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Abstract 

This thesis describes an investigation of neuronal responses with both 

magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). 

MEG and fMRI are widely used in neuroscience. However, aspects of the MEG and 

fMRI signal are still not well understood, particularly post-stimulus responses – 

responses which occur after a stimulus has ended. Post-stimulus responses have been 

shown to correlate with various illnesses and as a result, MEG and fMRI have yet to 

reach their full potential clinically.  

By developing carefully controlled experiments, MEG is used in this thesis to 

characterise post-stimulus responses to a grip-force task. The results showed that the 

beta-band post-stimulus response (post-movement beta rebound, PMBR) is modulated 

by task duration. Functional network analysis, using amplitude envelope correlation 

and a hidden Markov model, showed that the PMBR re-establishes networks after 

breaking down during a task, suggesting the PMBR is related to functional connectivity. 

The results of this thesis provide new information about the nature of the PMBR, 

demonstrating that it can be systematically controlled by task parameters and provides 

insight into its generation. It is hoped this research will contribute to a deeper 

understanding of the PMBR and provide a step forward for its use clinically.  

In fMRI, the origin of the post-stimulus response is also poorly understood. To 

investigate fMRI post-stimulus responses, an MR pulse sequence was developed and 

optimised to measure blood flow, volume and oxygenation changes simultaneously at 

7 T. This was implemented with the grip-force task, allowing direct comparison 

between MEG and fMRI. This study provides new insights into the fMRI post-stimulus 

undershoot which warrant further investigation. Understanding the link between fMRI 

and MEG signals will help further understanding of both modalities and how they relate 

to neuronal activity. 

Finally, the applications of fMRI were explored by comparing fMRI responses in 

patients with focal hand dystonia (FHD) with healthy controls. 7 T fMRI was used to 

map cortical fingertip representations and measures were developed to compare overlap 

of digit representations between patients and healthy controls. This project provided an 

important opportunity to advance the understanding of FHD and was the first study to 

use fMRI to explore the effects of treatment on patients with FHD.  
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CHAPTER 1 

1 Introduction  

The human brain is one of the most complex things in the universe. Humanity has tried 

to understand the brain for millennia, yet how it functions still largely remains elusive. 

It is only recently that the tools to study the structure and function of the brain in vivo 

have been available.  

Whilst the quest to understand the brain for knowledge’s sake is an important one, it is 

the real-world applications that make studying the brain truly worthwhile. Perhaps, if it 

is possible to image the brain when it is well functioning, it will be possible to 

understand what goes wrong in the brain in disease, neurological disorders and mental 

illness. In particular, mental illness is often dismissed as it is seen as something only 

happening in your head. Yet, because something is happening in your head does not 

mean it is not real. With modern neuroimaging techniques, it is possible to image neural 

activity and examine changes in this neural activity in psychiatric disorders.  

Beyond understanding the brain, it is conceivable that better neuroimaging techniques 

will not only lead to diagnosis of conditions, and earlier treatment, but could be used to 

tailor treatment to an individual and monitor treatment throughout – so called precision 

medicine. Medicine is usually thought of in terms of being applied to a population, but 

with increasing data on individual patients, medicine can be tailored to the individual 

with the aim of improving outcomes and reduce side effects. 

1.1 Neuroimaging  

Neuroscience has been trying to understand the function of the brain for a long time, 

but it is difficult to investigate neural activity non-invasively. Electrical activity can be 

measured from the brain by placing electrodes directly on the surface of the brain, or 

into the brain, but this invasiveness limits its investigational uses. In 1924, Hans Berger 

first recorded the electrical activity from the brain non-invasively, which he termed the 

electroencephalogram (EEG) (Berger, 1929). Berger demonstrated that brain activity 

can be described by waves, such as the alpha rhythm (8 – 12 Hz). It wasn’t until much 

later, due to technological advances in quantum mechanics in superconductors, that 

magnetoencephalography (MEG), the magnetic counterpart to EEG, was able to be 
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measured in a practical way (Cohen, 1968). Consequently, whole-head MEG scanners 

have only been available since the 2000s.  

Other imaging modalities, namely x-ray computed tomography (CT), positron emission 

tomography (PET) and magnetic resonance imaging (MRI) came about in the late 20th 

century. MRI, unlike CT and PET, offers a means to measure anatomical structure 

without the use of ionising radiation. Moreover, with the ability to rapidly acquire 

images, functional MRI (fMRI) was developed in the early nineties to measure the 

dynamics of brain function, using blood oxygenation as contrast.  

Despite these advances in neuroimaging, how the brain functions is still not fully 

understood, in part due to a lack of understanding of the precise origins of the signals 

measured by the neuroimaging techniques described. Understanding the brain’s 

function is vital to better understand disease and therefore it is necessary to characterise 

brain responses. To do this, this thesis uses multimodal techniques (MEG and fMRI) to 

investigate neuronal responses. MEG measures oscillatory activity directly related to 

neuronal activity, with high temporal resolution, yet its spatial resolution is hindered by 

the ill-posed inverse problem. FMRI, on the other hand, has excellent spatial resolution, 

which is improved with higher field strength, but poorer temporal resolution than MEG. 

Furthermore, these techniques provide insights into different aspects of brain activity: 

synchronous firing of neurons from MEG and changes in neuronal metabolic demands 

as well as physiological changes from fMRI. Therefore, if used in concert, multimodal 

imaging has the potential to gain greater insights into the true functioning of the brain. 

1.2 Aims of This Thesis 

This thesis firstly aims to characterise post-stimulus responses, significant changes 

from baseline in measured brain signal after the end of a stimulus, using both fMRI and 

MEG. On movement cessation, electrophysiological responses show an increase in 

amplitude above baseline - the post-movement beta rebound (PMBR). Numerous 

studies have highlighted the importance of the PMBR, showing how the PMBR is 

modulated in disease (for example, schizophrenia (Robson et al., 2016), autism 

(Honaga et al., 2010), stroke (Parkkonen et al., 2017), multiple sclerosis (Barratt et al., 

2017) and motor neurone disease (Proudfoot et al., 2017)). For the PMBR to have 

clinical relevance, it must be fully characterised. It is still unknown how the PMBR 

modulates with task parameters which is essential to its characterisation. A great deal 
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of recent research into the PMBR has been performed, yet tasks favour short inter-

stimulus-intervals to acquire many repeats, limiting their ability to fully assess the 

PMBR. This thesis uses a precisely controlled task with long baseline periods to 

investigate the PMBR.  

A large amount of recent research has investigated functional connectivity in the brain. 

These tools can be used to explore the origins of the PMBR more closely. Most studies 

have investigated resting state networks, which are limited for studying the PMBR. In 

this thesis, the functional networks that are present throughout different task stages will 

be explored, using amplitude envelope correlation and a novel hidden Markov model. 

An understanding of how brain networks develop during a task will provide further 

insight into the functional relevance of brain activity during different phases of the task. 

The direct relationship between the fMRI responses and neuronal activity is not 

understood. In particular, a significant component of the fMRI response, post-stimulus 

responses, have been largely overlooked. Post-stimulus fMRI responses are important 

as the post-stimulus undershoot (PSU) has been shown to have some neuronal origin 

and therefore functional relevance, distinct to the information occurring during the 

stimulus. A key question is what generates the post-stimulus undershoot – does it arises 

from vascular, metabolic, or neuronal effects? Large amounts of research have tried to 

answer this, with different measures, but to fully understand the PSU it is necessary to 

untangle what happens to blood oxygenation, oxygen metabolism, blood volume and 

blood flow for a task where the underlying neuronal activity is precisely characterised. 

In this thesis, the aim was to combine measures of cerebral blood volume, cerebral 

blood flow and blood oxygenation to measure what happens to the post-stimulus 

undershoot in the same motor task where the MEG response had been characterised and 

relate the responses measured across modalities.  

Finally, the primary blood-oxygen-level-dependent (BOLD) fMRI response can play 

an important role in understanding neurological disorders. Focal hand dystonia (FHD) 

is of interest as it has been thought that FHD causes disturbances in the sensory 

representation of digits in the cortex. However, the research to date has used lower field 

strength and lower spatial resolution fMRI to investigate FHD. The specific objective 

of the work in this thesis was to use high spatial resolution fMRI at 7 T to generate 

maps of digit representation in individual FHD patients and healthy controls, as well as 
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exploring effects of Botox treatment. This study aims to develop analysis pipelines to 

optimise the investigation of digit representation, to facilitate research into FHD.  

1.3 Thesis Overview  

At the beginning of this thesis, the background of MEG and fMRI will be introduced. 

Chapter 2 describes the theory behind the origins and acquisition of the MEG signal. 

The neuronal origin of MEG signals is discussed, followed by the physics of super 

conducting quantum interference devices (SQUIDs) which are most commonly used to 

detect MEG signals. The analysis methods, used in the experimental work of this thesis, 

which enable MEG signals measured on the surface of the head to be localised inside 

the head are then described.  

In Chapter 3, the theory behind fMRI is detailed, beginning with a description of the 

phenomenon of nuclear magnetic resonance. This is followed by the theory of MRI and 

how an image is generated. Techniques are introduced for fast imaging, including ways 

to speed up acquisition. Finally, the basics of BOLD fMRI are explained, including the 

origin of the BOLD signal and the general principles of how fMRI data are acquired 

and analysed.  

Chapter 4, the first experimental chapter, describes the methods and results of a 

precisely developed grip-force task using MEG to image brain electrophysiology. The 

aim was to accurately characterise how task duration modulates beta responses. Chapter 

5 extends this work, using the same data to further explore the nature of the PMBR 

using functional connectivity measures. Amplitude envelope correlation is used to 

investigate connectivity changes throughout a task. Exploiting the high temporal 

resolution of MEG, novel hidden Markov model analysis is used to investigate 

networks on a short timescale.  

Chapter 6 takes advantage of multimodal imaging, employing the task used in the MEG 

experiments adapted for an fMRI setting. The aim of this chapter was to establish the 

origins of the post-stimulus BOLD response to this stimulus. A sequence was optimised 

to measure cerebral blood volume and flow as well as BOLD to aid interpretation of 

the origin of the BOLD post-stimulus response and modulation with the task. The aim 

is that this sequence will better uncover any underlying neural activity than standard 

BOLD fMRI alone, and aid interpretation of the contribution of the vascular and 
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neuronal origin to the post-stimulus response. The MEG and fMRI results will also be 

compared.  

Chapter 7 explores the applications of BOLD fMRI to clinical populations. A high 

spatial resolution BOLD fMRI experiment is conducted on patients with focal hand 

dystonia with the aim to accurately map the representation of hand digits in the 

sensorimotor cortex of these patients compared with healthy controls. Analysis 

pipelines are developed for investigating overlap of digit representations, and the 

effects of Botox treatment on cortical organisation in patients with FHD is explored for 

the first time with fMRI.  

Finally, Chapter 8 will present the conclusions of this thesis and will explore the 

potential for future research.  
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CHAPTER 2 

2 Magnetoencephalography 

2.1 Introduction  

MEG (magnetoencephalography) is a non-invasive technique that measures the 

magnetic fields produced by the brain, induced by synchronised currents flowing 

through neurons. These magnetic fields are on the order of 10-14 to 10-13 T. Measuring 

such small fields is challenging, but possible with superconducting quantum 

interference devices (SQUIDs) (Cohen, 1968; Jaklevic et al., 1964). Currently, most 

systems use around 300 detectors, which surround the head in an array and can be used 

to measure neural oscillations and evoked potentials. MEG has excellent temporal 

resolution as it directly measures changes in neuronal activity.  

Conducting a magnetoencephalography experiment firstly involves measuring the 

extra-cranial magnetic fields. This is performed inside a magnetically shielded room to 

reduce external noise. Once the measured magnetic fields are collected, the next aim is 

to reconstruct the sources inside the head which produced the measured magnetic fields 

to provide a measure of brain activity. The problem is, there are an infinite number of 

current distributions inside the head that could produce a single measured magnetic 

field distribution outside the head. This is known as the MEG inverse problem, to which 

there is no unique solution, but can be overcome with methods such as beamforming 

(Van Veen & Buckley, 1988; Van Veen et al., 1997).  

The result is that MEG allows the study of electrophysiological activity on short time 

scales, non-invasively. This provides a method to directly study the synchronous firing 

of neurons within the brain and therefore allows the investigation of brain function. 

MEG is still fairly uncommon, with only 10 MEG systems in the UK (meguk.ac.uk), 

largely due to its high price. Yet, MEG has better spatial resolution than its electric 

counterpart (electroencephalography, EEG) and better temporal resolution than fMRI, 

and as such holds great promise. In recent years, technological developments have 

enabled a new type of MEG, namely OPM MEG (optically pumped magnetometer) 

which uses optical pumping of rubidium atoms to act as a magnetometer. This allows 

MEG to be performed at room temperature, reducing the costs needed for liquid helium 
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and allowing the sensors to be placed closer to the head, increasing SNR (Boto et al., 

2018). OPM MEG could revolutionise the future of MEG, however, it is still in its 

infancy and being developed. Therefore, this thesis focuses on the use of SQUID MEG, 

which was used in experimental Chapters 4 and 5. The data collected in this thesis were 

recorded on a 275 SQUID CTF MEG system (CTF MEG International Services, 

Coquitlam, BC), at the Sir Peter Mansfield Imaging Centre, University of Nottingham. 

The basis of the methods by which to measure magnetic fields from the brain will be 

explained in this chapter.  

2.2 Origin of MEG Signals 

2.2.1 Neurons 

MEG measures the magnetic fields from the brain, produced by the synchronous firing 

of millions of neurons. Neurons are electrically excitable nerve cells responsible for 

information processing within the brain by sending electrical impulses to other neurons. 

Figure 2.1 shows the schematic of a neuron. A neuron consists of the soma, the cell 

body which contains the nucleus of the cell; the dendrites, thread-like structures which 

branch from the soma to receive information from neighbouring cells; and the axon, a 

single fibre which extends from the soma to carry electrical signals to other neurons, 

which terminates in a nerve ending. The axon leaves the soma at the axon hillock and 

the axon may be surrounded by a myelin sheath which electrically insulates the axon to 

increase transmission speed. The nerve ending of the axon (the presynaptic nerve 

terminal) connects to another neuron which is referred to as the postsynaptic cell. The 

presynaptic nerve terminal and postsynaptic membrane make up the synapse, and are 

separated by a small area called the synaptic cleft, where neurotransmitters are released. 

The synapse allows electrical stimulation to travel from the nerve ending of one neuron 

to the dendrite, soma or axon of the next neuron and are the structures by which neurons 

communicate.  

Figure 2.2 shows a diagram of the human brain. The brain is made up of grey matter on 

the outer surface of the brain, which largely consists of cell bodies and dendrites, and 

white matter, which is made up of axons. Neurons can take many forms but generally 

take two main shapes: stellate neurons which have dendrites that propagate in all 

directions from the soma, and pyramidal neurons which have dendrites oriented parallel 

to each other, and usually perpendicular to the cortical surface. The schematic in Figure 
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2.1 shows a pyramidal neuron. A drawing of a cross-section of the cortex is shown in 

Figure 2.3 showing the laminar structure of neurons in the cortex.  

 

Figure 2.1. Schematic of a pyramidal neuron, where the dendrites are oriented parallel to each 

other. The cell body contains the nucleus of the cell and the axon extends from the axon hillock. 

Electrical signals are transmitted to other neurons via synapses, which can be excitatory or 

inhibitory. Adapted from Hämäläinen et al. (Hämäläinen et al., 1993). 

 

Figure 2.2. Anatomy of the human brain. (A) The cerebrum can be divided into four lobes: 

frontal, parietal, occipital and temporal. The central sulcus separates the frontal and parietal 

lobes. (B) A coronal slice through the brain showing the grey and white matter. Adapted from 

Bear et al. (Bear et al., 2020).  
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Figure 2.3. Drawing of the cell bodies of neurons in motor cortex, showing laminar structure 

of layers I-VI, where the surface of the cortex is at the top. Drawing from Ramón y Cajal 

(Ramón y Cajal, 1899). 

2.2.2 Action Potentials 

Neurons transmit information via electrical and chemical processes. Neurons are 

surrounded by a selectively permeable membrane, which changes depending on the 

electrical potential of the surrounding area. At equilibrium, there is a difference in 

intracellular and extracellular ion concentrations, resulting in a resting potential of -70 

mV between the inside and outside of the cell. If the potential at the axon hillock (Figure 

2.1) reaches a certain threshold of around -40 mV, the neuron fires and an action 

potential is initiated. At this threshold, the permeability of the membrane changes and 

ion channels are opened, allowing ion flow. This causes a large influx of Na+ ions into 

the membrane, resulting in the cell becoming positively charged to approximately +40 

mV. This rapid increase in potential is known as the action potential. The action 

potential triggers neighbouring membranes to change permeability and become 

depolarised, resulting in the propagation of the action potential along the length of the 

axon (Figure 2.4). After becoming depolarised, the membrane returns to equilibrium 
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via outflow of potassium ions causing the membrane to repolarise back to the resting 

potential. This is achieved by ion pumps which move ions against the concentration 

gradient. This depolarisation and repolarisation propagates along the axon. Because of 

this, action potentials can be modelled as two opposite current dipoles, forming a 

current quadrupole (Figure 2.4). Quadrupole magnetic fields fall off at a rate of 1/r3.  

 

Figure 2.4. Diagram of an action potential propagating along an axon. Two opposing current 

dipoles (depolarisation and repolarisation) create a current quadrupole which propagates 

along the axon. 

2.2.3 Postsynaptic Potentials  

Once the action potential reaches the end of the axon of the presynaptic cell, it triggers 

the release of neurotransmitters into the synaptic cleft (Figure 2.1). The 

neurotransmitters travel across the synapse and bind to the dendrites or soma of the 

postsynaptic cell, opening ion channels at the postsynaptic cell. This allows ions to 

enter the cell causing a change in potential, which is known as the postsynaptic 

potential, as well as a current along the direction of the dendrite of the postsynaptic cell 

(Figure 2.5). Depending whether an excitatory or inhibitory synapse was stimulated, 

the neuron will either by depolarised (voltage increase, in the case of an excitatory 

synapse) or hyperpolarised (in the case of an inhibitory synapse, voltage more 

negative). If enough excitatory synapses are stimulated, the voltage will reach the             

-40 mV threshold and an action potential will be triggered. In the case of inhibitory 

synapses, the neuron becomes less likely to fire as the chance of reaching the -40 mV 

threshold for an action potential to be induced is reduced. The postsynaptic potential 

decays along the direction of the dendrite. After the postsynaptic potential, ion pumps 

re-establish equilibrium concentration by expelling ions against the concentration 
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gradient. This expulsion of ions creates an extracellular current (volume current) in the 

opposite direction to the postsynaptic current (Figure 2.5). 

 

Figure 2.5. Diagram of a current dipole along a dendrite.  

2.2.4 Neuronal Origin of MEG  

From a distance, this postsynaptic current can be modelled as a dipole oriented along 

the dendrites. The magnetic field of a dipole falls off at a rate of 1/r2. Therefore, at a 

distance the dendritic current (postsynaptic potential) is larger than the axonal current 

(action potential). The action potentials also operate on a much smaller timescale than 

postsynaptic potentials: 2 ms compared to tens of milliseconds, respectively. Therefore, 

it is unlikely that action potentials make a significant contribution to the MEG signal; 

instead, MEG signals are thought to originate largely from dendritic currents in 

postsynaptic potentials (Hansen et al., 2010). Further, the symmetric nature of stellate 

neurons means that the current is distributed symmetrically, hence the electromagnetic 

fields produced by stellate neurons cancel out at short distances. In pyramidal neurons, 

with dendrites parallel to each other and usually perpendicular to the cortical surface, 

the electromagnetic fields do not cancel out meaning the signals are able to be detected 

outside the head. Therefore MEG signals are thought to originate from postsynaptic 

currents of pyramidal neurons.  

The detected MEG signal does not originate from a single neuron, rather the 

synchronous firing of many thousands of neurons. If the average measured MEG signal 

is around 10 nAm, and the postsynaptic potential is considered to be a current dipole 



13 

 

on the order of 0.29 to 0.90 pAm, this would suggest around 50 000 neurons are needed 

to be synchronously firing to be detectable with MEG (Murakami & Okada, 2006).   

2.2.5 Neural Oscillations 

This synchronous firing of thousands of neurons results in rhythmic oscillations. Brain 

oscillations were first measured in humans by Berger (Berger, 1929), upon the 

discovery of alpha rhythm (8 – 13 Hz). Spontaneous oscillations have since been 

categorised into further observed frequency bands: delta (1 – 4 Hz), theta (4 – 8 Hz), 

beta (13 – 30 Hz) and gamma (30 – 200 Hz). Oscillations are crucial to brain function 

and the traditional view was that different frequency bands represent different 

functions, and mediate connections between brain regions. Jasper and Penfield (Jasper 

& Penfield, 1949) describe early work measuring electrocortical activity, showing 

different frequency bands associated with different brain regions and give the first 

description which attempts to characterise rhythms.  

A more current theory has provided a model of how neural oscillations communicate 

across the brain. The idea is that for oscillations to communicate effectively with each 

other over a long range, the oscillations need to be coherent. This is termed 

communication by coherence and was proposed by Fries in 2005 (Fries, 2005). The 

excitability of a neuron is dependent on the phase of the oscillation, such that at the 

peak of the oscillation spiking occurs. The neuron is also more receptive to signals at 

the peak. Therefore, if two neuronal populations are in phase, and hence their peak 

occurs at the same time, they are more likely to be able to send information between 

each other and be functionally connected.  

The amplitude of these oscillations can be modulated by a task. Figure 2.6 shows the 

time course of the envelope of activity in different frequency bands overlaid in a visual 

experiment. During the visual stimulus, there is a loss in power in the low frequency 

bands (alpha and beta) and an increase in power in high frequency bands (gamma). A 

rebound above baseline can also be observed in the alpha and beta bands, after the 

stimulus has ended. The decrease in average power of the oscillations in response to a 

stimulus is known as event related desynchronization (ERD) and the increase in average 

power of the oscillations is known as event related synchronization (ERS). These 

changes in neural oscillations have been observed numerous times – Pfurtscheller and 

Lopes da Silva (Pfurtscheller & Lopes da Silva, 1999) give a review on basic principles 
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of ERD and ERS in different frequency bands and how to quantify them; Neuper and 

Pfurtscheller 2001 (Neuper & Pfurtscheller, 2001) discuss features of ERD and ERS in 

alpha and beta; Pfurtscheller et al. 1996 (Pfurtscheller et al., 1996) gives a review of 

ERS in the alpha band in EEG; Cheyne 2013 (Cheyne, 2013) gives a more current 

review on application of MEG in sensorimotor cortex. These responses also occur in 

many regions of the brain. The precise functional role of ERD and ERS both during 

and after a stimulus period in different frequency bands is still not fully understood and 

is explored further in Chapters 4 and 5 where more detail on the beta band can be found.  

 

Figure 2.6. MEG virtual electrode time courses from the visual cortex for all frequency bands 

during a visual experiment. The visual stimulus occurred between 0 and 4 s. Taken from (Zumer 

et al., 2010).  

2.3 Detection of MEG signals  

Neuromagnetic fields are a billion times smaller than the Earth’s magnetic field, making 

them difficult to detect. In fact, they are one hundred times smaller than the magnetic 

fields produced from the heart. In 1968, measurements of the brain’s magnetic field 

were first performed (Cohen, 1968) using a single million-turn coil in a magnetically 

shielded room. Soon this was improved upon using a superconducting magnetometer 

(Cohen, 1972) with much higher sensitivity, called a superconducting quantum 

interference device (SQUID). Since 1972, technology has advanced to allow up to 300 

SQUIDs to be used at once. SQUIDs are based on a quantum phenomenon of 

superconductivity which will be explained briefly in the following.  
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2.3.1 Superconductivity  

When temperature is reduced below a certain transition temperature, metals can 

conduct electricity without any resistance. This is known as superconductivity. The 

electrons in the lattice of the metal become attracted to one another, and form pairs, 

known as Cooper pairs. A single electron is a Fermi particle, whereas a Cooper pair is 

a Bose particle. Therefore, the Fermi Exclusion principle which states that no two 

electrons can exist in the same state, no longer applies. Instead, as bosons, any number 

of electrons can exist in the same state. This is what happens in superconductivity: all 

the electrons are in the same state and can be described by the same wavefunction so 

there is no electrical resistance. As a consequence of no resistance, a current induced in 

a superconductor can persist without dissipating. However, this typically only applies 

at very low temperatures, as the thermal energy required to break the bond between the 

Cooper pairs is very small (on the order of 10-3 eV).  

2.3.2 Josephson Junctions  

An interesting phenomenon in superconductivity was discovered in 1962, when 

Josephson considered what would happen if two pieces of superconductor were 

connected by a weak, non-superconducting link. This is now known as a Josephson 

junction (Josephson, 1962). When two pieces of superconductor are joined by a weak 

link, such as an oxide barrier, which is sufficiently thin that the wavefunctions on either 

side couple, electrons in Cooper pairs can cross the gap in a quantum mechanical 

tunnelling process. If there were no gap between the superconductors, the 

wavefunctions of the electrons would be the same. If there were a large gap, the 

wavefunctions would be completely unrelated. Instead, the weak link causes the 

wavefunctions on either side of the gap to be coupled. Fundamentally, the tunnelling 

current 𝐼 across the gap is dependent on the phase difference between the two 

superconductors, 

 𝐼 = 𝐼0 sin 𝛿 (1) 

where 𝛿 = 𝜃2 − 𝜃1, the difference in phase of the two wavefunctions at the junction, 

and 𝐼0 is a characteristic of the particular junction.  

An even more interesting effect occurs when two Josephson junctions are present in a 

superconducting ring (Figure 2.7). In this case, the currents interfere, caused by a 

difference in phase of the currents on the different paths around the ring. This is because 
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the phase difference of the wavefunctions must be the same no matter which way 

around the loop the electrons travel. The change in phase travelling around the loop 

through junction A (orange line, Figure 2.7), must be equal to the change in phase 

travelling around the loop through junction B (blue line, Figure 2.7). Therefore the 

change in phase can be equated, which gives  

 𝛿𝑏 − 𝛿𝑎 =  
2𝑞

ℏ 
∮ 𝑨. 𝑑𝒔

𝐿𝑜𝑜𝑝

 (2) 

showing that the difference in phase equals the line integral over the whole 

superconducting loop, where ℏ is the reduced Planck’s constant, 𝑨 is the vector 

potential and q is the charge on an electron. The line integral around the loop is the 

magnetic flux, Φ, through the loop. Therefore,  

 𝛿𝑏 − 𝛿𝑎 =  
2𝑞

ℏ 
Φ. (3) 

This results in the difference in phase being proportional to the magnetic flux. To find 

the current of the loop, the total current, I, will be given by the sum of the currents 

through each junction. Using equation 1,  

 𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼0 sin 𝛿𝑎 + 𝐼0 sin 𝛿𝑏 . (4) 

 

Let 𝛿𝑎 = 𝛿0 +
2𝑞

ℏ 
Φ and 𝛿𝑏 = 𝛿0 −

2𝑞

ℏ 
Φ, and using a trigonometric identity, this gives  

 𝐼 = 2𝐼0 sin 𝛿0 cos
𝑞

ℏ
Φ. (5) 

For a maximum,  

 𝐼𝑚𝑎𝑥 = 2𝐼0 |cos
𝑞

ℏ
Φ|  (6) 

with maxima at Φ = 𝑛
𝜋ℏ

𝑞
 where n is an integer. From equation 5, it can be seen that 

current depends in an oscillatory way on the flux inside the loop. As the period of the 

oscillation is so small, the current is extremely sensitive to tiny changes in magnetic 

flux. Therefore a pair of Josephson junctions can be used as a sensitive magnetometer 

to measure magnetic fields with great precision. This is the basis for a DC SQUID used 

in MEG.  



17 

 

 

Figure 2.7. Two Josephson junctions, a and b, in a superconducting ring. The currents through 

the two junctions interfere, resulting in a total current which is dependent on magnetic flux, 

enabling its use as a magnetometer. 

2.3.3 DC SQUID  

This superconducting ring with two Josephson junctions is what is used in a DC 

SQUID. An example of the circuit diagram for a DC SQUID is given in Figure 2.8B. 

The SQUID is inductively coupled to a flux transformer. Flux transformers consist of 

a superconducting pickup coil which is placed close to the head, and a coupling coil 

which is inductively coupled to the SQUID. Time varying neuromagnetic fields induce 

currents in the superconducting pickup coil. Since the flux transformer is connected to 

the SQUID, and a bias current, IDC, has been applied to the SQUID, the change in 

current will cause a change in flux through the SQUID. The SQUID flux voltage 

transfer function is a periodic sinusoid (Figure 2.8A). For greatest sensitivity in changes 

in magnetic flux, the SQUID is operated in the region where the function is steepest, 

where 
𝑑𝑉

𝑑Φ
 is maximum, and the curve is approximately linear (Figure 2.8A). Therefore 

to ensure this holds, the SQUID is operated in a feedback loop, where the electronics 

apply a feedback current which counters the change in flux, to keep the flux through 

the SQUID constant. This applied voltage by the feedback circuit is the measured 

output of the SQUID.  
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Figure 2.8. (A) Voltage as a function of flux. The DC SQUID is operated where the curve is 

approximately linear. (B) Circuit diagram of a DC SQUID. Pickup coil on the left picks up 

neuromagnetic fields, which is inductively coupled to the SQUID. This changes flux through 

the Josephson junctions, so a feedback current is applied to keep the flux through the SQUID 

the same and ensure the SQUID is operated on the linear part of the curve. Adapted from Vrba 

and Robinson (Vrba & Robinson, 2001). 

2.3.4 Noise Reduction  

Although SQUIDs are sensitive enough to measure neuromagnetic fields, the Earth’s 

magnetic field is still orders of magnitude larger than the neuromagnetic fields, and 

external magnetic noise – such as electronics in the laboratory, moving magnetic 

objects (e.g. cars) and biomagnetic fields of no interest (e.g. magnetocardiogram) – can 

obscure the signal from the head. Hence, SQUIDs need to be used in conjunction with 

external noise reduction. The most straightforward approach to noise reduction is 

shielding using a magnetically shielded room. This is accomplished by eddy currents 

in a thick layer of high conductivity, high permeability metal (Zimmerman 1977), such 

as µ-metals which are nickel-iron alloys. Whilst magnetically shielded rooms remove 

most of Earth’s magnetic field and sources of electrical equipment, this still leaves noise 

which is orders of magnitude higher than the neuromagnetic fields of interest.  
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To further isolate the neuromagnetic fields from the head, gradiometers are used. The 

CTF system uses axial gradiometers, shown in Figure 2.9. Gradiometers measure 

magnetic field gradient instead of magnetic field strength. The gradiometer is made of 

two loops of wire wound in opposite directions, separated by a short baseline distance, 

b. Since they are wound in opposition, the induced currents from a homogenous 

magnetic field will cancel out, and the net current will measure field gradient. As 

magnetic field strength follows an inverse square law, gradiometers are effective at 

measuring magnetic fields from nearby sources, such as the head, which the 

gradiometers are placed close to, whereas fields from distant noise sources are cancelled 

out (Figure 2.9).  

 

Figure 2.9. (A) Schematic of an axial gradiometer. Since the loops are oppositely wound, 

induced currents from fields which are the same at both loops will cancel out, whereas for a 

nearby source (the head) the field gradient will be large. (B) Field gradient measured from an 

axial gradiometer of a distant noise source (pink) and neuromagnetic field (blue) which is 

closer to the gradiometer. Since the noise source is far away, the gradient between the two 

loops is small, whereas for the nearby brain source, the gradient is large.  

Using hardware gradiometers reduces a lot of environmental noise, but is usually not 

sufficient. Additional hardware gradiometers can be used, but become impractically 

long and are expensive to build (Hämäläinen et al., 1993). Instead, on the CTF system 

used in this thesis, higher order gradiometers can be synthesised using software. Second 

and third order gradiometers can be made electronically from first order gradiometers, 

used in conjunction with reference sensors. Reference sensors are positioned far away 

from the subject’s head in order to detect distant noise sources. The magnetic fields 

detected at these reference sensors is expanded into a Taylor series about the primary 

sensor location. Using this, second and third order gradiometers can be synthetically 
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produced (Vrba & Robinson, 2001). These substantially improve the signal to noise of 

MEG recordings, particularly at low frequencies, enabling extra-cranial magnetic fields 

to be measured.  

2.3.5 MEG System  

A diagram of a MEG system is given in Figure 2.10. As mentioned in the previous 

section, the MEG system is housed inside a µ-metal magnetically shielded room. The 

MEG system comprises SQUIDs and flux transformers kept in a dewar of liquid helium 

to stay at superconducting temperature. The dewar is contained inside a movable gantry 

to allow horizontal or vertical positions. The subject is positioned on an adjustable chair 

which can be pulled out into a bed for supine scans. In this thesis, supine scanning was 

utilised to allow direct comparison to fMRI which is performed supine, as evidence has 

suggested body position can influence brain activity (Thibault et al., 2014). The subject 

is provided with head padding to minimise head movement during the scan to aid 

localisation. Measurements from the SQUIDs are digitised by an electronics rack and 

sent to an acquisition computer. A stimulus computer provides visual stimuli which are 

back-projected onto a screen inside the shielded room from a projector which is situated 

outside the shielded room to reduce interference. The acquisition and stimulus 

computer are connected via a parallel port so that temporal markers of stimulus 

occurrence can be placed in the MEG data for synchronicity and to aid post-processing.  

 

Figure 2.10. Diagram of a MEG system. Adapted from Vrba and Robinson (Vrba & Robinson, 

2001).  
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Another important component of a MEG experiment is localising the head within the 

MEG scanner. This is achieved by attaching coils to the participant at three locations 

on the head (the nasion, left and right preauricular locations) to determine the position 

of the head in relation the MEG. During the experiment, the coils are energised to 

localise the position of the coils within the scanner and track head movement during 

the experiment. The location of these coils is then registered relative to the subject’s 

head geometry at the end of the scan session using a 3D digitiser. The 3D digitiser 

system (Polhemus, Colchester, VT, USA) uses a transmitter placed behind the subject 

and a receiver attached the subject’s head, which are able to locate the position of a 

stylus. The stylus is used to determine the location of the three coils relative to the 

surface of the subject’s head, and to create a 3D representation of the surface of the 

head by moving the stylus over the head (Figure 2.11A). This surface is then matched 

to an anatomical image acquired using an MPRAGE sequence on either 3 T or 7 T MRI 

(Figure 2.11B). The scalp surface is extracted from the MRI image and is matched to 

the digitised head in an iterative process to find the best match. The position of the 3 

coils are then known relative to the anatomy of the subject and also relative to the 

sensors in the MEG helmet (Figure 2.11B). This enables data acquired in the MEG 

scanner to be coregistered to the subject’s brain anatomy.  

 

Figure 2.11. (A) Digitised surface points (blue) matched to head surface (red) extracted from 

anatomical MRI. (B) Nasion head coil location from the MEG scan can now be accurately 

matched to anatomical MRI. 

2.3.6 Source Reconstruction  

Once the MEG data have been collected, it is useful to localise the sources of the 

measured magnetic fields in the head. Not only does this enable investigation of the 

location of brain activity in functionally specific brain regions, but it can reduce 
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potential issues of field spread (since many sensors will detect the field from a single 

source) and reduce interference from noise sources. In order to project data into source 

space, two problems need to be solved: the forward problem and the inverse problem.  

2.3.7 The Forward Problem 

The forward problem is: given a known current distribution inside the brain, can the 

resulting electromagnetic field distribution outside the head be calculated? This 

problem is solvable, as the magnetic field outside the head can be calculated with 

Maxwell’s equations, albeit with several assumptions. In this example, the head is 

assumed to be a single sphere with homogeneous conductivity. Secondly, the magnetic 

fields resulting from synchronised postsynaptic currents is assumed to resemble the 

field from a single current dipole at a distance. This is a reasonable assumption 

assuming the volume of brain activated is small.  

 

Figure 2.12. Geometry of a single spherical conductor, G, bounded by surface, S, with a dipole 

Q at location rQ. A detector is at location r.  

The magnetic field, B, outside a conductor (the head), G, with homogeneous 

conductivity is given by the Biot-Savart law,  

 𝑩(𝒓) =
𝜇0

4𝜋
∫

𝑱(𝒓′) × 𝑹

|𝑹|3
𝐺

𝑑𝑣′ (7) 

where 𝜇0 is the permeability of free space, 𝑱 is the total current density contained in the 

volume, 𝑹 = 𝒓 − 𝒓′ where 𝒓′ represents a location inside the head and 𝒓 represents a 

location outside the head (see Figure 2.12). For now, it is assumed the current is only 

due to the primary current, as is can be shown that the volume currents are zero for a 

radial field (Geselowitz, 1970). Therefore, assuming the current source is a single 
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dipole of strength 𝑄, at location 𝒓𝑄 , produced by primary currents of postsynaptic 

events, the current density, 𝑱𝑃, can be expressed as  

 𝑱𝑃(𝒓′) = 𝑸𝛿(𝒓′ − 𝒓𝑄) (8) 

where δ is the Dirac delta function. This means that 𝑱𝑃 = 0 at every location other than 

𝒓𝑄. It is also assumed that the volume is enclosed by a spherical surface and that the 

detector is oriented such that it only senses the radial component of the magnetic field, 

therefore the magnetic field only needs to be considered in the radial direction: 

 𝐵𝑟(𝒓) =
𝜇0

4𝜋
∫

𝑱𝑷(𝒓′)  × 𝑹

|𝑹|3
∙ �̂�𝒓 𝑑𝑣′ (9) 

where �̂�𝒓 is the unit vector in the radial direction. Substituting equation 8, this can be 

simplified to, 

 𝐵𝑟(𝒓) =
𝜇0

4𝜋
𝑸(𝒓𝑄) ×

𝒓 − 𝒓𝑄

|𝒓 − 𝒓𝑄|
3 ∙ �̂�𝒓. (10) 

Since [𝑸(𝒓𝑄) × 𝒓] ∙ �̂�𝒓 = 0,  

 𝐵𝑟(𝒓) = −
𝜇0 (𝑄 × 𝑟𝑄)

4𝜋 |𝑟 − 𝑟𝑄|
3 ∙ 𝒆𝒓. (11) 

To generate an expression for the magnetic field including non-radial components, 

consider that outside of the conductor, J = 0, therefore from the quasistatic 

approximation of Maxwell’s equation (∇ × 𝐵 = 𝜇0𝐽), ∇ × 𝐵 = 0. Therefore, the 

magnetic field outside the conductor can be described as a scalar potential U:  

 𝑩(𝒓) = −𝜇0𝛻𝑈(𝒓). (12) 

To find an expression for U, consider a line integral of ∇U over 𝒓 + 𝑡𝒆𝑟, between 0 ≤

𝑡 ≤ ∞, 

 

𝑈(𝑟) = ∫ ∇𝑈(𝑟 + 𝑡𝑒𝑟) ∙ 𝑒𝑟 𝑑𝑡 
∞

0

 

=
1

𝜇0
∫ Br(𝒓 + 𝑡𝒆𝑟) 𝑑𝑡 

∞

0

 

=
1

𝜇0
∫ 𝐁0(𝒓 + 𝑡𝒆𝑟) ∙ 𝒆𝑟 𝑑𝑡 

∞

0

 

=
1

4𝜋
𝑸 × (𝒓 − 𝒓𝑄) ∙ 𝒆𝑟 ∫

𝑑𝑡

|𝒓 + 𝑡𝒆𝑟 − 𝒓𝑄|
3

∞

0

 . 

(13) 
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Solving this integral gives  

 𝑈(𝒓) = −
1

4𝜋

𝑸 × 𝒓𝑄 ∙ 𝒓

𝐹
  (14) 

where  

 𝐹 = 𝑎(𝑟𝑎 + 𝑟2 − 𝑟𝑄 ∙ 𝑟) (15) 

and where 𝒂 = 𝒓 − 𝒓𝑄, 𝑎 = |𝒂| and 𝑟 = |𝒓|.  

Substituting this expression for U(r) into equation 12, the magnetic field outside the 

conductor is given by 

 𝑩(𝒓) =
𝜇0

4𝜋𝐹2
(𝐹𝑸 × 𝒓𝑄 − 𝑸 × 𝒓𝑄 ∙ 𝒓∇𝐹) (16) 

where ∇𝐹 = (𝑟−1𝑎2 + 𝑎−1𝒂 ∙ 𝒓 + 2𝑎 + 2𝑟)𝒓 − (𝑎 + 2𝑟 + 𝑎−1𝒂 ∙ 𝒓)𝒓𝑄. Equation 16 

is known as the Sarvas equation (Sarvas, 1987) and is the general solution to the single 

sphere model. It is important to note that this equation now includes the contribution 

from the volume currents, since non-radial components of B are considered. For a radial 

dipole, the magnetic field outside the head will be zero from Equation 16. Therefore, 

MEG is only sensitive to dipoles oriented tangentially. Fortunately, there are a large 

(roughly 70% (Hillebrand & Barnes, 2002)) number of postsynaptic potentials in 

cortical sulci which are oriented tangentially and can be detected.  

2.3.8 Multiple Sphere Model 

The solution in equation 11 is based on the assumption of a spherical conductor. 

Evidently, the head does not have spherical geometry as areas such as the frontal lobe 

deviate from a single sphere geometry (Hamalainen & Sarvas, 1989). Whilst the 

spherical head model is mostly reasonable, alternatives to the single sphere head model 

exist, such as the multiple spheres model (Huang et al., 1999) which was the model 

used in this thesis. The multiple spheres model was developed in 1999, whereby the 

head is modelled as a series of overlapping spheres instead of a single sphere (Huang 

et al., 1999). In the multiple spheres model, a sphere is fit for each sensor (see Figure 

2.13) and the forward model is solved using the sphere assigned to that sensor. This has 

the benefit that the forward model for a sphere is simple to solve, so the forward model 

can be solved rapidly, and yet the head shape is more realistic than a single sphere. The 

multiple sphere model was found to have similar accuracy to other alternative models 

such as the boundary element model (BEM) (Mosher et al., 1999) with less 
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computational cost. However, it is important to note that more recent studies (Stenroos 

et al., 2014) have shown BEMs to be more accurate than multiple sphere models since 

computational power has increased rapidly since the 90s. Whilst BEMs, which require 

estimating the conductivity profile of the head, offer a large benefit to EEG, it could be 

argued that the improvements in MEG will be small since MEG is independent of the 

conductivity profile of the head.  

 

Figure 2.13. Schematic showing multiple spheres model. Each sphere is fit individually to 

each sensor, giving a more realistic head shape, whilst the forward model for a sphere is still 

simple to solve.  

2.3.9 The Inverse Problem 

Using the forward solution, the magnetic field of a dipole in the brain can be calculated 

outside the head. In MEG, the aim is then to localise sources inside the head given 

measured data. This is the inverse problem: given a measured magnetic field 

distribution outside the head, can we reconstruct the underlying current distribution 

inside the brain? The inverse problem is mathematically ill-posed as a measured field 

could result from an infinite number of current distributions inside the head due to field 

cancellation. Not only this, but for the inverse solution used in this thesis, many more 

sources are attempted to be reconstructed than there are sensors. However, the forward 

solution helps to constrain the number of possible inverse solutions and the inverse 

problem can be optimised to find the best solution, based on a few assumptions.  
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Figure 2.14. Geometry of a current dipole, 𝑞(𝒓′, 𝑡) at location r' and the resultant magnetic 

fields, 𝑏(𝑡) measured at each of the N sensors. 

The measured magnetic fields outside the head will be a superposition of the fields 

generated from many current sources inside the head. As shown in Figure 2.14, 

considering the head as a spherical conductor, V, the radial component of the magnetic 

field, bi(t), measured by a sensor (i = 1, 2, …, N, where N is the total number of sensors), 

will be the integral over the volume of all the sources:  

 
𝑏𝑖(𝑡) = ∫ 𝑳(𝒓′)𝑞(𝒓′, 𝑡)

𝑉

𝑑𝑉 

 

(17) 

where 𝑞(𝒓′, 𝑡) is a current dipole at location 𝒓′ and time 𝑡. 𝑳(𝒓′) is the lead field, the 

magnetic field that would be induced at location 𝒓 by a current dipole of unit amplitude 

at location 𝒓′. In reality, the volume will be discretised into a set of M cubic voxels, 

therefore the integral tends to a sum over voxels, where M is the total number of voxels: 

 𝑏𝑖(𝑡) =  ∑ 𝑳(𝒓𝑚
′ )𝑞(𝒓𝑚

′ , 𝑡)

𝑀

𝑚=1

. (18) 

The lead fields can be described as an N x M matrix, where N is the number of sensor 

channels and M is the number of voxels. Therefore equation 18 can be written in matrix 

form,  

 [
𝑏1(𝑡)

⋮
𝑏𝑁(𝑡)

] =  [

𝒍1,1 ⋯ 𝒍1,𝑀

⋮ ⋱ ⋮
𝒍𝑁,1 ⋯ 𝒍𝑁,𝑀 

] [
𝑞1(𝑡)

⋮
𝑞𝑀(𝑡)

] (19) 
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 𝑩(𝑡) = 𝑳 𝒒(𝑡). (20) 

The MEG measurements, bi, are a linear projection of the dipole time courses through 

the lead fields. To get to the underlying current sources, the equation needs to be 

inverted to find q. Unfortunately, L cannot be inverted simply as it is non-square and 

singular. Therefore some sort of optimisation must be used to find q.  

2.3.10 Beamforming 

Beamforming is one possible solution to this problem. Beamforming is a spatial 

filtering technique where the dipole strength, 𝑞(𝒓′, 𝑡), is given by a weighted sum of 

the sensor measurements at each of the sensor locations. Mathematically, 

 �̂�(𝒓′, 𝑡) = 𝑤1(𝒓′)𝑏1(𝑡) + 𝑤2(𝒓′)𝑏2(𝑡) + ⋯ + 𝑤𝑁(𝒓′)𝑏𝑁(𝑡) (21) 

Or,  

 �̂�(𝒓′, 𝑡) = 𝒘𝑇𝒃(𝑡) (22) 

where �̂�(𝒓′, 𝑡) is the reconstructed estimate of 𝒒(𝑡), 𝑤1 … 𝑤𝑁 are the weights for N 

sensors, and b is the measured magnetic field at the sensor. For a single voxel location, 

the time course of current is reconstructed, and subsequently applied to all other voxels.  

The accuracy of the reconstruction depends on how the weights are chosen. In 

beamforming, the weights are chosen such that the overall power is minimised, with 

the linear constraint that power originating from the location of interest remains. In this 

way, the signal from a specific location is estimated and activity from locations which 

are not of interest are attenuated. Mathematically this can be written (Van Veen et al., 

1997),  

 min
𝒘(𝑟)

 ⟨�̂�2(𝒓′, 𝑡)⟩ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒘𝑇(𝒓′)𝑳(𝒓′) = 1. (23) 

where the estimated power is the expectation value of the squared signal. This linear 

constraint 𝒘𝑇(𝒓′)𝑳(𝒓′) = 1 originates from the definition of the lead field. Substituting 

equation 22, the expectation value of the dipole magnitude is given by,  

 

⟨�̂�2(𝒓′, 𝑡)⟩ = ⟨(𝒘𝑇(𝒓′)𝑩(𝑡))(𝒘𝑇(𝒓′)𝑩(𝑡))𝑇⟩ 

 = ⟨𝒘𝑇(𝒓′)𝑩(𝑡) 𝑩𝑇(𝑡)𝒘(𝒓′)⟩ 

= 𝒘𝑇(𝒓′)𝑪𝒘(𝒓′) 

(24) 
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where 𝐂 = ⟨𝐁(t)𝐁(t)T⟩ is the N x N covariance matrix which represents the data 

covariance over a time-frequency window of interest. This is usually chosen to span the 

entire experiment as increasing the amount of data increases the accuracy of the 

calculation of the covariance matrix (Brookes et al., 2008). Therefore the beamformer 

can be written as,  

 min
𝒘(𝑟)

[𝒘𝑇(𝒓′)𝑪 𝒘(𝒓′)] 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒘𝑇(𝒓′)𝑳(𝒓′) = 1. (25) 

The solution to this can be found analytically (Van Veen et al., 1997), where the weights 

are given by,  

 𝒘𝑇(𝒓′) =
𝑳𝑇(𝒓′)𝑪−1

𝑳𝑇(𝒓′)𝑪−1𝑳(𝒓′) 
. (26) 

This equation should be normalised to prevent a bias towards the centre of the brain. 

The weights are corrected by dividing the weights by the norm of itself, 

 𝒘𝑛𝑜𝑟𝑚(𝒓′) =
𝒘(𝒓′)

√𝒘(𝒓′)𝒘𝑇(𝒓′)
 (27) 

where 

 

√𝒘(𝒓′)𝒘𝑇(𝒓′) = √(
𝑳𝑇(𝒓′)𝑪−1

𝑳𝑇(𝒓′)𝑪−1𝑳(𝒓′)
)

𝑪−1𝑳(𝒓′)

𝑳𝑇(𝒓′)𝑪−1𝑳(𝒓′)
  

=
√𝑳𝑇(𝒓′)𝑪−2𝑳(𝒓′)

𝑳𝑇(𝒓′)𝑪−1𝑳(𝒓′) 
. 

(28) 

Therefore,  

 𝒘𝑛𝑜𝑟𝑚(𝒓′) =
𝑳𝑇(𝒓′)𝑪−1

√𝑳𝑇(𝒓′)𝑪−2𝑳(𝒓′)
. (29) 

So far, the orientation of the source has not been considered, which needs to be correctly 

estimated. Since there is no radial contribution to MEG, the source could exist in any 

orientation on the tangential plane. Therefore, all possible orientations over 180˚ in the 

tangential plane are modelled, and the orientation with the highest signal to noise ratio 

is chosen as the direction of the source.  

The weights can then be calculated over the whole brain. In the case of task data, rather 

than calculating the absolute power of a source, instead the power in a time window 

during the task (active window) is compared relative to a control window during rest. 

In this case, the covariance is measured during an active window, 𝑪𝑎𝑐𝑡𝑖𝑣𝑒, (the window 
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of interest) and the control window, 𝑪𝑐𝑜𝑛𝑡𝑟𝑜𝑙, ensuring that the control and active 

window are the same length (Brookes et al., 2008). Applying this to all voxels across 

the brain can build a pseudo-T-statistic image, 

 
𝑇 =

𝒘𝑇(𝒓′)𝑪𝑎𝑐𝑡𝑖𝑣𝑒𝒘(𝒓′) − 𝒘𝑇(𝒓′)𝑪𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝒘(𝒓′)

𝒘𝑇(𝒓′)∑𝒘(𝒓′)
 

  

(30) 

where 𝒘𝑇(𝒓′)𝑪𝑎𝑐𝑡𝑖𝑣𝑒𝒘(𝒓′) is the power during the active window, similarly 

𝒘𝑇(𝒓′)𝑪𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝒘(𝒓′) is the power during the control window, and 𝒘𝑇(𝒓′)∑𝒘(𝒓′) is 

estimated noise power. This process is used in Chapter 4.  

2.3.11 Hilbert Transform  

Once the source has been localised, time courses can be estimated from the location of 

the source. Stimulus induced responses are time locked to the stimulus but not phase 

locked, which means that when averaged over many trials the signal will be diminished. 

Therefore, the amplitude envelope of the signal is taken. This is usually performed with 

a Hilbert transform. The source reconstructed time course q̂(t) is a real signal. In order 

to measure the phase and amplitude of the signal, the signal needs to be converted into 

a complex signal ẑ(t):  

 ẑ(t) = q̂(t) + iŷ(t) (31) 

where ŷ(t) is the Hilbert transform of the real signal q̂(t). 

The Hilbert transform is given by  

 ŷ(t) = h ∗  q̂(t) (32) 

 ŷ(t) = P [
1

π
∫

q̂(τ)

t − τ
dτ

∞

−∞

] (33) 

where P is the Cauchy principal value of the integral, h is the Hilbert transform kernel 

which is 
1

πt 
 and τ is a new label for the time coordinate. The Hilbert transform creates 

the analytic signal by convolving the signal with the Hilbert transform kernel. The 

signal envelope is then found by taking the absolute value of the Hilbert transform, an 

example is shown in Figure 2.15. Hilbert transforms are used in Chapter 4 and 5 to 

derive virtual electrode time courses, and are also used in Chapter 5 to investigate 

functional connectivity between brains which will be explained in Chapter 5.  
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Figure 2.15. Demonstration of taking the Hilbert envelope (blue) of a sinusoidal signal (red). 
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CHAPTER 3 

3 Magnetic Resonance Imaging  

MRI (magnetic resonance imaging) is a non-invasive technique that measures signals 

from precessing nuclei, typically protons, in a magnetic field. MRI has the ability to 

build high spatial resolution images throughout the whole body, and as the MR signal 

depends on tissues properties, MRI can be used clinically in diagnostic imaging. Not 

only can MRI give static images of tissue contrast with great detail, but MRI can also 

map dynamic changes in function, including in the brain, where MRI is used widely in 

neuroimaging for functional MRI (fMRI). Most importantly, MRI can produces images 

without the use of ionising radiation, unlike PET and CT.  

Developments in MRI have led to a shift toward higher field strength scanners, where 

increased signal allows the collection of data at higher spatial resolution. The first 7 T 

scanner in the UK was installed at the Sir Peter Mansfield Imaging Centre in 2005, and 

at the time of writing there are 89 ultra-high field (UHF, ≥7 T) scanners worldwide 

(Huber, 2020). The increase in field strength, whilst providing many benefits, also 

poses many new challenges. 

The origin of the MRI signal is based on the phenomenon of nuclear magnetic 

resonance (NMR), which will be described in this chapter. Localisation of NMR signals 

from nuclei is made possible using magnetic field gradients. Further, the process by 

which MRI can be used to measure functional changes in the human brain, functional 

magnetic resonance imaging (fMRI), is described along with the pulse sequences which 

are used in later experimental chapters of this thesis, including techniques for 

accelerating MRI acquisition.  

3.1 Nuclear Magnetic Resonance  

NMR (nuclear magnetic resonance) was first demonstrated in 1938 by Rabi (Rabi et 

al., 1938), and further developed by Bloch (Bloch, 1946) and Purcell (Purcell et al., 

1946) in 1946. The theoretical explanation of NMR is founded on the properties of the 

nucleus, in particular, the fundamental property known as spin. Neutrons and protons 

have an intrinsic angular momentum called spin, where the total spin angular 

momentum of a nucleus is given by 𝐼ℏ, where 𝐼 is the spin quantum number and ℏ is 
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the reduced Planck’s constant. 𝐼 can take integer or half-integer values, depending on 

the number of neutrons and protons in the nucleus. Only nuclei with 𝐼 ≠ 0 can exhibit 

NMR. For an even number of protons and neutrons, 𝐼 = 0. If both the number of 

neutrons and the number of protons are odd, the nucleus will have integer 𝐼. If the 

nucleus has an odd number of neutrons or an odd number of protons, the nucleus will 

have half-integer spin. The hydrogen nucleus has spin ½ and is the most common 

nucleus with net spin in the human body, as the body is on average 60% water (Institute 

of Medicine Food and Nutrition Board, 2004). Therefore, the hydrogen nucleus is 

commonly studied with MRI and is the nucleus studied in this thesis. Whilst based on 

quantum mechanical properties of the nucleus - spin - NMR can also be explained in 

terms of classical mechanics, which is the approach taken in this chapter. 

3.1.1 Precession 

A proton (hydrogen nucleus) with spin ½ has a corresponding magnetic moment, 𝝁,  

 𝝁 = 𝛾 𝑱 (1) 

where 𝛾 is the gyromagnetic ratio, specific for a particular nucleus, and 𝑱 is the spin 

angular momentum vector. For a 1H nucleus, 𝛾 = 42.58 MHz T−1 (Hennel et al., 1993). 

When a magnetic moment 𝝁 is placed in an external magnetic field, 𝑩, the magnetic 

moment experiences a torque which attempts to align 𝝁 with the magnetic field. Torque 

is defined as the rate of change of angular momentum and is given by 

 
𝑑𝑱

𝑑𝑡
= 𝝁 × 𝑩. (2) 

Substituting from Equation 1 gives  

 
𝑑𝝁

𝑑𝑡
= 𝛾 𝝁 × 𝑩. (3) 

Equation 3 describes the equation of motion of a magnetic moment in a magnetic field. 

The rate of change of 𝝁 is perpendicular to 𝝁, resulting in the precession of 𝝁 about the 

magnetic field axis. The angular frequency of this precession is given by the Larmor 

equation, 

 𝜔 = 𝛾𝐵0 (4) 

where 𝐵0 is the magnetic field strength and 𝜔 is the Larmor frequency. The quantisation 

of angular momentum results in a splitting of energy levels associated with the magnetic 

moments in a magnetic field, known as the Zeeman effect. For 1H, angular momentum 
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can take two possible values, ±
ℏ

2
. This gives rise to two distinct energy states for a 

hydrogen nucleus in a magnetic field, one high (E+) and one low (E-):  

 𝐸± = ±
𝛾ℏ𝐵0

2
.  (5) 

At thermal equilibrium, the spins will be distributed between these two energy states in 

accordance with Boltzmann statistics,  

 
𝑁−

𝑁+
= 𝑒

−
𝛾ℏ𝐵0
𝑘𝐵𝑇  , (6) 

where 𝑁− is the number of spins occupying the low energy state and 𝑁+ is the number 

of spins occupying the high energy state, 𝑘𝐵 is the Boltzmann constant and 𝑇 is the 

absolute temperature of the sample. The population difference between the two states 

results in a net magnetisation, M0, in the direction of the applied field, which is the sum 

of all the magnetic moments in the sample. M0 is given by  

This net magnetisation is the basis of the NMR signal. A stronger magnetic field, B0, a 

lower temperature, T, and a higher gyromagnetic ratio, γ, will all result in a larger net 

magnetisation, M0, and hence a larger NMR signal.  

3.1.2 Relaxation 

To detect an NMR signal, the nuclei must be perturbed from equilibrium along the z-

axis by applying a magnetic field, 𝐵1. This magnetic field must be applied at an energy 

equal to the energy difference between the two spin states in order to allow transitions 

of the nuclei between the energy states (Equation 5). In order to do this, an oscillating 

B1 field is applied at the Larmor frequency orthogonal to the net equilibrium 

magnetisation. For a 7 T magnetic field, the Larmor frequency is 298 MHz, which is in 

the radio frequency range and hence the applied B1 field is often called the RF pulse. 

Initially, the net magnetisation, M0, is aligned with B0 (along the z-axis). The applied 

RF pulse acts to tip M0 away from B0 into the transverse plane. The duration for which 

the RF pulse is applied, τ, and its amplitude, B1, determines the angle through which 

the net magnetisation is tipped (flip angle 𝛼 = 𝛾𝐵1𝜏). A 90° RF pulse has two resultant 

effects: it equalises the population difference between the two spin states, and causes 

the spins to come into phase with each other thus the magnetisation is tipped from the 

 𝑀0 =
𝑁(𝛾ℏ)2𝐵0

4𝑘𝑏𝑇
. (7) 
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z-axis into the xy-plane, generating a transverse magnetisation signal. After the RF 

pulse is switched off, the spins will precess about B0 at the Larmor frequency (Equation 

4). The precession of the magnetisation will induce an oscillating electromotive force 

(emf) in a pickup coil, which is the detected NMR signal. This observed signal is known 

as a free induction decay (FID) as it decays with an exponential envelope. 

Once the magnetisation has been perturbed from equilibrium, over time the longitudinal 

and transverse magnetisation will return back to Boltzmann equilibrium via two 

independent processes: longitudinal relaxation (T1) acts to return spins parallel to B0 to 

equilibrium (i.e. returning to a Boltzmann distribution and thus M0), and transverse 

relaxation (T2 and T2*) acts to return the transverse magnetisation perpendicular to B0 

back to zero. These two mechanisms are characterised by the longitudinal and 

transverse relaxation time constants, T1 and T2 respectively, and are described by the 

Bloch equation: 

3.1.2.1 Longitudinal Relaxation 

Longitudinal recovery is the process by which spins return back to their equilibrium 

population difference, and the magnetisation along the z-axis (Mz) returns to the 

equilibrium magnetisation (M0). This process is governed by the time constant T1 which 

is known as the spin-lattice relaxation time. Longitudinal recovery depends on the 

transfer of energy between the spins and the lattice. The return to equilibrium arises due 

to the fact that molecules undergo Brownian motion, creating randomly fluctuating 

magnetic fields which interact with other spins and cause transitions between spin 

states. This motion has an associated time constant termed the correlation time. 

Transitions are more efficient the more closely matched the molecular motion is to the 

Larmor frequency. In highly mobile liquids such as water, molecules can move freely 

and so have very small correlation times, which are far from the Larmor frequency, so 

relaxation is inefficient leading to long T1 values. In viscous liquids and solids, mobility 

of molecules is reduced, resulting in a correlation time that more closely matches the 

inverse of the Larmor frequency, resulting in a shorter T1. Since temperature affects the 

rate of Brownian motion, temperature also affects T1. The equation for the recovery of 

longitudinal magnetisation is determined by solving the Bloch equation (Equation 8) 

(Bloch, 1946). The longitudinal magnetisation, Mz, as a function of time is given by,  

 
𝑑𝑴

𝑑𝑡
= 𝛾(𝑴 × 𝑩) −

(𝑀𝑧 − 𝑀0)𝒌

𝑇1
−

𝑀𝑧𝒊 + 𝑀𝑦𝒋

𝑇2
. (8) 
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 𝑀𝑧(𝑡) = 𝑀0 (1 − 𝑒
−

𝑡
𝑇1) + 𝑀𝑧(0)𝑒

−
𝑡

𝑇1 (9) 

where M0 is the equilibrium magnetisation.  

Following a 90° RF pulse, the magnetisation M0, which is initially aligned along the z-

axis, will be tipped into the xy-plane resulting in Mz at time zero being given by Mz(0) 

= 0. Mz(t) will then recover to its equilibrium value via Equation 9, and return to 

equilibrium in a time approximately five times T1.  

Following a 180° inversion pulse, the longitudinal magnetisation will be flipped along 

the –z-axis and will recover from –M0 to M0. At a later time TI (the inversion time), a 

90° pulse can be applied to tip the magnetisation that has recovered at that given time 

into the transverse plane. This 90° pulse will result in an FID with initial amplitude 

proportional to the amount of longitudinal magnetisation. This is known as an inversion 

recovery sequence, and the recovery following an inversion pulse in different tissue 

types in the brain is shown Figure 3.1. The amount of signal is related to the amount of 

recovery that occurs, which generates a T1 weighted image. For each tissue type, there 

will be a particular value of TI where the longitudinal magnetisation is zero, which is 

known as the null point, where there is no signal. The concept of an inversion recovery 

is used in Chapter 6 in the VASO sequence to null the signal from blood.  

 

Figure 3.1. An inveresion recovery sequence showing longitudinal (T1) recovery following a 

180° inversion pulse for grey matter (purple), white matter (pink) and CSF (blue). 

Different tissues have different T1 values, therefore by changing the time at which the 

signal is acquired (TI), different contrasts can be created. At 7 T, grey matter T1 is 

approximately 1940 ms, white matter 1130 ms (Wright et al., 2008) and CSF 4425 ms 

(Rooney et al., 2007) and hence at a time less that T1 of CSF, white matter signal will 

have recovered the most, appearing brightest, and CSF will appear dark, resulting in a 
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T1 weighted image. This is the contrast used in many structural brain images such as 

MPRAGE (see section 3.5.1). 

3.1.2.2 Transverse Relaxation 

Transverse relaxation is the process via which spins which were initially coherent after 

a 90° pulse move out of phase with each other, i.e. the transverse magnetisation, Mxy, 

returns to zero. Transverse relaxation is governed by the time constant T2 which is 

known as the spin-spin relaxation time as it depends on dephasing of spins. T2 is due to 

magnetic interactions between neighbouring spins causing the magnetisation to 

dephase, and reducing the transverse magnetisation. T2 is an irreversible loss of 

magnetisation; once the spins have dephased they cannot be brought back into phase. 

Additional dephasing will occur due to inhomogeneities in the magnetic field which 

results in variations in Larmor frequency, causing the spins to get out of phase with 

each other. However, the dephasing due to static inhomogeneities can be rephased. The 

combination of both fluctuating intrinsic T2 dephasing and dephasing due to static field 

inhomogeneities, T2’, is known as T2*, which is given by,  

The rate of change of magnetisation is described by the Bloch equations, which can be 

solved to generate an equation for the recovery of transverse magnetisation, Mxy, for T2 

effects:  

  
𝑀𝑥𝑦(𝑡) = 𝑀0𝑒

−
𝑡

𝑇2. 
(11) 

As illustrated in Figure 3.2, after a 90° RF pulse, all the spins are in phase. Over time, 

the spins dephase over the transverse plane as each precesses at a slightly different rate. 

However, if a 180° refocussing pulse is applied at time TE/2, the spins will be flipped, 

and any acquired positive phase is flipped and vice versa. The vectors will then precess 

at the same rate as before, due to the same inhomogeneities, and go back into phase 

producing an echo at time TE. However, loss of phase due to T2 effects cannot be 

refocussed, as the dephasing is due to randomly fluctuating fields which cannot be 

exactly rephased, so the echo will be smaller in amplitude than the initial signal (Figure 

3.2A). The time at which the echo is created is TE, the echo time, with the 180° RF 

pulse applied at TE/2. If TE ~ T2, this results in a T2 weighted image. Common values 

of T2 at 7 T are 55 ms for grey matter and 46 ms for white matter (Yacoub et al., 2001). 

 
1

𝑇2
∗ =

1

𝑇2
+

1

𝑇2
′ . (10) 
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Due to magnetic field susceptibly effects, T2* decreases with increasing magnetic field 

strength. T2* at 7 T is on the order of 33 ms for grey matter and 27 ms for white matter 

(Peters et al., 2007), but will also be dependent on the scanner.  

 

Figure 3.2. (A) Spin echo following a 90° pulse and a 180° pulse at time TE/2 which produces 

an echo at time TE. The echo is reduced in height by T2 and decays exponentially with T2*. (B) 

Showing magnetisation during a spin echo. A 90° pulse is used to tip the magnetisation into the 

xy plane. The spins dephase and spread out across the xy plane as different spins experience 

slightly different precession rates. A 180° pulse is applied which flips the spins and the spins 

refocus to form an echo.  

3.2 Magnetic Resonance Imaging (MRI) 

The next requirement in MRI is to spatially encode the measured NMR signal to 

produce an image where each pixel is a representation of the magnetisation at a given 

location. This can be done using magnetic field gradients which spatially encode the 

magnetisation. This was first proposed in 1973 by Mansfield (Mansfield & Grannell, 

1973) and Lauterbur (Lauterbur, 1973). An image represents the magnetisation at that 

point in time. Since magnetisation is transient, MRI can be used to image dynamic 

processes. This requires fast imaging techniques, which were made possible with the 

development of echo planar imaging (EPI) in 1977 (Mansfield, 1977).  
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3.2.1 Magnetic Field Gradients  

Magnetic field gradients are used to spatially encode magnetisation. Gradients cause 

magnetisation at different spatial locations to precess at different frequencies (Equation 

4). Magnetic field gradients (G) can be applied along any direction (i = x, y, or z),  

 𝐺𝑖 =
𝑑𝐵𝑧

𝑑𝑖
. (12) 

These gradients act to change the local magnetic field at a position r, causing a change 

in the Larmor frequency with spatial location,  

 𝜔(𝑟) = 𝛾(𝐵0 + 𝐺𝑟𝑟). (13) 

Therefore frequency is now a function of position, which can be used to localise signals 

and build up a 3D image. This signal in the time domain can be converted into a 

magnetisation distribution in the spatial domain using a Fourier transform. The concept 

of k-space, which is in the spatial frequency domain, is a helpful tool where the images 

are considered to be acquired before being transformed into Cartesian coordinates. MR 

images are acquired by navigating through k-space by altering gradient parameters in 

time. Commonly, k-space is sampled line by line in the read direction. 

3.2.1.1 Slice Selection  

Rather than excite the whole head, it is possible to apply the magnetic field gradients 

so that only a thin slab of spins are excited to generate a slice. In the presence of a 

magnetic field gradient, applied along the z-axis, the Larmor frequency will vary 

linearly in the direction of z. An RF pulse can be applied over a narrow bandwidth of 

frequencies so that only spins with those frequencies are excited (Figure 3.3). The 

position of the spins excited can be modulated by changing the carrier frequency of the 

RF pulse. In order to excite a thin rectangular slab in space, a sinc pulse is used in 

frequency space, since the Fourier transform of sinc function is a rectangular window. 

The thickness of the slice (𝛥𝑧) selected will depend on the amplitude of the gradient, 

𝐺𝑧 , or the bandwidth, Δ𝜔 of the RF pulses,  

 𝛥𝑧 =
Δ𝜔

𝛾𝐺𝑧
 . (14) 
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Figure 3.3. Magnetic field gradient 
𝑑𝐵𝑧

𝑑𝑧
 applied along the z-axis results in the variation of 

frequency along the z-axis. Therefore a narrow range of frequencies (Δω) can be excited to 

select a narrow range in space (Δz), a slice. 

3.2.1.2 Frequency Encoding 

After slice selection, additional gradients can be applied to spatially encode information 

in the selected 2D slice. Frequency encoding uses the same concept as slice selection, 

whereby a linear magnetic field gradient is used to generate a Larmor frequency that 

varies linearly across the sample. The spins in a slice have already been selected using 

a gradient along the z-axis during the RF pulse, so to achieve further localisation 

another gradient is applied along the x-axis during the readout. This gradient results in 

a variation of precessional frequency of the selected spins. A Fourier transform of this 

signal then provides information about the spin density along one dimension.  

3.2.1.3 Phase Encoding 

To encode in a third dimension, y, a further magnetic field gradient along the y-axis 

can be applied. Again, this uses the same concept as before, except rather than a linear 

variation of frequency with space, now the phase of the magnetisation is linearly varied 

along the y-axis. A y-gradient is applied before the frequency encoding for a short 

period of time to induce a specific phase. Therefore each line of k-space corresponds to 

a different combination of phase and frequency. A further phase encoding gradient can 

be applied in the third dimension (slice select dimension (i.e. z-axis in the example 

above)) to produce a 3D image. The benefits of 3D images are explored in Section 3.4.2 

and used in Chapter 6.  
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3.3 MRI System  

An MRI scanner comprises the magnet, shims, gradient coils and RF coils. The MRI 

scanner used in this thesis was the Philips 7 T Achieva at the Sir Peter Mansfield 

Imaging Centre, University Of Nottingham, UK.  

An MRI scanner requires a strong, homogeneous B0 magnetic field. The magnet 

requires a high magnetic field strength (of the order 100 000 times larger than Earth’s 

magnetic field), and also needs to be spatially uniform and temporally stable to produce 

undistorted images. Most magnets for MRI are made using superconducting 

electromagnets where magnetic fields are generated by currents flowing through wires. 

Large magnetic fields can be created from solenoids, where the field is proportional to 

the number of turns per unit length and the current through the coil. This can be done 

using superconducting wires with no resistance, so there is no heat dissipation. Below 

a certain threshold, superconducting materials have no resistance, dependent on 

temperature, current density and the field. Therefore, the magnet is kept in liquid helium 

to keep it superconducting. The magnetic field outside the scanner, termed the fringe 

field, needs to be reduced as it has the potential to cause harm (to people with 

pacemakers for example). This reduction is achieved by shielding the 7 T scanner room 

with iron, for the SPMIC scanner this consists on the order of 300 tonnes of iron.  

Within the magnet are the shim coils. Shims are used to cancel out inhomogeneity in 

the main magnetic field. Shims can be passive, in the form of magnetic material 

(typically steel) permanently in the scanner to overcome major inhomogeneity in the 

magnet. Alternatively shims can be active, where currents are generated through coils 

to create weak spatially varying magnetic fields. This helps to overcome inhomogeneity 

caused by the field distortions arising from placing a human body in the scanner.  

Within the magnet bore are the gradient coils. Gradient coils consist of three coils to 

generate the magnetic field gradients required to make the MR image (see Section 

3.2.1). By rapidly varying the large current through the gradient coils in time, an image 

can be formed. It is this variation of current through these coils which generates the 

acoustic noise experienced during an MRI scan. 

Radio frequency (RF) coils are used for both exciting and receiving the signal. As the 

detected RF signals are small, the magnet needs to be placed in a screened room to 

prevent external RF being picked up. Generally the transmit coil and receive coil are 
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two separate coils, with the transmit coil able to generate a uniform field over a large 

region and the receive coil optimised to be able to detect much smaller RF signals. The 

receive coil should be placed as close as possible to the part of the body being imaged. 

In this thesis, all data were acquired using a head-only transmit coil and 32-channel 

receive coil (Nova Medical).  

3.4 Imaging Techniques  

The focus of this thesis is to collect images rapidly to assess dynamic changes in the 

brain. This section will outline sequences to do this and summarise the structural images 

used. The sequence of RF pulses used to generate a specific image is called a pulse 

sequence. A pulse sequence consists of variable sequence parameters such as the 

repetition time, TR, which is the length of time between repeating the pulse sequence 

and the echo time, TE. These can be altered to produce different image contrasts.  

3.4.1 2D Gradient Echo Planar Imaging  

Using the techniques described in Section 3.2, a pulse sequence would need to be 

repeated for each phase encoding step in order to collect data to completely sample k –

space and generate a 2D image. This would result in a long imaging time, depending 

on the number of phase encoding steps and the TR. One way to speed up the acquisition 

of an image is to acquire data corresponding to more than one phase encoding step for 

each excitation pulse. This is what is done in echo planar imaging, or EPI (Mansfield, 

1977). In EPI, all phase encoding steps are collected after a single RF excitation pulse, 

meaning an entire image can be acquired from one RF pulse. This is achieved using 

rapidly switching gradients in the read direction to create multiple gradient echoes, 

therefore EPI requires very strong gradients and is intensive on the scanner hardware 

(Section 3.3). Since the whole of k-space is sampled after a single RF pulse, EPI has 

high temporal resolution which makes it an excellent tool for studying dynamic 

processes such as the brain’s response to stimuli and is commonly used in fMRI (see 

fMRI Section 3.6) and is used in this thesis in Chapter 7.  

The pulse sequence for a gradient echo EPI sequence is shown in Figure 3.4. Firstly, an 

RF excitation pulse is applied along with a slice selection gradient. This is shown for a 

90° RF pulse, but is typically chosen to be the Ernst angle (see below). After this, two 

gradients, Gread and Gphase are used to move from the centre to the edge of k-space. 

Following this, the frequency encoding gradient is used to sample a line of k-space. 
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After a line is acquired, a small phase encoding gradient (blip) is used to step to a new 

line of k-space. The frequency encoding gradient is then reversed and a new line of k-

space is acquired. This sequence is repeated and alternating lines of k-space are 

acquired until all of k-space has been acquired. The repeated reversals of the gradients 

acts to dephase and rephase the transverse magnetisation which generates an echo. The 

lines of k-space must be collected before the magnetisation decays away, which makes 

EPI T2* dependent.  

When the whole of k-space is acquired after one RF pulse, the sequence is referred to 

as single shot EPI. EPI can also be performed in a multi-shot sequence, where multiple 

excitation pulses are used to acquire each portion of k-space data. The benefit of this is 

that image distortion can be reduced and higher resolution can be achieved, however, 

the images take longer to acquire (increases by the number of multi-shots used). Spatial 

image distortion can be a problem in EPI, as EPI has a low bandwidth in the phase 

encoding direction. If there is a small deviation in precessional frequency there can be 

a mislocalisation of information in the phase encode direction causing geometric 

distortions. This is worse at air-tissue interfaces and increased at higher field strength 

where B0 inhomogeneities are often more severe.  

 

Figure 3.4. 2D gradient EPI pulse sequence diagram. The RF pulse tips the magnetisation into 

the transverse plane to excite a 2D slice. A coincident slice selective gradient is used to excite 

a thin slice. Gradients are rapidly switched along the read direction and a phase encoding 

gradient is used to step lines across k-space and generate an echo train from a single FID.  

3.4.2 3D Gradient Echo Planar Imaging  

With 2D EPI, one slice is acquired at a time, with the sequence repeated to collect 

multiple slices of a 2D image. This means the time to acquire the volume of interest is 
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directly proportional to number of slices. An alternative is to image a 3D volume (Poser 

et al., 2010). In 3D imaging, instead of exciting a slice, a thick slab is excited with the 

RF pulse. Spatial information in the third (z) dimension (slice select direction) is 

encoded using a second phase encoding in z (in addition to that in y). The same slab is 

repeatedly excited and data are collected for a kx-ky plane in increments of kz (Figure 

3.5). Since the same slab is excited each time, the signal from each voxel contributes to 

every measurement resulting in 3D EPI having a higher signal to noise ratio (SNR) than 

2D EPI. Because of this increase in SNR, 3D EPI can be used to achieve higher spatial 

resolution whilst maintaining sufficient SNR. An example of a 3D EPI image, used in 

Chapter 6, is given in Figure 3.6. Another benefit is that parallel imaging (discussed 

below, Section 3.4.3) can be applied in both of the two phase encode directions which 

will reduce scan time. However, the acquisition time is usually longer than 2D EPI and 

therefore 3D sequences are also thought to be more affected by physiological noise than 

2D (Poser et al., 2010; Van der Zwaag et al., 2012). Also, there is less time for the 

signal to recover from a voxel before it is excited again, which reduces the steady state 

signal. Because of this, the flip angle used is typically lower than 90°. The optimum 

flip angle to give the highest signal is found from the Ernst angle (Equation 15), which 

is dependent on the TR and T1. At lower TRs, the signal does not have time to fully 

recover between inversions when using a 90° pulse. Therefore, flip angles lower than 

90° are used to maximise the signal for a given TR, as less recovery time is required. 

The optimum angle is defined by the Ernst angle (Ernst & Anderson, 1966), 𝛼𝐸,  

 

Figure 3.5. 3D EPI pulse sequence diagram. The RF pulse (typically low flip angle) tips the 

magnetisation into the transverse plane. A slab is repeatedly excited with varying increments 

of kz. Gradients are rapidly switched along the read and phase encoding directions to acquire 

the whole of k-space from a single FID.  

 𝛼𝐸 =  cos−1( 𝑒−𝑇𝑅/𝑇1). (15) 
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Figure 3.6. Example of a 3D EPI image with 12 slices with 1.5 mm isotropic resolution and 

SENSE 2.5 x 1 as used in Chapter 6. 

3.4.3 Accelerated Imaging 

One possible way to speed up imaging is to sample fewer lines of k-space. Although 

this would usually reduce field of view or increase blurring, k-space has phase-

conjugate symmetry so only half of k-space needs to sampled, and the other half can be 

reconstructed. This is called ‘half-scan’ on a Philips scanner console. This approach 

only works if the centre of k-space is aligned with the centre of the echo, therefore in 

reality more than half of k-space is sampled, commonly 75%. Whilst this reduces 

acquisition time, it always comes with a drop in SNR as less data points are acquired 

(Feinberg et al., 1986). Halfscan can be used with 2D and 3D EPI acquisitions.  

Another method to reduce the image acquisition time is parallel imaging. The term 

parallel imaging refers to the use of multiple receive coils at once to spatially encode 

based on the RF receive coil sensitivity. The induced voltage at a RF receive coil from 

a source depends on the position of the coil in relation to the source. This means each 

receive coil will measure a slightly different signal, with receive coils closer to the 

source measuring a stronger signal (see Figure 3.7). Therefore, extra information about 

the source is available from the coil sensitivities. By using this information about spatial 

location, less phase encode steps are needed which reduces acquisition time. Reducing 

the sampling of k-space reduces the field of view causing aliasing. An aliased image is 
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created for each coil. The full image is then created by separating the aliased image 

based on weightings of the coil sensitivities and a matrix inversion. The full image can 

then be reconstructed from the coil sensitivities.  

The version of parallel imaging used on Philips scanners is called SENSE (sensitivity 

encoding in the image domain) (Pruessmann et al., 1999). In SENSE, firstly the coil 

sensitivity maps from each receive coil must be generated to provide the weightings. 

This is usually done at the start of the scan session. Then the reduced k-space data are 

acquired in parallel at each receive coil. Using this information, the full image can then 

be reconstructed by unfolding the aliased images via matrix inversion. For example, a 

SENSE factor of 2 results in k-space being under sampled by a factor of 2. An issue 

with this technique is that it comes with a reduction in SNR as the amount of k-space 

that is sampled has been reduced. However in EPI, especially at high field where T2* 

is lower, the benefit of being able to sample k-space faster means that less T2* decay 

occurs, so the gain in signal outweighs the loss in SNR of using SENSE. Also, the 

shorter acquisition time reduces image distortions. SENSE can be used in both 2D and 

3D EPI, with the advantage that in 3D EPI SENSE acceleration can be applied along 

both of the phase encode directions.  

 

Figure 3.7. A simple example of SENSE for two receive coils. Images are acquired from each 

coil, each with different coil sensitivity. Coil sensitivity maps are used to reconstruct the full 

image based on the weightings of the sensitives. 
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So far, the fast imaging techniques introduced have reduced acquisition time of a 

volume of images through reduction in k-space sampling. Yet, for a 2D acquisition, 

each slice still has to be selected one at a time which is time-consuming. Simultaneous 

multi-slice (SMS or multiband (MB)) imaging, instead, allows multiple slices to be 

excited at the same time, significantly reducing the repetition time, up to ten times has 

been demonstrated (Feinberg & Setsompop, 2013), though typically a factor of 3 or 4 

is used. Larkman et al. first demonstrated simultaneous multi-slice imaging in the 

human leg (Larkman et al., 2001). The method works by introducing a frequency offset 

into the RF pulse, to simultaneously excite multiple 2D slice planes. The signal 

measured at a coil will be a linear combination of the signal from each slice, weighted 

by the coil sensitivities. The simultaneously excited 2D slices can then be separated by 

using the coil sensitivities. One major advantage of this technique is that there is no 

undersampling of k-space so SNR is not reduced in this way. However, there are losses 

in SNR due to a coil geometry factor (known as g-factor) which results in spatially 

varying noise enhancement (Moeller et al., 2010). Multiband imaging is often used in 

conjunction with SENSE, as utilised in Chapter 7. However, care must be taken not to 

increase both SENSE and MB factor to unacceptable levels where the SNR becomes 

too low. 

3.5 Structural Imaging  

Throughout this thesis structural images are required for coregistration of MEG data 

and anatomical references in fMRI chapters. In the following sections the structural 

images implemented are described.  

3.5.1 Magnetisation Prepared Rapid Gradient Echo (MPRAGE) 

Magnetisation prepared rapid gradient echo, or MPRAGE (Mugler & Brookeman, 

1990), is a T1-weighted gradient echo sequence which can produce high spatial 

resolution 3D images with good contrast between grey and white matter (see Figure 

3.8). MPRAGE is used widely in neuroimaging to produce anatomical images - in this 

thesis it is used in both MEG and fMRI work as an anatomical reference image. The 

sequence comprises an initial 180° pulse to invert the magnetisation followed by a delay 

to achieve T1 weighting – this is the magnetisation preparation period. Following this, 

there is a rapid gradient echo sequence to sample the prepared magnetisation. Finally, 

there is a recovery period after the acquisition. By doing the magnetisation preparation 
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as a separate step, the acquisition is faster compared to a steady-state acquisition 

scheme with the same contrast (Mugler & Brookeman, 1990).  

 

Figure 3.8. Example of a sagittal slice of an MPRAGE image used in Chapter 4 and Chapter 

5 as a MEG anatomical image with 1 mm isotropic resolution.  

3.5.2 Phase Sensitive Inversion Recovery (PSIR) 

Phase sensitive inversion recovery (PSIR) is another anatomical image sequence used 

in this thesis in Chapters 6 and 7, which was used to create  grey (GM) and white matter 

(WM) maps. PSIR (Hou et al., 2005) is an inversion recovery technique where the 

inversion time is chosen to give signal equal in magnitude from grey matter and white 

matter, in between the two null points. Phase correction is then used to retrieve the sign 

of the magnetisation from this image. In this thesis, an adapted PSIR protocol (Mougin 

et al., 2016) was used which combines PSIR with MP2RAGE (Marques et al., 2010). 

The inversion recovery image at TI1 (the first inversion time) is interleaved with a 

recovered image acquired at TI2 (second inversion time) after the WM, GM and CSF 

null points. The phase of the second image is used to restore the sign of the first image 

and the magnitude is used to correct the bias field (Van de Moortele et al., 2009). The 

benefits of this version is increased contrast-to-noise ratio (CNR) between GM and 

WM, and the ability to acquire high resolution data (0.7 mm at 7 T) in 3 directions in a 

reasonable acquisition time (e.g. 6 minutes). An example PSIR image is shown in 

Figure 3.9.  
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Figure 3.9. Example of a 7 T PSIR image with 0.7 mm isotropic resolution used in Chapter 6, 

for the same subject as Figure 3.8. 

3.5.3 Fast Low Angle Shot (FLASH) 

The fast low angle shot pulse sequence (FLASH) (Haase et al., 1986) is a gradient echo 

sequence which uses a low flip angle and short TR so that the sequence can be rapidly 

repeated, therefore FLASH is a very fast imaging technique. FLASH can be T1 or T2* 

weighted depending on the TE and the flip angle. A longer TE maximises T2* weighting 

and a long TR and low flip angle minimises any T1 dependence. In Chapter 6, a T2* 

weighted FLASH sequence was used to be sensitive to magnetic susceptibility changes 

around veins, so that a vein mask could be produced to aid fMRI analysis. For example, 

in Figure 3.10, veins appear dark in the FLASH image.  

 

Figure 3.10. Example of a T2* weighted FLASH image with TE = 11.4 ms, resolution 0.5 x 

0.5 x 1.5 mm.  
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3.6 Functional Magnetic Resonance Imaging (fMRI)  

Having described the process by which an MR signal is produced and detected, this 

section details the basis of functional MRI (fMRI). fMRI is widely used to measure 

human brain function, and has become perhaps the most popular technique in 

neuroimaging since it was first performed in 1992 (Bandettini et al., 1992; Kwong et 

al., 1992; Ogawa et al., 1992). Commonly, fMRI is based on the blood oxygen level 

dependent (BOLD) contrast due to changes in the concentration of deoxyhaemoglobin 

in the blood. Other non-BOLD mechanisms can be used to study functional activity, 

such as arterial spin labelling (ASL) which is commonly based on changes in cerebral 

blood flow (CBF), and vascular space occupancy (VASO) which measures changes in 

cerebral blood volume (CBV). These methods are discussed further in Chapter 6.  

The BOLD contrast was first demonstrated in 1990 (Ogawa et al., 1990). The BOLD 

response in the brain is due to the combination of the paramagnetic nature of 

deoxygenated blood, and the brain’s response to a stimulus resulting in a large 

overshoot of cerebral blood flow. Changes in neural activity result in a mixture of 

changes in CBF, CBV and cerebral metabolic rate of oxygen consumption (CMRO2) 

hence the BOLD signal is an indirect measure of neural activity. These vascular 

changes are slow and therefore fMRI has poor temporal resolution compared to MEG. 

On the other hand, fMRI has excellent spatial resolution, capable of resolving sub-

millimetre activation.  

3.6.1 Origin of fMRI Signal  

3.6.1.1 Physiology 

As described in Chapter 2, neuronal activity results in currents across the cell membrane 

which create fluctuation in electric potentials – extracellular potentials. These can be 

characterised into low and high frequency components. Local field potentials (LFPs) 

are low frequency components reflecting synaptic activity, whereas high frequency 

activity called multi-unit activity (MUA) represents spiking (Logothetis, 2002). BOLD 

fMRI has been shown to correlate with LFPs corresponding to neural input, rather than 

spiking activity which represents neural output (Goense & Logothetis, 2008).  

Neuronal activity requires glucose and oxygen for metabolism which is supplied via 

blood flow. The brain is one of the most energetic organs in the body, yet it has no store 
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of oxygen, meaning it needs a constant delivery of blood. As a result, the brain receives 

around 15% of the body’s total cardiac output, making it one of the most heavily 

perfused organs in the body. The grey matter, where the cell bodies are, receives more 

blood supply than the white matter. This is achieved by large arteries (red vessels in 

Figure 3.11) to provide oxygen-rich blood which branch into arterioles in grey matter, 

which further divide into capillaries where exchange of nutrients between blood and 

tissue occurs. Blood then returns back towards the heart via venules into larger pial 

veins on the cortical surface (Duvernoy et al., 1981), see black vessels in Figure 3.11. 

Upon neural activity, muscles surrounding the arterioles and capillaries dilate to 

increase blood flow, to increase the delivery of glucose and oxygen. CBF is defined as 

the rate of delivery of arterial blood to the capillary bed. Cerebral blood volume (CBV) 

is the fraction of tissue volume occupied by blood vessels and it can be subdivided into 

arterial (aCBV), capillary and venous volumes (vCBV).  

 

Figure 3.11. Drawing of cortical vasculature of the human brain. Arteries are shown in red 

and veins are shown in black. Shows large pial vessels on the cortical surface, which branch 

into smaller diameter arterioles and venules. Taken from Duvernoy et al. (Duvernoy et al., 

1981).  

3.6.1.2 BOLD Contrast 

When a region of the brain is active, there will be an increase in CMRO2 in that area. 

Oxygen is delivered to the area via oxyhaemoglobin in the blood. Oxyhaemoglobin is 

diamagnetic, yet when oxyhaemoglobin loses oxygen it becomes deoxyhaemoglobin 

which is paramagnetic. Deoxyhaemoglobin creates local magnetic field distortions in 

and around blood vessels, which will cause local spins to precess at different 

frequencies causing more dephasing and shortening T2*. Following neural activity, 



53 

 

CBF and CBV increase to provide oxygen. The increase in flow is considerably higher 

than the consumption of oxygen (Figure 3.12B). This means there is a local decrease in 

the concentration of deoxyhaemoglobin, increasing the local MR signal, giving rise to 

the BOLD signal.  

The BOLD signal increases with increasing field strength. At higher magnetic field, 

there will be larger magnetisation present due to Boltzmann statistics (see Equation 6), 

leading to increased signal. Susceptibility effects are increased at higher field strength, 

and since BOLD is due to susceptibility effects of deoxyhaemoglobin, BOLD contrast 

also increases (van der Zwaag et al., 2009). However, the increased susceptibly effects 

will shorten the time in which data can be collected due to decreasing T2 and T2* at 

higher field (see Section 3.6.2.1).  

The change in MR signal over time after a stimulus is known as the BOLD 

haemodynamic response function (HRF), as shown in Figure 3.12. The BOLD response 

consists of the primary response and the post-stimulus undershoot which can take up to 

a minute to return to baseline (Frahm et al., 1996). Some models also include an initial 

dip in BOLD signal before the primary response, however this has not been observed 

consistently across studies (Buxton, 2001). The positive primary response is an increase 

in MR signal relative to baseline beginning at the start of stimulation, which reaches its 

peak around typically 6 s after stimulus onset. This lag in the peak of the response from 

the start of the stimulus is often referred to as haemodynamic lag. The peak in signal 

corresponds to an oversupply of oxygenated blood, as the concentration of 

deoxyhaemoglobin decreases. Following the primary response, the BOLD signal then 

undershoots below baseline before returning to baseline. The BOLD signal is measured 

as a percentage change from baseline. The origin of the post-stimulus undershoot is the 

subject of much debate and is discussed and investigated in more detail in Chapter 6. 

One widely acknowledged theory is the Balloon model where vasculature causes the 

slow return of blood volume(Lu et al., 2004) (Buxton et al., 1998). However, other 

theories such as elevated CMRO2 suggest the undershoot is a metabolic phenomenon , 

whilst another theory of decreased CBF suggests a neuronal origin (Uludağ et al., 

2004).  
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Figure 3.12. (A) BOLD haemodynamic response function to a short stimulus at time 0 s. The 

BOLD signal rises to a peak at 6 s from stimulus onset and undershoots before returning to 

baseline. (B) Classical view of CBF, CMRO2 and CBV responses during the BOLD response, 

adapted from Buxton et al. (Buxton et al., 2004). CBF increases more than CMRO2 during the 

primary response, causing a decrease in deoxyhaemoglobin and increased BOLD signal. 

During the post-stimulus undershoot, CBV remains elevated while CBF and CMRO2 return to 

baseline, resulting in a negative BOLD signal termed the post-stimulus undershoot. 

3.6.2 Detection of the fMRI Response 

3.6.2.1 Data Acquisition  

To measure the BOLD signal, the pulse sequence needs to be sensitive to T2* changes. 

The greatest BOLD signal occurs for an echo time which matches T2* of grey matter. 

The data acquisition also needs to be fast to capture dynamic changes in the brain, and 

have the spatial resolution and coverage to cover the region of interest with sufficient 

detail. There is a trade-off between higher spatial resolution and SNR, as the smaller 

the volume that is imaged (i.e. each voxel of the image), the fewer nuclei there will be 

within that volume, thus reducing the signal which can be measured. Generally the 

spatial resolution is selected to be the minimum resolution to resolve the region of 

interest (ROI). As explained in Section 3.4.1, gradient echo EPI is T2*-weighted and is 

a fast sequence, therefore it is commonly used in fMRI.  

In order to assess the quality of fMRI data, it is necessary to measure the image stability 

over time, as fMRI is primarily concerned with fluctuations in time. Temporal SNR 
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(tSNR) is the metric typically used to determine the image quality over time, where the 

mean signal from each voxel over a given time is calculated and divided by the variation 

in the signal of that voxel over time:  

 
𝑡𝑆𝑁𝑅 =

𝑚𝑒𝑎𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠
 . 

 

(16) 

This measure is used in chapter 6 and 7.  

3.6.2.2 Data Analysis: General Linear Model 

Once an fMRI time series has been acquired, data are analysed to produce maps of 

activation from which time courses of the response can be extracted. However, the 

signal change measured in fMRI is of the order of a few percent (dependent on the field 

strength and stimulus) and it can be a challenge to separate the signal related to 

underlying neuronal activity from the noise. This is particularly challenging as noise 

can vary across the image, making it more difficult to eliminate. The signal will also 

contain contributions from thermal noise and physiological noise, such as respiration 

and cardiac noise. Physiological noise increases at higher field strength (Triantafyllou 

et al., 2005) but can be corrected using methods such as RETROICOR (retrospective 

correction of physiological motion effects in the image domain) (Glover et al., 2000). 

RETROICOR is applied in post-processing and works by assuming the time course 

consists of the signal plus noise from cardiac and respiratory traces, using the phase of 

the cardiac and respiratory trace to calculate and remove the noise. Respiration can be 

recorded during the scan using bellows, and the cardiac trace is measured using a 

peripheral pulse unit attached to the index finger. 

One way to solve the problem of separating signal from noise when a task is performed 

is to use a general linear model (GLM). This models the data as a linear combination 

of various models (called regressors). The contribution to the variance of the fMRI time 

course of a single voxel from each regressor is assessed, and given a weighting 

depending on its contribution, which gives the overall best fit to the data. The group of 

regressors is called a design matrix. The model of the task is derived by predicting the 

shape of the BOLD response to the stimulus. The model is created by modelling the 

stimulus as a boxcar which is 1 when the stimulus is on and 0 when it is off, which is 

then convolved with a standard HRF (Figure 3.12). The shape of the time course is 
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specified but the amplitude is unknown. The voxel time courses, Y, are considered to 

be a sum of the regressors multiplied by a weighted factor, 𝛽, known as beta weights, 

plus noise, e, which can be described by the matrix equation,  

where Y is the data vector, X is the matrix of model functions (or regressors) also 

known as the design matrix, beta is the amplitude weighting (beta weight) vector and e 

is the noise vector. The analysis aims to find the values of the weights which best 

explains the signal variation. A large positive beta weight suggests the measured voxel 

time course is well explained by the regressor. This analysis is performed over all 

voxels to find voxels which match the modelled response and are therefore considered 

to be activated by the task.  

Statistical analysis is then performed to test the significance of the active voxels. Since 

there are thousands of voxels in an fMRI dataset, testing each voxel will result in a 

multiple comparisons problem. Applying an uncorrected p-value of p < 0.05 will result 

in a large number of false positives – if there are 10 000 voxels, 500 voxels will appear 

active when they are not truly active. Therefore, p-values are usually corrected to 

overcome this issue. The familywise error rate (FWE) is the probability of a false 

positive occurring. A Bonferroni correction is performed where the p-value is divided 

by the number of tests being performed in all voxels. However, for the large number of 

tests performed in fMRI, Bonferroni correction can be too strict and remove true 

positives as well as false positives. An alternative method is false discovery rate (FDR) 

correction (Benjamini & Hochberg, 1995), where rather that controlling false positives 

in the entire image, only false positives among the voxels which produce a significant 

result are controlled. This correction method means that the number of false positives 

is related to the number of active voxels, such that if there is little activity the correction 

is strict, but it is more conservative for large active regions (Genovese et al., 2002).  

Once maps of significant activation are produced, the time course can be investigated 

in the active voxels. These are usually created by comparing the signal during the task 

to a baseline period either at the start of the scan session or at the end of each trial, and 

converted into a percentage signal. These methods are used in Chapters 6 and 7.  

 𝑌 = 𝑋𝛽 + 𝑒 (17) 
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CHAPTER 4 

4 Post-stimulus Oscillatory MEG Responses  

4.1 Abstract 

Modulation of beta-band neural oscillations during and following movement is a robust 

marker of brain function. In particular, the post-movement beta rebound (PMBR), 

which occurs on movement cessation, has been related to inhibition in the healthy brain, 

and is perturbed in disease. However, to realise the potential of the PMBR as an 

indicator of brain function, its modulation by task parameters must be characterised and 

its functional role determined. In this chapter, MEG was used to image brain 

electrophysiology during and after a grip-force task, with the aim to characterise how 

task duration, in the form of an isometric contraction, modulates beta responses. 

Fourteen participants exerted a 30% maximum voluntary grip-force for 2, 5 and 10 s. 

The results showed that the amplitude of the PMBR is systematically modulated by task 

duration, with increasing duration significantly reducing PMBR amplitude and 

increasing its time-to-peak. The time at which the PMBR returned to baseline was 

unchanged by task duration. No variation in the amplitude of the movement related beta 

decrease (MRBD) with task duration was observed. The results add to the emerging 

picture that, in the case of a carefully controlled paradigm, beta modulation can be 

systematically controlled by task parameters. These findings will support design of 

clinically relevant paradigms and analysis pipelines in future use of the PMBR as a 

marker of neuropathology. 

 

 

The work in this chapter formed a considerable component of the published paper: 

‘Post-stimulus responses are modulated by task duration’, DO Pakenham et al, 

NeuroImage 2020. It has also been presented at Biomag 2020 in Philadelphia.  
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4.2 Introduction  

As described in Chapter 2, the amplitude of neural oscillations can be modulated by a 

task. Motor tasks typically generate electrophysiological responses in the beta (15 – 30 

Hz) frequency band (Jurkiewicz et al., 2006). Such responses comprise a decrease in 

amplitude during movement - the movement related beta decrease (MRBD) - followed 

by an increase in amplitude above baseline on movement cessation - the post-movement 

beta rebound (PMBR). These phenomena are well documented (Cheyne, 2013; Kilavik 

et al., 2013; Pfurtscheller & Lopes da Silva, 1999), yet a full understanding of how they 

are modulated by stimulus parameters and their functional roles is lacking. Whilst 

similar characteristics are seen in the alpha band (commonly referred to as mu when 

observed in central regions), and movement can induce an increase in power in the 

gamma band, there has been a greater focus on beta band activity when studying the 

motor cortex as modulations are more pronounced in MEG, hence this chapter will be 

primarily concerned with characterising beta band activity. 

The MRBD is not only observed during movement but also during motor planning 

(Tzagarakis et al., 2010) and imagining movements (Pfurtscheller et al., 2005; 

Schnitzler et al., 1997) (albeit at lower amplitude). Previous work has shown that the 

MRBD amplitude, duration and onset time is modulated by task parameters such as 

certainty of movement or number of movement options. For example, Tzagarakis and 

colleagues (Tzagarakis et al., 2010) showed that during movement preparation (i.e. 

prior to actual movement onset), the drop in beta oscillatory amplitude was significantly 

greater in a case where the direction of movement was certain, than a case where the 

direction of movement was uncertain. However, during movement itself, the MRBD 

has been shown to be relatively unaffected by parameters such as force output, rate of 

force development (Fry et al., 2016), or speed of force development (Stancak Jr & 

Pfurtscheller, 1995, 1996). This has led to a hypothesis that the MRBD relates to 

movement planning and execution, but not to measurable changes in peripheral output. 

The PMBR has also been shown to be modulated by a number of task parameters. 

Stevenson et al. (2011) measured MEG responses to finger abductions performed for a 

range of durations (1, 2, 4 and 6 s) and found an increase in the total PMBR with 

increased task duration, which plateaued after stimulus durations of 4 s. Another study 

(Parkes et al., 2006) showed that the rate of finger extensions affects PMBR, with faster 
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movements resulting in a higher amplitude. The PMBR has been found to be larger for 

incorrect compared to correct button presses (Koelewijn et al., 2008). Whilst Heinrichs-

Graham and colleagues (2017) showed the PMBR is stronger for cues to terminate 

movement at 2 s compared to at 2.5 s. It is therefore evident that the PMBR can be 

modulated by a number of movement parameters.  

Variation between cohorts in PMBR have also been seen. A number of studies have 

shown modulation of PMBR across subjects; for example, Gaetz et al. (2010) found 

that the PMBR is significantly reduced in children and diminished in adolescents 

compared to adults. Vakhtin et al. (2015) showed similar findings and suggested that 

the PMBR is modulated by age in a predictable manner in adolescents. Perhaps most 

importantly, the PMBR is modulated by disease, opening the potential for its use as a 

clinical tool. For example, Robson et al. (Robson et al., 2016) showed that patients with 

schizophrenia have a smaller PMBR compared to healthy controls, and the amplitude 

of the response decreases with increasing symptom severity. In a study of autism, the 

PMBR was found to be reduced when patients were observing hand movements 

compared with healthy controls (Honaga et al., 2010). In a study of stroke patients, 

Parkkonen et al. (2017) found the PMBR was decreased bilaterally (i.e. independent of 

affected side) in patients during passive finger movements compared with controls, 

perhaps providing some indication regarding the functional role and origin of this 

response. Other studies have shown modulation in the timing rather than amplitude of 

the response. Barratt et al. (2017) found patients with multiple sclerosis had delayed 

PMBR compared to healthy controls. Proudfoot et al. (2017) showed a delayed PMBR 

and larger MRBD during movement execution in patients with amyotrophic lateral 

sclerosis. Together, these results suggest that the PMBR is functionally important, and 

the generation of a better understanding of its role may lead to its use as a predictor of 

a number of disorders. 

The fact that the MRBD and PMBR differ in their response to stimulus parameters, 

individual differences and disease suggests that they also have different neuronal 

generators (Parkkonen et al., 2015). This is supported by a number of studies showing 

that the generator of the PMBR is anterior in the brain compared to the MRBD (Fry et 

al., 2016; Jurkiewicz et al., 2006; Salmelin et al., 1995; Stancak Jr & Pfurtscheller, 

1995). The MRBD has been described as a “cortical gate” to facilitate local processing 

in sensory and motor cortex (Fry et al., 2016; Stevenson et al., 2011), whereas the 
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PMBR might provide active inhibition of motor cortex (Pfurtscheller et al., 1996; 

Stevenson et al., 2011). This latter hypothesis is supported by a measurable relationship 

between the concentration of gamma-aminobutyric acid (GABA) and the PMBR 

(Cheng et al., 2017; Gaetz et al., 2011; Hall et al., 2011; Muthukumaraswamy et al., 

2013). It has further been suggested that whilst the MRBD might represent local 

processing, the PMBR is likely to relate to long range integrative processes over 

distributed networks (Tewarie et al., 2018). This also agrees with resting state studies 

showing that long range networks are mediated by beta band oscillations (Hipp et al., 

2012). It is therefore tempting to suggest that the PMBR is representative of top-down 

inhibitory control of the primary motor region, by a wider sensorimotor and premotor 

network. 

Whilst beta band activity is integral to motor function, beta band activity does not occur 

in isolation and modulations in other frequency bands, such as alpha and gamma bands 

for a simple motor task have also been observed previously. Movement-related gamma 

is commonly reported in the 60 – 90 Hz frequency range in the contralateral primary 

motor region (Wiesman et al., 2020). Studies of motor gamma have shown brief bursts 

of gamma activity on movement execution for simple finger movement tasks, i.e. a 

gamma event related synchronization (ERS) (Cheyne et al., 2008; Gaetz et al., 2010). 

Muthukumaraswamy and colleagues showed that gamma activity was modulated by 

the type of movement performed, as gamma activity was not present in a passive task 

but was observed in an active contraction, suggesting gamma plays a role in information 

encoding rather than simply muscle contraction (Muthukumaraswamy, 2010). Gamma 

band activity is thought to serve many different functions and is fundamental to 

information processing (Fries, 2009), representing top-down processes (Donner et al., 

2009) but its role in motor function is still not entirely clear. Alpha band activity in the 

sensorimotor area is thought to be tightly linked to beta band activity in the motor 

cortex, and follows the similar desynchronization (termed event related 

desynchronization, ERD) and rebound pattern (event related synchronization, ERS) 

observed in the beta band (Salenius et al., 1997). The mu rhythm can be modulated by 

attention (Anderson & Ding, 2011; Jones et al., 2010) and is thought to represent a 

sensory gating mechanism (Jones et al., 2010).  

Before understanding the functional role of neural oscillations in the motor cortex, it is 

necessary that they are consistently and correctly characterised. Understanding how the 



64 

 

PMBR is affected by task parameters is important to reduce variance within cohorts 

and better disassociate disease types from variation due to the way a task is performed. 

However, the characterisation of PMBR variation with task parameters remains poorly 

documented. For example, precise movement parameters (i.e. rate, force of movement 

etc.) are rarely recorded and although Pfurtscheller et al. argued in 1999 that it was 

necessary to leave 10 s between movements to allow the PMBR to return to a true 

baseline (Pfurtscheller & Lopes da Silva, 1999), this has rarely been adhered to. 

As such, investigations of PMBR have used relatively short periods of rest between 

tasks with these rest periods varying between studies. Commonly, the inter-stimulus-

interval is between 1 and 6 s, with some of this time window used to define a “baseline” 

from which MRBD and PMBR are quantified (Gaetz et al., 2010; Heinrichs-Graham et 

al., 2017; Koelewijn et al., 2008; Parkes et al., 2006; Stevenson et al., 2011). If task 

parameters and/or disease states modulate the duration or amplitude of the PMBR, then 

it is likely that such a task design will lead to incorrect definition of the baseline, and 

consequently spurious quantification of the MRBD and PMBR.  

The importance of long baseline periods was highlighted in recent work by Fry and 

colleagues (2016) who carefully controlled force levels during a wrist flexion task. 

Here, force was held at 5%, 15%, 35% and 60% of each subject’s maximum voluntary 

force (MVF) for 3 s, with rest periods extending to 25 s. The study found that PMBR 

amplitude increases with increasing force output, whilst MRBD was unchanged. The 

authors also explored changing the rate of force development (RFD), with participants 

required to reach 65% MVF in either 6.25 s, 2.25 s or 0.75 s, with a minimum rest 

period of 25 s between contractions. The study showed that a greater RFD resulted in a 

higher amplitude and shorter duration PMBR. Importantly, the duration of the PMBR 

was shown to vary systematically between 4 s and 7.5 s; this metric was only possible 

due to the long inter-stimulus interval (baseline was defined to be at least 16.8 s after 

stimulus onset). In contrast, many other studies have recorded the PMBR as lasting 

about 2 s after movement offset (Gaetz et al., 2010; Heinrichs-Graham et al., 2017; 

Jurkiewicz et al., 2006; Kilavik et al., 2013; Parkes et al., 2006). Heinrichs-Graham et 

al. (2017) defined baseline a maximum of 3.85 s after stimulus offset of the previous 

trial, which will likely cause a premature end to the PMBR. This clearly demonstrates 

the problem related to baseline definition, implying studies using shorter inter-stimulus 
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intervals may not measure a true baseline which will have detrimental effects on the 

interpretation of modulations in MRBD or PMBR.  

Fry et al. (2016) provide a basis for more precise characterisation of movement related 

beta responses via careful control and characterisation of motor output. However, the 

complexity of the RFD task they employed (in which task force and duration varied) 

means that it is unclear which stimulus parameter drove the measured changes in 

PMBR. Heinrichs-Graham et al. (2017) concluded that future work should investigate 

the relationship between MRBD duration and PMBR amplitude using carefully 

controlled motor output. These arguments show the increasing importance of 

developing a new generation of well controlled motor tasks with long inter-stimulus 

intervals for use in electrophysiology investigations. 

Here, in this Chapter, a well-controlled motor task is used to fully parameterise the 

changes in beta band oscillations with task duration. In particular, the aim is to 

understand how task duration affects amplitude and duration of post-stimulus 

responses, and their relationship to the MRBD during stimulation. 
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4.3 Methods 

4.3.1 Subjects 

Fifteen healthy volunteers (10 female, aged 27 ± 3 (mean ± SD) years) took part in this 

study, which was approved by the University of Nottingham Medical School Research 

Ethics Committee. All volunteers gave written, informed consent and self-reported as 

being right-handed.  

4.3.2 Motor Paradigm 

Maximum voluntary force (MVF) was determined for each subject prior to the start of 

the experiment. Subjects were encouraged to exert their maximum force, with verbal 

encouragement provided, using a grip-force bar (Current Designs, Philadelphia, USA) 

for a period of 1-2 s, with two repeats separated by ~15 s. The MVF was taken as the 

peak maximum force averaged over a 200 ms epoch achieved in either repeat, compared 

with the baseline reading of the force bar (mean over 400 ms at the end of the 

recording). A target force for the main study was then set at 30% of the subject’s MVF.  

Subjects lay supine with their head resting in the MEG helmet and held a grip-force bar 

in their right hand (Figure 4.1A). Subjects applied a force to the bar when visually cued. 

The visual stimulus comprised a target profile of the required force output, which 

appeared 2 s before the stimulus period onset. During the stimulus period, subjects were 

instructed to squeeze the grip-force bar to match the target profile at 30% MVF for 

periods of either 2, 5 or 10 s. The force output was measured directly and overlaid onto 

the target profile in real-time, to provide visual feedback (see Figure 4.1B). The target 

profile remained on the screen 0.5 s after the end of the stimulus. A fixation cross was 

then presented on the centre of the screen for 27.5 s, giving a 30 s rest period between 

contractions ensuring sufficient time for the post-stimulus response to end. During the 

rest period, subjects relaxed their hand and refrained from movement. Complete 

relaxation of the hand was made possible by use of a fingerless glove attached to the 

grip-force bar; this was worn on the right hand, enabling subjects to release their grip 

without dropping the bar (Figure 4.1A). All stimulus presentation, as well as the 

recording of outputs from the grip-force bar, was implemented using in-house software 

written using the Psychophysics Toolbox (Brainard, 1997) in MATLAB (MathWorks, 

Massachusetts, USA). Subjects were instructed to lie as still as possible and only move 
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the hand needed to perform the task. Only monitoring of movement of the hand and 

forearm performing the task was carried out. 

Within one experimental run, 15 trials of each of the three stimulus durations were 

presented in a pseudo-random order, providing a total of 45 trials per run. Two runs 

were acquired per subject, each lasting ~27 minutes, with a ~15-minute break between 

runs. Before and after each run, subjects attempted to reach two, 3-s-long target profiles 

of 100% MVF with a 30 s rest period between, akin to that used in Fry et al. (Fry et al., 

2017) to assess fatigue within and between runs. A schematic overview of the 

experiment is shown in Figure 4.1C. 

 

Figure 4.1. Overview of the experiment. (A) The grip-force bar (Current Designs, Philadelphia, 

USA) attached to a fingerless glove to allow relaxation of the hand. (B) Example single trial. 

The target force profile is shown (red) with real-time force output from a single trial overlaid 

(black). The visual stimulus appeared 2 s before the force output period, which was sustained 

for 2, 5 or 10 s [shown here for 2 s]). The profile remained on the screen for a further 0.5 s 

after the end of the force output period and was followed by a fixation cross for 27.5 s. (C) 

Schematic diagram of one run. Single trials were repeated 15 times for each duration in a 

pseudo-random order, totalling 45 trials within one run. This was followed by a second run 

after an approximately 15-minute break. Two 3 s target profiles of 100% MVF were presented 

before and after each run to monitor fatigue.  
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4.3.3 Data Acquisition  

Surface Ag/AgCl electrodes (EasyCap GmbH, Germany) to measure electromyography 

(EMG) were attached to the subject’s right arm, in order to quantify the time at which 

the subject gripped the bar, as well as to monitor any extra, unwanted movements of 

the hand during the rest periods. Electrode pairs were positioned in a bipolar 

configuration over the forearm extensor bundle (channel 1) and forearm flexor bundle 

(channel 2) muscle groups. EMG data were acquired using an ExG amplifier (Brain 

Products GmbH, Germany) and BrainVision recorder (v 1.1), with a sampling rate of 

1000 Hz and frequency range of 0.016 – 250 Hz (with 30 dB roll-off at high 

frequencies). A marker was inserted at the start of the experiment to temporally 

synchronise with the MEG data.  

MEG data were recorded using a 275-channel CTF MEG system (MISL, Coquitlam, 

BC) in synthetic 3rd order gradiometer configuration at a sampling rate of 600 Hz. Head 

localisation coils were attached to the subject at the nasion and preauricular points as 

fiducial markers. To coregister brain anatomy with the MEG sensor geometry, a 

digitised head shape was created using a 3D digitiser (Polhemus, Colchester, VT, USA) 

relative to the head localisation coils. T1-weighted anatomical images were acquired 

using a 1 mm isotropic MPRAGE sequence on either a 3 T or 7 T Philips Achieva MR 

scanner. Coregistration was achieved by matching the digitised head surface with the 

head surface from the anatomical MRI using an iterative closest point algorithm.  

4.3.4 Pre-processing 

4.3.4.1 EMG 

EMG data were downsampled to 600 Hz to match the MEG data sampling rate. An in-

house MATLAB programme was developed to determine the exact time of the start and 

end of the individual grip contractions. For this, EMG data were filtered from 1 to 150 

Hz and rectified. The standard deviation in baseline EMG activity was determined in a 

time window 13 to 23 s after the visual cue for contraction offset from all contractions, 

independently for each EMG channel and subject. This baseline period was used to 

determine a noise threshold which was defined as three times the standard deviation of 

the baseline (Cheyne et al., 2008; Muthukumaraswamy, 2010). Subsequently, the onset 

of contraction was defined as the first time point, in a 0.5 s window either side of the 

visual cue, when the signal was greater than the noise threshold. If the contraction did 
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not start in this time, the trial was discarded. Similarly, contraction offset was 

determined as the last time point, in a time window 0.5 s either side of the cue to end 

contraction, when the signal was greater than the noise threshold. Trials were also 

discarded if any extra movements occurred during the rest period, detected in both 

EMG channels.  

4.3.4.2 MEG 

MEG data were bandpass filtered from 1 to 150 Hz then visually inspected to remove 

any trials and channels which contained excessive interference (e.g. due to SQUID 

resets or excessive muscle activity) using DataEditor (CTF MEG, Canada). This 

resulted in the removal of, on average, 3 ± 2 trials (range 0 – 9) out of 15 trials per run, 

per condition. In addition, markers were added to the MEG data at the times of the 

contraction start and end, based on the EMG data. The MEG data were then segmented 

in two ways: 

1) To investigate the MRBD, the start of an epoch was defined as 3 s before the 

contraction onset (to ensure all preparatory effects were included). 

2) To investigate the PMBR, the data were segmented according to contraction 

offset. In this case, the start of an epoch was defined as 5 s, 8 s and 13 s before 

contraction offset. The trials were then segmented into 31, 34 and 39 second 

epochs (in relation to the cued contraction durations of 2, 5 and 10 s 

respectively). The epoch lengths were chosen to allow for discrepancies 

between cued and actual contraction periods. 

Following filtering, artefact removal and segmentation, these data were processed using 

a beamformer spatial filter (see below). 

4.3.5 Post-processing 

4.3.5.1 Grip-force and EMG 

Mean grip-force during each contraction was determined, with the first and last 0.5 s 

excluded so that only steady force output was captured. Force output was calculated as 

a percentage of the subject’s MVF. The mean rectified EMG signal from each muscle 

group (forearm extensors and flexors) was determined for each grip contraction (again 

excluding the first and last 0.5 s of each trial). Separately for the force output and EMG 

measures, paired Student’s T-tests were used to assess whether any difference in force 
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output/EMG signal occurred in the different runs of the experiment, and a repeated 

measures ANOVA (RM ANOVA) was used to assess whether there was a systematic 

difference in force output/EMG signal between durations of the task.  

The 100% MVF contractions were analysed in post-processing to determine if there 

had been an effect of fatigue. To do this, the peak force over a 200 ms epoch during the 

100% MVF contractions was compared to the subject’s MVF which had been 

determined at the start of the experiment. Paired Student’s T-tests were used to 

determine if there were any significant differences in %MVF before and after a run. 

4.3.5.2 Source Localisation 

Pre-processed MEG data were analysed using a scalar Linearly Constrained Minimum 

Variance (LCMV) beamformer (Robinson & Vrba, 1998; Van Veen & Buckley, 1988; 

Van Veen et al., 1997) with a local spheres forward model (see Chapter 2). Pre-

processed MEG data were further filtered to the beta band (15 – 30 Hz), and active and 

control windows contrasted to determine the spatial signature of task induced beta 

modulation in the brain. To localise the MRBD, the active window was defined from 

contraction onset to the cued duration of the contraction (i.e. 2 s, 5 s or 10 s). The control 

window was defined to start 24 s after contraction onset with a length matching the 

active window (i.e. terminating at 26, 29 or 34 s). To localise the PMBR, the active 

window was defined as an 8 s window starting from contraction offset (Fry et al., 2016). 

The control window was 16-24 s after contraction offset. Similarly, to investigate alpha 

(as both visual and motor alpha were investigated in this chapter, motor alpha is simply 

referred to as alpha rather than mu for ease) and gamma responses, MEG data were 

filtered to the alpha band (8 – 13 Hz) and gamma band (60 – 90 Hz).  

The covariance matrices used to compute the weights for the beamformer were created 

by concatenating the (band filtered) data from the active and control windows for the 

2, 5 and 10 s trials. Concatenation of data from different task durations was valid as it 

is expected that the neuronal sources of the PMBR or MRBD are the same for all task 

durations. This concatenation provided the maximum amount of data for the calculation 

of the covariance matrix thus increasing its accuracy (Brookes et al., 2008). Since 

evidence suggests the MRBD and PMBR are generated by different sources (Fry et al., 

2016; Jurkiewicz et al., 2006), the responses were localised separately using the 

relevant concatenated active and control window data to calculate two sets of 
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covariance matrices and beamformer weights. Pseudo-t-statistical (T-stat) images were 

produced to localise the MRBD and the PMBR by contrasting the relevant active and 

control windows. A single peak was identified for the MRBD and the PMBR for each 

subject over all task durations, to ensure source localisation was not biased to any one 

task duration. The peak of the activity in the left sensorimotor cortex was found for 

each subject and used to extract time frequency spectrograms (TFSs) at these locations 

for each subject with maximum signal to noise (see Section 4.3.5.3 below).  

In order to compare the spatial locations of the MRBD and PMBR, the T-stat maps 

were transformed from subject space into MNI space using FLIRT (FSL) (Jenkinson et 

al., 2002; Jenkinson & Smith, 2001). For each subject, MNI coordinates of the peak 

location in left sensorimotor cortex of the MRBD and PMBR were recorded. Paired 

Student’s t-tests were used to separately identify changes in peak locations in the x 

(left/right), y (anterior/posterior) and z (superior/inferior) direction between the MRBD 

and PMBR. Group average T-stat maps were produced for the PMBR and MRBD by 

averaging across subjects.  

Additional analysis was performed to investigate alpha and gamma responses. Alpha 

and gamma filtered data were beamformed separately with weights formed for each 

frequency band individually. T-stat images were calculated for the alpha ERD, using 

the same timings as the beta MRBD, and alpha ERS, using the same timings as the 

PMBR. For the gamma ERS during the task, the same timings as the MRBD were used. 

Again, as for the beta band, the peak of the activity in the left (contralateral) 

sensorimotor cortex was found for each subject for each of these additional contrasts 

and used to extract time frequency spectrograms (TFSs) at these locations for each 

subject with maximum signal to noise. For alpha, the peak of the activity in the visual 

cortex was also found (see Appendix B).  

4.3.5.3 Time Frequency Spectrograms (TFSs) 

TFSs were generated with the MEG data filtered into a broader 1 – 150 Hz band (to 

capture the broad band response) and all data were used to create the covariance matrix. 

The derived beamformer weights were multiplied by the MEG sensor data to provide 

estimates of the electrical signal at the identified locations. TFSs were created by 

frequency filtering these time courses into 31 overlapping frequency bands, with a 

Hilbert transform used to calculate the envelope of activity within each band (see 
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Chapter 2). Envelope time courses were averaged over all trials of the same duration 

(i.e. 2, 5 or 10 s), baseline corrected (baseline was defined as 2 – 10 s prior to the end 

of the trial) by subtracting baseline for each band, normalised by dividing by baseline 

measures (providing a measure of relative amplitude for each subject) and then 

concatenating in frequency. Resultant TFSs were then averaged over subjects. 

4.3.5.4 Quantification of the MRBD and PMBR 

In order to quantify the size of the MRBD and PMBR, a curve fitting routine was 

employed. The beamformer derived time courses were filtered into the beta band (15 – 

30 Hz) and Hilbert transformed to provide the amplitude envelope of beta oscillations. 

Amplitudes were baseline corrected and averaged over trials, with the absolute measure 

of beta amplitude (as distinct from percent change from baseline) maintained. Time 

courses were averaged over subjects and the standard error over subjects computed.  

A Weibull curve was fitted to the rebound period (Barratt et al., 2017; Liddle et al., 

2016), given by 
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where a is the scale and b is the shape parameter. A general linear model was used to 

fit the Weibull curve to the PMBR (defined as the first time point when the beta time 

course amplitude returned to 0 nAm after the MRBD); the scale and shape parameters 

were iterated to find the best curve fit to the data (minimised sum of squared residuals). 

These fits were performed for each subject and task duration individually, allowing 

estimation of the peak PMBR amplitude, time-to-peak, and time the PMBR returned to 

baseline (defined as when the gradient of the Weibull curve fit was less than 0.0001). 

Once the best fit to the rebound had been computed, a trapezoid was fitted to the 

MRBD, using a similar procedure. The time of the vertices of the trapezium were 

allowed to vary along with the height of the trapezium. The lateral arms of the trapezium 

were fitted to the downward and upward slopes of the MRBD whilst the base was fitted 

to the constant MRBD during the movement. Once the best fit was found, the time 

between the two vertices of the base determined the duration of the MRBD whilst the 

height of the trapezium determined the amplitude of the MRBD. A RM ANOVA was 

used to determine if there was a significant effect of stimulus duration on each 

parameter. A Weibull curve was also fit to the gamma results for use in Chapter 6. 
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4.4  Results  

From initial assessment of the EMG data, one subject was removed from further 

analysis due to movement of the hand during the rest periods (EMG data showed hand 

movement in just under half the trials). Results are therefore reported for the remaining 

14 subjects. Following removal of the bad trials, 13 ± 2, 13 ± 2, 12 ± 3 trials out of 15 

(average and standard deviation across all subjects and runs) remained for the 2, 5 and 

10 s durations respectively. 

4.4.1  Grip-force and EMG data 

The mean force output (across subjects and durations ± standard deviation) was 29.5 ± 

0.8% MVF during run 1 and 29.8 ± 0.6% MVF during run 2, a significant difference 

(p=0.02, paired t-test). The EMG amplitudes for runs 1 and 2 were 334 ± 175 µV and 

306 ± 128 µV respectively on channel 1 (forearm extensor bundle) and 194 ± 75 µV 

and 181 ± 59 µV, on channel 2 (forearm flexor bundle). These values were not 

statistically different (p>0.05, paired t-test). The high similarity of the force output and 

EMG responses across runs, combined with the fact the same number of trials were 

performed in each run allowed data to be grouped across runs for each subject for the 

grip-force duration of 2, 5 and 10 s.  

Single subject time courses of the mean force output and mean EMG responses are 

shown in Figure 4.2A-C. Force data show the high overall performance of the subjects 

in the task, reaching the 30% MVF and maintaining it for the different durations as 

required. The EMG traces also indicate neuromuscular activation to perform the task 

remained the same for the different durations (Figure 4.2B and C). The mean force 

output and mean EMG amplitude across all subjects is shown in Figure 4.2D-F. A 

significant difference between the three durations (p=0.04, RM ANOVA) was found 

between the force outputs however, this was not seen in the EMG data for either 

channel. As the mean force output differences were so small (29.8 ± 0.7 %, 29.4 ± 0.7 

% and 29.5 ± 0.3 % for 2, 5 and 10 s grip durations respectively) and no changes in 

EMG were observed, overall the performance for all three durations was considered to 

be similar.  

The 100% MVFs before and after each run were analysed to assess fatigue during the 

experiment. Mean force outputs before and after run 1 were 96 ± 12%MVF and 89 ± 

12%MVF, respectively whilst they were 87 ± 14%MVF and 83 ± 15%MVF before and 
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after run 2, respectively. Comparing 100% MVF responses no significant differences 

(paired t-tests, Bonferroni corrected) were seen before and after the task for either run, 

or when comparing the before or after task 100% MVF measures for each run.  

 

Figure 4.2. Behavioural results. (A-C) Example of output for one subject of (A) grip-force, (B) 

forearm extensor bundle EMG trace, (C) forearm flexor bundle EMG trace. (D-F) Average 2, 

5 and 10 s responses across subjects and runs for (D) grip-force, (E) EMG amplitude in the 

forearm extensor bundle, (F) EMG amplitude in the forearm flexor bundle. 

4.4.2  Beta Responses 

Contralateral MRBD, localised to the sensorimotor cortex, was found for all subjects, 

and contralateral PMBR, also localised to sensorimotor cortex, was found in 13 out of 

14 subjects. Figure 4.3A and Figure 4.4A show example T-stat maps for an individual 

subject for a single run for the PMBR and MRBD, respectively.  

Time-frequency spectrograms for the PMBR, averaged across trials, runs and subjects 

are shown in Figure 4.3B, where time zero indicates contraction offset, determined from 

the EMG trace. As expected, an increase in beta amplitude (the PMBR) was observed 

after contraction offset for all three durations, which appears to increase in magnitude 

as the gripping period decreases (Figure 4.3B, red). A slight increase in alpha amplitude 

was also observed during the PMBR period at the PMBR location, although this effect 

was weaker.  
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Figure 4.3C shows the time courses of the beta band amplitude for each task duration 

averaged over all subjects and runs. Again, it is evident that the PMBR is modulated by 

task duration, with shorter contractions (red) showing higher amplitude compared to 

longer contractions (blue). Interrogating the PMBR using the Weibull fit showed a 

significant decrease (p=0.018, RM ANOVA corrected for multiple comparisons 

(Benjamini-Hochberg)) in the peak amplitude with increasing contraction duration 

(Figure 4.3D), and a significant increase (p = 0.017, RM ANOVA) in the time-to-peak 

of the PMBR (Figure 4.3E). No difference (p=0.55, RM ANOVA) in the time to return 

to baseline of the PMBR was found between contraction durations (Figure 4.3F). The 

average time to return to baseline was 9 ± 3 s across all subjects and durations. The 

integral of the PMBR, which combines these effects, showed a significant reduction 

(p=0.001, RM ANOVA) with increasing task duration. 

Figure 4.4 shows results for the MRBD, here time zero represents contraction onset, as 

determined from the EMG traces. As expected, the TFS revealed a distinct beta (and 

alpha) band decrease during the grip contraction, with the effect in the alpha band more 

pronounced than during the rebound period. Furthermore, an increase in gamma band 

activity (~60-90 Hz) was seen on contraction onset and offset at the MRBD location. 

Figure 4.4B&C show that the MRBD is sustained for the duration of the task, and the 

MRBD consistently began approximately 2 s before the onset of contraction, when the 

visual presentation appeared. The amplitude of the MRBD during the contraction was 

consistent across task durations, reflected by no significant difference (p=0.767, RM 

ANOVA) in MRBD amplitude calculated from the trapezoid fit parameters (Figure 

4.4D). As expected, the integral of the trapezoid increased linearly with duration 

(Figure 4.4E), reflecting the increase in duration of the MRBD with task duration. 

Figure 4.5 shows the average T-stat map for the MRBD and PMBR over all subjects, 

normalised to the MNI brain. The location of the PMBR peak response across all 

subjects was (-36, -10, 62) mm (MNI coordinates (x, y, z)) while the MRBD peak was 

at (-40, -20, 58) mm. According to the probabilistic Harvard-Oxford Cortical Structural 

Atlas (i.e. the fsl “atlasquery” tool) the most likely cortical region relating to the average 

peak MNI coordinate of the PMBR was precentral gyrus (43%), whilst the peak of the 

MRBD was split between precentral gyrus (36%) and postcentral gyrus (18%). Whilst 

there was considerable spatial overlap of the PMBR and MRBD responses, the peak 
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location of the PMBR was significantly more anterior (p<0.05, paired samples t-test) 

and more medial compared with the MRBD when considered over all subjects. 

 

Figure 4.3 (A) Pseudo-t-statistical map showing the PMBR localised to motor cortex for one 

run of a single representative subject (radiological view). (B) Average TFSs extracted from 

individual subject PMBR location for the three contraction durations, 2, 5 and 10 s (top to 

bottom) where baseline was 16-24 s (blue box). Time zero is cessation of the contraction. (C) 

Average time courses of beta band amplitude for the three task durations from the peak location 

of the PMBR across 14 subjects. Responses are aligned to contraction offset (time = 0 s). Red 

line shows the response to 2 s task duration, green line = 5 s task duration and blue line = 10 

s task duration. Error bars show the standard error across subjects. (D–F) Measures from 

Weibull curves fitted to the PMBR showing effects of task duration. All times reported on y-

axes are measured relative to contraction offset. (D) The amplitude of the PMBR peak (R-

square 0.98), (E) the time at which peak of PMBR occurs (R-square 0.92) and (F) the time 

taken for rebound to return to baseline (R-square 0.01). Error bars show the standard error. 

Blue dashed line shows linear fit of the data.  
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Figure 4.4 (A) Pseudo-t-statistical map showing MRBD localised to motor cortex for one run 

of a single representative subject (radiological view). (B) Average TFSs extracted from 

individual subject MRBD location for the three contraction durations. Spectrograms show the 

relative change in power for each frequency band where baseline was 2-10 s prior to the end 

of the trial (blue box). Time zero is contraction onset. (C) Average time courses of beta band 

amplitude for the three task durations from the peak location of the MRBD across 14 subjects. 

Responses are aligned to contraction onset (time = 0 s). Red line shows the responses to 2 s 

task duration, green line response to the 5 s task duration and blue line to the 10 s task duration. 

Error bars show the standard error across subjects. (D-E) Measures from a trapezoid fitted to 

the MRBD showing effects of task duration. (D) Amplitude of MRBD and (E) integral of MRBD 

plotted against task duration. Error bars show the standard deviation across subjects. Blue 

dashed line shows linear fit of the data. 
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Figure 4.5. Pseudo-t-statistical map of the group average location of the MRBD (blue, peak (-

40, -20, 58) mm) overlaid with the PMBR (red, peak (-36, -12, 62) mm) with the cross hairs at 

the PMBR peak (radiological view). T-stat maps were created in individual subject space 

before normalising to MNI space and averaging over subjects. 

4.4.3  Alpha Responses  

The time frequency spectrograms in Figure 4.3 and Figure 4.4 showed changes in 

oscillatory activity outside of the beta band, namely in the alpha and gamma bands. 

Therefore the alpha and gamma responses were interrogated separately. The broadband 

frequency time courses were extracted from the peak of the alpha event related 

synchronization (ERS) for each subject, to investigate post-stimulus effects (akin to the 

PMBR), and from the peak of the alpha event related desynchronization (ERD) to 

investigate effects in this frequency band during the task (akin to the MRBD). For two 

of the subjects, an alpha ERS could not be source localised and therefore in these 

subjects the peak of the alpha ERD was taken as the alpha location for all time course 

extraction. Resultant TFS and alpha power time courses are shown in Figure 4.6 and 

Figure 4.7. Both alpha ERD and MRBD responses show very similar behaviour with 

no clear effect of task duration on the amplitude (Figure 4.7 and Figure 4.4) of the 

response during the task. In addition, the alpha ERD also begins during the preparation 

phase, rather than on contraction onset. In contrast, the alpha ERS after the contraction 

had ceased was much smaller and less distinct than the PMBR (Figure 4.6 compared 

with Figure 4.3). Whilst the signal to noise prevents any detailed analyses of this 

response, it appears that the alpha ERS is modulated with task duration in a similar 

manner to the PMBR with the shortest task duration (2 s) resulting in the largest alpha 

ERS (Figure 4.7B&C). Therefore, it appears that the alpha response to the task has the 

same characteristics, but weaker in the sensorimotor cortex, as that of the beta response. 

Visual alpha effects were also investigated which are shown in Appendix B. 
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Figure 4.6. Alpha ERS response. (A) Location of maximum power change during the event 

related synchronization in alpha band in a single representative subject (same subject as for 

beta, Figure 4.3). (B) Time frequency spectrogram averaged over all subjects. Top panel is the 

response from the 2 s stimulus, middle 5 s, bottom 10 s. (C) Subject average alpha envelope 

time course from peak location of power change in motor cortex. Red is 2 s, green is 5 s and 

blue is 10 s task duration. Aligned at time = 0 s at contraction offset.  
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Figure 4.7. Alpha ERD. (A) Location of maximum power change during the task in the alpha 

band in a single representative subject (same subject as for beta, Figure 4.4). (B) Subject 

average TFS where time = 0 s is contraction onset. Top panel is the response from the 2 s 

stimulus, middle 5 s, bottom 10 s. (C) Subject average alpha envelopes from the peak location 

of alpha ERD. Red is 2 s, green is 5 s and blue is 10 s task duration.  

4.4.4  Gamma Responses  

Gamma band responses were observed between 60 and 90 Hz from the beta peak 

locations during the task (see Figure 4.4B). Therefore, gamma ERS was source 

localised only during the task for each subject and broadband frequency time courses 

were extracted. The results are shown in Figure 4.8. As expected, the amplitude of the 

gamma response was far smaller than that of the alpha or beta response. The response 

was not sustained throughout the stimulation period but was strongest at contraction 

onset, with a gamma burst lasting approximately 1.5 s. There were also hints of a weak 

gamma response at contraction offset. For the 2 s task duration it appeared that these 

onset and offset gamma responses merged so gamma band activity appeared more 
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sustained throughout the task duration (Figure 4.8C). There was however, no sign of a 

gamma response in the post-movement period of primary interest in this study. 

 

Figure 4.8. Gamma ERS. (A) T-stat map showing maximum power change in the gamma (60 – 

90 Hz) band during the task. (B) Subject average TFS, where the blue box shows the baseline 

period. (C) Subject average gamma envelope taken from the peak of the T-stat map where red 

represents the response to the 2 s task duration, green 5 s and blue 10 s. (D) Gamma envelopes 

for 2 s (top, red), 5 s (middle, green) and 10 s (bottom, blue) with Weibull fit overlaid (black).  
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4.5 Discussion 

Using a controlled grip-force task, the results from this chapter show that the amplitude 

of the PMBR is modulated by task duration (for an isometric contraction task), with 

increased amplitude associated with shorter contraction durations. This was 

accompanied by a shorter time-to-peak following contraction offset. It was also shown 

that the total duration of the PMBR was independent of task duration, returning to 

baseline approximately 9 s after contraction offset. The amplitude of the MRBD was 

unaffected by task duration. It was also shown, in agreement with previous studies, that 

the MRBD and PMBR localised to spatially neighbouring, but significantly different 

cortical locations. Motor alpha responses were found to mirror those of beta, whilst 

visual alpha showed no modulation of the rebound with task duration, unlike in motor 

cortex. Brief bursts of motor gamma were observed on movement onset and to a lesser 

extent movement offset.  

Fry et al. (2016) showed that the amplitude of the PMBR, measured from the primary 

sensorimotor region, decreased and the duration of the response increased with 

increasing duration of contraction, when rate of force development (RFD) was 

modulated. This task was relatively complex as both force and duration were 

simultaneously varied, making it impossible to determine which aspect of the task 

resulted in the observed changes in PMBR. The authors proposed that it was the 

duration of the contraction that determined the duration of the PMBR. However here, 

using a task where only the duration of the contraction was varied, the results show that 

increasing task duration decreases the amplitude of the post-stimulus response and has 

no effect on PMBR longevity. Nevertheless, the modulation of PMBR amplitude with 

task duration observed agrees with Fry et al. (2016). These findings are also supported 

by those of Heinrichs-Graham et al. (2017) who showed that a longer stimulus duration 

resulted in a smaller PMBR. However, caution is needed when comparing these studies; 

in this study the altered PMBR is observed in the primary sensorimotor cortex, whereas 

in Heinrichs-Graham et al. the PMBR was reported in higher order brain areas as well 

as the somatosensory cortex, but not the motor cortex. This difference may be due to 

differences in task paradigm. In the study presented in this chapter, the subjects knew 

when contraction offset would occur (due to the visual cue), whereas the aim of 

Heinrichs-Graham et al. was to characterise the effect of not knowing when contraction 
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offset would occur. This may involve recruitment of cognitive networks which 

potentially gives rise to the spatial differences observed.  

The fact that time-to-peak was lower, and amplitude higher for shorter durations 

suggests that the beta response on contraction offset is a direct response to the duration 

of the force output, rising more rapidly and to a higher amplitude for shorter task 

durations (Figure 4.3C). A possible explanation for this finding is linked to task 

difficulty. Anecdotally, subjects reported finding the task cognitively easier for the 

longer durations. This was because once the required 30% MVF had been reached and 

subjects had stabilized their grip it was not difficult to hold that force (as the task had 

been designed to prevent fatigue). This is supported by quantitative data; there was 

significantly (p<0.05, paired Student’s t-test) greater variation in force output recorded 

across trials for the 2 s task duration (mean over subjects of SD over trials = 

1.0±0.5%MVF) than the 10-s task duration (mean over subjects of SD over trials = 

0.6±0.3%MVF). Another suggestion the modulation may be linked to task difficulty is 

that no modulation was seen in the visual cortex (Appendix B), where ostensibly the 

task did not vary in difficulty between durations. Fry et al. (2016) argued that when 

muscle contraction force is increased, it is conceivable that the perceived task difficultly 

is increased as it is harder to reach the required force. Indeed their study reports an 

increase in mean absolute error (a measure of task accuracy) with target force. It is 

harder to hypothesize how task difficulty is changed by RFD but it is likely that the 

lower RFD trials were easier as, similar to the longer task durations in the current work, 

once the desired RFD had been found it could be continued until the end of the 

prescribed contraction. Again, the reported mean error values supported this 

suggestion, with smaller errors for lower RFD (Fry et al., 2016). This also agrees with 

the work from Heinrichs-Graham et al. (Heinrichs-Graham et al., 2017), which shows 

reduced PMBR amplitude for slow conditions, which would arguably be easier. Thus 

in all these cases it appears that the more challenging the task the greater the PMBR. 

Therefore the PMBR in primary sensory regions may be modulated by top-down 

feedback mechanisms associated with perceived task difficulty even in these relatively 

simple tasks. 

As summarized in the introduction to this chapter, beta band responses have been 

associated with GABAergic inhibition (Cheng et al., 2017; Gaetz et al., 2011; Jensen 

et al., 2005; Kilavik et al., 2013; Muthukumaraswamy et al., 2013). In support of this, 
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in a previous study, Chen et al. (Chen et al., 1999) used transcranial magnetic 

stimulation (TMS) to explore the functional significance of the PMBR by probing 

excitability of the motor cortex to drive a muscle twitch in the hand at different lags 

following median nerve stimulation. They showed maximum cortical inhibition around 

200 ms to 1000 ms post-stimulus; this timing is closely matched to that of the PMBR. 

Taking results presented here, it is likely that the peak inhibition is highest and fastest 

following completion of a task with a shortened duration; or perhaps more generally, 

peak inhibition is highest and fastest following more challenging motor outputs. One 

possible explanation for the increased PMBR is that increased PMBR is a result of 

increased top-down inhibition required to end the excitatory activity associated with the 

movement, with greater inhibition required for more cognitively demanding 

movements.  

Interestingly, in the later stages of the response, the rate of decay of the PMBR appears 

to be the same (from 5 s after movement offset) regardless of task duration and 

amplitude/latency of the peak of the PMBR (Figure 4.3C&F). It appears that the PMBR 

of lower amplitude has a wider peak before returning to baseline such that all PMBR 

responses follow a highly similar trajectory in the later stages of the response, which is 

surprising. It is tempting to speculate that these later stages are related to fundamental 

processes such as rebalancing of ionic gradients through after-hyperpolarization 

currents (Fry et al., 2016; McCormick et al., 1993) which can elicit beta band responses 

(Kopell et al., 2000; Lu et al., 2004). It is interesting that a similar mechanism of 

rebalancing of ionic gradients has been proposed as a putative cause of the post-

stimulus fMRI response (Lu et al., 2004) and post-stimulus responses across imaging 

modalities have been linked (Mullinger et al., 2017; Mullinger et al., 2013), see Chapter 

6 for investigation of fMRI post-stimulus responses to this task. However, if ionic 

rebalancing is the driving mechanism of the later stages of the PMBR it is still 

challenging to explain why the same trajectory is followed regardless of the peak 

amplitude of the PMBR, and requires further investigation through modelling and 

invasive recording approaches. 

The data presented here (Figure 4.3) suggest that the duration of the PMBR is longer 

than has been reported in recent studies (Gaetz et al., 2010; Heinrichs-Graham et al., 

2017; Jurkiewicz et al., 2006; Kilavik et al., 2013; Parkes et al., 2006) and agrees with 

the observation of Fry et al. of a long (> 6 s) PMBR (Fry et al., 2016). However, it is 
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important to note that the present study, and Fry et al., involved long duration force 

outputs as distinct from short ballistic (transient) finger movements and so any 

comparisons should be treated with care. Nevertheless, it is possible that the short 

duration (1-3 s) of the PMBR which has commonly been reported is due to the baseline 

periods previously used, which typically begin less than 4 s after stimulus/task cessation 

(Gaetz et al., 2010; Heinrichs-Graham et al., 2017; Jurkiewicz et al., 2006; Kilavik et 

al., 2013; Parkes et al., 2006). Whilst long inter-stimulus intervals are often used in 

fMRI paradigm design due to the haemodynamic lag, it has generally been thought 

unnecessary for electrophysiology recordings. However, these short gaps between 

stimulus cessation and baseline window will artificially return the time course to 

baseline giving the impression of a shorter PMBR (and an MRBD that is increased in 

magnitude). For example, work by Stevenson and colleagues (Stevenson et al., 2011) 

found that the integral of the PMBR increased with increasing stimulus duration, but 

plateaued at durations above 4 s. This result disagrees with the results found here, and 

whilst this difference may be due to the motor task used (Stevenson et al. used a self-

paced finger movement), it could be attributed to the baseline periods employed. Finger 

abductions were performed for different durations of 1, 2, 4 and 6 s, with trial length 

fixed at 12 s, such that for the 6 s stimulus there was 6 s rest period, with the final 2 s 

of this used as baseline. If the PMBR is as long as found here, it is possible this 

discrepancy in results is caused by the limited baseline. This raises an important 

methodological point which was explored further and is presented in Appendix A.  

Similar results to the beta responses were found in the alpha band in motor cortex. 

Whilst the alpha results (Figure 4.6 and Figure 4.7) were less prominent, they showed 

the same trend of increased amplitude and decreased time to peak for the 2 s stimulus 

compared to 10 s stimulus. This shows the modulation of post-stimulus responses in 

the motor cortex to this motor task is not limited to the beta band. In contrast, in the 

visual cortex where alpha is an inherently more prominent rhythm, there appears to be 

no modulation in the amplitude or shape of the post-stimulus rebound despite the length 

of the visual stimulus (presentation of the target trace and visual feedback [Figure 

4.1B]) varying with stimulus duration. It is difficult to draw insight from what this may 

mean as this was not a classic visual stimulus such as a flashing checkerboard, although 

there was visual feedback during this task. However, as discussed above this may be 

related to lack of modulation in the level of difficulty for the visual system by this task. 
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In the gamma band (investigated here between 60 to 90 Hz), an increase in activity was 

observed on movement onset and offset but was not sustained during the movement 

period. This transient gamma response is observed in the literature (Cheyne et al., 2008; 

Gaetz et al., 2010; Muthukumaraswamy, 2010; Wiesman et al., 2020), however most 

studies do not report a gamma response on movement offset. This could be due to the 

task used in this study where the bar is let go on movement offset, which is more active 

than stopping a finger movement for example, which is in agreement with the previous 

result that gamma is not observed for passive stimuli (Muthukumaraswamy, 2010). 

However, the possibility that the gamma responses observed are due to muscle artefact 

cannot be ruled out.  

Finally, as expected from previous work (Fry et al., 2016; Stancak Jr & Pfurtscheller, 

1995, 1996), the amplitude of the MRBD remained constant (Figure 4.4D) for all task 

durations and the integral of the MRBD scaled linearly with task duration (Figure 4.4E). 

These findings agree with the previously proposed hypothesis that, during movement, 

the MRBD acts as a cortical gate which is unaffected by measurable stimulus 

parameters such as force output (Fry et al., 2016; Stevenson et al., 2011). The fact that 

task duration modulates the PMBR and not the MRBD suggests that MRBD and PMBR 

are distinct responses. This is also reflected by the results from spatial localisation 

which found that the PMBR is located significantly more anterior in the motor strip 

whilst the MRBD is located more posterior in the somatosensory strip in agreement 

with previous studies (Fry et al., 2016; Jurkiewicz et al., 2006; Salmelin et al., 1995; 

Stancak Jr & Pfurtscheller, 1995). Interestingly, it was noticed that the PMBR appeared 

unilaterally, whereas the MRBD was bilateral in most subjects. Figure 4.4C shows that 

the MRBD began at exactly the same time prior to contraction onset, regardless of task 

duration. The MRBD commenced with the presentation of the visual cue, prior to the 

contraction. During this preparatory period the MRBD appears to have a slightly lower 

magnitude than during the contraction itself. This observation is in line with previous 

work showing that MRBD occurs during movement planning (Kilavik et al., 2013).  

4.6 Conclusion  

This chapter shows that, with increasing task duration, the amplitude of the PMBR 

drops and its time-to-peak increases. There was no effect on overall PMBR duration 

and no effect on MRBD. The work here adds weight to the argument that precise control 
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of task parameters enables systematic variation of the PMBR, and hence investigation 

of its functional role. With increasing evidence of abnormalities of the PMBR in 

disorders, this will become increasingly important if it is to realise its potential as an 

indicator of disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

4.7 References  

Anderson, K. L., & Ding, M. (2011). Attentional modulation of the somatosensory mu 

rhythm. Neuroscience, 180, 165-180. 

Barratt, E. L., Tewarie, P. K., Clarke, M. A., Hall, E. L., Gowland, P. A., Morris, P. G., 

Francis, S. T., Evangelou, N., & Brookes, M. J. (2017). Abnormal Task Driven 

Neural Oscillations in Multiple Sclerosis: A Visuomotor MEG Study. Human 

Brain Mapping, 38(5), 2441-2453. 

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433-436. 

Brookes, M. J., Vrba, J., Robinson, S. E., Stevenson, C. M., Peters, A. M., Barnes, G. 

R., Hillebrand, A., & Morris, P. G. (2008). Optimising experimental design for 

MEG beamformer imaging. Neuroimage, 39, 1788-1802. 

Chen, R., Corwell, B., & Hallett, M. (1999). Modulation of motor cortex excitability 

by median nerve and digit stimulation. Experimental Brain Research, 129(1), 

77-86. 

Cheng, C.-H., Tsai, S.-Y., Liu, C.-Y., & Niddam, D. M. (2017). Automatic inhibitory 

function in the human somatosensory and motor cortices: An MEG-MRS study. 

Scientific Reports, 7(4234). 

Cheyne, D., Bells, S., Ferrari, P., Gaetz, W., & Bostan, A. C. (2008). Self-paced 

movements induce high-frequency gamma oscillations in primary motor cortex. 

Neuroimage, 42(1), 332-342. 

Cheyne, D. O. (2013). MEG studies of sensorimotor rhythms: A review. Experimental 

Neurology, 245, 27-39. 

Donner, T. H., Siegel, M., Fries, P., & Engel, A. K. (2009). Buildup of Choice-

Predictive Activity in Human Motor Cortex during Perceptual Decision 

Making. Current Biology, 19(18), 1581-1585. 

Fries, P. (2009). Neuronal Gamma-Band Synchronization as a Fundamental Process in 

Cortical Computation. Annual Review of Neuroscience, 32(1), 209-224. 

Fry, A., Mullinger, K. J., O'Neill, G. C., Brookes, M. J., & Folland, J. P. (2017). The 

effect of physical fatigue on oscillatory dynamics of the sensorimotor cortex. 

Acta Physiologica, 220(3), 370-381. 

Fry, A., Mullinger, K. J., O’Neill, G. C., Barratt, E. L., Morris, P. G., Bauer, M., 

Folland, J. P., & Brookes, M. J. (2016). Modulation of Post-Movement Beta 

Rebound by Contraction Force and Rate of Force Development. Human Brain 

Mapping, 37, 2493-2511. 

Gaetz, W., Edgar, J. C., Wang, D. J., & Roberts, T. P. L. (2011). Relating MEG 

measured motor cortical oscillations to resting γ-Aminobutyric acid (GABA) 

concentration. Neuroimage, 55, 616-621. 

Gaetz, W., MacDonald, M., Cheyne, D., & Snead, O. C. (2010). Neuromagnetic 

imaging of movement-related cortical oscillations in children and adults: Age 

predicts post-movement beta rebound. Neuroimage, 51, 792-807. 

Hall, S. D., Stanford, I. M., Yamawaki, N., McAllister, C. J., Rönnqvist, K. C., 

Woodhall, G. L., & Furlong, P. L. (2011). The role of GABAergic modulation 

in motor function related neuronal network activity. Neuroimage, 56, 1506-

1510. 

Heinrichs-Graham, E., Kurz, M. J., Gehringer, J. E., & Wilson, T. W. (2017). The 

functional role of post-movement beta oscillations in motor termination. Brain 

Structure and Function, 222(7), 3075-3086. 



89 

 

Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M., & Engel, A. K. (2012). Large-

scale cortical correlation structure of spontaneous oscillatory activity. Nature 

Neuroscience, 15, 884. 

Honaga, E., Ishii, R., Kurimoto, R., Canuet, L., Ikezawa, K., Takahashi, H., Nakahachi, 

T., Iwase, M., Mizuta, I., Yoshimine, T., & Takeda, M. (2010). Post-movement 

beta rebound abnormality as indicator of mirror neuron system dysfunction in 

autistic spectrum disorder: An MEG study. Neuroscience Letters, 478(3), 141-

145. 

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved Optimization 

for the Robust and Accurate Linear Registration and Motion Correction of Brain 

Images. Neuroimage, 17(2), 825-841. 

Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine 

registration of brain images. Medical Image Analysis, 5(2), 143-156. 

Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., & Ermentrout, B. (2005). On the 

human sensorimotor-cortex beta rhythm: Sources and modeling. Neuroimage, 

26(2), 347-355. 

Jones, S. R., Kerr, C. E., Wan, Q., Pritchett, D. L., Hämäläinen, M., & Moore, C. I. 

(2010). Cued Spatial Attention Drives Functionally Relevant Modulation of the 

Mu Rhythm in Primary Somatosensory Cortex. The Journal of Neuroscience, 

30(41), 13760. 

Jurkiewicz, M. T., Gaetz, W. C., Bostan, A. C., & Cheyne, D. (2006). Post-movement 

beta rebound is generated in motor cortex: evidence from neuromagnetic 

recordings. Neuroimage, 32(3), 1281-1289. 

Kilavik, B. E., Zaepffel, M., Brovelli, A., MacKay, W. A., & Riehle, A. (2013). The 

ups and downs of beta oscillations in sensorimotor cortex. Experimental 

Neurology, 245, 15-26. 

Koelewijn, T., van Schie, H. T., Bekkering, H., Oostenveld, R., & Jensen, O. (2008). 

Motor-cortical beta oscillations are modulated by correctness of observed 

action. Neuroimage, 40, 767-775. 

Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (2000). Gamma 

rhythms and beta rhythms have different synchronization properties. 

Proceedings of the National Academy of Sciences, 97(4), 1867-1872. 

Liddle, E. B., Price, D., Palaniyappan, L., Brookes, M. J., Robson, S. E., Hall, E. L., 

Morris, P. G., & Liddle, P. F. (2016). Abnormal Salience Signaling in 

Schizophrenia: The Role of Integrative Beta Oscillations. Human Brain 

Mapping, 37, 1361-1374. 

Lu, H., Golay, X., Pekar, J. J., & van Zijl, P. C. M. (2004). Sustained Poststimulus 

Elevation in Cerebral Oxygen Utilization after Vascular Recovery. Journal of 

Cerebral Blood Flow & Metabolism, 24(7), 764-770. 

McCormick, D. A., Wang, Z., & Huguenard, J. (1993). Neurotransmitter Control of 

Neocortical Neuronal Activity and Excitability. Cerebral Cortex, 3(5), 387-398. 

Mullinger, K. J., Cherukara, M. T., Buxton, R. B., Francis, S. T., & Mayhew, S. D. 

(2017). Post-stimulus fMRI and EEG responses: Evidence for a neuronal origin 

hypothesised to be inhibitory. Neuroimage, 157, 388-399. 

Mullinger, K. J., Mayhew, S. D., Bagshaw, A. P., Bowtell, R., & Francis, S. T. (2013). 

Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are 

modulated by poststimulus neuronal activity. Proceedings of the National 

Academy of Sciences, 110(33), 13636-13641. 

Muthukumaraswamy, S. D. (2010). Functional Properties of Human Primary Motor 

Cortex Gamma Oscillations. Journal of Neurophysiology, 104(5), 2873-2885. 



90 

 

Muthukumaraswamy, S. D., Myers, J. F. M., Wilson, S. J., Nutt, D. J., Lingford-

Hughes, A., Singh, K. D., & Hamandi, K. (2013). The effects of elevated 

endogenous GABA levels on movement-related network oscillations. 

Neuroimage, 66, 36-41. 

Parkes, L. M., Bastiaansen, M. C., & Norris, D. G. (2006). Combining EEG and fMRI 

to investigate the post-movement beta rebound. Neuroimage, 29(3), 685-696. 

Parkkonen, E., Laaksonen, K., Piitulainen, H., Parkkonen, L., & Forss, N. (2015). 

Modulation of the ~20‐Hz motor‐cortex rhythm to passive movement and 

tactile stimulation. Brain and Behavior, 5(5), e00328. 

Parkkonen, E., Laaksonen, K., Piitulainen, H., Pekkola, J., Parkkonen, L., Tatlisumak, 

T., & Forss, N. (2017). Strength of ~20-Hz Rebound and Motor Recovery After 

Stroke. Neurorehabilitation and Neural Repair, 31(5), 475-486. 

Pfurtscheller, G., & Lopes da Silva, F. (1999). Event-related EEG/MEG 

synchronization and desynchronization: basic principles. Clinical 

Neurophysiology, 110, 1842-1857. 

Pfurtscheller, G., Neuper, C., Brunner, C., & da Silva, F. L. (2005). Beta rebound after 

different types of motor imagery in man. Neuroscience Letters, 378, 156-159. 

Pfurtscheller, G., Stancák, A., & Neuper, C. (1996). Post-movement beta 

synchronization. A correlate of an idling motor area? Electroencephalography 

and Clinical Neurophysiology, 98(4), 281-293. 

Proudfoot, M., Rohenkohl, G., Quinn, A., Colclough, G. L., Wuu, J., Talbot, K., 

Woolrich, M. W., Benatar, M., Nobre, A. C., & Turner, M. R. (2017). Altered 

Cortical Beta-Band Oscillations Reflect Motor System Degeneration in 

Amyotrophic Lateral Sclerosis. Human Brain Mapping, 38, 237-254. 

Robinson, S. E., & Vrba, J. (1998). Functional neuroimaging by synthetic aperture 

magnetometry. Recent Advances in Biomagnetism, 302-305. 

Robson, S. E., Brookes, M. J., Hall, E. L., Palaniyappan, L., Kumar, J., Skelton, M., 

Christodoulou, N. G., Qureshi, A., Jan, F., Katshu, M. Z., Liddle, E. B., Liddle, 

P. F., & Morris, P. G. (2016). Abnormal visuomotor processing in 

schizophrenia. Neuroimage Clin, 12, 869-878. 

Rossiter, H. E., Boudrias, M.-H., & Ward, N. S. (2014). Do movement-related beta 

oscillations change after stroke? Journal of Neurophysiology, 112(9), 2053-

2058. 

Salenius, S., Schnitzler, A., Salmelin, R., Jousmäki, V., & Hari, R. (1997). Modulation 

of human cortical rolandic rhythms during natural sensorimotor tasks. 

Neuroimage, 5(3), 221-228. 

Salmelin, R., Hamalainen, M., Kajola, M., & Hari, R. (1995). Functional segregation 

of movement-related rhythmic activity in the human brain. Neuroimage, 2, 237-

243. 

Schnitzler, A., Salenius, S., Salmelin, R., Jousmaki, V., & Hari, R. (1997). Involvement 

of Primary Motor Cortex in Motor Imagery: A Neuromagnetic Study. 

Neuroimage, 6, 201-208. 

Stancak Jr, A., & Pfurtscheller, G. (1995). Desynchronization and recovery of β 

rhythms during brisk and slow self-paced finger movements in man. 

Neuroscience Letters, 196, 21-24. 

Stancak Jr, A., & Pfurtscheller, G. (1996). Event-related desynchronisation of central 

beta-rhythms during brisk and slow self-paced finger movements of dominant 

and nondominant hand. Cognitive Brain Research, 4, 171-183. 

Stevenson, C. M., Brookes, M. J., & Morris, P. G. (2011). Beta-band correlates of the 

fMRI BOLD Response. Human Brain Mapping, 32(2), 182-197. 



91 

 

Tewarie, P., Hunt, B. A. E., O’Neill, G. C., Byrne, A., Aquino, K., Bauer, M., 

Mullinger, K. J., Coombes, S., & Brookes, M. J. (2018). Relationships Between 

Neuronal Oscillatory Amplitude and Dynamic Functional Connectivity. 

Cerebral Cortex, bhy136-bhy136. 

Tzagarakis, C., Ince, N. F., Leuthold, A. C., & Pellizzer, G. (2010). Beta-Band Activity 

during Motor Planning Reflects Response Uncertainty. The Journal of 

Neuroscience, 30(34), 11270-11277. 

Vakhtin, A. A., Kodituwakku, P. W., Garcia, C. M., & Tesche, C. D. (2015). Aberrant 

development of post-movement beta rebound in adolescents and young adults 

with fetal alcohol spectrum disorders. NeuroImage: Clinical, 9, 392-400. 

Van Veen, B. D., & Buckley, K. M. (1988). Beamforming: A Versatile Approach to 

Spatial Filtering. IEEE ASSP Magazine, 5(2), 4-24. 

Van Veen, B. D., Van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). 

Localization of Brain Electrical Activity via Linearly Constrained Minimum 

Variance Spatial Filtering. IEEE TRANSACTIONS ON BIOMEDICAL 

ENGINEERING, 44(9), 867-880. 

Wiesman, A. I., Koshy, S. M., Heinrichs-Graham, E., & Wilson, T. W. (2020). Beta 

and gamma oscillations index cognitive interference effects across a distributed 

motor network. Neuroimage, 213, 116747. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 

 

4.8 Appendices  

A. Investigating Baseline 

Realising the potential of the PMBR as a biomarker of disease requires its robust 

characterisation across multiple laboratories. This, in turn, would require 

standardisation of experimental paradigms. However, to date, the literature is 

inconsistent regarding how best to illicit a PMBR response. One important question is 

how long it takes for the PMBR to reach baseline following movement offset. The work 

presented in this Chapter (Figure 4.3 and Figure 4.4) in agreement with previous work 

(e.g. Fry et al. (2016)), shows that the PMBR can take up to 10 s to reach a true baseline 

value following stimulus offset; indeed this is consistent with advice from early studies 

(Pfurtscheller & Lopes da Silva, 1999) which recommended that a minimum of 10 s is 

left between trials. However, in recent years this advice is rarely adhered to, with 

experimenters opting for much shorter inter-stimulus-intervals (ISIs) in order to fit 

more trials into an experiment. Whilst direct comparisons between the present work 

and the vast literature on short ISI experiments, which typically employ ballistic finger 

movements rather than extended force outputs, should be treated with caution, it is 

possible that such short ISIs, with baselines taken at the end of each trial, could risk 

underestimation of the magnitude of the PMBR, and overestimation of the MRBD. 

Here, a simple experiment was performed to demonstrate this point. 

Methods 

Six subjects (3 female, aged 26 ± 1 (mean ± SD) years) took part in a further grip-force 

experiment in which they were asked to apply force to a bar to match a target profile, 

as described above. Here, the duration of force output remained constant (at 5 s) across 

all trials, but the inter-stimulus interval (ISI) was varied between 5, 10 and 30 s, with 

30 trials for each ISI resulting in a total trial duration of 10 s, 15 s and 35 s for the three 

different ISIs respectively. The different ISIs were distributed randomly throughout the 

experiment which lasted 30 minutes in total. Data were processed as described above 

using a scalar beamformer to determine the location in the brain of the maximum beta 

band change. Both a time frequency spectrum, and the Hilbert envelope of beta band 

oscillations, were extracted from this location, on a subject-by-subject basis, with 

results averaged over both trials and subjects. Importantly, baseline correction was 

performed in two ways: 1) Single baseline: the baseline was calculated in the 23 to 27 
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s window (relative to contraction offset) for the 35s ISI trials only, and all three 

conditions (ISIs) were baseline corrected to this same value. 2) Independent baselines: 

baselines were selected independently for the three trial types, using the 1 to 2 s window 

for the ISI of 5 s; the 4 to 7 s window for the ISI of 10 s and the 23 to 27 s window for 

the ISI of 30 s (all relative to contraction offset). These analyses resulted in three time-

frequency-spectra and associated beta envelopes (one for each of the three separate 

ISIs) for the single value baseline correction, and a further three for the independent 

baseline correction. 

Results and Discussion  

Figure 4.9A shows the 3 time frequency spectra for each of the three ISIs, baseline 

corrected using a single value derived from the long ISI. Figure 4.9B shows the 

corresponding beta envelopes baseline corrected in the same way. Figure 4.9C and 

Figure 4.9D show the same plot, but in this cases baseline corrected using values 

derived from each ISI independently.  

The results show that the beta band envelopes follow robust and well characterised 

profiles regardless of ISI; for the shorter ISIs, the rebound is simply curtailed by the 

onset of movement. In cases in which the baseline is measured independently for each 

ISI, it is clear that the “baseline” value is estimated during the PMBR, and this leads to 

an overestimation of the resting beta amplitude, a diminishing PMBR, and an increased 

(more negative) MRBD. It follows that short ISIs will likely lead to misrepresentation 

of the MRBD/PMBR and this could, potentially, mask subtle differences in the PMBR 

between, for example, experimental conditions or clinical populations. An example of 

this is provided by Rossiter et al. (Rossiter et al., 2014) where differences in MRBD 

were found between stroke patients and controls, but the ISI for the 3 s grip task was 

only between 3 and 7 s. Thus, it is impossible to determine, with a short ISI, what is 

driving the differences in the clinical population, especially if MRBD and PMBR do 

have different neuronal mechanisms.  
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Figure 4.9. The effect of ISI on the PMBR and MRBD characterisation: (A) Trial averaged time 

frequency spectra and (B) beta band envelopes for three separate ISIs (5 s (red); 10 s (green); 

30 s (blue)). Baselines were determined as a single value taken from the long ISI condition. 

(C&D) Equivalent to (A&B) but where baselines were determined independently from each ISI, 

i.e. 1 to 2 s for the 5 s ISI, 4 to 7 s for the 10 s ISI, 23 to 27 s for the 30 s ISI.  

Conclusion  

It is recommended that, in future experiments attempting to characterise the PMBR, 

sufficient time is left between trials to allow a true baseline measure to be derived, in 

order that robust PMBR characterisation is possible.  
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B. Visual Alpha 

Figure 4.10 shows an example of the activation observed in the visual cortex during the 

rebound period. The peak of the activity was found and virtual electrodes extracted for 

each subject, the average of which is shown in Figure 4.10C. No difference between 

the three task durations is observed during the rebound. During the movement, a 

sustained decrease in alpha was observed in the visual cortex, as seen in Figure 4.11.  

 

 

Figure 4.10 Visual alpha ERS. (A) Activation localised to the visual cortex during the rebound 

in the alpha band, shown for a single subject. (B) TFSs averaged over all subjects from 

individual locations of peak visual alpha activity. Top panel shows response to 2 s, middle 5 s, 

and the bottom panel shows 10 s task duration. (C) Time courses of visual alpha envelopes 

averaged over all subjects. Where red is 2 s task duration, green is 5 s task duration and blue 

is the 10 s task duration aligned to contraction offset. Error bars show standard error across 

subjects.  
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Figure 4.11 Visual alpha ERD. (A) Activation localised to the visual cortex during the 

movement in the alpha band, shown for a single subject. (B) TFSs averaged over all subjects 

from individual locations of peak visual alpha activity during the movement. Top panel shows 

response to 2 s, middle 5 s, and the bottom panel shows 10 s task duration. (C) Time courses 

of visual alpha envelopes averaged over all subjects. Where red is 2 s task duration, green is 5 

s task duration and blue is the 10 s task duration aligned to contraction onset. Error bars show 

standard error across subjects.  

 

  

 



97 

 

CHAPTER 5 

5 Exploring Transient Networks in Task-based 

MEG Data 

5.1 Abstract 

Whilst the PMBR is well observed in terms of a beta time course of trial averaged 

results, as characterised in the last chapter, this chapter aims to understand the formation 

and functional role of the PMBR beyond the classical picture. New analyses will be 

used to investigate what drives the rebound, using the rich temporal resolution of MEG 

to study brain networks on short time scales. Few studies have examined the temporal 

evolution of connectivity within and between brain networks throughout a task, which 

may provide important information as to the functional relevance of the PMBR. In this 

chapter, amplitude envelope correlation (AEC) was used to study network changes 

during a right-handed grip contraction task. Following this, a hidden Markov model 

(HMM) was used to identify the individual trial dynamics of a sensorimotor brain 

network. For AEC, correlations between beta band amplitude envelopes were measured 

in three time-windows: event related desynchronization (ERD), event related 

synchronization (ERS) and baseline. Significant differences between the three time-

windows were found in beta band connectivity. The ERS time-window exhibited 

greatest overall functional connectivity, with the strongest effect in contralateral 

sensorimotor region. These data show clear changes in connectivity during different 

task stages. Inter-hemispheric connectivity in primary sensory regions breaks down 

during ERD and is re-established during the ERS, before returning to resting networks. 

The results from the HMM identified a bilateral sensorimotor network which was 

visited most frequently during the ERS. The rapidly evolving dynamics of this network 

demonstrated similar variation with task parameters to the ‘classical’ rebound, and 

show that the modulation of the PMBR can be well-described in terms of increased 

frequency of beta events on a millisecond timescale rather than modulation of beta 

amplitude during this time period, providing new information with regards to the 

formation of ‘classical’ responses. Together, these findings suggest the PMBR fulfils a 

role in re-establishing resting-state networks after disparate activity during a task. 
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During a Grip-force Task’; and some of the work formed part of paper in NeuroImage, 

‘Post-stimulus beta response are modulated by task duration’ Vol 206, 2020.   
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5.2 Introduction  

The post movement beta rebound (PMBR), is robustly observed on stimulus offset. 

Whilst the aim of the last chapter was to characterise how the beta rebound varies with 

systematic modulation of task parameters, how the PMBR is formed and its functional 

role remains poorly understood, hindering its use as a metric of brain health. This 

chapter aims to understand what the drives the beta rebound, using novel analysis 

methods applied to the motor task data collected in the previous chapter.  

In the previous chapter it was hypothesised that the PMBR represents the integration of 

brain networks over a long range after a task. Recent advances in MEG allow the 

investigation of the temporal evolution of connectivity within and between brain 

networks (de Pasquale et al., 2010). Therefore, this hypothesis can be tested by 

measuring functional connectivity during the different stages of a task. 

In 1995, Biswal (Biswal et al., 1995) showed with fMRI that so-called resting state 

activity – brain responses in the absence of a task – contained meaningful spatio-

temporal structure. In other words, brain activity measured in spatially separated 

regions was found to be temporally correlated even in the absence of a task. This 

revealed spatial patterns of connected regions, termed resting state networks. These 

networks have since been thought to underlie core brain function and can be perturbed 

by disease (Stam et al., 2008). Functional connectivity is defined as statistical 

interdependencies between time courses of functional signals from two regions in the 

brain. Until around 2010, most studies investigated functional connectivity over long 

periods of time. Dynamic connectivity, on the other hand, is the study of functional 

connectivity in the brain which is non-stationary in time. 

fMRI has been used to study functional connectivity for many years, with the last 10 

years seeing a shift in neuroimaging towards investigation of dynamic connectivity 

(Chang & Glover, 2010). However, for fMRI, the minimum time window usable in 

dynamic connectivity is about 30 s due to haemodynamic lag, with most studies using 

a window of 30 – 60 s (Preti et al., 2017), which is not a short enough time scale to 

elucidate fast changes in the brain as there is not enough data to reliably estimate 

connectivity. MEG, on the other hand, is an excellent technique for investigating fast 

changes in brain activity as it has millisecond temporal resolution. However, it is only 

recently that the temporal dynamics of functional connectivity have been studied in 
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MEG (Baker et al., 2014; de Pasquale et al., 2010; Liu et al., 2010) due to a number of 

technical challenges which are explored in Section 5.3 below. Temporal connectivity 

dynamics will be extremely useful to understand the role of the PMBR and how it is 

formed. However, there is a relatively small body of literature that is concerned with 

functional connectivity during a task.  

An example of a motor task studied with connectivity is Brovelli et al. (Brovelli et al., 

2017). This research involved a visuomotor task, where finger movements were 

performed based on an associated number shown on screen. 500 ms sliding windows 

were used to investigate the high gamma band (60 – 150 Hz). A visuomotor network 

was found in the high gamma band associated with the movement. Connectivity of this 

network increased on stimulus presentation (movement planning) and peaked a second 

time after the movement which was said to represent dissolution of the network after 

the movement. They hypothesised that brain function is due to the interplay of many 

overlapping subnetworks rather than single brain regions. Nevertheless, this study did 

not explore the beta band or what happens in the post-movement period.  

Another example investigating connectivity during a task is O’Neill et al. (O’Neill et 

al., 2017). In this paper, a self-paced button press task was used and connectivity was 

measured in the 13 – 30 Hz frequency band in 6 s sliding windows. A network centred 

on the right primary somatosensory cortex with strong connections between sensory 

and motor areas was found to modulate during the task. An increase in connectivity was 

observed, centred on the button press. The increase in connectivity began 3 s before the 

movement, and was sustained for about 6 s, which could be due to the windows used. 

However, there was no explicit exploration of the post-stimulus window. More 

recently, these data (O’Neill et al., 2017) were analysed further by Tewarie et al. using 

phase difference derivative (PDD) (Tewarie et al., 2018) which is a method to quantify 

the phase synchronous dynamics in time series data (Breakspear et al., 2004), and 

further explored using instantaneous amplitude correlation, wavelet coherence and 

PDD (Tewarie et al., 2019). A sensorimotor network was found to modulate during the 

task, showing an increase in connectivity during the PMBR. The authors suggest that 

this represents the PMBR acting as a mechanism to reintegrate isolated regions back 

into the sensorimotor network. Yet, a large proportion of functional connectivity studies 

have focused on resting state networks, with few studies investigating dynamic 

connectivity during a task. This indicates a need to study the connectivity and evolution 
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of networks during the PMBR. Functional connectivity during the PMBR will be 

explored further in this chapter using amplitude envelope correlation (AEC). A detailed 

explanation of amplitude envelope correlation is given in Section 5.3. 

The PMBR is usually considered in the form of a beta envelope averaged over many 

trials (see Chapter 4), yet a recent body of work describes beta oscillations in terms of 

a “bursting” hypothesis (Little et al., 2018; Sherman et al., 2016). The premise is that, 

distinct from the view of an ongoing oscillation whose amplitude changes over time, 

beta oscillations are generated by short punctate events, or bursts, that are not 

necessarily time-locked over trials. The MRBD can be thought of as an absence of 

bursts, whilst the PMBR reflects an increased burst likelihood which, when averaged 

over trials, looks like a smooth increase in oscillatory amplitude (Little et al., 2018). 

The idea that electrophysiological data can be broken down into transient events is not 

new; it has been supported by a vast body of evidence that decomposes whole brain 

electrophysiological data, measured using EEG, into “microstates” (Koenig et al., 2005; 

Lehmann et al., 1998) that represent short (~100 ms) windows, in which the distribution 

of EEG power over the scalp remains stable. However, this field is still unfolding (van 

Ede et al., 2018), and to date the relationships between connectivity and classical 

metrics like the PMBR remain unclear.  

To better understand the PMBR, it is imperative to understand what underlies these 

trial-averaged results and the brain regions recruited during this period compared with 

other task and rest periods. To fully understand the nature of transient brain networks, 

and their role in the PMBR, high temporal (millisecond) analysis methods are needed. 

One method that has recently been applied to MEG data are hidden Markov models 

(HMM) (Baker et al., 2014), which fully takes advantage of the excellent temporal 

resolution of MEG. The HMM is able to identify brain states which vary on 100 ms 

time scales. The benefits of using the HMM on task data are that the HMM is given no 

knowledge of the task timings and is a data driven approach, unlike other connectivity 

metrics where timings and time windows need to be specified. Novel methods, like the 

HMM, potentially offer a new means to understand the nature of the MRBD and the 

PMBR, and their perturbation in disease in the context of beta bursts and network 

dynamics. 
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Studies have identified states related to the PMBR during a task, for example Vidaurre 

et al. (Vidaurre et al., 2016) investigated a self-paced button press task and found an 

ERD and an ERS state associated with the button press using a 3-state HMM. Quinn et 

al. 2018 (Quinn et al., 2018) applied an HMM to a face perception task and revealed 

task-dependent HMM states which varied on millisecond time scales. These approaches 

show that HMMs have the power to reveal transient networks in brain activity which 

vary on very short time scales.  

5.2.1 Aims and Objectives  

In this chapter, to explore the relationship between the PMBR, connectivity and brain 

networks, two analysis methods (AEC and HMM) will be used to investigate the motor 

task data from the previous chapter. The aim of this work is to investigate the evolution 

of connectivity through the entire time series of the task to gain further insight into the 

functional role of the PMBR. This motor task is ideal for studying dynamic 

connectivity, as the long rest periods between stimuli provides sufficient data to act as 

‘resting state’ to compare with different task periods.  

The hypothesis is that during the motor task, connectivity will be localised to the 

contralateral motor cortex during the movement, with an increase in connectivity during 

the post-stimulus response between the motor region and all other brain areas as the 

brain integrates itself with resting state networks, as previously proposed in an EEG-

fMRI study (Mullinger et al., 2013b). Further, it is hypothesised that the networks of 

functional connectivity are transient events but the sensorimotor network, which is re-

established in the PMBR period, is visited more often during this period than any other 

period of time. These networks form and dissolve through “bursts” of concordant brain 

activity. These hypotheses will be tested by exploring the networks present during the 

PMBR compared with stimulation and baseline periods throughout the task, using AEC 

to investigate whether the connectivity between the contralateral motor cortex and the 

rest of the brain is modulated across three different time windows: a window during 

ERD, ERS and baseline. The second objective was to investigate whether a HMM could 

provide further information on how network connectivity evolves and ultimately 

understand the evolution of the PMBR in the context of brain network architecture. 
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5.3 Background Theory  

5.3.1 Functional Connectivity  

In MEG, when measuring neural oscillations, there are typically two ways of relating 

signals: measuring correlation between the amplitude envelope of band-limited 

oscillations, or the relationship between the phase of oscillations. See (O'Neill et al., 

2015; O'Neill et al., 2018), and (Bastos & Schoffelen, 2016) for a review of connectivity 

analyses. Amplitude envelope connectivity tends to better match fMRI connectivity 

than phase-based connectivity (Brookes et al., 2011a; Tewarie et al., 2016a) and is one 

of the most reliable methods (Colclough et al., 2016). For example, de Pasquale (de 

Pasquale et al., 2010) uses MEG to study resting state networks. The authors show two 

well-characterised resting state networks: the dorsal attention network and the default 

mode network. After creating the MEG power time series, correlation was measured 

between a seed voxel and the rest of the brain voxel over the entire 5-min MEG time 

series. Many other studies have since confirmed that power envelope correlation in 

MEG agrees with resting state networks found in fMRI (Brookes et al., 2011a; Brookes 

et al., 2011b; Hipp et al., 2012; Hipp & Siegel, 2015; Liu et al., 2010).  

Unlike the sluggish haemodynamic metric of brain activity in fMRI, MEG provides a 

direct measure of neuronal activity with excellent time resolution (see Chapter 2) 

allowing instantaneous connectivity metrics to be derived such as various phase metrics 

(coherence (Nunez et al., 1997), imaginary coherence (Nolte et al., 2004), phase locking 

value (Lachaux et al., 1999), phase lag index (Stam et al., 2007), phase difference 

derivative (Breakspear et al., 2004)) as well as cross-frequency correlations (Florin & 

Baillet, 2015). This allows the interrogation of dynamic connectivity. That is, 

connectivity representing functional networks that form and dissolve on sub-second 

time frames.  

5.3.2 Dynamic Functional Connectivity  

Following in the footsteps of fMRI (Sakoğlu et al., 2010), one simple way to measure 

dynamic functional connectivity in MEG is with a sliding window approach. This 

involves selection of a time window of fixed length in which the functional connectivity 

is assessed (in the same way as a stationary approach), then the window is shifted along 

(by a set number of points) and the connectivity is reassessed. The benefits of the sliding 

window are that most conventional static methods of measuring functional connectivity 
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still apply and do not need to be changed. However, the choice of window length is 

non-trivial. The window needs to be large enough to robustly measure connectivity, yet 

short enough to explore transient network features. Shorter windows mean there are 

less time points to measure and therefore less signal to noise ratio (SNR) and the 

measurements can become dominated by noise. If the window is too long, any effects 

from fast changes will be diluted.  

Windows of varying length have been used through many different studies. In one of 

the first studies of dynamic connectivity in MEG, de Pasquale used a 10 s sliding 

window (de Pasquale et al., 2010). They showed fluctuations in the dorsal attention 

network on the order of minutes, and also found evidence for correlations existing on 

10 – 20 s time scales, providing evidence for non-stationary MEG networks. The same 

group added to this work in 2016 (de Pasquale et al., 2016), by showing that multiple 

dynamic networks exist which interact with each other. They used the same 10 s sliding 

window and found three distinct networks: default mode (DMN), dorsal attention 

(DAN) and motor network. The DMN, DAN and motor network were shown to have 

strong cross-network interactions. They hypothesised that these dynamic networks are 

a property of the brain to increase the efficiency of communication.  

Since the inception of sliding window analysis, the issue of window length choice has 

remained. The effect of window length on correlations was investigated by Brookes et 

al. (Brookes et al., 2011a) using varying time segment lengths of 0.5, 1, 4, 6 and 10 s 

to measure AEC between left and right motor cortex. For AEC, no significant 

correlations were measured using the 0.5 s window, with correlation values and 

significant correlations increasing with increasing time window length. This suggests 

longer time windows (10 s) are more reliable, however the results for 4, 6 and 10 s 

window were found to be similar.  

5.3.3 Amplitude Envelope Correlation  

Perhaps the simplest way to assess the relationship between two time courses is to 

measure the correlation of their amplitudes. This first requires the amplitude envelope 

of the oscillation, which is commonly calculated using a Hilbert transform (Chapter 2). 

Once the Hilbert envelope has been created, the correlation between two given 

envelopes can be calculated. This is done by simply taking the linear correlation 

coefficient between two time courses, usually the Pearson correlation coefficient. This 



105 

 

can take a value between +1 and -1, where 1 is positive correlation, 0 is no correlation 

and -1 is negative correlation. The Pearson correlation coefficient is the covariance of 

two variables divided by the product of their standard deviations. These correlations 

can be assessed across the brain and at a range of different frequencies to reveal regions 

of the brain connected with each other.  

5.3.4 Leakage  

Probably the most significant challenge when using MEG for connectivity analyses is 

signal leakage. Due to the ill-posed inverse problem, signals at spatially separate 

locations may not be independent, which can lead to wrongly inflated measures of 

connectivity between these regions, especially if these regions are spatially 

neighbouring. Therefore, this issue of signal leakage must be addressed before 

connectivity metrics of any type can be taken. 

When two separate sources are beamformed, signals originating from one brain location 

can leak into the estimated signals from a separate brain region. The reason for this is 

explained mathematically here, also refer to Chapter 2 for further information on 

beamforming. Assuming two separate sources in the brain, 𝐪1and 𝐪2, the measured 

MEG data will be  

 𝐦 = 𝐥1𝐪1 + 𝐥2𝐪2 +  𝛜 (1) 

where 𝐥𝟏 and 𝐥𝟐 represent the forward vectors for the sources and ϵ is measurement 

noise. To reconstruct source 𝐪1 with a beamformer, 𝐪1can be reconstructed as the 

beamformer weights multiplied by the MEG data: 

 �̂�1 = 𝐰1
T𝐦. (2) 

Substituting in the MEG data from equation 1,  

 �̂�1 = 𝐰1
T𝐥𝟏𝐪1 + 𝐰1

T𝐥2𝐪2. (3) 

Since the beamformer is subject to the linear constraint 𝐰1
T𝐥1 = 1,  

 �̂�1 = 𝐪1 + 𝐰1
T𝐥2𝐪2. (4) 

Therefore 𝐪1 will be reconstructed with an additional term dependent on 𝐪2, which will 

only be independent of 𝐪2 if 𝐰1
T𝐥2 = 0, i.e. if the weights of 𝐪1 are orthogonal to the 

forward vector for 𝐪2. This is a simplistic example with only two sources in the brain 

and assuming no noise. In reality, this needs to be simulated for varying number of 

dipoles and locations and sensor noise. O’Neill et al. (O’Neill et al., 2015) simulated 
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this and showed that leakage is greatest in sources close to each other, and still has large 

effects in sources 5 cm apart from each other. Sources need to be at least 6 cm apart for 

leakage to be less of a concern. They also showed that leakage is increased for regions 

with lower SNR, for example for sources deep in the brain. Therefore, to produce 

accurate connectivity results, leakage needs to be controlled.  

Leakage results in overestimated connectivity between sources, where this correlation 

will have zero-phase-lag. Source leakage is linear, therefore leakage can be corrected 

by removing zero-lag correlations. In reality, there is expected to be a time lag in true 

connectivity, as signals take time to travel along nerve fibres in the brain. As a result, a 

way to reduce leakage is to remove all zero-phase-lag connectivity. In envelope 

connectivity, this can be done via linear regression. The linear projection of a voxel is 

removed using a general linear model. This has been done by pairwise comparison 

between voxels (Brookes et al., 2012; Hipp et al., 2012), where time courses are 

orthogonalised with respect to a seed voxel. This can be used when investigating a seed 

compared to the rest of the brain. In whole brain analysis, symmetric multivariate 

leakage correction can be used (Colclough et al., 2015), where all time courses from 

each region are made orthogonal to each other.  

5.3.5 HMM Theory  

Sliding window approaches are limited as the window length needs to be defined a 

priori, and perhaps varies over the length of an experiment. Higher temporal resolution 

connectivity metrics and shorter sliding windows are available, however this often 

means less data are being used, resulting in lower SNR. Recently, several studies (Baker 

et al., 2014; Vidaurre et al., 2018a; Vidaurre et al., 2018b) have used a HMM to identify 

points in time at which distinct spatial patterns of oscillatory power occur. Results show 

that brain activity can be parcellated into ‘states’, each of which has a spatial signature 

that relates to canonical resting state networks. These networks, including the 

sensorimotor network, modulate on a very short (100 ms) time scale, much faster than 

AEC can reveal. Another benefit of HMMs is that they are data-driven but with an 

assumption – the only parameter that needs to be specified is the number of states. 

Instead of estimating connectivity for a limited window length as in AEC, the 

estimation is performed at state level – all the data corresponding to that state is pooled 

together to characterise the network (see Figure 5.1) and therefore much more robust. 
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Therefore there is no need to pre-specify the window width which is hugely 

advantageous.  

 

 

Figure 5.1. From (O'Neill et al., 2018). The top panel shows sliding window connectivity 

analysis: a window of fixed length t is taken, and connectivity measured in this window. In 

HMM analysis (bottom), networks are described by state occurrences across the entire data 

set. The states are inferred from the data itself, and are more robust than a sliding window as 

data is taken from the entire dataset rather than a window of limited length. 

One of the first studies to apply an HMM to MEG data was Baker et al. (Baker et al., 

2014). The authors used an HMM to investigate resting state MEG data and found the 

classical resting state networks, which have previously been seen with lower temporal 

resolution fMRI and MEG, but showed that the networks form and dissolve on rapid 

timescales, lasting only 100 to 200 ms in each instance, much more rapidly than had 

previously been shown. Vidaurre et al. (Vidaurre et al., 2016) presented an update to 

this HMM, which uses the phase information of the raw data. In this case the states are 

represented by multivariate autoregressive models (HMM-MAR) of the raw time series 

rather than power envelopes and can therefore use phase information. Vidaurre et al. 

(Vidaurre et al., 2018b) uses an HMM to identify brain networks described by power 

and phase connectivity that are spectrally resolved (as a function of frequency) in 
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resting state. By showing that these short-lived transient brain states have very specific 

frequency bands, they propose that this represents functional specialisation. Phase-

locking at distinct frequencies across the cortex has been proposed as a means of 

transmitting information across the brain in an efficient way (Fries, 2005; Palva et al., 

2005). HMMs have also been shown to be clinically useful in a study characterising the 

effects of benzodiazepines on multiple sclerosis (Van Schependom et al., 2019). 

A hidden Markov model (HMM) is a statistical model which assumes a system can be 

described by a set of distinct states. In the HMM, the states are ‘hidden’ – they cannot 

be directly observed. Instead, they are inferred based on observations (the data). The 

transition from one state to the next depends only on the current state – this is a 

Markovian process (a memoryless random process, with Markov chain of order 1). The 

Markovian process is determined by the current state and the state transitions 

probabilities (Rabiner, 1989; Stamp, 2015).  

To model a given observation sequence with a hidden Markov process, the only 

parameter to be specified is the number of states in the model. The model is then trained 

on the data to find the best model that fits the observations. Given the model and 

observations, the optimal state sequence can then be found.  

The model (λ) is described by the parameters A, B, and π,  

 𝜆 = (𝐴, 𝐵, 𝜋). (5) 

A is the matrix of state transitions – the probabilities of transitioning from one state to 

the next. A is a square matrix N x N, where N is the number of states in the model. The 

A matrix is row stochastic, which means that each row must sum to one. The system 

has to be in one of the states at any given time point, and the states are mutually 

exclusive. The B matrix is based on real data and relates the hidden states to the 

observations. B is N x M where M is the number of different observations, which comes 

from the data. π is the initial state distribution.  

Once the model has been determined, the most likely state sequence needs to be 

determined. For an HMM, the “best” sequence of states is not necessarily the most 

probable one, i.e. the one that maximises probability of the entire state path. Rather, the 

sequence of states is the one that maximises the expected number of correct states; an 

expectation maximisation algorithm.  
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A diagram of a HMM is shown in Figure 5.2. O represents the observation sequence 

and X represents the hidden state sequence. The goal of the HMM is to learn about the 

states X from the observables. The HMM results in a hidden state sequence X0, X1, X2, 

XT-1., where T is the length of the observation sequence. Note that each state in the 

sequence doesn’t have to be different from the previous state. The dashed red line 

demonstrates what can be observed: above the red line is the Markov process which is 

hidden, below are the observables. Only the observation sequence, O, is able to be 

observed, which is related to the hidden states by the observation probability matrix, B. 

In the simplest case B is a Gaussian. The transitions between hidden states are described 

by probabilities in the matrix A.  

 

Figure 5.2. Diagram of a simple HMM. The observations, O (MEG data), can be described by 

a time series of hidden states, X. The hidden states are related to the observations by the 

observation probability matrix B. The transitions form state to state are governed by the matrix 

of state transitions, A. 

In MEG data, it can be assumed that the MEG signals can be described by a set of 

networks that change over time, which are related to the observations of MEG data. 

These brain networks cannot be directly measured, but can be inferred from the 

measured MEG data. The HMM segments the MEG time series into a sequence of 

states, indicating at each time point which state is the most likely. Each state is 

characterised by a unique pattern of whole-brain spontaneous activity, which is 

modelled by a multivariate normal distribution (Baker et al., 2014). The HMM used in 

this thesis is similar to that used in Baker et al. (Baker et al., 2014).  
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5.4 Methods  

5.4.1 Data Acquisition 

The data used here are the data that were acquired and used in Chapter 4, see Chapter 

4 for a full description of the paradigm. Briefly, fifteen subjects performed a right-

handed grip contraction task. Firstly, individual maximum voluntary force (MVF) was 

determined. Then, in two separate runs, subjects were visually cued to exert 30%MVF 

for 2, 5 or 10 s (15 trials/condition, pseudo-random order), followed by 30 s rest. Data 

were acquired using a 275-channel CTF MEG system. Surface electromyography 

(EMG) was used to monitor forearm muscle activity. 

5.4.2 Analysis 

5.4.2.1 Amplitude Envelope Correlation 

Following pre-processing (see Section 4.3.4 of previous chapter), each subject’s brain 

anatomy was parcellated into 78 cortical regions using the AAL atlas (Tzourio-Mazoyer 

et al., 2002). The atlas was transformed to each subject’s anatomical brain geometry 

using FLIRT (Jenkinson et al., 2012). The centre of mass of the region was found to 

provide a single representative location for each region. MEG data were source 

localised to this location using a linearly constrained minimum variance beamformer 

(Robinson & Vrba, 1998; Van Veen et al., 1997) with covariance measured over the 

whole experiment to derive virtual electrodes for the 78 cortical regions. The forward 

model used a dipole approximation (Sarvas, 1987) and a multiple spheres head model 

(Huang et al., 1999). Dipole orientation was determined by searching over 180° and 

finding the orientation with the greatest signal to noise ratio as described in Chapter 2.  

For the functional connectivity analysis, data were filtered into the alpha (8 – 13 Hz) 

and beta (13 – 30 Hz) bands, where largest induced effects were seen in the average 

time courses in Chapter 4. To maximise the data from which to calculate the 

connectivity, data from the three stimulus durations were combined and effects during 

specific time periods of the task were explored. A four-second time window was chosen 

as this would be long enough for good signal to noise ratio, but short enough to capture 

the effects of the periods of interest irrespective of the contraction duration, as four 

seconds was the largest time window which could capture the ERD for the 2 s stimulus 

response. Three time windows were chosen to investigate the event-related 
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desynchronization (ERD), event-related synchronization, and baseline. For all stimulus 

durations, data were segmented into the three windows: ERD (defined -4 to 0 s relative 

to movement offset, i.e. during the task); ERS (1 to 5 s after movement offset, i.e. during 

the rebound); and baseline (20 to 24 s after movement offset) (see Figure 5.3). For each 

region, pairwise leakage correction was performed (Brookes et al., 2012; Hipp et al., 

2012) and the amplitude envelope derived using a Hilbert transform. Connectivity was 

determined by measuring the Pearson correlation between amplitude envelopes of all 

78 regions, to all regions. This was done on a trial by trial basis and the resulting 78 x 

78 connectivity matrix was then averaged over all trials for each of the three time 

windows, for each subject. Connectivity matrices were averaged over regions to give a 

78 x 1 matrix indicating the average connectivity strength from one region to all other 

regions, and averaged over subjects, which could be plotted to visualise the connections 

of each region to all other brain regions (see Figure 5.4 to Figure 5.7 in Results). To 

assess statistical differences in connectivity between time windows, connectivity across 

all regions was averaged to give one value of connectivity per subject and time window. 

A repeated measures ANOVA was used to assess statistical differences between 

connectivity in the different time windows. To investigate interhemispheric 

connectivity, the quarter-diagonal of the 78 x 78 connectivity matrix was plotted as this 

gives the connectivity between the same brain regions in the right and left hemispheres.  

 

Figure 5.3. For AEC, data were segmented into 3 windows: ERD (-4 to 0 s relative to movement 

offset, blue block), ERS (1 to 5 s after movement offset, red block) and baseline (20 to 24 s after 

movement offset, green block). Displayed here overlaid on the beta envelope from Chapter 4 

(Figure 4.3) to show the effects in each window for all contraction durations.  
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5.4.2.2 Hidden Markov Model  

To gain insight into what is happening to the dynamics of the beta band amplitude 

envelope at the individual trial level, a hidden Markov model (HMM) (Baker et al., 

2014; Rezek & Roberts, 2005; Woolrich et al., 2013) was used. Again, the brain was 

parcellated into 78 regions according to the AAL atlas (Tzourio-Mazoyer et al., 2002). 

Following this, an LCMV beamformer was used to derive a time course of estimated 

electrophysiological activity for each region (Brookes et al., 2016; Hillebrand et al., 

2012). The beamformer was applied with a covariance window encompassing the 1-

150 Hz frequency range and a time window capturing the entire experiment. 

Regularisation was applied to the covariance matrix using the Tikhonov method with a 

regularisation parameter equal to 5% of the maximum eigenvalue of the unregularised 

covariance matrix. Time courses were derived from a single virtual electrode at the 

centre of mass of each region and symmetrically orthogonalised (Colclough et al., 2015; 

Colclough et al., 2016) for leakage reduction. Prior to application of the HMM the 

source localised data were downsampled to 100 Hz and frequency filtered to 1 – 40 Hz 

(Baker et al., 2014). The data were limited to this frequency range as results from 

Chapter 4 showed effects in the alpha band as well as the beta band, and higher 

frequencies in the gamma band are difficult to detect with this approach (Quinn et al., 

2019; Vidaurre et al., 2018b). The Hilbert transform was applied to generate the 

amplitude envelopes and data were concatenated across subjects and runs. 

For the HMM itself, analysis is performed on the amplitude envelopes similar to that 

used in previous work (Baker et al., 2014; Quinn et al., 2018; Woolrich et al., 2013). 

This assumes that brain activity is well-described by a relatively small number of 

“states” and that, at any single point in time, only one of these states is active. Note that 

states are mutually exclusive. In addition, this also assumes that the underlying 

sequence of states is Markovian; i.e. the brain’s current state depends only on its 

previous state, rather than a complete history of past states. Each state was described 

by a multivariate normal distribution with a (78 x 1) mean vector and a (78 x 78) 

covariance matrix. Inference on the HMM is carried out using variational Bayes (VB) 

(Rezek & Roberts, 2005), to estimate the full posterior distribution on the model 

parameters (i.e. a probabilistic description of the likelihood of the unobserved state 

parameters, and state transition probabilities, conditional on the measured data was 

obtained). In addition, for every time-point, the state which the brain was most likely 
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to be in was determined. This was done using Viterbi decoding (Baker et al., 2014; 

Woolrich et al., 2013). The result is a binary time course for each state, showing 

whether, for any one point in time, that state was the most likely. A HMM with 4, 6, 8 

and 10 states was run to identify the number of HMM states required to identify a 

bilateral motor state expected to be modulated by the post-stimulus response as 

identified in the results presented in Chapter 4. Each HMM was ran 10 times to test the 

variability of the states, and the inference with the lowest free energy was chosen 

(Quinn et al., 2018). Crucially, the HMM inference was carried out without knowledge 

of the task timings or structure. Based on this analysis, an 8-state HMM was chosen 

(see results), in agreement with that used previously (Baker et al., 2014) .  

The resulting 8 binary state time courses were decomposed to obtain summary statistics. 

Specifically, for each state and subject: 1) Fractional occupancy: the fraction of the trial 

that the brain was in each state. 2) Number of occurrences: number of times a state is 

visited. 3) State lifetime: the mean time spent in each state on a single visit. 4) State 

interval: the mean time between state visits 5) State mean beta amplitude: the mean 

amplitude of the beta power in the left sensorimotor cortex during state visits (i.e. the 

time course derived from “conventional” analysis above multiplied with the binary state 

time course derived from the HMM to give beta power during state visits) were 

estimated. The mean values of these parameters were calculated by averaging over trials 

and then subjects. Each of these metrics was calculated individually for the three 

epochs, based on the results from the time-frequency analysis and the same periods 

used above in the AEC analysis: ERD (defined as a 4 s window -4 to 0 s relative to 

movement offset), ERS (defined as a 4 s window 1 to 5 s after movement offset), and 

baseline (20 – 24 s after movement offset) and averaged over all contraction durations. 

To test for significant differences in each of the metrics between the three time 

windows, a RM ANOVA was performed across the subjects and time windows. To 

interrogate the ERS period further, the same five metrics were calculated for the three 

separate contraction durations in the 4 s window after movement offset. RM ANOVA 

was then used to test for significant differences of the metrics between contraction 

durations during the ERS period. 
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5.5 Results  

5.5.1 Amplitude Envelope Correlation  

Figure 5.4 shows the networks present during each time window in the beta band. The 

panels show the correlation between each region and every other region over the whole 

brain. Significant differences between the three time windows (p<0.05, RM ANOVA) 

were found in the mean beta band connectivity over the whole head, with the ERS 

period exhibiting the greatest connectivity. Mean connectivity (±SE) across subjects 

for beta band responses was 0.040 ± 0.005, 0.054 ± 0.005 and 0.051 ± 0.005 during the 

ERD, ERS and baseline, respectively. During the ERS, connectivity to all other brain 

regions was greatest in the contralateral sensorimotor region for beta responses. The 

mean value (±SE) in the left (contralateral) precentral gyrus was 0.040 ± 0.005, 0.063 

± 0.007 and 0.052 ± 0.007 during the ERD, ERS and baseline, respectively, a significant 

difference (p<0.05, repeated measures ANOVA) in connectivity between time 

windows for this region. During baseline, bilateral connectivity patterns were observed 

with the strongest in motor-parietal areas.  

Considering only regional inter-hemispheric connectivity (Figure 5.5) (the correlation 

between one region and the corresponding region in the other hemisphere), there was a 

significant difference in interhemispheric connectivity between the three time windows 

(p<0.05, RM ANOVA) over the whole brain. The strongest connectivity during the 

ERS was observed in the sensorimotor strip for beta responses. Whilst during the ERD, 

higher order parietal areas exhibited the highest connectivity and during baseline, 

connectivity was strongest over the occipital and sensorimotor cortex. Mean 

interhemispheric connectivity was 0.043 ± 0.005, 0.065 ± 0.005 and 0.059 ± 0.006 for 

the ERD, ERS and baseline, respectively. In particular, for the precentral gyrus, 

connectivity from the left precentral gyrus to the right precentral gyrus was 0.038 ± 

0.007, 0.09 ± 0.01, 0.072 ± 0.009 for the ERD, ERS and baseline, respectively, again a 

significant difference between the three time windows (p<0.05, RM ANOVA) in 

interhemispheric connectivity between time windows for this region. This shows that 

during the ERS window, homologous regions across the two hemispheres are more 

connected through beta band activity than during the other two time windows.  
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Figure 5.4. Beta connectivity: average correlation in the beta band between each node and 

every other node across all brain regions averaged across all subjects. Correlation values 

calculated for all stimulus durations combined in three separate time windows relative to 

movement offset: (A) ERD (-4 to 0 s), (B) ERS (1 to 5 s) and (C) baseline (20 to 24 s). 

 

Figure 5.5. Beta inter-hemispheric connectivity: correlation in the beta band between node and 

corresponding node in other hemisphere averaged across all subjects. Correlations were 

calculated during three time windows relative to movement offset: (A) ERD (-4 to 0 s), (B) ERS 

(1 to 5 s) and (C) baseline (20 to 24 s), for all stimulus durations combined. 
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Similarly, Figure 5.6 and Figure 5.7 shows the alpha band results. Significant 

differences between the three time windows (p<0.05, repeated measures ANOVA) 

were found in alpha band connectivity over all regions (Figure 5.6), with the greatest 

connectivity again seen during the ERS period. Mean connectivity (±SE) across 

subjects for alpha band responses was 0.04 ± 0.01, 0.07 ± 0.01, and 0.06 ± 0.01 during 

the ERD, ERS and baseline, respectively. During the ERS, connectivity to all other 

brain regions was greatest in the left parietal region, with strong correlations also in 

occipital regions. During baseline, bilateral connectivity patterns were observed with 

the strongest in the occipital-parietal area. In the occipital lobe (averaged over both 

hemispheres), connectivity in the three windows was 0.04 ± 0.01, 0.07 ± 0.01 and 0.06 

± 0.01 for the ERD, ERS and baseline, respectively, a significant difference between 

the three time windows (p<0.05, repeated measures ANOVA). 

Considering only regional inter-hemispheric connectivity (Figure 5.7), the strongest 

connectivity during the ERS was observed in the occipital lobe for alpha responses 

(Figure 5.7B). Whilst during the ERD, higher order visual and parietal areas exhibited 

the highest connectivity (Figure 5.7A) and during baseline, connectivity was strongest 

over the occipital and parietal cortex (Figure 5.7C). Mean interhemispheric 

connectivity over all regions was 0.04 ± 0.01, 0.08 ± 0.01 and 0.06 ± 0.01 for the ERD, 

ERS and baseline, respectively, a significant difference between the three time windows 

(p<0.05, repeated measures ANOVA). The interhemispheric connectivity between left 

and right occipital lobe was 0.06 ± 0.01, 0.11 ± 0.02 and 0.09 ± 0.02 for the ERD, ERS 

and baseline, respectively, again showing a significant difference (p<0.05, repeated 

measures ANOVA) between the three time windows. 
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Figure 5.6. Alpha connectivity: correlation in the alpha band between each node and every 

other node averaged across all brain regions and all subjects. Correlations assessed in three 

time windows: (A) ERD (-4 to 0 s), (B) ERS (1 to 5 s) and (C) baseline (20 to 24 s) relative to 

movement offset.  

 

Figure 5.7. Alpha inter-hemispheric connectivity: correlation in the alpha band between node 

in one hemisphere and the corresponding node in the other hemisphere, averaged across 

subjects. Correlations measured in three time windows: (A) ERD (-4 to 0 s), (B) ERS (1 to 5 s) 

and (C) baseline (20 to 24 s) relative to movement offset.  
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5.5.2 Hidden Markov Model  

The state maps for the HMM run with 4, 6, 8 and 10 states are shown in Figure 5.8. 

When fewer than 8 inferred states for the HMM are used, it was clear that multiple 

networks are grouped together due to insufficient states. When 10 states are inferred, 

the motor network of interest (state 7, K = 8, 3rd column) is split across three states 

(states 7, 8 and 9, K = 10, right column) which suggests that too many states have been 

assigned. Therefore 8 inferred states for the HMM were used for further analysis in 

agreement with previous work (Baker et al., 2014). Of these 8 inferred states, a single 

state (state 7) was selected for further analysis due to its spatial topography which 

covered bilateral sensorimotor cortices.  

Detailed results are shown in Figure 5.9 for this chosen state, whilst the summary results 

of all eight states are shown in Figure 5.10. Figure 5.9A shows the state map where red 

shows brain areas with an increase in power and blue shows brain areas with a decrease 

in power when the brain entered brain that state, compared to overall average power. 

The spatial topography shows increased power in the sensorimotor network (extending 

to posterior parietal regions). Figure 5.9B shows the binary time courses of state 

occurrences shown for a subset of trials and subjects, with trials on the y-axis and time 

on the x-axis. Figure 5.9C shows a probabilistic interpretation of these data. Note that 

the sensorimotor state is most likely to be visited immediately after movement offset 

and least likely to be visited during movement. This means that the probabilistic time 

courses mirror the classical MRBD and PMBR (Figures 4.3 and 4.4). Variation with 

movement duration also mirrors the PMBR results, with a higher probability of the state 

occurrence for short duration contractions (2 s) compared to longer contraction (10 s). 

Given that the HMM was applied (in accordance with (Baker et al., 2014)) in the 1 to 

40 Hz frequency window, the fact that a single state has been derived whose 

probabilistic dynamics mirrors those of the PMBR, even accounting for parametric 

variation with contraction duration, is compelling.  
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Figure 5.8. State maps for HMMs inferred with 4, 6, 8 and 10 states where red shows brain 

regions with increased power relative to average and blue decreased power. 
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Figure 5.9D summarises the state statistics for the sensorimotor network; findings are 

averaged over conditions and subjects, but calculated separately for three time-

windows: ERD, ERS and baseline, akin to AEC analyses time windows above. A 

significant (p<0.05, RM ANOVA) difference in number of occurrences of state visits 

(Figure 5.9Di), state lifetime (Figure 5.9Dii) and fractional occupancy (Figure 5.9Div) 

between all three time-windows was found. This change in fractional occupancy was 

driven by both a drop in the number of occurrences during the movement period and a 

change in the length of the state visit. Significant differences between all three time 

windows were found for the state lifetime, meaning that during the beta rebound, the 

sensorimotor state was not only more likely to be found, but also its temporal stability 

was greater (i.e. state visits were longer). No significant differences across the three 

time windows were found for the mean interval length, i.e. the amount of time between 

visits to this state (Figure 5.9Diii). Interestingly, a significant difference in the beta 

amplitude in the left sensorimotor cortex when this state was visited was observed 

between the time windows (Figure 5.9Dv), with beta amplitude during state visitations 

being the greatest during the ERS time period. This suggests that the modulation of beta 

power in the conventional analyses seen in Figure 4.3C and 4.4C is not purely due to 

the number and duration of visitations to a given state. 
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Figure 5.9. Results of sensorimotor state from the HMM. (A) State map of state 7 (see Figure 

5.10) showing a sensorimotor state. (B) Plots of the binary time course for a subset of the first 

100 trials for the three conditions (2, 5 and 10 s task duration) against time, where dark grey 

is 1 (in state 7) and white is 0 (not in state 7). (C) Probabilistic time course derived from (B) 

showing probability of being in state 7 at any given time, for the three conditions. Responses 

are aligned to contraction offset (time = 0 s). Red line shows 2 s task duration, green line is 5 

s task duration and blue line is 10 s task duration. (D) Summary metrics for state 7, averaged 

over all conditions for each subject and then averaged over subjects, separated into three 

epochs relative to movement offset: ERD (-4 to 0 s), ERS (1 to 5 s) and baseline (20 to 24 s). 

Error bars show standard error over subjects. Additional analyses are shown in Figure 5.11. 
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Figure 5.10. State maps from a HMM inferred with 8 states where red shows brain regions 

with increased power relative to average and blue decreased power, and associated state 

probability time courses for the three conditions, where red is 2 s, green is 5 s and blue is 10 

s task duration.  
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Interrogating the ERS time window further for different contraction durations, a 

significant (p<0.05, RM ANOVA) difference in number of occurrences (Fig. 5.11i) and 

fractional occupancy (Fig. 5.11iv) is seen between the three contraction durations. No 

difference in state lifetime (Fig. 5.11ii), mean interval length (Fig. 5.11iii), or beta 

amplitude during state visits (Fig. 5.11v) was seen for the contraction durations. This 

suggests that the modulation in beta power during the ERS is driven entirely by the 

number of the visitations to this state, in contrast to the modulation of signals 

throughout the task time-course. Overall, these results imply that, underlying the beta 

rebound are rapidly evolving state dynamics which change systematically, not only 

with movement, but also with stimulus parameters. This will be addressed further in 

the discussion below. 

 

Figure 5.11. Summary metrics for state 7 (see Figure 5.9) during the ERS period (1 to 5 s 

post movement offset) for the three contraction durations (2, 5, and 10 s). Data are averaged 

over trials within each condition and then over subjects. Error bars show the standard error 

over subjects. 
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5.6 Discussion 

The aim of this chapter was to investigate the functional role of the PMBR by exploring 

the functional brain networks involved in different stages of a task, using two analysis 

methods. Both the AEC and HMM analyses performed in this chapter showed clear 

changes in connectivity and brain networks recruited during the different task stages. 

As hypothesised, the highest connectivity (AEC analysis) was found during the PMBR 

period in the motor region in the beta band (Figure 5.4). Between hemispheres, the 

sensorimotor strip showed strong connectivity in the beta band (Figure 5.5) as well as 

strong connectivity between visual and parietal areas in the alpha band (Figure 5.7). 

The HMM analysis complemented this finding, identifying a state with a spatial 

topography that covered bilateral sensorimotor cortices, which was most likely to be 

visited during the PMBR period (Figure 5.9). The probability of visits to this state was 

also modulated by contraction duration, mirroring the observations in Chapter 4 with 

more classic analyses. This supports the idea that brain activity consists of bursts of 

activity. Furthermore, the beta amplitude during state visits was modulated between 

task stages but not between contraction durations during the PMBR period, suggesting 

more than one beta phenomenon is occurring, as explored more below. Overall, these 

findings support the hypothesis that the PMBR is facilitating a re-integration of brain 

networks post-stimulation and shed new information as to how the PMBR is formed.  

AEC showed clear changes in connectivity during the different task stages. Inter-

hemispheric connectivity in primary sensory regions in the beta band breaks down 

during the ERD and is re-established during the PMBR, producing the strongest 

connectivity, before returning to baseline (Figure 5.4 and Figure 5.5). The sensorimotor 

network observed during the rebound period was similar to networks previously 

observed in other explorations of task-based connectivity, as well as the finding that the 

PMBR coincides with an increase in connectivity (Quinn et al., 2018; Tewarie et al., 

2018; Tewarie et al., 2019; Vidaurre et al., 2016). Together, with these previous studies, 

the data presented in this chapter supports the idea that the PMBR is required to 

reactivate networks that were supressed during the task.  

In the alpha band, again the highest connectivity was observed during the ERS period, 

supporting this hypothesis (Figure 5.6). The main difference observed in the alpha band 

results compared to the beta band was that connectivity was strongest over parietal and 
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visual cortex, whilst in the beta band connectivity is stronger over sensorimotor areas. 

The alpha results are more symmetric than beta (compare Figure 5.4B with Figure 

5.6B), which could be explained by the fact the motor task was unilateral, whereas the 

visual component of the task was not lateralised, resulting in a bilateral visual response. 

The recruitment of the parietal areas in the alpha AEC analysis (Figure 5.6), suggests 

that higher order cognitive areas were required in the processing of this task as attention 

to the stimulus and visual feedback from the grip force were processed by the subject. 

The apparent recruitment of visual and parietal areas, may be due to two separate but 

inter-related networks being recruited as recent evidence suggested there may be more 

than one mechanism which drives alpha power modulations (Sokoliuk et al., 2019). 

Further, the HMM analyses provide additional information with regards to the brain 

regions involved in the PMBR. A bilateral sensorimotor network was identified which 

is most likely to be visited during the PMBR period (Figure 5.9C), driven by the 

increased number of times the state is entered and the increased length of time spent in 

the state (Figure 5.9D). Moreover, the time course of this state has the same 

characteristics as the beta envelope seen in Chapter 4 (Figure 4.3), with the modulation 

of contraction duration exhibited by the PMBR also demonstrated by the probabilistic 

state dynamics, as increasing task duration decreases the probability of being in the 

state after movement offset (Figure 5.9C). This implies that rapidly evolving network 

dynamics underlie the observation of systematic variation of the PMBR with stimulus 

duration. Though the PMBR and MRBD are sustained over several seconds in the time 

frequency spectrogram analysis from Chapter 4, and the AEC results show networks 

on a 4 s time scale, the HMM analysis shows that the underlying these affects or 

individual beta events lasting on average 100 ms in duration.  

The findings from both the HMM analysis and AEC support the premise that the PMBR 

is related to long range integrative processes over distributed networks (Mullinger et 

al., 2017; Mullinger et al., 2013a; Tewarie et al., 2018), perhaps re-integrating networks 

which divide during tasks to facilitate unilateral processing (Mullinger et al., 2017; 

Mullinger et al., 2013a). In particular, whilst it was not possible to interrogate networks 

on a very short time scale (sub-second) with AEC, the results of the HMM also 

complements the theoretical framework of network dynamics (Shenoy et al., 2013), 

whereby a rapid switching between networks which are recruited during movement 

preparation and movement onset, are proposed. Rapid changes in the number of visits 
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to the sensorimotor state were observed on movement onset and offset (Figure 5.9), 

whilst the change into resting state from the network primarily recruited in the PMBR 

period is more gradual. In future work, further insights into the network properties of 

the PMBR could be obtained using versions of the HMM able to find states that 

correspond to brain networks with distinct power spectra and phase-locking (Vidaurre 

et al., 2018b), to build a greater understanding of the role of the PMBR.  

The HMM analyses also demonstrate that the length of each visit to the “rebound” 

state is greatest in the PMBR period (79 ± 7 ms) and least during the MRBD (55 ± 6 

ms), whilst still an order of magnitude shorter than the duration of the PMBR seen 

through traditional analysis (Figure 4.3). The duration of the visits into this state are on 

the time scale of beta bursts (Sherman et al., 2016), perhaps suggesting that this state is 

denoting beta bursting activity. Bursting activity has been conceptualized as generating 

the modulations seen in traditional averaged oscillations by an increase in likelihood of 

transient bursts of beta activity at certain phases of a task with no systematic change in 

the amplitude of the beta bursts across time (Jones, 2016). The modulation of the PMBR 

presented in this chapter is consistent with this concept, with the frequency of visits to 

the “rebound” state reducing, whilst the amplitude of the beta band signal remains 

constant during the PMBR, with increasing contraction duration (Figure 5.11). This 

suggests that the modulation of the PMBR amplitude seen in Figure 4.3 is driven 

entirely by the number of state visits. In contrast, the amplitude modulation across the 

task periods i.e. MRBD, PMBR and rest appears to be explained by a combination of 

the bursting hypothesis and the traditional concept of the amplitude, duration and 

frequency of the beta “bursts” changing across the task. The difference in the apparent 

underlying sources of the beta envelope modulation (Figure 4.3) seen between task 

periods (MRBD, PMBR and baseline) and between contraction durations during the 

PMBR period suggests the different driving mechanisms generate the different types of 

modulation. It is plausible that the modulation in bursting activity between task periods 

is due to a difference in the number of neurons (i.e. size of the network) recruited during 

these different periods driving different amplitude beta bursts. This would agree with 

the idea that the MRBD and PMBR are generated through different beta networks, as 

discussed is the previous chapter.  

The HMM used here was not optimised for detecting bursts, however recent work has 

explored the relationship between beta bursts and connectivity in more detail, by 
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employing the HMM as a burst detection method (Quinn et al., 2019; Seedat et al., 

2020). Seedat et al. applies the time-delay embedded HMM (Vidaurre et al., 2018b) in 

this way to a right handed finger abduction task. Despite the differences in HMM used, 

the results agree with the findings presented here (Figure 5.9D); the study finds that the 

PMBR shows an increase in frequency of bursts in the left sensorimotor cortex, and the 

bursts last longer during the PMBR. However, Seedat et al. shows no change in the 

amplitude of the bursts across time windows, unlike the results shown in Figure 5.9Dv. 

This could be due to the relatively passive nature of the task in the work by Seedat et 

al., compared with an active task with visual feedback used here. Quinn et al.(Quinn et 

al., 2019) also uses a HMM to detect bursts. Again this study confirms the results here 

- that the beta rebound is due to increased occurrences of state events, and increased 

state lifetime. It also shows the drop in occupancy of the rebound state during the 

movement which is what was found here (Figure 5.9C). These results highlight the 

bursting nature of electrophysiological signals. Whether this will help understand the 

underlying neurophysiology of the PMBR remains to be seen, but bursts have been 

shown to provide extra information than the averaged beta envelope which has 

functional relevance (Little et al., 2018; Shin et al., 2017). Future work could look at 

using the burst detecting HMM on this data to further understand the PMBR.  

Limitations and future work  

The work in this chapter was based on amplitude coupling of signals. Measured 

amplitude coupling has been shown to be due to a combination of real amplitude 

coupling, and spurious amplitude coupling caused by phase coupling (Palva et al., 

2018). Recent work showed that phase and amplitude coupling are similar but not 

identical (Siems & Siegel, 2020) which the authors claim, in part, is due to different 

neural mechanisms. If this is the case, it would be worthwhile to use phase coupling as 

well to study the PMBR, for example with phase difference derivative (Breakspear et 

al., 2004). 

The AEC work is also limited as correlations were only explored within one frequency 

band. In reality, the frequency bands do not exist separately and it was shown in the 

previous Chapter that this task produces responses in the alpha and gamma bands. 

(Chapter 4). Therefore it would be interesting to explore connections between 

frequency bands, with a multilayer network to investigate any effects of cross-
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frequency coupling (Boccaletti et al., 2014; Brookes et al., 2016; Kivelä et al., 2014; 

Tewarie et al., 2016b).  

Although the HMM analysis offers greater time resolution over AEC, the HMM is still 

limited in that the number of states need to be chosen. However, this was accounted for 

by running multiple HMMs with different numbers of states (Figure 5.8), to find the 

best number of states to match the data. Another issue is that HMMs assume that the 

brain is in a state at all times, and that it can only be in one state at a time, which may 

not be true of brain activity. Further work using HMMs will be useful to gain greater 

insight into electrophysiological signals and also understand the limitations of these 

models. 

5.7 Conclusion  

Results from AEC and HMM analysis show that the PMBR is likely driven by 

underlying network dynamics, with a unified sensorimotor network demonstrating 

increased temporal stability (AEC analyses) and increased probability of occurrence 

(HMM analyses) during the rebound period. Furthermore, the results of this chapter 

suggest that the modulation of the PMBR by task duration may occur through a 

different process to the gross modulation of beta signals during different task stages. If 

proven, in future work this would suggest evidence for multiple beta rhythm generating 

mechanisms and suggesting both the classic oscillatory theory and the new bursting 

theory may both contribute to beta rhythm generation.  
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CHAPTER 6 

6 Investigating fMRI Post-stimulus Responses 

6.1 Abstract 

The neuronal origins of post-stimulus fMRI BOLD responses remain to be studied in 

detail, as their origin was thought to be vascular rather than linked to brain function. 

Yet, recent evidence suggests that the post-stimulus response provides additional 

neuronal information distinct to that occurring during stimulation, highlighting the 

importance of characterising the vascular and neuronal components of post-stimulus 

BOLD responses. In this chapter, a sequence was developed to provide combined 

Vascular Space Occupancy (VASO), Arterial Spin Labelling (ASL) and Blood 

Oxygenation Level Dependent (BOLD) contrasts to measure blood volume, blood flow, 

and oxygenation changes to a grip-force paradigm at 7 T. The grip-force paradigm, 

used previously with MEG recordings (Chapters 4 & 5), was performed in 10 healthy 

volunteers to measure motor cortex responses to 2 and 10 s duration grip contractions. 

Results showed no significant difference between the amplitude of the BOLD primary 

response for the 2 and 10 s grip contractions. The BOLD post-stimulus undershoot had 

a smaller amplitude for the 2 s than 10 s duration. VASO and arterial cerebral blood 

volume (aCBV) primary responses showed a modulation between the 2 and 10 s 

stimulus for the primary response, due to an artefact of the analysis pipeline and low 

temporal resolution. The VASO response showed a significant decrease in total CBV 

in the post-stimulus period, but no significant difference was found between contraction 

durations. The aCBV signal had no significant post-stimulus response. The decrease in 

total CBV, but not aCBV, suggests a reduction in venous CBV (vCBV) drives the 

VASO undershoot, the opposite of the balloon model. A decrease in vCBV would 

require an increase in CMRO2 or reduction in CBF post-stimulus to produce a post-

stimulus undershoot, neither of which were observed, suggesting further testing is 

needed to reveal the origins of the post-stimulus undershoot. Comparison to MEG 

responses showed a disparity between modulation of post-stimulus responses with 

stimulus duration, which may imply the post-stimulus response is a combination of 

competing vascular and neuronal effects.  
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6.2 Introduction 

Over 25 years since fMRI was first introduced (Bandettini et al., 1992; Kwong et al., 

1992; Ogawa et al., 1992), there is still no consensus on the origins of the BOLD post-

stimulus undershoot (PSU). The BOLD response (outlined in Chapter 3) arises due to 

the combined change in cerebral blood flow (CBF), cerebral blood volume (CBV) and 

cerebral metabolic rate of oxygen consumption (CMRO2), and the BOLD PSU was 

originally thought of as a purely vascular effect (Buxton et al., 1998). In recent years, 

it has been postulated that the BOLD PSU also relates to neuronal activity (Uludağ et 

al., 2004), yet to date it remains unclear whether the BOLD PSU is a neuronal, vascular 

or metabolic phenomenon, or a combination of these effects. If the post-stimulus BOLD 

response does reflect neuronal activity, it may provide additional information to the 

primary BOLD response and could provide a metric of brain function in health and 

disease. This highlights the importance of characterising PSU responses to further 

understand their origin. 

It is widely recognised that electrophysiology recordings exhibit post-stimulus 

responses, such as the event related synchronization (ERS) of oscillatory activity upon 

stimulus cessation - in particular the post-movement beta rebound (PMBR). In Chapters 

4 and 5 it was shown that stimulus duration modulates the amplitude of the 

magnetoencephalography (MEG) post-stimulus response but not the primary response 

- revealing distinct functional information to that of the primary response. fMRI is the 

most widely used methodology to study neuronal activity, but taking a multimodal 

approach will help to advance understanding of the signals measured. Using both MEG 

and fMRI findings to investigate post-stimulus responses will potentially provide a 

better understanding of the driving mechanisms behind all post-stimulus responses, 

enabling the electrophysiological ERS to be related to the BOLD PSU. In addition to 

providing haemodynamic information, fMRI also benefits from increased spatial 

resolution and access to imaging of deep brain structures which cannot be resolved with 

MEG and could be crucial in understanding the functional role of post-stimulus 

responses. 

6.2.1 Mechanisms of the BOLD PSU 

Three main mechanisms have been proposed to explain the origin of the BOLD PSU. 

The first describes the PSU as a vascular effect, with the balloon model (Buxton et al., 
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1998) and Windkessel model (Mandeville et al., 1999) originating from biomechanical 

properties of veins, where the PSU is a result of elevated CBV after the end of the 

stimulus, while CBF and CMRO2 return to baseline. The second states the PSU is a 

metabolic effect, due to elevated CMRO2 caused by restoration of ionic gradients (Lu 

et al., 2004b). The third assumes the PSU is a neuronal effect, caused by a decrease in 

CBF below baseline (and reduction in CMRO2) due to a decrease in neuronal activity 

(Uludağ et al., 2004). More recently, studies have suggested the PSU is a combination 

of these effects (Hua et al., 2011; van Zijl et al., 2012; Yacoub et al., 2005).  

The first of these theories, the balloon model (Buxton et al., 1998), was one of the 

earliest models to explain the haemodynamic response function. It models the vascular 

bed as a balloon. Flow into the balloon increases, increasing the pressure in the balloon, 

until flow into the balloon matches the flow out and a steady state is reached. The 

balloon model is based on several assumptions: no capillary recruitment, all blood 

volume changes occur in veins and that the flow increase due to dilation of arterioles is 

negligible. The flow out of the balloon is assumed to be a function of its volume. The 

rate of change of volume (V) is therefore simply given by flow in (𝐹𝑖𝑛) minus flow out 

(𝐹𝑜𝑢𝑡): 

 
𝑑𝑉

𝑑𝑡
=  𝐹𝑖𝑛(𝑡) − 𝐹𝑜𝑢𝑡(𝑡) (1) 

 

Considering the concentration of deoxyhaemoglobin (Q), assuming all 

deoxyhaemoglobin is in the venous compartment, the concentration of 

deoxyhaemoglobin into the balloon will be the product of flow in, oxygen extraction 

(E) and arterial oxygen concentration (Ca). The concentration of deoxyhaemoglobin out 

of the balloon will be a function of flow out, concentration of deoxyhaemoglobin in the 

venous compartment, which will be the total deoxyhaemoglobin divided by the volume 

of the compartment. Therefore,  

 
𝑑𝑄

𝑑𝑡
= 𝐹𝑖𝑛(𝑡)𝐸𝐶𝑎 − 𝐹𝑜𝑢𝑡(𝑉)

𝑄(𝑡)

𝑉(𝑡)
. (2) 

This equation can be normalised to describe values relative to their baseline level, by 

dividing by the variable at rest (subscript 0), e.g. 𝑞(𝑡) = 𝑄(𝑡)/𝑄0 where 𝜏0 = 𝑉0/𝐹0 is 

the mean transit time through venous compartment at rest.  
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𝑑𝑞

𝑑𝑡
=

1

𝜏0
[𝑓𝑖𝑛(𝑡)

𝐸(𝑡)

𝐸0
− 𝑓𝑜𝑢𝑡(𝑣)

𝑞(𝑡)

𝑣(𝑡)
 ]  (3) 

Assuming oxygen delivery is limited, CMRO2 increases as much as possible within the 

constraints of limited oxygen delivery. This is the oxygen limitation model which states 

that the large flow increase is due to the tight coupling of flow and oxygen metabolism, 

in the presence of limited oxygen. Net oxygen extraction is given by a nonlinear 

expression (Buxton & Frank, 1997) which is a function of flow in (f),  

 𝐸(𝑓𝑖𝑛) = 1 − (1 − 𝐸0)1/𝑓 (4) 

where E0 is the resting net extraction of oxygen, which can be inserted in equation for 

rate of change of deoxyhaemoglobin (Equation 2). Different forms of flow out can then 

be modelled, representing different pressure/volume curves of the balloon. Grubb et al. 

(Grubb et al., 1974) found the steady state blood volume could be described as a power 

law relationship,  

 𝑣 = 𝑓𝛼 (5) 

where α is the Grubb constant, which was found to be 0.38.  

In the balloon model, the BOLD primary response reflects increases in cerebral blood 

flow (CBF), blood volume (CBV) and metabolic rate of oxygen consumption 

(CMRO2), while the post-stimulus undershoot is due to the slow recovery of CBV 

which remains elevated after CMRO2 and CBF have returned to baseline. This is 

because the vessels rapidly dilate during activation to account for increased flow, but 

the vessels cannot constrict as quickly as the flow returns to baseline and therefore 

volume and flow become uncoupled. As a result, during the post-stimulus response it 

is possible Equation 5 does not hold. 

One study supporting the balloon model is Feng et al. (Feng et al., 2001) which showed 

excellent correlation between the experimental BOLD time course and predicted time 

course from the balloon model. However, there was no post-stimulus undershoot 

observed. Many other studies all show experimental evidence for the balloon model 

(Friston et al., 2000; Mildner et al., 2001; Obata et al., 2004; Toronov et al., 2003).  

Following this, studies went on to show that a slow recovery of CBV was not the whole 

explanation for the PSU. In 2004, Lu et al. (Lu et al., 2004b) collected three consecutive 

measures of VASO, BOLD and ASL at 1.5 T in response to a flashing checkerboard. 

The results showed that the BOLD PSU lasted much longer than CBV took to return to 
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baseline, suggesting elevated CBV could not be the sole explanation for the BOLD 

PSU. From these data the authors estimated that CMRO2 remained elevated after the 

stimulus while CBF and CBV returned to baseline, and therefore postulated that the 

PSU is caused, in part, by increased oxygen metabolism. They attributed this to 

restoration of ionic gradients and speculated that flow and metabolism are not 

necessarily directly linked; instead CBF is controlled by neurotransmitter signalling 

rather than oxygen metabolism (Attwell & Iadecola, 2002). Many other studies 

(Dechent et al., 2010; Donahue et al., 2009; Frahm et al., 2008; Hua et al., 2011; Poser 

et al., 2011; Schroeter et al., 2006) have since also found evidence for CBV and CBF 

returning to baseline before the BOLD PSU, supporting the hypothesis of prolonged 

oxygen consumption.  

Thirdly, other studies have found evidence for a decrease in CBF with a decrease in 

CMRO2, suggesting that the BOLD PSU is caused by a decrease in neuronal activity 

(Uludağ et al., 2004). Early work supporting this was presented by Hoge et al. (Hoge 

et al., 1999) who showed that a radial checkerboard stimulus produced a reduction in 

post-stimulus CBF in visual cortex. They also showed that the PSU depended on the 

type of visual pattern presented, suggesting the PSU depends on neuronal activity. They 

suggested the reason this had not been observed previously was due to low SNR of 

CBF data in earlier studies, but also hypothesised that the reduced CBF was amplified 

by the slowly returning CBV. This was taken further by Sadaghiani and colleagues 

(Sadaghiani et al., 2009) who measured CBF during a static and flashing checkerboard. 

The authors found no difference in the primary BOLD response for the two types of 

stimulation, but found differences in the BOLD PSU, independent of luminance 

contrast of the stimuli, implying a neuronal activation or deactivation to modulate the 

BOLD PSU.  

A different approach was taken by Logothetis (Logothetis et al., 2001) using local field 

potentials (LFPs) to compare with BOLD signal in primates. This study suggested that 

the primary BOLD response directly correlates to an increase in neural activity, and the 

BOLD PSU is due to inhibition of neuronal activity after stimulation, reflected by a 

decrease in LFPs relative to baseline. In a study using EEG-fMRI, Mullinger et al. 

(Mullinger et al., 2013b) found the amplitude and sign of the BOLD PSU correlates 

with EEG mu power resulting from median nerve stimulation, providing evidence for 

an association between the BOLD PSU and the electrophysiological PSU in humans. 
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Further work by Mullinger (Mullinger et al., 2017) showed that the amplitude of BOLD 

and CBF post-stimulus responses depended on the post-stimulus EEG visual alpha 

power, which could not have been predicted from the primary response. They also 

estimated CMRO2 changes and found an altered coupling of CMRO2 to CBF during 

the PSU. Taken together, this implied that the primary and post-stimulus responses are 

distinct and should be modelled separately. However, to my knowledge, the work 

supporting a reduction in CBF and CMRO2 has not measured CBV and therefore the 

CBV post-stimulus response in these more recent studies is unknown. 

There is still much controversy surrounding the origin of the post-stimulus undershoot 

(van Zijl et al., 2012), but it is clear the original balloon model should be further 

modified (Buxton, 2012) and perhaps the PSU is a combination of neuronal, metabolic 

and vascular factors. Chen and Pike (Chen & Pike, 2009b) found evidence for the slow 

return to baseline of CBV as described by the balloon model, but also found evidence 

of a CBF undershoot, and argue that the combination of these two factors accounts for 

the BOLD PSU. It is possible that some of this controversy is driven by low SNR of 

CBF and CBV measures collected in past studies at low field strengths (generally 1.5 

T and 3 T). 

In order to better understand the origins of the BOLD PSU, it is necessary to determine 

the changes in CBF, CBV and CMRO2 on which the BOLD signal depends. Total CBV 

can be measured using vascular space occupancy (VASO), while arterial spin labelling 

(ASL) can be used to measure CBF and arterial CBV (aCBV), and calibrated fMRI can 

be used to estimate CMRO2. By moving to higher field strength such as 7 T, SNR will 

be increased, improving the data sensitivity as described in Section 6.3. 

6.2.2 Stimulus Duration in fMRI  

If the primary response drives the post-stimulus BOLD response, as predicted by the 

balloon model or a metabolism response due to a rebalancing of ionic gradients, then a 

larger primary response would expected to result in a larger post-stimulus response. 

One simple way to interrogate this relationship between the primary and post-stimulus 

response is to investigate the effects of stimulus duration. Stimulus duration has been 

found to modulate the primary response in a number of studies as outlined below.  

Early work investigating the effect of task duration used finger tapping of different 

durations in fMRI studies at 1.5 T (Glover, 1999; Miller et al., 2001). These studies 
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found a non-linear relationship between stimulus duration and the primary BOLD 

response, with short duration stimuli producing lower amplitude responses, and the 

amplitude plateauing for stimulus durations around 6 to 8 s. The amplitude of responses 

to longer duration stimuli were not able to be predicted from the amplitude to shorter 

stimuli in a in a linear way. These findings were corroborated by Stevenson et al. in a 

study at 3 T who also showed that the primary BOLD did not increase linearly with 

finger tapping duration (Stevenson et al., 2011). However, these studies did not 

investigate the BOLD PSU and used quite short baseline periods for considering 

heamodynamics (19 s (Miller et al., 2001), 14 – 29 s (Glover, 1999), 24 – 29 s 

(Stevenson et al., 2011)). Further, these experiments used finger tapping which is hard 

to control for speed and movement. This is important as a higher force gives higher 

amplitude BOLD signal (Peck et al., 2001) and rate of movement also affects the 

amplitude of the BOLD response (Jäncke et al., 1998) which is hard to standardise for 

finger tapping.  

Using 3 T MRI, Birn et al. (Birn et al., 2001) showed that the primary BOLD response 

to stimuli does not scale linearly with stimulus duration, and that shorter duration 

stimuli give a higher amplitude primary BOLD response than predicted by a linear 

model. The same effect has also been observed for different durations of epileptic 

activity (Bagshaw et al., 2005). Furthermore, Birn et al. (Birn et al., 2001)noted that 

using short inter-stimulus intervals (ISI) is a concern as there is a need to leave time for 

the BOLD PSU to recover, but they found results for a 16 s ISI and 30 s ISI were well 

correlated.  

Few studies have investigated the effect on non-BOLD fMRI responses of modulated 

task duration. One study (Gu et al., 2005) used simultaneous VASO, ASL and BOLD 

to measure responses in visual cortex to different duration stimuli at 3 T, and found that 

increasing stimulus duration increased the amplitude and width of the response for 

VASO, ASL and BOLD. They did not, however, investigate the PSU. What is more, 

most VASO-fMRI studies use long task durations (~30 s) due to the low temporal 

resolution and SNR of the technique, where the effects of nonlinearity are not observed. 

For example, Beckett at al. (Beckett et al., 2019; Huber et al., 2018) used a 30 s tap and 

Lu and van Zijl (Lu & van Zijl, 2005) used 30 s visual stimulation. Therefore the 

interaction of CBV, CBF and CMRO2 in generating the primary response to short 

stimuli is poorly documented. 
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Despite these studies investigating the effects of stimulus duration on the primary 

BOLD response, research into the effects on the PSU remains limited. The existing 

studies are largely unable to investigate the post-stimulus undershoot as most do not 

leave a sufficient inter-stimulus interval for the PSU to fully return to baseline. A 

critical question, therefore, is how task duration affects BOLD, CBV, aCBV and CBF 

during both the primary response and PSU. The balloon model would predict that if the 

stimulus duration is longer, and the primary response amplitude is larger and the post-

stimulus undershoot would be larger.  

6.2.3 Aim  

A thorough approach to task design, controlling force, speed, and using long ISI, is 

required to investigate the PSU. Here, the task which was previously developed to 

modulate post-stimulus neuronal responses with MEG (Chapters 4 and 5) is adapted for 

fMRI. It was evident from MEG experiment that the largest differences in PSU were 

observed between the 2 s stimulus and 10 s stimulus, so these two grip durations were 

used. By using this task, investigation of the neuronal component of the measured fMRI 

responses is possible. Acquiring VASO and ASL concurrently with BOLD weighted 

images allows interrogation of the combination of total CBV, aCBV and CBF, and 

CMRO2 which underlie the BOLD responses throughout the experimental paradigm. 

Using 7 T provides greater BOLD, total CBV and CBF/aCBV contrast to noise ratio 

(CNR), allowing higher spatial resolution than achieved in previous studies (Gu et al., 

2005). First, a VASO-ASL sequence was implemented and optimised to measure 

VASO, aCBV, CBF and BOLD concurrently to allow assessment of the contribution 

of the vascular origin to the post-stimulus response.  
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6.3 Optimisation of the VASO-ASL-BOLD Sequence 

BOLD fMRI is an indirect measure of neuronal activity and depends on a combination 

of CBF, CBV and CMRO2. In order to better understand the origins of the PSU, it is 

necessary to separate the effects of CBF, CBV and CMRO2 on the BOLD signal. Total 

CBV (the sum of arterial CBV (aCBV) and venous CBV (vCBV)) can be measured 

using VASO, CBF is measured using ASL and can also be used to estimate aCBV, 

while calibrated fMRI can be used to estimate CMRO2. 

6.3.1 Vascular Space Occupancy (VASO) 

Vascular space occupancy (VASO) fMRI (Lu et al., 2003) is based on changes in total 

CBV. VASO works by nulling the signal from blood whilst retaining the signal from 

tissue using an inversion recovery pulse sequence. This sequence is dependent on the 

difference in T1 between blood and tissue, with blood T1 being longer than that of tissue 

(tissue T1 is of the order of 1100 ms at 3 T and 1800 ms at 7 T (Huber et al., 2018; 

Wright et al., 2008), and T1 of blood is 1624 ms at 3 T (Lu et al., 2004a) and 2100 ms 

at 7 T (Zhang et al., 2013)), and T1 increasing at higher magnetic field strength 

(Hoogenraad et al., 2001). This difference in T1 between blood and tissue causes the 

null point - the time at which the magnetizations cross zero following an inversion pulse 

- of blood and tissue to differ, as shown in Figure 6.1. VASO is proportional to 1 – 

CBV and is usually measured as a percentage signal change, so a decrease in VASO 

intensity corresponds to an increase in total CBV which is generally coupled to an 

increase in neuronal activation (Lu & van Zijl, 2012). The percentage signal changes 

of VASO are on the order of 1% at 7T.  

There is only a short window in which to acquire images after the blood nulling in a 

VASO sequence as the sensitivity rapidly decreases with time (Fig. 6.1B), hence only 

a small number of slices can be acquired. Further, as magnitude data is collected, the 

slice acquisition should not cross the null point, but be collected after the null point, so 

that the sign of the signal intensity due to a blood volume change does not vary across 

slices. Simultaneous multi slice EPI (SMS-EPI) or multiband EPI (MB-EPI) can 

overcome issues with spatial coverage by exciting multiple slices at the same time 

(Huber et al., 2018) (see Chapter 3 Section 3.4.6).  
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Figure 6.1. (A) Recovery of longitudinal magnetization of blood and tissue at 7 T after an 

inversion pulse. Data simulated assuming blood T1 of 2100 ms (Zhang et al., 2013) and tissue 

T1 of 1800 ms (Wright et al., 2008). (B) Measured transverse magnetisation for a 900 excitation 

pulse applied at a delay TI of 1450 ms. Note the blood signal is nulled but the tissue signal has 

crossed the null point.  

To null the signal from blood, an inversion recovery sequence with inversion time (TI) 

at the blood null point is used, whilst retaining the tissue signal. Since blood in the voxel 

is continuously replaced, a non-slice-selective inversion pulse must be used. The 

relationship between TI and T1 is  

 1 − 2𝑒−
𝑇𝐼
𝑇1 + 𝑒−

𝑇𝑅
𝑇1 = 0. (6) 

For a long TR, this can be simplified to  

 𝑇𝐼 = 𝑇1 ln (2). (7) 

Therefore, to calculate the required inversion time for a VASO scheme, it is required 

to accurately know the T1 of blood. T1 is dependent on temperature and field strength, 

with the T1 of blood at 7 T of approximately 2100 ms (Zhang et al., 2013) resulting in 

a required inversion time to null the blood signal TI of 1450 ms (Equation 7). For blood 

nulling to be effective to estimate the total blood volume, both arterial and venous blood 

need to be nulled, which is possible as arterial and venous blood have similar T1 values 

(Lu et al., 2003).  

6.3.2 Arterial Spin Labelling (ASL) 

While VASO measures total CBV, ASL is a technique primarily used for imaging CBF 

(Detre et al., 1992) and can also be used to measure aCBV. ASL is a non-invasive 

imaging technique to measure tissue perfusion by labelling the arterial blood delivered 

to the tissue. This results in a response which is better localised to capillary beds than 
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BOLD, as BOLD reflects venous outflow (Buxton, 2009). However, the SNR and 

temporal resolution of ASL are much poorer than that of BOLD (Liu & Brown, 2007). 

ASL and BOLD techniques can be used together to measure BOLD signal and CBF 

simultaneously (Wong et al., 1997) which can be helpful for understanding the origins 

of the BOLD signal (Mullinger et al., 2017; Mullinger et al., 2013b). 

To collect an ASL image, magnetization of water in arterial blood is first inverted with 

a 180° adiabatic RF pulse outside the region being imaged. This labelled blood then 

flows into tissue and is imaged after a time, the inversion time TI, when the labelled 

blood has flowed into the image plane and exchanged with the tissue (label image). A 

control image with no labelling of arterial blood, where the inflowing spins are fully 

relaxed is then collected, which is subtracted from the label image. This results in a 

perfusion-weighted image proportional to the amount of arterial blood delivered in the 

time TI (Buxton, 2009).  

ASL experiments are generally conducted using pulsed ASL (PASL) or pseudo-

continuous ASL (PCASL). FAIR (flow-sensitive alternating inversion recovery) (Kim, 

1995) is a type of PASL, in which the label image is acquired with a non-selective 

inversion pulse, and the control image is acquired with a slice-selective pulse. The 

concept is that the inflowing arterial blood is inverted with the non-selective pulse, 

whilst inflowing blood is fully relaxed following the slice-selective pulse. Inflowing 

blood will then perfuse into the tissue and exchange. An example of this is shown in 

Figure 6.2. Traditionally, ASL is used to measure CBF, but at short inversion times 

ASL is sensitive to the arterial cerebral blood volume (aCBV) as the blood flows 

through the arterioles (Brookes et al., 2007; Francis et al., 2008).  

6.3.3 Combining BOLD, VASO and ASL  

The simultaneous acquisition of VASO, ASL and BOLD to measure total CBV, CBF 

and blood oxygenation in the same sequence has many benefits. It allows the collection 

of data to the exact same stimulus, removing habituation and learning effects if the same 

experiment is repeated multiple times, and removes motion differences between 

separately acquired scans. Combining parameters provides complementary information 

to better understand the relationship between neuronal activity, haemodynamic and the 

MR signal, and is highly desirable for understanding post-stimulus responses. Both 

VASO and the FAIR ASL protocol are based on an inversion recovery scheme. For  
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Figure 6.2. Schematic of the FAIR ASL scheme, showing the slice selective control and non-

selective label image. An aCBV weighted image is created by subtracting the label image from 

the control image using an early TI. 

concurrent acquisition, an inversion recovery scheme with double excitation can be 

used. This can be used to collect a VASO image at the blood-nulling point after the 

non-selective inversion, and an ASL image at a later time when the labelled spins have 

perfused the image plane.  

An early example of simultaneous VASO, ASL and BOLD was developed by Yang et 

al. (Yang et al., 2004). In Yang et al., an inversion recovery sequence is used where the 

VASO image is collected at first inversion time delay, and ASL and BOLD images are 

collected at the second inversion time delay with a double acquisition: the first with a 

short TE to provide high SNR for ASL and the second with a longer TE to provide T2*-

weighting for BOLD contrast. The inversion alternates between non-selective (label) 

and slab-selective (control) to allow ASL images to be derived.  



146 

 

Using an inversion recovery sequence with a double excitation requires a modification 

to the inversion delay TI to use for VASO (Equation 7), with the solution to the Bloch 

equation for a double excitation yielding  

 
𝑀𝑧 =  𝑀0 (1 − 𝑒

−
𝑡

𝑇1) + 𝑀𝑧(0) 𝑒
−

𝑡

𝑇1 .  

 

(8) 

To null Mz at TI1 requires 

 0 = 𝑀0 (1 − 2𝑒
−

𝑇𝐼1
𝑇1 + 𝑒

−
𝑇𝑅+𝑇𝐼1−𝑇𝐼2

𝑇1 ). (9) 

Solving this gives 

 𝑇𝐼1 = 𝑇1 ln (2 − 𝑒
−

𝑇𝑅−𝑇𝐼2
𝑇1 ). (10) 

Several studies have successfully combined VASO, ASL and BOLD to measure total 

CBV, CBF, and enable CMRO2 calculation at 1.5 T and 3 T (Hua et al., 2011; Lin et 

al., 2009; Lu et al., 2004b). Moving to 7 T is advantageous for BOLD fMRI as it 

provides increased BOLD CNR. However, the implementation of VASO at 7 T is more 

challenging as the application of homogeneous inversion requires improved adiabatic 

inversion pulses. Further, the VASO signal can be more contaminated with BOLD 

effects at higher field strength due to the shortening of T2*. It is possible, however, to 

remove any BOLD contamination, by collecting data without blood-nulling acquired 

(i.e. solely BOLD-weighted) along with VASO (BOLD-contaminated) data (Huber et 

al., 2014). If the BOLD-contaminated VASO data is divided by the BOLD data, 

uncontaminated VASO data is obtained. 

As described above, with VASO there is only a short time in which to acquire the 

imaging slices after blood nulling. As a consequence of each slice taking a finite time 

to acquire, each of the slices will have a slightly different inversion time TI. This 

variation in TI will result in a variation in signal intensity across slices. To keep 

differences in signal intensity to a minimum, only a small number of 2D slices can be 

collected consecutively, limiting the spatial coverage of VASO. To demonstrate the 

variation in signal intensity across slices, the VASO signal was simulated in Figure 6.3 

for a five slice 2D EPI readout. The signal from each slice is simulated, showing that 

after the VASO-delay, each slice is collected at a slightly different TI resulting in 

different magnetisation in each slice. One solution to this is to use a 3D EPI readout 
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rather than 2D EPI readout, as with 3D EPI the whole volume can be collected with the 

same TI (see Chapter 3), enabling greater spatial coverage and matched VASO contrast 

across all slices. 3D EPI has been found to provide higher BOLD contrast compared to 

2D EPI at 7 T for GE-BOLD responses (Poser et al., 2010; van der Zwaag et al., 2012) 

and has been used as the readout scheme in VASO at 7 T (Huber et al., 2018). Huber 

and colleagues (Huber et al., 2018) directly compared 2D and 3D EPI VASO at 7 T. 

3D EPI was found to give higher temporal stability than 2D, but to be more dominated 

by physiological noise. However, a disadvantage of 3D EPI with VASO is T1 blurring 

as the signal is not in steady state. To overcome this, a variable flip angle can be used 

across the 3D EPI readout (Gai et al., 2011) so that a constant signal is measured across 

the 3D acquisition.  

A further compromise with combining VASO, ASL and BOLD is the choice of echo 

time. For the greatest BOLD signal, the ideal is for TE = T2
* of grey matter, whereas 

for ASL and VASO a short TE is preferred for high SNR. One solution is to use a 

double echo with different echo times for each acquisition so that the TE is optimised. 

Previous studies have used multiple echo times, including Yang et al. (Yang et al., 

2004), (Lu & van Zijl, 2005) and the DABS sequence (double-acquisition background 

suppression) (Mullinger et al., 2017; Mullinger et al., 2013b; Wesolowski et al., 2009) 

uses a double echo. The other option is to use a single echo time between the ideal echo 

times with reduced sensitivity to both ASL and BOLD. The choice here is often 

dependent on the spatial resolution required, at higher spatial resolution the two echo 

times can be too long to provide sufficient SNR. 

A further adaptation is to implement the VASO scheme with a measure of arterial CBV 

using ASL and BOLD. aCBV has the advantage of having a significantly greater SNR 

than CBF and is localised to the arterioles in proximity to the active brain regions. In 

the following sub-sections, optimisation of the implementation of a VASO-ASL-BOLD 

sequence at 7 T is described.  
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Figure 6.3. Simulated signal from the grey matter of each slice (orange, green, blue, purple 

and pink lines) for a 2D EPI readout where pulses are applied to measure the magnetisation in 

the transverse plane at VASO collection time and BOLD collection time. Since each slice is 

collected at a slightly different TI time after the VASO-delay (1050 ms) it can be seen that each 

slice has a different magnetisation, whereas at the BOLD-weighted acquisition (2500 ms) the 

slices recover to the same magnetisation. Shows relaxation of blood (red line) without any 

pulses applied for comparison.  

6.3.4 Methods 

Pilot experiments were first performed to develop and optimise a sequence for 

combined measures. The plan was to compare 2D EPI with 3D EPI, including 3D EPI 

with a constant flip angle and variable flip angle, with various multiband and SENSE 

factors, in order to find the optimum sequence. This was defined as the sequence which 

provided greatest tSNR, but also took into account greater spatial coverage, as well as 

the sequence which better equalised signal intensity between slices and between the 

different measures. In this work a FAIR ASL scheme is combined with a VASO scheme 

and a double excitation, as shown in Figure 6.4. VASO data is formed from the non-

selective data at TI1 corrected for BOLD contamination by dividing by the BOLD-

weighted data collected at TI2 (BOLD2), aCBV data can be created from the difference 

of the slice-selective and non-selective data at TI1, CBF data is acquired from the 

difference of the slice-selective and non-selective data at TI2, and BOLD data can be 

collected from the second excitation following both the selective and non-selective 

inversion using either a 2D EPI or 3D EPI readout. For a 2D readout, the TI will vary 

across slices whereas a 3D readout will collect the whole volume with the same TI. 
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However 3D readout will have blurring due to T2* decay and T1 blurring if the flip 

angles are not corrected using a variable flip angle across the echo train.  

6.3.5 Optimisation of the VASO Scheme Using Non-task Data 

The first aim was to optimise the VASO scheme to provide the optimal sequence with 

good spatial coverage. For this, a 2D EPI readout without and with multiband 

  

Figure 6.4. VASO-ASL-BOLD pulse sequence diagram, typical parameters use TI1 = 1050 ms, 

TI2 = 2300 ms, TR = 6000 ms with either a 2D or 3D EPI readout. In the first phase, the blood 

nulled data is acquired at TI1. In the second phase, BOLD weighted data is acquired at TI2. 

BOLD2 data are used to correct VASO data for T2
* dependence. An aCBV image is created 

from control minus label of the first phase, and a CBF image from the control minus label of 

the second phase. The sequence simultaneously measures total CBV (VASO), aCBV and CBF 

(ASL), and BOLD.  

acquisition, and 3D EPI readout were compared. The 2D EPI readout had 6 slices, 

yielding 12 slices for a multiband factor of 2, and the 3D EPI acquisition had 12 slices. 

All data were collected with 2 mm isotropic resolution at the minimum echo time TE 

of 20 ms. Data were all acquired in the same scan session on the same subject. 

Following this, the 3D EPI readout was compared for various SENSE factors to find 

the optimum acceleration which gives the best SNR for accelerated acquisition without 

artefacts. Further, to mitigate the effects of T1 blurring across the slices when using 3D 

EPI with a constant flip angle, an acquisition with a variable flip angle to correct for T1 

blurring was also performed. The 3D EPI constant flip angle was set to 18o, whilst the 

variable flip angle was optimised to ensure a steady state signal was obtained over the 

3D EPI readout with a train of flip angles of FA=18°, 19°, 20°, 22°, 24°, 26°, 28°, 33°, 

35°, 39°, 41°, 52° and 90° over the 13 TFE factors.  
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6.3.5.1 Results  

As shown in Figure 6.5, the 2D EPI readout (panels A and B) results in variation in 

signal intensity across the slices for VASO, as expected from the simulations (Figure 

6.3) as the images are collected at different TI values. In contrast, for the 3D EPI readout 

(Figure 6.5C) a uniform signal intensity across the slices is seen. Figure 6.6 shows the 

corresponding tSNR for these scans. The tSNR was used to assess data quality and the 

multiband data were found to be highly unstable with poor tSNR. It later became clear 

the low tSNR of the multiband sequence (Figure 6.6B) was due to intrinsic issues with 

the scanner, rather than the pulse sequence itself, and the scanner was out of use for 

approximately 4 months throughout this sequence development period whilst the 

scanner was repaired. When comparing between the different contrasts (Figure 6.6), as 

expected the BOLD signal had the highest SNR for the 2D-EPI readout, whereas for 

the 3D-EPI readout the VASO and BOLD SNR became comparable. In addition, as 

was expected the aCBV images had a higher SNR than the CBF images.  
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Figure 6.5. Comparison of 2D EPI readout collected without (A) and with multiband (MB) 

factor 2 (B), and with 3D EPI readout (constant flip angle (C). Data collected using SENSE 

factor 2 throughout. 
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Figure 6.6. Comparison of tSNR for (A) 2D EPI MB1, (B) 2D EPI MB2 and (C) 3D EPI 

constant flip angle, where mean images are shown in Figure 6.5.  

As 3D EPI provides better coverage than 2D EPI, as well as being more robust than 2D 

EPI with multiband, it was decided to optimise the 3D EPI scheme further to reduce the 

acquisition time for collection of the imaging volume to reduce T2* and T1 blurring 

effects. For this, the in-plane x through-slice SENSE factor was compared for SENSE 

2x1, SENSE 2x1.5, and SENSE 2x2. It can be seen from Figure 6.7 that as the SENSE 

factor is increased, an artefact appears in the CBF and aCBV data. 
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Figure 6.7. Comparing different SENSE factors for 3D EPI readout, with (A) SENSE 2x1, (B) 

SENSE 2x1.5, (C) SENSE 2x2. Arrows highlight artefacts observed in aCBV and CBF data 

with increasing SENSE acceleration.  

Figure 6.8 shows the effect of using a constant flip angle in the 3D EPI readout versus 

a variable flip angle, all acquired with SENSE factor of 2.5 in-plane and no through 

plane acceleration. This provided a compromise of the results seen in Figure 6.7 to 

minimise the artefact whilst also minimising the readout time. The 3D EPI variable flip 

angle gives a more homogenous signal across slices, and between the BOLD and VASO 
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schemes whereas for the constant flip angle regime, the signal intensities are very 

different for VASO and BOLD (Figure 6.8). Similar signal intensities between VASO 

and BOLD are important as better realignment of images can be achieved. The tSNR 

of the VASO and BOLD data compared for constant and variable flip angles was 

calculated (Figure 6.9). Mean tSNR was 21 and 39 for VASO and BOLD data 

respectively for constant flip angle, and 33 and 32 for VASO and BOLD data 

respectively for the variable flip angle. The variable flip angle has improved SNR for 

VASO compared to constant flip angle, whilst BOLD tSNR is reduced slightly 

compared to constant flip angle but overall the variable flip angle provides better 

compromise on SNR, since BOLD data inherently has a higher SNR than VASO data.  

 

Figure 6.8. Comparison of absolute signal for (A) 3D EPI constant flip angle with (B) 3D EPI 

variable flip angle for VASO and BOLD, both with SENSE factor: 2.5×1. 
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Figure 6.9. tSNR of VASO and BOLD for (A) 3D EPI constant flip angle and (B) 3D EPI 

variable flip angle, where mean images are shown in Figure 6.8. 

6.3.6 Task Data 

Having optimised the 2D and 3D readout VASO acquisitions, the question was whether 

the sequence had enough sensitivity to detect functional activity. A robust, long 

duration functional task was first used to compare the 2D EPI and 3D EPI readout 

schemes, with 3D EPI readout data collected to compare both a constant flip angle and 

variable flip angle of excitation pulses. For each acquisition scheme, data were 

collected at 1.5 mm isotropic resolution and used a TE = 18 ms, TI1 = 1050 ms and TI2 
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= 2300 ms, SENSE factor = 2.5×1 with 112 volumes. Table 6.1 provides the parameters 

for each of the readout schemes. For each readout scheme, the timings were optimised 

to maximise the blood-nulling of the VASO scheme across slices, and to obtain 

sufficient signal-to-noise of the BOLD data using a complete simulation of the scheme 

using modified Bloch equations (data not shown in this thesis).  

A block-design experiment was performed using right-handed finger tapping paradigm 

with 48 s initial rest period, followed by 8 repeats of 30 s task and 48 s rest. The 

paradigm included a visual cue to instruct the participant when to tap their fingers using 

Presentation (Neurobehavioral systems Inc, Berkeley, CA, USA). Data were collected 

for all readouts on the same subject in the same scan session. Data were analysed in 

mrTools (Gardner, 2018) using a GLM of the timings of the cued movements.  

  
2D EPI 3D EPI constant 3D EPI variable  

Slices 5 12 12 

TE (ms) 18 18 18 

Resolution 

(mm) 1.5x1.5x1.5 1.5x1.5x1.5 1.5x1.5x1.5 

Volumes 112 112 112 

Table 6.1 Parameters for each of the readout schemes.  

6.3.6.1 Results  

Results of data collected using each of the 2D EPI, 3D EPI constant and 3D EPI variable 

readout schemes are shown in Figure 6.10 (2D), Figure 6.11 (3D EPI constant flip 

angle) and Figure 6.12 (3D EPI variable flip angle). Time courses of the whole run and 

activation maps are shown. The 3D EPI variable flip angle gives the most similar 

response across the image contrasts; BOLD, VASO and aCBV each produce a clear 

response to the stimulus period. Although the BOLD response when using the 3D 

constant flip angle is stronger than this response with the variable flip angle, the VASO 

data is much worse with no clear response to the stimulation periods when a constant 

flip angle is used with the 3D readout. The tSNRs of each contrast were also compared, 

for BOLD tSNR = 43, 36, 32 (for 2D, 3D, 3D variable); for VASO tSNR = 27, 16, 27; 

aCBV tSNR = 2.3, 1.4, 1.6; CBF tSNR 1.5, 0.9, 1.3 for 2D, 3D and 3D variable 

respectively. Although the 2D scan has higher tSNR for BOLD, the 2D scan is limited 

as it only has 5 slices compared to 12 slices for the 3D scan, therefore due to 

considerably better coverage the final sequence used was a 3D single echo with flip 

angle modulation. After initial visualisation of the CBF data, along with tSNR analysis, 
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the CBF data were found to be of poor quality. Therefore, the CBF data were not 

analysed any further. It is hypothesised this may have been due to the instability of the 

MRI scanner at the time of acquisition rather than the pulse sequence. 

 

Figure 6.10. fMRI for 2D EPI. Showing task activation for (top to bottom) BOLD, VASO, aCBV 

and CBF. Right-hand column shows time courses of activation from region of interest in 

contralateral sensorimotor area (% change from baseline). Threshold at p<0.05 FDR 

corrected.  
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Figure 6.11. fMRI for 3D EPI with constant flip angle. Showing task activation for (top to 

bottom) BOLD, VASO, aCBV and CBF. Right-hand column shows time courses of activation 

from region of interest in contralateral sensorimotor area (% change from baseline). Threshold 

at p<0.05 FDR corrected. 
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Figure 6.12. fMRI for 3D EPI with variable flip angle. Showing task activation for (top to 

bottom) BOLD, VASO, aCBV and CBF. Right-hand column shows time courses of activation 

from region of interest in contralateral sensorimotor area (% change from baseline). Threshold 

at p<0.05 FDR corrected. 

6.3.6.2 Conclusion 

Based on this preliminary optimisation work, it was concluded that the optimal 

sequence was the 3D EPI variable flip angle sequence, which provides similar contrasts 

for VASO and BOLD compared to a constant flip angle, and equal signal intensities 

across slices compared to a 2D readout. The VASO-ASL-BOLD sequence was able to 

reliably detect functional activation for BOLD, aCBV and VASO, but little effects were 

seen for CBF data, due to reduced SNR of CBF measures and scanner instability issues 

at the time of data collection. The 3D variable flip angle sequence (Figure 6.4) can 

therefore be used in studying post-stimulus responses, to measure BOLD, total CBV 

and aCBV during a grip-force paradigm which will be described in the rest of this 

chapter.  
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6.4 Assessing the BOLD PSU Using Combined VASO-

ASL-BOLD  

10 healthy right-handed volunteers (mean age 28 ± 4 years, 3 male) took part in this 

study, with pilot data collected on one additional subject (male, age 26). All participants 

gave written, informed consent and the study was approved by the University of 

Nottingham Medical School ethics committee.  

6.4.1 Paradigm 

Subjects lay supine in the scanner bore, wearing prism glasses to view a screen onto 

which the visual presentation was projected. The paradigm was adapted from that used 

in Chapter 4 for the MEG experiment (see Figure 4.1), and consisted of a series of grip-

contractions using an MR-compatible grip-force bar in their right hand (Current 

Designs, Philadelphia, USA) in order to reach the target profile. The target profile 

appeared on screen 2 s before the subject was required to grip, onto which the real-time 

force output from the grip-force bar was plotted. The height of the boxcar was set at 

30% of the subject’s maximum voluntary force (MVF). MVF was determined prior to 

the start of the scan session, when the subject was in the bore with their hand in position 

for the experiment. After each stimulus was a 60 s rest period where a fixation cross 

was presented to allow the haemodynamic response to fully return to baseline. Subjects 

were instructed to relax their right hand during the rest period between stimuli. Six trials 

of each stimulus (2 and 10 s) were presented in one run in a pseudo random order (12 

trials in each run). Three runs were performed, with different ordering of trials for each 

run. The ordering of trials was designed so that the trial onsets were jittered in a 

controlled way relative to the MRI acquisition, creating a sampling rate which was one 

third of the nominal 6 s TR of the MRI sequence.  

6.4.2 Data Acquisition 

fMRI data were acquired on a 7 T Philips Achieva MR scanner (Philips Healthcare, 

The Netherlands) with 32-channel Nova head coil (Nova Medical, Wilmington, MA, 

USA). A localiser was performed first to identify locations of activation in the motor 

cortex to facilitate slice selection for the main experiment. The localiser consisted of a 

GE 2D EPI sequence, TR = 2 s, TE = 25 ms, 20 slices, 1.75 mm isotropic resolution, 

72 volumes. The same visual presentation and grip-force task employed for the main 
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experiment was used for the localiser, but with fixed stimulus duration of 8 s on and 

16s off, repeated 6 times. IViewBOLD (Philips) was used to analyse these functional 

data on the scanner, to visualise areas of activation from the grip task. Activation maps 

were then overlaid on an anatomical image and slices for the main experiment were 

chosen based on these activation maps. Subsequently, three fifteen-minute runs of the 

task were acquired using the optimised VASO-ASL-BOLD sequence with a 3D EPI 

variable flip angle readout (see Section 6.3 for more details), with scan parameters: TR 

= 6 s; TE = 18 ms; TI1 = 1050 ms; TI2 = 2300 ms; 3D EPI FA = 18°, 19°, 20°, 22°, 24°, 

26°, 28°, 33°, 35°, 39°, 41°, 52° and 90°; voxel size 1.5 mm isotropic and 12 slices; 104 

x 102 matrix, FOV 154 x 18 x 154 mm, SENSE 2.5 x 1; 147 volumes per run. The jitter 

in paradigm presentation resulted in an effective TR of TR/3 (2 s) for aCBV, CBF and 

VASO, and 1 s for BOLD since BOLD data is collected following both the selective 

and non-selective inversions. 

The task runs were separated by the acquisition of anatomical images to allow the 

subjects to rest between experimental runs. These comprised 1) FLASH (TE = 11.4 ms, 

resolution 0.5 x 0.5 x 1.5 mm, 360 x 360 matrix, 74 slices), 2) high-resolution phase-

sensitive inversion recovery (PSIR) (0.7 mm isotropic resolution, 320 x 320 matrix, 

224 slices) 3) B0 map (TE = 5.92 ms, 4 mm isotropic resolution, 64 x 64 matrix, 40 

slices) and 4) B1 map (4.5 mm isotropic resolution, 44 slices, 64 x 64 matrix).  

Surface electromyography (EMG) was recorded from the subject’s right forearm to 

measure exact movement times and monitor movement. Surface Ag/AgCl electrode 

pairs (EasyCap GmbH, Germany) were positioned in a bipolar configuration over the 

forearm extensor bundle (channel 1) and forearm flexor bundle (channel 2) muscle 

groups. As in Chapter 4, EMG data were acquired using an ExG amplifier (Brain 

Products GmbH, Germany) and BrainVision recorder (v 1.1), with a sampling rate of 

5000 Hz and frequency range of 0.016–250 Hz (with 30 dB roll-off at high frequencies). 

The EMG clock was synchronised to the MR scanner clock and markers were inserted 

at the start of each TR period to ensure temporally synchronised data, to allow for 

gradient artefact correction. In addition, grip-force bar data were recorded throughout 

the task via MATLAB. The 100% MVF contractions performed in the MEG experiment 

to monitor fatigue were not performed in this experiment, as the results from Chapter 

4.4.1 did not show effects of fatigue. It was decided these were not needed as the fMRI 
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experiment had longer rest periods between trials and less trials overall, so was even 

less likely to cause fatigue.  

6.4.3 Analysis  

6.4.3.1 EMG 

EMG data were corrected to remove the gradient artefact and filtered. Gradient artefact 

correction was performed in BrainVision Analyzer 2.2 using the TR value of 6 s and a 

sliding average calculation with 51 repeats. Data were filtered to 1 – 150 Hz and 

rectified. Data were then analysed to extract onset and offset times of movement from 

the EMG trace using an in-house MATLAB program, modified from that used in 

Chapter 4. The standard deviation of baseline EMG activity was determined in a time 

window 45 to 55 s after the visual cue for contraction offset from all contractions, 

independently for each EMG channel and subject. This baseline period was used to 

determine a noise threshold which was defined as three times the standard deviation of 

the baseline (Cheyne et al., 2008; Muthukumaraswamy, 2010). Subsequently, the onset 

of contraction was defined as the first time point, in a 0.5 s window either side of the 

visual cue, when the signal was greater than the noise threshold. Unlike in Chapter 4, 

(4.3.4.1), for each subject, the best channel was chosen (channel with cleanest EMG 

trace) from which to define the movement times as the channels were noisier than the 

MEG-EMG data (see Results). In addition, extra movements during the rest period were 

unable to be detected in these EMG data due to higher noise in the fMRI-EMG data. 

Grip-force and motion parameter data were visually inspected for any large movements 

and none were found, therefore all subjects and trials were included for further analysis.  

To investigate the performance of the task, the mean EMG amplitude was determined 

during the grip period. The Hilbert envelope of the signal was taken, and the mean 

amplitude during the grip (excluding the first and last 0.5 s of each trial) was found. 

This was compared across runs and durations to assess whether there was any difference 

in EMG signal during the different runs of the experiment or the two experimental 

conditions.  

Similarly, the mean force from the grip-force data were measured. Data were converted 

to a percentage of the subject’s MVF and the mean grip-force during each contraction 

was determined, with the first and last 0.5 s excluded so that only steady force output 

was captured. 



163 

 

6.4.3.2 MRI pre-processing  

BOLD data from the label and control acquisitions were interleaved, to provide a TR 

of 3 s. Data were motion corrected to the first volume within each run using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and coregistered between runs by 

registering all data to the first volume of the second run in FSL using FLIRT. ASL-

weighted data collected at TI1 and TI2 were linearly interpolated to an effective TR of 

3 s. Tag-control pairs from the first phase were subtracted to produce aCBV-weighted 

images (see Figure 6.4). VASO data were corrected for BOLD weighting by dividing 

the VASO-weighted images acquired after the non-selective pulse at the earlier TI1, by 

the BOLD-weighted image at TI2 (see Figure 6.4). PSIR data were corrected for field 

bias to produce high resolution T1-weighted PSIR image (Mougin et al., 2016; Van de 

Moortele et al., 2009) and brain extracted using FSL (Jenkinson et al., 2012). fMRI data 

were co-registered to the individual subject’s PSIR using FLIRT (FSL). A vein mask 

was created (Figure 6.13) from the T2
*-weighted FLASH image by high-pass filtering 

the unwrapped phase images and using a threshold to identify veins (Besle et al., 2014). 

If signal remains from large veins, it can limit the spatial resolution achievable of 

activation maps. Barth and Norris showed that removal of veins can improve spatial 

specificity of activation maps (Barth & Norris, 2007), however reduces the activated 

volume by 25%. Excluding the draining vein effects ensured that signals measured were 

dominated by microvasculature more closely related to neurons rather than by large 

draining veins. The brain extracted PSIR image was segmented into grey matter, white 

matter and cerebrospinal fluid (CSF) masks using segment in SPM12 (Figure 6.14). 

The resultant maps were then transformed to the functional space in which the BOLD, 

VASO and aCBV data resided using FLIRT (FSL). 

 

Figure 6.13. Example of a vein mask (blue) created from FLASH image of individual subject 

and transformed to functional space, overlaid on the PSIR image. 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Figure 6.14. PSIR is segmented into grey matter, white matter and CSF probability maps for 

each subject. Maps were transformed to functional space and thresholded to create an 

individual subject mask of CSF (shown in blue, overlaid on the PSIR image).  

6.4.3.3 Basic General Linear Model  

The main focus of this work was to compare BOLD responses to a task where the 

electrophysiological response was already known (Chapter 4) and elucidate the origins 

of the haemodynamic response. For this, a general linear model (GLM) was used for 

each subject to locate regions of activation to the task. Analysis was carried out in 

SPM12. Data were modelled with a boxcar regressor of constant amplitude, using the 

onset and offset times of the grip-contraction determined from the EMG data. This 

boxcar was convolved with a conventional canonical double-gamma 6 s peak 

haemodynamic response function (HRF) available in SPM12. A regressor was made 

for each run with both 2 and 10 s stimuli modelled in the same regressor, as no spatial 

difference was expected in the region of the brain activated by these two conditions. 

Motion parameters were also included in the design matrix for each run as nuisance 

regressors. GLMs were performed separately for the BOLD, aCBV and VASO data. 

For the BOLD data, positive task contrasts to the stimulus regressor were assessed, with 

a threshold at p < 0.05, FWE corrected with a 5 voxel extent, to identify regions of 

correlation with the task. Negative contrasts were assessed for VASO data whilst 



165 

 

positive contrasts were assessed for aCBV data. For both these data, a lower threshold 

of p < 0.001 uncorrected, 5 voxel extent was used for VASO and aCBV due to the 

intrinsically lower SNR of these sequences. Following this, the activation maps from 

each image contrast were binarised and summed to find voxels where activation 

occurred in conjunction in BOLD, aCBV and VASO responses, thus producing maps 

of activation of the spatial conjunction all three contrasts.  

6.4.3.4 Regions of Interest (ROIs) and Time Courses  

From the MEG study, (Chapter 4) it was observed that the PMBR was localised more 

to the precentral gyrus which is known to be the primary motor area, therefore, regions 

of interest (ROIs) were taken from within the precentral gyrus. A mask of the precentral 

gyrus created from the Harvard-Oxford cortical atlas was transformed into each 

subject’s functional space using FLIRT (FSL). ROIs were taken as a 3 x 3 x 3 voxel 

cubic region (total = 27 voxels) surrounding a number of peak responses within the 

contralateral precentral gyrus for each subject. Firstly, an ROI was formed from the 

peak BOLD T-stat within the conjunction mask of the BOLD, aCBV and VASO 

activation (termed ‘Large ROI’). This ROI was then refined to remove potentially 

confounding signals. Due to the fact that BOLD responses can be dominated by large 

draining veins, the vein masks created from the FLASH images were used to exclude 

veins from the conjunction activation mask. The VASO signal will also be modulated 

by partial voluming of CSF or white matter (Lu et al., 2003). If a voxel is only 50 % 

grey matter, uncertainty is introduced in the proportionality between VASO signal 

change and CBV (Lu et al., 2013). Therefore, the CSF mask created from the PSIR was 

used to exclude any voxels containing a large fraction of CSF from the conjunction 

activation mask, resulting in a cleaned conjunction activation mask which excluded 

both draining veins and voxels with large CSF contributions. With these confounding 

factors removed, a second ROI was created centred on the peak of the BOLD T-stat 

within the cleaned conjunction activation mask (termed ‘Small ROI’). Only voxels 

which were not CSF or veins could be included in this ROI, as such ROIs often 

contained fewer than the nominal 27 voxels defined as an ROI (5 ± 4 voxels, range 1 – 

11). To interrogate signal quality for each contrast, further ROIs were created centred 

on the peak i) BOLD ii) VASO and iii) aCBV t-stat within the contralateral precentral 

gyrus (Appendix A). 
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Time courses of BOLD, VASO and aCBV response were extracted from the large and 

small ROI. The time courses were interpolated to 1 s temporal resolution and segmented 

based on timings of movement from the EMG. Each run was converted to a percentage 

signal change relative to baseline, where baseline was defined as the last 10 s of each 

trial, before the next visual cue was presented. Responses were averaged over trials, 

separately for 2 and 10 s stimuli, and then subjects to produce a subject average. 

To test for significant differences between stimulus conditions, the peak of the primary 

response (a minimum for VASO) was found in the 1 to 20 s period after stimulus onset, 

averaged over 1 TR period around the peak, this was determined separately for the 2 

and 10 s datasets, and a paired Student’s t-test was used to compare the peak amplitude 

of the haemodynamic responses between the two conditions. If the data were not 

normally distributed, as was the case for the aCBV data, a Wilcoxon signed rank test 

was used. The minimum of the post-stimulus response (PSR) (maximum signal for 

VASO) was found in the 15 to 35 s period after stimulus onset and averaged over 1 TR 

period around the minimum, again this was determined for 2 and 10 s and paired t-tests 

(Wilcoxon signed rank test for aCBV data) were performed to assess differences 

between the amplitudes of the responses for the two conditions for BOLD, VASO and 

aCBV responses. The minimum of the PSR was also tested if it was a significant effect 

for each stimulus duration and response (one sample t-test). 

6.4.3.5 Using MEG Regressors in the GLM 

The analysis in Section 6.4.3.3 uses a GLM comprising of a boxcar convolved with a 

standard canonical HRF. When a canonical HRF is convolved with a boxcar stimulus 

duration of 10 s, the undershoot is larger than the undershoot for a 2 s stimulus duration 

(Figure 6.15, bottom row). This is what the GLM will be modelling, so the GLM results 

will clearly show the highest t-stat results in regions which show this form of 

modulation of the PSR. However, if the PSR is neuronally driven, then the MEG results 

from Chapter 4 predict a larger undershoot for the 2 s than 10 s stimulus. To explore 

this possibility, a second GLM was created using the known MEG responses as inputs 

to the GLM. This GLM was designed to determine if the activation identified from the 

MEG input model was spatially different or stronger than that identified by the 

conventional boxcar model from Section 6.4.3.3.  



167 

 

Different components of the MEG response were convolved with a HRF and used to 

model the fMRI responses. The MEG beta band time course was divided into the 

movement related beta decrease (MRBD) component measured during the stimulus and 

the post-movement beta rebound (PMBR) component measured post-stimulus. To 

reduce noise in the model the trapezoid and Weibull fits to the average MEG MRBD 

and PMBR responses were used and each convolved with a 10 s single-gamma HRF 

(Mullinger et al., 2013a). Since BOLD and beta are expected to be negatively correlated 

(Yuan et al., 2010), the MEG beta band time course was multiplied by -1 to give 

positive correlations. These were input as the first two regressors in the GLM. As well 

as exploring effects in the beta frequency band, gamma band responses and BOLD have 

been shown to be positively correlated (Goense & Logothetis, 2008; Logothetis et al., 

2001; Zumer et al., 2010), with gamma band activity thought to most closely relate to 

the primary BOLD response (Goense & Logothetis, 2008). Therefore, the gamma 

response was also modelled in the GLM. Again to reduce noise, a Weibull distribution 

was fit to the subject average gamma response (Chapter 4.4.4) and this was input as a 

third regressor, convolved with a 6 s single-gamma HRF (Mullinger et al., 2013a).  

Using this GLM of MEG responses, analysis was performed on the BOLD, VASO and 

aCBV images to identify regions of the brain which significantly correlated with each 

regressor. Positive contrasts with each regressor were assessed with a threshold at p < 

0.001 uncorrected. Separately for each regressor, the peak active voxel in the BOLD 

image was found in the contralateral precentral gyrus and a 3 x 3 x 3 ROI was centred 

on this voxel. From this ROI, the mean time course was found and averaged over 

subjects to identify the temporal profiles of responses generated from each regressor, 

and to determine if there were regions where the PSR behaved in a manner predicted 

by the classic boxcar (i.e. larger PSR for the 10 s stimulus) or other regions which 

behaved as predicted by the MEG data (i.e. larger PSR for the 2 s stimulus).  
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Figure 6.15. MEG regressors (MRBD, PMBR and Gamma) shown compared with the stimulus 

boxcar regressor used in Section 6.4.3.3. The average MRBD and PMBR responses for the 2 s 

(red) and 10 s (blue) stimuli from Chapter 4 were convolved with a 10 s single gamma HRF to 

create MRBD and PMBR regressors, the gamma responses were convolved with a 6 s single 

gamma HRF and a boxcar of the stimulus duration was convolved with a 6 s double gamma 

HRF to produce the boxcar regressor.  

6.4.3.6 Simulation  

Based on these MEG models in Section 6.4.3.5 a simulated time course was created. 

This was used to investigate the effects of sampling rate on the time courses to 

understand the time courses observed for each of the fMRI contrasts (BOLD, VASO 

and aCBV) (see Results 6.5.2). Appendix B provides details of these simulations.  

6.4.3.7 CMRO2 estimation  

On the basis of the results of the different GLM analyses (see Results) CMRO2 

calculations were performed on the time courses from the conventional boxcar GLM 

which gave the most robust responses across contrasts. The CMRO2 change during the 

primary and post-stimulus response was estimated using the Davis model (Davis et al., 

1998), described in terms of CBV rather than CBF (Guidi et al., 2016). Combining the 
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Davis model (Davis et al., 1998), which gives BOLD signal change as a function of 

CBV, CBF and CMRO2, with Grubb’s law (Chen & Pike, 2009a; Grubb et al., 1974), 

and the relationship between the VASO signal and CBV (Lu et al., 2013), the change 

in BOLD signal (𝛿𝑆) can be written as a function of CBV and CMRO2 (Guidi et al., 

2016),  

 δS = M(1 − vt
(αv−β)/αt  rβ) (11) 

where 𝑀 is the maximum BOLD signal change (a calibration constant), 𝑣𝑡 is relative 

CBV in the total blood compartment, 𝛼𝑡 is Grubb’s coefficient in the total blood 

compartment and 𝛼𝑣 in the venous compartment. 𝑟 is relative CMRO2 and 𝛽 is a 

constant dependent on transverse relaxation rate and deoxyhaemoglobin concentration, 

which is approximately 1 at 7 T (Martindale et al., 2008). Equation 11 can be rearranged 

to calculate CMRO2,  

 (
𝐶𝑀𝑅𝑂2

𝐶𝑀𝑅𝑂2,0
)

𝛽

= (1 −
(

Δ𝐵𝑂𝐿𝐷
𝐵𝑂𝐿𝐷0

)

𝑀
) (

𝐶𝐵𝑉𝑡

𝐶𝐵𝑉𝑡,0
)

𝛽−𝛼𝑣/𝛼𝑡

 (12) 

where subscript ‘0’ represents the quantity at rest (baseline). This was used to calculate 

CMRO2 using αv = 0.2 (Chen & Pike, 2009a), αt = 0.38 (Grubb et al., 1974) and β =

1 (Martindale et al., 2008). 𝑀 depends on baseline quantities, TE and field strength and 

was estimated from literature hypercapnic challenges. A study with the same field 

strength and TE found M = 11 (Guidi et al., 2016), therefore this value was used for the 

main analysis. Further values of M were found in the literature and normalised to the 

field strength and TE used in this experiment, and a wider range of values of M (M = 

18 and M = 25) were explored in Appendix C. The change in CMRO2 was calculated 

during the primary response and the PSR using the BOLD and VASO time courses 

from the peak BOLD response ROI within the contralateral precentral gyrus (Small 

ROI). The maximum BOLD signal change in the 1 to 20 s period from stimulus onset 

for each subject was computed and averaged over a period of ± 1 s. The VASO signal 

change was measured at the time point that the BOLD peak occurred and averaged over 

a period of ± 3 s. The change in CMRO2 was then calculated for each subject using 

Equation 5. From the results of Appendix B, the primary VASO response for the 2 s 

stimulus was found to be consistently smaller than the 10 s response which was not 

seen in the BOLD responses. From Appendix B it was shown that the 2 s stimulus 

VASO peak amplitude was consistently under-represented (80% of true VASO 



170 

 

amplitude) due to the sampling rate of the VASO sequence. Therefore measured 

amplitudes of the 2 s VASO primary response were scaled by a factor of 1.25 to 

compensate for the artefact of the analysis method. This scaled VASO measure was 

used for the CMRO2 calculation. Percentage change CMRO2 during the primary 

response and PSR was compared for the 2 and 10 s grip contraction using a paired 

Student’s t-tests. A one sample t-test was used to test whether the percentage change 

CMRO2 differed significantly from baseline.  
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6.5 Results 

One subject was removed from further analysis due to considerably lower tSNR (17 ± 

1) than all other subjects (28 ± 4). Therefore, results are presented for nine subjects.  

6.5.1 EMG 

After gradient artefact correction, the EMG data collected inside the MRI scanner were 

considerably noisier than in the MEG environment as shown in Figure 6.16A. To 

investigate if the residual noise was at a specific frequency, EMG data were Fourier 

transformed. Figure 6.17 clearly shows there are gradient artefact residuals which 

remain in the data, as well as higher broadband noise due to the MRI static field. The 

fMRI-EMG results also show large spikes at movement onset and offset (Figure 6.16A) 

which was not seen the in MEG-EMG. This is probably due to movement of the wires 

in the magnetic field. Although the large spikes on movement onset and offset are not 

true muscle activity, they are clearly time-locked to movement offset and onset and as 

a result were used in this analysis. Despite these differences in EMG, little difference 

was observed between grip-force data in the fMRI and MEG experiments (Figure 

6.16B), showing the two experiments were performed similarly.  

As is apparent from Figure 6.16A, EMG channel 2 (measuring forearm flexor bundle 

activity) was cleaner than channel 1 (measuring forearm extensor bundle activity). The 

traces were visually inspected for each subject, and it was clear than one channel always 

contained less noise - channel 2 for 8 subjects, and channel 1 for 1 subject. The channel 

with the least noise was used to determine the movement onsets and offsets together 

with amplitude, and the other channel discarded.  

The mean EMG amplitude for runs 1, 2 and 3 were 277 ± 181 µV, 249 ± 122 µV and 

267 ± 138 µV respectively. These values were not statistically different across runs 

(p>0.05, RM-ANOVA). The mean grip-force output (across subjects and durations ± 

standard deviation) was 29 ± 1% MVF during run 1, 30 ± 1% MVF during run 2 and 

30 ± 1% MVF during run 3, with a significant difference between runs (p = 0.02, RM-

ANOVA), driven by the difference between run 1 and run 2. However, given the highly 

similar values of force output and no significant difference in EMG amplitudes, the 

runs were considered to be the same. The grip-force data show excellent performance 

of the task, with subjects reaching the desired 30% MVF.  
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Figure 6.18 compares EMG and grip-force data for the two task durations. The mean 

EMG amplitude for the 2 s grip was 275 ± 163 µV and 253 ± 131 µV for the 10 s grip. 

There was no significant difference across durations (p>0.05, Wilcoxon signed rank 

test). Accordingly for the grip-force data, mean %MVF for the 2 s grip was 30 ± 1 

%MVF, and 29 ± 1 %MVF for the 10 s grip, with no significant difference (p>0.05, 

paired t-test). These data show that there was no difference in performance between the 

two task durations.  

 

Figure 6.16. Comparison of fMRI and MEG EMG and grip-force measures for the same subject 

who completed both fMRI and MEG experiments. (A) EMG time courses for run 1 of the fMRI 

(left) and MEG (right) experiments in channel 1 (top) and channel 2 (bottom), note the 

difference in timings in the two experiments: baseline between contractions was 60 s for the 

fMRI and 30 s for the MEG experiment. As channel 2 in this case contained much less noise 

than channel 1, channel 2 was used for determining movements which are displayed in red. (B) 

Time courses of fMRI-grip-force (left) and MEG-grip-force (right) averaged over the different 

contraction durations (red – 2 s; green – 5 s; blue – 10 s). 
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Figure 6.17. Fourier transforms of fMRI-EMG (blue) and MEG-EMG (red) experiments, for 

channel 1 (left) and channel 2 (right) for the same subject in Figure 6.16.  

 

Figure 6.18 Comparing average grip and EMG for 2 and 10 s grip contraction. Rows A and B 

are for 1 subject: Row A shows average grip and EMG response to 2 s contraction, and row B 

shows average grip and EMG responses to 10 s contraction. Row C is the subject average, 

showing the average grip and EMG for 2 s and 10 s contraction, with error bars showing the 

standard deviation over subjects.  

6.5.2 fMRI Responses 

The motor task produced BOLD, aCBV and VASO responses in the contralateral motor 

area for all subjects, as shown in Figure 6.19. As expected, the BOLD response was 

stronger than VASO and aCBV due to the higher CNR of the sequence and the 

increased sampling rate (two BOLD images acquired for each VASO and aCBV 
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image). Figure 6.20 shows activation maps derived using a boxcar GLM across all 12 

slices for Subject 2, illustrating that the task activation in the sensorimotor cortex was 

not limited to one slice. The average time course from the peaks of activation within 

the precentral gyrus was computed over all subjects for each contrast (Figure 6.28). 

Appendix A provides these data for all participants showing that all data acquired were 

of good quality with clear responses. 

In all subjects, common active voxels were detected in BOLD, aCBV and VASO 

images with this ‘conjunction activation’ map shown for one slice in each subject in 

Figure 6.19 (right column), and in Figure 6.20 (bottom row) for all slices in a single 

subject. The peak t-stat of the BOLD was then found within this common activation 

and an ROI was created centred on this BOLD peak (Section 6.4.3.4). Time courses of 

BOLD, VASO and aCBV signals obtained from this Large ROI were averaged over 

trials for each condition and are shown in Figure 6.21 with an example of the Large 

ROI for one subject.  

Vein and CSF masks were created for each subject as shown in Figure 6.13 and Figure 

6.14. The peak BOLD t-stat was found within the conjunction activation, excluding 

CSF and veins from which a Small ROI was created which excluded veins and CSF. 

This resulted in an average (± standard deviation) of 5 ± 4 voxels (range 1 – 11 voxels) 

in the Small ROI over all subjects. An example of the Small ROI is shown in Figure 

6.22A and corresponding subject average time courses are shown in Figure 6.22B. It 

was decided to use the Small ROI in further analysis, since this ROI better represents 

tissue responses which are more likely driven by a neuronal origin. Appendix A shows 

the time courses for each individual subject for the small ROI (Figure 6.29).  
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Figure 6.19. Individual subject activation maps for BOLD, VASO and aCBV responses and the 

conjunction of all three response maps. BOLD threshold at p = 0.05 FWE corrected, 5 voxel 

extent; VASO and aCBV threshold at p = 0.001 uncorrected, 5 voxel extent. 
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Figure 6.21. (A) Example of Large ROI (blue cube) used for one subject (Subject 2) determined 

from the peak BOLD response within the conjunction activation (overlaid in pink), constrained 

to precentral gyrus (radiological view). (B) Time courses from subject specific Large ROIs, for 

BOLD, VASO and aCBV signals averaged over subjects for 2 s and 10 s contraction durations. 

Error bars show the standard error over subjects. Note, initial 8 s of the 2s contraction time 

courses are padded to align response with stimulus offset of 10 s contraction time.  

Results from the Small ROI BOLD time course showed a clear positive BOLD primary 

response, with a percentage signal change of 4.7 ± 0.5 % for both the 2 and 10 s task 

durations (Figure 6.23Ai). The primary BOLD response took, on average from 

contraction onset, 6.8 ± 0.4 s to peak for the 2 s contraction and 9 ± 3 s to peak for the 

10 s contraction. There was no significant difference (paired t-test, p = 0.78) in the 

amplitude of the peak of the primary response for the 2 and 10 s contraction duration 

of the BOLD over all subjects, in contrast to the prediction from the boxcar GLM 

(Figure 6.15, bottom row). As can be seen in Figure 6.22B, the BOLD post-stimulus 

undershoot lasted around 20 s from when the BOLD signal passed zero following the 

primary response before returning to baseline, reaching -1.1 ± 0.3 % for the 2 s 

contraction and -1.7 ± 0.3 % for the 10 s contraction (Figure 6.23Bi). The post-stimulus 

undershoot was significantly different between the two task durations (paired t-test, p 

= 0.01) with the 10 s duration producing a larger (more negative) undershoot, in 

agreement with the model from the boxcar GLM (Figure 6.15, bottom row).  

The VASO response showed, as expected, a primary negative percentage signal change 

(implying a positive CBV change) of -2.5 ± 0.3 % for the 2 s contraction duration and 
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-3.0 ± 0.3 % for the 10 s contraction duration (Figure 6.23Aii), followed by a small 

positive post-stimulus response (Figure 6.22 and Figure 6.23Bii). There was no 

significant difference (p = 0.13) between the VASO primary amplitude response 2 and 

10 s contraction duration. The PSR amplitude was significantly different from zero over 

all contraction durations (p = 0.002), but there was no significant difference in post-

stimulus response amplitude between the 2 and 10 s contraction durations (p = 0.09). 

The aCBV response showed a large positive primary response, with a 114 ± 23 % signal 

change for the 2 s contraction duration and 160 ± 45 % signal change for the 10 s 

contraction duration, which were significantly different (p = 0.008), Figure 6.23Aiii. 

The post-stimulus response amplitudes were not significantly different from zero 

(Figure 6.23Biii). 

These time courses for the BOLD responses reveal clear discrepancies in the primary 

response to those predicted by the boxcar model. Therefore, the modulation of the post-

stimulus response seen here may be driven by boxcar model. The next section provides 

results modelled based on the known electrophysiology MEG response, to assess 

whether other brain regions are revealed which exhibit PSR modulation which matches 

the neuronal modulation measured in Chapter 4.  

 

Figure 6.22. (A) Example Small ROI (blue) from one subject (Subject 2), created from location 

of peak BOLD t-stat in conjunction activation with CSF and veins excluded and constrained to 

the left precentral gyrus (radiological view) (B) Subject average time course for BOLD, VASO 

and aCBV signals from the Small ROI.  
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6.5.3 Using MEG Regressors in the GLM 

The orthogonality between the three regressors (cosine of angle) in the design matrix 

was: PMBR and MRBD = -0.19, PMBR and gamma = -0.04, MRBD and gamma = 

0.59, highlighting that the MRBD and gamma regressor are not orthogonal, which 

means that the regressors are correlated and the results may be unreliable. Hence, 

another GLM was performed with only the two MRBD and PMBR regressors. Positive 

contrasts of the PMBR regressor gave the same peak t-stat voxel location for both the 

2-regressor (MRBD and PMBR) and 3-regressor GLM (MRBD, PMBR, and gamma). 

Resultant t-stat maps from each of the MEG regressors for the BOLD data are shown 

in Figure 6.24 using the 3-regressor model, as well as the combined positive contrast to 

all 3 regressors. The PMBR regressor produced a small localised area of activation in 

the left motor cortex in all subjects. The MRBD regressor showed less activation than 

the PMBR regressor. For some subjects the gamma regressor showed less active regions 

and smaller t-stat values than the PMBR regressor, for others gamma produced a 

stronger response. There was no clear change in spatial location of the peak t-stats 

between the three regressors. Surprisingly, the VASO (Figure 6.25) and aCBV (Figure 

Figure 6.23. Summary of results from time courses of (left to right) BOLD, VASO and aCBV 

responses from the Small ROI. Top panel (A) shows results of the amplitude of the primary 

response, bottom panel (B) shows results the post-stimulus response compared for the 2 and 

10 s grip duration. * indicates a significant difference (p<0.05, paired t-test) between task 

duration. Note that the aCBV post-stimulus responses were not a significant effect.  
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6.26) contrasts show very little activation to any of these MEG regressors, or the 

combination of all three.  

As there was little activation for VASO and aCBV, only the BOLD data were analysed 

further. Time courses were taken from an ROI at the location of the peak BOLD t-stat 

of the positive contrasts of the PMBR regressor, and the positive contrast of all three 

regressors for each subject, with veins and CSF excluded. Table 6.2 shows the peak 

voxel location of the PMBR regressor compared to all regressors. Figure 6.27 shows 

time courses from this ROI averaged over all subjects. No significant differences were 

observed in the maximum percentage change in BOLD signal during the primary 

response, and the minimum percentage change in BOLD signal during the post-

stimulus undershoot, between any of the regressors.  

In addition, the primary response amplitude for the 2 s and 10 s contraction duration 

did not significantly differ for any of the time courses shown in Figure 6.27. However, 

the PSR still showed a significantly larger (p = 0.008) amplitude for the 10 s contraction 

duration than the 2s even when the PMBR regressor was used for the ROI definition. 

With this ROI, the PSR amplitude was -1.2 ± 0.5% for the 2 s contraction duration, 

whereas the 10 s contraction duration had an amplitude of -1.7 ± 0.6%.  
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Figure 6.24. BOLD activation (t-statistic) maps with threshold at p = 0.001 uncorrected 5 voxel 

extent for MRBD regressor, PMBR regressor, Gamma regressor and all contrasts. Box 

highlights regressors that were not orthogonal in the 3-regressor GLM.  
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Figure 6.25. Activation maps (t-statistic) for VASO data of MRBD regressor, PMBR regressor, 

Gamma regressor and all contrasts, threshold at p = 0.001 uncorrected 5 voxel extent. Box 

highlights regressors that that were not orthogonal in the 3-regressor GLM.  
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Figure 6.26. Activation maps (t-statistic) for aCBV data of MRBD regressor, PMBR regressor, 

Gamma regressor and all contrasts, threshold at p = 0.001 uncorrected 5 voxel extent. Box 

highlights regressors that were not orthogonal in the 3-regressor GLM.  
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Figure 6.27. Subject average time courses of BOLD data from peak t-stat location of PMBR 

regressor (pink), and all regressors (blue) compared to boxcar regressor (black, from Figure 

6.22) for 2 s contraction duration and 10 s contraction duration. Shown without (top row) and 

with (middle row) error bars for ease of comparison. Bottom row: 2 and 10 s contraction 

response for PMBR regressor and all regressor shown individually. Error bars show standard 

error across subjects.  
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Subject 
PMBR All 

X Y Z X Y Z 

1 83 58 9 77 57 5 

2 76 48 8 80 53 10 

3 79 50 10 79 50 10 

4 78 46 4 78 46 4 

5 74 47 5 75 47 4 

6 89 54 2 88 53 2 

7 83 43 7 74 52 4 

8 88 35 3 88 35 3 

9 85 54 5 85 54 5 

Table 6.2. Peak voxel locations in MNI space of the PMBR regressor and all regressors 

compared for each subject. These locations were used to produce the time courses in Figure 

6.27. 

6.5.4 CMRO2  

CMRO2 was estimated during the primary and post-stimulus response period for each 

subject. Based on the results of simulations in Appendix B, CMRO2 was calculated 

using the upscaled VASO data for the 2 s stimulus for the primary response. Since the 

PSR is assumed to have a long duration, the VASO response amplitude was not 

upscaled in the post-stimulus phase for these calculations.  

Table 6.3 shows the results of the CMRO2 calculation for a value of M = 11 (Guidi et 

al., 2016), results for other values of M values (18 and 25) are given in Appendix C. 

The BOLD and VASO data used in the calculation are also provided. As expected, the 

results for the 2 and 10 s primary response show a significant increase in CMRO2 above 

zero during the primary phase, but no significant difference (p = 0.19, paired samples 

t-test) between the 2 and 10 s grip duration. However, the change in CMRO2 from 

baseline during the PSR were not found to differ significantly from baseline. 
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% CMRO2 for each subject 

Average 

± SE 

1 2 3 4 5 6 7 8 9  

2 s  

primary 

response 

57 32 37 17 46 36 57 5 -10 31 ± 7* 

10 s 

primary 

response 

45 35 24 4 35 20 79 10 -31 25 ± 10* 

2 s  

post-stimulus 

response 

3 -1 -7 -8 41 29 64 -20 -17 9 ± 9 

10 s  

post-stimulus 

response 

-4 -22 -36 -36 18 18 41 -56 17 -7 ± 10 

BOLD amplitude (% change) 

2 s  

primary 

response 

4.4 3.8 4.0 6.8 3.2 4.3 3.1 4.9 8.0 4.7 ± 0.5 

10 s  

primary 

response 

4.6 3.7 3.5 7.3 3.0 4.7 3.6 4.7 6.9 4.7 ± 0.5 

2 s  

post-stimulus 

response 

-0.9 -1.4 -0.4 -2.4 -0.7 -1.1 -0.6 -0.7 -2.4 -1.2 ± 0.2 

10 s  

post-stimulus 

response 

-1.6 -1.1 -1.5 -3.1 -0.9 -2.0 -0.7 -1.5 -2.7 -1.7 ± 0.3 

VASO amplitude (% change) 

2 s  

primary 

response 

-3.2 -2.2 -2.4 -3.8 -2.3 -2.6 -2.5 -2.0 -4.2 -2.8 ± 0.2 

10 s  

primary 

response 

-3.0 -2.2 -1.8 -3.9 -1.9 -2.3 -3.3 -2.0 -1.8 -2.5 ± 0.2 

2 s 

post-stimulus 

response 

0.1 0.3 0.3 0.7 -0.8 -0.4 -1.3 0.7 0.9 0.1 ± 0.2 

10 s  

post-stimulus 

response 

0.4 0.8 1.3 1.5 -0.2 0.0 -0.8 2.0 0.2 0.6 ± 0.3 

Table 6.3. Results of CMRO2 calculation. The CMRO2 percentage during primary response 

showed a significant change from baseline levels (*, p<0.05, paired Student’s t-test), the results 

of the PSR did not differ significantly from baseline levels. The VASO data used in the 2 s 

primary response calculation were multiplied by 1.25 to account for errors due to low sampling 

rate. BOLD and VASO data used in the calculation are provided.  
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6.6 Discussion  

Using 7 T fMRI, with a VASO-ASL-BOLD sequence, fMRI responses to a controlled 

grip-force task were investigated for two stimulus durations. No difference in the peak 

amplitude of the primary BOLD response was observed between the 2 s and 10 s task 

durations, but there was a difference in amplitude of the post-stimulus undershoot, with 

reduced amplitude for the 2 s contraction compared to the 10 s contraction. This is in 

contrast to the results found in Chapter 4, of the MEG response to the same stimulus, 

where a larger post-stimulus response was seen in the beta band for the shorter 2 s 

stimulus. 

Non-BOLD fMRI responses were also investigated. Both VASO (total CBV) and 

aCBV (arterial CBV, primary driver of CBF responses) showed an apparent difference 

in amplitude of the 2 and 10 s contraction primary response. However, this can be 

explained as an artefact of the low time resolution of the sequences, short stimulus 

duration and analysis pipeline. Unexpectedly, the VASO time courses for both stimulus 

durations showed a small, significant, positive post-stimulus response suggesting total 

CBV reduces below baseline during the PSR for shorter duration stimuli investigated 

here than previously investigated stimulus durations (Beckett et al., 2019; Huber et al., 

2018; Lu & van Zijl, 2005). Interestingly, no significant post-stimulus effect for aCBV 

was observed. Calculations of CMRO2 were performed which showed a significant 

increase in CMRO2 during the primary response, with no difference between the 2 and 

10 s task duration but no measurable change in CMRO2 during the PSR relative to 

baseline.  

Finally, the effects of using MEG responses to model fMRI data were explored. Little 

difference was seen in activation profiles or response time courses from ROIs between 

the different models for BOLD. The different MEG regressors used produced limited 

activation for VASO and aCBV data, yet, the BOLD data were modelled well by the 

MEG regressors.  

Effect of Stimulus Duration on Primary Response 

In this chapter it was shown that the duration of the contraction did not change the 

amplitude of the fMRI primary response. This is contrary to previous literature which 

suggests that shorter duration stimuli should give smaller amplitude primary BOLD 

responses than long duration stimuli (Glover, 1999; Miller et al., 2001; Soltysik et al., 
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2004). This discrepancy in the findings here compared with previous work could be 

due to differences in the types of movement used. Most previous studies using a finger 

tap, which could give different responses to a grip contraction. A finger tap is also 

harder to control for force and rate of movement, which could affect the BOLD 

response if force and speed of the movement for different stimulus durations are not 

controlled, then it is possible that the amplitude of the haemodynamic response would 

modulate based on change of force, rather than change of stimulus duration. The 

performance data recorded during this task (Figure 6.18 and Figure 6.19) suggest that 

the task was performed well, and that the 2 and 10 s grip contraction were performed 

equivalently. Finger tapping and flashing checkerboards which are often used as stimuli 

are also quite passive, whereas the task employed in this study involves visual feedback 

and requires the subject to pay attention. Another possibility for the difference observed 

is that previous studies have generally been performed at lower field strengths. 7 T, as 

was used in this chapter, has higher spatial resolution and also higher extravascular 

contribution to the signal from the capillary bed, which is much more closely related to 

neuronal activity (Duong et al., 2003; Yacoub et al., 2001), therefore 7 T is perhaps 

more sensitive to the true neuronal BOLD response. Finally, many of the previous 

studies did not leave a long enough inter-stimulus intervals for the haemodynamic 

response to return to baseline which could obscure differences in the BOLD response 

if baseline is not characterised correctly. If the inter-stimulus interval is not long 

enough, the period used as baseline may still be during the PSU, and therefore when 

the primary response is compared to the PSU the primary response will appear larger. 

This could cause a longer duration stimulus to appear larger in amplitude if the PSU is 

also longer and/or has a larger amplitude that short stimulus durations. This is a similar 

argument to that made about the observations of the MRBD in the literature compared 

with the findings in Chapter 4.  

Comparing the haemodynamic responses to the electrophysiological responses 

measured by the MEG (Chapter 4), it should be noted that the movement related beta 

decrease (MRBD) in MEG signal also reached the same amplitude for the different task 

durations during the stimulus. This could imply the fMRI responses observed in this 

chapter are directly linked to neuronal activity, perhaps generated by a combination of 

the beta and gamma band responses during stimulation. In addition, the MEG and 

BOLD responses appeared in similar locations between the two modalities.  
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The primary BOLD response showed clear transients during the 10 s stimulus, with a 

biphasic peak to the response. These transients have previously been reported in BOLD 

responses (Duff et al., 2007; Fox et al., 2005; Harms & Melcher, 2003). The work in 

this thesis allows direct comparison of the BOLD responses to MEG responses in 

Chapter 4. By comparing these responses, it can be seen that the BOLD transients are 

similar to the gamma band activity which was observed in the MEG response at 

contraction onset and offset, but not during the sustained contraction period (Figure 

4.8). This complements previous work suggesting the primary positive BOLD response 

is most strongly coupled to the gamma band response (Goense & Logothetis, 2008; 

Koch et al., 2009; Logothetis et al., 2001). An alternative explanation for the observed 

transients could be that there is an increase in grip force at the start and end of the 

contraction causing the observed response profile. Whilst there was often an overshoot 

in %MVF at the start of the contraction, it can be seen in Figure 6.16 and Figure 6.18 

that the %MVF is largely flat throughout the contraction, and no overshoot was 

observed in grip-force data or EMG amplitude at the end of the contraction, so this is 

unlikely to be the explanation for the BOLD transients observed.  

In this study, responses to a very short stimulus were investigated, compared to the 

stimuli which are often used in fMRI, especially in the field of VASO-fMRI. Short 

stimuli are more realistic to real-life situations and cognitive processing, therefore 

establishing a method to collect data and understand the BOLD response to basic short 

stimuli will help interpret more complex cognitive processes. However, investigating 

short stimulus responses with non-BOLD fMRI measures such as VASO is challenging 

due to the sampling rate of the sequences. The results presented here showed the 

primary VASO and aCBV response to the 2 s may be smaller than to the 10 s 

contraction duration (Figure 6.21 and Figure 6.22), which would be supported by 

previous literature that shorter stimuli give smaller primary responses. However, further 

analysis showed this to be an artefact of the analysis pipeline and the VASO and aCBV 

primary responses to these short stimuli track that of the BOLD response (Figure 6.32). 

This artefact occurred despite best efforts to maximise temporal resolution through 

jittering the stimuli relative to data acquisition in the study design.  
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Effect of Stimulus Duration on the Post-stimulus Response 

In contrast to the primary response, the BOLD PSU was found to be significantly 

smaller for the 2 s contraction than the 10 s contraction. This was accompanied by an 

apparent reduction in total CBV (increase in VASO signal) for both stimulus durations, 

with no significant difference between the two task durations (Figure 6.23). In both the 

total and arterial CBV measures there was no clear evidence of CBV remaining elevated 

post-stimulation, contrary to that proposed by the balloon model (Buxton et al., 1998). 

Furthermore, the CMRO2 calculations (Table 6.3) showed no evidence of CMRO2 

remaining elevated during the during the post-stimulus phase, inconsistent with the 

elevated CMRO2 theory (Lu et al., 2004b). However it is important to note that the 

CMRO2 results in this chapter were quite unreliable and further work is needed before 

conclusions about CMRO2 can be drawn. What does stand out is that the VASO and 

aCBV response showed different responses. aCBV is thought to be the primary driver 

of CBF responses, therefore the lack of an aCBV undershoot could also imply no 

undershoot in CBF, which is inconsistent with the decrease in CBF theory (Chen & 

Pike, 2009b; Sadaghiani et al., 2009). Rather, a PSU in total CBV but not aCBV 

suggests the PSU is driven by reduction in vCBV. This would suggest that there is a 

constriction of veins following the primary response. This is supported by recent work 

which showed a reduction in deoxygenated CBV during the post-stimulus period (Liu 

et al., 2019). However, if there is a reduction only in vCBV then a BOLD overshoot 

would be expected (i.e. the opposite of the balloon model) which is clearly not 

observed. The possible ways to produce a decrease in BOLD signal, given a reduction 

in vCBV, would require an increase in CMRO2 or a reduction in CBF. No post-stimulus 

change was observed in CMRO2 in this study, yet this is likely due to the uncertainties 

in the method, as calibration constants were estimated. CBF could not be measured due 

to insufficient SNR and instability of the scanner. In addition, the SNR of the VASO 

sequence is inherently relatively low which is likely to result in inaccuracies in 

estimating CMRO2 from the VASO signal on an individual subject basis. Therefore it 

is not possible in this study to fully elucidate the origin of the PSR. 

However, the fact that primary response amplitude remained the same, yet the PSU was 

modulated by stimulus duration, suggests that the post-stimulus response is in some 

way independent of the primary response, supporting what was found in Chapter 4 for 

the MRBD and PMBR. Likewise, the PMBR has been shown to be reduced in people 
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with schizophrenia, which has also been observed in the post-stimulus undershoot 

(Hanlon et al., 2016). The PSU is also reduced in people with autism, which suggests 

the PSU is related to neural inhibition (Murray et al., 2020). Indeed, for such a short 

stimulus, the post-stimulus undershoot observed in these data was larger than expected 

if the response was purely haemodynamic (Figure 6.15, bottom row). 

A direct comparison of the haemodynamic results to the electrophysiological MEG 

results in Chapter 4 does not show a clear coupling as was hypothesized from previous 

work (Mullinger et al., 2017; Mullinger et al., 2013b). The PMBR measured in Chapter 

4 was largest for the 2 s contraction duration whereas the PSU is larger for the 10 s 

contraction duration. This finding may have been driven by the fact that a larger 

undershoot for the 10 s stimulus than the 2 s stimulus was built into the basic boxcar 

model (Figure 6.15). To account for this, regressors from the MEG data were used to 

further interrogate these responses, where the PMBR was used to locate any BOLD 

regions where modulation matched that seen in the MEG data. Still, this did not reveal 

an area of the brain where the 2 s stimulus produced a larger post-stimulus undershoot 

than the 10 s stimulus (Figure 6.27). The PMBR regressor did show a larger post-

stimulus undershoot to both contraction durations, however not statistically different to 

the standard boxcar model. It was not possible to fully interrogate the three MEG 

regressors in the model independently since the MRBD and gamma response were not 

orthogonal. However, the PMBR regressor was orthogonal to the other regressors in 

the model, and when compared to a model with only 2 regressors (PMBR and MRBD 

response only), the peak location of the activation to the PMBR regressor did not 

change. Whilst the regions investigated did not reveal a larger PSU for the 2 s stimulus 

than 10 s stimulus, it is conceivable that this was not found due to the model used. One 

interesting area to explore would be to assess model independence. In future 

investigations, it would be interesting to generate a time course over all voxels and 

identify any voxels which have a larger PSU for 2 s compared to 10 s.  

A possible explanation for the difference between this study and previous work 

(Mullinger et al., 2017; Mullinger et al., 2013b) is the type of stimulus used. The 

previous works used entirely passive stimuli and were looking primarily at natural trial 

by trial variations compared with stimulus driven variations investigated here. Here, the 

trial averaged PMBR was used as input as the regressor, rather than trial-by-trial 

variations. Yet, in Chapter 5 it was shown that the PMBR is not a continuous increase 
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in oscillatory amplitude, but rather an increase in occurrence of transitory bursts of 

activity. To better model the beta response, the individual trial responses would need to 

be input as regressors, however this would only be possible with simultaneous EEG-

fMRI, which would present a number of additional challenges at 7 T with the VASO-

ASL-BOLD sequence employed in this study.  

It is important to note that the MEG regressors did not produce significant activation 

for either the VASO or aCBV data. This is interesting as the data were modelled well 

by the boxcar regressor, which was similar to the MRBD regressor. This could be 

purely an SNR issue, or, alternatively, these results may suggest the PSU is not wholly 

driven by neuronal activity. Instead, the PSU could be a combination of both neuronal 

and vascular effects. In a study investigating functional connectivity, Bright at al. 

suggest that brain networks are formed from a coupling of two separate systems, one 

which is neuronal and the other vascular (Bright et al., 2020). The work of Bright et al. 

may provide evidence that the BOLD response is due to coupling of distinct neuronal 

and vascular systems. A recent study (Liu et al., 2019) suggested that slow changes in 

CBV only occur for long duration stimuli (~>40 s). This could suggest that there is an 

interplay between neuronal and haemodynamic effects, and haemodynamic effects take 

over at longer stimulus times. Understanding how these systems compete to form the 

post-stimulus responses in different stimulation scenarios will be key to unlocking the 

potential of the post-stimulus response for the study of neuronal function. The 

limitations of this study mean that this aim of understanding the competition between 

vascular and neuronal systems could not be fully elucidated from the results presented 

here. However, further work using similar MRI sequences and learning from the 

limitations of this study should be able to shed further light on the origins of the BOLD 

post-stimulus response. 

Limitations 

One of the biggest issues in the data presented here is the low sampling rate due to the 

long TR required for VASO and aCBV measures. In order to mitigate this low temporal 

resolution, a jitter was designed in the paradigm to give higher temporal resolution. 

However, since a motor task was employed, reaction times caused further issues as the 

movements did not occur exactly when cued. To overcome the variation in sampling 

times relative to contraction onset times, interpolation was used in the analysis pipeline 
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in order to segment the data into trials. The result of this interpolation was that for the 

long TR contrasts (aCBV and VASO), the primary response to the short duration 

stimulus was underestimated, resulting in a consistent drop in amplitude of 80% for the 

2 s stimulus (Appendix B) with a TR of 6 s. As the results from Appendix B show, 

using a TR of 3 s gives 99% of the expected amplitude of a simulated time course, 

therefore this should be a sufficient sampling rate for a short stimulus. In future, it 

would of interest to assess only the VASO-BOLD sequence with 3 s TR rather than 6 s 

used in this chapter if the label and control used for ASL were removed from the 

sequence. Another option is to remove the jitter in stimuli which would help reduce the 

problem of uneven sampling, but would require carefully designing the experiment to 

plan where the images are acquired in relation to the stimulus onset. Alternatively, a 

passive somatosensory stimulus could be used in which the applied stimulus is always 

time-locked allowing jittering to be used, however, then electrophysiological responses 

to as somatosensory stimulus would also need to be characterised. 

Another possible limiting factor is the spatial resolution and accuracy of masks used. 

Probability maps of precentral gyrus, CSF and veins were created at high resolution 

(0.7 mm isotropic and 0.5 x 0.5 x 1.5 mm for veins) in their native space. These were 

transformed into functional space with reduced their resolution (1.75 x 1.75 x 1.75 mm). 

Although attempts were made to remove signal from veins and CSF using strict 

thresholds, maps of veins and CSF may not have worked as well as intended, meaning 

the signal is still contaminated by veins or partial voluming effects. On the other hand, 

the masks used were very conservative so contamination is unlikely to be a significant 

effect. The strictness of the masks resulted in the small ROIs containing few voxels (5 

± 4) which will mean data may contain more noise than if a larger area was averaged 

over, but the signal is more specific to the tissue of interest.  

VASO signals will be affected by the proportion of grey matter in a voxel as the 

proportionality between VASO signal and CBV breaks down when the voxel is less 

than 50% grey matter (Scouten & Constable, 2008). Although CSF was masked out, 

the fraction of CSF in the voxel may change throughout the experiment as vascular 

dilation and contraction takes place (Jin & Kim, 2010). This effect is of particular 

concern for VASO as the signal from blood is nulled but CSF signal still remains. Due 

to the T1 of white matter and CSF, at the inversion time (TI) of blood nulling, there will 

be negative contributions from CSF and positive signal contributions from WM 
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(Donahue et al., 2006). However, Donahue et al. suggest that functional changes in CSF 

are generally less than 1% (Donahue et al., 2006). Coupled with the fact the VASO 

response did not change substantially with the inclusion of the CSF mask, this suggests 

that these results support that small proportions of CSF in the voxels selected for the 

ROIs used in this work were not a large confound.  

The CMRO2 calculation relies on a number of assumptions. One key assumption is the 

coupling of CBV and CBF via a power law relationship (Equation 5) (Grubb et al., 

1974). Ideally, it would have been better to use CBF measures in conjunction with the 

CBV measures for this calculation as this would negate the assumed coupling necessary 

in the work presented here. With the low temporal resolution of the VASO time course 

used to estimate CMRO2 in this work, the CMRO2 calculation was unreliable for the 2 

s contraction duration. The CMRO2 results also show large variation across subjects, 

which could be improved by increasing the number of subjects and number of trials per 

subject. However, increasing the number of trials per subject presents new challenges 

due to the long off periods needed in this study. The scan session was over an hour in 

duration, and as such any increase in time in the scanner would increase the likelihood 

of movement, as well as participants becoming fatigued which may affect motor 

responses. One possible solution is that the experiment could be performed in two 

separate runs with a break in between. However this approach then introduces 

coregistration issues between the two runs, particularly problematic with the limited 

coverage used here, and the potential for habituation effects. It was not possible to scan 

more subjects at the time as there were issues with the 7 T scanner, which resulted in 4 

months of downtime.  

Another possibility would be to use aCBV, rather than VASO, to calculate CMRO2, 

which would require additional modelling work and is a possibility for future studies. 

The increased SNR in aCBV measures compared with VASO measures may overcome 

the challenges in calculating CMRO2 presented in the current study. However, assumed 

coupling between the aCBV and venous CBV which would be necessary might add 

further confounds to the interpretation of estimated CMRO2 results and shows that such 

an expansion of modelling in this direction is non-trivial.  

As discussed, there would have been considerable benefit to this work of measuring 

CBF as well as CBV, which the sequence should allow. Unfortunately the CBF data 
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collected in this experiment were poor due to the technical issues with the scanner at 

time of data collection reducing the tSNR, as discussed in the preliminary experiments 

(Section 6.3). It would be very interesting to investigate what happens to CBF during 

this experiment in a future study, which should be possible with the sequence developed 

and a stable scanner.  

As well as CBF, future research should be undertaken to investigate the changes in 

arterial CBV compared to venous CBV. This would help confirm whether the VASO 

post-stimulus response observed was due to changes in vCBV. vCBV can be measured 

using hyperoxia to increase venous blood oxygenation, to measure absolute vCBV 

during rest (Bulte et al., 2007), or to measure the fractional change in vCBV during a 

task (Blockley et al., 2012). Such measures would be useful to combine with the 

measures already employed in this chapter to further understand the origins of the PSU.  

Conclusion 

The results in this chapter showed that the amplitude of the primary BOLD response 

did not vary with task duration for a grip contraction, but the BOLD post-stimulus 

undershoot had smaller amplitude for the shorter task duration. Non-BOLD fMRI 

showed a decrease in total CBV during the post-stimulus period, which coupled aCBV 

returning to baseline suggests the change is due to a decrease in vCBV post-stimulus. 

These results add weight to the idea that the balloon model is not the full description of 

the BOLD response. Combined with work of the previous chapters, this chapter allows 

direct comparison between fMRI and MEG. The post-stimulus undershoot was not 

found to modulate in the same way as the MEG response, which may suggest the post-

stimulus undershoot is not entirely driven by neuronal activity but a combination of 

competing vascular and neuronal effects.  
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6.8 Appendices  

A. Data Quality Assessment 

To interrogate signal quality for each contrast, additional ROIs were created centred on 

the peak of the i) BOLD ii) VASO and iii) aCBV t-stat within the contralateral 

precentral gyrus for the corresponding image (i.e. peak aCBV t-stat for the aCBV 

images, peak VASO t-stat for the VASO images) with vein and CSF masking applied. 

Figure 6.28 shows the subject average time course from ROIs centred on the peak of 

the BOLD, VASO and aCBV response, in comparison to Figure 6.22 which shows all 

time courses taken from an ROI centred on the peak of the BOLD response.  

 

Figure 6.28 Subject average time courses of BOLD from ROI centred on the peak BOLD t-stat, 

VASO from ROI centred on peak of VASO T-stat and aCBV from ROI centred on peak of aCBV 

T-stat. Voxels containing veins or CSF were excluded (i.e. Small ROIs). 

Further checks on data quality were made by assessing the individual participant 

responses to the task as shown in Figure 6.29 for subject time courses from the Small 

ROI, for BOLD, VASO and aCBV.  

Since the VASO and aCBV data have low SNR, the effect of spatial smoothing was 

investigated to increase SNR for this data quality check. Data were spatially smoothed 

with a Gaussian smoothing kernel with full-width half maximum of 3 mm using SPM 

and another GLM with a boxcar regressor was performed on these smoothed data. 

Figure 6.30 shows the t-stat maps for the smoothed BOLD, VASO and aCBV data.  
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Figure 6.29. Individual subject (1 – 9) time courses of BOLD, VASO and aCBV % signal change 

from the Small ROI, corrected for veins and CSF. 
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Figure 6.30 Example t-stat maps of smoothed (3 mm FWHM) BOLD, VASO and aCBV data for 

an individual subject (Subject 2). BOLD FWE p = 0.001 5 voxel extent, VASO and aCBV p = 

0.001 uncorrected 5 voxel extent. Time courses of BOLD, VASO and aCBV signal from peak 

BOLD t-stat in contralateral post-central gyrus from smoothed data, averaged over subjects. 

Error bars show standard error across subjects.  
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B. Simulating BOLD, VASO and aCBV Time Courses  

As outlined in Methods Section 6.4.3.4, the fMRI time courses were interpolated to a 

sample rate of 1 s, in order to be segmented into trials. However, interpolation is only 

an estimate of the true data points and may miss maxima or minima. To explore this 

potential for error, the effect of interpolation was simulated on a model time course. 

Models were created using a boxcar and PMBR, MRBD, gamma MEG responses, as 

outlined in Section 6.4.3.5, using movement onset times derived from the EMG each 

subject. These were combined to produce a time course that resembled the fMRI 

response to a 2 and 10 s stimulus (Figure 6.31A) with 0.1 s time resolution.  

When segmented into trials at this high temporal resolution, this time course gives the 

expected response shape (Figure 6.31B). To simulate the BOLD and VASO data, the 

time course was downsampled to TR = 3 and TR = 6 s, and then interpolated to 1 s and 

segmented into trials in the same way as with the real data analysis pipeline (Section 

6.4.3.4). As can be seen in Figure 6.31C, for TR = 3 s (as for BOLD data), there is little 

difference between these interpolated and the non-interpolated data, apart from the 

artefactual appearance of a small initial dip. The amplitude of the response is 99% of 

the amplitude before being segmented into trials for both 2 and 10 s contraction 

durations. The time to peak of the responses is approximately 1 s later for both 

contraction durations when using the interpolation method compared to the simulated 

TR = 0.1 s. However, for simulated data with TR = 6 s (as for VASO data) (Figure 

6.31D), the amplitude of the 2 s response drops to 80% of its true simulated value. This 

occurs because the 2 s contraction is short, so the time that the peak response is 

maintained is also short and the response will not always be sampled at the peak. Unless 

the 2 s contraction is directly sampled at the time of the peak, the peak will be missed 

and, when averaged, the 2 s peak will be diminished compared to the 10 s peak, which 

is maintained for a longer period so the peak amplitude is more likely to be sampled. 

The time to peak for the 2 s response is 1 s later and time to peak of 10 s response is 

3.6 s later compared to the high time resolution trials. Different amplitudes of the initial 

response were tested to demonstrate that the 2 s response always gave a 20% drop in 

amplitude at the 6 s TR compared to the high temporal resolution simulation. Therefore, 

amplitudes of responses to the 2 s VASO and aCBV time courses were scaled by 1.25 

to account for this (Figure 6.32). Scaled VASO data were also in the CMRO2 

calculation (Section 6.5.4). 
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Figure 6.32 shows the subject average time courses from the Small ROI scaled (i.e. data 

multiplied by scaling factor of 1.25) for the 2 s contraction VASO and aCBV time 

courses. It can be seen that, with this scaling factor, the VASO and aCBV response to 

the 2 s grip contraction is similar to the response for the 10 s grip contraction. Statistical 

analysis showed there was no significant difference between the 2 and 10 s grip 

contraction for VASO (p = 0.79, paired samples t-test) or aCBV (p = 0.86, Wilcoxon 

signed rank test) after scaling. Therefore, it is inferred that the results from Section 6.5.2 

which showed significant differences between 2 and 10 s response for VASO and aCBV 

primary response were an artefact of the combination of poor sampling and the use of 

interpolation for the 2 s stimulus.  

Figure 6.31 (A) Simulated model time course of the fMRI response to a 2 and 10 s stimulus 

with 0.1 s resolution. (B) Simulated time courses segmented into trials and averaged. (C) 

Simulated time course downsampled to TR = 3s to match BOLD data, interpolated to 1 s, 

segmented into trials and averaged. (D) Simulated time course downsampled to TR = 6 s to 

match VASO data, then interpolated to 1 s, segmented into trials and averaged. 
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One way to overcome this artefact of the analysis procedure would be not to interpolate 

but merge the data acquired at different points and average. The experiment was 

designed with this in mind and cues for the onset of the contractions relative to the 

sampling of the responses were jittered. However, in reality movement times in relation 

to the cued time were not constant. Therefore, there is variation in sample times 

resulting in an uneven number of samples at each time point and in some cases only 

one sample per time point, meaning the average response time course can be dominated 

by noise. To test if this would be possible, the BOLD data were padded with time points 

with no data to a time resolution of 1 s, then segmented into trials and averaged over 

all trials for all subjects. This had the effect of interleaving only measured data points 

from different trials with no interpolation. Similarly, the VASO data were upsampled 

to 2 s resolution. For aCBV, since the data were interpolated before performing the 

subtraction it was not possible to get back to the true data, so these data were upsampled 

to 1 s resolution. Figure 6.33 shows time courses from the small ROI using the 

upsampling method. Although the time courses are much noisier, it can be seen from 

comparing Figure 6.22 with Figure 6.33 that whilst the BOLD time courses follow a 

similar pattern regardless of analysis method, the VASO and aCBV data exhibit similar 

primary peak amplitudes for the 2 and 10 s durations when upsampling (Figure 6.33) is 

used rather than the interpolation method (Figure 6.22). This confirms that the results 

from the interpolated time courses were due to an artefact of the low temporal 

resolution, stimulus duration combined with the analysis method. While it would be 

preferable to use the real data and not interpolate, the time courses in Figure 6.33 have 

a clear oscillation in the data which limits their use. The noise does not have a clear 

source and requires further in depth investigation through simulation and experimental 

Figure 6.32 Time courses of BOLD, VASO and aCBV response from the Small ROI, where 2-

s response for VASO and aCBV has been upscaled (multiplied by 1.25) to account for poor 

sampling. Compare with Figure 6.22 without upscaling. 
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work which is beyond the scope of this thesis. The noise could be due to interleaving 

the BOLD data from the two labels, but cannot be purely from this as it should average 

out across trials, and noise is still apparent in VASO and aCBV which were not 

interleaved. The data could be analysed separately for the two labels, however, this 

would leave the BOLD with a 6 s TR which would then have the sampling issues as 

apparent in the VASO and aCBV data. Another potential source for this noise is that 

the movement times vary on a shorter time scale than can be accounted for with the 

resolution of these data, so onset times could still be incorrectly assigned by ± 1 s or ± 

2 s (for BOLD and VASO respectively) which could cause this. However, it is 

conceivable this is an SNR problem and with more data this might disappear. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.33 Subject average time courses without interpolation from the Small ROI. BOLD 

and aCBV data were upsampled to a resolution of 1 s and VASO were upsampled to a 

resolution of 2 s before averaging over trials and subjects. Error bars show standard error 

across subjects. 
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C. CMRO2  

CMRO2 calculations were performed for varying values of M. Table 6.4 shows the 

results for M = 18, Table 6.5 shows the results for M = 25 (Krieger et al., 2014). Data 

show that regardless of M value used the primary response shows a significant 

difference in the CMRO2 from baseline where as the PSR does not. 

  

% CMRO2 for each subject Average 

± SE 1 2 3 4 5 6 7 8 9 

2s 

primary 

response 
98 59 67 90 70 71 81 39 84 73 ± 6* 

10s  

primary 

response 
86 62 47 83 55 55 113 42 13 

62 ± 9* 

 

2s 

post-stimulus 

response 
-1 -5 -9 -15 38 24 60 -22 -23 5 ± 9 

10s  

post-stimulus 

response 
-9 -25 -39 -41 14 11 38 -58 8 -11 ± 10 

Table 6.4. CMRO2 calculation using M = 18. The CMRO2 percentage during primary response 

showed a significant change from baseline levels (*, p<0.05, one-sample t-test), the results of 

the PSR did not differ significantly from baseline levels. 

  

% CMRO2 for each subject Average 

± SE 1 2 3 4 5 6 7 8 9 

2s 

primary 

response 

116 71 80 122 80 86 91 53 125 92 ± 7* 

10s  

primary 

response 

104 73 57 118 63 71 128 56 32 78 ± 10* 

2s 

post-stimulus 

response 

-2 -7 -9 -18 37 22 59 -23 -26 4 ± 9 

10s  

post-stimulus 

response 

-11 -26 -40 -44 13 8 36 -59 4 -13 ± 10 

Table 6.5. CMRO2 using M = 25. The CMRO2 percentage during primary response showed a 

significant change from baseline levels (*, p<0.05, one-sample t-test), the results of the PSR 

did not differ significantly from baseline levels. 
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CHAPTER 7 

7 Using fMRI to Map Touch in Focal Hand 

Dystonia 

7.1 Abstract 

Focal hand dystonia (FHD) is a motor disorder causing involuntary movements of the 

hand, leading to the inability to perform specific tasks and aspects of everyday life. Yet, 

the pathophysiological basis of FHD is not fully known. Mapping finger representations 

in somatosensory cortex may help to better understand FHD. However, digit 

representations in the cortex are small and require high spatial resolution to successfully 

map each of the 5 digits of the hand, requiring the use of ultra-high-field MRI for 

sufficient spatial resolution. Here, a somatosensory and motor travelling wave 

paradigm were performed using 7 T fMRI to explore any changes in digit 

representations in 7 patients with FHD compared to age- and sex-matched healthy 

controls. The experiment was performed both ~4 weeks after patients had received 

treatment of botulinum toxin (Botox), and 3 months later once the treatment had worn 

off to assess the effects of treatment. Functional data were analysed in two ways: using 

a phase-encoding analysis as standard for travelling wave paradigms, and a general 

linear model (GLM). Maps of finger representation were successfully mapped in 

patients with FHD and healthy controls, with little difference observed between the 

maps in patients and healthy controls for either task. Comparison between the two 

analysis methods showed that a winner-takes-all GLM analysis is valid, and has the 

additional benefit that it can be used to measure the overlap of digit representations 

which is not possible to measure with phase-encoding methods. No significant 

difference in the degree of digit overlap was found between patients with FHD and 

healthy controls.  

The work in this chapter was presented as a power pitch and poster at ISMRM 2019, 

Montreal, Canada, entitled ‘Assessing somatotopic and mototopic organisation in 

Focal Hand Dystonia using high-resolution 7 T fMRI’, and a poster at the Postgraduate 

Symposium of the British Chapter of ISMRM 2019, Birmingham, UK.  
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7.2 Introduction 

Chapter 6 focussed on characterising fMRI responses in the motor cortex in healthy 

individuals. In this chapter, the utility of fMRI to investigate responses to motor and 

somatosensory tasks in a clinical population is explored. Ultra-high-field, high spatial 

resolution fMRI is applied to participants with focal hand dystonia (FHD). Dystonia is 

a neurological movement disorder that manifests as the uncontrollable spasms of 

muscles in the body, and is estimated to effect over 100,000 people in the UK 

(dystonia.org.uk, 2019). FHD specifically affects the hand area, causing involuntary 

cramping of the hand. For a long time, no physiological disturbances were recognised 

in people with dystonia and seemingly little differences were observed in the brain 

(Hallett, 1995). With the advent of modern neuroimaging techniques, dystonia has 

become better understood and is now classed as a neurological movement disorder. 

However, the pathophysiology is still not completely known (Breakefield et al., 2008) 

hence, the drive here to study changes in brain function associated with FHD. The work 

in this chapter formed part of a larger project ‘TOUCHMAP’ funded by the Medical 

Research Council (MR/M022722/1). 

Dystonia is a neurological movement disorder now thought to be caused by incorrect 

signalling from the brain. Symptoms include abnormal and often painful movements in 

the hand, which can affect the ability to write (writer’s cramp) and the fine motor 

control required in everyday tasks and the ability to work. FHD is diagnosed by a 

neurologist. Treatment for dystonia includes physical rehabilitation such as movement 

therapy, and injections of botulinum toxin (Botox) into the affected muscles which acts 

to reduce the amount of muscle activity, allowing patients to regain some use of their 

hand. This is repeated every three months as the injection wears off. Despite dystonia 

being thought of as a largely motor disorder, the sensory system is thought to play an 

important role (Hallett, 1995): dystonia may develop after a sensory injury, sensory 

ticks can be present and anaesthetic can be used as treatment (Butterworth et al., 2003). 

The causes of FHD are not always clear, as FHD can be caused by an interaction 

between genetics, neurobiology and environmental factors, such as stress and trauma 

(Hinkley et al., 2009). It has been suggested that patients with FHD can exhibit 

abnormal somatosensory digit representations and a blurring of somatotopic 

arrangement (Butterworth et al., 2003). fMRI may help understand these disturbances 

and whether these changes modulate with Botox treatment.  
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To gain a better understanding of dystonia and its pathophysiology, there is a need to 

investigate the localised parts of the brain responsible for sensory representations of the 

hand, and therefore how, or if, they are altered in FHD. This can be achieved by 

mapping digit representations in the human brain, to assess whether there is a difference 

in the representations of the digits in somatosensory cortex in subjects with FHD 

compared to healthy controls. These representations of digits in somatosensory cortex 

are known as somatotopic maps, and such maps can reveal distorted sensory 

representations of the digits in neurological disorders. In this study both a 

somatosensory and motor task are used to investigate the responses in the primary 

somatosensory cortex. It has been previously been shown that motor tasks involving 

digit movements produce large responses in the somatosensory cortex. For example, 

Kolasinski et al. (Kolasinski et al., 2016) used a motor travelling wave paradigm 

(similar to that implemented in this chapter) and showed that finger movements evoke 

robust activation of somatosensory cortex, rather than motor cortex. Strong 

somatosensory responses have also been previously reported during active hand 

movements (Porro et al., 1996) and illusory hand movements (Naito et al., 2005). The 

somatosensory cortex acts broadly as both a processing region for afferent sensory 

inputs and a more central node in the redirection of incoming sensory information 

across the sensorimotor network. The somatosensory cortex has highly organized 

reciprocal connections with primary motor cortex and is thought to strongly influence 

the function of the motor cortex (Jacobs et al., 2014; Platz et al., 2012) with it being 

shown to affect motor learning (Vidoni et al., 2010). It is due to this structural and 

functional interplay between somatosensory and motor cortices that a natural digit 

movement task will elicit robust activation of somatosensory cortex. Further studies 

also suggest that motor representations may be encoded in a higher dimensionality 

space rather than as individual body parts (Diedrichsen et al., 2013; Overduin et al., 

2012; Wiestler & Diedrichsen, 2013), limiting the mapping of digits in the motor cortex 

itself. This study also allows the relationship between somatosensory and motor cortex 

to be explored, by comparing the motor and somatosensory task data collected on the 

dominant hand in the same scan session.  

Assessing the effectiveness of treatment for FHD is also important. Neither treatment 

with botulinum toxin nor rehabilitative training are completely successful at returning 

normal motor control (Hinkley et al., 2009). In particular, it has been hypothesised that 
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Botox may not only affect the muscles at the local injected site, but also cause remote 

effects at distant parts of the body as it acts through the central nervous system (Giladi, 

1997). Studies using transcranial magnetic stimulation have suggested that Botox can 

affect the cortical representation of the hand, and that treatment with Botox can reverse 

reorganisation (Byrnes et al., 1998; Thickbroom et al., 2003). In a study of spatial 

discrimination thresholds, Walsh et al. (Walsh & Hutchinson, 2007) showed that 

thresholds improved 1 month after Botox injection, suggesting Botox has an indirect 

effect on the sensory cortex. Therefore, it is important to study patients with FHD both 

with and without Botox treatment. Most studies on people with FHD have been 

performed with patients not receiving treatments (≥3 months after Botox injection).  

Previous studies have assessed somatosensory and motor topography in the brain both 

invasively and non-invasively. Cortical representation of the hand area was first 

accomplished in 1937 by Penfield and Boldrey (Penfield & Boldrey, 1937), using 

electrical stimulation during invasive operations. They explored motor and sensory 

representation in the cerebral cortex of electrical-induced finger movements and finger 

sensation, and found finger movements were localised to the precentral gyrus whilst 

finger sensation was largely localised to the postcentral gyrus. It is now commonly 

accepted that the precentral gyrus is the primary motor cortex and the postcentral gyrus 

is the primary somatosensory cortex. Woolsey et al. (Woolsey et al., 1979) recorded 

electrically-induced cortical evoked potentials during neurosurgery and showed that 

digit representations are ordered in the cortex, with the thumb (D1) being most inferior 

and lateral, moving through the digits to the little finger (D5) being more superior and 

medial. Figure 7.1 shows the hand representation on the cortical homunculus as defined 

from invasive imaging, where thumb = D1, index = D2, middle = D3, ring = D4 and 

little = D5. However, invasive electrophysiology is not ideal to investigate brain 

function on people who do not require neurosurgery as there is no benefit to the 

individual. Advances in fMRI allow brain function to be indirectly investigated non-

invasively with high spatial resolution for much more accurate mapping of digit 

representations to natural tasks than achievable in the past.  

Mapping of the motor and sensory cortex has been performed since fMRI was first 

developed in the early 1990s. Puce et al. (Puce et al., 1995) used fMRI at 1.5 T to 

measure responses when performing a motor task (squeezing a sponge) and sensory 

task (brushing of palms and air blown over palms). The authors observed considerable 
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overlap of activated regions around the contralateral central sulcus for both tasks. Sakai 

et al. (Sakai et al., 1995) successfully mapped areas of somatosensory cortex 

corresponding to the toes, fingertips and the tongue using fMRI at 1.5 T. A manual 

scrubbing stimulation was applied to the fingertips of digits 1 to 3, however, they were 

not able to distinguish different fingertips. In 2000, as higher field strengths were 

available, Francis et al. (Francis et al., 2000) mapped cortical representations of digits 

2 and 5 of the hand using 3 T fMRI. This was achieved using a piezoelectric stimulator, 

which was specifically developed to stimulate digits without interacting with the 

magnetic field. This allowed independent control of the amplitude and frequency of the 

somatosensory stimulation to produce an accurate and reproducible map of cortical 

representations.  

To achieve a more detailed map which can distinguish all 5 digits of the hand, higher 

spatial resolution is needed. MRI at ultra-high-field (7 T and above) provides higher 

signal-to-noise ratio and increased BOLD contrast-to-noise ratio enabling the 

acquisition of smaller voxels thus the possibility of resolving detailed maps 

representing the individual fingertips. Further, the increase in BOLD signal with field 

strength (Yacoub et al., 2001) allows the detection of weaker responses such as those 

in somatosensory cortex, or for fewer trials to be acquired to identify functional 

responses reducing the time of data acquisition which is particularly beneficial in 

patient groups. However, at higher magnetic field, there is increased vulnerability to 

susceptibility induced geometric distortions and signal loss in EPI due to the shorter 

Figure 7.1 Cortical homunculus showing mapping of primary somatosensory cortex (left) and 

primary motor cortex (right) with representations of thumb to little finger moving more 

superior through the cortex. From Penfield & Rasmussen (Penfield & Rasmussen, 1950). 
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T2*, but this can be overcome using parallel imaging (e.g. SENSE) to reduce the echo 

train length (see Chapter 3).  

In 2010, Sanchez-Panchuelo et al. used 7 T fMRI to successfully map all five digits of 

the hand in the brain on an individual subject basis (Sanchez-Panchuelo et al., 2010) 

using a travelling wave somatosensory paradigm which had previously been used for 

visual retinotopic mapping (Engel et al., 1997). An explanation of the travelling wave 

paradigm is given in Appendix A. The travelling wave design has been shown to be 

more efficient than an equivalent event-related paradigm (Besle et al., 2013), whilst 

still providing accurate maps of fingertip representation. A travelling wave paradigm 

requires less data than event-related paradigms to produce a similar quality map, which 

again is advantageous for patients. However, since the travelling wave paradigm works 

by assigning a voxel to a digit based on the phase of the response, the standard phase 

analysis used in a travelling wave paradigm design cannot be used to estimate 

overlapping representations of digits. Therefore, an objective of this study was to 

investigate analysis of the digit mapping paradigm using the phase-encoding analysis 

compared with a GLM analysis (Chapter 3, Section 3.6.2.2). 

Previous studies investigating digit representations in patients with FHD have been 

performed. Bara-Jimenez et al. (Bara-Jimenez et al., 1998) mapped cortical 

representations of the thumb (D1) and little finger (D5) of the dystonic hand in primary 

somatosensory cortex in six dystonia patients using somatosensory evoked potentials 

by stimulation from ring electrodes. They found the Euclidean distance between the 

peak voxels representing D1 and D5 was 12.7 ± 5.7 mm in healthy controls and 

decreased to 6.5 ± 3.0 mm in patients. They also found the topography of D1 and D5 

to be inverted in 50% of patients which correlated with dystonia severity.  

Magnetoencephalography (MEG) has also been used to image digit representations. In 

2001, Meunier et al. (Meunier et al., 2001) used MEG to map D1, D2, D3 and D5 of 

both hands in 23 patients with FHD by measuring evoked responses from electrical 

stimulation of the digits. They found cortical representations of digits were more 

disordered in patients compared to healthy controls, which was more marked in the 

non-dominant hemisphere (contralateral response to non-dominant non-dystonic hand). 

Their results suggested overlap of representations in severely affected patients. 

McKenzie et al. (McKenzie et al., 2003) used MEG to measure the evoked response 
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from air puffs on digits 1-5 on both hands. Similarly to Meunier et al., the authors found 

digit representations were also more topographically disordered in FHD than in healthy 

controls, in this case on both affected and unaffected hemispheres.  

Using 3 T fMRI with surface coils for improved spatial resolution, Butterworth et al. 

(Butterworth et al., 2003) explored the representations of digits 2 and 5 in the sensory 

cortex in 9 patients with FHD using vibrotactile stimulation. They found significantly 

decreased distances between representations of D2 and D5 to stimulation of the 

dominant (dystonic) hand, with absolute 3D separation between D2 and D5 was 4.14 ± 

0.23 mm in patients, and 9.60 ± 1.24 mm in controls. As well, there was smaller extent 

of activity in patients with FHD compared to controls. This work therefore 

complemented the findings of Bara-Jimenez et al. (Bara-Jimenez et al., 1998). 

With advancing methods, Nelson et al. (Nelson et al., 2009) mapped each digit (D1-5) 

of the dominant (dystonic) hand using high-resolution 3 T fMRI in 12 patients with 

FHD. Vibrotactile stimuli were used, with 8 seconds of vibration and 22 seconds rest 

performed on a single digit. Patients had reduced Euclidean distance between D1 and 

every other digit compared to controls. The distance between D1 and D5 was 12.8 ± 

4.7 mm for patients and 17.9 ± 4.5 mm for controls. They found disordered 

representations in one third of patients including overlapping activation of digit 

representations, with different digits occupying similar locations.  

Whilst previous studies investigated task-based differences, Dresel et al. (Dresel et al., 

2014) used resting-state fMRI at 3 T to investigate functional connectivity in 15 patients 

with FHD. Patients showed lower correlation of the left primary motor cortex to right 

somatosensory cortex compared to controls, which correlated with disease severity. 

They propose that this reflects an underlying abnormality of network architecture. 

In patients with FHD, sensory discrimination abilities have previously been found to be 

altered. Somatosensory temporal discrimination thresholds (TDT) and spatial 

discrimination thresholds (SDT), measure the ability to discriminate sensory 

stimulation in time and space respectively. Bara-Jimenez et al. found temporal 

discrimination thresholds to be raised in patients (96.7 ± 43.6 ms) compared to controls 

(64.4 ± 15.5 ms), which correlated with dystonia severity and age in patients (Bara-

Jimenez et al., 2000). In agreement with this, Sanger et al. also found significantly 

raised temporal discrimination thresholds in patients (107 ± 41 ms) compared to 
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controls (46 ± 49 ms) (Sanger et al., 2001). Using a grating orientation task, Sanger et 

al. also measured spatial discrimination thresholds and found patients had raised (2.48 

± 0.72 mm) SDT compared to controls (1.49 ± 0.61 mm) (Sanger et al., 2001). 

Similarly, Molloy et al. found SDT of patients to be 2.61 ± 0.38 mm compared to 1.46 

± 0.26 in healthy controls (Molloy et al., 2003), and SDT was found to increase 

significantly with age. Zeuner et al. (Zeuner et al., 2002) also found raised SDT (2.38 

± 1.09) in patients compared to controls (1.95 ± 1.01) but this was not a significant 

difference, which was thought to be due to small sample size (n = 10).  

7.2.1 Aims and Hypotheses 

The above literature suggests there may be altered sensory representation of digits in 

patients with FHD, with studies showing disorganised cortical representation 

(McKenzie et al., 2003; Meunier et al., 2001) and reduced distance between digits 

(Bara-Jimenez et al., 1998; Butterworth et al., 2003; Nelson et al., 2009). Therefore, it 

is hypothesised that patients will have disorganised maps of digit representation and 

reduced map size compared to controls. The majority of previous fMRI studies of 

patients with FHD have used lower field strength MRI (<7 T). Here, this hypothesis 

will be tested by using advances in ultra-high field fMRI for better spatial resolution, 

and a travelling wave paradigm to efficiently assess the somatosensory topographic 

digit organisation in patients with FHD compared with healthy controls. The second 

aim of this study was to develop a method by which the overlap of digit representation 

in the cortex could be assessed to provide a metric of organisational blurring. Using this 

methodology, for the first time, the effects of Botox treatment on digit representations 

will be explored with fMRI. The aim was to compare maps with and without Botox 

treatment to test whether patients treated with Botox appear more similar to healthy 

controls, compared to patients scanned at 3 months when the treatment had worn off. It 

is hypothesised that patients without treatment will have more disorganisation and 

overlap than patients with treatment. 
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7.3 Methods 

The study was approved by NHS ethics (17/EM/0368). 10 patients with FHD with 

unilateral impairments (mean age 54 ± 12, 4 female) were recruited by Dr Miles 

Humberstone, a neurologist from Queen’s Medical Centre, Nottingham, UK. Two 

patients’ data could not be analysed due to excessive movement in the scanner and one 

patient was unable to complete the scan session due to claustrophobia, resulting in data 

from seven patients in total. Patients were scanned within 4 weeks of receiving Botox 

treatment. 6 of the 7 subjects returned for a follow-up scan session at least 3 months 

after their last Botox injection treatment (no Botox), on average 21 weeks after the first 

scan. One subject dropped out from the no Botox scan due to claustrophobia, but was 

able to complete the behavioural tasks for the no Botox session, hence there were 7 

patients for no Botox behavioural data and 6 for fMRI. For six patients, their right hand 

was their affected hand, one patient had their left hand affected. 7 age- and sex-matched 

healthy controls were scanned for comparison to the patients.  

All data we acquired by myself and Dr Michael Asghar, a postdoctoral research fellow 

on the TOUCHMAP project. The phase analysis was conducted and previously 

presented by Michael Asghar (Asghar, 2019) and was not the main aim of this thesis 

chapter, but are necessary to be presented here for comparison. All other analysis was 

conducted by myself.  

7.3.1 Behavioural Measures 

First, to characterise differences in sensory discrimination between patients with FHD 

and healthy controls, behavioural measures were taken. This involved a 1 hour 

behavioural session of various tasks testing the sensory sensitivity of the subject’s 

hands. Measures included a somatosensory temporal discrimination task (TDT), 

amplitude threshold, and grating orientation spatial discrimination task (SDT). Tasks 

were performed on both visits prior to the fMRI scan session, in the order of TDT 

(piezos), TDT (brain gauge), amplitude threshold, and SDT.  

The spatial discrimination threshold was assessed using a grating orientation task. This 

assesses the smallest distance participants are able to distinguish on their fingertips. 

Square-wave gratings cut into plastic domes (Figure 7.2) were presented to the subject’s 

index finger of the affected hand (dominant for healthy controls) for approximately 1 

second in either proximal or lateral orientation. Subjects had no line of sight to the 
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domes and were asked to describe which orientation they felt. 20 trials of each dome 

were presented, with the widths of the grating gradually decreasing in size and the 

subject’s responses recorded. Eight domes were used in total with grating widths 

spanning 0.75 to 4.0 mm. Subjects unable to achieve correct responses for the largest 

grating (4 mm) were assigned a threshold of 4 mm.  

 

Figure 7.2. Plastic domes with square-wave gratings of varying widths used for the grating 

orientation task to assess SDT. Domes were placed with gratings horizontal or vertical on D2. 

Participants were asked which orientation the grating is presented in. Eight gratings of widths 

labelled were used, presented from 4 mm to 0.75 mm.  

Amplitude threshold is the threshold at which subjects can no longer feel a stimulus. 

This was assessed using piezoelectric stimulators (Dancer Design, UK, Figure 7.3A) 

cased in a custom-built plexiglass “hand” (Figure 7.3B), the same stimulators as those 

used in the somatosensory fMRI paradigm. The plexiglass hand allowed individual 

adjustment of the stimulators such that the stimulators could lie directly below the 

subject’s fingertips. The devices delivered suprathreshold vibrotactile stimuli to ~1 

mm2 of the fingertip. In each trial (Figure 7.3C), the stimulator would vibrate twice 

separated by a fixed short temporal gap, with one stimulation being delivered at a larger 

amplitude than the other. Subjects were asked to determine whether the first or second 

stimulation was of larger amplitude. This amplitude threshold task was performed on 

the index finger (D2) of both the affected and non-affected hands with stimulation 

delivered at two frequencies of 31 and 200 Hz. If the response was correct twice, the 

amplitude difference was decreased; conversely, if the response was incorrect, the 

amplitude difference was increased. This was performed for 8 reversals until an 

amplitude threshold was determined.  
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Figure 7.3. (A) Piezoelectric stimulator. (B) Piezoelectric stimulators mounted in plexiglass 

hands, one stimulator per digit. The position of the stimulators can be adjusted to match the 

subject’s hands. (C) Schematic for amplitude discrimination task. Two stimuli (S1 and S2) of 

varying amplitude are presented to D2 separated by a fixed temporal gap and the subject is 

asked whether the first or second stimulus had the higher amplitude. The task is repeated and 

amplitude decreased until the subject’s amplitude threshold is found.  

The temporal discrimination task was also performed using the same piezoelectric 

stimulators as used for the amplitude threshold task (Figure 7.4). The aim was to 

establish the subject’s temporal discrimination threshold (the shortest time the subject 

can distinguish between two stimuli 75% of the time). Two stimuli of the same 

amplitude were presented to D2 and D3 (index and middle finger) of the hand separated 

by a temporal gap (Figure 7.4C) Subjects were asked which stimulation came first 

temporally (D2 or D3). If the response was correct, the temporal gap was decreased; if 

incorrect, the temporal gap was increased, this was repeated in a staircase procedure 

until a temporal threshold was found. This was performed on both the affected and non-

affected hand. A similar temporal discrimination task was then also carried out for both 

affected and non-affected hands using a Brain Gauge stimulator (Cortical Metrics, NC, 

United States) (Figure 7.4B). This device has larger sensory stimulators mounted within 

a mouse for comparison with the piezoelectric stimulators. The Edinburgh handedness 

questionnaire was also taken to complete the behavioural testing (see Appendix A). To 

determine the reliability of the behavioural measures, the behavioural tasks were 

repeated on a group of 10 healthy controls to assess test-retest reliability. Each subject 

performed the behavioural tests twice, with two weeks between each session. The 
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coefficient of variation (CV) was calculated over the two sessions. A low CV implies 

small variation between different sessions of the test. 

 

Figure 7.4. Schematic of temporal discrimination task performed with (A) piezoelectric 

stimulators and (B) Brain Gauge stimulator. D2 and D3 are stimulated with varying temporal 

gap. Participants are asked which digit was stimulated first. 

7.3.2 fMRI 

7.3.2.1 Paradigm and Data Acquisition 

Data were acquired on a 7 T Philips Achieva MR scanner (Philips Healthcare, The 

Netherlands) using a single transmit Nova head coil with 32-receive channel (Nova 

Medical, Wilmington, MA, USA). Participants were placed in the scanner bore with 

prism glasses to view a screen onto which visual cues were projected. A peripheral 

pulse unit was placed on the participant’s finger to record heart rate and a respiratory 

belt was used to record the respiratory trace throughout the scan. The participant’s 

hands were positioned onto the MR compatible piezoelectric stimulators housed in the 

plexiglass hands (shown in Figure 7.3B) and adjusted so that the stimulators were 

directly under the finger tips. The session consisted of a 5-minute resting state scan 

(multiband = 4, TR = 1.5 s, 200 dynamics), somatosensory travelling wave scans in the 

forwards and reverse directions on both left and right hands (details below), an event-

related somatosensory on-off paradigm, a high resolution T2*-weighted FLASH image 

(0.5×0.5×1.5 mm resolution, 74 slices, TE = 9.7 ms), a whole brain 1 mm isotropic 
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structural MPRAGE scan (1×1×1 mm resolution, 180 slices, TE = 3.44 ms) and a whole 

brain high resolution PSIR (0.7x0.7x0.7 mm resolution, 224 slices, TE = 2.64 ms). The 

scanner bed was then briefly removed from the scanner bore, and the subject was 

instructed to not move their head as the accelerometer glove was applied to the subject’s 

dominant (affected) hand. The scanner bed was then returned to its original position in 

the bore and the motor travelling wave task was performed (see details below). Due to 

time constraints of the entire protocol it was not feasible to perform the motor task on 

both hands. Analysis of the resting state scan, event-related paradigm and structural 

data are beyond the scope of this thesis and were performed by Dr Michael Asghar. 

The somatosensory travelling wave data were collected using a 2D gradient-echo EPI 

acquisition (2D GE-EPI, TE = 25 ms, SENSE 1.5, 1.5 mm isotropic voxels, multiband 

factor 3, TR = 2 s, 80 dynamics, flip angle = 800, 48 slices, halfscan 0.7) and performed 

in forward (fingertip of D1 to D5) and reverse directions (fingertip of D5 to D1), on 

both hands (resulting in 4 scans in total). In one run, each digit was stimulated 

sequentially for 4 s using the piezoelectric stimulator placed under each fingertip. One 

cycle (sequential 4 s stimulation of each of the 5 digits) was 20 s in total, which was 

repeated for 8 cycles in both the forward and reverse direction, resulting in a total scan 

time of 2 minutes 40 s for each scan. See Figure 7.5 A&B for a diagram of the travelling 

wave somatosensory paradigm.  

For the motor travelling wave paradigm, a custom-built MR compatible accelerometer 

system monitored the movement of each digit (Figure 7.5C). The motor travelling wave 

paradigm consisted of subjects tapping the fingers of their dominant (affected) hand in 

the air (to reduce any effects of somatosensory stimulation) in time to a 1 Hz visual cue 

of a flashing dot (Figure 7.5D) displayed on a screen and viewed using prism glasses, 

to elicit a solely motor proprioception response. Five dots on the screen represented 

each digit, each of which would flash sequentially for 4 s. Subjects were instructed to 

move each finger in time with the flashing dot, to ensure a similar speed of movement 

between all finger movements and participants. Each finger movement was recorded 

throughout the scan using the accelerometer glove and an associated MATLAB 

programme (The MathWorks, United States). GE-EPI acquisition parameters were 

identical to the somatosensory paradigm, with the motor task also performed in both 

the forward and reverse directions.  
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Figure 7.5. (A) Timings of the somatosensory and motor travelling wave paradigm. Each digit 

was stimulated/moved sequentially for 4 s, resulting in a 20 s cycle. Each cycle was repeated 8 

times, for both the forward and reverse directions (shown here for the forward direction). 

Somatosensory stimulation was repeated in left and right hands, finger tapping (motor) was 

performed in affected/dominant hand only. (B) Demonstration of sequential digit ordering in 

the forward (D1-D5) and reverse (D5-D1) directions. (C) Accelerometer glove used to record 

finger movement during the motor paradigm. (D) Visual cue for finger movements in the motor 

paradigm. Each dot represents one of digits 1-5 and flashed for 4 s. Subjects were instructed 

to move their finger at the same rate as the flash to ensure consistent speed of movements across 

digits and individuals. 

7.3.2.2 Pre-processing of fMRI Data 

Physiological noise correction was conducted using the recorded cardiac and 

respiratory traces with RETROICOR (Glover et al., 2000), coded in MATLAB. The 

MPRAGE was processed through Freesurfer (Fischl, 2012) to generate white and grey 

matter boundaries and generate surfaces. Flattening was performed in mrTools (mrFlat) 

to produce individual flat maps for each subject. All fMRI analysis was then performed 

in mrTools (Gardner, 2018). Functional data were first motion corrected and aligned to 

the high resolution T2
*-weighted anatomical FLASH scan using mrAlign (mrTools) and 

the time series were high-pass filtered with a 0.01 Hz cutoff. 

7.3.2.3 Phase Analysis to Define Digit Maps 

Digit maps were produced from the sensory and motor mapping task using phase 

analysis (Asghar, 2019; Besle et al., 2013). fMRI data collected in the reverse-direction 
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scan was reversed and shifted by one TR (2 s) to correct for the slice timing of the 

acquisition (see Appendix A). Averaging of forward and reverse scans was then 

performed to reduce the effect of the haemodynamic delay (Besle et al., 2013). A cosine 

function at the stimulation frequency was fitted to the forward and reverse scans and 

averaged across runs resulting in a phase map, where the phase of a voxel represents 

the stimulation of a given finger based on the phase bin. Coherence maps were also 

created which measures the correlation between the fitted cosine and the voxel time 

series. The phase maps were generated at a threshold of coherence = 0.3 and binned 

into five equal phase bins of widths 2π/5 to produce ROIs of each digit representation. 

This process was performed for both the somatosensory data of both hands and the 

motor data of the dominant hand. 

7.3.2.4 GLM Analysis to Define Digit Maps 

The somatosensory and motor data were also analysed using a general linear model 

(GLM) in mrTools (Gardner, 2018). The purpose of this analysis was to determine 

whether digit maps could be robustly generated using a GLM, and secondly whether 

the overlap between digits could be measured. The latter is not possible with a phase 

analysis as this solely attributes a given phase to a single digit. Use of a GLM also 

allowed the exact times of movement from the accelerometer to be used for the motor 

task, rather than the visually cued movement times. To do this, separate GLMs were 

ran for each digit. A boxcar was created with the timings of stimulation for an individual 

digit which was convolved with a double-gamma haemodynamic response function. To 

compare the GLM analysis with the phase analysis, the positive beta weights from each 

digit were combined in a winner-takes-all approach (WTA), i.e. each voxel was 

assigned to a given digit based on its maximum beta value. The WTA analysis from the 

GLM was constrained to the digit ROIs as previously defined from the phase analysis. 

To quantitatively compare GLM analysis with the phase analysis, a Dice coefficient 

between the GLM winner-takes-all map and the phase map was computed. In order to 

do this, firstly the phase distribution from the phase analysis was converted into discrete 

maps of D1 to D5 by dividing the phase distribution (0 to 2π) into five (see Figure 7.6). 

Then the Dice coefficient was computed between this discrete phase map and the WTA 

map. For two images, A and B, which represent the binary digit maps, the Dice 

coefficient is given by 
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 𝐷𝑖𝑐𝑒(𝐴, 𝐵) =
2 |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (1) 

where 𝐴 ∩ 𝐵 is the intersection of A and B. The Dice coefficient assesses the similarity 

between two images and will range from 0 (not similar) to 1 (complete similarity). 

 

Figure 7.6. Schematic of how Dice coefficient is measured between phase and GLM maps. The 

phase distribution is converted into a discrete digit map, which can then be compared to the 

GLM map, see Equation 1. 

For the motor paradigm, the accelerometer data were input into the GLM to provide 

more accurate timings based on actual movements of each digit for each participant. 

The accelerometer measures movement in each of the three orthogonal directions, these 

traces were root-mean-squared (RMS) to capture the timing of the movement. An 

example RMS time course of movements detected by the accelerometer is displayed in 

Figure 7.7. The accelerometer data was then analysed to determine the movement onset 

and offset times, using a similar analysis method to that performed on the EMG data in 

Chapter 4. The RMS accelerometer data were filtered and the Hilbert envelope taken. 

A noise threshold was determined as 3 times the standard deviation of the data, and 

movement periods were classified as the periods above this threshold. The exact times 

of movement onset and offset were then input as timings into the GLM for the motor 

paradigm. In 6 of 20 scan sessions (3 FHD patients no Botox, 3 healthy controls) the 

accelerometer data were unusable or not present due to issues with hardware and 

scanner triggers. In these cases the timings of the visual stimulus were used.  
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Figure 7.7. Example RMS accelerometer trace for one subject for the forward direction motor 

task with detected movements highlighted for each of the five digits. (digit 1 = orange, digit 2 

= green, digit 3 = cyan, digit 4 = purple, digit 5 = pink).  

7.3.2.5 GLM Analysis of Overlap of Digits  

The advantage of using a GLM to study the mapping data is it provides a potential 

method by which to measure the overlap between the digits (Besle et al., 2014), a 

parameter which cannot be extracted from phase analysis of the data. To assess the 

degree of digit overlap, the beta weights from each of the separate digit GLMs were 

assessed for each digit ROI, defined from the phase analysis for each subject. To 

combine the data across the subjects within each group, the individual subjects were 

normalised to between 0 and 1 and averaged over the group. In order to quantify the 

spread in activity over digits, a Gaussian distribution was fitted to the digit beta weights, 

where digit ordering was shifted so the stimulated digit was in the centre. This enabled 

the width of the fitted Gaussian to be compared between subject groups. 
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7.4 Results  

7.4.1 Behavioural Measures  

Behavioural results are shown for the 7 patients with FHD (mean age 51 ± 10 years, 4 

female) collected within 4 weeks of receiving Botox treatment (Botox) and the same 

patients at least 3 months after the last injection (mean age 52 ± 11 years) after treatment 

effects had worn off (no Botox), which was on average 21 ± 11 weeks after the first 

scan, and 7 age- and sex-matched healthy controls (mean age 50 ± 12 years, 4 female).  

Mean values (± standard deviation) of SDT from the grating orientation task were 2.9 

± 0.9 mm and 2.8 ± 0.9 mm, for FHD patients with Botox and no-Botox respectively, 

and 1.8 ± 0.2 mm for healthy controls, as shown in Figure 7.8. The FHD patient group 

had a larger SDT and larger variance compared to the healthy controls, with a 

significant difference between the means of the three groups (p = 0.046, one way 

ANOVA). SDT was found to correlate with age (Figure 7.9) across the groups with a 

Pearson correlation coefficient of 0.443. This was largely driven by the patients, with 

the correlation beween SDT and age of patients only 0.587, p = 0.027. Patient 

demographics including age, sex, handedness, Botox dose received and their SDT score 

are shown in Table 7.1. There was no significant correlation between Botox dose and 

SDT.  

Amplitude discrimination thresholds at 31 Hz and 200 Hz on each hand averaged across 

groups are shown in Figure 7.10. Inidividual amplitude thresholds were compared 

between patients with Botox, patients no Botox and healthy controls for stimulation at 

31 and 200 Hz on both hands. No significant differences were found between groups in 

any of the measures (one-way ANOVA). Temporal discrimination thresholds using 

both piezoelectirc stimulators and the Brain Gauge device, for each hand, are shown in 

Figure 7.11. Again, no significant differeneces were obsereved between groups for any 

of the measures showing this lack of difference was independent of stimulus type. There 

was a significant difference in the type of stimulus used, with the Brain Gauge which 

has a larger stimulation area giving a significantly lower TDT across the group 

(P<0.001 paired samples t-test).  

The within-subject coefficient of variation (CV) was measured for the behavioural tests 

performed on a group of 10 healthy controls, to assess the test-retest realiability. The 
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CV for: i) grating orientaiton task was 6.2%, ii) amplitude threshold at 31 Hz was 24.5% 

and at 200 Hz was 38.9%, iii) temporal discrimination task for piezoelectric stimualtion 

was 43.1% and Brain Gauge stimulation was 30.9%. These results suggest that the 

between session variation was lowest in the measure of SDT with the grating orientation 

task.  

Subject Age Sex Handedness Botox dose (U) SDT (mm) 

1 37 F R 56 1.47 

2 39 M L 10 2.46 

3 68 F R 16 2.98 

4 63 M R 24 4 

5 49 F R 28 4 

6 52 M R 24 3.05 

7 52 F R 12 2.06 

Table 7.1. Patient demographic information including age of the patients, handedness, Botox 

dose received approximately 4 weeks before the scan and spatial discrimination threshold. 

 

Figure 7.8. Box plots of SDT results for FHD patients with Botox and no-Botox and healthy 

controls. Each colour represents an individual subject and their age-matched control.  
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Figure 7.9. Correlation between SDT and age across all groups (Pearson correlation = 0.443, 

p = 0.044). Squares represent FHD patients with botox, circles FHD patients with no Botox, 

solid dots represent healthy controls. The dashed line shows the linear fit to the data (R2 = 

0.196). 

 

Figure 7.10. Box plots of amplitude thresholds for patients with Botox, patients no Botox and 

healthy controls for (A) 31 Hz affected/dominant hand, (B) 31 Hz unaffected/non-dominant 

hand, (C) 200 Hz affected/dominant hand and (D) 200 Hz unaffected/non-dominant hand. No 

statistical difference was seen between the means of the three groups for any measure (one-

way ANOVA). Red crosses indicate outliers.  
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Figure 7.11. Box plots of temporal discrimination thresholds for patients with Botox, patients 

no Botox and healthy controls for (A) piezoelectric stimulators, affected/dominant hand, (B) 

piezoelectric stimulators, unaffected/non-dominant hand, (C) Brain Gauge affected/dominant 

hand, (D) Brain Gauge unaffected/non-dominant hand. No statistical difference was seen 

between the means of the three groups for any measure (one-way ANOVA). 

7.4.2 fMRI 

fMRI mapping results are shown for FHD patients with Botox (n = 7) and six of these 

patients (mean age 54 ± 10) who returned at least 3 months after last Botox injection 

(no Botox), together with the age- and sex-matched healthy controls. One patient did 

not return for the no Botox scan session due to claustrophobia.  

7.4.2.1 Phase Analysis  

Phase analysis of the somatosensory and motor travelling wave datasets produced maps 

of fingertip digit representation in the somatosensory cortex of the contralateral 

hemisphere. Individual digits were able to be distinguished, with the expected lateral to 

medial progression of digits observed (D1 is expected to be lateral and inferior to D5) 

(Figure 7.12B). Also, as expected the motor task resulted in a large digit specific 

response in the somatosensory cortex but limited activation in motor cortex. An 

example of the map from the somatosensory task for one FHD patient (Subject 6, 

Botox) is shown in Figure 7.12I. The associated coherence (Figure 7.12A) and phase 

(Figure 7.12B) maps are displayed on the flattened cortical patch. Figure 7.12C shows 
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the same digit representations on whole head geometry. The bottom panels of Figure 

7.12 show the progression of the individual digits D1-D5 from lateral (D1) to medial 

(D5). Figure 7.12II shows the results from the motor task for the same subject for 

comparison. The motor and somatosensory tasks can be seen to evoke similar cortical 

representations in the somatosensory cortex, with the motor task producing stronger 

responses denoted by greater coherence (panel A). The phase maps for all subjects are 

shown in Figure 7.13 for the somatosensory task on the dominant/affected hand, Figure 

7.14 for the somatosensory task on the non-dominant/unaffected hand and Figure 7.15 

for motor task on the dominant/affected hand. The first column shows FHD patients 

with Botox treatment, the second column FHD patients without Botox, and the third 

column is the age- and sex-matched healthy control.  

In Figure 7.13, 16 out of 20 maps show the expected digit topography, with no visual 

difference in the number of disordered representations between patients and healthy 

controls. Maps where the expected order of digits is not followed are marked with an 

asterisk. For the non-dominant hand, Figure 7.14, a similar number of maps are 

successfully produced, with 16 out of 20 maps showing expected digit topography. 

Again maps where digit representations appear disordered are marked with an asterisk. 

For the motor task (Figure 7.15), clear maps are produced in all subjects.  

Across all paradigms, for most patients, there is little difference between the maps of 

finger representation with Botox and no Botox. For two patients (subject 1 and 3), the 

maps between Botox and no Botox are very different.  
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Figure 7.12. (I) Phase analysis of somatosensory travelling wave for one patient on individual 

flattened cortical patch in the contralateral hemisphere (left hemisphere) to the dominant 

(right) hand where dark grey represents negative curvature (sulci) and light grey represents 

positive curvature (gyri). Central sulcus (CS) is marked. (II) Phase analysis of motor travelling 

wave for same subject. (A) Coherence map. (B) Phase map. (C) Phase map from B shown on 

whole head. D1-5: ROIs of individual digits. 
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Figure 7.13. Somatosensory travelling wave phase maps (dominant/affected hand) from phase 

analysis for all subjects, in contralateral hemisphere. Data not collected for subject 2 as subject 

did not return for no Botox scan. Disordered digit maps are marked with an asterisk.  
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Figure 7.14. Somatosensory travelling wave phase maps (non-dominant/non-affected hand) for 

all subjects, in contralateral hemisphere. Data not collected for Subject 2 as subject had no 

non-dominant hand. Disordered digit maps are marked with an asterisk. 
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Figure 7.15. Motor travelling wave phase maps (dominant/affected hand) from phase analysis 

in contralateral hemisphere. Data not collected for Subject 2 as subject did not return for no 

Botox scan and Subject 4 did not complete motor task.  
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7.4.2.2 GLM Results  

GLM analysis of the motor and somatosensory travelling wave paradigms produced 

activation of individual digits in the contralateral hemisphere. These are shown for each 

hand for the somatosensory paradigm (Figure 7.16A&B) and for the dominant hand for 

the motor paradigm (Figure 7.16C) for an example FHD patient (Subject 6). The 

expected progression of digits can be seen and individual digits were able to be 

distinguished. Comparing Figure 7.16A&B (somatosensory task) with Figure 7.16C 

(motor task), it can be seen that the motor task produced stronger activation than the 

somatosensory task, which was also observed for the phase analysis. Individual digit 

beta weights from the GLMs were combined and the maximum beta weight per voxel 

was found to produce a map of all 5 digits. The resulting maps of digit representations 

are shown for all subjects in Figure 7.17 (somatosensory affected hand), Figure 7.18 

(somatosensory non-affected hand) and Figure 7.19 (motor affected hand).  

 
Figure 7.16. GLM analysis of (A) somatosensory travelling wave in right (dominant and 

affected) hand, (B) left (non-dominant and non-affected) hand and (C) motor travelling wave 

in right (dominant and affected hand). Showing activation (FDR corrected Z-score) in the 

contralateral hemisphere to stimulation, for the same patient as Figure 7.12. Right image shows 

the individual digits combined using winner-takes-all analysis.  
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Figure 7.17. GLM winner takes all analysis of somatosensory travelling wave from 

affected/dominant hand in contralateral hemisphere. Data missing for subject 2 as subject did 

not return for no Botox scan. Disordered digit maps are marked with an asterisk. 
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Figure 7.18. GLM winner-takes-all analysis of somatosensory travelling wave from non-

dominant/non-affected hand, in contralateral hemisphere. Data missing for subject 2 as subject 

had no non-dominant hand. Disordered digit maps are marked with an asterisk. 
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Figure 7.19. GLM winner-takes-all analysis of motor travelling wave from dominant/affected 

hand in contralateral hemisphere. Data missing for subject 2 as subject did not return for no 

Botox scan and healthy control 4 did not complete motor task. 
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7.4.2.3 Comparison of GLM and Phase Analysis Digit Maps 

Maps of digit representations from the GLM winner-takes-all analysis and phase 

analysis of the same scans were compared. Figure 7.20 shows a GLM winner-takes-all 

and phase analysis map for an example subject (Subject 6, whose data is also shown in 

Figure 7.12 and Figure 7.16) for the motor and somatosensory tasks. Qualitatively, the 

two analysis methods can be seen to show good agreement for this subject. To 

quantitatively compare the two methods across all subjects, the Dice coefficient 

between the GLM winner-takes-all and phase maps was computed for each digit. The 

average Dice coefficient matrices across subjects are shown in Figure 7.21. The Dice 

coefficient for each digit (diagonal elements of the Dice matrix) averaged across 

subjects for each of the tasks is shown in Figure 7.22. Individual results are shown in 

Appendix C. The overall mean Dice coefficient across all subjects and digits was 0.64 

± 0.17 for the motor task (dominant/affected hand), compared to 0.50 ± 0.15 

(dominant/affected hand) and 0.49 ± 0.19 (non-dominant/unaffected hand) for the 

somatosensory task. Since the Dice coefficient shows good agreement between the two 

analysis methods for the motor scans, this validates the use of the GLM analysis for a 

travelling wave paradigm, where commonly the phase analysis is used. However, the 

Dice coefficients for the somatosensory task, on both the dominant and non-dominant 

hand is lower, indicating less similarity. As a result, the motor maps are used to assess 

overlap of digit measures, but the somatosensory maps are not analysed further in this 

Chapter. 
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Figure 7.20. GLM winner-takes-all analysis (left) compared with phase analysis (right) for (A) 

somatosensory dominant hand, (B) somatosensory non-dominant hand and (C) motor 

(dominant hand) for Subject 6 (same subject as previous figures). 
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Figure 7.21. Dice coefficient matrices between digits of the winner-takes-all GLM analysis and 

phase analysis averaged over subjects for somatosensory travelling wave on affected hand (top 

row), somatosensory unaffected hand (middle row) and motor task on affected hand (bottom 

row) averaged across subjects for patients with Botox (first column) patients with no Botox 

(middle column) and healthy controls (last column).  

 

Figure 7.22. Dice coefficient between digit maps from the winner-takes-all GLM analysis and 

phase analysis (diagonal of Figure 7.21) averaged over subjects for somatosensory travelling 

wave on affected hand (top row), somatosensory unaffected hand (middle row) and motor task 

on affected hand (bottom row) averaged across subjects for patients with Botox (first column) 

patients with no Botox (middle column) and healthy controls (last column).  
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7.4.2.4 Digit Overlap Measures  

Since Section 7.4.2.3 showed that the GLM method produces more robust digit maps 

for the motor task than the somatosensory task, the GLM results for the motor task were 

investigated further to assess overlap of digit representation. The resulting normalised 

beta values are shown in Figure 7.23. As expected, the plots show strongest beta 

weights in the digit that was stimulated, but also shows considerable overlap with 

neighbouring digits, with high beta weights in these digits too. The average Gaussian 

fit is shown in Figure 7.24.  

The mean width (averaged over all digits ± standard deviation) was 1.34 ± 0.04, 1.5 ± 

0.2 and 1.35 ± 0.03 for FHD patients with Botox, FHD patients no Botox and healthy 

controls respectively (Figure 7.25). The FHD patients with Botox treatment and healthy 

controls were very similar, whilst the width for the patients with no Botox was the 

largest (Figure 7.25), however, there was no significant difference between the three 

groups (Kruskal-Wallis test, p = 0.6).  

 

Figure 7.23. Digit overlap in patients with Botox, patients no Botox and healthy controls from 

motor experiment, showing the average normalised beta weight from the individual digit GLM 

(y-axis) in each digit ROI (x-axis). 
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Figure 7.24. Average Gaussian fitted to digits for healthy controls, patients with Botox and 

patients no Botox in the motor experiment. 

 

Figure 7.25 Average width of Gaussian fitted to beta weights (representing overlap) for patients 

with Botox, patients no Botox and healthy controls. 
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7.5 Discussion 

The results in this chapter show that there was only a significant difference in spatial 

discrimination threshold (SDT) between patients with FHD and matched healthy 

controls (Figure 7.8) but no difference in amplitude or temporal threshold between 

groups (Figure 7.10 and Figure 7.11). Using UHF MRI, digit representations for a 

motor and somatosensory travelling wave paradigm were mapped onto the cortex for 

both healthy controls and patients with FHD (Figure 7.13, Figure 7.14 and Figure 7.15). 

It was also shown that in addition to the established phase analysis methods used to 

assess digit representation with travelling wave paradigms, GLM analyses of these data 

could produce similar maps of the digit representation if the BOLD response was 

sufficiently robust, as found for the motor paradigm (Figure 7.19). Using a GLM 

allowed assessment of overlap in the cortical representation of the digits. This 

assessment indicated that there may be greater overlap of digit representations in the 

somatosensory cortex of the patients with no Botox treatment compared to when they 

had Botox treatment to help their symptoms or their matched healthy controls.  

7.5.1 Behavioural Measures  

SDT of the dominant hand was found to be raised in patients with FHD (2.9 ± 0.9 

mm/2.8 ± 0.9 mm for Botox/ no-Botox) compared to healthy controls (1.8 ± 0.2 mm), 

in agreement with previous literature which have shown spatial acuities in healthy 

controls to be on the order of 1 to 2 mm (Grant et al., 2006; Molloy et al., 2003; Sanger 

et al., 2001; Zeuner et al., 2002), consistent with the finding here. Previous literature 

has shown SDT of patients with FHD to be raised by the order of 1 mm compared with 

healthy controls, in agreement with this study (Figure 7.8). This shows that FHD affects 

sensory discrimination levels. Furthermore, it was shown that SDT correlated with age, 

as has previously been shown (Molloy et al., 2003). Whilst the correlation was over all 

three groups, the correlation was driven by the patients, suggesting that SDT might not 

correlate with age in the general population but does with FHD. It would be interesting 

to explore whether SDT correlated with years since onset of illness, however these data 

were not available.  

However, no clear difference was observed between SDT of patients with and without 

Botox treatment, suggesting no change due to the effects of Botox in this measure. 

Previous literature has shown that SDT scores improved 1 month after Botox injection 
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(Walsh & Hutchinson, 2007), suggesting that here it would be hypothesised that SDT 

with Botox treatment would be lower than SDT with no treatment and more similar to 

controls. The lack of difference between Botox and no Botox here could be due to small 

sample size, as Walsh et al. compared 20 patients. A limiting factor in the grating 

orientation task was that it was only performed on the index finger of the affected hand, 

which is not necessarily where the dystonia is localised in all the patients (for example, 

some subjects may experience most severe symptoms in their thumb).  

No significant difference was observed between groups in the amplitude or temporal 

threshold assessments, contrary to other studies (Bara-Jimenez et al., 2000; Sanger et 

al., 2001). This may be due to these tests having higher coefficients of variation between 

sessions than the SDT test. The coefficients of variaiton were in line with previous 

literature (Mikkelsen et al., 2020), suggesting that the tests were performed in line with 

previous studies, however with a lower sample size. Therefore, it is most likely that the 

lack of significant effect is because of the small sample size in this study (n = 7), and 

any differences between patient and controls are within the coeffcicient of variation and 

therefore not detectatable. Previous studies where significant behavioural effects were 

seen had cohorts of 9 to 15 patients (Bara-Jimenez et al., 2000; Mikkelsen et al., 2020; 

Sanger et al., 2001).  

A significant difference was seen between the two types of temporal discrimination test 

(piezoelectric stimulators and Brain Gauge device). This is likely to be due to the fact 

that the Brain Gauge device has a larger area of contact with the finger. The Brain 

Gauge device also had a lower coefficient of variation suggesting it is a more 

reproducible measure of TDT. Despite this, no differences were seen in temporal 

discrimination thresholds between patients and controls for the Brain Gauge device.  

7.5.2 fMRI  

This study is consistent with previous studies (Besle et al., 2013; Sanchez-Panchuelo et 

al., 2010), which showed that the travelling wave paradigm is a robust and reproducible 

method to assess functional organisation in somatosensory cortex. The maps of digit 

representations showed the expected ordering of digits (Penfield & Rasmussen, 1950), 

with D1 more lateral, anterior and inferior to the location of D5. This corroborates a 

great deal of previous work which showed that the digits are represented cortically in 

an organised manner.  
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Despite the hypothesis and previous work (Bara-Jimenez et al., 1998; McKenzie et al., 

2003; Meunier et al., 2001) suggesting that patients with FHD would show disordered 

representations, no clear differences were observed in the amount of disorder between 

the digit representations of the patients with FHD and age-matched healthy controls in 

this small group. Previous work has commonly reported differences in cortical distance 

between digit representations (Bara-Jimenez et al., 1998; Butterworth et al., 2003; 

Nelson et al., 2009) however in this chapter cortical distances were not compared. 

Analysis has previously been performed on these data (Asghar, 2019) which showed 

no difference in digit distance between patients and controls, and was not the main aim 

of this thesis. In fact, previous measures of distance (Butterworth et al., 2003) are 

limited as they involve measuring peak t-stat locations on folded brains, which does not 

take into consideration individual anatomical differences. Instead, a better approach 

would be to compare individual digit representations to a probabilistic atlas (O’Neill et 

al., 2020). 

There are several possible explanations for the lack of difference between controls and 

patients seen in this chapter. The first is that the previous studies were at lower spatial 

resolution, since surface electrophysiology used in Bara-Jimenez et al. (Bara-Jimenez 

et al., 1998) has inherently lower spatial resolution than fMRI, and 3T fMRI used in 

Butterworth et al. and Nelson et al. was at lower spatial resolution (3 mm and 2.08 mm 

voxels respectively) (Butterworth et al., 2003; Nelson et al., 2009) than this study where 

voxel size was 1.5 mm. In addition, there is less spatial specificity at 3 T due to the 

signal being more intravenously weighted than at 7 T, again reducing the spatial 

accuracy of the previous work compared with this study. Despite this lower spatial 

accuracy in previous studies at lower field strength, a recent study (Mancini et al., 2019) 

using fMRI at 3 T investigated somatotopic representation in patients with chronic pain 

conditions, which were hypothesised to cause reorganisation of somatotopic 

representation of the affected limb. However, the authors found digit representation 

between affected and unaffected hands of patients and between patients and healthy 

controls to be comparable, contradicting the hypothesis. This recent work supports the 

results presented here, leading to the hypothesis that focal hand dystonia does not relate 

to gross map reorganisation. 

Another possible explanation for this discrepancy is the effectiveness of the Botox 

treatment. The fact that patient and healthy control maps are comparable could be a 
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sign that the Botox treatment is working, as all patients regularly receive Botox 

injections, which could imply that Botox treatment is affecting cortical digit 

representations. Yet, if this were the case, it might be expected that there would be large 

differences in maps between Botox and no Botox scans, which was not found. No 

behavioural differences were seen between the Botox and no Botox scans also. It could 

be possible that the Botox had not completely worn off in the no Botox scan, despite 

acquiring the data on patients at least 3 months after their last injection. Botox injections 

are administered every 3 months so this was the longest gap that could be left. However, 

sometimes patients reported that the beneficial effects can last longer which perhaps is 

what is seen in these data. Still, this would not explain why SDT was raised in patients 

compared to controls but digit maps were similar.  

It has been noted in a previous study (Kolasinski et al., 2016) that there are large 

amounts of inter-subject variability in digit representation maps. Therefore, it may be 

that the difference between subjects is much larger than any difference due to FHD, as 

much larger differences in anatomical and functional architecture obscure any subtle 

changes due to FHD. If this is the case, it is possible that such changes may be revealed 

with a larger group size, and across a much wider range of disease severity.  

Comparing somatosensory and motor responses, the spatial location of the activation 

from the two tasks was similar. Despite aiming to evoke only a motor response by using 

finger tapping in the air for the motor task, a large response is seen in somatosensory 

cortex for the motor task. This is in agreement with what has previously been observed 

when a similar motor task was performed (Kolasinski et al., 2016). The similarity 

between responses of the two tasks suggests that finger-moving motor tasks do produce 

a largely somatosensory response. This suggest strong interplay between motor and 

somatosensory cortex. Interestingly, the response to the motor task was more robust 

(better correlation in the phase analysis and higher Z score in the GLM analysis) than 

the somatosensory task (Figure 7.12 and Figure 7.16). This could be because the motor 

task was more active than the somatosensory task thus requiring greater cortical 

recruitment. In future, it may be feasible to only use the motor task to assess cortical 

digit representations, rather than the somatosensory task.  

Whilst the maps were largely the same between the phase and GLM analysis methods 

(see Figure 7.20), using the GLM method allowed measurement of overlap between 
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digit representations during the motor task. Overlap measures showed that cortical 

activation for a given fingertip overlaps with cortical activation for other fingertips 

(Figure 7.23 and Figure 7.24). This effect was most strongly seen in the adjacent digits 

(e.g. D2 and D4 are most likely to overlap with D3), in agreement with previous 

literature (Besle et al., 2014). An increase in digit overlap was found for patients with 

no Botox compared to patients with Botox treatment and healthy controls, however, 

this was not statistically significant. Again, this could be due to small cohort size, or, it 

could imply that patients do not have more organisational blurring than healthy 

controls. Further investigation using the methods developed here is therefore warranted. 

In addition, the methods used here could also be applied to other pathologies which are 

believed to affect the sensorimotor cortex and particularly the hands, although in 

principle there is no reason such methods could not be expanded to investigate the 

cortical representation of other body parts. 

Limitations and Future Work 

One limitation of this study was the low number of patients, which may have resulted 

in limited statistical power to determine differences between groups. However, all the 

patients available that were being treated by the neurologist were invited to take part in 

the study. Out of this limited number of patients, in some cases patients were 

claustrophobic and so could not go in the 7 T scanner, due to its long and narrow bore. 

This is a problem if 7 T MRI is to be used clinically and needs to be made more patient 

friendly. Another issue is that two of the patients recruited and scanned were removed 

from the analysis due to large motion artefacts during the scans. In future, to improve 

motion artefacts, real-time motion tracking could be used which corrects fMRI data in 

real-time rather than retrospectively (Speck et al., 2006). However there are challenges 

with implementing this at 7 T and work is ongoing (Bortolotti et al., 2020). The scan 

session could also be shortened, to reduce scan time and chance of movement, however 

scans were already optimised to minimise acquisition time by using the travelling wave 

paradigm and SENSE and multiband to accelerate the acquisition. As mentioned 

previously, it could be suggested to only use the motor paradigm in future as this was 

more robust than the somatosensory paradigm, which would save time.  

In some patients and healthy controls, ordered digit maps were not produced. One 

possible explanation for this could be motion during the scans. Whilst data were motion 



251 

 

corrected and motion was ensured to be less than 1.5 mm (1 voxel), it could be that 

movement occurred between scans, which is an issue as the forward and reverse scans 

are combined in the travelling wave analysis which will affect the phase.  

It is important to note that throughout this chapter analysis was performed on the maps 

generated in the contralateral hemisphere to the stimulated hand. Future work will also 

investigate whether any responses were observed on the ipsilateral hemisphere, 

particularly for the digit overlap. Such investigation would allow exploration of 

interhemispheric sensorimotor communication, and whether it breaks down in the 

patients. The scan session also involved a resting state scan and event-related paradigm, 

the analysis of which is beyond the scope of this thesis. Future work will investigate 

whether there are any differences in the functional connectivity of resting state 

networks between patients and healthy controls, as well as analyse the event-related on-

off paradigm. All of these analyses will clearly complement the work presented here to 

get a fuller picture of the source of the problem in FHD.  

7.6 Conclusion  

This chapter has shown that high-resolution 7 T fMRI can be used in a clinical 

population to produce maps of somatosensory representations of fingertips in individual 

patients. However, no difference between patient and healthy control maps was evident 

in this small cohort, suggesting that FHD does not cause cortical reorganisation. It was 

shown that it is possible to measure overlap of individual digits in a travelling wave 

paradigm by using GLM analysis. This analysis revealed a slight difference between 

the digit overlap when patients with FHD had been treated with Botox compared with 

when they had no Botox. This effect was not significant but this may be due to the small 

cohort and warrants further investigation in a larger sample size. 
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7.8 Appendices  

A. Travelling wave paradigm  

A somatosensory travelling wave paradigm (Figure 7.26) involves sequential 

stimulation of digits with no off period and has been shown to be highly reproducible 

(Sánchez-Panchuelo et al., 2014). A full explanation of the travelling wave paradigm is 

given in Figure 7.26. Digit stimulation is performed in both the forwards and reverse 

order, with the stimulation order reversed to remove the haemodynamic lag. Digits are 

stimulated in the order D1 to D5 for the forward-order scan, and D5 to D1 for the 

reverse-order scan. Figure 7.26A shows an example time course from a voxel 

responding to stimulation of the index finger (D2) in the forward-order scan and Figure 

7.26B shows the corresponding time course of the index finger from the reverse-order 

scan. To remove haemodynamic lag, the reverse-order scan is time-reversed (Figure 

7.26C). It can be seen from Figure 7.26D, where the time-reversed reverse-order scan 

is plotted with the forward-order scan, that the two scans are mirror images of each 

other. The phase of the response is computed relative to acquisition time, and the point 

of symmetry between the forward-order scan and time-reversed reverse-order scan 

corresponds to 2.5 TR. The time-reversed reverse-order scan is then shifted by 1 TR 

period so the point of symmetry is moved forward by half a TR to 3 TR which makes 

the phase values easier to interpret (Figure 7.26E). A cosine function is fit to the 

responses, and the phase of the best fitting cosine function to the forward-order scan 

and the TR-shifted, time-reversed, reverse-order scan is averaged, which results in a 

direct relationship between phase and the location of the stimulation. The use of the 

forward and reverse scans removes haemodynamic lag, and the TR-shift removes the 

effect of slice time acquisition.  



257 

 

 

Figure 7.26. Schematic of the travelling wave paradigm. Solid line represents the time course 

of activation from a voxel. Dashed blue line represents the best-fitting cosine function. Circles 

represent each sampled time point, an unknown acquisition time, a, after the start of each TR 

period. (A) The response from an activated voxel from stimulation of the index finger, in the 

forward-order scan. (B) Reverse-order stimulation of the index finger. (C) The response from 

(B) time-reversed. (D) Forward-order stimulation, (A), superimposed with time-reversed 

reverse-order stimulation (C). (E) Forward-order stimulation, (A), superimposed with time-

reversed reverse-order stimulation (C), shifted by 1 TR period to correct for slice timing 

acquisition. The forward-order and time-reversed, reverse-order runs are then averaged which 

cancels out the haemodynamic delay. This results in a direct relationship between phase and 

the location of the stimulation. Reproduced from (Besle et al., 2013).  
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B. Handedness questionnaire. 

 

C. Dice coefficients  

Individual subject results of Dice coefficient for somatosensory task (dominant/affected 

hand) (Figure 7.27) somatosensory task (non-dominant/unaffected hand) (Figure 7.28) 

and the motor task (Figure 7.29).  
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Figure 7.27. Dice coefficient between phase maps and winner takes all map from GLM analysis 

maps for somatosensory task on dominant/affected hand. Blue indicates low similarity and 

yellow indicates high similarity. 
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Figure 7.28. Dice coefficient between phase maps and winner takes all map from GLM analysis 

for somatosensory task on non-dominant/unaffected hand. Blue indicates low similarity and 

yellow indicates high similarity.  
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Figure 7.29. Dice coefficient between phase maps and winner takes all map from GLM analysis 

for somatosensory task on non-dominant/unaffected hand. Blue indicates low similarity and 

yellow indicates high similarity. 
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CHAPTER 8 

8 Conclusion 

8.1 Summary  

The research presented in this thesis contributes to a growing body of work that aims 

to understand the characteristics and functional role of brain responses measured by 

MEG and fMRI. Together, this work highlights the potential and strengths of each of 

the imaging modalities for furthering our understanding of human brain function.  

Specifically, Chapter 4 has shown that MEG post-stimulus responses are modulated by 

task duration. Importantly, the PMBR was shown to last up to 9 s in duration. This is 

significant as this length of time is longer than the majority of electrophysiology studies 

leave between trials. An implication of this is the possibility that differences in 

measured PMBR could, instead, be a result of differences in baseline period used, or, 

that differences between groups may be obscured if the PMBR does not fully return to 

baseline. Overall, this work strengthens the idea that the PMBR is of functional 

relevance as the PMBR was shown to systematically vary with task duration. These 

results will be of great importance to the rapidly expanding field of measuring PMBR 

changes in clinical research, where the PMBR has been shown to be altered in people 

with schizophrenia (Robson et al., 2016), multiple sclerosis (Barratt et al., 2017) and 

motor neurone disease (Proudfoot et al., 2017), to name but a few. In future, the task 

presented in this thesis could be applied to a clinical cohort to identify any changes in 

PMBR in health and disease.  

Following the results of Chapter 4, further research was performed to investigate the 

functional role of the PMBR. This was done by exploring the functional networks 

present during a task. Chapter 5 used novel methods to show that functional networks 

form and dissolve on rapid timescales. In particular, this study showed that networks 

break down during the movement period, and are re-established during the post-

movement period. These findings suggests the role of the PMBR is not solely related 

to inhibition, as previous studies have suggested (Pfurtscheller et al., 1996), but instead 

that the PMBR fulfils a role of re-establishing connectivity across the functional 

networks of the brain after a movement task. The second major finding, revealed with 
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hidden Markov model analysis, was that the PMBR can be described by increased 

frequency of transient beta events, typically lasting ~100 ms, in agreement with other 

studies (Little et al., 2018; Sherman et al., 2016). The idea that the PMBR consists of 

transient bursts and that changes in bursting activity relates to different stimulus 

durations provides new evidence that the PMBR has a distinct origin and functional 

role which still warrants further investigation. 

In Chapter 6, the relationship between MEG and fMRI was investigated by applying 

the same paradigm as Chapter 4 and 5 to fMRI. fMRI measures of blood volume and 

blood oxygenation were explored, to better understand the origin and characteristics of 

the post-stimulus undershoot. The results of Chapter 6 showed that the BOLD post-

stimulus undershoot is modulated by task duration, but not in the same way as the MEG 

response: increasing the grip duration increases the amplitude of the BOLD post-

stimulus undershoot. This possibly suggests the post-stimulus undershoot is not entirely 

driven by neuronal activity. Measures of blood volume (CBV) showed a decrease in 

total blood volume in the post-stimulus period, with no change in arterial blood volume 

(aCBV). The decrease in total CBV, but not aCBV, suggests a reduction in venous CBV 

drives the VASO undershoot, which is the opposite of the balloon model (Buxton et al., 

1998). However, a decrease in vCBV alone could not cause the BOLD post-stimulus 

undershoot; an undershoot would require a post-stimulus increase in CMRO2 or 

reduction in CBF. Whilst both measures of CMRO2 and CBF were attempted in this 

study, neither could be directly measured and therefore further work is needed to 

develop this study. However, the work presented provides strong evidence that the 

Balloon model is not the complete explanation for the BOLD response and further 

testing is needed to reveal the origins of the BOLD post-stimulus undershoot.  

Finally, Chapter 7 highlights the potential use and challenges of BOLD fMRI in a 

clinical setting. Development of analysis methods showed that it was possible to use 

GLM analysis on a travelling wave paradigm, and that this can be used to measure 

overlap between cortical digit representations. However, even with optimised analysis 

strategies, the results of this study showed no significant differences between 

somatosensory representations of digits in patients with focal hand dystonia (FHD) 

compared to healthy controls. This is in contrast to what was hypothesised and what 

has been seen in previous studies (Bara-Jimenez et al., 1998; Butterworth et al., 2003). 

It is possible that this discrepancy is due to a small sample size, the effectiveness of 
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Botox treatment or additional noise at 7 T. Despite these limitations, it could be 

hypothesised that FHD does not alter sensory digit representation. This is a similar 

finding to a recent study of pain syndrome (Mancini et al., 2019). This new outcome 

may help improve the understanding of FHD.  

8.2 The Future 

The functional role of the PMBR is still unclear. The work in this thesis has laid the 

groundwork for future research into the PMBR, but more research is needed to 

understand its precise mechanism, especially if it is to be used as an indicator of brain 

health. In particular, there is a need to characterise how different movement types 

modulate the PMBR, whilst making sure to carefully control task parameters. Current 

MEG research is limited to experiments which are largely unnatural – as the 

experiments must be performed without moving, either seated or lying down, usually 

pressing a button. A new generation of MEG technology, OPM-MEG (Boto et al., 

2018), enables MEG to be performed whilst moving, and with the possibility of in a 

virtual reality environment (Roberts et al., 2019), as has previously been done with 

EEG (Tromp et al., 2018), which could enable more realistic experiments to be 

performed, helping to understand the PMBR further and perhaps its relevance to task 

performance. 

Similarly, the mechanisms behind the BOLD signal need to be fully understood before 

fMRI can be used widely in as a clinical tool. Considerably more work is required to 

determine what drives the post-stimulus undershoot. Future work could explore 

measuring cerebral blood flow (CBF) as well as CBV, which should be possible with 

the sequence developed in this thesis and an optimally performing ultra-high field MRI 

scanner. As well as CBF, future research should investigate the time course of venous 

CBV. This would help confirm the observed change in total CBV in this research. 

However, combining all these measures would pose a significant technological 

challenge. Taking the results of Chapter 5 and Chapter 6 together, a natural progression 

of this work would be to conduct an EEG-fMRI study, where transient beta events are 

modelled on a trial-by-trial basis and are input as regressors into the GLM, to better 

model the beta responses. However, MRI will cause artefacts on the EEG data, which 

might make beta bursts difficult to reliably detect. EEG can also introduce image 

artefacts into the MR data, which may reduce MR image quality and impact the ability 
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to measure CBF and CBV, though it can be done. Given the current evidence that post-

stimulus responses are altered in neurological conditions and have been proposed as a 

biomarker of disease state, work needs to be carried out to gain a full understanding of 

the networks involved in the generation of post-stimulus responses and the functional 

relevance of this response in task performance, through a combination of 

electrophysiological and haemodynamic measures.  

Further studies need to be carried out in order to validate the work of Chapter 7. If it is 

the case that FHD does not alter cortical representation of digits, more research will 

need to be conducted to understand FHD. Analysis of the other fMRI scans (such as the 

5-minute resting state scan, an event-related paradigm and structural scans) and MEG 

data collected during this project will also help elucidate these results. A larger study 

with more patients could provide more evidence.  

An interesting result of Chapter 7 was that the response to the motor task of a finger 

movement gives a large response in somatosensory cortex and little in the motor cortex, 

in agreement with other fMRI data using a similar motor task (Kolasinski et al., 2016). 

This shows the interconnectedness of motor and somatosensory cortex but raises an 

important point surrounding the relationship of responses measured with MEG and 

fMRI. MEG studies often show that the MRBD is localised to the somatosensory cortex 

whilst the PMBR is localised to the motor cortex in similar finger movement tasks 

(Jurkiewicz et al., 2006), which was what was observed in Chapter 4 for the grip-force 

task. It could be that this difference is highlighting that MEG and fMRI are not 

measuring the same effects. Or, it could be that the primary response to a simple finger 

movement in both modalities is in the somatosensory cortex, and the post-stimulus 

response is in the motor cortex. This is not what was found in Chapter 6 when the post-

stimulus fMRI response was interrogated. However, further investigation with a finger 

movement task which is less motor-demanding than the grip-force task used in the early 

experimental chapters of this work is warranted. The post-stimulus response cannot be 

investigated from the fMRI data collected in Chapter 7 due to the travelling wave 

paradigm used. The relationship between fMRI and MEG evidently needs investigating 

further as where the PMBR is generated from and its relationship with the post-stimulus 

BOLD response will help understand its function and possible role in FHD.  
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Perhaps it is the case that our understanding of brain function using fMRI is still limited 

by its spatial and temporal resolution. In future, with more ultra-high field scanners (>7 

T), which give higher signal, may be able to image the brain faster and with higher 

resolution that is currently possible. This might help us better understand the 

relationship between fMRI and neuronal activity.  
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