
Novel Techniques for Modelling
Uncertain Human Reasoning

in Explainable Artificial
Intelligence

Pasquale D’Alterio

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

2017 - 2020





Abstract

In recent years, there has been a growing need for intelligent systems that
not only are able to provide reliable predictions but can also produce expla-
nations for their outputs. The demand for increased explainability has led to
the emergence of explainable artificial intelligence (XAI) as a specific research
field. In this context, fuzzy logic systems represent a promising tool thanks to
their inherently interpretable structure. The use of a rule-base and linguistic
terms, in fact, have allowed researchers to design models with a transparent
decision process, from which it is possible to extract human-understandable
explanations. The use of interval type-2 fuzzy logic in the XAI field, however,
is limited: the improved performances of interval type-2 fuzzy systems and
their ability to handle a higher degree of uncertainty comes at the cost of in-
creased complexity that makes the semantic mapping between the input and
outputs harder to understand intuitively. The presence of type-reduction, in
some contexts fail to preserve the semantic value of the fuzzy sets and rules
involved in the decision process. By semantic value, we specifically refer to
the capacity of interpreting the output of the fuzzy system in respect to the
pre-defined and thus understood linguistic variables used for the antecedents
and consequents of the system. An attempt at increasing the explainability of
interval type-2 fuzzy logic was first established by Garibaldi and Guadarrama
in 2011, with the introduction of constrained type-2 fuzzy sets. However, ex-
tensive work needs to be carried out to develop the algorithms necessary for
their practical use in fuzzy systems. The aim of this thesis is to extend the ini-
tial work on constrained interval type-2 fuzzy sets to develop a framework that
preserves the semantic value throughout the modelling and decision process.
Achieving this goal would allow the creation of a new class of fuzzy systems
that show additional interpretable properties, and could further encourage the
use of interval type-2 fuzzy logic in XAI. After the formal definition of the re-
quired components and theorems, different approaches are explored to develop
inference algorithms that preserve the semantic value of the sets during the
input-output mapping, while keeping reasonable run-times on modern com-
puter hardware. The novel frameworks are then tested in a series of practical
applications from the real world, in order to assess both their prediction per-
formances and show the quality of the explanations these models can generate.
Finally, the original definitions of constrained intervals type-2 fuzzy sets are
refined to produce a novel approach which combines uncertain data and rep-
resents them using intuitive constrained interval type-2 fuzzy sets.

Overall, as a result of the work presented here, it is now possible to design
constrained interval type-2 fuzzy systems that preserve the enhanced semantic
value provided by constrained interval-type-2 fuzzy sets throughout the infer-
ence, type-reduction and defuzzification stages. This characteristic is then used
to improve the semantic interpretability of the system outputs, making con-
strained interval type-2 fuzzy systems a valuable alternative to interval type-2
fuzzy systems in XAI. The research presented here has resulted in three jour-
nal articles, two of which have already been published in IEEE Transactions
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on Fuzzy Systems, and four papers presented at the FUZZ-IEEE international
conference between 2018 and 2020.
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Chapter 1

Introduction

1.1 Explainable Artificial Intelligence

Intelligent systems have been widely adopted in recent years to tackle problems

in a variety of fields, ranging from image classification to medical data analy-

sis. Although state of the art models are able to produce reliable predictions,

understanding their decision process may be very challenging. Many popular

artificial intelligence (AI) tools like neural networks and deep learning, in fact,

behave as black boxes [4]: when they receive the input values (i.e. the pixels of

an image or the medical data of a patient), they extract and combine features

non-linearly in order to identify patterns that determine the output; once the

predictions are made, however, analysing how the input features have been

combined in the decision process will provide information with a limited level

of meaningfulness to a human user. In other words, although such models are

capable of making reliable predictions, it is hard to understand why a spe-

cific prediction was made. Although in many contexts this may not represent

a significant issue, in other situations it causes serious ethical and practical

problems.

Specifically, in scenarios that significantly affect users, understanding the

reasoning behind the choices of an AI model is required to ensure fair, non-

discriminatory treatment, to validate the output of the system against experts’

1
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knowledge and to detect any inconsistencies in the classification process [5, 6].

The medical domain is a typical example of a situation in which understand-

ing the motivations that led to the final recommendation or prediction is vital

to ensure that the patients receive the right treatment and that physicians can

validate the choice made by the AI model to prevent harmful therapies being

mistakenly advised.

The need for AI tools that can provide explanations for their decisions gen-

erated a new AI research field named explainable artificial intelligence (XAI)

[7].

Its ambitious goal is to build a new generation of intelligent models that not

only are reliable in their predictions but can also be intuitively interpreted by

their end-users so that they can be deploy in contexts in which the transparency

of the AI model is crucial.

So far in the literature, there are mainly two research areas focused on

building explainable AI: one tries to “open” the black box models, extracting

and analysing information from their decision process to make it more un-

derstandable by humans; the other research area makes use of AI techniques

that have an inherently explainable design, based on meaningful concepts and

structures (e.g words and rules) that mimic the thought process of humans in

their everyday life.

1.2 Fuzzy Logic and Explainable Artificial In-

telligence

Fuzzy logic is one of the tools with which it is possible to build AI models

that are inherently explainable. It was introduced by Zadeh in 1965 [8] to

represent classes that do not have clear boundaries, e.g. “the class of tall

men” [8]. Fuzzy sets (FSs) are a key component of fuzzy logic and are based

on the concept of degree of truth: they model classes “of continuum grade” [8]
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by the use of membership functions that assign to each element a real number

between 0 and 1. As Zadeh pointed out in his paper, this approach is useful

as classes in the real world do not always have “precisely defined criteria of

membership” [8]. Therefore fuzzy logic allows to directly and naturally model

vague concepts used by humans when they speak or write, such as words.

An example of fuzzy set modelling the words medium height is shown in Fig.

1.1. Having membership degrees as numbers between 0 and 1 makes it easy

to describe a concept like this, for which there are no clear boundaries but a

smooth transition from one class to the other (in this case, from low height to

medium height to tall height).

Figure 1.1: A Gaussian FS modeling medium height. Height in m on the x-axis;
membership degree on the y-axis.

In addition to their modelling capabilities, FSs can be put together to form

fuzzy rules. They are if-then statements, just like first-order-logic rules, used

to model an inference process that creates an input-output mapping between

the antecedents and the consequents. For example, the fuzzy rule “if the

temperature is high then the speed of the fan is high”, is used to establish a

relation between the current temperature and the motor of the fan. One of the

key advantages of the use of fuzzy logic is that it can be easily understood by

humans, even non-experts in the field, since it makes use of the same concepts

and structure of human reasoning. For these reasons, Zadeh himself defined

the use of fuzzy logic as computing with words [9].

The modeling power of a single rule, however, is very limited. To tackle
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many of the real-world problems, multiple rules are designed and organized in

rule-bases.

The process of feeding the input values to the rule-base (fuzzification), per-

forming the inference and then converting the fuzzy result into a number (de-

fuzzification) is usually called fuzzy logic system (FLS).

Since their introduction, FLSs have been widely used in the literature, par-

ticularly in the area of controllers and intelligent systems.

One of the key advantages of the use of fuzzy logic is that it can be used to

build interpretable systems. Thanks to the rule-based structure and the use

of linguistic labels, FLSs inherently have all the characteristics to tackle the

new challenge of XAI [10]. Understanding the decision process followed by the

systems and how the inputs are combined to produce the outputs is intuitively

easy to understand as it can be explained in human-understandable terms and

even in natural language [11, 12].

However, the kind of fuzzy sets described so far, called type-1 (T1) fuzzy

sets, have some limitations, specifically when it comes to the level of uncer-

tainty that they can handle. In fact “it may seem problematical, if not para-

doxical” [13] that the membership degrees of FSs are exact numbers, when the

goal of fuzzy logic is to model vague or uncertain contexts. To overcome this

issue, Zadeh himself introduced a new class of FSs, named type-2 fuzzy sets.

1.2.1 Type-2 Fuzzy Logic

There are many sources of uncertainty that need to be taken into account when

modelling a FLS [14]. One of them regards the fact that words mean different

things to different people and it is something that must be reflected in the

design of fuzzy sets [15]. Type-2 (T2) fuzzy sets [16], thanks to the ability to

express uncertainty around their membership function, are able to model this

scenario.

The membership degree of each object is no longer a single value, but rather
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an interval, in which each point can have a different weight in [0, 1].

Intuitively, T2 FSs can be seen as three-dimensional objects obtained by

“blurring” a type-1 (T1) fuzzy set and giving a different weight to each of

the blurred points. An example of a T2 FS is shown in Fig. 1.2, where the

difference in the weighting is made clearer by the use of different colours (with

blue being 0 and red being 1).

Figure 1.2: A type-2 fuzzy set.

The higher modeling capabilities of T2 FSs and FLSs, however, come with

a significantly increased computational cost. Carrying out many of the funda-

mental operations, requires significantly longer run-times, which makes them

less suitable for practical applications. Specifically, widely adopted defuzzifi-

cation techniques require a preliminary step called type-reduction with a high

computational complexity.

For this reason, a more efficient special case of T2 FSs, called interval type-

2 (IT2) fuzzy sets, has recently become widely adopted [17]. In IT2 FSs, the

membership degree is an interval where each point has weight either 0 or 1.

Some popular research works [18, 19] have shown that this limitation is suf-

ficient to make IT2 FLSs and the defuzzification more efficient than their T2

counterpart, making them good candidates for real-world application, espe-

cially in contexts with strict time constraints.

An example of an IT2 FS is shown in Fig. 1.3.
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Figure 1.3: An interval type-2 fuzzy set. Picture from [1].

1.2.2 Interval Type-2 Fuzzy Sets and Semantic Difficul-

ties

As the need for interpretable intelligent systems increased, some research works

[1, 20, 21] started to analyse the semantic relation between T2 and IT2 FSs

and the concepts they model. They have shown how the mathematical freedom

given by the standard definition of T2 and IT2 FSs, may lead to results that

are hard to interpret intuitively in certain contexts. Many T2 FSs in the liter-

ature are produced through a process of knowledge elicitation with a number

of participants, asked to provide a T1 FSs for a specific word [1]. Some other

times, T2 FSs are build starting from a T1 FS modelling the same concept, by

the addition of uncertainty around the membership function through different

“blurring” processes [22–30]. However, when the T2 FS is generated, there are

no guarantees that it will preserve some properties, e.g. continuity, convex-

ity and monotonicity, that may be crucial to preserve a semantic connection

between the FS and the concept it models [1]. Additionally, during the type-

reduction of T2 and IT2 FSs, embedded sets are taken into account: intuitively,

they are T1 FSs that lie within a T2 FS. Popular type-reduction procedures

(e.g. [18, 19] process all the embedded sets regardless of their shape, even

the ones that are not meaningful in that specific context [1, 20, 21]. This

phenomenon can make the decision process of a FLS harder to understand
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intuitively, making T2 and IT2 FLSs less appealing for the use in XAI.

However, T2 and IT2 FLSs have been shown to outperform T1 FLSs in

many tasks (e.g. [27, 31, 32]); therefore being able to increase the semantic

value of their input-output mapping would represent a significant progress for

the use of fuzzy logic in XAI.

1.2.3 Constrained Interval Type-2 Fuzzy Sets

Constrained type-2 (CT2) and constrained interval type-2 (CIT2) [1] fuzzy

sets present a possible solution to mitigate the decreased interpretability of

T2 FSs in certain contexts. Their goal is to preserve semantic meaning in the

generation of a T2 FS when it is obtained from an already existing T1 FS

modelling the same concept.

CT2 FSs represent a special case of T2 FSs as they impose additional con-

straints in order to restrict the possible shape of both the generated FS and

its embedded sets. Keeping a shape coherency [1] throughout the modelling

process is important for the interpretability of the model, as the shape is one

of the key features from which humans intuitively understand the semantic

meaning of a fuzzy set.

However, at the moment there is no systematic way to create CIT2 FSs for

practical use and there has not yet been developed an inference framework that

is able to preserve the semantic value guaranteed by the constrained approach.

1.3 Aims and Objectives

Recent research works [1, 20, 21] have shown that, in some contexts, the “math-

ematical freedom” [1] of the original definition of T2 FSs can cause some issues

in the interpretability of T2 models: the practical and semantic difficulties in

the determination of the shape of T2 FSs and the presence of embedded sets

that are not in line with the intuitive interpretation of the modelled concept

can cause a loss of the meaningful mapping between the input and outputs of
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a T2 FLS.

The aim of this thesis is to extend the recently established foundational

work on CIT2 FSs, specifically focusing on CIT2 FSs, to develop a framework

that preserves the semantic value of CIT2 FSs throughout the inference, type-

reduction and defuzzification in order to create a new class of CIT2 FLSs more

intuitively explainable1. These FLSs will make the semantic mapping from the

inputs to the output more intuitively interpretable, making them a valuable

alternative to T2 and IT2 FLSs in XAI.

To achieve the aims stated above, this thesis pursues the following objec-

tives:

1. Formally define the generation of CIT2 FSs for practical use: although

the concept of CIT2 FSs has already been formulated, for them to be

used in real-world applications it is necessary to formalize the definition

of some key components to make the generation of CIT2 FSs in practice

more systematic.

2. From interpretable models to explainable systems: CIT2 FSs guarantee

a semantic connection between the sets and the words they model; to

build interpretable CIT2 FLSs, however, it is important to develop an

inference and defuzzification framework that preserves the semantic value

of CIT2 FSs throughout the process. This property would ensure a

semantic mapping between the inputs and the output of the FLSs and

the ability to produce human-understandable explanations for the model

predictions.

3. Make CIT2 FLSs usable in practical applications: for CIT2 FLSs to

be usable in the real-world, it is necessary to design algorithms that

1Here and in the rest of the thesis, interpretability refers to the capacity of giving a
semantic interpretation to the different components of the system (e.g. sets and rules repre-
senting respectively human concepts and relations between them), while explainability refers
to the ability to explain in human-understandable terms the connection between the system
components and the outputs or predictions produced (i.e. the decision process followed by
the system).
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carry out both the modelling and the inference process with reasonable

run-times on modern computer hardware. It is therefore important to

analyse the mathematical properties of the sets to produce efficient pro-

cedures and approximation algorithms that do not make the increased

interpretability too expensive in terms of computational complexity. Fur-

thermore, producing software libraries that implement these algorithms

would be beneficial to facilitate the use of CIT2 FLSs in the research

community, while possibly encouraging the use and discussion of CIT2

FSs in XAI.

4. Validate the theory with real-world applications: once all the necessary

theory and algorithms have been laid out, it is necessary to test the novel

CIT2 FLSs in a series of practical applications from the real world, in

order to assess both their prediction performance and the perceived inter-

pretability of the explanations provided when dealing with non-synthetic

data.

1.4 Outline of the thesis

This thesis has the following layout: Chapter 2 presents a literature review on

T1, IT2 and T2 fuzzy logic with a particular emphasis on their use in XAI.

Some interpretability issues that may arise with the use of T2 fuzzy logic are

also discussed, together with possible solutions proposed in the literature.

Chapter 3 is focused on the theoretical foundations of CIT2 FSs and FLSs.

It introduces the core definitions and proofs that are necessary to build a first

inference framework. Two defuzzification algorithms are designed and applied

to a first case study, where CIT2 and IT2 FLSs are compared and contrasted

with a focus on the interpretability of both models.

The two defuzzification algorithms proposed in Chapter 3, however, have

the downside of being significantly slower than the most popular defuzzifi-

cation approaches for IT2 FLSs. In Chapter 4 this issue is tackled: a new,
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faster inference and defuzzification procedure for CIT2 FLSs is proposed and

compared with the algorithms introduced in Chapter 3, showing its significant

run-time improvement; additionally, it is discussed how the steps of the algo-

rithm can be analyzed to generate natural-language explanations for each of

the system predictions.

In Chapter 5, the algorithm introduced in Chapter 4 is then used in two

real-world case classification from the medical domain, where it is shown how

the explanations produced by CIT2 FLSs can be beneficial in the contexts in

which transparent AI models are needed and it is discussed when CIT2 FLSs

can represent a valid alternative to IT2 FLSs.

The concept of meaningfulness, as described in the first paper that intro-

duced CT2 and CIT2 FSs [1], is refined in Chapter 6. The meaningfulness is

decoupled from a specific shape and is described in terms of a set of contextual

mathematical constraints that define what kind of fuzzy set can give an “ac-

ceptable” representation of a given concept. This new characterization of the

concept of meaningfulness allows to create more flexible CIT2 FSs in which

multiple shapes can coexist. Chapter 7 uses this new concept of meaningful-

ness in a data-modelling problem, in which opinions gathered from surveys are

modelled using CIT2 FSs in a way that keeps a high interpretability while still

showing the effects of the inter-variation on the FSs produced.

Chapter 6, instead, focuses on the relation between the concept of meaning-

fulness and the original CIT2 definitions. In the chapter, the meaningfulness

is decoupled from the use of a specific shape. By analyzing some case studies

it is shown how the traits underpinning the meaningfulness of a concept can be

more naturally encoded through a set of mathematical constraints that define

an “acceptable” representation is. These mathematical constraints, can then

be used to restrict the shape of a CIT2 fuzzy set. This new characterization

of the concept of meaningfulness allows to create more flexible CIT2 models

in which multiple shapes can coexist. Chapter 7 uses this new definition of

meaningfulness in a data-modelling problem, in which opinions gathered from
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surveys are modelled through CIT2 fuzzy sets in an intuitive way, preserving

the original structure of the data while showing the effects of the inter-expert

variation on the models produced.



Chapter 2

Literature Review

2.1 Fuzzy Logic

In his famous paper [8] in 1965, Zadeh introduced the concept of fuzzy sets to

model classes that do not have clear boundaries. Their peculiarity is that their

membership functions assign to each object a value in the interval [0, 1] rather

than either 0 or 1, as would happen in standard set theory. Formally, given a

universe (also called universe of discourse) X ⊆ R, a FS A can be expressed

as:

A = {(x, µA(x))|x ∈ X} (2.1)

where µA : X 7→ [0, 1] identifies the membership function of the fuzzy set A.

All the points in the universe of discourse with a membership value greater

than 0 constitute the support set of A:

Definition 2.1. Given a FS A, its support set, here named SUPPA is the set

of all the x ∈ X for which µA(x) > 0:

SUPPA = {x |x ∈ X ∧ µA(x) > 0} (2.2)

Since every FS is a set of pairs, they can easily be represented on the Carte-

sian plane, with the universe of discourse on the x-axis and the membership

degree on the y-axis. Fig. 2.1 shows the difference between a fuzzy set (in red)

12
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and a classical set (in purple). From the picture it is possible to see that in

the fuzzy case the boundaries have a smooth transition compared to the sharp

edges of the classical set.

Figure 2.1: Example of a fuzzy set (in red) and a crisp, i.e. boolean, set (in purple)

The union, intersection and complement operations from classic set theory

have been extended to be used for fuzzy sets [8, 14] as shown below:

µA∪B(x) = µA(x)⊕ µB(x), ∀x ∈ X (2.3)

µA∩B(x) = µA(x) ? µB(x), ∀x ∈ X (2.4)

µA(x) = 1− µA(x), ∀x ∈ X (2.5)

with A and B fuzzy sets, X the universe and ⊕ and ? being respectively a

t-conorm and a t-norm operator.

Definition 2.2. A t-norm ? is a binary function [0, 1] × [0, 1] 7→ [0, 1] that

satisfies the following properties:

• Commutativity: a ? b = b ? a
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• Monotonicity: a ? b ≤ c ? d if a ≤ c ∧ b ≤ d

• Associativity: a ? (b ? c) = (a ? b) ? c

• 1 is the identity element: a ? 1 = a

Two of the most widely used t-norm operators in fuzzy logic to implement

the intersection (∩) are the minimum t-norm and the product t-norm, i.e.:

Minimum t-norm: µA∩B(x) = min(µA(x), µB(x)), ∀x ∈ X (2.6)

Product t-norm: µA∩B(x) = µA(x) · µB(x), ∀x ∈ X (2.7)

Definition 2.3. A t-conorm ⊕ is a function [0, 1]× [0, 1] 7→ [0, 1] that satisfies

the following properties:

• Commutativity: a⊕ b = b⊕ a

• Monotonicity: a⊕ b ≤ c⊕ d if a ≤ c ∧ b ≤ d

• Associativity: a⊕ (b⊕ c) = (a⊕ b)⊕ c

• 0 is the identity element: a⊕ 0 = a

One of the most widely used t-conorm operators in fuzzy logic to implement

the union (∪) is the maximum t-conorm, i.e.:

Maximum t-conorm: µA∪B(x) = max(µA(x), µB(x)), ∀x ∈ X (2.8)

The choice of the specific t-norm and t-conorm operators can vary and

depends, among other things, on the specific problem modelled or addressed.
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2.2 Rules and rule-bases

With fuzzy logic, it is possible to create relations between fuzzy sets through

rules. They are if-then statements like the first-order logic ones, for example:

IF x is A THEN y is B (2.9)

where A and B are FSs with universe X and Y , x ∈ X, y ∈ Y . The antecedent

block can contain multiple fuzzy sets in conjunction or disjunction, for example

”IF x is A AND y is B” or ”IF x is A OR y is B”. The “AND” and “OR”

operators are implemented respectively with the fuzzy set intersection (∩) and

union (∪).

Whenever the FSs and inputs involved model words, the rules can be ex-

pressed in a way that is very similar to human reasoning. For example, a

controller that increases the speed of a fan when the temperature is high,

could be implemented with fuzzy logic by the following rule: IF temperature

is high THEN fan speed is fast. This property has been defined by Zadeh as

“computing with words” [9].

Since the operations that are necessary to carry out the inference, are im-

plemented with functions that work on fuzzy sets, for the input values to be

used they must be fuzzified (i.e.turned into fuzzy sets) by the fuzzifier [14]:

Definition 2.4. Given a universe X, the fuzzifier maps a crisp point x ∈ X

into a fuzzy set Ax.

When the input is a crisp number, the fuzzifier is called singleton fuzzifier 1

[14]:

Definition 2.5. A singleton fuzzifier is one for which µAx(x) = 1∧ µAx(x′) =

0; x, x′ ∈ X, x 6= x′.

Rules that produce fuzzy sets as outputs are known as Mamdani rules [33]:

1Only singleton fuzzification is described, as non-singleton fuzzification is beyond the
scope of this thesis
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once the antecedents have been evaluated, the minimum t-norm is used to

carry out the implication between the fuzzy set obtained from the antecedent

evaluation and the consequent set(s). Since the modelling capability of a sin-

gle rule is limited, for practical applications multiple rules are designed and

grouped in rule-bases. The fuzzy sets resulting from the evaluation of each

Mamdani rule are grouped through the union (i.e. a t-conorm, usually imple-

mented through the maximum t-conorm). Therefore, the global result is still

a fuzzy set.

Since Mamdani rule-bases produce fuzzy sets as outputs, they must be

turned into crisp numbers to be usable in practice: this process is called de-

fuzzification [14]:

Definition 2.6. A defuzzifier maps one or more fuzzy sets into a real number.

The defuzzification of the result of Mamdani rule-bases can be carried out

through different approaches.

One of the most popular in the literature is the centroid defuzzification:

Definition 2.7. Given a fuzzy set A with a discrete universe of discourse X

with n points, its centroid is computed as:

Centroid(A) =

∑n
i=1 µA(xi)xi∑n
i=1 µA(xi)

, (2.10)

Although it is a very popular defuzzification method and one of the first to

be used in real-world applications [14], its computation can be time consuming.

The fuzzification, rule-base, inference and defuzzification processes are usu-

ally referred to as a fuzzy logic system (FLS). A scheme summarizing all the

components of a FLSs and how they communicate is reported in Fig. 2.2.
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Figure 2.2: Overview of the architecture of a fuzzy system.

2.3 Fuzzy Logic in Explainable Artificial In-

telligence

Fuzzy logic has some characteristics that make FLSs inherently understandable

by humans. In fact, FSs can be designed to have a clear semantic meaning (e.g.

when they model a word) while rules create an input-output mapping with a

structure similar to human reasoning. Additionally, after a FLS produces an

output, it is possible to analyse the rules of the rule-base that fired together

with their antecedents, making it possible to gain valuable insight into the

decision process of the system.

These properties have recently made FLSs a valuable tool for XAI appli-

cations in different areas, like the medical domain. Some fuzzy models have

been shown to be usable to detect many diseases [34], including life threatening

illnesses like lung [35] and breast [36] cancer. Other works analyzed the ability

to produce textual explanations in natural language from FLSs [11, 12, 37].

Fuzzy sets have also been used to model the variation that naturally occurs

in human decisions. In fact, if queried repeatedly, humans may provide dif-

ferent answers over time, as they “may have new or better information about

the problem domain, may have forgotten specific details, may be in a different

mood, etc.” [38].
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This non-deterministic behaviour has been modelled by non-stationary fuzzy

sets [39]. They capture minor variations through random alterations of the

membership function, according to a given perturbation function. Non-stationary

fuzzy sets have been successfully applied to model expert-knowledge variation

in intelligent systems [40, 41].

To improve the performance of interpretable FLSs [10], they are sometimes

optimized with genetic algorithms [42] to tune a single component of a FLS

(such as the FSs involved, the rulebase, the rule structure) or all of them.

Although FLSs can be used to build interpretable models, some concerns

have been raised about the inherent interpretability of fuzzy logic [5, 10]. A

FLS, in fact, is not intuitively understandable per se: the use of inappropriate

shapes for the FSs, a rule-base with hundreds of rules or individual rules with

a long chain of antecedent and consequents are all issues that may significantly

decrease the interpretability of a fuzzy model. These aspects must be taken

into account when designing a system, without assuming that the use of fuzzy

logic automatically makes the system easy to understand.

Additionally, the kind of fuzzy sets described so far, i.e. type-1 (T1) fuzzy

sets, can only handle a limited amount of uncertainty. In fact, their member-

ship functions are very “crisp”, as they assign a single number to every element

in the universe of discourse. However, sometimes it is challenging to define the

membership degree with such precision. For example, words usually have a

slightly different meaning for different people. Therefore, for each element

in the universe, different membership degrees could be chosen, depending on

the background and taste of a specific person; it would be desirable, in this

context, to model this uncertainty when designing the membership function.

2.4 Type-2 Fuzzy Sets

Type-2 (T2) fuzzy sets [16] were introduced by Zadeh to overcome the “crisp-

ness” of T1 memberships. Intuitively, they are obtained by “blurring” the
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boundaries of T1 fuzzy sets. As a result, the membership degree is no longer

a number, but an interval in which each point can have a different weight

between 0 and 1. Formally, a type-2 fuzzy set (T2 FS) Ã is denoted as:

Ã = {((x, u), µÃ(x, u)) |x ∈ X, u ∈ [0, 1]} (2.11)

where µÃ : X × [0, 1] 7→ [0, 1] is the membership function of Ã.

T2 FSs can be represented as three dimensional objectives (Fig. 2.3). The

“third dimension” is used to represent the weight of the points given by the

membership function to each pair (x, u).

Figure 2.3: A type-2 fuzzy set. The colours help identify the values in the third
dimensions, going form blue to red, being respectively 0 and 1.

Because of their more complex structure, they have additional character-

istics compared to T1 sets. Two of them are the primary and secondary

membership [14, 43, 44]:

Definition 2.8. Given a T2 FS Ã with universe X, the primary membership

of x, Jx, is:

Jx = {(x, u)|u ∈ [0, 1], µÃ(x, u) > 0} (2.12)

The primary membership Jx can be intuitively seen as the T1 FS that is

obtained by slicing the T2 FS vertically at the value x.
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Definition 2.9. For every x ∈ X, and u ∈ [0, 1], the value of µÃ(x, u), also

written as µÃ(x)(u), is called the secondary grade of x. For every x ∈ X, µÃ(x)

is the secondary membership of Ã with respect to x.

Another key concept of T2 FSs is the footprint of uncertainty :

Definition 2.10. Given a T2 FS Ã, its footprint of uncertainty (FOU) is the

set of points (x,u) for which µÃ(x, u) > 0:

FOU(Ã) = {(x, u) | (x, u) ∈ X × [0, 1], µÃ(x, u) > 0} (2.13)

Figure 2.4: Example of FOU (purple region).

Intuitively, the FOU is the area representing the uncertainty in the mem-

bership function (e.g. Fig. 2.4), without taking into account the weight of each

specific point. Intuitively, it is a 2D projection of the T2 FS. The boundaries

of this area are called upper (µÃ) and lower (µ
Ã

) membership function of the

FOU [14] (Fig. 2.5):

µÃ(x) = sup{u|u ∈ [0, 1], µÃ(x, u) > 0} (2.14)

µ
Ã

(x) = inf{u|u ∈ [0, 1], µÃ(x, u) > 0} (2.15)

Embedded sets (ESs) are another key concept related to T2 FS, since they
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Figure 2.5: Upper (in red) and lower (in black) bounds of the FOU in Fig. 2.4.

have been widely used to obtain theoretical results for T2 FSs and are used in

many fuzzy measures [44].

Definition 2.11. [1] A type-2 embedded set (T2 ES), denoted ÃE, is a path

along the T2 set it belongs to. It contains only one primary degree ux for each

x, with its associated secondary grade vx:

µÃE
(x, ux) = vx x ∈ X, ux ∈ Jx (2.16)

Definition 2.12. [44] A type-1 embedded set (T1 ES), denoted AE represents

a projection of a T2 ES, i.e. its secondary degree has been dropped. Therefore

it contains one primary degree ux for each x:

µAE
(x) = ux; µAE

(x, ux) = vx x ∈ X, ux ∈ Jx (2.17)

The defuzzification of a T2 FS (i.e. its conversion into a number) usually

involves a type-reduction step. Its goal is to map a T2 FS into a T1 FS which

can then be defuzzified using T1 defuzzification procedures.

The type-reduction is carried out following the procedure shown in Algo-

rithm 1 (rephrased from [45]). The algorithm requires the evaluation of all

the embedded sets of the discretized T2 FS and is for this reason sometimes
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called exhaustive method. As the number of embedded sets increases expo-

nentially with the number of discretization points used, this procedure is very

computationally expensive and limits the applicability of T2 FLSs in practice.

For this reason, type-reduction has become a very active research area [14].

Recently, some approximation procedures have been proposed, that signifi-

cantly reduce the run time of T2 FLS.

Algorithm 1 Type-reduction for type-2 fuzzy sets (rephrased from [45])

Given a type-2 fuzzy set Ã

for each embedded set E of the type-2 fuzzy set Ã do

Find the minimum secondary membership grade, z

Calculate the primary domain value x of the centroid of E

Pair z with x (some x values may be paired with more than 1 z value)

end for

for each primary domain value x do

Keep only the pair (x, z) with the maximum secondary grade z

end for

The final (x, z) pairs represent the type-reduced set of Ã

Greenfield et al.[46] presented the sampling approach. The authors claim

that a single embedded set has a very little impact on the final T2 centroid

output. Therefore, they developed an approximation algorithm that only con-

siders a random subset (of fixed cardinality) to carry out the type-reduction.

They show how for a random sample of at least 1000 embedded sets the dif-

ference with the exhaustive method is negligible while the running time is

drastically reduced (up to 10 000 times faster).

A different approach is represented by the use of α− planes [47, 48]. Con-

ceptually, the idea is to discretize (“cut”) the T2 FS along the third dimension,

generating a set of planes. The centroids of the planes, can then be used to

compute the centroid of the T2 FS they belong to. An equivalent approach

(zSlices) has been proposed by Wagner and Hagras [49].
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A conceptually similar idea has been used by John [50] with the vertical

slice centroid type-reduction. A given T2 FS is cut into a number of vertical

slices and each one of them is defuzzified as a T1 set. Then the domain (x)

value of the slice is paired with this defuzzified value to build the type-reduced

set. This method, however, is highly intuitive since no mathematical proof has

been given for its validity.

2.5 Interval Type-2 Fuzzy Sets

Although some approximation procedures have been introduced to reduce the

time complexity of T2 FLSs, they still remain significantly slower than their

T1 counterpart. For this reason, a more efficient special case of T2 FSs is

usually used in the literature: interval type-2 (IT2) FSs.

Intuitively, IT2 membership functions assign a weight of either 0 or 1 to

every point generated by the “blurring”. Therefore, the third dimension can

be dropped as they can be fully represented by the FOU with its upper and

lower membership functions. Formally, an IT2 FS is defined as follows:

Definition 2.13. [17] An interval type-2 fuzzy set (IT2 FS), denoted Ã, is

characterized by an IT2 MF µÃ : X × [0, 1] 7→ {0, 1} (i.e. µÃ(x, u) is either 0

or 1):

Ã = {((x, u), µÃ(x, u)) |x ∈ X, u ∈ [0, 1]} (2.18)

The inference process and set operations such as the union and intersection,

can be carried out using T1 mathematics working with the upper and lower

memberships of the FOU only [14, 17], which simplifies the execution of IT2

FLSs compared to general T2 FLSs:

Definition 2.14. Given two IT2 FS Ã and B̃ the lower memberships of the

IT2 FSs resulting from their union and intersection can be computed as follows:

µ
Ã∪B̃(x) = µ

Ã
(x)⊕ µ

B̃
(x) (2.19)
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µ
Ã∩B̃(x) = µ

Ã
(x) ? µ

B̃
(x) (2.20)

with ? and ⊕ being respectively a t-norm and a t-conorm. The upper member-

ship of Ã ∪ B̃ and Ã ∩ B̃ can be computed analogously.

Also the type-reduction step for IT2 is simpler to compute, compared to

general T2 FSs. Specifically, when type-reducing an IT2 FSs with a continuous

FOU, the resulting T1 FS R is fully identified by the interval [l, r], as its

membership function is the following:

µR(x) =


1, x ∈ [l, r]

0, otherwise

(2.21)

The values l and r are respectively the lowest and highest centroid among

all the embedded sets of the IT2 FS to defuzzify. The most widely used

algorithms to compute l and r are the Karnik-Mendel (KM) [18] and the

enhanced Karnik-Mendel (EKM) [19] procedures. They mathematically model

the type-reduction problem in an efficient iterative procedure that converges

in a finite number of iterations.

Once the type-reduced set has been obtained, the centroid defuzzification is

used to generate the final crisp value. Since the type-reduced set is identified

by the interval [l, r], its centroid is easily computed as its midpoint l+r
2

.

2.6 Interpretability Issues of Type-2 Fuzzy Logic

As already mentioned in the Introduction, some research papers analyzed how

the use of T2 and IT2 FSs and FLSs can impact the overall interpretability of

fuzzy models. One of the issues that can arise in some contexts, concerns the

loss of semantic value when embedded sets are taken into account [1, 20, 21].

Thanks to the representation theorem [44], a T2 (or IT2) FS can be ex-

pressed as the union of its T2 embedded sets. However, it is often the case

that the embedded sets do not plausibly model the concept represented by the
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T2 FS they belong to.

Figure 2.6: One of the embedded set of the FOU shown (picture from [1])

For example, the IT2 FS in Fig. 2.6 models the concept of medium height.

The T1 embedded set in red, although mathematically acceptable, could hardly

carry the same semantic meaning due to its shape. It seems reasonable to

expect an IT2 FS modelling medium height to be a collection of different but

plausible T1 embedded sets modelling the same concept. However, in the

original mathematical definition of a T2 FS, this semantic connection cannot

be preserved. This is a significant semantic issue in some contexts, since the

shape plays an important role in the interpretation that humans give to a set.

This phenomenon becomes increasingly problematic when one takes into

account fuzzy operators that make extensive use of the embedded set. For

example, the exhaustive method for type-reduction processes all the embedded

sets. Although other procedures (e.g. KM and EKM) do not process individual

embedded sets, they directly compute l and r. These two values, however,

represent the centroids of two of the embedded sets of the IT2 FS to type-

reduce. Therefore, when l and r come from two embedded sets that do not

carry a clear semantic meaning, like the one shown in Fig. 2.6, providing a

human-understandable explanation for the type-reduction and defuzzification

becomes very challenging. In other words, understanding intuitively why and

how two specific l and r values have been produced is not straightforward.

This problem also affects FLSs, as the type-reduction and defuzzification are
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the last two steps for the computation of the final output. Consequently, even

if the FSs used have a clear semantic meaning and the rule-base model is

similar to the structure used in human reasoning, providing an explanation

for the final system prediction is very challenging due to the presence of the

type-reduction and defuzzification that decrease the overall interpretability.

The explainable T2 FLSs in the literature mainly perform classification

tasks by solely identifying the single-consequent rule with the highest firing

to make their predictions [11, 12, 35]. Although this system bypasses the

issues that may arise from the type-reduction and defuzzification it also has

some limitations. Specifically, having a model in which a single rule (the one

with the highest firing strength) contributes to the final result may be not be

sufficient to model complex problems.

A recent paper [51] proposed a novel method that shows which rules con-

tributed to the final prediction of an IT2 FLS after the type-reduction and

defuzzification. Although this approach improves the global interpretability of

IT2 FLSs, a gap remains between the rules that fired and the way in which the

crisp output was generated. In other words, although this approach provides

a better insight on the decision process, it does not fully solve the issue gen-

erated by the lack of interpretability of the type-reduction. In fact, although

knowing which rules fired helps to understand how the system is reasoning,

it still does not fully explain in a meaningful manner how the l and r values

are obtained from the type-reduction: the same set of firing rules does not

always correspond to the same type-reduced set, as other components need to

be taken into account, such as the firing strength and the impact on the final

output for each rule.

2.6.1 Well-Shaped Interval Type-2 Fuzzy Sets

Some research work [1, 21] tackled the lack of interpretability of the type-

reduction by imposing additional restrictions on the original definition of T2
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or IT2 FSs. Specifically, the main goal was to completely remove the embedded

sets that could hardly carry a semantic meaning while keeping the ones with

a shape that could plausibly represent the concept modelled by the T2 FS.

Well-shaped IT2 FS [21] achieve this aim by imposing two additional math-

ematical properties, convexity and normality, to all the embedded sets of IT2

FSs.

Definition 2.15. An T1 FS A is normal if and only if ∃x ∈ X : µA(x) = 1

Definition 2.16. A T1 FS A is convex if and only if :

µA(δx1 +(1−δ)x2) ≥ min
(
µA(x1), µA(x2)

)
, ∀x1, x2 ∈ X and δ ∈ [0, 1] (2.22)

The reason behind this choice is that in the vast majority of the practical

applications of fuzzy logic, all the fuzzy sets used present these two character-

istics, especially when they model meaningful concepts such as words.

By limiting the shapes of the embedded sets, this approach also limits the

possible shapes of the FOU to the ones that can be fully covered by only convex

and normal embedded sets (from here, the name well-shaped sets).

Definition 2.17. (Adapted from [52]) Let Ã be an IT2 fuzzy set; let [b, c] be

the top base of its upper membership µÃ and [f, g] the top base of its lower

membership µ
Ã

.

Ã is well shaped if and only if:

1. Ã is normal and convex

2. f ≥ b ∧ g ≤ c i.e., the top base of the lower membership is completely

within the top base of the upper membership.

In a recent paper [52], the authors created a new well-shaped representation

theorem from which they extend some of the most popular fuzzy uncertainty

measures to their well-shaped IT2 FSs.

Although this novel approach represents a first step in tackling the inter-

pretability issues caused by the unrestricted shape of the embedded sets, it
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creates a very strong connection between convexity, normality and the mean-

ingfulness of a set. However, as discussed later in this thesis (Chapter 3 and

6), the meaningfulness of a set is a property that is heavily context dependant.

There are many cases in which convexity and normality alone fail to guarantee

that the shape of a set will be meaningful. For example, to model the word

medium additional properties might be required. A plausible representation,

would involve a fuzzy set with a membership function that monotonically in-

creases up to a point or a plateau, before monotonically decreasing. However,

in well-shaped FSs it is not possible to impose these additional properties.

Furthermore, in other contexts non-normal sets still have a semantic con-

notation. For example, the fuzzy outputs (i.e. before the defuzzification step)

of T1 Mamdani system are rarely normal. However, by analysing them it is

possible to extract valuable information about the decision process of the FLS

(e.g. the firing of the rules and which consequent sets contributed to the final

result).

2.6.2 Constrained Type-2 Fuzzy Sets

Constrained type-2 (CT2) fuzzy sets [1] represent an alternative approach to

address the problem caused by the unrestricted shape of the embedded sets.

Garibaldi et al. [1] proposed a systematic way to create T2 FSs starting

from meaningful T1 FSs while preserving the semantic value throughout the

process. In contrast with the well-shaped approach, in the CT2 case, the

shape of the starting T1 FS, called generator set, is assumed to be meaningful.

Therefore, only the embedded sets that have the same shape as the generator

set are considered as acceptable and processed by the fuzzy operators, including

the type-reduction. A similarity relation is used to determine the weight of

each pair (x, u), x ∈ X, u ∈ [0, 1]: the closer the point (x, u) is to the generator

set, the higher the weight. Intuitively, CT2 FSs can be seen as a way to model

a T1 FS with uncertainty around its location on the x-axis. Similarly to the
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well-shape shaped approach, also CT2 indirectly limit the possible shape of

the FOU to the ones that are fully representable by the acceptable embedded

sets.

Formally, a CT2 FS is defined as follows (rephrased from [1]):

Definition 2.18. A CT2 FS Ã is a T2 FS denoted by µδ
Ã

: X × [0, 1] 7→ [0, 1]

that is built from a generator T1 FS A with µA : X 7→ [0, 1] and a similarity

relation δ : X ×X 7→ [0, 1] (that captures the imprecision related the value of

X). And it is built as follows:

µδ
Ã

(x, u) = sup
u=µA(y)

δ(x, y), x, y ∈ X (2.23)

When the similarity function returns either 0 or 1, the set generated is

called constrained interval type-2 (CIT2) fuzzy set. A CIT2 obtained from a

Gaussian generator set is shown in Fig. 2.7. Some of the acceptable embedded

sets are shown in black within the footprint of uncertainty. All the acceptable

embedded sets, are translated version of the generator set along the x-axis,

within the FOU.

Figure 2.7: Example of a CIT2 FS (picture adapted from [1])

The constrained approach, compared to the well-shaped one, focuses more

on the importance of a specific shape to model a given concept, rather than

convexity and normality. On one hand, this gives the constrained approach the

flexibility to use, for each concept, the shape that better represents its semantic
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meaning. On the other hand, choosing a single shape may be limiting in some

situations, as some concepts may be plausibly modelled by multiple shapes.

For example, the word medium could be modelled by both Gaussians and

triangles but this scenario is not allowed in the CT2 representation.

2.7 Reflection on the state of the art

Being able to design interpretable IT2 intelligent systems would represent an

important step forward for the use of fuzzy logic in XAI, as IT2 logic has been

shown to outperform T1 in many scenarios while also offering higher modelling

capabilities and handling of uncertainties.

CIT2 FSs represent a promising tool to increase the interpretability of IT2

models as they focus on preserving the semantic connection between the sets

and the concept they model through the use of meaningful shapes. Although

the idea of CIT2 FSs has already been introduced, there are some limitations

in the state of the art that do not make the CIT2 representation usable in

practice. At the moment, there is no systematic way to create CIT2 FSs

once the generator set has been determined. It would be beneficial, for the

design of CIT2 FSs, to have a formal analysis of how the generator set, the

FOU and the acceptable embedded sets are mathematically related, in order

to make CIT2 FSs implementable in software. Furthermore, there has not yet

been developed an inference framework that is able to preserve the semantic

value guaranteed by the constrained approach. As a result, the additional

interpretable properties of CIT2 FLSs would be lost if used with standard IT2

inference and defuzzification methods. A particular effort should be made in

the design of a new type-reduction step, as it is the component that breaks

the semantic connection in the input-output mapping of IT2 FLSs.

Lastly, there are no studies that involve real-world applications of CIT2

FLSs. Comparing and contrasting this new class of sets with other approaches

is crucial to assess both the perceived interpretability and performance of this
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new modelling method. This is a necessary step to understand in which con-

texts CIT2 FLSs represent a valuable alternative to the standard IT2 modelling

approach.



Chapter 3

An Inference Framework for

Constrained Interval Type-2

Fuzzy Sets

3.1 Introduction

Whilst the current T2 and IT2 framework has shown to have many advantages

over T1 approaches, particularly in their ability to exhibit greater performance

in most situations, there are drawbacks. Two properties which may decrease

the overall interpretability of T2 systems are: (i) there is currently no agreed

mechanism to derive the FOU, particularly in the situation in which a concept

being modelled by a T1 set has uncertainty added to form a T2 set representing

the same concept; and (ii) embedded sets (ESs) may have any shape, including

ones which bear no relationship to the concept being modelled.

To overcome these issues, Constrained Type-2 (CT2) fuzzy sets have been

proposed [1]. The idea behind them is to address the two limitations above by:

(i) providing an explicit method for generating the boundaries of the footprint

of uncertainty that keeps a shape coherency [1] throughout the generation

of the type-2 set, based on an underlying concept modelled by a type-1 set;

and (ii) restricting the acceptable embedded sets that may be used to only a

32
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subset of all the ESs, in order to process only shapes that may be considered

meaningful in that specific context. Even though the concept of CT2 FS

has already been formulated [1], some key components are currently lacking

formal definitions such as the acceptable embedded sets, constrained inference

and centroid defuzzification.

This chapter, will provide some theoretical underpinning for this new con-

strained representation, focusing specifically on constrained interval type-2

(CIT2) fuzzy sets and contributing towards the objectives 1 and 2 of this the-

sis. In addition to formal definitions, a full inferencing and defuzzification

framework is then proposed for the creation of CIT2 Mamdani-style fuzzy

inference systems. Next, the CIT2 approach is compared with the recent

framework introduced by Wu et al [21, 52] for creating ‘well-shaped’ type-2

sets. Finally, a practical application will be shown and compared with the

conventional IT2 representation in terms of interpretability and explainability

of the outputs, performance and run-times. Specifically, a genetic architecture

will be described for the automatic generation of CIT2 fuzzy systems which is

tested on two real world data-sets. Whilst interpretability is itself a difficult

and complex concept to define, and is somewhat subjective in nature, never-

theless worked examples and the practical applications are shown to illustrate

ways in which interpretability is enhanced. Throughout, it is stressed that the

proposed CIT2 approach, which may be used in contexts in which explainabil-

ity and interpretability are considered important, is an alternative to other

approaches including the conventional type-2 approach.
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3.2 Motivation

In the literature, there are three main approaches to determine the upper and

lower bounds of the FOUs of T2 FSs when starting from already existing T1

MFs modeling the same concept. The first one identifies the two boundary MFs

by taking the parameters of the existing T1 MFs and adding some uncertainty

to them [25–30]. For example, in the case of a T1 Gaussian with mean m and

variance v, the upper and lower bounds of the FOU could be the Gaussians

with mean m and variances v−k and v+k respectively, with k being a positive

real number.

A different method defines the FOU as the area covered by the translation

along the x-axis of the starting T1 MF by a factor c and −c, c ∈ R [22–24].

The result is a symmetrical blurring around the starting T1 MF. An example

of an FOU obtained with this approach with a T1 Gaussian can be seen in

Fig. 3.1.

Figure 3.1: In red, one of the embedded sets of the interval type-2 fuzzy set in grey
(picture from [1])

Another approach has also been proposed. It models the FOU so that it

embeds all the T1 MFs obtainable from observations [20] or from the modeling

of the same concept under different circumstances [53].

All those methods have in common the fact that they identify some T1

shapes as “meaningful” in their context and then use them to build the FOUs.

However, when some fuzzy operators such as the Karnik-Mendel (KM) type-
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reduction algorithm [18] are used, all the ESs are processed, regardless of their

shape. As a consequence of that, ESs that could hardly represent the con-

cept they are modelling, will likely determine the end-point of the defuzzified

centroid. Since those ESs have a low interpretability due to their shape, the

explainability of the output and, consequently, of the fuzzy system or set that

generates it, decreases. However, in the recent years building explainable in-

telligent systems has become increasingly important [7, 54]. The following

examples support these claims. Suppose that one decides to model the con-

cept of medium height using a T1 Gaussian MF, as shown in Fig. 3.2. This

set is named T1 generator set (GS). If one wants to build an IT2 FS from

that, a possible approach would be to ask different people to place the mean

of the Gaussian on the x-axis, after its variance value had been previously

determined (similar approaches can be found in [55, 56]).

Figure 3.2: T1 Gaussian MF (picture from [1])

It is likely that something similar to what is shown in Fig. 3.3 would be

obtained, since the concept of medium height would vary slightly from person

to person. Now this collection of T1 MFs can be used to determine the FOU

of the IT2 FS.

As in [53], those sets will be embedded in the FOU. To do so, the translation

method mentioned above will be used, i.e. the FOU will be defined as the area

covered by the shifting of the GS from the leftmost to the rightmost Gaussian

to embed. The result of this operation is shown in Fig. 3.4.
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Figure 3.3: Possible result of the thought experiment described above (picture from
[1])

Figure 3.4: FOU of a possible IT2 FS modelling medium height (picture from [1])

If the standard IT2 representation is used, the ESs within the FOU can

have arbitrary shapes. That makes even the ES shown in Fig. 3.5 acceptable.

In this particular context, it is clear that a T1 ES like that has very little

relation with the concept of medium height. In fact, no observation of the

participants’ opinion during the experiment led to such shape. Furthermore,

this representation affects the centroid value and its explainability. The set

shown in Fig. 3.6 has been obtained with the process described in the thought

experiment above.

If the KM procedure [18] is used to type-reduce it, the algorithm will find

the two ESs that give us the left and right endpoints of the centroid. For the

IT2 FS in Fig. 3.6, the results are show in in Fig. 3.7.

These sets do not seem to fit this case very well. That is because, to obtain
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Figure 3.5: One of the embedded set of the FOU shown (picture from [1])

Figure 3.6: Possible FOU generated from a Gaussian T1 MF

the type-reduced value, the algorithm chose two ESs that did not represent

any of the observations made during the experiment; additionally, those shapes

could hardly represent the concept of medium height that is being considered.

System output defuzzification represents another useful example to see how

the standard IT2 representation affects the interpretability and explainability

of fuzzy systems. Consider, for example, the fuzzy output set shown in Fig. 3.8,

and its associated left and right endpoints shown in Figs. 3.9 and 3.10, respec-

tively. In Fig. 3.9, the embedded sets of the left endpoint derived using the

constrained centroid (Fig. 3.9(a)), and the KM procedure (Fig. 3.9(b)) are

compared. Similarly, Fig. 3.10 compares those of the right endpoint. The ES

used for the constrained centroid preserve the same level of interpretability of

T1 system outputs in that the shapes of the generator sets are clearly identi-

fiable and so are the firing strengths that generated them. As a consequence

of this, it is possible to get an intuitive idea of the sets that lead to the end-
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Figure 3.7: ESs used by the KM procedure to obtain the centroid of the IT2 FS in
Fig. 3.6

points. In addition to that, knowing which rules (and therefore which inputs

and antecedents) generated the ES from which the endpoints are obtained,

gives an explanation to how and why the final output of the system has been

obtained. In the KM case, on the other hand, the shape coherency with the

original shape is partly lost and the firing strengths are not as clear as in the

CIT2 case.

Figure 3.8: Fuzzy output of a CIT2 fuzzy system

Figure 3.9: ESs that determine the left value of the CIT2 (a) and KM (b) centroid
of the set in Fig. 3.8.

Intuitively, the standard T2 definition gives too much “mathematical free-
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Figure 3.10: ESs that determine the right value of the CIT2 (a) and KM (b)
centroid of the set in Fig. 3.8.

dom” in some contexts, posing no restrictions on the shape of the FOU and

of the ESs, especially when modeling T2 MFs from an underlying concept

represented as a T1 FS with uncertainty. For these reasons, CIT2 FSs were

proposed, in which both the FOU and the ESs considered as acceptable have

a shape that is “meaningful” for the context in which they are used.

The specific sense of “meaningfulness” can vary. The intuitive idea is that

the shape of the MFs should be reasonable for the semantic meaning they

carry. For example, in the case of the concept of medium height, only a MF

that monotonically increases up to a plateau and then monotonically decreases

would be “meaningful”. That is simply because any MF without these proper-

ties would result in a counter-intuitive set for the representation of the medium

height concept.

In other contexts, meaningful shapes can be obtained as a result of experi-

mental observations, data analysis or experts’ knowledge.

3.3 Constrained Interval Type-2 Fuzzy Sets

Although the main concepts of CT2 FSs can be extended to all T2 FSs, the rest

of the thesis will only focus on interval type-2 fuzzy sets and their constrained

representation (CIT2). The motivations behind this decision will be discussed

later in the chapter. Also, it is assumed that the universe of discourse (UOD)

considered is a connected subset of R.

The idea behind CIT2 FSs is to generate a T2 FS starting from a T1 FS
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modeling the same semantic concept. This T1 FS is called type-1 generator set

(T1 GS) (e.g. the T1 FS in Fig. 3.2 is the T1 GS for the thought experiment

in Sec. 3.2). To obtain the CIT2 FS, uncertainty is added on the location of

the T1 GS on the x-axis. That is done by using a set of offsets, that intuitively

represent all the possible valid locations of the T1 GS. This set of offsets is

called displacement set :

Definition 3.1. A displacement set (DS), denoted D, is a closed set of real

numbers such that:

D ⊆ R, 0 ∈ D (3.1)

When the DS is a continuous interval, it can be expressed as D=[a,b], where

a, b ∈ R, a ≤ 0 ≤ b.

With a DS plus a T1 GS, it is possible to define the T1 FSs that will

represent the acceptable embedded sets (AES) of the CIT2 FS modelled.

Definition 3.2. A collection of T1 acceptable embedded sets (CAES), is a set

of T1 FSs obtained from the shifting of a T1 GS G. Formally, each of the

acceptable embedded sets (AES) S in a CAES can be expressed as:

S = {(x, µS(x)) |x ∈ X} (3.2)

where

µS : X 7→ [0, 1], ∃c ∈ D : µS(x) = µG(x− c),∀x ∈ X (3.3)

given a UOD X, a DS D, a T1 GS G.

Given a CAES, it is possible to generate a CIT2 FS:

Definition 3.3. A constrained interval type-2 fuzzy set (CIT2 FS) Ă, is de-

fined as follows:

Ă = {((x, u), 1) |x ∈ X, u ∈
⋃

S∈CAESĂ

µS(x)} (3.4)
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with CAESĂ being the CAES from which Ă is obtained. In this case, Jx can

be rewritten as follows:

Jx =
⋃

S∈CAESĂ

(x, µS(x)), µS(x) > 0 (3.5)

Ă can also be written as:

Ă =

∫
x∈X

∫
u:(x,u)∈Jx

1

/
(x, u)

=

∫
x∈X

∫
u∈

⋃
S∈CAES

Ă

µS(x)

1

/
(x, u)

(3.6)

It is important to note that CIT2 FSs represent a subset of IT2 FSs since

they impose additional constraints on their mathematical definition, just like

IT2 FSs represent a subset of the more general T2 FSs.

In order to prove an important property, it is necessary to build a three-

dimensional version of the sets in the CAES. Since they are T1 FSs, building

their three-dimensional representation is straightforward. Given a T1 set A,

its three-dimensional representation Ã (i.e. its representation as a T2 FS) is

defined as follows:

Ã = {(x, µA(x), 1) |x ∈ X} (3.7)

By applying (3.7) to all the sets in a given CAES, a collection of IT2 ac-

ceptable embedded sets is obtained.

Definition 3.4. A collection of acceptable IT2 embedded sets (C̃AES) of a

CIT2 set Ă, denoted C̃AESĂ, is a set of CIT2 embedded sets described as

follows:

C̃AESĂ = {S̃ |S ∈ CAESĂ} (3.8)

with

S̃ = {((x, µS(x)), 1 |x ∈ X} (3.9)
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Each of the sets S̃, can also be described as:

S̃ =

∫
x∈X

∫
µS(x)

1

/
x =

∫
x∈X

(µS(x), 1) /x (3.10)

The sets in the C̃AESĂ are actual T2 ESs of Ă, since they satisfy Definition

2.11.

While all the definitions up to this point could be easily extended to the

general CT2 case, the conversion of T1 MFs to AESs of a general T2 FS would

not be so trivial. That is because the membership degree of each of the pairs

((x, µS(x)) could not be easily determined since it could be any value between

0 and 1. The conversion to AES of IT2 FS, instead, is straightforward and

shown in Def. 3.4. A possible solution to this has been proposed in [1], in

which a similarity function is used on each AES S and the GS to determine

µS̃(x, µS(x)), ∀x. However, the use of this and other possible approaches,

together with the interpretability of three-dimensional embedded sets will be

analyzed in future work. Definition 3.4 is very important since it allows us to

introduce the CIT2 representation theorem:

Theorem 3.1. Given a CIT2 set Ă and its C̃AESĂ, Ă can be expressed as

the crisp set union of all the IT2 sets S̃ in C̃AESĂ:

Proof. To do that, it will be shown that it is possible to write the union of all

the S̃ ∈ C̃AESĂ as (3.6), by rewriting S̃ as in (3.10):

∫
S̃∈C̃AESĂ

S̃ =

∫
S̃∈C̃AESĂ

(∫
x∈X

∫
u=µS(x)

1

/
(x, u)

)
=

∫
x∈X

∫
u∈

⋃
S∈CAES

Ă

µS(x)

1

/
(x, u)

(3.11)

Theorem 3.1 allows us to define CIT2 operations by only working with

AESs. For example, the union of two sets Ă and B̆ is defined as follows.
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Corollary 1. Given two CIT2 sets Ă and B̆, their union is the union of the

T2 embedded sets S̃ in C̃AESĂ and C̃AESB̆
1:

Ă ∪ B̆ =

∫
Ã′∈C̃AESĂ

Ã′ ∪
∫
B̃′∈C̃AESB̆

B̃′

Ă ∪ B̆ =

∫
Ã′∈C̃AESĂ

∫
B̃′∈C̃AESB̆

Ã′ ∪ B̃′
(3.12)

Intuitively, all the combinations of all the AES of the two CIT2 sets involved

in the operation are considered. The unions between the AESs of Ă and B̆

generate the AESs of the FS generated from the union of Ă and B̆.

Analogously,the CIT2 intersection and complement can be derived:

Ă ∩ B̆ =

∫
Ã′∈C̃AESĂ

∫
B̃′∈C̃AESB̆

Ã′ ∩ B̃′ (3.13)

Ă =

∫
Ã′∈C̃AESĂ

Ã′ (3.14)

Also the upper and lower MFs of the FOU of a CT2 FS can be expressed

in terms of the AES:

Definition 3.5. Given a CIT2 FS Ă, its upper MF µĂ and lower MF µ
Ă

are

defined as follows:

µĂ(x) = sup
S∈CAESĂ

µS(x) (3.15)

µ
Ă

(x) = inf
S∈CAESĂ

µS(x) (3.16)

Even though IT2 and CIT2 operations may seem similar, they are con-

ceptually different. In the IT2 case, the only goal of operations such as the

union and intersection is to generate the new upper and lower-bound MFs and

therefore the FOU. In the CIT2 case that is not enough. In fact, the key point

of CIT2 operators is the generation of a new CAES, that determines which

ESs are considered acceptable and therefore which ESs will be considered by

1(3.12) involves integral and union signs, where the integral sign is shorthand for lots
of union signs. The union sign indicates the union between members of a set, whereas the
integral sign represents the union of the sets themselves.
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other CIT2 fuzzy operators (such as the centroid). This property is necessary

to maintain the concept of interpretability (as semantic relation) described so

far in the chapter.

Since every CIT2 set can be expressed as the union of the AES in its

C̃AES, this property can be used to define the constrained centroid, denoted

as Cen(Ă):

Cen(Ă) =

∫
Ã′∈C̃AESĂ

Cen(Ã′) (3.17)

That is, the union of all the centroids of the sets in C̃AESĂ. The constrained

centroid is analogous to the IT2 one, in which the centroid is the union of the

centroids of all its embedded sets [17]. The difference is that in the CIT2 case

only the collection of AESs is taken into account. They represent a subset of all

the ESs examined in the standard IT2 approach. In addition, since the CAES

is a subset of all the ESs embedded in a given FOU, the constrained centroid

will always be contained (or will be equal to) the standard IT2 centroid.

When a CIT2 FS is not the result of a CIT2 fuzzy operator but is generated

from a T1 GS with a continuous DS, the CIT2 centroid has an interesting

mathematical property. In fact, in that case, the centroid can be rewritten as

the following interval:

Cen(Ă) = [Cen(ÃL), Cen(ÃR)], ÃL, ÃR ∈ C̃AESĂ (3.18)

with ÃL, ÃR being the left-most and right-most AES of Ă. The proof for that

equation is straightforward: since all the AES of a CIT2 generated from a GS

share the same shape, the AES obtained from the leftmost shift will trivially

have the lowest centroid value and will therefore determine the left endpoint

of the centroid; analogously, the right endpoint is generated by the rightmost

AES.

However, (3.18) may not hold anymore after the application of a set theory

operation. Intuitively, that is because (3.18) can be used when all the sets in
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C̃AES have the same shape. An example of a case in which (3.18) can not

be used is given by the CIT2 FS in Fig. 3.11. Its AES (e.g. Fig. 3.9 (a),

3.10 (a)) are obtained as the aggregation of three triangular MFs “truncated”

(i.e. inferred) at different heights. In that case, determining which “truncation

values” generate the AES with the lowest and highest centroid value is non-

trivial, as will be also discussed in Sec. 3.4.1.

Figure 3.11: Some AES of the CIT2 output from the inference of a CIT2 rule in
which all the sets involved are CIT2 sets

Lastly, the FOU (see (2.10)) of a CIT2 FS Ă can be rewritten using only

the AESs:

Definition 3.6. The FOU of a CIT2 FS Ă can be defined as:

FOU(Ă) = {(x, u) | ((x, u), 1) ∈
∫
S̃∈C̃AESĂ

S̃} (3.19)

3.4 Inferencing with CIT2 sets

Now that a formal definition of CIT2 FSs and all their components has been

presented, they can be used to build fuzzy rules and fuzzy systems. For CIT2

fuzzy systems to be usable, however, the procedure to carry out the Mamdani

inference with singleton fuzzification needs to be defined.

Consider the following constrained interval-type-2 fuzzy rule (CIT2 fuzzy

rule), i.e. a fuzzy rule in which all the sets involved are CIT2 FSs:

IF x1 IS Ă AND x2 IS B̆ THEN y IS C̆ (3.20)
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Using Theorem 3.1, the latter can be rewritten as:

IF x1 IS

∫
Ã′∈C̃AESĂ

Ã′ AND x2 IS

∫
B̃′∈C̃AESB̆

B̃′ THEN

y IS

∫
C̃′∈C̃AESC̆

C̃ ′
(3.21)

Since all the sets in the C̃AES are a three-dimensional representation of T1

sets (see (3.7)), T1 mathematics can be used to operate with them.

After the singleton fuzzification of the input, the antecedent operation is

straightforward. For example, for the fuzzified input x1 in the rule mentioned

above, it is: ∫
A′∈CAESĂ

µA′(x
′
1) (3.22)

where x′1 is a specific value of x1.

The antecedent composition is therefore given by the following formula:

∫
A′∈CAESĂ

µA′(x
′
1) ?

∫
B′∈CAESB̆

µB′(x
′
2) =

∫
A′∈CAESĂ

∫
B′∈CAESB̆

µA′(x
′
1) ? µB′(x

′
2)

(3.23)

with ? being a T-norm. The antecedent composition as described so far, re-

turns a set of real numbers. Each of these values can be then used to apply the

implication method (i.e. any T-norm) to each of the AES C ′ ∈ CAESC̆ , pro-

ducing the CAESC̆∗ of the fuzzy CIT2 output C̆∗. In the rest of the chapter, it

is assumed that the minimum operator is used for the implication method and

informally refer to this operation as truncation. To defuzzify C̆∗, a procedure

that is based on the result shown in (3.17) is implemented. The CIT2 centroid

is a pair (l, u), where:

l = inf (Cen(C̆∗)) (3.24)

u = sup (Cen(C̆∗)) (3.25)
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remembering from (3.17) that:

Cen(C̆∗) =

∫
C̃′∈C̃AESC̆∗

Cen(C̃ ′) (3.26)

Since each of the IT2 sets in the C̃AESC̆∗ is just a three-dimensional represen-

tation of a T1 set, the equivalent T1 sets in CAESC̆∗ can be defuzzified instead,

by using the standard T1 centroid defuzzification method. Therefore, the pair

(l, u) provides us a lower (l) and an upper (u) bound for the set of centroids in

(3.17). This approach is conceptually similar to the Karnik-Mendel (KM) [18]

procedure, in the sense that both return a pair composed of the upper and the

lower bound of a set of centroids (that in the case of the KM approach, is the

set of the centroids of all the ES of the IT2 FS).

The whole inference process where the CIT2 FSs involved have a finite

number of AES, is described in pseudo-code in Algorithm 2.
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3.4.1 Result of CIT2 operators

It is interesting to see how the result of CIT2 operators on CIT2 FSs may

result in a FS in which it may not be possible to identify a T1 GS G in the

CAES from which the remaining AESs can be obtained by shifting G. That

is because there is no guarantee that all the sets obtained as the result of the

implication operator, for example, will have the same shape.

However, the shape of the T1 GS is not totally lost after the application

of CIT2 fuzzy operators. Fig. 3.11 shows some of the AES of the inference

output of a CIT2 fuzzy rule of the form IF x1 IS Ă THEN y IS C̆ where all

the CIT2 FSs involved have a discrete DS (i.e. a finite number of AES). It is

possible to see that even though the sets forming the CAES of the output do

not share exactly the same shape, they all come from the same generator set

(i.e. a triangular T1 FS) truncated at different heights during the inference

process (the consequent CIT2 FS C̆ before the inference can be found in Fig.

3.12).

Figure 3.12: Consequent CIT2 in the rule generating the output set shown in Fig.
3.11

Intuitively, these AESs are meaningful even if they have different shapes

because they represent actual T1 inference results that are obtainable from T1

inference by picking one of the AES from each of the antecedent and conse-

quent CIT2 FSs in the fuzzy rule. The fact that each of the AESs is obtained

from a shifted GS truncated at a given height is extremely important to build

interpretable and explainable CIT2 systems. In fact, when one of those ac-

ceptable embedded sets is selected, its interpretability is guaranteed by the
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semantic connection with the concept it is modeling, since it has the same

shape as the GS, while its truncation height is directly related to the firing

strength of the rule(s) that generated it. Therefore, it is possible to give an

explanation for how this AES has been generated by showing the rules (and

therefore, the inputs) that contributed to its creation.
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3.4.2 On the interpretability of CIT2 sets and systems

As shown In Sec. 3.3, the CIT2 FOU is a set of points, exactly like the FOU of a

standard IT2 FS. If one considers the shape of a CIT2 FS alone, it is clear that

its interpretability depends only on the shape of its FOU (and its boundaries)

and not on the specific set of ES that are embedded into it. However, some

T2 uncertainty measures do make use of these embedded sets and it is in these

cases that CIT2 are able to provide a clear advantage over IT2 FS, allowing

for the creation of explainable CIT2 FS and systems. Specifically, each of the

AES that can be selected by the above mentioned fuzzy operators in the CIT2

case, has been created so that it is able to carry meaningful information. This

is done both by keeping a semantic relation with the concept it is modeling

(i.e. by keeping the same shape as the generator set) and by conveying, in

the case of rule-base systems, information on the rule that generated it and

its firing strength. In other words, it is possible to build CIT2 fuzzy systems

that not only are able to solve, for example, classification problems, but that

are also able to explain, in terms of the input space, how each endpoint of the

interval centroid has been obtained. With a standard IT2 system this property

is lost simply because in the defuzzification process, the ESs that produce the

endpoints do not carry any meaningful information on which rules played a

role in their generation and why. Therefore, in IT2 systems an explanation

in terms of the input space can not be provided for the centroid but only for

the boundaries of the FOU of the fuzzy output of the system. The ability of

CIT2 fuzzy systems to explain also the endpoints of the centroid, on the other

hand, clearly represents a novelty and a progress for T2 FSs in the increasingly

popular XAI field.

3.4.3 Efficiency

The main goal of Algorithm 2, is to provide a procedure to compute the in-

ferencing and defuzzification processes described in this section. For now, the
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optimization of computational complexity has not been the main focus. It is

clear that the proposed algorithm is slower than the current IT2 inferencing

and defuzzification methods. That is because after the evaluation of the whole

rule-base, the output is a set of AESs (line 16, in Algorithm 2) that can be

quite big in size: each rule can produce (line 9) a number of implication sets

that, in the worst case, is equal to the size of the permutations of the AESs of

the antecedents, multiplied by the cardinality of the DS of the consequent. In

addition, on line 16 the unions of all the possible permutations of the AESs of

the CIT2 resulting from the single rules is generated. This union, generates a

number of AES that grows as a double exponential, being O(kn+1)
m

where m

is the number of rules, n the number of antecedents per rule and k the number

of AES of each of the CIT2 involved.

Since this approach enumerates all the AESs to find the final defuzzified

output, it is the analogous of the exhaustive defuzzification method rather

than the KM one. In fact, the strength of the KM procedure is that it quickly

identifies the ESs to be used for the left and right centroid values. On the

contrary, in Algorithm 2 the AESs that give the left and right centroid value

are found using a brute force approach, first building all the AESs of the

total rule-base evaluation (line 16) and then finding among them the two that

will give us the left and right centroid values (lines 18 and 19). For use in

real-world problems, this approach is impractical because of its prohibitive

computational complexity. For this reason, the alternative, much faster and

practical defuzzification Algorithm 2 is proposed in Sec. 3.6. This algorithm

is then used within the genetic framework described in Sec. 3.7, in which it

is applied on two well known real-world datasets and compared to the KM

procedure.
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3.5 Comparison with a different constrained

approach

In this section, the constrained representation presented in this chapter will be

compared to a different approach (that here will be called W-CIT2) proposed

by Wu et al. in [21, 52]. They start from the observation that ESs have been

used to obtain theoretical results such as the definition of uncertainty measures

and are processed regardless of their shape.

However, the authors point out that in many fuzzy logic applications the

MFs that are used are convex and normal. Consequently, they propose a

constrained representation theorem that allows the definition of the FOU of

well-shaped (see [52] for details) IT2 FSs by using only convex and normal ESs.

They claim that this definition is more general than the one that only considers

ES with the same shape and doesn’t require any expert knowledge or data

analysis to determine which shapes are meaningful in a given context. Using

this new theorem, many constrained uncertainty measures (such as centroid,

entropy and cardinality) are defined mathematically. In addition to that, the

authors show how the convexity and normality constraints can be simply added

to the KM algorithm to find the constrained centroid value of a well-shaped

IT2 FS. Finally, the authors also state that this approach can’t be used in

Mamdani systems since their outputs can be non-well-shaped.

The main difference between the representation theorem proposed in this

chapter and the W-CIT2 one is in the definition of the ESs that are consid-

ered acceptable. Even though it is true that the W-CIT2 theorem allows the

presence of multiple shapes among the ESs, normality and convexity can be

not sufficient and not necessary to obtain shapes that are meaningful. Those

two properties alone, still do not guarantee there will be a meaningful con-

nection between an ES and the concept it models. To support this claim, a

comparison is provided between the ESs that determine the end-points of the

W-CIT2, CIT2 and IT2 centroid with the KM procedure (Fig. 3.13). The set
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to defuzzify has been obtained starting from a triangular T1 MF as a generator

set, using the approach described in this chapter to build the FOU around it.

The comparison shows how the ESs used by the KM approach (Fig. 3.13 (a))

are both non-normal and non-convex. In addition to that, they could hardly

represent any word or label. As a result, the meaningfulness and interpretabil-

ity of the centroid value returned as an output decreases. On the other hand

though, the KM algorithm can be applied to any IT2 FS, regardless of the

approach used to obtain its FOU. The ESs used by the W-CIT2 approach,

instead, are both normal and convex. However, also in this case the relation

between the original T1 triangular shape (i.e. the one that has been used as a

generator set) and the ESs is lost. Again, these sets would hardly model the

same concept (e.g. medium height) from which the generator set is obtained.

The ESs used by the CIT2 approach, instead, keep the same level of the in-

terpretability as the generator set as they share its shape. The only difference

between them is their location on the x-axis. From this experiment, it can be

concluded that normality and convexity alone may not be sufficient to guar-

antee the meaningfulness of a FS. In addition to that, the fact that W-CIT2

FSs are not usable in Mamdani systems represents a significant limitation that

can be overcome by the CIT2 definition provided in this chapter, as shown in

Sec. 3.4.
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3.6 Sampling approach for the CIT2 centroid

As already discussed in Sec. 3.4, the evaluation of the CIT2 centroid as de-

scribed in Algorithm 2 is prohibitive due to the astronomical number of AESs

that are examined to determine the defuzzified value. Therefore, even though

the algorithm proposed earlier in this chapter is theoretically correct for the

computation of the CIT2 centroid, it is not usable in practice for real world

problems. Conceptually, the problem is very similar to the one that is faced

when exhaustive defuzzification is applied to T2 FSs. In that context, many

approximation algorithms have been proposed to overcome the computational

complexity of the exhaustive defuzzification. One of them is the sampling

method [57]. The intuitive idea is that each of the ESs in a T2 FS only has a

minimal contribution to the final result, therefore generating a random sample

of the ESs is a good and efficient way to obtain an approximation of the actual

centroid value, as shown in [45]. In this case, the same concept is applied

to sample a fixed number of AESs to determine the constrained centroid. A

sample, is obtained by replacing each CIT2 FS in the rulebase with one of its

AES chosen at random (rather than replacing each set with all its AES, as in

Algorithm 2).

The fuzzy output of the T1 system obtained by carrying out all the sub-

stitutions will produce a single sampled AES. As a consequence of that, only

a subset of all the AES is generated, making this approach an approximation

algorithm. Once the number of desired samples has been obtained, the AESs

are defuzzified and the lowest and highest centroid values among them will

determine respectively the left and right end-point of the constrained centroid.

Conceptually, the following steps are used to produce a single sampled AES

of the CIT2 fuzzy output:

• For each set Ă involved in the FLS:

– Generate a random number k within its DS

– Use k to shift the GS of Ă along the x-axis, obtaining E, an AES
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of Ă; remembering that given a function f(x) its translated version

by a factor k along the x-axis can be written as f ′(x) = f(x − k),

this step can be done in constant time without the need to store all

the AES to choose one randomly

– Loop through all the rules and replace Ă with E

• Once all the CIT2 FS have been replaced with a random AES, a T1

rulebase is generated

• The fuzzy inferenced result of the rule-base represents a sampled AES

The output interpretability offered by CIT2 FLSs is given by the process used

to produce the AES. In fact, each of them represents a T1 fuzzy output and

as such keeps all the interpretability properties that belong to the outputs of

T1 FLSs: the shapes of the consequent set involved in the rules are clearly

identifiable together with the firing strengths used for the inference operator

(e.g. see Fig. 3.9(a), 3.10(a), 3.13(a)). These properties, also make possible a

direct connection between the endpoints of the interval centroid and the rules

that were used in its generation.

The pseudo-code (mainly written following OOP conventions) of the sam-

pling method is described in Algorithm 3.

Other than the reduction in the computational cost, the other main advan-

tage of this approach is its applicability to systems in which the CIT2 FSs

involved have a continuous DS, i.e. the number of AESs per CIT2 FS is in-

finite. In fact, Algorithm 2 only works with a discrete number of AESs and

may therefore require an additional discretization step. With the sampling

approach each CIT2 FS involved in the rule can be easily substituted with one

of its AESs by shifting its generator set by a random value in the DS during

the conversion step (mentioned above) of the CIT2 rule into a T1 one.
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3.7 CIT2 Fuzzy Systems in Practice

In this section, a framework for the automatic learning of CIT2 fuzzy systems

will be described and applied to two real-world classification problems. The

aim is not to compare this learning method to other approaches proposed in

literature in terms of performance, but rather to present a possible way of

generating CIT2 fuzzy systems and show a practical application of these new

fuzzy sets and their inference framework described so far.

Classification problems have been chosen because they represent one of the

contexts in which interpretability and especially explainability play a crucial

role. In many applications, in fact, knowing both the output (the interval

centroid) and how it has been obtained (i.e. which rules and which inputs

determined the ES that produced the endpoints) is of great value and it is the

main reason for the emergence of the new XAI field.

3.7.1 Learning CIT2 fuzzy systems Through Genetic

Algorithms

Genetic algorithms have been widely used for the automatic generation and

optimization of fuzzy systems [58] since they allow for the creation of both

the rule-base and the MFs without the need of any expert knowledge. Even

though these systems are obtained through machine learning techniques, they

can maintain the typical interpretability of fuzzy logic systems as long as they

contain a reasonably small number of rules and it is possible to give a lin-

guistic label to the MFs involved [59]. The genetic approach proposed for the

generation of CIT2 fuzzy systems, is based on the architecture described in

[2]. Each of the input variables of the system is partitioned in 3 triangular

MFs. The center of each triangular generator set for the antecedent CIT2

FSs is determined using the well known fuzzy C-Means clustering algorithm

(FCM) [60] on each input variable. The end-points of the triangles are the

center of the previous and next clusters, if they exist, or the closest end-point
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of the UOD increased by 10% of the UOD size, so that every point in the UOD

belongs to at least one of the MFs with a membership value greater than 0.

The continuous DS is an interval [−c, c], c > 0 with 2c = 5% of the distance

between the starting and end point of each triangular generator set. The out-

put variable is partitioned with a number of CIT2 FS equal of the number of

classes in the problem. Each of them is given an integer index from 0 to the

number of classes involved. The index represents the peak of their triangular

generator set while the start and end point of the triangles are obtained re-

spectively subtracting and adding 1 to their peak points. The DS for all the

CIT2 MF partitioning the output is an interval [−c, c], c > 0 with 2c = 10%

of the UOD. Once the MFs are determined, there is a first evolutionary stage

to generate the rule-base of the system. During this process, the MFs are

not changed. The number of rules is fixed (as shown in [2], redundant rules

can be eliminated with an additional stage) and each chromosome codes an

entire rule-base. With n input variables, each rule is coded with a set of n+ 1

integers. Each gene pi represents the index of the MF to use for the i − th

antecedent or for the consequent, if i = n + 1. A value of -1 for pi, i ≤ n,

indicates that the i− th input must not be included in the rule pi belongs to.
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A sequence of encoded rules represents a rule-base.

Table 3.1: Parameters used for the learning architecture

Parameters Values

Population size 100

Iteration limit 100 per stage

Crossover Single-Point

Crossover rate 0.7

Elitism 5%

Fuzziness in FCM 2.0

Mutation rate 1/chromosome size

Fitness function Accuracy value

Memberships per variable 3

Fuzzy Rules per chromosome Fixed, 10

Number of samples in CIT2 centroid 50

Random distribution for the random sampling Uniform

Discretization points for AES defuzzification 100

At the end of the first stage, the fittest chromosome is returned. The

rule-base encoded by this chromosome is passed to the second stage of the

learning process, with the goal of optimizing the MFs involved in the system.

Each triangular CIT2 MF is encoded with 4 real numbers: 3 modelling the

generator set (starting point, center and ending point of the triangle) and

one representing the size of the DS as a percentage of the UOD. Thanks to

the way CIT2 MFs are built starting from a T1 generator set, the encoding

of CIT2 MFs only requires 1 additional parameter with respect to their T1

counterpart. That is because the upper and lower MFs bounding the FOU of

the set, are determined from the T1 generator shape and the DS. Standard IT2

representations, instead, may require up to twice the number of parameters of

their T1 counterpart to fully represent the FOU and its bounds. The optimized

rule-base obtained at the end of the second stage is then returned as the final
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output of the learning process. The architecture is summarised in Fig. 3.14.

For more information on the tuning and learning process, please refer to [2].

Table 3.2: Results of the genetic CIT2 fuzzy system with two different defuzzification
approaches

CIT2 IT2(KM) CIT2 Time IT2 Time

Iris 96.0% 94.667% 4h5m 1h11m

New-Thyroid 91.167% 91.667% 6h19m 1h31m

Figure 3.14: The learning architecture used in this section. Adapted from [2]

3.7.2 Application on real data-sets

The genetic architecture described above has been tested on two real world

classification problems using two well known data-sets: iris [61] and new-

thyroid [62]. The 10-fold cross validation method has been used to evaluate

the CIT2 fuzzy systems; both data-sets, including the train and test partitions

of each cross validation iteration, are publicly available on the KEEL website

[63]. In both stages a single-point crossover has been used and the fitness func-

tion has been defined as the accuracy value of the rule-base encoded in the

chromosome. A more detailed list of the parameters used in the optimization

can be found in Table 3.1. The optimization has been carried out twice, once

using the CIT2 sampling method with 50 samples to defuzzify the output and

once using the implementation of the KM iterative procedure implemented in

the Java library Juzzy[64]. The architecture has been implemented in Java

using multi-thread computation on an i7-7600U CPU. The average results of

both approaches and their running times for the 10 runs are reported in Table

3.2. It can be seen that the execution time of the CIT2 systems, featuring

Algorithm 2, are higher than the IT2 systems. However, these execution times
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represent approximately 107 individual defuzzification operations throughout

the optimization process — i.e. each individual CIT2 defuzzification using

Algorithm 2 takes around 1.5 millisecs using multi-threading to generate the

samples. Whilst not as efficient as current IT2 defuzzification algorithms, this

is clearly usable in real world applications, particularly decision problems.

As it is possible to see, the two approaches give similar results and perform

well on both the data-sets analyzed. Therefore, to determine if and under what

conditions one of the two defuzzification methods gives superior results more

experiments are required, with a bigger number of data-sets and a statistical

evaluation of their performances. To demonstrate the superior interpretability

and explainability of the CIT2 approach, in Fig. 3.15 are shown the ES used

to determine the right end-point of the constrained (a) and “standard IT2” (b)

centroid generated by the KM procedure. Those ES have been obtained as the

result of the defuzzification of the output of a CIT2 FLS generated through the

learning framework described in this section. As discussed in Sec. 3.2, the AES

selected by the CIT2 approach, provides a clearer understanding of the final

system output, giving an intuitive idea of how the centroid value is obtained

since, just like any T1 fuzzy output, it is still possible to identify the shapes

of the consequent MFs and see the respective firing levels. Additionally, the

firing strengths can be traced back to the rules and the inputs that generated

the endpoints. The ability to produce explanations for each of the system

outputs, together with the interpretable rule-based structure (characteristic of

any FLS) make CIT2 FLS a valid alternative to IT2 for the development of

FLS in the XAI field.

Currently running times seem to be the main drawback of this approach.

In fact, in both the tests the IT2 approach with the KM procedure has proven

to be roughly 3.5-4 times faster than the CIT2 one. In future works, a new

and faster defuzzification methods to address this issue will be developed.
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Figure 3.15: ESs that determine the right end-point value of the CIT2 (a) and KM
(b) centroid in a CIT2 system obtained through the genetic architecture described in
this section.

3.8 Summary

In this chapter, constrained interval type-2 (CIT2) have been fully formalized,

showing how they can be obtained starting from a T1 FS with uncertainty

on its exact location on the x-axis. The main idea behind CIT2 FSs is to

produce a representation that considers only the ESs that have meaningful

shape for a given concept; these embedded sets, called acceptable (AES), can

then be used to define the FOU of the CIT2 FS and CIT2 fuzzy operators.

The use of AESs rather than their unconstrained version, guarantees that CIT2

operators will only process embedded sets with a meaningful shape, increasing

the interpretability of their output (as discussed in Sec. 3.2, 3.7.B).

Formal definitions of CIT2 FSs and AESs have been provided, together with

the formulation of a new constrained representation theorem (Theorem 3.1).

This allowed us to define all the main CIT2 operators, including the centroid

defuzzification, by working only with “meaningful” ESs. Finally, a full infer-

ence framework has been presented for a CIT2 fuzzy system together with a

defuzzification procedure. As a test case, a genetic architecture for the gener-

ation of CIT2 fuzzy systems has been described and applied to two real world
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datasets. The preliminary results, presented here, show how the performances

of the CIT2 approach are comparable to the ones obtained from the IT2 one,

with the CIT2 system outputs presenting a higher level of interpretability. On

the other hand, CIT2 FLSs have been shown to be slower, requiring approxi-

mately 4 times more time than their IT2 counterpart to complete the learning

process. The next Chapter will tackle this issue, designing a faster approxi-

mation algorithm for to carry out the inference and type-reduction in CIT2

FLSs.



Chapter 4

A Faster Defuzzification

approach

4.1 Introduction

Chapter 3 has shown how the higher level of interpretability of CIT2 FLSs

comes at the cost of higher computational complexity in the type-reduction

processes. In fact, while type-reducing a CIT2 set is trivial, the same operation

becomes very computationally expensive for the inference. Specifically, the

exhaustive procedure to type-reduce the output of a CIT2 Mamdani inference

system has been shown to be impractical for real world applications due to its

prohibitive computational cost. Even the approximation procedure (termed

the CIT2 sampling method [65]), introduced for faster computation, has been

shown to be significantly slower than the well-known Karnik-Mendel (KM) [18]

algorithm for IT2 FSs.

The contribution of this chapter is a refined inferencing mechanism with

an associated novel type-reduction approach which enables the much faster

computation of CIT2 Mamdani inference systems. The novel procedure effi-

ciently and deterministically selects a small number of appropriate embedded

sets from which it produces the final type-reduced set. This reduction in the

search space makes the approach presented in this chapter significantly faster

67
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than the exhaustive and sampling CIT2 type-reduction algorithms [65] while

maintaining comparable outputs and keeping the high level of interpretability

that characterizes CIT2 fuzzy sets.

The rest of the chapter is organized as follows: after the novel inference

and type-reduction technique is described and then formalized (Section 4.2),

multiple experiments are carried out to compare this new algorithm with KM,

its enhanced version (EKM, [19]) and the CIT2 sampling method to show

the significant run time improvements (Section 4.3). Finally, the approach is

applied to a real world classification problem, in which the explainability and

accuracy of its classifications is discussed with respect to the KM approach

(Section 4.3.3).
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4.2 A Novel Constrained Centroid Defuzzifi-

cation Method for Mamdani CIT2 fuzzy

systems

Type-reducing a CIT2 fuzzy set is a trivial task: since all the acceptable

embedded sets (AES) share the same shape, the left-most and right-most ones

will produce the two end-points of the type-reduced set.

However, the same operation for the inference in Mamdani systems is non-

trivial and computationally expensive. In fact, the AESs of the fired output of

the system do not necessarily share the same shape anymore, as a consequence

of the inference process. This phenomenon is shown in Fig. 4.1 where the AES

(which before the implication had a triangular shape) have been ‘truncated’ at

different heights as a result of the implication (min) operator. In this situation,

determining the endpoint of the type-reduced set is no longer trivial.

Figure 4.1: Some of the AES generated from a CIT2 rule where the consequent
has a triangular GS

The exhaustive approach [65] and its approximation procedure named the

sampling method [65] presented in the previous chapter, have been shown to be

significantly slower than current type-reduction algorithms for IT2 Mamdani

systems, making the use of CIT2 FLS in real world scenarios impractical.

In this chapter, a novel algorithm is proposed that selects a subset of AESs

with specific criteria to compute the endpoints of the type-reduced set. In

the experiments carried out and illustrated in Sec. 4.3, this new approach has

been shown to be at least 7.5 times faster than both the exhaustive and sam-
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pling algorithms while providing comparable results in terms of the endpoints

produced. The lower computational times, make this novel approach usable

in practical applications, fulfilling the third objective of this thesis.

4.2.1 Informal description

To type-reduce an IT2 FS, the KM algorithm finds the ESs with respectively

the lowest and highest centroid. These two values, determine the endpoints of

the interval that represents the type-reduced set. The MFs of these two ESs

can be written using the lower and upper-bound MFs of the FOU they are

embedded into:

µL(x) =


µÃ(x), x ≤ SL

µ
Ã

(x), x > SL

µR(x) =


µ
Ã

(x), x ≤ SR

µÃ(x), x > SR

where µL and µR are the MF of the ESs determining the endpoints, Ã is the

IT2 FS they belong to, SL and SR are two values in the universe of discourse

(UOD), called respectively left and right switch point. Informally these two

ESs ‘coincide’ with one of the two boundaries up to the switch point and then

switch to the other boundary of the FOU. In the general case, if this approach

is used to defuzzify a CIT2 FS, the ESs found by the KM algorithm would not

be one of the AES (i.e. they would not have a meaningful shape).

As a result of the Mamdani CIT2 inferencing process (for more details, see

[65]), the implication operator (min) is repeatedly applied to all the T1 AES

of each consequent using all the values in the firing interval of the rule. An

example of this operation is shown in Fig. 4.1, where the consequent before

the implication had a triangular GS (i.e. the AES were triangles before they

were “truncated”).

The idea in this novel approach is to use a binary choice for the implication
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operator for each of the AES. Rather than “truncating” them at all the possible

values in the firing interval, each of the AES can be truncated either at the

minimum or at the maximum value of the firing interval. For example, for

a rule with a firing strength [a, b], each AES of the consequent set can be

truncated only at the values a or b rather than any of the values in [a, b].

As a consequence of that, the red set in Fig. 4.1, for example, would not be

considered. In the determination of the left endpoint of the type-reduced set,

only the leftmost AES of each MF is considered while only the rightmost AES

is used when computing the right endpoint.

Each of the consequent MF is given an ordinal index based on its position.

The aim is to choose an integer value i such that for all the consequent MF

with an index value smaller than i, a specific endpoint of the firing interval is

used during the inference (e.g the lower value); for all the MFs with an index

value greater or equal to i, instead, the firing value used switches, so the other

endpoint of the firing interval is used (e.g. if the lower value was used for the

indices smaller than i, now the upper value is used). Hence, i is called switch

index.

The goal of the new algorithm is to find the switch indices that produce the

two sets with the maximum and minimum centroid value. Just like the switch

points, the two switch indices can differ, respectively for the generation of the

right and left endpoints of the type-reduced set.

4.2.2 Speeding up CIT2 Mamdani inference

As described above, for the exhaustive or sampling type-reduction methods to

be used, each CIT2 rule has to produce not just a firing interval but rather a

set of firing values that are then used to carry out the implication on the AESs

of a consequent set of each rule. For example, in Fig. 4.1, three distinct firing

values (i.e. the three different heights at which the sets have been ‘truncated’)

are used. With the novel approach introduced in this chapter, however, only



Chapter 4. A Novel Defuzzification Method for Mamdani CIT2 FLSs 72

the endpoints of the firing strength of each CIT2 rule are needed.

This subsection introduces a theorem that allows the firing strengths to

be quickly determined in a way that is analogous to that used for IT2 rules.

Specifically, to compute the endpoints of the firing strength of a CIT2 rule, it

is sufficient to work with the boundary functions of all the CIT2 sets involved

in the rule.

Theorem 4.1. Given a CIT2 rule (i.e. a fuzzy rule in which all of the fuzzy

sets involved are CIT2 FSs):

IF x1 IS Ă1 AND... AND xi IS Ăi THEN y IS Ăi+1 (4.1)

the firing interval of the rule can be computed using only the upper-bound and

lower-bound MFs µĂ, µ
Ă

of the CIT2 FS Ă1, ..., Ăi+1.

Proof. Each of the Ăk CIT2 FS in the rule can be rewritten as the union of

its IT2 AES, thanks to the constrained representation theorem [65].

Ăk =

∫
S̃k∈C̃AESĂk

S̃k (4.2)

where C̃AESĂk
is the collection of IT2 AES of Ăk. Therefore, the rule in (4.1)

becomes:

IF x1 IS

∫
S̃1∈C̃AESĂ1

S̃1AND... AND xi IS

∫
S̃i∈C̃AESĂi

S̃i

THEN y IS

∫
S̃i+1∈C̃AESĂi+1

S̃i+1

(4.3)

Similarly to what has been done for the CIT2 antecedent and consequent FSs

in (4.2), also the CIT2 fired output B̆ generated by the rule can be expressed

as the union of its IT2 AES:

B̆ =

∫
S̃B̆∈C̃AESB̆

S̃B̆ (4.4)
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By definition, the FOU of B̆ is:

FOU(B̆) = {(x, y)|(x, y, 1) ∈ B̆} (4.5)

Since B̆ can be expressed as the union of its IT2 AES (4.4) and since the

FOU is obtained by dropping the third dimension of B̆, (4.5) can be rewritten

using the T1 AES of B̆. In other words, since the third dimension (i.e. the

secondary degree) is not needed for the definition of the FOU, it can be defined

using the T1 “equivalents” (i.e. obtained by dropping the third dimension) of

the sets S̃B̆ in (4.4).

FOU(B̆) =

∫
SB̆∈CAESB̆

SB̆ (4.6)

The upper bound of the FOU can therefore be expressed as:

µB̆(y) = sup
SB̆∈CAESB̆

µSB̆
(y) (4.7)

As discussed in [65], each of the sets SB̆ is generated by replacing each of the

CIT2 FS in the rule (4.1) with one of its AES and carrying out the standard

Mamdani inference. Therefore the MF of one specific set Sc,...,d
B̆

∈ CAESB̆ can

be expressed as:

µSc,...,d

B̆

(y) = µSc
1
(x′1) ? ... ? µSd

i+1
(y)

with Sc1 ∈ CAESĂ1
, ..., Sdi+1 ∈ CAESĂi+1, ∀y ∈ Y

(4.8)

with x′l being the input value for the lth input variable; y represents the output

variable and Y its universe of discourse. Specifically, in (4.8) Ă1 (i.e. the first

antecedent of the rule (4.1)) has been replaced with its cth AES Sc1, ..., Ăi+1

has been replaced with its dth AES Sdi+1.
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Using (4.8) in (4.7), the upperbound of B̆ becomes1:

µB̆(y) = sup
S1∈CAESĂ1

,....,Si+1∈CAESĂi+1

µS1(x′1) ? ... ? µSi+1
(y) (4.9)

Since the ? operators are T-norms, the maximum value of µB̆(y) is obtained

by maximizing each of the terms:

µB̆(y) = sup
S1∈CAESĂ1

µS1(x′1) ? ... ? sup
Si+1∈CAESĂi+1

µSi+1
(y) (4.10)

Remembering that the upperbound of a CIT2 FS Ă is:

µĂ(x) = sup
S∈CAESĂ

µS(x) (4.11)

Using (4.11) in (4.10) the following is obtained:

µB̆(y) = µĂ1
(x′1) ? ... ? µĂi+1(y) (4.12)

This proves that, in a CIT2 rule, the upperbound of the FOU of the CIT2

fired output is determined only by the upperbound MFs of the CIT2 FSs

involved in the rule. Analogously, it is possible to show that the lowerbound

of the FOU is determined by the lowerbound of the FSs in the rule.

Corollary 2. Given a CIT2 fuzzy rule

IF x1 IS Ă1 AND... AND xi IS Ăi THEN y IS Ăi+1 (4.13)

and the IT2 rule obtained by replacing each CIT2 FS with an equivalent (i.e.

1Note how the superscripts of the sets Sk have been dropped since all the possible
combinations of the AES of the sets Ăk that generate all the SB̆ ∈ CAESB̆ , 1 ≤ k ≤ i + 1
are now considered.
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with the same FOU) IT2 FS

IF x1 IS Ã1 AND... AND xi IS Ãi THEN y IS Ãi+1 (4.14)

the two rules produce a fuzzy fired output with the same FOU

Proof. This is a straightforward consequence of the Theorem above. Since in

both the IT2 and CIT2 rules, the FOU of the fuzzy output is determined only

by the boundary functions of the sets involved in the rule, if each of Ă and Ã

have the same boundary functions they will produce the same FOU, since the

inference in both cases is carried out in the same way.

The boundary functions µĂ, µ
Ă

of a CIT2 fuzzy set Ă are defined in the

same way as the boundary functions of an IT2 fuzzy set [65], i.e. they represent

the boundaries of the FOU. Therefore Theorem 4.1 leads to the same results

that are obtained when one uses IT2 fuzzy sets [17]. The reason why Theorem

4.1 has to be proved is in the different representation between CIT2 and IT2

fuzzy sets. In the IT2 case, the representation theorem holds [44], i.e. each

IT2 fuzzy set can be represented as the union of its type-2 embedded sets; for

CIT2 fuzzy sets, instead, the constrained representation theorem holds, i.e a

CIT2 fuzzy set can be represented as the union of its acceptable embedded

sets. Since the collection of acceptable embedded sets is a subset of all the

embedded sets, all the theorems for IT2 sets that make use of the embedded

sets need to be proven again for CIT2 fuzzy sets showing that the same results

hold when only acceptable embedded sets are considered.

Although Theorem 4.1 is one of the reasons behind the improved run-times

of the novel algorithm, this way of computing the firing interval of CIT2 rules

cannot be used by the exhaustive or sampling method. In fact, as discussed in

the first paragraph of this Subsection, these algorithms require a discrete set of

firing values (and not just the endpoints of the firing interval) to determine the

type-reduced set. Additionally, the analysis of the computational complexity

carried out in Sec. 4.2.5 does not include the computation of the firing of the
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rules in order to make a fair comparison between the three CIT2 type-reduction

approaches.
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4.2.3 The algorithm

In this Subsection, a formal description of the algorithm is provided (Algorithm

4). As already mentioned, the idea is to find the switch indices that produce the

AESs with the highest and lowest T1 centroid values. The algorithm described

here, works with a single output variable at a time. In other words, it must

be executed once for each output generated by the system. For simplicity, the

analysis carried out in this chapter assumes that the CIT2 FLS only produces

one output (i.e. it has only one output variable).

In the for-loop starting at line 11, different AESs are generated, testing all

the possible switch index values. At the end of the procedure, the highest and

lowest T1 centroid among all the AESs that have been generated, are used as

the endpoint of the type-reduced set returned as an output. The identification

of the switch indices uses a brute force approach. This method has been chosen

for its simplicity and as a first strategy to compute the novel concept of switch

indices introduced in this chapter. In future work, the mathematical properties

of the AESs and the switch indices themselves will be analyzed to establish

a criterion or a mathematical formula that could directly determine the right

switch indices, similarly to what happens in the KM algorithm with the switch

points.

Conceptually, the algorithm can be summarized in the following steps:

1. Give each CIT2 consequent MF an ordinal index by sorting them in

ascending order of the minimum value of their support set, obtaining the

list (C̆1, ..., C̆n).

2. For each consequent C̆i, compute its lower firing value FL
i as the max-

imum lower firing strength of all the rules where it appears as a conse-

quent; analogously, compute its upper firing value FU
i as the maximum

upper firing strength of all the rules where it appears as a consequent.

3. If computing the right endpoint of the type-reduced set (i.e. to generate
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the AES with the maximum centroid value), replace each consequent MF

with its rightmost AES; if computing the left endpoint, take the leftmost

AES instead.

4. Test all the possible switch index values, between 0 and the maximum

index given to the consequent MFs:

i. If computing the left endpoint, apply the inference operator on each

replaced consequent MF Ci using FU
i if the MFs has an index smaller

than the switch index, use FL
i otherwise; for the right endpoint in-

stead, use FL
i before the switch index and the FU

i after it.

ii. Do the union of the AES resulting from the inference and defuzzify

the set obtained, computing its centroid.

5. Return, as the final type-reduced set, the lowest and highest centroid

values obtained from the defuzzification at the previous step.

A representation of the intermediate results of these steps can be found in

Sec. 4.3.2 and in Fig. 4.2: Fig. 4.2.a, shows the partitioning of an output

variable by three sets (e.g. low, medium and high temperature); Fig. 4.2.b

shows a possible FOU that is obtainable from a CIT2 FLSs that uses the MFs

in Fig. 4.2.a as consequent sets. Fig. 4.2.c, instead shows graphically the

effect of the step 4).i of the algorithm (Sec. 4.2.3) in which the implication

operator is applied to the leftmost AES of all the consequent sets. Fig. 4.2.d

shows the final AES produced as the union of the sets in Fig. 4.2.c.

4.2.4 Mathematical description

The exhaustive approach evaluates every combination of every embedded set

at every firing strength that arises from each individual rule in combination

in the output. Empirically, it has been observed that the combination of sets

that produced the AES with the lowest (left-most) centroid, follow the AES

obtained by carrying out the implication with the upper value in the firing
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Figure 4.2: Creation of the AES of the fired output (2.) that determines the left
endpoint of the constrained centroid. First the partitioning of the output variable
(1.) is shown, then for each consequent MF one AES is selected and the implication
operator applied (3.). Finally, the inferenced sets are aggregated to produce the final
AES (4.).

interval on the leftmost AES of the consequent sets for some left-hand portion

of the universe, before switching at some point to following the left AES with

the lower value in the firing interval for the remainder of the universe (and

vice versa for the highest centroid). This observed behaviour has inspired

the current algorithm to determine this switch-point and use the acceptable

embedded sets with these properties for the type-reduction. An example of

this phenomenon is shown in Fig. 4.3, in which the fired FOU is obtained

as described in Fig. 4.2. In this case, for the magenta section, the leftmost

embedded set obtained with the higher firing value is used; the green section

is where the switch happens and the left AES with the lower firing value is

used instead.

Formally, the problem solved by the algorithm to compute the left endpoint

of the constrained type-reduced set can be modelled mathematically as follows

(the right endpoint can be expressed analogously):
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Figure 4.3: The fired FOU of a CIT2 FLS (shaded) and the AES with the lowest
centroid value. The magenta section of the AES is obtained following the leftmost
AES after the implication with the upper firing value in the firing interval, while the
section in green is obtained following the leftmost AES after the implication with the
lower firing value.

Left endpoint = min
0≤SI≤n

(
Centroid(

⋃
1≤i≤n

CL′

i )
)

(4.15)

µCL′
i

(x) =


min(µCL

i
(x), FU

i ), i < SI

min(µCL
i

(x), FL
i ), i ≥ SI

(4.16)

where SI is the switch index, CL
i is the leftmost AES of the i− th consequent

set, CL′
i is the set obtained after the implication on CL

i , FU
i and FL

i are the

maximum and minimum firing strength among all the rules in which C̆i appears

as a consequent (computed as in Algorithm 4 at line 8).

Determining whether Algorithm 4 computes the same type-reduced set as

the exhaustive approach is not straightforward. In fact, in the exhaustive

version, all the AES of each consequent C̆i are considered and the possible

firing strength Fi in the min operator in (4.16) could be any value in [FU
i , F

L
i ].

Additionally, the union of the AES before the centroid computation in (4.15)

may produce a non-convex and non-normal set (such as that in Fig. 4.3) while

the overlapping of the MFs of each AES also plays a role in the final result and

makes the problem challenging to solve from a mathematical point of view. For

these reasons, the formal relationship between Algorithm 4 and the exhaustive

method needs to be studied in future work.
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For now, the usefulness of the novel algorithm has been shown in the exten-

sive tests reported in Sec. 4.3. Indeed, in all experiments undertaken so far,

Algorithm 4 produces the same as the exhaustive method.

4.2.5 Analysis and computational complexity

The analysis carried out here does not include the computation needed to

determine the firing strength of the rules (lines 4-9). In all the case studies

examined in Sec. 4.3, the firing intervals of the rules are computed in the same

way they are computed in IT2 inference, using Theorem 4.1.

Before the algorithm can build the AESs, it is necessary to sort the n

consequent sets used in the CIT2 FLS in ascending order of the minimum

value in their support set, which requires O(n log n) operations. Once the

consequents are sorted, for each of the n iteration of the for-loop at line 11, two

AES are generated, with each generation requiring O(n) operations (because

of the union at lines 23, 24). The defuzzification at line 25 requires O(kn)

operations with k being the discretization level used and assuming that for

each discretized point x its membership degree with respect to C is computed

as:

µC(x) = max
1≤i≤n

µCi
(x) (4.17)

and the membership degree of x with respect to C is calculated in the same way.

Therefore, the final computational complexity of the algorithm is O(2kn2),

where n is the number of MFs that partition the output variable. This rep-

resents a significant improvement when compared to the original exhaustive

algorithm that had a computational complexity of O(kn+1)
m

where m is the

number of rules, n the number of antecedents per rule and k the number dis-

crete number of AES that had to be selected for each of the CIT2 FSs in the

CIT2 FLS [65]. A comparison of the run times of the novel procedure, the

sampling method, and the exhaustive algorithm is presented in Section 4.3.
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4.3 Practical Applications

This section is focused on the application of Algorithm 4 in three case studies

for the comparison of this novel approach with other type-reduction methods.

The first subsection shows a run time comparison between KM, EKM, CIT2

sampling, CIT2 exhaustive and Algorithm 4 in the type-reduction of a large

number of CIT2 FSs. The second part of the section, instead, compares the

different constrained approaches in terms of endpoints of the produced type-

reduced set to analyze their differences. Lastly, the third subsection presents a

qualitative comparison between Algorithm 4, the sampling method and EKM

in a real-world case study. Specifically, the problem of the recommendation

of post-operative breast cancer treatment is analyzed. The accuracy values

of the different approaches are compared, together with the interpretability of

the classifications that they produce.

4.3.1 Run time comparison

The experiments reported here, consist in the type-reduction of a number of

FSs produced as the output of a CIT2 FLS. Since the computational complex-

ity of Algorithm 4 is O(kn2) with n being the number of MFs that partition

a given output variable and k being the discretization level used to defuzzify

the AES, the experiments involve output variables partitioned with a different

number of MFs. By doing this, it is possible to see how the algorithm performs

as the cardinality of the partitioning increases.

The experimental setup is the following: 4 FLS have been produced with

the output variable partitioned respectively with 2, 3, 5 and 7 MFs. Each

of these MFs is used as the consequent of a different fuzzy rule with a single

antecedent MF and one input variable. Therefore, a FLS with a partitioning

size of n has n rules. The generator sets used in this experiments are triangular

MFs with parameters (x− 1, x, x+ 1), x ∈ N, 1 ≤ x ≤ 7. The displacement

set used to generate the FOUs is the interval [−0.5, 0.5] and the resulting sets
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can be seen in Fig. 4.4. The minimum operator has been used to carry out

the implication.

Figure 4.4: Fuzzy sets used for the experiment in Sec. IV-A

Each system has been run 5 × 106 times and its outputs type-reduced us-

ing different algorithms. The input values have been set randomly, whilst

maintaining that each rule always fires with a minimum firing strength of 0.1.

The methods tested are KM [18], EKM [19], the sampling CIT2 method

[65] with 50 samples with uniform random distribution (CIT2-S50) [65], the

exhaustive method (CIT2-Exh.)[65] and the novel procedure introduced in this

chapter (Algorithm 4) (CIT2-SI). Additionally, the generator sets of the CIT2

FLSs have been used to create a T1 version of the FLSs described above to

compare the run times of these T2 FLSs with their T1 counterparts. For the

exhaustive CIT2 approach, 5 AES have been considered for each CIT2 FS (the

generator set plus 2 AES at its left and 2 at its right, uniformly distributed).

The experiments have been run in Java on a Windows machine with an i7-

7600U CPU. For the KM, EKM and T1 FLSs implementations, the Juzzy

library [64] has been used. To defuzzify the T1 AES, T1 ES and the output of

the T1 FLS, they are uniformly discretized in 1000 points and their centroid
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is computed.

Table 4.1: Running times (in seconds) of the different approaches.

MFs T1 KM EKM CIT2-Exh. CIT2-S50 CIT2-SI

2 12.29s 196.57s 72.35s 635s 1077.21s 19.09s

3 26.00s 285.60s 107.58s 2655s 1424.17s 62.94s

5 41.15s 479.54s 198.56s 35600s (est.) 2323.88s 191.76s

7 53.77s 780.25s 247.32s 714170s (est.) 2979.54s 398.88s

The run times of the different approaches are reported in Table 4.1. The

minimum value in each row among the T2 approaches is highlighted in

bold. As it is possible to see, Algorithm 4 (CIT2-SI in the table) is at least

7.5 times faster in all the cases when compared to the sampling type-reduction

technique. In addition to that, CIT2-SI performs overall better than all the

other approaches, being slower than EKM (but still faster than KM) only when

the output is partitioned with more than 5 MFs. For the exhaustive approach

in the last two FLS (CIT2-Exh. with 5 and 7 MFs), only 1000 type-reductions

have been performed and then their run time multiplied by 5000 to obtained

an estimate of the total time it would be required to perform 5 × 106 type-

reductions using that algorithm due to its impractical computational time.

Although it has been been shown that run times are heavily affected by

the specific programming language used to implement the type-reduction algo-

rithm [66], the significant difference of at least one order of magnitude between

the presented approach (CIT2-SI) and the other CIT2 algorithms (CIT2-Exh.

and CIT2-S50) can hardly depend on implementation details. The relation-

ship between CIT2-SI, KM and EKM, however, may be different in other

programming languages, since the specific timings of each depend on both the

algorithm and the programming language used.
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4.3.2 Comparison between the constrained approaches

To compare the type-reduction set produced by the three different approaches

(exhaustive, sampling and switch index) a FLS for a simplified version of the

iris problem [61] is analyzed. In the original version, 4 input variables are used

(sepal and petal length and width) to identify the type of iris plant. In this

version, only 2 of them are used: petal length and width. This choice has been

made because the computational time for the exhaustive approach grows very

quickly with the number of antecedents and rules of the FLS. Therefore, in

order to be able to use it for this comparison, a compact rule-base and a small

number of input variables are necessary. Each variable is partitioned with 3

labels (low, medium and high) used to create the following 5 rules:

1. If petal length is low and petal width is low then species is setosa.

2. If petal length is medium and petal width is medium then species is

versicolor.

3. If petal length is high and petal width is high then species is virginica.

4. If petal length is medium and petal width is high then species is virginica.

5. If petal length is high and petal width is medium then species is virginica

To run the exhaustive algorithm, each CIT2 FS involved in the system has been

discretized in 5 AES: the generator set plus 2 AES at its left and 2 at its right,

evenly distributed. Additional details on the MFs used in this experiment can
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be found in Table 4.2.

Table 4.2: Membership function used in the iris system

Name Shape Parameters Displacement Set

Length Low Gaussian (std.dev.=1.2, mean=1) [-a, a], a=5% UOD

Length Medium Gaussian (std.dev.=0.9, mean=3.8) [-a, a], a=5% UOD

Length High Gaussian (std.dev.=1.2, mean=7) [-a, a], a=5% UOD

Width Low Gaussian (std.dev.=0.6, mean=0 [-a, a], a=5% UOD

Width Medium Gaussian (std.dev.=0.35, mean=1.25) [-a, a], a=5% UOD

Width High Gaussian (std.dev.=0.7, mean=2.5) [-a, a], a=5% UOD

Setosa Triangular (A=0, B=1, C=2) [-a, a], a=5% UOD

Versicolor Triangular (A=1, B=2, C=3) [-a, a], a=5% UOD

Virginica Triangular (A=2, B=3, C=4) [-a, a], a=5% UOD

For the sampling method, the results have been obtained as the average of

50 executions of the sampling method computed with 50 samples each time.

The standard deviation for this approach is also reported. The T1 AES selected

by the different approaches are discretized in 1000 points to be defuzzified. In

Table 4.3, the interval representing the type-reduced set for the 3 approaches

is reported for 3 different input values, one for each of the possible species.

Table 4.3: Comparison of the different constrained type-reduction methods

Inputs Exhaustive Sampling Switch Index

(0.2, 1.4) [0.83, 1.26] [0.85±0.01, 1.22±0.01] [0.83, 1.26]

(1.4, 4.7) [2.08, 2.69] [2.19±0.04, 2.57±0.03] [2.08, 2.69]

(2.1, 6.6) [2.77, 3.18] [2.80±0.01, 3.16±0.01] [2.77, 3.18]

In all the cases both the switch index and the exhaustive approach produce

the same result while the sampling gives a slightly different value. Table 4.4,



Chapter 4. Practical Applications 89

shows the average absolute difference (for both the endpoints of the type-

reduced set) between the sampling and switch index procedures with respect

to the exhaustive method over the 150 entries of the iris dataset. In other

words, each entry is a pair [x, y] representing the average absolute difference

between two approaches for the left (x) and right (y) endpoint of the interval

representing the type-reduced set.

Also the standard deviation is reported. As can be seen, in the FLS ana-

lyzed here there is no difference between the switch index approach and the

exhaustive one. At the moment, it can not be proven whether they always pro-

duce the same results or this only happens in a subset of situations, perhaps

caused by the specific MFs, discretization or partitioning used. The relation

between Algorithm 4 and the exhaustive approach will be further studied in

future work with a formal analysis and additional case studies.

Table 4.4: Average absolute difference between the approaches

Sampling Switch Index

Exhaustive [0.06±0.04, 0.06±0.04] [0.0, 0.0]

Step-by-step application of the algorithm

The iris CIT2 FLS presented above, will be used to illustrate each step of

Algorithm 4, in order to clarify how the procedure works. In this example the

input value for the petal length is 1 while its width is 3. The three MFs mod-

eling respectively the setosa, versicolor and virginica species are represented

(shaded) in Fig. 4.5. Algorithm 4 sorts them using the leftmost value of their

support set in order to give each one of them an ordinal index (line 2). In

this case, the index of setosa (in blue) is 0, since it is the leftmost CIT2 FS

partitioning the output variable, while the indices of versicolor and virginica

(in red and green) are respectively 1 and 2.

Then, the firing interval for each rule is computed (for-loop at line 4) . The
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firing strengths of the rules in the system are the following:

1: IF Length IS Low AND Width IS Low THEN Species IS

Setosa: [0.18, 0.32]

2: IF Length IS Medium AND Width IS Medium THEN Species IS Versicolor:

[0.51, 0.82]

3: IF Length IS High AND Width IS High THEN Species IS Virginica:

[0.03, 0.06]

4: IF Length IS Medium AND Width IS High THEN Species IS Virginica:

[0.07, 0.14]

5: IF Length IS High AND Width IS Medium THEN Species IS Virginica:

[0.03, 0.06]

For each of the three classes, the firing interval is computed as the maximum

lower and maximum upper values of the firing strength of the rules in which

they appear as consequent. In this case, the firing interval of each class are:

Setosa: [0.18, 0.32]

Versicolor: [0.51 , 0.82]

Virginica: [0.07 , 0.14]

At line 20 of Algorithm 4, the implication operator (minimum) is then

applied to the rightmost AESs of the three classes. The rightmost AES for

each of the classes is represented with a solid line in Fig. 4.5. Line 21 carries

out the implication on the leftmost AES. Since the two operations are very

similar, only line 20 will be analyzed.

Figure 4.5: CIT2 fuzzy sets modeling the three iris classes (shaded) and their
rightmost AES

Before doing the implication, the procedure selects a current switch-index

value to try for the current iteration of the for-loop at line 11. The result of

line 20 for all the possible switch-index values tested by the for-loop is shown
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in picture Fig. 4.6.

Figure 4.6: Result of the implication with different switch-index values

If the switch index value is smaller than the index of the class, then the

lower firing value is used for the implication, otherwise the upper firing value

is used. For each of the switch index values, a single set is produced by doing

the union of the three classes after the implication. The set obtained at this

stage is an AES of the fuzzy output of the FLS. These three AESs obtained

from the union are then defuzzified and their centroid values stored in a list S

(line 25). After also line 21 is computed and the centroid values produced by

it are added to S, the interval [min(S),max(S)] is returned as the value of the

type-reduced set.

4.3.3 Real-world application

In this subsection, the novel algorithm is qualitatively compared to the EKM

procedure and sampling method on a real-world classification task.

The problem analyzed in this chapter is the recommendation of post-operative

therapy for breast cancer. In this case both the interpretability and the ex-

plainability of the system play a crucial role. An interpretable system is made

of MFs with a clear semantic meaning (i.e. a linguistic label) and a rule-base

composed of a limited number of rules [10]. This allows a non-expert audi-

ence, i.e. the physicians in this case, to get an intuitive understanding of the

rules followed by the system to produce the final classification. Explainability,
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instead, is defined as the ability to “explain the user the process it followed to

make the output decision” [10]. In other words, the system must provide an

explanation for each of the classifications produced. Therefore, in FLS for XAI

it is important to use defuzzification algorithms with a type-reduction process

that can produce explanations for the outputs of the FLS.

The goal of the system proposed here, is to determine whether a chemother-

apy treatment may or may not be beneficial as a post-operative treatment.

This decision problem was first described by Garibaldi et al. [41].

To provide a final recommendation to the patient, a multi-disciplinary group

of physicians decide on the most effective therapy to recommend. In this case,

the goal of the system is to replicate the decision of the group of doctors with

respect to the recommendation of chemotherapy only.

Figure 4.7: The protocol for the recommendation of chemotherapy

To make the fuzzy system interpretable, it has been built starting from the

clinical protocol used by the Nottingham University Hospitals NHS Trust (Fig.

4.7), generating the rule-base shown in Fig. 4.8.

The system has the following five inputs:

• NPI: Nottingham Prognostic Index, an index that indicates the prognosis
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Figure 4.8: Rule-base obtained from the protocol shown in Fig. 4.7

after the surgery. It is calculated from three criteria: size of the lesion,

number of involved lymph nodes and tumor grade. For this variable, 4

linguistic label (and therefore, 4 FSs) were identified from the recommen-

dation protocol: low, medium-low, medium-high and high. The cut-off

points between the labels are respectively 3.0, 3.4 and 4.4. The universe

of discourse (UOD) is the interval [0,10].

• ER: Estrogen Receptor test result, it shows whether estrogen fuels the

tumor. This can be used to decide if hormone-suppression treatment

would be beneficial. The linguistic labels in this case are negative, weak

and positive, with the cut-off points being 20 and 100. The UOD is the

interval [0, 300].

• Age: the age of the patient. The labels are young, middle age and old,

with their respective cut-off points being 40 and 60 while the UOD is [0,

90].

• VI: Vascular Invasion, represents the presence of unequivocal tumor in

vascular spaces. It has three labels, yes, maybe, no with the cut-off points

being 1.5 and 2.5. The UOD is [1, 3].
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• LN: positive Lymph Node ratio, it’s the ratio of lymph nodes that are

positive to cancer change on the total sample of tested lymph nodes. The

labels in this case are negative and positive with the cut-off point being

0.03.

The description of these input variables is based on material previously

presented in the original paper [41]. The output variable, instead, is the

chemotherapy recommendation that is partitioned in three labels, yes, no and

maybe. The yes and no cases, represent respectively a recommendation in

favour and against the chemotherapy. The maybe case, instead, represents a

situation in which an agreement among the physician could not be reached

and therefore a clear recommendation can not be provided; as a consequence

of that, the administration of the chemotherapy is further discussed with the

patient.

To build interpretable MFs that keep their semantic meaning and cut-off

points but also obtain a FLS with good performance, the following optimiza-

tion process has been implemented. The T1 MFs used for the input variables

of the VI-F FLS in [41] are used as a starting point by a genetic algorithm.

To carry out the optimization in a way that keeps the cut-off points intact,

the intersection points of the MFs remain unchanged and only the slopes of

the intersecting segments of the MFs are tuned. For example, consider the T1

MFs for the age variable, as shown in Fig. 4.9 [41].

Figure 4.9: Unoptimized T1 MFs for the age variable. From left to right, they
model the words young, middle age and old.

The goal of the genetic algorithm is to find the optimal slopes for the in-

tersecting oblique lines of the young, middle age and old MFs. By doing that,
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their intersection points and therefore the cut-off points between them remain

unchanged. The same optimization process is used for all the MFs partitioning

the input variables to ensure a high level of interpretability of the systems and

the adherence to the protocol described in Fig. 4.7. The parameters of the

genetic optimization are reported in Table 4.5.

Table 4.5: Parameters used for the genetic optimization in the breast cancer recom-
mendation FLS

Parameters Values

Population size 100

Iteration limit 100

Crossover Single-Point

Crossover rate 0.9

Elitism 5%

Mutation rate 1/chromosome size

Fitness function Accuracy value

For the output variable instead, there are no indications in the protocol

that can help build the three MFs (yes, maybe, no). For this reason, they

have been designed as follows: the maybe MF is modeled as an isosceles trian-

gles centered in 50 (the midpoint of the UOD) while its width is determined

by the genetic algorithm. The yes and no MFs, instead, are shoulder MFs re-

spectively ending and starting in the midpoint of the UOD. The cut-off points

are the ones with a membership value of 0.5 in the maybe MF. An example

of the partitioning generated by the genetic algorithm for the output variable

chemotherapy recommendation, is shown in Fig. 4.10.

The process described so far, generates the T1 MFs that can be used as

GSs of the CIT2 MFs. To obtain CIT2 MFs, however, also the displacement

set (DS), i.e. the shifting values to generate the FOU, needs to be determined.

The choice of the width of the DS for each CIT2 MF is made by the genetic

algorithm. The FLS returned at the end of the optimization is the one with
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Figure 4.10: A possible partitioning of the chemo recommendation output generated
by the genetic algorithm, The MFs represent the following labels, from left to right:
No, Maybe, Yes

the highest accuracy value on the training set.

The real-world dataset used for the optimization of the system is the same

one presented in the original paper [41]. However, due to its imbalanced nature,

only some of its entries have been selected. Specifically, all the 191 yes, all the

52 maybe and 191 no cases have been chosen, for a total of 434 instances.

The optimization has been run four times to generate a T1 FLS, an IT2

FLS and 2 CIT2 FLS using respectively the sampling method and Algorithm 4

for the type-reduction step. The process to obtain the T1 FLS is the same one

used to determine the GS of the IT2 and CIT2 FLS. The genetic optimization

to obtain the FOUs of IT2 and CIT2 FLS is the same. To run the systems,

the Mamdani inference is used, with the min function implementing the AND

and implication operators while the EKM type-reduction procedure is used for

the IT2 FLSs. The final output of the system is calculated as the mid-point

(centroid) of the type-reduced set. This value is then converted into a class

using the cut-off points between the chemo MFs no, maybe and yes. Although

the endpoints of the type-reduced set are not directly used at this step of

the classification in this example, they are very useful in the development of

explainable systems. In fact, producing an interval as an output rather than

a crisp value and being able to explain how the interval has been generated

would provide additional information to the end user regarding the effects

of the uncertainty on the final classification (i.e. the width of the interval),

thereby clearly showing the decision process followed by the FLS.
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The accuracy values of each of these systems have been computed as the

average of a 5-fold cross validation approach repeated 5 times for a total of 25

executions per system. The results are reported in Table 4.6. All the FLSs

have been designed in Java; the T1 and IT2 FLSs have been implemented with

Juzzy [64] while Juzzy Constrained [67] has been used for the CIT2 FLSs.

Table 4.6: Results of the different genetic FLS

FLS Accuracy

T1 70.762%

IT2 (EKM) 71.826%

CIT2 (Switch Index) 72.568%

CIT2 (Sampling, 50 samples) 72.845%

The data shows that the IT2 and the 2 CIT2 FLSs perform better than

the T1 one; both the CIT2 also show a higher accuracy than the IT2 FLS,

with the CIT2 FLS with the sampling method having the best performance

(0.277% better than the switch index algorithm). Being this comparison only

based on a single case study with a specific tuning algorithm, it is not sufficient

to make any claims on which modeling approach, i.e. IT2 or CIT2, performs

better and under which circumstances. The main goal of this case study is

to provide a worked example of the novel algorithm proposed in this chapter,

and show its potential in terms of its use in XAI applications, as discussed

in the next subsection. However, a more formal comparison, using multiple

datasets and a statistical analysis will be carried out in future work to get a

better understanding of which approach is better in which situations.

4.3.4 Interpretability

With an IT2 fuzzy system, regardless of the type-reduction method used, it is

possible to provide an explanation for the outputs of the system by analysing

the rules that fired with a given set of inputs. Following a novel approach
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proposed by Mendel [51], any input can be linked to its IT2 first-order rule

partition from which it is possible to determine the firing rules. These can

then be shown to the end-user as an explanation for the output produced.

As a further enhancement to this capability, CIT2 fuzzy systems have the

ability to also explain the type-reduced set. When a designer wants to ex-

plicitly model the effects of the uncertainty on the decision process, the inter-

val obtained from type-reduction can be provided as the system output. An

application of this concept is shown in Sec. 4.3.2, where the firing of each

class is reported as an interval; the same strategy can also be applied to the

chemotherapy recommendation scenario, in which the system output is repre-

sented by an interval, e.g. [75, 90], showing how much the FLS is in favour of

the chemotherapy treatment and how certain or uncertain its decision is. With

a CIT2 FLS, the specific rules and inputs that determine each of the endpoints

of the interval, i.e. 75 and 90 in this example, can be identified by analyzing

the AESs that lead to those values during the type-reduction, as illustrated by

the following analysis.

Figure 4.11: ESs that determine the right value of the EKM (a) and CIT2 (b)
centroid.

Fig. 4.11 shows one of the ES selected by the EKM procedure and the AES

chosen by Algorithm 4 to type-reduce an output of the system. In other words,

these are the ESs chosen by the procedures to obtain the right endpoints of

the type-reduced set. In the CIT2 case, by looking at the way those AESs

are generated, it is possible to see the contribution of each of the consequent

MFs to the final result as well as the firing strengths obtained from the input

values.
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The AES in Fig. 4.11.b has been obtained as the union of the sets shown in

Fig. 4.12. The latter sets, represent all the Ci at line 23 of Algorithm 4, before

the union. Through this analysis, it is possible to see that the no MF (the one

in blue) was fired with a strength of 0.45, the maybe one (in the middle) with

a value of 1 and yes with a value of 0.39. Additionally, it is possible to identify

which rules generated the firing strengths (line 8 of Algorithm 4), making

possible the generation of a textual explanation for each of the endpoints of

the type-reduced set, similar to what can already be done for the outputs of

T1 FLS (e.g. [11, 35]).

Linking each ESs identified by the KM procedure to rules or inputs of the

systems, on the other hand, can be challenging. In fact, for the resolution of

the well-defined mathematical problem carried out by the KM procedure, it

makes no difference if the IT2 fuzzy set to type-reduce has been obtained as

the output of an IT2 FLS or not. The procedure is, in fact, unaware of the

existence of the rulebase.

The ability to use the algorithm proposed in this chapter in order to produce

explanations has been further explored in Chapter 5.

Figure 4.12: The unions of these sets generates the AES shown in Fig. 4.11.b

4.4 Summary

CT2 FSs have been proposed as a way to increase the interpretability and

explainability of T2 FSs [1], being a specific way of generating T2 FSs when

starting from a T1 MF modeling the same concept. Particularly, CIT2 FS
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have been previously described and analysed, showing how they can be used

to produce CIT2 FLS with a high level of explainability [65, 68]. However, the

two original type-reduction procedures originally presented, had the drawback

of being significantly slower than the widely used KM [18] procedure.

In this chapter, a novel inference and type-reduction algorithm for CIT2

FSs has been presented, based on the idea of switch indices rather than the

switch points used in the KM procedure.

The running times of the novel algorithm presented in this chapter have

been compared to different T2 type-reduction procedures (KM, EKM, CIT2-

S50), showing better performance in three of the four tests carried out.

Finally, a real-world classification application has been used as a case study

to have a qualitative comparison in terms of accuracy and interpretability

between the algorithm produced in this chapter and the widely adopted EKM

procedure. It has been shown that the CIT2 FLS with the novel algorithm

keeps the same level of accuracy as its IT2 counterpart while producing outputs

with a higher level of interpretability (for each of the AES it is possible to

determine which rules and input values generated them).

In future work, it will be studied how to further decrease the run time

of Algorithm 4. In fact, the identification of the switch indices, for now,

has been carried out using a brute force approach. Determining a different

stopping criterion or a direct way to identify the switch indices (similarly to

what happens with the switch points in the KM procedure) would further

improve the computational complexity of the novel procedure presented here.

Finally, the possible advantages and differences in the use of the constrained

modeling approaches in systems like Takagi-Sugeno [69] will be studied.
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Constrained Interval Type-2

Fuzzy Systems in Explainable

Classification Tasks

5.1 Introduction

In this chapter, the CIT2 defuzzification algorithm proposed in Chapter 4

will be used to design CIT2 FLSs that provide explanations for each of their

classifications. For both endpoints of the interval centroid, the AES, the rules

and the input variables that contributed to their creation will be identified,

adding valuable information for the understanding of the internal decision

process of the system.

The rest of the chapter is organized as follows: after a brief introduction

on CIT2 fuzzy sets and the reasons why they were introduced, the creations

of the explanations for CIT2 FLSs will be discussed; this approach will then

be applied to two case-studies in the medical domain, showing how the expla-

nations can be obtained and the level of information they are able to provide

while briefly discussing why the same level of explanation is harder to achieve

with the standard IT2 representation.

101



Chapter 5. Explainable Constrained Interval Type-2 Fuzzy Systems 102

5.2 Explainable Constrained Interval Type-2

Fuzzy Systems

This subsection shows how the mathematical restrictions of CIT2 fuzzy sets,

together with the inference and defuzzification approach in Chapter 4, can be

used to design CIT2 FLSs that are able to provide explanations for each of the

output centroids they produce.

Figure 5.1: Creation of the AES of the fired output (2.) that determines the left
endpoint of the constrained centroid. First the partitioning of the output variable
(1.) is shown, then for each consequent MF one AES is selected and inferenced (3.).
Finally, the inferenced sets are aggregated to produce the final AES (4.).

In summary, the algorithm selects the two AES to determine the endpoints

of the interval centroid of a CIT2 FLS. Each of the AESs is generated as the

aggregation (by the use of the or operator) of all the MFs that appear as

consequents in the rule-base. Each CIT2 consequent is replaced with one of its

AESs (more on this below) and then one of the endpoints of the firing interval

of the rule they belong to is used to carry out the inference. The latter choice



Chapter 5. Explainable Constrained Interval Type-2 Fuzzy Systems 103

Figure 5.2: The ES determining the left endpoint of the centroid of the same set
as that shown in Fig. 5.1.2 using the KM procedure

depends on the index value assigned to the consequent MF and on the switch

index value that has been chosen by the algorithm. By noting the rules and

the firing value used for the inference on each consequent MF, it is possible to

build an explanation for the final output.

The algorithm can be briefly summarized in the following steps:

1. Give each CIT2 consequent MF an ordinal index by sorting them in

ascending order of the minimum value of their support set.

2. For each CIT2 consequent set, compute its firing interval as the maximum

lower and maximum upper values of the firing strengths of all the rules

where it appears as a consequent.

3. If computing the right endpoint of the constrained centroid (i.e. to gener-

ate the AES with the maximum centroid value), replace each consequent

MF with its rightmost AES; if computing the left endpoint, take the

leftmost AES instead.

4. Test all the possible switch index values, between 0 and the maximum

index given to the consequent MFs:

i. If computing the left endpoint, use the upper value of the firing
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interval to utilise the MFs with an index smaller than the switch

index and switch to the lower value afterwards; for the right endpoint

instead, use the lower value of the firing interval before the switch

index and the upper one after it.

ii. Do the union of the AES resulting from the inference and defuzzify

the set obtained.

5. Return, as the final constrained centroid, the lowest and highest centroid

values obtained from the defuzzification at the previous step.

The process that leads to the creation of one of the acceptable embedded

sets that determine the constrained centroid is also shown in Fig. 5.1. It is

straight-forward to see that the AES has been obtained as the union of two

MFs (medium and high); additionally, the respective firing strengths of the

rules that were used are also identifiable ( i.e. the ‘truncation heights’ in

Fig. 5.1.2), producing an easily interpretable AES. Once each consequent MF

is replaced with one of its AESs (the leftmost or rightmost one) and for each

one of them an inference value is chosen (i.e. one of the endpoints of the

firing interval), all the operations are carried out using T1 mathematics. For

this reason, as can also been seen in the example in Fig. 5.1, the AESs that

determine the endpoints of the constrained centroid keep the same level of

interpretability as any fuzzy output of a T1 FLS. In other words, while CIT2

FLSs allow for the modeling of uncertainty around the membership function

(making use of the FOU) they also keep the same level of interpretability as

T1 FLSs. On the other hand, the IT2 modeling struggles to achieve the same

properties. The lower ES chosen by the KM procedure to defuzzify the same

output set as that shown in Fig. 5.1.2 is shown in Fig. 5.2. Compared to the one

selected by the constrained approach (Fig. 5.1.4), it is harder to identify how

the consequent MFs contributed to its creation and it can be challenging to

link it to the rules of the system and their firings (see Sec. 4). This is because

the KM procedure selects the two ES that solve a well-defined mathematical
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problem but that do not necessarily carry a semantic meaning.

Furthermore, as will be demonstrated in the next subsection and in the case

studies in Sec. 5.5, these properties of CIT2 FLSs can be used to produce a

human-readable explanation for each output of the system.

5.3 Generation of the explanation

In the examples provided in this chapter, the explanations for the classifica-

tion systems are divided into two parts: first the predicted class is presented,

together with the interval centroid that generated it; then, for both endpoints

of the centroid, the AESs, the rules and firing values that produced them are

shown. Each rule has a different consequent MF, showing the firing strength

for each of the possible classes.

The interpretable AESs provided give an intuitive idea of the firings of each

class while the description with the rules that fired gives a more detailed and

accurate description of the decision process followed by the FLS. The creation

processes of the AESs themselves are illustrated: for each consequent MF in

the rulebase one AES is chosen and inferenced using one of the endpoints of

the firing interval; the union of all the inferenced sets gives the AES of the

fired FOU of the rulebase.

While similar explanations have already been produced for T1 FLS before

(e.g. [11, 12]), they represent a novelty in the T2 field. In fact, producing

explanations for IT2 and T2 FLS outputs has been very challenging since to

compute the left and right endpoints of the interval centroid, all the embedded

sets are processed regardless of their shape. As a consequence of that, the

embedded sets that determine the endpoints of the interval centroid in the

standard IT2 approach do not carry any particular meaning (making them

harder to interpret), nor do they have a direct link with any of the rules of the

rulebase (making the generation of an explanation less straightforward).

At this stage, there is no data gathered from users (e.g. with surveys) that
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determine the usefulness of the explanations of CIT2 FLS compared with IT2

ones. The superior explainability claimed in this chapter is therefore based

on the ability of CIT2 FLS to produce explanations for their classifications

rather than on the users’ feedback. Future work will focus on validating these

claims by the use of surveys in which both approaches are compared in order to

understand if the additional information provided by CIT2 FLSs is perceived

as useful by domain experts.

5.4 Juzzy Constrained: a CIT2 software li-

brary

To facilitate the use by the research community of CIT2 FSs and to make the

use of CIT2 FLSs possible in practice, a CIT2 software library has been pro-

duced. It implements CIT2 FSs and FLSs with all the algorithms introduced

in Chapter 3 and in Chapter 4. The library is called Juzzy Constrained, has

been developed in Java and it is open-source and freely available on GitHub

and Maven1. It has been designed as an extension of the popular T1 and

T2 Juzzy [64] and follows its conventions to facilitate its use for developers.

The new toolkit is capable of using the constrained representation to provide

human-readable explanations for the constrained interval centroids produced

by the systems. The library has been fully described in a paper presented

at the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

[67]; a detailed description of the software library and examples showing how

to use it can be found in the Appendix of this thesis (Chapter A). All the

practical applications in the rest of this chapter, have been implemented using

Juzzy Constrained.

1https://github.com/PasqualeDAlterio/JuzzyConstrained
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5.5 Case Studies

In this section, two case studies taken from the medical domain are analyzed.

The goal is to demonstrate that the use of CIT2 FLS can be beneficial in

situations in which it is important to understand the decision process behind

the system classification to detect possible inconsistent decisions and/or to

guarantee a fair treatment. At the same time it will be shown that, in these

examples, both CIT2 and IT2 FLS achieve the same level of accuracy.

The predicted class is MAYBE, from the midpoint of the output [49.16 , 52.2]
The leftmost centroid (49.16) is obtained from firing the following rules:

1. Chemo_no: 0.6, obtained because NPI IS High [1, 1] AND ER IS
Not_Negative [1, 1] AND age IS
Old [0.5, 0.6], using the upper membership degree of each input term

2. Chemo_maybe: 1, obtained because NPI IS High [1, 1] AND ER IS
Not_Negative [1, 1], using
the upper membership degree of each input term

3. Chemo_yes: 0.56, obtained because NPI IS High [1, 1] AND ER IS Weak
[0.56, 0.61] , using the lower
membership degree of each input term

Aggregating these output terms produces the embedded set shown in Fig. 5.4,
with the centroid 49.16:

The rightmost centroid (52.2) is obtained from firing the following rules:
1. Chemo_No: 0.5, obtained because NPI IS High [1, 1] AND ER IS

Not_Negative [1, 1] AND age IS Old [0.5, 0.6], using the lower
membership degree of each input term

2. Chemo_Maybe: 1, obtained because NPI IS High [1, 1] AND ER IS
Not_Negative [1, 1], using the lower membership degree of each input
term

3. Chemo_Yes: 0.611 , obtained because NPI IS High [1, 1] AND ER IS Weak
[0.56, 0.611] , using the upper membership degree of each input term

Aggregating these output terms produces the embedded set shown in Fig. 5.5,
with the centroid 52.2:

Figure 5.3: Example of explanation of the output for the classification of the post-
operative breast cancer treatment CIT2 FLS.
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Figure 5.6: Embedded sets selected by the KM procedure to defuzzify the fired FOU
in Fig. 5.3

5.5.1 Recommendation of post-operative chemotherapy

for breast cancer

The first classification system presented here concerns the recommendation of

post-operative chemotherapy for breast cancer. After the surgery to remove

the tumor, a team of physicians makes a recommendation for the best ad-

ditional therapy for the patient. In this case, the goal of the system is to

replicate the decision process of the group of physicians with respect to the

recommendation of chemotherapy. The three possible outcomes are yes, no

and maybe with the first two cases denoting a decision in favor or against the

use of chemotherapy and the latter represents the scenario in which a clear

recommendation cannot be provided (e.g. because there is not an agreement

among the physicians) and the post-operative therapy needs to be further dis-

cussed with the patient. The problem has already been analyzed by Garibaldi

et al. [41], whereby different T1 and non-stationary [39] fuzzy systems have

been designed and compared. The CIT2 FLS proposed in this chapter, is based

on the T1 FLS denoted as VI-F previously [41]. Its T1 MFs are used as gen-

erator sets for the corresponding CIT2 MFs; the displacement set [−a, a] (i.e.

the “shifting interval” used to obtain the FOU and the acceptable embedded

sets) has been experimentally chosen so that for each MF |2a| = 2% of the size

of the universe of discourse.

The rule-base, as previously [41], is based on a written protocol provided
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Figure 5.7: Partitioning of the chemo recommendation variable. The FS, from
left to right, model the words no, maybe and yes

by the Nottingham University Hospitals Trust, in order to assure a high level

of interpretability. Additionally, each of the MFs used in the system models

a word, such as negative, positive, high, low and medium. Fig. 5.3 shows an

explanation provided for a case that has been classified as maybe, in which the

output variable chemo recommendation is partitioned as shown in Fig. 5.7.

Figure 5.8: Partitioning used for each of the variable in the thyroid CIT2 FLS

Using the KM procedure to defuzzify the same FLS output, results in end-

points determined by the ESs shown in Fig. 5.6. Since CIT2 fuzzy sets are a

subset of IT2 sets, the inferencing can also be carried out using the standard

IT2 approach. When using the midpoint of the centroid to perform the classi-
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fication, both the CIT2 and IT2 methodologies (using the KM defuzzification

procedure) have an accuracy of 72.29% when tested on the same dataset used

in [70].

The predicted class is Hyperthyroidism, from the midpoint of the output [1.59 ,
1.66]

The leftmost centroid (1.59) is obtained from firing the following rules:
1. Hyperthyroidis: 0.6, obtained because T3resin IS Medium [0.53 , 0.63]

AND Thyroxin
IS Medium [0.66 , 0.76] AND Triiodinthyronine IS Medium [0.91, 1] AND

TSH_value IS Low [0.92 , 1]
using the lower membership degree for each input term

Aggregating these output terms produces the embedded set shown in Fig. 5.10,
with the centroid 1.59:

The rightmost centroid (1.66) is obtained from firing the following rules:
1. Hyperthyroidism: 0.66, obtained because T3resin IS Medium [0.53, 0.63]

AND Thyroxin
IS Medium [0.66 , 0.76] AND Triiodinthyronine IS Medium [0.91, 1] AND

TSH_value IS Low [0.92 , 1]
using the upper membership degree for each input term

Aggregating these output terms produces the embedded set shown in Fig. 5.11,
with the centroid 1.66:

Figure 5.9: Example of explanation of the output for the classification of thyroidal
disease CIT2 FLS
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Figure 5.12: Embedded sets selected by the KM to defuzzify the fired FOU shown
in Fig. 5.9

5.5.2 Thyroid disease diagnosis

In this case study the aim of the system is to predict whether a patient suffers

from a thyroid disease (hypothyroidism or hyperthyroidism) on the basis of

the analysis of some physiological data. For this system, there was no expert

knowledge available from which it was possible to build the rule-base and the

MFs. To build an interpretable FLS for this problem, each input variable has

been partitioned with three MFs modeling the words low, medium and high,

with the first and last one being implemented as triangular shoulders with

their peaks being the endpoints of the universe of discourse, while the medium

MF is as an isosceles triangle with its peak in the midpoint of the universe

of discourse. The partitioning strategy described is shown in Fig. 5.8. The

output variable is partitioned in the same way, with the 3 MFs representing

respectively the terms hypothyroidism, normal and hyperthyroidism. The dis-

placement set [−a, a] (i.e. the “shifting interval” of the generator set to obtain

the FOU and the acceptable embedded sets) has been experimentally chosen

so that for each MF |2a| = 5% of the size of the universe of discourse.

For the rule-base, ten rules have been created using the same genetic ap-

proach described in Chapter 3 for the first stage of the optimization. Although

this is one of many ways in which it is possible to generate a FLS from data,

this method has been chosen with the only goal of generating a compact rule-

base in which each MF identifies a meaningful linguistic label, to keep a high
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level of interpretability [10]. The dataset used for the learning phase is the

“newthyroid” dataset available on the KEEL website [63]. The accuracy of

the system produced on this dataset is 88.37% using the KM defuzzification

method and 88.84% for the CIT2 version. Fig. 5.9 shows the explanation pro-

duced by the CIT2 FLS for one of the entries of the dataset. In comparison,

the ESs that determine the endpoint of the centroid for the same FLS fuzzy

output using the KM procedure are shown in Fig. 5.12.

5.6 Discussion

In both the case studies provided, it has been shown how the previously pro-

posed algorithm (Chapter 4) can be used to produce explainable CIT2 FLSs

(Figs. 5.3, and 5.9). Each of the outputs, in addition to the predicted class,

also provides the interval centroid from which it was determined and an ex-

planation for its generation. Each endpoint is then accompanied by the AES

that determined it. For each of these AES an explanation for their creation is

also provided, showing which rules contributed, their firing strength and the

membership degree of the input values. These explanations can provide valu-

able information to understand the decision process followed by system for the

following reasons:

• The presence of the interval centroid shows the effect of the uncertainty

on the final output. Intuitively a ‘wider’ centroid represents a more

uncertain result.

• As it is possible to see in Figs. 5.3 and 5.9, the AESs keep the same level

of interpretability of T1 fuzzy outputs, i.e. it is possible to recognize the

different terms involved (the consequent MFs) and the firing strengths

of the rules they belong to (their ‘truncation’ heights). This provides an

intuitive idea of how the constrained centroid has been obtained.

• Lastly, illustrating the rules that generated each of the AES and the
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membership degrees of the antecedent terms, provides a more technical

and detailed explanation for the final output of the system.

The last 2 points described above represent a novelty in the IT2 field. In fact,

modern algorithms like the KM [18] one and its enhanced versions are nowa-

days considered the standard for the defuzzification of IT2 FSs. They work

by quickly identifying the embedded sets with the lowest and highest cen-

troid value to compute the interval centroid of a set. However, although these

embedded sets are mathematically acceptable and solutions to a well-defined

optimization problem, their shapes may not carry any particular meaning in

specific contexts. That is because all the embedded sets are processed, regard-

less of their shape. Consequently, giving a semantic meaning to the embedded

sets determined by the KM procedure may be challenging. These claims are

supported by the comparison between the embedded set chosen by the KM pro-

cedure in Figs. 5.6 and 5.12, and those produced by the constrained approach,

in the explanations in Figs. 5.3 and 5.9, respectively. While the constrained

embedded sets have the same level of interpretability of a T1 FLS output in

which the different MFs and firing strengths are clearly identifiable, the same

can not be said for the embedded sets of the KM approach. Particularly, due

to the presence of the switch point (that is crucial for the identification of

these embedded sets), the shape of the original MFs are partly lost and it is

challenging to determine a direct relation between the rules of the FLS and

the generation of such shapes. Therefore, building an explanation similar to

the one offered by CIT2 FLS would not be straightforward.

The properties of CIT2 FLSs and the level of detailed shown in the ex-

planations presented in the case studies, make CIT2 a valid and attractive

alternative to IT2 FLS, in any context in which the interpretability of the

system and a degree of explainability of the output is required.
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5.7 Summary

In this chapter it has been described how the defuzzification algorithm pre-

sented in Chapter 4 can be used to design explainable CIT2 classification sys-

tems in which explanations can be provided for each of the classes predicted.

In addition, it has been shown that the embedded sets processed by the CIT2

approach have a higher level of interpretability since they are built in a way

that makes the identification of the linguistic terms and the firing strengths

easier (see Sec. 5.6).

To support these claims, two case studies have been analyzed, both belong-

ing to the medical domain: the selection of post-operative therapy for breast

cancer and the thyroidal disease treatment problem. In both tasks the goal

of the system was to analyze some physiological data belonging to the patient

in order to make a therapy recommendation or a medical decision. The CIT2

approach has been compared to the standard IT2 one, showing that CIT2

FLSs are able to produce detailed explanations for the system outputs while

having similar performances in terms of the accuracy of the classification. For

each classification produced, the rules involved and the firing strengths used

for each of the endpoints of the centroid have be shown, providing valuable

information for the understanding of the decision process of the system.

In future work, statistical data from surveys will be gathered to explore

whether the explanations provided by CIT2 FLS are perceived as more inter-

pretable than the IT2 ones by end-users and experts. Furthermore, the in-

formation in the explanations will be reorganized in order to generate a more

coherent piece of text in natural language, similarly to what has been done for

T1 FLSs in other work [11, 12]. Additional work is also needed to understand

how interpretable the CIT2 explanations are for the end users compared to

the ones produced by T1 systems.

The next chapter, will analyze the concept of meaningfulness in the context

of CIT2 fuzzy sets, examining the limitations of the current CIT2 definitions.
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In fact, in many scenarios the meaningfulness of a concept is not strictly related

to a specific shape but rather to a set of properties that need to be satisfied.

In the next chapter, this idea will be used to create a more flexible definition

of CIT2 FSs that considers as acceptable the embedded set satisfying a set of

context-dependant properties rather than the ones having fixed shape.



Chapter 6

Refining The Concept of

Meaningfulness in Constrained

Interval Type-2 Fuzzy Sets

6.1 Introduction

Although CIT2 FSs heavily rely on the concept of “meaningfulness” so far, no

clear definition has been given of what a “meaningful” shape for a membership

function is. At the same time, it has been shown in Chapter 3 that operations

on CIT2 FSs may produce IT2 FSs that formally are not CIT2 FSs, i.e. it is

not possible to find a generator set (GS) that would generate them. That is

because all the AESs obtained from the fuzzy operators have different shapes,

regardless of the fact that they could all be reasonable for the operation result

they represent. The aim of this chapter is to both clarify the concept of

“meaningfulness” in CIT2 FSs and to extend the original CIT2 definitions,

in order to include different and more general constraints that go behind the

requirement of having ESs with the same shape. By doing this, a more powerful

modeling tool will be provided and that can be useful in all the cases where

different shapes (e.g. both triangular and Gaussian) are considered acceptable

for the representation of a given concept.

118
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6.2 The concept of meaningfulness and CIT2

fuzzy sets: two case studies

Even though the idea behind CT2 FSs was to provide a representation that

keeps a “meaningful” relation between T2 FSs and the concept they model,

there are some cases in which the restriction of having only AESs sharing the

same shape is too limiting. This claim will be supported by providing two

practical example of CIT2 application in which the use of different shapes is

needed to obtain an accurate representation of the modeled scenario.

6.2.1 Modeling Words

In this thought experiment, the goal is to obtain a CIT2 FS for the concept of

medium height.

Figure 6.1: T1 GS modeling medium height (picture from [1])

In order to obtain the CAES, different people are asked to place a T1

Gaussian FS like the one in Fig. 6.1, on the x-axis (similar approaches can

be found in [55, 56]). Since the concept of medium height varies slightly from

person to person, it is likely that something similar to what is shown in Fig. 6.2

would be obtained from the experiment.

Using the approach described above, ensures that only the ESs with a

“meaningful” shape are included in the AES and then processed by fuzzy

operators such as centroid defuzzification. Specifically, all the AES keep a
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Figure 6.2: AES obtained from the medium height experiment (picture from [1])

semantic relation with the concept of medium height they are modeling.

6.2.2 Analysis - I

The idea of imposing the use of one specific Gaussian for the generation of

the CAES is very limiting in this case. For example, one could imagine that

some of the participants would want to change the spread of the Gaussian or

would want to use triangular shapes instead of Gaussian ones. This would

be unacceptable by the current CIT2 definitions since a CAES with different

shapes would not satisfy Def. 3.2. Nevertheless, in this example there are

multiple shapes that can be considered “meaningful”, in the sense that they

keep the semantic relation with the concept they model. In this case, it can be

seen that the concept of “meaningfulness” is not kept by one specific shape but

it is rather the result of the satisfaction of a set of constraints that are implicitly

imposed on words in human reasoning. For example, one could imagine that

in the case of “medium height”, the meaningfulness and the semantic relation

is kept by all the symmetric shapes that are monotonically increasing up to a

plateau and then monotonically decreasing.

The analysis of this experiment suggests that the idea of imposing one

shape to all the ESs is only one of the possible constraints that a designer

would want to use for a T2 FS and that the concept of “meaningfulness” is

not related to one specific shape but is rather the result of the satisfaction
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of a set of implicit constraints that are related to the concept one is working

with. Furthermore, even convexity and normality, which are usually described

as “desirable properties” for MFs [1, 21, 52], can be “non-meaningful” in some

contexts, as shown in the next subsection.

6.2.3 Fuzzy system outputs: a non-normal and non-

convex case

To show that non-normal and/or non-convex MFs can still be meaningful, the

following problem will be analyzed. Consider the CIT2 fuzzy rule R:

R: IF x1 is Ă AND x2 is B̆ THEN y is C̆

The consequent FS C̆ is shown in Fig. 6.3. It is obtained using a triangular

MF as a GS and a discrete DS to generate the AESs.

Figure 6.3: Consequent CIT2 FS C̆ used in the rule R (FOU in light blue)

To carry out the inference, the CIT2 fuzzy rule is expanded in a set of

T1 fuzzy rules; each one of them is obtained by substituting the CIT2 FSs

involved in the rule with one of their T1 AESs. The goal of the process is to

obtain the AESs of the FS resulting from the rule evaluation.

The fuzzy rule output shown in Fig. 6.4 has been obtained using the process

described above, with the minimum function for the conjunction (and) and

implication operator.
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Figure 6.4: CIT2 output from the inference of a CIT2 rule in which all the sets
involved are fixed-shape CIT2 sets (FOU in light blue)

6.2.4 Analysis - II

It is clear that the collection of T1 ES in Fig.6.4 is not a CAES as defined

in Def. 3.2: since they have been obtained from the same triangular shape

truncated at different height, it is not possible to identify a valid T1 GS. In

other words, it is not possible to choose one of the T1 FS in Fig. 6.4 as a

GS, so that the other AESs could be obtained from the translation along the

x-axis of the GS. Furthermore, these AESs are non-normal. Therefore, it can

be concluded that the fuzzy result of a CIT2 fuzzy rule is not a CIT2 FS. This

seems to suggest that the collection of T1 FSs in Fig. 6.4 is not “meaningful”

in this context.

Figure 6.5: Examples of two AES obtainable from a CIT2 Mamdani fuzzy system

However, each of those T1 FSs represents a plausible T1 fuzzy rule output

since they have been obtained as results of T1 fuzzy rules by picking one of
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the AESs of each CIT2 FSs involved in the CIT2 rule. Intuitively, the T1

FSs in Fig. 6.4 represent possible T1 fuzzy rule outputs when the uncertainty

modeled around the T1 GS is removed and the CIT2 FS collapses to one of

its AESs, i.e. when the one of the possible locations of each T1 GS on the

x-axis is chosen. Therefore, the collection of T1 FSs in Fig. 6.4 represents all

the possible T1 fuzzy outputs that can be obtained by taking into account the

uncertainty on the T1 GSs of all the CIT2 FSs involved in the rule.

This analysis supports the fact that the FSs in Fig. 6.4, still carry a “mean-

ingful” connection when it comes to the representation of fuzzy rule outputs

even though they do not satisfy the definition of CAES as described in Def.

3.2 and are non-normal T1 FSs. In contrast, the standard IT2 representation

would consider as acceptable all the ESs of a given IT2 fuzzy rule output,

regardless of the fact that they could or could not represent an actual T1 rule

output FS.

In addition to that, in Mamdani fuzzy systems where multiple CIT2 fuzzy

rule outputs are combined by the union operator, a collection of T1 FSs which

is non-convex (Fig. 6.5) will likely be produced. For the same reasons discussed

above, however, those FSs would still be “meaningful” for the representation

of a Mamdani system output since they represent plausible T1 system outputs

when an exact location for all the GSs is chosen. From these plausible T1

system outputs, additionally, it is possible to extract meaningful information

about the firing rules and their firing strengths. It can therefore be concluded

that even non-convexity and non-normality can be meaningful in some specific

contexts.

6.3 Extending Constrained Type 2 Fuzzy Sets

As a result of the analysis carried out in the previous section, new formal

definitions for CIT2 FSs are needed. As already discussed, the original concept

of “meaningfulness” fulfilled by the use of a single shape for all the ESs can
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be limiting in some contexts. Specifically, it is only useful when the kind

of uncertainty modelled is restricted to the exact location of the T1 GS on

the x-axis. In addition to that, it is not clear when and why a shape is

considered to be meaningful in a given scenario. For these reasons, a different

formalization of the concept of meaningfulness might help tackle these issues.

Specifically, here is proposed a novel representation of the CAES based on

the satisfaction of a set of constraints. This approach both formalises the

concept of “meaningfulness” into the satisfaction of constraints and provides

a representation that makes ESs with different shapes acceptable.

Definition 6.1. A collection of T1 acceptable embedded sets (CAES), is a set

of T1 FSs satisfying a set of n constraints constraints C1, ..., Cn:

CAES = {S |µS : X 7→ [0, 1], C1(S) ? ... ? Cn(S)} (6.1)

with X being the UOD and each of the ? being either ∧ or ∨.

This new definition of CAES can then be used in Def. 3.3 to obtain new

CIT2 FSs. All the other definitions remain unchanged.

In the context of human reasoning, those constraints are implicitly imposed

by people on the words they use. For example, as discussed in Sec. 6.2, when

using words such as medium, one can expect the MF modeling this concept

to be monotonically increasing-decreasing, symmetric and convex. In other

scenarios, MFs are obtained from data analysis, as in [20]. In this case, the

constraints are given by empirical or theoretical relations between the values

of the universe of discourse. The original idea of constraining the ESs to share

the same shape is only one of the possible constraints one may want to impose

on the T2 FS modelled.

To prove that this new formulation is more general than the old one, it will

be shown that any CAES that satisfies Def. 3.2, can also be obtained by the

use of constrains as in Def. 6.1. Specifically, given a CAES A where all its T1
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sets are obtained from a T1 GS G and a DS D, A can also be expressed as:

A = {S |µS : X 7→ [0, 1], C1(S)} (6.2)

where:

C1(S) =


true if ∃ c ∈ D : µS(x) = µG(x− c),∀x ∈ X

false otherwise

6.4 Applications

To show a practical application of this new definition of CIT2, a case that is

very similar to the one presented in the first part of Sec. 6.2 will be analyzed.

Just like in the other thought experiment, the amin is to model a CIT2 FS

representing medium height starting from T1 MFs obtained from a survey.

The difference is that, this time, each person can freely choose the shape that

he or she considers to be the most appropriate for this context. A possible ex-

perimental result is shown in Fig. 6.6. Since different MFs (e.g. triangular and

Gaussian) would likely be obtained, this scenario could not be modeled with

the old CIT2 definition. However, for example, both triangles and Gaussians

are appropriate in this context.

Figure 6.6: Possible T1 MFs modeling medium height

When the number of AES is finite and obtained from surveys or data anal-

ysis, generating the constraints for the CAES is trivial. One strategy would
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be to put these MFs in a set named E and then define the following constraint

C1:

C1(S) =


true S ∈ E

false otherwise

This constraint can then be used to build a CAES and a CIT2 FS as in

Def. 3.3.

The idea of defining a CAES as T1 MFs satisfying a set of constraints is

more powerful when the number of shapes that are acceptable is infinite. For

example, one may want to consider as acceptable for medium height all the

Gaussians having mean between 170 and 180 and having a standard deviation

between 1 and 1.5. This scenario can be easily modeled by the following

constraint:

CG(S) =


true ∃µ, σ : 170 ≤ µ ≤ 180, 1 ≤ σ ≤ 1.5

µS(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

,∀x ∈ X

false otherwise

Even if all the MFs satisfying the constraints CG are Gaussians, it would

have not been possible to model this scenario using the old CIT2 definition.

That is because the difference in their variance could not by modeled by Def.

3.2 since it considers only as acceptable Gaussians that differed for their mean,

i.e. Gaussians that be obtained as the translation along the x-axis of a GS.

6.5 Discussion

The new CIT2 definition, based on constraints satisfaction, allows us to model

a broader set of scenarios, like the ones described in Sec. 6.2, 6.3. In addition

to that, no property is imposed a priori, not even normality or convexity.

This represent a significant difference when compared to the other con-

strained approach introduced by Wu in [21], where any “well shaped”[52] IT2
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FS is represented using only normal and convex ESs.

In contrast, the imposition of normality and convexity can be too restrictive

in some cases and not sufficient in others. For example, when working with

fuzzy outputs these properties are usually not necessary since these sets keep

their own interpretability regardless of their non-convex or non-normal shape.

If, instead, only one or a limited set of specific shapes are acceptable for

the ESs, normality and convexity alone are not sufficient to guarantee that a

T2 FSs will keep a semantic meaning with the concept modelled.

In addition to that, as already analyzed in [52], Wu’s approach has the

downside of being unusable in Mamdani systems since there is no guarantee

that its fuzzy output will maintain the “well shaped” properties when rule

outputs are combined using the union operator.

Furthermore, Wu’s representation is a special case of the CIT2 definition

proposed in this chapter. That is simply because convexity and normality, can

be expressed mathematically in terms of constraints (as shown in [21]) that

can then be used to generate a CAES and therefore a CIT2 FS.

Finally, it is important to mention that it is possible to build a CAES so

that it includes all the ESs of an IT2 FS. In other words, given any IT2 FS, it

is always possible to generate a CAES to obtain an equivalent CIT2 FS.

Specifically, given an IT2 FS Ã with the FOU delimited by the upperbound

and lowerbound MFs µÃ and µ
Ã

it is possible to generate the CAESĂ of the

equivalent (i.e. with the same FOU) CIT2 FS Ă by using the conjunction of

the two following constraints C1 and C2:

C1(S) =


true if µS(x) <= µÃ(x), ∀x ∈ X

false otherwise

C2(S) =


true if µS(x) >= µ

Ã
(x), ∀x ∈ X

false otherwise
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However, this does not mean that there is an equivalence between the IT2

and CIT2 representations. In fact, whenever CIT2 FSs are preferred to IT2

FSs, the goal is to work with a subset of all the ES described in the represen-

tation theorem [44], in order to keep a consisted semantic mapping between

the concept modelled and the set.

6.6 Summary

In this chapter, the use of the concept of meaningful shapes in CT2 FSs was

analyzed. It was shown how the current definition of CIT2 FSs that only con-

siders as acceptable the ESs with a given shape is sometimes too strict, even

in contexts such as human reasoning in which it is important to keep a con-

nection between a concept and the FS that models it. In addition to that, the

concept of meaningfulness itself has remained vague and not formally defined.

To overcome these limitations, a new, more general definition of CIT2 FSs was

given, based on the concept of the satisfaction of mathematical constraints

to identify the shapes that are considered “meaningful” for the ESs. These

constraints can be extracted, for example, by analyzing the properties that

are implicitly associated with the word modelled or they can be determined to

keep an empirical or theoretical relations between the values of the universe of

discourse. It has also been shown how the old definition can be considered as

a special case of the new one and how, given an IT2 FS, is it always possible to

obtain its equivalent (i.e. with the same FOU) CIT2 representation by using

two constraints. Finally, it was discussed the differences between the proposed

approach and the constrained approach proposed by Wu in [21], which can be

seen as a special case of CIT2 FSs. The next chapter, will show how this new

CIT2 definition based on constraint satisfaction can be used to create a new

way to model meaningful data with CIT2 FSs by preserving their semantic

meaning through the different of multiple acceptable shapes.



Chapter 7

A Novel Method for Creating

Interpretable Fuzzy Sets from

Uncertain Data Using a

Constraint-Based

Representation

7.1 Introduction

Gathering data has become an increasingly important process as a necessary

step to build models that perform automatic reasoning. Any data gathered

from the real world, however, comes with some degree of uncertainty. When the

data is collected from sensors, there are a number of errors to take into account,

as well as the possibility of faulty hardware; when the data is obtained from

human knowledge, instead, the uncertainty in the answers must be considered.

It is therefore important to design approaches that preserve this uncertainty in

the modelling phase. A very useful tool in this context is the framework of fuzzy

sets and systems. Each individual instance (e.g. a single observation or sensor

reading) can be represented through a fuzzy set, in which the uncertainty is

129
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modelled through the membership function.

In some contexts, data on a given subject is collected multiple times from

different sources. For example, different experts may be asked to give an opin-

ion about a patient’s condition or the same measurement may be obtained

through different sensors. In this case, the fuzzy sets representing the individ-

ual instances can be combined together in a new type-1 or type-2 fuzzy set

into a model that provides a more thorough representation of the data and its

variability (e.g. how much the experts’ answers or sensors’ readings differed).

A typical example is represented by surveys: a group of people is asked to

answer the same set of questions, often using a Likert [71] scale. The scale is

made of values between 1 and 5 (with 1 usually meaning ‘strongly disagree’ and

5 ‘strongly agree’) and each user can choose a single value per answer. This

system, however, is not able to capture the uncertainty of the participants in

the answers that they provide. For this reason, intervals have been used as

an alternative as they allow the users to select a set of values, rather than a

single one, when providing an answer. A wider interval represents a higher

level of uncertainty, while a single value means zero uncertainty in the answer

given [72]. Intervals can be directly modelled through type-1 fuzzy set, fully

preserving the structure and information of the data.

In the literature, there are currently four main fuzzy approaches to combine

group of intervals representing the same concept: the interval approach (IA)

[73], the enhanced interval approach (EIA) [74], the interval agreement ap-

proach (IAA) [38] and the efficient interval agreement approach (EIAA) [75].

Each of these algorithms provides a different representation of the data to sat-

isfy different needs. The IAA produces a non-parametric type-1 (T1) or type-2

(T2) fuzzy set (depending on the kind of uncertainty modelled) in which the

membership degree represents the level of agreement, measured as the number

of overlapping intervals, without discarding any of the collected data. The

EIAA presents a more efficient version of the IAA in which each membership

function is represented as the weighted sum of a set of basis functions. The
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IA and EIA, instead, provide parametric interval type-2 (IT2) fuzzy set with

a triangular or a shoulder shape. They are obtained by removing all the non-

sensical opinions and outliers before using the statistics of the remaining data

to generate the parameters of the membership functions. The goal in this case

is to have a practical and noise-tolerant approach, at the cost of potentially

discarding valid intervals and providing a partial representation of all the data

collected.

None of the current approaches focus on preserving the shape used to model

an individual instance during the aggregation process. However, the shape of

a fuzzy set is important for its interpretability, as it is semantically linked to

its underlying concept. In this chapter, a novel approach named constrained

parametric approach (CPA) is proposed, to aggregate data instances modelled

through parametric type-1 fuzzy sets in a way that preserves the shape used

to model individual opinions, enhancing the interpretability of the produced

models.

Specifically, the CPA makes use of constrained interval type-2 fuzzy sets

(CIT2) [1, 65, 68] to guarantee that the chosen shape is preserved throughout

the generation of the footprint of uncertainty and to ensure that its embedded

sets only represent acceptable instances.

The approach has been applied to a case study involving combining interval-

valued data gathered from surveys, and compared to the other approaches in

the literature. Also, an example of application on data instances modelled

through triangular fuzzy sets is illustrated, to show the flexibility of the novel

approach and the difference in the shapes obtained compared to the interval-

valued case.

The rest of the chapter is organized as follows. After a brief introduction

to CIT2 fuzzy sets and the problem of modelling intervals with fuzzy sets, the

CPA is described and applied to both synthetic and real-world interval-valued

data. The experiments are followed by an extensive discussion, in which the

different approaches are analyzed and compared, exploring the characteristics
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of each. Lastly, it is shown how the CPA can be used to model data in which

each instance is an opinion represented through a triangular fuzzy set.
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7.2 Constrained interval type-2 fuzzy sets

based on constraint satisfaction

Chapter 6 extended the CIT2 definitions in order to make them more general

and make them usable in situations in which multiple shapes are considered

acceptable for the modelling of a given concept.

In this new formulation, instead of forcing all the embedded sets to have

a single, specific shape, the characteristics underpinning the meaningfulness

of the modelled concept are modelled through mathematical constraints that

need to be satisfied by the acceptable embedded sets. In the case of the word

medium, for example, any membership function that monotonically increases

and then monotonically decreases would be plausible. Therefore, Gaussian

memberships with different standard deviations and triangular shapes with

different parameters would all be acceptable. The original representation for

CIT2 fuzzy sets, however, would not allow to have embedded sets with different

shapes, as they could not be obtained by translating a generator set along the

x-axis.

Formally, a set of constraints C0, ..., Cn can be used to build the collection

of acceptable embedded sets (CAES) that characterizes a CIT2 fuzzy set Ă

[3, 65]:

CAESĂ = {S|X 7→ [0, 1], C0(S) ∧ ... ∧ Cn(S)} (7.1)

where S is a T1 embedded set, X is the universe of discourse and Ci(S), i ≤

i ≤ n means that S satisfies the constraint Ci. All the constraints must be

satisfied by an embedded set for it to be considered acceptable (hence the ∧

in (7.14)). The CAES is then used to define the upper and lower membership

functions of Ă:

µĂ(x) = sup
S∈CAESĂ

µS(x) (7.2)
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µ
Ă

(x) = inf
S∈CAESĂ

µS(x) (7.3)

Figure 7.1: A CIT2 fuzzy sets that makes use of the new representation [3] for
acceptable embedded sets

Fig. 7.1 shows an example of a CIT2 fuzzy set that makes use of the CIT2

definition based on constraint satisfaction. In this case, although a triangular

shape has been defined as acceptable, having all the three embedded sets in

red would not be possible with the original CIT2 representation, since they

cannot be obtained by translating a single set (i.e. the generator set) along

the x-axis.

In the rest of the chapter, it is shown how the CIT2 representation based

on the satisfaction of constraints can be used to achieve two main goals: (i)

maintaining a strong relation between the concept modelled and the generated

CIT2 fuzzy set, by preserving the shape used to represent an individual in-

stance (e.g. an interval, in the survey case); (ii) embedding into the footprint

of uncertainty only the embedded sets that can actually model an individual

instance, by considering as acceptable only the embedded sets with the same

parametric shape used to represent individual instances.

7.3 Type-reduction and centroid defuzzifica-

tion

Type-reduction is an important operation in T2 fuzzy logic as it maps a T2

fuzzy set into a T1 fuzzy set [17] and it is usually used before the defuzzification
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process, that turns the type-reduced T1 fuzzy set into a crisp number.

Type-reducing an IT2 fuzzy set Ã produces a T1 fuzzy set that is fully

identified by an interval [l, r], where l and r are respectively the lowest and

highest centroid among all the embedded sets of Ã. All the embedded sets

are considered at this step, regardless of their shape and it is likely that the

two embedded sets determining l and r will not have a shape that could plau-

sibly model an instance (e.g. a single opinion or an observation) in the data

representation context. This phenomenon, reduces the interpretability of the

defuzzification step and, therefore, of any system or model that uses them.

When type-reducing a CIT2 fuzzy set Ă, on the other hand, only the ac-

ceptable embedded sets are processed. In this context, it means that only

the embedded sets satisfying the constraints C0, ..., Cn, contribute to the type-

reduction and by extension to the defuzzified value of Ă [65].

7.4 Aggregating Interval-Valued Data with Fuzzy

Sets

When modelling concepts, opinions and words with fuzzy sets, it is important

to preserve the inherent properties and structure of the data by the use of an

appropriate shape.

Interval-valued data can be directly mapped into fuzzy sets. In fact, an

interval can be seen as a crisp set of numbers, i.e. a set in which a number

either belongs or does not belong to the interval. For example, the interval

[2, 5] can be directly modelled as a fuzzy set as shown in Fig. 7.2. Although

one could argue that this set is not truly “fuzzy” since the membership degree

of its points is either 0 or 1, this phenomenon is the consequence of the fact

that, by design, there is no uncertainty on the endpoints of the interval. The

uncertainty, in this context, is not given by the membership degree but by the

width of the interval itself.
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Figure 7.2: A fuzzy set modelling the interval [2,5]

There are four main approaches in the literature that generate fuzzy sets

from the aggregation of intervals, focusing on different properties.

The IA [73] and EIA [74] have the goal of producing IT2 fuzzy sets with

a practical parametric shape. Before generating the IT2 set, a pre-processing

step is used to eliminate all the intervals that are considered outliers or non-

sensical (i.e. non-overlapping intervals or intervals that do not fall within

specific thresholds). The IAA [38] and EIAA [74], on the other hand, have as

their main objective the representation of the agreement among the opinions

expressed by the participants. They generate T1 or T2 fuzzy sets (depending

on the different levels of uncertainty that are modelled) in which the member-

ship degree is determined by the number of overlapping intervals in a given

point. In contrast to the IA and EIA, the IAA and EIAA do not require a

pre-processing step and model all the available data without discarding any

entries, under the assumption that outliers and non-overlapping intervals may

represent admissible entries (e.g. valid answers to a survey that differ from all

the other ones).

Although the shape of a fuzzy set is one of the main properties by which

humans give it a semantic interpretation, none of the approaches in the lit-

erature focus on keeping a relation with the shape used to represent a single

interval. In this context, specific shapes of the footprint of uncertainty and

of the embedded sets can help intuitively understand what the model repre-

sents and the effects of uncertainty on it, making it understandable also by
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non-experts.

7.5 The constrained parametric approach

In this section, the constrained parametric approach (CPA) is introduced. This

novel methodology can be used to model uncertain data acquired from multiple

sources in which each instance (e.g. each survey answer) is represented by a

parametric fuzzy set. The goal of the approach is to generate fuzzy sets with a

strong semantic connection with the concepts in the original data by preserving

their structure throughout the modelling process.

In order to do so, the generated fuzzy set and its embedded sets keep the

same same parametric shape used to model an individual instance: the foot-

print of uncertainty is used to model the effect of the uncertainty generated

by the aggregation on the parameters of the shape (e.g. the endpoints, for

an interval), while restricting the shape of the embedded sets ensures that

embedded sets that could not plausibly represent an instance, are excluded.

These properties can be implemented with CIT2 fuzzy sets as they can be

easily translated into mathematical constraints.

The parametric shape used to represent the individual instances, together

with data statistics for each of its n parameters, are used to determine n + 1

constraints C0, ..., Cn. Specifically, the first constraint C0 makes sure that all

the acceptable embedded sets have the same parametric shape used to model

individual observations (e.g. when aggregating intervals, all the embedded sets

must have an interval shape too). Then, for each parameters P i, 1 ≤ i ≤ n

used to identify the chosen shape (e.g. the endpoints a, b for intervals or the

points a, b, c for triangles) an uncertainty range [P i
min, P

i
max] is defined. The

value of each parameter P i for each embedded set must be P i ∈ [P i
min, P

i
max]

for it to be considered acceptable.

The process can be summarized in the following steps:

1. Determine the n parameters P 1, ..., P n required by the shape used to
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model each individual instance (e.g. interval, triangular, trapezoidal).

2. For each parameter P i, 1 ≤ i ≤ n of the parametric shape (e.g. for each

endpoint, in the case of an interval), determine its uncertainty range

[P i
min, P

i
max]. In this step, a combination of different data statistics such

as mean, variance and standard deviation can be used to determine the

uncertain endpoints (more on this in Sec. 7.6).

3. Build the constraint C0 to ensure that all the acceptable embedded sets

have a membership function that can be written in the same form of

the parametric shape used in step 1 (e.g. when combining intervals, all

the acceptable embedded sets must have an interval shape too, but with

specific constraints limiting the possible variations).

4. For each parameter Pi, 1 ≤ i ≤ n of the parametric shape, define the

constraint Ci that is satisfied if and only if Pi ∈ [P i
min, P

i
max].

5. Use the constraints C0, ..., Cn defined in the steps 3, 4 to build the CIT2

fuzzy set that aggregates the observations, as in (7.1).

7.5.1 Combining intervals with the CPA

In this subsection, the CPA is used to aggregate intervals. A step-by-step

application of the approach described here can be found in Sec. 7.6.1. Since

an interval [a, b] is identified by the two parameters a, b, the total number of

constraints to define is three:

• C0:

∃ a, b,∈ R, a ≤ b : µS(x) =


1, x ∈ [a, b]

0, otherwise

(7.4)

• C1: a ∈ [amin, amax]

• C2 b ∈ [bmin, bmax]
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for each acceptable embedded set, C0 ensures that it is shaped as an interval,

while C1 and C2 make sure that its endpoints are within the respective uncer-

tainty ranges. Intuitively, the CIT2 fuzzy set generated using C0, C1 and C2

is determined by the collection of all the intervals with the endpoints within

the uncertainty ranges used in C1 and C2. To fully characterize the gener-

ated CIT2 fuzzy set, the boundaries of its footprint of uncertainty must be

determined. In this case, the upper-bound membership function is:

µĂ(x) =


1, x ∈ [amin, bmax]

0, otherwise

(7.5)

Proof. For all the values x, x < amin ∨ x > bmin the membership degree for

both the boundary function must be 0, since a set S ′ such that µS′(x) = 1, x <

amin ∨ x > bmin would not satisfy C0 and would therefore not be part of the

CAES. For the values of x′ ∈ [amin, bmax], trivially µĂ(x′) = 1.

In fact, for each value x′, there exists a set S ′ modelling the interval [a′, b′] ⊆

[amin, bmax], a
′ ≤ x′ ≤ b′ for which µS′(x

′) = 1 (because of C0). The lower-

bound membership function µ
Ă

can be obtained analogously by analysing the

two parts of the universe of discourse [amin, amax)∪(bmin, bmax] and [amax, bmin].

While the lower-bound membership (7.3) is:

µ
Ă

(x) =


1, amax < bmin ∧ x ∈ [amax, bmin]

0, otherwise

(7.6)

Proof. Using a proof that is similar to the one used for the upper-bound

membership function in the previous subsection, it is possible to show that

∀x′ ∈ [amin, amax)∪ (bmin, bmax], µĂ(x′) = 0. For each value of x′, in fact, there

exists a set S ′ modelling the interval [a′, b′] ⊂ ([amin, amax)∪ (bmin, bmax]), a
′ >

x′ ∨ b′ < x′ for which µS′(x
′) = 0 (because of C0).
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In the case in which x′ ∈ [amax, bmin], instead, there are two cases:

1. [amax, bmin] is not a well-formed interval, i.e. bmin < amax: in this cir-

cumstance, the whole section of the universe of discourse [amin, bmax]

is covered by the case analysed above (i.e. when x′ ∈ [amin, amax) ∪

(bmin, bmax]). In this case, the lower-bound membership degree of the

CIT2 set Ă is:

µ
Ă

(x) =


0, x ∈ [amax, bmin]

0, otherwise

(7.7)

I.e., µ
Ă

(x) = 0, ∀x ∈ X, with X universe of discourse

2. [amax, bmin] is a well-formed interval, i.e. bmin > amax: in this sub-

case, the membership degree of the lower-bound function is 1 for ∀x′ ∈

[amax, bmin]. To prove that, it is shown that for all the sets S ′ modelling an

interval [a′, b′] ⊇ [amax, bmin]1 and satisfying C0, C1, C2, µS′(x) = 1, ∀x ∈

[amax, bmin].

Since x ∈ [amax, bmin] ∧ [amax, bmin] ⊆ [a′, b′] =⇒ x ∈ [a′, b′]. Since S ′

satisfies C0, it follows that µS′(x) = 1, ∀x ∈ [amax, bmin]. In this sub-case,

the lower-bound membership function of the CIT2 set Ă can therefore

be written as:

µ
Ă

(x) =


1, x ∈ [amax, bmin]

0, otherwise

(7.8)

The constraints chosen for the modelling of intervals also simplify the type-

reduction process. To reduce a CIT2 fuzzy set Ă, it is necessary to identify

the two acceptable embedded sets with the lowest and highest centroid value,

respectively l and r. Since all the acceptable embedded sets model intervals

1Any set S′ modelling an interval [a′, b′] ⊂ [amax, bmin] would not satisfy C1, C2
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(because they satisfy C0), the formula for the calculation of their centroid can

be simplified as follows:

C(S) =
a′ + b′

2
(7.9)

with S being a generic acceptable embedded set modelling the interval [a′, b′], a′ ∈

[amin, amax], b
′ ∈ [bmin, bmax]. Taking into account the constraints C1, C2 de-

scribed above, the lowest centroid l can be determined as:

l = min
S∈CAESĂ

C(S) = min
a∈[amin,amax],b∈[bmin,bmax]

a′ + b′

2
(7.10)

To minimize the fraction a′+b′

2
in (7.10), it is sufficient to minimize a and b.

Therefore (7.10) can be rewritten as:

l =
amin + bmin

2
(7.11)

Analogously, it can be proven that r is computed as:

r =
amax + bmax

2
(7.12)

By construction, the acceptable embedded sets providing l and r are, respec-

tively, the lowest and highest intervals embedded in the CIT2 set. Therefore,

they represent the lowest and highest opinion within the footprint of uncer-

tainty. This property also contribute to the interpretability of the model,

compared to models consisting of IT2 fuzzy sets. In fact, since the defuzzified

value of the CIT2 set produced by the CPA is computed as (l+ r)/2, it can be

intuitively expressed as the average of the lowest and highest embedded opin-

ions. This provides a clear, meaningful explanation for how the type-reduction

and defuzzification process is carried out, understandable also by non-experts.

Explaining the type-reduction and defuzzification for a generic IT2 fuzzy set

like the ones produced by the other approaches in the literature, on the other
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hand, would be more challenging. When procedures like the Karnik-Mendel

one are used for the type-reduction, there is no guarantee that the embedded

sets providing l and r will carry a particular meaning or can be interpreted

as opinions, due to their shape. Therefore, giving a human understandable

reason for how the defuzzified value was computed is significantly harder.

7.5.2 Modelling other shapes: triangles

As already mentioned in this section, the CPA can be applied not only to in-

tervals but to any uncertain data with instances modelled through parametric

fuzzy sets. Here, the case in which each observation is modelled as a triangular

T1 fuzzy set is analyzed. A triangular membership function is described by

three parameters a, b, c identifying respectively the start, peak and end points

of the triangle. The first constraint C0 ensures that each acceptable embed-

ded set has a triangular membership function, while the constraints C1, C2, C3

(one per parameter) are defined to check that each of the parameters of the

membership function are within the respective uncertainty ranges.

Therefore, the constraints that each acceptable embedded set S must satisfy

are the following:

• C0: this constraints ensures that S is an actual triangle with parameters

[a, b, c], a < b < c, a, b, c ∈ R. The membership function of S must be in

the following form:

µS(x) =



x−a
b−a , x ∈ [a, b]

b−x
c−b x ∈ (b, c]

0 x < a ∨ x > c

(7.13)

• C1: a ∈ [amin, amax]
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• C2: b ∈ [bmin, bmax]

• C3: c ∈ [cmin, cmax]

The CAES is defined as the set of acceptable embedded sets satisfying these

four constraints:

CAES = {S |µS : X 7→ [0, 1], C0(S) ∧ C1(S) ∧ C2(S) ∧ C3(S)} (7.14)

The upper membership functions of each CIT2 fuzzy set Ă can be expressed

as follows:

µĂ(x) =



x−amin

bmin−amin
, x ∈ [amin, bmin]

1 x ∈ (bmin, bmax)

bmax−x
cmax−bmax

, x ∈ [bmax, cmax]

0, x < a ∨ x > c

(7.15)

Proof. To prove (7.15), first the universe of discourse is divided in three parts

[amin, bmin], (bmin, bmax), [bmax, cmax] and show that for each of these intervals:

max
S∈CAESĂ

µS(x) = (7.15) (7.16)

• x ∈ [amin, bmin]: since each triangular set S with parameters is in the

form of (7.13), when x ∈ [amin, bmin], considering that S must also satisfy

C1, ..., C3 to be in the CAES, its membership function becomes:

µS(x) =
x− a
b− a

(7.17)

Therefore, to obtain the maximum in (7.16), it is necessary to choose the

values a ∈ [amin, amax] and b ∈ [bmin, bmax that maximize x−a
b−a . The values

that maximize it are a = amin and b = bmin as shown by the following

proof. For readability, a and b will be used instead of amin and bmin.
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Theorem 7.1. Given two values b′ ∈ (bmin, bmax], a
′ ∈ (amin, amax] (i.e.

a′ > amin, b
′ > bmin) then:

x− a
b− a

≥ x− a′

b′ − a′
, a = amin, b = bmin (7.18)

Proof. (7.18) is equivalent to:

x− a
b− a

− x− a′

b′ − a′
≥ 0 (7.19)

(x− a)(b′ − a′)− (x− a′)(b− a)

(b− a)(b′ − a′)
≥ 0 (7.20)

The numerator and denominator of (7.20) can be analyzed separately.

(x− a)(b′ − a′)− (x− a′)(b− a) =

x(b′ − a′ − b+ a)− ab′ + a′b ≥ 0

(7.21)

Since a′ > a and b′ > b that can be written respectively as:

a′ = a+ εa, εa > 0 b′ = b+ εb, εb ≥ 0 (7.22)

(7.21) can be rewritten as:

x(b+ εb − a− εa − b+ a)− a(b+ εb) + (a+ εa)b =

x(εb − εa) + bεa − aεb =

xεb − xεa + bεa − aεb =

εa(b− x) + εb(x− a) ≥ 0

(7.23)

Since εa, εb > 0, (7.18) is true ∀x ∈ [a = amin, b = bmin]. The denominator

of (7.20) is trivially always positive: b and a are two of the parameters

of an acceptable embedded set S modelling a triangle and satisfying the

constraints C0, ..., C3. Therefore, it must be that b > a because of C0.

Analogously, b′ > a′.
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• x ∈ (bmin, bmax). This case is trivial. Since for each acceptable embedded

set S ∈ CAESµS(b) = 1, the acceptable embedded set S ′ modelling

the triangle with parameters (amin, x, cmax satisfies all the constraints

C0, ..., C3 and µS′(x) = 1.

• x ∈ [bmax, cmax]. The proof is analogous to the x ∈ [amin, bmin] case.

The lower membership, instead, function is:

µ
Ă

(x) =


0, x < amax ∨ x > cmin

min
(

x−amax

bmax−amax
, bmin−x
cmin−bmin

)
, otherwise

(7.24)

Proof. For this proof, the universe of discourse will be split into two intervals:

[−∞, amax) ∪ (cmin,+∞] and [amax, cmin] and it will be shown that for both

cases µĂ(x) = (7.24).

• x ∈ [amax, cmin]. Since the membership function of each set S in the

CAES is in the form of (7.13), the lower-bound membership function of

Ă can be written as:

min
S∈CAESĂ

µS(x) = min
(
1,
x− a
b− a

,
b− x
c− b

)
(7.25)

I.e., it is the minimum among the three cases. Similarly to what has

been done for the the proof of the upper-bound membership function (in

which these quantities had to be maximized), it can be shown that:

min
(x− a
b− a

) =
x− amax

bmax − amax

min
(b− x
c− b

)
=

bmax − x
cmax − bmax

(7.26)

• x ∈ [−∞, amax) ∪ (cmin,+∞]. This case can be split in two sub-cases,

i.e. when x ≤ amax and when x ≥ cmin. Consider the two sets S ′, S ′′ ∈
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CAESĂ modelling respectively the triangles with parameters amin, bmin, cmin

and amax, bmax, cmax. When x ≤ amax, then:

µS′′(x) = 0 = min
S∈CAESĂ

µS(x) = min
(
1,
x− a
b− a

,
b− x
c− b

)
(7.27)

Instead, when x ≥ cmin:

µS′(x) = 0 = min
S∈CAESĂ

µS(x) = min
(
1,
x− a
b− a

,
b− x
c− b

)
(7.28)

Therefore, in both sub-cases:

min
(
1,
x− a
b− a

,
b− x
c− b

)
= 0 (7.29)

Just like any other CIT2 (and in general, IT2) fuzzy set, Ă can be type-

reduced into a T1 fuzzy set fully represented by the interval [l, r], where l

and r are respectively the minimum and maximum centroids obtainable by

defuzzifying all the acceptable embedded sets of Ă. Since each acceptable

embedded set is a T1 triangular fuzzy set with parameters (a, b, c), [l, r] can

be computed as follows:

[l, r] = [
amin + bmin + cmin

3
,
amax, bmax, cmax

3
] (7.30)

7.6 Applications

To use the CPA in practice, it is necessary to determine the endpoints of the

uncertainty ranges (i.e. the values P i
min and P i

max for each parameter P i) in

order to use them in the constraints and define the acceptable embedded sets.

The specific metrics and process used to determine them, can vary and

depend on the quality and size of the data that the designer is dealing with.

As an initial suggestion, it is proposed the following process to determine the
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uncertainty range for each of the n parameters P i, 1 ≤ i ≤ n:

• The values P i
avg is computed averaging the value of the parameter P i

among all the observations or opinion modelling to aggregate (e.g. all

the opinions for the word medium).

• Similarly, the standard deviation P i
std is computed.

• The endpoints of the uncertainty range [P i
min, P

i
max] are defined as fol-

lows:

P i
min = P i

avg − (P i
std/2) (7.31)

P i
max = P i

avg + (P i
std/2) (7.32)

To summarize, each uncertainty range in this chapter is computed as follows:

[P i
avg − (P i

std/2), P i
avg + (P i

std/2)] (7.33)

The choice of using the average and standard deviation has been made

heuristically. Hence, alternative metrics may equally be used by the designer,

according to their needs and the quality of the data they have. In case of noisy

data, for example, a preprocessing step can be added to remove all the non-

sensical data and the outliers or different data statistics can be used. One of

the strengths of the CPA, in fact, is that it can be easily adapted to different

scenarios simply by changing the process that computes P i
min and P i

max for

each parameter P i.

7.6.1 Step-by-step application on interval-valued syn-

thetic data

The following synthetic example shows a step-by-step application of the CPA

on interval-valued data, to facilitate the understanding of how it can be used

in practice. In the next subsection, the CPA is applied on real world-data, in

a more thorough case study.
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Consider the three intervals I1 = [1, 3], I2 = [2, 5], I3 = [4, 7] represented

in Fig. 7.3 modeling a given concept (e.g. the word some) for three different

people.

Figure 7.3: Three intervals (in red, magenta and black) modelling the same concept

In order to build a CIT2 fuzzy set Ă that aggregates them, the uncertainty

range for each parameter of the chosen shape must be computed. Since the

data is modelled as intervals, the shape has only two parameters: the endpoints

a and b. In this case, they are calculated as described in (7.33), producing for

the left endpoint the uncertainty range:

[2.333− (1.247/2), 2.333 + (1.247/2)] = [1.709, 2.956] (7.34)

And for the right endpoint:

[5− (1.632/2), 5 + (1.632/2)] = [4.183, 5.816] (7.35)

Therefore, the acceptable embedded sets S satisfy the following constraints:

• C1: S must correctly model an interval, i.e.:

∃ a, b ∈ R, a ≤ b : µS(x) =


1, x ∈ [a, b]

0, otherwise

(7.36)

• C2: a ∈ [1.709, 2.956]

• C3 b ∈ [4.183, 5.816]
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The collection of these acceptable embedded represents the CAES, as de-

fined in (7.1).

The upper (7.5) and lower (7.6) membership functions of the CIT2 fuzzy

set are respectively:

µĂ(x) =


1, x ∈ [1.709, 5.815]

0, otherwise

(7.37)

µ
Ă

(x) =


1, x ∈ [2.956, 4.183]

0, otherwise

(7.38)

The CIT2 fuzzy set Ă obtained is shown in Fig. 7.4.

Figure 7.4: The CIT2 fuzzy set Ă obtained from the aggregation of the three inter-
vals in Fig. 7.3 with the CPA

Figure 7.5: The two acceptable embedded sets (in magenta and red) determining
the type-reduced set of Ă

From the picture, it is possible to see how this set keeps a shape relation

with the T1 representation of an interval, making it easily interpretable. Just
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by looking at the CIT2 set, it is clear that it models an interval with uncer-

tainty on its endpoints (i.e. the two thick magenta sections of the footprint

of uncertainty). The level of uncertainty on each endpoint is easy to under-

stand as it is modelled by the ‘width’ of the uncertain boundaries (i.e. a wider

footprint of uncertainty means higher uncertainty).

The two acceptable embedded sets representing the lowest and highest ac-

ceptable opinion that determine the type-reduced set [2.945, 4.386] are shown

in Fig. 7.5.

7.6.2 Application on real-world interval-valued data and

comparison with IA, EIA, IAA

The CPA has also been applied to intervals gathered from real surveys, to see

how it performs on non-synthetic data that can be noisy and contain outliers

or ‘bad’ (i.e. non-sensical) answers. The data chosen is available online2 and

has been already used in other research works [74, 76]. A total of 174 partici-

pants were asked, in an online survey, to provide the interval in [0, 10] that in

their opinion better represents a given word (such as small, medium, some),

for a total of 32 words. In addition to the novel CIT2 modelling technique

presented in this chapter, also the interval approach (IA, [73]), the enhanced

interval approach (EIA, [74]) and the interval agreement approach (IAA, [38])

have been used to model the data, for comparison. For the IA and EIA im-

plementation, the freely available Matlab library has been used 2; the IAA

2http://sipi.usc.edu/∼ mendel/publications/index.html
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algorithm, instead, has been taken from the Python library FuzzyCreator [77].

Table 7.1: Comparison of the type-reduced sets

Word CIT2 EIA IA

Small [1.283, 3.314] [0.452, 1.825] [0.454, 2.222]

Medium [4.363, 5.878] [3.164, 6.923] [1.983, 8.167]

Large [6.500, 8.506] [7.861, 9.385] [6.503, 9.377]

Table 7.2: Comparison of the centroid defuzzified values

Word CIT2 EIA IA IAA

Small 2.298 1.138 1.338 3.488

Medium 5.120 5.043 4.369 5.154

Large 7.504 8.623 7.940 6.522

From the 32 words available, because of space limitations, three words have

been chosen for the comparison: small, medium and large. The fuzzy sets

obtained with the CPA, EIA, IA and IAA approaches are shown in Figs. 7.6,

7.7, 7.8, 7.9 respectively while the type reduced and centroid defuzzified values

for each of the sets are reported in the Tables 7.1, 7.2.
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7.6.3 Application on real world triangular data

The experiments so far were focused on the modelling of intervals. The CPA,

however, can be used with uncertain data with instances modelled through

any parametric fuzzy set, such as triangular ones. Each triangle, in fact, can

be represented with three parameters a, b, c being respectively the starting

point, the peak and the endpoint of the triangle. To show how the CPA can

be used to generate triangles, the same intervals gathered from surveys for

the experiments in the previous section have been turned into triples with

the following strategy: each interval [a, b] has been transformed into the triple

(a, (a+b)/2, b) representing the three parameters (a, b, c) of a triangular shape.

This conversion has been adopted just to show an example of how the CPA

could be used to model triangles or if a designer explicitly wants to obtain

triangular shapes from interval data.
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(a) Acceptable embedded set determining the
left-endpoint of the type-reduced set of the
CIT2 set in Fig. 7.6a

(b) Acceptable embedded set determining the
right-endpoint of the type-reduced set of the
CIT2 set in Fig. 7.6a

(c) Embedded set determining the left-
endpoint of the type-reduced set of the IT2
set in Fig. 7.7a (EIA)

(d) Embedded set determining the right-
endpoint of the type-reduced set of the IT2
set in Fig. 7.7a (EIA)

Figure 7.10: Embedded sets determining the type-reduced set for the word small
with the CIT2 (top row) and EIA
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The three CIT2 fuzzy set modelling the words small, medium and large

using a triangular shape to model each of the collected opinions, are shown

in Fig. 7.11. The acceptable embedded sets determined the respective [l, r]

values during the type-reduction, are depicted in Fig. 7.12 instead.

7.7 Discussion

7.7.1 Interval-valued data

From the experiments carried out in the previous section, the most evident

difference between the approaches is in the shape and type of the fuzzy sets

they produce.

The IA (Fig. 7.8) and EIA (Fig. 7.7) both produce triangular or shoulder

shape, with the EIA being specifically designed to generate a narrower foot-

print of uncertainty. Their main goal is to produce practical parametric IT2

fuzzy sets to model each word. Outliers, non-sensical and non-overlapping in-

tervals are removed in a preprocessing step, before the set is created (for more

details, the reader can refer to the original papers [73, 74]). The shape and

the tolerance to noise and “bad” data, makes both IA and EIA very useful

for practical applications. However, the heavy preprocessing applied can dis-

card up to 90% of the collected intervals before the IT2 fuzzy set is generated

[76]. While this behaviour does not represent a problem in this context, it

may reduce the amount of data to just a few points, if the starting dataset

is already small. Additionally, in some contexts, outliers may represent valid

opinions that simply differ from the rest; therefore removing them may not be

desirable.

The IAA (Fig. 7.9) models a different aspect of the data and focuses on the

representation of the agreement among the participants. In contexts in which

only inter-expert variability is present, as in this experiment, the algorithm

produces T1 fuzzy sets. The membership degree for each point x in the universe
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of discourse is determined by the number of overlapping intervals in x. As a

result, the shape generated is non-parametric and one of the possible drawbacks

of this approach is that the sets produced may less practical for uses in real-

world systems (although this issue is partly tackled by the EIAA).

The IAA does not require a preprocessing step (although it can be added)

and does not remove any outliers. The goal, in fact, is to fully represent the

data as is, without discarding any of the collected intervals or making any

assumptions on what may or may not be a non-sensical answer.

The CPA proposed in this chapter (Fig. 7.6), prioritizes different aspects

compared to the other algorithms. The aim is to preserve a strong connection

between the representation of a single opinion and the CIT2 fuzzy set in order

to increase the intuitive understanding of the model. In fact, the shapes used to

generate the CIT2 set make them easily interpretable as intervals with uncer-

tainty on their endpoints. The footprint of uncertainty models the uncertainty

around the endpoints, with a wider footprint of uncertainty corresponding to

a higher degree of uncertainty.

The other main objective of the CIT2 approach is to avoid embedded sets

that could not model valid opinions and to make the type-reduction more

explainable. Thanks to the constraints C0, C1.C2, only the embedded sets

that model an interval and that lie within the footprint of uncertainty are

considered as acceptable. As a consequence, the two acceptable embedded

sets that determine the type-reduced set represent respectively the lowest and

highest acceptable opinion. These acceptable embedded sets for the word small

are shown in Figs. 7.10a and 7.10b. For comparison, the embedded sets used

to type-reduce the set modelling the same word with the EIA are reported in

Figs. 7.10c, 7.10d. The defuzzified value of the CIT2 set they belong to, is

therefore obtained as the average of the lowest and highest acceptable opinion.

In the set generated by the EIA, since the latter algorithm focuses on other

properties of the data, it is harder to give an intuitive meaning to the embedded

sets determining the type-reduction and as a consequence, also providing an
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interpretable explanation for the generation of the defuzzified output. This

phenomenon is not limited to the word small as it extends to any fuzzy set

that can be modelled both as a CIT2 and IT2 fuzzy set [1, 3, 65] since it

depends on the way in which CIT2 and IT2 sets represent their embedded

sets.

The properties showed by the CPA and the use of meaningful shapes for

both the CIT2 fuzzy sets generated and their acceptable embedded sets, add

an additional layer of interpretability that makes both the model itself and

the operations on it intuitively understandable even by non-experts. The use

of shapes with a clear semantic meaning, together with the capability of ex-

pressing complex operations such as the type-reduction and defuzzificaiton in

simple, human-understandable terms represents the main advantage and con-

tribution of this approach, making it a valid alternative to the other method-

ologies in the literature, in situations which have specific needs with respect

to interpretability of the model.

One of the possible downsides of the CPA is that even though no prepro-

cessing is necessary, using only the mean and standard deviation of the data to

define C1, C2 implies that some of the opinions gathered during the survey, are

not considered as acceptable anymore, i.e. some of the collected intervals would

not lie within the footprint of uncertainty of the CIT2 set produced and would

in fact be discarded. In a scenario in which this behaviour is problematic,

however, the designer can simply use different constraints or data statistics to

produce the CIT2 set from the collected data.

The CPA, in conclusion, represent a valid alternative to the other ap-

proaches in all the contexts in which it is necessary to produce a model with

additional interpretability properties and for which the operations carried out

can be explained in human-understandable terms. These requirements are be-

coming increasingly important in many real-world applications, especially in

explainable artificial intelligence (XAI,[7]).
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7.7.2 Triangular data - Flexibility of the approach

Also in the experiment in which the CPA has been applied on data where

each individual observation is modelled as a triangle, it is possible to see how

the CIT2 set produced preserves the shape throughout the modelling process.

Changing the constraints is sufficient to generate a CIT2 fuzzy set with a

triangular shape, showing the flexibility and potential of the novel approach.

All the three CIT2 fuzzy sets in Fig. 7.11 keep a triangular shape and by

looking at the footprint of uncertainty, it is intuitively easy to understand that

a plausible opinion is represented by any T1 triangle lying within it. In addition

to that, during the type-reduction, the acceptable embedded sets determining

the T1 set [l, r], also have a triangular shape. This property creates a direct

and humanly-understandable link between the CIT2 fuzzy set modelling the

aggregation of opinion and the defuzzified value, obtained as the average of

the lowest and highest opinion.

7.8 Limitations

Although this chapter introduced the CPA and presented a set of experiments

showing its specific characteristics and its applicability in real-world contexts,

there are some limitations that need to be addressed in future research work.

Firstly, for the CIT2 fuzzy sets to be constructed, in fact, it is necessary

to establish a set of mathematical constraints C0, ..., Cn (for a shape with n

parameters) that must be satisfied by all the acceptable embedded sets. De-

termining which constraints better suit a particular scenario or the designer’s

needs may not be trivial. In this chapter, the mean and standard deviation of

each parameter have been recommended as they have experimentally produced

sensible CIT2 fuzzy sets, even with noisy data. However, they may not be as

suitable in other contexts.

Another limitation of the current approach concerns the upper and lower

membership function and the type-reduction formulae that need to be derived
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every time a new set of constraints is used. In this chapter, the formulae for

both the interval and triangular shapes have been presented but determining

the boundary functions given an arbitrary set of constraints may be very chal-

lenging (although it can be speculated that Gaussian, shoulder and trapezoidal

shapes can be implemented just as easily as triangles).

7.9 Summary

This chapter proposes the constrained parametric approach: a novel method to

model uncertain data with instances modelled through parametric fuzzy sets

in a more interpretable way. By modelling the underpinning characteristics

of the meaningfulness of a concept through a set of mathematical constraints,

the CPA produces models that are intuitively easier to understand, both in

the kind of data they represent and the uncertainty produced by the aggre-

gation. Additionally, by restricting the shape of the embedded sets, the CPA

also makes the type-reduction and defuzzification steps more explainable by

expressing it in terms of the lowest and highest instance embedded in the

footprint of uncertainty.

The novel approach has been compared with the three algorithms from

the literature for the modelling of interval-valued data: the interval approach

(IA), enhanced interval approach (EIA) and the interval agreement approach

(IAA). They have all been applied to data gathered from real surveys and the

features of the CPA have been extensively discussed and compared to the main

characteristics of the other approaches.

Finally, it has also been shown how the CPA can be used with not only

intervals but any parametric shape simply by changing the constraints upon

which the model is built. Specifically, also the constraints and formulas for

triangular instances have been derived and applied on real-world data.

In future work, it is desirable to develop a strategy to simplify the deter-

mination of the upper and lower membership functions of the combined fuzzy
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set generated by the CPA given an arbitrary set of constraints, as well as com-

paring this novel approach with the other algorithms present in the literature

on a wider set of problems and data types.



Chapter 8

Conclusion

8.1 Contributions

Fuzzy logic has been successfully used in the explainable artificial intelligence

(XAI) field thanks to its ability to model the decision process through words

and rules, in a manner that is similar to human reasoning and intuitive to

understand.

In the real world, however, there are many sources of uncertainty that

need to be taken into account when designing an intelligent system: sensor

readings, faulty hardware, noise in the collected data or inaccuracies in human

knowledge.

To better represent the uncertainty in intelligent systems, interval type-2

(IT2) fuzzy logic is often used. However, the ability of better handling the

uncertainty, comes at the cost of an increased complexity and the need for

additional steps during the inference. As a consequence, the semantic value

of fuzzy sets is partially lost during the input-output mapping of traditional

interval type-2 fuzzy logic systems (FLSs). By semantic value, we specifi-

cally refer to the capacity of interpreting the output of the fuzzy system in

respect to the pre-defined and thus understood linguistic variables used for

the antecedents and consequents of the system. As traditional interval type-2

fuzzy systems process all the embedded sets during the type-reduction step,
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the resulting outputs can be substantially different from any of the input sets,

making intuitive interpretation (based on the known models of the linguistic

antecedent/consequent labels) challenging.

The goal of this thesis was to extend the recently established foundational

work on constrained type-2 (CT2) fuzzy sets (FSs), specifically focusing on

constrained interval type-2 (CIT2) FSs, to develop a framework that preserves

the semantic value of CIT2 FSs throughout the inference, type-reduction and

defuzzification stages in order to create a new class of CIT2 FLSs with im-

proved semantic interpretability. These FLSs make the semantic mapping

from the inputs to the outputs more intuitively interpretable, making them a

valuable alternative to type-2 (T2) and IT2 FLSs in XAI.

To achieve this goal the following objectives were pursued:

1. Formally define the generation of CIT2 FSs for practical use.

2. Explore how to generate explainable systems from interpretable sets.

3. Make CIT2 FLSs usable in practical applications by producing a practical

inference framework.

4. Validate the theory with real-world applications.

The first objective has been accomplished in Chapter 3, where all the re-

quired properties and theorems were established to facilitate the creation of

CIT2 FSs. The formal definitions enable the practical creation of CIT2 FSs

from predefined T1 FSs, by simply choosing the displacement interval. The

creation of an open-source Java library (Chapter A in the Appendix), further

simplifies the use of CIT2 FSs and FLSs by providing a free and customizable

toolkit, available to the research community.

Objective 2, i.e. the generation of explainable systems from meaningful

CIT2 FSs, has been extensively discussed in Chapters 3, 5 and 6. It has been

shown how CIT2 FLSs are able to provide a meaningful explanation for the

inference, type-reduction and defuzzification steps; this differs from traditional
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IT2 FLSs with which it is challenging to produce a linguistic explanation for

the type-reduction, as they process embedded sets that may not carry any

semantic meaning in that specific context.

Chapter 4 fulfilled objective 3, regarding the definition of a practical infer-

ence framework. Specifically, the algorithm proposed in Chapter 4 is shown to

have run-times that are comparable to some of the most popular type-reduction

IT2 algorithms.

The last objective, has been partly achieved by Chapters 5 and 7. These two

chapters, with some limitations discussed in detail in the next subsection, focus

on the practical application of CIT2 FLSs, showing in which contexts they can

be deployed and what the advantages of using them are. The interpretability

of the CIT2 models is analyzed and compared to other approaches in the

literature.

8.2 Limitations

The work carried out in this thesis, is subject to a number of limitations. One of

the main ones concerns the lack of the interaction with the end-users to collect

feedback about the interpretability of CIT2 FSs and the explanations produced

by CIT2 FLSs. It will be essential to understand the real-world applicability of

the novel approach, to gather opinions on the perceived usefulness and clarity

of the explanations and models generated. These opinions should be collected

not only from experts but also from people outside of this research area (e.g.

physicians or engineers) for whom the intelligent system is designed.

Another limitation regards the use of CIT2 FLSs in a limited number of

applications, focusing mainly on the medical domain and expert knowledge

representation. To get a global understanding of the performances of the CIT2

approach in different scenarios, more case studies should be examined, from

different domains and with different characteristics.

Lastly, this thesis addresses only one aspect regarding the interpretability
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of fuzzy models and AI models in general. First of all, the definition of what

makes a model interpretable or explainable is itself very fuzzy. There is no

clear or formal agreement on what these concepts identify; their description is

usually vague, based on natural language rather than mathematical formulas,

making it hard to determine the “degree of interpretability” of a model. Fur-

thermore, in the fuzzy logic field there are additional factors that need to be

taken into account to model an interpretable system, such as the size of the

rulebase or the structure of rules. They have not been studied as the contribu-

tion of this thesis is in the preservation of the meaningfulness of IT2 FSs when

generated from T1 FSs and in the definition of an inference and defuzzification

framework that facilitates the generation of explanation for system outputs.

8.3 Future Work

The work carried out in this thesis leaves room for additional research work

that needs to be carried out in the future.

Surveys involving researches and end-users could be carried out to improve

the quality of the explanations of CIT2 FLSs. The participants involved could

provide valuable feedback on what are the main improvements to make in the

current explanations and why. The process could be iterated multiple times,

revising the design of the explanations at each step, until the participants are

satisfied with the result.

The computational complexity of the switch indices approximation type-

reduction approach presented in Chapter 4 could be improved. The identifica-

tion of the switch indices, for now, is carried out using a brute force approach.

However, determining a different stopping criterion or a direct way to identify

them (similarly to what happens with the switch points in the KM procedure)

would further improve the computational complexity of the novel procedure

presented here. Additionally, it would be useful to carry out a formal study of

the relation between the switch indices approach and the exhaustive method,
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to understand if and under which circumstances they provide the same results.

The explanations for the type-reduction and defuzzification obtainable from

CIT2 fuzzy systems, as shown in Chapter 5, can be further refined. Currently,

the presence of technical terms such as the firing strengths and the schematic

organization of the information may make the explanations harder to under-

stand for a non-expert of the field. However, the material can be reorganized

in a more natural piece of text, similarly to what happens for some T1 systems

[11, 12] or with linguistic summaries [78, 79], to facilitate the understanding

of the decision process by the end user. Furthermore, experts and non-experts

of the field should be involved in these studies to have a better understanding

of what aspects to improve, how to do it and why.

Lastly, the relation between the concept of meaningfulness and the novel

and more flexible definitions for CIT2 fuzzy sets developed in Chapter 6, could

be further studied. The models produced using the old CIT2 definitions, that

make use of generator sets, and the new ones that model the meaningfulness

through mathematical constraints could be compared to understand which

ones are perceived as more interpretable and in which circumstances. Addi-

tionally, the definition of meaningful shapes through a set of contextual math-

ematical constraints is a concept that can be applied not only to CIT2 but to

any kind of fuzzy set. This could represent a first step towards a more formal

definition of the idea of a meaningful fuzzy set : a vague but recurring concept

in fuzzy logic within the broad research area of XAI.
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Appendix A

Juzzy Constrained: a Java
Library for CIT2 Fuzzy Sets
and Systems

A.1 Introduction

Although many practical applications of CIT2 FLS have already been shown
in Chapter 3 and Chapter 4, there is no library that can be used by the
research community to easily deploy CIT2 FLS. The aim of this chapter is to
present the first software library, named Juzzy Constrained, that implements
CIT2 fuzzy sets and systems to favour their use in the research community.
Written in Java, Juzzy Constrained is an extension of the already well-known
Java library Juzzy [64] and follows its conventions to facilitate its use for
developers. The new toolkit makes possible the design of CIT2 FLS using
the defuzzification algorithms proposed in Chapter 3 and Chapter 4 and is
capable of using the constrained representation to provide human-readable
explanations for the constrained interval centroids produced by the systems.

The rest of the chapter is organized as follows: after a short description of
other software libraries focused on T1 and T2 fuzzy logic (Sec. A.2), the new
library Juzzy Constrained will be analyzed, describing its structure, its main
classes and its relation with Juzzy (Sec. A.4). Finally, a working example will
be presented: a CIT2 FLS will be built from scratch, with the help of code
snippets to facilitate the understanding of the usage of the toolkit (Sec. A.6).

176
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A.2 Related works

Many tools for the development of T1 and T2 FLS have been released over the
years. One of the most famous ones is the Fuzzy Logic Toolbox for MATLAB1.
It allows developers to design T1 fuzzy sets and systems through a set of func-
tions or the use of a graphical interface. The sets built with the toolbox, the
control surfaces and the rules can then be easily visualized. Similar toolboxes
that include IT2 fuzzy sets have been proposed in [80–83].

Software libraries for different programming languages have also been re-
leased. In [84] a Python toolkit for the automatic generation of T1, IT2 and
T2 fuzzy sets from data has been presented; [85], instead, describes a soft-
ware library in R for the modelling of T1, IT2 and T2 FLS that also includes
functions for the graphical visualization of fuzzy sets and control surfaces.

Software for the creation of fuzzy systems has also been included in famous
suites for machine learning such as KEEL [63] and Weka [86]. Both offer
various methods to learn fuzzy rules and sets from data (e.g. with the use of
genetic algorithms) and to perform fuzzy clustering.

After the introduction of the IEEE Standard for Fuzzy Markup Language
for the definition of fuzzy sets and systems in a “human-readable and hardware
independent way” [87], new software libraries adhering to the novel standard
have been developed such as JFML [88] and VisualJFML [89].

A.3 Juzzy

Juzzy Online [90], is a software for the design, execution and sharing of T1
and T2 fuzzy sets and systems through the use of an online dashboard that is
usable with no knowledge of programming.

A Java version of the same tool has been released. Juzzy [64] is a library
for the implementation of T1, IT2 and T2 fuzzy sets and systems. It is written
in Java, it is open-source and available online at http://juzzy.wagnerweb.net/,
http://www.lucidresearch.org/software.html and on the Maven Central Repos-

itory2. The toolkit implements T2 fuzzy sets with the zSlices representation
[91] and also supports multi-core execution of the code.

A.4 Juzzy Constrained

The Java library for CIT2 fuzzy sets and systems has been conceived as an
extension of Juzzy: it makes use of its T1 membership functions to define
the generator sets of CIT2 fuzzy sets and also adopts some of its conventions
(e.g. for the creation of rules) and utility classes (such as Input and Output

to model the input and output variables of a CIT2 FLS). Therefore, for Juzzy
Constrained to work, also Juzzy must be included in the given Java project.

The source-code released under the BSD 3-Clause license, the documenta-
tion and the JAR archive of Juzzy Constrained are freely available on GitHub
at https://github.com/PasqualeDAlterio/JuzzyConstrained. The library is

1https://www.mathworks.com/products/fuzzy-logic.html
2https://search.maven.org/artifact/com.github.chwagnlucid/Juzzy/2.0/jar

http://juzzy.wagnerweb.net/
http://www.lucidresearch.org/software.html
https://github.com/PasqualeDAlterio/JuzzyConstrained
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also available on the Maven Central Repository and can be quickly included
in any Java Maven project (for more information, see the GitHub page).



Chapter A. Juzzy Constrained 179

F
ig
u
re

A
.1
:

T
h
e

cl
a
ss

d
ia

gr
a
m

o
f

J
u

zz
y

C
o
n

st
ra

in
ed



Chapter A. Juzzy Constrained 180

A.4.1 Library structure

The packages included in the library are shown in Fig. A.2. The package
CIT2 Generator includes the T1 membership functions that are usable as
generator sets. Triangular, Gaussian, Gauangle and trapezoidal membership
functions are currently supported. Each one of them is a wrapper of the corre-
spondent T1MF defined in Juzzy; the main difference between them is that each
of the CIT2 Generator must implement a method that returns all the points
of local (and global) maximum and a method that returns all points of local
minimum of the membership function, as requested by the CIT2 Generator

interface. These two methods are needed to determine the upper and lower
membership functions of the CIT2 fuzzy set, as discussed in Theorem A.1, in
the Appendix.

Figure A.2: The package structure of the library

The CIT2 package is the core of the library: it implements CIT2 fuzzy sets
and systems using the same style used by Juzzy. Once the sets have been
defined they can be used to build antecedents and consequents that are then
organized in CIT2 Rule. Once the rules are created, they can be organized in
a CIT2 Rulebase to implement a FLS.

CIT2 Explanations contains all the objects that are used in the generation
of the explanation of the output of a CIT2 Rulebase. They mostly focus on
organizing and formatting information in a humanly readable piece of text in
order to show how the endpoints of the constrained centroid have been ob-
tained. The remaining packages offer additional utilities and tools that were
not originally implemented in Juzzy but are useful in the Juzzy Constrained
context (e.g. an IT2 fuzzy set where the upper and lower bounds can have ar-
bitrary shape or a T1 fuzzy set modeling the result of the inference operation).

Fig. A.1 shows the class diagrams with all the main classes used in Juzzy
Constrained and their relation with the original classes in Juzzy. Each CIT2

fuzzy set, to be instantiated, needs a CIT2 Generator. This interface extends
the T1MF Interface defined in Juzzy, since the generator set is a T1 set,
and requires the implementation of three additional methods: getMaxPoints,
getMinPoints and shiftFunction. The first two, as described earlier in this
section, are needed to determine the boundary functions of the generated CIT2
fuzzy; the shifting method, instead, is needed to generate the acceptable em-
bedded sets: since they are translations along the x-axis of the generator set,
this method takes a real number value as an argument and returns a new T1
membership function representing the generator set shifted by value. Addi-
tionally, since CIT2 fuzzy sets are a special case of IT2 fuzzy sets, i.e. they
have been obtained by adding a set of additional mathematical constrained
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to the original IT2 definition, the class CIT2 extends the Juzzy abstract class
IntervalT2MF Prototype.

The generator sets implemented in the library extend
CIT2 Generator Prototype, i.e. an abstract class that already imple-
ments some functionalities that are used by all the generators provided. To
add a new generator membership function, it is only required to implement
the CIT2 Generator interface. This operation, as it will be shown in Sec.
A.6, is straightforward for all the widely used T1 membership functions.

All the classes related to the the construction of a rule and a rule-base
follow the same conventions used in Juzzy, making them easy to work with for
the developers that are already used to the T1, IT2 and T2 rule-bases of the
original library.

A.4.2 Defuzzification algorithms, other features and lim-
itations

The toolkit provides two algorithms for the defuzzification of the output of a
CIT2 FLS. The first one, implemented by the method sampleCentroid in the
class CIT2 Rulebase, is based on the sampling approach proposed in Chapter 3,
itself an adaptation for CIT2 sets of the sampling method for T2 fuzzy sets
[57]. Since the extensive computation of the centroid by processing all the
acceptable embedded sets has a prohibitive cost (similarly to what happens
with “standard” T2 fuzzy sets) and each of these embedded sets only gives a
small contribution to the final result, the idea is to calculate an approximation
by sampling a subset of the acceptable embedded sets and use only them to
compute the constrained centroid.

The other defuzzification algorithm included in Juzzy Constrained is the
one presented in Chapter 4, based on the concept of switch indices instead
of the switch points used by the KM procedure for IT2 fuzzy sets [18]. This
approximation method is faster than the sampling one as it uses the properties
of CIT2 fuzzy sets to quickly identify the small subset of acceptable embedded
sets that will be used to determine the constrained centroid. For more details
about this algorithm, please refer to Chapter 4. This approach can also be used
to produce human-readable explanations for CIT2 FLSs as shown in Chapter
5 and in Sec. A.6.

In addition to the methods implemented in Juzzy for the visualization of T1
and IT2 fuzzy sets, Juzzy Constrained integrates the popular Java graphical
library JFreeChart3. This represents a more flexible way of building plots, since
they are easily and widely customizable, while also giving the opportunity of
better highlight the FOUs of the CIT2 and IT2 fuzzy sets, as shown in Fig.
A.3.

Being currently still under development, Juzzy Constrained has some lim-
itations. Specifically, CIT2 Rule only implements the and operator in the
antecedent composition and does so with the min T-Norm. In addition to
that, each rule can currently has only one consequent. At the moment, this
limitation can be overcome by replacing a rule with n consequents with n
replicas of the rule, one per consequent. In future works, the library will be

3http://www.jfree.org/jfreechart/
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expanded by adding the support to multiple-consequent rules and more an-
tecedent connectors.

A.5 Determining the boundary functions of a

CIT2 fuzzy set

The CIT2 Generator interface used in this library requires a method that
returns all the points of local maximum and one that returns all the points of
local minimum of a membership function for it to be used as a generator set.
The reason why these points are needed is to easily determine the boundary
functions of the generated CIT2 fuzzy set. As shown in Chapter 3, these two
membership functions for a generic CIT2 fuzzy set Ă can be expressed as:

µĂ(x) = sup
S∈CAESĂ

µS(x) (A.1)

µ
Ă

(x) = inf
S∈CAESĂ

µS(x) (A.2)

where Ă is a CIT2 set and the CAES is the collection of its acceptable embed-
ded sets. The following theorem proves that to determine the upper and lower
bounds of the FOU of a CIT2 fuzzy set, it is sufficient to know the generator
set, its points of local minimum and maximum and the displacement interval
used.

Theorem A.1. Given a CIT2 fuzzy set Ă, to determine its upper membership
function µĂ it is sufficient to know the T1 generator set G (with a continuous
membership function) its displacement interval [a, b] with a ≤ 0, b ≥ 0, a, b ∈ R
and the set M of all the local points of maximum of µG.

Proof. To prove the theorem, it will be shown that the upperbound function
of Ă µĂ can be expressed as:

µĂ(x) =

max

(
?, max

k∈M
(µG(k))

)
M 6= ∅

? otherwise
(A.3)

where M is the set of all the local points of maximum of µG in [x− b, x− a]
and ? is:

? = max

(
µG(x− a), µG(x− b)

)
(A.4)

Since each S in (A.1) is obtained as a shifting of G using the values in the
displacement interval (see [65] for more details), it can be rewritten as:

µĂ(x) = max
z∈[a,b]

µG(x− z) (A.5)

Using (A.5), the upperbound membership function (A.3) can be rewritten as:
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max
z∈[a,b]

µG(x− z) =

max

(
?, max

k∈M
(µG(k))

)
M 6= ∅

? otherwise
(A.6)

At this point, it must be proved that the upperbound membership function
(A.5) is determined either by µG(x− a) and µG(x− b) or by one of the points
of maximum of µG in the interval [x − b, x − a], i.e. by one of the points in
M . To do so, the two possible scenarios must be considered:

1. max
z∈[a,b]

µG(x− z) = ? (A.7)

2. max
z∈[a,b]

µG(x− z) 6= ? (A.8)

In (1), it is assumed that the upperbound membership function is determined
by maximum between µG(x − a) and µG(x − b). In this case, (A.3) trivially
holds, both when M is empty and when it contains at least one element. In (2),
instead, it must be proved that when the upperbound membership function is
not determined by µG(x − a) and µG(x − b), then it is be determined by one
of the points of maximum in M . In fact, since the upperbound membership
degree of x is different from both µG(x−a) and µG(x−b), it must be determined
by another value w that is different from x− a and x− b. Formally:

∃w ∈ (x− b, x− a) : ∀z ∈ [a, b], µG(w) ≥ µG(x− z) (A.9)

By definition, w is a point of local maximum in [x−b, x−a] and must therefore
be equal to the maximum k ∈ M in (A.6) when M 6= ∅. Therefore the thesis
holds in 2) as well. Since (A.6) holds in all the possible cases, it is true.

Similarly, it can be proven that to determine the lowerbound membership
function of a CIT2 fuzzy set it is sufficient to know the generator set, its points
of local minimum and the displacement interval used.

A.6 Applications and examples

This section will show how Juzzy Constrained can be used in practice to de-
velop CIT2 FLS, starting from the creation of CIT2 fuzzy sets and then illus-
trating how they can be put together to make rules and rulebases.

The example analyzed in this chapter is the tipping problem. This system
has been chosen for its simplicity and not to show the full potential of CIT2
FLSs. A more thorough analysis of the advantages of the use of CIT2 FLSs
and case studies on real world datasets can be found in Chapter 5. The tipping
problem has the following structure: it has 2 input variables, food and service,
and the goal is to use them to determine the adequate percentage to give as
tip.

The first thing to do, is to instantiate the generator sets. Their creation is
identical to the creation of T1 fuzzy sets in Juzzy. Here there is an example of
how the generator sets for the service membership functions can be created.
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T1MF_Generator_Gauangle unfriendlyServiceMF=
new T1MF_Generator_Gauangle("Unfriendly" ,0.0, 0.0, 6);

unfriendlyServiceMF.setLeftShoulder(true);
T1MF_Generator_Gauangle okServiceMF =

new T1MF_Generator_Gauangle("OK" ,2.5, 5.0, 7.5);
T1MF_Generator_Gauangle friendlyServiceMF =

new T1MF_Generator_Gauangle("Friendly",4, 10, 10);
friendlyServiceMF.setRightShoulder(true);

With the generator sets, it is possible to create CIT2 fuzzy sets. In addition
to the generator sets, also the displacement intervals need to be specified.
They determine how “wide” the shifting and therefore the FOU will be. In
the example below, the positive shifting values shifting size 2 is used to
generate the displacement interval [-shifting size 2, shifting size 2].

CIT2 cit2_unfriendlyServiceMF = new CIT2(unfriendlyServiceMF.getName
(), unfriendlyServiceMF , shifting_size_2);

CIT2 cit2_okServiceMF = new CIT2(okServiceMF.getName (), okServiceMF ,
shifting_size_2);

CIT2 cit2_friendlyServiceMF = new CIT2(friendlyServiceMF.getName (),
friendlyServiceMF , shifting_size_2);

The definition of the input and output variables, is taken from Juzzy since
it uses the same Input and Output objects.

Input food = new Input("Food Quality", new Tuple (0,10));
Input service =new Input("Service Level", new Tuple (0,10));
Output tip = new Output("Tip", new Tuple (0 ,30));

The partitioning of the variables can then be plotted using JFreeChart as
shown below. The results of this operation for the food, service and tip are
shown respectively in Fig. A.3, Fig. A.4 and Fig. A.5.

JFreeChartPlotter.plotMFs("Food partitioning", new CIT2 []{
cit2_badFoodMF , cit2_greatFoodMF},food.getDomain (), 1000);

JFreeChartPlotter.plotMFs("Service partitioning", new CIT2 []{
cit2_friendlyServiceMF , cit2_okServiceMF , cit2_unfriendlyServiceMF
}, service.getDomain (), 1000);

JFreeChartPlotter.plotMFs("Tip partitioning", new CIT2 []{ cit2_lowTipMF
, cit2_mediumTipMF , cit2_highTipMF}, tip.getDomain (), 1000);

Figure A.3: Partitioning of the food variable (from left to right: Bad, Great)
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Figure A.4: Partitioning of the service variable (from left to right: Friendly, Ok,
Unfriendly)

Figure A.5: Partitioning of the tip variable (from left to right: Low, Medium,
High)
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Once the CIT2 fuzzy sets have been defined, they can be paired with the
input and output variables to define the antecedents and the consesequents
that will be used in the rulebase. In this case, Juzzy Constrained follows the
same conventions used by Juzzy, making the creation of CIT2 Antecedent

and CIT2 Consequent very similar to the creation of IT2 antecedents and
consequents in the original library.

CIT2_Antecedent unfriendlyService =
new CIT2_Antecedent(cit2_unfriendlyServiceMF , service);

CIT2_Antecedent okService =
new CIT2_Antecedent(cit2_okServiceMF , service);

CIT2_Antecedent friendlyService =
new CIT2_Antecedent(cit2_friendlyServiceMF , service);

Once the antecedents and consequents have been defined, they can be put
together to create the rulebase. Again, the initialization of a CIT2 rulebase is
very similar to the creation of T1 and IT2 rulebases in Juzzy.

CIT2_Rulebase rulebase = new CIT2_Rulebase ();
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent []{ badFood ,

unfriendlyService}, lowTip));
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent []{ badFood ,

okService}, lowTip));
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent []{ badFood ,

friendlyService}, mediumTip));
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent []{ greatFood ,

unfriendlyService}, lowTip));
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent []{ greatFood ,

okService}, mediumTip));
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent []{ greatFood ,

friendlyService}, highTip));

After the input values are set, there are two algorithms that can be used to
do the inference and defuzzify the result: the sampling strategy (Chapter 3)
and the switch index method (Chapter 4). In the first case, the algorithm can
be executed invoking the method rulebase.samplingDefuzzification(50)

where 50 is the number of samples used to compute the constrained centroid.
The function returns a Tuple representing the centroid.

food.setInput (7);
service.setInput (8);
Tuple constrained_centroid_sampling=

rulebase.samplingDefuzzification (50);
Tuple constrained_centroid_si=

rulebase.switchIndexDefuzzification (100);
ExplainableCentroid result=

rulebase.explainableDefuzzification (100);

The switch index approach, instead, can be used in two different
ways: using the method rulebase.switchIndexDefuzzification(100)

where 100 is the level of discretization used to defuzzify the accept-
able embedded sets, the library returns a Tuple containing the value
of the constrained centroid, just like in the sampling method case;
the method rulebase.explainableDefuzzification(100), instead, returns
the constrained centroid and the explanation for its generation in an
ExplainableCentroid object.
As already discussed in Chapter 3 and 4, the properties of CIT2 fuzzy sets can
be used to link the endpoints of the centroid to the specific acceptable em-
bedded sets that generated them. They can then be used to determine which
rules and input values led to the creation of the constrained interval centroid,
in order to create a human-readable explanation. The selected acceptable em-
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bedded sets also have an interpretable structure: the consequent membership
functions that contributed to their generation are clearly visible and so are the
firing strengths of the rules they belong to (i.e. the heights at which they have
been “truncated”). For other IT2 defuzzification procedures like the KM one,
on the other hand, there is no guarantee that the chosen embedded sets will
have any meaningful shape nor that it is possible to link them directly to the
rules to produce an explanation. The ability to provide interpretable results
when computing the constrained interval centroid is one of the reasons why
CIT2 fuzzy sets can represent a valuable alternative to IT2 fuzzy sets in the
context of XAI.

Once the ExplainableCentroid object is obtained, the acceptable embed-
ded sets determining the constrained centroid can be plotted as shown below,
together with the fired FOU. The plots for this example are show in Fig. A.6.

JFreeChartPlotter.plotMFs("Resulting FOU", new IntervalT2MF_Interface
[]{ rulebase.getFiredFOU ()}, tip.getDomain (), 1000);

JFreeChartPlotter.plotMFs("AES determining the endpoints", new
T1MF_Interface []{ left_aes , right_aes}, tip.getDomain (), 1000);

System.out.println("The recommended tip percentage is in the range:"+
result.getIntervalCentroid ());

// Print the explanations
System.out.println(result.printableExplanation ());

The ExplainableCentroid structure also stores the information neces-
sary for the creation of the human-readable explanation using the method
result.printableExplanation(). The piece of text below, links each of the
endpoints of the constrained centroid to the rules in the rulebase that gener-
ated them, also showing the firing values of the rules, the input values and their
membership degrees with respect to the antecedent membership functions.
The recommended t i p percentage i s in the range : l e f t = 18.06 and r i g h t = 19.67
The l e f tmos t c en t ro id ( 18 . 0 6 ) i s obtained from f i r i n g the f o l l o w i n g r u l e s :
Medium : 0 .35 obtained because Food Qual ity IS Bad [ 0 . 2 5 , 0 . 3 5 ] AND Serv i c e Level IS

Fr i end ly [ 0 . 7 1 , 0 . 8 8 ] us ing the UPPER membership degree o f each input terms
High : 0 .65 obtained because Food Qual ity IS Great [ 0 . 6 5 , 0 . 7 5 ] AND Serv i c e Level IS

Fr i end ly [ 0 . 7 1 , 0 . 8 8 ] us ing the LOWER membership degree o f each input terms

The r ightmost c en t ro id ( 19 . 6 7 ) i s obtained from f i r i n g the f o l l o w i n g r u l e s :
Medium : 0 .25 obtained because Food Qual ity IS Bad [ 0 . 2 5 , 0 . 3 5 ] AND Serv i c e Level IS

Fr i end ly [ 0 . 7 1 , 0 . 8 8 ] us ing the LOWER membership degree o f each input terms
High : 0 .75 obtained because Food Qual ity IS Great [ 0 . 6 5 , 0 . 7 5 ] AND Serv i c e Level IS

Fr i end ly [ 0 . 7 1 , 0 . 8 8 ] us ing the UPPER membership degree o f each input terms

A.7 Adding a new CIT2 generator member-

ship function

Juzzy Constrained currently supports 4 types of generator sets: Gaussian,
Gauangle, triangular and trapezoidal. To add additional shapes, it is necessary
to define a new class that implements the CIT2 Generator interface. The
new class needs to provide methods that return the points of minimum and
maximum of the membership function (so that the FOU of the CIT2 fuzzy set
can be determined, see Theorem A.1, in the Appendix) and a method for the
shifting of the generator set (to generate the acceptable embedded sets).

Although implementing the methods that determine the points of minimum
and maximum may seem challenging, it is relatively easy for many shapes. In
the code snippet below, the implementation of these method is shown for the
trapezoidal membership function.
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@Override
protected ArrayList <Interval > computeMinPoints ()
{

ArrayList <Interval > min_points=new ArrayList <>();
min_points.add(new Interval(trapezoid.getA()));
min_points.add(new Interval(trapezoid.getD()));
return min_points;

}

@Override
protected ArrayList <Interval > computeMaxPoints ()
{

ArrayList <Interval > max_points=new ArrayList <>();
max_points.add(new Interval(trapezoid.getB(), trapezoid.getC()));
return max_points;

}

The minimum and maximum points are stored in Interval objects which
store generic intervals of the form [a, b]. The reason why intervals are used
rather than points is that in some membership functions the points of minimum
or maximum are infinite and all within a given interval. For example, in the
case of a trapezoidal membership function, the points of maximum are all the
points that make the shorter base, i.e. all the points in the segment BC. The
minimum points, instead, are only A and B; in this case the Interval object
is initialized using a single value a, representing the interval [a, a].

In other functions, the points of local minimum or maximum may not exist.
For example, the Gaussian shape does not have any points of local minimum.
In that situation, the getMinPoints() method can return a null value.

A.8 Summary

In this chapter, the new open-source library Juzzy Constrained has been pre-
sented. This toolkit, written in Java, has been developed as an extension
of the fuzzy library Juzzy (for type-1 and type-2 fuzzy logic) and adds the
support to constrained interval type-2 (CIT2) fuzzy sets and systems. This
new class of fuzzy sets represents a useful alternative to the standard interval
type-2 representation in the contexts in which a high level of interpretability
is needed. Through the addition of some mathematical constraints, it ensure
that a meaningful connection is kept between the shape of the footprint of
the uncertainty, the embedded sets and the concept the CIT2 set is modeling.
In the literature, it has also been shown how these properties can be used to
produce explainable interval type-2 systems by processing only embedded sets
with a meaningful shape for the determination of the interval centroid.

The chapter introduces the library and showcases the properties and utility
of CIT2 models using a worked, practical example, clearly highlighting the
advantages of CIT2 FLSs from an XAI point of view.

The toolkit presented here, is the first one to support CIT2 fuzzy sets and
systems. The aim of this chapter is therefore to present the new library to
the research community and also to encourage the discussion regarding the
possible interpretability issues that may arise with the use of T2 and IT2 FSs
(objective 4. of this thesis).

The structure of the library, its main classes and the defuzzification algo-
rithms provided have been discussed, while in Sec. A.6 a CIT2 fuzzy logic
system is built from scratch, with the help of code snippets to facilitate the
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understanding of how the toolkit can be used.
Being still under development, the library has some limitation such as the

fact that rules only support a single consequent or that the antecedents can
only be connected using the and operator. In future works these aspects will
be improved, adding rules with multiple consequents and different connectors
for the antecedents as well as making the library compliant with the fuzzy
markup language.



Appendix B

List of Common Abbreviations

FS Fuzzy set
FLS Fuzzy logic system
ES Embedded set
AES Acceptable embedded set
T1 Type-1
T2 Type-2
FOU Footprint of uncertainty
UOD Universe of discourse
IT2 Interval type-2
CT2 Constrained type-2
CIT2 Constrained interval type-2
GS Generator set
DS Displacement set
KM Karnik-Mendel
EKM Enhanced Karnik-Mendel
AI Artificial intelligence
XAI Explainable artificial intelligence
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