
University of Nottingham

PhD Thesis

Modularity in Artificial Neural
Networks

Student:
Mohammed Amer

Supervisor:
Dr. Tomás Maul

Co-Supervisor:
Dr. Iman Yi Liao

Faculty of Science and Engineering
School of Computer Science

June, 2021

Acknowledgements
I am indebted to Dr. Tomás for his endless support on the professional and

the personal levels during the long PhD journey. I was really lucky to have the
opportunity to be his student and to work under his supervision. I would also
like to thank my co-supervisor, Dr. Iman, for her valuable advice and feedback
during my PhD. I wish to show my gratitude to all my colleagues, especially
Moataz, Ijaz, Khoa and Tuong. It was really a privilege to be around you.

No words can really express how indebted I am to my father, mother and
brother for always being there for me. Their endless caring is the reason I am
writing these words right now. I can not express how much I am blessed to have
Asmaa, my wife, beside me during the rough and the good times. Without
her support, I could not have made it this far. Special mention to my little
daughters, Malika and Farida, who were my shining stars during this journey.
I dedicate this to Hamid Abdullatif, my grandfather.

Publications and Grants
• Amer, M., Maul, T. A review of modularization techniques in

artificial neural networks. Artif Intell Rev 52, 527–561 (2019).
https://doi.org/10.1007/s10462-019-09706-7

• Amer, M., Maul, T. Path Capsule Networks. Neural Process
Lett 52, 545–559 (2020). https://doi.org/10.1007/s11063-020-
10273-0

• Amer, M., Maul, T. Weight Map Layer for Noise and Adver-
sarial Attack Robustness. arXiv:1905.00568 (2019). [Submit-
ted]

• Four quarters, each of 200k CPU hours, at HPC Midlands+
(Athena), which was funded by the EPSRC on grant EP/P020232/1
as part of the HPC Midlands+ consortium.

Abstract
Artificial neural networks are deep machine learning models that excel at

complex artificial intelligence tasks by abstracting concepts through multiple
layers of feature extraction. Modular neural networks are artificial neural net-
works that are composed of multiple subnetworks called modules. The study
of modularity has a long history in the field of artificial neural networks and
many of the actively studied models in the domain of artificial neural networks
have modular aspects. In this work, we aim to formalize the study of mod-
ularity in artificial neural networks and outline how modularity can be used
to enhance some neural network performance measures. We do an extensive
review of the current practices of modularity in the literature. Based on that,
we build a framework that captures the essential properties characterizing the
modularization process. Using this modularization framework as an anchor, we
investigate the use of modularity to solve three different problems in artificial
neural networks: balancing latency and accuracy, reducing model complexity
and increasing robustness to noise and adversarial attacks. Artificial neural
networks are high-capacity models with high data and computational demands.
This represents a serious problem for using these models in environments with
limited computational resources. Using a differential architectural search tech-
nique, we guide the modularization of a fully-connected network into a modular
multi-path network. By evaluating sampled architectures, we can establish a
relation between latency and accuracy that can be used to meet a required soft
balance between these conflicting measures. A related problem is reducing the
complexity of neural network models while minimizing accuracy loss. CapsNet
is a neural network architecture that builds on the ideas of convolutional neural
networks. However, the original architecture is shallow and has wide layers
that contribute significantly to its complexity. By replacing the early wide
layers by parallel deep independent paths, we can significantly reduce the com-
plexity of the model. Combining this modular architecture with max-pooling,
DropCircuit regularization and a modified variant of the routing algorithm, we
can achieve lower model latency with the same or better accuracy compared
to the baseline. The last problem we address is the sensitivity of neural net-
work models to random noise and to adversarial attacks, a highly disruptive
form of engineered noise. Convolutional layers are the basis of state-of-the-art
computer vision models and, much like other neural network layers, they suf-
fer from sensitivity to noise and adversarial attacks. We introduce the weight
map layer, a modular layer based on the convolutional layer, that can increase
model robustness to noise and adversarial attacks. We conclude our work by a
general discussion about the investigated relation between modularity and the
addressed problems and potential future research directions.

Contents

1 Introduction 1
1.1 An Overview of Deep Learning 1
1.2 Basic Topologies of ANNs . 4
1.3 Learning Types . 6
1.4 Application Domains . 7
1.5 Challenges to Deep Learning . 8

1.5.1 Data Greediness . 8
1.5.2 Overfitting and Underfitting 8
1.5.3 Complexity . 9
1.5.4 Adversarial Attacks . 10
1.5.5 Catastrophic Forgetting 11

1.6 Biological Origins of Modularity 12
1.7 Modularity in ANNs . 13
1.8 Why Modularity? . 14
1.9 Challenges to Modularity . 15
1.10 Our Research . 17

1.10.1 Review of Modularity in ANNs 19
1.10.2 Balancing Latency and Accuracy 20
1.10.3 Reducing Complexity and Maintaining Accuracy 21
1.10.4 Reducing Sensitivity to Noise and Adversarial Attacks . 23

1.11 Experimental Design and Implementation 24
1.11.1 MNIST . 24
1.11.2 CIFAR10 . 25
1.11.3 iWildCam2019 . 25

1.12 Thesis Guide . 25

2 A Review of Modularization Techniques in Artificial Neural
Networks 27
2.1 Preface . 27
2.2 Introduction . 29
2.3 Modularity . 33
2.4 Modularization Techniques . 37

2.4.1 Domain . 39
2.4.1.1 Manual . 40
2.4.1.2 Learned . 42

2.4.2 Topology . 43
2.4.2.1 Highly-Clustered Non-Regular (HCNR) 44
2.4.2.2 Repeated Block 46
2.4.2.3 Multi-Architectural 52

2.4.3 Formation . 53
2.4.3.1 Manual . 54
2.4.3.2 Evolutionary 55
2.4.3.3 Learned . 56

2.4.4 Integration . 58
2.4.4.1 Arithmetic-Logic 58
2.4.4.2 Learned . 59

2.5 Case Studies . 62
2.6 Conclusion . 63

3 Balancing Accuracy and Latency in Multipath Neural Net-
works 65
3.1 Preface . 65
3.2 Introduction . 66
3.3 Multipath Neural Networks . 69
3.4 Neural Network Compression 69
3.5 Neural Architecture Search . 70
3.6 Methodology . 72
3.7 Experiments . 78

3.7.1 Results . 80
3.8 Discussion . 85
3.9 Conclusion . 86
3.10 Chapter Acknowledgements . 86

4 Path Capsule Networks 87
4.1 Preface . 87
4.2 Introduction . 89
4.3 Capsule Network . 90
4.4 Multipath Architectures . 92
4.5 Methods . 93
4.6 Results . 96

4.6.1 PathCapsNet Architecture 96
4.6.2 MNIST . 99
4.6.3 CIFAR10 . 99
4.6.4 iWildCam2019 . 100
4.6.5 RSA Analysis . 100

4.7 Discussion . 104
4.8 Conclusion . 106
4.9 Chapter Acknowledgements . 107

5 Weight Map Layer for Noise and Adversarial Attack Robust-
ness 108
5.1 Preface . 108
5.2 Introduction . 109
5.3 Adversarial Attack . 111
5.4 Methods . 113
5.5 Experiments . 114

5.5.1 Results . 117
5.6 Discussion . 120
5.7 Conclusion . 126
5.8 Chapter Acknowledgements . 126

6 Discussion and Conclusion 127

A Acronyms 131

References 135

Chapter 1

Introduction

1.1 An Overview of Deep Learning
Machine Learning (ML) is a branch of Artificial Intelligence (AI) that ap-
proaches complex tasks, mainly the ones that do not lend themselves to classical
types of well-defined algorithms, through tuning mathematical models using a
corpus of data in a process known as learning. Learning is a process that
aims at increasing the performance of some mathematical model on a given
task by exposing it to experience, that is, a suitable form of information or
data. While classical ML approaches revolutionized the way many problems
are solved, they fall short on many serious applications like complex image
recognition, voice synthesis and advanced Natural Language Processing (NLP)
tasks like language translation, voice synthesis and semantic analysis, among
others.

Many factors contributed to these limitations and two of the main factors
were the reliance on shallow models and manual feature engineering. Shal-
low models, like linear regression, logistic regression and Support Vector Ma-
chine (SVM) usually depend on a variant of a linear transformation, that is
followed by some non-linearity when needed. This single step of feature pro-
cessing limits the ability of models to discover and distil defining features from
the data and, hence, the performance of the models is very dependant on the
process of manually designing good data features. Since these types of complex
problems are ill-defined in terms of classic rule-based algorithms, this process of
manual engineering was to a great extent a blind process, guided only by rough
heuristics.

Deep learning (Goodfellow et al., 2016) is a wide set of related techniques
that aims at mitigating the mentioned limitations of classical ML through com-
position of distributed features, extracted over multiple layers of sequential and
parallel processing. Deep learning and Artificial Neural Networks (ANNs) have
a long history in computer science and have gone through different waves from
cybernetics passing by the connectionism movement till reaching the current
resurgence by the term deep learning. While classical ML approaches depended

1

Chapter 1. Introduction

mostly on shallow learners and manual feature engineering, depth of process-
ing, feature composition and distributed representations are fundamental to
deep learning.

While deep learning is a wide umbrella encompassing many techniques,
ANNs are the most commonly researched and applied category of models. The
inspiration for ANNs came from biological neural circuitry. However, they di-
verged from their biological origins over the years and took a mainly pragmatic
approach, oriented towards engineering problems without clinging faithfully to
mimicking their biological counterparts.

Biological neural circuits consist mainly of a densely connected network of
cells, called neurons, that are specialized for electrical conduction and chem-
ical transmission. Every neuron consists of a cell body (called soma) having
specialized protruding branches, called dendrites, generally responsible for re-
ceiving signals from other neurons and another protruding cylindrical structure,
called axon, which generally transmits signals to other neurons. These circuits
perform information processing through receiving, integrating and transmitting
signals between each others (Purves et al., 2004).

Figure 1.1. A conceptual diagram of a fully-connected
feedforward neural network with 3 hidden layers and output

size of 5.

2

Chapter 1. Introduction

Inspired by this distributed processing model, ANNs are parametric models
that conceptually consist of a set of interconnected neurons. Each neuron (or
node) is a parameterized function that performs a linear transformation on the
inputs followed by a non-linearity (called activation). These neurons are usually
arranged in sequential layers, where neurons in each layer receive input from
the previous layer and pass their output to the subsequent layer. Fig. 1.1 shows
a conceptual diagram of a feedforward fully-connected network which is often
called an Multilayer Perceptron (MLP); it is one of the earliest types of ANNs.
Formally, the output h(l)j of a given node j in layer l in an MLP is calculated as
follows,

ĥ(l)j = bj + ∑
i

w(l)
ij ∗ x(l−1)

i

h(l)j = σ(ĥ(l)j)

(1.1)

where ĥ(l)j is the intermediate state of the node after applying the linear trans-

formation, w(l)
ij is the weight (the learned parameter) connecting node i in the

previous layer l − 1 to node j in layer l, x(l−1)
i is the output of node i in the

previous layer l− 1 (or the input if layer l is the first layer), bj is the bias term
for node j, σ is the non-linearity function and ∗ is the multiplication operator.
Eq. (1.1) can be considered the fundamental equation of modern ANNs and
almost any other variant is more or less building on it.

Through training, the weights get adjusted to fit the data and, subsequently,
each layer in the network extracts a set of features by composing features from
the previous layer. The final layer in the network produces the output and
is called the output layer, while all the previous layers produce intermediate
states and are called the hidden layers. Like the training of many other classical
ML models, an ANN is trained by defining an objective or a loss, which is a
measure of the network performance on the task dataset, and then optimizing
the network parameters based on this loss or error signal.

Due to the extensive non-linear properties of an ANN, there is no closed-
form solution to the optimization process. Hence, ANNs are optimized using an
iterative algorithm that alternates between evaluating the loss using the current
weights (parameters) and optimizing the weights based on the loss to get a new
set of weights. The two most commonly used techniques for optimizing ANNs
are backpropagation and Evolution Algorithms (EAs) (Paul and Singh, 2015).

EAs are a set of optimization techniques inspired by the theory of evolu-
tion by natural selection (Bäck, Fogel, and Michalewicz, 2018). The main steps
in any EA are: fitness evaluation, selection and reproduction (or mating). In
an EA, a set of solutions (individuals) are initialized and encoded. The per-
formance of each solution is evaluated according to a problem-specific fitness
function. Then, a subset of the solutions are chosen to proceed to the next

3

Chapter 1. Introduction

evolutionary generation by a selection process that depends on the fitness of
each solution. The selected solutions are then reproduced, a process which in-
troduces diversity and random mutations in the offspring. Then the process is
repeated for the new evolutionary generation until satisfactory criteria are met.

There are three main variations of EAs, namely Genetic Algorithm (GA),
Evolution Strategies (ES) and Genetic Programming (GP). GA is the most
faithful to biological evolution. The main characteristic of a GA is that the
solutions are encoded into a genotype or a genome, i.e. an encoding scheme
that can be translated into the actual solution. In contrast, ES operate on the
actual solution or the phenotype directly. In ES, two sets of parameters are used
to represent the solution: decision parameters which represent the solution itself
and strategy parameters which control the mutation of the decision parameters.
GP is an EA intended for evolving programs, i.e. a set of instructions to be
executed as an algorithm. A program in a GP is often represented as a tree.

EAs have the advantage that the neuron activations and the loss can be
any arbitrary functions. However, EAs are very computationally expensive
and demand a serious scale of distributed processing to be sufficiently efficient
and, hence, practical. On the other hand, backpropagation requires the acti-
vation functions and the loss to be differentiable since it depends on gradient
information. Backpropagation, however, is by far more computationally effi-
cient than EAs since it can be accelerated using commercial Graphical Pro-
cessing Units (GPUs) and is much faster to converge. Many optimization algo-
rithms based on backpropagation exist like Stochastic Gradient Descent (SGD),
Adagrad (Duchi, Hazan, and Singer, 2011), Adadelta (Zeiler, 2012), RMSprop
(Ruder, 2017) and Adam (Kingma and Ba, 2017), among others, where each of
them has its advantages and disadvantages.

1.2 Basic Topologies of ANNs
Like any kind of network, there has to be a general plan (i.e. topology) that
defines how individual neurons are connected together to form the network
structure. There are virtually an infinite number of possible topologies; many
variants are in use and architectural innovations to find better performing net-
works is an open question and one of the biggest active research areas in ANNs
research. However, there is a fundamental dichotomy in the topologies of ANNs
which is based on graph theory. Since Neural Networks (NNs) are essentially
a graph where the nodes are the vertices and interconnections are the edges,
we can classify NNs into either feedforward NNs, which are NNs with Directed
Acyclic Graph (DAG), i.e. a graph containing no loops, and Recurrent Neural
Networks (RNNs), which are NNs with a Cyclic Graph (CG), i.e. containing
loops.

Feedforward NNs process their input by a unidirectional flow of information,
where the first hidden layer receives the input and passes its output to the

4

Chapter 1. Introduction

subsequent hidden layer. Every subsequent layer similarly processes its input
and passes the output to the next layer, until the last layer, called the output
layer, which produces the final output. Feedforward networks are mainly used to
process independent inputs with no inter-dependencies, however, some recent
variants have modified architectures that can process sequential data. Some
notable examples are WaveNet (Oord et al., 2016), an audio generative model,
and Transformer (Vaswani et al., 2017), a state-of-the-art (SOTA) NLP model.

Two feedforward variants are of special importance since they lay the foun-
dation for many other feedforward architectures, which are MLPs, also called
Fully Connected (FC) networks, and Convolutional Neural Networks (CNNs).
The MLP was one of the first architectures to be used in the deep learning
field. An MLP is a multilayer NN where each node in a given layer is connected
to every node in the previous layer. Historically, the MLP was used for any
data type, including visual data, but later it was superseded by CNNs for vi-
sual datasets. However, MLPs are still used for many other types of data and
as a component subnetwork/module of almost every ANN to serve different
purposes like producing the classification output, routing input in routed NNs
(Rosenbaum, Klinger, and Riemer, 2017; Rosenbaum et al., 2019) and atten-
tional mechanisms (Bahdanau, Cho, and Bengio, 2014; Xu et al., 2015; Luong,
Pham, and Manning, 2015; Yang et al., 2016), among others.

The other famous variant of feedforward networks is CNNs (Fukushima and
Miyake, 1980; LeCun and Bengio, 1995). A CNN is a type of NN that is
architecturally modified to be efficient in processing visual data and images.
Unlike MLPs, a CNN layer node is connected only to a subset of the outputs
of the previous layer. Hence, CNNs depend on two main concepts, Receptive
Field (RF) and weight sharing. An RF is the size of the subset of the previous
layer output to which each node in the subsequent layer is connected to. Weight
sharing means that weights of each node across all the possible RFs are tied
together so that they have the same values. The reason for this arrangement is
the spatial arrangement inherent to visual data. Images, and similar visual data,
are hierarchically composed of building units at different levels of abstraction.
Hence, it makes sense to try to identify these different units at all the possible
locations of the image.

The other main type of NN is RNNs. An RNN is an NN containing feedback
connections, i.e. a connection from a node to itself or to a previous node in the
hierarchy. This means that some nodes depend on past inputs and, hence, have
temporal dependency. This makes an RNN suitable for processing temporal and
other types of sequential data, e.g weather forecasting. RNNs, however, suffer
from difficulties in learning due to the long term dependencies between their
states, which manifests mainly in vanishing and exploding gradients. These
learning problems are usually solved by either a modified learning algorithm, a
modified architecture, or both. Learning algorithms like Truncated Backprop-
agation Through Time (TBPTT) solve this by truncating the steps used to

5

Chapter 1. Introduction

calculate the gradient. Architectural innovations like Long Short-Term Mem-
ory (LSTM) (Hochreiter and Urgen Schmidhuber, 1997) and Gated Recurrent
Unit (GRU) (Cho et al., 2014) address the problem by introducing different
gating mechanisms that control the information flow and time dependency.

1.3 Learning Types
Different ML learning problems require different types of learning. While all
of the ML problems dictate estimating some probability distribution over the
data, the output required to solve the problem differs in a significant way. One
common type of ML problem is associating an input with an output. The most
commonly encountered problem in this category is data classification, where
an input has to be placed in one of multiple classes. Supervised learning is
usually used to solve this kind of problem. In supervised learning, the model
is presented with an input and its corresponding output and the model has to
implicitly estimate the conditional probability distribution, so that at inference
time, the NN can classify similar patterns correctly.

In contrast, for some tasks, we need only to discover interesting patterns
in the data. Clustering problems fall under this category, where we want to
discover similarity between patterns and then place similar data into the same
cluster/group. Unsupervised learning is the type of learning used for this kind
of problem, where the model needs to implicitly estimate the probability dis-
tribution over the input data in order to be able to map similar patterns to
similar representations. Another very useful common application of unsuper-
vised learning is pretraining NNs in order to extract useful representations that
can be used in another downstream task, like object classification using super-
vised learning.

Self-supervised learning is another type of learning which has similarity to
unsupervised learning in that it needs no labeled data, however, it is also sim-
ilar to supervised learning in that it utilizes a supervisory signal for learning.
The idea is to use some inherent structure in the data or an auxiliary source
to automatically extract a supervisory signal. For example, word embedding
models like BERT (Devlin et al., 2019) and skip-gram (Mikolov et al., 2013)
are trained to vectorize words into useful representation by predicting missing
words in a text corpse using their surrounding context. These types of self-
supervised tasks are usually called pretext tasks to differentiate from final or
downstream tasks. Self-supervised learning also has applications that are them-
selves final tasks, like image colorization (Vitoria, Raad, and Ballester, 2020)
and inpainting (Zeng et al., 2020).

Another type of task, which has similarity to supervised learning, is where
we want to make decisions based on input states. Hence, it is effectively a
task of associating states with actions. However, unlike the case for supervised
learning, we do not have pairs of states and their corresponding actions. Instead,

6

Chapter 1. Introduction

the model is presented with a reward or a score that acts as a proxy for the
model’s performance. Reinforcement Learning (RL) is the type of learning that
is used for these kinds of tasks and it has many useful application when it comes
to domains like robotic control (Kormushev, Calinon, and Caldwell, 2013), AI
in video games (Mnih et al., 2015) and mastering board games (Silver et al.,
2016; Silver et al., 2017b; Silver et al., 2017a).

1.4 Application Domains
Deep learning has a vast number of applications that are infeasible to count.
Many of these applications were practically outside of ML reach before the re-
cent era of deep learning, mainly due to the curse of dimensionality, the scale of
the data and the high level of expertise needed to extract useful features. Re-
search on applying ML models to visual data is an old quest that stretches back
across many decades of the previous century and, for quite a long time, practi-
cal Computer Vision (CV) applications were mainly dominated by classical CV
algorithms. CNNs have revolutionised the field and their variants are currently
considered the SOTA in this field. Visual-modality applications of ANNs are
numerous, including image classification, segmentation (Ronneberger, Fischer,
and Brox, 2015), colorization (Vitoria, Raad, and Ballester, 2020), inpainting
(Zeng et al., 2020), style transfer (Jing et al., 2018), sample generation (Barua,
Erfani, and Bailey, 2019), face detection (Zhang et al., 2016b) and recognition
(Guo and Zhang, 2019) and guidance of self-driving cars (Nugraha, Su, and
Fahmizal, 2017) and Unmanned Aerial Vehicles (UAVs) (Padhy et al., 2018),
among others. One of the triumphs of this subfield is Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014), which are generative models that
can generate images in a given context with unprecedented realism.

On acoustic data, such as voice and music, ANNs have achieved SOTA
on different complex tasks such as voice recognition (Newatia and Aggarwal,
2018), text-to-speech and music synthesis (Oord et al., 2016), musical instru-
ment separation (Chandna et al., 2017) and voice cloning (Arik et al., 2018),
among others. NLP is the subfield of processing human languages. The NLP
subfield had been dominated for a long time by combined Hierarchical Markov
Models (HMMs) and Gaussian Mixture Models (GMMs), termed GMM-HMM.
With the introduction of RNNs and, later, Transformers (Vaswani et al., 2017),
SOTA has been pushed extensively on many NLP tasks, like word represen-
tation (Devlin et al., 2019; Mikolov et al., 2013), language translation (Wu et
al., 2016), text generation (Lu et al., 2018), document summarization (Zhang,
Wei, and Zhou, 2019) and similarity (Ranasinghe, Orasan, and Mitkov, 2019),
sentiment analysis (Wadawadagi and Pagi, 2020) and chatbots (Csaky, 2019),
among others.

The applications discussed above are only a subset of the most profound
territories that ANNs are revolutionizing. Many other applications are heavily

7

Chapter 1. Introduction

researched and new applications are being continuously explored as the field
expands its understanding and toolkit. One of the newly emerging subfields
that is gaining traction is Graph Neural Networks (GNNs) (Zhou et al., 2019),
a specialized architecture that is adapted to processing graphs. GNNs are being
applied to many interdisciplinary fields, like rational drug discovery (Li, Cai, and
He, 2017), molecular simulation (Husic et al., 2020) and properties prediction
(Hao et al., 2020), combinatorial optimization (Gasse et al., 2019) and social
network analysis (Fan et al., 2019).

1.5 Challenges to Deep Learning

1.5.1 Data Greediness
Despite the fact that the concept of stacking multiple non-linear layers dates
back to the 1960s, two main challenges worked against the popularization and
practical application of deep learning: scarcity of data and computational needs.
At the dawn of the 21st century and as big data became more available and
computers became more powerful, specially after commercial General-Purpose
Graphical Processing Units (GPGPUs) became widely available and could be
utilized to accelerate ANNs, the real potential of ANNs could be harnessed.

Later, a trend appeared in ANNs where greater performance could be achieved
by increasing model capacity and, hence, more data can be fitted by the model
and the generalization can be improved in turn. The data greediness of ANNs
turned to be problematic, specially for supervised learning, where obtaining
large amounts of labeled data is expensive and requires extensive manual labor.
Several research directions aim at mitigating this problem. Data augmenta-
tion aims at generating more data variations from the existing samples through
different transformations or through generative models like GANs (Goodfellow
et al., 2014). Another emerging approach is few-shot learning (Wang et al.,
2020), which is a type of meta-learning where the model has to generalize from
few examples of each class or, in the extreme case, from a single example of
each class (one-shot learning).

1.5.2 Overfitting and Underfitting
Another problem that is related to capacity is overfitting. Underfitting and
overfitting are two problems that plague not only ANNs but ML models in
general. Underfitting occurs when ML models with small capacity struggle to
fit large data and, hence, tend to have poor test performance. On the other
hand, overfitting happens when models with very high capacity can fit noise and
statistical artifacts in the data and, hence, their performance will also suffer at
test time. The bias-variance trade off is the analytical framework that explains
these phenomena, where the performance of the underfitting models will tend

8

Chapter 1. Introduction

to have lower variance across many runs, however, the mean performance will
be biased compared to the ground truth. On the other hand, overfitting models
will on average have less bias, but their performance will be of higher variance
across multiple runs.

Overfitting is more manifested in ANNs since they usually have large ca-
pacity. Hence, research in regularization techniques have special importance
in the deep learning subfield. Regularization is a set of techniques that intro-
duces inductive bias, that is a prior inherent bias, in the model selection process
such that a subset of models is favoured over others. In the context of ANNs,
different regularization techniques (Kukačka, Golkov, and Cremers, 2017) are
used to bias the model selection towards models with lower effective capacity.
Weight decay and different forms of L-norm are used to bias the learning process
towards models with sparser or smaller weight magnitude. Dropout (Srivastava
et al., 2014) is another regularization technique that randomly drops different
nodes during training to decrease effective capacity and introduce more inde-
pendence between the learned features. Similar drop techniques followed such
as DropConnect (Wan et al., 2013). We will later use DropCircuit (Phan et al.,
2018), a related modular regularization technique in Chapter 4. Data augmen-
tation is itself considered a regularization technique since it aims at reducing
overfitting by increasing the dataset size.

1.5.3 Complexity
One of the obvious problems that comes with models with large capacities
is the explosion in time and memory complexity. Large ANNs require large
matrix-matrix multiplications which translate to a huge number of Floating
Point Operations Per Second (FLOPS) and large memory is needed to store
the millions, and sometimes, billions of parameters, intermediate states and
the associated gradients calculated during training. Despite the fact that the
industry of GPUs before the recent popularization of ANNs was mainly fueled
by other applications like video games, graphics rendering and simulation of
biological and physical systems (Kirk and Wen-Mei, 2016), GPUs proved to be
very handy when it comes to performing the huge number of FLOPS required
for ANNs. Tensor libraries adopted support for GPU acceleration and many
of them are extended to support multiple GPUs and distributed computing.
Emerging recent research trends aim at devising new training algorithms that
can accelerate ANNs on Central Processing Unit (CPU) clusters and multi-core
machines (Chen et al., 2020).

This computational revolution aided the conventional paradigm of compute-
centric learning. In compute-centric applications, a central repository of data
and powerful machines are utilized for learning models and usually also remote
inference. With the advancement of handheld and Internet of Things (IoT)
devices, a new potential opened for exploiting the huge amount of distributed

9

Chapter 1. Introduction

data gathered by these devices. However, it is not feasible to pursue applications
in this domain using the compute-centric approach due to many limitations and
concerns like safety, privacy and bandwidth. The data-centric approach was
developed as a mitigation to these concerns. Instead of a central computational
repository of machines and data, the data-centric approach depends on small
distributed models that can learn locally without the need for central data
collection.

The data-centric approach, along with the need for inference on limited-
resource devices, stimulated a line of research directed at miniaturizing models.
Since model performance is on average correlated with generalization, a delicate
balance needs to be achieved such that shrinking the model does not lead to
severe degradation in performance. Several techniques are actively researched
in this research line such as Neural Architecture Search (NAS), separable con-
volutions, quantization, hashing, factorization, pruning and distillation. We
review some of these techniques when we address the complexity issue using
modularity in Chapter 3.

1.5.4 Adversarial Attacks
The commonly researched and most performing ANNs are differentiable mod-
els. This differentiability facilitated their training by exploiting gradient in-
formation. However, this very same differentiability also made these models
sensitive to adversarial attacks, an intriguing vulnerability that was discovered
by Szegedy et al. (2013). ML models, and deep learning models being no ex-
ception, suffer from sensitivity to noise. However, random noise existing in the
data can usually be accounted for by using large datasets, regularization tech-
niques and data augmentation. However, adversarial attacks are a special kind
of engineered noise that can seriously harm the performance of ANNs. By using
the same kind of gradient information used for training the models, an attacker
can differentiate with respect to the ANN input to find the directions in the
input space that seriously affect the network performance. Then, by adding
very small perturbations in these directions to inputs like images, the network
performance, e.g classification accuracy, can be severely harmed without any
noticeable disruption as perceived by a human observer.

Adversarial attacks can be either white-box or black-box (Chakraborty et al.,
2018). White-box attacks assume the target model to be directly accessible and,
hence, gradient information can be readily obtained. Black-box attacks assume
no access to the target model and they generally rely on training a surrogate
model that can be used to design the attacks that will be finally targeted at
the victim model. This depends on the transferability assumption between ML
models, that is, the assumption that models trained on similar datasets can
be affected by the same attacks. Research in adversarial attacks is a feedback
arms race between devising more powerful attacks and enhancing adversarial

10

Chapter 1. Introduction

defences, which are techniques that aim at reducing model susceptibility to the
attacks. An adversarial defence can be through detection, modifications to the
architecture or the learning process or a combination of these techniques. We
elaborate on adversarial defences when we use modularity to increase robustness
of convolutional-based models to noise and adversarial attacks in Chapter 5.

1.5.5 Catastrophic Forgetting
ANNs are learned through weight updates guided by an error signal that de-
pends on the dataset. Learning, or fitting an ANN to a dataset, means finding
a set of weights with a good generalization on the target dataset. If a trained
ANN is later learned on a different dataset, it will gain performance on the new
dataset, however, at the cost of performance degradation on the old dataset.
This phenomenon is called catastrophic forgetting (Kirkpatrick et al., 2016).
Catastrophic forgetting happens due to the shift of the network weights from
the discovered local minimum, as measured by the loss, of the old dataset into
a local minimum of the new dataset. This problem is related to the stability-
plasticity problem (Abraham and Robins, 2005) in Neuroscience, which remains
an open problem to date.

Life-long learning is the term used to describe the ability of an AI agent
to continuously acquire new knowledge and skills without forgetting what was
learned in the past. Catastrophic forgetting is a serious obstacle to achieving
life-long learning and to knowledge integration across different tasks; mitigating
its effect is an open question and an active research area in the deep learning
field.

Five main approaches that try to address this problem currently exist in the
literature. One of the very early approaches is regularization. Regularization
in the context of catastrophic forgetting aims at regularizing the model weights
to stay close to the previous local minimum, while leaving enough flexibility
to allow the model to learn new tasks. Notable examples are Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2016) and Synaptic Intelligence (SI)
(Zenke, Poole, and Ganguli, 2017). Ensemble methods (Polikar et al., 2001; Dai
et al., 2007; Fernando et al., 2017) depend mainly on assigning a new network
or a new module in a larger network for each new task. Replay methods (Shin
et al., 2017; Ven and Tolias, 2018; Isele and Cosgun, 2018) reduce forgetting
by frequently injecting samples from the old datasets into the learning process
to regularize training. The dual-memory approach (McClelland, McNaughton,
and O’Reilly, 1995; Kumaran, Hassabis, and McClelland, 2016) is a biologically
inspired technique, where two types of memories, namely Short-Term Memory
(STM) and Long-Term Memory (LTM), are used. STM processes the new
task information and integrates it later into the LTM. Finally, sparse-coding
(Kruschke, 1991; Coop, Mishtal, and Arel, 2013; Murdock, 1983; Eich, 1982)

11

Chapter 1. Introduction

aims at reducing the interference in the internal network representations across
tasks by introducing sparsity.

1.6 Biological Origins of Modularity
The early inspiration of ANNs as ML models came from biology (Goodfellow et
al., 2016). Biological neural circuitry is composed of densely connected networks
of cellular units called neurons. A neuron is a cell specialized in communicat-
ing signals through electrical conduction. Each neuron consists of a cell body
(soma) which has several arborizations called dendrites and a cylindrical pro-
truding structure called axon. Information processing in nervous systems takes
different shapes. In the most common mechanism, a neuron receives input sig-
nals from other neurons, processes and integrates them, and then decides to fire,
i.e. send a signal to its downstream neurons, or not. Connection sites between
neurons are called synapses and firing occurs by sending an electrical signal,
called action potential, that travels down the axon till it reaches its terminals.
When the action potential reaches the axonal terminals, it stimulates the release
of a chemical neurotransmitter that will cross the connection gap (synaptic gap)
between the axon and the receiving neurons to stimulate the post-synaptic neu-
rons. It is notable to mention that different synapses have different strengths
that reflect how much a pre-synaptic neuron can affect a post-synaptic neu-
ron. The change in these synaptic strengths, known as plasticity, is the main
mechanism behind learning processes in nervous systems.

ANNs started as significantly simplified models of their biological counter-
parts. Neurons are represented by simple non-linear mathematical functions
that are conceptually arranged in layers and interconnected by weights, which
represent the synaptic strengths between them. Over the development of the
field, ANNs became more oriented towards solving engineering probelms and
departed more and more from being a faithful replication of their biological
origins. Nonetheless, cross-fertilization between the neuroscientific and ANN
fields continues to emerge and inspire researchers on both sides from time to
time (Hassabis et al., 2017).

A very important organizing principle in almost every biological nervous
system, specially in animals having enough brain complexity to show sophis-
ticated social and intelligent behaviour, is modularity. In the neural context,
modularity is used to describe the structural or functional arrangement of func-
tional units into aggregations, where each aggregation of units shows dense
internal interaction and sparse interaction with other aggregations. Modularity
shows at many levels in the brain, in a spectrum ranging from the micro-level
of synapses (Kastellakis et al., 2015) to the macro-level of brain regions ex-
hibiting functional specialization (Schwarz, Gozzi, and Bifone, 2008). Lesion
studies and fMRI imaging provided ample evidence that brain regions can be
very specialized in specific functions. Other theoretical and analytical evidence

12

Chapter 1. Introduction

comes from graph theoretical studies of brain networks. In an evolutionary
context, many reasons have been hypothesized to explain the natural pressure
towards modular brain networks. In one hypothesis, it was proposed that mod-
ularity facilitates evolving brain functions without introducing disruption to old
functionality (Clune, Mouret, and Lipson, 2013). Another proposed reason is
facilitating exaptation, where ancient biological structures can be readapted to
different functions over evolutionary time (Kashtan and Alon, 2005). Modular
structures are proposed to be more exaptation-friendly due to their contained
functionality. We elaborate more on the biological origins of modularity in
Section 2.3.

1.7 Modularity in ANNs
A Modular Neural Network (MNN), in the artificial context, is an ANN that
can be decomposed into a set of subnetworks based on its connectivity pattern.
As ANNs can be regarded as graphs (in a graph theoretical sense), different
techniques exist for analysing modularity in ANNs and they originate from two
different domains, computer science and sociological studies (Newman, 2004;
Newman, 2006), where modularity is usually established using graph partition-
ing techniques. These techniques were mostly developed for other applications
before the interest in the modularity of ANNs. Computer science, for exam-
ple, has used graph partitioning for optimizing parallel processing and sociology
applied these techniques to community detection. In more recent approaches,
more advanced modularity measures were studied (Newman, 2004; Newman,
2006; Newman, 2016; Tyler, Wilkinson, and Huberman, 2005; Radicchi et al.,
2004).

Based on our work in Chapter 2, modularizing an ANN has to be done at
multiple levels of abstraction. These are: domain, topology, formation and in-
tegration. Domain modularity is an optional step in modularization. Domain
modularity is concerned with partitioning the input space to allow specialized
processing. For example, input decomposition can be done to separate different
modalities, data with different characteristics or different pre-processing. Do-
main modularization can be manual or learned. While manual decomposition
is an obvious solution in some cases, learned decomposition is a more flexible
technique in general since the problems addressed by ML are generally complex
and their input space is by definition hard to separate. We discuss domain
modularity more extensively in Section 2.4.1.

Choosing a modular topology is the next step in the modularization chain.
Topology refers to the general blueprint or skeleton of the MNN (Miikkulainen,
2010). Modular topologies have multiple modules, which are densely connected
internally and sparsely connected to other parts of the network. We identified
and systemically categorized many modular topologies that exist in the liter-
ature and we discuss them in more details in Section 2.4.2. Many variants of

13

Chapter 1. Introduction

modular architectures exist; some of them are highly regular while others are
complex irregular structures.

While the modular topology is concerned with the general plan of the MNN
architecture, formation on the other side is concerned with how these modules
can be constructed, learned and interconnected between each others to form
the network. This can be done manually, using EAs or other forms of learning
techniques. We elaborate on formation in Section 2.4.3. After the topology
is selected and the formation technique is established, a final step is how the
different modules can be integrated to give the final output. Integration can be
either cooperative, where all of the modules contribute to the final output, or
competitive, where a module or a subset of modules is selected over the others.
We further discuss integration in Section 2.4.4.

1.8 Why Modularity?
As we discussed, from an evolutionary and biological perspective, modularity
has evolutionary advantages like facilitating the evolution of new functions and
exaptation. In the artificial context, modularity can serve many functions. As
we discuss and show several examples in Section 2.4, decomposable problems can
be easily modularized, which makes debugging easier and adding enhancements
less disruptive to the existing functions.

Transfer learning is an ML technique where a model developed for a task is
reused to solve a different task. Pretrained modular components can be used
in different ways to make it easier to transfer and integrate knowledge from
different sources. We list multiple examples in Section 2.4 of similar usage in
the literature. For example, by modularizing a robotic control network, Zhang
et al. (2016a) decoupled perception from control and, hence, made it easier to
transfer knowledge between simulation and real environments. Another example
is Calabretta et al. (2000), where learned modules can be reused by duplication
in an EA by mutating a set of duplicating genes.

Model capacity has proved to be of great importance to generalization, spe-
cially for complex tasks that need large amounts of data. The main downside
of large models is time and memory complexity. Latency is the increased pro-
cessing runtime of a neural network, usually as measured at inference time.
Hence, latency is a proxy measure of the time complexity of a neural network.
However, due to the difficulty of measuring the actual runtime latency, the
model parameter count is often used as a proxy measure of the latency. Since
the model parameter count is also a proxy measure of the memory complexity,
it is an overall good measure of the suitability of a model to limited-resource
applications. Other things being equal, an MNN is usually sparser than its
monolithic counterpart (i.e. a non-modular model with all of the other archi-
tectural hyperparameters being the same). In Chapter 3, we show that we can

14

Chapter 1. Introduction

balance between complexity and accuracy in a systematic way such that a re-
quired trade off between latency and accuracy can be realized. Also, we show
in Chapter 4 that we can modularize CapsNet to decrease its complexity and,
at the same time, achieve better or comparable results. Another perspective
regarding capacity is that modularity can act as a regularizer. Models that
are well-engineered to have lower effective capacity can be less susceptible to
overfitting.

Another important aspect of an MNN that results from the sparse connec-
tivity between its modules is its readiness for parallelization and distribution.
Since, by definition, modules connect sparsely between each other, the over-
head of distribution across multiple computing nodes is decreased. Moreover,
independent modules can be executed in parallel. This allows MNNs to benefit
from parallel and distributed computing, either in multi-GPU or distributed
computing settings.

Modularity can also benefit scenarios where a modular structure can exploit
the properties of the problem being tackled. CNNs use filters to process their
inputs. A convolutional filter can be considered a small linear module, and
indeed it was generalized to a more complex subnetwork in Lin, Chen, and Yan
(2013). The usage of filters exploited the intrinsic structure of images, mainly,
the translation invariance and the decomposability of a scene into discrete ob-
jects. This kind of prior knowledge that is integrated into a model intrinsically
is called inductive bias (Hüllermeier, Fober, and Mernberger, 2013). We use a
similar concept in Chapter 5 to increase the resistance of convolutional-based
networks to noise and adversarial attacks.

We can summarize the main benefits that can be achieved through modu-
larity in the following:

• Accumulating functionality with less disruption to existing functions and
easing debugging.

• Transfer learning.

• Less complexity and more regularization.

• Computational distribution and parallelization.

• Problem-specific inductive bias.

1.9 Challenges to Modularity
MNNs have a long history in the deep learning field and they have been stud-
ied either implicitly or explicitly (Happel and Murre, 1994; Caelli, Guan, and
Wen, 1999; Sharkey, 1996; Xu, Krzyzak, and Suen, 1992). One of the main
obstacles to defining a modular architecture is that there are usually a lot of

15

Chapter 1. Introduction

hyperparameters that control it. A lot of decisions regarding architectural de-
sign have to be made such as the number of modules, the connectivity pattern
and the architecture of separate modules. In Section 2.4.2, Section 2.4.3 and
Section 2.4.4, we describe many techniques that were used in the literature to
rationally make such choices either manually or through different optimization
techniques. However, this is still generally an open question and a very active
research area that has branched out into different directions like using EAs or
NAS.

Another open question regarding architectural design is finding suitable
training objectives that can optimize naturally for modularity. Two notable
strategies pertaining to EAs are penalizing connection cost and cooperative co-
evolution. Another technique involves restricting the resulting architectures to
be modular in nature through some inductive bias to the learning process. We
further discuss these techniques in Section 2.4.3.

Another complication in learning modular structures is ensuring diversity
and functional specialization of different modules. Obviously, a set of modules
that compute the same function is redundant and generally not desired. Some
techniques can enforce such diversity. Similar to what Dropout (Srivastava
et al., 2014) aims to do generally in ANNs, DropCircuit (Phan et al., 2016;
Phan et al., 2017) is a regularization technique for Multipath NNs (a topology
of MNNs) where modular paths are dropped randomly to introduce indepen-
dence of features between paths. In the cooperative coevolution used in Garcia-
Pedrajas, Hervas-Martinez, and Munoz-Perez (2003), two fitness measures were
used to enforce competition and cooperation, where the former ensures that
different modules do not converge to the same function and the latter ensures
that the module functions are complementary. For some datasets and appli-
cations, diversity can be introduced by feeding different types of inputs, either
from different modalities or from different preprocessing steps. For example,
Wang (2015) used a multipath NN, where the input to the first path is the raw
image, while the input to the other is a filtered version of the same image.

We believe that a major problem that contributes to the difficulty of mod-
ularity research is the efficiency of implementation. One of the main factors
that contributed to the acceleration of ANN research in recent years was the
significant efficiency of learning and inference made possible by GPUs. GPU ac-
celeration depends on the fast parallel multiplication of dense matrices. MNNs,
however, are usually sparse and sometimes have irregular structure which make
them unable to benefit from their sparsity and reduced complexity when it
comes to implementation efficiency.

Since the research we did in Chapter 5 has a similarity to conventional
convolutional layers, we could make use of the acceleration already established
in the existing tensor libraries. Convolutional layers are regular structures that
can be reduced to dense matrix-matrix multiplication and hence can benefit
from GPU acceleration. We could apply a similar trick to the work we did

16

Chapter 1. Introduction

in Chapter 4. By making the paths regular, i.e. having the same width and
depth, we could reduce the parallel computations across the independent paths
into dense matrix-matrix multiplications. We achieved that by reducing the
convolutional layers across the different paths into a computational form similar
to depthwise-separable convolutions and we could, again, utilize the optimized
convolutional operators found in existing tensor libraries. We discuss this in
more detail in Chapter 4. Unfortunately, the same was not possible in the
case of Chapter 3 since we had to deal with irregular paths having different
widths. So, eventually, we relied on approximating the sparse matrices with
dense matrices having zero entries. Still, however, this was possible since we
had to rely on this approximation only at inference time.

1.10 Our Research
In this work, the main problem we are trying to address is:

“How can we use modularity to improve some of the essen-
tial performance measures of neural networks?”

In order to address the research problem, we needed to know the existing
modularization techniques and how modularity is used in the literature to ad-
dress different problems. Hence, in Chapter 2 we did an extensive review of
the existing literature that addresses modularity in ANNs. We substantially
expanded previous reviews and established a systematic taxonomy of MNNs
and identified a characteristic process of modularizing NNs. This review lays
the foundation and context for the methods and architectures used later in the
subsequent chapters.

Since NNs have many different performance measures that can be studied,
we had to select a subset of these measures to address using modularity. We
focused on three essential problems in the field of deep learning. The prob-
lems were chosen based on their impact and practical importance. The first
and second problems focused on how the accuracy of an NN is affected by
its capacity. The relation between capacity and accuracy is a very important
problem that affects the application of NN in limited resource environments.
The high-capacity nature of ANNs makes overfitting noise in the data a serious
complication in their practical applications. Hence, the third problem focused
on how the accuracy of an NN is affected by noise. Noise is an integral part
of any realistic dataset and the ability of ANNs to generalize is largely affected
by their robustness to noise. Moreover, engineered noise like adversarial at-
tacks represents a serious complication to the usage of NNs in mission critical
applications.

In the first problem (Chapter 3), we addressed the trade-off between the
accuracy of an NN and its latency. By modularizing a monolithic NN and hence

17

Chapter 1. Introduction

making it more sparse, we could draw a relation between the NN accuracy and
latency which can be used to satisfy a mutual accuracy-latency requirement. In
the second problem (Chapter 4), we addressed the latency measure but with the
stronger constraint of maintaining the target NN accuracy. We could redesign
a target NN architecture to be more modular. The modular design had lower
capacity but at the same time had a similar or better performance compared to
the original architecture. In the third problem (Chapter 5), we focused on how
the accuracy is affected by noise. We introduced a modular layer that can be
integrated into CNNs and increase their robustness to random and engineered
noise.

The main Research Objectives (ROs) we addressed are:

1. RO: Do an extensive review of modularity practices in the literature in or-
der to formulate a general modularization framework which will provide
the context and the toolbox needed to improve a subset of NN perfor-
mance measures.

2. RO: Use differential NAS to optimize the modularity of a multipath NN
and establish a relation between its accuracy and latency.

3. RO: Apply modular techniques to CapsNet in order to reduce its latency
while maintaining its accuracy.

4. RO: Design a modular layer that can be integrated into CNNs and in-
crease their robustness to noise.

Our main contributions:

1. We established a general framework that captures how modularity is ap-
plied in a variety of settings in the literature.

2. We used differential NAS to modularize a monolithic network into a mod-
ular multipath NN and used sampled architectures to establish a relation
between the accuracy and latency of the target family of architectures.

3. By applying multipath modularization, DropCircuit regularization and
a modified routing technique, we could reduce the latency of CapsNet
while obtaining similar or better performance compared to the original
architecture.

4. We designed a modular layer that resembles convolutional layers and can
be readily integrated into CNNs to increase their robustness to random
noise and adversarial attacks.

In Section 1.10.1, Section 1.10.2, Section 1.10.3 and Section 1.10.4, we de-
scribe in more details the research we have done in subsequent chapters, which
research objectives we target, what are the research questions we want to answer
and the contributions we achieved.

18

Chapter 1. Introduction

1.10.1 Review of Modularity in ANNs
Since we aim at doing a horizontal study of using modularity in solving dif-
ferent problems that face the deep learning field, we need a solid foundation
of the existing contributions in this domain and how modularity was previ-
ously studied and used to solve problems in deep learning. Moreover, during
reviewing the literature, we spotted that previous reviews in this domain were
outdated and focused only on applications and lacked a systematic framework
that captured the modularization process in ANNs. Hence, in Chapter 2 we
extensively analyse the implicit and explicit study of modularity in the litera-
ture and, based on that, we establish a general modularization framework and a
systematic taxonomy of modularity techniques that capture the essential prop-
erties of the modularization process. Finally, we present a set of case studies
that apply our framework to prominent research in the field to test its consi-
tency and practicality. Through this review, we aim to address the following
ROs:

1. RO: Cover a sufficiently wide range of literature addressing modularity
to spot explicit and implicit relevant studies.

2. RO: Analyse the existing contributions to capture the defining patterns
that characterizes the modularization process.

3. RO: Establish a general framework and taxonomy that captures the
essence of the modularization process.

We answer the following Research Questions (RQs):

1. RQ: Which of the previous research in the deep learning field contains
elements of modularity?

2. RQ: What are the main elements that are common to existing modular
techniques?

3. RQ: Are there any common steps that are being followed by modular
techniques?

4. RQ: What are the logical steps that need to be followed to turn a mono-
lithic network into a modular network?

5. RQ: How can modularity be quantified?

We achieve the following contributions:

1. We significantly expand previous reviews to include the various modular-
ity variants that exist in the literature.

19

Chapter 1. Introduction

2. We provide general systematic principles organized in a framework that
describes the modularization process across different MNNs.

3. We fit our framework to several prominent use cases in the literature
to show how it captures the big picture and provide insights into MNN
modeling.

1.10.2 Balancing Latency and Accuracy
As discussed, ANNs are growing in capacity in order to accommodate larger
datasets and approach higher generalization standard. While this paradigm
may be suitable for the compute-centric approach, it is not suitable for the
data-centric approach which utilizes distributed learning on devices with limited
resources. Modularizing an FC network by slicing it into multiple paths can
introduce sparsity and, hence, reduce model complexity. However, this will need
a set of architectural hyperparameters that are critical to the accuracy of the
model like the number of paths and the width of each path. Optimizing these
parameters by brute force is infeasible for practical applications, so the modeler
has to have a way of predicting the interplay between these hyperparameters
and how they affect latency and accuracy in order to make a guided decision
based on the required latency-accuracy trade off. In Chapter 3, we aim to
address this by seeking the following ROs:

1. RO: In the context of a multipath network, use differential architectural
search to optimize for the number and widths of paths starting from an
FC network.

2. RO: Use data derived from this optimization process to evaluate sampled
architectures.

3. RO: Establish a relationship between latency and accuracy from the eval-
uated architectures and use it to predict the performance of any potential
architecture.

We try to answer the following RQs:

1. RQ: Does the optimization process yield multipath networks with consis-
tent relative balance between latency and accuracy?

2. RQ: Does the information derived from the optimization process have
good predictability of the latency-accuracy relationship for unseen mod-
els?

3. RQ: Do the predictions have good correlation with the actual test per-
formance?

20

Chapter 1. Introduction

4. RQ: Is evaluating a small sample from the architectural space sufficient
for good predictability?

We achieve the following contributions:

1. We use a one-shot model to approximate the relative accuracy between
potential multipath models with different latency measures.

2. We use a pruning technique to modularize an FC network into a set of
balanced multipath networks.

3. We evaluate a small set of sampled architectures and use the results to
predict the balance between latency and accuracy for the full spectrum
of potential models to help the modeler make a rational decision given
specific latency-accuracy constraints.

1.10.3 Reducing Complexity and Maintaining Accuracy
As discussed, an MNN is generally more sparse than an equivalent model, other
things being equal. Hence, a good potential for exploiting modularity is intro-
ducing sparsity in an existing less modular model to decrease its complexity in
terms of parameter count. However, blindly introducing sparsity can lead to
degradation in accuracy due to decreased capacity and underfitting. Modularity
opens the way for modular changes that we can use to balance the introduced
sparsity and hence maintain accuracy. In Chapter 4, we investigate the appli-
cation of this idea to CapsNet (Sabour, Frosst, and Hinton, 2017). CapsNet
achieved a reasonable accuracy on different datasets and its operating concept is
different from conventional CNNs. However, CapsNet is a shallow network that
has a large proportion of its parameters concentrated in two very wide convolu-
tional layers. Capsules, the main architectural addition defining CapsNet, are
built subsequently on top of these layers. Generating these capsules by deep
independent paths can significantly cut the number of parameters, while the
expressiveness added by depth and other suitable adjustments can compensate
for the reduced capacity. To investigate this, we aim to achieve the following
ROs:

1. RO: Generate capsules by deep independent paths with balanced width,
instead of wide shallow layers, to decrease the network complexity.

2. RO: Reduce the intermediate representations by introducing max-pooling
layers in the paths to cut out more parameters.

3. RO: Exploit a multipath-aware regularization technique to maintain net-
work performance.

21

Chapter 1. Introduction

4. RO: Investigate alternatives to the routing process that are more com-
patible with the multipath modifications adopted.

We address the following RQs:

1. RQ: Can the expressiveness introduced by depth compensate for the re-
duced capacity in terms of accuracy?

2. RQ: How will reducing the internal representation by max-pooling affect
the network accuracy?

3. RQ: Will DropCircuit, a multipath regularization technique, help main-
tain the network accuracy?

4. RQ: What will be the effect of modifying the original routing by agree-
ment to be in a fan-in direction? Which variant is more compatible with
our modifications?

5. RQ: What is the effect of the introduced modifications on the correla-
tion between capsules? Can this contribute to the multipath variant’s
accuracy?

Our contributions are:

1. We introduce a deep modular version of CapsNet that is significantly
cheaper in terms of parameters, nonetheless with similar or better accu-
racy compared to the original variant.

2. We show that the coordination of depth, max-pooling, fan-in routing and
regularization by DropCircuit made possible by the modular structure
can adequately compensate for the reduced absolute capacity to maintain
model accuracy.

3. Through our analysis using Representational Similarity Analysis (RSA),
we show that modularity can have interesting effects on the internal repre-
sentations of ANNs and the study of these dynamics can have a significant
impact on the study of neural networks.

4. We open the door for more critical investigation regarding routing tech-
niques in CapsNet, their importance and their interaction with data and
architectures.

22

Chapter 1. Introduction

1.10.4 Reducing Sensitivity to Noise and Adversarial At-
tacks

ANNs in general, and CNNs being no exception, are sensitive to noise. Ran-
dom noise exists in any realistic dataset and any ML model has to filter out
this noise in order to have good generalization. An adversarial attack is an ar-
tificially engineered noise that can disrupt the performance of a neural network
significantly, while being imperceptible to humans. These kinds of attacks are
usually targeted at visual data and hence are mostly applied to CNNs. Ad-
versarial attacks can also be applied to other modalities such as audio data
(Takahashi, Inoue, and Mitsufuji, 2021).

CNNs are specialized NNs that are designed to be more effective at process-
ing visual data. As discussed before, instead of the fully connected arrangement
from a given layer to the next, CNNs depend on local connectivity and shared
weights. From a signal processing perspective, a convolutional layer is a set of
linear filters convolved with the layer’s input and followed by a non-linearity. A
filter can be generalized to any module with arbitrary structure like what has
been done in Lin, Chen, and Yan (2013). Hence, a generalized convolutional
layer is a modular layer.

In Chapter 5, we aim to increase CNNs robustness to noise and adversarial
attacks. We build on the modular structure of convolutional layers to introduce
a similar modular layer, called Weight Map (WM) layer that increases the
network resistance to noise and adversarial attacks. A WM layer operates in
two steps. First, a grid of weights, with the same dimensionality as the input,
is elementwise multiplied by the input. Then, a reduction operation is applied
which utilizes constant-value non-learnable 2D filters. We have the following
ROs:

1. RO: Assess the effect of WM layer and different reduction operations on
the accuracy as measured on the raw noise-free data and on the robustness
of different architectures to uniform noise and adversarial attacks.

2. RO: Investigate the possible ways of integrating WM layer in a convolutional-
based network and the effect on the baseline performance.

3. RO: Analyse the observed effect of the WM layer and its possible working
mechanism.

We address the following RQs:

1. RQ: What is the effect of the WM layer on noise robustness when ap-
plied to different architectures and different datasets at different noise
intensities?

2. RQ: What kind of reduction operations can achieve noise robustness while
maintaining the baseline accuracy as much as possible?

23

Chapter 1. Introduction

3. RQ: What contributes to the specific performance of a reduction opera-
tion?

4. RQ: How can we introduce a WM layer in a convolutional based network
with minimal disruption to its performance?

5. RQ: How do the features extracted by the network vary from the baseline
and how do they relate to the layer’s dynamics?

Our contributions are:

1. We show that the WM layer can be integrated in convolutional-based
NNs to increase their robustness to noise and adversarial attacks with
little disruption to their baseline noise-free performance.

2. We introduce two reduction operations: smoothing and unsharp. We
show that while both can increase robustness, unsharp can outperform
smoothing by mitigating the latter’s over-smoothing effect.

3. We propose activation-variance amplification as the working principle of
this layer and discuss its similarity to explicit adversarial training. This
further opens the possibility for more future work in similar directions.

1.11 Experimental Design and Implementation
The core neural network algorithms were implemented in PyTorch (Paszke et
al., 2019). We used docker containers for dependency management. The main
experiments were always automated using scripts that took care of hyperparam-
eter persistence to ensure reproducibility. Raw experimental data were later
analysed using Jupyter notebooks. We used Pandas for data analysis along
with Matplotlib for visualization. Experiments were accelerated on different
Nvidia GPUs including Geforce GTX: 1060, 1080 and 1080Ti and Tesla: K80,
P40, P100 and V100.

When assessing a performance measure of a NN, we take the average of
three trials with different random network initializations. This is a common
methodology in the field (Webb et al., 2020; Omar et al., 2013; Xiao et al.,
2018; Sohoni et al., 2019). Unless otherwise specified, we train a given model
on the target dataset for 300 epochs (Wang et al., 2016; Mehta et al., 2019; Guo
et al., 2019; Bello et al., 2017). We benchmark using three datasets, namely
MNIST, CIFAR10 and iWildCam2019 which we describe next.

1.11.1 MNIST
The MNIST dataset is a collection of images of handwritten digits with 10
classes representing the digits from 0 to 9. The images are grayscale with spatial

24

Chapter 1. Introduction

dimensions of 28x28. MNIST consists of a training dataset of 60k samples and
a testing dataset of 10k samples. We divide the training dataset into 90%
(54k) for training and 10% (6k) for validation. Unless we specify otherwise, no
augmentation was used for the training data. The test dataset was used as it
is.

1.11.2 CIFAR10
The CIFAR10 dataset is a collection of colored (3-channels) images comprising
10 classes representing animals and vehicles. The images have 32x32 spatial di-
mensions. CIFAR10 consists of 50k training images and 10k testing images. We
divide the training set into 90% (45k) for training and 10% (5k) for validation.
No augmentation was used for the training data. The test dataset was used as
it is.

1.11.3 iWildCam2019
The iWildCam2019 dataset is a collection of colored animal images captured
in the wild by camera traps. The dataset is imbalanced and there is only a
partial overlap between the classes found in the training and test datasets. To
balance the dataset and fix the classes between training and testing, we used
only the training set by splitting it into train, validation and test sets. This was
done by first choosing 10 classes (deer, squirrel, rodent, fox, coyote, raccoon,
skunk, cat, dog, opossum), then balancing all the classes by choosing only 1000
samples from each class. We then split the data into 70% (7k) train, 20%
(2k) validation and 10% (1k) test. This was done class-wise to maintain the
balance. We preprocessed all the sets by converting the images to grayscale and
downsampling to 23x32 spatial dimensions. No augmentation was used.

1.12 Thesis Guide
In this chapter we have discussed the theoretical foundation for ANNs and
modularity in the artificial domain. We have also discussed the main problems
and challenges we tackle in the following chapters and the contributions we offer
for solving these problems. In Chapter 2, we present our extensive review of the
modularity literature in deep learning. We propose a systematic classification of
MNNs and a modularization framework that captures the essence of designing
MNNs. In Chapter 3, we investigate the problem of balancing latency and
accuracy in ANNs. Through modularizing an FC network into a multipath
architecture, we can approximate the relation between the efficiency gained by
multiple paths and the accuracy lost by the decreased capacity. Based on this
predictive relation, a modeler can make a rational decision to meet specific
restrictions of latency and accuracy.

25

Chapter 1. Introduction

In Chapter 4, we modularize CapsNet by replacing its shallow wide layers by
deep balanced paths to reduce its complexity. We investigate using max-pooling,
a different routing technique and DropCircuit regularization to further reduce its
complexity while maintaining the accuracy as much as possible. In Chapter 5,
we use the general modular structure of convolutional layers to introduce the
WM layer. We show that the WM layer can increase ANN robustness to noise
and adversarial attacks. In Chapter 6, we give a general discussion of how
modularity can be used to enhance some of the essential performance measures
of ANNs, what conclusions can be drawn regarding the impact of modularity
and what are the potential future research opportunities made possible by our
contributions.

26

Chapter 2

A Review of Modularization
Techniques in Artificial Neural
Networks

An adaptation of this material has been published in Amer and Maul (2019).

2.1 Preface
The adaptation of NNs as ML models has diverged significantly from their
biological counterparts. Due to the nature of the engineering problems and the
characteristics and limitations of computational hardware, many simplifications
were made for the sake of feasibility and efficiency. However, cross-fertilization
of ideas between the biological study of neural circuitry and the engineering
practices of ANNs never stopped throughout the turbulent history of neural
networks. Insights of new architectures, optimization algorithms and internal
dynamics coming from ANNs inspired new ideas for studying and understanding
biological systems (Barrett, Morcos, and Macke, 2019). The feedback in the
other direction consisted mainly of adoptions of more concepts, structural ideas
and mechanisms from biological neural systems into ANNs.

Modularity is a well known property in the study of the brain and related
neural structures. Since the emergence of Neuroscience as the formal study
of the nervous system in different organisms, it was recognized that different
brain areas are specialized in the processing of different sensory, motor and
integration functionalities (Purves et al., 2004). While functional modularity
is a qualitative property that can be understood using methods like ablation
and lesion studies, topological modularity, on the other hand, can be quantified
using formal measures. Graph theory has a pivotal role in shaping and studying
these measures. A neural network can be considered a graph with neurons
corresponding to vertices and synapses corresponding to edges, and so neural
networks lend themselves naturally to the formal analysis of Graph theory. We
explore some of these measures later in this chapter.

27

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

The desire to bring modularity into the realm of ANNs has existed for a
long time in the field (Happel and Murre, 1994; Caelli, Guan, and Wen, 1999;
Sharkey, 1996; Xu, Krzyzak, and Suen, 1992; Auda and Kamel, 1998; Auda
and Kamel, 1999). The problem domains that ANNs excel in contain disparate
problems differing in input structure, learning requirements, inductive bias and
output properties, to name a few. With the advancement of the field, different
architectures and techniques excelled in different niches. For example, CNNs
(Fukushima and Miyake, 1980; Lecun et al., 1998) were one of the early ex-
amples of such architectures developed as specialized networks for the visual
modality based on the structure and nature of the corresponding input. Sim-
ilarly, many specialized architectures exist for audio and speech (Oord et al.,
2016), natural language processing (Vaswani et al., 2017) and generative models
(Goodfellow et al., 2014), among others. A way of integrating different archi-
tectures, or more generally, topologically distinct and functionally specialized
modules, into a MNN is necessary to solve multimodal tasks and design more
autonomous AI agents. Later and through out the following chapters, we show
that modularity is not only useful as a way of integrating modules that spe-
cialize in different tasks, but also can be used to enhance different performance
measures and solve some problems tightly related to ANNs.

As our aim in this work is to enhance different ANN performance measures,
we needed a general framework that can give a bird’s-eye view of modular
practices in the field and capture the defining patterns in MNNs. Hence, in
this chapter, we have performed an extensive review of modularity in ANN
literature and established a systematic taxonomy of modular techniques and a
general methodology capturing the modularization practices used in MNNs.

We identified that the modularization, i.e. the process of designing MNNs,
of ANNs happens at multiple levels of the ANN design process. The first level
is modularizing the domain of the problem. Some problems have a structure
that lends itself to natural decomposition, like the need to perform specific well
defined tasks to solve the problem. In this case, different modules can operate
on different partitions, either explicitly or implicitly. This is an optional level of
modularization. A neural network can still be modular without explicit domain
modularization. At the second level comes the network topology. Here, the
architecture of the network is specified in terms of how many modules are used,
how they are arranged and connected and what is the sub-architecture of each
module, among other structural properties. Having determined the details of
the architecture, the next level deals with the formation of modules. Given the
problem domain and architecture, is there an obvious way of constructing and
arranging these modules? Does the sub-architecture of each module and the
arrangement of modules into a full network need an automated optimization
process to search the space of possible modules or is there a clear structure that
is better enforced manually? At the final level, the question of how the different
modules will be integrated to produce the system’s final output is addressed. For

28

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

example, in some systems the output arises naturally from the learning process,
while for other systems the output can be calculated in a more algorithmically
defined way. At the end of the chapter, we present some concrete use cases from
the literature to further solidify the presented concepts.

In the upcoming sections, we first discuss modularity, its origins in biolog-
ical systems and its formal treatment and quantification. We then present our
systematic taxonomy and the general modularization methodology capturing
the different techniques in the literature. During the discussion of these tech-
niques, we present a recent extensive review of the different MNNs found in the
literature and further establish a general practical framework of modularity. Fi-
nally, we present detailed use cases of some prominent MNNs in the literature
to help portray the full picture of the methodology. This chapter will act as
a contextual foundation for the subsequent chapters; a frame of reference that
relates the different modular ideas that we investigate later.

2.2 Introduction
Modularity is the property of a system whereby it can be broken down into a
number of relatively independent, replicable, and composable subsystems (or
modules). Although modularity usually adds overhead to system design and
formation, it is often the case that a modular system is more desirable than a
monolithic system that consists of one tightly coupled structure.

Each subsystem or module can be regarded as targeting an isolated subprob-
lem that can be handled separately from other subproblems. This facilitates
collaboration, parallelism and integrating different disciplines of expertise into
the design process. As each module is concerned with a certain subtask, the
modules can be designed to be loosely coupled, which enhances its fault tol-
erance. Also, a modular design with well defined interfaces makes it easier to
scale and add more functionality without disrupting existing functions or the
need for redesigning the whole system. Moreover, as modules correspond to
different functions, error localization and fixing tend to be easier.

An MNN is a neural network that embodies the concepts and practices of
modularity. Essentially, an MNN can be decomposed into a number of sub-
networks or modules. The criteria for this decomposition may differ from one
system to another, based on the level at which modularity is applied and the
perspective of decomposition.

Since the inception of artificial neural networks and throughout their de-
velopment, many of their design principles, including modularity, have been
adapted from biology. Biological design principles have been shaped and ex-
plored by evolution for billions of years and this contributes to their stability and
robustness. Evolutionary solutions are often innovative and exhibit unexpected
shortcuts or trade-offs that, even if not directly implementable, often provide
useful insights. Mapping from biological principles to in-silico realizations is

29

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

not a linear one-to-one process. However, there are several common steps that
can be shared by different such realizations. Ideally, the process of adapting a
biological design principle to an artificial neural network implementation starts
with identifying the key function(s) underlying the design principle. Usually,
there are several complex biological details that are irrelevant to the functional
essence of the principle, which can thus be abstracted away. This may be
followed by some enhancement of the identified function(s) in the artificial do-
main. Finally, the abstracted and enhanced principle is mapped to an artificial
neural network construct using a flexible platform. CNNs (Lecun et al., 1998;
Fukushima and Miyake, 1980) are a poignant success story of the adoption of
some of the key design principles of the visual cortex. The model of the visual
cortex was greatly simplified by CNNs by eliminating complexities like the ex-
istence of different cortical areas (e.g. areas V1 and V2) and pathways (e.g.
ventral and dorsal streams) and focusing on receptive field, pattern specific re-
gions and a hierarchy of extracted features. These were realized using linear
filters, weight sharing between neurons and deep composition of layers. More
examples include RNNs, which are inspired by the brain’s recurrent circuits
(Douglas and Martin, 2007), and Parallel Circuit (PC) neural networks (Kien
Tuong Phan, Maul, and Tuong Thuy Vu, 2015), which take their inspiration
from retinal microcircuits (Gollisch and Meister, 2010).

Biological nervous systems, the early inspiration behind neural networks,
exhibit highly modular structure at different levels, from synapses (Kastellakis
et al., 2015), to cortical columnar structures (Mountcastle, 1997), to anatomical
(Chen et al., 2008) and functional (Schwarz, Gozzi, and Bifone, 2008) areas at
the macro level . It has been proposed that natural selection for evolvability
would promote modular structure formation (Clune, Mouret, and Lipson, 2013).
Modularity is evolvable as it allows for further evolutionary changes without dis-
rupting the existing functionality. It also facilitates exaptation, where existing
structures and mechanisms can be reassigned to new tasks (Kashtan and Alon,
2005). Recognition of this prevalence of modularity in biological neural systems
has left an indelible albeit somewhat irregular mark on the history of ANNs,
mostly under the guise of biologically plausible models. However, with the di-
vergence between the fields of ANNs and Neuroscience, the ANN approach has
tended to become more engineering oriented, getting most of its inspiration and
breakthroughs from statistics and optimization.

Many researchers have long been aware of the importance and necessity of
modularity. For example, the ANN community has for many years recognized
the importance of constraining neural network architectures in order to de-
crease system entropy, lower the number of free parameters to be optimized by
learning, and consequently, have good generalization performance. In Happel
and Murre (1994), it was argued that constraining neural architectures through
modularity, facilitates learning by excluding undesirable input/output map-
pings, by using prior knowledge to narrow the learning search space. In Caelli,

30

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

Guan, and Wen (1999), modularity is considered a crucial design principle if
neural networks are to be applied to large scale problems. In Sharkey (1996)
and Xu, Krzyzak, and Suen (1992), some of the early techniques of integrat-
ing different architectures or modules to build MNNs are discussed. In Caelli,
Guan, and Wen (1999), six different MNN models were analytically dissected,
in an attempt to provide several modeling practices. On the other hand, in an-
other comparative study (Auda and Kamel, 1998), ten different MNN models
were empirically compared using two different datasets. In Auda and Kamel
(1999), a survey was done about MNNs, where the MNN design process was
broken down into three stages, starting by task decomposition, then training
and finally, decision making.

Despite this early interest in neural network modularity, previous research
(Waibel, 1989; Happel and Murre, 1994; Fritsch, 1996; Ronco and Gawthrop,
1995; Auda and Kamel, 1998; Auda and Kamel, 1999; Sharkey, 1996; Chris
Tseng and Almogahed, 2009; Kacprzyk and Pedrycz, 2015; LeCun, Bengio, and
Hinton, 2015) has generally focused on particular MNN models and has lacked
systematic principles and a broad general perspective on the topic. Previous
research has also been lacking in terms of a systematic analysis of the advan-
tages and disadvantages of different approaches (Chris Tseng and Almogahed,
2009), with an increased focus on empirical comparisons of very specific models
and applications (Waibel, 1989; Auda and Kamel, 1998; Fritsch, 1996). Even
for theoretically focused reviews, the taxonomy is sparse and fails to capture
important properties and abstractions (Ronco and Gawthrop, 1995; Auda and
Kamel, 1999; Sharkey, 1996; Kacprzyk and Pedrycz, 2015). Moreover, the scope
of modularity focused on is very narrow, ignoring important forms of modularity
and focusing mainly on ensembles and simple combinations of models (Sharkey,
1996; Happel and Murre, 1994; Fritsch, 1996). These limitations need to be ad-
dressed if modularity is to be applied more generally. More general insights
and a toolbox of modularity-related techniques are needed for consistently im-
plementing successful MNNs. Fortunately, recent MNN techniques have been
devised and revisited, specially in the last decade after the revival of the ANN
field in the form of deep learning.

In this chapter, we aim to expand previous reviews by introducing and
analysing modularization techniques in the neural networks literature in an at-
tempt to provide best practices to harness the advantages of modular neural
networks. We reviewed prominent modular neural networks throughout the lit-
erature, inspected the different levels at which modularity is implemented and
how this affects neural network behaviour. We then systematically grouped
these techniques according to the aspect of neural networks they exploit in or-
der to achieve modularity. Unlike previous reviews, our focus is the general
systematic principles that governs applying modularity to artificial neural net-
works and the advantages and disadvantages of the different techniques. We

31

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

produced a general taxonomy that captures the major traits of different mod-
ular neural networks at different levels and for various modularity forms and
a framework that captures the essentials of the process of building a modular
neural network.

From our study of modular neural networks in the literature, we classified
modularization techniques into four major classes, where each class represents
the neural network attribute manipulated by the technique to achieve modu-
larity. We thus categorized MNN operations into the following four classes:

1. Domain: this is the input space or the data an MNN operates on, which
in turn defines and constrains the problem we are trying to address.

2. Topology: this corresponds to an MNN’s architecture, which reflects the
family of models that an MNN expresses.

3. Formation: this is how an MNN is constructed and what process is used
to form its components.

4. Integration: this is how the different components of an MNN are composed
and glued together to form a full network.

So, modularization techniques operating on the domain tend to act by find-
ing a good partitioning of the input data, to which different modules can be
assigned. This is the only modular level that is optional in the sense that you
may have an MNN that does not have an explicit modularization of the domain,
however, any neural network that is modular must use at least one technique
from each successive level, which includes selecting a certain modular topology,
a formation technique for building the modular architecture, and an integra-
tion scheme for combining the different modules. So, as mentioned, topological
modularization is the next level at which modularity is achieved, where the
technique is essentially a specification of modular topology. Every topological
technique is a blueprint for the structure of the MNN, and therefore defines
how nodes and modules are connected. Although the topological technique
specifies how the MNN as a whole should be at the end, it does not specify
how this architecture can be built. This is what formational techniques try to
address. Formational techniques are the processes by which modular topologies
can be constructed. Finally, while formational techniques focus on the build-
ing of modularity, integration techniques specify how different modules can be
integrated together to achieve the desired system outputs. So, every modular
neural network realization can be seen as chain of modularization techniques
applied to each level or aspect of the network.

In section 2.3, we discuss modularity in the context of both ANNs and
biological neural circuits in general, along with the different approaches for de-
tecting and quantifying it, its evolutionary context and the practical importance
and challenges in applying to engineering problems. In section 2.4, we discuss

32

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

the different modularization techniques applied to the different levels of design-
ing an ANN and how different modularization chains can produce a variety of
MNNs. In section 2.5, we analyse different state-of-the-art MNNs, applying our
conceptual framework to show its explanatory power and emphasise its practical
applicability.

2.3 Modularity
In the domain of neural networks, modularity is the property of a network that
makes it decomposable into multiple subnetworks based on connectivity pat-
terns. It can be argued that the shift of thinking towards functional modularity
in the brain and biological neural networks, is one of the greatest leaps in Neuro-
science since the neuron doctrine (López-Muñoz, Boya, and Alamo, 2006). The
concept of emphasising the importance of relative connections between neurons
and that functionality emerges from intra-modular and inter-modular interac-
tions revolutionized the way we research nervous systems and transformed the
idea of a connectome (Bullmore and Bassett, 2011; Sporns, 2011) into a key
area of brain research.

As already mentioned, the brain has been shown to be modular at different
spatial scales, from the micro level of synapses to the macro level of brain
regions. At the level of synapses, it has been suggested (Kastellakis et al.,
2015) that synapses show both anatomical and functional clustering on dendritic
branches, and this plays a central role in memory formation. At a larger spatial
scale, cortical minicolumns (Buxhoeveden, 2002) have been suggested to be the
basic building unit of the cortex, largely supported by the claim that they have
all of the elements of the cortex represented within them. Lesion studies, brain
imaging using fMRI and several other techniques have shown strong evidence of
brain modularity, where different areas and regions of the brain are specialized
into certain cognitive or physiological functions. More recently, the pioneering
work by Sporns, Bullmore and others and the introduction of graph theory
into the study of brain networks have shed light on the small world nature of
brain connectivity (Bullmore and Sporns, 2009; Sporns and Zwi, 2004). A small
world network is a network characterised mainly by clusters which are groups of
neurons having more interconnections within the cluster than would be expected
by chance, while there is still sparse connectivity between different such clusters.
Moreover, despite large networks and sparse inter-cluster connectivity, there is
still a short average path length between neurons. In Sporns and Zwi (2004),
it was observed that there is a direct correlation between clustering and path
length, and between these two measures and brain area functionality. It was
suggested that areas with short average path length and low clustering tend to
be integrative multimodal association areas, while those with long average path
length and high clustering tend to be specialised unimodal processing areas.

33

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

The graph theoretical approach to studying neural networks considers the
network as a connected graph, where the neurons are represented by nodes (or
vertices) and the synaptic connections between neurons as edges. Although, in
practise, neural networks are directed graphs, i.e. edges have directionality from
pre to postsynaptic neurons, for simplicity and tractability, most researchers in
this area treat neural networks as undirected graphs. Central to quantifying
the small world properties of biological neural networks is how to cluster or
partition the nodes into modules, where each module has dense connectivity
between its nodes and sparse connectivity with nodes in other modules. There
is no single most efficient algorithm for solving this problem, and indeed it was
proven to be an NP-complete problem (Brandes et al., 2008), however, similar
problems have long been studied in Computer science and Sociology (Newman,
2004; Newman, 2006).

In the field of computer science, graph partitioning is a well studied problem,
where given a certain graph and pre-specified number of groups, the problem
is to equally partition the vertices into the specified number of groups, whilst
minimizing the number of edges between groups. The problem was motivated
by other applications before the interest in partitioning neural networks, like
partitioning tasks between parallel processors whilst minimizing inter-processor
communication. The main approach in computer science is a collection of algo-
rithms known as iterative bisection, such as spectral bisection and Kernighan-
Lin algorithm. In iterative bisection, first the graph is partitioned into the best
two groups, then subdivisions are iteratively made until the desired number of
groups is reached. The problem with these methods is that the number and sizes
of groups are not known a priori when partitioning neural networks. Moreover,
a lack of good partitioning measures leads these algorithms to deterministically
partition the graph into the desired number of groups, even if the partitions do
not reflect the real structure of the graph.

On the other hand, sociological approaches have focused more on the prob-
lem of community structure detection. Community structure detection consists
of the analysis of a network in an attempt to detect communities or modules,
where the algorithm does not pre-specify the number or size of groups. In other
words, it is an exploratory approach, where the algorithm may detect subgraphs
or may signal that the graph is not decomposable. This flexibility makes com-
munity structure detection more suitable for neural network research. The main
technique used so far in sociological studies is hierarchical clustering. Based on
a metric called similarity measure, hierarchical clustering constructs a tree-like
structure of network components called a dendrogram. The horizontal section
of this dendrogram at any level gives the network components produced by the
algorithm. The algorithm does not require pre-specification of the number or
sizes of groups, but it does not necessarily guarantee the best division.

In more recent approaches (Newman, 2004; Tyler, Wilkinson, and Huber-
man, 2005; Radicchi et al., 2004), a modularity measure (Equation 2.1) was

34

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

used to either guide the detection process towards the best division or evaluate
the quality of the resulting partitioning. The intuitive notion of modularity as
defined by Newman (2004) and Newman (2016) is that a good network division
is one that places most of the network edges within groups, whilst minimizing
the number of edges between groups. Network connectivity is assumed to be
described by a real symmetric matrix called adjacency matrix A, with dimen-
sions n× n, where n is the number of nodes in the network. Each element Aij
is 1 if there is an edge between node i and j and 0 otherwise. If we assume
dividing the network into q number of groups, where gi refers to the group to
which node i was assigned, then the sum of edges within groups (i.e. between
nodes of the same group) is 1

2 ∑ij Aijδgigj , where δgigj is the Kronecker delta.
Maximizing this quantity alone is no guide towards a good division, because
assigning all the nodes to one big group would maximize this measure whilst
completely avoiding any partitions. To remedy this, modularity is taken to
be the difference between this quantity (i.e. the actual sum of edges within
groups) and the expected number of this sum if edges were placed randomly,
whilst keeping the same partition. If the probability of node i connecting to
node j after randomization is Pij, then this expected sum is 1

2 ∑ij Pijδgigj , and
the modularity measure is then

Q =
1

2m ∑
ij
(Aij − Pij)δgigj (2.1)

where m is the total number of edges, which is used as a normalization factor.
The most used randomization scheme is one that preserves node degree (i.e.
number of edges attached to each node), and the probability of connecting node
i and j under this scheme is kikj

2m , where ki is the degree of node i. Please refer to
Figure 2.1 for an illustration of different neural topologies with corresponding
modularity measures.

On the evolutionary side, multiple hypotheses have been proposed for ex-
plaining the origin of modularity in brain organization. The issue is impor-
tant from the ANN perspective, as it provides inspiration for guiding evolu-
tionary computational algorithms towards generating modular architectures.
It was suggested that evolution in an environment with Modularly Varying
Goals (MVGs) leads to modular networks (Kashtan and Alon, 2005). The
MVG environment consists of varying goals with common subgoals. As the
modularity of the solution obtained was usually limited, it was argued that the
failure might be explained by the fact that the EA was directed more towards
optimal solutions, which was sufficient to solve simple problems, but due to lack
of evolvability, failed to scale up to more complex problems. In other studies,
the competition between efficient information transfer and wiring cost of the
brain have been suggested as sufficient evolutionary pressures for modularity
(Clune, Mouret, and Lipson, 2013; Bullmore and Sporns, 2009). It was also

35

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

Figure 2.1. Calculated modularity measure (Newman, 2004;
Newman, 2016) for different architectures. The partitions,

marked as circles, used for calculations may not be optimal.

suggested that selection for minimal connection cost bootstrapped modularity,
while MVG helped in maintaining it (Clune, Mouret, and Lipson, 2013).

Using multiple modules in practice is partly motivated by the existence of
different subproblems, that may have different characteristics, promoting prob-
lem decomposition and functional separation of tasks, that typically contribute
towards maintainability and ease of debugging. There are, however, difficulties
that surround applying modular neural networks to practical problems. First
of all, domain decomposition into meaningful subproblems is usually difficult as
the problems tackled by neural networks are usually poorly understood. More-
over, adding modularity to a neural network tends to add a number of new
hyperparameters that need optimizing, such as the number of modules, the size
of each module, and the pattern of connectivity between modules. Another
problem that arises with multiple modules is how to integrate the output of dif-
ferent modules and how to resolve any decision conflicts that might arise. We
address these different problems throughout this study. We discuss the issues
surrounding domain decomposition in Section 2.4.1, where we show that prob-
lem decomposition can be done implicitly or explicitly, and indicate how the
process can be automated. Hyperparameter selection and associated issues are
discussed in Section 2.4.3, where the different techniques for MNNs formation
are presented. Integrating different modules to solve the task at hand is further
investigated in Section 2.4.4.

While the study of modularity has focused mainly on topology, which is

36

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

indeed the main property of modular structure, we expand our study of mod-
ularization techniques to different levels of neural network design that can be
exploited to produce modular networks. In the following section, we discuss
the different levels of modular neural networks, and how different chains of
techniques applied to such levels can produce different MNN variants.

2.4 Modularization Techniques
The modularization of neural networks can be realized with different techniques,
acting at different levels of abstraction. A modularization technique is a tech-
nique applied to one of these levels in order to introduce modularity to the
network topology. We present a taxonomy of such techniques that are cate-
gorized based on the abstraction level they exploit to achieve modularity. We
analyse each technique, explaining the main rationale behind it, presenting its
advantages and disadvantages (Table 2.1) relative to other techniques and pro-
viding prominent use cases from the literature. The main levels at which the
modularization techniques act are complementary. Consequently, to produce
a modular neural network, a chain of techniques, or chain of modularization,
is used. A modularization chain (Figure 2.2) consists of a set of techniques
(each one corresponding to a different level of the neural network environment)
used to produce a modular neural network. So, every modularization chain
corresponds to a particular type of MNN.

A modularization chain starts with partitioning the domain, however this
is optional as was mentioned earlier. Then, a modular topological structure
is selected for the model. After that, formation and integration techniques are
selected to build the model and integrate the different modules, respectively. So,
for example, if we need to develop an MNN for enhanced MNIST classification,
then a modularization chain would look like the following:

1. Domain: we may choose to augment the MNIST dataset by applying
a certain image processing function to a copy of each image to extract
specific information, and then consider the original and processed images
as different subdomains.

2. Topology: here we may select a multi-path topology, where one path
of the network has the original image as input and the others have the
processed ones.

3. Formation: we may use an EA to build the multi-path topology, con-
straining it to have exactly two paths.

4. Integration: here we may integrate the outputs of each path into the
final system output, either through the evolutionary process itself, or as
a post-formation learning (or fine-tuning) algorithm.

37

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

Figure 2.2. Modularization chain acting on the different
levels of a neural network.

The underlying concept in the example above is to use MNNs to integrate
different sources of information (i.e. source and processed images) to improve

38

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

classification performance. A similar concrete MNN application was investi-
gated in Ciregan, Meier, and Schmidhuber (2012) and Wang (2015).

2.4.1 Domain
The domain refers to all of the information that is relevant to the problem and
is accessible to the neural network learning model. In other words, it consists
of the inputs and outputs that the system relies on for learning how to gener-
alize to unseen inputs. Focusing on the input side, one of the rationales behind
domain modularization, is that some functions can be defined piecewise, with
each subfunction acting on a different domain subspace. So, instead of learn-
ing or applying the neural network model on all of the input space, domain
modularization aims to partition this space into a set of subspaces. Then, the
modules of an MNN, constructed by applying techniques at different modu-
larization levels, can be readily applied to each subdomain. So, for example,
we may choose to partition temporal data according to the time intervals in
which they were collected, or partition spatial data according to the places in
which they occurred like in Vlahogianni, Karlaftis, and Golias (2007). We refer
to this kind of domain partitioning as subspatial domain partitioning, because
the individual data items are clustered into multiple subspaces. Curriculum
learning (Bengio et al., 2009; Bengio et al., 2015) is a particular form of this
partitioning, where the neural network is successively trained on a sequence of
subspaces with increasing complexity. Another kind is what we call feature or
dimensional domain partitioning. In feature domain partitioning, partitioning
occurs at the level of a data instance, such that different subsets of features
or dimensions or transformations of these get assigned to different partitions.
Examples of this approach include the application of different filters to the orig-
inal images and processing each with different modules like in Ciregan, Meier,
and Schmidhuber (2012), and the partitioning of an image to enhance object
detection accuracy (Zhang et al., 2014).

The domain is, conceptually, the most natural and straightforward level of
modularization. This is essentially because the domain defines the problem and
its constraints, so, a good modularization of the domain corresponds directly to
good problem decomposition. Decomposition of complex problems greatly sim-
plifies reaching solutions, facilitates the design and makes it more parallelizable
in both conception and implementation. In Nardi et al. (2006), the problem of
replacing a manually designed helicopter control system by a neural network
could not be tackled when a single MLP was trained to replace the whole sys-
tem. However, it was feasible by replacing the system components gradually.
Moreover, as it holds all the available information about the problem and its
structure, it acts as a very good hook for integrating prior knowledge, through
the implementation of modularity, that may be useful in facilitating problem
solving. Prior knowledge at the domain level is mainly a basis for problem

39

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

decomposition, be it an analytical solution, some heuristic or even a learning
algorithm. For example, in Babaei, Geranmayeh, and Seyyedsalehi (2010), the
problem domain of predicting protein secondary structure was decomposed into
two main groups of factors, namely: strong correlations between adjacent sec-
ondary structure elements and distant interactions between amino acids. Two
different RNNs were used to model each group of factors before integrating both
to produce the final prediction. It is also interesting to note that the domain
is the only level of modularization that can be absent, at least explicitly, from
a modular neural network. In other words, you can have a modular neural
network that does not involve any explicit modularization at the domain level,
but this is not possible for the other levels. This is mainly because domain
decomposition is a kind of priming technique for modularity, in other words,
it promotes modularity but is not a necessary condition. Note that domain
decomposition can still happen implicitly without intentional intervention. As
a simple example, it is well established in the ML literature that Radial Ba-
sis Function (RBF) networks, and also non-linearities in feedforward networks,
are able to transform inputs that may be non-linearly separable into linearly
separable ones (Haykin, 1994; Montufar et al., 2014).

2.4.1.1 Manual

Manual domain modularization is usually done by partitioning the data into
either overlapping or disjoint subspaces, based on some heuristic, expert knowl-
edge or analytical solution. Theses partitions are then translated into a full
modular solution via different approaches throughout the modularization pro-
cess.

The manual partitioning of input space allows for the integration of prior
knowledge for problems that are easily decomposable based on some rationale.
This knowledge-based integration can be done by defining partitions that cor-
respond to simple subproblems that can be addressed separately. Moreover,
it gives fine control over the partitioning process that can be exploited to en-
hance performance. This is contrary to automatic decomposition, which may
be adaptive and efficient, but as the rationale is latent and not directly ob-
served, it is hard to tweak manually for further enhancements. On the other
hand, it raises the question of what defines a good partition, a partition which
corresponds to a well defined subproblem, that has isolated constraints and can
be solved separately. Although the domain is what characterises a problem’s
solution, usually the relation between decomposing the domain and obtaining a
solution is not that straightforward. For example, you may think of decompos-
ing some input image to facilitate face recognition. However, since the process
of face recognition is not well understood, it is not clear what decomposition is
suitable. Is it segmentation of face parts or maybe some filter transformation?
(Chihaoui et al., 2016) Figuring this out analytically is not feasible. The data
generating process is often very complex and contains many latent factors of

40

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

variations, which makes the separation and identification of those factors hard.
A good partitioning requires a good prior understanding of the problem and
its constraints, which is rarely the case for ML tasks, which generally rely on
large datasets for the automatic extraction of the underlying causal factors of
the data.

One of the simplest subspatial partitioning schemas that arises naturally in
classification tasks is class partitioning. Class partitioning is the partitioning
of the domain based on the target classes of the problem. This is a straight-
forward approach which is built on the assumption that different classes define
good partitions. There are three main class partitioning schemes, namely One-
Against-All (OAA), One-Against-One (OAO) and P-Against-Q (PAQ) (Ou and
Murphey, 2007). In the OAA (Anand et al., 1995; Oh and Suen, 2002) scheme,
the domain of K classes is partitioned into K subproblems, where each sub-
problem is concerned with how to differentiate a particular class A from its
complement, that is, all of the remaining classes which are not A. OAO (Rudasi
and Zahorian, 1991) partitions the domain into (K

2) subproblems, with each
subproblem concerned with differentiating one class from only one other class.
A compromise between the two previous schemes is PAQ (Subirats et al., 2010),
where each subproblem aims to differentiate P number of classes from Q number
of classes. OAO is the most divisive of the three, which makes it the most com-
putationally expensive, assuming that each classifier’s complexity is the same.
Whatever the scheme used, the output of each module trained on a different
subproblem can then be combined with an integration technique to embody a
particular MNN. More generally, different modularization chains can be applied
to the different subproblems, thus resulting in different MNNs.

Class partitioning reduces classification complexity and can be seen as a
divide-and-conquer approach. If the partitioning results in several smaller
datasets, and assuming that the partitioning accurately reflects the problem’s
underlying structure, then not only should the learning problem be easier, but
the overall representation learned by the MNN should be more faithful to the
underlying causes of the data. In Bhende, Mishra, and Panigrahi (2008), clas-
sification of power quality into 11 classes was done by class partitioning using
the OAA technique. The MNNs were applied after feature extraction using the
S-transform, and the different modules were integrated using a max activation
function to produce the final output.

In Vlahogianni, Karlaftis, and Golias (2007), a subspatial domain partition-
ing, that is not class based, is used to train different modules on forecasting
traffic volume at different road locations. In Aminian and Aminian (2007),
an electronic circuit is decomposed into multiple subcircuits to facilitate fault
detection by several neural network modules. Feature domain partitioning is
another form of manual partitioning, and is seen in Mendoza, Melin, and Licea
(2009a) and Mendoza, Melín, and Castillo (2009b) where edge detection us-
ing a fuzzy inference system is done on target images to obtain edge vectors.

41

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

Then different neural networks are trained on parts of these vectors, and the
network outputs are combined using the Sugeno integral to produce the final
classification results. Sometimes, the feature domain partitions are just differ-
ent transformations of the data, with each transformation revealing different
perspectives of the data. This is realised in Ciregan, Meier, and Schmidhuber
(2012) and Wang (2015) where the input image together with its transforma-
tions via different image processing functions are used as inputs into a modular
CNN, in order to enhance classification performance.

2.4.1.2 Learned

Learned decomposition is the partitioning of the domain using a learning algo-
rithm. Problem domains are often not easily separable. This is closely related
to the problem of representation. If the domain can be manually decomposed
into an optimal set of subdomains, that is a set of subspaces that capture all of
the constraints of the problem compactly, this will significantly facilitate learn-
ing. However, usually the data generating process of the domain involves many
interacting factors that are not readily observed. Problems like these typically
require learning algorithms to be applied both to the partitioning (explicitly or
implicitly) and the overall classification problem.

Learned decomposition facilitates the capturing of useful clustering patterns,
especially complex ones that are not tractable by human designers. This in-
tractability may stem from different sources like mathematical complexity or
poorly understood problems. For example, the prediction of protein secondary
and tertiary structure is often a complex and poorly understood process, that
may take tremendous amounts of computational resources to simulate (Fred-
dolino et al., 2008; Allen et al., 2001). However, learning algorithms often add
computational cost to the overall process, since they typically involve adding
an extra step for optimizing the model responsible for the decomposition.

Yuan and Lin (2006) propose modifications to three factor selection meth-
ods, namely lasso, LARS and non-negative garrotte, to allow for selecting groups
of factors. Effectively, the proposed generalization aims at reaching a good de-
composition of the underlying factor space. Because of the clustering nature
of learned decomposition, the mainstream approach involves applying unsuper-
vised learning. In Ronen, Shabtai, and Guterman (2002), fuzzy clustering is
used to dynamically partition the domain into regions, then a different MLP
is trained on each region, and finally, the MLP outputs are integrated using
a Sugeno integral like method. Also, in Fu et al. (2001), a technique called
Divide-and-Conquer Learning (DCL) is used to partition the domain whenever
learning stalls. DCL acts by dividing training regions into easy and hard sets
using Error Correlation Partitioning (ECP) (Chiang and Fu, 1994), which is
based on optimizing a projection vector that separates data points according
to their training error, then different modules are trained on each region and
finally integrated using a gated network.

42

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

Figure 2.3. Different modular neural network topologies.

2.4.2 Topology
The topology of a network refers to how different nodes and modules within
the network connect with each other, in order to produce the overall struc-
ture of the model. A neural network with a modular topology (Figure 2.3)
exhibits a structure whereby nodes within a module are densely connected to
each other, with sparse connectivity between modules. This is topological mod-
ularity, whereas functional modularity emerges when each topological module
can be assigned a sub function of the whole task addressed by the neural network
model. Topological modularity is a necessary, but not sufficient, condition of
functional modularity. Without a learning algorithm that promotes functional
modularity, topological modularity is not guaranteed to give rise to functional
specialisation.

Neuroscience research sheds light on the modular topology of the nervous
system. Neural circuitry in the brain is organized into modules at different levels
of granularity, from cortical columns and neuronal nuclei to the whole anatom-
ical areas of the brain’s macro structure. It has been suggested in different
works that the modularity of the brain arises from selection for evolvability and
minimization of connection cost (Bullmore and Sporns, 2009; Clune, Mouret,
and Lipson, 2013).

Although the early inspiration for neural networks was the brain, artificial
neural network research has mostly deviated from biological research. However,
there are still occasional insights taken from biology (e.g. deep networks and
convolutional structures, to name a few impactful examples) with the usual
caveat that the aim is not to closely mimic the brain, but to solve real world

43

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

problems in effective ways regardless of the source of the core ideas (Goodfellow
et al., 2016). So, although topological modularity is inspired by the brain’s
modular structure, it has metamorphosed into different forms that better suit
the ANN domain.

The formation and learning of monolithic neural networks are hard prob-
lems. This is especially true with very deep neural networks. Deep learning
faces several problems like overfitting, vanishing gradients and spatial crosstalk.
Good topological modularization acts as a kind of regularization relative to
highly connected monolithic networks. For example, Watanabe, Hiramatsu,
and Kashino (2018) provided a method for detecting topological modular struc-
ture in trained monolithic neural networks and empirically showed an inverse
correlation between the modularity of the detected structure and the network
generalization error. Some forms of modular topologies (Larsson, Maire, and
Shakhnarovich, 2016; He et al., 2016; Srivastava, Greff, and Schmidhuber, 2015)
provide shortcut paths for gradient flow which help to alleviate vanishing gra-
dients. Moreover, the sparse connectivity of modules reduces spatial crosstalk.

One of the main problems with monolithic networks arises when something
wrong occurs. In the vast majority of cases, neural networks are considered
black box models. As such, it is usually unrealistically hard to decipher how
a neural network makes its predictions. This stems mainly from a neural net-
work’s distributed representations, where nodes are tightly coupled, making
separation of functions infeasible even in theory. This makes debugging and
fixing deviations in behaviour very difficult. Topological modularity, especially
if accompanied by functional modularity, can be exploited to localize functional
errors so that more investigations may reveal possible solutions. In the case of
full functional modularity, there are still distributed representations associated
with different modules, however, since modules themselves are loosely coupled,
this separation of concerns makes localizing deviation in some sense realistic.

2.4.2.1 HCNR

HCNR topology is a modular topology with non-regular and dense within-
module connections, and sparse connectivity between different modules. Non-
regularity here roughly means that the overall topology can not be described by
a template with repeating structures. This makes the topology generally hard
to compress. Elements from graph theory can be used to formalize this notion
using measures like characteristic path length and clustering coefficient (Watts,
1999). Aside from high clustering, HCNR does not have to exhibit properties
such as the short average path length of Small World (SW) networks. Thus,
the broader category of HCNR includes small world topologies as special cases.

Biology has shown significant interest in small world networks as increas-
ing evidence suggests that many biological systems including genetic pathways,
cellular signalling and brain wiring, exhibit small world topology. The evolu-
tionary origins of the brain’s modular structure is still controversial, but some

44

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

hypotheses have been suggested. In Kashtan and Alon (2005), it was suggested
that evolution under a MVG environment yields modular structure. An MVG
environment changes modularly, in the sense that the environmental goal varies
through time, but each goal is comprised of the same common set of subgoals. A
biological example is chemotaxis towards nutrients. The process of chemotaxis
involves the same set of intermediate goals, like sensing, computing motion di-
rection and moving, that are independent of the target nutrient. In another
hypothesis (Clune, Mouret, and Lipson, 2013) it was suggested that modular-
ity is bootstrapped by a pressure for minimizing costs pertaining to neuronal
connections, and is then maintained by selection for evolvability. Random net-
works tend to have high connection cost due to dense connectivity, which is not
the case in the brain’s neural circuitry, which exhibits economical functional
networks (Achard and Bullmore, 2007). Having a modular structure promotes
evolvability, as accumulative evolutionary changes tend to be local in effect
without disrupting other functions.

In the context of artificial neural networks, the sparse connectivity of HCNR
and average short path of its special case SW, reduce computational complex-
ity compared to monolithic networks, whilst maintaining information transfer
efficiency. However, due to their structural complexity, analysing and adapting
these types of networks to real world problems is hard and raises several techni-
cal difficulties. How many nodes should be in each module? Should module node
counts vary? How much connectivity is allowed within a module? And what
connection sparsity between modules is sparse enough? Also, formation of this
network type is done either by modifying a regular lattice (Bohland and Minai,
2001), which is hard to adapt to all ML tasks, or via EAs (Huizinga, Mouret, and
Clune, 2014; Verbancsics and Stanley, 2011; Garcia-Pedrajas, Hervas-Martinez,
and Munoz-Perez, 2003; Mouret and Doncieux, 2009; Mouret and Doncieux,
2008), which are lengthy and computationally expensive. The adoption of these
two approaches, especially EAs, is a direct consequence of the previously men-
tioned difficulties and lack of good general engineering practices for HCNR.

The work done in Bohland and Minai (2001) shows that an SW topology
can approach the performance of random networks for associative memory tasks,
with less connectivity than random networks, implying that associative mem-
ories can benefit from modularity. This network was constructed by rewiring
a regular lattice randomly. The work by Bohland and Minai (2001) shows
that performance is not only about the quantitative nature of connectivity (i.e.
number of connections), but also about its qualitative nature (i.e. how these
connections are placed).

Evolutionary approaches for HCNR are either based on direct connection
cost regularization, or the coevolution of modules. Both approaches tend to be
biologically inspired, with connection cost regularization corresponding to the
pressure of minimizing brain wiring, and coevolution inspired by species coevo-
lution, where in this case each module is considered a different species. The

45

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

evolutionary approach in Huizinga, Mouret, and Clune (2014) and Verbancsics
and Stanley (2011) made use of the connection regularization studied in biolog-
ical neural networks (Clune, Mouret, and Lipson, 2013; Bullmore and Sporns,
2009) to promote HCNR modularity in the resulting model, which led to better
performance on modular regular problems such as the retina problem. Another
evolutionary approach relies on the cooperative coevolution model where mod-
ules are dependently co-evolved and their fitness is evaluated based on each
module’s performance and how well each module cooperates with other mod-
ules. COVNET (Garcia-Pedrajas, Hervas-Martinez, and Munoz-Perez, 2003),
for example, achieved better results in some classification problems, like the
Prima Indian and Cleveland Clinic Foundation Heart Disease datasets. COV-
NET also showed robustness to damage in some network parts.

Currently, there is an increasing interest in learning and manipulating struc-
tured representations using GNNs (Battaglia et al., 2018). For example, Santoro
et al. (2017) introduced a module to enhance solving relational reasoning prob-
lems. Message-Passing Neural Networks (MPNNs) (Gilmer et al., 2017) are a
type of GNN that were applied to the prediction of properties of molecular struc-
tures. Another area of application was recovering textual representations from
Abstract Meaning Representations (AMR) (Song et al., 2018). One application
which is very relevant to architectures and topologies is Graph HyperNetworks
(Zhang, Ren, and Urtasun, 2018). This is a GNN for predicting a good set of
weights for a neural network by analyzing its graph. We believe that GNNs
can facilitate the analysis, manipulation and building of complex graphs, like
HCNRs, and help understand their properties.

2.4.2.2 Repeated Block

This topology of modular neural networks is essentially a structure of repeated
units or building blocks connected in a certain configuration. The building
blocks do not have to be exact clones of each other, but they are assumed to
share a general blueprint. The idea of global wiring schema in neural networks
has its roots in biological studies and it is the underlying principle of the fa-
mous neuroevolution algorithm, HyperNEAT (Stanley, D’Ambrosio, and Gauci,
2009). In Angelucci et al. (1997) it was shown that retinal projections in ferrets,
normally relayed to the Lateral Geniculate Nucleus (LGN), when rewired to the
Medial Geniculate Nucleus (MGN), normally a thalamic relay in the auditory
pathway, led the MGN to develop eye-specific regions. Also, mammalian cor-
tex is considered to be composed of repeating columnar structure (Lodato and
Arlotta, 2015). These and other lines of evidence support the notion of a global
mechanism of wiring and learning in the brain.

In the artificial realm, repeated block structure allows for easier analysis
and extensibility of neural networks. On the theoretical level and due to the
high regularity of these topologies, a very large structure can be described by
a few equations. For example, a recursive structure like FractalNet (Larsson,

46

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

Maire, and Shakhnarovich, 2016), can be described by a simple expansion rule.
Also, due to regularity, scaling the capacity of these topologies tends to be very
natural. We provide a taxonomy of repeated block topologies based on how the
repeated units are wired together.

2.4.2.2.1 Multi-Path

Multipath topology refers to neural networks with multiple semi-independent
subnetworks connecting network inputs to outputs. In Kien Tuong Phan, Maul,
and Tuong Thuy Vu (2015), Phan et al. (2016), and Phan et al. (2017) this
topology is named PCs, which are inspired by the microcircuits in the retina
(Gollisch and Meister, 2010). The retina is believed to be of significant com-
putational importance to the visual pathway, not just a simple informational
relay. In other words, it has been shown that the retina does perform complex
computational tasks, such as motion analysis and contrast modulation, and de-
livers the results explicitly to downstream areas. Moreover, these microcircuits
have been shown to exhibit some sort of multipath parallelism, embodied by
semi-independent pathways involving different combinations of photoreceptor,
horizontal, bipolar, amacrine and retinal ganglion cells.

The separation of multiple paths allows for overall network parallelization,
contrary to network expansion in terms of depth, where deeper layers depend on
shallower ones, which makes parallelization problematic. Also, as in Ortín et al.
(2005) and Wang (2015), each path can be assigned to a different input modality
which allows for modal integration. This resembles brain organization where
different cortical areas process different modalities, and then different modalities
get integrated by association areas. However, the introduction of multiple paths
adds uncertainty in the form of new hyperparameters (e.g. numbers and widths
of paths), which if to be determined empirically, often requires a phase of pre-
optimization. Moreover, aside from obvious links to ensemble theory, as of
yet there is no detailed theoretical justification for multiple paths. Why do
empirical experiments show improved generalization performance (Phan et al.,
2016) of multipath over monolithic topologies? Does width (in terms of number
of paths) promote problem decomposition just like depth promotes concept
composition? To date there are no mature gradient-based learning algorithms
to fully exploit the parallel circuit architecture, and which are likely to explicitly
promote automatic task decomposition across paths.

In Kien Tuong Phan, Maul, and Tuong Thuy Vu (2015), Phan et al. (2016),
and Phan et al. (2017), a multipath approach with shared inputs and outputs is
shown to often exhibit better generalization than monolithic neural networks.
Crucial to this improvement, was the development of a special dropout approach
called DropCircuit, where whole circuits are probabilistically dropped during
training. In another approach (Guan and Li, 2002), called output parallelism,
the inputs are shared between paths, while each path has a separate output
layer. This technique can be applied when the output is easily decomposable.

47

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

A very related approach can be found in Goltsev and Gritsenko (2015), where
a central common layer is connected to multiple paths, each used for a different
output class. On the other hand, the work in Wang (2015) enhances CNNs by
allowing for two paths, one with the source image as input, and the other with a
bilateral filtered version of it. In bilateral filtering, each pixel value is replaced
by the average of its neighbours, taking into account the similarity between
pixels, so that high frequency components can be suppressed while edges are
preserved. The integration of images preprocessed in different ways facilitates
the capturing of more useful features. This is motivated by the observation
that convolution and pooling operations extract high frequency components,
which causes simple shapes and less textured objects to gradually disappear.
Bilateral filtering of one of the input images tends to suppress high frequency
components, which allows the network to capture both simple and complex
objects. The multi-path concept can be integrated with other topologies, as
in Xie et al. (2016) where ResNetXt enhances ResNet’s sequential topology by
introducing modules that have multi-path structure.

2.4.2.2.2 Modular Node

A modular node topology can be viewed as a normal monolithic feedforward
neural network, where each node is replaced by a module consisting of multiple
neurons. This expansion is computationally justified by replacing a single acti-
vation function depending on one weight vector, by a collection of functions or
a function depending on multiple weight vectors. This has the effect of increas-
ing the computational capability of the network, while maintaining a relatively
small number of model parameters. Moreover, the regularity and sparsity of
such a structure, combined sometimes with restricting weights to integer val-
ues, can be suitable for hardware realizations (Sang-Woo Moon and Seong-Gon
Kong, 2001). On the other hand, this requires additional engineering decisions,
like choosing the number of module neurons, how they are interconnected and
what activation functions to use.

A special case of this topology is hierarchical modular topology, which con-
sists of modules at different topological scales, where a higher level module is
composed of submodules, each of which is composed of submodules, and so
on. Hierarchical modularity is known to exist in brain networks (Wang, Hilge-
tag, and Zhou, 2011; Kaiser and Hilgetag, 2010), other biological networks and
Very Large-Scale Integration (VLSI) electronic chips (Meunier, Lambiotte, and
Bullmore, 2010). It has been argued that this form of modularity allows for
embedding a complex topology in a low dimensional physical space.

In Sang-Woo Moon and Seong-Gon Kong (2001), Wei Jiang and Seong Kong
(2007), and Phyo Phyo San, Sai Ho Ling, and Nguyen (2011) modular node
topology is realized by replacing the nodes of a feedforward network by a two
dimensional mesh of modules, with modular units each consisting of four neu-
rons. The four neurons can be connected in four different configurations. This

48

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

network, called Block-Based Neural Network (BBNN), was shown to be appli-
cable to multiple tasks including pattern classification and robotic control, even
when its weights were restricted to integer values. Another modular network
called Modular Cellular Neural Network (MCNN) (Karami, Safabakhsh, and
Rahmati, 2013) exhibits similar array like arrangement, where nine modules
are arranged in a grid. A module in MCNN is composed of another grid of
dynamic cells, where each cell is described by a differential equation. MCNNs
were applied to texture segmentation successfully and benchmarked to other
algorithms on the problem of edge detection. Another realization of this topol-
ogy can be found in the Local Winner-Take-All (LWTA) network (Srivastava
et al., 2013), where each node of a feedforward neural network is replaced by
a block, each consisting of multiple non interconnected neurons. The network
operates by allowing only the neuron with the highest activation in a block to
fire, while suppressing other neurons. The block output is

yi = g(h1
i , h2

i , ..., hn
i) (2.2)

where g(.) is the local interaction function and hj
i is the activation of the jth

neuron in block i. This is mainly inspired by the study of local competition
in biological neural circuits. Network In a Network (NIN) models (Lin, Chen,
and Yan, 2013) are the modular node equivalents of CNNs, where each feature
map is replaced by a micro MLP network, to allow for high-capacity non-linear
feature mapping. The output of a single micro MLP is

f l
i,j = max(0, Wl f l−1

i,j + bl) (2.3)

where (i, j) are indices of the central pixel location, l is the index of the MLP
layer and W and b are the weights and bias, respectively. It is also interesting
that the LSTM architecture (Hochreiter and Urgen Schmidhuber, 1997), the
famous RNN, has a modular node structure, in which each node is an LSTM
block. LSTM has shown state-of-the-art results in sequence modeling and differ-
ent real-world problems (Stollenga et al., 2015; Eyben et al., 2013; Soutner and
Müller, 2013). Moreover, Hierarchical Recurrent Neural Networks (HRNNs),
which are typically realised using LSTM or its simplification, the GRU, imple-
ments hierarchical modular topology, where the first hidden layer is applied to
input sequentially and the layer output is generated every n number of inputs,
which is then propagated as input to the next layer and so on. Hence, the main
difference between HRNNs and classic RNNs is that, for the former, hidden
layer outputs are generated at evenly spaced time intervals larger than one.
HRNNs have been used for captioning videos with a single sentence (Pan et al.,
2016) and with a multi-sentence paragraph (Yu et al., 2016), and for building
end-to-end dialogue systems (Serban et al., 2016).

CapsNet was introduced in Sabour, Frosst, and Hinton (2017), which is
mainly a vision-centric neural network that attempts to overcome the limitations

49

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

of CNNs. The main rationale behind CapsNet is representing objects using
a vector of instantiation parameters that ensures equivariance with different
object poses. CapsNet can be thought of as an ordinary CNN, in which each
node is replaced by a vector-output module. The output of such a modular
node vj in CapsNet is calculated as

vj =
||sj||2

1 + ||sj||2
sj

||sj||
(2.4)

where sj is the node input and is calculated as

sj = ∑
i

cijûj|i, ûj|i = Wijui (2.5)

where ui is the output of a unit i from the previous layer, Wij is a transformation
matrix and cij is a coupling coefficient. Coupling coefficients are calculated
through a routing softmax as

cij =
ebij

∑k ebik
(2.6)

where bij is a log prior probability which is initialized to zero and updated
following the rule

bij ← bij + ûj|i.vj (2.7)
This is called routing-by-agreement and acts to increase contributions from
lower layer capsules that make good predictions regarding the state of a higher
level capsule.

2.4.2.2.3 Sequential

Sequential topology consists of several similar units connected in series. The
idea of composition of units has its roots in deep learning. Deep networks arise
when multiple layers are connected in series. This allows for deep composition
of concepts, where higher level representations are composed from lower level
ones. The difference here is that the composed units consist of whole modules.
But with added depth, convergence and generalization can become increasingly
difficult, and one must therefore resort to tricks like dropout and batch nor-
malization to make learning feasible. Moreover, there has been recent criticism
of very deep networks based on the question of whether this extreme depth
is really necessary (Ba and Caruana, 2014; Veit, Wilber, and Belongie, 2016),
specially given that the brain can do more elaborate tasks with far fewer layers.

Inception networks (Szegedy et al., 2015a; Szegedy et al., 2016) and Xcep-
tion networks (Chollet, 2016) (built from an extreme version of an inception
module), are essentially a sequential composition of multi-path convolutional

50

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

modules. Highway networks were introduced in Srivastava, Greff, and Schmid-
huber (2015) and can be seen as a sequentially connected block of modules,
where each module output consists of the superposition of the layer output and
layer input, weighted by two learning functions called the transform gate and
carry gate respectively. The output of a single layer in a highway network can
be modelled as

y = H(x, WH).T(x, WT) + x.C(x, WC) (2.8)

where H is the layer activation function, T is the transform gate and C is the
carry gate. These two gates learn to adaptively mix the input and output of
each module, acting as a regulator of information flow. A similar idea can
be found in He et al. (2016) where a special case of highway networks called
residual networks consists of the same structural unit but with both gates set
to the identity function. This makes the residual layer output

y = H(x, WH) + x (2.9)

This is motivated by simplifying the learning problem and enforcing residual
function learning. Interestingly, the LSTM network, whose modular node topol-
ogy was discussed above, exhibits a temporal form of sequential topology, where
each LSTM block feeds its output to itself through time. So, expanding the
LSTM block in time results in a temporal sequential topology, where the out-
put of the LSTM block from the previous time step is considered as an input
to the LSTM block in the current time step.

2.4.2.2.4 Recursive

Networks with recursive topology exhibit nested levels of units, where each unit
is defined by earlier units in the recursion. Usually, all of the units are defined
by the same template of components wiring. Recursion has a long history and
is considered to be a key concept in computer science. Although recursive
problems can be solved without explicit recursion, the recursive solution is a
more natural one. In theory an infinite structure can be defined in one analytical
equation or using a simple expansion rule. Due to their recursive structure,
networks with recursive topology are readily adaptable to recursive problems
(Franco and Cannas, 2001). Recursion also allows for very deep nesting while
still permitting short paths, sometimes called information highways (Larsson,
Maire, and Shakhnarovich, 2016) that facilitate gradient back-propagation and
learning. However, as mentioned earlier, excessive depth is criticised by some
researchers and its necessity is becoming increasingly debatable.

FractalNet introduced in Larsson, Maire, and Shakhnarovich (2016) exploits
recursive topology to allow for very deeply nested structure that is relatively
easy to learn despite its significant depth. It is inspired by the mathematically

51

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

beautiful self-similar fractal, where going shallower or deeper in structure yields
the same topology schema. It is defined as

fC+1(x) = [(fC ◦ fC)(x)]⊕ [conv(x)] (2.10)

where C is the fractal index, ◦ means composition, conv is a convolutional layer
and ⊕ is a join operation which was chosen to be an elementwise average of its
inputs. It is supposed that the effectively shorter paths for gradient propaga-
tion facilitate learning and protect against vanishing gradients. In Franco and
Cannas (2001) the parity problem was decomposed recursively and a recursive
modular structure was adapted for its solution. Also in this work on the parity
problem, it was shown that generalization was systematically improved by de-
gree of modularity, however, it was not obvious if that was a general conclusion
applying to all problems.

2.4.2.3 Multi-Architectural

A multi-architectural topology consists of a combination of full network ar-
chitectures, integrated together via a high-level and usually simple algorithm.
Frequently, it is characterized by each component network having its separate
output. The different architectures used may be similar (i.e. homogeneous)
or different (i.e. heterogeneous). Architectural differences include, but are not
limited to, differences in wiring scheme and activation functions. As different
network architectures have different strengths and weaknesses (and make dif-
ferent errors), the integration is usually trying to exploit this diversity in order
to achieve a more robust collective performance. Even when networks are sim-
ilar, diversity can still be achieved since random initialization and stochastic
learning makes each network converge differently. However, this usually entails
training multiple architectures, which is time consuming and computationally
expensive.

One of the early attempts for combining multiple architectures was the
mixture of experts systems (Jacobs et al., 1991; Azam, 2000), where a gat-
ing network chooses which one of multiple networks should respond to a given
input. In another approach (Ciregan, Meier, and Schmidhuber, 2012), a ho-
mogeneous model is used where similar CNNs are trained on different types of
pre-processing of the same image and their outputs are integrated by averaging.
In Yu et al. (2018b), a referring expression is decomposed into three components,
subject, location and relationship, where each component is processed using a
separate visual attention module, which is essentially a CNN, and then the
outputs of the different modules are combined. In Babaei, Geranmayeh, and
Seyyedsalehi (2010), a heterogeneous model consisting of two different RNNs,
each modeling different protein structural information, is applied to predicting
protein secondary structure. In Zhang et al. (2016a), a modular deep Q network
is proposed to facilitate transferring of a learned robotic control network from

52

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

simulation to real environment. By modularising the network into three com-
ponents, namely perception, bottleneck and control modules, the perception
training can be done independently from the control task, while maintaining
consistency through the bottleneck module acting as an interface between the
two other modules. In Shetty and Laaksonen (2015), Yu et al. (2016), and Pan
et al. (2016) heterogeneous models of CNNs and RNNs are used for video cap-
tioning, where one or more CNNs are used for extracting features, which are
used as inputs to RNNs for generating video captions. GANs and their vari-
ants (Goodfellow et al., 2014; Kim et al., 2017) are also multi-architectural in
nature. Another interesting example is the memory network (Weston, Chopra,
and Bordes, 2014), where multiple networks are composed end-to-end around
a memory module to allow for the utilisation of past experiences. Essentially,
a memory network is composed of a memory and four components, namely,
I, G, O and R. I is the input network that translates the raw input into an
internal representation I(x). G stands for generalization and it is responsible
for updating memory based on the new input

mi = G(mi, I(x), m) (2.11)

where i is the index of the memory cell. After the memory is updated, another
module, O, computes the output features o based on the new input and the
memory

o = O(I(x), m) (2.12)
and finally, the R module converts the output features into the desired format

r = R(o) (2.13)

2.4.3 Formation
Formation refers to the technique used to construct the topology of the neural
network. Manual formation involves expert design and trial and error. In man-
ual formation, the human designer is guided by analytical knowledge, several
heuristics and even crude intuition. Because of the difficulty and unreliability
of manual formation, and a general lack of understanding of the relation be-
tween problems and the models they require, automatic techniques have been
devised. Arguably the most popular automatic techniques are EAs, where the
structure of the network is evolved over multiple generations, based on a fit-
ness function that evaluates which individuals are more adapted. Another set
of automatic formation algorithms constitute the learned formation category,
where a learning algorithm is used not only for parameter (e.g. connection
weight) optimization, but also for structure selection. Learned formation can
be categorized into constructive and destructive algorithms (Garcia-Pedrajas,
Hervas-Martinez, and Munoz-Perez, 2003). In constructive learned formation,

53

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

the algorithm starts with a small model, learns until the performance stalls,
adds components to expand capacity and iterates again. Destructive learned
formation algorithms start with a big model that overfits, then iteratively re-
move nodes until the model generalizes well.

In order to form a modular neural network, one of these construction ap-
proaches needs to be modified in order to take modularization into account.
With manual formation, it is in principle straightforward to modularize, where
instead of designing a monolithic network, different modules are designed and
combined to build an MNN. On the other hand, while standard EAs can pro-
duce modular structure, they are usually modified using techniques like coop-
erative coevolution, given that the latter are generally seen to be more effective
for evolving modular structure. In the case of learned formation, learning algo-
rithms usually take modularity explicitly into account. So, the ML task becomes
that of learning both modular structure and the parameters (e.g. weights) of
that structure. A variant of learned formation, which we call implicit learned
formation, is a learning algorithm that is implicitly sampling or averaging from
a set of modules, so that the overall effective structure of the network can be
seen as a modular one.

2.4.3.1 Manual

In manual formation, modular networks are built by manual design and compo-
sition of different modules. This type of formation provides useful opportunities
for integrating good engineering principles and prior knowledge of the target
problem into the modular neural network. For example, in Babaei, Geran-
mayeh, and Seyyedsalehi (2010), the system for predicting protein secondary
structure is formed from two RNN modules that model two different aspects of
the process, namely, short and long range interactions. Fine control over what
to include or exclude from the model can lead to a robust combination of well
performing components. However, regardless of how this sounds theoretically
plausible, limited understanding of the underlying structures of most real-world
problems and limited, to date, research into good neural modularization prac-
tices, make this hard in practice.

In Nardi et al. (2006), different modules are manually composed together
to implement a helicopter control system, based on the practices of human
designed Proportional–Integral–Derivative (PID) controllers. The PID compo-
nents are replaced progressively by their neural network counterparts, until the
whole control is done by the MNN. More formally in Guang-Bin Huang (2003),
analytical introduction of modular layers into feedforward neural networks al-
lows for reducing the number of nodes required to learn a target task. This is
a case that shows how good engineering could be integrated, through formal
analysis, into the formation of modular neural networks.

54

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

2.4.3.2 Evolutionary

EAs represent the current state of the art in formation methods for modular
neural networks. This is clearly biologically inspired by the neuroevolution of
the brain, which is shown to be highly modular both in topology and function-
ality (Aguirre et al., 2002; Bullmore and Sporns, 2009). Aside from biological
inspiration, evolving modular structure has gained momentum as an effective
approach to modularity formation, partly because of a lack of fundamental
learning principles supporting artificial neural modularity. Adapting evolution
to the problem of modularity formation, through connection cost regulariza-
tion (Huizinga, Mouret, and Clune, 2014) or cooperative coevolution (Garcia-
Pedrajas, Hervas-Martinez, and Munoz-Perez, 2003), partly delegates the prob-
lem of choosing modularity-related hyperparameters, such as the number and
structure of modules, or connection schema, to a fitness function. Furthermore,
EAs are the only fitness-based approach to producing HCNR topology, whereas
other methods rely on random modifications to regular networks. On the down
side, as already mentioned, EAs tend to be computationally expensive.

In Garcia-Pedrajas, Hervas-Martinez, and Munoz-Perez (2003), COVNET
was introduced, which is a modular network formed using a cooperative co-
evolutionary algorithm. Every module is called a nodule, and is defined as a
set of neurons that are allowed to connect to each other and to input/output
nodes, but are not allowed to connect to neurons in other nodules. Every nod-
ule is selected from a genetically separated population and different nodules are
combined together to form individuals of the network population. To achieve
cooperative coevolution, it is not sufficient to assign fitness values to networks,
but it is also necessary to assign fitness values to nodules. The fitness of a net-
work is straightforward, where obviously it corresponds to how well the network
performs on its target task. The fitness assignment of nodules must enforce: (1)
competition, so that different subpopulations do not converge to the exact same
function, (2) cooperation, so different subpopulations develop complementary
features and (3) meaningful contribution of a nodule to network performance,
such that poorly contributing nodules are penalized. In COVNET, a combina-
tion of different measures is used to satisfy these criteria. Substitution is used
to promote competition, where the best k networks are selected and a nodule
a is replaced by a nodule b from the same subpopulation; then the networks
fitnesses are recalculated, and nodule a is assigned fitness proportional to the
average difference between the network fitnesses with nodule a and the net-
work fitnesses with the substitution nodule b. Difference is used to promote
cooperation between nodules by promoting competition between nodule sub-
populations, so that they do not develop the same behaviour. Difference is
done by eliminating a nodule a from all the networks where it is present, then
recalculating network fitnesses; then the nodule is assigned fitness proportional
to the average difference between fitnesses of the networks with the nodule and

55

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

the networks without it. Finally, best k is used to assess the meaningful con-
tribution of a nodule, where nodule fitness is proportional to the mean of the
fitnesses of the best k networks. This has the effect of rewarding nodules in
the best performing networks, whilst not penalizing a good nodule in a poor
performing network.

Promoting modularity through connection cost minimization (Huizinga, Mouret,
and Clune, 2014) is biologically inspired as evidence suggests that the evolution
of the brain, guided by the minimization of wiring length, besides improving in-
formation transfer efficiency, produces modular structure (Clune, Mouret, and
Lipson, 2013; Bullmore and Sporns, 2009). In Hüsken, Igel, and Toussaint
(2002), modularity emerges through evolution by selection pressure for both
fast and accurate learning. In Di Ferdinando, Calabretta, and Parisi (2001),
a modular multi-path neural network was evolved for solving the what and
where task of identifying and localizing objects using a neural network. In an-
other type of approach, modules are used as substrates for EAs. For example, in
Braylan et al. (2015) pre-learned networks (modules) were combined using EAs,
in an attempt to implement knowledge transfer. In Calabretta et al. (2000),
evolution was implemented using a technique called duplication-based modu-
lar architecture, where the architecture can grow in the number of modules by
mutating a set of special duplicating genes. In Miikkulainen et al. (2017) a
population of blueprints, each represented by a graph of module pointers, was
evolved using CoDeepNEAT, alongside another population of modules, evolved
using DeepNEAT, an algorithm based on NEAT (Stanley and Miikkulainen,
2002), to develop deep modular neural networks. CoDeepNEAT seems to be a
generalization of a previous algorithm called ModularNEAT (Reisinger, Stan-
ley, and Miikkulainen, 2004), where modules are evolved using classic NEAT
and blueprints are shallow specifications of how to bind modules to the final
network input and output.

In Fernando et al. (2017), an interesting approach to evolutionary formation
is introduced, where only some pathways in a large neural network composed
of different modules are trained at a given time. The aim is to achieve multi-
task learning. The pathways are selected through a GA that uses a binary
tournament to choose two pathways through the network. These pathways are
then trained for a number of epochs to evaluate their fitness. The winner genome
overwrites the other one and gets mutated before repeating the tournament. At
the end of the training for some task, the fittest pathway is fixed and the process
is repeated for the next task.

2.4.3.3 Learned

Learned formation is the usage of learning algorithms to induce modular struc-
ture in neural networks. Learned formation attempts to integrate structural
learning into the learning phase, such that the learning algorithm affects net-
work topology as well as parameters. We identified two variants of learned

56

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

formation in the literature. Explicit learned formation uses ML algorithms
to promote modularity, predict the structure of modular neural networks and
specify how modules should be wired together. On the other hand, implicit
learned formation corresponds to learning algorithms that implicitly sample
from multiple modules during training, although during the prediction phase,
the network is explicitly monolithic whilst effectively simulating a modular net-
work. Learned formation, just like evolutionary formation, allows for dynamic
formation of modules. Moreover, as mentioned above, it can effectively sample
from a large set of models, which is why it is often referred to as effectively
implementing ensemble averaging (Srivastava et al., 2014; Huang et al., 2016b;
Singh, Hoiem, and Forsyth, 2016; Larsson, Maire, and Shakhnarovich, 2016).
The main disadvantage for dynamic algorithms like these is added computa-
tional overhead. Also, for implicit learned formation, the network is still densely
connected and therefore computationally expensive, and modules are generally
sampled randomly without any preference for better modules.

In Andreas et al. (2016a), Andreas et al. (2016b), and Hu et al. (2016),
which exemplifies recent work on explicit learned formation, the problem of re-
lating natural language to images was addressed. A set of modular blocks, each
specialised in a certain function (e.g. attention and classification), were used
as building units of a modular neural network, where different dynamic tech-
niques were applied to assemble units together into an MNN that was capable
of answering complex questions about images and comprehending referential
expressions. For example, in Andreas et al. (2016b), two distributions were
defined: (1) layout distributions, defined over possible layouts/structures of the
network and, (2) execution model distributions, defined over selected model
outputs. The overall training was done end-to-end with reinforcement learning.
Another approach (Ferreira et al., 2018) proposes using False Nearest Neigh-
bours (FNN), an adaptive learning algorithm usually used to determine the
dimensionality of embedding, to help determine the kernel size and number of
units for CNNs.

One of the most well known implicit learned formation techniques is dropout
(Srivastava et al., 2014). Dropout acts by dropping random subsets of nodes
during learning, as a form of regularization that prevents interdependency be-
tween nodes. Dropout is effectively sampling from a large space of available
topologies during learning, because each learning iteration acts on a randomly
carved sparse topology. In the prediction phase, networks are effectively aver-
aging those random topologies to produce the output. Stochastic depth (Huang
et al., 2016b) is another dropping technique used in training residual networks,
which acts by dropping the contribution of whole layers. Swapout (Singh,
Hoiem, and Forsyth, 2016) generalizes dropout and stochastic depth, such that
it is effectively sampling from a larger topological space, where a combination
of dropping single units and whole layers is possible. DropCircuit (Phan et al.,
2016; Phan et al., 2017) is another related technique, which is an adaptation of

57

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

dropout to a particular type of multipath neural network called Parallel Circuits.
In this technique, whole paths are randomly dropped, such that learning itera-
tions are acting on random modular topologies. This effectively corresponds to
sampling from a topological space of modular neural networks. Blundell et al.
(2015) introduced Bayes by Backprop, a learning algorithm that approximates
Bayesian inference which is, as applied to a neural network, the sum of the
predictions made by different weight configurations, weighted by their posterior
probabilities. This is essentially an ensemble of an infinite number of neural
networks. As this form of expectation is intractable, it is approximated using
variational learning, using different techniques such as Monte Carlo approxima-
tion and a scale mixture prior.

2.4.4 Integration
Integration is how different module outputs are combined to produce the final
output of the MNN. Integration may be cooperative or competitive. In coop-
erative integration, all the MNN modules, contribute to the integrated output.
On the other hand , competitive integration selects only one module to produce
the final output. The perspective of integration is different from that of forma-
tion, where the latter is concerned with the processes that gives rise to modular
structure, and the former is concerned with the structures and/or algorithms
that use different modules in order to produce model outputs. Integration is
a biologically inspired theme of brain structure, where hierarchical modular
structures work together to solve a continually changing set of complex and
interacting environmental goals.

2.4.4.1 Arithmetic-Logic

Arithmetic-Logic (AL) integration corresponds to a set of techniques that com-
bine different modules through a well-defined algorithmic procedure, combining
mathematical operators and logic. For problems that can be described using a
sequence of algorithmic steps, this is the simplest and most straightforward ap-
proach, and is the most natural hook for integrating prior knowledge. It is worth
mentioning that while the relation between steps needs to be algorithmically
defined, the computation of the steps themselves is not necessarily well-defined.
For example, a car control system may want to steer away from an obstacle once
it has identified one. The relation between identification and steering away is
AL-defined, while the identification of obstacles is not generally algorithmically
defined. Moreover, AL integration allows for module decoupling, where each
module has its well-defined interpretable output, which further makes debug-
ging easy. However, in ML tasks, due to our limited understanding of problem
domains and corresponding data generating processes, it is rarely the case that
problems can easily be decomposed into AL steps.

58

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

In Gradojevic, Gençay, and Kukolj (2009), multiple neural networks were
logically integrated, where each network was trained on only a part of the
input space, and the output was integrated at the prediction phase by selecting
the network that corresponded to the input subspace. This is a competitive
integration type scheme. A more complex integration was done in Nardi et al.
(2006), where neural network components for a helicopter control system were
cooperatively integrated based on the AL of a hand designed PID controller.
In Wang et al. (2012), two CNNs, one being a text detector and the other a
character recognizer, were logically integrated, where the detector determined
image locations containing text and the recognizer extracted text given these
locations. In Eppel (2017), the recognition of the parts of an object was done
in two steps, where in the first step, a CNN was used to segment the image to
separate the object from its background, then in the second step another CNN
was applied to the original image and the segmentation map to identify the
object parts.

2.4.4.2 Learned

Learned integration consists of the composition of modules through a learning
algorithm. Here, learning is concerned with how to optimally combine mod-
ules in order to obtain the best possible performance on the target problem.
Composing modules to solve a certain problem is not straightforward, involving
complex interactions between modules. Using learning algorithms in modu-
lar integration helps to capture useful complex relationships between modules.
Even when subproblems are readily composable into a final solution, learning
algorithms can find shortcuts that can help formulate more efficient solutions.
However, the introduction of learning can result in unnecessary computational
overhead, and can give rise to tightly coupled modules, often leading to over-
fitting and harder debugging. A very common type of learned integration is
synaptic integration, where different modules are combined together by con-
verging to a common parametric layer, which determines, through learning, the
contribution of each module to the final output.

In Almasri and Kaluarachchi (2005), several neural network outputs were
integrated together, to predict nitrate distribution in ground water, using a
gating network. A gating network is a very common integration technique,
where a specialised network is used to predict a vector of weights, which is
used to combine the outputs of different experts (i.e. networks). In Zheng,
Lee, and Shi (2006), a Bayesian probability model was used to combine MLP
and RBF network predictions based on how well each module performed in
previous examples. This Bayesian model tended to give more weight to the
module that performed better on previous examples in a certain target period
of prediction. Fuzzy logic has also been used as a tool for learned integration
(Melin et al., 2007; Hidalgo, Castillo, and Melin, 2009). In Mendoza, Melin,
and Licea (2009a), Mendoza, Melín, and Castillo (2009b), and Melin, Mendoza,

59

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

and Castillo (2011) an image recognition MNN was proposed where different
neural networks were trained on part of the edge vector extracted from the
target image. Fuzzy logic was then used to integrate different neural network
outputs by assessing the relevance of each module using a fuzzy inference sys-
tem and integrating using the Sugeno integral. Synaptic integration was done
in Anderson et al. (2016), with the aim of achieving transfer learning on a small
amount of data. A set of untrained modules were added to a pretrained net-
work and integrated by learning while freezing the original network weights.
In another work (Terekhov, Montone, and O’Regan, 2015), a similar approach
utilized synaptic integration for multi-task learning, where an initial network
was trained on some task, followed by a modular block of neurons that were
added and integrated by training on a different task, while again freezing the
original network parameters.

60

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

Table 2.1
Advantages and disadvantages of different technique

Technique Advantages Disadvantages
A. Domain
1. Manual

• Prior knowledge integration
• Fine control over partitions

• Partitions are hard to define
• Relation between decomposition and so-

lution is not straightforward
• Separation of variation factors is hard

e.g Anand et al. (1995), Oh and Suen (2002), Rudasi and Zahorian (1991), Subirats et al. (2010), Bhende, Mishra, and Panigrahi
(2008), Mendoza, Melin, and Licea (2009a), Mendoza, Melín, and Castillo (2009b), Ciregan, Meier, and Schmidhuber (2012),
Wang (2015), Vlahogianni, Karlaftis, and Golias (2007), and Aminian and Aminian (2007)
2. Learned

• Capture useful relations not tractable by
human designer

• Computational cost and extra step of
learning the decomposing model

e.g Ronen, Shabtai, and Guterman (2002), Fu et al. (2001), and Chiang and Fu (1994)
B. Topology
1. HCNR

• Sparse connectivity
• Short average path

• Complex structure
• Hard to analyse and adapt to problems
• Formation difficulty

e.g Bohland and Minai (2001), Huizinga, Mouret, and Clune (2014), Verbancsics and Stanley (2011), Garcia-Pedrajas, Hervas-
Martinez, and Munoz-Perez (2003), Mouret and Doncieux (2009), and Mouret and Doncieux (2008)
2. Repeated Block
2.1. Multi-Path

• Parallelizable
• Suitable for multi-modal integration

• Additional hyperparameters
• Currently lacks theoretical justification

e.g Kien Tuong Phan, Maul, and Tuong Thuy Vu (2015), Phan et al. (2017), Ortín et al. (2005), Wang (2015), Phan et al.
(2016), Xie et al. (2016), and Guan and Li (2002)
2.2. Modular Node

• Computational capability with relatively
fewer parameters

• Can be adapted for hardware implemen-
tation

• Additional hyperparameters

e.g Sang-Woo Moon and Seong-Gon Kong (2001), Wei Jiang and Seong Kong (2007), Serban et al. (2016), Soutner and
Müller (2013), Phyo Phyo San, Sai Ho Ling, and Nguyen (2011), Karami, Safabakhsh, and Rahmati (2013), Pan et al. (2016),
Srivastava et al. (2013), Lin, Chen, and Yan (2013), Eyben et al. (2013), Yu et al. (2016), Hochreiter and Urgen Schmidhuber
(1997), Stollenga et al. (2015), Wang, Hilgetag, and Zhou (2011), and Kaiser and Hilgetag (2010)
2.3. Sequential

• Deep composition • Hard training
• Excessive depth is arguably unnecessary

e.g Szegedy et al. (2015a), Szegedy et al. (2016), Chollet (2016), Srivastava, Greff, and Schmidhuber (2015), and He et al.
(2016)
2.4. Recursive

• Readily Adaptable to recursive problems
• Deep nesting with short paths

• Excessive depth is arguably unnecessary

e.g Franco and Cannas (2001) and Larsson, Maire, and Shakhnarovich (2016)
3. Multi-Architectural

• Better collective performance
• Error tolerance

• Computationally complex

e.g Ciregan, Meier, and Schmidhuber (2012), Babaei, Geranmayeh, and Seyyedsalehi (2010), Shetty and Laaksonen (2015), Yu
et al. (2016), Pan et al. (2016), Kim et al. (2017), and Weston, Chopra, and Bordes (2014)
C. Formation
1. Manual

• Prior knowledge integration
• Fine control over components

• Hard in practice

e.g Nardi et al. (2006) and Guang-Bin Huang (2003)
2. Evolutionary

• Adaptable way for modularity formation
• Suitable for HCNR formation

• Lengthy and computationally complex

e.g Huizinga, Mouret, and Clune (2014), Garcia-Pedrajas, Hervas-Martinez, and Munoz-Perez (2003), Braylan et al. (2015),
Miikkulainen et al. (2017), Reisinger, Stanley, and Miikkulainen (2004), Hüsken, Igel, and Toussaint (2002), Calabretta et al.
(2000), and Di Ferdinando, Calabretta, and Parisi (2001)
3. Learned

• Dynamic formation of modularity
• Sample from large set of models

• Computational complexity
• In implicit learned variant, networks are

densely connected

e.g Srivastava et al. (2014), Huang et al. (2016b), Singh, Hoiem, and Forsyth (2016), Larsson, Maire, and Shakhnarovich
(2016), Andreas et al. (2016a), Andreas et al. (2016b), Hu et al. (2016), Phan et al. (2016), Phan et al. (2017), and Blundell
et al. (2015)
D. Integration
1. Arithmetic-Logic

• Prior knowledge integration
• Loosely coupled modules

• Difficult in practice

continued on next page

61

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

continued from previous page
Technique Advantages Disadvantages
e.g Gradojevic, Gençay, and Kukolj (2009), Nardi et al. (2006), and Wang et al. (2012)
2. Learned

• Captures complex relations • Computationally complex
• Tightly coupled modules

e.g Zheng, Lee, and Shi (2006), Mendoza, Melín, and Castillo (2009b), Mendoza, Melin, and Licea (2009a), Almasri and
Kaluarachchi (2005), Melin et al. (2007), Melin, Mendoza, and Castillo (2011), and Hidalgo, Castillo, and Melin (2009)

In the next section, we apply the discussed modular framework to some of
the state-of-the-art MNNs, where we analyse their modular composition and
show how their general design is captured by our abstracted modular concepts,
in a proof-of-concept of the practical applicability of these modularization prin-
ciples.

2.5 Case Studies
We will present some case studies of state-of-the-art MNNs, for which we will
emphasize the modular techniques applied. We will be concerned with the
three main levels of modularization, i.e. topology, formation and integration.
As discussed earlier, domain modularization is an optional component. In the
Inception architecture (Szegedy et al., 2015a), the architecture which set the
state-of-the-art in ILSVRC14, the topology is mainly a repeated block archi-
tecture, which combines both multi-path and sequential structures. The main
skeleton is a sequence of repeated blocks, where each block is a multi-path
subnetwork. Formation was manually engineered. The main guiding heuris-
tic for the manual formation was approximating a sparse architecture using
dense modules, such that it can still exploit the hardware optimized for dense
computations. Integration is a learned integration.

FractalNet (Larsson, Maire, and Shakhnarovich, 2016) topology is a com-
bination of different modular techniques. The main skeleton is a sequential
repeated block structure. Each block is a combination of recursive fractal struc-
ture, sequential chaining and multi-path branching. The manual formation is
based on making the network robust to the choice of overall depth, through
the recursive nesting of subnetworks of various depths, such that the learning
algorithm can carve out the efficient paths. Integration is a learned integration.

CapsNet (Sabour, Frosst, and Hinton, 2017) can be considered a modular
node topology, where each single activation is replaced by a pose vector cap-
turing different instantiation parameters of the underlying object. Formation
is manually engineered, where the main guiding principle is to achieve equiv-
ariance through pose vectors, transformation matrices and dynamic routing by
agreement. Integration is AL based on dynamic routing by agreement. Dy-
namic routing by agreement acts by combining predictions of the lower layer
based on their relative agreement. In that way, it has no learned state.

PCNet++ (Phaye et al., 2018), a variant of CapsNet (Sabour, Frosst, and
Hinton, 2017) has a topology of a sequential and mutli-architectural nature. The
main skeleton is a sequential stack of three simpler networks called DCNet. The

62

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

output of each subnetwork is routed into two branches, one contributes to the
final output and the other is used as the input to the next subnetwork in the
stack. This way, each subnetwork builds on the previous one and at the same
time contributes to the final output as a standalone architecture. The forma-
tion is manual based on diversifying the PrimaryCapsules, such that different
capsules carry information of various scales of the image. Integration is a simple
AL, where the DigitsCapsules from different output levels are concatenated to
form the final output.

In their NAS technique, Liu et al. (2017) used a search space of hierarchical
modular topology, a special case of modular node topology as discussed ear-
lier. Each searched architecture is a hierarchical structure of building blocks of
increasing complexity starting from a pre-defined set of primitives. The tech-
niques for formation and integration were evolutionary search with tournament
selection and learned integration, respectively. Another NAS technique was in-
troduced by Bender et al. (2018). This search technique is based on training an
exponential number of modular architectures through training a large model,
called one-shot model, that includes these architectures as subnetworks. The
main topological structure of the one-shot model is composed of a sequential
skeleton of multi-path blocks. Formation is a hybrid of implicit and explicit
learned formation, where a path-dropping technique is used for regularization
such that the one-shot model can be used as a proxy for the performance mea-
sure of the different implicit subnetworks. After convergence of the one-shot
model, explicit modular networks are sampled based on the performance mea-
sure provided by the one-shot model. Integration is a learned integration.

2.6 Conclusion
This chapter aimed at introducing and analysing the main modularization tech-
niques used in the field of neural networks so far, in order to establish a general-
ized framework for how to systematically implement neural modularity in order
to harness its advantages. We devised a taxonomy of modularization techniques
with four main categories, based on the target of the modularization process,
i.e.: domain, topology, formation and integration. We further divided each cat-
egory into subcategories based on the nature of the techniques involved. We
discussed the advantages and disadvantages of the techniques, and how they
are used to solve real-world problems. Analysis and empirical results show that
modularity can be advantageous over monolithic networks in many situations.

The review has shown that a wide variety of algorithms for modularization
exists, acting on different parts of the MNN life cycle. We have shown that
advances in MNNs are not restricted to biologically inspired topological mod-
ularity. The quest for modularity in ANNs is far from being a mere case of
enforcing networks to be partial replicas of the brain. Even topological modu-
larity is often a vague imitation of brain structure. As the ANN literature has

63

Chapter 2. A Review of Modularization Techniques in Artificial Neural Networks

increasingly diverged from its early biological roots, so has modularity metamor-
phosed into different shapes and techniques, ranging from biologically-inspired
to purely engineering practices.

The techniques reviewed here have ranged from explicit expert-knowledge
based techniques to fully automated implicit modularization techniques, each
having its specific set of pros and cons and suitability for particular problems.
Some techniques were found to be tailored to satisfy the specific constraints of
particular problems, while others were found to be generic, trading specializa-
tion performance for full automation and generalizability. Neural modulariza-
tion was shown to be a sequential application of techniques, which we called
modularization chain, where each technique acts on a different aspect of the
neural network.

Although modularity has many advantages over monolithic deep networks,
the main trend is still oriented towards monolithic deep neural networks. This is
mainly due to the many successes of monolithic deep learning in different areas
throughout the last decade. Also, the lack of extensive research into learning
and formation techniques for neural modularity makes it hard for practitioners
to efficiently deploy the approach. Contrary to this, monolithic networks have
attracted extensive research that has generated a critical mass of theoretical in-
sights and practical tricks, which facilitate their deployment. EAs are currently
the main actors in complex modular neural network construction. However,
the debate of whether EAs are the best approach for MNN formation and if
they harness the full power of modularization and problem decomposition is
still open. Also, there is still a significant gap on how to stimulate problem
decomposition in modular networks, so that their topological modularity may
also become a full functional modularity.

We tentatively predict that as the challenges facing deep learning become
increasingly hard, a saturation phase will eventually be reached where depth
and learning techniques may not be enough to fuel progress in deep learning.
We do not view modularity as a replacement for depth, but as a complemen-
tary and integrable approach to deep learning, especially given that excessive
depth is becoming increasingly criticized for reasons of computational cost and
extraneousness. The dilemma is similar to the software quality problem, where
exponential growth in hardware efficiency is masking poor algorithmic opti-
mization. We believe that as deep learning becomes increasingly applied to
more challenging and general problems, the need for robust Artificial General
Intelligence practices will sooner or later promote the modularization of neural
networks.

Based on the context introduced in this chapter, we use modularity in the
subsequent chapters to improve different performance measures of ANNs. We
make use of different modular tools like multipath and modular node topologies
(Section 2.4.2), manual and learned formation (Section 2.4.3) and learned and
AL integration (Section 2.4.4).

64

Chapter 3

Balancing Accuracy and Latency
in Multipath Neural Networks

3.1 Preface
Despite the extraordinary success achieved by deep learning and ANNs tech-
niques in complex AI tasks that defied classical AI and ML for decades, they
are becoming more and more computationally demanding over time. Increasing
capacity in a coordinated way has led to a remarkable increase in model accu-
racy. This gave rise to the compute-centric approach which utilizes centralized
data repositories and computational resources to train high-capacity models.
Since this approach is not suitable for applications with limited resources, the
data-centric approach which utilizes distributed data and local computations
was actively developed to meet the requirements of these use cases.

Because of these requirements in the data-centric approach, a new breed of
models optimized for constrained resources was needed. Usually, as mentioned,
the capacity/complexity of a model has a strong relation with its accuracy. This
implies that miniaturizing models needs to be done while taking this delicate
balance into account. Many techniques have been developed to realize this
potential like factorization (Jaderberg, Vedaldi, and Zisserman, 2014; Howard et
al., 2017), quantization (Han, Mao, and Dally, 2015) , hashing techniques (Chen
et al., 2015), pruning techniques (Han, Mao, and Dally, 2015) and knowledge
distillation (Hinton, Vinyals, and Dean, 2015). NAS is a general technique
that optimizes an ANN architecture by searching for potential candidates in a
given search space. Some NAS techniques were adjusted to search for potential
architectures while taking the accuracy-latency balance into consideration (Tan
et al., 2019; Tan and Le, 2019; Cai, Zhu, and Han, 2018).

Multipath Neural Network (MpathNN) is an MNN with branched structure
that carries computations in parallel through multiple network paths (Kien
Tuong Phan, Maul, and Tuong Thuy Vu, 2015; Phan et al., 2016; Phan et al.,
2017; Ortín et al., 2005; Wang, 2015). Compared to an MLP, with all other
architectural hyperparameters like width and depth being equal, MpathNN has
a sparser parameter set and, hence, is less computationally expensive. However,

65

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

deriving an MpathNN from an equivalent MLP implies introducing two more
extra hyperparameters representing how many paths are needed and where to
divide the network to get the extra paths.

In this chapter, we aim to harness the potential of deriving less computa-
tionally expensive MpathNN that may be used in limited resource conditions.
MpathNN is one of the MNN topologies we discussed in Section 2.4.2. Since
this process requires choosing how many paths are needed and where to place
the divisions, we use a NAS technique, mainly a one-shot model, to optimize for
these architectural hyperparameters. A NAS technique is a variant of the MNN
learned formation techniques discussed in Section 2.4.3 and the integration in
this case is learned integration as discussed in Section 2.4.4. By implicitly
ranking the relative effects of different divisions, we prune the network in a
coordinated way to introduce sparsity while preserving accuracy as much as
possible. This is a common pruning technique that was chosen because of its
simplicity and implementation efficiency. Also, by sampling different architec-
tural candidates from the search space, we can establish a relation between
latency and accuracy across the different potential MpathNN candidates that
allows a modeler to balance the accuracy-latency requirements without the need
for exhaustive training of models. Our results show that our method can find
MpathNN candidates with a good balance between accuracy and latency and
can reliably predict their performance with high precision.

In Section 1.5, we discussed the problem of efficiently implementing a mod-
ular architecture. While we did use optimization techniques in our modular
work in Chapter 4 and Chapter 5, in this chapter we used a conventional dense
zero-entries matrix. That is, the sparsity was incorporated into the network’s
feedforward pass by replacing the pruned connections by zero entries. This,
however, was still efficient since we needed sparsity only at inference time.
However, finding efficient generic techniques for accelerating modular architec-
tures is crucial to the artificial modularity field as we discuss more in Section 3.7
and Section 3.8.

3.2 Introduction
Deep learning has gained momentum as an ML approach that surpassed clas-
sical techniques in a broad category of complex tasks by introducing multiple
layers of feature composition. As a side effect, the computational complexity
of its models grew substantially and they are becoming exceedingly demand-
ing with the accelerating research in the field. The field has seen a trend of
strong correlation between increasing model sizes, in a coordinated way, and
the accuracy gain in different tasks. Applications that utilize a compute-centric
approach, i.e. central repository of accumulated data and high computational
resources that can be used for training and enhancing models, could scale their

66

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

computational resources and data size sufficiently to accommodate for the ex-
ploding demand of the bigger-size data-greedy models.

However, not every application lends itself to central computation. Hand-
held devices and IoT are pervasive technologies with rich data. For many con-
cerns like privacy, security and bandwidth, these data can not be centralized
and a different approach is needed. The data-centric approach, hence, depends
on distributed computing and learning across many terminal devices that are
generally limited in resources.

Latency refers to the increased processing runtime of a neural network, usu-
ally as measured at inference time. While there are implementation and hard-
ware factors that can contribute to a network’s latency and cause the same
architecture’s latency to vary across devices (Yang, Lu, and Ren, 2020), the
parameter count of a network is a very important proxy measure to a net-
work’s latency, specially when benchmarking similar architectures (Howard et
al., 2017; Sandler et al., 2018; Iandola et al., 2016; Hinton, Vinyals, and Dean,
2015). Also, since the parameter count offers a good proxy measure of the
model’s memory complexity, it is considered an overall good measure of the
suitability of a model to limited-resource applications. In this work, we simi-
larly rely on the parameter count as a proxy to the model latency at inference
time.

Since deep learning is computationally demanding, ways of reducing its com-
plexity, while maintaining its performance are needed to harness the potential
of the passive data available in peripheral and limited resource devices. Several
methods were researched in the quest to achieve this goal. Separable convo-
lutions were used in a set of techniques (Howard et al., 2017; Sandler et al.,
2018; Iandola et al., 2016) to reduce network size and complexity. Quanti-
zation, hashing and pruning techniques (Han, Mao, and Dally, 2015) aim at
reducing parameter precision, and allow sharing of parameters based on ac-
tivations and sparsifying parameters, respectively. Factorization (Jaderberg,
Vedaldi, and Zisserman, 2014) reduces the number of parameters by approxi-
mating complex computations by another smaller set of factored computations.
Distillation (Hinton, Vinyals, and Dean, 2015) effectively compresses knowledge
from a large network into another smaller network.

NAS is a set of related techniques for optimizing neural architecture by
searching in a prespecified search space. Vanilla NAS techniques depend on
sampling architectures from the search space. These architectural samples are
then trained and evaluated in order to guide the search process towards more
promising architectures (Kyriakides and Margaritis, 2020). This sampling pro-
cess can happen through techniques like RL (Zoph and Le, 2016; Zoph et al.,
2018), EAs (Liu et al., 2017) and random search (Liu et al., 2017; Zoph et al.,
2018).

Training and evaluating a large number of sampled architectures are compu-
tationally expensive processes that need a serious scale of distributed computing.

67

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

One-shot NAS techniques (Liu, Simonyan, and Yang, 2018; Zhao et al., 2020)
were developed to avoid these heavy computational needs. A supernet is a large
network that spans multiple subnetwork architectures with overlapped weight
sharing. By single-time training of a supernet that is designed to span some
search space, one-shot NAS can approximate the evaluation of an exponential
number of architectures without the need for exhaustive training and evaluation
of individual networks. Furthermore, specialized NAS techniques were devel-
oped with search spaces aimed at limited resource conditions (Tan et al., 2019;
Tan and Le, 2019; Cai, Zhu, and Han, 2018).

MpathNNs are NNs that have multiple, usually independent, paths. Com-
pared to another model having the same width and depth, MpathNNs have a
sparser set of parameters. MpathNNs have been used in several previous stud-
ies for improving generalization (Kien Tuong Phan, Maul, and Tuong Thuy Vu,
2015; Cireşan, Meier, and Schmidhuber, 2012; Wang, 2015), image captioning
(Yu et al., 2019a), feature extraction (Yu et al., 2019b), cross modal learning
(Hong et al., 2015; Hong et al., 2019), and dimensionality reduction (Zhang,
Yu, and Tao, 2018).

We can think of MpathNNs as a way of sparsifying a FC model with similar
width and depth (in general, the same architectural hyperparameters exclud-
ing the number of learned parameters). However, it is not clear how to divide
such an FC model into multiple paths specially given that the number of pos-
sible MpathNNs corresponding to an FC model is intractable to be evaluated
thoroughly. We utilize a one-shot model to evaluate the relative importance
between such divisions. Then, we can prune the network using this information
to get an MpathNN with decent balance between latency and accuracy. We
further construct an approximate relation between complexity and accuracy by
fine-tuning and validating a small sample of possible models. This allows a
modeler to satisfy a given accuracy-latency requirement ahead of any specific
MpathNN model training. Finally, the model can be fine-tuned for a given
complexity to yield the final desired model. Our contributions are:

• Using a one-shot model to approximate the relative accuracy across all
possible divisions of paths of an FC model.

• We utilize the information gained from the search process to get MpathNNs
models with a desired path count through a pruning process.

• We use a predictive model learned from a small architectural sample to
predict potential model accuracy ahead of any specific model training/fine-
tuning.

68

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

3.3 Multipath Neural Networks
Biological nervous systems exhibit multipath branching and parallel computa-
tions in their structure (Gollisch and Meister, 2010; Otsuna, Shinomiya, and
Ito, 2014). This inspired ANNs which adopt similar structures. Multipath
CNN was used by Cireşan, Meier, and Schmidhuber (2012) where different
paths have a different preprocessed version of the same input. The outputs
of different columns were averaged to produce the final output. In a similar
approach by Wang (2015), different paths were fed with differently filtered ver-
sions of the input and the output was consolidated from the multipaths by
a fully connected subnetwork. In image captioning, Yu et al. (2019a) used
several detectors applied in parallel for multi-view feature learning. For unsu-
pervised dimensionality reduction, Zhang, Yu, and Tao (2018) used the same
idea by applying local contractive autoencoders to extract local features and
then applied affine transformations to align with a global coordinate system.
Yu et al. (2019b) extracted hierarchical features of different granularity using
a parallel structure applied to both image and text data. For Human Pose Re-
covery (HPR), Hong et al. (2015) extracted 2D and 3D features from different
modalities and learned to map 2D to 3D features. Similarly for HPR, Hong
et al. (2019) fed inputs from different modalities into different branches, each
with its own reconstruction task.

Inception-v1, the ANN that won ILSVRC-14, was introduced by Szegedy et
al. (2015b) and it exhibits highly branched structure. Inception-v2/v3 (Szegedy
et al., 2016) and Xception (Chollet, 2016) improved over inception-v1 by exploit-
ing more multibranching. ResNetXt (Xie et al., 2016) and Residual Inception
(Zhang et al., 2018) are variants of ResNet (He et al., 2016) where the mod-
ular block has multipath structure. FractalNet, proposed by Larsson, Maire,
and Shakhnarovich (2016), has a recursive highly branched structure. The par-
allel circuit network by Phan et al. (2016) is based on a multipath structure
and showed generalization improvement over FC networks when regularized by
DropCircuit (Phan et al., 2018). PathNet (Fernando et al., 2017) is a super NN
(a large NN that is supposed to contain multiple subnetworks) that is targeted
at learning sequential tasks efficiently. The network is highly branched and a
GA is used to select which subnetwork to learn. After the convergence of each
task, the fittest path is frozen before moving to the next task.

3.4 Neural Network Compression
Due to the explosion of NN sizes and the need to run on limited resource devices,
several techniques have been investigated to reduce network sizes while main-
taining as much accuracy as possible. Howard et al. (2017) used a factorization

69

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

technique of separable convolutions and 1x1 convolutions in MobileNet to re-
duce complexity. More fine control over architecture size was done by width
and resolution multipliers, two hyperparameters that control network width
and representation resolution, respectively. MobileNetv2 (Sandler et al., 2018)
enhanced over MobileNet by introducing inverted residuals and bottlenecks in
order to reduce computations and promote the extraction of useful represen-
tations. A similar approach was adopted by Iandola et al. (2016) where they
introduced two different types of cells, namely squeeze and expansions cells,
containing either 1x1 filters or a mix of 1x1 and 3x3 filters, respectively. Chen
et al. (2015) used the hashing trick (Weinberger et al., 2009; Shi et al., 2009)
to share weights based on feature activation. Han, Mao, and Dally (2015) used
a combination of pruning, quantization/Huffman-coding and fine tuning. Af-
ter training, the network was pruned based on the weight magnitudes. The
sparse weights were then quantized and Huffman-coded and, finally, fine-tuned.
The idea by Jaderberg, Vedaldi, and Zisserman (2014) was to factor convo-
lutional filters into rank-1 horizontal and vertical vectors. The separation of
the kernels was based on gradient-guided optimization. Knowledge distillation
(Hinton, Vinyals, and Dean, 2015) is a knowledge transfer technique that trains
a smaller student network using soft targets generated from a larger teacher
network. The soft targets are generated from the teacher using a softmax with
high-temperature (i.e. higher than 1). Two objectives are used for the training,
the first is based on the cross entropy of the soft targets with the same high-
temperature used for generating the soft targets and the other is based on the
actual labels with a softmax temperature of 1.

3.5 Neural Architecture Search
NAS is the set of techniques targeted towards the automated optimization of
ANN architectures. Zoph and Le (2016) used an RNN to sample an ANN archi-
tecture. The sampled architecture was then trained and evaluated to provide
the necessary reward that would be used to train the RNN through RL. Zoph
et al. (2018) used a similar RL technique, however, instead of searching for a
complete ANN architecture, they restricted their search to finding a cell/block
that would be repeated later to build a full architecture. Zhang et al. (2020)
proposed a NAS technique for DenseNet (Huang et al., 2016a). The core idea
was to prune unnecessary skip connections by formulating the pruning process
as a Markov Decision Process (MDP). An RL agent was then trained to suggest
the potential connections for pruning.

As discussed, one-shot NAS depends on training a supernet in order to im-
plicitly evaluate the performance of many architectures in parallel without the
need for exhaustive evaluation of individual candidates. Saxena and Verbeek
(2016) used a supernet that spans a CNN search space by arranging the net-
work architectural hyperparameters across three axes: (1) a layer axis, which

70

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

is analogous to the usual depth axis, (2) a scale axis, which spans feature maps
with different resolutions and (3) a channel axis, across which the number of
channels vary. DARTS (Liu, Simonyan, and Yang, 2018) is another differential
NAS technique that uses a set of stacked modular multipath cells, each having a
branched structure with different operations. The operations are combined by a
parameterized weighting function and the whole model is optimized end-to-end
for architectures with higher accuracy. PC-DARTS (Xu et al., 2019) mitigated
the high memory need of DARTS by downsampling the number of channels of
each node input. To avoid fluctuations in the architecture optimization due
to this random sampling process, node outputs were combined in a normalized
learnable way, instead of concatenation like in DARTS. A technique similar
to DARTS is used by Cai et al. (2019) where the weighting factors of the dif-
ferent operations were produced by a secondary network. A highly branched
network was used in a NAS technique by Bender et al. (2018) to evaluate mul-
tiple branched NNs in parallel. Random paths were dropped during training as
a form of regularization and subnetworks are evaluated by sampling from the
trained supernet.

Some NAS techniques were developed with the aim of searching architec-
tural spaces that suit limited resource applications in mind. Tan et al. (2019)
used a search space based on diverse, instead of homogeneous, blocks. The
architectural search optimizes for accuracy subject to a constraint of maximum
allowed latency. The latency was measured as the runtime on actual mobile
devices, instead of FLOPS. Tan and Le (2019) analysed the effect of scaling
the width, depth and resolution of the network, and based on that, modified
the work by Tan et al. (2019) to enforce uniform scaling. Cai, Zhu, and Han
(2018) used a NAS technique that samples different potential operations from
the search space, in contrast to techniques like DARTS (Liu, Simonyan, and
Yang, 2018) that use a linear mixture of possible operations.

The approach most similar to our technique is slimmable NNs (Yu et al.,
2018a). Slimmable NNs aim to balance network complexity and accuracy by
activating different fractions of the total network width. The network is trained
by accumulating gradients from a predefined set of width fractions.

In this work we use a one-shot model to evaluate different possible divisions
of a fully connected network into independent paths and, then, guide the prun-
ing process to get potential MpathNN models. Our work is different from Yu
et al. (2018a) in that the whole width of the network is active since we aim at
evaluating all possible divisions. The one-shot model, in contrast to previous
work, is used to draw a relation between parameter count and validation er-
ror, which can aid the modeler to realize the required accuracy-latency balance
beforehand, without the need for training multiple models from scratch.

71

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

3.6 Methodology
For our purposes, we formally define a MpathNN as a NN having two or more in-
dependent paths (i.e. having no interconnections). We also define an MpathNN-
equivalent MLP, which we will refer to by an equivalent MLP for convenience,
as an NN having the same number of layers (i.e. depth) and number of nodes
per layer (i.e. width). In the same way, we will call any MpathNN that has an
equivalence to a given MLP as a derived MpathNN. An equivalent MLP has
certainly more capacity in terms of its parameter count than any corresponding
derived MpathNN. Pruning an MLP into a number of paths is done by dropping
a set of connections in the way described later. Thus, a derived MpathNN is
more computationally and memory efficient, at the expense of losing capacity,
which may lead to accuracy degradation. For some applications, like models
targeted at devices with limited resources, some degree of accuracy degradation
can be tolerated in order to achieve a more efficient runtime and less memory
consumption.

Due to the limited resources in these kinds of applications, usually a model is
trained on more powerful machines, and used later for inference on the resource-
constrained device. At one extreme, one can imagine training every possible
derived model and choosing the one with the optimal balance between accu-
racy and complexity. This is, however, not practically possible for almost any
realistic MLP due to combinatorial explosion1.

Our aim in this chapter, is to use a method similar to one-shot models (Liu,
Simonyan, and Yang, 2018; Xu et al., 2019; Cai et al., 2019; Bender et al.,
2018; Yu et al., 2018a; Saxena and Verbeek, 2016) to approximate this kind
of accuracy-latency relation, without the need to train every possible derived
model. Fig. 3.1 shows a sketch of the one-shot NAS and the pruning steps of
our method. In step (a), a one-shot NAS model based on an equivalent MLP is
initialized. Then, this model is fully-trained to estimate the relative importance
of different path divisions as shown in step (b). A sample of derived models
with different numbers of paths can be generated from the trained model by
pruning. Step (c) shows the pruned models with 2 paths (i) and 3 paths (ii). The
derived models are fine-tuned for a small number of epochs and, then, validated
to establish a relation between capacity and validation accuracy. Based on

1Calculating the number of unique derived MpathNN models is not a trivial problem and
is beyond conventional combinatorial techniques and the scope of this work. The problem is
related to the integer partitions problem which can be solved using generating functions or
through an approximation formula (Andrews, 1998; Andrews and Eriksson, 2004). In a more
recent work, Bruinier and Ono (2013) found a closed-form formula which is, nonetheless, not
trivial. For our purposes, it is sufficient to state that for a model following the simplified
scheme shown in Fig. 3.2 with width W, the number of unique architectures grows sub-
exponentially in W (Andrews and Eriksson, 2004) and that for widths as small as 64 and 128,
the number of unique architectures is on the order of 1.7M and 4.4B, respectively.

72

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

Figure 3.1. One-shot NAS of an MpathNN with 3 hidden
layers and a width of 7 nodes. The input connections and the

output layer were omitted for clarity. (a) An equivalent MLP is
turned into a one-shot model by inserting a set of randomly

initialized membranes. (b) The estimated membrane
permeabilties are ranked in ascending order. (c) Pruning can

be used to get an MpathNN with a given path count, e.g
MpathNN with 2 paths (i) or 3 paths (ii).

this relation, a modeler can select the model with the desired balance between
accuracy and complexity and fine-tune it to get the final inference-ready model.

73

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

Figure 3.2. Simplified Equivalent MLP Architecture

For simplicity of analysis and efficiency of implementation purposes, we
consider only MpathNNs which follow the structure of the equivalent MLP
depicted in Fig. 3.2. The set of models following this general architecture consist
of a number of hidden layers, all having the same width (i.e. number of nodes).
The first hidden layer (i.e. the layer receiving the input) is a FC layer. The
remaining hidden layers are divided into a number of independent paths, each
having the same width for all of their layers. The output layer is an FC layer
much like the first hidden layer, receiving all path outputs as a concatenated
vector.

74

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

Figure 3.3. MpathNN Example with 3 paths

We can think of an MpathNN as a variation of an FC network, where we
draw an imaginary line, which we will call a membrane, between each two
adjacent neurons across all the hidden layers starting from the second hidden
layer up to the final hidden layer. This membrane has a permeability that ranges
from impermeable (0) to fully permeable (1). Then, we allow connections based
on this permeability, with full connection strength if the membrane is fully
permeable, no connection if it is impermeable and a graded connection strength
in between. This means that for an MpathNN of width W, if an impermeable
membrane is located between the two adjacent neurons ni and ni+1 with indices
i and i + 1, then for any two successive hidden layers, no connections going
into neuron ni+1 from its previous layer are allowed from the set of neurons
{nk | k ≤ i} and, similarly, no connections are allowed into a neuron ni from
the set of neurons {nl | l ≥ i + 1}. An example diagram is shown in Fig. 3.3.

We think of each of the described membranes between any two adjacent
neurons as having a permeability p(mi) ∈ [0, 1] described by

p(mi | Ωi) = σ(Ωi) | ∀mi ∈M (3.1)

75

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

where M is the set of membranes with cardinality |M| equal to W − 1 (where
W is the network width), mi ∈ M is the membrane between neurons ni and
ni+1, σ is the sigmoid nonlinearity and Ω is the set of weights parameterizing
the membrane permeabilities. Note that Ω is shared between all hidden layers.
Also, note that at inference time, we need to derive an MpathNN, hence, a
membrane is either permeable, so that it adds no paths to the architecture, or
impermeable and so it contributes one additional path to the modular architec-
ture. However, in order to perform a differential search on our one-shot model,
we need the permeability function to be differentiable. We will discuss later
how we use pruning to discretize these permeabilities to obtain an MpathNN.

As we have a set of membranes spanning the whole network between each
two adjacent neurons, we need to model the general connectivity between any
two neurons with connections crossing multiple membranes. In order to model a
connection between any two neurons ni and nj, we generalize equation Eq. (3.1)
by considering the set of membranes that will be crossed by the given connection
to connect the two neurons

p(ci→j | Ωi:j−1) = min
k∈[i,j−1]

σ(Ωk) (3.2)

where ci→j is the connection from neuron ni in the hidden layer l − 1 into
neuron nj in the following hidden layer l and i < j. Note that due to sym-
metry, p(cj→i) = p(ci→j). In other words, when a connection crosses multiple
membranes, we model it by the lowest membrane permeability it crosses. The
reasoning is that a single impermeable membrane is sufficient to hinder a con-
nection.

To create our one-shot model, we need to integrate these permeabilities
into our equivalent MLP feedforward pass so that we can perform an end-to-
end optimization. We do this by multiplying each weight by its corresponding
permeability in the feedforward pass. In general,

ŵ(l)
i,j = w(l)

i,j ∗ p(ci→j) (3.3)

where w(l)
i,j is the weight connecting neuron ni in layer l − 1 to neuron nj in

layer l. The resulting modified weight matrix is then used for carrying on the
feedforward in the usual way. We, then, train the model parameters (including
membranes parameters) till convergence. We refer to this phase as the one-shot
training.

After the model convergence, we will have the estimations of the membrane
permeabilities, with each permeability p(mi) ∈ [0, 1]. To have an MpathNN
with a given path count from the converged model, we need a way to select a set
of membranes to prune (i.e. to make impermeable), based on their correspond-
ing permeabilities. We note that adding one more impermeable membrane to
an equivalent MLP will add one more path to the resulting MpathNN. This

76

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

means that the range of possible path counts M in a derived MpathNN with
width W is [2, W]. For each possible path count, there will be many possible
ways to make the additional division (i.e. to place the additional impermeable
membrane) and each division will give rise to an MpathNN with a different ca-
pacity (i.e. parameter count), and, hence, with a different accuracy in general.
To choose a good division, we follow the following pruning technique. We select
which membranes to make impermeable by ordering the membrane permeabil-
ities in ascending order. Then, to have an MpathNN with a given path count
b, we set to zero the ordered membrane permeabilties with indices in the range
[1, b). This is motivated by the intuition that weights multiplied by a small
permeability will be less important for the MpathNN accuracy. We set the
permeabilities of the remaining permeable membranes to one. The described
pruning technique based on membrane permeability magnitude was chosen be-
cause of its simplicity and implementation efficiency.

While each path count can have many corresponding MpathNNs with differ-
ent parameter counts, under the described pruning technique, each path count
will be mapped to a specific MpathNN with a unique parameter count. To es-
tablish a relation between the path count, and hence the parameter count, and
accuracy, we need to obtain the validation accuracies for a sample of MpathNNs
with path counts that sufficiently cover our search space. Given some architec-
ture sample size, we choose to sample a set of path counts B = {b : b ∈ [2, W]}
that are evenly spaced from each other over the specified interval [2, W]. For
example, for W = 10 and a sample size of five, we choose B = {2, 4, 6, 8, 10}.
Then, for each path count b ∈ B, we obtain the corresponding MpathNN with
b number of paths from the one-shot model using the described pruning strat-
egy. We, then, fine-tune each of these MpathNNs for a small number of epochs
and calculate their validation accuracies. We refer to this phase as sample
fine-tuning.

At the end, we are left with a set of path counts B and their corresponding
validation accuracies v. As we discussed, path counts can be uniquely mapped
to parameter counts under the defined pruning technique. Despite the fact
that we are ultimately interested in the parameter counts, we use the path
counts as the input to the regression model in order to make the regression
more stable. The reason is that path counts are a well-behaving arithmetic
sequence of integers, while their corresponding parameter counts are a sequence
of integers with irregular gaps. Hence, we fit a simple linear regression model
using path counts as an input and the corresponding validation accuracies as
the target. To do that, we first order the path counts in an ascending order
and reorder the corresponding accuracies v to maintain the alignment between
each path count and its associated accuracy. With an overload of notation, we
will refer to this ordered array also by B. Then, the regression model is trained
to predict the accuracy array from the path count array. This means that the
regression model is a map g : N|B| → [0, 1]|B| with input and output sizes |B|

77

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

and the training data is just a single point consisting of the array pair (B, v).
The reason for not treating the path counts and their associated accuracies
as multiple data points of a scalar dimensionality is that the mapping of the
accuracy would be reduced to a linear function of the path count. This would
limit the prediction accuracy significantly. While fitting the model to the path
counts and the accuracies as a single point in a higher dimensional space is still
a linear transformation, this will increase the prediction accuracy by utilizing
more information from the relation between single values. Alternate methods,
like polynomial fitting or non-linear models, can be used, however at the cost
of introducing more complexity or additional hyperparameters.

We use this regression model to predict the validation accuracy for any path
count not in the regression data by the following method. We insert the path
count that we need to predict the accuracy of in the ordered path count array
B in a correctly ordered position. For example, if our path count array is
B = {2, 4, 6, 8} and we want to predict the accuracy of MpathNN with 5 paths,
then we have B′ = {2, 4, 5, 6, 8} where we have inserted 5 at index 3 (indices
start from 1). To maintain the correct input size of our regression model (4 for
this example), we need to remove one of the old elements in B′. We do that
by removing the first element of the ordered array if the new path count was
inserted as the last element or by removing the last element if it was inserted
anywhere else. For our example, since the new path count 5 was not inserted as
the last element, we remove the last element in the new array which becomes
B′ = {2, 4, 5, 6}. After that, we can use our trained regression model to map
the new array B′ into a predicted accuracy array v′. The accuracy prediction
for our new path count is then acquired from the same index in v′ (i.e. the
insertion index used in B′), which for our example would be index 3.

Using the described inference process, a modeler, having a range of required
accuracies and an upper limit on resources, can make the required trade off
between the two quantities by estimating the validation accuracy, and hence an
approximate test accuracy, for any path count and its corresponding parameter
count, without the need to train the intractable number of all possible MpathNN
models. As we discussed, while we use the path counts for regression, they are
uniquely convertible to parameter counts since the pruning process produces a
unique MpathNN for each path count.

3.7 Experiments
To assess our method, we tested three different architectures, following the
simplified general architecture described earlier, on three different datasets. We
will refer to each architecture by the abbreviation [mlp or mpath]-[hidden layers
number]-[hidden features]. The prefix is mlp if it is an equivalent MLP or mpath
if it is an MpathNN model. We follow the prefix by the number of hidden
layers and, then, the number of hidden features in each hidden layer. Our

78

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

three architectures have 4, 4 and 6 layers and 500, 200 and 200 hidden features,
respectively. For each of the used architectures, we train an equivalent MLP to
act as a baseline.

We test on three datasets, namely, MNIST, CIFAR10 and iWildCam2019 as
described in Section 1.11. We use 300 epochs for the equivalent MLP training
and the one-shot training of MpathNN. After convergence, we report the test
error of both the equivalent MLP and MpathNN. The test error for MpathNN
at this point is calculated without any divisions into independent paths by the
pruning technique, i.e. according to Eq. (3.3), and we will refer to it by the one-
shot MpathNN test error. For the sample fine-tuning phase, we use 10 evenly
spaced path counts. We fine-tune the corresponding MpathNNs for 10 epochs
and then report the error on the validation dataset. After that, we sample a
new set of path counts that were not used in the sample fine-tuning phase,
fine-tune their corresponding MpathNNs for 30 epochs and calculate the test
error. After we fit the regression model to the validation error data, we use
it to predict the validation error for the new set of path counts and calculate
the Pearson correlation and the Mean Absolute Error (MAE) between the test
error and the predicted validation error. The Pearson correlation reflects how
much the predictions can model the relative relation between the test error of
different derived MpathNN models, while the MAE measures how accurate the
predictions are.

For all of our experiments, we do three trials per condition, each with a
different random initialization. The weights parameterizing the membrane per-
meabilities are initialized according to

Ωi ∼ U(−1, 1) (3.4)

where U is the uniform distribution. We report the test error of the equivalent
MLP and the one-shot MpathNN test error as an average of the three trials.
We, then, randomly choose an MpathNN model from one of these three trials
to conduct the sample fine-tuning phase. Pruning and sampled architecture
fine-tuning will be based on this selected model. For the optimization, we use
Adam optimizer.

From each dataset, we use a small percentage of the training dataset as
a validation dataset (Section 1.11). The validation dataset is used for two
purposes. First, calculating the validation error after each epoch during the
training of the MLP and the one-shot training of the MpathNN to select the
best model. Second, calculating the validation error during the sample fine-
tuning phase.

As we discussed in Section 1.5, implementation efficiency is one of the main
problems in MNNs research. We have used optimization techniques to enhance
the modular architecture efficiency in the work we have done in Chapter 4 and
Chapter 5 and we elaborate more on the used technique in each corresponding
chapter. Due to the non-regularity of the search process in this chapter, we had

79

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

to rely on a conventional dense matrix with zero entries at inference time. This
means that we carry on the forward computation in the usual way, however, we
zero out the matrix entries corresponding to the connections that were pruned
due to the introduced path divisions. Since inference is not very computation-
ally demanding except for models with extreme capacity, experimentation was
smooth. We elaborate more on this choice in Section 3.8.

3.7.1 Results
The test performance results of the equivalent MLP models and MpathNN
models after the one-shot training (i.e. as per equation Eq. (3.3)) are listed in
Table 3.1, Table 3.2 and Table 3.3. Relative difference in performance is con-
sistent across the three different architectures. For MNIST and iWildCam2019,
MLPs perform consistently better than MpathNNs, while the reverse is true for
CIFAR10.

Model # hidden layers # hidden features Test error (%)
mlp-4-500 4 500 1.49±0.06

mpath-4-500 4 500 1.64±0.05
mlp-4-200 4 200 1.79±0.1

mpath-4-200 4 200 1.87±0.05
mlp-6-200 6 200 1.7±0.1

mpath-6-200 6 200 1.82±0.1

Table 3.1
MNIST results

Model # hidden layers # hidden features Test error (%)
mlp-4-500 4 500 49.08±0.5

mpath-4-500 4 500 46.94±0.2
mlp-4-200 4 200 48.6±0.2

mpath-4-200 4 200 47.71±0.2
mlp-6-200 6 200 49.75±0.3

mpath-6-200 6 200 48.65±0.1

Table 3.2
CIFAR10 results

80

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

Model # hidden layers # hidden features Test error (%)
mlp-4-500 4 500 22.57±0.3

mpath-4-500 4 500 23.27±1.2
mlp-4-200 4 200 23.7±0.5

mpath-4-200 4 200 26.1±0.5
mlp-6-200 6 200 23.1±0.9

mpath-6-200 6 200 26.83±0.9

Table 3.3
iWildCam2019 results

Fig. 3.4, Fig. 3.5 and Fig. 3.6 show different plots of the sample fine-tuning
phase for the different architectures benchmarked on the three datasets. The
upper left plot of each figure shows the validation error as a function of the
path count. The upper right plot shows the validation error as a function of the
percentage of parameters in the corresponding MpathNN with a given division
of paths. The percentage of parameters here is relative to the parameter count
of the equivalent MLP, i.e. Nd

N %, where Nd is the parameter count of a given
division of an MpathNN and N is the parameter count in an equivalent MLP.
Note that, as we discussed, the mapping from a path count to its corresponding
parameter count is unique under the previously described pruning technique.
Hence, the path count and parameter percentage scales are unique maps from
each others, however, in reverse direction, i.e. larger path count means smaller
parameter percentage.

81

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

0 100 200 300 400 500
paths_num

0.05

0.10

0.15

0.20

va
lid

_e
rro

r

mpath-500-4
mpath-200-4
mpath-200-6

40 50 60 70 80 90
params_num (%)

0.05

0.10

0.15

0.20

va
lid

_e
rro

r

mpath-500-4
mpath-200-4
mpath-200-6

0 100 200 300 400 500
paths_num

0.05

0.10

0.15

0.20

te
st
_e
rro

r

mpath-500-4
mpath-200-4
mpath-200-6

40 50 60 70 80 90
params_num (%)

0.05

0.10

0.15

0.20

te
st
_e
rro

r
mpath-500-4
mpath-200-4
mpath-200-6

Figure 3.4. MNIST Sample Fine-tuning Phase. (Dotted
curves represent the predicted validation error)

82

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

0 100 200 300 400 500
paths_num

0.50

0.55

0.60

0.65

0.70

0.75

va
lid

_e
rro

r

mpath-500-4
mpath-200-4
mpath-200-6

70 75 80 85 90 95
params_num (%)

0.50

0.55

0.60

0.65

0.70

0.75

va
lid

_e
rro

r

mpath-500-4
mpath-200-4
mpath-200-6

0 100 200 300 400 500
paths_num

0.50

0.55

0.60

0.65

0.70

0.75

te
st
_e
rro

r

mpath-500-4
mpath-200-4
mpath-200-6

70 75 80 85 90 95
params_num (%)

0.50

0.55

0.60

0.65

0.70

0.75
te
st
_e
rro

r
mpath-500-4
mpath-200-4
mpath-200-6

Figure 3.5. CIFAR10 Sample Fine-tuning Phase. (Dotted
curves represent the predicted validation error)

83

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

0 100 200 300 400 500
paths_num

0.3

0.4

0.5

0.6

0.7

va
lid

_e
rro

r

mpath-500-4
mpath-200-4
mpath-200-6

40 50 60 70 80 90 100
params_num (%)

0.3

0.4

0.5

0.6

0.7

va
lid

_e
rro

r

mpath-500-4
mpath-200-4
mpath-200-6

0 100 200 300 400 500
paths_num

0.3

0.4

0.5

0.6

0.7

te
st
_e
rro

r

mpath-500-4
mpath-200-4
mpath-200-6

40 50 60 70 80 90 100
params_num (%)

0.3

0.4

0.5

0.6

0.7
te
st
_e
rro

r
mpath-500-4
mpath-200-4
mpath-200-6

Figure 3.6. iWildCam2019 Sample Fine-tuning Phase.
(Dotted curves represent the predicted validation error)

The bottom left plot shows the actual test error as solid curves and the
corresponding predicted validation error as dotted curves, both as a function of
the path count. Note that we predict only the validation error of the path counts
which we are going to calculate their test error. This means that while the big
dots on the dotted curve are actual predictions from the regression model, the
dotted line segments are just a linear interpolation. The bottom right plot
shows the same results but as a function of the percentage of parameters. The
MAE and correlation between the actual test error and the predicted validation
error are shown in Table 3.4. The MAE results show an overall small deviation
between the predictions and the actual errors. The Pearson correlation results
as well show a consistent high correlation between the same two sets. The
correlation level of mpath-4-500 for CIFAR10 is relatively lower than the other
correlation results but still a reasonable value for a good correlation (> 0.5).

84

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

Model MAE Pearson
MNIST CIFAR10 iWild MNIST CIFAR10 iWild

mpath-4-500 0.003 0.02 0.1 0.91 0.57 0.92
mpath-4-200 0.003 0.02 0.1 0.91 0.97 0.95
mpath-6-200 0.003 0.02 0.1 1.0 0.98 0.98

Table 3.4
MAE and Pearson correlation

3.8 Discussion
The main idea behind our approach is using differential architectural search to
rank the different divisions of an MpathNN. By subsequent pruning, a relation
between parameter count and accuracy can be established and divisions can be
made to meet the desired accuracy-latency requirements. Given a permissible
range of latency and accuracy, a modeler can, without the need for training
every potential model, meet the desired balance. Some trade-offs can not be
realised due to limitations of the model and the capacity-accuracy relationship.
In this case, the modeler can know beforehand and ranges can be adjusted to
more realistic values.

The results of the one-shot training in Table 3.1, Table 3.2 and Table 3.3
show performance close to equivalent MLPs. The results of equivalent MLPs
for MNIST and iWildCam2019 are slightly better than MpathNN. For CI-
FAR10, the performance of MpathNN is significantly better than MLP. This
confirms that no serious under/overfitting is happening from introducing the
permeability factors.

The MAE of the sample fine-tuning phase is small and consistent, showing
decent approximation for different architectures and datasets and reliability
as a proxy for balancing accuracy-latency requirements. Pearson correlation
also shows consistency and decent high correlation for different architectures
and datasets. This supports our conclusion of the ability of the method to
approximate the relation between latency and accuracy based on the introduced
permeability factors and the pruning based on the relative magnitude of factors.

We have used compact matrices with zero-entries in all the inference phases.
Unlike training, inference is usually not very computationally demanding except
for extremely large models like Transformers (Vaswani et al., 2017). However,
many situations in modular research will need sparsity at training time. Most of
the modular NAS techniques will avoid any irregularity by sticking to a regular
search space; by limiting their search space, a lot of potential for discovering
more innovative and diverse architectures is wasted. Hence, finding efficient
optimizations for sparse matrices is a line of research that we think is very
important to opening the potential of research in modular architectures.

85

Chapter 3. Balancing Accuracy and Latency in Multipath Neural Networks

3.9 Conclusion
In this chapter, we investigated using NAS to modularize a fully-connected
network into sparser MpathNN architectures targeted at use cases with limi-
tations of resources. By modeling the search using the metaphoric membrane
permeability, we could use a one-shot model to find divisions of multiple paths
that could be used efficiently to predict accuracy-latency relationships. Hence,
an efficient balancing between the available resources and the desired accuracy
threshold can be realised. We showed that the proposed method has good
predictive power and can replace exhaustive search.

3.10 Chapter Acknowledgements
This work was partially supported by a grant from Microsoft’s AI for Earth
program.

86

Chapter 4

Path Capsule Networks

An adaptation of this material has been published in Amer and Maul (2020).

4.1 Preface
The CNN (Fukushima and Miyake, 1980; LeCun and Bengio, 1995) was a
successful architectural innovation that played an important rule in popular-
izing ANNs after big data and cheap powerful computing became available
(Krizhevsky, Sutskever, and Hinton, 2012; Goodfellow et al., 2016). Building
on the structure of the visual domain and previous research on animal visual
cortex (Hubel and Wiesel, 1968), convolutions were introduced as shared weight
kernels that can be trained to identify recurring structures and primitive shapes
in images and compose them in a hierarchical way to represent higher-level ab-
stract visual concepts. Augmented with pooling operations, CNNs could achieve
translation-invariant representations of images and visual data. That is, shifting
an object to a different location in the image still leads to similar higher-level
representations.

Despite CNNs wide success in practical applications and becoming the state-
of-the-art in visual processing, translation invariance meant by definition that
location data are lost in the higher layers of the CNN. This limitation stimulated
a line of research in deep learning aimed at overcoming this problem using
different location data augmenting techniques (Wang and Veksler, 2018; Tang
et al., 2015; Ghafoorian et al., 2017). This approach to the location agnosticism
problem, however, was focused on avoiding the core problem in CNNs by using
different auxiliary tricks to alleviate the limitation. CapsNet (Sabour, Frosst,
and Hinton, 2017) took a different approach to the problem targeted at replacing
translation invariance by translation equivariance. The core of the solution is
to replace point-wise activations by pose vectors, named capsules, such that
even if the view point of the object changes, the pose vectors would change in a
coordinated manner and, since the vector magnitudes are used to signify object
presence, the network should still signal the object’s existence.

The original variant of CapsNet in Sabour, Frosst, and Hinton (2017) is
composed of 3 layers. The first layer is a normal convolutional layer with ReLU

87

Chapter 4. Path Capsule Networks

activation. The second layer is the PrimaryCaps layer. It is basically a convo-
lutional layer but with a specific rearrangement of the activations into a specific
vector/capsule configuration and a special kind of squashing non-linearity ap-
plied to each capsule. These capsules are aggregated into larger sets called
PrimaryCapsules. The final layer is the DigitCaps layer, which produces the
output vectors signaling the existence or absence of different classes. The cal-
culation of the DigitCaps layer involves the routing-by-agreement algorithm.
In this routing mechanism, each capsule from the previous layer votes for each
DigitCapsule and the output is calculated by a weighted sum of the votes, which
is iteratively fine-tuned based on the agreement between the votes and the out-
put. Despite the fact that CapsNet achieved decent performance, specially on
datasets with explicit varying view points (LeCun, Huang, and Bottou, 2004),
we identified two potential opportunities for enhancement that can be achieved
using modularity. First, the first layer of CapsNet is a very wide layer that
contains most of the network parameters. Second, the CapsNet architecture is
very shallow when compared to the usual depth used in state-of-the-art CNNs.
We hypothesized that we can exploit modularity to add depth to CapsNet such
that we enhance the representation capacity of the network, while at the same
time reducing the number of parameters significantly.

Since the second layer of CapsNet is composed of a given number of Prima-
ryCapsules, a natural choice of a modular architecture that we could exploit to
add depth consists of a multipath architecture, one of the topologies discussed
in Section 2.4.2. So, instead of producing the PrimaryCaps layer through re-
arrangement of a large number of feature maps obtained from the previous
layer, we produced each PrimaryCapsule as the output of an independent deep
path of convolutional layers. This is a manual formation similar to the manual
techniques discussed in Section 2.4.3. The integration of capsules into a final
output is an AL integration similar to the original paper and like what was
discussed in Section 2.4.4 and Section 2.5. Since these paths collectively are
sparser than a fully connected set of layers, we could cut parameters number
significantly. Also, since these paths have deeper architecture, and by exploit-
ing max-pooling to make the computations more efficient and using Dropcircuit
(Phan et al., 2018) as a regularizer and a modified variant of the routing al-
gorithm, we could balance the decreased absolute capacity as measured by the
number of parameters using the additional effective representational capacity.
We did a RSA (Mehrer et al., 2020) and the results suggest that the increased
representational capacity can be partially explained by the low correlation be-
tween PrimaryCapsules produced by the path independence.

In this chapter, we present and discuss how we modularized CapsNet to re-
duce the number of parameters and at the same time maintain the network
accuracy. Besides the deep independent paths and the combined usage of
max-pooling and Dropcircuit, we introduced another variant of the routing-
by-agreement algorithm, namely fan-in routing. We show that fan-in routing

88

Chapter 4. Path Capsule Networks

combined with the previously mentioned modular modifications to CapsNet
could achieve better or similar results to CapsNet with a significant reduction in
the number of parameters. Our modular multipath architecture can be readily
parallelized and computationally distributed. However, the naive implementa-
tion as a set of independent modules/subnetworks is not efficient to run on a
single GPU due to sparsity. Later in this chapter, we discuss in Section 4.6.1
and Section 4.7 how we could achieve an efficient single-GPU implementation.

4.2 Introduction
CNNs (Fukushima and Miyake, 1980; LeCun and Bengio, 1995) have remained
state-of-the-art in image processing and computer vision tasks since their suc-
cessful large scale training by Krizhevsky, Sutskever, and Hinton (2012). CNNs
were biologically inspired by the visual cortex (Hubel and Wiesel, 1968) and
were built on the principle of translation invariance, achieved through local
receptive fields, weight sharing and pooling operations. Despite their success,
CNNs suffer from inherent limitations, most significantly the fact that transla-
tion invariance by definition causes loss of location information. This limitation
has stimulated a lot of research in the direction of augmenting learning with
location data (Wang and Veksler, 2018; Tang et al., 2015; Ghafoorian et al.,
2017).

Sabour, Frosst, and Hinton (2017) argued that the main limitation of CNNs
is the focus on achieving translation invariance, and that equivariance should
also be targeted. Hence, the authors proposed CapsNet as a step towards achiev-
ing equivariance. The philosophy of CapsNet is that a single activation/feature
should be replaced by a pose vector, named capsule, representing the different
properties of an object’s viewpoint. CapsNet has two main components, which
are PrimaryCapsule and DigitCaps layers. PrimaryCapsules represent the dif-
ferent parts of the underlying objects, which are then multiplied by translation
matrices to get prediction vectors, representing the votes of each PrimaryCap-
sule with respect to each DigitCaps, which are then routed using routing by
agreement to compute DigitCaps activations, which can then be used to signify
the presence of an object. The philosophy is that with changing the viewpoint
of an object, the change in pose matrices should be coordinated, such that the
voting agreement is maintained. We consider using another form of routing
by agreement, fan-in routing in contrast to fan-out routing used by Sabour,
Frosst, and Hinton (2017), which we show can have better performance under
some conditions.

CapsNet was shown to achieve very good results with a shallow architecture
and decent parameter savings, compared with deep CNNs. However, the lack of
depth can be limiting to the expressiveness of the network. Moreover, the first
convolutional layer in CapsNet is large and contributes to increasing the number
of CapsNet parameters significantly. We believe that a coordinated inclusion of

89

Chapter 4. Path Capsule Networks

depth and multiple pathways can help increase the network performance and
simultaneously help save more parameters.

We consider a multipath architecture for including more depth into CapsNet.
Multiple paths in neural networks are biologically plausible and biological neural
networks have been shown to exhibit multipath parallel processing (Gollisch
and Meister, 2010; Otsuna, Shinomiya, and Ito, 2014). Aside from biological
inspiration, we think that using different paths for generating PrimaryCapsules
can be exploited to enhance performance while saving parameters significantly.
A PrimaryCapsule generated by a deep path can be considered a deep version of
the original CapsNet capsule, which we believe can exhibit more expressiveness
and more abstraction, similar to other deep structures in the deep learning
paradigm.

The universal approximation theorem by Hornik, Stinchcombe, and White
(1990) showed that any Borel measurable function can be approximated by
a sufficiently wide single layer MLP. Empirically, however, this is infeasible
due to optimization limitations, and is rarely desirable due to the problem of
overfitting. On the other hand, making use of depth is statistically motivated
by composition of functions and empirically can lead to better generalization.
Moreover, as we show, depth can be added judiciously to save parameters with-
out sacrificing performance.

Our contributions in this paper are:

1. We propose PathCapsNet, a multipath deep version of CapsNet.

2. We enrich the routing by agreement methodology by a new variant, fan-in
routing.

3. By carefully adding depth and max-pooling, along with a multi-path
structure, fan-in routing and DropCircuit, we achieved better or com-
parable results to CapsNet with significant parameter savings.

4. We open the possibility of leveraging significant model parallelism in the
context a capsule networks.

In the next section we discuss the previous work done around capsule net-
works and multipath architectures, and how we enhance by building on these
concepts.

4.3 Capsule Network
CapsNet (Sabour, Frosst, and Hinton, 2017) was introduced as an architec-
ture that builds up on the conventional CNN (Fukushima and Miyake, 1980;
LeCun et al., 1989) trying to overcome its limitations. The main motivation be-
hind CapsNet is achieving equivariance, in addition to the invariance properties

90

Chapter 4. Path Capsule Networks

already implemented by CNN. CapsNet could achieve a good generalization us-
ing relatively fewer parameters than deep CNNs (only 8.2M parameters for the
MNIST model with reconstruction). Different variants have been introduced
since the original CapsNet. Phaye et al. (2018) introduced DCNet as a dense
version of capsule networks and DCNet++ by stacking multiple DCNets. In
DCNet++, each DCNet in the stack produces its version of the PrimaryCap-
sule layer, which is then fed to the next DCNet in the stack. The final output
is calculated based on both the output of each subnetwork and their concate-
nation. They also made some modifications to the decoder (reconstruction)
subnetwork. DCNet++ achieved good generalization in relatively few epochs
at the cost of using more parameters (13.4M).

Another variant is MS-CapsNet (Xiang et al., 2018). MS-CapsNet is com-
posed of three successive modules. The first module is the feature extractor and
it has two convolutional paths of depths 1 and 2 and a third path which is just a
skip connection. Each path produces a PrimaryCapsule of different dimension.
The second module is a capsule encoding and it is responsible for projecting
the PrimaryCapsules to a common dimension and concatenating them. The
third module, capsule dropout, is applied before routing and it is responsible
for dropping random capsules as a way of regularization in a manner simi-
lar to dropout (Srivastava et al., 2014) and other similar techniques. Capsule
dropout showed enhancement in performance relative to the non-dropout condi-
tion. MS-CapsNet could achieve better performance than the original CapsNet
on FashionMNIST and CIFAR-10 with fewer parameters (∼11M).

SECaps (He et al., 2018) is an adaptation of CapsNet to sequential tasks,
specifically NLP. The word embeddings of single words are treated as Prima-
ryCapsules. Since the dynamic routing is not sequential in nature and does not
respect order, the seq-caps layer is introduced. This layer is basically composed
of a LSTM layer that is applied to a given sequence of the data as a series en-
coding, and then the output is dynamically routed in the conventional way to
produce the output of the next layer. Multiple seq-caps layers can be stacked.
Another module, the attention module, transforms the word embeddings, which
are then concatenated with the seq-layer output. The final output is produced
by an MLP subnetwork. SECaps was evaluated on multiple charge prediction
datasets, achieving better performance than the state-of-the-art.

Siamese Capsule Network (SCN) (Neill, 2018) is the capsule version of the
conventional siamese network. Neill (2018) introduced SCN as a face verification
approach similar to DeepFace (Taigman et al., 2014). SCN is very similar in
architecture to the original CapsNet. It has a convolutional layer, followed by
the PrimaryCapsules layer and then a layer called Face Capsule layer, which
is essentially similar to the DigitCaps layer. The final output is produced by
a fully connected layer on top of the Face Capsule layer. SCN achieved good
performance on different datasets with a smaller model, little preprocessing and
less data.

91

Chapter 4. Path Capsule Networks

Matrix capsules network was proposed by Hinton, Sabour, and Frosst (2018)
as a generalization of the original CapsNet for more efficient pose estimation.
Each capsule is represented by a matrix and a sigmoid unit that controls the
probability of activating the capsule. Every pose matrix is multiplied by a
transformation matrix to get the votes which will be used for routing to the
next layer. Routing is done using Expectation Maximization (EM) that takes
as input the votes and activation probabilities of the previous layer. Matrix cap-
sules network achieved a very good accuracy improvement on the smallNORB
dataset, a dataset that is highly viewpoint variant, but it seems that it does
not have the same advantage on MNIST.

4.4 Multipath Architectures
The ideas of branching, parallel computation and multiple paths are well es-
tablished in the deep learning literature and have their supporting biological
plausibility (Gollisch and Meister, 2010; Otsuna, Shinomiya, and Ito, 2014).
In Cireşan, Meier, and Schmidhuber (2012), each path in a multi-path CNN
is trained on a different preprocessing/distortion of the input image and the
columns outputs are averaged to produce the final output. A similar approach
is used in Wang (2015), but with different types of inputs which are the source
image and a bilateral filtered version of it, and the outputs of the paths are
integrated using fully connected layers. Similarly, in Yu et al. (2019a) and in
the context of image captioning, multi-view feature learning is achieved using
several detectors applied in parallel. The same idea of parallel detectors is
also used in Zhang, Yu, and Tao (2018) in the context of unsupervised dimen-
sionality reduction. Zhang, Yu, and Tao (2018) use a set of local contractive
autoencoders to extract representations of the neighbourhood of each sample,
and then apply local affine transforms to align the local features with a global
coordinate system. For extracting hierarchical features in the context of pre-
dicting the click feature vector of images, Yu et al. (2019b) apply a parallel
structure to extract features of different granularity from the word and image
modalities. In the context of HPR, Hong et al. (2015) and Hong et al. (2019)
utilize parallel structures in different ways. Hong et al. (2015) use two parallel
autoencoders to extract 2D and 3D from different modalities and then learn the
mapping from 2D to 3D features. On the other hand, Hong et al. (2019) use a
model that takes different modalities as inputs and then produce different out-
puts using a branching structure, where each output corresponds to a different
reconstruction task of a specific modality.

Szegedy et al. (2015b) proposed the Inception-v1 model , which was respon-
sible for winning ILSVRC-14, and is composed of a highly branched multipath
architecture. Szegedy et al. (2016) further improved the design of Inception-
v1 to produce Inception-v2&3 which exploit large scale branching and multiple

92

Chapter 4. Path Capsule Networks

paths even more. The Xception architecture (Chollet, 2016) is a further ex-
tension to the Inception family, that uses more branching based on separable
convolutions. ResNetXt (Xie et al., 2016) and Residual Inception (Zhang et al.,
2018) are extensions of ResNet (He et al., 2016) where the modular block is mul-
tipath instead of single path. FractalNet (Larsson, Maire, and Shakhnarovich,
2016) is another type of architecture that has a recursive self-similar, highly
branched structure. Parallel circuit networks, introduced by Phan et al. (2016),
adopt an extensively multipath architecture, and have demonstrated general-
ization improvements using a dropping technique called DropCircuit (Phan et
al., 2018). Related to the DropCircuit technique is the path dropout used by
Bender et al. (2018) to regularize the training of a one-shot model, which is an
implicit form of a multipath network, where a whole space of possible branches
is trained simultaneously.

We build on previous work by:

1. Adding representational power to PrimaryCapsules by generating each
capsule using a deep path.

2. Enriching dynamic routing by agreement with a new fan-in variant.

3. Combining depth, a multipath architecture, DropCircuit, max-pooling
and fan-in routing to obtain a level of performance congruent with the
original CapsNet, with significant parameter savings.

4. Showing that max-pooling is not inherently contradictory with the Cap-
sNet philosophy, and that it can be used to save parameters significantly
without sacrificing neither performance nor pose awareness.

5. Opening a new illuminating perspective on the potential diversity of the
representations learned by multipath architectures using RSA-analysis
(Mehrer et al., 2020).

In the next section, we explain the general PathCapsNet architecture and
the different pieces that contribute to its performance.

4.5 Methods
The original CapsNet (Sabour, Frosst, and Hinton, 2017) has two main capsule
types, namely the PrimaryCapsules and the DigitCaps. PrimaryCapsules are
formed by applying an initial convolution layer to produce 256 channels, then
another set of convolutions, which are then rearranged into 32 8D PrimaryCap-
sules. PrimaryCapsules are then routed to the next DigitCaps layer using dy-
namic routing by agreement. In one variant of CapsNet, namely CapsNet with
reconstruction, a reconstruction layer is learned on top of the DigitCaps layer

93

Chapter 4. Path Capsule Networks

to facilitate the learning of instantiation (or transformation) parameters and
therefore enhance generalization.

PathCapsNet Fig. 4.1 shares the upper part of CapsNet, starting from the
PrimaryCapsules layer, through the DigitCaps layer and ending with a recon-
struction layer if needed. However, PathCapsNet is fundamentally different in
how the PrimaryCapsules are constructed. In PathCapsNet, each PrimaryCap-
sule is formed by a deep CNN, named a path. So, the input is fed into different
CNNs (paths) and the output of each path comprises one PrimaryCapsule.

Figure 4.1. PathCapsNet architecture

The experiments done by Phan et al. (2018) demonstrated enhanced gen-
eralization in multipath MLPs, named parallel circuits in their work, using a
drop technique called DropCircuit. DropCircuit is an adaptation of dropout
to multipath architectures, where different paths are dropped during training,
using a pre-specified probability. This is believed to enhance generalization by
promoting independence between paths, hence allowing for problem decompo-
sition and learning more useful representations, similar to dropout (Srivastava
et al., 2014) and related techniques.

Dynamic routing is the mechanism by which PrimaryCapsules are routed to
DigitCaps capsules, such that similar votes from PrimaryCapsules contribute
more strongly to the target DigitCaps. The dynamic routing by agreement
algorithm used in (Sabour, Frosst, and Hinton, 2017) updates the contribution

94

Chapter 4. Path Capsule Networks

of votes based on the similarity between the output DigitCaps and the prediction
vector, representing the vote, using dot product as a measure of similarity.
So, given the prediction vectors (votes) from the previous layer of capsules
(PrimaryCapsule layer) ûj|i, where j is the index of the DigitCaps capsule and i
is the index of a single capsule in the PrimaryCapsule layer, the output vector
(DigitCaps) is calculated as,

sj = ∑
i

cijûj|i (4.1)

where cij are the coupling coefficients weighting the contributions of different
prediction vectors,

c(f out)
ij =

exp(bij)

∑k exp(bik)
(4.2)

and bij is the log probability (logits) that the ith PrimaryCapsule should be
coupled to the jth DigitCaps capsule. We call this fan-out (fout) routing, since
the weights of the contributions of the ith PrimaryCapsule to each DigitCaps
capsule in the next layer are normalized probabilities that sum to 1.0. For
PathCapsNet, we used a different form of dynamic routing by agreement, named
fan-in (fin) routing, where logits are normalized such that the weights of the
contributions to the jth DigitCaps capsule from all the PrimaryCapsules are
normalized probabilities that sum to 1.0. Coupling coefficients for fan-in routing
are calculated as,

c(f in)
ij =

exp(bij)

∑k exp(bki)
(4.3)

Figure 4.2 shows a simplified diagram highlighting the difference in Softmax
calculation direction between fan-out and fan-in variants. All connections with
similar line pattern are inputs to the same Softmax. Note how the Softmax
is applied across connections fanning into the same DigitsCaps in the fan-in
variant, while it is applied across connections fanning out from a single Prima-
ryCapsule in the fan-out variant.

The accuracy and reconstruction losses are calculated the same way as
(Sabour, Frosst, and Hinton, 2017), using margin loss and sum of squared errors
loss, respectively.

In the next section, we present the details of our experimental design and
the results we obtained.

95

Chapter 4. Path Capsule Networks

Figure 4.2. A simplified diagram showing the main difference
in Softmax direction between fan-out and fan-in routing.

Connections with similar lines are inputs to the same Softmax.
Note that the other operations between PrimaryCapsules and

DigitsCaps layers are abridged for clarity.

4.6 Results

4.6.1 PathCapsNet Architecture
For all of our experiments, each path had the same architecture as in Table 4.1.
The number of paths in each experiment varied and will be clarified for each set
of experimental results. We will use the notation PathCapsNet-[num], where
[num] is replaced by the number of paths, so PathCapsNet-5 is PathCapsNet
with 5 paths. All PrimaryCapsules were 8D with spatial dimensions 7x7. As
each path produces one PrimaryCapsule, the number of PrimaryCapsules is
equal to the number of paths. The DigitCaps layer was exactly the same as
Sabour, Frosst, and Hinton (2017). We used 3 routing iterations in all the exper-
iments and whenever we used fan-in routing, we initialized the transformation
matrices of the DigitCaps layer randomly from a standard normal distribution.
The Adam optimizer was used in all of the experiments using the default param-
eters and learning rate. When DropCircuit was used, the probability of path
dropping was 0.5. Our benchmark was the original CapsNet (Sabour, Frosst,
and Hinton, 2017) with and without reconstruction and using 3 routing itera-
tions. The benchmark was implemented using the same architecture as reported
in the original paper without any modifications, unless otherwise specified. All
reported results are based on an average of three trials. Each trial is 300 epochs
of training which is in the range of the reasonable values used in the literature

96

Chapter 4. Path Capsule Networks

(Section 1.11) as compared to the number used by Sabour, Frosst, and Hinton
(2017), which seems to be more than 1000 epochs.

Layer Type Kernel Padding Stride Output Channels
1 Conv 9 4 1 16
2 Conv 9 4 1 16
3 Maxpool 2 0 2 16
4 Conv 9 4 1 16
5 Conv 9 4 1 8
6 Maxpool 2 0 2 8

Table 4.1
Single path architecture

When we discussed the challenges that face the research in artificial mod-
ularity in Section 1.5, we discussed the problem of implementation efficiency.
Accelerating ANNs using GPUs assumes dense matrices. Since modularity in-
troduces considerable sparsity into the network architecture, accelerating MNNs
using GPUs can be tricky. For the work in this chapter, we assume regular
paths, i.e. having the same width and depth. This way we could feedforward
through the paths in parallel by reducing the calculation of the convolutional
layers at the same level in each path into a single dense convolutional operation.

To achieve that, we utilized the optimized depthwise-separable convolution
operator that exists in most tensor libraries. In regular convolution, a single
convolutional filter has a depth equal to the input channels count. This con-
straint is relaxed in depthwise-separable convolution and, hence a filter can
span only a fraction of the input channels. We concatenated the channels of the
inputs to the convolutional layers at the same level across the different paths as
a single input. Similarly, we concatenated the filters at the same level of layers
into a single group of filters. Then, by repeating input channels so that they
align with the right set of filters, we could carry on the whole operation at each
level of layers as a single depthwise-separable convolution.

A formal description of this idea for the convolutional case would need extra
details about how a convolutional operation can be reduced to a dense matrix-
matrix operation. Since the core idea is the same, we will avoid the extra
complications that might be introduced by this and we will instead formally
describe the analogous process for fully-connected paths, i.e. paths with fully-
connected layers instead of convolutional layers. Extending to the convolutional
case can be considered a special case of the fully-connected one. We denote
the weight matrix that maps from layer l − 1 to layer l in any path (b) by
Mb ∈ RWxW , where W is the width of any path. Despite the fact that under
the regularity assumption the input and output dimensions are both equal to
W, we emphasize that the first dimension of Mb is the output dimension and
the second is the input dimension to avoid any confusion later. Note that each

97

Chapter 4. Path Capsule Networks

layer in each path will have its own weight matrix, however we omit any layer
indexing for convenience and assume that all the matrices Mb are at the same
layer level l. We also denote the input to layer l in path b by xb ∈ R1xW . We
first concatenate the weight matrices into the block matrix M,

M =

M1
M2
· · ·
MB

where B is the number of paths. Then, we define a block matrix Xb for each
input xb by repeating the vector xb W times,

Xb =

x(1)b

x(2)b

· · ·

x(W)
b

Using the Xb matrices, we define the block matrix X as,

X =

X1
X2
· · ·
XB

Then, we can carry out the feedforward computation by

Ô = M⊙X
O = ∑

j
Ô:,j

(4.4)

where ⊙ is the elementwise multiplication operator and the indexing operator
(:) means selecting all the elements across the indexed dimension. The O output
will be a block matrix with the following format

O =

o1
o2
· · ·
oB

98

Chapter 4. Path Capsule Networks

where O ∈ R(W∗B)x1, ∗ is the scalar multiplication operator and ob ∈ RWx1 is
the output of layer l in path b. The previous calculation can be easily extended
to be in a minibatch form.

The following three sub-sections will describe the results of our experiments,
applying the mentioned model architecture on 3 different datasets, namely,
MNIST, CIFAR10 and iWildCam2019. In the tables summarizing the results,
the best test performance across all conditions was shown in bold and we marked
the best test performance across PathCapsNet conditions by an asterisk. The
fourth and last sub-section in the results, will present an analytical perspective
on the learning characteristics of the proposed PathCapsNet model compared
to CapsNet.

4.6.2 MNIST
We use the MNIST dataset as described in Section 1.11. Following Sabour,
Frosst, and Hinton (2017), the only augmentation used during training was
padding by 2 and random cropping using a 28x28 patch. Our performance
results on MNIST are summarized in Table 4.2.

For the no-reconstruction setting, fan-in routing improved CapsNet test
performance from 0.48% to 0.42%. A similar improvement was observed for
PathCapsNet-5, where test performance improved from 0.54% to 0.47%. With
DropCircuit, we observed no improvement for a small number of paths, i.e.
PathCapsNet-5, while a significant improvement was observed for PathCapsNet-
10, where the error improved from 0.52% to 0.42%, which had the same per-
formance as the standard CapsNet with only 21% of the parameters. A regu-
larization effect can be observed from the validation curves Fig. 4.3. For the
reconstruction setting, both of CapsNet and PathCapsNet-16 with fan-in and
DropCircuit had the best test performance, with PathCapsNet-16 having only
44% of the parameters. Combining DropCircuit and fan-out had the same or
worse performance compared to the corresponding no-DropCircuit condition,
everything else being equal. The reverse seemed to hold for DropCircuit when
combined with fan-in, where the performance was better or the same.

4.6.3 CIFAR10
We benchmark on CIFAR10 following the description in Section 1.11. All the
PathCapsNet variants for CIFAR10 had 16 paths. CIFAR10 results are sum-
marized in Table 4.3.

For both the no-reconstruction and reconstruction conditions, fan-in routing
improved CapsNet performance. All PathCapsNet conditions, except PathCap-
sNet with fan-out and DropCircuit, were better than CapsNet. The best perfor-
mance was achieved by PathCapsNet with fan-in and DropCircuit, which was
better than CapsNet by around 5%, using only 28% and 51% of the CapsNet pa-
rameters in the no-reconstruction and reconstruction settings, respectively. For

99

Chapter 4. Path Capsule Networks

Architecture Routing Paths DC #params params(%) Test error (%)
No Reconstruction

CapsNet Fan-out N/A N/A 6.8M 100% 0.48±0.02
CapsNet Fan-in N/A N/A 6.8M 100% 0.42±0.03

PathCapsNet Fan-out 5 Yes 683K 10% 0.54±0.05
PathCapsNet Fan-in 5 No 683K 10% 0.48±0.07
PathCapsNet Fan-in 5 Yes 683K 10% 0.47±0.04
PathCapsNet Fan-in 10 No 1.4M 21% 0.52±0.03
PathCapsNet Fan-in 10 Yes 1.4M 21% *0.42±0.05
Reconstruction

CapsNet Fan-out N/A N/A 8.2M 100% 0.35±0.04
CapsNet Fan-in N/A N/A 8.2M 100% 0.47±0.03

PathCapsNet Fan-out 10 No 2.8M 34% 0.44±0.06
PathCapsNet Fan-in 10 No 2.8M 34% 0.47±0.02
PathCapsNet Fan-out 10 Yes 2.8M 34% 0.49±0.02
PathCapsNet Fan-in 10 Yes 2.8M 34% 0.42±0.05
PathCapsNet Fan-in 16 Yes 3.6M 44% *0.38±0.02

Table 4.2
MNIST results. DC: DropCircuit. #params: parameters count.
params(%): percentage of parameters (relative to the baseline).

all conditions, everything else being equal, adding DropCircuit to PathCapsNet
fan-out models worsened the performance, while it improved the performance
for fan-in models.

4.6.4 iWildCam2019
We use iWildCam2019 as described in Section 1.11. All the PathCapsNet mod-
els had 16 paths. The results are summarized in Table 4.4.

For both of the no-reconstruction and reconstruction settings, and in con-
trast to the other datasets, CapsNet with fan-out was better than the corre-
sponding fan-in condition. Combining DropCircuit with fan-out had the same
or better performance compared to the corresponding no-DropCircuit condition.
The reverse was true for fan-in. Both CapsNet with fan-out and PathCapsNet
with fan-out and DropCircuit had the best test performance with PathCapsNet
having only 26% and 38% of the CapsNet parameters in the no-reconstruction
and reconstruction settings, respectively.

4.6.5 RSA Analysis
The main crucial difference between CapsNet and PathCapsNet is how the
PrimaryCapsules are generated. In order to peek into the characteristics of
the learned features at the PrimaryCapsules layer, we followed the RSA-based
methods used in Mehrer et al. (2020). For a given model, either CapsNet or

100

Chapter 4. Path Capsule Networks

0 50 100 150 200 250 300
epoch

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

va
lid

 e
rro

r

no dropcircuit
dropcircuit

Figure 4.3. Average validation curves for PathCapsNet-10
with fan-in routing (MNIST)

PathCapsNet, we calculate the Representational Dissimilarity Matrices (RDMs)
for each PrimaryCapsule. RDMs are calculated by presenting pairs of different
samples to a given model (or a part of a model) and then calculating a measure
of distance between the corresponding outputs. We use Euclidean distance
as our distance measure. We then calculate the squared Pearson correlation
(r2) between each pair of the PrimaryCapsules using the RDMs. After taking
the average of r2 across PrimaryCapsules pairs, we use it as a measure of the
correlation between PrimaryCapsules in the given model. We use a subset
of 500 samples from the test set of each dataset for calculating the RDMs
and the reported correlation for each model architecture is an average of three
independently trained models.

101

Chapter 4. Path Capsule Networks

Architecture Routing Paths DC #params params(%) Test error (%)
No Reconstruction

CapsNet Fan-out N/A N/A 8.0M 100% 35.6±0.4
CapsNet Fan-in N/A N/A 8.0M 100% 32.7±1.1

PathCapsNet Fan-out 16 No 2.2M 28% 31.3±1.2
PathCapsNet Fan-in 16 No 2.2M 28% 31.7±0.3
PathCapsNet Fan-out 16 Yes 2.2M 28% 35.6±1.4
PathCapsNet Fan-in 16 Yes 2.2M 28% *30.6±0.7
Reconstruction

CapsNet Fan-out N/A N/A 11.7M 100% 35.5±0.8
CapsNet Fan-in N/A N/A 11.7M 100% 32.9±1.2

PathCapsNet Fan-out 16 No 6.0M 51% 30.9±0.4
PathCapsNet Fan-in 16 No 6.0M 51% 32.2±0.9
PathCapsNet Fan-out 16 Yes 6.0M 51% 35.2±1.5
PathCapsNet Fan-in 16 Yes 6.0M 51% *30.7±0.7

Table 4.3
CIFAR10 results. DC: DropCircuit. #params: parameters

count. params(%): percentage of parameters (relative to the
baseline).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
r2

CapsNet+fan-out
CapsNet+fan-in

CapsNet+Reconst+fan-out
CapsNet+Reconst+fan-in

PathCapsNet-5+fan-out+DropCircuit
PathCapsNet-5+fan-in

PathCapsNet-5+fan-in+DropCircuit
PathCapsNet-10+fan-in

PathCapsNet-10+fan-in+DropCircuit
PathCapsNet-10+Reconst+fan-out
PathCapsNet-10+Reconst+fan-in

PathCapsNet-10+Reconst+fan-out+DropCircuit
PathCapsNet-10+Reconst+fan-in+DropCircuit
PathCapsNet-16+Reconst+fan-in+DropCircuit

CapsNet
PathCapsNet

Figure 4.4. Squared Pearson Correlation (MNIST)

102

Chapter 4. Path Capsule Networks

Architecture Routing Paths DC #params params(%) Test error (%)
No Reconstruction

CapsNet Fan-out N/A N/A 6.6M 100% 21.6 ±0.8
CapsNet Fan-in N/A N/A 6.6M 100% 23.8±0.3

PathCapsNet Fan-out 16 No 1.7M 26% 22.5±0.5
PathCapsNet Fan-in 16 No 1.7M 26% 24.3±1.6
PathCapsNet Fan-out 16 Yes 1.7M 26% *21.8(11)
PathCapsNet Fan-in 16 Yes 1.7M 26% 24.3±0.5
Reconstruction

CapsNet Fan-out N/A N/A 8.0M 100% 21.6±0.6
CapsNet Fan-in N/A N/A 8.0M 100% 23.1±0.3

PathCapsNet Fan-out 16 No 3.0M 38% 22.1±1.0
PathCapsNet Fan-in 16 No 3.0M 38% 22.3±0.6
PathCapsNet Fan-out 16 Yes 3.0M 38% *21.9(9)
PathCapsNet Fan-in 16 Yes 3.0M 38% 24.1±1.0

Table 4.4
iWildCam2019 results. DC: DropCircuit. #params:

parameters count. params(%): percentage of parameters
(relative to the baseline).

0.0 0.1 0.2 0.3 0.4 0.5
r2

CapsNet+fan-out

CapsNet+fan-in

CapsNet+Reconst+fan-out

CapsNet+Reconst+fan-in

PathCapsNet+fan-out

PathCapsNet+fan-in

PathCapsNet+fan-out+DropCircuit

PathCapsNet+fan-in+DropCircuit

PathCapsNet+Reconst+fan-out

PathCapsNet+Reconst+fan-in

PathCapsNet+Reconst+fan-out+DropCircuit

PathCapsNet+Reconst+fan-in+DropCircuit
CapsNet
PathCapsNet

Figure 4.5. Squared Pearson Correlation (CIFAR10)

103

Chapter 4. Path Capsule Networks

0.0 0.1 0.2 0.3 0.4 0.5 0.6
r2

CapsNet+fan-out

CapsNet+fan-in

CapsNet+Reconst+fan-out

CapsNet+Reconst+fan-in

PathCapsNet+fan-out

PathCapsNet+fan-in

PathCapsNet+fan-out+DropCircuit

PathCapsNet+fan-in+DropCircuit

PathCapsNet+Reconst+fan-out

PathCapsNet+Reconst+fan-in

PathCapsNet+Reconst+fan-out+DropCircuit

PathCapsNet+Reconst+fan-in+DropCircuit
CapsNet
PathCapsNet

Figure 4.6. Squared Pearson Correlation (iWildCam2019)

For the MNIST dataset Fig. 4.4, CapsNet models showed a consistent high
correlation between PrimaryCapsules. In contrast, PathCapsNet conditions
did not show a consistent pattern of correlation. Some PathCapsNet conditions
showed very low correlation, while others showed high correlation, sometimes
higher than CapsNet. For CIFAR10 and iWildCam2019 Figs. 4.5 and 4.6,
CapsNet still showed a consistent high correlation. However, in contrast to
MNIST, all the PathCapsNet conditions showed a consistent low correlation.

In the next section we discuss our interpretations and hypotheses explaining
the different techniques that contributed to these results and why we think that
they enhance the current methodologies.

4.7 Discussion
Three main components, we believe, contributed to the performance of Path-
CapsNet, namely deep PrimaryCapsules, fan-in routing and DropCircuit. Deep
paths, even without fan-in routing and no DropCircuit, could achieve a better
or near test performance. We attribute this to the increased representational
power of each PrimaryCapsule.

The main rationale behind fan-out routing was that each detected part of an
object should contribute more strongly to a single object category rather than
to multiple object categories. Fan-in routing, on the other hand, is expressing
the idea that for a given object, different detected parts should contribute dif-
ferently. Both philosophies can be seen to have different pros and cons, making
each one optimal for a different set of contexts. This was supported empirically
since fan-in achieved better performance on average in MNIST and CIFAR10,
while fan-out was mostly better in iWildCam2019.

104

Chapter 4. Path Capsule Networks

DropCircuit showed performance enhancement for conditions with large
numbers of paths, and no significant effect for small numbers of paths. We
believe DropCircuit, being a form of regularization, needs a sufficiently large
number of paths to show a positive effect. With a small number of paths, drop-
ping becomes too destructive, specially with a high dropping rate, to show any
significant improvement. We believe DropCircuit, like other drop techniques,
is introducing independence between paths and promoting the extraction of
more useful PrimaryCapsule representations. This is partly supported by the
RSA-analysis, which is further discussed later in this section.

A mutual interaction seems to exist between the routing mode (i.e. fan-out
and fan-in) and DropCircuit. For MNIST and CIFAR10, where fan-in seems
to improve performance over fan-out, DropCircuit enhances the performance
of fan-in models, while it worsens fan-out models. For iWildCam2019, where
fan-out is mostly better than fan-in, DropCircuit seems to endorse the same
effect by enhancing the better performing mode (fan-out) and worsening the
lower performing mode (fan-in).

We hypothesize that a contributing factor to PathCapsNet performance
is the ability of the independent paths to extract diverse uncorrelated repre-
sentations. This, however, seems to depend not only on the model architec-
ture, but also on the dataset structure. RSA-analysis showed that while Cap-
sNet had a consistent high correlation between its PrimaryCapsules in all the
datasets, PathCapsNet showed a consistent low correlation in CIFAR10 and
iWildCam2019. However, as mentioned this seems to be dataset dependent
since in MNIST, and despite the fact that some PathCapsNet models showed
low correlation, others showed higher correlation than CapsNet. Since this high
PathCapsNet correlation seems to happen with DropCircuit, one potential ex-
planation is that due to the similarity between MNIST classes, learning diverse
features is difficult and enforcing independent learning through DropCircuit
leads only to convergence of the learned features.

The modular redesign of CapsNet into PathCapsNet, combined with max-
pooling, introduced a strong sparsity and large reduction in the parameter
count. We could achieve a performance comparable to CapsNet by exploiting
the modular multipath architecture to increase the network depth. Essentially,
we substituted the wide convolutional layer of CapsNet with deeper narrower
paths regularized by DropCircuit, a modular oriented regularization technique.
Fan-in routing alone enhanced the performance in two out of the three datasets
used. Moreover, it enabled the effective utilization of DropCircuit regulariza-
tion in these cases, since, as discussed, the DropCircuit effect depends on the
routing mode.

We showed that max-pooling, which may be considered incompatible with
CapsNet and its equivariance aim, can be used to increase parameter savings
without sacrificing performance. Moreover, experiments perturbing different di-
mensions in the DigitCaps layer learned on MNIST confirmed that, even when

105

Chapter 4. Path Capsule Networks

using max-pooling, different pose parameters can be successfully learned. For
example, as shown in Fig. 4.7 perturbing the first three dimensions of the Digit-
Caps layer of one of the models suggested that the first dimension in the model
was controlling multiple pose parameters, like the elongation of the circular
and linear regions and stroke thickness. The second dimension seemed to affect
the circle axes orientations and also stroke thickness, while the third dimension
resulted in a combination of vertical translation, vertical axis inclination and
elongation of the circular part.

Figure 4.7. Perturbing different dimensions of
PathCapsNet-10 (DropCircuit and fan-in) learned on MNIST.

The images in the box are, from the left, the input and the
unperturbed reconstruction, respectively.

Despite of the sparsity of PathCapsNet, we could achieve efficient imple-
mentation since the paths have the same width and depth. As we discussed, we
did that by reducing the operations in layers that are located at the same level
of each path into a single compact matrix operation. However, this technique is
not feasible in the general case of heterogeneous paths having different depths
and widths. Finding new ways of generalizing this efficiency to the general case
of multipath architecture and further to arbitrary modular architectures would
be of significant impact to the research in modularity.

4.8 Conclusion
We have introduced PathCapsNet, a modular sparse multipath version of Cap-
sNet that can achieve better or comparable performance to its baseline with
significant reduction in complexity. In order to achieve this, we used regulariza-
tion by DropCircuit along with a new variant of dynamic routing by agreement,
fan-in routing. The careful coordination of depth, max-pooling, routing mode

106

Chapter 4. Path Capsule Networks

and DropCircuit allowed for maintaining, and sometimes even improving, Cap-
sNet performance, while cutting down the parameter count considerably. RSA-
analysis suggested that the independent multipath architecture of PathCapsNet
has a diversifying effect on the learned representations. Reconstructions with
perturbations showed that the use of max-pooling is not necessarily in conflict
with retaining location information and pose estimation. The independence of
paths renders the model suitable for model parallelism, a property which we did
not investigate in detail and we leave for future work. We think there is still
more space for enhancing PathCapsNet, specially in the reconstruction setting
where we believe there is a complex interaction between routing, DropCircuit
and reconstruction.

4.9 Chapter Acknowledgements
• We acknowledge the use of Athena at HPC Midlands+, which was funded

by the EPSRC on grant EP/P020232/1, in this research, as part of the
HPC Midlands+ consortium.

• This work was partially supported by a grant from Microsoft’s AI for
Earth program.

107

Chapter 5

Weight Map Layer for Noise and
Adversarial Attack Robustness

5.1 Preface
Since their early days, it was recognized that neural networks NNs, like many
other ML models in general, are susceptible to noise. Although artificial noise
can be used as a method of regularization, generally noise in real-world data
is an inevitable annoyance that arises from many sources in the stages of data
acquisition and pre-processing. The sensitivity of NNs to noisy data is taken
to its extreme through adversarial attack (Szegedy et al., 2013), an engineered
noise that can severely disrupt the performance of NNs.

Since the discovery of adversarial attacks, there has been an ongoing research-
oriented arms race between finding techniques to desensitize NNs to adversar-
ial attacks, and potentiating adversarial attacks to overcome these techniques.
Techniques for overcoming adversarial attacks, or adversarial defences, fall into
two main categories: learning approaches and architectural approaches. Learn-
ing approaches aim to modify and enhance the learning process such that the
trained network is less sensitive to adversarial attacks. Techniques such as
augmenting the dataset with adversarial examples (Goodfellow, Shlens, and
Szegedy, 2014; Jin, Dundar, and Culurciello, 2015; Seltzer, Yu, and Wang,
2013), distillation (Hinton, Vinyals, and Dean, 2015; Papernot et al., 2016;
Papernot and McDaniel, 2017), feature squeezing (Xu, Evans, and Qi, 2017),
NULL labeling (Hosseini et al., 2017), utilizing gradient and loss (Sinha et al.,
2018) and using generative models (Pontes-Filho and Liwicki, 2018) fall into this
category. Architectural techniques, on the other hand, are based on modifying
the network architecture to introduce robustness to the attacks. Techniques
based on autoencoders (Lamb et al., 2018; Ghosh, Losalka, and Black, 2018),
sparsity and masking (Gao et al., 2017) and special layers (Sun, Ozay, and
Okatani, 2017) fall into this category.

In principle, adversarial attacks can be applied to any kind of data. How-
ever, data that are readily perceptible by humans, like applications to visual
and acoustic data (Seltzer, Yu, and Wang, 2013), are of special interest on the

108

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

theoretical and practical level. Hence, when it comes to the visual domain, de-
sensitizing CNNs, being the SOTA models, to adversarial attacks is of a special
importance. While the following point may not be frequently expressed, CNNs
are in fact modular adaptations of feedforward networks, that were designed to
exploit the inherent structure in visual data through introducing an inductive
bias that is based on translation invariance. In its original formulation, a convo-
lutional layer applies a set of independent filters to an input at different spatial
locations. Hence, different filters can be considered different modules, even if
they are simple modules of a single linear operation followed by a non-linearity.

In fact, this concept of modularity was generalized more by Lin, Chen,
and Yan (2013) by replacing the filters by small feedforward networks. So, in
principle, the most generalized form of a convolutional layer is composed of a set
of modules applied at different spatial locations of the input to produce feature
maps. In this chapter, we introduce the WM layer, a layer that is similar
to and inspired by the convolutional layer. Both layers are a variant of the
modular node architecture discussed in Section 2.4.2. The formation in both
layers is a manual formation as discussed in Section 2.4.3 and the integration
is AL as discussed in Section 2.4.4, since the module outputs are concatenated
spatially to generate the feature map. We show that by inserting the WM
layer in different SOTA NN architectures, we can increase their robustness to
random noise, as well as adversarial attacks. The closest technique to ours is
HyperNetworks with statistical filtering (Sun, Ozay, and Okatani, 2017). It
depends on utilizing the channel-wise mean and standard deviation statistics
to filter the weights of a traditional convolutional layer in order to render it
more resistant to adversarial attacks. Our technique is significantly different in
the methodology, and while it conceptually manipulates the input statistics, it
performs that in an implicit way as we show in our discussion and interpretation.

In the following sections, we present our contributions to the problems of
noise and adversarial attacks by introducing the WM layer. We benchmark
different architectures and discuss our in depth analysis regarding the WM
layer’s dynamics and principle of action. The implementation efficiency issue
that was discussed in Section 1.5 did not need a specific treatment in this
architecture. Due to the relatedness to convolutional layers, the optimization
needed is in fact reducible to the corresponding one needed in convolutional
layers, which is well studied and supported in every modern tensor library.

5.2 Introduction
Despite their wide adoption in vision tasks and practical applications, CNNs
(Fukushima and Miyake, 1980; LeCun et al., 1989; Krizhevsky, Sutskever, and
Hinton, 2012) suffer from the same noise susceptibility problems manifested
in the majority of neural network models. Noise is an integral component of
any input signal that can arise from different sources, from sensors and data

109

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

acquisition to data preparation and pre-processing. Szegedy et al. (2013) opened
the door to an extreme set of procedures that can manipulate this susceptibility
by applying an engineered noise to confuse a neural network to misclassify its
inputs.

The core principle in this set of techniques, called adversarial attacks, is to
apply the least possible noise perturbation to the neural network input, such
that the noisy input is not visually distinguishable from the original and yet
it still disrupts the neural network output. Generally, adversarial attacks are
composed of two main steps:

• Direction sensitivity estimation: In this step, the attacker estimates
which directions in the input are the most sensitive to perturbation. In
other words, the attacker finds which input features will cause the most
degradation of the network performance when perturbed. The gradient of
the loss with respect to the input can be used as a proxy of this estimate.

• Perturbation selection: Based on the sensitivity estimate, some per-
turbation is selected to balance the two competing objectives of being
minimal and yet making the most disruption to the network output.

The above general technique implies having access to the attacked model
and thus is termed a whitebox attack. Blackbox attacks on the other hand
assume no access to the target model and usually entail training a substitute
model to approximate the target model and then applying the usual whitebox
attack (Chakraborty et al., 2018). The effectiveness of this approach mainly
depends on the assumption of the transferability between ML models (Paper-
not, McDaniel, and Goodfellow, 2016). Transferability means that adversarial
attacks engineered on a given model can affect other models trained on the
same or similar datasets, even when the models are of different architectures.

Since their introduction, a lot of research have been done to guard against
these attacks. An adversarial defence is any technique that is aimed at reduc-
ing the effect of adversarial attacks on neural networks. This can be through
detection, modification to the learning process, architectural modifications or
a combination of these techniques. Our approach consists of an architectural
modification that aims to be easily integrated into any existing convolutional
neural network architecture.

The core hypothesis we base our approach on starts from the premise that
the noise in an input is unavoidable and in practise is very difficult to separate
from the signal effectively. Instead, if the network can adaptively amplify the
features activation variance selectively in its representations based on their im-
portance, then it can absorb the variation introduced by the noise and map the
representations to the correct output. This means that if a feature is very im-
portant to the output calculation, then its activation and intrinsic noise should
be adequately amplified at training time to allow the classification layers to be

110

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

robust to this feature’s noisiness at inference time, since it is crucial to perfor-
mance. In the context of CNNs, this kind of feature-wise amplification can be
achieved by an adaptive elementwise scaling of feature maps.

We introduce the WM layer, which is an easy to implement layer composed
of two main operations: elementwise scaling of feature maps by a learned weight
grid of the same size, followed by a non-adaptive convolution reduction oper-
ation. We use two related operations in the two WM variants we introduce.
The first variant, smoothing WM, uses a non-adaptive smoothing convolution
filter of ones. The other variant, unsharp WM, adds an extra step to exploit
the smoothed intermediate output of the first variant to implement an op-
eration similar to unsharp mask filtering (Gonzalez and Woods, 2002). The
motivation for the second variant was to decrease the over-smoothing effect
produced by stacking multiple WM layers. Smoothing is known to reduce ad-
versarial susceptibility (Xu, Evans, and Qi, 2017), however if done excessively
this can negatively impact accuracy, which motivates the unsharp operation as
a counter-measure to help control the trade-off between noise robustness and
overall accuracy. We show and argue that the weight map component can in-
crease robustness to noise by amplifying the noise during the training phase
in an adaptive way based on feature importance and hence can help networks
absorb noise more effectively. In a way, this can be thought of as implicit adver-
sarial training (Goodfellow, Shlens, and Szegedy, 2014; Lyu, Huang, and Liang,
2015; Shaham, Yamada, and Negahban, 2015). We show that the two compo-
nents, weight map and reduction operations, can give rise to robust CNNs that
are resistant to uniform and adversarial noise.

5.3 Adversarial Attack
Since the intriguing discovery by Szegedy et al. (2013) that neural networks
can be easily forced to misclassify their input by applying an imperceptible
perturbation, many attempts have been made to fortify them against such at-
tacks. These techniques are generally applied to either learning or architectural
aspects of networks. Learning techniques modify the learning process to make
the learned model resistant to adversarial attacks, and are usually architec-
ture agnostic. Architectural techniques, on the other hand, make modifications
to the architecture or use a specific form of architecture engineered to exhibit
robustness to such attacks.

Goodfellow, Shlens, and Szegedy (2014) suggested adversarial training, where
the neural network model is exposed to crafted adversarial examples during the
training phase to allow the network to map adversarial examples to the right
class. Tramèr et al. (2017) showed that this can be bypassed by a two step-
attack, where a random step is applied before perturbation. Jin, Dundar, and
Culurciello (2015) used a similar approach of training using noisy inputs, with
some modifications to network operators to increase robustness to adversarial

111

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

attacks. Seltzer, Yu, and Wang (2013) also applied a similar technique in the
audio domain, namely, multi-condition speech, where the network is trained on
samples with different noise levels. They also benchmarked against training on
pre-processed noise-suppressed features and noise-aware training, a technique
where the input is augmented with noise estimates.

Distillation (Hinton, Vinyals, and Dean, 2015) was proposed initially as
a way of transferring knowledge from a larger teacher network to a smaller
student network. One of the tricks used to make distillation feasible was the
usage of softmax with a temperature hyperparameter. Training the teacher
network with a higher temperature has the effect of producing softer targets
that can be utilized for training the student network. Papernot et al. (2016) and
Papernot and McDaniel (2017) showed that distillation with a high temperature
hyperparameter can render the network resistant to adversarial attacks. Feature
squeezing (Xu, Evans, and Qi, 2017) corresponds to another set of techniques
that rely on desensitizing the model to input, e.g. through smoothing images,
so that it is more robust to adversarial attacks. This, however, decreases the
model’s accuracy. Hosseini et al. (2017) proposed NULL labeling, where the
neural network is trained to reject inputs that are suspected to be adversarials.

Sinha et al. (2018) proposed using adversarial networks to train the target
network using gradient reversal (Ganin et al., 2015). The adversarial network
is trained to classify based on the loss derived gradient, so that the confusion
between classes with similar gradients is decreased. Pontes-Filho and Liwicki
(2018) proposed bidirectional learning, where the network is trained as a clas-
sifier and a generator, with an associated adversarial network, in two different
directions and found that it renders the trained classifier more robust to adver-
sarial attacks.

From the architectural family, Lamb et al. (2018) proposed inserting Denoising
Autoencoders (DAEs) between hidden layers. They act as regularizers for dif-
ferent hidden layers, effectively correcting representations that deviate from the
expected distribution. A related approach was proposed by Ghosh, Losalka, and
Black (2018), where a Variational Autoencoder (VAE) was used with a mixture
of Gaussians prior. The adversarial examples could be detected at inference
time based on their high reconstruction errors and could then be correctly re-
classified by optimizing for the latent vector that minimized the reconstruction
error with respect to the input. DeepCloak (Gao et al., 2017) is another ap-
proach that accumulates the difference in activations between the adversarials
and the seeds used to generate them at inference time and, based on this, a
binary mask is inserted between hidden layers to zero out the features with the
highest contribution to the adversarial problem. The nearest to our approach,
is the method proposed by Sun, Ozay, and Okatani (2017). This work made use
of a HyperNetwork (Ha, Dai, and Le, 2016) that receives the mean and stan-
dard deviation of the convolution layer and outputs a map that is multiplied
elementwise with the convolution weights to produce the final weights used to

112

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

filter the input. The dependency of the weights on the statistics of the data
renders the network robust to adversarial attacks.

We introduce the WM layer, an adversarial defence which requires a minimal
architectural modification since it can be inserted between normal convolutional
layers. We propose that the adaptive activation-variance amplification achieved
by the layer, which can be considered as a form of dynamic implicit adversarial
training, can render CNNs robust to different forms of noise. Finally, we show
that the WM layer can be integrated into scaled up models to achieve noise
robustness with the same or similar accuracy in many cases across different
datasets.

5.4 Methods
The main operation involved in any variant of a weight map layer (Fig. 5.1
and Fig. 5.2) is an elementwise multiplication of the layer input with a map
of weights. For a layer l with an input xl ∈ RCi×Di×Di with Ci input chan-
nels and spatial dimension Di and an output ol ∈ RCo×Do×Do with Co output
channels and Do spatial dimension, the channel map of the cith input channel
contributing to the coth output channel is calculated as

m(ci,co)
l = W(ci,co)

l ⊙ x(ci)
l (5.1)

where W(ci,co)
l ∈ RDi×Di is the weight mapping between ci and co, x(ci)

l is the
cith input channel and ⊙ is the elementwise multiplication operator. We used
two techniques for producing the pre-nonlinearity output of the weight map
layer. The first variant, smoothing weight map layer, produces the coth output
channel o(co)

l by convolving the maps with a kernel k ∈ RCi×Dk×Dk of ones with
Dk spatial dimension as follow,

o(co)
l = m(co)

l ∗ k + b(co)
l (5.2)

where m(co)
l is the set of intermediate maps contributing to output channel

co, b(co)
l ∈ RDo×Do is a bias term and ∗ is the convolution operator. The other

variant, unsharp weight map layer, produces the output by an operation similar
to unsharp filtering as follow,

s(ci,co)
l = 2m(ci,co)

l −m(ci,co)
l ∗ k (5.3)

o(co)
l = ∑

ci

s(ci,co)
l + b(co)

l (5.4)

113

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

where k ∈ RDk×Dk is a kernel of ones applied with a suitable padding element
to ensure similar spatial dimensions between the convolution input and output.

Figure 5.1. Smoothing weight map layer.

Figure 5.2. Unsharp weight map layer.

5.5 Experiments
We tested our method on three architectures and three datasets, namely MNIST,
CIFAR10 and iWildCam2019. For every dataset, we benchmark a number of

114

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

weight-map layer variants against a baseline. The baseline and the variants
share the same skeleton, but the layers in the baseline are convolutional layers,
while in the different weight map variants some or all of the convolutional layers
are replaced with a variant of the weight map layer. We train each model for
300 epochs using the Adam optimizer. The test error reported on the non-noisy
dataset is an average of three trials. For the weight map layer, we initialize the
weights and biases according to

wij ∼ U(−s, s)

s =
1√
ain

where U is the uniform distribution and ain is the fan-in.

Layer CNN CNN (wide) WM
1 Conv(33 channels) Conv(200 channels) WM (32 channels)
2 Conv(33 channels) Conv(500 channels) WM (32 channels)
3 Conv(8 channels) Conv(8 channels) WM (8 channels)
4 FC(64 nodes) FC(64 nodes) FC(64 nodes)
5 FC(10 nodes) FC(10 nodes) FC(10 nodes)

Table 5.1
CNN variants basic skeletons

Layer Out dimension Repeat
ResBlock 8 3
ResBlock 16 4
ResBlock 32 6
ResBlock 64 4

Global average pool 64 1
Fully connected 10 1

Table 5.2
ResNet skeleton

115

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

Layer Hyperparams Repeat
Conv channels: 16 1
ReLU channels: 16 1
Dense Growth rate: 8 2

Max pool size:2, stride:2 1
Dense Growth rate: 8 4

Max pool size:2, stride:2 1
Dense Growth rate: 8 8

Max pool size:2, stride:2 1
Dense Growth rate: 8 16

Global average pool out: 256 1
Fully connected out: 10 1

Table 5.3
DenseNet skeleton

In the experiments on the MNIST dataset, we tested three different archi-
tectures: CNN, ResNet (He et al., 2015) and DenseNet (Huang et al., 2016b)
and for the two other datasets (CIFAR10 and iWildCam2019) we tested ResNet
and DenseNet. The CNN skeleton is a stack of three layers, where the first two
layers have either 32 channels, if it is a weight map network variant, or 33 chan-
nels if it is a normal CNN (Table 5.1). This difference was adopted to maintain
approximately the same number of FLOPS between the two architectures. In
one of the CNN variants, we increased the channels in the first two layers to
200 and 500, respectively, to compare with the weight map network having the
same number of parameters. We will refer to this scaled up variant as ”wide” in
the results. The final layer in the skeleton body has 8 channels. Classification
output is made by a 2 layer fully connected MLP, where the first layer has 64
nodes followed by an output layer. We fixed the kernel size across all the layers.
We compared two kernel sizes, 3 and 9, and we included batchnorm (Ioffe and
Szegedy, 2015) layers in some of the variants to test the interaction with the
proposed layer. When batchnorm was included, it was inserted in the convo-
lutional or WM layers just before the nonlinearity. In one of the variants, we
multiplied the input with a learned weight map elementwise to probe the effect
of the input weight map on noise robustness.

To assess the scalability of the proposed weight map layer, we integrated
it into two popular CNN skeletons: ResNet and DenseNet. Table 5.2 shows
the skeleton of the ResNet variant. ResBlock was composed of two layers of
3x3 convolutions with ReLU activations. At layer transitions characterized
by doubling of the number of channels, downsampling to half of the spatial
dimension was done by the first layer of the first block. Residual connections
were established from the input to each ResBlock to its output, following the
pattern used in the original paper (He et al., 2015), where projections using 1x1

116

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

convolutions were applied when there was a mismatch of the number of channels
or spatial dimensions. Table 5.3 shows the skeleton of DenseNet. Each Dense
layer is assumed to be followed by a ReLU nonlinearity. For integrating WM
layers into the architectures, we either replace all the layers by one of the WM
layer variants or replace half of the layers by skipping one layer and replacing
the next. We will refer to the former by the non-alternating WM model and to
the latter by the alternating WM model.

We tested the model robustness on two types of noise, uniform noise and
adversarial noise. When testing models for uniform noise robustness, we added
random uniform noise to the input, which always had a lower boundary of zero.
We varied the upper boundary from values close to zero towards 1 in order to
assess the degree of robustness. After the addition of the noise, the input was
linearly renormalized to be within the range [0, 1]. The robustness measure is
reported as the average test error achieved by the model on the noisy test dataset
averaged over three trials. For testing the models against adversarial attacks,
we followed the Fast Gradient Sign Method (FGSM) (Goodfellow, Shlens, and
Szegedy, 2014) approach. Let the cost function used to train the network be
J(θ, x, y) where θ is the network parameters, x is the input and y is the input’s
label. Then following FGSM, the perturbation η to be added to the input can
be obtained as follows,

η = ϵ ∗ sign(∇x J(θ, x, y)) (5.5)

where ϵ > 0 is a scaling factor controlling the severity of the attack, ∗ is the
multiplication operator and ∇ is the gradient operator.

The datasets used for benchmarking are described in Section 1.11. For
MNIST, the only augmentation used during the training was padding by 2 and
then random cropping a 28x28 patch. The results on MNIST are summarized in
Table 5.5, Fig. 5.3 and Fig. 5.4. CIFAR10 results are summarized in Table 5.6
and Fig. 5.5. iWildCam2019 results are summarized in Table 5.7 and Fig. 5.6.

5.5.1 Results
The test errors of the preliminary experiments benchmarking CNN on MNIST
are summarized in Table 5.4. The basic weight map network has better per-
formance than the corresponding basic CNN with the same number of FLOPS.
The unsharp version is better by a larger margin but with slightly higher
FLOPS. Increasing the CNN parameters to the level of the corresponding
weight map network results in lowering its performance. Including batchnorm
in either the CNN or the weight map network boosted the performance of both
variants to nearly the same level. On the other hand, increasing the kernel size
to 9 boosted the CNN performance, whilst degrading the weight map network
performance.

117

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

Arch Variant Params GFLOPS Test error (%)
CNN wide 1.19M 1.07 1.0±0.09
CNN 33 channels 261K 0.014 0.85±0.11
CNN 33 channels - batchnorm 261K 0.014 0.73±0.10
CNN 33 channels - kernel size 9 361K 0.125 0.7±0.09
CNN 33 channels - input-scale 261K 0.014 0.86±0.01

Smooth WM 32 channels 1.16M 0.013 0.79±0.03
Smooth WM 32 channels - batchnorm 1.16M 0.013 0.7±0.07
Smooth WM 32 channels - kernel size 9 1.16M 0.119 0.88±0.04
Unsharp WM 32 channels 1.49M 0.020 0.73±0.03

Table 5.4
CNN results (MNIST)

Variant Test error (%)
ResNet

Conv 0.5±0.05
Smoothing WM 0.8±0.09
Unsharp WM 0.91±0.14

Alternating Conv/Smoothing WM 0.65±0.08
Alternating Conv/Unsharp WM 0.71±0.1

DenseNet
Conv 0.52±0.09

Smoothing WM 0.67±0.05
Unsharp WM 0.6±0.04

Alternating Conv/Smoothing WM 0.55±0.07
Alternating Conv/Unsharp WM 0.54±0.04

Table 5.5
MNIST results

118

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

Variant Test error (%)
ResNet

Conv 32.14±2.2
Alternating Conv/Smoothing WM 39.31±0.7
Alternating Conv/Unsharp WM 38.49±0.9

DenseNet
Conv 23.18±0.7

Alternating Conv/Smoothing WM 29.04±0.4
Alternating Conv/Unsharp WM 30.15±0.8

Table 5.6
CIFAR10 results

Variant Test error (%)
ResNet

Conv 23.3±1.0
Alternating Conv/Smoothing WM 20.43±0.8
Alternating Conv/Unsharp WM 20.4±0.4

DenseNet
Conv 22.53±0.8

Alternating Conv/Smoothing WM 22.47±0.7
Alternating Conv/Unsharp WM 20.7±1.0

Table 5.7
iWildCam2019 results

The test error results of ResNet and DenseNet are summarized in Table 5.5,
Table 5.6 and Table 5.7. Baseline ResNet had better performance than the
weight map layer variants on MNIST and CIFAR10, while all of the weight map
layer variants were better than the baseline on iWildCam2019. For DenseNet
tested on MNIST, the baseline had better performance than the non-alternating
weight map layer variants, while it had similar performance to the alternating
variants. On iWildCam2019, the baseline DenseNet had similar performance to
the alternating smoothing variant and lower performance than the alternating
unsharp variant. On CIFAR10, the weight map variants had lower performance
than the baseline DenseNet.

Robustness to noise results are shown in Fig. 5.3, Fig. 5.4, Fig. 5.5 and
Fig. 5.6. For uniform noise, all of the WM variants tested on MNIST had
better performance than the baseline, except for the non-alternating smoothing
WM variant of ResNet. On CIFAR10, the alternating unsharp WM variant of
ResNet showed lower performance than the baseline at lower noise. However, it
becomes more robust than the baseline as the noise magnitude increases. All the

119

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

0.0 0.2 0.4 0.6 0.8 1.0

Noise upper level

0

20

40

60

80

100

Te
s
t

e
rr

o
r

(%
)

cnn

cnn-batchnorm

cnn-input -scale

sm oothingWM

unsharpWM

(a) Uniform noise

0.0 0.2 0.4 0.6 0.8 1.0

Epsilon

0

20

40

60

80

100

Te
s
t

e
rr

o
r

(%
)

cnn

cnn-batchnorm

cnn-input -scale

sm oothingWM

unsharpWM

(b) Adversarial noise

Figure 5.3. MNIST. CNN variants.

alternating WM variants of DenseNet showed a similar behaviour. However, the
alternating smoothing WM variants of ResNet had less robustness at all noise
levels. On iWildCam2019, all of the WM variants of ResNet were less robust
than the baseline, while all the WM variants of DenseNet were more robust
than the baseline.

Regarding adversarial noise results on MNIST, the unsharp WM variant of
CNN was more robust than the baseline, while the baseline and all the other
WM variants of CNN had similar performance. For ResNet, all the WM vari-
ants had either less or the same robustness compared to the baseline. All the
WM variants of DenseNet were better than the baseline, except the alternating
unsharp WM model which had similar performance to the baseline. On CI-
FAR10, both the baselines and the WM models of ResNet performed poorly.
However, on average baseline was better than WM variants of ResNet, while
WM variants of DenseNet were better on average than their baseline. iWild-
Cam2019 had similar results to CIFAR10, where all the models, including the
baseline, performed poorly. All ResNet models on iWildCam2019 had similar
performance, while for DenseNet models, the baseline was on average better
than the WM variants.

5.6 Discussion
We have benchmarked two reduction operations in WM layers: smoothing and
unsharp. The smoothing operation is effectively a moving average over a window
equal to the kernel area. Since this will introduce blurriness into the input
which will accumulate further on stacking multiple layers, we benchmarked

120

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

0.0 0.2 0.4 0.6 0.8 1.0

Noise upper level

0

20

40

60

80

100

Te
s
t

e
rr

o
r

(%
)

ResNet

ResNet-sm oothingWM

ResNet-sm oothingWM-alternat ing

ResNet-unsharpWM-alternat ing

0.0 0.2 0.4 0.6 0.8 1.0

Noise upper level

0

20

40

60

80

100

Te
s
t

e
rr

o
r

(%
)

DenseNet

DenseNet-unsharpWM

DenseNet-sm oothingWM-alternat ing

DenseNet-unsharpWM-alternat ing

(a) Uniform noise

0.0 0.2 0.4 0.6 0.8 1.0

Epsilon

0

20

40

60

80

100

Te
s
t

e
rr

o
r

(%
)

ResNet

ResNet-sm oothingWM

ResNet-sm oothingWM-alternat ing

ResNet-unsharpWM-alternat ing

0.0 0.2 0.4 0.6 0.8 1.0

Epsilon

0

20

40

60

80

100

Te
s
t

e
rr

o
r

(%
)

DenseNet

DenseNet-unsharpWM

DenseNet-sm oothingWM-alternat ing

DenseNet-unsharpWM-alternat ing

(b) Adversarial noise

Figure 5.4. MNIST. Left: ResNet variants. Right: DenseNet
variants.

121

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

0.0 0.2 0.4 0.6 0.8 1.0
Noise upper level

35

40

45

50

55

60

65

70

Te
st

 e
rro

r (
%

)

ResNet
ResNet-smoothingWM-alternating
ResNet-unsharpWM-alternating

0.0 0.2 0.4 0.6 0.8 1.0
Noise upper level

20

30

40

50

60

70

80

90

Te
st

 e
rro

r (
%

)

DenseNet
DenseNet-smoothingWM-alternating
DenseNet-unsharpWM-alternating

(a) Uniform noise

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

30

40

50

60

70

80

90

100

Te
st
 e
rro

r (
%
)

ResNet
ResNet-smoothingWM-alternating
ResNet-unsharpWM-alternating

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

20

30

40

50

60

70

80

90

100

Te
st
 e
rro

r (
%
)

DenseNet
DenseNet-smoothingWM-alternating
DenseNet-unsharpWM-alternating

(b) Adversarial noise

Figure 5.5. CIFAR10. Left: ResNet variants. Right:
DenseNet variants.

122

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

0.0 0.2 0.4 0.6 0.8 1.0
Noise upper level

20

30

40

50

60

70

80

Te
st
 e
rro

r (
%
)

ResNet
ResNet-smoothingWM-alternating
ResNet-unsharpWM-alternating

0.0 0.2 0.4 0.6 0.8 1.0
Noise upper level

20

30

40

50

60

70

80

Te
st
 e
rro

r (
%
)

DenseNet
DenseNet-smoothingWM-alternating
DenseNet-unsharpWM-alternating

(a) Uniform noise

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

20

30

40

50

60

70

80

90

Te
st
 e
rro

r (
%
)

ResNet
ResNet-smoothingWM-alternating
ResNet-unsharpWM-alternating

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

20

30

40

50

60

70

80

90

100

Te
st
 e
rro

r (
%
)

DenseNet
DenseNet-smoothingWM-alternating
DenseNet-unsharpWM-alternating

(b) Adversarial noise

Figure 5.6. iWildCam2019. Left: ResNet variants. Right:
DenseNet variants.

123

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

Figure 5.7. Grad-CAM visualization

against another reduction operation that mimics the action of an unsharp filter
to reduce the accumulating blurring effect. To further reduce the introduced
distortion, we benchmarked models which alternate between having a normal
convolutional layer and a WM layer.

For the experiments based on CNN, the WM variant (no batchnorm and
kernel size of 3) has a better performance than the corresponding vanilla CNN
having the same number of FLOPS. We attribute this to two main factors.
First, the WM variant is more expressive since it has larger number of parame-
ters and hence has higher capacity. WM representation does not, however, need
to be in the same space as the CNN variant. The Grad-CAM (Selvaraju et al.,
2016) visualization of both vanilla CNN and the two WM variants Fig. 5.7 shows
a substantial difference. While the CNN CAM is a blurry, diffused distortion
of the input and sometimes activating for a large proportion of the background,
the WM CAM is sharper, sparser and more localized with almost no diffused
background activation, specially for the unsharp WM variant. We attribute this
background activation sparsity to the feature selection ability of WM. Much
like the way attentional techniques (Bahdanau, Cho, and Bengio, 2014; Vinyals
et al., 2014; Xu et al., 2015; Hermann et al., 2015) can draw the network to
focus on a subset of features, WM includes an elementwise multiplication by a
weight map, that can in principle achieve feature selection on a pixel by pixel
basis. On the other hand, normal convolution can not achieve a similar effect
because of weight sharing. The second possible reason for better performance
consists of the scaling properties of the WM layer. This can in principle act like
the normalization done by batchnorm layers. However, applying batchnorm can
boost the performance of both CNN and WM variants, which indicates that the
two approaches have an orthogonal component between them. Moreover, as we
discuss below, batchnorm alone does not protect against uniform noise and ad-
versarial attacks. If we fix the number of parameters, instead of FLOPS, along
with depth, we observe a clear advantage for WM variants. The WM variant
with the same number of parameters and depth is better in performance by a

124

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

large margin, and cheaper in FLOPS by around 100x. We attribute this to the
large width compared to depth of the CNN variant, which makes it harder to
optimize. On the other hand, WM can pack larger degrees of freedom without
growing in width.

Increasing the kernel size enhances the performance of the CNN variant,
while it lowers the performance of the WM variant. The enhanced CNN perfor-
mance is due to increased capacity and a larger context made available by the
larger receptive field. In the case of WM, the increased kernel size results in over
smoothing and larger overlapping between adjacent receptive fields, effectively
sharing more parameters and limiting the model’s effective capacity.

For deeper networks like ResNet and DenseNet, we will focus the discussion
on the alternating models. The unsharp models show a similar or better test
performance compared to the smoothing models across all the tested datasets.
This supports our motivation for introducing the unsharp operation to reduce
distortion.

For uniform noise, we find that for all the WM models in MNIST and
CIFAR10, at least one of the WM variants have better noise robustness than
the baseline. In this subset, all of the WM models of CNN and DenseNet
in MNIST have better noise robustness than the baseline. For uniform noise
in iWildCam2019, the WM variants of DenseNet are more robust than the
baseline, while the WM variants of ResNet are less robust than the baseline.
For adversarial attacks, the WM variants of CNN and DenseNet have at least
one model which is better than the baseline. For ResNet on MNIST, WM
variants have the same as or less robustness than the baseline. For CIFAR10
and iWildCam2019, all the models are very sensitive to the adversarial noise,
with mixed relative results between the WM variants and the baseline.

The above summary of results shows that the WM layer is very effective
against random noise, while it does not have the same efficacy against adver-
sarial attacks. This may be explained by our hypothesis on the mechanism of
the WM layer. The elementwise multiplication of the weight map by the input
pixels, or any intermediate activation in general, can be considered as a feature
selection mechanism. This implies that pixels that have large contribution to
the accuracy will have large magnitude. The variance of any activation after
applying the elementwise multiplication is then

Var[wij ⊙ xij] = w2
ij ⊙Var[xij] (5.6)

where xij is the activation at the index ij, Var is the variance of that activation
over the dataset, wij is the weight corresponding to the activation and ⊙ is the
elementwise multiplication operator.

We attribute the noise resistance introduced by the WM layer to the de-
scribed amplification of the activation variance. This amplification is propor-
tional to the weight magnitude and, hence, to the importance of the corre-
sponding feature to the model performance. The amplification of variance

125

Chapter 5. Weight Map Layer for Noise and Adversarial Attack Robustness

increases the variations that the network encounters for the corresponding
pixel/activation, which can be considered as an implicit augmentation of the
dataset. This hypothesis, in turn, explains why it is performing better on ran-
dom noise than adversarial attacks. While random noise has arbitrary direction,
an adversarial attack can exploit gradient information to account for any dif-
ferentiable component.

The efficiency of modular implementation that we discussed Section 1.5 was
not an issue in this architecture since it is very similar in principle to con-
volutional layers. The efficient implementation is a matter of applying the
usual matrix-matrix elementwise multiplication, followed by a convolution with
a constant-values kernel. Optimization of convolution efficiency is well-studied
and supported in modern tensor libraries and does not need any special treat-
ment here.

5.7 Conclusion
We have introduced the weight map layer, a modular layer that shares similar-
ity with the architecture of convolutional layers. The two WM layer variants
introduced represent a generic architectural modification that can increase the
robustness of convolutional neural networks to noise and adversarial attacks.
We showed that it can be used to boost performance and increase noise robust-
ness in small convolutional networks. Moreover, we showed that WM layers can
be integrated into scaled up networks, ResNet and DenseNet, to increase their
noise and adversarial attack robustness, while achieving comparable accuracy.
We explained that the adaptive activation-variance amplification exhibited by
the WM layer can explain its noise and adversarial attack robustness and the
associated experimental observations regarding its dynamics.

5.8 Chapter Acknowledgements
This work was partially supported by a grant from Microsoft’s AI for Earth
program.

126

Chapter 6

Discussion and Conclusion

ANNs are ML models that are composed of interconnected nodes, where each
node is a mathematical function consisting of a linear transformation followed
by a non-linearity. Connections between nodes are specified by weights, which
are learned parameters that control the strength by which nodes affect each
other. MNNs are a specific type of ANN; an MNN is a neural network that
consists of a set of subnetworks (called modules) that are densely connected
internally, while sparsely connected between each other.

In this work, we aimed to use modularity to address some of the essential
problems that face the research in deep learning and its application to complex
ML problems. In Chapter 2, we did an extensive review of the literature that
would serve as a contextual framework for the subsequent chapters. We iden-
tified common patterns between modular architectures and based on that we
formulated our modularization framework that captures the general process of
introducing modularity into an ANN. We showed that this framework can pro-
vide a broader perspective of modularity when applied to common case studies
in the field.

We focused on applying modularity to the relation between the accuracy of
a model on one side and its latency and the effect of noise in the data on the
other side. ANNs are usually high-capacity models. This high-capacity corre-
lates with high latency and more susceptibility to overfitting the noise in the
data. A modeler who aims to apply a deep learning model in a limited resource
environment has to sacrifice capacity in order to decrease latency. In Chap-
ter 3, we used differential NAS to explore the space of modular multipath NNs
that can be derived from a fully-connected network and by applying pruning
and evaluating an architectural sample, we could predict the latency-accuracy
relationship with good precision. This allows the modeler to find the required
balance between resources and the model performance without the need for
exhaustive training of models. In the described work, we used a multipath
topology, a learned formation technique and a learned integration technique as
described in Section 2.4.2, Section 2.4.3 and Section 2.4.4, respectively.

A related problem with stronger constraints is reducing the complexity while

127

Chapter 6. Discussion and Conclusion

maintaining accuracy. The target in this type of problem is reducing complex-
ity as much as possible, while maintaining the accuracy of the baseline high-
capacity model. In this sense, this problem has a much stronger constraint on
the accuracy side and complexity can be reduced as long as we do not depart sig-
nificantly from the accuracy of the high capacity model. In Chapter 4, we mod-
ularized CapsNet in order to introduce sparsity and reduce model complexity.
We reduced the intermediate computations by integrating max-pooling into the
manually engineered multipath architecture. We further exploited the modular
architecture by introducing more depth and by regularizing using DropCircuit
to compensate for the reduced capacity. The redesigned modular path capsule
network model, combined with the introduced variant of the routing algorithm,
was in some conditions as low as 20% of the original model parameters while
its accuracy was similar to the original model and on some datasets it had
even better accuracy. We used a multipath topology, manual formation and
AL integration as described in Section 2.4.2, Section 2.4.3 and Section 2.4.4,
respectively.

The third problem we investigated was the sensitivity of ANN accuracy to
noise and adversarial attacks. There is a special interest in applying adversarial
attacks to visual data and hence CNNs are a major target for these attacks. A
convolutional layer is a modular layer that consists of a module being convolved
with the input. In Chapter 5, we introduced the WM layer, which is a modular
layer that has similarity to convolutional layers. The topology of the WM layer
is a modular node topology as described in Section 2.4.2 and we used manual
formation and AL integration as discussed in Section 2.4.3 and Section 2.4.4,
respectively. A WM layer consists of two operations, elementwise multiplication
by a weight grid followed by a reduction convolutional operation. We showed
that the WM layer can be integrated into CNNs to increase their robustness to
random noise and adversarial attacks and we investigated its working principle.

In implementing our modularity experiments we faced the problem of im-
plementation efficiency. The main executing engine of ANNs is the GPU. The
usage of GPU acceleration in ANNs depends on the assumption of dense matrix-
matrix multiplications. Hence, in order to realize accelerated performance using
a GPU, an operation has to be in a dense format. Since modular architectures
have sparsity by definition, they do not readily benefit from GPU acceleration.
We could solve the mentioned sparsity problem in the realized implementations
in Chapter 5 and Chapter 4. In Chapter 5, the WM layer is similar in its general
structure to convolutional layers and, hence, we could benefit from the existing
GPU optimization of these operations. In Chapter 4, since one of our assump-
tions is a homogeneous multipath architecture (i.e. independent paths have the
same width and depth), we could reduce the multipath convolutional operations
to a dense matrix form. We discussed the general idea of dense transformation
of an MNN with fully-connected paths in Section 4.6.1 and extending this to
convolutional operators is straightforward and can be implemented with the

128

Chapter 6. Discussion and Conclusion

optimized depthwise-separable convolution utilities in modern tensor libraries.
For Chapter 3, since the paths are not homogeneous, we could not use a similar
strategy. We instead used the less efficient option of regular dense matrices
where we zero out entries which correspond to connections that are severed due
to modularity. However, since for our case sparsity is needed only at inference
time which is not very computationally demanding, the experiments were still
feasible.

Throughout this work we showed how modularity can be used to tackle
different problem in deep learning. Future work holds a high potential for mod-
ularity based ideas. The work in Chapter 3 showed how differential search could
help in exploring the combinatorial space of latency and accuracy in modular
multipath networks in order to achieve a required balance. We used a prun-
ing technique based on weight magnitude, which has logical justification and
previous usage in literature besides its simplicity and efficient implementation.
However, pruning is a large topic in the field and more advanced techniques may
give rise to a more efficient architectural search. We regard NAS, and the gen-
eral idea of learned formation described in Section 2.4.3, to be a very important
idea for MNNs. While designing MNNs manually is suitable for some problems
as was discussed in Chapter 2 and as we applied it in Chapter 4, the majority of
problems will benefit more from learned and automatic formation of MNNs. In
general, current NAS techniques depend on regular homogeneous blocks, mainly
for the efficiency of implementation issue that was discussed. Hence, there is a
serious missed opportunity for benefiting from modular diversity. In the same
sense, the space of modular architectures searched by NAS techniques is very
limited and has a very restrictive manually engineered component. EAs, which
are another good candidate for modular architectural search, suffer from the
same problems. Additionally, EAs are very demanding in terms of paralleliza-
tion and, hence unlike differential techniques, they are further limited by the
lack of an efficient acceleration engine. We regard finding more efficient mod-
ular search objectives, flexible modular NAS techniques and efficient modular
implementations to be highly impactful future research directions.

In Chapter 4, we showed how manual modularity design can be used to
make models more efficient and even increase their performance at the same
time. The independence of paths renders the redesigned model suitable for
model parallelism, a property which we did not investigate in detail and we
leave for future work. We think there is still more space for enhancing Path-
CapsNet, specially in the reconstruction setting where we believe there is a
complex interaction between routing, DropCircuit and reconstruction. Our re-
sults showed that modularity does not only hold the potential for sparsity and
decrease in latency, but also can be utilized to enhance model accuracy and
generalization. Using modularity to enhance generalization of models is still an
open ended question and many challenges need to be addressed to achieve its
full potential. More research in promoting functional modularity in MNNs and

129

Chapter 6. Discussion and Conclusion

in finding more objectives that can increase diversity and modular specialization
is needed. In Chapter 5, we further proved the utility of modularity for another
measure which is noise and adversarial attack robustness. More future work is
needed to identify more effective ways to integrate with other architectures and
to gain more insights regarding the dynamics of the WM layer. We think that
a lot of potential exists in investigating the relation between modularity and
many performance measures that may be considered not to be directly related
to modularity like catastrophic forgetting, data greediness, few-shot learning
and regularization.

As we discussed throughout the preceding chapters, this work was not possi-
ble without finding an implementation that is efficient enough to be computable
and the same applies to any potential work in modularity, either artificially or
biologically inspired. We had to transform our operators into an efficient form
and to adapt them to the existing optimized algorithms in the field. Nonetheless,
there are still a lot of general use cases that do not have a feasible or straight-
forward efficient implementation using the current technology and tools. This
limitation is extremely crippling to the research in modularity and, hence, the
impact of developing this area can not be overemphasized.

Modularity has its deep origins in biology. Regardless of the frequent di-
vergence between the study of deep learning and its biological roots, we believe
that many fruitful links between artificial and biological modularity exist. The
original inspiration of CNN was based on neuroscientific studies and it culmi-
nated in one of the most successful examples of this crossover of ideas. We
discussed similar inspirations in Chapter 2 and we regard this direction as very
important, at least at the explanatory and illuminating level, if not also at the
practical level. We could use modularity to balance accuracy and latency in
multipath neural networks, reduce complexity of CapsNet and increase CNN
model robustness to noise and adversarial attack. We believe that the research
in modularity has just scratched the surface of its potential and by building on
previous studies in the artificial domain along with more adoption of inspira-
tions from the biological domain, the reach of modularity applications can be
significantly expanded.

130

Appendix A

Acronyms

AI Artificial Intelligence

AL Arithmetic-Logic

AMR Abstract Meaning Representations

ANN Artificial Neural Network

BBNN Block-Based Neural Network

CG Cyclic Graph

CNN Convolutional Neural Network

CPU Central Processing Unit

CV Computer Vision

DAE Denoising Autoencoder

DAG Directed Acyclic Graph

DCL Divide-and-Conquer Learning

EA Evolution Algorithm

ECP Error Correlation Partitioning

EM Expectation Maximization

ES Evolution Strategies

EWC Elastic Weight Consolidation

FC Fully Connected

FGSM Fast Gradient Sign Method

FLOPS Floating Point Operations Per Second

131

Appendix A. Acronyms

FNN False Nearest Neighbours

GA Genetic Algorithm

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

GNN Graph Neural Network

GP Genetic Programming

GPGPU General-Purpose Graphical Processing Unit

GPU Graphical Processing Unit

GRU Gated Recurrent Unit

HCNR Highly-Clustered Non-Regular

HMM Hierarchical Markov Model

HPR Human Pose Recovery

HRNN Hierarchical Recurrent Neural Network

IoT Internet of Things

LGN Lateral Geniculate Nucleus

LSTM Long Short-Term Memory

LTM Long-Term Memory

LWTA Local Winner-Take-All

MAE Mean Absolute Error

MCNN Modular Cellular Neural Network

MDP Markov Decision Process

MGN Medial Geniculate Nucleus

ML Machine Learning

MLP Multilayer Perceptron

MNN Modular Neural Network

MPNN Message-Passing Neural Network

132

Appendix A. Acronyms

MVG Modularly Varying Goal

MpathNN Multipath Neural Network

NAS Neural Architecture Search

NIN Network In a Network

NLP Natural Language Processing

NN Neural Network

OAA One-Against-All

OAO One-Against-One

PAQ P-Against-Q

PC Parallel Circuit

PID Proportional–Integral–Derivative

RBF Radial Basis Function

RDM Representational Dissimilarity Matrix

RF Receptive Field

RL Reinforcement Learning

RNN Recurrent Neural Network

RO Research Objective

RQ Research Question

RSA Representational Similarity Analysis

SCN Siamese Capsule Network

SGD Stochastic Gradient Descent

SI Synaptic Intelligence

SOTA state-of-the-art

STM Short-Term Memory

SVM Support Vector Machine

SW Small World

133

Appendix A. Acronyms

TBPTT Truncated Backpropagation Through Time

UAV Unmanned Aerial Vehicle

VAE Variational Autoencoder

VLSI Very Large-Scale Integration

WM Weight Map

134

References

Abraham, Wickliffe C and Anthony Robins (2005). “Memory retention–the
synaptic stability versus plasticity dilemma”. In: Trends in neurosciences
28.2, pp. 73–78.

Achard, Sophie and Ed Bullmore (2007). “Efficiency and cost of economical
brain functional networks”. In: PLoS Computational Biology 3.2, pp. 0174–
0183. issn: 1553734X. doi: 10.1371/journal.pcbi.0030017.

Aguirre, Carlos, Ramón Huerta, Fernando Corbacho, and Pedro Pascual (2002).
“Analysis of biologically inspired small-world networks”. In: International
Conference on Artificial Neural Networks. Springer, pp. 27–32.

Allen, F., G. Almasi, W. Andreoni, D. Beece, B. J. Berne, A. Bright, J. Brun-
heroto, C. Cascaval, J. Castanos, P. Coteus, P. Crumley, A. Curioni, M.
Denneau, W. Donath, M. Eleftheriou, B. Flitch, B. Fleischer, C. J. Geor-
giou, R. Germain, M. Giampapa, D. Gresh, M. Gupta, R. Haring, H. Ho,
P. Hochschild, S. Hummel, T. Jonas, D. Lieber, G. Martyna, K. Maturu,
J. Moreira, D. Newns, M. Newton, R. Philhower, T. Picunko, J. Pitera,
M. Pitman, R. Rand, A. Royyuru, V. Salapura, A. Sanomiya, R. Shah, Y.
Sham, S. Singh, M. Snir, F. Suits, R. Swetz, W. C. Swope, N. Vishnumurthy,
T. J. C Ward, H. Warren, and R. Zhou (2001). “Blue Gene: A vision for
protein science using a petaflop supercomputer”. In: IBM Systems Jour-
nal 40.2, pp. 310–327. issn: 0018-8670. doi: 10.1147/sj.402.0310. url:
http://ieeexplore.ieee.org/document/5386970/.

Almasri, Mohammad N and Jagath J Kaluarachchi (2005). “Modular neural
networks to predict the nitrate distribution in ground water using the on-
ground nitrogen loading and recharge data”. In: Environmental Modelling &
Software 20.7, pp. 851–871.

Amer, Mohammed and Tomás Maul (2019). “A review of modularization tech-
niques in artificial neural networks”. In: Artificial Intelligence Review 52.1,
pp. 527–561. issn: 15737462. doi: 10.1007/s10462-019-09706-7. eprint:
1904.12770. url: https://doi.org/10.1007/s10462-019-09706-7.

— (2020). “Path Capsule Networks”. In: Neural Processing Letters, pp. 1–15.
issn: 1573773X. doi: 10.1007/s11063-020-10273-0. arXiv: 1902.03760.
url: https://doi.org/10.1007/s11063-020-10273-0.

Aminian, Mehran and Farzan Aminian (2007). “A modular fault-diagnostic
system for analog electronic circuits using neural networks with wavelet
transform as a preprocessor”. In: IEEE Transactions on Instrumentation
and Measurement 56.5, pp. 1546–1554.

135

https://doi.org/10.1371/journal.pcbi.0030017
https://doi.org/10.1147/sj.402.0310
http://ieeexplore.ieee.org/document/5386970/
https://doi.org/10.1007/s10462-019-09706-7
1904.12770
https://doi.org/10.1007/s10462-019-09706-7
https://doi.org/10.1007/s11063-020-10273-0
https://arxiv.org/abs/1902.03760
https://doi.org/10.1007/s11063-020-10273-0

References

Anand, R., K. Mehrotra, C.K. Mohan, and S. Ranka (1995). “Efficient classi-
fication for multiclass problems using modular neural networks”. In: IEEE
Transactions on Neural Networks 6.1, pp. 117–124. issn: 10459227. doi:
10.1109/72.363444.

Anderson, Ark, Kyle Shaffer, Artem Yankov, Court D. Corley, and Nathan O.
Hodas (2016). “Beyond Fine Tuning: A Modular Approach to Learning on
Small Data”. In: arXiv: 1611.01714. url: https://arxiv.org/abs/1611.
01714v1.

Andreas, Jacob, Marcus Rohrbach, Trevor Darrell, and Dan Klein (2016a).
“Neural module networks”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 39–48.

— (2016b). “Learning to Compose Neural Networks for Question Answering”.
In: arXiv: 1601.01705.

Andrews, George E (1998). The theory of partitions. 2. Cambridge university
press.

Andrews, George E and Kimmo Eriksson (2004). Integer partitions. Cambridge
University Press.

Angelucci, a, F Clascá, E Bricolo, K S Cramer, and M Sur (1997). “Experimen-
tally induced retinal projections to the ferret auditory thalamus: develop-
ment of clustered eye-specific patterns in a novel target.” In: The Journal
of neuroscience : the official journal of the Society for Neuroscience 17.6,
pp. 2040–2055. issn: 0270-6474.

Arik, Sercan O., Jitong Chen, Kainan Peng, Wei Ping, and Yanqi Zhou (2018).
Neural Voice Cloning with a Few Samples. arXiv: 1802.06006 [cs.CL].

Auda, G and M Kamel (1998). “Modular Neural Network Classifiers: A Com-
parative Study”. In: Journal of Intelligent and Robotic Systems 21, pp. 117–
129. issn: 09210296. doi: 10.1023/A:1007925203918.

— (1999). “Modular neural networks: a survey.” In: International journal of
neural systems 9.2, pp. 129–51. issn: 0129-0657.

Azam, Farooq (2000). “Biologically Inspired Modular Neural Networks”. In:
url: https://vtechworks.lib.vt.edu/handle/10919/27998.

Ba, Jimmy and Rich Caruana (2014). “Do deep nets really need to be deep?”
In: Advances in neural information processing systems, pp. 2654–2662.

Babaei, Sepideh, Amir Geranmayeh, and Seyyed Ali Seyyedsalehi (2010). “Pro-
tein secondary structure prediction using modular reciprocal bidirectional re-
current neural networks”. In: Computer Methods and Programs in Biomedicine
100.3, pp. 237–247. issn: 01692607. doi: 10.1016/j.cmpb.2010.04.005.

Bäck, Thomas, David B Fogel, and Zbigniew Michalewicz (2018). Evolutionary
computation 1: Basic algorithms and operators. CRC press.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural Ma-
chine Translation by Jointly Learning to Align and Translate”. In: arXiv:
1409.0473. url: http://arxiv.org/abs/1409.0473.

136

https://doi.org/10.1109/72.363444
https://arxiv.org/abs/1611.01714
https://arxiv.org/abs/1611.01714v1
https://arxiv.org/abs/1611.01714v1
https://arxiv.org/abs/1601.01705
https://arxiv.org/abs/1802.06006
https://doi.org/10.1023/A:1007925203918
https://vtechworks.lib.vt.edu/handle/10919/27998
https://doi.org/10.1016/j.cmpb.2010.04.005
https://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

References

Barrett, David GT, Ari S. Morcos, and Jakob H. Macke (2019). Analyzing biolog-
ical and artificial neural networks: challenges with opportunities for synergy?
doi: 10.1016/j.conb.2019.01.007. arXiv: 1810.13373.

Barua, Sukarna, Sarah Monazam Erfani, and James Bailey (2019). FCC-GAN:
A Fully Connected and Convolutional Net Architecture for GANs. arXiv:
1905.02417 [cs.LG].

Battaglia, Peter W., Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Bal-
lard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles
Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Push-
meet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu
(2018). “Relational inductive biases, deep learning, and graph networks”. In:
arXiv: 1806.01261. url: http://arxiv.org/abs/1806.01261.

Bello, Irwan, Barret Zoph, Vijay Vasudevan, and Quoc V Le (2017). “Neural
optimizer search with reinforcement learning”. In: International Conference
on Machine Learning. PMLR, pp. 459–468.

Bender, Gabriel, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and
Quoc Le (2018). Understanding and Simplifying One-Shot Architecture Search.
url: http://proceedings.mlr.press/v80/bender18a.

Bengio, Samy, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer (2015). Sched-
uled Sampling for Sequence Prediction with Recurrent Neural Networks.
url: http://papers.nips.cc/paper/5956-scheduled-sampling-for-
sequence-prediction-with-recurrent-neural-networks.

Bengio, Yoshua, Jérôme Louradour, Ronan Collobert, and Jason Weston (2009).
“Curriculum learning”. In: Proceedings of the 26th Annual International
Conference on Machine Learning - ICML ’09. New York, New York, USA:
ACM Press, pp. 1–8. isbn: 9781605585161. doi: 10.1145/1553374.1553380.
url: http://portal.acm.org/citation.cfm?doid=1553374.1553380.

Bhende, C.N., S. Mishra, and B.K. Panigrahi (2008). “Detection and classifi-
cation of power quality disturbances using S-transform and modular neu-
ral network”. In: Electric Power Systems Research 78.1, pp. 122–128. issn:
03787796. doi: 10.1016/j.epsr.2006.12.011.

Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra
(2015). “Weight uncertainty in neural networks”. In: arXiv:1505.05424.

Bohland, Jason W. and Ali A. Minai (2001). “Efficient associative memory
using small-world architecture”. In: Neurocomputing 38, pp. 489–496. issn:
09252312. doi: 10.1016/S0925-2312(01)00378-2.

Brandes, Ulrik, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner (2008). “On modularity clustering”.
In: IEEE Transactions on Knowledge and Data Engineering 20.2, pp. 172–
188. issn: 10414347. doi: 10.1109/TKDE.2007.190689.

137

https://doi.org/10.1016/j.conb.2019.01.007
https://arxiv.org/abs/1810.13373
https://arxiv.org/abs/1905.02417
https://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
http://proceedings.mlr.press/v80/bender18a
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks
https://doi.org/10.1145/1553374.1553380
http://portal.acm.org/citation.cfm?doid=1553374.1553380
https://doi.org/10.1016/j.epsr.2006.12.011
https://doi.org/10.1016/S0925-2312(01)00378-2
https://doi.org/10.1109/TKDE.2007.190689

References

Braylan, Alexander, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen
(2015). “Reuse of Neural Modules for General Video Game Playing”. In:
arXiv: 1512.01537.

Bruinier, Jan Hendrik and Ken Ono (2013). “Algebraic formulas for the coeffi-
cients of half-integral weight harmonic weak Maass forms”. In: Advances in
Mathematics 246, pp. 198–219.

Bullmore, Ed and Olaf Sporns (2009). “Complex brain networks: graph the-
oretical analysis of structural and functional systems”. In: Nature Reviews
Neuroscience 10.3, pp. 186–198. issn: 1471-003X. doi: 10.1038/nrn2575.

Bullmore, Edward T. and Danielle S. Bassett (2011). “Brain Graphs: Graphical
Models of the Human Brain Connectome”. In: Annual Review of Clinical
Psychology 7.1, pp. 113–140. issn: 1548-5943. doi: 10 . 1146 / annurev -
clinpsy-040510-143934.

Buxhoeveden, D. P. (2002). “The minicolumn hypothesis in neuroscience”. In:
Brain 125.5, pp. 935–951. issn: 14602156. doi: 10.1093/brain/awf110.

Caelli, Terry, Ling Guan, and Wilson Wen (1999). “Modularity in neural com-
puting”. In: Proceedings of the IEEE 87.9, pp. 1497–1518. issn: 00189219.
doi: 10.1109/5.784227.

Cai, Han, Ligeng Zhu, and Song Han (2018). “Proxylessnas: Direct neural ar-
chitecture search on target task and hardware”. In: arXiv:1812.00332.

Cai, Shaofeng, Yao Shu, Wei Wang, and Beng Chin Ooi (2019). “Isbnet: Instance-
aware selective branching network”. In: arXiv preprint arXiv:1905.04849.

Calabretta, Raffaele, Stefano Nolfi, Domenico Parisi, and Günter P Wagner
(2000). “Duplication of modules facilitates the evolution of functional spe-
cialization”. In: Artificial life 6.1, pp. 69–84.

Chakraborty, Anirban, Manaar Alam, Vishal Dey, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay (2018). “Adversarial Attacks and Defences: A
Survey”. In: arXiv: 1810.00069. url: http://arxiv.org/abs/1810.00069.

Chandna, Pritish, Marius Miron, Jordi Janer, and Emilia Gómez (2017). “Monoau-
ral Audio Source Separation Using Deep Convolutional Neural Networks”.
In: Latent Variable Analysis and Signal Separation. Ed. by Petr Tichavský,
Massoud Babaie-Zadeh, Olivier J J Michel, and Nadège Thirion-Moreau.
Cham: Springer International Publishing, pp. 258–266. isbn: 978-3-319-
53547-0.

Chen, Beidi, Tharun Medini, James Farwell, Sameh Gobriel, Charlie Tai, and
Anshumali Shrivastava (2020). SLIDE : In Defense of Smart Algorithms
over Hardware Acceleration for Large-Scale Deep Learning Systems. arXiv:
1903.03129 [cs.DC].

Chen, Wenlin, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin
Chen (2015). “Compressing neural networks with the hashing trick”. In:
International conference on machine learning, pp. 2285–2294.

Chen, Zhang J., Yong He, Pedro Rosa-Neto, Jurgen Germann, and Alan C.
Evans (2008). “Revealing modular architecture of human brain structural

138

https://arxiv.org/abs/1512.01537
https://doi.org/10.1038/nrn2575
https://doi.org/10.1146/annurev-clinpsy-040510-143934
https://doi.org/10.1146/annurev-clinpsy-040510-143934
https://doi.org/10.1093/brain/awf110
https://doi.org/10.1109/5.784227
https://arxiv.org/abs/1810.00069
http://arxiv.org/abs/1810.00069
https://arxiv.org/abs/1903.03129

References

networks by using cortical thickness from MRI”. In: Cerebral Cortex 18.10,
pp. 2374–2381. issn: 10473211. doi: 10.1093/cercor/bhn003.

Chiang, Cheng-Chin and Hsin-Chia Fu (1994). “A divide-and-conquer method-
ology for modular supervised neural network design”. In: Neural Networks,
1994. IEEE World Congress on Computational Intelligence., 1994 IEEE
International Conference on. Vol. 1. IEEE, pp. 119–124.

Chihaoui, Mejda, Akram Elkefi, Wajdi Bellil, and Chokri Ben Amar (2016). “A
Survey of 2D Face Recognition Techniques”. In: Computers 5.4, p. 21. doi:
10.3390/computers5040021.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio (2014). Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Trans-
lation. arXiv: 1406.1078 [cs.CL].

Chollet, François (2016). “Xception: Deep Learning with Depthwise Separable
Convolutions”. In: arXiv: 1610.02357. url: http://arxiv.org/abs/1610.
02357.

Chris Tseng, H. and Bassam Almogahed (2009). “Modular neural networks
with applications to pattern profiling problems”. In: Neurocomputing 72.10-
12, pp. 2093–2100. issn: 0925-2312. doi: 10.1016/J.NEUCOM.2008.10.
020. url: https://www.sciencedirect.com/science/article/pii/
S0925231208005444?via{\%}3Dihub.

Ciregan, Dan, Ueli Meier, and Jürgen Schmidhuber (2012). “Multi-column deep
neural networks for image classification”. In: Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE, pp. 3642–3649.

Cireşan, Dan, Ueli Meier, and Juergen Schmidhuber (2012). “Multi-column
Deep Neural Networks for Image Classification”. In: arXiv: 1202.2745. url:
http://arxiv.org/abs/1202.2745.

Clune, Jeff, Jean-Baptiste Mouret, and Hod Lipson (2013). “The evolutionary
origins of modularity.” In: Proceedings. Biological sciences / The Royal Soci-
ety 280.1755, p. 20122863. issn: 1471-2954. doi: 10.1098/rspb.2012.2863.
arXiv: 1207.2743v1.

Coop, Robert, Aaron Mishtal, and Itamar Arel (2013). “Ensemble learning
in fixed expansion layer networks for mitigating catastrophic forgetting”.
In: IEEE Transactions on Neural Networks and Learning Systems 24.10,
pp. 1623–1634. issn: 2162237X. doi: 10.1109/TNNLS.2013.2264952.

Csaky, Richard (2019). Deep Learning Based Chatbot Models. arXiv: 1908 .
08835 [cs.CL].

Dai, Wenyuan, Qiang Yang, Gui-Rong Xue, and Yong Yu (2007). Boosting for
Transfer Learning. Tech. rep. url: http://www.cs.berkeley.edu/.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019).
BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding. arXiv: 1810.04805 [cs.CL].

139

https://doi.org/10.1093/cercor/bhn003
https://doi.org/10.3390/computers5040021
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
https://doi.org/10.1016/J.NEUCOM.2008.10.020
https://doi.org/10.1016/J.NEUCOM.2008.10.020
https://www.sciencedirect.com/science/article/pii/S0925231208005444?via{\%}3Dihub
https://www.sciencedirect.com/science/article/pii/S0925231208005444?via{\%}3Dihub
https://arxiv.org/abs/1202.2745
http://arxiv.org/abs/1202.2745
https://doi.org/10.1098/rspb.2012.2863
https://arxiv.org/abs/1207.2743v1
https://doi.org/10.1109/TNNLS.2013.2264952
https://arxiv.org/abs/1908.08835
https://arxiv.org/abs/1908.08835
http://www.cs.berkeley.edu/
https://arxiv.org/abs/1810.04805

References

Di Ferdinando, Andrea, Raffaele Calabretta, and Domenico Parisi (2001). “Evolv-
ing modular architectures for neural networks”. In:

Douglas, Rodney J and Kevan A C Martin (2007). “Recurrent neuronal circuits
in the neocortex.” In: Current biology : CB 17.13, R496–500. issn: 0960-
9822. doi: 10.1016/j.cub.2007.04.024. url: http://www.ncbi.nlm.
nih.gov/pubmed/17610826.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization”. In: Journal of
Machine Learning Research 12.61, pp. 2121–2159. url: http://jmlr.org/
papers/v12/duchi11a.html.

Eich, Janet M. (1982). “A composite holographic associative recall model.” In:
Psychological Review 89.6, pp. 627–661. issn: 0033-295X. doi: 10.1037/
0033-295X.89.6.627. url: http://content.apa.org/journals/rev/
89/6/627.

Eppel, Sagi (2017). “Hierarchical semantic segmentation using modular convo-
lutional neural networks”. In: arXiv: 1710.05126. url: https://arxiv.
org/abs/1710.05126v1.

Eyben, Florian, Felix Weninger, Stefano Squartini, and Bjorn Schuller (2013).
“Real-life voice activity detection with LSTM Recurrent Neural Networks
and an application to Hollywood movies”. In: ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 483–
487. isbn: 9781479903566. doi: 10.1109/ICASSP.2013.6637694.

Fan, Wenqi, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin
(2019). Graph Neural Networks for Social Recommendation. arXiv: 1902.
07243 [cs.IR].

Fernando, Chrisantha, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha,
Andrei A. Rusu, Alexander Pritzel, and Daan Wierstra (2017). “PathNet:
Evolution Channels Gradient Descent in Super Neural Networks”. In: arXiv:
1701.08734. url: http://arxiv.org/abs/1701.08734.

Ferreira, Martha Dais, Débora Cristina Corrêa, Luis Gustavo Nonato, and Ro-
drigo Fernandes de Mello (2018). “Designing architectures of convolutional
neural networks to solve practical problems”. In: Expert Systems with Ap-
plications 94, pp. 205–217. issn: 0957-4174. doi: 10.1016/J.ESWA.2017.
10.052. url: https://www.sciencedirect.com/science/article/pii/
S0957417417307340.

Franco, Leonardo and Sergio Alejandro Cannas (2001). “Generalization prop-
erties of modular networks: Implementing the parity function”. In: IEEE
Transactions on Neural Networks 12.6, pp. 1306–1313. issn: 10459227. doi:
10.1109/72.963767.

Freddolino, Peter L, Feng Liu, Martin Gruebele, and Klaus Schulten (2008).
“Ten-microsecond molecular dynamics simulation of a fast-folding WW do-
main.” In: Biophysical journal 94.10, pp. L75–7. issn: 1542-0086. doi: 10.
1529/biophysj.108.131565. url: http://www.ncbi.nlm.nih.gov/

140

https://doi.org/10.1016/j.cub.2007.04.024
http://www.ncbi.nlm.nih.gov/pubmed/17610826
http://www.ncbi.nlm.nih.gov/pubmed/17610826
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1037/0033-295X.89.6.627
https://doi.org/10.1037/0033-295X.89.6.627
http://content.apa.org/journals/rev/89/6/627
http://content.apa.org/journals/rev/89/6/627
https://arxiv.org/abs/1710.05126
https://arxiv.org/abs/1710.05126v1
https://arxiv.org/abs/1710.05126v1
https://doi.org/10.1109/ICASSP.2013.6637694
https://arxiv.org/abs/1902.07243
https://arxiv.org/abs/1902.07243
https://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1701.08734
https://doi.org/10.1016/J.ESWA.2017.10.052
https://doi.org/10.1016/J.ESWA.2017.10.052
https://www.sciencedirect.com/science/article/pii/S0957417417307340
https://www.sciencedirect.com/science/article/pii/S0957417417307340
https://doi.org/10.1109/72.963767
https://doi.org/10.1529/biophysj.108.131565
https://doi.org/10.1529/biophysj.108.131565
http://www.ncbi.nlm.nih.gov/pubmed/18339748 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2367204
http://www.ncbi.nlm.nih.gov/pubmed/18339748 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2367204

References

pubmed/18339748http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=PMC2367204.

Fritsch, J urgen (1996). “Modular Neural Networks for Speech Recognition”. In:
Fu, Hsin Chia, Yen Po Lee, Cheng Chin Chiang, and Hsiao Tien Pao (2001).

“Divide-and-conquer learning and modular perceptron networks”. In: IEEE
Transactions on Neural Networks 12.2, pp. 250–263. issn: 10459227. doi:
10.1109/72.914522.

Fukushima, Kunihiko and Sei Miyake (1980). “Neocognitron: Self-organizing
network capable of position-invariant recognition of patterns”. In: Proc. 5th
Int. Conf. Pattern Recognition. Vol. 1, pp. 459–461.

Ganin, Yaroslav, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky (2015). “Domain-
Adversarial Training of Neural Networks”. In: arXiv: 1505 . 07818. url:
https://arxiv.org/abs/1505.07818.

Gao, Ji, Beilun Wang, Zeming Lin, Weilin Xu, and Yanjun Qi (2017). “Deep-
Cloak: Masking Deep Neural Network Models for Robustness Against Ad-
versarial Samples”. In: arXiv: 1702.06763. url: http://arxiv.org/abs/
1702.06763.

Garcia-Pedrajas, N., C. Hervas-Martinez, and J. Munoz-Perez (2003). “COV-
NET: a cooperative coevolutionary model for evolving artificial neural net-
works”. In: IEEE Transactions on Neural Networks 14.3, pp. 575–596. issn:
1045-9227. doi: 10.1109/TNN.2003.810618.

Gasse, Maxime, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea
Lodi (2019). Exact Combinatorial Optimization with Graph Convolutional
Neural Networks. arXiv: 1906.01629 [cs.LG].

Ghafoorian, Mohsen, Nico Karssemeijer, Tom Heskes, Inge W. M. van Uden,
Clara I. Sanchez, Geert Litjens, Frank-Erik de Leeuw, Bram van Ginneken,
Elena Marchiori, and Bram Platel (2017). “Location Sensitive Deep Con-
volutional Neural Networks for Segmentation of White Matter Hyperinten-
sities”. In: Scientific Reports 7.1, p. 5110. issn: 2045-2322. doi: 10.1038/
s41598-017-05300-5. url: http://www.nature.com/articles/s41598-
017-05300-5.

Ghosh, Partha, Arpan Losalka, and Michael J Black (2018). “Resisting Adver-
sarial Attacks using Gaussian Mixture Variational Autoencoders”. In: arXiv:
1806.00081. url: http://arxiv.org/abs/1806.00081.

Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl (2017). “Neural Message Passing for Quantum Chemistry”.
In: arXiv: 1704.01212. url: http://arxiv.org/abs/1704.01212.

Gollisch, Tim and Markus Meister (2010). Eye Smarter than Scientists Believed:
Neural Computations in Circuits of the Retina. doi: 10.1016/j.neuron.
2009.12.009. arXiv: NIHMS150003.

Goltsev, Alexander and Vladimir Gritsenko (2015). “Modular neural networks
with radial neural columnar architecture”. In: Biologically Inspired Cognitive

141

http://www.ncbi.nlm.nih.gov/pubmed/18339748 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2367204
http://www.ncbi.nlm.nih.gov/pubmed/18339748 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2367204
http://www.ncbi.nlm.nih.gov/pubmed/18339748 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2367204
https://doi.org/10.1109/72.914522
https://arxiv.org/abs/1505.07818
https://arxiv.org/abs/1505.07818
https://arxiv.org/abs/1702.06763
http://arxiv.org/abs/1702.06763
http://arxiv.org/abs/1702.06763
https://doi.org/10.1109/TNN.2003.810618
https://arxiv.org/abs/1906.01629
https://doi.org/10.1038/s41598-017-05300-5
https://doi.org/10.1038/s41598-017-05300-5
http://www.nature.com/articles/s41598-017-05300-5
http://www.nature.com/articles/s41598-017-05300-5
https://arxiv.org/abs/1806.00081
http://arxiv.org/abs/1806.00081
https://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://doi.org/10.1016/j.neuron.2009.12.009
https://doi.org/10.1016/j.neuron.2009.12.009
https://arxiv.org/abs/NIHMS150003

References

Architectures 13, pp. 63–74. issn: 2212-683X. doi: 10.1016/J.BICA.2015.
06.001. url: https://www.sciencedirect.com/science/article/pii/
S2212683X15000286.

Gonzalez, Rafael C and Richard E Woods (2002). “Digital image processing
[M]”. In: Publishing house of electronics industry 141.7, pp. 184–186.

Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio (2016).
Deep learning. Vol. 1. 2. MIT press Cambridge.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). Gener-
ative Adversarial Nets. url: http : / / papers . nips . cc / paper / 5423 -
generative-adversarial-nets.

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy (2014). “Explaining
and Harnessing Adversarial Examples”. In: arXiv: 1412.6572. url: http:
//arxiv.org/abs/1412.6572.

Gradojevic, Nikola, Ramazan Gençay, and Dragan Kukolj (2009). “Option pric-
ing with modular neural networks.” In: IEEE transactions on neural net-
works / a publication of the IEEE Neural Networks Council 20.4, pp. 626–
637. issn: 1941-0093. doi: 10.1109/TNN.2008.2011130.

Guan, Sheng-Uei and Shanchun Li (2002). “Parallel growing and training of
neural networks using output parallelism”. In: IEEE transactions on Neural
Networks 13.3, pp. 542–550.

Guang-Bin Huang (2003). “Learning capability and storage capacity of two-
hidden-layer feedforward networks”. In: IEEE Transactions on Neural Net-
works 14.2, pp. 274–281. issn: 1045-9227. doi: 10.1109/TNN.2003.809401.

Guo, Guodong and Na Zhang (2019). “A survey on deep learning based face
recognition”. In: Computer Vision and Image Understanding 189, p. 102805.
issn: 1077-3142. doi: https://doi.org/10.1016/j.cviu.2019.102805.

Guo, Qiushan, Zhipeng Yu, Yichao Wu, Ding Liang, Haoyu Qin, and Jun-
jie Yan (2019). “Dynamic recursive neural network”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5147–
5156.

Ha, David, Andrew Dai, and Quoc V. Le (2016). “HyperNetworks”. In: arXiv:
1609.09106. url: http://arxiv.org/abs/1609.09106.

Han, Song, Huizi Mao, and William J Dally (2015). “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and huff-
man coding”. In: arXiv preprint arXiv:1510.00149.

Hao, Zhongkai, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi
Liu, Enhong Chen, and Cheekong Lee (2020). “ASGN: An Active Semi-
supervised Graph Neural Network for Molecular Property Prediction”. In:
Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. doi: 10.1145/3394486.3403117. url:
http://dx.doi.org/10.1145/3394486.3403117.

142

https://doi.org/10.1016/J.BICA.2015.06.001
https://doi.org/10.1016/J.BICA.2015.06.001
https://www.sciencedirect.com/science/article/pii/S2212683X15000286
https://www.sciencedirect.com/science/article/pii/S2212683X15000286
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets
https://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/TNN.2008.2011130
https://doi.org/10.1109/TNN.2003.809401
https://doi.org/https://doi.org/10.1016/j.cviu.2019.102805
https://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
https://doi.org/10.1145/3394486.3403117
http://dx.doi.org/10.1145/3394486.3403117

References

Happel, Bart L M and Jacob M J Murre (1994). “Design and evolution of
modular neural network architectures”. In: Neural Networks 7.6-7, pp. 985–
1004. issn: 08936080. doi: 10.1016/S0893-6080(05)80155-8.

Hassabis, Demis, Dharshan Kumaran, Christopher Summerfield, and Matthew
Botvinick (2017). “Neuroscience-inspired artificial intelligence”. In: Neuron
95.2, pp. 245–258.

Haykin, Simon (1994). Neural networks: a comprehensive foundation. Prentice
Hall PTR.

He, Congqing, Li Peng, Yuquan Le, and Jiawei He (2018). “SECaps: A Sequence
Enhanced Capsule Model for Charge Prediction”. In: arXiv: 1810.04465.
url: http://arxiv.org/abs/1810.04465.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Deep Resid-
ual Learning for Image Recognition”. In: arXiv: 1512.03385. url: http:
//arxiv.org/abs/1512.03385.

— (2016). “Deep residual learning for image recognition”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 770–778.

Hermann, Karl Moritz, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt,
Will Kay, Mustafa Suleyman, and Phil Blunsom (2015). “Teaching Machines
to Read and Comprehend”. In: arXiv: 1506.03340. url: http://arxiv.
org/abs/1506.03340.

Hidalgo, Denisse, Oscar Castillo, and Patricia Melin (2009). “Type-1 and type-2
fuzzy inference systems as integration methods in modular neural networks
for multimodal biometry and its optimization with genetic algorithms”. In:
Information Sciences 179.13, pp. 2123–2145.

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean (2015). “Distilling the Knowledge
in a Neural Network”. In: arXiv: 1503.02531. url: http://arxiv.org/
abs/1503.02531.

Hinton, Geoffrey E, Sara Sabour, and Nicholas Frosst (2018). “Matrix capsules
with {EM} routing”. In: International Conference on Learning Representa-
tions. url: https://openreview.net/forum?id=HJWLfGWRb.

Hochreiter, Sepp and J Urgen Schmidhuber (1997). “LONG SHORT-TERM
MEMORY”. In: Neural Computation 9.8, pp. 1735–1780. issn: 0899-7667.
doi: 10.1162/neco.1997.9.8.1735. arXiv: 1206.2944.

Hong, Chaoqun, Jun Yu, Jian Wan, Dacheng Tao, and Meng Wang (2015).
“Multimodal Deep Autoencoder for Human Pose Recovery”. In: IEEE Trans-
actions on Image Processing 24.12, pp. 5659–5670. issn: 10577149. doi:
10.1109/TIP.2015.2487860.

Hong, Chaoqun, Jun Yu, Jian Zhang, Xiongnan Jin, and Kyong Ho Lee (2019).
“Multimodal Face-Pose Estimation With Multitask Manifold Deep Learn-
ing”. In: IEEE Transactions on Industrial Informatics 15.7, pp. 3952–3961.
issn: 15513203. doi: 10.1109/TII.2018.2884211. arXiv: 1712.06467.

143

https://doi.org/10.1016/S0893-6080(05)80155-8
https://arxiv.org/abs/1810.04465
http://arxiv.org/abs/1810.04465
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340
https://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=HJWLfGWRb
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1206.2944
https://doi.org/10.1109/TIP.2015.2487860
https://doi.org/10.1109/TII.2018.2884211
https://arxiv.org/abs/1712.06467

References

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1990). “Universal
approximation of an unknown mapping and its derivatives using multi-
layer feedforward networks”. In: Neural Networks 3.5, pp. 551–560. issn:
0893-6080. doi: 10.1016/0893-6080(90)90005-6. url: https://www.
sciencedirect.com/science/article/pii/0893608090900056.

Hosseini, Hossein, Yize Chen, Sreeram Kannan, Baosen Zhang, and Radha
Poovendran (2017). “Blocking Transferability of Adversarial Examples in
Black-Box Learning Systems”. In: arXiv: 1703 . 04318. url: https : / /
arxiv.org/abs/1703.04318.

Howard, Andrew G, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam (2017). “Mo-
bilenets: Efficient convolutional neural networks for mobile vision applica-
tions”. In: arXiv preprint arXiv:1704.04861.

Hu, Ronghang, Marcus Rohrbach, Jacob Andreas, Trevor Darrell, and Kate
Saenko (2016). “Modeling Relationships in Referential Expressions with
Compositional Modular Networks”. In: arXiv: 1611.09978.

Huang, Gao, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger
(2016a). “Densely Connected Convolutional Networks”. In: arXiv: 1608 .
06993. url: http://arxiv.org/abs/1608.06993.

Huang, Gao, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger
(2016b). “Deep networks with stochastic depth”. In: European Conference
on Computer Vision. Springer, pp. 646–661.

Hubel, DH and TN Wiesel (1968). “Receptive fields and functional architecture
of monkey striate cortex”. In: The Journal of physiology. url: http://
onlinelibrary.wiley.com/doi/10.1113/jphysiol.1968.sp008455/
abstract?rss=1.

Huizinga, Joost, Jean-Baptiste Mouret, and Jeff Clune (2014). “Evolving Neural
Networks That Are Both Modular and Regular: HyperNeat Plus the Con-
nection Cost Technique”. In: Gecco, pp. 697–704. doi: 10.1145/2576768.
2598232.

Hüllermeier, Eyke, Thomas Fober, and Marco Mernberger (2013). “Inductive
Bias”. In: Encyclopedia of Systems Biology. Ed. by Werner Dubitzky, Olaf
Wolkenhauer, Kwang-Hyun Cho, and Hiroki Yokota. New York, NY: Springer
New York, p. 1018. isbn: 978-1-4419-9863-7. doi: 10.1007/978-1-4419-
9863-7_927. url: https://doi.org/10.1007/978-1-4419-9863-7_927.

Husic, Brooke E., Nicholas E. Charron, Dominik Lemm, Jiang Wang, Adrià
Pérez, Maciej Majewski, Andreas Krämer, Yaoyi Chen, Simon Olsson, Gi-
anni de Fabritiis, Frank Noé, and Cecilia Clementi (2020). Coarse Grain-
ing Molecular Dynamics with Graph Neural Networks. arXiv: 2007.11412
[physics.comp-ph].

Hüsken, Michael, Christian Igel, and Marc Toussaint (2002). “Task-dependent
evolution of modularity in neural networks”. In: Connection Science 14.3,
pp. 219–229.

144

https://doi.org/10.1016/0893-6080(90)90005-6
https://www.sciencedirect.com/science/article/pii/0893608090900056
https://www.sciencedirect.com/science/article/pii/0893608090900056
https://arxiv.org/abs/1703.04318
https://arxiv.org/abs/1703.04318
https://arxiv.org/abs/1703.04318
https://arxiv.org/abs/1611.09978
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1968.sp008455/abstract?rss=1
http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1968.sp008455/abstract?rss=1
http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1968.sp008455/abstract?rss=1
https://doi.org/10.1145/2576768.2598232
https://doi.org/10.1145/2576768.2598232
https://doi.org/10.1007/978-1-4419-9863-7_927
https://doi.org/10.1007/978-1-4419-9863-7_927
https://doi.org/10.1007/978-1-4419-9863-7_927
https://arxiv.org/abs/2007.11412
https://arxiv.org/abs/2007.11412

References

Iandola, Forrest N, Song Han, Matthew W Moskewicz, Khalid Ashraf, William
J Dally, and Kurt Keutzer (2016). “SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and< 0.5 MB model size”. In: arXiv:1602.07360.

Ioffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In: arXiv:
1502.03167. url: http://arxiv.org/abs/1502.03167.

Isele, David and Akansel Cosgun (2018). Selective Experience Replay for Life-
long Learning. arXiv: 1802.10269 [cs.AI].

Jacobs, Robert A., Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton
(1991). “Adaptive Mixtures of Local Experts”. In: Neural Computation 3.1,
pp. 79–87. issn: 0899-7667. doi: 10.1162/neco.1991.3.1.79. url: http:
//www.mitpressjournals.org/doi/10.1162/neco.1991.3.1.79.

Jaderberg, Max, Andrea Vedaldi, and Andrew Zisserman (2014). “Speeding up
convolutional neural networks with low rank expansions”. In: arXiv preprint
arXiv:1405.3866.

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello (2015). “Robust Con-
volutional Neural Networks under Adversarial Noise”. In: arXiv: 1511 .
06306. url: http://arxiv.org/abs/1511.06306.

Jing, Yongcheng, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli
Song (2018). Neural Style Transfer: A Review. arXiv: 1705.04058 [cs.CV].

Kacprzyk, Janusz and Witold Pedrycz (2015). Springer handbook of computa-
tional intelligence. Springer.

Kaiser, Marcus and Claus C Hilgetag (2010). “Optimal hierarchical modular
topologies for producing limited sustained activation of neural networks”.
In: Frontiers in neuroinformatics 4.

Karami, Mojtaba, Reza Safabakhsh, and Mohammad Rahmati (2013). “Modu-
lar cellular neural network structure for wave-computing-based image pro-
cessing”. In: ETRI Journal 35.2, pp. 207–217. issn: 12256463. doi: 10.4218/
etrij.13.0112.0107.

Kashtan, Nadav and Uri Alon (2005). “Spontaneous evolution of modularity
and network motifs.” In: Proceedings of the National Academy of Sciences
of the United States of America 102.39, pp. 13773–8. issn: 0027-8424. doi:
10.1073/pnas.0503610102.

Kastellakis, George, Denise J. Cai, Sara C. Mednick, Alcino J. Silva, and Panayiota
Poirazi (2015). Synaptic clustering within dendrites: An emerging theory of
memory formation. doi: 10.1016/j.pneurobio.2014.12.002. arXiv:
15334406.

Kien Tuong Phan, Tomas Henrique Maul, and Tuong Thuy Vu (2015). “A
parallel circuit approach for improving the speed and generalization prop-
erties of neural networks”. In: 2015 11th International Conference on Nat-
ural Computation (ICNC). IEEE, pp. 1–7. isbn: 978-1-4673-7679-2. doi:
10.1109/ICNC.2015.7377956.

145

https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1802.10269
https://doi.org/10.1162/neco.1991.3.1.79
http://www.mitpressjournals.org/doi/10.1162/neco.1991.3.1.79
http://www.mitpressjournals.org/doi/10.1162/neco.1991.3.1.79
https://arxiv.org/abs/1511.06306
https://arxiv.org/abs/1511.06306
http://arxiv.org/abs/1511.06306
https://arxiv.org/abs/1705.04058
https://doi.org/10.4218/etrij.13.0112.0107
https://doi.org/10.4218/etrij.13.0112.0107
https://doi.org/10.1073/pnas.0503610102
https://doi.org/10.1016/j.pneurobio.2014.12.002
https://arxiv.org/abs/15334406
https://doi.org/10.1109/ICNC.2015.7377956

References

Kim, Taeksoo, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim
(2017). “Learning to Discover Cross-Domain Relations with Generative Ad-
versarial Networks”. In: arXiv: 1703.05192.

Kingma, Diederik P. and Jimmy Ba (2017). Adam: A Method for Stochastic
Optimization. arXiv: 1412.6980 [cs.LG].

Kirk, David B and W Hwu Wen-Mei (2016). Programming massively parallel
processors: a hands-on approach. Morgan kaufmann.

Kirkpatrick, James, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan
Kumaran, and Raia Hadsell (2016). “Overcoming catastrophic forgetting in
neural networks”. In: arXiv preprint. issn: 0027-8424. doi: 10.1073/PNAS.
1611835114. arXiv: 1612.00796.

Kormushev, Petar, Sylvain Calinon, and Darwin G Caldwell (2013). “Reinforce-
ment Learning in Robotics: Applications and Real-World Challenges”. In:
Robotics 2.3, pp. 122–148. issn: 2218-6581. doi: 10.3390/robotics2030122.
url: https://www.mdpi.com/2218-6581/2/3/122.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). ImageNet
Classification with Deep Convolutional Neural Networks. url: https://
papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.

Kruschke, John K. (1991). “ALCOVE: A Connectionist Model of Human Cat-
egory Learning”. In: Advances in Neural Information Processing Systems
3. Ed. by R. P. Lippmann, J. E. Moody, and D. S. Touretzky. Morgan-
Kaufmann, pp. 649–655. url: http : / / papers . nips . cc / paper / 416 -
alcove-a-connectionist-model-of-human-category-learning.pdf.

Kukačka, Jan, Vladimir Golkov, and Daniel Cremers (2017). Regularization for
Deep Learning: A Taxonomy. arXiv: 1710.10686 [cs.LG].

Kumaran, Dharshan, Demis Hassabis, and James L. McClelland (2016). “What
Learning Systems do Intelligent Agents Need? Complementary Learning
Systems Theory Updated”. In: Trends in Cognitive Sciences 20.7, pp. 512–
534. issn: 13646613. doi: 10.1016/j.tics.2016.05.004. url: http:
/ / www . ncbi . nlm . nih . gov / pubmed / 27315762https : / / linkinghub .
elsevier.com/retrieve/pii/S1364661316300432.

Kyriakides, George and Konstantinos Margaritis (2020). “An Introduction to
Neural Architecture Search for Convolutional Networks”. In: arXiv preprint
arXiv:2005.11074.

Lamb, Alex, Jonathan Binas, Anirudh Goyal, Dmitriy Serdyuk, Sandeep Subra-
manian, Ioannis Mitliagkas, and Yoshua Bengio (2018). “Fortified Networks:
Improving the Robustness of Deep Networks by Modeling the Manifold of
Hidden Representations”. In: arXiv: 1804.02485. url: http://arxiv.org/
abs/1804.02485.

146

https://arxiv.org/abs/1703.05192
https://arxiv.org/abs/1412.6980
https://doi.org/10.1073/PNAS.1611835114
https://doi.org/10.1073/PNAS.1611835114
https://arxiv.org/abs/1612.00796
https://doi.org/10.3390/robotics2030122
https://www.mdpi.com/2218-6581/2/3/122
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/416-alcove-a-connectionist-model-of-human-category-learning.pdf
http://papers.nips.cc/paper/416-alcove-a-connectionist-model-of-human-category-learning.pdf
https://arxiv.org/abs/1710.10686
https://doi.org/10.1016/j.tics.2016.05.004
http://www.ncbi.nlm.nih.gov/pubmed/27315762 https://linkinghub.elsevier.com/retrieve/pii/S1364661316300432
http://www.ncbi.nlm.nih.gov/pubmed/27315762 https://linkinghub.elsevier.com/retrieve/pii/S1364661316300432
http://www.ncbi.nlm.nih.gov/pubmed/27315762 https://linkinghub.elsevier.com/retrieve/pii/S1364661316300432
https://arxiv.org/abs/1804.02485
http://arxiv.org/abs/1804.02485
http://arxiv.org/abs/1804.02485

References

Larsson, Gustav, Michael Maire, and Gregory Shakhnarovich (2016). “Frac-
talNet: Ultra-Deep Neural Networks without Residuals”. In: arXiv: 1605.
07648. url: http://arxiv.org/abs/1605.07648.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel (1989). “Backpropagation Applied to Handwritten
Zip Code Recognition”. In: Neural Computation 1.4, pp. 541–551. issn:
0899-7667. doi: 10 . 1162 / neco . 1989 . 1 . 4 . 541. url: http : / / www .
mitpressjournals.org/doi/10.1162/neco.1989.1.4.541.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based learn-
ing applied to document recognition”. In: Proceedings of the IEEE 86.11,
pp. 2278–2324. issn: 00189219. doi: 10.1109/5.726791. url: http://
ieeexplore.ieee.org/document/726791/.

LeCun, Yann and Yoshua Bengio (1995). “Convolutional networks for images,
speech, and time series”. In: The handbook of brain theory and neural net-
works 3361.10, p. 1995.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In:
nature 521.7553, p. 436.

LeCun, Yann, Fu Jie Huang, and Léon Bottou (2004). “Learning methods for
generic object recognition with invariance to pose and lighting”. In: Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. Vol. 2. doi: 10.1109/cvpr.2004.1315150.

Li, Junying, Deng Cai, and Xiaofei He (2017). Learning Graph-Level Represen-
tation for Drug Discovery. arXiv: 1709.03741 [cs.LG].

Lin, Min, Qiang Chen, and Shuicheng Yan (2013). “Network In Network”. In:
arXiv preprint, p. 10. issn: 03029743. doi: 10.1109/ASRU.2015.7404828.
arXiv: 1312.4400.

Liu, Hanxiao, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu (2017). “Hierarchical Representations for Efficient Architec-
ture Search”. In: arXiv: 1711.00436. url: http://arxiv.org/abs/1711.
00436.

Liu, Hanxiao, Karen Simonyan, and Yiming Yang (2018). “Darts: Differentiable
architecture search”. In: arXiv preprint arXiv:1806.09055.

Lodato, Simona and Paola Arlotta (2015). “Generating Neuronal Diversity in
the Mammalian Cerebral Cortex”. In: Annual Review of Cell and Develop-
mental Biology 31.1, pp. 699–720. issn: 1081-0706. doi: 10.1146/annurev-
cellbio-100814-125353. arXiv: 15334406.

López-Muñoz, Francisco, Jesús Boya, and Cecilio Alamo (2006). “Neuron the-
ory, the cornerstone of neuroscience, on the centenary of the Nobel Prize
award to Santiago Ramón y Cajal”. In: Brain Research Bulletin 70.4-6,
pp. 391–405. issn: 03619230. doi: 10.1016/j.brainresbull.2006.07.010.

Lu, Sidi, Yaoming Zhu, Weinan Zhang, Jun Wang, and Yong Yu (2018). Neural
Text Generation: Past, Present and Beyond. arXiv: 1803.07133 [cs.CL].

147

https://arxiv.org/abs/1605.07648
https://arxiv.org/abs/1605.07648
http://arxiv.org/abs/1605.07648
https://doi.org/10.1162/neco.1989.1.4.541
http://www.mitpressjournals.org/doi/10.1162/neco.1989.1.4.541
http://www.mitpressjournals.org/doi/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
http://ieeexplore.ieee.org/document/726791/
http://ieeexplore.ieee.org/document/726791/
https://doi.org/10.1109/cvpr.2004.1315150
https://arxiv.org/abs/1709.03741
https://doi.org/10.1109/ASRU.2015.7404828
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1711.00436
http://arxiv.org/abs/1711.00436
http://arxiv.org/abs/1711.00436
https://doi.org/10.1146/annurev-cellbio-100814-125353
https://doi.org/10.1146/annurev-cellbio-100814-125353
https://arxiv.org/abs/15334406
https://doi.org/10.1016/j.brainresbull.2006.07.010
https://arxiv.org/abs/1803.07133

References

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning (2015). Effective
Approaches to Attention-based Neural Machine Translation. arXiv: 1508.
04025 [cs.CL].

Lyu, Chunchuan, Kaizhu Huang, and Hai-Ning Liang (2015). “A Unified Gradi-
ent Regularization Family for Adversarial Examples”. In: 2015 IEEE Inter-
national Conference on Data Mining. IEEE, pp. 301–309. isbn: 978-1-4673-
9504-5. doi: 10.1109/ICDM.2015.84. url: http://ieeexplore.ieee.
org/document/7373334/.

McClelland, James L., Bruce L. McNaughton, and Randall C. O’Reilly (1995).
“Why there are complementary learning systems in the hippocampus and
neocortex: Insights from the successes and failures of connectionist models
of learning and memory.” In: Psychological Review 102.3, pp. 419–457. issn:
1939-1471. doi: 10.1037/0033-295X.102.3.419. url: http://www.ncbi.
nlm.nih.gov/pubmed/7624455http://doi.apa.org/getdoi.cfm?doi=
10.1037/0033-295X.102.3.419.

Mehrer, Johannes, Courtney J. Spoerer, Nikolaus Kriegeskorte, and Tim C. Ki-
etzmann (2020). “Individual differences among deep neural network models”.
In: bioRxiv 3.1, p. 2020.01.08.898288. doi: 10.1101/2020.01.08.898288.

Mehta, Sachin, Mohammad Rastegari, Linda Shapiro, and Hannaneh Hajishirzi
(2019). “Espnetv2: A light-weight, power efficient, and general purpose con-
volutional neural network”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9190–9200.

Melin, Patricia, Alejandra Mancilla, Miguel Lopez, and Olivia Mendoza (2007).
“A hybrid modular neural network architecture with fuzzy Sugeno integra-
tion for time series forecasting”. In: Applied Soft Computing 7.4, pp. 1217–
1226.

Melin, Patricia, Olivia Mendoza, and Oscar Castillo (2011). “Face recognition
with an improved interval type-2 fuzzy logic sugeno integral and modular
neural networks”. In: IEEE Transactions on systems, man, and cybernetics-
Part A: systems and humans 41.5, pp. 1001–1012.

Mendoza, Olivia, Patricia Melín, and Oscar Castillo (2009b). “Interval type-2
fuzzy logic and modular neural networks for face recognition applications”.
In: Applied Soft Computing 9.4, pp. 1377–1387. issn: 15684946. doi: 10.
1016/j.asoc.2009.06.007.

Mendoza, Olivia, Patricia Melin, and Guillermo Licea (2009a). “A hybrid ap-
proach for image recognition combining type-2 fuzzy logic, modular neu-
ral networks and the Sugeno integral”. In: Information Sciences 179.13,
pp. 2078–2101. issn: 00200255. doi: 10.1016/j.ins.2008.11.018.

Meunier, David, Renaud Lambiotte, and Edward T. Bullmore (2010). Modular
and hierarchically modular organization of brain networks. doi: 10.3389/
fnins.2010.00200.

Miikkulainen, Risto (2010). “Topology of a Neural Network”. In: Encyclopedia
of Machine Learning. Ed. by Claude Sammut and Geoffrey I Webb. Boston,

148

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://doi.org/10.1109/ICDM.2015.84
http://ieeexplore.ieee.org/document/7373334/
http://ieeexplore.ieee.org/document/7373334/
https://doi.org/10.1037/0033-295X.102.3.419
http://www.ncbi.nlm.nih.gov/pubmed/7624455 http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.102.3.419
http://www.ncbi.nlm.nih.gov/pubmed/7624455 http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.102.3.419
http://www.ncbi.nlm.nih.gov/pubmed/7624455 http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.102.3.419
https://doi.org/10.1101/2020.01.08.898288
https://doi.org/10.1016/j.asoc.2009.06.007
https://doi.org/10.1016/j.asoc.2009.06.007
https://doi.org/10.1016/j.ins.2008.11.018
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.3389/fnins.2010.00200

References

MA: Springer US, pp. 988–989. isbn: 978-0-387-30164-8. doi: 10.1007/978-
0- 387- 30164- 8_837. url: https://doi.org/10.1007/978- 0- 387-
30164-8_837.

Miikkulainen, Risto, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink,
Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel
Duffy, and Babak Hodjat (2017). “Evolving Deep Neural Networks”. In:
arXiv: 1703.00548.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). Efficient
Estimation of Word Representations in Vector Space. arXiv: 1301 . 3781
[cs.CL].

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, and Georg Ostrovski (2015). “Human-level control through deep rein-
forcement learning”. In: nature 518.7540, pp. 529–533.

Montufar, Guido F., Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio
(2014). On the Number of Linear Regions of Deep Neural Networks. url:
http://papers.nips.cc/paper/5422- on- the- number- of- linear-
regions-of-deep-neural-networks.

Mountcastle, Vernon B. (1997). The columnar organization of the neocortex.
doi: 10.1093/brain/120.4.701.

Mouret, Jean-Baptiste and Stéphane Doncieux (2008). “MENNAG: a modular,
regular and hierarchical encoding for neural-networks based on attribute
grammars”. In: Evolutionary Intelligence 1.3, pp. 187–207. issn: 1864-5909.
doi: 10.1007/s12065-008-0015-7.

— (2009). “Evolving modular neural-networks through exaptation”. In: 2009
IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1570–1577.
isbn: 9781424429592. doi: 10.1109/CEC.2009.4983129.

Murdock, Bennet B (1983). A Distributed Memory Model for Serial-Order In-
formation. Tech. rep. 4, pp. 316–338.

Nardi, R. de, J. Togelius, O.E. Holland, and S.M. Lucas (2006). “Evolution
of Neural Networks for Helicopter Control: Why Modularity Matters”. In:
2006 IEEE International Conference on Evolutionary Computation. IEEE,
pp. 1799–1806. isbn: 0-7803-9487-9. doi: 10.1109/CEC.2006.1688525.

Neill, James O’ (2018). “Siamese Capsule Networks”. In: arXiv: 1805.07242.
url: http://arxiv.org/abs/1805.07242.

Newatia, S. and R. K. Aggarwal (2018). “Convolutional Neural Network for
ASR”. In: 2018 Second International Conference on Electronics, Commu-
nication and Aerospace Technology (ICECA), pp. 638–642. doi: 10.1109/
ICECA.2018.8474688.

Newman, M E J (2004). “Detecting community structure in networks”. In: Eur.
Phys. J. B 38, pp. 321–330. doi: 10.1140/epjb/e2004-00124-y.

Newman, M E J (2006). “Modularity and community structure in networks.”
In: Proceedings of the National Academy of Sciences of the United States

149

https://doi.org/10.1007/978-0-387-30164-8_837
https://doi.org/10.1007/978-0-387-30164-8_837
https://doi.org/10.1007/978-0-387-30164-8_837
https://doi.org/10.1007/978-0-387-30164-8_837
https://arxiv.org/abs/1703.00548
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks
https://doi.org/10.1093/brain/120.4.701
https://doi.org/10.1007/s12065-008-0015-7
https://doi.org/10.1109/CEC.2009.4983129
https://doi.org/10.1109/CEC.2006.1688525
https://arxiv.org/abs/1805.07242
http://arxiv.org/abs/1805.07242
https://doi.org/10.1109/ICECA.2018.8474688
https://doi.org/10.1109/ICECA.2018.8474688
https://doi.org/10.1140/epjb/e2004-00124-y

References

of America 103.23, pp. 8577–82. issn: 0027-8424. doi: 10 . 1073 / pnas .
0601602103.

Newman, M. E. J. (2016). “Community detection in networks: Modularity op-
timization and maximum likelihood are equivalent”. In: Arvix 1, pp. 1–8.
issn: 2470-0045. doi: 10.1103/PhysRevE.94.052315. arXiv: 1606.02319.

Nugraha, B. T., S. Su, and Fahmizal (2017). “Towards self-driving car using
convolutional neural network and road lane detector”. In: 2017 2nd Interna-
tional Conference on Automation, Cognitive Science, Optics, Micro Electro-
Mechanical System, and Information Technology (ICACOMIT), pp. 65–69.
doi: 10.1109/ICACOMIT.2017.8253388.

Oh, Il-Seok and Ching Y. Suen (2002). “A class-modular feedforward neural
network for handwriting recognition”. In: Pattern Recognition 35.1, pp. 229–
244. issn: 00313203. doi: 10.1016/S0031-3203(00)00181-3.

Omar, M Azhar, M Khair Hassan, Azura Che Soh, and MZA Ab Kadir (2013).
“Lightning severity classification utilizing the meteorological parameters:
A neural network approach”. In: 2013 IEEE International Conference on
Control System, Computing and Engineering. IEEE, pp. 111–116.

Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu
(2016). WaveNet: A Generative Model for Raw Audio. arXiv: 1609.03499
[cs.SD].

Ortín, S., J.M. Gutiérrez, L. Pesquera, and H. Vasquez (2005). “Nonlinear dy-
namics extraction for time-delay systems using modular neural networks
synchronization and prediction”. In: Physica A: Statistical Mechanics and
its Applications 351.1, pp. 133–141. issn: 03784371. doi: 10.1016/j.physa.
2004.12.015.

Otsuna, Hideo, Kazunori Shinomiya, and Kei Ito (2014). “Parallel neural path-
ways in higher visual centers of the Drosophila brain that mediate wavelength-
specific behavior.” In: Frontiers in neural circuits 8, p. 8. issn: 1662-5110.
doi: 10.3389/fncir.2014.00008. url: http://www.ncbi.nlm.nih.gov/
pubmed/24574974http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=PMC3918591.

Ou, Guobin and Yi Lu Murphey (2007). “Multi-class pattern classification using
neural networks”. In: Pattern Recognition 40.1, pp. 4–18. issn: 00313203.
doi: 10.1016/j.patcog.2006.04.041.

Padhy, Ram Prasad, Sachin Verma, Shahzad Ahmad, Suman Kumar Choud-
hury, and Pankaj Kumar Sa (2018). “Deep Neural Network for Autonomous
UAV Navigation in Indoor Corridor Environments”. In: Procedia Computer
Science 133, pp. 643–650. issn: 1877-0509. doi: https://doi.org/10.
1016/j.procs.2018.07.099. url: http://www.sciencedirect.com/
science/article/pii/S1877050918310524.

150

https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1103/PhysRevE.94.052315
https://arxiv.org/abs/1606.02319
https://doi.org/10.1109/ICACOMIT.2017.8253388
https://doi.org/10.1016/S0031-3203(00)00181-3
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://doi.org/10.1016/j.physa.2004.12.015
https://doi.org/10.1016/j.physa.2004.12.015
https://doi.org/10.3389/fncir.2014.00008
http://www.ncbi.nlm.nih.gov/pubmed/24574974 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3918591
http://www.ncbi.nlm.nih.gov/pubmed/24574974 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3918591
http://www.ncbi.nlm.nih.gov/pubmed/24574974 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3918591
https://doi.org/10.1016/j.patcog.2006.04.041
https://doi.org/https://doi.org/10.1016/j.procs.2018.07.099
https://doi.org/https://doi.org/10.1016/j.procs.2018.07.099
http://www.sciencedirect.com/science/article/pii/S1877050918310524
http://www.sciencedirect.com/science/article/pii/S1877050918310524

References

Pan, Pingbo, Zhongwen Xu, Yi Yang, Fei Wu, and Yueting Zhuang (2016). “Hi-
erarchical Recurrent Neural Encoder for Video Representation With Appli-
cation to Captioning”. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Papernot, Nicolas and Patrick McDaniel (2017). “Extending Defensive Distilla-
tion”. In: arXiv: 1705.05264. url: http://arxiv.org/abs/1705.05264.

Papernot, Nicolas, Patrick McDaniel, and Ian Goodfellow (2016). “Transfer-
ability in Machine Learning: from Phenomena to Black-Box Attacks using
Adversarial Samples”. In: arXiv: 1605.07277. url: http://arxiv.org/
abs/1605.07277.

Papernot, Nicolas, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami (2016). “Distillation as a Defense to Adversarial Perturbations Against
Deep Neural Networks”. In: 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, pp. 582–597. isbn: 978-1-5090-0824-7. doi: 10.1109/SP.2016.
41. url: http://ieeexplore.ieee.org/document/7546524/.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala (2019). “PyTorch: An Imperative
Style, High-Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A.
Beygelzimer, F. d' Alché-Buc, E. Fox, and R. Garnett. Curran Associates,
Inc., pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf.

Paul, Sandeep and Lotika Singh (2015). “A review on advances in deep learn-
ing”. In: 2015 IEEE Workshop on Computational Intelligence: Theories,
Applications and Future Directions (WCI). IEEE, pp. 1–6.

Phan, Kien Tuong, Tomas Henrique Maul, Tuong Thuy Vu, and Lai Weng Kin
(2016). “Improving Neural Network Generalization by Combining Parallel
Circuits with Dropout”. In: doi: 10.1007/978-3-319-46675-0_63. arXiv:
1612.04970. url: http://arxiv.org/abs/1612.04970http://dx.doi.
org/10.1007/978-3-319-46675-0{_}63.

Phan, Kien Tuong, Tomas Henrique Maul, Tuong Thuy Vu, and Weng Kin Lai
(2017). “DropCircuit: A Modular Regularizer for Parallel Circuit Networks”.
In: Neural Processing Letters, pp. 1–18.

— (2018). “DropCircuit : A Modular Regularizer for Parallel Circuit Networks”.
In: Neural Processing Letters 47.3, pp. 841–858. issn: 1370-4621. doi: 10.
1007/s11063-017-9677-4. url: http://link.springer.com/10.1007/
s11063-017-9677-4.

151

https://arxiv.org/abs/1705.05264
http://arxiv.org/abs/1705.05264
https://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
http://ieeexplore.ieee.org/document/7546524/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-3-319-46675-0_63
https://arxiv.org/abs/1612.04970
http://arxiv.org/abs/1612.04970 http://dx.doi.org/10.1007/978-3-319-46675-0{_}63
http://arxiv.org/abs/1612.04970 http://dx.doi.org/10.1007/978-3-319-46675-0{_}63
https://doi.org/10.1007/s11063-017-9677-4
https://doi.org/10.1007/s11063-017-9677-4
http://link.springer.com/10.1007/s11063-017-9677-4
http://link.springer.com/10.1007/s11063-017-9677-4

References

Phaye, Sai Samarth R, Apoorva Sikka, Abhinav Dhall, and Deepti Bathula
(2018). “Dense and Diverse Capsule Networks: Making the Capsules Learn
Better”. In: arXiv: 1805.04001. url: http://arxiv.org/abs/1805.04001.

Phyo Phyo San, Sai Ho Ling, and H. T. Nguyen (2011). “Block based neural net-
work for hypoglycemia detection”. In: 2011 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 5666–
5669. isbn: 978-1-4577-1589-1. doi: 10.1109/IEMBS.2011.6091371.

Polikar, Robi, Lalita Udpa, Vasant Honavar, Senior Member, and Satish S Udpa
(2001). Learn++: An Incremental Learning Algorithm for Supervised Neu-
ral Networks mHealth View project Analysis of RNA-protein interactions
View project Learn++: An Incremental Learning Algorithm for Supervised
Neural Networks. Tech. rep. 4. url: https://www.researchgate.net/
publication/2489080.

Pontes-Filho, Sidney and Marcus Liwicki (2018). “Bidirectional Learning for
Robust Neural Networks”. In: arXiv: 1805.08006. url: http://arxiv.
org/abs/1805.08006.

Purves, D, GJ Augustine, D Fitzpatrick, WC Hall, AS LaMantia, JO McNa-
mara, and SM Williams (2004). “Neuroscience. 3rd”. In: Massachusetts: Sin-
auer Associates Inc Publishers.

Radicchi, Filippo, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and
Domenico Parisi (2004). “Defining and identifying communities in networks”.
In: Proceedings of the National Academy of Sciences of the United States of
America 101.9, pp. 2658–2663.

Ranasinghe, Tharindu, Constantin Orasan, and Ruslan Mitkov (Sept. 2019).
“Semantic Textual Similarity with Siamese Neural Networks”. In: Proceed-
ings of the International Conference on Recent Advances in Natural Lan-
guage Processing (RANLP 2019). Varna, Bulgaria: INCOMA Ltd., pp. 1004–
1011. doi: 10.26615/978- 954- 452- 056- 4_116. url: https://www.
aclweb.org/anthology/R19-1116.

Reisinger, Joseph, Kenneth O Stanley, and Risto Miikkulainen (2004). “Evolv-
ing reusable neural modules”. In: Genetic and Evolutionary Computation
Conference. Springer, pp. 69–81.

Ronco, Eric and Peter Gawthrop (1995). “Modular neural networks: a state of
the art”. In: Rapport Technique CSC-95026, Center of System and Control,
University of Glasgow. http://www. mech. gla. ac. uk/control/report. html.

Ronen, M, Y Shabtai, and H Guterman (2002). “Hybrid model building method-
ology using unsupervised fuzzy clustering and supervised neural networks”.
In: Biotechnol Bioeng 77.4, pp. 420–429.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). U-Net: Convo-
lutional Networks for Biomedical Image Segmentation. arXiv: 1505.04597
[cs.CV].

152

https://arxiv.org/abs/1805.04001
http://arxiv.org/abs/1805.04001
https://doi.org/10.1109/IEMBS.2011.6091371
https://www.researchgate.net/publication/2489080
https://www.researchgate.net/publication/2489080
https://arxiv.org/abs/1805.08006
http://arxiv.org/abs/1805.08006
http://arxiv.org/abs/1805.08006
https://doi.org/10.26615/978-954-452-056-4_116
https://www.aclweb.org/anthology/R19-1116
https://www.aclweb.org/anthology/R19-1116
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597

References

Rosenbaum, Clemens, Ignacio Cases, Matthew Riemer, and Tim Klinger (2019).
Routing Networks and the Challenges of Modular and Compositional Com-
putation. arXiv: 1904.12774 [cs.LG].

Rosenbaum, Clemens, Tim Klinger, and Matthew Riemer (2017). Routing Net-
works: Adaptive Selection of Non-linear Functions for Multi-Task Learning.
arXiv: 1711.01239 [cs.LG].

Rudasi, L. and S.A. Zahorian (1991). “Text-independent talker identification
with neural networks”. In: [Proceedings] ICASSP 91: 1991 International
Conference on Acoustics, Speech, and Signal Processing. IEEE, 389–392
vol.1. isbn: 0-7803-0003-3. doi: 10.1109/ICASSP.1991.150358.

Ruder, Sebastian (2017). An overview of gradient descent optimization algo-
rithms. arXiv: 1609.04747 [cs.LG].

Sabour, Sara, Nicholas Frosst, and Geoffrey E Hinton (2017). “Dynamic Routing
Between Capsules”. In: arXiv: 1710.09829. url: http://arxiv.org/abs/
1710.09829.

Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen (2018). “Mobilenetv2: Inverted residuals and linear bottlenecks”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 4510–4520.

Sang-Woo Moon and Seong-Gon Kong (2001). “Block-based neural networks”.
In: IEEE Transactions on Neural Networks 12.2, pp. 307–317. issn: 10459227.
doi: 10.1109/72.914525.

Santoro, Adam, David Raposo, David G. T. Barrett, Mateusz Malinowski, Raz-
van Pascanu, Peter Battaglia, and Timothy Lillicrap (2017). “A simple neu-
ral network module for relational reasoning”. In: arXiv: 1706.01427. url:
http://arxiv.org/abs/1706.01427.

Saxena, Shreyas and Jakob Verbeek (2016). “Convolutional Neural Fabrics”. In:
Advances in Neural Information Processing Systems, pp. 4060–4068. arXiv:
1606.02492. url: http://arxiv.org/abs/1606.02492.

Schwarz, Adam J., Alessandro Gozzi, and Angelo Bifone (2008). “Community
structure and modularity in networks of correlated brain activity”. In: Mag-
netic Resonance Imaging 26.7, pp. 914–920. issn: 0730725X. doi: 10.1016/
j.mri.2008.01.048. arXiv: 0701041v2 [arXiv:q-bio.NC].

Seltzer, Michael L., Dong Yu, and Yongqiang Wang (2013). “An investiga-
tion of deep neural networks for noise robust speech recognition”. In: 2013
IEEE International Conference on Acoustics, Speech and Signal Process-
ing. IEEE, pp. 7398–7402. isbn: 978-1-4799-0356-6. doi: 10.1109/ICASSP.
2013.6639100. url: http://ieeexplore.ieee.org/document/6639100/.

Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra (2016). “Grad-CAM: Visual Ex-
planations from Deep Networks via Gradient-based Localization”. In: arXiv:
1610.02391. url: http://arxiv.org/abs/1610.02391.

153

https://arxiv.org/abs/1904.12774
https://arxiv.org/abs/1711.01239
https://doi.org/10.1109/ICASSP.1991.150358
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1710.09829
https://doi.org/10.1109/72.914525
https://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1706.01427
https://arxiv.org/abs/1606.02492
http://arxiv.org/abs/1606.02492
https://doi.org/10.1016/j.mri.2008.01.048
https://doi.org/10.1016/j.mri.2008.01.048
https://arxiv.org/abs/0701041v2
https://doi.org/10.1109/ICASSP.2013.6639100
https://doi.org/10.1109/ICASSP.2013.6639100
http://ieeexplore.ieee.org/document/6639100/
https://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391

References

Serban, Iulian V., Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and
Joelle Pineau (2016). “Building End-To-End Dialogue Systems Using Gen-
erative Hierarchical Neural Network Models”. In: Aaai, p. 8. issn: 10495258.
doi: 10.1017/CBO9781107415324.004. arXiv: 1507.04808.

Shaham, Uri, Yutaro Yamada, and Sahand Negahban (2015). “Understanding
Adversarial Training: Increasing Local Stability of Neural Nets through Ro-
bust Optimization”. In: doi: 10.1016/j.neucom.2018.04.027. arXiv:
1511.05432. url: http://arxiv.org/abs/1511.05432http://dx.doi.
org/10.1016/j.neucom.2018.04.027.

Sharkey, A J C (1996). “On Combining Artificial Neural Nets”. In: Connec-
tion Science 8.3-4, pp. 299–313. issn: 09540091 (ISSN). doi: 10 . 1080 /
095400996116785.

Shetty, Rakshith and Jorma Laaksonen (2015). “Video captioning with recur-
rent networks based on frame- and video-level features and visual content
classification”. In: arXiv: 1512.02949.

Shi, Qinfeng, James Petterson, Gideon Dror, John Langford, Alex Smola, and
SVN Vishwanathan (2009). “Hash kernels for structured data”. In: The Jour-
nal of Machine Learning Research 10, pp. 2615–2637.

Shin, Hanul, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim (2017). “Continual
learning with deep generative replay”. In: Advances in neural information
processing systems, pp. 2990–2999.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, and Marc Lanctot (2016). “Mastering the game of Go with deep
neural networks and tree search”. In: nature 529.7587, pp. 484–489.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, and
Thore Graepel (2017a). “Mastering chess and shogi by self-play with a gen-
eral reinforcement learning algorithm”. In: arXiv:1712.01815.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, and
Adrian Bolton (2017b). “Mastering the game of go without human knowl-
edge”. In: nature 550.7676, pp. 354–359.

Singh, Saurabh, Derek Hoiem, and David Forsyth (2016). “Swapout: Learn-
ing an ensemble of deep architectures”. In: Advances in Neural Information
Processing Systems, pp. 28–36.

Sinha, Ayan, Zhao Chen, Vijay Badrinarayanan, and Andrew Rabinovich (2018).
“Gradient Adversarial Training of Neural Networks”. In: arXiv: 1806.08028.
url: http://arxiv.org/abs/1806.08028.

Sohoni, Nimit Sharad, Christopher Richard Aberger, Megan Leszczynski, Jian
Zhang, and Christopher Ré (2019). “Low-memory neural network training:
A technical report”. In: arXiv preprint arXiv:1904.10631.

154

https://doi.org/10.1017/CBO9781107415324.004
https://arxiv.org/abs/1507.04808
https://doi.org/10.1016/j.neucom.2018.04.027
https://arxiv.org/abs/1511.05432
http://arxiv.org/abs/1511.05432 http://dx.doi.org/10.1016/j.neucom.2018.04.027
http://arxiv.org/abs/1511.05432 http://dx.doi.org/10.1016/j.neucom.2018.04.027
https://doi.org/10.1080/095400996116785
https://doi.org/10.1080/095400996116785
https://arxiv.org/abs/1512.02949
https://arxiv.org/abs/1806.08028
http://arxiv.org/abs/1806.08028

References

Song, Linfeng, Yue Zhang, Zhiguo Wang, and Daniel Gildea (2018). “A Graph-
to-Sequence Model for AMR-to-Text Generation”. In: arXiv: 1805.02473.
url: http://arxiv.org/abs/1805.02473.

Soutner, Daniel and Luděk Müller (2013). “Application of LSTM neural net-
works in language modelling”. In: International Conference on Text, Speech
and Dialogue. Springer, pp. 105–112.

Sporns, Olaf (2011). The human connectome: A complex network. doi: 10.
1111/j.1749-6632.2010.05888.x.

Sporns, Olaf and Jonathan D. Zwi (2004). “The Small World of the Cerebral
Cortex”. In: Neuroinformatics 2.2, pp. 145–162. issn: 1539-2791. doi: 10.
1385/NI:2:2:145.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov (2014). “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15, pp. 1929–
1958. issn: 15337928. doi: 10.1214/12-AOS1000. arXiv: 1102.4807.

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber (2015). “High-
way Networks”. In: arXiv:1505.00387 [cs]. arXiv: 1505.00387.

Srivastava, Rupesh Kumar, Jonathan Masci, Sohrob Kazerounian, Faustino
Gomez, and Jürgen Schmidhuber (2013). “Compete to Compute”. In: Nips,
pp. 2310–2318. issn: 10495258.

Stanley, Kenneth O., David B. D’Ambrosio, and Jason Gauci (2009). “A Hypercube-
Based Encoding for Evolving Large-Scale Neural Networks”. In: Artificial
Life 15.2, pp. 185–212. issn: 1064-5462. doi: 10.1162/artl.2009.15.2.
15202.

Stanley, Kenneth O. and Risto Miikkulainen (2002). “Evolving Neural Net-
works through Augmenting Topologies”. In: Evolutionary Computation 10.2,
pp. 99–127. issn: 1063-6560. doi: 10.1162/106365602320169811. arXiv:
1407.0576.

Stollenga, Marijn F, Wonmin Byeon, Marcus Liwicki, and Juergen Schmidhu-
ber (2015). “Parallel Multi-Dimensional LSTM, With Application to Fast
Biomedical Volumetric Image Segmentation”. In: Advances in Neural Infor-
mation Processing Systems 28. Ed. by C Cortes, N D Lawrence, D D Lee,
M Sugiyama, and R Garnett. Curran Associates, Inc., pp. 2998–3006.

Subirats, José L., José M. Jerez, Iván Gómez, and Leonardo Franco (2010).
“Multiclass Pattern Recognition Extension for the New C-Mantec Construc-
tive Neural Network Algorithm”. In: Cognitive Computation 2.4, pp. 285–
290. issn: 18669956. doi: 10.1007/s12559-010-9051-6.

Sun, Zhun, Mete Ozay, and Takayuki Okatani (2017). “HyperNetworks with
statistical filtering for defending adversarial examples”. In: arXiv: 1711 .
01791. url: http://arxiv.org/abs/1711.01791.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich
(2015a). “Going deeper with convolutions”. In: Proceedings of the IEEE

155

https://arxiv.org/abs/1805.02473
http://arxiv.org/abs/1805.02473
https://doi.org/10.1111/j.1749-6632.2010.05888.x
https://doi.org/10.1111/j.1749-6632.2010.05888.x
https://doi.org/10.1385/NI:2:2:145
https://doi.org/10.1385/NI:2:2:145
https://doi.org/10.1214/12-AOS1000
https://arxiv.org/abs/1102.4807
https://arxiv.org/abs/1505.00387
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/106365602320169811
https://arxiv.org/abs/1407.0576
https://doi.org/10.1007/s12559-010-9051-6
https://arxiv.org/abs/1711.01791
https://arxiv.org/abs/1711.01791
http://arxiv.org/abs/1711.01791

References

Computer Society Conference on Computer Vision and Pattern Recogni-
tion. Vol. 07-12-June, pp. 1–9. isbn: 9781467369640. doi: 10.1109/CVPR.
2015.7298594. arXiv: 1409.4842.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich
(2015b). “Going deeper with convolutions”. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recogni-
tion. Vol. 07-12-June, pp. 1–9. isbn: 9781467369640. doi: 10.1109/CVPR.
2015.7298594. arXiv: 1409.4842.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna (2016). “Rethinking the inception architecture for computer vision”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2818–2826.

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus (2013). “Intriguing properties of
neural networks”. In: arXiv: 1312.6199. url: https://arxiv.org/abs/
1312.6199.

Taigman, Yaniv, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf (2014).
DeepFace: Closing the Gap to Human-Level Performance in Face Verifi-
cation.

Takahashi, Naoya, Shota Inoue, and Yuki Mitsufuji (2021). “Adversarial at-
tacks on audio source separation”. In: ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, pp. 521–525.

Tan, Mingxing, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, An-
drew Howard, and Quoc V Le (2019). “Mnasnet: Platform-aware neural
architecture search for mobile”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2820–2828.

Tan, Mingxing and Quoc V Le (2019). “Efficientnet: Rethinking model scaling
for convolutional neural networks”. In: arXiv preprint arXiv:1905.11946.

Tang, Kevin, Manohar Paluri, Li Fei-Fei, Rob Fergus, and Lubomir Bourdev
(2015). “Improving Image Classification with Location Context”. In: arXiv:
1505.03873. url: https://arxiv.org/abs/1505.03873.

Terekhov, Alexander V., Guglielmo Montone, and J. Kevin O’Regan (2015).
“Knowledge Transfer in Deep Block-Modular Neural Networks”. In: Springer,
Cham, pp. 268–279. doi: 10.1007/978-3-319-22979-9_27.

Tramèr, Florian, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel (2017). “Ensemble Adversarial Training: Attacks and
Defenses”. In: arXiv: 1705.07204. url: http://arxiv.org/abs/1705.
07204.

Tyler, Joshua R., Dennis M. Wilkinson, and Bernardo A. Huberman (2005). “E-
Mail as Spectroscopy: Automated Discovery of Community Structure within

156

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://arxiv.org/abs/1409.4842
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1505.03873
https://arxiv.org/abs/1505.03873
https://doi.org/10.1007/978-3-319-22979-9_27
https://arxiv.org/abs/1705.07204
http://arxiv.org/abs/1705.07204
http://arxiv.org/abs/1705.07204

References

Organizations”. In: The Information Society 21.2, pp. 143–153. issn: 0197-
2243. doi: 10.1080/01972240590925348. arXiv: 0303264 [cond-mat].

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). Attention Is
All You Need. arXiv: 1706.03762 [cs.CL].

Veit, Andreas, Michael J Wilber, and Serge Belongie (2016). “Residual networks
behave like ensembles of relatively shallow networks”. In: Advances in Neural
Information Processing Systems, pp. 550–558.

Ven, Gido M. van de and Andreas S. Tolias (2018). “Generative replay with
feedback connections as a general strategy for continual learning”. In: arXiv:
1809.10635. url: http://arxiv.org/abs/1809.10635.

Verbancsics, Phillip and Kenneth O Stanley (2011). “Constraining connectivity
to encourage modularity in HyperNEAT”. In: Proceedings of the 13th annual
conference on Genetic and evolutionary computation - GECCO ’11, p. 1483.
doi: 10.1145/2001576.2001776.

Vinyals, Oriol, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Ge-
offrey Hinton (2014). “Grammar as a Foreign Language”. In: arXiv: 1412.
7449. url: http://arxiv.org/abs/1412.7449.

Vitoria, Patricia, Lara Raad, and Coloma Ballester (2020). ChromaGAN: Ad-
versarial Picture Colorization with Semantic Class Distribution. arXiv: 1907.
09837 [cs.CV].

Vlahogianni, Eleni I, Matthew G Karlaftis, and John C Golias (2007). “Spatio-
Temporal Short-Term Urban Traffic Volume Forecasting Using Genetically
Optimized Modular Networks”. In: Computer-Aided Civil and Infrastructure
Engineering 22.5, pp. 317–325.

Wadawadagi, Ramesh and Veerappa Pagi (2020). “Sentiment analysis with deep
neural networks: comparative study and performance assessment”. In: Arti-
ficial Intelligence Review.

Waibel, Alex (1989). “Modular Construction of Time-Delay Neural Networks
for Speech Recognition”. In: Neural Computation 1.1, pp. 39–46. issn: 0899-
7667. doi: 10.1162/neco.1989.1.1.39. url: http://www.mitpressjournals.
org/doi/10.1162/neco.1989.1.1.39.

Wan, Li, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus (2013).
“Regularization of neural networks using dropconnect”. In: International
conference on machine learning, pp. 1058–1066.

Wang, Jinjiang, Junfei Zhuang, Lixiang Duan, and Weidong Cheng (2016).
“A multi-scale convolution neural network for featureless fault diagnosis”.
In: 2016 International Symposium on Flexible Automation (ISFA). IEEE,
pp. 65–70.

Wang, Mingming (2015). “Multi-path Convolutional Neural Networks for Com-
plex Image Classification”. In: arXiv: 1506.04701.

157

https://doi.org/10.1080/01972240590925348
https://arxiv.org/abs/0303264
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1809.10635
http://arxiv.org/abs/1809.10635
https://doi.org/10.1145/2001576.2001776
https://arxiv.org/abs/1412.7449
https://arxiv.org/abs/1412.7449
http://arxiv.org/abs/1412.7449
https://arxiv.org/abs/1907.09837
https://arxiv.org/abs/1907.09837
https://doi.org/10.1162/neco.1989.1.1.39
http://www.mitpressjournals.org/doi/10.1162/neco.1989.1.1.39
http://www.mitpressjournals.org/doi/10.1162/neco.1989.1.1.39
https://arxiv.org/abs/1506.04701

References

Wang, Sheng-Jun, Claus C Hilgetag, and Changsong Zhou (2011). “Sustained
activity in hierarchical modular neural networks: self-organized criticality
and oscillations”. In: Frontiers in computational neuroscience 5.

Wang, Tao, David J Wu, Adam Coates, and Andrew Y Ng (2012). “End-to-end
text recognition with convolutional neural networks”. In: Pattern Recognition
(ICPR), 2012 21st International Conference on. IEEE, pp. 3304–3308.

Wang, Yaqing, Quanming Yao, James Kwok, and Lionel M. Ni (2020). Gen-
eralizing from a Few Examples: A Survey on Few-Shot Learning. arXiv:
1904.05046 [cs.LG].

Wang, Zhenyi and Olga Veksler (2018). “Location Augmentation for CNN”. In:
arXiv: 1807.07044. url: https://arxiv.org/abs/1807.07044.

Watanabe, Chihiro, Kaoru Hiramatsu, and Kunio Kashino (2018). “Modular
representation of layered neural networks”. In: Neural Networks 97, pp. 62–
73. issn: 0893-6080. doi: 10.1016/J.NEUNET.2017.09.017. url: https:
//www.sciencedirect.com/science/article/pii/S0893608017302319.

Watts, Duncan J. (1999). “Networks, Dynamics, and the Small‐World Phe-
nomenon”. In: American Journal of Sociology 105.2, pp. 493–527. issn: 0002-
9602. doi: 10.1086/210318. arXiv: 9910332 [cond-mat].

Webb, Andrew, Charles Reynolds, Wenlin Chen, Henry Reeve, Dan Iliescu,
Mikel Lujan, and Gavin Brown (2020). “To Ensemble or Not Ensemble:
When does End-To-End Training Fail?” In: stat 1050, p. 6.

Wei Jiang and G. Seong Kong (2007). “Block-Based Neural Networks for Per-
sonalized ECG Signal Classification”. In: IEEE Transactions on Neural Net-
works 18.6, pp. 1750–1761. issn: 1045-9227. doi: 10 . 1109 / TNN . 2007 .
900239.

Weinberger, Kilian, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg (2009). “Feature hashing for large scale multitask learning”. In:
Proceedings of the 26th annual international conference on machine learning,
pp. 1113–1120.

Weston, Jason, Sumit Chopra, and Antoine Bordes (2014). “Memory Networks”.
In: arXiv: 1410.3916.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and
Jeffrey Dean (2016). “Google’s Neural Machine Translation System: Bridg-
ing the Gap between Human and Machine Translation”. In: abs/1609.08144.
url: http://arxiv.org/abs/1609.08144.

Xiang, Canqun, Lu Zhang, Yi Tang, Wenbin Zou, and Chen Xu (2018). “MS-
CapsNet: A Novel Multi-Scale Capsule Network”. In: IEEE Signal Processing

158

https://arxiv.org/abs/1904.05046
https://arxiv.org/abs/1807.07044
https://arxiv.org/abs/1807.07044
https://doi.org/10.1016/J.NEUNET.2017.09.017
https://www.sciencedirect.com/science/article/pii/S0893608017302319
https://www.sciencedirect.com/science/article/pii/S0893608017302319
https://doi.org/10.1086/210318
https://arxiv.org/abs/9910332
https://doi.org/10.1109/TNN.2007.900239
https://doi.org/10.1109/TNN.2007.900239
https://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1609.08144

References

Letters 25.12, pp. 1850–1854. issn: 1070-9908. doi: 10.1109/LSP.2018.
2873892. url: https://ieeexplore.ieee.org/document/8481393/.

Xiao, Dengyu, Yixiang Huang, Xudong Zhang, Haotian Shi, Chengliang Liu,
and Yanming Li (2018). “Fault diagnosis of asynchronous motors based on
LSTM neural network”. In: 2018 prognostics and system health management
conference (PHM-Chongqing). IEEE, pp. 540–545.

Xie, Saining, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He (2016).
“Aggregated residual transformations for deep neural networks”. In: arXiv
preprint arXiv:1611.05431.

Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-
lan Salakhutdinov, Richard Zemel, and Yoshua Bengio (2015). “Show, At-
tend and Tell: Neural Image Caption Generation with Visual Attention”. In:
arXiv: 1502.03044. url: http://arxiv.org/abs/1502.03044.

Xu, L., A. Krzyzak, and C.Y. Suen (1992). “Methods of combining multiple clas-
sifiers and their applications to handwriting recognition”. In: IEEE Transac-
tions on Systems, Man, and Cybernetics 22.3, pp. 418–435. issn: 00189472.
doi: 10.1109/21.155943.

Xu, Weilin, David Evans, and Yanjun Qi (2017). “Feature Squeezing: Detecting
Adversarial Examples in Deep Neural Networks”. In: doi: 10.14722/ndss.
2018.23198. arXiv: 1704.01155. url: http://arxiv.org/abs/1704.
01155http://dx.doi.org/10.14722/ndss.2018.23198.

Xu, Yuhui, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong (2019). “Pc-darts: Partial channel connections for memory-
efficient differentiable architecture search”. In: arXiv:1907.05737.

Yang, Luting, Bingqian Lu, and Shaolei Ren (2020). “A Note on Latency Vari-
ability of Deep Neural Networks for Mobile Inference”. In: arXiv preprint
arXiv:2003.00138.

Yang, Zichao, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy (June 2016). “Hierarchical Attention Networks for Document Classi-
fication”. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. San Diego, California: Association for Computational
Linguistics, pp. 1480–1489. doi: 10.18653/v1/N16- 1174. url: https:
//www.aclweb.org/anthology/N16-1174.

Yu, Haonan, Jiang Wang, Zhiheng Huang, Yi Yang, and Wei Xu (2016). “Video
Paragraph Captioning Using Hierarchical Recurrent Neural Networks”. In:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Yu, Jiahui, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang (2018a).
“Slimmable neural networks”. In: arXiv:1812.08928.

Yu, Jun, Jing Li, Zhou Yu, and Qingming Huang (2019a). “Multimodal Trans-
former with Multi-View Visual Representation for Image Captioning”. In:
IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1.

159

https://doi.org/10.1109/LSP.2018.2873892
https://doi.org/10.1109/LSP.2018.2873892
https://ieeexplore.ieee.org/document/8481393/
https://arxiv.org/abs/1502.03044
http://arxiv.org/abs/1502.03044
https://doi.org/10.1109/21.155943
https://doi.org/10.14722/ndss.2018.23198
https://doi.org/10.14722/ndss.2018.23198
https://arxiv.org/abs/1704.01155
http://arxiv.org/abs/1704.01155 http://dx.doi.org/10.14722/ndss.2018.23198
http://arxiv.org/abs/1704.01155 http://dx.doi.org/10.14722/ndss.2018.23198
https://doi.org/10.18653/v1/N16-1174
https://www.aclweb.org/anthology/N16-1174
https://www.aclweb.org/anthology/N16-1174

References

issn: 1051-8215. doi: 10.1109/tcsvt.2019.2947482. arXiv: 1905.07841.
url: http://arxiv.org/abs/1905.07841.

Yu, Jun, Min Tan, Hongyuan Zhang, Dacheng Tao, and Yong Rui (2019b). “Hi-
erarchical Deep Click Feature Prediction for Fine-grained Image Recogni-
tion”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1–1. issn: 0162-8828. doi: 10.1109/tpami.2019.2932058.

Yu, Licheng, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, Mohit Bansal, and
Tamara L. Berg (2018b). “MAttNet: Modular Attention Network for Re-
ferring Expression Comprehension”. In: arXiv: 1801.08186. url: https:
//arxiv.org/abs/1801.08186v2.

Yuan, Ming and Yi Lin (2006). “Model selection and estimation in regression
with grouped variables”. In: Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 68.1, pp. 49–67. issn: 1467-9868.

Zeiler, Matthew D. (2012). ADADELTA: An Adaptive Learning Rate Method.
arXiv: 1212.5701 [cs.LG].

Zeng, Yu, Zhe Lin, Jimei Yang, Jianming Zhang, Eli Shechtman, and Huchuan
Lu (2020). High-Resolution Image Inpainting with Iterative Confidence Feed-
back and Guided Upsampling. arXiv: 2005.11742 [cs.CV].

Zenke, Friedemann, Ben Poole, and Surya Ganguli (2017). “Continual Learn-
ing Through Synaptic Intelligence”. In: arXiv: 1703 . 04200. url: http :
//arxiv.org/abs/1703.04200.

Zhang, Chris, Mengye Ren, and Raquel Urtasun (2018). “Graph HyperNetworks
for Neural Architecture Search”. In: arXiv: 1810 . 05749. url: http : / /
arxiv.org/abs/1810.05749.

Zhang, Fangyi, Jürgen Leitner, Michael Milford, and Peter Corke (2016a).
“Modular Deep Q Networks for Sim-to-real Transfer of Visuo-motor Poli-
cies”. In: arXiv: 1610 . 06781. url: https : / / arxiv . org / abs / 1610 .
06781v4.

Zhang, Jian, Jun Yu, and Dacheng Tao (2018). “Local Deep-Feature Alignment
for Unsupervised Dimension Reduction”. In: IEEE Transactions on Image
Processing 27.5, pp. 2420–2432. issn: 10577149. doi: 10.1109/TIP.2018.
2804218. arXiv: 1904.09747.

Zhang, Kaipeng, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao (2016b). “Joint
Face Detection and Alignment Using Multitask Cascaded Convolutional
Networks”. In: IEEE Signal Processing Letters 23.10, pp. 1499–1503. issn:
1558-2361. doi: 10.1109/lsp.2016.2603342. url: http://dx.doi.org/
10.1109/LSP.2016.2603342.

Zhang, Ning, Jeff Donahue, Ross Girshick, and Trevor Darrell (2014). “Part-
based R-CNNs for fine-grained category detection”. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Vol. 8689 LNCS. PART 1,
pp. 834–849. isbn: 9783319105895. doi: 10.1007/978-3-319-10590-1_54.
arXiv: 1407.3867.

160

https://doi.org/10.1109/tcsvt.2019.2947482
https://arxiv.org/abs/1905.07841
http://arxiv.org/abs/1905.07841
https://doi.org/10.1109/tpami.2019.2932058
https://arxiv.org/abs/1801.08186
https://arxiv.org/abs/1801.08186v2
https://arxiv.org/abs/1801.08186v2
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/2005.11742
https://arxiv.org/abs/1703.04200
http://arxiv.org/abs/1703.04200
http://arxiv.org/abs/1703.04200
https://arxiv.org/abs/1810.05749
http://arxiv.org/abs/1810.05749
http://arxiv.org/abs/1810.05749
https://arxiv.org/abs/1610.06781
https://arxiv.org/abs/1610.06781v4
https://arxiv.org/abs/1610.06781v4
https://doi.org/10.1109/TIP.2018.2804218
https://doi.org/10.1109/TIP.2018.2804218
https://arxiv.org/abs/1904.09747
https://doi.org/10.1109/lsp.2016.2603342
http://dx.doi.org/10.1109/LSP.2016.2603342
http://dx.doi.org/10.1109/LSP.2016.2603342
https://doi.org/10.1007/978-3-319-10590-1_54
https://arxiv.org/abs/1407.3867

References

Zhang, Xingpeng, Sheng Huang, Xiaohong Zhang, Wei Wang, Qiuli Wang,
and Dan Yang (2018). “Residual Inception: A New Module Combining
Modified Residual with Inception to Improve Network Performance”. In:
2018 25th IEEE International Conference on Image Processing (ICIP).
IEEE, pp. 3039–3043. isbn: 978-1-4799-7061-2. doi: 10.1109/ICIP.2018.
8451515. url: https://ieeexplore.ieee.org/document/8451515/.

Zhang, Xingxing, Furu Wei, and Ming Zhou (2019). HIBERT: Document Level
Pre-training of Hierarchical Bidirectional Transformers for Document Sum-
marization. arXiv: 1905.06566 [cs.CL].

Zhang, Xuanyang, Hao Liu, Zhanxing Zhu, and Zenglin Xu (2020). “Learning to
Search Efficient DenseNet with Layer-wise Pruning”. In: 2020 International
Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8.

Zhao, Yiyang, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo
(2020). “Few-shot neural architecture search”. In: arXiv:2006.06863.

Zheng, Weizhong, Der-Horng Lee, and Qixin Shi (2006). “Short-Term Freeway
Traffic Flow Prediction: Bayesian Combined Neural Network Approach”. In:
Journal of Transportation Engineering 132.2, pp. 114–121. issn: 0733-947X.
doi: 10.1061/(ASCE)0733-947X(2006)132:2(114).

Zhou, Jie, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun (2019). Graph Neural Networks:
A Review of Methods and Applications. arXiv: 1812.08434 [cs.LG].

Zoph, Barret and Quoc V. Le (2016). “Neural Architecture Search with Rein-
forcement Learning”. In: 5th International Conference on Learning Repre-
sentations, ICLR 2017 - Conference Track Proceedings. arXiv: 1611.01578.
url: http://arxiv.org/abs/1611.01578.

Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le (2018). “Learn-
ing transferable architectures for scalable image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 8697–
8710.

161

https://doi.org/10.1109/ICIP.2018.8451515
https://doi.org/10.1109/ICIP.2018.8451515
https://ieeexplore.ieee.org/document/8451515/
https://arxiv.org/abs/1905.06566
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(114)
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578

	Introduction
	An Overview of Deep Learning
	Basic Topologies of ANNs
	Learning Types
	Application Domains
	Challenges to Deep Learning
	Data Greediness
	Overfitting and Underfitting
	Complexity
	Adversarial Attacks
	Catastrophic Forgetting

	Biological Origins of Modularity
	Modularity in ANNs
	Why Modularity?
	Challenges to Modularity
	Our Research
	Review of Modularity in ANNs
	Balancing Latency and Accuracy
	Reducing Complexity and Maintaining Accuracy
	Reducing Sensitivity to Noise and Adversarial Attacks

	Experimental Design and Implementation
	MNIST
	CIFAR10
	iWildCam2019

	Thesis Guide

	A Review of Modularization Techniques in Artificial Neural Networks
	Preface
	Introduction
	Modularity
	Modularization Techniques
	Domain
	Manual
	Learned

	Topology
	hcnr
	Repeated Block
	Multi-Architectural

	Formation
	Manual
	Evolutionary
	Learned

	Integration
	Arithmetic-Logic
	Learned

	Case Studies
	Conclusion

	Balancing Accuracy and Latency in Multipath Neural Networks
	Preface
	Introduction
	Multipath Neural Networks
	Neural Network Compression
	Neural Architecture Search
	Methodology
	Experiments
	Results

	Discussion
	Conclusion
	Chapter Acknowledgements

	Path Capsule Networks
	Preface
	Introduction
	Capsule Network
	Multipath Architectures
	Methods
	Results
	PathCapsNet Architecture
	MNIST
	CIFAR10
	iWildCam2019
	RSA Analysis

	Discussion
	Conclusion
	Chapter Acknowledgements

	Weight Map Layer for Noise and Adversarial Attack Robustness
	Preface
	Introduction
	Adversarial Attack
	Methods
	Experiments
	Results

	Discussion
	Conclusion
	Chapter Acknowledgements

	Discussion and Conclusion
	Acronyms
	References

