proposes robustness

measures for finite time trajectories using IQCs to represent the uncertainties.

It is solved by directly integrating over the IQC parameter. However, this

approach does not consider disturbances. Another approach solely based on

RDEs concerning IQCs and a finite horizon time-varying minimal quadratic

cost control problem was proposed in [154]. In this reference, the problem is

limited to a single averaging IQC used to represent the uncertainties for which

a computational approach via direct one parameter search is suggested. Cov-

ering multiple IQCs was deemed infeasible by the authors at this point. This

situation has changed over the last 20 years due to ever-growing computational

power and the emergence of elaborate nonlinear programs. Consequently, a

direct optimization approach appears attractive again. A review of a class of

feasible nonlinear programs is provided in section 1.2.2.

Furthermore, the analysis of finite horizon LTV systems via gap metrics is

covered in [155]. An approach based on the small gain theorem and the strict

BRL in [127] is proposed in [156] to calculate time-varying robustness margins.

For completeness, it shall be mentioned that, in the literature, numerous ap-

proaches to calculate the robustness of uncertain periodic LTV systems are

given, such as [157–160]. More recently, the IQC framework has been extended
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to this problem in [161].

1.2.2 Meta-Heuristics

Meta-heuristics (MHs) have gained increasing popularity solving global opti-

mization problems for various engineering applications. They are also known

as evolutionary algorithms, as proposed in 1963 by Lawrence Fogel [162]. The

majority of these methods are developed by imitating selection processes in

nature such as genetic evolution [163], laws of physics e.g. Coulomb law [164]

or gravitational law [165]. Other versions imitate animal behavior such as the

path finding of insects, e.g. moths [166], dragonflies [167], or fruit flies [168],

animal’s hunting patterns e.g. wolves [169], or ant-lions [170], etc. They are

considered global optimization methods for using population-based concepts

and randomization in their search procedure. This allows them to recover from

local optima. Also, no derivatives are required in the optimization procedure.

Hence, MHs are straightforward to deploy and can be applied to almost every

form of cost function and design variables. Their main downsides are a lack

of search consistency and low convergence rates. Concerning these problems,

significant effort was put into developing and enhancing MHs over the last two

decades, focusing primarily on problem exploitation and exploration capabil-

ities. This lead to an increasing success and prominence of MHs reported in

literature. There are now examples covering a variety of engineering prob-

lems, e.g. truss sizing [171], general constraint mechanical design optimization

[172–174], multi-objective design optimization of e.g. car floor-frames [175],

manufacturing optimization [176], tuning of proportional-integral-derivative

(PID)-type fuzzy logic controllers [177], neural networks [178], path planing of

unmanned aerial systems (UASs) [179, 180] or PID tuning [181].

Focusing on robust control and/or aerospace applications, several different

MHs schemes were implemented. This includes genetic algorithms for robust

finite horizon controller design for uncertain flexible systems [182] and H∞
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controllers for power transfer systems [183]. Differential evolution was applied

for flight control system (FCS) clearance [184] and optimal flight control [185].

Particle swarm optimization was utilized for autoland controller tuning [186]

and pitch control design [187]. Furthermore, Lévy flight-based pigeon-inspired

optimization was applied for automated carrier landings [188] and unmanned

aerial system controller tuning [189].

The manifoldness of these problems and approaches make a promising can-

didate for the direct optimization problem introduced in Section 1.2.1 in the

context of IQCs and uncertain LTV systems. This is a nonlinear problem

that also must be assumed non-convex and non-smooth with an arbitrarily

large search space. The problem size also scales with the number of covered

perturbations. However, no literature concerning this matter exists.

1.2.3 Analysis of Systems with Time-Varying Dynamics

This section presents the state-of-the-art approaches to address the industrial

analysis problems covered in this thesis. It starts with the finite horizon anal-

ysis of aircraft with potentially time-varying dynamics. Here, especially the

finite horizon of the analysis problem, including its terminal conditions, is

critical. Furthermore, the dynamics are time-varying, mostly late in the ap-

proach due to the ground effect. Important certification methods are included

for completeness. Afterwards, state-of-the-art analysis methods for the atmo-

spheric flight phase of space launchers are investigated. Here, the varying time

dynamics are more significant, and the problem’s focus is mainly concerned

with their influence on possible violations of certification criteria along the

trajectory.

Finite Horizon Analysis of Aircraft

The state-of-the-art approach, to evaluate the touchdown constraints and flight

control system clearance in general, are Monte Carlo analyses, e.g. [4, 5, 190,
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191], or worst case searches/ optimizations, e.g. [192–194]. These are con-

ducted on the nonlinear model. Due to the large parameter space of the air-

craft, environmental conditions, and disturbances, these approaches are com-

putationally expensive. Hence, they are not suitable to provide fast feedback

in the design/tuning phase of an autoland controller. Furthermore, they can-

not provide (guaranteed) worst cases, whose identification is also critical in

the design process.

An example calculating linear worst cases applying µ analysis in the design

process of an autoland controller can be found in [195]. However, the presented

robust performance analysis is limited to frozen grid points in time over finite

horizons. Thus, it is unsuitable for evaluating touchdown constraints in any

form.

LTI methods with the theoretical potential to analyze touchdown constraints

are reachable set analyses. However, these would fail to respect the time-

varying dynamics explicitly. General examples for said analysis concerning LTI

systems under uncertainty can be found in [196–198]. In [199], the approach in

[196] is extended to uncertain linear systems with time varying parameters. For

neither the time-invariant nor the time-variant case, applications to the final

approach problem can not be found in the literature. Furthermore, they do

not present worst-case analyses and are limited to a predefined set of uncertain

parameters/system matrices. Additionally, the respected time horizons in the

example applications are too short for the problem at hand.

A finite time horizon requirement also renders LPV IQC approaches to cover

the uncertain, varying dynamics infeasible. These are a valuable tool for con-

straint analyses regarding gust loads, e.g. [7, 200]. These analyses cover infinite

horizons and determine the worst-case value along all possible trajectories in

the parameter set. This also allows the system to remain at a certain point,

which is in apparent contradiction to the problem posed by an approach anal-

ysis.

Consequently, only a robust finite horizon LTV analysis allows for both the
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finite horizon and time-varying dynamics along a specific trajectory. So far,

there exist no examples for this kind of analysis in literature. Most closely

related is the approach in [201]. It presents a backward reachability analy-

sis using IQCs for uncertain nonlinear systems using a sum of squares (SoS)

approach. However, SoS approaches scale poorly with the system size. The

presented analysis of a simple quad-rotor example with six states and one

uncertainty over a time horizon of 2s required between 18min and 10h to com-

plete.

Worst-Case Analysis of Launch Vehicle

The general industrial approaches used to evaluate the effects of turbulence

and the estimated perturbation set utilize Monte Carlo analyses and worst-

case optimizations conducted on nonlinear launcher models [1–3]. Although

these methods can be directly deployed on the high fidelity nonlinear launcher

model, they require significant computational resources and time. Even more

critically, they can only provide a lower bound on any worst-case performance

measure, such as aerodynamic loads, pitch/yaw tracking, or deviation from

the flight path.

Linear worst-case analyses are conducted to provide strict upper bounds. These

are mainly based on the structured singular value µ and corresponding LTI

worst-case gains. Therefore the systems are analyzed at frozen gird points,

i.e. all matrix coefficients are frozen at a certain time, and the systems are

treated like an LTI system. Consequently, the linear worst-case analysis con-

siders the parameter variation as ”slowly enough” and infinite time horizons.

Examples for this approach can be found in, e.g. [202–206]. However, there are

also counterexamples demonstrating that the LTI assumption is invalid [207].

This includes examples for LTV systems with unstable poles whose system

responses are not unstable.

More recently, LPV synthesis methods were applied to launch vehicles in

[208] using the non-gravitational velocity as a varying parameter with strictly
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positive parameter variation rates. As for the approach problem, this ap-

proach suffers from an infinite time horizon. Additionally, the launcher closely

follows a predefined trajectory, rendering analyzed parameter combinations

infeasible/over-conservative.

Consequently, there is no guarantee that the common linear worst-case meth-

ods provide correct nor meaningful results as they ignore the actual system’s

behavior due to their infinite horizon definition. The motivating example in

Chapter 2 visualizes the LTI approach’s insufficiency for clearly time-varying

systems with finite horizons.

1.3 Thesis Aims and Objectives

This thesis aims to develop linear analytical worst-case analysis tools and the

required theory to provide fast and reliable upper bounds for (aerospace) sys-

tems with time-varying dynamics. These tools need to explicitly respect the

system’s time-varying dynamics along a predefined finite trajectory under un-

certainty. These include parametric uncertainty, dynamic uncertainty, and

nonlinearities (e.g. time delays). Furthermore, the influence of external dis-

turbances, such as wind, must be respected and accurately modeled.

Guaranteed analysis results shall be provided by extending the finite hori-

zon LTV bounded real lemma to integral quadratic constraints (IQC). Based

on the finite horizon LTV framework for IQCs, the worst-case analysis shall

cover time-varying dynamics under perturbations and external disturbance

and present an alternative to state-of-the-art nonlinear analyses. Due to their

finite horizon nature, these tools also provide a practical approach to evaluate

performance criteria worst-cases for certain points of specific trajectories.

To achieve these aims, the following objectives are specified:

1. Identify and evaluate existing nominal LTV worst-case analysis methods.
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2. Extend the theoretical framework for nominal LTV worst-case analysis

to IQCs to incorporate a multitude of perturbations into the analysis.

3. Develop an efficient analysis framework, including fast algorithms to cal-

culate the worst-case gains of uncertain LTV systems, providing reliable

upper bounds for the real system.

4. Evaluate the developed algorithms on simple but industry-relevant bench-

mark models against exiting algorithms.

5. Apply the developed LTV worst-case analysis framework on elaborate

industry-sized problems. Use this to demonstrate the feasibility of the

approach to provide fast upper bounds via comparison to the results of

corresponding nonlinear Monte Carlo simulations.

6. Identify shortcomings of the developed tools and methods to determine

future areas of research.

Note that this thesis is partially funded by ESA. Hence, the example appli-

cations will focus mainly on space launchers. These are predestined for finite

horizon LTV analyses and whose mission success is connected to the greatest

monetary and hazard risk. However, an aircraft touchdown analysis is used

to demonstrate the versatility of the developed framework for other aerospace

applications.

1.4 Thesis Outline

The thesis is divided into seven chapters corresponding to the key areas of the

conducted work. They are summarized as:

Chapter 1: Introduction

The motivation for the research is presented. This includes two explicit indus-

trial applications with growing markets, which would benefit from the devel-

opment of novel analysis tools for their respective V&V processes. Afterwards,
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existing literature on the robust performance and worst-case analysis of linear

time-varying systems is examined. This includes a digression to the historic

key developments in (robust) stability, which form the backbone of the theory

and methods developed in this thesis. Additionally, state-of-the-art worst-case

analysis methods for systems with strictly time-varying dynamics are investi-

gated. Here, the focus is strictly on the two industrial examples covered in the

thesis. Based on the motivation and literature review, the aims and objectives

of the work are stated.

Chapter 2: Motivating Example

A state-of-the-art LTI worst-case analysis of space launcher, a prototypical

time-varying system, under wind disturbance is presented. The results are

evaluated against a corresponding nonlinear simulation to validate the inade-

quacy of existing worst-case approaches for highly time-varying systems. This

illustrates motivation for the thesis and emphasizes the necessity to develop

dedicated LTV analysis tools.

Chapter 3: Fundamentals on Nominal Robustness Analysis of Linear

Time-Varying Systems

The literature review identifies existing (worst-case) analysis conditions and

methods for finite horizon LTV systems. These build the origin for the re-

search and new developments in this thesis. Thus, the necessary theoretical

background, including relevant signal and system norms, existing theorems,

and integral quadratic constraints, is provided. This is essential for the exten-

sion of the finite horizon LTV framework in this thesis.

Chapter 4: Worst-Case Analysis of Uncertain Finite Horizon Linear

Time-Varying Systems

The extension of the LTV bounded real lemma to IQCs is derived and proved.

Subsequently, the necessary steps to convert the theorem into a computa-

tionally feasible problem are shown. These are based on the solvability of a
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parameterized Riccati differential equation. This leads to a constrained non-

linear optimization problem for which two tailored nonlinear programs using

meta-heuristics are developed. The novel nonlinear programs are evaluated

on benchmark examples to show their feasibility and applicability to industry-

sized engineering problems.

Chapter 5: Finite Time Horizon Analysis of an Autolanded Aircraft

in Landing Configuration under Crosswind

The developed LTV worst-case analysis framework is applied to identify worst-

case touchdown conditions of an autolanded airliner. This presents a critical

application for linear worst-case analysis where its finite time horizon is espe-

cially critical. It is also of high industrial relevance due to the vast amount of

automated landings in transport aviation and the tight touchdown constraints

to be met by the autolanding systems under a broad range of environmental

and aircraft conditions. A special wind disturbance model for LTV analyses

is developed, covering the wind disturbance usually applied in the certifica-

tion process. It is demonstrated that the developed LTV worst-case analysis

framework provides feasible upper bounds for the Monte Carlo simulation in

a fraction of time. Therefore, a supplemental tool for the V&V process of

autolanding systems is provided.

Chapter 6: Finite Time Horizon Analysis of a Launch Vehicle in

Atmospheric Ascent

The last application presents the worst-case aerodynamic loads and lateral drift

analysis of a launch vehicle’s first stage flight under atmospheric disturbance.

Due to the fast progression through the multiple layers of the atmosphere and

rapid fuel burn, LTV worst-case analyses are of high interest to support the

V&V process and narrow the validation gap between existing linear analytical

methods and common nonlinear analysis. Therefore, tailored LTV wind filters

are calculated, covering the wind profile of an actual launcher mission in the
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pitch plane and a certification wind profile in the yaw plane. The LTV worst-

case analysis results are validated against a Monte Carlos simulation conducted

on the nonlinear launcher model.

1.5 Summary

This chapter provided the motivation for this thesis, namely the development

of fast and reliable worst-case analysis tools for highly time-varying systems

under perturbation and external disturbance. Based on this motivation, an

extensive literature review was presented focusing on theoretical advances and

the application of worst-case analysis methods for linear systems. The latter

focused on the aerospace examples covered in this thesis. The literature review

pointed out the missing theory and, thus, the missing use of LTV analyses tool

for highly time-varying systems under uncertainty. Thus, it emphasized the

necessity to develop novel analysis tools for such systems. Afterwards, the aims

and objectives of this thesis were derived from the motivation and literature

review.



Chapter 2

Motivating Example

2.1 Introduction

This chapter presents an LTI analysis as typically used in industrial valida-

tion and verification processes of highly time-varying systems. A simple but

sufficiently complex nominal linear worst-case performance analysis of a space

launcher under wind disturbance is chosen. Firstly, the dynamics of a space

launcher along a predefined trajectory are derived. Afterwards, two controllers

are designed to minimize the vertical drift from the trajectory and stabilize the

pitch motion. The first controller stabilizes the inherently unstable launcher

dynamics over the whole trajectory. Inversely, the second controller’s design

leads to unstable closed-loop dynamics for the drift motion but achieves a

sizable performance gain. Subsequently, a nominal LTI worst-case analysis is

conducted on frozen grid points covering the trajectory. The analysis aims

to predict the worst-cases of multiple performance measures relevant in the

control design and V&V process of space launchers. Thus, fast and reliable

feedback on the effects of design changes is crucial for the control engineer.

To demonstrate the insufficiency of the LTI approach, a corresponding Monte

Carlo simulation is conducted on the nonlinear model. Hence, this chapter

provides the practical motivation of the thesis.

26



Chapter 2. Exemplary Launcher Model 27

2.2 Exemplary Launcher Model

The analysis is conducted on a representative expendable launch vehicle (ELV)

model during atmospheric flight. It covers a time horizon from ts = 25s to

tf = 95s after lift-off, including the most critical flight segments, such as the

transonic region, the region of maximum aerodynamic pressure, and the en-

gine burn-out. During this flight phase, the launcher tracks a pre-calculated

pitch program, which is designed to minimize the aerodynamical loads on the

launcher.

The model’s complexity matches the general recommendations for the initial

control design process of launch vehicles [209, 210]. In this example, only the

rigid body’s pitch dynamics are considered with neglected effects of propellant

sloshing. The thrust vectoring control’s inertias are also neglected. Further-

more, following common practice, the spheric and rotating earth’s influence is

ignored [209–211]. Additionally, only linear aerodynamics are considered.

A detailed description of the nonlinear equations of motion and how to derive

the linear equations with respect to a reference trajectory frame is given in

Appendix A. Consequently, the linear equations of motion are stationary with

respect to the trajectory reference frame. This does not solve the problem that

the parameters are only valid for the discrete analysis points and corresponding

instants in time along the trajectory.

2.2.1 Launcher Augmentation

The analyzed space launcher is aerodynamically unstable, and feedback con-

trol is required to stabilize the launcher and track the pitch program. A

proportional-derivative (PD) control law will be used in the ∆θ channel, while

solely proportional feedback will be applied in the ∆α channel:

δTVC,cmd = −KTVC(Kθ̇∆θ̇ +Kθ∆θ +Kα∆α), (2.1)
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Table 2.1: Controller gains used for the analysis

Controller KTVC Kθ̇ Kθ Kα

Stable 2 0.4 1 0.2

Unstable 2 0.4 1 1.6

where KTVC is the TVC servo-amplifier, Kθ̇ the rate gyro gain, Kθ the ori-

entation gyro gain, and Kα the angle of attack sensor gain. The controller

is specifically chosen as it minimizes the vertical trajectory drift under wind

disturbance. Two sets of gains, as summarized in Tab. 2.1, are calculated as

detailed in [212, Chapter 3]. The first set corresponds to stable closed-loop

dynamics over the whole trajectory. Conversely, the second set belongs to a

closed-loop with an unstable flight path pole (vertical drift) over the whole

analysis segment. This promises significantly better drift performance as the

launcher actively steers into the wind.

2.3 Worst Case Performance Metric

The worst-case energy-to-peak gain , e.g. [213] defined as:

‖G‖2→∞ = sup
d∈L2(∞,∞)
d 6=0,x(0)=0

‖e(t)‖∞
‖d(t)‖2(−∞,∞)

. (2.2)

is used to calculate the LTI worst-case performance at frozen points in time.

In (2.2), d(t) and e(t) denote the disturbance input and performance output

signal, respectively. The notations ‖...‖∞ and ‖...‖2(−∞,∞) represent the in-

finite horizon ∞-norm and infinite horizon 2-norm, respectively. A detailed

definition follows in Section 3.2. It provides a guaranteed upper bound of the

maximum peaks of the systems (performance) outputs for an arbitrary norm

bounded input. In the case of ‖d(t)‖2(−∞,∞) = 1 (unit norm) and single per-

formance output, (2.2) directly provides the physical worst-case value. It can
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be readily calculated based on the solution of the Lyapunov equation:

AQ+QAT +BTB = 0, (2.3)

with A ∈ Rnx×nx denoting the LTI state matrix, B ∈ Rnx×nd the LTI input

matrix, C ∈ Rne×nx the LTI output matrix, and Q ∈ Rnx×nx the controlla-

bility Gramian. The variables nx, nd, and ne represent the number of states,

disturbance inputs and performance outputs, respectively. Based on (2.3), the

worst case gain can be computed as

‖G‖2→∞ =
√

max(eig(CQCT )). (2.4)

In the course of this thesis, it is calculated using the Matlab internal function

gram (see [214]). However, the LTI energy-to-peak gain requires the analyzed

system to be stable with feedthrough matrix D = 0. Consequently, neither

the vertical deviation, due to the corresponding pole in the origin, nor the

non-stabilizing controller can be analyzed.

2.4 Wind Disturbance Model

The evaluated wind disturbance shall resemble Dryden turbulence profiles.

These are frequently used aerospace certification processes [215–217].

2.4.1 Wind Filter Nonlinear Analysis

In the nonlinear analysis, the Dryden wind filter Gw for vertical turbulence

ẋw(t) =

 0 1

−
(
V (t)
Lw

)2

−2V (t)
Lw

xw(t) +

 0(
V (t)
Lw

)2

nw(t)

vw(t) =

[
σ(h)

√
Lw
πV (t)

σ(h) Lw
V (t)

√
3Lu
πV (t)

]
xw(t)

(2.5)
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with white noise input nw, is implemented to generate the wind disturbance

w. Here, the white noise signal is calculated by Matlab’s internal band-limited

white noise block. These signals have a power spectral density Φ of one and

are shaped into continuous turbulence profiles statistically matching real tur-

bulence by the filter Gw. In (2.5), V is the launcher’s velocity, σ is the altitude-

dependent turbulence intensity, and Lw is the turbulence scale length. For the

analysis, the values for σ are interpolated over altitude, based on the data for

severe turbulence provided in [218]. Contrary to [218], the turbulence scale

length is chosen to five-times the recommended value, i.e. Lw = 2629.2m.

This results in longer turbulence gusts, which are more critical in the context

of the analyzed trajectory disturbances. According to the analyzed trajectory

segment, the value of Lu is not altitude dependent following [218].

2.4.2 Wind Filter Linear Analysis

The wind filter Gw is unsuitable for LTI analyses applying worst-case energy

to peak gain, see e.g. [213]. This gain only defines an upper bound from an

arbitrary analysis input d(t) to the maximum peak of the output signal e(t).

Consequently, for the calculated gain to have a physically meaningful value,

the wind filter must generate a valid turbulence spectrum for inputs with unit

norm. Although some literature exists covering discrete gusts, e.g. [219], the

turbulence analysis for LTI systems is relatively unexplored.

In this thesis, the scaling approach proposed in [220] is utilized, i.e. the wind

filter is scaled with the maximal expected norm of a white noise signal over a

certain analysis horizon. Here, the scaling kwi is chosen so that the norm of a

white noise signal from ts up to the analyzed frozen point in time ti is covered.
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Accordingly the wind filter Gw,LTI for the LTI analysis is defined as

ẋw(t) =

 0 1

−
(
V (ti)
Lw

)2

−2V (ti)
Lw

xw(t) +

 0(
V (ti)
Lw

)2

nw(t)

vw(t) = kwi

[
σ(ti)

√
Lw

πV (ti)
σ(ti)

Lw
V (ti)

√
3Lw
πV (ti)

]
xw(t),

(2.6)

for a frozen time ti. Note that due to the predefined trajectory the altitude

dependencies in (2.5) convert to strict time dependencies in (2.5). This further

highlights a significant issue with LTI analysis, the systematic modeling of

appropriate input disturbances.

2.5 Analysis

A nominal LTI worst-case analysis is conducted for both controller designs

applying the wind filter. The outcomes are evaluated against the results of a

Monte Carlo simulation conducted on the corresponding nonlinear model.

2.5.1 Analysis Setup

The general analysis structure is shown in Fig. 2.1. In the nonlinear analy-

ELV
C

Wind

[θb, θ̇b, α]

−

yp
d/nw

Figure 2.1: General analysis interconnection used for nominal launcher analysis

sis, the ELV-block is described by the nonlinear dynamics (A.1) in Appendix

A.1. Additionally, the Wind-block represents the unscaled wind filter Gw,

with white noise input nw(t). Depending on the test case, block C represents

the stabilizing or non-stabilizing controller with the gains provided in Tab.

2.1. Identical controllers are used in the linear and nonlinear analyses. Fur-

thermore, the performance output yp includes the signals ∆Qα (aerodynamic
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load), ∆θ (pitch angle deviation), ∆ż (vertical drift rate), and ∆z (vertical

deviation form trajectory).

In case of the linear analyses, the ELV-block describes the linear dynamics

in (A.16) from Appendix A.1. Furthermore, the scaled wind filter Gw,LTI is

applied with input d.

2.5.2 Results

Using the frozen time approach, e.g. [204], the worst-case gain is calculated

at points in time ti on the interval [30s, 95s] with a step size of 5s. Here, all

performance signals are evaluated individually. As the starting point of the

analysis, 30s is chosen so that a suitable wind filter scaling can be calculated.

The Monte Carlo simulation of the nonlinear model is conducted in Matlab

Simulink using the corresponding analysis interconnection in Fig. 2.1. The

simulation starts at ts = 25s and ends at tf = 95s after lift-off. 5000 unique

white noise signals nwi(t) are evaluated.

The result of the LTI frozen grid analyses as well as the bound enveloping all

Monte Carlo signals for both controllers, are shown in Fig. 2.2. For the LTI

analyses, the points in time in-between the analysis points are linearly inter-

polated. Starting with the stabilizing controller, it can be seen that the LTI

analysis is initially more conservative during the initial part of the trajectory

but fails to provide an upper bound for times after approximately 70s. This

is emphasized with detail windows on the right side of Fig. 2.2. As mentioned

before, no results for the worst-case deviation can be calculated. The unsat-

isfactory results of the LTI analysis, particularly in the later part, expose a

major limitation of the frozen grid point approach. Due to the turbulence’s

altitude dependence, the maximal wind disturbances at later frozen grid points

are significantly decreasing. With the analysis limited to the assumption that

the system remains on the frozen grid point, also only the worst-case distur-

bance for dynamics at precisely this point can be modeled. Thus, the influence
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of critical points along the trajectory, such as the transonic or engine burn-out,

cannot affect later points in time and need to be evaluated explicitly. However,

even this analysis will have little meaning as, in reality, the system only passes

through that point for an infinitesimal amount of time.

As mentioned before, the vertical deviation from the trajectory cannot be

evaluated using the LTI energy to peak gain. This is a significant drawback

of the LTI approach as it is not possible to calculate the worst-case value for

a central design criterion of the controller. Altogether, the LTI approach fails

to analyze realistic system behavior and fails to provide a reliable/guaranteed

upper bound. The respective Monte Carlo simulation finished after 1h45min,

whereas the LTI analysis was completed in a total of 15s. Thus, the latter

would provide a significant time advantage in the V&V process if it provides

a reliable upper bound.

Comparing the bounds provided for both controllers by the Monte Carlo sim-

ulation in Fig. 2.2, shows a noticeable reduction of the maximal occurring

drift rate and total deviation from the trajectory in the nonlinear analysis.

The former reduces from 8.17m/s to 1.66m/s as Kα increases from 0.1 to 1.6

and the latter from 253.22m to 63.32m. As the launcher actively steers into

the wind, the absolute value of ∆θ increases in the Monte Carlo simulation

from 0.55◦ to 2.14◦ compared to the stabilizing controller. Due to the reduced

drift, the gravity turn is better executed, and the maximum load reduces from

1.74 · 105Pa◦ to 8.48 · 104Pa◦.

Consequently, exploiting unstable closed-loop dynamics results in a significant

performance gain. However, the state-of-the-art linear analysis approach can-

not provide this crucial feedback in the design process. Thus, the control

engineer would need to rely fully on Monte Carlo simulations and thus only

lower bounds on the performance measures without identifying guaranteed

worst cases. Furthermore, the Monte Carlo simulations require a combined

3h30min for a relatively small sample size and do not provide fast feedback in

an iterative tuning process.
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2.6 Summary

It was shown that LTI worst-case analyses are not suitable for systems with

rapidly changing dynamics along a predefined finite trajectory. This is mainly

due to the analysis’s limitation to frozen points in time, which entirely denies

the trajectory characteristics and physical system behavior. The LTI approach

was infeasible to provide meaningful insights during the control design process

showing a non-comprehensible gap to the nonlinear analysis. Due to the LTI

approach’s limitation to stable systems, for the non-stabilizing controller, no

worst-case gain could be calculated. Here, the nonlinear analysis showed a

clear performance improvement. However, already for this simple example,

the simulation-based approach required significantly more time than the lin-

ear analysis. This example underlines the imperative for developing and ap-

plying linear methods explicitly respecting the analyzed system’s time-varying

characteristics.



Chapter 3

Fundamentals on Nominal

Robustness Analysis of Linear

Time-Varying Systems

3.1 Introduction

This chapter presents the necessary theoretical preliminaries on the derivation

of linearized representations of nonlinear systems explicitly respecting the time

variance. Furthermore, the required signal and system norms, nominal worst-

case analysis conditions, and IQC theory necessary to extend the LTV analysis

framework to perturbed systems are introduced.

3.2 Finite Horizon Linear Time-Varying Sys-

tems

As automation becomes more and more prominent in various systems’ applica-

tions, a significant subset of these systems follows a preprogrammed trajectory

leading the system from a fixed starting point to a fixed terminal point. A

typical example of trajectory-based operations is a space launcher during at-

mospheric ascent. The launcher has to tightly follow a predefined trajectory

36
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starting from the lift-off and ending with the first stage’s burn-out. Conse-

quently, its nonlinear equations of motion are strictly time-dependent.

A less obvious example is the final approach of an auto-landed aircraft. In

this scenario, the aircraft has to precisely and fully autonomously track the

runway’s instrument landing systems’ guidance signal. This leads to a specific

finite reference trajectory commencing with the aircraft’s touchdown. Here,

the terminal conditions of the trajectory, especially under adverse environmen-

tal conditions, are essential to assure safe landings.

Another example is an industrial robot. These commonly are used for auto-

mated assembly [221], materials and quality testing [222], or manufacturing

[223, 224]. A robot arm, as shown in Fig. 3.1 is used as an example to show

the linearization of nonlinear dynamics along a predefined trajectory. Its pla-

r1

θ1

x

y
l1

r2
l2

θ2

Figure 3.1: Industry robot (Source: KUKA)

nar nonlinear dynamics in the xy-plane concerning the two main links are
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described by [107]:

τ1

τ2

 =

α + β cos (θ2) δ + β cos (θ2)

δ + β cos (θ2) δ


θ̈1

θ̈2



+

−β sin (θ2)θ̇2 −β sin (θ2)(θ̇1 + θ̇2)

β sin (θ2)θ̇1 0


θ̇1

θ̇2

 .
(3.1)

In (3.1), τi is the torque applied to the base of the i-th link. Hence, the input

vector is chosen as d = [τ1, τ2]. The robot arm’s states are represented by

x = [θ1, θ̇1, θ2, θ̇2] and the outputs by e(t) = [θ1, θ2]. The angles are denoted

with respect to joint fixed Cartesian coordinate systems. The parameters α,

β, and δ describe substitutes variables combing the mass moments of inertia

as follows:

α := I1 + I2 +m1r
2
1 +m2(l21 + r2

2)

β := m2l1r2

δ := I2 +m2r
2
2,

(3.2)

where li and ri are the total length, and the distance from the joint to it’s center

of mass, respectively, of the i-th arm. The mass and mass moment of inertia

of the i-th arm is denoted by mi and Ii, respectively. Given a desired state

trajectory, x0(t) the input torque d(t) required can be calculated to achieve

the prescribed movement. The robot arm’s nonlinear equation of motion in

(3.1) along this reference trajectory can be written more generally in the form

of the differential equations:

ẋ = f(x, t, d)

e = g(x, t, d)

(3.3)

Under the assumption of small perturbations, the robot arm’s movement along

this reference trajectory can be modeled as a superposition of a known and
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perturbed motion. Consequently, the state vector x(t) of the robot arm can

be written as nominal vector x0t and a perturbation vector δx(t):

x(t) = x0(t) + δx(t). (3.4)

In the same fashion the input vector d can be split into d(t) = d0(t)+δd(t). The

subsequent multidimensional Taylor expansion of the state and input vector

in (3.3) with respect to the reference trajectory defined by [x0, d0] results in

the linear approximation:

f(x, t, d) = f(x0, t, d0) +∇T
x f(x0, t, d0)δx+∇T

d f(x0, t, d0)δd+ ... . (3.5)

Neglecting higher order terms, the linear perturbation dynamics can be written

as:

δf(t) =
n∑
i=1

(
∂f(t)

∂xi(t)

)
0

δxi(t) +
n∑
i=1

(
∂f(t)

∂di(t)

)
0

δdi(t), (3.6)

where the subscript 0 indicates the differentials evaluated on the reference

trajectory. Similarly, a linear representation of the robot arm’s output equation

g can be derived. The linear dynamics of the robot arm can be arranged in

typical state-space form and written as:

ẋGt(t) = AGt(t)xGt(t) +BGt(t)d(t)

e(t) = CGt(t)xG(t) +DGt(t)d(t),

(3.7)

where xGt(t) ∈ RnxGt , d(t) ∈ Rnd and e(t) ∈ Rne are the state, input, and

output vectors, respectively. The system Gt in (3.7) is a finite horizon linear

time varying system. Its system matrices are piecewise continuous bounded

functions of time t with compatible size to the corresponding vectors, i.e.

AGt : [0, T ]→ RnxG×nxGt , BGt : [0, T ]→ RnxGt
×nd , CGt : [0, T ]→ Rne×nxGt and

DGt : [0, T ]→ Rnw×nd .
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3.3 Signal Norms

The linear worst-case analyses in this thesis are conducted exclusively in the

time domain. A time domain signal is a (Lebesgue) measurable function that

maps the real numbers R to the real vector Rn and forms the set (see e.g. [127,

Chapter 3]):

S := {d : R→ Rn}. (3.8)

This forms a natural vector space under addition and scalar multiplication.

Two subspaces can be defined from the set S:

S+ := {d ∈ S : d(t) = 0 ∀ t < 0} (3.9)

and

S− := {d ∈ S : d(t) = 0 ∀ t > 0}. (3.10)

In the proceeding, ‖x‖ =
√
xTx defines the common Euclidean vector norm.

3.3.1 Infinite Horizon 2-Norm

The infinite horizon 2-norm is defined as (e.g. [21]):

‖d(t)‖2(−∞,∞) =

{∫ ∞
−∞
‖d(t)‖2

} 1
2

. (3.11)

It is commonly used in the stability and performance analysis of LTI and LPV

systems, where the signal’s behavior over infinite horizons must be considered.

Signals which remain bounded over infinite time horizons are in the infinite

Lebesgue 2-space defined as:

L2(−∞,∞) = {d(t) ∈ S : ‖d(t)‖2(−∞,∞)} (3.12)

Based on L2(−∞,∞), the two vector spaces L2[0,∞) and L2(−∞, 0] can be

defined/built using the intersections of the two sets S+ and L2(−∞,∞) and S−



Chapter 3. Signal Norms 41

and L2(−∞,∞), respectively. Proving that a signal is in L2[0,∞), is usually

done by the stepwise evaluation of increasingly stringent growth conditions,

e.g. [127, Chapter 3]. In this context, the extended 2-space is introduced as:

L2e = {d(t) ∈ L2[0, T ] ∀T <∞}. (3.13)

Nevertheless, d(t) ∈ L2e does not imply that supT ‖d(t)‖2[0,∞) < ∞, as e.g.,

d(t) = 2t2 and d(t) = e2t are both in L2e, but not in L2[0,∞). In (3.13),

L2[0, T ] is the finite horizon Lebesgue 2-space.

3.3.2 Finite Horizon 2-Norm

The finite horizon 2-norm, which will be used for the performance analysis of

finite horizon LTV systems in this thesis, is defined as:

‖d(t)‖2[0,T ] =

{∫ T

0

‖d(t)‖2

} 1
2

. (3.14)

Signals whose finite horizon 2-norm is limited are in the finite horizon Lebesgue

2-space defined by the set:

L2[0, T ] = {d(t) ∈ S+ : ‖d(t)‖2[0,T ] <∞} (3.15)

Note that all signals which are continuous on the time horizon [0, T ] are

bounded and thus in L2[0, T ]. Consequently, signals of the form d(t) = 2
3t−T

are not in L2[0, T ].

3.3.3 Infinite Horizon ∞-norm

The L∞-norm of time-domain signal d(t) ∈ Rnd over an infinite horizon is

defined as (e.g. [21]):

‖d(t)‖∞ = sup
t

(
max
n
|dn(t)|

)
. (3.16)
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Thus, it describes the signal’s peak value over time. In case d(t) ∈ L2(−∞,∞),

it is implied that ‖d(t)‖∞ < ∞. The L∞ norm will be used in the context of

nominal LTI worst-case analyses in this thesis.

3.4 System Norm

In the course of the thesis various performance metrics are evaluated using

linear (analytical) analysis methods. This section provides the necessary back-

ground on the underlying system norms/gain to quantify the performance.

3.4.1 Finite Horizon Induced L2[0,T ] Gain

When nominal worst-case tracking performances for LTV systems are evalu-

ated, the finite horizon induced L2 gain (e.g. [127]):

‖G‖2[0,T ] = sup
d∈L2[0,T ]
d6=0,x(0)=0

‖e(t)‖2[0,T ]

‖d(t)‖2[0,T ]

. (3.17)

is utilized in this thesis. It can be interpreted as the maximum energy ampli-

fication from the (disturbance) input to the (performance) output along the

finite trajectory over all valid signals in L2[0, T ]. An efficient way for its cal-

culation is presented in the subsequent section. By T ≤ ∞ and the causality

of G, it is implied that if d(t) ∈ L2[0, T ], also xG(t) and e(t) are in L2[0, T ].

Hence, for any fixed horizon the induced L2[0,T ] gain is finite.

3.4.2 Finite Horizon L2[0,T ] to Euclidean Gain

For the quantification of upper bounds on worst-case values for an LTV sys-

tem’s performance outputs at the end of the trajectory, the finite horizon

energy-to-Euclidean gain is utilized. Assuming D(t) = 0, it is defined as (e.g.

[127]):

‖G‖E[0,T ] = sup
d∈L2[0,T ]
d 6=0,x(0)=0

‖e(T )‖
‖d(t)‖2[0,T ]

. (3.18)



Chapter 3. Bounded Real Lemma for Linear Time-Varying Systems 43

Consequently, it describes the ball upper bounding the performance output

over all valid disturbance input signals in L2[0, T ] at the final point of the

trajectory. The restriction D(t) = 0, guarantees that the gain is well-defined.

Note that the gain only upper bounds the output at the final time T . For

intermediate points in time t ∈ [0, T ], the L2[0, T ] to Euclidean gain ‖G‖E[0,t]

can equivalently be used to upper bound the output. Given C = Inx , ‖G‖E[0,T ]

defines an upper bound on the reachable set, i.e. the set of states that can be

reached at final time by a norm bounded disturbance.

3.5 Bounded Real Lemma for Linear Time-

Varying Systems

Sufficient conditions to calculate the upper bound of the finite time hori-

zon gains in Section 3.4 are based on the well-known LTI Bounded Real

Lemma. An extension to finite horizon LTV systems can be found in [127,

Theorem 3.7.4], providing an upper bound on the induced L2[0, T ] gain. An

equivalent formulation of the theorem is given below.

Theorem 1. Let Gt be an LTV system defined by (3.7). Given x(0) = 0, iff

there exists a time-dependent, continuous differentiable matrix valued function

P : R+
0 → Snx such that

P (T ) = 0 (3.19)

and

Ṗ =− PA− ATP − CTC

− (PB + CTD)(DTD − γ2Ind)
−1(BTP +DTC),

(3.20)

then γ is an upper bound on the induced L2[0, T ] gain of Gt.

Proof. The proof is based on the definition of a positive definite storage func-

tion V (x, t) = xT (t)P (t)x(t). After perturbing the RDE in (3.20) with an
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infinitesimal small positive scalar ε, the resulting Riccati differential inequality

can be rearranged as an equivalent LMI applying Schur’s complement (see e.g.

([225]):

Ṗ + PA+ ATP + CTC PB + CTD

BTP +DTC DTD − γ2(Ind(1− ε))

 ≤ 0. (3.21)

Left and right multiplying (3.21) with [xT (t), dT (t)] and [xT (t), dT (t)]T , respec-

tively, results in the dissipation inequality:

0 ≥ xT Ṗ x+ xTP

ẋ(t)︷ ︸︸ ︷
(Ax+Bd) +

ẋT (t)︷ ︸︸ ︷
(xTAT + dTBT )Px︸ ︷︷ ︸

V̇ (t,x)

+ xTCT (Cx+Dd) + dTDT (Cx+Dd)︸ ︷︷ ︸
eT (t)e(t)

−(1− ε)γ2dTd

(3.22)

Integrating (3.22) from 0 to T results in:

0 ≥x(T )TP (T )x(T )− x(0)P (0)x(0)

+

∫ T

0

e(t)T e(t)dt︸ ︷︷ ︸
‖e(t)‖22[0,T ]

−(1− ε)γ2

∫ T

0

d(t)Td(t)dt︸ ︷︷ ︸
‖d(t)‖22[0,T ]

. (3.23)

Applying zero initial conditions, norm definitions, and the terminal condition

(3.19), the square root of (3.23) becomes:

0 ≥ ‖e(t)‖2[0,T ] −
√

(1− ε)γ ‖d(t)‖2[0,T ] (3.24)

Consequentially, the upper bound on (3.17) is given by γ.

Theorem 1 can be easily adjusted to provide the upper bound on the finite

horizon L2[0, T ] to Euclidean gain:

Theorem 2. Let Gt be an LTV system defined by (3.7). Given x(0) = 0, if

there exists a time-dependent, continuous differentiable matrix valued function
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P : R+
0 → Snx such that

P (T ) = C(T )TC(T ) (3.25)

and

Ṗ =− PA− ATP

− (PB + CT )(−γ2Ind)
−1(BTP + C),

(3.26)

then γ is an upper bound on the L2[0, T ] to Euclidean gain of Gt.

Proof. Again, the proof is build on the definition of a positive definite storage

function V (x, t) = x(t)P (t)x(t). After perturbing it with an infinitesimal small

positive integer ε, applying Schur’s complement, and left/right multiplying the

resulting LMI with [xT , dT ] and [xT , dT ]T , respectively, (3.26) can be written

as:

0 ≥ xT Ṗ x+ xTP

ẋ(t)︷ ︸︸ ︷
(Ax+Bd) +

ẋ(t)T︷ ︸︸ ︷
(xTAT + dTBT )Px︸ ︷︷ ︸

V̇ (t,x)

− (1− ε)γ2dTd.

(3.27)

Integrating (3.27) from 0 to T and applying zero initial conditions results in:

0 ≥x(T )TP (T )x(T )− (1− ε)γ2

∫ T

0

d(t)Td(t)dt︸ ︷︷ ︸
‖d(t)‖22[0,T ]

.
(3.28)

The left/right multiplication with x(T )T/x(T ) of the terminal condition (3.25)

results in:

x(T )TP (T )x(T ) = x(T )TC(T )x(T )︸ ︷︷ ︸
e(T )T e(T )

(3.29)

Inserting (3.29) in (3.28) leads to:

0 ≥ e(T )T e(T )︸ ︷︷ ︸
‖e(T )‖22

−(1− ε)γ2 ‖d(t)‖2
2[0,T ] (3.30)
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Applying the Euclidean vector norm, it can be concluded that γ upper bounds

(3.18).

Consequently, the upper bound γ in Theorem 1 and 2 is based on the exis-

tence of (3.20) and (3.26), respectively, over the full horizon [0, T ]. Thus, it

can be easily calculated by bisecting over γ to identify the minimal value for

which (3.20) or (3.26) is fully integrable backwards in time given the provided

terminal conditions.

3.6 Example of a Linear Time-Varying Worst-

Case Analysis

3.6.1 Introduction

Having demonstrated the unsuitability of LTI methods for systems with highly

time varying dynamics in Chapter 2, a corresponding finite horizon LTV anal-

ysis is conducted. It uses the same analysis setup, but applies the theory

presented in Sections 3.4.2 and 3.5. The potential of this approach for systems

like space launchers is demonstrated by comparison to the benchmark Monte

Carlo simulations.

3.6.2 Analysis

The launcher model is equivalent to the one introduced in Chapter 2, as the

linear analysis interconnection shown in Fig. 2.1 is essentially LTV, and finite

horizon norms reason the wind filter scaling. Therefore, it can be directly used

in the nominal LTV worst-case analysis. Furthermore, the same two controllers

are compared.

To calculate upper bounds on the worst-case performance, the nominal finite

horizon worst-case L2[0,T ] to ‖e(T )‖2 gain is applied. The nominal finite hori-

zon worst-case L2[0,T ] to ‖e(T )‖2 gain can only upper bound the performance
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output yp at the respective terminal time T . Therefore, it is necessary to

analyze a set of terminal times covering the trajectory. The LTV analysis is

performed on final times Ti in the interval [30s, 95s] with a step size of 5s using

the approach explained in Section 3.5. For this grid, the wind filter scalings kwi

calculated for Gw,LTI can be directly applied in the current analysis. A relative

and absolute tolerance for the bisection of εBSrel
= 10−4 and εBSabs

= 10−6 is

chosen. The RDE is solved using the Matlab internal ode15s solver for stiff

ordinary differential equations (ODEs) using its default settings.

The results of the LTV finite horizon analyses and Monte Carlo upper bounds

from Section 2.5.2 are compared in Fig. 3.2. For the LTV analysis, the points

in time in-between the analysis grid are linearly interpolated.

It can be seen that the LTV worst-case envelope encloses all signals of the

Monte Carlo simulation for times before 60s for both controllers. These upper

bounds are significantly less conservative than for the LTI worst-case analysis.

Focusing on the stabilizing controller and times after 60s, only in case of the

lateral drift rate and lateral drift, the LTV analysis provides a distinct up-

per bound. However, the Monte Carlo envelopes for ∆Qα and ∆θ are almost

identical to the corresponding LTV worst-cases, with sporadic violations. Re-

garding the non-stabilizing controller, the upper bounds only holds in case of

the lateral drift rate and later drift for times after 60s. In contrast, the LTV

worst-case bound is frequently violated for ∆Qα and ∆θ by the Monte Carlo

results. However, these infractions happen late along the trajectory, where the

overall values of the performance metrics are small and well below their limit

values.

Nevertheless, it is apparent from this comparison that the LTV approach

presents a more accurate representation of the actual system’s behavior. As the

system behavior up to the respective terminal time is analyzed, significantly

improved results are achieved compared to the preceding LTI analyses. The

analysis also covers the wind disturbance characteristic up to the respective

final time. This also includes the effects of changing dynamics in the transonic
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Figure 3.2: Results for bounds on performance metrics: Upper bound LTV worst-
case analysis Kα = 0.1 ( ) and Kα = 1.6 ( ), upper bound Monte Carlo
Kα = 0.1 ( ) and Kα = 1.6 ( )
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Table 3.1: Comparison of worst-cases identified by LTV and most critical Monte
Carlo analysis results (MC)

Qα[Pa◦] ∆θ[◦] ∆ż[m/s] ∆z[m]

LTV MC LTV MC LTV MC LTV MC

Kα = 0.1 4.96·105 1.74·105 1.68 0.55 25.02 8.17 859.99 253.22

Kα = 1.6 2.42·105 8.48·104 6.38 2.14 5.45 1.66 243.50 63.32

region as well as the engine burnout, if they occur before the analyzed final

time.

Furthermore, the LTV analysis provides direct feedback on the influence of

the controller design updates. Comparing the results for both controllers in

Fig. 3.2 as summarized in Tab. 3.1, shows a noticeable reduction in the

maximal drift velocity and total deviation from the trajectory in the nonlinear

analysis. The former reduces from 8.17m/s to 1.66m/s and the latter from

253.22m to 63.32m. This reduction is well predicted by the nominal LTV

worst-case analysis, whose calculated worst-case drift and deviation reduced

from to 25.02m/s to 5.45m/s and 859.99m to 243.50m, respectively. Here,

the updated controller gains equate to a reduction by a factor 4.5 and 3.5,

respectively.

As the launcher actively steers into the wind, the absolute value of ∆θ increases

in the Monte Carlo simulation from 0.55◦ to 2.14◦ compared to the stabilizing

controller. Again, the LTV analysis provides quantitative feedback of the gain

tuning showing an increase in ∆θ from 1.68◦ to 6.38◦. Surprisingly, the aerody-

namic load reduces for the non-stabilizing controller despite steering into the

wind. This is a result of the overall lower drift rates and improved trajectory

tracking performance. Consequently, the gravity turn is better executed, and

the maximum loads are reduced. In the nonlinear analysis, they drop from

1.74 · 105Pa◦ to 8.48 · 104Pa◦ and from 4.96 · 105Pa◦ to 2.42 · 105Pa◦ in the LTV

analysis.

The complete LTV analyses were finished after 4min30s, whereas the Monte

Carlo simulation, for a relatively small disturbance set, took 3h30min and will
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always only provide a lower bound. Thus, the finite horizon LTV approach

demonstrates its suitability for analyzing unstable dynamics, providing a fast

estimate of the system performance and an accurate match of the actual sys-

tem’s behavior. The insufficiency of the LTV worst-case bound for times after

60s is due to an inadequate wind filter. It is not designed explicitly for the

LTV analysis framework inside the BRL.

3.6.3 Conclusion

For the analyzed launcher, only the LTV approach provides an accurate re-

semblance of the nonlinear system’s dynamics independently of the evaluated

controller. Furthermore, it predicted the performance improvement of the non-

stabilizing controller also seen in the Monte Carlo simulation. Here, the LTV

approach was roughly 47 times faster.

The nominal LTV approach can reduce the validation gap between linear and

nonlinear analyses. However, an adequate wind filter inside the constraints of

the BRL must be designed to assure adequate disturbance levels along the tra-

jectory. This would allow for the provision of strict and not overly conservative

upper bounds on simulation-based approaches.

The potential benefits of LTV analyses are even more prominent in the presence

of uncertainty as the computational effort of Monte Carlo approaches scales

with the covered perturbation sets. Consequentially, the LTV framework’s

extension to cover perturbed systems is imperative to advance the V&V process

for space launchers and other highly time-varying systems.

3.7 Integral Quadratic Constraints

Usually, the linear model used for the controller design or performance analy-

sis differs from the existing system. Various reasons for these differences exist,

such as only approximately known parameters, imperfections of sensors, es-

pecially at unknown structure and model order at high frequencies, opting to
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work with a lower order approximation of very detailed models for simplicity

and difference between the designed and implemented controller. These kinds

of model differences can be divided into two classes, parametric and dynamic

model uncertainties. The former covers uncertainties of parameters for mod-

els with known order and structure, and the latter cover uncertain dynamics,

which are either purposely neglected or unknown. Furthermore, nonlinearities,

e.g. saturations or dead-zones, and infinite-dimensional systems, e.g. time de-

lays, cannot be accurately represented in the linear model. All the mentioned

model differences are summarized under the notation ∆ generally as pertur-

bations. These perturbations are exclusively covered by employing IQCs in

this thesis. IQCs present a generalized framework for the robustness analysis

covering various perturbation types by bounding their input/output behavior.

3.7.1 Frequency-Domain

IQCs in the frequency domain are introduced in [226] via a multiplier Π. Π is

measurable hermitian-valued function, Π : jR → C(nv+nw)×(nv+nw). The IQC

defined by Π is satisfied by the two signals v ∈ L2[0,∞) and w ∈ L2[0,∞) if

∫ ∞
−∞

[
V (jω)
W (jω)

]*

Π(jω)
[
V (jω)
W (jω)

]
dω ≥ 0, (3.31)

where V (jω) and W (jω) are the Fourier-transforms of the v(t) and w(t), re-

spectively. Consequently, if (3.31) holds for all v ∈ L2[0,∞) and w = ∆(v),

then the bounded, causal operator ∆ : L2[0,∞)→ L2[0,∞) satisfies the IQC

defined by Π. In [226], IQCs were introduced to analyze the robust stability

and performance of uncertain LTI systems. Hence, the respective analysis con-

ditions are formulated in the frequency-domain. Due to the LTV nature of the

nominal systems analyzed in this thesis, a respective time-domain condition is

required.
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3.7.2 Time-Domain

A respective time-domain formulation of IQCs was derived in [145]. It is

shown that any Π ∈ RL(nv+nw)×(nv+nw) can be factorized as Π = Ψ∼MΨ,

where M ∈ Snz is a symmetric matrix and Ψ ∈ RHnz×(nv+nw)
∞ . Note that such

factorizations are not unique but can be computed via state-space methods

such J-Spectral factorizations [146]. Let Ψ be factorized as (Ψ,M), then the

IQC in (3.31) is satisfied by v, w ∈ L2(−∞,∞) iff Z(jω) := Ψ(jω) satisfies∫∞
−∞ Z

∗(jω)MZ(jω) ≥ 0. Applying Parseval’s theorem, the frequency domain

constraint imposed on z can be transformed into an equivalent time domain

constraint: ∫ ∞
0

z(t)TMz(t)dt ≥ 0. (3.32)

In (3.32), z = Ψ [ vw ] is the output of the linear IQC filter Ψ:

ẋΨ(t) = AΨxΨ(t) +BΨ,1v(t) +BΨ,2w(t)

z(t) = CΨxΨ(t) +DΨ,1v(t) +DΨ,2w(t)

(3.33)

, with zero initial conditions. Consequentially, the IQC defined by Π = Ψ∼MΨ

is satisfied by ∆, iff the time domain constraint in (3.32) is fulfilled for all

v ∈ Lnv2 [0,∞) and w = ∆(v). In Fig. 3.3, a graphical interpretation of

a time-domain IQC is given. Generally, the constraint in (3.32) only holds

∆

Ψ
z

wv

Figure 3.3: Graphical interpretation of a time-domain IQC

over infinite horizons. These IQCs are called soft. In case the time domain

inequality (3.32) holds for all finite times T ≥ 0, the IQC:

∫ T

0

z(t)TMz(t)dt ≥ 0. (3.34)
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is called hard. The distinction is relevant for technical reasons. Hard IQCs

are required for the robustness analysis of gridded LPV systems based on

dissipativity theory [6]. In the context of LTV robustness analysis, it will only

be required that the IQC holds over the considered analysis horizon [0, T ]. The

short notation ∆ ∈ IQC(Ψ,M) is used if the perturbation ∆ satisfies the IQC

defined by Ψ and M over the interval [0, T ]. Note that the soft/hard property

is imposed by the applied factorization (Ψ,M). In [143], it was shown that

under mild assumptions, for most of the multipliers in [83], a hard factorization

exists.

The IQC framework allows k different perturbations ∆i ∈ IQC(Ψi,Mi) to be

included in a single IQC by diagonally combining them. Also, multiple IQCs

satisfied by ∆ can be combined in a single analysis. The latter is shown in the

following example of a dynamic uncertainty:

Example 3.7.1.

For a dynamic LTI uncertainty (LTI system) ∆ with ‖∆‖∞ ≤ b, the bound-

edness of ∆ imposes ‖w‖2[0,T ] ≤ b ‖v‖2[0,T ] for any input/output combination

v ∈ L2[0, T ] and w = ∆(v). Based on the causality of ∆, the constraint on v

and w can be equivalently stated as the following time-domain inequality:

∫ T

0

v(t)

w(t)


T b2 0

0 −1


v(t)

w(t)

 dt ≥ 0. (3.35)

Hence, the IQC defined by IQC1(Ψ1,M), with Ψ1 = I2 and M =
[
b2 0
0 −1

]
,

is satisfied by ∆. Note that z1 = [ vw ] as Ψ has no dynamics. Furthermore,

as ∆ is LTI, it commutes with any stable minimum phase system D(s), i.e.

∆D = D∆. Therefore, also the system ∆̃ := D∆D−1 is norm bounded by

b. For the related input/output pair defined by ṽ = Dv and w̃ = Dw, the

inequality ‖w̃‖2[0,T ] ≤ b ‖ṽ‖2[0,T ] holds. This relation can be equivalent to (3.36)

written as: ∫ T

0

z2(t)TMz2(t)dt ≥ 0, (3.36)
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where M =
[
b2 0
0 −1

]
and z2 = [ ṽw̃ ] = [D 0

0 D ] [ vw ] = Ψ2 [ vw ]. Thus, ∆ satisfies the

IQC defined by IQC2(Ψ2,M), with M =
[
b2 0
0 −1

]
and Ψ2 = [D 0

0 D ]. Moreover,

in [6] it was shown that if ∆ satisfies each IQC separately, it also satisfies any

conic combination build of them. This means the outputs zi of the respective

IQC filter Ψi fulfill the quadratic time constraint built by the conic combination

of multipliers

∫ T

0

z1(t)Tλ1Mz1(t) + z2(t)Tλ2Mz2(t)dt, λi > 0 (3.37)

for all v ∈ L2[0, T ] and w = ∆(v) over the interval [0, T ]. The IQCs in (3.37)

can be stacked into the single IQC:

Ψ =

Ψ1

Ψ2

 and M(λ) =

λ1M 0

0 λ2M

 (3.38)

More valid IQCs can extend the stacked IQC in (3.38) in an obvious fashion.

Note that the dynamic system D corresponds to so-called D-scales used in the

µ framework.

A time delay presents an infinite-dimensional system, which can not be covered

explicitly in classic LTI frameworks such as µ. In [150], a detailed approach

to derive and apply time-domain IQCs representation of time delays is given.

The representation used in the course of this thesis is described in the following

example.

Example 3.7.2. The IQC representation is built by the conic combination of

two IQCs. Both IQCs use the same matrix Mτ = [ 1 0
0 −1 ] but different filters Ψτ1

and Ψτ2. The respective filters result from the J-spectral factorization Πτi =

Ψ∼τiMτΨτi of the multiplier Πτ1 =
[

0 −1
−1 1

]
and Πτ2 =

[
0 φ∗(s)

φ(s) −1

]
, with

φ(s) :=
−2.19( s

τ
)2 + 9.02( s

τ
) + 0.089

( s
τ
)2 − 5.64( s

τ
)− 17.0

, (3.39)

In (3.39), τ is a selected constant time delay. Note that the calculated norm
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bound will also hold for all smaller τ . The parameterization of the combined

IQC is confined to the set Mτ defined by

Mτ := {diag(λ1Mτ , λ2Mτ ) : λi > 0, i = 1, 2}. (3.40)

Thus, time delays can also be represented by stacked IQCs.

3.8 Summary

This chapter presented the theoretical background required for the theoreti-

cal advances proposed in this thesis. First, linear time-varying systems and

their derivation from nonlinear models were introduced. Afterwards, signal

and system norms for LTI and LTV systems were introduced. Thirdly, the

bounded real lemma for linear time-varying systems was explicitly defined for

the induced L2[0, T ] and L2[0, T ] to Euclidean gain. The latter was applied

in the worst-case performance analysis of a space launcher to demonstrate the

suitability of LTV analyses for highly time-varying systems. A Monte Carlo

simulation of the corresponding nonlinear model was used for (successful) val-

idation. In summary, IQCs were introduced as an approach to upper bound

the input-output behavior of uncertainties.



Chapter 4

Worst-Case Analysis of

Uncertain Finite Horizon Linear

Time-Varying Systems

4.1 Introduction

This chapter presents an approach to compute the worst-case gain of the in-

terconnection of a finite time horizon linear time-variant system and a pertur-

bation. The input/output behavior of the uncertainty is described by integral

quadratic constraints (IQC). A condition for the worst-case gain of such an

interconnection can be formulated using dissipation theory as a parameterized

Riccati differential equation, which depends on the chosen IQC multiplier. A

nonlinear optimization problem is formulated to minimize the upper bound

of the worst-case gain over a set of admissible IQC multipliers. Two tailored

meta-heuristic optimization algorithms are developed to exploit the optimiza-

tion problem’s structure and solve it efficiently. The advantages over applying

existing meta-heuristics are demonstrated on an extensive benchmark example.

56
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4.2 Uncertain Linear Time-Varying Systems

An uncertain LTV system is described by the interconnection of a nominal LTV

system Gt and the perturbation ∆ as shown in Fig. 4.1 This interconnection

Gt

∆

de

wv

Figure 4.1: Feedback interconnection LTV system G and uncertainty ∆

represents a linear fractional transformation (LFT) denoted as Fu(Gt,∆). See

e.g. [21] for details. It can be generally written as:

ẋGt(t) = AGt(t)xGt(t) +BGt(t) d(t)

e(t) = CGt(t)xGt(t) +DGt(t) d(t)

w(t) = ∆(v),

(4.1)

where v ∈ Rnv and w ∈ Rnw are the perturbation input and output vectors,

respectively. The operator ∆ : L2[0, T ] → L2[0, T ] defines the perturbation.

The interconnection in Fig. 4.2 is said to be well-posed if, for all initial condi-

tions xGt(0) and d(t) ∈ L2[0, T ] unique solutions xGt ∈ L2[0, T ], v ∈ L2[0, T ],

and w ∈ L2[0, T ] satisfying (3.7) and causally dependent on d(t) exist.

4.3 Finite Horizon Linear Time-Varying Ro-

bustness Framework

A robust performance analysis is proposed utilizing the time-domain IQC rep-

resentation of a perturbation ∆ described in Section 3.7.2 and the worst-case

analysis conditions for nominal LTV systems in Section 3.5. It allows for the

worst-case analysis of the interconnection Fu(Gt,∆).

This requires introducing the IQC filter Ψ into the interconnection shown
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in Fig. 4.1. Therefore, the input v and output w of the perturbation ∆

are connected with Ψ, as shown in Fig. 4.2. Thus, the explicit input/output

Gt

∆

Ψ

de

wv

z

Figure 4.2: Feedback interconnection LTV system Gt and uncertainty ∆ extended
with IQC filter Ψ

relation w = ∆(v) of the perturbation can be replaced by the time domain

inequality (3.34) enforced on the filter output z. As ∆ can be excluded from

the interconnection as emphasized in Fig. 4.2, w is now treated as an external

signal. The dynamics of the interconnection in Fig. 4.2 depend on an extended

LTV system G defined by:

ẋ(t) = A(t)x(t) + [ B1(t) B2(t) ]
[
w(t)
d(t)

]
[
z(t)
e(t)

]
=
[
C1(t)
C2(t)

]
x(t) +

[
D11(t) D12(t)
D21(t) D22(t)

] [
w(t)
d(t)

]
,

(4.2)

where x(t) = [xGt(t)
T , xΨ(t)T ]T ∈ RnxGt

+nxΨ represents the state vector con-

taining the states of Gt and Ψ, d(t) ∈ Rnd the external disturbance input

vector, and e(t) ∈ Rne the performance output vector.

The robust performance of an uncertain LTV system in the IQC framework can

then be quantified by worst-case finite horizon input/output gains. Specifically,

two metrics are used in this paper. Firstly, the finite horizon worst-case L2[0, T ]

to ‖e(T )‖2 gain for D22 = 0 is defined as follows:

‖Fu(Gt,∆)‖2 := sup
∆∈IQC(Ψ,M)

sup
d∈L2[0,T ]
d6=0,x(0)=0

‖e(T )‖2

‖d(t)‖2[0,T ]

. (4.3)

Geometrically interpreted, it describes the ball upper bounding the worst-case

output e(T ) over all ∆ ∈ IQC(Ψ,M) for ‖d(t)‖2[0,T ] = 1 and the considered
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finite time horizon [0, T ] with T ∈ [0,∞). It is most applicable for evaluating

physical performance values, such as quantitative design constraints, e.g gust

loads or deviations from a given trajectory. The second performance measure

is the finite horizon worst-case induced L2[0, T ] gain:

‖Fu(Gt,∆)‖2[0,T ] := sup
∆∈IQC(Ψ,M)

sup
d∈L2[0,T ]
d6=0,x(0)=0

‖e(t)‖2[0,T ]

‖d(t)‖2[0,T ]

. (4.4)

It defines an upper bound on the worst-case amplification of the system’s finite

horizon 2-norm over all ∆ ∈ IQC(Ψ,M) for inputs d(t) ∈ L2[0, T ] and the time

horizon [0, T ] with T ∈ [0,∞). It is most suitable to evaluate the maximum

(energy) amplification from a disturbance input to performance output, e.g.

required to evaluate worst tracking performance under uncertainty.

4.4 IQC Bounded Real Lemma for Linear Time-

Varying Systems

A dissipation inequality using the extended system G (4.2) and the finite time

horizon IQC (3.34) is formulated to upper bound either the worst-case gain

in (4.3) or (4.4) of the interconnection Fu(Gt,∆). An LMI condition for the

upper bound γ is given in [151] following the approach in [6]. It is based on

the definition of a time-dependent, continuously differentiable matrix function

P : R+
0 → Snx . By P (t), a quadratic storage function for the extended LTV

system is defined. The LMI condition can be rewritten as an equivalent RDE

applying Schur’s complement, leading to the following Theorem 3 stating an

analysis condition for the robust finite horizon worst-case L2[0, T ] to Euclidean

gain:

Theorem 3. Let Fu(Gt,∆) be well-posed ∀∆ ∈ IQC(Ψ,M), then

‖Fu(Gt,∆)‖2 < γ if there exist a continuously differentiable P : R+
0 → Snx
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such that

P (T ) =
1

γ
C2(T )TC2(T ), (4.5)

Ṗ = Q+ PÃ+ ÃTP − PSP ∀t ∈ [0, T ] (4.6)

and

R =
[
DT11MD11 DT11MD12

DT12MD11 DT12MD12−γInd

]
< 0, (4.7)

with

Ã = [ B1 B2 ]R−1
[

(CT1 MD11)T

(CT1 MD12)T

]
− A, (4.8)

S = − [ B1 B2 ]R−1
[
BT1
BT2

]
, (4.9)

Q =− CT
1 MC1 +

[
(CT1 MD11

(CT1 MD12

]T
R−1

[
(CT1 MD11)T

(CT1 MD12)T

]
. (4.10)

Proof. The proof is based on the definition of a time-dependent quadratic

storage function V (t) = x(t)TP (t)x(t) defined as V : Rnx × R+
0 → R. As

Fu(Gt,∆) is well-posed, a unique solution for xG, v, w, and e exists. Define

the state vector of the extended system x = [ xGxΨ ]. For d ∈ L2[0, T ] and given

initial conditions x(0) =
[
xG(0)

0

]
, the extended system (4.2) with inputs w, and

d has a solution x, z and e. The filter output z also satisfies the time domain

constraint (3.34).

After perturbing (4.6) with an infinitesimally small strictly positive scalar ε,

the resulting Riccati differential inequality (RDI) can be transformed into an

equivalent LMI applying Schur’s complement. The equivalence is guaranteed

by condition (4.7), which also ensures the invertibility of R. The resulting and

reformulated LMI:



Chapter 4. IQC Bounded Real Lemma for Linear Time-Varying Systems 61


P (t)A(t) + A(t)TP (t) + Ṗ (t) P (t)B1(t) P (t)B2(t)

B1(t)TP (t) 0 0

B2(t)TP (t) 0 −γ(1− ε)Ind



+


C1(t)T

D11(t)T

D12(t)T

M
[
C1(t) D11(t) D12(t)

]
≤ 0

(4.11)

is left and right multiplied with [xT , wT , dT ] and [xT , wT , dT ]T , respectively.

Applying the relations in (4.2) results in the dissipation inequality:

V̇ (t)︷ ︸︸ ︷
ẋ(t)TP (t)x(t) + x(t)TP (t)ẋ(t) + x(t)T Ṗ x(t)−γ(1− ε)d(t)Td(t)

+ z(t)TMz(t) ≤ 0

(4.12)

Integrating (4.12) from 0 to T and applying the initial conditions gives

x(T )TP (T )x(T )− xG(0)TP11(0)xG(0)− γ(1− ε)

‖d(t)‖22[0,T ]︷ ︸︸ ︷∫ T

0

d(t)Td(t)dt

+

∫ T

0

z(t)TMz(t)dt ≤ 0,

(4.13)

with P11 being the upper left diagonal block matrix of P associated with xG. As

∆ ∈ IQC(∆,M), the last term in (4.13) can be neglected according to (3.34).

Equality (4.5) is left and right multiplied with x(T )T and x(T ), respectively,

resulting in

x(T )TP (T )x(T ) =
1

γ
x(T )TC2(T )TC2(T )x(T ) =

1

γ
e(T )T e(T )︸ ︷︷ ︸
‖e(T )‖22

.
(4.14)

Substituting (4.14) in (4.13) and applying the Euclidean vector and finite hori-
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zon L2[0, T ] norm accordingly results in:

1

γ
‖e(T )‖2

2 − xG(0)TP11(0)xG(0)− γ(1− ε) ‖d(t)‖2
2[0,T ] ≤ 0 (4.15)

From (4.3), it follows that xG(0) = 0. Thus, it can be concluded that ‖Fu(Gt,∆)‖

is upper bounded by γ.

Theorem 3 can be easily adjusted to formulate an upper bound on the robust

worst-case induced L2[0, T ] gain:

Theorem 4. Let Fu(Gt,∆) be well posed ∀∆ ∈ IQC(Ψ,M), then

‖Fu(Gt,∆)‖2[0,T ] < γ if there exist a continuously differentiable P : R+
0 → Snx

such that

P (T ) = 0, (4.16)

Ṗ = Q̂+ PÂ+ ÂTP − PŜP ∀t ∈ [0, T ] (4.17)

and

R̂ =
[
DT11MD11+DT21D21 DT11MD12+DT21D22

DT12MD11+DT22D21 DT12MD12+DT22D22−γ2Ind

]
< 0, (4.18)

with

Â = [ B1 B2 ] R̂−1
[

(CT1 MD11+CT2 D21)T

(CT1 MD12+CT2 D22)T

]
− A, (4.19)

Ŝ = − [ B1 B2 ] R̂−1
[
BT1
BT2

]
, (4.20)

Q̂ =− CT
1 MC1 − CT

2 C2

+
[

(CT1 MD11+CT2 D21)T

(CT1 MD12+CT2 D22)T

]T
R̂−1

[
(CT1 MD11+CT2 D21)T

(CT1 MD12+CT2 D22)T

]
.

(4.21)

Proof. The proof is similar to Theorem 1. Based on the definition of a time-

dependent quadratic storage function V (t) = x(t)TP (t)x(t). After perturbing

(4.17), the resulting Riccati inequality can be rewritten as an LMI applying the

Schur complement. Multiplying [xT , wT , dT ] and [xT , wT , dT ]T on the left/right
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side, respectively, of the LMI results in a dissipation inequality. The integration

provides the upper bound γ on ‖Fu(Gt,∆)‖2[0,T ] implied by ‖e(t)‖2
2[0,T ] ≤ (1−

ε)γ2 ‖d(t)‖2
2[0,T ] for the final condition P (T ), zero initial conditions, and ∆ ∈

IQC(Ψ,M).

4.5 Computational Approach

Some considerations are necessary to convert the results of Section 4.4 into a

computationally feasible problem. In general, an infinite set of IQCs represent-

ing a given perturbation ∆ exists. A common approach found in literature, see

e.g. [6, 227], is selecting a fixed set of IQC filters and a free parameterization of

M . Consequently, M lies within a feasibility setM such that ∆ ∈ IQC(Ψ,M)

for all M ∈M.

4.5.1 Worst-Case Gain Optimization Problem

The effects of a changing parameterization M ∈M, given a fixed choice of Ψ

are best shown by example. Therefore, Theorem 4 is applied to calculate the

induced finite horizon worst-case L2[0, T ] gain of the Euler equation, a typical

linear time-varying ordinary differential equation, in interconnection with an

uncertainty.

Example 4.5.1. The Euler equation is defined for t 6= 0 by the nominal finite

horizon LTV system Ge:

ẋ1

ẋ2

 =

 0 1

− q
t2
−p

t


x1

x2

+

 0

1
t2

 d

e =

1 0

0 0


x1

x2

 .
(4.22)

Ge is extended by a multiplicative dynamic norm-bounded input uncertainty

∆ (‖∆‖∞ ≤ 1) as shown in Fig. 4.3, to create the uncertain LTV system
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Fu(Ge,∆). ∆ is represented by the IQC introduced in Example 3.7.1 built

Ge

∆

ed

Figure 4.3: Euler equation extended with a multiplicative input uncertainty

by the static filter Ψ1 = I2 and the parameterization M1 = λ1 [ 1 0
0 −1 ], with

λ1 > 0 denoted by IQC1(Ψ1,M1). Applying the IQC allows to convert the

interconnection in Fig. 4.3 into the robust LTV framework, as described in

Section 4.3. Hence, Theorem 4 can be applied to define an upper bound on the

uncertain Euler equation’s induced finite horizon worst-case L2[0, T ] gain.

Given Theorem 4, the minimal achievable upper bound on the worst-case gain

for a given Ψ1 and feasible λ1 value is defined by the smallest value of γ for

which the RDE in (4.17) defined by Fu(Ge,∆), Ψ1, M(λ1), and γ is fully

solvable. This minimal value of γ can be easily calculated via bisection over it

constraint by the solvability of (4.17). The influence of λ1 on the value of γ

is evaluated by executing the bisection over a grid of 150 logarithmically and

linearly space values λ1i in the interval [10−7, 104]. A lower and upper bound

of γ of 0 and 50, respectively is chosen. The bisection’s absolute tolerance is

5 ·10−7. For the integration of the RDE, the built-in Matlab function ode15s is

applied, with an absolute and relative tolerance of 10−2 and 10−6, respectively.

This is a solver specialized on stiff ODEs [214], RDEs generally fall into this

category [228]. The analysis horizon spans from 5s to 10s seconds. In Fig.

4.4, the resulting γi over λ1i are displayed with a linearly scaled x-axis for

the linearly spaced grid on the left and a logarithmically scaled x-axis for the

logarithmically spaced grid on the right. The minimal value calculated for γ is

6.0967 given λ1 = 18.5548. In total, 8 seconds were required to calculate all

γi for the logarithmic case with the bisection parallelized on eight processors

of an Intel i7 in a standard desktop computer with 32GB memory. The linear

case required 5s in the same setup and provided a minimal γ of 8.8261 for

λ1 = 26.2213.
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γ
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Figure 4.4: Minimal realizable value of γ for a given value of λ1 calculated via
bisection

Using a second IQC representation for ∆, the influence of the selected IQC

filter and the resulting richer parameterization is demonstrated. Following ex-

ample 3.7.1, ∆ is represented by the conic combination of two IQCs, namely

IQC1(Ψ1,M1) and IQC2(Ψ1,M2). The factorizations are selected as Ψ1 = I2

and Ψ2 = 1
s+1

I2 with the respective parameterizations M1 = λ1 [ 1 0
0 −1 ] and

M2 = λ2 [ 1 0
0 −1 ], with λi > 0. For the evaluation of the minimal possible γ

given a fixed λ1 and λ2, both are gridded on the interval [10−7, 104] by 150

logarithmically spaced points. Hence, this results in an analysis grid of 22500

points. Subsequently, the bisection is executed over all possible combinations of

λ1i and λ2j to identify the corresponding minimal γij. The rest of the analysis

setup remains unchanged. In Fig. 4.5 the behavior of this minimal γ with re-

spect to λ1 and λ2 is shown, where the x and y-axis are logarithmically scaled.

A minimal γ value of 6.0940 for the parameterization λ1 = 18.5543 and

λ2 = 1.4945 · 10−4 was calculated. The analysis was completed in 22min and

15s. Hence, the richer IQC parameterization only provides an negligible lower

minimal γ with a 167 times higher computational cost.

As emphasized by Example 4.5.1, the upper bound γ on the worst-case gain in

Theorem 3 and Theorem 4 directly depends on the choice of the IQC param-

eterization, for a chosen Ψ. Evaluating a grid of feasible parameterizations is
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Figure 4.5: Minimal realizable value of γ for a given value of λ1 and λ2 calculated
via bisection

not feasible in an industrial application, as it is unlikely that it contains the

exact value of M connected to the global minimum of γ. Furthermore, it is

computationally inefficient for larger parameterizations. Hence, to obtain the

lowest upper bound γ of the worst-case input/output gain of the uncertain

interconnection, an optimization over the IQC parameterization M(λ) given a

fixed Ψ must be performed. The RDE in (4.6) and (4.17), respectively, is pa-

rameterized by the IQC matrix M . However, due to the application of Schur’s

complement, M enters the RDEs nonlinearly. Thus, a nonlinear optimization

problem directly over the parameterization M ∈M minimizing γ constrained

by the integrability of the RDE can be derived. This optimization approach

is also motivated by the shapes of the graphs in Fig. 4.4 and Fig. 4.5. In the

case of the finite horizon worst case L2[0, T ] to ‖e(T )‖2 gain, it is written as:

min
M∈M

γ

such that ∀t ∈ [0, T ]

P (T ) = 0

Ṗ = Q̂+ PÂ+ ÂTP − PŜP

R̂ < 0.

(4.23)
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The nonlinear optimization problem for the finite horizon worst-case L2[0, T ]

gain can easily be derived from (4.23) by replacing Â, Ŝ, Q̂, and R̂ with Ã, S, Q,

and R respectively, and changing the final condition to P (T ) = 1
γ
C2(T )TC2(T ).

4.5.2 Requirement Specification for the Nonlinear Pro-

gram

Note that in general, M enters (4.23) in a non-convex way, as clearly visible

in Fig. 4.5. However, given the shape of the results of γ over the IQC param-

eterization in Fig. 4.4 and Fig. 4.5, the problem appears to be locally convex

for large areas of the search space. Thus, a direct optimization over M ∈ M

appears promising. However, a global optimization algorithm must be applied,

to avoid to get stuck in local minimums during the search.

Furthermore, a derivative-free search procedure is required. As the calculation

of analytical derivatives for the problem (4.23) is infeasible, only numerical

derivatives could be used. Two main reason render this method impracti-

cal. Firstly, integrating the RDE (4.6) or (4.17) becomes computationally

more expensive for longer analysis horizons and especially richer parameteri-

zations. Note that the RDE is a matrix function, with Ṗ ∈ Rnx×nx and thus,

n2
x scalar RDEs must be solved. Hence, the total evaluations of the RDE (4.6)

or (4.17) should be reduced to a minimum. Secondly and even more impor-

tantly, the optimization problem must be assumed non-smooth, because of its

non-convexity.

Evaluating Example 4.5.1 for the conic combination of IQC1(Ψ1,M1) and

IQC2(Ψ2,M2) for a wider and denser logarithmically spaced grid of 200× 200

values of λ1 and λ2, each in [10−10, 104], show that the optimization problem

is not strictly convex around the identified minimal γ, as the gradient there

is zero. Also, local minimums of γ for low values of λ1 at the boundary of

the search space can be found. These are attributed to numerical issues oc-

curring during the integration process, due to very high condition numbers of
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the matrix function R̂. This observation is emphasized with Fig. 4.6, where

besides the overall result, the γ value over λ2 for a fixed λ1 value of 18.0419

and equivalent plot for fixed value of λ2 = 24.9451 is plotted. Thus, gradient

10−10 10−7 10−4 10−1 102

20

40

λ2

γ
λ1 = 18.0419 fixed

10−10 10−7 10−4 10−1 102

20

40

λ1

γ

λ2 = 24.9451 fixed

Figure 4.6: Non-Convexity of γ over λ1 and λ2 for the Euler equation

information cannot be used and the non-smoothness must be robustly handled.

This can be problematic, especially for multiple uncertainties and, thus, more

complicated parameterizations. Thus, an optimizer that does not require ini-

tial solutions is favorable for this optimization problem. Recall that although

the worst-case finite horizon gains are theoretically always bounded, the un-

derlying RDE has a finite escape time, i.e. it is not necessarily solvable over the

whole analysis horizon as it blows-up to infinity [125, 228]. Also, identifying

an adequate initial search space is critical as a too narrow search space could

result in not identifying the global minimum, comparing Fig. 4.5 and 4.6.

Consequently, adaptive search bounds would help avoid an extensive initial

search space, especially for small parameterizations.

4.6 Meta-Heuristics for the Worst-Case Opti-

mization Problem

Two novel custom-tailored optimization algorithms are proposed based on the

requirements in Section 4.5.2 to deal with the nonlinear problem (4.23) effi-

ciently. Both algorithms follow a similar concept, consisting of a simple bi-
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section nested within a meta-heuristic optimizer. The bisection is used to

obtain a minimal γ for a given M , i.e. bisect (4.23) with a fixed M ∈ M.

This specific M is provided by the meta-heuristic, performing the optimiza-

tion over M ∈ M. Thus, the main difference between both algorithms is the

applied MH search strategy, a logarithmically scaled self-adaptive differential

evolutionary optimizer with linear population size reduction (Log-L-SHADE),

or an adaptive boundary sine cosine algorithm with population size reduc-

tion (Ab-SCA-PR). Although, the MHs’ principle search procedures differ, the

LTV IQC optimization problem-specific adaptations in them are similar and

described in the following sections.

4.6.1 Necessary Modifications

MHs present a direct and global optimization method. The latter is achieved

through a degree of randomization in the search process, which allows the

solution to ”escape” from local minimums. In general, they do not require a

user guess for an initial solution but utilize a random one inside the search

space. Due to the randomization, this initial solution does not necessarily

need to be valid. A large enough population size, i.e. set of solution vectors

and iteration amount, will eventually lead to a feasible solution vector. The

randomization in the search procedure is also beneficial for handling the non-

smoothness of the problem. Also, MHs are parallelizable. This supports larger

parameterization, exploiting the fact that multi-core processors are standard

in industry and academia. Hence, MHs check most of the requirements in

Section 4.5.2 to allow for robustly solving the LTV IQC optimization problem

(4.23).

However, most if not all MHs have been developed to deal with bound-constrained

optimization, which can be generally expressed as:

min : f(λ) ; λL ≤ λ ≤ λU , (4.24)
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where λ is a vector of nλ design variables λk, f is an objective function, and

λL and λU are respectively the lower and upper bounds of λ. MHs are directly

applicable to simple IQCs or conic combinations of IQCs as shown in Example

3.7.1 using a large enough upper bound. More general IQC representations

impose additional constraints.

Nonlinear Constraints on the Design Variables

The optimization problem in (4.23) is more complicated with respect to the

design variables. In general, the elements of the design vector λ ∈ Rnλ building

the IQC parameterization M(λ) are not bounded. They are only constrained

by the structure imposed by M(λ) ∈ M, which in fact renders certain value

combinations infeasible. More general IQC representation for structured and

full-block dynamic, as well as parametric uncertainties are given in [227] and

presented in the next three examples.

Example 4.6.1. Let ∆ = δInv be a LTI real diagonally nv repeated parametric

uncertainty δ, with δ ∈ R and |δ| ≤ b, with b ∈ R. A valid time domain

IQC for ∆ is defined by Ψ =
[
ψν⊗Inv 0

0 ψν⊗Inv

]
and M := {M =

[
b2X Y
Y T −X

]
:

X = XT > 0 ∈ Snv(ν+1), Y = −Y T ∈ Rnv(ν+1)×nv(ν+1)}. A typical choice for

ψν ∈ RH(ν+1)×1
∞ is:

ψν =

[
1 s+ρ

s−ρ . . . (s+ρ)ν

(s−ρ)ν

]T
, ρ < 0 , ν ∈ N0. (4.25)

Example 4.6.2. Let ∆ be a LTI dynamic uncertainty, with ∆ ∈ RH∞ and

‖∆‖∞ ≤ b. A valid time domain IQC for ∆ is defined by Ψ =
[
ψν⊗Inv 0

0 ψν⊗Inv

]
and M := {M =

[
b2X 0

0 −X
]

: X = XT > 0 ∈ Snv(ν+1)}. A typical choice for

ψν ∈ RH(ν+1)×1
∞ is:

ψν =

[
1 s+ρ

s−ρ . . . (s+ρ)ν

(s−ρ)ν

]T
, ρ < 0 , ν ∈ N0. (4.26)

Example 4.6.3. Let ∆ be a full-block dynamic LTI uncertainty, with ∆ ∈

RHnw×nv and 0 < ‖∆‖∞ ≤ b. A valid time domain IQC for ∆ is defined by
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Ψ =
[
bψν⊗Inv 0

0 ψν⊗Inw

]
and M := {M =

[
X⊗Inv 0

0 −X⊗Inw

]
: X = XT ≥ 0 ∈

S(ν+1)}.

A typical choice for ψν ∈ RH(ν+1)×1
∞ is:

ψν =

[
1 1

(s−ρ)
. . . 1

(s−ρ)ν

]T
, ρ < 0 , ν ∈ N0. (4.27)

In all three cases, the matrices X and Y are the optimization variables built

by λ in (4.24). Y is a skew-symmetric matrix whose off-diagonal elements

are unbounded. X must be positive definite and symmetric, which adds a

nonlinear constraint to the optimization problem. Thus, the diagonal entries

must be strictly positive, whereas the upper diagonal values are in principle

unbounded. However, the positive definiteness renders certain parameter com-

binations infeasible. Assuming that ν = 1 and nv = nw = 1, X = [ x1 x2
x2 x3 ] > 0,

iff x1 > 0, x2 > 0, and x1x3 − x2
2 > 0. For larger matrices of block structure,

a similar condition is provided by Schur’s complement. See [225] for more de-

tails. The positive definiteness of matrices like X is covered in the developed

algorithms exploiting the fact that any indefinite symmetric matrix X can be

made positive definite by adding the absolute value of a real number smaller

than its smallest eigenvalue λmin to every diagonal entry. Bad conditioning

of the matrix X is avoided by increasing this correction value by a positive

random number of the same magnitude as λmin. Here, a random number is

chosen to follow the general randomization solution updates in MHs.

Nonlinear Constraint Imposed by the RDE’s Solvability

The solvability of the RDE (4.6) and (4.17), respectively, which is directly

related to the existence of the optimized upper bound γ, imposes another non-

linear constraint. It is handled by a bisection, which is nested in the MHs

algorithm providing the respective M ∈ M. The general implementation fol-

lows Example 4.5.1, with some practical changes for more flexible and efficient

implementation for the worst-case optimization. In Algorithm 1, pseudo-code
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illustrates the general implementation used in the thesis.

Algorithm 1 Bisection to calculate local minimal γ

Input: G, M , γLB, γUB, T
Output: γ = γUB

Initialize: εBS, P (T ), εrel,ODE, εabs,ODE

Solve Bisection: Calculate the γ for a fixed M provided by the MH
while γUB−γLB

γUB
≥ εBS do

if First execution of respective M then
γTry = γUB

else
γTry = γLB+γUB

2

end if
Solve RDE: The RDE (4.6)/(4.17) from G, M and γTry is solved
backwards from T to 0 with initial condition P (T ) and tolerances εrel,ODE

and εabs,ODE. Terminate integration if eigenvalues of Ṗ (t) ”blow-up”.
Output: Solution P (t) and time vector tRDE of the integration.
if RDE is fully solvable, i.e. min (tRDE) = 0 then
γUB = γTry

else
γLB = γTry

end if
end while

The bisection is evaluated between a user-defined upper and lower bound γUB

and γLB, respectively until a user-specified relative tolerance εBS is reached.

Note that the initial run is evaluated for γTry equaling the upper bound to

identify if the bounds are suitable and avoid unnecessary evaluations. If the

upper bound is infeasible, the bisection for the given bounds is not executed.

Instead, the upper bound is upscaled by a factor of 1000. This procedure is

repeated until either an upper bound is found feasible or a maximum upper

bound of 1020 is reached. The upscaling allows for narrower initial bisection

bounds. In combination with the pre-check, it increases computational effi-

ciency. Note that the value fix value of 1000 was chosen based on experience.

However, smaller and larger values can be chosen founded on the expected

value range of γ

The RDE corresponding to the applied theorem is integrated backwards in

time from the respective terminal condition P (T ) with the user-specified ab-

solute and relative tolerance εODE, abs and εODE, rel, respectively. In this thesis,
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exclusively the built-in Matlab ODE solver ODE15s is applied for solving the

RDE. This solver is especially designed for stiff ODEs. For all application

problems evaluated in this thesis, it outperformed Matlab’s other ODE solvers

(ODE45 (non-stiff), ODE23 (non-stiff), ODE113 (non-stiff), ODE23s (stiff), ODE23t

(stiff), and ODE23tb (stiff)) with respect to the required integration time. An

event function recognizes if the RDE ”blows-up” up, i.e. the solution P (t) be-

comes unstable and approaches infinity, due to an escape time shorter than the

analysis horizon. Therefore, it calculates the maximum eigenvalue of Ṗ (t) and

terminates the integration if necessary. This avoids computationally expensive

integration attempts and reduces the overall execution time of the bisection.

If no analytical description of G(t) is provided, piecewise cubic Hermite inter-

polating polynomials (PCHIPs) of the system matrices are used to describe

G(ts) at the integration time step ts. This guarantees continuously differen-

tiable representations of the system matrices, which are generally assumed for

the solvability of non-autonomous RDEs [124, 125, 228]. It has to be men-

tioned that, in general, integration can not be avoided. This is because the

Q/Q̂ matrix is indefinite due to the applied positive negative IQC multipliers.

The strict definiteness of Q/Q̂ is a necessary condition of common existence

theorems, e.g. Theorem 4.1.6 in [228], which avoid solving the actual RDE.

Neither did the solution of the equivalent linear system derived via Radons

Lemma, see e.g. [229], show any benefit over solving the original RDE due to

the resulting Hamiltonian system’s instability.

Nonlinear constraint imposed by R < 0

The last nonlinear constraint on the optimization problem (4.23) is imposed by

the condition R < 0/R̂ < 0. Note that for most valid IQC parameterizations

M ∈ M the condition is automatically fulfilled. Nevertheless, R < 0 must be

checked in the algorithm. The condition R < 0 is checked inside the bisection

as R is a function of the bisected γ and M . If R ≥ 0, the integration is skipped

and this γTry is treated equivalently to an incomplete integration.
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Note that another critical issue regarding the constraint R < 0 is that the

condition number of R can become very large for valid IQC parameterizations,

which has adverse numerical effects on the inverting of R and integration of the

RDE. The latter is visible by a significant increase in the required integration

time. Extensive test scenarios showed that these solutions do not relate to

global minimums. Therefore, a user-defined upper bound on R’s condition

number can be proposed. It can be checked before the bisection for M and

γUB, and if violated, the bisection is skipped, or if the search procedure allows

it a new M resulting in a valid R can be proposed.

4.6.2 Efficient Implementation and Application

By exploiting the LTV IQC optimization problem’s characteristics in the search

and the general worst-case analysis procedure, the MH’s computational effi-

ciency can be significantly increased. The main goal must be the reduction

of the overall amount of RDE evaluations and narrowing the technically infi-

nite search space. Note that all the subsequently discussed adaptations and

analysis strategies not only hold true for MHs developed in this thesis but also

in general. Therefore, this section can be viewed as a general guideline for

applying MHs efficiently to the robust LTV analysis framework.

Exploiting Symmetry

Although the integration of the RDE (4.6)/(4.17) cannot be avoided, the com-

putational effort solving it can be reduced by exploiting the symmetry of P .

As the RDE is hermitian, it is sufficient to solve the upper triangular portion

and diagonal of this matrix differential equation. Hence, only 0.5(nx(nx + 1))

rather than the original n2
x equations have to be solved per RDE evaluation,

i.e. for large systems, the computational effort is nearly halved.
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Narrowing the Bisection Bounds and Avoiding Unnecessary Bisec-

tions

Narrowing the initial bisection bounds reduces the number of bisection steps,

and consequently, RDE evaluations. In general, the robust worst-case gain

is lower bounded by the nominal worst-case gain, and its value can be taken

as initial guess for the lower bound γLB. In some cases, a theoretical lower

bound larger than the nominal γ exists. As R =
[
R11 R12
R21 R22

]
< 0 ⇔ R22 < 0

and R/R22 = R11 − R12R
−1
22 R21 < 0 (Theorem 1.12 in [225]), it follows from

Theorem 1 and Theorem 2 that γ2 > DT
12MD12 +DT

22D22 and γ > DT
12MD12,

respectively. This step further reduces the computational cost of the bisection

by narrowing the maximum bisection interval.

The selection of an upper bound γUB for the initial population is difficult and

usually handled by simply selecting a ”large enough” value, i.e. several mag-

nitudes larger than γLB. However, for subsequent populations, a characteristic

shared by all MHs can be exploited, only updated solution vectors (children)

whose γ value (fitness) is smaller than the origin (parent) solution’s γ will be

used to update the solution vector (reproduction). Consequently, the initial

γUB to evaluate children can be set to the parent’s γ, and before the bisection

starts the RDE can be evaluated for said γUB. If the RDE cannot be solved,

the children are no improvement over its parent, the children must not be used

for reproduction, and no bisection is necessary as the actual degradation in-

formation is not required to proceed in the search. In the case that a solution

exists, γUB can be used as the initial upper bound. Altogether, this signifi-

cantly reduces the number of RDE integrations. How well MHs handle the

reduction of search information is shown in the benchmark example in Section

4.7.

Simplifying the Identification of Initial Solution Sets

For more extensive IQC representations, identifying valid initial solutions showed

to be difficult for the tested MHs. Albeit, the search could commence without
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any valid initial solution, providing such increases the search performance. If

the IQC represents dynamic or parametric uncertainties, down-scaling the in-

dividual norm bounds b enlarges the feasible search space, i.e. the search space

for which a solution can be found. This effect is investigated on the example

of the Euler equation from Example 4.5.1 given IQC1(Ψ1,M1) by reducing b

from 1 to 0.2 in 0.2 increments and 150 λ1 values logarithmically spaced in

[10−2, 106]. The resulting γ over λ1 values are shown in Fig. 4.7. It can be seen
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Figure 4.7: Comparison of the valid search space for reducing uncertainty norm-
bounds b: b = 1 ( ), b = 0.8 ( ), b = 0.6 ( ), b = 0.4 ( ), b = 0.2 ( ),
identified minimums ( )

that, the feasible search space given γUB = 50 increases significantly, but the

identified minimum remains inside the same magnitude. Moreover, the identi-

fied minimums for smaller b are in the feasible search space of the larger b, as

the norm bound insignificantly changes the optimal solution. This effect is ex-

ploited for the rescaling of the norm bounds necessary later in the optimization.

Note that the computational overhead introduced by the scaling/rescaling pro-

cedure is marginal as the rescaling only requires a recalculation of the current

solution set’s fitness values.

Utilizing Previous Results

The observed correlation between b and the optimal solution seen in Fig. 4.7

can be exploited in analyses evaluating a control system’s performance degra-

dation for an increasing amount of uncertainty, i.e. increasing norm bounds.



Chapter 4. Meta-Heuristics for the Worst-Case Optimization Problem 77

Here, the optimal solution of a preceding b can be used as initial guess and nar-

row the search space, improving the overall analysis performance and efficiency.

Furthermore, the respective minimal γ can be used as γLB for the subsequent

b value. This strategy is applied in the tracking analysis conducted in Section

4.7.

A similar correlation exists between the analysis horizon and the position of the

optimal solution, as emphasized in Fig. 4.8. Here, the analysis’ final time T is
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Figure 4.8: Comparison of the optimum locations for increasing final times T :
T = 10 ( ), T = 15 ( ), T = 20 ( ), T = 25 ( ), T = 30 ( ), identified
minimums ( )

increased in 5s steps from 10s to 30s, and the respective γ values are plotted

over λ1. It can be seen that adjacent analysis horizon’s minimums are inside

the same magnitude. Consequently, the optimal solution of preceding final

times can be used as initial guess and narrowing the search space proceeding

in the analysis. Exploiting this correlation is particularly helpful for trajectory

analyses, i.e. analyses where the worst-case values of performance criteria are

evaluated along the whole trajectory. This policy is applied in Chapter 6,

where a space launcher’s atmospheric flight phase is analyzed.

Furthermore, changes in the nominal system’s parameters/coefficients impact

the location of the identified minimum, as long as the overall structure remains

the same. This is shown by increasing p and q in (4.22) and evaluating γ over

λ1. The results are displayed in Fig. 4.9. Starting from a p and q values of

3 and 2, respectively, the values are doubled for each subsequent evaluation
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until p = 48 and q = 32 are reached. As the minimums’ position between
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Figure 4.9: Comparison of the optimum locations for different combinations (p, q)
in (4.22): (3, 2) ( ), (6, 4) ( ), (12, 8) ( ), (24, 16) ( ), (48, 32) ( ),
identified minimums ( )

subsequent points does not noticeably change, in iterative gain tuning processes

in the control design process, information from previous designs can be used

as initial guess for the initial solution and search space.

Identifying Suitable Terminal Conditions

Meta-heuristics and global optimizations generally only utilize terminal condi-

tions in the form of a maximum number of cost function evaluations or solution

set iterations. As no convergence guarantees exist and arbitrary local mini-

mums can exist, using relative and absolute tolerances on the function value

as terminal conditions are infeasible. A common approach is to use a global

optimizer to find the ”rough” region of the global minimum, which is then

calculated using local optimization. However, most of the time, the precise

worst-case gain is not required, and it is sufficient to know if a preset limit

value is not violated. Hence, the MHs in this thesis are extended with an

additional terminal condition based on a minimal achievable function value to

reduce the computational effort in such a case.

Parallelizing the Search Procedure

As the main computational cost driver is the number function evaluations,

due to the integration of the RDE, all proposed meta-heuristics have fully
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parallelized cost function evaluations. This means, the bisections for a given

set of solutions M ∈M are run in parallel on the available processor cores.

4.6.3 Ab-SCA-PR

The first MHs algorithm proposed is a novel adaptive boundary sine cosine

algorithm with population size reduction (Ab-SCA-PR). It is dedicated to solve

for LTV worst-case gain optimization problems applying conic combinations

of k IQCs defined by IQCk(Ψk,Mk) resulting in stacked IQCs:

Ψ =


Ψ1

...

Ψk

 andM(λ) =


λ1M

. . .

λkM

 ; λ1, ..., λk > 0 (4.28)

as introduced in Example 3.7.1. Consequently, the design variables are λ ∈ Rk
+,

i.e. a vector consisting k strict positive real numbers arranged in form of

M(λ) ∈M describing the IQC parameterization. Conic combinations of IQCs

cover analysis of a single dynamic uncertainties, time delays (see, e.g. [230])

or sector nonlinearities (see, e.g. [231]). The search procedure is specifically

designed to work well with the arbitrarily large space, but also to work ro-

bustly under the nonlinear constraints introduced in Section 4.6.1 and exploit

attained information in Section 4.6.2 on the LTV IQC analysis problem wher-

ever possible.

Its basic search procedure is based on the original sine cosine algorithm (SCA)

introduced in [232]. Similarly to most MHs, the Ab-SCA-PR contains three

main steps, namely initialization, reproduction (based on sine and cosine func-

tions), and selection phase. It is extended with an adaptive bound technique

to deal with the large search space. Additionally, a population reduction is

included to avoid extensive cost function evaluations late in the search. These

are generally computationally expensive due to the bisection. In Algorithm 2,

the Ab-SCA-PR’s implementation is presented via pseudo-code.

Before the algorithm is executed, the user needs to provide the maximum
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Algorithm 2 Ab-SCA-PR

1: Input: Np,max, Ni,max, nλ, Umax, γLB, γUB, εBS, λmax, λu, G, M
2: Output: λbest, γbest

3: Generate random initial population P and build respective M(λl) ∈M
4: Calculate γ(M(λl)) via bisection (γLB/γUB fixed) constrained by solvability

of the RDE over [T, 0], for P (T ), treat R ≥ 0 as failed integration
5: Find the best solution λbest and initialize U = 0
6: for Ni = 1 to Ni,max do
7: Calculate parameter r1 based on (4.31)
8: for l = 1 to Np do
9: for k = 1 to Nλ do

10: Randomly generate the parameter r2,r3 and r4 in the ranges of
[0, 2π], [0, 2] and [0, 1], respectively

11: Update the kth element of the lth solution (λl) based on (4.30)
12: end for
13: Build M(λl) ∈M
14: if RDE solvable for γlNi−1 and M(λl) then Execute bisection with

γUB = γlNi−1 calculating γ(M(λl)), handle R ≥ 0 as failed
integration

15: else Skip bisection, treat λl as failure
16: end if
17: end for
18: Find λbest,new

19: if γ(M(λbest,new)) < M(γ(λbest)) then λbest = λbest,new and set U = 0
20: else U = U + 1
21: end if
22: if U > Umax then Update search bounds via (4.32), reset U to 0
23: Generate Nadd solutions in M using LHS for new bounds
24: Remove all solutions located in the old bounds
25: Apply the k-mean clustering technique to group the remaining

solutions into Nadd groups and find the centroid solutions
26: Calculate γ values of the centroid solutions of each group via

bisection (γLB/γUB fixed) and save to current population if they
are better than the worse solution in the population

27: end if
28: Update population size via (4.33) and remove worst solutions from P
29: end for

population size Np,max, the maximum number of population iterations Ni,max,

the number of decision variables nλ, maximum number of unsuccessful repro-

ductions Umax, lower and upper bound of the bisection γLB and γUB, respec-

tively, the bisections absolute tolerance εBS, the vector λu with the initial upper

bounds of the search space, the vector λmax containing the maximum upper

bounds of the search space, the extended LTV system G containing the fixed
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IQC filter Ψ, and last the nonlinear constraint of the search space M provid-

ing the structure and properties of M(λ). The estimates for γLB and γUB are

chosen based on the recommendations in section 4.6.2.

The main algorithm starts with generating a random initial population P . It

describes a set of l solution vectors λl ∈ Rnλ
+ written as:

P = {λ1, λ2, ..., λNp,max}. (4.29)

The elements of λl build the respective IQC paramterization M(λ). Hence, it

must be assured that M(λl) ∈M. In case of the IQC parameterization given

in Example 3.7.1 the elements of λ need to be strict positive scalars. Hence, it

is sufficient to define the search space for each element of λl as λlk ∈ (0, λmax,k],

where λmax,k is a sufficiently high upper limit. While an initial λmax has to be

specified, it will be adapted during the search if necessary. Hence, the opti-

mization is not confined to the initial search space. This allows for a narrowed

initial search space, e.g. exploiting information from previous optimizations

as described in Section 4.6.2. Furthermore, it increases the algorithm’s ap-

plicability as the poorly chosen initial bounds are compensated. This bound

adaptation is motivated by Example 4.5.1. The comparison of Fig. 4.5 and 4.6

indicates that the search space’s lower bound is too high for the first analysis,

whereas the upper bound is too high for both analyses.

After it is guaranteed that M(λ) ∈ M, the minimal value of γ for each λl in

the initial population γ(M(λl)) is calculated using the bisection constrained

by the solvability of the RDE (4.6) or (4.17), as described by Algorithm 1. The

bisections for the M(λ) are fully parallelized, i.e. if executed the on a multi-

core processor the bisections are distributed to all available cores. Due to the

RDE’s finite escape time it is possible that for a given M(λl) no γ value can

be calculated, as the RDE is never fully solvable. In this case, γ(M(λ)) is set

to 1020. The R < 0 constraint is included as described in Section 4.6.1. This

means if R(M(λl), γ)) ≥ 0, the respective γ bisection step is treated similarly
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to a not fully integrable RDE.

Then, the present best solution λbest is identified. Now, the iteration starts

with the reproduction process updating each design solution in the population

via

λlnew,k =

 λlold,k + r1 sin (r2)
∣∣r3λbest,k − λlold,k

∣∣ , if r4 < 0.5

λlold,k + r1 cos (r2)
∣∣r3λbest,k − λlold,k

∣∣ , otherwise

, (4.30)

where λlnew,k, λ
l
old,k, and λbest,k are the kth vector element of a newly formed

solution for λl, a present solution and the present best solution of the popu-

lation, respectively. The parameters r2, r3, and r4 are uniformly randomized

for each iteration in the intervals of [0, 2π], [0, 2] and [0, 1], respectively. The

parameter r1 is an iterative adaption applying

r1 = a−Ni
a

Ni,max

, (4.31)

where Ni is the present iteration and a is a predefined constant. Again, it

has to be guaranteed that the updated M(λlnew) ∈ M. As M(λlnew) /∈ M is

a simple boundary infraction for parameterizations described by (4.28), the

respective λlnew,k are set to their nearest boundary value.

Before the bisection for the updated M(λlnew) is conducted, it is checked if

the RDE (4.6)/(4.17) is solvable for M(λlnew) and the minimal γlNi−1 value

calculated for its respective parent. If the RDE is not solvable, the bisection

is omitted by the reasoning in Section 4.6.2 and a fitness of 1020 is assigned to

the respective λlnew.

If the RDE (4.6)/(4.17) is fully solvable for M(λl) and γlNi−1, the bisection

is executed using γlNi−1 as the upper bound γUB. Using this adaptive upper

bound, significantly narrows the bisection interval compared to the initial pop-

ulation’s or the one used after a boundary extension, which utilize user defined

bounds.

After concluding all bisections, the best solution obtained from the newly cre-
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ated population is compared with its complement from the preceding iteration.

If the new population’s best solution is an improvement, the current best so-

lution is updated, while U is reset to zero. Here, U is a variable that counts

the number of unsuccessful iterations. Otherwise, the current best solution

remains unchanged, and U is increased by one. If the U value is higher than

a predefined limit, the search space’s bounds are extended. Given the IQC

parameterization in (4.28), each design variable’s upper bound is extended by

λu,newk =

 10λu,oldk if λu,oldk < λmaxk

λu,oldk otherwise

, (4.32)

whereas the lower bound remains zero. In (4.32), λu,oldk and λu,newk are the

upper bound of the kth element of all design variables λl before and after

updating, respectively. The maximum admissible upper bounds of the corre-

sponding elements are given by λmaxk . Note that this boundary adaption can

also be adjusted to cover other search spaces.

Since the bounds of the design variables have been extended, a set of addi-

tional Nadd = 10 solutions located on/inside the extended boundary must be

generated to enhance the optimizer’s search performance. In order to have

the solutions well distributed throughout the extended boundary, a Latin Hy-

percube Sampling (LHS) technique is first used to create 50 · Nadd solutions

throughout the whole boundary of the design variables [233]. Then, all solu-

tions inside the old boundary are removed, while Nadd solutions are created

based on the distribution of the remaining solutions. Here, a k-mean clustering

technique is used to group the remaining solutions into Nadd groups, whereas

each group’s centroid is assigned as one of those Nadd solutions [234, 235].

After calculating their fitness values, the solutions are added to the present

population. Then, the worst solutions in the population are deleted to recover

the required population size.

After obtaining the current best solution of γ and updating the search space for
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each iteration, the population size is reduced based on the following equation

NpNi+1
= Np,max − round

Ni (Np,max −Np,min)

Ni,max

, (4.33)

where NpNi+1
is the population size at iteration Ni + 1. Np,max and Np,min are

the user-defined maximum and minimum population sizes, respectively.

In order words, the presented algorithm starts with the maximum population

size at the first function evaluation and reduces the population size with pro-

gressing function evaluations. If NpNi+1
is lower than the current population

size, the current population’s worst solutions are removed to match the new

population size. The population reduction reduces the amount of necessary

bisection evaluation towards the end of the search when the global minimum’s

neighborhood is likely identified. Simultaneously, it further biases the search

continuously towards this neighborhood, possibly improving the convergence.

Subsequently, the reproduction starts again. The search process ends as soon

as the maximum number of iterations Ni,max is reached, providing the minimal

calculated upper bound γbest on the worst gain and the corresponding λbest.

4.6.4 Log-L-SHADE

The second algorithm developed in this thesis is a novel logarithmically scaled

self-adaptive differential evolutionary optimizer with linear population size re-

duction (Log-L-SHADE). It is custom-tailored to efficiently deal with the op-

timization problem (4.23) for more complex IQC parameterizations such as

parametric uncertainty given in Example 4.6.1 and defined by IQC(Ψ,M):

Ψ =

bψν ⊗ Inv 0

0 ψν ⊗ Inv

 andM(X, Y ) =

X Y

Y T −X

 := (mi,j), (4.34)

with ψν =
[

1 s+ρ
s−ρ ...

(s+ρ)ν

(s−ρ)ν
]T

. Consequently, the design variables are the el-

ements mij of the IQC parameterization M , on which X = XT > 0 and
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Y = −Y T imposes nonlinear constraints, as described in Section 4.6.1. This

optimization problem is also significantly larger than the conic combinations,

as the matrix variable X contributes nv(ν+1)(nv(ν+1)+1)
2

decision variables and

Y nv(ν+1)(nv(ν+1)−1)
2

decision variables. In the case that the uncertainty is re-

peated three times, already, the selection of a relatively low MacMillan degree

ν = 1 for ψν cumulates in thirty-six decision variables. Here, decision vari-

ables related to diagonal entries of X are defined over R+, whereas the ones

related to off-diagonal entries in either X or Y are defined over R. Thus, the

resulting (individual) search spaces are arbitrarily large, i.e. cover several or-

ders in magnitude. Recalling Example 4.5.1 and especially Fig. 4.4 and 4.5,

the change in γ for a variation of the IQC parametrization M(λ) over several

magnitudes is significantly better covered by a logarithmically spaced grid and

represented using a semi-logarithmic plot, respectively. Given a logarithmic

scaling of the x-axis, the problem also appears (locally) convex. Consequently,

searching a logarithmic rather than a decimal scale exploits this observation

and allows the meta-heuristic to converge easier, especially over a search space

spanning several magnitudes. A single design variable mij is represented using

a logarithmic search space by:

mij = (−1)round(msign,ij)10mexp,ij ,with

msign,ij ∈ R+
0 ≤ 1,mexp,ij ∈ R,

(4.35)

where msign,ij and mexp,ij are the elements of the matrix Msign ∈ Snm and

Mexp ∈ Snm , respectively. In the proceeding, they will be arranged in the form

of a block-diagonal matrix MLog = diag(Mexp,Msign) ∈ S2nm with elements

mLog,ij. Therefore, the meta-heuristic searches over the new decision matrix

MLog.

The Log-L-SHADE’s underlying search procedure is based on the original L-

SHADE proposed in [236]. As the Ab-SCA-PR, it contains three main steps,
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namely initialization, reproduction, and selection phase. It is extended with

the introduced logarithmic search space to deal with the complicated and ex-

tensive search space. These are generally computationally expensive due to the

bisection. In Algorithm 3, the Log-L-SHADE’s implementation is illustrated

using pseudo-code.

Algorithm 3 Log-L-SHADE

1: Input: Np,max, Np,min, Ni,max, kCR, kF , G, M, m, n, γlim, MLog,init, kIQC,
γLB, γUB, εBS

2: Output: γbest, MLog,best

3: Initialize: SF , SCR
4: Scale original IQC norm bound by kIQC

5: while Amount of M l with γ(M l) < 1020 less than 0.2Np,max do
6: Generate random initial population PLog, convert to decimal domain

via (4.35), and guarantee M l ∈M, assign γ(M l) = 1020 in case
cond(R(M l, γUB, t)) > 1012

7: Calculate remaining γ(M l) via bisection (γLB/γUB fixed) constrained
by the solvability of the RDE over [T, 0] given P (T ), treat R ≥ 0
as failed integration

8: end while
9: Find current best solution MLog,best and fitness γbest

10: Set IQC norm bound upscaling threshold Np,IQC = Np,max and Ni = 0
11: while (Ni ≤ Ni,max OR γbest > γlim) AND kIQC < 1 do
12: Ni = Ni + 1
13: if kIQC < 1 AND (γbest ≤ γlim OR Np < 0.8Np,IQC) then
14: Set Np,IQC = Np and kIQC = min(3kIQC , 1)
15: Upscale norm bound, recalculate γl with original γUB, and update

MLog,best and γbest

16: end if
17: for l = 1 to Np do
18: Compute M̄ l

Log (4.37), mutate m̄l
Log,ij (4.38), and enforce boundaries

19: Calculate M̄ l via (4.35) and guarantee M̄ l ∈M
20: if RDE is solvable for M̄ l and γ(M l) AND cond(R) < 1012 then
21: Execute bisection with γUB = γ(M l) calculating γ(M̄ l),

handle R ≥ 0 as failed integration
22: else
23: Skip bisection, treat corresponding M l

Log as failure
24: end if
25: if γ(M̄ l) < γ(M l) then M l

Log = M̄ l
Log

26: end if
27: end for
28: Update SF and SCR with µF and µCR calculated via

(4.39)-(4.41) using successful F and CR
29: Identify current best solution MLog,best and fitness γbest

30: Update population size via (4.42) and remove worst solutions from PLog

31: end while
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Before the algorithm is executed, a total of sixteen inputs must be provided

by the user. The first three are similar to the Ab-SCA-PR, namely the max-

imum and minimum population size Np,max and Np,min, respectively, and the

maximum number of population iterations Ni,max. These are followed by the

number of successful crossover rates and scaling factors kCR and kF , respec-

tively. G is the extended system in (4.2), which includes the user-selected IQC

filter Ψ. It is followed by M describing the set of feasible IQC parameteriza-

tions. The inputs m and n, with m ∈ Nnm(nm+1) and n ∈ Nnm(nm+1) define

the minimum and maximum value of the elements in MLog. Furthermore, the

user can provide a scaling factor kIQC for the uncertainty norm bound b cov-

ered by the IQC to accelerate the search of an initial population, see Section

4.6.2. The input γlim is used as rescaling and terminal condition related to

the the worst-case gain’s present best optimization value γbest. A guess for the

initial population can be provided by MLog,init. Remaining are three inputs

that are required to run the bisection, its lower and upper bound γLB and γUB,

respectively, and its relative tolerance εBS.

The algorithm is initialized with the vectors SF ∈ RkF and SCR ∈ RkCR con-

taining kF and kCR elements, respectively, with a value of 0.5. These vectors

are later used to store successful weighted contra harmonic mean values µF

and µCR of successful scaling factors F and crossover rates CR, respectively.

The main algorithm starts with generating a random initial population PLog.

It describes a set of Np,max solution matrices M l
Log, written as

PLog = {M1
Log,M

2
Log, ...,M

l
Log}, (4.36)

whose coefficients ml
Log,ij are confined to their respective bound constraints.

The condition X > 0 requires the respective ml
ii related to the diagonal en-

tries/elements of X to be strictly positive. Therefore, the respective elements

ml
sign,ii in the logarithmic search domain can be fixed to zero, reducing it by

nv(ν+ 1) design variables. In case an initial guess MLog,init is provided, the set
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PLog is extended with it.

Then, the initial population PLog is converted into its decimal domain equiva-

lent Pdec using (4.35), and it is checked if M l ∈M. X > 0 violations are han-

dled according to the remarks in Section 4.6.1 by increasing the corresponding

diagonal elements ml
ii. Accordingly, the corresponding elements ml

Log,ii as-

signed to the element’s magnitude in PLog is updated. The poor conditioning

of R discussed in Section 4.6.1 becomes prominent for larger IQC parameteri-

zations, especially given a large initial search space. Therefore, a default upper

bound of 1012 on R(M l, γUB, t)’s condition number over the analysis horizon

[0, T ] is proposed, which if violated is handled as proposed in Section 4.6.1, i.e.

for the respective M l the bisection is skipped and γ(M l) = 1020.

Now, the minimal γ(M l) related to M l are calculated via bisection as described

in Algorithm 1 and identically to the Ab-SCA-PR’s implementation. The com-

putation is fully parallelized, i.e. the number of accessible workers/processor

cores is directly inverse to the computation time. For a better convergence

of the optimization, a minimum of 20% successful elements in Pdec and, thus,

PLog are required, i.e. elements with γ(M l) < 1020 . If the initial popula-

tion does not contain enough valid members, invalid members are replaced

with new random members until the condition is fulfilled. If the search of a

valid initial set PLog appears problematic, the perturbation’s norm bound can

be downscaled via kIQC. By downscaling, the co-domain/feasibility set of M l

possessing a valid γ is extended. The approach is described and reasoned in

Section 4.6.2. The the more generous feasibility set allowed Log-L-SHADE to

converge faster in numerous test scenarios.

After identifying the current best solution MLog,best with its respective γbest,

the meta-heuristic iteration starts. Firstly, it is checked if the norm bound

covered by the IQC can be upscaled. This is the case, if either γbest < γlim

or Np < 0.8Np,IQC, with Np,IQC = Np,max for the first iteration. Both cases

require that the current scaling kIQC is smaller than 1. If the norm bound

is upscaled, all γ(M l) in the population are recalculated, and the new best
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solution MLog,best and fitness γbest are identified.

Now, the reproduction starts, and a new generation of the population is cre-

ated, using the current-to-pbest/1 strategy from [236]. Therefore, potential

new individuals M̄ l
Log of the population are calculated from current individu-

als M l
Log via

M̄ l
Log = M l

Log + Fl(M
l
Log,pbestl −M l

Log +M l
r1 −M l

r2). (4.37)

In (4.37), M l
r1 and M l

r2 are two randomly selected individuals from the current

population, whereas M l
Log,pbest is a individual, randomly selected from the best

10% of the current population PLog. In (4.37), the scaling factor Fl ∈ R is a

Cauchy distributed random number with variance 0.1 and a mean value µF,kF .

The latter is a randomly selected element from the vector SF . After performing

the mutation, each of the elements m̄l
Log,ij in M̄ l

Log has a chance to be replaced

with the respective element ml
Log,ij of its parent M l

Log by the means of binomial

crossover:

m̄l
Log,ij =


m̄l

Log,ij if randn[0, 1) ≤ CRl or ij = ijrand

ml
Log,ij otherwise

. (4.38)

In (4.38), the crossover rate CRl ∈ R, with l = 1, 2, ..., Np is a normal dis-

tributed random number with variance 0.1 and a mean value µCR,kCR . The

later is a randomly selected element from the vector SCR. The index combina-

tion ijrand is a random index combination, which prevents some elements to be

updated besides the crossover rate being to low. After finishing the crossover,

the bound constraints are checked. In case of a violation, the respective ele-

ments m̄l
Log,ij are set to the mean value of the corresponding parental element

m̄l
Log,ij and the respective violated boundary. Then, the M̄ l

Log are transformed

into their respective decimal representation M̄ l using (4.35). Due to the mu-

tation and crossover, it is necessary to check again if the M̄ l are in M. In
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case that, e.g. a constraint X > 0 is violated, a correction as described for the

initial population is conducted. Subsequently, the inner loop of the bisection

is executed to calculate the minimal γ(M̄ l) for each M̄ l. The lower and upper

bounds are chosen equivalently to the Ab-SCA-PR as recommended in Section

4.6.2. Here, the same procedure of skipping bisections as described in Section

4.6.2 and utilized in the Ab-SCA-PR is applied.

If γ(M̄ l) < γ(M l), then the respective M̄ l
Log replaces M l

Log in PLog. Otherwise,

M l
Log remains unchanged. The Fo and CRo with o = 1, 2, ..., nopt used to

create the nopt improved M̄ o are used to update the first element in SF and

SCR, respectively. Therefore, a new µCR and µF is calculated as:

µCR =

∑nopt

o=1 ηoCR
2
o

ηoCRo

, (4.39)

µF =

∑nopt

o=1 ηoF
2
o∑nopt

o=1 ηoFo
, (4.40)

with

ηo =

∣∣γ(M̄o)− γ(Mo)
∣∣∑nopt

o=1

∣∣γ(M̄o)− γ(Mo)
∣∣ . (4.41)

These are weighted contra-harmonic mean values, a special form of the weighted

Lehmer mean, see e.g. [237]. Note that in the next population iteration, the

successful sets’ subsequent elements are updated until kCR/kF updates were

executed. Afterwards, the updates start again with the first elements in the

sets.

Before the next iteration starts, the population size NpNi+1
of the next iteration

Ni + 1 is updated by

NpNi+1
= round

(
Np,max −

Ni(Np,max −Np,min)

Ni,max

)
. (4.42)

If NpNi+1
is smaller than the present population size, the NpNi

−NpNi+1
worst

excessive solutions in PLog are removed to match the updated population size.

In case the scaling factor kIQC is less than 1, before the next population update
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it is evaluated if γbest ≤ γlim or Np < 0.8Np,IQC. If so the uncertainty norm-

bounds are upscaled by a factor three up to a maximum value of one and

the helper variable Np,IQC is set to the value of the present population size.

Subsequently, the population is fully re-evaluated, i.e. using the initial γUB

and the without skipping any bisections and the new γbest and corresponding

Mlog,best are identified.

The optimization concludes, as soon as the maximum number of population

iterations Ni,max or γbest < γlim, if kIQC = 1. It returns γbest and Mbest corre-

sponding to the optimal solution MLog,best of the latest iteration.

Log-L-SHADE is also suitable for problems with mixed perturbations, which

require the stacking of multiple different IQC ”types” and, thus, present a mix

of the parameterizations introduced so far. Hence, it presents the algorithm

of choice for the elaborate industry examples in Chapters 5 and 6.

4.7 Benchmark Example of Ab-SCA-PR

In this section, the optimization problem (4.23) arising in an industry-relevant

benchmark example is solved using the Ab-SCA-PR algorithm proposed in

Section 4.6.3 and thirteen existing MHs. This benchmark example is taken

from [238], where a small space launcher’s robust tracking performance under

wind disturbance is analyzed.

4.7.1 Model of the Vanguard Space Launcher

The analyzed dynamics represent the Vanguard space launcher’s first stage

during the atmospheric flight phase. In the vertical plane, the launcher follows

a pitch program, i.e. the launcher tracks a time-scheduled pitch angle signal

θd calculated preflight. Equivalently to the motivational example in Section

2, the trajectory describes a so-called gravity turn maneuver with a nominal

angle of attack α of zero. A linear time-varying representation G of the space

launcher’s nominal dynamics is given in [108]. It results from the nonlinear
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Figure 4.10: Space launcher schematic

dynamics’ linearization along the gravity turn trajectory, with respect to the

body-fixed coordinate system and is defined by:


α̇(t)

θ̇b(t)

θ̈b(t)

 =


Zα(t) −g0(t)

V (t)
1

0 0 1

Mα(t)
Jy(t)

0 Mq(t)

Jy(t)




α(t)

θb(t)

θ̇b(t)



+


T (t)

m(t)V (t)
Zα(t)

m(t)V (t)

0 0

T (t)lCG(t)
Jy(t)

Mα(t)
Jy(t)


 µ(t)

δα(t)



α(t)

θb(t)

θ̇b(t)

 =


1 0 0

0 1 0

0 0 1




α(t)

θb(t)

θ̇b(t)

+


0 1

0 0

0 0


µ(t)

δα(t)



(4.43)

The nominal LTV model’s states are the angle of attack α, the pitch angle

θb, and the pitch rate θ̇b. It has two inputs, the TVC deflection µ utilized for

pitch control and a wind disturbance in the form of an additional exogenous

angle of attack signal δα. The latter is described by δα ≈ −w
V

and defined

parallel to the launcher-fixed frame’s zb-axis, as depicted in Fig. 4.10. V is
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the velocity of the space launcher, and w is the wind speed. Denoted by Zα,

Mα, and Mq are the aerodynamic stability derivatives. The variables m and

Jy denote the launcher’s total mass and overall mass moment of inertia. The

latter is stated with respect to the launcher’s center of gravity G. By T , the

thrust is denoted, which acts at the nozzle reference point C. The geometric

variable lCG describes the absolute distances between C and G. Assuming an

equatorial launch site, the gravitational acceleration g0 is modeled according

to the world geodetic system 84 (WGS84 [239]). The numerical values of all

introduced variables are available in [108] in the form of tables, plots over time,

or functions of time.

4.7.2 Analysis Interconnection

In Fig. 4.11, the corresponding analysis interconnection is displayed. Here, the

GTVC
GLV

∆

C

uvuC

w

θ
−

ed

Figure 4.11: Analysis interconnection used for disk-margin analysis

block GLV represents the space launcher’s LTV dynamics described by (4.43).

Thrust vector control (TVC) is applied to control the launcher’s pitch attitude.

Its dynamics are described by

GTVC =
50

s+ 50
(4.44)

and represented by the block GTVC. A linear quadratic regulator (LQR) in-

cluding an observer based on pitch angle feedback calculates the respective

control signals. Their constant gains are calculated in accordance to [108]

for the dynamic at 48s after lift-off. The controller is represented by C in

Fig. 4.11. A norm bounded dynamic LTI uncertainty ∆ is introduced into
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the interconnection, to evaluate the system’s robustness regarding to simul-

taneous gain and phase variations/perturbations. The uncertainty’s specific

implementation as shown in Fig. 4.11 mimics input LTI disk margins. These

are a common tool in the robustness analysis of flight control systems, e.g.

[240]. In this case, the norm bound b directly relates to the applied simulta-

neous phase and gain disturbances’ maximum value. Thus, by analyzing the

interconnection in Fig. 4.11 for increasing b values, the maximal sustainable

perturbation can be identified. In total, eight values for b ranging from 0.01 to

0.085 are evaluated. The worst case finite time induced L2[0, T ] gain γ from

the wind disturbance d = δα to the angle of attack e = α is applied to quantify

the launcher’s performance.

Therefore, the analysis interconnection in Fig. 4.11 must be converted into

the LTV IQC framework as detailed in Section 4.3. The dynamic LTI uncer-

tainty ∆’s input/output behavior is covered by the conic combination of two

IQCs following Example 3.7.1. By IQC1(Ψ1,M1) the first IQC is denoted,

which is factorized with Ψ1 = I2 and parameterized by M1(λ1) = λ1M , where

M =
[
b2 0
0 −1

]
. The second IQC, namely IQC2(Ψ2,M2), applies Ψ2 = 1

s+1
I2 as

factorization and M2(λ2) = λ2M as parameterization. Both scalings, λ1 and

λ2, are defined as strict positive. By stacking IQC1(Ψ1,M1) and IQC2(Ψ2,M2)

as in (4.28), a single IQC is created equivalently to Example 3.7.1, with fac-

torization Ψ = [ΨT
1 ,Ψ

T
2 ]T and parameterization M(λ) =

[
λ1M

λ2M

]
.

Consequently, the LTV worst case gain optimization problem (4.23) identifying

γ must be solved over the two decision variables λ1 and λ2. The optimization

is repeated for increasing b values. Recall, that due to the finite escape time

of the underlying RDE, it is possible that some solvers cannot find a valid γ

for all the test cases executed in the benchmark example.
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4.7.3 Solver and Benchmark Setup

The proposed Ab-SCA-PR algorithm is evaluated against a total of thirteen

MHs. Each MHs solves the space launcher’s worst-case gain optimization

in five independent runs. All solvers start with an initial population size of

50. Solvers with fixed population size are terminated after 50 generations,

whereas algorithms with adaptable population size terminate after 2500 (50×

50) bisection runs. Except for the Ab-SCA-PR, all optimizers apply a fixed

lower and upper bound of 1 · 10−6 and 1 · 108, respectively, for both λ1 and λ2.

However, the Ab-SCA-PR algorithm’s self-adaptive upper bounds allow for a

significantly narrower initial search space. Therefore, the initial upper bound

for both decision variables is reduced to 100.

All the evaluated meta-heuristics with their specific optimization parameter

settings are listed below.

1. Differential evolution (DE) [175]: DE/best/2/bin strategy was used, with

a scaling factor, crossover rate and probability of choosing elements of

mutant vectors of 0.5, 0.7, and 0.8, respectively.

2. Adaptive differential evolution (JADE) [241]: All optimization parame-

ters are self-adapted during an optimization run.

3. Success-history based adaptive differential evolution (SHADE) [242]: All

optimization parameters are self-adapted during an optimization run.

4. SHADE with Linear Population Size Reduction (L-SHADE) [236] : All

optimization parameters are self-adapted during an optimization run.

5. Neuro-dynamic Differential Evolution Algorithm (L-SHADE-ND) [243]:

All optimization parameters are self-adapted during an optimization run.

6. L-Shade with Eigenvector-Based Crossover and Successful-Parent-Selecting

Framework (SPS-L-SHADE-EIG) [244]: All optimization parameters are

self-adapted during an optimization run.



Chapter 4. Benchmark Example of Ab-SCA-PR 96

7. Whale optimization algorithm (WOA) [245]: The algorithm’s authors

provide both, code and parameters.

8. Moth-flame optimization algorithm (MFO) [166]: The algorithm’s au-

thors provide both, code and parameters.

9. Dragonfly Algorithm (DA) [167]: The default parameter setting from the

original code by [167] are used in this benchmark.

10. Grey Wolf Optimizer (GWO) [169]: The default parameter setting from

the original code by [169] are used in this benchmark.

11. Sine Cosine algorithm (SCA) [232] (Algorithm 1): The constant param-

eter a is set to 2.

12. Improved sine cosine algorithm with crossover scheme (ISCA) [246]: The

constant parameter a is set to 2, while the crossover rate is set to 0.3.

13. Modified Sine Cosine Algorithm (m-SCA) [247]: The constant parameter

a, crossover rate and jumping rate are set to 2, 0.3 and 0.1, respectively.

14. Adaptive boundary sine cosine optimizer with population reduction (Ab-

SCA-PR) (Algorithm 1): Used the same parameter settings as SCA.

Note, all optimizations apply two important recommendations from Section

4.6.2, namely the parent fitness based bisection upper bound and to skip the

bisection completely, if the offspring promises no improvement. Only the initial

population is evaluated fully using a fixed specific upper bound γUB. The lower

bound γLB for a given b is always fixed. The respective b-specific values are

taken from [238] and presented in Tab. 4.1. Note that for b = 0.01, γ1 equals

the nominal worst case gain and γUB is a factor of ten higher. The subsequent

norm bounds use a γLB and γUB of 0.8 and 10 times the worst case γ of the

previously evaluated norm bound, respectively.
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Table 4.1: Lower bound γLB and upper bound γUB used for the bisection for a given
b based on [238]

Norm bound b Lower bound γl Upper bound γu

0.01 1.1527 11.527

0.03 1.8837 23.5460

0.05 2.2529 28.1610

0.06 2.8194 35.2420

0.07 3.2229 40.2860

0.075 3.7438 46.7970

0.08 4.2086 52.6070

0.085 5.3578 66.9730

4.7.4 Results and Discussion

Four metrics are applied to evaluate the MHs’ search performance:

1. The lowest cost function value γbest.

2. The worst-case gain’s mean value µγ over the five optimization runs.

3. The number of successful runs nfeas.

4. The worst-case gain’s standard deviation σγ.

Firstly, based on the lowest cost function value γbest, the absolute search per-

formance. Secondly, the worst-case gain’s mean value µγ over the five opti-

mization runs. It is used to measure the convergence rate and consistency of

the algorithms. Both indicate the algorithm’s reliability, which essential for

its industrial applicability. The third criterion, the number of successful runs

nfeas, further emphasizes this. In the case that two algorithms deliver the same

number of successful runs, the worst-case gain’s standard deviation σγ is used

to measure the search consistency instead. It should be noted that only al-

gorithms that can find feasible solutions in at least two optimization runs are

considered for the µγ and σγ value comparison. In Fig. 4.12, the worst-case

gain’s mean value and variance over b achieved by the Ab-SCA-PR are shown.

These values are compared to the two existing optimizers with the most suc-

cessful runs, namely the GWO and the SCA. The proposed algorithm achieved
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Figure 4.12: Mean values and variance of the top three optimizers: Ab-SCA-PR
( ), GWO ( ), SCA ( )

the lowest variance σγ in the worst-case gain for all b values. Furthermore, the

two existing MHs did not provide multiple solutions, i.e. successful optimiza-

tion runs, for all values of b. They also show a higher variance as well as higher

mean values µγ. In particular, the SCA showed significantly worse results for

b = 0.03 and b = 0.07. Hence, the proposed Ab-SCA-PR is the most reliable

and consistent optimizer for the LTV robustness analysis problem.

By evaluating each algorithm’s detailed results summarized in Tab. 4.2, the

Ab-SCA-PR superiority can be further underlined. Note, the results for the

remaining b are given in Table B.2 in appendix B. Regarding absolute search

performance, the proposed Ab-SCA-PR is the best optimizer for norm bounds

of 0.03, 0.05, and 0.085. However, for the lowest norm bound b = 0.01, it

achieves only fifth place, with the LSND calculating the lowest γbest. The

proposed algorithm achieves the third-lowest γ analyzing b = 0.07. Neverthe-

less, the Ab-SCA-PR’s γbest is always equivalent to at least the second decimal

achieved by the respective best algorithm.

Concerning search convergence, the proposed Ab-SCA-PR is the best per-

former for the cases of b = 0.03, b = 0.05, and b = 0.085 and is also the

runner-up for b = 0.07. Evaluating b = 0.01, the best MHs in this category are

the GWO and the WOA. Analyzing a norm bound of 0.07, the GWO is the

best optimizer. The runner-ups for b = 0.03 and b = 0.05 are the GWO and

the LSHADE-ND, respectively. The third best algorithm given b = 0.01 and



Chapter 4. Benchmark Example of Ab-SCA-PR 99

b = 0.03 is the SCA, while the third-best method for b = 0.07 is the WOA.

Regarding the search consistency, the best performer across all norm bounds

is the proposed Ab-SCA-PR with a 100% success rate. All remaining algo-

rithms’ search consistency deteriorates for increasing norm bound values b.

For the lowest norm bound of 0.01, the overall results are still good, and five

algorithms, namely SCA, DA, GWO, WOA, and mSCA, reach a 100% success

rate. However, none of these algorithms achieved a standard deviation as low

as the Ab-SCA-PR (σγ = 0.0004). The SCA achieved the second lowest stan-

dard deviationσγ = 0.007, and DA the highest with σγ = 0.6704. Two other

algorithms, the LSND and the ISCA, achieved four successful runs, with the

ISCA performing worse overall, achieving a ten times higher standard devi-

ation. The only other algorithm concluding multiple successful runs was the

DE, totaling 2. A total of five algorithms fail to identify a valid γ in any

run. Raising b to 0.03, other than the proposed algorithm, only the GWO,

and the SCA have more than one successful run, with four and three, respec-

tively. However, their standard deviations of 0.2581 and 3.7230, respectively,

are considerably worse than the Ab-SCA-PR’s 0.0013. Other than that, just

the WOA can identify a solution at all for this norm bound. By further in-

creasing the norm bound to 0.05, besides the Ab-SCA-PR only the LSND ran

successfully multiple times (twice). Both successful runs resulted in a γ of

3.5668. Thus, its achieved minimal γ value is slightly higher than the Ab-

SCA-PR’s accomplished µγ = 3.5213. Besides that, just two other algorithms

(GWO and WOA) finished successfully once. Thus, altogether eleven algo-

rithms are not producing results. Evaluating b = 0.07, besides the proposed

algorithm, the SCA, WOA, and GWO had multiple successful runs, with the

first two finishing successfully three and the last two times. These algorithms

achieved a standard deviation of zero. The Ab-SCA-PR still provides a very

low σγ = 0.0040. However, only the GWO calculated a γ better than the

Ab-SCA-PR’s mean value. For the maximum norm bound of b = 0.085, only

the proposed Ab-SCA-PR identified a valid solution M(λ) ∈M. Furthermore,
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considering the test cases in Table B.2, only the novel Ab-SCA-PR algorithm is

applicable for all b values. For all other algorithms, the user would be required

to change the solvers depending on the analyzed b. Compounding, there exists

no a-priori-information on which algorithm will work for the problem. These

limitation renders the existing algorithms infeasible for industrial application.

In general, the proposed algorithm is superior analyzing high values of b, which

is especially important for worst-case performance evaluations. Concluding, it

can be stated that the proposed Ab-SCA-PR attained the best overall search

performance. Hence, extending the original SCA search procedure with bound-

ary adaptation and linear population reduction schemes significantly increased

its suitability for the LTV worst-case analysis.
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4.7.5 Effects of the Bisection Adaptations
The bisection modifications, namely an adaptive upper bound and skipped

evaluations, reduce the search space exploration. Hence, their impact on the

optimization performance must be investigated. Accordingly, the previous

analyses are repeated using fixed upper and lower bounds in the bisection as

provided in Tab. 4.1. Furthermore, all offspring fitnesses are fully calculated

in the bisection. Thus, the optimizer is given substantially more search infor-

mation but requires significantly more computational effort.

In Fig. 4.13, the three most consistent optimizers’, namely the Ab-SCA, the

SCA, and GWO, mean value and variance of γ over b are compared. The

increase in search information shows only a minor improvement in the Ab-

SCA-PR’s search performance than the initial evaluation. Only for higher b

values, the σγ reduces slightly but without visible effect on the achieved µγ.

However, this marginally improved search performance was significantly more

computationally expensive.On average, compared to the initial evaluations,

twice as much time was required for the same number of function evaluations.

The original SCA identifies more successful solutions over a broader range of

b, with mean worst-case values closer to the Ab-SCA-PR. Furthermore, γ’s

variance reduces. An adverse effect on the search performance of the GWO

concerning µγ and σγ is apparent. Compared to the initial analysis, it only

executes successfully multiply for four b values and, hence, once less. Conclud-

ing, the existing optimizers are highly sensitivity regarding alterations in the

search information, whereas the novel Ab-SCA-PR is significantly robuster.
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Figure 4.13: Mean values and variance of the top three optimizers without bisection
adaptations: Ab-SCA-PR ( ), GWO ( ), SCA ( )
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Comparing the detailed performance criteria for all solvers in Tab. 4.3 with the

initial results in Tab. 4.2 emphasizes this observation. Note, the results for the

remaining norm bounds can be found in B.1 in Appendix B. The Ab-SCA-PR’s

γbest for a given b on average only reduces by −0.25%. Most of the existing

solver show more improvement in the absolute search performance than the Ab-

SCA-PR, especially for higher values of b. The most significant improvements

are visible for the GWO with −58% for b = 0.05 and the MFO with −53% for

b = 0.08. Nevertheless, some solvers performed significantly worse, e.g. the

DE’s γbest increased by 262% evaluating b = 0.06. Consequently, extending

search information and increasing computational effort does not guarantee γbest

improvements for the existing solvers.

Evaluating the search convergence (µγ), exclusively the proposed algorithm

showed an improvement for all norm bounds. This improvement is insignif-

icant, averaging −0.2%, with a maximum of 1% for b = 0.085. As for the

absolute search performance, the existing algorithms show indifferent behav-

ior. The DA improved the most, with −34.03% for b = 0.01, whereas the

GWO worsened the most, with 159% for b = 0.075.

Concerning the search consistency, the best algorithm is still the Ab-SCA-PR

reaching a 100% success rate for all evaluated norm bounds. Although the

provided search information was significantly increased, none of the off-the-

shelf solvers’ search performance became more consistent for all b. The total

number of calculated valid γ dropped from 116 to 114. However, the total

number of nfeas increased for b > 0.07. On average, the analyses took nearly

twice as long as in the initial, for the same number of function evaluations.

Concluding, only the Ab-SCA-PR allows to fully exploit the bisection modifi-

cation with nearly no degradation in search performance. The existing solvers

perform significantly better in some cases without the recommended modifica-

tions from Section 4.6.2. Nonetheless, they remain significantly less consistent

than the proposed algorithm with the modifications, which in this case is also

much faster.
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4.7.6 Comparison to Original Benchmark

The proposed Ab-SCA-PR’s evaluation is concluded by comparing the best

results obtained in the thesis with the best results from the algorithm used in

[238], shown in Tab. 4.4. When comparing the results with the previous work

Table 4.4: Comparison of the best results obtained with Ab-SCA-PR in this study
with the best results from the algorithm used in the previous work

b Results [238] Ab-SCA-PR
(fixed bounds)

Ab-SCA-PR
(adaptive
bounds)

0.01 2.3546 2.3360 2.3365

0.03 2.8161 2.8130 2.8140

0.05 3.5242 3.5199 3.5204

0.06 4.0286 4.0071 4.0127

0.07 4.6797 4.6570 4.6737

0.075 5.2607 5.0733 5.0718

0.08 6.6973 6.2975 6.3140

0.085 n.f. 16.6624 16.6789

[238], the proposed MH (Ab-SCA-PR) returns better results than the opti-

mizer in [238] for both the adapted and non-adapted bisection procedure. The

improvement in the Ab-SCA-PR’s search performance compared to the origi-

nal becomes more significant for increasing b. Given b = 0.085, the nonlinear

program applied in [238] fails to identify a feasible solution. This nonlinear

program was based on a local gradient-free search, whose performance was

significantly influenced by the guessed initial solution. Thus, significant back-

ground research estimating good initial values for λ1 and λ2 was necessary.

Searching for initial guesses is highly undesirable for the algorithm’s industrial

utilization, as it shall be deployable robustly with almost no a priori infor-

mation. Furthermore, the applied solver in [238] can neither exploit adaptive

bisection bounds nor avoid bisections at all by the nature of its search strategy.
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4.8 Summary

A robust LTV analysis framework allowing for the worst-case gain calculation

of finite-horizon LTV systems in interconnection with perturbations was in-

troduced. By representing the perturbations via time-domain IQCs, recent

advances in the robustness analysis of LPV systems were extended to the LTV

case. Built upon the solvability of an RDE, an analysis condition upper bound-

ing the interconnection’s worst-case gain was proposed. The selection of a fixed

IQC factorization Ψ and a free parameterization M ∈ M parameterizes this

RDE with M and γ. By performing a bisection of γ over a fixed M ∈M, it was

shown that the chosen M directly influences the achievable minimal gamma.

As this relation appears locally convex, a nonlinear optimization problem di-

rectly optimizing gamma over M constrained by the RDE’s solvability was

proposed. This optimization problem can be readily solved by bisecting γ for

a fixed M in an inner loop. A global optimization identifies M in an outer

loop to find the minimal γ. The direct optimization approach avoids the ex-

plicit definition and respective gridding of the storage function necessary for

LMI-based analysis conditions.

Following this, general guidelines to handle the optimization problem’s non-

linear constraints were stated. These guidelines define a general requirement

list to assess the suitability of a given nonlinear program for the worst-case

gain optimization problem. Furthermore, general recommendations for effi-

cient computation of the worst-case gain were proposed exploiting the op-

timization problem’s structure. Based on these guidelines, two specifically

tailored MHs, Ab-SCA-PR, and Log-L-SHADE were developed.

The novel Ab-SCA-PR algorithm was successfully applied to an industry-

relevant benchmark example, where it outperformed 13 off-the-shelf meta-

heuristics. Moreover, it solved the problem more robustly than an algorithm

initially proposed and applied by the author.

The proposed Log-L-SHADE algorithm was specifically designed for large pa-



Chapter 4. Summary 107

rameterizations built from multiple IQC. Hence, it will be deployed on two

elaborate worst-case analyses of industrial complexity to show that the robust

LTV framework can provide a valuable asset in the certification process.

Hence, this chapter provides the necessary theoretical and computational tools

for an efficient worst-case analysis of systems with time-varying dynamics.



Chapter 5

Finite Time Horizon Analysis of

an Autolanded Aircraft in

Landing Configuration under

Crosswind

5.1 Introduction

The final approach presents the most dangerous flight segment in aircraft op-

erations, accounting for more than 49% of all disastrous accidents, see [8].

Autoland systems (AS) were introduced to moderate the risk, primarily for

poor visual conditions, at the beginning of the 1950s [9]. These generally em-

ploy a runway-based instrument landing system (ILS) to produce a localizer

and glideslope signal tracked by the aircraft’s autopilot. Given its operational

limits, the autoland system must satisfy tight touchdown constraints for safe

operation.

In general, Monte Carlo analyses [4] or worst-case optimizations on the nonlin-

ear model [5] are state-of-the-art methods to evaluate touchdown conditions.

Given the aircraft’s large parameter space, various possible environmental con-

ditions, and disturbances, these procedures are computationally costly. Hence,

108
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Monte Carlo simulations are not suitable to provide fast feedback in an iter-

ative design/tuning process of the autopilot. Furthermore, the tools provided

cannot provide guaranteed worst-cases but only a probability distribution or

a lower bound of the worst case, respectively.

However, linear analysis methods can provide guaranteed worst-cases. As the

aircraft tracks a particular trajectory imposed by the ILS signals, its nonlinear

dynamics can be treated as solely time-dependent over a finite horizon. Hence,

the linearization along this particular trajectory provides a corresponding finite

horizon LTV model. Treating the aircraft as a finite horizon LTV system allows

applying the LTV analysis framework in Chapter 4 to calculate worst-case

touchdown conditions.

This chapter introduces a robust LTV worst-case analysis for touchdown condi-

tions of an autolanded aircraft under crosswind. The nonlinear aircraft dynam-

ics are directly obtained from [17], which provides a large airliner model in final

approach configuration and the corresponding nonlinear simulation environ-

ment. It is freely available from http://w3.onera.fr/smac/?q=aircraftModel.

The LTV representation of the aircraft dynamics is derived by numerical lin-

earization along a reference approach trajectory. An autoland controller for

this aircraft model was developed in [18] whose worst-case touchdown perfor-

mance under wind disturbance will be evaluated.

A tailored wind filter is designed to cover this turbulent wind disturbance. It

is specifically designed to generate realistic wind disturbance under the con-

straints imposed by the strict BRL. Thus, an arbitrary norm-bounded in-

put disturbance must be shaped into a wind signal, whose PSD matching

Dryden-like turbulence common for aircraft certification. The influence of

constant/frozen altitude-dependent wind fields, e.g. wind shears, is directly

included in the aircraft’s linearized dynamics.

The LTV worst-case analysis results are evaluated against a Monte Carlo anal-

ysis conducted on the corresponding industry-sized, high-fidelity nonlinear air-

liner model. The evaluation concludes the chapter and demonstrates the LTV

http://w3.onera.fr/smac/?q=aircraftModel
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analysis’s adequacy for the final approach problem.

This chapter contributes an entirely new method to analyze worst-case touch-

down conditions of autolanded aircraft. In contrast to existing linear worst-

case methods, the LTV framework explicitly respects the aircraft’s time-varying

dynamics and the approach problem’s finite time horizon. Additionally, the

chapter contributes a novel wind filter design procedure to cover general wind

signals in the LTV framework accurately.

5.2 Nonlinear Dynamics

The nonlinear aircraft model describes a large twin-engine civil transport air-

craft in final approach configuration from 1000ft above the runway until touch-

down and is directly taken from [4]. It is implemented as a standard nonlinear

six-degrees-of-freedom flight mechanics model concerning translational veloci-

ties u, v, and w and the angular rates p, q, and r formulated in the body-fixed

frame. The aircraft’s orientation in the earth-fixed reference frame is defined

by the well-known Euler angles Φ, Θ, and Ψ [248]. In terms of x, y, and z,

the aircraft’s center of gravity’s position in the earth fixed frame is specified.

The flight path is defined relative to the earth’s surface by the path angle γ,

course angle χ, and ground speed Vg, i.e. the horizontal speed relative to earth.

The aerodynamic angle of attack α and sideslip angle β are defined based on

the aerodynamic velocity Va, which results from superimposing the aircraft’s

translational velocity and atmospheric wind speed. Fully linear aerodynamic

coefficients are implemented. However, the aerodynamics respect the ground

effect. The aircraft is controlled by anti-symmetrically operating ailerons, an

elevator, a rudder, and symmetrically operating twin engines during the ap-

proach. Rate and amplitude-limited first-order filters are utilized to model the

control surface actuators’ dynamics. Their specifications are provided in Tab.

5.1. The engine’s thrust is modeled via the exhaust pressure ratio (EPR),

with a minimum and maximum of 0.95 and 1.6. A first-order delay with a
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Table 5.1: Actuator and engine parameter

Time
Constant [s]

Deflection
Limited [◦]

Rate
Limit[◦/s]

Aileron 0.06 ±55 60

Elevator 0.07 ±25 20

Rudder 0.2 ±30 30

time constant of 2s is implemented to cover its dynamics. The maximum rate

of change of the EPR is limited to 0.11/s. Note that the aircraft’s LTV model

will omit all rate and deflection limits. The model utilizes a simple atmosphere

model based on the international standard atmosphere model. Hence, the in-

fluence of different airfield elevations as well as outside air temperatures on

the autopilots performance can be analyzed.

5.3 Autolanding Controller

In this chapter, the autoland controller as proposed in [18] is analyzed. As the

design considers the lateral and longitudinal dynamics as decoupled, the au-

topilot consists of two separate controllers. The longitudinal controller handles

the pitch motion and velocity, whereas the lateral controller the roll and yaw

motion. Their basic structure and functionality are described in the following

mainly to introduce necessary adaptations for the LTV analysis. A schematic

of the overall control architecture is shown in Fig. 5.1.

5.3.1 Longitudinal

The longitudinal controller utilizes a cascaded control structure, consisting of

an inner loop and two nested outer loops. Given the engines’ and elevator’

significantly different bandwidths, throttle δT is used to control airspeed, and

the elevator δe is used to control the attitude of aircraft during the approach.

The longitudinal autoland controller cannot be directly implemented as in [18]
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Autothrottle
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δth
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δe
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Directional
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Vertical Path
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∆y
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H
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Ψ
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Vz,ref

ny,ref

Φref pref

Figure 5.1: Architecture of the autoland controller proposed in [18]

for the LTV analysis of the touchdown constraints. Reasons are the changing

control laws, e.g. activation of flare and nonlinearities in the signal modifica-

tions. The necessary alterations are highlighted in the controller’s integrator

chain analogy displayed Fig. 5.2 and explained in detail in the following para-

graphs. Note the LTV analysis omits all rate and amplitude saturations and,

∫ ∫

k∆z(t)kVz

Long.
Dynamics

Robust
Controller

VCAS

−
ki

∫
kT (t)

δT

nz

Vz

−
∆ẑ

Vz,ref
nz,ref

q

δe

kH(t)
H

Figure 5.2: Longitudinal part of the autoland controller as used in the LTV analysis
(adaptations in gray)

thus, they are not explicitly highlighted in Fig. 5.2.

Signal Modification

The deviation to the glide slope provided to the autopilot is calculated con-

cerning the aircraft’s sensor location and not the landing gear. Given the

sensors offsets δzGLD = −5m vertically and δxGLD = 28m horizontally in the

aircraft fixed frame, high pitch angles likely during the approach would provide

∆z values differing significantly from the landing gear’s ∆zLG. Therefore, it
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is more reasonable to track the actual landing gear deviation rather than the

sensor deviation ∆z. The necessary geometrical correction and filtering of the

∆z signal are achieved by

∆ẑ =
ωz

s+ ωz

(
∆z − δxGLD sin θ + δzGLD +

Vz
ωz

)
, (5.1)

with ωz = 2rad/s. As this filter is nonlinear in θ, it cannot be used directly in

the LTV analysis. The latter requires linearization of (5.1) along the approach

path resulting in the filter’s following LTV representation

∆∆ẑ =
ωz

s+ ωz

(
∆∆z(t)− δxGLD cos (θ0(t)) +

∆Vz(t)

ωz

)
. (5.2)

In (5.2), ∆ denotes the deviation from the reference trajectory and θ0(t) the

respective reference pitch angle.

Furthermore, the sink rate signal provided to the controller needs to be cor-

rected as the barometrically measured sink rate Vz does not match the sink

rate of the landing gear in the case of sloped runways. Accordingly, the al-

titude of the landing gear above ground level HAGL measured with the radio

altimeter during the final approach is passed through the differentiating filter

V̂z =
15s

s+ 15
HAGL, (5.3)

leading to a better sink rate estimate V̂z with respect to the ground. The

filtered signal is only utilized during the flare and can be directly applied in

the LTV analysis.

Auto-Throttle

An auto-throttle controller maintains the approach speed Vref constant under

wind disturbance and attitude changes. It is implemented as a standard PI

controller calculating the necessary throttle command δT based on the mea-
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sured calibrated airspeed VCAS:

δT = kT

(
1 +

1

15

1

s

)
(Vref − VCAS) , (5.4)

with kT = 0.045. The auto-throttle gets deactivated, reaching a radar altitude

of HAGL = 20m to initiate the flare maneuver. Below 20m, the last throttle

command is fixed and fed to the engine control in the nonlinear simulation

until touchdown. In contrast, in the LTV case, the gain kT is implemented as

a time-varying scalar, as highlighted in Fig. 5.2. Here, it is exploited that in

the nominal case, HAGL = 20m is passed at a particular time Tf along the tra-

jectory. To approximate the nonlinear model’s behavior in the LTV analysis,

the value of kT equals 0.045 for times before Tf and zero afterwards. Thus, the

auto-throttle command effectively goes back to the trim value. A correspond-

ing implementation in the nonlinear simulation showed a close match with the

original in numerous evaluations.

Inner Loop Controller

A multi-input single-output H∞ controller of fifth-order is used in the inner-

loop. Based on a calculated nz,ref and the respectively measured signals nz

and q, it calculates the elevator deflections. The design philosophy follows a

classical PI regulator with additional pitch damping implementation. However,

it provides additional lead compensation and roll-off in both control channels.

A discretized version using a standard Tustin transformation with a sampling

rate of 20Hz is used in the nonlinear analysis, whereas it is directly applied in

the LTV analysis.

Sink Rate Control

The nz,ref signal tracked by the inner loop controller is provided by the sink

rate tracking controller. It is a proportional controller represented by

nz,ref = kVz(Vz,ref − Vz), (5.5)
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with kVz = 0.625. In the nonlinear analysis, the output nz,ref fed to the inner

loop is limited to ±5m/s2. Saturations are inherently challenging to cover via

IQCs, see e.g. [7]. However, as the saturation limit was not reached in any

test scenario, (5.5) can be reasonably applied without in the LTV analysis.

Glide Slope Tracker

The glide slope tracker provides the reference sink rate Vz,ref in (5.5), based on

the glide path deviation until initiation of the flare maneuver at HAGL = 20m.

It is implemented as a simple proportional controller

Vz,ref = k∆z∆ẑ, (5.6)

with kVz = 0.1. In the nonlinear analysis, the output is limited to differ a max-

imum ±3m/s from the trim value. Again, this output saturation is omitted in

the respective LTV analysis. Equivalent to the auto-throttle’s implementation,

the gain k∆z is a time-varying scalar, with a value of 0.1 before Tf and 0 after.

Flare Controller

From a radar altitude of HAGL,0 = 20 on, the flare controller is engaged and

provides the Vz,ref signal to the subsequent loop instead of the glide slope

tracker. Therefore, the feedback loop from HAGL to Vz is closed via

Vz,ref = kH(HAGL +Hbias). (5.7)

The gains kH = 1/τ and Hbias are calculated from the sink rate at flare initial-

ization Vz,f, via Hbias = τVz,f−H0, with τ = H0/(Vz,f−Vz,TD). Here, the desired

vertical velocity at touchdown Vz,TD is 0.3m/s. Accordingly, the constants get

calculated at flare initialization Tf using an estimate of the current reference

sink rate Vz,f = 5
s+5

Vz,ref. The result is a varying τ control law, which accounts

for different approach scenarios, mainly wind disturbance and approach ve-

locities Vz,f. For the nominal trajectory under headwind τ ’s value is 8.39 and
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under tailwind 6.26, while varying in a range from 4.6 to 12.3 in extensive

evaluations over the parameter space. In the LTV model, kH is implemented

as a time-varying scalar with a value of 0 before Tf and 1/τ after. Also, only

∆H is fed back. The variation of τ over many approach parameters is covered

in the uncertainty set applied in the LTV analysis. As time-varying gains are

applied in (5.7) and (5.6), the flare controller’s and glide path tracker’s added

output is used as input for the sink rate tracker. Thus, the change of the

control law is accurately covered in the LTV analysis.

5.3.2 Lateral Control System

The lateral controller is designed under the ”crabbed approach” paradigm. At

the same time, φ shall remain zero for zero deviation from the localizer. As for

the longitudinal control, a cascaded control architecture, with an inner loop

and two nested outer loops, is utilized. Again, adaptations to the original im-

plementation are necessary to apply the lateral part of the autoland controller.

They are highlighted in the controller’s integrator chain analogy displayed in

Fig. 5.2. A detailed explanation is given in the following paragraphs. In the

∫ g
Vg

∫
Vg

∫

k∆ykΦ

kẏVg0
cosχ0

Lateral
Dy-

namics

Robust
Controller

p Φ

−

χ ∆y

Φref
pref

r ny

δa

δr

kny
(t)

ny,ref 4s+1
20s+1

Ψ

Figure 5.3: Lateral part of the autoland controller as used in the LTV analysis
(adaptations in gray)

lateral LTV analysis, all rate and amplitude saturations are also omitted and

not explicitly highlighted in Fig. 5.2.

Signal Modification

As for the glideslope, a localizer offset signal is necessary, as it is desirable
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to control the deviation of the landing gear rather than the sensor. Due to

the large heading angles required for a crabbed approach and the horizontal

distance between the main landing gear and the ILS sensor of δxLOC
= 30m,

the difference between both values can grow considerably large. The necessary

filtering and geometrical correction are given by

∆ŷ =
ωy

s+ ωy

(
∆y − δxLOC sinψ +

Vg sinχ

ωy

)
, (5.8)

with ωy = 0.3rad/s. This filter is nonlinear in ψ and χ. Hence, it must be

linearized along the reference approach trajectory

∆∆ŷ =
ωy

s+ ωy

(
∆∆y − δxLOC cos (ψ0)∆ψ +

Vg0

ωy
cos (χ0)∆χ

)
. (5.9)

The values ∆∆ŷ, ∆χ, and ∆ψ represent the deviation from the reference

approach trajectory, whereas Vg0
, ψ0, and χ0 are the values on the reference

approach trajectory at a specific time.

Inner Loop Controller

The inner loop applies a ninth-order multivariable H∞ controller. It provides

lateral directional control via roll rate and lateral load factor feedback, damp-

ing augmentation of the dutch-roll mode via yaw rate feedback, and adverse

yaw cancellation via a pronounced roll rate to rudder forward-feed. Further-

more, it adds lead compensation and roll-off characteristics. The robust con-

troller provides the command signals δa and δr to the respective actuators.

This controller can be directly applied in the LTV analysis, whereas a dis-

cretization using standard Tustin transformation with a sampling frequency of

20Hz is used in the nonlinear analysis.

Bank Angle Tracking

The reference roll rate for the inner loop controller is provided by the bank

angle tracking realized by proportional bank angle feedback. It is implemented
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as

pref = kφ (φref − φ) , (5.10)

with kφ = 0.7 and directly applied in the LTV analysis. The bank angle φ is

controlled to achieve zero deviation ∆y from the localizer signal

Localizer Tracking

The reference bank angle in (5.10) is provided by the localizer tracker imple-

mented as a derivative (PD) controller is implemented. Rather than directly

implementing an differentiator, ∆ẏ is approximated by ∆ẏ ≈ Vg sinχ. Thus,

the controller is implemented as

φref = k∆y∆y + kẏVg sinχ, (5.11)

with k∆y = 0.003 and kẏ = 0.033. This implementation assures that φ remains

zero for zero deviation. In the nonlinear, model the maximum commanded

bank angle is limited to ±30◦. This saturation is again omitted in the LTV

analysis. Nominal LTV worst-case analyses and subsequent simulations showed

no control signals close to the saturation limit were commanded. As (5.11)

is nonlinear in χ, the controller needs to be linearized along the reference

approach trajectory. The linearized controller used in the LTV analysis is

given by

∆φref = k∆y∆∆y + kẏVg0
(t) cos (χ0(t))∆χ, (5.12)

where ∆φref and ∆χ are the offsets of the reference bank angle and nominal

course angle, respectively, with respect to the nominal/reference approach tra-

jectory/states. Vg0
and χ0 are the nominal ground speed and course angle,

respectively, at a given time.

Decrab Controller

The decrab maneuver is initiated at a fixed HAGL of 5m. Following a specific

approach trajectory, this altitude maps to a particular time tDC. The nonlinear
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model uses a ψ feedback controller with lag compensator given by

ny,ref = kny
4s+ 1

20s+ 1
ψ, (5.13)

with kny = 33. During decrab, the bank angle command in the nonlinear

model is limited to ±5◦, which is omitted in the LTV analysis. In the LTV

analysis, kny is implemented as a time-varying scalar with a value of zero until

tDC and 33 after. Thus, the initiation of the decrab maneuver is covered in

the LTV analysis as only after tDC a value different to zero is fed to the robust

controller.

5.3.3 Linear Dynamics

The LTV representation of the aircraft is derived by linearizing the nonlin-

ear model along a nominal approach trajectory. This trajectory is calculated

based on a reference approach in the nonlinear simulation using the autoland

controller from Section 5.3. For the nominal aircraft configuration, a center

of gravity position of 22% and a mass of 140t is chosen. The aircraft lands

on a runway at mean sea level under standard/nominal ISA conditions. The

simulation starts at an altitude of 300m, 30m below the glideslope signal and

20m right of the localizer signal and ends with the aircraft’s touchdown. The

nonlinear aircraft dynamics are extended with the actuator dynamics and lin-

earized along the reference trajectory using the tools provided by [17]. This

results in a general finite horizon LTV presentation Gt of the aircraft’s dynam-

ics described by (3.7). For the approach scenario, the cross-coupling between

the longitudinal and lateral motion is neglectable. Hence, a separate model for

the longitudinal dynamics Gt,long and lateral dynamics Gt,lat can be extracted

from Gt. The resulting LTV models’ respective states, inputs, and outputs are

summarized in Table C.2 and Table C.1 in Appendix C. In interconnection

with the longitudinal autoland controller in accordance to Fig. 5.2, the ana-

lyzed longitudinal closed loop has 17 states, two disturbance inputs, namely
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longitudinal wind uw and vertical wind ww, and the two performance outputs,

the vertical touchdown velocity Vz,TD and the height of the landing gear 60m

behind the touchdown threshold H60. The resulting lateral closed-loop, as pic-

tured in Fig. 5.3 has a total of 19 states, and the three performance outputs,

namely bank angle φ, lateral offset to the centerline yLG, and the landing gear’s

sideslip angle relative to the centerline βLG. The single disturbance input is

the lateral turbulence vw. Note that the influence of static wind profiles can be

implicitly respected in the LTV dynamics by including them then calculating

the reference trajectory, i.e. executing the reference approach with a static

wind field.

During the approach, it can be noticed that the dynamics of the aircraft vary

noticeably over time. This is depicted exemplarily in Fig. 5.4, showing the

Bode magnitude plot of the transfer function from δe to α evaluated at frozen

points in time along the approach trajectory.
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Figure 5.4: Bode magnitude plot of δe to α transfer function evaluated at different
points in time along approach trajectory ( )

5.3.4 Wind Model

The wind disturbances analyzed in this paper are derived from the original

landing challenge [17], which was also used for the design verification of the

autoland controller in [18]. It is built by the superimposition of an altitude-

dependent wind shear and a turbulent wind field. Based on the resulting
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wind profiles, an equivalent/corresponding LTV wind model is derived. It

allows for a direct quantitative comparison between the LTV analyses and

the Monte Carlo analyses. The longitudinal and lateral touchdown conditions

are each analyzed for two distinct wind scenarios. In the longitudinal case,

first, a tailwind with a fixed maximum amplitude of 10kts is analyzed. The

second analysis covers headwind with a fixed maximum amplitude of 30kts.

Simultaneously, lateral wind shear and simultaneous turbulent head-/tailwind

and vertical turbulence are applied in both scenarios. In the lateral scenarios,

first, a tailwind with a fixed maximum amplitude of 10kts is analyzed. The

second analysis covers headwind with a fixed maximum amplitude of 30kts. In

both scenarios, a lateral wind shear superimposed with turbulent crosswind is

applied.

Nonlinear Analysis

The lateral wind shear has a fixed maximum amplitude of 25kts, i.e. in each

Monte Carlo run, its amplitude reaches 25kts from the left. Its amplitude

builds up with decreasing altitude, reaching its maximum 15m above ground

as described by

vlat = 25kts ·min

(
(HAGL −HAGL,0)2

(HAGL,0 − 15m)2
, 1

)
, (5.14)

where HAGL,0 is the altitude above ground level at initialization of the analysis.

The turbulence is generated by filtering a random number signal with a mean

of zero, a variance of one, and a sample time of 0.05s through the first-order

filter Glat described by

Glat = σlat
20

2.5s+ 1
, (5.15)

with σlat having a fixed value of 5.8kts. Note that in [17], σlat is a normally

distributed random number with mean 0kts and variance 7kts. Consequently,

the wind disturbance in the thesis is, on average, more conservative.

For the longitudinal wind disturbance, two scenarios exist. The first is a con-
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stant altitude-dependent headwind of 30kts and the second a constant altitude-

dependent tailwind of 10kts. In both cases, the maximum value of the wind

shear vlong is reached in each run of the Monte Carlo simulation. The alti-

tude scheduling is identical to (5.14), with the maximum amplitude adjusted

accordingly. The superimposed turbulence field is generated by filtering band-

limited white noise through a shaping filter identical to (5.15). In addition

to this combined head-/tailwind, there is a turbulent vertical (up/down) wind

profile, which is generated by passing a random number signal with a mean of

zero, a variance of one, and a sample time of 0.05s through the shaping filter

Gvert given by

Gvert = σvert
2.25

0.125s+ 1
, (5.16)

where σvert is a constant with a value of 1.5kts. Note that in [17], σvert is a

normally distributed random number with mean 0kts and variance 2.5kts.

Linear Analysis

Due to their altitude dependence, the wind shear profiles are unique for a

specific approach trajectory. Therefore, calculating the reference trajectory

under the respective wind scenarios, the derived linear model includes the

wind profiles’ influence on the aircraft dynamics. Thus, only the turbulent

component must be covered in the LTV analysis.

Consequently, the (external) wind disturbance in the LTV analysis only needs

to cover the turbulent wind field explicitly. As the turbulence filters (5.15) and

(5.16) require a white noise input, they cannot be applied directly in the LTV

analysis. Recalling the definition of the L2[0, T ] to ‖e(T )‖2 gain, the LTV wind

filter has to be designed in such a way that it converts any L2[0, T ] bounded

signal into realistic turbulence. In particular, the LTV wind filter’s design goal

is to match the power spectral density (PSD) of the turbulence signals utilized

in the Monte Carlo analysis. As the lateral and longitudinal turbulence are

identical in the nonlinear model, they also share the same turbulence filter
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in the LTV analyses. Consequently, only two LTV turbulence filters have to

be designed, i.e. a common filter for lateral and horizontal turbulence and a

separate one for the vertical turbulence.

The proposed design procedure is closely related to the work in [216] and

can be applied to any (turbulent) wind profile. It consists of three steps and

is exemplarily shown for vertical turbulence. In the first step, 2000 random

turbulence profiles are generated along the reference approach trajectory using

the nonlinear simulation’s turbulence wind model with a fixed sampling time

of 20Hz. The second step is the calculation of the PSDs Ωvw,i of the time

domain wind signals vw,i(t) using

Ωvw,i(ω) = lim
T→∞

2

π

1

T

∣∣∣∣∫ T

0

vw,i(t)e
−jωtdt

∣∣∣∣2 . (5.17)

Accordingly, the PSD of a time-domain signal is simply the average squared

of the signal’s Fourier transform. The Fourier transform of the wind signals

can be calculated via a fast Fourier transform (FFT), e.g. using the built-in

Matlab function fft. In the third step, a minimum phase first-order transfer

function is calculated upper bounding the square roots of the calculated PSD

magnitudes,
√∣∣Ωvw,i(ω)

∣∣ of all wind signals using the internal Matlab function

fitmagfrd and safety margin of 8dB. Note that the square root is necessary to

account for the general PSD input/output relation Ωout(ω) = |H(ω)|2 Ωin(ω),

where H(ω) is a corresponding shaping filter. The safety accounts for the finite

amount of considered wind signals, an immanent probability of exceedance

for any statistically derived wind turbulence intensity, see, e.g. [216] and the

missing information on the worst-case input signal’s PSD. Subsequently, the

transfer function is transformed into a state-space representation of the wind

filter Gvw,LTV as the analysis is conducted in the time-domain.

In Fig. 5.5, the PSD magnitude square roots for a selection of vw,i are compared

to the magnitude of the fitted wind filter Gvw,LTV. This approach allows to

easily cover the influence of two turbulence disturbance inputs by increasing
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Figure 5.5: Comparison of the power spectral density magnitudes: LTV wind filter
Gvw,LTV ( ), Monte Carlo turbulence signals vw,i ( )

the lower bound of the transfer function fit. Note that for the LTV analysis,

a simple LTI filter is sufficient because the underlying turbulence generator in

the nonlinear model does not possess any parameter dependencies.

5.3.5 Uncertainty Model

Table 5.2: Aircraft and environmental parameters covered in Monte Carlo Analysis

Parameter Distribution∗ min max

Mass [t] uniform 120 180

Center of mass [%] uniform 15 41

Temperature [◦C] uniform −69 40

Runway slope [%] N (0, 0.4) −2 2

Glide Slope [◦] N (−3, 0.075) −3.15 −2.85

Runway elevation
[ft]

[−1000, 250] : 50% −1000 9200

[250, 750] : 28.33%

[750, 1250] : 13.33%

[1250, 1750] : 3.33%

[1750, 2500] : 1.67%

[2500, 3500] : 1.00%

[3500, 4500] : 0.67%

[4500, 9200] : 1.67%
∗N (µ, σ): normal distribution with mean µ

and standard deviation σ.

The LTV analysis has to cover the aircraft configurations and environmental
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conditions evaluated in the Monte Carlo analysis, as summarized in Tab. 5.2.

Note that the percentages for the different runway elevation intervals denote

the percentage of the overall parameter set values uniformly distributed inside

this interval.

Different aircraft and environmental parameters directly influence the aircraft’s

dynamics and the approach trajectory. This is emphasized with the Bode mag-

nitude plots of transfer functions from δe to α at a fixed altitude of 10m above

ground level, i.e. the time the aircraft passes 10m, in Fig. 5.6. The red graph

shows the nominal configuration, whereas the blue charts resemble ten differ-

ent dynamics randomly generated using Tab. 5.2. Thus, the corresponding

LTV closed-loop dynamics differ from the nominal configuration in Section

5.3.3. Explicitly respecting every uncertain parameter in Tab. 5.2 results in

an extensive IQC parameterization. Therefore, the following general uncertain

LTV representation of the (lateral or longitudinal) closed loop is introduced,

whose range of behaviors covers the dynamics of a large set of approaches:

GCL = GCL,nom(1 +WLTV(t)∆). (5.18)

In (5.18), ∆ is a norm bounded dynamic LTI uncertainty, with ‖∆‖∞ ≤ 1,

GCL,nom represent the nominal longitudinal or lateral closed-loop dynamics,

and WLTV is a time-varying shaping filter. The weighting filter WLTV is cal-

culated based on the approach proposed in [249]. Firstly, LTV models of the

aircraft and controller resulting from 200 approaches are generated using pa-

rameter combinations based on Tab. 5.2 and a selected static wind profile.

At frozen altitudes, the LTI weight W is calculated such that all approach

models are included in the uncertainty set (5.18), covering all disturbance in-

puts and all outputs of the respective LTV aircraft model (see Tab. C.2 and

C.1). Afterwards, the altitude grid is mapped to the time grid of the corre-

sponding nominal approach trajectory resulting in a time-dependent grid of

weights. Finally, the time-varying weighting filter Wt is obtained by piecewise
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cubic Hermite polynomial interpolation of the obtained weights over the time

grid of the nominal trajectory. Each wind scenario must be analyzed individ-
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Figure 5.6: Bode magnitude plot of δe to α transfer evaluated for an AGL of 10m:
nominal model ( ), random models in the parameter space defined by Tab. 6.1
( )

ually, hence, a separate weighting filter has to be calculated for each analyzed

static wind profile introduced in Section 5.3.4 and for the lateral/longitudinal

motion of the aircraft. The results are two diagonal 2× 2 weights Wlong,1 and

Wlong,2 for the longitudinal analysis due to the two disturbance inputs and two

SISO weights Wlat,3 and Wlat,4 for the lateral analysis. Note that a set of 200

approaches was determined sufficient to cover the Monte Carlo simulation pa-

rameter set, as including more models did not further increase the calculated

LTV worst-case gains.

5.4 Analysis

In this section, the different analyzed wind disturbance scenarios and analysis

interconnections are described. Afterwards, the Log-L-SHADE algorithm is

applied to solve the arising LTV worst-case analysis problem. The section

concludes by comparing the LTV analysis results with the nonlinear model’s

corresponding Monte Carlo analyses.
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Table 5.3: Wind scenarios covered in the analysis

Case Model Static Wind [kts] Turbulence Criterion

Long.∗ Lat.

1 Long. +10 25 σu, σw Vz,TD,H60

2 Long. −30 25 σu, σw Vz,TD,H60

3 Lat. +10 25 σv
yLG,TD,βLG,TD,

φTD

4 Lat. −30 25 σv
yLG,TD,βLG,TD,

φTD

∗ positive/negative value indicates tailwind/headwind

5.4.1 Analysis Scenarios

The analysis scenarios in this chapter are closely related to the one introduced

in [17]. However, they are more tailored to give feedback in the controller’s

design process regarding the worst-case touchdown conditions. Hence, rather

than running a single Monte Carlo analysis to evaluate the complete autoland

controller design, LTV worst-case analyses of the longitudinal and lateral con-

troller for four different wind scenarios are conducted. Afterwards, the results

are compared to the results of the corresponding Monte Carlo analyses.

A summary of the different analyzed wind scenarios and resulting test cases

are given in Tab. 5.3. The first two test cases solely focus on the aircraft’s

longitudinal dynamics evaluating the vertical velocity Vz,TD of the landing gear

at touchdown and the landing gears altitude above runway 60m behind the

threshold H60. For these analyses, two separate LTV models, i.e. longitudinal

closed-loop and uncertainty weight, must analyze either head- or tailwind. The

first one is derived from a reference trajectory calculated under 25kts crosswind

and 10kts tailwind. Cross- and headwind of 25kts and 30kts, respectively,

are applied to generate the second test case’s reference trajectory used to

derive the LTV models and uncertainty weight. Both test cases apply external

disturbances in the form of horizontal and vertical turbulence. Note that the

final time for evaluating the H60 constraints is not related to the touchdown
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but when the aircraft is 60m behind the threshold.

The last two cases exclusively analyze the lateral dynamics of the aircraft

evaluating the lateral offset of the landing gear to the centerline yLG,TD, the

sideslip angle of the landing gear βLG,TD, and the bank angle φTD at touchdown.

Both cases are evaluated for two separate uncertain lateral closed loops, which

are derived equivalently to the first two test cases, i.e crosswind and either tail-

or headwind. However, for these analyses the aircraft, is externally disturbed

by a turbulent crosswind. Note that the analysis inherently assumes that the

maximum static wind profiles, i.e. the vertices of the allowed head-/tailwind

and crosswind, lead to a worst-cases.

5.4.2 Analysis Interconnection and Setup

The general analysis interconnection for the LTV analyses is shown in Fig.

5.7. According to the individual test case and performance measure, the single

blocks, the disturbance, and the performance signal must be adjusted. For the

first two test cases, Gwind represents the block diagonal system
[
Guw,LTV

Gww,LTV

]
and ∆ the dynamic 2 × 2 full-block LTI uncertainty. The remaining blocks,

C the longitudinal autoland controller, WLTV the 2× 2 full-block time-varying

uncertainty weight Wlong,1 or Wlong,2, and GA/C the longitudinal LTV aircraft

dynamics have to be adjusted chosen regarding the tail- or headwind scenario

(case 1 or case 2, respectively). In the last two test cases, Gwind represents

Gvw,LTV, C the lateral autoland controller, WLTV the time varying SISO uncer-

tainty weight Wlat,3 or Wlat,4, ∆ the dynamic SISO LTI uncertainty, and GA/C

the lateral LTV aircraft dynamics. The test case-dependent blocks have to be

chosen in an obvious fashion. respectively.

The LTV worst-case touchdown conditions are calculated applying the Log-L-

SHADE algorithm from Section 4.6.4 on the nonlinear optimization problem

(4.23). Therefore, the interconnection in Fig. 5.7 must be transferred into the

LTV robustness analysis framework described in Section 4.3. In the longi-
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Figure 5.7: General analysis interconnection

tudinal analysis test cases (1 and 2), ∆ is a 2 × 2 full block, dynamic LTI

uncertainty. Its behavior is covered by the IQC described in Example 4.6.3,

with nv = nw = 2. The MacMillan degree ν is chosen as one, and the value

of ρ is −1.25. This means ∆ ∈ IQC1(Ψ1,M1), with M1 restricted to the set

M := {M =
[
X⊗I2 0

0 −X⊗I2

]
: X = XT ≥ 0 ∈ R2×2} and Ψ1 =

[
ψ1⊗I2 0

0 ψ1⊗I2

]
.

The same class of IQC is used to cover the behavior of the SISO, dynamic

LTI uncertainty in the lateral analysis. Note in this case, the IQCs described

in Examples 4.6.2 and 4.6.3 are identical. Here, nv = nw = 1, with the IQC

factorization defined by ν = 1 and ρ = −0.75. Hence, ∆ ∈ IQC2(Ψ2,M2),

with M2 restricted to the set M := {M =
[
X 0
0 −X

]
: X = XT ≥ 0 ∈ R2×2}

and Ψ2 =
[
ψ2 0
0 ψ2

]
.

The finite horizon worst-case L2[0, T ] to Euclidean gain only bounds the Eu-

clidian vector norm of the output performance signal over the disturbance

inputs at the final time T . Therefore, for a given test case, each touchdown

condition must be evaluated separately. Thus, the LTV worst-case gain opti-

mization has to be executed ten times. In a combined analysis, i.e. one for

each test case covering all performance output, the actual worst-cases of the

single conditions would not be identified given the worst-case gains definition.

The Log-L-SHADE is initialized with an initial population size of 40 in the

longitudinal analysis and 20 in the lateral analysis. This difference is reasoned

by the longitudinal analysis’s larger IQC parameterization. However, all other

settings are identical in both analyses. A total of 10 population iterations are

conducted with a minimum population size of four. The logarithmic search
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Table 5.4: Log-L-SHADE settings used in the longitudinal and lateral analyses

Case Np,max Np,min Ni,max m n kCR kF εBS εODE,rel εODE,abs

1&2 20 4 10 −7 1 5 5 10−3 10−3 10−6

3&3 20 4 10 −7 1 5 5 10−3 10−3 10−6

space’s lower and upper bound are set to −7 and 1, respectively. The numbers

of successful crossover rates kCR and scaling factors kF are both set to five.

None of the analyses requires downscaling to facilitate the identification of a

valid initial population. A relative tolerance of 10−3 is chosen for the bisec-

tion. The relative and absolute tolerance of ODE15s are set to 10−3 and 10−6,

respectively. Tab. 5.4 summarizes the settings used for both analysis.

Four separate Monte Carlo analyses, one for each test case, are necessary to

evaluate all touchdown conditions of the full nonlinear closed-loop. Each test

case is covered by 10000 samples defined in the parameter set in Tab. 6.1.

5.4.3 Results

The worst-case touchdown conditions calculated in the longitudinal plane for

10kts tailwind and 25kts crosswind (test case 1) are a vertical touchdown

velocity Vz,TD of 16.35ft/s and an AGL 60m behind the threshold H60 of

11.32m. Note that the LTV worst-case analysis only delivers the absolute

value of the deviation from the design trajectory. Thus, the results have to be

added/subtracted from the touchdown values of the recorded nominal trajec-

tory used to derive the underlying nominal LTV model. In the proceeding, the

total values are given so that they match the sign of the most critical value iden-

tified in the Monte Carlo simulation. The results are the absolute worst-cases

Vz,TD,WC1
= 20.8ft/s and H60,WC1=1.9m. The most critical touchdown condi-

tions found in the respective Monte Carlo analyses are Vz,TD,MC1
= 15.7ft/s

and H60,MC1 = 2.25m.

Afterwards, for the 30kts headwind scenario (test case 2), the same analyses are
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run. A total worst-case vertical touchdown velocity of 24.42ft/s, and a worst-

case H60,WC2 of −6.40m were calculated. Note that the value of H60,WC2 indi-

cates a short landing due to its negative sign. The corresponding Monte Carlo

analysis provided a critical Vz,TD,MC2
of 22.62ft/s and a H60,MC2 of −0.48m.

Hence, at least one short landing occurred, as the LTV analysis predicted. Note

that the absolute LTV worst-case for the short landing (H60,WC2 = −6.40m)

can only be interpreted by its sign and not its value. A (significantly) neg-

ative value indicates that the aircraft touched the runway noticeably before

the threshold as it would (theoretically) below be below the surface at the

threshold. All previously discussed results, including the reference touchdown

conditions, are summarized in Tab. 5.5.

Table 5.5: Longitudinal analysis results

Analysis Test Case 1 Test Case 2

Vz,TD[ft/s] H60[m] Vz,TD[ft/s] H60[m]

Reference 4.5 13.25 4.89 4.7

LTV WC 16.35 11.32 19.53 11.13

Ref.+LTV 20.85 1.9 24.42 −6.40

Monte Carlo 15.699 2.25 22.62 −0.48

Subsequently, the lateral touchdown constraints are evaluated. For test case 3

(10kts tailwind), the LTV worst-case analysis delivered a total bank angle at

touchdown φTD,WC3
of 11.29◦, a lateral offset to the centerline yLG,TD,WC3

of

11.4m, and a worst-case sideslip angle of the landing gear βLG,TD3
of 17.17◦.

Maximum values of 11.27◦, 8.36m, and 11.13◦ for the bank angle, lateral offset,

and sideslip angle, respectively, were identified in the corresponding Monte

Carlo analysis. For test case 4 (30kts headwind), the LTV worst-case analyses

calculated a total value of 11.01◦ for the bank angle, 14.46m for lateral offset,

and 17.61◦ for the sideslip angle. The corresponding Monte Carlo analysis’

results are 10.72◦ for the bank angle, 13.42m for the lateral offset, and 16.37◦

for the sideslip angle. In Tab. 5.6, the lateral analysis’ results, as discussed,
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are summarized. It also provides the reference touchdown conditions used

to calculate the LTV worst case values. In Fig. 5.10, the most critical

Table 5.6: Lateral analysis results

Analysis Test Case 3 Test Case 4
φTD
[◦]

yTD
[m]

βLGTD
[◦]

φTD
[◦]

yTD
[m]

βLG,TD
[◦]

Reference +0.02 −0.90 0.97 0.21 1.39 1.39

LTV WC 11.27 10.51 16.20 10.8 13.07 16.22

Ref.+LTV 11.29 11.40 17.17 11.01 14.46 17.61

Monte
Carlo

11.27 8.36 11.13 10.72 13.42 16.37

0 5 10 15 20 25
0

100

200

Vz,TD [ft/s]

Hard Landing (TC 1)

0 5 10 15 20 25
0

100

200

Vz,TD [ft/s]

Hard Landing (TC 2)

0 5 10 15 20 25
0

100

200

H60 [m]

Short Landing (TC 1)

0 5 10 15 20 25
0

100

200

H60 [m]

Short Landing (TC 2)

Figure 5.8: Analysis results test case 1 (TC 2) and test case 2 (TC 2) : LTV worst
case analysis ( ), histogram Monte Carlo simulation ( ), most critical Monte
Carlo results( )

yLG value identified in the Monte Carlo simulations for head- and tailwind

are plotted against the corresponding LTV worst-cases. It can be seen that,

the LTV worst case provides a not overly conservative upper bound for the
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Figure 5.9: Analysis results test case 3 (TC 3) and test case 4 (TC 4) : LTV
worst-case analysis ( ), Histogram Monte Carlo simulation ( ), most critical
Monte Carlo results( )

nonlinear simulation. Thus, each Monte Carlo analysis is upper bounded by

the respective LTV worst-case. This is visualized in Fig. 5.8 and 5.9, showing

the four Mont Carlo analyses’ histograms and their most critical value and the

individual LTV worst-cases. Notably, the ten LTV analyses were completed in

80min, which is eight times faster than the 640min required for the two Monte

Carlo simulations, given the relatively small sample size of 10000. Also, there

is no general rule on how large the sample size must be to draw conclusions for

the design process. Therefore, the LTV analysis is more viable to assess the
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Figure 5.10: Comparison of lateral offset from flare initiation to touchdown: Most
critical nonlinear Simulation ( ), LTV worst-case bound ( )

qualitative impact of design changes in an iterative tuning process. All analyses

were run on a standard desktop computer equipped with Intel i7 processor

and 32GB memory. Furthermore, only the LTV worst-case analysis identifies

(guaranteed) worst-cases, whereas the Monte Carlo analysis can only provide

lower bounds on the touchdown conditions. Additionally, the distributions in

Fig. 5.8 and 5.9 indicate that the latter requires large sample sizes to allow for

meaningful conclusions on the most critical touchdown scenarios. Note that

the touchdown constraints in [17] are based on probabilistic. Thus violations

are allowed to a certain number of occurrences. Hence, the LTV analysis can

quickly evaluate if a touchdown constraint is likely to be violated, allowing to

adjust the design, avoiding extensive simulations.

5.5 Summary

The proposed robust LTV analysis of an autolanded aircraft provided fast up-

per bounds on worst-case touchdown conditions under crosswind. The common

LPV aircraft representation was simplified to a special finite horizon LTV case,

exposing the autoland scenario’s characteristics. This allowed to explicitly re-

spect the changing dynamics and control laws under the restriction of the final

approach’s finiteness. Feasible upper bounds for the Monte Carlo simulations

conducted on corresponding the high-fidelity nonlinear model were provided
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by the LTV worst-case analysis in a fraction of time. Thus the proposed ap-

proach delivers a supplemental tool for the design process and evaluation of

autoland controllers.



Chapter 6

Finite Time Horizon Analysis of

a Launch Vehicle in

Atmospheric Ascent

6.1 Introduction

A significant amount of time in the pre-launch preparation of expendable

launch vehicles (ELVs) is spent optimizing the ascent trajectory and the re-

spective tuning of the launcher’s controller. One of the primary optimization

objectives is reducing the maximal aerodynamic loads on the launcher due

to wind disturbance. Additionally, most launch sites impose tight constraints

on ascent corridors in the yaw plane to limit or avoid land overflight [10–12].

Hence, safety ranges must be included in the launch corridor design. At the

same time, there are limits on the launcher’s azimuth to reach the target orbit.

In general, an excessive lateral drift in the atmospheric flight phase is ener-

getically expensive to correct in the later flight phases, e.g. orbit injection,

especially for polar orbits. Until hours before launch, updates are made based

on wind data gathered by wind-balloons, etc. to identify a load minimizing

trajectory based on gravity turns to provide enough safety range regarding

land overflight [13].

136
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Although these estimations are reasonably accurate for static wind profiles, it

is hard to predict and account for turbulent wind fields’ effects. Furthermore,

there are no guarantees that the launcher model used for the calculations ac-

curately matches the actual system. Focusing on the launcher’s pitch motion,

particularly perturbations in the launcher’s thrust and mass profile, signifi-

cantly influences the actual trajectory and, consequently, the occurring aero-

dynamic loads. Moreover, perturbations in the aerodynamic parameters and

other perturbations such as time delays contribute to an overall degradation

of the control performance.

Most state-of-the-art industrial approaches to evaluate the effects of turbu-

lence and the estimated perturbation set utilize Monte Carlo analyses and

worst-case optimizations conducted on nonlinear launcher models [1–3]. These

methods can be directly deployed on the high-fidelity nonlinear launcher model.

They require significant computational resources and time. Even more critical,

they can only provide a lower bound on any worst-case performance measure.

Therefore, a linear worst-case analysis for two critical launcher performance

criteria, namely aerodynamic loads and lateral drift, is proposed in this chap-

ter. It considers realistic wind disturbances and multiple perturbations, such

as an accurately modeled trust and mass uncertainty. These analyses support

the nonlinear Monte Carlo simulations by providing strict upper bounds.

However, existing linear worst-case analysis procedures are restricted to per-

turbations not primarily influencing the launch trajectory. Otherwise, the uti-

lized linearization would lose its validity. Consequently, these analyses exclude

thrust and mass uncertainties as they induce an increasing deviation from the

planned trajectory in the pitch plane. Common approaches for linear analyses

of launch vehicles pitch dynamics, see e.g. [204] or [3], treat thrust pertur-

bations solely as an uncertainty in the thrust vectoring control (TVC). This

procedure neglects the thrust profile’s actual correlation with the launcher’s

weight and balance and the drift from the ascent trajectory. Thus, the most

significant effects of these perturbations regarding the worst-case aerodynamic
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loads and controllability of the launcher are not covered.

For a more sophisticated linear worst-case analysis, in this thesis, the thrust is

treated as an external input and the mass as a state in the linearization of the

ELV’s pitch dynamics along the pre-calculated trajectory. As a direct result, a

perturbation of the nominal thrust in the LTV model describes the deviation

from the design trajectory accurately, including the resulting aerodynamic load

build-up. Because the exhaust mass flow directly connects the thrust and the

mass, the direct coupling is maintained during the linearization. To cover

the effects of the deviation from the design trajectory on the launcher’s pitch

dynamics, e.g. due to changing dynamic pressure, a dynamic uncertainty with

time-varying weight is applied.

In contrast to the pitch plane, the thrust and mass perturbations do not di-

rectly influence the launcher’s trajectory in the yaw plane. The lateral drift

is only triggered by the wind disturbance. Thus, the additional thrust input

and mass state are not included in the lateral analysis. However, the respec-

tive effects on the yaw dynamics of the launcher are covered using a dynamic

uncertainty with time-varying weight.

Appropriate scaling and filtering of the disturbance inputs is necessary to re-

strict the analysis to realistic disturbance inputs. In case of the wind distur-

bance signal, the filter design approach from Chapter 5 is applied. The thrust

disturbance is scaled using the L2[0,T ] norm of the thrust uncertainty analyzed

in the nonlinear simulation. Hence, it is guaranteed that the worst-case anal-

ysis covers the maximal allowable disturbance of the nonlinear system due to

a variation in thrust norm-wise.

This chapter contributes a sophisticated worst-case aerodynamic loads anal-

ysis in the pitch plane and lateral drift analysis in the yaw plane of launch

vehicles under wind disturbance and perturbations. Included is a novel ap-

proach to cover thrust and mass uncertainties in the pitch plane. Here, the

thrust uncertainty is incorporated as an adequately scaled input disturbance,

which is directly coupled with the launcher’s mass. Contrary to the tradi-
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tional approach using parametric uncertainties, the proposed method allows

considering the perturbations’ effects on the trajectory and states in the LTV

analysis. This uncertainty description fits seamlessly into the overall LTV

launcher analysis framework, as shown by extending the analysis with other

types of perturbations. Here, all significant perturbations usually considered in

the analysis of launch vehicles are covered. The applicability of the approach

is demonstrated by comparison with the results of a random search conducted

on the launcher’s nonlinear model.

6.2 Launcher Model

Launch vehicles face stringent and complex performance requirements under

a high amount of uncertainty. One of the most challenging mission segments

is the atmospheric flight phase. Space launchers are aerodynamically highly

unstable systems [250–252]. The high dynamic pressures aggravate this during

the ascent leading to substantial aerodynamic loads accompanied by unsteady

aerodynamics in the transonic region [253, 254]. The launcher is also subject

to various disturbances. The most influential of these is wind [255].

6.2.1 Nonlinear Dynamics

An expandable launch vehicle built of 3 solid rocket motor (SRM) stages and

a liquidly propelled upper module is investigated. The covered time segment

spans from 25s to 95s after lift-off covering the launcher’s atmospheric flight

phase. It concludes with the burnout of the first SRM. During the atmo-

spheric ascent, the space launcher can be treated as perfectly symmetric, with

fully decoupled pitch and yaw dynamics [211, 252]. Thus, the pitch and yaw

dynamics can be analyzed separately. Given this flight segment’s overall du-

ration and velocity regime, the earth can be assumed flat and non-rotating

[209, 211]. Furthermore, only the launcher’s rigid body motion is considered

in this thesis. Based on the launcher’s configuration, neither fuel sloshing nor

TVC inertias are critical given their respective fractions on the overall system



Chapter 6. Launcher Model 140

mass. Consequently, their influences are neglectable. These mainly affect the

launcher’s flexible modes, which are not a focal point in the static loads and

drift analysis [210, 256]. An illustration of the launcher’s dynamics is given in

Fig. 6.1. It shows the pitch dynamics on the top and the yaw dynamics on the

bottom. Forces are indicated by red and velocities by blue arrows.
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Figure 6.1: Expendable launch vehicle in body-fixed reference frame

The launcher’s nonlinear equations of motion (EoM) are defined with respect
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to its center of gravity G in a body-fixed coordinate system denoted by the

subscript b. The xb axis is aligned with the launcher’s symmetry axis and is

defined as positive in the direction of forward travel. The zb axis is point-

ing downward, building a right-hand system with the yb axis. The nonlinear

EoM describing the launcher’s pitch and yaw dynamics described by the set

of equations:

θ̈b(t) =

∑
My(Ma,α, h, t)

Jyy(t,m)

=
Z(Ma,α, h, t)lGA(t,Ma,m)

Jyy(t,m)
− θ̇b

J̇yy
Jyy

− T (t)lCG(t,m)

Jyy(t,m)
sin δy,TV C(t)

ψ̈b(t) =

∑
Mz(Ma, β, h, t)

Jzz(t,m)

=
Y (Ma, β, h, t)lGA(t,Ma,m)

Jzz(t,m)
− ψ̇b

J̇zz
Jzz

− T (t)lCG(t,m)

Jzz(t)
sin δz,TV C(t)

ẍb(t) =

∑
Fx(Ma,α, h, t)

m(t)
− θ̇b(t)żb(t)

=
T (t) cos δTV C(t)−X(Ma,α, h, t)

m(t)

− g0(h) sin θb(t)− θ̇b(t)żb(t)

ÿb(t) =

∑
Fy(Ma, β, h, t)

m(t)
+ ψ̇b(t)ẋb(t)

= −Y (Ma, β, h, t)

m(t)
− T (t)

m(t)
sin δz,TV C(t)

+ ψ̇b(t)ẋb(t),

z̈b(t) =

∑
Fz(Ma,α, h, t)

m(t)
− θ̇b(t)ẋb(t)

= −Z(Ma,α, h, t)

m(t)
− T (t)

m(t)
sin δy,TV C(t)

+ g0(h) cos θb(t)− θ̇b(t)ẋb(t).

(6.1)

In (6.1),
∑
My and

∑
Mz are the sums of the angular moments around the

pitch and yaw axis. Both are formulated with respect to the center of gravity

G. The sum of forces in xb, yb, and zb direction are denoted by
∑
Fx,

∑
Fy, and
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∑
Fz, respectively. By θb, the launcher’s pitch angle is denoted, describing the

angle between the xb axis and the local horizon. The notation for the launcher’s

yaw angle is ψb describing the angle between the xb-axis and the initial launch

direction. The axial, lateral, and vertical accelerations are denoted by ẍb,

ÿb, and z̈b, respectively. X, Y , and Z are the axial, lateral, and vertical

aerodynamic forces, respectively. They are described by

X(Ma, β, h, t) = Q(h, t)SrefCX(β,Ma) (6.2)

Y (Ma, β, h, t) = Q(h, t)SrefCY (β,Ma) (6.3)

and

Z(Ma,α, h, t) = Q(h, t)SrefCZ(α,Ma) (6.4)

with

Q(h, t) = 0.5ρ(h, t)V (t)2 (6.5)

Accordingly, CX , CY , and CZ are the axial, lateral, and vertical aerodynamic

force coefficients. These coefficients are nonlinear in the Mach number Ma

and the angle of attack α or side-slip angle β. V is the absolute aerodynamic

velocity of the ELV. The density of the air ρ is calculated according to the inter-

national standard atmosphere (ISA, [257]). In contrast to standard aerospace

conventions, the aerodynamic forces are defined parallel to the respective body

axis rather than the aerodynamic velocity. Here, the axial and vertical forces

are defined in the negative axis direction and the lateral force in the positive

axis direction. In (6.2) and (6.3), the angle of attack is approximated as

α(t) ≈ żb(t)− wz(t)
ẋb(t)

, (6.6)

where wz is the external wind disturbance. It is aligned with the zb-axis and

defined positive in zb’s direction. The sideslip angle in (6.3) is similarly defined
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as

β(t) ≈ ẏb(t)− wy(t)
ẋb(t)

, (6.7)

with wy denoting the wind velocity in the positive yb-axis direction.

The launcher’s thrust T acts at the nozzle reference point C. It can be deflected

by the angle δy,TVC and δz,TVC using the thrust vector control. Due to the

characteristics of the solid rocket motor, the thrust follows a predefined profile.

The thrust at particular point in time is defined by

T (t) = vex(t)ṁex(t), (6.8)

where vex is the exhaust velocity and ṁex the exhaust mass flow of the engine.

As a consequence of perturbations in the combustion process as well as toler-

ances in the packing process, T has a noticeable degree of uncertainty. Based

on post-flight analysis of mission data, a common assumption is a constant

thrust uncertainty of up to ±10%. The thrust profile (6.8) directly relates to

the launcher mass m by mex. The mass of the launcher is given by

m(t) = m0 −
∫ Tf

0

ṁexdt = m0 −
∫ Tf

0

T (t)

vex(t)
dt. (6.9)

It is assumed that the thrust uncertainty is purely a consequence of ṁex and

not vex. An uncertainty in T directly affects the mass (6.9) and indirectly

through m the launcher’s attitude and translation (6.1). Furthermore, the

overall mass moment of inertias Jyy and Jzz defined with respect to G depends

directly on the launcher’s momentary mass. Hence, they are also indirectly

affected by thrust disturbances. The same holds for the center of gravity, which

is also a function of the launcher’s mass. Consequently, the lever arms of the

introduced thrust and aerodynamic forces lCG and lGA, defined as absolute

distances between C and G, and G and A, respectively, are also affected by a

thrust disturbance. Contrary to the mass, these perturbations mainly affect

the launcher’s controllability and instability rather than the trajectory. The
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altitude-dependent gravitational acceleration g0(h) is calculated based on the

world geodetic system 84 (WGS 84, [239]), assuming a launch side at the

equator.

6.2.2 Trajectory Calculation
The launcher performs a so-called gravity turn maneuver in the pitch plane,

i.e. the centrifugal and the gravitational force on the launcher compensate

each other. It minimizes the static aerodynamic loads and maximizes the

longitudinal acceleration for the available amount of propellant. Under this

assumption, the trajectory results from solving the initial value problem:

ḣ = ẋb sin θb Ṅ = ẋb cos θb

ẍb =
T −X
m

− g sin θb θ̇b = − g

ẋb
cos θb

(6.10)

derived from the launcher’s EoMs given by (6.1). In (6.10), h is the altitude,

and N is the downrange distance. Solving (6.10) for a given h0, θ0, ẋb0 , and N0

provides a pitch program for the launcher, which results in α ≈ 0 and δTV C ≈ 0

during the ascent. In the case of thrust perturbations, the equilibrium of

gravitational and centrifugal force as assumed for (6.10) is no longer fulfilled

if the pre-calculated pitch program is followed. The result are a build-up of

α as well as a continuous deviation from the design trajectory. Note that no

elaborate yaw program is designed. The launcher shortly after lift-off aligns

with a fixed reference heading/yaw angle. Consequently, the thrust and mass

deviations do not directly influence the equilibrium of forces in the yaw plane.

Thus, no build-up of β is induced by said perturbations.

6.2.3 Linear Dynamics
The LTV worst-case analyses of the ELV require a linear representation of the

ELV along the calculated gravity turn trajectory with a constant yaw angle of

0◦. Thus, the nonlinear dynamics in (6.1) are linearized along this trajectory.

The result is a finite horizon LTV systemGt as described by (3.7) in Section 3.1.

Due to the decoupled pitch and yaw motion, this LTV model can be separated

into two LTV models describing the pitch and yaw dynamics, respectively.
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The LTV model GLV,pitch applied in the aerodynamic loads analysis for the

pitch plane is given in (6.11). In (6.11), the state vector is chosen as xpitch =

[∆θb,∆θ̇b,∆żb,∆ẋb,∆m]T , the input vector is dpitch = [∆δy,TVC,∆wz,∆T ]T ,

and the output vector epitch = [∆θb,∆Qα]T . Qα is a measure for the static

aerodynamic load and is defined as the product of the dynamic pressure Q and

the angle of attack α. ∆ refers to the deviation from the reference value on

the design trajectory. It will be dropped in the equations and in the following

to shorten the notation. The standard approach in the literature is to treat

thrust and mass as parameters in the linearization, e.g. [204] or [3]. Thus, a

thrust and mass perturbation can only be respected in the linear analysis by

treating the respective reference values T0 and m0 in the system matrices as

uncertain. Therefore, only its influence on the controllability via δy,TVC can be

covered.

In this thesis, the thrust is defined as an input and the mass as a state in

the linearization. Therefore, the LTV model retains the inherent coupling

between thrust and mass disturbance due to (6.8) and (6.9). If the thrust

input is adequately scaled, it can accurately represent a thrust uncertainty in

the nonlinear dynamics. Hence, the LTV description of the launcher in (6.11)

presents a more accurate approximation of the ELV’s nonlinear dynamics for

the worst-case analysis than the standard literature approaches.

The lateral drift analysis in the yaw plane is described by the nominal LTV

model GLV,yaw in (6.12). In this case, the state vector is chosen as xyaw =

[∆ψb,∆ψ̇b,∆ẏ,∆y], the input vector as dyaw = [∆δz,TVC,∆wy]
T , and the out-

put vector as eyaw = [∆ψb,∆y]T . ∆y is the performance measure for the

lateral analysis and describes the lateral deviation from the design trajectory.

All coefficients in (6.11) and (6.12) are strictly time-dependent, omitted only

to shorten the notation. The subscript 0 relates to the reference value on the

nominal trajectory. Note that the explicit thrust input and mass state are

omitted in the lateral LTV model as they do not directly influence the drift in

the trajectory’s yaw plane.
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6.2.4 Modeling Mass and Thrust Uncertainty Effects

via External Disturbance

The application of the strict BRL restricts the search space of the worst-case

disturbance signals only by the L2[0,T ] norm, i.e. ‖d(t)WC‖2[0,T ] = 1. There-

fore, to calculate conclusive results, an adequate scaling of the thrust input

in (6.11) is necessary to cover 10% thrust uncertainty. A practical scaling

is the L2[0,T ] norm of 10% nominal thrust for the given analysis horizon, i.e.

kT = ‖0.1T0(t)‖2[0,T ], basically treating the thrust uncertainty as a form of

energy disturbance. Hence, it is ensured that the LTV analysis covers the

maximal thrust disturbance’s norm/energy considered in the nonlinear anal-

ysis. Consequentially, the LTV worst-case analysis also provides an upper

bound to the respective constant thrust disturbance due to the latter’s norm’s

worst-case re-distribution. Nonetheless, this can lead to worst-case thrust dis-

turbances, which temporarily exceed ±10%. The consequent increase in the

LTV analysis’ conservatism is acceptable as its primary purpose is to provide a

reliable upper bound for the nonlinear analysis. This additional conservatism

can even be regarded as profitable regarding the limited information about the

actual thrust disturbance during the mission.

6.2.5 Augmentation

Feedback controllers are necessary to track the calculated pitch and yaw pro-

gram and minimize the deviation from the pre-calculated trajectory. As both

the pitch and yaw motion are aerodynamically unstable, the respective con-

trollers further need to stabilize the ELV. Note that the pitch and yaw dy-

namics only differ by the gravity and centrifugal term immanent for the pitch

dynamics, which offset in case of a gravity turn. Therefore, only one fixed-

gain PID controller C was designed using the longitudinal dynamics at the

point of maximum dynamic pressure Qmax = 5.603 · 104Pa during the as-

cent. Employing loop-shaping, the proportional gain KP = −4.81, the integral
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gain KI = −3.0175, and the differential gain KD = −1.1395 were calculated,

achieving 6dB gain and 40◦ phase margins for a maximum tracking bandwidth

of 6rad/s. Thus, the controller satisfies recommended robustness margins for

space applications [209, 256]. This controller can be directly applied to the

launcher’s yaw dynamic using ψb feedback to satisfies the same margins. The

launcher model is extended with the second-order dynamics of the TVC:

GTVC(s) =
1

0.000374s2 + 0.0384s+ 1
(6.13)

in the pitch and yaw channel. Fig. 6.2 shows the nominal closed loop systems

for the pitch and yaw plane.

GLV,pitch

GTVC

kT

KI

∫KP

KD

θb−

Qα
wz

T

(a) Pitch plane

GLV,yaw

GTVCKI

∫KP

KD

ψb−

ywy

(b) Yaw plane

Figure 6.2: Nominal launcher closed loops

The nonlinear simulation for separate lateral and vertical wind disturbance

([258]) shows sufficient tracking of the pitch program (|∆θb ≤ 0.1◦|) while main-

taining the reference yaw angle. At the same time, the absolute values of the

developing aerodynamic loads |Q(t)α(t)| and |Q(t)β(t)| in the pitch and yaw

plane never exceed the Mach dependent structural limit load under test sce-

narios suggested by ESA as shown in Fig. 6.3 [258].
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structural limit load ( )

6.2.6 Uncertainty Model

The perturbations analyzed in this chapter can be categorized into two main

categories. Firstly, the explicitly modeled perturbations/uncertainties in the

parameters defining the launcher’s and subsystems’ dynamics. These include

aerodynamic parameters, time delays, and higher order dynamics. Secondly,

trajectory uncertainties are considered, which account for the perturbations

of the launcher’s dynamics due to the thrust and mass uncertainty induced

deviation from the nominal trajectory. These implicitly cover the effects

of uncertainties in the mass/weight and balance and controllability of the

launcher. In combination, these two groups account for the majority of un-

certainties recommended for launcher performance analyses, e.g. mass and

balance, dynamic pressure, aerodynamics, and the thrust vectoring control

system [3, 202, 204, 258, 259].

Launcher Uncertainty Model

A significant amount of uncertainty arises from the launcher’s aerodynamic

parameters, mainly due to the limited means of testing and the ensuing re-

liance on simulation. Furthermore, the launcher passes through the transonic

(0.8 ≤ Ma ≤ 1.2), for which the calculation of aerodynamic parameters is

complicated. One of the most challenging parameters to estimate is the center
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Table 6.1: Explicit uncertainty set used for the robustness analysis

Parameter Notation Value Occurrences Type

lGA δlGA 20% 3 real

TVC ∆TV C |0.18s+2.74
s+56.01

| 1 dynamic

Delay τ 22ms 1 -

of aerodynamic pressure. This is a consequence of the turbulent and com-

plex airflow caused by the payload fairing. Due to its significant contribution

to the launchers instability it is accounted for by an multiplicative input re-

peated LTI parametric uncertainty δlGA for lGA of 20%. It is included in both

the aerodynamic loads and lateral drift worst-case analyses. Furthermore, the

TVC’s dynamics are treated as uncertain, primarily to account for the overall

system’s higher-order dynamics, which are not explicitly modeled. It is rep-

resented using dynamic LTI uncertainty ∆TVC with ‖∆TVC‖∞ < 1, which is

implemented as

GTVC = GTVC,nom(1 + ∆TVCWTVC), (6.14)

with a weighting filter WTVC. WTVC is calculated based on the approach in

[249]. It covers up to 5% uncertainty in the TVCs static gain δTVC,k, damping

ratio δTVC,ζ , and eigenfrequency δTVC,ω. Finally, an explicit time delay of 22ms

is included between the pitch/yaw controller and the TVC, which accounts for

the control command’s maximal computing time. All modeled perturbations

are summarized in Tab. 6.1.

Trajectory Uncertainty Model

Following the introduction in Section 6.2.1, a thrust perturbation affects the

nonlinear dynamics in (6.1) indirectly and directly. Accordingly, a variation

from the nominal thrust profile leads to a continuous/steady deviation from the

planned trajectory as the equilibrium conditions in (6.10) are violated, which

by itself perturbs the nonlinear dynamics. It affects the (reference) values of

mass and balance parameters like G, Jy, Jz and, m, controllability via lCG,
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and T0, trajectory-related parameters like θ̇b, ẋb, and żb, and environmental

parameters such as V and Q for a given point in time t. Thus, linearizing the

nonlinear dynamics in (6.1) along such a perturbed trajectory results in LTV

systems different to the ones in (6.11) and (6.12). Fig. 6.4 emphasizes the

effects. It compares the bode magnitude plot of the nominal δy,TVC to θb open-

loop transfer to the transfers belonging to trajectories resulting from constant

thrust uncertainties in the range of ±10 at 75s after lift-off. This is emphasized

in Fig. 6.5. It compares the singular values from ∆T and ∆wz to Qα for the

nominal closed-loop dynamics to the singular values belonging to trajectories

resulting from constant thrust uncertainties in the range of ±10 at 75s after

lift-off. These perturbed dynamics must be respected in the LTV worst-case
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Figure 6.4: Comparison of the transfer functions from δy,TV C to θb at 75s af-
ter lift-off: nominal dynamics ( ), dynamics resulting from up to ±10% thrust
disturbance ( )
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Figure 6.5: Comparison of the singular values from ∆T and ∆wz to Qα at 75s
after lift-off: nominal dynamics ( ), dynamics resulting from up to ±10% thrust
disturbance ( )
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analysis. Otherwise, comparing the linear and the nonlinear analysis would

be of little significance. Comparable to Section 5.3.5, the following uncertain

LTV representation of the launcher’s closed-loop pitch and yaw dynamics is

introduced, whose range of behaviors covers the dynamics along the perturbed

trajectories.

GCL = GCL,nom +WLTV(t)∆traj (6.15)

In (6.15), ∆traj is a norm bounded dynamic LTI uncertainty, with ‖∆traj‖∞ ≤

1, WLTV is a time-varying shaping filter, and GCL,nom represents the nominal

LTV closed-loop pitch or yaw dynamics. The weighting filter WLTV is chosen

based on the approach proposed in [249]. As it theoretically requires the under-

lying system to be stable, the closed-loop is chosen. Firstly, LTV closed-loop

models of 8 perturbed trajectories covering a range of ±10% constant thrust

uncertainty are generated. Subsequently, the weight is calculated at frozen

times so that all perturbed models are included in the uncertainty set (6.15).

Finally, the time varying-weighting is obtained by piecewise cubic polynomial

interpolation. Note that thrust and mass disturbance are not explicitly mod-

eled in the lateral LTV model (6.12) due to their limited direct effects on the

lateral path. However, the trajectory uncertainty description is included in the

lateral worst-case analysis. Thus, the effects on the launcher dynamics con-

cerning the mass and balance, controllability, trajectory, and environmental

conditions are covered.

6.2.7 Wind Disturbance Model

The analyzed wind disturbances in the aerodynamics loads and lateral drift

analyses cover realistic wind profiles encountered during launcher missions.

Therefore, dedicated shaping filters are designed according to Section 5.3.4 for

the LTV and nonlinear analyses, shaping the respective input signals accord-

ingly. As the most critical wind characteristics concerning the aerodynamic

loads and lateral drift differ significantly, separate filters for both analyses are
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designed.

Wind Filter Aerodynamic Loads Analysis

The vertical component of a suitable wind profile for the considered trajectory

from an equatorial launch side can be found in [204]. This (vertical) wind

profile is calculated from the post-flight analysis of the Vega space launcher

mission VV05 and shown in Fig. 6.6. The figure also shows the wind component
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Figure 6.6: Vertical wind profile Vega space launcher flight VV05: Pre-flight esti-
mation used for trajectory/controller design ( ), post-flight estimation ( )

which can be estimated pre-flight using data from air-balloons and launch side

specific wind charts. [260] This wind profile can be respected in the reference

trajectory calculation. However, this estimation will never perfectly match

the actual wind-profile met by the launcher. Thus, potential differences must

be accounted for in the worst-case analysis. To cover theses differences from

the pre-flight wind profile, an approach based on spectral characteristics is

proposed, i.e., bounding a specific power spectral density. Hence, an LTV

wind filter is designed based on the representative wind profile’s [204] offset

to the pre-flight estimation and a specified safety margin. The procedure is

almost identical to the one introduced in Section 5.3.4 In a first step, the offset

wind signal (i.e., the wind velocity without the reference profile in Fig. 6.6) is

divided into 5s segments from 25s to 65s. Based on the wind profile in Fig. 6.6,

zero wind is assumed for times later than 65s after lift-off. Note that after 65s
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the launcher has ascended to such a high altitude that wind is no detectable

which is established by the representative wind profile [204]. Based on the

time history of the reference wind signal wz, the PSD Ωwz,n of a segment n is

defined by

Ωwz,n(ω) = lim
Tn→∞

2

π

1

Tn

∣∣∣∣∫ Tn

0

wz,n(t)e−jωtdt

∣∣∣∣2 , (6.16)

with Tn defining the time span of the segment, where wz,n(t) has been truncated

to have zero value outside the range 0 to Tn. Hence, the PSD of a signal is

determined by the average squared of its Fourier transform. In the present

paper, the internal Matlab function fft is applied for this purpose using a

sampling rate of 100Hz. This calculation is repeated for all segments n of the

wind profile. In a second step, for each time segment, a transfer function upper

bounding the respective
√∣∣Ωwz,n

∣∣ and an added safety margin is calculated.

For this purpose, the internal Matlab function fitmagfrd is applied, which

determines a minimum phase transfer function using log-Chebychev magnitude

design. The considered margin has a value of 12.5dB at ω = 1rad/s and a value

of 15dB at ω = 315rad/s. This accounts for increasingly higher uncertainty

with higher frequencies. The margin increases logarithmically between these

boundaries. The fitted transfer functions are then transformed into consistent

state-space models. In the third an final step, an LTV representation Gwz ,LTV

of the wind filter is calculated by linear interpolating the system matrices’

coefficients over the analysis horizon. In Fig. 6.7, the square roots of the PSD

magnitudes and the fitted transfer function for the time segment from 55s to

60s is compared to the offset wind signal in this time span. In the Monte

Carlo simulation a set of wind signals with PSDs comparable to the reference

wind profile and upper bounded by the LTV wind filter is evaluated. PSD

magnitudes of signals from this set are shown in gray ( ) in Fig. 6.7.
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Figure 6.7: Comparison of power spectral density magnitudes for the loads analysis
segment covering 55s to 60s: LTV wind filter ( ), reference wind signal ( ),
example signals from the set used in the nonlinear analysis ( )

Wind Model Lateral Drift Analysis

The lateral component of the encountered wind profile must be used as the

reference to derive the wind models for the yaw analysis. The approach to

derive the wind model is the same as for the vertical wind profile. As the

actual mission’s data is restricted, a generic but applicable wind profile based

on ESA practice is used as reference. It is displayed in Fig. 6.8 and is reasoned

by the fact that, the launcher’s lateral drift is more sensitive to low frequency,

high amplitude wind disturbances. Due to the lower frequency content the

safety boundaries are reduced to 5dB at 1rad/s and 10dB at 315rad/s. The

yaw plane Monte Carlo wind signals follow the approach described for the

pitch plane.
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Figure 6.8: Offset wind profile for lateral drift analysis
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6.3 Analysis

In the final section, the LTV worst-case analyses of the aerodynamic loads

and lateral drift are presented. A direct evaluation against the results of the

corresponding Monte Carlo simulations performed on the nonlinear is used to

prove the approach’s practicability. Before the analysis results are presented,

the respective analysis setups and interconnections are introduced.

6.3.1 Analysis Interconnection

The general analysis interconnection used for both LTV worst-case analyses is

displayed in Fig. 6.9. Note that the respective blocks need to be adjusted for

ELV
GTVCC

∆

θb/ψb−

QαWC/∆ydWC

Figure 6.9: Launcher interconnection for LTV worst-case analyses

the respective analysis. Hence, ELV represents the launcher’s nominal LTV

pitch closed loop dynamics or yaw dynamics as pictured in Fig. 6.2, extended

with the respective LTV wind filter Gwz ,LTV and Gwy ,LTV.

The underlying nominal LTV models GLV,pitch and GLV,yaw are computed via

numerical linearization over the given analysis horizon [25s, 95s] with a step

size of 0.1s. For the loads analysis, the input signal dWC = [dWC,wz , dWC,T ]T

represents the wind and thrust disturbance, respectively. In the lateral analy-

sis, only the wind disturbance is included, and hence, dWC = [dWC,wy ].

The LTV worst case aerodynamic load QαWC and lateral drift y are calculated

using the Log-L-SHADE algorithm from Section 4.6.4 on the optimization

problem (4.23) originating from Theorem 3. Therefore, the interconnection in

Fig. 6.9 has to be transferred into the IQC framework described in Section 4.3.

Here, the uncertainties introduced in Section 6.2.6 are covered by their respec-
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Table 6.2: Parameters used for the IQC description

Uncertainty b ν ρ

δlGA 0.2 1 −1

∆TVC 1 1 −1

∆traj 1 1 −1

tive IQC representations introduced in section 4.6.1. The repeated parametric

uncertainty δlGA is represented with the IQC in Example 4.6.1. For the dy-

namic uncertainty in the actuator and trajectory uncertainty description, the

IQC description in Example 4.6.2. The specifically selected McMillan degrees

ν, pole locations ρ, as well as norm bounds b, are summarized in Tab 6.2. In

case of the time delay, the IQC from Example 3.7.2 introduced in Section 3.7.2

is applied. Note that this representation presents an upper bound on the time

delay. Thus, all smaller time delays are inherently covered in the analysis.

6.3.2 Aerodynamic Loads Analysis

The first analysis calculates the aerodynamic loads in the pitch plane. It starts

with LTV worst case loads using the analysis interconnection in Fig. 6.9 and

IQC description following Tab. 6.2 described in Section 6.3.1. Subsequently, a

corresponding Monte Carlo simulation is run on the corresponding nonlinear

model of the launcher to validate the results of the LTV analysis.

LTV Worst-Case Aerodynamic Load Calculation

Recall, the finite horizon worst-case L2[0,T ] to Euclidean gain only provides an

upper bound on QαWC at the final time of the analysis horizon. Thus, it is in-

evitable to analyze a set of final times covering the trajectory. The presented

analysis is conducted for final times Ti ranging from 30s to 95s with a step

size of 5s. The required scaling of the thrust input kT,i is determined follow-

ing the descriptions in Section 6.2.4 for a constant thrust uncertainty of 10%.

As two disturbance inputs exists, the worst case disturbance signal’s norm

‖dWC‖2[0,T ] is distributed between the wind and thrust input. This distribu-
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Table 6.3: Initial Log-L-SHADE settings used in the Qα and ∆y analysis

Metric Np,maxNp,min Ni,max m n kIQC kCR kF εBS εODE,rel εODE,abs

Qα 40 4 50 −14 8 0.4 5 5 10−5 10−4 10−6

∆y 50 4 50 −14 8 0.1 5 5 10−5 10−4 10−6

tion must be accounted for to reach the required disturbance levels. Hence,

an additional scaling is introduced for the LTV loads analysis calculated, de-

termined as follows. First, the L2[0, T ] norms of the nominal LTV worst-case

input’s dWC,i = [dWC,w, dWC,T ]T components are calculated for final times Ti.

Afterwards, these norm’s inverses are used as the scalings kTWC,i and kWWC,i of

the respective input channels for a given terminal time. This allows accounting

for the distribution of the norms in the worst-case analysis.

The first run of the analysis calculating Qα1 for T1 = 30s using the Log-L-

SHADE algorithm is conducted with an initial downscaling of the uncertainty

norm bounds kIQC to 40%. As reasoned in Section 4.6.2, the downscaling

simplifies and accelerates the identification of an initial solution set but re-

duces population iterations with the fully scaled uncertainty set. However, no

degradation in the optimized Qα value was observed than in non-scaled opti-

mization runs, but the initial population was identified five-times faster. The

logarithmic search space’s lower and upper bound are initialized with −13 and

8, respectively. An initial population size of 40 is selected, with a maximum

number of 50 population iterations. The minimum population size is 4. For the

numbers of successful crossover rates kCR and scaling factors kF , a value of five

is chosen. A relative tolerance of 10−5 is chosen for the bisection. The bisec-

tion applies a lower bound of the nominal worst-case gain γnom,i and an initial

upper bound of 103 · γnom,i. The relative and absolute tolerance of ODE15s are

set to 10−4 and 10−6, respectively. Tab. 6.3 summarizes the settings used for

the initial grid point’s analysis.

Subsequent final times Ti points include the optimal solution of Ti−1 in the
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initial solution set and narrow the search space to five magnitudes around this

solution. Reasoned by Section 4.6.2, this procedure exploits that the optimal

solutions of consecutive final times are relatively close. This observation also

reasons the reduction of the maximal population size and number of itera-

tions. Here, they are reduced by 30% compared to T1. Hence, the overall

computational effort for later grid points is noticeably reduced, speeding up

the analysis.

The absolute values of the calculated worst-case QαWC are displayed in Fig.

6.10, compared to the Mach dependent limit load Qαlim along the trajectory.

Points in time in-between the analysis grid points are linear interpolated. A
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Figure 6.10: Aerodynamic loads analysis results: QαWC bound LTV analysis
( ), most critical Monte Carlo simulation QαMC,WC ( ), selected critical Qα
signals Monte Carlo simulation ( ), Limit load Qαlim ( )

local peak of 140000Pa◦ (ca. 62% of Qαlim), at 30s, can be identified, before

QαWC drops to 67750 (ca. 29% of Qαlim). This characteristic matches the

expected wind turbulence, see Fig. 6.6. Afterwards, the aerodynamic load in-

creases until reaching its maximum QαWC,max at 45s with a value of 223200Pa◦

(84% of the limit load). The QαWC values remain in this range up to 55s until

they start to gradually decrease to 111200Pa◦ (around 66% of Qlim) at 65s. A

combination of three effects leads to the high QαWC in this trajectory phase.

Firstly, the expected turbulence amplitudes are the highest in this region,

as apparent from Fig. 6.6, causing high wind induced α disturbances. Sec-

ondly, the dynamic pressure increases to Qmax = 56248Pa at 51.2s due to the
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launcher’s acceleration in the atmosphere’s denser part. Thirdly, the drift from

the planned trajectory induced by the thrust disturbance already built up an

(additional) α disturbance. After 65s into the flight in an altitude of around

23km, the expected wind turbulence is almost diminished. From this point

in time, only the steadily increasing deviation from the planned gravity-turn

causes a α build-up contributing to Qα. Although α is continuously increas-

ing, the significant drop in dynamic pressure due to the thinning atmosphere

decreases QαWC. The LTV worst-case analysis of the Ti grid was finished in

10h30min on a standard PC equipped with an Intel i7 and 32GB memory.

This cumulative time includes necessary re-runs for the final times 45s and

75s, respectively, due to too narrowed search bounds.

Nonlinear Aerodynamic Load Calculation

Subsequently, it is validated if the LTV worst-case envelope presents a valid

and practical upper bound for the launcher’s nonlinear simulation. There-

fore, a Monte Carlo simulation in Matlab Simulink is conducted. The required

analysis interconnection for the nonlinear analysis is similar to Fig. 6.9. How-

ever, the GELV block now represents the launcher’s nonlinear dynamics, and

the thrust is explicitly implemented as an uncertain parameter in the simu-

lation. Furthermore, the altitude scheduled wind filter Gwz with white noise

input introduced in Section 6.2.7 is applied to generate the wind disturbance.

The simulation begins at ts = 25s and finishes at tf = 95s after lift-off. A

sufficient sample size of perturbation and disturbance signal combinations is

necessary to achieve meaningful results by Monte Carlo simulation. For the

disturbance signals, this is accomplished by generating 500 unique white noise

signals nw,n(t) applying the band-limited white noise block with unique noise

seeds sn. A gridding approach is used for model perturbations. Therefore, the

thrust uncertainty is considered by five uniform points to cover ±10% uncer-

tainty, lGA by five uniform points covering ±20% uncertainty, and the single

uncertainties in the actuator dynamics (used to generate WTVC) by three uni-
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form points each to cover 5% uncertainty. Furthermore, two time-delays of

11ms and 22ms are evaluated.

Now, each noise signal nwn is evaluated over all possible combinations in the

generated uncertainty grid/set. The maximum aerodynamic load QαMC,WC =

1.304 · 105Pa◦ (48% of Qαlim) is identified at 54.1s. It corresponds to the

perturbation combination δT = 0.1, δlGA = +0.2, δTVC,ω = −0.05, δTVC,k =

δTVC,ζ = 0.05 , and a time delay of 22ms. The signal QαMC,WC is shown in

Fig. 6.10. Additionally, the figure shows a selection of Qα signals causing

local peaks inside of 5s second intervals spanning from 30s to 95s. None of

the Qα signals generated in the Monte Carlo simulation violated the LTV

worst-case envelope. Furthermore, the general characteristic of the nonlinear

analysis and LTV analysis match, i.e. local peak of Qα at the beginning

of the trajectory, the region of the highest Qα values around Qmax, and the

decrease of the expectedQα and the drift’s growing influence. A total of 675000

model evaluations with an average simulation time of 3.2s were required for

the nonlinear analysis. This cumulated to an overall analysis time of 25d,

which was effectively quartered to 6d6h, distributing the analysis between

four computers equipped with Intel Xeon E-5 1620 v4 processors and 32GB

memory. Thus, the nonlinear simulation took approximately 15 times longer

than the LTV worst-case analysis providing a lower bound on QαWC.

Both analyses match better in the later stages of the trajectory than at the

beginning of the flight. The main reason is that the strict BRL also considers

non-white noise signals, which in combination with Gwz ,LTV result in poten-

tially higher turbulence amplitudes. The decreasing expected turbulence levels

reduce this effect for later times, improving the match. As in this phase, the

influence of the thrust and mass uncertainty is most dominant. It suggests a

good approximation of the trajectory deviation using ∆T as disturbance input

combined with a weighted dynamic uncertainty.
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6.3.3 Lateral Drift Analysis

Chapter 6 concludes with the analysis of the worst-case lateral drift of the

space launcher under crosswind. After calculating the LTV worst-case, the

results are validated via a Monte Carlo Simulation conducted on the nonlinear

launcher model.

LTV Worst-Case Drift Analysis

As only the launcher’s lateral deviation at the end of its planned trajectory

is relevant, only one lateral LTV worst-case analysis run for the final time

T = 95 is required. Furthermore, the lateral LTV analysis does not require

input scaling as the thrust disturbance is not explicitly respected. Hence, only

a single wind disturbance input exists, and no norm distribution has to be

respected.

The LTV worst analysis is conducted with similar settings for the worst-case

gain optimization used for the first grid point in the QαWC calculation. Only

the initial downscaling of the uncertainty norm bounds is changed to 10% and

the initial population size increased to 50, as identifying an initial solution set

is more complicated due to the substantially longer analysis horizon. Recalling

Fig. 4.8 in Section 4.6.2, extending the analysis horizon reduces the feasible

search space. Again, the nominal worst-case gain γnom is used as the lower

bound and 1000γnom as the upper bound for the bisection using identical tol-

erances as before. The Log-L-SHADE settings are summarized in Tab. 6.3.

A worst-case lateral deviation from the planned trajectory at 95s after lift-off

of 405.2m was calculated. In total, 7h30min were required to complete the

analysis on the same computer as used for the Qα analysis. The dispropor-

tionately high computation time compared to the previous analysis originates

from the inherently more challenging optimization problem. The longer (ini-

tial) analysis horizon can be identified, making the RDE harder to solve and

narrowing the feasible search space. Simultaneously, the total number of re-
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quired function evaluations over the full analysis horizon is significantly higher,

as no initial guesses can be used to narrow the search space.

Nonlinear Drift Analysis

Subsequently, a corresponding Monte Carlo simulation is run to validate the

LTV worst-case analysis results. Only the vertices of the uncertainty grid and

maximum time delay used in the aerodynamic load analysis are evaluated as

only one dedicated computer was available for the Monte Carlo analysis. Note

that the thrust disturbance is included in the analysis as the effects are covered

in the lateral trajectory uncertainty. Again 500 unique white noise signals nw,i

are generated, which are separately evaluated for all uncertainty combinations.

A maximum lateral deviation to the right of −146.6m and 113.2m to the left

were identified. Both occurred for the uncertainty combination δT = 0.1,

δlGA = +0.2, δTVC,ω = δTVC,ζ = −0.05, δTVC,k = 0.05 , and a time delay of

22ms. The respective worst case trajectory is shown in Fig. 6.11. Hence, in a
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Figure 6.11: Most critical trajectory with respect to lateral deviation: nonlinear
analysis ( ), upper bound provided by LTV worst-case analysis ( )

total of 16000 model evaluations, the LTV worst-case analysis provided a strict

upper bound. In Fig. 6.12 the distribution of the lateral deviation at Tf = 95s

is shown. The nonlinear analysis finished 15h and 14min for a very coarse

grid and small sample size. Note that this was purely due to the limitations

in computational availability. However, due to the statistical nature of Fig.

6.11 and the sufficient margin, it can be concluded that the LTV analysis
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Figure 6.12: Results lateral deviation analysis: Histogram Monte Carlo simulation
( ), most critical deviations Monte Carlo simulation ( ), worst-case lateral
deviation LTV analysis ( )

provides a valid upper bound. The small sample size is also the main reason

for the high conservatism of a factor of 2.76 concerning the LTV upper bound.

Recall that a Monte Carlo simulation can also only provide a lower bound

on the performance metric, which increases with larger sample size. Thus,

the conservatism here can be interpreted as a form of safety margin. Hence,

the LTV analysis provided a good insight into the maximal expected lateral

deviation requiring significantly less time than an extremely coarse Monte

Carlo simulation.

6.4 Summary

The presented LTV worst-case analyses of an ELV incorporate the influence of

realistic wind disturbances and an elaborate uncertainty set covering coupled

mass and weight and balance uncertainties. Unlike state-of-the-art approaches,

the thrust uncertainty is included as an appropriately scaled input disturbance

rather than a parametric uncertainty in the linear worst-case aerodynamic load

analysis. Additionally, the LTV model is extended with an explicit mass state

directly coupled with the thrust input. Thus, the thrust’s direct influence on

the trajectory and its indirect influence on it by affecting the mass state are

covered. Therefore, the LTV pitch model’s behavior fits the nonlinear model
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more precisely. Adding a weighted dynamic uncertainty to account for the

dynamics of perturbed trajectory increases the match further and includes

several other relevant uncertainties into the analysis. A similar trajectory

uncertainty description is used in the lateral drift LTV analysis. Given this

elaborate uncertainty model, the LTV worst-case analyses provide a feasible

upper bound for the corresponding Monte Carlo simulation. Consequently,

a fast and suitable complement in the validation and verification process of

launch vehicles is provided.
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Conclusions and Future Work

The research in this thesis was based on the need for improved analytical tools

in the V&V process for complex industrial applications. A significant incon-

sistency between the outputs of linear analysis and corresponding simulation-

based methods is apparent, especially for systems with highly time-varying

dynamics over finite horizons. This can result in both overly conservative lim-

its as well as incorrectly satisfied safety margins, depending on the case. To

bridge this gap, the development of novel reliable, computationally efficient,

and not overly conservative worst-case analysis tools is required.

This thesis investigates this problem by developing a finite horizon linear time-

varying (LTV) robustness analysis framework. It is specifically designed to

cover long time horizons and provide fast guaranteed upper bounds on cor-

responding simulation-based approaches for the nonlinear model. A sophis-

ticated benchmark example and two elaborate analysis examples with clear

industry relevance were used to test the proposed framework thoroughly. A

review of the results and thesis contributions as well as recommendations for

future work are included in the following subsections.
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7.1 Review of Thesis Aims and Achieved Re-

sults

The first target addressed in the thesis was the identification of existing LTV

worst-case analysis methods. The bounded real lemma (BRL) for nominal LTV

systems was identified as the most promising approach. It was subsequently

implemented on a simple space launcher model. It showed improvement over a

linear time-invariant analysis, which still (wrongfully) represents the industrial

standard. This encouraging result led to the extension of this framework to

IQCs to analyze LTV systems in interconnection with perturbations becoming

a crucial aim. The nominal LTV BRL and the linear parameter-varying (LPV)

BRL, including IQCs, were used as a theoretical foundation to formulate an

extension of the LTV BRL to IQCs. It is built upon a solvability condition

imposed on a Riccati differential equation (RDE). Based on these theoretical

advances, an LTV robustness analysis framework was to be developed.

This was achieved by rendering the analysis conditions computationally feasi-

ble using fixed IQC factorizations and set constrained IQC parameterizations.

The result was a nonlinear optimization problem, constrained by the RDE’s

solvability. For this optimization problem, two custom-tailored algorithms,

namely Ab-SCA-PR and Log-L-SHADE, were developed.

Proof of feasibility for the new algorithms was demonstrated using various

aerospace applications. The first algorithm’s performance in a simple but

relevant launcher robustness margin analysis was benchmarked against various

off-the-shelf algorithms with a favorable outcome.

Having demonstrated functionality and improved performance using a simple

model the next step was to expand the approach and evaluate its performance

using complex and more industrially relevant examples. Using the second of

the two algorithms developed, this evaluation involved its deployment on the

following two examples. Example one was the autoland controller validation

originating from the joint Airbus and ONERA landing challenge of the IFAC
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world congress. The second example involved a part of the certification pro-

cedure for the ESA’s space launchers. Both examples were successful.

Due to this thesis’s time-frame, it was not possible to address all aspects of

the developed framework. However, the outstanding areas of investigation that

have been identified to date are the subject of the remaining sections.

7.2 Conclusions

Suitability of State-of-the-Art Analysis Methods

LTI worst-case analyses are not suitable for systems with highly time-varying

dynamics. The LTI analysis’s limitation to fixed grid points entirely denies the

trajectory characteristics and the system’s physical behavior. It consistently

fails to provide meaningful results using even the most rudimentary examples.

In addition, it shows a large deviation from the results of non-linear analyses.

For unstable motions, even for very large time constants, no worst-case gain

can be calculated. Compounding this issue is the fact that the non-linear

simulations indicated a significant performance gain. However, even for this

simple example, the simulation-based approach is computationally significantly

more expensive. This results in an inability to provide fast feedback during

the design process. In summary, it can be concluded that it is imperative to

develop specific linear methods for systems with time-varying characteristics.

Furthermore, a time-varying system must only be analyzed with these specific

methods.

Potential Gains from a Linear Time-Varying Analysis Framework

Only LTV methods can provide a valid, not overly conservative, upper bound

for a time-varying nonlinear system over a finite horizon. Even a simple nom-

inal LTV reduces the validation gap between linear and nonlinear analyses.

Note that the respective scaling and filtering of the disturbance input signifi-

cantly influence the analysis results. Thus, the correct input modification must
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be a centerpiece of any LTV analysis. The potential benefits regarding compu-

tational efficiency are even more significant in the presence of uncertainty, as

the computational effort of simulation-based methods directly scales with the

covered perturbation sets. Consequentially, the extension of the LTV frame-

work to cover perturbed systems is imperative to advance the V&V process

for space launchers and other highly time-varying systems.

Robust Linear Time-Varying Analysis Framework

A robust LTV analysis framework allowing for the worst-case gain calculation

using IQCs can be readily derived based on recent advances in the robustness

analysis of LPV systems. The analysis condition upper bounding uncertain

LTV systems worst-case gain can be stated based on the solvability of an

RDE. Using a standard approach to implement the IQCs, an optimization

problem directly optimizing gamma over the IQC parameterization can be

proposed. The RDE’s solvability condition constrains it. This optimization

problem can be readily solved by bisecting the worst-case gain for a temporarily

fixed parameterization in an inner-loop. A global optimization identifies the

optimal parameterization in an outer-loop related to the minimal worst-case

gain.

Robustness Analysis of Finite Horizon Problems

The proposed robust LTV analysis framework also applies to systems where

the performance metrics at the end of the trajectory are relevant. These cannot

be analyzed with classic LTI methods. Besides the finite horizon characteristic

of the problem, the proposed framework also covers time-varying dynamics

and trajectory triggered control law changes, e.g. time or altitude related.

Applied to an autolanded aircraft, it provides valid upper bounds on worst-

case touchdown conditions under crosswind. It requires a fraction of the time

compared to the corresponding simulation-based approach. Therefore, it can

provide fast feedback in the (iterative) design process of autoland controllers.
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In summary, the proposed LTV robustness framework delivers a supplemental

tool for autoland controllers’ design and validation process.

Robustness Analysis of Highly Time-Varying Problems

The presented analysis framework offers an efficient approach to calculate

worst-case gains for an uncertain system with highly time-varying dynamics.

These worst-case gains provide valid, not overly conservative upper bounds for

simulation-based approaches. These upper bounds were successfully calculated

for performance criteria of a detailed ESA space launcher model. The results

indicate that the presented analysis framework is feasible for the rapid worst-

case analysis of industry-sized problems, providing a valuable supplemental

certification process tool.

7.3 Main Contributions

Finite horizon time-varying systems gathered little interest in the controls

community until recently. Thus, elaborate analysis tools and procedures are

scarce and have not been applied to examples of industrial complexity. The

shortage of sophisticated worst-case analysis tools is apparent in the space

sector, where knowingly unsuitable LTI tools are applied.

The work on the robustness analysis of finite-horizon systems conducted in this

thesis, in the author’s opinion, contributes to various advances in this research

field:

1. The nominal bounded real lemma for finite horizon LTV systems is ex-

tended to IQCs, allowing for the worst-case analysis of uncertain systems

with time-varying dynamics over finite horizons.

2. A novel LTV robustness analysis framework based on a nonlinear opti-

mization problem, especially suitable for extensive analysis horizons is

proposed.
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3. In a detailed study, the question of how to efficiently solve the opti-

mization problem by exploiting its specific characteristics and nonlinear

constraints is explored. This study further delivers a general blueprint to

design custom-tailored nonlinear programs for the worst-case optimiza-

tion problem.

4. Two novel meta-heuristic optimization algorithms are proposed. Both

algorithms are custom-tailored to solve the nonlinear optimization prob-

lem arising in the LTV robustness analysis.

5. A novel approach is developed for designing wind disturbance shaping

filters from arbitrary reference signals while respecting the constraints

of the BRL. These filters generate realistic wind disturbances and allow

the calculation of worst-case gains directly comparable to the nonlinear

simulation.

6. A novel method to respect coupled mass and thrust uncertainties in

the LTV analysis is proposed. It models the mass as state and the

thrust as an external disturbance in the linearization process. Thus,

thrust/mass perturbation-induced deviations from the design trajectory

are covered. In combination with a time-varying trajectory uncertainty,

the corresponding nonlinear model’s behavior can be adequately covered.

7. A detailed finite horizon robustness analysis of the worst-case touch-

down conditions of an autolanded aircraft is conducted, covering various

aircraft and environmental parameters. It provides valid upper bounds

on the results of simulation-based analyses of the nonlinear model. An

equivalent analysis or procedure cannot be found in the literature.

8. A detailed finite horizon robustness analysis of a space launcher’s cer-

tification criteria during atmospheric ascent is conducted incorporating

coupled mass and thrust uncertainties. It delivers strict upper bounds
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on the results of simulation-based analyses of the nonlinear model. An

LTV analysis for launch vehicles cannot be found in the literature.

7.4 Limitations and Future Work

Although the proposed analysis framework showed promising results, some lim-

itations can be addressed in future research work. The nonlinear optimization

problem is assumed non-convex as it is not possible to prove its convexity for

more than one design variable. Thus, a global optimizer has to be employed

to find the global minimum. However, no guarantee exists that the global

minimum is found. An alternative approach leading to a convex optimization

problem would be to use analysis conditions based on LMIs, see e.g. [238], or

[152]. However, this requires the analysis grid’s gridding and a definition of

basis functions for P . Identifying the right approximations for both is difficult

and not advisable for highly time-varying dynamics over vast horizons. There-

fore, future research to improve the direct optimization approach could focus

on convexifying the nonlinear problem.

Although the direct optimization based on the RDE’s solvability scales bet-

ter for large analysis horizons, solving the RDE is a main computational cost

driver. Given a combination of a large analysis horizon and extensive IQC

parameterization, the RDE becomes numerically hard to solve. Avoiding the

direct integration using an estimate of the finite escape time could signifi-

cantly reduce the bisection’s computational cost. However, to the author’s

best knowledge, no feasible approach to avoid integration exists. Neverthe-

less, substantial theoretical work on the existence theory of autonomous RDEs

could identify suitable existence guarantees.

Furthermore, the modeling of useful disturbance inputs under the restrictions

of the BRL remains a vital issue. Although the design approach in the thesis

produces sufficient filters, it cannot cover real turbulence as is possible in the

H2 framework for LTI systems. However, achieving a white noise disturbance



Chapter 7. Limitations and Future Work 174

input, if possible at all given the finite horizon, will likely require an approach

differing from the BRL.

Trajectory uncertainties have a significant influence on the results, as seen in

the mass and thrust uncertainty example. Hence, alternative and more com-

prehensive approaches to trajectory uncertainties should be pursued, ideally

inside the robust LTV IQC framework.
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2013, Zuerich, Switzerland. Zürich: Omnipress, 2013, pp. 1101–1106.

[199] M. Althoff, C. L. Guernic, and B. H. Krogh, “Reachable set computation
for uncertain time-varying linear systems,” in Proceedings of the 14th
international conference on Hybrid systems: computation and control -
HSCC '11. ACM Press, 2011.



BIBLIOGRAPHY 190

[200] H. Pfifer and P. Seiler, “Less conservative robustness analysis of linear
parameter varying systems using integral quadratic constraints,” Inter-
national Journal of Robust and Nonlinear Control, vol. 26, no. 16, pp.
3580–3594, Feb. 2016.

[201] H. Yin, P. Seiler, and M. Arcak, “Backward reachability using integral
quadratic constraints for uncertain nonlinear systems,” IEEE Control
Systems Letters, vol. 5, no. 2, pp. 707–712, Apr. 2021.

[202] A. Marcos, V. Mantini, C. Roux, and S. Bennani, “Bridging the gap
between linear and nonlinear worst-case analysis: an application case
to the atmospheric phase of the VEGA launcher,” IFAC Proceedings
Volumes, vol. 46, no. 19, pp. 42–47, 2013.

[203] A. Marcos, S. Bennani, C. Roux, and M. Valli, “Uncertainty model-
ing and robust analysis of atmospheric launchers: Incremental steps for
industrial transfer,” IFAC-PapersOnLine, vol. 48, no. 14, pp. 426–431,
2015.

[204] P. Simplicio, S. Bennani, X. Lefort, A. .Marcos, and C. Roux, “Struc-
tured singular value analysis of the vega launcher in atmospheric flight,”
Journal of Guidance, Control, and Dynamics, vol. 39, no. 6, pp. 1342–
1355, 2016.

[205] M. Ganet-Schoeller, G. Maurice, and S. Bennani, “SAFE-v launcher val-
idation framework and controller optimization,” IFAC Proceedings Vol-
umes, vol. 46, no. 19, pp. 482–487, 2013.

[206] J. Pei and J. Newsom, “Robust stability evaluation of the space launch
system control design: A singular value approach,” in AIAA Atmospheric
Flight Mechanics Conference. American Institute of Aeronautics and
Astronautics, Jan. 2015.

[207] W. L. Brogan, Modern Control Theory (3rd Ed.). Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1991.

[208] D. Navarro-Tapia, A. Marcos, S. Bennani, and C. Roux, “Linear parame-
ter varying control synthesis for the atmospheric phase VEGA launcher,”
IFAC-PapersOnLine, vol. 51, no. 26, pp. 68–73, 2018.

[209] A. L. Greensite, “Analysis and design of space vehicle flight control sys-
tems. volume vii - attitude control during launch,” NASA Marshall Space
Flight Center; Huntsville, AL, United States, techreport, 1967.

[210] J. Orr, M. Johnson, J. Wetherbee, and J. McDuffie, “State space
implementation of linear perturbation dynamics equations for flexible
launch vehicles,” in AIAA Guidance, Navigation, and Control Confer-
ence. American Institute of Aeronautics and Astronautics, Aug. 2009.

[211] A. Miele, Flight Mechanics Theory of Flight Paths. Addison-Wesley
Publishing Company Inc., 1962.



BIBLIOGRAPHY 191

[212] A. L. Greensite, “Analysis and design of space vehicle flight control sys-
tems. volume vii - attitude control during launch,” NASA Marshall Space
Flight Center; Huntsville, AL, United States, techreport, 1967.

[213] M. A. Rotea, “The generalized h2 control problem,” Automatica, vol. 29,
no. 2, pp. 373–385, Mar. 1993.

[214] MATLAB version 9.3.0.713579 (R2017b), The Mathworks, Inc., Natick,
Massachusetts, 2017.

[215] N. M. Barr, “Wind models for flight simulator certification of landing and
approach guaidance and control systems,” Boeing Commercial Aircraft
Company, Tech. Rep., Dec. 1974.

[216] F. M. Hoblit, Gust Loads on Aircraft: Concepts and Applications. Amer-
ican Institute of Aeronautics and Astronautics, Jan. 1988.

[217] N. Aeronautics and S. Administration, “Terrestrial environment (cli-
matic) criteria handbook for use in aerospace vehicle development,” Mar-
shall Space Flight Center, techreport, Aug. 2000, nASA-HDBK-1001.

[218] “Flying qualities of piloted airplanes u.s. military specification mil-f-
8785c,” U.S. Department of Defense, techreport, 1980.

[219] A. Knoblach and G. Looye, “Efficient determination of worst-case gust
loads using system norms,” Journal of Aircraft, vol. 54, no. 3, pp. 1205–
1210, May 2017.
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Appendix A

Simple Launcher Model

Here, the launcher dynamics used for the introductory example in Chapter
2 are derived. It starts with the formulation of the nonlinear equations of
motion.Based on these, linear state-space models are derived via analytical
linearization.

A.1 Nonlinear Launcher Dynamics

The forces acting on the launcher are pictured in the schematic diagram given
in Fig. A.1. A launcher fixed coordinate system denoted by the subscript b

mg0

G
w α

Va

θb

trajectory

local horizon

xb

zb

L

A
D

T

xt

zt

∆z

∆θ

V

C

δTV C

Figure A.1: Launcher vehicle and trajectory frame dynamics

is used to formulate the launcher’s nonlinear equations of motion. Its origin
is fixed to the launcher’s center of gravity G. The xb-axis is aligned with the
launcher’s symmetry axis and is defined as positive pointing forward. Its zb-
axis points downward, building a right-hand system with the yb-axis pointing
out of the page. Corresponding to this convention, the rigid body motion in
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the pitch plane is given by:

θ̈b(t) =
L(t)lGA(t)

Jy(t)
− T (t)lCG(t)

Jy(t)
− θ̇b

J̇y
Jy

ẍb(t) =
T (t) cos(δTV C(t))−D(t)

m(t)
− g0(t) sin θb(t)− θ̇b(t)żb(t)

z̈b(t) = −L
m
− T (t)

m(t)
sin δTV C(t) + g0(t) cos θb(t) + θ̇b(t)ẋb(t),

(A.1)

where θb is the pitch angle of the launcher describing the angle between the
body axis and the local horizon. The forward and downward accelerations
are denoted by ẍb and z̈b, respectively. Va is the air relative velocity of the
launcher, whereas V is the kinematic velocity. L denotes the aerodynamic lift.
It is defined as positive in upward direction parallel to the zb-axis as

L = QSCLα︸ ︷︷ ︸
Lα

α, (A.2)

where S is the reference area, CLα the (linear) lift coefficient andQ the dynamic
pressure. The latter is defined as

Q =
1

2
ρV 2

a (A.3)

with ρ being the altitude dependent air density calculated according to the
international standard atmosphere (ISA) [257]. The aerodynamic drag D is
defined in the same way with respect to the xb-axis and defined as

D = QSCD0︸ ︷︷ ︸
D0

+QSCDα︸ ︷︷ ︸
Dα

α, (A.4)

where CD0 is the zero-lift drag coefficient and CDα the induced drag coefficient.
L as well as D act at the aerodynamic center A. By m, the total mass of the
ELV is denoted. Jy denotes the overall mass moment of inertia with respect
to G. The thrust is denoted as T . It acts at the nozzle reference point C. The
deflection of the thrust vector by the TVC is denoted as δTV C . The geometric
variables lCG and lGA are defined as the absolute distances between C and
G, and G and A, respectively. The gravitational acceleration g0 is modeled
according to the world geodetic system 1984 (WGS84), see [239], assuming a
launch at the equator. The angle of attack α is approximated as

α ≈ żb − w
V

, (A.5)

where w denotes the wind velocity in zb direction.

Linear Dynamics

The launcher is linearized along a so-called gravity turn trajectory for δTVC =
α ≈ 0 with respect to a non-stationary trajectory fixed frame. A gravity turn
trajectory is based on tracking a pre-calculated time scheduled θref(t) profile
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resulting in a pitch rate of approximately:

θ̇b(t) =
g0(t) sin θref(t)

V (t)
(A.6)

Accordingly, the centrifugal and gravitational term in (A.1) are offset. The
trajectory fixed frame is denoted by the subscript t in Fig. A.1. It translates
axially with the launcher but remains tangent to the ascent trajectory. It
is illustrated in Fig. A.2 for three points in time along the trajectory. The

planned trajectory

ts

ti

tf

local horizon

Figure A.2: Trajectory frame along ascent trajectory [210]

transformation matrix from the actual body reference frame to the reference
trajectory frame is introduced as

Ttb =

[
cos ∆θ sin ∆θ

− sin ∆θ cos ∆θ

]
. (A.7)

Accordingly, the perturbed equations of motion in the reference frame are:[
∆ẍ

∆z̈

]
= Ttb

[
ẍb

z̈b

]
−

[
ẍt

z̈t

]
∆ẍ = ẍb cos (∆θ) + z̈b sin (∆θ)− ẍt
∆z̈ = −ẍb sin (∆θ) + z̈b cos (∆θ)− z̈t.

(A.8)

Here, the subscript b represents actual coordinates, while t represents the ones
of the reference trajectory. The states in the body frame can be formulated in
terms of the reference variables as:

θb = θt + ∆θ

θ̇b = ∆θ̇

żb = żt + ∆ż

αb = αt + ∆α

δTVC,b = δTVC,t + ∆δTVC.

(A.9)
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Accordingly, the equations in (A.1) expressed for small deviations from the
reference can be written as:

θ̈t + ∆θ̈ =a6(αt + ∆α)− k1(δTVC,t + ∆δTVC)− J̇y
Jy

(θ̇R + ∆θ̇)

ẍb =
T −D
m

− g sin (θt + ∆θ)− (θ̇t + ∆θ̇)(żt + ∆ż)

z̈b =− Lα
m

(αt + ∆α)− T

m
(δt + ∆δ) + g cos (θt + ∆θ)

+ (θ̇t + ∆θ̇)(ẋt + ∆ẋ),

(A.10)

where k1 = T lCG
Jy

. Assuming small angles ∆θ

cos (∆θ) ≈ 1

sin (∆θ) ≈ ∆θ
(A.11)

and applying the addition theorem for sine and cosine, the theta equation of
(A.10) can be simplified to:

∆θ̈ =a6(αt + ∆α)− k1(δTVC,t + ∆δTVC)− J̇y
Jy

(θ̇t + ∆θ̇)− θ̈R

∆θ̈ =a6∆α− k1∆δTVC

∆ẍ =
T −D
m

− g cos (θt)∆θ − g sin (θt)− θ̇tżt − θ̇t∆ż −∆θ̇żt

−∆θ̇∆ż − Lα
m

(αt + ∆α)∆θ − T

m
(δt + ∆δ)∆θ + g cos (θt)∆θ

− g sin (θt)(∆θ)
2 + θ̇tẋt∆θ + θ̇t∆ẋ∆θ + ∆θ̇ẋt∆θ + ∆θ̇∆ẋ∆θ − ẍt

∆z̈ =− T −D
m

∆θ + g cos(θt)(∆θ)
2 + g sin (θt)∆θ + θ̇tżt∆θ + θ̇t∆ż∆θ

+ żt(∆θ̇)
2 + ∆ż(∆θ̇)2 − Lα

m
(αt + ∆α)− T

m
(δTVC,t + ∆δTVC) + g cos (θt)

− g sin (θt)∆θ + θ̇tẋt + θ̇t∆ẋ+ ∆θ̇ẋt + ∆θ̇∆ẋ− z̈t.
(A.12)

Afterwards, all higher-order terms, as well as products of variables of small
sizes, are neglected in (A.12) leading to the linear equations with respect to
an arbitrary reference trajectory:

∆θ̈ = a6∆α− k1∆δTVC −
J̇y
Jy

∆θ̇

∆ẍ = −(
Lα
m
αt +

T

m
δTVC,t)∆θ

∆z̈ =
T −D
m

∆θ − Lα
m

∆α− T

m
∆δTVC.

(A.13)

For the gravity turn maneuver the equation can be further simplified, as αt ≈ 0
and δTVC,t ≈ 0. Accordingly, the simplified linearized pitch equations of motion
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for the analyzed launcher are

∆θ̈ = a6∆α− k1∆δ − J̇y
Jy

∆θ̇

∆z̈ =
T −D
m

∆θ − Lα
m

∆α− T

m
∆δTVC,

(A.14)

where the ∆ẍ equation is neglectable in total. The angle of attack ∆α is
defined as

∆α = ∆θ +
∆ż −∆w

Va
. (A.15)

In state space form the launchers linear representation can be written as GLV:
∆θ̇

∆θ̈

∆ż

∆z̈

 =


0 1 0 0

a6 −a4 0 a6

V

0 0 0 1

−a1 0 0 −a2




∆θ

∆θ̇

∆z

∆ż

+

 0 0

−a6

V
−k1

a2 −a3

[ ∆w

∆δTVC

]



∆α

∆θ

∆θ̇

∆z

∆ż

∆Qα


=



1 0 0 1
V

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Q 0 0 Q
V




∆θ

∆θ̇

∆z

∆ż

+



− 1
V

0

0 0

0 0

0 0

0 0

−Q
V

0


[

∆w

∆δ

] (A.16)

, with

a1(t) =
Lα(t) + T (t)−D0(t)

m0(t)
, a2(t) =

Lα(t)

m(t)V (t)
, a3(t) =

T (t)

m(t)

a4(t) =
J̇y(t)

Jy(t)
, and a6(t) =

Lα(t)lGA(t)

Jy(t)
.

(A.17)

In (A.16), the states are ∆θ, ∆θ̇, ∆z, and ∆ż d. The input signals are the
∆δTVC and ∆w, and the output signals ∆θ, ∆θ̇, ∆z, ∆ż, and the aerodynamic
load ∆Qα. Qα is simply the product of the dynamic pressure Q and the angle
of attack α. All matrix coefficients in (A.16) are time-dependent as a result of
the predefined trajectory. The explicit time-dependence of the system matrices
is only omitted to shorten the notation.



Appendix B

Additional Results Ab-SCA-PR
Benchmark

The following tables contain the results for the remaining analyzed norm
bounds:
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Appendix C

Linear Aircraft Model States,
Inputs, and Outputs

The following tables contain a summary of the linearized aircraft dynamic’s
states, inputs, and outputs.
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Table C.1: Input, outputs and states of the lateral LTV model

Variable Name Unit

States

v lateral velocity m/s

p roll rate rad/s

r yaw rate rad/s

y lateral position m

φ roll angle rad

ψ heading angle rad

xa aileron actuator rad

xr rudder actuator rad

Inputs

δa aileron deflection rad

δr rudder deflection rad

vw lateral wind m/s

Outputs

ny lateral load factor m/s
2

p roll rate rad/s

r yaw rate rad/s

φ bank angle rad

ψ heading angle rad

Vg ground speed m/s

χ course angle rad

∆Y localizer deviation m

yLG
landing gear lateral offset

w.r.t center line
m

βLG
sideslip angle
landing gear

rad
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Table C.2: Input, outputs and states of the longitudinal LTV model

Variable Name Unit

States

u
longitudinal

velocity
m/s

w vertical velocity m/s

q pitch rate rad/s

x
longitudinal

position
m

z vertical position m

θ pitch angle rad

xth engine state [-]

xe
elevator actuator

state
rad

Inputs

δe elevator deflection rad

δth throttle position -

uw longitudinal wind m/s

ww vertical wind m/s

Outputs

nx
longitudinal load

factor
m/s

nz vertical load factor m/s

q pitch rate rad/s

θ pitch angle rad

α angle of attack rad

VCAS calibrated airspeed m/s

VTAS true airspeed m/s

Vg ground speed m/s

Vz
Inertial vertical

airspeed
m/s

H altitude m

HAGL
landing gear height above

ground level
m

∆Z
glideslope
deviation

m

VzLG

landing gear
vertical speed

m/s

DLG
distance to
threshold

m
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