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Abstract: 
This thesis describes the use of compartmentalised microfluidic devices to investigate 

changes in neuronal excitability. All studies carried out in this work were completed in line 

with principles of the NC3Rs (reduction, replacement and refinement). Particular interest was 

given to the study of the excitability of dorsal root ganglion neurons (DRGs) in the context of 

pain-based signalling. This also included the in vitro culture and characterisation of non-

neuronal cells involved in inflammation and nociception.  

Current methods for In vitro modelling of pain pathways often fails to replicate the unique 

morphology of the DRG neurons. These pseudo-unipolar neurons detect nociceptive stimuli 

at the peripheral terminals, and transduce long range action-potentials to higher processing 

centres in the central nervous system. Unlike in vivo modelling of pain behaviours, in vitro 

models of nociception provide the capacity to monitor changes in neuronal function at a 

cellular and molecular level. However, until the development of technology such as 

microfluidics, the standard methods of culture failed to isolate the axons from the soma.  

The primary aim of this project was to develop a model capable of replicating the complex 

microenvironment that terminals of the DRG neurons encounter during the development and 

onset of pain. This involved the optimisation of cell culture methods for inflammatory cells 

used to induce changes in neuronal excitability, both from the context of the peripheral 

terminals, or from the CNS if desired. At a molecular level, the microfluidic model was also 

used to investigate the role of small non-coding RNA (microRNAs) on regulating DRG 

excitability in the context of nociception. This Thesis hypothesises that voltage-gated 

potassium channels form an interesting target for a microRNA of interest. However, it is 

widely acknowledged that microRNAs regulate the expression of multiple mRNAs.  

The use of functional studies using the microfluidic model have shown here that there are 

differences in the way in which a neuron responds to a stimulus, dependent on whether it is 

applied locally to the axon or the soma. Live cell imaging was used to measure evoked changes 

in Ca2+ transients as a proxy for cell excitability. As well as significant differences in the 

response to depolarising agents such as potassium chloride (KCL), the use of biologically 

relevant stimuli to the study of nociception was also developed. The culture of inflammatory 

cells such as bone marrow derived macrophages led to the development of cytokine-rich 

media which was used to evoke changes in neuronal excitability. By exploiting the microfluidic 
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nature of the device, subsequent investigations to the role of microRNA 138-5p in regulating 

neuronal excitability were undertaken. The use of cell permeable microRNA inhibition 

showed a reduction in cell excitability if applied locally to the axons. Bioinformatics led to the 

development of Kv1.2 as a potential target for miR-138-5p in vivo, which could explain the 

effects of miR-138-5p in modulating excitability of the DRGs. 

The findings in this work have demonstrated the potential for development of more 

biologically relevant in vitro models using microfluidic compartmentalised cell culture. For 

example, fluidic isolation has characterised the role of miR-138-5p in regulating DRG 

excitability at the axons.  
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1 Introduction and literature review 
The formation of precise axonal connections between the peripheral and central nervous 

system is essential for successful function related development. The cells of the nervous 

system form multiple connections in early development, which are systematically pruned to 

form a complex network for effective signal transduction. In this way a sensory stimulus is 

detected by cells of the peripheral nervous system, and action potentials rapidly propagated 

to the central nervous system, whereupon an appropriate motor response is induced. This 

cell signalling is particularly important for complex multi-cellular processes such as pain, 

where transduction of a noxious stimuli into an electrical signal relies on 

compartmentalisation and polarisation of neuronal networks.  

 

1.1 The nervous system: 

 

The central nervous system consists of the brain and the spinal cord, where all neurons are 

encased by up to 30 sheaths of myelin formed by oligodendrocytes. All other neuronal tissue 

forms the peripheral nervous system; these neurons are both sensory and motor in nature 

and propagate action potentials into the central nervous system where it is processed 

accordingly. Dependent on the function of the nerve, the neurons in the peripheral nervous 

system may or may not be myelinated. Dependent on the function of the nerve, the neurons 

in the peripheral nervous system may or may not be myelinated. For example, both small 

diameter unmyelinated C-fibers, and myelinated Aδ fibers are involved in nociceptive 

processing, but remain silent in the absence of a nocifensive stimulus (Yam et al., 2018). The 

obvious advantage of myelination is the capacity for saltatory conduction, where the action 

potential appears to ‘jump’ between the unmyelinated nodes on the axon. However, whether 

a nerve is myelinated by Schwann cells is not dependent on the axon diameter, but rather on 

the expression of neuregulin-1, an epidermal growth factor (Nave and Salzer, 2006). The 

profiling of neurons within the specific areas of the nervous system demonstrates that 

neurons develop in accordance with their function. For example, those neurons that are 

highly involved in movement express high levels of dopaminergic receptors and appear to be 

more prevalent in the frontal lobe of the cortex. In order to understand these pathologies, it 
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is therefore essential to investigate the structure and function of the building block of the 

nervous system, the neuron.  

 

The nervous system is highly complex and first develops within the first 2 to 8 weeks of 

embryo development (Elshazzly and Caban, 2019). Although formation of the neural plate 

begins early in embryogenesis, the nervous system continues to grow, and axonal 

connections continue to form even throughout post-natal development (Discovering the 

Brain, 1992). Once formed, the human brain is estimated to contain 1015 neurons as early as 

aged 3 (Drachman, 2005). At which point, the nervous system undergoes systematic ‘pruning’ 

to ensure that axonal connections are meaningful and propagate action potentials in the most 

effective way possible (Cowan et al., 1984; Meier, Finch and Evan, 2000; Low and Cheng, 

2006). The selective re-structuring of the connections in the human brain is at its core a good 

example of natural selection. The plasticity of the nervous system in early post-natal 

development occurs in multiple ways. More commonly, cells undergo apoptosis due to 

changes in the surrounding environment (Yuan, Lipinski and Degterev, 2003). And this 

programmed cell death reduces unnecessary competition for potential synaptic targets. 

However, it has also been demonstrated that surrounding growth factors and neurotrophins, 

such as NGF, may not solely be involved in maintaining cell viability, but also regulating axon 

development and survival (Singh and Miller, 2005). It is for this reason that such growth 

factors and cytokines are of particular interest in the development of pathologies like pain, 

whereby the activity of sensory neurons appears to become dysfunctional due to changes in 

the surrounding environment.  

It is widely acknowledged that most of the nervous system does not generally acquire new 

neurons post-natally, although there is evidence to suggest that in certain areas adult 

neurogenesis has been detected in rodent modelling (Lei et al., 2019). This doctrine was first 

defined in 1965 (Altman and Das, 1965). Since then it has been demonstrated that the genesis 

of new neurons in adult rodent brains is limited largely to the hippocampal and subventricular 

zones (Ming and Song, 2011). Furthermore, it has been demonstrated that neurogenesis in 

the adult human brain is even further limited than that of the rodent CNS. Most notably, in 

rodents and other mammals neuroblasts appear to migrate from the subventricular zone to 

the olfactory bulb. However, in humans no new neurons were detected here after 

development of the adult CNS (Bergmann et al., 2012). In summary, we should be wary when 
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directly comparing rodent tissue to the CNS of humans.  For example, there is also evidence 

that axons of existing neurons readily regenerate following peripheral nerve injury. Although 

the axonal connections of the central nervous system (CNS) do not readily regenerate, the 

neurons of the peripheral nervous system (PNS) have been shown to (Huebner and 

Strittmatter, 2009).  

 

1.2 The Neuron  

 

The nervous system is comprised of multiple cell types, including neurons (1015) and non-

neuronal cells such as glial cells. It was previously estimated that glial cells outnumbered 

neurons by a factor of 10:1 (HYDEN, 1962) but more recent histological data has suggested 

otherwise. More accurate cell counting techniques have demonstrated that it is more likely 

that the glial cell to neuron ratio is around 1:1, with around 86.1 billion neuronal cells and 

84.6 billion non-neuronal cells (Azevedo et al., 2009; von Bartheld, Bahney and Herculano-

Houzel, 2016). Furthermore, whilst neurons do not continue to divide, and rarely self-

regenerate following injury, the glial cells readily proliferate upon injury. 

 

The signalling and cellular excitability of neuronal cells in the PNS forms the basis of this thesis, 

although we also investigated how the excitability of these cells can be modulated by non-

neuronal cells such as immune cells. Therefore, it must be acknowledged early that the 

neurons cannot function as discrete entities, efficient function of the nervous system relies 

on multiple layers of cell-to-cell communication.  

 

The majority of neurons acquire a highly polarised morphology in development, often 

corresponding to the functional of a neuron in the nervous system. Unlike multipolar neurons 

(figure 1.2.1A) found in the CNS, the neurons of the dorsal root ganglion (DRG) develop an 

unusual pseudo-unipolar structure (see figure 1.2.1B, below.) Classically it is understood that 

the dendrites receive information and transmit it to the soma, whilst the axon carries action 

potentials away from the cell body, towards a receptor cell. The diagram below shows how 

this flow of information is propagated along the cell via action potentials.  
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1.3 The Axon: 

 

The axons, or nerve fibres are long processes along which action potentials are rapidly 

propagated for effective cell communication. For example, in some areas of the human body, 

axons can be up to one metre long, running from the base of the spinal cord to the end of the 

foot. Primarily the axons are connective structures through which complex neuronal 

networks are formed for effective cell-to-cell signalling. Therefore, the transduction and 

transmission of electrical impulses along the axon is essential for rapid neuronal signalling. 

However, due to the highly polarized nature of the neurons, the axons are also critical in the 

bidirectional transport of signalling molecules for successful neuronal signalling. Unlike the 

action potential which is only transported in one direction along the axon, the movement of 

specific axonal components can require either anterograde (e.g. Kinesin) or retrograde (e.g. 

Dynein) transport of molecules. Although similar processes of macromolecular transport can 

be observed in other cells, the scale of protein trafficking observed in the neurons is unique 

due to the elongated axons and polarized phenotype of the cell.  

 

In general, anterograde transport is essential to transport newly synthesised proteins to a 

target of interest, whilst retrograde transport simultaneously clears the cell of misfolded or 

damaged molecules. Microtubule motor proteins drive the movement of molecules along the 

A B 

Figure 1.2.1: Comparison of neuronal phenotypes. 1A) A multipolar neuron phenotype, typically observed by cortical 

neurons in the CNS. 1B) A Pseudounipolar neuron, most commonly recognised as the phenotype of the neurons of the 

dorsal root ganglion. 
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axons, inclusive of organelles, endosomes and RNA vesicles. Where kinesin proteins drive the 

movement of molecules away from the soma, proteins such as dynein are responsible for 

retrograde transport. However, the purification of axonal endosomes have exhibited the 

presence of both motor proteins (Hendricks et al., 2010). Therefore, it is understandable that 

the bi-directional transport of macromolecules is essential not only for the development of 

the nervous system, but also to prevent pathological degeneration.  

 

The “neurotrophic factor hypothesis” was postulated in 1968, following the result that 

removal of chick hindlimbs led to a reduction in motor and sensory neurons (Hamburger and 

Levi-Montalcini, 1949; Levi-Montalcini, 1987). This hypothesis suggested the presence of 

target-derived neurotrophins was required for the survival of neurons, and ultimately led to 

the characterization of nerve growth factor (NGF.) Injection of radio-labelled NGF into the 

axonal terminals led to the discovery that NGF could later be detected in the soma, a result 

which was confirmed both in-vitro and in-vivo (MacInnis and Campenot, 2002). Furthermore, 

the addition of NGF to the axonal compartment of compartmentalised cultures promoted the 

growth of axons over time (Campenot, 1982). However, since then the family of proteins 

referred to as neurotrophins has been further investigated and is also known to incorporate 

BDNF, NT-3 and NT-4/5. These neurotrophins have regulatory roles in both the peripheral and 

central nervous systems, with established roles in both axonal guidance and nerve 

regeneration.   

 

Anterograde transport has been most clearly defined using metabolic labelling techniques in 

the cell (Weiss, 1967). Manipulating the cytoskeleton demonstrated that microtubules are 

essential for rapid movement along the axons, whilst pulse-chase labelling in motor neurons 

led to the discovery of multiple phases involved in anterograde transport along the axons  

(Griffin et al., 1976). Furthermore, the rate of transport appears to be dependent on the 

function and size of the molecule. Organelles have been shown to move at 400mm/day, 

whereas cytoskeletal proteins move away from the soma much more slowly (<8mm/day) 

(Maday et al., 2014). Of particular interest to this project is the anterograde transport of 

mRNA and microRNA along the axons of sensory nerves. Local protein synthesis is essential 

for functional cell-to-cell signalling. Although it is evident that localization of specific mRNA 

within distinct neuronal compartments is important for neuronal function, the mechanisms 
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by which this is regulated have yet to be elucidated (Holt, C. E., and Schuman, 2013). 

Meanwhile microRNAs act as negative regulators of mRNA translation, and the pathway for 

biogenesis of mature miRNA is discussed in detail below. However, precursor microRNA 

molecules have been identified both in the soma and the distal compartments of the axon in 

sensory neurons (Kim, H. H., Kim, P., Phay, M., and Yoo, 2015; Rotem et al., 2017). As such, it 

is understandable that anterograde transport of microRNA and mRNA is important in 

regulation of gene expression in neurons.  

 

1.4 The Action Potential: 

The action potential underlies all electrophysiological neuronal cell-to-cell signalling. The 

action potential is an ‘all-or-nothing’ response, with the resting membrane potential typically 

measuring -60-70mV (as shown in figure 1.4 below.) Therefore, an action potential will only 

be generated if the membrane is sufficiently depolarized. For example, when a stimulus such 

as TRPV1 binds receptor at the terminal of the DRG, a small influx in Na+ ions is triggered and 

the membrane potential is bought closer to the threshold potential of -20mV. This small influx 

of Na+ is known as a generator potential but unlike the action potential, these generator 

potentials have graded responses. There are four main classes of tactile mechanoreceptors 

that relay extracellular stimuli such as touch or pressure, to intracellular signal transduction 

via mechanically gated ion channels. These tactile mechanoreceptors are found in the 

superficial laminae, and deeper layers of the skin. One such example is the Pacinian 

corpuscles (Abraira and Ginty, 2013). Upon mechanical disruption of these receptors, ions 

flow into the cell causing electrical depolarization and generator potentials. When the influx 

of sodium ions associated with stimulation is sufficient to reach threshold potential, the 

membrane rapidly and completely depolarizes to +40mV. This depolarization is rapidly 

followed by repolarization of the membrane by efflux of K+ ions. This transient switch in 

membrane potential is known as the action potential (Hammond, 2015). Figures 1.4.1- 1.4.3 

showshow the depolarisation phase of the action potential is associated with the influx of 

sodium ions (Na+), whilst the repolarisation phase is dependent on the efflux of potassium 

(K+) ions. Following depolarisation, the neuron enters a refractory period, in which an action 

potential cannot be produced because the sodium channels are closed (and do not open) and 

the membrane is undergoing repolarisation via efflux of K+.  
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Rapid cell communication is required between cells of the nervous system for effective signal 

transduction followed by an appropriate response. A good example of this is the reflex 

response; if you hold your hand over an open flame, action potentials are rapidly propagated 

along the nerves of the PNS to the CNS so that your motor neurons are activated, and you 

remove your hand from harm. For this reason, action potentials must be propagated in the 

most efficient way possible, and therefore most of the nerves in the body are myelinated.  

 

 

In the neurons of the PNS, the myelination of fibres is formed by polarised, longitudinal 

Schwann cells ensheathing the axon (Salzer, 2003; Pereira, Lebrun-Julien and Suter, 2012). In 

A 
 

B 
 

Figure 1.4.1: A simplified representation of a myelinated neuron in the PNS, made using BioRender.  

A) The insert demonstrates how the myelination is not continuous, but there are unmyelinated nodes where the ionic 

capacitance is higher, and the action potential can pass through the membrane easily. B) The flow of current through a 

neuron during saltatory conduction of an action potential. Images taken from (Uncini and Kuwabara, 2015) 



 22 

development of the PNS, axons signal to glial precursors, initiating Schwann cell migration 

and survival (Perlin et al., 2011). Both the axons and the surrounding Schwann cells release 

bi-directional trophic signals throughout life to support cell survival (Jessen and Mirsky, 2005; 

Pereira, Lebrun-Julien and Suter, 2012). Critically, the myelination of the axons by the 

Schwann cells helps to regulate the axon cytoskeleton as well as the rate of transport along 

the axon. Myelin provides a high resistance, low capacitance barrier that enables saltatory 

conduction of ions between the unmyelinated nodes of Ranvier (Hillman and Hillman, 1986; 

Salzer, 2003). Effectively, the action potential appears to ‘jump’ between the nodes, where 

the ions cannot pass through the myelin sheath surrounding the axon: 

 

Myelination of the axon is clearly important in propagation of the action potential and 

irreversible de-myelination of nerves is an underlying factor of pathologies such as Multiple 

Sclerosis (Moalem and Tracey, 2006a; Popescu and Lucchinetti, 2012; Huang, Chen and 

Zhang, 2017). The loss of myelin surrounding axons damages the exposed fibre, reducing the 

efficiency of action potential propagation, as well as reducing the capability of the neuron to 

traffic proteins efficiently. The lipidic nature of myelin gives the neuron a low capacitance at 

regions where the Schwann cells surround the axon. Therefore, ions must cross the 

membrane solely at the unmyelinated regions known as the Nodes of Ranvier. The expression 

of voltage-gated channels for sodium and potassium at these regions is therefore also 

instrumental in maintaining successful propagation of the action potential.  

 

In the PNS, it has been demonstrated that there is selective expression of subsets of voltage 

gated ion channels, dependent on the presence of surrounding Schwann cells.  
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Figure 1.4.2: Distribution of voltage gate channel isoforms at the paranodal and nodal regions. This image has been taken 

from (Rasband and Peles, 2016) as a recreation from (Lakke, 1997). 

Figure 1.4.2 demonstrates that whilst the propagation of action potentials is reliant upon the 

presence of voltage gated channels at the node, the expression of relevant proteins is not 

uniform (Rasband and Peles, 2016).  This differential expression of ion channels is essential in 

the development of functional distinctions in sensory neurons. 

 

The rapid influx of sodium ions in the depolarising phase of the action potential is essential 

for reaching threshold potential. However, evidence has shown that not all subtypes of 

voltage-gated channels open at the same time, see figure 1.4.3. Nociceptive fibres express 

both tetrodotoxin (TTX) sensitive and TTX resistant subtypes of channels. Genes encoding the 

TTX-R channels NaV1.8 and NaV1.9 were initially deemed exclusively expressed in sensory 

neurons (Akopian, Sivilotti and Wood, 1996). Additionally, immunocytochemistry has 

demonstrated higher expression of TTX-R channels in unmyelinated fibres of the DRG, in the 

soma, axon and nerve terminals (Fjell et al., 2000; Fang et al., 2002). Since TTX-R and TTX-S 

channels have very different kinetics with relation with activation and inactivation, it is 

understandable that there is differential activity throughout the action potential (Elliott and 

Elliott, 1993). Higher expression of TTX-R polymodal nociceptors has been deemed to underlie 

activity dependent slowing of conduction in the nociceptors in response to a range of 

nociceptive stimuli (Jonas et al., 2020). 
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Voltage-Gated sodium channels are open during the depolarizing phase, and rapid influx of sodium ions increases the 

membrane potential.  In contrast, the re-polarization of the membrane is largely due to the opening of voltage-gated 

potassium channels, and efflux of potassium from the cell. Evidence for the roles of subsets of voltage gated channels has 

been acquired from relevant literature (Tsantoulas and McMahon, 2014; Dib-Hajj, Geha and Waxman, 2017) 

 

Patch clamping has shown that initial depolarization is resultant from TTX-S sodium currents; 

where these channels (NaV1.3 and NaV1.7 in particular) activate rapidly but are also 

inactivated before the membrane potential has peaked. TTX-R channels are also activated 

and reach maximal amplitude during the rising phase of the action potential. However, these 

channels (especially NaV1.8, as shown by figure 1.4.3) do not completely inactivate during 

the re-polarization of the membrane. It is thought that these TTX-R channels are largely 

responsible for a “shoulder” in the falling phase (Blair and Bean, 2002). Particularly in smaller 

diameter nociceptors it has been shown that TTX-R are responsible for most of the influx of 

Na+ during the depolarizing phase, whilst at low temperatures NaV1.8 are solely responsible 

for the initiation of the action potential (Zimmermann et al., 2007). It has also been 

demonstrated that there is a high composition of NaV at the unmyelinated region of the Node 

Figure 1.4.3: An overview of the action potential.  
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of Ranvier, in particular Nav1.1 and NaV1.6 in the CNS (Rios et al., 2003; Duflocq et al., 2008), 

although the NaV1.6 isoform is also highly clustered at the node in the nerves of the PNS 

(Caldwell et al., 2000; Rasband and Peles, 2016).  

 

Where the movement of sodium ions into the neuron is known to initiate the action potential, 

the movement of potassium channels out of the axon returns the neuron to its resting state. 

In particular the resting membrane potential is known to be regulated by two-pore potassium 

channels, and members of the Kv7 family, as shown in figure 1.4.3. This figure only suggests 

the association of voltage gated potassium channels with regulating the action potential, but 

it is evident that other isoforms of potassium channel are also involved in ionic conductance 

across the neuron membrane. This includes two-pore potassium channels, as well as calcium-

activated potassium channels, and inward rectifiers (Tsantoulas and McMahon, 2014). The 

voltage gated potassium channel is by far the largest family of potassium channels, with over 

40 genes in humans (Gutman et al., 2005). Pharmacological evidence has demonstrated a 

heterogeneous nature of the voltage-gate potassium channel family. Therefore, it is likely that 

a range of Kv channels are expressed in cells, each of which rectifies the action potential with 

unique biophysical properties. Six distinct K+  currents have been observed in the neurons of 

the DRG, 3 of which appear to be unique to small diameter fibres, or nociceptors (Everill, Rizzo 

and Kocsis, 1998; Everill and Kocsis, 1999). Several voltage gated potassium channels cluster 

in the juxta-paranodal regions, in particular those isoforms of the Kv1 family, to regulate 

neuronal excitability (Rasband et al., 2001). Although there is abundant evidence for the role 

of NaV, TRP and even H+ sensitive channels on the surface of the sensory neurons of the DRG, 

there is relatively little in comparison on the diverse range of Kv channels expressed on these 

neurons. The myelinated nerve fibres of the DRG appear to predominantly express isoforms 

of the Kv1 family, with particular interest to Kv1.1 and Kv1.2. These channels form complexes 

to maintain internodal resting potential (Wang et al., 1993; Rasband et al., 1998). Neuropathic 

pain models using spinal nerve ligation (SNL) of L5-L6, has demonstrated the effect of 

potassium channels on sensory nerve excitability. In the ipsilateral fibres of L5-L6 the 

expression of Kv1 channels was significantly reduced, where in comparison little change in 

expression in the uninjured L4 fibres (Rasband et al., 2001). Furthermore, induced axotomy 

demonstrated a significant decrease in the expression of these channels in medium diameter 

fibres of the DRGs. In particular, the downregulation of Kv1.1 has been linked to reduced firing 
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threshold, and consequentially mechanical allodynia (Xian and Nicol, 2007; Hao et al., 2013). 

In contrast, the activity of Kv1.2 has been linked to regulation of the membrane potential by 

augmenting firing rate (Tsantoulas and McMahon, 2014). Additionally, the mechanosensitive 

effects of Kv1.2 have not only been detected in the myelinated fibres of the DRG, but also 

linked to C-fibre activity.  

 

1.5 Disruptions to the action potential: 

Repetitive and controlled regulation of the action potential along the axon is essential for cell-

to-cell communication via synapses, even at a long distance. The movement of ions across 

the membrane is tightly regulated such that resting membrane potential always returns to -

60mV. Therefore, dysregulation of the action potential can induce downstream effects, 

disrupting sensory and motor function. One such family of pathologies in which disruption to 

the action potential is implicated is pain. Pain is defined by IASP as ‘an unpleasant sensory 

and emotional experience associated with actual or potential tissue damage, or described in 

terms of such damage.’ Underlying a painful physical sensation is altered cell signalling of 

sensory neurons, in particular the nociceptive fibres of the DRGs. At a cellular level this is 

often caused by a change in the conductance of the axons, where cell membranes may 

become hyper- or hypoexcitable, and consequentially the action potential is not efficiently 

propagated. Nociception can be defined as the ability to detect noxious stimuli, and in 

humans activation of the nociceptive neurons usually evokes a downstream sensation of 

physical pain.   

 

1.5.1 An overview of pain: 

From a physiological perspective pain is an evolutionary response that provides a protective 

role against noxious stimuli. This physiological response is comprised of both an emotional 

response, and the unpleasant physical sensation associated with pain, known as nociception 

(Basbaum et al., 2009). Generally the pathway involving physical detection of a noxious 

stimuli has been determined to have three main parts.  

1. The first stage involves exposure and subsequent detection of a stimulus via binding 

of receptors (e.g. Capsaicin at TRPV1) on terminals of the DRG neurons. Activation of 
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these receptors bring the membrane closer to threshold potential, in order to 

depolarize the membrane and generate an action potential.   

2. An action potential is propagated along the active nociceptors and integrated into the 

superficial laminae of the dorsal horn, where the sensory neurons of the DRGs 

terminate. (In wound healing, non-neutrophilic CD11b+ cells (most likely 

macrophages) sensitize pseudounipolar DRG neurons via the release of pro-

inflammatory cytokines, NGF and histamine (Ghasemlou et al., 2015) with the ability 

to change the sensitivity of these neurons following nerve injury.) 

3. From here, the action potential is transmitted through pain pathways of the central 

nervous system. These include the ascending pathways to higher processing centres 

(such as the thalamus and the cortex,) and the descending pathways of pain where 

action potentials are transmitted via the spinal cord to the reflex organs (Yam et al., 

2018).  

A good example involves the myotactic (stretch) reflex following tapping the patellar 

tendon with a hammer. It is important to note that from the point at which a stimulus 

is detected by the sensory afferent fibres, to the response from a motor efferent fibre, 

there are several other cell types indirectly involved in signal transduction. Other 

withdrawal reflexes, including the nociceptive withdrawal response (e.g. removing 

your hand from an open flame) are polysynaptic, including one or more synaptic 

connections between the afferent and efferent fibres.)  

 

NB: This is a generalised overview of the typical steps involved in the perception of pain. 

However, it is worth noting that the physical response to detection of a noxious stimuli can 

occur prior to integration in the CNS. It has been demonstrated that decerberation of mice, 

rats and rabbits has not removed the withdrawal reflex in these animals. Removal of the 

forebrain in rats did not appear to impair the ability of these animals to respond relatively 

normally to a noxious stimulus. For example, decerebrate rats still showed normal withdrawal 

responses, vocalization and licking at the site of injury. In this regard the behaviour of the 

decerebrate animals was almost identical to a healthy control.  However, removal of the 

frontal cortex and thalamus induced limitations in the normal behaviour of these rats. Whilst 

they responded appropriately to a noxious stimuli, immediately afterwards these animals 

returned to normal grooming behaviours. Even following contact thermal injury where the 
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ipsilateral paw was extremely sensitive, these animals continued with normal behaviours (e.g 

grooming) and demonstrated no sustained response to protect the site of the injury.  These 

results suggested that the sensory component of the pain pathway was intact and functional, 

but the reactive component was now abnormal where the cortex was removed (Woolf, 1984) 

 

However, it is also evident that there is a pathological component to the development of pain 

often underlying multiple disorders, such as arthritis. In this context, the pain elicited by 

inflammation or even injury to the nervous system evokes a pathophysiological response. The 

sensitisation of firstly the peripheral nociceptors, and subsequently the ascending pathways 

of the pain pathways in the central nervous system induces changes in signalling of the 

nociceptive neurons. The International Association for the Study of Pain (IASP) determined 

that pain can be classified according to the region of the body from which the pain originates. 

As such, there are three classifications of pain, including nociceptive, neuropathic and 

inflammatory (Woolf et al., 1998; Yam et al., 2018). 

 

1.5.2 Peripheral Sensitisation and the DRG neurons:  

In the peripheral nervous system, the cells are comprised of sensory neurons, forming ganglia 

adjacent to, but outside the spinal cord and the CNS. These bundles of fibres are known as 

the Dorsal Root Ganglion cells (DRGs) and in many ways, form the link between the peripheral 

nervous system and the integration of a nociceptive signal to the central nervous system. 

These sensory neurons innervate target tissue in the periphery, but transport neuronal signals 

into the CNS via the dorsal horn of the spinal cord (via the substantia gelatinosa.) Here the 

primary afferent fibres synapse with dorsal horn neurons (known as the second order 

neurons) and form projections to the brain (Todd, 2010; Zeilhofer et al., 2020). 

 It is the relationship between sensory neuron input to the dorsal horn and the downstream 

activation of the second order neurons that determines the excitability of the dorsal horn. 

For this reason, investigating changes in the excitability of these pseudo-unipolar sensory 

fibres form the basis of the model outlined later in this project.   

Peripheral sensitisation refers to the changes in neuronal excitability and sensitivity that occur 

often following peripheral nerve injury and/or inflammation. For example, following injury, 

the threshold for activation of the peripheral nociceptors is reduced, and the sensitivity of 
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these sensory fibres to stimulation is also increased, often manifesting as primary 

hyperalgesia (Gold and Gebhart, 2010).  

There are several ways in which cells can become sensitised, although at a molecular level 

there are often transcriptional dependent changes in protein expression (for example, 

activation of protein kinase A pathway by PGE2.) One of the ways in which peripheral 

sensitisation manifests is via up-regulation of receptors on the terminals of the afferent fibres 

following exposure to inflammatory stimuli such as bradykinin, ATP and prostaglandins (Staud 

and Smitherman, 2002; Campbell and Meyer, 2006). This translational regulation of receptors 

on the DRG terminal increases action potential firing of the nociceptors, and induces a state 

of “pain.”  

 

1.5.3 The switch from acute to chronic pain:  

Neuropathic pain arises from a combination of both peripheral sensitisation in the nociceptor 

terminals, and central sensitisation of nociceptive signalling. The changes in nociceptor 

signalling manifest as mechanical allodynia and hyperalgesia. As such, central sensitisation is 

defined as an increased responsiveness in the neurons of the central nervous system  

(Latremoliere and Woolf, 2009; Louw, Nijs and Puentedura, 2017). The pathophysiology 

arising from a single nociceptive input can lead to either an increase in excitability, and a 

reduction in the threshold for activation of a nociceptor. For example, if the nervous tissue is 

irreversibly damaged a state of mechanical allodynia is induced, and consequently the 

threshold for a pain response is lowered so that even innocuous stimuli are perceived as 

painful (von Hehn, Baron and Woolf, 2012). Unlike other forms of algesia, allodynia serves no 

protective purpose, but is often a co-morbidity underlying conditions such as diabetes, where 

mechanosensitive receptors in the periphery become irreversibly damaged.  

 

However, the inflammatory response arising from exposure to a nociceptive stimulus is 

dynamic and protective. Reversible changes in the sensory nervous system may also induce 

transient hyperactivity of nociceptive neurons known as hyperalgesia. In this condition the 

nociceptors have sensitised so that the detection of a low-level noxious stimulus, induces 

overactivation of nociceptors, and a long-lasting pain response. Whilst primary hyperalgesia 

is said to refer to a state of increased sensitivity at the site of injury, secondary hyperalgesia 
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is referred pain accompanying the damage to tissues surrounding the site of injury 

(Latremoliere and Woolf, 2009; Kuner, 2010).  

 

Rodent studies have previously shown differential responses to inflammatory mediators 

between neonatal and adult DRGs in hyperalgesic priming experiments (Beland and 

Fitzgerald, 2001). For example, peptidergic DRG fibre terminals have been identified in 

rodents before birth, but larger, non-peptidergic fibres are not present until post-natal day 5. 

Furthermore, evidence suggests that the functionality of the sensory circuits is acquired 

postnatally. For example, in the dorsal horn of newborn rodents, neuronal input 

predominantly arises from the low threshold A-fibres, where input from nociceptive C-fibres 

develops later, around post-natal day 10. In vivo it was shown that in adult rodents, the 

exposure of the hindpaw to mustard oil penetrated the skin and produced rapid and long-

lasting flexor responses.  However, these flexor reflexes to chemical irritants such as mustard 

oil did not begin to occur until postnatal day 10-11 (Jennings and Fitzgerald, 1998). In the 

second week of postnatal development it has been demonstrated that there is development 

of glycinergic inhibitory control of the dorsal horn. This coincides with the emergence of C-

fibre maturation, which is most likely responsible for the ability of these neonatal rodents to 

respond appropriately to chemical and inflammatory irritants. Results have shown that in 

tissue at P10-14 the selective block of primary afferent C-fibres with Lidocaine and Capsaicin 

delays the development of glycinergic inhibitory networks, and maintains the dorsal horn in 

a state of newborn excitability (Koch et al., 2012).  

Where newborn animals are particularly sensitive to tactile responses, the maturation and 

refinement of the networks in the spinal cord coincides with a postnatal pruning of A-fibre 

input, and strengthening of nociceptive C-fibre connections.  

When adult tissue was injected with carrageenan at 2% body weight, maturation of the DRGs 

showed development of two sub-populations of cells. This hyperalgesic priming is thought to 

be partially controlled by peptide plasticity in inflammation, especially since many 

neuropeptides are dependent on NGF, which is upregulated in the periphery during the 

inflammatory response (Woolf et al., 1994). In neonatal culture, both the CGRP (peptidergic) 

and IB4 positive (non-peptidergic) cell populations were affected by carrageenan, but only 

after postnatal day 5. Through development the TrkA receptor diversifies the nociceptive 

sublineage and is upregulated on peptidergic fibres but downregulated on the non-
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peptidergic fibres in favour of the glial derived neurotrophic receptor Ret. These non-

peptidergic neurons now bind isolectin B4 (IB4) in two distinct populations of small and 

medium diameter non-peptidergic neurons. Results have shown that following an injection 

with 2% carrageenan in adult tissue, only those cells expressing CGRP increased. These CGRP-

expressing, peptidergic Aδ/C-fibres are affected by inflammation and also express the TrKA 

receptor for NGF in the mature nervous system.  

Of relevance to this work, it was important to consider that tissue was extracted from 

embryonic mice and may not reflect what was previously observed in adult tissue.  

 

In the model described later in this work, we have focused on the role of inflammatory cells 

in inducing a change to the excitability of DRG neurons following exposure to an acute 

stimulus. As such, this model more closely resembles the changes observed in vivo arising 

from primary hyperalgesia. It is important to note that whilst immune cells release 

inflammatory mediators to modulate neuronal response to a stimulus, the nociceptors in turn 

release neuropeptides to modulate the immune cell function at the site of injury. This two-

way signalling between the neurons and the immune system is not only essential for the 

initiation and maintenance of a behavioural response to a nociceptive stimulus, but also for 

the resolution of the inflammatory response to a painful stimulus.   

Figure 1.5.1: The changes in paw withdrawal threshold associated with development of peripheral sensitisation and 

hyperalgesia. 
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1.6 Neurons of the pain pathways: 

There are primarily three types of neurons involved in the transmission and modulation of a 

nociceptive stimulus. This includes the primary afferent fibres, connective interneurons, and 

efferent motor neurons. Although the central nervous system is required for higher 

processing and ‘interpretation’ of a noxious stimulus, the neurons involved in transmission lie 

in the peripheral nervous system.  

 

1.6.1 Dorsal Root Ganglion Neurons (DRGs): 

The pseudo-unipolar neurons that comprise the bundles of fibres known as the dorsal root 

ganglion (DRGs) act as first order sensory neurons of the somatosensory system (Chen et al., 

2019). With the ganglion located in the dorsal root, the DRG neurons themselves form part 

of the peripheral nervous system. However, due to their unique morphology, these neurons 

‘bridge-the-gap’ between detection of a sensory stimulus at receptors in the terminals of 

peripheral nerves, and communicate directly with the neurons of the CNS.  

 

The DRG fibres terminate in the skin, where they form distinct subtypes of low-threshold 

mechanoreceptors based on the diameter and conduction velocity of the fibres. There is 

overwhelming evidence for the role of DRGs in processing both proprioceptive (Koerber, 

Mirnics and Mendell, 2017; Madden et al., 2020) and nociceptive stimuli (Krames, 2015; 

Emery et al., 2018) and therefore the activity of the DRGs have been extensively studied in 

culture. Neuronal fibres of the DRG are varied in diameter, and as such function. For example, 

a cross section of the DRG reveals that small diameter, unmyelinated fibres known as the C-

fibres, are primarily involved in integrating noxious stimuli to the CNS. Whereas, larger 

diameter fibres (such as type II Aβ fibres) can also respond to light-touch. Although the 

existence of Aβ fibres as nociceptors was initially overlooked, evidence has recently suggested 

that in rodent tissue the proportion of Aβ fibre nociceptors ranged from 18-65% (Djouhri and 

Lawson, 2004).  
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Figure 1.6.1 A) simplified diagram of a cross section of the fibres of the DRG showing relative subpopulations of neuronal 

fibres.  

Thicker dotted lines represent additional layers of myelination between the nodes of Ranvier. B) A transverse section of a 

rat lumbar dorsal root ganglion stained with fluorescent markers to distinguish sensory neuron subpopulations involved in 

the pain pathway. (Tsantoulas et al., 2012) 

 

1.6.2 A summary of the activity of fibres within the DRG: 

Some of the sensory fibres within the DRG are myelinated and demonstrate saltatory 

conduction along the axon. These are larger diameter fibres, involved in proprioceptive 

function rather than solely nociceptive function (Djouhri and Lawson, 2004; Koerber, Mirnics 

and Mendell, 2017).   

The large diameter, myelinated Aβ fibres can be further subdivided into type I and type II 

mechanoreceptors dependent on the mechanical and thermal threshold of fibre activation. 

However, the importance of the Aβ (as well as unmyelinated C- and thinly myelinated A𝛅 

fibres) must not be overlooked. As well as being functionally different in adult tissue, the 

neurogenesis of these fibres appears to emerge sequentially throughout development.  

It has been documented that in vivo that A-fibres develop between E15-17 and are later 

followed by C-fibres at E18-20. Therefore, the addition of specific growth factors was 

optimised to help promote differentiation of a nociceptive culture including Aδ and C-fibres. 

Manipulation via transgenic overexpression or deletion of receptors has demonstrated the 

importance of neurotrophin signalling for neuronal survival and differentiation in the DRG 

fibres. The non-peptidergic C-fibres appear to be dependent upon glial derived neurotrophic 

factor (GDNF) in early post-natal life, where the receptor for GDNF (Ret) was shown to be 
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expressed in embryonic rat fibres as early as embryonic day 15.5 (Molliver et al., 1997). The 

addition of GDNF to the in vitro culture of murine DRGs may have helped a sub-population of 

fibres differentiate to represent IB4 positive C-fibres.  

Whereas, the addition of the neurotrophin nerve growth factor (NGF) to the cultures not only 

promoted neuronal growth but may have promoted the expression of the TrkA receptor 

found on C- and Aδ-fibres. In vivo >50% of neurons in the DRG of embryonic mice at E11.5 

have been shown to be TrkA+, with IHC demonstrating the presence of TrkA-mRNA detected 

in 80% of DRG neurons by E13-15. However, in both mice and rats, the proportion of TrkA+ve 

cells was shown to decreased to between 40-60% in post-natal development.  

In adult rodent tissue around 40% of DRG neurons have been shown to express receptors for 

NGF (Barker et al., 2020). Furthermore, many of these NGF-responsive neurons also express 

TRPV1 (Caterina et al., 1997), and treatment with NGF can upregulate TRPV1 expression on 

the plasma membrane  (Xue et al., 2006a). In vivo, following peripheral inflammation anti-

NGF treatment in the hindpaw of rodents appeared to reduce TRPV1 expression, and also 

reduced inflammation-induced hyperalgesia (Cheng and Ji, 2008). As such, there is evidence 

that dysregulation of expression of NGF or it’s corresponding receptor may have a role in 

development of neuropathic pain. There was thought to be potential for anti-NGF treatment 

in humans although this has not yet been verified (Saldanha et al., 1999; Abdiche, Malashock 

and Pons, 2008).   
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Figure 1.6.2: An simplified overview of the fibres of the DRG (Susuki, 2010). There is a wide varibility in the range of stimuli 

that can activate the neurons of the DRG in pain based processing.  Whilst the role of C- and Aδ fibres in nociceptive 
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processing is widely explored, there is also evidence for function of the larger diameter Aβ fibres as both 

mechanoreceptors and nociceptors.  

 

The Aδ nociceptors can be further divided into two subtypes based on their sensitivity to 

heat and Capsaicin, dependent on how highly the TRPV1 (Transient vanilloid receptor 1) 

receptor is expressed on the neuron (Chen and Sehdev, 2019). For example, in a rodent model 

for neuropathic pain, exposure to Resiniferatoxin (RTX) only induced rapid cell death in those 

axons expressing TRPV1 (Tender, Li and Cui, 2008). RTX is a highly potent agonist of the TPRV1 

receptor and induces rapid influx of calcium into the cell via a non-selective cation channel 

and cell death. However, since TRPV1 is selectively expressed on the C-fibres and the type II 

Aδ-fibres, the type I Aδ-fibres remained functional. After this peripheral nerve injury, it was 

demonstrated that there was a significant increase in paw withdrawal threshold (PWT) 

suggesting that although these animals were still allodynic, large diameter fibres are also 

involved in the development of neuropathic pain.  

 

In contrast, the unmyelinated C-type fibres form around 70% of the afferents involved 

in nociceptive signalling. However, as these fibres are unmyelinated action potentials are 

transmitted much more slowly along the axon relative to the larger diameter Aδ fibres. The 

C-fibres are polymodal, activated by heat, pH and even mechanical stimuli (Dubin and 

Patapoutian, 2010). However, they can be categorized into two distinct types; peptidergic 

(expressing CGRP and Substance P) or non-peptidergic fibres, that are highly responsive to 

GDNF. Whilst expression of NGF is essential for function-related developed of the nociceptors 

in embryos, it has been deemed evident that this molecular ‘switch’ from NGF sensitivity in 

the peptidergic fibres, to GDNF sensitivity in the non-peptidergic nociceptors occurs early in 

post-natal development (Molliver et al., 1997).  

 

Non-peptidergic C-fibres have been demonstrated to be involved in the development of 

hypersensitivity to a mechanical stimulus via peripheral sensitization in a mouse model (Pinto 

et al., 2019). These nerves bind Isolectin-B4 (IB4) and may not be involved in low level 

physiological pain processing. However, ablation of these IB4 sensitive nociceptors led to a 

reduction in the expression of TRPV1 as well as P2X3 (an ATP-sensitive purinoceptor) 
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(Burnstock, 2000; Wirkner, Sperlagh and Illes, 2007). Whilst the mechanical threshold for 

activation of these neurons was not altered, there was inhibition of hypersensitivity to GDNF 

(glial derived neurotrophic factor) but not NGF (nerve growth factor). The expression of these 

growth factors, and the corresponding receptors will affect how highly other receptors are 

expressed on the primary afferent fibres via post-transcriptional regulation, for examples TRP 

channels and sodium channels. Therefore, the function acquired in post-natal development 

determines how sensory fibres responds to and overcomes a nociceptive stimulus.  

 

1.7 Receptors expressed on the nociceptors: 

Mechanoreceptors found in the superficial laminae of the skin relay somatosensory stimuli 

via mechanically gated ion channels. Receptors may be either encapsulated or “free” and fall 

into one of four main categories including Merkel’s disks, Meissner’s corpuscles, Ruffini 

endings and Pacinian corpuscles (Abraira and Ginty, 2013). As the somatosensory neurons of 

the DRGs develop in embryonic development, the expression of the A-type fibres emerge first 

(E9-E11) characterised by the expression of Neurogenin 2 (Ngn2) (García-Piqueras et al., 

2019). The cutaneous mechanoreceptors detect a wide range of physiological stimuli, from 

vibration, stretch and noxious pressure depending on which somatosensory fibres are 

activated. Local depolarisation of ion channels located on these mechanoreceptors induces 

receptor potentials which can summate to induce the propagation of an action potential.  

 

The sensory fibres of the DRG are a heterogeneous population of neurons that both respond 

to and detect a diverse range of stimuli. As such, there are a range of proteins expressed on 

these fibres, ranging from neurotransmitter receptors, to ion sensitive channels. The 

molecular composition of the DRG fibres enables the detection of very selective stimulus, 

dependent on the role of the fibre. Of particular interest here are those neurons involved pain 

signalling, often referred to as the ‘high threshold mechanoreceptor’ neurons (HTMRs) in the 

epidermis.  

 

These nociceptive fibres express a variety of receptors involved in pain processing of different 

sensory modalities. In particular, the mechanosensitive responses of the DRG fibres is partly 

due to the cellular organization of ion channels present on the neuronal terminals, and the 
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intrinsic gating properties of each receptor. Furthermore, it has been demonstrated that 

receptors are selectively expressed depending on the function of a fibre. A classic example of 

this is the selective expression of the TRPV1 receptor to the C-fibre terminals, and the 

consequent links with nociception. This localised expression of specific proteins provides a 

molecular profile of which neurons are involved in acute and inflammatory nociceptive 

signalling. Therefore, when developing an in vitro model for changes in cell excitability 

associated with nociception, studying the expression patterns and intrinsic properties of ion 

channels and receptors associated with the nociceptive fibres is a good place to start: 

 

1.7.1 Transient receptor potential channels (TRP): 

One of the most potent families of receptor involved in nociceptive signalling is undoubtedly 

the TRP channels. In mammals, there have been 28 TRP channels identified, which can be 

further subdivided into 6 categories dependent on the shape of the active site of the receptor 

(Montell, 2005). These calcium permeable channels are highly expressed on the neurons of 

the peripheral nervous system, specifically the DRGs, and several have been deemed essential 

in detection of nociceptive stimuli. Real time PCR (polymerase chain reaction) has been used 

to quantify the expression of the TRP channels on somatosensory neurons, with particular 

interest to those fibres of the DRGs (Vandewauw, Owsianik and Voets, 2013). Of those 

channels screened, the data confirmed that 6 TRP channels previously associated with sensing 

noxious stimuli, were all highly detected in the DRGs, including TRPV, TRPM and TRPA 

channels. Of note, there was a variable level of mRNA detected for TRPV1 (vanilloid 1, 

capsaicin sensitive) and TRPM8 (melastatin 8, cold sensitive) dependent on where the ganglia 

were anatomically isolated from in relation to the spinal cord (Vandewauw, Owsianik and 

Voets, 2013).  

 

It is important to note, that whilst useful, quantitative levels of mRNA expressed of any one 

channel do not necessarily correlate to the protein level, or furthermore determine the 

functional relevance of this channel.  

 

With regards to those channels involved in pain, three subtypes of thermally activated TRP 

channel have been determined a largely important in nociceptive signalling (Patapoutian, 
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Tate and Woolf, 2009). These include the TRPA, TRPV and TRPM channels, a summary of 

which is shown below.  

 

1.7.1.1 TRPV1: Vanilloid-1 receptor, A heat sensitive ion channel and key integrator of 

nociceptive signals 

The TRPV1 receptor is a noxious-heat channel, widely regarded for sensitivity to capsaicin, 

and is particularly important in nociceptive pathways involved in hyperalgesic priming (Ferrari 

et al., 2013). Although there are 6 members of the TRPV family, only TRPV1 is sensitive to 

vanilloid compounds, although the other receptors retain a similarity in the amino acid 

sequence forming the channel (Rosenbaum Emir, 2017). Physiologically the TRPV1 receptor 

is best defined as being sensitive to heat greater than 42°C, and is largely expressed on the 

unmyelinated C-fibres of the DRG (Caterina et al., 1997) although it has also been shown to 

be expressed on Aδ fibres too.  

In vivo, the TRPV1 receptor has been identified as early as E12.5 on the terminals of some 

neurons (Hjerling-Leffler et al., 2007), but in P2 neonatal rat cultures it was demonstrated 

that TRPV1 expression was already at a similar level to that of an adult culture (Fitzgerald, 

2005).   

 

In an early knockout study, it was determined that mice lacking the TRPV1 receptor 

demonstrated impaired responses to selective nociceptive stimuli. Whilst the VR1-/- 

genotype mice showed no change when exposed to a noxious stimulus of a mechanical 

nature, if the stimuli was thermal, and targeted the TRPV1 receptor, the response was 

impaired (Caterina et al., 2000).  

Since this study it has been determined that whilst TRPV1 is more selectively expressed on 

the C-fibres of the DRG, it is not expressed on all C-fibres. Evidence has also demonstrated 

that TRPV1 is expressed on the medium diameter Aδ fibres, although the role of TRPV1 here 

may be in response to different threshold temperature or pH. Although it is expressed in 

several regions of the body, such as the respiratory system  (Zhao et al., 2016) and the bladder 

(Liu et al., 2014), TRPV1 is also prominently expressed in laminae I and II of the superficial 

dorsal horn in the CNS (Rosenbaum Emir, 2017). These are the terminals of the pseudo-

unipolar DRG neurons, terminating in the spinal cord.  
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1.7.1.2 Inflammation and TRPV1: 

Although TRPV1 is a heat-noxious receptor, primarily responsive to temperature >42°C, a low 

pH of the surrounding tissue will dramatically alter the activation threshold of the receptor. 

A good example of this is during inflammation, when the exogenous pH drops due to the 

release of inflammatory cells into the periphery (Rajamäki et al., 2013). Immune cells are 

highly metabolically active, working to reduce inflammation and therefore the glycolysis rate 

is high, with lactic acid secretion increasing. During inflammation, many cytokines are 

released by surrounding inflammatory cells, which sensitize nociceptors via peripheral 

sensitization. These include interleukins, ATP, Substance P and neurotrophins such as NGF 

(Pinho-Ribeiro, Verri and Chiu, 2016).  

 

Inflammatory pain is often modelled in vivo via the injection of Complete Freund’s Adjuvant 

(CFA) to induce changes in the threshold of activation of the nociceptors. This is known as 

CFA-induced hyperalgesia, as is characterised by factors such as prolonged activation of the 

nociceptors correlating with an increased amplitude of the pain and the persistence of the 

pain at the site of inflammation . CFA is an emulsion of oil and water, containing inactivated 

mycobacterium tuberculosis. By injecting the antigen into the joint or paw of the animal, the 

corresponding antibodies will be produced and released in the acute immune response. CFA 

has been demonstrated to contain ligands for toll like receptors (e.g. TLR2, TLR4 and TLR9) 

and injection inactivation of the mycobacterium present induces a TH1 dominated immune 

response (Fang et al., 2010). This Th1 response co-ordinates the polarization of immune cells 

like lymphocytes and macrophages (into an M1-like state,) inducing cell-mediated immunity 

(Billiau and Matthys, 2001).  

 

An early study conducted in Wistar rats demonstrated that injection of CFA into a hindpaw 

led to peripheral sensitization and rapid mechanical allodynia of the affected paw (Stein, 

Millan and Herz, 1988). Inflammation was physiologically evident as a result of changes in 

increase in paw volume, core body temperature and reduced water consumption over the 

course of one-month post inoculation with CFA. These results have since been replicated in 

mice to conclude that injection with CFA induced thermal hyperalgesia and mechanical 

allodynia (Pitzer, Kuner and Tappe-Theodor, 2016). The effects of injection on stimulus 

evoked changes in behaviour were investigated using methods such as Von Frey testing, and 
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CatWalk analysis of gait. Results demonstrated a decrease in body weight correlating with 

temporary disruption of gait, potentially as an effect of underlying inflammation in the paw. 

However, it is debated whether the use of gait analysis underlying inflammatory pain is a 

relevant paradigm, since changes may also occur due to neuronal sensitization caused by 

development of neuropathic pain (Piesla et al., 2009). 

 

Although TRPV1 has been identified on both medium diameter A-fibres and smaller diameter 

fibres, it is evident that there is a higher expression of TRPV1 on C-fibres (Michael et al., 2019). 

Using injection of CFA to the paw, the role of the TRPV1 receptor in the development of 

thermal hyperalgesia and mechanical allodynia has been further investigated. Evidence has 

shown that ongoing pain, induced by injection of CFA was likely dependent on input from 

primary afferents expressing high levels of TRPV1 (Okun et al., 2011).  

 

1.7.2 Other TRP channels and pain:  

Temperature is a critical mediator in the activation of many TRP channels involved in 

nociception (Patapoutian et al., 2003). Where the TRPV1 channels are activated at 

temperatures higher than 42°C, there are also those channels that are cold-sensitive. TRPM8, 

also known as the menthol receptor is typically activated at cool temperatures, around 25°C 

although this temperature is not necessarily considered noxious threshold (Bandell et al., 

2004). It was hypothesised that therefore a second population of cold-sensitive TRP receptors 

must be respondent to noxious cold temperatures.  The TRPA1 channel, also known as 

ANKTM1 (Corey, 2003) has been located on selective populations of the DRG fibres, but is 

only activated as temperatures of 17°C or below. Whilst some fibres of the DRG solely express 

TRPV1, or TRPM8 there are some fibres that appear to be polymodal, expressing TRPV1 

alongside TRPA1 (Patapoutian et al., 2003; Story et al., 2003). These sensory neurons are 

therefore activated my noxious heat and noxious cold temperatures, implicating these 

receptors in acute transduction of nociceptive stimuli.  

 

TRPA1 is an ‘itch-sensitive’ transduction channel expressed on the sensory fibres of the DRG 

neurons (Bandell et al., 2004; Schmidt et al., 2009). These TRP channels can be activated by a 

diverse range of noxious stimuli, particularly cold temperature and selective environmental 
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irritants. For this reason, TRPA1 is widely regarded as a mediator of acute and inflammatory 

pain signalling.  

 

TRPA1 expression was quantified using Northern Blot from adult mouse tissue. Receptors 

were localised to only 3.6% of DRG fibres, 97% of which expressed CGRP, and TRPV1. It was 

evident that TRPA1 did not co-localise with NF-150kd expression, used as a marker for the 

large diameter A-fibres. It was determined that TRPA1 was mainly expressed in unmyelinated 

C-fibres, or lightly myelinated Aδ fibres (Story et al., 2003). Although the role of the TRPA1 

channel in nociception was first suggested in 2003, it was not until 2006 that this was 

confirmed using knockout mouse modelling (Kwan et al., 2006). If the Trpa1 gene was deleted 

in mice, the removal of the pore loop domain led to a reduction of sensitivity in response to 

chemical stimuli such as mustard oil. The knockout cohort were normal in viability and 

appearance but demonstrated no calcium response when stimulated with mustard oil 

(Bautista et al., 2006). Meanwhile the prevalence of TRPV1 response was the same in the wild 

type versus the mutant strain, confirming that TRPA1 does not have an impact on heat-

sensitive stimulation by TRPV1. However, the Trpa1-/- population did demonstrate a loss of 

sensitivity to cold temperature relative to wild type littermates (Kwan et al., 2006).  

 

TRPM8 has also been implicated in pain since the receptor is saturated at 8°C, which overlaps 

with the TRPA1 nociceptive range of activation (McKemy, Neuhausser and Julius, 2002). 

However, selective activation of the TRPM8 receptors has also been implicated in inducing a 

state of analgesia. Since the TRP family are calcium-sensitive, activation induces flow of 

calcium (and sodium into the cell) and promotes propagation of the action potential along 

the nociceptor. Of particular importance is the vast range of stimuli that activate those 

receptors involved in nociceptive signalling.  

 

1.7.3 Voltage Gated Sodium Channels:  

Voltage-gated sodium channels (VGSCs) are important in regulating excitability of the primary 

afferent fibres. From integrating the generator potential upon stimulation, to propagation of 

the all-or-nothing action potential along the axon, the voltage-gated nature of the VGSCs 

determines excitability of the neuron. Although there are many subtypes of VGSC, few have 
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been identified with specific roles in acute nociception. This includes NaV1.3, NaV1.7, NaV1.8 

and NaV1.9, all of which are expressed in adult primary afferent fibres. This selective 

expression of VGSCs associated with small fibre neuropathy makes them an attractive target 

for the development of newer, more effective analgesics (He et al., 2010; Chen et al., 2011a).  

 

Hodgkin and Huxley first demonstrated the effect of VGSCs on regulating neuronal 

excitability, through their work on giant squid axons in 1951 (Hodgkin and Huxley, 1952a). 

These experiments formed the basis for understanding neuronal excitability today. Voltage-

clamp experiments were initially used to confirm that the initial depolarising phase of the 

action potential was caused by movement of sodium ions (Hodgkin and Huxley, 1952b). By 

replacing sodium with choline, only the rising phase excitability was affected, whilst the 

resting potential remained unaffected. Under normal physiological conditions, sodium 

conductance rises rapidly, then falls exponentially. However, VGSCs associated with pain have 

shown changes in activity associated with the development of neuropathic pain (Cummins, 

Sheets and Waxman, 2007; Fischer, Mak and McNaughton, 2014). 

 

In mature primary afferent fibres, selective VGSCs are highly expressed, and associated with 

changes in excitability of the neurons. In adult primary sensory neurons five subtypes of 

VGSCs have been shown to be highly expressed, three of which are tetrodotoxin sensitive 

(TTX-S) (Kim et al., 2002). This includes NaV1.1, 1.6 and 1.7, whilst NaV1.8 and 1.9 are known 

to be TTX-resistant (Dib-Hajj et al., 1999; Bao, 2015). NaV1.3 is usually constitutively 

expressed during adulthood, following downregulation associated with functional 

development of the neuron acquired post-natally (Waxman, Kocsis and Black, 1994; Bao, 

2015). However, this subtype of channel can also be re-upregulated following nerve injury 

and is therefore important in the development of neuropathic pain states. The expression 

pattern of the VGSCs of interest have been highlighted the table below, summarised from 

work by Kwong and Carr (Kwong and Carr, 2015). 

 

NaV1.7 has been demonstrated to be abundantly expressed in many regions of the peripheral 

nervous system. Of interest with regards to nociceptive processing is the expression of NaV1.7 

in the primary afferent fibres of the DRG. However, evidence shows higher levels of 
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expression in peptidgeric C-fibres, as well as the free nerve endings, suggesting a role for 

NaV1.7 in pain processing (Levinson, Luo and Henry, 2012). 

 

Aβ-Fibres A𝛅- Fibres C-Fibres (IB4+) C-Fibres (CGRP/ SP+) 

NaV1.1 NaV1.1 NaV1.1 NaV1.1 

NaV1.6 NaV1.6 NaV1.6 NaV1.6 

NaV1.7 NaV1.7 NaV1.7 NaV1.7 

NaV1.8 NaV1.8 NaV1.8 NaV1.8 

    NaV1.9   

 

Immunohistochemical studies has demonstrated that isoforms of NaV1.7, 1.8 and 1.9 are 

localised to excitable cells of the peripheral nervous system, including the DRGs and 

peripheral sensory ganglia (Cregg et al., 2010). Of particular interest as new therapeutic 

targets for pain are NaV1.7, from genetic links to development of pathological pain, and 

NaV1.8 due to selective expression in the axons of the sensory fibres of the DRG (Dib-Hajj et 

al., 2010). 

 

It is understood that prolonged and repetitive firing from peripheral sensory neurons to the 

spinal cord is thought to be one of the ways in which central sensitisation is induced. However, 

the onset of peripheral sensitization also induces up-regulation of nociceptive ion channels 

such as NaV1.7 on the terminals of the DRG (Staud and Smitherman, 2002; Campbell and 

Meyer, 2006). Under physiological conditions, the voltage-gated sodium channels (NaV) 

expressed in the DRG depress this ectopic discharge, and the corresponding pain behaviours 

(Amir, Michaelis and Devor, 1999). This random, increased firing of sensory fibres can be 

inhibited by blocking VGSCs, using selective antagonists such as QX-314. This membrane 

impermeable sodium channel blocker binds to the same target site as Lidocaine, and has been 

shown to dose-dependently inhibit ectopic firing at the DRGs and dorsal horn (Omana-Zapata 

et al., 1997).  

 

There is also evidence to suggest that upregulation of TTX-S channels in the primary afferents 

may contribute to this increased ectopic firing, and ultimately sensitisation of these nerves. 
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For this reason, those NaV channels that are TTX-Sensitive (such as NaV1.7) are of particular 

interest, since low doses of TTX have been demonstrated to reduce ectopic firing of the 

sensory fibres (Lyu et al., 2000). This has been successfully modelled in rats using axotomy of 

the sensory fibres via segmented spinal nerve ligation (C. H. Kim et al., 2001). In a spinal nerve 

ligation model for neuropathic pain the mRNA expression of NaV1.7 was reduced by 40% up 

to 5 days post-operatively (Kim et al., 2002). 

 

1.7.4 Potassium Channels: 

Whilst the role of the voltage gated sodium channels is well-elucidated in the rising phase of 

the action potential, the role of potassium channels, especially voltage-gated channels, is 

known to regulate re-polarisation of the membrane (Hodgkin and Huxley, 1952b). Potassium 

ion current, referred to from here-on as Ik was first assumed to be linearly proportional to  

‘V-EK,’ where V is membrane potential and EK represents the Nernst potential. However, this 

assumption has since been disproven where Ik shows non-linear dependence on (V-EK) under 

physiological conditions. Simply put, the relationship between Ik and Vm can be well 

characterised by the Goldman-Hogkin-Katz (GHK) equation (Goldman, 1943; Hodgkin and 

Katz, 1949). 

 

For this reason, evidence has suggested that changes in the expression, or gating kinetics of 

these potassium channels, may alter the way in which action potentials are propagated. This 

hyperexcitability of sensory neurons is considered essential for the generation of a chronic 

pain state, whereby the nociceptors become sensitised to nociceptive stimuli (Tsantoulas and 

McMahon, 2014). 

 

Aside from being the most diverse family of ion channels expressed in human neurons (Ocaña 

et al., 2004) it is also noticeable that there is a selective expression of multiple potassium 

channels on the DRG neurons. With 78 genes in humans expressing potassium channels, it is 

unsurprising that there are multiple subclasses of ion channel identified (Ocaña et al., 2004). 

Potassium channels can be subdivided into four distinct groups, of which the largest 

superfamily is the voltage-gated potassium channels (Kv) (Johnston, Forsythe and Kopp-

Scheinpflug, 2010). This Kv superfamily is further subdivided dependent on the ability of the 
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capacity of the alpha subunit to form a pore subunit. Only members of the Kv1-Kv4, Kv7 and 

Kv10-Kv12 are pore-forming subunits. However, as figure 8 demonstrates there appears to be 

selective expression of Kv1 subtype receptors at the juxta-paranodal regions in nociceptive 

fibres. Figure 1.7.1 below is a comprehensive overview of where Kv subtypes are found in the 

nociceptors:  

 

However, we cannot disregard the importance of background “leak” channels in maintaining 

resting membrane potential. Although these channels are largely voltage independent, the 

KCNK family of proteins is key in re-setting the membrane potential after action potential 

propagation. Leak channels are driven both by electrical potential and the conductance of 

permeating ions across the neuronal membrane.  The rectification of the membrane potential 

is driven by the concentration gradient of ions moving across these leak channels, a 

phenomenon that can also be attributed to the GHK equation (Goldman, 1943; Huang, Hong 

and De Schutter, 2015). Figure 1.7.1 shows how these channels are also expressed throughout 

the fibres of the DRGs, localised mainly to the C-fibres, but having shown expression patterns 

in both the somal and axonal regions.  
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Figure 1.7.1: A) Subcellular localization of potassium channels in murine DRG neuron (Tsantoulas and McMahon, 2014).  

The pattern shown is not absolute, but reflective of data reported in the literature. Expression patterns may vary between 

organisms or species.  

 

1.8  Role of non-neuronal cells in nociception: 

 

1.8.1 Non-Neuronal Cells: 

With regards to excitability and nociception, the full extent of the role of myelinating cells in 

neuropathic pain still remains poorly understood compared to the neurons. However, sciatic 

nerve injury models (SNI) have shown that Schwann cells have the ability to change 

phenotype following damage to the axon (Scheib and Höke, 2013). Schwann cells adopt a 

‘repair’ cell phenotype and regain capacity for proliferation and release of growth factors such 

as NGF and GDNF (R. R. Ji, Chamessian and Zhang, 2016; Jessen and Arthur-Farraj, 2019). With 

several subtypes of P2X receptors identified on Schwann cells, these cells clearly also have a 

role in ATP signalling (Su et al., 2019). Of course, ATP is well characterised as a key modulator 

of both peripheral and central sensitisation of neurons (Tsuda, Tozaki-Saitoh and Inoue, 2010) 
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and therefore the high expression of P2X-R on Schwann cells led to the conclusion that these 

non-neuronal cells must play a role in the development of neuropathic pain (Burnstock, 2000; 

Su et al., 2019). Although overexpression of P2X4 did not induce increased states of 

hyperalgesia (Su et al., 2019) it was demonstrated that administration of broad-spectrum P2 

receptor antagonist pyridoxal phosphate-6-azophenyl-2ʹ,4ʹ-disulfonic acid (PPADS) following 

nerve injury reduced tactile allodynia and thermal hyperalgesia, and reduced the levels of 

secreted IL-6 and IL-1β (Martucci et al., 2008). Furthermore, it has been demonstrated that 

following CCI, the expression levels of pro-inflammatory cytokines (TNFα, IL-1β and IL-6) are 

upregulated in the DRG fibres and sciatic nerve (Jančálek et al., 2010; Austin et al., 2015). 

These chemokines are not only released from infiltrating macrophages, but also from non-

neuronal cells surrounding the damaged tissue. Activated Schwann cells are hypothesised to 

be an additional source of TNFα production in the early hours following SNI (Wagner and 

Myers, 1996; Campana, 2007). TNFα is detectable 6H post injury in high concentrations, and 

has been shown to induce the release of further pro-inflammatory cytokines such as IL-6 by 

infiltrating macrophages. Further evidence has shown that COX-2 and MCP-1 (both potent 

inflammatory mediators involved in sensitising neurons) are expressed by Schwann cells 

following nerve injury in rats (Toews, Barrett and Morell, 1998; Takahashi et al., 2004). 

 

1.8.2 Macrophages: 

Macrophages are highly motile mononucleolar cells derived from hematopoietic tissue. They 

are widely distributed throughout the body, and due to their phagocytic nature are highly 

involved in mediating innate and adaptive inflammatory processes (Bailey et al., 2020). The 

morphology of macrophages is highly dynamic and dependent on the surrounding 

microenvironment (Mulay et al., 2016). Throughout embryonic development macrophages 

arise from yolk-sac progenitor cells and persist throughout adulthood as self-renewing 

populations of inflammatory cells. However, after birth, macrophages derived from bone-

marrow monocytes are also recruited, to replenish tissue resident macrophages in states of 

inflammation or infection (Gordon and Martinez-Pomares, 2017). Since these blood derived 

monocytes are highly heterogeneous, there is still a wide debate about whether specific 

populations of monocytes migrate to specific tissues in inflammatory processes  (Nahrendorf 

et al., 2007). However, in mice it has been demonstrated that the first bone marrow derived 
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monocytes have an innate inflammatory phenotype (Passlick, Flieger and Loms Ziegler-

Heitbrock, 1989) and rapidly develop into mature tissue macrophages or dendritic cells 

(Randolph et al., 1999).  

 

The plasticity of macrophages refers to the process by which macrophages are polarized to 

differentiate to specific phenotypes, each with a specific biological function. On a simplistic 

level, macrophages are polarized either to an M1 (classically activated, pro-inflammatory) 

phenotype, or an M2 (alternatively activated, anti-inflammatory) phenotypes (Murray, 2017). 

However, the M2 phenotype has rapidly evolved to encompass all those macrophages that 

don’t exhibit a pro-inflammatory phenotype (Martinez et al., 2008). At the centre of this 

M1/M2 axis is arginine metabolism (Thomas and Mattila, 2014) but in line with the way cells 

are polarized, three roles for macrophages have been defined including, wound healing, host 

defence and immune regulation (Edwards et al., 2006). Following the innate response of M1-

like or M2-like macrophages, these polarized cells induce T-helper lymphocytes to further 

amplify the macrophage polarization, and promote continuation of the immune response 

where appropriate (Rath et al., 2014a).  

 

Classically activated macrophages typically refers to pro-inflammatory macrophages induced 

by cell mediated immune responses. This includes the stimulation by cytokines such as IFNγ 

or TNFα inducing a tumoricidal phenotype and increased secretion of pro-inflammatory 

cytokines and nitric oxide synthase (Wager and Wormley, 2014). Nitric oxide is a particularly 

important marker of the innate tumoricidal nature of these pro-inflammatory cells. Nitric 

oxide itself is cytotoxic (Li et al., 2004), but will also induce downstream release of metabolites 

to remove pathogens. Since the adaptive immune response is much slower, the rapid innate 

response of these macrophages is required to remove and reduce inflammation (Mills, 2012). 

Other notable markers for the M1 phenotype include CXCL9, CXCL10, CXCL11, IL-12 and 

suppressor of cytokine signalling 3 (SOCS3) (Mosser and Edwards, 2008). Of particular interest 

here is the present of SOCS3, which restricts cell responsiveness to IL-4, a typical promoter of 

the anti-inflammatory phenotypes (Arnold et al., 2014). On the other hand, alternatively 

activated macrophages are induced by cytokines such as IL-4, IL-10 and IL-13, and 

characteristically resemble the anti-inflammatory phenotype of macrophages. In these cells, 

the expression of arginase metabolises arginine to orthinine and urea (Briken and Mosser, 
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2011; Rath et al., 2014a). However, it is uncommon to see either an M1 or an M2 population, 

but rather a mixed population with a preference for either a pro- or anti-inflammatory 

phenotype dependent on the stimulation and surrounding microenvironment. Studies have 

indicated that these characterizations are more indicative of interlaced signalling pathways, 

and the range of phenotypes that can be induced following stimulation (Atri, Guerfali and 

Laouini, 2018). In line with the classification of cells defined above, it is understandable as to 

why there is potential overlap between phenotypes. Recent evidence has suggested that as 

opposed to discrete populations, macrophages polarize in a spectrum based on their function 

(Mosser and Edwards, 2008).  

 

In fact, it has been suggested that the first cells to infiltrate a lesioned area following 

peripheral nerve injury are macrophages, neutrophils and Schwann cells (Stoll G et al., 1989; 

Lindborg, Mack and Zigmond, 2017). However, the changes in the periphery are also rapidly 

followed by those in the CNS, although these are less involved in the initiation of a pain 

response. For example, microglia (the resident immune cells of the CNS) are also important 

in modulating the neuronal response to nociceptive stimuli (Moalem and Tracey, 2006b).  

Although acute inflammatory and neuropathic pain are deemed as separate clinical 

pathologies, evidence has suggested that pro-inflammatory cytokines released from 

infiltrating inflammatory cells are prominent in the development of peripheral sensitization 

and also chronic pain (Miller et al., 2009). In sciatic nerve transection, murine modelling 

showed that upon injury there was a 3-fold increase in infiltrating macrophages relative to 

resident immune cells (Mueller et al., 2003). In models such as Wallerian degeneration, 

following the distal nerve crush there has been shown to be a rapid influx of cytokine 

production induced by infiltrating macrophages derived from the bone marrow (Mueller et 

al., 2003; Fregnan et al., 2012). In vivo, following axotomy of the DRG neuron, an 

accumulation of infiltrating macrophages has been observed 4-days post injury, and high 

levels of these infiltrating inflammatory cells remained present up to 32-days post injury (Lu 

and Richardson, 1993; Kwon et al., 2015). Immunohistological tissue analysis has shown that 

infiltrating macrophages form ‘rings’ around larger diameter fibres of the DRG neurons, with 

fewer cells migrating towards undamaged tissue or smaller diameter fibres (Vega-Avelaira, 

Géranton and Fitzgerald, 2009). In this study it was shown that reactive macrophages, most 

likely M1-like phenotype, appeared to cluster around larger diameter DRG neuron cell bodies 
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in a model of neuropathic pain. Since these neurons were highly sensitised following spared 

nerve injury, this implicated a strong correlation between the regulation of the peripheral 

nervous system, the peripheral immune system and the development of neuropathic pain. 

 

Whilst in vitro culture of bone derived monocytes is useful in the context of flexibility and 

tissue availability, the response seen in these cells may not be translatable to other forms of 

cultures. The L-conditioned media from L929 cells contains high concentrations of mCSF 

(colony stimulating factor) and as such is used to sustain a population of healthy monocytes. 

However, evidence has shown that the presence of mCSF in the culture may cause cells to 

favour an M2 like phenotype, prior to stimulation. 

 

1.8.3 Microglial cells: 

Microglial cells are the resident macrophages of the CNS, accounting for up to 15% of the glial 

cells expressed in the brain and spinal cord. First described by Rio-Hortega in the early 20th 

century (Del Rio-Hortega, 1919), the origin of microglial cells has been widely debated, where 

they were first described as “non-neuronal elements deriving from oligodendrocytes and 

astrocytes”. However, unlike bone marrow derived macrophages, it has since been 

demonstrated that microglial cells originate from the yolk sac early in gestation (Ginhoux et 

al., 2010). Rodent studies have shown that progenitor cells colonize the cerebrum as early as 

the 4th week of development, maturing into microglial cells throughout the CNS (Menassa and 

Gomez-Nicola, 2018; Wang et al., 2019).  Two key functions are thought to define the function 

of microglial cells in the CNS including homeostasis of the CNS and immune regulation and 

defence (Ginhoux and Prinz, 2015).  

Microglial cells develop from the mesodermal layer in development and have many common 

features with other myeloid cells such as macrophages. Although each cell develops 

differently, both macrophages and microglial cells are essential in the innate immune 

response, by maintaining homeostasis and actively scanning the surrounding environment for 

invading pathogens. As such, both cells types have the ability to adapt to changes in the 

surrounding environment and polarize accordingly. Upon detection of invading pathogens or 

chemokines released from damaged surrounding tissue, microglial cells undergo physiological 

changes to help resolve injury, promote repair of damaged tissue and resolve inflammation 
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(Goldmann and Prinz, 2013). In a similar way to that observed in peripheral macrophages, the 

microglial cells of the CNS can also be stimulated to exhibit a pro-inflammatory M1-like or a 

more regenerative M2-like phenotype (Michelucci et al., 2009). However, in spinal cord tissue 

extracted from disease models, where inflammation is increased (such as murine modelling 

in vivo for ALS) the microenvironment of the microglia is far more complex. Characteristically, 

upon detection of invading pathogens, the CNS microglia undergo a switch from a ramified 

resting state, to an ameboid morphology (Davalos et al., 2005).  

Phenotypic similarities were first reported in immunohistochemical studies where it was 

demonstrated that microglial cells also expressed several markers that are highly expressed 

on macrophage cells (Perry, Hume and Gordon, 1985). In mice and humans this first included 

the presence of the surface glycoprotein F4/80, CSF-1 receptor, as well as integrin CD11b 

(Akiyama and McGeer, 1990). Additional markers that have since been identified include the 

presence of the fractalkine receptor (CX3CR1) and the calcium binding protein Iba-1 (Prinz 

and Mildner, 2011; Amici, Dong and Guerau-de-Arellano, 2017). Whilst there are many 

similarities between macrophages and microglial cells, it has also been shown that microglia 

have a unique transcriptomic ‘signature’ that distinguishes them from other inflammatory 

cells (Butovsky et al., 2012). Using flow cytometry and RNA sequencing of microglia isolated 

from the spinal cord tissue of mice, in a single study 29 genes were identified that 

distinguished peripheral monocytes from CNS microglial cells (Chiu et al., 2013). 

 

In early post-natal rodent tissue (P10) the dorsal horn response to nerve injury was 

demonstrated to be weak where there was low activation of the neuroimmune response in 

these animals (Moss et al., 2007). Although in early life the dorsal horn was shown to be 

insensitive to pro-inflammatory cytokines, it has been demonstrated that neuropathic injury 

in neonates primes microglia to become reactive in later life (Vega-Avelaira, Géranton and 

Fitzgerald, 2009). Using neonatal microglia it was recently demonstrated that the phenotype 

of the cells changed dependent on how long they were kept in culture (Caldeira et al., 2014). 

In a ‘quiescent’ state, microglia appear to exhibit a more ramified phenotype, with shorter 

processes extending from the cell body. However, it is important to note that even when 

quiescent, microglia are still actively sensing changes in the surrounding cellular environment. 

Upon inflammation, it has been demonstrated that the cell structure changes to a more 

ameboid morphology, where cells are more phagocytic (Leong and Ling, 1992; Kozlowski and 
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Weimer, 2012). It was demonstrated that the longer cells were left in an in vitro culture, the 

more they favoured a ramified morphology closer to that of an M0-M2 like cell (DiV16.) The 

cells isolated from murine spinal cord here were cultured for a minimum for 14-days prior to 

use in any downstream experiments, and this time period may have affected the morphology 

of the cells.  

 

Scattered throughout the CNS, microglia come into close contact with neurons, mediating 

synaptic pruning and neuronal cell signalling (Kim and De Vellis, 2005). In particular there is 

evidence for the role of chemokines such as fractalkine (CX3CL1) in mediating release of 

trophic factors from microglial cells in neurodevelopment. Binding of fractalkine to receptors 

on the surface of spinal cord derived microglia induces activation of the MAPK pathway and 

promotes the release of pro-inflammatory cytokines from the cell, as well as the transcription 

and upregulation of membrane bound receptors such as P2X4 for ATP  (Ji and Strichartz, 2004; 

Kazuhide and Makoto, 2009). The P2X4 receptor for ATP is solely expressed on microglia in 

the spinal cord, and evidence has shown that knockdown of P2X4 can partially reverse 

mechanical and thermal hyperalgesia evoked by spinal nerve transection (Tsuda et al., 2003, 

2009). In a separate murine model deficient in CX3CR1, neurons in cortical layer V showed 

decreased post-natal survival. This correlated with reduced secretion of insulin-like growth 

factor secretion from microglial cells surrounding the neurons, demonstrating the role for 

microglial cells in mediating neuronal survival as well as modulating the inflammatory 

response to changes in DRG excitability (Ueno et al., 2013).  

 

1.9 Protein turnover and local translation in the nervous system: 

 

In the mature nervous system, it is estimated that each excitatory neuron synapses with up 

to 100,000 other neurons. To regulate and maintain function and plasticity of the nervous 

system, protein turnover is essential. Although action potentials are only propagated in one 

direction along the axon, the cytoskeleton of the neuron also acts as scaffolding for 

bidirectional transport of protein or mRNA (Sotelo-Silveira et al., 2006). The specialised 

function of each part of the neuron means that proteins must be selectively regulated. Recent 

works have provided evidence that translation of mRNA is not only temporally regulated but 
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also spatially regulated. This dynamic turnover of protein in the cell is resultant from a process 

known as local translation (Di Liegro, Schiera and Di Liegro, 2014). Local translation of proteins 

refers to post-transcriptional regulation of mRNA in subcellular compartments. Undoubtedly 

in highly polarized cells like neurons this is essential for dynamic regulation of efficient cell-

to-cell signalling, where regular turnover of proteins is necessary to adapt to changes in the 

microenvironment of the cell (Jung, Yoon and Holt, 2012). Classic examples of local translation 

in the neuron include turnover of proteins the growth cone, and synaptic plasticity. The 

fastest rate of protein transport in human axons has been recorded at 1µM/second. However, 

since the longest axons of the body can be up to 1 metre long, without local translation it 

could take up to 11.6 days to transport proteins from the soma to the distal part of an axon 

(Maday et al., 2014). Therefore, on-site synthesis of proteins in neurons has evolved as an 

essential component in effective cell signalling and synaptic plasticity.  

 

Local protein synthesis was first observed by the detection of amino acids being incorporated 

into the axon of the neuron, although at the time a lack of evidence meant that the theory of 

local protein translation in neurons was not widely acknowledged (Giuditta, Dettbarn and 

Brzin, 1968; Sotelo-Silveira et al., 2006). It was first hypothesised that local protein translation 

did not occur in mature axons, and ribosomal RNA observed in the axoplasm was most likely 

RNA transfer from the mitochondria of the neuron. However, this study used polyacrylamide 

gel electrophoresis to visualise the RNA and as such, the low sensitivity of the technique 

meant that only low levels of ribosomal RNA were detected in the axoplasm of the squid giant 

axon (Lasek, Dabrowski and Nordlander, 1973).  Initial evidence subsequently suggested that 

although present, local protein synthesis in the axon only occurred during development of 

the cell since electron dense polysomes were only detected in the proximal axonal segments, 

but not in the distal compartment (Steward and Ribak, 1986). However, as biochemical 

detection methods have become more sensitive (e.g. the development of microarrays, qPCR 

and electron microscopy) ribosomal RNA has been observed from both cortical and sensory 

neuron axons (Bassell et al., 1998). Compelling evidence came in 2009 when axons of cultured 

peripheral sensory neurons showed metabolically labelled, newly synthesized proteins being 

trafficked to the cell membrane (Merianda et al., 2009). Synaptic plasticity is one of the 

earliest acknowledged examples of local translation, where connections are formed based on 

neuronal firing and metabolic requirements of the cell. This process of protein turnover at 
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the synapse requires new RNA, and protein synthesis (Davis and Squire, 1984; Sutton and 

Schuman, 2006). It has been demonstrated that neuronal proteins quantified in vitro had a 

short half-life of up to 6 days (Dörrbaum et al., 2018) whilst in vivo protein turnover appears 

occur every 10 days (Fornasiero et al., 2018). In particular those proteins that demonstrated 

highest levels of turnover included proteins found in the growth cone, like MAP2 (Garner, 

Tucker and Matus, 1988) and proteins involved in synaptic transmission such as Camk2A 

(Burgin et al., 1990). Several techniques have been used to identify proteins (or polysomal 

RNA) in the distal portion of the axon. In-situ hybridization was one of the first methods that 

made it possible to identify proteins in the distal compartment of the cell, although initially 

low-sensitivity of the detection meant that few transcripts were identified, two of which were 

Camk2A and Map2. However, more recent developments including qPCR of rodent sensory 

neurons have led to the identification of hundreds of transcripts located in the distal 

compartment of the axon, not having been translocated from the soma (Zheng et al., 2001). 

Furthermore, the purification of excitatory synaptosomes led to the identification of more 

than 400 transcripts selectively expressed in the active zone of the synaptic terminal (Hafner 

et al., 2019). 

 

Nowadays it is widely accepted that mRNAs are 1. locally translated within the cell. 2. Are 

transported via the microtubules of the axon, and 3. That the 3’ and 5’ untranslated regions 

of an mRNA are key in the regulation and localization of a protein (Eom et al., 2003; Tushev 

et al., 2018). RNA interference (or RNAi) refers to the cellular mechanisms of post-

transcriptional regulation of protein expression, whereby protein synthesis may be inhibited. 

Small changes in the sequence of the UTRs affect downstream binding and subsequent 

translation of a protein. Furthermore, it is clear that there is a large scale of diversity in the 

3’UTR of neuronal mRNAs especially, since these cells must constantly react and adapt to 

incoming cell signals and adjust protein expression accordingly. Genes transcribing proteins 

in the nucleus are usually transcribed by RNA polymerase II. The primary transcript is 

processed by splicing to form mRNA and is exported into the cytoplasm where ribosomes 

catalyze translation of mRNA to mature polypeptide chains. However, this translation can be 

regulated by small sequences of double stranded RNA molecules involved in translational 

repression. Both siRNA (short interfering) and miRNA (micro) are short double-stranded RNA 

molecules involved in RNAi. The key difference is that siRNA binds with full complementation 
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to one mRNA of interest, which is then degraded. Whereas, miRNAs only bind to mRNA at the 

seed sequence in the 3’UTR; meaning that one microRNA sequence can potentially bind to 

and inhibit the translation of multiple mRNA sequences. Therefore, alternative regulation of 

neuronal mRNAs via the UTRs most likely arises as a consequence of the presence, or absence 

of several microRNA sequences (Lin and Holt, 2008; Tushev et al., 2018). 

 

1.10  MicroRNA: 

MicroRNAs are an endogenous family of small, non-coding RNA roughly 21-25 nucleotides in 

length. First discovered in C.Elegans in 1993, Lin-4 was initially thought to be an isolated 

regulatory sequence (Lee, Feinbaum and Ambros, 1993). However by 2000, the conserved 

and temporal expression of the Let-7 family of microRNA had been first reported (Pasquinelli 

et al., 2000). To date around 2000 microRNA have been identified in the human genome, 

although sequencing shows that many are conserved between species such as rat and mouse 

(De Rie et al., 2017; Alles et al., 2019).  

 

1.10.1  MicroRNAs as regulators of translation in the nervous system: 

It is well established that these short non-coding sequences are involved in regulating protein 

turnover, by targeting mRNA degradation and facilitating translational repression. In 

particular, the role of microRNA in local protein translation has been investigated with  

relevance here to the subcellular expression in polarised cells such as neurons (Siegel et al., 

2009). For example, it has been elucidated that the expression of specific microRNA in the 

axonal “compartment” of a neuron can repress translation of proteins, thereby acting as 

regulators of translation (Wang et al., 2015; Zhang et al., 2015). Of course, given the dynamic 

metabolic requirements of neurons, it is unsurprising that these cells can rapidly regulate 

protein turnover at a subcellular level, where the soma and the axon often have different 

metabolic requirements with respect to the surrounding microenvironment. Given the 

distinct subcellular expression of select mRNAs in the axons of neurons, recent works have 

also identified roles for microRNA in axonal outgrowth as well as maintaining neuronal 

viability (Baudet et al., 2012). In a screen of several microRNAs, it was demonstrated here 

that the specific loss of miR-124 induced a synchronised “loss of function” in growth cone 

pathway-finding. This finding was most likely induced by the delayed onset of Semaphorin-3 
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sensitivity in these neurons by inhibition of miR-124 expression in the axon (Baudet et al., 

2012).  

 

Work has been ongoing in the Dajas-Bailador lab for many years to characterise the function 

of specific microRNAs in neuronal development and connectivity. In an earlier study it was 

shown that miR-9 had roles in regulating axonal extension of cortical neurons, by regulating 

expression of Map1b and subsequent microtubule stability (Dajas-Bailador et al., 2012). 

Results showed that microRNA-9 was detected as early as embryonic day 17 (E17) in culture, 

but the addition of a locked nucleic acid inhibitor (LNAi) for miR-9 showed reduced axonal 

extensions in cortical outgrowths. Furthermore, the role of miR-9 as a target for signalling 

pathways controlling neuronal extension was elucidated. The expression of miR-9 was 

identified as being linked to expression of the chemoattractant brain derived neurotrophic 

factor (BDNF) in a biphasic manner, thus linking the microRNA of interest to a protein target 

in a signalling pathway of interest. Short stimulation of the axons with BDNF induced an 

increase in axonal length, although this response was reversed is miR-9 was overexpressed. 

Critically, in this study neurons were cultured using compartmentalised microfluidic devices, 

where the change in miR-9 expression correlating with increase in axonal length, was only 

observed when BDNF was locally applied to the axons. Consequently, this work has helped to 

pave the way for further studies in compartmentalised devices, investigating the role of 

microRNA in local translation of mRNA in neurons.  

Following this, the role of miR-26a was elucidated in early stage development of mouse 

cortical neurons using microfluidic devices (Lucci et al., 2020). MiR-26a was shown to 

modulate neuronal growth and polarity in primary neuron cultures via the activity of GSK-3β. 

Functionally GSK-3β was detected in both the somal and axonal compartments of the 

microfluidic devices, and a molecular mechanism was demonstrated whereby the local 

translation of GSK-3β is quiescently repressed by miR-26a, and allows elongation of cortical 

axons.  However, upon targeted inhibition of the expression of miR-26a in the axon, 

translational repression of GSK-3β is removed, and protein turnover is increased. This 

increase in GSK-3β has been further implicated in neurodegeneration, with implications in the 

development of Alzheimer’s and Parkinson’s disease models (Jacobs et al., 2012; Golpich et 

al., 2015).  
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There is increasing evidence for the role of microRNA and translational repression in disease 

pathology. For example, the extracellular expression of specific microRNAs have been 

facilitated as potential biomarkers for the onset of disease (Reid, Kirschner and van Zandwijk, 

2011). It is evident that the aberrant expression of microRNA often underlies the pathologies 

of diseases; such as cancer where the dysregulation of microRNA expression is key to the 

disease pathology (Tüfekci et al., 2014). There is compelling evidence for microRNAs acting 

as either tumour suppressors or oncogenes, depending on the endogenous expression of the 

microRNA. One of the most well-known examples of this, is the role of miR15a and miR16-1 

in leukemia. In a mouse model it was demonstrated that mice that developed chronic 

lymphocytic leukemia (CLL) had a much lower expression of these miRs endogenously. 

Physiologically these miRs act as tumour suppressors by inducing apoptosis, but ablation of 

the mature miR sequence led to development of a cancer phenotype (Esquela-Kerscher and 

Slack, 2006).   

 

MicroRNAs have also been demonstrated to affect pathologies of the nervous system, 

including nociception (Andersen, Duroux and Gazerani, 2014; Sakai and Suzuki, 2014). Pain is 

highly dependent on the sensory nerves, but dysregulation of protein expression, specifically 

receptors or ion channels may induce hypersensitivity of these neurons. 

 

There are multiple stages at which the regulation of microRNA could be endogenously 

affected. In order to understand how microRNA expression affects disease pathologies, the 

process of miRNA biogenesis must be further examined.  

 

1.10.2  Biogenesis of microRNA: 

 

There are still new microRNAs being discovered, although the majority of miRNA biogenesis 

follows a similar pathway. MicroRNA is transcribed from the DNA sequence into a primary 

miRNA sequence (pri-miRNA). From here, pri-miRNA is processed into a precursor sequence 

and eventually a mature microRNA (O’Brien et al., 2018). It is widely reported that these 

mature microRNA sequences interact with the 3’ untranslated region (UTR) of mRNA to 

regulate translational repression of protein (Ha and Kim, 2014). However, there have been 
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examples where the miR target is the 5’UTR or even the gene promoter sequence (Lytle, Yario 

and Steitz, 2007).  

 

The majority of microRNAs are generated via the canonical biogenesis pathway (O’Brien et 

al., 2018) as shown below in figure 1.10.1: 

 

 

Figure 1.10.1: An overview of the canonical pathway of microRNA biogenesis, made using Biorender 

 

The canonical pathway begins by transcription of DNA by Polymerase II, into the pri-miRNA 

stem-loop sequence. From here, flanking sequences on the pri-miRNA are cleaved by 

ribonuclease III enzyme Drosha and the associated RNA binding protein DGCR8 (Denli et al., 

2004). The pri-miRNA is processed into a smaller pre-miRNA molecule with a 2 nucleotide 

overhang at the 3’ end of the stem loop (Han et al., 2004).  

 

The pre-miRNA is then exported to the cytoplasm where it is processed by the double 

stranded RNA-specific RNAse III endonuclease, Dicer (Lee et al., 2003; Bartel, 2004). Dicer 
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cleaves phosphodiester bonds in the RNA sequence to form small dsRNAs, including (but not 

limited to) microRNAs. Pre-miRNA is cut by removing the loop and terminal base pairs, whilst 

leaving a short sequence, including the 5’ phosphate and 2 nucleotide overhang at the 3’ end 

that is characteristic of RNAse III digestion.  

There is some evidence to suggest that different at different stages of the canonical pathway, 

microRNAs are selectively expressed at different regions of the neuron. Where neurons are 

polarized cells, the metabolic requirements of the axon versus the soma are different but also 

dynamic. For example, it has been shown that pri-miRNAs are localised only to post-synaptic 

densities (Lugli et al., 2012). However, PCR reactions from the distal portion of DRG neurons 

detected amplicons for precursor microRNAs such as pre-miR-138-1 in the somal RNA only, 

but not in the dendritic RNA fragments (Natera-Naranjo et al., 2010; Kim et al., 2015). In 

contrast, mature miR-138 has been localised to the soma, axons and dendrites of cultured 

DRG neurons using fluorescence in situ hybridization (Siegel et al., 2009; Kim, H. H., Kim, P., 

Phay, M., and Yoo, 2015). As such, the evidence provided here demonstrates that the 

expression of microRNA may change dependent on the microenvironment of the cell, and 

consequently the translational repression activity of the microRNA is dependent on the 

biogenesis of mature microRNA.  

 

1.10.3  Association with the RNA Induced Silencing Complex: 

 

The RNA induced silencing complex (RISC) is a protein complex that can actively promote 

mRNA degeneration or inhibit translation of RNA. In the canonical pathway for miRNA 

biogenesis this RISC is comprised of Argonaute (AGO) and the guide strand of the pre-miRNA 

molecule. The miRISC binds to a complementary sequence on target mRNA known as a 

microRNA response element (MRE.) The degree of complement binding between the miRNA 

duplex and miRISC determines the mechanism of post-transcriptional regulation of mRNA. If 

the target sequence of the MRE is fully complementary to the miRISC, then mRNA is 

immediately cleaved by AGO2 endonuclease activity (Ipsaro and Joshua-Tor, 2015; Jo et al., 

2015).  
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However, the majority of MREs do not show complete complementation to the miRISC (Jonas 

and Izaurralde, 2015). If cleavage by AGO alone is not possible, the RISC is also comprised of 

additional elements. In humans, this RISC is comprised of an AGO2 component, as well as 

glycine-tryptophan (GW182) and other proteins like helicases (Krol, Loedige and Filipowicz, 

2010). Interestingly it has been demonstrated that whilst important, the miRNA:mRNA 

binding is not essential for translational repression. Artificial tethering of either the Ago (Pillai, 

Artus and Filipowicz, 2004) or GW182 (Eulalio et al., 2009) components of miRISC at the 3’UTR 

of target mRNA demonstrated a positive effect on gene silencing in a luciferase reporter 

format (Bos et al., 2016). 

 

Although either strand of the miRNA duplex can associate with the miRISC, it is widely 

acknowledged that most microRNAs have a dominant guide strand. For example, miR-138-5p 

recognises the 5’ dominant strand in the precursor (Ambros et al., 2003). When the dominant 

strand of the miR duplex associates with miRISC, the other strand of miRNA is degraded. From 

here, microRNA associated with AGO2 and GW182 induces downstream translational 

repression of target mRNA (Kim, Han and Siomi, 2009; Galagali and Kim, 2018).  

 

There also appears to be a developmental effect of miRISC association and the effect on gene 

silencing. For example, it has been demonstrated that in early development, miRISC activity 

induces translational repression by shortening the poly-A tail of the transcript, but critically 

does not reduce transcript stability (Bazzini, Lee and Giraldez, 2012; Subtelny et al., 2014).  

 

1.10.4  Other pathways for microRNA Biogenesis: 

 

Multiple non-canonical methods of microRNA biogenesis have been hypothesised to date, 

proposing alternate combinations of proteins involved in canonical biogenesis. Of particular 

interest are Drosha, Dicer, Exportin activity and Ago in the RISC. For this reason, non-canonical 

biogenesis can be categorised into Drosha-independent and Dicer-independent pathways 

(O’Brien et al., 2018). For example, pre-miRNA generated with a 7-methylguanosine cap in 

the Drosha-independent pathway, resembles a Dicer substrate (Xie et al., 2013). The m7G cap 
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at the 5’UTR are directly exported from the nucleus, without the need for Dicer cleavage 

(Yang and Lai, 2011; Xie and Steitz, 2014)  

 

The resultant effect of miRNA association with the RISC is variable with respect to expression 

of target mRNA. There is evidence for both translational repression and RNA degradation 

inducing gene silencing (Bartel, 2009) but the environmental factors governing how this is 

determined have not yet been fully elucidated.  

 

1.10.5  Utilising the miRNA seed sequence for target recognition in a signalling 

pathway: 

 

A prominent method of target interaction with microRNA is the utilisation and cross-

referencing of bioinformatic databases. As previously stated, microRNA duplexes bind to the 

miRISC. It has become evident that since microRNA conforms to Watson-Crick base pairing, 

the MRE sequence of the mRNA is complementary to the ‘seed sequence’ of the microRNA. 

This seed sequence, usually 6 nucleotides long near the 5’UTR, is the only section of the 

microRNA that must be entirely complementary to the target mRNA (Lewis et al., 2003), in 

order for a microRNA to potentially target a protein of interest. Other factors, such as low GC 

composition or length of the 3’UTR (Grimson et al., 2007) have been demonstrated as 

additional factors that may affect seed binding to a target. However, the basis of most binding 

prediction algorithms first investigates the complementation of the seed sequence to the 

mRNA of interest (Paraskevopoulou et al., 2013a; Kozomara and Griffiths-Jones, 2014; 

Peterson et al., 2014; Agarwal et al., 2015). 

 

Although it is evident that seed sequence complementation to the MRE is important, the 

inaccuracy  of prediction algorithms often leads to false predictions (Liu and Wang, 2019). 

This is most likely due to the effect of interactions between the miRNA and mRNA that are 

independent of complementary seed sequence binding. As such, there is often a need for 

experimental validation of microRNA, following bioinformatic identification of a protein 

target of interest. Chapter 2.4 describes the use of the dual luciferase reporter system for 

target validation, a technique that is later used and discussed in Chapter 5.  
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1.11 Summary and aims of this thesis: 

 

Of particular interest to this project was the use of microfluidic culture for modelling complex 

multi-cellular signalling pathways, such as those involved in nociception. Until recently the 

study of nociception in vitro has often been limited by the method of culture, and failure to 

replicate the complex cell signalling pathways and cell morphologies involved in pain-based 

signalling. However, the development of microfluidic culture has been previously been 

demonstrated to provide a useful tool for modelling the complexity of neuronal signalling in 

vitro (Taylor et al., 2005).  

The primary objective of this project was to develop a microfluidic model that could be used 

to investigate induced changes in neuronal excitability, in the context of pain-based signalling. 

This included healthy and reproducible culture of DRG neurons in vitro that replicated the 

unique pseudounipolar morphology of these cells observed in vivo.  

 

The following aims were outlined during the initial stages of this project: 

• To replicate the complex microenvironment of the pseudounipolar DRG neurons by 

using microfluidically isolated cultures. This included, but was not limited to the 

additional culture and characterisation of non-neuronal cells that interact with and 

induce changes in DRG neurons at the neuronal terminals. 

• To use the microfluidic model developed in this project to investigate changes in 

neuronal excitability as a proxy for pain. 

• Neurons are highly polarised cells, and it was hypothesised that protein expression is 

locally regulated in the cell. By exploiting the microfluidic nature of the model, we also 

aimed to investigate the effect of local protein translation on DRG excitability. This 

work also included the investigation into a microRNA of interest and the potential role 

in regulating excitability in pain-based signalling. 

Additional objectives have been elaborated on and discussed within the results section of this 

Thesis. 
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2 Materials and Methods 
Standard protocols are not repeated (i.e DRG dissection and microfluidic seeding). Suppliers 

for all reagents have been named in the first citing. 

 

2.1.1 Animals  

Mice (C57/BL6) were housed, bred and treated in compliance with the ethics and animal 

welfare in place in the University, in accordance with the Animal (Scientific Procedures) Act 

1986. Animals were sacrificed and tissue collected in accordance with UK home office 

regulations and procedures under Schedule 1 of ASPA 1986. 

 

2.1.2 Cell culture: 

As an NC3Rs project, this thesis describes the use of multiple cell types. Per dissection, up to 

3 cell subtypes were potentially extracted from one pregnant female adult mouse, and the 

additional embryonic tissue in the case of DRG neuron culture. 

 

2.2 Cell Culture based protocols:  

All tissue dissections used sterile instruments and cell culture was undertaken in a sterile 

environment using a class II cabinet. All reagents used in the sterile culture environment were 

sprayed with 70% ethanol before use.   

 

2.2.1 Coating of plates, dishes and coverslips 

Dishes or coverslips (if non-sterile) were soaked thoroughly in 70% ethanol and air-dried in a 

class II cabinet. 

Poly-L-Lysine (PLL, Sigma) was diluted in sterile water to a final concentration of 0.02mg/ml 

and added so that the coating covered the base of the dishes. The coating was left soaking on 

the dishes for one hour in a class II cabinet. PLL was removed from coated Nuncs/ coverslips, 
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at which point they were washed twice with sterile water and left to dry completely 

overnight.  

On the day of dissection, laminin (Sigma) was diluted in DMEM (D6546) to a final 

concentration of 20µg/ml. In microfluidic devices a minimum of 100µl per channel was added. 

Or if using coverslips for dissociated plate culture, a 50µl drop was added to the centre of a 

culture dish. Plates were incubated for one hour at 37°C in an incubator whilst neurons were 

dissected. Laminin was removed and plates were washed with DMEM prior to seeding of cells. 

2.2.2 In vitro culture of bone marrow derived macrophages: 

In order that the cell culture medium is consistent throughout the model, this protocol 

describes the culture of macrophages with Dulbecco’s modified eagle medium (high glucose 

DMEM, D6546 Sigma) from an adapted form of the culture method by (Massier et al., 2015).   

 

2.2.2.1 Preparation of L-conditioned media (LCM) 

L929 cells (Sigma) were kindly provided by the Martinez laboratory and thawed in a water 

bath at 37ᵒC. LCM media stock was made by combining DMEM with 10% (v/v) HI FBS, 1% (v/v) 

PS, 1% (v/v) GM in a 500ml bottle.  

1ml of defrosted cells was added to a sterile falcon tube, with 17.5ml LCM media stock added 

drop-by-drop. Media was not added vigorously to avoid damaging the cells.  Cells were 

centrifuged at 250xg for 5-minutes at +4ᵒC to form a dense pellet and remove DMSO from 

suspension. The supernatant was removed, and the pellet resuspended in the small volume 

remaining by tapping the falcon tube gently. From here the cell pellet was completely re-

suspended in 3ml of the LCM media stock and added to a T-75cm2 with 15ml additional LCM 

media to cover the base of the flask. After 2-days in culture, the flask was passaged into 4-T-

75cm2 flasks, and after a further 2 days the T-75cm2 were sub-cultured into 10 x 225cm2 petri 

dishes. When the cells began to touch each other in culture on day 8, the time elapsed was 

counted for a further 10-days. On the 10th day the supernatant was filtrated and frozen at -

20ᵒC in 15ml aliquots until required.  

 

2.2.2.2 Preparation of media for culture of macrophages in vitro:  
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The initial stock was made by combining DMEM with 10% (v/v) HI FBS, 1% (v/v) PS, 1% (v/v) 

GM in a 50ml tube. At which point, 7.5ml of the “stock” was removed, and replaced with 7.5 

ml of the defrosted LCM.  

In order that the macrophage media could be tested in live imaging protocols, a protocol for 

making a stock without phenol red present was also prepared. In this case, all reagents were 

the same but high glucose DMEM without phenol red (Gibco, 31053028) 

 

2.2.2.3 Culturing cells in macrophage media:  

Bone marrow was usually isolated from fresh tissue since the viability of cells appeared 

increased: the long bones from a pregnant adult female were cut, and excess muscle 

surrounding the bones was removed. Using a 25G needle and 20ml PBS (without calcium and 

magnesium, Sigma) the bone marrow was flushed from within the bones, into a sterile 50ml 

falcon.  

Cells were centrifuged at 250xg for 5 minutes at 4ᵒC. By quickly discarding the supernatant 

into the waste pot, this process forms a dense pellet of cells at the bottom of the falcon. Cells 

were partially re-suspended by gently flicking the end of the falcon, before 5-10ml pre-

prepared DMEM macrophage media was added drop-by-drop to completely re-suspend the 

cells. 

25ml of ‘macrophage media’ was added onto a 140mm non-tissue culture treated petri dish 

(Fisher, 501V) prior to the addition of the cell-suspension. Cells were incubated at 37ᵒC, 5% 

CO2 for 3-5 days before changing the media. Although undifferentiated, a healthy 

macrophage culture appeared between 70-90% confluent, where cells were morphologically 

rounded or elongated with a ‘halo.’  

At day 7 in vitro (DiV7) cells were washed twice with PBS (without calcium and magnesium) 

each time incubating on ice for between 2 to 10 minutes. By adding PBS-EDTA at 10mM (pH 

8.0) for up to 20 minutes on ice, cells were detached easily from the cell plate.  

If cells were re-plated into a 6-well plate, 2ml/well of cells was pipetted and the plate re-

incubated at 37ᵒC, 5% CO2 until ready to be used. If used for immunofluorescence, cells were 

re-plated into a 6-well plate onto a glass coverslip and cultured until used. Cells could also be 

cryopreserved in resuspension 10% (v/v) DMSO with 90% (v/v) FBS.  
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2.2.2.4 Polarizing cells in vitro:  

Culture of mature macrophages in media supplemented with cytokines of interest has been 

shown to demonstrate changes in the phenotype of cells. In this protocol, from DiV7 onwards, 

macrophage cells were re-plated and grown in macrophage media supplemented with 

inflammatory stimuli to promote cell polarisation.  

Exposure to cytokines was required for a minimum of 24 hours, with literature suggesting 

that this period was optimized between 24-48 hours. Phenotypic changes were observed 

between cells cultured in the presence of lipopolysaccharide (LPS) with interferon-γ (IFN-γ, 

Miltyni Biotech) as compared to those cultured with interleukin-4 (IL-4, Miltinyi Biotech) only.  

As a control, following re-plating, murine macrophage colony stimulating factor (m-CSF, 

Fisher) was used to maintain a population of cells in the MØ condition.  

 

Cells from one confluent 140mm petri dish were divided and plated onto three 90mm 

bacterial-grade petri dishes (Sarstedt.) At this point, once cells had adhered to the plastic, the 

following protocol for cell polarization was used, based on the literature on classical activation 

of macrophages (Murray et al., 2014; Massier et al., 2015.)  

 

The concentrations of the cytokines used to promote differentiation of each culture were as 

follows:  

 

M1-like culture: 100ng/ml IFN-γ + 100ng/ml LPS 

M2-like culture: 20ng/ml IL-4 

MØ- like control culture: 100ng/ml mCSF 

 

Media from polarized cells was collected and frozen in aliquots at -20°C to be used in 

downstream co-culture or live cell imaging techniques. The protocol was optimised for use so 

that cells were exposed to polarizing stimuli for 24-hours, then the media replaced for 2-hours 

prior to collection. In this way the frozen stocks of ‘polarized media’ contained cytokines 

released from polarized cells, but low levels of polarizing stimuli.  

 

Based on the stimuli used, the polarized macrophages produced most closely resembled an 

M1a-like and M2a-like phenotype, as described by (Melton et al., 2015). For use in imaging 
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protocols, all polarized media generated was phenol red free to avoid cross-reaction at 

470nM excitation wavelength. 

 

2.2.2.5 Cytokine array: 

The cytokine array was purchased from Abcam (ab133999) for use with media extracted from 

polarized macrophage cells (see 2.2.2.4.) The cytokine array permitted semi-quantitative 

analysis of 40 targets in one experiment rather than the quantification of selected targets of 

interest. Rather than being a plate-based assay, media was added to a membrane, followed 

by a biotinylated detector antibody, as well as horseradish peroxidase (HRP.)  

 

Using ImageJ the results of the array were analysed using dot-blot densitometry. The 

background was removed from each image, using a rolling ball radius set to 25 pixels as 

standard. Only after correcting to the background does the integrated density for the empty 

wells equal 0 (or close to.)  The scan of the membrane shown has been converted to an 8-bit 

binary image and inverted. Only those cytokines detected at levels higher than the negative 

control are now quantified. Densitometry was used for a semi-quantitiative analysis of the 

fold change in the most highly expressed cytokines present in different media subtypes. N=2, 

error bars representing the standard deviation of the fold change. The results provided a 

‘snapshot’ of inflammatory cell profiles, although the results observed in mice may not 

directly reflect that observed in human tissue. 
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Figure 2.2.1 shows an example of a membrane exposed to M1-like media after a 10-minute 

exposure. A circle was drawn around D6 for both media subtypes, since this point was 

considered to be the largest spot recorded on the membrane. The integrated density was 

calculated using Fiji. The area analysed was left the same for every point on the membrane, 

and the result for wells 1C-2D were subtracted, since these points are “blank” controls. In this 

way, the background on the membrane was removed from the result, and the data was then 

normalised to the endogenous positive control.  

 

See below the plate map for the 40-target cytokine array: 

 

 

 

Figure 2.2.1: Example scan of cytokine array membrane exposed to M1-like 

media for 10-minutes. 
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2.2.3 Microglial Culture in vitro: 

Using the spinal cords isolated from E16.5 tissue, a mixed glial population was cultured from 

which the microglia were isolated as required.  

 

Microglial seeding media= High glucose DMEM, no Ca2+ (Gibco 21068028) supplemented 

with 10% (v/v) HI FBS, 1% (v/v) PS and 1% (v/v) GM 

Microglial replating media= High glucose DMEM, no Ca2+ (Gibco 21068028) supplemented 

with 10% (v/v) HI Horse serum (Gibco), 1% (v/v) PS and 1% (v/v) GM 

 

Spinal cords were removed during embryonic dissection and placed in 5ml Leibovitz's L-15 

media (Gibco) on ice. The tissue was then transferred to a sterile 50ml tube, and the volume 

of media was topped up to a minimum of 10ml before the spinal cords were homogenized by 

pipetting. The suspension was then centrifuged at 2500xg for 5 minutes at 4°C, and the 

supernatant aspirated from the pellet. Cells were gently re-suspended in 10ml L-15 using a 

10ml serological pipette, and the suspension passed through a 100µM cell strainer (Corning) 

to remove cell debris. 

The cell suspension was re-spun at 2500xg for 5 minutes at 4°C, and the pellet re-suspended 

in 6ml microglial seeding media. Cells were transferred to T-25cm2 flasks, were incubated at 

37°C, 5% CO2 and the media changed on day 5, then every 48-72 hours until cells were 

confluent. 

Upon reaching confluency (usually between DiV10-14) cells were placed on an orbital shaker 

at 150rpm for between 2-4 hours (maximum) at 37°C, 5% CO2 to lift the microglial layer from 

the astrocytes. The flask was checked every hour to ensure only the microglial cells were 

removed. These cells were resuspended in microglial re-plating media, on pre-coated PLL 

dishes or coverslips (see Chapter 2.2.1,) using 100µl droplet per coverslip, and topping up 

media after 24 hours.  

 

2.2.3.1 Microglial polarization: 

Culture of mature microglia in media supplemented with cytokines of interest also 

demonstrated changes in the phenotype of cells. For continuity, the same protocol was used 
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for the microglial polarization as the macrophage culture (section 2.2.2.4), although IFNγ was 

not used to prime the development of the M1-like cells.  

 

2.2.3.2 Microglial Phagocytosis assay:  

(see Bioprotocols (Lian, Roy and Zheng, 2016)) 

After microglia were attached to pre-coated PLL coverslips (0.1mg/ml, see section 2.2.1) 

polarization was promoted for between 24-48H using the protocol described in section 

2.2.2.4. 

Latex fluorescent beads (diameter 1µM, Sigma L1030) were pre-opsonized in HI FBS for 1 hour 

at 37°C, then diluted into high glucose DMEM (D6546) for a final concentration of beads to 

FBS in DMEM at 0.01% (v/v) and 0.05% (v/v) respectively.  

 

Cell media was replaced with microglial media containing the latex beads and cells re-

incubated for a minimum of 1 hour at 37°C. Cells were washed thoroughly with PBS and then 

fixed with 4% PFA. Downstream immunofluorescence protocols (section 2.5) were used to 

quantify microglial phagocytosis with relevance to cell phenotype.  

 

2.2.4 In vitro culture of dorsal root ganglion:  

Embryonic DRG (E16.5) were extracted from pregnant adult C57-BL6 mice and placed in 

Leibowitz-15 (L15, Fisher) medium on ice. From here DRGs were treated for 10 minutes with 

0.025% (w/v) trypsin (Sigma) in calcium and magnesium free PBS followed by 15-20 minutes 

digestion with 0.2% (w/v) collagenase-II (Gibco) at 37ᵒC. The cell pellet was removed from the 

collagenase and transferred to 1ml high glucose DMEM (D6546 Sigma) supplemented with 

10% FBS (Fisher) and gently dissociated.  

Cell suspension was centrifuged for 5 minutes at 100xg (4000rpm) in a tabletop 

minicentrifuge and the resulting cell pellet suspended in the appropriate volume of DRG 

growth media (DMEM, 2% (v/v) B27 (Invitrogen), 1% (v/v) PS (Sigma,) 2mM GM (Fisher), 

50ng/ml Glial-Derived Neurotrophic factor (GDNF, Sigma), 50ng/ml Nerve Growth Factor 

(NGF 2.5S, Invitrogen) and 4µM Aphidocolin (Aph, Sigma). The anti-mitotic Aphidicolin was 
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included within the DRG growth media in order to restrict excessive growth of non-neuronal 

cells.  

 

2.2.4.1 Microfluidic seeding: 

 
Preparation of the microfluidic devices SND150 (Xona) was completed as described by Garcez 

et al., (2016.) Dissociated cultures were seeded in microfluidic chambers on plates pre-coated 

with PLL and Laminin as described in 2.2.1. A maximum 10µl cell suspension was slowly added 

drop-by-drop to each well in the somal compartment, with each of the axonal compartments 

being filled with 150µl DRG growth media.  

After 4 to 6 hours the culture was supplemented with 200µl additional growth media for 

culture on the somal side. Cultures were maintained at 37°C, 5% CO2 in a high humidity 

incubator with an average of 8-12 DRGs dissociated to a cell concentration of 5x106 cells/ml 

in each 2-channel microfluidic chamber (Xona, SND150.)  

Hydrostatic pressure was used to ensure that media entered but did not pass through the 

microgrooves. This was achieved by ensuring that the volume of media was higher in the 

somal compartment than the axonal compartment of the chamber at all times (see figure 

Figure 2.2.2: Schematic showing the design of a two channel microfluidic device with microgroove length 150μM 

separating the microfluidically isolated compartments, image taken from Xona microfluidics. 
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2.2.2.) Wells on the axonal side of the chamber were filled with 150µl each of DRG growth 

media compared to 200µl per well on the somal side. 

 

2.2.4.2 Dissociated plate-based culture of DRGs: 

Laminin (Sigma) in DMEM was applied to the centre of a PLL-coated Nunclon (35x10mm) cell 

culture dish at least one hour prior to cell seeding. Laminin solution was removed, and 30μl 

of DRG cell suspension containing 3-5 dissociated ganglia was applied to the centre of the 

dish in a droplet. Cells were left to adhere overnight, and 1-2ml of DRG growth media was 

added to the cells the following morning. Media was gently replaced every 3-4 days of culture, 

ensuring not to lift the cell suspension from the plate when re-adding new media.  

 

2.2.4.3 Culture of DRG on porous membranes: 

Cell culture inserts (Corning) with a porous PET membrane (1.0µM diameter pores) were 

placed into a tissue culture grade 6-well plate. The culture method was derived from works 

described by Unsain et al., (2014) regarding the culture of sensory neurons using porous 

filters. When the insert was placed into the 6-well plate, two compartments were formed as 

shown by chapter 5, figure 5.3.1.  

 

All cultures using these inserts were pre-coated with 1mg/ml PLL for 1 hour (on both sides of 

the insert) before exposure to laminin (20µg/ml) for 1 hour at 37°C on the day of culture. The 

“axonal compartment” of these inserts sits in a minimum of 2ml DRG growth media, which 

contains growth factors, whilst the cell pellet is seeded in 100µl of DRG growth media without 

NGF and GDNF onto the membrane, and topped up to 1ml after 24 hours, after the cells have 

attached to the membrane. Media was exchanged every 3 days of culture. 

 

2.3 Functional studies with DRG in microfluidic chambers:  

 

2.3.1 Calcium Imaging: 
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Standard imaging buffer was prepared fresh every two to four weeks in autoclaved sterile 

water containing 135mM NaCl, 3mM KCl, 10mM HEPES, 15mM glucose (all Sigma), pH 7.4. To 

each 10ml of complete buffer used 1mM MgSO4 and 2mM CaCl2 was added on the day of use.  

 

Changes in fluorescence were recorded by quantifying the increase in Fluo-5F (AM) signal 

following stimulation of a cell. Fluo-5F AM (ThermoFisher) is a single wavelength, labelled 

calcium indicator, with similar properties to other indicators such as Fluo-3 (Thomas et al., 

2000). However, unlike other analogs of calcium indicators used in epifluorescent signalling 

experiments, Fluo-5F has a lower binding affinity for calcium within the cell, making small 

changes in intracellular calcium (1µM-1mM) more easily detectable without saturation of the 

response of the fluorescent ligand (Paredes et al., 2008, 2009). A lower affinity calcium 

indicator dye was selected as most suitable for this assay, where the concentration of calcium 

in the endoplasmic reticulum ranges between 0.1 and 1mM (Raffaello et al., 2016).  

 

Cell permeable Fluo-5 AM (ThermoFisher, 11544786) was diluted into 454µl Pluronic F127 

20% solution in DMSO (Sigma, 10767854) in order to create a 10mM stock of Fluo-5, aliquoted 

to 10µl aliquots and stored at -20°C until use. The aliquots were protected from white light at 

all times (foil wrapped vessels etc.) 

 

This protocol has been optimised for live cell imaging of DRG cultures seeded into two-

channel microfluidic chambers, although can also be carried out for dissociated cell cultures 

seeded onto coverslips.  

 

2.3.1.1 Cell loading and de-esterification: 

The media was removed gently from the somal compartment of the chamber, and the cells 

gently washed twice with complete imaging buffer. From this point onward, the entire 

protocol was completed in the dark, to avoid bleaching of the Fluo-5 signal.  

Fluo5 (in pluronic) stock was diluted in complete imaging buffer to a final concentration of 

100nM, and 100µl applied to the somal compartment of each microfluidic device.  



 74 

Fluo-5 was then removed from the somal compartment of the chamber after a loading period 

of 30 minutes, and replaced with 100µl imaging buffer, at which point the cells were left to 

completely de-esterify for a minimum of 30 minutes.  

 

2.3.1.2 Technical notes on dye loading and extrusion: 

Loading of the calcium indicator dye was highly efficient, but there was potential for extrusion 

of the molecule from the cell body during longer imaging protocols, especially if the cell was 

continuously exposed to light. When exposed to light at a specific wavelength, 470nM the 

increase in “free” calcium in the cell was recorded as an increase in fluorescence where 

calcium binds to fluo-5 and light is emitted. However, if exposed for long periods of time, or 

to high intensities of light (such as ambient light) the fluorophore becomes unstable and the 

signal will photobleach, rendering the fluorophore unable to fluoresce and inducing high 

levels of background fluorescence. Whilst the acetoxymethyl ester group attached to fluo-5 

was essential for making the dye cell permeable, once inside the cell, the de-esterification 

period was required to completely hydrolyse this AM ester bond before recording (Lock, 

Parker and Smith, 2015).  Since Fluo-5 is a fluorescent molecule, complete removal of the 

attached ester was required to reduce background fluorescence when quantifying changes in 

fluorescence to a stimulus.  

 
The phenomenon referred to as “bleaching” of the signal, is one of the disadvantages of using 

non-ratiometric calcium indicators, such as Fluo-5. Calcium indicator dyes have been 

engineered in several forms, including salts, dextrans and hydrophobic acetoxymethyl (AM) 

ester forms. With a lower binding affinity, and a cell permeable nature, the most appealing 

form for this experimental design was the AM ester form (Paredes et al., 2009; Lock et al., 

2015). However, without complete de-esterification of the indicator loaded into the cell, the 

background signal would fluctuate where there was a mixture of free and calcium-bound 

indicator dye trapped within the cell whilst imaging. For this reason, it was important to time 

the de-esterification period of the cells for a minimum of 30 minutes.  

 

2.3.1.3 Imaging: 
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An Olympus IX70 Inverted tissue culture microscope could to a CCD camera (photometrics 

CoolSnap MYO, global shutter) was used and data acquired in micromanager (Tsuchida et al., 

2014). Using multi-acquisition in Fiji an image stack was recorded in line with cell stimulation. 

An exemplar recording measured 480 frames, one every 250ms, with a total run time of 2 

minutes. Appropriate imaging settings were selected on micromanager (Tsuchida et al., 

2014). Usually this was set for 50ms exposure in the 470nM wavelength filter and 2x2 image 

binning. However, if doing longer read times reducing the binning to 4x4 reduced the size of 

the file. For analysis purposes, the images were saved as a stack file to allow multiple analyses 

of the same cell.  

 

Once the cells were completely loaded imaging buffer was removed from the chamber and 

placed on the platform. Using 10X magnification the cells were brought into focus (using 

eyepieces and green light illumination, 470nM). Once the cells were in focus the eye piece 

was switched to camera and the image re-focused before stopping live imaging.  

 

All cultures were recorded for up to 20 seconds prior to stimulation, in order to determine an 

initial level of excitability. Since pseudounipolar sensory neurons do not fire spontaneously 

(unlike cortical neurons) this provided a stable baseline Fluo-5 signal, for which the post-

stimulation response would be normalised to.  

By starting the acquisition sequence, the shutter opened and closed every 250mS until the 

sequence was complete. Watching the timer on the screen, after a maximum of 10 seconds, 

the first stimulus was added (e.g., 30µl KCl 25mM) to the axonal compartment of the 

chamber, then if required the second stimuli was added at 2 minutes and 20 seconds. 

Different stimuli were selected according to which fibres of the DRG were being targeted. 

 

Although cell viability was not an issue during this time period, the background signal from 

Fluo-5 would begin to saturate the image if the cells were continuously exposed at 470nM for 

prolonged periods of time. All time-course analyses have been adapted to show a total time-

course of 60 seconds, including 10 seconds baseline prior to stimulation. 

 

2.3.1.4 Image Analysis for Ca2+ signalling experiments:  
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All image analysis was completed using the ImageJ software from Fiji (Schindelin et al., 2012). 

Using ImageJ, the stack file was opened and navigated to find excitation of the cells in 

response to a stimulus. Cells were manually selected, and added to the ROI manager tab. 

Once a minimum of 10 cells were selected, the multi-measure feature calculated the area 

(μM) as well as the mean fluorescence intensity (ΔF) of each cell per image taken. Data was 

exported to an excel template and manually analysed to plot a time-course analysis. All data 

was normalised to the baseline fluorescence intensity. 

 

Each chamber was only imaged once, starting with stimulation of the axonal compartment, 

at which point it was removed from the stage, washed with imaging buffer and the stimuli 

usually then added directly to the somal compartment.  

In order to normalise the intensity of the Fluo-5 signal, an average value for the baseline 

fluorescence (F0) was calculated before stimulation. The stimulus-response was calibrated by 

removing this background from the maximum fluorescence at every time point (Ft) on the 

image stack.  

The change in fluorescence over time was plotted using the equation ((∆F=Ft-F0)/F0). In this 

equation Ft represents fluorescence at a given time point, where F0 is equal to the ‘resting 

fluorescence’ of a cell. 

Values were primarily plotted as a time-course analysis (XY curve) to visualise the change in 

fluorescence as a measure of excitability in response to a specific stimulus. The percentage 

increase in fluorescence following stimulation could be extracted from the data, by 

calculating the difference between maximum and minimum ∆F/F.  

 

2.3.1.5 Statistical analysis of Ca2+ imaging:  

For the purposes of the data shown in this thesis the following definitions are important:  

Biological replicates (N): Each chamber was only imaged once, with different conditions 

tested across multiple preparations. Given that each biological replicate was taken from a 

separate embryonic litter, each microfluidic device (or dissociated plate) was assumed to be 

a biological replicate.  
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Technical replicates: it is important to acknowledge that the tissue used here was taken from 

dissociated embryonic tissue, with tissue from multiple embryos used when seeding multiple 

plates. In the case of the microfluidics we refer to the individual cells within each channel as 

the technical replicates of each condition.  

 
Data represents the mean ± SEM of 3 (or more) independent biological replicates/repeats of 

an experimental condition. The N number chosen was dependent on the type of test 

condition, in line with necessary power calculations and the principles of the 3Rs. Where 

possible, conditions were tested using tissue from more than one animal to allow for tissue 

variability, but without wasting tissue. The significance level for statistical analysis was 

assumed to be 5%.  

In line with the principles of the 3Rs a power calculation was performed to ask; 

a) What was the smallest effect that could have biological relevance? 

b) What was the largest effect of a treatment compared to a control? 

For example, when comparing stimulation of dissociated plates versus microfluidics, a post-

hoc power calculation estimated that a minimum N=6 would determine statistical 

significance, and the P values have been highlighted on the figures. The power calculation 

was estimated using the peak excitability (ΔF) for three biological repeats, where no 

appropriate published data was available to perform the calculation before starting the 

experiment. Estimates were calculated using a low and high estimate of the signal to noise 

ratio: 

  Mean 1  Mean 2 Std Dev.  S/N Ratio  N number at 80% confidence  

N=3 2.5 1.8 0.2 3.5 3 

      0.4 1.8 6 

This estimation assumes P=0.05 is significant and used a two-sided format.   

 

In each repeat (N) a minimum of 10 cells (replicate values) were analysed, although this was 

dependent on the field of view and normally approximately 20 cells were selected. Using 

GraphPad Prism 9.0 peak fluorescence data was analysed to show a Gaussian population for 

downstream statistical analysis purposes.  

With three or more groups for comparison, a one-way ANOVA (analysis of variance) was used 

to determine significant differences between data sets. For multiple comparisons of data sets, 
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an additional Dunnett’s comparison. Tests was used. Degrees of freedom (F) was calculated 

within groups and between groups and was reported as F(Df1, Df2). 

 

If comparing significance between two groups, a parametric (usually unpaired) t-test was 

used.  Where descriptive statistics deemed the standard deviations of data sets were different 

then a post-hoc Welch’s analysis was also applied (as stated in the figure legends.) A Grubbs’ 

analysis was performed and a maximum of one outlier was removed where α=0.05. 

 

 Values of P<0.05 were considered to be statistically significant.  

 

2.4 MicroRNA functional analysis tools: 

2.4.1 MicroRNA ‘power’ inhibitors; 

A cell permeable miRNA power inhibitor control (Negative Control A, 

TAACACGTCTATACGCCCA, ID Y100199006-DDA) and the miRCURY LNA miR-138-5p Power 

inhibitor (MIMAT0000150: 5'AGCUGGUGUUGUGAAUCAGGCCG, ID YI04102106) were 

obtained from Qiagen. 

 

At DiV5 the media was changed in the microfluidic device, and the miR-138-5p inhibitor (or 

non-targeting control probe) was added at a concentration of 100nM for 24-hours. The 

schematic in each figure indicates where the inhibitor was added.  

 

2.4.2 Small interfering RNA (siRNA):  

Accell smartpool siRNA for Mouse Kcna2 (Horizon, E-058746-00-0010, 10nmol) and a non-

targeting siRNA control (Horizon, D-001910-10-20, 20nmol) were purchased from Horizon 

discoveries. Pellets were resuspended to a working concentration of 100μM in 1X siRNA 

buffer and stored at -20°C until required.  

 
At DiV5 the media was changed in the microfluidic device, and the smartpool siRNA for Kv1.2 

(smartpool negative control siRNA) was added to the axonal compartment at a final 

concentration of 100nM for 24-hours. 
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2.4.3 Target prediction using Bioinformatics: 

 
Target searching for interactions with the 3’UTR of miR-138-5p is described in-depth in 

Chapter 5, part B. It is important to be aware that prior to use of siRNA, targets of interest 

were identified and validated. When identifying potential candidate targets a range of 

bioinformatic searching tools were used. This included, Diana Tools microT-CDS 

(Paraskevopoulou et al., 2013a) Tarbase (Karagkouni et al., 2018) TargetScan v7.2 (Agarwal 

et al., 2015) and miRTarBase (Hsu et al., 2011).  

 

  

2.4.4 Target validation using Luciferase assay: 

 
The dual-luciferase reporter assay is relatively low throughput, but can be easily manipulated 

to provide a semi-quantitative output regarding changes in protein expression dependent on 

a microRNA of interest (Jin et al., 2013). First the protein of interest is expressed in a vector 

such as pmiRGlo (Guo et al., 2013). Once the insert has been successfully sequenced to 

contain the seed sequence of the microRNA of interest, an immortalised cell line is 

transfected with the protein. A microRNA mimic is co-transfected alongside the luciferase 

reporter construct and the microRNA mimic binds to the target site identified in the construct, 

protein translation is subsequently repressed.  
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By inserting miRNA target sites downstream of the primary reporter gene (FLuc) a reduced 

FLuc expression is observed. This indicates binding of miRNA mimic to cloned miRNA 

sequence inserted into the pmiR vector. Where reduction in FLuc expression is used to 

monitor miRNA regulation, the RLuc site acts as a control reporter sequence. In this way, by 

remaining stable, the RLuc site normalizes the signal of the dual luciferase assay between 

samples in transfected cell lines.  

 

2.4.4.1 Luciferase cloning: 

Forward and reverse oligonucleotides were designed for 4 protein targets of interest, 

encompassing a total of 9 potential target sites to be tested where proteins such as KCNA2 

(also known as Kv1.2) contained 5 potential target sites for miR-138-5p. The oligonucleotides 

were all 51 bp in length and were designed so that when annealed they contained the 

potential 3’UTR target sequence in 3’ – 5’ direction. 

 

Only the desired miRNA target region was inserted into the pmirGLO Dual-Luciferase miRNA 

Target Expression Vector (Promega), as opposed to the entire 3’UTR. Restriction sites were 

included on either end (NheI and SalI) so that overhangs created by oligonucleotide annealing 

Figure 2.4.1 The dual luciferase reporter system using pmiRGlo and expression of firefly luciferase (FLuc) to quantify miR-

mimic binding to a protein sequence of interest in vector 
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were complementary to those generated by restriction enzyme digestion of the pmirGLO 

Vector’s multiple cloning site. Primers were also phosphorylated at the 5’ end of the 

oligonucleotides for ease of insertion into the pmirGLO vector. An internal NotI restriction 

site was also added to oligonucleotides for downstream clone confirmation. This addition 

creates a ~125bp insert when digested with NotI because of a NotI site at position 93 in the 

vector. 

 

miR138-5p complement: 3’ cggccugauucacaacACCAGCu 5’ 

Seed sequence 3’ to 5’ uggucg (search complement accagc). Seed sequence in bold. 

 

 Forward Sequence (NheI/NotI/ SalI) BP %GC Tm 
KCNA2 
Site 1 

CTAGCATGCGGCCGCGAATGTATCTTTGGGGAGGGGGCACCAGCTTACACG 51 61 87 

KCNA2 
Site 2 

CTAGCATGCGGCCGCGAATGTACACATGCAAAATGCACACCAGCCTACACG 51 55 85 

KCNA2 
Site 3 

CTAGCATGCGGCCGCGAATGTATCATCCTGCTAGTATTACCAGCTTACACG 51 51 81 

KCNA2 
Site 4 

CTAGCATGCGGCCGCGAATGTACTTGGCCCTTATTGAGACCAGCATACACG 51 55 83 

KCNA2 
Site 5 

CTAGCATGCGGCCGCGAATGTATCATGAAAATTTAGACACCAGCTTACACG 51 47 79 

KCNB1 
Site 1 

CTAGCATGCGGCCGCGAATGTAGTGCCGGGTCACGTGCACCAGCGTACACG 51 65 89 

KCNB1 
Site 2 

CTAGCATGCGGCCGCGAATGTAGGCCATCCCAGAAGGCACCAGCGTACACG 51 63 88 

KCNG1 
Site 1 

CTAGCATGCGGCCGCGAATGTACCTGTTCAGACCTCCCACCAGCCTACACG 51 61 86 

KCNG1 
Site 2 

CTAGCATGCGGCCGCGAATGTAGCTCTGTCCCTGCAGGACCAGCCTACACG 51 63 88 

KCNK10 
Site 1 

CTAGCATGCGGCCGCGAATGTAGGCAGCTTTCCCTTAGACCAGCCTACACG 51 59 85 

KCNK10 
Site 2 

CTAGCATGCGGCCGCGAATGTAGAGTCTCCTTTCCCCAACCAGCCTACACG 51 59 85 

KCNK10 
Site 3 

CTAGCATGCGGCCGCGAATGTAGTATGTCTGGCAAAGAACCAGCCTACACG 51 55 83 

KCNK10 
Site 4 

CTAGCATGCGGCCGCGAATGTATGGTAGATCACATGACACCAGCTTACACG 51 53 82 

 Reverse Sequence BP %GC Tm 
KCNA2 
Site 1 

TCGACGTGTAAGCTGGTGCCCCCTCCCCAAAGATACATTCGCGGCCGCATG 51 61 87 

KCNA2 
Site 2 

TCGACGTGTAGGCTGGTGTGCATTTTGCATGTGTACATTCGCGGCCGCATG 51 55 85 

KCNA2 
Site 3 

TCGACGTGTAAGCTGGTAATACTAGCAGGATGATACATTCGCGGCCGCATG 51 51 81 
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KCNA2 
Site 4 

TCGACGTGTATGCTGGTCTCAATAAGGGCCAAGTACATTCGCGGCCGCATG 51 55 84 

KCNA2 
Site 5 

TCGACGTGTAAGCTGGTGTCTAAATTTTCATGATACATTCGCGGCCGCATG 51 47 80 

KCNB1 
Site 1 

TCGACGTGTACGCTGGTGCACGTGACCCGGCACTACATTCGCGGCCGCATG 51 65 89 

KCNB1 
Site 2 

TCGACGTGTACGCTGGTGCCTTCTGGGATGGCCTACATTCGCGGCCGCATG 51 63 88 

KCNG1 
Site 1 

TCGACGTGTAGGCTGGTGGGAGGTCTGAACAGGTACATTCGCGGCCGCATG 51 61 86 

KCNG1 
Site 2 

TCGACGTGTAGGCTGGTCCTGCAGGGACAGAGCTACATTCGCGGCCGCATG 51 63 88 

KCNK10 
Site 1 

TCGACGTGTAGGCTGGTCTAAGGGAAAGCTGCCTACATTCGCGGCCGCATG 51 59 86 

KCNK10 
Site 2 

TCGACGTGTAGGCTGGTTGGGGAAAGGAGACTCTACATTCGCGGCCGCATG 51 59 86 

KCNK10 
Site 3 

TCGACGTGTAGGCTGGTTCTTTGCCAGACATACTACATTCGCGGCCGCATG 

 

51 55 84 

KCNK10 
Site 4 

TCGACGTGTAAGCTGGTGTCATGTGATCTACCATACATTCGCGGCCGCATG 51 53 83 

Table 2.1 Oligonucleotides designed for protein target sites for use in the luciferase assay. Complementary 

oligonucleotides were designed for the potential targets of KCNA2, KCNB1, KCNG1 and KCNK10, they contained 

NheI and SalI ends to incorporate into the pmirGLO vector and an internal NotI site (sites indicated in different 

colours). The site of the seed sequence for miR138-5p is also highlighted in yellow. 

 

The pmirGLO vector (500ng/μl) was digested with 20u of both NheI-HF (NEB) and SalI-HF 

(NEB) for 15 minutes at 37°C as per the manufacturers instructions, before being treated with 

1u alkaline phosphatase (NEB) for 60-minutes at 37°C, to dephosphorylate the 

oligonucleotides and prevent re-ligation of the linearized plasmid DNA. Samples were purified 

by running the digested vector on a 1% (w/v) agarose gel using Tris-Acetate-EDTA buffer (40 

mM Tris, 20 mM acetic acid, 1mM EDTA), excising the DNA band and then gel extracting the 

DNA using the QIAquick Gel extraction kit as per manufacturer’s instructions (Qiagen).  

 

Oligonucleotides were delivered in a lyophilised state (Integrated DNA technologies) and 

suspended in hyclone water to a concentration of 1μg/μl prior to annealing.   

Forward and reverse primer were combined with oligonucleotide annealing buffer (10mM 

Tris pH7.5, 50mM NaCl and 1mM EDTA), and heated to 90°C for 3 minutes, then to 37°C for 

15 minutes to anneal the complementary pairs.  
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4ng of annealed oligos were ligated into 50ug of the linearized pmirGLO dual luciferase vector 

overnight at 16°C using T4 DNA ligase (NEB) as per manufacturer’s instructions. The resulting 

plasmid was transformed into XL10 gold high-efficiency competent cells. In brief, 5ul of the 

ligation reaction was incubated with 100ul of XL10 competent bacterial cells for 30 minutes 

on ice, then heat shocked at 42°C in a pre-heated waterbath for 40 seconds, before being 

incubated immediately on ice and re-suspended in 900µl LB broth. After 1-hour shaking at 

200rpm and 37°C the ligation mixture was cultured on an LB agar plate with selectivity for 

Ampicillin (Sigma) overnight at 37°C. 

Colonies were picked and cultured for miniprep (Qiagen) extraction of the plasmid using 

distilled water following manufacturer’s instructions. Efficient cloning was confirmed through 

NotI (NEB) digestion of plasmid followed by agarose gel visualisation of resulting fragment 

bands.  

Successful insertion of the annealed oligonucleotides was then confirmed through Sanger 

sequencing (DeepSeq Lab, University of Nottingham). Upon optimisation of this protocol, it 

was evident that insert would only be detected at concentrations higher than 500ng/µl. 

 

2.4.4.2 Site directed Mutagenesis: 

Primers were re-designed for those sequences successfully cloned into the pmiRGlo vector. 

This time a mutant version of the inserted sequence was generated via PCR, where four 

nucleotides in the target seed sequence were mutated. In each mutation, the site 

represented the 2nd to the 6th nucleotides of the microRNA seed sequence.  

The primers for site-directed mutagenesis were designed in-house and are shown in Table 2.2 

below: 

 Forward Primer SDM (Seed mutation ACCAGC to AAACAC) BP %GC Tm 
KCNA2 
Site 1 

GTATCTTTGGGGAGGGGGCAAACACTTACACGTCGACCTGCAGG 
 

44  57 80.4 

KCNA2 
Site 4 

GTACTTGGCCCTTATTGAGAAACACATACACGTCGACCTGCAGGC 
 

45  
 

51 78.5 

KCNA2 
Site 5 

GTATCATGAAAATTTAGACAAACACTTACACGTCGACCTGCAGGCATGC 
 

49 43 77.2 

KCNK10 
Site 1 

GTAGGCAGCTTTCCCTTAGAAACACCTACACGTCGACCTGCAGG 
 

44 59 81.2 

 Reverse Primer SDM (Seed mutation GCTGGT to GTGTTT) BP %GC Tm 
KCNA2 
Site 1 

CCTGCAGCTCGACGTGTAAGTGTTTGCCCCCTCCCCAAAGATAC 
 

44  57 80.4 
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KCNA2 
Site 4 

GCCTGCAGGTCGACGTGTATGTGTTTCTCAATAAGGGCCAAGTAC 
 

45  
 

51 78.5 

KCNA2 
Site 5 

GTACGCCTGCAGGTCGACGTGTAAGTGTTTGTCTAAATTTTCATGATAC 
 

49 43 77.2 

KCNK10 
Site 1 

CCTGCAGGTCGACGTGTAGGTGTTTCTAAGGGAAAGCTGCCTAC 44 59 81.2 

Table 2.2 Primer sequences used for SDM 

The PCR reaction for mutant strand synthesis is shown here: 

1 cycle           95°C         30 seconds 

18 cycles       95°C         30 seconds 

                       55°C         1 minute 

                       68°C         9 minutes 

hold at 4°C. 

The product was digested using 20u DpnI (NEB) at 37°C for 1-hour as per the manufacturer’s 

instructions, to remove the parental dsDNA strand prior to transformation into XL10 cells as 

described above. Confirmation of mutagenesis was achieved using Sanger sequencing.  

 

 

2.4.4.2.1 Treatment of pmirGLO with miRNA mimic and transfection into HEK cells: 

 
HEK-293T cells were seeded into a 24-well plate at a seeding density of 0.8x 105 cells/ml in 

high glucose DMEM with 10% (v/v) FBS and 1% (v/v) PS. After 24-hours incubation at 37°C 

and 5% CO2 cells were transfected with the pmirGLO vector containing the DNA insert.  

The DNA was diluted to 200ng/μl, with each condition to be tested run in triplicate for both 

the miRNA mimic and the LNA control sequence.  

Transfection mixture was assembled as follows (per well): 

• 0.5µl Lipofectamine2000 mixed with 100µl Opti-Mem and incubated for 20 minutes 

at room temperature. 

• 50µl Opti-mem + 1µl DNA (insert in pmirGLO at 200ng) + 2.5µl 20µM mimic/ LNA 

mimic control. Mix was incubated for 5 minutes at room temperature.  

• Solutions were combined and incubated at room temperature for 30 minutes, then 

added dropwise to cells without removing the media. Cells were then incubated at 

37°C and 5% CO2 for 48 hours with the transfection mix. 
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Following transfection, media was removed from cells and they were washed with ice-cold 

PBS prior to lysis in 100µl passive lysis buffer (per well.) Cells were rocked for 30-minutes at 

room temperature, making sure to cover the plate to protect the light sensitive reagents. 

When lysis was complete, the contents of each well were collected in separate lo-bind DNA 

tubes before use in the dual luciferase assay. The protocol could also be stopped here, with 

DNA frozen at -80ºC until required.  

2.4.4.2.2 Dual Luciferase assay: 

This assay required the use of a GloMax® Navigator microplate luminometer (Promega), as 

well as the Promega Dual-Luciferase® reporter assay kit.   

The reagents luciferase assay reagent II (LARII) and Stop and Glo® were prepared as per 

manufacturer’s instructions.   

In triplicate 10µl of each sample was pipetted into a well of a white 96 well plate. A slightly 

modified method from that of the manufacturer was used; 25µl of each of the luciferase assay 

reagent II (LAR II) and Stop & Glo® was used per well.  

An additional 700µl of each reagent was also required to prime the lines of the Glomax plate 

reader.  

2.4.4.2.3 Analysis of Luminescence: 

Luminescence emission was recorded in relative light units (RLU) in counts per second (CPS) 

by the GloMax Luminometer plate reader. Results were exported to excel, and the relative 

result for FLuc was divided by the control response for the RLuc response of the same sample. 

The changes in the FLuc/RLuc ratio are indicative of direct inhibition of the FLuc reporter gene. 

Therefore, this FLuc/RLuc ratio was used as a reflective change in target modulation, arising 

as a result of miR target binding to the introduced mimic and results were expressed as 

percentage change from the control samples. Whilst this dual-luciferase assay is ratiometric 

by design, there were some limitations to the assay.  

 

2.5 TRIzol extraction of RNA: 

This is a standard protocol used in the Dajas-Bailador lab for RNA extraction from neuronal 

cultures (Garcez, Guillemot and Dajas-Bailador, 2017). However, when extraction RNA was 
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extracted from microfluidic chambers RNA is pooled to increase the concentration, 

particularly from the axonal compartments.  

 

Samples were lysed using 1ml TRIzol reagent (Invitrogen) per condition and incubated at 

room temperature for 5 minutes to allow dissociation of ribonucleoprotein complexes. One 

fifth volume of chloroform (ThermoFisher) was added to each of the samples and vortexed, 

before being incubated for up to five minutes at room temperature. Each sample was then 

centrifuged at 12,000x g for 15 minutes, in a centrifuge pre-cooled to 4°C. 

 

Following centrifugation, three layers become visible; the clear aqueous phase, the 

interphase, and the organic layer (phenol-red chloroform phase.) The upper, known as the 

aqueous layer, contains the RNA required. Without disturbing the layers below, as much of 

the aqueous phase as possible was collected and transferred to a new Lo-bind tube 

(Eppendorf.)  

 

One half volume of isopropanol (i.e. 500µl for every 1ml TRIzol used for lysis, ThermoFisher) 

was added to the aqueous phase and the samples incubated at room temperature for 10 

minutes. If extracting RNA from only the axonal compartment, the concentration is often very 

low. To make the downstream pellet more visible, 0.66µl Glycoblue (ThermoFisher) was 

added into the aqueous phase per 0.5ml isopropanol. Each sample was centrifuged again at 

12000x g, this time for 10 minutes at 4°C. 

The supernatant was gently removed from each of the RNA pellets and the RNA was washed 

in one volume of 75% ethanol in Hyclone RNAse and DNAse free water (GE healthcare.) Each 

sample was briefly vortexed before one final centrifugation for 5 minutes at 7500xg, at 4°C. 

The RNA pellet was allowed to air dry before resuspension in maximum 30µl Hyclone, and to 

aid RNA resuspension, each sample was incubated for up to 10 minutes at 55-60°C.  

 

RNA concentration and purity was then determined using a 2000c UV/IV Spectrophotometer 

(Nanodrop, ThermoFisher Scientific) before storage at -80°C. Partially dissolved RNA showed 

a 260/280 ratio of less than 1.6, although a good yield from the axonal compartment was 

considered anything between 30-50ng/ml.  
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2.5.1 Extraction of RNA fractions from porous trans-well inserts: 

After culturing DRGs in Twiss-chambers (Corning) for a minimum of 5 days in vitro, and once 

the axons have crossed through the channel to the axonal side, the chamber was washed with 

PBS, whilst the cells remained attached to the insert.  

Media was aspirated gently from the cultures, usually following exposure of the “axonal 

compartment” to polarised media (or control media) for 8 hours, and the cells were washed 

gently twice with sterile PBS.  To increase the yield of RNA collected, when washing the inserts 

with TRIzol, the cells were also gently scraped to promote cell lifting. The procedure for RNA 

extraction was followed as described in 2.5 above.  

 

2.5.2 Quantitative polymerase chain reaction (qPCR):  

qPCR was carried out to determine the levels of select miRNAs within extracted RNA samples 

and uses SYBR green that binds to double stranded DNA and subsequently fluoresces. The 

emitted fluorescence during the PCR is directly proportional to the amount of DNA amplified 

product detected in every cycle. 

 

2.5.3 cDNA Synthesis: 

cDNA was synthesised from mature miRNAs using the miRCURY LNA™ Universal cDNA 

synthesis kit (Qiagen, UK), which uses a poly-T primer. This method uses ExiLENT SYBR Green 

master mix dye (Qiagen) that binds to double stranded DNA and subsequently fluoresces. The 

emitted fluorescence during the PCR is directly proportional to the amount of DNA amplified 

product detected in every cycle.  

 

2.5.4 qPCR using SYBR green: 

qPCR was undertaken using the ExiLENT SYBR® Green master mix kit (Qiagen, UK), and the 

Applied Biosystems Step One Plus thermocycler was used in standard mode using cycling 

parameters recommended by Qiagen: 

 

Polymerase Activation/Denaturation; 95°C for 10 min 
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Amplification cycles; 40 cycles at 95°C for 10s, then 60°C, for 1 min. The ramp-rate was set to 

1.6°C/s, with an optional melt-curve analysis.  

 

Data was acquired using Applied Biosystems SDS2.3 programme and Ct values were analysed 

for relative miRNA quantification using the comparative ΔΔCt method (Livak and Schmittgen, 

2001; Nolan, Hands and Bustin, 2006; Rao et al., 2013). Biological repeat samples were run 

across multiple mouse dissections, using miRCURY LNA™ primers (Qiagen, UK). Per plate each 

biological repeat was run with two technical replicate wells. See section 2.5.4.3 below for a 

technical note on the exclusion of CT values for housekeeper miR133b, which was only 

consistently detected in 3 out of 5 biological repeat samples.  

 

microRNA of interest: miR-138-5p primers used were the hsa-miR-138-5p LNA PCR primer set 

(Qiagen) which have been reported to be compatible with samples from mice (as well as rat.) 

 

2.5.4.1 Internal Controls for normalization of fold change expression in qPCR: 

ROX™ (Fisher Scientific - UK Ltd) was used as a passive reference for normalising for non-PCR 

related fluorescence variations, and was incorporated by SDS2.3 to calculate Ct values. A non-

template control (NTC) of water was also included for each primer to confirm absence of 

background signal and lack of contamination. Spike in samples containing Sp6 were used as 

inter-plate calibrators (IPCs) to confirm PCR efficiency and added at the cDNA synthesis stage. 

If possible, an IPC was run for one sample and one control sample per plate (in minimum 

duplicate.) In most cases, the DRG media control (or the MØ control) were used as the IPC 

samples between plates.  Average IPC Ct values between plates that were within ≤5% of each 

other were deemed acceptable to use. 

 

2.5.4.2 Housekeeper genes for reference fold change expression in qPCR: 

A range of housekeepers were used, having first been identified in a hyperalgesic priming 

study by J. Spalton, in collaboration with Dr Alex Rathbone and Professor Victoria Chapman. 

Since this study involved the effect of inflammation on RNA, it was anticipated that most 

housekeepers would change dependent on the inflammatory condition that they were 

exposed to. A housekeeper was deemed suitable if the change in Ct value was less than 2-
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fold overtime and between pooled control and treated samples and when the same trend of 

the Ct value was seen between housekeepers and miRNAs of interest in control samples when 

serial diluted (Livak and Schmittgen, 2001). 

 

Housekeepers used were miR-133b, miR-134-5p and SNORD33 

Primers for SNORD33 were designed in-house for rat using Primer3 software by Clare Martin, 

but have been demonstrated to be compatible with mice:  

SNORD33_F: 5’AGCTTGTGATGAGGATGTCTCC  

SNORD33_R: 5’TGGTAGTGCATGTAGAGTCGTC  

 

miR-133b and miR-134-5p primers were LNA PCR primer set (Qiagen), details in Table 2.3 

  Sequence  ID Conserved 
in Mouse 

 mmu-miR-133b 5’UUUGGUCCCCUUCAACCAGCUA MIMAT0000770 Y 
hsa-miR-134 5’UGUGACUGGUUGACCAGAGGGG MIMAT0000447 Y 

hsa-miR-138-5p 5’AGCUGGUGUUGUGAAUCAGGCCG MIMAT0000430 
 

Y 

Table 2.3 Details of LNA Primers (Qiagen, UK) 

 

2.5.4.3 Analysis of qPCR: 

Using the SDS2.3 software thresholds were standardised for each miRNA and remained 

consistent between plates. The Ct values were analysed using relative quantification and the 

comparative Ct method (2-ΔΔCt); the geometric mean of the housekeepers miR-134-5p, miR-

133b, and SNO33 was used as the endogenous control and the 24-hour time point exposure 

to DRG media as the calibrator. Results were expressed as fold change in expression. 

GraphPad Prism was then used to plot the fold change data with error bars showing SEM. 

Individual housekeeper values for miR133b of 34.8 and 39.9 were excluded prior to 

calculaction of the geomean, where the average dCT value was 24-29.  

 

2.6 Immunofluorescent staining of primary cells:  

Cells were washed in PBS before being fixed with 4% (w/v) Paraformaldehyde (PFA) in PBS 

containing 2.7% (w/v) sucrose at room temperature for 30 minutes. Following which samples 

were washed twice in PBS with 10mM glycine (PBS/glycine), before being permeabilised by 
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incubation for half an hour in PBS/glycine with 0.2% (v/v) triton. After washing cell samples 

twice for 2 minutes in PBS with 0.1% (v/v) Triton (PBS/Triton), cells were blocked in 3% (w/v) 

BSA in PBS for 30 minutes. The primary antibody was diluted in 3% (w/v) BSA, 50µl was added 

per coverslip and samples left overnight at 4°C in a humidified chamber.  

Cells were washed three times in PBS/Triton. At this point the secondary antibody was added 

after dilution in 3% (w/v) BSA (e.g. 1µl alexa fluor 488 for βIII-tubulin in 300µl 3% BSA was a 

typical stain for the axons of the neuronal cultures). Coverslips were left at room temperature 

for up to two hours, and then washed again once with PBS/Triton before being mounted on 

slides with up to 20µl hard set VectaShield (Vector Laboratories). If required, DAPI was also 

added to the stain in the presence of the secondary antibody, at final concentration of 300nM. 

 

Antibodies  Working dilution  Manufacturer details 
Anti-Acetylated tubulin  1:300  Cat no. T7451; Sigma-Aldrich 

Anti-βIII tubulin  1:100 Cat no. ab18207; Abcam 
Rabbit polyclonal to liver Arginase 1:300-1:500 ab91279, Abcam 

Mouse monoclonal [NOS-IN] to 
iNOS 1:300-1:500 

ab49999, Abcam  

Kv1.2 trial size antibody 1:300 Alamone labs, APC-010 
Table 2.6.1: List of antibodies, dilutions and suppliers used in this Thesis 

 
 

2.6.1 Quantifying relative expression of protein markers using 

immunofluorescence: 

2.6.1.1 Acquisition:  

Unless stated otherwise phase contrast/brightfield images were acquired using a 20X 

objective of a widefield fluorescence microscope (Zeiss 200M, Axiovert) couple to a CCD 

camera (CoolSnap MYO). All images were acquired using Micro-manager software v2.0 

(Edelstein et al., 2014) and analysed using ImageJ (FIJI). All images in this assay were acquired 

at 20X magnification, 100-milliSecond exposure and using a triple channel stain (including 

DAPI for nuclear localisation) where appropriate. 

 

2.6.1.2 Plot profile analysis: 



 91 

Upon analysis the image stack was opened in ImageJ and converted to an 8-bit colour image, 

in this way all images were comparable where the pixel intensity always ranged from 0-255. 

(In a binary image format, zero represents an area of black, whilst 255 is white, although over 

exposure can lead to a value of 256, indicating greyscale.) By splitting the channels (FITC, 

Arginase-1 in green /TRITC, iNOS in red) it was possible to view the relative intensity of each 

stain. The image was converted to binary, and the whole area selected. Using ImageJ built in 

analysis, the Plot profile plugin tool was used to a 2-dimensional representation of the relative 

pixel intensity along a line within the image. Of course, this selection also included 

background regions, where little to no stain was present within a cell. For this reason, 5 areas 

of background were selected from each image and an average intensity was calculated. This 

background value was subtracted from every value in the plot-profile range, and 

subsequently an average “marker-intensity” value was calculated for each channel.  
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3 In Vitro modelling of nociceptive cellular 
connectivity using compartmentalised 
microfluidic culture systems 

 

3.1 Introduction 

International guidelines for the study of nociception in vivo require that all animal studies are 

carried out under strict ethical guidelines. The framework of these guidelines are based on 

the principles of the 3Rs incorporating the Reduction, Replacement and Refinement of 

animals in research (McGrath et al., 2010). Complete replacement of animals in pain-based 

research is difficult due to the nature of behavioural testing, where pain can be inferred in 

vivo from the development of pain-like behaviours. For example, rats and mice can be 

assessed or their willingness to move and behaviour such as paw withdrawal can be 

quantified following exposure to inflammatory mediators such as carrageenan in the hindpaw 

(Larson, Wilcox and Fairbanks, 2019). Especially with regards to drug development (e.g. 

analgesics) it is important to monitor changes in pain in a living animal for reasons such as 

efficacy and safety.  Although useful for studying behavioural changes, there are also clear 

limitations to in vivo modelling. For example, monitoring changes in cellular excitability at a 

molecular level enables the study of subtle changes in protein regulation and neuronal 

signalling, which cannot be detected from an in vivo behavioural model (Sandkühler, 2009). 

Furthermore, models involving scoring such as the use of the facial grimace scale analyses 

have the potential for human bias, where it is down to the investigator to determine the level 

of ‘pain’ that the animal is feeling (Hirst et al., 2014; Deuis, Dvorakova and Vetter, 2017). 

Therefore, there is a clear need for the development of biologically relevant in vitro models 

of nociception that reduce the use of animal tissue, and enable the study of the molecular 

changes underlying development of pain pathologies.    

 

At a cellular level, the formation of precise axonal connections between the peripheral and 

central nervous system is particularly important for complex multi-cellular processes such as 
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pain. Until recently, it has not been possible to model the cellular interactions in nociceptive 

circuits in vitro, with cell culture experiments often failing to replicate the complex pseudo-

unipolar nature of the dorsal root ganglia (DRG) neurons (Djouhri and Lawson, 2004; Krames, 

2014; Fenstermacher, Pazyra-Murphy and Segal, 2015; Emery et al., 2018). In vitro modelling 

using microfluidic compartmentalised cell cultures has previously been used  to demonstrate 

the capability of DRG neurons to locally respond to a nociceptive signals (Tsantoulas et al., 

2013). However, despite the response of the peripheral and central nervous systems being 

critical in promoting a painful response to an inflammatory mediator, non-neuronal cells are 

also essential in the resolution (R.-R. Ji, Chamessian and Zhang, 2016). In vivo this includes 

cells such as the keratinocytes in the skin, microglial (see chapter 1.8.3) and astrocytic cells of 

the CNS, as well as peripheral macrophages; the resident cells of the innate immune system 

(Katz and Rosenbloom, 2015). With respect to understanding the inflammatory response to a 

nociceptive stimulus, the response of peripheral inflammatory cells like macrophages is key 

(see chapter 1.8.)  

This chapter describes the development and optimisation of an in vitro microfluidic model, 

(including the culture of DRG neurons) that permits the replication of some of the diverse 

environments these cells encounter in vivo in the context of inflammatory responses and 

nociception.  

 

3.1.1 Peripheral Sensitization of DRG neurons 

In states of inflammation, primary afferents of the DRG become sensitized (Gold and Gebhart, 

2010). This sensitisation refers to the change in the threshold for activation of these sensory 

neurons, which is potentially accompanied by a change in the magnitude of response of the 

peripheral terminals to stimulation, and consequently a downstream change in the 

physiological response (see Chapters 1.5.2 regarding peripheral sensitisation and 1.7 for 

receptors on the nociceptors). For example, one of the key components of sensitization is 

that the painful sensation outlasts the presence of the noxious stimulus at the nociceptor 

terminals (Sandkühler, 2009). This phenomenon occurs in response to the prolonged 

activation of sensory afferents and the chemical mediators released by surrounding non-

neuronal cells (e.g. macrophages etc.). 
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There are a wide range of receptors present on the surface of the peripheral terminals of 

these neurons, although intra-cellular secondary messenger systems are also important (R. R. 

Ji, Chamessian and Zhang, 2016). The diagram in figure 3.1.1 shows an example of the range 

of signalling molecules that have been studied as key modulators of the DRGs and pain, 

although there are undoubtedly more.   

 

There are also a wide range of signalling molecules involved in the development and 

mediation of peripheral sensitization, including ATP, prostaglandins (PGE2) and neurotrophins 

such as NGF. The role of NGF in peripheral sensitization is well documented, with long 

standing evidence to support the role of NGF as a peripherally produced mediator of 

inflammatory pain states (Aloe and Levi-Montalcini, 1977).  NGF has been demonstrated to 

have a complex role in inflammatory pain as well as chronic pain states, where endogenous 

levels of NGF can be elevated (Sarchielli et al., 2007). NGF is synthesised and released from 

inflammatory cells such as mast cells, macrophages and Schwann cells upon tissue injury or 

inflammation, and binds to high affinity tropomyosin kinase A receptors (TrkA) selectively 

expressed on the terminals of subpopulations of DRG neurons. NGF is also known to bind p75 

receptors although the role of p75 is not discussed here.  Upon trkA receptor binding, the 

NGF/TrkA complex is retrogradely transported to the DRG where the cell bodies of the 

primary afferent fibres are located. This leads to transcription and upregulation of 

neuropeptides (e.g. substance P), ion channels, and receptors as well as anterograde 

transport of neurotransmitters (Mantyh et al., 2011). The modulation of these proteins (such 

as ion channels) sensitizes the primary afferent fibres by changing the excitability of the 

neuron. Where NGF signalling occurs via retrograde transport, there is a delay (hours to days) 

before the onset of hypersensitivity of the neurons is observed. One particularly important 

mechanism of NGF-TrkA binding is the sensitisation of the heat-sensitive TRPV1 channel 

expressed on smaller diameter peptidergic fibres via phosphorylation. The mechanisms by 

which TRPV1 is phosphorylated have been debated, including evidence to support the role of 

mitogen activated pathway kinase (MAPK) signalling and phosphatidylinositol-3-kinase 

(PI3K.) (Bonnington and McNaughton, 2003). However, it is evident that even the direct 

binding of NGF to the TrkA receptor induces phosphorylation of TRPV1. This sensitisation of 

the TRPV1 channel lowers the threshold for thermal activation of these channels, and 
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consequently lowers the temperature of the sensory neurons for detection of noxious heat 

(Galoyan, Petruska and Mendell, 2003). 

 

Underlying the onset of peripheral sensitisation, it is likely that receptors other than TRPV1 

present on the terminals of the DRG neurons are also upregulated and sensitized. For 

example, an influx of neutrophils migrate to an area of damaged tissue and the release of pro-

inflammatory cytokines induces changes in neuronal excitability (Cunha et al., 2008).  For 

example, in studies of neuropathic pain, the release of chemokines such as CCL2 from 

nociceptors has been shown to regulate the production of inflammatory cytokines from 

polarized macrophages via TLR signalling pathways (Zhang et al., 2013; Liu et al., 2016). 

 

3.1.2 Hyperalgesic priming and the transition from acute to chronic pain 

It is essential for survival that animals are able to sense and avoid hazardous situations that 

may cause physical harm. Although acute pain is defined as a protective and evolutionary 

response, the onset of chronic pain is not deemed to have any physiological benefits.  

 

Figure 3.1.1: Interactions between distinct parts of a nociceptor with different types of non-neuronal cells, (R. R. Ji, 

Chamessian and Zhang, 2016) 
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First developed by Levine in 2003 (Parada et al., 2003; Reichling and Levine, 2009; Ferrari et 

al., 2013) the in vivo models of hyperalgesic priming have become very useful for investigating 

the cellular and molecular processes involved in the transition from acute to chronic pain (see 

chapter 1.5.3, hyperalgesic priming and central sensitiation.). Levine (Reichling and Levine, 

2009) showed that a short-lived exposure of a rat hind paw to an inflammagen such as 

carrageenan led to an acute inflammatory response (see figure 1.5.1.) The initial exposure to 

this inflammatory mediator (e.g. carrageenan) was then followed a reduction in mechanical 

pain threshold, as measured by the change in paw withdrawal threshold using Von Frey 

filament recording. This model provides an insight into the mechanism by which the 

development of acute and chronic pain can be investigated. The nervous system was said to 

have been “primed” for a hyperalgesic response. For example, a second exposure to 

prostaglandin-E2 (PGE2) now evoked a prolonged decrease in paw withdrawal threshold 

lasting at least 24 hours (Reichling and Levine, 2009).  

 

3.1.3 Modelling Nociceptive networks in vitro: 

 

In order to model the complexity of the nociceptive circuit in vitro, we used microfluidic 

culture devices to attempt to closely replicate the complex and dynamic cell signalling 

pathways between the peripheral nervous system and the central nervous system. The 

pseudounipolar DRG neurons are characterised as the neurons that “bridge the gap” between 

detection of an inflammatory stimulus at the periphery, and integration to the higher 

processing centres of the CNS via the dorsal horn of the spinal cord. 
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Figure 3.1.2: Modelling the reflex arc in vitro using compartmentalised microfluidic models 

  

Axonal side A (rhodopsin-2)  

Axonal side B (calcein) 

 
Figure 3.1.3: The pseudounipolar nature of the DRG neurons was highlighted using triple channel microfluidic devices. The 

uptake of fluorescent dyes into the soma was used to determine if the axon had developed through the microgrooves 

using changes in Calcium signalling.   
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The image shown in figure 3.1.3 is taken from Clara Patricio of the Dajas-Bailador lab using 

E18 rat tissue cultures in a triple channel microfluidic device. This preliminary data helped to 

show functional characterization of the DRGs in microfluidic chambers, where the soma and 

the axons were fluidically isolated.  The pseudounipolar nature of these cells has also been 

highlighted here using dual-staining immunofluorescence.  

A red dye (Rhodopsin-2) and a green dye (Calcein) were applied to opposite lateral 

compartments of a triple channel microfluidic device, as shown in the schematic in figure 

3.1.3 above. Only some of the cells in the device have taken up both rhodopsin-2 and calcein 

resulting in these cells being labelled yellow. This indicated that they had axons crossing into 

both lateral compartments of the microfluidic device. Figure 3.1.3 demonstrates that where 

a significant number of neurons developed axons that extended into both lateral 

compartments, the pseudounipolar nature of the DRG neurons was replicated in vitro using 

the compartmentalised microfluidic devices. Since the DRG neurons develop this unique 

pseudounipolar morphology, it was hypothesised that the axonal terminals would polarize 

based on what the axon was exposed to in the microfluidic device.  

A recent work published after our original findings, confirmed our original findings, showing 

that in triple channel microfluidic devices from rat cultures, on average 18±7% of DRG soma 

extended bilaterally, with both axons responding to stimulation. In this model, the DRG 

neurons from embryonic rats were co-cultured with mixed populations of dorsal horn 

neurons from the ascending pain pathway in an attempt to model the cell-to-cell signalling 

between the peripheral and central nervous systems (Vysokov, McMahon and Raouf, 2019). 

The regulation of excitability of the second order interneurons in the dorsal horn is directly 

related to input from the DRG neurons, and affects the modulation of pain (section 1.5.2.)  
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In contrast, we developed a step-by-step approach, beginning the investigation studying cell 

signalling at the peripheral terminals of the DRG neurons rather than the level of the spinal 

cord (or the CNS.) Two-channel microfluidic devices were used to reduce materials and time 

course of in vitro culture of primary cells in line with the 3Rs. In our model, the dual-channel 

microfluidic devices (Xona, SND150) were used to demonstrate changes in the excitability of 

the DRG neurons.  

 

In vivo, the exposure of the peripheral terminals of the nociceptor to inflammatory mediators 

reduces the threshold of activation (see chapter 1.5-1.7.) The molecular processes underlying 

hyperalgesic priming also include translational regulation of ion channels on the neuron 

terminals. In our model, investigating the bi-directional signalling between peripheral 

macrophages and DRG neurons has been deemed to most closely resemble the development 

of hyperalgesia following peripheral sensitisation. 

 

One of the advantages of these microfluidic cultures was the flexibility of the model for 

culture and analysis. The hydrostratic pressure in the device created two microfluidically 

isolated chambers as described in 2.2.4.1.  As shown in this work, immunofluorescence and 

brightfield imaging provided a useful tool for visualising and quantifying changes in cellular 

markers following treatments. Furthermore, the unique microfluidically isolated nature of the 

DRG		
neurons	

DH	neurons/astrocytes	

Peripheral		
6ssue	

 

Figure 3.1.4: A schematic showing the development of a simplified version of the NC3Rs model. This model focused on the 

investigation of cell signalling between the peripheral inflammatory cells and the dorsal root ganglion   
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devices led to the development of stimuli that were more biologically relevant in the study of 

nociception. 

 

In this model, there were several further techniques that could be applied downstream of the 

cell culture to quantify changes in protein expression or neuronal signalling. This included the 

capacity to functionally investigate changes in the excitability of the DRG cultures via calcium 

signalling assays, such as those described by Tsantoulas et al., (2013.). This microfluidic model 

also provided the ability to selectively record information being relayed from the axon to the 

soma. This included both retrograde transport of proteins, and the propagation of the action 

potential along the axon of the DRG.  

We also included direct comparison to standard plated-based culture (colloquially referred to 

as ‘dissociated plates’). In these cultures, a stimulus was applied to the whole culture, and 

therefore could not be solely ascribed to an axonal receptor or channel response. 

Additionally, it was possible to isolate axonal versus ‘somal’ RNA from the microfluidic 

devices. This technique is commonly used in the Dajas-Bailador laboratory to investigate 

changes in local protein translation following treatment of the axonal compartment (Garcez, 

Guillemot and Dajas-Bailador, 2017; Lucci et al., 2020).  

 

In some experiments the direct culture of inflammatory cells that could potentially migrate 

through the microgrooves was excluded. Instead, media extracted from polarized cells, such 

as bone marrow derived macrophages, was used to induce a change in neuronal signalling. 

As shown in the schematic in figure 3.1.4, the culture of spinal cord microglia was removed, 

with this simplified microfluidic model focusing on how peripheral inflammatory cells induced 

changes in neuronal excitability. (See chapter 1.8.3 for discussion on the role of microglial 

cells as inflammatory mediators in the CNS.)  

The use of smaller two-channel microfluidics provided the flexibility to characterise functional 

changes in each cell type more quickly, and as such the development of the model of 

hyperalgesic priming was accelerated. Whilst the microglial cells were removed from cell-to-

cell signalling experiments involving microfluidic culture, a protocol was devised for 

maintaining an embryonic culture and characterising polarised cells.  
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3.1.3.1 Objectives of the NC3Rs:  

This work was funded by the national centre for reduction, replacement and refinement of 

the use of animal tissue in scientific research (NC3Rs.) This project was categorised as a 

reduction project, and as such when developing the model, it was imperative that while we 

gained knowledge on nociceptive mechanisms, we did so by meeting the NC3Rs objectives.  

 

3.1.3.2 Reducing the number of animals required:  

In order to maximise the tissue taken per animal, as well as the viability of the cultures 

seeded, cell culture protocols were adapted accordingly in line with the principles of the 3Rs. 

Theoretically, microfluidic modelling has the potential to reduce the number of mice required 

by 90%.  

Based on previous studies from the Hathway and Chapman laboratories, it was estimated that 

an in vivo model for hyperalgesic priming would require around 300 animals to screen 15 

compounds of interest (at a minimum N=3.) In comparison, only 30 mice embryos would be 

required to seed up to 75 dual channel microfluidic chambers for in vitro testing of DRG 

neuronal excitability. Furthermore, in contrast to standard in vitro models that have limited 

capacity to model the complexity of neuronal cell signalling in nociception, the microfluidic 

model replicates the pseudounipolar nature of the cells observed in vivo.  Therefore, this 

model provides flexibility to investigate both how localised axonal exposure to specific 

compounds can affect DRG neuron excitability in live cell signalling, and also quantify changes 

in local protein expression using standard molecular biology techniques such as qPCR.  

One litter from a pregnant C57/BL6 at E16.5 served up to 6 people per preparation, with the 

additional potential for culture of multiple cell types extracted from animal. Theoretically this 

could include astrocytes, cortical neurons, bone marrow derived macrophages, DRG neurons, 

with the possibility for development of other cell preparations if desired. The methods used 

in this chapter have been described in full detail in chapter 2.   

 

3.1.4 Experimental aims of the chapter: 

• In line with the proposed NC3Rs model, develop experimental models for 3 cell 

types involved in primary afferent function.  
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• Compare the use of microfluidic culture of DRG neurons to the traditional culture of 

dissociated DRG neurons in normal culture plates 

• Investigate phenotypic changes of those cells involved in inflammatory responses, 

to model what would typically be observed in vivo when these cells responded to 

an inflammatory stimulus 

 

3.2 Results and Discussion: 

3.2.1 Culture of DRG neurons in compartmentalised microfluidic chambers:  

As a first attempt to model hyperalgesic priming in vitro, work focused on the use of neonatal 

cultures from rats, which have been previously used in an in vivo study in the Hathway lab 

(James Spalton PhD thesis). Rodent models of nociception commonly involve the use of both 

rats and mice, where both species can be inexpensively housed, are easily to handle and 

mature quickly (Larson, Wilcox and Fairbanks, 2019). Over time, several stimulus-evoked 

methods have been developed to model nociceptive behaviours in vivo, including Von Frey 

stimulation (Görlitz and Frey, 1972; Deuis, Dvorakova and Vetter, 2017) and the Randall-

Selitto test as a measure of mechanical hyperalgesia (Randall and Selitto, 1957). Although the 

genomes of mice and rats are largely similar, evidence has suggested that some fragments in 

the genome of the rat are closer to that of humans (Zhao et al., 2004). However, 99% of the 

human genome is conserved in mice, making either species a suitable candidate for modelling 

nociception in vitro (Commission, 2010). 

 

To reduce the use of tissue in line with the 3Rs, this study was developed to incorporate the 

use of a pre-existing colony of rats, isolating cells from neonatal tissue at P2. Neonates were 

chosen as they more closely reflect the functional phenotype of nociceptive neurons 

observed in adult rodents, than the partial development of nociceptive function observed in 

embryonic tissue. Furthermore, neonates have been shown to display pain-like behaviours 

such as hyperalgesia in vivo (Vega-Avelaira, Ballesteros and López-García, 2013). The use of 

multiple pups versus one adult yielded increased capacity for microfluidic device cell culture 

per prep.  
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However, preliminary results demonstrated that non-neuronal cells extracted in the 

dissection of DRGs from P2 rats were capable of active migration through the microgrooves 

despite the narrow width (1-2µM (Taylor et al., 2005)). The localisation of a DAPI nuclear stain 

was present in both the somal and the axonal compartment, where the NeuN neuronal cell 

marker was only shown in the soma (see figures 3.2.1 below.) This migration of non-neuronal 

cells between compartments removed the properties of compartmentalisation from the 

device and rendered these cultures of P2 rat neurons impractical for modelling localised 

changes in central and peripheral connectivity. In particular the presence of a high number of 

non-neuronal cells present in the P2 culture was deemed responsible for the migration of 

cells through the microgrooves.   

Image was taken from a P2 neonatal rat culture around DiV5 using Zeiss 200M. (Red=acetylated tubulin staining for axons, 

Blue= DAPI nuclear stain, Green= NeuN staining for neuronal cells only. Composite image on the far right shows all 

channels combined at 20X magnification.) 

 

3.2.1.1 Troubleshooting cell migration in P2 rat DRG cultures: 

 

Initially the concentration of GDNF was halved from 50ng/ml to 25ng/ml to attempt to reduce 

non-neuronal cell proliferation. Following culture in adjusted media for 5 days in vitro, cells 

 

Somal 

Axonal 

Figure 3.2.1: Separating channels to demonstrate migration of those cells stained with DAPI nuclear stain through the microgrooves of a 

two-channel microfluidic device.Where DAPI nuclear staining was localised to both the axonal and the somal compartment of these 

devices, the microfluidic isolation was lost ,rendering them useless. 
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were fixed and stained. Figure 7.1.1 (appendix 1) showed that the reduction of GDNF 

concentration did not stop the movement of cells through the microgrooves. 

Following the observation that halving the concentration of GDNF in the media did not 

prevent cell migration, anti-mitotics were introduced to the culture (see figure 3.2.2.) When 

using P2-derived cells this included testing increased concentrations of Aphidicolin, as well as 

the introduction of 5’-fluorodeoxyuridine (FDU). FDU has been shown to reduce the dividing 

of non-neuronal cells in culture of primary cells (Rieske and Kreutzberg, 1977). By co-staining 

with DAPI and NeuN it was possible to distinguish between neurons and non-neuronal cells, 

such as satellite glia. Since non-neuronal cells will only express DAPI, an estimated number of 

cells in each section of the chamber was calculated, and used to quantify cell migration. 

 

Figure 3.2.2 shows that even higher concentrations (40μM FDU, fig. 3.2.2C) anti-mitotics did 

not completely prevent migration of non-neuronal cells, as was demonstrated by the 

presence of the DAPI stain in the axonal compartment (see figure 3.2.2D). Furthermore, as 

the concentration of anti-mitotics was increased the number of neurons stained with NeuN 

that appeared viable at DiV5 was reduced from 54.8±9.2 cells per chamber to 23±5.6 cells 

with 40μM FDU. FDU has previously been shown to be preferable for use in culture compared 

to anti-mitotics such as Ara’C (cytosine arabinoside) where Ara’C was shown to reduce 

neuronal viability overtime where 99% of proliferating cells were removed in a cortical culture 

(Hui, Zhang and Herrup, 2016). 

 



 105 

A) Rat P2 cells (Control) in DRG media. B) P2 Rat cells in DRG media supplemented with 20µM FDU only. C) P2 rat cells in 

DRG media supplemented with 40µM FDU with Aph. D) Counting the number of cells stained with DAPI in the axonal 

compartment. Results of a one-way ANOVA with multiple comparisons to the P2-control, Degrees of freedom (F)= 6.431 (2, 

12), P=0.012.  N=5 biological replicate chambers. Bars showing Mean ± SEM, P<0.05 significance threshold.Post-hoc  

Dunnett’s multiple comparisons (dF=12) showing P-values of 0.17 (NS) and 0.16 (NS) respectively.  E) Counting the number 

of cells marked with NeuN in the somal compartment. Results of a one-way ANOVA with multiple comparison to the P2-

control. F(2, 11)= 18.27 where P=0.0003. Mean ± SEM, P<0.05 significance threshold, N=5 vs N=4 biological replicates with 

one statistical outlier removed using Grubbs’ analysis for P2 +40µM FDU. Post-hoc Dunnett’s multiple comparison test 

(df=11) showing P values 0.0121 and 0.0002 respectively.   

D E 

Figure 3.2.2: Attempting to optimise neonatal rat culture in microfluidic devices. Addition of DAPI nuclear stain showed migration of 

non-neuronal cells through the microgrooves, meaning microfluidic isolation of these cultures was lost. Anti-mitotics were added to 

attempt to reduce the ratio of non-neuronal cells in culture;  
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3.2.1.2 Culturing embryonic murine DRG cultures in vitro: 

 

As an alternative approach, from here-on we used E16.5 mouse cultures, where the ratio of 

non-neuronal cells surrounding DRG neurons is intrinsically lower due to the age-related 

development of nociceptive neurons (Herculano-Houzel, Mota and Lent, 2006; Bandeira, Lent 

and Herculano-Houzel, 2009). Effectively, embryonic cultures had fewer non-neuronal cells 

to migrate to the somal compartment, and the chamber showed retained microfluidic 

isolation and functional compartmentalisation when sealed to the plate. No migration of cells 

through the microgrooves was observed in these cultures (figure 3.2.3.) 

By maintaining a fluid gradient between the compartments and retaining fluidic isolation (as 

described in chapter 2.2.4.1,) it was possible to spatially isolate the axon from the cell body 

(Taylor et al., 2005). The development of a microfluidic model for the culture of DRG neurons 

often required comparison to standard ‘dissociated’ plate cultures. The immunofluorescent 

Figure 3.2.3: Dual-staining of DRG neurons cultured from E16.5 murine tissue in a two-channel 

microfluidic device. No migration of cells through the microgrooves was observed, the DAPI nuclear stain 

(blue) remained localised to the somal compartment. 20X magnification. Red= Acetylated Tubulin, Blue= 

DAPI 

Soma 

Axonal 
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staining depicted in figure 3.2.4 shows DAPI (blue) with βIII-Tubulin marking the axons of the 

neurons (green in the microfluidic device, and red in the dissociated plate culture.) 

 

 

It is important to note that in the microfluidic devices used for testing, the DAPI (nuclear) stain 

was only localised to the somal compartment, into which the dissociated cells were seeded. 

However, not all cells that were stained with DAPI were also labelled with β-Tubulin, which 

most likely identifies them as non-neuronal cells. The addition of an anti-mitotic (Aphidicolin, 

see Chapter 2.2.4) to the cultures helped to reduce the population of non-neuronal cells, but 

crucially did not eliminate them.  

Dissociated culture Microfluidic culture 

 Figure 3.2.4: Immunofluorescent staining of E16.5 mouse DRG neurons at DiV5 in culture to compare methods 

of culture.  

 Images taken at 20X magnification using Zeiss 200M axiovert microscope. (DAPI nuclear stain= blue, β-tubulin 

axonal marker=green in microfluidic culture, red in dissociated plate culture) 
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In the peripheral nervous system, the Schwann cells are the most abundant form of glial cells, 

and can be myelinating or non-myelinating- although both phenotypes originate from neural 

crest tissue. Where satellite cells surround the somata of the DRGs, the myelinating Schwann 

cells ensheath the larger diameter axons of the DRG fibres in a one-to-one ratio for trophic 

support (R. R. Ji, Chamessian and Zhang, 2016; Chen et al., 2018). Therefore, for viability of 

the neurons in vitro it was important that they were surrounded by non-neuronal cells such 

as these perineuronal Schwann cells.  

 

3.2.1.3 Discussion and conclusions from the development of in vitro culture of DRG 

neurons: 

Initial extraction of DRG neurons from postnatal rat tissue was not deemed successful, but 

healthy cultures of neurons were isolated from E16.5 murine tissue and retained microfluidic 

isolation.  

The switch from P2 to E16.5 tissue was necessary to reduce the migration of non-neuronal 

cells through the microgrooves of the microfluidic devices. However, these myelinating non-

neuronal cells are essential for viability of the culture, and were not completely removed. 

Whilst non-neuronal cells provide essential trophic support to neurons, there is compelling 

evidence to support a role in modulating excitability in pathologies such as neuropathic pain. 

In vivo, the production of cytokines from non-neuronal cells has been linked to nerve damage 

and the infiltration of inflammatory cells such as macrophages. For example, the infiltration 

of pro-inflammatory macrophages was observed after only 2 hours following CCI in a model 

of peripheral nerve injury, and was shown to exacerbate muscle atrophy in the model of pain 

described (Shimada et al., 2020).  

 

In vivo models of nociception generally focus on the responses of Aδ and C fibres (see chapter 

1.6 regarding the structure of the DRG fibres) the morphological diversity of neurons in the 

DRG does not fully arise until postnatal development (de Moraes, Kushmerick and Naves, 

2017). In adults, the neurons of the DRGs have distinct action potentials based on the 

amplitude of response and duration of cell signalling. This reflects the development of mature 

DRG neurons in adult cells, and the downstream effect of this on protein expression and 

subsequent threshold activation of nociceptors (Lawson, 2002; Koerber, Druzinsky and 
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Mendell, 2017). When developing an embryonic model in vitro it was important to 

acknowledge that the results may not directly replicate the results observed from adult tissue, 

since there are many differences between the transcriptomes of adult and embryonic tissue 

(Gumy et al., 2011). 

 

It has been demonstrated that the subtypes of fibres involved in nociceptive signalling 

develop in waves (E12.5, E15.5) during embryonic development, and often only acquire full 

functionality post-natally. Evidence has shown that by E15.5 in vivo, only 80% of the neurons 

in the DRG have acquired sensory diversity (Lechner et al., 2009).  However, the remaining 

20% do not reach maturity until P0-P1 post-natally (where often this response requires 

mechanosensitive priming, for example by NGF.) A good example of this phased development 

includes the TRP (transient receptor potential) receptors involved in a range of nociceptive 

signalling. Although the TRPV1 channel (heat sensitive,) is present by E15.5 in vivo, the TRPM8 

receptor (cold-sensitive) does not appear until postnatal development (Hjerling-Leffler et al., 

2007). Despite this meaning that the suitability for these embryonic in vitro cultures in a pain-

based study must be approached with caution, the layered development of the nociceptive 

pathways also gives rise to the ability to stimulate selective neuronal subtypes.  

 

The following sections describe the development and optimisation of culture methods for 

non-neuronal subtypes which are involved in bi-directional signalling with the DRG neurons. 

Cell signalling between the primary afferents and inflammatory cells at the peripheral 

terminals induce changes in DRG signalling, and as a consequence inflammatory cells such as 

microglia in the CNS respond accordingly to modulate a pain-based response.  
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3.3 Culture of inflammatory macrophage cells: 

 

The inherent sensitivity of bone marrow derived cells to inflammatory cytokines and 

chemokines make them highly useful as tools for in vitro modelling of inflammation and 

macrophage biology, although there are still clear limitations to this (Bailey et al., 2020). Cell 

heterogeneity is a common limitation of in vitro culture of macrophage tissue (Murray et al., 

2014a), where inflammatory mediators and culture conditions affect the endogenous 

morphology and motility of the cells. Not only are macrophages highly motile, of particular 

interest is the ability of these cells to adapt to their surrounding environment, and become 

transiently ‘polarized.’ The role of macrophages as inflammatory mediators has been 

discussed in Chapter 1.8.2.  

 

One full set of adult female long bones were flushed per prep to culture bone marrow derived 

macrophages as inflammatory mediators of the peripheral immune system. By 7 days in vitro, 

cells formed a mature population of monocytes. Cells were re-plated and polarized in 

accordance with protocols described for classical versus alternative “activation,” (Classen, 

Lloberas and Celada, 2009; Rath et al., 2014a).  Chapter 2.2.3 describes in detail the protocol 

used for isolation and in vitro culture of BMDMs. A healthy culture of macrophages showed 

adherence and elongation of cell processes at DiV7 as shown in figure 3.3.1.  

Figure 3.3.1: Bright-field imaging at 20X of a healthy culture of 

monocytes isolated from bone marrow of adult mouse femur tissue. 

Imaged at DiV7. Cells have attached to the plastic and showed an 

elongated phenotype 
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3.3.1 Culture of Macrophages in microfluidics:  

One of the main objectives of this model was to attempt co-culture of 2 types of primary cell 

types in a 2-channel microfluidic device, in order to accurately reproduce the bi-directional 

signalling between peripheral inflammatory cells and the axonal terminals of the sensory 

primary afferents.  

 

Having previously demonstrated the ability to culture E16.5 neurons in the 2-channel 

microfluidic device (see section 3.2.1.3) the direct co-culture with bone marrow derived 

macrophages in one compartment of the microfluidic device was attempted.  

A) No coating; whilst few cells adhered and elongated, most cells died and developed a rounded morphology once they 

detached from the chamber. B) PLL+ Laminin; few cells made it past the well, those that did, did not adhere and died 

within the channel. C) PLL only; A greater yield of cells passed from the reservoir into the channel and adhered within 24H 

hours. There was also evidence of cellular elongation that would be typically observed in a mature population of BMDMs. 

 

Upon lifting the monocyte layer from bacterial grade plastic at DiV7, cells were re-plated into 

two-channel microfluidic devices. A range of coating was used to demonstrate what, if any 

preparation would be required to seed macrophage cells into microfluidic upon downstream 

co-culture with DRG neurons. The results demonstrated that unsurprisingly cells did not 

adhere to laminin, a class of protein extracted from the basement membrane of viable cells 

that forms an extracellular scaffold for cellular support, adhesion and migration of cells 

(Yurchenco, 2011).  

No coating PLL + Laminin PLL only A B C 

Figure 3.3.2: Multiple methods of coating for culturing bone derived monocytes in the lateral compartment of microfluidic 

devices were investigated  to ensure cell adhesion without migration through the microgrooves:  
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Whilst some cells adhered to cell-culture grade plastic (without coating, figure 3.3.2A) there 

was still some evidence of low cell viability, or cells self-polarizing towards the M1_like 

phenotype, with a “fried egg” like morphology (see Chapter 1.8.2.)  

To achieve co-culture of macrophages with DRG neurons, macrophages must adhere to PLL 

(20 μg/ml) and Laminin (20 μg/ml), as this coating was required to support DRG culture in 

microfluidics (see Chapter 2.2.1), and therefore this combination was also tested. When 

macrophage-like cells did not adhere to the coating, they died within the chamber, exhibiting 

a rounded morphology (figure 3.3.2B.)  

It was evident that most cells adhered to PLL only. Cells that survived seeding into the 

microfluidics quickly elongated (figure 3.3.2C.) All cultures were seeded at 1x 106 cells/ml. 

However, the representative images in figure 3.3.2 show that not all the cells made it past the 

reservoir in the chambers.  

For this reason, the model was altered to fulfil the original requirements for “co-culture” of 

primary cells in one microfluidic device. It was decided to instead utilise the unique nature of 

the microfluidic devices, and expose only the axonal compartment to media extracted from 

polarized macrophages. Following polarization, the media collected from polarized 

macrophages should contain high and changing levels of inflammatory cytokines.  

 

3.3.2 Polarization of macrophages in vitro: 

In vivo there are two types of macrophages, resident cells and infiltrating cells (Griffin, George 

and Ho, 1993).. For example, it has been well characterised that following nerve injury, high 

levels of chemo-attractive peptide C-C motif ligand 2 (CCL2 formerly called MCP-1) induce 

migration of monocytes to the inflamed area (Zigmond and Echevarria, 2019).  

 

Macrophages have been shown to continuously adapt to cues in the surrounding 

microenvironment, and can even express both M1 and M2 markers in response to 

surrounding pathological conditions (Bazzan et al., 2017; Lee et al., 2018). It has also been 

demonstrated that in vitro macrophages demonstrate cellular plasticity and switch 

phenotype in response to surrounding stimulus, making BMDMs a suitable candidate for this 

project (Khallou-Laschet et al., 2010). Following axotomy, it has been shown that 
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accumulation of polarized macrophages can be detected as early as 4-days after injury, and 

continues to be detectable up to 32-days post-injury. These infiltrating polarised cells have 

been shown to form rings around larger diameter neurons, with macrophages contributing 

to the innate inflammatory response (Vega-Avelaira, Géranton and Fitzgerald, 2009). 

 
There are varying models of macrophage biology in vitro, where peritoneal cells mature in 

vivo prior to culture (see Chapter 1.8.2.) Furthermore, it has been suggested that the ex vivo 

nature of differentiating the BMDMs may induce functional differences to those acquired by 

cells in vivo. Of particular interest to this study was the capacity of BMDMs to polarize towards 

different phenotypes. It has been demonstrated that exposure to polarizing stimuli induces 

BMDMS to upregulate chemokine and cytokine expression, as well as releasing more 

cytokines, therefore making them a useful tool for this model (Zajd et al., 2020).  

 

Cells were polarized using appropriate stimuli for classical (Celada et al., 1984) and alternative 

(Stein et al., 1992) activation of cells (Zhang, Goncalves and Mosser, 2008) as discussed in 

Chapters 1.8.2. Based on the literature (Mosser and Zhang, 2008) it was hypothesised that a 

minimum period of 24-hours was required to induce a change in the phenotype of 

inflammatory cells. To promote development of a classically activated cell (M1a,) 

macrophages were exposed to LPS and IFNγ or to IL-4 to promote development of a 

population of alternatively activated (M2a) cells (see Chapter 2.2.2.4.) Following stimulation 

and incubation for 24-hours, most cells had  polarized either towards an M1a or M2a 

phenotype (Huang et al., 2018). Since macrophages are inflammatory cells, they respond 

dynamically to the cues in the surrounding microenvironment, which in many ways makes a 

perfect candidate for use in a microfluidic culture system of hyperalgesic priming. 

 

However, since inflammatory cells continually respond to these changes, it would be 

inappropriate to refer to these cells as solely “pro” or “anti” inflammatory, while a better 

reflection of the cellular process should consider that polarization always generates a mixed 

population of cells depending on how much a cell was exposed to a cytokine in culture. 

Therefore, from now on, inflammatory cell populations are referred to as M1-like or M2-like, 

dependent on the stimulus used to trigger the eventual shift in the population.  
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The route of macrophage polarization can at least partly be classified by the route of arginine 

metabolism induced by an inflammatory stimulus (Thomas and Mattila, 2014). The diagram 

in Figure 3.3.3, based on that by Yang and Ming, (2014) demonstrates how specific proteins 

surrounding the conversion from L-Arginine to L-Ornithine can be used as cell markers of 

polarization. Using immunofluorescence for markers of inflammation, there was a 

quantifiable shift between arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS) as 

shown in figure 3.3.4A.  

 

Arginase-1 was higher in cells exposed to IL-4 for 24H, where these cells were stimulated to 

polarize more towards an M2_like, anti-inflammatory phenotype. Whereas, those cells 

exposed to IFNγ and LPS for 24 hours, polarized towards an M1_like (pro-inflammatory) cell 

type, shown by the higher levels of the classical M1 marker iNOS. It was unsurprising that the 

results of polarizing cells did not show a complete shift towards only one phenotype. Figure 

3.3.4B demonstrates how it was possible to quantify the shift towards an inflammatory 

phenotype, based on the changes in expression of cellular markers iNOS and Arg1. Exposure 

Arginase  

L-Arginine  L-Ornithine  

IL-4, IL-13 

Tissue Repair   
Cell  

Cytotoxicity  

IFNγ, IL-1β, TNFα 

iNOS  

Figure 3.3.3: Overview for the role of the metabolism of L-arginine in characterising the phenotype of macrophages. In 

vivo, this switch between arginine and orthinine metabolism can be used to characterise the phenotype of inflammatory 

cells (See Mosser and Zhang., 2008) 
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with pro-inflammatory mediators demonstrated a 62.4±3.3% expression of iNOS in M1_like 

macrophages (N=3, Mean±SD), relative to a 20.4±7.2% expression of iNOS in an M2_like 

population (N=3, Mean±SD). 

An important step in understanding the process mediating the potential changes in neuronal 

excitability after macrophage polarisation is the investigation of the cytokine composition 

present in the media. This was important to determine since the polarized inflammatory cells 

would be required for the model of hyperalgesic priming, to induce changes in neuronal 

excitability. To determine the presence of multiple populations of cells, the chosen subtype 

of conditioned media was tested using a semi-quantitative cytokine array, to ascertain the 

concentration of 40 selected inflammatory targets (as described in Chapter 2.2.2.5). The 

results of this array are shown and discussed in further detail in appendix 1, figure 7.2.1.  

As shown in figure 7.2.1 the array was used to primarily to determine if there were obvious 

differences in the cytokine profiles of the M1-like media and M2-like media. The array 

provided some interesting insight in the composition of the media, but the semi-quantitative 

nature of the assay meant that it did not have the capacity to provide absolute quantification 

of the concentration of selected cytokines present. In order to confirm the results of the 

assay, future work would include the use of media extracted fresh from cells, as well as lysis 

of the polarized cells in the plate to also calculate the total concentration of protein within 

each population of cells.  
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Figure 3.3.4: Exposure to inflammatory stimuli for 24H induced a quantifiable change in macrophage phenotype: 

 A) Triple channel immunofluorescence to directly compare the expression of markers of activation. (FITC= iNOS, 

TRITC= ARG-1, +DAPI nuclear marker. Both channels were  exposed at 100mS for direct comparison. Background 

fluorescence has been removed during statistical analysis. 

Legend continued overleaf… 
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B) Quantifying marker expression in a region of interest using densitometry of the split channel 

immunofluorescence images. Data represents N=3 stainings from different dates, with 5 replicate images taken 

from each coverslip. All images were taken at 20X magnification using the Zeiss 200M. Results of a one-way 

ANOVA with statistical threshold at P<0.05. F (3, 8) =65.18 where P<0.0001. Post-hoc Sidak’s test for multiple 

pairwise comparisons showed P<0.0001 and P<0.0001 as shown. 

 

3.3.3 Discussion and conclusions from the culture and polarization of 

macrophages in vitro: 

Bone marrow was isolated from adult murine tissue and cultured on bacterial grade plastic 

to produce healthy populations of BMDMs. When optimising the culture of macrophages in 

microfluidic devices it was shown that coating was particularly important in the development 

of a healthy culture.  

 

In vitro it has previously been demonstrated that macrophages will not adhere solely to 

laminin (20µg/ml) without the addition of phorbol myristate acetate (PMA, 50ng/ml) which 

resulted in rapid adhesion (Mercurio and Shaw, 1988). Although the basement membrane is 

formed from multiple protein subtypes such as laminins, fibronectins and collagens, the 

composition varies dependent on the tissue (Guldager Kring Rasmussen and Karsdal, 2016). 

Critically, it has been demonstrated that adherence of immune cells (such as monocytes and 

macrophages) to the basement membrane can induce specific immune functions of these 

cells. For example, the expression of laminins-111, 411 and 511 in vivo, induce the adherence 

on monocytes, followed by production of pro-inflammatory cytokines such as TNFα, IL-6 and 

IL1β, and increased phagocytic cellular activity (Simon and Bromberg, 2017). For this reason, 

although cells did not adhere to culture plates in the presence of laminin alone, the use of 

this protein to coat the lateral compartment of the chamber was not appropriate, as it would 

potentially induce pro-inflammatory phagocytosis. 

 

The unique requirements for optimal culture of macrophages did not meet the culture 

conditions previously optimised for the culture of E16.5 murine DRGs in two-channel 

microfluidic devices. It was hypothesised that the cytokines in the media collected from 

polarized macrophages could induce sensitisation of axonal terminals without the need for 
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direct cell co-culture.  In addition, only changing media in the device would help to maintain 

optimal conditions for neuronal growth and give flexibility to the model. 

 

By quantifying the expression of Arg1 or iNOS as markers for polarized cells, it was shown to 

be possible to induce populations of macrophages similar to either an M1-like or an M2-like 

phenotype in vitro. Upon extracting media from polarized cells, it was also determined that 

each cell population had a unique cytokine profile. Although the use of iNOS and Arginase-1 

as markers for polarized cells is highly documented, it may have been more conclusive to use 

4 cell markers.  This would have helped reduced the cross talk between cell types, since both 

proteins are expressed in both cellular phenotypes. Other useful markers may include 

mannose receptor (CD206, normally downregulated by exposure to IFNy) or changes in the 

IL-12 axis. Of course, there is little evidence reported in embryonic tissue, and therefore this 

novel model cannot necessarily be directly compared to neonatal or adult studies.  

 

It is important to note that the media tested here was extracted from polarized cells relatively 

early in relation to the development of an anti-inflammatory phenotype. M2 macrophages 

are often hallmarked by the presence of IL-10 and other key anti-inflammatory cytokines. 

However, it is also true that M2-like cells may secrete cytokines associated with M1-cell 

activation (Roszer, 2015). Of particular interest from this array (figure 7.1.2) was the presence 

of high levels of IL-12, CCL5 and CCL2. Although the inactive form (p40 subunit) of IL-12 was 

detected at a high concentration in the M2-cell population, it was noticeable that the IL-12 

p70 (active subunit) was only detected from M1-like cells. This data supported the evidence 

for IL12 as a pro-inflammatory cytokine, but also demonstrated the plasticity of macrophages, 

whereby the stimulation with IL-4 induced release of IL-12 from an M2-cell culture. However, 

it is essential to acknowledge that the signatures of macrophages observed in vivo and those 

cultured in vitro will not be identical since they are dynamic inflammatory cells, highly 

respondent to the surrounding environment.  

The classical versus alternative activation axis was first established as a binary dichotomy by 

(Mills et al., 2000), but this simplified explanation of the M1/M2 paradigm has since become 

outdated. It has been established that M1/M2 polarization is largely dependent on the stimuli 

used, where polarized cells form a spectrum, and the M1 and M2 phenotype sit at either end 
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(Mantovani et al., 2004). Physiologically, a “cocktail” of inflammatory mediators regulates 

macrophage polarization, although here a fixed concentration of only one cytokine was used 

to induce a specific phenotype. Therefore, it was difficult to anticipate how downstream 

inflammatory targets would respond. Although the upregulation of Arginase-1 was more 

prominent in the M2-like macrophage populations, it has been demonstrated that M1-like 

macrophages stimulated by TLRs also express this marker (El Kasmi et al., 2008). The 

endogenous phenotype of macrophages is most likely regulated by multiple cell signalling 

pathways, for example the SOCS (suppressor of cytokine signalling) proteins (Briken and 

Mosser, 2011; Davis et al., 2013). It has been observed, specifically in M2-like macrophages, 

that SOCS1 (but not SOCS3) can lead to rapid downstream induction of the M2-like phenotype 

after treatment of IL-4 in vitro (Dickensheets et al., 2007). Therefore, although Arginase-1 is 

a well characterised marker for M2-like macrophages, caution should be exercised when 

considering the change in phenotype of the cells, since there are likely other cellular 

processes involved in the regulation of these markers.  

Although cells were stimulated with cytokines aimed to evoke M1a and M2a cells, our results 

support the now overwhelming evidence suggesting that this “switch” between pro and anti-

inflammatory cells is not as binary as once thought. In fact, in in vitro studies it is possible to 

distinguish between phenotypes based on the stimulus used to induce the molecular change. 

In this case the cells would therefore be referred to as M[LPS+IFNy] or M[IL-4]. This is because 

multiple stimuli can be used to polarize cells towards an M2-like phenotype, but not all M2-

like cells show the same molecular profile (Murray et al., 2014b). The regulation of 

macrophage phenotype is a dynamic process, where concentrations of surrounding cytokines 

can rapidly induce changes to the cellular activity and morphology. Whilst M1-like cells 

release cytokines to inhibit proliferation of surrounding cells, the M2-like phenotype is more 

involved in the resolution phase of inflammation. For this reason, M2-like cells release 

cytokines more involved in tissue regeneration and repair. Polarizing these cells in vivo is 

tightly regulated by surrounding signalling pathways and post-transcriptional regulation. 

However, it is not as simple as to suggest that the molecular switch between phenotypes is 

an “all or nothing” response. Crucially there is also evidence to support the hypothesis that 

some cytokines may mediate the regulation of both pro-inflammatory and anti-inflammatory 



 120 

phenotypes (Martinez and Gordon, 2014). The role of a select cytokine appears to be 

dependent on 3 distinct parameters (Shachar and Karin, 2013):  

 

1. Local concentration of the cytokine surrounding an area of inflammation 

2. The stage of injury in disease pathology  

3. The combination with other cytokines  

 

Bone marrow derived macrophages have a unique cytokine profile compared to other 

inflammatory cells such as peritoneal macrophages. If this study were continued or optimised 

further, the use of additional antibodies such as CD68 or CD11b would have been useful to 

create a panel of markers for cell specific antigen detection to distinguish macrophages from 

other hematopoetic cells. It would theoretically have also been possible to use techniques 

such as flow cytometry to identify the inflammatory ‘profile’ of the different phenotypes of 

bone marrow derived macrophages grown in our cultures.  

3.4 In vitro culture of spinal cord microglia as a model for inflammatory cells 

in the CNS:  

 

In addition to modelling the inflammatory cells that can affect the peripheral nervous system, 

a protocol was developed to culture spinal cord derived microglial cells. In vivo the microglia 

modulate the inflammation in the CNS to further promote inflammation and hyperexcitability 

of neurons, or to resolve injury and hyperalgesia (see Chapter 1.8.3.)  In a similar way to 

peripheral macrophages, CNS microglia respond dynamically to cytokines in the 

microenvironment, which is critical in resolution of sensitisation. It was hypothesised that the 

media extracted from polarized microglia would either potentiate the hyperexcitability 

induced by pro-inflammatory macrophages, or reduce nociceptor sensitisation. Other 

potential cellular candidates included second-order dorsal horn neurons isolated from the 

spinal cord, to which the DRG neurons might synapse in vivo.  

 

To determine the purity of the microglial culture we used a dual-staining IF model with Iba-1 

(microglial cell marker) and GFAP (astrocytic cell marker), as shown in figure 3.4.1 below. 

Since the cells were isolated from embryonic spinal cord, the GFAP signal represents 
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progenitor cells for CNS astrocytes. A higher level of expression of Iba-1 versus GFAP in culture 

(see Chapter 1.8) suggested that the culture method of the cells favoured the development 

of microglial like cells. Shown here is the quantification of Iba-1 relative to GFAP in a culture 

of quiescent microglial cells extracted from the spinal cord. In a mixed population of cells Iba-

1 was detected at 80.58±8.1% (mean±standard deviation) relative to 19.42±8.1% GFAP. These 

results suggested the presence of a microglial-rich population of non-neuronal cells isolated 

from the spinal cord of embryonic mice.  
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Day-14, M⌀ 

20X  
Iba-1, DAPI, GFAP 

A 

B 

Figure 3.4.1: Determination of the purity of a microglial culture isolated from embryonic spinal cord tissue.  
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 A) An exemplar image of M0 microglial cells at 20X magnification, showing dual-staining with iba1 (microglial marker) 

versus GFAP (astrocytic cell marker.) Shown on the left is the triple-channel image including DAPI nuclear stai, iba-1 (TRITC) 

and GFAP (FITC). The FITC and TRITC channels have been separated to show a lower expression of the GFAP marker 

respectively.  

B) Quantification of the purity of a mixed glial cell population, using %-expression IBA-1 vs. GFAP in M0 population of cells.  

Data represents an N=3 coverslips from 3 separate cell preparations, with n=5 ROI analysed per coverslip. (Error bars ± 

standard error of the mean.)  
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3.4.1 Polarizing microglial cells in vitro 

It has been demonstrated that microglial cells polarize to favour different phenotypes in a 

very similar way to peripheral macrophages (Michelucci et al., 2009). Although the 

transcriptional profiles of monocytes and microglial cells are similar, they are not identical (as 

discussed in Chapter 1.8.3.) One of the defining factors of microglial cells is the innate cellular 

response to inflammation. Unlike macrophages which are stimulated to polarize, the 

microglial cells become activated and differentiate from a resting quiescent state to either a 

ramified or an ameboid morphology, dependent on the surrounding microenvironment. The 

morphological change in the cell also coincides with upregulation of surface markers such as 

CD206 or CD86 (Heneka, Kummer and Latz, 2014). The classifications of polarized microglia 

are often compared to the classically activated M1-like macrophages and alternatively 

activated M2-like macrophages (Goldmann and Prinz, 2013; Zanier et al., 2015; Amici, Dong 

and Guerau-de-Arellano, 2017). However, given that these cells are quiescently ramified 

rather than resting, and in vivo studies have failed to demonstrate the presence of 

morphological regulators in isolation, there is some debate about the application of the 

M1/M2 dichotomy to microglial cells in general (Ransohoff, 2016).  
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Assuming that microglial cells can be induced to demonstrate changed morphologies based 

on exposure to inflammatory stimuli, we attempted to quantify the presence of “M1-like” 

(activated, ameboid) and “M2-like” (activated, ramified) microglial cells following stimulation.  

 

Once again it was noticeable that cells did not fully shift towards a specific phenotype, 

supporting the evidence for a spectrum of inflammatory cells. In fact, it was observed that 

there was a 81.3±6.0% expression of iNOS in the M1-like population versus an 80.7±4.1% shift 

Figure 3.4.2: Exposure to inflammatory mediators induced significant changes in the phenotype of spinal cord derived microglial cells.  

B A 
Arginase-1 iNOS M1-Like cells 

M2-Like cells 

A) Triple-channel immunofluorescence using DAPI, iNOS (FITC) and Arg1 (TRITC) as markers for inflammation. All channels 

were exposed for 100mS to enable direct comparison. M1-like microglia demonstrated a more ameboid phenotype compared 

to a ramified phenotype in the M2-like populations of cells. 

 B) Converting detection of a marker to a % expression to quantify the effect of polarizing stimuli on the phenotype of cells. 

Results of a one-way ANOVA with selected pairs of comparisons. P<0.05 Significance threshold, F (3, 8)= 170.4. Post-hoc 

Sidaks test showed P<0.0001 and P<0.0001 respectively as shown. dF=8  

N=3 coverslips from 3 separate animal preparations. Error bars represent the SEM. Background fluorescence has been 

removed during statistical analysis. 
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towards Arg-1 in the M2-like cells (and 19.27±2.4% iNOS expression relatively.) Figures 3.4.2B 

represents an N=3 independent stainings (biological replicates,) with a minimum of 3 

representative areas (technical replicates) imaged per coverslip (mean± standard error of the 

mean%.) The threshold for each immunofluorescent image was set the same before the 

image was taken, so that the stainings were directly comparable.  

It was noticeable that unlike the M2-like macrophages, the M2-like microglia did not 

demonstrate a large shift towards the M2 phenotype given 24-hours exposure to IL-4 only. 

However, a quantifiable shift in morphology suggested that the cells had undergone 

translational regulation and were secreting different profiles of inflammatory cytokines (see 

appendix, figure 7.1.3 and table 7.1.4.1.) Therefore, exposure of the DRG terminals to the 

media extracted from these cells would theoretically either potentiate a state of hyperalgesia, 

or reduce excitability of the cell.  

 

 

3.4.2 Discussion and conclusions from the development of in vitro culture 

method of spinal cord derived microglial cells: 

 
Immunofluorescent staining successfully validated the extraction of embryonic spinal cord for 

the selective culture of microglia, although it did not help to determine the functional 

differences of the cell phenotypes. As resident immune cells of the CNS, in vivo microglial cells 

act as first-line defense cells against invading pathogens (Zhou et al., 2017). However, there 

may be a difference in the phenotype of microglia derived from the spinal cord versus the 

brain. It is understood that microglia localised to the brain are more involved in regulating 

cognitive function, whereas microglia found in the spinal cord are more relevant in the control 

of sensory-motor neuron mediated functions (Xuan et al., 2019) Usually in vitro models use 

immortalised cell lines such as cortical BV2 murine cells, where these cells are easily 

maintained in culture, and readily proliferate, reducing the need of fresh tissue (Timmerman, 

Burm and Bajramovic, 2018).  

It has also been suggested that in vitro culture of microglia leads to the development of a 

different phenotype than in vivo. Of particular interest was the length of time cells were kept 

in culture. Cells kept for over 14-days in vitro appeared to lose their ameboid shape and prefer 
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a more ramified, quiescent morphology. However, in vivo this shift towards M0-M2-like cells 

does not occur until the cells become “aged.”  

The physiology of microglial cells dynamically changes in response to secretions of pro- and 

anti-inflammatory cytokines into the surrounding  microenvironment (Helmut et al., 2011). 

Having ascertained it was possible to change the phenotype of the cells in response to a select 

stimulus, it was also important to investigate the capacity of the microglia to phagocytose 

foreign bodies (see figure 7.3, appendix 1). A number of functional assays were implemented 

in order to help further define polarisation states of the microglia in line with published 

literature. The results of a phagocytosis assay and a Feret’s diameter calculation are shown in 

appendix 1.   

The results of a phagocytosis assay supported the evidence that pro-inflammatory cells have 

a more active role in phagocytosis, whilst also demonstrating that the M2-like (anti-

inflammatory) phenotype displays some phagocytic behaviour. In order to improve the 

dynamic range of this experiment it would have been preferable to increase the number of 

biological repeats, or test other polarizing stimuli to induce the polarized microglial cell 

populations.  

A Feret’s analysis is often also used in statistical analysis of inflammatory cells. Feret’s 

(maximum) diameter is a measure of cell length and is useful where some cells change 

morphology dependent on their activity (Zanier et al., 2015). A good example of this is 

inflammatory cells like macrophages and microglial cells, which switch from an elongated 

morphology in quiescent or M2-like cells to a more rounded morphology in the M1-like cells 

as the phagocytic activity of the cell is increased (Caldeira et al., 2014). The results have then 

been combined as shown in table 7.1.4.1 to calculate an average diameter (µM). As expected, 

the analysis showed a larger value output for those cells deemed to be M2-like phenotype, 

where the cell area of cells in an M1-like phenotype was consistently lower as these cells were 

more amoeboid following exposure to LPS, and activation of phagocytosis.  

 

These results helped to support the evidence that we had successfully isolated microglia from 

the spinal cord of embryonic tissue, and used inflammatory stimuli to induce different 

populations of inflammatory cells based on morphology and phagocytic activity. The 

characterisation of changes in CNS microglia was useful for potential addition to the 

microfluidic model of hyperalgesic priming.  
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3.5 Chapter conclusions: 

The main objectives of this chapter were to develop protocols for the culture and 

characterisation of multiple cell types involved in nociceptive signalling. Due to the 

pseudounipolar nature of the DRG neurons, and the flexibility of microfluidic modelling, it 

would also be possible to model nociceptive signalling between the PNS and the CNS, by 

exposing the DRG axons to either macrophages or microglial cells.  

The characterisation of development of DRG neurons in the triple-channel microfluidic was 

previously carried out by Clara Patricio of the Dajas-Bailador lab. In the initial stages of this 

project, the microfluidic model in this project was simplified to a 2-cell model and the use of 

macrophages as peripheral cells changing the excitability of the axon of the DRG was further 

investigated.  

Reasonable efforts were made here to co-culture more than one cell type within a 

microfluidic with the DRG neurons. However, in order to optimise the environment required 

for in vitro culture of DRGs, it was decided to avoid changes in culture media that would be 

required for physical co-culture of primary cells. Although the cell types were easily cultured 

individually, each cell has its own timeline for development, ranging from 5-days in vitro for 

DRG neurons, to 7-days in vitro for macrophages, and longest of all 14-days minimum for a 

microglial rich culture (see chapter 2, section 2.2.3). It was also evident that each cell type 

required specific culture conditions, where macrophages were preferential to a bacterial 

grade plastic, but DRG neurons require tissue culture grade sterile plastic, coated with PLL (20 

μg/ml) and laminin (20 μg/ml.) 

 

The following conclusions can be drawn from the work shown in this chapter:  

1. DRG neurons can be isolated from E16.5 mice and cultured in microfluidic 

compartmentalised devices for the study of neuronal excitability in culture. 

2. It was possible to extract and maintain a healthy culture of bone marrow derived 

macrophages from an adult female mouse. Cells were polarised and used to 

investigate the effect on neuronal function.  

3. Using classical stimuli such as IFNy versus IL-4 it was possible to generate two 

populations of macrophages, with distinctive cytokine signatures of polarization.  
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4. It was also possible to isolate microglial cells on demand from the embryonic spinal 

cord tissue 

5. Similarly to macrophages, microglial cells could be polarised towards different 

phenotypes, changing the morphology and apparent phagocytic nature of the cell. 

(This metric would require further investigation to improve robustness of data.) 

 

The efforts of this project largely focus on the interaction between the periphery (where a 

stimulus would be applied in vivo) and the downstream effect on DRG excitability following 

infiltration of inflammatory cells. For this reason, more work was completed on characterising 

changes in bone marrow derived macrophages. Media from polarized cells was extracted at 

an optimised time-point, and frozen until required, meaning the model only required 

consistent culture of DRG neurons and improving the flexibility of experiments. The next step 

in development was to determine what, if any effect the inflammatory mediators released 

from macrophage cells would have on the excitability of DRG neurons at the peripheral 

terminals. Microfluidic modelling provides a useful tool for this setup, where media can be 

locally applied to the axonal compartment, and if an increase in free intracellular calcium is 

recorded at the soma, it must be dependent on propagation of action potentials to the somal 

compartment.  
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4 Investigation of changes in DRG excitability 
using a compartmentalised microfluidic 
model 

 
4.1 Introduction: 

As part of a model of changes in neuronal excitability as a proxy for pain, we were interested 

in utilising the microfluidic model to quantify changes in excitability of DRG neurons (see 

Chapter 1.5 and 1.6). Due to the compartmentalised nature of the microfluidic device, it was 

highly suitable for monitoring localised changes in calcium transients (Ca2+) at the soma, in 

response to axonal stimulation.  

 

The excitability of DRG neurons is dependent on stimulation of the neuronal terminals and 

membrane depolarization inducing the propagation of an action potential. When the action 

potential reaches the soma, the change in membrane potential elicits a response. This 

includes, but is not limited to the activation of voltage-gated Ca2+ sensitive channels and 

evoked release of Ca2+ transients from intracellular stores such as the endoplasmic reticulum 

(Berridge, Bootman and Roderick, 2003). Elevated concentrations of free, active Ca2+ is 

therefore dependent on propagation of the action potential along the axon, and can be 

assumed to be proportional to changes in excitability of the neuron.  

 

4.1.1 Using evoked Ca2+ transients as a reporter for changes in neuronal 

excitability: 

In excitable cells like neurons, changes in intracellular Ca2+ are essential for synaptic function 

(Stevens and Wesseling, 1998; Neher and Sakaba, 2008) as well as the activation of signalling 

pathways within the cell (Hagenston and Baing, 2011; Burgoyne and Haynes, 2015). In 

neurons, the cytosolic Ca2+  concentration is determined by an equilibrium between the influx 

and efflux of Ca2+ ions in the cell, where Ca2+ binding proteins (e.g. Parvalbumin in cortical 

interneurons) buffer the concentration of metabolically active free Ca2+ in the cytosol (Rink 
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and Merritt, 1990; Schwaller, 2010). Therefore, quantifying dynamic changes of intracellular 

Ca2+ within the cell was used here as a measure of cellular excitability.  

A rise in intracellular Ca2+ activates potassium channels to induce re-polarization of the 

membrane and trigger neurotransmitter release (Jow et al., 2004; Iosub et al., 2015). 

However, it has been demonstrated that the efficacy of Ca2+ as signalling molecule, is not only 

due to the concentration gradient maintained between extra and intracellular compartments 

of the cell, but also due to the physical distance of a Ca2+ sensor (e.g. VGCC) from a stimulus 

(Heine et al., 2019). To restrict Ca2+ fluctuations without physical stimulation, cells such as the 

neurons of the DRG regulate the level of free Ca2+ in the cytoplasm. Ca2+ is compartmentalized 

within the cell so that a small change in the intracellular concentration can potentiate 

downstream signalling, and modulate excitability of the neuron (Grienberger and Konnerth, 

2012a). It has been estimated that at rest most cells of the nervous system have an cytosolic 

Ca2+ concentration of between 50-100nM (Berridge, Lipp and Bootman, 2000). Depolarization 

of the membrane and propagation of an action potential stimulate the release of Ca2+ in the 

neuron (e.g. from the endoplasmic reticulum,).   

 

It is possible to quantify changes in cytosolic Ca2+ transients in vitro by loading cells using cell 

permeable, hydrophobic fluorescent indicator dyes. In this way, Ca2+ acts as a reporter for 

changes in neuronal excitability, where evoked Ca2+ transients at the soma can be quantified 

as a proxy for a change in cellular excitability. Following stimulation, when ‘free’ Ca2+ binds to 

the dye within the cell, a fluorescent signal is emitted (see Chapter 2.3.1). The change in 

fluorescence recorded can be assumed directly proportional to the fluctuations of Ca2+ within 

the cell. However, it is important to note that the indicator dye will only bind to Ca2+ that is 

freely diffusing through the cytosol following stimulation, whilst most intracellular Ca2+ 

remains sequestered to stores such as the endoplasmic reticulum.  

The efficiency of Ca2+ as a modulator of cell excitability is due to the capacity of a cell to 

maintain a concentration gradient of up to 20,000x fold difference between intracellular and 

extracellular stores of Ca2+ (Clapham, 2007). There is ongoing evidence for the use of evoked 

Ca2+ transients as a measure of cell excitability from in vivo models. Critically these in vivo 

setups monitor whole ganglia rather than Ca2+ transients in the soma corresponding with 

axonal stimulation. Recent advances have also led to the use of two-photon imaging of DRG 

neurons in awake animals. It was shown that hyperexcitability of DRG neurons induced by 
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plantar formalin injection correlated with ongoing pain behaviour in the animal across 5-

weeks of live recordings (Chen et al., 2019). 

This change in intracellular Ca2+  is also a validated method for monitoring neuronal function 

and changes in excitability in vitro (Grienberger and Konnerth, 2012b). Using neonatal rat 

cultures this technique has also been applied to neurons grown in microfluidic cultures, to 

quantify changes in neuronal excitability (Tsantoulas et al., 2013). In this setup, it was 

demonstrated that stimulation of the axonal compartment induced propagation of action 

potentials towards the somal compartment. It was hypothesised that these action potentials 

triggered the opening of voltage-gated Ca2+ channels upon reaching the soma (Tsantoulas et 

al., 2012, 2013).  

 

4.1.2 The effect of inflammation on neuron excitability and calcium transients 

in neurons: 

Inflammation is often associated with changes in excitability of the primary afferent fibres. 

The onset of inflammation often precedes changes in neuronal excitability including action 

potential conductance, propagation and neurotransmitter release (Ma, Greenquist and 

LaMotte, 2006; Wang et al., 2007). All of these factors contribute towards sensitization of the 

peripheral fibres (Hamilton and McMahon, 2000; Raddant and Russo, 2011). However, at a 

cellular level the onset of inflammation is critically associated with changes in the 

concentration of intracellular free Ca2+. Specifically an increased resting concentration of 

intracellular Ca2+ in the neuron, as well as an increase in the magnitude of evoked Ca2+  release 

upon stimulation (Lu and Gold, 2008). Several prominent findings from in vivo studies have 

helped develop an understanding of how inflammation affects Ca2+ transients of the DRGs 

through the use of fluorescence dyes (Chen et al., 2019). In these models the increase in 

fluorescence observed upon evoked release of Ca2+ transients at the soma is proportional to 

changes in the neuronal excitability. Electroporation of the L4/L5 ganglia in vivo also included 

direct stimulation of voltage-gated channels on the soma as well as membrane depolarization 

at the axonal terminals (Chen and Huang, 2017). Upon stimulation of the axons, the 

propagation of the action potential induces release of Ca2+ from intracellular stores and the 

opening of voltage-gated Ca2+ channels, both of which contribute to the fluctuation in Ca2+ 

transients recorded in the soma.  
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In a transient nerve injury model it was shown that there was a decrease in voltage-gated 

calcium channel density following the onset of nerve injury and inflammation (Baccei and 

Kocsis, 2000; Hogan et al., 2000). Axotomy of the DRG fibres also induced a reduction in 

intracellular Ca2+ in rats (Duncan et al., 2013) and reduced fluctuations of free Ca2+  recorded 

following stimulation of the axotomized fibres (Fuchs, Rigaud and Hogan, 2007). These 

findings were consistently observed in small and medium fibre subtypes of the DRG only, or 

those fibres involved in nociceptive signalling (Lu et al., 2010). I have discussed the 

implications of this in Chapter 5.  

 

4.1.3 Modelling in vitro responses to an acutely applied stimulus  

In a physiological environment, the peripheral terminals of the sensory neurons are exposed 

to an array of inflammatory cytokines and chemokines, especially upon invasion of a polarized 

macrophage. In chapter 3 the development of culture methods for both DRG neurons in 

microfluidic devices, as well as the culture and polarization of BMDMs was discussed. In the 

following chapter, a model was developed to investigate the effects of inflammatory 

mediators released from these polarized macrophages on neuronal excitability.  

Initial experiments involved acute stimulation with either a depolarising agent (KCl 25mM) or 

polarized macrophage media, whilst further development of the protocol included pre-

incubation of cells in polarized macrophage media to attempt to sensitize the axons before 

acute stimulation with KCl (25mM.) 

 

The method described in chapter 2.5.1 for a Ca2+ indicator assay gives an in-depth overview 

of how the assay was performed. In response to a stimulus (e.g. KCL) membrane 

depolarisation lead to a rapid and acute increased concentration of cytosolic Ca2+. Free Ca2+  

ions were bound by Fluo-5F in the cytosol (Thomas et al., 2000; Paredes et al., 2008) and the 

corresponding emission of fluorescence at a single wavelength of light was recorded.  

The increase Ca2+ transients were recorded as a change in fluorescence, and used as a proxy 

for neuronal excitability. It was hypothesised that stimulation of the neuronal culture would 

induce local depolarization of the membrane. If suprathreshold the action potential would 

propagate, whereby Ca2+ is released via opening of voltage gated sensitive channels, and 

intracellular mechanisms such as calcium induced calcium release involving secondary 
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messenger systems. The detectable increase in free intracellular Ca2+ was recorded as a 

transient change in fluorescence recorded.  

In order to quantify the increase in calcium fluorescence following stimulation of a population 

of cells the following formula was applied:  ΔCa2+ = ΔF/F = (F − Frest)/Frest 

 

4.1.4 Experimental aims and objectives of the chapter: 

Part A: 
• Demonstrate the advantages of compartmentalised microfluidic models in the 

investigation of neuronal excitability 

Part B: 
• Utilise compartmentalised microfluidic devices to model intrinsic and extrinsic cell 

processes in primary afferent nociception, by combining DRG neurons and bone 

marrow derived macrophages  

• Investigate the effect of inflammatory stimuli on neuronal excitability using 

compartmentalised microfluidic cultures 

• Compare the effect of acute versus prolonged inflammatory stimulation on neuronal 

excitability  

4.2 Part A: Axonal stimulation of embryonic DRG cultures in microfluidic 

devices evokes rapid Ca2+ transients and changes in cell excitability: 

 

Chapter 3.4 described the optimisation of culture of dissociated DRG neurons isolated from 

embryonic murine tissue in compartmentalised microfluidic devices. This model was used 

here to functionally test the stimulation of the axons for efficient transmission of an action 

potential. In order to quantify the result of stimulation, evoked Ca2+ transients in the soma 

were recorded as a change in fluorescence. This section describes the use of a Ca2+ signalling 

assay, to validate the use of embryonic microfluidic culture in the study of nociception in vitro. 

Following acute stimulation, a rapid and transient change in intracellular Ca2+ was recorded 

via change in fluorescence emitted. Initially a stimulus was added acutely to the axonal 

compartment to evoke a change in excitability of the cell soma.   
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4.2.1 Stimulation of the axons with potassium chloride in a 

compartmentalised microfluidic device evoked Ca2+ transients in the 

soma: 

In the experiments discussed here, the fluctuation in Ca2+ transients at the soma were 

recorded as a proxy for the change in cell excitability induced by stimulation of the cell culture. 

Figure 4.2.1 below shows that microfluidic stimulation only records the somal response of 

those axons that have crossed to the lateral compartment of the device. Whereas, the 

responses labelled “dissociated cultures” recorded a summation of direct and indirect somal 

stimulation. 

 

 

Potassium chloride (KCL) is as a powerful depolarising agent of all subtypes of sensory 

neurons, and all neuronal cultures were only stimulated with KCL at a saturating 

concentration of 25mM. Figure 4.2.2 shows a comparison between the effects of acute 

application of KCL to a standard plate-based dissociated culture, versus the effects on 

localised axonal stimulation of a microfluidic culture.  

 

Stimulation of dissociated cultures with KCL evoked a higher amplitude and longer duration 

response with comparison to axonal stimulation of microfluidic devices (see figure 4.2.2A.) 

Dissociated culture Microfluidic culture 

Stimulation (e.g. KCL 25mM) 

Figure 4.2.1: Schematic representation of the differences between stimulating the axons in 

compartmentalised microfluidic culture versus the whole cell population in a standard dissociated plate 

culture. 
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This was likely reflection of the fact that this stimulation adds direct somal and axonal 

stimulation mechanisms. The response seen in neurons cultured in a microfluidic culture only 

reflected the Ca2+ transients evoked by stimulation of the axon and transmission of the action 

potential to soma of the DRG, following membrane depolarization. The direct comparison of 

peak excitability in figure 4.2.2B demonstrates that the method of culture did not significantly 

affect the response recorded.  

However, the AUC calculation in figure 4.2.2C demonstrated that the duration of the response 

was significantly increased in dissociated plate cultures, where Ca2+ mobilising processes 

being stimulated were present on the soma as well as the axon. This suggested the presence 

of longer duration excitation and ongoing cytosolic Ca2+ that outlasted the application of an 

acute stimulus. Where Fluo-5 binds free Ca2+ moving through the cell, the prolonged response 

suggests either Ca2+ stores are being replenished, or there is a background signal intensity 

that must be taken into account.  

 

Figure 4.2.2D shows that the Ca2+ signal recorded in microfluidic chambers stimulated with 

KCL recovered on average by 77.7% from the peak ∆F recorded in the 50-seconds following 

stimulation. Analysis of individual stimulations demonstrated that 5 out of 6 of the recordings 

in microfluidic culture showed 100% recovery to baseline fluorescence. In contrast, the 

average recovery of fluorescence in dissociated plate cultures was only 36.1% by the end of 

a 60-second recording. The increased recovery towards baseline fluorescence in microfluidic 

cultures served as further identification of rapid but transient Ca2+ responses recorded 

because of action potential propagation in compartmentalised and fluidically isolated 

cultures.  

 

This significant increase in cytosolic Ca2+ following axonal stimulation in a microfluidic culture 

was dependent on the following conditions:   

a) Crossing of the axons through the microgrooves whilst retaining microfluidic isolation 

in the device. 

b) Addition of a stimulus increasing the extracellular positive charge and inducing 

membrane depolarization via activation of voltage-gated ion channels either at the 

axonal terminal or on the axons  
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c) Subsequent propagation of the action potential to the cell body, where the change in 

excitability was recorded as a change in fluorescence evoked by the increase in 

cytosolic free Ca2+ within the cell body.  
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Figure 4.2.2: By measuring change in fluorescence as a proxy for cell excitability, the effects of KCL stimulation on evoked Ca2+ 

transients was quantified in two different DRG neuron culture systems: 

 
A) Stimulation with KCL evoked rapid Ca2+ transients in normal and microfluidic culture. The increase in cell excitability in 

microfluidic cultures showed a lower amplitude and faster recovery due to local application of the stimulus to the axons.   

(Legend continued overleaf… ) 
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4.2.2 Capsaicin evokes increase in neuronal excitability by stimulation of C-

like fibres in vitro: 

 
Identifying an appropriate stimulus was dependent on what the model was trying to 

demonstrate. KCL was used as a general depolarising agent, where subtypes of potassium 

channels are found on all fibres of the DRG. However, the activation of fibres specifically 

involved in nociceptive signalling (Aδ and C fibres) required a more selective stimulus. Figure 

4.2.3 (shown below) demonstrates a significant increase in the excitability of embryonic 

cultures when stimulated with Capsaicin, a stimulus that is known to activate TRPV1, a 

sodium/calcium sensitive ion channel receptor expressed on small diameter nociceptors 

(Caterina et al., 1997; Yang and Zheng, 2017). Activation of the TRPV1 receptor has a key role 

in detecting thermal and chemical stimuli and is express on both the small-diameter 

unmyelinated C-fibres, as well as the myelinated Aδ-fibres in the adult (Morgan et al., 2019). 

However, in rodent behavioural studies investigating ablation of the TRPV1 receptor, it is 

often hard to distinguish between the behavioural responses mediated solely by fast-

conducting Aδ fibres. For that reason, behavioural studies often focus on thermal pain 

responses associated with TRPV1 activation in unmyelinated, slow conducting C-fibers 

(Mitchell et al., 2014). However, it is important to note that TRPV1 is expressed on both 

Figure 4.2.2 continued: By measuring change in fluorescence as a proxy for cell excitability, the effects of KCL stimulation on evoked 

Ca2+ transients was quantified in two different DRG neuron culture systems: 

B) Quantification of the peak Ca2+ transients showed a statistically significant increase from baseline fluorescence was 

recorded irrespective of the method of culture. Results of a one-way ANOVA showed P<0.0001 where F(3, 20)= 14.03. Post-

hoc Sidak’s test for multiple comparisons showed a significant increase in cellular excitability irrespective of the method of 

culture. As shown, P=0.0147 for stimulation with KCL in microfluidic culture and and P<0.0001 in dissociated plate cultures. 

The peak amplitudes recorded between cultures were not significantly different. P<0.05 significant threshold. N=6 

biological replicates.  

C) The AUC showed a significant difference in neuronal excitability following stimulation of cultures with KCL, where the AUC 

of dissociated cultures was increased due to the sustained duration of the Ca2+ transient response recorded at the soma. 

(P=0.0156) Unpaired t-test, ±SEM, P<0.05 significance threshold, 1 outlier removed via Grubbs’ analysis. 

D)  Recovery of cellular excitability following stimulation with KCL was represented as %-recovery in fluorescence. Cells 

cultured in microfluidic devices showed higher %-recovery in fluorescence in a 60-second recording (P=0.0038.) Unpaired t-

test, ±SEM, P<0.05. 
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myelinated and unmyelinated nociceptors. As discussed in Chapter 1.6 and 1.7 both the Aδ 

and the C-fibre subtypes have been demonstrated to be involved in nociception.  

 

In experimental models a stimulus such as KCL has the potential to depolarize any of the axons 

within the neuronal population. The time-courses plotted in figure 4.2.3A were used to 

visualise the change in fluorescence following stimulation of cultures with Capsaicin. In a 

similar manner to the depolarisation induced by exposure to the axonal terminals to KCL, the 

evoked increase in Ca2+ transients following stimulation by Capsaicin showed higher 

amplitude and longer duration in a plate-based culture. The smaller amplitude of the 

response to stimulation with Capsaicin suggested the involvement of TRPV1 receptors on the 

soma of the embryonic neurons as well as the axons.  

 

Previous evidence by Tsantoulas et al., (2013) has shown that there is a dose-dependent 

response of neonatal DRG neurons to capsaicin stimulation. For example, it was 

demonstrated that in neonatal experiments, the EC50 for capsaicin stimulation was 94µM 

from 3 independent axonal stimulations and 135µM from 3 independent somal stimulations. 

In these experiments, 72% of cells responded to a “low” concentration of capsaicin (100nM) 

whilst 92% of cells were shown to respond to stimulation with a “high” concentration of 

capsaicin (500nM) (Tsantoulas and McMahon, 2014). The concentration used in this setup 

was 200nM, based on previous evidence from the Hathway laboratory. 
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Figure 4.2.3: Stimulation with Capsaicin evoked Ca2+ transients in subpopulations of DRG neurons in culture, recorded as 

an increase in fluorescence: 

A) Stimulation of microfluidic devices vs. dissociated plate cultures. The amplitude and duration of response 

observed in the dissociated plates was higher due to direct somal stimulation 

Legend continued overleaf… 
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As shown in figure 4.2.3B, there was a significant difference recorded between the peak 

excitability of the culture subtypes in response to stimulation with Capsaicin, where the peak 

excitability recorded from microfluidic cultures was significantly lower than that observed in 

dissociated plate-based cultures.  

 

The AUC for stimulation of microfluidic devices with Capsaicin was significantly smaller than 

the AUC for stimulation of dissociated plates (figure 4.2.3C.) Whereas, the recovery to 

baseline fluorescence was higher in microfluidic culture, where the duration and amplitude 

of the responses were lower. Following acute stimulation with capsaicin (200nM) in 

microfluidic devices, the average recovery was 100%, ranging from 87.9% to 100%. In contrast 

the average recovery of cells in dissociated cultures was only 23.66%, ranging from 19.3% to 

117%.  

 

It could be hypothesised that these results suggested that the TRPV1 receptors may not be 

uniformly expressed on the DRG neurons cultured from E16.5 tissue. The lower amplitude 

response from stimulation of microfluidics was dependent on propagation of the action 

potential. However, a larger amplitude response was observed following direct activation of 

TRPV1 on the soma in dissociated plates. 

Figure 4.2.3: Stimulation with Capsaicin evoked Ca2+ transients in subpopulations of DRG neurons in culture, recorded as an increase 

in fluorescence: 

B) Quantification of the peak Ca2+ transients showed a statistically significant increase from baseline fluorescence was 

recorded dependent on the method of culture.  Results of a one-way ANOVA with pre-selected pairs of comparisons 

showed P<0.0001 where F(3, 24)= 46.08. Post-hoc Sidak’s test for multiple comparisons showed a significant increase in 

cellular excitability irrespective of the method of culture. As shown, P=0.0036 for stimulation with capsaicin in microfluidic 

culture and and P<0.0001 in dissociated plate cultures. The peak amplitudes recorded between cultures were also 

significantly different at P<0.0001.. P<0.05 significant threshold. N=6-8 biological replicates.  

 
C) The AUC showed a significant difference in neuronal excitability following stimulation of cultures with Capsaicin, where the 

AUC of dissociated cultures was increased due to the sustained duration of the Ca2+ transient response recorded at the 

soma. Unpaired t-test, ±SEM, P<0.05 significance threshold, 1 outlier removed via Grubbs’ analysis.   

D) Recovery of cellular excitability following stimulation with Capsaicin was represented as %-recovery in fluorescence. Cells 

cultured in microfluidic devices showed higher %-recovery in fluorescence in a 60-second recording. Unpaired t-test, 

±SEM, P<0.05 significance threshold.  
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4.2.3 The peak excitability of a cell was affected by the cross-sectional cell 

area of the DRG neuron:  

 
Cell size is one of the earliest criteria used to differentiate the diverse populations of DRG 

neurons (Tandrup, 2004). Using electrophysiological recordings of whole cell DRGs, it has 

been demonstrated in vivo that the cross-sectional area of L4/L5 rat DRG neurons show 

normally-distributed populations of cells, with overlapping receptive fields (Lawson, Fang and 

Djouhri, 2019). As previously discussed in Chapter 1.6.2, the neurons of the DRG fibres have 

different roles in neuronal signalling, largely defined by the fibre size and threshold for 

activation. Larger diameter fibres, known as Aβ-fibres are involved in proprioception, whilst 

smaller diameter fibres (Aδ/C) with lower thresholds for mechanical and heat-sensitive 

stimulation are involved in nociception (Lawson, 2002). This functional dependence on cell 

size can be extrapolated to an in vitro model and used to determine what kind of stimulus 

might induce a response in the cells. However, one of the common problems with in vitro 

modelling is the limited capacity to recapitulate the myelination of whole nerve fibres 

observed in vivo (Thomson et al., 2008; Zuchero, 2014). In this experiment, we have used the 

observed cross-sectional area of the somata as an indication for the neuronal subtype. This 

measurement has previously been used in studies of the nociceptive function of selective DRG 

neurons via in situ hybridisation (Wang and Wessendorf, 2001; Xiuli et al., 2013) and whole 

DRG Ca2+ studies in L4/L5 ganglia of rats in vivo (Lawson, Fang and Djouhri, 2019).  

 

The results from figures 4.2.2 and 4.2.3 demonstrated that microfluidic culture was a useful 

and appropriate method of culture for in vitro investigation of neuronal excitability in an 

embryonic model of nociception. However, it was also important to ascertain what subset of 

DRG neurons was most likely prevalent in the embryonic culture, as well as eliminate the 

question of unintentional bias when selecting cells for analysis. Therefore, the results of 

axonal stimulations were used to statistically determine which subset of DRG fibres was most 

likely being stimulated in both embryonic and for comparison, in adult cultures of dissociated 

DRG neurons.  
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The cross-sectional area of 100 cells was compared to the peak excitability induced in each 

cell following axonal stimulation of the microfluidic device. Figure 4.2.4A (embryonic data 

only) shows the prevalence of each cell size dependent on the stimulus used.  This data 

represents the cross-sectional area at the nucleus in µM2 but the diameter of the cell body is 

estimated to be between 10-50 µM, as suggested by  (Lawson, Fang and Djouhri, 2019). No 

small cells were detected for either stimuli between 0-200µM2 or between 700-900µM2 if a 

culture was stimulated with KCL (25mM).  

The axonal stimulation of microfluidic devices with KCL was repeated with cells cultured from 

adult mice to compare the effects of tissue development on excitability. Figures 4.2.4B and 

4.2.4C show a comparison between embryonic and adult cell culture. When directly 

comparing embryonic to adult cultures, there was no statistical significance difference 

between amplitude of the peak excitability of each culture. The duration of the response was 

longer in embryonic cultures, where fluorescence did not return to baseline within 60-

seconds of recording, although neuronal excitability was stable at the end of the recording. 

The adult neurons also failed to return entirely to true baseline fluorescence, although there 

was a larger standard error of the data where embryonic cultures had not yet fully 

differentiated to express all subsets of receptors. In vitro studies have previously shown that 

electrical excitability of mouse DRG neurons evolves in waves. The emergence of mechano-

transductors emerged at E11.5 and nociceptive function emerging between E12.5 to E14.5 in 

gestation. However, the duration and amplitude of APs recorded did not resemble that of an 

adult population of neurons until P0-P1 (Stucky and Lewin, 1999; Lechner et al., 2009) 

 

Having determined that it was possible to perform the same Ca2+ experiment using 

dissociated adult DRGs in microfluidic devices, figure 4.2.4D shows the %-number of cells 

selected from each culture, dependent on the cross-sectional area of the cell. This figure 

showed that neither the adult nor the embryonic cultures showed the presence of small 

diameter DRGs with a cross-section of between 0-200μm2. Only the adult population 

appeared to have cells larger than 1000μm2, which have previously been suggested to be 

mechanosensitive or involved in proprioception in whole cell DRG Ca2+ imaging studies taken 

from adult rat tissue in vivo (Lawson, Fang and Djouhri, 2019). In fact, this figure 

demonstrated that 100% of the cells selected in the embryonic culture were less than 900μm2 
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in cross-section. It could be hypothesised that these most likely more closely resembled the 

in vivo development of Aδ or C-fibres involved in nociceptive signalling.  

 

There is significant evidence using this measurement as a proxy for fibre subtype from in situ 

hybridisation data in adult rodents (Holmes et al., 2000; Fang et al., 2006; Lawson, Fang and 

Djouhri, 2019). The evidence from in vitro culture is more limited. However, it has been 

demonstrated using dissociated E14.5 cultures of murine DRGs that the cross-sectional area 

of cells detected was normally distributed, with an average perikarayal area of 658 ± 7.9μM 

(Hall et al., 1997). The results here also showed a normal distribution in the cross sectional 

area of cells detected, although the average area was smaller, which could reflect the 

development of nociceptive neurons by E16.5 (Lechner et al., 2009). It is worth noting of 

course that dissociated cultures of DRG neurons in vitro may not directly replicate the 

morphology acquired in vivo.  
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A) Cross-sectional area demonstrated development of multiple subtypes of sensory neurons in embryonic cultures. Embryonic cultures 

showed a higher proportion of neurons with a larger cross-sectional area.  

B) The peak amplitude of axonal stimulation was higher in embryonic culture (N=6) relative to adult DRG neurons (N=4.) The duration of the 

response in adult cells was shorter and returned rapidly to baseline, whereas stimulation of embryonic cultures only demonstrated partial 

recovery of excitability.  

C) The peak amplitude of evoked Ca2+ transients in embryonic cultures was not significantly different to the amplitude of adult culture 

(P=0.1.) Results of a one-way ANOVA with post-hoc Sidak’s test F(3, 16)=8.15. Significance threshold at (P<0.05). Error bars represent mean 

± SEM. Only the embryonic stimulation showed a significant increase in fluorescence following stimulation (P=0.001.) 

D) The culture of DRG neurons from adult mouse tissue demonstrated the development of larger diameter somata that were not present in 

the embryonic cultures.  

Figure 4.2.4: A comparison of cellular response to stimulation based on cell size and age of tissue: 
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4.3 Part B: Macrophage dependent changes in neuronal excitability and Ca2+ 

transients:  

Chapter 1.8 discussed the role of non-neuronal cells in the onset and development of 

neuronal hyperexcitability in pain. At the peripheral terminals of the nociceptors in vivo this 

includes, but is not limited to the influx of polarised macrophages in response to an 

inflammatory insult (Baral, Udit and Chiu, 2019). The release of cytokines and chemokines 

from polarised cells induces peripheral sensitisation via multiple mechanisms such as 

lowering the threshold for activation of receptors such as TRPV1 expressed on the terminals 

on the nociceptor (Pinho-Ribeiro, Verri and Chiu, 2016) (see Chapter 1.5-1.7.)  

The results shown in chapter 3 demonstrated the in vitro culture and polarisation of 

macrophages derived from bone marrow monocytes extracted from mice. The direct use of 

co-culture was complicated due to the extensive optimisation of culture conditions required 

for primary cells in vitro. Figure 7.1.2 showed that the extraction of media from polarised cells 

demonstrated quantifiable and unique signatures of inflammatory mediators released from 

different populations of inflammatory cells.  

A protocol was devised in order to be able to expose DRG axons to cytokines released from 

polarized macrophages, without the need for direct co-culture in the microfluidic devices. The 

schematic in figure 4.3 shows the timings of how macrophage cells and DRG cells were 

cultured in parallel. 

Figure 4.3: The optimised time-course of parallel culture for DRG neurons and macrophages in vitro. Once the DRGs reach 

DiV5, a stock of polarized macrophage media was extracted and used to stimulate the axons in Ca2+ imaging. 
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The effect of inflammatory cytokines on neuronal excitability was quantified following 

localised exposure of the axonal compartment to media extracted from polarized cells.  

 

4.3.1 Acute axonal addition of polarized macrophage media evoked changes 

in DRG neuronal excitability:  

 

A model was devised to investigate the effect of acute exposure to polarized macrophage 

media on DRG neuron excitability. Polarized media was generated using the protocol 

described in full in Chapter 2.2. All data shown here used phenol red free DMEM (NPR) to 

reduce cross-reaction fluorescence from excitation of Fluo-5 at 470nM.  

In the experiments described here “acute exposure” refers to neurons stimulated between 

DiV5-6, where the stimulus of interest was applied after a minimum of 10 second baseline 

recording, and images collected for a further 1-2 minutes. Tests are all comparable to the 

preliminary data recorded for “acute” exposure to KCL (25mM) and Capsaicin (200nM) 

described in part A (figures 4.2.2 and 4.2.3.)   

 

Acute stimulation with polarized macrophage media in the axonal compartment 

demonstrated significantly lower amplitude responses compared to a depolarising stimulus 

such as KCL. The time-course analyses in figure 4.3.2A below demonstrated that the addition 

of polarized media induced a negligible increase in fluorescence, with a 0.095∆F increase 

following M2-like media, and 0.077∆F max following M1-like media.   

(For reference, figure 4.3.2B includes the peak excitability following stimulation with KCL 

(0.65∆F) as seen in figure 4.2.2.)  

DRG 
DiV5  

(+Stimulus) 

Axonal 

Figure 4.3.1: Schematic showing acute addition of polarized macrophage media to the axons of DRG cultured in microfluidic 

devices  
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The increase in excitability from baseline was calculated for each stimulation. Figure 4.3.2B 

shows a comparison of the increase in fluorescence induced following stimulation with either 

M1-like or M2-like media. Using stimulation with KCL to compare the results for acute 

M1/M2-like stimulation, it was evident that the macrophage media induced little to no 

response at the axonal terminals of the DRGs in culture. Overall, and despite a very small 

transient increase, the acute addition of media extracted from polarized macrophages did not 

produce statistically significant changes in Ca2+ transients when applied to the axon.  

In vivo the cytokines released from inflammatory cells such as macrophages sensitize the 

axons of the DRG neurons over the course of hours, and therefore this model of ‘acute 

addition’ to the axons of the DRGs may not have induced results considered to be biologically 

meaningful in this setup. 

0 20 30 40 50 60M
0.0

0.1

0.2

0.3
1.3

1.4

Time (seconds) 

F4
70

 (N
or

m
al

is
ed

 Δ
F/

F)

Pro-inflammatory media
(M1-like macrophages)

Anti-inflammatory media 
(M2-like macrophages)

A

+M1-like 
media

+M2-like
media

+KCL
only 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Axonal exposure

Δ
Fm

ax

P=0.04

P=0.06

B

A) Neuronal populations cultured in microfluidics were stimulated with polarized media.  The time-course analysis shows the change in 

excitability, recorded as change in fluorescence. Y-axis shown used the same scale as stimulation with KCL for direct comparison.  

B) The increase in excitability (as shown by dF max) was significantly reduced when cells were stimulated with M1-like media in particular 

(P=0.04). The data shown for M1/M2 like stimulation is plotted next to the results from figure 4.2.2 (stimulation with KCL) for direct 

comparison. One-way ANOVA with Dunnett’s multiple comparisons. ±SEM, P<0.05. F(3, 18)=1.319 

Figure 4.3.2: Addition of polarized macrophage media to the DRG axons demonstrated negligible changes in cell excitability 

relative to the stimulation with KCL  
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4.3.2 Acute stimulation with macrophage media induced changes in the 

amplitude of a subsequent stimulation with KCL :  

 

This model was also useful for determining if exposure to an inflammatory stimulus (such as 

media extracted from a polarized macrophage) would affect the amplitude of a subsequent 

response of the DRG neurons. In vivo, a phenomenon like this is referred to as “priming,” and 

is a key characteristic of peripheral sensitisation in nociceptive neurons (Fischer, Mak and 

McNaughton, 2014). A second acute stimulation of the axons with KCL was used here as a 

control for viable neuronal signalling.   

 

In this model, after 2 minutes exposure to macrophage media, the cells were re-stimulated 

with 25mM KCL to quantify what, if any, effect the cytokines secreted by polarized 

macrophages had on cell excitability and resting membrane potential. Only the first 50 

seconds following each stimulation have been shown, as by this point the fluorescence had 

returned to a baseline level of excitability.  

 

Figure 4.3.3A shows that the amplitudes of a primary stimulation to macrophage media and 

the secondary stimulation to KCL were not statistically significantly different. The primary 

stimulation of the cells with macrophage media reduced the concentration of unbound fluo-

5 in the cell, and therefore it was hypothesised that this might reduce the amplitude of a 

second stimulation such as KCL. However, given that the amplitude of the primary stimulation 

with macrophage media was so low, it was possible that the second stimulation with KCL 

would evoke a higher amplitude response (similar to that observed in figure 4.2.2.) Given that 

the amplitude of both the primary stimulation with macrophage media and the subsequent 

stimulation with KCL were negligible, it was possible that the macrophage media (or the 

cytokines within) had ‘desensitised’ the axons to a second stimulation.  
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Figure 4.3.3: The acute stimulation of the axons with inflammatory media induced no significant change  in cell excitability, but the 

subsequent axonal response to KCL was significantly reduced following a stimulation with inflammatory macrophage media: 

   A) There was no significant difference in cell excitability following  axonal stimulation with macrophage media and a 

downstream stimulation with KCL. One-way ANOVA showed no statistically significant difference between the dFmax 

following axonal stimulation with macrophage media versus subsequent axonal stimulation with KCL, F(3,18)=1.319, 

P=0.29. A post-hoc Sidak’s test for selected multiple comparisons also demonstrated no significance was observed 

comparing the peak excitability of M1-like and M2-like stimulations.  N=5 microfluidic chambers imaged for M1/KCL, N=6 

microfluidic chambers for M2/KCL. Error ± SEM, P<0.05 significance threshold.  

B) Stimulation of the axons with just imaging buffer showed a lower amplitude response than stimulation with inflammatory 

media.  A one-way ANOVA, with post-hoc Dunnett’s multiple comparison test (using buffer only exposure as the control 

comparison) determined that the amplitude of response to M1/M2 media (N=5/6) was not significantly greater than just 

buffer alone (N=3.) All data was deemed to be normally distributed.  M1-like data is plotted at N=5, where one biological 

replicate was removed by the Grubb’s outlier test. Bars represent mean ± SEM, where P<0.05 was deemed significant. F 

(2.000, 6.979)= 3.399. 
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The results of these experiments can be interpreted in multiple ways:  

1) Evoked Ca2+ transients in DRGs were lower in response to inflammatory media than 

by stimulation with KCL. The acute exposure to macrophage media potentially 

reduced the excitability of the cells. 

2) One potential limitation of only leaving 2-minutes between stimulations was that the 

Ca2+ stores in the cell may not have replenished by the second stimulation. Acute 

stimulation of axons with inflammatory macrophage media partially depleted the 

available stores of fluo-5 in the soma. Therefore, the reduced secondary response to 

KCL stimulation was likely partially because of reduced starting concentration of fluo-

5 in the cell.  

3) Given that the low amplitude of the response observed was similar over multiple cell 

preparations it was unlikely that the results observed were an artefact of low cell 

viability. Figure 4.3.3B also included a comparison with N=3 stimulations using just 

imaging buffer. The amplitude of these responses were lower than the responses to 

inflammatory media. Although not significant, this suggested that the response to 

acute stimulation with macrophage media was a ‘real’ response, and not the artefact 

of mechanical stimulation of the axons. 

4) The results in figures 4.3.2 and 4.3.3 showed a significant change in the amplitude of 

the response to KCL, if the axons were stimulated first with macrophage media. It 

could be hypothesised that the macrophage media (and cytokines within) had an 

inhibitory effect on the neuronal response to stimulation with KCL. Stimulation with 

KCL prior to the macrophage stimulation would help to confirm points 3 and 4.  

 

To confirm whether the contents of polarized media could affect neuronal excitability 

without reducing viability, the next step was to culture the axons in polarized media 

for a prolonged period of time prior to stimulation.  
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4.3.3 Prolonged exposure of the axon terminals to polarised macrophage 

media induced quantifiable changes in neuronal excitability  

 

As a model derived for the purpose of investigating the effects of inflammatory mediators on 

peripheral nociceptors, a timeline was devised to mimic “long-term” exposure of the DRG 

terminals to sensitising agents. A protocol was devised to quantify the effects of longer-term 

effects of axonal exposure to inflammatory cytokines on neuronal excitability. 

 

The diagram shown here represents a simplified version of the timeline used for these in vitro 

“priming” experiments.  

Once the axons covered the axonal compartment of the chamber (usually DiV5-6) the axons 

were exposed to polarized macrophage media for a period of 8 hours prior to stimulation 

with KCL (25mM) over a period of two minutes. It has previously been shown that 

intraganglionic injection with 8-bromo cAMP (transcription factor activator) induced 

hyperalgesic priming by a minimum of 6-12 hours. Although if injected to the hindpaw (i.e at 

the terminals) then 72-hours was required to observe a change in cell excitability (Araldi, 

Ferrari and Levine, 2015). 

 

 

 

 

Following an 8-hour incubation of the axonal compartment in polarized macrophage media, 

an increase in fluorescence was still observed when axons were stimulated with KCL (figure 

4.3.4A.) The change in fluorescence following stimulation was used again as an indirect 

DRG DiV5 
8H exposure to 
polarized media 

(+Stimulus, 
e.g. KCl 
25mM)

Axonal 

Figure 4.3.3.1: A schematic showing the setup for prolonged exposure of the axonal compartment to polarized macrophage 

media prior to stimulation of the axons with KCL.  
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measure of the change in cell excitability. The amplitude of the response for cells exposed to 

M1-like media was higher than if the axons were exposed to M2-like media for 8-hours. 

However, the amplitude of the responses in figure 4.3.4A were much lower than stimulation 

of naïve microfluidic cultures with KCL (as shown in figure 4.2.2, ΔF=0.65.)  

 

The comparison of the peak excitability induced by Ca2+ transients in the soma, did not show 

a significant difference between prolonged incubation of axons in M1-like media or M2-like 

media prior to stimulation with KCL (figure 4.3.4B.)  

 

In figure 4.3.4C the maximum change in fluorescence (as a proxy for cell excitability) for each 

condition has been directly compared to the result observed for cells cultured in DRG media 

and stimulated acutely with KCL. The amplitude of the response to stimulation with KCL was 

consistently lowered when axons were exposed to inflammatory media for 8-hours. Although 

incubation in both subtypes of inflammatory media demonstrated a reduction in cell 

excitability relative to stimulation of naïve microfluidic cultures with KCL, the viability of axons 

was not reduced. (i.e. Upon visual inspection, alongside the continual uptake of Fluo-5, it was 

determined that the prolonged exposure of the cells for 8-hours was not detrimental to cell 

viability.) It could be hypothesised that the terminals of the peripheral nociceptors had been 

‘desensitised’ by prolonged exposure to inflammatory media (and the cytokines within,) and 

were less excitable.  

 

In conclusion, it was determined that culture of the axonal compartment in macrophage 

media, prior to stimulation, was not detrimental to cell viability. The prolonged exposure for 

8-hours in culture appeared to reduce the evoked Ca2+ transients recorded following axonal 

stimulation with KCL. This data supported the results seen in figure 4.3.3 and suggested that 

exposure to macrophage media induced a reduction in axonal excitability. Figure 4.3.4D has 

been added to show a direct comparison of the results shown in figure 4.3.4C and figure 

4.3.3A. The stimulation of axons exposed to M1-like media for 8-hours with KCL was 

significantly different to those cells acutely stimulated with both M1-like media followed by 

KCL. However, there was no significant difference in the evoked Ca2+ transients recorded 

following prolonged exposure to M2-like media relative to acute stimulation with M2-like 



 154 

media (and KCL.) These results indicated that there was potential for this model to be further 

developed, where the time-period for incubation with polarized media could be optimised.  
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A) A time course analysis showing the effect of axonal stimulation with KCl (25mM) following 8-hours incubation of the axonal 

compartment in either M1-like or M2-like media. The amplitudes of responses was not significantly different between 

treatments.  

B). Exposure to inflammatory media exerted a reduction in excitability. However, the increase from baseline fluorescence in 

both conditions was deemed to be significant. Results of a one-way ANOVA withpost-hoc  Sidak’s multiple comparisons test, 

where P<0.05 was significant. Error ± SEM. F(5, 28)= 9.699 

Legend continued overleaf. 

 

Figure 4.3.4: Prolonged exposure of the axonal compartment to polarized macrophage media exerted a significant reduction in 

neuronal excitability compared to stimulation of naïve cultures with KCL.  
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4.4 Discussion and chapter conclusions: 

In recent years the use of compartmentalised microfluidic devices (such as those developed 

by Xona) has proved an invaluable tool in the study of primary cell cultures, including neuronal 

and glial cell populations ((Taylor et al., 2005; Park et al., 2006; Dajas-Bailador et al., 2012)). 

The fluidic isolation of the soma from the axons has led to in-depth study of 

compartmentalised changes in biochemistry of the cell (Taylor et al., 2005; Dinh et al., 2013; 

Neto et al., 2016; Garcez, Guillemot and Dajas-Bailador, 2017). Furthermore, microfluidics 

provide a flexible cell-culture platform to quantify changes in cellular excitability using live-

cell imaging formats, as well as downstream quantification of changes in biomarker 

expression arising from localised addition of a treatment.  

 

Unlike cortical neurons of the central nervous system the DRGs show limited spontaneous 

activity in normal physiological conditions.  (Esposito, et al., 2019 ). However, following nerve 

injury or exposure to an inflammatory stimuli (e.g. polarized macrophage media,) the DRGs 

may become hyperexcitable, since they are involved in maintaining chronic pain states (Weng 

et al., 2012). In line with the objectives for this chapter, I have shown here how the 

compartmentalised microfluidic nature of the 2-channel device has the potential to model 

changes in excitability of DRG neurons. In order to do this, live-cell imaging was used to 

quantify changes in cytosolic Ca2+ transients in the somal compartment of a device, following 

localised stimulation at the axonal compartment.  

 

C) The maximum fluorescence demonstrated no significant difference between M1-like and M2-like exposure prior to KCL 

stimulation. However, both treatments demonstrated a significant reduction in excitability relative to a negative control. One-

way ANOVA with Dunnett’s multiple comparison’s test, ±SEM, P<0.05 significance threshold. F(3, 21)=6.45 

D) Directly comparing the evoked Ca2+ transients recorded following acute stimulation with M-like media and KCL versus 

prolonged axonal incubation in macrophage media followed by stimulation with KCL. Only the prolonged incubation with M1-

like media induced a significant difference in cell excitability compared to relevant acute stimulations.  Results of a one-way 

ANOVA with Sidak’s multiple comparisons tests, mean ±SEM, P<0.05 significance threshold. F(5, 27)=2.489 
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This model demonstrated the rapid and dynamic response of the pseudo-unipolar DRGs when 

stimulated at the peripheral terminals. To ensure reproducibility of results, each chamber was 

only imaged once, and replicate data was taken from separate embryo dissections.   

One of the advantages of compartmentalised microfluidic modelling is the flexible nature and 

capacity for development of reproducible and adaptable protocols. Multiple stimuli (such as 

KCL and Capsaicin) were used to induce quantifiable changes in neuronal excitability, as well 

as the use of polarized macrophage media as a more biologically relevant stimulus for 

modelling changes in excitability. Not only was there a significant difference in evoked Ca2+ 

transients dependent on the stimuli used, but there was a reduced amplitude of response in 

cells stimulated selectively in the axonal compartment of a microfluidic device (compared to 

a standard dissociated culture.)  

In microfluidic devices, the evoked change in fluorescence quickly returned to a stable 

baseline, usually within 30 seconds of the stimulus being added. In these cultures, the action 

potential arriving at the soma had triggered the release of Ca2+ from intracellular stores such 

as the endoplasmic reticulum or via activation of voltage-gated Ca2+ channels. Consequently, 

the response was rapid, but short lived where the source of free calcium diffusing through 

the cell was sequestered rapidly. However, in dissociated plate culture the addition of a 

stimulus such as KCL or Capsaicin (a potent TRPV1 agonist) also opened voltage-gated ion 

channels on the soma, and induced further influx of Ca2+ ions into the cell. In these cultures, 

the fluorescence had not returned to true baseline by 60-seconds. Fluorescence was no 

longer increasing, but had not returned to the original baseline fluorescence observed prior 

to stimulation. The additional direct stimulation of the soma in dissociated plate cultures 

induced a larger amplitude and duration of response, where more cytosolic Ca2+ was available 

to interact with fluo-5 at the time of recording.   

 

Chapter 1.7.1.1 introduced the TRPV1 channel, for which Capsaicin is a potent agonist. The 

TRPV1 channel is Ca2+ permeable (Samways et al., 2016) and therefore evoked larger Ca2+ 

transients in the somal compartment, where propagation of the action potential was not 

always necessary. The somal compartment of the microfluidic device is also comprised of an 

axonal network connecting the soma, so it is likely that some of the response recorded was 

dependent on activation of TRPV1 receptors on the axons. However, the distance required 
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for the action potential to be propagated to the soma was clearly much less if the axons in 

the somal compartment were stimulated.  

Alternatively, activation of the TRPV1 channels located directly on the DRG soma induced a 

rapid influx of Ca2+, which was recorded by the increase in fluorescence following stimulation. 

TRPV1 receptors are only localised to selective fibres of the DRG, and although it has been 

demonstrated they are expressed throughout the sensory fibres (Andresen, 2019) the results 

shown here suggested  a more dense expression of TRPV1 receptors in the somal 

compartment (most likely on the soma,) from cells extracted at E16.5.  

 

The peak amplitude of response to capsaicin was also consistently lower than that of KCL in 

neuronal cultures from E16.5 tissue. This could be attributed to a higher prevalence of 

potassium sensitive ion channels expressed axonally and on the soma. Of particular relevance 

is the potential for selective protein expression at this early stage of development. These 

results suggested that stimulation of the axon by TRPV1 agonism was less effective at 

depolarising the membrane of the neuronal terminals (and subsequently generating an action 

potential) than the addition of a positive charge such as KCL to the extracellular space.  

  

It was concluded that not only are the microfluidic devices a useful tool for isolating the axonal 

and somal responses to a stimulus, but that the response of a cell in vitro is also dependent 

on age related functionality acquired in vivo (Lechner et al., 2009). The evidence for in vitro 

cultures of dissociated embryonic DRG cells is limited, but recent work has suggested that by 

E18.5 in development, a deficiency in Ret protein (tyrosine kinase) demonstrated a shift 

towards a cell distribution of smaller cells only, with limited development of 

mechanoreceptive DRG neurons (Honma et al., 2010). There is more supporting literature for 

a similar protocol performed from whole cell DRGs extracted from adult rodents. Chronic 

constriction models of injury conducted in adult mice identified three ‘ranges’ in somal cell 

area (Ruscheweyh et al., 2007). Small DRGs (<300 μm2) medium-sized cells (300–700 μm2) 

and large cells (defined as >700 μm2). However, what this study did not discern, was how the 

subtypes of A- and C-fibres can be subcategorised within these sizes.  

The results of the in vitro model shown here suggested a high percentage of small to medium 

size DRG neurons dissociated in culture, which would suggest the presence of cells with a 

similar function to C and Aδ nociceptive fibres. In vitro differences in cell body size did not 
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appear to be directly correlated with neuronal type. All dissociated neurons had the capacity 

to be depolarised by the addition of KCL at the neuronal terminals, but there was also a 

significant overlap in the responses of small diameter to cells to also be depolarised to 

selective stimuli such as Capsaicin.  

These results were particularly important in later experiments when identifying a protein 

target of interest downstream of a microRNA that was locally expressed in the axons or 

terminals of the DRG neurons.  

 

As well as utilising the microfluidic model to show differences in the evoked responses 

recorded between KCL and Capsaicin, we attempted to model peripheral sensitisation of the 

nociceptors. There is extensive research on the bi-directional signalling processes between 

inflammatory cells such as macrophages and sensory neuron fibres of the DRGs (R. R. Ji, 

Chamessian and Zhang, 2016). A common limitation of standard in vitro modelling is the 

limited capacity of most models to selectively record changes in excitability arising from direct 

axonal stimulation. This microfluidic model was also used to demonstrate how cytokines 

released by infiltrating polarized macrophages can induce rapid changes to DRG neuron 

excitability, with particular relevance to nociceptive function. Although it could be argued 

that further work would be required on development of the inflammatory stimuli used, the 

model shown was useful for inferring the link between addition of an inflammatory cytokine 

to the tissue and correlating downstream changes in excitability of the neurons.  

Whilst immune cells release cytokines and growth factors that act at the peripheral nerve 

terminals, the nociceptors in-turn release neuropeptides from the terminals to modulate this 

immune response (Baral, Udit and Chiu, 2019). However, it is not only polarized macrophages 

that release inflammatory mediators to modulate nociceptor activity. Where macrophages 

have been characterised in the release of cytokines such as TNFα,	IL-6 and	IL-1β, there are 

other inflammatory cell types involved in the regulation of nociceptive function. These include 

mast cells, neutrophil cells, TH-17 cells (Pinho-Ribeiro, Verri and Chiu, 2016) as well as cell 

shuttling from the satellite glial cells surrounding the nociceptor fibre.  Taken as a whole, it 

would therefore be very difficult to replicate the complexity of this bi-directional signalling in 

vitro using only two cell subtypes.  
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The resultant sensitisation of the peripheral nerve fibres that arises from release of cytokines 

from circulating inflammatory cells is implicated in several neuropathies and pain pathways 

(Coutaux et al., 2005; Burnstock et al., 2009; Reichling and Levine, 2009). In physiological 

conditions there are multiple mechanisms by which the nociceptors become sensitised, since 

many types of immune receptors are found on the terminals of the DRGs in close contact with 

inflammatory cells (Thacker et al., 2007). These include (but are not limited to) cytokine and 

chemokine receptors such as those found to be upregulated in the media of polarized 

macrophages. For example, following chronic constriction injury to the sciatic nerve, the 

concentration of both TNFα and IL-1β have been shown to increase 10-fold up to 1-hour after 

injury (Ueceyler, Tscharke and Sommer, 2007; Sacerdote et al., 2008). Both of these cytokines 

are pro-inflammatory and produced in high concentrations by M1-like macrophages (Lu et 

al., 2018). Furthermore, the release of these cytokines induces the cascade of further 

inflammatory cytokine production such as IL-6, and the increased activation of inflammatory 

signalling cascades.  

The mechanisms by which pro-inflammatory mediators modulate DRG neuronal excitability 

is also dependent on the nature of the inflammagen (Scholz and Woolf, 2007; Sandkühler, 

2009; von Hehn, Baron and Woolf, 2012). For example, TNFα is released from M1-like cells 

and has been shown to be important in the maintenance of neuropathic pain via sensitisation 

of the NaV channels (Jin and Gereau IV, 2006). Both TNF and the TNF-receptors have been 

shown to be upregulated post-injury in rodent models of pain (Schäfers et al., 2003). In vivo 

modelling has shown that following upregulation, TNF targets voltage-gated sodium 

channels, specifically the TTX-resistant NaV channels found on nociceptor terminals (Chen et 

al., 2011b; Leo et al., 2015). The direct application of TNFα to DRG neurons in culture has also 

been shown to transiently sensitize nociceptive firing in hairy skin isolated from the rat 

hindpaw (Bretag, 1969; Oprée and Kress, 2000) correlating with an induced upregulation in 

TRPV1 expression in dissociated ganglia from adult mice (Jin and Gereau IV, 2006). The 

increased activity of rat nociceptors to noxious heat was short lived, and none of the pro-

inflammatory cytokines tested (IL-6, IL-1B and TNFα) evoked a release of CGRP from larger 

diameter nociceptors at an innocuous temperature. In a similar mechanism to IL-1B, TNF 

phosphorylates NaV1.8 to facilitate channel opening (Jin and Gereau IV, 2006). This increase 

in activity of the sodium channels induces a neuropathic pain state by making nociceptors 
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hyperexcitable. However, there is also evidence that some cytokines target nociceptors 

indirectly, via glial cell shuttling.  

 

There is also evidence that pleiotropic anti-inflammatory cytokines have roles in 

neuroprotection and the resolution of neuro-inflammation (Amici, Dong and Guerau-de-

Arellano, 2017). One important example is the role of IL-4 (and M2-like macrophages) in 

ameliorating pain induced by increased circulation of pro-inflammatory cytokines. The 

application of IL-4 to nerve terminals in a mouse model of nerve injury, induced upregulation 

of anti-inflammatory macrophages (Brundu S, 2015). These M2-like cells synthesise opioid 

peptides (Met-enkephalin and β-endorphin) and induce reduction in nerve hypersensitivity 

downstream of the acute treatment with IL-4 (Celik et al., 2020). Other important examples 

include IL-10, a key cytokine involved in endogenous resolution of pain and released in high 

quantities from M2-like cells. It has been shown that intrathecal administration of cytokines 

like IL-10 can reduce neuropathic pain (Milligan et al., 2006) whilst injection of IL-10 

neutralising antibodies has been shown to prolong transient inflammatory pain in mice 

(Krukowski et al., 2016).  

Localised application of cytokine-rich macrophage media to axons of the DRG neurons was 

used to induce changes in excitability. Although circulating levels of cytokines in vivo are 

dynamic (Pettersen et al., 2011) it has also been demonstrated that endogenous M2-like 

macrophages will re-polarize to an MØ regulatory phenotype after around 6 days (Tarique et 

al., 2015). One of the advantages of polarized media was that the cytokines released by the 

cells would not deplete over time. In addition, the protocol used was optimised to ensure that 

the stimuli used to trigger the changes in the phenotypes of the cells were no longer 

circulating in the media, and wouldn’t produce a depolarization of the axon terminals. 

Neither acute stimulation nor prolonged exposure to polarized macrophage media increased 

the excitability of the DRG neurons in microfluidic culture. However, the use of the polarized 

media in the microfluidic device produced a significant reduction in neuronal excitability, 

compared with the evoked Ca2+ transients recorded following stimulation with KCL only. Of 

particular interest, the amplitude of the response to KCL following prolonged exposure to 

macrophage media was lower, and could potentially suggest that this subset of polarized 
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media desensitised the neuronal terminals to stimulation. These preliminary results with 

inflammatory media showed limited differences between the peak excitability induced 

following incubation of axons in proinflammatory media versus anti-inflammatory media. 

However, exposure to inflammatory media was not deemed to reduce viability of cells. There 

is evidence to suggest that there is temporal secretion of cytokines from macrophages, 

dependent on the state of polarization (Melton et al., 2015). It could be suggested that for 

the application of prolonged exposure to inflammatory media the set up would require either 

a) automated perfusion of media over extended periods of time, or b) live-cell imaging in a 

controlled atmosphere, regulating parameters such as CO2 and temperature.  In this way, 

images could be taken for hours without observing loss in neuronal viability. Since fluorescent 

dyes such as Fluo-5 cannot be followed for hours without photobleaching, development of 

this model in this way would require the use of transiently expressed Ca2+ sensitive molecules.  

 

The following conclusions were drawn from this Chapter: 

• Two-channel compartmentalised devices were very effective at modelling functional 

changes in neuronal excitability.  

• The peak amplitude of response to capsaicin was also consistently lower than that of 

KCL in neuronal cultures from E16.5 tissue 

• In order to model hyperalgesic priming the stimulus used would require further 

optimisation, however we were clearly able to show that exposure of the axons to a 

cytokine rich media acutely changed the excitability of the DRG neurons. 

• Significant differences in the evoked Ca2+ transients were also observed dependent on 

whether a stimulus was applied to the axon or directly to the soma. This unique 

feature of the compartmentalised devices helped to demonstrate that protein 

expression is not equally distributed throughout the terminals, axons and soma of the 

pseudounipolar DRG neurons.  
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5 miR-138-5p regulates DRG excitability  

 
5.1 Introduction: 

MicroRNAs (miRNA) are small, non-coding sequences between 21-25 nucleotides that are 

involved in processed such as mRNA degradation, or more commonly in neurons repression 

of translation by targeting mRNA. Since their discovery in C.elegans in 1993 (Lee, Feinbaum 

and Ambros, 1993; Wightman, Ha and Ruvkun, 1993) over 2500 conserved miRNA sequences 

have been identified for humans (Kozomara and Griffiths-Jones, 2014). The role of microRNAs 

as regulators of translation in the nervous system has been discussed in Chapter 1.8.1. In this 

model we used the microfluidic nature of the devices to investigate the role of these small 

non-coding RNAs in local translation in the axon, and regulation of neuronal excitability in the 

context of those observed in nociceptive signalling.  

The role of neuronal plasticity in regulation of cell excitability has been more extensively 

studied in recent years. It has been demonstrated that local translation of mRNA in the axon 

is an important process for efficient regulation of neuronal plasticity. One such example of 

pathways known to be of importance, are the mTOR-dependent (mammalian target of 

Rapamycin) pathways, where mTOR-dependent local translation of mRNA has been shown to 

regulate excitability in a subpopulation of nociceptive neurons in vivo (Piper and Holt, 2004). 

Immunohistochemical staining showed that the mTOR machinery was present in subsets of 

primary afferent fibers, although most likely the A-fibres since phospho-mTOR labelling did 

not extend to the epidermal layer where the C-fibre terminals are located (Jiménez-Díaz et 

al., 2008).  Subcutaneous injection of rapamycin into the hindpaw of rats also significantly 

increased the threshold temperature for paw-withdrawal evoked by A-fibres. In contrast, 

rapamycin did not appear to affect the C-fibre dependent activity.  Furthermore, the injection 

of anisomycin (a global protein synthesis inhibitor) also reduced thermal sensitivity after fast-

heat ramps targeting A-fibre nociceptors (Jiménez-Díaz et al., 2008). Behavioural assessment 

using Von Frey filaments also showed that pre-treatment with Rapamycin significantly 

attenuated secondary mechanical hyperalgesia (Obara, Géranton and Hunt, 2012). These 

results showed that the local administration of rapamycin potentially affected the excitability 
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of subpopulations of sensory neurons, via inhibition of mTOR mediated local mRNA 

translation.  This mTOR dependent local translation is just one example of how and why local 

translation in the neuron is important and essential for regulating neuronal excitability.  

 

5.1.1 microRNA and pain: 

With roles in translational repression, microRNAs (miRs) have also been identified as useful 

biomarkers for disease pathologies such as chronic pain, and are an important area of interest 

in upcoming clinical trials. The pleiotropic nature of this class of non-coding RNAs makes them 

particularly useful for treatment of multifactorial origins. Therefore, as well as interest in 

understanding their physiological role, much of the research surrounding miRNA investigates 

their potential role as therapeutic targets (van Rooij and Kauppinen, 2014). The first evidence 

for the role of miRs in mechanisms of pain were shown by screening miR expression in 

different in vivo models of chronic pain (Andersen, Duroux and Gazerani, 2014). For example, 

CFA injection into the hindpaw of adult rats showed downregulation of 10-selective microRNA 

by RT-qPCR (Bai et al., 2007). This downregulation of mature microRNA correlated with the 

development of allodynia, and supported the evidence that miRs are involved in regulation 

of an appropriate response to an inflammatory stimulus. 

 

In work by Zhao et al., (2010) it was proven that reduced production of miRs in the sensory 

DRG neurons resulted in inflammatory pain attenuation (Zhao, M.-C. Lee, et al., 2010). This 

model used deletion of the Dicer gene in nociceptive neurons of the DRG that express NaV1.8 

to reduce production of miRs in these neurons. The NaV1.8+ neurons are small fibre, and 

known to have a role in detection of inflammatory pain-based signalling (Hameed, 2019). 

Whilst the behavioural response to painful stimuli was normal in Dicer knockout mice (apart 

from a deficit in cold-sensitivity) the response to inflammatory stimuli was dramatically 

different. The absence of Dicer correlated with lowered levels of expression of several 

proteins such as P2X3, NaV1.8 and NaV1.9, all of which have important roles in inflammatory 

pain signalling (Abrahamsen et al., 2008). Dicer-null mice did not show changes in threshold 

for activation in response to carrageenan or CFA, and at a cellular level no increased 

excitability was recorded in response to inflammatory stimuli such as bradykinin or PGE2 

(Zhao, M. C. Lee, et al., 2010). 
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The overwhelming evidence from models of chronic pain have undoubtedly highlighted the 

importance of miRs in regulation of pain responses. It is clear that knockout of mature 

microRNA leads to downregulation of proteins of interest, and subsequently the response of 

the DRGs to a painful stimulus is inappropriately modulated. In the transition from acute to 

chronic pain, it is evident that there is upregulation of proteins at the terminals of the 

nociceptors. Ferrari et al., (2013) tested the hypothesis that transient inhibition of translation 

in the peripheral terminals of the nociceptors could reverse hyperalgesic priming. The 

injection of translation inhibitors (e.g. cordycepin) to the peripheral terminals of the neurons 

in adult male rats showed reversal of hyperalgesic priming (Ferrari et al., 2013). The 

downregulation of mRNA translation corresponded with a reduced decrease in mechanical 

paw withdrawal threshold upon exposure to PGE2. Critically, the reversal of priming was 

shown to outlast the duration of the action of the translation inhibitors (Cordycepin and 

Rapamycin) used to prevent development of priming.  

At a cellular level it has been demonstrated that miRNAs modulate pain via post-

transcriptional regulation of proteins involved in nociception (Bartel, 2009). Therefore, 

combined with the evidence from Ferrari et al., (2013) that inhibition of local translation in 

the axon can reverse hyperalgesic priming, of particular interest to this project was the role 

of miRs in regulating local translation of proteins in the axon. 

 

 

5.1.2 miR-138-5p and pain: 

Figure 5.1.1: An overview of a hyperalgesic priming model in vivo, as used previously by members of the Dajas-

Bailador laboratory.  
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Hyperalgesic priming experiments in the Hathway and Dajas-Bailador labs have previously 

demonstrated that out of 726 miRNA tested, only 4% (32 miRNA) showed an increase 

following hyperalgesic priming, including miR-138-5p. Data from the thesis of Clare Martin 

(submitted to the University of Nottingham for a doctorate of philosophy in 2018) showed 

the results of a preliminary microarray using tissue from the hyperalgesic priming model 

described above. L4, L5 and L6 DRGs (with nerve roots intact) were collected from primed 

and unprimed tissue 7-days post PGE2 treatment. Levels of microRNA were quantified by 

microRNA microarray using TORAY 3D gene (see figure 5.1.2.)  

All in vivo work was completed in Wistar rats using the paw withdrawal threshold as a 

measure of hyperalgesia. Of those microRNAs that were shown to be upregulated at day-14 

of the hyperalgesic priming model, miR-138-5p demonstrated a 2.4 log2fold change. As 

shown in Chapter 1.5.3 by day 14, the paw withdrawal threshold of primed animals remains 

low following removal of the inflammatory stimulus. In these animals the DRG neurons had 

become more excitable even in the absence of the inflammatory modulator. In line with 

published data demonstrating a role for miR-138-5p in neuropathic pain and peripheral nerve 

injury (Liu et al., 2013; Zhou et al., 2016), the results of this microarray pointed towards miR-

138-5p being a relevant candidate for further study of peripheral mechanisms regulating 

inflammatory pain via local translation.  
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Figure 5.1.2: The results of a preliminary microarray showing upregulation of miR-138-5p in tissue extracted from adult rat 

primed tissue in the chronic phase of hyperalgesia (Clare Martin, 2016). Saline control N=1, Carrageenan primed tissue 

N=2.  

For example, miR-138 upregulation can be induced by exposure to proinflammatory 

cytokines, such as those which are released upon tissue damage to stimulate polarization of 

macrophages in the neuropathic pain response including LPS (Zhou et al., 2016).  

 

5.2 Materials: 

Cell culture consumables including media and culture dishes were obtained from 

ThermoFisher Ltd (UK) and Sigma, as listed in Chapter 2.  All microfluidic devices used in this 

study obtained from Xona Microfluidics were 2-channel chambers (SND150) with a 

microgroove length of 150µM. Full details of the methods used here have been described in 

Chapter 2.  

In order to investigate microRNAs functional mechanism, and specifically miR-138-5p with 

regards to regulation of neuronal excitability, I used commercially available miRNA mimics 

and inhibitors (miRCURY LNA miRNA Mimics and Inhibitors, Qiagen), a tool widely used in the 

field and in our laboratory (Dajas-Bailador et al., 2012; Lucci et al., 2020) 

 

5.2.1 LNA technology: 
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Locked nucleic acid (LNA) technology incorporates high affinity RNA analogs where the ribose 

ring is “locked,” with an extra bridge connecting the 2’oxygen and 4’ carbon. This rigid binding 

forms the ideal conformation for Watson-Crick base pairing, and increases the thermal 

stability of the LNA oligonucleotide when hybridized to complimentary RNA or DNA (Stein et 

al., 2009). This increased melting temperature (Tm) is especially important when 

oligonucleotides are used to detect short sequences, or those with increased GC% such as 

microRNAs.  

 

5.2.1.1 MicroRNA mimics: 

miRNA mimics are designed to simulate the endogenous activity of a miRNA upon addition to 

a cell culture, by increasing the proportion of the RISC (RNA-induced silencing complex) 

containing the guide strand miRNA. The unique design of Qiagen LNA oligonucleotides are 

characterised by three RNA-LNA strands, rather than the traditional two. This includes an 

unmodified RNA strand with a complimentary sequence to miRNA of interest, and two LNA-

enhanced passenger strands. Since the passenger strand is divided into two, this helps to 

ensure that only the miRNA guide strand is loaded onto the RISC (Bramsen et al., 2007). This 

chapter describes the use of a dual-luciferase reporter assay, where a miR-138-5p mimic was 

transfected into HEK cells with a target of interest (see chapter 2.4.4.2.1.)  

 

5.2.1.2 MicroRNA ‘power’ inhibitors: 

miRNA silencing was induced using a miRNA power inhibitor for miR-138-5p. The miRNA 

inhibitor is an antisense oligonucleotide with a complimentary sequence to the mature 

sequence of miR-138-5p. Therefore, upon introduction into the cell the miRNA of interest is 

sequestered by the inhibitor, blocking normal translational repression by miR-138-5p. I have 

described the use of a cell-permeable miRNA inhibitors that 

carry phosphorothioate modifications on the LNA backbone. This improves stability in 

culture and enables transfection-free incorporation into the cell, which is useful for working 

with cells such as DRG neurons (Griffiths-Jones, 2004). Increased stability of the power 

inhibitor means it can be added directly to the culture media and up-taken by the cell via 

gymnosis (Soifer et al., 2012). The efficiency of inhibition is dependent here on several factors 

including cell density, length of incubation period and the concentration of inhibitor added.  
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Both the miRNA power inhibitor control and the miRCURY miR-138-5p LNA miRNA Power 

inhibitor were obtained from Qiagen. 

 

5.2.1.3 Small interfering RNA (siRNA):  

Also known as silencing RNA, siRNAs are short double-stranded RNA sequences that function 

as RNA interference molecules upon binding to complimentary target transcripts. In many 

ways, siRNA and miRNAs are similar. Both molecules decrease protein translation by binding 

to the RISC complex, however, the downstream mechanism of siRNA is different to that of 

miRNA. Unlike miRNA which can cause translation repression and degradation of multiple 

proteins via selective binding of the seed sequence, siRNA only targets a single sequence in 

mRNA. The RISC proteins unwind the double stranded siRNA molecule, whereupon the 

antisense siRNA strand binds to the select sequence on mRNA. Slicer protein subsequently 

cuts the mRNA in the binding region, and the mRNA is degraded by the cell (Kim, 2005). 
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5.3 Part A: Investigation of miR-138-5p in modulating the excitability of small 

fibre DRG neurons 

 

This chapter investigates the functional role of miR-138-5p in the control and regulation of 

neuronal cell excitability. Using established techniques such as qPCR, the relative expression 

of miR-138 was quantified, with regards to the state of inflammation that the 

microenvironment of the axon was exposed to. However, regulatory control of microRNAs in 

the cell is dynamic, much like the processes surrounding inflammation in the cell. Whilst 

miRNA expression has been investigated in neuronal function, and implicated in processes 

such as pain, the involvement of miRNA in the development and resolution of inflammation 

has not yet been fully elucidated.   

Previous works from the Dajas-Bailador and Hathway labs showed upregulation of miR-138-

5p in a model of hyperalgesic priming. Based on these results it was hypothesised that 

expression of miR-138-5p would change following exposure to inflammatory mediators such 

as pro-inflammatory cytokines and chemokines. To investigate this, the axon terminals of DRG 

neurons were once again exposed to inflammatory media extracted from polarised 

macrophage media.  

 

5.3.1 Part A objectives: 

• Investigate localised changes in miR-138-5p in the modulation of DRG neurons 

cultured in microfluidic devices  

• Study the effect of inflammatory signals on miR-138-5p regulation of axonal 

propagation of action potentials DRG  

 

5.3.2 Exposure of axons to inflammatory media demonstrated upregulation 

of miR-138-5p in the soma: 

 
In this experiment DRG neurons were cultured on culture inserts (known as Twiss chambers, 

see figure 5.3.1) for up to 7 days in vitro. Unlike Xona microfluidic devices, these inserts do 

not provide complete fluidic isolation of the different compartments.  
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The diagram in figure 5.3.1 shows a schematic of how cells were cultured using these Twiss 

chambers. For experiments involving RNA extraction and qPCR, the Twiss inserts were utilised 

to increase the potential concentration of RNA isolated from each culture. If required for PCR 

between 20-30 DRGs were dissociated per chamber. Cells were dissociated and seeded into 

the upper compartment of the insert. On top of the mesh insert, a network of axons (and 

soma) develop, whilst axons would also pass through the pores in the insert and form an 

“axonal-rich” layer underneath the mesh. A much higher number of DRGs were dissociated 

per insert, especially when attempting to isolate RNA from the ‘axonal compartment.’ At 

DiV5-6 the DRG neurons showed >80% coverage of the mesh insert. From here, the insert 

was removed, and cells were extracted via gentle scraping and washing with TriZol (See 

Chapter 2.5 for complete methods.)  

 

The Twiss model was designed to replicate the layout of the Xona microfluidics used in the 

Calcium assay, and mirror what might be observed in vivo where the axonal terminals of DRG 

neurons become exposed to a cocktail of inflammatory mediators upon priming by a 

nociceptive stimulus.  

At DiV7, the media on the underneath of the insert (representative of the axonal 

compartment) was changed for 24 hours prior to RNA extraction. In order to quantify the 

effect of inflammation on miR-138-5p expression in the DRGs, the media in the axonal 

compartment was substituted for media extracted from polarized macrophages (see Chapter 

2.2.2.4) The “somal” compartment was always cultured in DRG media.  

Semi-permeable 
membrane 

Culture  
media  

6-well 
plate 

Culture  
insert 

DRG Soma  
(+connective axons) 

DRG Axons  

Figure 5.3.1: Culturing cells in semi-permeable "Twiss" inserts for RNA extraction 
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The axonal RNA yield of the chamber was very low from the cells seeded. In un-pooled 

samples, the CT values were too high to be consistently detected for axons exposed to M1-

like media. The pooled samples in the supplementary data show how there was no significant 

fold change in the expression of miR-138 when cells were exposed to M1-like media. The 

upregulation of miR-138-5p was more easily detected when axons were exposed to anti-

inflammatory media.  

  

 

The effect of anti-inflammatory media on upregulating miR-138-5p was further investigated. 

Figure 5.3.2 refers to 5-independent RNA extractions, from 5 embryo preparations, where 

 A direct comparison between axonal and somal fragments at N=5 independent RNA extractions. One somal sample was 

undetected following axonal exposure to M2-like media, and therefore this bar represents N=4. Bars represent mean fold 

change ± SEM using the ddCT method. Housekeeper values for miR133b of CT=34.8 and 39.9  were removed from analysis 

prior to calculation of the fold change where the average CT was 24-29. Figure shows results of a one-way ANOVA from 

grouped data where F(3, 15)= 2.334.  

A post-hoc Holm-Sidak’s multiple comparisons test was also used to compare exposure to DRG media or M2-like media.. 

P<0.05 was deemed significant. Somal expression of miR-138-5p increased 6.3x on average, if the corresponding axons 

were exposed to M2-like media (P=0.03, DRG exposure N=5, M2-like exposure N=4.)  

Figure 5.3.2: Exposure of axons to inflammatory media significantly increased the expression of miR-138-5p in the soma  
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each Twiss insert utilised one dissociated embryo. In one biological repeat miR-138-5p was 

not detected in the somal compartment following axonal exposure to M2-like media (N=4.) 

 

Results showed that there was a quantifiable and significant increase in somal miR-138-5p if 

axons were exposed to M2-like media (figure 5.3.2, results of a one-way ANOVA with multiple 

comparisons.) This in vitro model of inflammation was used to demonstrate that the exposure 

of axons to anti-inflammatory mediators induced upregulation in somal miR-138-5p 

expression.  

 

5.3.3 Functional analysis of the dual effect of inflammatory mediators and 

miR-138-5p on neuronal excitability:  

 

Having shown that inflammatory mediators could change localised expression of miR-138-5p, 

we investigated the effect of the inhibition of miR-138-5p on neuronal excitability. In vivo 

modelling has shown that miRs are involved in the regulation of inflammatory pain-based 

signalling by the translational inhibition of protein on the neuronal terminals (Zhao, M.-C. Lee, 

et al., 2010). In vivo models of hyperalgesic priming have also shown that translational 

inhibition (e.g. treatment with either cordycepin or rapamycin) targeted at the peripheral 

terminals can reduce sensitisation of the nociceptors (Ferrari et al., 2013). In this study it was 

also shown that injection with anisomycin (protein translation inhibitor) prevented induction 

of hyperalgesic priming, suggesting that ongoing local peripheral translation is essential in 

both the development and maintenance of chronic pain. The capacity to investigate these 

localised changes in vitro has been limited until recently due to the nature of standard 

dissociated cultures. In this experiment, compartmentalised microfluidic cultures were 

exposed to inflammatory macrophage media at the same time as the miR-138-5p inhibitor. It 

was hypothesised that the incubation of peripheral terminals with inflammatory media in 

conjunction with axonal inhibition of miR-138-5p could promote an increase in excitability of 

the neurons.  
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The schematic in figure 5.3.3 shows how the miR-138 power inhibitor was applied to 

microfluidic devices in which the axonal compartment was also exposed to polarized 

macrophage media (and the cytokines within) for 24 hours prior to stimulation.  

 

If we refer back to Chapter 4 (figure 4.3.4) it was shown that prolonged incubated of the axons 

in polarized media reduced the overall excitability of neurons upon stimulation with KCL. The 

time-course in figure 5.3.3A shows that neuronal excitability was higher in cells incubated 

with the non-targeting probe (control) than the miR-138-5p inhibitor. The decrease in the 

amplitude of the response when the axons were incubated with the miR-138-5p inhibitor and 

M2-like media was not deemed to be statistically significant (figure 5.3.3C, P=0.3557 as shown 

by a one-way ANOVA with post-hoc Sidak’s multiple comparison’s test.)  

 

Figure 5.3.3B shows a time-course analysis for axons incubated with either the non-targeting 

probe (control) or a miR-138 inhibitor in the presence of M1-like media. In this setup, those 

cells incubated with the miR-138 inhibitor were more excitable than the control. This increase 

in excitability was also not deemed to be statistically significant (also shown in figure 5.3.3C, 

results of a one-way ANOVA with post-hoc Sidak’s test for correction of multiple comparisons, 

where P=0.1672) 
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A) The effects of M2-like media and miR-138 inhibition in the axon on the modulation of DRG excitability as observed over a time-

course of 60-seconds. Stimulation of the axonal compartment with KCL is shown at 10-seconds.  

B) The effects of M1-like media and miR-138 inhibition in the axon on the modulation of DRG excitability as observed over a time-

course of 60-seconds. Stimulation of the axonal compartment with KCL is shown at 10-seconds. 

C) Results of a one-way ANOVA with post-hoc Sidak’s correction for multiple comparisons showed no statistically significant 

difference between peak excitability of cultures incubated with inflammatory macrophage media and a non-targeting control 

probe, or the miR-138 inhibitor. F(3, 22)= 2.573, N=5 (M1-like exposure) and N=8 (M2-like exposure) biological replicates. 

Figure 5.3.3: Incubation of the axons with either M1-like or M2-like 

media in the presence of the miR-138 inhibitor induced no significant 

change in the amplitude of Ca2+ transients and neuronal excitability 

compared to those observed following incubation of the axons with a 

non-targeting control. 
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The peak excitability of neurons incubated with miR-138 inhibitor in the presence of 

macrophage media was also compared to the results previously observed when neurons were 

pre-cultured in macrophage media prior to stimulation with KCL (data extracted from figure 

4.3.4.) 

The average peak excitabilities have been compared in table 5.3.1 shown below: 

 

Table 5.3.1: Comparing average peak amplitude of evoked Ca2+ recorded dependent on axonal culture conditions. All axons 

were stimulated with KCL. Inhibitor control refers to a non-targeting control probe.  

If the DRG media in the axonal compartment was changed for media extracted from pro-

inflammatory cells (M1-like phenotype) then the peak excitability was unchanged between 

addition of the inhibitor control or the absolute control.  

However, the amplitude of evoked Ca2+ transients recorded following incubation with the 

miR-138 inhibitor was increased. Co-incubation of miR-138 inhibitor and M1-like media in the 

axonal compartment increased excitability of the neurons. 

 

In comparison, if the axonal compartment was exposed to M2-like media and the inhibitor 

control, the average peak excitability was increased relative to the absolute control. The 

amplitude of the response following incubation with the miR-138 inhibitor was also higher 

than the absolute control, but was lower than incubation with the inhibitor control. Co-

incubation of miR-138 inhibitor and M2-like media in the axonal compartment changed the 

excitability of the neurons. 

 

In line with the objectives for this chapter, the following conclusions can be drawn from 

this:  

 

1. The expression of miR-138-5p in the soma was increased when the axons were 

exposed to M2-like media as demonstrated by the qPCR in figure 5.3.2 

Axonal 
exposure  

miR Inhibitor (Peak 
Excitability (ΔF)) 

Inhibitor Control  
(Peak Excitability (ΔF)) 

Absolute Control 
(Peak Excitability (ΔF)) 

M1-like 
Media 0.33 0.16 0.17 
M2-like 
Media 0.22 0.33 0.085 
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2. The excitability of DRG neurons was increased if the axonal compartment was cultured 

in M2-like media and either an miR-138-5p cell permeable inhibitor or the inhibitor 

control.  

3. The excitability of DRG neurons was only increased if the axonal compartment was 

cultured in M1-like media and the miR-138-5p cell permeable inhibitor.  

 

 

It could be hypothesised that the induced increase in miR-138-5p from exposure to M2-like 

media was counteracted by the addition of the miR-138 inhibitor. This could explain why the 

excitability of the cells cultured in M2-like media was reduced when incubated with the miR-

138-5p inhibitor compared to the non-targeting control probe. 

To continue this investigation into the effects of inflammatory mediators and sensitisation, it 

would have been interesting to determine the effects of miR-138 inhibition in the somal 

compartment of microfluidic devices where the axons are exposed to polarized macrophage 

media.  

 

This study showed that inflammatory mediators changed the expression or miR-138-5p in the 

soma. This increased expression of miR-138-5p was also shown to affect neuronal excitability. 

The next step was to investigate mechanisms by which changes in miR-138-5p expression 

could regulate excitability of the neurons using compartmentalised microfluidic devices.  
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5.4 Part B: Molecular and cellular analysis of the mechanisms underlying the 

effect of miR-138-5p on sensitization of peripheral neurons: 

 

In Chapter 4 it was demonstrated that axonal stimulation of untreated microfluidic cultures 

stimulated with KCL induced an increase in evoked Ca2+ transients recorded at the soma.  In 

Chapter 5, part A it was shown that inhibition of miR-138-5p affected neuronal excitability.  

The increase in fluorescence observed was representative of an increase in free cytosolic Ca2+. 

The delay following axonal stimulation of a microfluidic device likely reflected the time taken 

for action potentials to propagate from the nerve terminals and induce a Ca2+ response. 

 

In this study the role of miR-138-5p in local protein translation and modulation of neuronal 

cell excitability was further investigated. Microfluidic chambers were cultured until axons 

extended through the microgrooves and covered the axonal compartment >50%. Previous 

work from the Dajas-Bailador lab suggested that optimal time for use of microfluidic devices 

was between DiV5-8 dependent on the nature of the study (Lucci et al., 2020). In this model 

the media was removed and replaced with media supplemented with a cell permeable power 

inhibitor for miR-138, at a final assay concentration of 100nM. Due to the compartmentalised 

microfluidic nature of the devices the inhibitor was either applied localised to the axons, or 

the soma and the downstream effect on neuronal excitability was quantified.  

 

5.4.1 Part B objectives: 

• Use local application of a miR-138-5p inhibitor in a microfluidic model to investigate 

a) the effect of miR-138-5p expression on neuronal excitability and b) the 

mechanism of action by which miR-138-5p induces changes in neuronal signalling. 

• Identify and isolate potential downstream targets of interest for miR-138-5p 

• Validate targets based on seed sequence expression in the 3’UTR and interaction 

with miR-138-5p.  

• Investigate the effects of target protein expression on cell excitability using siRNA 
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5.4.2 Inhibition of miR-138-5p expression in the axonal compartment of 

compartmentalised microfluidic devices reduced evoked Ca2+ transients 

and changes in neuronal excitability:   

 

The schematic in figure 5.4.1 below shows an overview of the experimental setup where only 

the axons were stimulated with KCL. Figure 5.4.1A shows a visual representation of how the 

amplitude of neuronal response to stimulation was reduced where a miR-138-5p inhibitor 

was added to the axons (relative to the control chambers where a non-targeting miRNA probe 

control was added.)  

To quantify this reduction in excitability, an unpaired t-test was used to compare the KCL-

evoked peak excitability between cultures. Figure 5.4.1B shows that there was a significant 

decrease in peak excitability in neurons where the miR-138 inhibitor was added to the axonal 

compartment. (A comparison including the baseline has also been included in the 

supplementary data, using a one-way ANOVA to compare the baseline fluorescence to the 

peak fluorescence recorded.) 

Both treatments showed a rapid increase in fluorescence upon stimulation, but the duration 

of the responses returned to near baseline by the end of the 60-second recording. The 

decreased excitability in those axons incubated with the miR-138-5p inhibitor was reflected 

in the reduced AUC relative to the control (figure 5.4.1C.) 

 

Results also showed that unlike untreated populations of DRGs stimulated with KCL, both the 

treatments with the power inhibitor control or the miR-138 inhibitor reduced the overall 

amplitude of the Ca2+ response. This effect was observed across multiple cell preparations 

and was deemed to not be an artefact of specific tissue showing reduced excitability in the 

presence of KCL. These results demonstrated that the effect of miR-138 inhibition on reducing 

cellular excitability was not resultant from manual addition of a substrate to the cell, but 

reflected a “true” decrease in excitability when miR-138 activity was blocked in the axonal 

compartment. (Average peak amplitude (±SD) of an absolute control was 0.64± 0.45ΔF at N=6 
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biological repeats, see chapter 4 section 4.2.1. In comparison the peak amplitude following 

addition of miRNA non-targeting control probe was 0.35± 0.18ΔF at N=12.) 
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Figure 5.4.1: miR-138 inhibition in the axonal compartment induced a significant decrease in Ca2+ transients in the soma 

following axonal stimulation with KCL (25mM): Legend continued overleaf… 
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The same protocol was subsequently repeated using stimulation of the axonal compartment 

with Capsaicin (200nM) to selectively stimulate TRPV1+ve neurons. Although TRPV1 is 

expressed as early at E12.5, expression levels are not complete until around post-natal day 2. 

Our previous experiments had shown that there was a transient change in fluorescence when 

Capsaicin was applied to the axonal compartment of E16.5 DRG neurons.  In a similar way to 

the results observed following stimulation with KCL, axonal stimulation with capsaicin 

induced a rapid and transient increase in cytosolic Ca2+.  

 

The time course analysis in figure 5.4.2A (below) shows how fluorescence of the control 

population and the treated cells had returned to a stable baseline by the end of a 60-second 

recording period. Following stimulation with capsaicin, the amplitude of the responses of cells 

treated with the non-targeting miRNA control probe or miR-138 inhibitor overlapped (figure 

5.4.2A.)  

 

There was no statistically significant difference between the amplitude of the response of the 

control treatment population, and those cells in which miR-138 was inhibited in the axons 

(figure 5.4.2B.) Moreover, there was no significant reduction in amplitude of the response 

compared with the axonal stimulation of empty microfluidic cultures (Chapter 4, figure 4.2.3 

where average peak excitability was 0.23ΔF.)    

 

 

A)    Time-course analysis with stimulation by KCL shows that amplitude in response of cells incubated with a miR inhibitor was 

reduced relative to the control population. 

B) Increase in fluorescence (following stimulation) was statistically reduced following incubation with a miR-inhibitor. One-way 

ANOVA with multiple comparisons showed a statistically significant reduction in the excitability of those cultures incubated 

with a miR-138 inhibitor in the axonal compartment (P=0.0046). Significance threshold  P<0.05, showing representative data 

from N=12 independent biological repeats. F(3,44)=31.9 for comparison between treatments. Post-hoc Holm’s-Sidak test for 

multiple comparisons also demonstrated significant increase from baseline excitability irrespective of the axonal treatment. 

C) The AUC also showed a significant decrease in neuronal excitability following stimulation with KCL of cultures incubated with 

a cell permeable miR-138 inhibitor. Unpaired t-test with Welch’s correction showing P=0.05. Error showing mean ±SEM 

where signficiance threshold was P<0.05. Comparison of variance showed F(11, 11)= 2.662 where P=0.119. 
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A) Time-course analysis with stimulation by Capsaicin shows that amplitude in response of cells incubated with a miR inhibitor 

was not significantly reduced relative to the control population. The change in fluorescence observed once again was used as a 

proxy for the change in excitability of the neurons.  

B) Excitable response following stimulation was not signficantly reduced following incubation with a miR-inhibitor and stimulation 

with Capsaicin. One-way ANOVA showed no statistically significant effect of miR-138 inhibition when stimulating the axonal 

compartment with capsaicin F(3, 42)= 15.20, where P=0.99 as shown by multiple comparisons. Post-hoc Sidak’s multiple 

comparison’s also showed that the increase in excitability from baseline was always statistically significant (P<0.001) irrespective 

of the axonal treatment. Representative of N=11 biological repeats, where bars represent mean ±SEM.  
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Figure 5.4.2: miR-138 inhibition in the axonal compartment did not induce a significant decrease in Ca2+ transients recorded in the 

soma following axonal stimulation with Capsaicin (200nM): 
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The results of figures 5.4.1 and 5.4.2 suggested a selective role for miR-138-5p in regulating 

the excitability of small diameter DRG neurons. The stimulation with Capsaicin did not 

demonstrate any significant difference in the excitability of cells incubated with or without 

the miR-138 inhibitor. Therefore, it was hypothesised that the effect of miR-138 was localised 

to neurons more closely resembling A-fibres.



 184 

It was also hypothesised that the effect of miR-138-5p was local to the axon. Therefore, it was 

predicted that inhibition of miR-138-5p in the soma would not induce a reduction in cell 

excitability following axonal stimulation of neurons. Microfluidic devices were cultured to 

DiV5, at which point the media was changed and the miR-138 inhibitor was added to the 

somal compartment for 24H. Following this, a stimulus was locally applied to the axonal 

compartment.  

 

Figure 5.4.3 shows the resultant change in fluorescence following somal inhibition of miR-138 

and subsequent axonal stimulation with KCL (25mM). The time-course in figure 5.4.3A shows 

that there was no difference in the KCL-evoked response when comparing the control group 

to those cells incubated with miR-138 inhibitor. Figure 5.4.3B shows that there was also no 

significant decrease in the KCL-evoked peak excitability of cells treated with a miR-138 

inhibitor versus the negative control. It was also shown that axonal stimulation with KCL still 

evoked a significant increase in Ca2+ transients recorded from baseline. Therefore, the somal 

incubation with miR-138 inhibitor did not decrease viability of the neurons. This result further 

supported the evidence that miR-138-5p was only affecting the excitability of the cell by 

acting locally in the axon terminal.  

 

The effect of Capsaicin-evoked neuronal excitability following somal incubation with the miR-

138 inhibitor was also studied. Figure 5.4.3C shows that there was no significant difference in 

the peak excitability of neuronal cultures incubated with either the miR-138 inhibitor or the 

non-targeting control in the somal compartment.  
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5.4.3 Inhibition of miR-138-5p in the somal compartment did not reduce KCl 

or Capsaicin-evoked increase in neuronal excitability:  

DRG 
DiV5  

24H (+miR inhibitor vs. 
inhibitor control) 

(+Stimuli) 
Axonal 

Somal 

A) Time course analysis comparing the amplitude of neuronal excitability 

axonal stimulation with KCl (25mM.) The miR-inhibitor (or a scramble 

control) was added to the soma for 24-hours prior to stimulation and did 

not evoke a significant reduction in neuronal excitability.  

B) Increase in fluorescence following axonal  stimulation with KCL was not 

significantly reduced following incubation of the soma with a miR-inhibitor. 

Results of a one-way ANOVA with post-hoc Sidak’s test showed no 

statistical significance between the peak excitability of treatments (NS) 

with P<0.05 significance threshold. N=7. Mean ± SEM. F(3, 24)=21.79. 

Sidak’s multiple comparisons showed a significant increase in fluorescence 

from baseline at P<0.0001 irrespective of the somal treatment. 
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Figure 5.4.3; Prolonged inhibition of miR-138 in the soma of DRG 

sensory neurons did not evoke significant changes in neuronal 

excitability: 
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(Legend continued overleaf) 

Figure 5.4.3 C) Increase in fluorescence following axonal  stimulation with Capsaicin was not significantly reduced following 

incubation of the soma with a miR-inhibitor. Results of a one-way ANOVA with post-hoc Sidak’s test showed no statistical 

significance between the peak excitability of treatments (NS) with P<0.05 significance threshold. N=7. Mean ± SEM. F(3, 

23)=7.858. Sidak’s multiple comparisons showed a significant increase in fluorescence from baseline at P=0.0031 for somal 

incubation with the miR-inhibitor, versus p=0.0173 following incubation with a non-targeting inhibitor control probe..  

 

In the final experimental setup, the somal compartment was incubated with miR-138 inhibitor 

for 24-hours prior to direct somal stimulation with either KCL at 25mM or Capsaicin at 200nM.  

 

The time-course in figure 5.4.4A shows how there was a rapid increase in cell excitability 

following direct stimulation of the soma with KCL. The amplitude of the response was higher 

than the amplitude of KCL-evoked Ca2+ transients recorded at the soma following axonal 

stimulation (figure 5.4.4.) The increase in excitability from baseline was deemed significant 

irrespective of what treatment the soma were incubated with.   

However, there was no significant difference between the peak excitabilities recorded 

following somal incubation with the miR-138 inhibitor or the non-targeting inhibitor control 

probe (figure 5.4.4B.) The direct stimulation of the soma with capsaicin following somal 

inhibition of miR-138-5p also did not induce a significant change in cell excitability relative to 

incubation with a non-targeting miRNA probe control (figure 5.4.4C.)  

 

Somal inhibition of miR-138-5p demonstrated higher amplitude in response if stimulated with 

Capsaicin than KCL. The following conclusions can be drawn from this data: 

 

miR-138-5p is involved in regulating excitability of the small fibres of the DRG. The effects of 

miR-138-5p most likely targets A-fibres since inhibition of miR-138 did not induce any 

significance changes in Capsaicin-evoked excitability (relative to treatment with a negative 

control). Based on this data it could be hypothesised that miR-138-5p has roles in regulating 

cellular excitability via local translation, most likely regulating neuronal conductance (e.g. 

potassium signalling) in small fibres of the DRG 
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A) Time course analysis comparing the amplitude of neuronal 

excitability axonal stimulation with KCl (25mM.) The miR-inhibitor or a 

scramble control was added to the soma for 24-hours prior to somal 

stimulation. Treatment did not evoke a significant reduction in the 

amplitude of responses between treatments, but somal stimulation 

evoked a longer duration response.  

B) Quantification of the peak Ca2+ transients showed no significant 

difference in the fluorescence recorded at soma directly stimulated with 

KCL following incubation with a miR-138 inhibitor versus a non targeting 

control probe.  Results of a one-way ANOVA a post-hoc Sidak’s test for 

multiple comparisons showed a significant difference in cellular 

excitability irrespective of the somal treatment with miR-138 inhibitor. 

As shown, P=0.02 following incubation with the miR-138 inhibitor. F(3, 

24)= 23.40, with significance threshold at P<0.05. N=7 biological 

replicates showing mean ±SEM.  

Continued overleaf…  
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Figure 5.4.4: Prolonged inhibition of miR-138 in the soma of DRG 

sensory neurons did not evoke significant changes in neuronal 

excitability: 
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Figure 5.4.4 C)  Quantification of the peak Ca2+ transients showed no significant difference in the fluorescence recorded at 

soma directly stimulated with Capsaicin following incubation with a miR-138 inhibitor versus a non targeting control probe.  

Results of a one-way ANOVA a post-hoc Sidak’s test for multiple comparisons showed a significant difference in cellular 

excitability irrespective of the method of culture. As shown, P=0.02 following incubation with the miR-138 inhibitor. F(3, 

23)= 4.314, with significance threshold at P<0.05. N=7 biological replicates showing mean ±SEM.  

 

5.4.4 Bioinformatic prediction for targets with roles in regulating neuronal 

excitability by interaction with miR-138-5p: 

 
Addition of the miR-138 inhibitor to compartmentalised microfluidic devices had 

demonstrated a clear role for miR-138-5p in regulating neuronal excitability. The inhibition of 

miR-138-5p only induced a significant decrease in neuronal excitability if the axonal 

compartment was incubated with the miR-138 inhibitor and the subsequent KCL stimulus was 

locally applied to the axons. As such it was hypothesised that miR-138-5p has roles in 

regulating neuronal excitability via local translation, most likely via regulation of membrane 

conductance. Since microRNAs are known to inhibit translation of mRNAs, a bioinformatic 

search was conducted to attempt to identify a protein target of interest that would help to 

explain the mechanism of miR-138-5p in regulating neuronal excitability. 

 

Initial attempts to identify a target for miR-138-5p included a conservative search and 

comparison of multiple bioinformatic prediction tools, each of which uses a different 

algorithmic model. Preliminary searches included MirGate, Diana Tools microT-CDS at 

inclusion threshold 0.7, (Paraskevopoulou et al., 2013a) Tarbase (26 targets,) (Karagkouni et 

al., 2018) TargetScan v7.2 (Agarwal et al., 2015) and miRTarBase (14 targets) (Hsu et al., 

2011). 

 

At a threshold of 0.7, DIANA tools identified 556 targets potentially associated with miR-138-

5p, where at 0.8 the predicted list was reduced to 267 targets. All targets that appeared in 

DIANA tools were converted from a transcript ID to a gene ID and cross-referenced with a list 

of results from a second bioinformatic database. When using TargetScan (v7.2) 630 

transcripts were initially identified, although some of these were later identified as “false 
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positives” where the seed sequence was predicted but not present in the 3’UTR. Between 

TargetScan and DIANA tools, 122 targets overlapped. From here a species conservation list 

was produced, where each target was cross-referenced for prediction with rat and human 

tissue. This yielded a list of 16 targets: 

 

 

Figure 5.4.5: Developing a pipeline for bioinformatic searches of predicted targets overlapping with miR-138-5p. 

From the 16 genes identified, the proteins identified were suggested to be involved in up to 

45 biological processes including 4 genes involved in cell signalling and 4 genes involved in 

‘response to stimulus.’ These included hits such as Calcipressin-2, involved in the signal 

transduction of calcium, and sodium channel beta subunits, which modulate channel 

conductance and action potential propagation. Furthermore, 7 protein classes were identified 

in this list, including intercellular signalling proteins, transmembrane signalling and transport 

proteins. Although the 16-targets identified appeared to have some roles in signal 

transduction, based on the results of the calcium assay previously described in this chapter, 

it was deemed that voltage-gated sensitive channels were potentially of high interest for this 

project, with particular regards to peripheral sensitisation. With the capacity to change the 
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search parameters of DIANA tools (Paraskevopoulou et al., 2013b) to include even those 

targets most lowly predicted targets, a second more biased search was conducted based on 

the results observed with the miR-138-5p inhibitor in Ca2+ signalling assays. A target was only 

deemed suitable if it was endogenously expressed by E16.5, where protein expression often 

begins in the embryo, but may not peak until post-natal development.  

 

This time the parameters on Diana tools microT-CDS were widened to include a prediction 

threshold of 0.1, in order to locate all potential voltage-gated targets containing the seed 

sequence of miR-138-5p. This search included calcium, potassium and sodium channels in line 

with the hypothesis that miR-138-5p has roles in signal transduction, and potentially regulates 

membrane conductance during states of hyperalgesia.  

A list of potential targets was created based upon reported expression of a) the seed 

sequence for miR-138-5p in the 3’UTR, and b) known expression of the relevant protein on 

fibres of the DRG. Only those channels with multiple predicted seed sequences in the 3’UTR 

were carried forward, and the 3’UTR was manually searched to confirm expression of the 

sequence.  It was noticeable that the DIANA prediction did not always accurately reflect the 

presence of the seed sequence in the 3’UTR. Those targets highlighted on figure 5.4.6 below 

were deemed the most appropriate for this study based on selective and localised expression 

throughout the DRG fibres.  
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5.4.4.1 Identifying which channels to investigate: 

 

The work by Tsantoulas and McMahon described in Chapter 1, figure 1.4 (Tsantoulas and 

McMahon, 2014) gives a comprehensive overview of the suggested expression patterns of 

multiple voltage-gated channels throughout the DRG fibre subtypes. In Chapter 1.7 I have also 

discussed the role for different subtypes of both Kv and NaV channels throughout the 

changing phases of the action potential. Understanding which channels are affected by a 

nociceptive stimulus may help to determine how miR-138-5p potentially regulates neuronal 

excitability of the DRGs.  

 

5.4.4.2 SCN family:  

There are 13 members of the genes encorporating voltage-gated sodium channel family (SCN 

genes) including the large α-subunit and a potential additional β-subunit. These voltage-gated 

sodium channels are essential in the initiation and propagation of action potentials, although 

they can be further sub-categorized dependent on the chromosomal expression (Yu and 

Figure 5.4.6: : Based on seed sequence expression in the 3’UTR, ion channels of interest were shortlisted and subsequently 

validated as predicted targets of miR-138-5p. 
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Catterall, 2003) and sensitivity to tetrodotoxin (TTX). In adult neurons the roles of NaV1.1, 

NaV1.6, NaV1.7, NaV1.8 and NaV1.9 have been established in regulating sensory neuron 

excitability in pain-based signalling. Furthermore, changes to the expression pattern or 

alterations to genetic variants of NaV1.7, NaV1.8 and NaV1.9 have all been linked to small 

fibre neuropathies. However, in those channels screened, the seed sequence for miR-138-5p 

was only identified in the 3’UTR of NaV1.6.  

 

5.4.4.3 KCN family: 

In a similar way, proteins of the voltage-gated potassium channel family were screened for 

known association with miR-138-5p. Of a total 40 channels screened, miR-138-5p was 

predicted to be associated with the regulation of 30 potassium channels. The 3’UTR for these 

candidates was manually searched to locate the seed sequence for miR-138-5p. Those 

channels showing multiple seed sequence expression for miR-138 were marked a good 

candidate for a luciferase assay.  

 

Also included in this screening process was potassium activated calcium channels, voltage 

gated calcium channels, potassium inward rectifier channels and two-pore potassium 

channels. 

 

A shortlist of candidate genes can be seen in table 5.4.1 below. Target genes were selected 

based on a) the TargetScan prediction with miR-138-5p, b) the expression of the seed 

sequence in the 3’UTR for miR-138-5p, c) the number of seed sequences expressed in the 

3’UTR and d) literature based on the role of the target in nociception or neuronal excitability. 

For example, where Kv1.2 (KCNA2) has been documented to be selectively expressed in the 

A-fibres, TREK-2 (KCNK10) has been localised to IB4 positive C-fibres only. The DIANA tools 
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microT-CDS prediction is also included here, although the prediction rate does not always 

correlate with the prevalence of the seed sequence in the 3’UTR.  

 

Those targets used for cloning into the pmiRGlo vector have been highlighted in the table 

above. Only the targets highlighted in green (KCNK10/ KCNA2) were successfully cloned into 

the reporter and used in the luciferase assay with a miR-138-5p mimic.  

 

 

5.4.4.4 Kv1.2:  

The shaker protein Kv1.2 belongs to the delayed rectifier family of voltage-gated channels, 

which rapidly induce repolarization of the cell membrane following conduction of the action 

potential. Furthermore, there is evidence to demonstrate that the Kv1.2 protein is widely 

conserved between species including rat, human and mouse. The distribution of the Kv1.2 

channel in murine neurons has been demonstrated to be uniform throughout the axons, 

terminals and cell body. However, as shown in Chapter 1 (Tsantoulas and McMahon, 2014) in 

mice these channels have been shown to be selectively expressed on the A-fibres of the DRG 

neurons.  

 

Table 5.4.1: Shortlisted target genes for interactions with mmu-miR-138-5p. 4 potassium channels of interest have been 

highlighted based on expression in the A/C fibres of the DRG and predicted number of seed sequences in the 3’UTR. 
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Figure 5.4.7 below shows high levels of Kv1.2 expression both at the axonal terminals, and 

throughout the axon of the DRG neurons, although in vivo Kv1.2 is known to only localise to 

A-fibre subtype DRGs.  

 

Figure 5.4.7: Dual staining immunofluorescence from a dissociated plate-based culture of DRG neurons at DiV5 showing high 

relative expression of Kv1.2 at the terminals (40X.) 

Following axonal injury, the juxtaparanodal region becomes exposed and there is a high 

expression of Kv1 channels in this area. This may lead to a reduction in conduction velocity of 

these damaged neurons, as well as a potential sensory loss of function. Reduced functionality 

of channels in the Kv1 family potentially induces peripheral hyperexcitability where the axon 

does not repolarize as efficiently.  

 

5.4.4.5 Two pore potassium channels: 

Since one of the targets investigated (TREK-2, KCNK10) belongs to the two-pore- potassium 

channel family, I have further discussed the role of these channels in maintaining resting 

membrane potential. Where voltage-gated potassium channels are elucidated in the 

movement of potassium out of a depolarised membrane, the two-pore channel domain is 

predominantly determined by the electrochemical gradient of K+ ions in the cell. Therefore, 

the K2P channels have a role in contributing to maintaining the background membrane 

potential (O’Connell, Morton and Hunter, 2002). Although there is relatively little homology 

between the intracellular N- and C- termini of the K2P channels, the short sequence of amino 

Kv1.2 
Acetylated-Tubulin 
40X  
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acids forming the channel pores are highly conserved. These region makes the channel 

selective for K+ ion sensitivity, whilst allowing fast movement of ions across the cell 

membrane. Although not directly voltage-dependent, the K2P channel family are affected by 

a range of physiochemical variables. This is included but not limited to, changes in membrane 

potential, pH and surrounding temperature (Enyedi and Czirják, 2010). The first channel in 

the K2P family was identified in yeast in 1995 (Ketchum et al., 1995), although since the TOK1 

channel expresses eight transmembrane segments and is strongly outward rectifying, it is 

considered largely different from other members of the K2P channel family. In contrast, these 

channels, such as TREK-2, are acknowledged to possess 4-transmbrane domains and 2-

channel pore forming subunits. As a “background K+ current” channel, the probability of these 

channels opening is not altered in response to changes in the membrane potential. Although 

K2P channels are weakly voltage-dependent they are predominantly considered ‘leak’ 

channels.  

 

The first member of the TREK (TWIK-related K+ channel) family of proteins was discovered in 

1996, followed by two further proteins including TREK-2 (Fink et al., 1996)  although the group 

is functionally diverse due to the presence of several splice variants. In particular alternative 

translation initiation in TREK-2 induces a long segment of the intracellular termini missing on 

this channel, and as such can affect the biophysical properties of the channel activity (Y. Kim 

et al., 2001). Crucially, evidence has demonstrated that the TREK-2 channel is conserved 

between species, and is selectively expressed on the IB4-positive C-fibres of the DRGs (Acosta 

et al., 2014; Viatchenko-Karpinski, Ling and Gu, 2018) making this protein a good candidate 

for a small-fibre pain-based study. Evidence from siRNA knockdown of the TREK-2 channel in 

in vivo murine studies demonstrated a role for TREK-2 in the hyperpolarization of the 

membrane of IB4-positive C-fibres (Acosta et al., 2014). Moreover, in vitro studies 

demonstrated the expression of TREK2 as early as 2-days in vitro, suggesting the channel is 

not only expressed in mature DRG fibres.  

5.4.5 Luciferase reporter assay: 

 

Following the identification of predicted targets for miR-138-5p it was important to 

functionally validate these targets. The first step was cloning the 3’UTR region of interest into 
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the pmiRGlo vector containing the complementary seed sequence for miR-138-5p (as 

described in Chapter 2.4.4.1.) Following sequencing to confirm insertion of the primer into 

the pmiRGlo vector, a dual-luciferase reporter assay was carried out to confirm the 

interaction of miR-138-5p with the predicted target site in the 3’UTR. 

Of the primers shown in Chapter 2.4.4.1, seven predicted target sites were eventually 

investigated for the capacity to act as functional targets using the luciferase assay (see 

chapter 2.4.4.2.2.)  

 

Cells were transfected with DNA inserted into pmiRGlo and treated with either the miR-138 

mimic or a miR-control at 50nM for 48-hours prior to quantification of firefly luciferase signal. 

Preliminary tests included Kv1.2 site 3, Kv1.2 site 4, Kv1.2 site 5 and TREK-2 sites 1-4 as shown 

in figure 5.4.8. However, 3 target sites were identified as statistical outliers, demonstrating 

 

Figure 5.4.8: Preliminary results from a luciferase reporter assay at N=1: Results show %Change in fluorescence detected when 

cells were treated with 50nM miR-138 mimic for 48-hours. All 7-targets were previously validated using Sanger sequencing to 

locate the sequence of interest inserted into the pmiRGlo vector. Only the 4-targets marked with an asterix were carried 

forward to N=4, where they showed reduction in fLuc activity in the dual luciferase reporter assay. 



 197 

very little (or a positive) change in fluorescence of the mimic relative to the control. Only 4 

targets were carried forwards to investigate statistical significance of target interaction with 

miR-138-5p, as shown later in figure 5.4.9.  

 

Of the 4 targets taken forward only two showed a statistically significant reduction in firefly 

luciferase activity, suggesting the miR-138 mimic was bound to the target site and protein 

translation was either repressed or degraded (see figure 5.4.9 A-D). The luciferase reporter 

assay was repeated to a minimum N=3 repeats to determine statistical significance of the 

reduction in firefly luciferase activity in each condition. Figure 5.4.9 below shows that only 

Kv1.2 site 4 and site 5 demonstrated a statistically significant decrease in fLuc activity. Since 

Kv1.2 is only expressed in A-fibres in vivo, this data further supported the hypothesis that 

miR-138-5p regulates excitability of the DRG neurons via local translation in A-fibres.  
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Following the preliminary validation of two target sites of interest via luciferase reporter, the 

primers for these target sites were mutated at the seed sequence to confirm the interaction 

with miR-138-5p. Via PCR the mutated primers were re-inserted into pmiR-Glo for use in a 

site directed mutagenesis recovery assay.   

In the mutagenesis recovery assay, nucleotides in the seed sequence of miRNA interaction 

were replaced, but primers were designed according to standard melting point and GC% 
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Significance was determined using unpaired t-tests, where P<0.05 was deemed statistically significant. Figures 

5.4.9B (N=4) and figure 5.4.9C (N=3, 1 outlier removed) demonstrated a significant reduction in fLuc activity, and 

validated these as targets for miR-138-5p. 

Figure 5.4.9: Transfection with miR-138 mimic and pmiRGlo with the target site inserted showed a reduction in firefly 

luciferase activity for four targets of interest. 
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parameters. If the miRNA was truly targeting the Kv1.2 sites of interest, it was hypothesised 

that by mutating nucleotides in the seed sequence, the luciferase activity would be recovered 

following transfection with a mutated DNA sample.  

 

 

Figure 5.4.10: A site-directed mutagenesis assay demonstrated a loss of function with mutation of the seed sequence for 

miR-138-5p in the 3’UTR. Transfection with the miR-138 mimic and the mutated DNA sequenced did not induce a reduction 

in firefly luciferase activity in the dual luciferase assay, (N=3.) No significant difference in fLuc acitivty was detected between 

the LNA control and the SDM miR-138-5p targets, therefore validating the presence of a binding site in the 3’UTR of Kv1.2 

for miR-138-5p. 

 
Figure 5.4.10 demonstrates that the mutation in the seed sequence led to a reduction in miR-

138-5p interaction with the target site on pmiRGlo, and confirmed the validity of the 

interaction of Kv1.2 with miR-138-5p. This was characterised by the increase in firefly 

luciferase activity to equal that of the results observed for the LNA control. This ‘rescue’ effect 

by mutation of the seed sequence of miR-138-5p, validated Kv1.2 as a target of interest. It 

was likely that in this context, the mutation in the seed sequence led to reduced interaction 

of the miR-138 mimic with the target mRNA, and consequentially reduced degradation the 

target mRNA.  
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5.4.6 Treatment of axons with small interfering RNA (siRNA) for Kv1.2 

demonstrated partial rescue of the decrease in excitability induced by 

miR-138-5p inhibition:  

 

At this point we had identified suitable target(s) of interest that could interact with miR-138-

5p in the 3’UTR, and used molecular biology to validate Kv1.2 at multiple binding sites. It was 

previously demonstrated that axonal addition of the miR-138 inhibitor alone led to a 

reduction in cellular excitability compared to addition of the non-targeting microRNA control 

probe (see figure 5.4.1.) Additional evidence from the literature had also suggested that in 

vivo Kv1.2 is primarily located in the A-fibres of the DRG neurons (Tsantoulas and McMahon, 

2014). Since microRNA is involved in translational repression or the degradation of target 

mRNA (Bartel, 2004; Jackson and Standart, 2007) it was deduced that miR-138-5p could 

regulate DRG excitability via repression of mRNA for ion channels regulating conductance of 

the action potential.  

 

In this experiment, small interfering RNA (siRNA, see Chapter 2.4.2) for Kv1.2 was added to 

the axons of neurons cultured in microfluidics. Unlike miR-138-5p, which most likely targets 

repression or degradation of multiple proteins in the axon, the siRNA for Kv1.2 only targets 

degradation of mRNA for Kv1.2.  

It was hypothesised that downregulation of the target of interest (Kv1.2) would lead to 

changes in the resting membrane potential, and increased excitability of the cell.  If Kv1.2 was 

a real target for miR-138-5p, then knockdown of Kv1.2 in the axon was hypothesised to mimic 

the effects of miR-138-5p on neuronal excitability. To investigate this hypothesis, siRNA for 

Kv1.2 was added to the axons to selectively induce reduction of Kv1.2 expression.  
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The time course analysis in figure 5.4.11A shows that there was a rapid increase in 

fluorescence observed upon stimulation with KCL. The treatment with the siRNA for Kv1.2 

(and subsequent knockdown of Kv1.2) did not reduce viability of the cells or render the 

neurons unresponsive to stimulation by KCL. The amplitude of the response following axonal 

stimulation with KCL was not significantly different if the axons had been exposed to the 

siRNA for Kv1.2 or the siRNA non-targeting probe (figure 5.4.11B.) 

For reference, the peak excitability of the neurons incubated with siRNA for Kv1.2 was 0.30ΔF, 

compared to 0.20ΔF following axonal incubation with a miR-138 power inhibitor (figure 5.4.1) 

and 0.64ΔF in untreated microfluidics (figure 4.2.2.) 

In these preliminary experiments knock-down of Kv1.2 in the axon did not appear to modulate 

excitability, so at the moment it does not appear to be the only target of miR-138-5p in this 

process. There was potential for this experiment to be development further focusing on 
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A) Time course analysis comparing the amplitude of neuronal excitability following axonal stimulation with KCl (25mM.) siRNA 

for Kv1.2 or the non-targeting smartpool siRNA control was added to the axonal compartment for 24-hours prior to axonal 

stimulation. Treatment did not evoke a significant difference in the amplitude of responses between treatments.  

B) Increase in fluorescence following stimulation increased following axonal incubation with siRNA for Kv1.2 or the non-targeting 

siRNA control. Results of an unpaired t-test showed no significant difference between the evoked Ca2+ response between 

conditions. N=7, Bars show mean ± SEM. 

Figure 5.4.11: Prolonged incubation of the axonal compartment (24-hours) with 100nM siRNA for Kv1.2 evoked small changes in 

neuronal excitability relative to the non-targeting siRNA control sequence. Evoked change in excitability was not deemed 

statistically significant at N=7 biological replicates 
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different concentrations of siRNA, a longer incubation period with siRNA or the co-incubation 

with a second siRNA of interest (for example where Kv1.1 and 1.2 are often seen to form 

heterotetramers.) 

 

In line with the objectives for this chapter, the following conclusions can be drawn from 

these studies:  

1. miR-138-5p regulates excitability of DRG neurons via local translation in the axon. 

2. Two target sites for Kv1.2 were validated as targets for binding with miR-138-5p via 

bioinformatics, luciferase reporter and site directed mutagenesis 

 

Future works could have been to confirm the interaction between miR-138-5p and Kv1.2. It 

was hypothesised that the reduction in cell excitability observed by treatment with a miR-138 

inhibitor could be rescued by the dual addition of the miR-138 inhibitor and siRNA for Kv1.2.  

 

5.4.7 Discussion and Chapter Conclusions: 

The results of parts A and B of this chapter suggested that miR-138-5p is more likely involved 

in local translation and regulation of proteins such as potassium channels on the peripheral 

terminals of the small fibre DRG neurons, as opposed to the TRPV1 receptor. Some changes 

in excitability were detected when miR-138-5p was inhibited in the presence of inflammatory 

mediators. However, the somal upregulation of miR-138-5p in the cell associated with 

exposure to inflammatory mediators was not deemed to be significant. On the contrary, the 

localised inhibition of miR-138-5p in the axonal compartment induced a significant decrease 

in cellular excitability when axons were stimulated with KCL. Therefore, the role of miR-138-

5p in local translation of Kv channels was investigated.  

 

At a molecular level, pathologies such as pain are linked to changes in the way in which 

excitable cells signal. For example, in a state of hyperalgesia the exposure of the nerve 

terminals to an inflammatory stimulus has induced a state of increased excitability. Rapid 

evoked firing of the sensory nerves makes the terminals more sensitive to stimulation, and as 

such a noxious stimulus is often detected as more painful than it was before. At the centre of 

research on mechanisms of inflammatory pain have often been the VGSCs, specifically NaV1.7 
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and NaV1.8, where the exposure to inflammatory mediators induces phosphorylation of 

sodium channels and increased ectopic firing of DRG fibres (Cummins, Sheets and Waxman, 

2007; Hameed, 2019).  

In this work I have proposed a mechanism by which altered expression of voltage gated 

potassium channels, specifically Kv1.2 can be elucidated in the development of a state of 

increased excitability of DRG fibres. Voltage-gated potassium channels (Kv) have been shown 

to regulate both the amplitude and the duration of the action potential, as well as frequency 

of neuronal firing in response to membrane depolarization, and undoubtedly maintaining the 

resting membrane potential (Hille, 2001). The transmembrane Kv family are activated by 

depolarization of the membrane, and are responsible for the repolarization of the membrane 

potential to resting state (Kim and Nimigean, 2016). Therefore, it is understandable that the 

activation of these channels is dependent on the influx of sodium into the axon when the 

membrane is depolarized.  

 

The propagation of the action potential is dependent on sequential activation of K+ channels, 

as depicted in figure 1.4.3, chapter 1. In sensory neurons of the PNS, such as the DRG neurons, 

the Kv1 family of channels are largely expressed in medium to large diameter neurons 

(Rasband et al., 2001). The Kv1.2 channel is well documented to have roles in maintaining the 

resting membrane potential, as well as mediating repolarization of the neuron following firing 

of an action potential (Long, Campbell and MacKinnon, 2005). The heterotetrameric Kv1.2 

channels are slow to activate in order to rectify depolarization of the membrane (Manis, 

2014), and their role in modulation of the resting membrane potential is well documented 

(Trimmer, 2015). The inactivation of these delayed rectifier channels is not deemed to be 

dependent on a change in the driving force, and some evidence has also suggested that Kv1 

in the DRG neurons channels may cluster at the juxta-paranodal regions with other Kv (e.g. 

Kv1.1 and Kv1.4) subtypes to help modulate downstream action potential propagation 

(Rasband, 2010).   

Mutations in Kv1.2 have previously been observed in vivo with regards to both gain-of-

function and loss-of-function (Syrbe et al., 2015). At a single cell level it has become evident 

that loss of function of Kv1.2 can result in impaired membrane repolarisation and neuronal 

hyperexcitability (Kearney, 2015). There is even evidence to support the theory that different 
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variants of the Kv1.2 channel can be expressed, supporting a “gain-of-function” mutation and 

inducing hyperexcitability of neuronal networks in the CNS (Niday and Tzingounis, 2018).  

Evidence of Kv1.2 having a significant effect on peripheral nerve fibres is more limited. 

Although the Kv1.2 channel is well characterised in sensory neurons, especially the larger 

diameter A-fibres of the DRG  (Tsantoulas and McMahon, 2014) it is often hard to pin-point a 

pathological effect arising from changes in expression in one protein in vivo.  

 

It has been suggested, that the down-regulation of these channels is partly responsible for 

increased ectopic firing of DRG neurons in a neuropathic pain state (Fan et al., 2014). In a CCI 

model in rats, there was shown to be a concomitant link between knockdown of Kv1.2 and 

upregulation of a different microRNA of interest (Zhang et al., 2020). This work was 

completed in adult rats rather than embryonic mice, and studied changes in protein 

expression at the level of L4-L6 in the spinal cord following nerve injury. As anticipated, CCI 

at L4/L5 induced rapid reductions in the paw withdrawal threshold, and animals displayed 

signs of mechanical allodynia. This corresponded with a significant decrease in protein 

expression of Kv1.2 as determined by western blot (Zhang et al., 2020). However, given that 

Kv1.2 is implicated in neuropathic pain, and is known to be expressed on the select fibres of 

the DRG neurons it was considered a good target for miR-138 in this study.  

 

In a recent study it was shown that there was a link between long non coding RNA silencing 

of Kv1.2 in DRG neurons and the development of a neuropathic pain state by increased 

membrane depolarization (Zhao et al., 2013). On the contrary the role of short, non-coding 

RNA such as microRNAs have not been widely investigated with regards to the expression of 

Kv1.2.  

 

Based on the results of this work it could be hypothesised that miR-138-5p contributes to the 

regulation of neuronal excitability, potentially via translational repression of ion channels 

such as Kv1.2 on the terminals of sensory neurons. However, given that the addition of siRNA 

for Kv1.2 alone did not induce a significant increase in neuronal excitability, it is unlikely to be 

the only target for miR-138-5p involved in regulation of membrane excitability. 
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6 General Discussion and Conclusions 
 

6.1 Role of the DRG neurons in peripheral neuropathy:  

As described in Chapter 1.5.3 and 3.1.2 the development of chronic pain is concomitant with 

the peripheral nociceptor neurons of the DRG fibres becoming irreversibly sensitised. The 

molecular mechanisms underlying development of some pathologies including neuropathic 

pain are still being elucidated. Animal models have demonstrated that there is more than one 

peripheral and central component underlying the onset of painful neuropathies. At present 

there are several in vivo models that have been shown to successfully model behavioural 

characteristics of neuropathic pain. For example chronic constriction injury (CCI) models have 

shown the hyperexcitability of axotomized DRG neurons, and the eventual onset of central 

sensitisation (Chung and Chung, 2002). Other models include the use of spinal nerve ligations 

(SNL) to demonstrate onset of paw withdrawal resultant from reduction in thermal or 

mechanical threshold for stimulation (Wang and Wang, 2003; Jaggi, Jain and Singh, 2011). 

 

Until recently in vitro modelling has been less successful at studying the molecular 

mechanisms underlying the development of pain. Largely this was due to the limited capacity 

of standard culture techniques to replicate the polarized nature of neurons in vitro (see 

Chapter 1.2 and 3.1.3.). The results from Chapter 3 showed that the use of 

compartmentalised microfluidic chambers described in this thesis enabled the development 

of an in vitro model that can replicate some of the key aspects of neuronal excitability as seen 

in vivo. Although direct co-culture of macrophages and DRG neurons was not deemed 

possible in this format, the use of cytokine rich media led to the development of a flexible 

model for quantifying changes in neuronal excitability. Given that this work was carried out 

in vitro, it is important to re-iterate that this was not directly a model of pain, but modelled 

changes in excitability as a proxy for nociceptive neuron function. 

The results of live cell imaging in Chapters 4 and 5 have discussed that the amplitude and 

duration of a neuronal response was lower when only the axons were stimulated in 

microfluidic devices. These results highlighted how microfluidic chambers present advantages 

in terms of temporal responses, but also provide the capacity to modulate processes localised 

to the axon. Previous efforts by the Dajas-Bailador lab have used compartmentalised 
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microfluidic cultures to highlight the polarised nature of neurons and local protein expression 

in the axon (Lucci et al., 2020). The model described in this thesis brings a dynamic dimension 

where function of excitability was studied locally by quantifying evoked changes in Ca2+. Local 

translation is known to play a role in pain (Ferrari et al., 2013) but has largely been ignored so 

far due to the inaccessibility of local axons in vivo and inability of standard in vitro models to 

do it. In conclusion, compartmentalised microfluidic models such as ours provide a novel 

technique for studying local protein expression in the axon using in vitro models.  

 

6.2 Investigation of inflammation on the amplitude of evoked Ca2+ transients 

in the soma of sensory neurons: 

Following insult to the nerve, the onset of inflammation indirectly regulates excitability of the 

DRG neurons, most likely via the modulation of membrane conductance. In states of 

inflammation, the axons of the DRG neurons become “stressed” and depleted of 

mitochondrial stores (Jha et al., 2015; Misgeld and Schwarz, 2017). Neurons are highly 

metabolically active and the continual replenishment of ATP is essential for regulation of basic 

cellular functions. This includes resolving inflammation, regulating propagation of the action 

potential and regulation of membrane conductance. It has been shown that in the onset of 

peripheral sensitisation associated with inflammation, there is a rapid influx of M1-like 

macrophages to the damaged tissue (Godai et al., 2014). Furthermore, during the resolution 

of inflammatory pain (in mice) the M2-like macrophages infiltrate the nerve terminals of the 

DRG, concurrent with increased levels of oxidative phosphorylation in the neurons.  

 

In vivo, intraplanar injection of carrageenan into the hindpaw of mice shows rapid 

development of hyperalgesia (Winter, Risley and Nuss, 1962; Whiteley and Dalrymple, 2001) 

that can be measured using behavioural analysis such as ‘dynamic weight bearing.’ In a recent 

study it was shown that when macrophages were selectively depleted from mice, they still 

showed the rapid onset of pain in response to carrageenan, but critically this pain response 

did not resolve (Raoof et al., 2020).  

The work in this thesis has also investigated the role of inflammatory modulation on the 

terminals of sensory DRG neurons. The results in chapter 3 showed the development and 

characterisation of two populations of inflammatory macrophages. The results in Chapter 4 



 207 

showed that the exposure of the neuronal terminals to the polarized media did not initiate a 

state of hyperalgesia, instead the cytokine-rich media reduced the overall excitability of the 

DRGs.  In Section 1.8.2 the dynamic nature of macrophage cells was discussed, and in vivo 

studies have demonstrated that it is the metabolic nature of the inflammatory cell that 

contributes to the development of pain states such as hyperalgesia. For example, in vivo, the 

M1-macrophages are known to be glycolytic cells, whilst the M2-like cells are dependent on 

oxidative phosphorylation (Rath et al., 2014b; Angajala et al., 2018; Hobson-Gutierrez and 

Carmona-Fontaine, 2018). In chronic pain it has been demonstrated that where oxidative 

phosphorylation is impaired (Duggett, Griffiths and Flatters, 2017) so is Ca2+  buffering in the 

cell, and consequently action potential propagation. It was hypothesised that in a similar way 

that cortical neurons uptake mitochondria from surrounding astrocytes following a stroke 

(Hayakawa et al., 2016), so do the DRGs uptake mitochondria from surrounding M2-like 

macrophages in the resolution phase of inflammatory pain (Raoof et al., 2020). 

Therefore, it could be hypothesised that the decrease in excitability of neurons exposed to 

cytokine-rich media in vitro was a response to the exposure of the cytokines present in the 

media, and not resultant from exposure to the macrophages themselves. Although the results 

of this model did not directly mirror what can be observed in vivo, this setup demonstrated 

the flexibility microfluidic modelling, with potential for the model described here to be 

developed further.  

 

6.3 The role of microRNA in regulation of sensory neuron excitability: 

In vivo the onset of pain and neuronal hypersensitivity is often associated with underlying 

changes in protein expression. For example, as described in Chapter 1.5.2, the sensitisation 

of peripheral nociceptors may be caused by translational regulation of receptors on the 

terminals of the DRG neurons. Given that microRNAs target translational repression (or 

degradation) of multiple mRNAs, it is hypothesised that microRNAs expressed in the sensory 

DRG nerves regulate local protein translation, and thus contribute towards regulation of 

neuronal excitability. Several studies have previously implicated the role of microRNAs in 

regulation of DRG excitability, often in the context of neuropathic pain (Aldrich et al., 2010, 

Zhao et al., 2010, Sakai et al., 2013.). 
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In an SNL model of neuropathic pain, it was observed that there was a significant down-

regulation of miR-183 in the ipsilateral L5 DRG, corresponding with the onset of mechanical 

hypersensitivity (Aldrich, et al., 2010). Furthermore, microarray analysis using total RNA 

isolated from L5 DRGs in rats implicated the downregulation of microRNAs such as miR-7a in 

the hyperexcitability of sensory neurons, arising from upregulation of voltage-gated channels 

(Sakai et al., 2013).  

In vivo loss of function studies have also previously elucidated the upregulation voltage-gated 

channels such as  NaV1.8 in hyperexcitability of the DRG neurons in neuropathic pain models 

(Thakor et al., 2009).  In a spared nerve injury model of neuropathic pain, the down-regulation 

of miR-182 correlated with the upregulation of the NaV1.7 channel on nociceptive DRG fibres, 

and the onset of neuropathic pain behaviours. The selective over-expression of miR-182 at 

L4-L6 was shown to reverse this change over-expression of NaV1.7 and reduce the 

hyperexcitability of the DRG neurons (Cai, et al., 2018).   

One advantage of the microfluidically isolated culture used in this thesis was the capacity to 

study changes in excitability at a molecular level. One mechanism of which has been explored 

in Chapter 5, investigating the effect of microRNA on excitability of small diameter DRG 

neurons. Of particular interest to this project was the role of miR-138-5p in regulating 

neuronal excitability in the context of pain. MiR-138-5p is a widely reported microRNA, with 

evidence for roles in suppression of axonal regeneration in the CNS (Liu, et al., 2013)  and has 

also been implicated in inflammation and tumour suppression (Bai, et al., 2018). Chapter 5.1.2 

describes the upregulation of miR-138-5p in a model of hyperalgesic priming. However, 

several other works have implicated miR-138-5p in pain. For example, in a recent CCI model 

for neuropathic pain in adult mice 125 microRNAs were differentially expressed in the sciatic 

nerve. This included a significant decrease in miR-138-5p corresponding with the onset of 

mechanical allodynia  (Wilkerson, et al., 2020).  

The microfluidic nature of the devices used in our model showed that localised inhibition of 

miR-138-5p in the axons of microfluidic culture of DRG neurons led to a decrease in neuronal 

excitability. As discussed in Chapter 5, bioinformatic targets searches combined with the 

results of the Ca2+ signalling assay suggested the role for miR-138-5p in specific inhibition of 

potassium channels.  
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6.4 Dysregulation of potassium channels in disease and neuropathy: 

Excitability is a key function of neurons, both with regards to homeostatic function and 

development of pathologies such as pain. This has been discussed at length in Section 4.1.1, 

and supported by the results shown in Chapters 4 and 5. Neuronal excitability is regulated by 

subcellular expression and localization of ion channels, with evidence showing that ion 

channels form ‘clusters’ at different sites throughout the axon (Rasband, 2010). The tight 

regulation of the conduction and propagation of an action potential along the axon is 

essential for normal neuronal function. Underlying this control of membrane excitability is 

the expression of multiple ion channels on the nerve terminals and along the axonal 

membrane. Perhaps one of the most well documented examples of this are the voltage-gated 

ion channels. The dual signalling between sodium and potassium is key in maintaining the 

resting potential of the neuron. But what happens when this signalling goes awry?  

 

It has been suggested, that down-regulation of the voltage-gated ion channels involved in  

regulating membrane conductance is partly responsible for increased ectopic firing of DRG 

neurons in a neuropathic pain state (Fan et al., 2014). In particular the down-regulation of 

Kv1.1 and Kv1.2, both of which are expressed on the juxta-paranodal regions of DRG neurons, 

has demonstrated hyperexcitability of cells in loss-of-function studies (Tsantoulas and 

McMahon, 2014). For example, in a CCI model in rats, there was shown to be a concomitant 

link between knockdown of Kv1.2 and upregulation of a different microRNA of interest (Zhang 

et al., 2020). This work was completed in adult rats rather than embryonic mice, and studied 

changes in protein expression at the level of L4-L6 in the spinal cord following nerve injury. 

As anticipated, CCI at L4/L5 induced rapid reductions in the paw withdrawal threshold, and 

animals displayed signs of mechanical allodynia. This corresponded with a significant 

decrease in protein expression of Kv1.2 as determined by western blot (Zhang et al., 2020). 

However, given that Kv1.2 is implicated in neuropathic pain, and is known to be expressed on 

the select fibres of the DRG neurons it was considered a good target for miR-138 in this study.  

 

6.5 Concluding remarks: 

The work in this thesis details the use of compartmentalised microfluidic cultures to model 

changes in excitability of sensory DRG neurons. It was possible to utilise the microfluidic 
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isolation of the device to expose the axons and the soma of the DRG to separate micro-

environments. Of particular interest to the study of nociception was the exposure of the 

axonal compartment to inflammatory stimuli. A unique set of in-house stimuli were 

developed from the culture and polarization of bone marrow derived macrophages. 

The model described was flexible and could be repeated with different sets of inflammatory 

mediators if desired. For example, protocols for culture and polarization of spinal cord derived 

microglial cells were also developed, which could be used to investigate changes in DRG 

excitability resulting from changes in signalling from the CNS.  

In our model, the use of live-cell imaging was particularly important to quantify changes in 

neuronal excitability, with the nature of microfluidic modelling providing the capacity to 

monitor changes in evoked Ca2+ transients at the soma as a result from axonal stimulation. 

This unique property of the microfluidic devices also permitted the investigation of local 

translation of protein. Neurons are highly polarised cells, and it was evident that localised 

stimulation of the axonal terminals with KCL induced a rapid and significant increase in 

neuronal excitability. Therefore, the effects of small non-coding RNA on translational 

repression in the axons were investigated. Kv1.2 was identified as a target for miR-138-5p, 

where inhibition of miR-138-5p in the axons induced a reduction of neuronal excitability in 

microfluidic cultures. It was hypothesised in Chapter 5 that Kv1.2 was a target for miR-138-

5p, with bioinformatic predictions showing 5 potential binding sites for miR-138-5p in the 

3’UTR (see Appendix, figure 7.7.1.) However, we were also able to validate some of these 

interactions between miR-138-5p and Kv1.2 using a dual luciferase reporter assay and site 

directed mutagenesis assays.   

In our final pilot studies, knock-down of Kv1.2 mRNA in the axon did not show a significant 

increase in neuronal excitability. Several other studies have investigated the role of Kv1.2 in 

hyperexcitability and development of pain-states such as neuropathic pain (Everill and Kocsis, 

2000; Xiuli et al., 2013; Laumet et al., 2015; Zhao et al., 2017). The majority of these pain-

based studies were conducted in vivo, due to the limited capacity of most in vitro models to 

replicate the complex morphology of the DRG neurons and surrounding non-neuronal cells. 

However, microfluidic model such as the one described in this work can overcome these 

hurdles. Of course, unlike siRNA, miRNAs target the translational repression of multiple 

mRNAs, and therefore it is unlikely that in vivo miR-138-5p only inhibits the expression of 

Kv1.2 at the axonal terminals of the DRG neurons. The results from the final experiment with 
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siRNA for Kv1.2 described in this thesis did not conclusively link upregulation of protein to 

miR-138-5p. The results of a bioinformatic target search also highlighted inward rectifiers and 

two-pore potassium channels such as TREK-2 as targets of interest. It could be hypothesised 

that miR-138-5p has roles in regulating the expression of multiple subtypes of potassium 

channels. The combined effect of miR-138-5p on multiple ion channels of interest could 

demonstrate a more significant effect on regulating membrane excitability (LaMotte & Ma, 

2007). 

 

6.6 Implications of this study on future work:  

In order to discover more effective medicine for pain, there is an ever-present need for 

biologically relevant in vitro models. Microfluidic models provide the necessary tool for 

reproducible culture in vitro that replicate the polarity of the cells observed in vivo. This could 

help to lead to the development of in vitro models for the study of pain, that are more 

predictable to the response observed in humans. 

The model described in this thesis provided the capacity to investigate the excitability of DRG 

neurons following localised exposure of the axons to a range of stimuli and molecular 

manipulations. Critically, the microfluidic nature of the devices meant that the DRG neurons 

retained their polarised morphology when cultured in vitro.  The work in this thesis has 

already led to advances in the optimisation of the method of culture used in the lab, as well 

as the development of high throughput templates for analysis of Ca2+ signalling.  As with the 

development of any model, there are still unanswered questions for future studies. The 

identification of future work would be dependent on the question being asked of the model. 

Here I have provided a few examples of how the model I have described could be further 

progressed in future works:  

 

6.6.1 Investigation of neuronal excitability on inflammation: 

Future works could involve the development of a model involving the use of triple channel 

devices (as show in schematic 3.1.2.) In the same way in which this project has modelled 

changes in excitability of the DRGs induced by changes in peripheral inflammatory cells, it 

could be interesting to investigate the downstream effect of this neuronal modulation on cells 

of the CNS such as microglia. This work also developed a protocol for the isolation and 
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characterization of populations of microglial cells in vitro. It could be hypothesized that for 

additional complexity, the next stage would be to investigate how the induced changes in 

neuronal excitability observed in this project could affect the morphology and phagocytic 

activity of spinal cord derived microglial cells.  

 

6.6.2  Investigation of the targets for miR-138-5p in regulating neuronal 

excitability: 

 

The preliminary study of siRNA for Kv1.2 on excitability of DRG neurons did not show a 

significant increase relative to the control at N=6. Expansion of the work shown in this project 

could include further development of the siRNA study, which time-permitting would have 

most likely been the next investigation of this Thesis. Using siRNA in co-incubation with a cell 

permeable miR-138-5p inhibitor, the decreased excitability induced by miR-138-5p inhibition 

could be potentially ‘rescued’.  

Other options could also include the development of the microfluidic model as a ‘screen’ for 

other targets regulated by miR-138-5p (or other microRNAs of interest.)  
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7 Appendices  
7.1 Reduction in the concentration of GDNF did not prevent non-neuronal 

cell migration  

7.2 Composition of polarized macrophage media:  

Although 40 targets were tested relative to an endogenous positive control, a negative 

control and a blank control, the preliminary fold changes in select target of interest are 

displayed below. The positive control was provided by biotin-conjugated IgG printed directly 

onto the array membrane in the upper-left and lower-right corners. The negative control 

spots were printed with the same buffer used to dilute antibodies printed on the array. 

Therefore, the signal intensities of the negative controls represented the background plus 

non-specific binding to the printed spots and could be used for background correction of the 

signal.  

 

The fold change of each target was measured relative to the endogenous positive control 

provided on the membrane. As part of a preliminary approach to investigate cytokine 

B 
 
B 

A 
 
A 

C 
 
C 

 
Figure 7.1.1: Measuring non-neuronal cell migration in microfluidic cultures; A) DiV3 E18 rat DRGs (01/12). B) DiV4 P2 rat DRGs 

(04/12). C) DiV4 P2 Rat cells cultured with additional anti-mitotics.  

A) DiV3 E18 rat DRGs . B) DiV4 P2 rat DRGs. C) DiV4 P2 Rat cells cultured with additional anti-mitotics.  

  

Figure 6.6.1: Measuring non-neuronal cell migration in microfluidic cultures; 
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regulation, this assay was replicated once, using 2 samples for each polarized media, and 

where each repeat was extracted from a different batch of polarized cells.  

Luminescence was then used to detect the relative concentration of each antigen in the 

media. In this instance both conditions were exposed for 10 minutes for direct comparison, 

although it was noticeable that the M2-like media displayed lower raw integrated density, 

particularly with relevance to the positive control. For this reason, results are shown as the 

raw integrated density (in pixels) with the fold change of each cytokine relative to the 

endogenous positive control. On each membrane, the most highly expressed chemokine was 

used to select the area for analysis.  
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Figure 7.2.1: Results of a 40-target cytokine array using inverted densitometry for a semi-quantitative analysis of the fold 

change in the most highly expressed cytokines present in different media subtypes. N=2, error bars representing the 

standard deviation of the fold change. 
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Two batches of media were tested, from different dates of bone marrow extraction, and 

subsequent polarization. Although each batch of media show variation in the expression of 

specific markers there was some overlap between the most highly detected markers in both 

analysis formats. This is demonstrated by the prism analyses included above (figure 7.2.1). 

There was some initial concern by the low levels in expression of cytokines that have been 

heavily documented in inflammatory studies. However, it is important to note that different 

cytokines appear at different time points throughout the pro-inflammatory and resolution 

phase of injuries (Melton et al., 2015).  

 

It was unlikely that the protocol for polarizing macrophages generated two discrete 

populations of cells. The M1/M2 nomenclature is useful for defining the two populations of 

cells produced but fails to acknowledge the presence of intermediate polarization stages. 

Results of the cytokine array demonstrated that despite expected overlaps, the populations 

of polarized macrophages present clear shifts in cytokine profiles, and helps to define the 

inflammatory state (Orecchioni et al., 2019; Zajd et al., 2020). However, the M2 population in 

particular was unlikely to be purely an M2a phenotype. In order to better understand the 

results of the array, I have highlighted the importance of some of the most highly expressed 

cytokines.   

 

CCL2 (MCP-1): 

CCL2 (formerly MCP-1) is an inflammatory chemokine produced by monocytic cells, as well as 

fibroblasts and epithelial cells during the innate immune response (Deshmane et al., 2009). 

There is vast evidence for the role of CCL2 as a pro-inflammatory chemokine that is involved 

in the influx of macrophages and fibroblasts to a site of injury or inflammation. However, the 

role of CCL2 as an innate polarizing signal for macrophages remains somewhat unclear. A high 

level of CCL2 production can be indicative of a shift towards the M2-like phenotype, where 

blockade of CCL2 binding shows a decrease in anti-inflammatory cytokine production in in 

vivo modelling of inflammation (deSchoolmeester et al., 2003). However, CCL2 is also 

implicated in disease pathologies such as rheumatoid arthritis where macrophages are 

observed polarized towards an M1-like phenotype. For example, it has been demonstrated 

that stimulation by LPS induced polarization towards the M1-like phenotype, and correlated 



 216 

with high levels of MCP-1 (CCL2.) Moreover, the level of CCL2 in the blood correlated with 

other markers of rheumatoid arthritis, and could therefore be considered a biomarker (Liou 

et al., 2013). Our results also showed that CCL2 was highly expressed in both M1-like and M2-

like cells relative to the positive control, although the release from M2-like cells appeared to 

be higher than that of the M1 population. Therefore, the role of CCL2 in driving cytokine-

specific immune responses is both complex and dynamic.  

 

RANTES (CCL5): 

CCL5 was detected at a 2.2x increase in the M2-like population of cells, despite widely being 

regarded as a pro-inflammatory cytokine. However, it has also been demonstrated that some 

M2-like cells produce high levels of CCL5 in order to recruit other inflammatory cells 

(neutrophils, monocytes etc.) in a regulatory inflammatory response (Atri, Guerfali and 

Laouini, 2018). There is evidence to support the release of CCL2 (and CCL5) from both M1-like 

and M2-like cells in bone marrow derived cultures (Zajd et al., 2020) although the relative 

concentrations of cytokines present will always be dependent on the microenvironment of 

the cell culture. This may have been affected by the time at which the media was removed 

from the cells for testing, or the length of initial exposure to a stimulus, or even the type of 

media cells were cultured in (Murray et al., 2014a).  

 

IL-6: 

Other important examples include the small increase in IL-6 (0.97X) observed in the M2-like 

culture. IL-6 is a pleiotropic cytokine, with roles in modulating both pro- and anti-

inflammatory pathways. However, it is acknowledged that the presence of IL-4 (the stimulus 

used to induce the M2-like phenotype) can cause downstream release of IL6 from M2-cells 

(Casella et al., 2016).  
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7.3 Microglial Phagocytosis assay:  

Having demonstrated that it was possible to detect changes in the phenotype of the spinal 

cord derived microglial culture, the next step was to investigate if this led to a functional 

change in the induction of phagocytosis, typical of polarized microglia cells (see figure 7.3.1 

below for images acquired at 63X magnification). By incubating pre-polarized cells with 

yellow-fluorescent latex beads (1µM diameter, Sigma L1030) the average number of beads 

ingested in a set time period was used as a measure of phagocytic activity. This assay is ideally 

completed using confocal microscopy to confirm the bead has been phagocytosed. Without 

access to this equipment, we used widefield imaging and z-stacks confirmation to determine 

overlap of the bead with the image of the cell suggests migration towards the cell body.  

 

Cells were exposed to the latex beads on separate occasions for either 24 or 48 hours, to 

quantify how quickly a microglial phenotype would begin to ingest a foreign body. In order to 

analyse these findings, the number of beads versus the number of cells in a single frame (20X 

magnification) was manually counted. From here, the number of beads overlapping with the 

cell body (stained with iba-1) was calculated and used to estimate the average number of 

beads phagocytosed per cell. After 24-hours exposure, results showed that the number of 

beads overlapping with the microglial cell body was highest in the M1-like population (20.2 ± 

15.8) compared to only 14.12 ± 14.1 in the M2-like cells, see figure 7.3.1C. Since this metric 

did not demonstrate a significant difference in the number of beads ingested between the 

phenotypes used. Therefore, it was decided not to take this metric forward for further 

analysis. 
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7.4 Analysing changes in morphology dependent on cellular phenotype:  

Feret’s diameter is measured by the greatest distance between two points along the diameter 

of the cell. The equation for the transformation index is as follows: 

[perimeter of the cell (μM2)/4π[ cell area (μM2)] (Fujita et al., 1996) 
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Figure 7.3.1: Looking at the overlay between Iba-1 and the green latex bead as a marker for how the phagocytic activity of 

microglial cells is dependent on phenotype. 
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This equation can be used to calculated microglial ramification state, based on phenotype of 

the cell. A cell with long processes and a small soma, such as the standard “anti-inflammatory” 

phenotype, has a large index value, and via versa. It is also important to note that this index 

is only dependent on cell shape, not on cell size. Figure 7.3.1 (above) at 63X magnification 

clearly demonstrates distinct morphological changes of the microglial culture, dependent on 

the polarisation state and subsequent ramification.  

 

The images acquired from the phagocytosis assay were also used to calculated Feret’s 

diameter: 

 
M1-like  M2-like  

63X 30.35125 52.612 

20X 28.0848 27.60432 

Average area 

(µM) 29.218025 40.10816 

Table 7.1.: Morphological changes of microglial cultures as determined by a Feret’s diameter calculation 

In total 10 replicate images from the phagocytosis assay were used to calculate Feret’s 

diameter. (5x replicate images at 63X magnification and 5x images at 20X magnification.)  

 

 

7.5 The stimulation of axons by cytokines used to polarize macrophages did 

not evoke a significant increase Ca2+ transients: 

 

It was demonstrated that acute exposure of the axonal compartment to media extracted from 

polarized macrophages elicited a transient, but small increase in cellular excitability. Although 

the contents of the polarized media had been semi-quantified using the cytokine array in 

chapter 3 (supplementary figure 7.2.1) it had not yet been determined whether the stimuli 

used to polarize the macrophages would also induce a change in the excitability of the DRG 

neurons. When media was extracted from the polarized macrophages and used to stimulate 

the axonal compartment of a microfluidic device, it is likely that there was still a low level of 

cytokine in circulation, even following replacement of fresh media.  
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For this reason, cytokines such as IFNy and IL-4 were diluted directly into complete imaging 

buffer and used to stimulate the axonal compartment of microfluidic devices (N=3.)  

 

The exposure to the cytokines shown did not induce significant release of Ca2+ transients in 

the soma.  The average peak excitability recorded is shown in the table shown below for the 

relative stimuli used: 

 

Stimulus △F Max 
M1 (NPR 2H fresh) 0.053 
LPS 0.05 
IFNy 0.1 
    
M2 (NPR 2H fresh)  0.099 
IL-4 0.02 

Table 7. 2: Peak excitability induced following axonal exposure to stimuli shown 

The response to M1-like media was very close to that of LPS and less than that of IFNY. On 

the contrary, if cells were stimulated solely with IL-4, the average peak excitability was lower 

than if the cells were stimulated with the media containing the cytokines released from anti-

inflammatory like macrophages. The increases in excitability were negligible with respect to 

Capsaicin or KCL and were not further investigated.  
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7.6 QPCRs from Pooled samples:  

 

Figure 7.4.1 shows an N=1, where 3 biological replicates of RNA extractions were pooled prior 

to qPCR reactions.  

Result of two-way ANOVAs, where the mean fold-change has been compared with the other 

averages for the same compartment of the insert. In this way an ‘adjusted’ P-value was 

calculated allowing for inter-sample variation.  Results showed that there was no statistical 

significant increase in miR-138-5p expression in either the somal compartments in either the 

M1-media exposed cells or the M2-media exposed culture. It was hypothesised that by 

pooling the samples the significance was lost by reducing the N-number to 1. The data in 

supplementary figure 7.4.1 demonstrated a 0.9X change in miR-138-5p in axons exposed to 

M1-like media, relative to a 1.91X increase in miR-138-5p if cells were exposed to M2-like 

media. Evidence also showed that there was an increase in miR-138-5p in the soma relative 

to the DRG control media, irrespective of whether the axons were supplemented with M1-
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Figure 7.5.1: Quantification of localised effects of inflammatory mediators on expression of miR-138-5p in pooled 

samples of RNA 
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like media (3.92X increase) or M2-like media (5.68X increase.) However, only if the neurons 

were exposed to M2-like media was an increase in miR-138-5p observed both in the somal 

RNA and the axonal RNA extracted from the cells. 

 

7.7 pmiRGlo Plasmid Map (Promega): 

 
Figure 7.7.1: Plasmid map for pmiRGlo (Promega) 

 

7.8 miR-138-5p binding sites in the 3’UTR of Kv1.2: 

Figure 7.7.2; mmu-miR-138-5p binding sites in Kv1.2 as predicted by Ensembl. 
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