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Abstract 

Moving towards electrification of transport including electric vehicles (EV), more 

electric aircraft (MEA), and electric ships offers a crucial way in dealing with global 

carbon emissions and climate change. Electric motors are a key enabling technique in 

these applications, but their increased use is associated with requirements of extreme 

power/torque density, excellent fault-tolerance, high efficiency, and good 

manufacturability. 

The main goal of this thesis is to study permanent magnet electric machine 

winding theory to determine the suitable electric machine winding topologies for 

different applications. Two separate vehicle transport applications are investigated, 

including an EV traction motor and a novel modular electromechanical actuator 

(EMA) for MEA. 

The study of the EV traction motor involves the investigation of methods for 

reducing the significant stator MMF harmonics in fractional slot concentrated winding 

(FSCW) electric machines, and the development of novel FSCW topologies while 

keeping the benefits of easy manufacturing and the non-overlapping characteristic of 

concentrated windings. The novel FSCW topologies can be extended to multi-phase 

FSCW motors. A traction motor equipped with a novel 24 slots, 14 poles FSCW 

topology and interior PM (IPM) rotor is developed for evaluation. The performance 

under normal and fault conditions is fully explored and validated with simulation and 

experimental results, which demonstrates the applicability and strong potential of the 

proposed 24 slots, 14 poles IPM motor in fault-tolerant traction motor applications. 

The second topic focuses on modular fault-tolerant EMAs for aircraft actuation 

systems which can meet a diverse range of requirements. The architecture and design 
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considerations of the actuator system are firstly determined considering reliability, 

fault-tolerance, and weight. The modular EMA scheme consisting of a direct-drive 

rotary motor and mechanical screw is identified. A dual 3-phase 24 slots, 22 poles 

FSCW motor with a surface-mounted permanent magnet (SPM) rotor is developed 

and evaluated in terms of electromagnetics, thermal management, and fault-tolerance. 

Experimental results of the modular EMA motor prototypes agree well with predicted 

results. All this confirms the applicability and satisfactory implementation of the 

modular EMA motor for aircraft actuation system applications. 
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Chapter 1  

Introduction 

Climate change is one of the global challenges causing global warming and posing an 

existential threat to human civilization [1]. All the nations across the world have 

reached an agreement to reduce carbon footprint and combat climate change. 

Significant efforts have been made to deal with these issues at an international level, 

with agreements such as The Paris Agreement and the Copenhagen Accord. In 

responding to this, many countries’ governments have set out specific carbon emission 

reduction goals. Some of them have even promised a net zero carbon emission and 

seek to legislate corresponding law, such as Norway (2030) and UK (2050). 

According to the Emissions Database for Global Atmospheric Research 

(EDGAR), the transport sector has contributed 27% of total greenhouse gas emissions 

in 2016 in the EU. It was found that transport remains the major contributor to NOx 

emissions, which cause air pollution and result in premature mortality [2][3]. Figure 

1.1 depicts the share of greenhouse gas emissions for different transportation methods, 

illustrating the fact that road, maritime, and aviation transport are the three most 

significant contributors, contributing 72.1%, 13.6%, and 12.3% of total emissions, 

respectively. Electric vehicles (EVs) are anticipated to be a key component in the 

future that offers great reduction in carbon and air pollutant emissions, consequently 

reducing impacts on climate change when coupled with renewable power generation 

[4]. Therefore, moving towards electrification of transport like EV, more electric 

aircraft (MEA), and electric ships offers a crucial way in dealing with global carbon 

emissions and climate change [4]-[6]. 
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Figure 1.1 Share of transport greenhouse gas emissions [3] 

 

Electric motor is a key enabling technique in EVs or MEA [7]. This implies an 

extreme power/torque density, high efficiency, and manufacturability requirements on 

electric motors as these factors will affect the range, cost and carbon emissions. 

Several technological advancements in the areas of electric motor operation theory, 

high-performance steel, advanced winding topology, and novel rare-earth magnets, 

have made the electric motor a crucial player in the electric transport industry. 

Reliability, on the other hand, is also a significant factor in safety-critical transport 

applications, which requires the electric motor or electric drive to offer fault-tolerance 

[8][9]. All these requirements raises a significant challenge in the design of electric 

motors. 

In this thesis, permanent magnet electric machine winding theory is studied in 

order to determine the suitable electric machine winding topologies for different 

applications. Two vehicle transport applications are investigated, including a traction 

motor for EV and a modular electromechanical actuator (EMA) for aircraft actuation 

systems. 

The study of EV traction motor aims to investigate permanent magnet (PM) 

electric motors with novel winding topologies. PM electric motors with conventional 

fractional slot concentrated winding (FSCW) offer benefits in terms of power density, 

fault-tolerant capability, and manufacturability but suffer from high stator space MMF 

harmonics which may result in significantly high rotor losses, localized saturation, 

unbalanced magnetic force, noise and vibrations [10]-[12]. Therefore, the main effort 

is towards studying the novel FSCW topologies with reduced stator space MMF 

harmonics and implementing them into electric traction motors. 
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The second topic focuses on modular fault-tolerant EMAs for aircraft actuation 

systems. Aircraft typically use many actuators with varying requirements. Having as 

few components as possible is a huge benefit for design, certification, construction 

and maintenance. Electric actuation system architecture and actuator 

configurations/envelopes are studied in terms of weight, reliability, and cost, and 

thereby are determined to develop modular electrical actuators capable of meeting a 

diverse range of actuation requirements. A modular fault-tolerant FSCW PM motor is 

developed to meet these strict requirements. 

 

1.1 Electric motor technology in HEVs & EVs 

Electric and hybrid electric vehicles have been rapidly developing in recent decades 

due to the increasing fuel economy/efficiency concerns and climate change 

challenges. The electric machine as a core part of electric vehicle propulsion 

technology including motor and generator has received much attention and has 

extreme requirements in terms of power/torque density, efficiency, reliability, fault 

tolerance, cost and manufacturability. 

The selection of electric motor drives is a very crucial step in the development 

of the powertrain for EVs as the performance of EVs heavily depends on traction 

motors. This process normally involves three key factors: drive cycle, complete 

vehicle drive and energy system, which makes selecting the most suitable electric 

motor drive a challenging task. Generally, the EV traction motor must meet the 

following characteristics requirements: 

• High torque/power density. 

• Wide constant power speed range capability, typically 3-4 times of base speed. 

• High efficiency in the wide speed and torque range or drive cycle. 

• Desirable overload capability for a short period of 30-90s.   

• High reliability and acceptable fault-tolerance. 

• Reasonable cost and manufacturability. 

The feasibility of a number of electric motor topologies, including DC motor, 

induction motor (IM), PM synchronous motor (PMSM), switched reluctance motor 

(SRM), axial-flux motor, wound field synchronous motor (WFSM), synchronous 
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reluctance (SynRM)motor, and stator-PM synchronous motor are investigated [13]-

[17]. Five topologies are identified by the industry to be the most promising candidates 

for EVs/HEVs traction system, including IM, PMSM, SRM, WFSM, and PM SynRM. 

Table 1.1 lists some of the typical electric traction motor topologies adopted in the 

EVs and HEVs. 

Table 1.1 Electric motor topologies adopted in EVs and HEVs 

Motor topology EVs or HEVs Model 

IM [18]-[22] 
GM EV1, Tesla Model S/X, Chevrolet 

Silverado Spark EV, and NIO ES6/8 

PMSM [23]-[29] 

Toyota Prius, Honda Insight, Nissan Leaf, 

Chevrolet Volt, Tesla Model 3, BYD EV 

Models, NIO ES6/8, and ROEWE E50 

SRM [30]-[36] 
Land Rover Defender EV and Holden 

ECOmmodore  

WFSM  [13][22], [37]-[52] Renault Kangoo/Fluence/Zoe, and BRUSA 

 

IM is widely used in EVs and railway traction systems due to low material cost, 

simple structure and high reliability [19]. Despite these advantages, the drawbacks of 

low efficiency, low power density, and low power factor limit its ability to meet the 

increasing demands. Although improvements can be achieved using a copper rotor 

cage, this will increase motor mass and manufacturing effort [22]. 

As the more  strict requirement on high efficiency and power density is needed, 

the PMSM has gained more attention and has become the most popular candidate in 

the current electric vehicle market [23][24]. Due to the use of permanent magnets, 

high back EMF in the high speed range is a challenge, which makes field-weakening 

to the rotor magnet necessary and so sacrifices some efficiency [25]. 

SRMs can deliver high power density and overall high efficiency at a low cost, 

making them a cost-effective candidate for EVs and HEVs applications [30] [31]. 

However, the high torque ripple and vibration due to double-salient structure are the 

challenges [35]. A dedicated control drive system is also needed [31].  

WFSM provide a flexible controllable rotor flux by adopting an independent 

rotor field coil excitation [37][38]. A reduced flux linkage can easily be implemented 

to reduce the no-load back EMF in high speed zone, which reduce the stator copper 



Chapter 1. Introduction 

- 5 - 

 

losses and rotor iron losses and extend the constant power high speed range [39]. 

However, their efficiency and power density are not comparable to PMSMs and the 

rotor coil brings the issue of slip ring and rotor copper loss [40]. A self-excited 

machine using rotary transformer can be used to solve the rotor excitation issue [41]. 

 

1.2 Electric motor technology in more electric aircraft (MEA)  

More electric aircraft (MEA) has been a general trend for the next generation of 

aircraft, with the ultimate goal of all electric aircraft (AEA). This is due to its 

characteristics of faster and simpler power-by-wire system, optimizing aircraft 

performance, improving efficiency and overall weight, reducing operating and 

maintenance cost and decreasing carbon emissions [42]-[45]. In the conventional 

aircraft, a combination of powers including hydraulic, pneumatic, mechanical and 

electrical power are usually used. Recent advancements in new technologies, 

specifically power electronics and electrical motors, enable the more electric aircraft. 

The MEA underlines the utilization of the electrical power to power the non-

propulsive aircraft systems currently powered by hydraulic, pneumatic or mechanical 

methods, including flight control surfaces, landing gear systems, fuel pump, and 

numerous other utility applications, and potentially propulsion systems in the future. 

The concept of MEA brings in challenges for the aircraft design, among which 

the most challenging three parts are aircraft electrical power systems, electric/hybrid 

propulsion and electrical actuation systems. 

1.2.1 Aircraft electrical power system 

For aircraft electrical power systems, the typical power rating of dozens of kW for 

traditional aircraft is largely increased to level of MW for MEA, e.g. Boeing 787. This 

increasing requirement in the electrical power system increases the demand for on-

board generation systems, which results in the discussion of variable aircraft power 

systems including constant frequency, variable frequency, and importantly DC power 

system (±270V DC) [42][46]. The reliability of on-board electrical power systems and 

energy management are the challenges [5]. 
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1.2.2 Electric/hybrid propulsion 

Hybrid electric propulsion aircraft is a step advance in the MEA technology. In 

November 2017, the Airbus/Rolls-Royce/Siemens launched the E-Fan X (hybrid-

electric aircraft demonstrator) project, by replacing one of its four turbofans in a BAe 

146 airplane with a Siemens 2 MW electric motor [47]. The collaboration will pave 

the way to a hybrid single-aisle commercial aircraft that is safe, efficient, and cost-

effective. On the other side, the United Technologies Corporation (UTC) unveiled its 

initial hybrid-electric demonstration aircraft in 2019 by using an electric motor to 

support one of its two turboprop engines during take-off and climb on a modified 

Bombardier Dash 8-100, which aims to fly by 2022. This hybrid-electric solution 

could yield 30 percent fuel savings on a typical one-hour mission [48]. 

A full-electric commercial regional aircraft seems to be out of reach in the short- 

to mid-term future based on current technology, principally due to the weight of 

required batteries. However, in the 2019 Paris Air show, an Israel plane maker 

Eviation Aircraft demonstrated its first pure electric airplane Dubbed Alice, which is 

a regional commuter designed to fly up to 650 miles at around 276mph. The airplane 

has a capability of up to 9 passengers and is powered by 3x260kW electric motor on 

tails and wingtips. The 900 kWh Li-ion battery is distributed throughout the airplane 

and accounts for 60% of MTOW. It is set to be in service in 2021 [49]. Obviously, the 

electric motor technology is shaping the aviation industry. 

1.2.3 Electrical actuation system 

One of the most challenging parts for aircraft is the electrical actuation system. 

Generally, modern aircraft actuation systems including primary control surfaces, 

secondary control surfaces, and landing gear systems are powered by a combination 

of hydraulic, pneumatic, and mechanical systems. Adopting electrically powered 

actuators, viz., electromechanical actuators (EMA), to replace the concentrated 

hydraulic actuators brings the benefits of weight reduction, improved maintainability, 

and the potential advantage of more flexible flight control by introducing distributed 

actuation system architecture [45]. 

This thesis will focus on the electrical actuation system, investigating using 

electromechanical actuators (EMAs) to replace conventionally concentrated hydraulic 
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actuators, which brings in the potential advantages of advanced distributed electrical 

actuation architecture [45] [50]. The electrically powered actuators have the 

advantages of ‘power on demand’, consuming power only when moving or holding a 

position. On top of this, the removal of high-pressure pipelines and utilization of 

‘power by wire’ results in a weight reduction at system level, improved functionality 

and manufacturability, reduced installation efforts and easy maintenance. The flight 

control surfaces including primary and secondary control surfaces and landing gear 

systems are quite important parts of the aircraft, thus the electrically powered flight 

control surfaces and landing gear system is a significant step to advance the MEA. 

 

1.3 Objectives, aims and outline of the thesis 

This thesis focuses on two topics. The first is applying an IPM motor with novel 

FSCW topology to an EV traction motor application, and the second is developing a 

modular electromechanical actuator (EMA) for aircraft actuation systems. 

The study of the EV traction motor is to investigate methods for reducing the 

significant stator MMF harmonics in the conventional FSCW electric motors and to 

propose novel FSCW topologies. The novel FSCW topologies feature reduced stator 

space MMF harmonics while keeping the benefits of easy manufacturing and good 

fault-tolerance of concentrated windings. A traction motor equipped with a novel 24 

slots, 14 poles FSCW topology and an interior PM (IPM) rotor is developed for 

evaluation. 

The second topic focuses on modular fault-tolerant EMAs for aircraft actuation 

systems which can meet a diverse range of requirements. This is done through 

evaluating novel modular actuator configuration and actuation system architecture 

considering reliability, fault-tolerance and weight. A FSCW motor with a surface-

mounted PM (SPM) rotor designed for the modular fault-tolerant EMA is developed 

and evaluated in terms of electromagnetics, thermal management, and fault-tolerance. 

In all, the thesis aims to 

• Systematically analyze the issue of significant stator MMF harmonics of FSCW 

motor and stator MMF harmonic reduction techniques. 
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• Propose a generalized FSCW design method for electric motor with reduced stator 

MMF harmonics while keeping the concentrated winding characteristics, which 

can be extended to different slot/pole combinations for different phase numbers. 

• Investigate the advantages and disadvantages of the proposed FSCW topologies 

with reduced stator MMF harmonics compared to the conventional FSCW 

counterparts. 

• Investigate the applicability and prospect of the proposed FSCW topology in the 

traction motor applications. 

• Systematically analyze the architecture and design considerations of 

electromechanical actuator (EMA) for aircraft actuation systems in terms of 

weight, reliability, and fault-tolerance. 

• Propose a modular EMA configuration and develop a highly fault-tolerant rotatory 

motor solution for the modular EMA. 

To this end, the thesis is outlined as below: 

• Chapter 1 presents a general introduction of electric motor technology in the area 

of electric vehicles (EVs) and more electric aircraft (MEA), while Chapter 2 gives 

a review of recent application examples and advancements of high-performance 

electric motor technology. 

• In Chapter 3, the theory and design aspects of fractional slot concentrated winding 

(FSCW) motors are presented, with the impacts of significant stator MMF space 

harmonics highlighted.  The stator MMF harmonic reduction techniques in the 

literature are systematically analyzed and compared. 

• A generalized FSCW design method with reduced stator MMF space harmonics 

for electric motor is proposed in Chapter 4; the proposed winding design can 

cancel all stator MMF harmonics except for the working harmonic and its slot 

harmonics while keeping the concentrated winding characteristics. 

• The behavior of an IPM motor with the proposed 24 slots, 14 poles FSCW 

topology with reduced stator MMF harmonics developed for an electric traction 

system is evaluated in Chapter 5 in terms of torque capability, efficiency, and fault-

tolerant capability.  

• Chapter 6 and Chapter 7 deal with the design considerations of a modular 

electromechanical actuator (EMA) for an aircraft actuation system. The actuation 

system architecture and actuator topology are firstly determined considering 
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reliability, weight and cost. Then, the detailed design of a 24 slots, 22 poles dual 

3-phase FSCW SPM motor for the modular EMA is developed and evaluated 

considering the modular structure concept, EM performance, thermal management 

and fault-tolerant capability. 

• Manufacturing, construction, and experimental validation of two kinds of 

prototypes, namely, the IPM traction motor with the proposed 24 slots, 14 poles 

FSCW topology and the 24 slots, 22 poles SPM motor, are presented in Chapter 

8. The experimental results are reported and compared with analytical and finite 

element method (FEM) results, with good agreement between results. 

• The final Chapter 9 presents general conclusions and considerations on the 

limitations of the work and further work to be done. 

 

 

 

 

 

 

 

 



- 10 - 

 

Chapter 2  

Review of Electric Motor Technology  

As has been introduced, the thesis focuses on two topics, including traction motors for 

EVs and modular EMAs for aircraft actuation systems. This chapter presents the 

electric motor technology advancements for these two applications, respectively. 

 

2.1 Electric motor technologies in HEV&EVs 

A number of electric motor topologies, including DC motor, induction motor (IM), 

PM synchronous motor (PMSM), switched reluctance motor (SRM), axial-flux motor, 

wound field synchronous motor (WFSM) and synchronous reluctance (SynRM)motor, 

and stator-PM synchronous motor have been investigated for traction applications 

[13]-[17]. There are some other electric motor topologies with special structure like 

double stator/rotor field-modulated motor or stator-PM synchronous motor. However, 

it is expected that they are still in early stage of research and development, and some 

of them are inherently constrained with structure complexity or performance limitation 

for traction applications [13]. 

Five electric motor topologies are identified by the industry to be the most 

promising candidates for EV/HEVs traction system, namely, IM, PMSM, SRM, 

WFSM, and SynRM. Each of them will be reviewed. 
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2.1.1 Induction motor (IM)  

The induction motor or so-called asynchronous motor is a common AC motor with a 

conductive rotor formed from a conductive copper or aluminium cage, or occasionally 

rotor windings, which is widely used in industrial applications. It has been successfully 

utilized in many commercial EVs and HEVs such as GM EV1, BMW X5 and Tesla 

Model S [18]-[20]. An example is the GM EV1 rolled out in 1996, which equipped 

with a three-phase, 102kW AC induction motor that spins to 13,000rpm and weights 

68kg [19]. The most recent exceptional example is the Tesla Model S which has a 225 

kW 3-phase 4-pole AC induction motor with copper cage rotor [18]. Figure 2.1 shows 

a high-performance induction motor with a copper cage rotor [21]. 

           

            (a) Induction motor                             (b) Copper cage rotor [21] 

Figure 2.1 Induction motor with a copper rotor  

 

The induction motor works by inducing current in the rotor to generate a rotor 

magnetic field. As a result, an electromagnetic (EM) torque can be produced by the 

interaction between stator and rotor magnetic field. As there is no rare-earth permanent 

magnet (PM) material, the material cost of the induction motor is low, and it is free 

from the impact of possible large price fluctuations of PM material. On top of this, the 

simple motor structure makes the manufacturing process simple and ensures a high 

reliability.  

There are a few drawbacks facing the induction motor, including low efficiency, 

low power factor, low power/torque density, and low inverter usage compared to the 
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PM synchronous motor [20]. The induced current in the rotor will increase stator 

current and peak Voltage-Ampere (VA) rating in the power inverter. The induced rotor 

current and increased stator current will increase loss and reduce electric drive 

efficiency, which will in turn impact the endurance mileage of EVs and battery 

capacity. Much attention should be taken to tackle the thermal management challenge 

in the rotor as the high loss in the rotating rotor is normally difficult to dissipate and it 

may rapidly be over-heated during high power operation.  

Although the induction motor does not have the high-power density and/or 

efficiency that a PM synchronous motor has, the rotor flux can be flexibly controlled 

by decoupled vector control as the induction motor contains no magnets in the rotor. 

In terms of high speed operation, flux-weakening can easily be implemented to restrain 

the high back EMF generated, which is normally a critical issue for PM synchronous 

motors. However, the constant power extended speed range operation is limited by the 

existence of break down torque which occurs when the rotor reaches the critical speed. 

Several techniques have been pushing forward to improve the performance of 

the induction motor such as optimization during the design step, using copper cage 

rotors instead of aluminium alloy, and hairpin winding technology. Apart from the 

improvements from the motor design aspect, considerations have also been taken in 

the control techniques such as pole-changing and dual-inverter technology [22]. 

2.1.2 PM synchronous motor (PMSM)  

The PM synchronous motor is a family of brushless synchronous motor normally with 

rare-earth PM in the rotor. The PMSM is the most popular candidate for automotive 

applications owing to its excellent power/torque density, high efficiency, and high 

power factor.  

However, this kind of motor may have a short constant power range due to the 

high back EMF generated by the fixed PM excitation. Although the flux-weakening 

control technique can be adopted to reduce the back EMF when the speed is above the 

base speed and 4:1 or 5:1 extended speed operation can be achieved, the efficiency in 

the high speed range may drop down significantly and a demagnetization may happen 

to the sensitive magnet. Furthermore, rotor losses due to flux-weakening would be 
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considerably increased, this will result in a thermal management challenge in the rotor 

and thereby increase the magnet’s demagnetization risk.  

Depending on the position of the magnet in the rotor, the PMSM can be 

classified into surface-mounted PM (SPM) motor, interior PM (IPM) motor, and spoke 

PM motor.  

The SPM motor may give the same torque as the interior PM motor, it is not 

considered as a good candidate for achieving an extended constant power operation 

range due to the high back EMF at the base speed and lower inductance resulting from 

the thick magnet on the rotor surface (which is literally like an air region in the 

magnetic circuit). It also can suffer from high magnet loss and mechanical stiffness 

problems. Nonetheless, there is an SPM motor equipped with FSCW configuration 

developed by A. M. El-Refaie, et al., which confirms it can provide high performance 

and meet several of the very challenging FreedomCAR 2020 specifications, as in 

Figure 2.2 [51]. 

          

          (a) Rotor prototypes                          (b) Cross section of SPM motor 

Figure 2.2 FSCW SPM motor for FreedomCAR 2020 traction applications [51] 

 

The IPM motor seems to be more robust from the mechanical aspect and can 

have a higher airgap flux density. The IPM motor can be carefully designed to consider 

the contribution of magnet and reluctance torque. This capability gives IPM motor 

more flexibility in the designing and extending the constant power operation range. 

However, IPM motor normally involves a complicated rotor lamination geometry 

which requires more manufacturing effort. In addition, the ribs in the rotor may lead 

to high magnet flux leakage. 
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Figure 2.3 Rotor of different PM synchronous motors [24]-[27] 

 

         

                 (a) Stator with hairpin winding                         (b) IPM rotor  

Figure 2.4 Toyota Prius gen 4 motor [27] 

 

A number of IPM rotor topologies that are used in the EVs and HEVs have been 

summarized in Figure 2.3 [24]-[27]. The most famous example of using IPM motor 

for an electric car is likely the Toyota Prius HEV series, which normally adopts 48 

slots stator and 8 poles IPM rotor. Their evolution of rotor structure can be observed 

from Figure 2.3 and Figure 2.4 [26][27]. It is reported that with the hairpin winding 

design, the motor has been made smaller and more compact, with considerable 

reduction in both the weight and losses [27]. 

While the Tesla Corporation originally used induction motors for all of its 

vehicles, they have recently used PM motors for the new Model 3, which is using a 54 

slots 6 poles IPM motor with normal random winding, as in Figure 2.5 [28]. 
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On the other hand, several Chinese automotive companies such as BYD and 

NIO also prefer permanent magnet synchronous motors. The NIO ES6/8 have used an 

electric powertrain system of a 160kW PM synchronous motor at the front axle and a 

240kW induction motor at the rear [29]. 

 

Figure 2.5 Tesla model 3 motor 

 

2.1.3 Switched reluctance motor (SRM)  

The switched reluctance motor (SRM) is a motor without excitation in the 

ferromagnetic rotor, the torque is generated by magnetic reluctance effect. Due to the 

absence of magnet material and a simple double-salient structure, the SRM is cheap, 

robust and easy to manufacture. The SRM can offer a higher power density and overall 

comparable efficiency at a low cost compared to induction motor but a lower 

power/torque density compared to PMSM, making it a cost-effective candidate for EV 

and HEV applications, as in Figure 2.6 [30]-[32].  

Without permanent magnet excitation in the rotor, the SRM can operate easily 

at high speed. Apart from that, the concentrated windings in the stator physically and 

electrically isolated from each other which provides high fault-tolerance. However, 

due to the reluctance torque effect and highly position-dependant inductance, the 

torque ripple is significant and may result in unacceptable noise and vibration, which 

is a critical drawback. Another disadvantage with SRM is the low power factor, which 

is caused by the discontinuous excitation current [33][34]. 

On the other hand, advanced control techniques are required for switched 

reluctance motor drives (SRD) compared to other AC and DC drives due to the non-

sinusoidal drive waveform, limiting its applications [31]. 
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Several investigations have been carried out to maximize average torque and 

minimize torque ripple [35]. These include implementing global optimization in the 

design of SRM and more advanced/optimal control strategy in the SRD. One of the 

successful business applications of SRM in the EV is Land Rover Defender powered 

by a 70kW SRM and a lithium-ion battery with capacity of 27kWh [36]. 

 

Figure 2.6 Most common SRM topologies [31] 

 

 

Figure 2.7 Wound field rotor synchronous motor [41] 

 

2.1.4 Wound field synchronous motor (WFSM) 

The wound field synchronous motor (WFSM) is a classic motor technology that is 

widely used in industry applications. Instead of using permanent magnets in the rotor 

for excitation, a rotor with wound coil excitation is adopted, as shown in Figure 2.7 

[41]. Traditionally, the coil is connected to a stationary voltage source and both brush 

and slip ring are required. The rotor is only composed of coil and steel, making it more 

robust and less sensitive to temperature than the PMSM [13][37][38]. Renault has 



Chapter 2. Review of electric motor technology 

- 17 - 

 

implemented a wound field synchronous motor in the Kangoo/Fluence/Zoe, as in 

Table 1.1 [52]. 

 

Figure 2.8 An example of inductive rotating transformer [41] 

 

The flexible regulation of magnetic field given by the independent rotor 

excitation is the main advantage of this motor technology. In the constant power high 

speed region, a reduced flux linkage can be implemented to reduce the no-load back 

EMF and eliminate the flux-weakening control, which consequently decreases the 

stator copper losses and rotor losses and improves efficiency and constant power high 

speed operation range. 

However, due to the copper losses in the rotor, the WFSM has a lower efficiency 

compared to the PMSM. The mechanical wear of brush in the conventional WFSM is 

also a challenge, which may impact motor’s operation and maintenance. A self-excited 

WFSM [40], which uses a transformer to supply energy from stator coil to rotor coil 

without brush. By rectifying the induced current in the rotor coil with diodes, a DC 

current can be applied to the rotor field winding. The concept of rotating transformer 

has also been implemented in a brushless separately excited synchronous motor 

developed for electric vehicles; Figure 2.8 depicts the structure of a separately rotary 

transformer; a functional example has been built by ETH and BRUSA [41].  
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2.1.5 Synchronous reluctance motor (SynRM) 

The synchronous reluctance motor (SynRM) is also a reluctance motor in which the 

rotor has flux barriers to provide a reluctance variation between the d- and q- axis. The 

generated torque depends on the saliency ratio of Ld/Lq. Extensive investigation 

indicates that the SynRM drive has advantages over IM in terms of cost, weight, 

cooling and efficiency [53]-[56]. The conclusion in [53] shows that the SynRM can 

give 10% to 25% of more torque depending on the motor size and higher efficiency 

over the corresponding induction motor. However, a drawback of SynRM is their poor 

power factor. 

 

Figure 2.9 Scheme of a SynRM with magnet [57]  

 

The pure SynRM does not feature comparable torque density as the PMSM. A 

typical way to address this issue is to add assisted magnet either NdFeB or Ferrite in 

the rotor flux barrier. In this case, the motor is termed as PM assisted SynRM (PMA-

SynRM). A typical configuration of PMA-SynRM is shown in Figure 2.9 [57]. With 

this combination, a high saliency ratio of 3-5 or even more can be achieved, which is 

preferable for increasing the power/torque density [13]. It is reported that a PMA-

SynRM with ferrite magnet can have a matched power density and 73% of torque 

density as the IPM motor used in Prius 2003 [14][58]. This topology provides a 

promising candidate to get rid of the expensive rare-earth magnet.  

Compared to IPM motor, the PMA-SynRM features a lower power density and 

power factor due to the flux leakage coming from the multi-layer flux barriers in the 

rotor; however it gains the advantages of lower back EMF and higher inductance, 
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which are good for flux-weakening operation in the high speed region. The low short-

circuit (SC) current due to the high inductance can also be beneficial to improving the 

fault-tolerant capability. Therefore, the PMA-SynRM represents a potential cost-

effective solution in the EVs and HEVs. 

2.1.6 Quantitative comparison of different motor technologies 

Many researches and studies have been done on the comparison of different motor 

topologies for electric traction applications. 

A comparison of IPM motor, IM, and SRM for a HEV traction applications has 

been undertaken in [59] and the geometry dimensions and weight breakdown are 

shown in Table 2.1. The performance figures at 1500 and 6000 rpm with maximum 

power are given in Table 2.2. The SRM tends to have a higher iron loss due to the 

increased frequency of the flux, and at 1500 rpm the copper losses are high. IPM motor 

features the highest efficiency, whereas more detailed design work can improve the 

generally lower efficiency for the IM and SRM.  

Table 2.1 Comparison of geometry, weight and cost [59] 

Parameter IPM IM SRM 

Outer stator diameter (mm) 269.0 269.0 269.0 

Outer rotor diameter (mm) 160.5 180.0 170.0 

Airgap length (mm) 0.73 1.5 0.3 

Axial core length (mm) 84 84 84 

Weight of stator core (kg) 18.65 11.86 14.11 

Weight of stator copper (kg) 5.99 10.57 7.44 

Weight of rotor core (kg) 5.22 6.15 5.16 

Weight of rotor magnet/copper (kg) 1.30 7.67 -- 

Total weight (kg) 31.16 36.25 26.71 

Laminated steel cost (US $) 31.03 23.41 25.05 

Copper cost (US $) 39.53 120.38 49.10 

NdFeB magnet (US $] 171.60 0 0 

Total cost [US $] 242.17 143.80 74.16 
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Table 2.2 Comparison of performance at maximum power [59] 

(a) 1500rpm 

 
Torque 

(Nm) 

Copper 

loss (W) 

Iron loss 

(W) 

Efficiency 

(%) 

Current density 

(A/mm2) 

IPM 303 4328 198 91.3 15.7 

IM 297 8591 148 83.1 15.8/12.1 

SRM 294 7653 404 85.2 20.1 

(b) 6000rpm 

 
Torque 

(Nm) 

Copper 

loss (W) 

Iron loss 

(W) 

Efficiency 

(%) 

Current density 

(A/mm2) 

IPM 45.6 219 953 96.1 3.75 

IM 50.8 730 439 95.2 4.51/3.72 

SRM 52.1 306 4074 88.2 4.02 

 

On the other hand, it is interesting to note that the material costs and 

manufacturing processes for high production volumes. For IPM motor, more cost is 

incurred because of the expensive magnet. The IM has much more copper than either 

IPM or the SRM, so SRM is relatively cheaper. In terms of manufacturing, the 

handling of magnetized magnet is a concern for IPM motor. The SRM prefers a much 

smaller airgap length, in order to realize a high reluctance ratio, so that more precision 

is needed. The IM requires a rotor with copper bars, which is expected to be relatively 

expensive to fabricate compared to aluminum bar [13] [60]. 

Based on the strict requirements to the key enabling technology of electric 

machine in the traction application, the figure of merit from 1 to 10, 10 being best and 

1 being the worst, is used for qualitative comparison of different motor topologies, as 

in Table 2.3 [13][59][60]. As can be observed, the IPM, PMA-SynRM and IM are 

more competitive for EV traction applications compared to other motor topologies, 

with IPM and PMA-SynRM show the highest ranking due to their high efficiency, 

power density and controllability associated with relatively high magnet cost 

[13][59][60]. This can also be concluded from the current commercial applications of 

electric motors for EVs and HEVs where IM and IPM motor are dominant among the 

automobile companies as in Table 1.1. 
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Table 2.3 Qualitative comparison of different motor topologies 

Performance SPM IPM IM SRM 
PMA-

SynRM 
WFSM 

Torque/power density 10 10 7 8 10 8 

Torque ripple 8 8 9 6 8 8 

Efficiency 10 10 8 8 10 8 

Cost 6 7 10 9 7 8 

NVH 10 9 8 6 9 8 

High speed operability 6 7 8 10 8 6 

Reliability/Fault 

tolerance 
6 8 10 10 8 7 

Manufacturability 6 8 9 10 7 8 

Controllability 10 10 7 7 10 10 

Sum 72 77 76 74 77 71 

Ranking 5 1 3 4 1 6 

 

Considering the sum of figures of merits, both IM and the SRM are promising 

candidates as magnet-less alternatives to IPM motor in HEVs and EVs. The IM is 

widely used and is characterized by low cost and high reliability; however, to improve 

the performance, the rotor with copper bar is needed which requires a high 

manufacturing effort [18].  

The SRM features a relatively high performance with a crucial weakness of high 

torque ripple and relatively low power factor. More efforts to improving the torque 

ripple, power factor and noise are required [13]. 

To conclude, when designing an electric traction motor, the sizing and topology 

determination have to be integrated into a complete product cycle evaluation including 

performance, cost, and manufacturability [60]. 

 

2.2 Electric motor technologies in electromechanical actuator 

(EMA) 

The electromechanical actuator can be classified as linear EMA and rotary EMA 

according to the motion form. A typical configuration of a linear EMA is a rotary 
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prime motor plus a reduction gearbox coupled with a mechanical screw, which 

converts the rotary motion to linear motion. A rotary EMA is normally a rotary prime 

motor with a multi-stage speed reducer like planetary gear or strain-wave gear, with 

features of low weight and no backlash. Compared to a hydraulic actuator, the EMA 

offers the advantages of lighter and more compact structure, less complexity than 

hydraulic actuation systems, easy installation and simple maintenance. 

A major concern regarding the utilization of EMA is the mechanical jamming, 

which is critical and potentially disastrous for aircraft, but this is not a problem for 

hydraulic actuators as it will inherently be able to convert into damper mode after a 

failure, making it jamming-free and fail-safe. Therefore, it is crucial to assess the EMA 

jamming issue as this may results in catastrophic failure during flight if there is no 

suitable solution to handle the issue. The mechanical wear moreover is another 

important factor as this may results in free-play or other non-linearity. Hence the 

prediction of wear life of mechanical transmission part is also critical. 

2.2.1 Linear EMA 

The linear EMA, typically composed by high performance rotary prime motor plus a 

reduction gearbox coupled with a mechanical screw. It uses electromagnetic 

force/torque instead of hydraulic pressure to drive the ram [45] [50] [61]. There are 

two types of configurations for linear EMA, as shown in Figure 2.10 [62]. 

• Gear drive EMA: rotary prime motor coupled with a gearbox plus mechanical 

screw. 

• Direct-drive EMA: Direct-drive rotary motor plus mechanical screw.  

     

             (a) Gear drive EMA                                      (b) Direct-drive EMA 

Figure 2.10 Two typical configurations of EMA [62] 
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                (a) EMA prototype                                    (b) EMA on iron-bird 

Figure 2.11 F-18 Aileron test bench with linear EMA [65] 

 

Linear EMA can also be realized by directly adopting a linear motor, removing 

the transmission screw that covert rotary motion to linear motion, which is inherently 

a direct-drive actuator and is jam-free [62]. However, the continuous force density of 

a linear motor is typically a few hundred newtons per active kilogram, making it too 

heavy to be used in aircraft actuators where the weight is one of the primary 

considerations [63][64]. Nonetheless, there are still some studies on the application of 

linear motor for aircraft actuation system, and it is obvious from these papers that the 

force per mass is too small [63][64], and this will also be proved in Chapter 6. 

In the 1980s, a dual linear EMA has been built and tested to replace dual 

hydraulic actuator on the left Aileron in a C161, as in Figure 2.11 [62]. The Electrically 

Powered Actuation Design (EPAD) joint program between NASA, US Air Force, and 

Navy developed a Spoiler EMA (Max load: 222.411kN) based on a rotary five-phase 

SRM (peak power 40kW) coupled with mechanical screw. The Aileron EMA was 

developed for F-18 A/B Systems Research Aircraft. The performance in Iron-bird and 

on flight were tested, which shows the EMA matched that of the standard hydraulic 

actuator very well and is slightly better on the close-loop frequency response. However, 

the problems of thermal management, non-rotating shaft and mechanical stops still 

needs to be improved [65]. 

A. Garcia, et al., discuss the general safety needs of EMA for aircraft 

applications, including suitability and reliability of actuator systems, electric motors, 

and power converters [66]. The mechanical jamming issue is highlighted. A solution 

through the monitoring and fault-tolerant systems is proposed for increasing reliability, 
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that is, using the scheme of direct-drive motor coupled with ball screw and improving 

the capability to detect, identify, and diagnose faults in their earlier states. 

A 20 KW matrix converter driven EMA for an aircraft Rudder demonstrator is 

presented in [67][68]. Both induction motor and PMSM are evaluated, with the matrix 

converter providing good dynamic performance with a wide variation in static and 

non-static load. Testing results with a constant load of up to 55kN show the correct 

operation of the entire system with good power quality and drive performance. 

                 

       (a) Stator with concentrated winding                         (b) 20-pole rotor 

Figure 2.12 PM motor designed for direct-drive Spoiler Actuator [11] 

 

C. Gerada, et al., present a direct-drive EMA without gearboxes designed for 

Spoiler actuation system for a large civil aircraft [11]. A low-speed 24 slots, 20 poles 

FSCW PM motor is developed as a potential solution to improve reliability, reduce 

weight and volume, with a high degree of fault tolerance, as in Figure 2.12. With roller 

screw (RS) as a rotary-linear gearing, a rated torque of 27Nm is needed for the rotary 

motor. The fault conditions of open-circuit (OC) phases and terminal short-circuit (SC) 

are investigated with a fault-tolerant drive topology of adopting individual controllers 

for each motor phase. 

Airbus Group and SAFRAN Group collaboratively developed a linear EMA 

integrated with a direct-drive dual 3-phase PMSM and mechanical roller screw 

without reduction gearbox, as illustrated in Figure 2.13, which had been first tested for 

an Airbus A320 Aileron in Jan 2011, and 114 flight hours have been accumulated 

since then [62].  In the author’s knowledge, this is the first project to work towards 

optimal solution of the EMA actuation system with integrated drive & control 

electronics, sensors and an electric motor to replace a conventional hydraulic actuation 

system in a commercial civil aircraft, aiming to achieve safety goals and aircraft 
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certification. System level, equipment level, and technology and methodology level 

have been studied. The results of both iron bird and flight test in A320 MSN1 (38 

flights, 114 flight hours) show that the EMA is a promising technology for future flight 

control systems for MEA and AEA. Now, they are working to evaluate and extend the 

EMA life duration for product development [62][69].  

 

Figure 2.13 Aileron EMA developed by SAFRAN Group [62]  

 

M. Villani, et al., present an EMA designed for a helicopter rotor damper 

application to improve onboard comfort through balancing the typical vibration due to 

the main rotor [70].  The actuator system architecture is shown in Figure 2.14. Three 

types of PMSM with concentrated and distributed windings are analysed and 

compared, with a 12 slots, 10 poles FSCW PM motor selected due to its fault-tolerance, 

lower torque ripple and no unbalanced radial force. Preliminary test results confirm 

the achievement of the required specifications. 

 

Figure 2.14 EMA scheme for helicopter active vibration reduction 
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                 (a) 5-phase PM BLDC motor                    (b) Actuator prototypes 

Figure 2.15 EMA motor and prototype [71] 

 

 

Figure 2.16 The twin EMAs' test bed [72] 

 

M. Villani, et al., also present a fault-tolerant EMA with 5-phase PMSM for a 

high lift Flap actuation system in Figure 2.15 [71][72]. The design philosophy, 

actuator configuration, and selection of motor to meet the dynamic loads, bearings, 

ball screw & sensor are discussed. The feasibility of keeping output rated torque with 

one or two phases open is confirmed which demonstrates the fault-tolerant 

requirements and the suitability for high reliability Flap application. The 

synchronization of two EMAs for simulating the synchronization of two Flaps 

actuation is implemented, as in Figure 2.16, which demonstrated good synchronization 

capability of the system with an adequate load sharing between the EMAs. 
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Figure 2.17 HEMAS EMA Scheme [73] 

 

    

(a) Dual 3-phase stator             (b) Dual-Channel PMSM Drive 

Figure 2.18 Dual 3-phase stator and drive system [73] 

 

 

Figure 2.19 Jamming tolerant EMA [74][75] 

 

M. Rottach, et al., report a fault-tolerant PM motor drive helicopter 

electromechanical actuation system (HEMAS) [73]. To overcome the potential for 

mechanical jamming with EMAs, two EMAs are coupled with disconnect devices that 

provide fault tolerance against an individual EMA jamming or free-wheel failure, as 

in Figure 2.17, and each EMA is driven by a dual-channel fault-tolerant PMSM and 

dual 3-phase inverters with 270VDC supply, as in Figure 2.18. The experimental 

results of the integrated optimized prototype demonstrated the torque characteristics 

and fault-tolerant capability of limiting short-circuit current and braking torque. 
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More recently, a jamming tolerant flight control electromechanical actuator 

(EMA) is reported by CESA, a Spanish Aerospace System company, as in Figure 2.19 

[74][75]. An anti-jamming system located inside the screw can disconnect the actuator 

from the control surface, avoiding possible jamming from mechanical single failure 

and assuring the manoeuvre of the flight control by means of a second actuator in 

parallel. A demonstrator with both EMA and electronic control unit (ECU) integrated 

has been developed. Three different control modes: Active, Damping and Anti-

jamming mode, are tested and validated. It has demonstrated that the EMA with anti-

jamming device can be adopted to perform safety-critical actuation systems such as 

Landing Gear or Primary Flight Control Surfaces [75]. 

2.2.2 Rotary EMA 

Rotary EMA is a rotary actuation system composed of a rotary motor and a multi-

stage speed reducer like planetary gear or strain-wave gear, with features of low 

weight and no backlash, as shown in Figure 2.20 [76]. 

   
Figure 2.20 Compound Planetary Rotary Actuator [76] 

 

          

             (a) One end of the actuator                  (b) Full twin Flap test rig 

Figure 2.21 Demonstration of EMA for a Flap actuation system [77] 
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                    (a) Cross section of motor                                (b) Prototype stator 

Figure 2.22 EMA motor with three independent phase windings [78] 

 

Figure 2.21 shows a rotary EMA for Flaps and Slats for a civil aircraft developed 

by J. Bennett and B. Mecrow from Newcastle University [77]. A ‘2+1’ 9 slots, 10 poles 

FSCW PMSM with three independent phase windings is developed, with peak torque 

of 3.4Nm, operating speed of 10,000r/min, and peak power of 2kW, as in Figure 2.22. 

The mechanical separation between winding groups can mitigate the thermal coupling 

between winding groups. System architecture and a full-scale demonstrator have been 

presented, which meet the design specifications, including synchronisation of two 

Flaps and operation under short-circuit failure. In addition, the safety critical design 

requirement and fault-tolerant electric drives are fully discussed [61] [77]. 

Goodrich Actuation Systems and Newcastle University collaboratively 

developed a nose wheel steering actuator system, capable of load torque in excess of 

7000Nm and an operating speed in excess of 180/s [78]. With a 595:1 gearbox, torque 

required from motor is taken to be 17Nm to allow a gearbox efficiency of 70% and 

provide some over-rating margin. A 24 slots, 20 poles FSCW PM motor with dual 3-

phase winding is developed, as in Figure 2.23. Experimental results with the 

compensation strategies resulting from open-circuit and short-circuit failures of the 

motors show the dual 3-phase electric drives topology is simple to implement, with no 

requirement for current shifting or reshaping to maintain a smooth output torque at 

low speeds and a smooth SC braking torque. 



Chapter 2. Review of electric motor technology 

- 30 - 

 

 

Figure 2.23 Nose wheel actuator motor [78]  

      

      (a) Design concept of rotary EMA                            (b) Strain-wave gear 

Figure 2.24 Rotary EMA for landing gear system [79] 

 

Another investigation on rotary EMAs is the EU Program-Actuation 2015: 

Modular EMAs for ACARE 2020 Aircraft and Helicopters, which includes both linear 

and rotary EMAs, and aims to validate a common set of standardised, modular and 

scalable EMA resources for all actuators (flight control, high lift, main landing gear 

applications) and all types of aircraft (civil, military, regional: aircraft and helicopter) 

[79]. A rotary actuator for retractable landing gear systems composed of motor with 

strain-wave gear is showed in Figure 2.24.  

2.2.3 EMA design trends 

The EMA system involves the safety and reliability of electrical motors, electronics 

control units, mechanical systems including bearing, mechanical screw and potentially 

gearbox in some cases. Some of the key design requirements on the EMA system 

components are summarized in Table 2.4 [66][80][81]. 
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Table 2.4  EMA system design requirements [66][80][81] 

Components Characteristics and design requirements 

Electric motor 

• Low-speed high torque motor with direct-drive EMA. 

• High speed low torque motor with geared EMA. 

• High efficiency across the full operation range. 

• Magnetic, electrical, mechanical, and thermal isolation 

o SRM and PM motor are preferred in terms of high 

fault-tolerant capability under critical operation 

conditions. 

o PM motor is preferred than SRM due to high power 

dense and high efficiency required for aircraft 

applications. 

• Modular multi-phase motor design. 

• Large winding inductance to limit terminal short-circuit 

(SC) currents. 

• Maintain the normal output in the case of first fault. 

• Output degradation operation in the case of second fault. 

Electronics 

control unit 

• Fault-tolerant power converter topologies are required: 

o Independent H-Bridge converter for every phase if the 

motor phases are segregated. 

o Additional fourth leg in the classical three-phase 

inverter. 

• High reliability power switches and passive components. 

• Electromagnetic interference (EMI) with multiple electric 

actuators. 

Monitor and 

diagnosis system 

• Detect incipient faults at an early stage. 

• Online techniques for predictive maintenance, to check 

and evaluate performance conditions of both the rotating 

electrical motors and the whole electronics. 

• Certain redundancy level of sensors. 

• Crossing checking and comparison.  

Mechanical 

components 

• High reliability mechanical lead screw such as planetary 

roller screw. 

• High reliability bearing. 

• Model the wear down and life cycle and predict service 

life. 

Mechanical 

system integration 
• Disconnected or decouple device to avoid mechanical 

jamming issue. 

 

Different from the traction motor application, the design requirement is normally 

low-speed high torque motor for direct-drive EMA or high speed low torque motor for 
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geared EMA. Both high torque/power density and excellent fault-tolerant capability 

are extensively demanded.  

From applications or research examples reviewed in the previous sections [66]-

[73], [77][79], the use of FSCW PMSM motor which can provide the magnetic, 

electrical, mechanical, and thermal isolation is dominant. Considering fault tolerance, 

multiple winding groups supplied by independent power sources are necessary. 

Therefore, the multiple electric lanes FSCW PMSM with multiple electric drives is 

becoming a key enabling technology for aircraft EMA application [61][62]. 

 

2.3 Chapter summary 

This chapter presents the electric motor technology advancements in traction motor 

applications for electric vehicles (EVs) and in electromechanical actuator (EMA) for 

more electric aircraft (MEA), respectively. 

The comprehensive evaluation and comparison of typical electric motor 

topologies in the current EV market confirm that the IPM (including PMA-SynRM), 

IM and SRM are the most promising candidates for EV traction applications. To 

determine the most suitable topology, the sizing and topology determination must be 

integrated into a complete product cycle evaluation including performance, cost, and 

manufacturability. In addition, it is expected that the IPM motor (including PMA-

SynRM) is anticipated to rule the market currently and possibly in the near future when 

pursuing a high-performance and high efficiency traction system. 

The electric motor technologies applied in aircraft EMAs demonstrated a 

different design requirement from the traction motor, viz., low-speed high torque 

motor for a direct-drive EMA, or high speed low torque motor for a geared EMA. Both 

the high torque/power density and excellent fault-tolerant capability are required. 

Therefore, the FSCW PMSM with multiple electric lanes/drives capable of providing 

isolation in magnetic, electrical, mechanical, and thermal aspect and excellent fault-

tolerant capability is the most promising technology for aircraft EMA applications. 
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Chapter 3  

Fractional Slot Concentrated Winding 

(FSCW) Motors 

This chapter deals with the operation principle and design aspects of the fractional slot 

concentrated winding (FSCW) motor. The stator MMF and winding inductance 

characteristics of ISDW and FSCW motor will be derived and compared using the 

winding function method. The stator MMF harmonic reduction techniques will be 

systematically reviewed and compared, which provides guidelines for developing new 

winding design methods. 

 

3.1 Synchronous motor operation theory 

3.1.1 Operation principle 

The electric motor can be analyzed by using electromechanical energy conversion 

theory [82]. Figure 3.1 depicts an elementary rotational electric motor where the stator 

has a 3-phase winding and the rotor has two poles. The rotating magnetic fields, i.e., 

𝜆𝑠 and 𝜆𝑟, are produced in both the stator and rotor, respectively. One should note that 

the winding can be an arbitrary winding as long as it can generate a rotating magnetic 

field; the rotor magnetic field can be generated from either field windings or a 

permanent magnet. 
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Figure 3.1 Schematic of an elementary rotational electric motor 

 

The voltage equation in the stator and rotor winding can be written as 

𝑣𝑠 = 𝑖𝑠𝑅𝑠 +
𝑑𝜆𝑠

𝑑t
                                                           (3.1) 

𝑣𝑟 = 𝑖𝑟𝑅𝑟 +
𝑑𝜆𝑟

𝑑t
                                                          (3.2) 

where i, R, and λ are the current, resistance, and flux linkage, respectively; the 

subscript of s and r means stator and rotor side, respectively.  

To simplify the analysis, no magnetic saturation is considered, which means the 

system is linear. Thus, the flux linkages can be written as 

𝜆𝑠 = 𝐿𝑠𝑖𝑠 + 𝑀𝑠𝑟𝑖𝑟                                                           (3.3) 

𝜆𝑟 = 𝑀𝑟𝑠𝑖𝑠 + 𝐿𝑟𝑖𝑟                                                           (3.4) 

where the self-inductance of Ls and Lr are constant; the mutual-inductance depends on 

the angle between stator and rotor magnetic field and can be expressed as 

𝑀𝑠𝑟 = 𝑀𝑟𝑠 = 𝑀𝑐𝑜𝑠𝛽                                                      (3.5) 

Therefore, the energy in the system can be obtained. 

𝑑𝑊𝑐(𝑖𝑠, 𝑖𝑟 , 𝛿) = (𝑣𝑠𝑖𝑠 + 𝑣𝑟𝑖𝑟) = 𝑖𝑠
2𝑅𝑠 + 𝑖𝑟

2𝑅𝑟 + 𝑖𝑠
𝑑𝜆𝑠

𝑑t
+ 𝑖𝑟

𝑑𝜆𝑟

𝑑t
                (3.6) 

𝑊𝑐(𝑖𝑠, 𝑖𝑟 , 𝛽) = ∫
1

2
(𝐼𝑠

2𝑅𝑠 + 𝐼𝑟
2𝑅𝑟)𝑑𝑡 +

1

2
(𝐿𝑠𝐼𝑠

2 + 𝐿𝑟𝐼𝑟
2)𝑑𝑡     

+(2𝑀𝑠𝑟𝐼𝑠𝐼𝑟 sin𝜔𝑠𝑡 sin𝜔𝑟𝑡)𝑑𝑡                                     (3.7) 
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The first term to the right of the equal sign of (3.7) represents the ohmic losses, 

the second term represents stored field energy in the windings, and the last term is the 

coupling energy between stator and rotor which is responsible for generating 

electromagnetic torque. It can also be observed that only when 𝜔𝑠=𝜔𝑟, namely, stator 

and rotor magnetic field have the same frequency, it may generate a smooth average 

electromagnetic torque. That is the operation principle of synchronous motor. 

By applying the virtual work theory, the electromagnetic torque can be achieved  

𝑇𝑒𝑚 = −
𝜕𝑊𝑐(𝑖𝑠, 𝑖𝑟 , 𝛽)

𝜕𝑡
= 𝐼𝑠𝐼𝑟𝑀𝑠𝑖𝑛𝛽                                      (3.8) 

Therefore, we can visualize the production of torque by the mutual interaction 

of the stator and rotor current. If the current amplitude is kept the same, the torque 

varies sinusoidally with the angle β. 

3.1.2 Rotating magnetomotive force (MMF)  

In the previous section, it has been confirmed that the stable operation of a 

synchronous motor requires two magnetic fields rotating at the same speed in the stator 

and rotor and interacting with one another. Normally, a permanent magnet 

synchronous motor (PMSM) consists of an armature winding in the stator and 

permanent magnet poles in the rotor.  

In general, the armature winding that generates stator rotating magnetic field, 

can be classified according to the number of slots/pole/phase (SPP): Integral slot 

distributed winding (ISDW) for SPP≥1; otherwise, they are referred to as fractional 

slot concentrated winding (FSCW). This section introduces a comparison of these two 

winding types. In fact, there is another type of winding: fractional slot distributed 

winding (FSDW), which will be presented in Section 3.3.4. 

The integral slot distributed winding normally has SPP≥1 and coil pitch of more 

than 1 slot. Figure 3.2 and Figure 3.3 depict a 30 slots, 10 poles (30S-10P) surface-

mounted PMSM with double-layer (DL) ISDW and its winding distribution, 

respectively. A 12S-10P surface-mounted PMSM with double-layer (DL) ISDW and 

its winding distribution are shown in Figure 3.4 and Figure 3.5, respectively. 
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Figure 3.2 A 30S-10P surface-mounted PMSM with DL ISDW 

 

 

Figure 3.3 Winding distribution of a 30S-10P PMSM with DL ISDW 

 

        

Figure 3.4 A 12S-10P surface-mounted PMSM with FSCW 

 

 

Figure 3.5 Winding distribution of a 12S-10P PMSM with DL FSCW 

 

Based on the winding distribution diagram, their stator winding rotating 

Magnetomotive Force (MMF) can be determined by using the winding function 
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method in Section 3.1.3. Its MMF waveform and corresponding Fast Fourier 

Transform (FFT) harmonic distribution are plotted in Figure 3.6. It should be noted 

that the stator MMF waveform are obtained without considering the stator slotting 

effect and rotor effect. It is apparent that the 30S-10P-DL has a more sinusoidal 

waveform while a concentrated winding exhibits more stator MMF harmonics such as 

1st and 7th apart from the main working harmonic 5th harmonic. These MMF harmonics 

will increase airgap harmonic leakage inductance and can have other undesirable 

impacts, including high rotor/magnet losses and localized saturation. 

   

(a) MMF waveform                              (b) FFT spectrum 

Figure 3.6 Stator MMF distribution of 30S-10P and 12S-10P PMSM 

 

3.1.3 Winding function 

Before calculating the motor inductances, we need to introduce the concept of the 

winding turn function to help in calculating flux linkage in a winding. The winding 

function is a description of how effectively a winding links flux density at any given 

position, in other words, the effective number of turns linked at different positions [82] 

[83]. It is apparent that winding turn is a function of rotor position. The winding 

function of an arbitrary winding can be expressed as [82] 

𝑁(𝜃) = 𝑛(𝜃)−< 𝑛(𝜃) >                                               (3.9) 

where < 𝑛(𝜃) > is the average value of the winding turns function, and it can be 

expressed as (3.10), and 𝑔(𝜃) is the airgap length function. 

< 𝑛(𝜃) >=
∫ 𝑛(𝜃)𝑔−1(𝜃)𝑑𝜃

2𝜋

0

∫ 𝑔−1(𝜃)𝑑𝜃
2𝜋

0

                                   (3.10) 
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Applying Fourier Transform to winding function, the harmonic components can 

easily be achieved; thereby, its general expression can be written as 

𝑁(𝜃) = ∑ 𝑁𝑣 cos(𝑣𝜃)

∞

𝑣=1

                                              (3.11) 

where Nv is the equivalent winding turns of vth harmonic. 

Taking 30S-10P-DL ISDW and 12S-10P-DL FSCW PMSM as examples, 

Figure 3.7 illustrates their winding function waveform and corresponding FFT 

distribution. They can also be expressed in Fourier series, as in (3.12) and (3.13). It 

can be observed that the 12S-10P-DL FSCW have more harmonics including 

fractional harmonics whose orders are not integral multiple of rotor pole-pair numbers. 

      

              (a) Winding turn waveform                              (b) FFT distribution 

Figure 3.7 Phase winding function of 30S-10P-DL and 12S-10P-DL PMSM 

 

𝑁30𝑆−10𝑃−𝐷𝐿(𝜃) = ∑
2𝑁𝑠1

𝑣𝜋
𝑘𝑤𝑣 cos(𝑣𝜃)

∞

𝑣=5,25,35

                      (3.12) 

where Ns1 is the number of turns per phase; 𝑘𝑤𝑣 = sin
𝑣𝜋

3
 is the winding factor of vth 

harmonic order. 

𝑁12𝑆−10𝑃−𝐷𝐿(𝜃) = ∑
2𝑁𝑠2

𝑣𝜋
𝑘𝑤𝑣 cos(𝑣𝜃)

∞

𝑣=1,3,5,7

                       (3.13) 

where Ns2 is the number of turns per phase; 𝑘𝑤𝑣 = sin
𝑣𝜋

12
sin

𝑣𝜋

12
 is the winding factor 

of vth harmonic order. 
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Comparing (3.12) to (3.13) we can see that they share the same formula of 

winding function. In fact, this formula, as in (3.14), is generally established if the 

distribution of the coils is uniform. In (3.14), Ns is the number of turns per phase, 

coefficient of 2 represents the relationship between conductors and coil numbers, and 

kwv represents the effective turns coefficient for each harmonic, referring to the 

definition of winding turn function and properties of the Fourier Series [84] [85]. 

Otherwise, the more general formula of (3.11) can be used for any arbitrary winding, 

especially when the distribution of the coils is not uniform, and every coil has a 

different number of turns. 

𝑁(𝜃) = ∑
2𝑁𝑠

𝑣𝜋
𝑘𝑤𝑣 cos(𝑣𝜃)

∞

𝑣=1

                                             (3.14) 

3.1.4 Winding inductance 

In any real coupled inductance, the flux linking a winding will include both leakage 

flux linkage and magnetizing flux linkage. The inductance is associated with flux 

components of current. Thereby, the concept of leakage and magnetizing inductance 

are associated with the concept of leakage and magnetizing flux, respectively, where 

1) leakage flux: flux links only a single stator or rotor winding and does not travel 

across the airgap and is not involved in energy conversion. It includes airgap harmonic 

leakage, slot leakage, tooth-tip leakage, and end-winding leakage. Due to the existence 

of the airgap in machines, it can form a significant portion of the total flux [82][84]. 

2) magnetizing flux: flux that travels across the airgap and links both a stator and a 

rotor winding, that is, mutual flux, can be considered as the useful component of flux 

[82][84]. 

𝜆 = 𝜆𝑙 + 𝜆𝑚                                                        (3.15) 

𝐿 = 𝐿𝑙 + 𝐿𝑚                                                        (3.16) 

Recalled from Figure 3.1, the mutual-inductance between winding as and bs is 

the sum of leakage and magnetizing inductance, hence  

𝐿𝑎𝑏 = 𝐿𝑎𝑏𝑙 + 𝐿𝑎𝑏𝑚                                                  (3.17) 

𝐿𝑎𝑏𝑙 =
𝜆𝑎𝑙

𝑖𝑏
                                                           (3.18) 
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𝐿𝑎𝑏𝑚 =
𝜆𝑎𝑏𝑚

𝑖𝑏
                                                        (3.19) 

Then the self-inductance of a winding can be expressed as 

𝐿𝑎𝑎 = 𝐿𝑎𝑎𝑙 + 𝐿𝑎𝑎𝑚                                                     (3.20) 

Since the leakage inductance, including slot leakage, tooth-tip leakage, end-

winding leakage, and differential leakage component, is associated with leakage flux 

that does not travel across the airgap, the effective airgap variation due to the rotor 

topologies would normally not have a significant impact on it. In addition, it is not 

involved in the energy conversion within the machine. Hence, we can treat it as a 

constant value which depends mainly on the stator slot geometry, winding 

arrangement and end-winding shape, and detailed calculation for each leakage 

inductance components can be found in [82][86]. 

In this thesis, more focus will be on the calculation of airgap inductance which 

includes the magnetizing inductance and harmonic leakage inductance. According to 

[82][84], the general expression of total flux linkages in winding as due to current in 

bs winding can be written as 

𝜆𝑎𝑏 = ∫ 𝑁𝑎(𝜃𝑠)𝐵(𝜃𝑠)𝑟𝑙𝑒𝑓𝑑(𝜃𝑠)

2𝜋

0

= 𝜇0𝑟𝑙𝑒𝑓 ∫
𝑁𝑎(𝜃𝑠)𝑁𝑏(𝜃𝑠)𝑖𝑏

𝑔(𝜃𝑠 − 𝜃𝑟)
𝑑(𝜃𝑠)

2𝜋

0

      (3.21) 

where 𝜇0 is the permeability of free space; 𝜃𝑠 is the position measured relative to the 

stator reference axis; 𝜃𝑟 is the rotor position measured relative to the stator reference 

axis; r and 𝑙𝑒𝑓 are the airgap radius and active axial length, respectively; P is the rotor 

pole-pair numbers; 𝑔(𝜃𝑠 − 𝜃𝑟) is the airgap length function. 

Hence, the airgap mutual inductance between winding as and bs can be expressed 

as 

𝐿𝑎𝑏𝑚 = 𝜇0𝑟𝑙𝑒𝑓 ∫
𝑁𝑎(𝜃𝑠)𝑁𝑏(𝜃𝑠)

𝑔(𝜃𝑠 − 𝜃𝑟)
𝑑(𝜃𝑠)

2𝜋

0

                           (3.22) 

It can be noted that the above equation will be equal to the magnetizing 

inductance if only the winding function of the main working harmonic is considered. 

In addition, one can note from Figure 3.7 that the harmonics of winding function for 
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FSCW are much more significant than that of ISDW, which is another inherent reason 

of high leakage inductance for FSCW motors. 

From Figure 3.1, the rotor in consideration is an elementary salient-pole, or so-

called synchronous reluctance rotor topology, where the effective airgap is a positive 

function in related to the rotor position 𝜃𝑟. Applying Fourier transform to the effective 

airgap length function, we can get  

𝑔(𝜃𝑠 − 𝜃𝑟) =
1

𝑔0 + 𝑔2𝑐𝑜𝑠2𝑃(𝜃𝑠 − 𝜃𝑟) + 𝑔4𝑐𝑜𝑠4𝑃(𝜃𝑠 − 𝜃𝑟) + ⋯
         (3.23) 

3.1.4.1 ISDW configuration 

Recalled from (3.14) and only considering the first order harmonic, namely the main 

working harmonic which is associated with rotor pole-pair numbers P, the winding 

function of each phase for a ISDW motor can be written as  

𝑁𝑎(𝜃𝑠) =
2𝑁𝑠

𝑃𝜋
𝑘𝑤𝑃 cos(𝑃𝜃𝑠)                                          (3.24) 

𝑁𝑏(𝜃𝑠) =
2𝑁𝑠

𝑃𝜋
𝑘𝑤𝑃 cos (𝑃𝜃𝑠 −

2𝜋

𝑚
)                                    (3.25) 

𝑁𝑐(𝜃𝑠) =
2𝑁𝑠

𝑃𝜋
𝑘𝑤𝑃 cos (𝑃𝜃𝑠 −

4𝜋

𝑚
)                                    (3.26) 

where m is phase numbers. 

Substituting (3.23), (3.24), (3.25) and (3.26) into (3.22), and formalizing, we can 

get 

𝐿𝑎𝑏𝑚 =
1

𝜋
𝜇0𝑟𝑙𝑒𝑓(

2𝑁𝑠𝑘𝑤𝑃

𝑃
)2 [𝑔0 𝑐𝑜𝑠 (

2𝜋

𝑚
) +

1

2
𝑔2𝑐𝑜𝑠 (2𝑃𝜃𝑟 −

2𝜋

𝑚
)]      (3.27) 

Similarly, the magnetizing component of self-inductance can be expressed as 

𝐿𝑎𝑎𝑚 =
1

𝜋
𝜇0𝑟𝑙𝑒𝑓(

2𝑁𝑠𝑘𝑤𝑃

𝑃
)2 [𝑔0 +

1

2
𝑔2 𝑐𝑜𝑠(2𝑃𝜃𝑟)  ]              (3.28) 

Therefore, all the inductance components associated with a m-phase PMSM with 

symmetrical winding can be achieved. Below are all the inductance components 

associated with a three-phase PMSM. 

𝐿𝑎𝑎 = 𝐿𝑙𝑠 + 𝐿𝑎𝑎𝑚 = 𝐿𝑙𝑠 + 𝐿𝐴 + 𝐿𝐵 𝑐𝑜𝑠(2𝑃𝜃𝑟)                            (3.29) 
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  𝐿𝑏𝑏 = 𝐿𝑙𝑠 + 𝐿𝑏𝑏𝑚 = 𝐿𝑙𝑠 + 𝐿𝐴 + 𝐿𝐵 𝑐𝑜𝑠 2 (𝑃𝜃𝑟 −
2𝜋

3
)                (3.30) 

𝐿𝑐𝑐 = 𝐿𝑙𝑠 + 𝐿𝑐𝑐𝑚 = 𝐿𝑙𝑠 + 𝐿𝐴 + 𝐿𝐵 𝑐𝑜𝑠 2 (𝑃𝜃𝑟 −
4𝜋

3
)                 (3.31) 

𝐿𝑎𝑏 = 𝐿𝑙𝑚 + 𝐿𝑎𝑏𝑚 = 𝐿𝑙𝑚 −
1

2
𝐿𝐴 + 𝐿𝐵𝑐𝑜𝑠2 (𝑃𝜃𝑟 −

𝜋

3
)              (3.32) 

𝐿𝑎𝑐 = 𝐿𝑙𝑚 + 𝐿𝑎𝑐𝑚 = 𝐿𝑙𝑚 −
1

2
𝐿𝐴 + 𝐿𝐵𝑐𝑜𝑠2 (𝑃𝜃𝑟 −

2𝜋

3
)            (3.33) 

𝐿𝑏𝑐 = 𝐿𝑙𝑚 + 𝐿𝑏𝑐𝑚 = 𝐿𝑙𝑚 −
1

2
𝐿𝐴 + 𝐿𝐵𝑐𝑜𝑠2(𝑃𝜃𝑟 − 𝜋)                 (3.34) 

where  

𝐿𝐴 =
1

𝜋
𝜇0𝑟𝑙𝑒𝑓(

2𝑁𝑠𝑘𝑤𝑃

𝑃
)2𝑔0                                       (3.35) 

𝐿𝐵 =
1

2

1

𝜋
𝜇0𝑟𝑙𝑒𝑓(

2𝑁𝑠𝑘𝑤𝑃

𝑃
)2𝑔2                                    (3.36) 

𝐿𝑙𝑠 and 𝐿𝑙𝑚 represent a simpler notation for leakage component of self- and of mutual- 

inductance respectively, and they are common to all stator phases. 

We can observe that both self- and mutual- inductance are position-dependent 

and the variation of them is a sinusoidal function of 2𝑃𝜃𝑟 for a salient-pole PMSM or 

synchronous reluctance motor. For a PMSM with non-salient rotor structure, e.g. 

surface-mounted PMSM, the effective airgap length 𝑔(𝜃𝑟), ignoring the slotting effect 

on the effective airgap which can be considered by Carter’s coefficient [82], is a 

constant and is independent of rotor position; in this case, both self- and mutual- 

inductance are a constant and are independent of rotor position theoretically. However, 

as the iron core saturation level varies with rotor position in a practical electric motor, 

a variation of sinusoidal function of 2𝑃𝜃𝑟 may still exist. 

3.1.4.2 FSCW configuration 

Due to the concentrated winding characteristics, there may be no overlapping area 

between the flux path of different phase winding; thereby, the magnetizing component 

of mutual- inductance maybe zero or nearly negligible in some cases. In addition, there 

may be some FSCW winding topologies where the average value of winding turn 

function is not zero. 
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In [87], a modified winding function has been proposed to facilitate the slot/pole 

combinations with FSCW. The airgap inductance that includes the magnetizing 

inductance and harmonic leakage inductance of mutual-inductance can be expressed 

as (3.37). This expression is similar to (3.9).  

                                𝑀𝑎𝑏 = 𝜇0𝑟𝑙𝑒𝑓 ∫
𝑁𝑎(𝜃𝑠)𝑁𝑏(𝜃𝑠)

𝑔(𝜃𝑠 − 𝜃𝑟)

2𝜋

0

 

−𝜇0𝑟𝑙𝑒𝑓

∫
𝑁𝑎(𝜃𝑠)

𝑔(𝜃𝑠 − 𝜃𝑟)
2𝜋

0
𝑑(𝜃𝑠) ∙ ∫

𝑁𝑏(𝜃𝑠)
𝑔(𝜃𝑠 − 𝜃𝑟)

2𝜋

0
𝑑(𝜃𝑠)

∫
1

𝑔(𝜃𝑠 − 𝜃𝑟)
2𝜋

0
𝑑(𝜃𝑠)

𝑑(𝜃𝑠)   (3.37) 

Similarly, the airgap inductance that includes the magnetizing inductance and 

harmonic leakage inductance of self-inductance can be expressed as 

𝐿𝑎𝑎 = 𝜇0𝑟𝑙𝑒𝑓 ∫
𝑁𝑎(𝜃𝑠)

2

𝑔(𝜃𝑠 − 𝜃𝑟)
− 𝜇0𝑟𝑙𝑒𝑓

(∫
𝑁𝑎(𝜃𝑠)

𝑔(𝜃𝑠 − 𝜃𝑟)
2𝜋

0
𝑑(𝜃𝑠))

2

∫
1

𝑔(𝜃𝑠 − 𝜃𝑟)
2𝜋

0
𝑑(𝜃𝑠)

𝑑(𝜃𝑠)

2𝜋

0

          (3.38) 

With an evenly distributed airgap, the mutual-inductance can be simplified as 

𝑀 = −2𝜋
𝜇0𝑟𝑙𝑒𝑓

𝑔
〈𝑁𝑎(𝜃𝑠)〉

2                                           (3.39) 

where 〈𝑁𝑎(𝜃𝑠)〉 means the average value of winding function. 

            

 (a) SL                                                           (b) DL 

Figure 3.8 6S-4P FSCW configuration 

 

In fact, this is reasonable as the flux generated by one coil must form a closed 

path. If the number of positive and negative coils are not equal like 6 slots, 4 poles 

(6S-4P) FSCW DL in Figure 3.8, some fluxes will couple with the coils of other phases. 

Therefore, it can be confirmed that for the slot/pole combinations in which the number 

of positive and negative coils are equal such as 12 slots, 10/14 poles (12S-10/14P) and 

18 slots, 14 poles (18S-14P), the magnetizing component of mutual-inductance is 

nearly zero. The magnetizing component of mutual-inductance is determined by how 
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unbalanced the number of positive coils and negative coils for the slot/pole 

combinations where the number of positive and negative coils are not equal. 

3.1.4.3 General expression of winding inductance 

In general, if ignoring the high order winding inductances, the inductance of a three-

phase winding can be expressed [87] 

𝐿𝑥𝑥 = 𝐿0 + 𝐿2 𝑐𝑜𝑠 2𝑃𝜃𝑟                                              (3.40) 

𝑀𝑥𝑦 = 𝑀0 + 𝑀2 𝑐𝑜𝑠 (2𝑃𝜃𝑟 −
2𝜋

3
)                               (3.41) 

where 𝐿0 and 𝑀0 are the average value of respective inductance components; 𝐿2 and 

𝑀2 are the amplitude of the 2nd order harmonic of the inductance, respectively; 

subscript x and y denote the winding phase name. 

3.1.5 PMSM Mathematical model 

From the previous sections, one can note that the flux linkage and current are vectors 

rotating in space at a certain speed, and the inductance is a position-dependent 

function. However, if we see the current and flux linkage from the rotor rotating frame, 

these components become constant, and constant value is more convenient for 

modeling and control. Therefore, it is beneficial to convert those items from static 

stator frame to rotating rotor frame. Figure 3.9 shows the phasor diagram of PMSM in 

the d-q rotating frame [86].  

 

Figure 3.9 Phasor diagram of PMSM in d-q rotating frame 

 

𝑳𝒅𝒒 = 𝑷𝑳𝒂𝒃𝒄𝑷
−1                                                     (3.42) 
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𝑮𝒅𝒒 = 𝑷𝑮𝒂𝒃𝒄                                                           (3.43) 

where 𝑮 denotes flux linkage, current or voltage, and the d-q transformation matrix is  

𝑷 =
2

3

[
 
 
 
 
 𝑐𝑜𝑠(𝑤𝑡) 𝑐𝑜𝑠 (𝑤𝑡 −

2𝜋

3
) 𝑐𝑜𝑠 (𝑤𝑡 +

2𝜋

3
)

−𝑠𝑖𝑛(𝑤𝑡) −𝑠𝑖𝑛 (𝑤𝑡 −
2𝜋

3
) −𝑠𝑖𝑛 (𝑤𝑡 +

2𝜋

3
)

1

2

1

2

1

2 ]
 
 
 
 
 

                   (3.44) 

Hence, the mathematical model of PMSM may be expressed as [86] 

                          𝑢𝑑 =
𝑑𝜆𝑑

𝑑𝑡
− 𝜔𝜆𝑞 + 𝑅𝑖𝑑

                          𝑢𝑞 =
𝑑𝜆𝑞

𝑑𝑡
+ 𝜔𝜆𝑑 + 𝑅𝑖𝑞

           𝜆𝑑 = 𝐿𝑑𝑖𝑑 + 𝜆𝑓

𝜆𝑞 = 𝐿𝑞𝑖𝑞

                                              𝑇𝑒𝑚 =
𝑚

2
𝑃[𝜆𝑓𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞]

                              (3.45) 

where the expression of d- and q- inductance can be achieved from transforming the 

self- and mutual- inductance of (3.40) and (3.41) in the stator frame to the rotor 

rotating frame. 

𝐿𝑑 = (𝐿0 − 𝑀0) + (
𝐿2

2
+ 𝑀2)                                            (3.46) 

𝐿𝑞 = (𝐿0 − 𝑀0) − (
𝐿2

2
+ 𝑀2)                                           (3.47) 

Therefore, the EM torque may also be expressed as 

𝑇𝑒𝑚 = 𝑇𝑝𝑚 + 𝑇𝑟 =
𝑚

2
𝑃[𝜆𝑓𝑖𝑞 + 𝐿𝑑𝑖𝑓𝑓𝑖𝑑𝑖𝑞]                         (3.48) 

𝐿𝑑𝑖𝑓𝑓 = 𝐿2 + 2𝑀2                                                      (3.49) 

One can note that the reluctance torque capability is technically determined by 

the amplitude of the 2nd order harmonic of self- and mutual- inductance. 

For the ISDW topologies and DL FSCW with SPP=1/2 or 1/4 topologies, the 

amplitude of 2nd order harmonic of self- and mutual- inductance are equal, and the d- 

and q- inductance difference can be expressed as (3.50).  

𝐿𝑑𝑖𝑓𝑓 = 3𝐿2                                                          (3.50) 
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For FSCW configuration that the average value of phase winding turn function 

is zero such as SPP=2/5 and 2/7, the amplitude of 2nd order component of mutual-

inductance is nearly zero or negligible, and the d- and q- inductance difference can be 

expressed as (3.51).  

𝐿𝑑𝑖𝑓𝑓 = 𝐿2                                                          (3.51) 

Therefore, it can be observed that the reluctance torque capability of all the 

FSCW motor where average value of phase winding turn function is zero such as 

SPP=2/5 or 2/7 family are very limited, while SPP=1/2 or 1/4 family such as 6S-4P or 

12 slots, 8 poles (12S-8P), or SPP=3/8 or 3/10 family such as 9S-8P and 9S-10P FSCW 

design are preferred in terms of giving more reluctance torque component due to their 

high mutual-inductance. 

 

3.2 Fractional slot concentrated winding (FSCW) motor 

As revealed before, the FSCW topology exhibits unique characteristics compared to 

the conventional ISDW topology. Depending on the number of layers, a fractional slot 

concentrated winding motor, i.e., single-layer (SL) and double-layer (DL) winding, 

can be seen in Figure 3.10.  This section will present the design aspects of FSCW 

motor. 

                

      (a) Single-layer                                   (b) Double-layer 

Figure 3.10 Example of a 12S-10P FSCW configurations 
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3.2.1 Slot/pole combinations 

Due to the characteristics of concentrated winding or tooth wound winding, the pole 

numbers 2P and slot numbers Q must be close in order to have a high pitch factor and 

consequently high winding factor [88]. Normally, the selection criteria are Q=2P±1 or 

Q=2P±2. In some cases, it can be Q=2P±4. The star of slots theory which is based on 

a graphical representation and is useful to rapidly differentiate the harmonic orders in 

the winding distribution, back EMF and airgap MMF distribution, can be used in the 

analysis and the design of fractional slot windings [10][88]. 

The motor’s electrical periodicity 𝑡𝑚 is defined by the greatest common divisor 

(GCD) between the number of slots Q and pole pairs P. The unit motor being 

considered in this paper is when GCD equals to 1. 

𝑡𝑚 = 𝐺𝐶𝐷(𝑄, 𝑃)                                                (3.52) 

To have a balanced winding system, the value of Q/tm must be a multiple of the 

phase numbers m. The electrical angle difference between the phasors of vth harmonic 

of two adjacent slots is 𝛼𝑣 = 𝑣𝛼𝑠 , where 𝛼𝑠 = 2𝜋/𝑄 is the mechanical slot angle. 

Hence, the design of the winding of a FSCW motor needs to differentiate the position 

of the coil phasors of each phase. To this aim, the phasor of each phase is obtained by 

summing those phasors of desired harmonic, that is the harmonic with rotor pole-pair 

order, with minimum angular displacement [10]. 

                  

                     (a) Coils distribution                                      (b) Star of slots 

Figure 3.11 Star of slots of a three-phase 12S-10P DL motor [10] 

 

An example is reported in Figure 3.11 showing the main harmonic of star of 

slots of a 12S-10P DL FSCW motor. The coil side connection is chosen with the aim 
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of maximizing the winding factor of the EMF main harmonic, i.e., ν = P = 5. The 

phasors 1, 6, -7, and -12 are connected, obtaining the resultant phasor of the first phase. 

The distribution factor can also be determined in this way. Similarly, the distribution 

factor of other harmonics can also be determined. Some of the feasible slot/pole 

combinations can be found in [89][90]. The winding factor calculation method is 

systematically addressed in [91]. 

3.2.2 Cogging torque 

Cogging torque is caused by variation of the magnetic energy of the field due to the 

interaction between PM rotor and stator slot. A concept of elementary torque may be 

defined as the interaction of a slot opening with a PM pole. For each revolution of the 

rotor, the number of periods Np of the waveform depends on the least common multiple 

(LCM) of slots and poles [89] [92].  

𝑁𝑝 = 𝐿𝐶𝑀(𝑄, 2𝑃)                                                  (3.53) 

The value of Np is an index that shows if the elementary cogging torque 

waveforms are in phase or not. The low Np means the positive (and then negative) 

elementary torques occur at the same rotor position. In this case, the different addenda 

are superimposed, yielding a high cogging torque. Conversely, if Np is high, different 

addenda are distributed along the slot pitch, namely some of them are counteracting 

from one another, yielding a low cogging torque. Since normally the FSCW features 

Q=2P±1 or Q=2P±2, Np is a much higher number compared to the ISDW cases; hence, 

the FSCW motors inherently have a low cogging toque. 

3.2.3 Design for winding isolation 

Due to the tooth wound winding characteristic of the FSCW motor, there is a 

possibility to realize a maximum isolation between coils or phases. As can be seen in 

in Figure 3.10, the tooth wound winding makes it possible to physically and thermally 

isolate the phases from one another. With independent electric supply to different 

phase or coils, electrical isolation can also be achieved. In the case of SL FSCW, the 

coils are physically isolated by the alternate teeth and a fault in one phase will have 

minimum impact on the operation of other coils or phases. 
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                           (a) 12S-14P SL                                  (b) 12S-14P DL 

Figure 3.12 Flux distribution of a 12S-14P motor with phase B excitation 
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                                (a) 6S-4P SL                                   (b) 6S-4P DL 

Figure 3.13 Flux distribution of a 6S-4P motor with phase B excitation 

 

As for the magnetic isolation, it is not straightforward. Most of the FSCW 

topologies feature low mutual coupling between phases from the winding inductance 

analysis in Section 3.1. Specifically, the FSCWs where the average value of winding 

turn function is zero, feature no or negligible coupling between phases such as 12S-

10/14P or 24S-22/26P, while for the FSCWs, such as with SPP=1/2 or 1/4, where the 

average value of phase winding turn function is not zero, will result in a strong 

coupling between phases. 

For most of the SL FSCW, as in Figure 3.10 (a), the teeth are alternatively wound, 

where the flux generated by a positive coil will be closed by the corresponding 

negative coil without coupling with the flux path of other phases. Some leakage fluxes 

will also be closed with adjacent teeth. This can be observed from Figure 3.12(a) 
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showing the flux distribution of 12S-14P FSCW motor with only phase B excitation. 

For most of the DL FSCW configurations like the one in Figure 3.10(b), all the teeth 

are alternatively wound, the flux generated by a positive coil will be closed by the 

adjacent corresponding negative coil without coupling with the flux path of other 

phases. However, for FSCW with SPP=1/2 or 1/4, the coupling is strong, and this can 

be observed from the flux distribution in Figure 3.13. 

A summary of normalized self- and mutual- inductance for both a 12S-14P and 

6S-4P can be seen in Table 3.1. It should be noted that both SL and DL case have the 

same number of turns per phase. For a 12S-14P FSCW, the mutual-inductance is 

negligible for both SL and DL case, and the DL case tends to have a slightly higher 

mutual-inductance than the SL case. For a 6S-4P DL FSCW, the mutual-inductance is 

about half of the self-inductance, while for a 6S-4P SL FSCW, the mutual coupling is 

lower but still it is considerable. 

Therefore, if a magnetic isolation between phases is required, it is better to 

choose the FSCW slot pole combinations have low mutual coupling where the average 

value of winding function is zero, and normally the SL case is preferred to the DL case 

in terms of giving maximum isolation. With FSCW design, the isolation physically, 

thermally, electrically, and magnetically can easily be implemented with appropriate 

slot-pole combination and winding arrangement. 

Table 3.1 Normalized self- and mutual- inductances 

 Self-inductance Mutual-inductance 

 SL DL SL DL 

12S-14P 1 0.654 0.002 0.067 

6S-4P 1 0.445 0.166 0.201 

 

3.2.4 High phase inductance 

The main components of inductance in a surface-mounted PMSM are attributed to the 

air-gap flux leakage due to the inherent stator space MMF harmonics and slot leakage 

flux due to high effective airgap length (physical airgap + magnet thickness), and the 

dominance of slot leakage flux might be weakening with effective airgap reduced 
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[87][93][94]. The airgap leakage inductance maybe comparable to the magnetizing 

inductance. 

The inductance comparison between a SL FSCW, DL FSCW and ISDW motor, 

is reported in [93] with same SPM rotor configuration and the constraint of same flux-

linkage for all the winding configurations. Regardless of end-winding leakage 

inductance, FSCW features much higher inductance than ISDW, and SL FSCW 

demonstrates higher inductance than DL FSCW due to higher air gap leakage and end-

winding leakage components. 

The characteristic current of an SPM motor is defined as: 

𝐼𝑐ℎ = 𝐼𝑠𝑐 =
𝜆𝑓

𝐿𝑑
                                                       (3.54) 

It is well-known that optimal flux-weakening, for both SPM and interior PM 

motors, occurs when the characteristic current Ich equals the rated current [95]. The 

inductance of an SPM motor with ISDW configuration is, however, relatively low. As 

a result, the characteristic current tends to be significantly higher than the rated current, 

which severely limits the constant-power, flux-weakening operational range. 

However, thanks to the high slot leakage and airgap harmonic inductance, the SPM 

motor with FSCW configuration can achieve a high self-inductance reducing 

characteristic current and short-circuit current; these benefits give it a better constant-

power and flux-weakening capability [96] [97]. 

With the high slot leakage inductance, a per-unit inductance can deliberately be 

designed; as a result, the symmetrical three-phase terminal short-circuit (SC) current 

will be equal to the rated current, which limits the per phase SC current to a safe value 

in the case of winding short-circuit fault, making the FSCW SPM motor a good 

candidate for fault-tolerant applications [98][99]. 

3.2.5 Modularity and manufacturability 

One of the advantages of FSCW motors is the concentrated winding, where coils are 

wound around a single tooth, giving a highly modular winding [100]-[105]. This 

feature allows for a modular design of motor that can be segmented by teeth; both the 

tooth and coil can be separately manufactured and then assembled together. The 

segmented modular design makes manufacturing easy, more efficient, and is good for 
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automated processes. A high slot fill factor can also be achieved. With premade coils 

pressed, the slot fill factor can be further increased. 

3.2.6 Summary of advantages and disadvantages 

As has been detailed, a comprehensive comparison between FSCW and ISDW can be 

achieved in terms of EM performance, fault-tolerance, and manufacturability. The 

main advantages of FSCW are 

• Short end-winding length due to the concentred winding characteristics, and 

hence shorter motor length and lower passive component cost associated with 

end-regions. 

• High slot fill factor. With modular teeth design, the slot fill factor can be 

improved up to 85% [105]. 

• High power/torque density due to the reduction in copper loss associated with 

short end-winding and high slot fill factor. In addition, FSCW motor prefers 

high pole numbers which lead to a thin stator/rotor yoke and hence reduce the 

motor’s weight and volume. 

• Low cogging torque and torque ripple with appropriate slot-pole combinations 

where the GCD of slot and pole numbers is high. 

• Due to the concentred winding characteristics, it is easier to manufacture with 

modular designs, offering advantageous cost-effective production solutions. 

• Wide speed constant power region attributed to the high slot leakage, which 

can reduce the characteristic current. It is verified that an SPM motor equipped 

with FSCWs can achieve wide speed flux-weakening operation. 

• Excellent fault-tolerant capability due to the feasibility of implementing the 

physical, electric, magnetic, and thermal isolation simultaneously. 

Compared to ISDW topology, however, the main drawbacks are  

• Significant stator space MMF harmonics can lead to localized magnetic 

saturation, and considerable iron losses, especially in the rotor core and magnet. 

• Higher rotor losses attributed to asynchronous stator space MMF harmonics, 

resulting in a high risk of rotor thermal issues. 

• Unbalanced magnetic force caused by the MMF harmonics which is more 

serious if the GCD between the slot and pole numbers is low [106]. This results 
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in higher stresses on the bearings and the risk of high vibration and acoustic 

noise [107]. 

 

3.3 FSCW stator MMF harmonics reduction techniques 

As discussed in the Section 3.1, unlike the conventional ISDW configurations where 

their winding turn function and stator rotating MMF are more sinusoidal, the stator 

rotating MMF harmonic that is asynchronous to the main working harmonic in an 

FSCW motor is significant, which will result in high rotor/magnet losses, localized 

saturation, and unbalanced radial force [108]. 

This section will review four different stator MMF harmonics reduction 

techniques for FSCW motor, including multi-layer winding, multiple m-phase 

winding, two-slot pitch winding, and offset stator or stator shifting. Some other 

techniques such as unequal turn numbers and stator flux barriers are not discussed as 

they either are not easily implemented or feature low effectiveness [109] [110]. 

3.3.1 Stator MMF harmonics definition 

Before presenting the MMF harmonic reduction techniques on the undesired stator 

MMF harmonics, the definition of different stator MMF harmonics will be required. 

There are four types of MMF harmonics in an FSCW motor, taking a 9 slots, 8 poles 

(9S-8P) DL winding as an example in Figure 3.14.  

Working harmonic: This harmonic is the harmonic whose order is the same as the 

rotor pole-pair numbers. In a 9S-8P motor, it is the 4th, while for 9 slots, 10 poles (9S-

10P) motor, it is the 5th. 

Parasitic harmonic: This harmonic is the harmonic whose order is close to that of the 

working harmonic and normally having the same winding factor and comparable 

amplitude of the working harmonic. In a 9S-8P motor, it is typically the 5th; both 4th 

and 5th normally occur in a pair, making it difficult to reduce the parasitic harmonics, 

which will be seen in the next section. 

Sub-harmonics: These harmonics are normally the harmonics whose order is lower 

than that of the working and parasitic harmonic. In a 9S-8P motor, they are the 1st and 

2nd. 
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Slot harmonics: They are the harmonics characterized by the same winding factor as 

the main harmonics and each slot harmonic is correlated with a specific main harmonic 

[108]. In fact, these slot harmonics can be regarded as the modulated harmonics of the 

main harmonics due to the slot modulated effect. Their order may be expressed as 

𝑣𝑠ℎ = 𝑘𝑄 ± 𝑣                                                       (3.55) 

where k=1, 2, 3…. In the example of a 9S-8P motor, 8th and 10th, and 7th and 11th may 

be regarded as the slot harmonics of the 1st and 2nd harmonic, respectively; 13th and 

14th may be regarded as the slot harmonics of the 4th and 5th harmonic, respectively. 

            

               (a) Phase distribution                             (b) Stator MMF harmonics 

Figure 3.14 9S-8P DL winding topology 

 

3.3.2 Multi-layer winding 

Winding layer number has played a critical role in reducing stator MMF harmonics in 

both ISDW and FSCW configuration. Normally, a l-layer winding configuration can 

be regarded as a combination of two l/2-layer combinations if the slot numbers is even, 

with shifting of certain slots between each other. For instance, a 6 slots, 2 poles (6S-

2P) DL ISDW can be regarded as putting two 6S-2P SL ISDW configurations 

together, with shifting by 1 slot between them, as in Figure 3.15. Both the 5th and 7th 

harmonic have been slightly reduced to decrease torque ripple, while the main working 

1st harmonic is negatively impacted. The critical winding shifting concept is involved 

which will be presented in the next section. 
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           (a) Winding distribution                                      (b) FFT spectrum 

Figure 3.15 6S-2P ISDW configuration with SL and DL winding 

 

 

Figure 3.16 Concept of winding shifting 

 

3.3.2.1 Concept of winding shifting 

Generally, the concept of winding shifting is to use two of the same winding 

configuration to form a combined winding configuration having lower stator MMF 

harmonics, while maintaining or even improving the torque performance, with a 

certain mechanical shift angle α between these two stators/windings and the rotor 

unchanged [111] [112]. Figure 3.16 shows the principle of winding shifting. A second 

winding set, which is identical to the existing first winding set, is added to the existing 

motor, shifting by a specific mechanical angle over each other. The corresponding 

coils of each phase in these two winding sets can be connected either in series or in 

parallel. It should be noted that all the process is implemented in the stator winding 

side, the rotor is kept the same. 
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The winding shifting concept aims to reduce the undesirable stator MMF 

harmonics. By selecting an appropriate shift angle, some undesirable harmonics can 

be significantly reduced or even cancelled while the main working harmonic can be 

maintained or not significantly reduced. 

The impact of winding shifting on each harmonic can be graphically expressed 

using the star of slots theory [10], as in Figure 3.17. Assuming A1 and A2 represents 

the resultant vector of phase A of first and second winding sets, respectively, and they 

are shifting by a mechanical angle of α from each other, the attenuation factor 𝑘𝑎 due 

to the winding shifting and winding factor 𝑘𝑤𝑘𝑐 of the resultant vector of phase A for 

the combined winding may be expressed as  

𝑘𝑎 = cos (
𝑘𝛼

2
)                                                             (3.56) 

𝑘𝑤𝑘𝑐 = 𝑘𝑤𝑘𝑘𝑎 = 𝑘𝑤𝑘cos (
𝑘𝛼

2
)                                          (3.57) 

where kwk is the winding factor of corresponding l/2-layer winding configuration. 

 

Figure 3.17 Impact of winding shift on winding factor of harmonics 

 

It can be observed that an extra attenuation factor of cos (kα/2) has been added 

to the winding factor of the combined winding. In fact, this factor can also be regarded 

as an additional distribution factor. Therefore, this equation can be used to find the 

shift angle for reducing undesired harmonics, and the negative impact on the desired 

working harmonic can also be evaluated. 

3.3.2.2 Double-layer winding 

From the concept of winding shifting, a DL winding can be regarded as a combination 

of two SL windings, with shifting by certain slots between each other. 
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Figure 3.18 Illustration of a 12S-10P FSCW from SL to DL design 

 

 

Figure 3.19 Attenuation factor for 12S-10/14P motor 

 

 

A 12S-10P with DL winding can be regarded as a combination of two 12S-10P-

SL winding configurations, as depicted in Figure 3.18. The attenuation factor of the 

harmonics can be calculated using (3.56) to identify the optimal shift angle, as in 

Figure 3.19, which has to be k*300 as it can only be shifted by a whole number of slots. 

It can be observed that shifting 150 or 2100, viz., 5 or 7 slots, gives the better impact 

in reducing the 1st sub-harmonic while having a slightly negative effect on the working 

5th harmonic. The attenuation factor for the 1st , 5th and 7th harmonic are 74.15%, 3.4%, 

and 3.4%, respectively and they agree well with MMF spectrum and winding factor 

comparison in the Figure 3.20. 

One should note that for some FSCW motors with odd slot numbers, it is not 

possible to have a balanced single-layer winding configuration; thereby the minimum 

layer number is 2. Figure 3.21 depicts the winding layout of 9S-10P DL configuration, 

which can easily be obtained from star of slots theory [10]. 
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             (a) MMF harmonic spectrum                                    (b) Winding factor 

Figure 3.20 Comparison of single and double layer 12S-10P motor 

 

           

              (a) Winding configuration                       (b) MMF harmonic spectrum 

Figure 3.21 9S-10P FSCW motor 

 

3.3.2.3 Quadruple layer winding 

To further reduce or cancel the sub-harmonics, a higher layer of triple or quadruple 

layer windings are proposed, which can be derived from double-layer or single-layer 

winding configuration by the concept of winding shifting [113]-[116]. 

Figure 3.22 illustrates the process of a 12S-10P FSCW motor from DL to 

quadruple layer winding configuration. The top and bottom layer winding distribution 

in Figure 3.22 (b) is exactly the same as a normal 12S-10P -DL winding in the Figure 

3.22 (a), shifting by a certain angle between each other. The optimal shift angle can 

be identified by calculating the attenuation factor of the concerned harmonics, as in 

Figure 3.19. Again, shifting 5 or 7 slots can reduce 1st sub-harmonics considerably 

while having slightly negative effect on the working 5th harmonic. The Figure 3.22 (b) 
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depicts the resultant 12S-10P FSCW with quadruple layer winding with shifting by 5 

slots between each other, and the comparison of MMF harmonic spectrum and 

winding factor are plotted in Figure 3.23. A similar concept can be applied to a 9S-

8/10P FSCW motor [117]; 

                       

                  (a) Double-layer                         (b) Quadruple layer (shifting by 5 slots) 

Figure 3.22 12S-10P FSCW motor [115]  

 

   

                          (a) MMF spectrum                                 (b) Winding factor 

Figure 3.23 Comparison of double and quadruple layer 12S-10P motor [115]  

 

3.3.3 Multiple m-phase winding 

Multi-layer winding configuration can reduce stator MMF sub-harmonics, but it 

cannot cancel the sub-harmonics in most of cases. This section introduces the method 

of using multiple m-phase winding configuration to cancel all the sub-harmonics. 

Based on the star of slots theory [10], the coils can be regarded as a phasor in 

different position. In the cases of SPP≠1/2 or 1/4 family with DL winding, e.g., 12S-
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10/14P and 9S-8/10P, each phase has more than 1 phasor in each sector and the 

phasors belong to each phase are in different position, which means there is an angle 

offset between them. This provides an opportunity to use multiple m-phase windings 

with shifting from each other in time to cancel the sub-harmonics.  

                     

                             (a) Star of slots                      (b) Winding layout of phase A 

Figure 3.24 12S-10P FSCW DL motor [117] 

 

        

                        (a) MMF spectrum                              (b) Winding factor 

Figure 3.25 Comparison of 3-phase and dual 3-phase 12S-10P motor 

 

Figure 3.24 shows the star of slots of a 12S-10P motor, which is an example of 

SPP=2/5 family [117]. It can be seen that there is 30 electric degree shift between 

phasor 1 and 6, and between phasor 7 and 12. To make the excitation current in line 

with the corresponding coil phasor, a dual 3-phase winding with 300 shifting in time 

from each other can be applied [118]. In this case, the 1st sub-harmonic is cancelled, 

and both the 5th and 7th harmonics are slightly increased by 3.5%, as in Figure 3.25(a). 
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In fact, the dual 3-phase concept can be extended to any m-phase winding, e.g. 

5-phase 20S-18P FSCW motor [118]. For a split-phase motor, the phase belt of a 

conventional m-phase winding is split into two halves with an electrical space phase 

separation of π/2m between the two m-phase winding sets. This entails that the angle 

between two successive slots should be π/2m, which corresponds to a number of slots 

equal to 4m or its multiples. 

The implementation of a dual 3-phase winding can also be realized by the Star-

Delta connection as the angle difference between Star and Delta connection is exactly 

30 degrees, as shown in Figure 3.26 (a) [118]. In this case, only 3 terminals come out 

simplifying the cable connection; in addition, the electric motor can be controlled as a 

3-phase winding system as the dual 3-phase current with shifting 30 deg in time is 

realized by the physical internal connection. However, there is a current ratio of √3 

between the Star and Delta connected winding. Hence, the number of turns of the Delta 

connected winding should be √3 times of turn numbers of the Star connected winding. 

It is worth noting that if the winding topology contains the (3*i)th EMF harmonics it 

will create circulating current within Delta connection. 

One should note that the method of multiple m-phase winding eliminating sub-

harmonics can be extended to any FSCW configurations and ISDW configurations 

where there is an angle difference between the coil phasors belong to the same phase, 

such as 18S-14/22P and 24S-22/26P [119] [120] and 24S-2P ISDW motor [121]. 

 

Figure 3.26 Implementation of dual 3-phase winding [118] 
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3.3.4 Two-slot pitch winding 

Those methods introduced in previous sections are only effective in reducing or 

cancelling the sub-harmonics while having negligible effect on reducing the parasitic 

harmonic which normally has a high amplitude and is more detrimental due to its very 

high asynchronous frequency seen from the rotor, e.g. 7th and 5th in the 12S-10/14P 

motor and 5th and 4th in the 9S-8/10P motor. This section will review the two-slot pitch 

winding which provides more shift angle options to reduce or cancel the more 

detrimental parasitic harmonics by winding shifting. 

If we recall the attenuation factor of winding shifting in Figure 3.19 for 12S-10P 

motor, there is a shift angle of 750 which can significantly reduce the 7th harmonic, 

while having no considerably negative impact on the 5th harmonic. However, shifting 

750 is not possible for 12S-10P motor as the angle should be an integer times of slot 

angle, that is k*300. When doubling the slot numbers e.g. changing from 12S-10P to 

24S-10P, and splitting the concentrated winding into a two-slot pitch winding, more 

shift angles are possible, which provides more flexibility in cancelling the undesired 

space MMF harmonics [112][122][123].  

Dajaku, et al., proposed a 24 slots, 10 poles (24S-10P) motor with two-slot pitch 

DL winding, which is obtained by doubling the slot numbers of a conventional 12S-

10P-DL motor and then adding another set of windings into the stator[112]. The 

attenuation factor of harmonics with shift angle can be seen in Figure 3.19, where the 

optimal shift angles are in the angular ranges shaded grey areas. As the shift angle can 

only be k*150, shifting 750 or 1070, viz., 5 or 7 slots, are the best options. The process 

of achieving a 24S-10P motor with two-slot pitch winding is depicted in Figure 3.16, 

where shifting 5 slots between two winding sets is illustrated. The more detrimental 

7th harmonic is reduced by 87% while only sacrificing 0.8% of 5th (working) harmonic, 

as in Figure 3.27. In fact, this winding topology is a fractional slot distributed winding 

(FSDW) where SPP is not an integer. 

However, the 1st sub-harmonic still exists, which can be eliminated by using 

multiple m-phase windings, as presented in previous sections [123]. In addition, the 

two-slot pitch winding method can be applied to other FSCW motors in reducing the 

more detrimental parasitic harmonic, e.g. the 4th and 5th in the 9S-10/8P motor. 
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Figure 3.27 Stator MMF spectrum of 12S-10P-DL and 24S-10P-DL-2-slot 

 

 

Figure 3.28 24S-10P-DL motor with shift angle of 7000 [124] 

 

One can note that the winding shifting method can only be applied by shifting 

by a whole number of slots, which limited the available shift angles. To further extend 

the two-slot pitch winding method, B. Reddy, et al., propose a generalized approach 

of stator shifting in interior permanent-magnet motors equipped with unequal 

slot/tooth [124]. In this case, any shift angle is possible and consequently can achieve 

the optimal effect of reducing undesirable harmonics while keeping the working 

harmonic unaffected. The disadvantage, however, is the resultant unequal slot/tooth, 

as in Figure 3.28, which complicates the stator core manufacturing. 
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3.3.5 Offset stator 

As has been depicted, the winding shifting is a good method in reducing MMF 

harmonics. Using two stators offset from each other was proposed to cancel out the 

negative harmonics in the MMF waveform leaving only the positive working 

harmonics in [125] and [126]. Figure 3.29 depicts the 2 and 4 pole flux waveform 

components in a double-sided 3 coil section of a concentrated winding linear motor; 

with 1800 offset or shifting, the 2 pole flux is cancelled. The same concept can be 

applied to other FSCW configurations such as 9S-8/10P and 12S-10/14P. 

This offset stator method offers the most flexible options in reducing stator 

MMF harmonics. The disadvantage is two stators are required, which is complex in a 

radial-flux rotating motor; However, this can be easily implemented and beneficial in 

linear motors and axial-flux motors. 

 

Figure 3.29 Description of offset double-sided concentrated winding [125]  

 

3.3.6 Summary of stator MMF harmonics reduction techniques 

Different techniques were proposed to reduce the stator space MMF harmonics. The 

advantages and disadvantages are summarized in Table 3.2. Depends on the 

requirements such as losses, speed and fault tolerance, a careful design consideration 

should be involved. 
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Table 3.2  Comparion of different MMF harmonic reduction techniques 

Techniques 
Harmonics 

concerned 
Advantages Disadvantages 

Unequal turn 

numbers 

[109] 

Sub-

harmonics 

- Stator core kept the same 

- No sacrifice on the 

working harmonic for 

optimum turn ratio 

- Limited turn numbers 

available for optimum 

turns 

- Difficult in winding 

coils with unequal turns 

coil side 

Stator flux 

barriers  [110] 

Sub-

harmonics 

- Easy implementation 

- Additional space for 

weight saves or cooling 

channel 

- Modular tooth design 

- Reduced magnetic 

loading 

- Penalized performance 

at heavy load condition; 

Multi-layer 

winding 

[113]-[116] 

Sub-

harmonics 

- Easy implementation 

 

- Higher layer numbers 

- Mutual phase coupling 

- Insulation issue 

- Low slot fill  

Multiple m-

phase 

winding 

[117][118]  

Sub-

harmonics 

- Slightly improved 

working harmonic 

- Fault tolerance 

 

- Higher power switch 

numbers in some cases 

- Control complexity 

Two-slot 

pitch winding 

[112][122]  

Sub-

harmonics 

& parasitic 

harmonics 

- Reduce most of harmonics 

- No or tiny sacrifice on the 

working harmonic 

- Literally short pitch 

distributed winding 

- Mutual phase coupling 

- Low slot fill 

Offset stators 

[125][126] 

Sub-

harmonics 

& parasitic 

harmonics 

- Most flexible design in 

reducing any harmonics 

- Possible fault tolerance  

- Easy implementation in 

linear motor or axial-flux 

motor 

- Complex structure of 

two stators for radial-flux 

rotating motor 

 

3.4 Selection of motor topologies for traction motor and EMA motor 

Based on the comprehensive analysis and literature review on the current state-of-the-

art technologies, the following motor topologies have been selected to assess in this 

thesis. 
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3.4.1 IPM motor with proposed FSCW for traction application 

For traction application in HEVs or EVs, the wide speed constant power operation and 

fault-tolerant capability are required apart from the high power/torque density. The 

IPM motor with FSCW configuration can meet these requirements and is also 

characterized by high reliability and easy manufacturability attributing from 

concentrated winding features. These features make a modular stator structure 

possible and so it is good for automated production. 

One of the challenges with FSCW IPM motor is the significant stator MMF 

harmonics which result in considerable rotor losses in the high speed operation range 

[97], which may be comparable or even higher than the copper loss. 

Therefore, this thesis will investigate the significant stator MMF harmonics 

issue of the IPM motor with conventional FSCW configuration used for traction 

application and propose a novel generalized FSCW topology with reduced stator 

MMF harmonics while keeping the concentrated winding characteristics. 

3.4.2 SPM motor with conventional FSCW for EMA application 

For the direct-drive EMA motor, the key demands are the high torque density and 

excellent fault-tolerant capability. The SPM motor with FSCW configuration is 

expected to be the best candidate due to its high torque density and high inductance 

limiting short-circuit (SC) current [96] [97]. Due to the low speed characteristics 

attributing from direct-drive EMA motor, the iron loss and magnet eddy current loss 

coming from the significant stator MMF harmonics associated with conventional 

FSCW configuration are negligible compared to the copper loss [127]. The isolation 

design in the physical, electrical, magnetic, and thermal aspect can also easily be 

implemented with a single-layer FSCW topology. However, more attention must be 

paid to the unbalanced magnetic pull with FSCW configurations, especially under 

fault conditions. 

Hence, this thesis will focus on the SPM motor with conventional FSCW 

topology, aiming to develop a high torque density and compact modular EMA motor 

with excellent fault-tolerant capability. 
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3.5 Chapter Summary 

This chapter introduces the principle and design aspects of the FSCW motor by using 

the synchronous motor operation theory. The stator MMF and winding inductance 

characteristics of ISDW and FSCW motor are derived and compared using the 

winding function method.  

Secondly, the design aspects of the FSCW motor are comprehensively analysed. 

The method to give a low cogging torque, low mutual coupling, and high winding 

inductance is reviewed. The highest isolation in electric, magnetic, physical, and 

thermal aspect that can be realized in FSCW motors have been highlighted. 

Then, the issue of the significant stator MMF harmonics in FSCW motors is 

specifically dealt with. Several stator space MMF harmonic reduction techniques are 

discussed and compared, including multi-layer winding, multiple m-phase winding, 

two-slot pitch winding, and offset stator method. The methods such as multi-layer 

winding and multiple m-phase winding that can reduce or cancel sub-harmonics and 

keep the concentrated winding characteristics cannot restrain the parasitic harmonics. 

The two-slot pitch winding method can reduce or cancel all unwanted harmonics but 

moves away from the simple concentrated winding. The offset stator method can 

eliminate any selected harmonics but requires two stators and so is normally only easy 

to be implemented in linear motors and axial-flux motors. All this confirms that new 

methods to reduce the stator MMF harmonics without sacrificing the concentrated 

winding and structure characteristics for FSCW motors are needed. 

Finally, the motor topologies for different applications concerned in this thesis 

are identified. First, the IPM motor with novel FSCW configuration featuring reduced 

stator MMF harmonic is identified for traction motor application. Second, the SPM 

motor with conventional FSCW configuration is identified for direct-drive EMA 

motor application. 
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Chapter 4  

Generalized FSCW Design Method to 

Reduce Stator MMF Harmonics 

This chapter deals with the significant stator space MMF harmonics issue in the FSCW 

topologies. A generalized FSCW design method with reduced stator space MMF 

harmonics will be proposed using a winding shifting concept. This will be based on a 

novel single-layer FSCW topology in which the two opposite coils of each phase are 

distributed adjacently. It is worth noting that unlike the existing winding shifting 

method in Section 3.3.4 which requires a two-slot pitch winding, non-overlapping or 

concentrated winding characteristics can be kept in the proposed method. 

 

4.1 Stator space MMF harmonics issue 

Figure 4.1 depicts the phase distribution and flux contours (with only phase C fed with 

current) of a 12S-14P FSCW motor with both SL and DL winding. The flux path in 

the motor with a SL winding must be closed through a long flux path across the half 

of the circumference since the two opposite coils per phase are on each side of the 

circumference. This is the inherent reason for the significant 1st harmonic in the 

conventional SL winding motor. For the DL configuration, the flux path can be closed 

by the adjacent coils owing to the two adjacent opposite coils of each phase. This can 

also be observed from their normalized MMF harmonic distributions in Figure 4.2. 
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The 7th harmonic is the main working or synchronous harmonic, and the rest are 

unwanted or asynchronous harmonics. 

A+ B+

C-

B- A-

C+
                    

A+

C+

A-

B-

C-

B+

300 C+

B-

A+
A-

C-

B+

 

 (a) SL winding                                                  (b) DL winding 

Figure 4.1 Conventional 12S-14P FSCW motor 

 

  

Figure 4.2 Stator MMF characteristics of 12S-14P FSCW motor 

 

The MMF distribution of the 12S-14P FSCW motors with conventional SL and 

DL winding can also be expressed as Fourier series by using winding function method. 

For a 12S-14P FSCW SL motor,  

𝐹(𝜃, 𝑡) = ∑
6𝑁𝐼

𝑣𝜋
sin (

𝑣𝜋

12
) sin(𝑣𝜃 − 𝜔𝑡)

∞

𝑣=1,−5,7

                            (4.1) 

For a 12S-14P FSCW DL motor,  

𝐹(𝜃, 𝑡) = ∑
6𝑁𝐼

𝑣𝜋
sin (

𝑣𝜋

12
) sin (

𝑣𝜋

12
) sin (𝑣𝜃 − 𝜔𝑡 −

𝑣𝜋

12
)

∞

𝑣=1,−5,7

            (4.2) 
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where v is the harmonic order, N is the number of conductors per slot, I is the current 

amplitude, θ is the space angle, and 𝜔 is the angular speed. 

A dual 3-phase winding can be used to cancel out the 1st harmonic for the DL 

configuration [118]. Except for 1st sub-harmonic, the parasitic harmonic which occurs 

along with the working harmonic 7th, e.g., the 5th harmonic, is also undesirable and its 

amplitude is comparable to the main working harmonic. 

These undesirable stator MMF harmonics may result in high iron losses, 

localized saturation, and unbalanced magnetic force. Therefore, it is necessary to 

develop a solution to deal with this issue, which will be presented in the next sections. 

 

4.2 Proposed FSCW design method to reduce stator MMF 

harmonics 

This section presents a FSCW design method to reduce stator MMF harmonics for 

FSCW motors based on the winding shifting concept. As discussed in Section 3.3.2.1, 

an appropriate shift angle is required for elimination or significantly reduction of some 

undesirable stator MMF harmonics using winding shifting concept.  

In order to provide an appropriate shift angle, a FSCW motor with novel SL 

winding topology is used [12][128]. Based on this, a FSCW topology with DL winding 

featuring reduced stator MMF harmonics can be achieved using winding shifting 

concept. This will be illustrated in the following sections. 

A1+

A2-

C1-
C2+

B1+

B2-

300

A1-

A2+

C1+
C2-

B1-

B2+

 

Figure 4.3  24S-14P motor with SL winding topology 
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4.2.1 Novel SL FSCW topology 

Similar to the conventional DL winding configuration, a novel SL FSCW topology of 

24 slots, 14 poles (24S-14P) was proposed [12][128], in which the two opposite coils 

per phase are adjacently distributed, as in Figure 4.3(a). The magnetic flux generated 

by one coil can be closed by the adjacent opposite coil that belongs to same phase and 

the significant 1st sub-harmonic can then be avoided, as shown in Figure 4.4. 

   

(a)  Stator MMF waveform                          (b) FFT spectrum 

Figure 4.4  Stator MMF characteristics of a 24S-14P motor with SL winding 

 

The MMF distribution of the 24S-14P motor with SL winding configuration may 

be expressed as Fourier series by using the winding function method. 

𝐹(𝜃, 𝑡) = ∑
12𝑁𝐼

𝑣𝜋
sin (

𝑣𝜋

24
)sin (

𝑣𝜋

12
)

∞

𝑣=1,−5,7

sin (𝑣𝜃 − 𝜔𝑡 −
𝑣𝜋

12
)          (4.3) 

The corresponding stator MMF harmonic distribution is illustrated in Figure 4.3 

(b). This harmonic distribution is similar to that of a conventional 12S-14P motor with 

DL winding, but the amplitude of the 1st sub-harmonic is significantly reduced from 

1.7 pu to 0.31 pu compared to a 12S-14P motor with conventional SL FSCW design. 

Since the slot mechanical angle is 150 (3600/24), the electric angle difference 

between the vectors of the two opposite coils in each phase, e.g. A1+ and A2- in Figure 

4.3, is 300 (2*7*150-1800). A dual 3-phase winding set (A1B1C1& A2B2C2) may be 

adopted with phase shifting to each other in time by 300, as depicted in Figure 4.5. 

Thus, the resulting MMF can be written as  



Chapter 4. Generalized FSCW design method with reduced stator MMF harmonics  

- 72 - 

 

𝐹𝑑(𝜃, 𝑡) = ∑ 𝑣𝑑𝑣

∞

𝑣=1,−5,7

sin (𝑣𝜃 − 𝜔𝑡 −
𝑣 − 1

12
𝜋)                           (4.4) 

𝑣𝑑𝑣 =
12𝑁𝐼

𝑣𝜋
sin (

𝑣𝜋

24
) sin (

𝑣 − 1

12
𝜋)                                    (4.5) 

where 𝑣𝑑𝑣  is the amplitude of kth space harmonic for the motor with dual 3-phase 

winding configuration. 

300

300

00

A1

A2

B1

B2

C1

C2

A1
B1

C1

A2
B2

C2

 

Figure 4.5 Dual 3-phase with two converters 

 

In this case, compared to equation (4.3), it can be observed that the factor of sin 

(kπ/12) in (4.3) is replaced by sin ((v-1)π/12). When v equals to 1, that is, the 1st sub-

harmonic, the corresponding amplitude vd1 is zero, which implies the 1st sub-harmonic 

has been eliminated. Moreover, all the harmonics with orders of (12v±1) have been 

eliminated as they are the slot harmonics corresponding to the 1st sub-harmonic. 

On the other hand, both the 5th and 7th harmonic have been slightly increased 

due to this additional factor. This increase also applies to the slot harmonics 

corresponding to these two harmonics such as 17th and 19th, etc. All of this agrees well 

with the observations from their MMF harmonic distributions in Figure 4.3. However, 

the parasitic harmonic of 5th still exists; a method using winding shifting will be 

proposed to reduce it in the next section. 
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4.2.2 Proposed DL FSCW winding design method 

There are parasitic harmonics in the FSCW motors, e.g., 5th and 7th harmonic for a 12 

slots 10/14 poles motor. They usually occur in pairs, and their winding factor is 

normally the same, making it very difficult to reduce only one of them. 

In this thesis, by applying the winding shifting method into the 24S-14P motor 

with the novel SL FSCW design presented in the previous section, the parasitic 

harmonic can be significantly reduced or eliminated without using an overlapping 

winding. The process of the method is as below. 

 

Figure 4.6 New configuration of 24S-14P with double-layer winding 

 

• Doubling the slot numbers of a conventional 12S-14P FSCW motor, viz., going 

from 12S-14P to 24S-14P motor. 

• A novel SL FSCW design configuration with two opposite coils of each phase 

distributed adjacently is applied to the new 24S-14P FSCW motor, as in Figure 4.6 

(a). 
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• Another 24S-14P motor with the same SL FSCW design topology but with a 

mechanical shift angle over the previous 24S-14P motor can be achieved, as in 

Figure 4.6 (b). 

• Combing these two motors, a novel 24S-14P motor with DL FSCW design is 

achieved, as in Figure 4.6 (c). Both the stator and rotor maintain the same while 

the coils of each phase in the two winding sets can be connected either in series or 

in parallel, e.g. A1 and A3 or A2 and A4, depending on the requirement. 

One should note that different mechanical shift angles will lead to different 

winding configurations and consequently a different MMF harmonic contents. From 

(4.4), the resulting MMF for the combined 24S-14P motor with the proposed DL 

winding with a single 3-phase winding configuration can be expressed as  

𝐹(𝜃, 𝑡) = ∑ 𝑘𝑎𝑣

12𝑁𝐼

𝑣𝜋
sin (

𝑣𝜋

24
)sin (

𝑣𝜋

12
)

∞

𝑣=1,−5,7

sin (𝑣𝜃 − 𝜔𝑡 −
𝑣𝜋

12
+

𝑣𝛼

2
)     (4.6) 

Similarly, if a dual 3-phase with 300 shift is used, the resulting MMF can be 

expressed as  

𝐹(𝜃, 𝑡) = ∑ 𝑘𝑎𝑣

12𝑁𝐼

𝑣𝜋
sin (

𝑣𝜋

24
)sin (

𝑣 − 1

12
𝜋)

∞

𝑣=1,−5,7

sin (𝑣𝜃 − 𝜔𝑡 −
𝑣 − 1

12
𝜋 +

𝑣𝛼

2
)   

(4.7) 

where 

𝑘𝑎𝑣 = cos (
𝑣𝛼

2
)                                                   (4.8) 

Compared to (4.5), one can find that an additional factor of 𝑘𝑎𝑣 has been added 

to the amplitude of each MMF harmonic. This factor is the ‘attenuation factor’, as 

defined in Section 3.3.2.1, which is added to each harmonic to be used as an index of 

the effect of harmonic reduction by winding shifting. It also essentially determines the 

distribution factor of each harmonic. 

For a 24S-14P motor, the slot angle is 150, so the available shift angle is j*150. 

The attenuation factor for each harmonic versus the mechanical shift angle can be 

calculated using (4.7), and the variation of the attenuation factor of 1st, 5th, and 7th 

harmonics with respect to the mechanical shift angle 𝛼 is plotted in Figure 4.7. It can 
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be observed that the best results, in terms of reducing unwanted stator MMF harmonics, 

can be achieved in the angular ranges shaded grey areas. 

 

Figure 4.7 Attenuation factor of 1st, 5th, and 7th harmonic 

 

 

                     (a)  Stator MMF waveform                        (b) FFT spectrum 

Figure 4.8 Stator MMF characteristics of the proposed 24S-14P DL motor 

 

With a shift angle of 1050, that is, 7 slots, the winding distribution and resulting 

MMF harmonic distribution are shown in Figure 4.8. One can find that the parasitic 

harmonic of 5th as well as 24k±5 order harmonics are significantly reduced for the 

proposed 24S-14P motor with a single 3-phase DL winding configuration, while the 

1st sub-harmonic is reduced to 0.19 pu. With the configuration of dual 3-phase DL 

winding with 300 shift, both the 1st and its corresponding slot harmonics are eliminated. 

All this is in accordance with the results from winding function method analysis. 

Both the 1st and 5th harmonics principally impact the rotor losses. Therefore, the 

rotor losses can be significantly reduced with the proposed 24S-14P motor with DL 
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winding. Reducing the MMF harmonics will also decrease unbalanced magnetic 

saturation and may improve the overload capability. 

This winding layout uses the concept of winding shifting while keeping the 

concentrated or non-overlapping winding characteristics which is different from the 

existing winding shifting method in Section 3.3.4 that normally adopts two-slot pitch 

overlapping winding [112][122]. This method avoids physical contact between 

different coils and the high mutual-inductance, and so is preferable for ease of 

manufacturing and fault-tolerant electric drive systems. 

However, the winding factor is lower due to the lower pitch factor compared to 

the conventional FSCW motors. For instance, the pitch factor for a 24S-14P motors is 

0.793, while it is 0.975 for a 12S-14P motor. To achieve equivalent ampere turns, more 

coil turns should be used in the 24S-14P motor under the same current which will 

result in more copper loss. Due to the doubling of slot numbers, the end-winding 

length of the proposed 24S-14P motor is reduced. Moreover, the magnetic core is less 

saturated due to the reduced stator space MMF harmonics improving the overload 

torque capability. A larger reluctance torque could be produced if the proposed DL 

FSCW design is applied to an IPM or synchronous reluctance (SynRM) motor. These 

advantages would compensate the sacrifice attributing to its low winding factor. 

4.2.3 Cancellation of parasitic harmonic 

As can be seen from Figure 4.8, the 5th harmonic is not completely cancelled with 

either single 3-phase DL winding or dual 3-phase DL winding with 300 shift 

configuration, and this can also be observed by calculating the harmonic amplitude 

from expression (4.7). In fact, there is an electric phase shift between coil phasors of 

each phase in the first and second winding sets due to the mechanical shift angle α, as 

illustrated in Figure 4.9. If the shift angle α equals to 1050 (7*150), both the phase shift 

between A1 and A3 and between A2 and A4 are 150. Thus, a possible winding solution 

for the combined 24S-14P with DL winding is using quadruple 3-phase winding sets, 

with phase shifting to each other by 150(π/24), viz. 00, 150, 300, and 450, as depicted 

in Figure 4.10. Therefore, the resulting MMF for the combined 24S-14P motor with 

quadruple 3-phase DL windings can be achieved as 
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𝐹𝑑(𝜃, 𝑡) = ∑ 2𝑣𝑑𝑣𝑘𝑎𝑣1 sin (𝑣𝜃 − 𝜔𝑡 −
𝑣 − 1

12
𝜋 + (

𝑣𝛼

2
+

𝜋

24
))

∞

𝑣=1,−5,7

       (4.9) 

𝑘𝑎𝑣
′ = cos (

𝑣𝛼

2
−

𝜋

24
)                                        (4.10) 

 

Figure 4.9 Coil phasors of phase A for the proposed 24S-14P DL motor 
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Figure 4.10 Quadruple 3-phase winding system  

 

The attenuation factor is now cos (
𝑘𝛼

2
−

𝜋

24
), with an additional phase shifting of 

π/24 (150) in it. When v is 5, the attenuation factor of the 5th harmonic is zero, which 

can easily be calculated using (4.10). It is also the case for all the 24k±5 order 

harmonics. This can also be observed from the MMF harmonic distribution in Figure 
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4.11, where both the 1st and 5th harmonic that mainly determine the rotor losses are 

eliminated. Only the working harmonic of 7th and its corresponding slot harmonics 

remain at significant level. 

 

Figure 4.11 MMF spectrum of a 24S-14P DL motor with different windings 
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Figure 4.12 Proposed quadruple 3-phase winding system 

 

With the quadruple 3-phase winding system in Figure 4.10, there are 12 

terminals coming out, which adds complication and increases the number of power 

switches to 24, and thus is unlikely to be a good solution from the point of view of 

both cost and reliability. This thesis proposes a novel winding connection solution to 

implement the quadruple 3-phase winding system through Star-Delta winding 

connection to realize the 300 shifting within electric machine. The proposed winding 

connection is shown in Figure 4.12, which has only 6 terminal connections, and 

requires only 12 power switches (dual 3-phase converters) to control the electric motor 
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with a quadruple 3-phase winding system (literally 12 phases). One should note that 

there is a ratio of √3 between current in the Star and in the Delta connected winding. 

Hence, the number of turns of the Delta connected winding should be √3 times of the 

turn numbers of the Star connected winding to offer a balanced electrical loading.  

The same concept can be applied to other FSCW or ISDW motor with similar 

quadruple 3-phase winding topologies like 24 slots, 22 poles (24S-22P) and 24 slots, 

2 poles (24S-2P) or quadruple 5-phase winding topologies. It should be noted that the 

ratio between turn numbers of stator and pentagon connected winding for 5-phase 

winding is 1.1756. 

 

4.3 Performance study of proposed 24S-14P FSCW motor 

4.3.1 Inductance and torque capability 

After getting the phase distribution of the proposed 24S-14P FSCW motor, their 

winding function with SL and DL winding configurations can be obtained, as shown 

in Figure 4.13. 

   

(a) 24S-14P-SL                                             (b) 24S-14P-DL 

Figure 4.13 Winding function of proposed 3-phase 24S-14P motor 

 

It can be observed from Figure 4.13(a) there is no overlap between different 

phase winding functions. Thus, no mutual coupling exists. It is expected that even with 

a salient rotor structure such as IPM or SynRM rotor, the mutual-inductance is 

negligible or nearly zero, which means the second harmonic component M2 is zero as 
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well. Therefore, the reluctance torque capability is expected to be very limited, 

referring to the torque equation (4.11) that was derived in Section 3.1.5. 

𝑇𝑒𝑚 =
𝑚

2
𝑃[𝜓𝑓𝑖𝑞 + (𝐿2 + 2𝑀2)𝑖𝑑𝑖𝑞] = 𝑇𝑝𝑚 + 𝑇𝑟                   (4.11) 

The flux distribution of the 24S-14P-SL motor with either SPM or  IPM rotor 

under only phase A excitation is plotted in Figure 4.14. It is apparent that in both cases 

the main magnetic flux generated by phase A is not linked to other phase windings 

and it is only some leakage flux that may link with other phase windings, confirming 

the conclusion of no mutual coupling between phases obtained from the winding 

function method. 

A+

A-

A+

A-

   

A+

A-

A+

A-

 

 (a) SPM rotor                                              (b) IPM rotor 

Figure 4.14 Flux distribution of 24S-14P-SL winding with Phase A excitation 
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(a) SPM rotor                                              (b) IPM rotor 

Figure 4.15 Flux distribution of 24S-14P-DL winding with Phase A excitation 
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In the case of the 24S-14P motor with DL winding, as in Figure 4.13 (b), there 

is also no overlap area between different phase windings. However, as the flux will 

follow a path with lowest magnetic reluctance, it is expected that there will be some 

flux components linking with adjacent coils of other phases, which is similar to the 

case of conventional FSCW with DL winding configuration like 12S-10/14P. This can 

also be observed from the flux distribution of 24S-14P-DL motor with SPM and IPM 

rotor under only phase A excitation in Figure 4.15. Most of the flux generated by one 

coil is closed by the corresponding opposite coil of the same phase, but a small portion 

of magnetic flux is linked to the adjacent coils of other phase windings. Thus, a 

considerable mutual-inductance is expected in the proposed 24S-14P-DL motor. 

Table 4.1 summarizes the self- and mutual- inductance components for the 

proposed 24S-14P IPM motor with different layer windings calculated from FEM 

software. To have a fair comparison, the stator and rotor geometry, and turn numbers 

per phase are kept the same. It is worth noting that the airgap length is relatively low 

to mitigate the impact of slot leakage inductance. As expected, the mutual-inductance 

is zero for the 24S-14P motor with SL winding. In the case of 24S-14P-DL motor, the 

ratio between M0 and L0 is about 10%, while the ratio between M2 and L2 is 48.9%. 

To compare the mutual-inductance of different FSCW configurations, the self- 

and mutual- inductance components of a conventional 12S-14P IPM motor and a 24S-

14P IPM motor with 2-slot pitch winding (which is a FSDW topology) with phase 

distribution shown in Figure 4.16 [129], are calculated and summarized in Table 4.2 

and Table 4.3, respectively. It can be observed that there is no significant mutual 

coupling between phases in the conventional 12S-14P motor with either SL or DL 

winding. For the 24S-14P IPM motor with 2-slot pitch winding, however, a significant 

mutual coupling can be seen by calculating the ratio between M0 and L0, which is 18.7 % 

and 12.7% for SL and DL winding, respectively. It should be noted that the M2 is even 

higher than L2 in the 24S-14P IPM motor with 2-slot pitch winding which is preferable 

in improving reluctance torque capability. In fact, these phenomena can also be 

observed from the winding function of these three winding design topologies in Figure 

4.13, Figure 4.17(a), and Figure 4.17(b). No overlap in winding function between 

phases reprents no or negligible mutual coupling between phases, and the overlap area 

literally determines the mutual coupling level between phases. 
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Figure 4.16 Phase distribution of 24S-14P-DL with 2-slot pitch winding [129] 

 

     

(a) 12S-14P-DL                                             (b) 24S-14P-2slot-DL 

Figure 4.17 Winding function of 12S-14P and 24S-14P-2slot motor 

 

Table 4.1 Inductance of proposed 24S-14P IPM motor 

Winding topology 
Self-inductance Mutual-inductance 

L0 (mH) L2 (mH) M0 (mH) M2 (mH) 

24S-14P-SL 7.286 1.619 0.004 0.014 

24S-14P-DL 3.637 1.559 0.374 0.762 

 

Table 4.2 Inductance of conventional 12S-14P IPM motor 

Winding 

topology 

Self-inductance Mutual-inductance 

L0 (mH) L2 (mH) M0 (mH) M2 (mH) 

12S-14P-SL 19.664 1.258 0.161 0.175 

12S-14P-DL 10.793 2.088 0.401 0.526 
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Table 4.3 Inductance of 24S-14P IPM motor with 2-slot pitch winding 

Winding topology 
Self-inductance Mutual-inductance 

L0 (mH) L2 (mH) M0 M2 (mH) 

24S-14P-2slot-SL 10.633 0.484 1.986 0.611 

24S-14P-2slot-DL 5.622 1.139 0.714 1.488 

 

Table 4.4 Comparison of d-q inductance difference 

 12S-14P-DL 24S-14P-DL 
24S-14P-DL with 

2-slot pitch 

L2+2*M2 3.140 3.083 4.115 

 

   

(a) Average torque                                       (b) Ripple torque 

Figure 4.18 Torque comparison of three IPM motors  

 

A comparison of the difference between d- and q- inductance, viz.,  (L2+2*M2), 

of these three designs with DL winding has been summarized in Table 4.4, which can 

be used to quantitively compare their reluctance torque capability. Clearly, the 

proposed 24S-14P-DL winding may have the same level of reluctance torque as the 

conventional 12S-14P-DL winding, while the 24S-14P-DL with 2-slot pitch winding 

is expected to exhibit a much higher reluctance torque. 

The average torque and ripple torque under different current densities of the 

three IPM motors is depicted in Figure 4.18. It should be noted that a maximum torque 

per ampere (MTPA) control strategy is applied, which means the current phase 

advance angle is varied under different current densities. One can note that, the 12S-

14P IPM motor features a higher average torque than the proposed 24S-14P-DL IPM 
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motor when current density increases until 20 A/mm2, after which the proposed 24S-

14P IPM motor has seen a higher average torque in spite of its lower winding factor; 

this is mainly because of the lower saturation effect and the higher reluctance torque 

due to the reduced stator MMF harmonics of the proposed 24S-14P IPM motor. The 

24S-14P-DL-2 slot has the highest torque capability because of its reduced stator 

MMF harmonics and relatively high winding factor. A lower ripple torque can be seen 

in both the proposed 24S-14P-DL and 24S-14P-DL-2 slot IPM motor. 

 

Figure 4.19 Torque breakdown of three IPM motors 

 

Table 4.5  Comparison of average toque and reluctance torque capability 

 
Conventional 12S-

14P-DL 

Proposed 24S-14P-

DL 

24S-14P-DL with 2-

slot pitch 

J (A/mm2) 10 20 30 10 20 30 10 20 30 

Total torque 

(Nm) 
40.3 60.0 68.1 37.4 65.4 79.6 44.0 70.8 85.0 

Reluctance 

torque (Nm) 
13.8 22.7 26.7 12.6 28.5 34.5 16.6 31.9 36.1 

Reluctance 

torque ratio (%) 
34.3 37.8 39.3 33.7 43.6 43.4 37.6 45.0 42.4 

 

Table 4.5 and Figure 4.19 summarize the output torque and reluctance torque 

capability of the IPM motor with different winding designs at maximum torque per 

ampere (MTPA) operating point. One can note that at a low current density of 

10A/mm2, the conventional 12S-14P and proposed 24S-14P-DL IPM motor have a 

similar level of reluctance torque capability; the 24S-14P-DL with 2-slot pitch 

12S-14P-DL 24S-14P-DL 
24S-14P-DL-2slot 
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winding motor have the highest reluctance capability. Under the high current density 

of 20 or even 30 A/mm2, the reluctance torque of the conventional 12S-14P IPM motor 

is very limited due to the magnetic saturation coming from the significant stator MMF 

harmonics; while both the proposed 24S-14P-DL and 24S-14P-DL with 2-slot pitch 

winding IPM motor have a higher reluctance torque capability due to the less saturated 

magnetic circuit attributing to the reduced stator MMF harmonics. 

 

(a) Iron loss 

 

(b) Magnet loss 

Figure 4.20 Losses comparison of two IPM motors 

 

4.3.2 Loss characteristics 

Figure 4.20 shows the iron loss and magnet loss at the speed of 1910rpm under 

different current densities. The core loss is the sum of stator and rotor iron loss. No 

segmentation is applied to the magnet. The stator iron loss is significant compared to 

rotor iron loss. The 12S-14P-DL IPM motor has a slightly lower stator iron loss and 
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core loss than the proposed 24S-14P-DL IPM motor when current density is lower 

than 10A/mm2, after which the later one shows a lower stator iron loss. This can be 

explained by the fact that the IPM motor design exhibits a lower magnetic reluctance, 

which intensifies the effect of stator MMF harmonics on the stator iron losses. A much 

lower rotor core loss and magnet eddy current loss can be seen in the proposed 24S-

14P-DL IPM motor under the heavy load conditions due to the reduced stator MMF 

harmonics. The magnet loss in the 12S-14P-DL IPM motor can be seen to be 8 times 

higher at a current density of 10 A/mm2, and 4 times higher at 20 A/mm2, respectively. 

One should note that the loss in the rotor is particularly difficult to dissipate. 

 

(a) 10A/mm2 

 

(b) 20A/mm2 

Figure 4.21 Iron losses characteristics of two IPM motors  

 

The loss characteristics of both motors at 10 and 20 A/mm2 under different 

fundamental frequencies are plotted in the Figure 4.21 and Figure 4.22. Obviously, the 
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losses are proportional to the fundamental frequency. The proposed 24S-14P-DL IPM 

motor exhibits a higher stator iron loss under 10 A/mm2. However, under heavy load 

of 20A/mm2, it features a lower value both in core loss and magnet loss. 

In all, the proposed 24S-14P IPM motor is competitive in output torque 

capability under heavy load conditions. Apart from this, it is effective in reducing 

torque ripple, saturation effect and rotor losses especially in the high speed heavy load 

conditions where the iron loss and magnet eddy current loss are significant concern. 

 

Figure 4.22 Magnet losses characteristics of two IPM motors 

 

4.3.3 Radial magnetic force characteristics 

The radial magnetic force density can be determined according to the Maxwell’s stress 

method [130], as expressed in (4.12). 

𝑓𝑟 = 𝑓𝑟𝑟 − 𝑓𝑟𝑡 =
𝐵𝑟

2

2𝜇0
−

𝐵𝑡
2

2𝜇0
                                          (4.12) 

where Br and Bt represents the radial and tangential airgap flux density, respectively. 

Generally, the airgap flux density can be expressed as  

𝐵ℎ = ∑𝐵ℎ,𝑣cos (𝑣𝜃 − 𝜔ℎ,𝑣𝑡 − 𝜑ℎ,𝑣)

∞

𝑣

                             (4.13) 

where h denotes r or t. 

By substituting (4.13) into (4.12), the expression of radial force density 

contributing from radial flux density Br can be deduced as 
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𝑓𝑟𝑟(𝜃, 𝑡) =
1

2𝜇0
∑𝐵𝑟,𝑣

2 cos2(𝑣𝜃 − 𝜔𝑟,𝑣𝑡 − 𝜑𝑟,𝑣)

∞

𝑣

 

+
1

2𝜇0
∑∑𝐵𝑟,𝑣𝐵𝑟,𝑣′cos(𝑣𝜃 − 𝜔𝑟,𝑣𝑡 − 𝜑𝑟,𝑣)cos(𝑣′𝜃 − 𝜔𝑟,𝑣′𝑡 − 𝜑𝑟,𝑣′)

∞

𝑣′

∞

𝑣

 (4.14) 

then it can be written as 

𝑓𝑟𝑟(𝜃, 𝑡) =
1

4𝜇0
∑𝐵𝑟,𝑣

2[1 + cos(2𝑣𝜃 − 2𝜔𝑟,𝑣𝑡 − 2𝜑𝑟,𝑣)]

∞

𝑣

 

+
1

4𝜇0
∑ ∑𝐵𝑟,𝑣𝐵𝑟,𝑣′ [cos ((𝑣 + 𝑣′)𝜃 − (𝜔𝑟,𝑣 + 𝜔𝑟,𝑣′)𝑡 − (𝜑𝑟,𝑣 + 𝜑𝑟,𝑣′))]

∞

𝑣′

∞

𝑣

  

+
1

4𝜇0
∑∑𝐵𝑟,𝑣𝐵𝑟,𝑣′ [cos ((𝑣 − 𝑣′)𝜃 − (𝜔𝑟,𝑣 − 𝜔𝑟,𝑣′)𝑡 − (𝜑𝑟,𝑣 − 𝜑𝑟,𝑣′))]

∞

𝑣′

∞

𝑣

 (4.15) 

The expression of radial force density contributing from tangential flux density 

Bt is in similar form to (4.15). 

(4.15) shows two kinds of harmonic force components. The frequencies of the 

first ones are two times higher than the frequencies of the corresponding airgap 

magnetic flux components; the frequencies of the second ones are sum and difference 

of the frequencies of the airgap magnetic flux components. 

The general form of the radial magnetic force density in the airgap can be written 

as 

𝑓𝑟(𝜃, 𝑡) = ∑𝑓𝑟,ðcos (ð𝜃 − 𝜔ð𝑡 − 𝜑ð)

∞

ð

                             (4.16) 

where ð is the model number; fr,ð is the force component amplitude; 𝜔ð represents the 

angular velocity and 𝜑ð represents the corresponding spatial angle. 

The comparisons of airgap flux density including radial (Br) and tangential (Bt) 

components for the two IPM motors, i.e., 12S-14P-DL and proposed 24S-14P-DL, 

under both no-load and load condition (MPTA @10A/mm2) are plotted in Figure 4.23. 

Under no-load condition, the conventional 12S-14P-DL IPM motor has 5th and 19th 

harmonics which are the slot harmonics of the 7th harmonic in the rotor MMF 

harmonics, but these two harmonics do not exist in the proposed 24S-14P-DL motor. 
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Under load condition, the stator MMF harmonics are generated; as expected, the 5th 

and 19th harmonic are significantly lower in the proposed 24S-14P-DL motor. 

      

(a) Br under no-load                              (b) Br under load 

   

(c) Bt under no-load                                 (d) Bt under load 

        

(e) FFT spectrum of Br                              (f) FFT spectrum of Bt 

Figure 4.23 Comparison of flux density of two IPM motors 

 

Figure 4.24 shows the radial magnetic force density in the airgap under both no-

load and load condition (MPTA @10A/mm2). The radial magnetic force density 

contains only harmonics with even orders. This is due to the interaction of the odd 

order harmonics in the airgap magnetic field. Under no-load condition, the 12th and 

16th order radial force density harmonics are almost cancelled in the proposed 24S-

14P-DL motor due to elimination of 5th and 19th harmonic in no-load airgap flux 
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density, compared to the 12S-14P-DL IPM motor. Under load condition, it can be 

observed that for the proposed 24S-14P-DL motor the 2nd and 12th order radial force 

density harmonics are significantly reduced by 92% and 90%, respectively, compared 

to the 12S-14P-DL IPM motor; this is due to the significant reduction of 5th and 19th 

harmonic in stator MMF harmonics. However, the 4th and 10th of airgap radial force 

density are slightly increased. 

The radial force essentially acts on the stator core and causes deformation and 

vibration. Normally, the deformation amplitude is inversely proportional to ð4 [131]. 

Thus, the lower order radial force is more detrimental. Having less lower order 

harmonics helps reduce vibration. Therefore, it can be confirmed that the proposed 

24S-14P-DL IPM motor would have comparatively reduced vibration and noise. 

 

     (a) Waveform at no-load                            (b) Waveform at load 

 

      (c) FFT spectrum at no-load                       (d) FFT spectrum at load 

Figure 4.24 Comparison of radial force density of two IPM motors 

 

 

4.4 Generalization of proposed FSCW design method 

With the concept of winding shifting based on the novel SL winding topology in 

Section 4.2, a more general FSCW design method of significantly reducing or 
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cancelling the 1st and parasitic harmonic component for multi-phase FSCW motors 

with different slot/pole combinations can be achieved. 

The proposed winding topology is based on doubling the slot numbers of the 

conventional FSCW motors. Therefore, all the slot-pole combinations that can use the 

proposed FSCW design method to reduce the stator MMF harmonics can be obtained 

by doubling the slot numbers of conventional FSCW motors while maintaining the 

pole numbers. 

4.4.1 Three-phase FSCW Motors 

The concept proposed in Section 4.2 can be applied to a conventional 9S-8/10P motor. 

Its coil distribution and FFT spectrum can be recalled from Figure 3.21, where the 

parasitic harmonics of 4th and 5th have a comparable amplitude. By doubling the slot 

numbers and making the three opposite coils per phase adjacently distributed, a single-

layer 18S-8/10P can be achieved, as shown in Figure 4.25 (a). 

By putting two 18S-10P SL winding motors together, with a specific mechanical 

shift angle over each other, a combined 18S-10P motor with DL winding can be 

achieved. Referring to Section 3.3.2.3, it is worth noting that there are two types of 

winding configurations due to the unequal numbers of positive and negative coils per 

phase [12]. For Type 1, both the first and second winding set are the same, while for 

Type 2, the phase distribution in the second winding set is opposite to the phase 

distribution of the first winding set. 
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(a) 18S-10P-SL                                    (b) 18S-10P-DL 

Figure 4.25 Proposed 18S-10P FSCW topology 
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(a) Type 1                                                     (b) Type 2 

Figure 4.26 Attenuation factor of 1st, 2nd, 4th and 5th harmonic 

 

Table 4.6 Attenuation factor of better shift angles for a 18S-8/10P motor 

Type α (degree) slots k1 k2 k4 k5 

1 
140 7 0.34 0.77 0.17 0.98 

220 11 0.34 0.77 0.17 0.98 

2 

100 5 0.77 0.98 0.34 0.94 

180 9 1 0 0 1 

260 13 0.77 0.98 0.34 0.94 

 

 

Similarly, different shift angles result in different effects on the reduction of 

unwanted harmonics, and the attenuation factor of each harmonic can be calculated by 

using (4.7), as in Figure 4.26. Since the unwanted harmonics are 1st, 2nd, and 4th, in 

this case, the best shift angles in terms of reducing these harmonics while not having 

a considerably negative impact on the 5th harmonic are in the shaded areas in Figure 

4.26. As the coils can only be shifted by a whole number of, all the applicable shift 

angles with their corresponding attenuation factor that give better results are 

summarized in Table 4.6. It is evident that the configuration of Type 1 with a shift 

angle of 1800 is the best, eliminating 2nd and 4th harmonic and having no impact to the 

1st and 5th; the corresponding phase distribution is depicted in Figure 4.25(b). 

The MMF waveform and FFT spectrum of the 18S-10P with SL and DL 

windings are plotted in Figure 4.27. It can be observed that both the 2nd and 4th 

harmonic are eliminated and the 1st is not affected, which agrees well with the analysis. 
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The concept of multiple 3-phase winding configuration [117] can be used to 

cancel out the 1st sub-harmonic. As can be seen from their coil phasors in Figure 4.28, 

there are 6 coil phasors for each phase, and there is an angular difference between coil 

phasors per phase; thereby a triple 3-phase winding with 200 shift can be used in Figure 

4.29 (b). With this triple 3-phase configuration, the corresponding MMF waveform 

and FFT spectrum are plotted in Figure 4.27 (b) and (c). Both 1st and 2nd sub-harmonics 

can be eliminated in either SL or DL case. Finally, the 18S-10P-DL motor with triple 

3-phase features only 5th, 13th and 23rd harmonic, where  the 13th and 23rd are the slot 

harmonics corresponding to working harmonic of 5th. 

    

                              (a) 3-phase                                             (b) Triple 3-phase 

 

(c) FFT spectrum 

Figure 4.27 MMF comparison of a 18S-10P motor with SL and DL winding 

 

Similarly, all the possible slot-pole combinations for three-phase motors which 

can adopt the proposed FSCW design method are summarized in Table 4.7. The 

maximum achievable winding factor is utilized to characterize the performance of 

each slot-pole combination. The winding factor is determined by the pitch factor and 

distribution factor, while pitch factor is determined by the slot numbers and pole 
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numbers, which means a close slot and pole numbers results in a higher winding factor. 

Thus, a higher pole number is preferred (underlined in Table 4.7) in terms of achieving 

a higher winding factor. It is worth noting that these proposed winding designs can 

also be applied to linear motors and induction motors, where harmonic cancellation is 

more important as they tend to generate parasitic torque from harmonics. 

 

Figure 4.28 Coil phasors diagram of proposed 18S-10P-DL winding topology 

 

                       

                         (a) 3-phase                                 (b) Triple 3-phase with 200 shift 

Figure 4.29 Multiple 3-phase configurations of proposed 18S-10P-DL winding 

 

Table 4.7 Possible slot-pole combinations for three-phase FSCW Motor 

Conventional slot-pole 

combinations  

Proposed slot-pole 

combinations 

Maximum 

winding factor 

6S-4/8P 12S-4/8P 0.5/0.866 

9S-8/10P 18S-8/10P 0.643/0.766 

12S-10/14P 24S-10/14P 0.609/0.793 

15S-14/16P 30S-14/16P 0.669/0.743 

18S-16/20P 36S-16/20P 0.643/0.766 
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4.4.2 Multi-phase FSCW Motors 

Following the same principle, all the applicable slot-pole combinations for the multi-

phase FSCW motors such as four- and five- phase motors that use the proposed FSCW 

design method can be achieved, as summarized in Table 4.8 and Table 4.9, with 

preferable slot-pole combinations underlined. The slot-pole combinations in the tables 

can easily be extended to higher slot/pole numbers. The examples of a four-phase 16 

slots, 10 poles (16S-10P) and a five-phase 20 slots, 12 poles (20S-12P) FSCW motor 

are described in Appendix A.1 and A.2. 

Table 4.8 Possible slot-pole combinations for four-phase FSCW Motor 

Conventional slot-pole 

combinations  

Proposed slot-pole 

combinations 

Maximum winding 

factor 

8S-6/10P 16S-6/10P 0.556/0.831 

16S-14/18P 32S-14/18P 0.634/0.773 

24S-22/26P 48S-22/26P 0.659/0.752 

32S-30/34P 64S-30/34P 0.672/0.741 

 

Table 4.9 Possible slot-pole combinations for five-phase FSCW Motor 

Conventional slot-pole 

combinations  

Proposed slot-pole 

combinations 

Maximum winding 

factor 

5S-4/6P 10S-4/6P 0.556/0.809 

10S-8/12P 20S-8/12P 0.634/0.809 

15S-12/18P 30S-12/18P 0.588/0.809 

20S-16/24P 40S-16/24P 0.588/0.809 

 

4.5 Chapter Summary 

This chapter proposed a generalized FSCW design method with reduced stator space 

MMF harmonics for electric motors using a winding shifting concept. This is based 

on a novel single-layer FSCW topology in which the two opposite coils of each phase 

are distributed adjacently. The method is illustrated by going from a 12S-14P to a 24S-

14P motor. It does not require the overlapping two-slot pitch winding that normally 

used in the existing winding shifting method. In addition, when applied with multiple 
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m-phase windings, it can cancel out all unwanted harmonics except for the working 

harmonic and its slot harmonics. 

The performance characteristics of the proposed 24S-14P FSCW IPM motor in 

terms of torque capability, losses, and radial magnetic force, are investigated and 

compared to the conventional 12S-14P FSCW motor. The comparison shows that with 

reduced stator MMF harmonics, the proposed 24S-14P FSCW IPM motor is less 

saturated and features higher reluctance torque capability and better over-load 

capability while keeping the non-overlapping or concentrated winding characteristics, 

despite of its low winding factor. A much lower rotor loss and magnet loss are also 

observed. On top of this, the proposed 24S-14P FSCW IPM motor would have 

comparatively less vibration and noise. 

Generalized double-layer FSCW topologies with reduced stator MMF 

harmonics for different slot/pole combinations and different phase numbers have been 

summarized. The winding factors are calculated, and the preferable slot/pole 

combinations are given. 

Although the proposed winding design topologies can reduce stator space MMF 

harmonics and thereby reduce rotor losses and improve overload capability, it is worth 

noting that their winding factors are generally lower compared to their conventional 

FSCW counterparts. Therefore, a trade-off must be made depending on the design 

requirements of the power, speed, electrical loading, thermal management, and 

overload capability, etc. In addition, these proposed winding design methods can be 

applied to other machine types, including linear motors and induction motors. 
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Chapter 5  

Design and Analysis of a 24 Slots, 14 Poles 

FSCW IPM Motor  

In the previous chapter, several fractional slot concentrated winding (FSCW) designs 

based on the proposed stator MMF harmonic reduction method have been presented. 

To evaluate the effect of the proposed winding designs with reduced stator MMF 

harmonics on the motor’s performance, an IPM motor with the proposed 24 slots, 14 

poles (24S-14P) FSCW topology will be designed and evaluated for an EV traction 

motor application, with focus on the torque capability and efficiency. Apart from this, 

the fault-tolerant capability of the proposed 24S-14P IPM motor with different 

configurations of dual 3-phase winding system will also be analysed under both 

healthy and fault conditions. 

 

5.1 Design specification 

This section defines the design specifications of the traction motor, as summarized in 

Table 5.1. Based on this, the torque-speed and power-speed characteristics of the IPM 

motor are shown in Figure 5.1. 

An IPM motor with the proposed 24S-14P winding topology is designed, with 

the main geometry data summarized in Table 5.2. The B-H curve of the magnetic steel-

DW270-35 is shown in Figure 5.2. The designed copper slot fill factor is 39.2%. Due 
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to the motor’s short axial length, 3-D FEM is used to evaluate the EM performance 

and the FEA model is shown in Figure 5.3.  

Table 5.1 Motor design specifications 

Parameter Data Parameter Data 

Peak power (kW) 10  DC link voltage (V) 400 

Rated power (kW) 7 Peak current (Arms) 60 

Base speed (rpm) 1910 Peak current density (A/mm2) 18 

Peak speed (rpm) 6000 Rated current density (A/mm2) 8.5 

 

 

Figure 5.1 Torque-speed and power-speed envelopes against speed 

 

Table 5.2 Main geometry data and specifictaion of IPM motor 

Parameter Data Parameter Data 

Stator outer diameter (mm) 200 Stator core material DW270-35 

Stator inner diameter (mm) 121.6 Rotor core material DW270-35 

Stack length (mm) 40 Magnet material N38SH 

Airgap length (mm) 0.8 Peak current (Arms) 50 

Magnet thickness (mm) 4 Rated current (Arms) 27 

Magnet width (mm) 13.5 Peak torque (Nm) 50 

Turns per coil 24 Rated torque (Nm) 35 
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Figure 5.2  B-H curve of DW270-35 

 

          

                             (a) Model                                           (b) rotor 

Figure 5.3  FEM model of the proposed 24S-14P IPM motor 

 

5.2 EM performance of proposed 24 slots, 14 poles IPM motor with 

single three-phase winding system 

This section reports the general performance of the proposed 24S-14P IPM motor 

designed for an electric vehicle traction application. The EM performance with respect 

to the torque capability, saliency, as well as fault operation are analysed. A magnet 

temperature of 85oC is assumed. This work will be used as a baseline for comparison 

with dual 3-phase winding configuration developed using the methods previously 

outlined. 
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5.2.1 No-load Performance 

Figure 5.4 shows the back electromagnetic force (EMF) under no-load condition at a 

base speed of 1910rpm. A small 3rd harmonic exists, which provides an opportunity 

for improving output torque by injecting high-order (3rd) current harmonic [132]. Both 

5th and 7th harmonics, which are the main contributor of torque ripple, are nearly 

negligible, thereby a low torque ripple can be expected in the proposed 24S-14P IPM 

motor. 

The calculated cogging torque is plotted in Figure 5.5. It is obvious that the 

cogging torque is very small, with peak to peak value of 57mNm, which is negligible 

compared to the rated and peak torque.  

     

(a)Waveform                                             (b) FFT distribution 

Figure 5.4 No-load back EMF at 1910 rpm 

 

 

Figure 5.5 Cogging torque waveform 
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5.2.2 Torque capability 

By imposing a balanced three-phase fundamental current into the armature winding, a 

steady-state EM torque can be generated. Figure 5.6 shows the calculated 

instantaneous EM torque waveform of the proposed 24S-14P IPM motor in both the 

rated and peak load condition at base speed. As can be seen, the motor can generate 

35 Nm of rated torque and 50 Nm of peak torque, where the corresponding torque 

ripple is 3.3% and 5.9%, respectively. It should be noted that no additional mechanical 

methods such as stator and rotor skewing are used to reduce the torque ripple. The 

slightly higher torque ripple in the peak load condition is due to the saturation effect. 

However, the torque ripple may be reduced in the dual 3-phase winding configurations 

with different shift angles. 

 

Figure 5.6  Output torque calculated at rated and peak load 

 

Stator MMF space harmonics have a considerable impact on the saliency of the 

motor as the magnetic flux path depends on them, and significant stator MMF 

harmonics may reduce the rotor saliency. The average torque at different current phase 

advance angle in the rated and peak load condition are plotted in Figure 5.7. The 

proposed 24S-14P IPM motor generates a maximum torque of 50Nm at maximum 

torque per ample (MTPA) angle of 350, while at rated load condition, the MTPA angle 

is 300. Therefore, it can be concluded that the proposed 24S-14P IPM motor features 

some reluctance torque capability and a non-negligible saliency ratio. 
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Figure 5.7 Average torque versus current phase advance angle  

 

5.2.3 Efficiency map 

The efficiency map of the proposed 24S-14P IPM motor is calculated using the 3-D 

FEM analysis method with the MTPA control strategy applied [133], as shown in 

Figure 5.8. High efficiency can be observed in most of the operation area. Efficiency 

of higher than 94% can be kept at high speed range which can be attributed to lower 

iron losses due to the reduced stator MMF harmonics. It should be noted that the iron 

loss calculation is based on the loss coefficient data of lamination steel provided by 

supplier. No additional build factor is considered. 

 

Figure 5.8 Calculated efficiency map of the proposed 24S-14P IPM motor 
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It is well known that continuous power operation across the speed range is 

significantly constrained by both DC bus voltage limits and by high iron losses 

especially the high rotor losses at peak speed. Higher rotor loss may result in 

unacceptably high rotor temperature, which can deteriorate the magnet performance 

and possibly lead to irreversible demagnetization. Therefore, it is expected that the 

proposed 24S-14P IPM motor with reduced stator MMF harmonics can maintain a 

higher continuous power output at high speed than at the base speed while keeping a 

high efficiency. 

5.2.4 Short-circuit (SC) fault performance 

The benefit of using FSCW topology and the IPM rotor is their reduced steady-state 

SC current under terminal SC fault which is critical for safety-critical applications. A 

lower SC current can maintain the motor within thermal limit in fault conditions. 

     

         (a) SC current                                             (b) SC braking torque 

Figure 5.9 Steady-state SC characteristic of single 3-phase 24S-14P IPM motor 

 

The steady-state SC current and braking torque against speed for the single 3-

phase 24S-14P IPM motor are calculated and plotted in Figure 5.9. As expected, the 

steady-state SC current increases when the speed goes up, and remains almost constant 

after 2000rpm, which can be explained by the analytical SC current expression (5.1) 

derived from steady-state mathematical model in the synchronous d-q reference frame 

[134]. At high speed, the impact of  resistance on the SC current becomes negligible, 

thus the SC current may be expressed as (5.2), which is independent from speed. 

𝐼𝑠𝑐 =
√(𝜔2𝐿𝑞𝜆𝑓)2 + (𝜔𝑅𝜆𝑓)2

𝑅2 + 𝜔2𝐿𝑑𝐿𝑞
                                           (5.1) 
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𝐼𝑠𝑐 =
𝜆𝑓

𝐿𝑑
                                                                   (5.2) 

The highest SC current is about 31.5A that corresponds to 22.3Arms, which is 

smaller than rated current of 27Arms. It is worth noting that the motor was designed 

with the highest SC current to be qual to rated current of 27Arms; however, due to the 

end-winding leakage effect, the 3-D FEM calculated SC current is less than that of 2-

D FEM calculation. 

The steady-state SC braking torque may be expressed as [134] 

𝑇𝑠𝑐 = −
3

2
𝑃𝑅𝜆𝑓

2𝜔
𝑅2 + 𝜔2𝐿𝑞

2

(𝑅2 + 𝜔2𝐿𝑑𝐿𝑞)2
                                           (5.3) 

The critical speed where the maximum braking torque occurs can easily be 

achieved by equating the derivative of (5.3) with respect to the speed 𝜔 to zero; and 

normally the critical speed is at low speed. 

The variation of the steady-state SC braking torque in Figure 5.9(b) is as 

expected, with the highest SC braking torque of -14.8Nm occurring at the critical 

speed of 110rpm. After that, the steady-state SC braking torque decreases as the speed 

increases. At peak speed of 6000rpm, the steady-state SC braking torque is very small, 

about -0.5Nm. 

 

5.3 EM performance of proposed 24 slots, 14 poles IPM motor with 

dual 3-phase winding system 

5.3.1 Different dual 3-phase winding configurations 

As has been depicted in Section 4.2, there are different multiple 3-phase configurations 

for the proposed 24S-14P motor offering fault-tolerant capability. Based on the star of 

slots theory [88], the coil phasor distribution for the 24S-14P motor is plotted in Figure 

5.10. There are eight phasors available each phase for a three-phase winding system. 

By arranging the coil phasors of one phase into different phases, several dual 3-phase 

winding configurations can be achieved. Three kinds of dual 3-phase winding 

configurations with different shift angle, viz., 00, 150, and 300, are summarized in 

Figure 5.11, Figure 5.12, and Figure 5.13, respectively. 
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Figure 5.10 Coil phasors diagram of the proposed 24S-14P-DL winding 

 

A1+

A1-

A2+

A2-

A1+

A1-

A2+

A2-     

A1 (1, 3, 8, 10)

A2 (13,15, 20, 22)

B1(4, 9, 16, 21)

B2 (6, 11, 18, 23)

C1 (5, 12, 17, 24)

C2 (2, 7, 14, 19)

 

(a) Phase A1&A2 distribution                         (b) Coil phasor diagram 

Figure 5.11 Dual 3-phase 24S-14P-DL winding with 00 shift 

 

A1+

A1-

A1+

A1-

A2+

A2-

A2+

A2-         

A1 (1,3,13,15)

A2 (8,10,20,22)

C1 (5,7,17,19)

B2 (4,6,16,18)

150

C2 (2,12,14,24)

 

(a) Phase A1&A2 distribution                         (b) Coil phasor diagram 

Figure 5.12 Dual 3-phase 24S-14P-DL winding with 150 shift 
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A1+

A2-

A2+

A1-

A1+

A2-

A2+

A1-          

B1 (4,9,16,21)

300

A1 (1,8,13,20)

A2 (3,10,15,22)

B2 (6,11,18,23)

C1 (5,12,17,24)

C2 (2,7,14,19)

 

(a) Phase A1&A2 distribution                 (b) Coil phasor diagram 

Figure 5.13 Dual 3-phase 24S-14P-DL winding with 300 shift 

 

Table 5.3  Winding factor of dual 3-phase 24S-14P motor 

Shift angle 00 150 300 

Winding factor 0.760 0.766 0.787 

 

It is evident that different shift angles between dual 3-phase windings lead to 

different winding factors and electromagnetic performance, especially the 

performance under fault conditions. The corresponding winding factors are calculated 

and summarized in Table 5.3. A higher winding factor can be achieved by using a 

higher shift angle configuration. 

5.3.2 No-load EMF 

The no-load EMF of the dual 3-phase 24S-14P IPM motor with different shift angles 

is calculated using 3-D FEM analysis, as shown in Figure 5.14. Only 150 and 300 

configurations are plotted as the 00 configuration can easily be obtained from no-load 

EMF of the single 3-phase configuration in Figure 5.4. 

FFT spectrum comparison of their phase and line EMF are depicted in Figure 

5.15. Due to different winding factors attributing from different shift angles between 

dual 3-phase windings, their EMF amplitude with corresponding harmonic orders are 

different. The 300 configuration has the highest fundamental EMF amplitude, as well 

as 5th and 7th harmonic. A lower EMF amplitude is seen in 150 configuration, but the 

lowest EMF amplitude is in the case of 00 configuration.  
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 (a) 150                                                          (b) 300 

Figure 5.14 No-load EMF of dual 3-phase 24S-14P IPM motor with different shift 

angles 

 

    

                      (a) Phase voltage                                       (b) Line voltage 

Figure 5.15 FFT spectrum comparison of no-load EMF of dual 3-phase 24S-14P 

IPM motor with different shift angles 

 

5.3.3 EM performance under healthy condition 

In this section, the peak and rated torque capability of the 24S-14P IPM motor are 

evaluated and compared under healthy conditions, where the dual 3-phase windings 

are fed with corresponding appropriate current excitations. The EM torque 

characteristics of the dual 3-phase 24S-14P IPM motor with different shift angles are 

calculated and plotted in Figure 5.16. The torque ripple is defined as the ratio between 

peak to peak value and average value of EM torque. The higher the back EMF the 

higher the output torque; thereby, it is evident that the highest average torque of 

53.3Nm is generated in the 300 configuration, which is 7% higher than average torque 
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of 50Nm of 00 configuration; 150 configuration can generate 51.3 Nm, which is 3% 

higher than that of 00 configuration. A general torque improvement is observed for 

both 150 and 300 configurations. 

Both 150 and 300 configurations have less torque ripple than the 00 configuration, 

as some of the ripple torque components are eliminated or cancelled by the shift angle 

between two 3-phase windings, which can be explained by the EM torque expression. 

From the power conversion theory, the EM torque mainly includes 6th and 12th order 

ripple torque components; Thus, the EM torque generating from one set of 3-phase 

winding ignoring harmonics with orders higher than 12 can be expressed as  

𝑇𝑒𝑚1 = 𝑇1 + 𝑇6 sin(6𝜔𝑡) + 𝑇12 sin(12𝜔𝑡)                                  (5.4) 

The EM torque of dual 3-phase 24S-14P IPM motor with 00 configuration can 

be written as 

𝑇𝑒𝑚−00 = 2𝑇1 + 2𝑇6 sin(6𝜔𝑡) + 2𝑇12 sin(12𝜔𝑡)                             (5.5) 

The EM torque of dual 3-phase 24S-14P IPM motor with 150 configuration can 

be written as 

𝑇𝑒𝑚2−150 = 𝑇1 + 𝑇6 sin (6𝜔𝑡 −
𝜋

2
) + 2𝑇12 sin(12𝜔𝑡 − 𝜋)                  (5.6) 

𝑇𝑒𝑚−150 = 𝑇𝑒𝑚1 + 𝑇𝑒𝑚2−150 = 2𝑇1 + √2𝑇6 sin (6𝜔𝑡 −
𝜋

4
)                   (5.7) 

The EM torque of dual 3-phase 24S-14P IPM motor with 300 configuration can 

be written as 

𝑇𝑒𝑚2−300 = 𝑇1 + 𝑇6 sin(6𝜔𝑡 − 𝜋) + 𝑇12 sin(12𝜔𝑡 − 2𝜋)                  (5.8) 

𝑇𝑒𝑚−300 = 𝑇𝑒𝑚1 + 𝑇𝑒𝑚2−300 = 2𝑇1 + 2𝑇12 sin(12𝜔𝑡)                        (5.9) 

It can be seen from above torque equations that the 150 and 300 configurations 

can cancel out the 12th and 6th order harmonic torque component, respectively, which 

explains their characteristics giving less torque ripple. 
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(a) Torque waveform 

 

(b) Torque characteristics against current 

Figure 5.16 Torque capability of dual 3-phase 24S-14P IPM motor with different 

shift angles 

 

In fact, the torque ripple characteristic can also be explained by the reduced 

stator MMF harmonics. Based on the Lorentz force law, the instantaneous torque can 

be expressed as [136] 

𝑇𝑒𝑚1 = 𝑇𝑎𝑣𝑔 + 𝑇𝑟𝑖𝑝𝑝𝑙𝑒                                                      (5.10) 

𝑇𝑎𝑣𝑔 =
𝜇0

𝑔
𝑟𝑙𝑒𝑓𝜋𝑃𝑓𝑠,𝑃𝑓𝑟,𝑃sin𝛾𝑑                                        (5.11) 
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𝑇𝑟𝑖𝑝𝑝𝑙𝑒 = −
𝜇0

𝑔
𝑟𝑙𝑒𝑓𝜋𝑃 ∑ 𝑣𝑓𝑠,𝑣𝑓𝑟,𝑣 sin((𝑣 ± 𝑃)𝜔𝑟𝑡 ± 𝛾𝑑)

𝑣=(6𝑚∓1)𝑃
𝑚=1,2,3…

         (5.12) 

where 𝑓𝑠,𝑣 and 𝑓𝑟,𝑣 are the amplitude of vth order harmonic of stator and rotor MMF 

harmonics, respectively; 𝛾𝑑 is the current phase advance angle measured from d-axis. 

It can be observed that harmonic orders of the ripple torque are in multiples of 

six and only stator and rotor MMF harmonics with orders of (6m±1)P can contribute 

to the ripple torque [136] [137]. Since only the winding configurations are different 

and the rotor MMF harmonics are the same, the comparison of ripple torque is only 

related to their stator MMF harmonic components with orders of (6m±1)P.  

Therefore, the amplitude of corresponding ripple-torque-producing harmonics 

can be used to evaluate the ripple torque. For instance, both 35th and 49th of stator 

space MMF harmonics are contributing to 6th order of ripple torque, while for the 12th 

order of ripple torque, the contributing stator MMF harmonics are 77th and 91st 

harmonic.  

The MMF waveforms and their FFT spectrum under healthy conditions for the 

dual 3-phase 24S-14P IPM motor with different shift angles are plotted in Figure 5.17. 

The main ripple-torque-producing stator MMF harmonics amplitude are summarized 

in Table 5.4. Both 35th and 49th harmonics corresponding to 6th order of ripple torque 

are eliminated in the 300 configuration which explains its lowest ripple torque. The 

lower ripple torque of 150 configuration compared to 00 configuration can be attributed 

to the lower 35th harmonic and the cancellation of both 77th and 91st which contribute 

to 12th order torque ripple. 

 

(a) Stator MMF waveform 
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(b) FFT spectrum 

Figure 5.17 Stator MMF waveform under healthy condition of dual 3-phase 24S-14P 

IPM motor with different shift angles 

 

Table 5.4  Ripple-torque-producing stator MMF harmonics amplitude of dual 3-

phase 24S-14P IPM motor under healthy condition 

Torque ripple 

order 

Corresponding Stator 

MMF harmonics 
00 150 300 

6th 
35th 0.0240 0.0212 0.0001 

49th 0.0186 0.0218 0.0012 

12th 
77th 0.0049 0.0007 0.0051 

91st 0.0015 0.0001 0.0017 

 

5.3.4 EM performance under open-circuit (OC) fault condition 

As has been discussed, the dual 3-phase motor supplied by two independent power 

inverters can offer a certain level of redundancy. It can maintain torque output while 

losing one of the 3-phase winding sets, and the fault-tolerant control strategy is simple 

in that the current on the remaining 3-phase winding set is only required to be scaled 

by the appropriate factor (assuming this is possible from the point of view of drive and 

thermal constraints). 

Under the open-circuit fault condition of losing one 3-phase winding set, the EM 

torque characteristics of the dual 3-phase 24S-14P IPM motor with different shift 

angle are calculated and plotted in Figure 5.18. In contrary to the healthy condition, 
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the 300 configuration tends to have the highest torque ripple while the 00 configuration 

exhibits the lowest torque ripple. The 150 configuration has a slightly higher average 

torque and much lower torque ripple than the 300 configuration. 

 

(a) Torque waveform 

 

(b) Torque characteristics against current 

Figure 5.18  Torque capability under one 3-phase winding OC fault of dual 3-phase 

24S-14P IPM motor with different shift angles 

 

These phenomena can be explained by their stator space MMF harmonics 

distribution under one 3-phase OC fault condition, as shown in Figure 5.19 and Table 

5.5. Compared to 00 and 150configuration, both 35th and 49th harmonics with much 
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higher amplitude contributing to 6th ripple torque are observed in the 300 configuration 

which generates a much higher torque ripple under one 3-phase OC fault condition.  

 

(a) Stator MMF waveform 

 

(b) FFT distribution 

Figure 5.19 Stator MMF waveform under one 3-phase OC fault condition of dual 3-

phase winding 24S-14P IPM motor with different shift angles 

 

Table 5.5  Ripple-torque-producing stator MMF harmonics amplitude of dual 3-

phase 24S-14P IPM motor under OC fault condition 

Torque ripple 

order 

Corresponding Stator 

MMF harmonics 
00 150 300 

6th 
35th 0.0270 0.0284 0.0865 

49th 0.0224 0.0296 0.0668 

12th 
77th 0.0073 0.0344 0.0038 

91st 0.0005 0.0118 0.0021 
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                    (a) 00                                     (b) 150                                 (c) 300 

Figure 5.20 Magnetic field distribution under OC fault condition of dual 3-phase 

winding 24S-14P IPM motor with different shift angles 

 

 

Figure 5.21 UMP under OC fault condition of dual 3-phase winding 24S-14P IPM 

motor with different shift angles 

 

On the other hand, the unbalanced magnetic pull (UMP) characteristics have 

changed under the OC fault condition as the magnetic field might not be diametrically 

symmetrical [138]. Figure 5.20 shows the magnetic field distribution comparison 

when the operational 3-phase winding set is fed with peak current of 47Arms, 350. 

Although the magnetic fields of all configurations are not balanced along the 

circumference, only the 00 configuration exhibits a diametrically unsymmetrical 

magnetic field, which yields a significant radial UMP, as shown in Figure 5.21; both 

150 and 300 configuration have no radial UMP under OC fault condition. In fact, the 

UMP is considerably related to the stator MMF; a diametrically symmetrical stator 

MMF leads to no UMP while a diametrically unsymmetrical stator MMF results in 
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significant UMP and the UMP increases significantly with the phase current. Thus, 

the UMP characteristics can also be explained by the diametrically symmetry 

characteristics of the stator MMF waveforms in Figure 5.17 and Figure 5.19. 

5.3.5 Mutual-coupling between dual 3-phase windings 

This section deals with the mutual-coupling for dual 3-phase windings with different 

shift angles. The self- and mutual- inductance between phases is calculated, as shown 

in Figure 5.22, Figure 5.23, and Figure 5.24. All the inductance average values are 

summarized in Table 5.6.  

All self-inductances of different winding configurations have about the same 

average value of ~2mH. The ratio between self-inductance LA1A1 and mutual-

inductance LA1B1, LA1C1 provides the level of coupling within one 3-phase winding. It 

shows that the mutual coupling ratio within one 3-phase winding is low for all 

configurations; 150 configuration shows almost no coupling, while 0.038 and 0.075 

mutual coupling ratio are seen for 00 and 300 configuration, respectively. 

On the other hand, the ratio between self-inductance LA1A1 and mutual-

inductance between phases in different 3-phase windings such as LA1A2, LA1B2, gives 

the level of mutual-coupling between two 3-phase windings. The average mutual 

coupling ratios are calculated as an indication to compare the mutual coupling between 

two 3-phase windings for different winding configurations, as shown in Table 5.6. 

Overall, the mutual coupling between two 3-phase windings are extremely low, 

although there is a slight difference for different winding configurations. The 300 

configuration has a ratio of 0.008, featuring almost no mutual coupling between two 

3-phase windings. The 150 and 00 configuration give a ratio of 0.052 and 0.027, 

respectively, showing slightly higher mutual coupling but still extremely low. It is 

worth noting that an extreme low mutual-coupling is advantageous for fault-tolerant 

operation as it mitigates the negative impact of fault windings on the operational 

healthy windings, especially in the SC fault conditions which will be comprehensively 

examined in the next section. 
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        (a) Within one 3-phase winding              (b) Between two 3-phase windings 

Figure 5.22 Inductance of dual 3-phase 24S-14P IPM motor with 00 shift 

 

      

        (a) Within one 3-phase winding             (b) Between two 3-phase windings 

Figure 5.23 Inductance of dual 3-phase 24S-14P IPM motor with 150 shift 

 

      

        (a) Within one 3-phase winding                (b) Between two 3-phase windings 

Figure 5.24 Inductance of dual 3-phase 24S-14P IPM motor with 300 shift 
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Table 5.6  Comaprison of average value of inductance components of dual 3-phase 

winding 24S-14P IPM motor with different shift angles 

 LA1A1 

(mH) 

LA1B1 

(mH) 

LA1C1 

(mH) 

LA1A2 

(mH) 

LA1B2 

(mH) 

LA1C2 

(mH) 

Average mutual 

coupling ratio 

between dual 3-

phase windings 

00 2.030 -0.077 -0.083 0.000 -0.083 -0.078 0.027 

150 2.031 -0.003 -0.003 0.000 -0.155 -0.161 0.052 

300 2.006 -0.150 -0.150 0.023 -0.023 0.000 0.008 

 

5.3.6 EM performance under short-circuit (SC) fault condition 

As discussed above, the mutual-coupling between the dual 3-phase windings is low 

enough to be negligible, which is advantageous for the post SC fault operation as this 

offers a magnetically independent dual 3-phase system in the 24S-14P IPM motor; the 

SC current in one 3-phase would not significantly negatively affect the EM 

performance in the remaining healthy 3-phase winding set ensuring the outstanding 

power/torque output capability during SC fault condition. 

Like the single 3-phase winding configuration, the SC current increases when 

the speed goes up, and remain almost constant after 800 rpm, as shown in Figure 5.25. 

It can be observed that due to the almost same self-inductances and the negligible 

mutual-coupling in the dual 3-phase winding configuration with different shift angles, 

their steady-state SC current are almost the same. The SC braking torque for both the 

00 and 150 configuration reach the highest level of -8.1Nm at around 110rpm, but for 

the 300 configuration, the maximum SC braking torque reach -8.5Nm at 90rpm. 

The average and peak to peak value of the steady-state output torque after one 

3-phase winding SC fault with the remaining healthy 3-phase winding fed with peak 

current of 47Arms, 350 are calculated and plotted in Figure 5.26. In terms of output 

torque after one 3-phase SC fault, the 300 configuration exhibits a higher average 

torque output compared to 00 and 150 configuration due to its higher winding factor 

and relatively less mutual-coupling between the two 3-phase windings. The lowest 

output torque happens at around 110rpm, where the braking torque generated by the 

SC 3-phase winding reaches the highest level. 
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The variation of steady-state SC ripple torque, on the other hand, is quite similar 

to the OC fault condition. The 300 configuration gives the highest torque ripple, while 

the 150 configuration has a lower torque ripple, with the lowest torque ripple in the 00 

configuration. This can be explained by the fact that some of the ripple-torque-

producing stator MMF harmonics components such as 35th and 49th that are cancelled 

or reduced in the healthy condition appeared again in the SC fault condition where the 

currents in remaining healthy and SC 3-phase winding are different. Similarly, it is 

evident that only significant UMP can be expected in the 00 configuration under one 

3-phase SC fault condition. 

 

(a) Steady-state SC current 

 

(b) Steady-state SC braking torque 

Figure 5.25 Steady-state SC characteristics of dual 3-phase winding 24S-14P IPM 

motor with different shift angles 
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(a) Average output torque 

 

(b) Peak to peak output torque 

Figure 5.26 Steady-state output torque capability of dual 3-phase winding 24S-14P 

IPM motor with different shift angles when one 3-phase SC fault while other one 

loaded with peak current 

 

5.3.7 Comparison of different dual 3-phase winding configurations 

This section provides a comprehensive comparison of dual 3-phase 24S-14P IPM 

motor with different shift angles in terms of torque capability, UMP, and mutual-

coupling under both healthy and fault conditions, as summarized in Table 5.7. 

The 300 configuration exhibits the highest output torque under both healthy and 

fault conditions including OC and SC fault, but only under healthy condition, it has 

the lowest ripple torque, otherwise highest torque ripple is observed. The 00 
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configuration, on the other hand, shows the lowest output torque under all conditions 

but it offers the lowest ripple torque under fault conditions with the concern of 

significant UMP. A trade-off design between the 00 and 300 configuration is the 150 

configuration, which under all operation conditions exhibits a slightly higher average 

torque compared to the 00 configuration and a lower ripple torque compared to the300 

configuration. 

As the fault-tolerant operation only operates at emergency conditions, the 

performance under normal operation would be more of interest. The 300 configuration 

has been finally selected for prototype validation which can provide the highest output 

torque and lowest ripple torque under normal operation condition; and in fact, the 

output under healthy condition is almost constant, which means no extra measures is 

required for reducing torque ripple that may induce additional cost and negative 

impact on average torque. 

Table 5.7  Comparison of dual 3-phase 24S-14P IPM motor with different shift 

angles 

Item 00 150 300 

Mutual-coupling Low Low Low 

Healthy condition 

Average torque Low Middle High 

Torque ripple High Middle Low 

UMP No No No 

OC fault 

Average torque Low Middle High 

Torque ripple Low Middle High 

UMP High No No 

SC fault 

Average torque Low Middle High 

Torque ripple Low Middle High 

UMP High No No 

 

5.4 Chapter summary 

In this chapter, an IPM motor with the proposed 24S-14P winding topology is 

designed and evaluated based on an EV traction application. The EM performance 

such as torque capability and efficiency has been evaluated across the speed range. 

High efficiency can be observed in most of the operation area and it can maintain an 
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efficiency higher than 94% in the high speed zone. The torque ripple is very low which 

means no extra measures like rotor skewing, that may induce additional cost and 

negative impact on average torque, are required. 

The fault-tolerant capability of the proposed 24S-14P winding design is 

demonstrated with the dual 3-phase winding topology equipped with different shift 

angles in time, viz., 00, 150, and 300. The comparison of different dual 3-phase winding 

configurations have been analyzed in both healthy and fault conditions including OC 

and SC fault conditions, with focus on the torque capability and UMP. The 150 

configuration maybe a good trade-off solution which exhibits a slightly higher average 

torque compared to the 00 configuration under all operation conditions and a lower 

ripple torque compared to the 300 configuration under fault conditions. It is confirmed 

that the 300 configuration exhibits the best torque performance in the healthy 

condition, while maintaining a higher output torque with higher torque ripple, and no 

significant UMP in both healthy and fault conditions.  

In addition, the concentrated winding of the proposed 24S-14P IPM motor 

features less manufacturing effort and a higher slot fill. A segmented modular tooth 

structure may be implemented to further facilitate the manufacturing and reduce cost. 

Therefore, this chapter has demonstrated the practicability and good prospects 

of the proposed 24S-14P winding design in fault-tolerant traction motor applications. 
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Chapter 6  

Electromechanical Actuator: Architecture 

and Design Considerations 

The more electric aircraft (MEA) has become a general trend in future aircraft 

technology in terms of systematically improving efficiency and cost, weight reduction 

and decarbonisation. Actuation systems such as flight control actuation systems and 

landing gear systems are a key part in aircraft. Moving towards electromechanical 

actuator (EMA) systems can offer the advantages of lighter and more compact 

structure, less complexity than hydraulic actuation systems, easy installation and 

simple maintenance [45]. 

On the other hand, aircraft typically use many control surface actuators with 

varying requirements of size, power and duty. Having as few components as possible 

is a huge benefit for design, certification, construction and maintenance. Therefore, a 

distributed actuation system using integrated modular actuators is preferable. 

In the following two chapters, the actuation system architecture and actuator 

configurations are studied in terms of weight, reliability, and cost, and specifications 

are determined for modular electrical actuators capable of meeting a diverse range of 

actuation requirements. A modular fault-tolerant FSCW PM rotary motor will be 

developed to meet these strict requirements. Both electromagnetic and thermal 

performance will be evaluated. 
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6.1 Actuation system architecture 

6.1.1 Conventional concentrated actuation architecture 

Conventional concentrated actuation system architecture such as in the A320 and 

Boeing 777, adopts the centralized hydraulic system or centralized electrically 

powered actuation system. For centralized hydraulic system, the centralized redundant 

hydraulic systems supply the required pressure to hydraulic actuators of control 

surfaces. Figure 6.1 depicts a typical high-lift actuation system for a small commercial 

aircraft with mechanical shaft [72], in which Slat/Flap movement is driven by the 

central motor through mechanical transmission. This configuration ensures the 

synchronization of Flaps or other control surfaces like Slats but prohibit the 

functionalities and flexibilities of implementation. The aerodynamic loads on the 

inboard and outboard Flaps or Slats are different, which means complete 

synchronization of deployment of these devices cannot maximize efficiency and is 

required to be improved. In addition, the mechanical transmission shaft is composed 

of high numbers of components with many parts which requires high installation and 

design-engineering efforts and so is not preferable for manufacturing and certification 

[139]. 

 

Figure 6.1 A typical high lift system for a small commercial aircraft [72] 

 

6.1.2 Advanced distributed actuation architecture 

Recent development programs at Airbus and Boeing have extended the functional 

flexibilities of wing surface by introducing advanced distributed actuation architecture. 

In this configuration, each control surface is deployed independently from each other. 

An advanced distributed Flap actuation system architecture is shown in Figure 6.2 [72]. 
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Each control surface like Flaps and Slats is a self-contained actuation system, which 

includes actuators and power electronics. Thus, a power on demand flight control 

system is realized [50]. 

This distributed system architecture offers the capability for implementation of 

additional functionalities, such as improved function flexibility via differential 

actuators setting, weight reduction, improved manufacturability and reduced 

installation efforts due to the highly integrated actuator component design. In addition, 

the distributed configuration offers further redundancy both on mission and control 

surface level. Thus, in this thesis, the distributed actuation architecture is to be studied. 

 

Figure 6.2 Advanced distributed high lift actuation system architecture [72] 

 

6.2 Actuation system architecture 

In an aircraft distributed actuation system, each control surface can be deployed 

independently from each other. Furthermore, a control surface can be controlled by 

independently integrated actuators, and different number of actuators and power 

electronics drives allow for different redundancy capability at the control surface level. 

For considerations of the feasibility and deployment of aircraft actuation 

systems, the evaluation criteria include reliability, weight, efficiency, complexity and 

cost, etc. Among these, the level of failure probability is a critical factor. There are 

many configurations available for an individual control surface of the actuation system 

due to different combinations of flight control computers (FCCs), power supplies, 

actuators. This indicates the necessity to evaluate the failure rate of each configuration 

to determinate the feasibility of deployment in the aircraft actuation system. 

A typical flight control actuation system is illustrated in Figure 6.3. In general, 

three to four FCCs and two or three independent electrical power systems are available 
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for a commercial aircraft to provide the necessary level of redundancy for safety. The 

configuration of control surfaces and actuators depends on the function, safety 

criticality, and aircraft size. 

Three typical actuator configurations for an individual control surface are 

illustrated in Figure 6.4. According to the failure probability of each component, the 

overall failure probability can be evaluated by using the method of either fault tree 

analysis or a fault dependency diagram. 

FCCs
Electrical 

Systems

Control 

surface 

(Actuators)  

Figure 6.3 Typical flight control actuation system 

 

EMA

Surface

   

Surface

EMA EMA
   

Surface

EMA EMA EMA
 

Figure 6.4 Different actuator system configurations 

 

6.3 Modular EMA design requirements   

6.3.1 Actuator requirements  

The single-aisle type airplane such as A320 or B737 is the most in demand aircraft for 

the future [140]. The replacement for the A320/B737 will be enormously important 

for the major aircraft manufacturers and airlines alike based on the number of these 

aircraft currently in service and on order, coupled with the rapid growth in air transport 

predicted for the foreseeable future [140]. Therefore, the single-aisle aircraft of A320 

is selected as a baseline aircraft for investigation of advanced distributed actuation 

system architecture and for the EMA design evaluation. 

Table 6.1 shows a summary of primary flight control surfaces design 

requirements from hydraulic actuators on-board the Airbus A320 [141]. On the other 

hand, the stall load on the secondary flight control surfaces like Flaps and Slats is 
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difficult to estimate, and engineers usually use wind tunnel experiments to measure 

this data [142]. Unfortunately, there is no accessible information about the secondary 

control surface requirements for the A320. However, the loads on the secondary flight 

control surfaces are expected to be lower than primary control surfaces. Thus, it is 

expected that an actuator system designed for primary control surfaces could be 

suitably adapted to the less demanding secondary control surfaces. Thus, this project 

will focus on designing actuators for the primary control surfaces. 

It should be noted that the data in Table 6.1 is not design requirements for 

actuators of each control surface due to the control surfaces’ redundancy configuration 

improving failure-safe capabilities. Table 6.2 shows the redundancy configuration of 

each primary flight control surfaces. For instance, the Rudder has three active 

actuators, and all of these are active at the same time, so it’s one third of Rudder’s load 

on each actuator if the torque/force summing configuration (speed synchronization) is 

adopted. For the Aileron surface, there are two actuators with only one active, so the 

load on each actuator is the load on each Aileron. Therefore, the actuator requirement 

for each primary control surface can be figured out and summarized in Table 6.3 

Table 6.1 Primary control surfaces requirements for A320 

  Aileron Spoiler Elevator Rudder 

Stroke (mm) 44 84 60 110 

No Load Speed (mm/s) 90 100 60 110 

Max. Extend Force (kN) 48.0 44.9 27.7 44.3 

Max. Retract Force (kN) 48.0 36.6 27.7 44.3 

 

Table 6.2 Redundancy configuration of primary control surfaces for A320 

Control surface 
NO. of 

surfaces 

Actuators 

per surface 

Active per 

surface 

Active 

actuators 

Total 

actuators 

Ailerons 2 2 1 2 4 

Primary 

Spoilers 
8 1 1 8 8 

Elevators 2 2 1 2 4 

Rudders 1 3 3 3 3 
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Table 6.3 Actuator requirements of each primary control surface for A320 

  Aileron Spoiler Elevator Rudder 

Stroke (mm) 44 84 60 110 

No-load speed (mm/s) 90 100 60 110 

Peak extend force (kN) 48.0 44.9 27.7 14.8 

Peak retract force (kN) 48.0 36.6 27.7 14.8 

 

Table 6.4 Unit actuator for primary control surfaces for A320 

 Stroke (mm) Peak speed (mm/s) Peak force (kN) 

Unit Actuator 110 110 16 

 

Table 6.5 Modular actuator specification of primary control surface 

 Aileron Spoiler Elevator Rudder 

No. of units 3 3 2 1 

Peak speed (mm/s) 110 110 110 110 

Peak force (kN) 48 48 32 48 

 

6.3.2 Modular EMA design requirements  

Aircraft typically use many control surface actuators with varying requirements of size, 

velocity, thrust, power and duty, as shown in Table 6.1. Having as few components as 

possible is a huge benefit for design, certification, construction and maintenance. This 

research will develop modular linear electrical actuators capable of meeting a diverse 

range of actuation requirements for aircraft by using modular components. 

First, it is necessary to modularize the design requirement for each actuator so 

that a generic unit actuator can be found. The size of an actuator is primarily 

determined by the force requirement, which means a modular design scheme could be 

achieved based only on the required force of each control surface. According to Table 

6.3, the design requirement of a unit actuator for primary control surfaces in A320 can 

be figured out and is summarized in Table 6.4. It can be observed that 16kN has been 

chosen as the maximum force of the unit modular actuator. Then, how many units of 
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modular actuators for each primary control surface can be calculated, as summarized 

in Table 6.5. In comparison to Table 6.3, it is obvious that combined with different 

numbers of modular unit actuators, all the design specifications like force and speed 

meet the requirements of the corresponding control surface. 

 

6.4 Electromechanical actuator (EMA) scheme 

Before evaluating the control surface architecture, the linear EMA scheme must be 

determined. Since our project focuses on direct-drive actuators, the configuration of 

geared motor drive plus linear screw (either magnetic lead screw or mechanical screw) 

is not considered. In this case, there are three typical linear EMA configurations, as 

shown in below. 

• Direct-drive linear motor. 

• Direct-drive rotary motor + mechanical screw. 

• Direct-drive rotary motor + magnetic lead screw (MLS). 

Another thing that should be noted is that an actuator system includes actuator 

and drive & control electronics. The actuator not only includes electric motor and 

transmission mechanism but also protection components, such as brakes, stroke limits, 

sensors, and healthy monitoring, etc. However, these parts are beyond the profile of 

this thesis. Hence this thesis will only focus on electric motor part and drive & control 

electronics. 

To compare these three EMA schemes, the primary control surface Aileron in 

Table 6.5 has been chosen as a benchmark. Since we are trying to build a modular 

EMA, the modularization of the EMA will be considered in the process of designing 

and comparison. 

6.4.1 Direct-drive linear motor 

The first scheme composed of only a linear motor, which is authentically a direct-drive 

actuator without any transmission part like mechanical screw and is normally 

characterised by excellent dynamic characteristic, high acceleration, and easy 

maintenance [143][144].  
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The modulization of a linear motor is simply done by dividing a short stator 

(primary) into three parts, each of which is a unit. The motor is modularized as three 

units, so the peak force of each unit is 16kN. Assuming an overload coefficient of 2, 

the rated force of each unit is 8kN. On the other hand, the maximum force will not 

occur at maximum speed. Hence the turning point of maximum force can be chosen 

at rated speed, which is half of the peak speed. The force-speed curve of the unit linear 

motor is shown in Figure 6.5. 
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Figure 6.5 Force-speed curve of unit TPMLM 

 

 

Figure 6.6 R-Z Model of a unit TPMLM 

 

A 12 slots, 14 poles tubular PM linear motor (TPMLM) with FSCW, as in Figure 

6.6, has been chosen due to its relatively high force density and no end-winding.  

Referring to a rotary motor, the main dimensions equation of TPMLM can be 

written as  

𝐹 =
√2

4
𝜋𝐾𝑤𝐾Φ𝐴𝐵𝛿𝑎𝑣𝐷𝑙𝑒𝑓                                               (6.1) 

where 𝐾Φ , 𝐾𝑤  are winding factor and waveform factor, respectively; 𝐴 , 𝐵𝛿𝑎𝑣  are 

electric and magnetic loading, respectively; 𝐷, 𝑙𝑒𝑓 are airgap diameter and active axial 

length, respectively.  
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Table 6.6 Main design dimensions of a unit TPMLM 

Parameters Data Parameters Data 

Stator outer diameter (mm) 420 Pole pitch (mm) 30 mm 

Stator inner diameter (mm) 264  Air-gap length (mm) 0.8 mm 

Active axial length (mm) 280 Stator slot numbers 12 

PM magnetization length (mm) 5 Pole pair numbers 14 

Width of PM (mm) 20 Peak frequency (Hz) 1.83 

 

Table 6.7 Output characteristics of a unit TPMLM 

 Point 1 

(55mm/s, 16kN) 

Point 2 

(110mm/s, 8kN) 

Point 3  

(110mm/s, 16kN) 

R (Ω) 0.216 0.216 0.216 

Speed 0.055 0.11 0.11 

Current (Arms) 94 37 94 

J (A/mm2) 9.8 3.9 9.8 

Force (kN) 16 8 16 

Copper loss (W) 5733 888 5733 

Output power (W) 880 880 1760 

Input power (W) 6614 1779 7494 

Efficiency (𝜂) 13.3% 50.1% 23.5% 

 

From (6.1), the main design dimensions of a unit TPMLM can be obtained in 

Table 6.6. Their output performances on each operational point can be calculated using 

ANSYS Maxwell software and are summarized in Table 6.7. Iron losses are ignored 

due to the low speed characteristic. 

The mass of each part of the motor is calculated in Table 6.8. Since the unique 

characteristics of short stator and long mover of TPMLM, the active mass of three 

modular TPMLM can also be achieved. It should be noted that the auxiliary 

components such as housing and support part are not considered, and this will be kept 

the same for the other two schemes. One can note that the net weight of a unit TPMLM 

is about 177 kg, and it would be 531 kg for three modular TPMLMs. The massive 

weight of linear motor topology seems to be not acceptable for aircraft actuation 

system applications. 
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Table 6.8 Mass distribution of the TPMLM 

 
Unit TPMLM 

(Active part) 

Total TPMLM 

(Active part) 

Armature copper weight (kg) 27 81.1 

Magnet weight (kg) 9.7 29.2 

Armature core steel weight (kg) 109.8 329.3 

Translator core steel weight (kg) 30.6 91.8 

Total net weight (kg) 177.1 531.4 

 

 

Figure 6.7 Modular EMA: direct-drive rotary motor with mechanical screw 

 

6.4.2 Direct-drive rotary motor + mechanical screw (MS) 

This configuration, as shown in Figure 6.7, adopts a direct-drive rotary motor 

integrated with a mechanical screw, which essentially serve as a force amplifier like a 

gear set, to convert rotary motion to linear motion. The simple modular design concept 

is also presented. The design requirements are the same as the linear motor. 

The first thing is to determinate the characteristic of mechanical screw, 

specifically the lead of the screw, which will decide the gear ratio, and thereby the 

requirements for the rotary motor can be obtained. 

Three primary factors are considered when selecting and sizing the roller screw: 

lead, nominal diameter, and dynamic load carrying capability. The lead of the screw 

determinates the gear ratio. The smaller the lead of the screw, the higher the gear ratio 

between torque and force conversion, whereas smaller lead means smaller load 

capabilities. Thus, there is a trade-off in selecting lead length. On the other hand, the 
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nominal diameter is a significant factor of impacting the mass of assembly and 

dynamic load carrying capability. 

Table 6.9 shows the characteristics of the selected planetary roller screw from 

SKF [145].  Based on the force requirement, a lead of screw 𝑃ℎ of 5mm and normal 

diameter of 25mm is selected. The dynamic load carrying capability is 68.4 kN, which 

gives 40% of margin in terms of the required force; and the theoretical efficiency is 

0.85. 

Table 6.9 Selected planetary roller screw from SKF 

Normal diameter (mm) 𝑃ℎ (mm) Dynamic load capacity (kN) Efficiency 

25 5 68.4 85% 

 

Then, the gear ratio of roller screw can be calculated. 

Grs =2π/Ph=1256                                                     (6.2) 

Maximum rotation speed nscrew and output torque Tmax for prime rotary motor 

can be determined. 

nscrew=0.11/0.005*60= 1320 rpm                                    (6.3) 

Tmax=Fmax/Grs /ηscrew =45Nm                                       (6.4) 

Similar to linear motor scheme, the peak load will not appear at maximum 

velocity. Therefore, the torque-speed curve can easily be achieved, as shown in Figure 

6.8. 
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Figure 6.8 Torque-speed curve of 24S-22P PMSM 
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Table 6.10 Main design dimensions of 24S-22P PMSM 

Parameters Value Parameters Value 

Stator outer diameter (mm) 136 Slot numbers 24 

Airgap length (mm) 0.8 Number of turns/coil 48 

Rotor outer diameter (mm) 82 Pole numbers 22 

Rotor inner diameter (mm) 52 Pole-arc coefficient of magnet 0.85 

Axial length (mm) 96 Thickness of magnet (mm) 5 

 

Table 6.11 Characteristics of the 24S-22P PMSM 

 
Point 1  

(660rpm, 45Nm) 

Point 2  

(1320rpm, 22.5Nm) 

Point 3  

(1320rpm, 45Nm) 

R (Ω) 0.617 0.617 0.617 

Current (Arms) 15 7 15 

J (A/mm2) 10.37 4.84 10.37 

Iron loss (W) 40.7 76.5 119.5 

Copper loss (W) 416.5 90.7 416.5 

Output power 

(W) 
3109.9 3109.9 6219.9 

Total loss (W) 457.2 167.2 536.0 

Input power (W) 3567.1 3277.1 6755.9 

Efficiency (𝜂) 87.2% 94.9% 92.1% 

Torque (Nm) 45 22.5 45 

 

A FSCW PMSM is selected as the prime rotary motor due to its higher torque 

density and fault-tolerant capability. Based on the main dimension formula of electric 

motor as below:  

𝐷2𝑙𝑒𝑓

9.55𝑇
=

6.1

𝐾𝛷𝐾𝑤𝐴𝐵𝛿𝑎𝑣
                                               (6.5) 

Considering the requirement of low speed and high torque density, a 24-Slots 

22-Poles single-layer FSCW surface-mounted PMSM has been selected. The main 

design dimensions of this motor are summarized in Table 6.10. 

The output characteristics such as EM torque and efficiency and mass 

distribution of the motor are summarized in Table 6.11 and Table 6.12, respectively. 
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An efficiency of  higher than 90 % is observed in the rotary motor, and the scheme 

features a low weight of 13.1kg. Associated with the mechanical screw, the resulting 

efficency is higher than 76.5%. One should note that only the weight of active part is 

considered. In fact, the dimensions of the scheme are much smaller than the linear 

motor scheme; the difference in terms of auxililary parts like the housing and mounting 

components between the two schemes is also significant. 

Table 6.12 Active mass distribution of EMA composed of rotary motor + MS 

 Value (kg) 

Copper weight 2.5 

Permanent magnet weight  0.73 

Stator core steel weight 3.74 

Rotor core steel weight  1.35 

Motor net weight 7.39 

Roller screw weight 1.5 

EMA total net weight 8.89 

 

6.4.3 Direct-drive rotary motor + magnetic lead screw (MLS) 

Like the second scheme, this configuration, as shown in Figure 6.9, adopts a direct-

drive rotary motor integrated with a magnetic lead screw (MLS) instead of a 

mechanical screw. The modular design concept would be similar to scheme 2. 

The MLS is similar to mechanical screw but without mechanical contact and 

works based on interacting magnetic force between two sets of helical magnets, 

making the gear system free from wear and friction losses. Without physical contact 

between rotary part and linear part, this provides the advantage of being free from 

jamming when compared to their mechanical counterpart, which is a critical factor for 

EMAs used in an aircraft actuation system. Moreover, the MLS has a built-in overload 

protection capability as it would slip if the load force is larger than the pull-out force 

(maximum magnetic force between rotary part and linear part), preventing it from 

permanent damage in the case of over-load. However, manufacturing complexity and 

demagnetization risk are concerns [146][147].  
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The first thing is to find out the design requiremnt of the MLS, such as the lead 

of the screw which determines the gear ratio, and pull-out force (force capability), and 

consequently the design requirement for the rotary motor can be achieved. To this end, 

the design of the MLS and rotary motor are presented accordingly. 

 

Figure 6.9 Rotary motor integrated with MLS 

 

6.4.3.1 Magnetic Lead Screw (MLS) 

As shown in Figure 6.9, the short outer part of the MLS is taken as the rotary part and 

the long inner part is taken as the translator (linear motion). It should be noted that the 

rotary part and linear part can be exchanged with each other. As with the mechanical 

screw, the gear ratio is inversely proportional to the lead length, and the lead also has 

a significant influence on pull-out force; the higher the lead, the higher the pull-out 

force [146]. 

The maximum load force should not exceed the pull-out force of an MLS to 

ensure the safe operation (without slipping). Therefore, the pull-out force is set to be 

40% higher than that of maximum force requirement, namely 68.4 kN, which is the 

same as the mechanical screw in the scheme 2. 

A pole pitch of 10mm and the numbers of poles of 2 is selected, then the resulted 

gear ratio can be calculated  

Gmls=2π/(2*10*0.001) =314                                          (6.6) 

From the data in [146] and [147] and the preliminary study, the shear stress δg 

(force per surface airgap area) of MLS of 350 kN/m2 can be achieved, under which the 

air-gap surface area S=F/δg =0.195m2 can be determined (S=πD* Lef, D is the outer 

diameter of tranlsator, Lef is the effective rotor length). It is apparent that the D will 

change with different Lef. 
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Figure 6.10 summarized the variation of effective axial length and mass 

distribution versus different outer diameter D of MLS. It can be observed that the Lef 

of MLS is decreasing when outer diamenter D increases. A decreasing trend exists for 

the rotor mass part when increasing D, but the translator mass and total mass 

considering the stroke part is increasing. To have a higher force density and reasonable 

dimensions, a translator outer diameter of 150 mm and active axial length of 414.7 

mm are selected. By using 3-D FEM alaysis, the parameters such as magnet 

dimensions and translator diameter D are optimized. Finally, the main dimensions of 

the MLS are summarized in Table 6.13. 

   

                   (a) Active axial length                                       (b) Mass 

Figure 6.10 Active axial length and mass as a function of outer diameter of translator 

 

Table 6.13 Main design dimensions of MLS 

Parameters Value Parameters Value 

Pole numbers 2 Thickness of magnet (mm) 7 

Pole pitch τ (mm) 10 Embrace of magnet (mm) 10 

Active axial length (mm) 414.7 Translator mass (kg) 17.9 

Translator outer diameter (mm) 150 Rotor mass (kg) 21.7 

Rotor outer diameter (mm) 180 Total mass w/o stroke (kg) 39.6 

Airgap length g (mm) 1 Total mass w/ stroke (kg) 44.9 
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6.4.3.2 Direct-drive rotary motor design  

A conservative conversion efficiency of 80% is assumed for the designed MLS from 

the data in [146] and [148]. With the gear ratio of 314, the torque and speed 

requirement to the rotary motor can be achieved. 

• Maximum toque: T= 48000 / (0.8*314) = 192 Nm 

• Maximum rotation speed: n=314*0.11*60/(2π) = 330 rpm 

The same design process as for the previous 24S-22P motor can be used for this 

rotary motor. A 48 slots 44 poles single-layer FSCW surface-mounted PMSM is 

designed. The main dimensions and output performances are summarized in Table 

6.14 and Table 6.15, respectively. Therefore, the total weight distibution can be 

summarzied in Table 6.16 and Table 6.17. 

Table 6.14 Main design dimensions of the 48S-44P PMSM 

Parameters Value Parameters Value 

Stator outer diameter (mm) 285 Conductor numbers per slot 37 

Airgap length (mm) 0.8 Pole-arc coefficient of magnet 0.85 

Rotor outer diameter (mm) 214 Thickness of magnet (mm) 5 

Rotor inner diameter (mm) 185 Slot numbers 48 

Axial length (mm) 54 Pole numbers 44 

 

Table 6.15 Output characteristics of the 48S-44P PMSM 

 
Point 1  

(165rpm, 192Nm) 

Point 2  

(330rpm, 96Nm) 

Point 3  

(330rpm, 192Nm) 

R (Ω) 0.296 0.296 0.296 

Current (Arms) 27 12 27 

J (A/mm2) 9.27 4.12 9.27 

Iron loss (W) 36.5 65.0 98.8 

Copper loss (W) 647.2 127.8 647.2 

Output power 

(W) 
3317.3 3317.3 6634.6 

Total loss (W) 683.7 192.8 746.0 

Input power (W) 4001.0 3510.1 7380.5 

Efficiency (𝜂) 82.9% 94.5% 89.9% 
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Table 6.16 Mass distribution of 48S-44P PMSM 

 Value (kg) 

Armature copper weight 3.1 

Permanent magnet weight 1.1 

Armature core steel weight 6.9 

Rotor core steel weight  2.3 

Total net weight 13.4 

 

 

Table 6.17 Mass distribution of EMA composed of rotary motor plus MLS 

 Weight (kg) 

MLS w/o stroke 39.6 

Drive rotary motor  13.4 

Total w/o stroke 53 

 

6.4.4 Scheme comparison 

Now that we have three designs for a possible actuator, the characteristics of different 

EMA design schemes are compared in terms of weight (thrust density), fail-safe 

capability, cost, efficiency, life duration, and stiffness. 

Performance comparison of these three schemes has been summarized in Table 

6.18, and Figure 6.11 plotted their thrust density comparison. The first EMA scheme 

composed of linear motor seems a good option for its direct-drive characteristic, 

jamming free capability, and aptness for modular design, but its thrust density, which 

is a critical factor for aircraft actuator, is too low (only about 0.1kN/kg), making it 

unacceptable. In fact, this is reasonable as linear motor is a direct-drive without 

conversion from rotary to liner motion (which act as force amplifiers), compared to 

the other two schemes. In addition, the efficiency is a very low. 

The second EMA scheme that used a 24S-22P FSCW PMSM integrated with a 

planetary roller screw is a great option in terms of high thrust density (5.4 kN/kg) and 

high efficiency; the prime rotary motor is fault-tolerant. In addition, the efficiency is 

the highest among the three schemes. However, the roller screw may bring in the risk 

of mechanical jamming, which is a crucial factor for aircraft actuators as this may 



Chapter 6. Electromechanical actuator: architecture and design considerations 

- 139 - 

 

result in a catastrophic accident. An additional disconnect device should be included 

for the actuator which makes the actuator system more complicated. Another concern 

is mechanical wearing, which is hard to predict, bringing in the risk of backlash. 

Table 6.18 Performance comparison of three EMA schemes 

 

Tubular PM linear 

motor (18S-20P 

FSCW) 

Rotary motor (24S-

22P PMSM)+ RS 

Rotary motor (48S-

44P PMSM) +MLS 

Maxiumum 

thrust (N) 
48000 48000 48000 

Component  

mass (kg) 
NA 

24S-22P 

PMSM 
RS 

48S-44P 

PMSM 
MLS 

7.4 1.5 13.4 39.6 

Actuator net 

mass (kg) 
531.4 8.9 53 

Thrust density 

(N/kg) 
90.3 5393.3 905.7 

Motor 

Efficiency (𝜂) 

P1 P2 P 3 P1 P 2 P 3 P 1 P 2 P 3 

0.13 0.50 0.24 0.87 0.95 0.92 0.83 0.95 0.90 

J (A/mm2) 9.8 3.8 9.8 10.4 4.8 10.4 9.3 4.1 9.3 

Converter 

efficiency 
N/A 0.85 0.80 

Actuator 

efficiency 
0.13 0.50 0.24 0.74 0.81 0.78 0.66 0.76 0.72 

Active size 

(mm) 

Outer 

diamater 
Length 

Outer 

Diamater 
Length 

Outer 

Diamater 
Length 

420 860 136 96 285 370 

Power factor Vey low Average Average 

Dynamic 

capability 

Low (high inertia, 

large mover mass) 
Average 

Large rotor moment 

inertia (Large 

diameter, large rotor 

mass) 

Positioning 

accuracy 
High Average Average 

Manufacturing Average Average 
Complex, helical 

magnet 

Stiffness & 

Reliability 

Free from jamming; 

Easy for modular 

design. 

Mechanical jamming; 

wearing; 

High maintenance 

cost. 

No physical contact; 

Free from jamming. 
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The third scheme consists of a 48S-44P FSCW PMSM coupled with a magnetic 

lead screw (MLS). The thrust density is about 0.9 kN/kg, which is 6 times smaller than 

the second scheme and nine times higher than that of linear motor scheme. On the 

other hand, the rotation-to-linear converter is a magnetic lead screw (MLS) working 

based on the interacting magnetic force between two sets of helical magnets, giving it 

no physical contact between rotor and translator and therefore free from jamming. 

Moreover, the prime rotary motor is also fault-tolerant. 

It can be concluded that the first scheme of linear motor, at least so far, is not 

acceptable due to its poor thrust density; Both second and third scheme are promising, 

which are integrated with a torque-to-force amplifier making them light. The second 

scheme is not possible unless used in conjunction with a disconnect device to deal 

with the critical jamming problem. The third scheme is free from jamming which is 

critical to the aircraft, however, the relatively low thrust density and the manufacturing 

complexity of helical magnet and the high risk of demagnetization in the magnetic 

lead screw (MLS) are significant concerns, resulting in weak stiffness and a low life 

cycle. Therefore, the second EMA scheme of rotary motor integrated with roller screw 

is selected in this thesis for further investigation. 

 

Figure 6.11 Comparison of thrust density of the three EMA schemes 

 

6.5 Reliability of actuation system architecture 

Reliability is the critical factor in the deployment of aircraft subsystems as safety is 

the highest priority. The exploration of deploying electromechanical actuator (EMA) 

system in aircraft raises concerns on their reliability and failure probability. The large 
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number of components of the prime electric motor, mechanical screw, power 

converter, and control electronics included in the EMA system brings a big challenge. 

Therefore, it is necessary to evaluate the overall reliability and performance of EMA 

system at aircraft application-level, e.g. control surface level. 

Risk of mechanical jamming acts as a crucial limit on the deployment of EMAs 

for safety-critical systems. However,  jamming might be allowed for some non-safety-

critical systems such as secondary control surface and cabin actuation systems. 

Therefore, the EMA reliability should be evaluated in the circumstances of both 

allowing and avoiding jamming. 

6.5.1 Failure probability analysis without considering jamming 

The method of a fault dependency diagram offers a rapid evaluation of overall failure 

rate for a given control surface actuation system configuration. In a A320, two 

Elevator Aileron Computers (ELAC) and two Spoiler Elevator Computers (SEC) are 

utilized for the Elevator surface, and each Elevator has two actuators. Figure 6.12 

depicts the fault dependency diagram of a control surface with two EMAs connected 

in parallel without considering mechanical jamming. 

Flight Control Computer #1

3.3×10-4

Flight Control Computer #2

3.3×10-4

Flight Control Computer #3

3.3×10-4

EMA #1

Failure rate TBD*

EMA #2

Failure rate TBD 

Elevator 

Less than 1×10-9
Cockpit 

singal

1

2

*TBD: To be determined

 

Figure 6.12 Fault dependency diagram of Elevator with two EMAs in parallel 

 

The Flight Control Computer (FCC ) is at the core of any modern civil or 

military aircraft and is subject to strict compliance to safety standards for software and 

hardware such as DO-178C and DO-254, with a failure probability in a level of 10-4 

[149][150]. Considering the criticality of FCC, it is often used with dual or triple 

redundancy. 
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According to the specification regulation for development of civil aircrafts and 

systems from ARP4754 [151], the probability of loss of control (PLOC), which is the 

worst case, should be less than 1.0×10-9 per flight hour. The failure probability 

demands on the actuator or EMA could then be obtained from Figure 6.12, and it can 

be expressed as below 

                    P(1) +P(2)- P(1)*P(2)≤ 1.0×10-9                                      (6.7) 

                              P(1) = (3.3×10-4)^3                                                    (6.8) 

                             P(2) = (P(EMA))^a                                                   (6.9) 

where P(1) and P(2) is the equivalent failure probability of first part and of second 

part, respectively; P(EMA) is the failure probability of each EMA in the second part; 

a is the number of EMAs connected in parallel. 

Therefore, the equivalent failure probability of second part P(2) can be 

calculated, which value is 1.0×10-9. As for the example showing in the Figure 6.12, 

two EMAs are used for the control surface, so the failure probability of each EMA 

should be lower than 3.2×10-5. Based on a similar idea, if a control surface e.g. Rudder, 

is deployed with three EMAs connected in parallel, the failure probability of an EMA 

should be less than 1.0×10-3. If only one EMA #1 is used for a control surface, e.g. a 

Spoiler, the failure probability of EMA should be less than 1.0×10-9. In all, the failure 

probability demands on EMAs for control surface with different levels of redundancy 

are summarized in Table 6.19. 

The failure probability of an EMA is determined by its components. An EMA 

normally consists of a direct-drive rotating motor or of a high speed motor plus a 

gearbox under some circumstances, a mechanical screw such as roller screw or ball 

screw converting rotary to linear movement, and a controller & power inverter. A fault 

tree analysis (FTA) can be utilized for determining the failure probability of an EMA 

[61] and the simplified fault tree of a single-lane EMA is shown in Figure 6.13. 

Table 6.19 EMA failure probability demand for different levels of redundancy 

 
One EMA 

only 

Two EMAs 

in parallel 

Three EMAs 

in parallel 

Failure probability limit 1.0×10-9 3.2×10-5 1.0×10-3 
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Power supply

5.4×10-5

Controller &Inverter

8.6×10-5

Motor winding

3.1×10-7

Motor bearing

6.0×10-6

Mechanical screw

1.5×10-6

EMA

1.5×10-4OR

 

Figure 6.13 Fault tree of a single-lane EMA 

 

The failure probability of a power supply is not direct as it may include both AC 

and DC power bus for current civil aircrafts with 115-120V/400HZ AC power system, 

in which a AC/DC converter has to be used although a matrix converter could possibly 

be adopted to avoid the AC/DC converter [67]. A probability of 7.0×10-4 for loss of 

one channel AC power was suggested in [152] in 2008. In 2011, John and Glynn [61] 

suggest that the probability of loss of power bus is around 5.4×10-5, and a figure of 

4.8×10-5 was assumed in [149]. With the increasing demanding for on-board 

generation system, a higher voltage DC electrical system such as ±270V DC system 

is to be considered to reduce current rating, improve efficiency and reduce system 

weight, which will also improve the reliability of aircraft electrical power system [153]. 

Thus, a figure of 5.4×10-5 for the loss of power supply is used. 

The mechanical part involves mechanical screw, e.g., planetary roller screw and 

bearings. A failure probability of 1.5×10-6 for a roller screw could be identified from 

their MTBF in [154]. According to [155], the bearings are to be responsible for the 

95% of AC motor failure in the worst case, from which a failure probability of 6.0×10-

6 could be achieved by the MTBF of 159021 hours obtained by an IEEE industrial 

Survey. 

Similarly, the winding failure probability of 3.1×10-7 can be calculated by 

assuming winding failure responsible for the remaining 5% of total failures in the AC 

motor [155]. A conservative figure of 8.6×10-5 can be assigned to the Controller & 

Inverter failure [156]. Apparently, the mechanical components are more reliable than 

the electronic components. 
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Each component failure will lead to the loss of control of EMA, and the resultant 

probability of loss of control of the EMA is around 1.5×10-4 per flight hour from 

Figure 6.13, which clearly is not less than 1.0×10-9 per flight hour; this data however 

is reasonable compared to the merged failure rate of 50.2 failures per million operating 

hours for military quality linear EMAs stated by NPRD-2011[157]. 

In fact, all components of the EMA have a failure probability that is many orders 

of magnitude higher than the target requirement. For a control surface with two EMAs 

connected in parallel, the single-lane EMA is still unable to provide the required 

reliability, but it works for a control surface with three EMAs in parallel, as compared 

to the data in Table 6.19. Hence, one EMA configuration may be used for non-safety-

critical surfaces like Spoilers, while the safety-critical control surfaces such as Aileron 

and Rudder necessarily require a higher level of redundancy of three EMAs in parallel. 

To make an EMA feasible for the safety-critical control surfaces such as 

Elevators and Ailerons with two EMAs connected in parallel, the failure probability 

of EMA must be improved. A scheme of EMAs with multi-lane fault-tolerant electric 

drive is proposed. Figure 6.14 shows the basic fault tree of an EMA with dual-lane 

electric drives, which also refers to a dual-lane fault-tolerant EMA. 

AC/DC supply

5.4×10-5

Controller &Inverter

8.6×10-5

Motor winding

3.1×10-7

Motor bearing

6.0×10-6

Mechanical screw

1.5×10-6

EMA

7.52×10-6
OR

×2

OR

1.4×10-4
AND

2.0×10-8

 

Figure 6.14 Fault tree of a dual-lane EMA 

 

The resulting failure probability of the dual-lane EMA is 7.52×10-6, which is 

significantly reduced compared to its single-lane counterpart and apparently meets the 

demands of less than 3.2×10-5 stated in Table 6.19. Similarly, if a third lane electric 

drive is incorporated into the EMA, the failure probability of the electric part can be 

further reduced to 2.7×10-12, under which the resulting reliability of the EMA is now 
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restricted by the mechanical failure probability of 1.5×10-6. Therefore, an EMA with 

dual-lane electric drives could deliver the best failure probability requirement for the 

safety-critical control surfaces without considering mechanical jamming. 

6.5.2 Failure probability analysis considering jamming 

For conventional hydraulic actuators (HA) or electro-hydrostatic actuators (EHAs), 

fluid pressure will be removed when a fault occurs, and the actuator will be converted 

to damping mode automatically, under which the parallel connected redundant 

actuators can still drive the control surface according to commands from the Cockpit 

without any serious issues. However, this is not the case for an EMA, as the jamming 

of EMA, e.g. mechanical screw failure, could make the control surface freeze even if 

another parallel connected EMA works. Therefore, the problem of mechanical 

jamming is a critical concern, and must be carefully considered, as this may otherwise 

result in a disastrous event even in a surface with multiple redundant EMA units.  

In the aspect of reliability, fault tree analysis can also be used, but the failure 

probability and the logic connection of the jamming problem should be carefully dealt 

with. The jamming of an EMA will result in the loss of control of the surface even 

with redundant EMAs connected in parallel without breakdown. The methods of using 

an anti-jamming system, a dual load path, or disconnect devices have been proposed 

[61][75], ensuring the free movement of control surfaces governed by the redundant 

actuators after the jamming of one actuator. These methods inevitably increase the 

system complexity, but it is necessary if we want to advance the EMA for safety-

critical flight control surfaces in MEA. 

In order to analyse the reliability, taking a control surface with two EMAs as an 

example, the fault dependency diagram of the control surface and revised fault tree of 

an EMA can be redrawn, as shown in Figure 6.15 and Figure 6.16. One can observe 

that both mechanical screw and anti-jamming part have been taken out from the EMA 

and are being put on the last part of the fault dependency diagram to represent fault 

logic conditions, under which the EMA is divided into electric and mechanical 

subsystems. The exact type of anti-jamming system is not specified, but it is 

reasonable to regard it as an electromagnetic actuation system including control, 

monitoring, and actuation component. Thus, a failure probability of 1.5×10-4, which 

equals to the failure probability of a single-lane EMA, could be assigned to it [158]. 
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Figure 6.15 Fault dependency diagram of a control surface with two anti-jamming 

EMAs in parallel connection 
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AC/DC supply

5.4×10-5

Controller &Inverter

8.6×10-5

Motor winding

3.1×10-7

Motor bearing

6.0×10-6

EMA

6.0×10-6
OR

×2

OR

1.4×10-4 AND

2.0×10-8

 

Figure 6.16 Revised fault tree of anti-jamming EMA with dual electric drives 

 

Table 6.20 Failure probability demands on EMA for different levels of redundancy 

considering jamming 

 

Table 6.21 Failure probability of revised EMA with different levels of electric drives 

 

The overall failure probability of the safety-critical control surfaces must meet 

the requirement of 1.0×10-9. This means the constraints on the failure probability of 

the EMA can be expressed as   

P(1)+P(2)+P(3)-P(1)*P(2)-P(1)*P(3)-P(2)*P(3)+P(1)*P(2)*P(3)≤1.0×10-9  (6.10) 

where P(3) is the equivalent failure probability of the mechanical system part. 

From Figure 6.15, the requirement of failure probability limit on the second part 

P(2) can be calculated, which is 5.2×10-10. For different levels of EMA redundancy, 

the corresponding failure probability limit on each EMA can be calculated from (5.10) 

and they are being summarized in Table 6.20. 

An example of the revised fault tree of EMA with dual-lane electric drive is 

shown in Figure 6.16, without considering the mechanical subsystem failure, in which 

the resulting failure probability is 6.0×10-6. Similarly, the failure probability of the 

 One EMA Two EMAs Three EMAs 

Failure probability limit 7.4×10-10 2.3×10-5 7.3×10-4 

 
Single-lane 

Electric drive 

Dual-lane 

Electric drives 

Triple-lane 

Electric drives 

Failure probability 1.5×10-4 6.0×10-6 6.0×10-6 
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revised EMA with different redundancy levels of electric drives can be calculated as 

well, and their values are summarized in Table 6.21. One can note that the failure 

probability will not be less than 6.0×10-6; this is because of the restriction from motor 

bearing failure. 

For a control surface with only one EMA, the EMA cannot meet the safety 

failure probability limit irrespective of the redundancy level of electric drive. Thus, a 

control surface with one EMA can only be used for non-safety-critical actuation 

systems. 

For a control surface with two parallel EMAs, the EMA equipped with dual 

electric drives with a failure probability of 6.0×10-6 could meet the corresponding 

requirement of less than 2.3×10-5 in Table 6.20. It is also the case for EMA driven by 

triple electric drives. Therefore, it is demonstrated for the surface with two parallel 

EMAs, the EMA with more than one electric drive is necessary to achieve a reliability 

of less than 1.0×10-9 for safety-critical actuation systems. 

The reliability demands on each EMA will be reduced when the control surface 

has three or more EMAs in parallel. In the case of three EMAs, e.g. Rudder, the failure 

probability demand on a single EMA is less than 7.3×10-4, suggesting that an EMA 

could meet the reliability requirement irrespective of the redundancy level of the 

electric drive, according to the data in Table 6.21. 

In all, it is confirmed that a level of redundancy of two anti-jamming EMAs in 

parallel is necessary for the deployment of EMA in the aircraft safety-critical actuation 

control surface such as Elevator and Rudder. A single EMA configuration could only 

be considered for a less critical control surface, for example a Flap or Slat. 

 

6.6 Fault-tolerant rotary motor design considerations 

After demonstrating the topology and redundancy levels of EMA for safety-critical 

control surfaces in the MEA, the design of primary motor has come to the focus. Both 

the electromagnetic and thermal performance must be considered and evaluated in the 

whole design cycle. This section deals with the considerations for designing a fault-

tolerant motor. 
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6.6.1 Design aspects of rotary motor for EMA   

It has been proved that a prime rotary motor with dual-lane electric drive is required 

for safety-critical applications in the MEA. On top of this, both high torque density 

and good fault-tolerant capability are also compulsory requirements. An advantageous 

motor topology of permanent magnet synchronous motor (PMSM) is preferred; When 

equipped with fractional slot concentrated winding (FSCW), a low-speed high-torque 

density with excellent fault-tolerance can be achieved. The duty cycle and thermal 

behaviour of the actuators must be fully considered to determine the peak electric 

loading/current density of the motor within the given temperature limits. 

The fault-tolerant motor typically involves multi-lane electric drives with either 

multiple single-phase or multiple three-phase windings to provide levels of 

redundancy, ensuring normal operation or reduced output after faults occur. The 

motor’s thermal behaviour under normal and especially fault conditions required to be 

studied as the motor will be fed with overload current under single-lane fault in order 

to overcome the loss of and even negative dragging torque of the faulty lane. In 

addition, the isolation between different lanes in the electrical, thermal, magnetic, and 

physical aspect must be carefully considered to mitigate the propagation of faults. 

Unbalanced magnetic pull (UMP) under normal and fault conditions is also critical as 

this may present a crucial impact on the stiffness and life cycle of the mechanical 

system. 

Table 6.22 Comparison of different motor topologies in the EMA application 

 
PMSM 

IM SR 
FSCW ISDW 

High torque density * + - - 

Low speed + - - * 

Electrical isolation + - - + 

Magnetic isolation + - - + 

Physical (thermal) isolation + - - + 

Suppress the short-circuit current + - - + 

No UMP under normal and faults + + * * 

Stiffness * - + + 

           +: superior; *: average; -: inferior. 
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A comparison of different motor topologies such as PMSM and IM, are 

summarized in the Table 6.22. Due to the extreme requirements of high torque density 

and operation capability under fault or fail-safe conditions for EMA, the FSCW 

PMSM topology arises due to their high torque density and achievable isolations 

between lanes in the EM, thermal and physical aspect. Moreover, this topology could 

provide the possibility of limiting the terminal short-circuit (SC) current to 1 pu of 

rated/peak current because of their large per-phase inductance. 

6.6.2 Thermal behavior over the mission profile 

The thermal requirements on the EMA are represented by the demands over the whole 

mission profile. In order to meet the safety regulations, the most serious conditions 

(such as critical flight phases of serious turbulence and faults) must be considered, and 

this determines the sizing of an EMA. The actuation system is usually without any 

additional cooling system, making the thermal design quite a challenge. Moreover, the 

thermal behaviour of motor itself is not only determined by the thermal limitations 

from the materials but also limited by the requirements from aircraft level. For 

example, the maximum temperature at EMA skin should be around 100°C for 

qualitative safety requirement at wing level [69], which is obviously much lower than 

the thermal limit of the housing material (aluminium). 

Another critical challenge is the extreme working environments of high altitudes 

and high temperature variation ranges. For instance, the air temperature could be 

higher than 40 °C on the ground when taxing or in the low attitude during take-off 

while a negative 50 °C could be expected in a height of 35,000 feet during cruise phase. 

Thermal performance under fault conditions must be involved during the whole 

design cycle as this determines the fail-safe capability of an EMA which is critical for 

aircraft actuation system. For example, in the case of losing one lane for a dual-lane 

EMA system, the remaining healthy lane has to offer the full load demands, which 

might double the electrical loading and consequently results in a higher thermal 

load/stress in the healthy lane. 

In addition, the duty cycle is an important criterion in sizing the actuator. 

Actuator force and rate demands vary at different flight phases. A generic aircraft 

mission profile includes taxi, take-off, climb, cruise, descend, and landing. Apparently, 
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the mission profile would be the start point in specifying the actuator design 

requirement. 

Figure 6.17 depicts a worst duty cycle scenario of two minutes of peak torque 

and peak speed demand and one minute off repeating 3 times, which is reasonable as 

the extreme demands occurs at serious turbulence which is usually less than one or 

two minutes. This torque profile will be used for the EMA design and thermal 

performance evaluation in the next section. 

In all, the thermal management of an EMA should be studied with regards to the 

torque/speed demands, fault conditions, material properties and the duty cycle 

requirement in the aircraft mission level. 

 

Figure 6.17 Duty cycle for EMA design evaluation 

 

6.6.3 Fault-tolerant motor design, control strategy and comparison 

The redundancy and fault management requirements applied to the rotary motor for 

an aircraft actuator can be defined as below [156]. It should be noted that the output is 

based on the flight control surface level regarding the load demand. 

• No output degradation after the first fault (e.g. open-circuit (OC) & terminal 

short-circuit (SC)). 

• Acceptable output degradation, e.g. 50%, after the second fault. 

The design requirements for a fault-tolerant motor are directly related to the 

redundancy level of the control surface, and the configuration with at least two anti-

jamming EMAs connected in parallel has been confirmed as necessary in the 
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deployment of EMA for safety-critical aircraft actuation applications, which is 

regarded as a basis to give an insight on the issues in the designing of a fault-tolerant 

motor. Two alternative multiple lane fault-tolerant drives, viz. multiple single-phase 

and multiple three-phase as in Figure 6.18, are considered. 

         

                      (a) Triple-lane single-phase                                   (b) Dual 3-phase 

Figure 6.18 Electric motor with multiple drive systems 

 

Table 6.23  Comparison of fault-tolerant electric drive topologies 

 Multiple single-phase Multiple three-phase 

Configuration of motor 
Dual-

lane 

Triple-

lane 

One-

lane 

Dual-

lane 

Triple

-lane 

Total number of lanes 4 6 2 4 6 

Number of phases 4 6 6 12 18 

Number of switches 16 24 12 24 36 

SF* after first OC 0.67 0.75 1 0.67 0.75 

SF after second OC 0.5 0.75 N/A 0.5 0.75 

SF after first SC 0.8 0.67 2 0.8 0.67 

SF after second SC 1 0.5 N/A 1 0.5 

Overall SF of Motor 1 0.75 N/A 1 0.75 

SF for mechanical failure 1 1 1 1 1 

Overall SF of Surface 2 2 N/A 2 2 

 

Table 6.23 summarized a comparison of different multiple lane topologies for 

the actuation architecture with two anti-jamming EMAs connected in parallel in terms 

of sizing factor, number of total lanes, and power switches, etc. One should note that 

a suitable motor design has been assumed so that the motor can continuously operate 
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to provide the required torque under both open-circuit (OC) and terminal short-circuit 

(SC) conditions, and the same peak current limit is applied. In addition, three or four 

independent power supplies are available for a modern commercial aircraft, implying 

non-isolated lanes exist for EMA with up to three lanes electric drives. 

It is clear that for either multiple single-phase electric or multiple three-phase 

drives, each EMA is required to be driven by at least two independent or isolated lanes 

to provide the necessary fault-tolerance at control surface level; with the same number 

of lanes, the multiple 3-phase drives generally require a higher amount of power 

switches. 

In addition, it indicates that the higher the number of lanes, the lower the overall 

sizing factor (SF) of the motor, suggesting an EMA with a higher number of lanes is 

preferred. However, the independent power supply is limited with usually three or four 

lanes for modern commercial aircraft. On the other hand, this view only accounted for 

electric faults, but the control surface must survive or keep working after the 

mechanical failure such as failure of the mechanical screw and bearing. Thus, a 

minimum size factor of 1 is necessary in case of one EMA faults, while the parallel 

connected EMA can still provide required output load requirement. Therefore, the 

motor with dual-lane electric drives is selected, under which the resultant overall SF 

of surface level is 2. 

For a motor with dual-lane configuration, the number of switches for multiple 

3-phase drives is 24, which is higher than that for a multiple single-phase drive. 

However, the influence of remedial strategy under fault has also to be considered. For 

a multiple single-phase motor, a large torque ripple is expected after remedial strategy 

employed to overcome the influence of the faulty lane, and the current in each 

individual phase must be reshaped or re-scaled to overcome that, implying a higher 

harmonic current and consequently a higher PWM implementation complexity. 

However, for multiple 3-phase motors, the motor is divided into multiple independent 

3-phase motor lanes, which means the current on each lane only requires to be scaled 

by the required factor, reducing the control complexity and PWM implementation cost 

[61]. 

On the other hand, the motor is driven by a power converter. This implies 

another requirement to the DC input filter to minimize the distortion of power supply. 
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The multiple single-phase motor operated from an independent DC power requires 

significant input filter efforts, increasing the power converter volume and weight. In 

contrast, the demands on the input filter for a three-phase inverter is much less due to 

less harmonics. Therefore, the motor with dual three-phase drive is identified as the 

final candidate for our EMA application. 

 

6.7 Chapter summary 

In this chapter, the concerns of the electromechanical actuator (EMA) including 

actuation system architecture and actuator topologies have been evaluated, in terms of 

weight, reliability, size, efficiency and cost. A fault-tolerant rotary motor plus 

mechanical screw has been identified as the final EMA candidate. 

The reliability of the actuation system architecture and the failure probability of 

different actuation configurations have been evaluated. Specifically, the feasibility of 

deployment of EMAs with anti-jamming system in a safety-critical actuation system 

was confirmed.  

The considerations including electromagnetic and thermal aspects in the design 

of a fault-tolerant rotary motor are presented, and the best configuration of two anti-

jamming EMAs in parallel connected, with each EMA equipped with a dual three-

phase drive, has been identified, which meets the requirements of the safety-critical 

actuation applications. All of this provides a significant step advance towards the 

deployment of pure electric actuation systems in the MEA. 
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Chapter 7  

Electromechanical Actuator: Fault-

Tolerant Rotary Motor Design 

In the previous chapter, the EMA configuration composed of rotary motor with 

mechanical screw is identified as a promising solution to develop a modular 

electromechanical actuator (EMA) featuring high force density and high efficiency. 

The design considerations of the EMA with a fault-tolerant rotary PMSM motor 

equipped with dual 3-phase electric drives (defined as a dual 3-phase EMA motor) 

have been evaluated. In this chapter, the modular structure design, electromagnetic 

design, and thermal management of the dual 3-phase EMA motor will be investigated. 

 

7.1 Modular EMA envelope 

As has been depicted in Section 6.3, the EMA design requirement was evaluated for 

the primary control surface such as Aileron or Rudder for a single-aisle aircraft. 

Different control surfaces have different levels of force/power requirement. To meet 

a diverse range of actuation requirements, a modular EMA design concept is desired; 

thus, for different force/power requirements, several modular EMAs can be assembled 

to deliver the desired requirement. Therefore, the modular EMA envelope must be 

established first. 
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Taking three EMA units as an example, the basic envelope of the originally 

designed actuator (not a modular configuration) is shown in Figure 7.1(a). Based on 

this, a semi-modular and full-modular envelope are presented, as in Figure 7.1 (b) and 

(c). 

With the full-modular design, each modular unit is completely independent and 

has its own prime electric motor, rolling bearings, and endcap. It is obvious that this 

scheme will result in larger mass and space wasted. There are only two bearings and 

two endcaps in the semi-modular scheme, which can reduce the total mass by 

elimination of additional bearings and induced shorter housing axial length, but this is 

just a modularization of the rotary motor. Taking the factors of weight, space limitation 

and modular concept into account, an improved full-modular design is proposed, as in 

Figure 7.1 (d), which can remove the two sets of bearing and endcap between the 

modular units, saving weight and space without losing the modularization. In addition, 

the single set of bearings between units can improve the mechanical stiffness. 

     

Housing

Nut
Screw

Bearing

Stator Rotor Coil

                

(a) Original                                            (b) Semi-modular                                     

              

        (c) Full-modular                                    (d) Improved full-modular 

Figure 7.1 Comparison of different modular design envelopes 

 

However, with the configuration of short nut and long screw, the linear 

movement of the long screw demands space on both sides of the housing, which may 

create additional space claim and increase total volume; In addition, there is a potential 

risk of screw rotating, which poses a torsional torque to the load. Thus, another 
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configuration with long rotating screw and short nut linearly moving is proposed, as 

in Figure 7.2(a). In this case, the long screw is connected to the rotating rotor, while 

the short nut is coupled with the rod connected to load. An anti-rotating slider is 

coupled with the nut imbedding into the long housing channel. The modular concept 

can still be implemented from the primary rotary motor side, as shown in Figure 7.2(b). 

Single set of bearing and end plate between the two units can be eliminated, as can be 

seen from the cross section view in Figure 7.3; and if there are three units, two sets of 

bearings and end plates between the three units can also be eliminated. Therefore, this 

EMA configuration is adopted. 

 

(a) One unit                                     

 

(b) Two units                                     

Figure 7.2 Configuration of proposed modular EMA concept 
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                   (a) One unit                                         (b) Two units                                     

Figure 7.3 Cross section of proposed modular EMA motor 

 

7.2 Initial design specifications 

As mentioned in the Section 6.1,  the EMA demands a primary rotary motor with high 

torque density, compact structure, and high reliability and excellent fault-tolerant 

capability.  

The SPM motor with FSCW configuration is expected to be the best candidate 

due to its high torque density and high leakage inductance capable of limiting short-

circuit current [80][81][96][97]. In addition, the concentrated winding is easily to 

manufacture with high reliability avoiding physical contact between coils. Due to the 

low speed characteristics attributing from the direct-drive EMA motor, the iron loss 

and magnet eddy current loss coming from the significant stator space MMF 

harmonics associated with conventional FSCW configuration are negligible compared 

to the copper loss [127]. Isolated design in the physical, electrical, magnetic, and 

thermal aspects can be easily implemented with a single-layer FSCW topology. 

However, more attention should be paid to the potentially high torque ripple and 

unbalanced magnetic pull for some FSCW configurations. 

According to Section 6.4.3.2, the design specifications of the primary rotary 

motor for a unit EMA can be summarized in Table 7.1. It is evident that the EMA 

motor features low power and low speed characteristics. 
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Table 7.1 Design specifications of the EMA motor 

Parameters Values Parameters Values 

Peak power 2.1 kW Rated speed 660 rpm 

Peak torque 15 Nm Peak speed 1320 rpm 

Rated power 1.0 kW DC voltage 270V 

Rated torque 7.5 Nm Max current  20 Arms 

 

7.3 Initial studies of the EMA motor 

After determining the design specifications, initial studies are required to achieve a 

preliminary design solution of EMA motor. The SPM motor with FSCW configuration 

is identified as a potential motor topology offering high torque density, reliability and 

excellent fault-tolerant capability. 

7.3.1 Winding layers 

The winding layer number is the first to be determined. Compared to a double-layer 

(DL) winding configuration, the single-layer (SL) winding configuration features an 

increased phase inductance, improved slot fill factor as well as an increase of the 

synchronous or working harmonic winding factor which is directly related to the 

torque capability if the magnetic saturation is not considered. Moreover, the highest 

isolation in terms of physical, electric, magnetic, and thermal aspect can be achieved. 

On the other hand, the SL configuration is disadvantageous in terms of having 

significant stator space MMF harmonics and thereby reduced overload capability. In 

addition, the higher torque ripple and noise of the SL configuration is expected to be 

a concern if the motor is not well designed. 

In this thesis, the electric motor is being designed for an aircraft actuator, which 

is a safety-critical application. The SL configuration can provide the strictly required 

highest level of physical isolation between windings and magnetic isolation between 

different phases. The issues of significant stator MMF harmonics in the SL 

configuration inducing rotor losses and limiting overload capability are not the critical 

concerns as the electric motor is of low power and low speed, and the peak electrical 

loading is limited by the available cooling options. And more importantly, SL 
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configuration features higher leakage and airgap harmonic inductance which helps to 

restrain the short-circuit current in the SC fault conditions. Thus, the SL configuration 

is preferable for the EMA motor. 

7.3.2 Slot-pole combinations 

The typical slot/pole combinations with SL configuration are when pole numbers are 

equal to 𝑄 ± 2𝑗 or 𝑄 ± 𝑗, where 𝑄 is slot numbers and 𝑗 is an integer. All the possible 

slot/pole combinations for the EMA motor are summarized in Table 7.2, considering 

achieving reasonable winding factor and mechanical dimension limitations. 

Table 7.2 Characteristics of various slot-pole combinations 

Slots/ 

poles 
SPP tm LCM 

Mutual 

index 

ratio [87] 

Multi three-phase 

kw UMP 

(Healthy) 

UMP 

(Fault) 

6S-4P 1/2 2 12 -0.2 Yes Yes 0.866 

6S-8P 1/4 2 24 -0.2 Yes Yes 0.866 

12S-8P 1/2 2 24 -0.2 No Yes 0.866 

12S-10P 2/5 1 60 0 No Yes 0.966 

12S-14P 2/7 1 84 0 No Yes 0.966 

18S-12P 1/2 6 36 -0.2 No Yes 0.866 

18S-14P 3/7 1 126 -0.02 Yes Yes 0.902 

18S-16P 3/8 1 144 -0.02 Yes Yes 0.945 

18S-20P 3/10 1 180 -0.02 Yes Yes 0.945 

18S-22P 3/11 1 198 -0.02 Yes Yes 0.902 

18S-24P 1/4 6 72 -0.2 No Yes 0.866 

24S-16P 1/2 4 48 -0.2 No No 0.866 

24S-20P 2/5 2 120 0 No No 0.966 

24S-22P 4/11 1 264 0 No No 0.958 

24S-26P 4/13 1 312 0 No No 0.958 

24S-28P 2/7 2 168 0 No No 0.966 

24S-32P 1/4 4 96 -0.2 No No 0.866 

 

Normally, for a FSCW motor, there is no mutual coupling between phases if the 

average value of winding turn function of each phase is zero due to the concentrated 
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winding characteristics and non-overlapping area between phases. For the SPP family 

of 1/2 or 1/4 motor, however, there is significant mutual coupling between phases 

because the average value of turn function of each phase is not zero, which creates 

significant overlapping area between the flux paths of different phases, leading to a 

high mutual-inductance ratio [87]. This is also the case for SPP family such 3/7 or 4/8, 

where the average value of turn function of each phase is not zero. The mutual-

inductance ratio is proportionally related to the ratio between the average value and 

total surrounding area of per phase turn function [87]. Low and no mutual-inductance 

is preferable for fault-tolerant applications. Thus, these slot/pole combinations with 

high mutual-inductance such as 6 slots 4 poles are excluded. 

On the other hand, the UMP is a critical factor in determining the feasibility of 

slot/pole combinations as significant UMP may result in noise and vibration and 

damage to the bearing and rotor shaft. Both healthy and fault conditions must be 

considered as post-fault operation is required for the EMA motor. Under healthy 

operation conditions, the UMP normally exists for SPP family of 3/7 or 3/10 if their 

modular unit number is an odd number. However, under fault conditions, with one set 

of a 3-phase winding open-circuit (OC), the UMP characteristics for those slot/pole 

combinations that do not feature significant UMP under healthy conditions may 

change. For instance, in the case of dual 3-phase winding configuration  there are 6 

coils in the motor and only one coil per phase in the SPP family of 2/5 or 2/7 with 12 

slots; an unsymmetrical magnetic field may be generated if losing one set of 3-phase 

winding and thereby results in a significant UMP. However, for the SPP family of 2/5 

or 2/7 with 24 slots, there are two coils per phase and a symmetrical magnetic field 

can still be maintained when losing one set of 3-phase winding. Hence, the 

configurations that have an even number of coils per phase are preferred. It is evident 

from Table 7.2 that only configurations with 24 slots can meet the requirement of no 

significant UMP under OC fault condition; in fact, it is similar for a 3-phase SC fault 

condition where the electric loading in different 3-phase is different but their magnetic 

field is symmetrical on its own, and thereby no significant UMP is generated under a 

3-phase SC fault condition. 

The winding factor is directly related to the output torque for permanent magnet 

synchronous motor with surface-mounted magnets as there is no additional reluctance 

torque. Thus, the slot/pole combinations with high winding factor are advantageous. 
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 Considering all the above, four slot/pole combinations with 24 slots, viz., 24S-

20P, 24S-22P, 24S-26P, 24S-28P, are selected to be further investigated. 

7.3.3 Comparison 

After selecting the possible slot/pole combinations, the FEM models of each 

combination are built. The preliminary design study is done with  a target torque of 15 

Nm. A fixed peak current density of 12 A/mm2 as well as the same diameter and axial 

length are applied. The four studied models are plotted in Figure 7.4. 

                   

   (a) 24S-20P                                         (b) 24S-22P 

                   

      (c) 24S-26P                                        (d) 24S-28P 

Figure 7.4 2-D FEM models of the four considered slot-pole combinations 

 

Table 7.3 summarized the comparison results of these four slot-pole 

combinations. The average torque and torque density are plotted in Figure 7.5. The 

24S-28P tends to have a slightly higher torque than 24S-22P and 24S-26P, but the pole 

number is too high. On the other hand, if a dual 3-phase winding configuration is 

applied, the 24S-22P and 24S-26P may have a higher winding factor, as indicated in 

Table 7.4, and thereby a higher torque output due to the configuration of dual 3-phase 
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winding with 300 shift, which is also effective in cancelling out the ripple torque 

component with orders of 6th and 18th and thus a smooth torque waveform can be 

achieved. More details on the winding configurations will be explained in the next 

section. Higher pole numbers result in thinner stator tooth thickness and much smaller 

PM spans which increase the slot leakage and inter-pole leakage and may reduce the 

overload capability. Considering all the above, the SPM motor with 24S-22P slot-pole 

combination is selected for further investigation. 

      

(a) Average torque                                       (b) Torque density 

Figure 7.5 Average torque and torque density of the four motors 

 

Table 7.3 Performance comparison of the four motors 

 24S-20P 24S-22P 24S-26P 24S-28P 

Do (mm) 136 136 136 136 

lef (mm) 20 20 20 20 

g (mm) 0.8 0.8 0.8 0.8 

D (mm) 83.3 82.8 84 84.4 

hm(mm) 6.3 5.3 5 6 

PM arc coefficient apm 0.95 1 1 1 

wt (mm) 5.4 5.4 5.4 5.4 

Turns per coil, N 52 54 55 52 

J (A/mm2) 12 12 12 12 

T (Nm) 13.0 13.4 13.4 13.6 

Active mass (kg) 1.57 1.52 1.54 1.57 

Shear stress δg (kN/m2) 28.7 29.7 28.9 29.5 
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Table 7.4 Winding factors of the four considered motors 

 24S-20P 24S-22P 24S-26P 24S-28P 

One 3-phase 0.966 0.958 0.958 0.966 

Dual 3-phase* 0.966 0.991 0.991 0.966 

*: Maximum achievable winding factor of dual 3-phase winding configuration 

 

7.4 Performance improvement 

After confirming the slot-pole combination, further performance improvement is 

required. This section deals with performance improvement by investigating different 

magnetization patterns, steel materials, and winding configurations. 

7.4.1 The use of parallel magnetization 

There are two main magnetization patterns for a surface-mounted magnet, viz., radial 

and parallel direction, as in Figure 7.6. Halbach array may be possible but the 

manufacturing and assembly is complicated and so it is not considered here [102]. 

Previous studies have suggested that the adoption of radial magnetization does not 

necessarily give advantages compared to parallel pattern in regards to magnetic flux 

and torque capability [159][160] [161]. This provides an opportunity to explore the 

effect of different magnetization pattern in terms of performance improvement. 

The no-load and load performance under the same current density of 12 A/mm2 

are calculated using 2-D FEM, as shown in Figure 7.7. It can be noted that the EMA 

motor with parallel magnetization pattern features a 3.5% higher no-load back EMF 

and thereby a higher output torque. Radial magnetization patterns tend to have a higher 

3rd harmonic making it more suitable for brushless DC motor operation, whilst the 

parallel patterns have a negligibly higher 5th harmonic and lower 7th harmonic, 

implying a negligible torque ripple difference between both patterns. The impact of 

magnetization pattern on the cogging torque is significant, with a lower cogging torque 

for the radial pattern; however, the cogging torque amplitude for both patterns are 

extremely low compared to the peak output torque. On the other hand, the radial 

magnetization pattern normally requires more effort to implement and is more 
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expensive. Therefore, the parallel magnetization pattern which features higher torque 

output and less magnetization effort is selected for further investigation. 

         

(a) Radial                                               (b) Parallel 

Figure 7.6 Radial and parallel magnetization pattern 

 

   

        (a) Back EMF                                       (b) FFT Spectrum of back EMF 

   

(c) Output torque                                           (d) Cogging torque 

Figure 7.7 24S-22P motor with different magnetization patterns 

 

 

7.4.2 The use of cobalt iron steel 

For the electrical motor, different lamination steel material will lead to different EM 

performance. Previously the lamination material for stator and rotor used for design 
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and simulation is DW270-35, which is a typical silicon steel, and it is obvious that 

there are many high-performance steels available in the market. Among all of them, 

the cobalt iron alloys have the highest saturation magnetic flux density by far, about 

2.35T, as in Figure 7.8. The drawback with this high-performance steel is the cost, 

which may not a big concern for aircraft applications if it can offer considerable torque 

improvement. Another concern is the weight as their mass density is normally higher. 

For example, the mass density of Vacoflux-50 is about 8120 kg/m3 whilst for DW270-

35, it is 7600 kg/m3. Therefore, it is necessary to undertake quantitatively comparative 

study to evaluate the gains of adopting high performance iron steel. Three kinds of 

material combinations, viz., both stator and rotor with DW270-50, both stator and 

rotor with Vacoflux-50, and combination of stator with Vacoflux-50 and rotor with 

DW270-35, have been studied in this section to evaluate their impact on output 

performance. 

 

Figure 7.8 B-H curve of the two considered lamination steels 

 

The torque performance with different material combinations is calculated using 

2-D FEM, as summarized in Figure 7.9 and Table 7.5. Using Vacoflux-50 to replace 

the DW270-35 steel can considerably improve the peak torque of an EMA motor by 

about 11.6%. On the other hand, if only replacing the stator lamination material with 

Vacoflux-50, it can deliver almost the same torque as the motor with both stator and 

rotor equipped with Vacoflux-50. This is because the stator tooth is more easily 

saturated than the rotor yoke and the peak torque capability is mostly limited by stator 

tooth saturation level. In addition, the added weight due to the Vacoflux-50 is 

negligible, and 6.7% higher torque density can be achieved by adopting Vacoflux-50 
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and DW270-35 as stator and rotor steel, respectively. Considering all the above, the 

combination of stator with Vacoflux-50 and rotor with DW270-35 is selected. 

  

   (a) Peak torque                                        (b) Torque vs current 

Figure 7.9 Performance comparison of 24S-22P EMA motor with three different 

steel combinations (*Hybrid: stator with Vacoflux-50 and rotor with DW270-35) 

 

Table 7.5  Performance comparison of 24S-22P EMA motor with three different 

lamination steel combinations 

 

7.4.3 The use of dual 3-phase winding with 300 shift 

As has been identified, the EMA motor should be designed with dual 3-phase electric 

drives to meet the fault-tolerance requirement and give fail-safe capability. According 

to star of slots theory [88], there are four coil phasors per phase for a three-phase 

winding configuration, as shown in Figure 7.10. 

For a dual 3-phase winding topology, three different configurations can be 

achieved by dividing the four coil phasors into two groups and then arranging them to 

two phases, respectively, as shown in Figure 7.11 and Figure 7.12. There is no shift in 

 DW270-50 

(stator & rotor) 

Vocaflux50 

(stator & rotor) 

Hybrid 

Combination 

J (A/mm2) 12 12 12 

Active mass (kg) 1.535 1.595 1.582 

Average torque (Nm) 13.8 15.4 15.2 

Ripple torque (Nm) 0.6 0.8 0.8 

Torque ripple 4.3% 5.2% 5.3% 

Torque density (Nm/kg) 9.0 9.6 9.6 
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time between the two 3-phase windings for the Type 1 and 2 configurations, while for 

the Type 3 configuration, there is a 300 shift between the two 3-phase windings. 

 

Figure 7.10 Coil phasor diagram of a single 3-phase 24S-22P motor 

 

 

  (a) Type 1 (00 shift)                 (b) Type 2 (00 shift)              (c) Type 3 (300 shift) 

Figure 7.11 Phase distribution of three dual 3-phase winding configurations 

 

A comparison of winding factors, torque behaviors and UMP characteristics of 

different dual 3-phase configurations is summarized in Table 7.6. One can note that 

both Type 1 and Type 2 feature the same synchronous winding factor. The Type 3 

configuration has a 3.5% higher winding factor due to the improved distribution factor. 

The higher the winding factor, the higher the back EMF; this can be seen from the 

EMF waveform and FFT spectrum comparison in Figure 7.13. Type 1 and Type 2 

exhibit the same no-load back EMF and there is no shift in time between the two 3-

phase windings. Higher no-load back EMF and 300 shift in time between the two 3-

phase windings are observed in the Type 3 configuration; both 5th and 7th harmonic 

increase, which is the source of ripple torque component with order of 6th and a higher 
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torque ripple is expected in the condition of only one 3-phase winding operating; 

however the 6th ripple torque can be cancelled out in the dual 3-phase winding with 

300 shift configuration due to the elimination of those stator MMF harmonics 

corresponding to 6th order of ripple torque such as 55th and 77th, the explanation of 

which can be recalled in Section 5.3 [136] and will also be presented afterwards. 

           

        (a) Type 1 (00 shift)           (b) Type 2 (00 shift)            (c) Type 3 (300 shift) 

Figure 7.12 Coil phasor arrangement of three dual 3-phase winding configurations of 

24S-22P motor 

 

Table 7.6 Comparison of 24S-22P motor with different dual 3-phase winding 

configurations 

 Type 1 Type 2 Type 3 

Winding factor kw 0.945 0.945 0.991 

Healthy 

condition 

Average torque (Nm) 15.2 15.2 16.0 

Ripple torque (Nm) 0.6 0.6 0.2 

UMP Low Low Zero 

One 3-phase 

OC fault 

Average torque (Nm) 7.6 7.6 8 

Ripple torque (Nm) 0.4 0.3 0.5 

UMP High Low Zero 
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        (a) Back EMF of Type 1                                  (b) Back EMF of Type 2 

   

          (c) Back EMF of Type 3                           (d) FFT Spectrum comparison 

Figure 7.13 No-load back EMF comparison of 24S-22P EMA motor with different 

dual 3-phase winding configurations 

 

The torque behavior comparison under healthy and fault condition is depicted in 

Figure 7.14 and Table 7.6. The same torque performance for Type 1 and Type 2 under 

healthy condition is observed, with a lower average torque and much higher torque 

ripple in the healthy condition compared to Type 3 configuration. Type 3 configuration 

under healthy condition features only 12th and 18th ripple toque components and the 

6th ripple torque is eliminated. This is due to the elimination of those stator MMF 

harmonics corresponding to 6th and 18th order of ripple torque, which can be observed 

in Figure 7.14 (b) and Table 7.7; a higher 12th ripple torque is observed as the increased 

amplitude of those stator MMF harmonics corresponding to 12th ripple torque such 

121st and 143rd. In addition, the Type 3 winding configuration is characterized by the 

reduced stator MMF harmonics such as elimination of 5th and 7th in healthy condition, 

and their corresponding slot harmonics, which can reduce the magnetic saturation and 

improve the overload capability. 
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                (a) Torque @Healthy                     (b) FFT spectrum of torque @Healthy 

   

                 (c) Torque @OC fault                   (d) FFT spectrum of torque @OC fault 

Figure 7.14 Comparison of 24S-22P EMA motor with different dual 3-phase 

winding configurations 

 

In the OC fault condition, a similar torque ripple is seen in Type 1 and Type 2 

configuration, and it is worth noting that Type 1 configuration includes 2nd and 4th 

harmonic torque which is mainly due to the diametrically asymmetrical magnetic field 

distribution attributing to the diametrically symmetric stator MMF waveform, as in 

Figure 7.15 (c) and (d). Those stator MMF harmonics corresponding to 6th order of 

ripple torque such 55th and 77th in the Type 3 configuration are higher than those in 

the Type1 and Typ2 configuration, as shown in Table 7.7; this is the same for 18th 

ripple torque; thus, a higher ripple torque with order of 6th and 18th is seen in Type 3 

configuration, Figure 7.14 (d); The 12th order MMF harmonic is the same as it is in 

the healthy condition. 
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        (a) MMF waveform @ Healthy                    (b) MMF spectrum @ Healthy 

   

        (c) MMF waveform @ OC fault                   (d) MMF spectrum @ OC fault 

Figure 7.15 MMF waveform and FFT spectrum comparison of 24S-22P EMA motor 

with different dual 3-phase winding configurations 

 

Table 7.7  Amplitude of ripple-torque-producing stator MMF harmonics of 24S-22P 

EMA motor with different dual 3-phase winding configurations 

Operation 

condition 

Torque 

ripple order 

Corresponding 

Stator harmonics 
Type 1 Type 2 Type 3 

Healthy 

6th 
55th 0.0443 0.0443 0 

77th 0.0251 0.0251 0 

12th 
121st 0.0142 0.0142 0.0146 

143rd 0.0129 0.0129 0.0132 

OC fault 

6th 
55th 0.0443 0.0443 0.1712 

77th 0.0251 0.0251 0.0970 

12th 
121st  0.0142 0.0142 0.0147 

143rd  0.0129 0.0129 0.0133 
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Figure 7.16 (a) plots the UMP characteristics of the 24S-22P EMA motor with 

different winding configurations. As can be seen, no significant UMP occurs for all 

three configurations under the healthy condition due to the diametrically symmetric 

magnetic field distribution attributing to the diametrically symmetric stator MMF 

waveform in Figure 7.15 (a) [138]. However, under the one 3-phase OC fault 

condition, a significant UMP occurs in Type 1 configuration and a considerable UMP 

occurs in Type 2 configuration due to the resulting diametrically unsymmetrical stator 

MMF waveform, as in Figure 7.15 (c). For Type 3 configuration, the stator MMF is 

displaying the highest level of symmetry under either healthy or OC fault conditions 

as in Figure 7.15 (a) and Figure 7.15 (c), and thereby no significant UMP exists under 

both conditions. 

Considering all the above, the Type 3, that is, the dual 3-phase winding with 300 

shift is selected due to its improved average torque and torque ripple in the healthy 

condition and no UMP in both healthy and fault conditions. Although a higher torque 

ripple is expected in the OC fault condition, it is a condition that can be tackled with 

certain control techniques if needed [162]. 

  

        (a) Healthy                                     (b) One 3-phase OC fault 

Figure 7.16 UMP comparison under one 3-phase OC fault of 24S-22P EMA motor 

with different dual 3-phase winding configurations 

 

7.5 Analysis of 3-phase short-circuit (SC) fault 

The fault-tolerant capability is a crucial characteristic for the EMA motor. The OC 

fault performance has been addressed in the previous section, whilst the short-circuit 

(SC) performance is the focus of this section. To maintain operation of the EMA motor 
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under 3-phase terminal SC fault, the terminal SC current must be kept to an acceptable 

level. Generally, one per-unit phase inductance is required to limit the terminal SC 

current under rated or peak speed [163][164]. For the SPM motor with concentrated 

winding configuration, the key method to achieve this is by increasing slot leakage 

inductance by controlling the slot opening and slot depth, as the slot leakage 

inductance is the dominant component due to its inherently large effective airgap 

length [93] [163][165]. It is worth noting that the variation of slot opening dimension 

will inevitably change the main magnetic flux generated by the permanent magnets 

linking the coils. 

7.5.1 Single 3-phase SC current and braking torque 

In the case of a 3-phase terminal SC fault condition, the Id,sc and Iq,sc can be computed 

from (3.45) by making 𝑢𝑑=𝑢𝑞=0 in the synchronous d-q reference frame [134]. 

𝐼𝑑,𝑠𝑐 = −
𝜔𝑒

2𝐿𝑑𝜆𝑓

𝑅2 + (𝜔𝑒𝐿𝑑)2
                                                     (7.1) 

𝐼𝑞,𝑠𝑐 = −
𝜔𝑒𝑅𝜆𝑓

𝑅2 + (𝜔𝑒𝐿𝑑)2
                                                     (7.2) 

and the amplitude of SC current is 

𝐼𝑠𝑐 =
𝐸𝑜

√𝑅2 + (𝜔𝑒𝐿𝑑)2
=

𝜔𝑒𝜆𝑓

√𝑅2 + (𝜔𝑒𝐿𝑑)2
                                (7.3) 

It is evident that the SC current always increases with the speed, approaching to 

a constant value of 𝜓𝑚/𝐿𝑑, that is defined as the characteristic current, at high speed. 

𝐼𝑠𝑐𝑚𝑎𝑥 = 𝜆𝑓/𝐿𝑑                                                 (7.4) 

Since this is a SPM motor, no significant reluctance torque exists. The steady-

state SC braking torque may be expressed as [135] 

𝑇𝑠𝑐 = −
3𝑃

2

𝜆𝑓
2𝜔𝑒𝑅

𝑅2 + (𝜔𝑒𝐿𝑑)2
                                         (7.5) 

It can be noticed that the maximum SC braking torque can be calculated by 

equating the derivative of (7.5) with respect to the speed ωe to zero; the maximum SC 

braking torque can be written as [134] 
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𝑇𝑠𝑐𝑚𝑎𝑥 = −
3𝑃𝜆𝑓

2

4𝐿𝑑
= −

1

2

3𝑃

2
 𝜆𝑓

 𝜆𝑓

𝐿𝑑
                                (7.6) 

and it occurs at critical speed of 

𝜔𝑚
∗ =

𝑅

𝐿𝑑
                                                    (7.7) 

By substituting (7.4) into (7.6), the maximum SC braking torque can be written 

as  

𝑇𝑠𝑐𝑚𝑎𝑥 = −
1

2

3𝑃

2
 𝜆𝑓𝐼𝑠𝑐𝑚𝑎𝑥 = −

1

2
T(𝐼𝑠𝑐𝑚𝑎𝑥)                         (7.8) 

which is half of the EM torque of the motor generated by imposing Iq=Iscmax into the 

motor. 

Therefore, it can be concluded that for a dual 3-phase SPM motor, the maximum 

resulting output torque under one 3-phase SC fault can be expressed as 

𝑇𝑜𝑢𝑡 =
1

2
T(𝐼𝑚𝑎𝑥) −

1

4
T(𝐼𝑠𝑐𝑚𝑎𝑥)                                   (7.9) 

If the max SC current 𝐼𝑠𝑐𝑚𝑎𝑥 is normalized with respect to 𝐼𝑚𝑎𝑥, the minimum 

resulting output torque of the dual 3-phase EMA motor under one 3-phase SC fault 

can be expressed as 

𝐼𝑠𝑐𝑚𝑎𝑥 = 𝑎 ∗ 𝐼𝑚𝑎𝑥                                                (7.10) 

𝑇𝑜𝑢𝑡𝑚𝑖𝑛 = (
1

2
−

1

4
a) T(𝐼𝑚𝑎𝑥)                                    (7.11) 

According to Section 6.6.3, for the aircraft actuation system with two EMA 

motors, each of which is a dual 3-phase SPM motor, it must maintain half of peak 

torque under SC faults of two 3-phase windings. Thus, without considering the 

saturation effect, the following relationship must be met. 

𝑇𝑜𝑢𝑡𝑚𝑖𝑛 = 2 ∗ (
1

2
−

1

4
a) T(𝐼𝑚𝑎𝑥)≥

1

2
T(𝐼𝑚𝑎𝑥)                      (7.12) 

namely, 

𝑎 ≤ 1      or     𝐼𝑠𝑐𝑚𝑎𝑥 ≤ 𝐼𝑚𝑎𝑥                                    (7.13) 
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If 𝐼𝑠𝑐𝑚𝑎𝑥 = 𝐼𝑚𝑎𝑥, this is a one per-unit phase inductance design and the key to 

achieve this is by adjusting the armature leakage inductance which will be studied in 

the following section. 

According to the EMA motor design specification in Table 7.1, the peak target 

torque is 15Nm, so the maximum braking torque of the dual 3-phase EMA motor under 

one 3-phase SC fault should be less than 1/4*15Nm, viz., 3.75Nm, and thereby the 

minimum output torque of the EMA motor under one 3-phase SC fault condition is 

higher than 1/4*15Nm, viz., 3.75Nm. In this case, the actuation system with two EMA 

motors, each of which is a dual 3-phase SPM motor, can still generate half of peak 

target torque, viz., 7.5Nm when two 3-phase windings are short-circuit.  

Finally, associated with the design requirement specified in the Section 6.6.3, 

the fault tolerant capability design requirement for the EMA motor can be summarized 

in Table 7.8. 

Table 7.8 Fault tolerant capability design requirement of the EMA motor 

Performances Specifications 

Output torque under one 3-phase OC fault >1/2*Tmax 

Braking torque under one 3-phase SC fault <1/4*Tmax 

Braking torque under two 3-phase SC faults <1/2*Tmax 

Output torque under one 3-phase SC fault >1/4*Tmax 

 

7.5.2 Armature inductance calculation method 

As has been depicted, the inductance is essential in calculating the steady-state SC 

current and SC braking torque. The armature phase inductance Ls that consists of 

magnetizing inductance Lm and leakage inductance Ll can be analytically calculated 

as in (7.14), which provides reference for initial design considerations [166][167]. 

𝐿𝑠 = 𝐿𝑚 + 𝐿𝑙 = 𝐿𝑚 + 𝐿hσ + 𝐿sσ + 𝐿tt + 𝐿ew                         (7.14) 

where the leakage inductance 𝐿σ consists of airgap harmonic leakage inductance 𝐿hσ, 

slot leakage inductance 𝐿sσ , tooth-tip leakage inductance 𝐿tt , and end-winding 

leakage inductance 𝐿ew. The analytical calculation of each inductance component will 

be discussed in the following sections. For simplicity, the end-winding leakage 
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inductance is not considered  for comparison with 2-D FEM results as the end-winding 

leakage inductance is a 3-D phenomenon and many developed empirical and 

analytical models give quite different results [166][168]. 

7.5.2.1 Magnetizing inductance 

The magnetizing inductance 𝐿𝑚 is related to the magnetic flux travel across the airgap 

and links both stator and rotor. The derived formula of (3.22) using winding function 

method in the Section 3.1.4 is adopted to calculate 𝐿𝑚. 

𝐿𝑚 =
𝜇0𝑟𝑙𝑒𝑓

𝑔′
∫ (

2𝑁𝑠

𝑃𝜋
𝑘𝑤𝑃 𝑐𝑜𝑠(𝑃𝜃))

2

𝑑(𝜃𝑠)

2𝜋

0

                            (7.15) 

where 𝑔′ = 𝑔 + ℎ𝑚/𝜇𝑟  is the effective airgap length considering the thickness of 

magnet; 𝑁𝑠 is the turn numbers in series per phase; 𝑘𝑤𝑃 is the synchronous winding 

factor and P is pole-pair numbers. 

7.5.2.2 Airgap harmonic leakage inductance 

Unlike the ISDW configuration, the winding function waveform of FSCW motor is 

far from sinusoidal. It is evident for FSCW motor that there are significant spatial 

harmonics in the stator winding function except for the synchronous or working 

harmonic with order of P [166] which is interacting with the rotor harmonic; these 

harmonics travel across airgap but do not participate the energy conversion and 

generate EM torque, consequently only contributing to the leakage inductance. The 

airgap harmonic leakage inductance can be expressed as [167] 

𝐿hσ =
𝜇0𝑟𝑙𝑒𝑓

𝑔′
∫ ∑ (

2𝑁𝑠2

𝑣𝜋
𝑘𝑤𝑣 𝑐𝑜𝑠(𝑣𝜃))

2∞

𝑣=1
𝑣≠𝑃

𝑑(𝜃𝑠)

2𝜋

0

                      (7.16) 

This can also be written as  

𝐿hσ = 𝜎δ𝐿m                                                       (7.17) 

where 𝜎δ is the harmonic airgap leakage factor [167][168]. 

𝜎δ = ∑ (
𝑃 ∙ 𝑘𝑤𝑣

𝑣 ∙ 𝑘𝑤𝑃
)
2∞

𝑣=1
𝑣≠𝑃

                                              (7.18) 
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Clearly, FSCW motors generally has a much higher harmonic airgap leakage 

factor compared to ISDW motors. In addition, the single-layer FSCW configuration is 

expected to have a much higher harmonic airgap leakage factor than that of double-

layer counterpart. 

7.5.2.3 Slot leakage inductance 

Due to the existence of the airgap, part of the flux generated by the armature current 

will travel from one tooth to another by crossing the slot, contributing to slot leakage 

inductance. For a SPM motor, the effective airgap length is high, making slot leakage 

inductance a dominant component in the armature inductance and accounting for more 

than 50% of total inductance in some cases [93]. 

The analytical expression of slot leakage inductance can be written as 

𝐿sσ = 2𝑁𝑐𝑙𝑒𝑓𝑁1
2𝜆sσ                                         (7.19) 

where 𝜆sσ is the slot leakage permeance factor [167][168]; Nc is the coil numbers per 

phase and N1 is the turn numbers per coil. 

 

Figure 7.17 Slot geometry 

 

A simplified 1-D permeance model can be used to calculate the slot leakage 

inductance, as in Figure 7.17, assuming the leakage flux passes straight from one side 

of the slot to the other side crossing the centre line of the slot in the orthogonal 

direction. The slot leakage permeance factor can be calculated as [86][166] 



Chapter 7. Electromechanical actuator: fault-tolerant rotary motor design  

- 179 - 

 

𝐿sσ = 𝜇0

ℎ𝑠0

𝐵𝑠0
+ 𝜇0

ℎ𝑠1

𝐵𝑠1 − 𝐵𝑠0
𝑙𝑛

ℎ𝑠1

𝐵𝑠1
+ 𝜇0

ℎ𝑠2

𝐵𝑠2

[
 
 
 
 
(
𝐵𝑠1

𝐵𝑠2
)
2

−
1
4 (

𝐵𝑠1

𝐵𝑠2
)
4

− ln
𝐵𝑠1

𝐵𝑠2
−

3
4

(1 −
𝐵𝑠1

𝐵𝑠2
) (1 − (

𝐵𝑠1

𝐵𝑠2
)
2

)

2

]
 
 
 
 

  

(7.20) 

where the first, second, and third item to the right of the equal sign of (7.20) represents 

slot leakage permeance factor corresponding to slot opening, slot wedge and slot body 

area, respectively. 

7.5.2.4 Tooth-tip leakage inductance 

Similar to slot leakage flux, there is some flux travel from one tooth to another by 

crossing tooth-tip area, which does not travel across the airgap and thereby 

corresponds to tooth-tip leakage inductance. 

The analytical expression of the tooth-tip leakage inductance can be determined 

by applying a permeance factor [168]. 

𝐿tt = 2𝑁𝑐𝑙𝑒𝑓𝑁1
2𝜆𝑡𝑡                                                      (7.21) 

𝜆𝑡𝑡 = 𝑢0

5(
𝑔′

𝐵𝑠0
)

5 + 4(
𝑔′

𝐵𝑠0
)
                                                     (7.22) 

7.5.3 Analysis of armature inductance variation  

The impact of slot opening dimension on the phase inductance of dual 3-phase 24S-

22P EMA motor is evaluated and compared with 2-D FEM in this section. 

Figure 7.18 plotted the comparison of phase inductance against slot opening Bs0 

for different slot opening depth calculated by analytical expression and 2-D FEM. The 

inductance is sensitive to the variation of slot opening Bs0. The smaller the Bs0, the 

higher the inductance. Generally, the calculated value difference between the two 

methods is within 5%, with some of them between 5 to 10% when Bs0 is higher than 

2mm. 
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(a) hs0=0.5mm, hs1=1mm                             (b) hs0=1mm, hs1=1mm 

    

(c) hs0=1.5mm, hs1=1mm                             (d) hs0=2mm, hs1=1mm 

Figure 7.18 Inductance comparison against Bs0 with different hs0 and hs1 

 

The impact of hs0 on the phase inductance for different Bs0 and hs1 is plotted in 

Figure 7.19. The inductance is proportional to the hs0. For a smaller hs0, the analytically 

calculated value agrees well with the value calculated by 2-D FEM; however, when 

hs0 becomes higher, the calculated value difference between the two methods is getting 

bigger, with up to 12% higher value seen in analytical calculation. 

    

(a) Bs0=0.5mm, hs1=1mm                                  (b) Bs0=1mm, hs1=1mm 
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(c) Bs0=1.5mm, hs1=1mm                                  (d) Bs0=2mm, hs1=1mm 

Figure 7.19 Inductance comparison against hs0 with different Bs0 and hs1 

 

    

(a) Bs0=0.5mm, hs0=1mm                                   (b) Bs0=1mm, hs0=1mm 

    

(c) Bs0=1.5mm, hs0=1mm                                   (d) Bs0=2mm, hs0=1mm 

Figure 7.20 Inductance comparison against hs1 with different Bs0 and hs0 

 

Figure 7.20 depicts the impact of hs1 on the phase inductance for different Bs0 

and hs0. A similar trend is seen as for the hs0; the inductance is proportional to hs1, but 

the variation is less significant. The difference between analytical calculation and 2-D 
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FEM analysis is slightly bigger especially for a higher hs1. The big difference may be 

attributed to the overestimation of leakage inductance coming from slot wedge area. 

7.5.4 Calculation of 3-phase SC current and braking torque 

As depicted in the previous section, the impact of slot opening on the armature 

inductance is significant, which provides a way to adjust the SC current and SC 

braking torque by controlling the slot opening dimensions. 

Figure 7.21 depicts the variation of average torque and torque ripple of the EMA 

motor against Bs0. The impact of Bs0 on the average torque is less significant compared 

to its impact on torque ripple and on phase inductance as in Figure 7.21 (b) and Figure 

7.18; the average torque increases when Bs0 changing from 0.5 to 3mm, and then 

decreases, with maximum value at Bs0=3mm. The torque ripple is varying 

considerably, with two locally minimum torque ripple at Bs0=1mm and 3mm, 

respectively, but the torque ripple is well below 1.2% all the time. 

  

(a) Average torque                                        (b) Torque ripple 

Figure 7.21 Average torque and torque ripple of dual 3-phase EMA motor with 

different Bs0 when hs0=1mm, hs1=1mm 

 

The single 3-phase winding SC characteristics of  the dual 3-phase EMA motor 

with different Bs0 are plotted in Figure 7.22, including critical speed, maximum SC 

torque, maximum SC current, and minimum output torque under SC fault. The 

calculated value using the analytical expression in Section 7.5.1 is presented for 

comparison. Generally, the analytical results agree well with the simulation results. 

When Bs0 increases, the phase inductance decreases; it is evident that both the critical 

speed and the maximum SC current increase when Bs0 increases as shown in Figure 
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7.22(a) and (b), which can be easily explained from the expression of (7.4) and (7.7). 

It should be noted that the critical speed is normally relatively low. The higher the 

maximum SC current, the higher the maximum SC braking torque (the braking torque 

is in negative direction), as in Figure 7.22(c). Thus, the resulting minimum output 

torque under SC fault occurring at critical speed is decreasing when Bs0 increases, as 

in Figure 7.22(d). 

   

        (a) Critical speed                                     (b) Maximum SC current 

   

        (c) Maximum SC braking torque       (d) Minimum output torque under SC fault 

Figure 7.22 One 3-phase SC characteristic of dual 3-phase EMA motor with 

different Bs0 when hs0=1mm, hs1=1mm 

 

On the other hand, the per-unit inductance design can be realized when 

Bs0=2.5mm as the maximum SC current is equal to the designed peak current of 

17Arms. In this case, the minimum output torque under one 3-phase SC fault is 3.9Nm. 

However, for Bs0<2.5mm case, the phase inductance is higher than per-unit inductance 

and thereby a higher minimum output torque can be achieved. This provides an 

opportunity to increase the resulting output torque capability under SC fault by having 

a phase inductance that is higher than per-unit inductance. This is interesting as in 
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many cases it is the output torque capability under SC fault condition that determines 

the overall sizing factor of a fault-tolerant motor [61]. 

For example, when Bs0=1mm, the resulting torque under SC fault is 4.4 Nm 

which is 12.8% higher than the resulting torque of 3.9Nm when Bs0=2.5mm (per-unit 

inductance design), while the average torque when Bs0=1mm under healthy condition 

is only reduced by 5% compared to Bs0=2.5mm counterpart. However, Bs0 cannot be 

too small otherwise it is difficult to insert the coil into the slot unless a segmented 

modular tooth method is used. Therefore, Bs0=1.5mm is selected under which the 

resulting minimum output torque under SC fault is 4.2 Nm which is 7.7% higher 

compared to the case of Bs0=2.5mm, with average torque under healthy condition 

reduced by only 3%. 

The impact of hs0 and hs1 can also be easily achieved from the analytical 

expression. Increasing hs0 and hs1 will increase the slot leakage inductance and thereby 

reduce maximum SC current and maximum SC braking torque, which helps to 

improve output torque capability under SC fault. On the other hand, increasing hs0 and 

hs1 will reduce slot area. Thus, both hs0=1mm and hs1=1mm are kept. 

 

7.6 Final design and 3-D FEM verification 

7.6.1 Final design geometry 

The 2-D FEM analysis results have shown that the dual 3-phase EMA motor is able 

to deliver more than 15Nm of torque and meet the requirement under both OC and SC 

fault conditions. However, due to the short axial length of 20mm, the 3-D end effect 

on the torque capability might be considerable. An extra 10% of axial length, viz., 

2mm, is added to compensate the torque reduction due to the 3-D end effect. The outer 

diameter is changed from of 136mm to 140mm to facilitate the keyway on the outside 

stator surface. On the other hand, to facilitate the fixation of surface-mounted magnet, 

a small notch feature is added to the rotor lamination surface, as in Figure 7.23 (b). 

The final design geometry data and specifications are summarized in Table 7.9. 
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                        (a) Before                                            (b) Final 

Figure 7.23 Dual 3-phase EMA motor before and after adjustment 

 

Table 7.9 Main specifictaions of the dual 3-phase 24S-22P EMA motor 

Parameter Data Parameter Data 

Do (mm) 140 apm 0.917 

Di (mm) 84.4 Turns per coil 54 

Lef (mm) 22 Stator core material Vacoflux-50 

wt (mm) 5.4 Rotor core material DW270-35 

hs0 (mm) 1 Magnet material N45SH 

hs1 (mm) 1 Max current (Arms) 17 

hs2 (mm) 19 Max current density (A/mm2) 12 

Bs0 (mm) 1.5 Peak torque (Nm) 15 

g (mm) 0.8 Peak torque under OC fault (Nm) 7.5 

hm(mm) 5.3 Peak torque under SC fault (Nm) 3.75 

 

                  

                              (a) Full motor                                        (b) Rotor 

Figure 7.24 3-D geometry model of dual 3-phase EMA motor 
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7.6.2 3-D FEM verification 

It is necessary to investigate the torque and fault-tolerant capability of the dual 3-phase 

EMA motor with 3-D FEM analysis due to the short axial length. The 3-D FEM model 

is plotted in Figure 7.24. 

7.6.2.1 EM performance under healthy condition 

The phase EMF comparison of the dual 3-phase EMA motor calculated from 2-D and 

3-D FEM are plotted in Figure 7.25. It is evident that the difference between them is 

small. FFT analysis shows that the fundamental EMF of 3-D FEM result is 3% less 

compared to 2-D FEM result. 

    

                  (a) Phase EMF                                    (b) FFT spectrum of phase EMF 

Figure 7.25 No-load phase EMF of dual 3-phase EMA motor @1320rpm 

 

    

(a) Peak torque waveform                            (b) Torque vs current 

Figure 7.26 EM torque characteristics of dual 3-phase EMA motor under healthy 

condition 
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Figure 7.26 depicts the EM torque characteristics of the dual 3-phase EMA 

motor under healthy conditions. The peak torque waveform (with peak current density 

of 12A/mm2) in Figure 7.26 (a) shows that the 3-D FEM calculated torque is about 

15.2Nm which can meet the target torque of 15Nm and is 9.9% lower than that of 2-

D FEM due to the 3-D effect. Figure 7.26 (b) depicts the comparison of torque current 

characteristics. It is evident that only when current is higher than 9Arms, the 3-D effect 

becomes considerable. This is reasonable that due to the increasing electrical loading, 

the stator core is becoming more saturated which leads to an increase of the end-

winding leakage flux. 

7.6.2.2 Inductance calculation 

The inductance under no-load condition is calculated, as shown in Figure 7.27. As can 

be seen, the self-inductance is almost constant. The 3-D FEM inductance is 1.515mH 

which is 0.334mH higher than that of 2-D FEM results; the difference is attributed to 

the end-winding leakage inductance. 

   

(a) 2-D FEM                                                (b) 3-D FEM 

Figure 7.27 Inductance waveform of the dual 3-phase EMA motor 

 

Table 7.10  Average value of inductances of dual 3-phase EMA motor 

 LA1A1 

(mH) 

LA1B1 

(mH) 

LA1C1 

(mH) 

LA1A2 

(mH) 

LA1B2 

(mH) 

LA1C2 

(mH) 

2-D FEM 1.183 0.000 0.000 -0.001 0.001 0.000 

3-D FEM 1.515 0.001 0.001 -0.009 0.009 0.000 
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In addition, the mutual-inductance between different phases is negligible 

compared to the self-inductance, as shown in Table 7.10, which implies magnetic 

isolation between phases and so is beneficial to the fault-tolerant operation of the dual 

3-phase EMA motor as the faulty windings would not affect the operation of remaining 

healthy windings. 

7.6.2.3 EM performance under open-circuit (OC) fault condition 

The EMF of the OC fault phase of the dual 3-phase EMA motor operating at peak 

speed when the remaining healthy phase is loaded with peak current (1320rpm, 

17Arms) is plotted in Figure 7.28. Compared to Figure 7.25, it is evident that voltage 

of OC phase under one 3-phase loaded with peak current is almost the same as the no-

load phase voltage. This confirms that the mutual-coupling between the two 3-phase 

winding sets is negligible. 

  

               (a) Phase EMF                                       (b) FFT spectrum of phase EMF 

Figure 7.28 EMF of OC phase of dual 3-phase EMA motor under load 

 

   

(a) Torque waveform                                      (b) Torque vs current 

Figure 7.29 Torque of dual 3-phase EMA motor @OC fault condition 
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Figure 7.29(a) plots the peak EM torque waveform when one 3-phase winding 

is in OC fault condition and the remaining healthy 3-phase is fed with corresponding 

peak current. Again, lower peak torque is seen in 3-D FEM analysis. The torque 

current characteristics under OC fault condition is depicted in Figure 7.29(b). Similar 

to the healthy condition, when current is higher than 9Arms, the 3-D effect on reducing 

average torque becomes considerable. 

7.6.2.4 EM performance under short-circuit (SC) fault condition 

The comparison of SC current and braking torque waveform under one 3-phase SC 

fault at 1320rpm has been calculated using 2-D and 3-D FEM, and is shown in Figure 

7.30. A lower steady-state SC current and braking torque is seen in the 3-D FEM result 

due to the high inductance attributing to to the end-winding effect. This is advantagous 

in terms of reducing temperature rise coming from SC current and reducing SC 

braking torque. 

The behavior of the one 3-phase SC current and SC braking torque versus speed 

is calculated, as shown in Figure 7.31. A much lower SC braking torque can be 

observed in 3-D FEM analysis. The output torque under one 3-phase SC fault 

condition is quite similar for both 2-D and 3-D FEM analysis. The minimum output 

torque with peak current under one 3-phase SC condition for 3-D FEM analysis is 

4.8Nm which is much higher than the design requiremnt of 3.75Nm. 

 

(a) SC current 
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(b) SC braking torque 

Figure 7.30 SC characteristics of dual 3-phase EMA motor @1320rpm 

 

 

(a) SC current                                       

 

 (b) SC braking torque 
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(c) Output torque with peak current under SC fault 

Figure 7.31 Steady-state SC fault characteristics of dual 3-phase EMA motor 

 

                   

(a) Radial direction                               (b) Axial direction 

Figure 7.32 Thermal model built in Motor-CAD 

 

7.7 Thermal analysis  

As has been discussed in Section 6.6.2, the EMA must meet the thermal requirements 

under the designed duty cycle. The duty cycle of two minutes on with peak torque 

demand and one minute off repeating 3 times as in Figure 6.17 is used for thermal 

performance evaluation. The Motor-CAD model for thermal performance evaluation 

is shown in Figure 7.32, with basic input data summarized in Table 7.11. 

The loss data of the dual 3-phase EMA motor calculated from 3-D FEM analysis 

with the worst scenario of peak speed and peak load (1320rpm, 17Arms) is 
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summarized in Table 7.12. It is evident that the dominant loss is copper loss, which 

accounts for more than 90% of total loss. It should be noted that the AC copper loss is 

neglected due to the low speed characteristic. 

Table 7.11 Basic input data to Motor-CAD model for thermal analysis 

Parameter Value 

Enclosure type 
Totally Enclosed Non-

Ventilated (TENV) 

Housing outer cooling Natural convection 

Interface gap between stator 

lamination and housing 
0.03mm 

Ambient air temperature 60oC 

Air gap thermal model type Convection 

 

Table 7.12 3-D FEM calculated loss data of the EMA motor 

Copper loss 

@60oC (W) 

Stator iron 

loss (W) 

Rotor iron 

loss (W) 

Total Iron 

loss (W) 

Magnet 

loss (W) 

Total 

loss (W) 

311.3 13.0 5.6 19.4 4.6 335.3 

 

The model of mechanical loss including bearing friction loss and windage loss 

is complicated. Normally the bearing friction loss can be estimated using SKF bearing 

estimator tool [169] or empirical formulas [168]. The windage loss can be estimated 

using (7.24) given in [170]. Since the dual 3-phase EMA motor is characterized by 

small size and low speed, both the windage loss and friction loss are negligible. 

𝑃𝑓 = 𝐾𝐶𝑓𝜋𝜌𝜔3𝑟4𝑙𝑒𝑓                                          (7.24) 

where K is the roughness coefficient; 𝜌  is the mass density of fluid; The friction 

coefficient 𝐶𝑓 depends on many factors and it is often empirically determined [170]. 

7.7.1 Thermal duty cycle analysis 

The transient thermal analysis is carried out for the dual 3-phase EMA motor with the 

duty cycle provided in Figure 6.17, with the results summarized in Figure 7.33. 
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(a) Stator components 

 

(b) Rotor components 

Figure 7.33 Transient thermal characteristics of the EMA motor with duty cycle 

operation 

 

As can be seen that with the duty cycle of two minutes on and one minute off 

repeating three times, the maximum winding average temperature at each two-minutes 

on and one-minute off operation reaches 98oC, 123.9oC, and 144.4oC, respectively; 

the temperature rise at each two-minutes on operation is 38.4oC, 33oC, and 31.2oC, 

respectively, and temperature drop at each one-minute off operation is 7.5oC, 10.7oC, 

and 12.6oC, respectively. The maximum hotspot temperature of the winding reaches 

155.2 oC, which is 10.8oC higher than corresponding average winding temperature and 

is within the safety temperature limit of winding insulation (200oC). Stator tooth and 

stator back iron tend to have a lower temperature compared to winding. The maximum 

housing temperature is about 90oCafter the duty cycle operation. 



Chapter 7. Electromechanical actuator: fault-tolerant rotary motor design  

- 194 - 

 

Since there is not much rotor loss and the thermal resistance between stator and 

rotor is high due to the existence of air, the rotor temperature is under 80oC which is 

much lower compared to stator components and compared to the magnet maximum 

allowable temperature of 150oC, but it is slowly monotonously increasing during the 

duty cycle operation because there is constant heat transferred from stator through 

airgap due to the high temperature difference between stator and rotor. It is evident 

that the rotor is less demanding in terms of thermal dissipation. 

Figure 7.34 plots the loss behaviour during the duty cycle operation. One can 

note that the copper loss is dominant, and it increases when temperature rises. 

 

Figure 7.34 Loss behavior of the EMA motor with duty cycle operation 

 

7.7.2 Sensitivity studies of motor thermal behavior 

The accurate modelling and simulation of the thermal behaviour of the motor is 

complicated, and depends on many factors including losses estimation, material 

properties, assembly tolerance, and motor geometrical parameters. This section deals 

with sensitivity studies on the motor thermal behaviour. 

7.7.2.1 Sensitivity of input losses 

Both the machining and assembly process make it difficult to accurately predict both 

the copper loss and iron loss. By increasing both copper loss and iron loss with a ratio, 

the sensitivity of these losses with regards to the motor temperature can be studied for 

the duty cycle operation. Table 7.13 summarizes the maximum temperature of stator 
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and rotor components for different input loss combinations. The temperature 

characteristics of duty cycle operation are shown in Figure 7.35. 

Table 7.13 Maximum temperature of the EMA motor for different loss combinations  

# 
Copper loss 

@60 oC 

Iron 

loss  

Housing 

(oC) 

Winding 

average (oC) 

Winding 

hotspot (oC) 

Magnet 

(oC) 

1st 100% 100% 91 144.4 155.2 75.8 

2nd 105% 120% 91.9 148.6 160.0 77.2 

3rd 110% 140% 93.9 154.0 166.0 78.5 

4th 115% 160% 95.9 159.5 172.2 79.9 

5th 120% 180% 97.9 165.1 178.4 81.4 

6th 125% 200% 100 170.8 184.8 82.8 

 

 

(a) Winding hotspot temperature 

 

(b) Housing temperature 
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(c) Magnet temperature 

Figure 7.35 Thermal behavior of the dual 3-phase EMA motor with different losses 

combinations 

 

Table 7.14 Maximum temperature of the EMA motor for difference interface gaps 

between stator lamination and housing 

Interface 

gap (um) 

Housing 

(oC) 

Winding 

average (oC) 

Winding 

hotspot (oC) 

Magnet 

(oC) 

0 93.7 137.1 148.7 74.9 

10 92.4 139.4 150.7 75.3 

30 91 144.4 155.2 75.8 

60 86.7 147.7 157.8 76.4 

90 84.1 150.9 160.6 76.9 

 

It can be observed that with 125% copper loss and 200% iron loss, the winding 

hotspot temperature and average temperature are 184.8oC and 170.8oC, respectively, 

which both are well below safety limit of 200oC. Magnet temperature is still very low. 

Maximum housing temperature just reaches 100oC. 

7.7.2.2 Sensitivity of interface gap between stator and housing 

The interface gap between stator core and housing results in different thermal 

resistance between stator and housing, which may have a considerable impact on the 

temperature distribution as the housing is the main heat dissipation path.  
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(a) Winding hotspot temperature 

 

(b) Housing temperature 

 

(c) Magnet temperature 

Figure 7.36 Thermal behavior of the EMA motor with different interface gap 

between stator lamination and housing 
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Table 7.14 and Figure 7.36 shows the temperature variation of the dual 3-phase 

EMA motor with different interface gaps between stator core and housing under the 

duty cycle operation. The average interface gap of 30um is the reference design that 

the prototype can achieve. It suggests that a perfect surface contact between stator and 

housing will give temperatures that 12oC and 13.8oC lower in winding hotspot and 

average temperature respectively, compared to the poor surface contact with 90um 

interface gap. 

 

7.8 Chapter summary 

In this chapter, a fault-tolerant EMA motor with a high level of physical, electrical, 

magnetic, and thermal isolation is identified. Firstly, the modular structure design of 

the EMA motor is presented to facilitate the modular EMA configuration. Secondly, 

the 24 slots, 22 poles single-layer winding SPM motor with excellent fault-tolerant 

capability and torque capability is identified as the candidate for the modular EMA 

motor. Performance improvement of the EMA motor is achieved through using a 

parallel magnetization pattern, high-performance cobalt-iron steel, and a dual 3-phase 

winding. The identified dual 3-phase winding configuration with 300 shift in time 

exhibits an improved torque performance in the healthy condition and the most 

symmetrical magnetic field and so no UMP in both healthy and fault conditions.  

The armature inductance is analytically calculated and compared with 2-D FEM 

to evaluate the motor performance under 3-phase SC fault conditions. The steady-state 

SC current and maximum SC braking torque are optimized to acceptable levels by 

controlling slot opening dimensions. An interesting finding is that by having an 

inductance higher than one per-unit, the motor output torque capability under SC fault 

can be considerably improved without sacrificing considerable torque capability in the 

healthy condition. 

Thermal evaluation of the dual 3-phase EMA motor under the designed duty 

cycle operation shows it can safely operate and the hotspot is in the winding. 

Sensitivity study on the losses suggests that the EMA motor has enough thermal 

margin. 
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Chapter 8  

Prototyping and Experimental Validation 

This chapter presents the prototype manufacturing and experiment tests undertaken to 

validate the design and analysis presented in the previous chapters. The first part of 

the chapter deals with the experimental verification of the 24 slots, 14 poles IPM 

traction motor presented in Chapter 5. The manufacturing process and test rig are 

presented. The static parameters including resistance, inductance, and EMF and 

performance under both normal and fault conditions have been tested; and the results 

are used to compare with the predicted results in Chapter 5. 

The second part is concerned with the modular EMA motor (24 slots, 22 poles 

SPM motor) of Chapter 6 and Chapter 7. Two prototypes are built. The manufacturing 

challenges in stator winding and consideration for modular design are presented. The 

static characteristics under both normal and fault conditions of the single motor, and 

the modular performance with two interconnected motors assembled together have 

been tested. The experimental results are compared to the predicted results in Chapter 

6 and Chapter 7. 

 

8.1 24 slots, 14 poles IPM motor 

To validate the design and analysis of the 24 slots, 14 poles IPM motor presented in 

Chapter 5, a prototype motor has been built. The manufacturing and testing of the IPM 

motor are tackled in this section. 
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8.1.1 Manufacturing and assembly 

The general assembly drawing of the IPM motor is shown in Figure 8.1. Figure 8.2 

shows the components and assembly of the IPM motor prototype. The stator and rotor 

are laminated stacks. The stator is wound with the proposed 24 slots, 14 poles topology 

with double-layer (DL) winding in Section 4.2.2. The resulting copper slot fill factor 

is 43.4%. With a dual 3-phase winding configuration, 2 terminals of each phase 

winding come out and therefore 12 terminals come out in total. 

 

Figure 8.1 General assembly drawing of the IPM traction motor 

 

Due to the limitations of the lead time and cost, a water jacket housing was not 

adopted, the motor instead relied on passive air cooling via the housing. The rotor uses 

V-shaped structure with a single-layer of magnets and has internal arc ducts to 

minimize weight. 

            

          (a) Stator and rotor lamination                         (b) Stator assembly 
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      (c) Rotor assembly                            (d) Prototype assembly 

Figure 8.2 Components and assembly of the IPM traction motor prototype 

 

 

Figure 8.3 Schematic view of motor testing setup 

 

8.1.2 Experimental test 

8.1.2.1 Test rig setup 

To test the performance of the motor under different representative operating 

conditions, the test rig is developed, and its schematic is shown in Figure 8.3. 

The experimental test rig setup is shown in Figure 8.4. A PMSM servo motor is 

adopted as the load motor. Torque is measured with an HBM torque transducer. The 

control is realized by a back-to-back 3-phase voltage source inverters (VSI); one for 

the load motor, and another for the tested IPM motor. 
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(a) Back-to-back 3-phase voltage source inverters (VSI)  

 

 

(b) Motor test rig 

Figure 8.4 IPM traction motor testing setup 

 

8.1.2.2 Resistance measurement 

The resistance is measured at room temperature (20oC) using a DC current method. 

Due to the small phase resistance, an additional resistor is in series connected to limit 

the current to acceptable levels, as depicted in Figure 8.5. The measured results are 

summarized in Table 8.1. The resistance per phase is consistent, and the difference 

between the calculated and measured value is about 11%. The discrepancy may be 

attributed to the connections between different coils and the terminal leads. 
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Figure 8.5 Schematic of phase resistance measurement 

 

Table 8.1 Measured phase resistance of the IPM traction motor at 20oC 

 Calc.  
Measured 

A1 B1 C1 A2 B2 C2 

Value 

(ohm) 
0.0753 0.0845 0.0838 0.0836 0.0836 0.0835 0.0833 

Ratio - 1.12 1.11 1.11 1.11 1.11 1.11 

 

8.1.2.3 No-load test 

The no-load voltage was measured at room temperature (20oC) when the IPM motor 

is driven by the load motor operating at different speeds. Figure 8.6 shows the no-load 

phase voltage when the IPM traction motor is configurated as dual 3-phase winding 

operating at base speed of 1910rpm and its FFT spectrum. Table 8.2 summarizes the 

amplitude and RMS value of fundamental harmonic of the no-load phase voltage 

obtained from the experiment test with those of predicted by 3-D FEM calculation. It 

is worth noting that the 3-D FEM model is updated for the room temperature (20oC). 

As can be seen, the measured phase voltage is 4.7% lower than that of 3-D FEM 

results. This may be attributed to many factors, including the magnet dimension 

tolerance for inserting magnets into the rotor which can result in variations in magnet 

volume. In addition, the difference in B-H characteristic curves for both magnet and 

steel may also contribute to the difference. In addition, a 300 shift in time between the 

two 3-phase windings can also be observed, as would be expected from the novel 

winding layout. 
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When the dual 3-phase winding configuration are configured as a single 3-phase 

winding configuration via series connection as in Figure 8.7, the corresponding no-

load phase voltage is shown in Figure 8.8 and Table 8.2(b). Again, a lower measured 

value is observed. 

 

(a) Waveform 

 

(b) FFT spectrum 

Figure 8.6 Comparison of measured and predicted phase voltage of IPM motor 

@1910rpm for dual 3-phase configuration 
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(a) Coil phasor diagram                           (b) Physical connection 

Figure 8.7 Winding configurated as a single 3-phase connection 

 

Table 8.2 Measured and predicted EMF of IPM motor @1910rpm 

(a) Dual 3-phase configuration 

Fundamental 

voltage 
Calc. 

Measured 

A1 B1 C1 A2 B2 C2 

Amplitude (V) 73 70.2 70.2 69.9 71.3 69.9 70.3 

RMS (Vrms) 51.6 49.7 49.7 49.4 50.4 49.4 49.7 

Ratio (measured 

to calc.) 
- 0.962 0.962 0.957 0.977 0.957 0.963 

(b) Single 3-phase configuration 

Fundamental voltage Calc. 
Measured 

AB BC CA 

Amplitude (V) 139.8 135.2 133.7 134.6 

RMS (Vrms) 98.8 95.6 94.5 95.2 

Ratio (measured to calc.) - 0.967 0.957 0.963 
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(a) Waveform 

 

(b) FFT spectrum 

Figure 8.8 Comparison of measured and predicted phase voltage of IPM motor 

@1910rpm for single 3-phase configuration 

 

8.1.2.4 Load test 

Due to the limitations of the control drive, the control of dual 3-phase with 300 shift 

in time from each other, as in Figure 8.9, cannot be implemented. Thus, the dual 3-

phase windings are configured as a single 3-phase winding driven by a 3-phase voltage 

source inverter, as in Figure 8.10. Due to the torque limitation of the load motor, the 

full torque and power speed characteristics of the IPM motor cannot be completely 
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tested. Due to the absence of water jacket, to avoid overheating of the motor, the 

testing was done in a short period of time. 

300

300

00

A1

A2

B1

B2

C1

C2

A1
B1

C1

A2
B2

C2

 

Figure 8.9 Dual 3-phase winding configuration driven by two 3-phase VSIs 
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Figure 8.10 Single 3-phase winding configuration driven by a 3-phase VSI 

 

8.1.2.4.1 Measurement of d- and q- inductance 

The IPM traction motor is a salient pole synchronous motor where EM torque 

generated includes magnet torque and reluctance torque, as indicated in (3.45). The 

reluctance torque depends on the difference between d- and q- inductance. Thus, it is 

necessary to measure the d- and q- inductance versus different d- and q- axis current. 

The parameter measurement method presented in [171] is used, which is based 

on the steady-state voltage and current waveform and rotor position because at steady 

state the derivative items in the voltage equations are zero, as indicated in (3.45). The 

corresponding steady-state phasor diagram is shown in Figure 8.11. 

In this method, the motor is operating at certain steady speed. The motor speed 

should be selected carefully. The speed should be high enough to minimize the effect 

of resistive drop to the machine voltage drop.  On the other hand, the speed cannot be 
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too high such that the current gets distorted due to the high back EMF of the motor at 

high speeds. Therefore, a speed of 1000rpm is selected, which is lower than the base 

speed of 1910rpm. The motor is in current control mode and the inverter is controlled 

to feed the machine with different d- and q- axis current. The phase current is measured 

with a current probe, and the phase terminal voltage is measured with a differential 

probe. Due to the PWM switching and stator slotting effect, the voltage is not 

sinusoidal. Since only the fundamental component is concerned, the FFT is applied to 

the voltage and current waveform to extract the fundamental amplitude and phase 

angle information. The measured fundamental voltage and current with their phase 

angle information can then be used to calculate the d- and q- axis flux linkage using 

(8.1). Finally, the d- and q- axis inductance can be calculated using (8.2). 

It should be noted that the rotor position is not known. However, as the motor is 

in current control model, d- and q- axis current commands are given, so the measured 

current can be used to calculate the rotor position reference. The angle φ between 

current and q-axis can be easily calculated through the given d- and q- axis current 

command using (8.3); the angle between current and voltage can then be obtained by 

taking the difference between the phase angle of the fundamental voltage and the phase 

angle of the fundamental current. Then, the angle δ between the terminal voltage and 

q-axis can be achieved. 

 

Figure 8.11 Phasor diagram under load condition 

 

𝑈𝑑 = 𝐼𝑑𝑅𝑠 − 𝜔𝑒𝜆𝑞

𝑈𝑞 = 𝐼𝑞𝑅𝑠 + 𝜔𝑒𝜆𝑑
                                                       (8.1) 
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           𝐿𝑑 =
𝜆𝑑 − 𝜆𝑓

𝐼𝑑

𝐿𝑞 =
𝜆𝑞

𝐼𝑞

                                                            (8.2) 

𝜑 = tan−1 (
𝐼𝑑
𝐼𝑞

)                                                        (8.3) 

Figure 8.12 and Figure 8.13 shows the measured d- and q- axis inductance 

compared with 3-D FEM results. For the q-axis inductance, the measured results are 

higher than predicted results. However, as the q-axis current increases, the difference 

between them decreases. When Iq=24A, the difference is only about 4%. The 

significant errors at low q-axis current may be attributed to the high error in calculating 

the amplitude and phase angle of phase current as δ is relatively small which is more 

sensitive to the angle calculation error, while for higher q-axis current, the impact of 

the angle calculation error on δ becomes small. The manufacturing, material 

characteristics tolerance, and the effect of magnet temperature may also contribute to 

the difference. 

A similar trend can be observed in the d-axis inductance. The measured results 

are generally higher than the 3-D FEM predicted results, and the difference is from 

10% to 30%. Again, as the current increase, the difference decreases. More results are 

presented in Appendix B. 

 

Figure 8.12 q-axis inductance versus different q-axis current when Id=0A 
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Figure 8.13 d-axis inductance versus different d-axis current when Iq=6A. 

 

 

Figure 8.14 Comparison of measured and predicted torque of the IPM motor 

@1000rpm 

 

8.1.2.4.2 Efficiency measurement 

The efficiency measurement of the IPM traction motor is carried out under current 

control mode when the load motor is controlled under speed control mode. For 

simplicity, the Id=0A control strategy is adopted. 

Figure 8.14 shows the comparison of measured and predicted torque current 

characteristics when the IPM motor is controlled at 1000rpm. As can been seen, the 

measured torque is generally lower than the predicted results, with the difference 

within 5%. This may be attributed to the lower amplitude of no-load measured back 
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EMF. Factors such as material tolerance, manufacturing and magnet temperature may 

also contribute to it. 

The comparison of measured and predicted efficiency at different load 

conditions when the motor is operating at 1000rpm is plotted in Figure 8.15. The 

measured efficiency is lower than that of predicted and the difference between them 

varies from 1 to 1.6%, demonstrating a good level of accuracy. The difference between 

them is reasonable as the accurate estimation of losses is complicated. The winding 

temperature, magnet temperature and material loss data discrepancy may also 

contribute to it. 

 

Figure 8.15 Comparison of measured and predicted efficiency of the IPM motor 

@1000rpm 

 

8.1.2.5 Fault-tolerant capability test 

8.1.2.5.1 Three-phase open-circuit (OC) fault test 

The fault-tolerant capability test of the IPM motor under one 3-phase winding open-

circuit (OC) fault is carried out under current control mode when the load motor is 

controlled at speed mode operating at 1000rpm. To avoid the overheat of the motor, 

the test is done in a short period of time. For simplicity, the Id=0A control strategy is 

adopted. 

Figure 8.16 depicts the comparison of the measured and predicted torque current 

characteristics when only A1B1C1 is loaded whilst A2B2C2 is open-circuit at 
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1000rpm. As can be seen, the measured results agree well with the 3-D FEM results, 

and the difference between them is about 4-9%. 

 

Figure 8.16 Comparison of measured and predicted torque current characteristics of 

the IPM motor under OC fault @1000rpm 

 

8.1.2.5.2 Three-phase short-circuit (SC) fault test 

The fault-tolerant capability test of the IPM motor under short-circuit (SC) fault is 

carried out when the motor is driven by the load motor operating at different speeds. 

The comparison of measured and predicted steady-state SC characteristics when 

only A1B1C1 winding is short-circuited whilst A2B2C2 winding is open-circuit is 

plotted in Figure 8.17. As can be seen, the steady-state SC current increases when 

speed increases, approaching a constant value at high speed. The measured maximum 

steady-state SC current is about 21.7Arms which is smaller than 25.5Arms predicted 

from 3-D FEM; this may be attributing to the prototype’s higher end-winding leakage 

inductance and the lower no-load EMF coming from the negative impact of material 

and manufacturing tolerance. The critical speed where the maximum steady-state SC 

braking torque (negative torque) occurs at is 80rpm, as in Figure 8.17 (b). The 

measured maximum steady-state SC braking torque is 8.5Nm (negative) which is 

smaller than 9.7Nm predicted from 3-D FEM. 
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(a) Steady-state SC current 

 

(b) Steady-state SC braking torque 

Figure 8.17 Comparison of measured and predicted steady-state SC characteristics 

when only one 3-phase A1B1C1 winding is short-circuited 

 

To validate the output torque capability of the IPM motor under one 3-phase SC 

fault, the output torque of the IPM motor operating at the critical speed of 80rpm when 

the A1B1C1 winding is short-circuited and A2B2C2 winding is loaded with different 

currents (Id=0A control strategy is used) is tested, and the comparison with 3-D FEM 

simulation results is depicted in Figure 8.18. A good agreement is observed between 

experimental test and 3-D FEM results. It is worth noting that, the steady-state SC 

braking torque (negative value) reaches maximum value at the critical speed of 80rpm, 

thus the result shows the minimum output torque when one 3-phase is short-circuited, 

and the other 3-phase is loaded with different currents. It shows that the IPM motor 
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can still maintain some output torque capability even under the most extreme 

conditions of low speed SC operation. 

Finally, the steady-state SC characteristics of the IPM motor when the two 3-

phase windings are short-circuited (Two 3-phase windings are connected in series as 

in Figure 8.7(b)) is carried out, and the result is shown in Figure 8.19. As can be seen, 

the steady-state SC current is the quite similar to the case when one 3-phase winding 

is short-circuited, while the steady-state SC braking torque is almost doubled. The 

measured steady-state SC braking torque is lower than that of 3-D FEM result. Again, 

the difference between them may be attributing to the prototype’s higher end-winding 

leakage inductance and the lower no-load EMF coming from the negative impact of 

material and manufacturing tolerance. 

 

Figure 8.18 Comparison of measured and predicted output torque of the IPM motor 

when A1B1C1 short-circuit and A2B2C2 loaded with different current at 80rpm 

 

 

(a) Steady-state SC current 
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(b) Steady-state SC braking torque 

Figure 8.19 Comparison of measured and predicted steady-state SC characteristics 

when two 3-phases are short-circuit (Two 3-phase windings are connected in series) 

 

8.1.3 24 slots, 14 poles IPM motor summary 

Although the full torque-speed characteristic of the IPM motor cannot be fully tested 

due to the limitations of test rig, the performance comparison at no-load and light load 

condition illustrates the similarities between the 3-D FEM predicted and the 

prototype’s results. The performance under both 3-phase OC and SC fault conditions 

have been tested and compared to the predicted results, which demonstrates the 

excellent fault-tolerant capability of the IPM motor. All this demonstrates the 

applicability and prospect of the proposed 24S-14P IPM motor in the fault-tolerant 

traction motor applications. 

 

8.2 24 slots, 22 poles EMA motor 

To validate the design and analysis of the EMA motor presented in Chapter 6 and 

Chapter 7, two prototypes of the 24 slots, 22 poles EMA motor have been built. The 

manufacturing and testing of the EMA motor are detailed in this section. 
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8.2.1 Manufacturing and assembly 

The stator core pack with a single-layer winding for the EMA motor is shown in Figure 

8.20. Due to the narrow slot opening of 1.5mm, it is difficult to insert a coil into the 

slot and the end-winding projection is larger than expected. The resulting copper slot 

fill factor is 47%. It suggests that in the future a segmented modular tooth structure is 

preferable to facilitate the coil winding. This will reduce end-winding projection, 

increase the fill factor, improve the contact between wires and thereby improve the 

heat transfer between winding and stator core pack. In addition, a preformed wound 

coil can be pressed with certain pressure to further increase fill factor and improve 

heat transfer, as depicted in Section 3.2.5. With the dual 3-phase winding 

configuration, 2 terminals of each phase come out and therefore 12 terminals come 

out in total. 

 

Figure 8.20 Laminated stator core with winding of the EMA motor 

 

Table 8.3 Material of EMA prototype 

Parameter Designed Prototype 

Stator core material Vacoflux-50 DW270-35 

Rotor core material DW270-35 DW270-35 

Magnet material N45SH N45SH 

 

It should be noted that due to a cost and lead time issue during the prototype 

construction, the cobalt-iron alloys: Vacoflux-50 was not available; instead, the 

DW270-35 was used for both stator and rotor core manufacturing, as summarized in 
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Table 8.3. This will inevitably decrease the motor torque capability which will be 

presented in the next section. 

Figure 8.21 shows the rotor assembly of the EMA motor with and without rotor 

sleeve. Glass fiber is used for rotor sleeve to contain the surface-mounted magnets due 

to the low-speed characteristic. The rotor has a hollow shaft, as in Figure 8.21(b), to 

allow coupling the rotors of two motors when assembling two motors together. A 

removable shaft can be used for mounting an encoder if needed, as in Figure 8.21(a). 

Figure 8.22 depicts the EMA motor prototype assembly with encoder and flange. 

          

                (a) Rotor without sleeve              (b) Rotor without encoder-mounting shaft 

Figure 8.21 Rotor assembly of the EMA motor 

 

 

Figure 8.22 EMA motor prototype assembly 
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8.2.2 Modularity check 

Modularity in the prototype construction design was considered. The housing and 

endcap are designed to fit each other when assembling the unit motors together. The 

shaft extension part is designed to fit with the hollow part to facilitate the coupling of 

two shafts, as in Figure 8.21. 

To make sure the torque generated in the assembled two motors are not cancelled 

out from each other, the relative position between coils and magnets in the two motor 

units when rotating is required to be the same. To achieve this, the coil position relative 

to stator lamination keyway and the relative position between N-pole magnet and rotor 

keyway are fixed, as depicted in Figure 8.23. 

            

                 (a) Stator coil position               (b) Rotor magnet and keyway position 

Figure 8.23 Description of coil and magnet position relative to stator and rotor 

keyway 

 

 

Figure 8.24 Two interconnected EMA motors assembled together 
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With the modular mechanical design, two EMA motors can be assembled and 

one set of endcap and bearings between the two motors can be removed, as in Figure 

8.24. This demonstrated the feasibility of the modular EMA motor design concept. 

8.2.3 Experimental test: Single EMA motor 

8.2.3.1 Test rig setup 

The experimental testing rig is shown in Figure 8.25. A PMSM servo motor is adopted 

as the load motor. Torque is measured with an HBM torque transducer. The control is 

again realized by a back-to-back 3-phase voltage source inverters; one for the load 

motor, and the other for the EMA motor. The schematic of test rig is the same as the 

IPM motor test rig in Figure 8.3. 

 

Figure 8.25 EMA motor testing setup 

 

Table 8.4 Measured phase resistance of the EMA motor at 20oC 

 Calc. 
Measured 

A1 B1 C1 A2 B2 C2 

Value 

(ohm) 
0.1376 0.1549 0.1571 0.1568 0.1535 0.1542 0.1562 

Ratio - 1.13 1.14 1.14 1.12 1.12 1.14 

 

8.2.3.2 Resistance and inductance measurement 

The resistance is measured at room temperature (20oC) using the DC current method 

depicted in Section 8.1.2.2. The measurement results are summarized in Table 8.4. 

The phase resistance is consistent, but the difference between the calculated and 
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measured value is significant. As pointed out before, due to the narrow slot opening, 

the end-winding is not well shaped while inserting into slot, and therefore lead to a 

much longer end-winding projection. This is the source of the significant discrepancy 

between the calculated and measured value. 

Since the EMA motor has surface-mounted magnets, the inductance is almost a 

constant if not considering the magnetic saturation. The phase self-inductance is 

measured using AC current method as illustrated in Figure 8.26. A small AC current 

of 0.5Arms is fed into the winding and the self-inductance is then calculated through 

the measured voltage and current waveform, as summarized in Table 8.5. As can be 

seen that the measured phase self-inductance is 1.636mH which is about 13.2% higher 

than the predicted result of 1.445mH. This is reasonable, and the difference may be 

attributed to the prototype’s higher end-winding leakage inductance. 

Table 8.5 Measured phase inductance of the EMA motor at 20oC 

 Experiment 3-D FEM 

Phase-inductance (mH) 1.636 1.445 

 

 

Figure 8.26 Schematic of self-inductance measurement 

 

8.2.3.3 No-load test 

The no-load back phase voltage of all phases was measured at room temperature 

(200C) when the EMA motor was driven by the load motor operating at 1320rpm. 

Figure 8.27 and Figure 8.28 depict the measured no-load phase voltage and its FFT 

spectrum for the dual 3-phase and single 3-phase configuration, respectively. Table 

8.6 summarizes the amplitude and RMS value of the fundamental harmonic of the no-

load phase voltage obtained from the experimental test, compared to predicted values. 
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(a) Waveform 

 

(b) FFT spectrum 

Figure 8.27 Comparison of measured and predicted phase EMF of EMA motor 

@1320rpm for dual 3-phase configuration 

 

As can be seen from Figure 8.27 and Table 8.6(a), the measured phase voltage 

is slightly lower than 3-D FEM calculated value by about 2.6%, which may be 

attributed to the impact of material tolerance, steel machining process, lamination 

stacking factor and assembly tolerance. Their harmonic distributions are similar. A 

300 shift between the two 3-phase windings can be observed, as would be expected 

with the designed winding layout. 
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(a) Waveform 

 

 (b) FFT spectrum 

Figure 8.28 Comparison of measured and predicted phase EMF of EMA motor 

@1320rpm for single 3-phase configuration 

 

Like the IPM motor, when the two 3-phase windings are configured as a single 

3-phase winding through series connection as in Figure 8.7, the corresponding no-load 

phase voltage is shown in Figure 8.28 and Table 8.6 (b). A 3.6% lower measured value 

is observed. 
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Table 8.6 Measured and predicted EMF of EMA motor @1320rpm 

(a) Dual 3-phase configuration 

Fundamental voltage Calc. 
Measured 

A1 B1 C1 A2 B2 C2 

Amplitude (V) 30.9 30.0 29.9 30.1 30.3 29.7 30.4 

RMS (Vrms) 21.8 21.2 21.1 21.3 21.4 21.0 21.5 

Ratio (measured to 

calc.) 
- 0.972 0.969 0.976 0.981 0.963 0.984 

(b) Single 3-phase configuration 

Fundamental voltage Calc. 
Measured 

A B C 

Amplitude (V) 59.6 57.4 56.9 58.2 

RMS (Vrms) 42.2 40.6 40.2 41.1 

Ratio (measured to calc.) - 0.963 0.954 0.975 

 

8.2.3.4 Load test 

The load test is done to the EMA motor under current control mode when the load 

motor is controlled under speed mode. Due to the limitations of the drive, the control 

of dual 3-phase with 300 shift in time from each other cannot be implemented. Thus, 

like the IPM motor, the dual 3-phase windings are configurated as a single 3-phase 

winding driven by a 3-phase voltage source inverter, as in Figure 8.10. Since, the EMA 

motor has surface-mounted magnets, there is no reluctance torque and thus Id=0A 

control strategy is adopted. To maintain thermal stability, the testing was carried out 

over a short period of time. 

Figure 8.29 depicts the comparison of measured and predicted torque current 

characteristics when the EMA motor is operating at based speed of 660rpm. The 

measured torque is 7-8% lower than predicted with the same q-axis current excitation. 

This may be attributed to lower measured value of the no-load phase voltage. In 

addition, the difference may also be attributed to the factors such as material tolerance 

and magnet temperature. When loaded with 24A of q-axis current which is 

corresponding to 17Arms, the measured peak torque is 11.7Nm. 
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Figure 8.29 Comparison of measured and predicted torque of EMA motor @660rpm 

 

 

Figure 8.30 Comparison of measured and predicted efficiency of EMA motor 

@660rpm 

 

The efficiency comparison of experiment and predicted result is plotted in 

Figure 8.30. The measured efficiency is lower than the 3-D FEM predicted result, with 

the difference to be 3-8%. The higher the q-axis current, the higher the difference 

between measured and predicted efficiency. This difference may be attributed to the 

drop in the measured no-load back EMF and the tolerance between the predicted and 

practical iron losses. Both the increasing magnet temperature and coil temperature 

during test are also the contributing factors. In addition, both the friction loss and 

windage loss are neglected in the predicted results, which may also contribute to the 

difference.  
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8.2.3.5 Fault-tolerant capability test 

The EMA motor is designed with a dual 3-phase winding configuration. The fault-

tolerant capability when one 3-phase winding is under fault conditions is detailed in 

this section. 

8.2.3.5.1 Three-phase open-circuit (OC) fault test 

The fault-tolerant capability test of the EMA motor under one 3-phase winding open-

circuit (OC) fault is carried out under current control mode when the load motor is 

controlled as speed mode operating at base speed of 660rpm. Again, the Id=0A control 

strategy is adopted. To maintain the thermal stability, the test was carried out over a 

short period of time. 

Figure 8.31 depicts the comparison of the measured and predicted torque current 

characteristics when only one 3-phase winding (A1B1C1) is operating whilst the other 

one (A2B2C2) is open-circuit operating at 660rpm. The measured results are about 

6% lower than that of 3-D FEM results. This may be attributed to the lower measured 

no-load phase voltage. In addition, the material and manufacturing tolerance may also 

contribute to the difference. 

In addition, the torque when only A1B1C1 is loaded with 24A q-axis current 

(peak 17Arms) is 6.1 Nm, which is 52.1% of the torque when both A1B1C1 and 

A2B2C2 are loaded with the same 24A q-axis current. This confirms that the EMA 

motor can keep 50% output torque capability when one 3-phase winding is open-

circuit, as specified in Table 7.8. 

 

Figure 8.31 Comparison of measured and predicted torque current characteristics 

under OC fault @660rpm 
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8.2.3.5.2 Three-phase short-circuit (SC) fault test 

The fault-tolerant capability test of the EMA motor under SC fault is carried out when 

the motor is driven by the load motor. 

 

(a) Steady-state SC current 

   

(b) Steady-state SC braking torque 

Figure 8.32 Comparison of measured and predicted steady-state SC characteristics 

when one 3-phase A1B1C1 winding is short-circuited 

 

The comparison of measured and predicted steady-state SC characteristics when 

A1B1C1 winding is open-circuit while A2B2C2 is short-circuited is plotted in Figure 

8.32. It can be seen that the steady-state SC current increases when speed increases, 

approaching a constant value at high speed. The measured maximum steady-state SC 

current is about 9.7Arms which is smaller than 11.2Arms predicted from 3-D FEM 

which may be attributed to the prototype’s higher end-winding leakage inductance and 
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the lower no-load phase voltage coming from material and manufacturing tolerance. 

The critical speed where the maximum steady-state SC braking torque (negative 

torque) occurs at is 100rpm, as in Figure 8.32(b). The measured maximum steady-

state SC braking torque is 2.5Nm which is smaller than 2.8Nm predicted from 3-D 

FEM. 

In addition, the measured SC braking torque of 2.5Nm is about 21.4% of the 

measured peak torque of 11.7Nm. This confirms that the EMA motor can maintain a 

SC braking torque less than 25% of peak torque when only one 3-phase winding is 

short-circuited, as specified in Table 7.8. 

To validate the output torque capability of the EMA motor under one 3-phase 

SC fault, the output torque of the EMA motor operating at the critical speed of 100rpm 

when the A1B1C1 winding is short-circuited and A2B2C2 is loaded with different 

current (Id=0A control strategy is used) is tested, and the comparison with 3-D FEM 

simulation results is plotted in Figure 8.33. A good agreement is observed between 

experimental test and 3-D FEM results. It is worth noting that, the steady-state SC 

braking torque (negative value) reaches maximum value at the critical speed of 

100rpm, thus the result shows the minimum output torque when one 3-phase is short-

circuited and the other one is loaded. 

 

Figure 8.33 Comparison of measured and predicted output torque of the EMA motor 

when A1B1C1 short-circuit and A2B2C2 loaded with different current at 100rpm 

 

In addition, the EMA motor can generate a maximum torque of 3.6Nm (peak 

current of Iq=24A) under one 3-phase SC fault at the critical speed of 100rpm, which 
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is about 30.8% of the peak torque of 11.7Nm when the motor is in normal operation. 

This confirms that the EMA motor can keep 25% output torque capability when one 

3-phase winding is short-circuited, as specified in Table 7.8. 

 

(a) Steady-state SC current 

 

(b) Steady-state SC braking torque 

Figure 8.34 Comparison of measured and predicted steady-state SC characteristics of 

the EMA motor when the two 3-phase windings are short-circuit, respectively 

 

Finally, the steady-state SC characteristics of the EMA motor when the two 3-

phase windings are both short-circuited was carried out, and the result is shown in 

Figure 8.34. As can be seen, the steady-state SC current is the same as the case when 

one 3-phase winding is short-circuited, whilst the steady-state SC braking torque is 

doubled. The measured steady-state SC braking torque is lower than that of 3-D FEM. 

Again, the difference between them may be attributing to the prototype’s higher end-
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winding leakage inductance and the lower no-load EMF coming from the impact of 

material and manufacturing tolerance. 

In addition, the maximum SC braking torque is 4.8Nm, which is about 41% of 

the peak torque of 11.7Nm. This confirms that EMA motor can meet the requirement 

that the maximum SC braking torque when the two 3-phase windings are both short-

circuit should be less than 50% of the peak torque, as specified in Table 7.8. 

8.2.3.6 Thermal duty cycle test 

The thermal transient test of duty cycle operation of Figure 6.17, was carried out with 

660rpm, 17Arms of q-axis current at 25 oC. Four K-type thermocouples are placed on 

the winding to measure temperature, with their position summarized in Table 8.7. The 

rotor temperature is not measured due to the test rig limitations. 

To maintain consistency, the winding resistance in the thermal model is updated 

with measured value in Table 8.4. Table 8.8 summarizes the input loss data for the 

duty cycle thermal evaluation, where the iron loss and magnet loss are predicted using 

3-D FEM analysis. 

Figure 8.35 shows the comparison of measured and predicted winding 

temperature values. The measured temperature tends to be higher than the predicted 

winding average temperature. The peak temperature difference in each cycle of 180 

seconds is getting smaller. The measured temperature in TC2, TC3, and TC4 reaches 

to peak 111.6oC at 480 seconds, which is 4.3oC higher than the predicted winding 

hotspot temperature at that point. Compared to the predicted winding average 

temperature, the measured peak temperature in the winding during the duty cycle 

operation is about 13.2 oC higher. The higher measured temperature may be attributing 

to many factors. For instance, the material parameters discrepancy and the 

manufacturing tolerance may result in underestimated losses and different  thermal 

conduction from practical condition. In addition, good contact between wires in each 

coil is assumed in the simulation, while in the prototype it may not be the case. 

The simulation results in Section 7.7.1 shows that the maximum winding 

average temperature is 144.4oC. Considering the difference of 13.2 oC between 

simulation and experiment results, a winding with insulation class of 200oC still have 
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enough margin in terms of thermal perspective. This demonstrates that the EMA motor 

can meet the duty cycle operation requirement. 

 Table 8.7 Position of thermocouples 

Item Location 

TC1 End winding, phase A1 

TC2 In-slot winding, phase A2 

TC3 In-slot winding, phase C1 

TC4 End winding, phase B2 

 

Table 8.8 Input data for thermal evaluation 

Copper loss 

@25oC (W) 

Stator iron 

loss (W) 

Rotor iron 

loss (W) 

Magnet 

loss (W) 

Total loss 

(W) 

273.4 8.5 0.4 0.9 283.2 

 

 

Figure 8.35 Comparison of measured and predicted temperature behaviour @660rpm 

 

8.2.4 Experimental test: Two EMA motors assembled  

As mentioned before, the EMA motor features a modular structure. For higher 

power/torque requirement, a few of unit EMA motors can be assembled. In this thesis, 

two EMA motors are built and assembled to demonstrate the modular feature of the 
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EMA motor. Therefore, this section deals with the functional validation of the 

assembled two EMA motors by testing only no-load and load performance. 

8.2.4.1 Test rig setup 

The experimental testing rig is shown in Figure 8.36. A PMSM servo motor is adopted 

as the load motor. Torque is measured with an HBM torque transducer. The control is 

again realized by a back-to-back 3-phase voltage source inverters; one for the load 

motor, and the other for the EMA motor. 

 

Figure 8.36 Test rig setup for the assembled two EMA motors 

 

B11

B12

C11

C12

300

A11

A12

               

B21

B22

C21

C22

300

A21

A22

 

(a) EMA motor #1                                 (b) EMA motor #2 

Figure 8.37 Coil phasor diagram for the two EMA motors 

 

8.2.4.2 Winding configurations 

There are two EMA motors and their winding coil phasor diagram are depicted in 

Figure 8.37. To form a dual 3-phase winding configuration, there are two kinds of 
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connection method, as detailed in Figure 8.38, resulting different shift angle in time 

between A1B1C1 and A2B2C2. In this thesis, the dual 3-phase winding configuration 

with 300 shift in time was identified as the solution for EMA application. Therefore, 

the winding configuration in the Figure 8.38 (b) is selected.     
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(a) 00 shift between A1B1C1 and A2B2C2 
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 (b) 300 shift between A1B1C1 and A2B2C2 (selected) 

Figure 8.38 Winding configuration for the assembled two EMA motors 
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8.2.4.3 No-load test 

The no-load voltage was measured at room temperature (20oC) when the motor is 

driven by the load motor. Figure 8.39 shows the no-load phase voltage when the two 

EMA motor assembly is configured as a dual 3-phase winding as in Figure 8.38 (b) 

operating at 1320rpm and its FFT spectrum. Table 8.9 summarizes the amplitude and 

RMS value of fundamental harmonic of the no-load phase voltage obtained from the 

experiment test with those predicted by 3-D FEM calculation. 

As can be seen, the no-load phase voltage of the two EMA motor assembly is 

doubled compared to the single EMA motor. The measured phase voltage is 3% lower 

than that of 3-D FEM results. This may be attributed to many factors, including the 

magnet dimension tolerance and the difference in B-H characteristic curves for both 

magnet and steel. On the other hand, the tolerance when assembling these two EMA 

motors together may also contribute to the difference. 

Table 8.9 Comparison of measured and predicted phase voltage of the two EMA 

motors assembled @1320rpm 

Fundamental 

voltage 
Calc. 

Measured 

A1 B1 C1 A2 B2 C2 

Amplitude (V) 61.7 60.0 59.7 59.7 60.2 59.8 59.8 

RMS (Vrms) 43.6 42.5 42.2 42.2 42.5 42.3 42.3 

Ratio (measured 

to calc.) 
-- 0.973 0.968 0.968 0.975 0.969 0.969 

 

 

(a) Waveform 
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(b) FFT spectrum 

Figure 8.39 Comparison of measured and predicted phase voltage of the two EMA 

motors assembled @1320rpm 

 

8.2.4.4 Load test 

The load test is done to the EMA motor under current control mode when the load 

motor is controlled as speed mode. Again, due to the limitations of control drive, the 

control of dual 3-phase with 300 shift in time from each other cannot be implemented. 

Thus, the dual 3-phase windings are configured as a single 3-phase winding driven by 

a 3-phase voltage source inverter, as in Figure 8.40. The Id=0A control strategy is 

adopted. To maintain thermal stability, the testing was carried out over a short period 

of time. 
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Figure 8.40 Single 3-phase winding configuration driven by a 3-phase VSI for the 

two interconnected EMA motors assembled 
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Figure 8.41 Comparison of measured and predicted torque of the two interconnected 

EMA motors assembled 

 

Figure 8.41 plots the comparison of measured and predicted torque current 

characteristics when the two EMA motor assembly is operating at a base speed of 

660rpm. The measured torque is about 7-11% lower than predicted with the same q-

axis current excitation. This may be attributed to lower measured value of the no-load 

phase voltage. In addition, the difference may also be attributed to the factors such as 

material tolerance and magnet temperature. On the other hand, the tolerance when 

assembling these two EMA motors together may also contribute to the difference. 

The general agreement between the measured and predicted results for the two 

EMA motor assembly demonstrates the feasibility and functionality of the modular 

structure of EMA motor. 

8.2.5 24 slots, 22 poles EMA motor summary 

The experimentally measured and predicted results of the EMA motor are summarized 

in Table 8.10. General agreement between the model predicted and the prototype’s 

results can be observed considering the material and manufacturing tolerance. The 

modularity of the EMA motor is also validated through two EMA motor assembly. 

The winding hotspot temperature operating under extreme duty cycle condition is 

proved to be whithin the limit of the insultaion class. All this confirms the applicability 

and satisfactory implementation of the modular EMA motor for aircraft actuation 

system applications. 



Chapter 8. Prototyping and experimental validation 

- 236 - 

 

Table 8.10 Comparison of measured and predicted results of the EMA motor 

 3-D FEM Experiment 

Peak current (Arms) 17 17 

Peak Torque @ healthy (Nm) 13 11.8 

Peak Torque @OC fault (Nm) 6.6 6.2 

Max SC current (Arms) 11.4 9.7 

Critical speed (rpm) 100 100 

Max braking torque when one 3-phase 

SC fault (Nm) 
-2.75 -2.50 

Max braking torque when two 3-phase 

SC fault (Nm) 
-5.65 -4.80 

Min output torque when one 3-phase 

SC fault @critical speed (Nm) 
3.86 3.60 
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Chapter 9  

Conclusions 

The research work and main contributions of this thesis are concluded in this chapter. 

The limitations and the potential future scope of work are also included. 

 

9.1 Conclusions  

A comprehensive literature review on state-of-the-art technologies has been presented 

for two topics, including traction motor for electric vehicles (EV) and 

electromechanical actuator (EMA) applications for aircraft actuation systems. It is 

inferred that the PM synchronous motor with FSCW configuration is a potential 

candidate for electric traction applications due to its high torque/power density, 

excellent fault-tolerance, high reliability and easy manufacturing. However, the issue 

of significant stator MMF harmonics in FSCW motor may cause some undesired 

effects, including high rotor losses at high speed, localized saturation, and unbalanced 

radial force. For electromechanical actuator (EMA) applications, the use of PM 

synchronous motors with FSCW configuration are dominant. The issue of significant 

stator MMF harmonics in FSCW motor is not that crucial, while the torque density 

and fault-tolerance are the critical concerns for a direct-drive electric motor for EMA 

applications. 

After systematically analysing the principle of stator MMF harmonics in the 

FSCW motor using the winding function method and comparing different stator MMF 
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harmonic reduction techniques, a novel 24 slots, 14 poles FSCW topology with 

reduced stator space MMF harmonics was proposed using winding shifting concepts. 

Unlike the early winding shifting method which normally requires a two-slot pitch 

winding, non-overlapping or concentrated winding characteristics can be kept in the 

proposed winding. It has been shown that the novel winding configurations can cancel 

out all harmonics except for working harmonic and its slot harmonics. The main 

drawback is the lower winding factor compared to its counterpart. This, however, can 

be compensated by the reduced magnetic saturation level, improved overload 

capability and improved reluctance torque capability for IPM motors attributing to the 

reduced stator MMF harmonics. This method can also be extended to different 

slot/pole combinations with different phase numbers to facilitate different application 

requirements. 

The novel 24 slots, 14 poles FSCW topology has been applied to an IPM motor 

designed for an electric traction applications. The performance including torque 

capability, rotor saliency, flux-weakening capability, efficiency and fault-tolerant 

capability have been evaluated. High efficiency can be observed in most of the 

operation area and it can maintain an efficiency higher than 94% in the high speed 

zone. The torque ripple is very low which means no extra measures like rotor skewing 

that may induce additional cost and negatively impact on average torque are required. 

The proposed 24 slots, 14 poles IPM motor with a dual 3-phase with 300 shift winding 

was proved to exhibit the best torque performance under healthy conditions while 

maintaining a higher output torque with higher torque ripple under fault conditions, 

and no significant UMP under both healthy and fault conditions. A terminal short-

circuit (SC) current lower than rated current was observed which indicates that the 

motor can maintain continuous terminal SC fault without overheating the motor. 

The 24 slots, 14 poles IPM motor prototype was built. The full torque-speed 

characteristic of the prototype cannot be fully tested due to the limitation of test rig. 

However, the performance comparison at no-load and light load conditions gives a 

clear convergence between the 3-D FEM predictions and the testing results. The 

performance under both OC and SC fault conditions have been tested and compared 

to the predicted results, which demonstrate the excellent fault-tolerant capability of 

the IPM motor. All this demonstrates the applicability and prospect of the proposed 

24 slots, 14 poles IPM motor in the fault-tolerant traction motor applications. 
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The second topic focuses on developing a modular EMA capable of meeting a 

diverse range of requirements for aircraft actuation systems. The concerns of the 

electromechanical actuator (EMA) including actuation system architecture and 

actuator configurations have been evaluated, in terms of weight, reliability, size, 

efficiency and cost. The EMA scheme of a fault-tolerant rotary motor plus a 

mechanical roller screw has been identified as a promising EMA solution. The 

reliability analysis of the actuation system architecture and actuator configurations 

have confirmed the best configuration of two anti-jamming EMAs in parallel 

connection, with each EMA equipped with a dual three-phase drive. This 

configuration meets the requirements of safety-critical actuation applications. 

A modular fault-tolerant 24 slots, 22 poles SPM motor with a high level of 

physical, electrical, magnetic, and thermal isolation was developed for the EMA 

application. The modular mechanical structure, detailed electromagnetic design, and 

thermal management are fully discussed. Performance improvement is achieved 

through using parallel magnetization methods, high performance steel, and a dual 3-

phase winding with 300 shift. Analysis of motor fault conditions and the calculation 

of armature inductance have given a guideline for selecting appropriate slot 

dimensions to achieve the desired short-circuit (SC) current and braking torque under 

short-circuit (SC) fault conditions. An interesting finding was that by having an 

armature inductance higher than one per-unit, the motor output torque capability under 

SC fault can be considerably improved without sacrificing considerable torque 

capability in the healthy condition. In addition, the thermal evaluation under the 

designed extreme duty cycle operation shows that the EMA motor can safely operate 

and the hotspot is in the winding. Sensitivity studies on the losses suggests that it has 

enough thermal margin even in the winding hotspot position. 

The experimental results of the 24 slot, 22 pole motor prototypes agree well with 

the model predicted results. The steady-state SC current and braking torque is slightly 

lower than predicted, and the output torque under one 3-phase OC or one 3-phase SC 

fault is quite close to the predicted results, which demonstrate its fault-tolerant 

capability. The slight mismatch is likely due to the material and manufacturing 

tolerances. The winding hotspot temperature operating under extreme duty cycle 

conditions is proved to be within the limit of the insulation class. In addition, the 

modularity of the EMA motor is also validated through two interconnected motors 
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assembled, and the measured performance under this configuration agrees well with 

the predicted results. All this confirms the applicability and satisfactory 

implementation of the modular EMA motor for aircraft actuation system applications. 

 

9.2 Future scope of work 

There are some limitations of the research work presented in this thesis, which 

indicates various potential further research works, as outlined below: 

• Applying the proposed winding designs with reduced stator MMF harmonics 

to synchronous reluctance motor (SynRM) which has multi-layer flux barriers 

rotor to achieve high saliency ratio. 

• Application of the proposed FSCW topologies in multi-phase motors. 

• Investigation of the demagnetization withstand capability of PM synchronous 

motor with proposed FSCW topologies under various operating conditions 

including post-fault operations. 

• In the designing of fault tolerant motors in this thesis, only open-circuit (OC) 

and terminal short-circuit (SC) faults are considered. Investigation on some 

other fault scenarios such as SC fault in a single turn, or in a few turns, and the 

corresponding remedial actions can be explored in the future. 

• Due to the limited cooling options for EMA motor, end-winding potting 

techniques could be adopted as a potential way to improve the heat dissipation 

from winding to housing and hence improve the electric loading and torque 

density. Further investigations on this  could be undertaken. 

• Due to the limitations of time and cost, a complete EMA prototype including 

rotary to linear translator is not built in this thesis. In the future, it is expected 

that the EMA motor can be integrated with a mechanical screw part so that the 

full functional test of an EMA can be implemented and evaluated. 
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Appendix A 

Winding distribution of multi-phase FSCW 

motor with reduced stator MMF harmonics 

A.1. Four-phase, 16 slots, 10 poles (16S-10P) winding configurations 

The four-phase, 16 slots, 10 poles (16S-10P) winding motor can be obtained by 

doubling the slot numbers of an 8 slots, 10 poles (8S-10P) winding motor. 

In fact, there is an angular difference between coil phasors of each phase in a 

four-phase, 16S-10P motor. Therefore, similar to 3-phase FSCW motors, if a multiple 

four-phase winding with an appropriate shift angle is used, all the harmonics except 

for working harmonic and its slot harmonic can be eliminated [117]. More details will 

not be further discussed in this thesis. 
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                      (a) MMF waveform                                         (b) FFT spectrum 

MMF waveform and FFT spectrum comparison of conventional 8S-10P with SL and 

DL winding topology 
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                      (a) MMF waveform                                   (b) FFT spectrum 

MMF waveform and FFT spectrum comparison of proposed four-phase 16S-10P 

with SL and DL winding topology 
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A.2. Five-phase, 20 slots, 12 poles (20S-12P) winding configurations 

The five-phase, 20 slots, 12 poles (20S-12P) winding motor can be obtained by 

doubling slot numbers of a 10 slots, 12 poles (10S-12P) winding motor. 

Again, the concept of multiple m-phase winding configurations [117] can be 

used to cancel out the sub-harmonics. More details will not be further discussed in this 

thesis. 
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Appendix B    

Comparison of inductance and torque of the 

24 slots, 14 poles IPM motor 

 (a) Id=0A 

Id (A) Iq (A) 

Measured 3-D FEM 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

0 3 - 5.82 3.0 - 3.66 3.2 

0 6 - 4.74 6.0 - 3.63 6.2 

0 9 - 4.39 8.8 - 3.58 9.3 

0 12 - 4.07 11.6 - 3.51 12.2 

0 15 - 3.79 14.2 - 3.40 15.0 

0 18 - 3.60 16.6 - 3.30 17.6 

0 21 - 3.44 18.8 - 3.20 20.1 

0 24 - 3.21 21.0 - 3.08 22.4 
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(b) Id=-3A 

Id (A) Iq (A) 

Measured 3-D FEM 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

-3 3 2.33 6.09 3.6 1.98 4.10 3.6 

-3 6 2.55 4.98 6.6 1.93 3.91 6.9 

-3 9 2.94 4.60 9.6 1.98 3.77 10.1 

-3 12 3.64 4.27 12.4 2.12 3.67 13.2 

-3 15 4.49 3.93 15.2 2.34 3.58 16.1 

-3 18 5.32 3.69 17.6 2.66 3.44 18.9 

-3 21 6.01 3.52 20 3.04 3.32 21.5 

(c) Id=-6A 

Id (A) Iq (A) 

Measured 3-D FEM 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

-6 3 2.53 6.13 0.8 2.17 4.52 0.6 

-6 6 2.63 5.02 4 2.12 4.15 4.1 

-6 9 2.72 4.77 7.2 2.11 3.99 7.5 

-6 12 3.03 4.41 10.4 2.15 3.85 10.9 

-6 15 3.39 4.09 13.4 2.24 3.70 14.1 

-6 18 3.54 3.92 16.2 2.36 3.57 17.2 

-6 21 3.87 3.67 18.8 2.53 3.44 20.0 
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(d) Id=-9A 

Id (A) Iq (A) 

Measured 3-D FEM 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

-9 3 2.73 6.99 4.4 2.32 4.93 4.6 

-9 6 2.65 5.13 7.8 2.27 4.35 8.2 

-9 9 2.74 4.85 11 2.24 4.17 11.6 

-9 12 2.75 4.42 14.2 2.24 4.01 15.0 

-9 15 3.10 4.25 17.2 2.26 3.86 18.2 

-9 18 3.09 3.97 19.9 2.32 3.70 21.1 

(e) Id=-12A 

Id (A) Iq (A) 

Measured 3-D FEM 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

-12 3 3.54 6.56 4.9 2.46 5.25 5.0 

-12 6 2.65 5.39 8.3 2.40 4.59 8.7 

-12 9 2.80 4.84 11.7 2.38 4.38 12.3 

-12 12 2.84 4.52 14.9 2.34 4.15 15.8 

-12 15 2.82 4.26 18.1 2.34 3.98 19.1 

-12 18 3.03 4.00 20.9 2.35 3.82 22.2 
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(f) Id=-15A 

Id (A) Iq (A) 

Measured 3-D FEM 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

Ld 

(mH) 

Lq 

(mH) 

Torque 

(Nm) 

-15 3 2.75 6.87 5.3 2.57 5.68 5.5 

-15 6 2.84 5.44 8.9 2.51 4.81 9.3 

-15 9 2.75 4.93 12.3 2.47 4.47 13.0 

-15 12 2.90 4.60 15.7 2.44 4.26 16.6 

-15 15 2.88 4.37 18.9 2.41 4.08 20.0 

-15 18 2.86 4.10 21.9 2.40 3.91 23.2 
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