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Abstract

Z-spectroscopy is a form of magnetic resonance imaging (MRI) in which the free water
signal is modulated by exchange with other sources of protons resonating at different
frequencies. However, interpretation of these signals is not trivial, and care must be
taken when attempting to quantify the physical parameters which give rise to these
effects. This thesis describes the development of methods to assess and quantify
z-spectrum effects, along with in vivo application of these methods with the aim of
moving towards clinical use.

Initially z-spectrum data from the brain were analysed using a look-up table fitting
approach described previously. The MT pool size was used as a marker of myelination
across subjects. This was then compared to subject age showing a quadratic trend
with age, suggesting that cerebral myelination peaks at 43 years of age in grey matter
and 42 years of age in white matter. This was repeated for T1 measurements, which
indicated peak myelination slightly later in life, most likely due to the combined effects
of myelination and cerebral iron content. The concept of measuring myelination using
NOE as a marker was explored, and it was found that NOE measurements also followed
a parabolic trend with age, albeit weaker than the trend shown by the MT signal.
Nevertheless this may be a useful finding for understanding the nature and origin of
the NOE signal.

However, the look-up table used here could only fit for pool size. The main physical
parameters of interest in z-spectroscopy are the pool size and the exchange rate,
which are difficult to mathematically uncouple. This thesis introduces a particle swarm
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optimisation (PSO) algorithm as a tool to iteratively solve this problem, by effectively
taking many initial guesses at the solutions simultaneously, and then mimicking the
collective intelligence of a swarm to move towards the best solution. This was proven
to be robust in simulations and phantoms, and was used to quantify the z-spectra from
in vivo brain tissue and ex vivo blood, both of which are of great clinical importance.
When quantifying cerebral grey and white matter in vivo it was found that there is
a statistically significantly increased pool size fractions of both MT and the NOE
peak located at -1.7ppm in white matter compared to grey matter, while exchange
rates remained consistent between the two types of brain tissue. The NOE signals
from ex vivo human blood were found to have exchange rates of 10Hz for the pool
located at -3.5ppm and 13Hz for the pool located at -1.7ppm. CEST fitting with
glycosaminoglycans and glucose pools was attempted on this spectrum, however the
fitting results suggest that underlying CEST pools may not have been accounted for.

Finally the potential for performing z-spectroscopy in the abdomen was investigated,
first at clinical field strengths to assess the potential to accurately quantify the MT
effect for use as a marker for fibrosis. The challenges of abdominal z-spectroscopy
at ultra-high fields were then explored before development of a protocol capable of
measuring the evolution of liver glycogen in vivo.

This thesis is written in Computer Modern Unicode Sans-Serif typeface, which has been shown to
improve reading performance among dyslexic readers compared to other common fonts (L. Rello and
R. Baeza-Yates. Good fonts for dyslexia. Proceedings of the 15th international ACM SIGACCESS
conference on computers and accessibility 1-8, 2013).
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Introduction

Since its introduction in the early 1970s, magnetic resonance imaging (MRI) has
been responsible for saving millions of lives around the world. In terms of clinical
imaging techniques it is relatively new: roughly eighty years younger than planar X-ray
imaging, twenty-five years younger than clinical ultrasound, and six years younger than
x-ray computed tomography (CT). Its only major drawbacks compared to these other
modalities are its higher running costs and longer acquisition times, but in exchange
it offers significant clinical advantages. MRI is performed without the use of ionising
radiation, which is a limiting factor for CT, and is capable of producing images of
sub-millimetre resolution. Standard MRI acquires signal from the water protons in
the human body, and by probing the local properties of these protons is capable of
producing images with high contrast based on a range of endogenous mechanisms.

In addition to directly measuring the concentration or NMR relaxation times of water
protons, a range of methods of generating other contrasts have been created. Arterial
spin labelling (ASL), for example, selectively saturates the water protons in arterial
blood before entering an organ in order to measure perfusion. Magnetic resonance
elastography (MRE) is a method of measuring the stiffness of tissue by imaging the
vibrations from an external plate, used mainly to assess kidney fibrosis. And as a final
example, functional magnetic resonance imaging (fMRI) measures the local decrease
in the volume fraction of paramagnetic deoxygenated blood volume in the brain which
arises when a particular region is activated.

This thesis, however, is concerned with contrast generated from z-spectroscopy. Sim-
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CONTENTS

ilar in certain aspects to 1H magnetic resonance spectroscopy (MRS), z-spectroscopy
is sensitive to the presence of molecular species containing hydrogen atoms. However
unlike 1H MRS, z-spectroscopy is based on the water signal which is modulated by
exchange with other molecules rather than on the protons in those molecules them-
selves. The process of exchange effectively amplifies the signal from the molecules of
interest and allows them to be detected with a signal to noise ratio of the order of
the water signal. This means that the z-spectrum can be encoded in a standard MRI
scan, allowing the acquisition of data at high spatial resolution.

This exchange can occur through several mechanisms, which can produce a variety
of z-spectrum signals. These are magnetisation transfer (MT), which describes ex-
change of magnetisation between macromolecular species and water protons, chemical
exchange saturation transfer (CEST), which describes direct exchange between labile
proton groups (-NH, -OH and -SH), and finally magnetisation can be exchanged
through the nuclear Overhauser enhancement (NOE) effect. While the quantity of
certain molecules present has obvious clinical relevance, the rate at which protons
exchange their magnetisation is also of great interest, as this is sensitive to local pH
and temperature. Accurate quantification of exchange rates therefore has huge clin-
ical potential, as it is currently extremely challenging to non-invasively measure pH
in vivo. However, measurement of exchange rates is not trivial, and a large portion
of this thesis is dedicated to outline a new, robust method of accurately quantifying
exchange rates.

The first chapter of this thesis provides a theoretical overview of nuclear magnetic
resonance and its exploitation as an imaging technique. Methods of signal acquisition
are introduced and the basic methods of contrast generation are discussed. Common
imaging sequences are described, some of which will be utilised in the remainder of
this thesis.

The second chapter presents the theory behind the processes involved around z-
spectroscopy. The Bloch-McConnell equations are introduced, which describe the
evolution of magnetisation when exchanging pools are present. These equations are
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core to the work performed in this thesis. The methods of acquiring the z-spectrum
are described, and finally an analysis of current methods of analysing z-spectrum ef-
fects is performed, starting with more simplistic metrics and moving towards more
complex and powerful methods.

Chapter 3 describes work which used the quantitative MT pool size as a marker for
myelination in the human brain. A number of subjects were analysed with ages between
19 and 62 years, and the global variation of the MT signal with age was analysed, along
with local variation in each of the four lobes, largely showing a quadratic variation
in myelin over the adult lifespan, with peak myelination levels around age 42. This
was compared with the variation in T1 values and NOE pool size measures with age.
Finally the thickness of each subject’s cortex was assessed, and while the cortex was
found to decline with age as previously reported, it was found that the thickness of the
cortex did not correlate with the presence of myelin, suggesting that cortical thinning
in later life is not directly due to demyelination.

Chapter 4 introduces the Particle Swarm Optimisation algorithm (PSO) as a new
method of quantifying z-spectrum effects. Built around the Bloch-McConnell equa-
tions, this algorithm mimics the behaviour of swarms found in nature. Initial guesses
at the solutions are made, and these guesses act as individual members of the swarm,
communicating with each other to move towards the optimal global solution, i.e.
the underlying physical parameters which best model the acquired z-spectrum data.
This was tested in simulations and a phantom, before going on to quantify z-spectra
acquired from in vivo human cerebral grey and white matter.

Chapter 5 describes the use of the PSO algorithm to analyse the signals from ex vivo
human blood samples. A statistical analysis was performed in order to identify possible
sources of signal giving rise to the shape of the human blood z-spectrum. This was
followed by an investigation into whether measuring blood-glucose levels is possible
using this method within a physiologically applicable range, and finally an experiment
was performed in which the pH levels of ex vivo human blood samples was measured
through the quantification of the exchange rates of Iopamidol, an exogenous CEST
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agent, which is already known to be suitable for clinical use in CT imaging.

Chapter 6 describes the application of z-spectroscopy in abdominal imaging. Difficul-
ties in measuring abdominal MT are explored, and a ’prompted-breathing’ method of
z-spectrum acquisition is presented, which was found to yield robust, reliable z-spectra.
This was performed in vivo in human liver, kidney, and back muscle, at a clinical (3T)
field strength. The advantages and issues of moving abdominal z-spectroscopy to
ultra-high field (7T) were then explored, before an experiment to measure the evolu-
tion of the CEST signal arising from liver glycogen was described. This experiment
was performed but suffered from systematic errors. Therefore an optimised protocol
for this experiment is also presented which should yield robust quantifiable results.

xv



Chapter 1

MR Theory

This chapter will describe the fundamentals of Nuclear Magnetic Resonance (NMR)
and how these principles are utilised to form an image in Magnetic Resonance Imaging
(MRI).

1.1 Nuclear Magnetic Resonance

First introduced by Rabi in 1937 [1], and demonstrated by Bloch [2] and Purcell [3]
in 1946, nuclear magnetic resonance describes the phenomenon which occurs when a
nuclear spin interacts with an externally applied magnetic field. With a simple system
involving a single spin, it is appropriate to describe this phenomenon with quantum
mechanics, however realistically in magnetic resonance imaging (MRI) the number of
spins in a system is very large, and so it becomes viable to implement a simplified
classical description of the system.

1



1.1. NUCLEAR MAGNETIC RESONANCE

1.1.1 Quantum theory of NMR

Intrinsic angular momentum, commonly referred to as spin, is a fundamental property
of protons, neutrons, and electrons. The magnitude of this angular momentum, J,
can be defined by

|J| = ~
√

I(I + 1) (1.1.1)

where I is the spin quantum number and can take integer and half integer values
only, and ~ = h

2π
, the reduced Planck’s constant. There are 2I+1 possible spin

states for a nucleus with spin I, defined by the quantum number mi, where mi =

I, (I − 1), (I − 2), ...,+1
2
,−1

2
, ..., I for half integer spins.

Nuclei with an odd number of protons and/or neutrons have a non-zero net spin; in
the case of a hydrogen atom the nucleus consists of a single proton with spin quantum
number I = +1

2
. The rotating nucleus gives rise to an effective current loop, as it

is positively charged, and in turn generates a magnetic moment dependent on the
intrinsic angular momentum of the nucleus, defined by

µ = γJ (1.1.2)

where γ is the gyromagnetic ratio of said nucleus. This gyromagnetic ratio takes
different values dependent on the mass and the charge of the nucleus in question.
The most commonly probed nucleus in MRI experiments is the hydrogen nucleus 1H,
as it has the highest gyromagnetic ratio and abundance in living tissue. Table 1.1
presents the gyromagnetic ratios of various nuclei commonly probed by in vivo NMR
experiments.

2



1.1. NUCLEAR MAGNETIC RESONANCE

Nucleus Spin Gyromagnetic
ratio (MHz/T)

1H 1/2 42.57
13C 1/2 10.71
19F 1/2 40.05
23Na 3/2 11.26
31P 1/2 17.24

Table 1.1.1: Gyromagnetic ratios, γ, of various NMR sensitive nuclei.

1.1.2 Application of external B0 field

1H nuclei have spin 1
2
, and therefore have two possible spin states: mi = +1

2
and

mi = −1
2
. In the absence of an external magnetic field, the spins in a given sample

will point in random directions, and will also transfer energy randomly with each
other, producing a net magnetisation of zero. However, in the presence of an external
magnetic field (B0), the spins will align either parallel or anti-parallel to the field, as
displayed in Figure 1.1.1.

In MRI experiments the external magnetic field is conventionally aligned along the z-
axis, B0 = B0ẑ. We can therefore describe the z-component of the magnetic moment
of a 1H nucleus as

µz = γ~mz = ±1

2
γ~. (1.1.3)

There are two possible energy states for the 1H nucleus in an external magnetic field,
described by E = −µB = ±1

2
γ~B0. The energy difference between lower energy and

the higher energy state is therefore

∆E = γ~B0. (1.1.4)

The energy levels in a spin 1
2
system are displayed in Figure 1.1.2.

3



1.1. NUCLEAR MAGNETIC RESONANCE

Figure 1.1.1: The effects of an external field, B0, on the alignment of nuclear spins
(exaggerated for this diagram).

Spins in an ensemble naturally prefer to occupy the lower energy state aligned parallel
to the B0 field, however the difference in spin populations in a typical system is
relatively small. When a spin system is at equilibrium, the ratio of the number of
parallel spins (N ↑) to the number of antiparallel spins (N ↓) can be described by the
Boltzmann distribution:

N ↑
N ↓

= e
∆E
kBT (1.1.5)

where kB is the Boltzmann constant, 1.38 × 10−23 m2 kg s−2 K−1, and T is the
temperature of the system in Kelvin. From here we can derive the population difference
between the (N ↑) and (N ↓) state. We know that the energy difference is small,
∆E � kBT , and so can perform a Taylor expansion to yield

N ↑
N ↓

= 1 +
∆E

kBT
. (1.1.6)

4



1.1. NUCLEAR MAGNETIC RESONANCE

Figure 1.1.2: Possible energy states for a spin 1
2
system.

This can be rearranged to give the population difference between states:

N ↑ −N ↓= N
γ~B0

2kBT
(1.1.7)

where N is the total number of spins in the system.

The bulk (or net) magnetisation of the sample is determined by the sum of each of
the spins in the system. As the x- and y- components of each spin are random, these
cancel leaving only the z- components of the magnetisation. We can therefore define
the bulk magnetisation of a sample, M0, as

M0 =
γ2~2B0N

4kBT
ẑ. (1.1.8)

1.1.3 Application of B1 field

In reality, spins in a linear magnetic field do not align exactly with the z- direction,
but instead precess about the z- axis with an angular frequency ω0. This frequency is

5



1.1. NUCLEAR MAGNETIC RESONANCE

known as the Larmor frequency [4], and is defined as

ω0 = γB0. (1.1.9)

In NMR physics, it is often more appropriate to use the classical model to describe the
macroscopic observations of a spin system; while this cannot provide a complete de-
scription of the system it is capable of providing a clearer description of the phenomena
observed.

In the classical model, when we place a magnetic momentM into an external magnetic
field B, the magnetic moment experiences a torque L proportional to the change in
angular momentum, described by

L = M×B =
dJ

dt
(1.1.10)

From here we can substitute in equation 1.1.2 to give the Bloch equation [2] in its
standard form:

dM

dt
= γM×B (1.1.11)

which can be extended to describe the x-, y- and z- components of the evolution of
magnetisation:

dM

dt
= γ(M×B)− Mz −M0

T1

ẑ− Mxx̂ +Myŷ

T2

(1.1.12)

This describes the time evolution on the bulk magnetisation and introduces the vari-
ables T1 and T2, which govern the longitudinal recovery and transverse decay times
of the magnetisation of the system respectively. This can be solved in the x-, y- and

6



1.1. NUCLEAR MAGNETIC RESONANCE

z- directions to give

Mx(t) = Mx(0) cos(γBzt) +My(0) sin(γBzt) (1.1.13)

My(t) = −Mx(0) sin(γBzt) +My(0) cos(γBzt) (1.1.14)

Mz(t) = 0 (1.1.15)

The basis for magnetic resonance imaging comes from applying a second magnetic
field in the xy- plane, conventionally known as the B1 field, in order to perturb the
spins aligned with the B0 field. The B1 field is produced by a radio frequency pulse,
and is usually on the order of micro-Tesla, compared to Tesla for the B0 field. The
B1 field is time dependent, and so can generally be described by

B1(t) = 2B1 cos(ωt)x̂ (1.1.16)

This can be resolved into two components rotating about the x- axis, anti-clockwise
and clockwise respectively.

Ba(t) = B1(t)[cos(ωt)x̂ + sin(ωt)ŷ] (1.1.17)

Bc(t) = B1(t)[cos(ωt)x̂− sin(ωt)ŷ] (1.1.18)

The B1 field is chosen to be on-resonance with the precession of the 1H spins at the
given B0 field strength (ω = ω0), as described by equation 1.1.9. The contribution
from Ba(t) under this condition is negligible, as it rotates at −2ω0, far off-resonance.
Bc(t), however, rotates at ω0, on-resonance. This creates an additional torque on the
magnetic moment, such that its motion can be described by

dµ

dt
= γµ× [B + Bc(t)] (1.1.19)
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1.1. NUCLEAR MAGNETIC RESONANCE

As a result of this torque, application of the B1 field causes the net magnetisation of
the sample to spiral clockwise towards the xy- plane. However in NMR experiments it
is simpler to visualise things in a frame of reference rotating at the Larmor frequency,
known as the rotating frame [5], in which the B1 field appears stationary, as shown in
Figure 1.1.3.

Figure 1.1.3: The evolution of the net magnetisation, M, after the application of the
B1 field, shown in a) the laboratory frame, and b) the rotating frame of reference.

We can take the x-, y- and z- components of the B1 field from equation 1.1.18, and
transform into the rotating frame using a rotation matrix.


B1,x′(t)

B1,y′(t)

B1,z′(t)

 =


cos(ω0t) sin(ω0t) 0

− sin(ω0t) cos(ω0t) 0

0 0 1




B1,x(t) cos(ωt)

B1,y(t) sin(ωt)

0

 (1.1.20)

which reduces to
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1.1. NUCLEAR MAGNETIC RESONANCE


B1,x′(t)

B1,y′(t)

B1,z′(t)

 =


B1(t) cos2(ω0t) +B1(t) sin2(ω0t)

B1(t) sin(ω0t) cos(ω0t)−B1(t) cos(ω0t) sin(ω0t)

0

 (1.1.21)

and so


B1,x′(t)

B1,y′(t)

B1,z′(t)

 =


B1(t)

0

0

 (1.1.22)

In the rotating frame, the net magnetisation is tipped towards the xy- plane. The
angle by which the magnetisation is tipped around the x’- axis, α, is dependent on
both the magnitude and duration of the applied B1 field, and is described by

α =

∫ τ

0

γB1(t)dt (1.1.23)

where τ is the pulse duration. Common choices of flip angle include a 90◦ saturation
pulse to tip the magnetisation into the xy- plane, and allow the spins to dephase,
resulting in a net magnetisation of zero, or a 180◦ inversion pulse, which is used in T1

weighted imaging and will be detailed later.
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1.2 Relaxation

When a radiofrequency B1(t) pulse is applied to a sample, it is taken out of thermal
equilibrium, and the conditions Mz = M0, and Mx = My = 0 no longer hold true.
The spins are tipped toward the xy- plane, but after the RF pulse is switched off
the spins will relax back towards thermal equilibrium. This occurs via two processes:
longitudinal (T1) relaxation and transverse (T2 and T ∗2 ) relaxation, which are two key
sources of image contrast in MRI.

1.2.1 Longitudinal relaxation, T1

Once a spin system has been excited, the net longitudinal magnetisation will return
to the equilibrium Boltzmann distribution through exchange of energy from the spin
system to the surrounding thermal reservoir (historically defined as the lattice). This
process is not instantaneous, and is defined by a time constant T1, the longitudinal
relaxation time. Longitudinal recovery of the magnetisation can be defined by

dMz(t)

dt
=
M0 −Mz(t)

T1

. (1.2.1)

The T1 relaxation time varies depending on the efficiency of energy transfer between
the spin system and the lattice, which occurs via collisions and rotations of molecules
through dipole-dipole interactions. The mechanisms through which energy exchange
occurs means that the T1 is shorter in samples in which molecules are tightly packed
or bound than in samples in which molecules are freer. For example, pure water has
a relatively long relaxation time, as water molecules are not strongly bound to each
other and have a high motional frequency. In the cortex, grey matter has a much
shorter T1 than water, and white matter has a shorter T1 still, due to the presence of
myelin in white matter which restricts the motion of water molecules (although this
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is also influenced by iron).

T1 is typically measured with an inversion recovery experiment [6]. Here, a 180◦ RF
pulse is applied to the sample, which inverts the net magnetisation, so that Mz(0) =

−M0. Following an inversion pulse, we can solve equation 1.2.1 by integrating from
time t = 0 to t = TI to give

Mz(t) = M0(1− 2e
−TI
T1 ) (1.2.2)

By using variable time intervals, TI, we can plot the recovery of the magnetisation, as
shown in Figure 1.2.1, and fit an exponential to determine the T1 of the sample.

Figure 1.2.1: Recovery of magnetisation after an inversion pulse with a fitted expo-
nential to measure T1.

However, this experiment can be time consuming, as the time between the 180◦

pulse and the readout (TR, repetition time), will approach 5 times T1 at its longest
values, to allow for complete recovery of M0 each time. A method of speeding up T1

measurement is by using the Look-Locker readout scheme [7], which allows a single
inversion recovery pulse to be used, followed by multiple low flip angle readouts, as
shown in Figure 1.2.2.

The Look-Locker readouts are equally spaced by time TI2, which partially saturate
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Figure 1.2.2: Look-Locker readout scheme and recovery curve with a flip angle of 45◦.

the magnetisation. As a result of this, an apparent T1 is measured, denoted here by
T1,LL. The true T1 can be calculated from this value using the equation

1

T1

=
1

T1,LL

+
ln(cos(α))

TI2

(1.2.3)

where α is the flip angle of the readout pulses.

1.2.2 Transverse relaxation, T2

As well as longitudinal magnetisation recovering over time, phase coherence of an
excited spin system decreases at a rate dependent on the transverse relaxation time,
T2. If we consider immediately after a 90◦ RF pulse is applied to a system, Mz = 0

as all spins are tipped into the Mxy plane and precessing around the z- axis. Random
dipole-dipole interactions between neighbouring spins in a system create microscopic
magnetic fields, which disturb the precessional frequency of local spins. As a result of
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this, certain spins precess about the z- axis slightly faster or slower than the Larmor
frequency. Over time this leads to complete phase decoherence, as all of the excited
spins are oriented randomly in the xy- plane. Transverse relaxation of a system can
be defined by

dMxy(t)

dt
=
Mxy(t)

T2

. (1.2.4)

In order to measure T2, the effects of T ′2 need to be considered, which will be discussed
in the following section. T2 is typically measured using a spin-echo sequence, detailed
in section 1.3.2.

1.2.3 Observed transverse relaxation, T ∗2

In practice, phase coherence of a system is lost faster than described by equation 1.2.4,
due to external B0 inhomogeneities arising from either hardware issues or magnetic
susceptibility differences in the sample. This leads to frequency shifts in the rotation
of nearby spins, and therefore further coherence loss. This additional effect is termed
T ′2, and so the apparent transverse relaxation time needs to consider the true T2 of
the system along with these additional effects. This apparent transverse relaxation
time is termed T ∗2 , and is described by

1

T ∗2
=

1

T2

+
1

T ′2
. (1.2.5)

T ′2 effects are more significant at higher B0 field strengths, as susceptibility induced
field inhomogeneities scale linearly with B0, leading to shorter T ∗2 , which presents as
signal loss or image distortions.

Equations 1.2.1 and 1.2.4 can be combined to give the Bloch equation [2]
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dM

dt
= −Mx

T2

x̂− My

T2

ŷ +
M0 −Mz

T1

ẑ + γM× (B1 + ∆B0) (1.2.6)

where ∆B0 is the difference between the given field strength of the magnet (B0), and
the local magnetic field experienced by the spin system. The Bloch equations underpin
the evolution of magnetisation for a given imaging sequence, and can be modified to
describe various systems, a particular variant of which (termed the Bloch-McConnell
equations) will be explored later in this thesis.

1.3 Signal acquisition

Samples in an NMR experiment are excited in order to create a recordable, measurable
signal. This signal is dependent on the NMR properties of the sample, and as well
as being measurable can be manipulated through by RF pulses and changes in the
applied magnetic fields to encode its NMR properties.

1.3.1 Free induction decay

The simplest NMR experiment is the creation and acquisition of a Free Induction
Decay (FID) signal [8, 9]. A sample in a uniform B0 field is allowed to reach thermal
equilibrium before being excited by an external B1 field and tipped into the xy- plane
as described in section 1.1. We can then use a receive coil to detect a voltage produced
by Faraday induction. The resulting signal is an exponential decay which oscillates
at the resonant frequency. The rate of this decay is dependent on the rate constant
T ∗2 . It is often difficult to measure the earliest part of the FID, due to having to gate
the receive coil off while the B1 field is transmitted. To overcome this, echoes of the
signal are created via either spin-echo or gradient-echo sequences. Echoes are used in
MRI to refocus static field inhomogeneities, and to provide a symmetric signal which
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has a solely real Fourier transform.

1.3.2 Spin and gradient echoes

The spin-echo sequence [10] was briefly mentioned in section 1.2.2 as the primary
experiment used to measure T2. In this experiment, a 90◦ RF pulse is applied to the
system, tipping the magnetisation into the xy- plane. The spins begin to lose phase
coherence as described previously. After a time τ , a 180◦ RF pulse is applied, inverting
the spins and therefore reversing the direction of the phase shifts. Therefore after time
2τ , the phase shifts of the spins are all zero, meaning that the signal is fully refocused,
forming an echo (Figure 1.3.1). Dephasing due to any T2 effects is not reversed by
the inversion pulse, meaning that the echo is dependent only on T ′2.

Figure 1.3.1: Spin-echo pulse sequence.

As the name suggests, a gradient echo is formed by applying a linear magnetic field
gradient across a sample [11]. A gradient echo is not reliant on RF pulses of any
particular angle, instead forming an echo based on the positions of spins in the mag-
netic field gradient. An RF pulse of angle α is applied, followed by a negative field
gradient. This causes the spins to precess and therefore dephase dependent on both
their position, and on the length of time (τ) the field gradient is applied for. We
can then apply a positive field gradient of the same magnitude for the same amount
of time, which reverses the direction of phase accumulation. This means that spins
which were acquiring phase more quickly are now acquiring phase more slowly, and
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vice versa, and so after τ the spins rephase and create an echo, as illustrated in Figure
1.3.2. A gradient echo cannot refocus local field inhomogeneities, and so is dependent
on T ∗2 rather than solely on T2.

Figure 1.3.2: Gradient-echo sequence.

1.3.3 Chemical shift

T2 and T ∗2 processes are not the only mechanisms which affect the precessional fre-
quency of the spins. Spins in a sample can also be affected by their surrounding
chemical environment [12]. Electronic shielding due to other molecules can lead to
spins experiencing varying degrees of the B0 field, due to induced fields generated
by the free electrons of nearby molecules. We define chemical shift as the term δ,
measured in parts per million (ppm), where

δ =
ω − ωref
ωref

× 106 (1.3.1)

Here, ωref is the reference frequency, which in magnetic resonance spectroscopy
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(MRS) experiments is the Larmor frequency of protons present in tetramethylsilane
(4.7ppm upfield from water protons), and in CEST experiments ωref is the Larmor
frequency of protons present in water. Using MRS experiments, we can gain chemical
information about the sample by acquiring a FID and analysing its frequency spec-
trum post Fourier transform. In conventional MRI, chemical shifts such as between
water and fat can cause artefacts, but they can also be utilised in NMR spectroscopy,
magnetisation transfer (MT) and chemical exchange saturation transfer (CEST) ex-
periments, which will be detailed heavily in chapter 2.

1.4 Principles of imaging

In order to form an image, it is necessary to be able to spatially localise any signals
which we acquire. This is done through the application of linear field gradients to vary
the resonant frequencies of the spins based on their position. Through this method
we can describe the Larmor frequency of any given spin as a function of the applied
gradients at a given time:

ω(x, y, z) = γ(B0 + xGx(t) + yGy(t) + zGz(t)) (1.4.1)

Gradients are applied orthogonally to create linear frequency variation along their
respective axes. The following chapter will outline methods for localising the NMR
signal, before providing examples of how this is performed in practice.

1.4.1 Slice selection

A common method of acquiring three dimensional information in MRI is by acquiring
a series of two dimensional images along a third dimension. These individual images
are known as slices. In order to acquire a slice, we must perform slice selection, also
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known as selective excitation. Here, a slab of spins is excited through the use of an
applied RF pulse and an applied field gradient. An RF pulse of a particular bandwidth
will excite all spins within that frequency range, regardless of their position. Through
application of a magnetic field gradient, for example along the z- axis, the Larmor
frequency of spins becomes dependent on their position along that axis. As shown
in Figure 1.4.1, application of an RF pulse with a given bandwidth will excite a slice
in the presence of a field gradient, the thickness of which is dependent on both the
bandwidth of the RF pulse and the strength of the magnetic field gradient [13].

Figure 1.4.1: The magnetic field gradient Gz alters the resonance frequencies of the
sample dependent on their position. A slice of the sample can be excited by applying
an RF pulse with frequency components matching the range of frequencies in the
target slice.

In order to create an RF pulse of a given bandwidth, its Fourier transform must be
considered. In an ideal world, the reverse Fourier transform of a ’top hat’ function
would be used, as this excites a narrow band of frequencies equally, and nothing more.
However, the solution to this is a sinc shaped pulse, which is infinitely long. As
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we unfortunately do not have infinite time, modified versions of this shape must be
considered, such as a truncated sinc pulse or a Gaussian pulse, the profiles and Fourier
transforms of which are displayed in Figure 1.4.2.

Figure 1.4.2: Shapes and Fourier transforms of a sinc profile, a truncated sinc, and a
Gaussian

Because the slice profiles generated by these RF pulses are not completely rectangular,
interference between slices can arise where the slice profiles overlap [14]. This can
lead to reduced contrast on an image. There are two widely used solutions to this
problem, the simplest of which is to leave a gap between slices, usually around 10%
of the slice thickness. However, if it is important that no gaps are left, odd and even
numbered slices can be acquired using two separate acquisitions.

If more time is available to perform the RF pulse, adiabatic pulses are often used [15].
Here a B1 field is applied for a certain length of time, but the frequency of the field is
swept slowly from below resonance to above resonance. When the B1 is applied below
resonance, the net magnetisation precesses around a vector Beff , at an acute angle
to the B0 field. As the frequency is increased, the net magnetisation will follow Beff .
When the RF frequency is matched to the resonance frequency, Beff is aligned with
the xy- plane, and as the RF frequency moves above resonance the net magnetisation
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continues to follow Beff until it has been completely inverted. This technique can
be useful as the flip angle is no longer dependent on the magnitude of the B1 field
as described in equation 1.1.23, and the magnetisation should theoretically become
insensitive to B1 inhomogeneities.

1.4.2 Frequency encoding

Once a slice has been selected, spatial encoding in the x- and y- direction is required
in order to produce an image. In order to do this we can first perform frequency
encoding, here applied along the x- direction [16]. A field gradient is applied along the
x- direction during the readout, and making the precessional frequency of the spins
excited through slice selection dependent on their position along the x- axis such that

ω(x, t) = γ(B0 + xGx(t)) (1.4.2)

which is a simplified version of equation 1.4.1. We can use this to gain information
about the distribution of proton density of the sample. For a location r, the measured
signal S(r, t) at time t is proportional to the proton density ρ, such that

S(r, t) ∝ ρ(r)ei
∫ t
0 ω(r,t′)t′ . (1.4.3)

For an entire volume of space, we can express this as

S(t) ∝
∫
x

∫
y

∫
z

ρ(r)ei
∫ t
0 ω(r,t′)dt′dxdydz (1.4.4)

We can then demodulate this signal to remove the ω0 component, by applying a low-
pass filter, eliminating the higher frequencies in the MHz range arising from the B0

field, and leaving only the gradient induced frequencies in the kHz range. The signal
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is then defined as

S(t) ∝
∫
x

∫
y

∫
z

ρ(r)ei
∫ t
0 r.Gr(t′)dt′dxdydz (1.4.5)

We can here introduce the reciprocal gradient space vector, known as k-space. This is
the space represented by phase evolution, and will be detailed further in section 1.4.4.
We define this vector as

k(t) = γ

∫ t

0

G(t′)dt (1.4.6)

and combining equation 1.4.5 with 1.4.6, we can describe the signal in the form of a
3D Fourier Transform:

S(t) ∝
∫
x

∫
y

∫
z

ρ(r)eir.k(t)dxdydz. (1.4.7)

We can therefore obtain information about the proton density of an image by per-
forming an inverse Fourier Transform of the received signal.

1.4.3 Phase encoding

It is impossible to fully localise spins solely using frequency encoding. In order to form
an image, another method of spin localisation must be applied orthogonally to the
frequency encoding field gradient [16]. Phase encoding field gradients create phase
variation along the applied direction, which here is chosen as the y- direction. Phase
encoding gradients work in the same way as frequency encoding gradients in that they
alter the precessional frequency of spins along the applied direction, such that
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ω(y, t) = γ(B0 + yGy(t)) (1.4.8)

Unlike frequency encoding gradients however, this field gradient is switched off before
the readout. After applying a phase encoding gradient between time t = 0 to t =

T , spins will have accumulated phase due to their temporarily altered precessional
frequencies, described as

φy(y) = γy

∫ T

0

Gy(t)dt (1.4.9)

The signal acquired from spins can then be described by

S(t) ∝
∫
x

∫
y

∫
z

ρ(r)e−iφy−iγxGxtdxdydz (1.4.10)

Frequency and phase encoding gradients are not always chosen along the x- and y-
directions. Poor choice of the phase encoding direction can lead to major image
artefacts. Aliasing of the image can occur when part of the object protrudes out of
the field of view in the phase encoding direction [17]. This can lead to the image
appearing as if parts of the object outside of the defined field of view have been folded
over into the main part of the image. For this reason the phase encoding direction
is typically chosen along the shortest object dimension, which also speeds up the
acquisition. Motion artefacts are also propagated along the phase encoding direction,
and so the choice can sometimes be altered so that these effects do not spill over
into the region of interest. For example, when acquiring an axial image of the head,
phase encoding is usually performed from left to right to avoid spillover from motion
artefacts from the eyes into the brain.
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1.4.4 k-space

As described in equation 1.4.10, we acquire image data in time encoded in a way which
corresponds directly to the form of a 3D Fourier transform of the object. By varying
the strength, duration, and/or direction of frequency and phase encoding gradients,
we are sampling different parts of the spatial frequency domain, known as k-space
[18]. Higher spatial frequencies appear at the edges [19], and so in order to acquire an
image of sufficient detail, a k-space grid is chosen with suitable coverage of k-space,
both in the centre where information about coarse structures is, and moving away
from the centre where information about the finer details of the image are held. An
example of k-space data along with the illustration of a k-space grid is shown in Figure
1.4.3.

Figure 1.4.3: Illustration of a k-space grid superimposed on typical data in k space.
The field of view is dependent on ∆k and the pixel size in the image is dependent on
kmax.

23
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It is important to note that each point in the k-space grid does not correspond directly
to a single pixel on the image. Instead, each point in the k-space grid contains infor-
mation about every pixel in the image, with points on the kx and ky axes containing
information about the spatial frequencies along the pure x- and y- directions of the
image.

We begin the image acquisition process at the sampling position, kx = ky = 0,
immediately after slice selection. By performing frequency encoding as described in
section 1.4.2, the signal acquired is along a line of k-space along the kx direction. We
can move in the ky direction by performing phase encoding, and the following readout
will be along a line in the kx direction with a different value of ky.

We can alter both the field of view and the pixel size of an image by changing our
sampling of k-space. The total range of k-space frequencies, kx,y,max is inversely
proportional to the pixel size in the image, as higher spatial frequencies are located
at the outside of k-space, and therefore with a lower sampled range, less information
can be acquired about the finer details of the image. Similarly, the spacing between
data points in the k-space grid is inversely proportional to the field of view, as fewer
points in the frequency domain are sampled, leading to fewer total pixels in the real
image.

1.4.5 Real and imaginary signals

Each data point in the k-space grid is a complex number. We obtain the MR signal
in complex form by acquiring it from two orthogonal phase sensitive detectors (or two
orthogonal receiver coils) in order to determine the magnitude and phase (or real and
imaginary) components of the signal. While the signal received by one coil is deemed
as the real signal and the signal received by the other is deemed imaginary, both signals
are equally real, the only salient difference is that they receive the signal in orthogonal
directions to each other. However, by describing the signal this way, it allows us to
denote the signal in the form S = Re+ iIm. From this we can obtain magnitude and
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phase data about the image, where Mag =
√
Re2 + Im2, and φ = tan−1(Im/Re).

Ignoring the effects of relaxation, the magnitude image represents the proton density,
and is the most commonly used in clinical MRI, whereas the phase image is sometimes
used, for instance to observe field inhomogeneities or the effects of flow.

Theoretically the signal received from two orthogonal coils will be identical to each
other, save for a 90◦ phase shift. However, the signal received by both channels will
contain noise. Therefore by detecting the signal in quadrature, we can also increase
the signal to noise ratio (SNR) by a factor of

√
2.

We can speed up imaging sequences through partial Fourier techniques, which only
sample a part of k-space [20]. These take advantage of the fact that k-space possesses
conjugate symmetry, where if a data point located at (+kx,+ky) has a value a + bi,
the corresponding data point located at (-kx,-ky) will be the complex conjugate of
the original, a− bi. However, while this means that theoretically only half of k-space
need ever be acquired, phase variations in acquisition mean that this can often lead
to image artefacts. These variations can arise from a range of sources, such as B0

and B1 inhomogeneity, susceptibility variations, flow, or subject motion.

1.4.6 Pulse sequences for image acquisition

Spin Warp imaging combines slice selection, frequency encoding,and phase encoding
in the simplest manner, in order to create an image [21]. The pulse sequence for
this technique is displayed in Figure 1.4.4. Here, a line of k-space is acquired per
excitation, and repeated until k-space has been adequately sampled. After excitation,
a negative gradient is applied along the frequency encoding direction to dephase the
spins, while phase encoding is also performed. After a time T , the gradient in the
frequency encoding direction is reversed, and applied for a time 2T , reversing the phase
accumulation performed by the initial negative gradient. The result of this is that spins
keep the phase added from the phase encoding gradient, but during the readout the
positive frequency encoding gradient causes spins which had rapidly dephased to come
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back into phase with slower dephasing spins, which forms an echo. This process is
then repeated multiple times, but using a different strength phase encoding gradient
to acquire a different line of k-space. Image acquisition using Spin Warp imaging can
therefore take a long time, due to the fact that the magnetisation needs to recover
after each line of k-space is acquired.

Figure 1.4.4: Spin Warp a) pulse sequence, and b) traversal of k-space. Pulse sequence
shown for the first two lines of k-space acquired. The 90◦ RF pulse is applied at the
same time as the slice select gradient (not displayed here). Following excitation, phase
encoding is applied along with a negative frequency encoding gradient. The frequency
encoding gradient is then applied in a positive direction, sampling one line of k-space.
The change in colour represents the start of a new TR.

There are various techniques that can speed up image acquisition. Turbo field echo
imaging is one such technique. This is also a gradient echo sequence, similar to Spin
Warp imaging, however here the RF pulse used for excitation is much smaller, usually
around 10◦. As a result of this a large component of the magnetisation is left in the
longitudinal plane, while just tipping enough of the magnetisation into the transverse
plane to record a signal. Immediately after excitation a spoiler gradient is applied,
which destroys any transverse magnetisation and results in any acquired images being
dependent solely on T1. After a sufficient number of excitation pulses, evenly spaced
by a time TR, the longitudinal magnetisation will reach a steady state, dependent on
the T1 of the sample, the TR of the sample and the chosen flip angle of the excitation
pulses. The resulting signal from this sequence can be described as
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STFE = M0
sin(α)(1− e−

TR
T1 )

1− cos(α)e
−TR
T1

e
−TE
T∗2 (1.4.11)

assuming that all of the transverse magnetisation is destroyed by the gradient spoiler.
From this, we can differentiate with respect to α to find the excitation angle which
would give the maximum signal. This is called the Ernst angle [22], and is given by

αE = cos−1(e
−TR
T1 ). (1.4.12)

From equation 1.4.11, we can see that if we modify our imaging parameters, we can
instead produce an image that is strongly weighted by T ∗2 rather than T1. This is
done by making the TE relatively long, the TR relatively long compared to T1, and
a relatively low flip angle, which reduces the effects of T1. Between excitations, the
transverse magnetisation is destroyed by a spoiler gradient, so that each separate
acquisition is independent of the last. However in practice, the sequence will be
excessively long if TR > T1. The spoiler gradient used is enough to reduce the T1

signal, and the steady state is reached early when a low flip angle is used.

Image acquisition can be improved further by using a sequence termed Rapid Acqui-
sition with Refocused Echoes, or RARE. Originally described in 1986 [23], this is a
modification of the typical spin-echo sequence described in section 1.3.2. Instead of
creating one echo per excitation, the RARE sequence uses a series of refocusing pulses
to create multiple echoes per excitation. As shown in Figure 1.4.5, multiple gradients
are applied to create multiple echoes, so that during the readout of each echo, a line of
k-space is acquired. The number of echoes acquired per excitation is called the echo
train length, and is typically around 8 for conventional imaging. This speeds up image
acquisition by a factor of 8, meaning that there may be time for a longer TR to allow
for greater recovery of the longitudinal magnetisation, or for more lines of k-space to
be acquired. With a larger echo train length, the imaging sequence becomes faster,
but effects due to T2 also become greater. Effects due to magnetisation transfer may
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also become visible, due to repeated saturation of the bound pool [24], which will be
covered in detail in chapter 2. Multiple excitation pulses may also lead to increased
tissue heating, which must be closely monitored when using a large echo train length.

Figure 1.4.5: RARE pulse sequence, displayed here with an echo train length of 4,
which creates 4 echoes and acquires 4 lines of k-space per TR. Each TR is represented
in a different colour on the phase encoding line, and in this example 16 lines of k-space
are acquired in total over 4 TRs.

While recent developments have seen the TR of RARE based sequences reduced
to 0.6s [25], EPI is capable of acquiring entire slices in just 50-100ms [26]. First
introduced by Mansfield in 1977 [16], EPI pushes temporal resolution high enough
that it makes techniques such as fMRI [27] possible. This is because the whole of
k-space is acquired within a singular RF pulse. Following excitation, the frequency
encoding gradient sweeps k-space in alternating directions, while the phase encoding
gradient is applied in short bursts of smaller magnitude as the frequency encoding
gradient changes direction. This leads to a rapid repeated refocusing and defocusing
of gradient echoes as k-space is traversed in a ’snakes and ladders’ type direction, as
shown in Figure 1.4.6.

Of course, imaging at this rate comes with drawbacks. B0 or B1 field inhomogeneities
can lead to severe phase accumulation as the image is acquired, resulting in noticeable
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Figure 1.4.6: Echo planar imaging a) pulse sequence, and b) traversal of k-space.
EPI requires only one 90◦ pulse to traverse the whole of k-space by utilising alternat-
ing positive and negative frequency encoding gradients, with blipped phase encoding
gradients between them, resulting in vastly reduced acquisition times compared to
previously discussed techniques. Slice select gradient not shown here.

image distortions. Fat signals can also be severely affected, as the phase variation
from chemical shift effects also accumulates during k-space acquisition. Finally, the
alternating direction of the frequency encoding gradient can lead to an artefact called
a Nyquist ghost [28], due to imperfections in gradient coils or timing errors. This
artefact appears as a duplicate overlaid image, shifted in the phase encoding direction
by half the image length and wrapped around, as illustrated in Figure 1.4.7.

This type of EPI is termed ’single-shot’, due to the fact that only a single RF pulse
is applied. We can also implement ’multi-shot’ EPI, which can reduce some of the
effects of phase accumulation [29]. Here the whole of k-space is sampled in one RF
excitation, but with slightly larger magnitude phase encoding gradients, which samples
k-space more quickly but at a lower resolution. A second RF pulse is then applied and
this process is repeated, but slightly shifted in the phase encoding direction. This is
repeated multiple times until k-space is fully sampled, as illustrated in Figure 1.4.8.
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Figure 1.4.7: Illustration of the Nyquist ghost artefact. The ’real’ sample is displayed
as the dark blue shape in the middle, and the lighter blue shapes are representative of
how the artefact may appear.

Figure 1.4.8: Multi-shot echo planar imaging a) pulse sequence, and b) traversal of k-
space. This technique utilises the principles of EPI but acquires k-space more sparsely
than standard EPI, over several TRs, which helps to reduce image distortions from
phase accumulation. Slice select gradient not shown here.
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1.4.7 B0 and B1 mapping

It is often important to acquire field maps for quantitative MRI, to identify regions
of inhomogeneity which lead to artefacts. In the context of this thesis, quantitative
MRI is defined as the case where meaningful physical metrics are obtained through
calculations performed on the pixel values in acquired images. As explained throughout
Chapter 2, this thesis focuses on estimation of physical and chemical properties such
as the size, exchange rate, and apparent T2 of exchanging proton pools, and therefore
all subsequent mentions of MRI can be classified as quantitative.

We can produce a map of the B0 field using a dual gradient echo sequence [30]. By
measuring the phase difference ∆φ(x, y, z) between two gradient echoes, shown in
Figure 1.4.9, we can find the local frequency shifts in the B0 field, as the local spatial
B0 field variation ∆Bz causes phase shifts dependent on the TE of the sequence and
the frequency variation in the field. Therefore the spatial phase variation can be used
to produce a map of B0 variation, as shown in equation 1.4.13.

∆Bz(x, y, z) =
∆φ(x, y, z)

γ∆TE
. (1.4.13)

One way to produce a true map of the B1 field is to acquire multiple images with
varied flip angles, and fit to a function M0 sin(cα) for each separate voxel in the
image, where c is a constant that describes the field variation. However, this requires
a long TR between each image to allow for full recovery of the magnetisation, and
as such is too long to be feasible in clinical scans. The most common method of
overcoming this is using a technique called Actual Flip angle Imaging (AFI) [31]. This
is a sequence consisting of two identical RF pulses, each with an identical flip angle,
α, each followed by a delay of times TR1 and TR2 respectively. The signals from
these, S1 and S2, are acquired via a gradient echo, as shown in Figure 1.4.10.

Instead of waiting for the longitudinal magnetisation to recover, the condition TR1 <

TR2 < T1 is met, and therefore the longitudinal magnetisation of the system is in
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Figure 1.4.9: Dual GE pulse sequence with flyback to produce a B0 map. Two
theoretically identical gradient echoes are acquired, and the phase difference between
the two is directly related to the inhomogeneities in the B0 field.

a pulsed steady state. Assuming transverse magnetisation is completely destroyed by
spoiler gradients after each TR, we can describe the magnetisation of the system via
a consecutive solution to the Bloch equations:

Mz,1 = M0
1− E2 + (1− E1)E2 cos(α)

1− E1E2 cos2(α)
(1.4.14)

Mz,2 = M0
1− E1 + (1− E2)E1 cos(α)

1− E1E2 cos2(α)
(1.4.15)

where E1.2 = e−TR1,2/T1 . The signals we acquire are dependent on the chosen TE,
and can be expressed as

S1,2 = Mz1,2e
−TE/T ∗2 sin(α) (1.4.16)

The ratio of these can therefore be expressed as

32



1.4. PRINCIPLES OF IMAGING

Figure 1.4.10: AFI pulse sequence to produce a B1 map.

r = S2/S1 =
1− E1 + (1− E2)E1 cos(α)

1− E2 + (1− E1)E2 cos(α)
(1.4.17)

Because TR1 and TR2 are sufficiently short, we can apply a first-order approximation
to the exponential terms, to give

r ≈ 1 + (TR2/TR1) cos(α)

(TR2/TR1) + cos(α)
(1.4.18)

and therefore the signal ratio can be used to measure the actual flip angle indepen-
dently of T1.

α ≈ cos−1(
r(TR2/TR1)− 1

TR2/TR1 − r
) (1.4.19)

This approximation holds for most practical applications, save for some cases with high
flip-angle and short T1, where the relationship described in equation 1.4.19 begins to
deviate. B1 maps are typically displayed as a relative flip angle (the measured flip
angle divided by the input flip angle).
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1.5 Summary

This chapter has described the fundamental principles underpinning NMR and MRI,
which are necessary to understand experiments involving magnetisation transfer (MT)
and chemical exchange saturation transfer (CEST) experiments. The theory behind
these particular processes will be detailed in the following chapter, which are then
explored further throughout this thesis.
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Chapter 2

MT, CEST, and NOE theory

First described by Grad and Byrant in 1990 [1], z-spectroscopy refers to the method
of probing the presence of molecules or compounds containing 1H groups through
selective saturation of frequencies off-resonance from water, and observing the result-
ing change in intensity of the water signal due to proton, molecular or magnetisation
exchange. This chapter will describe the three processes visible in z-spectroscopy,
namely magnetisation transfer (MT), chemical exchange saturation transfer (CEST),
and the nuclear Overhauser enhancement (NOE) effect, and will explore the possible
proposed ways of measuring these effects.

2.1 Physical basis of z-spectroscopy

The field of z-spectroscopy originates from NMR investigations into chemical exchange
in the 1950s and 1960s by McConnell [2] and Forsén and Hoffman [3] in which the
effects of exchange were modelled (explored here in section 2.2) and experimentally
visualised. These early experiments showed the separation of two proton pools, and
how these signals undergo increasing coalescence as the rate of exchange between the
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two proton pools increases relative to their chemical shift separation.

There are three main categories which describe the way the exchange of proton mag-
netisation exchange occurs in vivo. The first of these to be discovered was mag-
netisation transfer by Wolff and Balaban in 1989 [4], which accounts for exchange
between large soluble macromolecules and water. This was followed by the obser-
vation of chemical exchange saturation transfer by Ward and Balaban in 2000 [5],
which describes exchange between smaller molecules containing labile protons. The
third source of signal, nuclear Overhauser enhancement, is a little more complex. In
z-spectroscopy, this was first observed by Ling in 2008 [6], and arises from cross-
relaxation of nearby protons. It is thought that the NOE effect may be indicative of
the presence of aliphatic protons, which will be explored further in section 2.1.3.

2.1.1 Magnetisation Transfer

While conventional clinical MRI observes the properties of relatively unrestricted (’free’)
water protons, it is not the only source of the 1H MR signal. Macromolecules such
as large intracellular proteins or collagen have 1H components, and so contribute to
the NMR signal in some way. However, the protons in these macromolecules cannot
be imaged directly as they have highly restricted motion, and therefore very short T2

relaxation times («1ms), meaning that the signal dephases before it can be acquired
using MRI methods [7].

In addition to this, a few layers of water molecules close to the surface of a macro-
molecule undergo some degree of hydrogen bonding with the macromolecular sur-
face. This causes their motion to be restricted, and therefore these particular water
molecules also share a very short T2. We refer to these hydration layers as ’bound
water’, and due to their similarities with macromolecules, bound water and macro-
molecules are collectively known as the ’bound pool’. As shown in Figure 2.1.1,
bound water interfaces with free water, which is where the transfer of magnetisation
can occur.
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Figure 2.1.1: Illustration of the ’bound pool’ of protons, consisting of macromolecular
protons and bound water, and the ’free pool’ consisting of free, mobile water.

While free water has a narrow resonance frequency with a maximum range of 100Hz
at 7T, the bound pool lies across a very broad frequency range. If we take Figure 2.1.1
as a simplified example tissue, Figure 2.1.2 shows an illustration of how the acquired
1H MRS signal might look from this tissue with respect to frequency if all spins were
NMR visible. For simplicity, magnetisation transfer experiments define the resonance
frequency of free water as being at zero, and due to convention we display frequency
diagrams with positive frequencies on the left and negative frequencies on the right.
We use parts per million (ppm) as the measure of frequency offset here, as it gives
us independence from the B0 field strength used. This can be calculated in the same
way as chemical shift in equation 1.3.1, except here we take ωref to be the resonance
frequency of protons in free water. In practice, this makes interchanging between Hz
and ppm extremely simple, as we can divide the frequency offset in Hz by the Larmor
frequency of 1H nuclei at the relevant B0 in MHz, to yield the offset in ppm. For
example, at a B0 of 3T, an offset of +128Hz is equivalent to an offset of +1ppm.

While we are unable to image the bound pool directly, we can probe the presence
of macromolecules through selective saturation of the bound pool at particular off-
resonance frequencies, due to the magnetisation transfer (MT) effect. By saturating
a chosen frequency off-resonance from free water, we would stimulate only the bound
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Figure 2.1.2: Illustration of the signal components arising from the bound pool and
the free pool as a function of resonance frequency.

pool of protons. These protons then return to equilibrium, by transferring their mag-
netisation to free water, primarily through dipole-dipole interactions [8]. This in turn
saturates the free pool, which reduces the water signal. We can therefore measure
the water signal before and after a saturation pulse, and the ratio of the initial signal
(S0) to the final signal (Ssat) is dependent on the presence of macromolecules and
their properties.

2.1.2 Chemical Exchange Saturation Transfer

Other molecular components of tissue can also lead to suppression of the water signal,
which can give us a further level of chemical specificity. Labile protons are capable of
physically exchanging their protons with free water protons, and by saturating these
labile protons, we can observe a change in the water signal and determine the presence
and properties of certain molecular groups. This process is called chemical exchange
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saturation transfer (CEST), and molecules which contain labile protons are some-
times referred to as CEST agents, with resonating functional groups usually located
downfield of water (>0ppm) [5]. CEST agents can be exogenous or endogenous,
and the first endogenous CEST agent to be detected in vivo was the amide group
[9]. CEST contrast arising solely from amides is also sometimes referred to as amide
proton transfer (APT), and is the most widely used endogenous CEST agent due
to its relatively large CEST signal in vivo, and sufficient separation from free water
resonance (+3.5ppm). However, many other CEST agents have been detected in
vivo, such as glycogen which has a resonance between +0.5ppm and +1.5ppm [10],
glycosaminoglycans which have a dual resonance at +3.2 ppm and between +0.9ppm
and +1.9ppm [6], creatine which has a resonance at +1.8ppm [11], and others. Each
of these typically comes with an abbreviation to describe the molecular specificity of
the experiment, i.e. glycoCEST, gagCEST, and CrCEST respectively.

2.1.3 Nuclear Overhauser Enhancement

There is another mechanism through which the transfer of magnetisation can occur.
Only labile protons are exchangeable, and so signals we see upfield of water arise
from nuclear Overhauser enhancement (NOE), which is where energy is exchanged
between two spins which are relatively close (0.5nm) to each other. Exchange due to
NOE can occur via dipole-dipole cross relaxation, where non-labile protons exchange
their spin states with nearby free water protons, or through exchange relayed NOE
(sometimes referred to as rNOE), where non-labile protons exchange their spin states
with labile protons in that same molecule, which then exchange with free water via
the CEST mechanism [12, 13]. This can get more complex, as non-labile protons can
exchange their spin states with other nearby non-labile protons in a molecule, which
continues until exchange with a different labile proton occurs, in a process known as
spin diffusion. An illustration of NOE exchange mechanisms is shown in Figure 2.1.3.

The largest and therefore most commonly seen NOE signal in in vivo z-spectroscopy
has an off-resonance frequency of -3.5ppm, and is generally attributed to the presence
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Figure 2.1.3: Illustration of two NOE processes: a) relayed NOE through labile proton
groups (here the N atom could equally be an O or S atom), and b) cross-relaxation
between nearby protons directly from the bound pool to the free pool.

of aliphatic protons [14]. Recently however, several studies have observed a new NOE
mediated signal at -1.7ppm. One study observed this signal in ischaemic stroke tissue,
and hypothesised that it may be indicative of phospholipid choline headgroups [15].
Another study speculated that this signal may arise from the α-carbons of mobile
membrane proteins [14], and indeed this may be backed up by a study observing this
signal in concentrated red blood cells, which then disappeared when the blood cells
were lysed [16].

2.2 Modelling of exchange processes

We can model the evolution of magnetisation of a sample containing exchanging
pools using the Bloch-McConnell equations, which are the Bloch equations modified
for chemical exchange [2]. In the absence of exchanging pools, we can separate out
the time dependent Bloch equation into its constituent x-, y-, and z- components [17]
to give
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dMx

dt
= ∆ωMy(t)−

1

T2

Mx(t) (2.2.1)

dMy

dt
= −∆ωMx(t)−

1

T2

My(t) + ω1(t)Mz(t) (2.2.2)

dMz

dt
= −ω1My(t)−

1

T1

[Mz(t)−M0
z ] (2.2.3)

where ω1(t) = γB1(t), ∆ω = ω0 − ω, the offset frequency of the applied B1 field ω
with respect to the Larmor frequency ω0, and M0

z is the equilibrium magnetisation in
the z- direction without application of the B1 field.

We can convert equations 2.2.1-2.2.3 into a homogeneous linear differential equation,
to give

dM

dt
= A.M (2.2.4)

where

M =

[
Mx(t) My(t) Mz(t) 1

]T
(2.2.5)

in which T symbolises the matrix transpose, and

A =



− 1
T2

∆ω 0 0

−∆ω − 1
T2

ω1(t) 0

0 −ω1(t) − 1
T1

M0
z

T1

0 0 0 0


(2.2.6)
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We can solve equation 2.2.4 to give the general solution

M(t) = eAtM(0) (2.2.7)

which in practical terms is laborious to solve, as it involves the matrix exponential
term eAt, which requires calculation via a Maclaurin series (eAt =

∑∞
k=0

Aktk

k!
). The

most basic method of evaluating this expression is to perform repeated calculations for
varying k up to a sensible cutoff point where further summations become negligible
[18]. Further methods have been explored to speed up this calculation, for example
Mathematica [19] and MATLAB [20] both use a scaling and squaring algorithm [21, 22]
in which a matrix exponential eA = e2−sA ≈ rm(2−sA)2s , where s is a non-negative
integer chosen for computational efficiency, and rm is the Padé approximation of eA,
as defined elsewhere [23]. This mathematical framework is key when exchanging pools
are considered.

2.2.1 Example three pool model

In this section we can consider a simple model with three exchanging pools: free water
as considered in the preliminary example above (denoted f), the bound pool (denoted
b), and an arbitrary CEST pool (denoted with a subscript c). We can take equation
2.2.4 and redefine the terms for the presence of these exchanging pools, so that

M =

[
Mx,f (t) My,f (t) Mz,f (t) Mx,c(t) My,c(t) Mz,c(t) Mz,b(t)

]T
(2.2.8)

where we ignore the x- and y- components of the bound pool, as the T2 of the bound
pool (T2,b) is sufficiently short that transverse coherence is lost significantly before
exchange occurs [24], and
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A =



− 1
T2,f
−kfc ∆ωf 0 +kcf 0 0 0

−∆ωf − 1
T2,f
−kfc +ω1(t) 0 +kcf 0 0

0 −ω1(t) − 1
T1,f
−kfb−kfc 0 0 +kcf +kbf

+kfc 0 0 − 1
T2,c
−kcf −∆ωc 0 0

0 +kfc 0 +∆ωc − 1
T2,c
−kcf +ω1(t) 0

0 0 +kfc 0 −ω1(t) − 1
T1,c
−kcf 0

0 0 +kfb 0 0 0 − 1
T1,b
−Rrfb−kbf


(2.2.9)

where we assume the exchange between the bound pool and the CEST pool is neg-
ligible, which is appropriate when the size of the free pool is significantly larger than
the size of the other pools [25]. We define two new terms here. The first of which,
kxy, is the exchange rate, the rate of chemical exchange which occurs from pool x to
pool y, measured in Hz (number of exchanging protons per second). The second term,
Rrfb, is specific to the bound pool, and determines the MT lineshape with respect to
saturation frequency, which will be explored in greater depth in section 2.2.2.

We redefine equation 2.2.4 to account for the longitudinal relaxation of the exchanging
pools [25], so that

dM

dt
= A.M + C (2.2.10)

where

C =

[
0 0

M0,f

T1,f
0 0 M0,c

T1,c

M0,b

T1,b

]T
(2.2.11)

in which M0,x is the equilibrium magnetisation of pool x, commonly referred to as the
pool size. As previously stated, solutions to this equation are difficult to compute,
however there are certain cases where analytical solutions can be derived, which will
be described later in this chapter.
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2.2.2 The z-spectrum

In practical situations such as human tissue, there are far more than three exchanging
pools present. As well as free water and MT, there are many possible sources of
CEST signal as suggested above, and while two common NOE signals have been
seen, it has been theorised that up to 5 sources of the NOE signal may be present
[26], corresponding to the different types of aliphatic and olefinic protons. When we
saturate off-resonance frequencies and read out the water signal in order to visualise
the presence of exchanging pools, this can result in the signals from different pools
overlapping and coalescing. As described in section 2.1.1, off-resonance frequencies are
selectively saturated and the resulting water signal is acquired. We can plot the ratio
of the signal post-saturation to the initial signal (Ssat/S0) against saturation frequency
to yield the z-spectrum, where the reduction in water signal at particular off-resonance
frequencies is dependent in part on the presence and properties of exchanging pools.
An illustration of a z-spectrum is shown in Figure 2.1.1.

Figure 2.2.1: Illustration of the z-spectrum, showing three commonly seen peaks.

As well as being dependent on which exchanging pools are present, we can see from
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equation 2.2.10 and its terms that the shape of the z-spectrum is sensitive to a number
of parameters. The effects of varying some of these parameters are often difficult to
distinguish (namely pool size, exchange rate, and apparent T2 of exchanging pools),
as will be illustrated below, and indeed there is no analytical method to solve the
Bloch-McConnell equations for these physical parameters. Attempts have been made
to approximate these, which will be detailed in section 2.5, and a novel method of
quantifying these terms is presented in chapter 3.

To illustrate the effects of these parameters, a simple two pool model can be considered
containing one CEST peak with an off-resonance frequency at 3.5ppm, labelled here
as an amide peak. We can start by considering the effect of the CEST pool size (which
tells us the amount of CEST agent present) on the shape of the z-spectrum. The
relationship here is simple to understand: as the amount of CEST agent increases, the
more exchangeable protons that are present, and so at a fixed exchange rate and a
set saturation frequency, the CEST signal increases as the pool size increases. Figure
2.2.2 shows the relationship between pool size and the shape of the z-spectrum when
all other parameters are fixed. All simulations in this section are performed with a
field strength of 7T.

Figure 2.2.2: Effects of variation in the pool size of the measured pool of interest.
Other parameters are fixed at kc = 50Hz, T2,c = 50ms, B1,max = 1µT, pulse dura-
tion=3s.

The effects of varying the exchange rate of CEST pools are similar to that of varying
M0,c, but with several salient differences. It is important to note that in practice,
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the term kf,c is typically ignored, as exchange in this direction is considered negligible
due to the small CEST pool size compared to free water. Because we now only have
one exchange term associated with each exchanging pool, the shorter notation kc

can be used to denote kc,f . As expected, the initial effect of increasing kc is that
the CEST signal increases, as saturated CEST protons can exchange with the free
pool at a greater rate, leading to increased overall saturation of the water signal.
However, at very fast exchange rates, the CEST signal begins to coalesce with the
water signal [27]. The effects of coalescence can be diminished by using an increased
B0 field strength, which causes the difference in the resonance frequencies of free
water and the CEST pool in question to be farther apart. Changes in the shape of
the z-spectrum due to varying exchange rate when all other parameters are fixed are
illustrated in Figure 2.2.3. As well as being specific to the functional groups of the
molecules in question, the exchange rate also depends on temperature and pH. The
temperature dependence of the exchange rate is defined by the Arrhenius equation,
k = Ae

−Ea
kBT [28], where A is the frequency of collisions when all molecules are perfectly

aligned, Ea is the activation energy for the reaction, kB is the Boltzmann constant,
and T is the absolute temperature. It is also known that proton exchange is pH
sensitive [29]. The direction of this depends on whether the CEST agent in question
is acid-catalysed or base-catalysed. For example, amide protons are base-catalysed,
meaning that exchange rate increases at higher pH as there are more exchangeable
sites at higher alkalinity, however this relationship is not linear [30].

Transverse relaxation of the exchanging pools affects the shape of the z-spectrum in
a different way. As T2,c decreases, the rate at which phase coherence is lost increases.
This leads to broadening of the CEST peaks, with some reduction in the peak height
at very short T2,cs. Increases in the T2,c change the shape of the z-spectrum up to a
point, beyond which phase coherence is maintained to a sufficient degree to not cause
additional peak broadening. The effects of T2,c variation can be seen in Figure 2.2.4.

Changes to the RF power or the application time of the saturation pulse also changes
the shape of the z-spectrum. Considering a continuous-wave pulse to remove the time
dependency of ω1(t) so that B1,max = ω1/γ, we can choose our saturation power and
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Figure 2.2.3: Effects of variation in the exchange rate of the measured pool of inter-
est. Other parameters are fixed at M0,c = 1%, T2,c = 50ms, B1,max = 1µT, pulse
duration=3s. Signal increases up to a point at which coalescence with water begins.

Figure 2.2.4: Effects of variation in the apparent T2 of the measured pool of inter-
est. Other parameters are fixed at M0,c = 1%, kc = 50Hz, B1,max = 1µT, pulse
duration=3s.

duration to acquire a z-spectrum sensitive to certain desired effects. Faster exchanging
pools are more prominent at higher saturation powers, and so it may be appropriate
to apply a larger or smaller saturation pulse depending on the properties of the pool
of interest. The effects of modifying the saturation parameters are shown in Figure
2.2.5.

Because of the drastic effects that the RF power has on the shape of the spectrum, any
B1 inhomogeneity can be a severe confounding factor if not properly accounted for. As
the shape of the spectrum does not change linearly with increasing RF, unfortunately
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Figure 2.2.5: Effects of changing the parameters of the applied saturation pulse. Other
parameters are fixed at M0,c = 1%, kc = 50Hz, T2,c = 50ms. Pulse duration is fixed
at 3s for B1,max variation, B1,max is fixed at 1µT for pulse duration variation. As we
are in the slow exchanging regime, lower B1 amplitudes have a greater effect on the
CEST signal. In the pulse duration variation, we see an increase in signal up until the
steady state is reached, which will be detailed in section 2.3.1.

it is not possible to simply acquire a B1 map and correct in post processing. In
most cases, this means that RF shimming must be performed, although a method has
been proposed where multiple z-spectra are acquired at varying saturation powers in
addition to a B1 map to correct the acquired data for these effects. Spline interpolation
is performed between the spectra to determine the expected values at the target B1

[31].

The z-spectrum is also affected by B0 inhomogeneities. Deviations in the B0 field can
shift the entire spectrum on the frequency axis. This becomes increasingly problematic
if multiple spectra inside a region of interest have been averaged, but local field
distortions are present. There are several widely used methods of correcting z-spectra
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for B0 inhomogeneities. The first of these is to interpolate the z-spectrum around the
central water frequency using a high order (e.g. twelfth-order) polynomial. Ideally this
would be a low saturation power spectrum which provides a very sharp water peak. It
is assumed that the lowest point in the spectrum is the resonance frequency of free
water, and should be located at 0ppm. The whole z-spectrum is therefore shifted to
make this the case, and this is performed on the z-spectrum from each individual pixel
[32]. Another method involves acquisition of a B0 map in the same image space as
the z-spectra. The frequency offset in each of the pixels in the B0 map can be used
to shift the entire z-spectrum in each of the corresponding pixels to align pools to
their correct resonance frequencies, so that the water resonance frequency is aligned
with 0ppm [33]. An alternative method to these is to use "WAter Saturation Shift
Referencing" (WASSR) [34]. Here an additional z-spectrum is acquired only around
the water frequency with sufficiently low power for any MT or CEST exchange effects
to be negligible. The frequency offset between 0ppm and the point at which the
direct water saturation occurs is noted and further acquired z-spectra are shifted by
this frequency offset such that water saturation occurs at exactly 0ppm. This has
been shown to be accurate to 1Hz at 3T.

While it is appropriate to model CEST and NOE pools in the z-spectrum as Lorentzian
lineshapes [35], the shape of the MT pool is not so straightforward. It has been shown
that around the water resonance, using a Lorentzian lineshape is suitable [36], however
this breaks down far off resonance, and suggestions such as a Gaussian [37] or super-
Lorentzian [38] lineshape have been proposed. While the super-Lorentzian lineshape
is the most commonly used in MT modelling, it has been shown that none of these
lineshapes truly describe the model, and as such the most accurate way to define the
MT lineshape currently is to create a flexible lineshape derived empirically from real
data [38].
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2.3 Z-spectrum imaging sequences

As can be seen from Figure 2.2.5, CEST effects are generally visible not from a
single exchange between water protons and another species, but rather the build up
of water saturation over time through repeated exchange and saturation. Saturation
builds up for a certain amount of time, until the steady-state is reached, where the
buildup of saturation is in equilibrium with the longitudinal relaxation of the free water
pool, and as such the system is no longer time-dependent. However, due to practical
limitations the steady-state cannot always be reached, and imaging must be performed
in the transient-state [39]. We can modify the way saturation is applied and the way
the water signal is measured, depending on the experiment we wish to perform and
limitations of any hardware.

2.3.1 Saturation methods

Due to the many dependencies of the z-spectrum, the ideal way to measure any
effects is through applying a long square pulse, in order to allow the system to reach
the steady-state, and also to remove time dependency of the B1 term (so that B1(t) =

B1,max). When the RF pulse is constant (i.e. not time-dependent), we refer to the
saturation method as continuous wave (CW) saturation [40]. An illustration of the
pulse sequence used in the CW experiment is displayed in Figure 2.3.1. Note for the
moment the image encoding section is simply denoted by a block labelled "READ",
however this will be explored in the next section.

Figure 2.3.1: Pulse sequence diagram of CW saturation.
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Under CW saturation and in the condition of steady-state saturation, an analytical
solution for the Bloch-McConnell equations can be derived. In the z-spectrum, we
normalise the z- component of the magnetisation such that Z = Mz,f/M0,f . As has
been shown previously [41, 42], we can solve equation 2.2.10 for a two pool model in
the eigenspace of the matrix A, to give the steady state solution

Z(∆ω)ss =
cos2(θ).T1,ρ(∆ω)

T1,obs

(2.3.1)

where T1,ρ refers to the overall longitudinal relaxation time of the system in the rotating
frame, and θ is the angle between the applied resonance frequency and the frequency
of the pool of interest in the rotating frame (tan−1(ω1/∆ω)). We can define this as
a superposition of the relaxation times of each pool, so that

1

T1,ρ(∆ω)
= Reff (∆ω) +Rex,c(∆ω) (2.3.2)

where the term Reff (∆ω) describes the relaxation of free water in the rotating frame,
such that

Reff (∆ω) =
cos2(θ)

T1,f

+
sin2(θ)

T2,f

(2.3.3)

in which

cos2(θ) =
∆ω2

ω2
1 + ∆ω2

; sin2(θ) =
ω2

1

ω2
1 + ∆ω2

(2.3.4)

and for a Lorentzian lineshape, the exchange dependent relaxation can be defined by

Rex,c = M0,ckc
ω2

1

ω2
1 + kc(kc + 1/T2,c)

(2.3.5)
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We can extend equation 2.3.2 for as many pools of interest as we like [42], for example
in a four pool model containing MT, CEST, and NOE pools along with free water,
the overall longitudinal relaxation time would be defined as 1

T1,ρ(∆ω)
= Reff (∆ω) +

Rex,b(∆ω)+Rex,c(∆ω)+Rex,n(∆ω). This of course assumes the bound pool also has
a Lorentzian lineshape, however as previously discussed this may not be the case. An
analytical solution for the case where the bound pool is defined by a super-Lorentzian
lineshape has also be found; for reference this is detailed in [43], but is not implemented
in this thesis for reasons which will be explained in chapter 3.

While this analytical solution has been found through consideration of the steady state
only, we can extend this model to the transient state [42] to produce the expression

Z(∆ω, t) = (cos2(θ)− Z(∆ω)ss)e
−tsat
T1,ρ + Zss (2.3.6)

where Zss is the system in the steady-state condition, and tsat is the time that satu-
ration is applied for. This expression has been verified both against the full numerical
solutions and in phantom work with a saturation time as short as 0.4s [43].

Although CW saturation is ideal for CEST, many clinical scanners are not capable of
achieving a 100% duty cycle (percentage of time the RF amplifiers can be run). To
overcome this, the constant RF pulse is replaced with a series of repetitive short pulses.
This reintroduces the time dependency of the B1(t) term in the Bloch-McConnell
solutions, and so the solution presented above no longer applies. An example of
pulsed irradiation applied to the CEST experiment is presented in Figure 2.3.2.

Typically for pulsed irradiation, the shape of the pulses are either Gaussian [44] or trun-
cated sinc shaped [16]. Previous work has shown that the average power transmitted
by a saturation train of RF pulses produces similar effects to the RF power transmitted
via CW saturation [45]. While equation 2.3.6 no longer theoretically applies, it has
been shown that CEST effects between 0ppm to +4ppm and kc = 0− 500Hz under
pulsed irradiation are on average 97± 1% similar to those obtained from CW satura-
tion [46], so the CW solutions may be used as long as this uncertainty is accounted
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Figure 2.3.2: Pulse sequence diagram of pulsed irradiation.

for (although this may be unwise when fitting, as we have seen from the figures in
section 2.2.2, a small change in the shape of the spectrum can indicate a large change
in one or more of the variables).

Pulse sequences have been developed to try to overcome the limitations created by
caps on maximum allowed duty cycle. Previous work [47] has shown that by us-
ing a multi-transmit RF coil, we can simulate CW saturation by alternating short
square pulses on the odd and even channels of the coil. This approach is called semi-
continuous wave (semi-CW) saturation, and is implemented extensively in this thesis.
For an 8 channel system, we would first apply a square RF pulse on channels 1, 3, 5,
and 7, followed by a square RF pulse on channels 2, 4, 6, and 8. An illustration of
this pulse sequence is displayed in figure 2.3.3. As a result of this, any one channel
is only on for 50% of the time, therefore satisfying the duty cycle limits, but the
overall effect is a long saturation pulse with constant B1. In practice it is important
to acquire B1 maps to make sure the saturation power of the odd and even powers
is matched, as unequal saturation can lead to an unusually shaped saturation train,
perturbing the magnetisation from a steady-state and adversely affecting the shape of
the z-spectrum. A simulation of this effect is shown in Figure 2.3.4.
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Figure 2.3.3: Pulse sequence diagram of semi-CW saturation.

2.3.2 Readout techniques

The key feature when acquiring the z-spectrum signal is that readout techniques must
be relatively fast, so that the signal does not decay before being read, while being
robust. There are a number of options to choose from, depending on the experiment
in question. Generally speaking, EPI is the most appropriate readout method to
use in MT and CEST experiments, as only one RF pulse is used and therefore the
magnetisation is perturbed to a lesser degree than with other readout sequences.
However, other readout techniques have also been used for improved image quality.
Turbo spin echo has been used previously [48], which is fast and robust at lower fields,
but is severely affected by B1 inhomogeneities and rapid T2 decay at higher fields.
For 3D imaging, a technique called GRASE (GRadient And Spin Echo) has been
proposed [49], which implements TSE in the phase direction, and EPI in the slice
direction. These images are reliable and have high SNR, but are also strongly affected
by B1 inhomogeneity due to the additive effects of consecutive refocusing pulses.
TFE approaches have also been used due to the increased robustness of gradient
echo schemes at higher field strengths, and in particular a single-shot acquisition
acquiring k-space from the centre outwards has been shown to yield high SNR in a
short acquisition time at ultra-high field [50].
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Figure 2.3.4: Simulated effects of uneven RF through odd and even channels on a
sample with 10% MT, 2% amides, and 2% NOE. Ratios displayed are the ratio of the
saturation power through the odd channels to the saturation power through the even
channels, where 100% is equivalent to a pulse of 1µT.

2.4 Qualitative z-spectrum metrics

Due to the complexity of solving the Bloch-McConnell equations to determine the
parameters contributing to z-spectrum effects, it has become commonplace to instead
define metrics which indicate the presence of exchanging pools. These metrics all
make certain assumptions about the nature of the system, however can still be useful
depending on the nature of the experiment. These metrics range from the overly
simplistic to the reasonably reliable, depending on the nature of prior assumptions
made about the system.
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2.4.1 Magnetisation transfer ratio

The first of these metrics to be used was the magnetisation transfer ratio (MTR), first
described in the original paper where MT was introduced [4]. This technique relies on
only one acquisition off-resonance, and one where no saturating pre-pulse is applied,
and simply takes a normalised ratio of each of the images. We can then define the
MTR in a given voxel as

MTR =
S0 − SMT

S0

(2.4.1)

where SMT,0 is the signal in the voxel with or without the MT pre-pulse. This method
is analogous to only looking at one point in the z-spectrum. Conventionally this off-
resonance frequency is chosen to be +1kHz [51, 52] (roughly +16ppm at 1.5T, which
is far enough off-resonance to avoid CEST effects), however this can and should be
modified by the user depending on the experiment. For example, the first MTR images
were acquired at -5kHz using a B0 of 4.7T, reproduced below in Figure 2.4.1. Here
we can clearly see the MT effect present in the inner medulla of the rabbit kidney.

Figure 2.4.1: First MTR images, reproduced from [4], showing a) image acquired
without MT pre-pulse, b) image acquired with MT pre-pulse, and c) ratio of the two
images, of ex vivo rabbit kidney.

The main issue with acquiring an MTR image is that any MTR image collected
is purely qualitative and should primarily be used for diagnostic purposes. This is
because we only acquire one off-resonance image, the frequency, saturation time,
saturation power, and field strength of which are all defined by the user, and altering
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these will change the value of the MTR. It could be argued that MTR can be used
as a quantitative measure over the course of one experiment where these parameters
are all fixed, however we have recently shown that even directly consecutive repeat
measurements of MTR in the abdomen can result in wildly different output images,
due to the effects on B0 and B1 inhomogeneity arising from respiration and blood
pulsatility [53].

2.4.2 MTR asymmetry

While MTR can be sufficient to produce MT-weighted images, it cannot be used to
assess CEST effects. Instead, a method of quantifying CEST peaks was proposed
named magnetisation transfer ratio asymmetry (MTRasym) [9], where a point in
the z-spectrum is compared directly to its opposing point mirrored around the water
resonance. This can be expressed as

MTRasym =
Sref − Slab

S0

(2.4.2)

where Slab is the label frequency, i.e. the point in the z-spectrum at the peak of the
CEST effect we want to measure, and Sref is the reference frequency, i.e. the point at
the opposite side of the z-spectrum about 0ppm. For example, for amides resonating
at +3.5ppm, Slab is the value of the z-spectrum at +3.5ppm, and Sref is the value of
the z-spectrum at -3.5ppm.

There are however several issues with theMTRasym metric which prevent it from being
a reliable measure of CEST effects, beyond the experimental factors which affect MTR.
Most importantly, MTRasym assumes that there are no effects in the negative side of
the z-spectrum other than MT. However, we know that at higher field strengths NOE
signals begin to become apparent, which alters the signal at the reference frequency.
This is especially detrimental when using MTRasym to measure amides, as the most
prolific NOE effect is located directly opposite the resonance frequency of amide
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protons. In addition to this, MTRasym assumes that the only CEST effect present
at the label frequency is the one being measured. Coalescing CEST peaks can affect
the signal at the label frequency, causing an increase in this signal and therefore an
artificial inflation in the MTRasym measure. Finally, the MTRasym metric assumes
that the MT lineshape is symmetrical around the water resonance. However, it has
been shown that the MTR lineshape is not symmetrical around 0ppm, and peaks at
around -2.34ppm, which may be tissue dependent [54, 55]. Despite these obvious
shortcomings, MTRasym remains the most commonly used metric to measure CEST
effects (as seen in such examples as [56, 57, 58]) due to its simplicity.

2.4.3 Three-offset method

To address some of the issues with using the MTRasym metric to quantify CEST
effects, the three offset method was developed [59]. Here, two points either side of
the peak of interest are measured and averaged, and the third point is measured at
the peak of interest and subtracted from the averaged point. For example, the amide
signal could be measured using reference points at +3.0ppm and +4.0ppm. We could
then define the resulting signal (Z3OM) as

Z3OM = (
S3.0ppm − S4.0ppm

2
− S3.5ppm)/S0 (2.4.3)

We can see an illustration of this in Figure 2.4.2, which shows the three-offset method
applied to measurements of both the amide signal and the NOE signal.

While this metric overcomes the issues arising from both the inherent asymmetry of
the MT lineshape about 0ppm and the fact that there are often effects on both sides
of the z-spectrum, it does not address the fact that there may be coalescing peaks at
the point of interest. It also gives rise to additional problems, such as the assumption
that the underlying spectrum is linear, which it rarely is, and that there may be CEST
effects at either of the new reference frequencies, adversely affecting the measurement.
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Figure 2.4.2: Three-offset method applied to the APT signal at +3.5ppm and the
NOE signal at -3.5ppm.

2.4.4 Lorentzian fitting

To address some of the issues with the previously described metrics, a method of
quantifying the effects in the z-spectrum using Lorentzian line-fitting was introduced
[35]. First demonstrated using a three pool model, this method fits Lorentzian line-
shapes with variable height and width to the spectrum, summed inversely as described
in section 2.3.1. The resulting height and width of each Lorentzian is indicative of
the properties of each pool. Typically the height of the Lorentzian is taken to be a
measure of the effect in question. This model can be extended for as many pools of
interest as desired, and has recently been seen in a six pool model used to investigate
glioma [60]. An illustration of Lorentzian fitting is presented in Figure 2.4.3.

While this metric solves many of the issues associated with MTRasym and the three-
offset method, it includes a few key assumptions. Firstly it assumes that all peaks
are known and fitted for, which may lead to artificial Lorentzian broadening if this
is not the case. Also, while the MT lineshape can be modelled with a Gaussian or
super-Lorentzian using this method, the assumption that any of these are correct may
not be accurate.
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Figure 2.4.3: Illustration of underlying Lorentzian lineshapes which can be fitted to the
acquired z-spectrum. 8 pools are displayed in this example for illustrative purposes.

2.4.5 Apparent exchange-dependent relaxation,

AREX

As an alternative to potentially computationally heavy Lorentzian fitting, a simpler
metric termed apparent exchange-dependent relaxation (AREX) has been proposed
[43]. This compares the inverse of the signals at the label and reference frequency
and normalises by the T1 of free water. The AREX metric is defined as

AREX = (
1

Zlab
− 1

Zref
)/T1,f . (2.4.4)

Here the term Zlab is again the point at the peak of interest, but the Zref term is
less clearly defined. The first AREX studies used the same Zref value as defined
by the three-offset method defined above [42], however later studies first performed
Lorentzian fitting, obtaining the Zref term by recreating the spectrum through sum-
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mation of the fitted Lorentzians while omitting the Lorentzian assigned to the peak of
interest [43]. By taking the inverse difference, the metric is free of T2,f contributions,
and by normalising using the T1 of free water, also free of T1,f contributions. AREX
is therefore free of adverse effects arising from the coalescence of the peak of interest
with free water. The AREX metric breaks down around the water frequency however,
as the 1

Zlab
and 1

Zref
terms approach infinity, and so is less suitable for the measure-

ment of CEST and NOE pools close to water, such as the CEST signal from hydroxyl
groups. The assumption that all peaks are known and accounted for remains, leading
to the possibility that hidden coalescing peaks may affect the AREX metric. AREX
is a widely used method of quantifying CEST effects in recent years, being used to
explore glioma [61], proteins [62], and the exploration of unknown peaks [63].

2.5 Exchange rate quantification

While some of the measures described in section 2.4 can be suitable for measuring
effects in the z-spectrum, they are all metrics and do not truly explore full quantifica-
tion of the z-spectrum. It is impossible to determine the pool size or exchange rate
from these metrics alone. There have however been several suggested methods which
could be capable of doing this given that certain assumptions hold true. Many of
these are based on simulation of the Bloch-McConnell equations, and fitting exper-
imental data to resulting z-spectra using a least squares methodology [64], however
as discussed it is both mathematically difficult and computationally expensive to find
accurate solutions based on standard model fitting alone.

2.5.1 QUESP and QUEST

First detailed in 2006 [65] and amended in 2018 [66], quantifying exchange using satu-
ration time (QUEST) and quantifying exchange using saturation power (QUESP) are
similar methods capable of quantifying the exchange rates and pool sizes of exchang-
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ing pools in the z-spectrum. These methods measure several MTRasym values (later
amended to AREX) using varying saturation times or powers respectively. Assuming a
Lorentzian lineshape for the pool of interest and that the system is in the steady-state,
we can express the AREX metric as

AREX = M0,x.kx.
ω2

1

ω2
1 + k2

x

(2.5.1)

where the subscript x here denotes the exchanging pool of interest. By varying the
saturation power, the ω1 term is affected. As this term is dependent on saturation
power, we can vary this and therefore determine kx and subsequently M0,x using
equation 2.5.1. This is the QUESP method, and holds when the system is in the
steady-state and when spillover from other pools is assumed to be minimal. For this
to occur, the effect of interest must be as pronounced as possible, which occurs when
B1 = kx/γ. As kx is initially unknown, some guesswork must be applied here, and
incorrect guesses can result in completely incorrect fitted exchange rate values. It is
also worth noting that because of this, different pools in a sample tissue may require
separate experiments to accurately quantify, despite their effects being visible in the
z-spectrum.

QUEST fitting holds further issues, as the equation used for fitting cannot separate
the pool size and exchange rate. QUEST can therefore only be considered a fully
quantitative method if the concentration of the pool of interest is known and can be
used as an input.

2.5.2 Look-up table

An alternative proposed method of quantifying the z-spectrum is the look-up table
(LUT) [67], which is capable of fitting multiple exchanging pools simultaneously. This
method uses the full form of the Bloch-McConnell equations as described in equation
2.2.7 to simulate a dictionary of sample spectra based on feasible values. The study
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in question fitted human brain tissue in vivo to a dictionary of spectra created using
a four pool model including free water, MT, amides and NOE. Eight values of pool
size were used for each exchanging pool, and 5 T1,f values were included. Six possible
values for B1 scaling were also included, to account for field inhomogeneities using
acquisition. Interestingly the exchange rates and apparent T2s of the exchanging
pools had only one simulated value, presumably as including a range of these would
have taken dictionary creation to an unreasonably long time (this dictionary took two
weeks to fully simulate). Acquired spectra were fitted to the look-up table using a sum
of least squares method, and the values from the dictionary spectrum most closely
matching the data were taken.

The data from this study has been explored further in this thesis through means of
interpolation of the look-up table. The aim of this was to improve the accuracy of
the LUT without having to simulate a more detailed dictionary. Once the data was
fitted, the dictionary spectrum and its four closest neighbours in every direction and
dimension were taken. This took a smaller portion of the LUT centred around the
selected dictionary spectrum, the dimensions of which were 5x5x5x5x5, each represent-
ing M0,b, M0,c, M0,n, T1,f , and B1 scaling factor. This segment was then interpolated
in all directions simultaneously using MATLAB’s interpn function [20] to create a
65x65x65x65x65 matrix. The original data was then refit to this interpolated LUT to
gain a more accurate measure of the exchanging pool sizes. A comparison of the data
fitted to the pre- and post- interpolated LUT is displayed in Figure 2.5.1.

Interpolating the LUT can yield significantly more accurate results, however it does
not address the fundamental issue with the LUT, namely the extraordinarily long
computation time required to create the LUT. If we wanted to extend the LUT to be
a truly quantitative measure, we would also have to extend the model to incorporate
possible values for exchange rates and T2s of exchanging pools, as well as considering
increasing the number of fitted pools for complex tissues. The LUT is also dependent
on the properties of the exchanging pools falling within the simulated values in the
LUT, as it cannot fit for a property which lies outside the bounds of the dictionary.
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Figure 2.5.1: Maps of exchanging pool sizes, fitted with a) the LUT, and b) the
interpolated LUT. Note significantly smoother contrast variation in the interpolated
LUT images, indicating that interpolation has yielded meaningful results.
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2.5.3 Bayesian fitting

Alternatively a Bayesian method has been suggested to quantify the parameters of
exchanging pools in the z-spectrum [68]. This method begins by taking initial as-
sumptions of all values to be fitted based on the system in question, here termed
Bayesian priors, and then works towards the solution. Using the full form of the
Bloch-McConnell equations as described in equation 2.2.7 as the model, the data can
be described as a probability distribution which takes into account the parameters fed
into the model:

Pr(S|θ) =
1

σ
√

2π
e−

[S−f(θ)]2

2σ2 (2.5.2)

where Pr(S|θ) is the probability distribution of the data given the input parameters
θ, f is the model with parameters θ, S is the measured signal, S = f(θ) + e1 (here
e1 is a random noise component), and σ is the standard deviation of the white noise.

This can be inverted to give the probability of the parameters given the data, Pr(θ|S),
via Bayes theorem:

Pr(θ|S) ∝ Pr(S|θ).P r(θ) (2.5.3)

where Pr(θ) is the previous distribution of the input parameters. By aiming to max-
imise this value, an iterative process can yield the parameters most likely to give rise
to the data, through essentially updating our prior assumptions to take account of the
given data.

While this method drastically reduces computation time compared to the LUT method
(assuming the experiment in question is a new experiment and a new LUT is needed),
it relies on the Bayesian priors to initialise the system. If these prior assumptions about
the system are incorrect, it may bias the results towards a local minimum, and it is
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possible that the correct solution may not be found. The Bayesian fitting method also
once again assumes that all pools of interest are known and accounted for.

2.5.4 Deep learning

It is possible that a potential solution to some of these assumptions could be found
through the use of deep learning. In theory, we could train a neural network to analyse
z-spectra based on the Bloch-McConnell equations, and identify how the shape of the
spectrum is affected by the parameters of exchanging pools. Once sufficiently trained,
the network may be able to identify pool sizes and exchange rates of exchanging pools
simply by ’looking’ at the data. This could be virtually instantaneous once the network
is trained.

It is possible that neural networks could go beyond this, and use z-spectra for direct
diagnostic purposes. Instead of our output being the parameters of exchanging pools
present in the z-spectrum, we could instead train a neural network to classify z-spectra,
so that the output is tissue type. In theory this could be used for tumour grading after
initial identification, as the APT signal in gliomas has been shown to increase with
increased grade [69]. However, this would have to be incredibly accurate to be used
clinically, as the possibility of a false diagnosis has the potential to be extremely
detrimental.

2.6 Summary

We can use MRI to create image contrast dependent on the presence of certain
molecules containing 1H groups. These groups produce effects which are visible in
the z-spectrum, and the nature of these effects depends on the physical properties of
these groups in the sample of interest. However, characterising these properties is not
trivial, and so metrics are commonly employed to characterise these effects. Methods
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of quantification have been proposed, but all make assumptions about the system.
The next chapter will utilise the look-up table to quantify MT and NOE data in a
large sample of subjects in order to assess the effects of normal ageing on myelination
levels, and chapter 4 will introduce a new method of z-spectrum quantification, which
makes fewer assumptions about the system than any of the methods described above.
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Chapter 3

Using MT to measure myelination
evolution through adulthood

Myelin is an important substance found in the brain comprising of water, lipids, and
proteins which envelops the axons of nerve cells, allowing for faster transmission of
electrical signals [1]. Throughout life, several processes give rise to variation in the
amount of myelin present in the human cortex. These can be categorised as myelina-
tion, which describes the process of myelin generation [2], demyelination, describing
the loss of myelination which can be indicative of neurodegenerative diseases [3], and
dysmyelination, which describes where the structure of the myelin sheath has become
defective through damage [4]. The nature of ’healthy’ demyelination in later life has
been observed in T1 weighted MR studies [5] but is not fully understood. Further-
more, it has been shown that the magnetisation transfer signal is an effective way of
assessing myelination due to its macromolecule-rich structure [6, 7], and may provide
advantages over T1 weighted measures of myelin water, as the quantitative MT signal
is not affected by cortical iron content [8]. This chapter aims to explore the evolution
of myelination in the healthy ageing human brain using MT measured at 7T, to assess
whether the demyelination observed in later life is linked to natural thinning of the
cerebral cortex, and finally to assess whether the NOE signal provides any additional
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information when used as a marker for myelination.

3.1 Myelination measurement using MR
techniques

Ex vivo microscopy is the gold standard for assessing myelination, but MRI is currently
the only viable way to image or measure myelin in the human brain in vivo. However,
there are several MR techniques capable of generating signals sensitive to myelin.
Previous studies have measured myelin via the T1 weighted measurement of myelin
water, the ratio of T1 weighted and T2 weighted images, and various MT metrics.
Each of these has differing advantages and pitfalls.

3.1.1 Myelin structure and function

As alluded to previously, myelin is a white substance comprised of 40% water, between
36% to 45% lipids, and between 9% to 15% proteins [1]. Myelin surrounds the axon
of the nerve cell in several segments, which is referred to as a myelin sheath. Each
segment of the myelin sheath is around 500µm in length and is separated from the
adjacent segment by a 1µm gap, which are termed nodes of Ranvier. An illustration
of a nerve cell is displayed in Figure 3.1.1.

Myelin serves to increase the speed at which electrical impulses travel along an axon
through saltatory conduction [9]. Here electrical signals can propagate from one node
of Ranvier to the next without degradation of the signal, through formation of action
potentials. As sodium ions reach a node, an electrical force pushes the ions inside the
axon, which reach the next node and create another action potential, and the process
repeats. This means that the electrical signal can effectively jump from one node of
Ranvier to the next, without having to physically traverse the entire axon. A heavily
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Figure 3.1.1: Illustration of a nerve cell.

myelinated axon can reach a propagation speed of 150ms−1, as opposed to 0.5ms−1

in a completely unmyelinated axon.

3.1.2 Myelination studies employing measurements

of myelin water

When considering how to image myelin water, there are three basic approaches to
generate MRI contrast: proton density which is proportional to water content, and T1

and T2 weighted imaging which are both affected by water content, water mobility,
iron content, macromolecular content and the microstructure of nearby tissues. As
a large percentage of the brain is water, proton density imaging generates relatively
little image contrast between myelin and other cerebral tissue.

Myelin water is restricted in its motion between myelin bilayers, which are wrapped
around the axon in a ’swiss roll’ configuration. These bilayers have a 3-4nm gap
between them which myelin water occupies [10], and as such it has a significantly
shorter T2 (10-20ms at 1.5T) than intracellular or extracellular water (80-100ms at
1.5T) [11, 12]. By employing a multi-echo spin echo sequence, the resulting signal
decay curve can be decomposed into a number of exponentials to give a histogram
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of the T2 components present [12]. The short T2 components can be divided by the
total signal in the relaxation distribution histogram to give a quantitative myelin water
fraction image. This is arguably the most common method of myelin imaging [13, 14].
A similar method can be used to extract the short T1 component from cerebral white
matter, revealing a short T1 peak of 106-225ms at 3T and 7T [15].

However, these methods do have some drawbacks. T2 relaxation is affected by cortical
iron content, [16], paramagnetic deoxyhaemoglobin [17] and tissue calcifications [18],
and the multi-echo spin echo sequences required can be strongly affected by B0 and
B1 field inhomogeneities, while T1 is also affected by cortical iron content, as well as
being sensitive to temperature [19], axonal count [20] and axon size [21].

3.1.3 Myelin measurements via T1 / T2 ratio

As pixel intensity is proportional to myelin content on T1 weighted images and inversely
proportional to myelin content on T2 weighted images, the ratio of T1 / T2 weighted
images can be considered indicative of myelin water content [22, 23] with a greater
contrast than T1 or T2 weighted images alone.

Several recent studies, however, have questioned the reliability of using the ratio of
T1 / T2 weighted images as a proxy for myelin content. One study [24] observed that
the T1 / T2 weighted images had a stronger correlation with multi-echo T2 weighted
images (thought to be more representative of axon length and diameter than myelin
content [25]) than their myelin water fraction images in four of their selected white
matter ROIs, and speculate that a ratio image may reflect packing density of the axons
rather than myelin content, based on the ROIs which had a higher signal intensity,
and could also be affected by inflammation. Another study did not find any significant
correlations between the ratio images and myelin water fraction maps in white matter
and concluded that the contrast generated should only be taken to be a generalised
measure of tissue microstructure [26].
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3.1.4 MT as a marker for myelination

The proteins and lipids which compose the dry matter of myelin are macromolecules
which are sensitive to the MT effect. Exchange between free water and these bound
protons (and bound myelin water) produces an MT signal indicative of myelin content
[27]. MTR imaging has been used frequently due to its speed and simplicity above
other MT measures [28, 29, 30], and has been shown to correlate with myelin content.
However, as discussed in Chapter 2, MTR is an imperfect measure of the MT signal
due to its dependency on a great many other variables [31]. Of particular interest in
myelin imaging is the dependency of MTR on the T1 of the sample. As T1 shortens with
increased myelin content [32], the MTR signal which increases with myelin content is
reduced due to the shorter T1 of the sample, and furthermore this means that MTR
suffers from the same drawbacks as myelin water imaging in that it is sensitive to
cortical iron content and axon count.

The answer to this issue is to use a measure of the MT pool size which is not affected by
the T1 and T2 of the surrounding free water (or indeed any underlying NOE effects)
in the sample. This has been explored in several studies, in both non-human and
post-mortem human subjects using a two-pool model and least-squares fitting [33,
34, 35], however is not commonly used, presumably due to the increased complexity
of quantitative MT measurements in vivo compared to MTR imaging.

3.1.5 Myelination as measured in healthy ageing

Despite advances in imaging myelin in vivo, the research into age related variations
in myelination levels is relatively sparse. In the early 20th century, studies in post-
mortem subjects revealed age related differences in cortical myelination [36], albeit
on a small number of subjects. This was confirmed elsewhere in studies which also
provided insights into related topology [37, 2, 38, 39]. The first human in vivo study
in MRI which was indicative of age-related trends in myelination was the work by
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Cho et al. in 1997, [5]. This study did not set out to measure myelin directly,
and focused on identifying age-related changes in T1 across the brain. The authors
observed a quadratic trend with age, with the shortest T1 values occurring around age
60, and suggested that this change may be as a result of changing myelination, but
acknowledging that it could also be indicative of other factors such as membrane lipid
content, cortical volume, and cortical iron content.

A more recent study advancing on this work showed that the T1 in white matter
fascicles had a parabolic trend with age, and that the T1 measurements correlated
with macromolecule tissue volume [40]. The work of Bartzokis et al. [41] has also
shown age-related changes in both T2 and diffusion in white matter, reported to follow
a nonlinear "quadratic-like" trend. Other studies have reported similar findings, with
one study fitting a "U-shaped smoothed spline" to the T1 / T2 ratio in selected cortical
ROIs with age [42] and another reporting linear correlations of T1 and T ∗2 with age,
but not exploring the possibility of non-linear trends [43].

Based on this, the aim of this chapter was to use the quantitative measure of MT
pool size as a marker for myelination, and acquire data from subjects at a range
of ages to observe trends in myelination with ageing in both grey matter and white
matter ROIs. The NOE signal was also tested as a potential marker for myelination,
as previous work has shown that the MT pool size and the NOE pool size are coupled
in the human brain [44]. The cortical thickness of each subject was also measured
in order to investigate whether the widely observed trend of cortical decline with age
[45, 46, 47, 48, 49] drives the decline in myelination in later life as observed by some
of the previous work in the field.

3.2 Data collection

Ethical approval for the study was granted by the University of Nottingham Medical
School Research Ethics Committee. Recruitment consisted of an online screening
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form to assess health and lifestyle, and subjects were excluded from the study if
they had present mental illness or diagnosis of mental illness within five years, any
history of neurological disorder, or family history of highly heritable mental illness
(such as schizophrenia or Huntington’s Chorea). The original intention was to recruit
individuals with no history of mental illness, however it quickly became clear that this
was not feasible due to the high proportion of individuals who have, at some point,
been diagnosed with a mental illness. Participants were also excluded if they were
taking any current prescription medication that crosses the blood-brain barrier, had
taken any non-prescription medication within the last year (including ‘legal highs’),
had consumed alcohol on the scanning day or reported excessive consumption 24
hours before scanning day, and if there were any MRI or MEG contraindications. The
screening form also included the Edinburgh Handedness Inventory [50] to assess left or
right hand dominance. A total of 81 participants were initially recruited, and of these
58 (aged 19 to 62 years old; 27 male; 52 right-handed) were suitable for use in the
study. The data used in this study forms part of a larger dataset which was initially
collected for a previously published study which compares magnetoencephalography
and 7T MRI [51].

3.2.1 Acquisition methods

Subjects were scanned using a Philips 7T Achieva system using a whole-head volume
transmit coil and a 32-channel receive coil. A high resolution anatomical image was
acquired using the Phase Sensitive Inversion Recovery sequence [52], with field of view
= 240 x 216 x 160 mm3, 0.8mm isotropic voxels, TI1/TI2 = 780ms/1600ms, which
was collected in order to be able to accurately define grey matter and white matter
regions.

Z-spectra were then acquired using the MT-TFE sequence [53], which employs pulsed
saturation and a 3D TFE readout. The saturation train consisted of 20 Gaussian
windowed sinc pulses with a bandwidth of 200Hz, each 30ms long with a shot to shot
interval of 60ms to satisfy the condition of a maximum 50% duty cycle built into
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the scanning software. Off-resonance saturation was applied at 17 frequency offsets in
turn at 0ppm, ±1.0ppm, -2.3ppm, +2.5ppm, ±3ppm, ±3.5ppm, ±4.0ppm, +4.5ppm,
-4.7ppm, ±6.7ppm, ±16.7ppm and +167ppm, with the final far off-resonance acquisi-
tion being used to normalise the z-spectra. This was repeated for three nominal B1,rms

values of 0.33µT, 0.65µT, and 1.09µT to create three z-spectra, in order to provide
additional sensitivity to effects which may be more prevalent at higher or lower satu-
ration powers [54]. For the readout portion of the sequence, a volume acquisition was
used, with a readout train of 410 gradient echoes, TE/TR/FA = 2.7 ms/5.8 ms/8◦,
field of view = 192 x 192 x 60 mm3, 1.5mm isotropic image resolution, low-high
k-space acquisition, and a SENSE factor (RL) of 2. Each z-spectrum was acquired in
8 minutes, resulting in a 24 minute total acquisition time for the three spectra.

A B0 field map was also acquired for z-spectrum correction, along with a B1 field map
and a T1 map, resulting in a total scan time of approximately 38 minutes for each
participant.

3.2.2 Post-processing and MT quantification

The three sets of z-spectral images were motion corrected using FSL’s [55] mcFLIRT
function, and registered to a high contrast to noise ratio image created by averaging
all the z-spectral images acquired at the highest B1 saturation value. Each pixel in
the coupled z-spectral images was then fitted simultaneously to a look-up table of
z-spectra simulated using a four-pool model, by calculating the total sum-of-squares
error between the three acquired spectra and the three spectra simulated for the
same ratio of actual saturation powers and same actual readout pulse amplitudes, as
described in Geades et al. [54]. A table of parameters used to create the look-up table
is presented in Table 5.2.1. As a result of this fitting, MT and NOE pool size maps
were created, which were free from contamination from each other, CEST effects, or
T1.

The PSIR images were used to create a grey matter mask and a white matter mask
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Pool Pool size,
M0 (%)

Exchange
rate with free
water (Hz)

T2 (ms) T1s Chemical
shift (ppm)

Free
water

- - 40 Five values
(1, 1.2, 1.6,
2, and 3)

0

Bound
pool

Eight values
(0.1, 1, 2, 5,
8, 10, 12, and
15)

50 0.009 1 -2.4

NOE
pool

Eight values
(0.1, 1, 2, 5,
8, 10, 12, and
15)

10 0.3 1 -3.5

Amide
pool

Eight values
(0.1, 1, 2, 5,
8, 10, 12, and
15)

200 10 1 +3.5

Table 3.2.1: Parameters of each pool in simulated look-up table. Saturation and
imaging pulses were also scaled in the look-up table to simulate B1 inhomogeneity, by
30%, 60%, 80%, 100%, 120%, and 150%. MT is modelled using a super-Lorentzian
lineshape.

using the boundary detection tool in FreeSurfer v5.3.0 [56, 57]. If a voxel lay on the
boundary between the grey and white matter, it was excluded, ensuring that there was
no overlap between the two masks. These were then thresholded at a high probability
value, resulting in a highly conservative grey matter mask that minimises any partial
volume effects which might arise due to the lower resolution of the z-spectral images
(and therefore also the MT and NOE maps).

The MT maps were registered to the PSIR images using FSL FLIRT and masked with
the conservative GM or WM mask. The grey matter masked MT and NOE maps were
then registered to the automated anatomical labelling (AAL) atlas [58], and the white
matter masked maps were registered to the underlying sub-cortical regions of each
ROI of the AAL atlas. A mean MT and NOE measure was calculated for each region,
for each participant, creating 78 grey matter values and 78 white matter values of MT
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and NOE per person for each person. 14 regions of the brain (primarily located at the
base of the brain) were excluded due to limited field of view or poor B1 shimming in
these areas, displayed in Figure 3.2.1.

Figure 3.2.1: Regions excluded from analysis (regions 1, 2, 24, 28, 32, 34, 35, 40, 63,
67, 71, 72, 73, 74 of the cortical AAL atlas) highlighted in red.

Finally the high resolution PSIR images were registered to the AAL atlas, and the
mean cortical thickness was calculated for each region within the AAL atlas for each
participant using FreeSurfer.

3.3 MT variation with age

Variation of the MT signal with age was analysed across the cortex using both a linear
and a quadratic model in grey and white matter separately, firstly as an average across
all of the 64 used ROIs, then in four defined ROIs corresponding to the four lobes
of the brain, and finally individually for each ROI of the AAL atlas. A p-value for
both the linear and quadratic model was calculated, and an F -test was performed to
determine whether the quadratic fit described the data significantly better than the
linear fit, by comparing the R2 of each fit considering the additional degree of freedom
gained with a quadratic model to find the F statistic. We can express this using the
equation

F =
dofQ(R2

Q −R2
L)

1−R2
Q

(3.3.1)
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where dofQ is the number of degrees of freedom in the quadratic fit, and R2
Q,L are

the R2 values for the quadratic and linear models respectively. The F statistic is then
compared to an F distribution table [59]. The relevant value is located in the table
under a numerator of 2 and a denominator of dofQ. In this chapter an α = 0.05

cutoff was used for determining significance.

3.3.1 Variation in trends across cortex

All grey matter and all white matter ROIs were averaged to create an average value
of MT in grey matter and white matter for each subject. These proved to both have
a significant quadratic trend with age, as shown in Figure 3.3.1.

Figure 3.3.1: Quadratic variation of average grey matter and white matter MT with
age, with 95% confidence intervals displayed as dotted lines.

The AAL regions lying solely in each of the frontal, parietal, occipital and temporal
lobes were then averaged for each subject in both the grey and white matter. The
quadratic trend with age is displayed for each of these in Figure 3.3.2. All of these
trends were significant barring the white matter in the temporal lobe.

The statistics associated with these trends, including the results of the F -tests, are
presented in Table 5.3.1. All significant quadratic trends were also significantly better

90



3.3. MT VARIATION WITH AGE

Figure 3.3.2: Quadratic variation of a) grey matter, and b) white matter MT with
age in each of the four lobes of the brain, with 95% confidence intervals displayed as
dotted lines.

than the linear model.

A quadratic fit was then applied to each of the 64 grey matter and 64 white matter AAL
regions used in this study. Figure 3.3.3 shows the quadratic coefficient in each AAL
region, which is indicative of the rate of myelination and subsequent demyelination
(i.e. the ’steepness’ of the quadratic curve).

The white matter and grey matter regions were then compared by pairing up each
grey matter AAL region with its corresponding white matter AAL region. The MT
values for each of these regions were averaged across all subjects to create an average
MT value for each AAL region. A linear regression was performed between the grey
matter MT values and corresponding white matter MT values to explore the regional
relationship between grey and white matter myelination. The results of this analysis
are displayed in Figure 3.3.4. The MT signal in each grey matter AAL region is
strongly correlated with MT in each corresponding underlying white matter AAL region
(R2=0.384, p<.0001).

91



3.3. MT VARIATION WITH AGE

Quadratic coefficient
(MT%2 / year)
± 95% confidence
intervals

Age of
peak MT
(years)

p-value of
quadratic
trend vs.
null
hypothesis

p-value from
F -test on
quadratic
model
compared to
linear model

Grey
matter

Global -0.0014 ± 0.0003 42.9 0.00002 * 0.000005 *

Frontal -0.0016 ± 0.0004 41.9 0.0008 * 0.0005 *

Parietal -0.0014 ± 0.0004 40.6 0.0009 * 0.0007 *

Occipital -0.0011 ± 0.0004 45.8 0.0074 * 0.0023 *

Temporal -0.0017 ± 0.0007 45.2 0.0115 * 0.0044 *

White
matter

Global -0.0023 ± 0.0005 41.7 0.0001 * 0.000001 *

Frontal -0.0026 ± 0.0008 41.3 0.0011 * 0.0008 *

Parietal -0.0020 ± 0.0006 41.1 0.0025 * 0.0019 *

Occipital -0.0024 ± 0.0007 43.8 0.0005 * 0.0002 *

Temporal -0.0015 ± 0.0009 44.6 0.0847 0.0546

Table 3.3.1: Coefficients and significance of the quadratic model applied to changes
in measured MT with ageing in each cerebral ROI. Significant trend (p<0.05) denoted
by ’*’.

3.3.2 Local variation of MT in cortical lobes

The nature of how the variation of MT across the brain changes with age was then
assessed. Each AAL region is comprised of a number of voxels, each with an MT mea-
surement associated with them, and so a standard deviation value can be calculated
from the spread of measurements within each of the four defined ROIs, and across
the whole of the grey or white matter. These standard deviation values were plotted
against age and both a linear and a quadratic fit was applied. The results of these fits
are displayed in Figure 3.3.5. The regional standard deviation of the MT increased
linearly with age in grey matter, with p<0.001 in all ROIs except for the temporal
lobes (p=0.006). There was no change in the standard deviation (p>0.05) of MT in
the white matter ROIs with respect to age.
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Figure 3.3.3: Quadratic coefficient of MT with age in each AAL region, showing how
drastic the changes in myelination are across the brain. The white matter regions
are mapped onto their corresponding overlying cortical regions for ease of viewing.
Regions without a significantly non-zero quadratic trend are left grey.

Figure 3.3.4: Correlation between grey matter and white matter MT averaged across
individuals for each AAL region.
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Figure 3.3.5: Age related variations in the standard deviation of MT measurements
in both grey and white matter.

3.3.3 Investigating T1 relationship with MT mea-

surements

The age related variations in T1 in both global grey and white matter were assessed by
applying the grey and white matter masks to the acquired T1 maps. The statistics as-
sociated with the quadratic trends fitted to the global T1 measurements are presented
in Table 5.3.2.
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Quadratic coefficient
(T1%2 / year)
± 95% confidence
intervals

Age of
peak T1
(years)

p-value of
quadratic
trend vs.
null
hypothesis

p-value from
F -test on
quadratic model
compared to
linear model

Grey matter -0.00017 ± 0.00014 48.5 0.005 * 0.0006 *

White matter -0.000074 ± 0.000038 44.8 0.00002 * 0.000004 *

Table 3.3.2: Coefficients and significance of the quadratic model applied to changes
in measured MT with ageing in each cerebral ROI. Significant trend (p<0.05) denoted
by ’*’.

There were significant quadratic trends with age for global grey matter and white
matter T1 measurements. These relationships are presented in Figure 3.3.6 along with
the variation of T1 with MT in each ROI averaged across participants for both grey
matter and white matter. There was no correlation between T1 and MT measurements
(p>0.9) in grey matter, but a negative linear correlation was observed for white matter
(p<0.001, R2=0.23).

3.3.4 Discussion

The results presented here display a clear parabolic profile in MT with age in both grey
and white matter, peaking at around 42 years of age. The trends were similar across
the whole brain, but were stronger in white matter regions which are typically more
heavily myelinated [60]. These results support the parabolic trend in T1 measurements
as reported previously [5, 40]. While our age of peak myelination agrees with the value
of 40 years of age in white matter published by Yeatman et al., Cho et al. found the
minimum T1 value in grey matter occurred at 60, while we have a maximum MT value
around the age of 42 across the whole cortex (varying between 35-48 across different
brain regions). Similarly to Cho et al., we did observe T1 in grey matter to have a
minimum at a later age of 48.5 years. The discrepancy here could arise from the
different age groups considered in the two studies; while here only ages between 19
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Figure 3.3.6: Age-related variations in T1 of global grey and white matter, plotted
for each participant separately. Variation of T1 with MT is also displayed, plotted for
each ROI averaged across participants for both grey and white matter.

to 62 were analysed, Cho et al. included subjects under 18 years old, as well as over
60 years old. However as previously discussed, T1 measurements are affected by iron
content which can further decrease the value of T1. Non-haem iron is known from
histology to increase with age [61] and susceptibility-weighted imaging studies have
suggested that iron deposition can continue until the age of 40 or even 60 in some
deep grey matter tissues [62], and is also known to increase in older age in some deep
grey matter areas [61]. It is likely that both iron and myelin increase in earlier life
since iron is required in myelin production in oligodendrocytes, but later in life the iron
accumulation may be more pathological [63]. This is further evidenced in Figure 3.3.6
where we observed the opposing effects of decreasing myelination, which decreases
the MT signal and increases T1, and increasing iron content, which decreases T1.
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However, this was only observed in white matter, likely reflecting the effect of varying
iron concentration in grey matter with age.

The standard deviation analysis reveals a linear increase in MT variation across the
cortical surface, however no increase in MT variation within the white matter. The
MT variation in grey matter is around an order of magnitude larger than that of
white matter, most likely arising from the reduced myelination of grey matter. It is
probable that the increase in variance in grey matter myelination with age arises from
the reduction in the volume of the cortical surface (which will be explored further
in the following section), and so there are fewer voxels to consider when finding a
regional standard deviation value, as opposed to the white matter myelination where
the number of voxels stays relatively constant with age.

It was also observed that the myelination was correlated with the underlying white
matter myelination. This result was expected, as the grey matter neurones are pri-
marily supported by axons in both the grey matter and underlying white matter.

3.4 Cortical thickness variation with age

Previous studies [45, 46, 47] have observed a linear decline in average global cortical
thickness, with an average loss of roughly 4µm per year. The aim of this section is to
confirm this finding, and perform further analysis to determine whether the cortical
decline is driving the loss in myelination in later life.

3.4.1 Variations in rate of cortical thinning across

cortex

The cortical thickness values in all AAL regions of each subject were averaged to create
an average measure of the thickness of each subject’s cortical surface. As expected
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there was a significant linear trend with age, as displayed in Figure 3.4.1.

Figure 3.4.1: Linear regression of cortical thickness with age, with 95% confidence
intervals displayed as dotted lines.

The same four ROIs as used in the previous section were created by averaging the
cortical thicknesses in the AAL regions in each of the frontal, parietal, occipital and
temporal lobes. The linear trend with age for each of these is displayed in Figure
3.4.2. All of these trends were significant barring in the temporal lobe. The statistics
associated with these trends are presented in Table 5.4.1

A linear regression was then performed on each of the 64 AAL regions used in this
study. Figure 3.4.3 shows the rate of cortical decline in each AAL region.

In order to explore the link between demyelination and cortical thickness, the MT
and cortical thickness values were taken from each grey matter AAL region and aver-
aged across subjects, to create an average MT measurement and an average cortical
thickness measurement for each AAL region. Averaging across subjects removes age
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Figure 3.4.2: Linear regression of cortical thickness with age in each of the four lobes
of the brain, with 95% confidence intervals displayed as dotted lines.

Linear coefficient
(µm / year) ± 95%
confidence intervals

p-value of
linear trend

Global -4.56 ± 1.21 0.0004 *

Frontal -4.31 ± 1.38 0.0028 *

Parietal -5.57 ± 1.71 0.0019 *

Occipital -5.19 ± 1.28 0.0002 *

Temporal 0.75 ± 1.75 0.5889

Table 3.4.1: Coefficients and significance of cortical decline in each cerebral ROI.
Significant trend (p<0.05) denoted by ’*’.

as a variable and allows inspection of whether increased amounts of MT are due to
increased cortex thickness. No correlation was found between grey matter MT and
cortical thickness, with R2=0.004 and p=0.59 for a linear regression.

3.4.2 Local variation of thickness in cortical lobes

The way in which cortical thickness varies across the cortical surface was then analysed.
A measure of the standard deviation of the cortical thickness was obtained for each of
the four ROIs in the same way as detailed in section 3.3.2. These standard deviation
values were plotted against age and a linear regression was performed. The results of
these fits are displayed in Figure 3.4.4. Only the occipital and temporal lobes had a
significantly non-zero linear trend, with the occipital lobe having a slope of +0.49µm
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Figure 3.4.3: Absolute value of the linear coefficient of cortical thickness with age in
each AAL region, showing how drastic the decline in thickness is across the cortical
surface. Regions without a significantly non-zero linear trend are left grey.

per year, R2=0.101 and p=0.015, and the temporal lobe having a slope of -0.47µm
per year, R2=0.109 and p=0.011.

Figure 3.4.4: Age related variations in the standard deviation of cortical thickness.
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3.4.3 Discussion

These results confirm the previous findings of a decrease in cortical thickness with age
[45, 46, 47, 48, 49], with an average decline of -4.56 ± 1.21µm per year found here.
Interestingly no significant decrease in cortical thickness was found in the temporal
lobes, which is also the only ROI in which the variation of thickness across the lobe
decreases with age. This has also been observed in a previous study [45], and further
work into the cortical surface within the temporal lobe should be performed in order
to understand the mechanisms driving this. These findings also reaffirm the possible
reason for MT standard deviation increasing in grey matter but staying relatively
constant in white matter.

The lack of a correlation between AAL regions with a thicker cortex and AAL regions
which are more heavily myelinated warrants further discussion. As a greater volume
of cortex apparently has no bearing on how heavily myelinated that particular volume
is, it stands to reason that demyelination observed in later life associated with healthy
ageing is not driven by the thinning of the cortex, a hypothesis which is further backed
up by the fact that demyelination also appears in white matter regions, although recent
work has shown that certain areas of white matter volume also decrease with age [64].
Nevertheless, the mechanism behind ’healthy demyelination’ is not yet understood and
requires further investigation.

3.5 NOE as a potential marker for myeli-
nation

While previous work has shown that MT and NOE pool size correlate in the human
brain [65], this is not the case in all tissues [66]. This section repeats the MT anal-
ysis described in section 3.3, but instead analysing the NOE maps. Grey and white
matter AAL regions were averaged globally, as well as grouped into the four ROIs, as

101



3.5. NOE AS A POTENTIAL MARKER FOR MYELINATION

described previously. These data were plotted against participant age and fitted to lin-
ear and quadratic functions, and F -tests were performed to compare the significance
of the quadratic model against the linear model as previously. A linear regression
was then performed on the average MT and NOE values for each AAL region to ex-
plore the relationship between the MT pool size measurement and the NOE pool size
measurement.

3.5.1 NOE relationships with ageing brain

Age-related trends in NOE were notably weaker than in MT, with a quadratic coeffi-
cient for grey matter being -15 ± 3 x10−4%2/year, peak at 42.87 years old, p<0.0001
for MT, and -5 ± 2 x10−4%2/year, peak at 44.43 years old, p=0.0027 for NOE. The
strength of the quadratic curve was slightly stronger in white matter, with a quadratic
coefficient of -23 ± 5 x10−4%2/year, peak at 41.67 years old, p<0.0001 for MT and -8
± 2 x10−4%2/year, peak at 40.90 years old, p=0.0040 for NOE. A table of quadratic
coefficients, p-values and the F -test results of each of these quadratic fits are pre-
sented in Table 5.5.1, however as several of the regional models are non-significant,
only the global NOE trends are displayed in Figure 3.5.1 alongside a comparison to
the MT data.

Figure 3.5.1: Quadratic trend in global NOE with age for grey matter and white
matter. MT is also shown for comparison.
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Quadratic coefficient
(NOE%2 / year)
± 95% confidence
intervals

Age of
peak NOE
(years)

p-value of
quadratic
trend vs.
null
hypothesis

p-value from
F -test on
quadratic
model
compared to
linear model

Grey
matter

Global -0.0005 ± 0.0004 44.4 0.0164 * 0.0078 *

Frontal -0.0006 ± 0.0008 47.0 0.1248 0.0711

Parietal -0.0006 ± 0.0004 40.6 0.0026 * 0.0022 *

Occipital -0.0003 ± 0.0082 45.4 0.1888 0.1352

Temporal -0.0005 ± 0.0036 44.0 0.0924 0.0641

White
matter

Global -0.0008 ± 0.0005 40.9 0.0050 * 0.0041 *

Frontal -0.0013 ± 0.0009 41.6 0.0047 * 0.0033 *

Parietal -0.0006 ± 0.0007 42.8 0.0665 0.0495 *

Occipital -0.0005 ± 0.0007 42.8 0.1658 0.1371

Temporal -0.0004 ± 0.0008 37.5 0.3412 0.3704

Table 3.5.1: Coefficients and significance of the quadratic model applied to changes in
measured NOE with ageing in each cerebral ROI. Significant trend (p<0.05) denoted
by ’*’.

3.5.2 NOE correlations with MT in the brain

An average NOE value for each AAL region was calculated and a linear regression was
performed with the corresponding MT measurements. There is a strong correlation
between MT and NOE for each AAL region averaged across all subjects. Figure
3.5.2 displays a linear relationship with R2=0.9478, p<0.0001 when considering the
grey and white matter regions together. This relationship is retained when considering
either solely the grey matter regions (R2=0.305, p<0.0001) or solely the white matter
regions (R2=0.282, p<0.0001).
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Figure 3.5.2: Correlation of MT vs. NOE averaged across individuals for each AAL
region.

3.5.3 Discussion

This section shows that the relatively new measure of NOE also displays the quadratic
trend with age associated with myelin concentration in vivo. MT and NOE were
well correlated across all grey and white matter regions despite being independent
measures, suggesting that similar underlying mechanisms give rise to both signals.
The NOE signal in the brain is thought to originate in transfer of magnetisation from
aliphatic backbones of mobile macromolecules and proteins, with the signal possibly
relayed via molecular exchange [67]. As the fitting method used here models MT and
NOE simultaneously and thus minimises biasing the NOE signal with underlying MT
and vice versa, the results presented here suggest that NOE is correlated to myelination
independently of MT, as myelin contains aliphatic groups which NOE is thought to
be a measure of. However the sensitivity of the NOE signal is lower and the trends in
NOE observed with age were similar to, albeit weaker than, the trends observed for
MT. Nonetheless, this measure has not yet been explored fully and these results may
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therefore play a role in guiding future literature.

As discussed throughout this thesis, measurement of both MT and NOE is not a
trivial task. While previous studies have opted to measure MTR due to its acquisition
speed, quantification of the MT pool size gives a much more reliable measure of MT.
This section used a look-up table to characterise MT and NOE, as the use of pulsed
saturation in the acquisition prevented further quantification. However, this measure
of MT and pool size is not uncoupled from exchange rate, as only one value for MT
exchange rate and one value for NOE exchange rate was used in creation of the look-
up table (multiple exchange rates could not be simulated due to the unfeasible size
of which the look-up table would become). Therefore the MT and NOE measures
presented here would vary with temperature and pH [68], although this is not expected
to be a confound in healthy subjects.

While the look-up table used in this section is capable of simultaneous fitting of
overlapping peaks, consideration should be taken of the true independence of these
measures. Any fit based upon the Bloch-McConnell equations has the same problems
in that the mathematical model may not be correct, which may lead to errors such as
misrepresentation of the MT spectrum, which is modelled here as a super-Lorentzian
however there is uncertainty surrounding its true shape [69]. In addition, even if the
model does perfectly represent the physical system, it may not provide the required
sensitivity to separate parameters, such as MT and NOE pool size. This will depend
on the chosen sampling parameters and inherent noise levels.

3.6 Summary

This chapter has used MT pool size as a marker for myelination due to its reduced
sensitivity to aspects of brain structure other than myelin, and has shown that it has a
strong parabolic trend with age in both grey and white matter, peaking on average at
age 42. The analysis into cortical decline has revealed that the demyelination seen in
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healthy subjects in later life is not driven by the loss in cortical volume, and therefore
must instead be as a result of another mechanism. The NOE effect has also been
introduced as a possible marker for myelination, however further work into the true
origin of this signal is necessary to explore where this measure may best be an asset.

References

[1] W. T. Norton and Wendy Cammer. Isolation and Characterization of Myelin. In
Myelin. 1984. doi: 10.1007/978-1-4757-1830-0{\_}5.

[2] Paul Emil Flechsig. Anatomie des menschlichen Gehirns und Rückenmarks auf
myelogenetischer Grundlage, volume 1. G. Thieme, 1920.

[3] O. Fernández, V. E. Fernández, and M. Guerrero. Enfermedades desmielinizantes
del sistema nervioso central. Medicine (Spain), 2015. ISSN 15788822. doi:
10.1016/j.med.2015.04.001.

[4] Charles M. Poser. Leukodystrophy and the Concept of Dysmyelination.
Archives of Neurology, 1961. ISSN 15383687. doi: 10.1001/archneur.1961.
00450090089013.

[5] Seong Cho, Dana Jones, Wilburn E. Reddick, Robert J. Ogg, and R. Grant Steen.
Establishing norms for age-related changes in proton T1 of human brain tissue
in vivo. Magnetic Resonance Imaging, 1997. ISSN 0730725X. doi: 10.1016/
S0730-725X(97)00202-6.

[6] Terri S Armstrong, Marlene Z Cohen, Jeffrey Weinberg, and Mark R Gilbert.
Imaging techniques in neuro-oncology. In Seminars in oncology nursing, vol-
ume 20, pages 231–239. Elsevier, 2004. ISBN 0749-2081.

[7] Martina F. Callaghan, Patrick Freund, Bogdan Draganski, Elaine Anderson,
Marinella Cappelletti, Rumana Chowdhury, Joern Diedrichsen, Thomas H.B.
FitzGerald, Peter Smittenaar, Gunther Helms, Antoine Lutti, and Nikolaus

106



REFERENCES

Weiskopf. Widespread age-related differences in the human brain microstructure
revealed by quantitative magnetic resonance imaging. Neurobiology of Aging,
2014. ISSN 15581497. doi: 10.1016/j.neurobiolaging.2014.02.008.

[8] S. Lorio, A. Lutti, F. Kherif, A. Ruef, J. Dukart, R. Chowdhury, R. S. Frackowiak,
J. Ashburner, G. Helms, N. Weiskopf, and B. Draganski. Disentangling in vivo
the effects of iron content and atrophy on the ageing human brain. NeuroImage,
2014. ISSN 10959572. doi: 10.1016/j.neuroimage.2014.09.044.

[9] D Purves, GJ Augustine, and D Fitzpatrick. Increased Conduction Velocity as a
Result of Myelination. Neuroscience, 2001.

[10] H. Inouye and D. A. Kirschner. Membrane interactions in nerve myelin. I. Deter-
mination of surface charge from effects of pH and ionic strength on period. Bio-
physical Journal, 1988. ISSN 00063495. doi: 10.1016/S0006-3495(88)83085-6.

[11] V. Vasilescu, Eva Katona, V. Simplâceanu, and D. Demco. Water compart-
ments in the myelinated nerve. III. Pulsed NMR result. Experientia, 1978. ISSN
14209071. doi: 10.1007/BF01932339.

[12] Alex Mackay, Kenneth Whittall, Julian Adler, David Li, Donald Paty, and Douglas
Graeb. In vivo visualization of myelin water in brain by magnetic resonance.
Magnetic Resonance in Medicine, 1994. ISSN 15222594. doi: 10.1002/mrm.
1910310614.

[13] Thomas Prasloski, Alexander Rauscher, Alex L. MacKay, Madeleine Hodgson,
Irene M. Vavasour, Corree Laule, and Burkhard Mädler. Rapid whole cerebrum
myelin water imaging using a 3D GRASE sequence. NeuroImage, 2012. ISSN
10538119. doi: 10.1016/j.neuroimage.2012.06.064.

[14] Evan P. Minty, Thorarin A. Bjarnason, Cornelia Laule, and Alex L. Mackay. Myelin
water measurement in the spinal cord. Magnetic Resonance in Medicine, 2009.
ISSN 07403194. doi: 10.1002/mrm.21936.

[15] Christian Labadie, Jing Huei Lee, William D. Rooney, Silvia Jarchow, Monique
Aubert-Frécon, Charles S. Springer, and Harald E. Möller. Myelin water mapping

107



REFERENCES

by spatially regularized longitudinal relaxographic imaging at high magnetic fields.
Magnetic Resonance in Medicine, 2014. ISSN 07403194. doi: 10.1002/mrm.
24670.

[16] Carsten Stüber, Markus Morawski, Andreas Schäfer, Christian Labadie, Miriam
Wähnert, Christoph Leuze, Markus Streicher, Nirav Barapatre, Katja Reimann,
Stefan Geyer, Daniel Spemann, and Robert Turner. Myelin and iron concentration
in the human brain: A quantitative study of MRI contrast. NeuroImage, 2014.
ISSN 10959572. doi: 10.1016/j.neuroimage.2014.02.026.

[17] Jan Sedlacik, Christian Kutschbach, Alexander Rauscher, Andreas Deistung, and
Jürgen R. Reichenbach. Investigation of the influence of carbon dioxide con-
centrations on cerebral physiology by susceptibility-weighted magnetic resonance
imaging (SWI). NeuroImage, 2008. ISSN 10538119. doi: 10.1016/j.neuroimage.
2008.07.008.

[18] Zhen Wu, Sandeep Mittal, Karl Kish, Yingjian Yu, J. Hu, and E. Mark Haacke.
Identification of calcification with MRI using susceptibility-weighted imaging: A
case study. Journal of Magnetic Resonance Imaging, 2009. ISSN 10531807. doi:
10.1002/jmri.21617.

[19] Neil Gelman, James R. Ewing, Jay M. Gorell, Eric M. Spickler, and Enez G.
Solomon. Interregional variation of longitudinal relaxation rates in human brain
at 3.0 T: Relation to estimated iron and water contents. Magnetic Resonance
in Medicine, 2001. ISSN 07403194. doi: 10.1002/1522-2594(200101)45:1<71::
AID-MRM1011>3.0.CO;2-2.

[20] Klaus Schmierer, Claudia A.M. Wheeler-Kingshott, Daniel J. Tozer, Phil A.
Boulby, Harold G. Parkes, Tarek A. Yousry, Francesco Scaravilli, Gareth J. Barker,
Paul S. Tofts, and David H. Miller. Quantitative magnetic resonance of post-
mortem multiple sclerosis brain before and after fixation. Magnetic Resonance in
Medicine, 2008. ISSN 07403194. doi: 10.1002/mrm.21487.

[21] Kevin D. Harkins, Junzhong Xu, Adrienne N. Dula, Ke Li, William M. Valentine,
Daniel F. Gochberg, John C. Gore, and Mark D. Does. The microstructural

108



REFERENCES

correlates of T1 in white matter. Magnetic Resonance in Medicine, 2016. ISSN
15222594. doi: 10.1002/mrm.25709.

[22] Matthew F Glasser and David C Van Essen. Mapping human cortical areas in vivo
based on myelin content as revealed by T1- and T2-weighted MRI. The Journal
of neuroscience : the official journal of the Society for Neuroscience, 2011. ISSN
1529-2401. doi: 10.1523/JNEUROSCI.2180-11.2011.

[23] Rebecca Shafee, Randy L. Buckner, and Bruce Fischl. Gray matter myelination
of 1555 human brains using partial volume corrected MRI images. NeuroImage,
2015. ISSN 10959572. doi: 10.1016/j.neuroimage.2014.10.054.

[24] Muzamil Arshad, Jeffrey A. Stanley, and Naftali Raz. Test–retest reliability and
concurrent validity of in vivo myelin content indices: Myelin water fraction and
calibrated T1w/T2w image ratio. Human Brain Mapping, 2017. ISSN 10970193.
doi: 10.1002/hbm.23481.

[25] Adrienne N. Dula, Daniel F. Gochberg, Holly L. Valentine, William M. Valentine,
and Mark D. Does. Multiexponential T2, magnetization transfer, and Quantita-
tive histology in white matter tracts of rat spinal cord. Magnetic Resonance in
Medicine, 2010. ISSN 07403194. doi: 10.1002/mrm.22267.

[26] Md Nasir Uddin, Teresa D. Figley, Ruth Ann Marrie, and Chase R. Figley. Can
T1w/T2w ratio be used as a myelin-specific measure in subcortical structures?
Comparisons between FSE-based T1w/T2w ratios, GRASE-based T1w/T2w ra-
tios and multi-echo GRASE-based myelin water fractions. NMR in Biomedicine,
2018. ISSN 10991492. doi: 10.1002/nbm.3868.

[27] Tanguy Duval, Nikola Stikov, and Julien Cohen-Adad. Modeling white matter
microstructure. Functional Neurology, 2016. ISSN 19713274. doi: 10.11138/
FNeur/2016.31.4.217.

[28] Klaus Schmierer, Francesco Scaravilli, Daniel R. Altmann, Gareth J. Barker, and
David H. Miller. Magnetization transfer ratio and myelin in postmortem multiple

109



REFERENCES

sclerosis brain. Annals of Neurology, 2004. ISSN 03645134. doi: 10.1002/ana.
20202.

[29] M. Filippi, A. Campi, V. Dousset, C. Baratti, V. Martinelli, N. Canal, G. Scotti,
and G. Comi. A magnetization transfer imaging study of normal-appearing white
matter in multiple sclerosis. Neurology, 1995. ISSN 1526632X. doi: 10.1212/
WNL.45.3.478.

[30] Irene M. Vavasour, Cornelia Laule, David K B Li, Anthony L. Traboulsee, and
Alex L. MacKay. Is the magnetization transfer ratio a marker for myelin in multiple
sclerosis? Journal of Magnetic Resonance Imaging, 2011. ISSN 10531807. doi:
10.1002/jmri.22441.

[31] Andrew J. Carradus, Simon M. Shah, Olivier E. Mougin, Caroline L. Hoad, and
Penny A. Gowland. Magnetisation transfer in human liver and kidney through
acquisition of the z-spectrum. Abstract presented at the Joint Annual Meeting
ISMRM-ESMRMB 2018, page Abstract no. 2551, 2018.

[32] J. P. Mottershead, K. Schmierer, M. Clemence, J. S. Thornton, F. Scaravilli,
G. J. Barker, P. S. Tofts, J. Newcombe, M. L. Cuzner, R. J. Ordidge, W. I.
McDonald, and D. H. Miller. High field MRI correlates of myelin content and
axonal density in multiple sclerosis: A post-mortem study of the spinal cord.
Journal of Neurology, 2003. ISSN 03405354. doi: 10.1007/s00415-003-0192-3.

[33] Daniel J. Tozer, G. R. Davies, D. R. Altmann, D. H. Miller, and P. S. Tofts.
Correlation of apparent myelin measures obtained in multiple sclerosis patients
and controls from magnetization transfer and multicompartmental T 2 analysis.
Magnetic Resonance in Medicine, 2005. ISSN 07403194. doi: 10.1002/mrm.
20479.

[34] C. Laule, E. Leung, D. K.B. Li, A. L. Traboulsee, D. W. Paty, A. L. MacKay,
and G. R.W. Moore. Myelin water imaging in multiple sclerosis: Quantitative
correlations with histopathology. Multiple Sclerosis, 2006. ISSN 13524585. doi:
10.1177/1352458506070928.

110



REFERENCES

[35] Klaus Schmierer, Daniel J. Tozer, Francesco Scaravilli, Daniel R. Altmann,
Gareth J. Barker, Paul S. Tofts, and David H. Miller. Quantitative magnetiza-
tion transfer imaging in postmortem multiple sclerosis brain. Journal of Magnetic
Resonance Imaging, 2007. ISSN 10531807. doi: 10.1002/jmri.20984.

[36] T Kaes. Die Grosshirnrinde des Menschen in ihren Maßen und ihrem Fasergehalt.
Ein gehirnanatomischer Atlas mit erläuterndem Text. 1907.

[37] HARRY CAMPBELL. PRINCIPLES OF HEREDITY: A REVIEW*. British
Journal of Inebriety, 3(1):31–35, 1905. ISSN 0366-0796. doi: doi:10.1111/j.
1360-0443.1905.tb04399.x. URL https://doi.org/10.1111/j.1360-0443.

1905.tb04399.x.

[38] Adolf Hopf. Über die Verteilung myeloarchitektonischer Merkmale in der isokor-
tikalen Schläfenlappenrinde beim Menschen. J Hirnforsch, 2(1):36–54, 1955.

[39] Oskar Vogt. Über strukturelle Hirnzentra. mit besonderer Berücksichtigung der
strukturellen Felder des Cortex pallii [On the structural centers of the brain,
with particular emphasis on the structural regions of the cortex]. Anatomischer
Anzeiger, 20:74–114, 1906.

[40] Jason D. Yeatman, Brian A. Wandell, and Aviv A. Mezer. Lifespan maturation
and degeneration of human brain white matter. Nature Communications, 2014.
ISSN 20411723. doi: 10.1038/ncomms5932.

[41] George Bartzokis, Po H. Lu, Panthea Heydari, Alexander Couvrette, Grace J.
Lee, Greta Kalashyan, Frank Freeman, John W. Grinstead, Pablo Villablanca,
J. Paul Finn, Jim Mintz, Jeffry R. Alger, and Lori L. Altshuler. Multimodal
magnetic resonance imaging assessment of white matter aging trajectories over
the lifespan of healthy individuals. Biological Psychiatry, 2012. ISSN 00063223.
doi: 10.1016/j.biopsych.2012.07.010.

[42] Håkon Grydeland, Kristine B. Walhovd, Christian K. Tamnes, Lars T. Westlye,
and Anders M. Fjell. Intracortical myelin links with performance variability across
the human lifespan: Results from T1- and T2- weighted MRI myelin mapping

111

https://doi.org/10.1111/j.1360-0443.1905.tb04399.x
https://doi.org/10.1111/j.1360-0443.1905.tb04399.x


REFERENCES

and diffusion tensor imaging. Journal of Neuroscience, 2013. ISSN 02706474.
doi: 10.1523/JNEUROSCI.2811-13.2013.

[43] B. Draganski, J. Ashburner, C. Hutton, F. Kherif, R. S.J. Frackowiak, G. Helms,
and N. Weiskopf. Regional specificity of MRI contrast parameter changes in
normal ageing revealed by voxel-based quantification (VBQ). NeuroImage, 2011.
ISSN 10538119. doi: 10.1016/j.neuroimage.2011.01.052.

[44] Craig K. Jones, Alan Huang, Jiadi Xu, Richard A.E. Edden, Michael Schär, Jun
Hua, Nikita Oskolkov, Domenico Zacà, Jinyuan Zhou, Michael T. McMahon,
Jay J. Pillai, and Peter C.M. van Zijl. Nuclear Overhauser enhancement (NOE)
imaging in the human brain at 7T. NeuroImage, 2013. ISSN 10538119. doi:
10.1016/j.neuroimage.2013.03.047.

[45] David H. Salat, Randy L. Buckner, Abraham Z. Snyder, Douglas N. Greve, Rahul
S R Desikan, Evelina Busa, John C. Morris, Anders M. Dale, and Bruce Fischl.
Thinning of the cerebral cortex in aging. Cerebral Cortex, 2004. ISSN 10473211.
doi: 10.1093/cercor/bhh032.

[46] Anders M. Fjell, Kristine B. Walhovd, Christine Fennema-Notestine, Linda K.
McEvoy, Donald J. Hagler, Dominic Holland, James B. Brewer, and Anders M.
Dale. One-year brain atrophy evident in healthy aging. Journal of Neuroscience,
2009. ISSN 02706474. doi: 10.1523/JNEUROSCI.3252-09.2009.

[47] Larson J. Hogstrom, Lars T. Westlye, Kristine B. Walhovd, and Anders M. Fjell.
The structure of the cerebral cortex across adult life: Age-related patterns of
surface area, thickness, and gyrification. Cerebral Cortex, 2013. ISSN 10473211.
doi: 10.1093/cercor/bhs231.

[48] Christopher R. Madan and Elizabeth A. Kensinger. Cortical complexity as a
measure of age-related brain atrophy. NeuroImage, 2016. ISSN 10959572. doi:
10.1016/j.neuroimage.2016.04.029.

[49] Christopher R. Madan and Elizabeth A. Kensinger. Predicting age from cortical

112



REFERENCES

structure across the lifespan. European Journal of Neuroscience, 2018. ISSN
14609568. doi: 10.1111/ejn.13835.

[50] R. C. Oldfield. The assessment and analysis of handedness: The Edinburgh in-
ventory. Neuropsychologia, 1971. ISSN 00283932. doi: 10.1016/0028-3932(71)
90067-4.

[51] Benjamin A.E. E Hunt, Prejaas K. Tewarie, Olivier E. Mougin, Nicolas Geades,
Derek K. Jones, Krish D. Singh, Peter G. Morris, Penny A. Gowland, and
Matthew J. Brookes. Relationships between cortical myeloarchitecture and elec-
trophysiological networks. Proceedings of the National Academy of Sciences
of the United States of America, 2016. ISSN 10916490. doi: 10.1073/pnas.
1608587113.

[52] Olivier Mougin, Rasha Abdel-Fahim, Robert Dineen, Alain Pitiot, Nikos Evan-
gelou, and Penny Gowland. Imaging gray matter with concomitant null point
imaging from the phase sensitive inversion recovery sequence. Magnetic Reso-
nance in Medicine, 2016. ISSN 15222594. doi: 10.1002/mrm.26061.

[53] Olivier Mougin, Matthew Clemence, Andrew Peters, Alain Pitiot, and Penny
Gowland. High-resolution imaging of magnetisation transfer and nuclear Over-
hauser effect in the human visual cortex at 7 T. NMR in Biomedicine, 2013.
ISSN 09523480. doi: 10.1002/nbm.2984.

[54] Nicolas Geades, Benjamin A.E. E Hunt, Simon M. Shah, Andrew Peters,
Olivier E. Mougin, and Penny A. Gowland. Quantitative analysis of the z-
spectrum using a numerically simulated look-up table: Application to the healthy
human brain at 7T. Magnetic Resonance in Medicine, 2017. ISSN 15222594.
doi: 10.1002/mrm.26459.

[55] Mark W. Woolrich, Saad Jbabdi, Brian Patenaude, Michael Chappell, Salima
Makni, Timothy Behrens, Christian Beckmann, Mark Jenkinson, and Stephen M.
Smith. Bayesian analysis of neuroimaging data in FSL. NeuroImage, 2009. ISSN
10959572. doi: 10.1016/j.neuroimage.2008.10.055.

113



REFERENCES

[56] Anders M. Dale, Bruce Fischl, and Martin I. Sereno. Cortical surface-based
analysis: I. Segmentation and surface reconstruction. NeuroImage, 1999. ISSN
10538119. doi: 10.1006/nimg.1998.0395.

[57] Bruce Fischl. FreeSurfer, 2012. ISSN 10538119.

[58] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard,
N. Delcroix, B. Mazoyer, and M. Joliot. Automated anatomical labeling of ac-
tivations in SPM using a macroscopic anatomical parcellation of the MNI MRI
single-subject brain. NeuroImage, 2002. ISSN 10538119. doi: 10.1006/nimg.
2001.0978.

[59] R. A. Fisher. Moments and product moments of sampling distributions. Pro-
ceedings of the London Mathematical Society, 1930. ISSN 1460244X. doi:
10.1112/plms/s2-30.1.199.

[60] Rud Virchow. Ueber das ausgebreitete Vorkommen einer dem Nervenmark analo-
gen Substanz in den thierischen Geweben. Archiv für Pathologische Anatomie
und Physiologie und für Klinische Medicin, 1854. ISSN 09456317. doi:
10.1007/BF02116709.

[61] B. Hallgren and P. Sourander. THE EFFECT OF AGE ON THE NON-HAEMIN
IRON IN THE HUMAN BRAIN. Journal of Neurochemistry, 1958. ISSN
14714159. doi: 10.1111/j.1471-4159.1958.tb12607.x.

[62] Dan Wang, Wen Bin Li, Xiao Er Wei, Yue Hua Li, and Yong Ming Dai. An Inves-
tigation of Age-Related Iron Deposition Using Susceptibility Weighted Imaging.
PLoS ONE, 2012. ISSN 19326203. doi: 10.1371/journal.pone.0050706.

[63] James R. Connor and Sharon L. Menzies. Relationship of iron to oligodendro-
cytes and myelination. GLIA, 1996. ISSN 08941491. doi: 10.1002/(SICI)
1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7.

[64] Farnaz Farokhian, Chunlan Yang, Iman Beheshti, Hiroshi Matsuda, and Shuicai
Wu. Age-related gray and white matter changes in normal adult brains. Aging
and Disease, 2017. ISSN 21525250. doi: 10.14336/AD.2017.0502.

114



REFERENCES

[65] Nicolas Geades, Olivier E. Mougin, Simon Shah, and Penny A. Gowland. Are
MT and NOE (at -3.5 ppm) in z-spectroscopy coupled in the brain? In Ismrm,
2017.

[66] Simon M. Shah, Olivier E. O.E. Olivier E. Mougin, A.J. Andrew J. Carradus,
Nicolas Geades, Richard Dury, William Morley, and Penny A. P.A. Gowland. The
z-spectrum from human blood at 7T. NeuroImage, 167, 2018. ISSN 10959572.
doi: 10.1016/j.neuroimage.2017.10.053.

[67] Peter C.M. van Zijl, Wilfred W. Lam, Jiadi Xu, Linda Knutsson, and Greg J.
Stanisz. Magnetization Transfer Contrast and Chemical Exchange Saturation
Transfer MRI. Features and analysis of the field-dependent saturation spectrum.
NeuroImage, 2018. ISSN 10959572. doi: 10.1016/j.neuroimage.2017.04.045.

[68] K. M. Ward, A. H. Aletras, and R. S. Balaban. A New Class of Contrast Agents
for MRI Based on Proton Chemical Exchange Dependent Saturation Transfer
(CEST). Journal of Magnetic Resonance, 2000. ISSN 10907807. doi: 10.1006/
jmre.1999.1956.

[69] Greg J. Stanisz, Ewa E. Odrobina, Joseph Pun, Michael Escaravage, Simon J.
Graham, Michael J. Bronskill, and R. Mark Henkelman. T1, T2 relaxation and
magnetization transfer in tissue at 3T. Magnetic Resonance in Medicine, 2005.
ISSN 07403194. doi: 10.1002/mrm.20605.

115



Chapter 4

Measuring exchange rates via a
Particle Swarm Optimisation
algorithm

As discussed in Chapter 2, it is analytically impossible to solve the Bloch McConnell
equations for the variables representing properties of present exchanging pools given
only the z-spectrum, without prior knowledge or assumption of one of either pool size
or exchange rate. While methods discussed in section 2.5 seek for ways to overcome
this, all make prior assumptions about the system, and some rely on initial guesses
which can bias the results if incorrect, and in addition the look-up table approach used
in the previous chapter does not allow for continuous values of variables to be fitted.
This chapter presents a novel method of fitting the z-spectrum to find key physical
variables with fewer assumptions than any other currently published method, and tests
its feasibility in both creatine phantoms and in cerebral grey and white matter in vivo.
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4.1 PSO design and implementation

The particle swarm optimisation (PSO) algorithm is a stochastic search method cre-
ated by Eberhart in 1995 [1], and modified in 1998 [2] to the version used in this
chapter. PSO is effective in solving highly nonlinear problems [3], where standard
search techniques may find local minima in the variable space, as opposed to the true
global solution. PSO has some similarities to the genetic algorithm, in that both are
based on a ’population’ of possible solutions, and both evolve over time towards the
true solution [4]. Eberhart states in his original 1995 paper that PSO has some influ-
ences from the genetic algorithm, but is primarily influenced by the social behaviour
of animals, for example a flock of birds mimicking the collective intelligence of the
flock to find food rather than the individual intelligence of any given member of the
flock.

4.1.1 PSO mechanics

The PSO algorithm is used to solve highly nonlinear multi-dimensional problems based
on iterative methods in which a set of initial randomised guesses evolve towards the
global solution. Given an appropriate set of bounds for each variable, the PSO algo-
rithm initialises a number of these guesses for all variables, termed as particles. The
value of each variable serves as coordinates for the position of each particle in variable
space. Each particle is also randomly assigned a velocity, which is used to calculate
its position in the next iteration of the algorithm. A minimisation function is used
to calculate how close these particles are to the optimal solution, and in the next
iteration the calculation of the new particle velocity is influenced both by the memory
of the particle itself and the memory of the swarm, as well as its own prior velocity. In
simple terms, the velocity of any given particle is dependent on where it is currently
going, the best place it has been, and the best place any particle has been [5].

The PSO algorithm is expressed mathematically as
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4.1. PSO DESIGN AND IMPLEMENTATION

vik+1 = wvik + c1rand
pi − xik

∆t
+ c2rand

pgk − xik
∆t

(4.1.1)

where xik is the position of particle i at iteration k, vik,k+1 is the velocity of particle
i at its current/next iteration, pi is the best position of particle i from all iterations,
and pgk is the best position of any particle during the current iteration. There are three
coefficients which determine how much influence each of these components has on the
new particle velocity. The inertia factor, w is a coefficient which controls the influence
of current motion, and is usually set between 0.4-1.4. The self confidence range, c1,
controls the influence of individual particle memory, and is usually set between 1.5-2.
Finally the swarm confidence range, c2, controls the influence of the swarm, and is
usually set between 2-2.5 [4].

The simplest way to visualise the mechanics of PSO is by considering a 1-dimensional
problem with several local minima, as displayed in Figure 4.1.1. Here PSO is deemed
necessary, as typical minimisation functions such as MATLAB’s lsqcurvefit [6] are
likely to present one of the local minima as the solution. The user has initialised 7
particles here to solve the problem. Note that this is an exaggerated illustration.

In Figure 4.1.1 the global solution is found after 20 iterations. There are a number of
possible stopping criteria for PSO algorithms which can be implemented. The simplest
of these is that the algorithm is forced to run for a fixed number of iterations, which
means that the algorithm may not find the solution in time, or conversely that it may
waste time after the solution has been found. The PSO can also stop after a solution
has been found that is close to the optimal solution, so that the minimisation function
becomes below a predefined tolerance level. This can be useful as in some cases PSO
may continue to search for a solution with a degree of accuracy that is unnecessary
for a given problem. Finally the algorithm can be set to stop after the global solution
has not been improved upon for a given number of iterations, as a way of ensuring
that no further solution would be found with continued searching.
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4.1. PSO DESIGN AND IMPLEMENTATION

Figure 4.1.1: Evolution of the swarm in a 1-dimensional problem, with the function
and its local minima represented by the blue line, particles by yellow circles, and their
velocities by red arrows. a) Initialisation of the algorithm, with randomly positioned
particles and randomly assigned velocities. b) Positions and velocities of the parti-
cles after 10 iterations, where influence of the swarm has started to work out where
the global minimum might be. c) Positions and velocities of the particles after 20
iterations, where the global minimum has been found. If so defined by the user, the
algorithm can end here.

4.1.2 Application to the z-spectrum

The key problem in quantifying the z-spectrum to find the values of the parameters
describing the exchanging pools is that a) the pool size, exchange rate, and apparent
T2 of any given pool can create similar changes on the shape of the z-spectrum, and b)
overlapping exchanging pools can further confuse measurement of this effect. Because
of this there are often a number of possible solutions which can give z-spectra closely
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4.1. PSO DESIGN AND IMPLEMENTATION

resembling that of an acquired dataset, meaning that determining the values of the
physical parameters that actually give rise to the z-spectrum can be difficult. It is for
this reason that the PSO algorithm is appropriate for quantification of the z-spectrum,
as it is ideal in finding the global solution amongst many local minima.

For this thesis, the PSO algorithm modified to quantify the z-spectrum (hereafter
referred to as the z-PSO) was written in C, as initial testing showed this to have
increased evaluation speed compared to MATLAB’s inbuilt particleswarm function
[6], and also allows for parallelisation of the z-PSO, as will be explored in section 4.1.3.

The main Bloch-McConnell simulation in the z-PSO is performed using a spectrum
calculated according to equation 2.3.6, restated here for clarity.

Z(∆ω, t) = (cos2(θ)− Z(∆ω)ss)e
−tsat
T1,ρ + Zss (4.1.2)

where Zss(∆ω) is the system in the steady-state condition for saturation applied at
∆ω (as previously defined in equation 2.3.1), T1,ρ refers to the overall longitudinal
relaxation time of the system in the rotating frame, tsat is the time that saturation
is applied for, and θ is the angle between the applied resonance frequency and the
frequency of the pool of interest in the rotating frame, such that θ = arctan( ω1

∆ω
),

in which ω1 = γ.B1, where γ is the gyromagnetic ratio of protons. This equation is
modelled through the simulation of each pool as a Lorentzian lineshape. As stated in
Chapter 2, the T1,ρ term can be expressed as a sum of the present exchanging pools,
such that 1

T1,ρ(∆ω)
= Reff (∆ω) +Rex,b(∆ω) +Rex,c(∆ω) +Rex,n(∆ω) in a four pool

model. The Reff term has been previously defined in equation 2.3.3. Each Rex term
can be expressed in the form of a Lorentzian lineshape [7], such that

Rex,c(∆ω) = M0,c.kc
Ac(∆ω)

Γc
2

2
+ (∆ω − δωc)2

(4.1.3)

for the Rex,c pool as an example, where
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Γc = 2

√
w2

1

kc + 1
T2,c

kc
+ (kc +

1

T2,c

)2 (4.1.4)

and

Ac(∆ω) =
ω2

1

(∆ω2 + ω2
1)
.(δω2

c +
∆ω2 + ω2

1

T2,c.kc
+
kc + 1

T2,c

T2,c

) (4.1.5)

where M0,c, kc, T2,c and δωc are the variables that are fitted by the z-PSO for pool c.
M0,c is the pool size of the exchanging pool c expressed as a fraction, kc is the exchange
rate of pool c with water expressed in Hz, T2,c is the apparent T2 of exchanging pool c
expressed in seconds, and δωc is the frequency offset of the peak of pool c. Through
summation of all Rex terms along with the Reff term we can simulate the z-spectrum
as described by equation 3.1.2.

This method assumes that our data has been acquired using CW saturation with a
saturation time of at least T1,f/4 [7]. The only prior information we give the z-PSO is
the number of exchanging pools present and their frequency offsets, which are allowed
to vary by 0.1ppm around their expected value when the algorithm is run. The z-PSO
is given the acquired z-spectra (which should be at multiple acquisition powers for
the same sample), the frequency offsets at which they were acquired, the nominal B1

values of each saturation block, the saturation time, the observed T1 of the sample,
and the actual B1 (as a fraction of the nominal B1) of the sample. Z-spectra must
be normalised so that the units are Ssat/S0, and are assumed to be B0 corrected via
one of the methods described in section 2.2.2.

Exchanging pools are then fitted sequentially depending on their frequency offset,
before being refitted while considering the whole spectrum (section 4.1.3 shows why
this is a much more effective fitting method than fitting all exchanging pools at once).
Let us consider a 4 pool model, containing free water, MT, APT, and NOE. The z-
PSO reads in the acquired data and firstly fits a 2 pool model of free water and MT
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to the data, excluding points in the range of -5ppm to -1ppm, and +1ppm to +5ppm.
In this stage there are 6 variables to be fitted: the T1 and T2 of free water, and the
MT pool size, exchange rate, apparent T2, and peak position. Particles are allowed
to explore possible values of each of these variables between predetermined bounds.
Z-spectra are simulated and compared to the real data through a sum of least squares
difference, so that no difference is a perfect fit. This is the value that the z-PSO aims
to minimise, and so through this finds the optimal solution for each parameter.

After finding the MT parameters, the z-PSO then fits a 3 pool model of free water,
MT, and APT to the data, now only excluding points between 1ppm to -5ppm.
However in this fit, the previously determined values for free water and MT are used
as fixed parameters, and the z-PSO only fits 4 variables: the APT pool size, exchange
rate, apparent T2, and peak position. Once solved, the z-PSO then fits the 4 pool
model to the data considering all data points, but still only the four variables of
the newly added NOE pool are fitted, while the other parameters are taken from
the previous fits. Finally each exchanging pool is refitted once more, but this time
including all data points and using the latest fitted values for the variables of each
exchanging pool. This stage removes any errors arising from overlapping exchanging
pools, which may have affected the initial fits when other pools were not considered.
A flowchart of the z-PSO is displayed in Figure 4.1.2.

It is important to note that for computational speed it is necessary to model the MT
pool as a Lorentzian lineshape. As stated in chapter 2, this model holds true around
the water resonance [8], and so does not affect the fitted values of underlying CEST or
NOE pools, however the fitted values of the MT pool (particularly exchange rate and
apparent T2) can only be considered indicators of their true values or of the underlying
physics, since the shape is not representative of the entire pool shape. When fitting
the z-PSO throughout this thesis, the University of Nottingham High Performance
Computer is used, implementing 100 1GB cores with classical x86 hardware.
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Figure 4.1.2: Flowchart showing the stages of the z-PSO.

4.1.3 Optimisation of PSO parameters for z-spectrum

fitting

There are two important questions to ask ourselves when using the PSO: how many
iterations do we need, and how many particles do we need? The first of these questions
is answered by simple observation. After repeated fitting of sample z-spectrum data it
was observed that the solution usually did not improve after around 150-190 iterations,
and so for confidence the number of iterations was fixed at 250, and no sample tested
has needed more than this to converge on a solution.

123



4.1. PSO DESIGN AND IMPLEMENTATION

The second question is more complex. Surprisingly there is apparently no literature
advising users of PSO how many particles to use, so investigations were performed
to determine this. We can intuitively discern that the number of particles needed to
adequately search a variable space must be proportional to the number of particles
searching across one variable to the power of the number of variables. For clarity on
this, we can visualise a 3-dimensional variable space as shown in Figure 4.1.3, housing
one particle per segment.

Figure 4.1.3: 3D variable space divided so that 3 particles are searching each dimen-
sion, making 27 particles total.

Here we can imagine a line across a cube face as 1 dimension, we would need 3
particles to search each section of this one-dimensional space. If we then extend to
the cube face, we need 32 = 9 particles to search 2 dimensions to an equal degree,
and for the whole cube 33 = 27 particles are required to maintain the same degree
of swarm coverage. This makes it clear as to why fitting each pool in the z-spectrum
individually is much more effective than fitting all pools simultaneously; for a 6 pool
model we have 22 parameters that need to be fit, and N6 + 4N4 << N22 where N is
an integer greater than 1, representing the number of particles in the swarm.

To test for the optimal number of particles, sample z-spectra acquired from cerebral
grey matter were fitted to a 6 pool model (free water, MT, amides, NOE(-3.5ppm),
NOE(-1.7ppm), and amines). The dataset comprised of 312 data points: 63 off-
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resonance frequencies acquired at 5 saturation powers. Fits were run with varying
number of particles and the sum of squares difference between the real data and
simulated spectra created from the fitted results was used as a metric to determine
goodness of fit. Computation time was also considered as a factor. The results of this
test are displayed in Figure 4.1.4.

Figure 4.1.4: Results of fit dependency on number of particles.

The test reveals a linear relationship between time taken for the fit to complete and
number of particles used as expected (coincidentally roughly one particle per second).
The sum of squares difference declined exponentially with increasing number of par-
ticles, showing drastic initial improvements in the fit and then diminishing returns
beyond 1000 particles. Interestingly the fit using one particle is analogous to using
simple least-squares fitting techniques.

The next test was to determine whether repeated sets of smaller swarms could be
used to find solutions as accurately as one large swarm. The advantage of this would
be that smaller swarms could be run simultaneously to drastically reduce total fitting
time. Fits containing smaller numbers of particles were repeated so that the number
of particles multiplied by the number of repeats was equal to 100,000 (for example
the 1000 particle fit was repeated 100 times). The best fit from all of the repeated

125



4.1. PSO DESIGN AND IMPLEMENTATION

measurements was then taken for each swarm size. Results of this test are displayed
in Figure 4.1.5.

Figure 4.1.5: Results of fit dependency on number of particles, with smaller swarms
repeated proportionally to the inverse of their population size.

We can see that increasing the swarm size has little effect on the computation time,
and for more than one particle the goodness of fit does not change, showing that even
the smallest of swarms are better at finding the solution than a series of individual
particles. Interestingly here, one particle repeated 100,000 times is analogous to simple
least-squares fitting methods with multiple starting points, showing just how powerful
the collective intelligence of even small swarms is. It is unclear as to why the 100,000
particle fit took 9000s as opposed to around 6000s like the other trials, however this
fit was performed on a different day to the others, so it is possible that system updates
may have increased computation speed.

Further investigation into one of these results reveals that this number of repeats
appears appropriate for this problem. Figure 4.1.6 shows the 100 individual repeat
results for the 1000 particle fits. The z-PSO improves on the first attempt twice:
once after 5 fits, and once after 63 fits. No fits after this are close to improving
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on this particular fit. The University of Nottingham High Performance Computing
system allows for a maximum of 400 parallel computations per user, and therefore by
utilising the 100 repeats of 1000 particle swarms, we can fit 4 z-spectra datasets at
once, taking the time required to perform one 1000 particle fit, which is roughly 16
minutes.

Figure 4.1.6: Results of the 1000 particle swarm fits, repeated 100 times. The orange
line displays the best overall fit updated after every repeat. We can see that during
the course of the 100 repeats, there were two repeats which yielded improvements
over the best previous fit.

4.2 Testing sensitivity of the z-PSO

Once the z-PSO fitting approach had been optimised, analysis was performed to
determine how accurate and precise the solutions were. To do this, z-spectra were
simulated using the Bloch-McConnell equations for a range of pool sizes, exchange
rates, and apparent T2s for firstly a CEST pool, and secondly an underlying MT pool.
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Noise was added to these simulated spectra which were then fitted. This was repeated
ten times and the resulting parameters were compared to the simulated values, to
identify regions where the z-PSO was incapable of performing well.

4.2.1 CEST fitting

In order to test the feasibility of fitting CEST pools, z-spectra were simulated with
one exchanging pool located at +3.5ppm, sampled at 63 off-resonance frequencies
and 5 saturation powers. 27 datasets were simulated, with combinations of small,
medium and large pool size (0.1%, 0.5%, and 1.0%), slow, medium and fast exchange
rate (10Hz, 100Hz, and 1000Hz), and short, medium and long T2 (1ms, 10ms, and
100ms). Simulated datasets are shown in Figure 4.2.1.

For each of the ten trials, 0.5% Gaussian noise was added to each of the data points
in the simulated spectra, representative of noise seen during experimental z-spectrum
acquisition. Figure 4.2.2 shows the fitted pool size for each of the datasets. The
colour used for the error bars indicates the percentage error on the mean compared
to the expected value (shown by the red dotted line). We can see that the z-PSO can
struggle at very low exchange rates, particularly when the pool size in question is also
small.

Figure 4.2.3 shows the results of fitted exchange rate for each of the datasets. We
can see again that for very slow exchange rates the z-PSO can struggle to find the
correct answer, especially at longer apparent T2s. However, when considering that an
error of 100% on an exchange rate of 10Hz tells us that the exchange rate is between
0-20Hz, the information provided is still useful.

Figure 4.2.4 shows the results of fitted T2,c for each of the datasets. We can see
that longer T2s are difficult to fit. This is consistent with section 2.2.2 which showed
that there is little noticeable difference in the shape of the z-spectrum beyond a T2 of
around 20ms for an exchanging pool. A similar lack of sensitivity to T2,c was found for
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Figure 4.2.1: Simulated z-spectra with a range of CEST pool sizes, exchange rates,
and apparent T2s.

all areas the z-PSO fails to fit accurately, as can be seen in Figure 4.2.5, which shows
the overlaid spectra simulated from the results of the trial fits as solid lines, with the
original noiseless datasets as red ’x’s.
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Figure 4.2.2: Variation in fitted value of the CEST pool size for varying pool sizes,
exchange rates, and T2s. The red dotted line shows the actual value used when
simulating the spectra, and bar colour shows the percentage error of the mean fitted
data compared to the target value.
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Figure 4.2.3: Variation in fitting CEST exchange rate for varying pool sizes, exchange
rates, and T2s. The red dotted line shows the actual value used when simulating the
spectra, and bar colour shows the percentage error of the mean fitted data compared
to the target value.
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Figure 4.2.4: Variation in fitting CEST apparent T2 for varying pool sizes, exchange
rates, and T2s. The red dotted line shows the actual value used when simulating the
spectra, and bar colour shows the percentage error of the mean fitted data compared
to the target value.
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Figure 4.2.5: Overlaid fits created from the simulated results (solid lines) compared
to the original simulations (red ’x’s).
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4.2.2 MT fitting capabilities

A similar test was then performed to ensure that a) MT could be fitted accurately,
and b) the fitting of exchanging pools was not affected by other underlying pools.
Z-spectra were fitted using the same basic parameters, but this time using a 3 pool
model (free water, MT, and one CEST pool located at +3.5ppm). The values of
the CEST pool were fixed at M0,c = 1%, kc = 100Hz, and T2,c = 10ms, while the
values of the MT pool were varied between small, medium and large pool size (1%,
5%, and 10%), slow, medium and fast exchange rate (1Hz, 10Hz, and 100Hz), and
short, medium and long T2 (50µs, 100µs, and 200µs).

Results of fitting the MT pool size are displayed in Figure 4.2.6. The z-PSO fits the
data with very little error apart from at very slow exchange rates with small pool sizes.

Figure 4.2.7 shows the results of fitted MT exchange rate. The z-PSO struggles to
fit the exchange rate correctly when there is very little MT present.

Figure 4.2.8 shows the results of fitted T2,b for each of the datasets. Again the z-PSO
only struggles when there is little MT present, and even then only at slow exchange
rates.

Figure 4.2.9 shows the overlaid spectra simulated from the results of the trial fits
as solid lines, with the original noiseless datasets as red ’x’s, showing again that the
z-PSO fits the spectra very well, and only struggles when changing the parameters
would not affect the shape of the z-spectrum, meaning the pools are impossible to fit
further without additional data.

To check that the presence of the MT pool is not biasing the CEST results, Figure
4.2.10 shows the results of the fitted CEST pool for each of the datasets, showing
variation in M0,c, kc, and T2,c.
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Figure 4.2.6: Variation in fitting MT pool size for varying pool sizes, exchange rates,
and T2s. The red dotted line shows the actual value used when simulating the spectra,
and bar colour shows the percentage error of the mean fitted data compared to the
target value.
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Figure 4.2.7: Variation in fitting MT exchange rate for varying pool sizes, exchange
rates, and T2s. The red dotted line shows the actual value used when simulating the
spectra, and bar colour shows the percentage error of the mean fitted data compared
to the target value.
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Figure 4.2.8: Variation in fitting MT apparent T2 for varying pool sizes, exchange
rates, and T2s. The red dotted line shows the actual value used when simulating the
spectra, and bar colour shows the percentage error of the mean fitted data compared
to the target value.
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Figure 4.2.9: Overlaid fits created from the simulated results (solid lines) compared
to the original simulations (red ’x’s).
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Figure 4.2.10: Variation in fitting the a) pool size, b) exchange rate, and c) T2 of
the CEST pool when underlying MT is present, showing that including an underlying
MT pool in the fit does not cause systematic or random errors in the fitting of CEST
pools.

4.3 Quantification of the z-spectrum of
creatine phantoms

To validate the z-PSO using real data, creatine phantoms were used, as creatine has
been shown to have a strong CEST signal resonating at +2.0ppm [9]. Three creatine
phantoms were created by dissolving 1g of creatine in 100ml of water. This solution
was then split into three and buffered to pH 5.5, 7.0, and 8.5 respectively using
phosphate buffer solution. Solutions were tested using pH strips (Simplex Health) to
ensure they closely matched the targeted pH. 6ml of each solution was then extracted
and placed in a sealed test tube to create the three phantoms. By varying both the
pH and temperature of creatine in solution, we should be able to observe a change in
exchange rate.

4.3.1 Z-spectrum acquisition at 7T

The three phantoms were placed in a water bath connected to an external heat pump,
and the water bath was placed inside a NOVA 8ch pTx head coil inside a 7T Achieva
system. The heat pump remained outside of the scanner room due to its metallic
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components, and plastic tubes were passed through a hole in the wall connecting it
to the water bath. The water bath was heated to 40◦C before scanning.

As we were unable to perform CW saturation, instead we used semi-CW saturation,
as described in section 2.3.1. In order for this to be an acceptable replacement, we
must first ensure that the RF output from the odd and even channels are matched.
Following a survey scan of the sample, two B1 maps were acquired, one using only
the odd channels and one using only the even channels. The RF power in a central
region of interest in the sample was compared between the two maps, and individual
channels could be tuned so that the RF power matched. If necessary, a set of two
repeat maps was acquired until the RF power from the odd channels was equal to the
RF power from the even channels, within a 5% margin.

Once the coils had been appropriately tuned, B0 and B1 maps of the sample were
acquired. The water bath was then switched off and allowed to settle for 2 minutes,
as it was found that flow around the samples affected the signal in the z-spectrum.
Z-spectra were acquired at 64 off-resonance frequencies between ±100, 000Hz with a
3 second saturation train comprised of 60 alternating odd / even blocks of 50ms, and
a voxel size of 1x1x3mm (with the longest dimension aligned with the test tube). 3
z-spectra were acquired, at a B1,max of 0.5µT, 1.0µT, and 1.5µT, with the acquisition
of each spectrum taking under 10 minutes (3s saturation, 1.7s readout, 4.3s recovery
for each acquired point on the z-spectrum). Between each z-spectrum acquisition,
the water pump was temporarily switched back on to heat the water bath back to
40◦C, as the bath usually cooled by 1− 2◦C during each acquisition, before switching
it off and allowing the water to settle again. After acquiring these three z-spectra, the
water bath was cooled to 30◦C and the three z-spectra were re-acquired in the same
way. This was repeated at 20◦C and finally at 10◦C.

After acquisition, each of the 12 spectral images were processed using in-house func-
tions written in MATLAB [6]. Each of the three phantoms were masked to produce
12 datasets of varying pH and temperature, each comprising of three z-spectra at dif-
ferent saturation powers. The first acquired point in each z-spectrum was discarded,
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as we found in practice this point always had a lower signal than the next acquired
point at the same offset frequency, potentially due to the system still approaching the
steady-state. These datasets were then B0 corrected by shifting the z-spectrum in
each pixel by the value of the field offset in the corresponding pixel in the acquired B0

map. Finally, z-spectra were normalised by dividing each point in the z-spectrum by
the point acquired at +333ppm. It was assumed that this signal is equivalent to the
sample after no saturation (S0), as there are no exchanging pools to be saturated this
far off resonance. Figure 4.3.1 shows the processed spectra acquired from the three
creatine phantoms at varying temperature.

Figure 4.3.1: Z-spectra from three creatine phantoms at varying pH, acquired at a
range of temperatures, with a saturation power of 0.5µT (red), 1.0µT (magenta),
and 1.5µT (blue).

4.3.2 Quantification results

These z-spectra were then fitted using the z-PSO adapted to a 2 pool model, with
the creatine peak position allowed to vary between +1.9ppm and +2.1ppm. The pool
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size, exchange rate, and apparent T2 of creatine were all given wide bounds. M0,c

was allowed to vary between 0− 5%, kc was allowed to vary between 1-5000Hz, and
T2,c was allowed to vary between 0.5-100ms. Results of this fit are presented in Table
3.3.1.

40◦C 30◦C 20◦C 10◦C

M0

(%)
k
(Hz)

T2
(ms)

M0

(%)
k
(Hz)

T2
(ms)

M0

(%)
k
(Hz)

T2
(ms)

M0

(%)
k
(Hz)

T2
(ms)

pH
5.5

0.57 797 >100 0.44 270 39.1 0.26 226 24.3 0.19 61 76.6

pH
7.0

0.18 729 >100 0.19 345 >100 0.19 192 93.0 0.10 117 14.7

pH
8.5

0.19 905 >100 0.20 360 >100 0.18 255 17.2 0.17 79 96.6

Table 4.3.1: Results of fitting z-spectra from creatine phantoms

All of the T2,c fits hit the upper bounds, since as we have shown previously in this
"long T2,c" regime, variations in T2,c do not affect the shape of the z-spectrum and so
are undetectable. The M0,c values are all expected to be roughly the same, however
there are certain areas where the fit differs from the most commonly measured 0.2%

(it is difficult to calculate what the ’true’ value should be due to packing of molecules
and availability of proton exchange sites). For example in the pH 5.5 phantom at
40◦C the M0,c is clearly too high, however we have shown that there is not enough
information for a reliable fit at such short exchange rates.

Figure 4.3.2 shows exchange rate variation with temperature in each of the pH phan-
toms. We can see clear differences in exchange rate with temperature here, however
we cannot separate pH values using this particular dataset. This could potentially be
achieved by scanning phantoms with a higher creatine content.

Recent work has demonstrated that the presence of phosphates catalyses CEST agents
[10]. This results in the altering of the visible CEST contrast, as in this case the
exchangeable amine protons present in creatine may be preferring to exchange with
the PBS, therefore obscuring some of the CEST contrast which would be visible

142



4.3. QUANTIFICATION OF THE Z-SPECTRUM OF CREATINE
PHANTOMS

Figure 4.3.2: Exchange rate variation with temperature, following a roughly exponen-
tial decline. Different pHs do not display a discernible difference in exchange rate.

through exchange with free water. This may be the reason why there is no discernible
difference between the CEST contrast at different pH levels.

This section has applied the z-PSO fitting method to real data, with successful results.
While pH was unable to be determined through exchange rate fitting, the creatine
exchange rate follows a roughly exponential decline with temperature, which is as
expected as defined by the Arrhenius equation stated previously in section 2.2.2.
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4.4 Quantification of in vivo cerebral grey
and white matter

The human brain is an area of great interest when it comes to z-spectroscopy, due to
the fact that it contains a range of CEST sensitive metabolites, and also pH sensi-
tive changes are often indicative of serious physiological conditions such as ischaemic
stroke [11]. Attempts to quantify the z-spectrum in the human brain have been made
previously using some of the quantification methods described in section 2.5. For
example, using the look-up table described in section 2.5.2 and used in chapter 3,
the MT, amide, and NOE(+3.5ppm) pool size has been quantified for both grey and
white matter [12]. Another study using a trust-region-reflective algorithm to quantify
all three parameters for MT, amide, and NOE pools finds somewhat similar results
[13]. However the authors concede that by using a trust-region-reflective algorithm
their solutions are biased by their initial guesses. Table 3.4.1 shows a summary of the
results published in these two studies.

4.4.1 Acquisition and post-processing of spectra

Following local ethical approval, 6 healthy volunteers (4 female, age 24±1 years) were
recruited for the study. Subjects were scanned in a 7T Achieva system using a NOVA
8ch pTx head coil, and the same tuning steps used to match the RF output on the odd
and even channels was followed. B0 and B1 maps were acquired as before. Z-spectra
were acquired using the same settings as for the creatine phantoms, except with
different B1 values used for the saturation train. Here 5 spectra were acquired with a
B1 of 0.33, 0.67, 1.00, 1.33, and 1.67µT respectively. Subjects were encouraged to
watch television during the scan, partly to alleviate boredom over the 60 minute scan
time, but also because there have anecdotally been reports that watching television
reduces head motion (this has been proven in children under the age of ten [14]). This
was achieved by the subject wearing periscopic glasses allowing them to see out of
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MT Amides NOE

M0 (%)

GM
Geades 4.4 ± 0.4 0.20 ± 0.02 3.0 ± 0.1

Liu 3.462 ± 0.42 0.25 ± 0.05 1.18 ± 0.16

WM
Geades 8.9 ± 0.3 0.21 ± 0.03 5.0 ± 0.1

Liu 6.18 ± 0.43 0.22 ± 0.04 2.39 ± 0.22

k (Hz)

GM
Geades Fixed at 50 Fixed at 200 Fixed at 10

Liu 63.48 ± 4.5 281.93 ± 0.87 24.5 ± 1.65

WM
Geades Fixed at 50 Fixed at 200 Fixed at 10

Liu 67.5 ± 6.98 281.21 ± 0.6 27.45 ± 2.18

T2 (ms)

GM
Geades Fixed at 0.009 Fixed at 10 Fixed at 0.3

Liu 0.10428 ± 0.00380 28.54 ± 7.14 402.7 ± 25.48

WM
Geades Fixed at 0.009 Fixed at 10 Fixed at 0.3

Liu 0.0838 ± 0.0015 22.7 ± 5.8 0.3180 ± 0.0073

Table 4.4.1: Literature results of fitted z-spectra parameters [12, 13].

the bore and look at a projection screen. Figure 4.4.1 shows sample spectral images
acquired from one of the subjects at 1.67µT. A high resolution T1 weighted anatomical
image was also acquired for motion correction purposes.

Figure 4.4.1: A central slice of the spectral images acquired from one subject at
1.67µT, with corresponding frequency offset in ppm displayed underneath.
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After acquisition, spectral images were motion corrected using the MCFLIRT tool in
FSL [15, 16, 17], which transforms the spectral images so that they are mapped onto
the first acquired spectral image, meaning that motion between z-spectral images
acquired is minimised. Spectral images were then motion corrected using FLIRT

(FMRIB’s Linear Image Registration Tool), which transformed the spectral images so
that they were in the same image space as the high resolution anatomical image. This
anatomical image was then masked using FAST (FMRIB’s Automated Segmentation
Tool) [18], to create high resolution grey matter and white matter masks. If a pixel lay
on the boundary between grey and white matter, it was excluded. These masks were
then applied to the spectral images, which were B0 corrected and averaged using in-
house MATLAB code, to create an average grey matter and an average white matter
set of spectra for each subject. These spectra are displayed in Figure 4.4.2.

The grey matter and white matter masks were then applied to the B1 map and
averaged to give an average value of B1 inhomogeneity in the grey matter and white
matter of each subject. This is later multiplied by the targeted RF powers to give the
true B1 values of each spectrum.

4.4.2 Quantification results

The grey matter and white matter spectra for each subject were fitted using the z-PSO
adapted to a six pool model comprising of free water (0ppm), MT (-2.34ppm), amides
(+3.5ppm), amines (+2.0ppm), NOE (-3.5ppm), and a second NOE (-1.7ppm). This
was decided based on the observable peaks in the acquired spectra.

Table 4.4.2 shows the results of fitting these spectra. The values in this table are
averaged across subjects, and the error stated is the standard deviation of the fitted
values across subjects.

Figure 4.4.3 shows the results of fitting the MT pool in grey matter and white matter
for each subject, and the results of the two tailed t-test between the two. There is a
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Figure 4.4.2: Averaged spectra from a) GM, and b) WM voxels in each subject

significant difference between MT pool size in grey matter and white matter.

Figure 4.4.4 shows the results of fitting the amide pool in grey matter and white matter
for each subject, and the results of the two tailed t-test between the two. There are
no significant differences here between grey matter and white matter. One T2,c value
in subject 4’s white matter appears to have fit poorly, which skews the mean result in
table 4.4.1.

Figure 4.4.5 shows the results of fitting the amine pool in grey matter and white
matter for each subject, and the results of the two tailed t-test between the two.
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There are no significant differences here between grey matter and white matter.

Figure 4.4.6 shows the results of fitting the NOE pool located at -3.5ppm in grey
matter and white matter for each subject, and the results of the two tailed t-test
between the two. There are no significant differences here between grey matter and
white matter. Again one T2,n value in subject 6’s grey matter appears to have fit
poorly.

Figure 4.4.7 shows the results of fitting the second NOE pool located at -1.7ppm in
grey matter and white matter for each subject, and the results of the two tailed t-test
between the two. There is a significant difference between the NOE(-1.7ppm) pool
size in grey matter and white matter. One kc value in subject 5’s grey matter appears
to have fit poorly.

Figure 4.4.8 shows the fitted spectra in a) grey matter, and b) white matter, showing
that the z-PSO has accurately fitted the acquired spectra, and values which appear
to have fit poorly are likely down to noise in the acquired data rather than poor
performance of the z-PSO.

MT Amides Amines NOE
(-3.5ppm)

NOE
(-1.7ppm)

M0 (%)
GM 5.32 ± 0.30 0.18 ± 0.07 0.30 ± 0.50 0.26 ± 0.05 0.04 ± 0.01

WM 7.25 ± 0.49 0.10 ± 0.06 0.85 ± 0.89 0.42 ± 0.05 0.03 ± 0.01

k (Hz)
GM 6.96 ± 2.85 136 ± 97 74 ± 106 65 ± 59 317 ± 265

WM 7.37 ± 2.43 354 ± 342 46 ± 75 38 ± 10 200 ± 54

T2 (ms)
GM 0.0091 ± 0.0015 0.51 ± 0.03 4 ± 6 0.90 ± 0.16 13 ± 23

WM 0.080 ± 0.008 17 ± 41 12 ± 12 0.81 ± 0.05 3.7 ± 1.4

Table 4.4.2: Fitted values averaged across subjects ± one standard deviation.
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Figure 4.4.3: Results of fitting the MT pool in each subject for grey matter and white
matter.

Figure 4.4.4: Results of fitting the amide pool in each subject for grey matter and
white matter
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Figure 4.4.5: Results of fitting the amine pool in each subject for grey matter and
white matter

Figure 4.4.6: Results of fitting the NOE pool located at -3.5ppm in each subject for
grey matter and white matter
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Figure 4.4.7: Results of fitting the second NOE pool located at -1.7ppm in each
subject for grey matter and white matter

4.4.3 Discussion

The results of this fit agree with previous results in some areas and disagree in oth-
ers. The MT pool size is slightly above that reported by Geades [12] or Liu [13] as
mentioned previously, but there are reports of MT pool size being measured as 10%

[19, 20] or higher [21, 22]. These latter two studies use two pool models, and there-
fore are inclined to overestimate the MT pool size by also measuring the NOE pool
in their MT measurement. We confirm previous findings that MT pool size is higher
in white matter than in grey matter [12, 13], which is primarily due to white matter
being more heavily myelinated than grey matter.

Our amide results agree with Liu [13], although admittedly with a higher variance in
the exchange rate between subjects. This may however reflect that their results are
influenced by their starting points using the trust-region-reflective algorithm. Else-
where the exchange rate of the amide pool has been quoted as 616 ± 29Hz in grey
matter and 575± 20Hz in white matter [23], and in a separate study as 365± 23Hz
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Figure 4.4.8: Fitted spectra for each subject in a) grey matter, and b) white matter.

in grey matter and 162 ± 20Hz in white matter [24]. There has been less work on
quantification of the NOE(-3.5ppm) pool, however our pool size fraction is around ten
times smaller than that reported by Geades [12] or Liu [13], although our exchange
rate and T2,n measurements are comparable.

The second NOE pool located at -1.7ppm is of particular interest. It has not previ-
ously been fully quantified in the human brain. Here we show that the pool size is
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significantly higher in white matter than grey matter. It has been speculated that this
may be indicative of mobile membrane proteins [25], but further work is needed to
work out exactly where this signal arises from in the human brain.

4.5 Limitations of the z-PSO

Particle Swarm Optimisation is advantageous over other fitting methods, as it reduces
the number of prior assumptions that need to be made about the system. There are
however some limits in how we can use the z-PSO, and some assumptions that we are
forced to make which may bias the results.

4.5.1 Practical limitations

The main issue with the z-PSO is the same as any other fitting method, in that we need
to know the peaks we are fitting for. This becomes more complex in living tissue where
there are many CEST sensitive metabolites present. If we simply include more and
more pools, we risk overfitting to the point where the results become meaningless.
Conversely if we use too few pools, the z-PSO will try to stretch out the fitted
Lorentzians to cover as many of the missed pools as possible, artificially shortening
the T2 of the measured exchanging pool. The most appropriate way we have found is
simply to fit for the peaks we deem visible with the human eye in the acquired spectra,
although with this method we must be aware that we may actually be measuring a
superposition of underlying CEST pools, regardless of the fitting method used. In
addition to this, depending on the size of the ROI fitted over, it should be noted that
exchange rate may vary both spatially and temporally due to physiological changes in
both pH and temperature.

The other practical limitation of the z-PSO using this minimisation function is that we
must acquire our z-spectra using a saturation train resembling CW saturation. This is
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necessary as in the fitting algorithm the z-spectra must be simulated for every particle
per every iteration. If we were to extend the z-PSO to fit spectra acquired through
pulsed irradiation, this would extend computation time to an unfeasible degree, as
we would have to simulate spectra using equation 2.2.7, which, as detailed in section
2.2, is an arduous calculation due to the matrix exponential which must be solved.
However, one study has shown that pulsed irradiation may be a suitable alternative to
CW saturation when measuring samples containing only slow exchanging pools [26].

4.5.2 The MT lineshape problem

We know that the MT lineshape is Lorentzian around the centre [8], however this
does not hold true beyond ±10ppm. We tested various lineshapes to try to find a
better fit to the MT lineshape, however we found that a Lorentzian, super-Lorentzian,
Gaussian, and a superposition of two Lorentzians all had equally poor fits away from
resonance.

To test this further, the results of one of the grey matter fits were simulated, but with
the MT pools size set to zero, to create an MT-free spectrum. This was subtracted
from the actual data to leave only the MT lineshape. As Figure 4.5.1 shows, this was
then fitted with an increasing number of summed Gaussians to see what it would take
to fit this shape.

A superposition of five Gaussians was found to fit the MT lineshape, however fitting
this number of shapes is essentially meaningless as too many new parameters have
been introduced in order to force the shape to fit.
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Figure 4.5.1: The MT lineshape in grey matter, with one to six summed Gaussians
fitted to the data.

4.6 Summary

This chapter has introduced the z-PSO: a novel method of quantifying the z-spectrum
by adapting the direct solutions to the Bloch-McConnell solutions under continuous
wave saturation to a Particle Swarm Optimisation algorithm. This has been optimised
for z-spectrum fitting, and tested on creatine phantoms and in vivo cerebral grey and
white matter. Results from the grey matter and white matter fitting largely agree
with previous results, while reporting new findings of interest, particularly information
about the NOE peak located at -1.7ppm in the human brain. The z-PSO is especially
useful for rigorous analysis of z-spectra, however for large sample sizes simpler fitting
methods with shorter computation time may still be preferred.
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Chapter 5

Measuring physiological changes
in human blood via the
z-spectrum

As blood is present in almost every organ of the body, understanding the z-spectrum
which arises from blood is of great importance when performing in vivo z-spectrum
imaging, as some component of this spectrum will be present in most biological tissues.
This chapter aims to explore and characterise the signals which arise from human
blood, by using the z-PSO to fit z-spectra obtained from ex vivo human blood. This
is taken further by exploring the feasibility of measuring endogenous and exogenous
compounds in blood using CEST contrast, first by investigating the possibility of
measuring blood glucose levels, and then by expanding on previous work measuring
pH using the CEST contrast of Iopamidol solution by adding this compound to human
blood and attempting to measure its pH ex vivo.
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5.1 CEST and NOE signals in human
blood

In order to better understand the z-spectrum of human blood, we must first determine
which CEST and NOE signals occur in the spectrum. This is tricky, as all current
fitting methods require the pools present to be known beforehand, and also because
the effect of coalescence means that different pools can combine to produce z-spectra
of very similar shapes. This section aims to determine the most likely composition
of the human blood z-spectrum by fitting a variety of pools to z-spectra acquired
at various saturation powers in an attempt to separate components with different
exchange rates using the z-PSO. The assumption here is that the best fit is most
likely to be the correct one, using the sum of squares difference between the fitted
spectrum and the acquired spectrum as a means of assessing goodness of fit.

5.1.1 Z-spectrum acquisition

Following ethical approval from the University of Nottingham Ethics Committee, a
6ml blood sample was taken from a healthy 24 year old male volunteer and deposited
in a vacutainer containing heparin, which is an anticoagulant. A drop of this blood
sample was removed and deposited into an i-STAT CHEM8+ test cartridge (Abbot
Point of Care Inc.) to measure the haematocrit level of the sample along with relevant
molecules.

The tube was fixed into a perspex holder, which could be placed in a purpose-built
rotary water bath. The water bath was made to be a cylindrical shape with a diameter
of 140mm, in order to fit inside the 7T head coil. One end of the cylinder had a notch
in which a pole could be placed, so that the user could rotate the water bath using
the pole while the sample was in the magnet bore, to avoid the blood settling and the
plasma separating from the concentrated red blood cells. This end of the water bath
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also had a water inlet and outlet through which rubber pipes could be affixed. These
were connected to a water pump outside of the magnet hall, which meant that water
could circulate through the water bath. This enabled us to keep the samples at 37◦C
throughout the scanning procedure, while frequently rotating the sample to prevent
the plasma and concentrated red blood cells from separating. The experimental setup
is shown in Figure 5.1.1.

Figure 5.1.1: Diagram of experimental setup to maintain sample temperature at 37◦C.

The blood sample was scanned using a 7T Achieva system with a NOVA 8ch pTx head
coil. Prior to scanning, the heat pump was set to 37◦C in order to mimic physiological
conditions. Once this temperature was reached, tuning of the odd and even channels
was performed as described in section 4.3.1, and B0 and B1 maps were acquired.

Initial testing showed that leaving the pump on during z-spectrum acquisition produced
flow artefacts in the images. To combat this, the heat pump was switched off and
the system was left to settle for 120 seconds. A z-spectrum was then acquired using
semi-CW saturation, with a 3 second saturation block comprised of sixty 50ms pulses
alternating on the odd and even channels, followed by a TFEPI readout scheme [1, 2]
with a duration of 1.7s, which was chosen to balance image quality with acquisition
speed.

The TFEPI sequence modifies the standard TFE sequence described in section 1.4.6
by adding in a portion of EPI-like gradient switching to speed up acquisition. As
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shown in the pulse sequence diagram in Figure 5.1.2, an RF pulse is applied before
strong negative gradients are applied in the phase and frequency encoding directions.
A positive gradient is applied in the frequency encoding direction, but then instead
of returning to the centre of k-space after one line is acquired, the phase encoding
gradient is ’blipped’ on in the positive direction, and a negative gradient is applied
in the frequency encoding direction, acquiring another line of k-space. The number
of lines of k-space acquired per shot is termed the EPI factor. For example, if the
EPI factor was 5, then five lines of k-space would be acquired after a single RF pulse,
before the process was repeated acquiring a different portion of k-space. Increasing
the EPI factor reduces scan time but increases EPI artefacts such as image distortion.

Figure 5.1.2: a) TFEPI scan sequence, and b) TFEPI traversal of k-space.

For this experiment an EPI factor of 11 was chosen after initial testing to determine
the maximum possible EPI factor which did not severely affect image quality. A ’half-
scan’ factor of 0.8 was also employed, meaning that only 80% of k-space was acquired
due to its inherent conjugate symmetry [3]. The total saturation and readout time
was 4.7s, however a TR of 9 seconds was chosen to reduce the degree of saturation
from the previous acquisition being carried over to the subsequent one. It is likely
there was some residual saturation at the end of each TR, but this was mitigated
by acquiring the two start up scans at the beginning of each spectrum which were
discarded from further analysis. After these start up scans, it is likely the amount of
saturation at the end of the long FFE readout train was dominated by the readout
pulses (rather than prior off-resonance saturation of the water signal), and so the
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longitudinal magnetisation prior to saturation reached a steady state regardless of the
position in the z-spectrum. The order of off-resonance frequencies that were acquired
was such that the outermost frequencies were acquired first, alternating between pos-
itive and negative, before progressing further towards the centre and ending on the
water resonance, which allowed the power output of the system to stabilise. 64 off-
resonance frequencies were acquired in total, and acquisition of the full z-spectrum
took just under ten minutes.

Once the first z-spectrum had been acquired, the blood sample was rotated in the
water bath to prevent the red blood cells from separating from the plasma, and
the heat pump was switched back on until the system returned to 37◦C. The heat
pump was then switched back off and left to settle for a further 120 seconds, before
another z-spectrum was acquired. This process was repeated until 5 z-spectra had
been acquired, with saturation pre-pulses of 0.33µT, 0.67µT, 1.00µT, 1.33µT, and
2.00µT respectively.

After scanning had been completed, the blood sample was once again analysed using
an i-STAT CHEM8+ test cartridge to explore if the sample had been affected by
being held ex vivo for the duration of the scan time. The haematocrit level remained
constant at 45%, which is in line with the literature values of between 42.5% and
47.4% reported for healthy males [4, 5, 6, 7, 8, 9], and the blood-glucose level dropped
from 2.7mMol/L to <1.1mMol/L (less than the lowest permitted value measurable by
the i-STAT cartridges) over the course of the scan. The starting blood-glucose level
was less than the average of 5.5mMol/L [10], however the subject had unintentionally
fasted for 12 hours prior to blood collection. As a point of interest, this value is on the
threshold of being considered as hypoglycemia (low blood sugar) [11], however this
value is not a cause for concern under these circumstances in non-diabetic subjects,
and also the i-STAT test does not have a stated margin of error (its degree of precision
is 0.1mMol/L, however of course the device may be less accurate than this in practice).
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5.1.2 Correcting the z-spectrum due to system-

atic errors

The z-spectrum acquired from the ex vivo human blood sample was corrected for B0

inhomogeneities using the acquired field map, as described in section 4.3.1. Upon
further analysis, it was evident that a systematic acquisition error had altered the
results, where the signal from some of the higher saturation powers was greater than
the signal from some of the lower saturation powers in the wings of the spectrum,
which is physically impossible. This is illustrated in Figure 5.1.3.

Figure 5.1.3: The z-spectrum acquired from ex vivo human blood at 37◦C, viewed
a) between ±70ppm, and b) between ±10ppm, showing clear errors between ±(10-
70)ppm. Spectra acquired with saturation power of 0.33µT, 0.67µT, 1.00µT, 1.33µT,
and 2.00µT. Arrows indicate obvious errors in the acquired spectrum.
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As we can see from Figure 5.1.3, only points between ±10 to ±60ppm were affected
by this systematic error. The off-resonance frequencies were acquired furthest off-
resonance first and on-resonance last, alternating positive and negative frequencies,
and the spectra were acquired starting with the highest saturation power and finishing
with the lowest. There was also an extended period of time between acquisition
of the 1.33µT spectrum and the 1.00µT spectrum where field maps were acquired.
This suggests that the system (probably the RF amplifier) takes time to stabilise
and acquire the correct signal, causing inconsistent signals to be acquired initially,
and hence suggesting an explanation for why the most strongly affected frequencies
are those outside of ±10ppm in the 0.67µT spectrum and the 1.00µT spectrum. A
similar problem to this had previously been observed on the system, which is why
the acquisition of the far off-resonance frequency was acquired twice at the start of
each scan with the first of the two being discarded, however it appears in this case
the system took many more acquisitions before the data was acquired correctly. It
is evident that the signal arising from the central points between +7ppm to -7ppm
appears to have been acquired as would be expected, the spacing of the spectra
appears appropriate in this region.

In order to minimise the effects of this error, four options were considered. The first
of these was to simply discard points outside of ±7ppm, with the exception of those
acquired at ±100kHz (±333ppm) which were used for normalisation. This left a
spectrum with 49 points in each of the five z-spectra as opposed to the original 64.
The second option was to normalise the spectrum using the point acquired at -10kHz
(±33.3ppm), as from observation of the data it was assumed that no significant MT
pool was present and therefore no off-resonance pools would be located here. This
left a spectrum with 56 points in each of the five z-spectra. The third and fourth
options were to repeat these ideas but discarding the middle and highest saturation
power. The thought process behind this was that the z-spectra were acquired in order
of highest saturation power to lowest, but with around thirty minutes between the
acquisition of the second and third highest. This meant that if the system needed to
acquire a certain amount of off-resonance frequencies to allow the power output to
stabilise, these powers would be the most strongly affected by this systematic error.
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The resulting z-spectra from these options are displayed in Figure 5.1.4.

Figure 5.1.4: The amended z-spectra, a) discarding points between -70ppm to -
10ppm and +10ppm to +70ppm, b) normalising the z-spectra at -33.3ppm instead
of +333ppm, c) replicating (a) but with saturation powers of 1.00µT and 2.00µT
discarded, and b) replicating (d) but with saturation powers of 1.00µT and 2.00µT
discarded.

From these options it was decided that the dataset with five saturation powers nor-
malised at +333ppm with points outside of ±7ppm discarded would be used for
analysis. While the systematic error in normalisation remains, this was deemed closest
to a z-spectrum shape that might be expected. The reasoning for this was that firstly
the central points seemed to be accurate and unaffected by the error introduced by
pausing the acquisition, so fitting to five saturation powers yields much stronger re-
sults than fitting to three, and secondly the central datapoints seemed closer to what
we would expect when normalising to +333ppm. This is especially evident around -
3.5ppm where we would expect the largest NOE signal, as the signal at this frequency
from the z-spectrum acquired with a saturation power of 1.00µT appears to be very
low compared to where we would expect the spectrum, almost touching the 1.33µT
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spectrum. However the signal at -10ppm seems relatively high, suggesting reasonable
normalisation. Future work should involve acquiring more data to allow the amplifiers
to stabilise before acquiring the spectrum, and further work should be performed to
understand the variability in this systematic error.

5.1.3 Fitting the z-spectrum

The question of evaluating which exchanging pools are present is not a trivial one.
The task was split into two parts: identifying NOE pools and identifying CEST pools.
The MT contribution to the z-spectrum was assumed to be negligible, as previous
work has fitted a low AREX value of 0.05 for an MT pool offset at -2.4ppm acquired
at 0.9µT [12], and this may have been inflated by the presence of nearby NOE pools.

For the part of the experiment exploring the signals present upfield from the water res-
onance, four potential NOE signals were considered based on previous reports. These
were the most commonly reported NOE signal located at -3.5ppm [13] attributed to
tertiary aliphatic protons, the newly reported NOE signal located at -1.7ppm [14, 12]
attributed to mobile membrane protons, and NOE signals theorised to be located at -
2.25ppm and -2.75ppm [15], corresponding to primary and secondary aliphatic protons
respectively.

The spectrum was fitted using the z-PSO for all possible combinations of these pools,
leading to fifteen total fits. For every fitted pool, ten thousand particles were used,
and this was repeated 100 times, producing the equivalent of a 1 million particle fit.
Initially only the frequencies around the water resonance (-0.8ppm to +0.8ppm) and
the point far off resonance were used to fit values for the T1 and T2 of free water.
Each NOE pool was then fitted twice, once with an initial fit considering only the
points around the pool of interest, and the second fit considering all points in the
relevant half of the spectrum. Discarding the irrelevant CEST data points resulted in
five z-spectra each with 29 data points.
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A similar method was used for the CEST signals. Four possible CEST sources were
identified using literature and visual analysis of the z-spectrum. The first two of
these were the amide pool located at +3.5ppm, which is the most commonly reported
CEST signal [16], and glutamate, which produces an amine signal at +3.0ppm [17].
As these pools have only a singular resonance, they can be fitted as normal using a
single Lorentzian.

The other two CEST pools which were fitted here were more complex. The first of
these were the signals arising from glycosaminoglycans (GAGs) which have a dual
resonance located at +3.2 ppm and between +0.9ppm and +1.9ppm, the latter of
which is commonly assumed to have a maximum signal at +1.0ppm [18]. For this
pool two Lorentzians were required, with independent exchange rates and T2s, but
coupled pool sizes. Each GAG molecule contains three -OH groups and one -NH
group, therefore the pool size of the Lorentzian located at +1.0ppm must be three
times the pool size of the Lorentzian located at +3.2ppm. Human blood is known
to contain a variety of proteoglycans, which are molecules comprised of one or two
types of GaG chains bound to a protein molecule [19]. The final pool we fitted for
was glucose. We already knew that there was some glucose present in blood from
the i-STAT tests performed before and after the initial experiment. This pool is even
more complex as there are seven labile protons leading to four sources of CEST signal.
For clarity the structure of glucose is displayed in Figure 5.1.5. The first proton
resonates at +0.66ppm arising from the -OH group attached to the carbon atom not
in the pyranose ring. There are three at +1.28ppm arising from the three -OH groups
attached to the carbon atoms in the pyranose ring. There is one remaining proton
in a glucose molecule, but depending on the anomeric conformation of the molecule,
it can have a resonance of +2.08ppm if the molecule is in the form of α-glucose,
and +2.88ppm if the molecule is in the form of β-glucose [20]. This leads to four
Lorentzians located at the aforementioned off-resonance frequencies, with the pool
size ratios of each being 1 : 3 : AR : (1-AR) for +0.66ppm : +1.28ppm : +2.08ppm
: +2.88ppm, where AR is the anomeric ratio of α-glucose to β-glucose, usually taking
the value of approximately 0.36 at equilibrium [20].
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Figure 5.1.5: Chemical structure of α and β glucose. Protons labelled with superscript
1 resonate at +0.66ppm, protons labelled 2 resonate at +1.28ppm, protons labelled
3 resonate at +2.08ppm, and protons labelled 4 resonate at +2.88ppm.

CEST signals arising from pools such as creatine or glycogen were not considered as
they are known not to be present in blood. Creatine is located and broken down in the
muscles, into a waste product called creatinine, which is removed in the blood [21].

5.1.4 F -tests on NOE pools

The results of fitting the blood spectrum with only one NOE pool are displayed in
Figure 5.1.6, with the best fit displayed in green. Placing a pool at -2.75ppm fits the
best here, although it is evident from the spectrum that this is only the best fit because
it is better at satisfying the least sum of squares difference condition on average across
the whole spectrum. The fit of a pool located at -3.5ppm clearly appears to fit the
spectral features of interest best, but misses some points between 0ppm and -2ppm.

Figure 5.1.7 shows the results of fitting two NOE pools to the z-spectrum. We can
see that placing a pool at -3.5ppm and another at -1.7ppm fits the data well, both
when considering the sum of squares difference and the fit to known spectral features.
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Figure 5.1.6: The z-spectrum acquired from ex vivo human blood fitted with a single
NOE pool. Pool positions indicated with blue marker on x-axis. The fit with the least
sum of squares difference with the acquired data is displayed in green. Points between
+0.8ppm and +7ppm were ignored for this fit.

Figure 5.1.8 shows the results of fitting three NOE pools to the z-spectrum. Adding
in a pool at -2.75ppm produced the best fit.

Finally, Figure 5.1.9 shows the results of fitting all four of the NOE pools to the z-
spectrum. We can see overfitting in some areas, particularly on the -1.7ppm pool for
the lowest power.

In order to determine whether the inclusion of additional pools resulted in a statistically
significant increase in goodness of fit, the F -test for nested models was used. Here
the residual sum of squares difference between the data and the fitted models are
compared to calculate the F statistic. We can express this using the equation
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Figure 5.1.7: The z-spectrum acquired from ex vivo human blood fitted with two
NOE pools.

F = (
SSq1 − SSq2

p2 − p1

)/(
SSq2

n− p2

) (5.1.1)

where SSq1,2 is the residual sum of squares difference of model 1 and 2 respectively,
p1,2 are the number of parameters in model one and two respectively, and n is the
number of data points. In this particular case, the number of parameters is the number
of fitted pools, and the number of data points is 145, 29 for each of the 5 acquired
spectra.

This F statistic is then compared to an F distribution table [22]. The relevant value is
located in the table under a numerator of p2−p1, and a denominator of n−p2. Because
most F distribution tables only give results for denominators in set increments, a value
of 200 was used for the denominator. This is only a marginally less accurate test than
using the correct denominator, as the value of the F statistic follows an exponential
decline with increasing denominator.

Table 5.1.1 shows the results of the F -tests for the best fitting spectra for each
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Figure 5.1.8: The z-spectrum acquired from ex vivo human blood fitted with three
NOE pools.

Figure 5.1.9: The z-spectrum acquired from ex vivo human blood fitted with all four
considered NOE pools.
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number of pools fitted to the data. For this test, an F statistic greater than 3.89
passes the F -test with p<0.05, and an F statistic greater than 6.76 passes the F -test
with p<0.01. A positive F -test result indicates that the specified number of pools
yields a significantly better fit than the previous model, so for example if fitting with
four pools gave a positive result, this indicates that it is more appropriate to fit the
data with four pools than three pools, and so forth.

Number of
NOE pools

Sum of squares
difference

F -test result

1 0.16675 N/A

2 0.15825 7.6773*

3 0.16067 -2.1366

4 0.16178 -0.9677

Table 5.1.1: F -test results of fitting NOE pools. Values marked * pass the F -test
with a threshold of p<0.01.

The F -test confirms the previous finding of two NOE peaks in blood located at
-3.5ppm and -1.7ppm [12] with p<0.01, suggesting that additional NOE peaks some-
times identified in other tissues [23, 24] do not originate from the blood. Interestingly
the addition of further peaks leads to overfitting of certain pools which causes errors
in the fits of existing pools. Table 5.1.1 is encouraging for the validity of the z-PSO
as a fitting method, as it suggests that the sum of squares difference between the fit
and the data might also be indicative of whether the pools which are being fitted for
are the correct number of pools, as well as simply how accurate the fitted parameters
are.

5.1.5 F -tests on CEST pools

The results of fitting CEST pools to the z-spectrum from human blood are displayed
in Figures 5.1.10 and 5.1.11. The GaGCEST signal produces two CEST peaks, and
the glucoCEST signal produces four CEST peaks, which has been accounted for when
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considering the number of degrees of freedom each CEST pool gives rise to in the
F -tests.

Figure 5.1.10 shows the fits for 1-4 CEST pools. The best fit in each case is highlighted
in green, and the sources of signal which are fitted for are indicated above each fitted
spectrum. It is visually apparent from these fitted spectra that the inclusion of glucose
is essential for a good fit, as all other fitted spectra clearly fail to fit a pool located
at around +2.0ppm.

Figure 5.1.11 shows the fits for 5-8 CEST pools. These appear to fit the z-spectrum
reasonably well, although there is some visual evidence of overfitting on the spectrum
with 8 fitted pools around the +2.0ppm glucose peak on the lower three of the five
saturation powers.

An F -test was conducted comparing the best fitting spectra for each number of fitted
pools. Table 5.1.2 shows the results of these F -tests. As previously, an F statistic
greater than 3.89 passes the F -test with p<0.05, an F statistic greater than 5.10
passes the F -test with p<0.025, and an F statistic greater than 6.76 passes the
F -test with p<0.01.

The F -test here yields interesting results. Going from 5 to 6 peaks reduced the
probability from the F -test from under 0.025 to under 0.05. However we have prior
knowledge of the sources of CEST signal which should be present. From the i-STAT
tests we know that glucose is present. It is also known that human blood contains
GaGs which aid in the regulation of blood coagulation [25]. This points us to our
model with six CEST pools, which fits GaGs and glucose to the z-spectrum with
p<0.05. The addition of further pools to this model does not yield a fit which passes
the F -test, so we can reasonably conclude that these are the CEST signals giving rise
to the shape of this z-spectrum.
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Figure 5.1.10: The z-spectrum acquired from ex vivo human blood fitted with 1-4
CEST pools. Pool positions indicated with blue marker on x-axis. The fit with the
least sum of squares difference with the acquired data is displayed in green. Points
between -0.8ppm and -7ppm were ignored for this fit.
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Figure 5.1.11: The z-spectrum acquired from ex vivo human blood fitted with 5-8
CEST pools.

5.1.6 The full human blood z-spectrum

After concluding that the signals present in the z-spectrum from human blood arise
from glucose, GaGs, and two NOE pools located at -3.5ppm and -1.7ppm, these could
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Number of
CEST pools

Sum of squares
difference

F -test result

1 0.23424 N/A

2 0.25185 -12.2533

3 0.23272 -12.7875

4 0.22098 7.3258***

5 0.21223 5.9600**

6 0.20547 4.4221*

7 0.21236 -4.2056

8 0.22607 -8.3080

Table 5.1.2: F -test results on the best fits of fitting CEST peaks. Values marked
*** pass the F -test with a threshold of p<0.01, values marked ** pass the F -test
with a threshold of p<0.025, and values marked * pass the F -test with a threshold
of p<0.05.

be fitted together to determine the parameters of these exchanging pools, taking
overlapping peaks into account. The z-PSO was run with 10,000 particles for each
exchanging pool, and repeated 100 times to produce the equivalent of a 1 million
particle fit. The resulting fitted spectrum is displayed in Figure 5.1.12, and the fitted
parameters for these peaks are displayed in Table 5.1.3.

Exchanging pool Pool size
(%)

Exchange
rate (Hz)

T2 (ms)

NOE (-3.5ppm) 3.78 10 0.54

NOE (-1.7ppm) 0.47 13 1.9

GaG (+3.2ppm) 1.28 31 0.70

GaG (+1.0ppm) 3.85 <1 69

Glucose (0.66ppm) 0.50 >10,000 >100

Glucose (1.28ppm) 1.50 <1 >100

Glucose (2.08ppm) 0.18 119 4.6

Glucose (2.88ppm) 0.33 9 100

Table 5.1.3: Fitted values from the z-spectrum of human blood
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Figure 5.1.12: The z-spectrum acquired from ex vivo human blood fitted with GaG
and glucose CEST pools,and two NOE pools.

As we can see from Figure 5.1.12, while this model was a good approximation of
the z-spectrum in human blood, there were several remaining issues. For the CEST
(positive) side of the spectrum, there were some areas in which the model fitted the
data particularly well, for example the spectrum acquired at 1.33µT, however there
were areas in which the peaks in the fitted spectrum became particularly sharp, such as
for the spectrum acquired at 0.67µT. This was reflected in the fitted values where the
glucose and GaG pools had peaks which fit to exchange rates of over 10kHz or under
1Hz, which are unreasonably high and low respectively. The algorithm struggled to
calculate the exchange rates for the pools close to water, both for GaGs and glucose.
This is one of the most difficult areas to fit as the water saturation obscures much of
the data, and it is likely that there are also other fast exchanging pools arising from
-OH groups present in this region. On the NOE (negative) side of the spectrum the
algorithm achieved results comparable to those achieved from fitting the NOE pools
alone, as seen in Figure 5.1.7. There were still some discrepancies between the fitted
values and the data, particularly at higher saturation powers, which most likely arise
from issues with inconsistent B1 output during the scan. Finally we can see at higher
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powers the algorithm overfitted the data far away from water, which may suggest that
further CEST and NOE pools are present in human blood, rather than the fewer wider
pools which were fitted here to encompass the apparent signals.

This section has systematically probed the z-spectrum from human blood and found
that two NOE pools along with GaG and glucose CEST pools are present. However,
some of the fitted exchange rates indicate that there may in fact be other CEST pools
present. This experiment should be repeated on a z-spectrum free of artefacts arising
from poor RF power stabilisation, potentially also at more RF powers and varying pH
levels or temperatures, in order to better probe exchanging pools. Performing high
resolution MRS on the blood sample may also be helpful, as this may reveal other
molecules (or molecular groups) present in human blood which could influence the
z-spectrum fitting.

5.2 Estimating blood-glucose levels via
glucoCEST

Developing a sequence which has the potential to measure in vivo blood-glucose levels
is of great interest. Non-invasive assessment of glucose uptake and delivery has huge
potential applications in cancer diagnostics [26]. The ability to map blood-glucose
levels through measurement of the glucose-sensitive CEST signal, termed glucoCEST,
has the potential to provide insights into the nature of glucose delivery and metabolism
in various organs in the body. The glucoCEST signal has been shown to be dependent
on 2-Deoxy-D-glucose concentration in phantom work [27]. It has also been shown
to increase between a control sample of human concentrated red blood cells, and a
similar sample with an added 50mMol/L of glucose [27]. However, this concentration
is far greater than what we would expect to see in vivo under normal conditions,
and previous work has shown that measurement of the glucoCEST signal in vivo is
difficult at clinical field strengths [28]. The blood sugar range of a healthy individual
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typically resides between 3.9mMol/L and 7.1mMol/L [10], while hyperglycemia is
generally accepted to occur above 11mMol/L [29, 30], and hypoglycemia is generally
accepted to occur below 2.8mMol/L [11]. The purpose of this section is therefore to
test whether we are able to measure changes in blood-glucose in this physiologically
relevant range using glucoCEST, and calibrate the resulting CEST signals so that we
can quantify glucose concentration in modified ex vivo blood samples.

5.2.1 Phantom investigations

In order to verify that the CEST signal from glucose could be seen at all at these
lower concentrations, a glucose phantom was scanned. A 50ml test tube was filled
with deionised water and 4mMol/L (36mg) of 2-Deoxy-D-glucose was added and
dissolved. The test tube had a screw-on cap, and so was tightly sealed and placed in
a 37◦C water bath directly before scanning. The system did not have to be connected
to a heat pump as the scanning protocol was short enough that cooling of the water
bath towards room temperature was not a significant issue.

The glucose phantom was scanned using a 7T Achieva system with a NOVA 8ch pTx
head coil. Tuning of the odd and even channels was performed as described previously,
and a B0 map was acquired. A z-spectrum was then acquired using semi-CW satu-
ration, with a 3 second saturation block comprised of sixty 50ms pulses alternating
on the odd and even channels, followed by the TFEPI readout scheme described in
section 5.1.1. The z-spectrum was acquired with a B1,max of 1µT at 42 off-resonance
frequencies, 41 of which were evenly spaced between +3.3ppm and -3.3ppm, with the
remaining off-resonance frequency acquired at +333ppm for normalisation.

The z-spectral images were post-processed using an in-house MATLAB [31] script.
The images were first normalised using the far off-resonance (333ppm) point, and
then corrected for B0 inhomogeneities using the acquired field map, as described in
section 4.3.1. The glucoCEST signal was then characterised using the asymmetry
method detailed in section 2.4.2. Figure 5.2.1 shows the z-spectrum acquired from

181



5.2. ESTIMATING BLOOD-GLUCOSE LEVELS VIA GLUCOCEST

the glucose phantom.

Figure 5.2.1: The z-spectrum acquired from a 2DG phantom, with the asymmetry of
the spectrum revealing the glucoCEST signal.

While the presence of 2DG is not immediately evident at first glance at the z-spectrum,
the asymmetry analysis reveals that effect of 2DG can be resolved at this comparatively
low concentration, the shapes of which closely match previous work [27]. We can see
the main peak at around 0.66ppm, with possible evidence of one of the other peaks
located at +2.08ppm, while the other two peaks appear to have coalesced and were
not observable under the conditions if this experiment. It is also not impossible that
2DG may produce an NOE signal which would reduce sensitivity in asymmetry analysis,
especially with recent reports of glycogen producing its own ’glycoNOE’ signal [32],
however no such signal has been reported previously from glucose.
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5.2.2 Z-spectra from blood with varying blood-

glucose levels

The next step was to prepare a range of blood samples with differing amounts of
blood glucose. One healthy volunteer donated 14 6ml samples of blood after a night
of fasting to ensure starting blood-glucose level was relatively low. These samples
were centrifuged for 15 minutes at 800rpm to separate concentrated red blood cells
(cRBCs) from the plasma, and the plasma was removed.

These samples were then split into pairs and washed in solutions containing 7 different
concentrations of glucose. Each sample was centrifuged after washing, and the glucose
solution was removed. This was repeated two further times to maximise glucose
absorption. Identical pairs of samples were then combined to create 7 samples with
volumes of between 5-6ml. A drop of each sample was removed and deposited into an
i-STAT CHEM8+ test cartridge (Abbot Point of Care Inc.) to measure the resulting
blood-glucose level of each sample. The i-STAT CHEM8+ test was also performed
directly after the experiment. Table 5.2.1 shows the blood-glucose levels of the samples
before and after scanning, along with the mean value to reflect the properties which
the samples were most likely to have during the scanning protocol.

The samples were fixed into the rotary water bath described in section 5.1.1, which
was heated to 37◦C prior to the experiment, and the setup was scanned using a 7T
Achieva system with a NOVA 8ch pTx head coil as previously. Tuning of the odd
and even channels was performed as described previously, and B0 and B1 maps were
acquired. The heat pump was then switched off and the system was left to settle
for 120 seconds to minimise flow artefacts. A z-spectrum was then acquired using
semi-CW saturation identical to the sequence performed for the glucose phantom
validation experiment, aside from the fact that 63 off-resonance frequencies were
acquired between +333ppm and -333ppm. The B1 max was also altered to 0.33µT
for the first z-spectrum acquisition, which took 9 minutes 30 seconds. The heat pump
was then switched back on until the system returned to 37◦C, at which point it was
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5.2. ESTIMATING BLOOD-GLUCOSE LEVELS VIA GLUCOCEST

Glucose
solution

Solution
composition

Mean blood-glucose
level (mMol/L)

Mean haematocrit
level (%)

0mM 100ml saline +
0mg glucose

1.55
(1.6 to 1.5)

44.0
(44 to 44)

2mM 100ml saline +
36mg glucose

2.80
(2.9 to 2.7)

69.0
(71 to 67)

4mM 100ml saline +
72mg glucose

3.65
(3.8 to 3.5)

68.5
(72 to 69)

6mM 100ml saline +
108mg glucose

4.50
(4.6 to 4.4)

70.0
(71 to 69)

8mM 100ml saline +
144mg glucose

6.90
(7.1 to 6.7)

49.5
(50 to 49)

12mM 100ml saline +
216mg glucose

7.90
(8.0 to 7.8)

50.0
(50 to 50)

16mM 100ml saline +
288mg glucose

10.20
(10.4 to 10.0)

68.0
(69 to 67)

Table 5.2.1: Glucose solutions used in phantom preparation and i-STAT results.
Change in blood-glucose level and haematocrit from before to after scanning indi-
cated in parentheses. 71mg of salt was also added to each solution.

once again switched off and the system was left to settle for 120 seconds. Four further
z-spectra were acquired using this protocol, with B1,max values of 0.67µT, 1.00µT,
1.33µT, and 1.67µT respectively.

The resulting z-spectra were post-processed using in-house MATLAB [31] scripts.
Each blood sample was masked and the spectra within each sample were normalised
using the far off-resonance +333ppm point. The z-spectra were then corrected for
B0 inhomogeneities using the acquired field map, as described in section 4.3.1, and
the resulting z-spectra in each sample were averaged. In order for direct comparison
between the samples, the z-spectra also had to be B1 corrected. The blood sample
masks were applied to the acquired B1 map to find the actual B1 in each sample.
Each point in the five z-spectra of varying saturation power could then be interpolated
from the actual B1 to the target B1, utilising the multiple saturation powers to model
how each point in the z-spectrum changes with increasing B1 in each sample.
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Quantifying the glucoCEST signal using the asymmetry method is clearly not appro-
priate here, as there are multiple sources of signal in the acquired spectrum. However,
aside from the glucose signal, the underlying signal should be completely identical in
each sample, as the initial blood sample was taken from the same subject at the same
time. It should therefore be possible to compare the averaged signals at the points
where the four glucose pools resonate, namely +0.66ppm, +1.28ppm, +2.08ppm, and
+2.88ppm [20]. Z-spectral images were not acquired at these exact frequencies, so the
four closest off-resonance frequencies to these were taken and averaged, which were
+0.83ppm, +1.17ppm, +2.0ppm, and +3.0ppm. These were then plotted against
the average blood-glucose level of each sample during acquisition to give a qualitative
view of how the glucoCEST signal changes in human blood within a range we would
expect to see in vivo.

Figure 5.2.2 shows the B0 and B1 corrected z-spectra acquired from each of the seven
samples. A change in glucoCEST signal is not obvious in the z-spectra.

Figure 5.2.3 shows the change in the glucoCEST metric between samples of varying
blood-glucose level for each saturation power. No change in the glucoCEST signal is
discernible.

As we can see from Figure 5.2.3, changes in blood-glucose level across the expected
physiological range appear to have no effect on the magnitude of the glucoCEST signal
from blood. This is not completely unexpected, as the previously reported change of
the glucoCEST signal at 50mMol/L was relatively small [27]. The aforementioned
study was also conducted at 9.4T, leading to greater resolution of any CEST peaks
present. It is possible that higher saturation powers may see some blood-glucose level
dependent changes, as glucose has a fast exchange rate with the free water pool and
so is more prevalent at higher powers, however this seems unlikely given that no signal
change at all could be seen between blood-glucose levels of 2mMol/L and 10mMol/L
here.
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Figure 5.2.2: The z-spectra acquired from blood samples with a blood glucose level of
a) 1.55mMol/L, b) 2.80mMol/L, c) 3.65mMol/L, d) 4.50mMol/L, e) 6.90mMol/L,
f) 7.90mMol/L, and g) 10.20mMol/L.
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5.3. MEASURING BLOOD PH VIA CEST CONTRAST

Figure 5.2.3: Evolution of the glucoCEST signal with increasing blood-glucose levels.

5.3 Measuring blood pH via CEST con-
trast

Previous work has shown that there may be a small amount of pH dependency on the
CEST signal located at the amide frequency, and the NOE signal located at -3.5ppm in
human blood samples [12]. However, this dependency was not found to be significant,
as the apparent change in signal was small and non-linear, and the error bars were
too large to draw any direct conclusions from the relationships between pH and CEST
or NOE signals originating from endogenous CEST compounds. This section aims to
determine a method of measuring the pH of human blood through the measurement
of the CEST signals of an exogenous CEST contrast agent, namely Iopamidol, over a
physiological range. Iopamidol has two CEST peaks located at +4.2ppm and +5.5ppm
with different exchange rates, which therefore evolve differently with changing pH
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[33]. These two peaks correspond to the amide and 2-hydrooxypropanamido groups
respectively. It is therefore possible to utilise a ratiometric approach, dividing the
magnitude of one peak by the other, to calibrate for pH.

Significant pH contrast has been demonstrated in Iopamidol phantoms between pH 6.0
and pH 7.5 [33], and this method has also been employed in mouse kidneys to provide
accurate pH measurements in the pH 5.5 to pH 7.4 range [34]. It is important also
to note that the sensitivity of this approach will be strongly dependent on saturation
power, as the 2-hydrooxypropanamido group has an exchange rate estimated to be
four times faster than the exchange rate of the amide group [33]. The normal pH level
of blood is 7.4 [35], however certain diseases can cause either acidosis or alkalosis,
causing blood pH to either drop down to pH 6.8 or lower in extreme cases [36], or
rise above pH 7.8 [37], both of which can be fatal. Iopamidol is already used as
a contrast agent in CT imaging [38], and therefore the safety of administering this
compound intravenously has been thoroughly tested. This section therefore aims to
utilise the ratiometric approach used elsewhere [33] to determine the pH of a variety
of phosphate buffered ex vivo human blood samples, in order to calibrate the results
with pH over a physiological range.

5.3.1 Calibrating the CEST signals of Iopamidol

with pH

Following local ethical approval, five 6ml blood samples were taken from one healthy
volunteer and stored in heparin tubes. The samples were centrifuged for 15 minutes
at 800rpm to separate concentrated red blood cells (cRBCs) from the plasma, and
the plasma was removed. The samples were then washed 3 times with phosphate-
buffered saline solutions at pH 6.8, pH 7.2, pH 7.6, pH 8.0, and pH 8.4, before
being re-centrifuged and the phosphate-buffered saline removed. 1ml of Iopamidol
(300mg/1ml) was added to each of the samples as a pH dependent contrast agent.
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The samples were fixed into the rotary water bath described in section 5.1.1, which
was heated to 37◦C prior to the experiment, and the setup was scanned using a 7T
Achieva system with a NOVA 8ch pTx head coil using the exact same protocol as
described in section 5.2.2. The odd and even channels were matched and B0 and B1

maps were acquired. Z-spectra were once again acquired using semi-CW saturation at
5 B1,max values of 0.33µT, 0.67µT, 1.00µT, 1.33µT, and 1.67µT at 64 off-resonance
frequencies between ±333ppm, with a TFEPI readout.

The z-spectra from each sample were post-processed using in-house MATLAB [31]
scripts. Each sample was masked and the spectra within each sample were normalised
using the far off-resonance +333ppm point. The z-spectra were then corrected for
B0 inhomogeneities using the acquired field map, as described previously, and the
resulting z-spectra in each sample were averaged. The z-spectra were B1 corrected
as described in section 5.2.2, by masking the acquired B1 map with the blood sample
masks, and then interpolating each point in the five z-spectra of varying saturation
power to model the z-spectra which would have been acquired at the target B1, so
that the samples could have been measured directly. As the B1 inhomogeneity was
relatively high in this case (ranging between 140%-280%), spectra were B1 corrected
to 200% of the target B1 values in order to stay within the sampled range.

The z-spectra were then fitted to a twelfth order polynomial between +3ppm to
+6ppm. As data had not been acquired directly at +4.2ppm or +5.5ppm, this was
necessary to estimate the value of the z-spectrum at these points, and also reduced
the error of simply acquiring two images at these off-resonance frequencies, as the
estimated values of these frequencies were dependent on the several images acquired
at the off-resonance frequencies neighbouring these. A ratiometric value was then
obtained by dividing the value of the peak at +5.5ppm by the peak at +4.2ppm, and
plotted against pH for each saturation power.

Figure 5.3.1 shows the B0 and B1 corrected z-spectra acquired from each of the five
samples. We can see the evolution of the Iopamidol signals located at +4.2ppm and
+5.5ppm.
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5.3. MEASURING BLOOD PH VIA CEST CONTRAST

Figure 5.3.1: The z-spectra acquired from blood samples with added Iopamidol, with
pH levels of a) 6.8, b) 7.2, c) 7.6, d) 8.0, and e) 8.4.

Figure 5.3.2 shows the results of spline fitting of the z-spectra between +3ppm and
+6ppm. The nature of the dependency of the Iopamidol signals on pH is more apparent
here.

Figure 5.3.3 shows the relationship between the ratio of the Iopamidol peaks with
blood pH. Error bars have been created through error propagation of the uncertainty
associated with each point on the acquired z-spectra, estimated through observing the
variance of repeated acquisitions of the same z-spectrum point in the water between
the blood samples. We can see that in the physiological range, acquiring a spectrum
at relatively low saturation power can provide us with the information we need to
determine pH.
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Figure 5.3.2: Spline fitting of the z-spectra presented in Figure 5.3.1 between +3ppm
and +6ppm, with pH levels of a) 6.8, b) 7.2, c) 7.6, d) 8.0, and e) 8.4.

Figure 5.3.3: Ratiometric analysis of the CEST peaks displayed in Figure 5.2.2, ob-
tained by dividing the value of the peak at +5.5ppm by the peak at +4.2ppm, plotted
against sample pH for each saturation power.
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5.4. SUMMARY

We can see clearly that higher saturation powers are far less suitable for determining
the pH of blood in the physiological range. Acquiring the z-spectrum with a sat-
uration power of 0.67µT however, gives excellent sensitivity over the physiological
range, especially between pH 7.2 and pH 7.6, where the pH level of healthy blood is.
Further work could more accurately determine the optimum saturation power for pH
measurement within this range.

As mentioned in section 4.3, recent work has shown that the presence of PBS may
significantly alter the CEST signal [39]. However this work suggests that amide protons
are unaffected by the presence of phosphate. PBS should however be considered as
a confounding factor where CEST experiments are performed involving any systems
involving any exchangeable protons other than amide protons.

5.3.2 Potential applications and future work

The applications for a safe pH dependent CEST contrast agent are not limited to
blood. Iopamidol is a readily available CT contrast agent which can be administered
in humans orally and intravenously. This method of pH determination could also have
uses in the stomach or the bowel, where acidity regulation is key, however further work
would have to be performed to investigate the capabilities of Iopamidol as a CEST
agent under such harshly acidic conditions. The pH value of muscle also changes after
exercise, and accurate in vivo measurements of this during exercise may be of great
importance when understanding the mechanisms of fatigue [40].

5.4 Summary

The z-spectrum from human blood is complex in its makeup, and the nature of the
signals we see are difficult to interpret. In the first part of the chapter, an attempt
at deconstructing the z-spectrum into its constituent parts was performed using the
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PSO fitting method introduced in the previous chapter. A reasonable model for the
z-spectrum of human blood was found, however certain discrepancies in the fitting
suggest that the true model is more complex than the one used here. Practical appli-
cations of the human blood z-spectrum were then explored, firstly using GlucoCEST
as a marker of blood-glucose levels. Unfortunately no correlation could be defined
between glucose and the GlucoCEST signal within a physiological range, most likely
due to the signal being so small. Finally the feasibility of measuring blood pH using
Iopamidol as a CEST agent was explored, and it was found that it is possible to mea-
sure blood pH over a physiological range, given that an appropriately low saturation
power is used for acquisition. This is an important result as it may have applications
beyond the blood, such as in gastrointestinal or muscle imaging.
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Chapter 6

Abdominal z-spectroscopy

Quantification of z-spectrum imaging in the abdomen presents unique challenges, as
motion artefacts and localised changes in B0 due to respiration are much greater than
in the brain due to close proximity to the lungs. Furthermore blood pulsatility in organs
such as the liver or kidney may further affect the z-spectrum as unsaturated blood
flows into these organs at a high velocity between saturation and acquisition. However
quantification of z-spectrum effects in abdominal organs would prove to be very useful,
as MT has the potential to be a marker for fibrosis due to its high content of collagen,
immobilised phospholipid cell membranes, and other macromolecules [1], which has
been proven using MTR in both animal [2, 3] and human [4] subjects. In addition
to this, quantification of glycogen in the liver is of particular interest, as blood sugar
can only currently be measured ex vivo, whereas imaging provides an opportunity for
localisation, and furthermore understanding how liver and muscle tissue metabolises
glucose into glycogen may lead to further discoveries in understanding diseases such as
diabetes where hypoglycemia is an issue. This chapter describes work which explores
how to quantify these effects, first by investigating the MT signal from liver, gut wall
and other abdominal tissues at 3T, before moving to 7T where CEST effects are more
prominent. The manner in which the MT signal changes between 3T and 7T was then
analysed, before performing an experiment which attempted to measure liver glycogen
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6.1. QUANTIFICATION OF MT IN LIVER AND GASTROINTESTINAL
TRACT TISSUE

synthesis over time after a high glucose content meal, using the GlycoCEST signal.

6.1 Quantification of MT in liver and
gastrointestinal tract tissue

There are several conditions in which the normal functional tissue of abdominal organs
can be replaced by scar tissue. The general term for this process is known as fibrosis.
For example, cirrhosis is the buildup of fibrotic scar tissue in the liver, and can be a
symptom of hepatitis B, hepatitis C, non-alcoholic fatty liver disease, or as a result of
excessive alcohol consumption, among other potential causes [5]. Currently the most
common and most reliable method of confirming cirrhosis is through a liver biopsy
[6], although there are some imaging methods which correlate with cirrhosis such
as magnetic resonance elastography [7], as a more heavily scarred liver will become
stiffer than the comparatively soft healthy liver tissue. However, magnetic resonance
elastography is also sensitive to several biological confounding effects such as liver
steatosis (abnormally high fat retention), venous congestion and right heart failure
[8].

Crohn’s disease is a chronic condition in which the wall of the gastrointestinal tract
becomes heavily inflamed [9]. It is usually diagnosed visually through endoscopy, and
confirmed with a blood test, as anaemia may also be indicative of inflammation in the
ileum due to impaired vitamin B12 absorption [10]. More recently it has been shown
that diffusion-weighted MRI may have the potential to identify inflammation of the
gastrointestinal tract [11], although this is sensitive to iron content and can suffer
from artefacts such as poor fat saturation due to the EPI readout [12].

Measurement of the MT signal can be regarded as advantageous over magnetic res-
onance elastography and diffusion-weighted imaging for assessing fibrosis, in that it
is relatively insensitive to iron deposition and steatosis [13, 14], and more directly
dependent on fibrosis. As discussed, the major disadvantage of MT imaging in the
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abdomen is its high sensitivity to localised B0 and B1 shifts. Therefore the aim of
this section is to develop a reliable method of measuring MT in the liver, the wall
of the gastrointestinal tract, and other abdominal organs or tissues. This is tested
in healthy subjects, with the intention of developing a protocol suitable for imaging
Crohn’s patients or other individuals who may have some degree of abdominal fibrotic
scarring.

6.1.1 Respiratory effects in MTR measures

A key constraint in abdominal imaging is the need for short imaging times, in order to
overcome respiratory motion. MTR is widely used as a clinical marker of MT effects
as it is a fast measure to perform [15, 16]. However, given that the MTR signal is
affected by respiration, it is vital that we know to what degree the localised changes
in the B0 field arising from this alters MTR before conclusions are drawn from MTR
data. To investigate this, one healthy subject was scanned using a 3T Philips Ingenia
wide-bore system. Three MTR images were collected in succession, by firstly acquiring
a far off-resonance image with a saturation train acquired at +100,000Hz, analogous
to a no-saturation image, followed by three off-resonance images with a saturation
train acquired at +1000Hz to saturate the MT pool. The subject was instructed to
hold their breath during each of the four image acquisitions. The acquisition of each
image took 2.3s with a 2.7s gap between each.

Figure 6.1.1 shows the MTR images acquired 5 seconds apart from each other. Even
when the MTR images are acquired with a perfect breath-hold, there are respiratory
driven artefacts which arise from how much air is held in the lungs, leading to local
variations in the B0 field. The effects of blood pulsatility are also apparent, but it
appears that this is mainly an issue in the vessels themselves.

It is therefore clear that MTR alone is likely to be an unstable measure here, as the
effects of respiration cannot be controlled or accounted for by acquiring only one point
on the z-spectrum. Acquiring a full z-spectrum will inherently give a more reliable
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Figure 6.1.1: MTR images acquired on the same subject in quick succession, showing
clear lack of repeatability when used in the abdomen.

measure of MT as more points are acquired, and the smoothness of the spectrum
gives a qualitative measure for the noise in the data.

6.1.2 Respiratory and cardiac gating

Two healthy subjects were recruited to test z-spectrum acquisition with respiratory
gating and cardiac triggering applied to the sequence. Z-spectra were acquired from
a single slice with transverse orientation, using an MT-TFE sequence [17] comprising
of a saturation train of 30 Gaussian windowed sinc pulses with pulse duration/spacing
30/80ms and a B1,rms of 2.19µT, and a single shot TFE readout scheme. 47 fre-
quencies were acquired between ±50,000Hz (±391ppm) in order to sample the full
width of the MT peak [18], with acquisition of all 47 frequencies taking 2 minutes and
30 seconds. The z-spectrum initially appeared to be noisy from a visual on-scanner
assessment, so four further repeats of the z-spectrum acquisition were performed.

The liver, kidney medulla, and back muscles were masked using in-house MATLAB
[19] scripts to exclude blood vessels, and the five spectral images were normalised using
the image acquired with +391ppm saturation and concatenated. These spectra were
B0 corrected by shifting each z-spectrum so that the minimum point on each aligned
with 0ppm, and then interpolating using a twelfth order polynomial to calculate the z-
spectrum values at the acquired frequencies. The highest and lowest signals recorded
at each off-resonance frequency were discarded to remove outliers and reduce scatter,
and the remaining points were averaged. This reduced noise to a degree in which the
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resulting z-spectra looked as expected, as can be seen in Figure 6.1.2.

Figure 6.1.2: a) 5 z-spectra taken from an ROI covering the liver, showing clear
artefacts. b) The 5 z-spectra displayed as ’x’s, with the highest and lowest (red)
signals discarded, and the remaining (black) points averaged to create an average
z-spectrum (blue), which is much smoother.

Once averaged z-spectra had been obtained from each of the three ROIs from each
subject, Lorentzian fitting was performed to quantify the amount of MT present. No
CEST or NOE effects were visible in the spectrum, due in part to their low concentra-
tions compared to MT. A two pool model was therefore used to fit the data, with a
Lorentzian lineshape used for free water, and a super-Lorentzian lineshape used for the
MT pool, the centre of which was allowed to vary. Figure 6.1.3 shows the Lorentzian
fitting results in the liver ROI of one subject.

The amplitude of the MT super-Lorentzian was then taken to be a measure of the MT
present. This measure assumes that the exchange rate between the bound pool and
the free pool is constant across tissues and subjects. Temperature and pH variations
are not expected to be a confound in healthy subjects but further work should be
performed to investigate the nature of proton exchange in scar tissue and healthy
tissue to confirm that this measure is suitable. The results of the MT fitting are
displayed in Figure 6.1.4.

The MT measurements are consistent across the two subjects, suggesting that taking
the average of 5 z-spectra is a suitable indicator of MT, and is far less hampered
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Figure 6.1.3: a) Lorentzian fitting performed with a 2 pool model to the z-spectrum
from the liver of one subject (black circles), with both individual pools displayed as
well as the final fit.

Figure 6.1.4: MT as measured from the coefficient of the fitted super-Lorentzian
using a two pool model. Error bars are calculated from performing Lorentzian fitting
to adjacent data points above and below the mean spectrum.

by artefacts caused by respiration or blood flow pulsatility, which will be present but
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undetectable in studies simply measuring MTR. However, acquisition of five separate
z-spectra is time consuming, taking 12.5 minutes. The following section details how
to acquire a high fidelity z-spectrum without the need to collect multiple repeats, by
helping the subject to regulate their breathing.

It was hypothesised that the large signal artefacts seen in the previous section were
partly as a result from localised B0 shifts arising from subjects holding different
amounts of air in their lungs each time they were being asked to hold their breath
during an acquisition, and partly from subjects breathing at a rate which was not con-
sistent throughout the z-spectrum acquisition, resulting in varying TR between each
acquired off-resonance image. To combat this, a method of encouraging subjects to
breathe regularly was implemented. Subjects were shown a projector screen during a
scan with automated cues appearing, with "Breathe in" shown for 1.5s, "Breathe out"
shown for 1.5s, and "Hold" shown for 2.5s, a rate that all subjects stated they were
comfortable with in testing. This eliminated the artefacts seen in Figure 6.1.2 during
normal respiratory gating, as displayed in Figure 6.1.5, which shows three z-spectra
acquired once each at three different values of B1,rms from the liver when acquired
and masked using the same sequence and procedure as described above. Lorentzian
fitting was performed to assess how the MT metric changes with increasing saturation
power.

Figure 6.1.5: a) Z-spectra acquired from the liver when the subject was asked to
regulate their breathing, showing vast reductions in noise when compared to standard
respiratory gating. b) Plot of the MT super-Lorentzian amplitude with increasing
saturation power, with a point at (0,0) included to aid the fit.
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These results indicate that this is a reliable method of acquiring z-spectra in abdominal
tissues. Future work should include acquiring more datasets to confirm the validity
of this method, which was unfortunately not possible for this study. This respiratory
gating technique could also be used to improve MTR imaging, but acquisition of
the entire z-spectrum allows for accurate B0 correction through identification of the
location of the central water peak, and acquisition of several saturation powers allows
for correction of local B1 inhomogeneities.

6.1.3 Gastrointestinal z-spectroscopy

Once this initial testing had been completed an experimental protocol was devised to
measure MT in the wall of the gastrointestinal tract. Two healthy volunteers (aged
24, 1F), were recruited for the study. Subjects ingested a solution containing 2.5%

Mannitol and 0.2% locust bean gum 30 minutes prior to the scan, and a further 500ml
immediately before the scan, as recommended when performing MRI of the bowel wall
[20]. Mannitol increases MRI contrast between the lumen and the bowel wall [21],
and the addition of locust bean gum serves to counteract some of the recognised side
effects associated with Mannitol ingestion, which can include flatulence and alteration
of gastrointestinal microbiota leading to bowel spasms and diarrhoea [22, 23, 24].
Subjects were also cannulated prior to the scan, and once in the scanner a 20mg dose
of Buscopan R© was administered intravenously. Buscopan R© is an antispasmodic drug,
and therefore halts normal peristaltic motion allowing for images of the bowel to be
acquired without motion artefacts [25]. There is a small but serious risk of cardiac
arrest when administering Buscopan R© intravenously [26], and as such the heart rate
of each subject was monitored throughout the scan.

Once the Buscopan R© had been administered, the z-spectrum were acquired. Subjects
lay prone in the scanner to minimise the effects of respiratory motion on the bowel
wall, and visual triggers were shown as described previously. The MT-TFE sequence
[17] was employed to acquire single-slice images in the coronal plane using the same
parameters as detailed in section 6.1.2, however this time 48 off-resonance frequencies
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between ±100,000Hz were acquired in a pseudo-random non-linear order. This was
done so that the whole of the z-spectrum would be sampled to some degree if the
effects of the Buscopan R© began to wear off before the four minutes it took to acquire
the entire z-spectrum were up.

The images were assessed visually to determine if motion had occurred before the
completion of z-spectrum acquisition, which was the case for one of the subjects. The
z-spectral images acquired after this point were discarded. The bowel wall was then
masked manually by drawing around the ROI, as can be seen in Figure 6.1.6, and
for further comparison two further ROIs were created in the liver and the abdominal
muscle. For illustrative purposes the MTR for each of these regions from one subject
is displayed in Figure 6.1.7, although as previously the coefficient of the fitted super-
Lorentzian will be the metric used for MT.

Figure 6.1.6: Example of an acquired z-spectral image and the applied bowel wall
mask.

The z-spectra from each of these ROIs were averaged and subsequently B0 corrected
pixel-by-pixel using in house MATLAB scripts, by identifying the minimum point on
each z-spectrum and shifting the entire spectrum so that this minimum aligned with
the water resonance at 0ppm. A two pool Lorentzian fit was then performed in order
to quantify the MT and water pools. Initial testing showed that a Lorentzian line-
shape fitted the data better than a super-Lorentzian in all cases, so here a Lorentzian
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Figure 6.1.7: MTR map from one subject, to illustrate the ROIs used.

lineshape is used for the MT pool. Figure 6.1.8 shows the z-spectra from the three
ROIs in both subjects, including the Lorentzian fitting.

Table 6.1.1 shows the amplitude of the MT peak in each ROI. The width of the peak
is also included for interest, as this is indicative of the T2 of the bound pool. The MT
peak appears consistent in different tissues across the two subjects.

Amplitude Width (ppm)

Subject 1 Subject 2 Subject 1 Subject 2

Bowel wall 0.22 0.27 108.6 122.7

Liver 0.36 0.38 56.1 58.1

Muscle 0.52 0.60 143.0 163.1

Table 6.1.1: Resulting parameters of the Lorentzian fit to the bound pool.
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Figure 6.1.8: Lorentzian fitting of the z-spectra from the bowel wall (first row), liver
(second row) and abdominal muscle (third row) in subject 1 (first column) and subject
2 (second column).

6.1.4 Discussion

It is clear from the results presented here that MTR is not an appropriate method of
measuring abdominal MT, even when the MTR images are acquired both respiratory
gated and cardiac gated. The protocol described in section 6.1.3 offers robust and
pragmatic z-spectrum imaging in the abdomen which can be used for MT quantifica-
tion. The first ever z-spectrum of the bowel wall is presented here, and the results of
the Lorentzian fits indicate that we can reliably quantify MT in the bowel wall using
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this regulated breathing method of acquiring a z-spectrum. The measured Lorentzian
amplitudes from the liver and abdominal muscle are relatively consistent across both
subjects, and the amplitudes measured in the liver match up to the amplitudes of the
super-Lorentzians acquired from the liver when using the protocol acquiring and av-
eraging five repeated z-spectra. There is a 15% difference in the muscle MT between
experiments, although it is important to note that the super-Lorentzian fitting was
performed on back muscle and the Lorentzian fitting was performed on abdominal
muscle (as displayed in the ROI on Figure 6.1.7), as these lineshapes were found to
be the best fit to the acquired data.

The change in the width of the MT pool between tissues warrants further discussion.
These widths are consistent between the two subjects suggesting that we are observing
a real biological effect rather than a fitting or acquisition anomaly. A wider MT peak
is either indicative of a slower exchange rate with free water due to local temperature
or pH differences, a shorter T2 due to structural tissue differences, or a combination
of these. The pH of healthy liver is 6.99 ± 0.03 [27] and the pH of healthy muscle
is 7.08 at rest [28], however this drops to pH 6 in the wall of the small intestine [29]
which may reduce exchange rate and widen the MT pool. However the difference in
width between liver and abdominal muscle is likely to be due to changes in the T2 of
the bound pool, as abdominal temperature is expected to be reasonably consistent in
healthy subjects.

The MT pool cannot be fully quantified without acquisition of further saturation
powers. If several z-spectra were acquired, a fitting method such as a look-up table
could be used to quantify the MT pool size, exchange rate, and T2, in order to further
understand the biological effects at play. This would have use beyond measuring
the amount of MT present, since a measure of exchange rate could be used as a
marker for pH. However, the total duration of z-spectra acquisition is limited by the
properties of Buscopan R©, which in this study could only effectively halt bowel motion
for around 8 minutes. Therefore if we wanted to acquire additional z-spectra with
varying saturation powers, it would be necessary to decrease the spectral resolution,
which may be reasonable for measuring MT.
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To get an indication of which off-resonance frequencies are required to maintain rea-
sonable precision in Lorentzian fitting, the fitting was performed on an existing dataset
with selected frequencies omitted to observe the influence each point has on the fit.
The bowel wall z-spectrum from subject 1 was taken and symmetrical datapoints were
removed one by one, starting with ±391ppm, so that the far off-resonance frequency
remained as this is vital for normalisation. Lorentzian fitting was performed on the
dataset with each of these frequencies removed and the degree to which the height
of the MT Lorentzian varied from the fit performed with all frequencies was recorded.
Figure 6.1.9 shows this variation plotted against off-resonance frequency to yield a
measure of influence that each point had on the Lorentzian fitting for this dataset.

Figure 6.1.9: Variation of Lorentzian fitting of the z-spectra from the bowel wall of
subject 1, where a result of zero suggests that the off-resonance frequency in question
has no influence on the fit.

From this test we can see that the datapoints acquired at ±7.8ppm, ±7.0ppm,
±3.1ppm, and ±1.2ppm had no influence on the Lorentzian fitting. As a final test all
eight of these points were removed simultaneously and the fit was performed again,
and it was confirmed that removing all of these points together had no effect on the
Lorentzian fit. Removing these eight off-resonance frequencies would reduce total
acquisition time from 4 minutes to 3 minutes 20 seconds. However it could be that
this result depends on the noise in this particular dataset, and this work should be
extended further.

Future work should employ this protocol to validate that MT data acquired from the
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z-spectrum can be used as a marker for fibrosis, by recruiting subjects with Crohn’s
disease as well as a healthy control group, and comparing the amount of MT measured
in both. This is the basis of the MERIT study which was planned to start in spring
2020 and will now start in late 2020. This protocol could also be used in subjects
afflicted with liver or kidney fibrosis. Finally it is interesting to note that no CEST or
NOE signals were visible. Assuming that validation in subjects with fibrotic scarring is
successful, it may be of interest to repeat the study at 7T in order to better visualise
any CEST or NOE signals present and further characterise the z-spectrum of fibrosis.

6.2 Magnetisation transfer imaging at 7T

Imaging at 7T provides some significant advantages over the clinically used field
strengths of 3T and 1.5T [30, 31]. Most importantly for CEST imaging, the chemical
shift increases from 128Hz to 298Hz per ppm, and so while CEST and NOE peaks
are less visible at clinical field strengths, they are better resolved at ultra-high fields.
This is also aided by sharpening of the water peak, meaning that a lesser degree of
coalescence occurs between free water and exchanging pools. SNR is also higher at
7T which means that higher resolution imaging is available. Increasing the B0 also
lengthens T1 which improves sensitivity to MT effects. However, imaging at higher
field strengths also comes with some drawbacks. An increase in SAR can mean that
only lower flip angles are possible, and poorer uniformity of the transmitted B1 field
in the body can lead to position dependent flip angles and unexpected contrast.

6.2.1 Acquisition methods

The 7T body imaging described in the remainder of this chapter was performed using
an 8 channel transmit, 32 channel receive body array (MRCoils, Zaltbommel, Nether-
lands), with the eight transmit elements placed round the subject so that four are on
the posterior side and four are on the anterior side. Power limits for each of the trans-
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mit elements can be altered at the scanner. A comprehensive and extensive review of
this system can be found within Doran 2020 [32]. A single healthy subject (age 24,
male) was recruited for initial testing.

As the RF output for each transmit array can be determined separately, it is possible to
perform semi-CW saturation using the body coil. The assumption with this technique
is that RF coverage originating from each of the eight transmit elements is fairly evenly
distributed across the abdomen. Figure 6.2.1 shows a far off-resonance spectral image
signal, which is dependent on transmit and receive elements.

Figure 6.2.1: Z-spectral image acquired at +333ppm, acquired using semi-CW satu-
ration and a TFEPI readout scheme.
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While there is evidence of significant signal loss in the centre of the body, a reasonable
amount of SNR is present in more distal regions. As evidenced in section 2.3.1, we
need the average signal in a given ROI to be constructed fairly evenly from the odd
and even channels to perform semi-CW saturation. By selecting a large enough ROI,
for example in the liver, we can ensure this is the case, as will be evidenced later in
this section.

Unfortunately, due to a combination of SAR and hardware limits, the maximum sat-
uration power we can achieve from the body coil is somewhat limited. A B1,max

of approximately 1µT could be achieved, half that which was possible in the multi-
transmit head coil used in chapters 3 and 4. This was even less in practice, as B1

mapping showed relatively poor RF coverage. An example B1 map acquired with the
AFI technique is displayed in Figure 6.2.2.

Figure 6.2.2: B1 map acquired showing the poor B1 transmit field in the liver. For
clarity the liver is roughly outlined in red and the body is roughly outlined in blue.

Despite this it was still possible to collect a z-spectrum from a single slice which had
adequate SNR, by selecting an ROI at the base of the liver, which is displayed in Figure
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6.2.3. Volume B0 shimming was performed over the liver and RF shimming (phase-
nulling) was performed on a small target ROI using in-house software to maximise the
homogeneity of the B1 field in the chosen ROI.

Figure 6.2.3: An example of a chosen liver ROI (green line), which was selected using
a polygon shape tool.

Sixty-four off-resonance frequencies were then acquired using semi-CW saturation,
with 50 alternating odd/even pulses, each 60ms long and with a B1,max of 1µT,
resulting in a 3s saturation train. A TFEPI readout scheme was used, lasting 1.7s, and
so the acquisition of each z-spectral image lasted 4.7s. The subject held their breath in
this time, and was given 4.3s after the acquisition of every z-spectral image to breathe,
resulting in a total of 9s per off-resonance image and a total z-spectrum acquisition
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time of 10 minutes. Figure 6.2.4 shows the resulting z-spectrum following post-
processing, which was performed using in-house MATLAB [19] scripts to B0 correct
the spectra by locating the minimum point in the z-spectrum and subsequently shifting
the entire spectrum so that the minimum was aligned with 0ppm. The z-spectra in the
target ROI were then masked, averaged, and normalised using the +333ppm point.
As far as we are aware this is the first in vivo human liver z-spectrum to be presented
at 7T. More features can be seen here than in the 3T liver spectrum displayed in
Figure 6.1.5(a).

Figure 6.2.4: Z-spectrum acquired from in vivo human liver at 7T.

6.2.2 Abdominal MT: 3T vs. 7T comparison

There are several notable differences in the human liver z-spectrum when acquired at
7T as opposed to 3T. Note that the two spectra cannot be directly and quantifiably
compared, as each were acquired with a different saturation power. The two z-spectra,
which were acquired from the same subject, are presented for comparison in Figure
6.2.5.

The first thing that is evident when comparing these two z-spectra is that we are clearly
achieving a much higher saturation power when performing z-spectrum imaging at 3T.
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Figure 6.2.5: Z-spectra acquired from in vivo human liver ROIs at 3T (blue, top)
and 7T (purple, bottom), presented covering a wide range of frequencies (left), and
zoomed in around the water resonance (right).

This is evidenced by the much wider peak around the water resonance, along with the
wider MT peak, proving that we are saturating it further. The T2 of free water also
decreases at higher field strengths, which narrows the water peak. As we have seen
in Figure 6.2.2, we achieve relatively low B1 in the liver compared to our target B1 at
7T. However, this is an issue regarding the 7T body coil rather than the fact that we
are performing z-spectrum imaging at a higher field strength, and further development
is required to attempt to resolve this within safe operating limits.

Another feature of note when comparing the two spectra is the increased spectral
resolution at 7T, which allowed us to resolve CEST and NOE effects which cannot be
observed at 3T. Two particularly notable features here were the amide peak around
+3.5ppm and the NOE peak at around -3.5ppm, which are commonly detected signals
in biological tissues. We could also see an additional signal in the liver at 7T located
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at around 1.5ppm, which is the resonance frequency of glycogen. This is of great
interest in the liver and will form the basis of section 6.3. The NOE peaks are also of
interest; a peak resonating at -1.7ppm could be observed, which may correspond to
blood as detailed in Chapter 4.

6.2.3 Quantifying liver MT at 7T

As multiple z-spectra with varying saturation powers have not been acquired, the
most appropriate method of MT quantification was to use a Lorentzian lineshape
fitting method. Two additional healthy subjects (2 female, ages 24-26) were recruited
and z-spectrum acquisition was performed as above, and B0 correction was performed
as described previously. The three z-spectra are displayed in Figure 6.2.6.

Figure 6.2.6: 7T liver z-spectra acquired from three different subjects.

Lorentzian lineshape fitting was then performed as described in section 6.1.2. However,
in this instance, the fit was biased by modifying the minimisation function so that the
MT pool never overfitted the data, ensuring that the MT Lorentzian always remained
above any data points. This ensured that any CEST and NOE peaks were ignored by
the two pool fit, leaving only the MT to be fit to the outer points. CEST and NOE
quantification in the 7T liver z-spectrum is explored further in Section 6.3. Figure
6.2.7 shows the results of the two pool Lorentzian fits.

We have developed a method of acquiring in vivo z-spectra in the human liver at
7T which is capable of reliably measuring MT between subjects. Note that the MT
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Figure 6.2.7: Lorentzian fits to the z-spectra from three subjects, with the height of
the MT Lorentzian indicated on each.

Lorentzian amplitudes presented above are not directly comparable to Figure 6.1.4 or
the data presented in Table 6.1.1, as a different saturation power has been applied
here, and the MT lineshape would be different at 7T as compared to 3T. Similarly
the discrepancy in lineshapes between subjects most likely arise from variations in
the local B1 field due to patient size and coil positioning. While MT imaging at 7T
comes with challenges such as increased inhomogeneity of the B1 transmit field, the
higher resolution and signal-to-noise ratio associated with 7T MRI has the potential
to improve the precision and sensitivity of the measurement of the MT signal.
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6.3 Measuring glycogen in the liver through
GlycoCEST

Glycogen is the primary short-term energy storage unit in humans, and plays a key role
in glucose metabolism and homeostasis. Glycogen content is typically reasonably con-
sistent across healthy individuals, ranging from 200-300mM in the liver when fasting
[33], and from 318mM [34] to 470mM [35] after a meal. However this concentration
can become depleted in individuals suffering from diabetes [36] or obesity [37]. These
values have all been obtained by using 13C MRS, which is the most common way
to measure hepatic glycogen in vivo [38, 39]. However, these 13C MRS experiments
are time consuming (even more so if a labelled exogenous tracer is used) and can be
particularly difficult in patients with significant adipose tissue.

CEST imaging offers an alternative approach to mapping glycogen [40]. The ap-
proach of measuring glycogen by analysing the CEST signal it produces is termed
GlycoCEST, which has the potential to provide improved signal strength and reduced
scan time compared to 13C MRS, without the need for additional multi-nuclear equip-
ment. Previous studies have shown that GlycoCEST is sensitive to in vivo changes in
glycogen stores in humans at 3T [41]. Deng et al. acquired a full z-spectrum of 41
off-resonance frequencies between -5ppm to +5ppm at 0.25ppm intervals. However,
the analysis involved a simple MTR asymmetry calculation, which may be particularly
problematic given recent reports of an NOE signal which may arise from glycogen
(termed GlycoNOE) [42], located directly opposite the GlycoCEST peak.

The aim of this section was to develop a method of monitoring liver glycogen by
acquiring the whole z-spectrum at 7T, which provides considerably enhanced sensitivity
and specificity to CEST and NOE effects, and to analyse this in a way which has
minimal confounds with other signals present in the z-spectrum. This was performed
in vivo in the human liver, and the response to fasting and feeding was observed.
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6.3.1 Phantom validation

Given the issues of achieving a high saturation power using the body coil outlined in
section 6.2, the first step was to acquire a z-spectrum from a glycogen-rich phantom
in order to observe the GlycoCEST signal. A cylindrical phantom comprised of a
suitable quantity of glycogen dissolved in distilled water was prepared. Two z-spectra
were acquired, one using a NOVA 8ch pTx head coil, and the other using the MRCoils
8TX/32RX fractionated dipole body array, using the same sequence for both. Z-
spectra were acquired at 64 off-resonance frequencies between ±333ppm using semi-
CW acquisition as described in section 6.2. A B1 map was also acquired to quantify
the difference in RF distribution and coverage between the two coils. Figure 6.3.1
shows the z-spectrum acquired from the phantom in both coils. The average B1 was
measured at 180% of the target B1 (1µT) in the head coil, but only 30% of the target
B1 in the body coil.

Figure 6.3.1: Z-spectra acquired from the glycogen phantom, highlighting the differ-
ence in the B1 transmit filed between the two coils.

We can see from the nature of the peak in the z-spectrum acquired from the head
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coil that the most prominent GlycoCEST signal is located between +0.8ppm and
+1.8ppm. However, even with reduced saturation power from the body coil, this
peak is still visible, albeit vastly reduced in amplitude. It is inconclusive from this
data whether this GlycoCEST peak will be visible in vivo when acquired using the
body coil due to competing effects in the z-spectrum such as MT, however it is at
least reassuring that it can be seen with an effective saturation power of only 0.3µT.
As glycogen has a relatively high exchange rate, the shape of the peak has a high
temperature dependency, and so may be more pronounced in vivo. It is also worth
noting that there appears to be a second exchanging pool at +3.2ppm, which is not
visible at lower powers. This may be indicative of the presence of glycosaminoglycans
(GAGs) in the phantom, which are long polysaccharides consisting of repeating sugar
units. As mentioned in chapter 4, these compounds have a dual resonance located at
+3.2 ppm and between +0.9ppm and +1.9ppm [43].

6.3.2 In vivo study protocol

4 subjects (2 male and 2 female) aged 24, 26, 36, and 55 years were recruited for
the study. Subjects were asked to fast overnight, starting from 8pm, with the study
beginning at 12 noon the next day, meaning a minimum of 16 hours of fasting.
Subjects were all scanned on the same day. The scanning protocol lasted 30 minutes,
and so subjects were interleaved. Figure 6.3.2 shows a timeline for the scanning
protocol.

Figure 6.3.2: Timeline of study protocol. Scanning sessions highlighted blue, meal
time highlighted in yellow. Total study duration was 6 hours.

The scanning protocol was similar to that described in section 6.2.1. A survey scan
was performed to locate the liver, and single slice B0 and B1 maps were acquired
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in the transverse plane. A small ROI was selected towards the posterior of the sub-
ject, and B0 and B1 shimming was performed across the selected ROI. A z-spectrum
with a reduced number of acquisition frequencies was first acquired around the water
frequency to assure that the B0 shimming had been successful, with 7 off-resonance
frequencies acquired from +1.5ppm to -1.5ppm at 0.5ppm intervals. If the lowest
signal was 0.5ppm away from the scanner resonance, this was deemed acceptable as
small B0 variations could be corrected in post processing. The full z-spectrum was
then acquired as detailed in section 6.2.1. 64 off-resonance frequencies were acquired
between ±333ppm using Semi-CW acquisition.

The meal offered to subjects was high in both carbohydrates and glucose, and consisted
of an assortment of foods including takeaway pizza and chocolate cake. Subjects were
encouraged to eat as much as they were comfortable with during their allocated thirty
minutes of meal time. At the end of the scan subjects were asked how well they were
able to follow these instructions.

Once the study had been completed, one subject was scanned a final three times in
succession. This was done to assess the repeatability of acquiring the z-spectrum.

6.3.3 Analysis of spectra

The spectral images were post-processed using in-house MATLAB [19] scripts. The
target ROI in the liver was masked and voxels in the ROI were averaged to create
one z-spectrum for each set of z-spectral images. These were then normalised to the
+333ppm point in the z-spectrum, and B0 corrected by locating the minimum of the
z-spectrum, and shifting the entire spectrum so that the minimum was aligned with
0ppm.

Figure 6.3.3 shows the z-spectra acquired to assess repeatability. It is clear that re-
peatability is very good between subsequent acquisitions, except for the peak occurring
at the glycogen location which appears to grow over the course of 30 minutes. Other
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possible peaks of interest are highlighted, along with a point in the z-spectrum where
the subject admitted to missing a breath hold.

Figure 6.3.3: Z-spectra acquired repeatedly from one subject in quick succession.
Possible peaks of interest are highlighted, along with a good example of the detrimental
effects of missing a breath hold during acquisition of a point in the z-spectrum.

The z-spectra acquired from the rest of the study were then analysed in the same way.
Figure 6.3.4 shows the series of z-spectra acquired from each subject. The data here
is clearly extremely noisy. Subjects 2, 3, and 4 admitted that they may have fallen
asleep during the scans, as the high amount of carbohydrate-rich food combined with
the repetitive noise of the scanner during z-spectrum acquisition and the requirement
to focus in breathing creates an environment where it can become difficult to remain
awake and alert. This may have resulted in the subjects not holding their breath at the
correct times and for the correct duration, leading to the breathing artefacts seen in
section 6.1. Subject 1, however, was confident that they remained awake throughout
the scanning procedure, and indeed this is reflected in the relatively noiseless z-spectra
displayed in Figure 6.3.4(a).

After initial analysis, two peaks were quantified in the z-spectra by measuring the area
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Figure 6.3.4: Z-spectra acquired from each subject, labelled (a-d). Of the four, only
subject 1 managed to remain conscious throughout the scanning protocol, as shown in
(a). Fasted spectra are displayed in black, and the spectra acquired 2 and 4 hours after
the meal are displayed in blue and red respectively. Dotted lines show the location of
the CEST and NOE peaks used for analysis.

under the z-spectrum at two hours and four hours post-meal relative to the fasted
spectrum. These were the glycogen peak, located between +0.8ppm and +1.8ppm,
and an NOE peak located between -2ppm and -1.17ppm. This method of quantifica-
tion was chosen to overcome systematic errors which would arise from an asymmetry
analysis, and in the absence of z-spectra acquired at further saturation powers, full
quantification could not be performed.

Figure 6.3.5 shows the results of quantifying the two peaks. Error bars have been
created by estimating the expected amount of variation in the fasted spectrum. For
each subject, the standard deviation of the area under the spectrum between +6.7ppm
and +5.7ppm, +5.7ppm and +4.7ppm, and +4.7ppm and +3.7ppm was calculated
to give an indication of how each subject’s breathing rate was altering the spectrum
shape close to the glycoCEST peak. An identical symmetrical analysis was performed
on the negative side of the spectrum to estimate error on the NOE peak. It should be
noted that this is an imperfect measure as a missed breath hold alters the shape of
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the z-spectrum quite dramatically, as can be seen particularly well in Figure 6.3.4(d).

Figure 6.3.5: Change in the peak area between +0.8ppm and +1.8ppm corresponding
to glycogen, and between -2ppm and -1.17ppm corresponding to the NOE peak, from
the fasted spectrum. Error bars indicate standard deviation in adjacent CEST and
NOE signals where the signal was not expected to change, to estimate spectrum
variation.

These results indicate that the glycoCEST signal seems to reach a maximum two
hours after feeding, whereas the NOE peak appeared to reach a maximum after 4
hours. However the results clearly varied hugely between subjects due to the induced
effects of drowsiness during the scanning protocol, and realistically only the results
from subject 1 should be considered. The origin of the NOE signal observed here is
still in question. Previous work has attributed this as ’glycoNOE’ [42] which would
be directly correlated with the glycoCEST signal, but here we observe the signals
behaving independently of each other. This is further evidenced in the repeatability
study shown in Figure 6.3.3, in which the glycoCEST signal marginally increases over
the course of 30 minutes but the observed NOE signal marginally decreases over the
same period. It is possible that this NOE signal is due to changes in blood volume in
the liver [44].

6.3.4 Future work

While this study demonstrates a promising initial investigation into measuring liver
glycogen levels in vivo, there are clearly several issues that need to be resolved. Several
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further variations of the study have since been attempted, and after these investiga-
tions a more robust study protocol has been designed.

The first and most obvious issue was to prevent subjects from falling asleep during z-
spectrum acquisition. It was found that this could be achieved if the scanner operator
spoke to the patient frequently during the scan. We found that if the patient was
informed how far through the z-spectrum they were every five dynamics, they were
able to retain a sufficient level of concentration to stay awake throughout the ten
minute acquisition time.

Subjects should also be given a meal better optimised to detect glycogen uptake in
the liver. As glycogen is a glucose storage unit, a high-glucose energy drink should be
used (8.9g glucose / 100ml) in place of the unmeasured quantity of high-carbohydrate
and high-sugar foods given previously. We suggest that subjects would drink a litre of
this drink, however this was estimated based on body weight, gastric emptying rates,
and the requirement to stay in the scanner long enough without the need to urinate.
This may be revised in the future following further investigations.

This revised version of the experiment was performed alternating two subjects every 30
minutes, in order to further increase the temporal resolution of the study. However,
it was found that the B1 saturation power changed considerably between each z-
spectrum acquisition, due to repositioning of the body coil. While a B1 map is
acquired as part of the scanning protocol, it is impossible to correct for changes in
B1 without the acquisition of multiple saturation powers, and even then B1 correction
using the required non-linear interpolation of the z-spectra would not be particularly
robust. However, based on this finding we can now outline a study which should be
able to accurately quantify the evolution of the glycoCEST peak and any other peaks
in the liver following a meal.
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6.3.5 Proposed protocol

As previously, a subject should fast overnight to ensure glycogen depletion in the liver.
The subject should also be asked not to drink for 1.5 hours before the start of the
scan and encouraged to urinate before scanning commences. The scanning protocol
for the fasted scan should be performed as described throughout this section, with
the scanner operator speaking to the subject after every five z-spectrum dynamics
acquired to assist the subject in staying awake. When the fasted set of scans is
complete, the patient should then remain in the scanner and ingest the glucose drink
through a gastric catheter, given the narrow bore of the Philips 7T Achieva system.
The glucose drink should be altered so that a set quantity of glucose per kilogram
of the subject’s body weight is dissolved in 500ml of water, to help avoid the need
to urinate. Z-spectra should then be acquired at a minimum rate of one every thirty
minutes after the subject has consumed the glucose drink. This results in a very long
time that the subject has to remain in the scanner (ideally over two hours, if not more),
which is why it is suggested that subjects are not continually subjected to z-spectrum
acquisition, and are allowed breaks between. We can see evidence that this approach
works in Figure 6.3.3 and Figure 6.3.4(a), where a z-spectrum was acquired from a
subject three times without them leaving the scanner, and the saturation power was
near identical each time.

Alternatively, multiple z-spectra acquired with different saturation powers could be
collected for each timepoint, for example at 0.67µT, 1.33µT, and 2.00µT, along with
a B1 field map. If three z-spectra were collected while the subject is fasted, and
then three were collected at hourly intervals after drinking a high-glucose drink, this
would allow for B1 correction of the acquired z-spectra while giving the subject more
freedom, as the z-spectra could be interpolated back to the target B1 as described in
section 4.2. Using this protocol, the patient would be in the scanner for around 40
minutes per acquisition, leaving a 20 minute break between subsequent scans if we
wanted to acquire once per hour. This would also allow us to acquire more timepoints,
and we could potentially map the evolution of glycogen for the desired period of 4
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hours after ingestion.

6.4 Summary

Z-spectrum imaging in the abdomen is still in its early stages, however it can enable
unique applications such as fibrosis imaging and glycogen mapping. This chapter
began by reviewing current methods of MT measurement in the abdomen before
proposing and trialling a new protocol for z-spectrum imaging in the abdomen at
clinical field strengths, which proved to be robust and repeatable, and free from res-
piratory effects. However, constraints were applied to acquisition of data on human
subjects and therefore further data should be acquired to validate this protocol. Some
of the challenges when moving to ultra-high field strengths were then explored, be-
fore conducting initial studies into how GlycoCEST imaging could be used to track
glycogen changes after a meal. The chapter finishes by detailing what should be the
ideal protocol to properly conduct this study, which hopefully can be used in the near
future.
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Conclusions

This thesis presents a new method of quantifying the underlying physical parameters
which give rise to the shape of the z-spectrum. In particular it has demonstrated the
use of a Particle Swarm Optimisation (PSO) algorithm in addressing this problem.
Unlike similar existing methods, the z-PSO is not dependent on any initial guesses,
and accurate quantification relies only on selecting the correct exchanging pools for
fitting. This method and other quantification methods are used throughout this thesis
for a wide range of in vivo and ex vivo applications in blood, brain and body.

Chapter 3 used the MT pool size as a marker for myelination to assess variation
in myelination levels across the adult lifespan. The look-up table was chosen as
an analysis method here as it is more suitable than the z-PSO for a quick analysis
of large datasets, especially when we are primarily interested in the pool sizes of
exchanging pools. Global and lobewise analyses are performed, and it is shown that
the myelination varies with age across the cortex, peaking at around age 42. This is
compared with the T1 measurements which have a peak later in life, most likely due to
the buildup of cortical iron which can decrease T1 measurements. The widely known
decline in cortical thickness is also observed, which is compared to the grey matter
MT measurements. No correlation was found between grey matter MT and cortical
thickness, suggesting that cortical thinning is not driven by demyelination in later life.
Finally the NOE pool size was also explored as a marker for myelination and it was
found to follow a similar (albeit weaker) parabolic trend with age, which may be of
use in understanding the origin of the signal in the human brain.
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The z-PSO was presented and evaluated in chapter 4. This revealed that the algorithm
was capable of accurately quantifying the underlying z-spectrum parameters, up to the
limit of the information provided in the z-spectrum. The algorithm was tested on a
creatine phantom at a range of temperatures, and successfully managed to fit exchange
rates which exhibited an approximate expected exponential decline with decreasing
temperature, which is the relationship we would expect considering the Arrhenius
equation. The z-PSO was then used to fit a six pool model to cerebral grey and white
matter, and the results were found to largely agree with similar analyses using other
quantification methods where available. Of particular interest, the only significant
differences between the cerebral grey and white matter were in the MT pool size,
which has been reported previously, and the NOE signal located at -1.7ppm, which
is currently of great interest. The z-PSO has many potential future applications in
measuring the exchange rates of a variety of CEST and NOE sources, both in vivo
and in phantom work.

Chapter 5 applied the z-PSO to a human blood z-spectrum in order to attempt to
determine the origin of the signals seen in the spectrum. F -tests on the fitted data
demonstrated that the most likely sources of signal were from glucose, glycosaminogly-
cans (GaGs), and two NOE signals at -3.5ppm and -1.7ppm. The ability to measure
glucose using the CEST signal was then probed further, but it was found that we
were unable to measure changes in the glucoCEST signal in a physiological range of
between 1.55mMol/L to 10.20mMol/L. The potential for in vivo pH measurement
using Iopamidol as an endogenous CEST contrast agent was then explored. It was
found that by using a low saturation power it was possible to distinguish between pH
levels in a physiologically relevant range. This could be utilised in future studies, for
example measuring muscle pH in vivo before and after exercise.

Finally the potential applications of abdominal z-spectroscopy were explored in chapter
6. The issues with current methods of measuring abdominal MT are outlined and
illustrated, and a respiratory and cardiac gated protocol is described to measure liver
and kidney MT. This was then developed further with a protocol in which the subject
was prompted to hold their breath at regular intervals, which appeared to remove any
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artefacts. This was used to measure MT in the intestinal wall, and was found to
give reliable results. This protocol will be used in a future study. The possibility of
performing z-spectroscopy at 7T was then explored, with an experiment to measure the
evolution of glycogen through measurement of the glycoCEST signal. This experiment
was performed with promising indications, however suffered from a fatal systematic
error, along with other parts of the experiment which could be optimised. The chapter
therefore concluded by providing a protocol for repeating this experiment in the future,
which should hopefully prove to be a robust way of measuring the evolution of the
glycoCEST signal in the liver following a meal.

In conclusion, this thesis presents a new robust and reliable method of quantifying
signals seen in z-spectroscopy, with the aim of developing the measurement of MT,
CEST and NOE effects for clinical use. These signals have been measured in a number
of in vivo situations, with potential future applications such as in vivo pH measurement
of muscle using Iopamidol in exercise studies, diagnosis of Crohn’s disease through
measurement of bowel fibrosis, and further understanding of glycogen metabolism
disorders, among many more.
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