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Abstract

Over the past few decades, interest has grown in classical and quantum phase

transitions that cannot be understood in terms of a Landau–Ginzburg–Wilson

(LGW) theory. These unconventional transitions, which are often accompanied

by other exotic phenomena, such as topological order and confinement of frac-

tionalized excitations, are known to exist in strongly correlated systems such as

the dimer model.

This thesis investigates a novel ‘non-LGW’ phase transition in the classical

double dimer model, consisting of two coupled replicas of the standard dimer

model, which has no symmetry-breaking order parameter. It can be understood

as a ‘pure’ topological or confinement transition, and we utilize these properties

to distinguish the phases.

In two dimensions, we find a Berezinskii–Kosterlitz–Thouless transition at

zero critical coupling, using a symmetry-based analysis of an effective height

theory. Meanwhile, on the cubic lattice, we use Monte Carlo simulations to

measure the (nonzero) critical coupling and critical exponents, the latter being

compatible with the 3D inverted-XY universality class.

Furthermore, we map out the full phase plane when aligning interactions are

added for dimers within each replica. In the square-lattice case, we are able to

calculate the shape of the phase boundary in the vicinity of the noninteracting

point exactly, starting from Lieb’s transfer-matrix.

In arriving at this result, we also derive several results of general significance

for the square-lattice dimer model. First, we rederive a host of known exact

results from Lieb’s transfer matrix, many of which were previously derived in the

1960’s using Pfaffian methods. Second, we rigorously derive the continuum height

description from the microscopic model using the technique of bosonization.
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Chapter 1

Introduction

The classical dimer model is a paradigmatic example of a strongly-correlated

system, in which dimers cover the edges of a lattice subject to a close-packing

constraint, i.e., each vertex touches exactly one dimer (see Fig. 3.1 for an ex-

ample configuration). First introduced in the 1930’s to describe the adsorption

of diatomic oxygen molecules onto a surface [1, 2], in modern physics the dimer

model offers a simple setting for the study of novel phenomena in geometrically

frustrated systems [3].

In particular, its extensive entropy reflects macroscopic ground-state degen-

eracy [4], while the configuration space splits into topological sectors labeled by

horizontal and vertical ‘flux’ components, with a global rearrangement of dimers

required to change sector, reflecting topological order [5]. Moreover, a dimer can

be replaced by a pair of monomers, which can be separated by subsequent dimer

updates and thus play the role of fractionalized excitations [3, 6].

In the absence of interactions, the dimer model exists in an unusual disordered

phase known as the ‘Coulomb phase’ [6], which has liquid-like properties, i.e.,

both strong fluctuations and power-law dimer–dimer correlations. Fluctuations

among the topological flux sectors in this phase are not suppressed, i.e., the flux

variance is nonzero [7, 8], while, due to the background dimer configuration, a

pair of inserted monomers interact via an effective Coulomb potential [4,6]. The

monomer pair is therefore deconfined, and can be separated to infinity with finite

free-energy cost.

As the temperature is lowered, interacting dimer models can enter ordered
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phases. A well-studied example of an equilibrium phase transition in the dimer

model is the columnar-ordering transition on the square [9,10] and cubic [11] lat-

tices, where interactions favor parallel alignment of dimers, J , and hence the or-

dered phase spontaneously breaks translation and rotation symmetries. A related

class of transitions, where the symmetry is broken externally, e.g., by applying

a ‘magnetic field’, are the Kasteleyn transition in the honeycomb-lattice dimer

model [12] and its generalizations to three dimensions (3D) [13,14], as well as the

‘1GS’ variant of the cubic dimer model studied by Chen et al. [15].

These phase transitions are interesting for several reasons. First, an applica-

tion of the standard Landau–Ginzburg–Wilson (LGW) paradigm [16], in which

one writes down a continuum theory in terms of a local order parameter, is not

sufficient to describe the critical behavior. In these particular cases, this is under-

stood to be a consequence of the hard constraints, since an LGW treatment fails

to capture the unusual correlations of the Coulomb phase [17]. They therefore

define a class of ‘non-LGW’ or ‘unconventional’ phase transitions [18,19].

Second, in addition to an order parameter, the two phases can be distin-

guished using the concepts of topological order and fractionalization. In the

low-temperature phases, fluctuations among topological flux sectors and the sep-

aration of monomers necessarily disrupt the order and are hence penalized en-

ergetically. The flux variance is therefore suppressed exponentially with system

size in the ordered phases, while a pair of inserted monomers has a free-energy

cost proportional to separation, and is thus confined. The qualitative difference

in these behaviors compared with the Coulomb phase provides a criterion to dis-

tinguish the phases. Such transitions can therefore be understood as ‘topological’

or ‘confinement’ phase transitions.

In this thesis, we study the double dimer model [20–22], comprising two repli-

cas of the close-packed dimer model, with interactions between dimers that co-

incide (or ‘overlap’) in the two replicas, K. In the case of attractive coupling,

K ≤ 0, our results demonstrate the existence of a phase transition, in both two

and three dimensions, between a standard Coulomb phase and a ‘synchronized’

phase, where both replicas remain disordered but their relative fluctuations are

suppressed. We will refer to this as a ‘synchronization transition’.
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Owing to the nature of the ordered phase, this is an unusual example of

a transition with no local order parameter, which clearly cannot be described

within the LGW framework. Instead, it can be understood as an example of a

‘pure’ topological or confinement transition, with the relative flux variance and

the effective interaction between a pair of monomers placed in a single replica

providing suitable topological and confinement measures, respectively.

Outline

For the most part, this thesis will examine the synchronization transition in the

double dimer model on the square lattice. In Chapter 2, we do so using a combi-

nation of theoretical arguments and Monte Carlo (MC) simulations. Surprisingly,

we establish that the critical coupling is zero using a symmetry-based analysis

of an effective height theory, indicating that infinitesimal coupling is sufficient to

synchronize the square-lattice case. By adding aligning interactions for dimers

within each replica, we map out the full phase diagram in the (J,K) plane. In

this chapter we will also briefly address the case of the honeycomb lattice.

Motivated by our finding that the critical coupling is zero in Chapter 2, the

combined aim of Chapters 3 and 4 is to analytically derive the shape of the phase

boundary in the vicinity of the non-interacting point, using perturbation theory

in the couplings J and K. Along the way, we will also derive some results of

general significance to the standard dimer model, namely a new derivation of

known exact results in Chapter 3, as well as new field theory results in Chap-

ter 4. Specifically, Chapter 3 solves the standard square-lattice dimer model with

periodic boundaries and in the presence of a field t that couples to the (vector)

flux. We do this by diagonalizing a modified version of Lieb’s transfer matrix [23],

which we map to a (quantum) free-fermion Hamiltonian in 1+1 dimensions. After

deriving the torus partition function in the thermodynamic limit, we show how

the configuration space divides into ‘topological sectors’ corresponding to distinct

values of the flux. Additionally, we obtain explicit expressions for dimer occupa-

tion numbers, dimer–dimer correlation functions and the monomer distribution

function. Most of these results were derived in the 1960’s using a combinatoric
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(Pfaffian) method [12,24–29].

Since the effective height theory used to analyze the square-lattice synchro-

nization transition in Chapter 2 is written down based on symmetry, it necessarily

contains unknown phenomenological parameters that depend nontrivially on the

couplings J and K. In Chapter 4, we use the technique of bosonization [30] to

map the free-fermion Hamiltonian of Chapter 3 to a free-boson quantum field

theory, and show that the resulting action in the path integral formulation is pre-

cisely the effective height theory conjectured in Chapter 2, but now with known

values for the parameters. Height theories of this kind have been written down

based on symmetry for decades [31, 32]; our work in this chapter demonstrates

how they can be derived rigorously from the microscopic model. Including inter-

actions in this formalism perturbatively allows us to determine the shape of the

phase boundary at linear order in the couplings J and K.

In Chapter 5, we turn to the three-dimensional case and study the synchro-

nization transition in the double dimer model on the cubic lattice. The structure

of this chapter closely follows that of Chapter 2, and we similarly utilize a mixture

of theoretical arguments and MC simulations to map out the full phase diagram

in the (J,K) plane. However, in the cubic-lattice case we place a stronger empha-

sis on the numerical aspect, focusing in particular on a finite-size scaling analysis

to extract the (nonzero) critical coupling and critical exponents. We also solve

the coupled double dimer model exactly on the Bethe lattice and show that it

correctly reproduces the qualitative phase structure, but with mean-field critical

behavior.

Finally, Chapter 6 concludes by drawing together the results of Chapters 2–5.

Here, we summarize the main results of this thesis and discuss some possible

experimental realizations and future work.
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Chapter 2

Interacting double dimer model

on the square lattice

2.1 Introduction

A prominent example of a non-LGW phase transition is the BKT transition in

the two-dimensional (2D) XY model. Across the BKT transition, no symmetry

is broken, as required for a 2D system at nonzero temperature by the Mermin–

Wagner–Hohenberg theorem [33,34], and there is hence no local order parameter.

One can instead understand the BKT transition as an example of a ‘topologi-

cal’ phase transition [35], where the phases are distinguished by their topological

properties. An appropriate criterion is the response to a twist applied across the

boundaries of the system: the associated energy cost, referred to as the helicity

modulus (or phase stiffness), decreases exponentially with system size above the

transition, but is nonzero in the thermodynamic limit below it [36,37].

In this chapter, our main focus is the synchronization transition in the double

dimer model on the square lattice, which provides a superficially distinct exam-

ple of a non-LGW transition in two dimensions. Surprisingly, we find that this

transition occurs for infinitesimal coupling K = 0− between replicas, reflecting

the critical nature of the noninteracting double dimer model [22].

We also find a novel ‘antisynchronized’ phase, where the overlap between

replicas is minimized, which meets the Coulomb and synchronized phases at the

zero-interaction point. Both of these features, along with the other transitions in
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the phase diagram, can be understood in terms of effective field theories based

on ‘height models’ [31,32], which we derive based on symmetry.

For sufficiently strong repulsive (i.e., J > 0) interactions within each replica,

we confirm the presence in the single dimer model of a transition into a staggered

phase, as noted in previous works [9, 38, 39], and determine the critical coupling

at which it occurs. We also demonstrate the existence of phases in the double

dimer model that are simultaneously staggered and (anti)synchronized.

Previous work on the double dimer model on the square lattice has addressed

the noninteracting case [22], as well as models that correspond to the limit K →

+∞ [20] (see Sec. 2.2.2) and that include nonlocal interactions [21], motivated by

a mapping from the quantum dimer model. Other related work has demonstrated

the possibility of phase locking transitions in 2D superfluids [40] and the XY

model [41].

An outline of this chapter is as follows. In Sec. 2.2 we define the interacting

double dimer model and present its phase diagram, which is calculated using the

methods detailed in the subsequent sections. In Sec. 2.3, we use symmetries to

write down height field theories that describe the various phases and transitions.

We then describe, in Sec. 2.4, the MC method that we use, which extends the

standard worm algorithm, before presenting the numerical results that underlie

our phase diagram and establish the critical properties in Sec. 2.5. We conclude

in Sec. 2.6.

2.2 Model

We consider two replicas of a classical statistical model of dimers on an L × L

square lattice with periodic boundary conditions (PBCs). To each link l in each

replica α ∈ {1, 2}, we assign a dimer occupation number d
(α)
l which takes values 0

or 1. The close-packing constraint applies separately for each replica and requires

that
∑

l∈r

d
(α)
l = 1 , (2.1)

at each site r, where the sum is over links l connected to r.
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Figure 2.1: An example configuration of the double dimer model on the square
lattice, in which two replicas of the close-packed dimer model (shown in black
and white) are defined on the same lattice. According to Eq. (2.2), parallel pairs
of nearest-neighbor dimers within each replica (marked with a star, ?) contribute
+J to the energy, and overlapping dimers contribute +K to the energy. Hence,
the energy of this configuration is E = 15J + 9K.

To each configuration, we assign an energy

E = J
[
N

(1)
‖ +N

(2)
‖

]
+K

∑

l

d
(1)
l d

(2)
l , (2.2)

where J and K are, respectively, interaction strengths between parallel dimers

within each replica and between overlapping dimers in the two replicas (see

Fig. 2.1), and N
(α)
‖ counts the number of parallel pairs of nearest-neighbor dimers

in replica α. The partition function is given by

Z =
∑

c(1)∈C0

c(2)∈C0

e−E/T , (2.3)

where, for each replica α, the sum is over the set C0 of all close-packed dimer

configurations (We set kB = 1 throughout.)

2.2.1 Magnetic field and height picture

On the square lattice, it is useful to define a (fictitious) ‘magnetic field’ [6, 8]

B(α)
r,µ = εr

[
d(α)
r,µ −

1

q

]
(2.4)
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on the link r, µ joining sites r and r + δµ, where δµ is a unit vector in direction

µ ∈ {x, y} (and the lattice spacing is set to 1). Here, εr = (−1)rx+ry = ±1

depending on the sublattice and q = 4 is the coordination number. (A similar

construction applies to other bipartite lattices such as the honeycomb lattice.)

The close-packing constraint for the dimers is then equivalent to the condition

that the ‘magnetic charge’, given by the lattice divergence of B
(α)
r,µ,

Q(α)
r =

∑

µ

[
B(α)
r,µ −B

(α)
r−δµ,µ

]
, (2.5)

is zero on every site. The normalization of B
(α)
r,µ is chosen so that removing a

dimer (and so breaking the close-packing constraint) leaves a pair of monomers

on opposite sublattices with Qr = ±1.

In two dimensions, this divergence-free constraint is resolved by defining a

scalar ‘height’ z(α) on each plaquette, in terms of which

B(α)
r,µ = εµν∆νz

(α) , (2.6)

where εµν is the two-dimensional Levi-Civita symbol and ∆ν denotes the lattice

derivative [31,32]. (This is the two-dimensional analog of B = ∇×A.)

Together, Eqs. (2.4) and (2.6) define a one-to-one mapping between dimer

configurations and their height representations, which is usually expressed as

the following set of rules [10]: One first chooses a plaquette to be the zero of

height. Then, moving anticlockwise around sites on sublattice A (B), the height

increases (decreases) by 1−1/q when an occupied bond is crossed. If, instead, an

empty bond is crossed, the height decreases (increases) by 1/q. Example height

representations are shown in Fig. 2.2.

The flux Φ(α) for each replica α can be defined by

Φ(α)
µ =

1

L

∑

r

B(α)
r,µ =

1

L

∑

r

εrd
(α)
r,µ , (2.7)

which, because of the divergence-free constraint, is equivalent to the sum of the

magnetic fields on links crossing a surface normal to δµ. The latter definition

highlights that Φ
(α)
µ is integer valued, and can only be changed by shifting dimers
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Figure 2.2: Example height representations z of (a) an arbitrary dimer configu-
ration and (b) the columnar configuration with magnetization order parameter
M = δy, which has average height 〈z〉 = 3

8
.

around a loop encircling the whole system [4]. The flux thus plays the role of a

topological invariant.

2.2.2 Phase diagram

Our phase diagram for the square-lattice double dimer model, Eq. (2.2), is shown

in Fig. 2.3. The fact that the Coulomb, synchronized and antisynchronized phases

meet at K = J = 0 is determined solely from a renormalization group (RG)

analysis in Sec. 2.3.2. All other points are obtained numerically using a MC

worm algorithm [42], as we describe in Sec. 2.5. In the remainder of this section,

we define the phases appearing in Fig. 2.3.

Independent replicas

For K = 0 the two replicas are independent and behave as single dimer models

with interactions that favor (J < 0) or disfavor (J > 0) parallel dimers. For J = 0,

this model exhibits a Coulomb phase [6], where no symmetries are broken and the

connected dimer–dimer correlation function 〈dldl′〉c decreases algebraically with

separation. This phase extends to small nonzero J , but gives way to ordered

phases for sufficiently large |J |/T .

For negative J , there is a transition to a phase with columnar order, as illus-

trated in Figs. 2.4(a) and (b), breaking translation and rotation symmetries [9,10].
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Sync. Antisync.

C&S

S&S S&AS

Coulomb

Col.

Stagg.

C&AS

-1.0 -0.5 0.0 0.5 1.0

-1

0

1

2

Figure 2.3: Phase diagram for the double dimer model of Eq. (2.2) on the square
lattice, in the (J/T,K/T ) plane. Dots show points where the phase boundary
has been determined using an RG analysis (J = K = 0) or MC simulations (all
other points), and thick grey lines are guides to the eye. The ordered phases are:
columnar (‘Col’), staggered (‘Stagg.’), synchronized (‘Sync.’), antisynchronized
(‘Antisync.’), columnar & synchronized (‘C&S’), columnar & antisynchronized
(‘C&AS’), staggered & synchronized (‘S&S’) and staggered & antisynchronized
(‘S&AS’). White dots represent BKT transitions, while green dots represent ap-
parently continuous transitions.

An appropriate order parameter for this phase is the ‘magnetization’

Mµ =
2

Ld

∑

r

(−1)rµdr,µ , (2.8)

where d = 2 is the spatial dimension, which takes the values M = ±δµ in the

four columnar states that maximize N‖.

Besides the symmetry-breaking order parameter, the two phases are also dis-

tinguished by the probability distribution P (Φ) for the flux Φ. In the thermo-

dynamic limit, the Coulomb phase has P (Φ) ∝ e−
κ
2
|Φ|2 , where κ is a function

of J/T (see Appendix 2.A.1). In the ordered phase, by contrast, P (Φ) is sup-

pressed exponentially with system size for nonzero Φ, since changing the flux

requires shifting a row of dimers that spans the whole system, with energy cost

proportional to L. The mean square flux 〈|Φ|2〉 therefore changes its behavior

across the transition, being independent of L in the Coulomb phase but vanishing

in the thermodynamic limit in the columnar phase [10].
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(a) (b)

(c) (d)

(e) (f)
Figure 2.4: Example ground states of the double dimer model of Eq. (2.2) on the
square lattice. (a)–(b) Columnar configurations, with maximal number of parallel

plaquettes N
(α)
‖ , which minimize the energy for J < 0, K = 0. For J < 0, K < 0

configuration (a), with maximal overlap, is a columnar & synchronized ground
state. Configuration (b) is a columnar & antisynchronized ground state when
J < 0, K > 0, because it has zero overlap between replicas. (c)–(d) Staggered

configurations, with zero parallel plaquettes N
(α)
‖ , which minimize the energy for

J > 0, K = 0. For J > 0, K < 0, configuration (c) is a staggered & synchro-
nized ground state, while for J > 0, K > 0, configuration (d) is a staggered &
antisynchronized ground state. (e) A fully synchronized configuration, which is a
ground state for J = 0, K < 0. (f) A fully antisynchronized configuration which
is a ground state for J = 0, K > 0.
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We also make use of a third diagnostic of the transition, which is based on con-

finement of ‘monomers’, empty sites in the otherwise close-packed configuration.

Removing one dimer leaves a pair of monomers on adjacent sites, with unit charges

Qr = ±1, which one can separate by locally rearranging the remaining dimers [6].

We define the monomer distribution function Gm(r+ − r−) = Zm(r+, r−)/Z,

where Zm is the sum of Boltzmann weights of all configurations with a pair of

monomers fixed at r+ and r−.

In the Coulomb phase, Gm decreases algebraically with separation (see Ap-

pendix 2.A.3), corresponding to a logarithmic effective potential Um(R) ≡

− lnGm(R) ∼ ln|R| [4]. In the columnar phase, separating the monomers dis-

turbs the ordered configuration, causing a linear potential Um(R) ∼ |R|, and

so Gm(R) decreases exponentially with |R|. The potential Um therefore grows

without limit in both phases; this is in contrast with the 3D case, where the

potential is bounded in the Coulomb phase, and the monomers are said to be

‘deconfined’ [6]. The different asymptotic behaviors nonetheless allow the phases

to be distinguished, and we refer to the 2D Coulomb phase as ‘quasideconfined’

by analogy with quasi-long-range order in the low-temperature phase of the XY

model [43].

For large positive J , the system instead reduces the number of parallel dimers.

The square lattice has a large but subextensive set of ‘staggered’ configurations

with the minimal value N‖ = 0 and Φ of order L [see, for example, Figs. 2.4(c)

and (d)]. As a result, there is a transition at large positive J/T to a phase where

the flux vector takes a nonzero expectation value of order L [9, 38, 39]. We treat

this phase and the transition in detail in Sec. 2.5.3.

The Coulomb, columnar, and staggered phases of the single dimer model are

shown in Fig. 2.3 on the vertical line K/T = 0. Note that the Coulomb phase

extends to J < 0 along the line K/T = 0.

Coupled replicas

For K 6= 0, the two replicas are coupled, with overlapping dimers favored for

K < 0 and disfavored for K > 0.

The columnar and staggered phases at large |J |/T have order parameters,
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M (α) and Φ(α) respectively, in each replica α. In the thermodynamic limit, any

nonzero coupling K fixes the relative values in the two replicas in order to maxi-

mize or minimize the overlap, as illustrated for the ground states in Figs. 2.4(a)–

(d). We refer to the resulting phases as columnar/staggered & (anti)synchronized.

In particular, order by disorder selectsM (1) = −M (2) in the columnar & antisyn-

chronized phase (we will discuss this in detail in Chapter 5), while Φ(1) = −Φ(2)

in the staggered & antisynchronized phase (see Sec. 2.5.3).

For smaller values of |J |/T , phase transitions occur that do not involve symme-

try breaking, but can be characterized through the flux distribution and monomer

confinement.

The flux distribution in the double dimer model can be described by the 2×2

covariance matrix 〈Φ(α) · Φ(α′)〉, but symmetry under replica exchange means

we need only consider 〈|Φ(±)|2〉, where Φ(±) = Φ(1) ± Φ(2) are the total and

relative fluxes corresponding to the fields B(±) = B(1)±B(2). For K < 0, one can

postulate a phase where both replicas remain disordered and their flux variances

Φ(α) remain nonzero, but where their fluctuations are strongly correlated so that

the variance of the relative flux 〈|Φ(−)|2〉 vanishes in the thermodynamic limit

[see Fig. 2.4(e)]. For K > 0, we similarly identify an ‘antisynchronized’ phase,

where fluctuations are correlated between the replicas in order to reduce the

amount of overlap [see Fig. 2.4(f)]. The relative flux 〈|Φ(−)|2〉 also vanishes in

the antisynchronized phase, as we argue in Sec. 2.3.2.

The monomer-confinement criterion can also be applied in the double dimer

model, where we define Gm using a pair of monomers of opposite charge in the

same replica, say α = 1. Each monomer then has nonzero charge for B(1) and

hence for both B(−) and B(+). They are therefore confined, with Gm(R) decreas-

ing exponentially with |R|, in the (anti)synchronized phases, where fluctuations

of Φ(−) are suppressed.

To distinguish the columnar-ordered phases from the (anti)synchronized

phases, one can instead insert pairs of monomers in both replicas simultaneously.

Two monomers, one in each replica, on the same lattice site form a double charge

for B(+), but have zero net charge for B(−). We therefore expect such objects to

be confined only when the total flux variance is suppressed. Explicitly, we de-
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fine the double monomer distribution function as Gd(r+ − r−) = Zd(r+, r−)/Z,

where Zd is the sum of Boltzmann weights of all configurations with a pair of

monomers fixed at r+ and r− in each replica. In the columnar-ordered phases,

Gd(R) decreases exponentially with |R|, whereas in both the (unsynchronized)

Coulomb phase and the (anti)synchronized phases, Gd(R) decreases only alge-

braically with |R|. [For the (anti)synchronized phases, we show this directly in

Appendix 2.A.5 using an effective field theory.]

Infinite coupling between replicas

The point J = 0, K/T → +∞ corresponds to the dimer loop model [20], which is

equivalent to a fully-packed loop model with fugacity n = 2. The latter is known

to be nonintegrable on the square lattice [44, 45] but solvable on the honeycomb

lattice, where it is equivalent to a three-coloring model [46].

In the opposite limit K/T → −∞, the two replicas are perfectly aligned, and

so act as a single dimer model with coupling 2J between parallel dimers. The

values of J/T at the columnar and staggered phase boundaries in this limit are

therefore exactly half their values at K = 0. (For K/T → +∞, the critical

couplings lie in between these two values, because the dimer loop model has

higher entropy than the single dimer model.)

2.3 Field theories and critical properties

Using the height mapping, the long-wavelength properties of the Coulomb phase

can be described in terms of a free field theory. In this section, we use symmetry

to determine the perturbations to this action that are most relevant under the

RG, and hence establish the critical properties at each transition.

2.3.1 Single dimer model

To construct a continuum theory we replace the effective magnetic field Br,µ and

height z by coarse-grained fields B(r) and h(r) obeying Bµ(r) = εµν∂νh(r). For
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the single dimer model, the Coulomb phase has action

SSDM =

∫
d2r

κ

2
|B|2 =

∫
d2r

κ

2
|∇h|2 , (2.9)

where κ is the stiffness, plus irrelevant higher-order terms. In the non-interacting

limit (J = 0) the stiffness is

κ∞ = π , (2.10)

from comparison of observables, for example Eqs. (2.A.12) and (2.A.22), with

exact results obtained using Pfaffian methods [28,29].

To study the columnar-ordering transition in the single dimer model, we in-

clude additional terms in Eq. (2.9). We require that any action is local, and

invariant under both π/2 rotations and translation of dimers; as discussed in

Ref. [10], this imposes constraints on the form of allowed additional terms, which

are summarized in Table 2.1. For example, translation of dimers by one lattice

constant in the x direction maps the height field h(r)→ −h(r − δx)− 1
4
, so the

action must be invariant under this change. The critical theory, which includes

the most relevant term (in the RG sense) consistent with all requirements, is a

sine-Gordon model:

SSDM,col. = SSDM +

∫
d2r V cos(8πh). (2.11)

Note that if the symmetry of the single dimer model is reduced [15], such as

in the case of anisotropic interaction strengths, i.e., Jx 6= Jy, between parallel

dimers [39], the form of the allowed cosine term is modified.

A standard perturbative RG calculation [10] applied to the general sine-

Gordon action

SSG =

∫
d2r

[ κ
2
|∇h|2 + V cos(2πph)

]
, (2.12)

with p an integer, leads to the following conclusions: There is a BKT phase

transition at a critical value of the stiffness

κc =
1

2
πp2 . (2.13)
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Requirement
Constraint

SDM coupled DDM,
h(−)

coupled DDM,
h(+)

Locality S[h] = S[h+ 1] S[h(−)] =
S[h(−) + 1]

S[h(+)] =
S[h(+) + 1]

π/2 rotation
symmetry

S[h] = S[−h] S[h(−)] =
S[−h(−)]

S[h(+)] =
S[−h(+)]

Translation
symmetry

S[h] =
S[−h− 1/4]

S[h(−)] =
S[−h(−)]

S[h(+)] =
S[−h(+) − 1/2]

Table 2.1: Requirements for the action of the single dimer model (SDM) and
the double dimer model (DDM) with coupled replicas on the square lattice, and
their corresponding constraints on allowed additional terms. (In the case of the
DDM with independent replicas, SDM constraints apply separately to both h(1)

and h(2).) Here, π/2 rotation symmetry refers to rotations about a plaquette
center, and translation symmetry refers to translations by one lattice constant in
the x direction. For the SDM ‘S’ means SSDM,col., which describes the columnar-
ordering transition [see Eq. (2.11)]. For the coupled DDM ‘S’ means SDDM,sync.,
which describes the synchronization transition [see Eq. (2.18)], or SDDM,col., which
describes columnar ordering of coupled replicas [see Eq. (2.20)]. The SDM con-
straints on S[h] are discussed in detail in Ref. [10], and can be used to deduce
the coupled DDM constraints on S[h(±)].

When κ < κc the cosine term is irrelevant, i.e., it renormalizes to zero in the long

distance theory, which is thus a free Coulomb phase. When κ > κc it is relevant

and locks the height field to discrete values.1

In the case of the columnar-ordering transition where the action, Eq. (2.11),

has p = 4, we have

κc = 8π . (2.14)

In the columnar phase (κ > κc) the cosine term locks the height field to values

h ∈
{

1
8
, 3

8
, 5

8
, 7

8

}
, which correspond to the average values of the height z in the

four columnar ground states [see, for example, Fig. 2.2(b)] [10].

2.3.2 Double dimer model

In the double dimer model, each replica has height field h(α) with identical stiffness

κ, and replicas are coupled by the term λ∇h(1) ·∇h(2), with λ ∼ K. The resulting

1A more detailed discussion of this RG calculation is provided in Sec. 4.3.4.
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action for the unsynchronized Coulomb phase may be written

SDDM =

∫
d2r

[κ+

2
|∇h(+)|2 +

κ−
2
|∇h(−)|2

]
, (2.15)

where h(±) = h(1) ± h(2) and

κ± =
1

2
(κ± λ) . (2.16)

Note that in the non-interacting limit, i.e., J = K = 0, one has λ = 0, κ = κ∞

and

κ±,∞ =
π

2
. (2.17)

We now construct field theories that describe phase transitions in the dou-

ble dimer model. For independent replicas, rotation and translation symmetry

constraints apply separately to both h(1) and h(2), so each replica has an action

given by Eq. (2.11). Therefore, when K = 0, one expects a columnar-ordering

transition with the same critical properties as the single-replica case.

For the double dimer model with non-zero coupling K, we require an action

local in both replicas, but now invariant under simultaneous π/2 rotations, and

translations, of both replicas. To study the synchronization transition, we focus

on the relative height h(−) [h(+) remains non-critical] and include additional terms

in Eq. (2.15). The constraints on allowed terms are easily derived using results for

the single dimer model, and are included in Table 2.1. For example, simultaneous

translation of dimers by one lattice constant in both replicas maps the height fields

h(α)(r)→ −h(α)(r−δx)− 1
4
, so that the relative height h(−)(r)→ −h(−)(r−δx),

which must be a symmetry of the action. In this case, the critical theory is a

sine-Gordon model with p = 1:

SDDM,sync. = SDDM +

∫
d2r V (−) cos(2πh(−)) , (2.18)

where, since the cosine term is forbidden by symmetry constraints when K = 0,

we require V (−) ∼ K to leading order. The constraints imposed by rotation and

translation symmetry are identical (see Table 2.1), and hence Eq. (2.18) remains

the correct critical theory for h(−) in reduced symmetry variations of the double
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dimer model.

From Eq. (2.13), the critical stiffness for the synchronization transition is

κ−,c =
π

2
, (2.19)

and ordering occurs when κ− > κ−,c. The ordered phase is synchronized (antisyn-

chronized) in regions of the phase diagram with negative (positive) coupling K,

because the cosine term locks h(−) = 0 (1
2
) in order to minimize the action. (The

relative height of any synchronized ground state is clearly h(−) = 0.) We iden-

tify the (high-temperature) Coulomb phase in the double dimer model with the

low-temperature phase of the XY model, in accordance with the duality mapping

from integer loops to the XY model [47]. Hence, the synchronization transition

is a BKT transition but with an inverted temperature axis.

To locate the phase boundary at fixed J/T , we measure κ− as a function

of K/T using MC simulations and, from the crossing with its critical value κ−,c,

identify a critical coupling (K/T )c. However, in the absence of interactions within

replicas (J = 0) MC simulations are not necessary, because κ−,c precisely coin-

cides with the non-interacting limit (K = 0) of Eq. (2.17). Hence, in this case,

the critical coupling (K/T )c = 0, and replicas synchronize for infinitesimal K < 0

[using Eq. (2.16) with λ ∼ K].

In our phase diagram, h(−) is locked in the vicinity of columnar-ordering tran-

sitions when K 6= 0, and columnar ordering of coupled replicas is thus described

by a critical theory in h(+). Adding to Eq. (2.15) the most relevant term consistent

with the constraints on S[h(+)] in Table 2.1, one obtains

SDDM,col. = SDDM +

∫
d2r V (+) cos(4πh(+)) , (2.20)

which is a sine-Gordon model with p = 2.

The critical stiffness for columnar-ordering of coupled replicas is therefore

κ+,c = 2π . (2.21)

(In principle, h(+) could lock before h(−) if κ+ > κ+,c while κ− < κ−,c, but we
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do not observe this.) The ordered phases, for which κ+ > κ+,c, are columnar &

(anti)synchronized. In the columnar & synchronized phase, for example, where

h(−) = 0, the cosine term locks the total height to values h(+) = 2h(1) ∈
{

1
4
, 3

4

}
.

This is consistent with average values of the height z for a single dimer model in

the columnar phase (see Sec. 2.3.1).

2.3.3 Honeycomb lattice

In passing, we consider the double dimer model defined on the honeycomb lattice,

which is also bipartite and thus amenable to a height description. As we outline

in the following, in the absence of interactions within replicas, i.e., J = 0, syn-

chronization on the honeycomb lattice occurs at a critical coupling (K/T )c = 0,

as for the square lattice.

The Coulomb phase action for the single dimer model on the honeycomb

lattice is given by Eq. (2.9), with stiffness fixed to κ = π by exact calculations [4].

This is the same as for the square lattice, Eq. (2.10), and it follows that the double

dimer model is again specified by Eqs. (2.15)–(2.17) in the non-interacting limit.

The constraints on S[h] for the single dimer model are dependent on lattice

type: For the honeycomb lattice they become S[h] = S[h+1] from locality, S[h] =

S[−h] from π/3 rotation symmetry and S[h] = S[−h − 1/3] from translation

symmetry (cf. Table 2.1). However, for the double dimer model with non-zero

coupling K, the constraints on S[h(−)] are unchanged and Eq. (2.18) remains the

correct critical theory. Hence, as discussed in Sec. 2.3.2, the replicas synchronize

for infinitesimal K < 0.

This finding may be interpreted in the context of a simple geometrically frus-

trated magnet, the triangular lattice Ising antiferromagnet (TLIAFM), which has

Hamiltonian

HTLIAFM = −J
∑

〈i,j〉

σiσj , (2.22)

where 〈i, j〉 denotes nearest-neighbor pairs of sites, J < 0 and σi = ±1. The TLI-

AFM has an extensive number of ground states and, as illustrated in Fig. 2.5,

each ground state is in one-to-one correspondence with a close-packed dimer con-

figuration on the honeycomb lattice [4].

19



Figure 2.5: Red: a ground state of the triangular lattice Ising antiferromagnet;
each plaquette contains a single frustrated bond [parallel spins contributing en-
ergy +|J | in Eq. (2.22)]. Black: corresponding close-packed dimer configuration
on the dual (honeycomb) lattice, in which dimers lie across frustrated bonds.

In the limit J /T → −∞, the double dimer model on the honeycomb lattice

is equivalent to a bilayer TLIAFM with Hamiltonian

H = H(1)
TLIAFM +H(2)

TLIAFM +
K

4

∑

〈i,j〉

σ
(1)
i σ

(1)
j σ

(2)
i σ

(2)
j , (2.23)

up to additive constants, where the four-spin interaction [48–50] derives from

the term that counts overlapping dimers in Eq. (2.2). Hence, in this limit, spins

in both replicas are either all aligned (σ
(1)
i = σ

(2)
i ∀ i) or all antialigned (σ

(1)
i =

−σ(2)
i ∀ i) for infinitesimal K/T < 0, according to our height analysis.

In fact, for general J , Eq. (2.23) is the Hamiltonian of the Ashkin–Teller

model on the triangular lattice. The phase diagram of this model, obtained

using MC simulations in Fig. 7 of Ref. [51], includes a BKT critical point at

(J , K) = (−∞, 0) and is thus consistent with our conclusion.

Finally, because the honeycomb-lattice dimer loop model is solvable (see

Sec. 2.2.2), one may also calculate the stiffnesses κ± exactly at (J,K) = (0,+∞),

with result κ− = π
2

= κ−,c [52]. Hence, this point lies on the synchronization

phase boundary. We also observe this feature in the square-lattice phase dia-

gram, Fig. 2.3, where an exact calculation is not possible.
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Figure 2.6: Local steps involved in a single-loop update of the worm algorithm
(see main text for details).

2.4 Worm algorithm

We obtain numerical results using the MC worm algorithm [42], in which non-

local loop updates are performed. With PBCs, loops can span the boundaries,

allowing changes in flux.

2.4.1 Single loops

We begin by reviewing the standard implementation of the worm algorithm, using

single loops. As illustrated in Fig. 2.6, the process is broken down into a series

of local steps:

1. Choose a lattice site i = i0 and a replica α at random.

2. In the current configuration of replica α, site i is connected by a dimer to

a neighboring site j. Delete this dimer, denoted by (i, j)(α).

3. Select a neighbour of j, called k, using a local detailed balance rule (de-

scribed below), and insert a new dimer (j, k)(α).

4. If k = i0, close the loop. Otherwise return to step 2, using i = k.

Since all loops are performed without rejection, the worm algorithm is highly

efficient.

The transition probability P
(
(i, j)(α) → (j, k)(α)

)
, with which the site k is

selected in step 3, is determined as follows. The requirement for global detailed

balance translates into the local detailed balance condition [42]

w
(
(i, j)(α)

)
P
(
(i, j)(α) → (j, k)(α)

)
= w

(
(j, k)(α)

)
P
(
(j, k)(α) → (i, j)(α)

)
. (2.24)
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Here, w
(
(j, k)(α)

)
is the equilibrium probability of the configuration obtained on

insertion of the dimer (j, k)(α) in step 3. For the double dimer model, Eq. (2.2)

implies

w
(
(j, k)(α)

)
∝ exp

[
−
(
JN

(α)
(j,k) +Kd

(ᾱ)
(j,k)

)
/T
]
, (2.25)

where N
(α)
(j,k) ∈ {0, 1, 2} is the number of nearest-neighbour dimers parallel to

(j, k)(α) in the same replica, whilst d
(ᾱ)
(j,k) is the dimer occupation number of the

other replica ᾱ on bond (j, k). A solution for the transition probabilities, chosen

to reduce backtracks (where k = i), is then

P
(
(i, j)(α) → (j, k)(α)

)
=

w
(
(j, k)(α)

)
−min(w)δi,k∑

k w
(
(j, k)(α)

)
−min(w)

, (2.26)

where w is a 4-component vector containing elements w
(
(j, k)(α)

)
for all k [53].

Step 2 produces configurations containing two test monomers: a stationary

monomer at site i0, and a moving monomer at site j (see Fig. 2.6). Hence,

single-loop updates may be used to construct the monomer distribution function

Gm(R), by tallying the monomer separation R after each step 2. Since the local

detailed balance rule correctly samples only configurations produced by step 3,

it is necessary to tally an amount 1/
∑

k w
(
(j, k)(α)

)
, rather than unity [10].

2.4.2 Double loops

Since they necessarily disrupt the order, single loops are suppressed in the syn-

chronized phase, whereas simultaneous loops in both replicas are not. Therefore,

to avoid problems with ergodicity, it is necessary to perform double-loop updates.

Double loops are constructed as follows. In step 1, loops begin in both replicas

from the same randomly chosen site i = l = i0. Both loops perform step 2 as for a

single-loop update, deleting dimers (i, j)(1) and (l,m)(2). Step 3 now corresponds

to 16 choices, with 4 in each replica. The insertion of new dimers (j, k)(1) and

(m,n)(2) is associated with a configuration probability

w
(
(j, k)(1), (m,n)(2)

)
= w

(
(j, k)(1)

)
w
(
(m,n)(2)

)
exp(Kδj,mδk,n/T ), (2.27)

where the factor exp(Kδj,mδk,n/T ) prevents double-counting of dimer overlap
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when the bonds (j, k) and (m,n) are identical. Eq. (2.26) is then used to obtain

the transition probabilities, with w a 16-component vector containing elements

w
(
(j, k)(1), (m,n)(2)

)
. In step 4, the process terminates when both loops close

simultaneously, i.e. k = n = i0. Otherwise we return to step 2, using i = k and

l = n.

Double-loop updates are performed without rejection, but their efficiency is

poor at higher temperatures. This is because the probability of simultaneous

closure is small, and so updates are unnecessarily long. To reduce this problem,

we use double loops only for large |K|/T . We also define a spring potential

V
(
(j, k)(1), (m,n)(2)

)
= 1

2
ks|rk−rn|2, where ks is a spring constant and rk denotes

the position vector of site k. This is imposed by multiplying the equilibrium

probabilities of Eq. (2.27) by exp(V ), and favours the selection of sites k and

n with smaller separation in step 3. The potential only modifies equilibrium

probabilities of configurations during the double-loop construction, and so does

not affect detailed balance for the close-packed dimer configurations.

2.4.3 Simulation parameters

We performed simulations on systems up to a maximum linear size L = 320 with

PBCs. Following equilibration, data points are typically obtained by averaging

over 106 MC sweeps, where a sweep is defined such that all lattice bonds are visited

once on average. Statistical errors are estimated using a jackknife resampling

method. A spring constant ks = 2 is used for double loops.

We have checked the MC data by comparing with exact results for the cases

L ∈ {2, 4, 6} and with the limits discussed in Sec. 2.2.2.

2.5 Numerical results

In this section we use MC results, obtained using the worm algorithm [42], to

map out the phase diagram shown in Fig. 2.3 and study the nature of each

transition. There are three types of phase boundaries, which we consider in turn:

synchronization, columnar ordering, and staggered ordering.
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2.5.1 Synchronization transitions

In Sec. 2.3.2 we identified, when J/T = 0, a synchronization transition at in-

finitesimal coupling between replicas, i.e., (K/T )c = 0. The transition is BKT

type, where the Coulomb and synchronized phases correspond to the low- and

high-temperature phases of the XY model, respectively. In this section, we first

provide MC evidence to support this finding, and then describe how the phase

boundary, which divides the Coulomb and (anti)synchronized phases, is located

in the case J/T 6= 0.

MC data for the synchronization transition when J/T = 0 are shown in

Fig. 2.7. According to theoretical arguments, the mean-square flux difference

〈|Φ(−)|2〉, shown in the top-left panel, is system-size independent in the Coulomb

phase (see Appendix 2.A.2) and decreases exponentially with L in the synchro-

nized phase. Hence, the extent of the L-independent region in 〈|Φ(−)|2〉 provides a

rough bound |(K/T )c| . 0.2 on the critical coupling. In the thermodynamic limit,

however, we expect that (K/T )c scales to zero (see Sec. 2.3.2), while 〈|Φ(−)|2〉

jumps discontinuously to zero across the transition. The latter is typical of a

BKT transition; for example, in the XY model there is a universal jump in the

helicity modulus at the critical point [37,47].

As expected for a BKT transition, the synchronization transition [at (K/T )c =

0] is not accompanied by a peak in the heat capacity per site c, as shown in the

top-right panel of Fig. 2.7. Instead, near the transition, theory predicts a non-

divergent essential singularity, which is unobservable [47, 54]. In the XY model,

the main feature of the heat capacity per site is a broad peak, which is above the

critical temperature and does not diverge with system size. We observe this in the

synchronized phase of the double dimer model, i.e., when K/T < 0, consistent

with the correspondence between the phases in the two models.

As discussed in Sec. 2.2.2, the Coulomb and synchronized phases may be

distinguished through the monomer confinement criterion. In the bottom-left

panel of Fig. 2.7, we show the confinement length ξ, defined by

ξ2 =

∑
R|R|2Gm(R)∑
RGm(R)

, (2.28)
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Figure 2.7: Mean-square flux difference 〈|Φ(−)|2〉 (top-left panel), heat capacity
per site c (top-right panel), square of the normalized confinement length ξ2/L2

(bottom-left panel) and mean-square total flux 〈|Φ(+)|2〉 (bottom-right panel) vs
K/T , for the square-lattice double dimer model with J = 0 and different system
sizes L. There is a synchronization transition at infinitesimal coupling between
replicas, i.e., (K/T )c = 0. The transition is BKT type, where the Coulomb and
synchronized phases correspond to the low- and high-temperature phases of the
XY model, respectively.

which is equivalent to the root-mean-square separation of the test monomers. In

the Coulomb phase, where monomers are quasideconfined with Gm(R) ∼ |R|−η

(see Appendix 2.A.4), the confinement length has asymptotic dependence

ξ ∼





L for η < 2

L2−η/2 2 < η < 4

L0 4 < η

(2.29)

(cf. the cubic-lattice case of Chapter 5, where fully-deconfined monomers have

ξ ∼ L independent of stiffness). One also has ξ ∼ L0 in the synchronized phase,

where monomers are confined. In our MC data, the region with ξ ∼ L at small

|K/T | is thus a signature of a quasideconfined phase. The behavior for large

|K/T | is consistent with a confined phase or quasideconfined monomers with

η > 4; we have checked that Gm decays exponentially in this region (not shown),
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implying the former. Note that for quasideconfined monomers we observe satu-

ration at ξ2/L2 ' 0.15, which is less than the value expected for fully-deconfined

monomers ξ2/L2 ≈ 1/6 [using the result (L2+2)/6 for the mean-square separation

of free monomers hopping on an empty lattice].

In the synchronized phase, where the replicas become strongly correlated,

fluctuations in the relative flux Φ(−) are suppressed. However, both replicas

remain disordered so fluctuations in the total flux Φ(+) are large in both phases,

as shown in the bottom-right panel of Fig. 2.7. In particular, at K/T = 0 where

the replicas are independent, 〈Φ(1) · Φ(2)〉 = 〈Φ(1)〉 · 〈Φ(2)〉 = 0 and 〈|Φ(+)|2〉 =

2〈|Φ(1)|2〉. This is half the value at K/T → −∞ for perfectly synchronized

replicas, where 〈Φ(1) ·Φ(2)〉 = 〈|Φ(1)|2〉 and 〈|Φ(+)|2〉 = 4〈|Φ(1)|2〉.

For general J/T , we locate the phase boundary between the

(anti)synchronized and Coulomb phases as follows. In the Coulomb phase,

the mean-square total and relative flux are given by [10]

〈|Φ(±)|2〉 = 2

∑
n1,n2∈Z n

2
±e−

κ+
2
n2
+e−

κ−
2
n2
−

∑
n1,n2∈Z e−

κ+
2
n2
+e−

κ−
2
n2
−

, (2.30)

where n± = n1 ± n2, as derived in Appendix 2.A.2 starting from the continuum

theory of Eq. (2.15). In the MC simulations we measure both 〈|Φ(±)|2〉, and solve

these equations numerically for the stiffnesses κ± using the Newton–Raphson

method [55]. As shown in Fig. 2.8 for J/T = 0.2, the phase boundary is then

located by scanning through K/T until κ− crosses its critical value κ−,c = π
2

[see

Eq. (2.19)].

To accurately determine the critical coupling, we use quadratic fits to measure

a crossing point (K/T )× for each system size (bottom-left inset of Fig. 2.8). For

a BKT transition, the appropriate finite-size scaling form is [56,57]

(
K

T

)

×
=

(
K

T

)

c

+
A

log(L/L0)2
, (2.31)

where A and L0 are constants. From our fit for J/T = 0.2 (top-right inset of

Fig. 2.8), we obtain (K/T )c = −0.293(3). Ten further critical points located in

this way are shown in the phase diagram of Fig. 2.3; this includes transitions

into the antisychronized phase at K > 0 which, notably, all scale onto the line
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Figure 2.8: Stiffness κ− vs K/T for J/T = 0.2. MC data crosses the critical
value κ−,c = π

2
(dashed line) at the synchronization transition. (Colors indicate

different values of L as in Fig. 2.7.) Bottom-left inset: Quadratic fits used to
measure a crossing point (K/T )× for each system size. Top-right inset: (K/T )×
vs system size L. The solid line is a fit to Eq. (2.31) for L ≥ 64, from which a
value for the critical coupling (K/T )c = −0.293(3) is obtained.

J/T = 0.

2.5.2 Columnar-ordering transitions

Next, we consider transitions into all columnar-ordered phases. For the case of

independent replicas, i.e., when K = 0, columnar ordering at J < 0 separates the

columnar and Coulomb phases. This transition has been studied in detail by Alet

et al. in Refs. [9,10] for the single dimer model, where the critical temperature is

determined using an order parameter. We first review this approach.

The magnetization M , defined in Eq. (2.8), breaks both translation and ro-

tation symmetry in the columnar phase. Denoting by Nµ the number of dimers

with orientation µ, a simpler choice of order parameter is the dimer rotation

symmetry breaking

D =
2

L2
|Ny −Nx| , (2.32)

a scalar that is sensitive only to rotation symmetry breaking.

This is still sufficient to indicate a columnar-ordering transition: In the

Coulomb phase, by symmetry one expects 〈Nx〉 = 〈Ny〉 so that 〈D〉 is small.
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In the columnar phase, rotation symmetry is broken and all dimers are either

horizontal or vertical. Hence, one expects 〈D〉 = 1 (the total number of dimers

is L2/2). Alet et al. observe this behavior in Fig. 9 of Ref. [10].

The critical temperature may be determined accurately using the dimer rota-

tion symmetry breaking Binder cumulant

BD = 1− 〈D4〉
3〈D2〉2

. (2.33)

In the vicinity of the critical point, the kth moment of the dimer rotation sym-

metry breaking has scaling form [58]

〈Dk〉 ∼ Lkafk(L/ζ) , (2.34)

where, for a BKT transition, the correlation length diverges as [47]

ζ ∼ exp
(
bt−

1
2

)
. (2.35)

Here, a and b are unknown constants, fk is a universal function, and t = (T −

Tc)/Tc is the reduced temperature. Hence, the Binder cumulant has zero scaling

dimension, i.e.,

BD ∼ g(L/ζ) , (2.36)

where g is a new universal function, because Eq. (2.33) has equal powers of D in

both numerator and denominator.

At the critical temperature t = 0, the correlation length diverges and, to lead-

ing order, the Binder cumulant has no system size dependence. Hence, depending

on the finite-size behavior either side of t = 0, MC data for different system sizes

may cross at the critical temperature. This is observed for BD in Fig. 11 of

Ref. [10], from which Alet et al. report Tc = 0.65(1) when J = −1, but not for

the Binder cumulant of M [10, 59].

We now generalize this method to locate the phase boundary when K/T 6= 0,

i.e., for coupled replicas. In this case, columnar-ordering transitions separate the

(anti)synchronized phases from the columnar & (anti)synchronized phases. Since

translation and rotation symmetry are broken in all columnar-ordered phases, we
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Figure 2.9: Dimer rotation symmetry breaking mean 〈D(1)〉 (left panel), suscep-
tibility χD(1) (middle panel), and Binder cumulant BD (right panel) vs J/T , for
K/T = −0.2 and different system sizes L. The sharp drop in 〈D(1)〉, and the
corresponding sharp peak in χD(1) , indicate a phase transition between colum-
nar & synchronized and synchronized phases. From the crossing in BD (right
panel, inset), we estimate the critical coupling (J/T )c = −1.03(2). This is the
generalization of Figs. 9–11 in Ref. [10] to the case of coupled replicas.

again expect a sharp drop in the mean dimer rotation symmetry breaking 〈D(α)〉

for both replicas, as well as a peak in the corresponding susceptibility

χD(α) = L2
(
〈
[
D(α)

]2〉 − 〈D(α)〉2
)

, (2.37)

in the vicinity of a transition. This is shown in Fig. 2.9 (left and middle panels)

for the transition at K/T = −0.2, between the columnar & synchronized and

synchronized phases.

To measure the critical coupling, we have analyzed the Binder cumulant BD(α)

of Eq. (2.33) for both replicas, but no longer observe a distinct crossing point

in the MC data when K 6= 0. Instead, we define the two-component vector

D = (D(1), D(2)), with corresponding Binder cumulant

BD =
〈|D|4〉
〈|D|2〉2

, (2.38)

which is shown in Fig. 2.9 (right panel). Up to normalization, this is equivalent

to Eq. (2.33) in the limits K = 0 and K/T → −∞. Deep within the colum-

nar & (anti)synchronized phases, the probability distribution for D is sharply

peaked at D(1) = D(2) = 1. Then 〈|D|4〉 = 〈|D|2〉2 so BD saturates to unity. In
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the (anti)synchronized phases, D(α) follows a half-normal distribution for which

〈
[
D(α)

]4〉 = 3〈
[
D(α)

]2〉2. The limiting value depends on K/T through the cor-

relator 〈
[
D(1)D(2)

]2〉, which can only be calculated at K = 0 and K/T → −∞,

where BD = 2 and 3, respectively.

As shown in Fig. 2.9 (right panel, inset), MC data for this Binder cumulant,

BD, does exhibit a crossing point when K 6= 0. From this, we estimate a critical

coupling (J/T )c = −1.03(2) at K/T = −0.2. Our phase diagram, Fig. 2.3,

includes this point along with ten others that have been obtained in the same

way, but using only system sizes L = 32 and L = 48.

Columnar ordering in the limits K = 0, studied in Refs. [9, 10], and K/T →

−∞, equivalent to columnar ordering of a single dimer model with Jeff = 2J (see

Sec. 2.2.2), is known to be a BKT transition with an inverted temperature axis.

We expect the whole phase boundary to share the same critical properties as

these points.

We now use the field theory and RG analysis of Sec. 2.3 to verify our results.

In Fig. 2.10 (top panel), we measure the monomer distribution function Gm(R)

at the columnar-ordering transition for independent replicas (J = −1, K = 0 and

T = Tc = 0.65), counting only monomers on the same row, i.e., R = (X, 0). Each

MC simulation can only construct Gm up to an arbitrary multiplicative constant,

so we fix Gm(1, 0) = 1.

The Coulomb phase monomer distribution function has asymptotic form

Gm(X, 0) ∼ X−κ/2π , (2.39)

which is derived in Appendix 2.A.3 starting from the continuum theory of

Eq. (2.9). Due to PBCs, Gm(X, 0) is symmetric around X = L/2 in the MC

simulations, hence the algebraic decay is cut off and Eq. (2.39) is only valid for

1 � X � L/2. A fit to Eq. (2.39) over a suitable range in the inset yields an

estimate for the critical stiffness κc = 8.028(3)π, which is comparable with the

RG prediction κc = 8π of Eq. (2.14) [the discrepancy perhaps arises due to the

uncertainty in Tc and finite-size effects in Gm(X, 0)]. Alet et al. instead measure

the flux and invert Eq. (2.A.12) to obtain the stiffness (see Fig. 31 of Ref. [10]).

In the case of coupled replicas, one requires the asymptotic form of Gm(R)
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Figure 2.10: Top panel: Log–log plot of monomer distribution function Gm(X, 0)
vs monomer separation X at the columnar-ordering transition for independent
replicas. Bottom panel: Log–log plot of double monomer distribution function
Gd(X, 0) vs X at a columnar-ordering transition for coupled replicas. In each
case, the system size is L = 160. Insets: Solid lines are fits to Eqs. (2.39) and
(2.40) for 15 ≥ X ≥ 23, from which values for the critical stiffness κc = 8.028(3)π
and κ+,c = 2.016(1)π are obtained, respectively.

in the (anti)synchronized phases, which is less straightforward. Instead, it is

convenient to consider the double monomer distribution function Gd(R) (see

Sec. 2.2.2) which, as derived in Appendix 2.A.5, has asymptotic form2

Gd(X, 0) ∼ X−2κ+/π . (2.40)

In Fig. 2.10 (bottom panel), we show Gd(R) for the columnar-ordering transition

2The height description of the columnar-ordering transitions necessarily implies a discon-
tinuity in the phase boundary at K = 0±. To see this, compare Gd on the phase boundary
at K = 0 and K = 0±: the former is equivalent to G2

m, where Gm is given by Eq. (2.A.22)
and κ = κc = 8π, hence Gd ∼ |R|−8. The latter, however, is given by Eq. (2.A.27) with
κ+ = κ+,c = 2π, i.e., Gd ∼ |R|−4. We have checked that this discontinuity is small and, in-
deed, it is not resolved by our Binder cumulant method. Such an effect, though, can be seen in
the phase diagram of Ref. [39].
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at K/T = −0.2 and J/T = (J/T )c = −1.03. In the inset, a fit to Eq. (2.40)

over a suitable range gives κ+,c = 2.016(1)π, which is close to the expected value

κ+,c = 2π of Eq. (2.21).

2.5.3 Staggered-ordering transitions

We begin by describing the nature of the staggered phase in the single dimer

model. The simplest staggered ground states (which contain no parallel pairs

of dimers) have all dimers horizontal, such as Fig. 2.11(a), or vertical, such as

Fig. 2.11(d). More complicated ground states are obtained by shifting dimers

along diagonal loops, or ‘staircases’, that span the periodic boundaries. For

example, Fig. 2.11(b) is a staggered ground state related to Fig. 2.11(a) by trans-

lation of dimers around the red staircase. Translation of dimers around further

staircases results in Fig. 2.11(c), and then Fig. 2.11(d).

From Eq. (2.7), the ground state in Fig. 2.11(a) has flux Φ = (L/2, 0). Intro-

duction of each staircase reduces (increases) the number of horizontal (vertical)

dimers by L, resulting in a flux change ∆Φ = (−1, 1). Consequently, the subset

of ground states in Figs. 2.11(a)–(d) occupy the line Φx+Φy = L/2 in flux space,

as illustrated by the center of Fig. 2.11. More generally, the full ground state

manifold is given by the equation

|Φx|+ |Φy| =
L

2
. (2.41)

This simple representation of the staggered ground states is specific to two di-

mensions, and cannot be generalized to the cubic lattice.

There is only one ground state, shown in Fig. 2.11(a), with flux Φ = (L/2, 0).

To construct configurations with Φy > 0 [for example Figs. 2.11(b)–(d)] one must

insert Φy staircases into L/2 slots, for which the number of choices is given by

the binomial coefficient L/2CΦy . In general, the degeneracy of a staggered ground

state with flux Φ = (Φx,Φy) is L/2C|Φy | [or equivalently, by Eq. (2.41), L/2C|Φx|].

Using this binomial distribution, one may calculate observables deep within
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Figure 2.11: Examples of staggered ground states for a single dimer model on a
6×6 lattice with PBCs. Ground states (a) and (d) have all dimers horizontal and
vertical, respectively. Ground states (b), (c) and (d) are related to (a), (b) and
(c), respectively, by translation of dimers around red ‘staircases’. Center: Ground
state manifold in flux space, described by the equation |Φx| + |Φy| = L/2; a dot
with flux Φ = (Φx,Φy) corresponds to L/2C|Φx| degenerate ground states (see
text for explanation). Colored dots correspond to the positions of ground states
(a)–(d).

the staggered phase. For example, the total number of ground states is

N = 4




L/2∑

Φx=0

L/2C|Φx| − 1


 (2.42)

= 4(2L/2 − 1), (2.43)

which corresponds to a subextensive entropy logN ≈ L
2

log 2. We also infer that,

since the quantity |Φx|/L is distributed around 1/4 with standard deviation ∝

L−1/2, the flux takes one of the four values Φ/L = (±1
4
,±1

4
) in the thermodynamic

limit, thus spontaneously breaking rotation and translation symmetries. At finite

J there are fluctuations out of these extremal states, but the symmetry-breaking

transition remains.

For the double dimer model, the above discussion allows one to write down
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the partition function exactly, as a function of K/T , in the limit J/T →∞. For

example, for both replicas consider only ground states in the first quadrant of

Fig. 2.11, i.e., 0 ≤ Φx,y ≤ L/2. A staircase can be covered by either horizontal or

vertical dimers within each replica, and so, including a field h that couples to the

flux difference Φ(−), has four possible Boltzmann weights: exp(−KL/T ) when

both replicas have the same orientation (i.e., both horizontal or vertical), and

exp[±h · (1,−1)] when both replicas have different orientations. Since, in total,

there are L/2 staircases, the contribution of these ground states to the partition

function is

Z11 = 2L/2
[
e−KL/T + cosh (hx − hy)

]L/2
. (2.44)

Because Z11 contains all configurations with maximal overlap, we expect that,

for K = 0−, the full partition function asymptotically approaches Z11 in the ther-

modynamic limit. By taking suitable derivatives with respect to h, one finds that

the flux difference Φ(−) is distributed around 0 with variance ≈ Le−|K|L/T . Hence,

as illustrated in Fig. 2.3, in the staggered phase infinitesimal negative coupling

is sufficient to synchronize the two replicas. Similarly, for K > 0, one expects

Φ(1)/L = (±1
4
,±1

4
) in the thermodynamic limit, Φ(2) = −Φ(1) to minimize over-

lap, and hence Φ(+) = 0 (we note that there are also, for example, configurations

with Φ(−) = 0 and zero overlap, but their degeneracy is less by a factor exponen-

tially small in L).

We now use MC results to examine transitions into all staggered-ordered

phases. To begin, we focus on the case K = 0, where staggered ordering at

J > 0 separates the staggered and Coulomb phases. One expects the same criti-

cal properties as for the single-replica case so, for simplicity, we consider a single

dimer model with J = +1 and vary the temperature.

By analogy with the columnar-ordering transitions (cf. Fig. 2.9), we use the

staggered order parameter [60]

s =
2

L
(|Φx|+ |Φy|) (2.45)

to determine the critical temperature. At low temperatures, deep within the

staggered phase, one has 〈s〉 = 1 by definition of the ground state manifold,
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Figure 2.12: Staggered order parameter mean 〈s〉 (left panel), susceptibility χs
(middle panel), and Binder cumulant Bs (right panel) vs temperature T , for the
square-lattice dimer model (two independent replicas, K = 0) with J = +1 and
different system sizes L. The sharp drop in 〈s〉, and the corresponding sharp
peak in χs, indicate a phase transition between staggered and Coulomb phases.
Right panel, inset: From the crossing in Bs, we estimate the critical temperature
Tc = 0.477(2). Middle-panel, inset: Log–log plot of χs, evaluated at the critical
temperature Tc = 0.477, versus system size L. The solid line is a fit to Eq. (2.48)
for L ≥ 64, from which a value γ/ν = 1.760(4) is obtained.

Eq. (2.41), whereas in the Coulomb phase 〈s〉 is small because the flux distribution

P (Φ) is peaked at Φ = 0 with width ∼ L0 [see Eq. (2.A.11)]. Between these

regimes, the sharp drop in 〈s〉 and peak in the corresponding susceptibility

χs = L2
(
〈s2〉 − 〈s〉2

)
, (2.46)

shown in Fig. 2.12 (left and middle panels), are characteristic of a phase transition.

In Fig. 2.12 (right panel), we obtain the critical temperature from the crossing

point in the staggered order parameter Binder cumulant [60]

Bs =
〈s4〉
〈s2〉2

. (2.47)

Our estimate, Tc = 0.477(2), is close to existing results Tc = 0.449(1) and Tc =

0.51 of Refs. [9, 39], respectively [see also Ref. [38], which reports Tc = 0.72(5)].

The absence of relevant cosine terms in the action for J > 0 implies that

staggered ordering does not occur through a BKT transition, and is consistent

with either a first-order transition, as suggested by Castelnovo et al. [38], or

a standard Landau-type ordering transition. Our MC data suggest that the
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transition is in fact continuous: Bs has a crossing point, while the heat capacity

per site c (not shown) does not diverge strongly with system size (i.e., not ∼ L2).

At the critical point for a continuous transition, the susceptibility has finite-

size scaling form [47]

χs ∼ Lγ/ν , (2.48)

where γ and ν are the susceptibility and correlation-length exponents, respec-

tively. A fit to this form in Fig. 2.12 (middle panel, inset) yields a rough estimate

γ/ν = 1.760(4), where the error reflects the quality of the fit, but ignores un-

certainty in Tc and higher-order corrections to Eq. (2.48). This is close to γ/ν

in the Ising (γ = 7/4, ν = 1), 3-state Potts (γ = 13/9, ν = 5/6) and Ashkin–

Teller (γ = 7/6, ν = 2/3) 2D universality classes [61]. Based on the four values

Φ/L = (±1
4
,±1

4
) taken by the flux deep within the ordered phase, a näıve Lan-

dau theory would be that of the 4-state clock model, which is equivalent to two

uncoupled Ising models [62] and thus supports the Ising universality class. Con-

firmation of this would require a more detailed analysis, which is beyond the

scope of this work.

In the height picture, the transition occurs when the stiffness κ = 0 in the

Gaussian action, Eq. (2.9). For this reason, Otsuka [39] and Alet [60] have made

the connection with the quantum spin-1
2

XXZ chain, and spin ice subjected to

uniaxial pressure [63], for which all terms in the action vanish to infinite order

at the critical point (by symmetry for the XXZ chain; ‘accidentally’ for spin ice

under pressure). Such infinite-order multicritical points [64] exhibit both first-

order and continuous features. Since we do not observe the former, our results

suggest that higher-order terms do not vanish in the dimer model, i.e., P (Φ) is

not flat [see Eq. (2.A.11)], at Tc.

To locate the full phase boundary our approach is straightforwardly extended

to the case of coupled replicas, using crossing points in the Binder cumulant

Bs =
〈|s|4〉
〈|s|2〉2

, (2.49)

where s = (s(1), s(2)). Eleven such points are included in our phase diagram,

Fig. 2.3, obtained for system sizes L = 64 and L = 96. We again infer the critical
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properties of the whole phase boundary from the limits K = 0 and K/T → −∞.

2.6 Conclusions

The central result of this chapter is the phase diagram of the classical double

dimer model on the square lattice, shown in Fig. 2.3. Our results demonstrate

the presence of a synchronization phase transition at which fluctuations between

the two replicas become more strongly correlated, with signatures in the variance

of the relative flux and in the monomer distribution function, but no symmetry

breaking. The critical properties at this transition are of the BKT type, as

expected for such a transition in 2D.

In addition, we find an antisynchronized phase, where overlaps between the

two replicas are reduced. Our numerical results indicate that the phase boundary

with the Coulomb phase runs along the line J/T = 0 for positive K/T (except

possibly close to K = 0, where the finite-size scaling becomes more difficult), as

has previously been conjectured [20].

Remarkably, we find that these three phases meet at the noninteracting point

J = K = 0, implying that an infinitesimal coupling between replicas is sufficient

to drive the synchronization transition. This conclusion is supported both by our

numerical results and by theoretical considerations based on a height field theory.

In the following two chapters, we will apply bosonization to the transfer-

matrix solution of the dimer model [23]. This provides an alternative perspective

on the fact that the synchronization transition is at infinitesimal coupling, because

it can be understood as a pairing transition for fermions at zero temperature in

1D. It also allows one to predict the asymptotic form of the phase boundary

exactly, based on perturbation theory in terms of the couplings.
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Appendices

2.A Calculation of observables using field theo-

ries

In this Appendix, we calculate various observables in the single dimer model

(SDM) and double dimer model (DDM) using the continuum theories introduced

in Sec. 2.3.

2.A.1 SDM flux in the Coulomb phase

We first calculate flux moments in the SDM Coulomb phase; a similar version of

this derivation can be found in Refs. [7, 10]. The SDM Coulomb phase action is

given by

SSDM =

∫
d2r

κ

2
|B|2 , (2.A.1)

and the probability associated with magnetic field B(r) is P [B] = e−SSDM[B]/Z,

where Z is the partition function.

We write the magnetic field as a Fourier series

B(r) =
1

L

∑

k

e−ik·rB̃(k) , (2.A.2)

with Fourier coefficients

B̃(k) =
1

L

∫
d2r eik·rB(r) . (2.A.3)

Formally, the coarse-graining procedure is defined by

Bµ(r) =
∑

r′

Br′,µKw(r − r′) , (2.A.4)

where Kw is a coarse-graining kernel with width w on the order of a few lattice

spacings, and normalization

∫
d2rKw(r − r′) = 1. (2.A.5)
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Hence, the Fourier coefficient

B̃µ(0) =
1

L

∫
d2rBµ(r) (2.A.6)

=
1

L

∑

r′

Br′,µ

∫
d2rKw(r − r′) (2.A.7)

= Φµ , (2.A.8)

where Φµ is the flux defined by Eq. (2.7).

In terms of the Fourier coefficients, the action becomes

SSDM[B] =
∑

k

κ

2
|B̃(k)|2 . (2.A.9)

The probability of flux Φ is obtained by integrating out all other Fourier modes

with k 6= 0, so

P (Φ) =

∫ ∏

k 6=0

d2B̃(k)P [B] (2.A.10)

=
e−

κ
2
Φ2

∑
Φ e−

κ
2
Φ2 , (2.A.11)

where Φµ is integer valued. As expected, the mean flux vanishes while the mean-

square flux is given by [10]

〈|Φ|2〉 = 2

∑
n∈Z n

2e−
κ
2
n2

∑
n∈Z e−

κ
2
n2 . (2.A.12)

Unlike in the case of the cubic lattice [11], the discreteness of the flux is important

in two dimensions and the sum over flux sectors cannot be converted into an

integral.

2.A.2 DDM flux in the Coulomb phase

The generalization to flux moments in the DDM Coulomb phase is straightfor-

ward. The DDM Coulomb phase action is

SDDM =

∫
d2r

[κ+

2
|B(+)|2 +

κ−
2
|B(−)|2

]
, (2.A.13)
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and the probability associated with magnetic fields B(±)(r) is P [B(+),B(−)] =

e−SDDM[B(+),B(−)]/Z, where Z is the partition function.

After Fourier expansion of B(±)(r) in terms of Fourier coefficients B̃(±)(k),

where B̃(±)(0) = Φ(±), the action becomes

SDDM =
∑

k

[κ+

2
|B̃(+)(k)|2 +

κ−
2
|B̃(−)(k)|2

]
. (2.A.14)

The probability of fluxes Φ(±) is obtained by integrating out all other Fourier

modes with k 6= 0, so

P (Φ(+),Φ(−)) =
e−

κ+
2
|Φ(+)|2e−

κ−
2
|Φ(−)|2

∑
Φ(1),Φ(2) e−

κ+
2
|Φ(+)|2e−

κ−
2
|Φ(−)|2

, (2.A.15)

where Φ
(1,2)
µ are integer valued (we avoid summing over Φ

(±)
µ = Φ

(1)
µ ±Φ

(2)
µ , which

are instead pairs of integers with the same parity). Again, the mean flux vanishes

while the mean-square total and relative flux are given by

〈|Φ(±)|2〉 = 2

∑
n1,n2∈Z n

2
±e−

κ+
2
n2
+e−

κ−
2
n2
−

∑
n1,n2∈Z e−

κ+
2
n2
+e−

κ−
2
n2
−

, (2.A.16)

where n± = n1 ± n2.

2.A.3 SDM Gm(R) in the Coulomb phase

Next, we calculate the monomer distribution function in the SDM Coulomb phase

(see also Refs. [4, 7]). In the continuum description, this is given by

Gm(R) =
1

Z

∫
DB(r) e−SSDM[B] , (2.A.17)

where Z is the partition function in the close-packed case, SSDM is given by

Eq. (2.A.1) and B is now the magnetic field in the presence of a pair of test

monomers, i.e., ∇ ·B = Q(r) with Q(r) = Kw(r−r+)−Kw(r−r−) [this follows

from coarse graining Eq. (2.5) with Qr = δr,r+ − δr,r− ].

The general solution for the magnetic field is [65]

Bµ = −∂µφ+ εµν∂νh , (2.A.18)
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where φ is fixed by the Poisson equation ∇2φ = −Q(r), and h is a Coulomb

phase height. After simplification, the action reads

SSDM =

∫
d2r

κ

2

(
|∇φ|2 + |∇h|2

)
(2.A.19)

(cross terms vanish after integration by parts) and, since the second contribution

returns Z, Eq. (2.A.17) reduces to

Gm(R) = e−
∫
d2r κ

2
|∇φ|2 . (2.A.20)

The remaining integral is the energy associated with an electrostatic potential

φ due to two extended charge distributions ±Kw separated by R = r+− r− [66].

For large monomer separation |R| � w, the charge distributions ‘see’ one another

as point charges, hence (in two dimensions)

∫
d2r

1

2
|∇φ|2 =

1

2π
log|R| , (2.A.21)

up to additive constants, and the asymptotic behavior is

Gm(R) ∼ |R|−κ/2π . (2.A.22)

2.A.4 DDM Gm(R) in the Coulomb phase

By extension, the monomer distribution function in the DDM Coulomb phase,

with a pair of monomers in one replica, say α = 1, is given by

Gm(R) =
1

Z

∫
DB(+)(r)DB(−)(r) e−SDDM[B(+),B(−)] , (2.A.23)

where Z is the partition function in the close-packed case, SDDM is given by

Eq. (2.A.13) and ∇ ·B(±) = Q(r) [because B(±) = B(1)±B(2), ∇ ·B(1) = Q(r),

and ∇ ·B(2) = 0].

The calculation proceeds as in the previous section, now with two fields B(±)

and their stiffnesses κ±, giving

Gm(R) ∼ |R|−η , (2.A.24)
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where 2πη = κ+ + κ−. As required, this reduces to Eq. (2.A.22) when K = 0

[since then κ± = κ
2

from Eq. (2.16)].

2.A.5 DDM Gd(R) in the (anti)synchronized phases

Finally, we calculate the double monomer distribution function in the DDM

(anti)synchronized phases. In these phases, the cosine term in Eq. (2.18) is

relevant and locks the relative height to values h(−) = 0 (1
2
). Hence, from the

continuum version of Eq. (2.6), the corresponding magnetic field B(−) = 0. For

the total magnetic field, this implies B(+) = 2B(1), since the cosine term in

Eq. (2.20) is irrelevant. In this case, Eq. (2.A.13) reduces to

SDDM =

∫
d2r 2κ+|B(1)|2 , (2.A.25)

which is the correct action for the (anti)synchronized phases.

In terms of this, the continuum version of the double monomer distribution

function is

Gd(R) =
1

Z

∫
DB(1)(r) e−SDDM[B(1)] , (2.A.26)

where Z is the partition function in the close-packed case and B(1) = B(2) is

the magnetic field in the presence of a pair of test monomers, i.e., ∇ · B(1) =

Q(r). The derivation proceeds as in Appendix 2.A.3 but with κ→ 4κ+, and the

asymptotic behavior is

Gd(R) ∼ |R|−2κ+/π . (2.A.27)
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Chapter 3

Topological sectors, dimer

correlations and monomers from

the transfer-matrix solution of

the dimer model

3.1 Introduction

Noninteracting classical dimer models in two dimensions were first solved in-

dependently by Kasteleyn [12, 24] and Temperley and Fisher [25, 26] in 1961

using a combinatoric method, in which the partition function is expressed as

the Pfaffian of a signed adjacency matrix known as the Kasteleyn matrix. Be-

cause they are exactly solvable, these models offer a useful setting to explore the

physics of Coulomb phases [6]. In particular, using the Pfaffian method Fisher

and Stephenson have calculated dimer occupation numbers, dimer–dimer correla-

tion functions and the mononomer distribution function in 1963 [29], while, more

recently, Boutillier and de Tilière have calculated partial partition functions for

the topological sectors [28].

Perhaps a more elegant solution of the dimer model is Lieb’s transfer-matrix

method [23], analogous to the well-known solution of the Ising model by Schultz et

al. [67], which maps the problem to free fermions. In this approach, the partition

function is expressed in terms of a transfer matrix, which, given a configuration
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on a row of vertical bonds, generates all dimer configurations compatible with the

close-packing constraint on the subsequent row of horizontal and vertical bonds.

This can be expressed in terms of spin-1
2

operators and mapped to fermions

through a Jordan–Wigner transformation.

This method has been used in the literature to derive the partition function

[23] and to determine its vertical-flux decomposition [68,69]. In this chapter, we

show how Lieb’s transfer matrix can be modified in order to calculate the full flux-

sector decomposition. We also provide a general framework for the calculation

of expectation values and explicitly calculate dimer occupation numbers, dimer–

dimer correlation functions and the monomer distribution function. For the last

of these, we show how the asymptotic dependence for large monomer separation,

which was only deduced by numerical means in Ref. [29], can be evaluated exactly

by applying the Fisher–Hartwig conjecture [70].

This chapter is organized as follows: In Sec. 3.2 we define the model before

showing how it can be formulated in terms of a transfer matrix in Sec. 3.3. We

then diagonalize the two-row transfer matrix in Sec. 3.4, whose spectrum is used

to calculate the partition function, including its flux-sector decomposition, in

Sec. 3.5, and various expectation values in Sec. 3.6. We conclude in Sec. 3.7.

3.2 Model

We consider the standard close-packed dimer model on an Lx×Ly square lattice

with PBCs, assuming both Lx, Ly even (we will return to the interacting double

dimer model in Sec. 4.3). To each configuration, we assign weight αNxeit·Φ. In

the first factor α > 0 and Nx are the ‘activity’ and number of horizontal dimers,

respectively (the activity of vertical dimers is unity). Hence, for α 6= 1, the model

is anisotropic, with horizontal (vertical) dimers favored for α > 1 (α < 1). In the

second factor t is a field, with components tµ ∈ (−π, π], that couples to the flux

Φ, which was defined Sec. 2.2.1. An example configuration is shown in Fig. 3.1.

The partition function is

Z(t) =
∑

c∈C0

αNxeit·Φ , (3.1)
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r = (1, 1)

Figure 3.1: An example configuration of the close-packed dimer model on a 6× 6
lattice with PBCs. The number of horizontal dimers is Nx = 8 and the flux
is Φ = (1, 1) [see Eq. (2.7) and text thereafter]. Hence, this configuration has
weight α8eit·(1,1).

where C0 denotes the set of all close-packed dimer configurations, and can be

thought of as a moment-generating function for Φµ. Similarly, expectation values

of a function O of the dimer occupation numbers dr,µ are given by

〈O〉 =
1

Z(t)

∑

c∈C0

OαNxeit·Φ . (3.2)

3.3 Transfer matrix

We construct the partition function, Eq. (3.1), by modifying Lieb’s transfer ma-

trix [23] to include the Φx weighting (the Φy weighting can be included without

modifying the transfer matrix).

We first define a vector space whose basis vectors |d̄y〉 correspond to all possi-

ble configurations d̄y of the dimer occupation numbers on a single row of vertical

bonds. As illustrated in Fig. 3.2, the transfer matrix V is defined so that

V |d̄y〉 =
∑

d̄′y

|d̄′y〉
∑

d̄x∈C(d̄y ,d̄′y)

w(d̄x) , (3.3)

where d̄′y is the configuration on the subsequent row of vertical bonds and

C(d̄y, d̄
′
y) is the (possibly empty) set of configurations d̄x of the intermediate

row of horizontal bonds that are compatible with d̄y and d̄′y. The weight function
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w is chosen to give the correct weights for Nx and Φx in the partition function of

Eq. (3.1). On even rows, where εr = (−1)rx in Eq. (2.7), it is given by

w(d̄x) =
Lx∏

j=1

µ
d̄j,x
j , (3.4)

where

µj = α exp

[
i(−1)j

tx
Lx

]
, (3.5)

while on odd rows w is defined in the same way, but with µj replaced by µ∗j .

(Here, d̄j,x denotes the occupation number of the bond between sites rx = j and

j + 1 in the configuration d̄x of the horizontal bonds.)

It is convenient to split the action of V into two steps:

1. Generate the (single) configuration d̄′y = (1, 1, . . . , 1)−d̄y with all horizontal

bonds on the intermediate row empty (left configuration in Fig. 3.2).

2. Starting with the result of step 1, one may produce all other configurations

by replacing pairs of neighboring vertical dimers with a horizontal dimer

(middle and right configurations in Fig. 3.2). The effect on d̄′y is that an

adjacent pair of dimers is removed.

In order to reproduce the weight function w, a horizontal dimer on the bond

between sites j and j + 1 in step 2 comes with a factor µj (µ∗j) on even (odd)

rows.

An explicit operator expression for the transfer matrix is obtained by repre-

senting occupied and empty vertical bonds by spin up |↑〉 and down |↓〉 states,

respectively [i.e., eigenstates of σzj , where σj = (σxj , σ
y
j , σ

z
j ) are the Pauli matri-

ces]. The above steps are easy to formulate in the spin language. As shown in

Fig. 3.2, step 1 is equivalent to flipping all spins, which is achieved by the operator

V1 =
Lx∏

j=1

σxj , (3.6)

since σ±j = 1
2
(σxj ± iσ

y
j ) satisfy σ+|↓〉 = |↑〉 and σ−|↑〉 = |↓〉.

In step 2, pairs of neighboring up spins are flipped, so the operator

dj,x = µjσ
−
j σ
−
j+1 (3.7)
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V

+ �ei
tx
Lx + �e−i

tx
Lx

Figure 3.2: Action of the transfer matrix V of Eq. (3.9) on a row of vertical bonds
(top), in which occupied and empty vertical bonds are represented by spin up |↑〉
and down |↓〉 states (red), respectively. The result is all dimer configurations on
the subsequent row of vertical bonds that are consistent with the close-packing
constraint (bottom). The left configuration with all dimers vertical is generated
by V1, which flips all spins. The middle and right configurations, obtained from
the left configuration by replacing pairs of neighboring vertical dimers with hori-
zontal dimers, are generated by V3, which flips neighboring up spins. In order to
obtain the correct weights in the partition function, Eq. (3.1), V and V ∗ = V †

act on alternate rows and assign weight µj = α exp [itx(−1)j/Lx] and µ∗j to a
horizontal dimer between sites j and j + 1, respectively.

effectively generates a horizontal dimer between sites j and j+1, with the correct

weight on even rows. Because (σ−j )2 = 0, the operator (m!)−1
(∑Lx

j=1 dj,x

)m

generates m horizontal dimers (PBCs require σ−Lx+1 = σ−1 ), and hence

V3 = exp

(
Lx∑

j=1

dj,x

)
(3.8)

generates an arbitrary number of horizontal dimers. To obtain the correct weights

on odd rows, one should instead use the operator V ∗3 .

It is therefore necessary to define two transfer matrices,

V = V3V1 (3.9)

on even rows and V ∗ = V † on odd rows.1 We also define the two-row transfer

matrix

W = V V † , (3.10)

1Lieb’s transfer matrix V = V3V2V1 includes a third operator V2, which generates an arbi-
trary number of monomers on a row [23].
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which is manifestly Hermitian, and can be simplified to

W = V3V
†

3 (3.11)

after using σxσ−σx = σ+ to eliminate V1.

The Φy weighting is included in the transfer-matrix formalism as follows: The

operator for the dimer occupation number on a vertical bond is simply

dj,y =
1

2
(1 + σzj ) , (3.12)

since spin up (down) corresponds to an occupied (empty) bond. In terms of this,

the vertical flux component on even rows is [see Eq. (2.7) and text thereafter]

Φy =
Lx∑

j=1

(−1)jdj,y , (3.13)

which satisfies the (anti)commutation relations {Φy, V } = 0 and [Φy,W ] = 0.2

The latter implies that it is possible to construct mutual eigenstates of the two-

row transfer matrix W and Φy. The partition function, Eq. (3.1), is then given

by

Z(t) = Tr
[
eityΦyW

Ly
2

]
(3.14)

(the trace arises due to PBCs in the vertical direction).

Similarly, the operator analog of Eq. (3.2), in the case of the correlation func-

tion between observables O and O′ in rows 1 ≤ l ≤ l′ ≤ Ly, is given by

〈O′(l′)O(l)〉 =
1

Z(t)
Tr
[
eityΦyW

Ly
2 O′(l′)O(l)

]
, (3.15)

where O(l) = U(l)−1OU(l) and

U(l) = · · ·V †V V †︸ ︷︷ ︸
l

=




V †W (l−1)/2 for l odd

W l/2 l even.

(3.16)

Note that [O(l)]† = O†(−l), where U(−l) = [U(l)†]−1 is defined by the second

2Φy appears in Refs. [68, 69, 71] as the operator V, whose eigenvalues are referred to as the
‘variation index’.

48



equality of Eq. (3.16).

To compute expectation values of dimer observables, it is necessary to find

operators that correspond to these quantities. While a suitable operator for the

dimer occupation number on vertical bonds has already been defined in Eq. (3.12),

no such operator exactly represents the dimer occupation number on horizontal

bonds, since the vector space on which the transfer matrix acts contains only

dimer configurations on vertical bonds.

One can nonetheless calculate expectation values involving horizontal dimers

using an appropriately constructed operator. From Eqs. (3.3) and (3.4), one finds

µj
∂

∂µj
V |d̄y〉 =

∑

d̄′y

|d̄′y〉
∑

d̄x∈C(d̄y ,d̄′y)

d̄j,xw(d̄x) , (3.17)

whereas Eqs. (3.7)–(3.9) give the operator identity

µj
∂

∂µj
V = dj,xV , (3.18)

since [dj,x, dj′,x] = 0. Comparing the right-hand sides, we therefore interpret dj,x

as the operator corresponding to the horizontal dimer occupation number d̄j,x on

an even row, but only when appearing in the combination3 dj,xV . Similarly, d∗j,x

acts as the horizontal dimer occupation number on an odd row in the combination

d∗j,xV
†. Setting O equal to dj,x (d∗j,x) on even (odd) rows in Eq. (3.15) gives the

correct combination dj,xV (d∗j,xV
†) in O(l), allowing one to calculate expectation

values involving the horizontal dimer number.

3.4 Diagonalization of the two-row transfer ma-

trix

To calculate Eq. (3.14) it is sufficient to diagonalize the two-row transfer matrix

W . We do so in this section through a series of transformations.

We map between spins and spinless fermions using the Jordan–Wigner trans-

3This means that, for example, d2
j,x does not give the square of the horizontal dimer number;

in fact d2
j,x = 0, whereas d̄2

j,x = d̄j,x.
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formation [72–74]

Cj =

(
j−1∏

i=1

−σzi

)
σ−j (3.19)

C†j =

(
j−1∏

i=1

−σzi

)
σ+
j (3.20)

C†jCj =
1

2
(1 + σzj ) , (3.21)

which identifies spin up and down with filled and empty fermion orbitals, respec-

tively, while preserving the usual (anti)commutation relations

[σµi , σ
ν
j ] = 2iδijεµνρσρ (3.22)

{Ci, Cj} = {C†i , C
†
j} = 0 {Ci, C†j} = δij . (3.23)

In terms of fermions, Eqs. (3.7) and (3.12) become

dj,x = −µjCjCj+1 (3.24)

dj,y = C†jCj , (3.25)

while the condition σ−Lx+1 = σ−1 is equivalent to

CLx+1 = −C1(−1)Φy = (−1)ΦyC1 (3.26)

with

Φy =
∑

j

(−1)jC†jCj . (3.27)

We now define projectors

Πp =
1

2
[1 + (−1)p(−1)Φy ] (3.28)

into the subspaces with even (p = 0) or odd (p = 1) Φy, which satisfy
∑

p Πp = 1

and (−1)ΦyΠp = (−1)pΠp. Then, since (−1)Φy commutes with any quadratic
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form in fermions, we have

W = W
∑

p

Πp (3.29)

=
∑

p

WpΠp , (3.30)

where

Wp = exp

(
−

Lx∑

j=1

µjCjCj+1

)
× h.c. , (3.31)

and the fermion operator CLx+1 depends implicitly on p through the boundary

condition

CLx+1 = −(−1)pC1. (3.32)

More generally, for any operator O containing CLx+1 of Eq. (3.26), we define

an operator Op that instead only contains CLx+1 of Eq. (3.32) (and thus depends

on p), such that the action of both operators on a state with Φy parity p yields

the same result, i.e., O =
∑

pOpΠp. (For operators that do not contain CLx+1,

such as Φy, one has Op = O.)

For later reference (see Sec. 3.6) we note that, after the Jordan–Wigner trans-

formation, the single-row transfer matrix is given by V =
∑

p VpΠp, with

Vp = exp

(
−

Lx∑

j=1

µjCjCj+1

)
Lx∏

j=1

[
Cj + (−1)jC†j

]
, (3.33)

where the operators in the product should be ordered from right to left.

We now make a Fourier expansion

Cj =
e−iπ/4

√
Lx

∑

k∈Kp

eikjηk , (3.34)

with

K0 = {±π/Lx,±3π/Lx, . . . ,±(Lx − 1)π/Lx} (3.35)

and

K1 = {0,±2π/Lx,±4π/Lx, . . . ,±(Lx − 2)π/Lx, π} , (3.36)
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which ensure the correct boundary condition on CLx+1 in Eq. (3.32) [23].4 The

ηk fermions obey standard anticommutation relations, as follows from Eq. (3.23).

Using the result

1

Lx

Lx∑

j=1

µje
i(k+k′)j = α

[
δk+k′,0 cos

(
tx
Lx

)
+ iδk+k′,π sin

(
tx
Lx

)]
, (3.37)

valid for both k and k′ in either K0 or K1, the operator appearing in the expo-

nential of Eq. (3.31) can be written as

−
Lx∑

j=1

µjCjCj+1 = iα
∑

k∈Kp

e−ikηk

[
cos

(
tx
Lx

)
η−k − i sin

(
tx
Lx

)
ηπ−k

]
. (3.38)

Restricting the sum to 0 ≤ k ≤ π
2
, this becomes

−
Lx∑

j=1

µjCjCj+1 =
∑

k∈Kp
0≤k≤π

2

Qk(A(k)) , (3.39)

where the quadratic form

Qk(X) =





1
2
η†kXηk for k ∈

{
0, π

2

}

η†kXηk otherwise.

(3.40)

Here,

ηk =




ηk

ηk−π

η†−k

η†π−k




(3.41)

[its Hermitian conjugate means the row vector η†k = (η†k η
†
k−π η−k ηπ−k)], while

4As an alternative to the approach in Sec. 3.3, one could instead construct the Φx weighting
using µj = α and σ−Lx+1 = eitxσ−1 in place of Eq. (3.5) and σ−Lx+1 = σ−1 , respectively [see

Eq. (2.7) and text thereafter]. However, a Fourier expansion of the new set of fermions C̃j is
no longer useful because of the absence of translation symmetry [75, 76]. Instead, one would

have to perform the gauge transformation C̃j = e−ij(−1)jtx/LxCj back to Cj fermions, before
proceeding as in the main text.
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the 4× 4 matrix

A(k) =


 0 0

A21 0


 , (3.42)

with

A21 = 2α


− sin k cos

(
tx
Lx

)
cos k sin

(
tx
Lx

)

− cos k sin
(
tx
Lx

)
sin k cos

(
tx
Lx

)

 . (3.43)

The additional factor of 1
2

for k ∈ {0, π
2
} prevents double counting of these terms

in Eq. (3.39), and ensures the commutation relation

[Qk(X), Qk′(Y)] = δkk′Qk ([X,Y]) , (3.44)

is valid for all 0 ≤ k ≤ π
2
.5

Since Q†k(X) = Qk(X
†), and all quadratic forms in Eq. (3.39) commute by

Eq. (3.44), the two-row transfer matrix, Eq. (3.31), is given by

Wp =



∏

k∈Kp
0≤k≤π

2

eQk(A(k))






∏

k∈Kp
0≤k≤π

2

eQk(A
†(k))


 , (3.47)

which can be reordered as the following product of commuting terms:

Wp =
∏

k∈Kp
0≤k≤π

2

eQk(A(k))eQk(A
†(k)) . (3.48)

To proceed, we map to the corresponding one-dimensional quantum Hamilto-

nian H through

W = e−2H . (3.49)

5For k ∈ {0, π2 }, because of the nonzero anticommutator {ηk,i, ηk,j} = (Wk)i,j , where

W0 = σx ⊗ I2 Wπ/2 = σx ⊗ σx , (3.45)

with ⊗ denoting the Kronecker product, Eq. (3.44) is only true if X satisfies the condition
WkX

TWk = −X (or the same for Y). However, it is always possible to symmetrize X to meet

this condition: Using (η†k)T = Wkηk,j , one can show

Qk(X) = Qk(X′) +
1

2
Tr(WkX

TWk) , (3.46)

where X′ = 1
2 (X −WkX

TWk) is a matrix that satisfies the condition. The matrix A(k) in
Eq. (3.42) has been constructed in this way.
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Then, by Eq. (3.30), we have

H =
∑

p

HpΠp , (3.50)

where

Wp = e−2Hp , (3.51)

since the projectors satisfy [Πp,Wp′ ] = 0 and ΠpΠp′ = Πpδpp′ . After inserting

Eq. (3.48), this implies

Hp = −1

2

∑

k∈Kp
0≤k≤π

2

log
[
eQk(A(k))eQk(A

†(k))
]

. (3.52)

The Baker–Campbell–Hausdorff formula [77] states that the logarithm in

Eq. (3.52) can be expressed in terms of nested commutators of Qk(A) andQk(A
†).

Using Eq. (3.44), these can be expressed in terms of nested commutators of A

and A†, giving

Hp = −1

2

∑

k∈Kp
0≤k≤π

2

Qk

(
log(eA(k)eA†(k))

)
. (3.53)

The problem is thus reduced to diagonalization of the 4×4 matrix eAeA† for each

k.

In order to solve the eigenvalue problem

eAeA†v = λv , (3.54)

we expand eA as a power series and use A2 = 0 to obtain

eAeA† = I + A + A† + AA† . (3.55)

After substituting Eq. (3.42) and writing v = (v1 v2)T , Eq. (3.54) reduces to a
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pair of simultaneous equations which, on rearrangement, read

v1 =
1

λ− 1
A†21v2 (3.56)

A21A
†
21v2 =

(λ− 1)2

λ
v2 . (3.57)

The latter is a 2×2 eigenvalue problem, which is easily solved. The result implies

eAeA† = U diag[λ−(k − tx/Lx), λ+(k − tx/Lx),

λ−(k + tx/Lx), λ+(k + tx/Lx)]U
† , (3.58)

where

λ±(k) =
[
α sin k ± (1 + α2 sin2 k)

1
2

]2

, (3.59)

and U is a unitary matrix whose columns are the eigenvectors of eAeA† .

By inserting Eq. (3.58) into Eq. (3.53), we obtain the free-fermion Hamiltonian

Hp =
∑

k∈Kp

ε(k − tx/Lx)ζ†kζk , (3.60)

with dispersion

ε(k) =
1

2
log λ+(k) = sinh−1(α sin k) , (3.61)

where the ζk and ηk fermions are related by the Bogoliubov transformation

ζk =




ζk

ζk−π

ζ†−k

ζ†π−k




= U†ηk , (3.62)

for 0 ≤ k ≤ π/2. Both sets of fermions obey standard anticommutation relations.

The transformation of Eq. (3.62) may be expressed as a single transformation

valid for all k:

ηk =
1√
2

(
cos θk−tx/Lxζk + cos θk+tx/Lxζ

†
−k − sin θk+tx/Lxζ

†
π−k + sin θk−tx/Lxζk−π

)
,

(3.63)
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with

tan(2θk) =
1

α sin k
, θk ∈

[
0,
π

2

]
. (3.64)

Combining Eqs. (3.34) and (3.63), the transformation relating the Cj and ζk

fermions is

Cj =

√
2

Lx
e−iπ/4

∑

k∈Kp

eikj ×





cos θk+tx/Lxζ
†
−k for j odd

cos θk−tx/Lxζk j even,

(3.65)

with inverse

ζk =

√
2

Lx
eiπ/4 cos θk−tx/Lx

∑

even j

e−ikjCj +

√
2

Lx
e−iπ/4 sin θk−tx/Lx

∑

odd j

e−ikjC†j .

(3.66)

This makes it clear that the annihilation operator ζk removes a fermion (or equiva-

lently, removes a vertical dimer) on even sites or adds one on odd sites. According

to Eq. (3.27), it therefore reduces Φy by one.

We now construct the spectrum of H. As discussed in Sec. 3.3, one can

find simultaneous eigenstates of H and Φy. After substituting Eq. (3.65) into

Eq. (3.27), the latter is given by

Φy = −Lx
2

+
∑

k∈Kp

ζ†kζk (3.67)

in terms of ζk fermions, which counts the number of occupied states relative to

half filling [the number of available k-states is Lx by Eqs. (3.35) and (3.36)].6

The occupation-number states of the ζk fermions with k ∈ Kp form a complete

set of mutual eigenstates of Hp and Φy. From Eq. (3.50), the complete set of

eigenstates of H is given by the union of all eigenstates of H0 that have even

Φy eigenvalue and all eigenstates of H1 that have odd Φy eigenvalue. We will

denote |Φy〉n as the nth excited eigenstate with vertical flux Φy, and En(Φy) as

its eigenenergy. The spectrum of the two-row transfer matrix W follows from that

of H through Eq. (3.49): |Φy〉n is also an eigenstate of W , but with eigenvalue

e−2En(Φy).

6Φy does not contain CLx+1 and so does not depend on p; either p gives the same result.
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Figure 3.3: Simultaneous eigenstates of the Hamiltonian H, given by Eqs. (3.50)
and (3.60), and the vertical flux Φy of Eq. (3.67), for Lx = 12, α = 1 and tx = π/2:
The nth excited eigenstate with vertical flux Φy is denoted by |Φy〉n, while filled
and empty circles represent filled and empty ζk orbitals, respectively. Top-left
panel: Ground state |0〉0, where k-states, given by Eq. (3.35) for Φy even (dashed
blue lines), are all occupied for ε(k − tx/Lx) < 0. Top-right panel: First excited
state in the Φy = 0 sector |0〉1, obtained by adding a particle-hole excitation to
|0〉0. Bottom-left panel: Lowest-energy state in the Φy = 1 sector |1〉0, where
k-states, given by Eq. (3.36) for Φy odd (dashed red lines), are occupied for
−π ≤ k ≤ 0. Bottom-right panel: Lowest-energy state in the Φy = 2 sector |2〉0,
obtained by adding two particles to |0〉0.

As illustrated in Fig. 3.3 (top-left panel), the ground-state is half filled and

thus denoted by |0〉0. Formally, it is defined by

ζk|0〉0 = 0 for 0 < k < π

ζ†k|0〉0 = 0 for − π < k < 0 ,
(3.68)

where k ∈ K0, and has energy

E0(0) =
∑

k∈K0
k<0

ε(k − tx/Lx) . (3.69)

Fig. 3.3 also illustrates some eigenstates with higher energy.
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To calculate the ground-state energy E0(0), in the limit Lx →∞ and including

O(1/Lx) corrections, we rewrite the sum in Eq. (3.69) as an integral using the

Euler–Maclaurin formula

n∑

i=0

f(a+ iδ) =
1

δ

∫ a+nδ

a

f(φ) dφ+
1

2
[f(a) + f(a+ nδ)] +

δ

12
[f ′(a+ nδ)− f ′(a)] +O(δ3) , (3.70)

with a = −(Lx − 1) π
Lx

, δ = 2π
Lx

and n = Lx
2
− 1. The integral can be performed

by extending the range of integration to [−π, 0] and expanding ε(k− tx/Lx) as a

power series in 1/Lx. The leading term is then

Lx
2π

∫ 0

−π
dk sinh−1(α sin k) =

iLxχ2(iα)

π
, (3.71)

where χ2(z) is the Legendre chi function [in particular, χ2(i) = iG, where

G =
∞∑

n=0

(−1)n

(2n+ 1)2
(3.72)

is Catalan’s constant]. The O(L0
x) term vanishes, while the O(1/Lx) term is

t2xα/2πLx.

The correction terms

−1

δ

[∫ a

−π
f(φ) dφ+

∫ 0

a+nδ

f(φ) dφ

]
, (3.73)

which arise when extending the integration bounds, as well as the remaining

terms in Eq. (3.70), can be calculated using the Taylor expansion

ε(k) ≈ αk +O(k3), |k| � 1 . (3.74)

The final result is

E0(0) =
iLxχ2(iα)

π
− πα

6Lx
+

t2xα

2πLx
+O

(
1

L3
x

)
, (3.75)
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and a similar calculation for the lowest-energy state in the Φy = 1 sector gives

E0(1) = E0(0) +
πα

2Lx
+O

(
1

L3
x

)
. (3.76)

3.5 Partition function

In this section, we write down the partition function Z(t) using Eq. (3.14) and

eigenvalues of the two-row transfer matrix, before taking the thermodynamic

limit.

By Eqs. (3.30) and (3.51), one can split Z(t) into contributions from each

parity sector, giving

Z(t) = Tr

(∑

p

eityΦye−LyHpΠp

)
. (3.77)

The projector Πp can be expanded using Eqs. (3.28) and (3.67) as

Πp =
1

2

∑

σ=±

σp exp


−iπδσ,−


−Lx

2
+
∑

k∈Kp

ζ†kζk




 , (3.78)

and hence

eityΦye−LyHpΠp =
1

2

∑

σ=±

σpe−LyH̃p,σ , (3.79)

where

H̃p,σ =
iLx
2Ly

(ty − πδσ,−) +
∑

k∈Kp

ε̃σ(k)ζ†kζk , (3.80)

with

ε̃σ(k) = ε(k − tx/Lx)−
i

Ly
(ty − πδσ,−) . (3.81)

The partition function, Eq. (3.77), can therefore be written as

Z(t) =
1

2

∑

p,σ

σpZp,σ , (3.82)

where Zp,σ = Tr e−LyH̃p,σ . Because the trace of an operator is equivalent to the
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sum of its eigenvalues, one has

Zp,± = (±eity)−Lx/2
∏

k∈Kp

[
1± e−Lyε(k−tx/Lx)eity

]
, (3.83)

which reduces to Lieb’s partition function for t = 0 [see Ref. [23], Eq. (3.14)].

We now take the thermodynamic limit, retaining leading-order corrections to

the free-energy density. To do so for Z0,±, we factor out ±e−Lyε(k−tx/Lx)eity for all

terms in the product with k < 0 and restrict the product to 0 < k ≤ π/2, which

gives

Z0,± = e−LyE0(0)

{ dLx/4e∏

n=1

[
1± e−Lyε(k−tx/Lx)eity

] [
1± e−Lyε(k+tx/Lx)e−ity

]
}
×

{ bLx/4c∏

n=1

[
1± e−Lyε(k−tx/Lx)e−ity

] [
1± e−Lyε(k+tx/Lx)eity

]
}

,

(3.84)

where k = (2n− 1) π
Lx

by Eq. (3.35).

In the limit Lx, Ly →∞, we can replace ε(k± tx/Lx) by its leading-order de-

pendence α(k± tx/Lx) [see Eq. (3.74)], since the next-order terms will eventually

be of order Ly/L
3
x. Hence, Eq. (3.84) becomes

Z0,± = e−LyE0(0)

∞∏

n=1

(1± yqn−1/2)(1± y−1qn−1/2)(1± y∗qn−1/2)(1± y∗−1qn−1/2) ,

(3.85)

where y = eρtxeity , q = e−2πρ and ρ = αLy/Lx. This can be expressed in terms of

Jacobi theta functions using the first equality of Eqs. (3.A.3) and (3.A.4):

Z0,+ = e−LyE0(0)q1/12 θ3(y|q)θ3(y∗|q)
η2(q)

, (3.86)

where η(q) is the Dedekind eta function defined in Eq. (3.A.5), and the same for

Z0,− but with θ3 → θ4. An analogous calculation for Z1,± yields

Z1,+ = e−LyE0(1)q−1/6 θ2(y|q)θ2(y∗|q)
η2(q)

, (3.87)

with θ2 → θ1 for Z1,−.
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Combining the results for Zp,σ with Eqs. (3.75) and (3.76), Eq. (3.82) becomes

Z(t) = exp

[
−iLxLyχ2(iα)

π

]
exp

(
−ρt

2
x

2π

)∑4
i=1 θi(y|q)θi(y∗|q)

2η2(q)
, (3.88)

which is consistent with Eq. (8.41) of Ref. [68] when tx = 0. When t = 0,

θ1(1|q) = 0 and the partition function is

Z(0) = exp

[
−iLxLyχ2(iα)

π

]∑4
i=2 θ

2
i (1|q)

2η2(q)
, (3.89)

in agreement with Ref. [27].

The first term in Eq. (3.89) grows exponentially with system volume, and

represents the weight of dimer configurations in the bulk, i.e., it specifies the

bulk free-energy density

fbulk = − lim
Lx,Ly→∞

1

LxLy
logZ(0) (3.90)

=
iχ2(iα)

π
. (3.91)

As one might expect, fbulk does not depend on the choice of boundary conditions,

although we note that this is not true in the case of the honeycomb lattice [78].

The remaining terms in Z(0) are boundary dependent and, in the case of

PBCs, encode information about topological flux sectors (see below). Previously,

these terms have also been evaluated for closed [27] and cylindrical [79] bound-

aries, as well as embeddings on the Möbius strip and Klein bottle [80]. In general,

one obtains terms in the free energy proportional to the edge of the system [e.g.,

2(Lx +Ly) for closed boundaries] and of order Ly/Lx. However, with PBCs (i.e.,

a torus) the edge is zero and we only observe the latter.

Flux sectors

We now show how the partition function, Eq. (3.89), divides into topological

sectors labeled by the flux. By construction, Z(t) is periodic in tµ (with period
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2π), so can be expressed as a Fourier series

Z(t) =
∑

Φ

Z̃Φeit·Φ . (3.92)

Comparison of Eqs. (3.1) and (3.92) implies

Z̃Φ =
∑

c∈C0(Φ)

αNx , (3.93)

where the set C0(Φ) contains all close-packed dimer configurations with flux Φ. In

other words, the Fourier coefficient Z̃Φ can be interpreted as the partial partition

function, or total weight, of flux sector Φ.

To calculate Z̃Φ, we use the second equality of Eqs. (3.A.1)–(3.A.4) to rewrite

Eq. (3.88) as [28]

Z(t) = e−LxLyfbulk
∑

m∈Z e−ρ(tx−2πm)2/2π
∑

n∈Z eintye−πρn
2/2

η2(q)
(3.94)

(the periodicity in tx is now apparent). The sum over m can be written in the

same form as the sum over n through the Poisson summation formula, giving

Z(t) = e−LxLyfbulk
∑

m∈Z eimtxe−πm
2/2ρ

∑
n∈Z eintye−πρn

2/2

√
2ρη2(q)

, (3.95)

which allows us to read off from Eqs. (3.92) and (3.95)

Z̃Φ = e−LxLyfbulk
e−π(Φ2

x/ρ+ρΦ2
y)/2

√
2ρη2(q)

. (3.96)

This result has previously been obtained for the honeycomb-lattice dimer model

using Pfaffian methods [28], while Ref. [68] has used the transfer matrix to cal-

culate the partial partition function of flux sector Φy, equivalent to
∑

Φx
Z̃Φ [see

their Eqs. (8.19) and (8.36)].

Knowledge of Z̃Φ can be used to calculate flux moments. The probability of
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flux Φ is given by

P (Φ) =
Z̃Φ∑
Φ Z̃Φ

(3.97)

=
e−π(Φ2

x/ρ+ρΦ2
y)/2

∑
m,n∈Z e−π(m2/ρ+ρn2)/2

, (3.98)

which implies that Φx and Φy are independent variables. This form is known

from effective field theories (see Appendix 2.A.1) [7,10]. The mean flux vanishes

by symmetry, while the mean-square flux is given by

〈Φ2
x〉 =

∑
n∈Z n

2e−πn
2/2ρ

∑
n∈Z e−πn2/2ρ

, (3.99)

and the same for Φy but with ρ→ 1/ρ.

3.6 Expectation values

In this section, we compute various expectation values in the thermodynamic

limit, using the spectrum of the two-row transfer matrix.

We use Eq. (3.15), and restrict to operators O that conserve parity of Φy, i.e.,

[O, (−1)Φy ] = 0. From Eq. (3.27), this includes any product of an even number of

Cj fermions, and hence any operator constructed from dj,x and dj,y [see Eqs. (3.24)

and (3.25)]. It also allows us to calculate the monomer distribution function, as

we show in Sec. 3.6.4. With this restriction, and because (−1)Φy commutes with

any quadratic form in fermions, O(l) = U(l)−1OU(l) can be written as

O(l) = O(l)
∑

p

Πp (3.100)

=
∑

p

O(l)pΠp , (3.101)

where

O(l)p = Up(l)
−1OpUp(l) , (3.102)

and Up(l) is given by Eq. (3.16) but with V replaced by Vp.

As for the partition function, the trace in Eq. (3.15) can be split into parity
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sectors by inserting Eqs. (3.30), (3.51) and (3.101), which yields

〈O′(l′)O(l)〉 =
1

Z(t)

∑

p

Tr
[
eityΦye−LyHpΠpO

′(l′)pO(l)p
]

, (3.103)

where we have used [Vp,Πp] = 0 and assumed [Op,Πp] = 0 (it is always possible

to choose Op in this way). By Eq. (3.79), this can be rewritten as

〈O′(l′)O(l)〉 =

∑
p,σ σ

pZp,σ〈O′(l′)O(l)〉p,σ∑
p,σ σ

pZp,σ
, (3.104)

where, assuming Zp,σ 6= 0,

〈O′(l′)O(l)〉p,σ =
1

Zp,σ
Tr
[
e−LyH̃p,σO′(l′)pO(l)p

]
. (3.105)

Expectation values are therefore given by an average over the four (p, σ) sectors,

each weighted by Zp,σ.

3.6.1 Two-point correlation functions of Cj fermions

For an operator O given by a product of Cj fermions, the corresponding time-

evolved operator O(l)p can also be expressed as a product of Cj(l)p, with the

same p for each. For example, when O = dj,y one has

dj,y(l)p = Up(l)
−1C†jCjUp(l) (3.106)

= Up(l)
−1C†jUp(l)Up(l)

−1CjUp(l) (3.107)

= C†j (l)pCj(l)p . (3.108)

Here, Cj(l)p is defined by extending Eq. (3.102) to Cj, even though it does not

conserve parity and so does not obey Eq. (3.101).

An expectation value 〈O′(l′)O(l)〉p,σ can then be expressed in terms of a prod-

uct of an even number of Cj(l) operators. Because this is a time-ordered product

and H̃p,σ is a free-fermion Hamiltonian, Wick’s theorem [81] applies, which allows

us to write 〈O′(l′)O(l)〉p,σ as a sum over products of two-point Cj(l) correlators

in each (p, σ) sector. [We similarly extend the definition Eq. (3.105) to include

O = Cj, even though Eq. (3.104) is not valid in this case.] We calculate these
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two-point correlators in this section.

To do so, we first use Eqs. (3.16) and (3.102) to derive an expression for Cj(l)p

in terms of ζk fermions. For l even, Eq. (3.60) implies

W−1
p ζkWp = e−2ε(k−tx/Lx)ζk , (3.109)

which can be used in Eq. (3.65) to give

Cj(l)p =

√
2

Lx
e−iπ/4

∑

k∈Kp

eikj×





cos θk+tx/Lxe
−lε(k+tx/Lx)ζ†−k for j odd

cos θk−tx/Lxe
−lε(k−tx/Lx)ζk j even.

(3.110)

For l odd, as well as Eq. (3.109) we additionally require the results

(V †p )−1ζ∗kV
†
p = −e−ε(k−tx/Lx)ζ†k−π

(V †p )−1
(
ζ†k
)∗
V †p = −eε(k−tx/Lx)ζk−π ,

(3.111)

which can be derived from Eq. (3.33). This time we use these in the complex

conjugate of Eq. (3.65), to find

Cj(l)p =

√
2

Lx
eiπ/4

∑

k∈Kp

eikj ×





cos θk−tx/Lxe
−lε(k−tx/Lx)ζk for j odd

− cos θk+tx/Lxe
−lε(k+tx/Lx)ζ†−k j even.

(3.112)

Finally, by combining Eqs. (3.110) and (3.112), we have

Cj(l)p =

√
2

Lx
e−i(−1)lπ/4

∑

k∈Kp

eikj ×





(−1)l cos θk+tx/Lxe
−lε(k+tx/Lx)ζ†−k for j + l odd

cos θk−tx/Lxe
−lε(k−tx/Lx)ζk j + l even,

(3.113)

for all l.

Since H̃p,σ, defined in Eq. (3.80), is a free-fermion Hamiltonian with dispersion

ε̃σ, and Eq. (3.105) describes a thermal distribution with effective temperature
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1/Ly, the two-point correlation functions of the ζk fermions are given by

〈ζkζk′〉p,σ = 〈ζ†kζ
†
k′〉 = 0

〈ζ†kζk′〉p,σ = δkk′nF(Ly ε̃σ(k))

〈ζkζ†k′〉p,σ = δkk′nF(−Ly ε̃σ(k)) ,

(3.114)

where nF(z) = (ez + 1)−1 is the Fermi–Dirac distribution function.

Hence, denoting R = (X, Y ), the Cj(l) correlators are

〈Cj+X(l + Y )Cj(l)〉p,σ =





−eiϕ(l,Y )Γp,σ(R,−t) for X + Y odd, j + l odd

−e−iϕ(l,Y )Γp,σ(R, t) X + Y odd, j + l even

0 X + Y even

(3.115)

〈C†j+X(l + Y )C†j (l)〉p,σ =





e−iϕ(l,Y )Γp,σ(R, t) for X + Y odd, j + l odd

eiϕ(l,Y )Γp,σ(R,−t) X + Y odd, j + l even

0 X + Y even

(3.116)

〈C†j+X(l + Y )Cj(l)〉p,σ =




0 for X + Y odd

eiϕ(l,Y ) [∆p,σ(R,−t)− Γp,σ(R,−t)] X + Y even, j + l odd,

e−iϕ(l,Y ) [∆p,σ(R, t)− Γp,σ(R, t)] X + Y even, j + l even

(3.117)

〈Cj+X(l + Y )C†j (l)〉p,σ =




0 for X + Y odd

e−iϕ(l,Y ) [∆p,σ(R, t) + Γp,σ(R, t)] X + Y even, j + l odd,

eiϕ(l,Y ) [∆p,σ(R,−t) + Γp,σ(R,−t)] X + Y even, j + l even

(3.118)
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where

ϕ(l, Y ) =





(−1)l π
2

for Y odd

0 Y even,

(3.119)

and

Γp,σ(R, t) =
1

Lx

∑

k∈Kp

e−ikXeY ε(k−tx/Lx)nF(Ly ε̃σ(k))×





i sin(2θk−tx/Lx) for X + Y odd

− cos(2θk−tx/Lx) X + Y even

(3.120)

∆p,σ(R, t) =
1

Lx

∑

k∈Kp

e−ikXeY ε(k−tx/Lx)nF(Ly ε̃σ(k)) . (3.121)

These results are exact, with the correct (anti)periodicity in the horizontal direc-

tion, and could be used to calculate expectation values for finite system sizes as

a function of flux sector.

Instead, we take the thermodynamic limit Lx, Ly → ∞, keeping the ratio

Ly/Lx and the separation |R| finite. In this limit, nF(z) can be replaced by a

step function ϑ(−Re z) and the discrete k values become continuous, giving

Γp,σ(R, t) ≈ Γ(R) =

∫ π

0

dk

2π
eikXe−Y ε(k) ×





i sin(2θk) for X + Y odd

cos(2θk) X + Y even

(3.122)

∆p,σ(R, t) ≈ ∆(R) =

∫ π

0

dk

2π
eikXe−Y ε(k) . (3.123)

Some values of these integrals for small |R| are shown in Table 3.1, expressed in

terms of the quantities

ρx =
arctanα

π
ρy =

arctan (1/α)

π
, (3.124)

which satisfy ρx + ρy = 1
2
. For large |R|, the asymptotic behavior is obtained by

integrating by parts repeatedly, treating the cases Y � 1 [where Eq. (3.74) can

be used] and Y of order unity separately.

These expressions are independent of p and σ, i.e., all four (p, σ) sectors make
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Integral Value

Γ(0) ρx

Γ(1, 0) −ρx
α

Γ(0, 1) iρy

Γ(2, 0) − 1

πα
+
ρx
α2

Γ(1, 2) − 1

π
+ αρy

Γ(2, 1) − i

α2

(
ρx −

α

π

)

Γ(3, 0) −ρx
(

1

α
+

2

α3

)
+

2

πα2

Γ(0, 3) i

[
ρy(1 + 2α2)− 2α

π

]

Γ(|R| � 1), X odd, Y even − 1

π

X

X2 + (αY )2

Γ(|R| � 1), X even, Y odd
i

π

αY

X2 + (αY )2

Γ(|R| � 1), X odd, Y odd
2iα

π

XαY

[X2 + (αY )2]2

Γ(|R| � 1), X even, Y even −α
π

X2 − (αY )2

[X2 + (αY )2]2

∆(Xeven, 0) 1
2
δX,0

∆(|R| � 1), X odd
i

π

X

X2 + (αY )2

∆(|R| � 1), X even
1

π

αY

X2 + (αY )2

Table 3.1: Values of the integrals Γ(R) and ∆(R), defined in Eqs. (3.122) and
(3.123), respectively, for small |R|, as well as their asymptotic behavior for |R| �
1. Values for X < 0 may be obtained using the relation Γ(−X, Y ) = (−1)XΓ(R)
and the same for ∆(R).
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equal contributions in the thermodynamic limit. Hence, Eq. (3.104) is redundant

to this order, and we simply have 〈O′(l′)O(l)〉 = 〈O′(l′)O(l)〉0,+ for operators O

that are products of an even number of Cj fermions. We therefore drop the (p, σ)

indices from now on.

Furthermore, they are independent of t, whose leading-order dependence is

O(L−1
x , L−1

y ). This implies that expectation values are the same in any fixed flux

sector in the thermodynamic limit (but note that that we have taken Lx, Ly →∞,

so this does not apply for Φ ∼ Lx, Ly). To see this we rewrite Eq. (3.2) as a sum

over Fourier modes [cf. Eqs. (3.92) and (3.93)]

〈O〉 =
1

Z(t)

∑

Φ

〈O〉ΦZ̃Φeit·Φ , (3.125)

where

〈O〉Φ =
1

Z̃Φ

∑

c∈C0(Φ)

OαNx (3.126)

is the expectation value of the observable O in a fixed flux sector Φ. After

multiplying both sides of Eq. (3.125) by Z(t)e−it·Φ′ and integrating over t, one

finds that 〈O〉Φ = 〈O〉 when the latter is independent of t.

In subsequent sections we use Eqs. (3.115)–(3.118) to calculate various observ-

ables in the dimer model in the thermodynamic limit. We expect our results to

reproduce those of Ref. [29] in this limit, since the choice of boundary conditions

(PBCs versus closed) becomes irrelevant. We also note that asymptotic behavior

of correlation functions can be predicted using effective field theories, although

the results depend on phenomenological parameters known as the stiffnesses (we

will demonstrate this in Chapter 4) [7].

3.6.2 Dimer occupation numbers

We first calculate the probability that a vertical or horizontal bond is occupied

by a dimer, given by 〈dj,y(l)〉 and 〈dj,x(l)〉, respectively. (In the thermodynamic

limit, there is no t dependence, and so d∗j,x = dj,x.)
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Using Eqs. (3.24) and (3.25), one finds

〈dj,x(l)〉 = −αΓ(1, 0) (3.127)

= ρx , (3.128)

and

〈dj,y(l)〉 = ∆(0)− Γ(0) (3.129)

= ρy , (3.130)

consistent with Sec. 5 of Ref. [29]. As required, each lattice site is touched by a

dimer with probability unity, since 〈dj,x(l)〉+ 〈dj,y(l)〉 = 1
2
. In the isotropic case,

α = 1, one has 〈dj,x(l)〉 = 〈dj,y(l)〉 = 1
4
, whereas in the limit α → 0 (α → ∞)

only vertical (horizontal) bonds are occupied.

3.6.3 Dimer–dimer correlation functions

Due to the close-packing constraint, the occupation of a given bond by a dimer

is influenced by dimers far away. Hence, dimer–dimer correlations are non-trivial

even in the absence of interactions. In this section, we show how they can be

calculated by extending the above discussion to two-point correlators of dj,x and

dj,y.

The connected correlation function of two horizontal dimers with separation

R, illustrated in Fig. 3.4 (top), is given by (we assume Y > 0 throughout this

section)

Gxx(R) = 〈dj+X,x(l + Y )dj,x(l)〉 − 〈dj+X,x(l + Y )〉〈dj,x(l)〉, R 6= 0 (3.131)

[for R = 0 the first term vanishes due to C2
j (l) = 0; see Footnote 3]. Inserting

Eq. (3.24) and using Wick’s theorem [81] yields

Gxx(R)

α2
= 〈Cj+X+1(l + Y )Cj(l)〉〈Cj+X(l + Y )Cj+1(l)〉 −

〈Cj+X+1(l + Y )Cj+1(l)〉〈Cj+X(l + Y )Cj(l)〉 , (3.132)
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hence, by Eq. (3.115),

Gxx(R)

α2
=




−Γ(R)2 for X + Y odd

Γ(X − 1, Y )Γ(X + 1, Y ) X + Y even.

(3.133)

From Table 3.1, some values for small |R| are

Gxx(1, 0) = −ρ2
x (3.134)

Gxx(0, 1) = α2ρ2
y (3.135)

Gxx(1, 1) = ρy

(
ρx −

α

π

)
(3.136)

Gxx(2, 1) =

(
ρx
α
− 1

π

)2

(3.137)

Gxx(0, 2) = −
(α
π
− α2ρy

)2

(3.138)

Gxx(0, 3) = α2

[
ρy(1 + 2α2)− 2α

π

]2

, (3.139)

while the asymptotic behavior for |R| � 1 is algebraic, rather than exponential:

Gxx(R)

α2
≈ (−1)X

1

π2[X2 + (αY )2]2
×





X2 for X odd, Y even

(αY )2 X even, Y odd

(αY )2 X odd, Y odd

X2 − 1 X even, Y even.

(3.140)

Similarly, the connected correlation function of two vertical dimers with sep-

aration R, illustrated in Fig. 3.4 (bottom left), is

Gyy(R) = 〈dj+X,y(l + Y )dj,y(l)〉 − 〈dj+X,y(l + Y )〉〈dj,y(l)〉 . (3.141)

Following the same procedure as for Gxx(R), but now using Eqs. (3.25) and

(3.115)–(3.118), yields

Gyy(R) =





Γ(R)2 for X + Y odd

∆(R)2 − Γ(R)2 X + Y even.

(3.142)
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Gxx(R)

R

Gyy(R)

R

Gxy(R)

R

Figure 3.4: Dimer–dimer correlation function between two horizontal dimers
(top), two vertical dimers (bottom left), and a horizontal and vertical dimer
(bottom right). In each case, the disconnected part of the correlator [i.e., the
first term in Eqs. (3.131), (3.141) and (3.143)] is equal to the probability that the
two bonds with separation R are both occupied.

Note that, showing the α dependence of the correlators explicitly, one must have

Gyy(R;α) = Gxx(Y,X;α−1), which follows from Eq. (3.2) and αNx ∝ α−Ny (the

number of dimers is conserved).

The third possibility is the connected correlation function of a horizontal and

vertical dimer with separation R, illustrated in Fig. 3.4 (bottom right), which is

Gxy(R) = 〈dj+X,y(l + Y )dj,x(l)〉 − 〈dj+X,y(l + Y )〉〈dj,x(l)〉 . (3.143)

The result is

Gxy(R)

α
=





Γ(R)[∆(X − 1, Y )− Γ(X − 1, Y )] for X + Y odd

Γ(X − 1, Y )[Γ(R)−∆(R)] X + Y even,

(3.144)
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with asymptotic behavior

Gxy(R)

α
≈ (−1)X+Y 1

π2[X2 + (αY )2]2
×





Xα(Y + 1) for X odd, Y even

(X − 1)αY X even, Y odd

XαY X odd, Y odd

(X − 1)α(Y + 1) X even, Y even.

(3.145)

The results in this section are in agreement with Sec. 7 of Ref. [29].

3.6.4 Monomer distribution function

Finally, we characterize the (entropic) interaction between a pair of inserted test

monomers by calculating the monomer distribution function

Gm(R) =
1

Z(t)

∑

c∈C(r+,r−)

αNx , (3.146)

where the set C(r+, r−) contains all configurations with monomers at sites r±.

For simplicity, we consider the case of two monomers on the same row.

Because σ−j inserts a monomer on site j, in the transfer-matrix formalism one

has

Gm(X, 0) = 〈σ−j (l)σ−j+X(l)〉 , (3.147)

which becomes

Gm(X, 0) = −

〈
Cj

[
j+X−1∏

i=j+1

(1− 2C†iCi)

]
Cj+X

〉
(3.148)

after performing the Jordan–Wigner transformation, Eqs. (3.19)–(3.21) (from

here on we do not explicitly show dependence on the row l).7

7In the case of two monomers on different rows, the operator on each row has an odd number
of Cj operators and so does not commute with (−1)Φy . We therefore cannot use Eq. (3.104);
instead, we require the case where O anticommutes with (−1)Φy .
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Following Refs. [67,73,74], we now define operators

Aj = C†j + Cj (3.149)

Bj = C†j − Cj (3.150)

(note that 1− 2C†jCj = AjBj), which, by Eqs. (3.115)–(3.118), satisfy

〈AjAj+X〉 = δX,0 (3.151)

〈BjBj+X〉 = −δX,0 (3.152)

〈BjAj+X〉 = −〈Aj+XBj〉 = −2Γ(X, 0) . (3.153)

In terms of these, Eq. (3.148) is a sum of four 2X-point correlators, each of which

can be expressed as a sum of products of two-point correlators through Wick’s

theorem [81]. Then, by Eqs. (3.151) and (3.152), the two correlators containing

an unequal number of Aj and Bj vanish, while the remaining two are

W(B,A) =
1

4

〈
j+X−1∏

i=j

BiAi+1

〉
(3.154)

=
1

4

∑

σ∈SX

sgn(σ)
X∏

i=1

〈Bj+i−1Aj+σi〉 , (3.155)

where SX denotes the symmetric group of order X, and (−1)X−1W(A,B).

Inserting Eq. (3.153) and using the relation Γ(−X, 0) = (−1)XΓ(X, 0) with
∏X

i=1(−1)i−σi = 1, it follows that W(A,B) =W(B,A), and hence

Gm(X, 0) =





1

2

∑

σ∈SX

sgn(σ)
X∏

j=1

−2Γ(1− (j − σj), 0) for X odd

0 X even,

(3.156)

which can be expressed as a Toeplitz determinant

Gm(X, 0) =
1

2
detTX for X odd, (3.157)

where TX is an X ×X matrix with elements (TX)j,j′ = −2Γ(1− (j − j′), 0).
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From Table 3.1, the first two non-zero values are

Gm(1, 0) =
ρx
α

(3.158)

Gm(3, 0) =
4ρx
α5

[
(1 + α2)2ρ2

x −
α2

π2

]
(3.159)

[cf. Eqs. (11.1) and (11.3) of Ref. [29]], where, up to a factor of α, the former

is equivalent to the occupation probability of a horizontal bond as calculated in

Sec. 3.6.2.

To calculate the asymptotic behavior for large X, we define ϕ(k) =

−2
∑∞

j=−∞ eikjΓ(1 − j, 0) = −eike2iθk sgn(k) for −π ≤ k < π. Unlike on the

triangular lattice [82, 83], Szegő’s limit theorems do not apply, since ϕ is not a

continuous function, and instead we apply the Fisher–Hartwig conjecture [70].

The discontinuities at k = 0 and k = ±π can be expressed by defining tβ(k) =

e−iβ(π−k) for 0 < k < 2π [84], in terms of which ϕ(k) = b(k)t1/2(k)t1/2(k−π). Here,

b(k) = −ie2iθk is continuous and has zero winding number when viewed as a map

from eik to the unit circle. Its Wiener–Hopf factorization, b(k) = b+(eik)b−(eik),

with b+ (b−) analytic and nonzero everywhere inside (outside) the unit circle [85],

is

b±(z) =

√
±c± − z
c± + z

, (3.160)

where c± = α−1 ±
√

1 + α−2.

According to the Fisher–Hartwig conjecture [84], we then have

detTX ≈ G[b]XXΩE , (3.161)

for large X, with G[b] = 1, Ω = −1
2

and

E =
22/3e6ζ′(−1)

(1 + α2)1/4
'
(

1 + α2

2

)−1/4

× 0.494744 , (3.162)

where ζ ′ is the derivative of the Riemann zeta function.

The monomer distribution function therefore obeys

Gm(X, 0) ≈ E

2
√
X

for X � 1, odd, (3.163)
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which is consistent with the numerical result reported in Ref. [29] for α = 1.

Note that the algebraic dependence on X, stemming mathematically from the

discontinuity in ϕ, contrasts with the exponential behavior on the triangular

lattice [82,83].

3.7 Conclusions

We have expressed Lieb’s transfer matrix for the classical square-lattice dimer

model in terms of a free-fermion Hamiltonian, and used its spectrum to rederive

some useful results. Although these can equally be derived using Pfaffian tech-

niques, the second quantized approach presented in this chapter is perhaps more

elegant.

Specifically, our results include the torus partition function which, by includ-

ing a field t, can be interpreted as a moment-generating function of the flux.

We have also shown how expectation values can be expressed in terms of the

fermionic operators, and evaluated dimer occupation numbers, dimer–dimer cor-

relation functions and the monomer distribution function in the thermodynamic

limit, all of which are independent of flux sector for not-too-large flux. Finally,

we have derived a new result, namely the asymptotic behavior of the monomer

distribution function for large monomer separation.

The results in this chapter are also relevant to the corresponding quantum

dimer model at its Rokhsar–Kivelson point [86], while the transfer-matrix method

can be extended to other two-dimensional lattices. Indeed, the straightforward

generalization of Lieb’s transfer matrix to the (bipartite) honeycomb and square-

octagon lattices, which can both be viewed as a square lattice with certain

horizontal bonds removed [i.e., certain terms omitted from the sum in V3; see

Eq. (3.8)], has already been demonstrated in Ref. [87].

One advantage of the transfer-matrix method is that dimer–dimer interactions

can be easily included in the operator formalism, in terms of products of the dimer

occupation numbers dj,x and dj,y. For example, on a row of vertical bonds, the

operator
∑

j dj,ydj+1,y describes interactions between parallel pairs of nearest-

neighbor dimers, as studied in Refs. [9, 10]. This is a four-fermion interaction,
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which is non-integrable [10] but could be included perturbatively using standard

diagrammatic perturbation theory.

Furthermore, the well-known height field theory [31,32] of the two-dimensional

classical dimer model can be rigorously derived from the free-fermion form, by

taking a long-wavelength limit and using the technique of bosonization [30]. In-

teraction operators included perturbatively in this context manifest themselves

through renormalization of the ‘stiffness’ as well as the introduction of (cosine)

potential terms consistent with symmetry requirements. A detailed account of

this derivation will be the subject of the next chapter.

Appendices

3.A Jacobi theta functions

In terms of the complex number y and the nome q with |q| < 1, the Jacobi theta

functions are [68]

θ1(y|q) = −i
√
yq1/12η(q)

∞∏

n=1

(1− yqn)(1− y−1qn−1)

= −i
∑

r∈Z+1/2

(−1)r−1/2yrqr
2/2

(3.A.1)

θ2(y|q) =
√
yq1/12η(q)

∞∏

n=1

(1 + yqn)(1 + y−1qn−1)

=
∑

r∈Z+1/2

yrqr
2/2

(3.A.2)

θ3(y|q) = q−1/24η(q)
∞∏

n=1

(1 + yqn−1/2)(1 + y−1qn−1/2)

=
∑

n∈Z

ynqn
2/2

(3.A.3)

θ4(y|q) = q−1/24η(q)
∞∏

n=1

(1− yqn−1/2)(1− y−1qn−1/2)

=
∑

n∈Z

(−1)nynqn
2/2 ,

(3.A.4)
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where the Dedekind eta function

η(q) = q1/24

∞∏

n=1

(1− qn) . (3.A.5)
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Chapter 4

Derivation of field theory for the

classical dimer model using

bosonization

4.1 Introduction

In statistical mechanics, certain two-dimensional lattice models with hard con-

straints can be described in terms of effective field theories known as ‘height

models’. These include vertex, coloring and frustrated spin models [4, 31, 32,52],

as well as the dimer model defined on bipartite lattices [4, 10]. As discussed in

detail in Chapter 2 for the dimer model, configurations are in one-to-one cor-

respondence with an appropriately defined discrete-valued ‘height’ on the dual

lattice, which encodes the hard constraints in a way amenable to coarse graining.

Based on its non-trivial transformation properties under the symmetries [10], one

can write down a field theory in terms of the coarse-grained height.

Height models have proven to be a powerful tool in understanding the physics

of strongly-correlated systems. For the non-interacting dimer model, the Gaus-

sian field theory has been used to calculate static properties, e.g., asymptotic

behavior of dimer–dimer correlation functions for large separation [7], as well as

to study dynamics [88,89]. Moreover, in the interacting case, the Gaussian action

is perturbed by cosine terms consistent with the symmetries, which drive BKT

phase transitions, as we have already discussed in Chapter 2.
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As shown in Chapter 3, the square-lattice dimer model is exactly solvable and

can be mapped to a free-fermion Hamiltonian in 1 + 1 dimensions. Previously,

Refs. [59,90] have pointed out that the height model can be viewed as a bosonized

version of the fermionic description [30]. In this chapter, we start from the results

of Chapter 3 and show these steps in full detail for a dimer model with anisotropic

bond weights.

Our motivation for this is twofold. First, existing expressions in the literature

for the dimer occupation variables in terms of the height [7, 59, 91, 92] allow one

to correctly evaluate exponents of asymptotic dimer–dimer correlation functions,

but not their coefficients. In our rigorous treatment, we show that this ambiguity

is resolved by consistently including a cutoff in the height model, which arises nat-

urally in the bosonization formalism. Second, the bosonization approach provides

precise values for phenomenological parameters in the field theory, which are usu-

ally put in by hand. Although not particularly powerful in the non-interacting

case, we return to the interacting double dimer model of Chapter 2 and show

that, when combined with an RG analysis, this feature allows one to predict the

shape of the phase boundary in the vicinity of the noninteracting point.

While most applications of height models in the physics literature are some-

what heuristic, previous studies of the dimer model have proven rigorously that

the height converges to a Gaussian free field in the scaling limit [93, 94], and

moreover that this holds even when the dimer model is rendered non-integrable

by interactions [95, 96]. The case of general edge weights has also been investi-

gated by Ref. [97].

We now give an outline of this chapter. Using the results of Chapter 3, we

derive the field theory in Sec. 4.2, which includes both the action and dimer occu-

pation variables, before making the connection with the height. This is extended

to the interacting case in Sec. 4.3, allowing us to predict the phase boundary of

the interacting double dimer model in the vicinity of the non-interacting point.

We conclude in Sec. 4.4.
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4.2 Derivation of field theory

In this section, we derive an effective field theory description of the standard dimer

model using bosonization, starting from the transfer-matrix solution. A similar

(but simpler) calculation for the XXZ spin chain is outlined in Appendix 4.C.3.

4.2.1 Action

The free-fermion Hamiltonian, Eq. (3.60), has dispersion ε(k) with ‘left’ and

‘right’ Fermi points, i.e., where ε(k) = 0, at

kL = π and kR = 0 , (4.1)

respectively. Their corresponding Fermi velocities are

∂kε(k)
∣∣
k=kL

= −α and ∂kε(k)
∣∣
k=kR

= α . (4.2)

We wish to linearize the dispersion around the two Fermi points and extend

each branch to infinity, as illustrated in Fig. 4.1. Hence, we define left- and right-

moving fermions through

ζk = LkL−k +Rk−kR , (4.3)

with Fourier series

r(x) =
1√
Lx

∞∑

k=−∞

eirkxrk , (4.4)

and inverse

rk =
1√
Lx

∫ Lx

0

dx e−irkxr(x) , (4.5)

where r means {L,R} in symbols and {−,+} in equations, respectively. These

definitions are chosen to be consistent with the bosonization prerequisites of

Ref. [30] (see Appendix 4.C). [In real space, with ψx = L
−1/2
x

∑
k eikxζk, Eq. (4.3)

reads ψx = eikLxL(x) + eikRxR(x).] The linearization scheme is a good approxi-

mation provided one is only interested in low-lying excited states; otherwise the

curvature of the dispersion becomes important. Hence, it is a long-wavelength
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Figure 4.1: The dispersion ε(k) = log
[
sin k + (1 + sin2 k)1/2

]
(gray) is linearized

around the two Fermi points at kL = π and kR = 0; the left- (green) and right-
(red) moving branches are then extended to infinity.

(small k) description, as is the case for a field theory.

Before linearizing an operator, it is necessary to normal-order all fermions in

order to prevent divergences in the linearized theory. The procedure for fermion

normal ordering is discussed in Appendix 4.B; for bilinears it only amounts to

subtracting off the ground-state expectation value [see Eq. (4.B.2)], hence

H = E0(0) +
∑

k

ε(k):ζ†kζk : (4.6)

(we omit this constant from now on). Insertion of Eq. (4.3) and expansion of ε(k)

to leading order around the Fermi points then yields

H = α
∑

k

k
(

:L†kLk +R†kRk :
)

. (4.7)

Here, the cross-terms α
∑

k k(L†kRπ−k + R†kLπ−k) are dropped because they only

contribute to high-energy processes. We transform to real space by inserting

Eq. (4.5), and obtain

H = iα

∫ Lx

0

dx
[
:L†(x)∂xL(x)−R†(x)∂xR(x) :

]
, (4.8)

which is in a form suitable for bosonization. Note that this is now defined in
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the continuum rather than on the lattice, since there is no Brillouin zone in the

linearized theory.

The left- and right- moving fermions can be expressed, according to the

bosonization identity [30], in terms of a boson field Φ and its canonically conjugate

momentum variable Π [see Eq. (4.C.26); we assume Lx →∞]. In Appendix 4.C,

we provide full details of this mapping; however, in the main text we refer to the

results summarized in Table 4.1. For the Hamiltonian, this implies

H =
α

2

∫ Lx

0

dx
[
: (∂xφ)2 + Π2 :

]
, (4.9)

where the right-hand side is now boson normal ordered (see Appendix 4.B.2),

and

φ(x) = (δa ∗ Φ)(x) =

∫ ∞

−∞
dx′ δa(x− x′)Φ(x′) , (4.10)

with ∗ denoting convolution and δa(x) a Lorentzian of width a. Here, a > 0 is

an infinitesimal cutoff that arises in the bosonization formalism. In particular,

Eq. (4.10) reduces to φ(x) = Φ(x) in the limit a→ 0.

The partition function, Eq. (3.1), may be written as a path integral

Z =

∫
DΦ e−S , (4.11)

where S is the action. Correspondingly, the probability density functional for the

field Φ(r) is

P [Φ] =
e−S[Φ]

Z
. (4.12)

For the general boson Hamiltonian

H =
vF

2

∫ Lx

0

dx

[
:

1

K
(∂xφ)2 +KΠ2 :

]
, (4.13)

the action may be calculated by unnormal ordering and inserting complete sets

of Φ eigenstates into Eq. (3.1), with result

S[Φ] =
1

2K

∫
dxdτ

[
vF(∂xφ)2 +

1

vF

(∂τΦ)2

]
, (4.14)

where τ denotes imaginary time and φ(r) = (δa ∗Φ)(r) (the convolution acts on
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the x coordinate only). Note that in the limit a→ 0 the action becomes

S[φ] =
1

2K

∫
dxdτ

[
vF(∂xφ)2 +

1

vF

(∂τφ)2

]
, (4.15)

which is the usual Gaussian action for a free boson.

In the case of the dimer model, where vF = α, K = 1 and τ = y, one obtains

S[Φ] =
1

2

∫
d2r

[
α(∂xφ)2 +

1

α
(∂yΦ)2

]
. (4.16)

This is the first element of our field theory: The entropic weight of dimer config-

urations with field Φ(r) is given by Eqs. (4.12) and (4.16). (All dimer configu-

rations have equal weight in the non-interacting case, but the mapping between

dimer configurations and Φ is many-to-one.) We previously conjectured an action

of this form (with α = 1 and a→ 0) in Eq. (2.9).

We now derive correlation functions of φ, which will be useful in subsequent

sections. In terms of the Fourier transform of Φ,

Φ̃(k) =
1

2π

∫
d2r eik·rΦ(r) , (4.17)

the action is

S̃[Φ̃] =

∫
d2k

1

2

[
αk2

xδ̃a(kx)
2 +

k2
y

α

]
|Φ̃(k)2| , (4.18)

where δ̃a(k) =
∫∞
−∞ dx eikxδa(x) = e−|k|a, and so the correlation functions of Φ̃ are

〈Φ̃(k)Φ̃(−k′)〉 =
δ2(k − k′)

αk2
xδ̃a(kx)

2 +
k2y
α

. (4.19)

Although the correlation function 〈[Φ(r) − Φ(r′)]2〉 diverges in the UV (in fact

linearly, rather than logarithmically as when a = 0), the correlation functions of

φ are finite. From Eq. (4.10) and the inverse of Eq. (4.17) we have

φ(r) =

∫
d2k

2π
e−ik·rδ̃a(kx)Φ̃(k) , (4.20)
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and hence

〈
[φ(r)− φ(r′)]

2
〉

=
1

π
log

(
|r̃ − r̃′|

a

)
+O

(
|r̃ − r̃′|

a

)−1

, (4.21)

where r̃ = (x, αy). The cutoff a therefore regularizes φ correlators. In a typical

treatment, one would write down a field theory in the form of Eq. (4.15), i.e.,

with no cutoff built in. It is then necessary to insert a UV cutoff by hand when

calculating φ correlators [4], leading to the same asymptotic form as Eq. (4.21)

(but possibly with leading order corrections of order a0).

4.2.2 Dimer occupation numbers

The entropic weights, i.e., Eqs. (4.12) and (4.16), are only useful when paired with

expressions that relate the microscopic degrees of freedom, i.e., dimers, and the

field Φ, so that one can use the field theory to calculate observables. Therefore,

in this section we derive expressions for the dimer occupation numbers on vertical

and horizontal bonds in terms of Φ, thus completing the field theory.

The calculation proceeds in analogy with the previous section, although the

operators are more complicated. The first step is to normal order Eqs. (3.24)

and (3.25) with respect to the ground state of the free-fermion Hamiltonian,

Eq. (3.60). To do this we use Eqs. (4.B.2), (3.115) and (3.117) to find

dj,x − ρx = −α:CjCj+1 : (4.22)

dj,y − ρy = :C†jCj : (4.23)

(we have taken the thermodynamic limit).

To proceed, we derive a transformation from Cj fermions to left- and right-

moving fermions r(x), by linearizing the transformation between Cj and ζk,

Eq. (3.65). After inserting Eq. (4.3), extending the sum over k to infinity and

shifting the summation index we obtain

C(x) =

√
2

Lx
e−iπ/4

∑

k

eikx ×





sin θkR−kR
†
−k − sin θkL−kL

†
k for x odd

cos θkR+kRk + cos θkL+kL−k x even.

(4.24)
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The low-energy description corresponds to k ' 0, so we expand around this value

to leading order in k using the Taylor series θkr−k = π
4

+rα
2
k, which can be derived

from Eq. (3.64). The remaining sums can be identified with real-space fermions

according to Eq. (4.4), which yields

C(x) = e−iπ/4 ×





(1− iα
2
∂x)R

† − (1 + iα
2
∂x)L

† for x odd

(1− iα
2
∂x)R + (1 + iα

2
∂x)L x even.

(4.25)

For the dimer occupation number on vertical bonds, inserting this result gives

dy(x)− ρy = (−1)x
(
:L†L+R†R :

)
+

L†R +R†L+

iα

2

[
:L†∂xL−

(
∂xL

†)L−R†∂xR +
(
∂xR

†)R :
]
−

iα

2
(−1)x∂x

(
L†R−R†L

)
,

(4.26)

which is easily bosonized term-by-term using the results of Table 4.1:

dy(x)− ρy =
(−1)x√

π
∂xφ+

1

πa
cos(
√

4πφ) +

α

2

[
: (∂xφ)2 + Π2 :

]
+

(−1)xα

2πa
∂x sin(

√
4πφ) . (4.27)

Retaining only the most RG relevant terms, writing this in the path integral

formulation is trivial and yields

dy(r)− ρy =
(−1)x√

π
∂xφ+

1

πa
cos(
√

4πφ) . (4.28)

The constant on the left-hand side is the mean dimer occupation number [see

Eq. (3.130)], while terms on the right-hand side encode (long-wavelength) fluc-

tuations, including changes in flux sector. Note that the coefficient of the cosine

term is cutoff dependent.

Similarly, for the dimer occupation number on horizontal bonds, the most RG

relevant terms are

dx(x)− ρx = iα(−1)x(:L†L−R†R : + L†R−R†L) , (4.29)
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and bosonization yields

dx(x)− ρx =
i(−1)xα√

π
Π− (−1)xα

πa
sin(
√

4πφ) . (4.30)

In this case, the path integral step is non-trivial, and effectively removes the Π

term according to the equation of motion αΠ = i∂τΦ. Identifying τ = y, we find

dx(r)− ρx = −(−1)x√
π
∂yφ−

(−1)xα

πa
sin(
√

4πφ) (4.31)

(we can safely take the limit a → 0 in the first term). As expected from rota-

tion symmetry requirements, the terms are similar in nature to those for dy in

Eq. (4.28).

When α = 1, Eqs. (4.28) and (4.31) are the same as the mappings between

the dimer occupation numbers and the height (up to a linear transformation of

φ that depends on the convention chosen for the height), which have previously

been written down to leading order based on the definition of the height and

symmetry considerations [7, 59, 91, 92]. We therefore identify φ as the height.

In particular, requiring translation invariance of Eqs. (4.28) and (4.31) implies

that φ(r) → −φ(r − δx) under translation in the x direction by one lattice

constant, while invariance under φ(r)→ φ(r)+
√
π, which is a consequence of the

compactification radius of the boson in the bosonization identity of Eq. (4.C.12),

reflects locality [10]. Taken together, these imply φ =
√
π(h+ 1

8
) in terms of the

height h defined in Chapter 2.

Our results for the dimer occupation numbers can be used to calculate asymp-

totic behavior of dimer–dimer correlation functions for large separation. As an

example, we consider the connected correlation function of two horizontal dimers

with separation R:

Gxx(R) = 〈dx(r +R)dx(r)〉 − 〈dx(r +R)〉〈dx(r)〉 . (4.32)

The only non-trivial terms are

〈(∂yφ(r +R)) ∂yφ(r)〉 =
α2

2π

X2 − (αY )2

[X2 + (αY )2]2
, (4.33)
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which can be obtained by differentiating Eq. (4.21), and

〈
sin
(√

4πφ(r +R)
)

sin
(√

4πφ(r)
)〉

=
1

4

〈
ei
√

4π[φ(r+R)−φ(r)] + c.c
〉

(4.34)

=
a2

2[X2 + (αY )2]
, (4.35)

where, in the first line, terms involving the combination φ(r+R)+φ(r) average to

zero, and in the second line we have used Eq. (4.21) with the result 〈eA〉 = e〈A
2〉/2

for a Gaussian random variable A with zero mean. Combining these terms, one

obtains
Gxx(R)

α2
≈ (−1)X

X2

π2[X2 + (αY )2]2
, (4.36)

consistent with Eq. (3.140). As required for any observable, the result is not

cutoff dependent; the factors of a in Eqs. (4.31) and (4.35) cancel out. In previous

work [7,59,91,92], the cutoff dependence of the coefficient of the sinusoidal term of

Eqs. (4.28) and (4.31) was not recognized, leading to cutoff dependent correlators.

4.3 Interacting double dimer model

So far, we have only considered non-interacting dimers; in this section, we

bosonize interactions and show how they modify the effective field theory (we

set α = 1 for simplicity). In particular, we return to the interacting double dimer

model defined in Sec. 2.2. We have shown that this model exhibits a BKT phase

transition between a standard Coulomb phase and a synchronized phase, and

that the phase boundary passes through the non-interacting point J = K = 0.

Because we have diagonalized the two-row transfer matrix in Chapter 3, in the

transfer-matrix formalism we must consider a reduced symmetry variation of this

model, shown in Fig. 4.2, in which aligning interactions are restricted to alternate

rows of vertical bonds (we also limit replica coupling to these bonds). Following

Ref. [15], we refer to this as the 1-GS model, since it has a single ground state

for J < 0 and K < 0. [Eq. (2.2) is the 4-GS model in this naming scheme.]

Denoting by W (α) the two-row transfer-matrix in replica α, the two-row trans-
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2∏
α=1

V (α)

e−
K
T No

2∏
α=1

e
− JT N

(α)

‖ V (α)

Figure 4.2: The 1-GS model [15]: dimer–dimer interactions in the interacting
double dimer model, Eq. (2.2), are only counted on alternate rows of vertical
bonds (blue). Equations show how the corresponding two-row transfer matrix
W1-GS, defined in Eq. (4.37), is constructed.

fer matrix for the 1-GS model is given by (see Fig. 4.2)

W1-GS = e−
K
T
No

2∏

α=1

e−
J
T
N (α)
‖ W (α) , (4.37)

where the operator

N (α)
‖ =

Lx∑

j=1

d
(α)
j,y d

(α)
j+1,y (4.38)

counts the number of parallel pairs of nearest-neighbor dimers in replica α on a

row of vertical bonds, and the operator

No =
Lx∑

j=1

d
(1)
j,yd

(2)
j,y (4.39)

counts the number of overlapping dimers on a row of vertical bonds [caligraphic

font is used to distinguish N (α)
‖ and No from the terms in Eq. (2.2), which include

the whole lattice]. The four-fermion interactions of Eqs. (4.38) and (4.39) are

non-integrable [10], so we turn to perturbation theory.

Instead of perturbing the eigenvalues and eigenvectors of H, we add perturba-

tions to the effective field theory of Eq. (4.16) using bosonization. For the 1-GS

model, we define the corresponding one-dimensional quantum Hamiltonian H1-GS

through

W1-GS = e−2H1-GS , (4.40)
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which, from Eq. (4.37), is given by

H1-GS = −1

2
log

(
e−

K
T
No

2∏

α=1

e−
J
T
N (α)
‖ e−2H(α)

)
. (4.41)

In the subsequent sections we bosonize N (α)
‖ and No in the free theory, and use

these results to calculate Eq. (4.41), and hence the corresponding 1-GS model

action, perturbatively in the couplings J and K. From this we infer the action

of the 4-GS model, Eq. (2.2), which allows one to predict the shape of the phase

boundary near the non-interacting point J = K = 0.

4.3.1 Aligning interactions N‖

The calculation of N‖ (we drop replica indices in this section) in the free theory

follows the procedure in Sec. 4.2.2 for the dimer occupation numbers. However,

because this operator is quartic, rather than quadratic, in fermions, the algebra

is more involved. A similar (but simpler) calculation for the XXZ spin chain is

outlined in Appendix 4.C.3.

The first step is to normal order, which, using Eq. (4.B.3), yields

N‖ −
Lx
8

=
Lx∑

j=1

[
:C†jCjC

†
j+1Cj+1 : +

1

4

(
:2C†jCj − CjCj+1 + C†jC

†
j+1 :

)]
. (4.42)

Here, the constant on the left-hand side is equivalent to 〈N‖〉, while the bilinear

terms on the second line can be written as

1

2

∑

k

(1 + sin2 k) sin(2θk):ζk
†ζk+π : (4.43)

in terms of ζk fermions. Note that normal ordering does not generate a term

proportional to H in this case, in contrast to Eq. (4.C.65) for the XXZ spin

chain.

In order to linearize the first term in Eq. (4.42), we insert Eq. (4.25) to obtain
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:C†jCjC
†
j+1Cj+1 : = −:

[
L†(x)L(x) +R†(x)R(x)

] [
L†(x′)L(x′) +R†(x′)R(x′)

]
: +

:
[
L†(x)R(x) +R†(x)L(x)

] [
L†(x′)R(x′) +R†(x′)L(x′)

]
: +

terms containing (−1)x that integrate to zero,

(4.44)

where x′ = x + 1 [the same terms are encountered for the XXZ spin chain in

Eq. (4.C.66)]. Note that we retain only the most RG relevant terms, i.e., those

without derivatives.

We now expand brackets and bosonize term-by-term using Table 4.1, taking

the scaling limit a → 0. In the first line, terms in a single-fermion species may

be written [98]

:r†(x)r(x)r†(x′)r(x′) : ≈ (x′ − x)2:r†(x)r(x)∂xr
†(x)∂xr(x) : , (4.45)

and are thus RG irrelevant. Note that, in this expansion, the zero order term

:r†(x)r(x)r†(x)r(x) : = 0 [99] because, from Eq. (4.B.4),

:r†(x)r(x)r†(x′)r(x′) : = −:r†(x′)r(x)r†(x)r(x′) : . (4.46)

Meanwhile, after bosonization, the remaining (mixed) terms contribute

−2:L†(x)L(x) ::R†(x)R(x) : =
1

2π

[
:Π2 − (∂xφ)2 :

]
. (4.47)

From the second line, one obtains the Umklapp process

L†(x)R(x)L†(x′)R(x′) + h.c. =
1

2(πa)2
cos
{√

4π [φ(x) + φ(x′)]
}

(4.48)

' 1

2(πa)2
cos
[√

16πφ(x)
]

, (4.49)

as well as, again, Eq. (4.47).

The bilinear terms in Eq. (4.42) are easily bosonized by analogy with the
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Hamiltonian in Sec. 4.2.1. We find

1

2

∑

k

(1 + sin2 k) sin(2θk):ζ
†
kζk+π : =

1

2

∫ Lx

0

dx (L†R +R†L) (4.50)

=
1

2πa
cos
(√

4πφ
)

. (4.51)

Finally, combining the most RG relevant terms, we obtain

N‖ −
Lx
8

=

∫ Lx

0

dx

{
1

π

[
:Π2 − (∂xφ)2 :

]
+

1

2πa
cos
(√

4πφ
)}

. (4.52)

This result is not in agreement with Ref. [59], in which Papanikolaou et al. derive

N‖ by substituting Eq. (4.27) into the continuum version of Eq. (4.38), before

using an operator product expansion. Although this approach is equivalent to

ours in the case of the XXZ spin chain (compare Sec. 4.C.3 and Ref. [100]), it is

incorrect in the present case due to its failure to properly normal order N‖.

4.3.2 Replica coupling No

In contrast to N‖, one can calculate No directly by substituting Eq. (4.27) into

the continuum version of Eq. (4.39)

No =

∫ Lx

0

dx d(1)
y d(2)

y . (4.53)

This is because operators with different replica indices commute and hence, pro-

vided d
(1)
y and d

(2)
y are each fermion normal ordered, the product d

(1)
y d

(2)
y is also

normal ordered. An analogous calculation for the Hubbard model, with spin

playing the role of replica index, can be found in Ref. [100]. One can similarly

construct an operator that counts the number of overlapping dimers on a row of

horizontal bonds using dx.

92



Retaining only the most RG relevant terms, one obtains

No −
Lx
16

=

∫ Lx

0

dx

{
2∑

α=1

1

4πa
cos
(√

4πφ(α)
)

+

2∑

α=1

1

8

[
:
(
∂xφ

(α)
)2

+
(
Π(α)

)2
:
]

+

1

π

(
∂xφ

(1)
) (
∂xφ

(2)
)

+

1

(πa)2
cos
(√

4πφ(1)
)

cos
(√

4πφ(2)
)}

(4.54)

[note that the second term derives from higher-order terms in dy; see Eq. (4.27)].

Here, the constant on the left-hand side is equivalent to 〈No〉 =
∑

j〈d
(1)
j,y〉〈d

(2)
j,y〉,

while replicas are coupled by the third and fourth terms.

4.3.3 1-GS model

We calculate H1-GS from Eq. (4.41) under the assumptions |J/T | � 1 and

|K/T | � 1. In this limit, interactions only excite particle-hole pairs near the

Fermi points of the free theory (see Fig. 4.1), and hence the linearization scheme

used to calculate H, N‖ and No in Eqs. (4.9), (4.52) and (4.54) remains valid.

The operators N (α)
‖ and No do not commute with H(α) (although [N (α)

‖ ,No] =

0), so the Baker–Campbell–Hausdorff formula, Eq. (4.A.1), is required to simplify

Eq. (4.41). To linear order in the couplings this gives

H1-GS ≈
2∑

α=1

(
H(α) +

1

2

J

T
N (α)
‖

)
+

1

2

K

T
No +

1

2

2∑

α=1

[
H(α),

K

T
No +

J

T
N (α)
‖

]
−

1

3

2∑

α,α′=1

[
H(α),

[
H(α′),

K

T
No +

J

T
N (α′)
‖

]]
+ . . . ,

(4.55)

where ‘. . . ’ refers to additional terms with three or more nested commutators

and one K
T
No + J

T
N (α)
‖ . In fact, we need only retain terms on the first line. To

see this, note that [H, ζk] = −ε(k)ζk, i.e., in the ζk basis each commutator of

N (α)
‖ or No with H(α) generates similar operators, but with an extra factor of
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ε(k). Following through the usual steps to bosonize these operators, one finds

that each factor of ε(k) manifests itself as an extra derivative. Hence, any term

involving a commutator is less RG relevant than the terms on the first line.

Dropping these terms, and substituting Eqs. (4.9), (4.52) and (4.54) into

Eq. (4.55) gives

H1-GS =

∫ Lx

0

dx

{
2∑

α=1

1

2

[
:
κx
π

(
∂xφ

(α)
)2

+
π

κy

(
Π(α)

)2
:

]
+

λx
π

(
∂xφ

(1)
) (
∂xφ

(2)
)

+

V cos
(√

4πφ(1)
)

cos
(√

4πφ(2)
)}

(4.56)

[we have dropped terms proportional to cos(
√

4πφ(α))], up to additive constants,

where

κx = π

(
1− 1

π

J

T
+

1

8

K

T

)
(4.57)

κy = π

(
1 +

1

π

J

T
+

1

8

K

T

)−1

(4.58)

' π

(
1− 1

π

J

T
− 1

8

K

T

)
(4.59)

λx =
1

2

K

T
(4.60)

V =
1

2

K

T

1

(πa)2
. (4.61)

All RG irrelevant operators omitted in the derivation of Eq. (4.56) only modify

these coefficients at higher order in J/T and K/T [59].

To perform the path integral, we diagonalize the quadratic terms through

φ(±) =
1√
2

(
φ(1) ± φ(2)

)
(4.62)

Π(±) =
1√
2

(
Π(1) ± Π(2)

)
, (4.63)

where the coefficient is chosen to ensure that Φ(±) has canonically conjugate

momentum variable Π(±) [in the same way as Φ(α) and Π(α); see Eq. (4.C.26)].
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This yields

H1-GS =
∑

σ∈±

1

2

∫ Lx

0

dx

[
:
2κx,σ
π

(
∂xφ

(σ)
)2

+
π

κy

(
Π(σ)

)2
: + V cos

(√
8πφ(σ)

)]
,

(4.64)

with

κx,± =
1

2
(κx ± λx) . (4.65)

Then, according to Eqs. (4.13) and (4.14), the action is given by

S1-GS =
∑

σ∈±

1

2

∫
d2r

[
2κx,σ
π

(
∂xφ

(σ)
)2

+
κy
π

(
∂yΦ

(σ)
)2

+V cos
(√

8πφ(σ)
)]

, (4.66)

which is a sine-Gordon theory in both height components φ(±).

In each case, the Gaussian terms are of the same form as the non-interacting

theory, Eq. (4.16), but with stiffness renormalized by the couplings J and K (we

note that, even though both types of interaction are anisotropic, at first order

anisotropy in the stiffnesses is only generated by K). The cosine terms [includ-

ing those dropped ∼ cos(
√

4πφ(α))] are those most RG relevant and consistent

with constraints on the action due to locality and symmetry under simultaneous

translation of both replicas by one lattice constant in the x direction, as discussed

in Sec. 4.2.2. They become RG relevant at sufficiently large stiffness and drive

BKT transitions into ordered phases, in which φ(±) are locked to discrete values.

4.3.4 4-GS model

To infer the action of the 4-GS model, we decompose the lattice into four bond

families i ∈ {1, 2, 3, 4}, defined in Fig. 4.3, associating couplings Ji and Ki to

each. For general J , K, the action for the relative height takes the form

SJ ,K =
1

2

∫
d2r

[
2κ̃x,−
π

(
∂xφ

(−)
)2

+
2κ̃y,−
π

(
∂yΦ

(−)
)2

+ V (−) cos
(√

8πφ(−)
)]

,

(4.67)

where κ̃µ,− are functions of J and K with leading-order Taylor series

κ̃µ,−(J ,K) ≈ κ̃µ,−(0,0) +
4∑

i=1

[
Ji
T

∂κ̃µ,−
∂(Ji/T )

+
Ki

T

∂κ̃µ,−
∂(Ki/T )

]
, (4.68)
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Figure 4.3: Definition of bond families i ∈ {1, 2, 3, 4} associated with couplings
Ji and Ki. The 1-GS and 4-GS models correspond to Ji = Jδi,1, Ki = Kδi,1 (see
Fig. 4.2) and Ji = J ∀ i, Ki = K ∀ i, respectively.

and similar for V (−). In the case of the 1-GS model with Ji = Jδi,1, Ki = Kδi,1,

we have κ̃x,− = κx,−, κ̃y,− = κy
2

, which allows us to read off from Eqs. (4.57)–(4.60)

and Eq. (4.65)

κ̃µ,−(0,0) = π/2 (4.69)

∂J1/T κ̃x,− = −1/2 ∂J1/T κ̃y,− = −1/2 (4.70)

∂K1/T κ̃x,− =
π

16
− 1

4
∂J1/T κ̃y,− = − π

16
. (4.71)

The remaining partial derivatives are related to the above by symmetry, i.e.,

∂J1/T κ̃µ,− = ∂J2/T κ̃µ,− and ∂J3/T κ̃µ,− = ∂J4/T κ̃µ,− by translation symmetry, and

∂J3/T κ̃x,− = ∂J1/T κ̃y,− and ∂J3/T κ̃y,− = ∂J1/T κ̃x,− by rotation symmetry (and the

same for K derivatives). Hence, the leading order dependence of the stiffnesses

can be deduced for any choice of J , K; a similar argument holds for V (−).

In the case of the 4-GS model, where Ji = J ∀ i, Ki = K ∀ i, one then finds

S4-GS =

∫
d2r

[
κ−
π

(
∂xφ

(−)
)2

+
κ−
π

(
∂yΦ

(−)
)2

+ V (−) cos
(√

8πφ(−)
)]

, (4.72)
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with

κ− =
π

2

(
1− 4

π

J

T
− 1

π

K

T

)
(4.73)

V (−) =
K

T

1

(πa)2
. (4.74)

This form was deduced in Eq. (2.18) using a symmetry-based analysis. Here, we

have determined how the phenomenological parameters κ− and V (−) depend on

the microscopic couplings J and K.

In order to determine the critical properties of S4-GS, we appeal to an RG

analysis. For the general sine-Gordon action

SSG[Φ] =
1

2K

∫
dxdτ

[
vF(∂xφ)2 +

1

vF

(∂yΦ)2

]
+

2g

(2πa)2
cos(
√

8πφ) , (4.75)

one can show that the RG flow equations for |g| � 1 are given by [100]

dy‖
d`

= −y2 dy

d`
= −y‖y , (4.76)

where y‖ = 2(K− 1) and y = g/πvF. The RG flows described by these equations

are illustrated in Fig. 4.4. In particular, since ydy = y‖dy‖, we have

y2
‖ − y2 = const. , (4.77)

i.e., the trajectories are hyperbolas. There is a BKT phase transition along the

separatrix

|y| = y‖ . (4.78)

To the right, where |y| flows to zero, the cosine term is irrelevant, i.e., it renor-

malizes to zero in the long distance theory, which is thus a free Coulomb phase.

To the left, where |y| flows to infinity, it is relevant and locks the height field to

discrete values.

In the case of the 4-GS model, where vF = 1, K = π/2κ− and g = 2K/T ,
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Figure 4.4: RG flows of the sine-Gordon action, Eq. (4.75), with y‖ = 2(K − 1)
and y = g/πvF. There is a line of fixed points (red stars) along |y| = 0, which
are stable (unstable) for y‖ > 0 (y‖ < 0). The trajectories are hyperbolas, and
the separatrix |y| = y‖ (gray) divides regions where |y| flows to zero and infinity.

Eq. (4.78) implies that there is a phase boundary at

J

T
=





0 for
K

T
≥ 0

−2
K

T

K

T
≤ 0,

(4.79)

in the vicinity of the non-interacting point. This finding is consistent with our

numerical determination of the phase boundary in Fig. 2.3, using a MC worm

algorithm. In particular, the data point closest to the origin is (J/T,K/T ) =

(0.05,−0.097(9)), while the phase boundary runs along the line J/T = 0 for

positive K/T , as has previously been conjectured [20]. We have attempted to

obtain data points closer to K = 0, but this is not possible because the finite-size

scaling becomes more difficult.

4.4 Conclusions

In this chapter, we have rigorously derived the effective height theory that was

written down in Chapter 2 based on symmetry. Our derivation, which started

from the free-fermion Hamiltonian of Chapter 3, includes a long-wavelength ap-

proximation and utilizes the technique of bosonization. It could easily be applied

to similar systems, e.g., the dimer model defined on other bipartite lattices [87],

as well as other exactly-solvable 2D models with hard constraints.
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In particular, we have derived effective field theory expressions for the action

and dimer occupation numbers in the noninteracting case. By carefully keeping

track of cutoffs in the bosonization formalism, we have used these to recover

asymptotic dimer–dimer correlation functions calculated in Chapter 3, clearing

up an ambiguity in the literature.

We then included aligning interactions and replica coupling perturbatively in

the 1GS model, and worked out how this modifies the Gaussian action. Finally, we

deduced the action of the model studied in Chapter 2, and used an RG analysis to

infer the shape of the phase boundary in the vicinity of the noninteracting point.

The result is in good agreement with our phase diagram, Fig. 2.3, obtained using

a MC worm algorithm.

The approach employed in this chapter should also capture further features of

the height theory, which have not been included in our treatment. For example,

the operator σ−j inserts a monomer on site j, and is known to take the form

σ−j ∼ e±i
√
πθ in terms of the dual height field θ [10,92,101], with the sign depending

on the sublattice.

Furthermore, one could include higher-order terms in the action of Eq. (4.16),

by taking into account the curvature of the dispersion ε(k). Such ‘band curvature’

effects have previously been studied in quantum wires [102], as well as the XXZ

spin chain [103]. In the isotropic dimer model, we expect these to take the form

|∇2φ|2 and |∇φ|4 [7, 91]. Although RG irrelevant, these terms can influence

finite-size behavior and could in principle be measured in the MC simulations.

Appendices

4.A Baker–Campbell–Hausdorff formula

The first few terms in the Baker–Campbell–Hausdorff formula are [77]

log
(
eAeB

)
= A+B +

1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]) + . . . , (4.A.1)

where ‘. . . ’ refers to additional terms involving three or more nested commutators.
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In the case [A, [A,B]] = [B, [A,B]] = 0, Eq. (4.A.1) implies

eAeB = eA+Be[A,B]/2 , (4.A.2)

and

eAeB = eBeAe[A,B] . (4.A.3)

4.B Normal ordering

In this appendix we define fermion and boson normal ordering, denoted by : :.

4.B.1 Fermions

In the ζk basis, : : means to anticommute all ζ†k with k ∈ [−π, 0] and all ζk

with k ∈ [0, π] to the right of all other creation and annihilation operators. For

example, with k, k′ ∈ [−π, 0],

:ζ†kζk′ : = −ζk′ζ†k . (4.B.1)

The meaning of : : for the left- and right- moving fermions rk then follows from

Eq. (4.3): anticommute all r†k with k < 0 and all rk with k > 0 to the right of all

other creation and annihilation operators of the same species [30].

In the case of two fermion operators, the above definitions of normal ordering

are equivalent to

AB = :AB : + 〈AB〉0 , (4.B.2)

where 〈·〉0 ≡ 0〈0|·|0〉0 denotes an expectation value in the ground state of

the relevant Hamiltonian H, i.e., Eqs. (4.6) and (4.7) in the cases A,B ∈

{ζk; ζ†k} and {rk; r†k}, respectively. For four fermion operators one requires the

Wick expansion [98,99,104]

ABCD = :ABCD : + 〈AB〉0:CD :− 〈AC〉0:BD : + 〈AD〉0:BC : +

〈BC〉0:AD :− 〈BD〉0:AC : + 〈CD〉0:AB : +

〈AB〉0〈CD〉0 − 〈AC〉0〈BD〉0 + 〈AD〉0〈BC〉0 .

(4.B.3)
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Note that within normal ordering, any two fermion operators can be considered

to anticommute, e.g.,

:ABCD : = −:BACD : . (4.B.4)

4.B.2 Bosons

For boson operators, to be introduced in the next section, : : means to commute

all annihilation operators bqr to the right of all creation operators b†qr of the same

species, e.g.,

:bqrb
†
q′r : = b†q′rbqr . (4.B.5)

Boson and fermion normal ordering are not in general equivalent [105], but it will

always be clear from context which we mean.

4.C Bosonization

This appendix provides a brief overview of (abelian) bosonization.

4.C.1 Bosonization identity

In this section we state the bosonization identity, which is an operator identity in

Fock space, as well as defining the fermion and boson fields that appear within

it. We follow Ref. [30] but with some changes to definitions of the fields; see

Refs. [74, 100] for other useful resources.

We will consider left- L(x) and right- R(x) moving fermion fields, i.e.,

r(x) =
1√
Lx

∞∑

k=−∞

eirkxrk , (4.C.1)

where r means {L,R} in symbols and {−,+} in equations, respectively. Here, rk

are fermion operators satisfying

{rk, rk′} = δrr′δkk′ , (4.C.2)

and Lx is the number of lattice sites. We place the system on a ring with an-
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tiperiodic boundaries, so that

k =
2π

Lx

(
nk −

1

2

)
, nk ∈ Z . (4.C.3)

In the ground state |0〉0, fermions are assumed to only occupy states with k < 0,

i.e.,

rk|0〉0 = 0 for k > 0 , (4.C.4)

r†k|0〉0 = 0 for k < 0 . (4.C.5)

A useful operator is the fermion number operator

Nr =
∞∑

k=−∞

:r†krk : , (4.C.6)

which counts the number of fermions relative to the ground state (fermion normal

ordering is defined in Appendix 4.B.1).

We now construct boson operators from the fermion operators. One can define

boson creation and annihilation operators

b†qr =
i
√
nq

∞∑

k=−∞

r†k+qrk , (4.C.7)

where q = 2πnq
Lx

and nq ∈ Z+, which generate particle-hole excitations and satisfy

[bqr, Nr′ ] = [b†qr, Nr′ ] = 0 (4.C.8)

[bqr, bq′r′ ] = [b†qr, b
†
q′r′ ] = 0 [bqr, b

†
q′r′ ] = δrr′δqq′ . (4.C.9)

The boson fields that appear in the bosonization identity are the chiral fields

φr(x) =

√
π

Lx
Nrx+ ϕr(x) + ϕ†r(x) , (4.C.10)

where

ϕ†r(x) =
r√
4π

∑

q>0

1
√
nq

e−irqxb†qre
−aq/2 . (4.C.11)

Here, a > 0 is an infinitesimal cutoff required to regularize certain non-normal-
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ordered expressions. Note that the chiral fields are not periodic, while their

derivatives are.

The bosonization identity is [30]

r(x) =
e−ir π

Lx
x

√
Lx

Fr: e
ir
√

4πφr(x) : (4.C.12)

=
e−ir π

Lx
x

√
2πa

Fre
ir
√

4πφr(x) . (4.C.13)

The Klein factors F †r and Fr are required to increase and decrease the fermion

number by one, respectively, which no combination of boson operators can

achieve, while also ensuring anticommutation of different fermion species, i.e.,

L(x) and R(x). They obey the following commutation relations:

[bqr, F
†
r′ ] = [b†qr, F

†
r′ ] = [bqr, Fr′ ] = [b†qr, Fr′ ] = 0 (4.C.14)

[Nr, F
†
r′ ] = δrr′F

†
r [Nr, Fr′ ] = −δrr′Fr (4.C.15)

{F †r , Fr′} = 2δrr′ FrF
†
r = F †rFr = 1 . (4.C.16)

The first form of the bosonization identity, Eq. (4.C.12), is boson normal ordered

(see Appendix 4.B.2). One can unnormal order by expanding the exponential

:eir
√

4πφr(x) : = eir 2π
Lx
Nrxeir

√
4πϕ†r(x)eir

√
4πϕr(x) (4.C.17)

and using Eq. (4.A.2) with the commutator

[ϕr(x), ϕ†r′(y)] =
δrr′

4π

∑

q>0

1

nq
eq[ir(x−y)−a] (4.C.18)

= −δrr
′

4π
log
[
1− ei 2π

Lx
[r(x−y)+ia]

]
, (4.C.19)

to obtain the second form, Eq. (4.C.13).

In practice, it is useful to define the fields

φ = φL + φR (4.C.20)

θ = φL − φR , (4.C.21)
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with Π = ∂xθ. Using Eq. (4.C.18) and the identity

∑

n∈Z

einye−λ|n| = 2π
∑

n̄∈Z

δλ(y − 2πn̄), λ > 0 , (4.C.22)

where

δλ(x) =
λ

π

1

λ2 + x2
(4.C.23)

is a Lorentzian of width λ, we have

[φ(x),Π(x′)] = i

[∑

n∈Z

δa(x− x′ − nLx)−
1

Lx

]
. (4.C.24)

We also define a field Φ through

φ(x) = (δa ∗ Φ)(x) =

∫ ∞

−∞
dx′ δa(x− x′)Φ(x′) , (4.C.25)

where ∗ denotes convolution, which has commutator

[Φ(x),Π(x′)] = i

[∑

n∈Z

δ(x− x′ − nLx)−
1

Lx

]
, (4.C.26)

i.e., Π plays the role of the canonically conjugate momentum variable to Φ in the

thermodynamic limit Lx →∞. Note that the field φ is not periodic, and satisfies

φ(x+ Lx) = φ(x) +
√
π(NL +NR) . (4.C.27)

4.C.2 Bosonization dictionary

We now use the bosonization identity to derive a ‘dictionary’ of useful bosoniza-

tion formulae, as summarized in Table 4.1.

In order to bosonize bilinears (and their derivatives) that contain a single

fermion species, as shown in rows 1–4 of Table 4.1, we define a generating function

Gr(x, y) = :r†(x)r(y) : (4.C.28)

= r†(x)r(y)− 〈r†(x)r(y)〉0 , (4.C.29)
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Fermions Bosons

:L†L+R†R : ∂xφ/
√
π

:L†L−R†R : Π/
√
π

i
2

[
:L†∂xL− (∂xL

†)L−R†∂xR + (∂xR
†)R :

]
1
2

[: (∂xφ)2 + Π2 :]

i
∫ Lx

0
dx (:L†∂xL−R†∂xR :) 1

2

∫ Lx
0

dx [: (∂xφ)2 + Π2 :]

L†R +R†L 1
πa

cos (
√

4πφ)

1
i
(L†R−R†L) 1

πa
sin (
√

4πφ)

Table 4.1: Bosonization dictionary: Useful bosonization formulae, obtained using
the bosonization identity, Eqs. (4.C.12) and (4.C.13), which relate bilinears in
left- L and right- R moving fermion fields (left column) to expressions containing
the boson field Φ and its canonically conjugate momentum variable Π (right
column). Note that Φ always appears as the convolution φ = δa ∗ Φ, where δa is
a Lorentzian of width a.

such that

: (∂mx r
†)∂nxr : = lim

y→x
∂mx ∂

n
yGr(x, y) . (4.C.30)

Note that products of fermion operators, such as those in Eq. (4.C.29), diverge

when evaluated at coinciding points; in Eq. (4.C.30) this is regularized by ‘point

splitting’ [106], i.e., we only manipulate expressions where fermions are evaluated

at different points, x and y, before finally taking the limit y → x.

We construct Gr(x, y) as follows. Inserting the bosonization identity,

Eq. (4.C.12), yields

r†(x)r(y) =
eir π

L
(x−y)

Lx
: e−ir

√
4πφr(x) :: eir

√
4πφr(y) : (4.C.31)

[the product of Klein factors is unity from Eq. (4.C.16)]. To boson normal order

the product of normal-ordered exponentials, we expand each exponential using

Eq. (4.C.17), and use Eqs. (4.A.3) and (4.C.19) to exchange e−ir
√

4πϕr(x) and
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eir
√

4πϕ†r(y), with result

r†(x)r(y) =
:e−ir

√
4π[φr(x)−φr(y)] :

2iLx sin
[
−r π

Lx
(x− y)

] . (4.C.32)

Finally, because the expectation value of a normal-ordered exponential is unity,

we obtain

Gr(x, y) =
:e−ir

√
4π[φr(x)−φr(y)] :− 1

2iLx sin
[
−r π

Lx
(x− y)

] . (4.C.33)

The simplest terms are the densities of left- and right- movers, given by

:r†r : = lim
y→x

Gr(x, y) (4.C.34)

= lim
ε→0

: eir
√

4πε∂xφr(x) :− 1

2irπε
(4.C.35)

=
∂xφr√
π

. (4.C.36)

Here, to obtain the second line, we rewrite y = x+ε in Eq. (4.C.33) before expand-

ing the exponent and denominator to leading order in ε. The third line follows

after expanding the normal-ordered exponential. Hence, using Eqs. (4.C.20) and

(4.C.21), we find

:L†L+R†R : =
∂xφ√
π

(4.C.37)

:L†L−R†R : =
Π√
π

, (4.C.38)

as shown in rows 1 and 2 of Table 4.1.

Similarly, for the terms with first derivatives (see rows 3 and 4 of Table 4.1),

we compute
i

2

[
:r†∂xr − (∂xr

†)r :
]

= −r(∂xφr)2 , (4.C.39)

which implies

i

2

[
:L†∂xL− (∂xL

†)L−R†∂xR + (∂xR
†)R :

]
=

1

2

[
: (∂xφ)2 + Π2 :

]
. (4.C.40)

106



Integration over x yields

i

∫ Lx

0

dx
(
:L†∂xL−R†∂xR :

)
=

1

2

∫ Lx

0

dx
[
: (∂xφ)2 + Π2 :

]
, (4.C.41)

where the second and fourth terms on the left-hand side of Eq. (4.C.40) have

been integrated by parts (boundary terms vanish due to antiperiodicity of L and

R).

We now bosonize bilinears that mix left- and right- movers, as shown in rows 5

and 6 of Table 4.1. To do so, we use the second form of the bosonization identity,

Eq. (4.C.12), and consider

L†(x)R(y) =
e−i π

Lx
(x+y)

2πa
ei
√

4πφL(x)F †LFRei
√

4πφR(y) . (4.C.42)

The first exponential can be exchanged with the product of Klein factors using

the following theorem [30]: If [A,B] = DB, where [A,D] = [B,D] = 0, it follows

that f(A)B = Bf(A + D). With A = φL and B = F †L, Eqs. (4.C.10), (4.C.14)

and (4.C.15) imply D =
√
π

Lx
x, and hence

L†(x)R(y) =
ei π
Lx

(x−y)

2πa
F †LFRei

√
4π[φL(x)+φR(y)] . (4.C.43)

By combining suitable derivatives of Eq. (4.C.43) and its Hermitian conjugate,

and then setting x = y, one obtains sinusoidal terms in the boson field φ (Klein

factors can be dropped). The simplest two cases are

L†R +R†L =
1

πa
cos(
√

4πφ) , (4.C.44)

and
1

i
(L†R−R†L) =

1

πa
sin(
√

4πφ) . (4.C.45)
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4.C.3 XXZ spin chain

As an example, we use the bosonization dictionary to bosonize the XXZ spin

chain, with Hamiltonian

HXXZ =
Lx∑

j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjS

z
j+1

)
(4.C.46)

=
Lx∑

j=1

[
1

2
(S+

j S
−
j+1 + S−j S

+
j+1) + ∆SzjS

z
j+1

]
, (4.C.47)

where Sj = 1
2
σj and S±j = Sxj ± iSyj .

This model is exactly solvable through the Bethe ansatz, and can be expressed

in the form of Eq. (4.13) with

vF =
π

2

sinϕ

ϕ
(4.C.48)

K =
π

2(π − ϕ)
, (4.C.49)

and cosϕ = ∆ [107]. We will derive this result in the limit |∆| � 1 using

bosonization.

We first map to spinless fermions using the Jordan–Wigner transformation,

Eqs. (3.19)–(3.21), and perform the canonical transformation Cj → (−1)jCj, to

obtain

HXXZ = H +Hint (4.C.50)

H = −1

2

Lx∑

j=1

(
C†jCj+1 + h.c.

)
(4.C.51)

Hint = ∆
Lx∑

j=1

(
C†jCj −

1

2

)(
C†j+1Cj+1 −

1

2

)
. (4.C.52)

Here, H describes free fermions with nearest-neighbor hopping, while Hint con-

tains fermion-fermion interactions.

108



The case ∆ = 0

We first treat the case ∆ = 0 and bosonize H. Inserting the Fourier series

Cj =
e−iπ/4

√
Lx

∑

k∈Kp

eikjηk (4.C.53)

into Eq. (4.C.51) yields

H = −
∑

k

cos kη†kηk , (4.C.54)

hence there are Fermi points at ±kF with kF = π
2

(fermions occupy all states with

|k| < kF in the ground state |0〉0). Using Eq. (4.B.2) and the correlator

〈C†jCj+1〉0 = −〈CjC†j+1〉0 =
1

π
, (4.C.55)

the normal-ordered form in real space is then

H = −1

2

Lx∑

j=1

(
:C†jCj+1 + h.c. :

)
− Lx

π
. (4.C.56)

We linearize the dispersion by inserting

Cx = e−ikFxL(x) + eikFxR(x) (4.C.57)

[this is the real-space analog of Eq. (4.3) with kr = rkF], and making the long-

wavelength expansion

r(x+ a0) ' r(x) + a0∂xr(x) , (4.C.58)

which gives

H = i

∫ Lx

0

dx (:L†∂xL−R†∂xR :)− Lx
π

(4.C.59)

(oscillatory cross terms integrate to zero). Finally, according to Table 4.1, the

bosonized form is

H =
1

2

∫ Lx

0

dx
[
: (∂xφ)2 + Π2 :

]
− Lx

π
. (4.C.60)
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We now find expressions for the microscopic degrees of freedom, i.e., the spin

operators Sj, in terms of φ and θ. For Szj , we fermion normal order Eq. (3.21)

using Eq. (4.B.2) and the correlator

〈C†jCj〉0 =
1

2
, (4.C.61)

to obtain

Szj = :C†jCj : . (4.C.62)

Linearization using Eq. (4.C.57) and subsequent bosonization using Table 4.1

results in

Sz(x) = :L†L+R†R : + (−1)x(L†R +R†L) (4.C.63)

=
1√
π
∂xφ+

(−1)x

πa
cos(
√

4πφ) . (4.C.64)

[Bosonization of σzj in the dimer model is considerably more complicated because

of the additional Bogoliubov transformation from ηk to ζk fermions, Eq. (3.63),

required to diagonalize H.]

The case |∆| � 1

We now bosonize the interaction termHint, by linearizing around the Fermi points

of the free-fermion theory. This is a perturbative treatment valid for |∆| � 1:

The perturbation must be sufficiently small such that only particle-hole pairs

near the Fermi points, i.e., those well-described by the linearization scheme, are

excited.

To normal order, we use Eq. (4.B.3) with the correlators of Eqs. (4.C.55) and

(4.C.61) to obtain

Hint = ∆
Lx∑

j=1

:C†jCjC
†
j+1Cj+1 : +

2∆

π
H +

∆Lx
π2

, (4.C.65)

i.e., the four-fermion term remains but we also find a new term proportional to
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H. After inserting Eq. (4.C.57), the four-fermion term has linearized form

:C†jCjC
†
j+1Cj+1 : = :

[
L†(x)L(x) +R†(x)R(x)

] [
L†(x′)L(x′) +R†(x′)R(x′)

]
:−

:
[
L†(x)R(x) +R†(x)L(x)

] [
L†(x′)R(x′) +R†(x′)L(x′)

]
: +

terms containing (−1)x that integrate to zero,

(4.C.66)

where x′ = x + 1. Bosonization of these terms in the scaling limit a0 → 0 is

discussed in detail in Sec. 4.3.1 [see Eq. (4.44) and text thereafter], and gives

Hint =
2∆

π

∫ Lx

0

dx : (∂xφ)2 :− 2∆

(2πa)2
cos
[√

16πφ(x)
]
− ∆Lx

π2
, (4.C.67)

hence

HXXZ =
1

2

∫ Lx

0

dx

[(
1 +

4∆

π

)
: (∂xφ)2 : + :Π2 :

]
−

2∆

(2πa)2
cos
[√

16πφ(x)
]

. (4.C.68)

Under the transformation φ = φ̃/
√

2, Π =
√

2Π̃, and using Eqs. (4.13) and

(4.14), the corresponding action takes the form of Eq. (4.75) with vF = 1 + 2∆
π

,

K = 2(1− 2∆
π

) and g = −∆. From the RG analysis of this action in Sec. 4.3.4, we

see that the cosine term is RG irrelevant for |∆| � 1. One can thus write down

an equivalent action with (y, y‖)→ (0, y‖(0)), where

y‖(0) =
√
y2
‖ − y2 (4.C.69)

from Eq. (4.77). However, at leading order in ∆ we have y‖(0) = y‖, and hence

one can simply drop the cosine term from Eq. (4.C.68), i.e.,

HXXZ =
1

2

∫ Lx

0

dx

[(
1 +

4∆

π

)
: (∂xφ)2 : + :Π2 :

]
, (4.C.70)

in agreement with Eq. (4.13) and the Taylor series of Eqs. (4.C.48) and (4.C.49)

for |∆| � 1.
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Chapter 5

Synchronization transition in the

double dimer model on the cubic

lattice

5.1 Introduction

In this chapter, we turn to the three-dimensional case. As for the double dimer

model on the square lattice, we find a transition without any symmetry breaking,

between a standard ‘Coulomb’ phase [6] and a ‘synchronized’ phase, where both

replicas remain disordered but their relative fluctuations are suppressed. The

synchronization transition on the cubic lattice is therefore an unusual example of

a classical transition in 3D with no local order parameter.

It will be insightful to make a connection to loop models in the cubic-lattice

case. Consider overlaying any pair of dimer configurations and deleting all dimers

that coincide. As illustrated in Fig. 5.1, the result is a gas of directed loops,

referred to as the ‘transition graph’ and corresponding to the set of dimer rear-

rangements that take one configuration to the other [12, 108]. A coupling that

favors overlapping dimers then amounts to an energy cost per unit loop length.

This makes possible a loop proliferation (or ‘condensation’) transition, between

a phase at low T with only sparse short loops and one at high T with a finite

density of boundary-spanning loops, as a result of competition between energy

and entropy [109, 110]. (See Sec. 5.2 for a precise definition.) In terms of the
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overlapping
dimers

directed
loop

Figure 5.1: An example configuration of the double dimer model, in which two
replicas of the close-packed dimer model (shown in black and white) are defined
on the same lattice. Although we consider a cubic lattice, illustrations are shown
on the square lattice for clarity. If overlapping dimers are deleted, the result is a
gas of directed loops (red).

dimers, the proliferation of loops amounts to a synchronization transition.

In the subsequent sections we argue theoretically that the transition, if contin-

uous, belongs in the inverted-XY universality class, and demonstrate using MC

results that this is indeed the case. It can therefore be seen as an unusual example

of a scalar Higgs transition, similar to the 1GS model [15] and the helical-field

transition in spin ice [111,112], but without any external symmetry breaking.

An outline of this chapter is as follows. In Sec. 5.2 we define the double dimer

model, including couplings between and within replicas, and present theoretical

arguments for its phase structure and critical properties. Our MC results, includ-

ing a detailed study of the critical properties of the synchronization transition,

are presented Sec. 5.3. Finally, in Sec. 5.4, we show that the double dimer model,

including coupling between replicas, can be solved exactly on the Bethe lattice.

We conclude in Sec. 5.5 with a brief comparison with the 2D case.

5.2 Model

We consider the cubic-lattice analog of the double dimer model defined in Sec. 2.2.

Because the cubic lattice is also bipartite, one can still construct an effective

magnetic field B
(α)
r,µ and its associated flux Φ(α) [see Eqs. (2.4) and (2.7)], although

in three dimensions the divergence-free constraint is no longer resolved in terms

113



of a height.

5.2.1 Loop picture

When the two replicas are overlaid, the result can be interpreted as a set of

directed loops. To see this, consider the relative magnetic field B
(−)
r,µ = B

(1)
r,µ−B(2)

r,µ,

which takes values on each bond of ±1 or 0. The former is interpreted as a loop

element directed along ±δµ, while the latter means that the dimers overlap and

is interpreted as the absence of a loop element. Since the relative field is clearly

also divergenceless, these elements indeed form a set of closed loops. Note that

swapping the two replicas switches the direction of each loop. Adding a loop

in B
(−)
r,µ that spans the system once in direction µ increases the relative flux

Φ
(−)
µ = Φ

(1)
µ − Φ

(2)
µ by one.

5.2.2 Phase diagram

The phase diagram of the double dimer model on the cubic lattice, obtained

using the MC method detailed in Sec. 2.4, is shown in Fig. 5.2. In this section we

define the phases shown and explain how the phase structure can be understood

theoretically. In Sec. 5.3 we describe how the phase boundaries, as well as the

critical properties at each, are determined in the simulations.

Independent replicas

We first review the phase structure for K = 0, where the two replicas act as inde-

pendent (single) dimer models. For K = J = 0, the cubic dimer model exhibits

a Coulomb phase [6,8], in which the dimers are disordered and their correlations

take a dipolar form. A single phase transition at (J/T )c = −0.597 separates

this from a low-temperature phase with nonzero magnetization order parame-

ter 〈M〉 6= 0 [see Eq. (2.8)] [11]. The transition is apparently continuous with

critical exponents compatible with the tricritical universality class. Theoretical

arguments [15, 113, 114], however, suggest that the critical properties should be

described by the so-called noncompact CP1 theory (see Sec. 5.2.3), and additional

interactions [115,116] indeed modify the exponents to values compatible with this

universality class [53].
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Figure 5.2: Phase diagram for the double dimer model of Eq. (2.2) on the cubic
lattice, in the (J/T,K/T ) plane. Dots show points where the phase boundary
has been determined using MC simulations, and thick grey lines are guides to
the eye. The orange region, labeled ‘Sync.’ is the synchronized phase. The pink
line labeled ‘Col.’ is the (unsynchronized) columnar phase, known to occur at
K = 0, whilst the purple region, labeled ‘∗’, is the columnar & antisynchronized
phase. Red dots represent first-order transitions, whilst green and white dots
represent continuous transitions, in the tricritical and inverted-XY universality
classes, respectively.

Besides the order parameter 〈M〉, the Coulomb and columnar phases can

be distinguished either through the flux or through the effective interactions be-

tween monomers. Consider first the latter, which involves introducing a test pair

of monomers with opposite charge into the background of close-packed dimers.

For K = 0, the replicas are independent, and so the monomer distribution func-

tion Gm (see Sec. 2.2.2 for a definition) reduces to that of the single dimer model.

In the Coulomb phase for small |J |/T , Um ≡ − lnGm is a Coulomb potential at

large separation, Um(r+ − r−) ∼ Um(∞) − κ/(4π|r+ − r−|), where κ (the ‘flux

stiffness’) and Um(∞) are finite (positive) constants [6]. In the low-temperature

phase, separating the monomers necessarily disrupts the columnar order along

a string joining them [consider Figs. 5.3(a)–(c)], and so has a free-energy cost

proportional to distance [6]. This qualitative distinction, between a confining in-

teraction (preventing separation to infinite distance) at low T and deconfinement

at high T , provides an alternative characterization of the phase transition.

In practice, it is convenient to use the confinement length ξ [see Eq. (2.28)],
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(a) (b) (c) (d)

Figure 5.3: Example ground states of the double dimer model of Eq. (2.2), il-
lustrated for the square lattice but applying also to the cubic lattice. (a)–(c)
Columnar configurations, which minimize the energy for J < 0, K = 0. In each
replica α ∈ {1, 2} (white and black dimers, respectively), the dimers are arranged

in columns, maximizing the number of parallel plaquettes N
(α)
‖ and hence min-

imizing the energy. For K = 0, the two replicas are uncoupled and so all three
arrangements have equal energy. For J < 0, K < 0 configuration (a), the colum-
nar & synchronized ground state, maximizes the overlap and hence minimizes
the energy. Configurations (b) and (c) are columnar & antisynchronized, with
replica magnetizations antiparallel and perpendicular respectively; both have zero
overlap between replicas and so are degenerate ground states for J < 0, K > 0.
(d) Example of a fully synchronized configuration, one of an extensive number
of ground states for J = 0, K < 0. Each replica is disordered, but the overlap
between their configurations is maximal, minimizing the energy.

which represents the root-mean-square separation of the test monomers. In the

Coulomb phase, Gm(R) → e−Um(∞)/T > 0 for large separation, and so ξ ∼ L.

In the columnar phase, by contrast, Um(R) grows without limit as |R| → ∞,

Gm(R)→ 0, and so ξ is an L-independent constant.

A related criterion for the phases can be expressed in terms of the flux

Φ(α). The mean flux vanishes by symmetry in both phases, while the vari-

ance, Var Φ(α) = 〈|Φ(α)|2〉, scales differently with system size in the two: In

the Coulomb phase, flux fluctuations are large, Var Φ(α) ≈ L/κ [8]. In the colum-

nar phase, the variance is exponentially small in L, because shifting dimers along

a loop spanning the system disturbs the columnar order and hence costs energy

E ∼ JL.1 Because the two replicas are independent, the variances of the total

and relative flux Φ(±) = Φ(1)±Φ(2) are identical, and equally serve to distinguish

the two phases.

1To see the connection to the monomer-confinement criterion, imagine changing the flux
by removing a dimer to create a monomer pair, winding one monomer around the periodic
boundaries, and then recombining the pair [117].
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Coulomb Columnar Synchronized

Var Φ(−) Large Small Small

Var Φ(+) Large Small Large

ξ Large Small Small

Table 5.1: Behavior in different phases of the double dimer model of: the variance
of the flux difference, Φ(−) = Φ(1) −Φ(2); the variance of the total flux, Φ(+) =
Φ(1) + Φ(2); and the confinement length, ξ. ‘Small’ means Var Φ(±) decreases
exponentially with linear system size L and ξ is independent of L, while ‘Large’
means Var Φ(±) ∼ L and ξ ∼ L. In the columnar & (anti)synchronized phases,
these observables behave as in the columnar phase.

Coupled replicas

Consider now J = 0 and nonzero coupling K < 0 between replicas. If a monomer

pair is inserted in replica 1, B
(2)
r,µ is divergenceless while B

(1)
r,µ has nonzero diver-

gence at r+ and r−. This implies the presence of an open string in B
(−)
r,µ that

runs between these two sites, and along which the two replicas differ. In the

limit K/T → −∞, the string will take the shortest possible path, resulting in

an energy proportional to separation and hence a confining effective interaction

Um. Comparing this limit with the case where K = 0 (and J = 0), it follows

that there must be a confinement transition, a qualitative change in the large-

separation form of Um, between the two. In our results, shown in Fig. 5.2, we

indeed find such a transition at a critical coupling (K/T )c = −1.400.

At temperatures above this point, where the entropy of the open string over-

comes its energy cost, closed loops of B
(−)
r,µ are also free-energetically favorable. As

a result, loops spanning the system boundaries, which cost an energy E ∼ KL

and are hence suppressed exponentially in L at low temperatures, ‘proliferate’

at the transition. Because these loops change the relative flux Φ(−), the high-

temperature phase has Var Φ(−) ≈ L/κ−, as at K = 0 but with a modified

flux stiffness κ−. By contrast, the variance of the total flux, Var Φ(+), is large

(≈ L/κ+) in both phases, because identical loops in both replicas costs zero en-

ergy [consider Fig. 5.3(d)]. The behavior of the flux variances in the different

phases is summarized in Table 5.1.

While confinement and the flux variance thereby provide precise definitions

of the phases, we also expect loop proliferation to reduce the overlap
∑

l d
(1)
l d

(2)
l
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between the replicas. We therefore refer to the low-T , high-overlap phase as

‘synchronized’ and the high-T , low-overlap phase as ‘unsynchronized’, although

the overlap is nonzero in both phases and so does not provide an order parameter

in the strict sense.

It should be noted that the energy ∝ K associated with each element of

a directed loop (or open string) is not the only contribution to its free-energy

cost. In regions devoid of loops, overlapping dimers can be rearranged without

changing the loop configuration. (For example, in the configuration of Fig. 5.1,

flipping the parallel pair of overlapping dimers around the bottom-left plaquette

in both replicas does not create a new directed loop). To leading order, this

results in an entropy that scales with the number of overlapping dimers. Since

the introduction of a directed loop reduces this number, and so the entropy, at

finite K/T we expect an additional free-energy cost per unit length of loops,

which can be thought of as renormalizing K/T towards more negative values.2

The arguments for the phase structure can be straightforwardly extended to

include both J/T and K/T . At large negative J/T and K = 0, both replicas

are columnar ordered, but the relative orientations of the two magnetizations

M (1) and M (2) are arbitrary. Infinitesimal negative K/T is sufficient to split this

degeneracy extensively and therefore to synchronize the two replicas, giving the

columnar & synchronized phase, illustrated in Fig. 5.3(a), with 〈M (1)〉 = 〈M (2)〉.

For positive K/T , any pair of columnar configurations with distinct magneti-

zations has zero overlap and hence minimal energy. There is an accidental degen-

eracy, between antiparallel (M (1) = −M (2)) and perpendicular (M (1) ·M (2) = 0)

magnetizations in the two replicas, illustrated in Figs. 5.3(b) and (c) respectively,

which can be resolved by order by disorder [4,118]. The elementary fluctuations,

which involve flipping a single pair of parallel dimers around a plaquette, cost

energy +6|J | in both cases, but additionally may cost energy +2K in the case of

perpendicular magnetization. The free energy is therefore lower in the antiparallel

arrangement, suggesting that this is selected by order by disorder. Our MC re-

2The significance of this effect can be estimated by comparing with a simple approximation
that neglects it and treats the loops as simply costing energy 1

2 |K| per unit length. (A loop
of length ` reduces the number of overlapping dimers by 1

2`.) This model has a proliferation
transition at Tc ' 0.33|K| [110]. In fact, our MC simulations give Tc = 0.714|K| (see Fig. 5.6)
– the additional free-energy cost of loops due to the entropy of overlapping dimers, neglected
in our approximation, means a higher temperature is needed for them to proliferate.
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sults (see Sec. 5.3.4) are indeed consistent with a phase where 〈M (1)〉 = −〈M (2)〉,

which we refer to as columnar & antisynchronized.

Comparison with the single dimer model further allows some quantitative de-

tails of the phase boundaries to be inferred: The critical point separating the

Coulomb and columnar phases for K = 0 is clearly (J/T )c = −0.597 as for

the single dimer model. Similarly, when K/T → −∞, the two replicas are per-

fectly synchronized, and behave as a single dimer model with effective interaction

Jeff = 2J . The critical temperature for columnar ordering is therefore given by

1
2
(J/T )c = −0.299 in this limit. As shown in Fig. 5.2, the critical value of J/T

closely approximates this limiting value already for K/T = −2.

5.2.3 Field theories and critical properties

A continuum description for the Coulomb phase in the single dimer model is given

by replacing the effective magnetic field Br,µ by a continuum vector field B [6,8].

The latter is subject to the constraint ∇ ·B = 0, inherited from the close-packing

constraint on the dimers, and hence can be expressed as B = ∇×A in terms of

the vector potential A. The continuum (Euclidean) action density is then given

by

LSDM =
1

2
κ|B|2 =

1

2
κ|∇×A|2 , (5.1)

where κ is the flux stiffness introduced in Sec. 5.2.2, plus irrelevant higher-order

terms.

In the double dimer model, one can similarly introduce a continuum magnetic

field B(α) for each replica, with the same stiffness κ for each. The coupling K

leads to a term λB(1) · B(2), with λ ∼ K, and so an effective action for the

unsynchronized Coulomb phase can be written as

LDDM =
1

2
κ+|B(+)|2 +

1

2
κ−|B(−)|2 , (5.2)

where B(±) = B(1) ±B(2) and κ± = 1
2
(κ ± λ). The synchronization transition,

at which fluctuations of B(−) are suppressed, occurs when K < 0 and hence

κ− > κ+.

Confinement transitions from the Coulomb phase, such as the synchronization
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and columnar-ordering transitions, can be described by introducing ‘matter’ fields

to enforce the restriction to discrete values [15,119]. Condensation of these fields

then leads, by the Higgs mechanism, to suppression of magnetic-field fluctuations.

The structure of the critical theory is determined by considering representations

of the projective symmetry group (PSG) [120] under which the matter fields

transform.

In the case of the columnar-ordering transition in the single dimer model, the

critical theory is [15,113,114]

LSDM,crit. = LSDM + |(∇− iA)z|2 + s|z|2 + u|z|4 , (5.3)

where s and u are real parameters and z is a two-component complex vector

(which is said to be ‘minimally coupled’ to A). The PSG analysis shows that the

field z transforms as a spinor under real-space rotations and allows one to express

the magnetization as M ∼ z†σz. In this description, the ordering transition

occurs when s is reduced below its critical value and z condenses, giving a nonzero

magnetization and also suppressing fluctuations of the magnetic field via the

Higgs mechanism.

In the double dimer model, the matter field should couple identically to both

replicas. We therefore expect the critical properties at the columnar-ordering

transition in the double dimer model to be the same as in the single-replica case.

While some theoretical aspects of this transition remain unresolved [121], its

properties have been well characterized numerically [11,115,116].

To describe the synchronization transition, one must similarly include a matter

field ϕ whose role is to restrict B
(−)
r,µ to ±1 or 0. Because these values are integers,

the PSG is trivial in this case3, and so the result is a scalar Higgs theory,

LDDM,crit. = LDDM + |(∇− iA(−))ϕ|2 + s−|ϕ|2 + u−|ϕ|4 , (5.4)

where B(−) = ∇ ×A(−). We have not included a field coupling to B(+), which

would remain noncritical across the synchronization transition.

3In the notation of Ref. [15], the background flux is zero, and so the static gauge configuration
ᾱ vanishes.
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In 3D, the scalar Higgs theory has a continuous transition in the XY univer-

sality class but with an inverted temperature axis [110]. (A more direct route

to the same critical theory starts from the loop picture and uses the standard

mapping from integer loops to the XY model [109].) We therefore expect the

synchronization transition to belong to the inverted-XY universality class.

5.3 Numerical results

We have used the worm algorithm to find the phase diagram shown in Fig. 5.2,

and to determine the critical properties of each transition. In this section, we

present our results for each of the phase boundaries in turn, and also for the

nature of the ordered phases at large negative J/T .

5.3.1 Synchronized ←→ Coulomb

We first focus on the synchronization transition, between the synchronized and

Coulomb phases. In particular, we consider the case J = 0, K = −1, and vary

the temperature.

Our data for the flux difference variance Var Φ(−) and normalized confinement

length ξ/L are shown in Fig. 5.4. Both quantities are small (large) at low (high)

temperatures, indicating a phase transition between synchronized and Coulomb

phases (see Sec. 5.2.2). In particular, the high-temperature limit ξ2/L2 ' 0.25

is observed, which closely matches the mean-square separation of (L2 + 2)/4 for

free monomers hopping on an empty lattice [15]. This is evidence for deconfined

monomers in the Coulomb phase.

In contrast to Var Φ(−), the variance of the total flux, Var Φ(+), is large in both

phases, as shown in Fig. 5.5. This confirms that the dimers in each replica remain

disordered, even though relative fluctuations between the two replicas are sup-

pressed. In fact, as |K|/T increases and the replicas become more synchronized,

Var Φ(+) becomes larger. In the limit of perfect synchronization, K/T = −∞,

Φ(1) = Φ(2) and so Var Φ(+) = 4 Var Φ(1), double the value at K = 0, where Φ(1,2)

are independent and their variances add.

In order to classify the phase transition, we use finite-size scaling arguments
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Figure 5.4: Variance of the flux difference Φ(−) = Φ(1) − Φ(2) (left panel) and
square of the normalized confinement length ξ2/L2 (right panel) versus temper-
ature T , for the cubic-lattice double dimer model with J = 0, K = −1, and
different system sizes L. In each case, quadratic fits in the vicinity of the crossing
point are shown (insets). Both quantities are small (large) at low (high) temper-
atures, indicating a phase transition between synchronized and Coulomb phases.
The distinct crossing points imply that the transition is continuous.
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Figure 5.5: Variance of the total flux Φ(+) = Φ(1)+Φ(2) versus temperature T , for
J = 0, K = −1, and different system sizes L. At low temperatures the replicas
are synchronized, but remain fluctuating, and hence Var Φ(+) is still large (∼ L).
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[47]. At the transition of interest, both Var Φ(−) and ξ2/L2 have zero scaling

dimension [11,112], and so for a continuous transition at critical temperature Tc,

obey the scaling forms

Var Φ(−) ∼ fΦ(L1/νt) (5.5)

and

ξ2/L2 ∼ fξ(L
1/νt) , (5.6)

where t = (T − Tc)/Tc is the reduced temperature, ν is the correlation-length

exponent, and fΦ and fξ are universal functions. At the critical temperature

t = 0, Eqs. (5.5) and (5.6) become independent of system size, predicting a

distinct crossing point in MC data at T = Tc. This is observed (see Fig. 5.4,

insets), indicating that the transition is continuous.

In reality, we observe a weak dependence on system size at the critical point,

which may be explained by corrections to scaling. Including the leading-order

correction, Eq. (5.5) becomes

Var Φ(−) ∼ fΦ(L1/νt) + uL−|yu|f̃Φ(L1/νt) , (5.7)

where u is a constant, −|yu| is the RG eigenvalue of the leading irrelevant scaling

operator, and f̃Φ is a universal function. For two system sizes L1 and L2, this

implies a crossing temperature T× scaling as [122,123]

T×(L1, L2)− Tc ∼
L
−|yu|
2 − L−|yu|1

L
1/ν
1 − L1/ν

2

. (5.8)

Fixing the ratio ρ = L2/L1 gives

T×(L1, ρL1)− Tc ∼ L
−|yu|−1/ν
1 , (5.9)

with an identical result applying to the ξ2/L2 crossing point. We determine Tc by

fitting to these expressions with ρ = 2, using quadratic fits in the vicinity of the

crossing point to measure T× for each L1 (insets of Fig. 5.4). From our results,

shown in Fig. 5.6, we obtain consistent critical temperatures Tc = 0.71447(4)

(flux) and Tc = 0.714444(2) (confinement length).
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Figure 5.6: Crossing temperature T× of Var Φ(−) (red) and ξ2/L2 (blue), for pairs
of system sizes L1, L2 in the ratio L2/L1 = 2. Solid lines are fits to Eq. (5.9) for
L1 ≥ 24, from which consistent values for the critical temperature Tc = 0.71447(4)
(flux) and Tc = 0.714444(2) (confinement length) are obtained.

In order to determine the correlation length exponent ν, we evaluate the

temperature derivative of Eqs. (5.5) and (5.6) at the critical point. For Var Φ(−)

this gives
∂

∂T
Var Φ(−)

∣∣∣∣
T=Tc

∼ L1/ν , (5.10)

and one finds the same result for ξ2/L2. The system size dependence of the slope

at Tc is extracted from quadratic fits. The results are shown in Fig. 5.7, and a

fit to Eq. (5.10) yields consistent estimates ν = 0.671(8) (flux) and ν = 0.677(3)

(confinement length). These values are compatible with the 3D XY universality

class, for which ν3DXY = 0.6717(1) [124].

Now equipped with estimates for Tc and ν, we replot the data of Fig. 5.4

against L1/νt in Fig. 5.8. Near the critical temperature, a good data collapse is

obtained for all but the smallest system size. The curves, which represent the

universal functions fΦ and fξ, are consistent (up to normalization) with those in

Fig. 6 of Ref. [15].

As shown in Fig. 5.9 (left panel), a single peak in the heat capacity per site

c is observed at the transition temperature, indicating a single phase transition

between the synchronized and Coulomb phases. To measure the specific heat
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Figure 5.7: Log–log plot of temperature derivative of Var Φ(−) (red) and ξ2/L2

(blue), evaluated at the critical temperature Tc, versus system size L. Solid lines
are fits to Eq. (5.10) for L ≥ 40, from which consistent values for the correlation
length exponent ν = 0.671(8) (flux) and ν = 0.677(3) (confinement length) are
obtained.

exponent α, we consider its scaling at the critical point,

c = c0 + ALα/ν , (5.11)

where c0 represents the regular part, and A is a constant. A fit to this form

in Fig. 5.9 (bottom right panel) yields α/ν = 0.13(11), and using ν = 0.677(3)

(flux) gives a rough estimate α = 0.09(7). In the 3D XY universality class, the

corresponding value is α3DXY = −0.0151(3) [124]. Our results satisfy hyperscaling

α = 2− dν.

We next measure the crossover exponent φ, which can be found by consider-

ing the monomer distribution function Gm [112]. Each MC simulation can only

construct Gm up to an arbitrary multiplicative constant, so we define the ratio

G(L) =
Gm(Rmax;L)

Gm(Rmin;L)
, (5.12)

where |Rmax| ∼ L, |Rmin| = 1, and the system size dependence of Gm has been

shown explicitly. At the critical point, this has scaling form [53]

G(L) ∼ L−2(d−φν ), (5.13)
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Figure 5.8: Flux difference variance Var Φ(−) (top panel) and squared normalized
confinement length ξ2/L2 (bottom panel) versus L1/νt, for J = 0, K = −1, and
different system sizes L. In each case, we have replotted the data of Fig. 5.4 near
the critical point, using values Tc = 0.714444 (obtained from the crossing point of
the confinement length) and ν = ν3DXY = 0.6717. The data collapse is consistent
with a synchronization transition in the 3D XY universality class.

for sufficiently large systems. A fit to this form in Fig. 5.10 yields φ/ν = 2.4820(6),

and using ν = 0.677(3) (confinement length) gives φ = 1.680(8). This value is

compatible with the 3D XY universality class, for which φ3DXY = dν3DXY −

β3DXY = 1.6665(3), using the exponents reported in Ref. [124].

Finally, we consider the same phase boundary, between the synchronized and

Coulomb phases, at points where J 6= 0. The critical point (K/T )c for each J/T ,

plotted in Fig. 5.2, has been obtained from the crossing point of Var Φ(−) for

system sizes L = 16 and L = 24. We expect that the universality class is the

same for each point along the boundary, and have confirmed this for the points

J/T = −0.16 and J/T = −0.24.
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Figure 5.9: Left panel: heat capacity per site c versus temperature T for J = 0,
K = −1, and system size L = 48. A single peak is observed at the critical
temperature Tc = 0.714444 (dashed vertical line), which grows slowly with system
size (top right panel). (Colors indicate different values of L as in Fig. 5.4.) Bottom
right panel: System size dependence at the critical temperature Tc = 0.714444.
The solid line is a fit to Eq. (5.11) for L ≥ 40, from which a value α/ν = 0.13(11)
is obtained.
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Figure 5.10: Log–log plot of G(L), the normalized value of the monomer distri-
bution function Gm, evaluated at the critical temperature Tc = 0.714444, versus
system size L. The solid line is a fit to Eq. (5.13) for L ≥ 40, from which a value
φ/ν = 2.4820(6) is obtained.
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Figure 5.11: Squared normalized confinement length ξ2/L2 versus J/T , for
K/T = −0.2, J/T ' (J/T )c, and different system sizes L. A confinement tran-
sition between the columnar & synchronized and Coulomb phases is not accom-
panied by a distinct crossing point, and is thus not continuous.

5.3.2 Columnar & (Anti)synchronized ←→ Coulomb

As discussed in Sec. 5.2.2, independent replicas (K = 0) exhibit a continuous

transition between the columnar and Coulomb phases [11]. We now consider

columnar ordering of coupled replicas (K 6= 0), i.e., the transition between the

columnar & (anti)synchronized and Coulomb phases. Our results indicate that

columnar ordering is driven first-order when replicas are coupled. (Certain other

additional interactions have previously been shown to have this effect [115,116].)

According to Eq. (5.6), a continuous (confinement) transition is characterized

by a crossing point in ξ2/L2, at the critical temperature. We plot this quantity in

Fig. 5.11, in the vicinity of a transition between the columnar & synchronized and

Coulomb phases. A distinct crossing point is not observed [cf. Fig. 5.4 (insets)],

and hence the transition is not continuous. Similar behaviour is obtained for

Var Φ(±).

Instead, the transition must be first-order. One thus expects a bimodal energy

histogram in the vicinity of the critical point, which can be seen in Fig. 5.12

(red). The same behavior is also obtained for transitions between the columnar

& antisynchronized and Coulomb phases (blue). In contrast, a single peak is

observed for columnar ordering of independent replicas (green), as expected for

a continuous transition.
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Figure 5.12: Histograms of energy per site, E/N , for different values of K/T
and with J/T close to the columnar-ordering transition for each. The system
sizes shown are L = 32 (top panel) and L = 48 (bottom panel). A single peak
at K/T = 0 is consistent with the well-known continuous transition between
columnar and Coulomb phases. The distributions for K/T 6= 0 are mixtures
of two approximately normal distributions, and become more clearly bimodal for
larger L, indicating first-order transitions between columnar & (anti)synchronized
and Coulomb phases.

Six points along this first-order phase boundary are included in the phase

diagram of Fig. 5.2. These have been located by identifying peaks in the heat

capacity per site, using system size L = 32.

5.3.3 Columnar & Synchronized ←→ Synchronized

We next consider the transition between the columnar & synchronized and syn-

chronized phases. In the limit K/T → −∞, this phase boundary corresponds to

columnar ordering of a single dimer model with Jeff = 2J (see Sec. 5.2.2). This

is known to be an (apparently) continuous transition in the tricritical universal-

ity class, and we expect the whole phase boundary to share the same critical

properties as this point.
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Since the flux difference variance Var Φ(−) and confinement length ξ are small

in both (synchronized) phases, we locate the phase boundary using crossing points

in the total flux variance Var Φ(+), for system sizes L = 16 and L = 24. We have

analyzed the points K/T = −2.0 and K/T = −1.2 in greater detail (not shown),

and verified the expected critical properties.

5.3.4 Columnar & (Anti)synchronized phases

Finally, we consider the different possible columnar-ordered phases at negative

J/T and both signs of K/T . To classify these, it is convenient to use the covari-

ance of the replica magnetizations σ12 = 〈M (1) ·M (2)〉, which, deep within the

columnar-ordered region, indicates the relative orientations of the magnetizations.

In the columnar phase at K = 0, the two replicas are independent, and so

σ12 = 〈M (1)〉 · 〈M (2)〉 = 0, since the mean magnetization vanishes by symmetry.

Deep within the columnar & synchronized phase for K < 0, the 6 ground states

with M (1) = M (2) = ±δµ [see Fig. 5.3(a)] dominate, giving σ12 = 1.

For positive K, there are two sets of configurations that minimize the en-

ergy: 6 where the magnetizations are antiparallel, M (1) = −M (2) = ±δµ [see

Fig. 5.3(b)], and 6× 4 = 24 where they are perpendicular, M (1) ·M (2) = 0 [see

Fig. 5.3(c)]. Because the degeneracy between the two sets is accidental (i.e., not

required by symmetry), it is liable to be resolved by order by disorder (ObD).

There are, a priori, three possibilities: ObD favoring antiparallel magnetizations;

ObD favoring perpendicular magnetizations; and no ObD, leaving all orientations

equally likely. For large negative J/T , where columnar order is well established

and so 〈|M (α)|〉 ' 1, these give limiting values of

σ12 =





−1 ObD, antiparallel

0 ObD, perpendicular

−0.2 no ObD.

(5.14)

MC results for σ12 are shown in Fig. 5.13. The expected behaviour is obtained

in the columnar phase (σ12 = 0 whenK/T = 0), and the columnar & synchronized

phase (σ12 → 1 for K/T < 0). In the columnar & antisynchronized phase, the
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Figure 5.13: Covariance of the replica magnetizations σ12 = 〈M (1) ·M (2)〉 versus
K/T , for different values of J/T < 0 and system size L = 8. As explained
in Sec. 5.3.4, σ12 vanishes at K = 0 and approaches +1 in the columnar &
synchronized phase for K/T < 0. Deep within the columnar & antisynchronized
phase, K/T > 0, we expect σ12 to approach one of the values in Eq. (5.14),
shown with dashed lines, depending on the result of order-by-disorder effects. The
evidence indicates that antiparallel magnetizations M (1) = −M (2) are preferred.
(Accessible values of L and |J |/T are limited by loss of ergodicity deep within
the ordered phase.)

data appear to converge towards σ12 = −1 as J/T becomes more negative. This

indicates that ObD selects an arrangement with antiparallel magnetizations, in

agreement with consideration of the elementary fluctuations, as in Sec. 5.2.2.

5.4 Bethe lattice

To gain further insight into the synchronization transition, we consider the double

dimer model on the Bethe lattice, which, we will show, can be solved exactly. This

provides an approximation to the model on the cubic lattice that is in the spirit

of mean-field theory. In particular, we expect it to reproduce the qualitative

behavior correctly, with a critical temperature that approximates the true value,

but to fail to predict the critical properties.

We first consider a ‘Cayley tree’, illustrated in Fig. 5.14, a graph where each

vertex has q neighbors, except for those at the boundaries, and where there

are no closed loops. To avoid contributions from the boundaries, which in the
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Figure 5.14: Cayley tree with coordination number q = 4. The ‘root’ bond, la-
beled d0, has depth n and is connected at each of its vertices to q−1 ‘subbranches’,
with roots labeled d1, of depth n− 1.

thermodynamic limit constitute a finite fraction of the vertices, we define the

Bethe lattice as the part of the Cayley tree that is far away from all boundaries.

A dimer model on the Bethe lattice has dimers occupying the bonds of the lattice

(i.e., the edges of the graph).

Statistical mechanics problems with nearest-neighbour interactions are often

exactly solvable on the Bethe lattice, since the absence of circuits allows one to

formulate a recurrence relation for the partition function. This method has been

used for the Ising model [61], whilst a similar calculation has been performed for

spin ice on the Husimi tree [14,112,125]. Here we apply it to the synchronization

transition on the Bethe lattice.

5.4.1 Noninteracting dimers

To illustrate the method, we begin with a simpler calculation. Consider a single

close-packed dimer model, with no interactions, on the Cayley tree. In this case

the partition function is simply

Z =
∑

c∈C0

1 . (5.15)
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A quantity of interest is the mean dimer occupation number for the central bond,

or root, of the Cayley tree, given by

〈d0〉 =
1

Z

∑

c∈C0

d0 . (5.16)

To begin, the partition function is written as

Z =
∑

d0

[Zn(d0)]2 (5.17)

= [Zn(0)]2 + [Zn(1)]2 . (5.18)

In the first line, the quantity Zn(d0) is the ‘partial partition function’ of the left,

or equivalently right, branch of the Cayley tree, when the root dimer occupation

number is fixed to d0. The index n enumerates the branch depth. The same logic

may be applied to Eq. (5.16), and results in

〈d0〉 =
[Zn(1)]2

[Zn(0)]2 + [Zn(1)]2
. (5.19)

A branch with root d0 and depth n consists of (q− 1) ‘subbranches’, rooted at d1

and with depth n− 1 (see Fig. 5.14). This observation allows the construction of

recurrence relations which connect the partial partition functions of branches of

depth n and n−1. By allowing for all consistent configurations of the subbranches,

while applying (at the roots) the constraint that each site should be covered by

exactly one dimer, one finds

Zn(0) = (q − 1)Zn−1(1) [Zn−1(0)]q−2 (5.20)

Zn(1) = [Zn−1(0)]q−1 . (5.21)

It is convenient to introduce the variable

xn =
Zn(0)

Zn(1)
, (5.22)
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for which Eqs. (5.20) and (5.21) imply

xn =
q − 1

xn−1

. (5.23)

Next we consider only sites on the Bethe lattice, deep within the Cayley tree,

by taking the thermodynamic limit n → ∞. Here, the solution is a fixed point

satisfying xn = xn−1 = x, so that Eq. (5.19) may be re-written

〈d0〉 =
1

1 + x2
, (5.24)

whilst Eq. (5.23) becomes

x =
q − 1

x
. (5.25)

This has solution

x =
√
q − 1 , (5.26)

and substitution into Eq. (5.24) yields

〈d0〉 =
1

q
. (5.27)

This is given, as expected, by the ratio of the number of dimers to the number of

bonds.

In reality, the recurrence relation of Eq. (5.23) does not converge towards

its fixed point in the thermodynamic limit, but instead oscillates indefinitely.

To perform a more rigorous treatment, one can permit monomers with a small

nonzero fugacity z, modifying Eq. (5.23) to

xn =
q − 1

xn−1

+ z . (5.28)

This recurrence relation does converge in the thermodynamic limit, and Eq. (5.27)

is easily retrieved by subsequently taking the limit z → 0.

Using the same approach, one can also calculate the response to monomer

insertion, which, as discussed in Sec. 5.2.2, allows one to distinguish confined

and deconfined phases. The monomer distribution function Gm involves a pair of

monomers and cannot easily be calculated using the recurrence relation. Instead,

134



we consider the corresponding quantity for a single monomer,

Ψm =
Zm

Z
, (5.29)

where Zm =
∑

c∈C(r+) e−E/T is the partition function with a monomer inserted

at r+. This takes the form of an expectation value (specifically, of a monomer

insertion operator [121]) and we therefore refer to it as the ‘monomer expectation

value’. While it vanishes due to the requirement of charge neutrality when PBCs

are applied, it can be nonzero with open boundary conditions, including on the

Bethe lattice.

Suppose r+ is taken as the left side of the root d0. Then the left (right) branch

of the Cayley tree ‘sees’ an occupied (unoccupied) root, and the system has

partition function Zm = Zn(1)Zn(0). The partition function without monomers

Z is again given by Eq. (5.18). From the definition of Eq. (5.22), and its solution

in Eq. (5.26), one obtains

Ψm =

√
q − 1

q
. (5.30)

The result is nonzero, indicating that an isolated monomer can occur with fi-

nite free-energy cost ∆Fm = −T ln Ψm. Monomers are therefore deconfined, as

expected in the noninteracting dimer model.

5.4.2 Synchronization transition

Now consider the double dimer model of Eq. (2.2) on the Cayley tree. Since

parallel pairs of dimers cannot be defined, we set J = 0, leaving configuration

energies

E = K
∑

l

d
(1)
l d

(2)
l , (5.31)

and a partition function given by Eq. (2.3). The quantity of interest is the mean

energy per site deep within the interior of the tree, which we take as its value on

the root bond,
〈E〉
N

=
q

2
K〈d(1)

0 d
(2)
0 〉 , (5.32)
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assuming translational symmetry (at least on average). We therefore require the

correlation function

〈d(1)
0 d

(2)
0 〉 =

1

Z

∑

c(1)∈C0

c(2)∈C0

d
(1)
0 d

(2)
0 e−E/T (5.33)

on the same bond. This may be calculated in analogy with Sec. 5.4.1, although

the algebra is more involved.

The partition function is written as

Z =
∑

d
(1)
0 ,d

(2)
0

e−kd
(1)
0 d

(2)
0

[
Zn

(
d

(1)
0 , d

(2)
0

)]2

(5.34)

= [Zn(0, 0)]2 + [Zn(1, 0)]2 + [Zn(0, 1)]2 + e−k [Zn(1, 1)]2 , (5.35)

where the reduced coupling k = K/T has been introduced for convenience. In the

first line, the quantity Zn

(
d

(1)
0 , d

(2)
0

)
is the ‘partial partition function’ of the left,

or equivalently right, branch of the Cayley tree, when the root dimer occupation

numbers are fixed to d
(1)
0 and d

(2)
0 . Similarly, Eq. (5.33) may be written

〈d(1)
0 d

(2)
0 〉 =

e−k [Zn(1, 1)]2

[Zn(0, 0)]2 + [Zn(1, 0)]2 + [Zn(0, 1)]2 + e−k [Zn(1, 1)]2
. (5.36)

In order to construct recurrence relations, one must again allow for all possible

configurations of the subbranches, while applying (at the roots) the constraint

that each site should be covered by exactly one dimer in each replica. The results

are

Zn(0, 0) = (q − 1)e−kZn−1(1, 1) [Zn−1(0, 0)]q−2 +

(q − 1)(q − 2)Zn−1(1, 0)Zn−1(0, 1) [Zn−1(0, 0)]q−3
(5.37)

Zn(1, 0) = (q − 1)Zn−1(0, 1) [Zn−1(0, 0)]q−2 (5.38)

Zn(0, 1) = (q − 1)Zn−1(1, 0) [Zn−1(0, 0)]q−2 (5.39)

Zn(1, 1) = [Zn−1(0, 0)]q−1 . (5.40)
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Next we define the variables




un

vn

wn


 =

1

Zn(1, 1)




Zn(0, 0)

Zn(1, 0)

Zn(0, 1)


 (5.41)

and take the thermodynamic limit. The solutions are again fixed points, and

Eq. (5.36) may be rewritten

〈d(1)
0 d

(2)
0 〉 =

e−k

u2 + v2 + w2 + e−k
, (5.42)

whilst Eqs. (5.37)–(5.40) translate into a system of coupled, nonlinear equations

given by

u =
q − 1

u

[
e−k + (q − 2)

vw

u

]
(5.43)

v = (q − 1)
w

u
(5.44)

w = (q − 1)
v

u
. (5.45)

The solutions to this system depend on the value of the reduced coupling k.

For k ≤ kc = − log(q − 1), there is a single solution




u

v

w


 =




√
(q − 1)e−k

0

0


 , (5.46)

whereas, for k > kc, we find additionally




u

v

w


 =




q − 1√
q−1
q−2

(q − 1− e−k)
√

q−1
q−2

(q − 1− e−k)


 , (5.47)

which, as we have confirmed by a linear stability analysis, is the only stable

solution. (Note that the critical value kc is negative – as expected, the transition

occurs for attractive coupling K < 0.)

Substitution of this result into Eq. (5.42), and then into Eq. (5.32), yields the
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final result for the mean energy per site of

〈E〉
N

=





K

2

(q − 2)e−k

(q − 1)2 − e−k
for k ≥ kc

K

2
k ≤ kc.

(5.48)

In line with xn in Sec. 5.4.1, the recurrence relations for un, vn and wn deriv-

able from Eqs. (5.37)–(5.40) may oscillate in the thermodynamic limit. Again,

convergence is achieved by allowing monomers with fugacity z and taking the

limit z → 0.

In Fig. 5.15 (top panel) we show the temperature dependence of the mean

energy per site for a Bethe lattice with the same coordination number as the cubic

lattice, q = 6, and with K = −1. There is a second-order phase transition at

Tc = 1/ log(5) ' 0.62, characterized by a kink in the mean energy per site. Note

that on the cubic lattice, our corresponding result (with J = 0) is Tc ' 0.71. The

low-temperature phase is always perfectly synchronized, since there is an energy

K for every dimer in a given replica. The high-temperature phase, which we

identify with the Coulomb phase, is unsynchronized. In particular, when k = 0,

the mean energy per bond is K/q2. This is sensible, because in this limit the

replicas are independent, and from Eq. (5.27) the probability of double bond

occupation is 1/q2.

To confirm our identification of the high-temperature solution with the (un-

synchronized) Coulomb phase, we return to the monomer expectation value Ψm

defined in Eq. (5.29). In this case, we consider the partition function with a

monomer in a single replica (again on the left side of the root d0), which is

Zm = Zn(1, 0)Zn(0, 0) + Zn(1, 1)Zn(0, 1) , (5.49)

while the partition function without monomers Z is given by Eq. (5.35). From

the definitions of Eq. (5.41), and their solution in Eqs. (5.46) and (5.47), one

obtains

Ψm =





√
(q − 1)(q − 2)(q − 1− e−k)

(q − 1)2 − e−k
for k ≥ kc

0 k ≤ kc.

(5.50)

138



0 1 2 3

-0.5

-0.4

-0.3

-0.2

-0.1

0 1 2 3

0

0.1

0.2

0.3

0.4

Figure 5.15: Mean energy per site 〈E〉/N (top panel) and monomer expectation
value Ψm (bottom panel), versus temperature T for the double dimer model on a
Bethe lattice with the same coordination number as the cubic lattice, q = 6. In
this case, there are no interactions within each replica (i.e., J = 0), and we set
K = −1. A second-order phase transition at Tc = 1/ log(5) ' 0.62 separates a
low-temperature (perfectly) synchronized phase, in which monomers are confined
(Ψm = 0), from a high-temperature unsynchronized phase, in which monomers
are deconfined (Ψm > 0).

The result is shown in Fig. 5.15 (bottom panel), using the same parameters

as for the mean energy per site. In the low-temperature synchronized phase

(k < kc < 0), Ψm = 0 and the free-energy cost for an isolated monomer, ∆Fm =

−T ln Ψm, is infinite, while in the high-temperature unsynchronized phase, Ψm >

0 and ∆Fm is finite. This qualitative distinction, equivalent to the criterion based

on Gm introduced in Sec. 5.2.2, implies that the synchronization transition on the

Bethe lattice is a bona fide confinement transition.

While the model on the Bethe lattice with q = 6 gives a reasonable approxi-

mation to the critical temperature on the cubic lattice, it does not reproduce the

correct critical behavior. This is directly evident for the heat capacity, ∂
∂T
〈E〉,

which, according to Eq. (5.48), has a discontinuity at T = Tc, as expected for
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a mean-field theory. For the monomer expectation value, the duality mapping

to the XY model [112] gives Ψm ∼ tβ for t > 0, where β is the magnetization

exponent. From Eq. (5.50), we find the mean-field value β = 1
2
.

5.5 Conclusions

We have studied the phases of the double dimer model on the cubic lattice using

a combination of theoretical arguments and MC simulations. As on the square

lattice, we find a synchronization transition at a critical coupling between the

replicas, which has no local order parameter but can be characterized through

the confinement of monomers.

In particular, our detailed finite-size scaling analysis of the synchronization

transition yielded critical exponents compatible with the 3D XY universality

class, in line with our expectations from both field theory and the loop picture.

An exact solution on the Bethe lattice provided a reasonable approximation to

the critical temperature, but with mean-field critical exponents.

It is interesting to compare the qualitative phase structure in 2D and 3D. Two

notable differences are the absence of direct transitions between the Coulomb and

columnar phases for coupled replicas in 2D, as well as the lack of antisynchronized

and staggered phases in 3D. Moreover, in the 3D case we have demonstrated that

replica coupling renders columnar ordering first order, which has no analog in

2D.
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Chapter 6

Conclusions

In this thesis, we have studied an interesting example of a non-LGW phase transi-

tion in the double dimer model, in both two and three dimensions. In the absence

of a local order parameter, we have used the concepts of topological order and

confinement to distinguish the two phases. By also including interactions be-

tween parallel dimers within each replica, we have seen that this system exhibits

a particularly rich phase structure.

In Chapter 2, we focused on the two-dimensional case, namely the square and

honeycomb lattices. Here, our symmetry-based analysis of an effective height

theory showed that, in both cases, the synchronization transition is BKT type

and occurs at zero critical coupling. Considerable attention was also devoted to

a MC study of the transition between the Coulomb and staggered phases.

Chapter 3 then commenced an analytical calculation of the phase bound-

ary near the noninteracting point, as measured in Chapter 2. We mapped the

square-lattice dimer model to a quantum Hamiltonian in 1 + 1 dimensions, and

diagonalized this to obtain a free-fermion form. As an aside, we were able to use

this to reproduce known exact results previously obtained using Pfaffian methods.

The next stage in our calculation of the phase boundary was the subject

of Chapter 4. By bosonizing the free-fermion Hamiltonian of Chapter 3, we

recovered the Gaussian height theory of Chapter 2, but with known values for the

phenomenological parameters. We then constructed and bosonized interaction

operators, and used an RG analysis to determine the shape of the phase boundary

at linear order in the couplings.
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Finally, in Chapter 5 we considered the three-dimensional case, specifically

that of the cubic lattice. The main focus here was a finite-size scaling analysis of

the MC data, which yielded accurate estimates for the critical temperature and

two critical exponents, the latter being consistent with the 3D XY universality

class. Furthermore, we solved the double dimer on the Bethe lattice exactly,

which provided an approximation in the spirit of mean-field theory.

Extensions of the work in this thesis to dimer models on other bipartite lattices

are straightforward. By adapting the synchronization criterion introduced here,

analogous transitions can also be expected in other systems consisting of two

coupled replicas of a fractionalized phase. These include the Coulomb phase in

ice models [5,6], where a pair of monopoles in one replica would similarly become

confined upon synchronization.

Experimental realizations of such transitions could be possible in various frus-

trated systems. In 2D, these include magnetic materials with a bilayer structure

(like the bilayer TLIAFM of Sec. 2.3) as well as nanomagnet arrays [126], which

have been used to simulate ice models with a variety of geometries, constructed in

a double-layer configuration. A 3D synchronization transition could be possible

between magnetic moments of two types, for example, in pyrochlore oxides with

magnetic ions on both the A and B sites of the crystal structure [127]. In these

cases, one expects a thermodynamic phase transition (see, e.g., Fig. 5.9), but

with no magnetic ordering. We leave the detailed study of possible experimental

signatures to future work.

A natural extension of the system studied here would involve multiple replicas

α ∈ {1, 2, . . . , n}. With sufficiently strong coupling between ‘adjacent’ replicas

α and α + 1, this could be interpreted as a trajectory either of the classical

dimer model imbued with dynamics or the Suzuki–Trotter decomposition of the

partition function for a quantum dimer model [128]. The double-loop algorithm

introduced in Sec. 2.4.2 could be extended to the case of multiple replicas, giving

a method that is similar (at least in spirit) to the membrane algorithm [129]

previously applied to quantum ice. Alternatively, coupling one replica to n others

and taking the limit n→ 0 [47] provides a way to introduce a quenched disorder

potential on the links of the single dimer model.
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[72] P. Jordan and E. Wigner. Über das Paulische Äquivalenzverbot. Zeitschrift

für Physik, 47(9-10):631–651, 1928.

[73] Elliott Lieb, Theodore Schultz, and Daniel Mattis. Two soluble models of

an antiferromagnetic chain. Annals of Physics, 16(3):407 – 466, 1961.

[74] S. Sachdev. Quantum phase transitions. Cambridge University Press, 2011.

[75] G. G. Cabrera and R. Jullien. Role of boundary conditions in the finite-size

Ising model. Phys. Rev. B, 35:7062–7072, 1987.

[76] D. B. Abraham, L. F. Ko, and N. M. Švrakić. Ising model with adjustable
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