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Abstract

A fundamental aspect of Belief-Desire-Intention (BDI) agents is intention revision. Agents
revise their intentions in order to maintain consistency between their intentions and beliefs,
and consistency between intentions. A rational agent must also account for the optimality
of their intentions in the case of revision. To that end I present GROVE, a model of rational
intention revision for BDI agents. The semantics of a GROVE agent is de�ned in terms of
constraints and preferences on possible future executions of an agent’s plans. I show that
GROVE is weakly rational in the sense of Grant et al. [36] and imposes more constraints
on executions than the operational semantics for goal lifecycles proposed by Harland et al.
[38]. As it may not be computationally feasible to consider all possible future executions, I
propose a bounded version of GROVE that samples the set of future executions, and state
conditions under which bounded GROVE commits to a rational execution.
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1 Introduction

Intelligent agents are an abstraction of autonomous, intelligent entities, that interact with
their environment in pursuit of high-level objectives. Agents maintain representations of
beliefs and desires, corresponding to their (potentially incomplete) knowledge of their en-
vironment, and the high-level motivations that guide their behaviour. Agents rely on their
beliefs to determine realistic courses of action, while their desires represent world states that
agents act to bring about. In general, an agent’s desires need not be mutually realisable, i.e.,
consistent, nor necessarily compatible with beliefs, i.e., realistic. For this reason, agents
adopt goals corresponding to a consistent set of chosen desires, that represent the desired
world state the agent chooses to achieve. Intuitively, a rational agent pursues a course of
action that achieves its goals. In the literature, the meaning of “goal” varies between cor-
responding closely to desires [20], to corresponding to a course of action that an agent has
chosen to perform in pursuit of its desires [71]. Moreover, goals are not necessarily a subset
of desires, as the desires themselves may be too high-level for an agent to act directly on
them, meaning that goals may be viewed as less abstract approximations of desires.

In the decision-theoretic literature [2, 62], rational agents seek to maximise utility cor-
responding to satisfying their desires, by acting to achieve their goals. Each action of a
rational agent in that perspective is viewed as the one that gives the greatest bene�t to the
agent in terms of cost and value among the alternatives. This approach to rationality yields
a de�nition of rationality that is suitable for an ideal agent, but it ignores the computational
limits of practical, realisable agents. Practical agents cannot always determine the highest
utility action to execute, and cannot deliberate over alternatives inde�nitely to do so. Not
only are practical agents’ resources limited with respect to time, but also computation.

Bratman [10, 11] addresses the issue of rationality in resource-bounded agents by in-
troducing the notion of intentions as a means to constrain deliberation and make rational
agency tractable for practical agents. Intentions are (partial) courses of action that an agent
commits to, avoiding repeated deliberation over the next action to take. An agent’s inten-
tions form what Bratman calls a �lter of admissibility, meaning that the courses of action
an agent can consider are limited to those that are compatible with its intentions. Rational
agents must reconsider their intentions rather than being blindly committed to them, as
when circumstances change, re�ected by changing beliefs and desires, a change of focus in
the form of revising intentions may be rational. Although agents should be able to recon-
sider their intentions, they represent a kind of commitment that is stronger than that of an
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1 Introduction

agent toward goals, leading to the notion that intentions are resistant to reconsideration.
Resistance to reconsideration means that an agent should not abandon intentions without
rational cause to do so. Rational cause might be that intentions are deemed impossible, or
no longer necessary. Because the cases where an agent can rationally reconsider intentions
are limited in this way, reconsideration is not necessary unless such a case occurs, allow-
ing to avoid unnecessary reconsideration. Moreover, committing to intentions constrains
the means-end reasoning that an agent must do when determining how to act. Rather than
selecting from all alternative (complete) means to satisfy desires, agents progressively plan
for their intentions as necessary to preserve their feasibility. This avoids planning up-front
for circumstances that may never actually occur, which is especially important when agents
have incomplete beliefs and inhabit unpredictable, changing independently evolving envi-
ronments. Bratman argues convincingly that the notion of intention is irreducible to beliefs
and desires, and develops a theory of resource-bounded rational agency centred around the
notion of intention: Belief-Desire-Intention.

The Belief-Desire-Intention (BDI) [10] model of agency has enjoyed wide success not only
as a methodology for specifying and implementing practical intelligent agents [6, 118], but
as a framework for investigating rational agency [20, 75, 80].

Intention revision is the process by which an agent amends its existing set of intentions by
adding intentions, dropping intentions, or altering existing intentions. This process corre-
sponds to a realignment of an agent’s intentions with its beliefs and desires, and is a rational
response to changes to desires, and certain changes in the environment, i.e., updated beliefs.
For instance, it would be irrational to continue to pursue a course of action that is deemed
impossible, even if the intended result is still desirable. In such a case, either the intention
should be abandoned altogether, or revised in some way to make it possible to achieve, such
as by replanning. Another rational cause of intention revision is loss of motivation, such
as the corresponding desire being abandoned. It is clearly irrational for an agent to persist
with satisfying a desire it no longer has. Rational intention revision is the adherence to a
notion of rationality when revising intentions, for instance satisfaction of rationality pos-
tulates [74, 75], or maximisation of utility or bene�t [36, 80]. While intention revision results
in potentially many di�erent reasonable sets of intentions, rational intention revision cor-
responds to choosing the “best” among the reasonable alternatives. An informal but clear
de�nition of rational intention revision is given by Grant et al. (quoted verbatim), in terms
of a rational agent state that is reached by revision [36]:

We can think of rationality as being an “ideal” mental state for an agent: the
agent has a consistent model of the environment, and has selected intentions
that are mutually consistent and compatible with this model, and that are in
addition optimal.
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To illustrate instances where intention revision is rational, I introduce a simpli�ed ver-
sion of the Mars rover scenario that I discuss in more detail in Chapter 3. A rover situated
on the Martian surface is tasked with collecting rock samples and returning them to a col-
lection bin for layer analysis. The Martian surface is littered with obstacles, and subject to
di�cult weather conditions, potentially obscuring the rover’s sensors. The rover intends to
perform a round-trip of several rock samples that it has identi�ed, before depositing them
together in the collection bin. However, while en-route to the �rst sample, the rover ob-
serves an interesting rock that wasn’t detected previously. It then has the choice between
either continuing as it was, or trying to gather the newly discovered rock as well. This cor-
responds to adopting a new desire: collect the observed rock. Due to this new desire being
adopted, it is possible for the rover to consider this new option in the context of its existing
intentions. While it may seem straightforward for it to simply collect this rock as well as
the others, the rover needs to determine that it is capable of doing so. Is the rock accessible?
Will there be enough room in the collection vessel for it to carry this rock and the others
it was already going to collect? If not, should it collect this rock but abandon its intention
to collect one of the others? In addition, does collecting this rock versus another lead to
a more preferable execution overall, taking into account any progress already made? Let
us assume that collecting this rock poses no such problems for the agent and it adopts an
intention that is compatible with its existing intentions. Now suppose that the rover moves
toward the rock and discovers that it is actually the tip of an enormous boulder, and it is
impossible to collect it after all. This impossibility corresponds to a loss of capability for the
agent, meaning its intention to collect the rock is no longer feasible. In such a case, it may
attempt an alternative plan, but it is unlikely it has an applicable plan for moving a buried
boulder, so the only rational revision that can be made to its intentions is to abandon the
intention to collect it altogether. Note that depending on how sophisticated the reasoning
of the rover is, it may also abandon the desire to collect the rock, given that it is not just
temporarily impossible, but permanently impossible. Now suppose that after collecting the
remaining rocks, the rover backs up to the collection bin to deposit them, but its wheels slip
on the loose dirt and one of the rocks falls into the bin unintentionally. A rational agent
should at that point abandon its intention to deposit that rock in the bin, as it has already
been achieved, albeit as an unintended side-e�ect. It would be irrational to persist with its
original intention to deposit the rock, or to seek an alternative means to achieve it, leaving
the only rational option of accepting that it achieved its goal despite failing to achieve it the
way it intended. Meanwhile, another rock sample has fallen onto the ground. The original
intention of depositing that rock is also no longer possible, but still unachieved. However, a
rational agent should resist abandoning its intentions without rational cause [11]. Therefore,
the rover should revise its intentions to collect the rock from the ground and deposit it, if
possible to do so, and at the very least abandon its intention to deposit the rock if not. One
last case to consider is that of preference. If there are multiple possible ways (i.e., joint means)

3



1 Introduction

for the agent to collect rocks, it should identify which is the most preferable of the reason-
able choices. Moreover, when choosing between sets of rocks to collect, it should intend to
collect the set that maximises preference. In the case where circumstances change and in-
tentions may need to be revised, the revision should also account for preference in order to
ensure that the resulting set of intentions is most preferred. Note that this may also involve
reasoning about trade-o�s, such as when intentions are in con�ict. An intention should be
rationally abandoned even if the agent has made progress toward it, if the progress toward
it is deemed less preferable than achieving an alternative incompatible intention.

When considering more complex agent architectures than the simpli�ed Mars rover, such
as those with subgoals [78], complex goal types [23] failure handling [82], detection and
avoidance of con�icts between intentions [77, 105, 108], detection and exploitation of syner-
gies between intentions [47, 106, 122] and notions of preference [66] or utility [47], the inten-
tion revision process becomes more complicated. This follows from the increased number
of causes for rational revision involved, and from the complexity involved in identifying the
occurrence of those causes and how to revise intentions accordingly. Moreover, there may
be multiple alternative revised intention sets that can be derived, and possibly consequen-
tial revisions to intentions and other mental attitudes such as beliefs following intention
revision. It should be noted that the interdependencies between di�erent mental attitudes
constitute a signi�cant source of complexity in the intention revision process [24, 96]. In ad-
dition, optimality must be accounted for, and the most preferable set of intentions selected
of the reasonable alternatives, i.e., those that are mutually compatible and compatible with
beliefs.

I now discuss the state of the literature with respect to rational intention revision. This
discussion serves as an example to illustrate the gap in knowledge. A more in-depth dis-
cussion is given in Chapter 2 and Chapter 3. There have been many attempts to de�ne,
formalise, and operationalise rational intention revision. This work mainly falls into two
general approaches: theory-based and practice-based. The theory-based approaches include
the BDI agent model and rationality postulates of Rao and George� [75], the metareason-
ing model of Russell and Wefald [80, 88], and the database perspective of Shoham [96] and
adjacent work [27, 36, 45, 127]. The theory-based approaches are high-level and theoretical,
specifying models of rational intention revision in BDI logics. While they specify and de�ne
rational intention revision, they are typically not operationalised, tractable, nor amenable
to agent programming. On the other hand there are more practice-oriented approaches,
adopting assumptions and a conceptual framework more consistent with traditional BDI
agent programming, typically giving operational semantics and focusing on practical ap-
plication. These approaches include work on goal interactions [47, 103, 123], failure han-
dling [81], and goal deliberation [13, 38, 61, 79]. Due to the more programming-oriented
conceptual framework and focus on practicality, these approaches typically do not consider
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rationality beyond partial satisfaction of rationality postulates, and applying BDI theoretical
results to the proposed models is not straightforward.

This incongruence between the two major approaches has led to what is sometimes re-
ferred to as the “theory-practice gap” in the literature [9, 38, 61, 71, 104, 115]. A body of work
has developed aiming to address the theory-practice gap by integrating BDI theory concepts
with agent-programming languages [9, 24, 40, 54, 92, 117]. Although these approaches con-
stitute signi�cant progress toward bridging the theory-practice gap, there are some aspects
of rational intention revision that they do not adequately address. Primarily, they do not ac-
count for the executability of intentions in their mutual context, i.e., their joint achievement,
at the level of both intentions to-be and intentions to-do. Moreover, they do not consider
subgoaling, planning, failure handling, or decision-theoretic notions of rationality, dealing
mainly with rationality postulates. Because of this, the de�nition of a rational agent state
preserved by intention revision (from Grant et al. [36]) is not satis�ed in the context of com-
mon agent programming concepts and assumptions, leaving a remaining theory-practice
gap.

In this thesis I provide a new, computationally grounded, model of rational intention
revision for BDI agents. The model, GROVE, shares a conceptual framework with BDI agent-
programming approaches, yet makes rational agency central. Executable traces are derived
from goal-plan trees, and combined to give interleaved executions of multiple intentions.
Interleavings are �ltered by executability and ordered by preference in order to determine
a most preferred execution of an agent’s goals. The idealised, unbounded model gives an
account of rational intention revision and rational BDI agency in general, presented as an
operational semantics. A bounded version of GROVE is also presented, giving an account
of bounded-rational BDI agency that requires no signi�cant changes to the model, only the
assumptions made. GROVE addresses the theory-practice gap by operationalising rational
intention revision in the context of a model based on standard BDI agent programming
abstractions. In addition, an account of bounded-rational BDI agency is given, bridging the
gap between intractable BDI theory and practical agent programming.

The remainder of this thesis is structured as follows. In Chapter 2 I review the intention
revision literature along the lines of the theory-practice dichotomy. In Chapter 3 I de�ne
the rational intention revision problem, elaborate on the limitations of the literature in ad-
dressing this problem, sketch the outline of a solution, and introduce a running example.
In Chapter 4 I introduce GROVE and its operational semantics as a solution to the ratio-
nal intention revision problem. In Chapter 5 I propose assumptions for bounding GROVE,
formalise the notion of bounded rationality, and describe how GROVE can be bounded to
give an account of bounded-rational BDI agency that is realisable in practical agents. I con-
clude with a summary of the contributions made and discussion in the context of existing
work, suggest extensions to GROVE to further bridge the theory-practice gap, and identify
avenues for future work.
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2 Literature Review

“AI makes philosophy honest.”
— Daniel Dennett

In this chapter I review the literature and identify the limitations with respect to ratio-
nal intention revision. I present the literature around the idea that the approaches to in-
tention revision and related work can be classi�ed at a high-level as either theory-based,
practice-based, or hybrid approaches. The classi�cation of theory-based and practice-based
approaches follows the identi�cation of a “theory-practice” gap in the literature, which is ad-
dressed by the hybrid approaches. The theory-based approaches primarily consider rational
behaviour of ideal BDI agents, and provide speci�cation that provides a logical background
for informing implementation of agents. However most of the theory-based approaches are
not operationalised or even tractable for practical agents. On the other hand, the practice-
based approaches consider tractable and realistic agents �rst and foremost. While these
approaches are more amenable to practical agent programming, they are limited in their
consideration of rationality and adopt a di�erent conceptual framework from that of the
theory-based approaches. The di�erences in terminology and conceptual framework of the
theory-based and practice-based approaches constitute a gap in knowledge. Bridging this
gap corresponds to realising practical agents that are amenable to agent programming, yet
exhibit rational behaviour in line with the principles postulated by BDI theory. The hybrid
approaches share a common aim of addressing the theory-practice gap.

The theory-based approaches I review consist of the founding work on BDI theory fol-
lowing Bratman [10], including models of BDI agency and rationality principles [20, 75], a
strand of work investigating rational intention reconsideration [80, 88, 119], and the litera-
ture surrounding Shoham’s database perspective [27, 36, 45, 96, 127].

The practice-based approaches I review include work on goal semantics [104, 115], goal
and plan interactions [93, 103, 123], deliberation and goal management [38, 68], and prefer-
ences [42, 66, 113].

The main approaches that I consider within the hybrid class are the development of so-
phisticated agent-programming languages [14, 39, 40, 54, 76, 92], and a strand of work in-
vestigating the rationality of agents in traditional BDI agent-programming languages [8, 49,
117].

The structure of this chapter is as follows: I review the theory-based approaches in Sec-
tion 2.1, the practice-based approaches in Section 2.2, the hybrid approaches in Section 2.3,
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2 Literature Review

and in Section 2.4 I elaborate on the BDI theory-practice gap in the context of the reviewed
literature, and discuss how the problem of rational intention revision can be approached by
addressing the limitations of the existing work.

2.1 Theory-based approaches

In this section, I discuss work that takes a more theoretical approach to the problem of in-
tention revision in BDI agents. I �rst consider key work in philosophy that forms the foun-
dation of much of the work on intention revision, before discussing attempts to formalise
these ideas in logic.

The intentional stance is a folk psychological abstraction of intelligent behaviour put forth
by Dennett [26]. By viewing an entity as a rational agent, one can then ascribe beliefs and
desires to it. Beliefs representing its knowledge of the world, and desires being states of the
world it would like to achieve. Then intentions are the chosen courses of action that the
agent pursues in order to realise its desires in light of its beliefs. This perspective facilitates
reasoning about, predicting, and ascribing motivation to an agent’s actions. The intentional
stance is the highest of three levels of abstraction proposed by Dennett, the others being the
physical stance, corresponding to abstraction at the level of physical laws, and the design
stance, corresponding to a teleological view focusing on purpose and function. Although
Dennett is concerned primarily with explaining human behaviour, the intentional stance
has found some traction in the �eld of arti�cial intelligence, particularly as a vehicle for
designing and reasoning about autonomous and proactive arti�cial agents.

Following the development of theories of intention in the philosophical literature, Brat-
man [10, 11] outlines a general approach for a rational agent architecture in which intentions
are treated as �rst-class mental attitudes alongside beliefs and desires. Bratman makes a
case for the distinct role of intentions in resource-bounded rational agents, and argues that
not only are intentions irreducible to beliefs and desires, but that they are instrumental in
making deliberation tractable for resource-bounded agents in dynamic environments. The
primary tasks of the architecture outlined by Bratman are means-end reasoning, deciding
between alternative courses of action, and reasoning about interactions between intentions.

Bratman identi�es several roles of intentions in constraining the reasoning performed
by a rational agent. Firstly, intentions act as an input to means-end reasoning, meaning
that means-end reasoning is focused on generating means by which to achieve intentions
rather than toward arbitrary goals or in direct reaction to environmental change. Secondly,
intentions act as constraints on further reasoning, such that a rational agent need not con-
sider courses of action that are incompatible with its intentions. Lastly, intentions in�uence
beliefs such that some beliefs are consequential of intentions, and agents believe to some ex-
tent that those consequences will follow. The constraining role can be further characterised
by the notion of consistency. Intentions should be internally consistent, consistent with be-
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2.1 Theory-based approaches

liefs, and mutually consistent such that they can be jointly executed. Thus the requirement
of consistency limits what intentions can be considered for adoption by the agent, what
means can be employed to achieve them, and circumscribes the relevant information for
determining when changes should be made to the intentions.

In a dynamic environment where circumstances can change unpredictably, in addition to
the assumption that agents are knowledge-bounded and do not have complete knowledge
of their environment, an agent’s intentions are necessarily based on incomplete informa-
tion that may render them unsuitable as beliefs are updated or revised. Bratman addresses
this by proposing that intentions are stable and revocable. Stability implies that intentions
resist reconsideration, and are abandoned only with rational cause to do so. On the other
hand, revocability implies that intentions can ultimately be abandoned when they are no
longer useful to the agent. These opposing properties give rise to what Bratman calls “ten-
sion”, where a rational agent must balance stability of intentions with reconsideration. This
balance is determined by the circumstances under which an agent can consider adopting
an intention that is incompatible with its existing intentions, i.e., the circumstances under
which it reconsiders its intentions.

In some cases it may payo� to reconsider intentions, and in other cases it may not, and
unnecessary reconsideration is wasted e�ort. On the other hand, failing to reconsider inten-
tions when it pays o� to do so means the agent has less than optimal intentions. Bratman
states that a rational agent aims to minimise this wasted e�ort.

Pollack [70] makes a similar case to Bratman, arguing for the centrality of the notion of
intention in constraining deliberation and practical reasoning in resource-bounded agents.

Cohen and Levesque [20] give the �rst formal treatment of Belief-Desire-Intention agents.
They introduce a possible worlds model based on temporal logic, in which mental attitudes
such as beliefs and goals are modal operators. Their model captures Bratman’s roles of in-
tentions and gives an account of how intentions are adopted with respect to beliefs, goals,
and existing intentions. Cohen and Levesque give several properties of goals that are desir-
able as a basis for de�ning intentions of rational agents: goals should be persistent, possible
and unachieved. The property of persistence means that goals are not dropped without
rational cause, possibility means that goals are required to be consistent with beliefs, and
unachieved means that a rational agent does pursue goals that have already been achieved.

Intentions are de�ned in their model as persistent goals (referred to as P-GOALs), which
are chosen goals that an agent believes it will act toward, and believes it will no longer pursue
after doing so. They de�ne an additional type of intention, a PR-GOAL, which also has an
explicit motivation condition such that the goal can be dropped if the agent no longer needs
to achieve it. The de�nition of intentions as P-GOALs or PR-GOALs gives two di�erent kinds
of commitment strategy toward intentions. The former is “fanatical” or blind commitment,
where an agent pursues an intention until it is achieved or believed impossible, and the latter
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2 Literature Review

is referred to as “relativized” commitment where an intention can additionally be abandoned
if no longer needed.

Although it constitutes a major �rst step, the model proposed by Cohen and Levesque
has some limitations. Singh [99] argues that the de�nition of P-GOAL given by Cohen and
Levesque is too strong as it implies an agent eventually believes a goal is achieved if the
agent is competent. Singh notes that this cannot be guaranteed, because as long as the
agent believes the goal is not impossible it can attempt it arbitrarily many times and still
not achieve it, and does not necessarily need to act towards the goal in order to believe it
will eventually be achieved either. Moreover, Singh argues that the de�nition of P-GOAL
is problematic as it gives a de�nition of intention that is incompatible with multiple inten-
tions. In addition, P-GOALs and PR-GOALs are based on criteria external to the agent and
their success is not contingent on actions of the agent. Therefore a rational agent should
not commit to these goals as intentions. Singh suggests that the issues with the model of
Cohen and Levesque stem from the merging of the semantics of intentions and policies of
intention revision, which should be separated. These problems are further addressed by
Creel et al. [21].

Rao and George� [73] investigate Bratman’s asymmetry thesis [10] in a branching time
logic of intention. They extend Bratman’s rational properties of intention-belief consistency
and incompleteness to analogous properties of intention-goal consistency, goal-belief con-
sistency, and intention-goal incompleteness. Intention-goal consistency means that inten-
tions are consistent with goals, and goal-belief consistency means that goals are consistent
with beliefs, i.e., goals are realistic. Intention-goal incompleteness is argued to be a property
of rational agents as intention-goal completeness would imply that an agent must adopt ev-
ery goal as an intention, which is irrational if intentions are incompatible or the resources
of the agent are limited. A rational agent therefore commits to a subset of goals and is not
forced to commit to all of its goals, there are cases where an agent should not necessarily
commit to a goal. For instance, goals may be logically consistent but have incompatible
means. This is analogous to the idea of intention-belief incompleteness where it is rational
for an agent can commit to an intention provided it is not impossible, rather than requir-
ing that it is certainly possible. Moreover goal-belief completeness is irrational as an agent
should not be forced to adopt inevitable beliefs as goals, which Rao and George� identify as
an issue with the realism constraint of Cohen and Levesque [20].

Rao and George� [75] propose an alternative framework resembling branching-time com-
putation tree logic (CTL). Possible scenarios in their model are represented as belief-accessible,
goal-accessible, and intention-accessible worlds. They identify several rationality proper-
ties for agents. Belief-compatibility means that if an agent has a goal stating that some
state is eventually reached, then it must believe that it is possible, i.e., there must be at
least one path in all belief-accessible worlds where the goal is realised. They re�ne this
notion to give a de�nition of strong realism, where an agent can only adopt goals that are
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consistent with beliefs. Goal-intention compatibility means that a rational agent only com-
mits to intentions corresponding to its goals. Inde�nite procrastination is avoided by the
requirement that agents are committed to attempting their intended actions, although not
necessarily successfully, and the requirement that agents eventually abandon their inten-
tions (eg., due to being achieved or impossible). Additionally agents must be aware of their
attempted actions, and whether or not they succeeded, and know their goals and intentions.
These rationality properties are de�ned as a set of axioms for their model. Rao and George�
de�ne three commitment strategies for agents: blind commitment, single-minded commit-
ment, and open-minded commitment. A blindly committed agent maintains its intentions
until they are actually believed to be achieved and thus never reconsiders its intentions. A
single-minded agent can abandon intentions that are no longer achievable, and otherwise
maintains them. An open-minded agent can additionally abandon intentions when they
no longer correspond to its goals, such as when an intention is no longer useful. Rao and
George� note the similarity between single-minded commitment and fanatical commitment,
and open-minded commitment and relativized commitment of Cohen and Levesque [20]. In
addition they point out that a rational agent should not be forced to intend the side-e�ects of
its intentions even if they are inevitable (the side-e�ect problem), and similarly should not
be forced to adopt inevitable beliefs as goals (non-transference). Due to the axiomatisation
and de�nition of intention they introduce, their model avoids these problems. Their model
di�ers from that of Cohen and Levesque in that it treats intentions as basic attitudes of the
agent rather than axiomatic commitment to goals, and the de�nition of future commitment
of an agent is focused on intention revision, rather than the de�nition of intention itself.

van der Hoek et al. [46] formalise capabilities of a rational agent as an operator in the
context of a logic of knowledge and action. They de�ne a capability operator in terms of
“can” and “cannot” predicates, which are conditioned on actions and goals. The “can” predi-
cate expresses that the agent knows that performing a given action brings about a particular
goal, and that it is able to perform the action, i.e., the action is consistent with the currently
believed state of the environment. On the other hand, the “cannot” predicate expresses that
the action de�nitely cannot be performed to bring about the goal, either due to inconsis-
tency with beliefs or because the action brings about a state other than the desired goal
state. van der Hoek et al. point out that the “cannot” predicate is not simply the negation of
“can”, because the agent’s knowledge is potentially incomplete. Therefore these predicates
allow to classify the agent’s actions into three classes with respect to a particular goal. For
a goal with respect to a particular action, either the agent “can” achieve it, “cannot” achieve
it, or it is unknown due to incomplete beliefs.

Padgham and Lambrix [64, 65] re�ne the notion of capabilities of rational agents further,
by requiring only that a goal is possibly achievable rather than necessarily achievable as in
the de�nition given by van der Hoek et al. [46]. Moreover, they distinguish between strong
and weak capability based on the two main interpretations of capability that they identify
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in the literature, which they argue correspond to di�erent degrees of commitment. Their
notion of weak capability corresponds to a rational intention to achieve a goal, while their
notion of strong capability corresponds to a rational commitment to a means to achieve a
goal. The di�erence between the two is that weak capability requires that a goal or intention
is realistic and desired, while strong capability additionally requires that the agent has an
applicable means to achieve the goal or intention. This re�ects the intuition that capability
is the combination of ability and opportunity [65], which implies that it is irrational for an
agent to commit to an intention that it does not believe it has the opportunity to achieve at
present or in the future, nor any means to achieve it. In addition, Padgham and Lambrix note
that if an agent has no means to achieve a goal, then opportunity (applicability of means) is
irrelevant to deliberation.

2.1.1 Intention Reconsideration

Russell and Wefald [80] address limitations of the standard decision-theoretic account of
rational behaviour with respect to bounded rationality. They develop an optimal model of
bounded-rational agency based on the assumptions that agents are resource-bounded and
situated in real-time environments where deliberation has a cost in terms of potential en-
vironmental change during deliberation. As deliberation leads to revised intentions, and
intentions in a decision-theoretic model lead to a desired environmental state with an as-
sociated utility, the utility of deliberation in their model is derived from the utility of the
revised set of intentions it results in. Because deliberation has both utility and cost, this leads
to a notion of payo� for revising intentions when the utility is greater than the cost. The
authors point out that while an ideal (unbounded) agent can deliberate until it has obtained
an optimal set of intentions, a bounded agent must avoid deliberation that does not lead to
a payo�, and engage in deliberation when it does. Rather than giving an account of how an
agent selects the maximal utility action, their model is an account of an agent maximising
expected net utility, i.e., maximal payo�. Russell and Wefald base their model on a notion
of rational metareasoning, where an agent selects either an (object-level) external action
to perform using its current intentions, or else executes a meta-level deliberation function
that may revise its intentions and thus potentially lead to executing an external action with
greater utility. The external action that an agent in their model performs based on its inten-
tions is the “known best” so far, rather than deriving the best action of all possible actions it
may take. In order to make the model tractable they introduce a probability distribution as a
means for predicting the utility of deliberation, without reasoning about the exact outcomes
of deliberation, which may incur a computational cost similar to simply deliberating.

The model proposed by Russell and Wefald [80] is investigated further and expanded on
by Kinny and George� [55], Wooldridge and Parsons [119], and Schut et al. [85, 86, 87, 88].

Kinny and George� [55] conduct an empirical investigation of the impact of commitment
on agent e�cacy. They carried out a series of experiments on agents with various commit-
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ment strategies, and additionally vary environmental properties including dynamism and
time budget for planning. The commitment strategies were varied in terms of degree of com-
mitment and deliberation strategy. They found that when circumstances change agents are
more e�ective if they reconsider in response to change, and that for greatest e�cacy com-
mitment to goals should be tailored to environmental dynamism, i.e., rate of environmental
change. In addition they found that agents that abandon impossible intentions immediately
outperform blindly committed agents that do not reconsider their intentions in most cases,
while the most e�ective deliberation strategy was reconsideration in response to certain
environmental changes.

Following these results, Schut and Wooldridge [85] incorporate the metareasoning model
of deliberation from Russell and Wefald [80] into a BDI architecture. Using this architecture
they carry out an empirical analysis to evaluate static and dynamic intention reconsidera-
tion policies in environments with varied dynamism. The dynamic intention reconsidera-
tion policy computes the expected value of deliberation by determining the expected utility
of the next action after revising intentions, minus the time cost. They found that the degree
of commitment was inversely proportional to environmental dynamism in agents with a dy-
namic reconsideration policy, meaning that the agent was more likely to reconsider goals in
dynamic environments and avoid doing so in less dynamic environments. They suggest that
this is because the computation of expected utility of deliberation in their model accounts
for predictions about the evolution of the environment (using a probability distribution),
therefore estimated utility of deliberation depends on environmental dynamism.

Schut and Wooldridge [86] conduct an empirical evaluation of intention reconsideration
strategies in di�erent environments, building on the work of Kinny and George�. The en-
vironmental parameters varied were dynamism, accessibility (agent knowledge), and deter-
minism. They found that dynamism had the strongest in�uence on agent e�ectiveness over-
all. The value of reconsideration increases with environmental dynamism, as with greater
world change agents need to reconsider more often to keep their intentions consistent with
changing circumstances.

Schut et al. [87, 88] describe an approach to intention reconsideration based on the ar-
chitecture developed previously in [85, 86]. Their approach relies on solving a partially-
observable Markov decision process (POMDP) to derive an optimal reconsideration policy
for an agent. The POMDP captures the domain knowledge of the agent, including the ex-
pected rewards of achieving states through deliberation or action, and evolution of the en-
vironment. The authors argue that although the construction and solution of the POMDP
is potentially intractable, it can be done o�ine and cheaply executed at run-time, making
it a suitable approach for determining a reconsideration policy, i.e., it is computationally
cheaper to estimate expected payo� of deliberation than it is to deliberate. Schut et al. com-
pare the POMDP-based approach to their previous architecture using metareasoning [85, 86]
and note that an agent with a POMDP-derived policy has a more consistent level of com-
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mitment to intentions when compared to a metareasoning-based agent, potentially due to
their lesser dependency on predictions about environmental dynamism. However, they also
note that metareasoning-based agents have lower overall cost of action. They found that
the POMDP-based approach gave agents that executed more actions with greater e�cacy,
but had greater cost overall.

Wooldridge and Parsons [119] develop a formal model of rational BDI agency based on the
metareasoning model of Russell and Wefald [80]. Their model allows formal de�nition of the
optimality of an agent with respect to its environment, and optimality of a meta-level con-
trol function that corresponds to the metareasoning component of the model. They de�ne
an agent as optimal with respect to an environment if there is no other agent which achieves
a computational run with greater utility, in line with the standard decision-theoretic notion
of agent optimality. Similarly, they de�ne a meta-level control function as optimal with
respect to an agent and environment if no other meta-level control function gives a compu-
tational run with greater utility. An optimal meta-level control function then corresponds to
a policy that makes an optimal series of choices between deliberation and action in a com-
putational run. Wooldridge and Parsons suggest that a meta-level control function could
determine the best reconsideration policy by reasoning about environmental conditions,
potentially choosing from a set of deliberation strategies such as those identi�ed by Kinny
and George� [55].

2.1.2 Database perspective

The database perspective [96] refers to a strand of work [16, 27, 36, 45, 50, 57, 58, 96, 124, 125,
127] that aims to give a formal account of intention revision in BDI logics that is analogous
to work on belief revision. The work as of 2009 and the motivation behind it are surveyed
in an article by Castro-Manzano [16], to which I direct the interested reader. Work in this
sphere views the mental state of a BDI agent as a database to be updated and revised in
order to preserve consistency within and between mental attitudes. A central concern is
the impact of revising mental attitudes on the consistency of other mental attitudes, due to
their inherent interdependencies. In order to preserve consistency of an agent’s mental state
inconsistencies between mental attitudes must be resolved, and their resolution by revision
can prompt further revision. The main di�culty addressed by the database perspective work
is the de�nition of postulates for rational revision of mental attitudes, and speci�cation of
models that satisfy those postulates.

Hoek et al. [45] introduce a model of rational intention revision based on temporal logic
of beliefs and intentions. They distinguish between strong beliefs, which are independent
of intentions, and weak beliefs, which are contingent on intentions. Weak beliefs de�ne a
notion of realism where an agent’s intentions must be consistent with strong beliefs such
that the weak beliefs contingent on intentions are also consistent with strong beliefs. This
means that both the preconditions and postconditions of intended actions must be consistent
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with how the agent believes the world currently is or will evolve, based on both strong beliefs
and weak beliefs, i.e., intended actions must be realistic in the context of the environment
and other intended actions. The distinction of strong and weak beliefs is motivated by the
intuition that a rational agent’s intentions must be revised to be consistent with strong
beliefs (the believed state of the world), rather than the other way around, and consequently
weak beliefs may be revised due to intention revision. Similarly, intentions may be revised
in order to restore consistency to weak beliefs, but this cannot a�ect the strong beliefs. Hoek
et al. argue that this distinction along intention-dependency of beliefs is necessary in order
to model rational intention revision.

Shoham [96] develops the database perspective of intention revision through investigation
of the notion of intention within a logical framework of belief and action. He aims to make
progress toward bridging the “theory-practice gap” by adopting a practical view of intention
rather than a philosophical one, leading to a precise interpretation of the notion of intention
revision. Shoham argues that a notion of capability is necessary for relating beliefs and
actions such that agents can reason about intentions. Because intentions and beliefs are
required to be internally and mutually consistent, intended actions must also be consistent in
the sense that they are jointly executable in some temporal ordering, i.e., their preconditions
are satis�ed and postconditions consistent with beliefs at each time point that an intended
action is executed. When beliefs are revised, this can result in inconsistencies which must
then be resolved by revision to intentions.

Ditmarsch et al. [27, 58] explore the interaction of belief and intention revision, with a fo-
cus on intention dynamics, in a dynamic logic. Their dynamic logic allows to represent how
an agent’s attitudes change over time. An agent in their logic committing to or abandoning
an intention corresponds to a choice operator, the application of which is justi�ed by prac-
tical reasoning. An intention is generated when practical reasoning rules determine that a
desire can be satis�ed by some means, which the agent can choose to adopt as an intention
provided it has not already done so. Similarly, the choice to reconsider an intention is made
on the basis of practical reasoning rules determining that an intention is no longer useful
or is hindering progress in some way e.g., if it is no longer possible, or con�icts with other
intentions.

Grant et al. [36] propose a model of BDI agency to investigate revision of mental attitudes.
Their approach is similar to the approach outlined by Shoham [96] in that it makes central
the connection between consistency of mental attitudes and the in�uence of their interde-
pendencies on intention revision. It di�ers from other approaches that explicitly adopt the
database perspective in that intentions are treated atemporally, giving a weaker de�nition
of consistency between intentions and beliefs. However, Grant et al. consider optimal-
ity of intentions in addition to consistency, which other approaches do not. Their de�ni-
tion of optimal intentions is based on cost-value analysis and resembles decision-theoretic
approaches to de�ning agent rationality. Grant et al. give rationality axioms for mental
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states of BDI agents. A weakly rational agent has consistent beliefs, desires, and inten-
tions, while a strongly rational agent is weakly rational and has optimal intentions also. An
agent is weakly rational if its mental state is belief-rational and intention-rational. Belief-
rationality corresponds to consistency between intentions and beliefs, and implies that an
agent is capable of its intentions. Intention-rationality corresponds to mutual consistency
of intentions and also requires that already satis�ed desires are not pursued by intentions.
Grant et al. identify the correspondance between their notions of belief-rationality and
intention-rationality and the rationality principles of Cohen and Levesque [20] and Rao and
George� [75]. Provided that an agent’s mental state is weakly rational, it is also strongly
rational if its intentions are at least as bene�cial as any alternative intention set that it could
adopt while remaining weakly rational. Bene�t is derived by subtracting the cost of intended
actions from the value of the desires they satisfy. While weak rationality de�nes rationality
with respect to consistency of a mental state, as in Shoham’s [96] de�nition of consistency as
central to the database perspective, strong rationality is a further constraint of optimality as
a choice between weakly rational mental states. Grant et al. specify postulates for rational
revision of a mental state. Abstractly, their postulates specify that revisions to strongly ra-
tional mental state should result in a strongly rational mental state, preserving consistency
and optimality.

Icard et al. [50] propose a formal model of belief and intention revision that adopts Shoham’s
database perspective. A database, corresponding to a BDI agent’s mental state, maintains
consistency and coherence between beliefs and intentions, and formalises Shoham’s notion
of consistency for mental attitudes. A database is coherent if the joint preconditions of in-
tended actions are consistent with beliefs, meaning that it is possible to execute the intended
actions together in a temporal ordering. If intentions and beliefs are coherent then all in-
tended actions can be performed, which Icard et al. identify as a minimal requirement of
rational balance between beliefs and intentions. Their model is based on a logic incorpo-
rating paths, which are possible evolutions of the database. For the property of coherence,
preconditions are required to hold on at least one belief-consistent path, giving an opti-
mistic interpretation of coherence as circumstances may not necessarily evolve along any
particular path. However this de�nition of coherence does imply that the intentions are at
least no impossible according to the agent’s beliefs. Icard et al. give postulates for inten-
tion revision that require that the result of a revision is a consistent and coherent database,
even if this requires abandoning existing intentions to restore consistency and coherency.
Although they note that only beliefs contingent on intentions should be revised following
intention revision, following the ideas of van der Hoek et al. [45], they do not make a formal
distinction between strong and weak beliefs in their model.

van Zee et al. [125, 126, 127] consider rational interaction between intentions and beliefs,
parameterised by time points as in [50]. They identify and address problems with the def-
inition of coherence and incomplete axiomatisation given by Icard et al. [50]. Icard et al.
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de�ne coherence as the joint executability of intended actions, and account for temporality
of intentions and beliefs in propositions but not modalities, leading to an overly strong def-
inition. The model proposed by van Zee et al. incorporates a stronger notion of coherence,
based on a logic where modalities are parameterised by time points. This gives a semantics
where if the preconditions of an intended action hold at a given time point, then it is pos-
sible to perform that action at that time point. Moreover, they distinguish between strong
and weak beliefs in their model, allowing to formally postulate that revision of intentions
and weak-beliefs cannot cause revision of strong beliefs. An agent in their model weakly
believes that the postconditions of its intended actions hold at the time points after they are
to be executed, and intentions and beliefs are coherent if the agent believes that it is possible
to execute all of its intentions, i.e., preconditions of intended actions are not inconsistent
with strong beliefs. Their de�nition of coherence then allows for the possibility of intended
actions to make the preconditions of other intended actions true, i.e., intentions are not nec-
essarily incoherent if the agent only weakly believes the preconditions of intended actions
are satis�ed.

2.2 Practice-based approaches

In this section, I review work that adopts a practical approach to the problem of intention
revision. The conceptual framework more or less common to the literature I review here
di�ers from the logical framework of BDI theory, where desires and intentions are viewed
as �rst-class primitives. Instead, the primitive concepts here are goals and plans, which
roughly correspond to desires and intentions. The exact correspondence between these
concepts depends largely on the work in question. The degree of commitment to goals is
either implicit in an agent programming language’s semantics or explicit in the form of
programmed commitment strategies, or representations of agent attitude such as goal state
�ags that denote role of goal in deliberation. Here I limit consideration of goals and plans to
their role in intention revision from an agent programming perspective, a wider discussion
of agent programming in general can be found in [118] and [6].

Due to this incongruence between the perspectives, I begin by discussing goal seman-
tics, types, and properties, in order to establish the agent programming terminology and
concepts that are common to the practice-based approaches. Next, I introduce the ideas of
subgoals and partial planning as they are integral to several of the approaches I review here.
Following that I consider work related to detecting and handling situations where intention
revision is warranted, and deliberation over goals and goal lifecycle-based models. Lastly
I discuss preferences, which are related to rational choice between alternatives and thus
rational intention revision.
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2.2.1 Goal semantics, types, and properties

According to Winiko� et al. [115], goals are dual-facted as they have both a declarative and
procedural aspect. The declarative aspect corresponds to a desired state of the world to
achieve, while the procedural aspect corresponds to action that must be taken on the part
of the agent to achieve the goal, such as means. Winiko� et al. argue that the declarative
aspect is necessary for agents to reason about goals, thus rational behaviour is predicated
on declarative representation of goals. They further argue that the procedural aspect is
necessary for agents to reason about the achievability of goals, as in agent programming the
assumption is made that the agent must carry out some means in order to achieve the goal.
Moreover, they argue that the procedural aspect of goals gives agents a problem to solve,
echoing Bratman [11]. Both the declarative and procedural aspects of goals are argued as
being necessary for rational behaviour in goal-directed agents.

The need for distinction between declarative and procedural aspects of goals, and the
necessity of representation of both for rational behaviour, is also argued for by Dastani et
al. [22].

Thangarajah et al. [104] argue that without explicit representation of declarative goals,
agents cannot reason about the consistency of their goals. They note that while the BDI
theoretical notion of rationality requires that adopted goals are a consistent set of chosen
desires, some agent programming languages cannot be consistent with this de�nition of
rationality as they have no explicit representation of goals, or only procedural goals are
represented.

van Riemsdijk et al. [79] aim to give a general and unifying de�nition of what is meant by a
goal, and explores how they are pursued. In addition they give de�nitions and semantics for
common goal types in agent programming. They de�ne a goal pragmatically as a preferred
progression of an agent.

Governatori et al. [35] de�ne a general notion of an outcome as a fundamental concept
that agents reason about, of which goals are a sub-type. While goals are preferred outcomes,
desires are acceptable outcomes.

Properties

Winiko� et al. [115] identify several properties of goals of rational agents and relate them to
the properties of rational commitment from Cohen and Levesque [20], and Rao and George� [75].
They argue that goals of a rational agent are persistent, unachieved, possible, consistent and
known. Persistence means that goals are retained unless there is good cause to abandon
them, unachieved means an agent should only have goals it believes are not achieved, pos-
sible means the goal is consistent with beliefs in some sense, consistent means that goals
are mutually consistent, and known means that the agent knows what goals it has. With
respect to persistence, Winiko� et al. give the example of decoupling of goal success/failure
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and plan success/failure. If a plan fails, the goal it pursues should not necessarily fail as well,
and similarly if a goal is achieved this may not necessarily occur as a result of plan com-
pletion. A plan can complete execution without its goal being achieved, and a goal can be
achieved serendipitously by environmental change in which case its plan should no longer
be pursued.

Braubach and Pokahr [12] extend the properties for goals proposed by Winiko� et al. to
account for those of long-term goals. They suggest that goals of a rational agent should
also be producible, suspendable, and variable duration. Producible means that a goal can
be invoked or revoked by the agent, i.e., added or removed at runtime, suspendable means
that goals can be suspended and resumed, and variable duration means making a distinction
between goals that are short-term and immediately require means-end reasoning, and long-
term or strategic goals that do not directly control action but still in�uence the behaviour
of the agent.

Types

Dastani et al. [22] discuss three types of declarative goal that can be incorporated into agent
programming languages. They identify three goal types in the literature, procedural (per-
form) goals, achievement goals, and maintenance goals, which they argue are sub-types of
declarative goals. They argue for and justify the integration of these goals in logic-based
agent-programming languages.

van Riemsdijk et al. [79] propose a unifying semantics for several goal types that they
identify as common in agent programming. The goal types are achievement, performance,
query, and reactive maintenance. Achievement goals are representing a desired state to
be achieved, performance goals are procedural goals corresponding to action to be taken,
query goals represent knowledge the agent aims to acquire, and reactive maintenance goals
represent a state that the agent aims to preserve and act to restore if necessary.

Dastani et al. [23] give an operational semantics for temporal goals, building conceptually
on the work of van Riemsdijk [79]. Temporal goals refer to multiple states, representing
conditions that an agent aims to achieve, maintain, or avoid over periods of time. In their
semantics temporal goals are LTL formulas that are modelled as achievement goals and
maintenance goals.

Du� et al. [28, 29] consider maintenance goals and distinguish types of maintenance goals
corresponding to di�erent attitudes of an agent toward maintenance of a state. Reactive
maintenance goals invoke achievement goals to restore maintenance conditions that have
been violated, while proactive maintenance goals invoke action to prevent predicted viola-
tion of their maintenance condition. Thus both of these types of maintenance goal directly
control agent behaviour. They additionally discuss passive maintenance goals, which cor-
respond to constraints on agent behaviour and do not directly control action.
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2.2.2 Subgoaling and partial plans

Bratman [10, 11] and Pollack [70] argue for the suitability of partial planning to BDI agents
in dynamic environments, as they facilitate plan selection at runtime, aid in guiding delib-
eration, and are �lled in as necessary, giving some resilience to changing circumstances. An
agent can commit to a partial plan to pursue an intention, without committing to exactly
how it is completed until necessary. This style of planning can be contrasted with reactive
planning (as in the Procedural Reasoning System (PRS) [33, 34]), where beliefs are mapped
directly to actions, i.e., actions are selected rather than (partial) plans.

Subgoals are abstract steps toward a goal, sometimes referred to as subsidiary goals [61].
Goals can be decomposed into subgoals, allowing a complex task to be broken down into
smaller parts. In addition, partial plans can be speci�ed using subgoals to represent con-
ditions that must be satis�ed for completion of plan, and can be satis�ed by assigning and
executing plans for subgoals. Subgoals are suited to partial planning as they only need to be
planned for and achieved if they are deemed necessary by the agent for pursuit of the parent
goal [78]. Moreover, agents can reason about subgoals to detect opportunities for synergistic
execution, such as only needing to achieve a common subgoal of intentions once [106].

2.2.3 Causes of intention revision

Goal interactions

Thangarajah et al. [103, 105, 106, 108] develop a strategy for detection and handling of inter-
actions between goals and plans, using summary information [17, 18, 19]. Their approach
uses summary information to determine the necessary and possible resources used, require-
ments and e�ects of, and common subgoals of paths through goal-plan trees corresponding
to a possible way for an agent to achieve a goal. Avoidance of con�icts is a quality of ratio-
nal behaviour, as it allows to avoid unnecessary failure and thus abandonment of intentions.
Moreover, the BDI theoretical literature [75] emphasises that an agent’s intentions should
be consistent so that it is not working at cross-purposes. A goal-plan tree is a hierarchical
data structure that denotes the relationships between goals and plans, and represents all
ways for an agent to achieve the root goal. A path through a goal-plan tree corresponds to
the execution of a series of plans and potentially the achievement of subgoals, which ulti-
mately achieves the root goal. Paths can also be viewed as complete plans corresponding
to the “�lling in” of partial plans to achieve the root goal. The approach of Thangarajah
et al. allows agents to compile summary information about goal-plan trees statically or of-
�ine, and update the summary information dynamically at run-time. Summary information
is used to schedule the execution of intentions in order to avoid con�icts due to resource
usage or e�ects, and to exploit synergies that arise due to common subgoals between inten-
tions. Their distinction of the notions of possible/potential and necessary/de�nite con�icts
between goals allows to avoid revising intentions unnecessarily, which would correspond
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to undercommitment, in cases where goals are possibly/potentially in con�ict. A possible
con�ict between goals corresponds to con�ict between at least one path for each goal repre-
senting their future evolution. A necessary con�ict occurs when all paths corresponding to
future evolutions of some goals are in con�ict. In the case of con�icts between preconditions
and e�ects of plans, it may be possible to schedule intentions to avoid con�icts. Thangara-
jah et al. introduce the notion of a preparatory e�ect characterised by an e�ect of a step in
pursuit of a goal upon which the precondition of a later step depends. If a preparatory e�ect
is threatened by the execution of other intentions, then there is a con�ict. They also identify
the case where intentions are mutually inconsistent meaning that scheduling cannot avoid
a con�ict, i.e., all schedulings of some intentions results in con�ict. Similarly, common sub-
goals between intentions can be exploited by scheduling intentions such that the common
subgoal only needs to be achieved once.

An alternative approach to using summary information for reasoning about goal interac-
tions is proposed by Shaw et al. [94, 95]. Shaw et al. use Petri nets to represent dependencies
between goals and plans, allowing for detection of con�icts and synergies. In their approach,
causal links (dependencies) between goals and plans are modelled using Petri nets, which ac-
count for the necessary information to reason about preconditions and e�ects of goals with
respect to goal interactions. In addition to detection of con�icts, common e�ects of plans
can be detected. This type of synergy can be exploited by plan merging, such as suggested
by Horty and Pollack [47].

Winiko� et al. [114] de�ne temporal goal types and consider con�icts between temporal
goals. They identify both logical con�icts (satis�ability) and con�icts over protected condi-
tions of temporal goals. Their approach assumes requirements modeling protected condi-
tions (or in-conditions) of a goal are available. By reasoning about mutual satis�ability and
mutual consistency of requirement sets, goals can be scheduled to avoid con�icts.

Zatelli et al. [123] propose a method for run-time con�ict detection and resolution between
intentions in Jason agents. Their aim is to maximise the internal concurrency of agents by
executing as many non-con�icting plans concurrently as possible, which implies identifying
and scheduling (non-)con�icting plans and sub-plans. Plans are annotated with con�ict
sets by an agent programmer. If any elements of a con�ict set are referenced by another
plan, then those plans potentially con�ict. Con�ict sets can contain a rich set of identi�ers,
including events, goals, and resource identi�ers. Rather than scheduling plans as atomic
units as in the approach of Thangarajah et al. [103], Zatelli et al. suggest scheduling at the
sub-plan level in order to maximise concurrency. They observe that some parts of plans may
con�ict while others do not, and therefore can be conceptually split into safe and con�icting
parts with respect to other plans. The con�ict sets of intended plans are checked in order
to detect con�icts, and potentially con�icting intentions are scheduled in order to avoid
con�ict. Zatelli et al. propose several strategies for deciding which of a set of con�icting
intentions takes priority when scheduling.
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Horty and Pollack [47] develop a framework for exploring rational merging of plans in the
context of plan costs and values for desires. Their framework addresses limitations of the
standard decision-theoretic view of cost-value analysis of intention revision by consider-
ing the adoption of incompatible intentions in the context of an agent’s existing intentions,
taking into account the cost-value tradeo� of abandoning existing intentions. Horty and
Pollack argue that it is sensible to require that goals and their means are evaluated together
rather than in isolation, as the value of adopting an intention is determined by the value of
the desire it satis�es and the cost of the means to do so. Existing intentions in their frame-
work act as a �lter of admissibility [10], not only in the sense that they must be compatible,
but also that it must be worthwhile to adopt the intention in terms of the cost-value trade-
o� of the resulting intention set versus the existing intention set. This goes beyond the
interpretation of admissability as being identi�ed with mutual capability, i.e., in addition
to limiting what an agent can consider doing, limiting what it is worthwhile for the agent
to consider doing. Horty and Pollack identify a type of synergy where plan steps can be
merged, allowing for lower cost overall compared to executing plans in isolation. However,
they consider only intention revision with respect to plan merging, and do not consider
intention revision in general.

Yao et al. [122] propose an approach to failure recovery for BDI agents based on exploita-
tion of positive interactions between intentions to re-establish preconditions of plan steps.
Intentions are scheduled such that the preconditions of non-progressable intentions are re-
stored by the e�ects of other intentions.

Xu et al. [120] propose a framework for interleaving intentions based on �rst-principles
planning. Their framework allows to avoid con�icts and exploit synergies by scheduling the
concurrent execution of intentions. The possible execution traces of a set of intentions are
derived and overlapping parts of executions identi�ed as possible candidates for merging in
concurrent executions.

Failure handling

Sardina et al. [81, 82, 84] de�ne a semantics of goals in the context of standard BDI handling of
plan failures. Declarative and procedural (event) goals are distinguished in their semantics,
allowing to decouple goal success/failure from plan success/failure. They consider a case
where failure handling involves rationally relaxing commitment to subgoals. When a plan
for a subgoal fails or is blocked and cannot progress (and there are no applicable plans for
that subgoal), it may be rational for an agent to abandon the subgoal if there is an applicable
alternative plan which can be adopted for a goal higher in the goal hierarchy. Sardina et al.
note the similarity between rational abandonment of a subgoal in this particular case, and
the abandonment of impossible goals as required by BDI theoretical de�nitions of rational
commitment. In their semantics, failure is propagated up the goal hierarchy only when an
alternative means is available, which avoids abandoning progress only for the agent to end
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up unable to progress the blocked intention anyway. Sardina et al. identify the commitment
strategy of their semantics as being between the single-minded and open-minded commit-
ment strategies of Rao and George� [75], as goals are dropped only when achieved or in the
particular case mentioned.

Unruh et al. [109, 110] propose an approach to semantic compensation in failure handling
of BDI agents. Central to their approach is the idea of semantic compensation for inten-
tions, where an agent handles plan failures by adopting a goal to achieve a recovery state.
Achievement of a recovery state is considered a practical compromise between making no
compensation for failed actions, and the impossible ideal of rolling back or “undoing” ac-
tions that were part of a failed plan. In the complex and dynamic environments that BDI
agents inhabit, it is not always possible to roll back or undo actions. When plans fail, an
agent’s environment can be left in an undesirable state that hinders further progress. For
instance resources in use by the failed plan may be unavailable for re-attempting the plan
or for use in pursuing other intentions. If other intentions were suspended due to con�icts
with the e�ects of the failed plan, those e�ects may be in place while plan is no longer be-
ing pursued, preventing the agent from making progress with respect to those intentions.
The approach proposed by Unruh et al. uses domain knowledge speci�ed in terms of goals
to determine how best to compensate for failed goals and plans. The goals speci�ed for
compensation refer to the e�ects, resources, and actions involved in the execution of plans
and goals, and it is these aspects that are compensated for by adopting a declarative goal
corresponding to a recovery state. This is in contrast to executing some �xed sequence of
recovery steps de�ned by an agent programmer, which would correspond to a procedural
interpretation of compensation. The magnitude of compensation required, corresponding
to the amount of progress that must be abandoned, is proportional to the height in the goal
hierarchy at which the failure is handled. Handling the failure higher in the goal hierarchy
allows for more general compensation, but at the risk of losing more progress than handling
it at a lower level. Failure handling is then the combination of semantic compensation and
re-attempting failed tasks.

Bordini & Hübner [7] extend the semantics of AgentSpeak to account for the plan failure
handling behaviour of the Jason interpreter. In Jason, goal deletion events may trigger plans
that handle clean-up behaviour, or other operations prior to backtracking, i.e., selecting an
alternative plan. This is in contrast to the standard AgentSpeak approach to failure han-
dling, where intentions are abandoned if no applicable plan can be found. Moreover, Bor-
dini & Hübner identify cases where plan failure can occur that are consequential to practical
implementation of agents (beyond the abstract nature of AgentSpeak), such as failure of ac-
tions within plans, and when intentions are suspended while actions are completing. They
show how these types of failure are handled in Jason by the failure handling mechanism,
how more advanced operations on goals can be performed using Jason’s internal actions
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(allowing more sophisticated failure handling), and give semantics that extend AgentSpeak
to facilitate this.

2.2.4 Deliberation over goals

Deliberation strategies

Pokahr et al. [68], introduce a deliberation strategy that assumes the generic goal lifecy-
cle from [67]. Their deliberation strategy identi�es when a change to goal states inhibits
or uninhibits goals, and deliberate over goals in order to determine whether to activate or
suspend goals in light of the change to goal states. The incompatibility relationships be-
tween goals are represented by inhibition links forming a directed acyclical graph. The
deliberation strategy ensures that uninhibited goals are pursued by the agent (it does not
procrastinate) and that con�icting goals are not simultaneously pursued. As changes to goal
states are caused primarily by changes to beliefs, the deliberation strategy implicitly relates
belief revision to intention revision.

Leask and Logan [56] show how several simple deliberation strategies can be implemented
in meta-APL, an agent programming language with re�ective capabilities. The re�ective
capabilities of meta-APL allow for the encoding of deliberation strategies purely at the meta-
level, without altering the object-level agent program.

Goal lifecycle

A strand of work [38, 61, 79] building on the seminal goal life-cycle framework of Braubach
et al. [13, 67] aims to give a generic operational semantics for common types of goals. In
the goal lifecycle models, an agent’s attitude toward goals are represented by explicit goal
states, which characterise the role of goals in the agent’s execution. The goal lifecycle can
be viewed as a state transition system that generically describes the states goals may occupy
and the transitions that may be made between states corresponding to a change of attitude
toward goals or change of focus of the agent.

Braubach et al. [13, 67] describe and formalise the lifecycle of goals in the context of the
Jadex [69] agent platform.

Riemsdijk et al. [79] de�ne “active” and “suspended” states for leaf goals, i.e., subgoals
and planning are not considered. The active state characterises goals the agent is actively
pursuing, i.e., intentions, while the suspended state characterises goals the agent is not cur-
rently pursuing. Goals in the active state can have plans assigned to them and executed by
the agent. Commitment to goals is de�ned by success and failure conditions. When either
is true, the corresponding goal is dropped by the agent. The success condition corresponds
to achievement of the goal, which for declarative achievement goals is identi�ed with the
goal formula itself. The failure condition corresponds to impossibility of achieving a goal,
which is rational cause to abandon it.
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Morandini et al. [61] extend the model proposed by Riemsdijk et al. [79] to account for non-
leaf goals, i.e., subgoals and failure handling. Goal state changes may trigger state changes
in related goals, for instance if a goal is suspended then its subgoals are also suspended.
Likewise for goals that are dropped.

Harland et al. [38] give an operational semantics for BDI agents, accounting for semantics
of goals, plans, and actions. Their model uni�es the previous goal lifecycle work within a
complete operational semantics for BDI agents. They identify additional states and oper-
ations for goals, allowing to cleanly incorporate both proactive and reactive maintenance
goals in their semantics. In addition they consider states and operations corresponding to
suspending, resuming, and aborting goals [101]. Their model is described in detail in Chap-
ter 4.

Castelfranchi and Paglieri [15] investigate the role of supporting beliefs in determining
degrees of commitment to goals. Although their approach is theoretical and from a philo-
sophical viewpoint, the stages of �ltering by beliefs passed by goals as they progress from
representing desires to representing intentions bears a strong similarity to the notion of a
goal lifecycle. In their model, goals acquire supporting beliefs that allow them to progress
from one stage to the next, moving closer to the degree of commitment corresponding to
intentions, i.e., maximal commitment. When supporting beliefs are lost, goals revert back to
lower stages corresponding to lesser degrees of commitment, closer to the level of desires,
i.e., minimal commitment.

Preferences

Rational BDI agents must derive a consistent set of goals from their desires. However, there
may be many possible consistent sets of goals that can be derived. In order to choose be-
tween consistent goal sets, an agent can use preferences over goals or sets of goals.

Castelfranchi and Paglieri [15] describe preference beliefs as a type of goal-supporting
belief, which can be used for �ltering goals during deliberation. Intuitively this means that
for a goal in con�ict with other goals to progress to being intended, it must be supported
by preference beliefs, i.e., it is part of a most preferred execution, although they do not refer
to executions explicitly. On the other hand, if a goal loses the support of preference beliefs,
this would imply a more preferred goal it is in con�ict with would be intended instead,
i.e., it would not be pursued in any most preferred execution. This corresponds to using
preferences to resolve con�icts between goals.

Thangarajah et al. [104] use preference orderings over consistent goal sets to determine
which goals the agent adopts in cases of con�ict between goals. They introduce a notion
of a ruleset for goal generation (from desires) that determines when goals are adopted or
abandoned, by choosing a consistent goal set. Goals are adopted if they are in the chosen set,
and abandoned if not. Consequently, the speci�ed ruleset implicitly encodes a commitment
strategy for the agent. They give a basic ruleset that corresponds to the open-minded com-
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mitment of Rao and George� [75], and extend it to a more �exible form of commitment by
adding rules to permit resolving con�ict between goals by adopting alternative plans, and
preferring goals the agent is already pursuing when con�icts cannot be resolved in that way
(corresponding to Bratman’s property of stability of intentions [10]). Preference is given as
a relation over consistent goal sets that gives rise to an ordering over the consistent goal
sets the agent might adopt. A rational agent in their framework repeatedly chooses the
most preferred consistent set of goals over the course of execution. The notion of prefer-
ence employed by Thangarajah et al. is similar in purpose to value (from decision theory)
or goal priorities (from agent programming). Although it allows to decide which consistent
set of goals an agent should adopt, it is not a general formulation that permits reasoning
about the preference of alternative courses of action. Commitment to goals in their model
is determined by the rulesets (corresponding to a commitment strategy), rather than a con-
sequence of reasoning about preference over possible courses of action and the past actions
(or commitments) of the agent.

In addition to choosing which goals to adopt, BDI agents must choose plans to execute to
achieve their goals. There may be several applicable plans an agent could use to achieve a
given goal. Executing any of those plans might achieve the goal, however a rational agent
should select the applicable plan that best satis�es the agent’s preferences, i.e., the maxi-
mally preferred plan.

Padgham et al. [66] use plan preferences are to determine the suitability of applicable
plans. In agent programming, plan contexts are used to denote when a plan is applica-
ble, but may also be used to constrain the choice of plan further, accounting for suitability.
The authors point out that this leads to a burden on the programmer to ensure the plan
contexts correctly encode plan suitability and lead to the agent selecting the “correct” plan
from among the applicable plans for a goal. They suggest that the concepts of applicability
and suitability of plans should be kept separate, allowing the agent to reason about them
separately. This is useful in cases such as plan failure, where an alternative plan might need
to be used. If the plan contexts are also required to account for plan suitability, they may
be so strong that alternative plans are deemed inapplicable and cannot be used in that case.
The solution proposed is to use preference formulae to denote suitability of plans. Each
preference formula captures a numeric measure of an independent attribute of a plan, ac-
cording to both the importance of the attribute as a component of preference and the degree
to which the plan satis�es it. By taking the sum of these preference measures, a measure
of the suitability of a plan is derived. This gives an ordering over applicable plans allowing
a most preferable applicable plan to be chosen for a goal, and allows the agent to use less
preferrable applicable plans in case of plan failure.

Nunes et al. [63], present a Tropos-inspired meta-model approach to modelling agents
with preference-based plan selection over softgoals. Agents seek to maximise the expected
utility of chosen plans, and the utility of a plan is determined by its expected contribution to
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softgoals, taking into account preferences over softgoals. Softgoals are akin to values in de-
cision theory, and represent independent attributes of plans that should be maximised when
possible. Plans are selected based on softgoal satisfaction and preferences, in the context of
uncertain plan success. Each plan makes positive or negative quantitative contributions to
each softgoal. Preferences correspond to a measure of importance of the satisfaction of each
softgoal. The plan utility is then the sum of the expected contributions weighted by prefer-
ences. Contributions of subgoals to a plan are derived from the plans for those subgoals. The
plan utilities are quantitative, giving a de�nitive ordering over plans, and the agent selects
the plan with highest expected utility. As the preferences dictate the relative importance of
satisfaction of softgoals by plans in this approach, they are used for informing plan selection
only.

Visser et al. [112, 113] extend an existing language for preferences [1, 3] to allow speci�ca-
tion of preferences over properties of goals in addition to preferences over plan properties
and resource usage. The properties of a goal allow to specify preferences over the e�ects
of achieving it, independently of the plans used to achieve it. For instance, it may be useful
to specify preferences over goals in terms of the value of achieving a goal, or the e�ects
brought about by achieving it, independently of the plans used in doing so. This might also
include properties such as the priorities of goals. Goal-plan trees are annotated such that
plans are assigned properties and resource usage, and this information is propagated up-
wards through the goal-plan tree by summary information. Agents must select the most
preferable applicable plan taking into account preferences over resource usage and proper-
ties of plans. This approach is inspired by the summary information work of Thangarajah
et al. [105, 106, 108], and extends the notion of necessary and possible resource usage of plans
and goals to properties of plans and goals. The degree to which a plan satis�es the agent’s
preferences (given as preference formulae) is determined by deriving a numeric meausre of
preference satisfaction and then ordering the plans by preference satisfaction.

Horty and Pollack [47] consider the problem of assessing candidate plan suitability in the
context of an agent’s existing plans. The authors present a framework of rational choice for
resource-bounded agents in dynamic environments, where choice is not only which plans
to execute, but how they are executed in a mutual context to maximise utility. They note
that the desirability of achieving a goal may depend on the way the agent achieves it in the
context of the agent’s existing commitments, and point out that the standard approach to
using utilities for plan selection neglects this. Intuitively, executing a plan may be more or
less desirable in the context of the agent’s existing plans, than it would be in isolation. They
consider the compatibility of plans and the impact this has on utility of candidate plans, and
take into account the cost and bene�t of plans. Cost and bene�t can be seen as negative
and positive preference respectively. The agent selects the plan that maximises the bene�t
minus the cost in the context of existing plans, if one exists. This approach goes beyond
using preferences for plan selection, as it considers the existing commitments the agent has,
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and the impact of scheduling plans on their utility. Thus, utility is used to inform a choice
of execution of plans (in a mutual context), rather than simply which plans to use.

Hindriks et al. [44] present an architecture for rational action selection taking into account
preferences. The agent programming language GOAL is extended with temporal operators
for goals and preferences. Both goals and preferences are represented by LTL formulae. The
agent uses lookahead to ensure that it selects an action from an execution trace that satis�es
the goals, which are treated as hard constraints. In addition, traces are ordered using pref-
erence formulae, so that a most preferred trace can be executed. Preferences are treated as
soft constraints, which the agent satis�es as much as possible, but is not strictly committed
to them unlike goals. Achieving goals is strictly preferred to satisfying preferences, so the
preferences can be viewed as a means to decide between possible executions that achieve
the agent’s goals. Intuitively, the most preferred trace does not have to satisfy all preference
formulae, it only needs to dominate the alternative traces. As the lookahead is bounded
by the length of the trace pre�xes it can inspect, the agent cannot always follow a globally
most preferred trace, nor can it guarantee that all goals are achieved on a trace, but instead
makes a bounded-rational choice with respect to goals and preferences. This approach goes
beyond preferences over plans and goals, as the preference formulae are LTL formulae and
can refer to the agent’s mental state in a �exible way. For instance, a preference formula
can specify that the agent should achieve one goal before pursuing another, or possibly
make assertions about the actions that are executed corresponding to plan preferences or
scheduling. Therefore preferences in this architecture are at the level of executions.

2.3 Hybrid approaches

In this section, I consider work that explicitly addresses the theory-practice gap. These
approaches aim to bring agent programming closer to BDI theory, especially satisfaction
of rationality principles. These approaches are “hybrid” in the sense that they take the
practicality of agents seriously, while avoiding compromising on correctness and rationality.

Firstly, I discuss agent-programming languages that explicitly address the theory-practice
gap, including 3APL [39], GOAL [40], Dribble [76], and BOID [24]. Secondly, I review a strand
of work extending the situation calculus for programing rational agents. Lastly, I discuss
work that investigates to what extent event-based, PRS-like agents satisfy the rationality
principles put forward in the BDI theory literature.

Hindriks et al. [39, 41, 60] specify an abstract agent programming language, 3APL, that
makes the connection between commitment to procedural goals and action central and ex-
plicit. 3APL agents are endowed with plan revision rules that are used to revise an agenda
containing the current plans for procedural goals in its goal base. The agenda therefore
corresponds to an agent’s intentions. A 3APL agent reasons about its goals and plans by
applying plan revision rules to revise its agenda. This represents a re�ective reasoning ca-
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pability of 3APL agents, as goals can be selected for execution by plan revision rules based
on reasoning about the beliefs, goal base, and agenda of an agent. Moreover, the execution
state of goals and plans can be monitored and accounted for during execution. Hindriks
et al. suggest that plan revision rules can be used to program complex deliberation such
as commitment strategies, priority ordering over goals, failure handling, and plan optimi-
sation (such as merging or scheduling), which are all useful techniques for enhancing the
rationality of agents.

Hindriks et al. [4, 40, 42, 43] identify the lack of declarative goals in agent programming
languages as a reason for a conceptual gap between theoretical approaches such as BDI log-
ics, and practical approaches such as agent programming languages and platforms. They
note that while agent programming languages focus on procedural goals as their primary
programming abstraction, in BDI theory and logics the concepts of desires and intentions
are taken as primitive attitudes. This distinction is especially important when considering
commitment strategies and rationality principles of agents speci�ed in agent programming
languages, where the necessary concepts may not be supported. To address this, Hindriks et
al. specify semantics for GOAL, an agent programming language with declarative goals. A
GOAL agent has a logical goal base and a notion of capabilities that relates beliefs and goals
to actions. Goals are adopted if the agent is capable of them, and the adopted goals form a
logical relation from goals in the goal base. While the adopted goals must be consistent, the
goals in the goal base are not necessarily so. As the semantics adopts a logical interpretation
of goals, Hindriks et al. develop a logic that corresponds to the GOAL semantics allowing
to reason about and prove properties of GOAL agents in terms of their program text, rather
than program traces. Hindriks et al. extend GOAL with temporal goals and de�ne a notion
of satis�ability for temporal goals with deadlines. They employ a lookahead horizon based
on the deadlines of temporal goals in order to bound the scope of the lookahead and make
satis�ability tractable. As goals may not necessarily be achieved within the lookahead scope,
they focus on ensuring that goals are not made impossible. Because the lookahead horizon is
based on the deadlines of temporal goals, this notion of satis�ability only ensures temporal
goals are not unsatis�able if they have deadlines, i.e., they correspond to temporal formulas
containing “until” or “before”. Moreover, it is unclear what the lookahead bound would be
at any given point in execution solely by examining the program text, as it depends on the
maximal deadline of goals the agent has adopted, and is thus dynamic and is limited only by
the extent of the deadlines imposed by the goals. Although their architecture treats goals as
hard constraints, achievement goals have no selective force, i.e., they are not used for any
�ltering beyond avoiding waste by achieving goals redundantly. Because of this, no treat-
ment of con�icts between goals (including their plans or actions) is given, and achievability
of goals is only considered for maintenance goals as they must be satis�ed in all states and
can be readily tested for satisfaction within a �nite pre�x of a trace. The �nite pre�x of a
trace may not include achievement of all achievement goals in the trace, so the satis�ability
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of achievement goals cannot always be determined due to the bounded lookahead. There is
no consideration of planning in GOAL agents, and the default commitment strategy given
by the semantics is blind commitment, as GOAL agents do not drop goals unless they are
achieved.

Similar approaches aim to improve on 3APL and GOAL. van Riemsdijk et al. [76] com-
bines features from 3APL and GOAL into a programming language with beliefs, declara-
tive/procedural goals, and plans. In addition they establish correspondence between their
proposed language, Dribble, with a dynamic logic. Dastani et al. [14, 24] specify an agent
architecture for reasoning about the relationships between mental attitudes, based on de-
feasible logic. Their proposed language, BOID, generates goals and plans and �lters them
by checking feasibility, coherence, and con�icts. Deliberation is then viewed as selecting
valid sets of mental attitudes from an acceptable set of alternatives, and the choice over al-
ternatives corresponds to a con�ict resolution strategy. However, the task of detecting and
resolving con�icts is left to the programmer.

Another strand of work extends the situation calculus for programming rational agents.
Shapiro et al. [83, 89, 90, 91, 92] propose an extension to the situation calculus that formalises
rational behaviour of agents. They de�ne a notion of capability that formalises rational
action of an agent toward its goals. Goals are characterised by the paths an agent can take
by acting such that the goals are achieved. An action strategy, dictating what action should
be taken in a given situation, induces all possible paths an agent can take to achieve its
goals. Shapiro et al. de�ne a rational search operator that takes an IndiGolog program and
a set of prioritised goals, and produces a plan that respects the meaning of the program, the
goals, and their priorities. The rational search corresponds to �nding a legal execution of a
potentially non-deterministic IndiGolog program, resulting in a plan that corresponds to a
rational execution of an IndiGolog agent.

Khan et al. [51, 52, 53, 54] prove several rationality properties for a Simple Rational APL
(SR-APL) with prioritised goals. They consider the concurrent execution of plans of a BDI
agent, and the impact of this on capability. Moreover, their language accounts for subgoals
and planning, bringing their approach conceptually closer to common BDI agent program-
ming. Goals in SR-APL are temporally extended, allowing to reason about the consistency
of intentions, in terms of plans. The temporal extension of goals corresponds to a limited
lookahead horizon, although it does not extend to subgoals of plans. Khan et al. prove
several rationality properties for SR-APL. The �rst property states that the agent’s beliefs
(knowledge) and chosen goals are internally consistent, with respect to the theoryD which
describes the world and also the agent’s declarative and procedural goals and their dynam-
ics. The other two properties hold in a static environment and essentially state that any
action performed by the agent is consistent with the agent’s intentions (with respect to the
theory D ¯Exo stating that there are no exogenous actions).
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Bordini et al. [8, 9] investigate which of the nine asymmetry thesis principles from Rao
and George� [74] are satis�ed by AgentSpeak(L) [71] agents. They �nd that AgentSpeak(L)
agents satisfy intention-belief incompleteness and belief-intention incompleteness, but not
intention-belief consistency. This is because AgentSpeak(L) agents can intend impossible
things, but do not necessarily believe the consequences of everything they intend nor in-
tend everything they believe possible. Bordini et al. determine that while intention-desire
consistency is satis�ed, intention-desire incompleteness is not, as AgentSpeak(L) agents de-
sire that which they intend. Desire-intention incompleteness is satis�ed, as AgentSpeak(L)
agents can have desires that they do not intend, e.g., if there are no applicable plans for
those desires. Desire-belief consistency is not satis�ed, but desire-belief incompleteness
and belief-desire incompleteness are. This is because AgentSpeak(L) agents do not assert
the possibility of satisfying their desires and do not desire everything they believe. Bordini
et al. note that the combination of asymmetry thesis principles satis�ed by AgentSpeak(L)
does not correspond to any of the BDI logics described by Rao and George� in [74].

Wobcke [117] develops a framework for modeling PRS-like agents based on CTL and dy-
namic logic. He investigates which of the rationality postulates of Rao and George� [75] are
satis�ed by PRS-like agents. In order to make precise what is meant by “PRS-like”, Wobcke
adopts an abstract architecture for PRS-like agents [116] that is intended to extend the BDI
architecture of Rao and George� [72] such that it captures the essential properties of the
PRS-like family of architectures. Wobcke determines that the postulates of belief-goal com-
patibility, goal-intention compatibility, beliefs about intentions, and beliefs about goals are
satis�ed, while the others are invalid for PRS-like agents. The axiom of intention to action
is not satis�ed, as it requires that agents eventually act on their intentions, but PRS agents
can execute their highest value plan and so may never activate lower value plans, permit-
ting inde�nite procrastination. Similarly, the “no in�nite deferral” axiom is not satis�ed as
it requires that agents eventually abandon their intentions, which is not the case if an agent
inde�nitely procrastinates. Moreover, PRS agents may continually unsuccessfully attempt
their intentions yet never abandon them despite never achieving them. Wobcke also deter-
mines that the axiom of awareness of primitive events is not satis�ed by PRS-like agents,
as PRS-like agents do not in general track attempted actions and their outcome. Overall
PRS-like agents satisfy some of the rationality postulates of Rao and George�, but not all
of them. Wobcke notes that those that are not satis�ed correspond primarily to the abil-
ity to represent declarative goals explicitly, and the distinction between goals, plans, and
intentions, both of which PRS-like agents lack.

Hübner et al. [48] present programming patterns for de�ning declarative goals using plans
in AgentSpeak(L). Although goals are a central component of AgentSpeak, they are primar-
ily implicit in plans. Hübner et al. describe plan patterns that transform the plans for goal
events in AgentSpeak(L) to permit declarative treatment of goals. Their patterns facilitate
encoding several degrees of commitment to goals, that resemble the di�erent types of com-
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mitment described by Cohen and Levesque [20], including P-GOALs, single-minded commit-
ment, and open-minded commitment. They emphasise that the addition of the .dropGoal

internal action (from the Jason [5] interpreter for AgentSpeak) is su�cient for a true declar-
ative treatment of goals without resorting to explicit representation of goals e.g., in a goal
base, and without extending the AgentSpeak semantics.

2.4 Rational Intention Revision

A rational agent must not only rationally choose a set of intentions, but also rationally
update them in response to changes. These changes are either changes in the environment,
re�ected by changes to beliefs, or changes in high-level motivation, re�ected by changes to
desires e.g., to accommodate requests from other agents. Moreover, changes to intentions
should be minimal, so as to preserve the stability of the agent’s intentions over time, in
accordance with Bratman [10].

Grant et al. [36] propose a model of mental state revision for BDI agents, and de�ne a
notion of rationality for the model. Their de�nition of rationality incorporates notions of
value and cost for intentions, inspired by decision theoretic treatment of rationality. The
model they propose de�nes ideal rational intention revision, i.e., the properties of intention
revision that an ideal rational agent would exhibit.

They de�ne the mental state of an agent as a BDI structure with value de�ned over subsets
of desires, and cost de�ned over subsets of intended actions. The rational balance of mental
attitudes is characterised by axioms that a rational BDI structure satis�es. Altogether, they
give a theory of rational revision of propositional mental attitudes. I introduce these axioms
informally before presenting them formally below.

Grant et al. distinguish a notion of belief rationality from intention rationality. Belief
rationality is the requirement that the beliefs of the agent are mutually consistent and the
intentions are consistent with the beliefs. Consistency of intentions with beliefs is deter-
mined by a notion of capability for intentions. If an agent believes it is capable of performing
an intention then that intention is consistent with beliefs. Capability is determined by sat-
isfaction of preconditions of the intended action. Belief rationality is formalised by axiom
A1 [36].

Intention rationality relates beliefs and intentions by requiring that the agent’s intentions
are consistent (in a limited sense, as I will explain later) and that the intentions do not achieve
desires that are already believed to be achieved. Intention rationality is formalised by axioms
A2, A3, and A4 [36].

If a BDI structure satis�es axioms A1 through A4, i.e., it is belief and intention rational,
then it is said to be weakly rational. A weakly rational agent can successfully execute its
intentions and achieve a subset of desires, however it may not do so in an optimal fashion.
For instance, the subset of desires achieved by its intentions may not be maximally valuable,
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and the cost of its intended actions may be not be minimal. The di�erence between the value
of a set of intentions and its cost is referred to as the bene�t of a set of intentions, and gives
a measure of quality of a set of intentions in terms of the tradeo� between value and cost.
Note that this resembles a notion of preference for sets of intentions. Grant et al. highlight
the compatibility of their model with decision-theoretic approaches as an advantage.

An optimal set of intentions maximises bene�t such that there is no alternative set of
intentions that could be adopted that has superior bene�t, i.e., it is at least as bene�cial
as all alternative intention sets. Note that this must be taken in the context of a weakly
rational agent in order to restrict the alternative intention sets to those compatible with a
belief rational and intention rational agent. Thus, Grant et al. de�ne a rational agent as one
that is weakly rational and satis�es the optimality axiom A5 [36], which requires that the
agent’s intentions are maximally bene�cial.

The axioms given by Grant et al. in [36] are summarised as follows:

A1 B is consistent, i.e., B 6` ⊥

A2 I is feasible in the context ofB (for every (α, θ) ∈ I , B ` rα,θ , where rα,θ says that α’s
preconditions are true, and α terminates and makes θ true)

A3 goals(I) is consistent

A4 For every θ ∈ goals(I), B 6` θ

A5 There is no I ′ such that S′ = 〈B,D, I ′, v, (c, C)〉 satis�es A1 - A4 and ben(I ′) >

ben(I), where ben(I) = v(goals(I))− c(actions(I)); that is, there is no other set of
intentions the agent can select which achieves more valuable goals by cheaper means.

where 〈B,D, I, v, (c, C)〉 is a BDI structure, B is a set of beliefs, D is a set of desires, I
is a set of intentions represented by chosen recipes, i.e., action-desire pairs, v is a valuation
function for subsets of D, and c is a cost function for actions in the set C , of which the set
of actions within I is a subset, i.e., intended actions are assumed to have known cost. Note
that actions in I are stipulated to have known cost. The function goals extracts the desires
from the pairs in I , while the function actions extracts the actions from the pairs in I . The
capability proposition rα,θ (corresponding to preconditions of α) denotes that executing the
action α can be executed to bring about the desire θ with certainty. Note that from the
perspective of these axioms there are no sequences of actions, only singular actions, which
may be complex, i.e., correspond to entire plans.

The main contribution of Grant et al. [36] is the speci�cation of revision of a rational BDI
structure. They consider the revision of beliefs, desires, intentions, cost, and value. Although
revising any of these components of a BDI structure may be straightforward in their model
(simply replace the component), they point out that a revision may trigger revisions of other
components in order to preserve the rationality of the BDI structure. For instance, adding
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or removing desires may mean the intentions need to be revised in order to be rational with
respect to the updated desires.

In addition to the requirement that revisions preserve the rationality of a BDI structure,
Grant et al. stipulate that changes to intentions should be minimal, i.e., follow the principle
of minimal change which they term parsimony. A change is parsimonious if it gives a ra-
tional BDI structure that is at least as bene�cial as alternatives, but is also at least as “close”
to the previous structure as alternatives. A rational agent in their model chooses the closest
updated BDI structure corresponding to a rational change. They de�ne a notion of closeness
for intentions in terms of the number of common intentions between a BDI structure and
an updated BDI structure, and the number of intentions that are added in the updated BDI
structure.

I will now brie�y summarise the rational revision operations of Grant et al.. As my focus
is on rational intention revision, I limit the discussion to intention revision and operations
that can cause it.

The primary e�ects of belief update of a rational BDI structure that threaten the rational-
ity of the intentions in the structure are e�ects on the feasibility of intentions (axiom A2),
whether or not intentions are necessary (axiom A4), and whether there are more bene�cial
means by which to pursue an existing intention under the revised beliefs (axiom A5). Note
that with respect to axiom A5, intentions may also be added or removed due to changes to
their bene�t under the revised beliefs e.g., if availability of means has changed.

Adding a desire can a�ect the satisfaction of axiom A5, as there may then be a more
bene�cial set of intentions that could be adopted that satisfy the added desire. Removing a
desire may prompt the agent to revise its intentions if it had intended to achieve that desire.

Grant et al. distinguish exogenous causes of intention revision from endogenous causes.
The exogenous cause they describe is an external agent making commands to a rational
BDI agent to add or remove an intention, and that agent revising its intentions accordingly.
It is unnecessary to describe the exogenous case here. In the endogenous case, adding or
removing an intention corresponds to revising the set of intentions to recover intentional
rationality and optimality when other components have changed. Grant et al. also consider
revisions to cost and value and their e�ect on intentions, which can be summarised as re-
vising the set of intentions to ensure satisfaction of axiom A5, i.e., the intention set must be
maximally bene�cial. Intention revision can then be classi�ed as either due to a change to
beliefs, desires, or cost/value.
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In this chapter I de�ne the problem of rational intentional revision, and compare it to related
problems introduced in my analysis of the literature on BDI agents in Chapter 2, including
goal deliberation, intention reconsideration, and goal reasoning. I then identify limitations
in the existing approaches that constitute a gap in knowledge. To address the limitations
in the state-of-the-art approaches in the literature, I generalise the rational intention revi-
sion problem and de�ne the sub-problem of bounded-rational intention revision, which can
be practically solved to give a realisable model of bounded-rational BDI agency. Finally, I
introduce an example to illustrate the main ideas, which I return to throughout the thesis.

3.1 Rationality

I de�ne rationality for BDI agents as follows. An agent executes actions, resulting in an
execution trace. Assume a notion of preference over execution traces, such that they can be
partially ordered. Then, a BDI agent is rational if it executes a maximally preferred sequence
of actions. Since the actions a BDI agent may take are de�ned by intentions, the execution
of a BDI agent can be viewed as the joint execution of a set of intentions, resulting in an
execution of a sequence of actions.

Not only must the actions that a rational agent executes in pursuit of its intentions be
executable, but the future actions of the agent should also be executable when the agent
comes to perform them. It stands to reason that a rational agent only intends what it can
realistically do. This leads to a notion of capability of an agent with respect to intentions.
An agent is capable of its intentions if it can execute them fully, i.e., there is a joint execution
of the intentions that is consistent with the agent’s beliefs.

The capability of an agent towards its intentions is essential to rational behaviour. An
intention in isolation may or may not be executable, but that executability may change when
part of a joint execution. That is, intentions may interact and this can a�ect the capability of
the agent toward them. A rational agent takes advantage of this by choosing intentions such
that they have a most preferred joint execution. This implies that the selection of means for
intentions is central to rational behaviour, as the capability of an agent towards an intention
depends on the means for that intention in the joint context.

The notion of choosing an execution that accounts for future actions is in stark contrast to
approaches that consider only the next steps that are taken toward intentions. By requiring
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that the full (joint) execution of a set of intentions is most preferred, rationality is de�ned
in terms of what is achieved and how rather than simply the immediate next step an agent
takes.

A rational agent must not only choose a set of intentions that it is capable of, but also
choose the most preferred among these. Intuitively, the possible executions circumscribe
what an agent can realistically intend to do, but a rational agent must execute the most
preferred among them. Then rational intention selection can be viewed as �ltering sets of
intentions by capability, and then by preference, i.e., what is rational to do is a subset of
what an agent is capable of.

3.1.1 The Rational Intention Revision problem

When circumstances change, what an agent is capable of and what is most preferred may
change. Therefore the set of intentions may need to be revised to ensure that a most pre-
ferred execution is followed. Changing circumstances correspond to changes to beliefs and
desires. As a corollary of rationality de�ned as a most preferred execution of a set of in-
tentions, rational intention revision implies revising intentions such that a most preferred
execution in the context of updated beliefs or desires is pursued. A rational BDI agent then
intends to follow a most preferred execution of its intentions, and revises this in response
to changing circumstances. Not only must the set of intentions be revised, but the manner
in which they are pursued may need to be revised. This poses the problem of how to revise
intentions such that a most preferred execution is obtained.

Work on BDI theory typically distinguishes between the problems of intention selection
and intention revision. In practice, however, agents maintain a set of intentions during ex-
ecution which they resist abandoning, revising them as necessary, rather than selecting a
set of intentions either each time they act or when circumstances change. Therefore inten-
tion revision (and its problems) subsume intention selection (and its problems) by viewing
intention selection as a special case of intention revision, where the agent currently has no
intentions, such as in the initial state.

The rational intention revision problem can be decomposed into sub-problems which cor-
respond to problems addressed in the literature. These sub-problems are: means-end rea-
soning (choice of plans or actions), goal deliberation, detection of and avoidance of con�icts,
exploiting synergy, failure handling, accounting for preferences, and addition or removal of
desires. Each sub-problem pertains to a change of relevant beliefs or desires that may alter
what the most preferred execution is, and thus how the agent should revise its intentions.
See Chapter 2 for a detailed discussion of each sub-problem with respect to the literature.

Means-end reasoning is a sub-problem of intention revision as the availability of appli-
cable means directly impacts the formation of intentions and their mutual executability. In
addition, some means may be more preferable to others, and this may depend on the mutual
context e.g., to exploit synergy between intentions or avoid con�icts between intentions.
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Goals can con�ict logically in the case that their combination brings about an inconsistent
state, but also in the way they are achieved, including the e�ects of their associated plans
and resources that are used. The idea that an agent should adopt a set of goals that are
consistent with its beliefs traditionally falls under the moniker of deliberation. Generally
work on deliberation considers only one component of intention revision or another, and is
usually at a high level that describes the set of goals the agent should adopt. This usually
does not account for the scheduling of steps, the incompatibility of goals and plans, or any
notion of preference. Moreover, goals typically have hierarchical structure which makes
this more complex. For instance, a subgoal representing a partial execution of an intention
may no longer have an applicable plan. Essentially the full execution of goals (including
subgoals) must be taken in account in order to determine whether their joint execution is
rational, which is usually not what is meant by deliberation.

If an agent is no longer capable of an intention, for instance due to plan failure, the agent
may revise its intentions to remedy this and restore capability. In classic BDI failure han-
dling, an intention is abandoned if the agent is no longer capable of it, i.e., if the chosen plan
is no longer feasible. An alternative approach is to replace a failed plan with an alterna-
tive applicable plan, and propagate the failure upwards through the goal hierarchy if none
is available. The classic approach makes the implicit assumption that capability toward an
intention is contingent on applicability of the plan currently being executed for it, for in-
stance by using plan contexts or in-conditions. However, an applicable plan or true plan
context does not necessarily guarantee that an agent (believes it) is capable of a complete
execution of such a plan. For instance, a plan may have a true context but be inconsistent
with the agent’s other intentions, or in the case of a partial plan, the agent may be incapable
of later steps or subgoals, which may not necessarily have applicable plans. Furthermore, a
rational agent may abandon a plan in order to adopt a more preferable alternative, even if
the existing plan is still executable. This is not accounted for in existing approaches, but is
a logical consequence of my de�nition of rationality.

Preferences are used to determine the best option between the available options, such as
when assigning plans to goals, and when deciding which of a set of con�icting goals are
pursued. In addition, the notion of preference is potentially more convenient for agent pro-
grammers than utility as in decision-theoretic approaches, as it can account for qualitative
properties of goals and plans, and their executions, which may be simpler than specifying
the utility of a desired state.

Desires may be added or removed from an agent’s set of desires. In either case the most
preferred execution may change. When a desire is added, an agent may adopt it as an in-
tention, and it may con�ict with the agent’s existing intentions, prompting further revision.
When a desire is removed, an agent should no longer pursue it, and this may allow previ-
ously con�icting desires to be intended, or synergies the agent was counting on to be no
longer possible.
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3.2 Summary of existing approaches

As shown in Chapter 2, a range of approaches to the rational intention revision problem
have been proposed [36, 38, 54]. I now summarise the state-of-the-art approaches.

3.2.1 Summary of Grant et al.

I now summarise the work of Grant et al. [36], which comprises a state-of-the-art de�nition
of rational revision of mental attitudes (including intentions) in BDI agents. While I sum-
marise here the essential aspects of how Grant et al. de�ne rational intention revision, I
refer the reader to the discussion of their work in the general context in Chapter 2.

The model proposed by Grant et al. de�nes ideal rational intention revision, i.e., the
properties of intention revision that an ideal rational agent would exhibit. Their model
tends towards the perspective of BDI logics, and as such they give no operationalisation.
They give axioms for rational BDI structures, which represent the state of a rational BDI
agent. These axioms correspond to properties of rational BDI agents, and de�ne a weak
form of rationality, and a stronger form of rationality which subsumes it. The notion of belief
rationality described by their axioms requires that a BDI agent’s beliefs are consistent. The
notion of intention rationality described by their axioms requires that a BDI agent is capable
of its intentions, that its intentions are logically consistent, and that its intentions are not
already achieved. Their optimality axiom requires that an agent’s intentions are maximally
bene�cial with respect to their cost and value compared to alternative sets of intentions. If
a BDI agent is both belief rational and intention rational, it is said to be weakly rational. If
a BDI agent is belief rational, intention rational, and has optimal intentions, it is said to be
rational.

In addition to de�nition of a rational BDI structure, Grant et al. de�ne rational revision of
a BDI structure in terms of postulates. Their postulates de�ne rational revision as revision
of a rational BDI structure that preserves rationality.

3.2.2 Summary of Harland et al.

As discussed in Chapter 2, Harland et al. [38] give an operational semantics for BDI agents
that is centred around the idea of a life-cycle for goals. The model they propose constitutes
the state-of-the-art model of goal management, and tends towards the perspective of agent
programming. Their semantics accounts for the management of achievement goals, perfor-
mance goals, and both reactive and proactive maintenance goals. In their model, the goal
life-cycle is de�ned in terms of states that goals occupy, and the transitions between them.
The state a goal is assigned represents the attitude of the agent toward the goal, and cir-
cumscribes the relevant beliefs that could trigger a change of attitude toward that goal, by
goal state transitions conditioned on beliefs. The model de�ned by Harland et al. allows the
agent to select a set of active goals, which constitute the agent’s intentions, and to suspend
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goals in order to facilitate scheduling of intentions. Active goals are considered executable
and thus have applicable plans assigned to them. Intention revision in their model is ful�lled
by revising the set of active goals, i.e., changing goal states. Their model also accounts for
the semantics of plans and subgoals.

3.2.3 Summary of Khan and Levesqe

Khan & Levesque [54] specify idealised BDI agent behaviour in terms of a model that ac-
counts for some principles of rationality. Their model aims to bridge the gap between agent
theories and practical agent-programming languages, and is based on ConGolog [25]. Inten-
tions are ful�lled by goals in their model, which are assigned plans and may have subgoals.
Goals are temporally extended in the sense that a limited form of lookahead permitted.
However, the lookahead does not extend to full expansion of subgoals, and only accounts
for plans that are already adopted by the agent and goal dynamics e.g., dropping a goal.
They de�ne consistency between goals in terms of the consistency of their plans. Goals are
consistent if there is a concurrent execution of their plans. Goals are prioritised in their
model, meaning that agents adopt a consistent set of goals that is at least as prioritised as
other consistent sets of goals. In [54], three rationality properties for their model are proven.
The �rst property they prove states that beliefs are consistent with intentions with respect
to a domain theory that accounts for knowledge of the world and the agent’s intentions,
including goal dynamics. The second and third properties they prove state that any action
performed by the agent is consistent with the agent’s intentions. The latter two properties
hold under the assumption of a static environment, i.e., exogenous actions are not permitted.

3.3 Limitations of existing approaches

I now explain how the existing approaches that I have summarised only partially address
the rational intention revision problem.

3.3.1 Critiqe of Grant et al.

While the model proposed by Grant et al. [36] constitutes a step forward for rational inten-
tion revision, it relies on certain assumptions that limit the scope of their solution.

Firstly, they represent intentions as chosen recipes, which are pairs of actions and in-
tended e�ects, i.e., desires. Although they note that actions may be complex e.g., involv-
ing sequence and non-deterministic choice, these actions are treated as e�ectively atomic
and cannot be inspected beyond the associated capability proposition, cost, and value. This
means that their model does not account for temporality of intentions, which they acknowl-
edge [36]. Because of this, the agent cannot reason about interactions between complex
actions, other than the simplistic notion of mutual capability and consistency of achieved
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desires. They further assume that executing an intended action does not alter the feasibility
of other intended actions. Both of these assumptions, related to capability within intentions
and mutual capability between intentions, appear to be due to their more general assump-
tion that the rationality of the agent is atemporal. If actions here are instead assumed to have
some limited temporality e.g., intentions are a sequence of actions such as a plan, rather than
an opaque complex action, then their notion of intention rationality must be extended to
account for this.

In agent programming, plans are typically partial in the sense that they allow means-end
reasoning to be deferred, in accordance with Bratman [10]. Partial plans may contain sub-
goals which have further potentially partial plans selected to achieve them. In that case, de-
termining the agent’s capability to execute an intention (corresponding to axiom A2 in [36])
becomes more complex, as the choices of selected plans for an intention may not be known
in the current state. In addition, we may relax the assumption that intended actions (or
plans here) do not alter the capability of other intended actions (or plans), in which case
executing a plan may alter the agent’s capability with respect to other plans, even within a
single intention in the context of partial plans. ln that case, axiom A2 cannot be preserved
without reasoning about the preconditions and e�ects of intended plans to ensure a partial
plan has a concrete execution the agent is capable of not only in isolation, but also in the
context of other intended plans.

One solution to this is to facilitate reasoning about the executability of intended partial
plans containing subgoals using summary information [106, 108], where a partial plan for
a goal is represented by a goal-plan tree. Then, any complete execution of a partial plan
corresponds to a path through a goal-plan tree. The executability of such a path can be
determined, allowing to recover axiom A2, i.e., we can ensure that the set of intentions is
feasible and execution achieves the desired e�ects.

Another issue is that the assumptions made so far constrain the agent to achieving inten-
tions serially, i.e., they cannot be pursued concurrently. This is another consequence of the
assumption of atemporality. If we relax this assumption further to allow the agent to pursue
intended plans concurrently, then this introduces the potential for interactions between in-
tentions which might a�ect their capability. For instance, executing one intention partially
might put the agent in a state where it is no longer capable of pursuing other intentions
temporarily. This would constitute a con�ict between intentions. Once again, summary in-
formation [108] can be used to determine the mutual capability of intentions and schedule
the execution of intended plans in order to preserve capability as required by axiom A2.

Rational intention revision in [36] is de�ned as revision of the set of intended action-desire
pairs to produce a BDI structure which satis�es their axioms. Implicit in their choice of rep-
resentation of intentions is the assumption that intentions cannot fail during execution, and
the assumption that intentions are revised in whole rather than in part, i.e., the agent can-
not revise only part of an intention as the intended action is opaque and cannot be reasoned
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about beyond capability and outcome. The former assumption corresponds to the idea that
if an agent is capable of an intention then executing it brings about the desired e�ect. This
a strong assumption that implies that the agent’s actions cannot fail. The latter assumption
eschews, for instance, plan revision as an important aspect of intention revision. Both of
these assumptions are consequences of the atemporal treatment of intentions in their model.

3.3.2 Critiqe of Harland et al.

The assumptions made by Harland et al. [38] preclude a precise treatment of rational inten-
tion revision in their model. Although they account for some aspects of rational behaviour,
such as dropping an achieved goal (and any subgoals) without further deliberation, in gen-
eral the goal state transitions are assumed to be mandated by an external deliberation com-
ponent, which is left unspeci�ed. Moreover, plans in their model are assigned to goals by
an external means-end reasoning function, which is also unspeci�ed. They make clear that
their intention behind leaving these components unspeci�ed is for the model to be generally
applicable.

The notion of capability in [38] is limited to checking the preconditions of the next ac-
tion in a plan for a goal are satis�ed. This means that although the agent may have a rich
set of intentions with subgoals, plans, and actions, the capability of an agent with respect
to an intention is limited to whether the next action for that intention is executable. This
notion of capability does not account for the (possible) future executions of an intention,
and precludes reasoning about interactions between actions toward intentions except in the
case of the immediate next action for each intention. In the case that capability toward an
intention is lost, by the next action’s preconditions not being satis�ed, the plan fails and
must be replaced by the means-end reasoning function. If no alternative plan is found then
the failure is propagated upwards by dropping the goal. Thus, the means-end reasoning
function is assumed to ensure that suitable plans are assigned to goals. Because this compo-
nent is unspeci�ed and assigns plans to single goals, the model cannot account for making
plan choices in order to facilitate scheduling of intentions or preserve capability of other
intentions (avoid con�icts), maximise preference, or a combination of these. Simply, a goal
is activated and thus intended before a plan is even assigned to it, so the choice of plan can-
not directly a�ect the choice of whether the goal is intended in the �rst place. Choices of
plans a�ect the preference of the set of intentions overall, so this model cannot guarantee
maximal preference of intentions. Also consider the case where the means-end reasoning
function assigns an applicable plan to a goal, yet there is no way to schedule this plan with
the other intentions. In that case, the agent has a set of inconsistent intentions. Similarly, if
a plan is not applicable in isolation but is applicable in the context of the other intentions,
by positive interaction, the agent cannot ensure this plan would be assigned

In the goal life-cycle model proposed by Harland et al. [38], the transitions between goal
states are conditioned on decisions made by an unspeci�ed deliberation function, which
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are assumed to be re�ected in the beliefs by deliberation facts. Aside from interaction via
deliberation facts, it is unclear how the deliberation function interacts with the model, and
deliberates over goals and plans. Except for the cases where a goal is dropped if achieved or
failed, the transitions between goal states are conditioned on deliberation facts, which im-
plies that the deliberation function is a necessary component of the model. In fact, because
the deliberation function determines which goals are active or otherwise, it is responsible
for intention revision. In theory the deliberation function may activate or suspend goals
arbitrarily, but in practice the responsibility of ensuring that intention revision is rational
falls to the agent programmer. Randomly activating goals is permitted, but is unlikely to
result in a set of maximally preferred intentions. Moreover it is unlikely to result in a non-
con�icting set of intentions, let alone maximise preference. Because of this their model does
not account for or stipulate rational intention revision.

3.3.3 Critiqe of Khan & Levesqe

The model proposed by Khan & Levesque [54] accounts for a limited form of rational inten-
tion revision. Their model does not account for plan preferences, only strict priority over
goals. Although they consider the impact of concurrent executions of plans on the con-
sistency of intentions, they do not de�ne consistency in terms of full executions of goals.
Instead, they make the weaker requirement that an adopted plan does not make the already
adopted goals impossible. To account for cases where plans are no longer viable, such as in
the case where a con�ict is unforeseen, they allow plans to be repaired.

3.4 A new model of Rational Intention Revision

In order to address the limitations identi�ed in the existing work, I elaborate on how these
limitations can be overcome and propose a solution to the rational intention revision prob-
lem.

Firstly, I explain how the complete execution of a goal can be de�ned. Secondly, I explain
how the interleaving of executions for goals allows an agent to reason about the mutual
execution of a set of goals. Then, I explain how a maximally preferred execution is de�ned
in terms of interleaved executions of goals. Finally, I show how rational intention revision
is de�ned in terms of a most preferred future execution of a set of goals.

3.4.1 Goal Reification

Full executions of goals can be derived from subgoals and plans, by the process of goal
rei�cation. For the sake of this explanation, assume goals correspond to goal-plan trees. Goal
rei�cation results in a set of traces corresponding to a complete execution of a goal. Consider
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the case of achieving a single goal by determining a sequence of external actions that realise
that goal. This sequence of external actions can be viewed as a concrete execution of a goal.

The behaviour of an abstract agent can be characterised as an execution of a series of
external actions that ultimately achieves a set of goals. Then, given a set of goals to achieve,
the agent determines a sequence of external actions that achieves them.

Reifying a goal

Rei�cation of a goal completely removes any ambiguity about how it will be achieved, and
corresponds to complete means-end processing of a goal. For partial plans, we can replace
any subgoals with an execution for each subgoal, i.e., we reify the subgoals. By doing this
recursively, we can derive a complete plan.

When a goal has several (partial) plans for it, the rei�cation of a goal yields a set of exe-
cutions or complete plans. Each execution corresponds to a unique set of plan choices, one
plan choice for each (sub)goal that is rei�ed. Note that for a goal-plan tree rei�cation yields
a set of executions that correspond to all complete paths through the tree.

Reifying a goal set

A set of goals is interpreted as a set of objectives that any execution of an agent should
aim to achieve. In an ideal execution the agent achieves all goals in the set (although not
necessarily at the same time). Sometimes an execution that achieves all of the goals may
not be possible due to incompatibility between goals.

We can extend the notion of goal rei�cation to a set of goals by interleaving the executions
of a set of rei�ed goals. While reifying a goal gives executions that achieve that goal, reifying
a set of goals gives interleavings of those executions that achieve the entire set of goals. Each
interleaving represents a combination of executions of all the goals in the set, potentially
concurrently (interleaved). Note that we can derive interleavings for subsets of the abstract
goal set as well.

In order to achieve a set of goals, the agent carries out a goal set execution. The execution
of a goal corresponds to a complete plan, while the execution of a set of goals corresponds
to an interleaving of complete plans. The sequence of actions that achieves a set of goals
together (although not necessarily at the same time) can be viewed as an interleaving of a
set of action sequences that achieve the goals in the set.

Extending goal rei�cation to a set of goals introduces several interesting problems that
are central to rational intention revision.

Firstly, some executions of goals may not be applicable in the current state of the agent’s
environment. We could require that the executions are compatible with the agent’s beliefs,
as in pure planning approaches, but choose instead to allow that some executions are not
currently applicable for reasons that will be clear in the sequel.
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Secondly, goals may negatively interact when their executions are interleaved, i.e., the
executions of goals may be incompatible with each other. This may always be the case
e.g., if two executions require a consumable resource and there is not enough for both, or
only when the executions are interleaved in certain ways, e.g., when the e�ects of actions
toward one clobber the preconditions of actions toward another. This means that in some
cases although the goal executions that are interleaved are applicable in isolation, their
interleaving may not.

Lastly, goals may positively interact when their executions are interleaved. If the goal
executions being interleaved are not applicable, this does not necessarily mean their inter-
leaving is also not applicable. Consider the case where the e�ects of actions in one goal
execution enable the preconditions of actions in another goal execution which would in
isolation be inapplicable. Then there may be an interleaving which combines these goal
executions which is applicable despite the goal executions it is made up of not all being
applicable.

3.4.2 Most preferred interleaving

Under the assumption that intentions are traces, and a rational set of intentions is captured
by a most preferred interleaving, the more general representation introduced permits re-
vision of parts of intentions, and permits revision of intentions during their execution if
circumstances change.

An executable most-preferred interleaving, constituting a rational agent’s intentions, may
be threatened by changes to beliefs. If beliefs change such that the interleaving is no longer
executable (i.e., the intentions are no longer feasible), then the agent must seek an alterna-
tive most preferred interleaving, i.e., revise its intentions. Likewise, if beliefs change such
that an active goal of the interleaving the agent was pursuing is believed to be achieved,
then the agent should avoid pursuing it. In that case, the agent should seek an alternative
interleaving where any plans for that goal are skipped. Skipping over plans for achieved
goals corresponds to avoiding adopting goals that have already been achieved. Similarly, if
a goal is achieved while an agent is executing a plan for it, the remainder of the plan can be
skipped over. In either case the agent avoids executing steps toward goals that are already
achieved.

As for addition of a desire, the agent may seek an alternative interleaving that also achieves
the added desire if there is one that is more preferred than the one it is already pursuing.
Similarly, if a desire is removed then the agent must seek an alternative interleaving if it was
an active goal of the most preferred interleaving it was pursuing. In the addition case, the
set of interleavings can be extended using the set of traces for the added desire. Intuitively,
this means giving the agent the option to select that desire as an intention and pursue it con-
currently with other intentions. In the removal case, the set of interleavings is contracted
such that there are no interleavings where the removed desire is selected as an intention.
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One issue with the correspondence of intention revision with selecting an alternative
interleaving is that interleavings are complete executions of a set of intentions. If circum-
stances change during execution it would be irrational to start over from scratch if progress
has been made toward some intentions, and they are pursued in the most preferred alterna-
tive interleaving, i.e., they would still be in the revised intention set. Note that this problem
does not occur in [36], as under their assumptions there is no notion of progress toward an
intention.

To resolve this, one solution is to allow the agent to pursue a partial interleaving corre-
sponding to a continuation of execution from a given point. Then rather than selecting an
alternative most preferred interleaving to pursue, a rational agent would have the option to
preserve the progress it has made toward its intentions if they are una�ected by revision.
To represent this, I de�ne the notions of an interleaving pre�x and su�x. Any interleav-
ing can be split into a pre�x and su�x, where the pre�x corresponds to actions the agent
has already executed, and the su�x corresponds to the remaining actions to be executed.
A pre�x is permitted to be empty, allowing the su�x to be any interleaving from the set
of interleavings, capturing the initial state of an agent. It is important to note that in the
set of interleavings there may be many interleavings which share a given pre�x, but which
di�er in their su�x. Thus, an agent can pursue an interleaving up to a point, and adopt a
di�erent su�x from the one originally intended if circumstances change. This corresponds
to executing a di�erent interleaving overall.

To illustrate, consider Singh’s cafeteria agent [99], which serves drinks to customers. One
customer might order a co�ee, while another orders tea. In that case, the cafeteria agent
forms an intention to make co�ee and an intention to make tea, and sets about executing
these. The agent might pick up a cup as the �rst action toward its intentions. At that point,
the agent’s remaining actions are to either serve co�ee in the cup and then make tea, or
serve tea in the cup and then make co�ee. If at that moment either of the customers can-
cels their order, the agent should not put down the cup and start from scratch, but instead
continue with its remaining uncancelled order, ensuring that its future actions ful�l its re-
vised intentions. For instance, if the customer ordering co�ee decided against it just as the
agent picked up a cup, the agent would then no longer consider interleaving su�xes where
it serves co�ee to that customer (either before or after the tea), and instead executes a su�x
where it just serves tea to the other customer. On the other hand, if the agent had started
to pour tea into the cup, it would still be able to continue with that intention, and discard
its intention to serve co�ee to the customer. Of course, if the customer cancelled their order
after the agent had already started pouring co�ee into the cup, then revising intentions is
not as simple as deciding to make tea instead.

Representing the agent’s progress toward intentions so far by a pre�x is insu�ciently
�exible to capture intention revision entirely. Consider the case where a desire is removed,
and the agent had already made some progress toward it as an intention, captured by actions
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on an interleaving pre�x (as with the cafeteria agent that has poured an unwanted co�ee).
Then, it is impossible to derive a su�x that avoids executing the remaining actions toward
the removed desire, as the interleavings that match the pre�x are those where progress has
already been made toward the removed desire. In order to avoid this problem, rather than
maintaining a pre�x I stipulate that agents maintain a history of their executed actions,
which does not necessarily correspond to the pre�x of any interleaving. An agent derives
a pre�x, corresponding to the progress it preserves from its history, and uses it to derive
su�xes from the interleavings.

Given a choice of interleaving su�xes, a rational agent executes the most preferred. This
recovers the optimality axiom A5 from [36].

As the choice of pre�x is not �xed (constrained by the history), agents have a choice of
how much progress toward intentions is preserved, dictated by the preference of the suf-
�x that can be derived using the chosen pre�x. This allows to capture typical BDI failure
handling. In typical BDI failure handling, if a plan is no longer executable during execution,
the plan is dropped and an alternative plan is selected for the parent goal. This corresponds
to removing progress made toward the plan in order to pursue an alternative. Plan failure
can propagate through a goal-plan hierarchy if the plan failure causes the parent plan to fail
also, e.g., if there are no alternative plans for the failed plan. This corresponds to removing
even more progress in order to pursue an alternative. Removing progress to allow pursu-
ing an alternative is captured by the notion of deriving a shorter interleaving pre�x from
the history, in order to select a more preferable su�x. BDI agents are well suited to dy-
namic environments due to their robust failure handling and ability to respond to changing
circumstances, so this is essential behaviour to capture.

As long as an agent is always pursuing a most preferred interleaving su�x consistent
with its history, interleavings, beliefs, desires, then there is by de�nition no other inter-
leaving su�x the agent could adopt that is more preferred. This is the case even when
progress must be removed in order to pursue a more preferable interleaving su�x, when
beliefs change such that executability is threatened, when goals can con�ict, when goals are
achieved by external forces, and when desires change. Therefore, an agent executing a most
preferred interleaving su�x under the assumptions I have made is rational, i.e., if it starts
in a rational state satisfying the axioms A1-A5 of Grant et al. [36], then it preserves this
even when circumstances change. As I have described how the interleavings correspond to
executions of intention sets, and how an interleaving su�x is chosen (and an alternative
chosen if circumstances change), rational intention revision is captured.

The degree to which a rational agent revises its intentions in reaction to a belief update
should be proportional the signi�cance of the changes to the beliefs. Signi�cant changes
imply a signi�cant change of course is necessary to retain a rational course of action under
the changed circumstances. Likewise, a less signi�cant change should prompt a less signi�-
cant change of course. One of the central problems of rational intention revision is de�ning
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Figure 3.1: Jezero Crater, landing site for Perseverance mission shown circled. Lighter colours show
higher elevation. Credit: NASA/JPL-Caltech/MSSS/JHU-APL/ESA

what makes a belief update signi�cant in this sense. A corollary of this is how the intentions
should be revised in proportion to the change. De�ning what constitutes a relevant belief
update and a signi�cant change are central to the problem of rational intention revision,
as is determining how an agent should revise its intentions proportionately in reaction to
these changes. In fact, solving this corresponds to solving the classical problem of intention
reconsideration.

3.5 Mars rover scenario

In order to aid with explaining the behaviour of agents throughout the sequel, I will now
introduce a practical example that will be revisited throughout. This scenario is derived
from the garbage removal example used by Rao to introduce AgentSpeak(L) in [71], and
inspired by the detailed Mars rover scenario described in [38].

3.5.1 Perseverance

In 2020, NASA launched the Perseverance mission. The main objective of Perseverance is to
land a rover on the surface of Mars that is tasked with performing experiments, exploring
the landing site, and collecting rock samples. The rock samples collected by the rover are
intended to be returned to Earth by a later mission. Perseverance is the successor to the
Curiosity rover, which is described as the inspiration for the example scenario given in [38].
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!in-storage(r)

drop(r)

!at(r)

!at(container)

pickup(r)

!holding(r)

Figure 3.2: (Partial) goal-plan tree for Mars rover’s “collect rock from location” behaviour

The planned landing site for Perseverance is the Jezero Crater (pictured in Figure 3.1),
which is hypothesised to be the location of an ancient river delta in Mars’s distant past.
It is predicted that the area of most interest is the western rim of the crater, where the
detected concentration of carbonate mineral deposits are highest. These carbonate deposits
are of signi�cant interest as they may have preserved signs of ancient life. However, the hills
making up the western rim of the crater are reported to be up to 1600 feet in height (roughly
488 metres), which could make the terrain di�cult for an autonomous rover to traverse.
Therefore, it is essential that a rover travelling across such terrain is robust to failure, and
able to tolerate a degree of unpredictability in its interactions with the environment.

3.5.2 Worked Example

Let us imagine a scenario similar to that of Perseverance, where a rover collects rock samples
for later processing. The rover must travel to and collect rocks before returning to and
depositing them in an immobile container. In transit, the rocks are carried on a trailer.

The objective of this rover is to collect as many of these rocks as possible. Since it can carry
several rocks at a time, the rover may minimise the number of trips it makes by travelling
directly between the locations of rocks rather than collecting and depositing one rock at a
time. The environment is represented as a grid where each cell may be occupied by either
the container, or potentially mutiple rocks to be collected. Let us further assume that the
rover can occupy the cells where the container and rocks are located in order to deposit and
pick up rocks respectively.

The rover is only operational during the Martian sol, as it must be able to use its sensors
to navigate and manipulate objects accurately. Therefore, the time available to complete
its task is limited. For simplicity, assume moving between adjacent cells has a �xed time
cost, and that travelling between locations has a (predictable) linearly increasing cost with
distance travelled. Also assume that actions like picking up a rock and dropping a rock have
�xed costs that are invariant of any properties of the rock being manipulated.

The top-level goal for collecting a rock sample can be represented as a goal-plan tree (see
Figure 3.2).
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Goals are represented by rounded-corner nodes, and actions by rectangles. The relation
between goals and plans is denoted by a dashed line. In Figure 3.2 the goal in-storage(r)
has a single plan made up of two subgoal expressions and an external action, and denotes a
goal to have deposited the rock r in the container. Two of the subgoals (subgoal expressions
are denoted by the “!” pre�x) are invocations of the at(r) goal which signi�es that the
agent should be at the location of the object r. The holding(r) goal denotes that the agent
should be holding the rock r. After picking up a rock, the agent carries it until it drops it.
The drop(r) action removes the rock r from the trailer and drops it at the rover’s current
location. If the current location is the container, the rock is deposited into the container
when dropped.

Generally there will be multiple rocks in the environment that the rover is tasked with
collecting, and thus it would adopt several (ground) top-level in-storage(r) goals, one for
each rock it is tasked with collecting. Although the rover can carry multiple rocks in its
trailer, it can only be in one location at a time. In addition, the trailer has a limited capacity
for rocks so the rover can only carry so many, up to some maximum quantity known to the
rover.

In the remainder of this thesis, I present a model of an idealised rational BDI agent, com-
pare it to existing approaches, and propose a bounded version of the model.
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In this chapter I present GROVE, a model of rational BDI agency that follows the outline
for a new model addressing the rational intention revision problem outlined in Chapter 3.
In GROVE, intentions are selected by interleaving their concrete executions to determine a
most preferred way of achieving them.

I introduce the model gradually alongside explanations and intuition for key concepts,
culminating in a formal semantics of the model. I then draw some comparisons with existing
models of intention revision.

I show that GROVE is strongly rational as it complies with the postulates given by Grant
et al. [36], and demonstrate that the executions of GROVE agents are a subset of possible
executions of equivalent agents based on the lifecycle model of Harland et al. [38]. Finally,
I show that there are irrational executions permitted by an agent using the model in [38]
which are not permitted by the equivalent GROVE agent.

4.1 Preliminaries

In this section, I introduce and de�ne the basic elements of GROVE.
I assume a setP of atoms, and denote byL the set of literals overP : L = P∪{¬l | l ∈ P}.

The entailment relation |= is de�ned as follows: for P ′ ⊆ P , P ′ |= p i� p ∈ P ′ and
P ′ |= ¬p i� p /∈ P ′, i.e., negation is interpreted as negation as failure. The complement
of a literal l is denoted ∼l, and for a set of literals L the complement ∼L is de�ned as:
∼L = {¬p | p ∈ L} ∪ {p | ¬p ∈ L}. P ′ |= L i� ∀l ∈ L P ′ |= l.

4.1.1 Beliefs, Goals and Plans

The agent’s beliefs B ⊆ P represent the agent’s information about the environment and
itself. The agent’s possible goals are denoted by D ⊆ P , where each g ∈ D represents a
state of a�airs that the agent may want to bring about, and which it has the means to achieve
in at least one environment state. A goal g is considered achieved i� B � g.

The set of plans available to the agent are denoted by Π. Each plan π ∈ Π consists of a
sequence of plan steps. Each plan step is either an action e ∈ Act or a subgoal !g, g ∈ D.
Plans are de�ned by the grammar π = (e | !g)+ | ε, where ε denotes the empty plan, and
the set of actionsAct is the union of actions that appear in plans available to the agent. The
function plans : D 7→ 2Π \ {∅} returns the (non-empty) subset of the agent’s plans that
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achieve a goal, i.e., for each g ∈ D the agent has at least one plan to achieve it (sometimes
termed relevant plans in the BDI literature).

The preconditions of an action e ∈ Act are a set of literals which must be true before the
execution of the action, and the postconditions of the action are a set of literals that are ex-
pected to be true after the execution of the action. For an action ewith preconditions pre(e)

and postconditions pos(e), if B � pre(e) then B � pos(e) immediately after executing e.
I stipulate that the pre- and postconditions of an action are consistent, i.e., pre(e) does not
contain l,∼l for any l (and the same for pos(e)).

The relations between goals, plans and actions can be represented using goal-plan trees
(GPT) [19, 103, 105].1 The root of a GPT is a top-level goal (goal-node), and its children are
the plans that can be used to achieve the goal (plan-nodes). In general, there are several
alternative plans to achieve a goal, hence the plan-nodes forming the children of a goal-
node are viewed as ‘OR’ nodes. In contrast, plan execution involves performing all the steps
in the plan: hence, the children of a plan-node are viewed as ‘AND’ nodes. As in Yao et al.
[121, 122], I consider goal-plan trees in which plans may contain primitive actions in addition
to sub-goals.

Each goal g induces a goal plan tree τ = gpt(g) rooted at g. A goal plan tree thus repre-
sents all possible ways of achieving the goal g available to an agent. Consider an execution
of a goal-plan tree gpt(g) through to the achievement of the top-level goal g. This entails
executing a plan that achieves the root goal, which might include subgoal steps that must
be recursively evaluated, i.e., they constitute goal-plan (sub)trees. A complete path taken
through the goal-plan tree can be identi�ed by the sequence of plans that are executed,
one chosen for each subgoal step. Each of these paths represents one way to achieve the
top-level goal at the root of the tree.

I further assume that goal-plan trees are non-recursive, i.e., in a well-formed agent pro-
gram g should not occur as a subgoal in any means to achieve g. For example, consider the
declarative (to-be type) goal at(r) (from the Mars rover example) that describes the desired
state of being at the location of the object r. In a purely declarative interpretation of goals, it
makes no sense for at(r) to be instrumental in achieving itself. In addition, recursive goal-
plan trees enable potentially in�nite (non-terminating) agent executions. However, this in-
terpretation may not re�ect how agent programs are structured in some agent-programming
languages, where goals are interpreted more procedurally and this behaviour is employed,
e.g., for looping behaviour. For reasons that will become clear in the remainder of this chap-
ter, recursive goal-plan trees would be problematic for determining whether an execution
is feasible and whether an agent’s goals will eventually be achieved.

Returning to the Mars rover scenario from Chapter 3, suppose that the rover has to
collect a rock from a given location and deliver it to the container. This corresponds
to a goal in-storage(r), which involves accomplishing the subgoals holding(r) and

1The goal-plan trees corresponding to a BDI agent program can be derived in a straightforward way [98].
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at(container), and �nally executing the drop action. However if there is no applicable
plan for holding(r), for instance because the trailer is already full, then there is no com-
plete execution of in-storage(r) that is executable. In this case, in-storage(r) contains
subgoal steps which themselves have plans, potentially containing further steps. In order
to determine whether the goal can be achieved, it is necessary to know whether there is a
viable complete path for it through the goal-plan tree, which can be executed.

4.1.2 Step Seqences, Traces and Interleavings

GROVE is based on possible executions of the plans an agent may use to achieve its goals.
Executions of plans are induced by goal-plan trees. In this section, I introduce the key
de�nitions that allow us to make this notion precise.

Step Sequences A step sequence is a sequence σ = s1, s2, . . . , sn where each step si is a
pair (A, e) consisting of a set of active goals A ⊆ D, and an action e ∈ Act. Intuitively, the
active goals for an action e can be thought of as the ends for which the action forms (part of)
the means. The set of active goals for a step sequence σ = (A1, e1), . . . , (An, en) is given
by

agoals((A1, e1), . . . , (An, en)) =
n⋃
i=1

Ai

In the context of the Mars rover scenario, a step might look like:

( {in-storage(rock), holding(rock)}, pickup(rock) )

which represents picking up a rock, making progress towards achieving the goals in-storage(rock)

(a top-level goal) and holding(rock) (a subgoal). In later steps, the active goal set might be
simply in-storage(rock), re�ecting the fact that the goal holding(rock) has been achieved
and dropped, while the goal in-storage(rock) remains to be achieved.

The projection of a step sequence σ = s1, . . . , sn with respect to a set of atoms E, σE , is
de�ned by

εE = ε

(A, e)E ◦ σ = σE where A ∩ E 6= ∅

(A, e)E ◦ σ = (A, e) ◦ σE where A ∩ E = ∅

where ◦ denotes concatenation of step sequences. That is, the projection of σ with respect
to E is the sequence σ′ in which all steps that have active goals in E are omitted. Note that
projection preserves the ordering of steps in σ.
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A history is a step sequence containing the steps executed by the agent so far. A history
h′ is a subhistory of a history h if there exists E ⊆ agoals(h) such that h′ = hE . Let us call
E the elided goals of h and the steps in h not appearing in h′ elided steps. 2

The pre- and postconditions of a step sequence are denoted by prec and post respectively:

prec(A, e) = pre(e)

prec(s1, . . . , sn) = prec(s1) ∪
n⋃
i=2

[
prec(si) \ post(s1, . . . , si−1)

]
post(A, e) = pos(e)

post(s1, . . . , , sn−1, sn) = post(s1, . . . , sn−1) ] post(sn)

where] is de�ned asX]Y =
(
X\∼Y

)
∪Y . Note that the precondition of a step sequence

excludes preconditions established by steps earlier in the sequence (and not undone).3 On
the other hand, the postconditions of a step sequence includes all literals that are established
by actions in the sequence not undone by a later step.

A step sequence s1, s2, . . . , sn is coherent if no step destroys the preconditions of later
step(s) in the sequence, that is, at no step si there exists l ∈ post(s1, . . . , si) such that
∼l ∈ prec(si+1, . . . , sn). Note that any pre�x and su�x of a coherent step sequence are
themselves coherent. A coherent step sequence s1, s2, . . . , sn is executable given beliefs B
if its preconditions are true given B, that is if B � prec(s1, s2, . . . , sn). An executable step
sequence s1, s2, . . . , sn is non-redundant given beliefs B if

∀si, sj , i < j, B ∩ agoals(sj) 6= ∅ → post(si) ∩ ∼agoals(sj) 6= ∅

Intuitively, a non-redundant step sequence does not contain a step sj with an active (sub)goal
that is currently believed unless the negation of the goal is a postcondition of an earlier step
si. Concatenation for step sequences is denoted by ◦. As usual, ε is identity for ◦, i.e.,
σ ◦ ε = ε ◦ σ = σ.

2Some steps may need to be executed even if an active goal has been elided, such as steps to release resources.
It is straightforward to ensure such steps are not elided, but I omit this for brevity

3These are called preparatory e�ects in [103]. However I extend their notion to include the establishment of
the precondition of an action by a previous action in the same plan.
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4.1.3 Traces and Interleavings

Traces A trace is a step sequence corresponding to a possible execution of a plan for a goal.
Traces are generated by expanding the subgoals in the plan and the plans for those subgoals
recursively. The set of execution traces, traces(g), induced by a goal g ∈ D is given by:

traces(g) = traces({g}, g)

traces(A, g) = {ε} ∪

{σ | σ = expand(A ∪ {g}, u1), . . . ,

expand(A ∪ {g}, uk)

for some u1, . . . , uk ∈ plans(g)}

expand(A, e) = (A, e)

expand(A, !g′) ∈ traces(A, g′)

Note that traces(A, g) contains the empty trace ε, corresponding to the case where a (sub)goal
is achieved fortuitously and steps to achieve it do not need to be executed. I stipulate that
each trace σ ∈ traces(g) is coherent.

The de�nition of traces(A, g) can be extended to account for richer goal and plan se-
mantics. For instance, we could de�ne trace generation for executing steps in parallel (as in
PRS [34]). The parallel operator enforces no ordering on the steps it encloses, allowing the
agent to execute those steps in arbitrary order provided that they are all completed. This
could be accomplished in GROVE by expanding parallel sequences into a set of traces cor-
responding to the orderings of the constituent steps in the parallel step, however a formal
realisation of this is future work.

Another possible extension to trace generation would be introducing abort methods sim-
ilar to those in [37], where each plan has a (possibly empty) sequence of primitive actions
that should be executed when a plan is cancelled, such as when the parent goal has been
achieved unexpectedly, or the plan has failed. As plan cancellation may cascade, several
abort methods might be invoked in sequence. Abort methods may be used to restore the
environment to the state prior to executing the plan, or for releasing resources acquired
by the plan but not released at the point of failure. In order to identify the abort method
for a given plan that has been cancelled, steps must be annotated with the plan that they
originated from. When steps toward active goals are elided from the history, abort methods
must be executed for each plan to which those steps belong. Extending GROVE with abort
methods is future work (see Chapter 6 for further discussion).

Interleavings An interleaving is a step sequence corresponding to a possible execution
of the traces induced by a set of (top-level) goals G ⊆ D. The set of interleavings for
a set of traces is generated by freely interleaving the steps comprising the traces whilst
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preserving the ordering of steps within the traces and their coherence. More precisely, the
set of interleavings generated by a set of goals G = {g1, g2, . . . , gn} is given by

inters(G) = {ρ | ρ = σi || . . . ||σj ∧ {gi, . . . , gj} ⊆ G

σi ∈ traces(gi), . . . , σj ∈ traces(gj) ∧

ρ is coherent }

where || is the interleaving operator. As interleavings are required to be coherent, each
interleaving ρ ∈ inters(G) is executable in some environment, i.e., for each ρ ∈ inters(G)

there is a set of beliefs B′ ⊆ P such that B′ � prec(ρ). Note that, a set of goals G may
have no coherent interleavings. For example, achieving goals g, g′ ∈ G may each require
the consumption of some non-renewable resource such as time, energy or money, so that it
is possible to achieve either g or g′ but not both.

A coherent interleaving is executable if its preconditions are believed true, while incoher-
ent interleavings are not executable in any environment. The environmental states in which
a coherent interleaving may be executed can be viewed as de�ned by those preconditions.
Therefore executability is a tighter constraint than coherence, as to be satis�ed it requires
that the agent’s environment is believed to be in one of these states corresponding to true
preconditions. However, the environment may not necessarily be (believed to be) in one of
those states, in which case an interleaving may be coherent but not executable.

In general, some interleavings will be preferred to others. For example, interleavings
that achieve higher priority goals, or goals requiring fewer resources to achieve, may be
preferred. Let us assume a preference ordering on interleavings speci�ed by a relation
prf (B,G, σ, σ′) which is true when the interleaving σ is strictly preferred to the inter-
leaving σ′ given beliefs B and goals G. I assume prf is a strict partial order: i.e., a relation
that is irre�exive, asymmetric and transitive, and that all executable interleavings are pre-
ferred to all non-executable interleavings. I further assume that the preference ordering
prf over interleavings applies to su�xes of interleavings. Incoherent interleavings are non-
executable and can never be executed. Consequently they are assumed to have unde�ned
preference, as they are never preferable to anything and shouldn’t be executed even if there
are no coherent alternatives.

Preferences are useful for determining which course of action to take when there is a
choice, e.g., choosing which goals to achieve if some are in con�ict. We might consider
di�erent types of preferences or preference beliefs taken into account by prf , such as those
derived from goal-plan tree annotations written by the agent programmer as in [113], or in
terms of bene�t derived from the value of goals and the cumulative cost of steps to achieve
them as in [36]. Castelfranchi & Paglieri [15] suggest dividing preference beliefs (for goals)
into at least two sub-classes: value and urgency. Value beliefs prescribe a measure of value

56



4.1 Preliminaries

in achieving the goals they pertain to. Urgency beliefs refer to temporal limits on goal
achievement, such as deadlines (as in [111]).

The set of possible future executions of an agent with beliefs B, goals G and history h is
the set of most preferred su�xes of interleavings in inters(G) that have a subhistory of h
as a pre�x. More precisely,

De�nition 4.1 (Possible Future Executions). The set of possible future executions
pexecs(B,G, h) is given by:

pexecs(B,G, h) =

{σ | ∃X ((hX ◦ σ) ∈ inters(G)) ∧ σ is non-redundant ∧

¬∃X ′∃σ′((hX′ ◦ σ′) ∈ inters(G) ∧

prf (B,G, σ′, σ) ∧ σ′ is non-redundant )}

Intuitively, the possible future executions of an agent with goals G are the most preferred,
non-redundant su�xes of interleavings in inters(G) that form a continuation of a (projec-
tion of) the history of actions executed so far. That is, the agent will continue to pursue a
course of action unless the situation (and the agent’s beliefs) changes in such a way that a
di�erent interleaving su�x becomes more preferred. Note that while the agent will start ex-
ecuting the more preferred interleaving at a point that is consistent with the actions already
executed in the history, the choice of possible future executions is based solely on prefer-
ences over the actions yet to be executed. In particular, a longer su�x of an inteleaving in
inters(G) that “reuses” fewer actions from the history may be preferred (e.g., have lower
cost) than a future execution that reuses more actions from the history.

In general, the possible future executions in pexecs(B,G, h) may achieve di�erent sub-
sets of G using di�erent plans with di�ering costs and execution times. However, from the
point of view of the agent, they are all equivalent. For example, the Mars rover agent may
consider an execution that achieves the (single) delivering its current cargo of rocks, and
an interleaving that achieves the goals of collecting several rocks, equally preferable. The
choice of which goals in G to pursue is implicit in the choice of most preferred future ex-
ecution, so depends on what courses of action are consistent with beliefs, and how prf is
de�ned.

Recall that the de�nition of traces generates an empty sequence ε in addition to traces for
each expanded plan for a particular goal. This gives rise to interleavings where steps toward
that particular goal have been omitted, so there is always an interleaving that allows to skip
plans for goals that have already been achieved. Note also that the steps for the one instance
of the redundant plan that is permitted may come from any of the traces where those steps
were expanded, so there would be an interleaving that executes the plan once where the
steps “belong” to a given trace for each of the traces where that plan could be executed.
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4.2 GROVE Semantics

In this section, I give the operational semantics of GROVE in terms of a transition system.
Each transition transforms one agent con�guration into another, and corresponds to a sin-
gle computation/execution step. I �rst de�ne the con�gurations of a GROVE agent before
presenting the transition rules.

An agent con�guration is a 4-tuple 〈B,G, h, f〉 where B ⊆ P is a set of beliefs, G ⊆ D

is a set of top-level goals, h is a history of steps executed so far and f is a phase �ag from
the set {s,m, a}.

4.2.1 Execution cycle

Each cycle of a GROVE agent consists of three phases: the belief update phase (s), the goal
update phase (m), and the execution (a) phase.

Belief update phase

In the belief update (s) phase the agent’s beliefs are updated based on sensory information
to re�ect changes resulting from the agent’s most recently executed action and exogenous
changes to the environment.

B′ = sense(B)

〈B,G, h, s〉 → 〈B′, G, h,m〉
(4.1)

The function sense(B) takes the agent’s current beliefs B as an argument, and returns an
updated set of beliefs B′ = sense(B) re�ecting the environment state at this cycle. For
the sake of simplicity in the semantics, the set of beliefs B is updated by sense rather than
explicitly handling update of beliefs. This permits an agnostic attitude with respect to the
speci�cs of updating beliefs.

Goal update phase

In the goal update (m) phase, the agent’s goals are updated in response to requests from
users or other agents to adopt or drop goals and when goals are achieved.

(G+, G−) = mesg(G) G′ = ((G ∪G+) \G−) \B

〈B,G, h,m〉 → 〈B,G′, h, a〉
(4.2)

The function,mesg(G) takes the current goalsG as an argument and returns a pair (G+, G−) =

mesg(G) consisting of the set of goals to be adopted,G+, and the set of goals to be dropped,
G−. I stipulate that G+ ⊆ D and G+ ∩ G− = ∅. The agent’s updated goals for this cycle,
G′, are then given by G′ = ((G ∪G+) \G−) \B.

58



4.2 GROVE Semantics

Themesg(G) function may also be used to model addition of goals in response to changes
in the environment (or changes in beliefs), for instance top-level goals may be adopted in
response to events generated by rules. For the sake of simplicity (and generality of the
semantics) the top-level goals are updated based on the output of mesg and achievement
with respect to B, similar to the role of sense in the belief update phase.

Execution phase

In the execution (a) phase, the set of possible future executions pexecs(B′, G′, h) are (re)computed,
the �rst step of a possible future execution is executed, and the history of executed actions
is extended with the executed step.

σ ∈ pexecs(B,G, h) σ = (A, e) ◦ σ′

〈B,G, h, a〉 → 〈B,G, h ◦ e, s〉
(4.3)

pexecs(B,G, h) = ∅

〈B,G, h, a〉 → 〈B,G, h, s〉
(4.4)

Note that, when an agent adopts one or more new goals, the possible future executions
may or may not achieve the new goals in G+ or the old goals in G, depending on the
agent’s preference relation prf . For example, one or more of the new goals in G+ may
not be jointly achievable with one or more goals in G, and the agent may prefer executions
that achieve the goals in G. Conversely, the newly adopted goals G+ may be of higher
priority/more preferred than the goals in G. Similarly, when the agent drops one or more
goals giving a new set of goals G′ ⊆ G, the goals achieved by possible future executions
in pexecs(B,G′, h) may or may not be a subset of the goals achieved by the executions in
pexecs(B,G, h). For example, if a high priority goal that is not jointly achievable with other
goals is dropped, the agent may be able to pursue a larger number of goals.

The cycle then returns to the belief update (s) phase.

4.2.2 Commitment to Intentions in GROVE

The GROVE execution cycle has some similarities with the execution or deliberation cycles
found in BDI architectures, however there are important di�erences. A BDI agent commits
to a set of top-level goals (ends), which form the basis of the agent’s intentions. The choice
of how to achieve the agent’s (sub)goals (means) is deferred for as long as possible, so that
the most appropriate plan can be selected based on the current state of the environment.
In contrast, a GROVE agent commits to a subset of both top-level goals and subgoals while
deferring commitment to other top-level goals (and their subgoals). The current intentions
of a GROVE agent are those top-level goals achieved in all possible future executions, I =⋂
{agoals(σ) | σ ∈ pexecs(B,G, h)}∩G. Goals achieved in some but not all possible future
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executions, i.e., J =
⋃
{agoals(σ) | σ ∈ pexecs(B,G, h)} ∩ G \ I , are top-level goals the

agent can achieve and to which the agent may commit in the future. While achievable, such
goals may not remain so depending on which possible future execution the agent executes.
Therefore, they re�ect a lesser degree of commitment than to goals that are achieved in all
possible future executions. As this depends on the state of the environment and its future
evolution (re�ected in B and coherence of future executions), commitment to intentions
in GROVE is predicated on beliefs. If J is non-empty, either not all goals in G are jointly
achievable or achieving them all is not preferred (e.g., achieving them all is too expensive).

Note that, while a GROVE agent has no �rm commitment to goals in J , if the environ-
ment is static and the agent’s goals are not updated (i.e., the agent’s preferences over possi-
ble future executions do not change), its commitment to a set of achievable goals is stable.
The set I grows monotonically as execution progresses (by addition of goals from J ). Con-
versely, some goals from J will cease to be achievable, as the interleavings on which they are
achieved no longer match the history, i.e., they are inconsistent with the course the agent
has followed. For intuition, the top-level goals in I and J can be viewed as disjoint sets
of necessary and potential goals respectively (analogous to necessary/de�nite and potential
e�ects/resources in [105, 106, 108]).

In the case of a dynamic environment, I may change because some interleavings become
non-executable or less preferred for some other reason (e.g., an interleaving achieving a
higher value goal becomes executable), or because the agent’s goals are updated. As a re-
sult, the history may contain steps from plans that were dropped, possibly even plans that
were attempted and failed multiple times. The process of matching the history to the set
of interleavings to derive the set of possible future executions involves ‘masking’ such re-
dundant steps (otherwise the history will not match any interleaving). Note that the least
number of steps in the history is not required to be masked, but it is reasonable to assume
that interleavings that match more steps in history will be preferred, as they will involve ex-
ecuting fewer actions in the future. Essentially, a GROVE agent prefers to preserve progress
because it means that less work must be done in the future than not doing so. Assuming that
actions have a cost, and that, all other things being equal, an agent prefers future executions
of lower cost, it is irrational for the agent to repeat steps already performed if these steps
also occur in a pre�x of an interleaving in pexecs(B,G, h). Moreover, some steps may not
be repeatable, e.g., if a step has consumed a non-renewable resource.

This behaviour of GROVE has two consequences: one is relative stability of commitments
even in the dynamic case, and another is the ability to resume failed plans at the point where
they failed.
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4.3 Rationality of GROVE

In this section, I show that the agent executions speci�ed by GROVE are rational. We show
that GROVE conforms to the rationality postulates proposed by Grant et al. [36], and that,
in a static environment, GROVE executions are a subset of those generated by the goal life-
cycle semantics of Harland et al. [38], i.e., GROVE agents are ‘more rational’ than agents
conforming to the Harland et al. model. I also consider the rationality properties proposed
by Khan and Lespérance [54].

4.3.1 GKPW Rationality Postulates

I begin by brie�y summarising the model of rationality proposed by Grant et al. [36] (GKPW)
and comparing it to GROVE. GKPW de�ne a high-level model of the mental state of BDI
agents, called a BDI structure. A BDI structure S is a tuple 〈B,D, I, v, (c, C)〉, where B is
a set of beliefs (all consequences of a �nite belief base B0), D is a set of declarative goals
(in the same language as beliefs), I is a set of intentions (pairs (action, goal), with functions
goals(I) and actions(I) returning respectively the set of goals occurring in I and the set
of actions occurring in I), v is a function from sets of goals to non-negative real numbers
representing the value of achieving a set of goals to the agent (satisfying the condition that
a superset has at least the same value as its subset), C ⊇ actions(I) and c is a function
from subsets of C to non-negative real numbers representing the cost of executing this set
of actions (c also satis�es the condition that a superset of a set of actions costs at least as
much as the set of actions).

GKPW de�ne �ve postulates on rational BDI structures:

A1 B is consistent, i.e., B 6` ⊥

A2 I is feasible in the context ofB (for every (α, θ) ∈ I , B ` rα,θ , where rα,θ says that α’s
preconditions are true, and α terminates and makes θ true)

A3 goals(I) is consistent

A4 For every θ ∈ goals(I), B 6` θ

A5 There is no I ′ such that S′ = 〈B,D, I ′, v, (c, C)〉 satis�es A1 - A4 and ben(I ′) >

ben(I), where ben(I) = v(goals(I))− c(actions(I)); that is, there is no other set of
intentions the agent can select which achieves more valuable goals by cheaper means.

BDI structures satisfying postulates A1 – A4 are referred to asweakly rational BDI structures
(WRBDI) while structures satisfying A1 – A5 are rational BDI structures (RBDI). GKPW state
several complexity results concerning WRBDI and RBDI structures, but give no algorithms
for revising (W)RBDI structures in a rational way. Our work can be seen as a step towards
providing a computationally grounded approach to this problem.
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Lemma 4.2. A GROVE agent is weakly rational in the sense of [36], i.e., satis�es postulates A1
- A4.

Proof. A1 holds because beliefs are atomic, any belief is either in B or not, therefore B
must be consistent (a belief cannot simultaneously be and not be in B). A2 holds because
all actions in a possible future execution are executable (from De�nition 4.1) and guaran-
teed to achieve the goal if executed. A3 holds because the active goals of a possible future
execution are consistent (from the coherence of interleavings). A4 holds because achieved
goals are dropped (Rule (4.2)) for top-level goals, and as a consequence of De�nition 4.1
(non-redundancy).

GROVE does not assume that a numerical value can be assigned to each set of goals or a
cost to each set of actions. However, if this is possible, then these values can be used to derive
a preference order on interleavings that chooses the optimal (in the sense of GKPW) set of
interleavings for execution. The relative value of an execution is captured by a notion of
“bene�t” (adapted from [36]), derived from the sum value of the (top-level) goals it achieves
minus the cost of the steps to achieve them.

Theorem 4.3. AGROVE agent is rational in the sense of [36], i.e., satis�es postulates A1 - A5, if
the preference relation prf gives an ordering by bene�t ben(σ) = v(agoals(σ)∩G) − c(σ),
where v(G′) is the value of achieving the top-level goals G′ ⊆ G, and c(σ) is the cost of
executing the step sequence σ.

Proof. A1-A4 hold by Lemma 4.2. A5 holds because the preference of each step sequence
matches its bene�t, and GROVE executes a maximally preferred step sequence, i.e., ρ ∈
pexecs(B,G, h) is maximally preferred if¬∃σ′ ∈ pexecs(B,G, h) such that prf (B,G, σ′, σ),
which is true by Transition (4.3) of the GROVE operational semantics and De�nition 4.1. The
maximally preferred step sequence ρ achieves the set of top-level goalsG′ corresponding to
agoals(σ) ∩G, also following the GROVE operational semantics.

While GROVE is weakly rational under the assumptions of Grant and Perlis, some of these
assumptions are stronger than those made by the GROVE semantics. Particularly, actions
in their model are assumed to be independent of each other (although possibly complex),
as are goals. These assumptions preclude p-e�ects, such as within plans, and subgoal rela-
tionships between goals. We might consider what kind of rationality, in the sense of Grant
and Perlis, that a GROVE agent would exhibit if these assumptions were relaxed. Relaxing
the assumption of action independence corresponds to allowing intermediate steps toward
a goal between adopting it and achieving it. Additionally, relaxing the assumption of goal
independence corresponds to allowing subgoals within plans. In both of these cases, it is
possible for an agent to fail to achieve a goal it has adopted (in a dynamic environment). In
a static environment, GROVE agents remain weakly rational under these relaxed assump-
tions as the axioms A1-A4 are still satis�ed, because the notions of goal and plan failure are
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irrelevant in a static environment. However in the case of a dynamic environment, while a
GROVE agent cannot be guaranteed to achieve its intentions, it always adopts a set of fea-
sible and consistent intentions. This gives a kind of ‘weaker’ rationality that is consistent
with axioms A1, A3, and A4, while partially satisfying axiom A2. This is because a GROVE
agent always executes (part of) an executable possible future execution in each execution
cycle, although it is not required to follow that particular execution in later cycles. There-
fore, in a dynamic environment a GROVE agent’s intentions are feasible and achievable in
each execution cycle, even if they are not guaranteed to be achieved.

4.3.2 HMTY Goal Life-Cycle Semantics

I now consider the goal life-cycle semantics of Harland et al. [38] (HMTY). I present the
relevant parts of their semantics here before proving equivalence of the HMTY goal life-
cycle model with GROVE under certain assumptions.

The HMTY semantics uni�es previous work on goals of monitoring and accomplish-
ment [28, 61, 79] and on aborting, resuming and suspending goals [100, 102, 103].

HMTY consider both achievement and maintenance goals. As GROVE currently does not
encompass maintenance goals, I focus on achievement goals here. Each goal is assigned a
state.

The goal states:

Pending Goal is inactive, awaiting further consideration. Can be either activated, sus-
pended, or dropped.

Active Goal is being actively pursued by the agent, may have a plan (or several) asso-
ciated with it. A plan must be assigned, or else the goal is dropped if no plan can
be found.

Suspended Goal is paused, possibly with plans associated, awaiting either reconsidera-
tion or reactivation.

There are also Monitoring and Abort states, which I do not consider here as the former is
exclusively for maintenance goals, and the latter is functionally equivalent to dropping the
goal but allows for executing abort methods before dropping the goal.

Goal operations:

– consider . Adopt the goal. (Assign the Pending state)

– activate. Start pursuing plans for the goal. Goals must be activated in order for
plans to be selected and executed (only Active goals can execute actions or initiate
planning). (Transition to the Active state)
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– suspend . Disallow execution of actions toward the goal until resumed. (Transition
to the Suspended state)

– reconsider . Transition the goal to the Pending state, abandoning any plan it might
have associated with it (and executing abort methods), if it had one prior to suspen-
sion.

– reactivate. Transition a suspended goal to the Active state and permit its associated
plan to be re-assigned following execution of resume methods (goal must have a plan
associated with it).

– drop. Drop/discard a goal, such as when achieved or failed (determined impossible).
This includes dropping any plans associated with it.

A con�guration in HMTY is a tuple 〈B,G〉where B is a set of beliefs and G is a set of goal
contexts of the form 〈I, ach(κ, S, F ), Rules, State, π〉, where I is a goal context identi�er,
κ is a goal context condition, S is a success condition, F is a failure condition, Rules is a
set of condition-action pairs for goal update, State is a state �ag, and π is a plan body. If
either of a goal’s success condition S or failure condition F are true, the goal is dropped.
As each condition-action pair is triggered by the state of the beliefs, state transitions are
triggered by changes to beliefs. The state �ag represents the current state of the goal in
the agent’s deliberation. Goals in the Pending state have no plan associated with them,
and are not currently being executed. A Pending goal may be activated (transition to the
Active state) as a consequence of deliberation if the context condition κ is true. Goals in the
Active state must have a plan body associated with them, and are considered executable.
Plans are assigned to goals by a means-end reasoning function, mer , which allows for both
pre-written plans and online generation of plans.

The beliefs of the agent are updated in each cycle to re�ect the goal state changes dictated
by a deliberation function, by the addition of facts detailing the operation and identi�er
of the goal. For instance, adding the fact activate(I) to the beliefs signals that the goal
instance with identi�er I should be activated. The semantics does not distinguish between
operations that are triggered by these facts or by internal triggers. The decisions about
which transitions to perform and when are primarily made by the deliberation function.
The cases where internal triggers can cause goal state transitions are limited to when a
subgoal is added as a consequence of executing a subgoal step in a plan (for achievement
goals), and dropping a goal when the success or failure conditions are true (or no plans can
be found for the goal). However, in the �rst case the activation of subgoals depends on the
deliberation function regardless. The deliberation function is assumed to be consistent with
the HMTY operational semantics, but is not further speci�ed.

The execution cycle of an HMTY agent is made up of the repeated execution of three
phases: goal update, plan update, and execution. This execution is not necessary cyclical,
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with goal transition rules taking precedence whenever they are applicable, and planning and
execution rules being applied otherwise. The semantics is consequently given as three sets
of transition rules: goal transition rules, planning rules, execution rules. These transition
rules are based on CAN 4 transition rules.

The general form of a goal transition is as follows. Given the condition c, the action A
takes achievement goal g = {I, achieve,Rules, S1, P1} from state S1 to state S2 and plan
P1 to P2.

〈c, A〉 ∈ Rules B |= c

〈B,G ∪ {I, achieve,Rules, S1, P1}〉 −→ 〈B,G ∪ {I, achieve,Rules, S2, P2}〉
(4.5)

I follow the original semantics [38] in abbreviating the general form of a goal transition
(4.5) where g ∈ G (and A 6= abort) as:

〈c, A〉 ∈ Rules B |= c

〈I, achieve,Rules, S1, P1〉 −→ 〈I, achieve,Rules, S2, P2〉
(4.6)

The standard (common) set of parameterised rules for goals, denoted by
standard(I,Succ,Cond), is as follows:

{〈s, drop〉|s ∈ Succ} ∪ (4.7)

{〈drop(I), drop〉, 〈abort(I), abort〉, 〈suspend(I), suspend〉, (4.8)

〈Cond ∧ activate(I), activate〉} ∪

{〈reactivate(I), reactivate〉, 〈reconsider(I), reconsider〉} (4.9)

The initial state of an achievement goal g in HMTY is represented by a goal context g =

〈I, achieve,Rules, Pending, ε〉, i.e., goals are initially in the Pending state with an empty
plan.

The transition rule for goal activation:

〈c, activate〉 ∈ Rules B |= c

〈I, achieve,Rules, Pending, ε〉 −→ 〈I, achieve,Rules,Active, ε〉
(4.10)

The transition for dropping a goal:

〈c, drop〉 ∈ Rules B |= c

〈B,G ∪ {I, achieve,Rules,State, π}〉 −→ 〈B,G〉
(4.11)

4See [84, 101, 115] for a detailed description of the CAN operational semantics.
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The transition for suspending a goal:

〈c, suspend〉 ∈ Rules B |= c State ∈ {Pending,Active}

〈I, achieve,Rules,State, π〉 −→ 〈I, achieve,Rules, Suspended, π〉
(4.12)

Adding a subgoal corresponds to executing a subgoal plan. The transition for adding a
subgoal:

stable

〈B,G ∪ {〈I, achieve,Rules,Active,SG〉}〉 −→
〈B,G ∪ {〈IP , achieve,Rules,Active,SGP〉} ∪ {〈IC , achieve,Rules1, Pending, ε〉}〉

(4.13)
where

– SGP is SC ∨ FC ∨ drop(IC) :?SC

– ‘:’ denotes a guard condition (left-hand side) which must be true in order to execute
the plan (right-hand side). The plan ceases progression without failure until the guard
condition is true. The ‘?’ pre�x denotes a test action, such that if SC is true the action
succeeds, otherwise it fails.

– Rules1 is standard(IC , {SC , FC}, true)∪{〈drop(IP ), drop〉, 〈suspend(IP ), suspend〉}
∪ {〈reactivate(IP ), reactivate〉, 〈reconsider(IP ), reconsider〉}

– stable denotes that no goal transition rules are applicable, i.e., planning rules and
execution rules may be executed.

– The success and failure conditions of the subgoal SG are SC and FC respectively.

The SGP plan ensures the parent goal waits for the child goal to be dropped, failed, or
achieved, while the extra rules added to Rules1 ensure that if the parent goal is dropped,
suspended, reactivated, or reconsidered, the child goal is also dropped or suspended accord-
ingly.

The transition for reconsider:

〈c, reconsider〉 ∈ Rules B |= c

〈I, achieve,Rules, Suspended, ε〉 −→ 〈I, achieve,Rules, Pending, ε〉
(4.14)

The transition for reactivate:

〈c, reactivate〉 ∈ Rules B |= c

〈I, achieve,Rules, Suspended, π〉 −→ 〈I, achieve,Rules,Active, ε〉
(4.15)

For any goal in the Active state which has an empty plan, a plan must be found via means-
end reasoning. If a plan cannot be found, the goal is dropped.
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Planning rules:

stable Π = mer(achieve, B,G ∪ {〈I, achieve,Rules,Active, ε〉}) Π 6= ε

〈B,G ∪ {〈I, achieve,Rules,Active, ε〉}〉 −→ 〈B,G ∪ {〈I, achieve,Rules,Active,Π〉}〉
(4.16)

stable Π = mer(achieve, B,G ∪ {〈I, achieve,Rules,Active, ε〉}) Π = ε

〈B,G ∪ {〈I, achieve,Rules,Active, ε〉}〉 −→ 〈B,G〉
(4.17)

stable π 6= ε

〈B,G ∪ {〈I, achieve,Rules,Active, π〉}〉 −→ 〈B′,G ∪ {〈I, achieve,Rules,Active, fail〉}〉

〈B,G ∪ {〈I, achieve,Rules,Active, π〉}〉 −→ 〈B′,G ∪ {〈I, achieve,Rules,Active, ε〉}〉
(4.18)

Rule 4.18 means that if a plan has failed it is replaced with the empty plan to allow re-
planning.

The execution rules of HMTY are based on the standard CAN rules [84]. As these rules
apply only to goals in the Active state (as I do not consider the Aborting state here), the rules
are given in an abbreviated form that refers to a con�guration by the beliefs and particular
plan being executed.

Plan transition rules:

stable 〈B,P1〉 −→ 〈B′, P ′〉

〈B,P1;P2〉 −→ 〈B′, P ′;P2〉
(4.19)

stable

〈B,nil ;P 〉 −→ 〈B,P 〉
(4.20)

stable

〈B,P ;nil〉 −→ 〈B,P 〉
(4.21)

stable

〈B, fail ;P 〉 −→ 〈B, fail〉
(4.22)

An HMTY agent’s beliefs are updated by executing actions, although it is noted in [38]
that this is merely a design choice and a more complex treatment of beliefs, such as sensory
update, is possible in CAN.

I now show that under suitable assumptions an HMTY agent can produce the same exe-
cution as a GROVE agent.
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Recall that the deliberation function is assumed to be consistent with the HMTY opera-
tional semantics but otherwise left unspeci�ed. I address this issue in GROVE by de�ning
rational deliberation in terms of preferences over possible future executions.

Theorem 4.4. Let the environment be static and actions infallible. Then for any GROVE agent
with initial con�guration 〈B,G, ε, s〉 and an execution history h, there is an HMTY agent with
the same goals and plans which produces the same execution history.

Proof. Consider a history h generated by the GROVE agent from initial con�guration
〈B,G, ε, s〉. Since the environment is static and actions are infallible, without loss of gen-
erality, I can assume that the agent is executing a single interleaving h = σ0 such that
pexecs(B,G, ε) = {σ0}.

For the sake of simplifying the proof, I assume that expand in Section 4.1.2 is implemented
so that each step (A, e) is annotated with plans and goals respectively. In particular, each
active goal a ∈ A is annotated with the plan πa that was selected to achieve a, and the
action e is annotated with the goal ge that it achieves. I denote an annotated goal by g:πg

and an annotated action by e:ge. The step annotations in σ0 are used to determine what
should happen in the HMTY agent. When the goals of an HMTY agent are activated and
plans are assigned to them, the annotations on A inform the choice of plan for each goal.
That is, if a goal g is activated then mer = πg , such that g:πg ∈ A. Subgoal steps !g′ require
adding g′ to G in the HMTY agent (I also omit some details to do with deliberation facts and
subgoal plans in HMTY which do not present any complications to the argument).

I de�ne a relation ofmatching between con�gurations of GROVE and HMTY agent, where
in both con�gurations the next transition is executing an action. Instead of the initial con-
�guration 〈B,G, ε, s〉, I consider 〈B,G, ε, a〉 reached from it by internal transitions.

The matching initial HMTY con�guration is 〈B,G〉 where B = B, and G contains goal
contexts of the form 〈I, achievement, standard(I, {g}, true), Pending, ε〉 for each g ∈ G.
This means that the goals in G are achievement goals with tautological context conditions.
Each goal context corresponds to a goal g ∈ G, which is thus dropped when g is believed
(achieved). As the context conditions are tautological, these goal contexts can be activated
by simply adding a deliberation fact activate(I) where I is the identi�er of the goal context
to be activated. We assume these deliberation facts are added as necessary to activate any
Pending goals in G.

For an arbitrary GROVE con�guration 〈B,G, h′, a〉 where a subhistory h′ of h has been
executed and pexecs(B,G, h′) = {σh′} is a su�x of σ0, the matching HMTY con�guration
〈B,G〉 corresponds to removing the actions in h′ from the plans for goals and subgoals
adopted so far; B isB with additional ‘deliberation facts’ which are records of goal adoption,
and G corresponds to G plus subgoals g with currently executing plans πg (the pre�x of πg
is a sub-sequence of h′ and the su�x is a sub-sequence of σh′ ).
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4.3 Rationality of GROVE

In order to show that at any point in the history h, the HMTY agent can execute the same
action as that executed by the GROVE agent, I need to show that in matching con�gurations
the action in the �rst element of σh′ is executable by the HMTY agent, and the resulting con-
�gurations (after some internal transitions) again match. Employing an inductive strategy,
I �rst demonstrate that an HMTY agent can match the �rst action of a GROVE agent when
they have equivalent initial con�gurations. Secondly, I demonstrate that the HMTY agent
can match the action chosen by the GROVE agent at each point in the execution history h′

provided they have matched up to that point.
In the initial con�guration, the action e:ge in the �rst element of σ0 is the �rst ac-

tion of a plan e ◦ π for some ge ∈ G. It can be executed by the HMTY agent by
assumption, since there is a goal 〈I, achieve, standard(I, {g}, true), Pending, ε〉 in the
HMTY con�guration, which can be activated and assigned a plan e ◦ π to become
〈I, achieve, standard(I, {g}, true),Active, e ◦ π〉. For the inductive step, we need to
consider two cases for the action e:ge in the �rst element (A, e:ge) in σh′ . The �rst
case is when e belongs to a plan for ge ∈ G (a top-level goal), which is as in the
initial con�guration. The second case is when e is the �rst action in the su�x of a
plan for a subgoal ge. Since by the de�nition of a matching con�guration, there is
a goal of the form 〈I, achieve, standard(I, {ge},Active, e ◦ π〉 in the HMTY con�gura-
tion it can be chosen for execution, and in the resulting con�guration there is a goal
〈I, achieve, standard(I, {ge}, true),Active, π〉 so the HMTY con�guration again matches
the GROVE con�guration corresponding to σh′◦e.

The converse of Theorem 4.4 is not the case; there are executions permitted by HMTY
that are not possible in GROVE. I give an example of such an irrational (from GROVE point
of view) execution in the proof of the theorem below.

Theorem 4.5. Let the environment be static and actions infallible. There exists an execution
h of an HMTY agent with initial beliefs B and goals G that cannot be generated by a GROVE
agent with initial con�guration 〈B,G, ε, s〉.

Proof. The behaviour of HMTY that GROVE cannot reproduce is caused by the fact that
HMTY does not check for coherence of plans, while GROVE does. Consider the following
example. Suppose both agents have two goals, g1 and g2 with plans π1 for g1 and π2 for
g2, and both π1 and π2 are executable given current beliefs B. Suppose the HMTY agent’s
deliberation function implements serial execution of goals, i.e., π1 is executed �rst, and one
of the actions in π1 makes one of the actions in π2 unexecutable. Then there is an execution
of HMTY agent h = π1 ◦ π′2, where π′2 is a pre�x of π2, for which there is no corresponding
GROVE execution, since π1 ◦ π2 6∈ inters({g1, g2}) since it is not coherent.

The analogue of Theorem 4.4 does not hold for dynamic environments, where plans may
stop being executable because of the environment changing.
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Theorem4.6. Let the environment be dynamic and actions infallible. There exists an execution
h of a GROVE agent with initial con�guration 〈B,G, ε, s〉 that cannot be generated by an
HMTY agent with beliefs B and goals G.

Proof. Consider the following example, which demonstrates the di�erence between the
GROVE and HMTY approaches to ‘backtracking’ when a plan fails. Assume both agents
have a goal g with a single applicable plan e1, e2, and that both agents executes the �rst ac-
tion e1, and some environmental event makes e2 unexecutable. As a result, the remainder of
the plan becomes non-executable, so the parent goal g becomes non-achievable. In this case,
the HMTY agent would drop the goal, but would potentially re-adopt it later if it becomes
achievable again, and start executing the plan from the beginning. It is not possible for the
HMTY agent to resume a plan for a dropped goal from the point where it was abandoned.
Meanwhile, a GROVE agent never ‘drops’ goals in this sense (progress remains accessible on
the history) and can therefore resume executing the plan when it later becomes executable.
Rather than dropping a goal, a GROVE agent selects actions to execute from a most pre-
ferred interleaving that matches (a projection of) its history. Since the history contains e1,
it may select an future execution that contains e2 as the next step.

I argue that the ability to pick up execution of a plan at the point where it was dropped
previously is a useful and rational behaviour (provided the environment is amenable to
it). This is the only behaviour of GROVE that a HMTY agent cannot match in a dynamic
environment. In fact, I can prove an analogue of Theorem 4.4 for dynamic environments,
provided all plans consist of a single action.

Lemma 4.7. Let the environment be dynamic, actions infallible, and plans contain only single
steps. Then a GROVE agent with initial con�guration 〈B,G, ε, s〉 yields an execution history
h corresponding to an interleaving of top-level goals G′ ⊆ G, i.e., h ∈ inters(G′)

Proof. The assumption that plans are single steps implies that the traces induced by G are
also single steps. This follows from the single step in each plan either being a subgoal or an
action, which gives at most one action per trace.

In the initial state, if there is a most preferred execution available then the agent executes
its �rst step e. The execution of e corresponds to the complete execution of a single-step
trace, which achieves one or more top-level goals G′′ (actions are infallible). The step e
is added to the agent’s history. Any interleaving su�xes that match with the pre�x cor-
responding to e are themselves interleavings of traces for some set of top-level goals G′′′

where G′′′ ⊂ (G \ G′′). Therefore any possible future execution of the agent in the state
following the initial state is an interleaving of traces induced by G′′′.

For the state 〈B,G, h′, s〉where h′ is a subhistory of h, h′ is the sequence of steps executed
so far, which corresponds to an interleaving of (single-step) traces for the set of top-level
goals achieved so far. Executing a step e′ of a future execution in that state extends h′. The
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4.3 Rationality of GROVE

resulting history, h′ ◦ e′, is also an interleaving of h′ (an interleaving of single-step traces)
and e′ which is a single-step trace.

Therefore each execution cycle results in a history that is an interleaving of single-step
traces, and any future executions are also interleavings of single-step traces. The concatena-
tion of an interleaving of single-step traces with another is also an interleaving of single-step
traces. The complete execution h of the agent corresponds to an interleaving of single-step
traces for a subset of top-level goals of the agent.

The Lemma 4.7 establishes that, under the assumption that plans are single steps, the
execution of a GROVE agent is an interleaving of the single-step traces induced by the top-
level goals G. This means that equivalence with an HMTY agent can be established in the
same manner as in Theorem 4.4, assuming that deliberation facts are available.

Theorem 4.8. Let the environment be dynamic and actions infallible, and plans contain only
single steps. Then for any GROVE agent with initial con�guration 〈B,G, ε, s〉 and an execution
history h, there is an HMTY agent with the same goals and plans which produces the same
execution history.

Proof. By Lemma 4.7, the execution h is an interleaving h ∈ inters(G′) where G′ ⊆ G.
In the initial state, the GROVE agent executes an action e, which is matched by the HMTY
agent following the strategy in Theorem 4.4. The HMTY agent selects the correct plans
and instantiates any subgoals as necessary until it reaches a plan containing e, by using the
available deliberation facts. After executing e, both agents have the same set of top-level
goals G′′′ ⊂ G \ G′′ where G′′ is the set of top-level goals achieved by e. This is because
executing an external action achieves one or more top-level goals (G′′) which are dropped
by both agents when achieved (following their operational semantics).

In any successor state, the GROVE agent executes the �rst step e′ of a possible future
execution that achieves a subset of the remaining top-level goals. The HMTY agent matches
this as in the initial state and any achieved goals are dropped by both agents, resulting in
both agents having the same set of top-level goals.

4.3.3 KL Rationality Postulates

Lastly, we consider the rationality properties proposed by Khan and Lespérance [54] (KL). In
[54] KL prove three rationality properties for a Simple Rational APL (SR-APL) with priori-
tised goals. The �rst property states that the agent’s beliefs (knowledge) and chosen goals
are internally consistent, with respect to the domain theory D which describes the world
and also the agent’s declarative and procedural goals and their dynamics. This is similar
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to postulates A1 and A3 of Grant et al. [36]. The other two properties hold in a static en-
vironment and essentially state that any action performed by the agent is consistent with
the agent’s intentions (with respect to the theory D ¯Exo stating that there are no exoge-
nous actions). These two properties trivially hold for GROVE, since any actions executed
by GROVE come from plans for the goals of the agent, as part of executing an interleaving
which is coherent and consistent with beliefs.
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The model of rational intention revision presented in Chapter 4 selects a maximally pre-
ferred, coherent interleaving to execute. While executing a maximally preferred interleav-
ing is rational, it assumes that the set of interleavings corresponding to the agent’s currents
adopted goals is available. However, generating the set of (most preferred) interleavings
may not be feasible in many real-world scenarios where computational resources are lim-
ited and/or the agent’s goals change frequently. In this section, I propose a bounded version
of GROVE that samples the set of future executions, and I state conditions under which
bounded GROVE commits to a bounded rational execution.

While the unbounded version of GROVE in Chapter 4 de�ned rational behaviour of an
idealised agent, further assumptions must be made in order to make the model realisable for
practical, real-life agents.

Firstly, I stipulate that the traces for the agent’s top-level goals are induced by goal-plan
trees, and are static and can be computed o�ine. This requirement ensures that the agent
has access to the full set of traces for each of its top-level goals in constant time. A sim-
ilar assumption is made in the summary information work of Thangarajah et al. [105, 106,
108], where the summary information derived from goal-plan trees is assumed to be com-
puted o�ine and kept up-to-date during execution, and the goal-plan trees are static. Their
summary information may seem similar in purpose to traces here, however the correspond-
ing aspects of GROVE that are updated at runtime are the history of the agent and the set
of top-level goals, which are separate from the traces. As traces are computed o�ine, the
bounding of the agent does not need to account for steps required to compute traces, which
are e�ectively a static component of the agent. A consequence of this assumption is that
when adding a new top-level goal, the traces are already available and therefore adding a
new top-level goal entails a constant amount of computation, and does not a�ect the time
complexity of the model overall.

Secondly, I assume that the set of executable traces can be computed in linear time from
the agent’s beliefs B given suitable indexing. This is possible by computing the precondi-
tions of traces o�ine, and checking their consistency with beliefs at run-time. An alternative
approach would be to compute the probability that a randomly selected trace is executable
using a measure of plan coverage for goals as in [107]. Furthermore, I assume that all incoher-
ent interleavings have the same minimal preference (e.g., 0). This is a stronger assumption
than in unbounded GROVE (see 4.1.2), where I simply assumed that all executable step se-
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quences are preferred to all non-executable sequences, but seems reasonable. An incoherent
interleaving cannot be successfully executed, and it seems reasonable to discount any utility
that may accrue from a partial execution prior to failure. Second, I assume that the distribu-
tion of preferences over coherent interleavings follows a normal distribution. Following this
assumption, there will be a few very bad/good interleavings, and a much larger number with
around average preference. Note that although the preference distribution of interleavings
is domain-dependent, if it is known then the proportions of interleavings above and below
a given preference bound can be determined. Here the normal distribution is chosen for the
sake of simplicity in demonstrating the strategy in this chapter for bounding GROVE.

Finally, in the bounded model (Chapter 4), I assumed that at each execution cycle a
GROVE agent has an unbounded amount of computation available to select the next ac-
tion to execute. Here I will instead assume that the computation available to select the next
action is bounded.

5.1 Bounded search for an ε-preferred interleaving

Bounded computation constitutes a particular type of resource-bounding. All realistic agents
are necessarily bounded in this way, as explained by Bratman [11]: “for real agents it takes
time to do such computations - the more complicated they are, the more time it takes.”, and
“All this must be done in a way that recognizes the fact that agents [humans or robots], are
resource bounded: they are unable to perform arbitrarily large computations in constant
time [as pointed out by Herbert Simon (1957)]”. Thus, a computationally bounded agent
is limited in how much reasoning it can do before it must act, and therefore must use its
limited resources e�ciently in order to maximise its e�cacy.

An ideal or computationally unbounded agent (as in 4) can be characterised as searching
an arbitrarily large solution-space to �nd an optimal solution. Therefore bounding GROVE
implies identifying this solution-space, bounding the search, and revisiting our assumptions
about the quality of solution that can be found given the limited search.

The search can be bounded in two ways: by restricting the solution-space that is to be
searched (limiting the number of candidate solutions to consider), and by weakening what
quali�es as an optimal solution (increasing the number of candidate optimal solutions).

The former corresponds to sampling the solution-space, rather than exhaustively search-
ing it, while the latter corresponds to accepting a solution that is “good enough” with re-
spect to some minimum acceptable preference bound. The minimum acceptable preference
bound forms an interval that contains the optimal solution (maximal preference solution
that an unbounded model would �nd), but does not insist upon it. Note that both of these
approaches decrease the number of solutions that must be considered.
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Let us suppose a bounded agent has a limited number of future steps it can consider
before acting. The agent uses this quota to randomly sample the set of interleavings, before
executing the �rst step of a most preferred interleaving in the sample.

Bounding the number of future steps the agent considers in each execution cycle is similar
to approaches that use a notion of bounded lookahead horizon (see [43], where a lookahead
horizon is de�ned for each goal and used to ensure maintenance conditions will not be
violated). However while those approaches bound how far the agent can lookahead with
respect to each goal, here the total number of steps examined is limited for a set of goals.
This allows to strongly restrict the number of steps considered for a set of goals, while the
number of steps considered in alternative approaches grows with the number of goals. A
step budget puts a �xed and precise bound on computation, whereas the bound given by
a �xed lookahead horizon (considering a �xed number of steps in each possible execution)
depends on factors like the number of goals and plans to consider.

For the sake of providing intuition, we can view the set of possible future executions of a
bounded GROVE agent, analogous to that of an unbounded GROVE agent from Chapter 4,
as de�ned in terms of a randomly generated set of candidate interleavings J composed of
randomly generated traces for a randomly selected subset of goals inG. The candidate inter-
leavings J are assumed to be generated within a bound b, i.e., they are a set of interleavings
that potentially achieve a subset of G and the sum of lengths of interleavings in J is less
than or equal to b. The set of possible future executions for a bounded GROVE agent is then
given by:

pexecsb(B,G, h) = {σ | ∃E hE ◦ σ ∈ J ∧

¬∃E′, σ′ hE′ ◦ σ′ ∈ J ∧

prf (B,G, σ′, σ)}

whereE is a projection on the history h to derive a pre�x. The agent executes the �rst action
of an interleaving ρb ∈ Ib = pexecsb(B,G, h). Such a model can be seen as approximating
an agent that does a bounded amount of lookahead before selecting a next action to execute.
Clearly such randomly generated interleavings are not guaranteed to be either coherent,
executable or most preferred. However, we can compute the probability that at each cycle
an agent with a given computation bound executes an action from an interleaving that is
within a preference bound of a most preferred interleaving.

5.2 ε-preferred interleavings

Since the most preferred interleaving is unknown prior to searching, the upper preference
bound of the interleaving set is also unknown. In order to determine that an interleaving
is most preferred requires exhaustively generating the set of interleavings. This exhaustive
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search is closely related to the complexity results regarding identi�cation of a maximally
bene�cial intention set in the model of rational BDI revision proposed by Grant et al. [36].
Grant et al. prove that determining whether an intention set is maximally bene�cial is NP-
hard and the proof employs exhaustive search of possible sets of intentions. As an interleav-
ing corresponds to a set of intentions, and preference corresponds to bene�t, identifying a
most preferred interleaving corresponds to identifying a maximally bene�cial intention set.

Rather than requiring that a rational agent executes a most preferred interleaving, let us
instead require that it executes an interleaving that is at least ε-preferred. An interleaving
is ε-preferred if it is at least as preferable as a hypothetical interleaving corresponding to a
lower preference bound, ε. This means that a proportion of the set of interleavings is consid-
ered “acceptable” for execution by a rational agent with respect to ε. Thus the requirement
of a most preferred interleaving is relaxed to that of ε-preferred interleaving, of which there
may be many depending on the proportion of the interleavings that are within the bound
de�ned by ε. Note that ε need not be a numeric value, and a bounded GROVE agent does not
require access to or knowledge of an ε-preferred interleaving. The ε-preferred interleaving is
(potentially) hypothetical and used only to identify the proportion of possible interleavings
that are “acceptable”, and consequently determines the probabilistic success of a bounded
GROVE agent, under the bound b. This is explained in more detail below.

The set of ε-preferred interleavings for a set of goals G given beliefs B is de�ned by

Iε = {ρ | ρ ∈ inters(G) ∧ prf (B,G, ρ, ρε)}

where ρε is an interleaving with preference ε. Recall that I assume that interleavings are
executable, so assume ρε is executable.

The de�nition of Iε is a straightforward restriction of the de�nition of inters(G) from
Chapter 4 to require that interleavings in Iε are at least as preferable as the hypothetical
interleaving ρε.

I refer to the set of all possible interleavings, corresponding to inters(G), as I∗. Note
that I∗ includes incoherent and non-executable interleavings. Given I∗, the probability
of randomly generating an ε-preferred interleaving is equivalent to the proportion of ε-
preferred interleavings in I∗, which is denoted |Iε|/|I∗|.

5.2.1 Coherency of interleavings

In order to determine |Iε|/|I∗|, we must �rst determine the number of coherent interleav-
ings in I∗. The coherent interleavings are those without con�icts, therefore I make some
assumptions about the possibility of con�icts between traces in order to model the propor-
tion of coherent interleavings.
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Average number of steps and traces

Let us assume that the properties of an agent’s goal-plan trees are described by a 4-tuple
(τg, τp, τa, τd), where τg is the average number of subgoals in each plan, τp is the average
number of plans for each goal, τa is the average number of (non-subgoal) steps in each plan,
and τd is the average depth of a tree, depth is indexed from zero. For example, a tree with
τd = 0 corresponds to a single root goal with a set of τp leaf plans, each containing τa
actions.

The average number of traces induced by a goal-plan tree τ is then:

τ
τdτg+1
p

Traces correspond to paths through a goal-plan tree. Any path through a tree described
by (τg, τp, τa, τd) can be characterised by a series of goal-plan choices, i.e., plan selection.
For any goal there are τp plans that could be selected, and the number of goals that are
achieved is determined by the number of goals per plan τg and the depth of the tree τd. For
a goal-plan tree consisting of a top-level goal with only leaf plans, i.e., τd = 0 the number
of traces is exactly τp (simpli�cation of (τp)

1). Intuitively the depth τd corresponds to the
number of layers in the tree which contain subgoals. For a plan with τg subgoals, each with
τp leaf plans, there are τgτp traces that represent completions of the plan. For a goal with
plans that have subgoals with leaf plans, there are then τg + 1 goals being achieved in each
trace. The number of traces in that case is then τ τg+1

p as each trace corresponds to a choice
of plan for each goal, each plan contains τg subgoals, and there is a single top-level goal for
which a plan is chosen, corresponding to selecting a plan τg+1 times, giving τ τg+1

p possible
combinations.

The number of subgoals achieved in a trace increases by τg for each additional layer
in the goal-plan tree, i.e., it increases with the depth of the tree. Then, the exponent τdτg
corresponds to the number of subgoals achieved in a trace. If the agent has only one possible
plan for its subgoals, then the number of traces is simply τdτg . To account for the plan
choices for each subgoal we apply the exponent to τp, the number of plans for each goal.

The number of steps in each trace is given by:

τa(τdτg + 1)

Note that the number of goals achieved by a trace is τdτg + 1. Each layer of subgoals adds
τg additional goals achieved to a trace, and for each additional goal τa steps are introduced.
The number of subgoal layers is de�ned by τd. An additional τa steps are added to account
for the plan for the top-level goal.
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Number of possible interleavings

The length of an interleaving of a set of traces T = {σ1, . . . , σn} is:

n∑
i=1

‖σj‖

which is just the sum of the lengths of the traces in T .
For a trace σi, the number of possible positions it can be �tted into the sequence of length

n∑
i=1
‖σj‖ are1 2 :

( n∑
j=1
‖σj‖

‖σi‖

)

That is, for each trace its steps are placed into the step sequence until all steps of all traces
in T have been allocated positions in the step sequence and the interleaving is complete.

Then the number of interleavings for a set of traces T , ninters(T ) is:

ninters(T ) =

|T |∏
i=1

( |T |∑
j=i
‖σj‖

‖σi‖

)

The intuition for this is that an interleaving of two traces must be a step sequence that
is the length of both combined, and each step in either trace is assigned a unique index
corresponding to a position in the interleaving. However, once a step is designated an index,
the following step from that trace cannot occur earlier in the interleaving, as the ordering
of steps in traces is preserved. This naturally extends to more than two traces.

Number of coherent interleavings

An interleaving is incoherent if a dependency (p-e�ect) between steps is not protected, re-
sulting in the preconditions of a step established by an earlier step(s) being undone by an
intervening step or steps.

My aim is to model con�icts abstractly in terms of properties of goal-plan trees, in order to
establish the proportion of coherent interleavings. The proportion of coherent interleavings
represents the probability of an interleaving being coherent when traces are interleaved. If
traces do not use the same resources, or have overlapping preconditions or postconditions
at any point, then they cannot interact and thus any interleaving of them will be coherent.

1I use |S| to denote the cardinality of a set S and ‖τ‖ to denote the length of a trace τ .
2This is a generalisation to multiple sequences of the formula for the complexity of merging or shu�ing two

sequences in [59].
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Similarly, if traces require the same resources, or have overlapping preconditions or post-
conditions at any point, then their interleavings may be incoherent in the case of negative
interaction.

One approach to determining whether traces interact is to use summary information [105,
108]. Summary information allows to determine the possible and necessary resources and
e�ects of goals, and thus whether those goals necessarily or possibly con�ict. If goals nec-
essarily con�ict, then there is no coherent interleaving (scheduling in [105]) of their traces.
On the other hand, if goals possibly con�ict, then this implies that some interleavings will
be incoherent while others are coherent.

Another approach is to use the notion of plan compatibility from Horty et al. [47], where
p-e�ects are modelled as causal dependency links in plans, which can be threatened under
some schedules if plans are incompatible. Their approach identi�es the cases where plans
can be merged without compromising dependency links, in order to achieve a lower overall
cost. However they do not consider goals, and plans are assumed to be complete.

The existing approaches consider only how to detect possible interactions between goals,
i.e., qualitatively determine possibility of interaction, rather than quantitatively computing
the likelihood that a con�ict occurs. One way to do this might be enumerate the schedulings
of goals that possibly con�ict, and those where no con�ict occurs. However that corresponds
to an exhaustive search of interleavings which is to be avoided. It may be possible to identify
the critical sections in the traces of a real agent, and use those to derive a model of the
coherent and incoherent interleavings of an agent based on its goal-plan trees. Such an
approach would allow building a probabilistic (domain-speci�c) model of the interactions
between traces when interleaved. Although that approach may be practically useful, the
modelling I propose here assumes random distribution of critical sections in interleavings
for simplicity of exposition.

Here I adopt a simple approach to modelling con�icts, where p-e�ects are modelled by
critical sections. The approach is based on enumerating the possible interleavings and of
those the coherent interleavings, and determining the proportion of possible interleavings
that are coherent. The main advantage of this approach is that it does not stipulate exhaus-
tively generating all possible interleavings of a set of traces in order to determine the pro-
portions of coherent and incoherent interleavings, and it permits precise non-probabilistic
formulation of these proportions.

I stipulate that a con�ict occurs if a critical section in a trace σi overlaps with a critical
section in a trace σj . Intuitively, incoherent interleavings are those where critical sections
are interleaved. I assume that each critical section consists of a single critical step from a
set C of critical steps. Critical steps in C are randomly distributed throughout the traces in
T , and an interleaving is coherent i� it contains no adjacent critical steps, i.e., there are no
continguous blocks of two or more steps from C in the interleaving. The number of critical
steps in C is assumed to be proportional to the sum of the length of traces in T (so that
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average length of traces does not a�ect the proportion of incoherent interleavings). Note
that randomly distributing critical steps throughout traces is equivalent to assuming that a
critical step occurs on average every so many steps in an interleaving.

The strategy for computing the proportion of incoherent interleavings can then be sum-
marised as follows. Given a set of coherent traces (recall that traces are computed o�ine and
assumed to be coherent), when the traces are interleaved with a set of critical steps the inco-
herent interleavings are those where critical steps are adjacent. Determing the proportion
of coherent interleavings in the set, i.e., those where con�ict steps are adjacent, equates to
determining the probability of a randomly chosen interleaving from the set being coherent.
The probability that a randomly generated interleaving of T is coherent is determined by
the proportion of interleavings of T that are coherent for a set of critical steps C .

First, note that any interleaving containing all of the critical steps in C (once) is equiva-
lent to interleaving a set of traces with a step sequence corresponding to an ordering of C .
Interleaving the traces in T with each of the critical step sequences induced by C gives the
set of coherent and incoherent interleavings of traces in T with critical steps C . More pre-
cisely, consider a single step sequence σc corresponding to an arbitrary order of the critical
steps in C . Then the set of step sequences to interleave is T ′ = T ∪ {σc}.

Deriving the number of coherent and incoherent interleavings of T ′ equates to counting
the number of interleavings of T ′, given by ninters(T ′) and multiplying it to account for
possible con�gurations of σc. We multiply by |C|! as this is the number of possible orderings
ofC . Then, the number of possible interleavingsN , including both coherent and incoherent
interleavings, is:

N = ninters(T ′)|C|!

Note that |C| must be less than the combined length of traces in T , otherwise only in-
coherent interleavings are produced. This is because when |C| is equal to or greater than
the combined length of traces, it is impossible to avoid critical steps being adjacent to one
another.

In order to determine the number of coherent interleavings of T ′, it is useful to make
several observations about the form that any coherent interleavings in T ′ take.

To begin with, observe that any coherent interleaving of T ′ can be viewed as an inter-
leaving of T interleaved with some σc, such that every step in σc is either separated by steps
from T , or occurs as the �rst or last step. Intuitively, there must be at least one step from T

between each consecutive critical step, and there may or may not be steps from T preced-
ing the �rst critical step, or following the last. This follows from the requirement that the
critical steps in a coherent interleaving are not adjacent.
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For example, consider the case where σc = c1, . . . , ck, and for simplicity T is represented
by a step sequence t1, . . . , tn. The general form of a coherent interleaving of σc and T in
this case is t1, . . . , tn with c1 and ck inserted such that they are not adjacent.

Note that only when c1 occurs before t1, ck occurs after tn, or both of these is true, is it
possible that a critical step has steps from T on only one side of it in a coherent interleaving.
Otherwise, each critical step is required to have steps from T either side of it.

Then the problem of determining how many valid arrangements meet these criteria is
equivalent to the classic combinatorics problem of determining how many ways there are
to distribute a number of indistinguishable items between distinguishable bins such that
every bin has at least one item (see Chapter 2 of [30]). Then any coherent interleaving of T ′

corresponds to a surjective mapping of steps from T to the gaps between critical steps of
σc, such that each gap contains at least one step from T in order to meet the requirement
that critical steps are not adjacent.

The number of such mappings is: (
|T | − 1

‖σc‖

)
where

(
n
k

)
denotes binomial choice, i.e., n choose k. Here n−1 (as in

(
n−1
k−1

)
) becomes |T |−1

because of the number of spaces between |T |-many steps that can be occupied by critical
steps. The k − 1 (as in

(
n−1
k−1

)
) becomes ‖σc‖ as this corresponds to the number of critical

steps that must be placed. Thus the number of mappings corresponds to the number of ways
to assign critical steps to spaces between steps from traces.

We must also account for the cases where no steps from T occur before the �rst critical
step or after the last. In either of those two cases the number of mappings is:(

|T | − 1

‖σc‖ − 1

)
The intuition for this is that one “gap” (at either end) is left empty and does not need to be
�lled (and thus exactly one critical step is not “between” trace steps, only adjacent to them
at one end).

This corresponds to the case where either the �rst step of a coherent interleaving is a crit-
ical step, or the last step is a critical step. Note that since both of these cases are symmetrical,
we double this number in the �nal total.

The �nal case to consider is where both gaps at each end are empty:(
|T | − 1

‖σc‖ − 2

)
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This corresponds to the case where the �rst and last steps of a coherent interleaving are
both critical steps (and thus exactly two critical steps are not “between” trace steps, only
adjacent to them at either end).

Then, the number of coherent interleavings of a set of traces T and a step sequence σc is
the sum of the numbers of coherent interleavings in each of these cases:(

|T | − 1

‖σc‖

)
+ 2

(
|T | − 1

‖σc‖ − 1

)
+

(
|T | − 1

‖σc‖ − 2

)
By application of Pascal’s rule this reduces to:(

|T |+ 1

‖σc‖

)
Finally, we multiply this by the orderings in C to derive Nc, the number of coherent

interleavings of a set of traces T and a set of critical steps C (as opposed to just σc, which
is one ordering of C):

Nc = |C|!
(
|T |+ 1

|C|

)
The proportion of coherent interleavings is then Nc/N .

5.2.2 Preference Distribution

As the preference of interleavings is assumed to be normally distributed, we can relate ε-
preference to an interval of a normal distribution, i.e., ε-preference is a lower bound on an
interval that captures acceptably preferred interleavings. The proportion of interleavings
within the interval then corresponds to the probability of randomly sampling an ε-preferred
interleaving.

A normal distribution is represented by a tuple (µ, σ) where µ is the mean and σ is the
standard deviation. The preference distribution determines the range of possible values for
ε. ε determines which interleavings are su�ciently preferable, and depends on the distribu-
tion of preference because it must be set at an appropriate value to capture a high enough
proportion of interleavings in order to �nd an ε-preferred interleaving within b simulated
steps.

In order to abstract ε-preference from absolute values, we take ε to be a function of the
preference distribution e.g., the 95th percentile.

Finally, the probability p is given by:

p = pεNc/N

where pε is the proportion of the preference distribution with lower bound ε.
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5.3 Probability of an ε-preferred interleaving

I now prove that at least one coherent ε-preferred interleaving can be found for a set of
goal-plan trees G within the bound b with probability 1− (1− p)b/l. The intuition for this
is that the probability that at least one coherent ε-preferred interleaving is found within a
bound b can be computed by subtracting the probability of �nding only incoherent or sub-
ε-preferred interleaving, which is (1− p)b/l, from one. The bound b permits generating on
average b/l interleavings, as l is the average length of an interleaving and b is a bound on
steps generated. Thus, at least one coherent ε-preferred interleaving is found within bound
b with con�dence 1− (1− p)b/l.

Theorem 5.1. The set of goals G induces a set of goal-plan trees following the assumptions
established in Section 5.2.1. Due tomy simplifying assumption that the traces induced by a goal-
plan tree have uniform length, we can refer to the average length of an interleaving for traces
induced by G trees as l. Given a bound b on the number of simulated steps that are considered
per execution cycle, a bounded GROVE agent 〈B,G, ε, s〉 �nds an ε-preferred interleaving with
con�dence 1− (1− p)b/l, where p = pεNc/N where pε is the proportion of preferences above
the threshold ε, under the assumption of a normal preference distribution (µ, σ).

Proof. The set of goals G induces a set of goal-plan trees. I assume that con�icts (and thus
coherency) of interleavings can be modelled by interleaving of traces with a set of critical
steps C . I further assume that the cardinality of the set of critical steps C for some set of
traces T is proportional to l, such that |C| is less than the combined length of induced traces
in T , and can then be treated as a property of T and thus omit C without loss of generality.
Then, for a set T of randomly selected traces such that each σg ∈ T corresponds to a goal
g ∈ G, i.e., there is an injective partial mapping of top-level goals to traces in T .

We assume a �xed budget of steps b may be simulated per execution cycle, which puts
an upper bound on the number of interleavings that can be generated during the search.
The number n of interleavings this permits to be generated given b is n = b/l where l is
the average length of interleavings. We treat generation of interleavings as sampling with
replacement.

The probability of generating an incoherent or sub-ε-preferred interleaving is 1 − p (in-
verse of p). The probability of generating only incoherent or sub-ε-preferred interleavings
in b/l simulations is (1 − p)b/l. Thus the inverse of this is the probability of generating at
least one coherent and ε-preferred interleaving.

Then, the probability that of b/l randomly generated interleavings at least one is ε-preferred,
is given by:

1− (1− p)b/l

where p is the probability of randomly generating an ε-preferred interleaving.
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The practical application of this result is that by adjusting the bound b, the probability
of �nding a coherent ε-preferred interleaving can be adjusted. Turning this around, given a
desired probability of �nding a coherent ε-preferred interleaving, the necessary bound can
be computed.

5.3.1 Stability

I now consider the question of stability of a bounded GROVE agent. The simplest inter-
pretation of an execution cycle for a bounded GROVE agent is to search for an executable
interleaving and execute the most preferred in each execution cycle. This results in execu-
tion of an epsilon-preferred interleaving in each execution cycle with con�dence de�ned
by Theorem 5.1. However, this interpretation implies that the agent essentially discards the
results of searches in previous cycles, stipulating only that it executes the best executable
interleaving that it generates in each cycle. Under this interpretation, an agent may partially
execute an interleaving with preference that is lower than those that resulted from earlier
searches, as the most preferred interleaving among those generated in the current cycle is
executed. resulting from the search in the current execution cycle. This di�ers from the
behaviour of the unbounded model in Chapter 4, in which the agent always executes the
maximally preferred executable interleaving. This principle can be satis�ed in the execu-
tion cycle of a bounded GROVE agent by retaining the most preferred interleaving from the
previous search cycle and continuing with it if it is more preferred than any interleavings
found by search in the following cycle. If any of the executable interleavings found in the
current execution cycle have greater preference than the best from the previous cycle, then
the agent executes the most preferred of those instead. This interpretation of the execution
cycle gives a bounded GROVE agent that always executes the most preferred interleaving
available to it. Note that in the case that the previous most preferred interleaving is no
longer executable, a bounded GROVE agent executes the most preferred interleaving found
in the current cycle, following the assumption that non-executable interleavings have min-
imal preference. Lastly, retaining interleavings from previous cycles may represent a cost
to the agent in terms of space, however this quantity does not grow with the number of
interleavings considered (as induced by the bound b) and corresponds to a multiple of l (the
average length of an interleaving). This cost can be limited to a constant factor by retain-
ing either the most preferred interleaving of the previous cycle, or some maximum number
of interleavings that can be retained, in either case giving a predictable cost. Moreover,
this interpretation of the execution cycle is not necessary to guarantee ε-preference, only
consistency with the behaviour of unbounded GROVE in the sense of executing the most
preferred executable interleaving available across execution cycles.

The possibility of retaining the interleavings from previous execution cycles raises the
question of whether a bounded GROVE agent should avoid executing retained interleavings
in some cases. Unlike the case where the agent does not retain interleavings and there is only
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a single set of interleavings found by search to consider, the agent may consider retained
interleavings (from previous cycles) in addition to those found by search in the current cycle.
As preferences may change with the evolving environment, it is possible that the preference
of retained interleavings ‘decays’ over time, even if they remain executable. The retained
interleavings may decay to the point where a rational agent may opt to execute several
search cycles if it is likely to �nd an execution with greatly superior preference to the most
preferred of those it has retained. Exploring this question further is future work.

5.3.2 Robustness

Let us consider the related problem of robustness to failure and changing circumstances.
While a bounded GROVE agent searches for an epsilon-preferred interleaving in each exe-
cution cycle, the stability policy of retaining the previous most preferred interleaving sug-
gests further extensions that can be made along the lines of retaining interleavings. Consider
an agent that retains several interleavings as a kind of “backup” for when circumstances
change and it must seek an executable interleaving. Interleavings that were previously
non-executable may be executable in the changed circumstances, and could have greater
preference than those found by search in a given execution cycle. Therefore, these previ-
ously generated interleavings may be valuable to retain in some kind of �nite cache. The
cached interleavings may be useful in situations where circumstances have changed, mak-
ing the agent more robust to change. For instance, the most preferred of these interleavings
may be superior to those found in later cycles, such as in the case where an executable
interleaving could not be found during search, but there are cached interleavings that are
executable in the changed circumstances. Such an agent would still be rational with respect
to Theorem 5.1, but with the advantage of access to the interleavings generated in previous
execution cycles. This is advantageous to the robustness of a bounded GROVE agent as
it e�ectively increases the pool of interleavings available to select from in each execution
cycle, thereby giving a wider base of possible courses of action for the agent.

Lastly, there is the general problem of determining which interleavings should be retained
in a �nite cache, i.e., determining a policy for preferring caching one interleaving over an-
other. This is similar to the problem of plan coverage [107], where the preconditions of plans
are used to determine coverage of di�erent situations that may develop. For a caching pol-
icy that retains only most preferred interleavings, there may be situations that are di�cult
for an agent programmer to anticipate when encoding the preferences for certain domains.
For instance, preference may need to take into account factors related primarily to caching
and robustness, such as the failure rate of the agent, i.e., frequency of having to abandon
progress, the amenability of the environment to di�erent types of executions, coverage (in
the sense of plan coverage) of interleavings in the cache, and preference of non-executable
interleavings that may become executable later. Strategies for caching and other extensions
are outside of the scope of this thesis, see Chapter 6 for discussion of future work.
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In this thesis I have presented a novel model of rational intention revision. By analysing
the state-of-art approaches with respect to a de�nition of the rational revision problem, I
identi�ed a gap in knowledge which I have addressed by giving operational semantics for
a model of rational BDI agency. Moreover, I presented a bounded version of the model
that under certain assumptions accounts for bounded-rational behaviour that is realisable
in real-life, practical agents.

Although the model I have presented addresses the rational intention revision problem
under the assumptions made, there are limitations which correspond to di�erences between
the assumptions and some approaches in the literature. For instance, I assume a notion of
preference in my de�nition of rationality, rational intention revision, and the semantics
of GROVE, however I do not elaborate in detail how this may be derived using existing
techniques or propose a novel technique for deriving preference over executions.

6.1 Future Work

One avenue for future work is investigation of how GROVE might be extended to account
for a richer variety of goal types, procedural operations on goals, a richer language of goals,
and derivation of preferences over executions which account for the kind of complex delib-
eration discussed in the literature.

While GROVE assumes achievement goals, the literature accounts for a richer variety
of goals, including maintenance goals [28, 29] (and temporal goals in general), and soft
goals [44] as a kind of qualitative preference. Moreover, goals in GROVE are assumed to
be atoms, while BDI logic approaches to agent programming [40] often assume richer lan-
guages for their representations of goals, permitting speci�cation of complex goals such as
conjunctive goals and temporal goals.

The concepts of traces and interleavings, central to the semantics of GROVE, bear simi-
larity to the computational traces employed in agent semantics based on temporal logic in-
corporating temporal goals, such as the semantics for temporal goals proposed by Dastani et
al. [23], the directly-executable temporal logic agent framework of Fisher and Hepple [31, 32],
and the approach to agent programming with temporal goals of Hindriks and van Riems-
dijk [42, 44]. Moreover, a temporal interpretation of goals as “desired progressions” returns
us to the motivating intuitions behind the seminal goal lifecycle work of van Riemsdijk et
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al. [79], and the interpretation of goals as “preferred outcomes” proposed by Governatori et
al. [35].

One sub-type of maintenance goals, the passive maintenance goal, could be accounted for
by generalising hard constraints on interleavings. Recall that interleavings are �ltered �rst
by executability, then by preference. Passive maintenance goals constrain execution such
that the agent refrains from committing to a course of action that will violate maintenance
conditions. This is similar to the notion that an agent refrains from committing to courses
of action that cannot be executed. A simple extension would be to extend the notion of
executability to account for a set of maintenance conditions, such that an interleaving is
not executable if it violates any of the maintenance conditions when executed. Note also
that maintenance goals are a sub-class of temporal goals, so extending GROVE with passive
maintenance goals would constitute a �rst step toward an extension of GROVE to account
for more complex temporal goals.

Finally, the semantics of GROVE does facilitate some procedural operations on goals that
are standard in agent programming. The suspension and resumption of intentions is implicit
in the ordering of steps in interleavings. The de�nition of traces induced by a goal-plan tree
can be extended to include suspend methods and resume methods [102], and abort meth-
ods [100] for goals and plans.

A number of di�erent extensions can be made to GROVE based on the general approach
of altering how traces are induced by goal-plan trees, and how future executions are de-
rived. These extensions include allowing abort, suspend, and resume methods to be executed
where appropriate. While these methods are usually annotations on goal-plan trees and can
therefore be captured by extending the derivation of traces to account for these, determin-
ing when these methods are actually executed is a higher level concern that coincides with
switching between top-level goals at the interleaving level (in the case of suspend/resume
methods), and abandoning progress or skipping plans (in the case of abort methods). Since
a trace corresponds to a complete execution of a goal, extensions to the semantics with
respect to the interpretation of goals fall under this umbrella. For instance, suspend and
resume methods [101] can be incorporated into traces to respresent executions of a goal that
involve execution of such methods. Note that GROVE already allows an implicit form of
suspension and resumption of goals using interleavings. A top-level goal is essentially sus-
pended when the agent has made progress toward it but executes steps for other goals before
continuing with it, on the most preferred interleaving. This gives an account of concurrent
execution of intentions as a consequence of the interleaved nature of the overall execution
of goals. However, suspend and resume methods as they are used in agent programming are
procedural operations used to free (on suspension) and recapture (on resumption) resources
used by a goal or plan, and are speci�ed as annotations on goal-plan trees. The way traces
are derived from goal-plan trees can be extended to make use of these annotations, such
that additional traces are available where the steps for suspend and resume methods are
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available. Determining when suspend or resume methods should be executed is at a level
of control above that of traces, and likely requires extension of either how interleavings are
generated, or pexecs . This is because suspension and resumption of a goal coincides with
executing steps for other goals. Switching between which trace is being executed within an
interleaving corresponds to a type of suspension and resumption of top-level goals. Because
the traces reify the entirety of the executions of goals, the requirement that resumption fol-
lows suspension, and suspension does not follow suspension, can be represented directly in
the generation of traces that encode this behaviour. The execution of suspend and resume
methods then corresponds to a course of action that can be reasoned about and executed as
with standard traces. A related possible extension is that of suspend and resume conditions,
which dictate when suspension and resumption should occur. Suspend and resume methods
proposed by Thangarajah et al. [101] may use conditions to prompt their execution, based on
environmental circumstances, or in the model proposed by Harland et al. [38] it is suggested
they may be conditioned on the state of other goals also. As with suspend and resume meth-
ods, these conditions can be encoded in traces by either requiring that the suspend method
and resume methods capture the respective conditions in their preconditions. However, this
does not capture the case where suspend and resume conditions correspond to aspects of
the agent’s mental state aside from beliefs, which is a direction for further investigation.
In addition, some suspend and resume conditions potentially correspond to conditions that
can be captured by temporal formulas, when a goal is suspended awaiting some external
change in circumstance rather than to avoid con�icts, for instance.

The incorporation of abort methods [101], which correspond to executing a series of ac-
tions prior to dropping a goal or plan. Intuitively this means an agent may execute steps
toward a goal that it has decided to drop without achievement, such as in case of plan failure
or an alternative course of action being more preferable.

Extending GROVE to allow abort methods would require executing the steps for abort
methods at points where a GROVE agent abandons progress, such as when dropping goals
or plans. These cases coincide with deriving an alternative (shorter) pre�x from the history.
The most signi�cant implication of abort methods for GROVE is that abandoning progress
may introduce (abort) steps that must be executed on a possible future execution that imme-
diately follows abandoning goals or plans that are in progress. Moreover, a rational agent
should be able to reason about these as consequences of a decision to abandon progress, as
they may incur additional costs or may be infeasible. Note that in the goal life-cycle model
proposed by Harland et al. [38] abort methods are required to execute succesfully and are
always feasible, i.e., they are assumed to never fail, so this aspect of rational behaviour is
avoided entirely.

Reasoning about executability and preference of a set of intentions in the context of abort,
suspend, and resume methods would constitute a novel contribution. Existing work does
not consider cases where these operations can fail or con�ict with other tasks, and does not
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consider how agents should determine when it is preferable to perform these operations,
i.e., weigh them up as options.

Lastly, GROVE can be extended by incorporating reactive maintenance goals [29]. Reac-
tive maintenance goals inhabit an inactive state until their maintenance condition is vio-
lated, in which case they initiate action to restore it. Rather than representing desired states
to be achieved, reactive maintenance goals represent states that should be preserved and the
steps that can be executed to restore them. This gives a dual-faceted notion of maintenance,
combining a constraint that should be respected and an achievement goal that is invoked
to restore it. Although the semantics of GROVE allow for the latter, the former constraint
aspect not only needs to be accounted for, but must also prompt the adoption of the latter
only when it is necessary. One approach to achieving this is a procedural-style encoding
akin to that of maintenance goals in Jadex [13], where an achievement goal can be assigned
a �ag that prevents it from being dropped when achieved. In addition, the achievement goal
can be made non-achievable until the maintenance condition is violated, by requiring that
all traces corresponding to its goal-plan tree have the negation of the maintenance condi-
tion as a precondition. Then, upon adopting the achievement goal a GROVE agent actively
pursues it (as an intention) only when it is executable, i.e., when the maintenance condition
is violated. Upon violation of the maintenance condition the agent pursues the achievement
goal and upon achieving it (and restoring the maintenance condition) it does not abandon
the goal, instead “resetting” it as in the procedural approach described by Braubach and
Pokahr [13], at which point it will be non-achievable provided the maintenance condition
has been successfully restored. This approach suggests the possibility of GROVE agents
reasoning about the relative preference of violating maintenance conditions, taking into
account whether or not they are able to restore them in the context of their intentions. Per-
mitting this corresponds to treating maintenance goals as soft constraints, rather than the
hard constraints they are usually interpreted as, but potentially gives more autonomous be-
haviour as the agent is free to reason about and choose to abandon its maintenance goals
temporarily when it is rational to do so.

Another avenue for future work is implementation of GROVE, following the proposed
bounded-rational semantics in Chapter 5. Partial progress has been made on encoding
bounded GROVE in meta-APL, for which an implemented interpreter exists. Other ap-
proaches to this may be to investigate how to achieve GROVE-like rational behaviour in
existing agent-programming platforms, similar to the approach taken by de Silva [97] to
incorporate HTN planning in a standard BDI interpreter.

There is also the question of verifying properties of GROVE agents. As the idea of an
execution of an agent in terms of concrete steps is central to GROVE, it seems plausible that
liveness and safety properties with respect to goals in a GROVE agent can be investigated
without signi�cant extension to the model.
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