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Abstract

In recent years, there has been an explosion in the use of machine learn-

ing, with applications across many fields. One application of interest to the

computational chemistry field is the use of a method known as Gaussian

processes to accurately derive a system’s Potential Energy Surfaces (PES)

from ab-initio input-output data. Gaussian processes are a stochastic pro-

cess, or collection of data, each finite group of which has a multivariate

distribution. When modelling the PES of a system with GPs, the cost of

computation is proportional to the number of sample points, and in the

interests of being economical it becomes imperative to use no more comput-

ing time than in necessary.

When examining the H2O−H2S system, 10,000 sample points was found to

be insufficient to accurately model the PES, raising the question: how many

points are needed, and what makes this system so challenging?

The root mean squared error, or RMSE, provides a non-negative measure

of the absolute fit of a model to sample data. PESs for a selection of differ-

ent dimers were modelled using an LHC regime and a GP, and the RMSE

tested against a set of test data. An LHC or Latin hypercube is a method

of multidimensional distribution used to generate a near random sample

of parameter values. From the RMSE data a parametric regression was im-

plemented to find the number of sample points required nreq to achieve a

benchmark precision of 10−5 Hartrees (Eh), and from a collection of these a

correlation observed between the relative difficulty of a system and geomet-

ric and chemical characteristics of each system.

An exponential correlation was observed between nreq and number of De-

grees of Freedom (DoF) of a system, making it the principal determinant

of difficulty. A strong negative correlation was also observed between the

number of permutations in a symmetry group and the difficulty of that sys-
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tem, with a distinction made between the effects of ‘flip’ and ‘interchange’

symmetries, which reduce the points required by 50% and 34% respectively.

The difficulty of systems also positively correlates with energy well depth,

atomic size and atomic size disparity, though these are not so easily un-

picked and quantified. With DoF and symmetry in mind, a general equa-

tion for estimating nreq was formulated, and a 6 DoF system was projected

to require upwards of 32,000 sample points to achieve benchmark accuracy.

Since the cost of calculating a PES of a system is proportional to the num-

ber of sample points included, and high performance computer time is lim-

ited, the ability to estimate nreq permits better management of the compu-

tational effort. Moving forward, the methodology outlined may be used to

appraise further systems of interest before committing processor time.
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1
B A C K G R O U N D .

Currently the growth in use of Machine Learning has spread to many fields,

from commodity price prediction [Guo. 2012], to classification of celestial

bodies [Davies. 2015], to agricultural management [Liakos. 2018]. The in-

terest in machine learning often stems from the ability to iteratively optimise

a computer’s ability to perform a task without the need for explicitly pro-

gramming the process. As a result, some degree of automation is achievable

and human involvement may be minimised, benefiting productivity where

expensive or repetitive tasks are involved.

Support Vector Machines (SVMs) are Machine Learning models which

make use of algorithms to perform classification [Suykens. 1999] and re-

gression analysis [Smola. 2004]. To perform these operations the SVM may

make use of a range of strategies, amongst which are Gaussian similarity

kernels, which in principle are Gaussian Processes. A Gaussian Process is

a stochastic process where between each data point there is a multivariate

normal distribution, so the calculated data is assumed to be exact at points

xi and y=f(x) is predicted probabilistically for all values of x along with their

marginal distribution.

The machine learning in this instance is applied to molecular potential

energy surfaces. A potential energy surface (PES) describes the energy of

a molecular system with respect to the Cartesian coordinates of a molecule.
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background.

Dependent on the number of atoms present in the molecules, this may be

a very high dimensional surface, as in the case of the H2O − H2S system,

which has 6 degrees of rotational freedom. The energy value is highly vari-

able in response to the manipulation of intermolecular distances. There is

slight attraction when two molecules sit within one another’s energy “well”,

where various attractive forces cause the molecules to pull one another to-

gether. At a larger distance this interaction between the opposing charges

rapidly decays, according to Coulomb’s law, resulting in an energy close to

zero. When intermolecular distances converge to zero the energy can be

seen to rise asymptotically due to repulsive forces. The attractive forces in

a system may include hydrogen bonding between a weakly positive dipole

and a lone pair of electrons. Another permanent source of dipole interaction

takes place between a weakly positive and weakly negative atom, which oc-

curs as a more electronegative element pulls electron density away from

its neighbouring atom. Without permanent dipoles, interaction is predom-

inantly dictated by van der Waal’s forces, which include: the contributions

of rotating permanent dipoles with one another, permanent dipoles induc-

ing shifts in neighbouring electron clouds, and the significant contributions

of London dispersion forces. London dispersion forces do not rely on per-

manent dipoles, making them abundant even between non-polar molecules.

Mechanistically, temporary positive or negative dipoles within an electron

cloud give rise to complimentary charges in the electron fields of the adja-

cent molecule. The Coulombic repulsive forces are due to negative-negative

electrostatic interaction between the electron clouds, and nucleus-nucleus

interaction. As the electron fields overlap further, the Pauli Exclusion Prin-

ciple begins to dominate and a repulsive quantum mechanical effect called

the exchange interaction manifests, as electrons may not occupy the same

state or location at the same time [Stone. 2013]. The contributions of all

these many-body interactions make the study of model systems necessarily

complex, hence the need for ab-initio simulation rather than decomposition
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1.1 ab-initio chemistry.

to simple pairwise contributions.

1.1 ab-initio chemistry.

Present methods of determining material behaviours are frequently based

upon empirical observations. However, alternatives exist which more accu-

rately model the interactions of molecules by emulating the electron clouds

surrounding them, using spatially-dependent functionals. Taking the level

of precision a step further, the behaviour of electron clouds can be deter-

mined more exactly by finding solutions to the Schrödinger equation, in

what is known as ab-initio calculation.

Ab-initio (from the start) computation of the intermolecular PES is effec-

tive as it accurately resolves the aforementioned forces by emulating the

electron clouds from established quantum principles. The downside is fre-

quently the cost of lengthy calculations, which naturally leads efforts to

interpolation of smaller data sets to save computing time while still obtain-

ing an accurate PES [Cui. 2016]. The problem arising is that parametric

interpolation is a flawed system, making use of a best fit which may not

coincide with the true potential at a given point. As a result, machine learn-

ing methods such as SVM regression which respect the calculated data are

gaining traction for PES interpolation.

Ab-initio molecular simulation is a useful tool for predicting the physical

behaviours of chemical species owing to its superior level of accuracy when

compared with empirical methods. The cost of this level of accuracy is the

computational expense of calculations from first principles. Upon expand-

ing this method to systems with more electrons or degrees of freedom, the

computational burden increases by orders of magnitude [Yazal. 2001]. As

a result it is primarily only used to calculate interactions in small systems,
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1.1 ab-initio chemistry.

requiring relatively fewer sampled points.

Using this family of methods, two body and three body systems may be

examined with a view to resolving the physical properties of a system.

Two body interactions are defined by the expression ∆2EAB = EAB− EA−

EB where ∆2EAB is the sum of forces such as Coulombic attraction and re-

pulsion, charge transfer polarisation, and Pauli Exchange Interaction, EAB is

the pairwise interaction and EA and EB are the internal energy of molecule

A and B [Huang. 2015].

Three body interactions build from this, and are more present in con-

densed phase systems, due to the increasing particle density compared to

a gas. This can be described by the expression ∆3EABC = EABC − ∆2EAB −

∆2EBC − ∆2EAC − EA − EB − EC where ∆3EABC is the non-additive three

body interaction [Huang. 2015]. These potentials may be obtained and used

in a PES to predict such physical properties as boiling point of a system

[Hellmann. 2017], and for a modest computational cost the additive poten-

tials may be implemented if the system requires it [Oakley. 2009]. Ab-initio

computational chemistry is an attractive prospect to many, as it offers the

opportunity to simulate systems which may be experimentally infeasible

due to difficulty, cost, safety or structurally unstable conformations.

Among the family of Ab-Initio methods there is the well known Hartree-

Fock method, and post Hartree-Fock methods such as Møller-Plesset per-

turbation theory and Coupled Cluster methods. Among these, the Coupled

Cluster methodology is considered the gold standard to accurately solve the

time-independent Schrödinger equation [Niu. 1997]. The time independent

equation may be derived using the time dependent wavefunction.
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1.1 ab-initio chemistry.

The time dependent wavefunction Ψ is defined by

ih̄ ∂
∂t Ψ = ĤΨ, (1)

assuming the solution can be factored as follows

Ψ(r, t) = ψ(r) exp
[
−iEt

h

]
, (2)

where E is the energy value, t is time and h is Planck’s constant [Kuhn. 2009].

By substituting equation (1) into (2), the time independent Schrödinger

equation is derived

ĤΨ = EΨ, (3)

where Ĥ is the electronic Hamiltonian operator, Ψ is the wave function and

E is the total energy associated with the system. The Hamiltonian is a sum

of the potential energy T̂ of the nuclei Tn and electrons Te in question, as

well as the potential energy V̂ between the concerned particles, be they

electron-electron, electron-nucleus, or nucleus-nucleus

Ĥ = Tn + Te + Ve−e + Ve−n + Vn−n, (4)

In practice an approximation of the wavefunction is a linear combination

of many electron configurations, and each orbital is described using a linear

combination of basis functions for post Hartree-Fock methods,

ψi = ∑
α

Cαiχα (5)

where the basis functions χ may be one of a number of functions of the in-

teratomic distance, r, including Contracted Gaussian Cie−αr2
or Slater e−αr,

with some angular descriptor such as x, y or z for P orbitals. Provided ap-

propriate basis functions are chosen, the larger the ζ number, or number

of basis functions used to represent the wave function of the Schrödinger

equation, the better the agreement with the actual wavefunction. This im-

provement in fit is due to the addition of functions resulting in uniform

convergence to the electronic wavefunction. Along with this is an increase
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1.2 gaussian processes .

in computational cost, proportionate to the size of the basis set. The number

of basis functions commonly implemented include single, double, or triple

ζ, and a Complete Basis Set (CBS) may even be extrapolated using triple

and quadruple ζ together for greater accuracy. The basis functions are then

added to describe orbitals. In this study the basis set used is the augmented

correlation-consistent triple-zeta (aug-cc-pVTZ) basis set.

An established software platform used to perform ab-initio calculations is

Molpro, which offers Coupled Cluster Single-Double excitation and Triple

perturbation (CCSD(T)) functionality, and the Møller-Plesset (MP2) method

used in this study [Werner et al. 2018]. Coupled cluster refers to a post

Hartree-Fock numerical technique to construct multi-electron wavefunctions

using an exponential cluster operator to account for electron correlation. In

the case of CCSD(T), the single electron and double electron excitation terms

are calculated explicitly, whereas the triple excitation (brought about by

the contributions of three electrons) is approximated non-iteratively using

perturbation theory. Møller-Plesset methodology is another post Hartree-

Fock numerical technique, where electron correlation is approximated us-

ing Rayleigh-Schrödinger perturbation theory, with the numeral in MP2

denoting a second order perturbation. Perturbation theory involves taking

a known mathematical solution to the electron correlation and adding a

perturberance, or small disturbance to the solution. Small changes to the

observed physical characteristics may then be characterised using a trun-

cated asymptotic series to find approximations of the remaining terms in

electronic correlation series.

1.2 gaussian processes .

The practice of regression using a Gaussian method (kriging), is achieved

within a type of machine learning called Support Vector Machines. These

6



1.2 gaussian processes .

are supervised methods of machine learning typically used for regression

and classification, employing a covariance function (kernel) suitable to the

task at hand. This kernel indicates how much two variables x and x′ change

together, and may be of a linear, polynomial, or radial basis function, also

known as the Gaussian similarity function [Rasmussen. 2006].

The utility of a Gaussian regression as opposed to a parametric fit is that it

constructs a model explicitly composed of the combinations of training data

provided, and obliquely interpolates using this data and hyperparameters.

This is in contrast to simply placing a trend line based on explicit parame-

ters which may not pass through all points, and in all likelihood would be

simply impractical in a high dimensional system. This is accomplished by a

kernel function which correlates clusters of points and their inner product

in higher dimensional space in what is called the “kernel trick”. This ulti-

mately leads to the most probable surface between data points. The kernel

itself is commonly of the squared-exponential form.

The squared exponential kernel is

κ(x, x′) = σ2
0 exp

[
−1

2

(
x− x′

λ

)2
]

, (6)

where λ represents the correlation length-scale, and σ0 is the signal ampli-

tude, comprising the hyperparameters. The parameters x and x′ represent

two points. From this, the covariance function generalised to N interatomic

distances.

This kernel is popular due to both its stationarity, and the fact it has

only two hyperparameters per dimension to optimise; the variance σ and

length-scale λ. Stationarity refers to the fact the squared exponential is a

function of (x − x′) making it invariant to translations in the input space,

which is to say that there is no spatial trend in the multivariate distribution

[Lapidoth. 2017]. To best fit the data in multiple dimensions, an Automatic

Relevance Determination (ARD) kernel is used, the only difference being

that λ is a vector of the same dimensionality as the data being fitted. This
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1.2 gaussian processes .

is necessary for chemical data as the interaction, for example, between a hy-

drogen and neon atom differs from the interaction between an oxygen and

neon atom due to differences in radius, electron cloud, and potential energy

surface.

κ(x, x′) = σ2
0

ND

∏
i=1

exp

[
−1

2

(
xi − x′i

λi

)2
]

. (7)

Another component of a Gaussian process is the nugget, a simple noise

variance parameter. If Y is a vector of energy potentials in a training set

{xi, Yi}N
i=1, and there are N values of i, GP regression may be used to find

the value of f (x) at point x′ by the equation

f (x′) = KT
∗K−1Y, (8)

where K∗ is a vector of covariances between x∗ and all values of xi, and K

is the positive-definite covariance matrix,

K =


k(x1, x1) + σ2

n k(x1, x2) · · · k(x1, xN)

k(x2, x1) k(x2, x2) + σ2
n · · · k(x2, xN)

...
... . . . ...

k(xN, x1) k(xN, x2) · · · k(xN, xN + σ2
n)

 , (9)

where σ2
n is the nugget, accounting for noise in the training set. The nugget

is discussed further, later in this section.

With this covariance function, an optimisation algorithm will identify the

best kernel hyperparameters to fit the function about the marginal distri-

bution. A key quantity in obtaining the likelihood function, which is the

probability of obtaining the training data, given the hyperparameters. Op-

timising the hyperparameters may include a downhill descent algorithm

which identifies the lowest negative log likelihood to find the values of σ

and λ that provide the most agreeable fit, whilst also iterating through a

number (typically 30 in this application) of random initial hyperparameter

8



1.2 gaussian processes .

values to avoid any local minima providing erroneous results. The benefit

of optimising with the natural logarithm of likelihood as opposed to likeli-

hood in numerical methods is its asymptotic nature, which avoids the rapid

transitions between zero and large sums which may challenge a numerical

method. Respecting symmetry in a system, and making use of the systems

permutation group, permits efficient calculation of any equivalent points

without wasted computation. As it stands, this kernel does not respect this

required symmetry. Ultimately, the GP predictions are sums over the ker-

nel function, hence if the required symmetry can be imposed on the kernel

function then the GP predictions will inherit this symmetry. There exists

an algorithm to impose the symmetry on the kernel which takes the per-

mutation group of the molecule at hand and adapts the GP to present a

symmetric energy surface [Uteva. 2017]

κsym(x, x′) = ∑
gεG

κ(gx, x′). (10)

The symmetric kernel respects permutations in that λi = λj when coor-

dinates xi and xj permute. This is accomplished by recognising that the

interaction potential between, for example, hydrogen and neon will hold

true at any other conformation where hydrogen and neon could interact

similarly (for example, at an equal interatomic distance). G represents the

permutation group, and g represents a permutation within that group.

One further component of the Gaussian Process is the nugget. The nugget

is a constant meant to account for noise in the data. It is typically small

relative to the total variance observed, and serves effectively to minimise

the detriment of small scale variations and rounding in the data set upon

the model. The nugget then becomes optimised by the data and settles at a

low value for a smooth surface, or a relatively larger one if the data features

much short range variation.
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1.3 latin hypercubes .

1.3 latin hypercubes .

Latin hypercube (LHC) sampling is a statistical method of generating an

evenly distributed and near random array of multidimensional sample points.

The geometry of the hypercube builds from that of the Latin square, in

which each row and column of a grid may only be occupied by a single sam-

ple point, not unlike the placement of a given number in a sudoku puzzle.

When expanded to multidimensional space this allows for a large number of

dimensions to be allocated in a fairly homogeneous fashion. Furthermore,

there are many possible arrangements that satisfy the LHC requirement for

a given LHC size and these can readily be generated via a stochastic algo-

rithm. It is possible to determine the ‘best’ of these as the LHC with the

largest minimum distance between points, with the intention that this indi-

cates the most homogeneously distributed sample array.

The Latin hypercube sampling method was chosen over grid based sam-

pling approaches and sampling methods based upon random distribution

such as Monte Carlo, due to perceived disadvantages to these methods.

While grid sampling works well in a 2 dimensional or 3 dimensional sam-

pling methodology, as the dimensionality increases in more complex molec-

ular systems, the number of sample points utilised will increase by an order

of magnitude each time. Not only is this computationally costly, but it also

runs the risk of specifying a sample with many points of limited usefulness.

While the pre-processing scripts which select the sampling array with the

largest minimum distance between any two points would certainly allow

the selection of a homogeneous sample set, the random nature would most

likely require far more arrays to be created before finding one of compara-

ble minimum distance to those generated by LHC sampling.
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1.4 applications of gaussian processes to data from computational chemistry.

1.4 applications of gaussian processes to data from compu-

tational chemistry.

Due to the cost of ab-initio calculations only a small number can be per-

formed, so interpolation methods must be used to infer the results between

existing calculations. The use of Gaussian machine learning methods has

been shown to be a valuable tool when applied to interpolate a discrete data

set in many fields, including quantum chemical topology [Handley. 2009],

where the Popelier research group utilised a Gaussian regression technique

to model the polar moments of water molecules. In the field of material

chemistry, Gaussian Processes have been utilised in conjunction with calcu-

lated energy potentials to reproduce dislocation structures and behaviours

in a tungsten crystal [Szlachta. 2014]. Most recently, Gaussian Processes

have been applied to interpolate intermolecular potentials derived from ab-

initio calculations with a high degree of fidelity for a bimolecular system

[Uteva et al. 2017].

x [Å]
y [Å]

Po
te

nt
ia

l [
Eh

]

Figure 1.: A plot of the 2D PES for a carbon dioxide - nitrogen system using

a GP taken from Uteva et al (2017). The z axis is the interaction

potential and the x and y axes denote the position of the Ne atom.

The CO2 molecule lies along the y-axis with the carbon atom at

the origin.
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1.5 aims of this work .

The study by Uteva made use of a Python library called GPy, which al-

lows the use of Gaussian processes in order to interpolate and extrapolate

a data set [GPy. 2012]. The training data was constructed spatially using

a Latin Hypercube regime, with geometric and energy constraints to focus

ab-initio calculations to a region typical of molecular interaction and not

waste computing time while still getting a thorough placement about the

molecules concerned. This method also made use of inverse centre to cen-

tre inter-atomic distances as opposed to centre to centre distance within the

LHC construction programme, with a view to placing more sample points

proximate to the origin, therefore concentrating more effort on representing

close range interactions. These close range interactions are significant as the

energy potentials are more pronounced than distant interactions which con-

verge to zero, as observable in figure 1, making them valuable for construct-

ing an accurate PES once a good design strategy had been demonstrated.

The study also made use of upgraded ab-initio calculations with complete

basis set (CBS) extrapolation of the CCSD(T) interaction energy from the

triple ζ and quadruple ζ basis sets, yielding better approximations of the

experimentally obtained cross Virial coefficient than the GERG equation of

state for a CO2 − CO system [Uteva et al. 2017].

1.5 aims of this work .

Chapter 3 shows that a direct application of these methods to the H2O−H2S

dimer fails to give a PES that is as accurate as work done previously on

simpler dimers. In this study a series of Potential Energy Surfaces will be

constructed for a selection of dimers using en-masse LHC placement, and

comparisons made to a large test set composed of MP2 level calculations

with triple ζ basis set for the relative accuracy and low computational cost.

It is hoped that the data acquired will show that the H2O− H2S dimer is

hard to resolve to a reasonable precision, given the relative ease with which
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1.5 aims of this work .

CO2−CO was modelled in the work of Uteva [Uteva et al. 2018], then shed

light on possible sources of difficulty. It is hoped that the apparent results

will allow conclusions to be drawn about a multitude of parameters inherent

to a system, including molecular shape and associated degrees of freedom,

numbers of atoms, symmetries and atomic size.
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2
M E T H O D O L O G Y.

In essence, modelling a dimer requires a series of sufficiently informative ar-

rangements of the two molecules in question. To maximise the usefulness of

each conformation, those where the molecules are so far away that the inter-

action energy tends to zero can be discounted, as can arrangements so close

together that the energies involved become thermally inaccessible. A further

consideration is precisely what phase space around the molecule is symmet-

rically distinct. A neon atom for instance, is invariant to an observer from

any angle, meaning only distance must be considered when calculating a

PES for two interacting neon atoms. A nitrogen molecule by comparison

has an end-to-end symmetry which effectively eliminates one hemisphere

of indistinct phase space, and due to its invariance when spun about its

longest axis, and reflective symmetry about this axis, only 90◦ in a single

plane is distinct. By focusing the placement of dimers with respect to one

another into this distinct region, superfluous conformations can be avoided,

thereby allowing a more optimal distribution of samples to be taken from

the most informative zones of each molecule. It is ensured that points are

spaced effectively using a series of random Latin Hypercube based distri-

butions, and the cube with the largest minimum distance between any two

sample points is selected.
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2.1 molecular degrees of freedom .

2.1 molecular degrees of freedom .

To describe a rigid molecule’s placement in space some convenient cen-

tral point must be designated the datum, and the molecules orientation

described from here. A spherical molecule located at the datum point

[0, 0, 0] such as Ar is invariant to rotations about the X, Y and Z axis, a

linear molecule is invariant to rotation about its longest axis, and a bent

molecule is variant about all three axes. When considering a pair of interact-

ing molecules the distance between them and their orientation must also be

considered. The spatial configuration of a rigid molecule relative to another

may be described using a center-to-center distance (r) and three angles, α, β,

and γ. These parameters are used to describe geometric constraints, during

the design of an LHC.
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2.1 molecular degrees of freedom .
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Figure 2.: A diagram of the available rotations about the X, Y and Z axis

when observing interaction between two bent molecules.

It may be observed in figure 2 how this combination of angles and dis-

tance look with respect to a H2O − H2S system. Only a single α angle is

required as the two are commutative to one another, β describes a zenith

angle, and γ provides an azimuthal angle.

The angles shown in figure 2 are used as co-ordinates for the Latin hyper-

cube design. Because of symmetries in the individual molecules and of the
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2.1 molecular degrees of freedom .

overall system the full range of all angles is not required. We define the sym-

metrically distinct region as the smallest possible range of angles required

to cover all possible molecular configurations, when the symmetries of the

dimer are accounted for. The symmetrically distinct region comprises of a

reduced, but continuous range for each of the angles and depends on the

geometry of each molecule in the dimer. Table 2 shows the symmetrically

distinct region for a range of dimer types.

Another method for describing molecular orientation is to use all inter-

atomic distances, which is less helpful for a human, due to its raw data

form, and the likelihood with which one may over-specify the system. This

is shown using the same H2O− H2S system in table 1 and 3.

Table 1. Table of vectors

Index 0 1 2 3 4 5 6 7 8

Species O-S O-H O-H H-S H-H H-H H-S H-H H-H

Distance r14 r15 r16 r24 r25 r26 r34 r35 r36
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2.1 molecular degrees of freedom .
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Figure 3.: A diagram of the nine available intermolecular distances when

observing interaction between the two bent molecules illustrated

in figure 2.

In figure 3 the 9 available intermolecular distances between the atoms of a

pair of bent molecules are shown alongside the index and species interaction

given in table 1. Given a known bond length within a molecule, this regime

functionally over specifies the system but is nevertheless the preferred input

format for the GP as a selection of inverse distances each correlate to the en-

ergy potential more easily than variables including a single distance and
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2.2 rmse as a metric of precision.

several angles. This strategy also makes specifying permutability within

the system straightforward. Since the method is easier for the user to vi-

sualise, when designing a Latin Hypercube the extent of the bimolecular

conformations are specified using the intermolecular rotations method de-

picted in figure 2, and these ranges are converted trigonometrically to the

intermolecular distances.

2.2 rmse as a metric of precision.

To ascertain the accuracy of the Gaussian process, the energy surface de-

rived from the training data must be compared to a much larger indepen-

dent set. By using training data with various different geometries and an

associated energy value,some insight can be obtained as to the effect train-

ing set size has on the Root Mean Square Error (RMSE), which is a useful

metric by which to judge the quality of interpolated energy values.

RMSE =

√√√√ 1
Ntest

Ntest

∑
i=1

[
f GP (xi)− f Molpro (xi)

]2. (11)

The symbols f GP and f Molpro represent the potential energy determined by

Gaussian process and Molpro respectively, and Ntest represents the number

of points in the test set.

2.3 active learning .

Active learning is a further sampling methodology which iteratively selects

points to examine potentials at. In this case it makes use of Gaussian pro-

cesses and a performance metric such as the point with the largest error

with respect to a test set, which is then used to select training points se-
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2.3 active learning .

quentially as opposed to en-masse, based on the degree of error between

any test point and its counterpart on the evolving potential energy surface.

In practice this process utilises 3 data sets, a normative set for testing

against, a reference set which the algorithm selects geometries from, and

a working training set composed of the selected points which are used to

construct the Potential Energy Surface.

In principle this could offer an accurate insight into a surface with far

fewer points than a pre-made sample regime, since the points are each se-

lected after a dynamic analysis of the most recently calculated energy sur-

face [Uteva et al. 2018].

2.3.1 Linear Molecules.

The nitrogen molecule interacting with neon represents possibly the sim-

plest non-trivial molecule examined, due to the invariant geometry of a

linear molecule upon rotation about its longest axis and inversion symme-

try. The placement of a neon atom relative to the nitrogen molecule may

therefore be described in polar terms, simply using the centre to centre dis-

tance r and an angle β from the longitudinal axis of the nitrogen molecule.

Since the molecule is symmetric end-to-end, the angle β need only range

from 0◦ − 90◦, thus describing the symmetrically distinct region for nitro-

gen. The same is true of the symmetrically distinct region of CO2 − Ne,

along with any linear molecule possessed of an end-to-end symmetry.

Similarly, carbon monoxide is rotationally invariant about its longest axis,

but does not possess the same end-to-end symmetry, and the value of β

must range from 0◦ − 180◦ when interacting with neon to cover the distinct

region.
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2.3 active learning .

2.3.2 Bent Molecules.

Figure 4.: A diagram of the symmetric planes of a bent molecule, and the

axis of rotational symmetry.[Chaplin. 2019]

Given the symmetric planes and rotational symmetry illustrated in figure 4,

some spatial orientations of a bent molecule are superfluous and the range

of angles specified in the construction of the hypercube may be truncated.

In figure 2 the rotations α1 and α2 can be seen to complement one another

and therefore in all the systems examined, only the difference between the

two is relevant, so α1 may be equated to 0. Owing to the two planes of sym-

metry, cos(β) for bent molecules is specified as -1 to 1, and γ to be between

0 and 180 degrees. The reason for specifying the cosine of β rather than 0 to

180 degrees is to sample more heavily at a relative orientation of 90 degrees,

where the angle α is required to sample over a larger phase space.

21



2.3 active learning .

Using the described angles coupled with knowledge of the systems per-

mutation group permits efficient calculation of any equivalent points with-

out wasted computation [Cui. 2016].

2.3.3 Table of Symmetrically Distinct Phase-Spaces for Dimers of Different Ge-

ometries.
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2.3 active learning .
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2.4 processing .

2.4 processing .

Each dimer system was first selected, respecting the dimensions (r, cos β1, cos β2, α2, γ1

and γ2) in which to orientate the two molecules relative to each other, along-

side a range of r between 1.5 and 9.0 Angstroms. Reference data sets were

then constructed using Latin Hypercube (LHC) placement strategies, in

a series of magnitudes starting with 2 and doubling it each time to give

even distribution when plotted against one another on a logarithmic scale.

These points were placed with distances ranging from 1.5 to 9.0 Angstroms

and allowing free rotation of each molecule within the previously specified

bounds. A test set an order of magnitude larger than the largest training

set was constructed using the same methodology, serving as a means of

comparison in order to obtain a Root Mean Squared Error (RMSE) value of

the GP estimates against calculated vales. In active learning the use of an

independent test set offers a more accurate comparison against the results

achieved using the training data than if a comparison was made against the

reference set, as the ever shrinking array of values would ultimately always

result in an RMSE converging to zero. To minimise the cost of computing

these data sets, the basis set used for calculations is triple ζ with the rela-

tively simple Møller-Plesset methodology discussed in chapter 1.1.

2.4.1 The Software Algorithm.

The geometry of the dimer must first be described, then a Latin Hypercube

constructed based on these geometric ranges, which follows the algorithm

described in chapter 1.3. A geometric constraint is applied to the LHC

which eliminates any configuration with an interatomic distance less than

1.5 Angstroms, or no points less than 9 Angstroms. From this LHC data,

Molpro performs ab-initio calculations of the interaction energy. Once Mol-
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2.4 processing .

pro has carried out calculations and any failed runs are resubmitted, the

data is collated and Gaussian processes are carried out, implementing a

high energy cut-off of 0.005 Hartrees to eliminate points of limited interest

for molecular simulations, focusing instead on the lower energies, resulting

in around 50% of points being eliminated.

25



2.4 processing .

Describe geometries

Construct LHC

Molpro

Training set Test set

Gaussian Process

RMSE
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Figure 5.: A diagram of the pre-processing to design the sample regime, the

Molpro input and output, and the analysis of data.
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2.5 fitting a non-linear curve .

The specifications of the LHC to be constructed are then described, mak-

ing use of the molecular geometry and constraints described in table 2.

Other specifications applied include: the number of desired geometries,

the number of LHCs the programme should create before deciding on the

most homogeneous sample (defined by the LHC with the largest minimum

distance between points), and the method of ab-initio calculation desired,

which in this instance is the computationally cheap MP2 method with triple

ζ basis set. From these specifications, the Molpro input files are constructed.

Molpro will then take the input files and perform MP2 calculations, return-

ing the inverse distance vectors and calculated energy of the geometry in

an output file. The data from these individual output files is then parsed

and concatenated into a single file detailing the inverse distance vectors and

energies of every geometry in the LHC, and any calculations which are in-

complete are flagged for reprocessing, after which they will also be parsed

into the complete data file. A Gaussian process will then be constructed and

optimised to fit the training data. Finally the RMSE of each method against

the test data may be compared to determine the performance of Gaussian

modelling, and some comparison made between sample size and RMSE.

2.5 fitting a non-linear curve .

In order to best analyse data, it is useful to characterize each learning curve

by a few parameters. To this end, this subsection concerns the fitting of an

appropriate parametric function.

When comparing the performance (RMSE) of a GP against sample size it

becomes apparent as in figure 7 that too few points will elicit no improve-

ment in RMSE, a larger amount will yield an improvement according to a

power law trend, and an excessive number of points will saturate the learn-

ing curve and yield no further improvement. To accommodate the plateau
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2.5 fitting a non-linear curve .

observed in LHCs with small sample sizes, and the power law trend seen

after a certain number of points is satisfied, a cross functional fit is imple-

mented. The basic form of this function is

yRMSE(xtrain) =
R0

1 + ( xtrain
x0

)α
, (12)

Figure 6.: An example plot of the cross function. This is an empirical plot

based on observed data. y = 1× 10−3/(1 + (X/20)2.5)

where R0 represents the no-model RMSE: the RMSE achieved when the test

set is compared to the mean energy value of the training set. The variable

x0 is the number of points required to start seeing an improvement in the

RMSE, and α is the power law exponent. Additionally, if a data set is large

enough that a sigmoidal shape may be observed due to a minimum value

being reached, a modified equation may be implemented:

yRMSE(xtrain) =
R0 − R∞

1 + ( xtrain
x0

)α
+ R∞, (13)
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2.5 fitting a non-linear curve .

Figure 7.: An example plot of the cross-sigmoidal function. y = (1× 10−3−

1× 10−8)/(1 + (X/20)2.5) + 1× 10−8

where R∞ represents the minimum energy value, most likely to correspond

to the root of Molpro’s energy convergence threshold at around 2× 10−8

Hartrees. These curves are fitted with a 1/y weighted least squares fitting

in order to best capture the contribution of the smallest sample sizes.
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3
T H E H 2 O − H 2 S S Y S T E M .

The previous year’s research concerned the dimer H2S−H2O as accurate ab-

initio models for this system were not abundant in literature, possibly owing

to the magnitude of sample points required to resolve the energy surface in

a system with so many degrees of freedom. Active learning was employed

in the hope that it may reduce the number of sample points required to

accurately resolve the surface, which in turn may reduce the computational

expense of modelling such a system.

3.1 placement of sample points .

The Lennard-Jones potential is considered an archetypical, realistic yet sim-

ple model for intermolecular interactions. The key observable characteris-

tics of the Lennard-Jones potential are an asymptotic increase in energy as

intermolecular distance converges to zero, a minimum energy at the base

of the asymptote, and a convergence to zero at longer ranges. Irrespective

of the model used, whether it be Lennard-Jones, or ab-initio, a pairwise

molecular interaction should present these same features, just as two real

molecules would. As a sanity check for the aforementioned features and

therefore some semblance of Lennard-Jones conformity amongst the molec-

ular potentials calculated from first principles, all points in the 500, 1000,

4000 and the two 10000 point sample sets were plotted with their individual

oxygen to sulphur distance (r14) versus energy. To conform to the Lennard-
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3.1 placement of sample points .

Jones model VLJ = ε
[(

σ
r
)12 −

(
σ
r
)6
]
, it is expected that at low values of

r14 the energy will climb asymptotically and there will exist a minimum

point in V where V < 0 at slightly larger vales of r14. As the separation

increases further it is anticipated that the energy will converge to zero. Due

to the variance of molecular rotation, there will also be an observable distri-

bution of points about this pattern, with more pronounced variations as the

molecules are placed closer together.

Figure 8.: A plot of the energy and magnitude of vector r14, to observe for

Leonard-Jones conformity.

It can be observed from figure 8 that the collective points do indeed fea-

ture asymptotic behaviour as distance approaches 0 and energy tends to-

ward ∞ , a minimum point around 3.5 Angstroms, and a convergence to

zero beyond 5 Angstroms. A spread can also be observed, particularly as

r14 tends to 0 due to the different ways the hydrogens of each molecule are

oriented about the central sulphur or oxygen. A degree of confidence can

be taken in the lack of anomalous points, since this indicates no irregular
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3.2 comparison of training set size .

calculations or anomalies in the data.

3.2 comparison of training set size .

Each of the sets of reference data were used in conjunction with Active

Learning to produce a new GP optimised to each successively larger data

set, and the RMSE versus dataset magnitude is plotted for each. A point is

also plotted to represent the RMSE of the LHC designed GP optimised to

each complete training set without any active point selection. This is pre-

sented in figure 9 along with the ’no model’ RMSE where the training set

is equal to zero at all points. Being equal to the square root of the Molpro

nugget (1.6× 10−15), the random error is 4× 10−8 Hartrees.

Figure 9.: A graphical illustration of the performance of various size LHCs

and associated active learning processes. The independent test set

is 20000 points in magnitude.
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3.2 comparison of training set size .

It can be observed in figure 9 that the LHC derived GPs all have a similar

RMSE to one another when the PES is compared to the 6582 point indepen-

dent test set. Looking at the results for the Active Learning models, the

first few points yield a poor model, but as subsequent points are added,

the RMSE rapidly outperforms the RMSE of the no model, and within 250

points all training sets outperform the first Latin Hypercube. Using the

2614 points within the energy cut-off in the 4000 point set, the Active Learn-

ing can be seen to perform similarly to its LHC designed counterpart with

only a quarter of the points, and likewise for the 10000 point Active Learn-

ing. It can be observed in the 1000 and 4000 point series that the RMSE

worsens after a substantial fraction of available points have been utilised.

This impaired precision may be tentatively attributed to the exhaustion of

informative points, e.g. those in the short range asymptote and around the

minimum. These regions represent significant deviation from the no model,

and excessive points outside these areas thereafter may adjust the GP to dis-

proportionately accommodate fairly featureless regions. It should be said at

this juncture that none of the methods implemented achieve a comparable

RMSE to those observed in simpler systems [Uteva et al. 2018].
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3.3 effect of high energy cut-off value on rmse .

3.3 effect of high energy cut-off value on rmse .

Figure 10.: An illustration of two 4000 point active learning operations mak-

ing use of the same energy cut-off as the normative data and one

twice as high.

Active learning was carried out in the manner described in chapter 3.2, with

two 4000 point reference sets. As observed in figure 10, the application of

a higher (0.2 as opposed to the default 0.1 Hartree) high energy cut-off

promotes a more stable downward trend in the RMSE values obtained by

active learning as points are added. This lends credibility to the hypothesis

that the short range asymptote is statistically significant, and improves the

RMSE of the GP as a result. The trade off however is, the additional cost

of calculating the potentials of points falling outside the normal range of

interaction distances.
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3.4 observations

3.4 observations

Whether using active learning, or LHC driven processing, a good RMSE in

this instance would have been 10−5 Hartrees, however, even with a relatively

large training set this was not achieved. A number of factors may have been

responsible for the relative difficulty of this system, namely the number of

degrees of freedom, atomic size disparity, and characteristics of the specific

atoms involved. To appraise the contributions of these variables to the dif-

ficulty of the system, each must be isolated and the RMSE analysed. In the

next chapter we present a sequence of dimers of increasing complexity to

isolate the effect of each of these factors on the RMSE versus training size

behaviour.
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4
B E H AV I O U R S O F D I M E R S .

This chapter concerns a fairly exhaustive selection of molecular pairs, from

which comparisons are drawn in the next section. For a summary of find-

ings, refer to the table of fitted functions in appendix A.

In order to observe the effects of symmetry and asymmetry, spherical,

linear and bent molecular geometries, as well as atomic sizes and size dis-

parity, a number of representative dimers must be selected. The simplest

base case, neon was selected as its small atomic radius is unlikely to result

in a large fraction of the sampled energy values being rejected for being

too high. For linear molecules, nitrogen was first chosen to represent a lon-

gitudinally symmetric diatomic molecule, carbon monoxide was selected

to represent a diatomic molecule with longitudinal asymmetry, and carbon

dioxide to represent longitudinal symmetry in a tri-atomic linear molecule.

In addition, HBr was selected to represent an asymmetric linear molecule

with a large disparity between the constituent atomic radii. To observe the

relative difficulty of the water and hydrogen sulphide, these were selected

to represent two bent molecular geometries. Additionally, to observe the ef-

fect of a less pronounced disparity in atomic radii, sulphur dichloride was

observed, as were a selection of diatomic halogens. These conformations

then made use of the LHC placement strategy so as to give a complete pic-

ture of how each interacts with one another.
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behaviours of dimers .

Once the LHC designs were generated, the interaction for each geometry

was calculated in Molpro, a GP was trained to each LHC size and the RMSE

data were plotted against LHC size. From the plotted data, a line is fitted;

This line is either of the of the form

yRMSE =
R0

1 + (xtrain/x0)α
, (14)

or, in the event of a sigmoidal distribution of data

yRMSE =
R0 − R∞

1 + (xtrain/x0)α
+ R∞. (15)

The parameter R0 approximates the initial RMSE value which corresponds

to the no-model estimate, x0 represents the number of values plotted, and

xtrain represents the number of points needed before a downward trend in

RMSE is observable. The parameter α describes the functions gradient, and

in the sigmoidal function R∞ represents the value of the observable lower

plateau, which is close to the systemic convergence error, and the function

will not go below. The fitting of the functions is carried out with a weight-

ing of 1/y2 to best respect the small values of RMSE which are of interest.

The main purpose of this fitting is to accurately estimate the LHC size re-

quired to give an RMSE of 10−5 Hartrees, the rationale being that Uteva

[Uteva et al. 2017] successfully determined the CO2-CO second virial coef-

ficient using a GP PES with an RMSE of 10−5Eh so we use this RMSE value

as the typical value required to give a PES that is sufficiently accurate to

make first principles predictions.

By substituting yRMSE in the two trend equations with a value of 10−5

and rearranging to solve for xtrain a value which corresponds to the desired

precision is obtained. This value describes the calculated number of sample

points required to achieve an RMSE of 10−5 (nreq).

xtrain = x0

(
R0

y
− 1
) 1

α

, (16)

xtrain = x0

(
R0 − R∞

y− R∞
− 1
) 1

α

. (17)
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4.1 method.

With the variety of molecular geometries and corresponding model molecules

chosen, there remains the task of allocating some rational combination of

each. This is depicted in table 4, with the sub-chapter relating to each dimer

specified in its associated cell.

Table 3. Table of Dimers

Ne N2 F2 Cl2 Br2 CO HBr CO2 H2O H2S SCl2

Ne 4.2.1 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.4.1 4.4.2 4.4.3

N2 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5

CO 4.6.1 4.6.2 4.6.3

CO2 4.7.1

H2O

H2S

Table 4. The sub-chapters corresponding to molecular pairs are shown at the

intersection of each row and column. Grey cells indicate a pairing

which is already specified, or not examined within this study.

4.1 method.

For the methods above, training and data sets were generated for each dimer

pair using ab-initio calculations and GPs were trained to each training set

size. Finally RMSEs were calculated for each training set size. Table 4 pro-

vides a directory of subsection numbers for each molecular pair examined.
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4.2 two spherical molecules

4.2 two spherical molecules

4.2.1 Ne− Ne

Figure 11.: A plot of RMSE against size of LHC for Ne− Ne, showing data

points as red circles. The black line shows the fit y = (1.18×

10−3 − 2.17× 10−8)/(1 + (X/4.90)9.87) + 2.17× 10−8)

Taking 10−5 Hartrees to be indicative of a reasonably precise model, the

Ne−Ne system in figure 11 can be observed to achieve the desired standard

with a placement strategy using only ten sample points, owing to the single

dimensionality of the system. It may also be observed that the logarithmic

plot of RMSE versus LHC size is roughly sigmoidal, and is fitted with the

associated function and 1/y2 weighting. The initial plateau at the no-model

value is 0.00118 Hartrees , then a downward power law trend commences

as the LHC size exceeds 5, and a final plateau exists at 2.21× 10−8 Hartrees,

roughly the energy convergence threshold of Molpro. Being the simplest

base case, the observable pattern should be roughly comparable to further
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4.3 linear molecules with a spherical molecule

systems tested, with the length of initial plateau increasing and power law

gradient becoming less steep as more complexity enters the systems.

4.3 linear molecules with a spherical molecule

4.3.1 N2 − Ne

Figure 12.: A plot of RMSE against size of LHC for N2 − Ne, showing data

points as red circles. The black line shows the fit y = (1.05×

10−3 − 7.22× 10−8)/(1 + (X/10.2)3.97) + 7.22× 10−8)

Much like figure 11, figure 12 shows a sigmoidal trend when plotted loga-

rithmically, with a substantially longer profile. Conformity to the no-model

RMSE of 0.00105 Hartrees is apparent up to a LHC size of 10.2, compared

to figure 11’s 4.9. The RMSE then commences a downward power law, with

a less pronounced gradient than seen previously and shows evidence of a

second plateau at 7.22× 10−8 as the number of sample points approaches

300.
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4.3 linear molecules with a spherical molecule

4.3.2 F2 − Ne

Figure 13.: A plot of RMSE against size of LHC for F2 − Ne, showing data

points as red circles. The black line shows the fit y = 8.88 ×

10−4/(1 + (X/11.5)3.31)

The F2 − Ne system depicted in figure 13 performs similarly to N2 − Ne,

requiring 45 points to reach the benchmark value. This shows a good fit

with a reasonably sized LHC as expected, since the two exist in a linear

form and possess similar atomic radii.
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4.3 linear molecules with a spherical molecule

4.3.3 Cl2 − Ne

Figure 14.: A plot of RMSE against size of LHC for Cl2 − Ne, showing data

points as red circles. The black line shows the fit y = 1.08 ×

10−3/(1 + (X/12.5)2.65)

The Cl2 − Ne system depicted in figure 14 performs slightly worse than

F2 − Ne, requiring 73 points to achieve the benchmark.
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4.3 linear molecules with a spherical molecule

4.3.4 Br2 − Ne

Figure 15.: A plot of RMSE against size of LHC for Br2 − Ne, showing data

points as red circles. The black line shows the fit y = 1.10 ×

10−3/(1 + (X/9.98)2.47)

The Br2 − Ne system depicted in figure 15 also requires more points to

achieve the benchmark, at 67 points.
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4.3 linear molecules with a spherical molecule

4.3.5 CO− Ne

Figure 16.: A plot of RMSE against size of LHC for CO− Ne, showing data

points as red circles. The black line shows the fit y = (7.53×

10−4− 2.47× 10−7)/(1 + (X/18.0)3.70) + 2.47× 10−7)

The carbon monoxide-neon system differs from N2 − Ne in that CO lacks

the end-to-end symmetry of N2. As discussed in chapter 2.3 ,this results

in a relatively larger symmetrically distinct region of phase-space, requir-

ing more points to accurately capture the PES. The plot of RMSE vs LHC

size shown in figure 16 shows some conformity to the no-model value of

0.000753 Hartrees for sample sizes up to 18, nearly twice as many as ob-

served with N2 − Ne. Similarly, the gradient of the power law appears

around half that of figure 12. With the sample sizes used, the lowest RMSE

observed is 3.91 × 10−7 Hartrees, an order of magnitude above Molpro’s

systemic error, and well below the desired benchmark.
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4.3 linear molecules with a spherical molecule

4.3.6 HBr− Ne

Figure 17.: A plot of RMSE against size of LHC for HBr−Ne, showing data

points as red circles. The black line shows the fit y = 1.16 ×

10−3/(1 + (X/11.9)1.97)

The HBr molecule possesses the same end-to-end asymmetry as CO but the

constituent atoms have a greater disparity in radius. Repeated attempts to

model the system revealed some substantial noise beyond 100 points. To

best fit this a weighting of 1/y was utilised rather than the usual 1/y2.
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4.3 linear molecules with a spherical molecule

4.3.7 CO2 − Ne

Figure 18.: A plot of RMSE against size of LHC for CO2−Ne, showing data

points as red circles. The black line shows the fit y = (9.83×

10−4 − 1.95× 10−8)/(1 + (X/9.51)3.01) + 1.95× 10−8)

The CO2 − Ne system resembles the N2 − Ne system insofar as it possesses

end-to-end symmetry, while the constituent atoms more closely resemble

CO− Ne, with an additional oxygen. With respect to the observable trends

in figure 18, the data diverges from the no-model RMSE of 0.000983 Hartrees

at around 9.5 sample points, and trends downward to a minimum of 2.73×

10−8. The fitted function passes the 10−5 Hartrees benchmark with 45 sam-

ple points, unsurprisingly resembling the N2 − Ne systems 33; the end-to-

end asymmetric CO− Ne and HBr − Ne systems for comparison required

58 and 84 points respectively. It may also be conjectured based on CO2−Ne

requiring more samples than N2 − Ne to resolve to within 10−5, that the in-

creased number of atoms in CO2 over-specifies the data for the Gaussian

process involved, and more computational effort is required to resolve the

PES.
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4.4 bent molecules with a spherical molecule

4.4 bent molecules with a spherical molecule

4.4.1 H2O− Ne

Figure 19.: A plot of RMSE against size of LHC for H2O − Ne, showing

data points as red circles. The black line shows the fit y = 7.82×

10−4/(1 + (X/13.5)1.80)

From figure 19 it can be observed that either the triatomic bent geometry or

intramolecular size difference is a significant confounding factor compared

to a triatomic linear molecule. In the case of the H2O− Ne the calculated

PES rapidly overtakes the no-model RMSE of 0.000782 Hartrees, and con-

tinues to improve, surpassing the 10−5 mark with a sample size of 152. For

comparison, the comparable system CO2 − Ne system requires only 44, as

shown in figure 18.
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4.4 bent molecules with a spherical molecule

4.4.2 H2S− Ne

Figure 20.: A plot of RMSE against size of LHC for H2S− Ne, showing data

points as red circles. The black line shows the fit y = 9.28 ×

10−4/(1 + (X/34.4)2.09)

Figure 20 shows a superficially similar pattern for the H2S− Ne system as

observed for H2O− Ne in figure 19, however achieving an RMSE of 10−5

Hartrees requires far more points (300) as opposed to 152. This suggests

some complicating factor inherent to H2S more so than H2O.
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4.4 bent molecules with a spherical molecule

4.4.3 SCl2 − Ne

Figure 21.: A plot of RMSE against size of LHC for SCl2 − Ne, showing

data points as red circles. The black line shows the fit y = 1.22×

10−3/(1 + (X/30.8)1.55)

A SCl2 − Ne system was selected due to the relatively similar atomic radii

within the SCl2 molecule. From figure 21 the trend can be seen to resemble

that of H2S− Ne in figure 20, but requiring relatively more sample points

(686) to achieve the desired RMSE.
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4.5 interactions with a nitrogen molecule

4.5 interactions with a nitrogen molecule

4.5.1 N2 − N2

Figure 22.: A plot of RMSE against size of LHC for N2 − N2, showing data

points as red circles. The black line shows the fit y = 1.14 ×

10−3/(1 + (X/17.7)2.70)

Figure 22 shows the RMSE of the nitrogen dimer, which remains around

the no-model RMSE of 0.00114 Hartrees for LHCs of up to 18 points, which

is not uncommon among the systems examined. The trend then ventures

downward, crossing the 10−5 Hartrees mark with 102 points. Compared

with the N2 − Ne dimer in figure 12 the initial plateau is of a similar mag-

nitude but persists for almost twice as many sample points, and the down-

ward gradient after this is less pronounced, and the desired RMSE requires

around 3 times as many sample points.
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4.5 interactions with a nitrogen molecule

4.5.2 CO− N2

Figure 23.: A plot of RMSE against size of LHC for CO− N2, showing data

points as red circles. The black line shows the fit y = 9.70 ×

10−4/(1 + (X/29.2)1.97)

Figure 23 shows the performance of the CO−N2 dimer with increasing sam-

ple sizes. The No model RMSE is observed for LHCs up to 30 points, before

trending down and crossing 10−5 Hartrees at around 295, approximately 3

times higher than the comparable N2 − N2 dimer, and 5 times higher than

the CO− Ne dimer.
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4.5 interactions with a nitrogen molecule

4.5.3 CO2 − N2

Figure 24.: A plot of RMSE against size of LHC for CO2− N2, showing data

points as red circles. The black line shows the fit y = 1.11 ×

10−3/(1 + (X/19.4)2.199)

As may be expected, the CO2 − N2 dimer requires larger sample sizes than

CO2 − Ne owing to the increased degrees of freedom. Figure 24 shows

conformity to the no-model RMSE of 0.0011 Hartrees for LHCs of up to

19 points, followed by a downward trend to 10−5 at 165 sample points.

This represents a sample around 60% larger than the comparable N2 − N2

system, and 4 times the points required by CO2− Ne. Despite these relative

difficulties in resolving the PES, the sample size required still appears to

be half that of the CO− N2 dimer, lending credence to the assertion that a

symmetrically distinct region twice the size will require twice the points in

order to resolve to the same fidelity.
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4.5 interactions with a nitrogen molecule

4.5.4 H2O− N2

Figure 25.: A plot of RMSE against size of LHC for H2O−N2, showing data

points as red circles. The black line shows the fit y = 1.25 ×

10−3/(1 + (X/19.9)1.02)

The H2O − N2 results depicted in figure 25 perform as may be expected

based on the relative difficulty observed in the H2O − Ne system, with a

plateau for LHCs up to 20 samples large, then trending downward with a

less pronounced gradient than observed in figure 19 for H2O − Ne. With

a test set of 8192 points before energy cut-offs are applied and a largest

training set of 4096 before cut-offs, this plot never reaches an RMSE of 10−5

Hartrees. Extrapolating from the fitted function, the LHC size required to

achieve the desired accuracy is 2214.
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4.5 interactions with a nitrogen molecule

4.5.5 H2S− N2

Figure 26.: A plot of RMSE against size of LHC for H2S− N2, showing data

points as red circles. The black line shows the fit y = 1.24 ×

10−3/(1 + (X/69.7)0.913)

The H2S−N2 results depicted in figure 26 show a substantial under-performance

relative to the comparable system H2O− N2 in figure 25. This may be due

to the size disparity between constituent atoms being larger in H2S or some-

thing intrinsic to the chemistry of the system.
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4.6 interactions with a carbon monoxide molecule

4.6 interactions with a carbon monoxide molecule

4.6.1 CO− CO

Figure 27.: A plot of RMSE against size of LHC for CO− CO, showing data

points as red circles. The black line shows the fit y = 7.61 ×

10−4/(1 + (X/56.3)2.34)

The plot of CO− CO in figure 27 performs closely to that of CO− N2 in fig-

ure 23, both passing 10−5 Hartrees at around 356 and 295 respectively. This

is unsurprising given the symmetrically distinct regions will cover the same

amount of phase space, owing to the two CO molecules being identical.
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4.6 interactions with a carbon monoxide molecule

4.6.2 CO2 − CO

Figure 28.: A plot of RMSE against size of LHC for CO2 − CO, showing

data points as red circles. The black line shows the fit y = 1.06×

10−3/(1 + (X/40.0)2.38)

Much like previous plots have shown, substituting N2 with CO2 frequently

gives a similar result, the plot of CO2 − CO in figure 28 being no excep-

tion. Once again, by having the same phase space encapsulated within the

symmetrically distinct region, 10−5 Hartrees is achieved with 283 points.
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4.6 interactions with a carbon monoxide molecule

4.6.3 H2O− CO

Figure 29.: A plot of RMSE against size of LHC for H2O − CO, showing

data points as red circles. The black line shows the fit y = 1.35×

10−3/(1 + (X/36.5)0.942)

The data in figure 29 featuring a H2O − CO system gives some metric of

the difficulty of resolving a system with a bent molecule, and the resulting

added degree of rotational freedom compared to the more linear CO2− CO

system that precedes it. The system precedes from the no-model estimate

of 0.00135 Hartrees, and as indicated by the fitted function, trends slowly

downward after around 36 points. After plotting 614 points, the system

still only approaches an RMSE of 10−4 Hartrees, so the number of samples

required to obtain the benchmark RMSE must be extrapolated from the

trend to be around 6655.
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4.7 interactions with a carbon dioxide molecule

4.7 interactions with a carbon dioxide molecule

4.7.1 CO2 − CO2

Figure 30.: A plot of RMSE against size of LHC for CO2 − CO2, showing

data points as red circles. The black line shows the fit y = 1.26×

10−3/(1 + (X/6.82)1.62)

Like most of the systems examined, CO2−CO2 pictured in figure 30 begins

to move from its no-model RMSE of 0.00126 Hartrees with an x0 value of 6.8,

trending downward with a steep gradient to exceed the desired precision

with 136 points. It has been observed previously that the symmetrically

distinct region of CO2 has the same phase space as N2, and conjectured

that by having more atoms from which to resolve vectors it may require

more computational effort than a nitrogen molecule in its place; in this

instance, by referring back to figure 22 it can be seen that CO2 − CO2 and

N2 − N2 achieve an RMSE of 10−5 Hartrees with almost the same number

of points. The performance relative to CO2 − N2 in figure 24 also illustrates
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4.7 interactions with a carbon dioxide molecule

how having two identical molecules reduces the phase space to be covered

and consequently reduces the number of samples required.
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5
C O M PA R I S O N O F D I F F E R E N T G E O M E T R I E S A N D H O W

E A C H A F F E C T S P R E C I S I O N .

5.1 observations on molecular shape .

Ne F2 Cl2 Br2 N2 CO HBr CO2 H2O H2S SCl2

DoF 1 2 2 2 2 2 2 2 3 3 3

Ne
nreq 8 45 73 67 33 58 134 44 152 300 686

DoF 4 4 4 5 5

N2
nreq 102 295 165 2214 13546

DoF 4 4 5

CO
nreq 356 283 6655

DoF 4

CO2
nreq 136

Table 5. nreq compared with Degrees of Freedom. nreq represents the interpo-

lated number of sample points required to achieve the benchmark

of RMSE 10−5 Hartrees. DoF describes the number of Degrees of

Freedom in a system.

From table 5, the performance of systems may be directly compared with

respect to their number of degrees of freedom (DoF). It is immediately ap-

parent that a general correlation exists between more degrees of freedom,

and a higher number of points required (nreq) to achieve the benchmark ac-
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5.1 observations on molecular shape .

curacy of 10−5 Eh . Also apparent is the performance of different geometries

when interacting with Ne; from this table it is easily deductible that asym-

metry and bent shape are significant confounding factors.

By plotting the quantitative data above, the correlation between DoF and

nreq may be examined further.

Figure 31.: An exponentially fitted plot of DoF and the points required to

achieve an RMSE of 10−5 Hartrees.

Figure 31 shows an exponential correlation of y = 2.4201e1.5758x between

the 1, 2, 3, and 5 dimensional systems, with the number of sample points re-

quired for the most challenging 5 DoF system exceeding 104. This explains

at least partially why the H2S− H2O dimer may have proven so computa-

tionally expensive to model with little progress made even at 10,000 points,

especially given the two non-identical molecules will lack interchange sym-

metry and require large rotations through phase space. Extrapolating this
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5.1 observations on molecular shape .

trend it would appear that a similar 6 DoF system would require around

31,000 points to achieve the benchmark precision. This trend omits the sys-

tems with 4 degrees of freedom, as all deviate from the trend due to the

lack of a challenging asymmetric system with this number of DoF.

Table 6. Dimers and their associated x0 and nreq results.

Ne F2 Cl2 Br2 N2 CO HBr CO2 H2O H2S SCl2

x0 4.9 11.5 12.5 10.0 10.2 18 11.9 9.5 13.5 34.4 30.8
Ne

nreq 8 45 73 67 33 58 134 44 152 300 686

x0 17.7 29.2 19.4 19.9 69.7
N2

nreq 102 295 165 2214 13546

x0 56.3 40 36.5
CO

nreq 356 283 6655

x0 6.8
CO2

nreq 136

x0
H2O

nreq

x0
H2S

nreq

Table 6 shows the estimated number of points required (calculated with

equations [14] and [15]) to see some improvement from the no-model, x0,

and the number of samples required to achieve an RMSE of 10−5 Hartrees

as determined by the non-linear regression, nreq. The molecules depicted

were chosen to represent the spherical, symmetric linear, asymmetric linear

and bent geometry. From the available results it is apparent that the length

of the shoulder, or conformity to the no-model RMSE remains relatively low

even in systems with the most degrees of freedom.
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5.1 observations on molecular shape .

Figure 32.: A fitted plot of DoF and the value of x0. The trend fitted is:

y = 9.0646x− 5.4187.

Figure 32 shows the plotted points appear scattered, as in figure 31, only

this time there is only weak support for a linear relationship, so x0 is not

responsible for the predominant exponential behaviour observed.
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5.1 observations on molecular shape .

Figure 33.: A fitted plot of DoF and the value of α. The trend fitted is: y =

1/(0.233x− 0.122).

As in figure 31, the 4 dimensional systems are discounted and a trend

established in figure 33, in this instance with a downward inverse function.

It is clear from figures 31, 32 and 33 that the number of degrees of free-

dom predominates, but is not the sole determining factor of the difficulty of

the system; based on the variability in nreq for a given number of DoF, other

factors clearly have a significant impact on ones ability to resolve a system.

To dissect the involvements of other factors, similar molecule pairs will be

compared, and further observations made.
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5.2 systems with 2 degrees of freedom .

5.2 systems with 2 degrees of freedom .

Figure 34.: A plot of points required versus number of permutations in the

symmetry group for systems with 2 degrees of freedom.

Among the systems with two degrees of freedom shown in figure 34, those

with two symmetric permutations generally require fewer sample points

than those with no additional permutability. A trend-line is not fitted as

there only exists 2 discrete numbers of symmetries, but the mean of the

single permutation group is 95.3 and the two permutation group’s mean is

52.0, lending credibility to the assumption that doubling the permutations

halves the number of points required.
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5.2 systems with 2 degrees of freedom .

Table 7. Atomic size disparities of HBr and CO.

CO HBr

atomic size

disparity (%)
15.3 35.5

nreq 58 134

The two systems with a single degree of symmetry: HBr and CO, require

markedly different numbers of points which may be explained by the size

disparity between hydrogen and bromine. Carbon and oxygen by compari-

son have more similarly sized atomic radii as shown in table 7.

Atomic size disparity is defined as

Disparity =

√(
(ra − rb)

ra

)2

× 100, (18)

where ra and rb are the atomic radii of atom A and atom B.
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5.2 systems with 2 degrees of freedom .

Figure 35.: A plot of well depth for HBr and CO interacting with Ne. Each

has 2 DoF and one element in the permutation group.

Figure 35 shows a correlation between increasing well depth (defined in

this instance as the lowest observed energy, and probable binding energy)

and nreq in the comparable HBr − Ne and CO − Ne systems. Since the

atomic size disparity is also increasing it is impossible from this plot to

unpick which of the two properties may be responsible, or if both, or neither

are contributing.
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5.2 systems with 2 degrees of freedom .

Figure 36.: A plot of mean atomic size against nreq for HBr and CO interact-

ing with Ne.

The mean atomic size of all molecules in the HBr − Ne and CO − Ne

dimer is presented against nreq in figure 36, with the larger atomic size

corresponding to a smaller number of required points. This is at odds with

the conjecture that larger atoms make the system more difficult, based on

the observable difficulty of SCl2 − Ne, seen below.
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5.2 systems with 2 degrees of freedom .

Figure 37.: A plot of well depth for N2, F2, CO2, Br2 and Cl2 interacting with

Ne.

The systems with two symmetries depicted in figure 37 exhibit a strong

correlation with well depth, the exception being CO2 − Ne which may be

somewhat easier due to the triatomic structure of CO2. Well depth is ob-

tained by examining the molecular simulation output values, from which

the minimum energy value is take to be representative of the energy well.
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5.3 systems with 3 degrees of freedom .

Figure 38.: A plot of mean atomic size against nreq for the centrosymmetric

linear N2, F2, CO2, Br2 and Cl2 molecules interacting with Ne.

Figure 38 shows a noisy plot of mean atomic size against nreq with an

overall upward trend, at odds with figure 36 but in agreement with the

conjecture that larger atomic sizes increase the difficulty of the system. It

may also be observed that the halogens vary more widely in size than the

systems composed of carbon, nitrogen and oxygen. This may be part of the

reason the CO2 − Ne system’s nreq does not vary from N2 − Ne as much as

we may assume from the well depth.

5.3 systems with 3 degrees of freedom .

All the systems with 3 degrees of freedom sampled have two permutations

to their symmetry group so no useful correlation may be struck between
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5.3 systems with 3 degrees of freedom .

this and the number of points required ; The system does however show an

expansive variability in in number of points required due to other factors.

Figure 39.: A plot of points required versus well depth for systems with 3

degrees of freedom.

From the observable correlation in figure 39 it seems reasonable to as-

sume that deeper energy wells require more sampling to be accurately re-

solved, with SCl2 − Ne having the deepest well at 0.0004 Eh and requiring

686 points. H2S − Ne and H2O − Ne by comparison have well depths of

only 0.000230 and 0.000228 Eh respectively and each require 300 and 152

sample points, suggesting that well depth may be the reason that SCl2 is

more difficult to resolve.
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5.3 systems with 3 degrees of freedom .

Table 8. Atomic size disparities of H2O and H2S.

H2O H2S

atomic size

disparity (%)
20 36.5

nreq 152 300

Figure 40.: A plot of mean atomic size against nreq for H2O, H2S, and SCl2

interacting with Ne.

Figure 40 Shows a linear correlation between atomic size and nreq, sug-

gesting this may indeed be at least a contributing factor to the difficulty of

SCl2 − Ne compared to similar systems.

Table 8 shows the atomic size disparity of the two remaining systems:

H2O − Ne and H2S − Ne. Both have similar well depths, but the system
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5.4 systems with 4 degrees of freedom .

involving H2S is almost twice as difficult, and it is clear from the table that

this orders correctly with the size disparity which is also almost double.

5.4 systems with 4 degrees of freedom .

Figure 41.: A plot of points required vs number of permutations in the sym-

metry group for systems with 4 degrees of freedom.

Figure 41 shows a downward trend in the number of samples required as

the number of permutations increases from 2 to 4 to 8. The CO−CO system

requires the most points, and has a single interchange symmetry between

molecules. Faring slightly better, and resembling one another closely are

CO − N2 and CO2 − CO, which each have a single flip symmetry within
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5.4 systems with 4 degrees of freedom .

CO2 and N2 respectively. The CO2− N2 system requires approximately half

the points of the systems preceding it at 165, and features two flip symme-

tries, suggesting that an additional flip symmetry has a halving effect on

the difficulty of the system. The final two systems, CO2− CO2 and N2− N2

each feature two flip symmetries and one interchange symmetry, and re-

quire about two thirds of the points that CO2 − N2 does. This suggests that

the benefit of an interchange symmetry is less than that of a flip symmetry,

reducing difficulty by a third.

Figure 42.: A plot of points required vs energy well depth for systems with

4 degrees of freedom.

It is apparent from figure 42 that there is much noise and no correlation

between well depth and the number of points required when comparing

dimers with the same symmetry group, eliminating this as the cause of the
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5.4 systems with 4 degrees of freedom .

Table 9. Atomic size disparities of N2 − N2 and CO2 − CO2.

Pair A Pair B

N2 − N2 CO2 − CO2 CO2 − CO CO− N2

atomic size

disparity (%)
0 & 0 15.3 & 15.3 15.3 & 15.3 15.3 & 0

nreq 101 136 283 295

trend observed in figure 41. When comparing systems in the plot with the

same symmetry group, nreq is almost constant despite changes in well depth.

It is also worth observing that the atomic size disparity between carbon and

oxygen is a relatively modest 15.3%, and among this data the only sam-

ples which have the same combination of flip and interchange symmetries

are N2 − N2 and CO2 − CO2, and CO2 − CO and CO− N2. These systems

are compared in table 9 and a 36% difference in difficulty is observed in the

more disparate CO2−CO2 system; while this contribution is significant, the

magnitude of differences imposed by the symmetries clearly predominates.

In the second pair compared, the more disparate system actually requires

slightly fewer points.
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5.4 systems with 4 degrees of freedom .

Figure 43.: A plot of mean atomic size against nreq for N2 − N2, and CO2 −

CO2.

Dimers of CO2 and N2 may be compared together since they posses sim-

ilar symmetries. Conversely to the earlier conjecture that increasing mean

atomic size correlates with difficulty, figure 43 shows an inverse correlation.

This observation is confounded however by the two systems being com-

posed of diatomic vs triatomic molecules, so no clear relationship may be

stated.
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5.4 systems with 4 degrees of freedom .

Figure 44.: A plot of mean atomic size against nreq for CO2−CO, and CO−

N2.

Since CO2 and N2 are similarly symmetric, CO2 − CO and CO− N2 are

grouped together for comparison. The observed trend agrees with the con-

jecture that increasing atomic size correlates with an increasing number of

required points. It must also be emphasized that comparing diatomic and

triatomic N2 and CO2 is not a like for like comparison, and other factors

may contribute to the observed trend.
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5.5 systems with 5 degrees of freedom .

5.5 systems with 5 degrees of freedom .

Figure 45.: A plot of points required vs number of permutations in the sym-

metry group for systems with 5 degrees of freedom.

In figure Figure 45 the downward correlation is not so easily observed, due

to the H2S− N2 system requiring vastly more points to resolve than those

composed of H2O−N2 and H2O−CO, an effect which has been previously

observed with systems containing H2S. We have previously ascribed this to

the disparity in size between hydrogen and sulphur. It is worth noting that

since the H2S− N2 system required extrapolation to obtain a value for nreq,

it has a higher level of uncertainty than the other plots, but the extrapolation

otherwise causes no visible features. Putting aside the hydrogen sulphide

system, the H2O− N2 system requires 2214 sample points and H2O− CO
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5.5 systems with 5 degrees of freedom .

requires around 3 times this many at 6655, exceeding the halving effect one

may assume the extra symmetry may provide.

Figure 46.: A plot of points required vs minimum observable energy for

systems with 5 degrees of freedom.

Figure 46 resembles figure 45, in that the extrapolated value for the H2S−

N2 system stands alone, indicating that well depth offers no compelling ex-

planation for the difficulty for this system relative to those containing H2O,

and another factor such as atomic size disparity predominates. Neverthe-

less, it can be observed that H2O− CO has a well depth of 0.00267 Eh and

H2O− N2 has a well depth of 0.00175Eh; referring back to figure 45 it was

discussed how the number of permutations logically should halve the num-

ber of points required to 3327.5, but the plot indicates a more substantial

reduction. By normalising the two well depths to one another a coefficient
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5.5 systems with 5 degrees of freedom .

of 1.52 is obtained, the reciprocal of which conveniently scales 3327.5 to 2183,

closely approximating the observed value of 2214 points for H2O− N2 and

suggesting a linear relationship between well depth and difficulty.

Figure 47.: A plot of mean atomic size against nreq for H2O− N2, H2S− N2,

and H2O− CO.

Once again, in figure 47 an upward trend in difficulty may be observed

in response to increasing mean atomic size. While H2O − CO does not

appear to conform to this trend, it may be discounted due to the reduced

permutability of CO compared to N2, and observations made from H2O−

N2 and H2S− N2 alone.

80



5.6 examining well depth , mean atomic size , and atomic size disparity.

5.6 examining well depth , mean atomic size , and atomic size

disparity.

To examine the contributions of well depth, mean atomic size and mean

atomic size disparity in isolation, the effects of degrees of freedom and

symmetry must be eliminated so far as is possible. Since the relationship

between nreq and DoF is shown in figure 31 to be nreq = 2.42 exp 1.5758do f ,

individual nreq values may be divided by the value of nreq corresponding

to their number of DoF. It is also shown in figure 41 that a flip symmetry

halves the expected value of nreq, and an interchange symmetry reduces

it by a third. From these relationships an equation may be formulated to

normalise the difficulty with respect to DoF and symmetry:

normalised difficulty =
nreq

(
2n f lips

)
2.4201e1.5758do f

(
0.66ninterchanges

) , (19)

from which comparisons may be made against well depth, mean atomic

size and mean atomic size disparity.
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5.6 examining well depth , mean atomic size , and atomic size disparity.

Figure 48.: A plot of the normalised difficulty of systems vs well depth.

Figure 48 displays considerable scatter, and shows such a weak correla-

tion with so much scatter that no clear relationship can be drawn between

the difficulty and well depth, which is in agreement with effects observed

previously.
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5.6 examining well depth , mean atomic size , and atomic size disparity.

Figure 49.: A plot of the normalised difficulty of systems vs mean atomic

size.

The plot of difficulty against atomic size in figure 49 shows such a weak

positive correlation with such considerable scatter that no real relationship

may be observed.
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5.6 examining well depth , mean atomic size , and atomic size disparity.

Figure 50.: A plot of the normalised difficulty of systems vs mean atomic

size disparity.

Figure 50 shows a weak positive correlation between the difficulty and

atomic size disparity. Once again there is considerable scatter so no definite

relationship may be observed, as is the case in figure 48 and 49.

Given the extent of scatter alongside weak positive correlation in Figures

48, 49 and 50, it seems difficult to unpick the contributions of each. De-

spite the scatter in these plots, it is clear that the normalised difficulty falls

within a fairly narrow band, supporting the idea that DoF and number of

symmetries are the key determinants of difficulty.
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5.7 quantifying an empirical formula .

5.7 quantifying an empirical formula .

An estimate of nreq may be made using the data in figure 31 along with

the observations that flip symmetries half nreq and interchange symmetries

reduce nreq by 34%. Each value of nreq may be divided based on the contri-

butions of its symmetry elements as shown:

nasymm =
nreq

(
2n f lips

)(
0.66ninterchanges

) , (20)

yielding the plot shown below.

Figure 51.: A plot of nasymm vs DoF. The trend fitted is: y = 2.3514e1.8172x

Once again a line is fitted omitting the 4 DoF systems, which deviate

downward from the general trend. The equation of this line may now be

used to substitute nasymm in equation (20), and a value of nreq determined
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5.8 extrapolations to systems with 6 degrees of freedom .

Table 10. Comparison of 5 and 6 DoF systems.

H2O-N2 H2O-CO H2S-N2 H2S-H2O

DoF 5 5 5 6

well depth

(Hartrees)
0.00175 0.00267 0.00121 0.00356

size disparity

(%)
20 & 0 20 & 15.3 36.5 & 0 36.5 & 20

flip symmetries 2 1 2 2

for a system with any combination of flip and interchange symmetries using

the appropriate scaling factors:

nreq =

(
0.66ninterchanges

)
2.3514e1.8172x(

2n f lips
) , (21)

in this manner it is possible to estimate nreq for a system of interest with 6

DoF.

5.8 extrapolations to systems with 6 degrees of freedom .

Extrapolation to six degrees of freedom is possible using equation (21),

which places nreq at 127,800. The H2S− H2O system previously examined

features two flip symmetries and no interchanges, bringing the estimate

down to 31,950, showing good agreement with the 31,000 points projected

by figure 31, and still far greater than the largest training set used in previ-

ous attempts to model the system.

In addition to two flip symmetries and 6 degrees of freedom, the H2S−

H2O features an observable well depth of 0.0035612 Eh and reasonably large

atomic size disparities at 20% for H2O and 36.5% for H2S.

Since H2S−H2O possesses a significantly greater well depth than the 5 DoF

systems interrogated, as seen in table 10, as well as two large size disparities

while possessing a comparable number of flip symmetries, it would be rea-
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5.8 extrapolations to systems with 6 degrees of freedom .

sonable to assume that the system’s additional complexity would warrant

slightly more than 32,000 sample points. Given the increase in difficulty

associated with well depth in figure 46, and the relative performance of

H2S− Ne versus H2O− Ne in figure 39 the number of points required may,

in a worst case scenario, be twice as high (64,000). During the previous

attempt to model the system only 10,000 sample points were used in the

largest training set, and 20,000 in the test set, explaining why the bench-

mark accuracy was not achieved.
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6
S U M M A RY A N D C O N C L U S I O N S .

When modelling a potential energy surface with a Gaussian Process the

cost of computation is proportionate to the number of sample points. The

number of sample points also determines how many calculations need to

be done when upgrading to intensive calculations such as CCSD(T) thus it

becomes essential to calculate only the minimum number of sample points

required (nreq). It was demonstrated with a H2S − H2O system that Ac-

tive Learning (AL) can be used to lower the number of points required to

achieve a benchmark precision, subject to the Latin Hypercube (LHC) used

for the initial training set being sufficiently large. Following the study on

H2S− H2O, a selection of pairwise interactions were scrutinised, with a va-

riety of geometries, symmetries, and valences in order to interrogate the

contributions of each. These dimers were modelled from first principles us-

ing Møller-Plesset perturbation theory, and a Latin hypercube design strat-

egy to allocate a representative sample of geometries. By using a number

of different sample sizes compared to a large test set, some measure of the

sample size required to make a satisfactorily precise model was observed.

The systems were namely: Ne, F2, Cl2, Br2, N2, CO, HBr, CO2, H2O, H2S,

and SCl2 interacting with Ne; N2, CO, CO2, H2O, and H2S interacting with

N2; CO, CO2, and H2O interacting with CO and finally CO2 interacting

with CO2. By obtaining RMSE values for a number of different sized LHCs

with each of these systems, a trend was fitted to describe the relationship

between LHC size and RMSE.
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summary and conclusions .

By rearranging the fitted function with a known RMSE benchmark of

10−5 Eh and solving for n of LHC points, a value of nreq was obtained.

The benchmark RMSE of 10−5 Eh was chosen because this error level was

shown to be suitable to make first principles prediction of physical proper-

ties [Uteva et al. 2018].

It was shown that for many systems involving spherical, linear and bent

molecules 10−5 Hartrees was an achievable RMSE using a LHC design

regime, but as the number of degrees of freedom increase, so does the num-

ber of samples required. By estimating and plotting the number of points

required to achieve the required precision, it was shown that the relative

difficulty of a system increases exponentially with the addition of degrees

of freedom. These results suggest that the number of atoms in a molecule

does not appear to impact the precision of a model in any meaningful way,

as long as the shape of the molecule does not change, nor the angular de-

scriptors of the symmetrically distinct region. It was also demonstrated that

there is an approximately linear relationship between the reciprocal of the

number of symmetric permutations as well as a linear relationship to the

energy well depth, and the number of points needed to resolve a system,

for some systems.

The principal determining factor of nreq was shown to be the number of

degrees of freedom (DoF) in the system, exhibiting an exponential corre-

lation. Next in order of contribution is the permutability of the system,

with an important distinction to be made between ’flip’ symmetries which

half the value of nreq, and ’interchange’ symmetries which reduce nreq by

around a third. Thirdly, the energy well depth of an interaction shows an

approximately linear correlation with nreq, as does the mean atomic size,and

size disparity between a molecules atoms. It was also demonstrated that

although Active learning techniques offer improved determination of Gaus-

sian processes, in one case yielding one tenth the RMSE of a Latin Hyper-

cube design strategy, neither the AL nor LHC method was able to model

the H2O− H2S system’s potential energy surface in a satisfactory fashion,
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6.1 future work .

with 10,000 training points.

By quantifying these effects an approximation of the number of points re-

quired to model H2S−H2O may be placed at 32,000 and possibly as high as

64,000. Since only 10,000 sample points were included in the largest train-

ing set previously studied it is abundantly clear that the sheer volume of

points required to model a system with 6 degrees of freedom was the rea-

son for an unsatisfactory RMSE. The pay off of this investigation is that an

estimate of nreq permits accurate cost appraisal for calculating a system. As

the complexity of a system grows this will become increasingly important,

as high performance computer time is limited and large scale computing

projects require reasonable estimates of the required compute effort during

the planning stage.

6.1 future work .

Because of the exponential increase in difficulty, efforts must be made to for-

mulate ways to more easily model systems with many degrees of freedom,

along with systems possessed of great size disparity.

A measure which could be implemented to save on computation is to have

different lengthscales at short range but to equate lengthscales at longer

range, where the interaction of molecules resembles the interaction of a pair

of atoms. This might be achievable using a new non stationary covariance

function in the GP. The important decision to be made when doing this is

to accurately decide what point to transition to a single lengthscale without

wasting computation or adversely affecting the model. This could probably

be achieved when the GP hyperparameters are optimised. Adaptations to

improve the modelling of molecules with significant size disparity may also

include the use of non-stationary covariance functions, so as to account for

the different energy characteristics of atoms with different radii.

90



6.1 future work .

Based on the significant effect that an energy well may have, it is also rec-

ommended that in future, the high energy cut off be a fixed multiple of this

value so as to avoid wasting computation on thermodynamically inaccessi-

ble regions. With this change it would also be reasonable to make the target

RMSE proportional to the well depth, which may reduce the influence of

the well depth.

Since active learning was demonstrated to reduce the size of training set

required to model a potential energy surface, future works should examine

whether this methodology is similarly effective in systems with different

numbers of DoF. If this method proves effective in systems with many DoF

it may help lessen the associated exponential increase in difficulty. To verify

whether this is the case, a selection of the dimers examined herein could be

modelled with active learning, and the relative reduction in sample points

required to achieve the benchmark RMSE compared across 1 to 5 DoF sys-

tems.

It may be that high dimensional dimers intrinsically require many train-

ing points. In this case applications will need to adapt around the constraint

of dramatically more expensive PES than are currently typical. Here paral-

lelized calculations of the GP would assist in spreading the computational

load over many processors. GP evaluation appears to be a natural candi-

date for parallelization as they require the summation of many exponential

terms. Such parallelized GPs could be implemented in molecular simula-

tions.
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A
TA B L E O F F I T T E D F U N C T I O N S

The table of fitted functions is an abstract from a spreadsheet used to col-

late fit data for analysis, and provides a summary of the cross and cross-

sigmoidal fits of RMSE vs number of sample points, as presented in chapter

4. The table also has a record of the projected values of nreq, well depth, de-

grees of freedom and number of symmetries, which are discussed in chapter

5.
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B
TA B L E O F P E R M U TAT I O N S

The table of permutations details the possible interchanges of atoms accord-

ing to the numbering convention used in this study. These permutations

are presented to the algorithm to allow it to populate its entire phase space

with corresponding energies selected from only its symmetrically distinct

region.
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table of permutations

system quantity permutations

Ne− Ne 1 [1]

N2 − Ne

2

[1,2],

[2,1]

F2 − Ne

Cl2 − Ne

Br2 − Ne

HBr− Ne
1 [1,2]

CO− Ne

CO2 − Ne

2

[1,2,3],

[1,3,2]
H2O− Ne

H2S− Ne

N2 − N2 8

[1,2,3,4], [1,3,2,4], [2,1,4,3], [2,4,1,3]

[3,4,1,2], [3,1,4,2], [4,3,2,1], [4,2,3,1]

CO− N2 2 [1,2,3,4], [2,1,4,3]

CO2 − N2

4

[1,2,3,4,5,6], [2,1,4,3,6,5],

[1,2,5,6,3,4], [2,1,6,5,4,3]
H2O− N2

H2S− N2

CO− CO 2 [1,2,3,4], [1,3,2,4]

CO2 − CO
2

[1,2,3,4,5,6]

[1,2,3,4,5,6]H2O− CO

CO2 − CO2 8

[1,2,3,4,5,6,7,8,9], [3,2,1,6,5,4,9,8,7],

[7,8,9,4,5,6,1,2,3], [9,8,7,6,5,4,3,2,1],

[1,4,7,2,5,8,3,6,9], [3,6,9,2,5,8,1,4,7],

[7,4,1,8,5,2,9,6,3], [9,6,3,8,5,2,7,4,1]
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C
TA B L E O F AT O M I C S I Z E D I S PA R I T Y

Atomic size disparity is defined as

Disparity =

√(
(ra − rb)

ra

)2

× 100, (22)

where ra and rb represent the radius of atom A and atom B. These values

are obtained from the table of van der Waals radii, and the equation pro-

vides the values of atomic size disparity as found in the table of atomic

size disparities. The atomic size disparity values are discussed in chapter

5 as a possible factor in the determination of how many sample points are

required to accurately resolve a system.

H C N O F Ne S Cl Br

van der Waals Radius

(Angstroms)
1.2 1.77 1.66 1.5 1.46 1.58 1.89 1.82 1.86

Table 11. The values of the van der Waals radius for a selection of relevant

atoms, which may be used to calculate atomic size disparity.
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table of atomic size disparity

Ne F2 Cl2 Br2 N2 CO HBr CO2 H2O H2S SCl2

Atomic size

disparity

(%)

- 0 0 0 0 15.3 35.5 15.3 20.0 36.5 3.70

Table 12. The calculated values of atomic size disparity for a selection of rele-

vant molecules, calculated using their constituent atoms respective

van der Waals radii.
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a verbose process diagram

D
A V E R B O S E P R O C E S S D I A G R A M

Key 

File 

Decision 

Process 

Start 

End 

Molecular descriptor 
file 

LHC dimensions 

Construct inputs for MolPro 

Output files 

MolPro 

Parse run data from MolPro to file  

Run data file 

error files 

Active learning En-Masse Gaussian analysis 

RMSE RMSE 

Permutation Group 

MolPro input files 

Figure 52.: A diagram of the pre-processing to design the sample regime,

the Molpro input and output, and the analysis of data, including

files.
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