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Abstract 

 

Ancient, veteran and notable trees are ecologically important keystone organisms and have tangible 

connections to folklore, history and sociocultural practices. Although found worldwide, few countries 

have such a rich history of recording and treasuring these trees as the UK, which has resulted in the 

formation over the past 15 years of a large, comprehensive database of ancient and other noteworthy 

trees, the Ancient Tree Inventory (ATI). Although the ATI contains over 200,000 recorded trees, there 

are still thought to be many more that are undiscovered across the UK, and information about their 

status, condition and distribution is lacking. The primary aim of this thesis is to use the ATI to gain 

novel and detailed insights into the true distribution of ancient and veteran trees across the UK, 

important predictors of their presence, and key habitat types in which they are found. The ATI suffers 

many of the problems of large species databases, including sampling bias, which is a major focus of 

this thesis. To address this problem, sampling bias is first identified and quantified, and then established 

and novel bias correction methods are employed to improve predictions of ancient and veteran tree 

distributions. By combining mathematical models at various scales, from specific habitats to the whole 

of England, with additional independent data from desk and field surveys, robust accurate distribution 

maps of ancient and other noteworthy trees are produced and verified. The models suggest that wood-

pasture is a particularly important habitat for ancient and veteran trees, and that their distributions are 

highly influenced by historical features of the environment and human factors. A key result emerging 

from multiple chapters of this thesis is the potentially large number of undiscovered ancient and veteran 

trees predicted across England: diverse alternative models produced similar and impressive total 

estimates of around two million trees. These results can be used to inform the conservation and 

protection of ancient trees, and highlight the need for more targeted surveying, tree planting and 

implementation of policy measures to ensure their persistence and survival into the future.  
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Chapter 1: Introduction 

 

“It is not so much for its beauty that the forest makes a claim upon men's hearts, as for that subtle 

something, that quality of air that emanation from old trees, that so wonderfully changes and renews a 

weary spirit”  

Robert Louis Stevenson (1875-6) 

 

1.1 What are ancient trees? 

Trees are thought to grow and age in three phases (White, 1998; Read, 2000; ATF, 2008a) (Fig. 1.1). 

First is formative growth occurring from seedling establishment until maturity, when there are rapid 

increases in crown spread, girth, height and leaf area. The mature phase is reached once the crown is at 

maximum size; this is generally after 40 – 100 years depending on the tree species (White, 1998). 

Finally the tree enters the ancient (or senescent) phase, where the characteristics associated with ancient 

or veteran trees emerge, including a hollowing trunk, holes and cavities, deadwood in the canopy, bark 

loss and the presence of fungi, invertebrates and other saproxylic organisms (Read, 2000; Rust and 

Roloff, 2002; ATF, 2008a; Owen & Alderman, 2008). Each phase length differs depending on 

environmental conditions, management techniques and tree species (Woodland Trust, 2001; Fay, 2002; 

ATF, 2008a; Owen & Alderman, 2008).  

 

Fig. 1.1 The three main phases of the ageing process of trees; young (formative), mature and ancient (senescent). 

The ancient phase can often be the longest phase, and even if a tree appears to be dead, it may have many years 

of life left, (ATF, 2008a).  
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In the literature, the terms ‘veteran’, ‘notable’, ‘champion’, ‘large old’ and ‘heritage’ are often used 

interchangeably with ‘ancient’ (Read, 2000; Fay, 2002; Pautasso & Chiarucci, 2008; Lindenmayer et 

al., 2012), which has led to confusion about why a tree is of particular interest (ATF, 2008a). In the UK, 

the Woodland Trust (WT), one of the largest woodland and ancient tree conservation charities, 

recognised the need to separate and define these terms to provide clarity when classifying trees in 

relation to age, size or other characteristics (Woodland Trust, 2001; ATF, 2008a; Lonsdale, 2013) 

(Table 1.1). Subsequent uses of these terms in this thesis will follow the WT definitions. As there is 

overlap between the terms ‘ancient’ and ‘veteran’ (i.e. all ancient trees are also veteran trees), any use 

of the term ‘veteran’ in this thesis refers to only trees that are ‘non-ancient veterans’. 

 

1.2 Value and importance of ancient and other noteworthy trees 

Like all trees, trees showing ‘veteran characteristics’ contribute to ecosystem services such as carbon 

storage, water and microclimate regulation (Rubino & McCarthy, 2003; Lachat et al., 2013; Sist et al., 

2014).  They are also an important source of decaying and dead wood, a rare and declining habitat 

throughout Europe (Siitonen, 2001; Butler et al., 2002). Fungi are the main dead wood decomposers 

(Cooke, 1984; Boddy, 2001), and influence the creation of the hollowing trunk, crevices and water-

filled pools that support a diverse range of saproxylic invertebrates, especially beetles (Speight, 1989; 

Seibold et al., 2018). It is estimated that 6% of British invertebrate species rely solely on decaying wood 

ecosystems (Alexander, 1999). Ancient trees also support a diverse range of epiphytes, including 

mosses, lichens and liverworts (Read, 2000; Butler et al., 2002; Ranius et al., 2008). 

 

The cracks and crevices within the decaying branches and stumps of ancient trees are ideal for bats, and 

all 16 UK species are associated with ancient trees in some way (Rasey, 2004). Similarly, birds roost, 

nest and feed in the hollows and crevices of ancient and veteran trees. Reptiles and amphibians, in 

particular grass snakes (Natrix natrix), and mammals such as red squirrels (Sciurus vulgaris), 

hedgehogs (Erinaceinae sp.), bank voles (Myodes glareolus), wood mice (Apodemus sylvaticus), 

harvest mice (Micromys minutus), common dormouse (Muscardinus avellanarius) and even wildcat 

(Felis silvestris) make use of ancient and veteran tree habitats (Schmeller et al., 2009; Humphrey, 2005). 
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Many ancient and other noteworthy trees have famous cultural and historical ties, which present 

valuable recreational and tourism opportunities (Rackham, 1994; Lonsdale, 2013). One of the oldest 

UK trees, often reported to be around 2000-2500 years old, is the Ankerwycke Yew (Taxus baccata) in 

Berkshire, where King John is rumoured to have signed the Magna Carta in 1215 (Bevan-Jones, 2016). 

Other well-known trees include the Major Oak (Quercus robur) in Sherwood Forest, the most visited 

tree in the UK (Everett & Parakoottathil, 2018) which is associated with the story of Robin Hood; the 

most reliable estimates date it around 800 - 900 years old (Farjon, 2017). Outside England, the 300-

year-old Scottish Birnam Oak (Quercus petraea) is thought to be a relic of Birnam Wood, famously 

mentioned in Shakespeare’s Macbeth (Woodland Trust, undated). 

 

Table 1.1 Definitions and distinctions between different terms used when discussing ancient and other noteworthy 

trees according to the Woodland Trust position statement (2001) and the ‘Ancient tree guide 4: What are ancient, 

veteran and other trees of special interest?’ (ATF, 2008a).  

Term Description 

Veteran 

Any tree showing ‘veteran’ characteristics (e.g. hollow trunk, crown retrenchment, 

crevices and the presence of saproxylic organisms). All ancient trees are veteran trees, but 

there are some younger trees also classed as veterans that show ‘veteran’ characteristics 

due to damage or disease. Veteran trees might also be classed as champion or heritage 

trees. Throughout this review, all references to a ‘veteran tree’ are in relation to only trees 

that are ‘non-ancient veterans’.  

Ancient 

Any tree showing ‘veteran’ characteristics and that is older than most individuals of the 

same species. Age is estimated based primarily on girth (as in White, 1998), but also 

considering the environment and growing conditions of the tree. Approximate age-girth 

relationships are available for the most common UK tree species (ATF, 2008a). All 

ancient trees are veteran and heritage trees, and may or may not be champion trees. 

Notable The largest or tallest tree per species in a defined local area e.g. a park or garden. A 

notable tree has no obvious ‘veteran’ characteristics. 

Champion The tallest tree or the tree with the largest girth per species in the UK (or other region e.g. 

England). These trees may or may not be ancient, veteran or heritage trees. 

Heritage 
Trees with connections to historical or cultural events or trees that provide high aesthetic 

value. These trees may or may not also be ancient, veteran, notable or champion trees. 

 



15 

 

Ancient and ageing trees also offer insights into historical and cultural vegetation and land management 

techniques used in different areas, such as coppicing or pollarding. These techniques involve the 

periodic cutting of the trunk to just above ground level (coppicing) or breast height (pollarding), from 

which regrowth is harvested at intervals (Rackham, 1967; Rackham, 1994; Fuller & Warren, 1993; Petit 

& Watkins, 2003). Both methods can produce stools (coppices) or trunks (pollards) of extreme ages 

(Lewington, 2012). A tree that has never undergone either of these procedures is usually classed instead 

as a ‘maiden tree’ (single-stemmed tree), and often is not able to obtain the same longevity (Petit & 

Watkins, 2003). The use of these techniques varies spatially and temporally in the UK, and so can 

inform us about changes in management and landscaping practice (Read, 2000; Barnes et al., 2017). 

Ancient trees can also be historical relics of boundaries, hedgerows, commons, ancient woodlands and 

forests, avenues and ancient burial grounds (Stahle, 1996; Lonsdale, 2013, Farjon, 2017).  

 

Additionally, although many ancient or veteran trees are hollow so that dendrochronological analysis 

of the trunk about tree age and condition is difficult, dead stumps or fallen branches can be used to show 

evidence of changes in temperature, water availability, disease outbreaks and mechanical damage over 

time (Kelly et al., 1992; Briffa, 2000; Cherubini et al., 2002; Ballesteros et al., 2010). Finally, ancient 

and ageing trees are not only relics of the past, but also important genetic resources for the future (Read, 

2000; Lonsdale, 2013). Ancient trees display an unusual degree of phenotypic plasticity and have 

clearly demonstrated their ability to survive disease outbreaks and environmental stress by virtue of 

their age. These trees may harbour genes for pathogen resistance or stress tolerance (Major, 1967), 

which we might consider exploiting when planting the next generation of veteran and ancient trees. 

 

1.3 Threats to ancient and ageing trees and associated organisms 

Ancient and veteran trees are in global decline, with losses reported in Australia (Fischer et al., 2010), 

America (Gibbons et al., 2008), South America (Laurance et al., 2000) and Europe (Linder & Östlund, 

1998; Jönsson et al., 2009). The key threats to the persistence and future of ancient tree populations are 

the lack of appropriate tree planting (Read, 2000) and elevated mortality (Gibbons et al., 2008; Le Roux 

et al., 2014) resulting from poor management e.g. the end of traditional techniques such as coppicing 
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and pollarding (Lonsdale, 2013), urbanisation, and the intensification of agricultural practices (Read, 

2000; Fay, 2004; ATF, 2005). Increasing field sizes, soil compaction, over-grazing and fertiliser 

applications are all particularly detrimental to ancient trees and associated organisms (Read, 2000; Fay, 

2004; ATF, 2005). 

 

There is uncertainty around how ancient and veteran trees and their dependent species will be affected 

by climate change (Ranius, 2002; Jonsson et al., 2005; Ranius, 2006; ATF, 2008b). The dispersal 

abilities of saproxylic species in the face of climate change are uncertain (Jonsson et al., 2005; Ranius, 

2006) and we may be at risk of losing these dead wood specialists (Sebek et al., 2013). Although ancient 

trees have shown their ability to survive over many past centuries, they may be less able to cope with 

rapid environmental and climate changes predicted in the future (Butler et al., 2002; ATF, 2008b). A 

further impact of climate change and globalisation is the spread of tree-associated diseases and pests 

(Brasier, 1996; Holdenrieder et al., 2004; Morin et al., 2007). Diseases such as Ash dieback 

(Hymenoscyphus fraxineus) have had devastating impacts on UK trees since 2000 (Mitchell et al., 

2014).  

 

1.4 Ancient and veteran trees in the UK 

The UK ancient and veteran tree population is of global renown and interest, and there is a large amount 

of information about certain aspects of the trees including their management and associated 

arboriculture practices (Read, 2000; Fay, 2002, 2004; Lonsdale, 2013), particular sites with high 

numbers of ancient and ageing trees (Mountford & Peterken, 2003; Read et al., 2010; Hall & Bunce, 

2011), particular genera such as Oak (Quercus) or Yew (Taxus) (Moir, 2013; Farjon, 2017) and their 

historic context in the UK landscape (Rackham, 1986, 1994; Fulford, 1995; Butler et al., 2002; Farjon, 

2017). Yet despite all this, there is still a lack of consensus and discussion about the large-scale 

abundance and distribution of ancient, veteran and other noteworthy trees in the UK.  

 

Particular sites that are most well-known for harbouring ancient and veteran trees are wood-pastures 

and historic parklands (Rackham, 1986, 1994; Hartel et al., 2013; Farjon, 2017). Wood-pastures are 
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generally characterised as an open, productive land-use type that combines livestock grazing with 

scattered, actively managed trees (Rackham, 1994; Quelch, 2002). The UK in particular is thought to 

have some of the highest concentrations of wood pastures in Europe (Rackham, 1994), possibly due to 

the continuity of land ownership (Butler et al., 2002): it is a recognised UKBAP priority habitat (BRIG, 

2011). Another habitat that might include large numbers of ancient trees is ancient woodland (woodland 

that has existed since at least the 16th century and therefore unlikely to be of plantation origin: Peterken, 

1977), yet this has undergone extensive conversion to plantation or other land uses across England and 

Wales since 1930, and was reported to cover a mere 2.6% of land in 1992 (Spencer & Kirby, 1992). 

Ancient trees are also found within farmland, in urban areas, as landscape boundaries, in tree avenues, 

on church grounds, in hedgerows or orchards and on private land or gardens (Rackham, 1994; Read, 

2000; Woodland Trust, 2017), yet little is known about the distribution or state of these trees.  

 

Although there is still uncertainty about the overall distribution and condition of ancient and veteran 

trees, the UK has substantially more information than other countries due to the long-term collation of 

tree records from a citizen-science project, the Ancient Tree Inventory (ATI) 

(https://ati.woodlandtrust.org.uk/). Other ancient tree inventories do exist covering a variety of 

geographical areas around the world. These range from global databases such as ‘Monumental trees’ 

(https://www.monumentaltrees.com) containing ~40,000 large, tall, old or notable trees across the 

world, to more localised regional databases such as the Remarkable Trees of the Brussels-Capital 

Region (http://bomen-inventaris.irisnet.be) which contains around ~5,800 records. Nevertheless, none 

of these datasets come close to the size or detail of the ATI. With over 200,000 trees recorded to date, 

the ATI provides an opportunity to extensively examine our current understanding of UK ancient and 

ageing tree distributions and condition, from which wider inferences about global ancient tree ecology 

can be made. 

  

1.5 Aims of thesis 

Citizen science data (i.e. data collected by members of the public) are usually stored in online databases, 

museums and herbariums, and are valuable resources of species records spanning large scales and long 
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time periods. In ecology, conservation and biogeography, this type of data is often difficult to collect 

due to financial, geographical and time constraints, so public databases such as the ATI are useful 

sources of species data for scientific research (Schmeller et al., 2009; Devictor et al., 2010; Tulloch et 

al., 2013). The ATI provides substantial information about the distribution, condition and attrition of 

ancient, veteran and notable trees across the UK. 

  

Unlike other UK citizen science projects such as the British Trust for Ornithology’s (BTO) Big Garden 

Bird Watch, or the UK Butterfly Monitoring Scheme, the ATI remains largely under-used and under-

appreciated in the scientific community, despite its longevity and number of records. This is likely due 

to uncertainty regarding the reliability, usefulness and limitations of the ATI: issues that this thesis will 

evaluate and address. In Chapter 2 of this thesis I introduce the ATI database in detail and provide a 

descriptive and statistical summary of different components of the dataset in order to outline the current 

known status and distribution of UK ancient and other noteworthy trees. I also summarise some of the 

issues and problems that are potentially encountered when using the ATI for research, and attempting 

to infer about the current distribution of trees. I finally introduce several other common datasets that I 

use in subsequent chapters of the thesis. 

 

A common method to investigate the true distribution of a species is Species Distribution Modelling 

(SDM), also called Ecological Niche Modelling (ENM). SDM has been successfully used to predict 

range shifts in relation to climate change (Beaumont et al., 2007; Chen et al., 2011), the spread of 

invasive species (Václavík & Meentemeyer, 2012) and has been useful in the development and 

deployment of many conservation projects (Clement et al., 2014; Mota-Vargas & Rojas-Soto, 2016). 

SDM is performed through the assessment of known species presence (and sometimes absence) records 

in relation to environmental or climatic variables. The suitability of locations for this species - their 

fundamental niche and geographic range - can then be predicted based on climate/ environmental 

characteristics of other locations (Araújo & Guisan, 2006; Hijmans & Graham, 2006; Mateo et al., 

2011). There are a variety of modelling techniques available, with Maximum Entropy (MaxEnt) 
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modelling being by far the most widely used due to its ability to use presence-only data and to cope 

with small datasets (Hernandez et al., 2006; Phillips et al., 2006; Elith et al., 2006). 

 

Distribution models of ancient, veteran and notable tree distributions across the UK using the ATI could 

provide insight into the true distribution of the trees and important environmental determinants of tree 

presence, as well as highlighting areas with high conservation potential, for example with high 

suitability for planting trees to become future ancient trees, or current hot-spots of ancient trees that 

need protecting. The next parts of this thesis use different approaches to SDM in order to produce the 

most robust, accurate distribution maps of ancient trees. In Chapter 3, I firstly take a targeted SDM 

approach by concentrating on a particular habitat with known connections to ancient trees: wood-

pasture. By modelling ancient tree abundance in wood-pastures across England in relation to 

environmental, historic and anthropogenic predictors, wood-pastures with high numbers of 

undiscovered ancient trees are identified. In this chapter I also introduce my first novel method of model 

verification: using a series of historic Ordnance Survey (OS) maps over time to estimate tree abundance 

in randomly selected wood-pastures and verify model predictions. 

 

One of the main problems with using citizen-science data such as the ATI in SDM is sampling bias 

(also called sample selection or survey bias), where certain temporal periods, geographical areas or taxa 

are sampled more intensively or frequently than others (Phillips et al., 2009; Dickinson et al., 2010; 

Bird et al., 2014). Sampling bias in SDM can lead to over- or under-estimation of important species-

environment relationships (Syfert et al., 2013), meaning that predicted distribution maps may partly 

represent survey effort rather than species niche requirements (Phillips et al., 2009). Therefore, if 

sampling bias is not accounted for, predictive SDM maps of ATI records may not reflect the true 

distribution of the trees. Chapter 4 presents a detailed literature-focused discussion of this issue in SDM 

for scientific research and the advantages and disadvantages of alternative methods of bias correction. 

In Chapter 4, I also introduce the problem of sampling bias in the ATI and carry out a short statistical 

investigation where I quantify potential sampling bias predictors, so that the optimal bias correction 
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methods can be applied in subsequent chapters in order to produce the most accurate distribution maps 

of ancient and veteran trees.   

 

Based on findings from Chapter 3 and detailed examination of the literature about sampling bias 

correction, in Chapter 5 I present an alternative to the common occurrence-based SDM methods such 

as MaxEnt. I show through a series of simulations how aggregating presence-only or presence-absence 

species occurrence data into counts of abundance, and then fitting zero-inflated models, can produce 

robust predictive species distribution maps free from sampling bias. This allows not only removal of 

bias, but also study of the causes of bias, something which most modelling methods currently are unable 

to do. In Chapter 6 I then apply this method to the ATI, along with several other common bias correction 

methods (as outlined in Chapter 4) in order to evaluate the effectiveness of each one in relation to the 

ATI. This approach builds on Chapter 3 and expands the scale of the research from one habitat to all 

habitats across England, with modelling occurring at a 1-km resolution. In this chapter, I also introduce 

my second method of model verification, additional randomised field surveys using trained volunteers 

that were carried out over autumn and winter of 2020, providing independent data to evaluate model 

predictions. Based on this independent field validation, I calculate estimates of the potential total 

number of ancient and veteran trees in England. 

 

My final research chapter (Chapter 7) investigates the use of alternate model predictors based on habitat 

and landscape structure in SDM, also at a 1-km resolution across England. Quantifying landscape 

structure involves the use of landscape metrics, which mathematically describe aspects of the landscape 

at different scales and complexities (Li & Wu, 2004), and their use in SDM has been shown to improve 

model performance by adding functional ecological information. In this chapter I compare the use of 

landscape metrics in SDM with models using only environmental predictors, and models using 

combinations of the two. Landscape metrics were calculated based on an alternative data-set, the 

National Canopy Map (also called National Tree MapTM) (Bluesky, 2015), which is a map of all canopy 

higher than 3 m across England and Wales constructed from stereo aerial photography and digital 

elevation models. I also use the data collected from the field verification to evaluate model predictions 
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from the landscape metric distribution models, and to create similar estimates of the total number of 

ancient and veteran trees across England as in Chapter 6. 

 

I finally review my main findings and conclusions about the most accurate distribution of ancient, 

veteran and notable trees in Chapter 8, where based on all my research using the ATI, I summarise the 

key environmental determinants of the trees, the most likely true predictive distribution maps and 

estimates of the total numbers of ancient and veteran trees in England.  
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Chapter 2: An initial analysis of the Ancient Tree Inventory (ATI) and an 

introduction to the other datasets used in the thesis. 

Adapted from: Nolan, V., Reader, T., Gilbert, F. et al. The Ancient Tree Inventory: a summary of the results of a 

15 year citizen science project recording ancient, veteran and notable trees across the UK. Biodiversity and 

Conservation, 29, 3103–3129 (2020). https://doi.org/10.1007/s10531-020-02033-2. 

 

2.1 Abstract 

In this chapter, I firstly present a descriptive and statistical outline of the ATI, including summaries of 

the current UK ancient, veteran and notable tree distributions, the status and condition of the trees, and 

key information about the recording process and maintenance of the database. I also outline areas of the 

ATI that are lacking in knowledge or robust surveying methodology, and that have the potential for 

improvement or for further study. Examining or correcting these issues with the ATI will become the 

focus of the remaining chapters of this thesis. Secondly, I then introduce other environmental, 

topographical and anthropogenic datasets that have the potential to be predictors of ancient tree 

distributions across the UK that I use in subsequent chapters of this thesis. My initial analysis of the 

ATI dataset (first carried out in 2018-2019) suggests there are significant differences in the threats, size, 

form and location of different types of trees, especially in relation to taxonomic identity and tree age. 

These findings will be used alongside the other datasets presented here to investigate the true 

distribution of ancient trees across the UK in the subsequent chapters in this thesis.  
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2.2 Introduction 

This chapter describes data from the Ancient Tree Inventory (ATI) provided by the Woodland Trust in 

late 2018 (accessed 17/12/18). The ATI began as the Ancient Tree Hunt in 2004 and was originally 

envisaged as a five-year citizen science project between the Ancient Tree Forum (ATF), Tree Register 

of British Isles (TROBI) and the WT, that encouraged the public to record and map ancient, veteran 

and notable trees. The success of the original project has resulted in its continuation to the present day 

(at the time of writing in July 2020) as the ATI and over 200,000 trees have been mapped with many 

more still being recorded each year. The project was intended to cover the UK, but a small number of 

records have also been collected across Ireland. The ATI encourages not only the location of trees to be 

recorded, but also information about their condition, accessibility, survey information and several other 

characteristics (Table 2.1).  

 

Any member of the public can upload a record to the ATI via an online database system, with the 

minimum requirement of information added about each tree being location, girth, species (if possible 

to identify) and access information. Currently 87% of records have completed information for all 

categories. The WT recording protocol requires all uploaded records to undergo a second verification 

step, whereby trained WT verifiers revisit each tree to confirm the record, location and associated 

information. Additionally, a tree can only be classified as ancient, veteran or notable by a verifier. The 

ATI is actively managed as an online database by the WT, and a record can only be viewed by all 

members of the public once verified. The verification process is ongoing, so although not all trees in 

the ATI have currently been verified, they will be in the near future.  

 

For guidance on how to distinguish between ancient, veteran and notable trees, verifiers are encouraged 

to refer to the WT’s Ancient Tree Guide No. 4 (ATF, 2008a) or to the WT website 

(https://ati.woodlandtrust.org.uk/what-we-record-and-why/what-we-record/). These sources describe 

in detail the features of each type of tree, as well as providing species-specific estimates of girth 

measurements for trees in each category. Verifiers are also required to attend an additional training day 

where they receive further guidance and assistance in distinguishing between the three categories.  
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In addition to members of the public, many organisations contribute to the ATI and also support, provide 

advice and campaign on behalf of ancient trees in the UK including the WT, Natural England, Scottish 

Natural Heritage, the National Trust, the ATF and the Royal Society for the Protection of Birds. Many 

of these organisations own and manage land containing ancient trees and all are vocal advocates of the 

importance of ancient trees.  

 

In this chapter I aim to present a descriptive and statistical overview of aspects of the ATI, including 

the distribution of the trees, differences between ancient, veteran and notable categories, variation 

across taxa and the status, condition and threats experienced by the trees. I first outline the ATI 

recording process and structure of the data, and then I present a combined results and discussion about 

the statistical analyses of the data in three sections, 1) current distribution and characteristics, 2) 

condition, threats and attrition and 3) survey and recording information and limitations. I also include 

a final section where I introduce other datasets used in subsequent chapters of this thesis that I deem to 

have the potential to be predictors of the distribution of trees in the ATI across the UK. 
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Table 2.1 Information collected about each Ancient Tree Inventory (ATI) record. 

Field Description 

Tree ID A unique record ATI ID 

Location Grid reference (6 – 10 significant figures)  

Country Country of tree 

County County of tree 

Tree Site Site name of record 

Public Accessibility Information about tree access 

Location access comments Information about accessibility and site 

Woodland Trust Wood Whether the tree falls within Woodland Trust owned wood 

Category Ancient, veteran or notable 

Veteran characteristics Additional information about veteran characteristics of the tree 

Local historic name Name of tree in local or national context 

Tree Form Tree form and management status e.g. maiden, pollard etc. 

Standing status Whether the tree is standing or fallen 

Living status Whether the tree is dead or alive 

Measured girth (m) Measured girth of tree at breast height (~1.5m) 

Height of girth measurement (m) Height that girth was measured from the ground 

Taxon Taxonomic identity 

Image Possibility to upload an image of the tree 

Date of Survey Date the record was uploaded to the ATI 

Organisation Organisation or individual who has uploaded the record 

Verification Whether the tree has been verified by a Woodland Trust verifier 

Rating Star rating of record 

Additional Notes Additional notes about location, status and access 
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2.3 Statistical methods used to analyse the ATI 

Multinomial logistic regression models were fitted to the ATI data to compare between ancient, veteran 

and notable tree categories in relation to three predictors (country, tree form and girth) including all 

second-level interactions. Models were fitted using the R package ‘nnet’ (Venables & Ripley, 2002). 

The most parsimonious model was selected based on multidirectional stepwise regression using 

Akaike’s Information Criteria (AIC) and parameter significance was assessed using Analysis of 

Variance (ANOVA) Wald Chi-Squared tests. Two models were fitted, one using all ATI records, and 

another using only records from the 12 most common tree genera. The latter model also included genus 

as an extra predictor. In addition, to describe patterns of variation in the relative frequency of trees in 

other categories where the information is not necessarily recorded for all trees (habitat and threats for 

each tree), I used independent chi-square tests of association based on the absolute numbers of records. 

Finally, Pearson correlation coefficient tests were used to describe trends in data recording and girth 

measurements over time. Since some of these tests involved repeated analysis of the same variables, it 

is important to note that their results are not statistically independent; they provide a descriptive analysis 

of the data and should not be viewed as definitive tests of particular hypotheses about the association 

between variables in the ATI. All statistical analyses and modelling were carried out in R (R Core Team, 

2018). 

 

2.4 Results and discussion 

2.4.1 Current distribution and characteristics  

Location, category, taxonomy, tree form and girth 

There are 169,967 trees across the UK recorded in the version of the ATI used for this analysis (Figure 

2.1). The majority (83.1%) are in England, with smaller numbers of records in Scotland (8.4%), Wales 

(5.3%), Northern Ireland (3.2%) and Republic of Ireland (0.02%). There are 15 records from Jersey, 

Guernsey and the Isle of Man. Records show a strong geographical bias towards southern English 

counties, with Berkshire (15,187 records), Herefordshire (10,934 records) and Wiltshire (9,077 records) 

contributing a combined total of 20.7% of all records (Fig. A2.1). However, this is influenced by the 
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high number of veteran and notable tree records in these areas; when considering only ancient trees, 

North Yorkshire and Cumbria become the second and third highest contributors, highlighting the 

importance of distinguishing between true ancient trees and those in other categories (as defined in 

Chapter 1, Table 1.1). Like many of the patterns in the ATI data, these geographical biases may reflect 

recorder bias, as well as biological and historical processes which influence the distribution of ancient 

trees. The possible nature of the bias is discussed further in Chapter 4 and methods for quantifying and 

removing it are actively explored in Chapters 4, 5 and 6. 

 

The majority of the trees in the ATI are veteran (103,648 records) or notable (45,618 records), with 

relatively few recorded as ancient (13,476 records) (Fig. 2.1). 6,867 records have no category i.e. have 

not yet been verified or the category is unknown, the majority of which fall within N. Ireland. Eighty 

two of the trees are also listed as heritage trees and 31 as champions. Many trees have saproxylic 

organisms present on them (noted in their records), including ferns (3,389 records), lichens (36,240 

records), moss (31,253 records) and several fungi species (Table A2.1). Although interesting, these 

observations are not necessarily the most informative, as quite young and small trees may have some 

moss or lichen. There is also likely to be inevitable bias in the recording and noting of these, depending 

on the recorders expertise, accessibility, habitat type etc. However, having the option to record locations 

and information about rare or endangered saproxylic species if found, in the ATI, could be valuable for 

other conservation purposes and projects.  
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Fig. 2.1 Distribution maps of ancient, veteran, notable and other records in the Ancient Tree Inventory (ATI) 

across the UK and Eire. Several records have incorrect grid references in the ATI and therefore do not display 

in the correct location e.g. outside the UK boundary. 

 

 



29 

 

Two hundred and eleven different taxa have been recorded in the ATI, ranging from family to species 

level including sub-species, cultivars and hybrid species (Table A2.2). The most common level of 

identification is genus (81,255 records), so further analysis in this report will focus only on this 

taxonomic rank. Quercus (Oak) is by far the most common genus recorded across the UK, representing 

almost half of all records (44.2%), followed by Fagus (Beech) with 12.4% and Fraxinus (Ash) with 

6.9%. The 12 most common genera contain 86.4% of all ATI records between them (Fig. 2.2). 

 

 

Fig. 2.2 The percentage contribution of the 12 most common genera to the total number of records in the Ancient 

Tree Inventory (ATI). The common name(s) of the species present in the ATI that fall within each genus is shown 

in brackets. 

 

Strong significant associations were found using multinomial logistic regression models between 

country, tree form, measured girth, genus and all second level interactions, across the three categories 

of trees (ancient, veteran and notable) (Table 2.3). When comparing across countries, there are 

proportionally more ancient tree records in Scotland and Wales than veteran or notable, and 
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proportionally more notable trees records in Ireland (Fig. 2.3a). Tree form can be a key method in 

determining whether a tree will survive into its ancient phase. The aim of traditional management tools 

such as pollarding or coppicing was to extend a tree’s life to exploit its resources, and consequently 

these techniques often produced trees that are many centuries old. Unsurprisingly, therefore, there is a 

significant association between tree form and category (Table 2.3), with strong links between ancient 

and veteran trees and pollard form (Fig. 2.3b & 2.3c). However, only 6% of all pollards in the ATI are 

recorded as being actively managed; this raises concerns about the future survival of the high number 

of lapsed pollards throughout the landscape.  

 

Ancient trees are also proportionally present more frequently as hedgerow trees or coppards (where the 

tree is cut at a height intermediate of a coppice and pollard), whereas veteran trees are proportionally 

more frequently found in ‘other’ tree forms (such as trees found on cliffs, phoenix trees (fallen trees 

that are able to re-root and regenerate) or trees of unknown form), and notable trees as maidens or 

coppices (Fig. 2.3b). However, it is important to note that the definition of a coppard has been revised 

by the Woodland Trust since this analysis was undertaken; due to the rarity of finding a true coppard, 

coppards are most likely now recorded as coppices or another tree form. Therefore, inferences about 

this finding should be taken with caution, as many of these coppard trees may in fact be lapsed coppices 

rather than true, actively managed coppards. 

 

There were also significant differences between category across tree form and country (Table 2.3), with 

ancient trees proportionally more common than veteran and notable trees as pollards, hedgerow trees 

and coppards in England, but more common as pollards or ‘other’ tree forms in Wales, and coppices, 

pollards or stumps in Scotland (Fig. 2.3c). Notable trees were most frequently found as maidens in all 

countries compared to ancient and veteran trees, but presented stronger associations with coppice and 

multi-stem tree form in England and Scotland than the other categories. Veteran trees showed 

proportionally stronger associations with ‘other’ tree forms in both England and Scotland than the other 

categories, and in general were found in intermediate proportions between ancient and notable category 

across all tree forms and countries (Fig. 2.3c).  
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Tree form, country and girth also differed significantly between categories in relation to genus (Table 

2.3). The most notable associations were between ancient tree category and Taxus (Yew), Castanea 

(Sweet Chestnut) and Fraxinus (Fig. 2.4a). Crataegus (Hawthorn) had the strongest association with 

veteran tree form, and Aseculus (Horse Chestnut) with notable tree form. The trees most likely to be 

recorded as coppices belong to Fraxinus or Acer (Maple) (Fig. 2.4b), particularly in relation to notable 

trees (Fig. A2.5), and pollards to Fraxinus, Quercus or Salix (Willow) (Fig. 2.4b), especially when in 

ancient form (Fig. A2.5). Other notable associations include ancient Fagus trees and hedgerow or stump 

form, Taxus or Crataegus with multi-stem form, and Pinus, Castanea and Aesculus with maiden form 

(Fig. 2.4b, Fig. A2.5).  

 

Table 2.3 Wald Chi-Squared Analysis of Variance (ANOVA) results to test for parameter significance from a 

multinomial logistic regression model of category (ancient, veteran and notable tree) in relation to Ancient Tree 

Inventory (ATI) characteristics. Two models are fitted, one using all ATI records, and one using only records 

from the 12 most common genera of tree. The latter model also includes genus as a predictor and second level 

interactions of genus with the other predictors. Chi-Squared values (d. f.) and parameter significance are shown 

(* < 0.05, ** < 0.01, *** < 0.001).  

Predictor All ATI records 
Records from the 12 most 

common genera 

Country 1194.6 (8) *** 897.7 (8) *** 

Girth   14104.9 (2) ***     20926.5 (2) *** 

Tree Form     12930.4 (14) ***       11768.3 (14) *** 

Country: Girth 1704.7 (8) *** 383.9 (8) *** 

Country: Tree Form   1276.2 (56) ***  567.8 (56) *** 

Girth: Tree Form   1006.1 (14) ***    1334.3 (14) *** 

Genus -    6735.0 (24) *** 

Genus: Girth - 766.1 (24) *** 

Genus: Tree Form -      2186.9 (168) *** 

Genus: Country -    1880.0 (96) *** 
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Fig. 2.3 The relative proportion of Ancient Tree Inventory (ATI) records between three tree categories (ancient, 

veteran and notable) shown across a) country of record, b) tree form and c) both country (England, Scotland and 

Wales) and tree form. The country category ‘other’ refers to trees situated in either Jersey or Guernsey, and 

‘other’ tree forms include cliff trees, phoenix trees and trees of unknown form. 
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Fig. 2.4 The relative proportion of Ancient Tree Inventory (ATI) records between three tree categories (ancient, 

veteran and notable) shown across a) the 12 most common genera and b) the 12 most common genera and tree 

form. Although Sycamore and Maple belong to the same genus, they are shown separately here to identify any 

unique associations that may be present. The category ‘other’ tree forms includes cliff trees, phoenix trees and 

trees of unknown form.      
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There is much discussion about the accuracy and usefulness of the relationship between tree girth and 

age, and without dendrochronological sampling a tree’s age is often over or under-estimated 

(Hartesveldt et al., 1975; White, 1998; Moir, 2013). The age-diameter relationship has also been shown 

to vary depending on environmental parameters such as temperature and water runoff (Rohner et al., 

2013) and across species (Yunyun et al., 2009). Nevertheless, it is an important characteristic to record 

and can provide some general idea of the rough age of a tree (White, 1998). Tree girth is usually 

measured at breast height (~1.5 m above the ground) where possible, although this can be difficult for 

trees in pollard, coppice or multi-stem form. The mean height at which girth is measured for all ATI 

records is 1.573 m.  

 

There are 22 trees with measured girths greater than 20 m in circumference (6.4 m dbh), with the largest 

(a maiden Pedunculate Oak), recorded as 54.18 m (17.2 m dbh) in girth. Most of these can be attributed 

to recording errors by the volunteers or verifiers i.e. omission of a decimal place; the largest Oak to ever 

be recorded is thought to be the Marton Oak in Cheshire (13.38 m girth, 4.26 m dbh) (Farjon, 2017). 

Additional errors also occur when a recorder or verifier incorrectly identifies a cluster of trees or 

coppices as one multi-stem tree, therefore introducing erroneous inflated girth measurements into the 

ATI. To reduce the influence of these potentially biased records, only trees with girths below 15 m in 

circumference (4.8 m dbh) were included in these analyses in this chapter. An interesting initial 

observation is that there is a weak significant positive correlation between measured girth and date of 

record (r = 0.042, p < 0.001), suggesting that there are many large, and potentially old, trees still being 

discovered.  

 

Mean measured girth differed significantly across category, tree form and country (Table 2.3). As might 

be expected, ancient trees have larger girths in general than veterans, which in turn are larger than 

notable trees (Fig. 2.5). The largest mean girth measurements belonged to Welsh ancient trees in the 

form of coppards, pollards or ‘other’ tree forms, English ancient trees in the form of hedgerow trees or 

coppices and Irish ancient coppice trees (Fig. 2.5). The largest veteran trees were Irish coppards or 
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multi-stem trees, English veteran hedgerow trees or maiden trees in other locations (Jersey or 

Guernsey). In general, mean measured girth was smaller across Scotland than any other country. 

 

 

Fig. 2.5 Mean measured girth (m) of trees recorded in the Ancient Tree Inventory (ATI) shown for three tree 

categories (ancient, veteran and notable) across country and tree form of record. The larger the circle and the 

lighter the colour, the larger the mean measured girth. The category ‘other’ tree forms includes cliff trees, phoenix 

trees and trees of unknown form.      

Mean measured girth also differed significantly among the 12 most frequent genera in the ATI (Table 

2.3; Fig. A2.4). The genus Castanea has by far the largest mean girth (4.87 m) followed by Taxus (4.10 

m) and Quercus (3.95 m). Pinus, Betula and Crataegus all have relatively smaller girths. Quercus is 

often thought of as the typical ‘ancient tree’, especially in England (Farjon, 2017), but surprisingly, 

Quercus spp. in the ATI had relatively smaller girths compared to other species than might be expected, 

which may be explained by the strong association of Oak with veteran rather than ancient form; as 

expected, veteran trees have significantly smaller girths than ancient trees. Oak was traditionally the 

preferred timber tree and its prevalence across the landscape is more due to economic factors than 

ecology (Barnes et al., 2017). When managed as a maiden tree, Oak was often harvested before reaching 

its mature phase, so was unlikely to reach great ages (Barnes et al., 2017). Most ancient Oaks remain 

today in either pollard or coppice form, or as maidens within parkland or wood-pasture (Farjon, 2017). 

This may also be the case with Castanea (Sweet Chestnut) and Fraxinus, both of which have strong 

historical association with coppicing or pollarding practices (Barnes et al., 2017). 
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Local habitat and site associations  

An interesting component of the ATI is the optional recording of habitat information for trees. Although 

only 69,308 (40.8 %) records have this information recorded, it offers insight into local habitat 

associations of trees. The number of records with habitat information is higher for ancient trees (47.9 

%), compared to veteran (44.2 %) and notable trees (36.3 %). It also varies across country, ranging from 

24.5% of records in Scotland to 61.9% of records in N. Ireland. The distribution of records is unequal 

across habitat types with 29.3% of records associated with woodland, 16.5% associated with parkland 

and 10.1% associated with field habitat. All other records fall within other habitat types (Fig. A2.2). 

 

Habitat associations depend significantly on genus (χ² = 29,998, d.f. = 132, p < 0.001) (Fig. 2.6), with 

combinations of Tilia (Lime) in avenue habitat, Taxus in churchyards or cemeteries, Betula and Pinus 

in upland or moorland habitat, Fagus in woodland and Fraxinus in field habitat all appearing more 

frequently than expected. As with Taxus spp. in churchyards, Tilia spp. (Lime) are familiar elements of 

avenues, especially on historic estates and parkland (Pigott, 1992; Couch, 2012). Although abundant 

across much of the UK, Lime trees were favoured for avenues and parkland due to their aesthetically 

pleasing, tall and long-lived characteristics (Helliwell, 1989). Both Betula (Birch) and Pinus (Pine) are 

common upland tree genera, especially in parts of Scotland (Fenton, 1984) and Birch was heavily 

coppiced in these areas (Barnes et al., 2017). There are fewer strong negative associations, but Quercus 

spp. are present less frequently as avenue trees or in upland/ moorland areas, Tilia spp. are less 

frequently present in woodland and Fagus spp. are less frequently present within field habitat than 

expected. 

 

Ancient, veteran and notable trees also have significantly different habitat associations (χ² = 2163.7, 

d.f. = 22, p < 0.001) (Fig. 2.6). Key habitats for ancient trees include cemeteries or churchyards, wood-

pasture, fields and moorland or upland. Ancient trees are less likely to be present as avenue trees, in 

gardens, alongside roads, railways or other public rights of way, or in woodland. Veteran trees are also 

found less frequently than expected in parkland, gardens and avenues, but do have strong positive 

associations with woodland habitat and hedgerows. In contrast, notable trees follow opposite patterns 
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to ancient or veterans and are more likely to be associated with avenues, gardens, parkland and public 

rights of way, and less likely to be found in hedgerows, fields, moorland or upland habitat, wood-pasture 

or woodland.  

 

 

Fig. 2.6 Standardised Pearson residuals (r) from the Chi-square test of association between habitat and the 12 

most common genera (left) and ancient, veteran or notable category (right) in the Ancient Tree Inventory (ATI). 

The higher the absolute residual value, the more that association contributes to the Chi-square statistic. + 

represents positive associations, whereas - represents negative associations, and the darker the square the 

stronger the relationship.  Although Sycamore and Maple belong to the same genus, they are shown separately in 

to identify any unique habitat associations that may be present.       

 

Where possible, recorders are encouraged to name the site on which a tree is found, and as a result, 

69,308 trees can be located to 1,466 specific named land areas. As with habitat, records appear biased 

towards public parks, large estates and historic forests, with the top 20 named sites (most of which fall 

into one of these three categories) containing 21.9% of all records between them (Fig. A2.3). 

Additionally, certain land owners have contributed heavily to the ATI, with 2,925 records appearing on 

WT owned land across the UK. Separate analysis using publicly accessible National Trust databases 
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across England (National Trust open data: ‘limited access land’ and ‘always open land’, accessed 

08/01/19) shows that approximately 11.5% of all English ATI records fall within National Trust land. 

The NT is an environmental and heritage conservation charity and has the largest number of subscribing 

members of the public of any organisation across England, Wales and Northern Ireland. Since its 

foundation in 1895, the NT has acquired ownership of over 350 properties and 2470 km2 of land. 

Churchyards and cemeteries also feature heavily, and contain 38.5% of all trees found on a named site. 

As before, these patterns probably reflect a combination of recorder bias and biological and historical 

processes, so further analysis might reveal interesting details for the understanding and conservation of 

ancient trees across the landscape.   

 

By assessing the distribution of records across different scales (from country to individual site or 

habitat), it is possible to gain insight into suitable locations for the persistence and survival of ancient 

trees to inform conservation and management action. Additionally, areas with few records, through 

either a lack of ancient trees or lack of surveys, can be targeted for future surveys, verification work or 

tree planting. The current distribution maps show records heavily clustered in southern English counties 

around London. These counties have strong associations with historic Royal forests, hunting grounds 

and private parks such as Richmond Park or Epping Forest (Farjon, 2017). Similarly, Savernake forest, 

Windsor Great Park, Ashridge Estate and the New Forest (the four sites with the highest record 

abundance) currently are or have been owned at some point by the monarch. The continuity of the 

monarchy and aristocracy in the UK, unlike other European countries such as France and Germany, is 

likely to be one of the main influences on the high abundance of UK ancient trees (Rackham, 1976; 

Butler et al., 2002; Farjon, 2017).  

 

2.4.2 Condition, threats and attrition 

Standing status and threats 

The standing and living status of each tree provides valuable information about the current condition, 

threats and attrition of ancient trees in the UK. In this version of the ATI (December, 2018) most trees 
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(93.4% of ancient trees, 95.7% of veteran trees, 98.3% of notable trees) are recorded as alive and 

standing. Only one tree is suffering from suspected Ash dieback and 15 trees are suffering from acute 

Oak decline or chronic Oak decline. However, this is very likely linked to observer bias; diseases such 

as Ash dieback are relatively difficult to spot in ancient trees, and so the total affected numbers are 

likely to be much higher. Additionally, there is likely to be a bias towards the recording of living (and 

therefore healthy) trees, as opposed to those that are fallen or dead, which may explain the low 

prevalence of diseased and dead trees in the ATI. Furthermore, most records have not been revisited 

since their initial recording, which for some trees is almost 16 years ago, so it is likely that some trees 

have subsequently been lost. Inferences about threats and disease should therefore be considered as 

speculative and a likely underestimation of the true, current status and attrition rate of ancient trees. 

  

There is an additional option in the ATI to add information about apparent threats to trees, although this 

is highly likely to be biased by expertise in this area e.g. confident tree recorders such as 

arboriculturalists are much more likely to notice and record threats than the average ATI recorder. 

Therefore, any inferences about threats to particular trees should take into consideration potential 

recorder biases.  17,499 specific instances of a threat have been recorded that are tree-specific and 

include ‘Compaction of root area’ (31% of threats), ‘Grazing damage’ (27% of threats), ‘Over shading’ 

(15% of threats), ‘Major tree surgery’ (8% of threats), ‘Cultivation close to tree’ (7% of threats) , 

‘Vandalism’ (4% of threats), ‘Development or building’ (3% of threats), ‘Vehicle damage’ (3% of 

threats) and ‘Fire damage’ (2% of threats). 

  

Nevertheless, relatively few records have associated threats recorded (less than 10% of records are 

recorded as threatened) and there is no way to assess the completeness of this field, so it is likely that 

many more trees are threatened in some way. For example many other threats may be less observable 

to recorders such as nitrogen deposition and drought (Lindenmayer et al., 2012; Lonsdale, 2013). By 

understanding the individual age and species-specific threats, conservation work can be targeted in these 

areas to better protect the most vulnerable trees and ensure our current mature phase trees will reach 

their ancient phase and the continuity of deadwood habitats across the landscape. One obvious example 
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is to promote continuous, appropriate management of coppices and pollards as part of any conservation 

plan for ancient trees.  

 

There is a significant association between the 12 most frequent genera in the ATI and the type of threat 

(χ² test = 581.2, d.f. = 96, p < 0.001) and also between the tree category and type of threat (χ² = 158.58, 

d.f. = 16, p < 0.001) (Fig. 2.7). Ancient trees are the most threatened category relative to veteran and 

notable trees, showing positive associations with six out of nine threats, the most prominent of which 

are grazing and fire damage, but also include cultivation, vandalism, tree surgery and development. 

Large, hollow trees are known to be vulnerable to fire. (Lanner, 2002; Becker & Freeman, 2009; Crane 

et al., 2017) especially in hot, arid places such as California or Australia (Lindenmayer et al., 2012). 

Although wildfires are infrequent and localised in the UK, fire damage through vandalism is a more 

common cause of ancient tree loss (Kirby et al., 1995). Over-grazing around ancient trees is also a 

common threat, due to the browsing of the bark, leaves or suckers from the tree, trampling of roots and 

high levels of excreted nutrients around the base of the tree (Manning et al., 2006; Hartel & Plieninger, 

2014). Veteran trees are very strongly impacted by over shading, and notable trees by cultivation and 

root compaction compared to other categories. 

 

The greatest associations recorded between particular threats and genera are those between Fagus and 

over-shading, Taxus and tree surgery, Tilia, Aesculus and Pinus and grazing, and Pinus and root 

compaction. Quercus experiences the most threats relative to any other genera, showing strong 

associations with seven out of nine including vehicle damage, cultivation and root compaction, which 

is worrying as records of this genus comprise almost 50% of the ATI. The strong anthropogenic interest 

in old trees, especially old Oaks can sometimes be counter-productive: excessive, inappropriately 

managed visitation to sites such as National Trust parklands or historic houses can result in pressure on 

exposed, scattered old trees. Conservation measures such as fencing can help to protect ancient trees 

against threats from livestock, human influences and cultivation (Fischer et al., 2009).  
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Fig. 2.7 Standardised Pearson residuals (r) from the Chi-square test of association between threat type and 

ancient, veteran or notable category (left) and the 12 most common genera (right) in the Ancient Tree Inventory 

(ATI). The higher the absolute residual value, the more that association contributes to the Chi-square statistic. + 

represents positive associations, whereas - represents negative associations, and the darker the square the 

stronger the relationship.  Although Sycamore and Maple belong to the same genus, they are shown separately in 

to identify any unique habitat associations that may be present.    

 

Legal protection for trees with veteran characteristics in the UK has improved significantly in the past 

few years, and the recently published 2019 National Planning Policy Framework (NPPF) now 

recognises both ancient trees and ancient woodlands as ‘irreplaceable habitat’ (NFFP, 2019). Other 

protective measures include Tree Protection Orders (TPOs) or legislation protecting other species or 

habitats such as bat roosts, designated sites, hedgerows, or scheduled ancient monuments (Read, 2000). 

Nevertheless, all of these measures can be overridden for ‘exceptional reasons’ such as health and safety 

concerns or national infrastructure projects (Read, 2000; NPPF, 2019). 

 

Attrition rate over time 

The global decline of decaying and dead wood habitat is a growing issue (Gibbons et al., 2008; Fischer 

et al., 2010; Lindenmayer et al., 2012), and it appears that UK ancient, veteran and notable trees are no 



42 

 

exception. Dead wood in different forms within an ecosystem is an important resource for many 

organisms (Hjältén et al., 2007; Lõhmus et al., 2010; Svensson et al., 2016), so its removal is likely to 

have cascading impacts across rural landscapes. Ancient and veteran tree loss is also hugely detrimental 

for wildlife and biodiversity in urban environments (Stagoll et al., 2012). Le Roux et al. (2014) predicted 

declines in urban ancient and veteran tree populations of 87% over the next 300 years under current 

management strategies. These declines were not halted by increasing the recruitment rate of ancient 

trees, and under the worst management scenarios, urban ancient and veteran tree populations were 

predicted to disappear within 115 years (Le Roux et al., 2014). Development or building works were 

found to present significant threats to Acer (Sycamore) and Salix, two of the UK’s most abundant urban 

tree genera. As information about urban tree populations is sparse, it is important to increase quickly 

our understanding of their abundance and distribution to prevent their decline and the loss of ecological 

functions.  

 

Since 2004, 47 ancient, 227 veteran and 84 notable trees are recorded as lost. Although some trees are 

only discovered once they are lost i.e. as a stump or fallen tree, some of the lost trees were previously 

recorded as alive, and have been revisited over time and have had their records updated. There does not 

appear to be any geographical pattern to these lost trees, and their distribution reflects that of ancient, 

veteran and notable trees across the UK. There is no significant correlation between year and proportion 

of lost ancient tree records collected (r = -0.0004, p = 0.999), or proportion of lost notable tree records 

collected (r = -0.725, p = 0.814). However, there is a moderate positive correlation between year and 

proportion of lost veteran tree records collected (r = 0.582, p = 0.023). The data suggest that the 

proportion of veteran trees recorded as lost has increased over the past 20 years, either through increased 

surveying of lost trees or through an actual increase in the number of trees that have been removed or 

damaged.  

 

Although this information gives some insight into attrition rates, the interpretation of this is problematic 

because we don’t know the total standing ancient, veteran or notable tree population sizes in the UK, 

or the rate at which new recruits are entering or leaving each population i.e. how many notable trees are 
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becoming veteran, and how many veterans are becoming ancient. Therefore, it is hard to know whether 

rates of loss are typical, and hence whether they reflect a population-level decline. Nevertheless, the 

establishment of the ATI means that we now have the ability to monitor long-term changes in the size 

and demographic constitution of ancient, veteran and notable trees, so future investigation into attrition 

rates should be more informative and reliable.  

 

2.4.3 Recording and survey information 

A feature of the ATI that increases its usefulness beyond being a simple database of species occurrences, 

is the extra information collected about the recording and verification process including accessibility of 

sites, recorder or organisation identity, date, verification status and rating. These factors allow more 

accurate assessment of record reliability before being added to the ATI, as well as more detailed 

assessment of recorder biases, which in theory should result in highly accurate distribution maps. I 

recommend both current and future citizen science projects to implement similar features in their 

recording process, as it should firstly allow assessment of the record reliability and secondly could help 

to establish a framework for a longer-term monitoring program of a particular species or ecosystem. 

  

Accessibility and recorder 

The majority of records are found on open access land where members of the public have unrestricted 

access (Fig. A2.6). Nevertheless, a remarkably high number of records (37.5%) are found on private 

land, where there are no public footpaths, which is another important cause of spatial bias in the ATI 

(see Chapter 4 for more information). These records result mostly from pre-arranged site visits with 

consent from the landowner or site manager, and although more challenging to organise, they are useful 

in both obtaining ATI records and raising awareness of the importance of ancient trees on the site and 

within the wider landscape. The largest contribution of records (13.1%) to the ATI comes from the 

collective input of individual members of the public, but an additional 101 charities, consultancies and 

conservation organisations have contributed records, the top 10 of which have recorded 55% of all 

records. Although most are national organisations and charities, several county-specific ancient tree-

recording groups have made significant contributions. 
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Date of tree record 

The ATI began in 2004 as the Ancient Tree Hunt, which is reflected in the sudden increase in the 

number of records in 2005. Records added before this date have come from original Tree Register of 

the British Isles records that had been collated over many years and provided the initial inspiration for 

the ATI. The earliest record is of an ancient Oak tree recorded in 1900 at Croft Castle, Herefordshire 

with a 7.63 m girth. The years following 2004 saw many more records added, even after the original 

project ended and the Ancient Tree Hunt became the ATI. However, in recent years (2011 onwards) 

there has been a decline in the number of records added each year, although 2017 proved a better year 

than the past five.  

 

The number added in 2018 is very low due to the fact that the ATI online recording platform was being 

updated throughout the spring and summer period and was unavailable during this time. Records from 

2018 were retrospectively added to the ATI by the WT throughout 2019/ 2020 and over this period 

around 9,000 more records have been uploaded. Currently, the date associated with each record is its 

date of upload to the ATI website, so may not necessarily be the date a tree is recorded. The delay 

between the two processes can be lengthy (potentially several years difference), but due to the longevity 

of the trees this is unlikely to make a substantial difference to the overall distribution map, providing 

that the tree is not felled or damaged. 

 

Verification steps in the ATI 

Best practice is for each ATI record to be revisited by a WT verifier after it is uploaded, to confirm the 

tree’s location and status and to maintain credibility of the ATI. Reassuringly, a high proportion of ATI 

records have been verified at least once, with some trees being revisited many times to assess their 

status and persistence. However, this proportion is slightly less for ancient trees (97.7%) compared to 

veterans (98.3%) or notables (99.2%). Verification work in the first instance should be targeted at N. 

Ireland, where the highest percentage (26.2%) of records are unclassified as ancient, veteran or notable, 
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compared to 2.9% in England, 3.2% in Scotland and 8.5% in Wales. Although most records have 

undergone this verification, there is concern that some have not and may therefore be incorrect.  

 

As an extra step, each record has been provided with a star rating to reflect its validity and reliability 

(Table 2.4). This was determined by the Woodland Trust ATI managers and relates predominantly to 

the level of verification for each record. Citizen science programs can introduce more errors or bias 

than traditional scientific recording methods (Dickinson et al., 2010; Crall et al., 2011), but record 

verification by volunteers has been shown to be more cost-effective than traditional data collection by 

professional scientists and less error-prone than using unverified records (Gardiner et al., 2012). These 

extra steps should help identify and eliminate biased or false records in the ATI.   

 

Table 2.4 The Ancient Tree Inventory (ATI) star rating system and the number of records within each group. 

Rating 
No. of 

records 

% of 

Total 
Reason for rating 

5 77,767 
45.75 

Recorded and verified by WT verifiers on site 

4 46,087 27.12 Verified by a WT verifier or Quality Assured records but not verified on site 

3 30,932 18.20 Verified by volunteers of another organisation  

2 5,905 3.47 Data that has proved unreliable and unverified 

1 9,276 5.46 Unverified but with potential of being 5 star 

 

A potential improvement to the recording process could be the introduction of remote, online 

verification using the uploaded photos, which would increase the quantity of records that could be 

verified to a high standard providing that the photos are of a good quality. Throughout the project, there 

has been periodic background screening and revision of parts of the dataset carried out remotely by an 

expert head verifier and other trained volunteers, in order to increase the accuracy and robustness of the 
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data. This usually includes running queries in the data to target records with missing information or 

fields with suspicious values. Nevertheless, not all records have received this extra attention due to the 

time consuming nature of this process and large quantities of records. Therefore, increasing the capacity 

and efficiency of this process, perhaps through the additional ‘lead’ verifiers, or by encouraging the 

public to upload additional photos of the trees, could increase the robustness of the data and the data-

capturing process.  

 

Limitations of the ATI recording process 

Firstly, the confusion regarding the terminology of ancient and other noteworthy trees presents 

problems in understanding the true nature of each record. The classification of an ancient or veteran 

tree based on the presence-absence of ‘veteran’ characteristics is a reliable distinguisher from notable 

trees. However, the difference between an ancient and veteran tree is much more arbitrary, and likely 

to vary across recorder or verifier based on experience or geographical region. Additionally, 

comparisons between different studies on ancient trees, whether in the UK or between other 

international ancient tree populations, will be difficult if definitions are not standardised. Although the 

WT provide guidelines for tree age based on girth measurements per species (ATF, 2008a), as 

mentioned previously, tree age is thought to vary hugely across different environmental conditions. 

Therefore, it is likely there are a number of ATI records that have been subjectively misclassified, and 

awareness of this issue is important when separating ancient trees from veteran trees for conservation 

purposes. Nevertheless, concentrating purely on trees displaying ‘veteran’ characteristics i.e. the 

characteristics most ecologically important for saproxylic organisms, mitigates this issue to a large 

extent until clearer definitions of ancient and veteran trees can be established.  

 

Although the ATI is the most comprehensive database of ancient and ageing trees to date, it suffers 

many of the drawbacks of a citizen science recording program, including sampling bias. Sampling bias 

results from the ‘ad-hoc’, non-representative recording method of public recording schemes and is often 

present in online, museum or herbarium datasets (Boakes et al., 2010; Rocchini et al., 2011). ATI 

recording and the subsequent distribution maps are likely to be strongly influenced by the home location 
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of the most active recorders and WT verifiers, and accessibility to sites such as private estates and parks. 

For example, the majority of the top 20 named sites with the most trees are all large, well-known, 

accessible parks, so the high abundances in these areas may be from large numbers of visitors who 

simply enjoy visiting here. Similarly, the comparatively low number of trees in Northern Ireland and 

Ireland could be a result of a lack of recorders, or low levels of interest or awareness of the ATI. 

Recording is also likely to be biased towards areas with good coverage of public rights of way, footpaths 

and roads, so working with farmers and landowners, and raising awareness of the ecological benefits of 

ancient trees in the landscape could help gain access to sites for recording purposes. 

 

There are currently a variety of statistical methods that are able to cope with large, biased species 

datasets which is discussed in more detail in Chapter 4, including spatial filtering of occurrence records, 

producing bias layers to capture the anthropogenic influence of recording or using statistical models to 

account for bias (Phillips et al., 2009; Fourcade et al., 2014; Boria et al., 2014; Bird et al., 2014). The 

ATI is unique in its abundance of unusually good information about recorder location and identity, so 

presents a brilliant opportunity for bias correction methods to be applied, which is the focus of Chapter 

6. Many citizen-science projects require recorders to provide an estimate of their level of expertise or 

education (Kosmala et al., 2016), which can greatly benefit scientific research based on these data 

(Johnston et al., 2018). Therefore, collecting more information about sampling effort, time spent in the 

field, number of volunteers and level of expertise in identification for each record would help to address 

the issues caused by these biases. In the meantime, identified patterns and conclusions drawn from 

information in the ATI should be considered in parallel to potential patterns of bias, and caution should 

be applied when using the ATI for ecological or conservation research without prior consideration of 

the data limitations.  

 

The reliability of the grid references should be also questioned, as even though the majority are recorded 

with 1 m precision (10-figure  grid references), or at the very least 100 m precision (6-figure grid 

reference), several records display outside of the UK boundary and are certainly incorrect. It is likely 

therefore, that there are other records within the UK boundary that are also incorrect. Increasing the 
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number of trees that are revisited over the next few years will increase the accuracy of the ATI and 

ideally reduce the amount of false information, yet this may be difficult if an incorrect grid reference 

has been provided and there are many recorded trees on a site. WT verifiers are often familiar with the 

problem and the inclusion of an image of the tree mitigates it somewhat, nevertheless there are several 

thousand duplicated records in the ATI that have been recorded multiple times. Additional work to 

remove these records is being currently undertaken by WT staff members and other experienced 

individuals.  

 

A possible remedy for the incorrect grid references would be the development of a smartphone app to 

collect high quality GPS location data, as well as provide a more accurate estimate of the time the tree 

is recorded. Many large citizen-science projects such as ‘eBird’, ‘Project Noah or ‘What's Invasive!’ 

currently benefit from mobile-phone record collection methods (Newman et al., 2012; Teacher et al., 

2013; Luna et al., 2018) and although not currently available for the ATI, a mobile app could be a 

valuable asset to the project for data acquisition. However, as mentioned previously, the ATI website 

was redeveloped in the summer of 2018, providing a more user-friendly interface and additional 

recording features such as the ability to update record information for previously recorded trees. Since 

this redevelopment, there has also been an ongoing boost in marketing and awareness about the ATI so 

we should hopefully expect to see an increase in the annual number of records added in the future as 

the website becomes more popular and awareness of the scheme grows.  

 

2.5 Additional data-sets used in this thesis 

Information from a variety of data-sets was collected in addition to the ATI, following careful 

consideration of the potential influence of each one, on ancient, veteran and notable tree distributions 

across the UK (Table 2.5). These included a variety of predictors considered to have either ecological 

influence on the distribution of the trees, or that might be a predictor of the sampling bias or have an 

influence on the record collection procedures. The data-sets can be grouped as being of historical 

importance, having environmental influences (either topographical or land classifications) or 
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anthropogenic factors. Further explanations of the categories from each of the categoric data-sets (Land 

Class, Agricultural Class, Soil type and Countryside type) can be found in Tables A2.3 to A2.6. All of 

the historical predictors were digitised manually using the georeferenced maps from literature using 

ArcGIS version 10.3 (ESRI, 2011).  

 

Table 2.5 Additional data-sets used throughout this thesis selected based on their potential as a predictor of 

ancient, veteran and notable tree distributions across the UK, along with the source the data were accessed from, 

the original format of the data obtained (as a point, polygon, line or raster format) and the reason for their general 

inclusion as a potential predictor of ancient and other noteworthy tree distributions across the UK. 

Predictor Format Source (date accessed) Justification for inclusion as a predictor 

Historical predictors 

Historic forests 

(1327 – 1336) 
Polygon 

Neilson, 1940 in The English Government at 

Work (Willard and Morris, 1940) - The 

Forests: 1327 – 1336 (02/07/18)  
In the UK certain types of historic sites such as these 

are thought to be less likely to have been deforested, 

and their ancient trees are more likely to have been 

protected than in the wider countryside (Rackham, 

1976; Farjon, 2017), particularly due to their 

continuous Royal or aristocratic ownership across the 

centuries (Butler et al., 2002). 

Medieval moated 

sites 
Point 

Aberg, 1978 - Medieval moated sites 

(05/07/18) 

Medieval Deer 

parks 
Point 

Rackham, 1976 - Trees and Woodland in the 

British Landscape (05/07/18) 

Tudor Deer parks Point 

The Counties of Britain: A Tudor Atlas by 

John Speed (Nicolson and Hawkyard, 1989) – 

(03/07/18) 

Countryside type  Polygon 
Rackham, 1976 - Trees and Woodland in the 

British Landscape (05/07/18) 

The divisions in the historical landscape are likely to 

highly influence the management and persistence of 

tree populations (Rackham, 1976). See Table A2.4 for 

more information.  

Topographical predictors 

Watercourses Line 
OS Open Rivers  V.10/2018 (Vector) 

(07/01/19) Environmental characteristics such as these shape the 

micro-climate experienced by the trees throughout 

their whole lives, and are likely to influence the species 

composition, dispersal, decay and other dynamics of 

ancient and veteran tree populations (Hall & Bunce, 

2011; Barnes et al., 2017; Hartel et al., 2018) 

Altitude (1-km) Raster 
Altitude (elevation above sea level (m)) - 

WorldClim DEM (10/05/18) 

Soil type (1-km) Raster 

EU Soil Database –  World Reference Base 

(WRB) for Soil Resources full soil code 

(WRBFU) (24/09/18) 
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Anthropogenic predictors 

Town centre Point 
Government Open Data – English Town 

Centres 2004 (19/03/2018) 

The presence of ancient and veteran trees across the 

UK landscape has experienced strong human 

influences across many centuries (Rackham, 1976; 

Farjon, 2017; Barnes et al., 2017). Therefore it is 

likely that proximity to towns, cities and roads will 

have shaped the planting and management of ancient 

and veteran trees. Additionally, many of these 

characteristics also are likely to influence ancient and 

veteran tree sampling due to issues around 

accessibility, favouring certain sites etc. (Reddy & 

Dávalos, 2003; Mair & Ruete, 2016).  

Major city Point 
Office of National Statistics (ONS) -  Major 

Towns and Cities 2015 (29/11/2017) 

Commons Point 
Government Open Data – Commons register 

2015 (18/12/18) 

Major road Line 
Government Open Data  - Major Road 

Network 2016 (05/11/2017) 

Minor road Line 
OS Open Map Local  V.10/2018 (Vector) - 

Road (07/01/19) 

Buildings Polygon 
OS Open Map Local V.10/2018  (Vector) – 

Building (07/01/19) 

Land classification predictors 

Ancient woodland Polygon 
Natural England - Ancient Woodlands 

(England) inventory (08/01/2018) 

Ancient and veteran trees can sometimes be found in 

woodland (especially ancient woodland (Peterken, 

1977)) so could be an important habitat in which they 

are present (Lonsdale, 2013).  National Forest Polygon 
Government Open Data  - National Forest 

Inventory (NFI) 2016 (04/12/17) 

Traditional 

orchard 
Polygon 

Natural England - Traditional Orchards HAP 

England (10/01/18) 

Ancient and veteran trees have strong connections to 

wood-pasture habitat (Hartel et al., 2013; 2018; 

Chapter 3) and traditional orchards (Barnes et al., 

2017). Wood-pasture Polygon Natural England - Wood Pasture and Parkland 

BAP Priority Habitat Inventory (4/12/17) 

National Trust 

land 
Polygon 

National Trust – Open data: limited access land 

and always open land (08/01/19) 

The National Trust is a large organisation in the UK 

that holds vast areas of land with historic or natural 

interest and therefore have strong links to ancient and 

veteran trees (Nolan et al., 2020).  

Agricultural Class 

(1-km) 
Raster 

Natural England - Provisional Agricultural 

Land Classification England 2013 (13/04/18) 

Land use change, agricultural intensification and 

urbanisation are strong influences on ancient and 

veteran tree decline around the world (Read, 2000; 

Fay, 2002; ATF, 2005, 2011; Lonsdale, 2013). In 

addition, tree populations have specialised niche 

requirements to grow and survive, and are likely to be 

adapted to particular environmental conditions relating 

to specific land types (Barnes et al., 2017).  

Land Class (1-km)  
Raster 

Centre for Ecology and Hydrology (CEH) - 

Land Cover Map 2015 (LCM2015, 1km 

dominant target class) (29/03/17) 

Special Areas of 

Conservation 

(SAC) 

Polygon 
Natural England – Special Areas of 

Conservation England (01/04/20) 

Special Areas of Conservation (SAC) are protected 

sites that significantly contribute to the conservation of 

particular habitats or species. Many SAC designations 

relate to the importance of a site for saproxylic 

organisms and therefore potentially ancient trees.  
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Chapter 3: Historical maps confirm the accuracy of zero-inflated model 

predictions of ancient tree abundance in English wood-pastures.  

 

3.1 Abstract 

Ancient trees have important ecological, historical and social connections, and are a key source of dead 

and decaying wood, a globally declining resource. Wood-pastures, which combine livestock grazing, 

open spaces and scattered trees, are significant reservoirs of ancient trees, yet information about their 

true abundance within wood-pastures is limited. England has extensive databases of both ancient trees 

and wood-pasture habitat, providing a unique opportunity for a large-scale case study to address this 

knowledge gap. In this chapter, I investigate the relationship between the abundance of ancient trees in 

a large sample of English wood-pastures and various environmental predictors, in order to identify 

wood-pastures with high numbers of undiscovered ancient trees. Twenty-one digitised environmental, 

topographical and anthropogenic variables were collected for 5,571 wood-pastures across England, and 

using the UK Ancient Tree Inventory (ATI), I predicted the abundance of ancient trees within each 

wood-pasture. I also introduce a novel model verification step using series of historic maps with detailed 

records of trees to validate my model predictions; this allows verification using completely independent 

data, often a challenging hurdle in many modelling scenarios. Important predictors of ancient tree 

abundance included wood-pasture area, distance to several features including cities, commons, historic 

Royal forests and Tudor deer parks, and different types of soil and land classes. Model predictions of 

tree abundance correlate well with historic map verification estimates. They suggest there are ~101,400 

undiscovered ancient trees in all wood-pastures in England, an increase of around 10 fold in the total 

current number of ancient tree records. Historical maps and statistical models can be used in 

combination to produce accurate predictions of ancient tree abundance in wood-pastures, and inform 

future targeted surveys of wood-pasture habitat, with a focus on those deemed to have undiscovered 

ancient trees.  
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3.2 Introduction 

Ancient trees (often referred to as ‘veteran trees’ or ‘large, old trees’) are found worldwide and are 

important ecological structures, in particular as a source of dead and decaying wood, in many 

ecosystems (Read, 2000; Siitonen, 2001; Butler et al., 2002). The characteristics that define an ancient 

tree, such as a hollowing trunk and branches, crevices and water-filled pools, enable them to act as 

‘keystone species’, supporting a wide range of saproxylic and non-saproxylic species, including fungi 

(Boddy, 2001), invertebrates (Speight, 1989), epiphytes (Read, 2000; Ranius et al., 2008) and larger 

vertebrates (Rasey, 2004; Ruczynski & Bogdanowicz, 2008). At a landscape scale, ancient trees provide 

ecosystem functions and have strong regulatory influences on local nutrient cycles and microclimate 

(Rubino & McCarthy, 2003; Lonsdale, 2013). Additionally, ancient trees are known for their cultural 

and historical ties, and can inform us of past land management and use, historical climate and changing 

social behaviours (Rackham, 1976, 1980; Read, 2000), as well as providing valuable tourism 

opportunities (Rackham, 1994; Lonsdale, 2013).  

 

Wood-pastures, royal forests and historic parklands are habitats which often contain an abundance of 

ancient trees (Rackham, 1994; Hartel et al., 2013; 2018; Farjon, 2017). These also include deer parks, 

commons (land owned collectively by many people with traditional shared grazing or harvesting rights), 

and chases (common land in the UK used by many for hunting without prosecution). These habitats, 

referred to here collectively as ‘wood-pasture’, usually combine livestock grazing with scattered trees 

either in maiden form or actively managed as pollards, where the tree is periodically cut at breast height 

and the trunk and branches are removed for use as animal fodder, or for particular industrial purposes 

(Petit & Watkins, 2003). The resulting landscape is productive, open and relatively undisturbed, 

providing an ideal environment for the development and persistence of ancient trees (Quelch, 2002; 

Hartel et al., 2018). Wood-pastures also more generally support high densities of rare flora and fauna 

(Rosenthal et al., 2012), and their conservation value is recognised throughout Europe (Dorresteijn et 

al., 2013; Hartel et al., 2018). Several studies have mapped European wood-pasture (Hartel et al., 2013; 

Plieninger et al., 2015), and it is estimated that it covers an area of ~203,000 km2 (Plieninger et al., 

2015).  
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Despite their importance, ancient trees are in global decline (Gibbons et al., 2008; Fischer et al., 2010), 

particularly due to the spread of disease and pests, urbanisation, and agricultural expansion (Read, 2000, 

ATF, 2005, 2011; Lindenmayer et al., 2012). In addition, there is a lack of tree planting and appropriate 

management to ensure the continuity and replacement of ancient tree populations and dead-wood 

habitats (Read, 2000). To add to this, wood-pasture is also considered an increasingly threatened habitat, 

particularly across Europe, (Hartel & Plieninger, 2014; Forejt et al., 2017), where overgrazing, the 

decline of old trees, and land-use intensification and conversion are having major impacts (Kirby, 

2015). Additionally, although the connection between wood-pasture and ancient trees is generally 

agreed upon, few studies, with the exception of Hartel et al. (2013; 2018) and Moga et al., (2016) in 

Romania, have investigated the true abundance or distribution of ancient trees within wood-pastures at 

an international or even a national scale. Further investigation and quantification of the links between 

ancient trees and wood-pasture at larger scales i.e. across other regions, countries or continents, would 

enable more effective conservation and protection of ancient trees. 

   

Compared to Europe and the rest of the world, both the number of ancient trees and the concentration 

of wood-pastures in the UK, and particularly in England, is extremely high (Rackham, 1994; Fay, 2004; 

Lonsdale, 2013). This is often attributed to the long history of continuous Royal and aristocratic land 

ownership and management of forests and parkland (Butler et al., 2002). Additionally, the UK has the 

most comprehensive ancient tree database in the world; the Ancient Tree Inventory (ATI). The ATI 

began as a citizen-science collaboration project in 2004 between the Woodland Trust (WT), the Ancient 

Tree Forum (ATF) and The Tree Register of the British Isles (TROBI), and over 200,000 ancient and 

other notable trees have been mapped since its beginning (Butler, 2014; Nolan et al., 2020). The 

extraordinary number of ancient trees recorded in the ATI presents a unique opportunity to investigate 

quantitatively the large-scale determinants of ancient tree abundance in wood-pastures, with the aim of 

identifying sites likely to contain undiscovered ancient trees across England.  

 

The non-random, ‘ad-hoc’ recording method of the ATI means that the inventory is thought to be far 

from complete, and many more ancient trees in the UK, including those at risk from the many factors 
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that threaten their survival, are likely to have gone unrecorded. This also means the ATI is likely to 

suffer from high levels of sampling bias, because certain geographical locations or time periods have 

been more extensively surveyed than others (Phillips et al., 2009; Mair & Ruete, 2016). It is suspected 

that there are many partially or completely un-surveyed sites, including wood-pasture that actually 

contain ancient trees; currently ~ 44 % of all ATI ancient trees are located in a wood-pasture, yet these 

wood-pastures represent only ~ 9 % of the total number of wood-pastures across England. The patchy 

recorded occurrence of ancient trees means that the data display a high level of zero-inflation, which 

presents a problem when trying to model tree abundance using conventional methods. Hence, in the 

present study I use zero-inflated (ZI) models to model the data and create abundance predictions. 

  

The accuracy of large-scale spatial models of the distribution and abundance of organisms is best 

assessed by comparison with independent data collected in the field (Chatfield, 1995). However, such 

data are seldom available and model verification typically involves retaining one or more subsets of the 

original data as pseudo-independent ‘test’ data sets. In this chapter, I take advantage of the uniquely 

detailed mapping of trees in England over the past 200 years to perform a novel form of model 

verification using completely independent data on the location of the organisms I am attempting to 

model. I use of a series of historical Ordnance Survey (OS) maps with detailed records of trees across 

England, together with the National Tree Map (NTM) (Bluesky National Tree Map, 2015) which 

depicts the current location, extent and height of all trees above 3 m across England. By overlaying 

these maps across time, abundance estimates were obtained for a randomly selected sample of wood-

pastures to verify model accuracy and predictive power. 

  

This chapter provides quantitative evidence for the drivers of the important relationship between ancient 

trees and wood-pastures in England, and highlights the international need to establish and expand 

ancient tree inventories such as the ATI. I hope these findings will assist with conservation efforts to 

locate and protect our ancient tree populations, and to ensure their survival into the future.  
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3.3 Methods 

3.3.1 Study area and ancient tree records 

Data describing the distribution of 5571 mapped wood-pastures in England were obtained from Natural 

England (Wood Pasture and Parkland BAP Priority Habitat Inventory for England, accessed 04/12/17) 

(Fig. 3.1). The digitised wood-pasture polygons cover an area of ~2780 km2. The wood pasture polygon 

dataset originally comprises 9815 sites of wood pasture collected from national and local record sources 

dated between 1976 to 2011 and verified using aerial photography and UK Ordnance Survey (OS) 

County Series maps (Epoch 1-4) that span 1846 - 1969 (for more information see 

https://data.gov.uk/dataset/bac6feb6-8222-4665-8abe-8774829ea623/wood-pasture-and-parkland-

england). All rivers and metalled roads were excluded by Natural England during digitisation in 

accordance with their mapping rules, so many wood pastures are artificially divided into multiple 

polygons. For this analysis all polygons sharing a common place name and within 100 m of each other 

were dissolved into a single feature, as were all polygons, named or unnamed, within 50 m. Finally, 

wood pasture polygons with an area less than 1-m2 were removed, leaving 5571 wood pasture polygons 

ranging in area from 8.6 m2 to 270 km2. The dataset is not exhaustive as, for example, churchyards and 

other burial grounds that may be considered as wood-pasture or parkland habitat are excluded unless 

completely within another wood-pasture, but it covers a significant land area and is the most 

comprehensive and up-to-date inventory of this habitat in England available to date. 

 

Ancient tree records in England were obtained from the ATI (Woodland Trust, accessed 17/12/18). I 

excluded all unverified (one or two star) records (see Chapter 2 for more information), and 185 records 

with incorrect or missing grid references. 10,450 records of ancient trees in England were retained, 

4,582 (43.8%) of which fall within a wood-pasture polygon. Ancient tree abundance (number of ancient 

trees per wood-pasture) was subsequently calculated. Abundance ranged from 0 to 392, but was right-

skewed with 91.4% of wood-pastures containing no ancient tree records (Fig. A3.1). Thus, the data 

showed severe zero-inflation i.e. there were significantly more zeroes than expected when compared to 

a standard Poisson distribution (Van den Broek test 1995: χ²=14,356.69, df = 1, p < 0.001).  
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Fig. 3.1 Distribution of all wood-pasture in England (as mapped by Natural England in Wood Pasture and 

Parkland BAP Priority Habitat Inventory for England). Although shown in the figure, wood-pastures on the Isle 

of Wight were not included in the analysis. 

 

3.3.2 Predictor variables 

A variety of sources was used to collect data on 21 characteristics for each wood-pasture (Table 2.5, 

Table 3.1). Justification for the inclusion of each predictor in this analysis are the same as those detailed 

in Table 2.5, and all are deemed relevant to ancient trees in wood-pastures for the same reasons outlined 

previously. Wood-pasture area (km2) was square-root transformed due to the large range of values. All 

16 numeric predictors were centred (the mean of each predictor is subtracted from each value of the 

predictor) and standardised (the centred values were divided by the standard deviation of the predictor 

values). Under-represented categories of the three categorical predictors (land classification, 

countryside type and soil type) were combined to aid model fitting resulting in five categories of land 

class (‘Broadleaved’, ’Arable’, ‘Grassland’, ‘Urban’ and ‘Other’) (Table A2.3), five categories of soil 
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type (‘Limited root growth’, ‘Fe/Al’, ‘Clay’, ‘No Profile’ and ‘Other’) (Table A2.5) and four types of 

countryside (‘Ancient’, ‘Planned’, ‘Highland’ and ‘Cornwall’) (Table A2.4).  

Two binomial predictors were used: whether the wood-pasture covered agricultural land or not (4,653 

wood-pastures are on agricultural land: defined as all agricultural land ranging from Grade 1-5 (Table 

A2.6)), and whether the wood-pasture covers land owned by the National Trust (NT); there are 244 

wood-pastures on NT land. The minimum resolution possible at which to obtain the categoric predictors 

(including agricultural land) was 1-km2, so the value (or average/ most common value if a wood-pasture 

covered multiple 1-km2 grid squares) was extracted for each wood-pasture. As a result, many wood-

pastures, which are recorded at a smaller resolution than the categoric predictors, fell within squares 

not necessarily designated as specific wood-pasture or parkland type habitat: some wood-pastures were 

assigned categories of land use based on squares whose primary designation was agricultural, urban or 

woodland. Nevertheless, including these land use predictors provides key information about the local 

environment and surroundings of the wood-pastures, which I believe could be important determinants 

of ancient tree distributions. All data processing was carried out in ArcGIS (ESRI, 2011) and R (R Core 

Team, 2018).   
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Table 3.1 The 21 variables describing wood-pasture characteristics used as predictors in statistical models of 

ancient tree abundance. There are 16 continuous predictors, 2 binomial predictors and 3 categoric predictors. 

Reasons for the inclusion of each predictor in the analysis in this chapter are the same as those detailed in table 

2.5, and equally apply to wood-pastures.  

Dataset Predictor (after processing) Format 

Wood-pasture Wood-pasture area (km2) Numeric 

Town centres Distance from nearest town center (km) Numeric 

Major city Distance from nearest major city (km) Numeric 

Historic forest Distance from a royal forest (km) Numeric 

Medieval moated site Distance from a moated site (km) Numeric 

Medieval Deer park Distance from a medieval deer park (km) Numeric 

Tudor Deer park Distance from a Tudor deer park (km) Numeric 

Commons Distance from a commons (km) Numeric 

Ancient woodland Cover of ancient woodland (%) Numeric 

Traditional orchard Cover of traditional orchard (%) Numeric 

National Forest Cover of forest or woodland (%) Numeric 

Buildings Cover of buildings (%) Numeric 

Major road Distance from a major road (km) Numeric 

Minor road Length of minor roads per km2 of wood-pasture (km) Numeric 

Altitude  Mean altitude across wood-pasture (m) Numeric 

Watercourse Distance from a water course (km) Numeric 

National Trust land National Trust owned land  Binomial 

Agricultural class Agricultural Land  Binomial 

Countryside type Type of countryside  Categoric 

Soil type Most common soil type across wood-pasture Categoric 

Land class Most common land classification  Categoric 

 

 

3.3.3 Statistical modelling 

Zero-inflated (ZI) models (Lambert, 1992) have been used effectively in ecology to model species data 

with excess zeroes and have been shown to be superior to equivalent Generalised Linear Models (GLM) 

(Potts & Elith, 2006). They have two parts producing two sets of coefficients; a ‘zero’ logistic 

component modelling the probability of an observation being an excess zero, and a ‘count’ component 
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generating the count estimates (see Lambert, 1992 or Welsh et al., 1996 for more information), and thus 

two different types of model predictions can be produced (Zeileis et al., 2008) (see Chapter 5 for more 

information). If all excess zeros are ‘true absences’ (arising from either unsuitability of the habitat or 

ecological stochastic processes) then the ‘zero component’ is modelling causes of biological 

aggregation. If some or all excess zeroes arise from ‘false absences’ (arising from sampling, detection 

or misclassification errors), abundance predictions from the whole ZI model (hereafter known as ‘model 

abundance’ predictions) reflect the abundance that would be observed in the presence of the sampling 

error in the data. In this case, predictions produced purely from the ‘count’ component of the ZI model 

(hereafter known as ‘count abundance’ predictions), will typically be a better reflection of the true 

ecological or environmental processes that determine species abundance. As I suspect the excess zeroes 

arise primarily from the lack of sampling of wood-pastures, I assume that the ZI ‘zero’ component will 

predominantly model the processes determining the likelihood that a wood-pasture has been sampled, 

whereas the ‘count’ component will model the ecological processes determining the suitability of the 

wood-pastures for ancient trees. 

 

Ancient tree abundance data were modelled using two ZI models with different distributions: a zero-

inflated Poisson model (ZIP) and a zero-inflated negative binomial (NB) model (ZINB), using the ‘pscl’ 

package in R (Zeileis et al., 2008). Discrete count data are most commonly modelled using a Poisson 

distribution and log link function (Zuur et al., 2007; Bolker et al., 2009; Cameron & Trivedi, 2013), 

assuming that the mean and variance are equal. This assumption is incorrect when dealing with 

overdispersed or aggregated data where the variance is greater than the mean, which occurs often in 

ecological data. In these cases, a NB distribution is more suitable, as it allows adjustment of the variance 

independently from the mean using an extra model parameter, ϴ (also referred to as 1/α) (Gardner et 

al., 1995). If excess zeroes under a Poisson distribution are the result of biological aggregation, an NB 

model can be used to account for these extra zeroes. However, if the data are still zero-inflated with 

respect to a NB distribution, then a ZINB model can be more appropriate. Comparative model fit to the 

data was assessed using Vuong’s (1989) closeness test for non-nested models, likelihood ratio tests 

(package: ‘lmtest’: Zeileis & Hothorn, 2002), the significance of the ϴ parameter, and visual analysis 
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of hanging rootograms (package: ‘countreg’, Kleiber & Zeileis, 2016). ZI models were also fitted 

separately for the two most common genera present across all wood-pastures (Quercus and Fraxinus) 

to assess differences in the environmental determinants between these taxa. No other genera were 

modelled owing to their low prevalence (comprising < 1% of records of all ancient trees in wood-

pastures).  

 

Model predictions were created using 10-fold cross validation; the data were split into 10 equal parts, 

with each subsample sequentially used as test data, and the other nine subsamples as the training data. 

Both ‘count abundance’ and ‘model abundance’ predictions were considered, as well as the predicted 

probabilities that each observation is an excess zero (i.e. the probability predictions from the ‘zero’ 

component only). Abundance predictions were evaluated against observed ancient tree abundance using 

Spearman’s rank correlation coefficient (rs) and root mean square log error (RMSLE). In addition, the 

probability of observing the data based on the predictions was calculated for each model; for every 

wood-pasture, a Poisson or NB probability distribution function was simulated based on the mean 

predicted count from the ZIP or ZINB model respectively. The natural log probability of obtaining the 

observed abundance under this simulated distribution was summed for all wood-pastures to produce an 

overall probability of obtaining the observed results.  

 

Spatial autocorrelation and collinearity between predictors violate model assumptions and can result in 

inaccurate parameter and standard error estimates, inflated type I and II errors and biased inferences 

(Dormann et al., 2013; Thompson et al., 2017). No collinearity between the raw numeric predictors was 

detected using the following tests and thresholds: VIF (vif = 2), Leamer’s method (leamer = 0.1), 

Pearson correlation coefficients (r = 0. 5) and determinant of the correlation matrix (detr = 0.01). In 

addition, no collinearity was detected in the fitted model residuals using adjusted generalised VIF 

(gVIF) (corrected for degrees of freedom) (gvif = 5) (R packages: ‘mctest’, Imdad Ullah et al., 2016; 

‘car’, Fox and Weisberg, 2011). No spatial autocorrelation was detected in ancient tree abundance 

across all wood pasture sites using Moran’s I (package: ‘ape’, Paradis & Schliep, 2019) (Observed = -

0.0004, Expected = -0.0002, p = 0.339) and correlations between model residuals and wood pasture 
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midpoint northing and easting coordinates were weak (ZIP Spearman correlations: northing: 0.140, 

easting: -0.033; ZINB Spearman correlations: northing: 0.115, easting: -0.002). 

 

3.3.4 Model verification 

The ideal method for ecological model verification is the evaluation of predictions using an independent 

dataset, yet it is often time-consuming and costly to collect extra data from the field; here I propose a 

more efficient, novel method of verification using historic maps. Three map series were selected (Table 

3.2), the first two of which are country-wide historic OS maps with detailed records of mature free-

standing trees, designated as having a ‘very high’ or ‘high’ UK coverage respectively according to the 

EDINA Historic Digimap Service. The last map is the National Tree Map (NTM) (Bluesky, 2015), a 

digitised polygon-based dataset of the location, extent and height of all tree canopies over 3 m in height 

across England and Wales recorded as present in 2015, which is between 116-169 years after the date 

of the earliest map series I used. By overlaying all three map series (between 1846 – 2015) the 

persistence of individual trees can be traced over a time to provide an estimate of current ancient tree 

abundance within wood-pastures.  

 

Table 3.2 Map series used for the historical desk verification of model predictions. The first two series consist of 

historic maps (Edina Historic Digimap Service), and the last one of recent (2015) digitised tree canopies of all 

trees and shrubs above 3 m in height across England.  

 Map Series Date Source 

1 
County Series First Edition 

Survey Map (Epoch 1) 

1846-

1899 

Ordnance Survey County Series 1st Edition [TIFF geospatial data], 

Scale 1:10,560. Using: EDINA Historic Digimap Service, 

http://edina.ac.uk/digimap, Downloaded: June 2019 

2 
National Grid Imperial Map 

First Edition (Epoch i5) 

1948-

1977 

Ordnance Survey National Grid Imperial Map 1st Edition [TIFF 

geospatial data], Scale 1:10,560. Using: EDINA Historic Digimap 

Service, http://edina.ac.uk/digimap, Downloaded: July 2019 

3 National Tree MapTM (NTM) 2015 

Bluesky National Tree Map 2015, http://www.bluesky-

world.com/#!national-tree-map/c1pqz. Accessed via Woodland 

Trust, 2018 as GIS vector layer 
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All wood pastures were categorised into one of four groups based on the observed presence-absence of 

ancient trees and the predicted probability of being an excess (‘false’) zero. These probability 

predictions were then converted into binary presence-absence. Fixed thresholds (usually 0.5) are often 

used for classification into binary groups in these circumstances in ecology but have been shown to 

perform poorly in comparison to more objective, variable methods based on prevalence, mean 

probability or sensitivity-specificity approaches (Liu et al., 2005; Freeman & Moisen, 2008). Therefore, 

I chose to use a variable threshold which was the mean predicted probability of a wood-pasture being 

an excess zero (i.e. the mean zero component probability prediction across all wood-pastures) for each 

of the 10 different sets of training data i.e. a different threshold therefore was used for each training 

data set. The four groups therefore comprised a) wood-pastures with ATI records predicted to contain 

trees, b) wood-pastures with ATI records predicted not to contain trees, c) wood-pastures with no ATI 

records predicted to contain trees and d) wood-pastures with no ATI records predicted not to contain 

trees. Fifteen wood-pastures from each group were randomly selected resulting in 60 wood-pastures 

overall that underwent verification.  

 

Two volunteers from the Woodland Trust digitised all freestanding (i.e. non-woodland) trees within the 

wood-pasture polygon boundary for the first two map series by placing a single point in the middle of 

each OS tree symbol. Each of these symbols is taken to mean a mature, free-standing tree (~75-100 

years old) at the time of mapping (see https://maps.nls.uk/view/128076885). Only freestanding trees 

were selected rather than those in woodland patches as these usually were documented using a generic 

woodland ‘symbol’ instead. The volunteers had no knowledge of the observed or predicted abundance 

of ancient trees for each wood-pasture.  

 

NTM Canopy polygons containing a digitised tree from both the first and second OS map series were 

retained and considered to be ancient as they represented free-standing trees in 2015 which were 

probably already mature 116-169 years previously, meaning that they were at least 166 years old, and 

likely to be over 200 years old; the majority of trees reach the mature stage (prior to becoming ancient) 

by 100 years old (White, 1998). The abundance per wood-pasture of probable ancient trees was thus 

https://maps.nls.uk/view/128076885
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obtained. I aimed to account for discrepancies and errors between the map series that may have occurred 

from either the original mapping methods or the digitising of the paper maps, by allowing an area of 

uncertainty around each historic tree. The verification process was therefore carried out for three 

different levels of accuracy using 1) the digitised tree point itself, 2) a 5-m buffer around the digitised 

tree and 3) a 10-m buffer around the digitised tree.  

 

Verification abundance estimates were assessed against both ‘count abundance’ and ‘model abundance’ 

predictions using Spearman’s Rank correlation coefficient (rs). Linear regression models were fitted in 

R using the ‘stats’ package, modelling the ZIP and ZINB model predictions in relation to the verification 

estimates for the 60 wood-pastures across the three different levels of accuracy (no buffer, 5-km and 

10-km). These models were then used to predict total ancient tree abundance across a) all wood-

pastures, b) wood-pastures currently containing ancient tree records and c) wood-pastures with no 

records. 

 

3.4 Results 

3.4.1 Model performance, parameter estimates and predictions 

Abundance of ancient trees in wood-pastures in England was best modelled with a zero-inflated 

negative binomial (ZINB) model, which accounts for biological overdispersion as well as additional 

zero inflation.  The ZINB model provided a more appropriate fit to the training data than an equivalent 

zero-inflated Poisson  (ZIP) model, based on the Vuong AIC-corrected test (z = -5.974, p <0.001) and 

the likelihood ratio test (χ2= 6,089.3, p < 0.001). Additionally, the significant ϴ parameter in the ZINB 

model suggests overdispersion is present in the data, meaning the ZIP model is not appropriate to use 

with this dataset (Table A3.1). Visual analysis of hanging rootograms for each model suggest the ZIP 

model is highly under-predicting wood-pastures with zero records and over-predicting wood-pastures 

with small numbers of records (less than 10) (Fig. 3.2).   
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Fig. 3.2 Hanging rootograms to visualise the fit of the zero-inflated Poisson (ZIP) and negative binomial (ZINB) 

models to the ancient tree abundance data in English wood-pastures. The (square root) expected number of wood-

pastures containing a certain ancient tree abundance is represented by the red line, and the observed number of 

wood-pastures by the grey bars. Therefore, bars that fall below a count frequency of zero are being under-

predicted in a particular count bin, and bars that do not reach a count frequency of zero are being over-predicted 

by the model.  

 

The ZINB ‘count abundance’ (from the count component) predictive performance based on the cross-

validation test data was significantly better than that of the ZIP for all three evaluation metrics (predicted 

probability of obtaining results, rs and RMSLE) (Fig. 3.3). There was no difference in predictive power 

of ‘model abundance’ (from the whole ZI model) for two of the metrics (predicted probability of 

obtaining results and RMSLE) but ZINB ‘model abundance’ predictions correlated more strongly with 

original ancient tree abundance per wood-pasture than those from ZIP.  ‘Count abundance’ predictions 

suggest that there are 50,784 (ZIP) or 13,848 (ZINB) ancient trees across all wood-pastures in England, 

which is between 3 and 9 times more than the total number already known (Table 3.3a). ZIP ‘model 

abundance’ predictions are quite poor, and actually suggest there are fewer trees in total than those 

already known about.  
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Fig. 3.3 Evaluation of abundance predictions from the zero-inflated Poisson (ZIP) and negative binomial model 

(ZINB). Two types of abundance predictions are evaluated: ‘count abundance’ predictions from the ‘count’ 

component of the ZI models and ‘model abundance’ predictions from the whole ZI model. Values shown represent 

the median, quartiles and range for each evaluation metric across all 10 cross-validation folds. Three metrics 

were considered: Spearman’s Rank Correlation Coefficient between the model predictions and observed 

abundance (Spearmans Rank), Root Mean Squared Log Error (RMSLE), and the probability of obtaining the 

results based on the observed and predicted values (Probability). The best performing models will therefore have 

the highest Spearmans Rank values, probabilities closest to one and the lowest RMSLE values. Significance levels 

are represented by p < 0.05 = *, p < 0.01 = **, p < 0.001 = *** and were calculated using the Welch two sample 

t-test.  

 

Parameter estimates of the best-performing model (ZINB) suggest ancient tree abundance is positively 

influenced by increasing wood-pasture area, increasing distance to the nearest city and nearest Royal 

forest, decreasing distance to the nearest Tudor deer park, distance to a common, and length of minor 

roads per km2 of wood-pasture (Table A3.1). Ancient tree abundance is also predicted to differ 

significantly across certain land classifications and soil types (Fig. 3.4), and is higher on NT and non-

agricultural land (Table A3.1). The logistic parameter estimates from the ZINB model provide insight 

into the factors that influence the odds of a wood-pasture being an excess (‘false’) zero, which is most 
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likely to arise because a wood-pasture has not been sampled and has undiscovered ancient trees. Such 

wood-pastures are more likely to be large, have a low coverage of forest or woodland and are on 

agricultural land. Soil type and land class also influence the probability a wood-pasture is an excess 

(‘false’) zero. 

 

Table 3.3a Estimates of the abundance of ancient trees for the zero-inflated Poisson (ZIP) and negative binomial 

model (ZINB) based on predictions from either the ‘count’ component of the ZI model (‘count abundance’) or the 

whole model (‘model abundance). Three wood-pastures deemed to be outliers due to extreme predictions (all 1011 

times greater than the next highest predicted abundances) were removed. 3.3b Estimates of abundance of ancient 

trees for the zero-inflated Poisson (ZIP) and negative binomial model (ZINB) based on the historical verification 

estimates. Estimates were obtained across the three levels of accuracy (no buffer, 5-m buffer and 10-m buffer).  

Model Estimates (a) 

Count abundance predictions 

(‘count’ component) 

Model abundance predictions 

(‘count’ and ‘zero’ component) 

All wood-

pastures 

Wood-pastures 

with records 

Wood-pastures 

without records 

All wood-

pastures 

Wood-pastures 

with records 

Wood-pastures 

without records 

ZIP  50,784 4,122 46,662 4,376 1,869 2,506 

ZINB  13,848 7,118 6,729 11,306 6,909 4,397 

Verification Estimates (b)     

ZIP 

No buffer 127,489 7,940 119,559 51,468 22,666 28,811 

5-m 1,022,218 63,607 958,633 221,062 97,360 123,752 

10-m 2,526,901 157,206 2,369,717 437,695 192,777 245,032 

ZINB 

No buffer 101,402 29,900 71,516 70,284 43,120 27,177 

5-m 368,411 108,649 259,836 266,208 163,330 102,949 

10-m 701,925 207,021 495,067 511,783 314,008 197,931 
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Fig. 3.4 Mean number of ancient trees per wood-pasture across each categorical predictor. Error bars = ± 1 SE. 

Dunn’s Test of Multiple Comparisons using Rank Sums significance tests were used to assess which categories 

differ significantly from each other. Significance levels are shown using stars: *** = p < 0.001, ** = p < 0.01, * 

= p < 0.05, and brackets are used to indicate which categories actually significantly differ from each other. 

Categories associated with stars but no brackets are significantly different from all other categories.   

 

There were 321 wood-pastures containg Quercus records and 66 containing Fraxinus records. The 

abundances of both genera were positively influenced by wood-pasture area and being on National 

Trust land, and were negatively influenced by being on ‘Limited Root Growth’ soil and increasing 

distance from a watercourse (Table A3.2). Fraxinus abundance was also higher at high altitudes, away 

from major cities, in planned countryside, on grassland or on land with traditional orchards, and lower 

when nearer to medieval deer parks, there was a large coverage of national forest and on agricultural 

land. Quercus abundance was also positively influenced by being on ‘other’ soil types and being on 

broadleaved habitat land, and negatively influenced by being on urban land, at lower altitudes and with 

greater coverage of minor roads (Table A3.2).  

 

3.4.2 Model verification using historic maps 

Verification estimates of ancient tree abundance across 60 selected wood-pastures ranged from 0 to 

2,108 across the three levels of spatial accuracy, with mean values ranging from 20 (standard error = ± 
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4) (no buffer) to 202 (standard error = ± 43) (10-m buffer). ‘Count abundance’ predictions from the 

ZINB model correlated remarkably well with the historic map verification estimates, whereas ZIP 

predictions correlated less strongly (Table 3.4). ZINB predictions performed better as I allowed for 

greater levels of inaccuracy in the precise location of trees in the historic maps (i.e. as buffer size 

increased), whereas this had little effect on the ZIP predictions.  

 

Additionally, 100 % of wood-pastures categorised as true positives (predicted to contain records when 

they actually do) and 13 out of 15 wood-pastures (87 %) categorised as false negatives (predicted to 

contain records but currently there are none) were verified as having ancient trees using the historic 

maps. The other two categories are slightly less clear-cut, with 8 out of 15 (53 %) ‘true negative’ wood-

pastures (correctly predicted by the model to contain no records) and 9 out of 15 (60 %) ‘false positive’ 

wood-pastures (predicted to not contain records when there are some)  having evidence of ancient trees 

based on historical maps.  

 

Table 3.4 Spearman’s rank correlations (rs) between the predicted ancient tree abundance from the zero-inflated 

Poisson (ZIP) or negative binomial model (ZINB), and the historic map verification estimates for 60 selected 

wood-pastures in England. Predictions considered include the ‘count abundance’ predictions from the ‘count’ 

component of the ZI models and the ‘model abundance’ predictions from the whole ZI model. Coefficients are 

shown for each of the three levels of assumed accuracy of the historic maps from highest accuracy (no buffer) to 

lowest accuracy (10-m buffer) along with p values representing test significance (p < 0.05:*, p < 0.01:**, p < 

0.001:***).  

 

 

 

 

 

Model Prediction 

Spearman’s Rank Coefficient (rs) 

No buffer 5 m 10 m 

ZIP 

Count abundance 0.365** 0.432*** 0.432*** 

Model abundance 0.663*** 0.681*** 0.678*** 

ZINB 

Count abundance 0.553*** 0.582*** 0.594*** 

Model abundance 0.701*** 0.710*** 0.720*** 
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Based on the linear regression models fitted using the ZI ‘count abundance’ predictions (from the ZI 

count component) and historic map verification estimates, the total estimates of ancient trees in English 

wood-pastures range from 101,402 (ZINB with no buffer) to 2,526,901 (ZIP with 10-m buffer) (Table 

3.3b). It is most likely the true number falls closer to the lower, more conservative estimate from the 

ZINB model, which consistently outperformed the equivalent ZIP model in a variety of evaluation 

metrics. This estimate is 22 times the number of ancient tree records currently in English wood-pastures, 

and almost 10 times the total number of ancient tree records in England.  

 

3.5 Discussion 

Ancient trees are keystone organisms in the landscape, and it is important to understand where they are 

and how they might best be protected and managed for long-term conservation. This research identified 

important environmental and anthropogenic factors that positively and negatively influence ancient tree 

abundance in English wood-pastures, both for all trees, and for Quercus and Fraxinus genera. As seen 

in previous studies (Moga et al., 2016; Hartel et al., 2018), wood-pasture area is a strong predictor of 

ancient tree abundance. This is to be expected, since larger areas by definition can contain more trees, 

but it may also be the result of historical management and land-ownership: many of the larger wood-

pastures are either royal forests or former aristocratic estates, which have actively managed trees over 

the centuries in ways to continuously sustain and benefit from them (Quelch, 2002). Wood-pasture 

habitat is an important resource for the development and persistence of ancient tree populations, yet is 

not considered to be self-sustaining (Quelch, 2013). Constant, active management of both land and trees 

is needed in the form of sustainable grazing and continuation of traditional pollarding techniques (ATF, 

2009; Lonsdale, 2013).  

 

Abundance was also influenced by three human factors, distance to a city, length of minor roads and 

agricultural land. In all cases, true ancient tree abundance is higher when away from high anthropogenic 

pressures. There are many threats to the future survival of ancient trees, especially agricultural 

intensification (Read, 2000; Fay, 2004; ATF, 2005) and urbanisation (Le Roux et al., 2014). It is 
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important to mitigate these threats, and implement protection measures such as Tree Preservation 

Orders (TPOs) or scrub planting (Read, 2000; ATF, 2009) and policy changes (Lindenmayer et al., 

2014).  

 

Sampling bias is a common artefact in many large species databases (Phillips et al., 2009) and is thought 

to be present also in the ATI. Verification of the abundance estimates confirmed that the majority 

(almost 90%) of wood-pastures predicted to have ancient trees, but having no ATI records, did in fact 

contain at least one ancient tree. Model coefficients from the ‘zero’ component of a ZI model provide 

insight into the factors that influence the probability of an excess zero (Lambert, 1992), and thus inform 

us about predictors of sampling bias in the ATI. One such factor is the occurrence of wood-pastures on 

agricultural land, or land not covered by ancient woodland or forests. Citizen-science recorders are 

known to favour interesting areas or species (Kramer-Schadt et al., 2013); for example I found ancient 

tree abundance to be much higher on NT land. Agricultural land is generally less appealing for ancient 

tree surveys, and is also is likely to be less accessible and have fewer public rights of way. As ancient 

trees on agricultural land are likely to be at increased risk of mortality from increasing field sizes, soil 

compaction, over-grazing and fertiliser applications (Read, 2000; Fay, 2004; ATF, 2005), these areas 

should be a priority for future surveys which aim to identify ancient trees in need of conservation 

intervention.  

 

Historic maps are an incredibly useful source of information about past land use, management and 

socio-cultural factors, yet they are often undervalued in scientific research (Roper, 2003). In the UK the 

extensive collection of Ordnance Survey maps dating as far back as 1801 provides a unique, unrivalled 

source of historical landscape characterisation, and have been used successfully in geographical and 

ecological studies (Cowley et al., 1999; Sutherland, 2012; Visser, 2014). The high level of detail 

included in these maps, such as the specific locations of individual trees and different types of woodland 

patches, present a rare opportunity to address ecological research questions such as ours, where 

environmental, historical and anthropological factors are all being considered to define the niche of 

organisms that can live to be over 1000 years old.  
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Abundance estimates from the historic map verification work correlated highly with the model 

predictions, providing strong support for a) the predictive power of the model, b) the hypothesis that 

many wood-pastures are ‘false absences’ and actually do contain ancient trees and c) the benefits of 

historic maps for addressing landscape-scale scientific questions. The most conservative estimate of 

ancient tree abundance in English wood-pastures (based on predictions from verification work and 

ZINB model with no area of uncertainty) was 101,402. Although at first glance this may seem an 

overestimate, as it represents a 2112 % increase on the known number of ancient trees in wood-pastures, 

it is not implausible. Because only 9% of wood-pastures contain 10,450 (43%) ATI ancient tree records, 

a figure close to 100,000 ancient trees (i.e. a 10-fold increase) is possible, depending on the 

completeness of sampling across all wood-pastures. Other estimates of ancient tree totals have 

suggested figures close to nine million ancient or veteran trees (trees that are becoming ancient trees or 

show ancient characteristics) across the whole UK (Fay, 2004). Therefore, my value of ~100,000 in 

wood-pastures seems if anything conservative. Either way, my predictions highlight the fact that, even 

in the UK, where sampling is relatively good, most ancient trees in the landscape are yet to be recorded.  

 

It is important to consider the accuracy of the OS maps used to verify my model predictions, especially 

as the early historic maps are thought to have the most inconsistencies (Harley, 1968; Visser, 2014) and 

there are likely to be a variety of caveats with using the historic maps, resulting in both under- and 

overestimation of ancient tree abundance. My decision to map only free-standing ancient trees and 

exclude woodland patches is likely to have contributed to under-estimation of true abundance: although 

frequently less common, ancient trees can be found in woodland (Rackham, 1980). Additionally, 

inconsistencies and the misplacement of the historic tree symbols would also result in underestimation 

if the tree is still around today but did not fall within an NTM canopy polygon. This risk could be 

relatively high, particularly as there was no standardised key for the tree symbols in the first OS map. 

Alternatively, overestimation of abundance may have occurred where the locations of trees recorded 

during verification actually reflected places in which more than one individual had been recorded over 

time. For example, a mature tree recorded on an early map may have been felled and another 

immediately planted in its place. Although I deemed this unlikely to happen, given that the interval 
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between any two map series was around 50-100 years, barely sufficient time for many species, 

especially free-standing Oaks, to reach maturity (White, 1998), it could have resulted in some immature 

or mature trees being labelled as ancient.  

 

Finally, both under- and overestimation of abundance could have occurred owing to the interspecific 

differences in the age at which a tree reaches maturity and then becomes ancient (White, 1998; ATF, 

2008a; Lonsdale, 2013). By assuming that a mature or ancient tree, minimally 40 years old (White, 

1989) in the first County series map, will now be at least 200 years old, this time period may be too 

long for the shorter-lived species to survive until the present day. Many fruit trees such as plum or pear, 

for example, will never reach 100 years old. Conversely, for some species such as Yew, which is 

generally only ancient after 800 years, this time period may not be long enough to classify it now as 

ancient. However, the majority of records were Quercus and Fraxinus, both of which often survive 

beyond 200 years, but are very likely to show ancient characteristics by this age or soon thereafter.   

 

Nevertheless, despite these suspected errors, it is likely the under- and overestimation of abundance 

largely cancel each other out, a view supported by the strong correlations with the model predictions. I 

believe the potential use and benefits of historical maps for ecological studies is high, and aim to draw 

attention to the possibilities that these often underused resources offer for research at a landscape scale. 

I also hope these findings could allow targeted surveys of wood-pastures with high predicted suitability 

for ancient trees to assist with the conservation and protection of valuable UK ancient trees and wood-

pasture habitats.  
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Chapter 4: Identifying predictors of sampling bias in the Ancient Tree 

Inventory (ATI) in England. 

 

 

4.1 Abstract 

Sampling bias in large species datasets is problematic and can result in inaccurate, error-prone models 

and prediction maps when used in Species Distribution Modelling (SDM). There are a variety of 

proposed methods to correct for sampling bias in SDM, yet there is little consensus as to which is most 

appropriate. Nevertheless, before attempting to correct for sampling bias it is useful to first gain insight 

into the potential sources and levels of sampling bias so the most optimum correction methods can be 

applied. Although the long-running UK Ancient Tree Inventory (ATI) has collected an impressive 

number of ancient, veteran and notable tree records over the past 15 years through the efforts of citizen-

scientists, it is thought to suffer heavily from sampling bias; recording is likely to have been focused in 

areas with high population densities, easy accessibility and with recreational or aesthetic interest to 

survey. Therefore, in this chapter, I aim to firstly discuss the problem of sampling bias in species data 

and potential methods to correct for this, and secondly I investigate and quantify sampling bias in the 

ATI using a variety of statistical approaches and descriptive methods. 
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4.2 Introduction 

The fields of ecology and conservation rely heavily on understanding links between species 

distributions and the environment. Species Distribution Modelling (SDM) is widely used to explore 

these links, and has a broad range of applications including predicting species distributions under 

climate change (Beaumont et al., 2007; Dormann et al., 2007), modelling the spread of invasive species 

(Václavík & Meentemeyer, 2012) and conservation planning (Wilson et al., 2006; Linkie et al., 2009). 

Species occurrence or abundance data from large, observational datasets are increasingly being used in 

SDM (Pearce & Boyce, 2006; Schmeller et al., 2009; Tiago et al., 2017a). The extensive spatial and 

temporal coverage of the data, as well as the growing ease of online access, provides numerous benefits 

over often costly and labour-intensive sampling methods employed in more focused scientific studies 

of distribution (Dickinson et al., 2010; Dwyer et al., 2016; Gouraguine et al., 2019). However, the 

increasing frequency of use of such datasets within scientific research has received much comment and 

criticism (Dickinson et al., 2010; Tulloch et al., 2013; Bird et al., 2014; Tiago et al., 2017b).  

 

Although large species record collections can be generated using hypothesis-led, systematic sampling 

protocols (Schmeller et al., 2009; Pocock & Evans, 2014), much of the available data for SDM comprise 

presence-only occurrence records originating from citizen-science projects, museum or herbarium 

collections, record lists and online databases (Pearce & Boyce, 2006). There is often little information 

about the source or survey effort accompanying the records, so the assumption of random sampling 

needed for SDM is infrequently met (Boakes et al., 2010; Rocchini et al., 2011). As a result, sampling 

bias (also called sample selection or survey bias) is often present in such data: certain temporal periods, 

geographical areas or taxa are sampled more intensively or frequently than others (Phillips et al., 2009; 

Dickinson et al., 2010; Bird et al., 2014). This can result from a variety of causes including variation in 

accessibility e.g. land-use, distance to roads or paths, or elevation (Reddy & Dávalos, 2003; Kadmon 

et al., 2004; Schulman et al., 2007; Mair & Ruete, 2016), or proximity to a recorder’s home or base 

location (Fourcade et al., 2014; Mair & Ruete, 2016), and a tendency to focus on interesting features 

such as endangered species or conservation areas (Kramer-Schadt et al., 2013).  
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Sampling bias in SDM can lead to over- or under-exaggeration of important species-environment 

relationships (Syfert et al., 2013), so predicted distribution maps may partly represent survey effort 

rather than species niche requirements (Phillips et al., 2009). Although SDM has been widely used over 

the last two decades, the influence of sampling bias in SDM has received relatively little attention 

(Kramer-Schadt et al., 2013; Boria et al., 2014; Mair & Ruete, 2016). Several authors have questioned 

studies using species datasets where the reliability of the records has not been evaluated (Loiselle et al., 

2008; Yackulic et al., 2013; Fourcade et al., 2014). Ideally, the best strategy to mitigate it is to design a 

sufficient, accurate recording scheme with systematic protocols and recording of survey effort, rather 

than having to deal with bias retrospectively (Tweddle et al., 2012). Unfortunately, many of the well-

known, established citizen science and data recording projects, which have already collected numerous 

records that span large spatial areas and temporal periods, do not have these ideal characteristics, and 

yet they are the often the best available source of data for species of conservation significance.  

 

Proposed methods to correct for sampling bias generally rely on either spatial filtering of occurrence 

records, or the manipulation of background data (‘pseudoabsences’) (Phillips et al., 2009; Kramer-

Schadt et al., 2013; Fourcade et al., 2014, Boria et al., 2014). Spatial filtering techniques such as a 

systematic re-sampling of occurrence records are one of the best methods to remove sample bias for 

many models and bias types (Fourcade et al., 2014; Beck et al., 2014). Other filtering techniques involve 

randomly removing occurrences within a certain distance of each other (Veloz, 2009; Boria et al., 2014; 

Varela et al., 2014), or sampling one point per cluster (Fourcade et al., 2014). These techniques produce 

more accurate models with reduced overfitting and autocorrelation, but are limited by sample size, as 

reducing the number of occurrence records can result in poor model predictions (Wisz et al., 2008). 

There is also the risk of reducing clustering in areas that truly represent high ecological value for a 

species (Fourcade et al., 2014).  

 

The second method involves manipulating the background data (i.e. the pseudo-absences) or 

environmental model predictors so that they mimic the bias in the occurrence data; SDM predictions 

made using the manipulated background data should then reflect the actual species niche rather than 
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sampling effort (Ponder et al., 2001; Phillips et al., 2009; Fourcade et al., 2014). Techniques for 

manipulating background data include restricting the area from which the selection of background 

pseudo-absence points are taken (Phillips, 2008; Fourcade et al., 2014), splitting the data into different 

areas (Gonzalez et al., 2011; Fourcade et al., 2013; 2014) and using weighted bias variables in the model 

representing a direct measure of sampling effort or a proxy, such as a map of road networks (Dudík et 

al., 2005;  Elith et al., 2010). Another method is target group sampling (TGS): locations with occurrence 

records of a similar species that was surveyed in a comparable way, and where the species/ taxa being 

modelled is absent, can be classed as ‘true’ absences (Phillips et al., 2009; Syfert et al., 2013; Hertzog 

et al., 2014). These approaches usually require some prior knowledge of the source of the bias or an 

appropriate TGS species, which can limit their application (Dudík et al., 2005; Phillips, 2008).  

 

A third option for tackling the problems caused by sampling bias is the use of statistical models that 

can account for some of the causes of bias (Bird et al., 2014; Isaac et al., 2014). These include 

Geographically Weighted Regression (GWR) (Brunsdon et al., 1998), Maximum Entropy (MaxEnt) 

with a bias layer, autoregressive and spatially-explicit models (Dormann et al., 2007) and mixed effect 

models (Bird et al., 2014), although again, most of these require prior knowledge of the source of the 

bias.  

 

Several studies have attempted to compare alternative methods of sampling bias correction (Fourcade 

et al., 2014; Boria et al., 2014) but generally have compared only one or two methods, and tend to focus 

on one case study, taxon or species (Fourcade et al., 2014). Therefore, there is not one widely accepted 

method of correction, and the optimal choice is likely to depend somewhat on the study in question and 

type of data used. Nevertheless, when using any large species database collected through non-strategic, 

uncontrolled methods, it is essential to consider sampling bias in the data and apply the most appropriate 

correction methods in order to produce the most accurate models and predictions.  

 

Before attempting to remove sampling bias from a dataset, it may be useful to first determine the type, 

strength and possible predictors of the bias (Boakes et al., 2010). For example, Reddy and Dávalos 
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(2003) confirmed sample bias in citizen science data of African passerines by testing statistically for 

significant effects of accessibility and conservation status of the areas compared to randomly generated 

data points. Kadmon et al. (2004) similarly found woody plants in Israel were significantly more 

sampled along roadsides. In this chapter, I aim to investigate sampling bias in the ATI by using similar 

methods to identify and quantify potential sampling bias predictors in the ATI. Some of these factors 

such as distance from roads, distance from towns and elevation are likely to be predictors of the true 

ecological distribution of trees as well, but some, such as recorder location and accessibility of sites, 

will only be predictors of sampling bias. By confirming the cause and extent of sampling bias in the 

ATI, the process of bias correction in the subsequent chapters can be more targeted and relevant to the 

ATI dataset, and can result in the production of more accurate predictive distribution maps.  
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4.3 Methods 

A grid consisting of 130,754 cells of 1-km x 1-km resolution was created within the boundary of 

England: this was the maximum total number of grid cells possible that fell completely within the 

boundary. Ancient and veteran tree records were obtained from the ATI (accessed 17/12/18). I chose to 

exclude all records with a rating below 3 stars and are therefore un-verified and potentially unreliable 

(see Chapter 2). This left 93,404 ancient and veteran tree records within my generated grid in England 

(Fig. 4.1). Ancient and veteran tree abundance was subsequently calculated for each 1-km grid cell by 

summing the number of occurrence records per cell. 

 

Fig. 4.1 Left: Ancient and veteran tree records across England from the Ancient Tree Inventory (ATI). There are 

94,024 records in total (10,450 ancient and 83,574 veteran). Right: Ancient and veteran tree record abundance 

(counts of records) per 1-km grid square. Abundance ranges from 0 (blue) to 939 (red). 

 

Potential predictors of sampling bias in the ATI were hypothesised based on similar studies, literature 

about the trees, and prior knowledge of the ATI (Table 4.1). These included a mixture of environmental 

and anthropogenic factors, as well as spatial biases. Raster layers of each predictor were created at a 1-
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km resolution across England with the same extent as the 1-km grid cells. In addition, for each original 

ATI occurrence record, the value of each numeric raster bias predictor was extracted at that precise 

location. Due to confidentiality issues, the exact location of each recorder’s home was unable to be 

obtained, so recorder home base location was determined as the centroid of all records collected by an 

individual recorder. There are 1,610 independent recorders of records, consisting of either 

organisations, projects or individuals. The top source of records is from the Woodland Trust (Woodland 

Trust batch upload or Ancient Tree Hunt), contributing 48,361 (52.5%) of ancient and veteran tree 

records. A significant number of records (21,659: 23.5%) have been uploaded by the 10 most active 

recorders (Fig. 4.2): 912 recorders have only ever uploaded one single record. Visual analysis of 

potential spatial biases relating to recorder location was carried out through the production of kernel 

density plots of the centroids for either all recorders or the top 10 recorders. Kernel density plots at a 1-

km resolution were created using ArcGIS version 10.3 (ESRI, 2018) based on planar distances between 

each centroid location. 

 

Spatial autocorrelation of record density was tested using Moran’s I, along with collinearity between 

all numeric bias predictors, tested using Pearson’s product correlation coefficient (r). Due to the non-

linear relationships between ancient and veteran tree abundance and many of the sampling bias 

predictors (Fig. 4.2), Spearman’s rank correlation coefficient (rs) significance tests were used to assess 

the relationship between abundance and each numeric sampling bias predictor per 1-km grid square. 

Two-sample Kolmogorov-Smirnov (K-S) tests were used to compare statistically the frequency 

distributions for the extracted raster values of seven of the numeric bias predictors (altitude and distance 

to nearest town, city, major road, minor road, watercourse or recorder base) at each tree location, to the 

frequency distributions of the bias predictor values extracted from an equal number of randomly 

simulated point locations across England.  

 

Finally, significant differences in the frequencies of record densities within each category of land use, 

agricultural type, National Trust land, Special Area of Conservation (SAC) and countryside type (Table 

4.1) were assessed using Chi Squared (χ2) tests. These compared the observed number of records per 
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category weighted by the proportion of area covered by each land category. All raster processing was 

carried out in ArcGIS version 10.3 (ESRI, 2018) and all statistical analysis in R (R Core Team, 2018).  

Table 4.1 Potential predictors of bias in the Ancient Tree Inventory (ATI) based on similar studies, literature 

about the trees and prior knowledge of the dataset. Predictor values were calculated for each 1-km grid cell and 

converted to raster format. They include 12 numerical predictors and five categorical predictors. 

Potential bias 

predictor 

Raster predictor (for a 

1-km grid square) 

Type of 

predictor 
Potential reason/ support from literature for inclusion as a bias predictor 

Altitude Mean altitude (m) Numeric 

High altitude sites are likely to be more difficult to access and survey because 

of lower road densities, rugged terrain and limited by the physical fitness of 

recorders. 

Distance from a 

town 

Distance from nearest 

town (km) 
Numeric The greater the distance from a town or city, the lower the population density 

(i.e. fewer recorders) and the more difficult/ costly/ time-consuming and less 

desirable it is for recorders to travel to more remote recording sites.  (Reddy 

& Dávalos, 2003; Parnell et al., 2003) 
Distance from a city 

Distance from nearest 

city (km) 
Numeric 

Distance from a 

major road 

Distance from nearest 

major road (km) 
Numeric The density of roads across the landscape greatly influences the ability of 

recorders to access survey sites and also reduces the likelihood or chance 

encounters with survey species (Freitag et al., 1998; Reddy & Dávalos, 2003; 

Parnell et al., 2003; Kadmon et al., 2004). 

Distance from a 

minor road 

 

Distance from nearest 

minor road (km) 
Numeric 

Distance from a 

watercourse (river, 

stream etc.) 

Distance from nearest 

watercourse (km) 
Numeric 

Similarly to roads, the density of watercourses also is likely to influence 

accessibility of sites, as many watercourses are banked by public rights of way 

or small roads and are more desirable to visit and likely to be surveyed (Reddy 

& Dávalos, 2003). 

Location of 

recorders 

Distance from nearest 

recorder’s base (km) 
Numeric 

The location of recorders is likely to be one of the most influential factors of 

sampling bias as recorders are more likely to survey closer to their homes (or 

in favourite visiting/ holiday spots). Therefore, often species distributions 

maps reflect recorder density rather than true species distributions (Dennis & 

Thomas, 2000; Fourcade et al., 2014).  

Latitude Latitude of centre Numeric As with recorder location, recording, accessibility and interest in ancient and 

veteran trees is likely to vary spatially and will therefore influence sampling 

bias. There is likely to be spatial autocorrelation in the ATI, both from 

ecological clustering of records and sampling biases. 

Longitude Longitude of centre Numeric 

Wood-pasture 

coverage 

Cover of wood-pasture 

(%) 
Numeric As well as wood-pasture, ancient woodland and other types of forest having 

ecological associations with ancient and veteran trees (Farjon, 2017; Hartel et 

al., 2018), many wood-pastures and forests are desirable places to visit, and 

have easy access (foot-paths, roads etc) and tourist attractions (cafes, public 

toilets etc.), so are likely to be more visited and thus surveyed sites.  

Ancient woodland 

coverage 

Cover of ancient 

woodland (%) 
Numeric 

National Forest 

coverage 

Cover of National 

Forest (%) 
Numeric 

Type of agricultural 

land use 

Most common 

agricultural class 
Categoric 

Different types of land use e.g. urban or broadleaved type land are likely to 

have variable interest in their recording and different levels of accessibility. 

Agricultural land in particular is often difficult to survey unless there are public 

rights of way or roads across the land (Freitag et al., 1998; Parnell et al., 2003). 

Type of general 

land use 

Most common land 

class 
Categoric 

Historic countryside 

type 

Most common historic 

countryside type 
Categoric 

Different types of countryside (ancient, planned, highland or highland 

Cornwall and likely to have different levels of survey interest and accessibility 

influencing recording (see Table A2.4 for more information).  

Whether land is 

owned by the 

National Trust 

National Trust (NT) 

Land present in square 

(Y/N) 

Categoric 

The National Trust is a charity organisation that owns and manages property 

and land with historic connections or natural interest, and therefore has strong 

connections to ancient and veteran trees. National Trust properties are also 

highly popular tourist attractions, and their accessibility and recreational focus 

are likely be a major influence on the surveying and large numbers of ancient 

and veteran trees on these sites (Freitag et al., 1998; Reddy & Dávalos, 2003).  

Whether land is a 

conservation area 

Special Area of 

Conservation (SAC) 

present in square (Y/N) 

Categoric 

Similarly to National Trust land, conservation areas are visited by the public 

for recreation, and are likely to be more surveyed as a result of their desirability 

and ease of access (Freitag et al., 1998; Reddy & Dávalos, 2003). 
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Fig. 4.2 Left: Centroid locations (red dots) and kernel density plots of all the records uploaded by each individual 

recorder or organisation of ancient and veteran trees to the Ancient Tree Inventory (ATI) and the kernel-density 

plots of the centroids. Right: centroid locations of all the records uploaded by each of the 10 most active individual 

recorders and the kernel-density plots of the centroids. 

 

4.4 Results 

The abundance of ancient and veteran tree records per grid square shows significant spatial clustering 

(Moran’s I: z = 281.9, p < 0.001) and significant correlations with latitude and longitude (Table 4.2); 

abundance increases with longitude but decreases with latitude i.e. abundance is highest in the south 

east of England. Pearson correlation coefficients suggest there is low collinearity between potential 

numerical bias predictors in Table 4.1 (all r values fall below an absolute value of 0.65) (Fig. 4.3). 

 

There are significant differences between ATI ancient and veteran tree records and randomly generated 

points in the frequency distributions of altitude, distance from nearest town, city, major road, minor 

road, watercourse and recorder base (Table 4.2). Additionally, record density per 1-km grid square 

correlated significantly with all bias predictors (although the coefficients were low for many - see Table 

4.2); density was higher in cells significantly closer to towns, cities, roads and rivers and closer to the 
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nearest recorder’s home base. Density was also higher in cells with greater coverage of wood-pasture, 

ancient woodland and national forest. Interestingly, density was also higher at greater altitudes, which 

suggests perhaps that this predictor is a greater influence on the real distribution of ancient and veteran 

trees than on sampling effort.  

 

Ancient and veteran tree record density differed significantly across all five types of land use: 

agricultural class (χ2 = 89,969, d.f. = 8, p < 0.001), countryside type (χ2 = 12,301, d.f. = 3, p < 0.001), 

land class (χ2 = 126,106, d.f. = 10, p < 0.001), NT land (χ2 = 19,883, d.f. = 1, p < 0.001), and Special 

Area of Conservation (SAC) (χ2 = 226.35, d.f. = 1, p < 0.001) (Fig. 4.4). Record density was particularly 

high on any land considered non-agricultural, broadleaved or other land class, ancient countryside, 

National Trust land or on an SAC (Fig. 4.4).  

 

Table 4.2 Spearman’s Rank correlation coefficients (rs) between the value of each sampling bias predictor and 

record abundance per 1-km grid square. Results from a two-sample Kolmogorov-Smirnov (K-S) test comparing 

the frequency distributions of potential sampling bias predictor values at record locations and the frequency 

distributions of values at an equal number of simulated random locations are shown.  

Bias source rs K-S test 

Altitude (m)  0.0187*** D = 0.137, p < 0.001*** 

Distance from nearest town (km) -0.0740*** D = 0.172, p < 0.001*** 

Distance from nearest city (km) -0.0298*** D = 0.203, p < 0.001*** 

Distance from nearest major road (km) -0.0509*** D = 0.124, p < 0.001*** 

Distance from nearest minor road (km) -0.0602*** D = 0.113, p < 0.001*** 

Distance from nearest watercourse (km) -0.0415*** D = 0.183, p < 0.001*** 

Distance from nearest recorders base (km) -0.2086*** D = 0.074, p < 0.001*** 

Cover of wood-pasture  0.2551*** - 

Cover of ancient woodland  0.1873*** - 

Cover of national forest  0.1892*** - 

Latitude -0.1000*** - 

Longitude  0.0092*** - 
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Fig. 4.3 Scatterplots of the relationships between ancient and veteran tree abundance from the Ancient Tree 

Inventory (ATI) and each of the 12 numerical sampling bias predictors for each 1-km grid cell across England.  
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Fig. 4.4 Number of ancient or veteran tree records in the Ancient Tree Inventory (ATI) per km2 of each land type 

(Agricultural Class, Historic Countryside Type, Land Class, Special Area of Conservation (SAC) or National 

Trust land). Dotted red lines represent the expected record density of records if land type has no influence on 

abundance. 

 

 

 

 

Agricultural Class 

Land Class SAC 

National Trust land 

Historic Countryside 

Type 
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4.5 Discussion 

Analysis of potential sampling bias predictors in the ATI identified a variety of environmental, 

anthropogenic and land use variables that are likely to have some influence on the recording of ancient 

and veteran trees across England. To summarise, recording is likely to be biased by all anthropogenic 

factors including recorder location, and distance to features such as cities, towns, rivers and roads. There 

is also spatial clustering in the ATI with significant correlations between abundance and latitude and 

longitude, although these relationships appeared to be non-linear so are likely to have an even greater 

influence than suggested from the correlation analysis. Therefore, bias correction measures might focus 

on the inclusion of some or all of these factors as either predictors or weights for the selection of absence 

points in species distribution models (Dudík et al., 2005; Elith et al., 2010).  

 

The cover of wood-pasture, ancient woodland and national forest also all positively influenced the 

record density, which may be a result of ecological influences, but is possibly an artefact of sampling 

bias through recorders selecting places they deem more likely to contain such trees, as well selecting 

more desirable and aesthetic places to visit and survey. There is also likely to be a similar process 

happening with the other land uses, especially National Trust land and SACs, as in fact many National 

Trust sites and SACs are also wood-pastures or woodland (Harvey, 1987; Nolan et al., 2020). Bias 

corrections methods that might be applicable in these cases could include spatial filtering of occurrence 

records to remove emphasis on highly surveyed areas (Fourcade et al., 2014).  

 

The only factor identified as unlikely to be influencing sampling bias was altitude: abundance was 

greater with higher altitudes, the opposite of my initial hypothesis that accessibility and terrain would 

limit surveying at higher altitudes. Nevertheless, the correlation between altitude and abundance is weak 

(0.019), so there may be some underlying bias not picked up, for example sampling bias at low altitudes 

e.g. coastal areas where accessibility may be low. All of these bias predictors have the potential to 

influence the SDM process and to reduce the accuracy and robustness of the predictions and resulting 

distribution maps. Therefore, sampling bias correction with regard to these potential bias sources will 

be the focus of Chapters 5 and 6. 
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Chapter 5: Solving sampling bias problems in presence-absence or 

presence-only species data using zero-inflated models. 

 

5.1 Abstract 

Large species record databases such as those generated through citizen science projects, archives or 

museum collections, are being used with increasing frequency in Species Distribution Modelling 

(SDM) for conservation and land management. Although the broad spatial and temporal coverage of 

the data is advantageous to ecological researchers, such data often suffer from sampling bias and 

consequently, zero-inflation; there are more zeroes (which are potentially ‘false absences’) in the data 

than expected. In this chapter, I demonstrate how pooling presence-absence or presence-only data into 

a ‘pseudo-abundance’ count, can allow identification and removal of sampling bias through the use of 

zero-inflated (ZI) models, and thus solves a common SDM problem. I present the results of a series of 

simulations based on hypothetical ecological scenarios of data collection using random and non-random 

sampling strategies. My simulations assume that the locations of occurrence records are known at a 

high spatial resolution, but that the absence of occurrence records may reflect under-sampling. To 

simulate pooling of presence-absence or presence-only data, I count occurrence records at intermediate 

and coarse spatial resolutions, and use ZI models to predict the counts (species abundance per grid cell) 

from environmental layers. The results show that ZI models can successfully identify predictors of bias 

in species data, and produce abundance prediction maps that are free from that bias. This phenomenon 

holds across multiple spatial scales, thereby presenting an advantage over presence-only SDM methods 

such as binomial GLMs or MaxEnt, where information about species density is lost, and model 

performance declines at coarser scales. My results highlight the value of converting presence-absence 

or presence-only species data to ‘pseudo-abundance’ and using ZI models to address the problem of 

sampling bias. This method has huge potential for ecological researchers when using large species 

datasets for research and conservation.   
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5.2 Introduction 

Species Distribution Modelling (SDM) is widely used to address important ecological questions about 

species distributions and the environment (Dormann et al., 2007; Phillips et al., 2009; Elith et al., 2011). 

Species occurrence or abundance data from large, observational datasets are increasingly being used in 

SDM (Pearce & Boyce, 2006; Schmeller et al., 2009; Tiago et al., 2017b). The extensive spatial and 

temporal coverage of the data, as well as the growing ease of online access, provides numerous benefits 

over often costly and labour-intensive sampling methods employed in more focused scientific studies 

of distribution (Dickinson et al., 2010; Dwyer et al., 2016; Gouraguine et al., 2019). Although large 

species record collections can be generated using hypothesis-led, systematic sampling protocols 

(Schmeller et al, 2009; Pocock & Evans, 2014), much of the available data for SDM comprise presence-

only occurrence records originating from citizen-science projects, museum or herbarium collections, 

record lists and online databases (Pearce & Boyce, 2006). There is often little information about the 

source or survey effort accompanying the records (Boakes et al., 2010; Rocchini et al., 2011), and as a 

result sampling bias is often present in such data: certain temporal periods, geographical areas or taxa 

are sampled more intensively or frequently than others (Phillips et al., 2009; Dickinson et al., 2010; 

Bird et al., 2014).  

 

Sampling bias in SDM can lead to over- or under-estimation of important species-environment 

relationships (Syfert et al., 2013), and predicted distribution maps may partly represent survey effort 

rather than species niche requirements (Phillips et al., 2009). Proposed methods to correct for sampling 

bias generally rely on either spatial filtering of occurrence records, or on the manipulation of 

background data (‘pseudoabsences’) (Phillips et al. 2009; Kramer-Schadt et al., 2013; Fourcade et al., 

2014, Boria et al., 2014). Both of these techniques have limitations: the former results in a dataset of 

reduced sample size and statistical power (Wisz et al., 2008), whereas the latter usually requires some 

prior knowledge of the source of the bias (Dudík et al., 2005; Phillips, 2008). A third option is the use 

of statistical models that can account for some of the causes of sampling bias (Bird et al., 2014; Isaac 

et al., 2014). These include Geographically Weighted Regression (GWR) (Brunsdon et al., 1998), 

Maximum Entropy (MaxEnt) with a bias layer, autoregressive and spatially-explicit models (Dormann 



88 

 

et al., 2007) and mixed effect models (Bird et al., 2014), although again, most of these require prior 

knowledge of the source of the bias.  

 

One specific problem with many large species databases, which is partly caused by sampling bias, and 

which is especially noticeable in databases that record species abundances, is zero-inflation: the 

presence of more recorded zeroes or locations where data are absent than expected under standard 

distributions (binomial, Poisson, negative binomial etc.) (Martin et al., 2005). These excess zeros can 

arise from multiple processes. Some are considered to be ‘true zeros’, which result from either 

ecological processes that render a site unsuitable for occupancy by a given species, or stochastic 

processes, such as a sudden random extinction event in an otherwise suitable location (Cunningham & 

Lindenmayer, 2005; Martin et al., 2005). In contrast, ‘false zeros’ are locations where a species occurs 

but was not recorded because of errors or omissions in the sampling method (Dénes et al., 2015). These 

errors are either systematic and occur repeatedly throughout the survey process (for example through a 

lack of detection or poor survey design), or are owing to sampling bias, because some geographical 

areas have not been sampled at all (Bird et al., 2014).  

 

Generalised Linear Models (GLMs) are a common method for analysing relationships between species 

occurrences or abundance and environmental variables, but excess zeros are problematic for GLMs. If 

excess zeros are not accounted for, GLMs may suffer from biased parameter estimates and poor 

predictive power (Lambert, 1992). As a possible solution to this problem, zero-inflated (ZI) models and 

their components (extensions of GLMs) have been widely discussed in the literature (Lambert, 1992; 

Welsh et al., 1996; Zuur et al., 2009). ZI models consist of two parts: a logistic component that models 

the probability of an observation being an excess zero (hereafter called the “zero component”), and a 

“count component” that models a count (e.g. species abundance) under an assumed distribution 

(Lambert, 1992). Both components of ZI models are capable of producing zeros, and a key feature is 

the ability to include different predictor combinations in each component. In other words, they can 

model the different sources of zeros independently (Wenger & Freeman, 2008; Zuur et al., 2009).  
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ZI models, which require counts of occurrences (i.e. abundance), are rarely considered in SDM, because 

most large datasets record only the presence of a species at a site, not the abundance. SDM methods 

that can use presence-only data, such as MaxEnt, are therefore most commonly applied (Phillips & 

Dudík, 2008; Fitzpatrick et al., 2013; Fourcade et al., 2014). Furthermore, where abundance is recorded, 

sampling effort is often not standardised across sites, and hence variation in abundance may simply 

reflect variation in sampling effort. Thus, SDM typically attempts to predict species presence, rather 

than abundance. However, the ability of ZI models to model separately the two processes underlying 

the generation of zeroes in a species dataset could provide an alternative method to model and account 

for sampling bias. In addition, ZI models can be used with any species database that records abundance 

directly, or by aggregating presence-only or presence-absence data into counts of occurrence that can 

be modelled using common count distributions. In this chapter, I therefore propose ZI models as a new, 

alternative method to address problems of sampling bias in SDM. I present here the results of a series 

of simulations based on hypothetical ecological scenarios representing the large-scale collection of 

species occurrence data that aim to address three particular research questions. 

 

My first research question is whether undersampling and sampling bias (resulting in excess ‘false’ 

zeroes) can be modelled and accounted for using ZI models, in order to improve species distribution 

predictions. ZI models have been used effectively to model true and false zeros in ecological count data, 

such as when modelling the abundance of rare species (Welsh et al., 1996; Cunningham & 

Lindenmayer, 2005; Martin et al., 2005). They are particularly prevalent in the field of occupancy-

abundance modelling (Sileshi et al., 2009; Smith et al., 2012), especially when there are false zeros in 

the data owing to systematic sampling errors from imperfect detection (Wenger & Freeman, 2008; 

Sólymos et al., 2012; Williams et al., 2016). Such occupancy-abundance models can account for 

detection errors without the need for repeated sampling (Sólymos al., 2012; Dénes et al., 2015). 

However, research into zero-inflation caused by spatio-temporal sampling bias in species occurrence 

data is scarce. A few studies have used ZI models to identify and quantify sources of bias in species 

data (Dwyer et al., 2016; Williams et al., 2016; Tiago et al., 2017a), yet none have tested the ability of 

the models to produce accurate predictions of species occurrence or abundance from biased data. I 
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outline through my simulations how accurate species distribution maps can be produced using ZI 

models to fit ZI data suffering from sampling bias, and I describe the required criteria during model 

fitting and prediction for this to occur. In particular, my simulations also address my second research 

question: under what levels of zero-inflation is my ZI model method most appropriate? 

 

My final research question considers the benefits of pooling fine-scale occurrence data to model 

occurrence density across coarser spatial scales. Species presence is normally modelled at the smallest 

spatial scale (grid cell size) possible, given the resolution of the records and environmental layers used 

to build the model. Counting or aggregating presences across grid cells at a larger spatial scale to 

generate “abundance” data intuitively seems to be a bad idea, because it throws away information about 

the precise location of the records. However, this process of aggregating occurrences may be inevitable 

if predictor layers have lower spatial resolution than occurrence location data, and I propose here that 

it may actually present considerable advantages. Aggregated counts of occurrences are commonly not 

a direct measure of true abundance (the total number of individuals of the target species), since each 

raw occurrence often represents a locality which is home to several or many individuals. Regardless, 

modelling ‘abundance’, and any zero-inflation therein, may give important clues to sources of bias in 

the data which are not obvious in the raw occurrences, and the benefits of being able to identify and 

eliminate bias could outweigh the costs of any loss of spatial resolution caused by aggregation. 

Therefore, counting occurrence records at larger spatial scales in order to model “occurrence density’ 

across the study area may be a better alternative to traditional presence-only SDM methods. Indeed, 

abundance models have been shown to perform better than presence-absence models fitted using the 

same data across multiple spatial scales (Howard et al., 2014; Johnston et al., 2015).  

 

Other methods do exist that propose aggregating occurrences into counts of ‘abundance’ that may also 

provide advantages when using spatially biased species data, including Poisson point models (Renner 

et al., 2015; Komori et al., 2020). These models can incorporate bias predictors when modelling 

intensity rather than occurrences across the study area. Nevertheless, they still require a-priori 
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knowledge about potential bias predictors, whereas I show here that ZI models are able to provide an 

indication of potential sources of sampling bias in the data when the exact sources are unknown. 

 

I do not attempt to provide a detailed statistical summary of ZI models and theory (there is much 

associated literature already available), but aim to draw attention to the main modelling methods and 

usefulness of ZI models for ecological researchers and species distribution modellers dealing with large, 

biased databases. This method benefits from being applicable to both presence-only and presence-

absence data: ZI models can be built using counts of occurrence made at a coarser resolution than the 

original data. I argue that ZI models can provide insight into, and correction methods for, the bias in 

large species databases, and that they can be powerful and effective SDM tools.  

 

 

5.3 Methods 

My general approach was to use ZI models to predict the observed number of species occurrences per 

grid cell for a series of simulated species using predictors of either the biology of the species and/or 

sampling bias in the data. I envisaged a large species for which it is theoretically possible to survey all 

individuals in a landscape (e.g. trees, large animals). The true distribution of all individuals was 

simulated for each species, and this distribution was then sampled incompletely, with or without spatial 

sampling bias. Before sampling, the true abundance of the species could be calculated by summing 

occurrences per grid square. But with incomplete sampling, the observed or “sampling abundance” per 

grid cell is an underestimate. An alternative way to view my simulations, which is more realistic for 

species which are small or hard to enumerate (e.g. smaller plants, most insects), is to consider each 

occurrence in the raw data to represent a recorded encounter with the species at a local site which may 

contain many individuals. In such cases, the models do not strictly predict abundance, but instead they 

predict what I might call “occurrence density”.  

 

As a result of the two-part nature of ZI models, two types of abundance predictions can be produced. 

Assuming that all excess zeros arise from incomplete sampling, the first type of prediction is of true, 
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biological abundance (or occurrence density) across the study area, created only from the count 

component of the model, which I call here the ‘count abundance prediction’. This is likely to be the 

desired modelling outcome, especially for conservation and land-management planning. The second 

type of prediction, which I here call the ‘sampling abundance prediction’, comes from the whole model 

(combining both the count and zero component) and therefore represents the predicted abundance (or 

occurrence density) that would be recorded if sampling were carried out in the same way as when 

collecting the data that were used to fit the model. Bias in sampling will be reflected in this second 

prediction. However, if some excess zeros arise also from biological zero-inflation, for example if a 

species is clustered, the zero component will reflect some of the underlying biological processes as well 

as the sampling bias. In this case, the count abundance prediction will only partially reflect the true 

species abundance. The best type of prediction to use will therefore depend on the estimated strength 

of biological zero-inflation versus the bias in the data.  

 

5.3.1 Simulation study area and predictor variables 

I simulated the occurrence of a hypothetical species in a study area that consisted of a 100 x 100 cell 

grid at 1-km2 resolution placed randomly within the boundary of England (Fig. 5.1). The total area 

covered by the grid is therefore 10,000 km2 and there are 10,000 individual grid cells. Two predictor 

variables were selected across this area. The first was a ‘biological predictor’ that I chose to be ‘altitude’, 

which I used to define the relationship between the simulated species occurrences and environment 

(Meynard et al., 2019). Real values for altitude (m) across the study area were obtained from WorldClim 

DEM (accessed 10/05/18) at a 1-km2 resolution and ranged from 0 to 284 m above sea level (Fig. 5.1). 

The choice of biological predictor for a simulation study of this sort is necessarily somewhat arbitrary, 

but I chose altitude because it is both a plausible predictor of occurrence for a range of organisms, and 

it is quite strongly spatially auto-correlated, an important possible source of biological zero inflation in 

the abundance data formed when occurrences are counted across grid cells at intermediate spatial scales. 

The actual biological mechanism underlying the relationship between altitude and species occurrences 

is not important for this study, but altitude is a good proxy for a suite of environmental variables such 
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as temperature or precipitation commonly used in SDM which have direct effects on species 

distributions.  

Because altitude is spatially autocorrelated, and so is the sampling bias I wanted to investigate (see 

below), there was a risk that biological and sampling bias predictors in my simulations could correlate:  

depending on the positions of the simulated towns on my map, there could be a strong correlation 

between real altitude and sampling effort. Thus, in order to allow us to investigate the impact of 

sampling bias completely independently of the biological predictor, I also generated an alternative 

‘biological predictor’ with no autocorrelation: a spatially random control variable. This control variable 

(henceforth labelled ‘altitude_randomised’) was created by randomising the real altitude values across 

the study area at a 1-km2 resolution (Fig. 5.1), and hence removed any correlation between altitude and 

distance from town. Pearson’s correlation coefficients are also shown for this predictor across each 

replicate simulation (Table 5.1).  

 

Fig. 5.1 Simulation study area consisting of a group of 100 x 100 grid squares of 1 km2 size randomly placed 

within England covering a total area of 10,000 km2 (outlined in red) (left), with the biological predictors: altitude 

(m) and altitude_randomised (m) (randomised altitude layer with no spatial autocorrelation) shown for the study 

area (right).  
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The second predictor of observed species occurrence was a ‘bias predictor’ (‘distance from nearest 

town’) which affected the virtual sampling of the simulated species. I assumed that the greater the 

distance from a town, the lower the feasibility and likelihood of sampling occurring, as has previously 

been seen in ecological studies (Reddy & Dávalos, 2003; Parnell et al., 2003). Unlike with altitude, I 

chose to simulate a hypothetical bias layer rather than use values based on the locations of real towns, 

in order to ensure the lowest possible correlation between the two predictors, although some correlation 

between them was likely because of spatial autocorrelation in both. Within the study area, 10 points 

representing ‘town centres’ were randomly placed, and the distance from the nearest town (m) was 

calculated for each grid cell, creating a continuous predictor layer at 1-km2 resolution across the study 

area. The process of generating the ‘town centres’ was repeated 10 times, creating 10 sets of randomly 

placed ‘town centres’ (Fig. A5.1.1): by both randomising town locations and repeating this process 10 

times, impacts of spatial autocorrelation between the bias and biological (altitude or 

altitude_randomised) predictors can be limited as much as possible. Pearson’s correlation coefficients 

between predictors are shown for each repeat (Table 5.1).  

 

Table 5.1 Pearson’s correlation coefficient (r) between altitude or altitude_randomised (biological predictors) 

and distance from the nearest town (bias predictor) across the 10 maps with randomly generated sets of ‘town 

centre’ locations.  

 

 

 

 

 

 

 

 Pearson’s correlation coefficient (r) 

Repetition Altitude Altitude_randomised 

1  0.277 -0.022 

2  0.053  0.011 

3 -0.114 -0.009 

4 -0.197 -0.014 

5  0.331 -0.018 

6 -0.067  0.006 

7 -0.397 -0.002 

8 -0.245  0.010 

9  0.031 -0.007 

10 -0.171 -0.000 
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To summarise, I had three variables in total across the simulation study area: two biological predictors 

(‘altitude’ and ‘altitude_randomised’), and one bias predictor (‘distance from nearest town’). All 

predictors were centred (the mean of each predictor was subtracted from each value of the predictor) 

and scaled (the centred values were divided by the standard deviation of the predictor values) so that 

the differences in units of the predictors was removed. 

 

5.3.2 Simulating the virtual species 

To obtain counts of ‘abundance’ to use in ZI models, I first simulated species occurrences across the 

study area and then aggregated them into counts of “abundance” (alternatively interpreted as occurrence 

density – see above). Because I assumed that the simulated distribution of occurrences was the complete 

true distribution, all other locations are assumed to be ‘true absences’. Therefore, when aggregating the 

raw occurrence points into ‘abundance’ counts, a value of 0 represented a true absence and any value 

greater than 0 a true presence.  

 

The recommended first step in a simulation study is to define the relationship between the environment 

and occurrence points (Meynard et al., 2019). I modelled the distributions of three simulated species 

each with 5,000 occurrence points (Fig. 5.2). The occurrence points of the first species (‘random 

species’) were simulated randomly across the study area, and show no preference for any environmental 

condition. The second and third species were simulated based on the two biological predictors 

(‘altitude’ and ‘altitude_randomised’) and were assumed to favour high altitudes; these species were 

named ‘altitude species’ and ‘altitude_randomised species’ respectively. I chose these three scenarios 

in order to create datasets in which different kinds of zero-inflation occur. For the random species, zero-

inflation can only occur as a result of sampling (where sites which are not sampled might be incorrectly 

recorded as zeros), whilst for the altitude species and altitude_randomised species, zero-inflation can 

result both from sampling and from the fact that grid cells are potentially not suitable for the species 

because of environmental conditions. 
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Fig. 5.2 A simulated species with 5,000 occurrence points showing a) no preference for altitude (random species), 

b) a preference for high altitudes based on a logarithmic scaler of altitude (altitude species), and c) a preference 

for high altitudes based on a logarithmic scaler of  altitude_randomised (altitude_randomised species). 

  

I then simulated the effect of the relationship between the biological predictors and species occurrences 

by creating layers of the probability of occurrence which varied according to altitude or 

altitude_randomised (see Meynard and Kaplan, 2013; Meynard et al., 2019). Initially I tried using a 

linear relationship between the altitude predictor layers and probability of occurrence, but this 

introduced relatively little zero-inflation in the data. For the purposes of investigating sampling bias 

and zero-inflation I therefore chose to use a logarithmic relationship, whereby probability of occurrence 

rapidly increases initially with small increases in altitude, but gradually tapers off at higher altitudes. 

This heavily disfavours low altitude values, and the majority of these will be assigned low probability 

values close to zero. Hence, biological aggregation of the occurrence points was effectively increased, 

yielding greater zero-inflation. Each biological predictor was resampled to a 100 m x 100 m resolution 

across the study area, and were then rescaled using the ‘rescale by function’ tool in ARCGIS version 

10.3.1 (ESRI, 2018), such that the new probability of occurrence layers (ranging between 0 and 1) were 

logarithmically related to the biological predictors.  

 

Five thousand occurrence points were placed across the study area (using the ArcGIS tool: ‘Create 

Spatially Balanced Points’) based on these altitude and altitude_randomised occurrence probability 

layers. Due to computation limitations of the ‘Create Spatially Balanced Points’ tool, only one 

occurrence point can be placed within a single raster cell. Therefore a resolution of 100 m x 100 m was 
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chosen for the probability layers so that up to 100 species occurrences could be placed in each 1-km2 

grid cell. Although visually the altitude_randomised species appears to be randomly distributed across 

the study area, it is actually the underlying altitude grid square values that are randomised: occurrences 

of the altitude_randomised species still occur at higher densities in grid squares with higher altitude 

values. As I used a logarithmic species response to the altitude_randomised layer, significant 

(biological) zero-inflation still occurs in the raw data: occurrences are unlikely in low altitude grid cells, 

generating lots of true zeros when occurrences were counted per grid cell (Table 5.2). Only the random 

species distribution is completely random across the study area.  

 

Finally, true (raw) species abundance (total number of occurrence points) was calculated for each 1-

km2 grid cell. I felt the chosen grid scale was appropriate because, although the maximum abundance 

per grid cell is strictly 100, no grid cells reached this value (the maximum was six occurrences per 1-

km grid cell), and I therefore assumed that it was unlikely that the shape of the distribution of 

abundances would be significantly affected by the upper bound (i.e. unbounded distributions such as 

Poisson or negative binomial were likely to be appropriate). In addition, using this grid scale sets up a 

situation where location data are available at a higher resolution than the environmental predictors. 

Hence, I am simulating a situation in which modellers must make a decision about how to aggregate 

high resolution data across grid cells to create models which predict species distributions based on lower 

resolution environmental predictors. 

 

Table 5.2 Sources of zero-inflation in the simulated species occurrence data.  

 

Source of zero-inflation 

True abundance 

(before sampling) 
Random sampling Biased sampling 

Species    

Random No zero-inflation Sampling Sampling 

Altitude Biological Biological and sampling Biological and sampling 

Altitude 2 Biological Biological and sampling Biological and sampling 
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5.3.3 Simulating the sampling strategies 

I considered two sampling strategies across the study area to represent alternative scenarios of 

ecological data collection. The first is random sampling, where every 1-km grid cell has an equal chance 

of being visited and sampled. If visited, I assume all species occurrences in the cell are recorded (i.e. 

there is no detection error) and the result is the true (raw) abundance (count of all occurrences) for each 

visited grid cell. The second sampling strategy is affected by spatial sampling bias and relates to the 

‘bias predictor’, where the probability of a grid cell being sampled decreases as distance from the nearest 

‘town centre’ increases. The grid cells selected for this strategy were chosen based on a probability 

layer created using a logarithmic scaler of the ‘distance from nearest town’ predictor, again using the 

‘rescale by function’ ArcGIS tool. This time high probability values close to one were assigned to cells 

with small numerical values i.e. cells closer to towns and more likely to be sampled, whereas low 

probability values close to zero were assigned to cells with large ‘distance from nearest town’ values. 

For each strategy, 2,000 grid cells (20% of the total) were sampled and species abundance was noted 

for each one. All other (unsampled) squares were assigned an observed abundance of zero, creating a 

zero-inflated dataset. All sources of zero-inflation in the simulated species abundance data before and 

after sampling are shown in Table 5.2. 

 

5.3.4 Simulation 1: Investigating the accuracy of species distribution maps from ZI models 

To address my first question regarding the accuracy of ZI model predictions of abundance, I focused 

initially on the performance of ZI Poisson models, and how this compared with equivalent conventional 

Poisson GLMs. I include comparisons between a) ZI and GLM models, b) count and sampling 

abundance predictions from ZI models, and c) alternative ZI models fitted using different combinations 

of biological and bias predictors.  

 

I chose to fit four GLMs and six ZI models for each of the three sets of species abundances per 1-km2 

(random, altitude and altitude_randomised), all fitted with a Poisson distribution but with different 

combinations of the biological or bias predictors (Table 5.3). These included combinations where 

different predictors were tested in the count and zero components of the ZI models. Where the biological 
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predictor was included, models for the “altitude species” were fitted using altitude as a predictor, and 

models for the altitude_randomised species were fitted using altitude_randomised. Model fitting was 

repeated 10 times, each time using a different set of simulated ‘town centres’ (Fig. A5.1.1). Thus, there 

are three species (random, altitude, altitude_randomised), two sampling strategies (random and biased) 

and 10 repeats, resulting in 60 total simulation runs. Model performance was evaluated using AIC, 

averaged across the 10 repetitions. All ZI and GLM models were fitted in R version 3.6.3 (R Core Team, 

2019) using packages ‘stats’ (R Core Team, 2019) and ‘pscl’ (Zeileis et al., 2008). 

 

Table 5.3 Ten predictor combinations were considered when modelling the simulated species distributions. Four 

Generalised Linear Model (GLM) and six Zero-Inflated (ZI) model structures were considered using 

combinations of the biological predictors (either altitude or altitude_randomised) and the bias predictor (distance 

from nearest town), including different combinations in the count and zero components of the ZI models.   

Model Predictors (GLM/ ZI Count component) Predictors (ZI Zero component) 

GLM1 Null (No predictors) N/A 

GLM2 Biased N/A 

GLM3 Biological N/A 

GLM4 Biological + bias N/A 

ZI1 Null (No predictors) Null 

ZI2 Biological + bias Biological 

ZI3 Biological Biological + bias 

ZI4 Biological Biological 

ZI5 Bias Bias 

ZI6 Biological + bias Biological + bias 

 

Abundance predictions from each model were created using 10-fold cross-validation, where the data 

were split into 10 subsets and each subset was used iteratively as the test data for which predictions 

were created and the other nine subsets as training data. For the ZI models both count abundance and 

sampling abundance predictions were evaluated. Model predictions were evaluated using a novel metric 

based on the probability of obtaining the model predictions, that I named ‘deviation from the best 

model’ (D) (See Appendix A5.3 for more information). I used this metric, rather than conventional 
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measures of performance (e.g. root mean square) typically employed in presence-only or presence-

absence modelling, because it produces a measure of fit for count or abundance predictions which is 

independent of the mean. D ranges from a minimum of one for a perfect model where model predictions 

are equal to the true raw abundance data, and increases without limit as model predictive performance 

decreases. Spearman’s rank correlation coefficients (rs) were also used to compare model abundance 

predictions to the original model covariates. 

 

To check that my results were not overly sensitive to the choice of predictor, simulations using average 

temperature (oC) (WorldClim, accessed 10/05/18) at a 1-km2 resolution, as an alternative biological 

predictor, were also carried following the same methodology (see Appendix A5.2): the results parallel 

those of altitude, and so were omitted from the main results and discussion. 

 

5.3.5 Simulation 2: Examining the impact of the extent of zero-inflation in the data 

To address my second question, about the effect of varying the extent of zero-inflation in the data (both 

as a result of biological processes and sampling bias) on the effectiveness of the ZI models, I carried 

out a second simulation. In my first simulation, I assumed 20% of grid cells were sampled, but in 

Simulation 2 zero-inflation resulting from sampling bias was adjusted by varying the number of cells 

sampled from the grid, ranging from 1000 (10%) to 10,000 (100%) at 10% increments. Therefore, the 

highest level of zero-inflation occurred when 1000 cells were sampled, and thus 9000 cells were 

assigned an abundance of zero simply because they were not sampled, and the lowest level of zero-

inflation occurred when 10,000 cells were sampled and none were assigned an abundance of zero for 

this reason. At the same time zero-inflation resulting from biological processes was adjusted by adding 

a threshold below which the altitude species can no longer survive, but keeping constant the number of 

true occurrence points generated each time. With higher altitude thresholds, the species occurrences 

were increasingly aggregated, and more cells were classified as true zeros. Altitude across the study 

area ranged from 0 to 284 m, so I tested threshold values of 0 m, 50 m, 100 m, 125 m, 150 m, 175 m 

and 200m (see Table A5.1.1 for number of cells above each threshold). Above these thresholds, species 

occurrences were placed in a similar way based on weighted probability calculated from a logarithmic 
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scaler of the original altitude predictor as described previously. Both the random species and altitude 

species were examined in scenarios with varying sample sizes, but obviously only the latter was tested 

using the altitude threshold method.  

 

Based on the results of Simulation 1, I selected three predictor combinations to fit the models and create 

predictions. These included the GLM with both the bias and biological predictor (GLM4) and two of 

the ZI models which differ only in the inclusion (ZI6) or exclusion (ZI2) of the bias predictor from the 

zero component (Table 5.3). Although theoretically a ZI model that has only the biological predictor in 

the count component, but both the biological and bias predictor in the zero component (as with ZI3), 

would be the most obvious choice, in the real world the bias predictor may also have some biological 

influence on the species distribution, and the researcher may not be sure whether it is a better predictor 

of bias or biology. I therefore chose to use ZI6 rather than ZI3, to simulate better a real world modelling 

scenario in which the causes of bias are unknown. 

 

Model performance (D) was calculated for each simulation run with a particular combination of sample 

size and altitude threshold. Finally, in order to evaluate the improvement in model performance created 

by adding predictors of zero inflation, the difference in ‘D’ was calculated between each model (GLM4 

and ZI2, GLM4 and ZI6, and ZI2 and ZI6). This was repeated using both count abundance and sampling 

abundance predictions for the ZI models. Again, model fitting was repeated 10 times each with two 

sampling strategies (random and biased). Therefore, there were 200 simulation runs for the random 

species (10 repeats, two sampling strategies and 10 levels of sampling zero-inflation), and 1,400 

simulation runs for the altitude species (10 repeats, two sampling strategies, 10 levels of sampling zero-

inflation and seven altitude thresholds (levels of biological zero-inflation)). 

 

5.3.6 Simulation 3: Comparing abundance versus presence-absence when aggregating spatial data 

Often when fitting distribution models the only data available are presence-only, and multiple species 

occurrences within a grid cell are usually classified as a single presence. Often the predictors are only 

available at a coarser spatial scale than the species occurrence data, forcing the modeller to aggregate 



102 

 

occurrences into coarser scale presence-only or presence-absence estimates.  The coarser the resolution 

at which the distribution is modelled, the more information is lost about both the precise location of 

species occurrences, and species abundance (or occurrence density). However, if occurrences are 

instead aggregated into count data, information about abundance or occurrence density is retained at all 

scales, which may be more beneficial for conservation purposes. Therefore, even if only presence-only 

data are available, ZI models fitted at a larger spatial scale using the summed counts of occurrence may 

provide a better modelling method than traditional presence-only SDM that aggregate multiple 

occurrences into presence-absence data. This effect is likely to be more pronounced when the species 

data are biased, because ZI models attempt to model the excess zeroes from sampling bias, whereas 

other methods, unless they explicitly incorporate bias correction, make no attempt to model or remove 

the bias.  

 

My final simulation study addressed this question by comparing the performance of Poisson GLM and 

ZI models predicting abundance of the altitude species (as was carried out in Simulation 1) with two 

commonly used modelling methods that predict presence-absence: presence-absence binomial GLMs, 

and presence-only MaxEnt models. This represents a scenario where the raw species occurrences 

(simulated at a 100m resolution) are available at a greater resolution than the predictors (at a 1-km 

resolution), so the modeller is required to make a decision on how to aggregate the data.  

 

To fit the binomial GLM presence-absence models, the source data for which need to be in the form of 

presence-absence rather than abundance, simulated 1-km cells that received an abundance count of zero 

based on either the random or biased sampling strategy for the ZI models in Simulation 1 (i.e.  80% of 

cells that were not considered to have been sampled) were classified automatically as an absence, and 

any cell with species occurrences that was sampled was classified as a presence. All binomial GLMs 

were fitted using the package ‘stats’ in R. As with Simulation 1, two GLMs were fitted, one with only 

the biological predictor (‘Binomia-GLM1’ equivalent to GLM3) and one with the biological and bias 

predictor (‘Binomial-GLM2’ equivalent to GLM4). Binomial occurrence predictions (i.e. predicted 
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probability of presence) were estimated across the study area from each model using 10-fold cross-

validation. 

 

Two MaxEnt presence-only models were also fitted to the altitude species occurrence data, one with 

altitude as the only predictor (‘Maxent1’), and one with both altitude and distance from nearest town as 

predictors (‘Maxent2’). To produce presence-only data collected under a random or biased sampling 

strategy, only occurrence points at a 100m resolution that fell within a 1-km cell that had been sampled 

for the ZI models in Simulation 1 were retained; only these cells would be classified by MaxEnt as a 

presence. Each model was fitted using the ‘dismo’ package (Hijmans et al., 2017) in R, at a 1-km 

resolution with 10,000 randomly selected background ‘pseudo-absences’ and 10 repetitions across each 

set of town centres. All other MaxEnt parameter settings were set to the default options, including 1,000 

iterations, regularization multiplier = 1, and specifying a logistic output (Naimi & Araújo, 2016). 

 

Comparing the performance of count/abundance models (Poisson GLM and ZI models) and 

presence/presence-absence models (MaxEnt and binomial GLMs) required evaluation metrics which 

could work with both types of model. As it is less feasible to convert presence-absence predictions to 

abundance to use ‘D’, two other evaluation metrics were selected: Area Under the Curve (AUC) and 

the Spearman’s Rank correlation coefficient (rs) between the model predictors (‘altitude’ and/ or 

‘distance from town’) and each of the model predictions of count/abundance (GLM/ ZI) or habitat 

suitability (MaxEnt/ binomial GLM). In order to calculate AUC for the ZI and GLM models, abundance 

predictions were converted to binary presence-absence predictions, using an abundance threshold above 

which the species was considered to be predicted to be present. As I outline in Chapter 3, variable 

thresholds like ‘mean probability’ are shown to be more robust and a better classification method than 

fixed thresholds (e.g. if I categorised abundance using a threshold of below or above one). In addition, 

some models produced predicted abundances that all fell below one. Therefore, the threshold I chose 

for conversion was the mean abundance prediction across all grid cells for each individual model i.e. 

the threshold varied across each GLM or ZI model. Mean AUC was calculated across the 10 repetitions 

for each model based on the presence-absence predictions for all models compared to the true presence-
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absence based on all occurrence locations across the study area. It should be noted that neither of these 

metrics offer a perfect measure of model performance. AUC causes a loss of information from the 

Poisson GLMs and ZI models, which are designed to predict abundance, while Spearman’s rank retains 

more of the information in the predictions of both types of model, but is necessarily relatively crude.   

 

Finally, in order to assess the impact of the scale of data aggregation on the performance of abundance 

and presence-absence models, additional models were fitted and compared across two other scales of 

increasing coarseness: 2-km and 5-km. The larger the grid cell, the larger the mean count of occurrences 

per cell, and hence the more data potentially lost by converting to presence-absence. ZI count abundance 

predictions at a 2-km and 5-km scale were obtained following the methodology of Simulation 1 using 

the ZI6 model structure and again converted to presence-absence predictions. MaxEnt and binomial 

GLM presence-absence predictions at a 2-km and 5-km scale were obtained following the methodology 

outlined previously in Simulation 3. Model predictors (altitude and distance from town) were converted 

to coarser scales by calculating the mean values of each predictor at a 1-km resolution for each 2-km or 

5-km cell. As before, all predictions were evaluated using AUC and Spearman’s Rank correlation 

coefficient (rs). 

 

5.4 Results  

5.4.1 Simulation 1: Investigating the accuracy of species distribution maps from ZI models 

The results from Simulation 1 confirm that count abundance predictions from the ZI models provide 

the most accurate estimates (according to the metric D) of true species abundance (Fig. 5.3, Fig. A5.1.3). 

Estimating true abundance based purely on the biology of the species rather than sampling processes is 

usually the aim of ecological research, and these results suggest the count abundance predictions are 

most likely able to fulfil these aims. In contrast, all GLMs are poor at predicting true abundance because 

they do not separately model the excess (false) zeros generated by grid cells that have not been sampled. 

The problem is exaggerated when sampling is not just incomplete, but is also biased; if the GLM 

includes a predictor which is correlated with sampling effort (distance from nearest town), the model 

performs even less well (compare pink and blue bars for GLM3 (without bias predictor) and GLM4 
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(with bias predictor) in Fig. 5.3) because it detects a spurious negative association between this predictor 

and abundance (top panels, Fig. A5.1.4). Similarly, ZI sampling abundance predictions (predictions 

from the whole model that potentially include the influence of sampling bias) perform poorly; rather 

than estimating true abundance, reflecting the species niche, they predict abundance as it would appear 

to observers employing each sampling strategy (Fig. 5.3, Fig A5.1.3). Again, these predictions are 

particularly poor when sampling is biased (compare pink and blue bars for ZI2 and ZI6 in Fig. 5.3). 

These findings hold true for all three species (altitude, altitude_randomised and random) (Fig A5.1.3).  

 

The ability to model excess zeros separately led to dramatically improved predictive power of true 

abundance for all ZI models (see count abundance predictions in Fig. 5.3 and Fig A5.1.3), although one 

(ZI2) performed relatively less well than the others when sampling was biased (Fig. 5.3, Fig. A5.1.3). 

In ZI2, the bias predictor was included in the count component but not the zero component, meaning 

that like the GLMs it detected a spurious negative association between abundance and distance from 

the nearest town (middle panels, Fig. A5.1.4); if they included the bias predictor, the other ZI models 

(e.g. ZI3 or ZI6) correctly detected that it was positively associated with the probability of an excess 

zero being recorded (lower panels, Fig. A5.1.4).  

 

Predicted distribution maps based on both the count abundance predictions and sampling abundance 

predictions also support these findings (Fig. 5.4 & 5.5). Maps produced using ZI count abundance 

predictions that account for bias where necessary (i.e. including predictors of bias in the zero component 

when sampling is biased), correlate strongly with the biological predictor layer (altitude) (rs > 0.9) and 

show little influence of bias (distance from towns) (Fig. A5.1.5). When sampling is biased, both 

neglecting to account for the bias in the zero component, or using the sampling abundance predictions, 

results in low accuracy distribution maps that correlate more strongly with the bias predictor (rs value 

between -0.64 to -0.71) and less strongly with the biological predictor (rs values between 0.60 to 0.74) 

(Fig. A5.1.5). Distribution maps produced by the GLMs were also less accurate when sampling was 

biased and predictors correlating with bias were included (Fig. 5.4 & 5.5). Maps from the GLMs which 

include the bias predictor (GLM4) show a strong influence of sampling bias similar to that seen in the 
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ZI sampling abundance predictions. These maps show relatively weak correlations to the altitude 

predictor (rs = 0.60) compared to their counterpart GLMs that do not include the bias predictor (GLM3) 

(rs = 0.99) (Fig. A5.1.5). The prediction map from the GLM including both the biological and bias 

predictors (GLM4) with biased sampling also shows a strong correlation to the bias predictor (rs = -

0.72). 

 

 

Fig. 5.3 Evaluation of abundance predictions (based on D = ‘deviation from the best model’) for a hypothetical 

organism with occurrences simulated based on a preference for high altitudes (altitude species). Mean D values 

(± SE and data range) are shown for each sampling strategy (random or biased) across the 10 model repetitions 

for four models: two non-zero-inflated generalised linear models (GLM3 including only the biological predictor 

and GLM4 including the biological and bias predictor) and two zero-inflated (ZI) models (ZI2, which does not 

account for bias in the zero component and ZI6, which does).  Both sampling abundance (abundance from the 

whole model including the potential impact of sampling bias) and count abundance (abundance from the ZI count 

component only) are evaluated separately for the ZI models. Only sampling abundance can be obtained from the 

GLMs.  

 

Additional maps that depict the probability of each grid cell being an excess zero (i.e. predictions from 

the zero component of a ZI model) further highlight the ability of ZI models to model separately the 

biological and sampling processes, as well as providing insight into the nature of bias in the species 
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data (Fig. 5.4 & 5.5). This means that in real studies in which the sources of sampling bias are unknown, 

inclusion of predictors that may correlate with sampling bias (e.g. distance to towns or roads, 

accessibility, land-use etc.) in both the count and zero components of ZI models can help to both model 

and identify likely causes of bias. This is a unique feature of the ZI models, and is something which the 

GLMs are unable to reproduce; these models cannot provide insight into the bias or prediction maps 

that eliminate sampling effects within the data. 

 

Conventional measures of model performance (AIC) were consistent with the results from model testing 

in that the ZI models performed better than the GLMs, and ZI models that included the bias predictor 

in the zero component (ZI3 and ZI6) performed better than those that did not (ZI2) (Fig. A5.1.2). 

However, in contrast to D, the majority of models fitted using biased data that included the bias predictor 

produced lower AIC values than their corresponding random sampling models. This is possibly because 

AIC measures the model fit to the data and there is more likely to be overfitting due to the inclusion of 

the bias predictor. With D, the models are being tested against a separate ‘unseen’ test data set (each of 

the 10 CV folds not used to train the model) and therefore is a better measure of predictive power of 

the model; D is less likely to be influenced by model overfitting.   
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Fig. 5.4 Example maps of abundance for a hypothetical species (‘altitude species’) whose occurrence is positively 

influenced by altitude, produced from two generalised linear models (GLMs) and two Zero-Inflated (ZI) models. 

Models were built with either data collected by randomly sampling grid cells (random) or with sampling bias 

(biased). Abundance maps from GLM3 (including the biological predictor only) and GLM4 (including both the 

biological and bias predictor) are produced using sampling abundance predictions (i.e. from the whole model). 

Both count abundance and sampling abundance predictions can be produced from the ZI models along with a 

map of the probability a cell is an excess zeros (zero). Both ZI models include a biological predictor (altitude) of 

both abundance and excess zeros, and bias predictor (distance from the nearest town) of abundance. ZI6 also 

includes ‘distance from the nearest town’ as a predictor of excess zeros. Individual cells are colour-coded based 

on abundance for the abundance predictions or on probability of being an excess zero for the zero predictions 

(high = red, low = blue). 



109 

 

 

Fig. 5.5 Example maps of abundance for a hypothetical species (‘altitude_randomised species’) whose 

occurrence is positively influenced by a randomised altitude layer, produced from two generalised linear models 

(GLMs) and two Zero-Inflated (ZI) models. Models were built with either data collected by randomly sampling 

grid cells (random) or with sampling bias (biased). Abundance maps from GLM3 (including the biological 

predictor only) and GLM4 (including both the biological and bias predictor) are produced using sampling 

abundance predictions (i.e. from the whole model). Both count abundance and sampling abundance predictions 

can be produced from the ZI models along with a map of the probability a cell is an excess zeros (zero). Both ZI 

models include a biological predictor (altitude) of both abundance and excess zeros, and bias predictor (distance 

from the nearest town) of abundance. ZI6 also includes ‘distance from the nearest town’ as a predictor of excess 

zeros. Individual cells are colour-coded based on abundance for the abundance predictions or on probability of 

being an excess zero for the zero predictions (high = red, low = blue). 
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5.4.2 Simulation 2: Examining the impact of the extent of zero-inflation in the data 

Real species occurrence or abundance data will suffer from variable levels of zero inflation resulting 

from both biological and sampling processes. Therefore, the better performance of ZI models compared 

with GLMs described in Simulation 1 may not occur in all circumstances. In Simulation 2, I explored 

which is generally the better choice of model under different levels of biological and sampling bias 

zero-inflation. As anticipated, ZI count abundance predictions and GLM abundance predictions have 

similar accuracy when the data are not zero-inflated: when the whole study area is surveyed, all absences 

are ‘true absences’, the species is randomly distributed with no biological zero-inflation, and the 

difference in performance is zero (Fig. 5.6a, see random species (R) in left and middle panels). When 

considering the random species only (i.e. with no biological zero-inflation), as less of the study area is 

surveyed, zero-inflation as a result of sampling increases, and therefore the effectiveness of ZI model 

count abundance predictions improves in comparison to GLMs. Although this phenomenon occurs 

under both sampling strategies, it is most noticeable when both sampling is biased and that bias is 

accounted for in the model (by including the bias predictors in the ZI zero component as in ZI6 for 

example). 

 

As with the random species, when there are high levels of incomplete sampling for the altitude species 

(e.g. ~20% or fewer cells are sampled), ZI model count abundance predictions are consistently better 

than GLM predictions, regardless of biological zero-inflation (Fig. 5.6a, left and middle panels). 

However as more of the area is surveyed (> 20%), the difference in performance decreases. At low 

levels of biological zero-inflation, this difference tends towards zero. However, at higher levels of 

biological zero-inflation, GLM predictions are actually more accurate than the ZI model count 

abundance predictions under both random and biased sampling scenarios. This can best be understood 

by looking at Fig. 8b showing the results based on sampling abundance predictions from the ZI model, 

rather than count abundance predictions: in contrast to the count abundance predictions, as biological 

zero-inflation increases, ZI sampling abundance predictions increasingly outperform those of the GLM. 

This is because the zero component of the ZI model, which is combined with the count component to 

create the sampling abundance prediction, is able to predict the excess zeroes caused by the biological 
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driver, while the GLM cannot. Therefore, if high levels of biological zero-inflation are suspected in the 

data, both the count and sampling abundance predictions should be considered and evaluated before 

choosing the best predictions of species abundance.  

 

Reiterating the results from Simulation 1, when sampling is random there is no benefit of including the 

bias predictor in the zero component under any levels of sampling or biological zero-inflation (Fig. 5.6a 

& b, top right panels). Under biased sampling scenarios, models accounting for bias (by including the 

bias predictor in the zero component as in ZI6 for example) are most effective when there are high 

levels of sampling-related zero-inflation and low levels of biological zero-inflation. As either the area 

surveyed or biological zero-inflation increases, the effectiveness of these models reduces compared to 

models that fail to account for bias (Fig. 5.6a, bottom right panel). Nevertheless, the majority of 

differences seen between ZI models are relatively small compared to those between the ZI models and 

GLMs.  
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Fig. 5.6 Comparisons of model predictive power of a) count abundance (top panels) or b) sampling abundance 

(bottom panels) between a generalised linear model (GLM) and two zero-inflated (ZI) models across varying 

levels of biological and sampling bias zero-inflation. Values represent the mean difference in D (‘deviation from 

the best model’) between GLM4 (containing both biological and bias predictor), ZI2 (excludes the bias predictor 

from the zero component) and ZI6 (includes the bias predictor in the zero component). Biological zero-inflation 

was increased by introducing a minimum altitude threshold below which the species cannot survive and therefore 

reducing its environmental niche. Sampling-related zero-inflation was increased by decreasing the number of 

grid cells sampled across the study area in increments of 10% from 100% to 10%. Negative (red) values show 

scenarios where the ZI model performs better than the GLM (left and middle panels) or where ZI6 performs better 

than ZI2 (right panel), whereas positive (blue) values show scenarios where GLM4 outperforms the ZI models or 

ZI2 outperforms ZI6. ‘R’ represents the values for the random species whose occurrence is not related to altitude. 
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5.4.3 Simulation 3: Comparing abundance versus presence-absence data across multiple spatial scales 

The results from Simulation 3 support my hypothesis that, when dealing with biased species data, 

modelling aggregated count data using ZI models is a better choice than modelling aggregated presence-

absence or presence-only data, as is commonly done in traditional SDM studies, using approaches such 

as binomial GLMs or MaxEnt (Fig 5.7). The only model to perform consistently well across all spatial 

scales when dealing with the biased species data was the ZI model, which maintained strong correlations 

to the biological predictor (rs > 0.9) and low correlations to the bias predictor (-0.12 < rs < 0.07) across 

all scales (Fig. 5.7). Predicted maps of the altitude species distribution also show that the ZI model 

count abundance predictions provide the most accurate reflection of the true species distribution as the 

scale of data aggregation increases (Fig A5.1.6). Binomial-GLM2 and MaxEnt2 models, which  

incorporate the bias predictor, produced predictions that are heavily influenced by sampling bias at a 1-

km scale, with strong correlations to the bias predictor (rs < -0.75) (Fig. 5.7, Fig. A5.1.6). These increase 

in strength as scale increases to 2-km and 5-km, so that both model predictions produce correlations to 

the bias predictor close to one (rs < -0.92). Both MaxEnt1 and binomial-GLM1 (which do not include 

the bias predictor) were able to produce accurate predictions with the biased data at a 1-km resolution, 

although performance declined as the scale became coarser. Even when the species data was collected 

using a random sampling strategy, the performance of the presence-absence models declined as the 

scale became coarser and more information was lost with data aggregation (Fig 5.7); this phenomenon 

was not seen in the ZI models and performance remained high as scale increased.  
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Fig. 5.7 Spearman’s Rank correlation coefficients (rs) between the model predictors (altitude and distance from 

nearest town) and model predictions for altitude species across three modelling resolutions: 1-km, 2-km and 5-

km. Three types of model are compared: 1) binomial generalised linear models (GLMs) that predict the 

probability of occurrence, 2) Maximum Entropy (MaxEnt) models that predict the probability of occurrence and 

3) zero-inflated (ZI) models that predict the true (count) abundance of the species. Binomial-GLM1 and MaxEnt1 

include only the biological predictor in the model, whereas Binomial-GLM2 and MaxEnt2 include both the 

biological and bias predictor. ZI6 model includes the bias and biological predictor in both the count and zero 

component. Values represent the mean coefficients (rs) and standard error (se) across the 10 simulated sets of 

‘town centres’ using data collected under two sampling strategies (random and biased). Coefficients are colour-

coded based on strength: the darker the colour, the stronger the correlation. Red values represent positive 

correlations, whereas blue represent negative correlations.    

 

Model evaluation using mean AUC based on the presence-absence predictions also supports these 

findings (Fig. 5.8). At a 1-km scale, all models fitted using biased data performed worse than the 

corresponding model using random data, with the exceptions of GLM3 and Binomial-GLM1 (both of 

which do not include the bias predictor) and ZI6 (which does include the bias predictor). Additionally, 

all presence-absence models (binomial GLMs and MaxEnt) performed worse than ZI6 regardless of the 

sampling strategy. As scale increases, the presence-absence models have a much larger variance in 

performance across the 10 repetitions of the town centre sets than the abundance models, with some 

repetitions producing AUC values below 0.5 and above 0.9 (Fig. 5.8). Nevertheless, when dealing with 

biased species data, the ZI6 model performed better on average than both MaxEnt models (with or 
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without the bias predictor) and Binomial-GLM2 (with the bias predictor) at a 2-km scale, and better 

than MaxEnt2 (with the bias predictor) and both binomial GLMs at a 5-km scale.  

 

Fig. 5.8 Evaluation of MaxEnt, generalised linear model (GLM) and zero-inflated (ZI) model predictions of 

altitude species presence-absence across the study area based on mean Area under the Curve (AUC) across three 

scales of data aggregation: 1-km, 2-km and 5-km. Mean AUC values (± SE and data range) for each sampling 

strategy (random or biased) across the 10 model repetitions are shown for two MaxEnt models and two binomial 

generalised linear models (GLMs): MaxEnt1 and Binomial-GLM1 which includes only altitude as a predictor, 

and MaxEnt2 and Binomial-GLM2 which includes altitude and distance from town as predictors. Abundance 

predictions were converted into binary presence-absence predictions for two non-zero-inflated generalised linear 

models (GLM3 including only the biological predictor and GLM4 including the biological and bias predictor) 

and two zero-inflated (ZI) models (ZI2 which does not account for bias in the zero component and ZI6 which does 

account for bias in the zero component) based on a threshold equal to the mean predicted abundance per model 

type (see Methods for more information). 
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5.5 Discussion 

Sampling bias in species data is problematic for SDM, and many researchers call for greater awareness 

and development of correction methods to deal with this issue (Araújo & Guisan, 2006; Bystriakova et 

al., 2012; Kramer-Schadt et al., 2013). My simulations using ZI models highlight a novel approach for 

dealing with sampling bias and zero-inflation in SDM, which I believe can be applied to a wide variety 

of ecological and conservation research questions that use large databases of species records. My results 

reveal that ZI models have the potential both to reduce the impact of bias on predictions which are used 

for biological inference, and to provide insights into previously unknown causes or correlates of 

sampling bias. This method can be used with both raw abundance data, and with abundance data created 

by summing occurrences from presence-only data at a coarser resolution, and therefore offers an 

alternative to traditional presence-only SDM methods. As spatial occurrence data is often present at a 

finer scale than the environmental predictors, decisions about data aggregation have to be made when 

fitting distribution models. I found that even though information about the precise location of species 

occurrences is sacrificed, aggregating species occurrences into counts of abundance and fitting ZI 

models produces better estimates of a species distribution, especially when the species data is biased by 

sampling methods, than aggregating occurrences into presence-absence form at a coarser spatial scale, 

as is common with traditional SDM methods such as binomial GLMs or MaxEnt.  

 

Species distribution maps are an important resource for conservation planners (Rodríguez et al., 2007), 

yet there is often little consideration of inaccuracies or uncertainty in these maps or associated models 

(Elith et al., 2002; Zuquim et al., 2014). My results show how the biological information value of maps 

based on GLM, MaxEnt and ZI sampling abundance predictions can be reduced by sampling bias. In 

contrast, the distribution maps produced from the predictions from the count component of ZI models 

are accurate reflections of the species niche and true abundance, even when species data are spatially 

biased, providing that the bias influence is accounted for in the model by included all predictors 

suspected of capturing or correlating with the bias in both ZI count and zero components. If in doubt 

about whether a predictor is likely to be a source of bias, inclusion in both parts will not only alleviate 

the problem of bias, but will also provide insight into whether it actually is a introducing a large number 
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of excess (‘false’) zeros. Additionally, ZI model coefficients allowed examination of potential causes 

of bias; in ZI6 (the model including both the bias and biological predictor in the zero component) from 

Simulation 1, ‘distance from nearest town’ was influential only in the zero component, and was not 

spuriously identified as influencing true abundance. Currently, there are few statistical models that 

allow post-modelling identification of bias sources. Many SDM techniques rely on prior understanding 

and some form of quantification of the bias in order to remove it (Phillips, 2008), so ZI models provide 

an advantage over these traditional bias correction methods in their ability to shed light on potential 

causes of bias.  

 

If all excess zeros are false zeros, count abundance predictions from ZI models should always reflect 

the true species niche, and the zero component will be modelling only excess zeros from non-biological, 

sampling processes. However, this scenario is unlikely in ecological systems. In reality, as in my 

simulations with the altitude and altitude_randomised species, the excess zeros will result from a 

combination of biological zero-inflation and sampling zero-inflation. Therefore, the count abundance 

prediction may not always be predicting true abundance, and the zero component may actually be 

dominated by biological processes, as I suggest is the case for the results from Simulation 2. In this 

case, the sampling abundance prediction will actually be a more accurate reflection of true species 

abundance. Nevertheless, by examining the significance and influence of predictors in both 

components, their plausibility as causes of bias can be inspected: biological predictors of abundance are 

likely to be significant in both parts of the ZI model, whereas sampling predictors are unlikely to appear 

influential in the count component.  

 

After identifying potential bias predictors, modellers can make more informed choices about whether 

to eliminate these predictors from either ZI component, whether the zero component is more heavily 

dominated by biological or sampling processes, and if the count abundance or sampling abundance is 

more likely to reflect true species abundance. A good understanding of the biology of the species being 

modelled is therefore key. Additionally, despite the post-model-fitting ability of ZI models to 

distinguish bias, beginning any analysis of a zero-inflated dataset, it is important also to try and identify 
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the source of excess zeros as either from biology or sampling processes (Martin et al., 2005). 

Consequently, although one benefit of ZI models is the ability to use different sets of covariates in the 

count and zero components (Lambert, 1992; Zuur et al., 2009), it is important only to include 

appropriate, relevant predictors in each part where possible.  

 

The collection of species data varies widely in its scale and standardisation, from single museum 

specimens collected by natural history experts, to more local, standardised recording schemes (Pocock 

& Evans, 2014) and to international, opportunistic recording schemes such as eBird (Sullivan et al., 

2009). The more standardised and directed the protocols, the lower the likelihood of sampling bias and 

‘false zeros’ in the data. In these cases, a simple Poisson or negative binomial GLM may suffice rather 

than a ZI model; at very low levels of zero-inflation the performance of the GLMs was shown to be 

equal to that of the ZI models in Simulation 2. Nevertheless, my findings from Simulation 2 suggest 

that, regardless of biological zero-inflation, when sampling is suspected to be very incomplete 

(estimated coverage of total study area < ~20%), ZI models will always be the optimum choice. At low 

levels of biological zero-inflation, I found ZI models to be more effective than GLMs even when 

sampling coverage approached levels as high as 90%, as might be the case for species with broad ranges 

that have been extensively documented, such as important or conspicuous species in countries with long 

histories of species record keeping.  

 

As well as the Poisson distribution, the negative binomial distribution is also often used for count data, 

which can also be applied within a zero-inflated modelling framework (Ridout et al., 2001; Minami et 

al., 2007; Zuur et al., 2009). The negative binomial distribution is able to model an extra proportion of 

the excess zeros compared to the Poisson distribution through the use of an extra model parameter (ϴ) 

(Fisher, 1941) and can therefore account for biological aggregation and overdispersion in ecological 

data (Lindén & Mäntyniemi, 2011). I chose not to investigate a ZI negative binomial model in these 

simulations to remove confusion when communicating my main message, although I acknowledge that 

under high levels of biological zero-inflation (as in Simulation 2), such models may well be more 

effective that the ZI Poisson models. Therefore, when analysing presence-only species data suffering 
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from high levels of sampling bias, a ZI Poisson model will usually be effective, but it is valuable to 

know that there are different ZI model types that can be used to address ecological or statistical issues 

that may arise in species data.  

 

The majority of SDM research to date has focused on producing presence-absence or presence-only 

distribution maps of species or communities (Brotons et al., 2004; Phillips et al., 2006; Lyashevska et 

al., 2016). Species abundance maps are produced more infrequently, often due to the practical difficulty 

of measuring absolute abundance (Lyashaveska et al., 2016). However, their ability to display extra 

information about density means they are often more informative and preferred (Pearce & Ferrier, 2000; 

Barry & Welsh, 2002; Johnston et al., 2015).  

 

Although count data are known commonly to suffer from zero-inflation, ZI models have been used to 

produce accurate species abundance maps from systematically collected species data in very few studies 

(Bouyer et al., 2015; Lyashaveska et al, 2016), and none have acknowledged or explored bias in their 

data. It is also not recommended to use SDM to predict species abundance from presence-only or 

presence-absence data (Jiménez‐Valverde et al., 2020), so ZI models that fit abundance by default 

should be able to cover this methodology gap in the field of SDM. Additionally, scale is hugely 

important in SDM. Species distributions are often modelled at coarse resolutions across national or 

international scales due to the availability of predictors, even though occurrences relate more to 

localised environmental factors (Guisan et al., 2007; Kuemmerlen et al., 2014). The coarser the grain 

size used in presence-absence or presence-only SDM, the more the raw occurrences are aggregated into 

a binary variable and density information is lost. Therefore, it is likely that at coarse resolutions, using 

abundance rather than occurrence data preserves more information and will produce more accurate 

maps of habitat suitability. 

 

My findings from Simulation 3 suggest that when having to decide how to aggregate data to match the 

coarser resolution of the environmental predictors, the best method is to aggregate species occurrences 

into counts of abundance and fit using a ZI model, rather than aggregate into presence-absence data and 
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fit using a traditional SDM method such as MaxEnt. This provides two main benefits over presence-

absence methods in that a) ZI models are able to identify and account for bias without prior knowledge 

of the bias sources and b) extra information about species abundance is retained and modelled. 

However, it should be noted that for some species that may be very rare or have been extremely poorly 

sampled, aggregating data points using this ZI method for SDM may be inappropriate, as the sample 

size and abundance counts may be too low (i.e. only have abundance counts of one even at very coarse 

resolutions). In these rare cases, traditional MaxEnt SDM methods that are more robust to low sample 

sizes combined with bias correction techniques may be a better option (Phillips et al., 2009).  

 

I also found that as scale became increasingly coarser, only the ZI models retained a high level of 

predictive power and were an accurate reflection of species niche compared to MaxEnt or binomial 

GLMs, especially when the data suffered from sampling bias. I believe that ZI models have an 

advantage over other statistical methods in that they can be used with either presence-absence data or 

abundance data collected from citizen science projects: presence-absence data can just be aggregated 

into a count at a particular resolution. Furthermore, scale was shown to have little influence on the 

predictive power of ZI models providing bias was accounted for. Nevertheless, this was only simulated 

across relatively small resolutions (up to 5-km) due to the limitations of the study area and requirement 

for zero-inflated data, whereas many studies map distributions at larger scales (> 10-km) (Thuiller et 

al., 2006; Luoto et al., 2007). It is uncertain therefore whether this pattern holds true across more coarse 

scales of analysis.  

 

In this chapter, I have investigated the performance of ZI models under a relatively restricted set of 

scenarios. For example, I chose to use a simple scenario in which only two predictors, a biological 

predictor and a bias predictor, generate patterns in the species distribution. The altitude species was 

assigned a simple preference for high altitudes, when in fact, there are likely several different 

environmental influences on the species niche. Furthermore, some of these biological predictors of 

species presence will also predict sampling bias. Therefore, it is important that prior consideration is 
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given to the possible influences of any predictor included in the model on both ecological processes and 

sampling behaviour before it is decided whether to include it in either part of the ZI model. 

 

GLMs, and by extension ZI models, have been criticised for their inability to capture the complex, non-

linear relationships which may often characterise species responses to the environment, in contrast with 

more modern methods such as MaxEnt or other machine learning techniques which are more flexible 

(Austin, 2002). Nevertheless, GLMs and ZIs also have some clear benefits, such as the ease with which 

they can be applied, and the transparency of their design. Here, I have shown an additional benefit of 

ZI models not yet available with any other modelling approach: the ability to simultaneously account 

for bias and to make inferences about it, when predicting distributions from incomplete sampling. I 

believe that my approach using ZI models has broad applicability to a variety of scenarios when bias is 

present, and there are suspected predictors of bias available. ZI models should be especially valuable 

when species abundance is of interest to the modeller, such as when modelling distributions of 

individual large animals or trees. Although I acknowledge that GLMs and ZI models have limitations, 

there is a range of options for more complex versions of these models, such as those incorporating 

polynomial terms, interactions and LASSO variable selection (Hastie et al., 2009; Vollering et al., 

2019), which might allow such models to capture non-linear/complex responses to the environment at 

the same time as modelling the causes of excess zeroes.  

 

In my simulations, I assume that all ‘false absences’ are due to sampling bias, but it is likely that in 

many cases, particularly for rare or cryptic species, they are also generated by detection errors 

(Fitzpatrick et al., 2009; Dickinson et al., 2010; Kosmala et al., 2016). The species range size and the 

scale of detectability of the individuals is likely to influence the interpretation of the model “abundance” 

predictions. For example under-estimation of true abundance could occur when modelling small 

organisms which appear frequently during the survey, and will be more representative of the likelihood 

of successfully sampling the species. On the other hand, over-estimation could occur when modelling 

large, mobile organisms that cover multiple sampling locations, so prediction abundance might be a 

proxy of the probability of encountering one of a small number of individuals. Hence, there may be 
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three sources of excess zeros: true zeros from unsuitable habitat, false zeros from lack of sampling and 

false zeros from detection error. When detection errors are significant, ZI models will not be able to 

distinguish between the different types of false zeros; but by including predictors in both the count and 

zero components of the model that capture the processes generating all types of zeros, I believe that ZI 

models will still be able (mostly) to account for these excess ‘false’ zeros, and combined with expert 

knowledge can provide some information about their sources. 

 

5.6 Conclusion  

Large collections of species data are extremely useful for SDM and conservation, and yet are limited 

by issues associated with the recording processes, including sampling bias and zero-inflation. My 

simulations show that ZI models can fit biased data and identify sources of bias. Most importantly for 

conservation, by using only predictions from the count component of the ZI model (i.e. the count 

abundance predictions), biased species data can be used to produce distribution maps comparable to 

those using unbiased data. I also highlight the importance of considering the use of abundance data in 

SDM, especially at large spatial scales, when valuable ecological information about density is lost if 

data in each cell are converted to presence-absence or presence-only. ZI models are advantageous 

compared to other commonly used SDM techniques such as MaxEnt owing to their ability to retain 

information about abundance and also to identify and remove bias without prior knowledge of the bias 

sources. I believe ZI models have been largely overlooked in ecological research, even though they 

have a huge potential to be useful in SDM, and could have great benefits for conservation and our 

environment.  
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Chapter 6: Distribution models calibrated with independent field data 

predict two million ancient and veteran trees in England. 

 

6.1 Abstract 

Large, citizen-science species databases are powerful resources for predictive Species Distribution 

Modelling (SDM) yet are often subject to sampling bias. There are many proposed methods to correct 

for this, but little consensus as to which is most effective, not least because the true value of model 

predictions is hard to evaluate without extensive independent field sampling. I present here in this 

chapter a nationwide, independent field validation of distribution models of ancient and veteran trees, 

a group of organisms of high conservation importance, built using a large and internationally unique 

citizen-science database: the Ancient Tree Inventory (ATI). This validation exercise presents an 

opportunity to test the performance of different methods of correcting for sampling bias, in the search 

for the best possible prediction of ancient and veteran tree distributions in England. I fitted a variety of 

distribution models of ancient and veteran tree records in England in relation to environmental 

predictors, and applied different bias correction methods including spatial filtering, background 

manipulation, the use of bias files and finally, Zero-Inflated (ZI) regression models. I then collected 

new independent field data through systematic surveys of 52 randomly selected 1-km2 grid squares 

across England to obtain abundance estimates of ancient and veteran trees. Calibrating the distribution 

models against the field data suggests there are around ten times as many ancient and veteran trees 

present in England than the records currently suggest, with estimates ranging from  1.7 to 2.1 million 

trees compared to the 200,000 currently recorded in the ATI. The most successful bias correction 

method was systematic sampling of occurrence records, although the ZI models also performed well, 

significantly predicting field observations, and highlighting both likely causes of undersampling and 

areas of the country in which many unrecorded trees are likely to be found. My findings provide the 

first robust nationwide estimate of ancient and veteran tree abundance, and demonstrate the enormous 

potential for distribution modelling based on citizen science data combined with independent field 

validation to inform conservation planning. 
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6.2 Introduction 

Citizen-science species databases and other large species record collections are becoming increasingly 

useful in conservation research and planning, and are able to provide a great deal of information about 

species distributions across large geographical areas and temporal periods (Pearce & Boyce, 2006; 

Schmeller et al., 2009; Tiago et al., 2017b). Nevertheless, sampling in this sort of species data is a 

widely acknowledged problem (Phillips et al., 2009; Hijmans, 2012; Syfert et al., 2013). Sampling bias 

results in certain areas or species being sampling more intensively or frequently, most commonly 

because of issues relating to accessibility and the location of the recorders, for example travel time from 

a recorder’s home to a survey site (Dennis & Thomas, 2000), distance from roads or the availability of 

pathways (Reddy & Dávalos, 2003; Kadmon et al., 2004; Schulman et al., 2007), or elevation/ terrain 

steepness (Mair & Ruete, 2016). The selective surveying of rare, ‘special’ species or interesting 

geographic areas also generates sampling bias in species data (Reddy & Dávalos, 2003; Snäll et al., 

2011; Kramer-Schadt et al., 2013). Quantifying bias is further complicated by different taxa suffering 

from different causes of spatial bias (Mair & Ruete, 2016). 

 

Species Distribution Modelling (SDM) is a common and effective tool for understanding and predicting 

species distributions and distributional shifts (Beaumont et al., 2007; Chen et al., 2011; Clement et al., 

2014). SDM works by assessing the known presence (and sometimes absence) records of a species in 

relation to environmental variables. The suitability of locations for this species, reflecting its 

fundamental niche and geographic range, can then be predicted based on environmental characteristics 

(Araújo & Guisan, 2006; Hijmans & Graham, 2006; Mateo et al., 2011). Many modelling techniques 

are available, with Maximum Entropy (MaxEnt) modelling being by far the most widely used because 

of its ability to use presence-only data and to cope with small datasets (Hernandez et al., 2006; Phillips 

et al., 2006; Elith et al., 2006). Sampling bias in species data can greatly influence SDM performance 

and quality, as it leads to exaggeration of the importance of the environmental conditions for the species 

in the better surveyed locations (Syfert et al., 2013). Therefore, predicted species distributions from 

models built with biased records can vary dramatically compared to the actual distribution: the 

predictions partly represent survey effort rather than species niche requirements (Phillips et al., 2009). 
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Incorrect model predictions are particularly detrimental in the planning of conservation projects and 

decision making about which areas should be protected or subject to management (MacKenzie, 2005). 

Various methods to assess and correct for sampling bias have been developed recently, and issues 

created by sampling bias in SDM and citizen science recording schemes are now widely recognised 

(Phillips et al., 2009; Kramer-Schadt et al., 2013; Fourcade et al., 2014; Boria et al., 2014). However, 

thorough evaluations of these methods using independently collected, unbiased species data are scarce, 

and the true value of many distribution models built using biased data remains unclear. 

  

Ground-truthing of model verifications using independently collected, unbiased new data is the ideal 

scenario when testing model performance and predictions, yet distribution models are rarely tested in 

this way (Greaves et al., 2006; Costa et al., 2010; Fabri‐Ruiz et al., 2019). The reasons for this are 

obvious, as the time and financial cost of large-scale surveys is often prohibitive and difficult. However, 

the networks of volunteer recorders for many citizen-science projects may lend themselves to planned 

ground truthing, and with some forward planning, robust, strategic sampling methods could be applied 

in many of these large projects. In this chapter I use a large, volunteer survey network of a nationwide 

citizen-science project, the UK Ancient Tree Inventory (ATI), to do just that: by recruiting a sample of 

enthusiastic volunteers who regularly record for the project, I carried out nationwide, randomised 

surveys in order to validate model predictions independently using the newly collected unbiased species 

data, with the aim of selecting the most robust predictive models of species distributions.  

 

Dead and decaying wood ecosystems are highly complex and fragile, and are found world-wide (Hodge 

& Peterken, 1998; Siitonen, 2001; Butler et al., 2002; Seibold & Thorn, 2018). They provide resources 

and habitats for numerous threatened and endangered saproxylic species (Jonsson et al., 2005; Seibold 

et al., 2015). Ancient and veteran trees exhibit ‘veteran characteristics’ such as a retrenched crown, 

hollowing trunk, holes and cavities (Read, 2000; ATF, 2008a; Nolan et al., 2020), and are essential 

contributors to the persistence of dead and decaying wood ecosystems in most biomes, supporting a 

wide range of fungi, epiphytes, invertebrates, birds and mammals (Speight, 1989; Read, 2000; 

Humphrey, 2005). The strong historic and cultural significance of ancient and veteran trees also 
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provides insight into past landscape use and management, and important events in human and 

environmental history, as well as changes and developments in social behaviour and landscape structure 

over time (Rackham, 1976; Read, 2000; Zhang et al., 2017; Nolan et al., 2020). Nevertheless, ancient 

and veteran trees and their associated habitats and species are declining around the world (Gibbons et 

al., 2008; Fischer et al., 2010; Le Roux et al., 2014; Kirby & Watkins, 2015). Factors such as 

urbanisation and agricultural intensification, alongside a lack of planting, management and awareness 

of the development of ancient and veteran tree populations, are all contributing to their steady decline 

(Read, 2000; Fay, 2002; ATF, 2005, 2011; Lindenmayer et al., 2012; Lonsdale, 2013). In addition, 

relatively few countries have knowledge about, or are actively recording, the locations and condition of 

ancient and veteran trees sufficiently well for conservation measures to be effective (Nolan et al., 2020). 

 

The UK is unique in having excellent records of ancient and veteran trees. The Ancient Tree Inventory 

(ATI) (formerly known as the Ancient Tree Hunt), is a national database of over 200,000 ancient, 

veteran and other noteworthy trees (Nolan et al., 2020). The ATI is a great example of a successful and 

popular citizen-science project, with hundreds of new tree records uploaded to the online inventory 

managed by the Woodland Trust each month by members of the public, ecological organisations and 

specialised ancient tree volunteer recorders. Nevertheless, like many citizen-science projects and online 

species databases, because of the non-random, unstructured nature of the recording process, there is 

likely to be a high level of sampling bias in the ATI. Therefore, the current distribution map of ancient 

and veteran trees based on the ATI may be more reflective of recorder activity in certain locations than 

it is of the true geographical distribution of trees. It is also likely that there is huge under-recording of 

trees in many areas, especially those that are less accessible, less interesting to survey or further away 

from centres of human population (Phillips et al., 2009; Mair & Ruete, 2016). Thus, despite the large 

number of records collected, there are thought to be many more undiscovered ancient and veteran trees 

in the UK including those that are at risk of damage or destruction (Nolan et al., 2020). Obtaining insight 

into the true distribution of ancient and veteran trees, as well as under- or well-surveyed areas (i.e. 

patterns of sampling bias), is therefore key for the conservation and protection of this important 

component of biodiversity.  
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A further problem of using non-randomly sampled species data, as found in the ATI, which is often 

encountered in SDM is the lack of information about true absences - locations where the species is 

definitively not present, rather than those that have simply not been surveyed (Hastie & Fithian, 2013). 

Presence-only SDM overcomes this by generating ‘pseudo-absence’ points across the study area. These 

points are usually positioned at random (Stockwell & Peters, 1999), but they can be weighted by 

geography, environment or target group sampling (Hirzel et al., 2001; Phillips & Dudík, 2008). 

However, the method of pseudo-absence generation has been shown to influence model outcomes (Wisz 

& Guisan, 2009; Barbet-Massin et al., 2012) and can result in unreliable models (Liang et al., 2018). 

  

Predictive species distribution maps based on abundance are much less common than those based on 

presence or presence-absence, because most large species datasets record only species occurrence 

(Lyashevska et al., 2016). If the spatial predictors in SDM are only available at a greater resolution than 

the occurrence data, occurrences have to be aggregated to presence-only or presence-absence at the 

same resolution, which results in loss of vital information about species density across the study area 

(Johnston et al., 2015; see Chapter 5). An alternative to aggregating occurrences to presence-absence 

data is to aggregate them into counts of occurrences (i.e. abundance or pseudo-abundance), at the 

resolution of the spatial predictors, an approach which retains information about species density and 

can produce better fitting, more accurate predictive maps (Howard et al., 2014; Johnston et al., 2015; 

see Chapter 5). One problem with this method is that the new aggregated abundance data are highly 

likely to be zero-inflated compared with the standard distributions which they are typically expected to 

follow (Martin et al., 2005; Bird et al., 2014), but this can be overcome with the use of Zero-Inflated 

(ZI) models (Lambert, 1992). ZI models, which have received relatively little attention in the field of 

SDM, are able to cope with such data and shown in Chapter 5 to be able to both identify causes of 

sampling bias, and to facilitate its removal in simulated species data. Here, I use the ATI case study to 

test my recently proposed method of sampling bias correction using ZI models (see Chapter 5). 

 

The aim of this study is to produce the best possible, unbiased prediction of the current distribution of 

ancient and veteran trees in England using distribution modelling and large-scale field validation. 
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Collecting additional data also presents an interesting opportunity to evaluate independently the 

effectiveness of a variety of bias correction methods in relation to my distribution models, which is 

something that relatively few studies attempt. I fit distribution models with a variety of different bias 

correction methods, including ZI models, and evaluate their performance and predictive power using 

both common internal model validation methods and my independently collected, unbiased field 

estimates of ancient and veteran tree abundance. Thorough, independent evaluation of the most robust, 

accurate predictive maps of ancient and veteran tree distribution can assist with future targeted surveys 

and provide estimates of the work needed to find undiscovered trees to add to the ATI for their 

protection, as well as helping to estimate the landscape-scale biological value of this habitat-rich 

resource as a whole.  

 

6.3 Methods 

6.3.1 Study species and environmental predictors 

Methods in this chapter follow those using the same 1-km grid and ATI ancient and veteran tree records 

across England from Chapter 4 (see Methods, Chapter 4). Twenty environmental, topographical and 

anthropogenic datasets were then selected for predictive modelling across the study area for each 1-km 

grid cell (see Chapter 2, Table 2.5, and Table 6.1). Four predictors were categorical (agricultural class, 

land class, soil type and type of historic countryside) and 16 were numeric. No strong correlations were 

found between any numeric predictor (Pearson’s correlation coefficient threshold +/- 0.6, Variance 

Inflation Factor (VIF) < 5). Each predictor was converted to raster format at a 1-km resolution. All 

processing of predictors was carried out in ArcGIS version 10.3.1 (ESRI, 2018). 
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Table 6.1 Information from 20 datasets (see Table 2.5) was collected for each 1-km grid cell, and converted into 

a useable quantitative model predictor. There are 16 continuous predictors and 4 categoric predictors. 

Original Dataset Predictor (after processing) Format 

Countryside type Type of countryside  Categoric 

Soil type (1-km) Most common soil type Categoric 

Agricultural class Most common agricultural classification Categoric 

Land class Most common land classification  Categoric 

Historic forest Distance from a historic forest (km) Numeric 

Medieval moated sites Distance from a moated site (km) Numeric 

Medieval Deer Park Distance from a medieval deer park (km) Numeric 

Tudor Deer Park Distance from a Tudor deer park (km) Numeric 

Watercourses Distance from a water course (km) Numeric 

Altitude (1-km) Mean altitude (m) Numeric 

Town centre Distance from nearest town center (km) Numeric 

Major city Distance from nearest major city (km) Numeric 

Commons Distance from a commons (km) Numeric 

Major roads Distance from a major road (km) Numeric 

Minor roads Length of minor roads (km) Numeric 

Ancient woodland Cover of ancient woodland (%) Numeric 

National Forest Cover of forest or woodland (%) Numeric 

Traditional orchard Cover of traditional orchard (%) Numeric 

Wood-pasture Cover of wood pasture (%) Numeric 

National Trust land Cover of National Trust owned land (%) Numeric 

 

 

6.3.2 Bias correction techniques 

Four types of bias correction method were tested, three of which are conventional presence-only or 

presence-absence SDM techniques that have been used and evaluated previously (Kramer-Schadt et al., 

2013; Fourcade et al., 2014; Beck et al., 2014). These were 1) spatial filtering of occurrence records, 2) 

restriction of the selection of pseudo-absence background data and 3) the use of bias files in the models 

(Table 6.2). Three methods of spatial filtering were tested, the first of which was ‘systematic sampling’ 

(Fourcade et al., 2014; Beck et al., 2014), where grids of 2-km, 5-km and 10-km resolution were created 

with the same extent as that of the occurrence records. One occurrence record was then randomly 
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sampled from each 2-km, 5-km and 10-km grid cell, resulting in a filtering of occurrence records from 

a total of 94,024 to 11,261, 5,504 and 2,495 final occurrence records respectively. 

  

The second method was ‘cluster analysis’ (Fourcade et al., 2014), whereby all occurrence records within 

1-km of each other were grouped together as a single cluster. Thus, some records in the same cluster 

were greater than 1-km distance from each other but all were < 1-km from at least one other record in 

the cluster. From each cluster, a single occurrence record was randomly selected and retained. All 

records that were further than 1-km away from the next record and did not fall within a cluster were 

also retained, resulting in a final total of 1,583 occurrence records. The final spatial filtering method 

was ‘weighted distances’ (Veloz, 2009; Kramer-Schadt et al., 2013; Boria et al., 2014), where the 

distance of the nearest record was calculated for each occurrence location, and rescaled into a 

probability of weighted distances between 0 and 1. A total of 20,000 occurrence records were then 

selected based on these weighted probability distances, so that records with large distances to the nearest 

other record were more likely to be selected (i.e. had a probability closer to 1). The processing of the 

occurrence records for each of these three filtering methods was carried out manually in R (R Core 

Team, 2018) and ArcGIS.  

 

The other two bias correction methods are both types of manipulation of the selection of the pseudo-

absences from the background when fitting distribution models, but differ based on their requirements. 

The first method, background restriction (Table 6.2), requires no prior knowledge of sampling bias, but 

involves restricting the area within which the pseudo-absence data were selected (Phillips, 2008; 

Fourcade et al., 2014). This was done by creating buffer areas around each occurrence point at 1-km, 

2-km, 5-km and 10-km distances, within which the pseudo-absence selection was confined. The second 

method employs bias files which are proxies of likely sources of bias across the study area (Dudík et 

al., 2005; Elith et al., 2010). The bias file is used to influence the weighted selection of pseudo-absence 

locations. Six different potential bias sources were considered (Table 6.2). Two of these bias files were 

record density (number of trees per grid square) and recorder density (centroid location of each 

recorder’s specific records). Having access to information about recorder locations allows us to examine 
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true factors that cause sampling bias, rather than just environmental proxies, which is something that 

many large databases are unable to do.  

 

The fourth bias correction method was based on the novel approach developed in Chapter 5, whereby 

the presence-only ATI records were aggregated into a count of occurrences per 1-km grid cell 

(‘abundance’). In some cases it is likely that this abundance measure is more likely ‘pseudo-abundance’, 

as in many species databases single occurrences represent the presence of multiple individuals at a 

single location. With the ATI data it is less likely this is the case, because each tree is recorded as a 

single individual, so I use the term ‘abundance’ throughout, although I acknowledge that ‘pseudo-

abundance’ may be more appropriate in other cases. This results in 12,687 cells (9.7%) containing one 

or more records. Abundance ranged from 0 to 939 trees per 1-km grid cell and shows severe zero-

inflation with respect to a Poisson distribution (Chi Squared test: χ2 = 283,637.96, p < 0.001). 

Aggregating to count data allowed ZI models to be fitted to the ‘pseudo-abundance’ data and used to 

both identify and correct for sampling bias (see Chapter 5). 
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Table 6.2 Types of bias correction method applied to the Ancient Tree Inventory (ATI) records when modelling 

the distribution of ancient and veteran trees across England.  

Method Type Description 

Spatial 

filtering 

Systematic sampling 
Randomly sampling one occurrence point per grid cell of 2-km, 

5-km or 10-km resolution. 

Cluster analysis 
Randomly sampling once occurrence point per grouped cluster of 

records within 1-km distance. 

Weighted distances 

Sample 20,000 occurrence points based on weighted probabilities 

of distance to nearest other occurrence location. Occurrences 

with greater distances to other occurrence locations were more 

favoured in the selection process.  

Background 

restriction 

Restricting background 

selection area 

Restricting the area within which pseudo-absences are randomly 

chosen by creating buffers at varying distances (1-km, 2-km, 5-

km and 10-km) around each occurrence location. Pseudo-

absences generated were then confined solely to these areas.   

Bias files 

Recorder location 

Weighted probability surface for the selection of 10,000 pseudo-

absence points based on a kernel density analysis of the locations 

of recorder home bases (centroid locations of all records 

uploaded by each recorder).  

Density of towns and cities 

Weighted probability surface for the selection of 10,000 pseudo-

absence points based on a kernel density analysis of the locations 

of all town and city centroids across England. 

Density of roads (major 

and minor) 

Weighted probability surface for the selection of 10,000 pseudo-

absence points based on a kernel density analysis of all major and 

minor roads across England.  

Altitude 

Weighted probability surface created by rescaling altitude values 

at a 1-km resolution across England for the selection of 10,000 

pseudo-absence points.  

Distance to nearest of 

wood-pasture 

Weighted probability surface for the selection of 10,000 pseudo-

absence points based on a 1-km resolution raster layer of distance 

to the nearest wood-pasture across England.  

Record density (abundance 

of records per 1-km grid 

cell) 

Weighted probability surface for the selection of 10,000 pseudo-

absence points based on record density per 1-km grid cell (i.e. 

abundance of ancient and veteran tree records). 

ZI Models Use of ‘pseudo-abundance’ 

Aggregating presence records to a count of ‘pseudo-abundance’ 

at a resolution of 1-km, and fitting ZI models to identify and 

correct for sampling bias (see Chapter 5). Predictions of 

abundance for each grid cell can be used to create a distribution 

map of ancient and veteran trees across England. 
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6.3.3 Modelling and analysis 

MaxEnt presence-only models were fitted to the ancient and veteran tree occurrence records under each 

of the presence-only bias correction methods (spatial filtering, background manipulation and bias files) 

at a 1-km resolution using ‘ENMeval’ package in R (Muscarella et al., 2014). An additional model with 

no bias correction (i.e. the raw occurrence data) was also fitted for comparison. All models were fitted 

using 10,000 pseudo-absence background points, which were randomly sampled across the study area 

unless explicitly different due to the bias correction method. All other MaxEnt parameters were left at 

their default values (Phillips & Dudík, 2008). Model tuning using combinations of feature classes 

‘Linear (L)’, ‘Linear and Quadratic (LQ)’, ‘Linear, Quadratic and Product (LQP)’ or ‘Linear, Quadratic, 

Product, Threshold and Hinge (LQPTH)’ and regularisation measures of 0.5, 1, 2, 3, 4, and 5 was 

undertaken, and the best fitting model for each bias correction method selected based on the corrected 

Akaike information criterion (AICc) (See Appendix 6.1). All 20 predictors (Table 6.1) were used for 

each model, but for models using bias files based on one or more of the predictors (towns and cities, 

roads, altitude or wood-pasture bias files), models were fitted both with and without those particular 

predictors for comparison. 

 

Model predictions were created for each MaxEnt model and evaluated using 10 fold cross-validation 

(CV), where the data are randomly split into 10 parts, with each part sequentially acting as the ‘test’ 

data during internal model evaluation while the other nine are used to train the model. Initial analysis 

(not shown) was used to evaluate alternative non-random methods of geographically splitting the data 

into training and test data, but these proved less effective than CV (see Appendix 6.1). Models were 

evaluated using AICc and ‘Area Under the Curve’ (AUC) for the training and test data. AICc is a test 

of model fitting and performance based on goodness of fit and its ability to avoid overfitting, and can 

be used to compare between the fit of different models (Akaike, 1973). AUC on the other hand is a 

measure of a model’s predictive power based on the ROC curve and its ability to correctly classify 

observations across all possible thresholds of classification of the probability of presence (Fielding & 

Bell, 1997; Lobo et al., 2008). AUC has been critised as an evaluation metric of distribution modelling 
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(Lobo et al., 2008; Peterson et al., 2008), yet still remains one of the most widely used evaluation 

methods in SDM.  

 

For the fourth bias correction method (ZI models), ZI models were fitted to the pseudo-abundance data. 

ZI models are an extension of GLMs and combine two components: 1) a “zero component” which 

models the probability that an observation is an excess zero, and 2) a “count component”, which 

produces the count estimates (Lambert, 1992; Welsh et al., 1996; Zuur et al., 2009). By having two 

parts, processes generating true zeroes and excess (potentially false) zeroes can be modelled separately 

(Zuur et al., 2009). When used for SDM with species abundance data suffering from sampling bias, the 

zero component can model the probability that an abundance of zero at a particular location is truly zero 

or not, and the count component can then produce an estimate of true abundance at that location (see 

Chapter 5 for more information). Therefore, ZI models have great potential to model geographically 

biased species data, and to allow examination of the sources of bias, if unknown, as well as producing 

predictive SDM maps free of bias. Several studies have used ZI models to examine sampling bias in 

species data (Dwyer et al., 2016; Williams et al., 2016; Tiago et al., 2017a), but none have used this 

method to produce prediction maps from real species data. 

 

ZI models were fitted with either a Poisson or negative binomial (NB) distribution. Both error 

distributions are commonly used for count data and can be applied within a ZI model framework (Zuur 

et al., 2009). A NB distribution allows for more overdispersion in the data than the Poisson distribution 

and can account for some (but often not all) of the excess zeroes in zero-inflated datasets through the 

use of an extra parameter (ϴ) (Fisher, 1941). Therefore, it may be more appropriate to use this 

distribution if there is biological aggregation in the data (Lindén & Mäntyniemi, 2011). In this case, the 

pseudo-absence data show huge overdispersion (variance/ mean = 122.7), so it is likely that a NB 

distribution will be more appropriate, even if there is still zero-inflation. Performance of each model 

was compared using Vuong’s AICc test for non-nested models (Vuong, 1989). 
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All environmental predictors were included in both components (count and zero) of the ZI models in 

order to examine both the potential influence of each predictor on both species’ ecology and sampling 

behaviour (Table 6.1). All numeric predictors were centred and scaled. Several categories from the 

categorical variables soil type, agricultural class and land class were combined to aid model fitting. 

Therefore, there were three agricultural classes (‘Agricultural’, ‘Non-Agricultural’ and ‘Other’), 10 land 

classes (‘Arable’, ’Grassland’, ‘Urban’, ‘Coniferous’, ‘Coastal’, ‘Freshwater’, ‘Saltwater’, ‘Heather/ 

Bog’, ‘Broadleaved’ and ‘Other’), and 10 soil types (‘Luvisol’, ’Cambisol’, ‘Gleysol’, ‘Fluvisol’, 

‘Podzol’, ‘Leptosol’, ‘Arenosol’, ‘Histosol’, ‘Urban’ and ‘Other’). All models were fitted in R using 

package ‘pscl’ (Zeileis et al., 2008). No collinearity was found in the model residuals (Generalised VIF 

(GVIF) <10) and spatial autocorrelation was low, with weak correlations between latitude and longitude 

and model residuals (+/- 0.015). 

 

A ZI model is capable of producing three types of predictions: 1) a prediction of abundance from the 

count component, 2) a prediction of abundance from the whole model, taking into account the processes 

generating the excess zeroes and 3) a probability prediction (known as the ‘zero prediction’) that an 

observation is an excess zero (see Chapter 5 for more information). If all zeroes are true zeroes (i.e. 

there are no false absences), then the most accurate prediction of abundance will be the second of these 

(abundance from the whole model), because the excess zeroes are the result of some underlying 

biological process. However, if a proportion of the excess zeroes result from sampling bias, then the 

count component prediction (hereafter known as the ‘count abundance’ prediction) may be a more 

accurate representation of the true species abundance, and the ‘model abundance’ prediction will partly 

reflect the processes underlying the sampling bias. Therefore, the whole model prediction of abundance 

can provide insight into the sources of sampling bias in the model, while the count prediction provides 

estimates of abundance free from bias. As the level of sampling bias in the ATI is unknown, both types 

of predictions could be informative and therefore were evaluated separately (see Chapter 5 for more 

information). 
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Model cross-validation predictions (both count and whole model predictions of abundance) from the ZI 

models of ancient and veteran tree abundance for each 1-km grid cell were created using 10 fold cross-

validation as described above. Cross-validation predictions were evaluated using Spearman’s Rank 

correlation between predictions and raw abundance, Root Mean Square Log Error (RMSLE) and 

training and test AUC. Following the same methods and reasoning as Chapter 5, training and test AUC 

were calculated for each CV fold by converting the abundance predictions from the Poisson and NB 

models into presence-absence predictions based on a varying threshold of the mean predicted 

abundance across all grid squares. 

 

6.3.4 Field surveys and model verification 

A set of 90 1-km grid cells was selected across England for further independent model verification 

using field surveys. These squares comprised two groups: 1) 50 of the squares that were selected 

completely at random so that there would be no additional sampling bias in the results and 2) 40 squares 

that were selected based on model predictions to ensure that, despite the high proportion of squares 

which contain no trees, there was good representation in the sample of squares with existing tree records 

in the ATI and/or predicted tree presences that could be verified (Fig. 6.1). These 40 squares were 

selected using the ZI NB ‘model abundance’ predictions; I used the highest performing ZI model and 

one of the best fitting models overall to generate these predictions. The ZI NB predictions were firstly 

categorised as being either low or high predicted abundance using the same classification method that 

I used from Chapter 3: predictions above the mean predicted probability that a square contains zero 

records (i.e. the mean zero prediction from the ZI model across each grid square) threshold were 

categorised as high predicted abundance, and all predictions below categorised as low predicted 

abundance. Then each square was categorised into one of four groups: 1) no ATI records and low 

predicted abundance, 2) no ATI records and high predicted abundance, 3) ATI records and low 

predicted abundance and 4) ATI records and high predicted abundance. From each group 10 squares 

were randomly selected, resulting in the 40 ZI model squares. 
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Each of the 90 squares was assessed for accessibility using aerial maps and photography. If a square 

was deemed completely inaccessible (no roads or public rights of way present) then it was discarded 

and another square selected in the same manner (n = 4 out of 90). A survey form was created for each 

square containing details about location, what to record (number and location of ancient and veteran 

trees, date of survey, photographs), how to record any trees found on the form, possible car parking 

spaces for the recorder during the survey, and all roads and public rights of way (Appendix 6.2). 

Recorders were also encouraged where possible to record species or genera of the trees found, although 

this was not included in the analysis in this study due to the relatively low number of individuals of 

each different species recorded (Fig. A6.3.1). This was likely because of the difficulty in identifying 

tree taxa when out of leaf during the late autumn/ winter months, as well as problems classifying any 

trees that were recorded from a distance because of accessibility issues.  

 

The aim of each survey was to cover each 1-km grid as completely and thoroughly as possible, using 

multiple trips if necessary and binoculars to view areas from afar that were not accessible. In order to 

maximise the chances that every ancient and veteran tree in the square was found during the surveys, 

‘areas of interest’ were designated on each survey form to help the recorders avoid wasting their time 

sampling areas with a very low likelihood of ancient trees e.g. industrial parks, new housing estates, 

open fields, etc., determined using aerial photography and Ordnance Survey Open Street Maps. Only 

those areas deemed very unlikely to have any trees (or at least any ancient or veteran trees) were not 

covered under an ‘area of interest’. Therefore, I assume that if all areas of interest had been surveyed 

with 100% coverage, then all ancient and veteran trees had been found. Each survey required the 

recorder to note the time spent surveying the whole square and each individual area of interest, as well 

as estimating the percentage from each area of interest that was covered during the survey. Any parts 

of the whole square that were not surveyed were either the result of not being an area of interest, 

accessibility issues or due to the lack of time of the recorders.  

 

Recorders comprised a range of volunteers from different sources including the Ancient Tree Forum, 

Woodland Trust staff members, Woodland Trust ancient tree recorders, Woodland Trust ancient tree 
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verifiers and other independent volunteer ancient tree enthusiasts. Initially one square was assigned to 

each recorder, according to geographical proximity to their home, although some recorders completed 

several squares if no other recorder lived sufficiently close to that square. The recorders had no prior 

knowledge of any model predictions. Unfortunately, although squares were first assigned from March, 

due to extensive Covid-based travel restrictions at various points throughout 2020, many recorders 

assigned to squares were unable to complete them, and 39 out of 90 squares were completed by 

volunteers (Fig. 6.1). An additional 13 squares were completed by the authors, resulting in a total of 52 

squares of the initial 90 (58 %) being completed (Fig. 6.1). Although the authors had prior knowledge 

of the model predictions, care was taken wherever possible to carry out the surveys impartially. All 

surveys were carried out throughout the months of August to December, travel restrictions permitting, 

during daylight hours.  

 

Three metrics were obtained from the field work results: 1) whether ancient or veteran trees were 

present or absent in each square (presence-absence), 2) raw abundance of ancient and veteran trees 

found in each square and 3) estimated density of ancient and veteran trees per square in relation to 

survey effort of the volunteer (number of ancient and veteran trees / estimated total area of the whole 

grid square surveyed in m2). Presence-absence verification metrics were analysed using AUC in relation 

to each of the model predictions of either habitat suitability (MaxEnt models) or abundance (ZI models). 

For this, the ZI ‘model abundance’ predictions were converted into binary presence-absence form based 

on a varying threshold of the ‘median’ prediction across all 90 grid squares. Although I previously use 

the ‘mean probability’ as my threshold in all other parts of this thesis, I chose to use median here instead 

as several of the abundance predictions were extremely high and would therefore skew the mean 

resulting in the majority of predictions being classed as absences. The raw abundance and density field 

work metrics were analysed using Pearson’s and Spearman’s correlation coefficients: both coefficients 

were used in order to examine the effect of two potential outliers. AUC was selected based on the 

necessity to have a metric that could compare predictions of abundance and habitat suitability: it is 

much more feasible to convert abundance to presence-absence rather than to do the opposite. This 

metric is not perfect, and is likely to result in a loss of information from the ZI models. Using the 
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correlations provides an alternative, albeit crude, method of direct assessment of the predictions against 

field verification results. 

 

In order to calibrate the models and provide total estimates of ancient and veteran tree numbers across 

England, a linear regression model was fitted for each set of model predictions for the 52 surveyed grid 

squares in relation to either raw tree abundance or tree density from the field surveys. Each of these 

linear regression models was then used to calibrate each model’s predictions for all of the grid squares 

across England in order to provide predictions of abundance or tree density in each grid square. These 

estimates were then summed across all grid squares to predict the total number of ancient and veteran 

trees across England. 
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Fig. 6.1 Centroid locations of each of the 90 1-km grid squares selected for field verification. 50 squares (purple) 

were selected at random across England and 40 squares (green) were selected based on the model predictions 

from the zero-inflated (ZI) models. Squares that were actually surveyed for the field verification are indicated as 

circles, whereas those that were not able to be surveyed due to travel restrictions are indicated as squares. 

 

6.4 Results 

6.4.1 Model fitting and performance using internal model validation 

Internal model validation suggests that the highest performing bias correction method based on AICc 

was the ‘cluster analysis’ spatial filtering technique, followed by systematic sampling at a 5-km and 10-
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km resolution (Fig. 6.2a). All other spatial filtering methods also performed better than the model with 

no bias correction. Similarly, ZI models performed well compared to other methods, particularly when 

using a NB distribution based on internal model evaluation. All other bias correction methods showed 

little difference compared to a model with no bias correction. The most effective bias file was ‘record 

density’, followed by altitude and wood-pasture (Fig. 6.2a), with the least effective being towns and 

cities. Nevertheless the differences among all bias files were relatively small. There was also little 

difference between the background restriction methods, all of which performed relatively poorly.  

 

When tested against the data used to build the models (cross-validation predictions) using AUC, there 

appeared to be little improvement in model predictive power when using any bias correction method in 

relation to the model with no bias correction (Fig. 6.2b & c). Nevertheless, models fitted with bias files 

provided the best predictions overall based on both training and test AUC, particularly those using 

‘altitude’, ‘wood-pasture’ and ‘roads’. Background restriction using a 10-km buffer was the best 

background manipulation method and weighted distance was the best spatial filtering method. ZI 

models performed relatively poorly based on predictive power compared to all other models, although 

as mentioned in the methods, this is likely owing to a loss of information when converting abundance 

to presence-absence to calculate AUC.  

 

As suspected, the ZI NB model provided a better fit to the data than the ZI Poisson model (Vuong AICc 

test: Z = -22.72, p < 0.001; NB AICc = 128783.0, d.f. =80; Poisson AICc = 290932.5, d.f. = 81). 

Evaluation of model predictions using internal model validation showed support for the NB model 

having overall greater predictive power compared to the Poisson model (Fig. 6.2b & c). Additionally, 

as well as the NB model outperforming the Poisson model, the ‘model abundance’ predictions showed 

stronger correlations to the raw data (Poisson rs = 0.257 and NB rs = 0.277), than the ‘count abundance’ 

predictions (Poisson rs = 0.203 and NB rs = 0.226), as well as lower error margins (whole model 

prediction RMSLE: Poisson – 0.566, NB – 0.583; count prediction RMSLE: Poisson – 1.492, NB – 

0.706). This is likely because the excess zeroes, as well as being the result of sampling bias, are 

sometimes caused by ecological processes (e.g. biological aggregation), so excluding the zero 
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component completely from the model predictions (as in the count abundance prediction), removes 

important biological information from the abundance prediction. 

 

Model coefficients for the ZI NB model (Table 6.3) provide insight into predictors influencing both the 

count component and excess zeroes. The count prediction of the abundance of ancient and veteran trees 

was positively associated with higher altitudes, being closer to Tudor deer parks, commons (land owned 

collectively by many people with traditional shared grazing or harvesting rights) and National Trust 

sites, being further away from towns and cities, having a greater coverage of forest and wood-pasture 

but less coverage of orchard, and being associated with fewer minor roads (Table 6.3). The count 

prediction of abundance also differed significantly across agricultural class, countryside type, land class 

and soil type, and was most likely to be highest on non-agricultural, freshwater or broadleaved land 

classes and fluvisol soil type (Table 6.3).  

 

Many predictors had an influence on the levels of zero-inflation, indicating a potential influence on 

sampling bias. The likelihood an observation is an excess zero (and is potentially an un-sampled square) 

increased with increasing coverage of minor roads, wood-pasture, orchard, ancient woodland and forest. 

Squares that have an observed abundance value of zero were also more likely to be excess (potentially 

‘false’) zeroes if they were further from watercourses, historic forests, moated sites and nearer to 

commons, National Trust land, medieval and Tudor deer parks and at lower altitudes, as well as on 

different land types, soil classes and countryside types (Table 6.3). Interestingly, moated sites, historic 

forests, medieval deer parks, ancient woodland and watercourses had a significant influence only in the 

zero-component, suggesting they are stronger influences of sampling than of the true underlying 

ecology determining the tree distribution. 
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Fig. 6.2a Corrected Akaike’s Information Criterion (AICc), 6.2b  Training Area Under the Curve (AUC) and 6.2c 

Testing Area Under the Curve (AUC) based on internal model validation for each species distribution model of 

ancient and veteran tree distribution across England using four main types of bias correction method (spatial 

filtering, background restriction, bias files and ZI models). Spatial filtering methods include Systematic Sampling 

(SS) at resolutions of 2-km, 5-km and 10-km, cluster analysis and weighted distance method. Background 

restriction involved the selection of ‘pseudo-absence’ points only from buffers of varying distance (1-km, 2-km, 

5-km and 10-km) around each occurrence point. Bias files involved weighting the selection of ‘pseudo-absence’ 

points according to a proxy for the bias. Where the chosen bias source is also a model predictor, models were 

fitted with and without the predictor; models missing the predictor are indicated with ‘-2’. Finally two zero-

inflated (ZI) models were fitted using either a Poisson or a negative binomial (NB) distribution. Predictions of 

both ‘count abundance’ (from the count component) and ‘model abundance’ (from the whole model) are shown. 

Error bars represent ± variance, although in most cases are too small to be visible at this scale. 

a. 

b. c. 
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Table 6.3 Model coefficients (± standard error), Z value and p value of significance are shown for the negative 

binomial ZI model for both the count and zero components.  

Model predictor 

Count component Zero component 

Coefficient (±SE) Z value Coefficient (±SE) Z value 

Intercept -3.276 (0.670) -4.893*** -3.704 (1.330) -2.785** 

Agricultural class - Agricultural  0.601 (0.279)  0.031* -0.894 (0.359) -2.490* 

Agricultural class – Non-Agricultural  0.703 (0.283)  0.013* -0.338 (0.368) -0.918 

Altitude  0.074 (0.033)  0.026*  0.147 (0.039)  3.809*** 

Type of Countryside - Ancient  0.036 (0.045)  0.431 -0.669 (0.060) -11.20*** 

Type of Countryside - Highland -0.328 (0.067) -4.926*** -0.610 (0.091) -6.672*** 

Type of Countryside - Cornwall  0.088 (0.135)  0.514  1.413 (0.141)  10.02*** 

Landclass - Broadleaved  2.349 (0.597)  3.937***  0.416 (1.031)  0.403 

Landclass – Heather/Bog  1.529 (0.610)  2.509*  1.031 (1.031)  0.999 

Landclass – Saltwater  2.072 (0.753)  2.752**  1.664 (1.137)  1.465 

Landclass – Freshwater  2.783 (0.637)  4.368***  0.639 (1.066)  0.600 

Landclass – Coastal  1.268 (0.684)  1.855  1.654 (1.090)  1.517 

Landclass – Coniferous  2.100 (0.604)  3.477***  1.963 (1.031)  1.904 

Landclass – Urban  2.322 (0.596)  3.893***  1.109 (1.024)  1.083 

Landclass – Arable  1.991 (0.594)  3.355***  0.802 (1.019)  0.787 

Landclass - Grassland  2.152 (0.593)  3.627***  0.625 (1.019)  0.614 

Soil type - Luvisol  0.455 (0.123)  3.699***  0.692 (0.213)  3.246** 

Soil type - Cambisol  0.227 (0.122)  1.857  0.702 (0.212)  3.303*** 

Soil type - Gleysol  0.310 (0.124)  2.498*  0.912 (0.215)  4.241*** 

Soil type - Fluvisol  0.574 (0.158)  3.638***  1.242 (0.239)  5.207*** 

Soil type - Podzol  0.360 (0.147)  2.449*  0.852 (0.253)  3.364*** 

Soil type - Leptosol  0.406 (0.137)  2.953**  0.434 (0.228)  1.905 

Soil type - Arenosol  0.022 (0.157)  0.139  0.681 (0.262)  2.601** 

Soil type - Histosol -0.573 (0.295) -1.943  1.366 (0.350)  3.900*** 

Soil type - Urban  0.266 (0.140)  1.894  1.200 (0.249)  4.812*** 

Tudor Deer Park -0.130 (0.029) -4.494***  0.500 (0.036)  13.92*** 

Moated Site -0.050 (0.034) -1.477 -0.321 (0.037) -8.639*** 

Historic Forest  0.003 (0.022)  0.146 -0.252 (0.029) -8.632*** 

Medieval Deer Park -0.041 (0.021) -1.955  0.080 (0.028)  2.874** 

National Trust -0.380 (0.021) -17.71***  0.275 (0.028)  9.644*** 

Cities  0.120 (0.025)  4.856***  0.012 (0.032)  0.383 

Towns  0.095 (0.028)  3.391*** -0.016 (0.034) -0.486 

Commons -0.096 (0.017) -5.545***  0.079 (0.024)  3.265** 

Major Roads  0.013 (0.023)  0.566 -0.050 (0.028) -1.755 

Cover of forest  0.226 (0.028)  8.177*** -0.312 (0.039) -8.057*** 

Cover of ancient woodland -0.009 (0.018) -0.478 -0.475 (0.071) -6.696*** 

Cover of orchard -0.020 (0.010) -1.990* -0.778 (0.097) -8.014*** 

Cover of wood-pastures  0.374 (0.012)  31.93*** -18.99 (3.498) -5.431*** 

Watercourse  0.030 (0.016)  1.883 -0.293 (0.024) -12.08*** 

Minor Roads -0.117 (0.026) -4.473*** -0.653 (0.050) -13.13*** 

Log(theta) -2.105 (0.019) -113.1***   
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6.4.2 Model validation using independent random field surveys 

New independent surveys of 52 1-km grid squares resulted in a total of 459 ancient and veteran trees 

being recorded (94 ancient and 365 veteran), 285 of which had not previously been recorded on the 

ATI. Before the surveys only 15 out of 52 squares had records of ancient or veteran trees, but this 

number was increased to 38 out of 52 following the surveys. Seven squares received 100% survey 

coverage, and 32 squares (62%) had at least 50% of their area surveyed (Fig. 6.3). Accessibility was an 

issue for some squares, although only three squares received a survey coverage of < 20%.  

 

 

Fig. 6.3 Histogram of the estimated percentage coverage of each grid square during the field surveys. Percentage 

coverage was estimated by totalling the area covered from each ‘area of interest’ and any other areas that the 

recorders were able to survey.  

 

Many of the bias corrected models produced predictions that strongly correlated with the field estimates 

of ancient and veteran tree abundance or tree density, and bias correction substantially improved the 

predictive power of the distribution models compared to the uncorrected model (Table 6.4). However, 

the evaluation of the performance of each model when predicting raw abundance or density of ancient 

and veteran trees depended heavily on whether the raw values (Pearson correlation coefficients) or 

ranked values (Spearman correlation coefficients) were used. This discrepancy was caused by two 

outlier squares with extremely high predictions of abundance that were likely inflating the accuracy of 

the raw predictive power of the models when evaluated with Pearson’s correlation (Fig. A6.3.2). 
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Field estimates of both raw tree abundance and density based on the Spearman ranked correlations 

provided good support for systematic sampling, and showed significant, strong correlations with model 

predictions, particularly at a 2-km and 5-km resolution (Table 6.4). The only other methods that 

increased model predictive power relative to the uncorrected model were the cluster analysis spatial 

filtering technique, and the wood-pasture bias file (Table 6.4). When evaluated using estimates of 

survey effort (i.e. against tree density) rather than with the raw abundance of trees per grid square, all 

these techniques produced predictions with stronger correlations to the field estimates, and the best bias 

correction was still systematic sampling at either a 2 or 5-km resolution, although using the wood-

pasture habitat as a bias file also produced good results (Table 6.4). 

 

As with the ZI models, the most important predictor of ancient and veteran tree habitat suitability across 

all MaxEnt models was the cover of each square by wood-pasture, which was especially true for the 

uncorrected model (Table 6.5) where it accounted for over 66% of variable importance. Other important 

predictors in the uncorrected model included National Trust land, cover of forest or ancient woodland 

and soil type (Table 6.5). When using the optimum sampling bias correction method (systematic 

sampling), wood-pasture variable importance dropped significantly by almost 50%, although it was still 

the most important variable. Other big changes included an increase in permutation importance of the 

type of countryside and the distance to a Tudor deer park, both by 11% (Table 6.5). The most important 

predictors of ancient and veteran trees from the systematic sampling model were therefore similar to 

the ZI models, and included wood-pasture cover, cover of forest, distance to a Tudor deer park, type of 

countryside and also the presence of minor roads.  
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Table 6.4 Independent field evaluation of model predictions. Model predictions were evaluated against a) field 

verification estimates of the presence-absence (P-A) of ancient and veteran trees per square using Area Under 

the Curve (AUC), b) field estimates of raw tree abundance (total number of trees recorded per square) using 

Pearson’s (r) and Spearman’s (rs) correlation coefficient tests and c) field estimates of tree density (number of 

trees in relation to estimated percentage cover of each square) also using Pearson’s and Spearman’s correlation 

coefficient tests. See Methods for a detailed description of each bias correction method. Values in bold represent 

those that are significant. Where indicated, significance levels are: p < 0.05: *, p < 0.01: **, p < 0.001: **. For 

each model the total predicted abundance of ancient and veteran trees (T) across England was calculated from a 

linear regression model between the model predictions and field verification data (both raw tree abundance and 

tree density) for the 52 surveyed squares. 
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Table 6.5 Permutation importance of each of the Maximum Entropy distribution model predictors shown for the 

model with no bias correction compared to the overall best performing bias corrected model using systematic 

sampling (SS) at a 2-km resolution. The percentage change in permutation importance between the two models is 

also shown, with positive values representing variables that become more important when bias is corrected for 

and negative values less important.  

Predictor 
Permutation Importance 

No Correction SS (2-km) % Change 

Agricultural class 0.209 1.230 1.021 

Altitude 0.528 1.866 1.338 

Type of Countryside 0.193 11.86 11.667 

Land class 1.734 1.929 0.195 

Soil type 5.473 7.526 2.053 

Tudor Deer Park 2.196 13.47 11.274 

Moated Site 0.000 1.249 1.249 

Historic Forest 0.010 3.893 3.883 

Medieval Deer Park 0.703 0.143 -0.56 

National Trust 7.947 6.560 -1.387 

Cities 0.297 0.927 0.63 

Towns 0.000 0.640 0.64 

Commons 0.112 0.595 0.483 

Major Roads 0.007 0.506 0.499 

Cover of forest 6.997 14.88 7.883 

Cover of ancient woodland 5.672 1.856 -3.816 

Cover of orchard 0.010 0.246 0.236 

Cover of wood-pastures 66.20 18.83 -47.37 

Watercourse 0.801 3.556 2.755 

Minor Roads 0.909 8.247 7.338 

 

When considering the raw Pearson correlation coefficients, the ZI models perform much better in 

comparison with the uncorrected model with very strong correlations between field estimates of both 

abundance and density and model predictions (Table 6.4). This is especially true for the ZI NB model, 

and based purely on this evaluation metric, the ZI NB appeared to be the best method of all to deal with 

sampling bias. However, because of the outlier grid squares (Fig. A6.3.2), Spearman correlations are 

likely a better measure of performance, but it is interesting to see the high performance of the ZI models 

at correctly predicting squares with very high abundances of trees (Fig. A6.3.2). 
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Prediction maps of ancient and veteran tree distributions from models using bias correction show 

substantial differences compared to the uncorrected model (Fig. 6.4, see Fig. A6.3.3 and A6.3.4 for 

maps from all models) with much more variation in habitat suitability across England when using 

systematic sampling (Fig. 6.4). This model’s prediction map suggests there are more areas with high 

suitability, especially in the south-east of England, the Lake District and in Herefordshire. In contrast, 

the bias file models using record-density or wood-pasture habitat suggests there are relatively few areas 

of high suitability, many of which are actually wood-pastures (Fig. 6.4). Prediction maps of abundance 

from the ZI models are shown in Figure 6.5 and show some areas of high suitability, particularly around 

London and the New Forest National Park in the south. Maps of the zero predictions from the ZI models 

provide interesting insight into areas with high numbers of excess zeroes, where trees are likely to have 

been particularly under-recorded. These maps suggest under-recording in much of Cornwall and Devon, 

Norfolk and other counties in the East of England and in parts of Northumberland.  

 

Calibrated model predictions of the total number of ancient and veteran trees across England using the 

field data are very similar across all models, with around 2 million trees (1.7 – 2.1 million) predicted 

based on the estimated tree density (which accounts for estimated survey effort) from the field validation 

from all models (Table 6.4). This prediction ranges from 1,725,977 when using the spatial filtering 

technique, cluster analysis, to 2,088,979 when using the wood-pasture bias file (thus the range across 

all models is 363,002 trees). Predictions of the total number based on the raw abundance with no 

correction for survey effort are obviously lower, and range from 826,052 with the wood-pasture bias 

file to 1,120,545 (towns and cities bias file) (Table 6.4). 
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Fig. 6.4 Predicted distribution maps of habitat suitability for ancient and veteran trees across England from a) a 

model with no bias correction, and some of the highest performing Maximum Entropy bias correction methods: 

b, and c) systematic sampling using grids of 2km and 5km resolution, d) cluster analysis, e) record density bias 

file, and f) wood-pasture bias file. Habitat suitability ranges from low suitability (blue) to high suitability (red). 
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Fig. 6.5 Predicted maps of the abundance of ancient and veteran trees across England from the Poisson and 

negative binomial (NB) zero-inflated (ZI) models. Three types of predictions are shown 1) count abundance 

prediction only from the count component of the ZI model, 2) whole model abundance prediction, from the whole 

of the ZI model and 3) the excess zero prediction, which represents the probability that an observation is likely to 

be an excess zero (i.e. a ‘false absence’). Red areas in the predicted abundance maps represent areas of high 

abundance, whereas in the zero probability maps they represent places where it is likely there is under sampling. 
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6.5 Discussion 

In this chapter, I have presented a rare empirical test of the ability of models fitted using a large citizen-

science species database to provide an unbiased prediction of the distribution of ancient and veteran 

trees across a large geographic area. My results using robust independent field verification methods 

show that there are indeed many undiscovered ancient and veteran trees across England, and that only 

a small proportion of the ancient and veteran tree population has been mapped. By evaluating and 

selecting the best bias correction methods to apply to my distribution models, we can produce accurate 

predictive maps of the locations of these previously unknown trees, to inform future targeted surveying 

and conservation plans for these valuable components of terrestrial biodiversity. 

  

It has long been suspected that there are many unrecorded ancient and veteran trees across England with 

great ecological importance in terms of their dead-wood habitats and associations with saproxylic 

species (Read, 2000; Butler et al., 2002; Fay, 2004). This study provides strong support for the need to 

find and record these trees. The field surveys covered a very small percentage of the area of England 

(0.04%), yet they increased the number of known ancient and veteran trees by a total of 285 records, 

more than a 100% increase on the number of trees recorded in the ATI in these locations before the 

surveys. From these surveys alone, there are clear large gaps in our knowledge of the current 

distributions of these trees, suggesting that many of them may remain unaccounted for in current 

strategies for protection, ecological monitoring and management. This is true despite the fact that in the 

UK such trees are much better recorded at the level of the individual than they are in most other parts 

of the world. 

 

The total number of ancient and veteran trees across England predicted by all the models based on the 

field estimates of abundance also emphasises the very high number of trees that are still unrecorded. 

Based purely on the raw abundance of trees recorded during the surveys, estimates totalled around one 

million trees, more than five times the number of ancient and other noteworthy trees currently in the 

ATI. However, when estimates of sampling effort for each square were factored in, to account for the 

parts of each square that were inaccessible in the field survey, the estimated total based on tree density 
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is around two million trees for several models. Although this is welcome news, as it shows that much 

more dead and decaying wood habitat is available across the country than was previously known, it is 

also worrying that so many valuable trees are unrecognised or recorded as ancient or veteran and may 

lack conservation measures or protection. This is the first study to provide quantitative nationwide 

estimates of the true number of ancient and veteran trees; my previous research in Chapter 3 was focused 

purely on wood-pastures in England, which cover an area of ~2,780 km2: it predicted around 100,000 

such trees just in this habitat (see Chapter 3). Other estimates have guessed figures close to nine million 

ancient or veteran trees across the whole UK (Fay, 2004), so our estimates do not seem wildly inflated. 

Nevertheless, my results suggest that there is much work to do to find these trees and add them to the 

ATI. 

 

Field validation with independent, unbiased sampling is the gold standard when evaluating the 

performance of distribution models and predictive maps, and yet it is rarely used (Getz et al., 2018). 

Instead, model performance is typically assessed using methods of internal validation: often retaining a 

portion of the data to test the models, or using a cross-validation approach, are considered sufficient to 

validate the models and make accurate predictions (Fielding & Bell, 1997) with AUC the most common 

evaluation statistic used for this. However, measuring model accuracy using AUC and cross-validation 

has been criticized, because it is likely to inflate perceptions of model performance owing to spatial 

autocorrelation in the species data (Lobo et al., 2008; Peterson et al., 2008). Additionally, any data 

retained to test the model from a biased species dataset will suffer the same bias as the data used to fit 

the model, thereby giving false confidence that significant predictors of species occurrence are 

predicting the underlying ecology, when they are actually predictors of sampling effort. Therefore, in 

order to evaluate models fully, and to assess the utility of different sampling bias correction methods, 

it is important to use unbiased field data where possible. In this study, field validation provided support 

for the need for bias correction when modelling ancient and veteran tree occurrences, and was able to 

increase my confidence in the model predictions. As a result, my maps can be relied upon to be 

biological informative and also robust against the obvious sampling bias in the ATI, something which 

relatively few studies can attest to. Alongside fine-tuning modelling procedures and understanding 
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ecological systems, the feasibility of collecting additional data for model validation should always be 

an important consideration of any ecological study. 

 

Spatial filtering, especially the systematic sampling technique, proved to be one of the most effective 

bias correction methods overall based on both internal validation using AICc and field validation. This 

method is known to be particularly useful for wide ranging, heavily sampled species and has been shown 

to reduce both type I and type II errors (Kramer-Schadt et al., 2013). However, it is often limited by 

sample size, because reducing the number of occurrence records can result in poor model predictions. 

Furthermore, the best choice of spatial filter may differ depending on environment; for example Boria 

et al. (2014) suggest that mountain regions need smaller spatial filters than other areas. There is also the 

risk of reducing clustering in areas which truly represent high ecological value for a species (Fourcade 

et al., 2014). Nevertheless, the large number of records in the ATI, as well as the large range of the trees 

across the UK, means spatial filtering is likely to be highly effective for this database. A similar study 

using spatial filtering with large species databases also reported good results when comparing to 

independent field data (Law et al., 2017), and concluded that their models were suitable to be applied 

to practical management scenarios. I believe that these similarly high-performing, independently 

validated models are also suitable for management applications, and could provide valuable insight into 

the areas most suitable for immediate practical ancient and veteran tree conservation measures. 

 

It is notable that field validation often ranked models differently compared to internal model validation; 

based purely on internal model evaluation, I would have inferred that the best bias correction method 

was the cluster analysis spatial filtering technique, followed by the ZI models, both of which performed 

less well when evaluated against the field data using AUC or Spearman rank correlations. The 

performance of the bias files also differed greatly between internal and field validation, although wood-

pasture habitat performed well using both methods. Wood-pastures have strong connections to ancient 

and veteran trees, and are the most studied of the habitats in which these organisms are found (Rackham, 

1994; Farjon, 2017; Hartel et al., 2018). Additionally, many wood-pastures in the UK form part or the 

whole of a site of interest from a tourism or aesthetic point of view, for example National Trust sites or 
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public parkland (Rackham, 1994; Lonsdale, 2013). Therefore, it is no surprise that wood-pasture spatial 

distributions have strong influences on recorded ancient and veteran tree distributions, via effects on 

both ecology and sampling effort: both the count prediction of abundance and the probability of a grid 

square being sampled from the ZI models were predicted to be higher in grid squares with greater 

coverage of wood-pasture. In the bias corrected MaxEnt models, wood-pasture importance as a 

predictor did decrease significantly compared to the uncorrected model, suggesting it has a large 

influence on sampling bias in the ATI, yet it still remained the most important predictor overall. This 

explains why in all the predicted distribution maps, even when sampling bias was corrected for, there 

are many grid squares containing wood-pastures that have very high suitability for ancient and veteran 

trees.  

 

Background manipulation methods also performed differently between internal model and field 

validation. They were relatively good at predicting raw tree abundance found during the field surveys, 

especially in squares with high numbers of trees, but not so good at predicting tree density (accounting 

for survey effort estimates), or producing models that fitted well to the original data.  Although there 

has been some success with this method in other studies (Phillips et al., 2009), it has previously been 

considered to perform worse than other methods (Fourcade et al., 2014), possibly because background 

points were restricted to too narrow an area, reducing model accuracy (Thuiller et al., 2004). 

Understanding the optimum background area size, and considering both the species range and the extent 

of sample bias, are likely to be case specific and should be considered before using this method for bias 

correction.  

 

The performance of ZI models varied the most across validation methods; internal model evaluation 

showed that ZI models provided a very good fit to the raw data, but low predictive power, whereas field 

validation suggested that the models are very suited to predicting raw abundance or density, especially 

of outlier observations where abundance was high, but poor at predicting presence-absence, and ranked 

abundance and density. Nevertheless, one benefit of the use of ZI models in comparison to all the other 

methods is that it is the only one to provide some independent insight into potential causes of bias in 
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the original data by examining potential causes of excess zeroes (see Chapter 5). Many predictors in 

my study had some influence on the proportion of excess zeroes in the ATI data, the majority of which 

are likely to influence both the ecology of the trees and the likelihood of them being sampled, including 

altitude, type of land or soil, distance to roads and watercourses, historic land use and cover of forests, 

woods and wood-pasture. Nevertheless, it is likely that predictors which also influenced the count 

component of the ZI model, for example altitude, have more influence on the ecology, whereas those 

influencing only the zero component, such as distance from a watercourse, are more likely reliable 

indicators of sampling effort. The high number of predictors potentially influencing both the tree 

ecology and sampling processes is likely the reason why the whole model predictions were better overall 

than the count predictions: a proportion of the excess zeroes in the ZI zero component are probably 

biological zeroes, rather than being caused by undersampling. Removing the influences of these 

processes from the model predictions (which is what the count abundance predictions do) would 

therefore remove meaningful biological information from the overall prediction maps. 

  

A major benefit of the use of zero-inflated models is that they can be used to generate distribution maps 

of the predicted excess zeros, providing insight into areas which may have been under or oversampled, 

and thereby helping those planning future sampling and conservation efforts. In my study, Cornwall 

and Devon counties were, for example, predicted to have high numbers of excess zeroes and are 

therefore good candidates for extra targeted surveys. Although ZI models have been used to fit 

distribution models before (Bouyer et al., 2015; Lyashevska et al., 2016), this is the first time that they 

have been successfully applied to identify causes of, and to correct for, sampling bias, and my results 

highlight their potential advantages over other more conventional methods of sampling bias correction. 

I believe ZI models have strong potential in the fields of ecological modelling and practical 

conservation. 

 

6.6 Conclusion 

My results first and foremost provide a robust prediction of ancient and veteran tree distributions across 

England which can be used for conservation planning and decision making. Until now, there has been 
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no real measure of the landscape-scale value of this habitat and how it interconnects. My work shows 

the overall collective value of this irreplaceable natural resource and should frame the debate for further 

serious discussion about what level of effort will be required to map, monitor and manage ancient and 

veteran trees in the future. In addition, despite the difficulties presented by a global pandemic, my study 

demonstrates how citizen scientists can be mobilised to conduct independent field validation of models 

built from large publicly-accessible databases, increasing confidence in, and the utility of, model 

predictions. My results also underline the impact of sampling bias in citizen-derived datasets on the 

effectiveness of ecological models in conservation. Correcting for sampling bias is essential for 

preventing incorrect inferences from distribution models influencing practical conservation decisions. 
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Chapter 7: Assessing the use of landscape metrics in Species Distribution 

Modelling: a case study using the UK Ancient Tree Inventory (ATI). 

 

 

7.1 Abstract 

Understanding how landscape structure and composition influence species distributions and 

biodiversity is key to conservation and land management, especially as human pressure on the landscape 

increases. Landscape metrics mathematically quantify aspects of the landscape structure, and their use 

within Species Distribution Modelling (SDM) can improve model performance and predictions by 

adding relevant fine-scale ecological information about the species or community in question. In this 

chapter, I quantify the landscape across England using a unique, large-scale dataset of all tree canopies, 

the National Tree Map (NTM). By calculating 16 landscape metrics that describe properties of the 

canopies (size, shape etc.) and their connectivity across the landscape, the landscape structure of 

England was defined. Maximum Entropy (MaxEnt) models of ancient and veteran tree distributions 

using different subsets of the landscape metrics as predictors were compared to those fitted using only 

environmental predictors (see Chapter 6), as well as models fitted using combinations of the two. 

Models were evaluated using the independent field data from Chapter 6 and total estimates of ancient 

and veteran tree numbers across England calculated. Quantifying the landscape structure based on the 

NTM revealed key fine-scale insights into types of landscapes more likely to have ancient and veteran 

trees including those with a large number of scattered and irregular tree canopies. However, landscape 

metrics did not improve SDM performance or predictions of ancient and veteran tree distributions, 

probably because of the coarser scale of fitting the distribution models compared to the fine-scale 

information captured by the metrics. Predictions of the total number of ancient and veteran trees across 

England were similar to those of Chapter 6, and again suggest there are around 2 million ancient and 

veteran trees nationwide, reinforcing the urgent need to find and record these valuable trees for their 

conservation and protection. 
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7.2 Introduction 

Landscape ecology relates to the spatial interaction of organisms and ecological processes with 

landscape patterns and structures (Turner, 1989; Haines-Young & Chopping, 1996; Kupfer, 2012). Our 

landscape has experienced intensive disruption from land use change, fragmentation, pollution and 

urbanisation, which have impacted many species at all spatial scales (Cozzi et al., 2008; Boyd et al., 

2008; Powers & Jetz, 2019). Fragmentation of habitats is of particular concern for conservation, and 

the reduction of both habitat quality and connectivity has had great influence on species decline and 

endangerment (Fahrig, 2003; Saltre et al., 2015). Conservation and land management relies on 

optimising the landscape to benefit and enhance the ecological processes of the target species or 

ecosystem, so a good understanding of landscape structure, including the composition and configuration 

of different land types, is essential for protecting biodiversity and ecosystem functions (Pino et al., 

2000; Cozzi et al., 2008; Banks‐Leite et al., 2011). 

 

The term ‘landscape’ is highly influenced by human perception, and is often defined in terms of the 

scale and nature of interactions between humans and the environment (Troll, 1968; Wiens & Milne, 

1989). Humans have been highly influential in shaping the past and present landscape structure, with 

human-related processes such as fire suppression, settlement, land-use change and urbanisation all 

contributing to changes in landscape structure and consequently shaping local ecology and biodiversity 

(Baker, 1992; Aubad et al., 2010; Threlfall et al., 2012). The decline of ancient and other trees with 

veteran characteristics around the world is linked to strong anthropogenic pressure on the landscape 

from urbanisation, agricultural expansion and development (Laurance et al., 2000; ATF, 2005; 2011; 

Lonsdale, 2013). Furthermore, it has been suggested that the original determinants of the distribution 

of these trees might also be more linked to human activities in the landscape than natural ecological 

processes (Rackham, 1994; Barnes et al., 2017). Historical tree management practices such as coppicing 

or pollarding have increased the longevity of many trees, so spatial geographic variation in these 

techniques can partially explain the current distribution of ancient and veteran trees (Read, 2000; Barnes 

et al., 2017). Trees that were deliberately planted by humans as parts of avenues, boundaries, landscaped 

gardens and in other prominent positions make up a significant proportion of the current known ancient 
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and veteran tree records (Lonsdale, 2013, Farjon, 2017; Nolan et al., 2020). Analysis of the landscape 

structure (heavily linked to anthropogenic processes) in relation to ancient and veteran trees could 

provide insight into areas more likely to contain them and the potential true distribution of ancient and 

veteran trees across the landscape.  

 

Quantification of landscape structure often involves the use of landscape metrics, mathematical 

descriptions of aspects of the landscape at different scales and complexities (Li & Wu, 2004). Metrics 

can be calculated for the whole landscape, for a series of land or habitat classes  or for each habitat 

patch (McGarigal, 1995). The development of metrics to measure landscape ecology accelerated during 

the late 1980s, and since then, hundreds of metrics have been used to describe all aspects of landscape 

structure. Many of these are based on O’Neil (1988), who proposed three general measures of landscape 

structure: dominance (a measure of diversity), contagion (habitat aggregation) and shape (habitat shape 

complexity). Additions to these measures include patch size, perimeter, patch type proportion, patch 

perimeter fractal dimension, simple edge contrast and patch type adjacency (Turner, 1989), as well as 

proximity, patch elongation, linearity, core area and edge area (Gustafson and Parker, 1992), although 

many of these are thought to be highly correlated and redundant (Baskent and Jordan, 1995; Haines-

Young & Chopping, 1996). Landscape metrics have been widely used in ecological research, for 

example to predict the spread of invasive species (Lustig et al., 2017), to investigate land use change 

and fragmentation within a Mediterranean ecosystem (Lamine et al., 2018) and to plan conservation of 

lowland English forests under fragmentation (Baalman & Kirby, 1995). 

 

Describing the landscape structure also requires the identification of particular types of land or habitat 

that can be used for quantitative calculation of landscape metrics. These could include urban areas 

(Connors et al., 2013), agricultural land classes (Griffith et al., 2000) or waterbodies (Connors et al., 

2013; Yuan et al., 2014), but are most commonly related to vegetation, for example forest patches 

(Aubad et al., 2010) or specific plant types (Cristofoli et al., 2010). The presence of trees, regardless of 

their age, within a landscape has a dramatic influence both on abiotic factors defining the landscape 

including soil erosion, flooding, temperature, rainfall and soil characteristics (Vailshery et al., 2013; 
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Pardon et al., 2017; Song et al., 2019; Turner‐Skoff & Cavender, 2019), and on individual organisms, 

populations and ecosystems via the provision of habitats, food sources and connectivity (Rasey, 2004; 

Manning et al., 2006; Rossi et al., 2016). The distribution of trees is also highly linked to the distribution 

of humans (Rackham, 1994; Polyakov et al., 2008; Cloke and Jones, 2020); trees are integral in many 

parts of our landscape and play a variety of roles in urban, sub-urban, agricultural and rural landscapes 

(Barnes et al., 2017; Cloke and Jones, 2020). Different geographic locations have significantly different 

compositions and configuration of trees (Barnes et al., 2017), and although they represent only one type 

of habitat, they could be ideal feature to use for landscape structure analysis.  

 

England has an innovative resource to assist with the quantification of landscape structure using trees 

across a large, national scale: the National Tree MapTM (NTM) (also called the National Canopy Map) 

produced by the mapping company, Bluesky International Limited. The NTM is a digitised vector map 

of all canopy higher than 3 m across England and Wales, constructed from stereo aerial photography 

and digital elevation models. All trees are represented as single polygons that show location, height and 

canopy extent (for more information see Chapter 3). The NTM is an accurate and useful tool that has 

been used to model urban vegetation (Casalegno et al., 2017), human health in response to allergenic 

pollen (McInnes et al., 2017), mental health in relation to urban greeness (Sarkar et al., 2018) and carbon 

dioxide emissions in central London (Björkegren & Grimmond, 2018). Using the NTM, of which 

ancient and veteran trees are a small subset, habitat patches can be defined with a high level of accuracy 

for landscape quantification. Theoretically the NTM should be able to highlight detailed variation in 

landscape structure to predict the true distribution of ancient and veteran trees in England. 

 

The configuration and spatial connectedness of trees in the NTM, as well as the shape and size of each 

canopy polygon, could provide a useful method to assess landscape structure: multiple connected 

canopies are most likely representative of woodland areas or plantation, whereas linear canopy rows 

could represent hedgerows. As an example, Fig. 7.1 portrays two different landscapes based purely on 

the canopies from the NTM, shown using two selected 1-km2 subsets of the NTM from the county of 

Suffolk in England. Prior knowledge and findings from this thesis and other literature suggest that 
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ancient and veteran trees are more likely to be found free-standing and in open landscapes, such as 

wood-pasture, and in places with less anthropogenic pressure (Rackham, 1994; Butler et al., 2002; 

Farjon, 2017). These habitat characteristics are seemingly represented more in the square on the left in 

Fig. 7.1. Hence, the NTM seems like an ideal resource with which to quantify the landscape structure 

across England and use this to predict areas most likely to harbour ancient and veteran trees. 

 

 

Fig. 7.1 Two 1-km2 grid squares from Suffolk, England with the overlaid National Tree Map canopies. Each 

polygon represents an individual canopy. Two very different landscapes are shown with different structures: on 

the left, the landscape has more canopy overall, including both areas with aggregated and dispersed trees, and 

less obvious influence of human activities; on the right the landscape appears to be more heavily influenced by 

human design, with linear rows of trees, as is typical of an agricultural or urban landscape. 

 

In this Chapter I aim to quantify landscape structure across the whole of England using the NTM as the 

selected habitat type, calculating a variety of landscape metrics at a 1-km2 scale. I then use the resulting 

metrics as predictors of ancient and veteran tree distributions and abundance in Species Distribution 

Modelling (SDM). Many other studies have shown that landscape metrics improve SDM performance 

(Hopkins, 2009; Foltête et al., 2012; Hasui et al., 2017; Ortner and Wallentin, 2020) because they add 

fine-scale information which can indirectly predict ecological processes determining the species 

distribution. A key benefit of using the NTM is that the compilation of the canopy data is unaffected by 
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sampling bias, and the canopies are recorded with a higher level of geographical accuracy than the ATI 

records. I compare the distribution models fitted using the landscape metric predictors to models fitted 

only using environmental predictors (see Chapter 6), as well as models incorporating both types of 

predictors. As with Chapter 6, models were validated using independently collected field-survey data. 

 

7.3 Methods 

7.3.1 Study species and landscape metrics 

The modelling processes in this chapter are based on the same 1-km grid and ATI ancient and veteran 

tree records across England first introduced in Chapter 4 (see Methods, Chapter 4) and also used in 

Chapter 6. Both the occurrence locations and abundance of ancient and veteran tree records per 1-km 

grid cell were used. All canopy polygons that intersected the 1-km study area grid across England (see 

Chapter 4) were obtained from the NTM (Bluesky, 2015, c/o the Woodland Trust). For each individual 

1-km grid square, all canopy polygons that intersected that square were selected and converted to a 

single 1-km by 1-km raster layer with pixels at a 1-m resolution. Each canopy was considered to be an 

individual unique patch, so all pixels within each canopy polygon were allocated the same raster value 

ID number, unique for each canopy within the grid square. A total of 16 landscape metrics were 

calculated for each grid square based on the canopy raster layer using the R package ‘landscapemetrics’ 

(Hesselbarth et al., 2019) (Table 7.1). Seven metrics described characteristics of each individual canopy 

patch; the mean value for each of these was calculated across all canopies per grid square. Five metrics 

described the configuration or characteristics of all canopy patches per grid square, and four metrics 

related to the minimum or maximum characteristic of all canopies per grid square. Due to the extremely 

high number of canopies across England, High Processing Computing (HPC) was used to speed up 

computation, whereby all the metrics for 400 grid squares could be computed simultaneously through 

the use of a 400-core processor.  
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Table 7.1 The original 16 landscape metrics calculated for each grid square in England based on the National 

Tree Map. Metrics highlighted in green indicate the final seven metrics remaining following collinearity reduction 

analysis using Variance Inflation Factor and Pearson’s correlation coefficient. 

Metric Abbr. Description 
Possible range 

Min Max 

Mean canopy 

area 
area_mn Mean area (m2) of all canopies per grid square. 0 (no canopies) 1-km2 

Number of 

canopies 
no_canopies Number of individual tree canopies per grid square. 0 (no canopies) Unlimited 

Total edge totaledge Sum of the lengths (m) of all tree canopy perimeters. 0 (no canopies) Unlimited 

Mean radius 

of gyration 
gyrate_mn 

Mean distance (m) between each pixel within a 

canopy and the canopy centroid averaged across all 

tree canopies per grid square. 

0 (canopy is a single 

pixel) 

Canopy covers 

entire grid cell 

Mean related 

circumscribing 

circle 

circle_mn 

Mean related circumscribing circle of all canopies 

within a grid cell. The metric is a measure of patch 

elongation and is a ratio of canopy area to the area of 

the smallest circle that can possible surround and 

completely contain each canopy 

0 (circular patches)  
1 (elongated, 

linear patches) 

Mean 

contiguity 

Index 

contig_mn 

Mean contiguity value of cells within a canopy, 

averaged across all canopies per grid square. 

Contiguity is a measure of spatial connectedness of 

all pixels within a canopy. 

0 (canopy is single 

pixel)  

1 (total patch 

contiguity) 

Mean shape 

index 
shape_mn 

Mean shape index (patch perimeter/ minimum 

perimeter possible i.e. a square patch) of all canopies 

within a grid square. A measure of canopy 

irregularity. 

1 (patch is square)  Unlimited 

Mean 

perimeter area 

ratio 

para_mn 

Mean ratio of patch perimeter (m) to area (m2) of all 

canopies within a grid square. Measure of canopy 

complexity. 

0 (no canopies) Unlimited 

Mean fractal 

dimension 

index 

frac_mn 

Mean canopy complexity of all canopies per grid 

square. Calculated as natural log of canopy perimeter 

(m)/ natural log of canopy area (m2). 

1 (simple perimeter 

e.g. square)  

2 (complex 

perimeter) 

Landscape 

division index 
division 

Calculated as the probability that two randomly 

chosen pixels within a grid square are not in the same 

canopy. 

0 (single canopy)  
1 (each pixel is 

separate canopy) 

Canopy 

cohesion 

index 

cohesion 
Measure of physical connectedness of the canopies 

within a grid square. 
Not yet clarified as part of the R package. 

Splitting index split 

Measure of the number of canopies with a constant 

size when the landscape is divided into n patches (n = 

splitting index). 

1 (single canopy) 

No. pixels in 

landscape 

squared 

Max. canopy 

area 
max_area 

Maximum area (m2) of the largest canopy per grid 

square 
0 (no canopies)  1-km2 

Mean canopy 

perimeter 
mean_perim Mean perimeter (m) of all canopies per grid square 0 (no canopies) Unlimited 

Max. canopy 

perimeter 
max_perim Largest perimeter (m) of a canopy per grid square 0 (no canopies) Unlimited 

Min. canopy 

perimeter 
min_perim Smallest perimeter (m) of a canopy per grid square 0 (no canopies) Unlimited 
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7.3.2 Metric analysis and reduction 

Many of the metrics were highly collinear (Pearson’s correlation coefficients > 0.9), so two alternative 

methods of metric selection were compared. The first used both the Pearson correlation coefficients of 

the raw landscape metrics (with a threshold of 0.9) and the Variance Inflation Factor (VIF) (using a 

threshold of 10). VIF was calculated independently for each variable and provides a measure of 

collinearity between that predictor and all others in a set by estimating potential increases in the variance 

of the regression coefficients. A VIF value of 1 indicates no correlation with other predictors, and 

increases as collinearity becomes more severe, with values above 10 thought to be highly collinear 

(Franke, 2010). This process resulted in the retention of seven of the original 16 metrics (Table 7.1).  

 

The second method involved carrying out Principal Component Analysis (PCA) on the 16 metrics. PCA 

is a method of reducing the dimensionality of a large dataset by combining variables into a set of new 

uncorrelated Principal Components (PCs) that capture as much of the information contained in the 

initial variables as possible. PCA was carried out on all 16 scaled landscape metrics using the ‘prcomp’ 

function in the ‘stats’ package in R (R Core Team, 2018). The first two PCs explained a combined total 

of 70% of the variance in the original dataset, and were retained. Eigenvalues of PC 3 and 4 were 1.17 

and 1.03 respectively, falling to the right of the elbow on an elbow plot (Fig. 7.2), and all subsequent 

PC eigenvalues (5 onwards) fell below 1. 

 

 

Fig. 7.2 Percentage of explained variance of each principal component dimension shown from the Principal 

Component Analysis (PCA) of all 16 landscape metrics. 
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7.3.3 MaxEnt Species Distribution Modelling  

Raster layer predictors across the whole of England at a 1-km resolution were created from the values 

of a) each of the seven landscape metrics selected after collinearity analysis, and b) the two retained 

PCs. Maximum Entropy (MaxEnt) models were then fitted to the ancient and veteran tree occurrence 

records in relation to the two sets of predictors (‘metrics’ or ‘PCs’) at a 1-km resolution using 

‘ENMeval’ package in R (Muscarella et al., 2014). As with the models in Chapter 6, models were fitted 

using 10,000 pseudo-absences background points randomly sampled across the study area, with all 

other MaxEnt parameters remaining at their default values (Phillips & Dudík, 2008). Model tuning was 

carried out based on the methods described in Appendix A6.1, with the best fitting models selected 

based on the corrected Akaike information criterion (AICc) (see Appendix A6.1). As in Chapter 6, 

model predictions were created and internally evaluated with 10-fold cross-validation (CV), using AICc 

and ‘Area Under the Curve’ (AUC) for the training and test data.  

 

The landscape-metric models were additionally compared to the original distribution models of ancient 

and veteran tree occurrence fitted in Chapter 6 (the original model with no bias correction) using all of 

the environmental predictors (subsequently named the ‘environment’ model in this chapter) (see Table 

6.1) to assess whether the use of landscape metrics in SDM provides a more accurate prediction of 

ancient and veteran tree presence across England. As a final step, two additional MaxEnt models were 

fitted following the same method as described, using the environmental predictors (Table 6.1) in 

combination with either the seven landscape metrics or the two PCs as predictors. Again models were 

evaluated internally using both AICc and training and test AUC.  

 

7.3.4 Field surveys and model verification 

The estimates of ancient and veteran tree presence-absence, raw abundance and tree density for each of 

the 52 1-km grid squares obtained from the independent field surveys as described in Chapter 6 were 

used to verify the model predictions (see Methods, Chapter 6 for more information).  Presence-absence 

field verification estimates were analysed using AUC in relation to each of the model predictions of 

habitat suitability, and the raw abundance and tree density field estimates were analysed using Pearson 
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and Spearman correlation coefficients. As in Chapter 6, linear regression models of each distribution 

model prediction against field verification abundance estimates (either raw abundance or tree density) 

for the 52 surveyed squares were used to calibrate the models and produce predictions of the total 

number of ancient and veteran trees across England. 

 

7.4 Results 

7.4.1 Landscape metric analysis 

Plots of each individual data point (grid square) grouped by whether each grid square contains ancient 

or veteran tree records or not (presence-absence) on the axes of PC1 and PC2 reveal distinct differences 

in the landscape metrics between the two groups (Fig. 7.3). Squares with records show strong 

associations with the total number of canopies, division index and total canopy edge (Fig. 7.3). This 

suggests that ancient and veteran tree presence is more likely in squares with a higher number of 

canopies that are more scattered (highly divided) and will therefore have a greater length of canopy 

perimeter within the square. 

 

Plots of the abundance of ancient and veteran trees per 1-km grid cell against each of the seven retained 

original landscape metrics suggest there are peaks in abundance when mean contiguity index is closest 

to 1, number of canopies is less than 5000, mean related circumscribing circle is around 0.45-5, splitting 

index is closest to 1, mean shape index is around 1.2 and maximum perimeter of a canopy is around 20-

m (Fig. 7.4). However, in contrast with the landscape-metrics PCA analysis, this suggests that 

abundance is highest when the canopies are highly connected, as well as when the canopies themselves 

are of an intermediate shape between circular and elongated, somewhat irregular and are relatively 

larger than other canopies (> 20 m). 
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Fig. 7.3a Direction and contribution of each landscape metric to Principal Components (PCs) 1 and 2 (colours 

are shown to aid visualisation of metric contributions: red = high contribution, blue = low contribution) from the 

Principal Component Analysis (PCA) of all 16 original landscape metrics. 7.3b Plot of each individual grid 

square coloured by ancient and veteran tree presence (present = orange, absent = blue) on the axes of PC1 and 

PC2 from the PCA of all 16 original landscape metrics. Two ellipses are shown in relation to grid squares with 

either presence or absence of ancient and veteran trees, and represent a multivariate normal distribution with a 

concentration level of 0.95.  Each ellipse is centred on the means of the two types of grid square (presence or 

absence) and oriented in the direction of the first eigenvector of the covariance matrix. 

 

a. 

b. 

Metrics Key 

- area_mn:  Mean canopy area  

- no_canopies: Number of canopies 

- totaledge: Total edge  

- gyrate_mn: Mean radius of gyration  

- circle_mn: Mean circumscribing circle 

- contig_mn: Mean contiguity Index 

- shape_mn: Mean shape index  

- para_mn: Mean perimeter area ratio 

- frac_mn: Mean fractal dimension index 

- division: Landscape division index  

- cohesion: Canopy cohesion index  

- split: Splitting index  

- max_area: Max. canopy area  

- mean_perim: Mean canopy perimeter 

- max_perim: Max. canopy perimeter 

- min_perim: Min. canopy perimeter 



169 

 

 

Fig. 7.4 Scatterplots of ancient and veteran tree abundance in relation to the seven final landscape metrics. 
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7.4.2 Internal validation of the distribution models 

The use of all seven landscape metrics in the distribution models resulted in slightly higher performing 

models that produced better predictions based on both AIC and AUC respectively than when the 

landscape metric PCs were used, although the difference was relatively small (Fig. 7.5). Nevertheless, 

the best performing models in all cases involved the use of the environmental predictors, with the 

Environment model actually performing better than when used in combination with the landscape 

metrics (Fig. 7.5), although again differences between models were relatively small.  

 

Distribution maps from each of the models show a wider range in habitat suitability for ancient and 

veteran trees across England when using the environment predictors. These models (Fig. 7.6 a, d and e) 

show high suitability in small sites, which are generally identified as parks, wood-pastures or forests 

(see Chapter 6 for more detail), scattered across the country. Both landscape metric distribution maps 

show less variability in habitat suitability, with the most suitable areas identified to the South West of 

London, centred on the South Downs National Park, Sherwood Forest in the East Midlands, the North 

York Moors National Park and Kielder Forest Park in the North of England (Fig. 7.6 b and c).  
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Fig. 7.5 Evaluation of the performance and 

predictive power of Maximum Entropy  models 

of ancient and veteran tree distributions using 

environmental predictors (Environment), 

Principal Components (PCs) of landscape 

metrics, and seven landscape metrics 

(Metrics), as well as two combinations of these 

predictor sets. Evaluation metrics include a) 

Corrected Akaike Information Criterion 

(AICc), b) Area Under the Curve (AUC) for the 

training data and c) AUC for the test data. 
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Fig. 7.6 Distribution maps of ancient and veteran trees across England produced from Maximum Entropy models 

using five combinations of predictors: a) environmental predictors, b) seven original landscape metrics, c) 

Principal Components (PCs) of the landscape metrics, d) environmental + landscape metrics and e) 

environmental + landscape-metric PCs. Colour scales range from low habitat suitability of 0 (blue) to the highest 

habitat suitability of 0.164 (red). 
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7.4.3 Field validation of the distribution models 

Field validation supported the internal model evaluation: the model using only environmental predictors 

had the highest predictive power when compared to the field data (Table 7.2) and outperformed all other 

models when predicting presence-absence, abundance and density of ancient and veteran trees. The 

only exception was when assessing tree density predictions (accounting for variation in survey effort 

per grid square) using Pearson raw correlations: the model using the seven landscape metrics as 

predictors outperformed the model using environmental predictors. The models combining the two sets 

of predictors still performed worse than either individually (Table 7.2). Estimates of total ancient and 

veteran tree abundance across England using the field verification were relatively similar to those 

predicted by the models in Chapter 6, but they varied more, ranging from 911,842 to 1,456,555 based 

on raw abundance, and 1,867,480 to 2,489,774 based on tree density (Table 7.2).  

 

Table 7.2 Independent field evaluation of model predictions. Model predictions were evaluated against a) field 

verification estimates of the presence-absence (P-A) of ancient and veteran trees per square using Area Under 

the Curve (AUC), b) field estimates of raw tree abundance (total number of trees recorded per square) using 

Pearson (r) and Spearman (rs) correlation coefficient tests and c) field estimates of tree density (number of trees 

in relation to estimated percentage survey effort for each square) also using Pearson and Spearman correlation 

coefficient tests. Values in bold represent those that are significant. Where indicated, significance levels are: p < 

0.05: *, p < 0.01: **, p < 0.001: **. For each model the total predicted abundance of ancient and veteran trees 

(T) across England was calculated from a linear regression model between the model predictions and field 

verification data (both raw tree abundance and tree density) for the 52 surveyed squares. 
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7.5 Discussion 

Landscape metrics have been successfully used as predictors in many studies that map species 

distributions, and have improved model performance through their ability to add information about fine- 

scale processes affecting species distributions, for example habitat fragmentation, dispersal limitations 

and anthropogenic influences on the landscape, compared to typical broad-scale environmental SDM 

predictors (Westphal et al., 2003; Hopkins, 2009; Foltête et al., 2012; Chefaoui, 2014). However, their 

ability to boost distribution model performance is known to vary across both taxonomic groups (Hasui 

et al., 2017) and spatial scales (Wu et al., 2002; Chefaoui, 2014). The research in this chapter did not 

find that the addition of landscape metrics to SDM improved model performance or predictions of 

ancient and veteran tree distributions across England. 

 

There are several factors which could explain the failure of landscape metrics to improve models of 

ancient and veteran trees. One is that using landscape metrics in SDM has been suggested to be most 

effective when modelling at a fine spatial scale, especially for smaller, sedentary organisms (Westphal 

et al., 2003; Schindler et al., 2013). In this study, fine-scale (1 m) information about the landscape 

reflected in detailed maps of tree canopies was converted (by averaging) to landscape metrics for use 

in distribution models at a larger scale (1 km), probably leading to the loss of information about the 

local habitat suitability, and underlying ecological processes affecting each individual tree might have 

been lost (Ortner and Wallentin, 2020). This has been found to be the case in other SDM studies (Hasui 

et al., 2017), and an approach which uses predictors at multiple scales has been suggested to be more 

appropriate (Foltête et al., 2012). 

 

The majority of studies using landscape structural components in SDM often have more than one type 

of habitat from which to calculate the metrics, which may therefore represent a more complex picture 

of the whole landscape (Schindler et al., 2013; Morelli et al., 2018). As my landscape metrics were 

derived from only one type of habitat (tree canopy), it might be the case that they were unable to 

differentiate between habitat types which are actually ecologically very distinct. For example 

landscapes with narrow, linear patches of canopy might represent agricultural fields, but they equally 



175 

 

might represent urban or suburban residential gardens. Although trees are ubiquitous throughout our 

landscape, using another type of identifying habitat or land-use type within the model may have 

increased the accuracy of my classification of landscape structure, and hence improved model 

performance. I did use both agricultural and land class predictors in the combination models, as well as 

types of vegetation cover (forest, ancient woodland and orchard), but because these alternate landscape 

descriptors are at a 1-km resolution, they may be too coarse to describe accurately the landscape 

structure in a way that is ecologically important for trees. 

 

The selection of specific landscape metrics used to quantify the landscape in relation to species 

distributions has been shown to be an important factor in the accuracy of distribution models (Li & Wu, 

2004; Schindler et al., 2013). The choice of metrics from the hundreds available should ideally be made 

using prior knowledge of species ecology and landscape biodiversity (Schindler et al., 2013), and the 

optimal choice varies widely depending on the landscape or taxon (Fahrig, 2003; Walz, 2011). In 

particular, the metrics themselves are biologically meaningless unless selected appropriately at the 

correct scale for the target species. In this study, the initial selection of the 16 metrics was done using 

biological theory and consideration of the target organism, but the reduction analysis was carried out 

using purely statistical methods. My two alternate selection processes (PCA and collinearity reduction) 

produced distribution models that differed in both model fit and predictive performance. Although PCA 

of landscape metrics has been shown to be an effective selection method (Schindler et al., 2015), in my 

study, this method consistently produced the poorest models compared to using a subset of the raw 

metrics, or using the alternative environmental predictors. Models using a selection of seven raw metrics 

performed slightly better, and although it has been recommended that between eight and 15 metrics is 

the ideal number (Cushman et al., 2008), this has been criticised as potentially retaining correlated 

predictors (Schindler et al., 2015). Therefore, it seems unlikely that it is the number of metrics, rather 

than the biological information contained, that reduced model performance. As with many aspects of 

distribution modelling, detailed consideration of ecological theory is likely to result in the most accurate 

predictions, and future research should consider alternative subsets of metrics if computationally 

feasible (Schindler et al., 2015).  
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Although landscape metrics had a limited impact on the performance of the model predictions, the 

individual raw landscape metrics provided some interesting insights into aspects of the surrounding 

canopy that might increase the likelihood of ancient or veteran tree presence. The PCA highlighted 

more suitable squares as having many, scattered canopies, as might be found in wood-pasture habitat, 

which fits with our current knowledge of ancient and veteran tree distributions (Rackham, 1994; Nolan 

et al., 2020). However, analysis of the raw metrics is more indicative of a cohesive canopy structure for 

high ancient and veteran tree abundance, for example that of rural woodland, with canopies that are 

larger and more irregular.  This highlights the potential importance of woodland and other more 

canopied areas for ancient and veteran trees, which can be overlooked in favour of other habitats such 

as wood-pasture, with which ancient trees are more commonly associated (Farjon, 2017; Nolan et al., 

2020). Although there is no wildwood remaining in the UK from the ice age (Rackham, 1994), ancient 

woodland (woodland that has existed since at least the 16th century: Peterken, 1977) covers around 

2.6% of land in England and Wales (Spencer and Kirby, 1992). Although the term ‘ancient’ refers only 

to the length of existence of the woodland, ancient trees can be found in ancient woodland (Rackham, 

1980), but not usually on land that has been converted from ancient woodland to forest or plantation 

(Lonsdale, 2013). Nevertheless, it may be likely that sampling bias in relation to woodlands e.g. through 

either accessibility issues or a lack of survey interest, prevents many ancient and veteran trees from 

being found and recorded in these areas. 

 

Predictions of the total number of ancient and veteran trees across England were similar to those 

obtained in Chapter 6, although the variation across models was greater. The distribution model fitted 

using the raw landscape metrics produced the highest estimate, with almost 2.5 million trees, whereas 

the best performing model (the environment model), estimated only ~1.9 million. This difference 

between predictions is quite significant, representing almost three times the current total number of 

records in the ATI (approximately 200,000). As discussed in Chapter 6, estimates in this range are 

probably not exaggerated, and even larger figures have been suggested by other studies (Fay, 2004). 

Based on model performance, the totals from the landscape-metric models are potentially overestimates. 
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Nevertheless, all of these models highlight the need to increase the rate of tree recording rapidly to 

ensure more trees are recorded and can be protected for the future.  

 

7.6 Conclusion 

Large-scale analysis of the landscape structure across England based on the NTM canopies revealed 

interesting insights into specific types of landscape and canopy structures that increase the likelihood 

of the presence of ancient and veteran trees. Nevertheless, the addition of landscape metrics to SDM 

did not increase the performance of predictive power of the models, probably a function of modelling 

distributions at a coarser scale than the metrics describe. Predictions of the total number of ancient and 

veteran trees across England from models using landscape metrics were potentially inflated, but still 

highlighted the need for rapid, targeted tree recording to find and protect the large number of 

undiscovered ancient and veteran trees in our landscape. 
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Chapter 8: Discussion and Conclusion. 

 

8.1 Discussion 

Ancient trees and other trees with veteran characteristics are keystone organisms and provide valuable 

ecological, historical and recreational functions around the world (Butler et al., 2002; ATF, 2008a; 

Lonsdale, 2013). Despite their importance, there are severe gaps in the knowledge about them and their 

distribution, and protection and conservation measures are lacking: as a result, their global decline is 

apparent (Read, 2000; ATF, 2005; Lindenmayer et al., 2012; Le Roux et al., 2014). This thesis uses one 

of the most important resources available currently in regards to ancient and veteran tree conservation, 

the UK Ancient Tree Inventory (ATI), containing over 200,000 tree records collected over the past 15 

years (Nolan et al., 2020), to present the first national overview and analysis of ancient, veteran and 

notable trees in the UK. Although the ATI holds the largest collection of ancient and other noteworthy 

tree records to date, it has received little attention in scientific research either directly to address issues 

related to the trees and their distribution, or in regards to the numerous organisms and ecological 

processes supported by the trees. This thesis presents novel research using the ATI in quantitative 

scientific studies to discover important information about the true distribution of ancient and veteran 

trees and their key environmental determinants.  

 

As with all trees, the true distribution of ancient and veteran trees is likely to be the result of both 

environmental factors and human influence (Rackham, 1980; Barnes et al., 2017; Farjon, 2017). Across 

multiple chapters of this thesis, a key predictor for ancient and veteran trees was the presence or 

coverage of wood-pasture habitat: with around 50% of all ancient tree records in the ATI falling within 

wood-pasture habitat, it is clear that there is an association between the two. Although this strong 

association is likely to be partially an artefact of sampling bias (recorders know wood-pasture contain 

ancient trees and will preferentially survey here), even when sampling bias is successfully accounted 

for in Chapter 7, wood-pasture is still a key predictor of tree presence. A second important predictor 

was coverage or distance to National Trust owned land, which as with wood-pasture is likely to be a 
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partial artefact of being favourable to survey (likely to have trees and also recreationally pleasing). In 

fact, many National Trust sites are also likely to contain some wood-pasture habitat (Harvey, 1987; 

Nolan et al., 2020). Therefore, even though these areas are probably predictors of sampling bias, 

extensive surveys of wood-pasture habitat or National Trust land should continue to be expanded due 

to the high number of ancient trees predicted to still be found in these areas. 

 

The inclusion of historical predictors digitised directly from literature sources in distribution models is 

a relatively uncommon practice, not least because most organisms do not live to be hundreds of years 

old (Farjon, 2017). Nevertheless, factors such as distance to a moated site, Tudor deer park or type of 

historic countryside were important determinants of ancient and tree distributions in Chapter 3, 6 and 

7. Inclusion of comparable predictors about the cultural landscape were also important in similar studies 

conducted by Hartel et al. (2013; 2018) and Moga et al. (2016), and show that consideration of the 

historical as well as the current landscape is necessary when studying organisms such as ancient and 

veteran trees. In fact, ancient and veteran trees are an unusual group of organisms: they consist of 

multiple species but are of a particular age group and life stage, they are very well recorded at the level 

of the individual, and they have a particularly unusual direct relationship with human society. Therefore, 

modelling this particular type of organism may require consideration of alternative predictors, and is 

likely that some of the methods and findings in relation to ancient and veteran tree research will not be 

readily applicable to other taxa and vice versa. For example, this may have been a reason why the 

characterisation of landscape structure in Chapter 7, which has been shown to be a successful SDM 

method with other taxa, was less successful at modelling ancient and veteran tree distributions than the 

model fitted using alternative historical predictors. 

 

Although the usefulness of citizen science recording is undeniable (Dickinson et al., 2010a), as with 

many large species databases the collection of the ATI records is highly likely to be biased, a conclusive 

finding from Chapter 4. This chapter provided the first qualitative insight into potential causes of bias 

in the ATI, examining a wide range of environmental and anthropogenic factors. As suspected, the 

current ATI distribution is to some extent a reflection of the location of recorders, with the top recorder 
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locations significantly mirroring hotspots of ancient and veteran trees. Alongside recorder location and 

types of land use, ATI recording is also likely biased by distance to towns, cities, roads and 

watercourses, as well as altitude, echoing the findings of many previous studies on other species 

databases (Reddy and Dávalos, 2003; Kadmon et al., 2003; Kramer-Schadt et al., 2013; Mair and Ruete, 

2016). Another likely predictor of bias in the ATI is the presence (or absence) of public rights of way 

across the landscape: this was considered a predictor in several models, but because coverage across 

the UK was patchy, it was not possible to incorporate it in any analysis. Nevertheless, accessibility to 

sites is likely to present a critical obstacle in the completion of the ATI: as shown in the field surveys, 

recorders had major difficulties in some of the 1-km grid squares, with coverage falling below 20% of 

the total area. Future targeted surveying would greatly benefit from obtaining permission from 

landowners to access and survey sites predicted to have high numbers of trees by the distribution 

models.  

 

Species Distribution Modelling (SDM) is a key tool in conservation and protecting biodiversity, and 

new improvements are constantly being made to the various models and methodologies (Araújo and 

Guisan, 2006; Yu et al., 2020; Zurell et al., 2020; Carlson, 2020). Nevertheless, neglecting to account 

for sampling bias in SDM will result in predictions of distributions or key environmental determinants 

that reflect sampling processes as well as the true underlying ecology (Phillips et al., 2009; Syfert et al., 

2013). In Chapter 5 of this thesis, I present a novel approach to SDM based on biased species data, 

using Zero-Inflated (ZI) models. I show in Chapter 5 and 6 that not only are these models able to produce 

more accurate distribution maps with reduced impacts of sampling bias, but ZI models can also provide 

inferences about unknown predictors of sampling bias in the raw data, something which few current 

SDM methods are able to do. In Chapter 6, when applied to a real-life case study using the ATI, ZI 

models perform well compared to other bias correction methods, and are especially good at producing 

predictions that scale well to the true abundance of ancient and veteran trees. Analysis of the ZI model 

zero component coefficients supported my findings from Chapter 4, also suggesting that bias in the ATI 

is likely caused by accessibility issues (for example coverage of roads, watercourses etc.) and the 

selective choosing of ‘interesting’ survey sites thought more likely to contain trees, such as National 
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Trust land or wood-pasture sites. The ZI ‘zero’ prediction map produced in Chapter 6 is invaluable in 

providing insight into areas of over- or undersampling across England, and highlights new areas, such 

as large parts of Cornwall, Devon and Norfolk, within which future surveying can be directed to assist 

in making the ATI more comprehensive. Therefore, I believe that ZI models can provide great benefits 

for conservation going forward, not only of ancient and veteran trees, but also many other at-risk taxa: 

they could represent a robust, valuable tool within the field of SDM.  

 

One of the key goals of SDM is to produce the most accurate predictions of the true ecological niche 

and geographical distribution of a species (Dormann et al., 2007; Phillips et al., 2009; Elith et al., 2011). 

Correcting for sampling bias should form a crucial part of the process and there are a variety of tested 

methods for this (Phillips et al. 2009; Kramer-Schadt et al., 2013; Fourcade et al., 2014, Boria et al., 

2014). In addition to the novel ZI models, spatial filtering of occurrence records consistently produced 

some of the best prediction maps in Chapter 6, especially when based on systematic sampling or 

removing records within a cluster. This method is likely successful due to the initial large number of 

records in the ATI, so that filtering occurrences does not significantly reduce the sample size and 

therefore model performance. The distribution maps of ancient and veteran trees produced using either 

this method or the ZI models highlighted many areas which they suggest are more suitable for tree 

presence compared to those suggested by an uncorrected model, or by other bias-correction methods. 

Particular areas with increased suitability, and therefore likely targets for immediate future surveys, 

include parts of East Anglia, Northumberland, Greater London, Herefordshire and the Lake District. 

Many large wood-pastures, some of which contain no records and are likely unsampled, are also 

highlighted as important potential hot-spots of trees. These prediction maps present the first quantitative 

and validated overview of the true unbiased distribution of ancient and veteran trees across England, 

and I believe the benefits to the discovery and future conservation of these organisms of having such 

maps will be great.  

 

In this thesis I introduce two types of model validation in addition to internal model validation 

strategies: the historical mapping desk verification in Chapter 3, and the collection of independent field 
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data for Chapters 6 and 7. Model validation is an important part of SDM, especially in order to apply 

any results to practical conservation projects (Greaves et al., 2006; Costa et al., 2010; Fabri‐Ruiz et al., 

2019). Common internal model validation metrics such as Area Under the Curve (AUC) are the only 

validation method used in many SDM studies, yet they have received extensive criticism (Lobo et al., 

2008; Peterson et al., 2008). My historical mapping validation strategy produced strong results in 

Chapter 3 that correlated highly with model predictions, and showed that this strategy has great potential 

for use in studies of tree distributions. Nevertheless, the possible high margin of error in the maps and 

selective recording (for example, trees in woodlands were typically designated as a single patch in 

historic maps), limits the use of this strategy, and although an improvement over internal model 

validation, is still likely to be less favourable compared to the collection of independent field data.  

 

In Chapter 6, I show that using independent field data for model validation leads to significantly 

different inferences compared to internal model validation, highlighting the important of independently 

validating distribution models that will be used directly in conservation practice. Although not always 

feasible due to cost or time pressures, I show that relatively little field data (only 52 1-km squares, of 

which 13 were collected myself) were needed to validate the models accurately and produce robust 

conclusions about various distribution models. This was possible through the use of the large 

nationwide network of ATI recorders; similar networks are likely also to exist for many other large 

citizen-science projects, and could therefore be a very useful and underappreciated tool for scientific 

research and conservation. In agreement with other authors (Devictor et al., 2010; Tweddle et al., 2012; 

Newman et al., 2012), I believe there is a large scope not only for using data collected by citizen-science 

projects in scientific research, but also for involving the various networks of recorders in carrying out 

more strategic, targeted surveys for the purpose of model validation and selecting the most appropriate 

final species distribution prediction maps.  

 

The final key output from this thesis is the novel creation of the first estimates of the total ancient and 

veteran tree numbers, both in wood-pasture habitat and across England, providing useful insights into 

the overall progress of the ATI project since its initiation and into how many trees are still unrecorded. 
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Interestingly, results from Chapter 3, 6 and 7 all reach a similar conclusion, predicting roughly that the 

ATI is currently at around a 10% completion level. The results suggest that the current recorded number 

of 10,000 ancient trees across all wood-pastures reflects an estimated 100,000 trees, and the ~200,000 

ancient and veteran trees in the ATI represents an estimated 2 million such trees across the whole of 

England. Therefore, although the ATI is at the forefront of ancient and veteran tree recording 

worldwide, my results suggest that there is still a way to go to ensure the majority of trees are recorded 

and protected. Nevertheless, there are many positive signs that suggest ancient and veteran tree 

recording is increasing in popularity, and the redesign of the ATI website and a streamlined recording 

process in 2018/ 2019 will likely assist with this. Citizen science in general is also gaining in popularity 

as public awareness of conservation issues is expanding (Dickinson et al., 2010b; Newman et al., 2012), 

and in Chapter 2 I show that the number of records added annually to the ATI is also increasing. 

Therefore, by using the distribution maps produced from my research alongside the increased popularity 

of citizen-science recording and the ease of recording tree online directly in the field, the undiscovered 

ancient and veteran trees can be found more quickly and added to the ATI. Given the increasing interest 

and potential for targeted surveying, I think that it is very likely that in 15 more years the ATI will have 

reached a much higher completion level than just 20%.   

 

The overall distribution and environmental niche of a tree is likely to be highly dependent on its 

taxonomic identity (Barnes et al., 2017), and I show in Chapter 2 that the genus or species is highly 

influential on the category of tree (ancient, veteran or notable), the threats each tree faces and where it 

is found. In Chapter 3 I model ancient tree abundance in wood-pasture for two genera separately, 

Quercus and Fraxinus, and highlight significant differences in their environmental determinants. 

However, due to the low frequency of other genera, statistical power was consistently too low to 

incorporate species differences into other models, especially when using the independently collected 

field data (where not all tree taxa were identified) to validate the models as in Chapters 6 and 7. Future 

research concentrated on interspecific differences between trees is likely to produce interesting results, 

and could be used to target surveying specific tree genera more at risk across our landscape than others.  
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Another future research opportunity identified in relation to this thesis would be the expansion of the 

models into Wales, Scotland and Ireland. In Chapter 2 I show that there are significant differences in 

tree characteristics between countries, and it is possible that alternative landscape and environmental 

predictors would be needed to capture effectively the ecological processes determining ancient and 

veteran tree distributions in these countries. As many of the predictors I used in my models in various 

chapters did not extend outside of England, especially the historical predictors (e.g. moated sites, 

historic forests etc.), alternatives would need to be found to capture this information - this was outside 

the scope and timeline of this project. Finally, the National Tree Map (NTM) is an amazing, albeit 

computationally demanding, resource that could be used to address many interesting ecological 

questions about ancient and veteran tree distributions. Currently the grid references of each ATI record 

are coarser than the resolution of the NTM, so each record cannot currently be matched to a single 

canopy. Future work could address this issue, allowing more fine-scale research about the localised 

environment of each ancient or veteran tree to be examined. The NTM, of which ancient and other 

noteworthy trees are a subset, could therefore be a great tool in investigating ecological processes about 

individual trees or local populations, as well as overall distributions.  

 

8.2 Conclusion 

This thesis presents the first overview and quantitative analysis of the true UK ancient, veteran and 

notable tree distribution using the globally renowned Ancient Tree Inventory (ATI). By using a variety 

of distribution modelling methods across varying scales (ranging from habitat level to large, national 

analyses), the true ancient and veteran tree distribution, their key environmental determinants and 

estimates of the total number of trees nationwide were successfully produced. These estimates are the 

first of their kind, and as I initially suspected, they suggest that the ATI is far from complete, with 

currently around only 10% of trees recorded. Identification of, and correction for sampling bias in the 

ATI using both novel and traditional bias correction methods was a key step in producing more accurate 

distribution maps, allowing new potential hot-spots of ancient and other noteworthy trees to be 

identified. In addition, validating model predictions using new, independently collected field data 
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provides an extra level of security in our ability to rely on these distribution maps for practical 

conservation applications, something which relatively few studies are able to claim. In conclusion, the 

research in this thesis provides the first crucial overview of ancient and other noteworthy trees across 

the UK, and has great implications for the conservation and protection of these valuable biological 

entities, helping to ensure their persistence and survival into the future. 
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A2: Appendix 2 – Additional tables and figures from Chapter 2 

Fig. A2.1 The number of records and the record density (number of records per km2) in the ATI, shown for each 

county or unitary authority throughout England and Wales, council area in Scotland and Northern Ireland and 

administrative counties in the Republic of Ireland. Records that do not fall within any county boundary i.e. with 

incorrect grid references and records in Jersey, Guernsey or the Isle of Man are excluded.  
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Fig. A2.2  The frequency of records in the ATI with a particular habitat characteristic noted alongside that record 

 

 

 

Fig. A2.3 The 20 individual sites containing the highest number of records in the ATI. Forests, parks and large 

estates form the majority of sites with large numbers of records, as well as farms, castles and larger areas of 

public land e.g. the Dowards in Herefordshire (shown here as Doward).  
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Fig. A2.4 Mean measured girth (m) of the 12 most frequent genera of tree in the ATI. 
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Fig. A2.5 The relative proportion of ATI records for the 12 most common genera across three categories (ancient, 

veteran and notable), and eight tree forms.  
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Fig. A2.6 Percentage of records within each public or private accessibility categories in the ATI.  

 

Table A2.1. Name and number of records of all fungi species recorded in the ATI. 

Common name Latin name Number of records 

Southern bracket Ganoderma australe 787 

Beafsteak fungus Fistulina hepatica 425 

Oak bracket Inonotus dryadeus 368 

Chicken of the woods Laetiporus sulphureus 202 

Shaggy bracket Inonotus hispidus 130 

Dryad’s sadle Polyporus squamosus 57 

Giant polypore Meripilus giganteus 54 

Birch polypore fungus Piptoporus betulinus 51 

Blushing bracket Daedaleopsis confragosa 15 

Dyer's mazegill Phaeolous schweinitzii 10 
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Table A2.2 A comprehensive list of all 211 taxa recorded in the ATI, along with the level of identification and 

number of records of each taxa. 

Taxa 
No. of 

Records 
Family Genus Species Sub-species/ var. 

Alder 2315 Betulaceae Alnus glutinosa  

Alder Buckthorn 3 Rhamnaceae Frangula alnus  

Apple 61 Rosaceae Malus   

Ash 9,840 Oleaceae Fraxinus   

Aspen 93 Salicaceae Populus tremula  

Atlas Cedar (Blue) 153 Pinaceae Decrus atlantica  

Austrian/ Corsican/ Black 

Pine 
223 Pinaceae Pinus nigra  

Bay Willow 10 Salicaceae Salix pentandra  

Beech 14,296 Fagaceae Fagus   

Bhutan Pine 10 Pinaceae Pinus wallichiana  

Birch 1,288 Betulaceae Betula   

Bird Cherry 45 Rosaceae Prunus padus  

Black Mulberry 150 Moraceae Morus nigra  

Black Walnut 35 Juglandaceae Juglans nigra  

Blackthorn 26 Rosaceae Prunus spinosa  

Blue Gum 5 Myrtaceae Eucalyptus   

Box 52 Buxaceae Buxus sempervirens  

Broad Leaved Lime var. 

Rubra 
11 Malvaceae Tilia platyphyllos  var. rubra 

Cappadocian Maple 16 Sapindaceae Acer cappadocicum  

Caucasian Elm 12 Ulmaceae Zelkova carpinifolia  

Caucasian/ Nordmann Fir 2 Pinaceae Abies nordmanniana  

Caucasian Wingnut 13 Juglandaceae Pterocarya fraxinifolia  

Cedar 218 Pinaceae Cedrus   

Cedar of Lebanon  537 Pinaceae Cedrus libani  

Cherry 337 Rosaceae Prunus   

Cherry Plum 14 Rosaceae Prunus cerasifera  

Chestnut leaved Oak 6 Fagaceae Quercus castaneifolia  

Chinese Juniper 2 Cupressaceae Juniperus chinensis  

Cider Gum 2 Myrtaceae Eucalyptus gunnii  

Coast Redwood 142 Cupressaceae Sequoia  sempervirens  

Colorado White Fir 1 Pinaceae Abies concolor  

Common Ash 1,828 Oleaceae Fraxinus excelsior  

Common Beech 6,209 Fagaceae Fagus sylvatica  
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Common Hawthorn 338 Rosaceae Crataegus monogyna  

Common Hornbeam 261 Betulaceae Carpinus betulus  

Common Juniper 374 Cupressaceae Juniperus comnunis  

Common Laburnum 7 Fabaceae Laburnum anagryoides  

Common Lime 3,374 Malvaceae Tilia 
Tilia × 

europaea 
 

Common Pear 120 Rosaceae Pyrus communis  

Common Walnut 136 Juglandaceae Juglans regia  

Common Whitebeam  101 Rosaceae Sorbus aria  

Common/ English Yew  3,028 Taxaceae Taxus baccata  

Copper/ Purple Beech 444 Fagaceae Fagus sylvatica  

Coral Bark Willow 2 Salicaceae Salix alba var. ‘Vitellina’ 

Cork Oak 26 Fagaceae Quercus suber  

Cornish Elm 3 Ulmaceae Ulmus minor  var. ‘Stricta’ 

Cotoneaster 2 Rosaceae Cotoneaster   

Crab Apple 708 Rosaceae Malus slyvestris  

Crack Wilow 574 Salicaceae Salix fragilis  

Cricket Bat Willow 16 Salicaceae Salix alba var. ‘Caerulea’ 

Crimean Pine 18 Pinaceae Pinus nigra subsp. Pallasiana 

Cypress 56 Cupressaceae    

Cypress Oak 2 Fagaceae Quercus robus var. ‘Fastigiata’ 

Dawn Redwood 33 Cupressaceae Metasequoia   

Deodar cedar 88 Pinaceae Cedrus deodara  

Dogwood 3 Cornaceae Cornus   

Douglas Fir 339 Pinaceae Pseudotsuga menziesii  

Dove Tree/ Handkerchief 

Tree 
7 Nyssaceae Davidia involucrata  

Doward Whitebeam 2 Rosaceae Sorbus eminentiformis  

Downy Birch 387 Betulaceae Betula pubescens  

Dutch Elm 3 Ulmaceae Ulmus   

Eastern Hemlock 7 Pinaceae Tsuga canadensis  

Elder 131 Adoxaceae Sambucus nigra  

Elm 533 Ulmaceae Ulmus   

English Elm 97 Ulmaceae Ulmus minor var. ‘Atinia’ 

Eucalyptus 8 Myrtaceae Eucalyptus   

European Larch 115 Pinaceae Larch decidua  

European Silver Fir 55 Pinaceae Abies alba  

European White Elm 12 Ulmaceae Ulmus laevis  

Evans Whitebeam 1 Rosaceae Sorbus evansii  

Exeter Elm 1 Ulmaceae Ulmus Exoniensis  
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False Acacia 113 Fabaceae Robinia pseudoacacia  

Fern-leaved Beech 50 Fagaceae Fagus sylvatica 
var. 

‘Asplenifolia’ 

Field Maple 2,195 Sapindaceae Acer campestre  

Fig 10 Moraceae Ficus   

Fir 102 Pinaceae Abies   

Giant Sequoia 1,332 Cupressaceae 
Sequoiadendro

n 
giganteum  

Ginkgo/ Maidenhair tree 62 Ginkgoaceae Ginkgo biloba  

Goat Willow/ Sallow 470 Salicaceae Salix caprea  

Golden Ash 3 Oleaceae Fraxinus excelsior var. ‘Jaspidea’ 

Golden Weeping Willow 26 Salicaceae Salix 
Salix x 

Sepulcralis 

var. 

‘Chrysocoma’ 

Grand Fir 39 Pinaceae Abies grandis  

Grecian Fir 9 Pinaceae Abies cephalonica  

Grey Poplar 83 Salicaceae Populus P. × canescens  

Grey Willow 36 Salicaceae Salix cinerea  

Guelder Rose 4 Adoxaceae Virburnum opulus  

Hawthorn 2,756 Rosaceae Crataegus   

Hazel 652 Betulaceae Corylus   

Hemlock 8 Apiaceae Conium maculatum  

Herefordshire Whitebeam 1 Rosaceae Sorbus herefordensis  

Holly 1,467 Aquifoliaceae Ilex   

Holm Oak 387 Fagaceae Quercus ilex  

Hornbeam 1,854 Betulaceae Carpinus   

Horse Chestnut 2,952 Sapindaceae Aesculus hippocastanum  

Hungarian Oak 24 Fagaceae Quercus frainetto  

Huntingdon Elm 19 Ulmaceae Ulmus 
Ulmus × 

hollandica 
var. Major’ 

Hybrid Black Poplar 91 Salicaceae Populus 
Populus x 

canadensis 
 

Hybrid Black Poplar 

Regenerata 
29 Salicaceae Populus 

Populus × 

canadensis 
var. ‘Regenerata’ 

Hybrid Black Poplar 

Robusta 
22 Salicaceae Populus 

Populus × 

canadensis 
var. ‘Robusta’ 

Hybrid Black Poplar 

Serotina 
77 Salicaceae Populus 

Populus × 

canadensis 
var. ‘Serotina’ 

Hybrid Sessile and English 

Oak 
407 Fagaceae Quercus Q. × rosacea  

Incense Cedar 18 Cupressaceae Calocedrus decurrens  
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Indian Bean 41 Bignoniaceae Catalpa bignonioides  

Irish Yew 54 Taxaceae Taxus baccata var. ‘Fastigiata’ 

Italian Cypress 6 Cupressaceae Cupressus sempervirens  

Ivy 31 Araliaceae Hedera   

Japanese Larch 2 Pinaceae Larix kaempferi  

Japanese Red Cedar 45 Cupressaceae Cryptomeria Japonica var. ‘Elegans’ 

Jeffrey Pine 3 Pinaceae Pinus jeffreyi  

Judas Tree 14 Fabaceae Cercis siliquastrum  

Juniper 58 Cupressaceae Juniperus   

Laburnum  21 Fabaceae Laburnum   

Larch 77 Pinaceae Larix   

Large Leaved Lime 324 Malvaceae Tilia platyphyllos  

Lawson Cypress 98 Cupressaceae Chamaecyparis lawsoniana  

Lawson Cypress Erecta 2 Cupressaceae Chamaecyparis lawsoniana 
var. ‘Erecta 

Viridis’ 

Leylandii Leighton Green 1 Cupressaceae Cupressus C. × leylandii 
var. ‘Leighton 

Green’ 

Lime 2,276 Malvaceae Tilia   

Liquidambar/ Sweetgum 15 Altingiaceae Liquidambar   

Lombardy Poplar 60 Salicaceae Populus nigra var. ‘Italica’ 

London Plane  778 Platanaceae Platanus P. × acerifolia  

Low’s Fir 2 Pinaceae Abies concolor subsp. ‘lowiana’ 

Lucombe Oak 144 Fagaceae Quercus Q. x hispanica 
var. 

‘Lucombeana’ 

Manna Ash 10 Oleaceae Fraxinus ornus  

Maple 160 Sapindaceae Acer   

Maritime Pine 30 Pinaceae Pinus pinaster  

Midland Hawthorn 15 Rosaceae Crataegus laevigata  

Mirbeck’s Oak 6 Fagaceae Quercus canariensis  

Monkey Puzzle 165 Araucariaceae Araucaria araucana  

Monterey Cypress 86 Cupressaceae Cupressus macrocarpa  

Monterey Pine 149 Pinaceae Pinus radiata  

Morinda Spruce 5 Pinaceae Picea smithiana  

Mulberry  38 Moraceae Morus   

Nikko Fir 1 Pinaceae Abies homolepis  

Noble Fir 48 Pinaceae Abies procera  

Nootka Cypress 6 Cupressaceae Cupressus nootkatensis  

Norway Maple 193 Sapindaceae Acer platanoides  

Norway Spruce 52 Pinaceae Picea abies  

Oak 40,336 Fagaceae Quercus   
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Orchard Apple 299 Rosaceae Malus   

Oriental Plane 86 Platanaceae Platanus orientalis  

Oriental Spruce 9 Pinaceae Picea orientalis  

Osier 3 Salicaceae Salix viminalis  

Pear 174 Rosaceae Pyrus   

Pedunculate Oak 29,204 Fagaceae Quercus robur  

Pin Oak 18 Fagaceae Quercus palustris  

Pine 155 Pinaceae Pinus   

Plane 40 Platanaceae Platanus   

Plantier’s Poplar 9 Salicaceae Populus nigra 
var. 

‘Plantierensis’ 

Plum 111 Rosaceae Prunus   

Pomegranate 1 Lythraceae Punica   

Pondersa Pine 2 Pinaceae Pinus ponderosa  

Poplar 311 Salicaceae Populus   

Purging Buckthorn 10 Rhamnaceae Rhamnus cathartica  

Purple Sycamore 4 Sapindaceae Acer pseudoplatanus var. ‘Purpureum’ 

Red Horse Chestnut 24 Sapindaceae Aesculus 
Aesculus × 

carnea 
 

Red Oak 144 Fagaceae Quercus rubra  

Redwood 51 Cupressaceae    

Roble/ Southern Beech 4 Nothofagaceae Nothofagus obliqua  

Rowan/ Mountain Ash 887 Rosaceae Sorbus   

Sapporo Autumn Gold 

Elm 
7 Ulmaceae Ulmus 

Davidiana var. 

japonica × 

pumila 

var.  ‘Sapporo 

Autumn Gold’ 

Sawara Cypress 5 Cupressaceae Chamaecyparis pisifera  

Scotch Laburnum 12 Fabaceae Laburnum  alpinum  

Scots Pine 3,508 Pinaceae Pinus sylvestris  

Service Tree 15 Rosaceae Sorbus torminalis  

Service Tree of 

Fontainebleau 
13 Rosaceae Sorbus latifolia  

Sessile Oak 3,909 Fagaceae Quercus petraea  

Silver Birch 957 Betulaceae Betula pendula  

Silver Lime 10 Malvaceae Tilia tomentosa  

Silver Maple 42 Sapindaceae Acer saccharinum  

Silver Pendant Lime 9 Malvaceae Tilia tomentosa var. ‘Petiolaris’ 

Single Leaved Ash 3 Oleaceae Fraxinus anomala  

Sitka Spruce 60 Pinaceae Picea sitchensis  

Small Leaved Lime 860 Malvaceae Tilia cordata  
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Smooth Japanese Maple 2 Sapindaceae Acer palmatum  

Smooth-leaved Elm 154 Ulmaceae Ulmus minor minor 

Southern Beech 11 Nothofagaceae Nothofagus   

Spindle 13 Celastraceae Euonymus   

Spruce 22 Pinaceae Picea   

Stone Pine 8 Pinaceae Pinus pinea  

Strawberry Tree 12 Ericaceae Arbutus unedo  

Swamp Cypress 35 Cupressaceae Taxodium distichum  

Sweet Chestnut 7,098 Fagaceae Castanea sativa  

Sycamore 4,149 Sapindaceae Acer pseudoplatanus  

Symonds Yat Whitebeam 1 Rosaceae Sorbus saxicola  

Tree of Heaven 9 Simaroubaceae Ailanthus altissima  

Tulip Tree 140 Magnoliaceae Liriodendron   

Turkey Oak 562 Fagaceae Quercus cerris  

Variegated Sycamore 12 Sapindaceae Acer pseudoplatanus 
var. ‘Simon-Louis 

Freres’ 

Walnut 157 Juglandaceae Juglans   

Wayfaring Tree 2 Adoxaceae Viburnum lantana  

Weeping Ash 3 Oleaceae Fraxinus excelsior var. ‘Pendula’ 

Weeping Beech 28 Fagaceae Fagus sylvatica var. ‘Pendula’ 

Western Hemlock 47 Pinaceae Tsuga heterophylla  

Western Red Cedar 129 Cupressaceae Thuja plicata  

Weymouth Pine 9 Pinaceae Pinus strobus  

Wheatley Elm 5 Ulmaceae Ulmus minor var. ‘Sarniensis’ 

White Poplar 32 Salicaceae Populus alba  

White Willow 352 Salicaceae Salix alba  

Whitebeam 167 Rosaceae Sorbus aria  

Wild Black Poplar 1,144 Salicaceae Populus nigra  

Wild Cherry 551 Rosaceae Prunus avium  

Wild Cherry Double Gean 17 Rosaceae Prunus avium var. ‘Plena’ 

Wild Pear 42 Rosaceae Pyrus pyraster  

Wild Service Tree 163 Rosaceae Sorbus torminalis  

Willow 911 Salicaceae Salix   

Wingnut 4 Juglandaceae Pterocarya   

Wych Elm 462 Ulmaceae Ulmus glabra  

Wych Elm var. Pendula  4 Ulmaceae Ulmus glabra var. ‘Pendula’ 

Yew 1505 Taxaceae Taxus   

Zelkova 4 Ulmaceae Zelkova   
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Table A2.3. Guide to the broad categories of land class and general included habitats. Adapted from ‘Land Cover 

Map 2015 – Dataset documentation V.1.0 (CEH, 2017)’.  

Broad Land class  Habitats included 

Broadleaf woodland Broadleaved, mixed and yew woodland 

Coniferous woodland Coniferous woodland 

Arable Arable and horticulture 

Improved grassland Improved grassland 

Semi-natural grassland Neutral, calcareous and acid grassland. Fen, marsh and swamp. 

Mountain, heath, bog Dwarf shrub heath (heather and heather grassland), bog and inland rock 

Saltwater Saltwater 

Freshwater Freshwater 

Coastal Supra-littoral and littoral rock, supra-littoral and littoral sediment, saltmarsh 

Built-up areas/ gardens Urban and suburban 

 

Table A2.4. Guide to the historic types of countryside, as defined in Rackham, 1976 - Trees and Woodland in the 

British Landscape. Each countryside type is deemed to be mutually exclusive, although a distinction between 

Highland and Highland – Cornwall has been made, although the landscape is deemed to be similar.  

Countryside Type  Broad Description 

Ancient 

Lowland countryside. Hedged and walled landscape that can be traced back often 

to even the Bronze age. Fields are irregular and of varied origin with varied and 

thick hedgerows, hamlets, medieval farms, pollards and many ancient trees.  

Planned 

Lowland countryside. Regular fields, straight roads and small woods, derived 

following the Enclosure Acts in the 18th and 19th centuries. Features exposed 

buildings, thin hawthorn hedgerows, few roads and big villages. Medieval woods 

and ancient trees remain in places where they were failed to be destroyed after the 

enclosures.  

Highland (including 

highland in Cornwall) 

Coverage of moors, dales and mountains. Ancient woods are generally composed 

of Oak (Quercus spp.) and management declined earlier in these areas than in the 

lowland ancient or planned countryside.   
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Table A2.5. Guide to the WRB Reference Soil Groups (RSG). Adapted from the ‘World reference base for soil 

resources 2014: International soil classification system for naming soils and creating legends for soil maps 

(2015)’.  

Characteristic RSG 

Soils with thick organic layers                                                                       Histosols 

Soils with strong human influence  

(e.g. intensive agriculture, containing artefacts)  

Anthrosols, Technosols 

Soils with limitations to Root Growth  

(e.g. permafrost, high concentration of soluble salts or Na, thin soil, 

alternate wet-dry conditions) 

Cryosols, Leptosols, Solonetz, 

Vertisols, Solonchaks 

Soils distinguished by Fe/Al Chemistry 

(e.g. stagnating water, presence of oxides or humus, accumulation of 

Fe etc.) 

Gleysols, Andosols, Podzols, 

Plinthosols, Nitisols, Ferralsols, 

Planosols, Stagnosols 

Accumulation of organic matter in mineral topsoil (e.g. dark topsoil, 

secondary carbonates etc.) 

Chernozems, Kastanozems, 

Phaeozems, Umbrisols 

Accumulation of moderately soluble salts or non-saline substances. 

(e.g. accumulation of secondary silica or carbonates) 
Durisols, Gypsisols, Calcisols 

Soils with clay-enriched subsoil 
Retisols, Acrisols, Lixisols, 

Alisols, Luvisols 

Soils with little or no profile differentiation (e.g. moderately 

developed, sandy, marine or sediments) 

Cambisols, Arenosols, Fluvisols, 

Regosols 
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Table A2.6. Guide to the agricultural classes. Adapted from ‘Agricultural Land Classification of England and 

Wales - Revised guidelines and criteria for grading the quality of agricultural land’ (Ministry of Agriculture, 

Fisheries and Food, 1988).  

Agricultural Class  Broad Description 

Grade 1 Excellent quality agricultural land 

Grade 2 Very good quality agricultural land 

Grade 3a Good quality agricultural land 

Grade 3b Moderate quality agricultural land 

Grade 4 Poor quality agricultural land 

Grade 5 Very poor quality agricultural land 

Urban Housing, industry, commercial, education, transport etc. 

Non-agricultural Golf courses, parkland, sports fields, allotments etc. 

Woodland Commercial and non-commercial woodland 

Agricultural buildings Permanent agricultural buildings, glasshouses etc. 

Land not surveyed Agricultural land that has not been surveyed 

Open water Lakes, ponds and rivers 
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A3: Appendix 3 – Additional tables and figures from Chapter 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A3.1 Histograms of ancient tree abundance (number of ancient trees per wood pasture) in England. Main: 

All wood pastures including wood pastures with and without ancient tree records. Ancient tree abundance ranges 

from 0 to 392, with 91.4% of wood pastures containing no ancient tree records. Inset: Only wood pastures that 

contain one or more ancient tree records are shown on a natural log (ln) scale. 
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Table A3.1 Model coefficients (and standard errors = SE), associated Z values and p values (p < 0.05:*, p < 

0.01:**, p < 0.001:***) for the ‘count’ and ‘zero’ components of the ZIP and ZINB models of ancient tree 

abundance in wood-pastures across England. 

a. Reference category is ‘Countryside type - Ancient countryside’ 

b. Reference category is ‘Soil Type – Clay’ 

c. Reference category is ‘Land Classification - Arable  

 

 ZIP ZINB 

Count Zero Count Zero 

Estimate 

(SE) 

Z Estimate 

(SE) 

Z Estimate 

(SE) 

Z Estimate 

(SE) 

Z 

Wood-pasture area (km2)  0.163 (0.006)  26.24*** -1.068 (0.063) -16.90***  0.705 (0.087)  8.124*** -2.875 (0.299) -7.211*** 

Distance from nearest town (km)  0.210 (0.026)  8.201***  0.116 (0.079)  1.462  0.203 (0.1220  1.667  0.279 (0.195)  1.429 

Distance from nearest city (km)  0.200 (0.023)  8.598*** -0.053 (0.070) -0.760  0.216 (0.102)  2.114* -0.070 (0.180) -0.390 

Distance from a royal forest (km) -0.093 (0.024) -3.880*** -0.114 (0.070) -1.628  0.284 (0.121)  2.353*  0.183 (0.181)  1.011 

Distance from a moated site (km) -0.186 (0.039) -4.836*** -0.101 (0.087) -1.160  0.053 (0.170)  0.309  0.072 (0.279)  0.259 

Distance from a Tudor deer park (km) -0.214 (0.026) -8.118***  0.105 (0.070)  1.498 -0.353 (0.090) -3.924***  0.009 (0.182)  0.051 

Distance from a medieval deer park (km) -0.268 (0.029) -9.330***  0.032 (0.074)  0.420 -0.028 (0.097) -0.290  0.212 (0.175)  1.214 

Distance from  a commons (km) -0.006 (0.019) -0.297  0.084 (0.062)  1.350 -0.210 (0.088) -2.393* -0.106 (0.176) -0.599 

Cover of ancient woodland (%) -0.021 (0.014) -1.525 -0.256 (0.058) -4.393***  0.050 (0.119)  0.423 -0.335 (0.183) -1.834 

Cover of traditional orchard (%) -0.122 (0.061) -2.008* -0.191 (0.129) -1.481 -0.093 (0.082) -1.133 -1.062 (0.768) -1.383 

Cover of forest or woodland (%)  0.367 (0.031)  11.71***  0.540 (0.092)  5.886***  0.189 (0.187)  1.010  0.778 (0.230)  3.390*** 

Countryside type -  Highlanda   0.595 (0.152)  3.910***  0.294 (0.380)  0.774  0.105 (0.778)  0.135 -0.110 (1.540) -0.072 

Countryside type -   Highland Cornwalla  0.351 (0.162)  2.172*  0.336 (0.380)  0.884  0.613 (0.782)  0.784  0.971 (1.612)  0.603 

Countryside type -   Planneda  0.622 (0.159)  3.917***  0.617 (0.389)  1.586  0.325 (0.790)  0.411  0.967 (1.614)  0.599 

Soil Type – Fe/Alb -0.695 (0.056) -12.07***  0.570 (0.183)  3.110** -0.545 (0.267) -2.042*  1.127 (0.471)  2.391* 

Soil Type – No Profileb -0.042 (0.040) -1.040 -0.094 (0.139) -0.677 -0.204 (0.207) -0.989 -0.103 (0.354) -0.291 

Soil Type – Limited Root Growthb -0.683 (0.107) -6.355*** -0.313 (0.282) -1.112  0.157 (0.505)  0.311  0.254 (0.871)  0.292 

Soil Type – Otherb  0.655 (0.055)  11.975***  0.075 (0.267)  0.282  1.076 (0.413)  2.605**  1.293 (0.599)  2.157* 

Distance from nearest major road (km) -0.260 (0.041) -6.358*** -0.031 (0.086) -0.356 -0.241 (0.128) -1.883 -0.193 (0.205) -0.940 

Land Classification – Broadleavedc  0.537 (0.065)  8.208*** -0.810 (0.234) -3.465***  0.538 (0.377)  1.429 -1.096 (0.648) -1.691 

Land  Classification  – Otherc -2.250 (0.174) -12.97*** -1.982 (0.457) -4.337*** -0.545 (0.442) -1.233 -3.083 (1.061) -2.905** 

Land  Classification  –  Grasslandc  0.147 (0.053)  2.755** -0.589 (0.140) -4.212***  0.120 (0.217)  0.552 -0.694 (0.349) -1.985* 

Land  Classification  –  Urbanc -1.826 (0.139) -13.14*** -0.459 (0.335) -1.372 -1.289 (0.442) -2.916** -1.136 (0.734) -1.549 

Agricultural Classification – Agricultural -0.921 (0.044) -20.79*** -0.431 (0.212) -2.032* -0.722 (0.287) -2.513* -1.224 (0.512) -2.389* 

Altitude (m) -0.220 (0.024) -9.168***  0.056 (0.081)  0.683 -0.175 (0.120) -1.466 -0.026 (0.209) -0.123 

Percent cover of buildings (%) -1.321 (0.084) -15.68*** -0.562 (0.148) -3.792*** -0.141 (0.184) -0.763 -0.023 (0.233) -0.099 

Minor road length per km2  0.566 (0.059)  9.677***  0.447 (0.146)  3.062** -0.836 (0.283) -2.953**  0.060 (0.423)  0.143 

National Trust owned land - TRUE  0.298 (0.038)  7.860*** -0.974 (0.192) -5.065***  0.695 (0.288)  2.416* -0.871 (0.691) -1.260 

Distance from nearest watercourse  (km) -0.074 (0.030) -2.518*  0.027 (0.066)  0.411 -0.105 (0.144) -0.729 -0.266 (0.285) -0.934 

Theta      -1.808 (0.092) -19.67***   

Log Likelihood -5327.016  -2282.361  

Number of parameters 60  61  

AIC 10774.03  4686.721 
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Table A3.2. Model coefficients (and standard errors = SE), associated Z values and p values (p < 0.05:*, p < 

0.01:**, p < 0.001:***) for the ‘count’ and ‘zero’ components of the ZINB models of ancient tree abundance of 

the two most common genera of ancient tree (Quercus (Oak) and Fraxinus (Ash)) in wood-pastures across 

England.  

a. Reference category is ‘Countryside type - Ancient countryside’ 

b. Reference category is ‘Soil Type – Clay’ 

c. Reference category is ‘Land Classification – Arable 

  

 

 Zero Count 

Quercus Fraxinus Quercus Fraxinus 

 
Estimate 

(SE) 

Z Estimate 

(SE) 

Z Estimate  

(SE) 

Z Estimate 

(SE) 

Z 

Wood-pasture area (km2) -3.790 (0.900) -4.210 ***  0.938 (0.531)  1.766  0.759 (0.111)  6.830 ***  1.523 (0.235)  6.515 *** 

Distance from nearest town (km) -0.111 (0.273) -0.406  1.756 (1.350)  1.301  0.123 (0.143)  0.857  0.459 (0.376)  1.221 

Distance from nearest city (km) -0.158 (0.311) -0.507  1.744 (1.104)  1.579  0.200 (0.142)  1.320  0.991 (0.265)  3.739 *** 

Distance from a royal forest (km)  0.447 (0.309)  1.447  2.315 (1.953)  1.185  0.117 (0.162)  0.718  0.840 (0.487)  1.726 

Distance from a moated site (km)  0.416 (0.383)  1.085 -0.795 (0.883) -0.901  0.019 (0.175)  0.110 -0.015 (0.347) -0.042 

Distance from a Tudor deer park (km)  0.019 (0.261)  0.072 -0.736 (0.656) -1.121 -0.189 (0.130) -1.453 -0.339 (0.312) -1.086 

Distance from a medieval deer park (km)  0.098 (0.267)  0.366 -2.210 (1.513) -1.461  0.028 (0.121)  0.235 -1.282 (0.405) -3.164 ** 

Distance from  a commons (km)  0.196 (0.294)  0.669 -0.185 (0.520) -0.356 -0.073 (0.130) -0.568 -0.253 (0.267) -0.946 

Cover of ancient woodland (%) -0.634 (0.294) -2.158 *  0.031 (0.328)  0.095  0.004 (0.120)  0.031  0.094 (0.191)  0.490 

Cover of traditional orchard (%) -0.934 (0.774) -1.207  2.357 (1.222)  1.929 -0.161 (0.169) -0.951  2.189 (0.692)  3.164 ** 

Cover of forest or woodland (%)  0.942 (0.357)  2.634 ** -0.134 (0.936) -0.143  0.152 (0.203)  0.750 -0.803 (0.385) -2.087 * 

Countryside type -  Highlanda   2.177 (1.813)  1.201 -1.694 (3.865) -0.438  0.602 (0.850)  0.709  0.450 (1.595)  0.282 

Countryside type -   Highland Cornwalla  1.764 (1.868)  0.945  2.018 (3.047)  0.662  0.489 (0.765)  0.639  2.075 (1.589)  1.306 

Countryside type -   Planneda  3.190 (1.947)  1.639  7.329 (3.283)  2.232 *  0.469 (0.810)  0.579  5.203 (2.103)  2.474 * 

Soil Type – Fe/Alb  1.957 (0.844)  2.319 * -0.625 (1.453) -0.430 -0.627 (0.321) -1.955 -0.882 (0.709) -1.244 

Soil Type – No Profileb  0.770 (0.533)  1.443  0.309 (0.961)  0.321  0.165 (0.258)  0.640  0.808 (0.565)  1.429 

Soil Type – Limited Root Growthb -3.011 (2.377) -1.266 -7.461 (4.003) -1.864 -1.705 (0.491) -3.476 *** -2.743 (1.168) -2.348 * 

Soil Type – Otherb  2.652 (0.889)  2.981 ** -7.537 (3.743) -2.013 *  1.298 (0.496)  2.819 ** -0.954 (1.209) -0.789 

Distance from nearest major road (km)  0.394 (0.441)  0.892  0.572 (0.478)  1.196 -0.009 (0.237) -0.039  0.280 (0.252)  1.109 

Land Classification – Broadleavedc -1.206 (0.886) -1.360 -1.467 (2.211) -0.664  0.875 (0.430)  2.032 *  1.096 (0.911)  1.203 

Land  Classification  – Otherc -4.364 (1.938) -2.252 *  0.735 (2.351)  0.313  0.082 (0.523)  0.157  0.835 (1.511)  0.553 

Land  Classification  –  Grasslandc  0.206 (0.533)  0.388  1.033 (1.012)  1.021  0.443 (0.274)  1.614  1.548 (0.563)  2.750 ** 

Land  Classification  –  Urbanc -1.497 (1.123) -1.333  0.772 (3.758)  0.206 -1.180 (0.531) -2.224 * -1.228 (1.645) -0.747 

Agricultural Classification – Agricultural -2.118 (0.924) -2.292 * -5.156 (2.881) -1.790 -0.580 (0.334) -1.739 -2.393 (0.910) -2.629 ** 

Altitude (m)  0.033 (0.314)  0.104  1.085 (0.519)  2.090 * -0.554 (0.159) -3.491 ***  1.191 (0.223)  5.251 *** 

Percent cover of buildings (%) -0.063 (0.372) -0.169  4.810 (2.842)  1.692 -0.288 (0.219) -1.315  1.208 (1.679)  0.719 

Minor road length (km) -0.555 (0.624) -0.890  3.270 (2.830)  1.155 -1.120 (0.325) -3.443 *** -0.058 (1.409) -0.041 

National Trust owned land - TRUE -0.581 (0.872) -0.665  5.716 (2.504)  2.282 *  0.945 (0.356)  2.656 **  4.237 (0.946)  5.005 *** 

Distance from nearest watercourse  (km) -0.919 (0.366) -2.513 * -2.352 (1.245) -1.889 -0.308 (0.121) -2.552 * -0.913 (0.390) -2.341 * 
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A5.1: Appendix 5.1 - Additional tables and figures from Chapter 5 

 

 

Fig. A5.1.1 Spatial positions of the 10 randomly placed hypothetical ‘town centres’ across the simulation study 

area for each of the 10 simulation repetitions.  

 

 

Fig. A5.1.2 AIC evaluation of model performance for a non-zero-inflated generalised linear model (GLM4) 

including both the bias and biological predictor, and two zero-inflated models which either exclude (ZI2) or 

include (ZI6) the bias predictor in the zero component. Mean AIC values (± SE and data range) are shown across 

the 10 repetitions of randomly placed ‘town centres’ for three hypothetical simulated species: one species 

simulated randomly with no biological preferences (random species) and two with biological preferences of high 

altitude (altitude species and altitude_randomised (here termed altitude_2) species (no spatial autocorrelation)). 

Two different sampling strategies (random and biased) are considered.  
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Fig. A5.1.3 Evaluation of model predictions of abundance (based on D = ‘deviation from the best model’) for 

three hypothetical organisms (one with randomly simulated occurrences = random species, and two with 

occurrences simulated based on biological preferences = altitude species or altitude_randomised species (here 

termed altitude_2 species)). Mean D (± SE and data range) is shown for each sampling strategy (random or 

biased) across 10 different sets of hypothetical ‘town centres’ for each model. There are four non-zero-inflated 

generalised linear models, and six zero-inflated (ZI) models. For explanations of the structure of each model, see 

Tab. 3.  Two types of prediction were evaluated: the count abundance predictions from the count component of 

the ZI models and the sampling abundance predictions from the whole of the ZI models or from the GLMs. Note 

the different scales on the vertical axes for the two types of predictions.  
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Fig. A5.1.4 Model coefficients estimating the effects of a biological predictor (altitude or altitude_randomised 

(here termed altitude_2)) and a sampling bias predictor (distance to nearest hypothetical town) on the abundance 

of a hypothetical organism from a non-zero-inflated generalised linear model containing both the bias and 

biological predictor (GLM4), and two zero-inflated models which either exclude (ZI2) or include (ZI6) the bias 

predictor in the zero component. Zero-inflated (ZI) models include components which model both the count (C) 

of organisms per grid cell, and excess zeros (Z) caused by zero-inflation. For explanations of the structure of each 

model, see Tab. 3. Median model coefficients and range are shown for models fitted with data simulated using 

two different sampling strategies: random sampling and biased sampling. Results highlighted in red boxes 

indicate where the model is including the bias variable as a predictor of abundance where it should not. Black 

boxes are results that are correctly predicted.  
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Fig. A5.1.5 Spearman’s Rank correlation coefficients (rs) between the model predictors (altitude/ 

altitude_randomised (here termed altitude_2) and distance from nearest town) and model predictions under two 

sampling strategies (random and biased). The top panel represents results for altitude species, whereas the bottom 

panel represents results for altitude_randomised species. These predictions are either abundance predictions 

from the whole model (shown for the generalised linear models (GLMs), sampling abundance predictions from 

the zero-inflated (ZI) models, count abundance predictions of true abundance (shown for the ZI models) and 

predictions of the probability an observation is an excess zero (shown for the ZI models). GLM3 and the zero 

component of ZI2 do not include the bias predictor, whereas GLM4 and the zero component of ZI6 do contain the 

bias predictor. Values represent the mean coefficients (including standard error (se)) across the 10 simulated sets 

of ‘town centres’ Coefficients are colour-coded based on strength: the darker the colour, the stronger the 

correlation. Red values represent positive correlations, whereas blue represent negative correlations.    
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Fig. A5.1.6 Example distribution maps for a hypothetical species whose occurrence is positively influenced by 

altitude (altitude species) from two binomial generalised linear models (GLMs) and two Maximum Entropy 

(MaxEnt) models. Maps are compared to maps of predicted abundance produced using the count abundance 

predictions (from the count component only) from a zero-inflated (ZI) model (ZI6) which inclues the bias in 

predictor in both components of the model. BinomialGLM1 and MaxEnt1 include only the biological predictor of 

altitude, whereas BinomialGLM2 and MaxEnt2 also include the bias predictor of distance from the nearest town. 

Unlike the zero-inflated (ZI) model, only one prediction can be obtained from the whole model and therefore will 

contain influences of sampling bias if present. Models were built with either data collected by random or biased 

sampling. Individual cells are colour coded based on abundance for the ZI abundance predictions or on 

probability of presence for the binomial GLM and MaxEnt predictions (high = red, low = blue).  
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Table A5.1.1 Number of grid cells (at 1km2 resolution) across the study area above each altitude threshold (m) 

used for Simulation 2. 

Threshold (m) Number of cells above threshold 

0 10,000 

50 9,068 

100 5,329 

125 3,364 

150 1,993 

175 1,036 

200 396 
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A5.2: Appendix 5.2 - Simulation methods and results using average temperature as an 

alternative biological predictor. 

 

Methods 

Simulation 1 (Accuracy of species distribution maps from ZI models) was repeated using an alternative 

biological predictor to altitude - average temperature in oC across the study area between 1970-2000 

obtained from WorldClim (WorldClim, accessed 10/05/18) at a 30-second resolution, and then 

converted to a 1km2 resolution. Following the protocol of Simulation 1, a species with 5000 occurrence 

points was simulated across the study area based on the temperature layer converted to a probability 

layer using a logarithmic scale; the species was simulated to prefer higher average temperatures (Fig. 

A5.2.1). The same bias predictor of distance to nearest town centre was used, and the simulation was 

again repeated 10 times for each set of town centres. All of the model structures in Table 5.3 were used. 

Model predictive power was assessed using ‘deviation from the best model’ (‘D’).  

 

Results 

Results from the alternative run of Simulation 1 with the species preferring high temperatures echo 

those using altitude, in that the count abundance predictions provide the most accurate estimates 

(according to the metric ‘D’) of true species abundance (Fig. A5.2.2). Again, the GLMs and the ZI 

sampling abundance predictions perform poorly in comparison and are unable to capture the effect of 

sampling bias or model successfully the excess zeros. Of the ZI models, all with the exception of ZI2 

(where the bias predictor is omitted from the zero component but included in the count component), are 

able to provide good estimates of true species abundance. The zero component of the ZI models is again 

able effectively to identify and model the sampling bias (Fig. A5.2.1). Although the correlations 

between distance from nearest town centre and average temperature are higher than for altitude (which 

is reflected in the zero component of the ZI6 models which include the bias predictor in this component), 

the ZI models are still able to produce accurate abundance maps using the count abundance predictions.  
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Fig. A5.2.1 Example maps showing predicted abundance (count abundance and sampling abundance– see main 

text) and excess zeros (zero) for a hypothetical species whose occurrence is positively influenced by mean annual 

temperature, from two zero-inflated models (ZI2 and ZI6). Both models include a biological predictor (mean 

temperature) of both abundance and excess zeros, and a bias predictor (distance from the nearest town) as a 

predictor of abundance. ZI6 also includes distance from the nearest town as a predictor of excess zeros. Models 

were built with either data collected by randomly sampling grid cells (random) or with sampling bias (biased). 

Individual cells are colour coded based on abundance for the abundance predictions or on probability of being 

an excess zero for the zero predictions (high = red, low = blue).  
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Fig. A5.2.2 Evaluation of model predictions of abundance (based on D = ‘deviation from the best model’) for a 

hypothetical organism with a biological preference for warm temperatures. Mean D (± SE and data range) is 

shown for each sampling strategy (random or biased) across 10 different sets of hypothetical ‘town centres’ for 

each model. There are four non-zero-inflated generalised linear models, and six zero-inflated (ZI) models. For 

explanations of the structure of each model, see Tab. 3.  Two types of prediction were evaluated: the count 

abundance predictions from the count component of the ZI models and the sampling abundance predictions from 

the whole of the ZI models or from the GLM 
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A5.3: Appendix 5.3 - Derivation of D: ‘Deviation from the best model’ 

Model predictions from Simulation 1 and Simulation 2 were evaluated using a novel metric derived 

from first principles that I named ‘deviation from the best model’ (D). This metric compares the 

probability of obtaining the true (raw) abundance (i.e. before sampling occurs) in each cell based on the 

model prediction, with the probability of obtaining a prediction equal to the true (raw) abundance i.e. 

predictions produced by a perfect model (Eq. 5.1). For each grid cell i, the probability of obtaining the 

true (raw) abundance (pAi) was estimated from a Poisson probability distribution with a mean equal to 

the predicted mean abundance (�̅�i) for that cell. The summed natural logs of these probabilities across 

the study area represents the overall probability of obtaining the true (raw) abundances under the model 

predictions. This is then expressed as a ratio against the summed natural log probabilities for each cell 

(q�̅�i) that would be obtained for a perfect model where the true (raw) abundance is equal to the predicted 

mean abundance. 

Eq. 5.1 

 

The rationale behind creating a new evaluation metric is that the generation of occurrence points was 

based on a Poisson process and was deliberately zero-inflated, so there are an extremely large proportion 

of 0’s and 1’s, and the highest ‘abundance count’ is only six. Therefore, a metric based on the probability 

of obtaining the raw data from the model, rather than a direct assessment of the actual values, would 

provide a more appropriate measure of model performance and fit that was not as weighted by the large 

proportion of zeroes in the data. Using traditional binary presence-absence classification metrics would 

results in penalties against large predictions of abundance in comparison to the true raw abundance: the 

observed values of 0 and 1 which are most common in this dataset would score more highly using binary 

classification methods. The magnitude of the difference between prediction and true (raw) abundance 

observations will scale with the mean, leading to greater “inaccuracy” in cells with large numbers of 

individuals, regardless of the model used. Therefore, a metric that considers the actual abundance value 

rather than just presence-absence is likely to provide a more accurate assessment of model predictive 

power.   

𝐷 =  
∑( ln (𝑝𝐴𝑖|�̅�𝑖))

∑(ln (𝑞�̅�𝑖|�̅�𝑖 ) )  
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A6.1: Appendix 6.1 - Species distribution model parameter tuning and evaluation of 

alternative methods of splitting of training and test data. 

 

Introduction 

When fitting any species distribution model (SDM) the choice of parameters can highly influence the 

models accuracy and performance (Fourcade et al., 2018). Maximum Entropy modelling has a variety 

of variable parameters that can be used to tune the model and produce a model of best fit (Phillips et 

al., 2009). Two of these parameters, feature class (FC) and regularisation measure (RM) are among the 

most useful and allow optimisation between overfitting and goodness of fit (Muscarella et al., 2014; 

Fourcade et al., 2018). In addition, the method of splitting training and test data for model evaluation 

has been shown to have strong influences on the models performance (Wenger & Olden, 2012; Bahn 

& McGill, 2013). One of the most common methods involves selecting a random proportion of 

occurrence (and background) records, usually between 20-50% as a ‘pseudo-independent’ test data set 

(Fielding & Bell, 1997). Alternative methods involve splitting the data into k number of groups (k-fold 

cross validation) and using each group to subsequently act as the test data, and the other groups as the 

training set. However, these methods of random splitting have been critised for underestimating model 

error and being affected by spatial autocorrelation problems (Burnham & Anderson, 2003; Araújo et 

al., 2005). Instead, non-random, geographical splitting of the data may be more appropriate, and can 

test the extrapolation ability of the model (Radosavljevic & Anderson, 2014; Roberts et al., 2017). 

Initial analysis was carried out to evaluate the best method to split the test and training data, as well as 

the best tuning parameter combination of FCs and RMs for the baseline SDM of ancient and veteran 

trees across England with no bias correction method.  

 

Methods and analysis 

MaxEnt models of ancient and veteran tree distributions across England were tuned and fitted in R (R 

Core Team, 2018) using the ‘ENMeval’ package in R (Muscarella et al., 2014). Initial model tuning 

using combinations of FCs ‘Linear (L)’, ‘Linear and Quadratic (LQ)’, ‘Linear, Quadratic and Product 

(LQP)’ or ‘Linear, Quadratic, Product, Threshold and Hinge (LQPTH)’ and RMs of 0.5, 1, 2, 3, 4, and 
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5 was undertaken for the model with no bias correction method applied. Model predictive power was 

evaluated using three methods of splitting the data into training and test data. The first method involved 

geographic splitting of the data into four spatial blocks, from which one was randomly assigned as test 

data and the others as training data (‘Block’). The second method was similar but split the data into a 

spatial checkerboard design (‘Check’), dividing the area into bins at the resolution of the raster 

predictors. The final method used 10 fold cross validation (‘Kfold’). The splitting was carried out 10 

times, with a separate model run for each, resulting in a total of 720 models (four feature classes (FC) 

x six regularisation methods (RM) x 3 splitting methods x 10 repetitions). Model performance was 

evaluated using corrected Akaike information criterion (AICc) and ‘Area Under the Curve’ (AUC). 

Generalised Linear Mixed Models (GLMMs) were used to analyse significant differences between 

model performance (AICc and AUC) in relation to FC, RM and splitting methods. GLMMs were fitted 

in R using package ‘lme4’ (Bates et al., 2015) separately for training and test data specifying a Gaussian 

distribution, and included splitting method, FC and RM as fixed factors, and repetition run as a random 

factor. Backward selection based on AIC was used to find the most parsimonious model with the most 

influential predictors.  

 

Results 

Model performance and predictive power differed significantly across splitting method, FC and RM 

(Table A6.1.1). When considering each parameter separately, the most effective tuning parameters 

based on both mean AICc and AUC (train and test) were the ‘Kfold’ splitting method, FC ‘LQ’ and 

RM 5 (Fig. A6.1.1 & A6.1.2). However, when considering interactions between parameters, an increase 

in RM only had a significantly positive influence on model performance (AICc) across FCs ‘LQP’ or 

‘LQPTH’, and had little effect on model with ‘L’ or ‘LQ’ FCs (Fig. A6.1.1). Therefore, the choice of 

RM when using either ‘L’ or ‘LQ’ FCs appears to be of little consequence, and the default version of 1 

may be the best choice. Additionally, there was a significant interaction between splitting method and 

FC (Table A6.1), with significantly poorer model performances with FC ‘LQP’ or ‘LQPTH’, 

particularly for the ‘Block’ splitting method (Fig. A6.1.1). Therefore, based on AICc, the selection of 
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the best tuning parameters should be based on a ‘Kfold’ splitting method and FC ‘LQ’, with any RM. 

When considering AUC, all parameters and interactions had a significant influence on the model 

predictive power (Table A6.1.1). Again, the worst performing models used the ‘Block’ splitting method, 

‘LQP’ and ‘LQPTH’ FCs and lower RMs), particularly when assessing the test data (Fig. A6.1.2). 

 

 

Fig. A6.1.1. Corrected Akaike Information Criterion (AICc) for each of the model tuning combinations of splitting 

method into training and test data (‘Block, ‘Check’ or ‘Kfold’), feature class (FC) (‘Linear (L)’, ‘Linear and 

Quadratic (LQ)’, ‘Linear, Quadratic and Product (LQP)’ or ‘Linear, Quadratic, Product, Threshold and Hinge 

(LQPTH)’) and regularisation measure (RM) (0.5, 1, 2, 3, 4, 5). Mean values (±SE) are shown across the 10 

repetitions of model fitting.  
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Fig. A6.1.2 Area Under the Curve (AUC) for each of the model tuning combinations of splitting method into 

training and test data (‘Block, ‘Check’ or ‘Kfold’), feature class (FC) (‘Linear (L)’, ‘Linear and Quadratic (LQ)’, 

‘Linear, Quadratic and Product (LQP)’ or ‘Linear, Quadratic, Product, Threshold and Hinge (LQPTH)’) and 

regularisation measure (RM) (0.5, 1, 2, 3, 4, 5). Mean values (±SE) are shown across the 10 repetitions of model 

fitting for both the training and test data set.  
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Table A6.1.1 Significance of tuning parameters in relation to model fitting (corrected Akaike Information 

Criterion: AICc) and model training and testing predictive power (Area Under the Curve: AUC). Parameters 

tested include the method of splitting data into training and testing sets (‘Block’, ‘Check’ or ‘Kfold’ methods), 

regularisation measures (RM) (0.5, 1, 2, 3, 4 and 5) and feature classes (FC)  (‘Linear (L)’, ‘Linear and Quadratic 

(LQ)’, ‘Linear, Quadratic and Product (LQP)’ or ‘Linear, Quadratic, Product, Threshold and Hinge (LQPTH)’). 

Results shown are based on a Type III analysis of variance (ANOVA) F test (with degrees of freedom) and 

significance levels of the p value (* < 0.05, ** < 0.01, *** < 0.001).   

 

 

 

 

 

 

 

 

Conclusion 

The choice of tuning parameters is an important step in model fitting, as well as the division of the 

training and test data for model evaluation. Choice of parameters is highly model specific and should 

be carried out before fitting and interpreting any SDM. In all cases, ‘Kfold’ data splitting was the most 

effective way to divide training and test data, regardless of any other parameter. Therefore, in all 

subsequent models of bias correction I have chosen to use this method. For the baseline model of ancient 

and veteran tree distributions with no bias correction, the combination of parameters which produce the 

model with both the highest performance and fit, as well as predictive power were using FC ‘LQ’ and 

RM 5, hence these parameters are the chosen ones for this model. For all other sampling bias corrected 

distribution models, models were fitted using all combinations of FC and RM as the best combination 

is likely to be highly variable across models. The best model for each bias correction method was then 

chosen based on AICc. 

 

 AICc AUCtrain AUCtest 

RM 28.26 (5,635)*** 20.18 (1,687)*** 184.1 (1,687)*** 

FC 447.9 (3,635)*** 19.77 (3,687)*** 129.3 (3,687)*** 

Splitting method 5.915 (2,635)** 7.423 (2,687)*** 358.5 (2,687)*** 

RM:FC 14.08 (15,635)*** 21.26 (3,687)*** 61.16 (3,687)*** 

RM: Splitting method 0.336 (10,635) 3.114 (2,687)* 48.33 (2,687)*** 

FC: Splitting method 2.399 (6,635)* 5.996 (6,687)*** 28.97 (6,687)*** 

RM: FC: Splitting method 0.367 (30,635) 3.045 (6,687)** 7.450 (6,687)*** 
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A6.2: Appendix 6.2 – Example survey form and instructions for field survey volunteers 

 
Please note this square was not used in the field model validation work, it was purely selected for trial 

purposes due to its location and to use as the example to inform the volunteers of the methods and types 

of areas they were required to survey. Therefore, not all parts of the square (priority areas or roads) 

were outlined here, as they would have been for a true verification square: only a sample of areas and 

roads were digitised for demonstration purposes. 

 

A worked example: Sections completed by a volunteer are in RED 
 

1.1 - Your Grid Square and maps. 
________________________________________________________________________ 

 
Grid square ID: 37 
Central Grid Reference (i.e. for the centre of the grid square): AB 12345 67890  
Please see maps of this grid square below 
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Key 
 
Orange dots = potential parking spaces/ areas 
 
Green lines = paths or roads to survey  
 
Blue lines = can take a quick look from afar if possible/ time permitting 
 
Shaded areas = examples of potential priority areas 
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Please use these maps to mark on the areas (left) or roads (right) you have covered.  

 

 
1.2 - Survey summary 
 
Please complete this table and clearly and neatly as possible. 
 

Area Area Priority Rating 
Time 
spent on 
area (min) 

Estimated % 
cover of area 

Number of 
ancient trees 

Number of 
veteran trees 

1 
Survey whole area where 
possible. Priority area. 

30 80 0 1 

2 
Survey whole area where 
possible. Priority area.  

45 95 1 2 

3 
Survey whole area if 
accessible and possible 

No access 0 0 0 

4 
Survey if time permits 
 

20 30 0 0 

5 
Survey if time permits 
 

15 45 0 0 

6 
Survey if time permits 
 

No time 0 0 0 

7 
Survey if time permits 
 

No time 0 0 0 

8 
Check accessibility and 
survey if time permits 

No access 0 0 0 

9 
Check accessibility and 
survey if time permits 

No access 0 0 0 

… … … … … … 

TOTAL  1 3 
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1.3 – Tree Recording Form 
_________________________________________________________________________ 
 
Please record any ancient and veteran trees that you find using the table below. 
 
Please make sure that you specify which “area number” each tree is in. This should 
correspond to the “area numbers” in the map in section 1.1. 
 
Record as much information as you can.  
However, if all you can record is the area number and veteran status (ancient / veteran) then 
this is fine for the purposes of this project. 
 
(example text is shown in red) 
 
Please complete this table and clearly and neatly as possible. 

 
 
 
 

Please use this space for any other comments on the survey or trees… 
 
No further comments 

 
 
 
 
 
 
 
 
 
 

Area Tree 
No. 

Ancient/ 
Veteran 

Species  Grid Reference Photo 
(Y/N) 

Comments 

1 1 Veteran Oak (pedunculate) AB XXXXX XXXXX Y  

2 2 Ancient Oak (pedunculate) AB XXXXX XXXXX Y  

2 3 Veteran Beech AB XXXXX XXXXX Y  

2 4 Veteran Willow AB XXXXX XXXXX N Not close enough to take photo 
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1.4 - Map of Approximate Tree Locations 
_________________________________________________________________________ 
 
During the survey, please plot the locations of any ancient and veteran trees that you 
find during the survey. 
 
Please also make sure that there is a 10 figure grid reference for each tree that you 
record. 
 
Please make sure that you label each tree e.g. 1, 2, 3, 4 etc. This number should 
correspond to the tree number on your tree recording form above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

1 

2 

3 

4 
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A6.3: Appendix 6.3 – Additional figures from Chapter 6 

 

 

Fig. A6.3.1 Number of each species/ genera (common names shown) of tree that was able to be identified out of 

the 52 surveyed grid squares from the field verification work.  
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Fig. A6.3.2 Scatterplots of model predictions (±SE) from the ancient and veteran tree distribution model fitted 

using systematic sampling (SS) at a 2-km resolution (i.e. the best overall performing Maximum Entropy (MaxEnt) 

model) or the Zero-Inflated (ZI) negative binomial (NB) model in relation to estimates from the 52 surveyed grid 

squares of a & c) the raw field verification abundance estimates and b & d) estimates of density of trees (including 

estimates of survey effort). Two grid squares (circled in red) are deemed to be outliers. 

 

  

 

a) 

b) 

c) 

d) 
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Fig. A6.3.3 Predicted maps of ancient and veteran tree distributions (or abundance from the ZI models) from each model with and without a bias correction method. Predicted 

areas of high suitability are represented in red, whereas predicted areas of low suitability are represented in blue. Map predictions from each model are not shown to the same 

colour scale. 
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Fig. A6.3.4 Calculated differences between predicted maps of ancient and veteran tree distributions with no correction and each predicted distribution map from a model using 

a bias correction method. Abundance predictions from the ZI models were first scaled between 0 and 1 before calculating their difference from the probability predictions from 

the model with no bias correction, Blue squares represent areas that are predicted to be less suitable following the application of bias correction. Difference maps from each 

model are not shown to the same colour scale.  

 

 


