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Abstract

SURFACE-based mass spectrometry analysis benefits from the minimum sample

preparation required and high throughput nature of the analysis (few minutes

per sample) and shows therefore potential for tackling current issues in the field of

proteomics and metabolomics. This thesis aims to develop a robust high throughput

methodology for the quantitative analysis of surface-adsorbed proteins and for untar-

geted metabolomics

One of the current problems in the field of biomaterials research is the limited un-

derstanding of the mechanistic behind cell attachment and behaviour on polymeric

substrates. Fully synthetic substrates have been identified which support growth and

survival of human pluripotent stem cells. Pluripotent stem cells are a valuable cell type

for regenerative medicine due to their ability to differentiate into the three germ lay-

ers. To treat a single patient, more than a billion stem cells are required. Current cell

systems use biological feeder layers for stem cell expansion. However, these animal-

derived matrices are expensive, undefined, and show high batch-to-batch variation.

In order to move towards reproducible, industrial culturing of stem cells a suitable

growth substrate needs to be defined. Through high throughput biomaterials discov-

ery, it was shown that some fully synthetic polymers can maintain stem cell cultures to

a similar level as biological substrates.

Current understanding of the response of cells on those synthetic polymers is re-

latively poor. Research has shown that coating of synthetic polymers with culture

medium-derived proteins increase the cell attachment which is required for cell sur-

vival. This shows the potential role of culture medium proteins in the response mech-

xxi



anism of cells on synthetic polymers. However, current technology does not allow

analysis of (combinatorial) polymer libraries which has limited the understanding of

relation between cell response and physicochemical properties and molecular features

of the polymers. A full understanding of the cell-polymer response mechanism would

allow the development and rationalisation of synthetic polymers for culturing of pluri-

potent stem cells.

It was shown that liquid extraction surface analysis-tandem mass spectrometry

(LESA-MS/MS) is a suitable analytical technique for the analysis of in situ digested

proteins. LESA is a commercial system which can automatically extract analytes from

a given substrate and directly introduce the sample in to the MS. Here, this potential

was further explored for polymer array screening as well as polymers taken forward

for scale-up experiments. A suitable substrate was chosen (Droplet Microarray) which

allowed control over the spreading of the monomer solutions, digestion solution, and

organic extraction solvent for reproducible MS results. With carefully optimised LESA

and MS parameters, difference in protein adsorption could be detected between differ-

ent chemical surfaces. These difference in protein adsorption did not show a good cor-

relation with the observed cell response (attachment and number of pluripotent stem

cells). Through multivariate modelling was found that surface chemistry was found to

play a role in protein adsorption. Whilst array screening did not reveal solid evidence

of the importance of protein adsorption in relation to cellular response, experiments

of protein adsorption on a larger surface area (6-well plates) revealed higher protein

adsorption on polymers with higher numbers of pluripotent stem cells. Altogether,

LESA-MS/MS shows to be an interesting tool to quantitatively assess protein adsorp-

tion on synthetic polymers. The developed methodology can not only be further used

to study more complex growth media for human cell lines, but also extended study

the relation between protein adsorption and response of different organisms. The ad-

dition of LESA-MS/MS to high throughput screening of material microarrays might

reveal vital information and could assist in proper choice of polymers for biomedical

purposes.
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Further interest of surface analysis comes from the field of oncometabolomics. In

this thesis, paediatric ependymoma were analysed by Orbitrap secondary ion mass

spectrometry (3D OrbiSIMS) and LESA-MS/MS. The main challenge here was to ac-

quire data using only minimal tumour tissue which was available in the form of a

tumour tissue microarray. By analysing the same tumour tissue with two complement-

ary mass spectrometry techniques, a more complete metabolite profile could be ob-

tained. Moreover, the combination of 3D OrbiSIMS and LESA-MS/MS data followed

by partial-least squares discriminant analysis (PLS-DA) permitted the classification of

tumour tissue based on eventual recurrence. This means that certain metabolite levels

are indicative of tumour relapse. Understanding these changes in metabolite abund-

ance along with the changes in corresponding metabolic pathways could open new

insight into ependymoma relapse. Further, this analytical strategy would be suitable

to study other types of (tumour) tissues.
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CHAPTER 1

Introduction

1.1 BIOMATERIALS

BIOMATERIALS play a main role in nowadays medicine. A biomaterial is defined

as a non-drug substance or combination of substances derived from natural or

synthetic sources which can serve as treatment, augmentation or substitute for any

malfunction of the body. Application examples of biomaterials are: drug delivery, sup-

port for tissue regeneration and surface coatings for e.g. infection resistance in medical

devices or support of implants [1–4]. Biomaterials can e.g. serve as a (temporary) re-

placement for a malfunctioning body part [5–7] as well as system for increasing efficacy

of treatments [8–10].

Finding new biomaterials is essential to meet nowadays clinical questions as antibi-

otic resistance [3, 11]. It is therefore important to investigate in a fast and efficient man-

ner which materials are potential candidates to be used. Most biomaterials research

has been using a trial-and-error approach to identify candidate materials limiting the

discovery of new materials [12]. With current available techniques and computational

power, data-driven high throughput discoveries are emerging[12–15] .

An important part in the discovery of new biomaterials is investigating the inter-

action between the material of interest and endogenous and exogenous compounds.

Throughout the years, development of new biomaterials has been limited due to the

low throughput nature of assays for studying interactions between cells and biomater-
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ials [1]. The idea behind high throughput biomaterials discovery is to use miniaturised

libraries to identify relations between the chemical structure and cellular response [13].

Understanding how these interactions work will be a major leap towards rationalising

and improving design of new fit-for-purpose biomaterials. High throughput strategies

have already led to the development of an anti-bacterial coating for urinary catheters

[16]. In order for high throughput biomaterials discovery to be successful, the library of

candidate materials should consist of physicochemical diverse materials to maximise

the discovery space [17].

1.2 HIGH THROUGHPUT BIOMATERIALS DISCOVERY

The surface chemistry of a material plays an important role in the ability of cells to

adhere to the surface [18]. Synthetic materials like polystyrene are often used for cell

culturing. One of the drawbacks of using these relatively simple polymers is the limited

cell adherence and therefore the materials require a protein coating in order to enhance

cellular adherence [18]. However, the use of protein coatings can introduce interference

to the sample, which can complicate any biological assay. In the quest to discover

materials that offer cell adherence and pluripotency maintenance, it is essential that

no false discoveries are made due to matrix interference. Proper positive and negative

controls are therefore a necessity to include during an assay.

One of the main tools in high throughput biomaterials discovery is the use of mi-

croarrays [15, 19]. These microarrays consist of numerous unique polymers which are

printed on unique locations onto a substrate [15, 19]. The production of microarrays is

mostly accomplished by printing and to some lesser extent by lithography [15] (Figure

1.1).

3
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Figure 1.1: Schematic representation of a material microarray fabrication. (A) The ma-
terial solution is collected from the source plate. (B) The solution is then
dispensed onto the printing substrate. Adapted from Algahtani et al. [15]

Substrate selection is an essential part in microarray production. In general, mi-

croarrays are produced by spotting liquid material on a solid material. Suitable sub-

strate material should therefore allow the formation regular-shaped droplets in order to

provide high throughput read outs of biological assays [15]. Furthermore, the substrate

should ideally not introduce any defect in the materials of interest, establish sufficient

adhesion of the material and should be compatible (low fouling [20]) with the analytical

method of interest for screening the microarray [15, 19, 20]. Poly(hydroxyethyl methac-

rylate) (pHEMA) is commonly used as substrate for microarray production since it sup-

ports entrapment of the pre-polymer / polymer when introduced on the surface. In

addition, pHEMA has shown to reduce the cellular growth rate [15]. An alternative to

pHEMA is the use of an agarose coating since it immobilises the pre-polymer/polymer

in a similar way as pHEMA and possesses antifouling properties which limits the ad-

herence of cells [15, 21].

As mentioned before, the production of microarrays is in general performed using

printing methods [15]. These methods can divided into contact and non-contact print-

ing (Figure 1.2). In direct contact printing, a solid or grooved pin is loaded with the

pre-polymer/polymer (ink). A robot arm then moves to a predefined location and a

set volume of ink is released onto the surface once in contact. The main advantages
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of direct contact printing are high reproducibility of spotting, flexibility in choice of

solvent, low maintenance and easy to clean [15]. Nonetheless, the pin can easily dam-

age the surface when it is making contact. In addition, the amount ink deposited on

the surface is rather difficult to set since one cannot tune the dispensed volume [15].

Both issues can be overcome by using non-contact printing. Non-contact printing can

be divided into two main methods, namely piezoelectric printing and thermal printing

[15]. In the first method of printing a droplet is released from the nozzle by a applying

a voltage to the nozzle which is made from a piezoelectric material [15]. By altering

the voltage and frequency settings the droplet speed and size can be controlled [15, 22].

The latter non-contact printing method releases solvent from the nozzle by heating of

an air bubble causing an increase in pressure inside the solvent chamber which results

in ejection of a droplet [15, 23]. Both methods allow deposition of picoliter volumes

onto the substrate [15]. Non-contact printing allows on-surface mixing of solvents (e.g.

sample and substrate) which can be time-saving compared to pre-mixing of solvents

[15]. Further, the non-contact nature of printing avoids contaminating the nozzle with

particulates on the surface and avoids damaging the substrate [15]. In addition, non-

contact printing methods are able to rapidly print many materials with a spot size

which ranges in the low micrometre range [24]. On the other hand, only non-volatile

solvents can be used for non-contact printing since volatile solutions would evaporate

before reaching the substrate. Also, solvent viscosity is an important parameter since

more viscous solvents are prone to block the printing nozzle [15, 25].
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Figure 1.2: Schematic representation of different printing methods. In contact print-
ing, the solution is released upon contact with the substrate. For piezoelec-
tric printing, a voltage is applied on the piezoelectric pin which causes the
pressure to increase within the solvent chamber permitting release (jetting)
of picoliter droplet from the pin. The droplet volume can be tuned by al-
tering the applied voltage.

1.3 HIGH THROUGHPUT SCREENING ASSAYS

The microarray platform has been used several types of screening. For instance, this

approach has been used for drug discovery, gene function screening, cell adhesion as-

says and material discovery for controlling stem cell fate [26]. Below, only results and

findings of cell adhesion and material discovery papers will be revisited, since this is

related to the project.

Anderson et al. [27] used a range of polyester materials on a pHEMA substrate to

investigate how these materials affect stem cells. They observed inhibition of stem cell

attachment to a copolymer of poly(lactide), poly(glycolide) and poly(ethylene glycol)

(53:21:26 v/v/v) inhibits cell attachment. This is probably due to the presence of

poly(ethylene glycol) since this polymer was already found to inhibit cell attachment

[27, 28]. The stem cell attachment could be increased by adding a copolymer of poly-

(lactide) and poly(glycolide) (70:30 v/v). Same experiments were performed to invest-

igate cell attachment of bovine chondrocytes. The average cell count per polymer spot

was found to be 120.

A microarray containing extracellular matrix (ECM) proteins has been employed
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for investigating cellular differentiation [29]. The proteins used were fibronectin, laminin,

collagen I, collagen III and collagen IV. It was found that adherence of hepatocytes was

dramatically higher in ECM protein regions compared to regions that did not contain

any proteins. Further, the effect of the ECM composition on hepatocyte function was

studied by staining for intracellular albumin. Most intense fluorescence was observed

when the matrix contains collagen IV. However, additional experiments using only col-

lagen IV as matrix in a serial dilution did not show a significant effect on the function

of hepatocytes. Therefore, it was concluded that collagen IV alone is not responsible for

the changes in cell function but rather due to a combination of proteins. Further experi-

ments showed that also fibronectin had a positive effect on albumin fluorescence whilst

laminin and collagen III had a negative effect when tested individually. Combinations

of proteins could either led to increased or decreased albumin secretion.

Another study by Soen et al. [30] explored differentiation of neural cells using a

microarray approach. As is also described in the previous paragraph, different ECM

proteins were tested for their effect on neural progenitor cells. Again, it was observed

that ECM proteins (laminin, fibronectin and vitronectin) support cell adherence while

in absence of these components cell adherence is barely observed. Differentiation of

cells was investigated by staining with TUJ1 and GFAP. Soen et al. [30] observed that

neural progenitor cells differentiated preferentially to neurons on a laminin substrate.

In general, the composition of the substrate controls the differentiation rate to either

neurons or glial cells.

Cell adhesion, proliferation and differentiation was also studied by Nakajima et al.

[31] by printing an array of proteins. Their research also showed that cellular adhe-

sion, proliferation and differentiation are depended on the composition of the growth

substrate. Neurospheres showed good adherence to laminin, fibronectin, ProNectinTM

F, ProNectinTM L and poly(ethyleneimine) (MW = 800 Da). Low adherence of neuro-

spheres was observed on collagen type proteins, gelatins and higher molecular weight

poly(ethyleneimine). No possible reason for the difference in adherence to poly(ethylene-

imine) of different weights was given.
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Mei et al. [32] used a microarray approach for combinational screening of bacterial

attachment to acrylate polymers. It was found that coating the array with fetal bovine

serum (FBS) allows efficient cell attachment across the microarray. Also, they found

that the number of acrylate groups influences colonial formation of human embryonal

stem cells (hESC; Table 1.1). Furthermore, they noted that materials with a low elastic

modulus also have a small water contact angle (WCA). By applying time-of-flight sec-

ondary ion mass spectrometry (TOF-SIMS) on the incubated polymers, it was found

that certain molecular moieties show difference in supporting colony formation. Also,

a poor correlation was found between the surface roughness of the material and colony

formation.

Table 1.1: Identified TOF-SIMS ions affecting colony formation [32]

Ion Molecular moiety E�ect on colony formation

C3H8N+ Tertiary amine Negative

C2H6N+ Tertiary amine Negative

CN– Tertiary amine Negative

C4H +
9 Tertiary butyl Negative

C2H +
3 Hydrocarbon Positive

C3H +
3 Hydrocarbon Positive

CHO –
2 Esters Positive

C3H3O+ Esters Positive

C2H3O Esters Positive

C6H– Cyclic structures Positive

C4H– Cyclic structures Positive

C2H– Cyclic structures Positive

In a follow-up study, Celiz et al. [33] used a multigeneration approach for discovery

of new materials for stem cell growth. A copolymer of N-(4-hydroxyphenyl) methac-

rylamide (HPhMA) and HEMA was used for a scaled-up experiment. HPhMA as poly-

mer showed great performance regarding cell adhesion whilst incorporation of HEMA
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was necessary to stabilise the material. The generated copolymer was stable for at least

six months [33].

1.4 ANALYSING BIOMATERIAL SURFACES FOR INVESTIGATING

CELLULAR RESPONSE

1.4.1 TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMETRY (TOF-SIMS)

TOF-SIMS is a surface analysis technique which uses a high energy primary ion beam

to sputter components from the surface (Figure 1.3). The primary ion source consists

of either a gas cluster ion beam (GCIB) or a liquid metal ion source (LMIS) [34]. Com-

monly used gas clusters and metals are respectively carbon or argon and bismuth and

caesium [35, 36]. Due to high impact energy of the ion source (primary ions; sev-

eral keV), substrate components are sputtered from the surface and ionised (secondary

ions) [34, 37]. Due to the high energy used for the ionisation, secondary ions tend to

fragment into smaller ions [38, 39]. During the analysis, the surface is etched by the

primary ion beam. Using a low ion dose ( <1012 ions·mm-2), about one monomolecular

layer of surface molecules is removed whilst using a higher ion dose results in removal

of several nanometers of the surface [39, 40].

TOF-SIMS serves as an excellent tool for surface characterization since libraries

of fragments can be created and used for subsequent assignment of unknown sub-

strate composition. Besides the wide usage of SIMS in materials science, there is more

and more interest to use SIMS for biological applications such as investigating hetero-

geneity in cancer cells and studying the metabolome at subcellular level reducing the

amount of cells required compared to standard metabolomics analysis with NMR, GC-

MS or LC-MS. [41–43].
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Figure 1.3: Schematic representation of the principle of SIMS

1.4.2 RAMAN SPECTROSCOPY

Raman spectroscopy uses the bond polarisation of molecules to retrieve chemical in-

formation. With a laser source, the molecule is excited from the ground state (E0) into a

virtual state [44]. The molecule is not fixed in one ground state, but has several differ-

ent rotational ground states [44]. As shown in Figure 1.4, the excitation as well as the

final transition can have respectively different start and end point. In Rayleigh scat-

tering, the molecule returns to the same state after energy transition. Another case of

scattering can occur when start state and end state are not the same, so called Stokes

and anti-Stokes scattering [44]. To create a spectrum from the energy transitions, the

frequency (ν) is converted into a wavenumber. Since the energy transitions are spe-

cific for atomic bonds and molecular environment, Raman spectra provide valuable

information on the structural composition of a molecule as well as the composition of

the analysed matrix [44, 45]. For high throughput screening of biomaterials, Raman

spectroscopy offers a complementary analysis strategy to TOF-SIMS for characterisa-

tion of the bulk chemistry of the materials on a microarray [15].
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Figure 1.4: Jablonksi diagram electronic states used in Raman spectroscopy. Adapted
from [44]

1.4.3 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)

In XPS analysis, the elemental composition of a sample can be determined by meas-

uring the binding energy of photoelectrons [46, 47]. Any element, except for hydro-

gen and helium, can be detected by this technique [46]. By irradiating a sample with

monoenergetic X-rays (photons), electrons in the core shell get excited and, when the

energy is large enough, are removed from the core shell (photoelectron). The energy re-

quired to remove an electron from the core shell to reach the Fermi level is referred to as

the binding energy (EB). XPS measures the loss in kinetic energy (EK) of photoelectron

upon removal from which the binding energy can be calculated according to Equation

1.1, in which h is Planck’s constant and ν the frequency of the photon, which means

that the surface sensitivity is defined by the photoelectron interaction with the matter

[48, 49]. φ represents the work function, which is defined as a instrument-specific cor-

rection factor for the energy difference between the Fermi level and the free electron

(vacuum) level. A schematic representation of the principle behind XPS is shown in

Figure 1.5.

EB = hν− (EK − φ) (1.1)
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The binding energy is specific for electronic states of the elements. In addition, since

the amount of emitted photoelectrons is proportional to the elemental abundance, XPS

can be used for quantitative measurements of the elemental composition of molecules.

This makes XPS an excellent tool for characterising materials in terms of their elemental

composition.

Figure 1.5: Schematic representation of the principle behind XPS. Adapted from [49]

1.4.4 WATER CONTACT ANGLE

WCA measurements provide information on the hydrophobicity of the measured sample.

The contact angle is defined as the angle between tangent to the liquid-vapour inter-

face and the sample surface at the three-phase contact line (Figure 1.6) [50]. This surface

analysis technique allows measurement on a monolayer (∼ 1 nm) of organic material

[51]. For contact angle measurements, the Young equation is used (Equation 1.2) in

which γSV and γSL are the respective interfacial tensions for the solid-vapor and solid-

liquid interface, γ is the surface tension of the liquid and θYoung is the Young contact

angle [52]. Surface with a higher surface energy show lower contact angles whilst low

surface energy results in higher water contact angles [50].

cos θYoung =
γSV − γSL

γ
(1.2)
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Figure 1.6: Schematic representation of the principle behind water contact angle meas-
urements. Adapted from [50]

1.4.5 DATA ANALYSIS

The data generated by above-mentioned analysis techniques is complex and consists of

multiple dimensions. In order to deal with this kind of datasets, sophisticated tools for

data analysis are required. These tools will be an aid to visualise and model the data

in order to correlate physical and chemical properties of the material with the output

from the biological assay. Commonly used multivariate analysis tools are principal

component analysis (PCA) and partial least squares (PLS) regression.

PCA is a method for reducing the dimensionality of a dataset [53]. This is done by

projecting the data along new axes using eigenvalues representing the largest variance

(first principal component) and the second largest variation in the dataset (second prin-

cipal component) respectively [54, 55]. PCA is an unsupervised data analysis method

which means no prior knowledge of the dataset is given to the algorithm and is there-

fore mainly used for initial exploration of the data [56]. The main use of PCA is to

separate data of different classes and find which variables (loadings) are thriving the

differences between classes. In terms biomaterials research, PCA can aid to find out

which molecular features (loadings) are important in, for instance, protein adsorption

to different substrates [57].

In PLS regression, one tries to correlate multiple descriptors (e.g. m/z values) with

their response (e.g. intensity) in order to find a relationship between those two matrices

[58]. This multivariate method has often been applied in high throughput biomaterials

discovery to, for instance, predict the water contact angle from TOF-SIMS spectra [39]

and prediction of cell-material response from TOF-SIMS spectra [32].
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1.5 UNDERSTANDING CELL-INSTRUCTIVE PROPERTIES FOR IM-

PROVED BIOMATERIAL DESIGN

1.5.1 QUANTIFICATION OF CELL RESPONSE

Cell response is defined as the observed behaviour of cells when exposed to a certain

condition. For this thesis, the response of interest is the attachment of induced pluri-

potent stem cells to synthetic polymer surface and the degree of pluripotency mainten-

ance (percentage of number of pluripotent stem cells in the total cell population).

The pluripotent stem cells are commonly cultured in a xeno-free medium (Essential

8TM) at 37°C and 5% CO2 [59]. The cell culture is passaged (harvested and re-cultured)

several times to generate a sufficient number of cells. After, the cells are seeded onto

the polymer microarrays and incubated for 24 hours at 37°C and 5% CO2 after which

the cell response is investigated [59].

To investigate the cell response of interest, fluorescent stains are available which al-

low quantification of the cell response through fluorescence microscopy and image ana-

lysis in tools as ImageJ [60] or CellProfiler [61]. In order to count the number of cells, the

fluorescent stain 4,6-diamidino-2-phenylindole (DAPI) is commonly used [62]. DAPI

binds to A-T rich motifs of the DNA present in the cell nucleus. Since cells have only

one nucleus, the number of cell nuclei represent the total number of cells.

There are a number of markers available to determine whether a stem cell is still in

its pluripotent state. These are Oct4, Nanog and Sox2 which are all transcription factors

required to maintain pluripotency [63]. Through immunohistochemical staining the

presence of these factors can be determined and, hence, determine whether the cell is

pluripotent or not [64]. The same pipeline (fluorescent microscopy and image analysis)

can be used to determine the total number of pluripotent stem cells.
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1.5.2 CURRENT UNDERSTANDING OF CELL-SYNTHETIC MATERIAL INTER-

ACTIONS

It is known that cells can adhere to biomaterial surfaces [65]. However, it is thought

that cells do not directly bind to the material, but to an adsorbed layer of proteins

present on the material [65–67]. The degree of protein adsorption and which pro-

teins adsorb are highly dependent on the polymer chemistry and the matrix in which

the proteins are present [66, 67]. Hammad et al. [67] performed a study to invest-

igate culture medium-derived protein adsorption on polystyrene and plasma-etched

polystyrene. Proteins uniquely adsorbing to the plasma-etched surface were identi-

fied via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Then those

proteins were printed in different concentrations on a N-(4hydroxyphenyl) methacryl-

amide (pHPhMA) coating, which was found to support human embryonic stem cell

(hESC) cultures [33, 67]. When comparing protein-coated polymer to untreated poly-

mer, it was found that certain proteins and protein mixtures increase the cell response

(cell attachment) for hESCs. As a result, it can be hypothesised that pre-adsorption of

culture medium proteins play an essential role in cell attachment. This in concordance

with previous finding that ECM components (proteins and glycosaminoglycans) serve

as a anchor site for cells to adhere in order to support cell survival [68, 69]. Further-

more, it is known that cells do not directly adhere to a polymer surface, but require a

protein coating in order to adhere [68, 70].

Abdallah et al. [69] used LC-MS/MS to identify MatrigelTM proteins adsorbing to

poly(methyl methacrylate) (pMMA) and pHEMA. MatrigelTM is a membrane protein

extract derived from Engelbreth-Hom-Swarm mouse tumour cells [71]. They found

barely any protein of interest adsorbing to pHEMA, but on pMMA laminin (α,β, and

γ) and nidogen 1 were identified as prominent proteins. These proteins were found to

promote adhesion and proliferation of epithelial cells [69].

It is further known that fibronectin is an important for cell attachment. Its amino

acid sequence has a RGD motif which can serve as cell binding site [13, 72]. By screen-

ing an array with a fibronectin RGD peptide gradient, it was found that higher concen-
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trations of a RGD peptide led to an increase of smooth muscle cell attachment [13, 73].

In addition, screening gradients of laminin peptides also showed an increase in fibro-

blast response [13, 74, 75].

From the above-mentioned experimental findings can be derived that culture me-

dium proteins potentially attach first to the synthetic polymer surface and serve as

a binding site. Cells can then either attach and proliferate or will lose their viability

when attachment is not possible (Figure 1.7). However, due to the limited capability

of current techniques to characterise the adherent protein matrix in a high throughput

manner, understanding of the mechanistics behind cell-material and protein-material

interactions is poor.

Figure 1.7: Schematic representation of the potential cell-material response mechan-
ism. (A) First, (a set of) proteins attach to the synthetic polymer surface
and serve as (B) a scaffold for the cells to the attach to.

1.5.3 LIMITATIONS IN HIGH THROUGHPUT SCREENING OF PROTEINS AD-

SORBED ON BIOMATERIAL SURFACES

Protein identification and quantification is nowadays performed using MS-based strategies

[76]. Studies from Hammad et al. [67], Abdallah et al. [69], and Tong et al. [77] employed

LC-MS/MS for characterisation of the adherent matrix on biomaterial surfaces. How-

ever, only a small number of surface chemistries (<10) were analysed. Although LC-

MS/MS is the golden standard for untargeted proteomics and protein quantification,

quantitative screening of protein adsorption on a large library of synthetic polymers is
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not compatible due to the required sample preparation and instrumentation time. Fur-

thermore, to quantitatively assess protein adsorption one should understand factors as

matrix effects and variation in digestion efficiency due to protein conformation [78, 79].

These factors can have a substantial effect on the accuracy of the quantification. The

next section will describe the MS workflow for proteomics in order to understand the

current limitations for library screening.

1.6 MASS SPECTROMETRY-BASED PROTEOMICS

1.6.1 THE STANDARD MS WORKFLOW FOR IDENTIFICATION AND QUANTI-

FICATION

1.6.1.1 TOP-DOWN VS. BOTTOM-UP PROTEOMICS

Though, top-down proteomics has reduced sample preparation steps, in terms of iden-

tification and quantification a bottom-up strategy is the preferred method [80]. In top-

down mass spectrometry, intact proteins are introduced into the MS and subsequently

fragmented (Figure 1.8A). The relatively simple experimental procedure for top-down

proteomics allows increased sample throughput and makes it a preferred method for

studying intact proteins and protein complexes [80, 81]. However, proteins vary widely

in mass (∼ 5-3000 kDa [82, 83]) which makes top-down analysis of larger proteins

within the m/z range of a mass spectrometer not the preferred strategy of choice for

discovery-based proteomics.

For untargeted proteomics, bottom-up proteomics is the preferred method of choice

due the higher number of identified proteins identified compared to top-down proteo-

mics [80, 84]. In bottom-up proteomics, proteins are first denaturated followed by di-

gestion into peptides using an enzyme (Figure 1.8B). Bottom-up proteomics has shown

to be a more sensitive approach than top-down due to improved ionisation efficiency

of peptides as well as better ion transmission of peptides compared to intact proteins

[85]. In addition, analysis can be performed in a relatively small m/z range (m/z 400-

2000 [86]) since the generated peptides cover a smaller mass range . The most popular
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enzyme is trypsin, because of its specific cleavage after arginine and lysine and genera-

tion of peptides which fit in a MS-compatible mass range (m/z 400-2000) [86–88]. How-

ever, other proteases are available which target other cleavage sites [87]. Proteases and

their cleavage sites are shown in Table 1.2.

Figure 1.8: Approaches for MS-based protein analysis. (A) Top-down strategy. Intact
proteins are introduced into the MS and dissociated via gas-phase colli-
sions. The fragment ions represent a part of the amino acid sequence of
the protein. (B) Bottom-up strategy. Intact proteins are first (enzymatic-
ally) digested into peptides which are then introduced into the MS and
fragmented. The MS/MS spectrum can then be used to identify the pep-
tide based on the amino acid sequence from which a protein identity can
be inferred. Adapted from [81]

Table 1.2: Overview of commercially available proteases for MS-based proteomics

Enzyme Cleavage site Exceptions

Trypsin C-terminal of K and R Presence of P

Lys-C C-terminal of K -

Lys-N N-terminal of K -

rAsp-N N-terminal of D -

Thermolysin N-terminal of L, F, V, A, M and I -

Pepsin C-terminal of F, L, Y, and W -

Elastase C-terminal of A, V, S, G, L, and I -

Arg-C C-terminal of R -
Information derived from Promega website [89]
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1.6.1.2 LC-MS/MS

Chromatography During a chromatographic gradient, peptides (or other compon-

ents) are separated based on their affinity to a stationary phase [90]. The stationary

phase normally consists of silica-based packing materials (Table 1.3) [91]. For separa-

tion of peptides, predominantly reversed-phase (C18) columns are used for their speed

and efficiency [91].

Table 1.3: Overview of commonly used LC types for proteomics

Chromatography type Separation mechanism Proteomics application

C18 Hydrophobicity Shotgun proteomics

Hydrophilic interaction Hydrophilic interactions Hydrophilic peptides

Size exclusion Size Peptide purification

Ion exchange Charge Shotgun proteomics

Information in table based on [91]

Fragmentation of peptide ions Acquisition of tandem MS data of peptides is im-

portant for confirming their identity. Fragmentation of ions takes place in a so-called

collision cell where the ions are either bombarded with an inert gas or irradiated with

a laser. The type of fragmentation used has a severe impact and the ions produced.

Roepstorff & Fohlman [92] defined a nomenclature for fragment ions based on the

location of bond cleavage caused by the fragmentation which was later updated by

Biemann [93]. The nomenclature is explained in Figure 1.9. The a,b,c-series always con-

tains the N-terminus of the peptide, whilst the x,y,z-series always contains the peptide

C-terminus. The numbering starts always from the respective terminus.
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Figure 1.9: Nomenclature of fragment ions of peptide as defined by Roepstorff & Fohl-
man and Biemann. Adapted from [94]

For untargeted (shotgun) proteomics experiments, collision-activated dissociation/collision-

induced dissociation/higher-energy collisional dissociation (CAD/CID/HCD) are com-

monly used. With this type of fragmentation, b and y-ions are predominately gener-

ated, indicating that cleavage takes places at the peptide bond.

Mass analysers The mass analyser in the MS is the method of separating the ions by

their m/z value. In proteomics research, five mass analysers are commonly used: TOF,

Orbitrap, FT-ICR, ion trap and quadrupole [76, 95].

A quadrupole is the simplest of mass analysers which is in more advanced MS

instruments rather used as a mass filter. The quadrupole mass analyser consists of four,

parallel-aligned cylindrical rods (Figure 1.10). Ions passing through the quadrupole are

filtered based on their stability in a field of an oscillating radio frequency voltage. The

stability of the ions at a given radio frequecy voltage (V) or direct potential (U) can

be calculated according Equation 1.4 and Equation 1.3, in which au and qu represent

the stability space, m/z is the mass-to-charge ratio, r0 is the spacing between the rods,

ωis the angular frequency, and e is the elementary charge [96]. Since ω, r0, and e are

constant, a changing the m/z is directly proportional to au and qu.

U = au
m
z

ω2r2
0

8e
(1.3)
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V = qu
m
z

ω2r2
0

4e
(1.4)

Figure 1.10: Schematic representation of a quadrupole mass analyser. Adapted from
[96]

In a TOF mass analyzer, ions are separated based on their different flight times in a

field-free region. Ions entering the MS are collected and accelerated. The velocity (v) is

depended on the kinetic energy (EK) and the mass (m) (Equation 1.5). Since the ions are

given the same kinetic energy at the acceleration , ions with a smaller mass will arrive

at the detector faster than ions with a greater mass [96].

v =

√
2Ek

m
(1.5)

The time (t) required to travel distance (L) can then be calculated according to Equa-

tion 1.6 [96].

t =
L
v

(1.6)

Since EK is equal to the product charge (z), elementary charge (e) and the potential

(Vs), Equation 1.5 and 1.6 can be rewritten to Equation 1.7 [96]. That shows that m/z is

proportional to t2.
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t2 =
m
z

(
L2

2eVs

)
(1.7)

An Orbitrap mass analyser uses the oscillation frequency of ions between two elec-

trodes whilst orbiting [96, 97]. A schematic representation of the Orbitrap is shown in

Figure 1.11. The oscillation frequency (ω) is can be calculated according to Equation

1.8, in which k is constant based on the curvature of the electric field [97]. Equation 1.8

can be rewritten to Equation 1.9, to show that an ion’s m/z is inversely related to the ω

squared. In an Orbitrap mass spectrometer, the oscillation frequency is measured over

a set scan time and subsequently converted to an m/z scale via Fourier transformation

[96]. Orbitrap instruments are well known for their high scan speed, mass resolving

power and mass accuracy, allowing confident identification of molecules of interest

[98].

ω =

√( z
m

)
k (1.8)

m
z
= k · 1

ω2 (1.9)

Figure 1.11: Schematic representation of the Orbitrap mass spectrometer
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Detection Nowadays MS instrument use a variety of systems to detect and amplify

the signal. Electron multipliers are most commonly used [96]. In this type of the de-

tector the ion hits a dynode which converts the ion into an electron. The electron is

then reflected to another dynode which doubles the amount of electrons. This is then

repeated n times before the actual read-out (Figure 1.12). This process can amplify the

signal by 4 to 5 orders of magnitude [96].

Figure 1.12: Schematic representation of an electron multiplier. Adapted from [96]

For Fourier-transform (FT) instruments, like an Orbitrap, the detection is signific-

antly different. The signal (image current) is created when ions pass near an electrode

or detection plate [99]. The image current (time domain) is then converted into the

frequency domain via Fourier transformation (Figure 1.13) [96]. The frequency scale is

then calibrated to convert it to a m/z scale (mass spectrum) [96].

Figure 1.13: Schematic representation of detection in a FT instrument
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1.6.1.3 IDENTIFICATION OF PROTEINS VIA MASS SPECTROMETRY

Prior to the availability of computational tools for peptide sequencing, annotation had

to be done manually. With the increase of MS for proteomics and the introduction of

shotgun proteomics (untargeted analysis) [100], automated identification of peptides

from MS/MS spectra became a necessity. Throughout the years, several identification

algorithms have been developed (Table 1.4).

Table 1.4: Available search algorithms for peptide identification from MS/MS spectra

Algorithm Introduction Reference Open source

SEQUEST 1994 [101] No

MASCOT 1999 [102] No

OMSSA 2004 [103] Yes

X!Tandem 2004 [104] Yes

OMSSA 2004 [103] Yes

Andromeda 2011 [105] Yes

Tide 2011 [106] Yes

Comet 2013 [107] Yes

MS-GF+ 2014 [108] Yes

MSAmanda 2014 [109] Yes

Each algorithm has its own method of scoring MS/MS spectra, which makes that

different algorithms will give the user provide different results [110, 111]. However,

the concept of identifying peptides from MS/MS spectra in each algorithm is similar.

The user will provide with a list of proteins in .FASTA format (Figure 1.14). The search

algorithm will then generate theoretical peptides based on the used enzyme and the

number of allowed missed cleavages. A missed cleavage means that the enzyme did

not cut at the expected location. This is most often by inaccessibility of the cleavage site

[112]. The search algorithm will then compare the theoretical spectra to the acquired

spectra based on user-defined mass tolerance window for the intact peptide ion and

the fragment ions. It will then generate a score based on correlation or probability.
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To validate spectra, a list of decoy peptides is used which is in general each protein

sequence in the .FASTA file reversed [113]. These decoy peptides are then compared

to the acquired MS/MS spectra. Since the decoys are non-existing peptide sequences,

MS/MS spectra matching a decoy peptide can be considered a false discovery. The

user has to define a false discovery rate (FDR) (in general 1%) as cut-off to define which

peptides can be considered identified [114].

As a complementary identification strategy to sequence database searching, the use

of spectral libraries has become a more popular approach [115, 116]. Spectral libraries

are commonly used for identification of proteins from data-independent acquisition

(DIA) data sets through software tools such as Skyline [117], Spectronaut and DIA-

Umpire [118]. A library is built by a number of data-dependent acquisition (DDA)

files containing the fragmentation spectra of the target proteins identified through se-

quence database search. Alternatively, new tools have emerged to predict fragmenta-

tion of peptide through artificial neural networks and build subsequent spectral librar-

ies based on in silico fragmentation spectra [119–122].

Figure 1.14: The .FASTA format explained

1.6.1.4 QUANTIFICATION OF PROTEINS VIA MASS SPECTROMETRY-BASED STRATEGIES

Tandem mass tags (TMT) In TMT labeling, peptides between different biological

conditions are labelled with different chemical tags. Commercially available tags (Thermo

Fisher) consists of a maximum 16 different tags. Thus, 16 different biological conditions

can be compared to each other. At, MS1 level, all tags will have the same precursor ion.
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However, during fragmentation all tags will lose their reporter ion, which is different

in mass and therefore will have a different m/z value (Figure 1.15). Using the intensities

of the reporter ions, relative quantification can be performed [123].

Figure 1.15: The use of TMT for relative quantification of proteins. (A) Example of a
tandem mass tag. The amine-reactive group is used for covalently bind
to the peptide. Each tag has a different reporter ion which make the tags
distuingishable at MS2. The balance part is essential to make up the mass
difference between reporter ions to generate the same precursor ion. (B)
During fragmentation the bond between the reporter ion and balance part
is cleaved, permitting relative quantification based on the intensity of the
reporter ion. Adapted from [124].

Stable isotope labelling with amino acids in cell culture (SILAC) A SILAC exper-

iment consists of comparing two conditions by growing cells or feeding subjects in-

/with a either medium containing a light label or a heavy label. Because trypsin is

commonly used as an enzyme for MS-based proteomics, the label of choice is mostly a

heavy arginine or lysine (Figure 1.16). These ’heavy’ amino acids are 13C,15N-labelled

in order to distinguish them from any natural occurring interference. The signal intens-

ities at MS1 are then used for relative comparison of the protein abundance [125, 126].
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Figure 1.16: ’Light’ (top) and ’heavy’ arginine (bottom)

Isobaric tag for relative and absolute quantification (iTRAQ) ITRAQ can be used for

absolute and relative quantification of proteins. In this strategy, isotopically labelled

tags are used like with TMT [127, 128]. In comparison to TMT, a maximum of four

different conditions (4-plex) can be assessed at a time. In contrast to TMT, the chemical

tag are all different in mass and will therefore have a different m/z value at MS1 level

(Figure 1.17). The intensities from the precursor ions can then be used for relative and

absolute quantification [128, 129]. Absolute quantification can be achieved by using

the isobaric tags as internal or external calibration standards [130]. However, iTRAQ is

predominantly used for relative difference in protein expression [131].
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Figure 1.17: Workflow for iTRAQ-based quantification of proteins

Label-free quantification As opposed the above mentioned strategies, relative quan-

tification of protein abundance can also be performed without any labelling. A number

of reasons to choose for label-free quantification are reduced expenses (no expensive

reagents required), no additional sample preparation is required, and it is suitable for

discovery experiments (shotgun proteomics) [132]. For quantification, MS1 intensities,

MS2 intensities or a combination of both are used as a measure of relative quantity. In

order to get reliable quantification, the data needs to be normalised to account vari-

ance induced by technical sources e.g. instrument response and digestion efficiency

[133–136].
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1.6.1.5 MS ACQUISITION STRATEGIES FOR PROTEOMICS

Classically, discovery-driven proteomics have used DDA of mass spectrometry data.

In DDA, selection of ions for fragmentation is done based on their intensity [76]. Ions

which have an intensity higher than a user-defined threshold are sent to the HCD

cell for fragmentation and a MS/MS spectrum is acquired subsequently. However,

intensity-based selection could lead to underrepresentation of low-abundant peptide

or protein ions. As alternative strategy, DIA was introduced [137]. In DIA, the MS does

not isolate single precursor ions, but instead large m/z windows (> 20 m/z ) are selected

and all ions present in the m/z range are fragmented at once.

1.6.2 LIMITATIONS OF STANDARD MASS SPECTROMETRY-BASED APPROACHES

FOR HIGH THROUGHPUT ARRAY SCREENING

Current LC-MS/MS strategies provide excellent in-depth, quantitative proteomics data.

However, as the standard workflow is laborious and time-consuming due to extraction,

several purification and concentrations steps, protein digestion and long LC-MS/MS

runs (> 1 hour) per sample. For screening of a vast number of samples, e.g. a material

microarray (∼500), weeks of labour and instrumentation time are required to complete

the analysis. Therefore, a more automated approach with minimal sample preparation

is required to make the analysis compatible with array screening.

1.7 AMBIENT MASS SPECTROMETRY FOR HIGH THROUGHPUT

SCREENING

1.7.1 THE DEFINITION OF AMBIENT MASS SPECTROMETRY

In ambient MS, ions are generated under ambient conditions [138, 139]. Further ad-

vantages of ambient MS are the ability to perform MS without upfront chromatography

allowing increased sample throughput (reduced run time per sample) and reduced

sample preparation [140, 141]. Ambient MS is already an established analysis strategy
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for drug discovery, clinical, environmental and forensic applications [142–147].

1.7.2 APPLICATIONS OF AMBIENT MASS SPECTROMETRY IN PROTEOMICS

Several studies have focused on the identification of proteins using ambient ionisation

techniques. Montowska et al. used liquid extraction surface analysis (LESA) for study-

ing peptide markers as tool for meat authentication [148–150]. Rao et al. [151] used

desorption electrospray ionisation (DESI) [152] and LESA [153] for the analysis of pro-

teins deposited on biomaterial surfaces. Other proteomics applications of LESA were

reported for intact protein analysis in bacterial colonies [154, 155] and dried blood spot

analysis [156–160].

1.8 LESA-MS/MS AS A TOOL FOR HIGH THROUGHPUT QUANT-

ITATIVE SURFACE PROTEOMICS

LESA (Figure 1.18) is an ambient MS technique invented by Kertesz & Van Berkel [153].

The system consists of a fully-automated robotic system to dispense and aspirate a

user-defined extraction solvent. The system (Figure 1.19) uses a single disposable con-

ductive pipette tip per analysis. Once the dispensing/aspiration cycle has been com-

pleted, the tip containing the extract is directed towards a chip (Figure 1.20) at the front

end of the instrument which serves as an ionisation source.

Figure 1.18: Schematic overview of the principle behind LESA

30



CHAPTER 1

Figure 1.19: The commercial available LESA system (TriVersa Nanomate) from Ad-
vion Biosciences (Ithaca, NY)

Figure 1.20: Chip used for nanoESI in LESA-MS/MS analysis

The solvent containing the extracted analytes is ionised via nano-electrospray ion-

isation (nanoESI) [161], which is similar to electrospray ionisation (ESI) [162, 163] but

lower flow rates are used, hence, increasing the sensitivity [161, 164]. The principle be-

hind ESI is not fully understood, but two main theories exist on the ionisation process
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[165, 166]. The first theory is the ion evaporation model [167] (Figure 1.21A), which pos-

tulates that ions are generated by coulombic repulsion when the surface charge density

of a droplet reaches the Rayleigh limit [168]. The Rayleigh limit is defined as follows

(Equation 1.10) in which q is the charge, γ is the surface tension, ε0 and r is the radius

of the droplet. Once the Rayleigh limit is reached or nearly reached, multiple smaller

charged droplets are generated. This process continues until the the charged droplet

arrives at the MS [166].

q2 = 64πγε0r3 (1.10)

The other theory is the charge residue model. This theory states that each droplet

formed via ESI contains only one analyte ion [166]. The analyte ion is then released

when the solvent has completely evaporated [166] (Figure 1.21B).
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Figure 1.21: Schematic representations of ionisation theories for ESI. (A) The ion evap-
oration model. The droplet evaporates until the charge density reaches the
Rayleigh limit (B) The charge residue model. Every droplet contains a single
analyte from which the ion is released once the solvent has evaporated.
Adapted from [169]

LESA shows great potential to be used for screening of material microarrays due to

the fully automated extraction and MS analysis. Further, the technical variance is re-

duced due to the minimal amount of sample preparation required for ambient MS and

minimal manual handling of samples [170]. Further several studies (e.g. [84, 148–151,

156–160, 171–174]) have shown that LESA is a suitable analysis platform for proteom-

ics. The group of Cooper has extensively used LESA for studying proteins and protein

complexes in their native state from several biological substrates [84, 156–158, 160, 174],
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have pushed LESA-MS/MS analysis to detect larger protein complexes (>70 kDa) [175],

have incorporated different ion mobility techniques to obtain conformational informa-

tion on intact proteins [176–180] and have explored to use of LESA for imaging native

proteins in tissue section [177, 181, 182].

Montowska et al. have successfully used LESA to identify peptide markers for au-

thentication of different meat species [148–150]. Proteins were either in solution or in

situ digested and analysed via LESA-MS/MS.

Rao et al. were the first to explore the use of LESA-MS/MS for the analysis proteins

adsorbed onto biomaterials surfaces [151]. Protein standards (individual and mixtures)

were deposited on PermanoxTM cell culture slides, in situ digested and analysed using

LESA-MS/MS. They found that proteins could be detected down to concentrations

of pmol·mm-1. The next step is now to further explore this methodology on proteins

relevant to cell culture media.

1.9 AIMS & OBJECTIVES THESIS

The overall aim of this thesis will be to develop a strategy for quantitative MS-based

proteomics analysis which is compatible with material microarray screening. Being

able to assess quantitatively measure protein adsorption on combinatorial libraries

of synthetic polymers will permit understanding of cell-material as well as protein-

material interactions. The basic mechanistic understanding of cell response on syn-

thetic polymers will allow rationalising as well as improvement of biomaterial design.

The first aim of the chapter will be to define a LESA-compatible substrate to be

used for material microarray analysis (Chapter 2). Next, all protein digestion, LESA

and MS parameters need to be defined for performing quantitative surface analysis

of digested proteins (Chapter 3). Then, the method can be extended for analysis of

synthetic polymers in array format (Chapter 4) as well as the analysis of scaled-up

polymers in 6-well plate format (Chapter 5) in order to gain more understanding on

the cell-instructive mechanism of synthetic polymers. Further, the use of LESA will be
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extended for untargeted metabolomics of clinical arrays (tumour microarrays) in order

to obtain valuable clinical information from minimal sample size (Chapter 6).
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Improving LESA-MS sampling

reproducibility through a

superhydrophilic-superhydrophobic

substrate1

2.1 INTRODUCTION

FOR quantative MS analysis, the variance induced from technical sources should

be minimised to be able to reliably measure biological differences. Examples of

sources of technical variation are the extraction protocol, the effect of reagents, and

data acquisition strategy [183]. In LESA-MS,the main sources of technical variation is

the poor repetitive sampling due to spreading of the extraction solvent on the surface

of interest [184]. Irregular spreading of the extraction solvent could potentially lead to

poor reproducibility of the re-aspirated solvent volume [184] and therefore may intro-

duce undesired technical variance between replicate samples. Brenton & Godfrey [185]

limited the spreading of the extraction solvent by using electrodes. However, they de-

veloped an in-house system which is not commercially available to date. Furthermore,

1This chapter has been fully published as technical note: J. Meurs et al., Anal. Chem. 90, 6001–6005
(2018). doi: 10.1021/acs.analchem.8b00973
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the sample probe needs to be washed after every single analysis to avoid carry-over

effects. Almeida et al. [184] modified the gas supply line of the commercially available

TriVersa Nanomate, which can perform liquid extraction surface analysis. By modify-

ing the gas line, the extraction solvent could be pressurised and therefore limiting the

solvent spread. Other methods to limit the solvent spread are bringing the tip with

extraction solvent directly into contact with the surface ("contact" LESA [155]) or by

ablating analytes from the surface using a laser and capture the volatile analytes in a

droplet of extraction solvent [186].

It has been noted that the spreading of the extraction solvent on hydrophilic sur-

faces is significant [155] resulting in limited solvent recovery. Furthermore, the use

of non-polar solvents such as chloroform dramatically increases the solvent spread

[184]. When the surface itself is not part of the system and is simply there to support

a spot of liquid analyte, the analytical performance of liquid surface sampling could

be enhanced by the judicious choice of the surface properties to vastly improve spa-

tial confinement of both sample deposition and the application of extraction solvent.

Van Berkel et al. reported a reproducibility ranging between 10% and 34% for different

lysozyme concentrations on Teflon-masked microscope slides analyzed by a continu-

ous surface sampling probe [187].

Hence, repeatable extraction solvent recovery as well as extraction efficiency could

be optimised by designing a substrate surface, which confines both the liquid sample

and the LESA extraction solvent within a consistent area. A platform which meet those

conditions is the Droplet Microarray (DMA). The DMA consists of a pattern of supe-

rhydrophilic spots bordered by a superhydrophobic material produced by chemically

modifying a polymer surface [188, 189]. These surface properties are of interest for

LESA to assist in obtaining reproducible analyte spot deposition and extraction solvent

coverage of the spots. The superhydrophilic part guides the solvent along the surface

while the superhydrophobic material has a low surface tension and is therefore difficult
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to wet [190]. This will limit the deposited sample as well as the extraction solvent from

further spreading. Besides the surface chemistry, the use of the DMA for LESA is of

interest due to its high-throughput design. In this chapter, the DMA high-throughput

array is compared to a standard glass microscope slide, which is often used as a sub-

strate for LESA-MS [84, 139, 171, 172, 184, 186, 191–198], to test the hypothesis that

confining the sample as well as the extraction solvent in a defined area assists in ob-

taining repeatable solvent recovery leading to improved spectral reproducibility and

multivariate modeling. A mixture containing a number of components is used to test

the extraction repeatability. The spectral quality and biological interpretation is as-

sessed by performing an untargeted metabolomics experiment using readily available

urine samples.

2.2 MATERIALS & METHODS

2.2.1 SAMPLE PREPARATION

2.2.1.1 STANDARD MIXTURE

The components of the standard mixture can be found in Table 2.1. Chemicals were

chosen to cover a wide range of molecular weights and physicochemical properties.

Stock solutions for taurine, L-arginine, diphenhydramine HCl, Rhodamine 6G, raffin-

ose pentahydrate (all 10 mM), and vitamin B12 were prepared in deionised water (18.2

MO; Elga PureLab, Lane End, High Wycombe, UK). A stock solution for hemin was

prepared in 50 mM sodium hydroxide (98.5-100.5%; VWR International, Leuven, Bel-

gium). Subsequently, all stock solutions were mixed and diluted with deionised water

to a final concentration of 10 µM for each standard.
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Table 2.1: Components of the standard mixture

Component Supplier Purity

Taurine Acros Organics 99%

L-arginine Sigma-Aldrich ≥ 98%

Diphenhydramine HCl Sigma-Aldrich 98%

Rhodamine 6G Acros Organics 99%

Raffinose pentahydrate Sigma-Aldrich 98%

Hemin Sigma-Aldrich ≥ 97%

Vitamin B12 Sigma-Aldrich ≥ 98%

The standard mixture was manually pipetted onto 10 individual features of a super-

hydrophobic-superhydrophilic array (Droplet Microarray (DMA), Aquarray, Karlsruhe,

Germany) [188] and dried in a fume hood (∼ 1 hour). The DMA consists of a pattern

of 2.8 mm circular superhydrophilic spots bordered by 1.7 mm superhydrophobic ma-

terial (Figure 2.1). Further, a 5 × 2 grid was created on a microscope glass slide (75 mm

× 25 mm) to deposit the standard mixture on. The glass slide was also dried in a fume

hood (∼ 1 hour) prior to further analysis.

Figure 2.1: (A) Schematic representation of the dimensions of a spot on the Droplet
Microarray. Superhydrophilic spot size: 2.8 mm; superhydrophobic bor-
der width: 1.7 mm (B) Macroscopic image of a 10 mM hemin solution dis-
pensed (V = 3 µL) onto glass (top) and DMA (bottom). Images reveals
the trapping of the aqueous solution within the superhydrophobic areas
whilst the solution spreads out widely on a microscope glass slide
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2.2.1.2 URINE SAMPLES

Urine samples from an intervention study were provided by Dr Sergey Evseev (School

of Pharmacy, University of Nottingham). In this study, four healthy male volunteers

participated. Each volunteer had to provide a urine sample prior to intervention (con-

trol). The intervention consisted of drinking a cup of Earl Gray tea (∼200 mL). Vo-

lunteers had to provide a urine sample within two hours of intervention. After collec-

tion, samples were immediately stored at -80◦ C. The study design was authorized by

University of Nottingham Ethical Committee of the School of Pharmacy, University of

Nottingham (reference number: 021-2016).

For the repeatability assessment, 5 replicate spots (V = 2 µL) were dispensed on both

surfaces using the urine sample of one subject. The urine spots were allowed to dry in

a fume hood (∼ 1 hour) and analysed with LESA-MS. For the untargeted metabolomics

experiment (before vs. after tea intervention), 2 µL of urine was dispensed onto both

glass and DMA for each subject for each condition. The samples were allowed to dry

in a fume hood (∼ 1 hour) and analysed with LESA-MS.

2.2.2 LIQUID EXTRACTION SURFACE ANALYSIS-MASS SPECTROMETRY

LESA (TriVersa Nanomate, Advion Biosciences, Harlow, UK) was performed on each

sample spot using an extraction solvent containing LC-MS grade methanol (MeOH;

CHROMASOLV; Riedel-Haen, Seelze, Germany), LC-MS grade water (H2O; CHROMA

SOLV; Riedel-Haen, Seelze, Germany) and LC-MS grade formic acid (FA; OptimaTM ,

Fisher Scientific) (70:30:0.1 v/v/v) [191]. The total extraction solvent volume was set

to 5 µL. For 5 seconds, 3 µL of extraction solvent was deposited on a sample loca-

tion. Thereafter, 3.5µL was re-aspirated and hold for 10 seconds. After, the tip was

directed towards the nanoESI chip (ESI ChipTM , Advion Biosciences, Ithaca, NY). Ion-

isation was performed at a voltage of 1.45 kV and 0.3 psi gas back pressure [191]. Data

were acquired in positive ionisation mode on an Exactive Orbitrap mass spectrometer

(Thermo Scientific, Hemel Hempstead, UK). The scan range, resolution and maximum
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injection time were set to m/z 100-1500, 100,000 (at m/z 400) and 1000 ms respectively.

The AGC target was set to 1×106 and the capillary temperature was set to 250◦C.

2.2.3 DATA ANALYSIS

2.2.3.1 SAMPLING REPEATABILITY

Raw files were averaged in Xcalibur v2.1 (Thermo Scientific, Hemel Hempstead, UK)

and converted into a .mzXML format using ProteoWizard (v3.0.18178 64-bit) [199]. The

obtained files were subsequently parsed into MATLAB (R2016b, The MathWorks Inc.)

and peak lists were generated per file. The most intense adduct for each standard mix-

ture component was used to compare relative standard deviations between surfaces

using Forkman’s F-test [200]. Peak heights were used as a measure of ion intensity.

2.2.3.2 UNTARGETED METABOLOMICS

MS data from urine files were converted to .mzXML as described above and parsed

into MATLAB. Zero-filling for Orbitrap data was performed to create a common m/z

vector [201]. Spectra were smoothed using the Savitzky-Golay algorithm [202]. Peak

picking was performed using the findpeaks function in MATLAB. Subsequently, peak

intensities (peak height) were corrected for loss in signal during the smoothing process

according to Equation 2.1 in which Icorr,x is the corrected signal intensity for a given

peak, Is,x is the peak intensity after smoothing, I0,max is the base peak intensity prior to

smoothing, and Is,max is the base peak intensity after smoothing. An example of signal

correction is shown in Figure 2.2

Icorr,x = Is,x
I0,max

Is,max
(2.1)
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Figure 2.2: Signal intensity before Savitzky-Golay smoothing (black), after Savitzky-
Golay smoothing (red) and after signal correction; Left: base peak (creatin-
ine; m/z 114.0663); Right: peak at m/z 203.0529 (C6H12O [M+Na]+). It can
be seen that after correction the signal intensity is restored at its original
level

Peaks were matched within a 5-ppm m/z window and corrected intensities per peak

were retrieved. The intensity matrix was used for PCA. Prior to PCA, peak intensities

were normalised to the total ion current (TIC) and Pareto scaled [203]. Peaks with a

detection rate lower than 80% across all samples or an intensity smaller than 1,000 were

excluded [204] for PCA. Missing values were replaced by using the average intensity

for corresponding ions (mean value imputation) [205]. Individual peak intensities were

statistically analysed using Student’s t-test . Statistical significance was corrected using

the Benjamini-Hochberg FDR procedure [206].

2.3 RESULTS & DISCUSSION

2.3.1 ROBUST LESA WITH DROPLET MICROARRAY

2.3.1.1 STANDARD MIXTURE

Ten spots of 2 µL standard mixture were created on glass and DMA and dried under

ambient conditions. The standard mixture contains components covering the range

m/z 100-1500 and would therefore be representative for a metabolomics experiment.

Furthermore, the used standards have different physicochemical properties and there-
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fore potentially different LESA extraction efficiency. Spots were analysed by LESA-MS

using an extraction solvent composed of MeOH, H2O, and FA (70:30:0.1 v/v/v). The

most intense adduct for each component was used for statistical comparison. From

Table 2.2 can be derived that all relative standard deviations (RSDs) are significantly

lower (Forkman’s F-test) when using the DMA as sample substrate. This indicates that

sampling variation can be reduced by confining the sample as well as the extraction

solvent within a defined area (Figure 2.3). Moreover, all RSDs for the DMA substrate

were found to be smaller than 15%. A RSD of 15% or smaller is required for quantitat-

ive analysis [207].

Table 2.2: Reproducibility of signal intensities for every standard mixture component
extracted from glass and Droplet Microarray

Component Adduct m/z RSD glass RSD DMA p-value

Taurine [M+Na]+ 148.0044 25.3% 7.6% 0.015

L-arginine [M+Na]+ 197.1015 23.1% 7.3% 0.020

Diphenhydramine [M+H]+ 256.1701 20.1% 5.1% 4.0×10−4

Rhodamine 6G [M-Cl]+ 443.2335 20.0% 5.1% 4.3×10−4

Raffinose [M+Na]+ 527.1588 21.7% 7.4% 0.0034

Hemin [M-Cl]+ 616.1773 21.4% 5.6% 7.7×10−4

Vitamin B12 [M+2Na]2+ 700.2735 26.6% 7.9% 0.0056
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Figure 2.3: Depositing and extraction of samples from the Droplet Microarray and
glass surface. (A) 10 mM hemin in 50 mM NaOH manually pipetted onto
glass (top) and Droplet Microarray (bottom). Sample volume: 3 µL; spot
size DMA: ∼2.8 mm; spot size glass: ∼4.0 mm. (B Microscope image (Op-
tical Profile, Zeta Instruments; 5× magnification) of dried urine on Droplet
Microarray (left) and glass (right). Images taken before (top) and after ex-
traction (bottom). Visually higher efficient extraction from DMA as can be
derived from the empty spot in the microscope image. Sample volume: 2
µL.

2.3.1.2 URINE SAMPLE

The readily available urine samples from a previous study were used "as is". One con-

trol urine sample was used to investigate the sampling reproducibility of a complex

biological matrix. Two µL urine was dispensed onto five clean spots of the Droplet

Microarray and on five marked spots on a clean microscope glass slide. The spots were

allowed to dry in a fume hood (∼ 1 hour). After, LESA-MS analysis was performed us-

ing MeOH/H2O/FA 70:30:0.1 v/v/v as extraction solvent. Peaks were included when

they were present in each replicate from both surfaces and their intensities were greater

than 1×103. Table 2.3 shows the RSDs as well as the p-value after comparison of both

substrates using Forkman’s F-test.
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Table 2.3: Statistical comparison of LESA extraction reproducibility from glass and
DMA

Ion (m/z) RSD glass (%) RSD DMA (%) p-value

112.8959 93.7 5.5 8.12 x 10-4

114.0664 93.2 1.4 8.83 x 10-5

142.9482 56.2 4.2 1.57 x 10-3

158.9222 91.8 5.2 6.58 x 10-4

166.0725 91.9 5.1 7.64 x 10-4

173.0214 91.8 2.9 2.57 x 10-4

173.0576 17.4 4.3 0.088

180.9040 91.5 5.9 5.63 x 10-4

245.1155 91.8 4.3 5.33 x 10-4

255.0630 91.8 2.8 2.35 x 10-4

283.2038 91.8 2.5 2.01 x 10-4

364.9646 91.8 2.9 2.39 x 10-4

368.9591 92.0 2.9 2.49 x 10-4

483.0767 91.8 3.4 3.29 x 10-4

2.4 IMPROVED UNTARGETED METABOLOMICS WITH DROPLET

MICROARRAY

An untargeted metabolomics experiment was performed on archived urine samples

from a tea intervention study using LESA-MS. Two µL of four biological replicates

were manually deposited onto the DMA and glass, dried in a fume hood(∼ 1 hour),

followed by LESA-MS analysis using MeOH/H2O/FA 70:30:0.1 v/v/v as extraction

solvent. The acquired spectra were TIC normalised, Pareto scaled and subjected to

PCA. The PCA scores plot of urine samples glass shows scattered scores for the samples

whilst in the PCA scores plot for sample acquired from DMA are tightly clustered and

clearly separated for both groups (Figure 2.4). This revealed that when the spreading
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of the sample as well as the extraction cannot be controlled, the technical variance is

dominant over the biological variance. Therefore, in this case, no biologically relev-

ant information can be obtained from the acquired data (e.g. biomarkers between two

different groups) since the goodness-of-prediction (Q2) is too low. For a relevant bio-

logical model, a minimum Q2 of 0.4 is required [208]. This threshold value is only met

when the DMA is used as sample substrate (Q2 = 0.8938).

The control samples analysed on glass are showing, however, low variance between

the biological replicates. To some degree, analytes could be extracted from the glass

substrate. However, when the extraction solvent is dispensed on glass, there is a high

probability that the microjunction is (partially) lost. Therefore, analytes are not or inef-

fectively extracted from the surface and solvent peaks will dominate the mass spectra.

That is what was observed for the control samples on glass. The solvent spreads out on

the glass substrate and therefore only the remaining solvent in the tip is analysed. Since

solvent spectra are highly similar, the control samples show to be reproducible in the

scores, however, they do not bear any biologically-relevant information. On the other

hand, the large spread in the after tea samples can be explained by the fact that there

have been analytes extracted from the glass substrate, however, the solvent recovery

was highly variable resulting in a large spread of the scores.

Figure 2.4: PCA scores plot for included ions found in urine before (green circles) and
after tea intervention (orange squares). (A) LESA-MS on glass surface (R2

= 0.7184; Q2 = −0.1551). (B) LESA-MS on DMA (R2 = 0.9609; Q2 = 0.8938)
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Figure 2.5: Volcano plots for common ions between control and tea intervention urine
samples. Green: significantly increasing ion after tea intervention. Red:
significantly decreasing ion after tea intervention. (A) Analysis from glass
substrate. (B) Analysis from DMA

These findings show potential of using the DMA in combination with LESA-MS as

an alternative to conventional methods for omics profiling of biological samples. Com-

pared to direct infusion MS, ion suppression caused by a high non-volatile salt content

in a biological sample could be reduced due to the dilution effect of the sample in the

LESA extraction solvent [209]. Further, shorter run times (sim 1 minute for MS pro-

filing) and lower solvent consumption (few microliters) could favour LESA-MS over

LC-MS.

2.5 CONCLUSION

In this chapter, it is established using simple and cost-effective experimental design

that the DMA permits repeatable surface sampling with LESA. As a result, LESA-MS

data acquired from biologically different samples is highlighting biological differences

between sample groups. The next step is to extend this analysis to proteomics analysis

by using the DMA as sample substrate for in situ digestion of proteins with subsequent

LESA-MS/MS analysis. This will be the focus of the next chapter.
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Optimisation and development of

LESA-MS/MS and digestion

parameters for in situ quantification

of proteins

3.1 INTRODUCTION

QUANTITATIVE MS-based proteomics has proven to be a valuable tool to quant-

itatively assess differences in protein profiles between different biological con-

ditions [210]. Classically, MS-based proteomics uses LC-MS/MS for identification and

quantification of proteins [76, 132]. However, the sample throughput of LC-MS/MS

analysis is low (>1 hour per sample) and would require months to complete the ana-

lysis of a polymer microarray (∼ 500 samples).

LESA was introduced in Chapter 2 as a suitable technique for automated surface

sampling and direct MS analysis. This has permitted sample throughput in the or-

der of minutes which could reduce the analysis time to about 1 day. Combined with

a suitable sample substrate (Droplet Microarray [188]; Chapter 2), repeatable LESA

sampling has been achieved [211]. The next step is to optimise the experimental and
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analysis conditions for proteomics. For reliable protein quantification, it is important

that the in situ digestion protocol is robust and the LESA and MS parameters permit

stable data acquisition, so the technical variation is minimal [212].

In terms of in situ digestion, Rao et al. [151] proposed an ambient digestion protocol

using trypsin and room temperature conditions. Trypsin is the most popular enzyme

of choice for MS-based proteomics, however, several other proteases are available [87]

and have been unexplored so far for in situ digestion. Higher in situ digestion effi-

ciencies might be achieved using another enzyme. Each protease cleaves the protein

at a specific site and certain cleavage sites might be more accessible in situ . Also, a

combination of protease might enhance the digestion efficiency due to complement-

ary cleavage [213]. Other adjustable digestion parameters are the temperature and the

incubation time. Trypsin has its optimal activity at 37°C [87] which indicates that per-

forming in situ digestion under ambient conditions, as done as done by Rao et al. [151],

might not lead to efficient cleavage of proteins into peptides. So far, optimisation of in

situ digestion, especially for biomaterial surfaces, is relatively unexplored and requires

attention to allow accurate quantification of proteins.

Another point of attention is the MS acquisition strategy. Classically, untargeted

proteomics has been performed using DDA [214]. In DDA, peptide ions are selected

for fragmentation based on their intensity [100]. However, this stochastic sampling

process could underrepresent low-abundant peptide ions. With the development DIA

and computational tools it is now possible to perform (un)targeted proteomics without

intensity-based of precursor ions [215, 216]. Current reports on the use of LESA-MS/MS

for bottom-up proteomics has only focused on DDA, most probably because of its

simplicity to implement and analyse with the current (commercial) available software

tools. Since it is known that the MS acquisition strategy can affect the reproducibil-

ity [214], the use of different LESA-MS/MS acquisition is of interest to investigate and

assess the effect on the reproducibility of protein identification and quantification.

In this chapter, parameters for reproducible in situ digestion with subsequent LESA-

MS/MS analysis are optimised for a robust digestion allowing quantitative assessment
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of the amount of protein present on the surface.

3.2 AIMS OBJECTIVES

The aim of this thesis chapter is to optimise the in situ digestion parameters to permit

reproducible protein digestion on the surface. Furthermore, parameters will be optim-

ised for LESA and MS/MS to allow reproducible protein identification and accurate

protein quantification.

3.3 MATERIALS & METHODS

3.3.1 REAGENTS CHEMICALS

Trypsin (sequencing grade), Trypsin Gold (mass spectrometry grade), trypsin/LysC

(mass spectrometry grade), pepsin (sequencing grade), thermolysin, and a MS-compatible

yeast extract were acquired from Promega (Southampton, UK). MeOH, ACN and H2O

(LC-MS grade; CHROMASOLV) was purchased from Riedel-de Haen (Seelze, DE). Di-

methyl sulphoxide (DMSO) (PierceTM; LC-MS grade), formic acid (FA) and acetic acid

(LC-MS grade; OptimaTM) were obtained from Fisher Scientific (Loughborough, UK).

Amicon 0.5 mL centrifugal filters, recombinant human insulin (≥98%), recombinant

human holo-transferrin (≥97%), bovine serum albumin (BSA) (≥96%), cytochome c

(Cyt c) (BioUltra; ≥99%), ammonium bicarbonate (AmBic) (BioUltra; ≥99.5%), iodo-

acetamide (IAA) (BioUltra;≥99.5%), dithiotreitol (DTT) (BioUltra;≥99.5%), and Permanox

cell culture slides (Nunc®) were obtained from Sigma-Aldrich (Gillingham, UK). Trif-

luroacetic acid (TFA) (99.5%) and ammonium hydroxide (ACS reagent) were acquired

from Acros Organic (Geel, Belgium). Fibroblast growth factor 2 (FGF-2) (>95%) and

transforming growth factor beta 1 (TGF-β1 ) (>97%) were obtained from R&D Systems

(Abingdon, UK). Droplet Microarrays were obtained from Aquarray GmbH (Karls-

ruhe, DE)
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3.3.2 OPTIMISING LESA EXTRACTION PARAMETERS

A 1 mg·mL-1 BSA, Cyt c, or yeast extract solution was prepared in 100 mM AmBic. Cyt

c was introduced to test the method on a smaller, more linear structure type of protein.

Yeast proteins were used to test the methodology on a very complex protein mixture.

To the solution, 100 mM DTT in 100 mM AmBic was added to an end concentration

of 5 mM followed by a 1-hour incubation at 56°C . After the incubation, 100 mM IAA

was added to an end concentration of 15 mM and incubated for 30 minutes at room

temperature in a dark environment. Next, the solution was transferred to an Amicon

0.5 mL centrifugal unit and washed with 100 mM AmBic for 10 minutes at 13,000 rpm.

Therafter, the purified BSA solution was collected and 5 µL of 0.05 sequencing grade

trypsin was added. Digestion was carried out overnight at 37°C followed by storage at

-20°C until further use.

3.3.2.1 EXTRACTION SOLVENT VOLUME

The BSA digest was manually pipetted (V = 2 µL per replicate) onto a PermanoxTM

cell culture slide and allowed to dry under ambient conditions. The extraction solvent

consisted of ACN/H2O (1:1 v/v). LESA-MS/MS analysis was performed using the

solvent volume parameters shown in Table 3.1. The extraction time was kept constant

at 10 seconds without repeated dispensing-aspiration cycles. The variation in the total

ion current (TIC) over all MS1 spectra was calculated and expressed as coefficient of

variation (CV).

Table 3.1: Solvent volume parameters used for optimisation

Total volume (µL) Dispensation volume (µL) Aspiration volume (µL)

1.0 0.8 0.9

1.5 1.3 1.4

2.0 1.8 1.9

2.5 2.3 2.4
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3.3.2.2 EXTRACTION CYCLES

LESA has the option to repeat the dispensing-aspiration cycle of the extraction solvent.

Here, the strategy of Rao et al. [151] (7 dispensing/aspiration cycles) was compared

to a single dispensing-aspiration cycle to investigate the technical variability. The BSA

digest (V = 2 µL per replicate) was manually pipetted onto a PermanoxTM cell culture

slide and allowed to dry under ambient conditions. Thereafter, the BSA digest was

analysed with LESA-MS/MS in triplicate per extraction condition. The variation in

TIC between MS1 scans was used to compare variability between extraction settings.

3.3.2.3 EXTRACTION TIME

The same BSA digest (V = 2 µL per replicate) was manually pipetted onto a clean

PermanoxTM cell culture slide. The digest was allowed to dry under ambient condi-

tions. LESA-MS/MS analysis on the BSA digest was performed using extraction times

of 10, 30 and 60 seconds. Each extraction time was tested in triplicate. The most intense

BSA peptide ion was used to assess the intensity (peak height) and variability between

extraction times.

3.3.2.4 EXTRACTION SOLVENT COMPOSITION

The BSA, yeast, or Cyt c digest was pipetted onto a PermanoxTM cell culture slide

and allowed to dry under ambient conditions. LESA-MS/MS analysis was done using

the following extraction solvents: ACN/H2O/TFA (50:50:0.1 v/v/v), ACN/H2O/FA

(50:50:0.1 v/v/v), ACN/H2O (1:1 v/v), ACN/100 mM ammonium hydroxide (1:1 v/v),

100 mM ammonium hydroxide and ACN/H2O/DMSO/FA (50:50:1:0.1 v/v/v/v). Each

solvent was tested in triplicate. Intensities (peak height) for peptide matches (MS1 mass

tolerance: 10 ppm) were compared on variation.
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3.3.3 INFERRING PROTEIN IDENTITIES

The MS-compatible yeast protein extract was reconstituted in 1 mL of 100 mM AmBic,

followed by denaturation using 5 mM DTT and 1 hour incubation at 56°C . Therafter,

free thiol groups were alkylated using 15 mM IAA with 30 minutes incubation at room

temperature in a dark environment. The solution was purified using a wash with 100

mM AmBic on an Amicon 0.5 mL centrifugal unit. The unit was centrifuged for 10

minutes at 13,000 rpm. 0.05 sequencing grade trypsin was added to the purified solu-

tion and incubated overnight at 37°C . After the incubation, the digest was manually

pipetted (V = 2 µL per replicate) in triplicate onto a PermanoxTM and allowed to dry to

the air after which LESA-MS/MS analysis was performed.

Different search algorithms were tested using SearchGUI 3.3.20 [217] and visual-

isation in PeptideShaker 1.16.45 [218]. SearchGUI supports the following search al-

gorithms: X!Tandem (Vengeance 2015.12.15.2) [104], MyriMatch (2.2.140) [219], MS

Amanda [109], MS-GF+ (v2018.04.09) [108], OMSSA [103], Comet [107], Andromeda

(1.5.3.4) [105], and Tide [106]. Search algorithms were compared for the time to com-

plete the search, number of peptide spectrum matches (PSMs) and number of unique

PSMs. For identification, the false discovery rate (FDR) was set to 1%.

3.3.4 LABEL-FREE PROTEIN QUANTIFICATION

The BSA digest generated in Section 3.3.2 was diluted two-fold in 100 mM AmBic.

Both 1x and 0.5x solution were two-fold diluted in ACN/0.2% FA. Solutions were ana-

lysed via direct infusion MS/MS. To perform label-free quantification, the MaxLFQ

algorithm (MaxQuant 1.6.10.43) [220], the most intense tryptic peptide (MS1 quantific-

ation) and the most intense fragment ion (MS2 quantification) were used for compar-

ison.
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3.3.5 MS ACQUISITION STRATEGIES

Analysis of the BSA digest (Section 3.3.2) was done using DDA (1 m/z isolation win-

dow) and DIA (20 m/z isolation window). Data were processed using an in-house

developed LESAProteomics MATLAB class (https://github.com/jorismeurs/LESA_

Proteomics). Comparison was performed for identification rate (number of identified

peptides and identification repeatability), accuracy (repeatablity of the measurements),

and precision (difference between true and calculated concentration).

3.3.6 REPRODUCIBLE in situ DIGESTION

To optimise the in situ digestion protocol, one of the target proteins for quantification

(recombinant human insulin) was used. Insulin stock solution (1 mg·mL-1 ) was pre-

pared in 0.1% v/v acetic acid. Insulin as an excellent protein to study digestion effi-

ciency, since both the single tryptic peptide (GFFYTPK) and the most intense charge

state of intact insulin can be captured in a single m/z range.

Working solutions for sequencing grade trypsin, MS grade trypsin, trypsin/LysC,

LysC, Rapid Trypsin, and Rapid Trypsin/LysC were prepared at a concentration of

0.05 in 100 mM AmBic. Protein stock solutions were mixed 1:1 (v/v) and dispensed

on a PermanoxTM cell culture slide and then allowed to dry under ambient conditions.

Protease working solutions were tested in triplicate and manually dispensed onto the

dry protein spots. Digestion was carried various conditions (time and temperatures,

buffers). The ratio between the most intense fully tryptic peptide ion and the intact

protein ion were used to assess the digestion efficiency [221].

3.3.7 QUANTIFICATION OF TARGET PROTEINS

Individual 2-fold dilution series were made from stock solutions of insulin (1 mg·mL-1

in 1% acetic acid), transferrin (1 mg·mL-1 in 100 mM AmBic), FGF-2 (250 µg·mL-1 in 100

mM AmBic), and TGF-β1 (50 µg·mL-1 in 100 mM AmBic). These proteins chosen here

represent the target proteins for studying adsorption on synthetic polymer substrates.
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Dilutions were introduced onto a Droplet Microarray via the rolling droplet technique

(Figure 3.1) for equal distribution of the solutions [188]. The rolling droplet technique

starts by forming a large droplet on the end of a glass Pasteur pipette. This droplet

is then dragged across the DMA. Due to extreme difference in wettability, individual

droplets are formed on the surface. The difference in droplet volume was found to be

smaller than 5% [188]. After drying under ambient conditions, in situ digestion and

LESA-MS/MS were carried out under optimised conditions.

Figure 3.1: Visualisation of the rolling droplet technique as described by Popova et al.
[188]. The extreme difference in wettability of the pattern allows formation
of individual droplets on the array

3.3.8 ANALYSIS

All optimisation work was carried using a TriVersa Nanomate (Advion Biosciences,

Ithaca, NY) coupled to a Q Exactive Orbitrap mass spectrometer (Thermo Scientific,

San Jose, CA). Thermo .RAW files were converted to .mzXML format (32-bit) using

ProteoWizard [199]. Statistical analysis was carried out in MATLAB R2017a (The Math-

Works, Inc., Natick, MA) on a Lenovo Thinkpad x260 with Microsoft Windows 10

Enterprise as operating system. For sequence database searching, the precursor and

fragment ion mass tolerance were set to 10 ppm and 0.02 Da respectively.

3.4 RESULTS & DISCUSSION

3.4.1 OPTIMISING LESA & MS PARAMETERS

For optimisation of the LESA extraction parameters, BSA was used because of its size

(66 kDa), so many peptides can be generated from the intact protein, its costs (relatively
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cheap compared to other analytical grade protein standards) and its wide use for op-

timisation so it will allow for comparison with previous studies. For more in-depth as-

sessment of the extraction parameters, a commercial yeast digest (Promega, Southamp-

ton, UK) was used. To discover which MS acquisition strategy is most suitable for

identification, the target proteins for array screening experiments (insulin, transferrin,

FGF-2 and TGF-β1 ) were used. Results of subsequent optimisation experiment are

given in the following sections.

3.4.1.1 EXTRACTION SOLVENT VOLUME

Different volumes of ACN/H2O 1:1 v/v were tested in triplicate on a BSA digest manu-

ally deposited onto a PermanoxTM cell culture slide. PermanoxTM slides are hydro-

phobic and also permit sufficient control of the extraction solvent. Since the DMAs are

expensive products, optimisation experiments were performed on the cheaper altern-

ative PermanoxTM. Using 1.0 µL was found to be a too small volume, i.e. a low and

unstable signal was obtained during infusion. The signal stability increased signific-

antly by increasing the solvent volume to 2.5 µL (Kruskal-Wallis: p = 0.0232; Figure

3.2A). The intensity increased significantly after increasing the solvent to 1.5 µL (p =

1.041×10−12) and remained at the same level after increasing to 2.0 µL and 2.5 µL (Fig-

ure 3.2B).

Figure 3.2: Optimising solvent volume for LESA-MS/MS analysis of tryptic peptides.
(A) TIC deviation expressed as CV. (B) Average TIC per solvent volume
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3.4.1.2 EXTRACTION CYCLES

It was found that multiple dispensing aspiration cycles decrease signal stability and

therefore increasing the technical variance . In order to recover the solvent from the

surface during the aspiration, the volume for aspiration (Vasp) is in general greater than

the dispensed volume (Vdisp). Though the mixing of the analytes will be improved

during multiple cycles, every cycle solvent is lost on the surface and since Vasp is greater

than Vdisp. In addition, an increasing air gap will be formed at the end of the tip. As

a consequence, no signal is obtained during the first part of the acquisition since the

solvent has not reached the end of the tip yet. Therefore, no MS data could be acquired

to compare signal stability between single and multiple extraction cycles. However, the

empirical observation that no data could be generated using multiple extraction cycles

led to the decision to use only a single dispensing-aspiration cycle.

3.4.1.3 EXTRACTION TIME

When investigating the influence of the extraction time on the peptide intensity, a

higher intensity for QTALVELLK (2+; m/z 507.8138) was observed when increasing the

extraction time (Figure 3.3), though, the difference was not found to be statistically sig-

nificant (ANOVA: p = 0.056). When investigating the reproducibility, it was found that

extraction for 30 seconds led to the lowest variability in peptide intensity. However, the

difference in standard deviation of the peptide intensity between extraction times was

not found to be statistically significant (Levene’s test: p = 0.0646). From these findings

can be derived that similar extraction efficiencies can be obtained without comprising

the reproducibility regardless of the extraction time
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Figure 3.3: The impact of extraction time on the intensity of the tryptic BSA peptide
QTALVELLK (2+; m/z 507.8138)

3.4.1.4 EXTRACTION SOLVENT COMPOSITION

A BSA digest on a PermanoxTM cell culture slide was analysed using LESA-MS/MS

with a number of different extraction solvents. First, the signal stability (TIC vari-

ation) was investigated. A stable signal is important for reliable quantification. All the

tested extraction solvents were found to perform equal in terms TIC intensity, except

for ACN/100 mM NH4OH 1:1 (v/v), which signal was about 2 orders of magnitude

lower (ANOVA: p = 0.0383; Figure 3.4A-B). ANOVA on the TIC variation showed equal

performance of each extraction solvent (p = 0.0603), though, through post hoc analysis

the variation in TIC intensity was found to be greater for ACN/100 mM NH4OH 1:1

v/v (Figure 3.4C-D).
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Figure 3.4: Comparison of the signal stability for different extraction solvents. (A) Jit-
ter plot for the average TIC per extraction solvent. (B) Statistical analysis
(ANOVA + Tukey-Kramer post hoc analysis) for comparison of the TIC in-
tensity. (C) TIC variation for different extraction solvents. (D) Statistical
analysis (ANOVA + Tukey-Kramer post hoc analysis) for comparison of the
TIC variation.

Besides a stable TIC, the signal stability for peptides is also an important parameter

to assess for accurate quantification. Overall, the peptide signal was more intense when

using FA or TFA as additive (ANOVA: p = 4.19×10−5; Figure 3.5A-B). For reliable quan-

tification of proteins, the CV of the peptide signal should be below 20% [132]. All CVs

were below 20% when TFA was used as additive and for most of the peptides when us-

ing FA as an additive. Both solvents (ACN/H2O /FA 50:50:0.1 (v/v/v) and ACN/H2O

/TFA 50:50:0.1 (v/v/v)) had a better peptide signal reproducibility than other tested

solvents (ANOVA: p = 0.0001; Figure 3.5C-D). In terms of sensitivity and signal sta-

bility, both extraction solvents outperform ACN/H2O 1:1 (v/v) which was previously

proposed as optimal solvent to sample from biomaterial surfaces [151]. The use of
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ammonium hydroxide was explored to assess whether an alkaline solution would be

more suitable (i.e. signal stability). It has been reported that alkaline solution could im-

prove the solubility of more hydrophobic components and cleaner (less solvent adduct

ions) mass spectra can be obtained due to reduced matrix interference [222]. The hy-

drophobicity of peptides can be expressed as grand average of hydropathy (GRAVY)

score. The higher the GRAVY score, the more hydrophobic the peptide is [223].Based

on current data, an ammonium hydroxide solution does not improve the signal intens-

ity for hydrophobic peptides compared to ACN/H2O 1:1 (v/v) (Table 3.2).

Figure 3.5: Comparison of BSA peptide signal intensity for different extraction
solvents. (A) Jitter plot for peptide signal intensity distribution. (B) AN-
OVA followed Tukey-Kramer post hoc analysis for comparison of peptide
signals. Non-overlapping intervals are significantly different. (C) Jitter
plot for variation in peptide signal intensity. (D) ANOVA followed Tukey-
Kramer post hoc analysis for comparison of variation in peptide signal.
Non-overlapping intervals are significantly different
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Table 3.2: Signal intensity for hydrophobic BSA peptides when analysed with 100 mM
NH4OH compared to ACN/H2O 1:1 (v/v)

Peptide GRAVY score Log intensity Fold change

QTALVELLK 0.64 13.49 1.03

HPEYAVSVLLR 0.26 14.75 0.96

AEFVEVTK 0.18 14.52 1.02

LVNELTEFAK 0.13 13.14 0.98

LGEYGFQNALIVR 0.29 14.95 1.11

KQTALVELLK 0.19 14.79 0.96

Fold changes were calculated as ratio between the mean peptide signal intensity using ACN/H2O 1:1

(v/v) and the mean peptide signal intensity using 100 mM NH4OH as extraction solvent

In order to determine which additive is more suitable (least variation; high identific-

ation rate), a yeast digest on a PermanoxTM cell culture was analysed in triplicate. TFA

is normally used as an ion-pairing agent for improved chromatographic separation

of peptides [224]. However, TFA is also well-known for its suppressing effect for the

ionisation of peptides [225]. This became evident after the sequence database search

for all LESA-MS/MS data. The difference in the number of identified peptides (FA:

107; TFA: 81) demonstrated the potential consequences of using TFA as an additive.

Further investigation of the peptide intensities revealed a significant reduced peptide

ion intensity when using TFA as an additive (Student’s t-test : p < 0.001; Figure 3.6).

Therefore, the use of TFA as an electrospray additive should omitted for LESA-MS/MS

analysis of peptides.
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Figure 3.6: Jitter plot for comparison of the yeast peptide intensities for FA and TFA
as extraction solvent additive

In order to improve the solubility of hydrophobic peptides, DMSO was introduced

as alternative for TFA. DMSO is known for improving the solubility of hydrophobic

compounds and has been reported to improve the electrospray signal of peptides [226–

229]. A Cyt c digest was analysed from PermanoxTM cell culture slides. Cyt c was used

here since it is easier to digest and would therefore allow proper comparison of peptide

intensities in this experiment. DMSO was added to 1% (v/v) in the extraction solvent.

No difference in the overall peptide intensity distribution (Student’s t-test : p = 0.0827;

Figure 3.7A) was observed, indicating no enhanced peptide intensity. However, it was

found that the use of 1% (v/v) DMSO in ACN/H2O /FA 50:50:0.1 v/v/v improved the

signal repeatability (Levene’s test: p < 0.001; Figure 3.7B) compared to ACN/H2O /FA

50:50:0.1 v/v/v.
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Figure 3.7: Investigating the benefit of DMSO as additive for the LESA extraction
solvent. (A) Peptide intensity distribution with and without DMSO. No
difference in signal intensity was observed with or without 1% (v/v)
DMSO (Student’s t-test : p = 0.0827). (B) Peptide intensity variation with
and without DMSO. Signal repeatability significantly improved using 1%
(v/v) DMSO as an additive (Levene’s test: p < 0.001)

3.4.2 SEARCH ALGORITHM SELECTION FOR MAXIMUM PEPTIDE IDENTI-

FICATION

The yeast protein digest was manually pipetted onto a PermanoxTM cell culture slide

and analysed in triplicate with LESA-MS/MS. Thermo .RAW files were submitted to

SearchGUI [217] followed by visualisation in PeptideShaker [218]. The yeast digest was

used to be able to assess the performance of the search algorithms on a complex pro-

teome. The results from each search algorithm are shown in Table 3.3. It is well-known

that the use of different search algorithms leads to different results [111]. Andromeda,

Comet and MS-GF+ required significantly more time to complete the search compared

to the other search algorithms (ANOVA: p < 0.001). Though, the benefit of MS-GF+

is the identification of peptide-spectrum matches (PSMs) which could not detected by

any other search algorithm. A PSM is defined as a MS/MS spectrum that is matched

to a peptide. Unique PSMs (PSMs not identfied with any other algorithm) were also

obtained using OMSSA, X!Tandem, MyriMatch, and Tide. The gain of unique PSMs

with MS-GF+, MyriMatch and Tide is only minimal, but MS-GF+ allows the identi-

fication of more PSMs (ANOVA: p < 0.001). Based on the results of this experiment,
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X!Tandem, OMSSA and MS-GF+ were selected as search algorithms for the analysis of

LESA-MS/MS data.

Table 3.3: Performance of search algorithms for identifying peptide from a yeast di-
gest analysed by LESA-MS/MS

Search algorithm Search time (s) Total PSMs Unique PSMs

OMSSA 13 ± 1 697 ± 25 25 ± 4

X!Tandem 9 ± 0 658 ± 25 19 ± 2

Andromeda 115 ± 12 621 ± 24 0 ± 0

MS Amanda 16 ± 1 633 ± 24 0 ± 0

MS-GF+ 79 ± 4 736 ± 37 3 ± 1

Comet 155 ± 11 732 ± 40 0 ± 0

MyriMatch 16 ± 1 724 ± 38 1 ± 1

Tide 27 ± 1 627 ± 26 1 ± 1

The search time refers as the time for the algorithm to complete the search and identification as logged by

SearchGUI

3.4.3 REPRODUCIBLE AND ACCURATE PROTEIN IDENTIFICATION & QUAN-

TIFICATION

3.4.3.1 A CUSTOM MATLAB TOOL FOR QUANTIFYING PROTEINS FROM LESA-

MS/MS AND DIRECT INFUSION MS/MS DATA

Two dilutions of a BSA digest were analysed via direct infusion MS/MS for quantitat-

ive analysis. To use the MaxLFQ algorithm, data needs to be analysed in MaxQuant

[220]. MaxQuant is a popular open-source processing platform for proteomics data

acquired on a LC-MS/MS system. The platform has been used previously for quanti-

fication of direct infusion MS/MS data acquired using the TriVersa Nanomate [230]. In

addition to the long processing times (± 30 minutes for 6 files (200 MB/file)), it was of-

ten observed that MaxQuant crashes without any error report. Furthermore, the results

obtained via MaxQuant’s MaxLFQ algorithm do not reflect the concentration differ-

ence (fold change) between both samples. The MaxLFQ algorithm gives 3.46×109 LFQ
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intensity for the 1x solution and 0 LFQ intensity for the 0.5x solution. Additional quant-

itative output in MaxQuant is the summed peptide intensity for all MS/MS identified

peptides. Using the summed intensity of all identified BSA peptides, the calculated

fold change is 124 whilst this should be 2.

Since (open source) software are specifically designed for LC-MS/MS data, pro-

cessing LESA-MS/MS or direct infusion MS/MS data quantitatively with existing tools

would be rather problematic, due to the absence of peptide elution profiles (peaks). For

that reason, a MATLAB class was constructed for identification and quantification of

proteins. LESAProteomics (Figure 3.8) uses the command line version of SearchGUI

[217] and PeptideShaker [218] for protein identification. Furthermore, the MATLAB

class permits annotation of MS1 and MS2 spectra. In addition, quantification can be

performed at both MS1 and MS2. The class has been made openly available via https:

//github.com/jorismeurs/LESA_Proteomics.

Figure 3.8: The LESAProteomics MATLAB class for processing of proteomics data ac-
quired via LESA-MS/MS

Quantification of BSA was performed based on the most intense peptide ion and

the most intense fragment ion. BSA peptides were identified through SearchGUI and
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PeptideShaker. It was found that QTALVELLK (2+; m/z 507.8142) was the most intense

peptide ion (Figure 3.9). For the same peptide, the most intense fragment ion (y5) was

extracted (Figure 3.10). Peptide intensities were log transformed to account for tech-

nical variability [231]. Analytical requirements for quantification of proteins is a CV

below 20% [216]. At MS1 level, the CV for respectively BSA 1x and BSA 0.5x was 9.4%

and 0.7% whilst at MS2 the CVs were 2.6% and 2.0% respectively (Figure 3.11). Both

quantification strategies are well within the limits for accurate quantification. No sig-

nificant difference in variation was found between both strategies for BSA 1x (F-test:

p = 0.1166) and BSA 0.5x (F-test: p = 0.3054). The calculated fold change was found

to be between for MS1 (1.10) and MS2 (2.41) quantification. Based on this calculation,

MS2 quantification produces more accurate results and therefore reflect the actual con-

centration different better compared to MS1. To confirm this observation, an additional

experiment was run to assess whether MS1 or MS2 using two of the target proteins for

the future array screening experiments (insulin and transferrin) after further optimisa-

tion of the digestion parameter (Section 3.4.5).

Figure 3.9: Annotated MS1 spectrum for BSA peptides. QTALVELLK is indicated by
the black arrow
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Figure 3.10: Annotated MS2 spectrum for the most intense BSA peptide (QTALVELLK
2+)

Figure 3.11: Jitter plot for comparing (A) MS1 and (B) MS2 quantification

Table 3.4: Comparison of MS protein quantification strategies

Parameter MS1 MS2

CV 1x 9.4% 2.6%

CV 0.5x 0.7% 2.0%

Fold change 1.10 2.41
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3.4.3.2 SELECTING THE MS ACQUISITION STRATEGY

The BSA digest was analysed via direct infusion MS/MS. The Orbitrap mass spectro-

meter was operated in DDA and DIA mode to investigate which acquisition mode

results in the most reproducible peptide identification and peptide signal intensity.

With classic DDA analysis of peptides, one has to deal with the stochastic nature

of precursor selection for fragmentation [214]. Therefore, MS/MS spectra of peptides

might not be acquired especially in the case of low abundance. In addition, peptide

signals can be severely suppressed due to increased ion suppression as a result of the

absence of chromatography [232]. As an alternative, DIA can be employed which over-

comes the biased precursor sampling. When using DIA, all target proteins (insulin,

transferrin, FGF-2 and TGF-β1 ) were identified using Skyline [117], whilst operating

the MS in DDA mode, the detection rate was reduced (Table 3.5). In order to be able

to perform quantification, identification of the peptides of interest should be robust.

The other advantage of operating in DIA is the reduced analysis time per sample (∼ 1

minute per sample).

Table 3.5: Identification rate of target proteins using DDA and DIA

Protein DDA DIA

Insulin 0/3 3/3

Transferrin 3/3 3/3

FGF-2 1/3 3/3

TGF-β1 1/3 3/3

3.4.4 ROBUST in situ DIGESTION

So far, all parameters have been optimised using model proteins. In order to assess the

performance of the protein digestion, one of the target proteins (insulin) was used. The

advantage of insulin is that its tryptic peptides and intact protein charge states can be

captured in a single, MS-compatible m/z range [233], which makes it ideal to monitor

the peptide ions as well as the intact protein ions.

68



CHAPTER 3

Several enzymes were selected for assessment of the in situ digestion efficiency of

insulin. First, the most intense tryptic peptides was derived from a standard in situ

digests. Since recombinant human insulin has only one fully tryptic peptide (GFFYTPK

2+; m/z 430.2212; Figure 3.12), no further investigation is necessary.

Figure 3.12: Annotated MS1 spectrum for tryptic peptides generated from recombin-
ant human insulin. The most intense peak (m/z 430.2212) represents
GFFYTPK (2+) whilst the other annotation is the singly charged peptide
ion for GFFYTPK (1+; m/z 859.4342)

Initially, the in situ digestion conditions listed in Table 3.6 were used based on pre-

vious research [151] and manufacturer recommendations. Peptide ion intensities were

extracted from the spectra using MATLAB. GFFYTPK (1+: 859.4342; 2+: m/z 430.2212)

was readily detected, however, the intact protein ion was not found for all replic-

ates. In order to statistically assess the digestion reproduciblity, the peptide intensity

of GFFYTPK (2+) was used as alternative. Higher peptide intensities were observed

when using sequencing grade trypsin, Trypsin Gold (MS grade) or the Trypsin/LysC

compared to the heat-stable Rapid Trypsin and Rapid Trypsin/LysC mix (ANOVA: p

= 1.02×10−5; Figure 3.13). Furthermore, digestion using Rapid Trypsin was found to

be less reproducible based on the variation in signal intensity for GFFYTPK (Bartlett’s

test: p = 0.0263).
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Table 3.6: Digestion conditions for used proteases

Protease Temperature (°C ) Time (h)

Sequencing grade trypsin 37 18

Trypsin Gold (MS grade) 37 18

Trypsin/LysC 37 18

Rapid Trypsin 70 3

Rapid Trypsin/LysC 70 3

Figure 3.13: Comparing in situ digestion performance for recombinant human in-
sulin with different proteases. (A) Jitter plot for the peptide intensity
distribution of GFFYTPK. (B) ANOVA with subsequent post hoc ana-
lysis (Tukey-Kramer test) for statistical comparison of peptide intensities.
Non-overlapping intervals are significantly different

The reason for variability in detection and peptide intensity could be due to the

evaporation of the digestion buffer during analysis. It was noted that all spots for

digestion were dried after incubation, despite performing the digestion in a humid en-

vironment (Figure 3.14A). Adding a wet tissue to create a humid environment [151]

did not prevent evaporation. In order to prevent evaporation of the digestion buffer,

DMSO (10% v/v) was added to the digestion buffer. At macroscopic level, the diges-

tion buffer containing 10% (v/v) DMSO did not seem to evaporate during incubation

for 2 hours at 37°C (Figure 3.14B). When DMSO was added to the digestion buffer to

a final concentration of 10% (v/v), it was found that both the peptide ion intensity
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for GFFYTPK (Figure 3.15A; Student’s t-test : p = 2.58×10−4) and the peptide/intact

protein ratio significantly increased (Figure 3.15B; Student’s t-test : p = 0.0146). The di-

gestion reproducibility was found to be similar between the two conditions (Levene’s

test: p = 0.9251). DMSO has been reported to improve solubilisation of more hydro-

phobic proteins [234] and as an enhancer for trypsin activity [235], explaining a more

efficient digestion when using a digestion buffer containing DMSO and 100 mM AmBic

(1:9 v/v).

Figure 3.14: The addition of DMSO prevented the evaporation of the digestion buffer
(B) compared to the standard 100 mM AmBic digestion buffer. After 2
hours incubation at 37°C , the deposited 2 µL is still present in B (indic-
ated by the red circles) whilst in A no solution is visible. This indicates
the addition of DMSO is required to prevent the digestion to stop before
completion Scale bar: 5 mm

Figure 3.15: Investigating the effect of DMSO as an additive to prevent evaporation
of the digestion buffer. (A) Jitter plot for comparison of the GFFYTPK
peptide intensity. (B) Jitter plot for comparison of the digestion efficiency
measured by the peptide/intact protein ratio

The effect of DMSO on the digestion was further investigated. A selection of the

previous proteases were used for in situ digestion under slightly different conditions
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which were reported to be more optimal for LESA-MS/MS analysis of tryptic peptides

[236] (Table 3.7).

Table 3.7: Digestion conditions used for the second round of experiments using DM-
SO/100 mM AmBic 1:9 v/v

Protease Temperature (°C ) Time (h)

Sequencing grade trypsin 37 2

Sequencing grade trypsin 37 4

Trypsin Gold (MS grade) 37 2

Trypsin Gold (MS grade) 37 4

Rapid Trypsin 37 2

Rapid Trypsin 70 2

Rapid Trypsin 70 4

Higher peptides intensities (ANOVA: p = 0.0005; Figure 3.16A-B) as well as diges-

tion efficiency is achieved using Rapid Trypsin at 70°C (ANOVA: p = 0.0003; Figure

3.16C-D). The incubation time was not of influence. The use of all other proteases res-

ulted in similar digestion efficiency. Despite the improved digestion using Rapid Tryp-

sin, its variability between replicates was found significantly larger compared to the

other conditions (Levene’s test: p = 0.00481). In order to perform reliable quantitative

protein analysis, the variation caused by technical handling (e.g. digestion) should be

kept as low as possible. Therefore, low deviation in digestion efficiency should weigh

higher in selecting the protease and conditions then the actual digestion efficiency. All

the digestion protocols performed similar in terms of repeatability (Levene’s test: p =

0.1778). As a results, the selection of the digestion conditions for further studies was

based on the lowest variation in digestion efficiency which was observed for in situ

digestion with sequencing grade trypsin and incubation for 4 hours at 37°C (Table 3.8).
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Figure 3.16: Comparison of the digestion efficiency for insulin under different diges-
tion conditions. (A) Intensity (peak height) distribution for GFFYTPK 2+
for each condition. (B) ANOVA followed by Tukey’s post hoc correction
for statistical comparison of the peptide intensities. Non-overlapping in-
tervals are significantly different. (C) Distribution of the digestion effi-
ciency for insulin (peptide-intact protein ration) for each digestion con-
dition. (D) ANOVA followed by Tukey’s post hoc correction for statistical
comparison of the digestion efficiency. Non-overlapping intervals are sig-
nificantly different.
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Table 3.8: Variation in digestion efficiency per protein for different digestion condi-
tions

Protease
Temperature

(°C )

Time

(h)

Trf

(CV%)

Ins

(CV%)

FGF-2

(CV%)

TGF-β1

(CV%)

Sequencing

grade trypsin

37 2 9.2 17.0 6.5 16.8

Sequencing

grade trypsin

37 4 2.7 1.27 9.3 9.5

Trypsin Gold

(MS grade)

37 2 22.0 3.3 23.7 22.5

Trypsin Gold

(MS grade)

37 4 6.2 17.0 6.5 16.8

Rapid Trypsin 37 2 32.6 16.8 19.3 34.8

Rapid Trypsin 70 2 7.26 16.86 19.80 46.41

Rapid Trypsin 70 4 14.4 20.2 19.8 16.2

3.4.5 PROTEIN QUANTIFICATION WITH OPTIMISED PARAMETERS

With the digestion parameters optimised, serial diluted insulin and transferrin solu-

tions were prepared for quantitative studies. Insulin and transferrin are two of the

target proteins for this thesis and were therefore used for further optimisation. All di-

lutions were manually deposited in triplicate on a Droplet Microarray (�1.414 mm).

The solvent volumes for LESA were slightly altered. Empirical observation showed

that improved solvent recovery from the surface was achieved when the total volume

was set to 3.0 µL and the dispensation and aspiration volume were set to 1.5 µL and 2.0

µL, respectively. Reproducible solvent recovery is required to reduce technical variance

in the data.

For both insulin and transferrin, the most intense MS/MS identified peptide was

selected. Since from insulin only one tryptic peptide can be generated (GFFYTPK), this

peptide was used for quantification. Two charge states were observed for GFFYPTK,
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from which the doubly charged peptide ion was found to be the most intense (m/z

430.2210; Figure 3.12). For transferrin, DSGFQMNQLR (2+; m/z 598.2805) was found to

be the most intense peptide ion (Figure 3.17). The fragmentation spectra for GFFYPTK

(2+) and DSGFQMNQLR (2+) are shown in Figure 3.18. Both MS1 ans MS2 quanti-

fication strategies were compared for both proteins. Proper choice of the peptide for

quantification is important since not all peptides bear quantitative properties, i.e. not

all peptide ions show a concentration-dependent change in intensity [237]. The quan-

tification was assessed based on relative variation between replicates (CV) and the ac-

curacy (% error) calculated via Equation 3.1 in which FCobs and FCtrue are the measured

and true fold change, respectively.

%error =
|FCtrue − FCobs|

FCtrue
× 100% (3.1)

Insulin quantification was found to result in similar values at both MS1 and MS2

level in terms of accuracy and variation between replicates (Table 3.9). For transferrin,

the difference between MS1 and MS2 was striking. CVs were substantially improved

when MS2 was used for quantification (most intense fragment ion). In general, MS1

and MS2 were found to perform similar for LC-MS/MS [238]. The potential downside

of MS1-based quantification is stochastic sampling of precursor ions and therefore res-

ult in missing MS/MS spectra for quantification [238]. Therefore, a DIA strategy with

subsequent spectral library searching would be more suitable for reproducible identi-

fication and quantification of proteins [214].

However, more attention has to be devoted to the accuracy of the quantification.

For both insulin and transferrin, the accuracy (percentage difference between actual

and calculated difference in concentration) was poor. Further investigation is neces-

sary to find out whether the accuracy can be improved. This can be done using nor-

malisation strategies which account for technical variation [133–136, 239–241]. Since

there is no consensus in the field of MS-based proteomics on a golden standard quan-

tification strategy [242], various MS-based quantification strategies are still being used,
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potentially introducing subjectivity towards explaining biological phenomena.

Figure 3.17: Annotated MS1 spectrum for tryptic peptides generated from transferrin.
The arrow indicates the most intense peptide (DSGFQMNQLR), which is
shown in detail in the figure insert
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Figure 3.18: Fragmentation spectra used for MS2 quantification. (A) Most intense
peptide for insulin: GFFYTPK. (B) Most intense peptide for transferrin:
DSGFQMNQLR

Table 3.9: Comparison of quantification strategies for insulin and transferrin

MS1 MS2

Protein CV 1x CV 0.5x Fold change CV 1x CV 0.5x Fold change

Insulin 0.3% 0.4% 2.76 (38%) 1.06% 1.1% 2.86 (43%)

Transferrin 21.8% 8.6% 0.91 (55%) 1.5% 3.5% 1.02 (49%)
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3.5 CONCLUSION

In this chapter, parameters for LESA-MS/MS analysis and conditions for were optim-

ised. The use of ACN/H2O/DMSO/FA 50:50:1:0.1 (v/v/v/v) resulted in the most

repeatable extraction of peptides from the surface. The optimal solvent volume for a

stable spray was found to be at least 2.5 µL. Furthermore, repeated dispensing/aspira-

tion cycles increased the variability in surface extraction due to loss of solvent and/or

an increased air gap at the end of the tip. LESA solvent and ionisation parameters were

initially optimised on PermanoxTM cell culture slides and later adjusted for the Droplet

Microarray.

Best performing search algorithms were X!Tandem, OMSSA, and MS-GF+ in terms

of unique peptide identification and processing time. In terms of digestion, it was

found that in situ digestion at 37°C for 4 hours using 0.05 sequencing grade trypsin in

DMSO/100 mM AmBic (1:9 v/v) provided the most reproducible results. Further, it

was found that a targeted acquisition mode (DIA) results in more reproducible iden-

tification of proteins than in DDA mode. In addition, MS1 and MS2 quantification

perform similar in terms of repeatability and reproducibility. Besides applying this

strategy for quantitative analysis of proteins adsorbed on biomaterial surfaces, this

strategy can be used as a starting point for other quantitative screening studies of vari-

ous proteins using LESA-MS/MS.
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High throughput screening of

acrylate and methacrylate

homopolymers for examining

adsorption of culture medium

proteins in relation to cell response

of human induced pluripotent stem

cells (hIPSCs)

4.1 INTRODUCTION

CELL-INSTRUCTIVE materials have a great potential in the manufacture of cells, as

medical devices and in cell therapies. Human induced pluripotent stem cells

(hiPSCs) are of great interest in regenerative medicine due to their ability to differenti-

ate into any cell type in the three germ layers. However, more than a billion cells are

required for each intervention. To date, the move to industrial-scale cell culture has
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been limited by the incompatibility of biological growth substrates due to costs and

large batch-to-batch variation. Therefore, research has focused on the discovery of syn-

thetic growth substrates to facilitate reproducible and low-cost synthetic substrates for

stem cell culture factories [243, 244].

The use of material microarrays allows biomaterials discovery to be progressed in

a high throughput manner [14].Material microarrays consists of numerous unique ma-

terials (>500 [24]) printed onto a modified substrate in order to perform large scale

screening for a desired cell-instructive property, e.g. pluripotency maintenance of hu-

man induced pluripotent stem cells (hIPSCs) [33]. The use of high throughput ma-

terials screening strategies has led to the discovery of bacterial-resistant coatings and

synthetic cell culture substrates [33, 245].

It is well established that pre-coating of synthetic polymers with extracellular mat-

rix components increases cell attachment [246]. Therefore, it suggests that cells do

not attach directly to the synthetic polymers, but synthetic polymers require a bio-

logical coating to allow cells to attach. So far, the missing part in biomaterials dis-

covery has been the ability to qualitatively and quantitatively assess this biological

coating adsorbed to the materials in high throughput to determine its role in the cell-

instructive mechanism [66]. Hammad et al. [67] extracted surface-bound proteins from

synthetic surfaces incubated with mouse embryonic fibroblast conditioned medium

(MEF-CM) and used mass spectrometry-based proteomics [76] for identification. They

have shown that pre-adsorption of certain cell culture medium proteins on plasma-

etched tissue culture polystyrene (PE-TCPS) induces increased stem cell attachment.

To make quantitative screening compatible with the material microarrays, a strategy

has been developed in the previous chapter. This strategy will now be employed to

perform high throughput quantitative proteomics to investigate the relation between

protein adsorption and hIPSC attachment and pluripotency maintenance on synthetic

polymer surfaces. This information could provide fundamental understanding of the

mechanism of cell-instructive polymers and will further assist in rationalisation and

development of improved polymer structures for reproducible and cost-effective stem
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cell culture factories.

4.2 MATERIALS & METHODS

4.3 REAGENTS & CHEMICALS

IPA (HPLC grade), DMF (99.8%), DMSO (≥99.9%), acetic acid (OptimaTM LC-MS grade),

and FA (OptimaTM LC-MS grade) were acquired from Fisher Scientific (Loughbor-

ough, UK). DMSO (LC-MS grade; PierceTM), Essential 8TM 50x supplement, 4% (v/v)

FBS, Alexa500 rabbit antibody, Nanog antibody, and DMEM/F12 were purchased from

Thermo Scientific. ACN (CHROMASOLV®LC-MS grade) and H2O (CHROMASOLV®LC-

MS grade) were purchased from Honeywell (Seelze, Germany). Monomers (Appendix

A) were acquired from Sigma-Aldrich and Polymer Sciences in the highest purity avail-

able. Sequencing grade trypsin was obtained from Promega (Southampton, UK). 2-

DMPA (99%), recombinant human insulin (≥98%), and human holo-transferrin (≥97%)

were acquired from Sigma-Aldrich (Gillingham, UK). Droplet Microarrays were provided

by Aquarray (Karlsruhe, Germany). FGF-2 (>95%) and TGF-β1 (>97%) were obtained

from R&D Systems (Abingdon, UK). ROCK inhibitor Y-27632 hydrochloride salt (ROCKi)

was purchased from STEMCELL Technologies (Vancouver, Canada).

4.3.1 ARRAY PRINTING

All printing optimisation was done on a Biodot XYZ3000 contact printer (Biodot, Irvine,

CA) equipped with one 946PM6B steel pin (Arrayit, Sunnyval, CA). A selection of

monomers and organic solvents was used to assess the printing performance. Each

monomer solution was subjected to in situ polymerisation using a long-wave UV light.

Printing was performed in an argon-rich environment (O2 <2000 ppm). During optim-

isation the relative humidity was altered to determine the optimal printing condition.

Printed arrays were dried for seven days in a vacuum oven (Thermo Scientific; 35°C ,

<50 mTorr) to extract residual solvent and after stored at room temperature.
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4.3.2 TOF-SIMS

TOF-SIMS analysis was performed on a TOFSIMS IV (IONTOF GmbH, Münster, DE)

equipped with a Bi3+ primary ion source. The field of view was scanned in stage scan

raster mode with a pixel density of 12.5 pixels per millimeter. Both positive and negat-

ive secondary ion spectra were collected within one scan per polarity. Analysis spectra

and ion images was done in SurfaceLab 7.0 (IONTOF GmbH, Münster, Germany).

4.3.3 INCUBATING MICROARRAYS IN ESSENTIAL 8TM

Printed arrays were incubated for 24 hours in deionised H2O (18.2 MΩ; Elga PureLab,

High Wycombe, UK) at room temperature and after allowed to dry under ambient con-

ditions. Next, a stock solution (10 mM) for ROCK inhibitor Y-27632 was prepared in de-

ionised water. Thereafter, a clean 50 mL Falcon tube was filled with 49 mL DMEM/F12

and 1 mL Essential 8TM 50x supplement to which ROCK inhibitor Y-27632 was to reach

a final concentration of 10 µM. The array was then placed in the culture medium and

incubated for 1 hour at 37 °C . After the incubation period, the array was dipped for 10

seconds in deionised H2O three times and subsequently allowed to dry under ambient

conditions. Directly after, in situ digestion was carried out.

4.3.4 In situ DIGESTION

A stock solution of sequencing grade trypsin (0.5 ) was prepared in 50 mM acetic acid

and stored in 10 µL-aliquots at -80°C until further use. Prior to application, the aliquot

was thawed at room temperature and diluted with 90 µL of DMSO/100 mM AmBic

(1:9 v/v). The digestion solution was dispensed on the array using the rolling droplet

technique. The array was subsequently placed in humidified chamber and incubated

for four hours at 37°C . The humidity chamber was created in a Petri dish by placing

wet tissue alongside the array and sealing the lid with wet tissue fixed on Sello tape

(Figure 4.1). After incubation, the array was placed in a vacuum oven (Thermo Sci-

entific; <50 mTorr) to extract the digestion solution. The array was subsequently stored
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at -20°C until further analysis.

Figure 4.1: Schematic representation of the humidity chamber used for in situ diges-
tion

4.3.5 LESA-MS/MS FOR SPECTRAL LIBRARY GENERATION

Essential 8TM 50x was diluted to 25x and 10x in 100 mM AmBic. 50x, 25x, and 10x solu-

tions were introduced on the Droplet Microarray using the rolling droplet technique

and allowed to dry under ambient conditions. Thereafter, proteins were subjected to in

situ digestion as described in Section 4.3.4 and LESA-MS/MS analysis.

LESA-MS/MS analysis was performed on a TriVersa Nanomate (Advion Biosciences,

Ithaca, NY) coupled to a Q Exactive plus mass spectrometer. The extraction solvent

consisted of ACN/H2O /DMSO/FA 50:50:1:0.1 (v/v/v/v). A total of 3 µL was aspir-

ated from the solvent reservoir from which 1.5 µL was dispensed on a protein digest.

After 15 seconds, 2.0 µL was aspirated back into the tip and infused into the mass

spectrometer using a voltage of +1.6 kV with 0.4 psi N2 back pressure. The mass spec-

trometer was operated in DDA mode. The isolation window was set to 1 m/z . The

NCE was set to 27, the resolution was set to 17,500 at m/z 200, the AGC target was set

83



CHAPTER 4

to 1×105 with a maximum ion injection time of 250 ms, and the first mass (minimum

m/z ) was fixed at m/z 100. After every 20 MS2 scans, a MS1 scan was acquired over

the range m/z 400-1200. The resolution was set to 140,000 at m/z 200, the AGC target to

3×106 and the maximum ion injection time to 200 ms.

4.3.6 LESA-MS/MS FOR HIGH THROUGHPUT PROTEIN QUANTIFICATION

ON POLYMER MICROARRAYS

An inclusion list was generated for all peptide ions present in the spectral library using

XCalibur 2.1 (Thermo Scientific, San Jose, CA). LESA-MS/MS analysis was performed

on a TriVersa Nanomate coupled to a Q Exactive plus mass spectrometer. The extrac-

tion solvent consisted of ACN/H2O /DMSO/FA 50:50:1:0.1 (v/v/v/v). A total of 3 µL

was aspirated from the solvent reservoir from which 1.5 µL was dispensed on a pro-

tein digest. After 15 seconds, 2.0 L was aspirated back into the tip and infused into the

mass spectrometer using a voltage of +1.6 kV with 0.4 psi N2 back pressure. The mass

spectrometer was operated in DIA mode. The isolation window was set to 1 m/z . The

NCE was set to 27, the resolution was set to 35,000 at m/z 200, the AGC target was set

to 1×106 with a maximum ion injection time of 250 ms, and the first mass (minimum

m/z ) was fixed at m/z 100. After every 10 MS2 scans, a MS1 scan was acquired over

the range m/z 400-900. The resolution was set to 140,000 at m/z 200, the AGC target to

3×106 and the maximum ion injection time to 200 ms. The total analysis time was 1

minute per polymer spot.

4.3.7 PROTEIN IDENTIFICATION & QUANTIFICATION

The LESAProteomics pipeline was used to perform sequence database searching for

identification of proteins and spectral library generation. MS/MS files were subjected

against a customised FASTA file containing the amino acid sequences of the recom-

binant human proteins and the yeast proteome to serve as decoys (Table 4.1). Decoy

sequences are used to estimate the FDR and validate peptide identification. The FDR

was set to 5% (minimum score 95). X!Tandem [104], MS-GF+ [108], and OMSSA [103]
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were used as search algorithms. Identified peptides per protein were used to extract

precursor intensities from averaged MS1 spectra. The peptide intensities per protein

were summed and log-transformed.

Table 4.1: Amino acid sequences for target proteins in FASTA format

Protein Sequence in FASTA format

Insulin
GIVEQCCTS ICSLYQLEN YCNFVNQHL CGSHLVEAL

YLVCGERGF FYTPKT

Transferrin

VPDKTVRWC AVSEHEATK CQSFRDHMK SVIPSDGPS

VACVKKASY LDCIRAIAA NEADAVTLD AGLVYDAYL APNNLK-

PVV AEFYGSKED PQTFYYAVA VVKKDSGFQ MNQLRGKKS CHT-

GLGRSA GWNIPIGLL YCDLPEPRK PLEKAVANF FSGSCAPCA

DGTDFPQLC QLCPGCGCS TLNQYFGYS GAFKCLKDG AG-

DVAFVKH STIFENLAN KADRDQYEL LCLDNTRKP VDEYKD-

CHL AQVPSHTVV ARSMGGKED LIWELLNQA QEHFGKDKS KE-

FQLFSSP HGKDLLFKD SAHGFLKVP PRMDAKMYL GYEYVTAIR

NLREGTCPE APTDECKPV KWCALSHHE RLKCDEWSV NS-

VGKIECV SAETTEDCI AKIMNGEAD AMSLDGGFV YIAGK-

CGLV PVLAENYNK SDNCEDTPE AGYFAIAVV KKSASDLTW

DNLKGKKSC HTAVGRTAG WNIPMGLLY NKINHCRFD EFF-

SEGCAP GSKKDSSLC KLCMGSGLN LCEPNNKEG YYGYT-

GAFR CLVEKGDVA FVKHQTVPQ NTGGKNPDP WAKNL-

NEKD YELLCLDGT RKPVEEYAN CHLARAPNH AVVTRKDKE

ACVHKILRQ QQHLFGSNV TDCSGNFCL FRSETKDLL FRD-

DTVCLA KLHDRNTYE KYLGEEYVK AVGNLRKCS TSSLLEACT

FRRP
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Table 4.1 (continued)

Protein Sequence in FASTA format

FGF-2

AAGSITTLPA LPEDGGSGAF PPGHFKDPKR LYCKNGGFFL

RIHPDGRVDG VREKSDPHIK LQLQAEERGV VSIKGVCANR

YLAMKEDGRL LASKCVTDEC FFFERLESNN YNTYRSRKYT

SWYVALKRTG QYKLGSKTGP GQKAILFLPM SAKS

TGF-β1

ALDTNYCFSS TEKNCCVRQL YIDFRKDLGW KWIHEPKGYH

ANFCLGPCPY IWSLDTQYSK VLALYNQHNP GASAAPCCVP

QALEPLPIVY YVGRKPKVEQ LSNMIVRSCK CS

Amino acid sequences for recombinant proteins retrieved from [247]

4.3.8 MICROARRAY SCREENING OF HUMAN INDUCED PLURIPOTENT STEM

CELLS

Microarray data were obtained from Nasir et al. [59]. Briefly, 0.75×106 hIPSCs (cell line:

Rebl-PAT) were seeded in Essential 8TM medium supplemented with 10µM ROCKi

onto a polymer microarray and cultured for 24 hours at 37°C and 5% CO2. Cells were

fixated using 4% (v/v) PFA for 20 minutes at room temperature in a dark environ-

ment. Arrays were then immunostained for OCT4 expression (pluripotency marker)

and counterstained with DAPI (cell nucleus marker). Images were acquired using an

automated fluorescence microscope (IMSTAR). Counting of total cell number and num-

ber of pluripotent stem cells was achieved through CellProfiler v2.2.0 [61].

4.3.9 DATA CLEANING & STATISTICAL ANALYSIS

Unsuccessful printed polymers (not observed in ToF-SIMS ion images) were removed

from the data. Summed peptide intensities were subsequently quantile normalised. In

quantile normalisation, data from each replicate are forced into the same distribution

by replacing each data point with the mean of the corresponding quantile in order
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to reduce technical variation [231]The datasets (protein and cell data) were subjected

to Thompson’s tau test for identification of outliers [248]. The outlier region (RR) is

calculated according to Equation 4.1, in which N is the number of repeats and tα/2 is

the critical value derived from Student’s t-distribution at significance level α.

RR =
tα/2(N − 1)

√
N
√

N − 2 + t2
a/2

(4.1)

Identified outliers in the protein data were replaced using the knn algorithm. Poly-

mers with zero values for more than two replicates were removed. The algorithm cal-

culates the a weighted average of the k nearest neighbouring values. The value of k

was set to 11 [249] and Euclidean distance was used as distance function (Equation 4.2)

which describes the distance (d) as a direct line between two data points (p and q) using

the Pythagoras theorem.

d =

√
Σ ((pi − qi)

2 (4.2)

Outliers in cell data were removed and not replaced. Protein data was checked for

normality (data distribution) using Lilliefort’s test. Statistical comparison of differences

in protein adsorption was then performed using either parametric (ANOVA) or non-

parametric statistics (Kruskal-Wallis) for multiple group comparison. The remaining

data was subjected to regression analysis to investigate the relation between protein

adsorption (independent variable) and cell count (dependent variable). Protein data

was transformed onto a relative scale by dividing all by the maximum summed peptide

intensity for each replicate [66]. Then a sigmoid curve was fitted to data, for which the

general form is shown in Equation 4.3. A sigmoid curve indicates that a process reaches

saturation in the dependent variable when the independent variable is increasing. This

was observed by Mei et al. [66], i.e. protein adsorption did not further increase from a

certain number of attached cells.

y(x) =
1

(1 + e−x)
(4.3)
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Further analysis was done to identify chemistry-related protein adsorption using

PLS regression with the protein quantification data (response) and ToF-SIMS ions (vari-

ables). First, a PLS model was created to capture at least 90% of the variance in the

data. VIP scores were calculated and a VIP score > 1.5 was considered to be important

to the PLS model and included to build a new predictive model. A new PLS model

was then built. The optimal number of PLS components was selected based on the

minimal mean square error of the prediction, which was calculated using 5-fold cross

validation with 50 Monte-Carlo repetitions. After, PLS models were validated using

a permutation test [250]. From the PLS model, the ions < m/z 100 were assessed for

relations between polymer chemistry and protein adsorption.

4.4 RESULTS & DISCUSSION

4.4.1 OPTIMISATION OF PRINTING PARAMETERS

In the first round of optimisation for printing monomer solutions on the Droplet Mi-

croarray (250 µm× 250 µm square superhydrophilic features), four monomers (isobornyl

methacrylate (iBMA), diethylene glycol dimethacrylate (DEGDMA), tert-butyl cyclo-

hexylacrylate (tBCHA), and neopentyl glycol propoxylate diacrylate (NGPDA); Figure

4.2) were chosen to determine whether the Droplet Microarray is suitable to be used as

printing substrate. These four monomers are chemically and structurally different and

would therefore provide sufficient initial information about the suitability of the DMA

as printing substrate. All monomers were prepared as 50% (v/v) solution in DMF after

which a 3% (w/v) 2-DMPA solution was added in a 2:1 (v/v) ratio. Printing of the

monomers was done using a single contact print onto a superhydrophilic spot. Each

monomer solutions was printed for two rounds with 16 repeats. In the first round, the

solution was dispensed on 16 consecutive spots. In the second round, monomer were

printed on every other spot (Figure 4.3). This was to determine whether the printing

solution merges to adjacent spots and would therefore cause cross contamination.
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Figure 4.2: Structures for selected monomers for testing the Droplet Microarray as
printing substrate

Figure 4.3: Schematic representation of print layout for testing the Droplet Microarray
as printing substrate

TOF-SIMS analysis was performed on the printed arrays to investigate whether the

monomers were successfully printed and polymerised on the superhydrophilic fea-

tures of the Droplet Microarray. SurfaceLab was used to extract ion images represent-

ing the four different chemical structures. An in-house library of TOF-SIMS ions was

used to find representative ions for each polymer. The ion images show successful and

repeatable printing of tBCHA and iBMA on the Droplet Microarray (Figure 4.4A-B).

For NGPDA and DEGDMA were also detected through TOF-SIMS analysis, though,

not for all repeats (Figure 4.4C-D). This can be either related to the solution not being
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dispensed onto the surface or that the in situ polymerisation was not successful. A

reason for decreased printing efficiency could be related to the higher viscosity of NG-

PDA and DEGDMA. Highly viscous solutions often cause problems in high through-

put printing [251]. From this could be derived that the printing efficiency of viscous

monomers could be improved by choosing a different solvent system or by reducing

the monomer concentration.
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Figure 4.4: Representative TOF-SIMS ion images for the selected monomers before
seven days of incubation in deionised H2O . (A) tBCHA (B) iBMA (C) DE-
GDMA (D) NGPDA. Chemical moeities detected by TOF-SIMS are high-
lighted in orange on the chemical structures
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After TOF-SIMS analysis, the array was incubated in deionised H2O for seven days

at room temperature. This was done to investigate the stability of the polymers on

the Droplet Microarray when exposed to an aqueous environment. After incubation,

the array was again analysed by TOF-SIMS. Using the same ions, it was confirmed

that the successfully printed polymers were still present on the array (Figure 4.5A-D).

When comparing the TIC normalised ion intensities before and after incubation, Stu-

dent’s t-test revealed a significant difference in ion intensity for the selected polymers

(Table 4.2). To investigate whether the reduced ion intensity can be attributed to vari-

ation in instrument response, the fluorine peak (F-; m/z 19) was used as a reference.

The superhydrophobic border contains of a fluorinised poly(HEMA-co-EDMA) poly-

mer. The TIC normalised intensity for F- was 0.116 and 0.121 before and after wash,

respectively. This indicates that the difference in ion intensity was not a result of fluc-

tuation in instrument performance. Since the array was not washed before TOF-SIMS

analysis, the ion intensities could be partially attributed to residual unreacted residual

monomers on the surface which were washed away during the incubation in deionised

H2O . However, long-term exposure (>1 day) of array to solutions should potentially

be avoided.
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Figure 4.5: Representative TOF-SIMS ion images for the selected monomers after
seven days of incubation in deionised H2O . (A) tBCHA (B) iBMA (C) DE-
GDMA (D) NGPDA. Chemical moeities detected by TOF-SIMS are high-
lighted in orange on the chemical structures
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Table 4.2: Comparison of TOF-SIMS ion intensities before and after wash

Polymer Fold change p-value

DEGDMA 1.32 4.03×10−5

NGPDA 1.27 0.01

iBMA 1.01 0.47

tBCHA 1.25 1.29×10−6

The previous Droplet Microarray format (500 µm × 500 µm) was not found to be

compatible with the movement of the Nanomate robot, i.e. the spacing between spots is

too small for the robot the move between adjacent superhydrophilic spots. Therefore,

a format with a larger superhydrophilic spot size (�1.414 mm) was used. The same

printing program as in the first optimisation experiment was used, but now on a larger

set of polymers to explore a larger chemical space (Figure 4.6). Also here, monomer

solutions were prepared as 50% (v/v) or 50% (w/v) in DMF, where 2-DMPA was added

to reach a concentration of 1% (w/v).
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Figure 4.6: Structures used for second optimisation experiment

In total, 40 monomers were printed onto the superhydrophilic spots and in situ

polymerised. Polymers were selected as representation of the available monomer lib-

rary and further investigate the suitability of the Droplet Microarray for printing chemically-

diverse monomers. Only 6 out of the 40 polymers were not detected using TOF-SIMS

(Table 4.3). The structures of the monomer entities of the unsuccessfully printed poly-

mers are shown in Figure 4.7. Five of those monomers were acrylate monomers and

one acrylamide. The two other structures had a single ethylene glycol moiety. Though,

poly(ethylene glycol) moieties were printed successfully indicating further optimisa-

tion (solvent system and printing parameters) is required for those monomers which

have a single ethylene glycol.
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Table 4.3: Overview of detected and not detected polymers using TOF-SIMS

Polymer Detected Polymer Detected

THFuA " TCDMDA "

HBOPBA " MAETA "

TMPETA " PETA "

13BDDA " NBMA "

MAEA " BA 7

BDDA " EA 7

EGDA 7 MMAm "

13BDDMA " PFPA "

DVAd " DHEBAM "

TMOBDA " DMAm "

HDMPDA " GA 7

EGDPEA 7 pEGDA "

DDDMA " BMAOEP "

TAHTA " AAm 7

pEGDMA " MBMAm "

HEODA " ECNTA "

CNEA " HEA "

ZrBNCTA " BOMAm "

NGDA " NAS "

GDMA " EaNIA "
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Figure 4.7: Chemical structures for unsuccessfully printed monomers. (A) glycidyl ac-
rylate (GA), (B) butyl acrylate (BA), (C) ethylene glycol diacrylate (EGDA),
(D) ethylene glycol dicyclopentyl ether acrylate (EGDPEA), (E) ethyl ac-
rylate (EA), and (F) acrylamide (AAm)

The TOF-SIMS ion images were studied to further identify parameters requiring

optimisation. In Figure 4.4.1, stitched TOF-SIMS ion images are shown for a represent-

ative ion for each polymer. From these ion images can be derived that the polymer spot

is smaller than the substrate. This reveals that the standard printing parameters for ma-

terial microarray production need to be further optimised to allow full spot coverage.

To eliminate the possibility of the superhydrophilic polymer influencing the protein

adsorption, the polymer of interest should cover the full area of the superhydrophilic

spot. Increased volume of monomer solution onto the surface can be achieved through

repetitive contact of the steel spin or by increasing the contact time. The contact time as

well as the number of prints were altered to find the optimal condition of solvent dis-

pensing. Three monomers (tricyclodecane-dimethanol diacrylate (TCDMDA), hexane-

diol ethoxylate diacrylate (HEODA), and methacryloyloxyethyl acetoacetate (MAEA))

were selected based on the observation that these monomer solution, among other, did

not fully fill a spot. Monomer solutions (50% (v/v)) were prepared in DMF, DMSO,

or ACN. Printing was performed using 75 contacts on the surface. ACN was found

to be compatible with the Droplet Microarray (i.e. ACN is repelled by the superhydro-

phobic pattern) and permitting solubilisation of monomers, however, ACN evaporated

too quickly (directly after contact with the surface) during the printing process prevent-

ing in situ polymerisation (Figure 4.8A). DMF was already found to be compatible in
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the first printing experiment. The solutions evenly distributed along the superhydro-

philic area. However, due to longer exposure to DMF it was visually observed that the

superhydrophobic border dissolved, i.e. the polymer layer disappeared. For DMSO,

also good and even distribution along the spot was observed. DMSO is less volatile

than DMF and ACN, as a result, the printed solutions are still present after the printing

process was finished. For both ACN and DMF, the solvent already evaporated before

the printing programme was finished (Figure 4.8A).

TOF-SIMS analysis (Figure 4.8B) revealed successful printing of MAEA and HEODA

for solutions in 50% DMSO or DMF (v/v). Printing performance for 50% ACN (v/v)

solutions was found to be poor due to the rapid solvent evaporation. Since, DMF tends

to spread across the superhydrophobic pattern and could therefore cause spreading

across multiple spots, DMSO was chosen as the most suitable solvent to prepare the

monomer solutions.
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Figure 4.9: Testing different solvent systems for printing monomer solutions onto the
Droplet Microarray. (A) Photograph of printed array directly after comple-
tion of the printing program. (B) TOF-SIMS ion images for selected poly-
mers for test printing. Representative ions were selected from an in-house
TOF-SIMS library

Further testing was done on optimising the number of contacts and the length of

contact time. It was visually observed that longer contact times were more efficient in

terms of solvent dispensing than quick repetitive contacts. For more viscous monomer

solutions, more repetitive contacts were found to benefit the dispensing. Therefore, the

printer was set to dispense the monomer solutions five times with five seconds contact

per spot.

The relative humidity was also investigated as parameter to improve the printing.

Previous research has shown that increasing the relative humidity results in improved

the release of the solvent from the pins [252]. At increased relative humidity (70%),

a number of monomer solutions formed hydrogels resulting in printing failure. It

is known that increased water content increases aggregation of molecules and could
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therefore cause gel formation [253]. At reduced humidity (30%), the solutions tend to

evaporate relatively fast and could therefore prevent in situ polymerisation. At the ini-

tially used humidity (50%) none of the problems found at higher or lower humidity

were observed.

4.4.2 BUILDING A SPECTRAL LIBRARY FOR PROTEIN IDENTIFICATION AND

QUANTIFICATION

It is known that not all peptides from the same protein are representative for the re-

lative amount of protein [237]. Therefore, a proper choice has to be made on which

peptide to be used for protein quantification. Essential 8TM supplement was serially

diluted at concentrations of 50×, 25×, and 10×, respectively. The Essential 8TM dilu-

tions were dispensed via the rolling droplet technique onto the Droplet Microarray (8

repeats), in situ digested and analysed with LESA-DIA-MS/MS. For each protein, the

identified PSMs are shown in Table 4.4. Excellent sequence coverage was obtained se-

lected PSMs for insulin (Figure 4.9), transferrin (Figure 4.10), FGF-2 (Figure 4.11), and

TGF-β1 (Figure 4.12). PSMs per protein were saved as library in .MAT format using

LESAProteomics. This library was used for identifying PSMs in the dataset acquired

from the polymer arrays.

Table 4.4: Identified PSMs per Essential 8TM protein

Protein Peptide Charge

Insulin GFFYTPK 1+

GFFYTPK 2+

Transferrin MYLGYEYVTAIR 2+

HSTIFENLANK 2+

YLGEEYVK 2+

KCSTSSLLEACTFR 2+

SASDLTWDNLKGKK 3+

SASDLTWDNLKGK 2+
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Table 4.4 (continued)

Protein Peptide Charge

NTYEKYLGEEYVK 2+

DSGFQMNQLR 2+

SASDLTWDNLK 2+

EGTCPEAPTDECKPVK 2+

HQTVPQNTGGKNPDPWAK 3+

KDSGFQMNQLR 2+

FDEFFSEGCAPGSKK 2+

DGAGDVAFVK 2+

HQTVPQNTGGK 2+

SKEFQLFSSPHGK 3+

SVIPSDGPSVACVKK 2+

EFQLFSSPHGK 2+

DSGFQMNQLRGK 2+

KSASDLTWDNLKGK 3+

CSTSSLLEACTFRRP 2+

ADRDQYELLCLDNTR 2+

KSASDLTWDNLK 2+

MYLGYEYVTAIRNLR 3+

SMGGKEDLIWELLNQAQEHFGKDK 4+

SMGGKEDLIWELLNQAQEHFGK 3+

EGYYGYTGAFRCLVEKGDVAFVK 4+

DQYELLCLDNTR 2+

WCALSHHERLK 2+

DCHLAQVPSHTVVAR 2+

DQYELLCLDNTRK 2+

DDTVCLAKLHDR 2+
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Table 4.4 (continued)

Protein Peptide Charge

EGYYGYTGAFR 2+

TAGWNIPMGLLYNK 2+

APNHAVVTR 4+

DSAHGFLKVPPRMDAK 3+

WCALSHHER 1+

YLGEEYVKAVGNLR 2+

DLLFRDDTVCLAK 2+

DKEACVHKILR 2+

TGF-β1 ALDTNYCFSSTEKNCCVRQLYIDFR 3+

NCCVRQLYIDFR 2+

VLMVETHNEIYDKFK 2+

KRIEAIRGQILSK 3+

RIEAIR 1+

RIEAIRGQILSK 2+

YSNNSWRYLSNR 2+

VEQLSNMIVRSCK 2+

RALDTNYCFSSTEK 2+

WIHEPK 2+

FGF-2 SRKYTSWYVALK 2+

TRGRRTEERPSGSR 2+

IHPDGRVDGVREK 2+

SDPHIKLQLQAEER 2+

GVCANRYLAMKEDGR 2+

MVGVGGGDVEDVTPR 2+
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Table 4.4 (continued)

Protein Peptide Charge

LESNNYNTYRSRK 2+

EKSDPHIK 1+

VGVGGGDVEDVTPRPGGCQISGR 3+

Figure 4.10: Fragmentation spectra for selected peptide GFFYTPK for for identifica-
tion of insulin
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Figure 4.11: Fragmentation spectra for selected peptide DSGFQMNQLR for identific-
ation of transferrin.

Figure 4.12: Fragmentation spectra for selected peptide YTSWYVALKR for identifica-
tion of FGF-2
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Figure 4.13: Fragmentation spectra for selected peptide WIHEPK for identification of
TGF-β1 .

4.4.3 ESSENTIAL 8TM PROTEIN DOES NOT CORRELATE WITH ATTACHMENT

OF PLURIPOTENT STEM CELLS

With the peptides for quantification being selected, the quantification strategy was

tested on a selection of polymers which were previously used for screening of human

induced pluripotent stem cell (hIPSC) attachment and pluripotency maintenance [59].

ReBl PAT hIPSCs were cultured on polymer microarray by Dr Jordan Thorpe to identify

suitable chemical structures as alternative growth substrate for hIPSCs. From the ini-

tial screening of homopolymers, it was found that pluripotency maintenance was not

affected by the polymer substrate, however, the number of attached cells varies greatly

per polymer (Figure 4.13).
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Figure 4.14: Average cell count versus pluripotency maintenance after microarray
screening. The use of different polymer chemistry resulted in a change
of cell attachment and pluripotency maintenance. Data from Nasir et al.
[59]

In total, 216 polymers were fabricated in triplicate onto separate Droplet Microar-

rays (Figure 4.14). After 7 days of drying in the vacuum oven (35 °C ; <50 mTorr), the

array was washed in deionised H2O for 24 hours and analysed with ToF-SIMS. The

array was therafter incubated for 1 hour at 37 °C in 50 mL 1x Essential 8TM and 10 µM

ROCK inhibitor Y-27632 in DMEM/F12. After removal of non-adsorbing components

through three 10-second dip washes in deionised H2O , in situ digestion was performed

for 4 hours at 37 °C with 0.05 sequencing grade trypsin (Section 3.4.4). The array was

then dried in a vacuum oven (<50 mTorr) for five minutes to remove the DMSO. Next,

the array was analysed via LESA-MS/MS.
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Figure 4.15: Sequence for printing selection monomer onto the Droplet Microarray
(�1.414 mm)

ToF-SIMS analysis showed that 180 out of the 216 polymers were printed success-

fully onto the Droplet Microarray. Whilst the solvent system and printing parameters

were optimised for a range of monomer solutions, solutions can still be repelled by

the superhydrophilic surface or dissolving the superhydrophilic surface and therefore

preventing in situ polymerisation.

After applying Thompson’s tau test on the cell data, 390 outliers were removed.

Then, Thompson’s tau test was also applied on the log-transformed quantile-normalised

protein data after which both datasets were subjected to an abundance filter. The num-

ber of outliers per protein are shown in Table 4.5. The effect of normalisation and filter-

ing is shown in Figure 4.15. It can be seen that correlation between replicates improved

as a result of the data pre-processing steps.

Table 4.5: Number of outliers (Thompson tau) and removed polymers (abundance fil-
ter) per Essential 8TM protein after filtering

Protein Outliers protein adsorption

Insulin 31

Transferrin 23

FGF-2 23

TGF-β1 2
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Figure 4.16: Effect of data pre-processing steps on variability between replicates. (A)
Pair-wise comparison of all log-transformed data for insulin adsorption.
(B) Pair-wise comparison after quantile normalisation and outlier filter-
ing using Thompson’s tau test. Improvement in agreement between rep-
licates is observed, i.e. data clean-up led to improved correlation between
replicate (better agreement)

Filtered data were statistically compared to identify any difference in protein ad-

sorption between polymer substrates. It was found that the data did not follow a

normal distribution (Lilliefort’s test: p < 0.001), therefore, non-parametric compar-

ison (Kruskal-Wallis) was performed on the protein adsorption data. For all Essential

8TM proteins, differential adsorption was observed between polymer chemistries (Table

4.6).

Table 4.6: Comparison of protein adsorption values for Essential 8TM proteins across
different polymers

Protein p-value

Insulin < 0.001

Transferrin < 0.001

FGF-2 < 0.001

TGF-β1 < 0.001

After, regression analysis was performed using the Curve Fitting Toolbox in MAT-

LAB. Non-linear regression was performed using a sigmoid function. A sigmoid func-

tion was used as a sigmoid profile for fibronectin adsorption on different co-polymer
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compositions was observed by Mei et al. [66]. Therefore, the same type of curve fitting

(y =
a

b + e−x ) was used for this data. Initially, no correlations were found (r < 0.001; p

> 0.05) between protein adsorption and total cell count. However, the large number of

zero values in the cell data cause the trend line to not reflect any trend in the data (see

Figure 4.16 for an example). Therefore, polymers which had a cell count of zero were

removed from the data.

Figure 4.17: Non-linear regression results for all cell data and insulin adsorption. The
high amount of zero values is masking the true trend in the data whilst
showing high correlation

As can be derived from Figure 4.17A-D and the regression analysis, a sigmoid

model does not accurately describe the relation between protein adsorption and cell

attachment. However, visually it appears that the higher adsorption of TGF-β1 leads to

a decrease in the attachment of pluripotent stem cells.

110



CHAPTER 4

Figure 4.18: Scatter plots for cell attachment as a function of Essential 8TM protein
adsorption. (A) Insulin, (B) transferrin, (C) FGF-2, and (D) TGF-β1 . All
correlation coefficients were < 0.001 and none of the regression models
was significant (p > 0.05)

In the study of Mei et al. [66], a selection of co-polymers were incubated with 0.03

mg·mL-1 fibronectin. For a number of co-polymers, a saturation effect was observed,

i.e. a further increase in fibronectin adsorption did not lead to a further increase in cell

attachment. For the remaining selection of co-polymers no obvious relation was seen

between fibronectin adsorption and cell count.

Here, an opposite effect is observed, i.e. there is a decrease in cell attachment when

the relative amount of TGF-β1 increases. Therefore, this data suggest that other factors

than culture medium protein adsorption increase the cell attachment and pluripotency

maintenance. These factors will be discussed in Section 4.4.5.
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4.4.4 INVESTIGATION OF STRUCTURAL RELATED PROTEIN ADSORPTION US-

ING MOLECULAR DESCRIPTORS AND PLS REGRESSION

The relative protein adsorption data were and ToF-SIMS ion intensities were used to

find any relation between protein adsorption and the chemical nature of the polymer.

To do so, protein adsorption data were subjected to PLS regression. First, the number

of components were selected to capture at least 90% of variance in the data. Then, a

PLS model was built using that number of components and VIP scores were calculated.

ToF-SIMS ions with a VIP score > 1.5 were included in the final model. For the final PLS

model, the optimal number of components (smallest mean square error of prediction)

was estimated using a 5-fold cross validation strategy which was repeated 50 times.

The predictivity of the PLS model (how well do ToF-SIMS ion intensities predict protein

adsorption) was assessed by calculating the goodness-of-predictivity (Q2).

Table 4.7: Results of pre-processing protein adsorption data for building a predictive
PLS model

Protein Number of components to

explain >90% variance

Number of included ions

�nal PLS model

Insulin 20 47

Transferrin 15 38

FGF-2 15 51

TGF-β1 10 53

For all proteins, a prediction model was obtained with a Q2 > 0, indicating a certain

degree of predictivity (Figure 4.18). The best prediction model (highest Q2) is obtained

for TGF-β1 . These results show that protein adsorption can be related to the chemical

structure of the polymeric substrate.

For a biologically relevant model a Q2 > 0.4 is required [208]. In order to assess

whether all models have predictive value, PLS regression was performed by running

permutations (n = 100) [250]. In a permutation round, the protein adsorption data is

randomly assigned to the ToF-SIMS ion intensities. PLS regression is then performed
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using the same number of components and Q2 is then calculated through leave-one-

out cross validation. The Q2 values of the original model and the random models are

then statistically compared using a z-test. A relevant prediction PLS model should

perform significantly (p < 0.05) better than any random PLS model. The results of the

permutation test are shown in Table 4.8. These results show that for each protein the

PLS model predicts protein adsorption better than any random model. Therefore, all

PLS models are relevant to predict protein adsorption from ToF-SIMS ion intensities.

Figure 4.19: Prediction of Essential 8TM protein adsorption using ToF-SIMS ion intens-
ities and PLS regression. (A) insulin (B) transferrin (C) FGF-2 and (D)
TGF-β1 . The black line represents the identity (x = y)
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Table 4.8: Results of permutation test for predictive PLS models

Protein p-value

Insulin < 0.001

Transferrin < 0.001

FGF-2 < 0.001

TGF-β1 < 0.001

To investigate which structural features are important variables in the respective

PLS models, ions with a m/z < 100 were assessed. Assignment of putative identities

was done using prior work from Hook & Scurr [254]. The list of important ions per

protein are shown in Table 4.9.

Table 4.9: Important ions in PLS model for predicting Essential 8TM protein adsorp-
tion. Reported values are m/z values

Insulin Transferrin FGF-2 TGF-β1

22.99 24.13 24.13 16.09

24.13 28.02 27.02 28.02

40.01 77.95 46.98 32.02

46.98 86.99 53.99 40.01

60.41 89.01 63.95 41.99

78.00 97.70 65.98 42.05

83.81 97.98 79.94 44.99

93.00 80.01 59.20

94.02 83.81 65.03

94.24 95.95

97.70 96.94

97.98

For insulin, ions related to hydrophobic structures are observed (e.g. m/z 40.1: C3H4,

m/z 78.00: C6H6, m/z 93.00: C6H5O). This could be expected since insulin is a hydro-

phobic protein (GRAVY: 0.22) and would therefore prefer to adsorb onto hydrophobic
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surfaces. Transferrin (GRAVY: -0.41), FGF-2 (GRAVY: -0.53) and TGF-β1 (GRAVY: -

0.25) are more hydrophilic proteins. Therefore it is expected that those protein would

preferably adsorb onto more hydrophobic polymers. The ions m/z 27.02 (C2H3 or

CN) and m/z 28.02 (C2H4) can be derived from heteroatom-rich structures from certain

(meth)acrylate polymers. Furthermore, m/z 79.94 relates to SO3 which is also known

to be a hydrophlic group. Altogether, this shows that the observed important ions for

predicting protein adsorption can be put into context based on hydrophic-hydrophobic

or hydrophilic-hydrophilic interactions.

4.4.5 POTENTIAL FACTORS AFFECTING CELL RESPONSE

One potential factor of increased cell attachment at maximum protein adsorption is the

presence of ROCK inhibitor Y-27632 (Figure 4.19). The ROCK inhibitor was added for

the first 24 hours in the Essential 8TM. Y-27632 is known to promote cell attachment

by increasing the spreading of the cells as well as through cofilin activation [255]. This

could indicate that there might be an effect of Y-27632 on the attachment to protein-

coated polymers. However, further investigation is required to assess the role of Y-

27632 (m/z 248.1763 [M+H]+) since it did not fall within the currently used m/z range

(m/z 400-900).

In addition, for further understanding of the cell-material response mechanism, in-

cubation experiments should be conducted in the same format but in the presence of

cells. Attached cells should than be carefully removed without compromising the de-

posited matrix and without release of intracellular components. So far, studies (e.g. [66,

67, 69, 256, 257]) have only focused on adsorption of medium components withouth the

presence of cells. Abdallah et al. found laminin (α, β, γ) and nidogen from MatrigelTM

to adsorb to poly(methyl methacrylate) [69]. Differences in deposited matrices on syn-

thetic polymers could then provide more understanding on the difference cell response

for different synthetic polymer substrates. This would require the development of a

robust protocol for cell removal as well as further development of the current LESA-

MS/MS analysis strategy to permit quantification of more complex matrices.
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Figure 4.20: Chemical structure of ROCK inhibitor Y-27632

4.5 CONCLUSION

With the developed LESA-MS/MS method, quantitative analysis of protein adsorp-

tion on synthetic polymer surfaces was carried out successfully. From the differential

adsorption profiles, the data suggest that the amount adsorbed protein does not correl-

ate with cell attachment of pluripotent stem cells. Furthermore, difference in protein

adsorption were used to identify molecular descriptors to suggest what molecular fea-

tures induces/repel protein adsorption.

This method shows huge potential to further investigate monomer libraries to un-

derstand cell-material response and predict protein adsorption from molecular descriptors.

This is vital information to select better performing structures to be used as growth sub-

strates for hIPSCs. In addition, the methodology could also be extend to different cell

lines and/or more complex media to improve upon the design of synthetic biomateri-

als.

Since a random scatter was observed for proteins with cell response, it suggests

that the observed cell response cannot be solely attributed to adsorption of culture

medium proteins onto the polymer substrates. Further study would require to look into

a potential role of protein orientation/conformation or cell-induced posttranslational

modifications in relation to hIPSC attachment.
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Quantitative screening of protein

adsorption on scaled-up polymers

using LESA-MS/MS analysis1

5.1 INTRODUCTION

PRE-ADSORPTION of medium-derived proteins present in cell culture media in-

creases the cell response on synthetic polymer surfaces [67, 258]. High through-

put experiments for discovery of a suitable fully-synthetic substrate for hIPSC expan-

sion in a minimal and fully-defined medium (Essential 8TM [259]) have shown a num-

ber of candidates to replace currently used biological feeder layers as MatrigelTM [59].

However, many potential hits derived from array screening experiments fail in the

scale-up stage. During the scale-up stage, polymer coatings are created on a larger

surface area (e.g. 96-well or 6-well plate) to test cell response under representative

conditions.

In the previous chapter (Chapter 4), a high throughput strategy was developed for

identification and quantification of proteins adsorbed onto synthetic polymers. Now,

the aim is to transfer this methodology (LESA-MS/MS) for the analysis of scaled-up

1This chapter is part of the paper: A. Nasir et al., Adv. Healthc. Mater. (2020),
doi:10.1002/adhm.202001448.
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polymers in order to replace labour-intensive and time-consuming LC-MS/MS ana-

lysis [67, 258]. Quantitative assessment of protein adsorption of selected polymers

could potentially inform on the failure/success of scaled-up polymers. In this chapter,

a selection of synthetic (co-)polymers in a 6-well plate format were subjected to quant-

itative LESA-MS/MS analysis to investigate the relation between protein adsorption

and polymer performance regarding hIPSC attachment and survival [59].

5.2 AIMS & OBJECTIVES

The aim of this chapter is to use the developed MS strategy to quantitatively study

protein adsorption on a set of low, medium and high performing synthetic polymers

for stem cell expansion.

5.3 MATERIALS & METHODS

5.3.1 REAGENTS & CHEMICALS

Butyl acrylate (BA; ≥99%; Figure 5.1A), tetrahydrofurfuryl acrylate (THFuA; Figure

5.1B, 2-DMPA (99%), AmBic (BioUltra, ≥99.0%), BSA (≥96%), horse heart myoglobin

(≥90%), bovine heart cytochrome C (≥95%), and human holo-transferrin (≥97%) were

purchased from Sigma-Aldrich (Gillingham, UK). Tricyclodecane-dimethanol diacrylate

(TCDMDA; 95-100%; Figure 5.1C) was obtained from Polysciences GmbH (Hirschberg

an der Bergstrasse, Germany). ACN and water (LC-MS grade; CHROMASOLV®) were

bought from Riedel-de Haen. PermanoxTM cell culture slides (Nunc®), Essential 8TM

50x supplement and Gibco DMEM/F12 were acquired from Thermo Fisher Scientific

(Loughborough, UK). ROCK inhibitor Y-27632 hydrochloride (ROCKi) was obtained

from STEMCELLTM Technologies (Vancouver, Canada). Sequencing grade trypsin was

purchased from Promega (Southampton, UK)
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Figure 5.1: Chemical structures of polymers. (A) BA, (B) THFuA, (C) TCDMDA

5.3.2 6-WELL PLATE FABRICATION

Polymer-coated 6-well plates were kindly provided by Dr Jordan Thorpe. Briefly, tis-

sue culture plastic 6-well plates (Thermo Fisher, Hemel Hempstead, UK) were treated

with oxygen plasma for 10 minutes at 100 W and 2×109 mbar (Diener, Germany). After,

monomer solutions (BA, THFuA, TCDMDA:BA 2:1 (v/v)) were mixed with 10% w/v

2-DMPA in IPA in a 9:1 v/v monomer-to-photoinitiator ratio. Solutions were degassed

for 15 minutes at 30°C using a sonicator. Oxygen was removed from the solution vi-

als by flushing with argon gas. Plasma-etched 6-well plates were filled with 125 µL

monomer-photoinitator solution per well followed by 1 hour irradiation with UV light.

To remove unreacted monomer, wells were rinsed three times with IPA, followed by

three rinses with deionised water. Wells were filled with deionised water and incub-

ated for 48 hours at 37°C. After 24 hours, wells were rinsed five times with deionised

water and wells were filled with fresh deionised water. After 48 hours, the deionised

water was discarded and polymer-coated well plates were stored at room temperature.

5.3.3 INCUBATION OF POLYMER-COATED WELL PLATES

Each (co-)polymer was tested in triplicate. The culture medium was prepared by mix-

ing 49 mL of DMEM/F12 with 1 mL Essential 8TM 50x. A solution of 10 µM ROCKi

in deionised H2O were provided by Dr Jordan Thorpe and Dr Aishah Nasir. ROCKi

solution was mixed with Essential 8TM 1x in a 1:1000 v/v ratio. Next, each well was
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filled with 1.5 mL ROCKi/Essential 8TM 1x solution and incubated for 1 hour at 37.

After, ROCKi/E8 1x solution was discarded and all wells were washed using an adap-

ted protocol from Hammad et al. [67]. The washing cycle was carried three times and

consisted of adding 1.5 mL fresh deionised H2O , reciprocal shaking for 10 minutes

(Stuart reciprocal shaker; 100 spm), and discarding washing solution.

5.3.4 PROTEIN DIGESTION

5.3.4.1 AMBIENT in situ DIGESTION

Sequencing grade trypsin (0.5 in 50 mM acetic acid) was diluted 10-fold with 100 mM

AmBic. The working solution was dispensed onto pre-selected regions of interest. In-

cubation took place for 24 hours at room temperature after which the remaining trypsin

solution was allowed to evaporate in a fume hood. Plates were stored at 4°C until fur-

ther analysis

5.3.4.2 MICROWAVE-ASSISTED in situ DIGESTION

Sequencing grade trypsin (0.5 in 50 mM acetic acid) was diluted 10-fold with 100 mM

AmBic. The working solution was dispensed onto pre-selected regions of interest.

Microwave-assisted in situ digestion was performed according to an adapted protocol

of Ha et al. [260]. The sample was directly placed in a bowl with ice. Microwave-

assisted in situ digestion was carried in a domestic microwave (Swan Compact 20701,

Swan Housewares Ltd.; maximum power: 500 W) at medium power for 10 minutes.

After, the trypsin solution was allowed to evaporate under ambient conditions.

5.3.5 LESA-MS/MS

Well plates were individually analysed using the TriVersa Nanomate (Advion Bios-

ciences, Inc., Ithaca, NY) in ’LESA’ mode. The stage temperature was set to 20. The

extraction solvent consisted of 10% v/v ACN in 200 mM ammonium acetate [181]. In

total, 5 µL extraction solvent was aspirated from the solvent reservoir from which 3.0
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µL was dispensed onto the digest for 10 seconds. Then, 3.5 µL was aspirated back

into the tip after which the sample was introduced into a Q Exactive plus (Thermo Sci-

entific, San Jose, CA) via nanoelectrospray ionisation (ESI ChipTM, Advion Biosciences,

Inc., Ithaca, NY) using 1.6 kV voltage and 0.4 psi gas pressure (N2). The mass spectro-

meter was operated in DDA mode. MS1 spectra were acquired at a resolution of 140,000

(at m/z 200) over the range m/z 400-1200. The AGC target and ion injection time were

respectively set to 3×106 and 200 ms. MS/MS spectra were acquired at a resolution of

17,500 (at m/z 200) with a maximum ion injection time of 250 ms and the AGC target

set to 1×105. Ions were isolated within a 1 m/z window and subsequently fragmented

using a NCE of 27.

5.3.6 PROTEIN IDENTIFICATION & QUANTIFICATION

All processing was done using a custom MATLAB script (https://github.com/jorismeurs/

LESA_Proteomics). A spectral library was created from previously acquired MS/MS

data of all Essential 8TM proteins. First, .RAW files were submitted to SearchGUI v3.3.20

[217] and spectrum matching was performed using the X!Tandem [104], MSGF+ [108]

and OMSSA [103] algorithms. The following parameters were used for spectral match-

ing: 10 ppm precursor mass tolerance, 0.02 Da fragment mass tolerance, fully tryptic

peptides with a maximum of two miscleavages, and the FDR set to 1% for protein, pep-

tide and PSM identification. A library file containing the spectra of the identified pep-

tides was then generated in MATLAB and stored in .mat format. Analysis files were

then converted to MASCOT Generic Format (.mgf) files using msconvert [199] with

peak picking enabled. Sample MS/MS spectra were subsequently matched against

the spectral library. Fragments tolerance was set to 0.02 Da and sample spectra with

a cosine correlation greater than 0.95 were considered identified. The log-transformed

averaged summed intensity of identified peptide ions were then retrieved and used for

quantification. Intensity values were presented relative to the intensity of BA (lowest

cell attachment) to investigate the correlation between protein adsorption and polymer

performance regarding cell attachment and pluripotency maintenance. An overview
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of the workflow is shown in Figure 5.2

Figure 5.2: Schematic workflow for performing quantitative LESA-MS/MS analysis
for proteins adsorbed onto polymer-coated 6-well plates. Cells are seeded
and cultured on the selection of polymers and subsequently stained with
DAPI and OCT4 to quantify the total number of cells and number of pluri-
potent cells respectively. Cell quantification was performed using fluores-
cence microscopy and Cell Profiler [61] for automated quantification. In
parallel, protein adsorption experiments were done on the same selection
of polymers. A spectral library is first generated for the Essential 8TM pro-
teins. The identified peptide ions were used to create a list of target pep-
tides allowing ∼ 1 minute analysis per sample. MS/MS spectra were for
the sample spectra were compared against the library. Then, protein quan-
tification was done using the sum of the identified peptide ion intensities.
To assess difference in protein adsorption between different polymer, AN-
OVA was used.

5.3.7 STATISTICAL ANALYSIS

Adsorption data were subjected to Grubb’s test [261] to identify and remove any out-

liers. Missing values were thereafter imputated using the weighted average of k nearest

neighbours (k = 11) [249, 262]. ANOVA followed by Tukey’s post hoc analysis was

used for statistical comparison of protein adsorption. P-values less than 0.05 were con-

sidered significant.

122



CHAPTER 5

5.4 RESULTS & DISCUSSION

5.4.1 COMPARISON OF AMBIENT in situ DIGESTION AND MICROWAVE-ASSISTED

in situ DIGESTION

Stock solutions for cytochrome C, transferrin, BSA and myoglobin (all 1 mg·mL-1 in 100

mM AmBic) were prepared and mixed in a 1:1:1:1 (v/v/v/v) ratio. Protein mixtures

were dispensed on PermanoxTM cell culture slides either in situ digested under ambient

conditions or through microwaving. Both digestion conditions were tested in triplic-

ate. To assess the digestion efficiency, the number of peptides as well as the sequence

coverage (summed peptide length divided by protein length) were assessed. For each

protein, the number of identified proteins significantly increased when performing the

digestion in a microwave (Figure 5.3). As a result of the identification of more pep-

tides, the sequence coverage for each protein was higher when in situ digestion was

performed in a microwave (Figure 5.4). A higher sequence coverage has been repor-

ted to be an indication of a more efficient digestion [79]. Furthermore, the variation in

results was not found to be different for any of proteins between digestion conditions

(F-test: p > 0.05).

Figure 5.3: Comparison of number of identified peptides between ambient in situ di-
gestion and microwave-assisted in situ digestion. †: p < 0.05
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Figure 5.4: Comparison of sequence coverage between ambient in situ digestion and
microwave-assisted in situ digestion

5.4.2 IDENTIFICATION OF ESSENTIAL 8TM PROTEINS FROM POLYMER-COATED

WELL PLATES

Polymer-coated 6-well plates were incubated with a ROCKi/Essential 8TM 1x solution

(1:1000 (v/v)) for 1 hour, plates were washed, followed by extraction and digestion of

the adsorbed proteins. Well plates were designed to have two polymers per plate with

three replicates. Each replicate was analysed in triplicate using LESA-DDA-MS/MS

analysis (Figure 5.5).

Figure 5.5: Experimental design for quantitative proteomics on a selection of synthetic
substrates

A spectral library with previously acquired DDA files on Essential 8TM was build
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using LESAProteomics and used for identification of spectra acquired from the digests.

Library identification has shown to produce more robust results [214]. Like in Chapter

4, MS1 peptide ion intensities were summed, averaged and log-transformed per pro-

tein. Identification of DDA MS/MS spectra was done using the normalised dot product

(cosine distance; Equation 5.1) between the reference (library; Appendix A) and sample

spectrum. For identification, the following criteria were set:

• cos θ > 0.95

• ≥5 fragment ions could be annotated (mass tolerance window: 0.02 Da)

cos θ =
∑n

i=1 Isample × Ire f erence√
∑n

i=1 I2
sample ∑n

i=1 I2
re f erence

(5.1)

Insulin (Figure 5.6), transferrin (Figure 5.7), TGF-β1 (Figure 5.8), and FGF-2 (Figure

5.9) could all be identified through library identification. This shows a huge potential

to perform future analysis on incubated scaled-up polymer format to examine cell-

material interactions.

Figure 5.6: Identified tryptic peptide through library search for insulin
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Figure 5.7: Identified tryptic peptide through library search for transferrin

Figure 5.8: Identified tryptic peptide through library search for TGF-β1
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Figure 5.9: Identified tryptic peptide through library search for FGF-2

For all identified peptides per protein the intensity was retrieved from the averaged

MS1 spectra. For each protein, peptide intensities were averaged and log-transformed

(Figure 5.10). Transferrin adsorption was higher on THFuA and TCDMDA:BA, but

ANOVA followed by Tukey’s post hoc analysis only revealed a significant higher ad-

sorption of transferrin on TCDMDA:BA compared to BA (Figure 5.11A). For insulin,

no difference in adsorption was observed between the different substrates (Figure 5.11).

Additionally, it was observed that both FGF-2 and TGF-β1 adsorbed at higher quantit-

ies to TCDMDA:BA compared to THFuA and BA.
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Figure 5.10: Comparison of protein adsorption for polymer-coated 6-well plates in-
cubated with Essential 8TM medium. Data presented as mean values ±
standard deviation
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Figure 5.11: Statistical comparison (ANOVA + Tukey’s post hoc analyis) of protein ad-
sorption on different synthetic polymer substrates. (A) Transferrin (B)
Insulin (C) FGF-2 and (D) TGF-β1 . Non-overlapping intervals are signi-
ficantly different

THFuA was the polymer with the second highest cell response in the screening of

homopolymers, whilst TCDMDA:BA came forward as potential growth substrate for

hIPSCs based on high cell response, long term (>72 h) cell culture survival and the

ability to differentiate hIPSCs into endoderm, mesoderm and ectoderm lineage cells

[59]. Interestingly, for TCDMDA:BA a significantly higher adsorption was observed of

FGF-2 and TGF-β1 compared to BA and THFuA. Higher hIPSC attachment and long-

term survival (>72 h) on TCDMDA:BA can be explained by a higher degree of TGF-β1

adsorption. TGF-β1 can bind integrins, which are important glycoproteins for cells to

be able to bind to extracellular matrix proteins [263, 264].

For transferrin, higher adsorption was observed for polymers with higher cell re-

sponse (THFuA and TCDMDA:BA), though, no difference was observed between THFuA
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and TCDMDA:BA. This seems to be in concordance with the observation in Section

4.4.3 that transferrin adsorption reaches saturation after which potentially currently

unknown other factors influence the cell attachment and survival.

Insulin did not differ in protein adsorption between the three synthetic polymer

substrates. Both insulin and transferrin are important factors for cell attachment and

survival [259]. Based on the observation in this experiment, all Essential 8TM proteins

will adsorb to a polymeric substrate regardless of the cell response. Transferrin seems

to be an initial important factor for cell attachment until the substrate is saturated

whereafter the growth factor proteins FGF-2 and TGF-β1 start to play an important

role. However, in order to investigate the role of the individual proteins, a study should

be performed on pre-coated polymer substrates with individual Essential 8TM proteins

as well as combinations of Essential 8TM proteins to discover which protein (combina-

tions) thrive cell response, cell culture survival and trilineage differentation. Further-

more, despite a number of studies using LESA-MS for MSI [171, 171, 180, 182, 265, 266],

it is not suitable for imaging at micrometer resolution in order to study the spatial ad-

sorption profile of Essential 8TM proteins across the polymer substrate. Recent develop-

ments in 3D OrbiSIMS might be a suitable approach, however, protein analysis using

3D OrbiSIMS is relatively new and needs to be further investigated [267]. MALDI MSI

could be an alternative approach the acquire chemical images for in situ trypsin diges-

ted Essential 8TM proteins [268–271].

5.5 CONCLUSION

The developed LESA-MS/MS strategy was extended from array screening to the ana-

lysis of scaled-up polymers in a 6-well plate format. Through microwave-assisted in

situ digestion, the digestion time was reduced from 4 hours to 10 minutes. Furthemore,

using the TriVersa Nanomate to directly sample the in situ digested proteins reduced

the analysis time to ∼1 minute.

Differences in protein adsorption were found between a low cell response substrate
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(BA) and high cell response substrates (THFuA and TCDMDA:BA). These observa-

tions revealed valuable information towards understanding of long-term cell culture

survival and trilineage differentation. Therefore, this method shows potential to in-

vestigate medium-derived proteins for other cell lines and their adsorption to synthetic

polymer substrates and provide with valuable information towards development of

suitable synthetic growth substrates for individual cell types.
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Sequential 3D OrbiSIMS and

LESA-MS/MS-based metabolomics

for prediction of brain tumor relapse

from sample-limited primary tissue

archives 1

6.1 INTRODUCTION

CENTRAL nervous system (CNS) paediatric tumours are the most prevalent type

of solid cancer diagnosed in children and the leading cause of mortality among

all cancers in children [272]. From the clinical and biological perspective, intracranial

paediatric ependymomas remain enigmatic and challenging tumours to treat. Overall,

the prognosis is poor with over 50% of tumours relapsing and less than 50% of children

surviving this disease (5-year overall survival is 25% for patients who have relapsed)

[273–275]. Though widely considered a ‘surgical disease’, a significant proportion of

1This chapter has been fully published: Meurs, J.; Scurr, D. J.; Lourdusamy, A.; Storer, L. C. D.; Grundy,
R. G.; Alexander, M. R.; Rahman, R.; Kim, D.-H. Sequential 3D OrbiSIMS and LESA-MS/MS-Based Meta-
bolomics for Prediction of Brain Tumor Relapse from Sample-Limited Primary Tissue Archives. Anal.
Chem. 2021, 93 (18), 6947-6954, doi 10.1021/acs.analchem.0c05087
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patients experience relapse, even following complete surgical resection of the tumour.

The identification of biological correlates of disease progression and patient-tailored

therapeutic targets therefore remains a significant challenge in this disease. Under-

standing the biochemical nature of tumour development is of vital importance for the

development of the next generation of treatments [273]. In a disease state, the human

metabolome is affected by several factors and therefore provides an excellent source

of information to investigate disease-related alterations in metabolism [276]. To do so,

an untargeted metabolomics approach can be used to study molecular changes within

and between tissue samples of different phenotypes [277, 278]. State-of-the-art meta-

bolomics techniques allow the detection of hundreds to thousands of metabolites in a

biological sample [279], where untargeted metabolomics of cancer tissue is undertaken

using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-

MS (GC-MS) [280, 281]. Chromatography-based strategies allow the identification of a

vast number of metabolites; however, these techniques require 20-50 mg of tissue for

metabolomics analysis.

Preserving tumour regions of interest is commonly achieved using the tissue mi-

croarray (TMA) format. The neuropathologist identifies and cuts out key regions in the

whole tissue section which are stored as a separate formalin-fixed paraffin-embedded

(FFPE) block. The TMA platform allows small amounts of tissue to be used for tran-

scriptomic and histological analysis [282–284], though for diagnosis the entirety of the

tumour needs to be reviewed. Since the TMA tissue sections are small (diameter <1

mm; thickness: 4 µm), sensitive analytical techniques are required for metabolomic

studies to detect low-abundance metabolites. Despite the vast amount of available

TMA libraries, metabolite profiling of tumour TMAs has been an unexplored territ-

ory due to incompatibility of LC-MS or GC-MS analysis. To perform MS analysis on

TMAs, a sensitive technique is required to directly obtain a wide range of metabolites

from small tissue sections.

A few studies have shown the potential of liquid extraction surface analysis-MS

(LESA-MS) for untargeted metabolomics across a range of sample types. With LESA-
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MS, liquid microjunction-based extraction can be performed on a flat sample surface

to obtain the analytes of interest which are directly injected into the mass spectro-

meter [153]. Hall et al. found significantly changed profiles of lipids in non-alcoholic

fatty liver disease (NAFLD) tissue using LESA-MS [198]. This allowed discrimination

between different stages of stearosis. Ellis et al. used LESA-MS for the analysis of

single-cell arrays and could distinguish cell types based on lipid profiles showing the

capability of per-forming single-cell metabolomics with LESA [193]. LESA-MS was also

successfully used to identify metabolic changes in small volumes of urine samples from

an intervention study [211]. Basu et al. used LESA-MS for direct metabolite profiling

for several different breast cancer cell lines [285]. The capability of LESA was shown to

allow direct analysis of adherent cells with minimal sample preparation. Collectively,

these studies have shown that from a limited amount of sample, metabolic changes

could be measured accurately.

The recent development of Orbitrap secondary ion mass spectrometry (3D OrbiSIMS)

revealed new possibilities for metabolic profiling due to its capability of high mass ac-

curacy and mass resolving power (>240,000 at m/z 200) at subcellular spatial resolution

[41]. In that study, it was shown that 3D OrbiSIMS can be used for 2D and 3D imaging

of neurotransmitters, in situ identification of lipid species using MS/MS, and perform-

ing metabolomics profiling of single cells [41]. One unmet scientific challenge for brain

tumour research is the capability to perform metabolomics analysis on archived TMAs

to understand tumor development and find potential targets for therapies [279, 286].

3D OrbiSIMS and LESA-MS/MS require only minimal sample preparation, analysis

can be performed directly on the tissue sample, and both instruments can acquire data

in an automated manner using the TMA as sample platform. These MS techniques can

therefore circumvent the need for tissue homogenisation, allowing the tissue to remain

architecturally intact and available for subsequent study. The data achievable using

this approach will address current challenges in cancer metabolomics, as detection of

low abundance (highly polar) oncometabolites to study important metabolic pathways

may enable the development of novel prognostic and treatment strategies [280, 287].

134



CHAPTER 6

To date, no disease studies have thus far reported the use of combined 3D OrbiSIMS

and LESA-MS/MS for untargeted metabolite profiling on TMAs. Combining MS tech-

niques, in which ions are generated via different mechanisms, will allow acquisition

of complementary metabolomic datasets from the same set of samples. Combination

of the individual datasets on existing TMA archives could therefore provide a vast

amount of clinically valuable information. Here, we perform 3D OrbiSIMS and LESA-

MS/MS analysis of FFPE pediatric ependymoma TMAs as an exemplar demonstration

of the ability to perform untargeted surface metabolomics and obtain clinically relevant

data.

6.2 AIMS & OBJECTIVES

The aim of this chapter is to develop a surface mass spectrometry strategy for the ana-

lysis of metabolites in FFPE tissue tumour microarrays using 3D OrbiSIMS and LESA-

MS/MS.

6.3 MATERIALS & METHODS

6.3.1 REAGENTS & CHEMICALS

MeOH and H2O (LC-MS grade; CHROMASOLV) were purchased at Riedel-de Haen

(Seelze, Germany). FA (LC-MS grade; OptimaTM) was bought from Fisher Scientific

(Loughborough, UK). Xylene (mixture of isomers; 98.5%, AnalaR NORMAPUR®) was

acquired from VWR (Leicestershire, UK).

6.3.2 EXPERIMENTAL DESIGN

Hematoxylin and eosin-stained sections from FFPE paediatric ependymoma were ex-

amined by a neuropathologist at Nottingham University Hospital, and three represent-

ative areas were marked on the slides. Using a Raymond Lamb tissue micro-arrayer,

1 mm cores were punched from the marked areas of the donor blocks and placed into
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recipient paraffin blocks to generate a tissue microarray (TMA). 4-µm sections were cut

from each block for use in further experiments. The analyzed TMA blocks consisted of

patients which experienced tumour relapse (N = 5; n =3) and patients without relapse

(N = 2; n = 3) (Table 6.1).

Table 6.1: Demographic information for patients included in the analysis (N = 7; n =
3)

Parameter Value

Age at diagnosis 55.3 ± 39.9 months

Gender Female (N = 5); Male (N = 2)

Recurrence Yes (N = 5); No (N = 2)

Tumour location Posterior fossa (N = 6); Supratentorial (N = 1)

WHO tumour grade II (N = 4); III (N = 3)

Overall survival 60.1 ± 35.1 months

Status Alive (N = 4); Death (N = 3)

6.3.3 SAMPLE PREPARATION FOR MS ANALYSIS

Deparaffinisation of FFPE paediatric ependymoma TMAs was achieved using an ad-

apted protocol from Ly et al. [288]. FFPE TMAs were first washed twice for 1 minute

in a xylene bath. Residual xylene was removed and the array was allowed to dry in a

fume hood for at least one hour, prior to storage at room temperature until analysis.

6.3.4 3D ORBISIMS ANALYSIS

The TMA was placed in a hybrid TOF.SIMS 5 (IONTOF GmbH, Münster, DE) instru-

ment coupled to a Q Exactive HF (Thermo Scientific, San Jose, CA) mass spectrometer.

Ions were sputtered from the surface using a 20 keV Ar3000
+ gas cluster ion beam

(GCIB). The field of view (FoV) was set to 500 µm x 500 µm. Spectra were acquired

at a resolution of 20 µm in random raster mode. The Orbitrap was operated in Full-

MS mode. The resolution was set to 240,000 at m/z 200 and the AGC target was set to
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1×106 with a maximum ion injection of 511 ms. Data were acquired in the scan range

m/z 75-1125 for both positive and negative polarity.

6.3.5 LESA-MS/MS ANALYSIS

The TMA was placed on a universal plate holder (Advion Biosciences, Ithaca, NY)

and scanned with an Epson V330 scanner. The tissue sample location was selected

in LESA Points (Advion Biosciences, Ithaca, NY). Liquid extraction surface analysis-

tandem mass spectrometry (LESA-MS/MS) was carried out using a TriVersa Nano-

mate (Advion Biosciences, Ithaca, NY) coupled to a Q Exactive plus Orbitrap mass

spectrometer (Thermo Scientific, San Jose, CA). Extraction of metabolites from tissue

samples was conducted with a mixture of 80% v/v MeOH and 20% v/v H2O to which

FA was added (end concentration 1% v/v). Brain tissue was sampled using the contact

LESA approach [155] in which the solvent tip is brought into contact with the sample

to minimize the solvent spread. During contact, 1.5 µL solvent (total volume: 3 µL)

was dispensed on the tissue and after 15 seconds, 2.0 µL was aspirated back into the

tip. The extract was introduced into the mass spectrometer via chip-based nanoelec-

trospray ionisation (ESI Chip™, Advion Biosciences, Ithaca, NY) at 1.4 kV and 0.3 psi

gas pressure [211]. The mass spectrometer was operated in Full-MS/dd-MS2 mode.

MS1 spectra were acquired in the scan range of m/z 70-1050. The resolution was set to

140,000 at m/z 200 and the AGC target was set to 3×106 with a maximum ion injec-

tion time of 200 ms. Data-dependent MS/MS spectra were acquired at a resolution of

17,500 at m/z 200. The AGC target for MS2 scans was set to 1×105 with a maximum

ion injection time of 50 ms. The top 20 most intense ions were isolated within a 1 m/z

window for fragmentation. Dynamic exclusion was applied for 120 seconds per po-

larity. Fragmentation was carried using higher-energy collisional dissociation (HCD)

using a stepped collision energy of respectively 10, 25 and 40 eV. All tissue sections

were analyzed once. MS data were acquired for 2 minutes per polarity.

137



CHAPTER 6

6.3.6 ION SELECTION FOR MULTIVARIATE ANALYSIS

LESA-MS spectra were averaged in XCalibur (Thermo Scientic, San Jose, CA) and ex-

ported in .RAW format. 3D OrbiSIMS spectra were exported from SurfaceLab (ION-

TOF GmbH, Münster, Germany) as .TXT files. Mass spectrometry data were further

processed using MATLAB (R2017a, The MathWorks, Inc., Natick, MA;https://github.

com/jorismeurs/LESAMS). For LESA-MS data, files were converted to .mzXML using

ProteoWizard 3.0.1908 [199]. Peaks were picked from the spectra using the mspeaks

function from MATLAB’s Bioinformatics Toolbox. After, peaks were aligned within 5

ppm m/z tolerance [198, 211]. Features with more than 20% missing values across all

samples were removed [204]. Remaining missing values were imputed using k-nearest

neighbours (knn) imputation. The value of k was set to 10 [289].

6.3.7 MULTIVARIATE ANALYSIS AND PATHWAY ANALYSIS

Ion intensity matrices were TIC normalized, log-transformed, and fused using a low-

level strategy [290]. Low-level fusion means that the obtained ion intensity matrices per

method are concatenated and subjected to multivariate analysis as one dataset (Figure

6.1F). Data were divided into a no relapse for patients who did not experience relapse

and eventual relapse for patients in who ependymoma recurred at least once after sur-

gical removal. Fused data were subjected to partial least squares - discriminant ana-

lysis (PLS-DA) followed by leave-one-out cross-validation to calculate the perform-

ance of the model to distinguish between no relapse and eventual relapse samples. The

PLS-DA model was further validated using permutation testing [250]. Ions with a VIP

score greater than 1.5 were considered discriminative between groups and included

for univariate statistical analysis. Discriminative ions were subjected to Student’s t-test

followed by a permutation test to estimate the FDR. Significant ions were annotated

using the Human Metabolome Database (3 ppm mass tolerance) [291]. Annotated ions

were submitted for pathway analysis in MetExplore [292, 293].
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6.3.8 CHEMICAL HETEROGENEITY IN 3D ORBISIMS IMAGES

Identified metabolic classifiers for relapse were used to study intra-tumour heterogen-

eity in the 3D OrbiSIMS images. IONTOF .ITAX files were converted to .imzML and

parsed into MATLAB using the imzML Converter [294] and an in-house developed

MATLAB class (http://github.com/jorismeurs/SIMS_imzML). The dynamic range

(difference between maximum and minimum ion intensity) was used as a measure

for heterogeneity [295].

6.3.9 STATISTICAL ANALYSIS

Distribution of the data was assessed using Lilliefort’s test. Univariate comparison

between ependymoma subgroups was done using either Student’s t-test or Mann-

Whitney test for normal distributed and non-normal distributed data, respectively. A

p-value less than 0.05 was considered to be significant. All statistical calculations were

performed in MATLAB.

6.3.10 GENE EXPRESSION ANALYSIS

Two independent gene expression datasets from previously published studies were

used for this analysis [296, 297]. The first cohort comprised of 65 tumour samples

taken at the diagnosis as well as at relapse from 45 paediatric ependymoma patients.

Transcriptomic microarray profiles of tumour samples were generated using Affymet-

rix HG-U133 Plus 2 GeneChip microarrays (Affymetrix, Santa Clara, CA). Expression

intensity values were calculated at probeset level from microarray data CEL files using

the robust multi-array average (RMA) method. Probesets that are ‘absent’ (present/-

absent call using MAS5) in all samples were filtered out from the analysis. Expression

values were mapped from probeset to unique gene and the probeset with the highest

mean expression value was selected when multiple probesets were mapped to the

same gene. The second cohort comprised of 54 tumour samples (both primary and

relapse) from 17 paediatric ependymoma patients and profiled with whole-human-
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genome 44K oligonucleotide microarrays (Dual Colour 44K microarray, Agilent Tech-

nologies). Raw intensities were background corrected and normalised with a Lowess

normalisation method for within-array and quantile normalisation for between-array

normalisation [298]. The normalised expression values were mapped to unique gene

and the probe with the highest mean expression value was selected when multiple

probes were mapped to the same gene. The normalised gene expression data from two

studies were combined using ComBat, a robust empirical Bayes regression method

[299]. The differential expression analysis between the primary and recurrent tumours

with the ten candidate genes was performed with the moderated t-test and the gene

set analysis was performed with the Global test [300].

6.4 RESULTS & DISCUSSION

6.4.1 SERIAL 3D ORBISIMS AND LESA-MS/MS FOR IN SITU METABOL-

ITE PROFILING

The deparaffinised TMAs were first analysed with 3D OrbiSIMS followed by LESA-

MS/MS and subsequent data preprocessing and multivariate analysis in MATLAB

(Figure 6.1).
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Figure 6.1: Sequential mass spectrometry analysis of pediatric ependymoma tissue
microarrays. (A) The tumour tissue was removed, the tumour area was
marked and then paraffin-embedded for long term storage. (B) For MS
analysis, a TMA block from the archive was sectioned and mounted onto
a glass substrate followed by a xylene wash to remove the paraffin. (C)
Paraffin-free samples were then analysed by 3D OrbiSIMS followed by (D)
LESA-MS/MS. (E) Ions were selected from the mass spectra and aligned.
(F) All matrices with ion intensities were then combined (low-level data
fusion). (G) Subsequently, data were subjected to partial-least squares-
discriminant analysis (PLS-DA) to identify discriminative features in tu-
mour recurrence. (H) Molecular formulae were assigned to the significant
ions using the Human Metabolome Data-base. (I) Ions with a putative
ID were then submitted to MetExplore for metabolic pathway analysis to
identify affected pathways and corresponding genes.

The 3D OrbiSIMS was introduced to enable the imaging of metabolites within the

individual TMA sections and to obtain the in situ spatial metabolite profile of FFPE

ependymoma tissue. During SIMS analysis, the sample is slightly etched by the primary

ion beam (20 keV Ar3000
+), although the amount of sample consumed by SIMS is lim-

ited when argon clusters are used [35]. Prior analysis by 3D OrbiSIMS did not lead to

a decrease in either the number of detected ions (Student’s t-test : p = 0.2578) or ion in-

tensity (Student’s t-test : p = 0.1806) for LESA-MS/MS data (Figure 6.2), indicating that

subsequent metabolite profiling with LESA-MS/MS can be performed without data

loss.
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Figure 6.2: Investigating the effect of 3D OrbiSIMS analysis on subsequent LESA-
MS/MS analysis. The signal intensity of features identified in LESA-MS
spectra did not seem to be affected by prior 3D OrbiSIMS analysis. For one
patient (n = 3), the analysis was carried out with and without OrbiSIMS.
The scatter plot reveals a good correlation between obtained feature in-
tensities. Furthermore, Student’s t-test revealed no significant difference
in signal intensity distribution

6.4.2 COMPLEMENTARY METABOLITE PROFILING WITH 3D ORBISIMS AND

LESA-MS/MS

The use of direct MS has not been reported yet for ependymoma metabolite profil-

ing due to the small quantity of tissue available per patient. Tumour sections on a

TMA range in diameter from 0.6 to 1.0 mm and are approximately 4 µm thick. 3D

OrbiSIMS and LESA-MS/MS are both applicable to sub-millimetre sample size and

therefore present an opportunity to obtain novel MS data from extremely small tissue

quantities. Furthermore, the relatively non-destructive nature of the 3D OrbiSIMS al-

lows for subsequent analysis of the same sample by multiple techniques. MS1 spectra

acquired from the TMAs with 3D OrbiSIMS and LESA were processed to obtain ion

intensities. A higher number of putative identifications (Figure 6.3A) were observed in

the LESA (annotated ions: 634 (+), 51 (-)) compared to 3D OrbiSIMS data (annotated

ions: 86 (+), 116 (-)). Annotated metabolites in 3D OrbiSIMS spectra were found to

be mostly (hetero)aromatic compounds whilst with LESA, linear polar and non-polar
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molecules were detected (Figure 6.3B). Comparison of annotated metabolite classes re-

vealed that 60 classes were commonly detected with 3D OrbiSIMS and LESA-MS whilst

20 and 83 classes were uniquely detected by 3D OrbiSIMS and LESA-MS, respectively

(Figure 6.3C). To confirm metabolite identities, LESA-MS/MS spectra were compared

against a library (mzCloud). In total, 288 metabolites were identified within 4 minutes

of LESA-MS/MS analysis time per sample. The number of identified metabolites is a

vast improvement compared to previous research conducted on metabolite profiling

of ependymoma tissue using NMR where 18 and 25 metabolites were identified and

quantified, respectively. [272, 301].

Figure 6.3: Identifying putative metabolites in 3D OrbiSIMS and LESA-MS spectra.
(A) In total, more ions were identified in the LESA-MS spectra, though
the number of ions in negative mode identified as metabolite was higher
for SIMS. (B) For all identified ions, the class as described in the Human
Metabolome Database was obtained to identify which classes can be detec-
ted with each technique. The patched areas represent structurally similar
classes. (C) A Venn diagram was derived with data from both surface MS
techniques, identifying common and unique metabolite classes that could
therefore provide complementary and additive information.

6.4.3 PREDICTING TUMOR RECURRENCE FROM METABOLITE PROFILES

Acquired 3D OrbiSIMS and LESA-MS/MS spectra were processed using a custom

MATLAB script for peak picking, alignment, data fusion and multivariate analysis.

To investigate the potential of the serial MS strategy for oncometabolomics, samples

143



CHAPTER 6

were categorised by eventual tumour recurrence. Analysed tumour sections consisted

of 7 primary tumours with each three replicates, though for 5 out of 7 patients in this

dataset, the tumour recurred at least once after surgery or follow-up treatment. From a

diagnostic and therapeutic point of view, it is of interest to predict if patients will exper-

ience tumour relapse or if primary treatment is successful so therapy can be adjusted

consequently. Waziri et al. [302] did not find any relation between ependymoma recur-

rence and demographic factors, tumor grade and location, indicating that the observed

difference in metabolite profiles could be due to actual biological differences between

no relapse and eventual relapse ependymoma metabolite profiles.

Fused data was subjected to PLS-DA with subsequent leave-one-out cross valida-

tion. The patient data separated into two distinct groups with recurring samples scor-

ing more highly in both the first and second component (Figure 6.4A). The observed

Q2 value (goodness-of-prediction; Q2 = 0.4334) for the PLS-DA model showed to be

acceptable for a biological model [208].

To identify the discriminative ions between ependymoma subgroups, the VIP score

for each ion was calculated. A VIP score≥ 1.5 was considered discriminative. The ions

which met this condition were subjected to Student’s t-test to determine which ions

were significantly altered between the two groups. In total, we identified 27 significant

ions (p < 0.05; Figure 6.4B). From those 27 ions, 18 ions could be assigned a putative

molecular formula using the Human Metabolome Database [291] (Table 6.2). Most of

the significant ions were found to be more prominent in the no relapse group.
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Figure 6.4: Identification of significant ions from fused LESA-MS/MS and 3D Or-
biSIMS data. (A) PLS-DA scores plot reveals clustering of patients based
on tumour recurrence. (B) Box plot for significant ions (p < 0.05) identified
using Student’s t-test and FDR estimation through a permutation test.

Table 6.2: Annotations for significant ions (p < 0.05). Fold changes were calculated by
dividing the average ion intensity of the no relapse group by the average ion
intensity in the eventual relapse group

m/z Formula Adduct Instrument Fold change

321.2400 C18H34O3 [M+Na]+ LESA 0.23

145.0293 C9H6O2 [M+H-H2O ]+ LESA 1.98

201.0225 C8H10O5S [M+H-H2O ]+ LESA 1.64

143.0500 C5H12OS [M+Na]+ LESA 1.57

170.0609 C11H8NO2 [M+H-H2O ]+ LESA 1.89

319.2244 C18H32O3 [M+Na]+ LESA 0.45

146.0610 C9H11NO2 [M-H-H2O ]- SIMS 2.53

167.0612 C11H8N2 [M-H]- SIMS 2.42

160.0402 C9H9NO3 [M-H-HH2O ]- SIMS 2.39

145.0293 C9H6O2 [M-H]- SIMS 1.98

158.0610 C10H11NO2 [M-H-H2O ]- SIMS 2.25

142.0296 C9H7NO2 [M-H-H2O ]- SIMS 1.57

201.0225 C8H10O4S [M-H]- SIMS 1.64

143.0500 C10H8O [M-H]- SIMS 2.50

168.0452 C11H9NO2 [M-H-H2O ]- SIMS 1.94

170.0609 C11H11NO2 [M-H-H2O ]- SIMS 1.89
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Table 6.2 (continued)

m/z Formula Adduct Instrument Fold change

409.0570 C21H14O9 [M-H]- SIMS 0.44

318.1183 C13H23NO9 [M-H-H2O ]- SIMS 0.49

The putatively identified metabolites covered in total 14 genes (Table 6.3). A num-

ber of studies compared primary and recurrent tumours at transcriptomic level [302–

305]. Those 14 genes identified in this study were not reported to be significantly

changed between primary and recurrent ependymoma in previous transcriptomic re-

search. This could be explained by the fact that all tumours in our study were primary

from which for five patients the ependymoma eventual relapsed. From our data, we

could hypothesize that the metabolite profiles of primary non-recurrent and primary

recurrent ependymoma are different, but primary recurrent ependymoma do not re-

flect the metabolite profile of recurrent ependymoma.
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Table 6.3: Putative metabolite IDs for significantly affected pathways (p < 0.05)
between ependymoma sub groups. Pathway analysis was performed us-
ing MetExplore

Pathway Putative signi�cant metabolite

IDs

Related

genes

Tryptophan

metabolism

4,6-dihydroxyquinoline (↑)

5-hydroxytryptophol (↑) ADHFE1

β-carboline (↑) MAOA

Methyl indole-3-acetate (↑) MAOB

Quinolone-4,8,-diol (↑)

Linoleate

metabolism

12(13)-EpOME (↓) EPHX1

9(10)-EpOME (↓) EPHX2

Cytochrome

metabolism

Coumarin (↑) CYP2A13

Napthalene epoxide (↑) CYP2A6

CYP2F1

Phenylalanine

metabolism
L-phenylalanine (↑)

DDC

GOT1

GOT2

PAH

TAT

Tyrosine

metabolism

1,2-dehydrosalsolinol (↑)

GSTK16,7-dihydroxy-1,2,3,4-

tetrahydroisoquinoline (↑)

Adrenochrome (↑)
Arrows indicate higher (^) or lower (_) abundance of the metabolite in the eventual relapse group com-

pared to the no relapse group

Although only a small number of patients were used in this study, the data sup-
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port the potential for performing large-scale studies on TMA libraries to investigate

the in situ alterations of metabolite profiles and affected pathways between tumour

phenotypes using LESA-MS and 3D OrbiSIMS. Rather than finding the same classifi-

ers, performing analysis with both direct MS techniques allowed us to discover unique

classifiers and metabolic pathways for predicting ependymoma relapse from metabolic

signatures in primary ependymoma. This provides an opportunity to perform a clinical

study on available libraries of FFPE tumour TMAs. Furthermore, novel pathways have

been discovered that provide insight into potential tumour relapse which will improve

upon understanding of tumour biology [301] and eventually leading to the discovery

of new drug targets, which may prevent or delay tumour relapse.

6.4.4 INVESTIGATING METABOLIC INTRA-TUMOUR HETEROGENEITY US-

ING 3D ORBISIMS IMAGING

Paediatric ependymoma is characterised by a high degree of inter-patient genetic, epi-

genetic and metabolic heterogeneity, which manifests as distinct tumour sub-groups

with varying prognoses [301, 306]. However, it is not yet known whether metabolomic

profiles vary within intra-tumour regions of paediatric ependymoma and/or within

distinct ecological niches.

Gularyan et al. [42] have shown the potential and capability of SIMS to study inter-

and intra-tumour heterogeneity. Increased intra-tumour heterogeneity has been iden-

tified as a reason for treatment failure [42]. From this could be hypothesized that intra-

tumour heterogeneity will increase for (eventual) recurrent tumours. Previous research

has shown that SIMS can be used to investigate inter- and intra-tumour heterogeneity

[42]. With the acquired 3D OrbiSIMS images, the intra-tumour heterogeneity was in-

vestigated between the no relapse and eventual relapse group. Through untargeted meta-

bolomics, phenylalanine metabolism was putatively identified as a prominent path-

way. Previous work on metabolite profiling of ependymoma showed via NMR that

L-phenylalanine is highly abundant and an important discriminative metabolite for

ependymoma among other paediatric brain tumours [272, 301]. The distribution of
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L-phenylalanine (m/z 146.0610 [M-H-H2O ]−) across intra-tumour regions was invest-

igated using the 3D OrbiSIMS images. Understanding the phenomena of heterogeneity

is an important step towards developing personalised therapies [307]. Mass spectro-

metry imaging (MSI) with 3D OrbiSIMS was performed on a 500 µm × 500 µm area.

In the eventual relapse group (Figure 6.5), the presence of L-phenylalanine appears to be

lower across the analysed area compared to the no relapse group (Figure 6.6).

Figure 6.5: Ion images for L-phenylalanine (m/z 146.0610 ± 0.001 m/z ) for patients in
the eventual relapse group

Figure 6.6: Ion images for L-phenylalanine (m/z 146.0610 ± 0.001 m/z ) for patients in
the no relapse group
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To investigate the intra-tumour heterogeneity of L-phenylalanine between the no

relapse and eventual relapse group, the dynamic range (ratio between maximum ion and

minimum ion intensity) was used a measure [295]. For comparison of the degree of

heterogeneity, adenine (m/z 134.0467 [M-H]−) was used because of its spatial abund-

ance (presence across the analysed area; Figure 6.7A-B). The dynamic range for adenine

was found to be smaller (more homogeneous) compared to L-phenylalanine for both

tumour subgroups (Levene’s test: p = 0.0039). Increased tumour heterogeneity has pre-

viously been identified as an important factor for therapy resistance and poor overall

survival [308–310]. However, for L-phenylalanine, no difference in intra-tumour het-

erogeneity was observed between both tumour groups (Figure 6.8). This could be a

potential indicator that intra-tumour heterogeneity in primary ependymoma does not

have a predictive value for eventual relapse. In addition, this could be an indication

that increased chemical heterogeneity occurs as a result of relapse and cannot be ob-

served in primary tumour subgroups. However, this would require investigation of a

larger sample cohort to confirm current findings.

Figure 6.7: Comparison of intra-tumour heterogeneity between the no relapse and even-
tual relapse subgroups. Representative 3D OrbiSIMS images for adenine in
the (A) eventual relapse and (B) no relapse group. The dynamic range for ad-
enine was significantly smaller compared to L-phenylalanine (ANOVA: p
= 0.0039).
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Figure 6.8: Investigating of difference in intra-tumour heterogeneity between no re-
lapse and eventual relapse subgroups. No difference in heterogeneity (dy-
namic range) was observed.

Despite of no difference in intra-tumour heterogeneity, L-phenylalanine seems to be

less present (higher number of zero intensity pixels) and less abundant in the eventual

relapse subgroup (Figure 6.5). Statistical comparison revealed that the spatial presence

of L-phenylalanine is significantly higher in the no relapse group (Mann-Whitney: p

= 5.29×10−4) Furthermore, it was found that, on average, the abundance (non-zero

pixel intensity) for L-phenylalanine was higher in the no relapse group. Based on these

results, the spatial absence of L-phenylalanine seems to be a signature for eventual

ependymoma relapse. Nonetheless, a larger sample cohort is required to validate these

findings .
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Figure 6.9: Statistical comparison for the spatial abundance of L-phenylalanine
between ependymoma subgroups. (A) The number of pixels (ion fre-
quency) in which L-phenylalanine was detected was higher for the no re-
lapse group (Mann-Whitney: p = 5.29×10−4). (B) In addition, the average
pixel intensity for L-phenylalanine was found to be higher in the no relapse
group (Student’s t-test : p = 2.12×10−5)

6.4.5 VALIDATION OF MS-BASED METABOLOMICS WITH PUBLICLY AVAIL-

ABLE GENE EXPRESSION DATA

Due to the limited availability of ependymoma samples, only a small cohort could

be analyzed. Through pathway analysis, it was found that fourteen genes are af-

fected (differential expression) between no relapse and eventual relapse ependymoma

cohorts. To validate these findings, publicly available gene expression datasets were

used for primary (n = 72) and recurrent (n = 47) paediatric ependymoma [296, 297].

Ten out of the fourteen genes listed in Table 3 were present in these gene expression

datasets. From those 10 genes, four genes showed a significant differential expres-

sion between the ependymoma subgroups. ADHFE1 (p = 0.00234) was upregulated

in primary ependymoma, whilst GSTK1 (p = 0.00450), GOT2 (p = 0.0393) and EPHX2

(p = 0.0433) showed a significantly higher expression in the recurrent ependymoma

cohort. The gene expression results are partially in concordance with the metabolo-

mics data. The expression of GSTK1 and GOT2 is in line with higher abundance

of 1,2-dehydrosalsolinol-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, adrenochrome,

and L-phenylalanine, respectively. On the other hand, the expression of ADHFE1 and
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EPHX2 was opposite to the observed difference in metabolite abundance between the

no relapse and eventual relapse subgroups. An explanation could be that for the meta-

bolomics study only primary ependymomas were used and these might not completely

reflect the same gene expression profile as recurrent ependymoma. This would re-

quire further investigation using a larger sample cohort. In addition, the group of ten

genes as a single gene set showed a significant change between primary and recur-

rent ependymoma (global test: p = 0.00257) and showed clear separation of primary

tumours from recurrent ependymal tumours (Figure 6.10), indicating a good predict-

ive power of the four significant genes for predicting ependymoma relapse. Although

our metabolomics dataset is small, the gene expression analysis supports the signific-

ance of the genes identified through MS-based metabolomics and pathway analysis.

Moreover, excellent clustering was observed for primary and recurrent ependymoma

based on the subset of the significant genes. This confirmation of the metabolomics

data shows the potential of the sequential MS strategy to be further used for large scale

clinical studies on archived TMAs.
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Figure 6.10: Gene expression analysis of primary (n = 72) and recurrent ependymoma
(n = 47). The dendrogram reveals two distinct groups for which most of
the recurrent samples belong to the first group and most of the primary
samples to the second group. The samples associated with strong evid-
ence for the association between the response (primary vs. recurrent) and
the gene expression profile of the gene set (10 genes) have small p-values
(tall bars in the bottom plot)

6.5 CONCLUSION

In this chapter, a novel mass spectrometry strategy is presented for metabolite profil-

ing of tumour microarrays. Complementary metabolite profiles were obtained permit-

ting putative identification of additional affected metabolic pathways and their cor-

responding genes, resulting in a putative predictive signature of no relapse/relapse.

This opens new opportunities to perform large scale metabolomics studies on archived

tissue libraries. Furthermore, the minimally required sample preparation and short

analysis time (10 minutes with 3D OrbiSIMS; 4 minutes with LESA-MS/MS) permits

high sample throughput, making this strategy a competitive alternative to standard
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CHAPTER 6

metabolomics analysis such as GC-MS, LC-MS and NMR.
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CHAPTER 7

Overall conclusion & future

perspectives

The aim of this thesis was to develop a LESA-MS/MS protocol for high throughput

quantitative analysis of proteins adsorbed onto synthetic polymer surfaces. Robust sur-

face extraction was achieved through the use of superhydrophobic-superhydrophilic

patterned arrays (Droplet Microarray) which were also found to be suitable as print-

ing substrate for monomer solutions and fabrication of LESA-compatible polymer mi-

croarrays. LESA-MS/MS parameters were optimised through a series of experiments

in order to obtain a stable spray signal and robust identification of peptides. Further-

more, in situ digestion conditions were optimised to achieve reproducible results. The

developed method was then tested on a selection of polymers in array as well as scaled-

up (6-well plate) format. The quantitative results showed a nonlinear trend between

cell response (attachment) and protein adsorption, i.e. at a certain level of protein ad-

sorption the increase cell response is driven by another unknown factor. This shows the

potential of the developed analysis strategy to be further used for screening polymer

libraries in order to increase the understanding of cell-material and protein-material

interactions.

In the current setup, a fully-defined and cell-free medium (Essential 8TM ) was used

to outline the analysis strategy. The next step would be to increase the complexity

of the culture medium by adding cells and investigate what the composition of the
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secreted matrix is. This will provide with additional information for understanding

the cell response mechanism on synthetic polymer surfaces. However, this would re-

quire the development a protocol the remove cells from the surface without causing cell

lysis and/or removal of the deposited matrix. Currently, no protocol has been avail-

able to achieve this. In addition, it should also be explored if the method can handle

more complex matrices. This could be done through repeating the array screening

experiments with a more complex cell culture medium, e.g. a culture medium sup-

plemented with serum proteins. This would require first full characterisation of the

culture medium through LC-MS/MS to create a library of the composition before start-

ing LESA-MS/MS analysis. The results of the LESA-MS/MS could then be compared

to the LC-MS/MS results to investigate what information is lost through LESA-MS/MS

analysis. Furthermore, increased complexity of the proteome might require revisiting

the used quantification strategy. One could think if introducing (isotopically-labelled)

internal standards, though, experiments can get for costly and so far no study has used

in situ labelling for quantification of proteins. Therefore, a set of experiments would be

required to investigate how to introduce an internal standard for proper normalisation

of technical variation.

Besides the use of this quantitative LESA-MS/MS method in the field of bioma-

terials discovery, it might also be of interest for use in the clinical field. For instance,

the study performed in Chapter 6 could be repeated using the developed protocol the

find differences in the proteome of ependymoma subgroups. This could provide with

further understanding of tumour progression, relapse, survival chances, and identific-

ation of targets for therapy.
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Acronym Name Structure 

13BDDA Butanediol-1,3 diacrylate 

 

CC(CCOC(=O)C=C)OC(=O)C=C 

 

AAcAm Diacetone acrylamide 

 

CC(=O)CC(C)(C)NC(=O)C=C 

 

AcAPAm 
N-[2-

(Acryloylamino)phenyl]acrylamide 

 

C12H12N2O2 

 

AnMA Anthracenylmethylacrylate 

 
 

BnMA Benzyl methacrylate 

 
 



Acronym Name Structure 

BPEODA Bisphenol A ethoxylate diacrylate 

 
 

BzHPEA 
Benzoyl-3-hydroxy-phenoxy)ethyl 

acrylate 

 

CHMA Cyclohexyl methacrylate 

 
 

CMAOE 
Caprolactone 2-

(methacryloyloxy)ethyl ester 
 

CNEA Cyanoethyl acrylate 

 

 

 

DEAEMA Diethylaminoethyl methacrylate 

 



Acronym Name Structure 

DEGDMA Diethylene glycol dimethacrylate 

 
 

DEGEEA 
Di(ethylene glycol) ethyl ether 

acrylate 
 

 

DEGEHA 
Di(ethylene glycol) 2-ethylhexyl 

ether acrylate 

 
 

EaNIA 
Ethyl trans-a-cyano-3-indole-

acrylate 

 
 

EbCNA Ethyl-cis-B-cyano-acrylate 

 

EG4DMA 
Tetraethylene glycol 

dimethacrylate 
 

EGDPEA 
Ethylene glycol dicyclopentenyl 

ether acrylate 

 



Acronym Name Structure 

EGDMA Ethylene glycol dimethacrylate 

 

EGMEA 
Ethylene glycol methyl ether 

acrylate 

 

EGPEA 
Ethylene glycol phenyl ether 

acrylate 

 
 

EGPhMA 
Ethylene glycol phenyl ether 

methacrylate 

 
 

EOEA Ethoxyethyl acrylate 

 
 

FMHPNMA 
Trifluoro-2′-(trifluoromethyl)-2′-

hydroxy)propyl]-3-norbornyl 
methacrylate 

 
 



Acronym Name Structure 

HDDMA 1,6-Hexanediol dimethacrylate, 

 

HFiPA Hexafluoroisopropyl acrylate 

 

HFiPMA Hexafluoroisopropyl methacrylate 

 
 

HMA Hexyl methacrylate 

 
 

HPA Hydroxypropyl acrylate 

 
 

iBA Isobutyl acrylate 

 
 

iBMA Isobornyl methacrylate 

 
 



Acronym Name Structure 

iBOA Isobornyl acrylate 

O)C=C 

iBOMAm N-(Isobutoxymethyl)acrylamide 

 
 

iDA Isodecyl acrylate 

 

iDMA Isodecyl methacrylate 

 
 

LaA Lauryl acrylate  
 

LMA Lauryl methacrylate 

 
 

MAA Methyl 2-acetamidoacrylate 

 
 



Acronym Name Structure 

MAAH Methacrylic anhydride 

 
 

MAEA 
Methacryloyloxy)ethyl 

acetoacetate 

 
 

MAL Methacryloyl-L-Lysine 

 

Mam Methacrylamide 

 
 

MBMAm 
N,N'-

Methylenebismethacrylamide 

 
 



Acronym Name Structure 

MEDMSAH 

[2-
(Methacryloyloxy)ethyl]dimethyl-

(3-sulfopropyl) ammonium 
hydroxide 

 
 

MMAm N-Methylmethacrylamide 

 
 

MPDSAH 
Methacryloylamino)propyl]dimeth

yl(3-sulfopropyl)ammonium 
hydroxide inner salt 

 
 

MTEMA Methylthioethyl methacrylate 

 
 

NBMA Norbornyl methacrylate 

 
 

NDMAm N-Dodecylmethacrylamide 

 
 



Acronym Name Structure 

NGDA Neopentyl glycol diacrylate 

 
 

NGPDA 
Neopentyl glycol propoxylate 

diacrylate 

 
 

NMEMA 
2-N-Morpholinoethyl 

methacrylate 

 
 

NpA Naphthyl acrylate 

 
 

NpMA Naphthyl methacrylate 

 
 

ODA Octadecyl acrylate  
 

PA Propargyl acrylate 

 
 



Acronym Name Structure 

PEDAM 
Pentaerythritol diacrylate 

monostearate 

 
 

pEGMA 
Poly(ethylene glycol) 

methacrylate 

 `CC(=C)C(=O)OCCO 

pEGMEMA 
Poly(ethylene glycol) methyl ether 

methacrylate 

 C7H12O3 

PETA Pentaerythritol tetraacrylate 

 
 

PhMA Phenyl methacrylate 

 
 



Acronym Name Structure 

PhMAm N-Phenylmethacrylamide 

 
 

PMAm N-(Phthalimidomethyl)acrylamide 

 
 

pPGNEA 
Poly(propylene glycol) 4-

nonylphenyl ether acrylate 

 
 

SPAK 
Sulfopropyl acrylate potassium 

salt 

 
 

SPMAK 
3-Sulfopropyl methacrylate 

potassium salt 

 
 



Acronym Name Structure 

TAHTA 
1,3,5-Triacryloylhexahydro-1,3,5-

triazine 

 
 

TAIC 
Tris[2-(acryloyloxy)ethyl] 

isocyanurate 

 
 

tBA Tert-butyl acrylate 

 
 

tBAEMA 
Tert-butylamino-ethyl 

methacrylate 

 
 

tBAm N-tert-Butylacrylamide 

 
 



Acronym Name Structure 

tBCHA Tert-butylcyclohexylacrylate 

 
 

tBCHMA Tertbutylcyclohexyl methacrylate 

 
 

tBMAm N-tert-Butylmethacrylamide 

 
 

TEGDA Tetra(ethylene glycol) diacrylate 

 
 

THFuA Tetrahydrofurfuryl acrylate 

 
 

THFuMA Tetrahydrofurfuryl methacrylate 

 
 



Acronym Name Structure 

TMCHMA Trimethylcyclohexyl methacrylate 

 
 

TMHA Trimethylhexyl acrylate 

 
 

TMPDAE Trimethyl propane diallyl ether 

 
 

TMPETA 
Trimethylolpropane ethoxylate 

triacrylate 

 
 

TMPOTA 
Trimethylolpropane propoxylate 

triacrylate 

 
 



Acronym Name Structure 

TPGDA Tri(propylene glycol) diacrylate 

 
 

ZnA Zinc acrylate 

 [Zn++].[O-
]C(=O)C=C.[O-]C(=O)C=C 

ZrA Zirconium acrylate 

 
 

ZrBNCTA 
Zirconium 

bromonorbornanelactone 
carboxylate triacrylate 

 
9H8BrO4-] [C2HO2-] CH2Zr4+ 

AAm Acrylamide 

 
 



Acronym Name Structure 

BAC N,N'-Bis(acryloyl)cystamine 

 
 

BAPA 1,4-Bis(acryloyl)piperazine 

 
 

BAPODA 
Bisphenol A propoxylate 

diacrylate 

 
 

BHMA Benzhydryl methacrylate 

 
 

BMAOEP 
Bis[2-(methacryloyloxy)ethyl] 

phosphate 

 
 



Acronym Name Structure 

BMENBC 
Bis(2-methacryloxyethyl) N,N’-1,9-

nonylene biscarbamate 

 
 

BOEMA Butoxyethyl methacrylate 

 
 

BPDMA Bisphenol A dimethacrylate 

 
O)Oc1ccc(cc1)C(C)(C)c2ccc(OC(=O)C(C)=C)cc2 

CEA Carboxyethyl acrylate 

 
 

COEA 2-Cinnamoyloxyethyl acrylate 

 
 



Acronym Name Structure 

CzEA Carbazol-9-yl ethyl acrylate 

 
 

DFFMOA 
Dodecafluoro-7-(trifluoromethyl)-

octyl acrylate 

 
 

DFHNMA 
Dodecafluoro-2-hydroxy-8-

(trifluoromethyl)nonyl 
methacrylate  

C14H11F15O3 

DHEBAM 
N,N'-(1,2-

Dihydroxyethylene)bisacrylamide 

 
O[C@H](NC(=O)C=C)[C@@H](O)NC(=O)C=C 



Acronym Name Structure 

DMEMAm 
N-[2-(N,N-

Dimethylamino)ethyl]methacryla
mide 

 
 

DMMAm N,N-Dimethylmethacrylamide 

 
 

DMPAm 
N-[3-

(Dimethylamino)propyl]acrylamid
e 

 
 

DVAd Divinyl Adipate 

 
 

DVSeb Divinyl sebacate 

 
 

F7BA Heptafluorobutyl acrylate 

 
 



Acronym Name Structure 

F7BMA Heptafluorobutyl methacrylate 

 
 

FuMA Furfuryl methacrylate 

 
 

GDGDA 
Glycerol 1,3-diglycerolate 

diacrylate 

 
 

GDMA Glycerol dimethacrylate 

 
 

HBMA Hydroxybutyl methacrylate 

 
 

HDFDA Heptadecafluorodecyl acrylate 

 
 



Acronym Name Structure 

HDFDMA 
Heptadecafluorodecyl 

methacrylate 

 
 

HDMA 1-Hexadecyl methacrylate 

 
 

HEODA Hexanediol ethoxylate diacrylate 

 
 

HFDA Heneicosafluorododecyl acrylate 

 
 

HFHUMA 
Hexadecafluoro-2-hydroxy-10-

(trifluoromethyl)undecyl 
methacrylate   

19O 

HMAm N-(Hydroxymethyl)acrylamide 

 
 

HMBMAm 
N,N'-

Hexamethylenebis(methacrylamid
e) 

 
 



Acronym Name Structure 

HPMAm 
N-(2-

Hydroxypropyl)methacrylamide 

 
 

iCEMA Isocyanatoethyl methacrylate 

 
 

MA Methyl acrylate 

 
 

MAAHS 
Methacrylic acid N-

hydroxysuccinimide ester 

 
 

MAETA 
4-Methacryloxyethyl trimellitic 

anhydride 

 
 

MAPU 
2-methacryloxyethyl phenyl 

urethane 

 
 



Acronym Name Structure 

MHMB 
Methyl 3-hydroxy-2-
methylenebutyrate 

 
 

MMA Methyl methacrylate 

 
 

mMAOEM 
mono-2-(Methacryloyloxy)ethyl 

maleate 

 
 

mMAOES 
mono-2-(Methacryloyloxy)ethyl 

succinate 

 
 

MOPAm N-(3-Methoxypropyl)acrylamide 

 
 

NAM N-Acryloylmorpholine 

 
 



Acronym Name Structure 

NAS N-Acryloxysuccinimide 

 
 

NBnMA o-Nitrobenzyl methacrylate 

 
 

NDDMA 1,9-Nonanediol dimethacrylate  

nOcMA n-Octyl methacrylate 

 
 

NPhPMA 
Nitrophenyl-2-pyrrolidonemethyl 

acrylate 

 
 



Acronym Name Structure 

OFHMA 
Octafluoro-2-hydroxy-6-
(trifluoromethyl)heptyl 

methacrylate 

 
 

OFPA Octafluoropentyl acrylate 

 
 

PAHEMA 
Phosphoric acid 2-hydroxyethyl 

methacrylate ester 

 
 

PBBA Pentabromobenzyl acrylate 

 
 

PDDMA 1,5-Pentanediol dimethacrylate 

 
 



Acronym Name Structure 

pEGDA Polyethylene glycol diacrylate 

 
 

PETrA Pentaerythritol triacrylate 

 
 

pFDA Perfluorodecyl acrylate 
 

PFPA Pentafluoropropyl acrylate 

 
 

PFPMA Pentafluoropropyl methacrylate 

 
 

PhA Phenyl acrylate 

 
 



Acronym Name Structure 

PMA Propargyl methacrylate 

 
 

PMMA 1-Pyrenylmethyl methacrylate 

 
 

pPGDA Poly(propylene glycol) diacrylate 

 
 

SEMA 2-Sulfoethyl methacrylate 

 
 

tBMA Tert-butyl methacrylate 

 
 



Acronym Name Structure 

TBNpMA Tribromoneopentyl methacrylate 

 
 

TBPhA 2,4,6-Tribromophenyl acrylate 

 
 

TBPMA Tribromophenyl methacrylate 

 
 

TCDMDA 
Tricyclodecane-dimethanol 

diacrylate 

 

 

TDFOcA Tridecafluorooctyl acrylate 

C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCOC(=O)C=C 

TEGMA 
Tri(ethylene glycol) methyl ether 

methacrylate 

 
 



Acronym Name Structure 

TFPMA Tetrafluoropropyl methacrylate 

 
 

VMA Vinyl methacrylate 

 
 

ZrCEA Zirconium carboxyethyl acrylate 
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