
   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Targeting Alternative Splicing as a Novel 

Approach to Chemotherapy Induced Peripheral 
Neuropathy  

 
 
 

 

Matthew N. Swift BSc 
 
 
 

A thesis submitted to the University of Nottingham for the 
degree of Doctor of Philosophy (PhD) 

 
 
 

December 2020 

 
 

 



   

 

2 

 

Abstract: 
 
 
Chemotherapy induced peripheral neuropathy (CIPN) is one of the most prevalent 
adverse effects of many chemotherapy drugs. It is estimated that up to 85% of 
patients suffer from CIPN during treatment and in many patients, painful neuropathy 
can continue beyond cessation of chemotherapy. Common symptoms of CIPN 
include, thermal and mechanical allodynia and painful sensations that are commonly 
described as burning and shooting pain. CIPN is often a dose limiting factor in the 
provision of chemotherapy. Currently, there are no effective treatments capable of 
preventing or treating CIPN. Consequently, CIPN is becoming an increasingly 
significant healthcare burden.  
 
As a result of this burden, there is a pressing need to develop novel therapeutic 
approaches with which to prevent and treat CIPN. In addition to this, development of 
chemotherapy agents that are as effective as traditional compounds but lack the 
severe adverse effects is also desirable. Recently, the neuroprotective and anti-
nociceptive properties of alternatively spliced VEGF-A isoforms were identified in the 
context of diabetic and platinum chemotherapy neuropathy. VEGF-A isoform 
expression is governed by the activity of splicing kinase SRPK1 which 
phosphorylates splicing factor SRSF1 and controls the expression of VEGF-A 
isoforms by selection of the proximal or distal splicing site of exon 8 of the VEGFA 
gene. Inhibition of SRPK1 leads to distal splice site selection and the expression of 
VEGF-Axxxb isoforms which are neuroprotective and anti-nociceptive. Other splicing 
kinases with confirmed or putative roles in VEGF-A alternative splicing control 
include CLK1/CLK2 and DYRK1A. Therefore it has been proposed that novel 
compounds that inhibit these splicing kinases could have potential utility in 
preventing the onset of CIPN or be capable of reversing the neuropathy 
therapeutically via VEGF, or alternative splicing pathways.  
 
This thesis investigated the anti-nociceptive and neuroprotective properties of 4 
novel splicing kinase inhibitors in in vitro models of vincristine induced neuronal 
sensitisation and vincristine induced neurite dieback, using dissociated primary DRG 
neurons. Additionally, an early stage chemotherapy agent, jerantinine was used in 
the same models and was compared to the neurotoxic and sensitising effects of a 
traditional agent, vincristine. Alteration of splicing kinases SRPK1, CLK1, CLK2 and 
DYRK1A with the 4 compounds was able to significantly inhibit vincristine induced 
sensitisation, in addition to preventing neurite dieback in response to chemotherapy 
challenge whilst having little or no detrimental effect as independent treatments. 
Furthermore, jerantinine did not sensitise neurons to the same degree as vincristine 
and caused a milder degree of neurite dieback. Using a 3D tumour spheroid model, 
inhibition of all 4 kinases combined with vincristine treatment significantly reduced 
spheroid growth whilst inhibitors had no effect on spheroid growth in the absence of 
vincristine. These findings suggest that these compounds will not inhibit 
chemotherapy activity and appease concerns that they could drive tumour growth. 
These results demonstrate that control of alternative splicing via inhibition of multiple 
kinases could be a potentially beneficial in preventing or treating CIPN, and that the 
novel chemotherapy agent jerantinine is worth developing further due to its reduced 
adverse effects.  
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1: Introduction 

 

1.1.1 Nociceptive Pain  

Pain as defined by the International Association for the Study of Pain (IASP) is “An 

unpleasant sensory and emotional experience associated with, or resembling that 

associated with actual or potential tissue damage”. Pain is a mechanism that aims to 

protect the body following contact with a potentially damaging stimulus by triggering 

a behavioural response (Dubin and Patapoutian, 2010). In response to acute pain, 

this is usually a stimulation of a withdrawal reflex away from the stimulus to prevent 

progressive tissue damage from exposure (Woolf and Ma, 2007). Pain can also 

persist in the event of injury, with the injured area becoming inflamed. This pain is 

usually reversible, and exists to prevent further damage as the tissue is repaired. As 

such, pain is a vital survival protective mechanism (Amaya et al., 2013). This 

canonical protective mechanism of pain is termed “nociceptive pain” and is a 

component of the somatosensory system. 

 

The somatosensory system is fundamental to the detection of stimuli, be they 

noxious or benign and how these stimuli are processed and interpreted by the 

various components of the nervous system. The somatosensory system relies on 

peripheral first order neurons, so called “peripheral afferents” which detect the 

stimulus, generate action potentials and transmit this information to the spinal cord, 

where information is transferred across the first synapse in the central nervous 

system to dorsal horn neurons (Nelson 2001). Following first order neuron 

processing, second order neurons carry this nociceptive information to the thalamus 

before transmission to third order neurons in the cortex where perception occurs. 
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Information is also transmitted to areas such as the brainstem which integrates 

autonomic responses to stimuli.  Involvement of the limbic system produces negative 

emotional responses that can exacerbate perceptions of pain.  There is also input 

into the sensory cortex from the anterior cingulate, insular cortices, cerebellum and 

other sites in response to nociceptive stimulation, indicating involvement of multiple 

brain regions as shown by fMRI (Peirs and Seal, 2016). These regions cover both 

the sensory and emotional aspects of pain as referred to in the IASP definition. 

Despite the importance of these higher centres for pain processing, they rely on 

primary afferent nociceptors for first contact and it is crucial that these first order 

neurons can accurately transduce information about a stimulus be it thermal, 

mechanical or chemical so that the body can respond appropriately (Todd, 2002). To 

account for this, first order neurons can be stratified into a variety of classifications.  

 

1.1.2: Nociceptor Classes  

As mentioned, nociceptors are required to detect a variety of potentially damaging 

stimuli and then transfer this information to the CNS for processing. As such many 

nociceptors are described as possessing “polymodality” which essentially refers to 

the ability of chemical, mechanical and thermal stimuli to be detected and processed 

by a single receptor (Hoffmann et al., 2008). First order neurons can be either 

myelinated or unmyelinated, which refers to the substance which acts as insulation 

on nerve cell axons and therefore serves to increase the speed at which action 

potentials can be transported along the nociceptive system (Williamson and Lyons, 

2018). In the PNS, myelin is produced by Schwann cells, a sub-type of so called glial 

cells which are non-neuronal support cells of the nervous system (Salzer, 2015). In 

the CNS, myelin insulation is created by another type of glial cell, so called 



   

 

16 

 

oligodendrocytes (Baumann and Pham-Dinh, 2001). CNS myelination is a key 

component of motor function as demonstrated by the debilitating effect of myelin 

disorders such as multiple sclerosis on these processes (Goldenberg, 2012). 

However in the PNS, unmyelinated sensory neurons play a key role in the detection 

of various stimuli. It is this myelination property that serves as a key distinguishing 

characteristic between classes of sensory neurons. Erlanger and Gasser classified 

unmyelinated neurons as possessing so called C-fibres that are small in diameter 

(Gasser and Erlanger, 1927). On average they are 0.2-1.5µm in diameter and have a 

slow conduction velocity due to the lack of myelin insulation of <1m/s. It is important 

to note that not all C-fibres are nociceptors, a proportion of these fibres are low 

threshold touch receptors, a population first identified by Nordin et al. and Vallbo et 

al. (Nordin, 1990; Vallbo et al., 1993). This sub-population of C-fibres are generally 

associated with pleasant sensations relating to touch that is common across 

mammalian species. This slow conduction velocity contrasts with the 2 fibre types 

possessed by myelinated neurons. Myelinated neurons are split into two sub-

classifications Aβ fibres and Aδ fibres. Aδ fibres are thinly myelinated but are larger 

diameter (1-5µm) than C-fibre counterparts. As a result of myelination, they also 

have faster conduction velocity of 2-10m/s (Lewin and McMahon, 1991). Aβ fibres 

are larger still in diameter (6-12µm), have even greater myelin insulation and as such 

even faster conduction velocity of >10m/s (Djouhri and Lawson, 2004). Though 

around 30% of Aβ fibres are associated with nociception, this fibre type is primarily 

involved with the detection of mechanical stimuli that is not harmful or noxious. A 

final fibre type Aα fibres are among the largest in diameter of sensory fibre types 

being up to 20µm. These fibres also possess very fast conduction velocities of more 

than 80m/s. However, these latter fibres are associated with muscle spindles and are 
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associated with proprioception, or the sense of self movement and body position 

rather than nociception (Watson and Dyck, 2015).  

 

Aδ fibres can be further sub-divided into Type I and Type II high threshold A-

mechano-heat (AMH) nociceptor classifications (Treede et al., 1995). Type I AMH 

are associated with high thermal thresholds of over 50°C but have important 

functions in detecting and processing ‘first pain’ information from noxious mechanical 

stimuli. Conversely, Type II AMH have a thermal activation threshold much lower 

than that observed in Type I, but higher mechanical thresholds. Type II AMH 

therefore are primarily involved in the detection and processing of ‘first pain’ noxious 

heat stimuli >50oC probably transduced by TRPV2, a type of cation channel that is 

detailed in Section 1.1.3. Type I AMH can be sensitised under conditions of tissue 

damage, when their thermal thresholds for activation drop, resulting in increased 

signalling to thermal stimulation at temperature <50oC (van den Broeke, Lenoir and 

Mouraux, 2016). C-fibres represent the largest population of nociceptors and due to 

their slow conduction velocity in the absence of myelination are responsible for dull, 

slow painful sensations that can be fairly wide-spread (Beissner et al., 2010). This is 

in contrast to Aδ fibres which evoke short, sharp acute sensations of pain in 

response to stimuli (Ahlquist and Frmzta, 1994). The reason underpinning this 

difference can be partially explained by C-fibre populations converging inputs and 

creating larger receptive fields, resulting in a more general widespread sensation 

than that evoked by nociceptors with smaller discrete receptive fields (Hallin, 

Torebjork and Wiesenfeld, 1982). Therefore areas considered to be more sensitive 

often have clustered neurons in large numbers, but with small receptive fields. Less 

sensitive areas have fewer neurons across an area, but with much wider receptive 
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fields. The majority of C-fibres are polymodal in nature and have the ability to detect 

thermal, mechanical and chemical stimuli, though single modality C-fibres also exist 

(Wooten et al., 2014). There is also a subset of C-fibres that in normal nociceptive 

conditions are not activated by thermal or mechanical thresholds. However, in the 

event of tissue injury these “silent nociceptors” become sensitive to these two 

classes of stimuli, which is moderated by the release of inflammatory mediators 

(Prato et al., 2017). This activation causes innervated tissue to become more 

sensitive and triggers nociception from otherwise non-noxious stimuli. Both Aδ fibres 

and C-fibres can be further sub-divided based on chemical properties. Both fibre 

types can be classed as peptidergic, associated with the expression and release of 

substance P and these account for ~40% of the nociceptor population (Lawson et al., 

1997). These neurons are often identified through their expression of TrkA which is 

the binding receptor of Nerve Growth Factor (NGF). Peptidergic neurons are reliant 

on NGF to survive, meaning TrkA is also essential to transduce the effects of NGF. 

Non-peptidergic neurons are not dependent on NGF for survival, but rather glial 

derived neurotrophic growth factor (GDNF). The effects of this neurotrophin are 

mediated through the GFR-α and c-ret receptors. Non-peptidergic neurons are 

identified thorough expression of Isolectin B4; this is due to the fact that almost all 

neurons found expressing IB4 are also RET positive. Along with this, over 80% of 

IB4 positive neurons also express GFR-α. However, it is important to note that 

overlap exists within these populations and differences are present across species 

(Stucky and Lewin, 1999; Ernsberger, 2009).  

 

Whilst the fibres of PNS neurons process out to the periphery via long projections, 

the cell bodies of these peripheral neurons are located in the dorsal root ganglia 
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(DRG). The DRG are located within the intervertebral foramina of the spinal column 

(Silav et al., 2016). Primary afferent fibres of neurons projecting into these ganglia 

are so called pseudo-unipolar neurons. Unlike bi-polar neurons that have a sensory 

terminal connected a dendrite which projects action potentials to the cell body and 

then to upstream pathways via an axon, pseudo-unipolar neurons have only a single 

axon fibre (Takahashi and Ninomiya, 1987). This fibre splits into a peripheral 

projection where the sensory terminal responsible for stimuli is located and then into 

a central projection which transmit this information into the dorsal horn of the spinal 

cord and to second order neurons. The cell body contained in the DRG can serve as 

the interchange between the peripheral and central axonal projections though 

peripheral signals can often bypass it by transmitting directly straight through to the 

central projection (Liem et al., 2016). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Schematic of primary afferent projections into the DRG and spinal cord  

  
Representative schematic of primary afferent fibre projection from the peripheral epidermis to the 
dorsal root ganglia and then into the various laminae of the spinal cord. Dorsal root ganglia contain 
the cell bodies of peripheral afferents. In the top image, unmyelinated C-fibres (red) project into 
lamina I and II. In the bottom image, myelinated (blue) A-fibres project into lamina I and V. From 
Dubin and Patapoutian, 2010.  
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Different fibres also project to different areas of the dorsal horn of the spinal cord. 

These can be seen in Figure 1.1. Peptidergic C-fibres project into laminae I and 

outer laminae II, along with myelinated Aδ fibres which project into laminae I and 

laminae V. Non-peptidergic C-fibres also project into inner laminae II. Finally, the 

largely non-nociceptive Aβ fibres project into laminae III and IV (Naim et al., 1997; 

D’Mello and Dickenson, 2008). Having reached these points, the release of 

neurotransmitters facilitates the activation of the aforementioned second order 

neurons which trigger the pain processing pathways of the brain described 

previously. It is important to mention that these pain processing centres of the spinal 

cord can be involved in ascending or descending pathways that can dampen or 

exacerbate pain processing and severity of pain sensation (Tesfaye et al., 2013).  

 

1.1.3: Polymodality and Cation Channels 

A fundamental property of primary afferents nociceptors, in particular C-fibres is their 

polymodality or ability to detect a variety of thermal, mechanical and chemical 

stimuli. Underpinning this property is neuronal expression of a variety of receptors 

which detect and transduce these stimuli into the flux of a variety of cations in 

response to the stimulus. This cation flux into the cell is the key mechanism 

underlying the receptor potential by which membrane depolarisation occurs and the 

action potential is generated initiating the processing of mechanical, thermal and 

chemical stimuli in the nervous system. A prime example of the channels by which 

this flux occurs is the transient receptor potential (TRP) cation channel family 

(Caterina et al., 1997). Expression of these channels is not limited to the peripheral 

nervous system and there are 30 TRP channel proteins expressed in mammals 

across 6 sub-families. Nociceptors have been found to express at least 6 of these 
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channels, including transient receptor potential vanilloid subtype 1 (TRPV1), 

transient receptor potential cation channel, subfamily A member 1 (TRPA1) and 

transient receptor potential cation channel subfamily M, member 8 (TRPM8) 

(Pedersen et al., 2005). These channels can be activated by a sliding scale of heat 

stimuli, and in response to various other stimuli. For instance, TRPV1 is activated at 

a threshold of around 43°C and by the potent chemical capsaicin, the active 

ingredient of chilli peppers (Touska et al., 2011). TRPA1 has previously been 

associated with detection of colder temperatures and does have heat based 

activation threshold and activation by a variety of chemicals such as cinnamaldehyde 

and allyl isothiocyanate which is the active ingredient in pungent tasting foods such 

as wasabi, mustard and radishes (Boiko et al., 2017). However, more commonly 

TRPA1 is regarded as a universal sensitiser that is activated by mediators of tissue 

damage (Karashima et al., 2007; Fernandes et al., 2012). These two channels have 

particular importance in terms of nociception. TRVP1 causes rapid calcium influx and 

release from intracellular stores upon activation by capsaicin and heat. As TRPV1 is 

expressed predominantly in nociceptor populations of both  C-fibres and Aδ fibres it 

is possible to use capsaicin to discern between nociceptive and non-nociceptive 

fibres, as only TRPV1 expressing fibres will respond. As there is considerable 

overlap between TRPV1 and TRPA1 expression in neurons, activation of TRPA1 

with allyl isothiocyanate (AITC) would replicate this effect. This therefore allows for 

clear identification of nociceptors within a group of peripheral neurons (Ambrosino et 

al., 2013). The importance of TRP channels in the detection of various stimuli has 

been examined in knock-out studies. Elimination of TRP channels in rodent models 

have revealed complete insensitivity to thermal (both noxious heat and cooling 

sensation) mechanical and chemical stimulants demonstrating the polymodal 
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properties they retain and the mechanisms that underpin them in neurons (Kwan et 

al., 2006; Hulse et al., 2014).  

 

Other channels that are fundamental to nociception and peripheral sensations are 

the voltage gated sodium channels such as NaV1.7, NaV1.8 and NaV1.9. Though 

nine of these channels are expressed in primary afferents, these three channels are 

most heavily associated with nociception (Eijkelkamp et al., 2012). These channels 

are classified based on their sensitivity to tetrodotoxin (TTX), a sodium channel 

blocker and an inhibitor of action potential generation by blocking sodium cation 

influx. NaV1.8 and NaV1.9 are TTX resistant whereas NaV1.7 is sensitive to TTX 

blockade (Fort et al., 2009). All three channels are commonly expressed in small 

diameter neurons, though there is also expression in A-fibres. NaV channels are 

associated with early responses to stimuli. For instance, NaV1.7 is associated with 

minor changes to neuronal membrane voltage, so called “receptor potentials” which 

are first transduced by TRP channels in response to chemical or heat stimuli. As 

TRP channels open and cation flux occurs these potentials are then progressively 

amplified by NaV1.7 which due to its slow inactivation properties allows small 

progressive depolarisations to build up into a so called “ramp current” (McDermott et 

al., 2019). This effectively serves to prime NaV1.8 channels which have a much 

higher depolarisation threshold, and serves as a main driver of sodium currents of 

the action potential. NaV1.8 also has an extremely rapid recovery from activation 

allowing the neurons to fire repeatedly over a short period of time which is a key 

determinant of neuronal excitability (Hameed, 2019). The importance of these 

channels is again emphasised in knock out experiments and in patients suffering 

from neuropathy. Knockout of either or both channels reduced responses to thermal 
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and mechanical stimuli and in the rare case of congenital loss of NaV1.7 in humans, 

a total insensitivity to pain is present (Gingras et al., 2014). Conversely, in 

neuropathy patients there is some evidence suggesting upregulation of both 

channels as a result of gain of function mutations (Dib-Hajj et al., 1999; Tanaka et 

al., 2017). These findings indicate that both TRP channels and NaV channels are of 

great importance in determining neuronal excitability and function. Overviews of both 

TRP channels and NaV channels can be seen in figures 1.2 and 1.3 respectively.   

 

Figure 1.2: TRP Channel Summary  

Diagram of TRP channels expressed in primary afferent fibres their thermal activation thresholds and 
chemical containing foods that lead to their activation.  These are cinnamon, mint, oregano and chilli 
pepper respectively.  Figure is adapted from Dhaka et al. 2006. 
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Figure 1.3: NaV Channel Summary 

A summary of NaV channel contributions to the firing of an action potential. NaV1.3/1.9 are 
associated with amplification of sub-threshold stimuli detected by a transducer (such as TRP 
channels)  which is further amplified by NaV1.6/1.7, leading to NaV1.8 activation and action potential 
firing. Figure from Bennett et al. 2019. 

 

1.1.4: Pathological Pain  

Whilst nociceptive pain describes sensations that are components of essential 

evolutionary and protective mechanisms, pain that persists beyond the time taken for 

injury to heal can result in painful responses to what would normally be non-harmful 

stimuli. Such pain has no physiological function and is regarded as pathological in 

and of itself rather than a response to a potentially pathological factor. This type of 

pain is termed “neuropathic pain” and is defined by IASP as “pain caused by a lesion 

or disease within the somatosensory system” (Colloca et al., 2017). This definition is 

broad and can refer to injury along any part of the sensory pathways described 

previously, both in the PNS and CNS. Neuropathic pain can also occur for prolonged 

periods, this is termed “chronic pain”. IASP define chronic pain as any pain lasts or 

recurs for more than 3 months (Fayaz et al., 2016). Another closely linked form of 
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pain that can lead to neuropathic pain but not inevitably is inflammatory pain. 

Inflammatory pain is initiated by the body’s response to damaged tissue in the event 

of injury. Though the aim of the response is tissue repair and protection, in many 

cases the inflammation becomes poorly regulated and impacts negatively on the 

surrounding nervous tissue often exacerbating the original injury or insult (Kidd and 

Urban, 2001). Whilst it is possible this dysregulation can result in neuropathic pain, a 

prominent example of non-neuropathic but chronic inflammatory pain is that often 

associated with rheumatoid arthritis (Gavrilă et al., 2016).   

 

 

1.1.4.1: Inflammatory Pain  

Immune responses to damaged tissue are commonplace in nearly every system 

within the body (Cooke, 2019). Though usually promoting healing and protecting the 

body from further damage the potency of the various cytokines and immune cells 

released in response to said damage can often result in greater tissue pathology. 

The nervous system is no exception to this dysregulation. As the name suggests, the 

PNS is located at the outer extremities of the body, therefore these sites are also the 

most likely to subject damage from foreign bodies penetrating the dermal layers of 

skin and triggering the release of neutrophils and other components of the innate 

immune system to the site of injury (Ordovas-Montanes et al., 2015). Therefore it is 

of no surprise that the cells in the periphery have the power to recruit such cells and 

to release cytokines, chemokines and interleukins in a co-ordinated attempt to repair 

and protect the body as part of a normal physiological response.   
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Neurons are no exception to this, with many peptidergic neurons capable of 

substance P release which is capable of upregulating myriad inflammatory factors 

and recruiting them to the site (Chen et al., 2007). Accumulation of inflammatory 

mediators can lead to the creation of so called “inflammatory soup”. This 

inflammatory soup (IS) is a pivotal factor in the development of pain in response to 

direct tissue damage such as that acquired from a sprained ankle (Dubin and 

Patapoutian, 2010). It should be noted however that substance P release is only 

essential for this in neurogenic inflammation, in most cases the innate inflammatory 

response of surrounding tissue is responsible.  Nociceptors also possess receptors 

for histamine and prostaglandins, the latter being essential inflammatory components 

that have been targeted for centuries via inhibition of the cyclooxygenases to prevent 

prostaglandin production in response to injury (Basbaum et al., 2009). Use of willow 

bark, containing salicylates is a traditional example of an anti-inflammatory remedy 

and aspirin commonly used for pain and inflammation management is derived from 

the willow tree. In more recent years however, various investigations have revealed 

many more key components of the inflammatory soup. Tumour necrosis factor alpha 

(TNFα) is a cytokine contained within the IS and is capable of substance P like 

upregulation of numerous other inflammatory components. TNFα has a record of 

causing both mechanical and thermal hyperalgesia, when administered as a 

recombinant protein (Wang et al., 2018). This has led to speculation that it may be a 

key factor in pain associated with diseases like arthritis, hence the creation of drugs 

such as etanercept which aim to neutralise its effects.  As previously mentioned all of 

these factors are essential in resolving tissue damage effectively and safely, but it is 

also the case that a positive  



   

 

27 

 

 

 

 

 

 

 

 

Figure 1.4: An overview of peripheral and central sensitisation mediated by 
inflammation.  
Following direct damage to the neuron of sustained damage of local tissue resident produce factors 
which recruit immune cells to the point of injury. This triggers further release of inflammatory 
mediators and cytokines which causes ectopic peripheral neuronal activity resulting in peripheral 
sensitisation. This peripheral sensitisation then causes aberrant signalling to the spinal cord which 
results in pathological amplification of pain processing. Immune and support cells can then maintain 
this amplified pain signalling resulting in central sensitisation. From Kiguchi et al., 2017. 
 

feedback loop can emerge in response to damage, which in turn can lead to 

recruitment of noxious cytokines and mediators which in turn can damage neurons. 

This damage can in some cases eventually form a lesion and it is at this point where 

the neurons themselves become targets of injury or damage that neuropathic pain 

can occur (Langjahr et al., 2018).  

 

1.1.4.2: Neuropathic Pain 

Neuropathic pain is caused by lesions to the somatosensory system (Woolf and Ma, 

2007; Colloca et al., 2017). Common symptoms in patients with neuropathic pain 

include but are not limited to numbness, tingling, burning, pruritus and fatigue. The 

range of potential causes for such lesions is extensive with chemical, physical, 

ischaemic, inflammatory, traumatic and cytotoxic agents all capable of invoking 

neuropathic pain in any component of the sensory system (Ellis and Bennett, 2013). 
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Neuropathic pain can also be caused by a number of iatrogenic causes such as 

surgery despite attempts to reduce the likelihood of and ameliorate such damage. 

Neuropathic pain affects large portions of society and can occur across all ages. It is 

estimated that over 10% of the population suffer from a degree of neuropathic pain 

deriving from a range of causes such as diabetes, spinal cord injury, post-stroke pain 

and chemotherapy induced neuropathy (Toth et al., 2009; van Hecke et al., 2014; 

Cruccu et al., 2017). Neuropathic pain is caused by heightened activity of peripheral 

nociceptors and/or increased activity in central nervous system nociceptive 

processing; these two processes are called “peripheral sensitisation” and “central 

sensitisation” respectively.  

 

Peripheral sensitisation (Fig 1.4) can be triggered by inflammatory factors or 

changes to nociceptor environments described above and is frequently mediated by 

changes in sensitivity and excitability in polymodal nociceptors and Type II AMH 

through modulation of TRP and VGNC channels (Shu and Mendell, 1999; Schaible, 

Ebersberger and Natura, 2011). For instance, the largely acidic environment that 

occurs as a result of inflammatory activation is capable of phosphorylating TRPV1 at 

its serine 800 residue. This increases the sensitivity of TRPV1 and thus lowers the 

threshold required for its activation and shift to an open channel conformation, 

resulting in easier generation of receptor potentials. This effect, combined with 

increased VGSC excitability due to prostaglandin modulation leads to erroneous 

firing of action potentials in response to non-harmful stimuli. These changes can also 

be mediated by release of neurotrophic factors in response to injury and can be 

amplified by surrounding neurons, glia and endothelial cells; as a result neuronal 
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excitability increases, and increased peripheral input occurs into the spinal cord 

(Chen et al., 2012; Hulse et al., 2014).  

 

This increased peripheral neuronal input and peripheral sensitisation can have 

profound effects on central nociceptive processing. In response to increased input 

from the periphery there is release of the neurotransmitter glutamate from peripheral 

afferents which then activate central NMDA receptors. NMDA activation then causes 

central spinal cord neurons to become more excitable in response to peripheral 

inputs which then drives further glutamate release and further excitability and results 

in central sensitisation (Latremoliere and Woolf, 2009). These changes can often be 

accompanied by alterations in spinal cord glia cells which can cause hyperexcitability 

in the dorsal horn. Recent evidence also points to the involvement of immune cell 

infiltration into the central nervous system, further exacerbating sensitisation and 

nociceptive processing in the CNS (Dalkara and Alarcon-Martinez, 2015). 

 

The most common symptoms of neuropathic pain fall into two closely related but 

fundamentally different classes. Neuropathic pain causes both allodynia and 

hyperalgesia. The former describes a painful response to a non-harmful stimulus, 

such as very light touch generating an unpleasant sensation. Hyperalgesia describes 

an elevated painful sensation to a noxious stimulus (Sandkühler, 2009). An example 

of a hyperalgesic response would be a heightened response to a high temperature, 

which causes discomfort but in neuropathic pain triggers a much more unpleasant 

sensation. This heightened response to moderately harmful or totally unharmful 

stimuli can initially be a direct result of peripheral sensitisation but is likely 

maintained centrally when it becomes chronic (Lee, Nassikas and Clauw, 2011). 



   

 

30 

 

Despite the widespread prevalence of neuropathic pain, management options are 

severely limited (Katz, 2002). As a result of this lack of effective treatments, patients 

often suffer with depression and anxiety about their conditions which worsens mental 

health outcomes and has a detrimental effect on quality of life (McCarberg et al., 

2008; Ataoǧlu et al., 2013; Lin et al., 2020). The most common first line therapeutic 

options for neuropathic pain irrespective of cause are anti-convulsants such as 

pregabalin and gabapentin and antidepressants such duloxetine and amitriptyline 

(Wiffen, 2013; Shahid et al., 2019). These drugs are normally given in sequential 

processes with a transfer to another drug in these classes advised if the currently 

used drug begins to lose efficacy. It should be stated however, that the efficacy of 

these drugs is also questionable as a significant proportion of patients receive no 

pain relief from anticonvulsant/antidepressant therapy (Cavalli et al., 2019). Other 

management options include the use of opioids, which target opioid receptors in the 

peripheral and central nervous system. Though they are extremely potent analgesic 

agents they also carry a high risk of addiction and abuse (Ling et al., 2011). The 

prevalence of chronic pain has led to their widespread use for pain management, 

however this usage has also been a key factor in the emergence of the so called 

“opioid epidemic”, which is occurring worldwide but with the greatest degree of 

scrutiny in the United States of America (Bonnie, Ford and Phillips, 2017; Blanco et 

al., 2020). The potency of opioids has also led to concerns about the risk of 

accumulation over time, with there being some evidence for pain actually worsening 

as a result of mass opioid use over a prolonged period. In both anti-convulsant and 

opioid based therapy side effects are common. Prolonged use of these management 

options can result in gastrointestinal defects such as diarrhoea, vomiting, dizziness, 
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addiction as previously described, insomnia, severe sweating and weight loss 

(Fornasari, 2017; Onakpoya et al., 2019). 

 

As a result of the lack of efficacy and often profound side effects resulting from 

extensive usage of these drugs, there is an urgent need to develop novel therapeutic 

non-opioid analgesic options for neuropathic pain. An assumption that is often made 

regarding neuropathic pain is that treatment of the underlying pathology will result in 

resolution of pain. However, in many cases this is found not to be the case and pain 

can be persistent leading to the classification of chronic pain as a disease rather 

than simply a symptom (Cohen, Quintner and Buchanan, 2013). Of particular interest 

in this regard is an increasingly common trigger of neuropathic pain, that caused by 

a variety of chemotherapy agents which lead to the development of chemotherapy 

induced peripheral neuropathy (CIPN). Management of CIPN is notoriously difficult 

and the fact pain can continue beyond treatment itself is indicative of the progressive 

nature of the condition (Staff et al., 2017). Therefore, appraisal of the mechanisms 

underlying its onset and the pathological means by which it persists and worsens is 

urgently required.  

 

1.2.1: Chemotherapy and CIPN 

The term “chemotherapy” refers to the use of a wide range of drugs used either 

independently or in combination with one another to prevent the growth, spread and 

survival of cancerous cells (Stone and DeAngelis, 2016). Cancer is one of the 

leading causes of worldwide mortality and is a major factor in healthcare burdens all 

over the world (Micheli et al., 2002; Crocetti et al., 2013; Nagai and Kim, 2017). The 

drugs used to treat cancer are usually very potent, target multiple areas of 
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oncogenesis and are often used in co-ordinated approaches to treat various facets of 

specific cancer types (Huang et al., 2017; Liston and Davis, 2017). However, a key 

limitation of nearly every class of chemotherapy drug is the prevalence of off-target 

effects which can have detrimental effects in myriad contexts and systems of the 

body. The nervous system is no exception to these off-target effects and 

chemotherapy induced peripheral neuropathy occurs in the majority of patients 

largely irrespective of drug class; with around 50-60% experiencing painful 

symptoms within a few weeks of treatment (Seretny et al., 2014). Though nearly all 

chemotherapy agents have side effects that can affect the nervous system those 

most heavily linked to neuropathy and painful sensations fall under the vinca 

alkaloid, platinum and taxane classifications (Addington and Freimer, 2016). Despite 

this, these three drug classes are among the most commonly used chemotherapy 

agents to treat a multitude of tumours in both children and adults (André and Meille, 

2006; Ruggiero et al., 2013; Bjornard et al., 2018). Refinement of their use over time 

has led to optimal outcomes in terms of survival however, the off-target effects of 

these drugs and the effects they have on people living beyond cancer have been 

neglected in terms of management and investigation (Arnold et al., 2019). In the past 

this was largely due to the fact survival rates for cancer were low. Only as the burden 

of CIPN has increased due to increased survival have substantive efforts been made 

to ameliorate neuropathic effects of these compounds. As mentioned, neuropathic 

pain is progressive disease with multiple mechanisms, it would therefore be 

erroneous to ignore the fact that the differential mechanisms of action possessed by 

these three compound classes is likely responsible for triggering neuropathic pain in 

different ways. Indeed treating CIPN as a single, umbrella term likely obscures the 

various ways the condition could be managed effectively or even reversed (Flatters, 
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Dougherty and Colvin, 2017). It is therefore useful to examine each of these classes 

separately and to assess their contribution to CIPN aetiology and sequelae before 

examining CIPN as a whole and elaborating where commonalities exist and how this 

could impact potential therapy development. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Putative sites where chemotherapy agents can cause damage to the 
peripheral nervous system. 

  
Chemotherapy can affect multiple sites in the nervous system from the peripheral nerve terminals to 
the neuronal cell bodies located in the dorsal root ganglia. As nerve terminals are often affected first, 
this leads to early neuropathic symptoms developing in the extremities such as the hands and feet. 
However, as chemotherapy administration continues multiple sites including mitochondria, ion 
channels and axons can be damaged leading to more severe sequalae, with many chemotherapy 
classes capable of damaging multiple sites. From Park et al. 2013.  

 
1.2.2.1: Vinca Alkaloids  

The vinca alkaloids are a class of compounds derived from Catharanthus roseus, 

commonly referred to as the Madagascan Periwinkle. Common vinca alkaloids 

include vinblastine and vincristine which were isolated in 1958 and 1961 respectively 

(Moudi et al., 2013). These compounds can be extracted naturally from the plant 

without the need for chemical synthesis though this was considered remarkably 
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inefficient with nearly a tonne of periwinkle leaves required to make less than 30g of 

vincristine (Pennanen and Huhtikangas, 1990; Ishikawa et al., 2009). As a result, 

semi-natural synthesis which uses precursors from the plant and combines them 

with chemical sidechains via synthetic reactions to produce vincristine was adopted 

(Verma et al., 2007). This adopted approach also led to the discovery and production 

of the semi-synthetic chemical analogues vinorelbine, vinflunine and vindesine in the 

1980s (Noble, 1990). In the past two decades however, various methods of total 

vincristine synthesis have been described (Keglevich et al., 2012; Maqsood and 

Abdul, 2017). Whilst these newer compounds have limited licensed applications, 

vincristine is a widely used chemotherapy agent that forms part of combination 

therapies for non-small cell lung carcinoma, Hodgkin’s Lymphoma, leukaemia and 

nephroblastoma (Meerwaldt et al., 1997; Douer, 2016; Daw et al., 2020). However, 

one of vincristine’s most important uses is in the treatment of paediatric brain 

tumours such as medulloblastoma where it is a frontline therapeutic option 

(Sirachainan et al., 2018).  

 

All vinca alkaloids share a common mechanism of action, the prevention of 

microtubule polymerisation via binding to beta tubulin (Owellen et al., 1976; Jordan, 

Thrower and Wilson, 1991). Microtubules are essential to maintenance of cell 

structure and transport but also essential in cell division and mitosis (Forth and 

Kapoor, 2017). Microtubules help form the mitotic spindles that form during cell 

division. Cell division is a process that relies heavily on the ability of the cell to 

readily polymerise and depolymerise the microtubule polymers in order to maintain 

proper microtubule dynamics. With this considered, it is obvious to see the 

mechanism by which vinca alkaloids operate as an antineoplastic drugs. By inhibiting 



   

 

35 

 

microtubule function and preventing cell division by inhibiting mitotic spindles, vinca 

alkaloids prevent the rapid cell division of cancerous cells (Ferguson et al., 1984; 

Jordan et al., 1985). Microtubule function however is not limited to cell division in 

cancerous cells, and as a result vinca alkaloids can cause immense disruption to 

microtubules in healthy cells and other settings. A fundamental component of 

neurons is expression of β-III tubulin, an isoform of tubulin that is almost exclusively 

expressed in neurons (Menezes and Luskin, 1994; Katsetos et al., 2002). Not only is 

β-III tubulin a component of neuron cell bodies, it is also a structural component of 

axonal processes and therefore essential in maintaining the functions and signals 

from primary afferents in the periphery (Kapitein and Hoogenraad, 2015). It is 

therefore unsurprising that all vinca alkaloids cause some degree of sensory 

neuropathy symptoms such as numbness and tingling; these symptoms are often 

dose dependent and worsen over time. This can be exacerbated by the eventual 

emergence of vinca alkaloid resistance in cancer cells, triggered by over activity of 

ABC transporters that cause drug efflux out of the cell, and require increased dosage 

in order to manage (Coyle et al., 2015).  

 

The most neurotoxic drug of the vinca alkaloids is vincristine, which has been shown 

to cause symptoms such as numbness and tingling which emerge quickly after early 

dosing in up to 90% of patients (Madsen et al., 2019). It is believed the damaging 

effects of vincristine on axons, cell bodies and axonal transport can all be factors in 

the onset of neuropathic pain. Vinca alkaloids have poor penetration across the 

blood brain barrier meaning the majority of their effects are observed on peripheral 

nerves rather than the CNS, though as discussed neuropathic pain can often 

become centrally maintained when it persists. Furthermore, accidental administration 
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of vincristine via the intrathecal route, or directly into the CNS is almost always fatal 

(Bain et al., 1991).  

1.2.2.2: Taxanes 

Taxanes are a class of compounds derived from the Taxus genus, commonly 

referred to as yew trees (Elias and Korzhenevsky, 1992). Common taxanes include 

the foundation compound paclitaxel (commonly known as Taxol), docetaxel and 

cabazitaxel. Paclitaxel was first isolated in the 1970s and approved for usage in 

ovarian cancers, lung cancers and prostate cancer among others, whereas 

docetaxel was patented and approved for usage in the 1980s and is also used in a 

variety of tumours including those of the head and neck (Rowinsky, 1997). Taxanes 

were also subject the same manufacturing issues as vincristine, with early synthesis 

heavily limited by availability of the Yew tree, though these have been subsequently 

addressed (Heinig, Scholz and Jennewein, 2013). The mechanism of action 

possessed by all taxanes is analogous to that of the vinca alkaloids, they bind to the 

β tubulin monomer of the α/β tubulin heterodimer which form the sub-units that 

polymerise together to form functional microtubules (Derry et al., 1997). However a 

key distinction exists between the two compound classes. Whereas vinca alkaloids 

bind to β-tubulin and prevent the polymerisation of the structural protein into 

microtubules that are essential for cancerous cell structure and support, taxanes 

bind to β-tubulin that is part of heterodimer with α-tubulin and stabilise them as 

microtubule subunits. This stabilisation prevents depolymerisation of the 

microtubules which is an essential step in normal microtubule dynamics (Jordan and 

Wilson, 2004). Throughout cell division for instance, the microtubules that form 

mitotic spindles are constantly remodelled, disaggregated and re-formed (Burbank 

and Mitchison, 2000). Stabilising the microtubules prevents this and leads to 
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erroneous cell division, bundling of microtubule mass within the cell and eventually 

apoptosis and cell death. Again, as mitotic spindle formation is common in rapidly 

dividing cancer cells it is patently obvious as to why taxanes are extremely effective 

chemotherapy drugs and similar to vinca alkaloids have become an integral part of 

many chemotherapy regimens as independent treatments or as part of combination 

therapy. However as previously explained, microtubule function is not limited to cell 

division and inhibition of β-tubulin dynamics also affects the neuron specific β-III 

tubulin isoforms. Therefore it is again no surprise that taxanes are also heavily 

associated with off-target somatosensory effects (Cella et al., 2003). All taxanes 

cause a degree of nervous system side effects, the most potent drug in this regard is 

the original taxane isolate paclitaxel. Paclitaxel causes CIPN in the vast majority of 

patients, and by some measures is estimated to occur in 87% of recipients (Garrison 

et al., 2003). Taxanes can impact on fibres and neuronal cell bodies and can 

mediate the release of inflammatory cytokines following application by generating 

cancer cell debris or by directly stimulating macrophages (Cassidy et al., 2002; 

Gartung et al., 2019). As with vinca alkaloids, taxane adverse effects are commonly 

dose limiting factors in chemotherapy and similar symptoms as for vinca alkaloids 

commonly emerge in the form of numbness and tingling, commonly interpreted as an 

effect on large fibres in distal areas of the body (Bhatnagar et al., 2014). Similar to 

vinca alkaloids, taxanes do not readily cross the blood brain barrier and therefore the 

effects on the CNS are limited but residual paclitaxel can remain in DRG cell bodies 

for prolonged periods of time (Wozniak et al., 2016).  
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1.2.2.3: Platinum Based Chemotherapy  

Unlike taxanes and vinca alkaloids, platinum based chemotherapies are not derived 

from naturally occurring plant sources. The first platinum containing compound, 

cisplatin was discovered in the 1800s but was not considered for use in 

chemotherapy until the 20th century and it was approved for use in cancer treatment 

in 1978 (Gómez-Ruiz et al., 2012). Since then, various analogous compounds such 

as carboplatin, oxaliplatin and nedaplatin in have been discovered and patented, in 

chronological order (Piccart, Lamb and Vermorken, 2001). Platinum based 

compounds are widely used in the treatment of head and neck cancer, lung cancer, 

brain tumours, bladder cancer and in testicular cancer. In the latter case, platinum 

based chemotherapy has gained a reputation for being one of the most successful 

classes of chemotherapy (Hanna and Einhorn, 2014). Testicular cancer patients now 

have 5 year survival of 90% and it is very common for the young males most often 

diagnosed to live for several decades (Raghavan, 2003). Platinum based 

chemotherapies have a common mechanism of action, unlike the taxanes and the 

vinca alkaloids they do not target cellular machinery involved in cell division but 

instead target DNA replication at source. When entering a cell, platinum 

chemotherapy molecule is able to bind to the two purine bases of DNA, adenine and 

guanine. By crosslinking these bases, transcription of mRNA is disrupted and 

replication of DNA and downstream cell division is prevented. In addition to this, 

cisplatin can generate reactive oxygen species (ROS) which interfere with 

mitochondrial function and trigger apoptosis pathways (Dasari and Tchounwou, 

2014; Johnstone, Park and Lippard, 2014). Platinum based chemotherapy can also 

trigger immune system activation and the release of inflammatory cytokines and 

disruption to calcium signalling (Leo et al., 2017). Despite targeting alternative 
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mechanisms to the vinca alkaloids and taxanes, platinum based compound are still 

associated with a high prevalence of CIPN. Some patients report sensory symptoms 

after the first dose, but over time as dosage begins to accumulate in DRG over 90% 

of patients report pain and neuropathy symptoms following treatment with cisplatin 

(Joseph and Levine, 2009). These symptoms present as for other chemotherapy 

classes as numbness, tingling followed by allodynia. Platinum based compounds 

readily accumulate in both peripheral ganglia, where it is believed the creation of 

ROS affects mitochondrial cell bodies and possibly sensitises various ion channels 

such as TRPA1 and TRPV1 (Dasari and Tchounwou, 2014). A feature very common 

to platinum based CIPN is the concept of “coasting” (Kanat, Ertas and Caner, 2017). 

This refers to the symptoms of chemotherapy actually worsening after treatment has 

stopped. Whilst these symptoms are still dose dependent the delayed onset of 

sensory sequelae can mean a damaging dose of chemotherapy is given to the 

patient that only becomes apparent after they treatment has stopped and by which 

time it is too late to lower the dose. Finally, platinum based chemotherapy can be 

associated with severe ototoxicity which significantly contributes to reduced quality of 

life in patients (Pearson et al., 2019).  

 

1.2.3: Jerantinine  

The success of the above chemotherapy classes in increasing cancer survivorship in 

the clinic in spite of their clear and obvious side effects has created pressure around 

the development of new chemotherapy agents. Novel chemotherapy compounds 

must retain the efficacy of existing drugs in order to justify their use and as such all 

novel chemotherapy development focuses first and foremost on targeting cancer 

cells or the systems that support them such as mechanisms of angiogenesis. But 
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this pursuit of improved efficacy at any costs means investigations into related side 

effects rarely occur (Berlin, Glasser and Ellenberg, 2008). Instead, research primarily 

focuses on alternative mechanisms of targeting cancer cells or improving on already 

proven concepts.  

One compound at the earliest stages of development in this regard is the novel 

indole alkaloid, jerantinine. Jerantinine is derived from the Tabernaemontana 

corymbosa or “Sweet Love” plant endemic to South East Asia. Similar to vinca 

alkaloids and taxanes, jerantinine is a microtubule inhibitor and prevents the 

polymerisation of tubulin dimers into microtubule polymers. However, jerantinine 

causes this inhibition by binding to a different site, the so called colchicine binding 

site, named after the first compound found to bind to this area (Smedley et al., 2018).  

Whilst taxanes and vinca alkaloids bind directly to β-tubulin, jerantinine binding at the 

colchicine site occurs at the interface between both tubulin heterodimers. The 

perceived advantage of this alternative binding site lies in the notion of cancer cell 

resistance to vinca alkaloid and taxane chemotherapy. Mutations of tubulin have 

been found to cause inadequate binding of vinca alkaloids and taxanes to the tubulin 

site, which prevents the drug from being fully able to inhibit microtubule function (Orr 

et al., 2003; Ganguly and Cabral, 2011). The result of this is the creation of drug 

resistant sub-populations which present a threat to survival. By binding at the 

interface of the two monomers, jerantinine avoids any potential structural effects 

associated with mutation and thus can target these resistant cells. This has already 

been demonstrated in a number of different cancer cell lines and development of the 

compound continues (Raja et al., 2014). However, this alternative binding site may 

also have promising effects in relation to off-target effects. Cytoskeletal disruption 

was only observed in a cancer cell lines and not neural stem cells which suggests 
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the drug may be able to distinguish between different types of tubulin expressed in 

cancer cells and neurons which in turn may result in reduced side effects and CIPN 

symptoms (Roper et al., 2018). However neural stem cells are significantly different 

from terminally differentiated neurons. Consequently, it will be useful to examine 

jerantinine in more specific adult neuronal models for off-target effects and to directly 

compare them to existing chemotherapy agents.  

 

1.2.4: Common Features and Mechanisms of CIPN 

As the above sections have demonstrated, there are multiple mechanisms by which 

CIPN and occur and be maintained. Though the 3 compound classes have different 

mechanisms of action they share remarkable similarity in how they can initiate 

pathological changes within the nervous system. The most obvious comparison to be 

drawn is between the taxanes and vinca alkaloids as both are microtubule inhibitors. 

The profound effects these compounds have on axons is cited within the literature as 

a major source of neuropathy (Sahenk et al., 1994; Guo et al., 2017). CIPN appears 

first in a “stocking and glove” pattern, with the toes, feet and hands affected, this is 

likely because longer axons tend to be affected first, therefore the effects of 

microtubule dysfunction on these fibres are logical (Starobova and Vetter, 2017). 

The involvement and activation of the inflammatory system is common across all 3 

classes and increased expression of cytokines such as TNF-α are believed to 

contribute heavily to nervous tissue damage following therapeutic usage (Sprowl et 

al., 2012; Wang et al., 2018; Abdel-Wahab and Moussa, 2019). In addition to the 

potential damage, inflammatory cytokines can change the expression and excitability 

of peripheral neurons through modulation of sensory receptors such as TRP and ion 

channels. These changes could feasibly occur in the absence of overt damage as 
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the inflammatory soup begins to accumulate and understanding whether pain and 

sensitisation can occur without overt neuronal damage, as examined via histology 

could be of major benefit when investigating the earliest stages of CIPN. Another 

reason as to why this could be important is in terms of diagnosis, commonly only 

larger fibres are examined for neuronal damage in the clinic, despite symptoms of 

small fibre neuropathy (tingling, burning) being common across all 3 classes 

(Sharma et al., 2015). This is potentially a relatively unexplored avenue for 

investigation, as amelioration of small fibre neuropathy could in turn prevent 

progression to widescale CIPN that affects larger fibres. The high prevalence of 

CIPN and the potency of the compounds used, often invoking these effects at low or 

minimal doses demonstrates a clear need for proactive and prophylactic therapy 

when treating CIPN. Currently, all analgesics and anticonvulsants are used 

therapeutically despite evidence showing often irreversible damage has occurred by 

this stage. There is therefore a pressing need for novel approaches that can 

ameliorate the mechanisms noted above.  

One such approach worthy of investigation is modulation of novel splicing kinases 

and alternative splicing. Use of differential VEGF isoforms and inhibition of the 

kinases responsible for this varying isoform expression has shown promising effects 

in cancer, ophthalmic and diabetic contexts, a component of the latter being 

amelioration of nervous system sequelae commonly seen in diabetic neuropathy 

(Ved et al., 2018). Furthermore, chemotherapy can also have profound effects on 

alternative splicing itself which may contribute to these pathological neuronal 

changes (Shkreta et al., 2008). Controlling alternative splicing in advance of 

chemotherapy via prophylaxis could be useful in CIPN prevention, and by 

modulating potential targets on the pathways listed or indeed putative neurotoxic 
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alternative splicing events resulting from chemotherapy possibly aid in therapeutic 

recovery of damaged nervous tissue.  

 

 

1.3.1: Alternative Splicing  

Alternative pre-mRNA splicing (herein alternative splicing) describes the process by 

which multiple different mRNA transcripts can arise from the same gene, often 

leading to expression of functionally distinct but related protein isoform families 

(Wang et al., 2015). As the name implies alternative splicing is distinct from 

constitutive splicing, the process by which non-protein coding introns are removed 

from nascent pre mRNA strands allowing all of the protein-coding exons in the 

primary transcript to be contained within the mature mRNA and translated 

sequentially (Fabrizio and Lührmann, 2012; Wickramasinghe et al., 2015). 

Alternative splicing often results in exclusion of particular exons, or inclusion of 

intronic sequences leading to differential protein expression when translated. This 

serves to increase the of size the proteome relative to the human genome. Advances 

in genome sequencing revealed the size of the human genome to be approximately 

20,000 to 25,000 genes, whereas analysis of the human proteome reveals upwards 

of 100,000 distinct proteins. This finding supplanted the “one gene = one protein” 

hypothesis that had predominated and vastly expanded investigations into control of 

gene expression in the body (Ponomarenko et al., 2016). Other mechanisms such as 

single nucleotide polymorphisms  enable a single gene to be able to produce 

potentially dozens of proteins from the same DNA template (Chiang, Wu and Chen, 

2017). It is estimated that over 95% of human genes are alternatively spliced, the 
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control of which can be initiated or blocked by multiple mechanisms such as 

developmental stage or tissue or tissue dependent factors (Chen and Manley, 2009).  

The different mechanisms of alternative splicing are shown in Figure 1.6. Briefly, 

alternative splicing can be mediated by the differential inclusion and exclusion of 

various exons from a primary transcript. Alternative splicing mechanisms include 

inclusion of introns, alternative 5’ and 3’ splice sites, use of alternative promoters and 

stop codons, and the existence of mutually exclusive exons. By these means, a 

single gene can give rise to numerous protein isoforms (Donaldson and Beazley-

Long, 2016).  
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Figure 1.6: An Overview of Alternative Splicing Mechanisms: 
 
A pre mRNA transcript that is constitutively spliced (A) can be alternatively spliced by the following 
mechanisms. Different colours denote different exons. (B) Exon skipping, exon 2 is omitted from 
mRNA transcript. (C) Intron retention, the intron between exon 3 and 4 is not spliced out. (D) 
Alternative 5’ donor site, an alternative intra exonic splice site in exon 1 is used and gives an 
alternative 5’ sequence. (E) Alternative 3’ acceptor site, an intra exonic splice site in exon 4 is used 
and gives an alternative 3’ sequence. (F) Alternative promoters, red arrow denote alternative  
promoters leading to multiple transcripts. (G) Mutually exclusive exons, exon 2 or exon 3 are 
differentially included or excluded. (H) Alternative polyadenylation states, creating truncated 
transcripts. (I) Alternative stop codons, constitutive splicing uses stop codon in exon 4, whilst 
exclusion of exon 2 leads to alternative stop codon in exon 3 and nonsense mediated decay.  
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Due to the profound effect that alternative splicing can have on protein function it is 

no surprise that dysregulation of alternative splicing can lead to a plethora of 

pathological conditions including but not limited to cancer, dementia and peripheral 

arterial disease (Ward and Cooper, 2010). Aberrant splicing can lead to the 

production of isoforms that are non-functional, or over-active. For example, in 

various cancers, alternatively splicing defects lead to the expression of genes 

associated with drug efflux such as ABCB1 and MRP pumps, contributing to tumour 

resistance (He et al., 2004; Eblen, 2012). These changes often occur due to 

mutations of components responsible for regulation of alternative splicing causing 

dysregulation. These other targets can aid the cell in evading apoptosis or aid the 

tumour in developing a blood supply via angiogenesis. Therefore control of 

alternative splicing is pivotal to normal physiology and this is reflected in the complex 

mechanisms by which alternative splicing is regulated and carried out.  

 

 

 

1.3.2: Regulation of Alternative Splicing  

The mediator of RNA splicing within mammals is the spliceosome. The spliceosome 

consists of a number of small nuclear ribonucleoproteins (snRNPs) that form a 

complex. In total the spliceosome consists of around 100 associated proteins, and 

the SNPs themselves are associated with a complimentary small nuclear RNAs 

(snRNA) that aid with regulation of pre-mRNA and transcription factors. The main 

constituents of the spliceosome are the 5 snRNPs U1, U2, U4, U5 and U6 

(Wilkinson, Charenton and Nagai, 2020). Canonically, the spliceosome recognises 

an intron via its 5’ splicing site and U1 and U2 form the so called “A complex”. This 
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complex then conjugates with the tri snRNP B complex which consists of the 

remaining snRNPs and the pre-mRNA. From this point U4 detaches and unwinds 

U6snRNA and forms the active site of the “Bact complex” which is the first catalytic 

state of the complex. From this point, the Bact complex is further remodelled into the 

C complex to enable further catalysis and initiate exon ligation, that is to say the 

process by which two constitutively expressed exons are joined into mature mRNA. 

From here the ligated exons are released and the so called lariat introns, that is the 

introns removed during the process of splicing, are decayed as the spliceosome 

deconstructs and the components are recycled for further use in future splicing 

events (Lee and Rio, 2015). It should also be said at this point, the process 

described here is the activity of the major spliceosome, which is responsible for 

around 99% of splicing events within the body. The remaining 1% is carried out by 

the minor spliceosome which utilises the U11 and U12 snRNPs among others 

(Turunen et al., 2013; Verma et al., 2018).  

 

This intrinsically complex process describes constitutive splicing performed as one 

may expect to see according to the “one gene = one protein” hypothesis. However, 

the spliceosome can be moderated and adapted to result in alternative splicing 

mechanisms (Figure 1.5) by a range of different promotional and inhibitory factors. 

These can include the presence differential motifs on pre-mRNA that may enhance 

or inhibit splicing by the spliceosome. The most commonly observed intron-exon 

boundary motifs that determine a splicing site are GU at 5’ and AG at 3’ sites 

respectively. However, the nucleotide sequence downstream and upstream of these 

motifs determines whether a splicing site is “strong” or “weak”. Strong splicing sites 

are much more likely to result in regulation of constitutive splicing. However “weaker” 
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splice sites are much more likely to lead to alternative splicing as the spliceosome 

does not catalyse the pre-mRNA at this point, leading to ligation of the intron and the 

exon together (Dvinge, 2018). It is also the case that weak splice sites may contain 

multiple alternative splice sites that can be recognised and may therefore compete 

with each other and the original “authentic” splice site.  

Another route of alternative splicing regulation is based on tissue specificity 

(Rodriguez et al., 2020). Whilst mechanisms of splicing are becoming increasingly 

well defined in general contexts there is comparatively less literature on how 

alternative splicing of mRNAs within certain tissues or at discrete developmental 

stages actually occurs (Ke and Chasin, 2011). There are however a few well 

documented exceptions to this that have been extensively investigated. Namely in 

neurons the splicing factor NOVA is responsible for the differential expression of 

voltage gated calcium channels and the development expression of various synaptic 

proteins. Tissue specific splicing factors can act as enhancers or promoters of 

splicing or can work in concert with each other to regulate it. Such is the importance 

of tissue specific splicing that NOVA-2 knockout mice die soon after birth, with 

deficits associated with disrupted synaptic function such as tremor (Allen, Darnell 

and Lipscombe, 2010; Racca et al., 2010).  

 

The promoting or suppressive activity of tissue specific splicing factors is similar to 

another key regulator that can control alternative splicing,  the so called RNA Binding 

Proteins (RBPs). RBPs serve to either suppress or enhance alternative splicing and 

are often termed splicing factors (Singh, 2002). Though several families of RBPs 

exist, two of the most prominent are the heterogeneous nuclear ribonucleoproteins 

(hnRNPs) and the serine/arginine rich splicing proteins (SR Proteins). As their name 
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implies these RBPs can bind directly to immature pre-mRNA transcripts and from 

this point they can have profound effects on splicing and hence the nature of the 

functional protein that is expressed as a result of their activation (Zhou and Fu, 

2013). SR proteins are generally viewed as factors that enhance splicing facilitated 

by the presence of repeated Arg-Ser amino acids on the C-terminus, a region 

appropriately termed the RS domain. At the N-terminus there exists the RNA 

Recognition Motif (RRM) domain (Shen and Green, 2006; Ghosh and Adams, 2011). 

The RRM is responsible for the recognition of small, distinct RNA sequences or so 

called Splicing Regulatory Elements (SREs). These sequences can either be exonic 

splice enhancers or suppressors (ESEs or ESSs) or intronic splice enhancers or 

suppressors (ISEs or ISSs) (Wang and Burge, 2008).  

As mentioned, SR proteins are associated with enhanced alternative splicing and 

therefore the SRE they most commonly associated with are the ESEs. SR proteins 

can be present both inside and outside of the nucleus and this can often dictate the 

activity of the protein as to how it influences alternative splicing (Ghosh and Adams, 

2011).  

Conversely, the hnRNPs are largely viewed as splicing suppressors, they most 

commonly bind to ISS SREs, However, the two families can often compete with each 

other and regulate the activity of the other family. A prominent example of this is the 

interaction between SRSF1, a SR protein that can be trafficked to the nucleus under 

certain conditions and the hnRNPA1 protein. In this example it is the balance of 

these two families that controls the process of alternative splicing. If the hnRNPA1 

protein is present in greater quantity than SRSF1 it antagonises the effects of 

SRSF1 and leads to the selection of distal splicing sites, whereas if SRSF1 

predominates the opposite occurs and more proximal splice sites are selected by the 
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spliceosome. It is the complex nature of these interactions and the balance between 

them that dictates the level and nature of alternative splicing within the body 

(Ladomery, Harper and Bates, 2007; Golan-Gerstl et al., 2011; Gonçalves et al., 

2014). 

 

1.3.3: Regulation of SR Proteins 

As aberrant alternative splicing can result in an array of diseases such as cancer, 

tight control of splicing is essential to maintaining healthy function within the body. As 

such, components of the splicing pathway that can enhance splicing activity such as 

SR proteins are tightly regulated. Some SR proteins are themselves alternatively 

spliced with only 1 transcript coding for a protein with functionality (Ladomery, 2013). 

The remaining splice variants result in frameshifts or incorporation of premature stop 

codons to generate SR protein that is then removed via nonsense mediated decay. 

This reduces alternative splicing activity by SR proteins and downregulates 

functional SR. Perhaps more interestingly, SR protein activity is often influenced by 

the activity of upstream mediators. For example, SRSF1 will only translocate to the 

nucleus following phosphorylation by Serine/Arginine Protein Kinase 1 (SRPK1). 

This phosphorylation occurs in the RS domain and causes the SRSF1 protein to be 

translocated to the nucleus. Even after this, SRSF1 will then only interact with the 

spliceosome when released from so called nuclear speckles or ‘splicing factor 

compartments’ which contain the protein (Spector and Lamond, 2011). To be 

released from speckles SRSF1 is further phosphorylated by cdc-2 like kinase 1 

(CLK1) (Aubol et al., 2016). 
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The full mechanism behind this regulation is yet to be fully elucidated but the most 

current model indicates that SRPK1 and CLK1 are capable of forming a complex that 

works to release “primed” SRSF1 protein from nuclear speckles. This model has 

largely supplanted a previous, more straightforward model that suggested SRPK1 

would prime SRSF1 protein and then CLK1 would effectively carry this forward. The 

presence of SRPK1 within the nucleus however precipitated further investigation that 

revealed a much more complex mechanism. Briefly, the SRPK1/CLK1 complex can 

release SRSF1 in 2 distinct ways; firstly SRPK1 cannot phosphorylate Ser-Pro 

residues of the SRSF1 RS domain and is reliant on CLK1 to phosphorylate these 

residues; CLK1 as an independent kinase however is a very slowly acting kinase but 

when joined to the SRPK1 complex it overcomes its slow turnover number (the 

maximum chemical conversions of a given enzyme at a given concentration) to 

rapidly hit Ser-Pro residues and release SRSF1 to interact with the spliceosome 

(Nowak et al., 2008; Aubol et al., 2016). Secondly, slowly acting, non-complex bound 

CLK1 binds to SRSF1 by its inherently disordered N-terminus which phosphorylates 

the RS domain stochastically (Aubol et al., 2013). SRPK1 can remove the CLK1 N-

terminus bound to the SRSF1 RS domain and release the phosphorylated protein by 

effectively preventing CLK1 from stabilising it. The released SRSF1 is then present 

in an activated state and can readily interact with the spliceosome. This brief 

explanation provides an insight into the potential complexity of alternative splicing 

regulation. It also emphasises the number of steps involved in these processes that 

gives rise to a multitude of targets that could be available to potential control. It is 

clear from the explanation above that inhibiting both CLK1 and SRPK1 would have 

profound effects on SRSF1 alternative splicing targets. One such downstream target 

is Vascular Endothelial Growth Factor A (VEGF-A), a growth factor primarily linked to 
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angiogenesis but one that has been shown in the literature to have effects on pain.  

Control of VEGF-A function by alternative splicing control therefore could be a novel 

therapeutic target for analgesia (Hulse et al., 2014; Donaldson and Beazley-Long, 

2016)  

 

 

 

Figure 1.7: Overview of SRPK1/CLK1 mediated phosphorylation and activation 
of SRSF1 protein. Adapted from Aubol et al. 2020.   
 
Cytoplasmic SRPK1 phosphorylates inactive SRSF1 which then translocates to the nuclear speckles. 
From here phosphorylated SRSF1 (pSRSF1) can be further activated in 2 pathways. Firstly, by slow 
phosphorylation by CLK1 and subsequent SRPK1 mediated CLK1-SRSF1 separation. Secondly by the 
formation of the SRPK1-CLK1 complex which rapidly phosphorylated RS domain SRSF1 residues. Both 
pathways culminate in hyper-phosphorylated SRSF1 (ppSRSF1) that can exert effects in the 
spliceosome. Adapted from Aubol et al. 2020. 
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1.3.4.1: Alternative Splicing of VEGF-A  

Vascular endothelial growth factor A is a growth factor that is most commonly 

associated with major physiological functions in angiogenesis, maintenance of 

endothelial cells and vascular permeability control. VEGF-A is the prototypical 

member of the VEGF family which also contains VEGF-B, VEGF-C, VEGF-D VEGF-

E and VEGF-F. VEGF-B-D are found endogenously in the body and have roles in 

cardiovascular development and lymphangiogensis respectively (Shibuya, 2011). 

VEGF-E is encoded in multiple viruses and can lead to the development of pustular 

skin lesions. Finally VEGF-F is found within snake venom (Yamazaki et al., 2009).  

VEGF-A was first identified and termed “Vascular Permeability Factor” by Senger et 

al. due its profound effects on interstitial fluid accumulation before later work by 

Ferrara and Henzel found the protein had profound mitotic influence on cultured 

endothelial cells leading to a change in nomenclature (Senger et al., 1983; Ferrara 

and Henzel, 1989). Since then the importance of VEGF-A in normal physiological 

processes has been studied in depth. VEGF-A is essential in embryonic 

development of blood vessels, with knockout models demonstrating lethality 

(Hiratsuka et al., 2005). VEGF-A exerts vascular effects via two main receptors; 

VEGFR1 and  VEGFR2. Knockout of these receptors at embryonic stages is again 

lethal and in adult animal models causes severe endothelial cell dysregulation 

(Ferrara, Gerber and LeCouter, 2003). Since its discovery in vascular contexts 

several roles have been found for VEGF-A including important functions in both 

nociception and the wider nervous system (Hulse et al., 2014). VEGF-A and its 

functions are dependent on the way it is alternatively spliced.  

 



   

 

54 

 

VEGF-A has two families of splice variants of varying length and potentially opposing 

functions, these two families are termed VEGF-Axxxa and VEGF-Axxxb (xxx denotes 

amino acid length of protein.). In the majority of tissues VEGF-Axxxb isoforms 

predominate and are associated with maintenance of tissue integrity and function in 

non-angiogenic tissues such as DRG, skin and colon (Pritchard-Jones et al., 2007; 

Varey et al., 2008; Hulse et al., 2014). VEGF-Axxxa isoforms play important roles in 

the prototypical function of the protein, contributing to angiogenesis in developing 

tissues and in the placenta and as such expression of VEGF-Axxxa isoforms is 

physiological feature (Ortega et al., 2019). The potency of alternative splicing leading 

to different functional proteins is apparent by the fact that the physiological function 

of these two families is dictated by just six amino acids on the C-terminus of the 

protein. In the case of the VEGF-Axxxa isoforms the final six amino acids are 

cysteine, aspartate, lysine, proline and two arginine repeats (CDKPRR), whereas the 

terminal six amino acids of the VEGF-Axxxb isoforms are serine, leucine, threonine, 

arginine, lysine and aspartate (SLTRKD) (Bates et al., 2002). This sequence is 

determined by the selection of alternative 3’ splice sites in Exon 8 of the VEGFA 

gene. This selection is in turn decided by the actions of SRSF1 and upstream 

SRPK1 and CLK1 activity. An overview of VEGF alternative splicing can be seen in 

Figure 1.8.  
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Figure 1.8: VEGF Isoforms Summary 

(A) Structure of the VEGFA gene showing translational start (Exon 1 Arrow), VEGFR binding sites, 
neuropilin binding sites and heparin binding sites. (B) The VEGF splice variant family, the angiogenic, 
algesic VEGF-Axxxa family are displayed on the left and the non-angiogenic VEGF-Axxxb isoforms are 
displayed on the right. Splice site selection on Exon 8 determines the isoform expressed. Selection of 
the proximal splicing site results in the inclusion of exons 8a and 8b. Selection of the distal splice site 
on exon 8 only results in inclusion of Exon 8b. The C-terminal sequences are displayed at the bottom 
of the figure. From Donaldson, 2016. 
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Selection of the proximal splice site in exon 8a occurs when SRSF1 is 

phosphorylated by SRPK1/CLK1 and released from nuclear speckles to interact with 

the spliceosome (Nowak et al., 2008, 2010). This leads to the expression of the most 

commonly recognised VEGF-Axxxa isoforms. Conversely, if SRPK1 phosphorylation 

does not occur SRSF1 does not translocate to the nucleus and the distal splice site 

on Exon 8b occurs leading to expression of the alternatively spliced VEGF-Axxxb 

isoforms. Splice isoforms of varying length between 121 and 206 amino acids exist 

in humans and mouse and in most conditions in which VEGF-A plays a role the two 

most abundantly expressed and studied isoforms are VEGF-A165a and VEGF-A165b. 

These two isoforms have directly contradictory functions in multiple contexts 

(Beazley-Long et al., 2013; Gammons et al., 2014; Mavrou et al., 2015; Hulse et al., 

2016). Other splice variants include VEGF-A183  and VEGF-A206 which have strong 

heparin binding properties and are largely sequestered to the cell surface and extra-

cellular matrix. Conversely, VEGF-A121 lacks heparin binding capabilities. VEGF-A165 

isoforms can bind heparin, but not as strongly as VEGF-A183/201 and is therefore also 

found in circulation and can be secreted, a property also possessed by VEGF-A121 

and VEGF-A145. Some isoforms are also to be tissue specific, as VEGF-A145 and 

VEGF-A206 are seemingly restricted to the placenta (Azimi-Nezhad, 2014; Peach et 

al., 2018). 
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1.3.4.2: Functions of VEGF-A165 Isoforms acting at VEGFR1/2 

Although the VEGF-Axxxa and VEGF-Axxxb isoforms may have opposing functions 

both isoforms exert their effects primarily through binding to the tyrosine kinase 

receptor/ vascular endothelial growth factor receptor 2 (VEGFR2, also known as 

Flk1) (Ferrara, Gerber and LeCouter, 2003). Upon binding to VEGFR2, VEGF-A165a 

isoforms trigger conformational changes to the receptor and its various domains 

resulting in receptor dimerization and binding of neuropilin 1 (NP-1), a membrane 

bound co-receptor to VEGFR2. These changes are followed by phosphorylation, 

predominantly of key tyrosine residues such as Y1175 which is key for full activation 

of receptor signalling (Hulse et al., 2016; Peach, Kilpatrick, et al., 2018; Peach et al., 

2018). Complete VEGFR2 phosphorylation activates a number of downstream 

pathways (Figure 1.9) which result in the canonical functions of VEGF-A165a such as 

increased vascular permeability, cellular proliferation, transformation of cells into 

migrating phenotypes from previous quiescent states and angiogenesis when 

binding occurs in endothelial cells (Benton and Whittemore, 2003; Harper and Bates, 

2009). Because of these effects on VEGFR2 phosphorylation, dimerization and NRP 

binding VEGF-A165a is regarded as a full agonist of VEGFR2. In contrast, VEGF-

A165b does not induce these effects. Previous theories included reduced affinity for 

VEGFR2, however studies have shown VEGF isoforms have remarkably similar 

affinities for the receptor (Peach, Kilpatrick, et al., 2018). It has been observed that 

whilst VEGF-A165b has equal affinity for VEGFR2 the effects it has in terms of 

inducing conformational changes or causing phosphorylation of tyrosine residues are 

different. For example, Y1175 is not fully phosphorylated by VEGF-A165b binding to 

VEGFR2 and there is a weaker NRP interaction and little to no PiP2 hydrolysis and 

PKC activation (Ballmer-Hofer et al., 2011; Kisko et al., 2011). As a result, fewer or 
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different intra-cellular pathways to those associated with canonical VEGF function 

are activated. VEGF-A165b is also recognised as being anti-angiogenic, though 

whether this is caused by actual blockade or competition for VEGFR2 is still 

somewhat debated. Though recent evidence does demonstrate that VEGF-A165b 

isoforms are clearly functional at VEGFR2, even if the downstream signalling 

pathway is yet to be fully defined.  

 

 Figure 1.9: VEGF Signalling at VEGFR2 

Following binding of VEGF-A ligands to the VEGFR2 receptor, the transmembrane helices rotate 
causing conformational changes in the VEGFR2 receptor and phosphorylation of various tyrosine 
residues (represented by Yxxx). This phosphorylation causes the creation of binding sites for 
downstream cytoplasmic proteins which in turn initiate cell signalling via pathways such as MAPK, 
ERK1/2, AKT signalling, FAK and PLCγ. This in turn triggers differential cellular mechanisms such as 
migration, proliferation, apoptosis, changes to vascular permeability and reorganisation of the 
cytoskeleton. VEGFR2 is internalised and can be recycled or degraded via lysosomes. It should also 
be noted this diagram assesses pathways in endothelial cells. Assessment of VEGF signalling in 
neurons has revealed an absence of MAPK signalling and PLC/PKC related calcium signalling. 
Adapted From Peach et al. 2018. 
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VEGF-A165a is vital for vascular development important during development as 

mentioned previously with regard to lethality in knockout models. VEGF-A165a is also 

important in physiological regulation and pathological conditions such as hypoxia, 

inflammation and tumorigenesis and is often upregulated in these conditions (Ferrara 

and Davis-Smyth, 1997; Mavrou et al., 2015). The VEGF-A165a isoform is also 

upregulated by the release of damage-related cytokines such as TNF-alpha to levels 

that may result in increased circulating levels of VEGF-A165a in some patients groups 

(Gavrilă et al., 2016; Beazley-Long et al., 2018). The two isoforms can be co-

expressed in tissues, can bind to VEGFR2 with similar affinities and act as 

competitors for the VEGFR2 site. It is therefore hypothesised that that it is the ratio 

of these isoforms present in tissue and therefore the control of alternative splicing 

that determines the eventual VEGF-A-mediated effects at a specific site (Oltean et 

al., 2012). Because of VEGF-A165b’s partial agonism of VEGFR2 it has been 

demonstrated  that occupancy of VEGFR2 over the more potent isoform serves as a 

form of antagonism, whilst not actually being classified as a VEGFR2 antagonism in 

of itself (Peach et al., 2018).  It is therefore evident that controlling isoform 

expression via alternative splicing is pivotal in determining the functional effects of 

VEGF and in recent years control of this process has been linked with profound 

ramifications in terms of nociception.  

 

1.3.4.3: VEGF, Nociception and Neuropathic Pain 

Despite being discovered some 30 years ago it is only in recent years that a role for 

VEGF in the nervous system and in nociception has emerged. VEGF-A has been 

found to promote neurite outgrowth, neuron growth and have trophic effects on 

neuronal companion cells such as glia in both the PNS and CNS (Muratori et al., 
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2018; Sondell, Sundler and Kanje, 2000; Beazley-Long et al., 2013; Calvo, Pastor 

and de la Cruz, 2018). Anti-VEGF therapy such as bevacizumab is often used 

alongside other chemotherapy agents and the anti-angiogenic effects of vinca 

alkaloids, taxanes and platinum based chemotherapy have been associated with 

painful symptoms in patients (Burger et al., 2007; Cohen et al., 2007). As these 

agents can downregulate both isoform families it suggests a neuroprotective role for 

both isoforms. However, promoting VEGF-A165a expression for purely 

neuroprotective purposes would not be advisable because of the profound effects 

the isoform can have on pathological angiogenesis and aberrant vascular 

permeability (Hulse et al., 2014). Furthermore, despite being neuroprotective there is 

increasing evidence demonstrating that the angiogenic isoform is pro-nociceptive. As 

mentioned in inflammatory conditions or tissue damage scenarios, VEGF-A165a 

isoforms are likely to predominate over their counterparts. Hulse et al. demonstrated 

that when applied as recombinant protein in mouse models VEGF-A165a protein 

induced mechanical sensitisation whereas a larger dose of VEGF-A165b protein had 

no effect on sensitivity. Furthermore in response to partial saphenous nerve injury 

(PSNI), VEGF-A165a expression increased 10 fold, which was associated with 

SRSF1 nuclear localisation suggesting injury or chemical insult may activate SRPK1 

and induce changes in alternative splicing (Hulse et al., 2014, 2016). This was also 

associated with VEGFR2 phosphorylation in DRG neurons showing that VEGF may 

directly initiate these effects through signal transduction of neuron bound receptors. 

These changes were reversed by application of SRPIN340, an SRPK1 inhibitor 

which was administered to the injured rats therapeutically. Furthermore in rodent 

models of diabetic neuropathy Bestall et al. demonstrated the benefits of VEGF-

A165b recombinant protein in reducing dissociated neuronal sensitivity to TRPV1 
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stimulation following application of capsaicin, in addition to finding VEGF-A165b 

expression was decreased in STZ induced diabetic rats which was then associated 

with neuropathic pain in these animals (Bestall, 2017). This is also important as 

TRPV1 knockout mice do not experience sensitisation when subjected to VEGF-

A165a, suggesting TRPV1 may be pivotal in causing VEGF related sensitisation. 

Bestall also demonstrated diabetic related pain could be prevented by prophylactic 

dosing of VEGF. More relevant to CIPN, Vencappa et al. showed that cisplatin 

induced neuropathy could be attenuated by both isoforms of VEGF. Administration of 

cisplatin resulted in upregulation of stress factors such as cleaved caspase 3, which 

were reversed with recombinant application of VEGF, however this study did not 

examine nociception in these animals leaving the role of VEGF in ameliorating 

chemotherapy induced pain as to yet unanswered (Vencappa, Donaldson and Hulse, 

2015).  

 

It should be noted however that there is some conflict within the literature with regard 

to the roles of VEGF isoforms in nociception. Some studies have demonstrated that 

VEGF-A165b to be nociceptive in chemotherapy related pain (Di Cesare Mannelli et 

al., 2018). Interestingly, the same study found this effect to be ameliorated by co-

treatment with the VEGF neutralising antibody bevacizumab, which as noted above 

have been associated with painful symptoms in patients. In spite of this, the majority 

of the literature does suggest an anti-nociceptive role of VEGF-A165b in a variety of 

painful conditions but it is worth considering that control of alternative splicing and 

modulation of splicing kinases would not affect just one protein family and that other 

mechanisms may also underpin any observed anti-nociceptive effects.  
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Though the mechanisms behind VEGF-A165a related sensitisation remain to be fully 

explored, it is clear the protein has profound effects in a variety of painful conditions 

including diabetic neuropathy, a close analogue of CIPN and in cisplatin induced 

neuropathy (Bestall et al., 2018). It is likely that activation of splicing kinases such as 

SRPK1 is responsible for these changes. Though most of these studies used 

recombinant protein to demonstrate promising effects, recombinant proteins are 

limited in clinical usage by short half-lives, side-effects, limited systemic distribution 

and specificity (Hutt et al., 2012). Therefore it is more practical to prevent 

pathological changes occurring upstream of splicing by inhibiting novel splicing 

kinases such as SRPK1 and CLK1. As these kinases are activated in neuropathic 

pain states they are responsible for a number of downstream splicing events not 

limited to VEGF, it is important to consider other mechanisms of splicing and 

alternatively spliced proteins that could invoke neuropathic symptoms. Nonetheless 

the creation of novel compounds capable of inhibiting these kinases could have 

seismic effects on how neuropathic pain is treated. One such set of compounds are 

the recently developed SPHINX and Griffin compounds developed by Professor 

Jonathan Morris and his group at the University of New South Wales.  

 

1.4.1: Novel Splicing Kinase Inhibitors  

The concept of splicing kinase inhibition is not necessarily new, multiple efforts have 

been made to develop SRPK1/2 inhibitors as potential antivirals for use in both 

Human Immunodeficiency Virus (HIV) and Hepatitis B virus (HBV) infections where 

the viruses can hijack alternative splicing kinase activity to force viral replication 

(Zheng, Fu and Ou, 2005; Fukuhara et al., 2006). However, compounds such as 

TG003 and various quinoxaline derivatives lack kinase selectivity/specificity which 
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would likely result in various off-target effects in a number of alternatively spliced 

pathways or a lack of potency against key targets (Batson et al., 2017). If alternative 

splicing kinase inhibition is to be viable as a potential adjunct therapy to 

chemotherapy the inhibitors used must demonstrate potency and selectivity in order 

to be effective at the pre-clinical stage. These pre-clinical properties help to ensure 

that selection and development of lead compounds is likely to result in efficacious 

outcomes when it reaches the clinic, though this process is complicated by the need 

to develop appropriate delivery formulations, enhancing of solubility and the need to 

acquire to “drug-like” properties such as those denoted in the Lipinski rules (Benet et 

al., 2016).  Another obstacle to overcome is the fact that many splicing inhibitor 

compounds are often reliant on targeting of the ATP binding site of the kinase which 

means innovative approaches must be taken to ensure potency and specificity 

parameters can be met (Gammons et al., 2014; Batson et al., 2017). This thesis 

examines 4 novel potent and selective compounds splicing kinase inhibitors; 

SPHINX31, Griffin 6, Griffin 23 and Hippogriff 1, developed by the Morris group at 

UNSW as potential adjuncts to vincristine in the context of chemotherapy induced 

peripheral neuropathy. In the case of the Griffins and Hippogriff this is the first time 

they have been assessed in any in vitro physiological model following initial 

validation of their inhibitory characteristics in kinase assays. These compounds 

target SRPK1, CLK1, CLK2 and DYRK1A in various combinations. SPHINX31 is a 

well-characterised compound with demonstrable efficacy in studies aimed at 

controlling the alternative splicing mechanisms downstream of the kinase  

particularly those with respect to the control of VEGF-A alternative splicing (Batson 

et al., 2017; Tzelepis et al., 2018).  
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The selectivity and IC50s of splicing kinase inhibitors are determined using in vitro 

kinase radioactive filter binding assays (MRC PPU International Centre for Kinase 

Profiling) against a panel of 140 kinases.  Whilst older compounds such as 

SRPIN340 and the quinoxaline derivatives have IC50s approaching 1µM for SRPK1 

inhibition, SPHINX31 has an IC50 for SRPK1 of just 6nM. Furthermore, while 

quinoxalines demonstrated inhibitory activity on a number of different kinases in 

screens SPHINX31 was highly selective for only SRPK1. Showing no significant 

inhibition of other kinases in a screen of 140 kinases including the closely related 

kinases SRPK2, CLKs and Dyrks.  The reason for the potency and specificity of 

these agents is due to innovative approaches to their synthesis which result binding 

to a site adjacent to the ATP site rather than competing for the ATP site, as is the 

case for other compounds (Batson et al., 2017).   

 

 

1.4.2.1: SPHINX31 

SPHINX31 is the most established of the compounds used in this thesis and has 

already been trialled in a number of pre-clinical models with success. SPHINX31 has 

been shown to prevent TNF-α mediated activation of SRPK1 and reduce 

phosphorylation of SRSF1 in PC-3 cells in a concentration dependent manner with 

an IC50 of 320nM (Mavrou et al., 2015). Whilst this IC50 is much higher than the 6nM 

quoted above, it is important to consider the assay used. The kinase screening 

assay uses a purified, isolated kinase and therefore in the latter assay performed in 

cells SPHINX31 must be able to get across the membrane and avoid efflux in order 

to exert its effects. Therefore it is logical that inhibitor IC50 values are higher in a cell 

system than those observed when the inhibitors are used against isolated kinases. 
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Gammons et al. and Batson et al. both demonstrated the ability of SPHINX31 to 

effect changes to VEGF-A splicing in retinal pigmented epithelial cells which was 

associated with reduced choroidal re-vascularisation following retinal lesioning in a 

model of wet Age-related Macular Degeneration (Gammons et al., 2013; Batson et 

al., 2017). Wet AMD is a VEGF-A-dependent condition which causes progressive 

blindness. SPHINX31 can induce functional changes to neuronal sensitivity where 

neurons treated with SPHINX31 showed reduced capsaicin-induced TRPV1 

activation (Blackley, 2019). These inhibitory effects on neuronal activation were also 

shown to be VEGF-A dependent using a VEGF-A165b neutralising antibody. This 

latter experiment is the only investigation of SPHINX31 effects on neurons to date, 

but given the promising potential of SPHINX31 demonstrated in other fields, use of 

SPHINX31 to reduce CIPN related sensory neuronal sensitivity via control of 

alternative splicing warranted investigation.  

 

 

 

 

 

 

Figure 1.10: Structure of SPHINX31, Batson et al 2017 
 
SPHINX31 skeletal compound structure. The Trifluoromethyl group (CF3) is responsible for binding 
the hydrophobic pocket in the SRPK1 adjacent to the hinge region. The pyridine group in the 
uppermost sidechain is responsible for tight contacts with the binding region.  

 

 

A key asset of SPHINX31 over other earlier SRPK1 inhibitor compounds is found 

within its structural chemistry. SPHINX31 does not directly target the ATP binding 
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site of SRPK1 but rather an associated site close to it. SRPK1 possesses a so-called 

“hinge” region which is strongly hydrophobic. The trifluoromethyl found on 

SPHINX31 (Figure 1.10) is capable of being directed to this region where it forms a 

strong interaction between the kinase and the inhibitor. Once bound, the attachment 

of a pyridine group to the SPHINX31 sidechains allows more stable binding to the 

hydrophobic pocket which increases the potency of the compound. When this occurs 

the hinge regions flips and prevents binding of ATP which then prevents the kinase 

activity of SRPK1. Therefore, SPHINX31 is a highly selective and potent inhibitor 

with already proven efficacy in controlling SRPK1-dependent alternative splicing. As 

such it is a very useful tool compound for investigations into alternative splicing as a 

therapeutic strategy for CIPN (Batson et al., 2017).  

 

1.4.2.2: Griffin Compounds  
 
Whereas SPHINX31 has been tested in a variety of in vitro and in vivo pre-clinical 

models in multiple contexts, the other compounds examined in this thesis namely 

Griffin 6, Griffin 23 and Hippogriff 1 had not previously been examined in cell-based 

models. Unlike SPHINX31 that is a highly selective SRPK1 inhibitor, Griffin 6 is a 

selective inhibitor of CLK1 and CLK2. As described above, CLK1 interacts with 

SRPK1 in the control of SRSF1 phosphorylation and activation and has been 

implicated in multiple splicing events in oncogenesis and neurodegeneration (Lee et 

al., 2019a). Investigations into the functions of CLK2 are limited. There is some 

evidence to suggest CLK2 plays a role in neural development, where it was found to 

induce expression of key neuronal markers in octopus models. However, more 

substantive studies have found implications for CLK2 activity in the liver, particularly 

in gluconeogenesis which describes the creation of glucose from non-carbohydrate 
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sources (Tabata et al., 2014). Activation of CLK2 downstream of insulin in 

hepatocytes by Akt signalling triggers CLK2 phosphorylation activity, which 

supresses PGC-1A, a master regulator of transcription factors that trigger the 

gluconeogenesis metabolic response (Fernandez-Marcos and Auwerx, 2011). 

Investigations into the role of CLK2 in pain or the nervous system are scarce, 

although the Wnt inhibitor Loricivivint which also inhibits CLK2 and DYRK1A, inhibits  

inflammation, pain behaviour and cartilage damage in osteoarthritis models 

(Deshmuhk et al 2019).  

Whereas SPHINX31 and Griffin 6 inhibit a single kinase or a single family of kinases, 

Griffin 23 and Hippogriff were synthesised as dual kinase inhibitors. In the case of 

Griffin 23 the inhibitor has similar selectivity for SRPK1 and CLK1/CLK2, which have 

been considered in depth in previous sections as key modulators of alternative 

splicing of growth factors such as VEGF-A. Use of more non-selective inhibitors may 

allow for direct comparisons between agents that inhibit a single kinase such as 

SRPK1, which is valuable for more rapid evaluation of the kinases that may be more 

important in neuronal tissue and in CIPN related neuronal changes. Additionally 

designing highly selective kinase inhibitors is notoriously difficult, so use of less 

selective compounds can both inform development and move understanding 

forwards. Hippogriff 1 also has dual selectivity as it is capable of inhibiting 

CLK1/CLK2 and DYRK1A. DYRK1A is a splicing kinase that has been implicated in 

the development of multiple disorders related to central nervous development 

primarily in the brain and in inflammatory processes. Aberrant expression and 

activity of the kinase is suggested to be a potential cause of learning deficits in Down 

syndrome and is also associated with Autism Spectrum disorders (Tahtouh et al., 

2012; Jarhad et al., 2018). Investigations into the role of DYRK1a and pain are 
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limited although as mentioned above Lorecivivint, a CLK/DYRK1A inhibitor 

decreased expression of inflammatory cytokines and pain behaviour in experimental 

arthritis. These findings suggest a roles for both kinases in pain and disease 

modulation through mechanisms other than VEGF-A splicing and provides an 

encouraging rationale for examination of these two kinases in alternative models of 

pain such as CIPN.  

 

 

 

1.5: Aims and Hypotheses  

 

Overall Hypothesis: Control of alternative splicing via inhibition of splicing kinases 

will ameliorate the sensitising and neurotoxic effects of vincristine chemotherapy in in 

vitro models. Furthermore, these novel inhibitors will not cause a reduction in the 

efficacy of vincristine to treat cancer cells.  

 

Aims: 

 

• Develop a model of neuronal activation and sensitisation using immortalised 

or primary sensory neurons. (Chapters 3 & 4) 

 

• Develop a model of vincristine neurotoxicity using immortalised or primary 

sensory neurons. (Chapter 5). 

 

• Use these models to screen novel splicing kinase inhibitors for effects that 

ameliorate observed vincristine toxicity. In addition, screen a novel 



   

 

69 

 

chemotherapy agent, jerantinine for comparative neurotoxicity (Chapters 4 & 

5) 

 

• Assess the effects of novel splicing kinase inhibitors and vincristine on cancer 

cells to ensure they do not compromise the properties of vincristine to reduce 

cancer cell proliferation. (Chapter 6).  
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2: General Methodology 

2.1 General Cell Culture Methods 

For investigations into neuronal activation prior to the use of primary adult rat DRG 

neurons, 2 immortalised cell lines were used, 50B11s and MED17.11s. Both of these 

cell lines required specific differentiation protocols that are detailed in section 3.2.1 

and 3.2.2 respectively. In addition to these neuronal lines, for cancer spheroid 

growth assays ONS76 cells, a sonic hedgehog sub-type medulloblastoma cell line 

were used. Specific information on spheroid formation and analysis can be found in 

section 6.2. For MYC expression analysis the immortalised prostate cancer cell line 

PC3 was used. All cell lines were grown in T25 flasks (Corning) following initial 

thawing and then subsequently passaged in T75 flasks (Corning) following 

expansion. All cells were incubated at 37°C at 5% CO2 unless otherwise stated. 

 

2.1.1 50B11 Culture Conditions & Passaging 

Immortalised 50B11 cells were a kind gift from Dr Ahmet Hoke and were cultured 

and expanded in Neurobasal (Gibco 21103049) containing 10% foetal bovine serum 

(FBS, Sigma F2442-500mL), 1x B-27 supplement (Thermo-Fisher 17504044), 

0.5mM L-Glutamine (Sigma G7513-100mL) and 0.2% glucose (Sigma G7021). Cells 

were allowed to grow to a maximum of 80% confluence before being passaged. 

During passaging, culture media was aspirated and cells washed using phosphate 

buffered saline (PBS, D8537-500mL). PBS was then removed and replaced by 1mL 

of 1x trypsin-EDTA (trypsin = 0.05% w/v, EDTA = 0.5mM) (T4049-100mL) in a T25 

flask or 2mL of 1x trypsin-EDTA in a T75 flask. Cells were then incubated with 1x 

trypsin-EDTA at 37°C at 5% CO2 internal incubator conditions for no longer than 5 
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minutes and subsequently split at a 1:5 ratio following centrifugation at x150G for 5 

minutes. 

 

2.1.2 MED17.11 Culture Conditions & Passaging 

Immortalised MED17.11 cells were a kind gift from Dr Mohammed Nassar 

(University of Sheffield) and were cultured in DMEM/F12 with GlutaMAX (Gibco 

10565018), 10% FBS, 1% Penicillin/Streptomycin (Merck P4333), 5ng/mL IFN-γ 

(R&D Systems 485-MI) and 0.5% chicken embryonic extract (CEE, Sera Lab CE-

650J). Depending on differentiation protocol, some MED17.11 cells were cultured in 

the absence of CEE during the proliferation phase of experiments. Cells were 

passaged as described in section 2.1.1 but split at a 1:10 ratio due to the fact the line 

is rapidly proliferating by nature. Additionally, due to the immortalisation process the 

cells MED17.11s were incubated for proliferation at 33°C to prevent premature 

inactivation of the SV40 large T-antigen responsible for the immortalisation of the cell 

line and thus premature differentiation into sensory neuronal phenotypes.  

 

2.1.3 ONS76 Culture Conditions & Passaging 

ONS76 medulloblastoma cells were a kind gift from Dr Beth Coyle and were cultured 

in RPMI 1640 medium (Sigma R8758) supplemented with 10% FBS. ONS76 cells 

were split at 70% confluence. During passaging ONS76 cells were first washed with 

Hanks Buffered Salt solution (HBSS, Gibco 14170) instead of PBS before being 

passaged as described in section 2.1.1. ONS76 cells were also split at a 1:10 ratio 

due to the rapidly expanding nature of the cell line.  
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2.1.4 PC3 Culture Conditions & Passaging 

PC3 cells were purchased from ATCC (CRL-1435) and were cultured in DMEM 

(Sigma D6546-500mL) supplemented with 10% FBS, 1% penicillin/streptomycin and 

0.5mM L-glutamine. PC3 cells were passaged as described in section 2.1.1 and split 

at a ratio of 1:10 due to rapidly growing nature of the cell line. Specific information on 

PC3 cell seeding for MYC expression experiments can be found in section 6.2.  

 

2.1.5 Preparation and Raising of Cell Stocks  

To prepare stocks of cell lines all cells were detached from flasks using 1x trypsin-

EDTA and centrifuged (Eppendorf 5810) at 150g for 5 minutes. Cells were then re-

suspended in bespoke freezing medium consisting of basal growth medium 

dependent on cell line, supplemented with 20% FBS and 10% dimethyl-sulphoxide 

as cryo-protectant (DMSO, Thermo-Fisher 20688) at a cellular density of 1x106/mL. 

Cells were then aliquoted into an appropriate number of 1mL cryo-vials (Nunc, 

V7384) and placed in an isopropanol chamber (Mr Frosty, Sigma C1562) and 

incubated at -80°C for 24 hours. Following this, vials were then moved directly to 

liquid nitrogen for long term storage. To thaw cell stocks vials were removed from 

liquid nitrogen and thawed as quickly as possible in a water bath or incubator set at 

37⁰C and the 1mL cryovial contents added to 4mL of preheated growth medium. 

Cells were then centrifuged at 150g for 5 minutes to remove DMSO content, before 

cells were re-suspended in 8mL of appropriate medium and placed in a T25 flask for 

normal growth and passaging procedures.  

 

 

2.2 Primary Adult Rat Dorsal Root Ganglia Culture 
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The majority of experiments contained within this thesis were conducted using adult 

rat dorsal root ganglia (DRG) sensory neurons following dissection and dissociation 

into single cell cultures. All rats used in these experiments were male Wistar strain 

and were purchased from Charles River UK and were at least 200g at the time of 

termination and no rat used exceeded 300g. Based on these weights rats were 

considered to be “young adults” according to growth curve studies (McCutcheon and 

Marinelli, 2009). One rat was used to produce one neuronal culture at a time, there 

was no pooling of tissues derived from each rat. Experimental units were assay 

specific and are laid out in Chapters 3,4 and 5. Rats were terminated according to 

Schedule 1 of the Animals in Scientific Procedures Act (ASPA) by terminal 

anaesthesia via intra-peritoneal injection of 0.5mL of 200mg/mL sodium 

pentobarbital (Sigma P3761) by a competent handler. Confirmation of death was 

performed via cervical dislocation again by a competent handler designated 

competent in Schedule 1 termination and on the S1 register of the University of 

Nottingham’s Bio-Support Unit (BSU).  

 

2.2.1 96 Well Plate Coating 

Prior to dissection a black sided 96 well plate (Corning) was coated in 0.01% Poly-L-

Lysine solution (Sigma A-005-C) in sufficient volume to cover the bottom of the plate. 

Plates were then incubated overnight at 37°C. Coating solution was removed the 

following morning and plates were washed with 50µL PBS and then allowed to dry in 

the incubator.  

 

 

2.2.2 Preparation of DRG Medium 
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Cell culture medium for primary DRG cultures consisted of Ham’s F12 medium 

(Gibco, 31765035) supplemented with 1x N2 supplement to support growth of post-

mitotic primary neurons, (Gibco 17502048), 2% Penicillin/streptomycin to prevent 

contamination from dissection and 3% Bovine Serum Albumin as a source of cell 

nutrients (BSA, A5976-50mL). 50mL of this medium was prepared fresh prior to 

dissection protocols. Media was stored in the fridge for no longer than 7 days to 

ensure standardisation of media preparation protocols.  

 

2.2.3 Rat Dissection & Laminectomy 

Following terminal anaesthesia and cervical dislocation of the rat, the cadaver was 

moved to the dissection rig which had been sterilised with 70% Industrial Methylated 

Spirit (IMS). Using tools also sterilised in IMS, an incision was made along midline 

from head to tail and the revealing the underlying musculature covering the spine. 

Excess skin and muscle was cut away until discrete vertebrae of the spine were 

visible. The head was then removed to expose the spinal cord and cervical 

vertebrae. Using rongeurs, a laminectomy was performed along the full spine of the 

animal by removal of the vertebral spinous processes and posterior vertebral arch  

thus exposing the underlying cord and nerve roots. Using fine forceps and micro-

scissors the cord was lifted and the DRG exposed either side of the intervertebral 

foramen, at which point the DRG were isolated via cutting of the connection to the 

peripheral nerve root. DRG were then immediately placed within cold, basal Ham’s 

12 medium until the dissection was finished. Once DRG from every level of the 

spinal cord had been removed the isolated DRG were then at least partially de-

sheathed using a dissection microscope and had the remaining nerve roots from 

initial dissection cut away and removed. DRG were then returned to a fresh aliquot of 
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cold, basal Ham’s F12 medium. All dissections had a maximum time limit of 120 

minutes post cervical dislocation with which to gather tissue, this was to standardise 

the protocol and to ensure tissue taken was as viable as possible ahead of culture.  

 

2.2.4 Dissociation of DRG and Culturing Protocol  

Following the conclusion of the dissection, DRG were placed Ham’s F12 medium 

containing 0.0125% collagenase type IV (Sigma C5138) and were incubated at 37°C 

for 2 hours. During this time, 96 well plates were removed and coated with 0.1µg/mL 

laminin (Sigma, L2020) for at least 1 hour. Using 3 15mL Falcon tubes, 3 15% BSA 

cushions were made using 1mL of 30% BSA solution and 1mL of basal Ham’s F12. 

Any bubbles arising from the mixing of these two solutions were pipetted off. 

Following incubation, and using a cut P1000 pipette tip, the DRG were carefully lifted 

from the collagenase solution into 5mL of warm Ham’s 12 medium to inactivate and 

dilute any remaining collagenase. Ham’s F12 medium was then aspirated and 

replaced by 500µL of aforementioned DRG medium (section 2.2.2) which had been 

warmed prior to use. Using a cut P1000 pipette tip and with the pipette set at 250µL 

DRG were mechanically triturated and dispersed into dissociated cells. A cut pipette 

tip was used to prevent fatty debris from blocking the tip by ensuring a wide bore 

size. This process was repeated with smaller pipette bore size (the pipette tip was 

cut lower down) at least 3 times until the mixture could be readily pipetted with an 

uncut tip with fatty debris fully broken up. The DRG medium containing the 

dissociated cells was then topped up to 3mL and 1mL added per cushion to 15% 

BSA cushions which consisted of 1mL F12 medium and 1mL 30% BSA. This created 

a sharp interface and clearly visible phases in the mixture, with the cell suspension 

resting on top of the BSA/F12 mix. Cushions were then centrifuged at 150xG for 8 
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minutes with no brake applied. Following centrifugation, the supernatant was 

removed and cells re-suspended in 200µL of DRG medium and moved to a new 

Falcon tube. Dissociated primary neuronal cells were then counted using a 

Neubauer Haemocytometer and suspended in an appropriate volume. Cells were 

then plated at a maximum of 2x103 cells per well in 100µL of DRG medium. Plates 

were incubated overnight at 37°C and the following morning media was aspirated 

and replaced by 100µL of DRG medium supplemented with 30µg/mL 5-fluoro-2’ 

deoxyuridine (FdU) to inhibit the mitosis of non DRG cells within the culture, such as 

glial cells. The neuronal cultures cells were then ready to use in a variety of 

experiments.  

 

2.3 Total Ribonucleic Acid Extraction 

For investigations into molecular expression of cell characterisation markers such as 

TRPV1 and NaV1.7, total ribonucleic acid was extracted from cultured cells. The 

following protocol was adhered to as a standardised procedure, any alterations to 

this procedure are denoted within accompanying results chapters. Firstly, cell culture 

media was aspirated and frozen for use in downstream analyses, the cells were then 

washed twice with ice cold PBS. Cells cultured in a 6 well plate were immediately 

washed with 1mL of Tri-Reagent (Thermo-Fisher, AM9738) per well. To ensure even 

distribution of the Tri-Reagent over the cell monolayer cells were scraped repeatedly 

until the mixture became homogenised and absent from any visible cellular clumps 

or debris. Following homogenisation, 1mL cell lysates were moved into 1.5mL 

Eppendorf tubes and incubated for 5 minutes at room temperature to facilitate the 

breakdown of nucleoproteins, ensuring the release of free RNA molecules. After this 

incubation, 200µL of chloroform (Sigma, C2432) was added to each Eppendorf tube. 



   

 

77 

 

Tubes were then inverted multiple times and incubated at room temperature for 15 

minutes. Following this, tubes were centrifuged at 12,000g for 15 minutes at 4°C at 

which point the lysate separated into 3 distinct phases. A clear, aqueous solution at 

the top contained RNA, a milky white interface contained DNA and the lower pink 

phase contained proteins. Approximately 500µL of the upper phase was transferred 

into fresh Eppendorf tubes and the lower phases were disposed of. In order to 

precipitate the RNA within the aqueous phase, 500µL of isopropanol (Thermo Fisher, 

9500-1) was added to the tubes. Tubes were inverted several times and incubated at 

room temperature for 10 minutes before being centrifuged at 12,000g for 10 minutes 

at 4°C. After centrifugation, visible RNA pellets appeared in the tubes and 

supernatants were discarded. The pellets were then washed using 1mL of 75% 

Ethanol to wash away excess salts from the pellet (Sigma, 459836-1L) and vortexed 

for up to 30 seconds to ensure a full wash. Tubes were then centrifuged for a final 

time at 10,000g for 5 minutes at 4°C and the supernatant removed. Pellets were 

dried for 5-10 minutes depending on size and subsequently dissolved in 20µL DEPC 

treated water (Invitrogen, 10289104). RNA was immediately quantified and tested for 

purity using a Nanodrop 2000 spectrophotometer (Thermo-Fisher). To quantify, 1µL 

of RNA was added to the Nanodrop pedestal and absorbance ratios at 260/320 and 

260/280nm were calculated to assess RNA quality and the Nanodrop also quantified 

RNA in ng/mL.  

 

 

2.4 cDNA Synthesis 

In order to synthesise complementary DNA (cDNA) for use in downstream PCR 

applications, 1µg of RNA solutions previously described was made up to 8µL in 
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nuclease free water in a 0.2mL PCR tube (Starlab, I1402-8100). For experiments 

using RNA derived from dissociated primary DRG where RNA yield was usually 

significantly lower than from cell lines, the total RNA isolated was dictated by the 

sample with the lowest yield. Other samples with higher yield were diluted in 

nuclease free water to give the same input RNA in each sample.  In order to reduce 

any potential genomic DNA contamination within the samples, 1µL of RQ1 DNAse 

(DNAse enzyme in 10mM HEPES, 50% v/v glycerol, 10mM CaCl2  and 10mM 

MgCl2.) and 1µL of RQ1 DNAse buffer (400mM Tris-HCl, 100mM MgSO4 and 10mM 

CaCl2) were added for a total reaction mixture of 10µl. Tubes were then incubated at 

37°C for 30 minutes in a PTC-200 Thermocycler. The reaction was then stopped 

after this period via the addition of 1µL of DNAse stop solution (20mM EGTA) and 

incubation of the samples at 65°C for 10 minutes. To initiate reverse transcription, 

0.5µg of Oligo-dT (Promega C110A) to hybridise to mRNA poly-A tails and 250ng of 

random hexamers to bind randomly to the template were added to the samples and 

incubated at 70°C for 10 minutes before samples were removed and placed in ice 

water to prevent RNA from entering secondary conformation structures. 

Subsequently, 0.5mM dNTPs (deoxyribonucleotide tri-phosphate) 4µL of 5x MMLV-

Reverse Transcriptase buffer (250mM Tris-HCl, 375mM KCl, 15mM MgCl2 and 

50mM DTT)  and 1.5µL of nuclease free water were added to the samples for a total 

reaction mixture of 19µL. Finally 1µL of MMLV-RT enzyme was added to all samples 

for a final reaction mixture of 20µL. The Moloney Murine Leukaemia Virus Reverse 

Transcriptase is an RNA dependent DNA polymerase capable of generating cDNA 

templates of 5kb and has lower RNAse H activity than other reverse transcriptases 

ensuring fidelity of RNA template. All experiments involving cDNA synthesis also 

included a –RT control which contained a final addition of nuclease free water to the 
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sample instead of reverse transcriptase. Samples were then incubated at 37°C for 

60 minutes, 42°C for 30 minutes and 70°C for 10 minutes. Following this samples 

were then kept at -20°C until further use. All products used in this protocol were from 

the Promega Reverse Transcription System. (Promega A3500) 

 

2.5 Polymerase Chain Reaction Primers 

Investigations into cell characterisation via detection of molecular markers required 

design and production of numerous primers for use in reverse transcription 

polymerase chain reaction (RT-PCR). The following primers denoted in Table 2.1 

were designed using NCBI Primer Blast and cross referenced using Ensembl to 

identify exon-exon junctions. All primers designed had a mandatory requirement to 

span an exon-exon junction to demonstrate any amplification a result of mRNA 

reverse transcription to cDNA rather than potential contamination with genomic DNA. 

Multiple primers were designed for individual targets, with their usage described in 

greater detail in their respective chapters. All primers were manufactured by Sigma  

in lyophilised form before reconstitution in DEPC treated water to form 100µM 

stocks. The full list of primers used can be found in Table 2.1 below. All primers are 

listed in 5’ to 3’ format. Primers derived from previously described literature are 

referenced within accompanying results chapters.  Information on cross-specificity of 

primers used to validate cDNA across different species is also in specific results 

sections.  
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Table 2.1: Primers and accompanying product sizes 

 

 

 

2.6.1 Reverse Transcription Polymerase Chain Reaction (RT-PCR)  

The following protocol denotes the standardised components of the experiment, for 

specific information on reaction cycles and primer annealing temperatures please 

consult individual chapters. Following reverse transcription and synthesis of cDNA, 

50ng (1µL in standard reaction) of cDNA samples were added to a 0.2mL PCR tube. 

Forward and reverse primers were then mixed together to a final concentration of 

10µM, 1µL of this primer mix was then added to the PCR tube for a final primer 

concentration of 0.5µM per primer. 10µL of PCR Master Mix (Promega) and 8µL of 

Primer Target Forward Primer Reverse Primer Product 

Size (bp) 

1. Rat/Mouse 

TRPV1  

AGCGAGTTCAAAGACCCAGA TTCTCCACCAAGAGGGTCAC 233 

2. Mouse TRPA1 CCCCACTACATTGGGCTGCA CCGCTGTCCAGGCACATCTT 487 

1. Mouse Only 

NaV1.7 

AGCAGGAAGAAGCCGAGGTAGTAT AATGCTGAGTGGTGACTGGTTGG 350 

1. Mouse/Rat 

NaV1.7 

GATGCTCTACTCTGCGGCTT TCATACGCCATGGCTACCAC 287 

1. Rat Only 

NaV1.7 

TTCGGCTCATTCTTCACGTT CACTCCCCAGTGAACAGGAT 359 

GAPDH  CAACTACATGGTTTACATGTTC GCCAGTGGACTCCACGAC 201 

c-MYC TGAGGAGACACCGCCCAC 
 

CAACATCGATTTCTTCCTCATCTTC 
 

71 
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water were then added to the samples for a final reaction volume of 20µL. To test for 

generic PCR contamination, a water control was prepared alongside samples, 

containing the same components other than the addition of 1µL water instead of 

cDNA sample. –RT samples were prepared as for cDNA samples. Samples were 

then placed in a PTC-200 thermocycler to carry out the reaction. Samples in all 

experiments were then initially denatured at 95°C for 5 minutes, before being cooled 

to an annealing temperature dependent on the primer set used. These annealing 

temperatures and further information on number of cycles for each experiment can 

be found in the methods section of their respective results chapter. All reactions 

concluded with a 10 minute final extension at 72°C. Samples were then kept 

overnight a 4°C or immediately taken for analysis via agarose gel electrophoresis.  

 

2.6.2 Agarose Gel Electrophoresis 

1.5% agarose gels were made by dissolving 3g of agarose powder (Sigma, A9535) 

in 200mL of 1x TAE Buffer (40mM Tris base, 1mM EDTA, 0.1042% v/v glacial acetic 

acid). Agarose powder was melted by heating in a microwave at high power for 

repeated 30s intervals until fully dissolved. The solution was then allowed to cool 

slightly before the addition of 5µL ethidium bromide (Sigma, E1510)  per 100mL of 

solution to allow visualisation of cDNA in GelDoc. The agarose solution was then 

poured into the gel mould and a comb added to create wells within the gel. Once 

solidified, the comb was removed and the gel placed within a BioRad gel tank. Fresh 

1x TAE buffer was then added to fully submerge the gel. Samples were added to 

4µL of 6x loading buffer (Thermo, R061 0.03% Orange G Dye + 0.03% Xylene 

cyanol FF in 60% Glycerol) for a total sample volume of 24µL. A maximum of 18µL 

of sample was then loaded into the gel, with 5µL of Bio-Line 50BP Hyperladder (Bio-
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Line loaded in one lane for amplicon size comparison. The gel tank was then 

attached to a power pack and the samples allowed to run for approximately 90 

minutes at 90v. Gels were visualised on GelDoc software using a UV visualisation 

plate (BioRad), images were then exported in TIFF format for analysis.  

 

2.7 Neurite Outgrowth Assay 

For investigations into chemotherapy induced neurite dieback, primary DRG neurons 

cultured as described in section 2.2 were treated with 10nM of the vinca alkaloid 

chemotherapy agent vincristine or co-treated with a combination of vincristine and a 

novel splicing kinase inhibitor to ameliorate the effects on neurite dieback exerted by 

vincristine. Specific information regarding drug concentrations can be found within 

Chapter 5. Due to the use of dispersed cultures rather than organotypic cultures, 

traditional Scholl analysis using concentric rings from the user defined soma 

definition was not possible as many individual neurons were usually present in a 

single field of view. Consequently, a new method of quantifying neurites within a field 

of view was developed using Image J software with the Simple Neurite Tracer plugin.  

The following protocols denote the overarching methodologies used across all 

experiments.  

 

2.7.1 Neurite Outgrowth Workflow 

Following dissection and culture of neurons into 96 well plates as described 

previously neurons were left overnight to stick down to coated laminin. The following 

morning 30µg/mL of FdU was added to the cultures to prevent glial proliferation and 

takeover of the culture. To encourage neurite outgrowth, 8ng/mL of Nerve Growth 

Factor (NGF) (R&D Systems, 556-NG) was also added to the cultures. Neurons 
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were then incubated for a total of 72 hours to allow neurites to grow. Optimisation 

methods and results to establish this time window can be found in Chapter 5. After 

this period neurons were then treated with an experimentally dependent 

concentration of vincristine. Neurons were then left for a further 72 hours, to allow for 

the effects of vincristine to be exerted. After this period cells were then prepared for 

immunocytochemistry protocols.  

 

 

2.7.2 Immunocytochemistry  

Following conclusion of the above workflow neurons were immediately fixed using 

4% (w/v) paraformaldehyde (PFA, Sigma P6148) for 10 minutes at room 

temperature. PFA was then aspirated and neurons washed 1x using PBS. Neurons 

were then permeabilised and blocked using a PBS solution containing 0.2% Triton X-

100 (Sigma 11332481001) and 1% of normal horse serum incubated at room 

temperature for 30 minutes. Blocking solution was then removed and a 1% 

Serum/PBS solution containing primary mouse anti-beta III tubulin (R&D Systems, 

MAB1195) was added to the cells. This was then incubated overnight in a humid box 

at 4°C. The following morning, antibody solution was removed and plates were 

washed with 0.5mL/L Tween 20 PBS solution (PBS-T) 3 times, with an incubation of 

5 minutes between washes. After washing, a 1% BSA PBS solution containing 

1:1000 dilution of Hoechst 33258 and 1:1000 dilution of donkey anti-mouse Alexa 

Fluor 488 secondary antibody (Thermo, R37114) was added to the cells and 

incubated for at least 30 minutes in darkness. Secondary antibody solution was then 

aspirated and plates washed again using PBS-T at least 3 times to reduce non-
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specific binding of antibodies. Plates were sealed with clingfilm and covered with foil 

and incubated at 4°C until imaging.  

 

2.7.3 Confocal Imaging  

Plates were imaged using Leica DMIL 521665 Confocal Microscope. To eliminate 

biased selection of potential neurite hotspots, fields of view were selected using only 

the Hoechst filter. Furthermore, to standardise imaging in each well, 3 fields of view 

were selected and each counted as an internal repeat to account for plating density 

variance. The fields were selected in approximately the top, middle and bottom third 

of the well. Images were taken at 20x and 40x magnification, and Z-stacks 

containing 15 images per field of view were created with a Z-step size of 10µm per 

step. Using Leica Confocal Software, these stacks were condensed into one image 

using maximum projection function and this image was then taken for downstream 

analysis. Laser was set at 50% and gain set at 900 units. Images taken were 

exported as TIFFs. Each plate treatment group therefore had a maximum of 18 

internal repeats and each plate was counted as a single N value.  

 

2.7.4 Image J & Simple Neurite Tracer Analysis 

Images exported as TIFFs were processed using free open access Image J (FIJI) 

software downloaded online. Firstly, images were blinded using the “File 

Randomizer” macro available off the Image J website. This created anonymised 

copies of all files prior to analysis. Blinded images were then opened using Simple 

Neurite Tracer and neurite outgrowth measured in a semi-automated fashion. The 

user input was to select the proximal and distal extremities of the neurite with the 

neuron cell body as the point of reference. Where this could not be achieved due to 
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the neurite reaching the edge of the field of view, the neurite length was terminated 

at this point. For neurites emerging from other neurites, the distal end and proximal 

sprouting point was selected. The simple neurite tracer software would then 

automatically trace the path between the two selected points and record the distance 

according to the set image scale. Once all neurites in the field were recorded in this 

manner, the “Render Skeleton” function was selected, leaving only the selected 

neurite paths present within the image (Figure 2.1).  

Figure 2.1: Neurite Skeleton Render 

An example of a neurite skeleton created using simple neurite tracer. All neurites are lifted from 
background image and are individually assigned an ID with associated length in µm. Green stain = 
Beta-III tubulin. Blue stain = Hoechst. Scale bar = 100µm. 

 

As cell density within cultures was not necessarily even across all plates, this could 

potentially have skewed results erroneously, to account for this total neurite lengths 

from the recorded skeleton were normalised to the number of neurons which were 

manually counted within the field of view of the original image. This therefore created 

a measurement output of neurite outgrowth per neuron. For instance, a field of view 

containing 500µm of total neurite outgrowth with 1 neuron was considered equivalent 

to 1000µm of total neurite outgrowth with 2 neurons present in the field of view. Data 

from a maximum of 18 images per treatment were then collated together on 

Graphpad Prism version 7 or 8. These 18 images were collected from 6 wells per 
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treatment with an image being taken from the top third, middle third and bottom third 

of the well to account for plating density variation. Measuring plates in this manner 

accounted for fairly high intra-plate variability and resulted in low inter-plate 

variability. Blinding was only removed once all images had been quantified. Specific 

information on downstream statistical analyses can be found in the methods section 

of Chapter 5. Images taken at 20x magnification were chosen for analysis. Some 

images had brightness adjusted via modulation of the “minimum” parameter to no 

less than 70 arbitrary units on the Image J command panel. This was done to ensure 

smaller neurites that were could be weakly stained were not excluded from the 

analyses.  

 

 

 

 

2.8 Neuronal Activation/Sensitisation Assay  

 
For investigations into effects of interventions on chemotherapy induced neuronal 

activation/sensitisation in vitro a high throughput assay was designed to assess the 

effect of novel compounds on TRPV1 channels via capsaicin stimulation. Use of 

veratridine stimulation for effects on Nav1.7  was optimised for assessment of effects 

on these channels. The following sections detail the generic workflow of the neuronal 

activation/sensitisation assay, for specific information on the drug regimens used in 

optimisation and final experiments please refer to Chapter 4. All findings used in this 

high-throughput assay have been previously validated at the single cell level using 

patch clamp techniques (Hulse et al., 2014; Bestall et al., 2018). 
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2.8.1 Preparation of Fluo-4 Calcium Direct Assay Dye 

Within this assay the read out for neuronal sensitisation was defined as the level of 

calcium ion influx into neurons following stimulation with either capsaicin or 

veratridine, assessed using the Fluo-4 Direct Calcium Assay (Thermo F10471). The 

assay makes use of a dye that fluoresces strongly upon binding of calcium whilst 

also being able to load more efficiently into cells than traditional calcium dyes. As a 

result background fluorescence is reduced and observed signal is much more 

specific to cell based calcium influx rather than detection of calcium in complete 

media solutions. This property also removes the need for several washing steps and 

complete removal of cell culture medium prior to use, which could potentially 

influence the normal activity of cultured neurons. The Fluo-4 direct dye in the 

following assays were prepared according to the manufacturer’s instructions minus 

the addition of the calcium extrusion inhibitor probenecid. Exclusion of probenecid 

was an experimental decision made to ensure calcium influx could peak and then 

reduce overtime in a more physiologically relevant process and represents the net 

release and influx into and extruded out of the cell rather than simply enhance the 

combination of release and influx within the assay.  

 

2.8.2 Neuronal Sensitisation Workflow 

Following dissection and overnight culture in of adult rat sensory DRG neurons in 96 

well plates (section 2.2.4), culture media was discarded and replaced by media 

containing relevant treatments as described in Chapter 4. In all experiments, glial 

proliferation was inhibited via the addition of 30µg/mL FdU to the treatment media. 

Plates were then incubated for 24 hours in standard cell culture conditions at 37⁰C 

and 5% CO2. Following this, 50µL of the 100µL total culture medium was removed 
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and replaced by 50µL of 2x Fluo-4 Direct calcium assay dye. Plates were then 

incubated for at least 1 hour in standard cell culture conditions in darkness. During 

this incubation period, a relevant concentration of capsaicin or veratridine agonist 

was prepared at 6x working concentration. For specific stimulant concentrations 

please see Chapter 4. Agonists were added to a dummy plate and placed on a 

heating block set to 37°C.  To standardise conditions at the time of measurements, 

the Perkin Elmer Victor 4 and Fluo-Star Omega plate readers used in these assays 

were set to 37°C during this incubation period. After at least 1 hour incubation, plates 

were loaded into the reader and background (dye minus cells) and baseline (dye 

plus cells) fluorescence measured at 488nm. Using a multichannel pipette, 6 x 20µL 

of the 6x concentrated agonist solution was then added to wells containing 100µL of 

media/dye for a final 1x working concentration on a row by row basis. Fluorescence 

was then measured at a least 10 intervals across a 120 second window creating a 

time course of fluorescent change. Fluorescent values were then exported to excel 

and background fluorescence deducted from measurements. At this point, 

fluorescent measurements were divided over the baselines taken before stimulation 

providing a ratio of change in fluorescence from baseline over time. From this, Area 

Under the Curve (AUC) values were derived across the time course via analysis in 

Graphpad Prism versions 7 or 8. AUC values were then used in various downstream 

analyses as described.  

 

2.8.3 Conversion of AUC Values to Percentage Reduction in Sensitisation 

Due to the high level of variability observed in the assay due to various factors such 

as even plating density, quality of dissection, quality of culture, and the consequent 

effects on the viability of neuronal cells significant differences across treatments 
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were potentially masked. To account for this AUC data from novel compound 

experiments were transformed to percentage decrease from the maximum mean 

response of the positive control. In all experiments involving the use of novel splicing 

kinase inhibitors this positive control was neurons treated with vincristine 

chemotherapy alone. The process by which this was achieved is outlined in the 

steps below using a basic example showing a sensitisation experiment involving 

Vincristine treatment + Capsaicin, DMSO vehicle control + Capsaicin and DMSO 

vehicle + HBSS capsaicin vehicle control:  

 

1. AUC values per treatment were averaged to produce a mean response per 

treatment.  

 

 

2. Using the highest mean AUC value as the comparator, percentage change 

from this value was then calculated for each individual AUC repeat using the 

following formula:  

(AUC value – Highest Mean AUC Value) ÷ Highest Mean AUC × 100 
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3. As vincristine in this case had the highest AUC mean, the mean percentage 

change value is 0%, but with variation around this value now observable and 

reflective of the variable responses within the assay. These values are then 

imported into GraphPad Prism. 

 

 

 

 

4. Once in Graphpad Prism the data is normalised with the vincristine 

percentage change (0% change) as 100% response and HBSS percentage 

change (40.11% decrease) as 0% response. The normalised data is then 

used in non-linear regression analyses using GraphPad Prism.  

 

 

2.9 Statistical Analyses 

All data was statistically analysed using Graphpad Prism software (GraphPad Prism 

version 7.0.0 or 8.0.0 for Windows, GraphPad Software, San Diego, California USA, 

www.graphpad.com). For specific information on the statistical tests used in each 

experiment, please consult the relevant results chapters and their accompanying 

figures. All statistical tests used a P value of less than 0.05 as a threshold for 

rejecting the null hypothesis. All figures display mean ± standard error of the mean 

unless otherwise stated. N numbers for each experiment are available within figure 

legends and accompanying explanation in relevant methods sections.  



   

 

91 

 

3: Assessment of Immortalised Neuronal Cell Lines 

as potential drug screening models  

 

3.1.1: Introduction  

The development of reliable, well characterised and phenotypically reflective 

immortalised sensory neuronal cell lines has been a major obstacle in the 

development of therapeutic compounds for a variety of sensory neuropathies 

including CIPN and diabetic neuropathy (Datta, 2013). Unlike cells used in studies in 

other fields, adult neuronal populations are unable to proliferate. Therefore many 

high throughput methods used for drug screening are unavailable because of the 

time constraints, limited tissue yield, financial costs and the labour intensive nature 

of deriving sensory neuronal tissue from primary sources such as rodents and in 

recent times, human samples (Kaur and Dufour, 2012). 

 

Since the discovery of TRPV1 as the active receptor for capsaicin in 1997 (Caterina 

et al., 1997), there has been a concerted effort to develop immortalised cell lines 

expressing this receptor for use in high throughput assays and for drug screening. 

This includes cell lines both neuronal and non-neuronal in nature. Indeed the cell line 

used to identify TRPV1, human embryonic kidneys cells (HEK293) were transfected 

with plasmid cDNA for a range of putative neuronal receptors derived from pooled rat 

and mouse dorsal root ganglia tissue causing heterologous expression of TRPV1 

within the HEK cells. Stimulation with capsaicin then yielded a calcium influx along 

which was later corroborated following stimulation of the cells with heat in a noxious 

range. Despite these landmark findings and the identification of one of key mediators 
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of neuronal sensitisation in a number of sensory neuropathies, several limitations still 

remain around the use of non-primary neuronal/non neuronal cell lines for 

investigations into sensitisation. For example, non-neuronal cell lines expressing ion 

channels such as TRPV1 and TRPA1 may help elucidate responses to certain 

agonists and the effects of therapeutic antagonists of these receptors in a functional 

context, however they could lack key elements of the intracellular signalling 

pathways required to further probe the mechanisms as to how painful neuropathies 

manifest. This therefore limits the efficacy of non-neuronal cell lines as a tool for 

diagnostic screening of novel compounds (Yin et al., 2016). Alternatives to non-

neuronal cell lines such as HEK293s include cell lines derived from nervous tissue 

malignancies such as SH-SY5Y and N2A cells which were isolated from human and 

murine neuroblastoma respectively. Both cells express immature neuronal markers 

which can be further matured following differentiation induced by a range of agents 

including retinoic acid and phorbol esters. However even after differentiation these 

cells lines do not express markers of nociceptive neurons such as functional TRP 

channels. N2A cells have been used for heterologous expression of TRP channels, 

however similar caveats therefore exist for these cells as for non-neuronal lines such 

as HEK293s.  

 

To circumvent these limitations many groups have attempted to develop cell lines 

from isolated primary sensory neuronal tissue which are subsequently immortalised. 

Putatively providing a tool for investigations using phenotypically sensory neuronal 

tissue albeit without the associated costs and time commitments concomitant with 

traditional primary neuronal cultures. Examples of these cell lines, primarily derived 

from neonatal or embryonic rodent dorsal root ganglia include 50B11, F11, 
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MED17.11 and ND7/23 cells (Dunn et al., 1991; Fan et al., 1992). In theory, these 

sensory neuronal cell lines should express key nociceptive markers such as TRP 

receptors and VGSCs that are functional and also by virtue of their origin retain their 

key intracellular signalling pathways that are integral to investigations of mechanisms 

underlying a number of neuropathies. It is therefore a key requirement of any 

sensory neuronal cell line used for screening to emulate primary DRG responses to 

agonists of these key mediators such as capsaicin for TRPV1 and the steroidal 

alkaloid veratridine for NaV1.7. The former of these compounds was fundamental in 

the discovery of TRPV1 and has since been used regularly in investigations into 

DRG sensitisation. The latter compound is regularly used as an agonist of sodium 

channels in screens of potential VGSC blocking agents. The robust effect of both 

agents on DRG neurons is well established and therefore provides reliable controls 

with which to assess the utility of immortalised cell lines in replicating nociceptive 

neuronal mechanisms (Ambrosino et al., 2013; Chernov-Rogan et al., 2018).  

 

Early cell lines developed using these methods such as F11 and ND7/23 cells 

principally used somatic fusion of sensory rat DRG cells with a cancer cell line such 

as N18TG2, a murine neuroblastoma line. These hybrid lines therefore contain 

transcripts from both mouse and rat, which limits the utility of these cell lines in 

genomic and proteomic studies. Furthermore, F11 cells have been shown to lose 

chromosomes between passages. This was associated with loss of opioid receptor 

expression when differentiated after just 10 passages of proliferation (Cruciani et al., 

1994). Nonetheless, both cell lines have been used extensively in the literature. F11 

cells demonstrate neurite outgrowth and contain a heterogenous population of cells 

with varied morphology and response profiles to stimulants such as NGF and retinoic 
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acid.  More recently established immortalised lines have predominantly made use of 

Large T antigen derived from Simian Virus 40 (SV40) to induce oncogenic like 

proliferation of cells without the need for somatic fusion with another cell line. 

Another key component of contemporary immortalisation is the Human Telomerase 

Reverse Transcription Subunit (hTERT). This catalytic subunit allows a telomerase 

repeating unit to be added to telomeres in target cells which are usually senescent or 

have reached the so called Hayflick Limit. The Hayflick limit refers to the point at 

which mammalian cells will be unable to divide due to a critical shortening of 

telomere length (Lee, Choi and Ouellette, 2004).  The result of hTERT insertion into 

cells is therefore a lengthening of otherwise truncated telomeres, a resumption of cell 

division and immortalisation of the cells in question. Immortalisation of cells is usually 

accomplished via incorporation of SV40 or hTERT into plasmid vectors and cells are 

then transfected via electroporation. Alternatively, the immortalising agents are 

incorporated into lentivirus vectors and cells passively transduced in culture. The 

main advantage of these methods over fusion with a tumour cell lines from another 

species is the prevention of potential genetic contamination from the hybrid cell line 

and the stability of the SV40 antigen in maintaining proliferation properties. Clones 

are normally identified through expression of a antibiotic resistance gene tagged to 

the genetic insert and clones are then screened across several divisions to 

determine the colony demonstrating the most robust proliferation whilst still 

maintaining fidelity of functional characteristics and markers when differentiated 

(Wang et al., 2019).  

 

Despite these advances in immortalisation procedure, cell lines can still have many 

limitations. For example the 50B11 immortalised cell line contains only a single 
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neuronal cell type ostensibly small diameter neurons and thus is not representative 

of the diversity of sub-populations normally found in a primary sensory DRG 

neuronal culture (Raymon et al., 1999; W. Chen et al., 2007) This often limits 

immortalised cell line utility as drug screening tools as the absence of specific 

receptors and ion channels within the immortalised population can render the entire 

cell line obsolete if they do not recapitulate normal channel/receptor activation when 

stimulated. Therefore, when selecting an immortalised neuronal cell line, it is of 

pivotal importance to select lines expressing receptors of interest and regularly 

confirm continued expression of these receptors at both the molecular and functional 

level between passages. Another limitation is that despite the immortalisation 

process, some cell lines lose their potential for differentiation following continued 

division and thus expressed characteristics of said differentiation are reduced or 

totally absent when shifting from a proliferative to a differentiated state (Mummery, 

2016). Differentiation of cells and their maintenance can also be difficult and 

expensive to sustain just to reliance on costly reagents to maintain cultures. 

 

Recent work identifying the potential utility of differentiating Human Pluripotent Stem 

Cells (hPSCs) into nociceptor populations took as long as 7 weeks to yield a result, 

with often painstaking monitoring and maintenance of the cell lines required to 

ensure viability (Chambers et al., 2012). For non-stem cell laboratories, this is not a 

practical alternative due to the level of expertise required for said maintenance and 

differentiation. Many differentiation protocols for immortalised lines require numerous 

small molecule inhibitors or growth factors to induce differentiation which may not be 

viable for long term studies or projects with financial constraints. However, despite 

these limitations immortalised cell lines can provide a suitable alternative to primary 
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neuronal tissue where access to rodents for primary tissue is limited due to 

administrative or financial constraints. Additionally many studies, such as those by 

Vetter et al. have now been carried out on more established lines, characterising 

their responses and molecular expression of key receptors and ion channels such as 

TRPV1 and various sodium channels (Vetter and Lewis, 2010). Additionally, this 

allows for selection of cell lines relevant to a specific set of hypotheses on discrete 

receptors or pharmacological targets. Another advantage of immortalised cell lines is 

that they are far more readily available for molecular investigations into protein and 

gene expression than primary neuronal tissue. Immortalised cells can rapidly be 

expanded to levels enough for cell lysis and western blotting whereas primary tissue 

must often be pooled across samples in order to satisfy the requirements of protein 

investigations (Bestall, 2017). The presence of non-neuronal cells such as astrocytes 

and glia in primary neuronal cultures can also compromise proteomic and genomic 

studies acting as confounders however, single cell approaches can help to address 

this issue (Timmerman, Burm and Bajramovic, 2018).  Many immortalised cell lines 

derived from embryonic DRG also display robust neurite outgrowth following 

differentiation, providing scope for multi-parametric drug screening investigations into 

both anti-nociceptive and neuroprotective properties of novel compounds. Therefore, 

when considering immortalised cell lines as alternatives to primary neuronal cultures 

it is practical to balance the benefits and limitations of immortalised cells and 

whether the sacrifice of some physiological fidelity is valid when comparing to the 

difficulties associated with primary neuronal cultures such as cost, intensity of 

training and animal handling (Haberberger et al., 2020). As previous work in the 

group has demonstrated immortalised cell lines such as 50B11 cells can be an 

effective tools in high-throughput investigations such as neuronal sensitisation and 
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outgrowth. Therefore, this chapter will present experiments attempting to 

characterise the functional and molecular characteristics of two immortalised cell 

lines, the novel murine MED17.11 cell line and the established 50B11 cell line. As 

the latter had previously been used within the group, it was possible to compare 

newly generated data with that gathered previously on the same Perkin Elmer plate 

reader which accounted for potential differences in different cell lines across 

laboratories.  

 

3.1.2: Immortalised 50B11 Cell Line 

The 50B11 neuronal cell line was developed by Chen et al. in 2007 and was derived 

from DRG taken from day 14.5 embryonic rats (Chen et al., 2007). The DRG were 

then dissociated and electroporated with plasmids containing SV40 Large T antigen 

and hTERT constructs. One transfected clone colony (50B11) retained proliferative 

properties throughout several passages. The 50B11 cells were then differentiated 

into a more neuronal phenotype via the addition of forskolin which raises levels of 

intracellular cyclic AMP (cAMP). Elevation of cAMP levels within DRG neurons has 

been found to increase neuritogenic capacity and axonal elongation in embryonic 

neurons. After just 24 hours in the presence of forskolin, the authors observed 90% 

of the neurons ceasing cell division and extending processes resembling neurites. 

These neurites were later probed for and had confirmed expression of key neuronal 

markers such as neurofilament and β-III tubulin. Additionally, the authors probed the 

molecular expression of key nociceptive neuronal  markers such as TRPV1, NaV1.7 

and NaV1.4. Function of the former was confirmed via stimulation with capsaicin. 

The 50B11 line is therefore a robustly characterised cell line with extensive 

expression of neuronal molecular markers and demonstrable functionality of 
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neuronal and key nociceptive receptors. Despite this, when Vetter et al. probed the 

responses of various immortalised neuronal cell lines and their receptors to 

stimulation, they found expression of TRPV1 but no functional capsaicin induced 

calcium influx (Vetter and Lewis, 2010). Probing this disparity between the two 

studies is essential for the assessment of 50B11 cells as a valid immortalised 

sensory neuronal model. Therefore, I decided to assess whether 50B11 cells could 

be used as a viable alternative to primary neuronal tissue derived from rodents in a 

sensitisation assay.  

 

3.1.3: Immortalised MED17.11 Cells 

The murine DRG cell line MED17.11 was first established by Doran et al. in 2015 

and was the first immortalised murine DRG cell line to be described (Doran et al., 

2015). Unlike the electroporation methods used in the creation of the 50B11 cell line, 

the MED17.11 cells were instead derived from DRG neurons taken from day 12.5 

embryos of the Immortomouse. The Immortomouse is a transgenic mouse stably 

expressing SV40 large T antigen controlled by the MHC H-2K promoter. The authors 

dissociated the DRG taken from embryos and maintained them in media containing 

interferon gamma to augment SV40 expression driving a proliferative phenotype. As 

the antigen is thermolabile and inactivated at 39°C, cells were maintained at 33°C to 

maintain proliferation. To differentiate the MED17.11 cells into nociceptive 

phenotypes, the cells were cultured without interferon and in a medium containing 

forskolin and FGF to elongate neurite processes, NGF and GDNF to promote 

nociceptor survival and rock inhibitor Y-27632 to induce neural crest cell 

differentiation.  Additionally when inducing differentiation, the authors incubated the 
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cells at 37°C to passively inactivate the SV40 antigen gradually to reduce 

proliferation and enhance retention of differentiated nociceptive phenotype. 

The differentiated MED17.11 cells express functional markers of nociceptive 

neuronal phenotype, including NaV1.7 and TRPV1, and structural proteins such as 

neuron specific β-III tubulin found in rapid onset neurite outgrowth following 

differentiation. In summary, the MED17.11 cells appear to be a robust alternative to 

primary neuronal cultures capable of recapitulated expression and functionality of 

many sensory neuron specific receptors and ion channels. Furthermore, the 

incubation times of 6 days for differentiation and expression of said markers is much 

more manageable than timescales described for other cell lines in development such 

as manipulation of human pluripotent stem cells. However, despite these positive 

developments, the MED17.11 cell line is yet to be assessed outside of the initial 

paper describing its establishment. In addition, following consultation with the 

authors, I was informed the differentiation protocol for MED17.11 cells is not 

universally optimised for use in a range of assays and thus it is important to optimise 

culturing and differentiation conditions on a lab by lab basis with consideration for 

their intended use in specific assays. For example, the time taken for the expression 

of key channels and receptors (6 days in differentiation medium) is markedly longer 

than that for required for rapid and robust neurite outgrowth (3 days) and therefore 

these parameters would need further optimisation. Nonetheless, the potential 

benefits of a cell line capable of extensive expression of neuronal markers, that can 

be differentiated in an expedient fashion would be a powerful tool for high-throughput 

drug screening assays capable of assessing the potential of novel therapeutics such 

a novel splicing kinase inhibitors. Therefore, I decided to assess the MED17.11 cell 



   

 

100 

 

line in this context and make direct comparisons to the performance 50B11 cells and 

primary sensory neuronal cell cultures in sensitisation assays. 

 

3.1.4 Hypothesis & Aims 

Hypotheses 

• Primary dorsal root ganglia neuron stimulation with capsaicin and veratridine 

will induce Ca2+ influx that is significantly higher than vehicle control.  

• The MED17.11 and 50B11 cell lines will express functional TRPV1 and 

NaV1.7 sensory neuronal markers 

• Stimulation of the immortalised neuronal cell lines 50B11 and MED17.11 will 

produce comparable stimulation and calcium influx to primary DRG neurons 

that is significantly higher than vehicle control.  

Aims 

• Establish basal responses of  DRG neurons to TRV1 and NaV1.7 stimulation. 

• Assess whether the immortalised cell lines are viable alternatives to DRG 

neurons within the Fluo-4 direct sensitisation assay. 

 

 

3.2 Methods 

 

3.2.1: 50B11 Culturing and Differentiation  

50B11 cells were a kind gift from Dr Ahmet Hoke (John Hopkins University) and 

were cultured prior to differentiation as described in section 2.1.1. No experiments 

with 50B11 cells were performed beyond passage 30. Therefore, all experiments 

were conducted well within the range of that deemed acceptable by Chen et al. To 
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differentiate 50B11 cells for use in sensitisation assays, 50B11 cells were trypsinised 

and removed from flask as per normal passaging conditions. Subsequently, 50B11 

cells were seeded at a density of 5,000 or 10,000 cells per well in a black sided 96 

well plate. Cells were allowed to attach in proliferation medium described in section 

2.1.1 for approximately 2 hours. Following attachment proliferation medium was 

removed and replaced by media supplemented with 75µM of the cAMP activator 

forskolin (Sigma F3917). Cells were then incubated at 37°C for 24 or 48 hours to 

allow for differentiation of 50B11 cells to occur dependent on experiment.  

 

3.2.2: MED17.11 Culturing and Differentiation 

MED17.11 cells were a kind gift from Dr Mohammed Nassar (University of Sheffield) 

and were cultured for proliferation at 33°C as described in section 2.1.2. For some 

differentiation experiments cells were cultured in proliferating conditions in the 

absence of chicken embryonic extract as part of cell line optimisation investigations. 

This was based on advice from the authors who used the extract in initial description 

of the cell line but were concerned it resulted in reduced expression of mature 

neuronal markers. Differentiation was considered to successful when cells stopped 

proliferating and demonstrated neurite outgrowth alongside morphological shift to a 

bi-polar morphology. No experiments with MED17.11 cells were conducted beyond 

passage 20, therefore all experiments were conducted well within the 100 passage 

limit denoted by Doran et al.  

As MED17.11 cells are not an established neuronal cell line, several differentiation 

protocols were carried out. In all differentiation protocols MED17.11 cells were 

trypsinised as for normal passaging. Cells were then seeded at 1000, 2000, 3000, or 

5000 cells per well of a black sided 96 well cell culture plate in proliferation medium 
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and incubated at 37°C.  Cells were allowed to attach to the plate for at least 2 hours 

before proliferation medium was removed and replaced with differentiation medium. 

Differentiation medium consisted of basal DMEM/F12 + 10% FBS, 1% penicillin and 

streptomycin supplemented with 25µM forskolin (Sigma F3917), 0.5mM di-

butyrlcAMP (D0627) , 10ng/mL GDNF (R&D Systems 512-GF), 100ng/mL NGF 

(R&D Systems 1156-NG), 10ng/mL FGF (R&D Systems 3139-FB-025) and 5µg/mL 

Y-27632 rock inhibitor (Chemdea CD0141). Differentiation medium was prepared in 

bulk, distributed into single aliquots and stored at -20°C.  

 

MED17.11 cells were then incubated in this differentiation medium for 96-144 hours 

in order to optimise conditions that resulted in maximal differentiation and 

functionality of the cell line. These timings were selected based upon author’s advice 

that differentiation may not take a full 144 hour window to result in expression of 

nociceptive markers, but expression of markers was variable prior to 96 hour 

incubation in differentiating conditions. Differentiating MED17.11 cells were 

incubated at 37°C as per the author’s instructions so as to inactivate the SV40 Large 

T antigen. A full summary of the various differentiation conditions trialled is shown in 

Table 3.1. 
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Table 3.1: Variations in differentiation protocol used for MED17.11 cells. 

 

3.2.3: Primary Neuronal Tissue  

To evaluate the robustness of the immortalised line performance in the chosen Fluo-

4 sensitisation assay it was necessary to isolate and culture sensory neurons from 

adult rat primary DRG to allow for direct comparisons using the same assay.  Adult 

Wistar rats were terminally anaesthetised using an intra-peritoneal injection of 

50mg/mL sodium pentobarbital and death was confirmed via cervical dislocation. 

DRG neurons were then collected, dissociated and cultured as extensively described 

in section 2.2.  

 

 

3.2.4 TRPV1/NaV1.7 Sensitisation Assay & Drug Treatments 

To assess the sensory functionality of the immortalised cell lines compared to 

traditional ex-vivo primary sensory DRG neurons, the Fluo-4 Direct Calcium assay 
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was used. The general workflow of the assay and conversion of outputs to graphed 

values are detailed in section 2.8. In these experiments cellular responses to TRPV1 

and NaV1.7 were measured following stimulation of the cells using capsaicin and 

veratridine respectively. In brief, 50µL of the total 100µL of media was removed from 

wells containing differentiated 50B11 cells, MED17.11 cells or primary DRG neurons. 

This was replaced by 50µL of 2X Fluo-4 Direct Calcium Dye after which cells were 

then incubated with the dye for at least 60 minutes. During this time, drugs for 

stimulation of TRPV1 or veratridine were made up to 6x the final working 

concentration and distributed into a dummy 96 well plate allowing addition of the 

drugs to be simultaneous via use of a multi-channel pipette. During the incubation 

with the dye, the Perkin-Elmer Victor 4 plate reader was set to 37°C at least 15 

minutes prior to the end of dye incubation.  

 

Following dye incubation cells were placed in the reader, prior to agonist stimulation. 

For experiments assessing functional NaV1.7 expression in immortalised cell lines, 

cells were treated with veratridine (Tocris Bioscience Cat-2918). 50B11 cells were 

treated with 1µM-30µM, MED17.11 cells with 10µM-100µM and primary DRG 

sensory neurons with 30-100µM. The difference between these concentrations 

reflect the different stages of assay optimisation at which these cell lines were used. 

However, all concentrations were concomitant with previous studies investigating 

activation of NaV1.7 in sensory neurons. No concentrations above 100µM were used 

as high concentrations of veratridine have been linked to off target activation of 

potassium ion channels (Mohammed et al., 2017) . For studies investigating 

capsaicin stimulation of the TRPV1 receptor  all cell cultures were treated with 1µM-

5µM with capsaicin (Hulse et al., 2014) (Sigma M2028). This concentration range 
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was derived from previous optimisation data of DRG responses to capsaicin within 

the group using the same assay. Above 5µM capsaicin has been found to cause 

variable desensitisation of TRPV1, reducing calcium influx and narrowing the 

experimental window. To verify the dependence of calcium influx on TRPV1 

stimulation in primary sensory neuronal cells the TRPV1 inhibitor capsazepine was 

added to cells at least 20 minutes prior to stimulation in the sensitisation assay. 

Though capsaicin is widely recognised as a specific TRPV1 agonist at low 

concentrations it can have off-target effects on VGSCs, calcium and potassium 

channels at higher concentrations (Kuenzi and Dale, 1996). Stimulation of all cell 

types with 45mM KCl (Sigma 137009100) was used a positive control for 

depolarisation and calcium influx. Sensitisation was recorded over a 120 second 

time scale at regular intervals and was exported to excel and processed as 

described in section 2.8.  

 

3.2.5: Assessment of TRPV1/NaV1.7 mRNA expression  

To assess expression of the key receptor TRPV1 and the NaV1.7 ion channel 

following differentiation of immortalised cell lines, RNA was extracted from 

differentiated cells as described in section 2.3. Generation of cDNA was as 

described in section 2.4. Rat cDNA from primary sensory DRG served as a positive 

expression control in these experiments and was a kind gift of Dr Andrew Bennett 

(University of Nottingham). The primer sequences used for all targets are shown in 

Table 2.1 (section 2.5), which also gives expected amplicon sizes. Rat NaV1.7 

primer pair 1 (Table 2.1) was used for 50B11 cDNA with an expected product size of 

359bp. Primary rat positive control cDNA and 50B11 cDNA were denatured for 5 

minutes at 95°C followed 34 cycles of: 60s annealing at 59°C;  60s extension at 
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72°C, and 60s denaturation at 95°C for a further minute. 60s annealing at 59°C; final 

extension at 72°C for 10 minutes, denaturation and storage at 4oC.  

 

For investigations into murine MED17.11 NaV1.7 expression a cross-hybridising 

primer was needed to detect the primary cDNA derived from rat. Therefore, the 

mouse/rat NaV1.7 primer described in Table 2.1, section 2.5 was used with an 

expected product size of 287bp. This primer was originally designed using NCBI 

Primer Blast and Ensembl using murine sequences but has high homology with the 

analogous gene in rats. Primary rat positive control cDNA and MED17.11 cDNA was 

denatured for 5 minutes at 95°C. To encourage a cross reaction across species a 

lower annealing temperature of 52°C was used for 45 seconds. This was followed by 

an extension phase at 72°C for 45 seconds and a denaturation at 95°C for 45 

seconds. This was repeated 35 times for a total number of 36 cycles, the PCR was 

concluded by a final 10 minute extension phase at 72°C.  

For investigations into TRPV1, a cross reacting primer was used for all cell types. 

Though designed against rat transcripts using NCBI primer blast and Ensembl, the 

rat/mouse TRPV1 primer possessed identical homology in the primer design 

spanning across exons 3-5 of the TRPV1 gene in rats and mice. The primer set had 

an expected amplicon size of 233bp. Initially, cDNA from all cell types was denatured 

for 5 minutes at 95°C. This was followed by primer annealing at 50°C for 30 seconds 

followed by a 60 second extension at 72°C and a further denaturation for 60 seconds 

at 95°C. This was repeated a further 39 times for a final total of 40 cycles.  
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All PCR amplicons were visualised following 2% agarose gel electrophoresis as 

described in section 2.6.2 and imaged on a BioRad Gel Doc set to automatic 

exposure detection time.  

 

 

3.3: Results 

 

3.3.1.1: Capsaicin stimulates primary DRG neurons, which is reversible with 
administration of capsazepine 

 
Following dissection, dissociation and incubation for 24 hours in basal F12 medium 

(Section 2.2.) primary DRG neurons were incubated with the Fluo-4 Direct Calcium 

Assay dye and subsequently treated with a final concentration of 1µM of the TRPV1 

agonist capsaicin, vehicle or 1µM capsaicin and 10-20µM of the capsaicin inhibitor 

capsazepine (CPZ) which was applied 20 minutes prior to capsaicin stimulation. 

Calcium influx was then measured across a 120 second interval. Stimulation with 

capsaicin resulted in a significant increase in calcium influx compared to HBSS 

vehicle control resulting in an increase in F/F ratio (1µM Capsaicin: 42.4 ± 1.31 AU 

SEM). This stimulation was subsequently reversed in DRG neurons co-treated with 

the capsaicin inhibitor capsazepine at both 10µM and 20µM (10µM CPZ: 30.5 ± 1.76 

AU SEM, 20µM CPZ: 20.7 ± 1.2 AU SEM). Despite this significant inhibition of 

capsaicin induced sensitisation, neurons stimulated with capsaicin but also treated 

with CPZ still had significantly higher levels of calcium influx compared to HBSS 

control. These results can be seen in Figure 3.1. 
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Figure 3.1: The effect of capsaicin and its inhibitor capsazepine on primary DRG neurons 
 
Baseline fluorescence was read prior to application of 1µM capsaicin, vehicle or 1µM capsaicin + 
capsazepine and stimulation recorded over 120 seconds, each well was normalised to its baseline 
value (A). (B) AUC values for change in fluorescence over the 120 second period. N=3 rats with at 
least 3 internal replicates per plate. One Way ANOVA with Tukey’s multiple comparisons. **** p = 
<0.00001, *** p= <0.0002, ** p= <0.002, ## p = < 0.003, ### p = <0.0004. Star significance = 
compared to CAP, Hash = compared to non-capsaicin vehicle.  
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3.3.1.2 Veratridine stimulates primary DRG neurons at high concentrations 
 

Stimulation of primary DRG with 30µM-100µM of the NaV1.7 agonist veratridine 

resulted in a concentration-dependent increase in intracellular calcium, but only 

stimulation with the maximal 100µM produced a significant increase in F/F ratio 

(100µM VTD: 19.89 ± 2.616 AU SEM) compared to HBSS vehicle control (HBSS: 3.9 

± 1.7 AU SEM). Whilst stimulation with 30µM and 50µM did produce modest 

increases in calcium influx neither of these were significantly above that of vehicle. 

The results of DRG neurons stimulation with veratridine can be seen in figure 3.2.  
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Figure 3.2: The effect of veratridine on primary DRG neurons 
 
Baseline fluorescence measured using the Fluo-4 Direct Calcium Assay Dye was read prior to 
application of 30µ-100µM veratridine and stimulation recorded over a 120 second period, each well 
was normalised to its baseline value (A). (B) Area under the curve (AUC) values of the changes in 
fluorescence across the 120 second period. N=3 rats with at least 3 internal repeats on each plate. 
One Way ANOVA with Dunnett’s multiple comparisons to vehicle. *** p = 0.0006. All data shown are 
mean ± SEM. 
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3.3.2.1: MED17.11 cells display robust neurite outgrowth when cultured in 
differentiation medium 
 
 
Irrespective of the differentiation conditions denoted in table 3.1, MED17.11 cells 

displayed robust morphological differentiation and neurite outgrowth when incubated 

in a variation of differentiation media. MED17.11 cells adopted a bi-polar morphology 

and developed extensive processes resembling neurites. Many of these neurites 

formed connections with neurites originating from other MED17.11 cells in the 

culture. Neurites were of varying length with some neurites extending beyond 

100µm. Emergence of these properties was recorded within 72 hours of 

differentiation, though some cells retained the flattened fibroblastic morphology up to 

this time point.  

 

Figure 3.3: MED17.11 Neurite outgrowth following differentiation 
 
Representative images of MED17.11 cells prior to incubation in differentiation medium 
(undifferentiated) and after 96 hours following incubation in differentiating conditions. Neurite 
outgrowth is clearly visible in differentiating MED17.11 cells which is absent in undifferentiated cells. 
Scale bar for undifferentiated image = 100µm. Scale bar for 96 hour differentiation image = 50µm.  
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3.3.2.2: No significant NaV1.7 responses were detected in MED17.11 cells that 
had been proliferated in CEE and differentiated for 96 or 144 hours.  
 
The first report on MED17.11 cells showed expression of functional NaV1.7 post 

differentiation (Doran et al., 2015) after proliferation in the presence of chicken 

embryonic extract. Despite alteration to seeding density and length of incubation in 

differentiation conditions I could not demonstrate functional NaV1.7 responses in 

MED17.11 cells as previously reported.  No significant differences in calcium influx 

were observed following stimulation of MED17.11 cells following veratridine 

stimulation compared to HBSS vehicle irrespective of MED17.11 seeding density. 

The absence of veratridine induced NaV1.7 stimulation and lack of responses can be 

seen in figure 3.4.   
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Figure 3.4: Effects of seeding density and 96/144 hours differentiation on MED17.11 
NaV1.7 responses 
 
MED17.11 cells seeded at 1000 (A), 2000 (B) and 3000 (C) per well and incubated for 96 hours in 
differentiating conditions display no significant NaV1.7 stimulation compared with control, following 
treatment with 50µM-100µM of veratridine. MED17.11 cells seeded at 1000 (D), 2000 (E) and 3000 
(F) cells per well and incubated for 144 hours in differentiating conditions display no significant 
NaV1.7 stimulation and associated calcium influx following treatment with 50µM-100µM of 
veratridine. N=3 plate repeats with 6 internal repeats on each plate. Data shown are mean ± SEM. 
No significant differences detected, One Way ANOVA with Dunnett’s multiple comparisons to HBSS 
vehicle control.  
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3.3.2.3: No significant NaV1.7 responses, nor NaV1.7 mRNA was detected in 
MED17.11 cells proliferated without chicken embryonic extract 
 

Following correspondence with the authors of the original MED17.11 paper following 

the lack of responses shown in figure 3.4, I was advised to remove the 0.5% chicken 

embryonic extract from the MED17.11 culture medium. Chicken embryonic extract is 

believed to allow cells to retain proliferative and primitive phenotypes. However, in 

discussions with the original authors they expressed concern that CEE may reduce 

the efficacy and efficiency of differentiation. I therefore cultured MED17.11 cells in 

the absence of CEE and differentiated at a seeding density of 5000 cells per well. All 

other differentiation conditions remained constant. These changes to protocols had 

no effect on NaV1.7 mediated calcium influx following stimulation with 10µM-100µM 

of veratridine compared to HBSS vehicle control. Furthermore, there was no 

detectable expression of NaV1.7 mRNA in MED17.11 cells proliferated without CEE 

and maintained in differentiating conditions for 144 hours. NaV1.7 mRNA expression 

was detected in primary rat cDNA using the murine based cross hybridising primer.  
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Figure 3.5: MED17.11 NaV1.7 responses from cells not exposed to chicken embryonic 
extract.  
 
MED17.11 cells proliferated without CEE and incubated in differentiating conditions for 96 (A) or 144 
(B) hours display no significant veratridine induced NaV1.7 responses and associated calcium influx 
when differentiated compared to HBSS vehicle control at any concentration of veratridine 
stimulation. (C) Area under the curve values for NaV1.7 responses following 96 hours of 
differentiation. (D) Area under the curve values for NaV1.7 responses following 144 hours of 
differentiation. N=3 plate repeats with 6 internal replicates per treatment. Data shown are mean ± 
SEM. No significant differences detected, One Way Anova with Dunnett’s multiple comparisons to 
HBSS vehicle control. (E) No NaV1.7 mRNA (product size = 287) was detected in MED17.11 cells 
proliferated without CEE and incubated for 144 hours in differentiating conditions. N=3 separate 
RNA extractions from MED17.11 cells cultured in above conditions at passages 9,10 and 11.  
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3.3.2.4: MED17.11 cells do not show functional TRPV1 responses after a 144 

hour differentiation protocol, nor do MED17.11 cells express TRPV1 mRNA.  

The first report on MED17.11 cells also showed expression of functional TRPV1 

(Doran et al., 2015), but as with NaV1.7 I was also unable to reproduce these 

responses in these cells. MED17.11 cells differentiated for 144 hours and seeded at 

various densities per well also failed to respond to capsaicin induced stimulation at 

either 1µM or 5µM (Fig 3.6)  These concentrations had previously invoked 

responses in MED17.11 cells and in primary DRG sensory neurons as shown in 

section 3.3.1.2 (Doran et al., 2015). Furthermore, there was no expression of TRPV1 

in the MED17.11 cells seeded at 3000 cells per well and differentiated for 144 hours 

despite detection in rat primary DRG positive control with a cross hybridising primer.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 



   

 

117 

 

3.6: Effects of seeding density on MED17.11 responses to capsaicin stimulation  
 
MED17.11 cells proliferated without CEE and incubated in differentiating conditions for 96 (A) or 144 
(B) hours display no significant capsaicin induced TRPV1 responses and associated calcium influx 
when differentiated compared to HBSS vehicle control at either capsaicin concentration. (C) Area 
under the curve values for TRPV1 responses following 96 hours of differentiation. (D) Area under the 
curve values for TRPV1 responses following 144 hours of differentiation. N=3 plate repeats with 6 
internal replicates per treatment. Data shown are mean ± SEM. No significant differences detected, 
One Way ANOVA with Dunnett’s multiple comparisons to HBSS vehicle control. (E) No TRPV1 mRNA 
(product size = 233) was detected in MED17.11 cells proliferated without CEE, seeded at 5000 cells 
per well and incubated for 144 hours in differentiating conditions. N=3 separate RNA extractions 
from MED17.11 cells cultured in above conditions at passages 10,11 and 12. 
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3.3.3.1: 50B11 cells do not demonstrate NaV1.7 mediated calcium influx when 

stimulated by veratridine following a 24 hour differentiation, nor was NaV1.7 

expression detected via RT-PCR 

Previous results in our group and within the wider literature have shown robust 

functional responses in differentiated 50B11 cells, plated at seeding densities of 

5000-10000 cells per well (96 well plate) similar to those in nociceptive DRG neurons 

(Bestall, 2017). However, I was not able to replicate these findings.  When stimulated 

with veratridine 50B11 cells did not respond to stimulation at any concentration and 

irrespective of cell density per well. Furthermore, I was unable to detect expression 

of NaV1.7 cDNA in differentiated 50B11 cells seeded at 10000 cells per well despite 

positive amplification of 50B11 GAPDH cDNA and positive detection of TRPV1  

expression in rat primary DRG cDNA at 359bp. I therefore concluded that 50B11 

cells did not exhibit functional NaV1.7 expression after differentiation.  
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Figure 3.7: Effects of veratridine stimulation on NaV1.7 mediated calcium influx in 50B11 
cells at different seeding densities and NaV1.7 expression.  
 
50B11 cells seeded at 5000 (A) and 10000 (B) cells per well and differentiated for 24 hours in the 

presence of 75µM forskolin did not display significant increases in calcium influx following 1µM-

30µM veratridine stimulation compared to HBSS vehicle control across the 120 second measuring 
period. (C) Area under the curve values at 5000 cells per well. (D) Area under the curve values at 
10000 cells per well. N=3 plate repeats with 6 internal replicates per plate. Data shown are mean ± 
SEM. No significant differences detected, One Way ANOVA with Dunnett’s multiple comparison to 
HBSS vehicle control. (E) No NaV1.7 mRNA (product size = 357bp) was detected in 50B11 cells 
seeded at 10000 cells per well and incubated for 24 hours in differentiating conditions. N=3 separate 
RNA extractions from 50B11 cells cultured in above conditions at passages 20,21 and 22. 
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3.3.3.2: 50B11 cells do not show functional TRPV1 responses following 
stimulation with capsaicin, nor was TRPV1 expression detected via RT-PCR 
 

Despite using concentrations of capsaicin previously shown to activate 50B11 cells 

in our lab (Hulse et al., 2014, 2015), there were no detectable responses in 50B11 

cells compared to HBSS vehicle control, irrespective of seeding density. 

Furthermore, despite validation of successful synthesis of cDNA from 50B11 

exemplified by successful detection of GAPDH at expected amplicon product size, 

there was no detectable expression of TRPV1 cDNA in the same samples. There 

was detection of TRPV1 cDNA in the rat primary DRG positive control sample at the 

expected product size of 233bp. I therefore determined that 50B11 cells did not 

exhibit functional TRPV1 expression following differentiation.  
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Figure 3.8: Effects of capsaicin stimulation on TRPV1 mediated calcium influx in 50B11 
cells at different seeding densities and TRPV1 expression.  
 
50B11 cells seeded at 5000 (A) and 10000 (B) cells per well and differentiated for 24 hours in the 

presence of 75µM forskolin did not display significant increases in calcium influx following 1µM-

5µM capsaicin stimulation compared to HBSS vehicle control across the 120 second measuring 
period. (C) Area under the curve values at 5000 cells per well. (D) Area under the curve values at 
10000 cells per well. N=3 plate repeats with 6 internal replicates per plate. Data shown are mean ± 
SEM. No significant differences detected, One Way ANOVA with Dunnett’s multiple comparison to 
HBSS vehicle control. (E) No TRPV1 cDNA (product size = 233bp) was detected in 50B11 cells seeded 
at 10000 cells per well and incubated for 24 hours in differentiating conditions. N=3 separate RNA 
extractions from 50B11 cells cultured in above conditions at passages 24,25 and 27. 
.  

 
 
 



   

 

122 

 

3.4 Discussion 
 

The potential for immortalised neuronal cell lines as a supplementary tool or even as 

an eventual replacement for primary tissue is vast and is subject to widespread 

discussion and development within scientific literature. By circumventing various 

administrative limitations and financial burdens that are concomitant with animal 

housing and handling, immortalised lines could enable large numbers of research 

groups to engage with investigations into various neuropathies including CIPN 

(Obinata, 2007). However, despite their immense potential and concerted efforts to 

develop cell lines with key neuronal characteristics that are maintained with high 

fidelity over dozens of passages, there are still many limitations in most neuronal cell 

lines that necessitate careful consideration when utilising them as a preference over 

ex vivo primary neuronal tissue. These limitations include: the speed at which 

immortalised lines may lose their ability to differentiate into neuronal phenotypes due 

to extensive passaging (Bucchia et al., 2018), the population of neurons from which 

the cell line is derived, the age of the animal from which they are obtained, and how 

this affects the expression of key markers and receptors;  the costs associated with 

differentiation, as many immortalised cell lines make use of expensive reagents in 

media that are quickly exhausted during extensive use of the cell line and finally and 

perhaps most importantly, how immortalised lines perform in functional assays 

compared to primary tissue such as neurite outgrowth and sensitisation.  

 

As both MED17.11 and 50B11 cell lines have been shown to demonstrate some 

functional properties of nociceptive sensory neurons, I aimed to validate these cell 

lines for functional responses using TRPV1 and NaV1.7 agonists as these are two 

key nociceptive channels (W. Chen et al., 2007; Doran et al., 2015). This would help 
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to determine whether responses were comparable to those of primary sensory 

neurons. (Malin, Davis and Molliver, 2007).  Despite variations in time based 

differentiation protocols and seeding density both cell lines failed to recapitulate 

either the relatively small veratridine induced NaV1.7 or the larger response 

capsaicin-induced TRPV1 response in primary neurons. Subsequent investigations 

showed an absence of target cDNA for both targets in these lines. Determining why 

these functional assays failed to recapitulate primary DRG neurons is of essential 

importance for the development of immortalised lines as an alternative to primary 

tissue and such concerns must be considered before any immortalised line is used.  

 

3.4.1: Primary DRG neurons respond to stimulation with capsaicin and 

veratridine  

Before assessing the validity of immortalised cell lines it was necessary to 

characterise the responses of sensory neurons derived from adult rat primary tissue 

to capsaicin and veratridine. Primary DRG sensory neurons demonstrated significant 

responses to both compounds representing activity of TRPV1 and NaV1.7 

respectively. The former of these responses was significantly but not fully reversed 

by the application of 10µM-20µM of the capsaicin inhibitor capsazepine, providing 

evidence the observed calcium influx was largely capsaicin and TRPV1 dependent 

(Nguyen et al., 2010) (Yang et al., 2019). Interestingly, 10µM capsazepine has 

previously been shown to abolish TRPV1 mediated DRG responses to 500nM 

capsaicin stimulation in vitro. Therefore, the presence of residual response following 

1µM stimulation with capsaicin potentially suggests a non-TRPV1 dependent route of 

calcium flux at higher capsaicin concentrations. However, there is considerable 

evidence in the literature to suggest 1µM capsaicin stimulation is within the range of 
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TRPV1 specificity rendering this suggestion unlikely. As I opted to not use 

probenecid in these experiments, extrusion of calcium from the cells was not 

inhibited therefore it is possible that the observed flux that was not inhibited by 

capsazepine was due to release from intracellular calcium stores or indeed influx 

from other sites.  

 

Furthermore, stimulation with a moderate concentration of capsaicin facilitated a 

larger response than stimulation with a high concentration of veratridine. Significant 

stimulation of NaV1.7 only occurred at a concentration at the threshold of inducing 

non-specific inhibition of voltage gated potassium channels and sustained 

depolarisation. A possible reason for this is the heterogeneity of NaV1.7 and TRPV1 

expression of the various neuronal populations found in a primary DRG cell culture 

and how isolation and dissection protocols could potentially alter the distribution of 

this expression. For example, various studies have found that following culturing 

procedures, the expression of TRPV1 has increased markedly compared to neurons 

isolated in the same manner, but immediately subjected to RNA extraction 

procedures (Mohammed et al., 2017) (Ren et al., 2014). In future work it would 

therefore be of use to greater characterise the components of the dissociated DRG 

cell culture in greater detail and how this could potentially affect the relevance of the 

model. Previous studies involving dissociated adult murine cultures and their 

responses to veratridine identified that 66% of the cellular composition in a DRG 

culture consists of nociceptors responsive to stimulation of either TRPA1 with AITC, 

TRPV1 with capsaicin of ATP with α-β methylene observed via calcium imaging. 

(Mohammed, Kaloyanova and Nassar, 2020) Of these, 64% responded to 

stimulation with veratridine and of those that did respond there was variety of 
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response profiles including some with large periods of latency to stimulation of up to 

two minutes. Therefore it is possible that the reduced response to VTD in 

comparison to capsaicin stimulation observed in the above experiments could be 

mediated by these factors. Additionally, in these experiments I assessed calcium 

influx as an output of VGSC activity which is a common method used within the 

literature. However, using a sodium based dye such as ANG-2 may help to improve 

the signal of veratridine stimulation by directly measuring influx of sodium ions 

across the cell membrane (Iamshanova et al., 2016). However, high throughput 

sodium dye assays often require a wash step to quench background fluorescence, 

which can cause cell detachment even on poly-lysine coated surfaces creating a 

source of inter-well variation. The Fluo-4 direct calcium assay used avoids the 

requirement for a wash-step through its formulation with a suppression dye which 

limits extracellular calcium sources of background fluorescence. Recently, a range of 

similar dyes were suggested for use in sodium indicator assays which may make this 

approach more viable in the future (Tay et al., 2019). DRG responses to capsaicin 

were comparable to previous sensitisation experiments and the significant effect of 

the capsaicin inhibitor capsazepine in reducing calcium influx at both concentrations 

used provided evidence that TRPV1 specific responses within this model can be 

accurately probed and defined as mainly TRPV1 dependent rather than being 

predominantly mediated by any potential off-target effects of capsaicin stimulation on 

dissociated DRG cultures. (Hulse et al., 2015; Bestall et al., 2018) 
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3.4.2: MED17.11 cells are not robust alternatives to primary DRG neurons in 

plate based calcium influx assays  

 

The murine MED17.11 cell line was subject to extensive differentiation and 

optimisation protocols in the experiments listed within this chapter. Despite this, they 

did not demonstrate any functional utility within the neuronal activation assay 

following stimulation with capsaicin or veratridine and following RT-PCR 

investigations were found to be lacking mRNA expression of both targets. As 

previously mentioned, the MED17.11 cells are a newly developed immortalised 

neuronal cell line and therefore there is a lack of confirmation of the initial findings on 

these cells. Indeed, at the time of writing the only paper describing their use and 

functionality successfully is the paper establishing the creation of the cell line (Doran 

et al., 2015). However, there are myriad reasons as to why the results in this chapter 

fail to reflect those observed by Doran et al. When I received the cell line as a kind 

gift I was advised that this cell line was still in the preliminary stages of its 

characterisation both functionally and in terms of expression of molecular markers. 

The MED17.11 cells used within this study were expanded from passage 2 and no 

experiments using the cell line were conducted beyond passage 20. Therefore it is 

unlikely that extensive passaging and subsequent phenotypic drift were responsible 

for the absence of responses and expression of key neuronal targets, however to 

definitively prove this it would be necessary to characterise cells repeatedly between 

passages.  

 

Furthermore, the differentiation protocols described in section 3.2.2 were developed 

in constant correspondence with the authors of the initial characterisation. Multiple 
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variations of the differentiation protocol were used prior to activation experiments, 

which were extensive both in terms of incubation time, consideration of seeding 

density and determining the effect of certain elements of proliferation media such as 

chicken embryonic extract  would have on any effective differentiation process. 

Therefore it is again unlikely that the protocols used were responsible for the 

absence of functional response and molecular expression given these protocols had 

previously resulted in successful expression of functional TRPV1 and NaV1.7. 

Further modification and adjustments to the concentration of the various growth 

factors and inhibitors used within these experiments would further corroborate this 

assertion but as this was not the primary aim of this project these further 

experiments were not carried out due to time constraints and the robust responses 

demonstrated by primary DRG neurons. A final possible explanation for the lack of 

observed TRPV1/NaV1.7 expression and responses in MED17.11 could be batch-

specific effects between different vials of immortalised cells and laboratory reagents. 

The vial I received as a gift had not been expanded and used in previous 

experiments by Doran et al. and therefore may have different properties than those 

originally described. Furthermore, though media and growth reagents were obtained 

from the same suppliers, the constitution of reagents such FBS and Chicken 

Embryonic extract are often heterogeneous between batches and therefore may 

have contained components such as growth factors that limited the ability of the cell 

line to differentiate appropriately and express functional receptors. The effects of 

serum variation and the variability between different vials of the identical cell lines 

are well documented in the literature. For example, SH-SY5Y cells have been 

documented to proliferate and differentiate with varying efficiency across serum 

batches (Xicoy, Wieringa and Martens, 2017). Vetter et al. also demonstrated 
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variance of expression of histamine receptor expression between two batches of SH-

SY5Y cells from separate vials, despite culturing in the same batch of serum 

(Buttiglione et al., 2007; Vetter and Lewis, 2010; Xicoy, Wieringa and Martens, 

2017). 

 

 

 

3.4.3: 50B11 cells above passage 20 are not robust alternatives to primary 

DRG neurons for plate based calcium influx assays.  

As for MED17.11 cells, the immortalised rat embryonic 50B11 cell line was subject to 

investigations into TRPV1 and NaV1.7 expression following putative differentiation. 

The 50B11 cell line lacked functionality in the neuronal activation assay and 

expression of key molecular markers following a 24 hour differentiation period with 

the cAMP synthesis inducer, forskolin. There was no detectable expression of 

TRPV1 or NaV1.7 in the cells using RT-PCR, despite previous reports of expression 

albeit in earlier passages (Haberberger, Barry and Matusica, 2020). However, unlike 

MED17.11 cells, there have been several studies utilising the 50B11 cells 

characterising their properties (Vetter and Lewis, 2010; Van Opdenbosch et al., 

2012; Bhattacherjee, Liao and Smith, 2014; Gnavi et al., 2015; Mohiuddin et al., 

2019). These studies include characterisation of calcium responses following 

stimulation by a number of different agonists such as capsaicin, bradykinin, 

histamine and ATP, all of which activate nociceptive sensory neurons. As a result it 

is useful to consider the results observed within this chapter in comparison with 

these other studies. For example, the paper establishing 50B11 cells showed that 

the cell line displayed neuronal characteristics such as expression of TrkA and could 
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still be differentiated beyond 100 cellular passages, this being sustained to an upper 

limit of 400 passages. In contrast, Vetter et al. observed that 50B11 cells when 

cultured and differentiated as described by Chen et al. remained sensitive to 

differentiation only up to a limit of 20 passages. This is significant and potentially 

indicative of batch specific differences between cell lineages during sub-cloning 

procedures. I used 50B11 cells between passages 20-30 as they were not available 

at earlier passage number, it is possible that these cells had lost the ability to fully 

differentiate. Earlier passages in the lab had demonstrated TRPV1 evoked 

responses (Hulse et al., 2015; Blackley, 2019).  It should also be noted that Vetter 

and colleagues only investigated functionality in calcium response assays and 

expression of these channels. Nonetheless, 50B11 cells have demonstrated a 

heterogeneous capacity for differentiation between batches, between our group 

Vetter’s, and the authors who developed the cell line. Vetter at al. also found 50B11 

cells differentiated at passages numbers below 20 and thus hypothetically sensitive 

to forskolin induced differentiation protocols, did not display any TRPV1 mediated 

responses to capsaicin despite responses to other stimulants such ATP being 

associated with a transient increase in calcium influx (Vetter and Lewis, 2010). 

Previous work within the group has identified TRPV1 expression within 50B11 cells 

and functional responses to AITC (TRPA1 agonist), capsaicin, and VEGF isoforms in 

in vitro diabetic neuropathy models, therefore this largely accounts for potential 

variations in equipment and laboratory conditions and further suggests the lack of 

consistency observed in the 50B11 cell line is likely to be due to genetic variation in 

batches caused by the cloning procedures used to establish the line. (Hulse et al., 

2015; Bestall et al., 2018) 
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3.4.4: MED17.11 cells and 50B11 cells display robust neurite outgrowth 
following differentiation 
 
Whilst differentiation of neither cell line resulted in detectable expression of the target 

neuronal markers in these experiments nor demonstrated any response to 

stimulation in functional assays, both cell lines did undergo noticeable morphological 

changes and exhibited robust neurite outgrowth. In the MED17.11 cells, robust 

morphological changes occurred within just 72 hours of the full 144 hour 

differentiation protocol and occurred across increasing numbers of cells in the period 

when images were taken. Neurites were observed in MED17.11 cells irrespective of 

CEE treatment. This robust outgrowth was also seen in the initial publication (Doran 

et al. 2015), with visible neurite outgrowth with strong expression of TUJ1/β-III 

tubulin detected within hours of incubation under differentiating conditions. This 

suggests that culturing in differentiation conditions promotes some neuronal features 

in MED17.11 cells even in the absence of expression of functional TRPV1 and 

NaV1.7 and that the cell line may have utility beyond that of these functional 

responses.  

 

In a similar fashion, 50B11 cells also demonstrated neuronal morphological changes 

after undergoing forskolin induced differentiation, showing neurite outgrowth in the 

majority of cells within 24 hours (Chen et al. 2007). TUJ1/β-III tubulin positive neurite 

outgrowth is evident in 50B11 cells after just 4 hours in differentiating conditions 

(Chen et al. 2007). This cell line has been used to investigate the effects of trophic 

and hormonal factors such as NGF and GDNF on neurite outgrowth by 

Bhattacherjee et al. (Bhattacherjee, Liao and Smith, 2014).  

Previous work in the group also used 50B11 cells as a tool in assessing neurite 

outgrowth in the context of a diabetic model. 50B11 cells were exposed to various 



   

 

131 

 

glucose concentrations in culture and then imaged via light microscopy and manual 

quantification. High glucose conditions visibly reduced observed neurite outgrowth 

that was ameliorated by supplementation with the neuroprotective VEGF isoform, 

VEGF-A165b. The versatility of the cells within this study was visibly on display as 

50B11 cells responded readily to glucose challenge and stimulation with a number of 

trophic factors such as NGF and VEGF-A165a, corroborating the findings of 

Bhattacherjee et al. It should be noted however that these studies did not probe 

expression of key neuronal markers within these neurites and therefore this should 

also be taken into consideration when assessing 50B11 cells as an alternative to 

primary neuronal cultures as they make have lacked markers crucial to neuronal 

characterisations. I did not investigate the characteristics of the MED17.11 or 50B11 

neurites further due to time constraints and the prioritisation of refining the 

sensitisation assay in DRG for screening of splicing kinase inhibitors.  

 

3.4.5: Concluding Remark 

Immortalised neuronal cell lines can have immense potential as cost and time 

effective alternatives to primary neuronal culture derived from rodents. However, due 

to the methods often employed in immortalisation to establish the cell lines, 

experimental conditions and various batch specific effects it is of paramount 

importance to fully characterise neuronal cell lines prior to use in order to ensure 

experimental consistency. This includes assessment of expression of key markers 

and the performance of the cells within functional assays. In this chapter, I assessed 

the validity of two immortalised neuronal cell lines, the 50B11 immortalised rat line 

and the novel murine MED17.11 cell line for use in high throughput neuronal 

activation assays. Despite use of previously published differentiation protocols 
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neither cell line responded in a high-throughput calcium influx based sensitisation 

assay to either capsaicin or veratridine. Additionally, differentiated cells did not 

express the key nociceptive markers NaV1.7 and TRPV1. However, both cell lines 

did show morphological changes in response to differentiation with robust neurite 

outgrowth following attempted differentiation protocols. Therefore, whilst 

immortalised cell lines represent an attractive option for replacement of primary 

neurons due to lack of responses observed using these lines, I concluded that it was 

most suitable to continue investigations into amelioration of CIPN using primary 

neuronal cultures.  
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4: An in vitro model of vincristine induced 

neuropathy as a screening tool for novel 

therapeutics 

 

4.1.1: Introduction  

Painful neuropathies are among the commonest adverse effects of sustained use of 

chemotherapy agents (Han and Smith, 2013). Neuropathy is a consistent 

phenomenon that occurs across multiple classes of chemotherapy, including the 

vinca alkaloids, the taxanes and platinum based chemotherapy drugs such as 

cisplatin (Ta et al., 2006; Grisold, Cavaletti and Windebank, 2012; Mora et al., 2016). 

Crucially, the onset of this pain is a dose limiting factor in the provision of 

chemotherapy to patients with the onset of pain often used as the benchmark for the 

cessation of a chemotherapy cycle. However, prior loss of fine motor control and 

tactile sensation is not uncommon (Sabarre, Rassekh and Zwicker, 2014). 

Furthermore, the earliest symptoms reported by patients with CIPN most commonly 

present primarily in the distal portions of the body such as the toes, feet and hands.   

Whilst pain during chemotherapy regimens is common, it can also be prevalent 

many months or even years following the termination of a successful treatment and 

in many cases is irreversible (Silva et al., 2006). In some cases, patients have 

refused treatments due to painful contraindications which presents an additional 

challenge to survival (Mora et al., 2016). In spite of this and considering the 

increased survivorship in people living with and beyond cancer due to refinement of 

chemotherapy and radiotherapy, there is a lack of clinical treatments available to 

ameliorate the symptoms of severe and often long term chemotherapy induced 
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peripheral neuropathy. Consequently, there has been a profound increase in pre-

clinical investigations probing potential mechanisms by which painful chemotherapy 

neuropathies emerge and as a result of this a number of potential candidates for 

treatment have emerged.  

 

However, there are certain obstacles preventing rapid development of novel 

approaches. Foremost among these is the fact that as previously mentioned, despite 

the high prevalence of CIPN among patients there is little consistency in how the 

neuropathy is assessed (Flatters, Dougherty and Colvin, 2017). There is often a lack 

of standardised diagnostic tests used to monitor the severity and sequelae of the 

neuropathy. In some cases patients are asked only to self-report symptoms, leading 

to poor characterisation of symptom development and resolution across different 

healthcare groups. A further potential consequence of this inter-observer variability is 

a disparity between clinical findings which may unveil more severe levels of 

pathology and CIPN progression, offset by patient reports which regularly 

underreport symptoms due to difficulties in articulating early onset symptoms such 

as numbness and tingling (Kelley and Fehrenbacher, 2017). Consequently, in the 

past it has been difficult to outline groups of patients who are potentially at greater 

risk of developing CIPN when treated with a certain class of chemotherapy. 

However, contemporary systematic reviews have been carried out to address this 

issue and identified a number of risk factors such as age, and a patient history of 

neuropathy with or without a diagnosis of diabetes (Seretny et al., 2014; Molassiotis 

et al., 2019).  Patients in insurance provider based healthcare systems can also be 

reticent about fully disclosing sensory symptoms due to concerns over how this will 

affect their standing or access to medication or even concerns about full cessation of 
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treatment (Center for Drug Evaluation and Research (CDER) and U.S. Food and 

Drug Administration (FDA), 2017). Similarly clinicians can often be unwilling to 

investigate symptoms fully due to the lack of available preventative or therapeutic 

options (Knoerl et al., 2019). This in turn fosters the creation of a vicious cycle that 

minimises the observed severity neuropathy and potentially masks information on 

patient symptoms that could help focus pre-clinical mechanistic investigations. 

Another obstacle to investigations into the mechanisms of CIPN manifestation is the 

lack of biopsies taken from patients during their chemotherapy or on follow up. There 

are several reasons for this including the aforementioned reluctance to fully 

investigate CIPN, but also that due to the fact that routine skin biopsy to assess 

neurite dieback, axonal degeneration and sensory receptor expression of intra-

epidermal nerve fibres (IENFs) are not recommended under current NHS guidelines 

due to patient welfare concerns (West London Cancer Alliance, 2019). As a result, 

the biopsies that are taken are often analysed in chemotherapy follow up 

appointments and therefore when long term damage to nerves is likely to have 

occurred. This prevents analysis of the putative acute mechanisms behind CIPN 

related pain during the earlier stages of a chemotherapy regimen in the vast majority 

of patients suffering from CIPN.  

 

In response to the growing difficulties experienced by cancer survivors with regard to 

reduced quality of life and the rising incidence of CIPN there is an urgent need to 

develop physiologically relevant in vivo, ex vivo and in vitro models to mirror 

chemotherapy related neuropathies and the sensitisation that is associated with 

them. Limitations on these approaches include those discussed in depth in Chapter 

3, the lack of well-established immortalised neuronal cell lines, the expense in both 
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time and finance of long term animal studies and the technical expertise required for 

the maintenance of ex vivo cultures. There are also limitations surrounding the 

translatability of neuronal culture models of CIPN and their relationship to the 

neuropathy in a clinical setting (Gadgil et al., 2019). Nonetheless, in spite of these 

limitations there has been significant progress in recent years in elucidating the 

various aetiologies of acute CIPN caused by different chemotherapy agents, 

neuronal sensitisation and how these factors eventually progress into the sustained 

neuronal damage associated with chemotherapy neuropathy. One of the principle 

receptors identified as a potential driver of acute sensitisation in CIPN is the 

aforementioned TRPV1 and pathways related to its activation. TRPV1 is described in 

depth in Chapter 1 and explored in the context of a neuronal activation model in 

Chapter 3.  

 

Screening of novel compounds such as novel splicing kinase inhibitors relies on 

development of high fidelity, high throughput screening in vitro models for key 

outcomes prior to use in pre-clinical in vivo studies. Use of traditional techniques 

such as patch clamping are expensive, time consuming and require high levels of 

technical expertise (Zhao et al., 2016). However, as described in Chapter 3, 

immortalised cell lines lack consistency in both functional assays and genetic 

expression of key targets including the putative CIPN mediator TRPV1. Therefore it 

is important to reach a compromise between the two approaches when developing 

novel neuronal drug screening methods. In Chapter 3, I described a nociceptive 

neuronal activation assay which focused on stimulation of TRPV1 and NaV1.7 with 

various agonists and subsequent recordings of calcium dye influx in response to said 

stimulation. Calcium dyes and capsaicin application to activate nociceptors in vitro 
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presents an opportunity to assess whether novel compounds can alter nociceptive 

responses prior to in vivo studies. 

Therefore, I decided to develop the activation model further, whilst basal responses 

of dissociated DRG neurons to capsaicin and veratridine stimulation were recorded 

in Chapter 3, the versatility of the cultured neurons and the ease of using a plate 

reader to record their responses within the assay following stimulation allows for 

more complex investigations. For example, previous work in the group has used a 

variation of the DRG Fluo 4 assay to record the sensitised responses of dissociated 

neurons that were maintained in high glucose conditions prior to stimulation (Bestall 

et al., 2018). This mirrors the hyperglycaemic conditions often observed in cases of 

diabetic neuropathy. TRPV1 stimulation of neurons cultured in high glucose 

conditions resulted in greater responses seen in untreated neurons and this enabled 

the assay to be used to identify potential compounds that reduced neuronal 

responses to those cultured in basal glucose conditions. Developing such a 

screening tool would be of immense utility as it would inform any future in vivo 

experiments assessing behavioural thresholds and bolster the pre-clinical portfolio of 

any therapeutic candidate. Additionally, an in vitro model of sensory neuronal 

sensitisation could be used to assess the properties of novel chemotherapy agents 

and probe the potential mechanisms responsible for sensitisation and pain.   

 

Previous work within the group has demonstrated in vitro sensitisation assays can 

achieve these aims. By modelling diabetic hyperglycaemia, Bestall et al. found 

enhanced nociceptive responses to capsaicin could be reversed with co-application 

of alternatively spliced VEGF-A isoforms. Furthermore using this diabetic 

sensitisation model TRPV1 was found to be one of the principle components of an 
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axis of sensitisation driven by glucose induced upregulation of the Receptor for 

Advanced Glycation Endproducts (RAGE) protein which in turn is driven by high 

glucose induced upregulations of High Mobility Group Protein B1 (HMGB1) and 

protein kinase C (PKC). Actions of both these molecules were inhibited by 

recombinant VEGF-A165b isoform application, clearly demonstrating a role for VEGF-

A in nociceptive neuronal sensitisation which was also demonstrated by Hulse et al. 

in vivo (Hulse et al., 2014). Therefore, modulating the activation assay to model the 

acute effects of chemotherapy on neurons would provide a tool with which to 

investigate the potential of novel compounds developed to ameliorate sensitisation 

and with consideration of their targets allow for investigations into the potential 

mechanisms behind the sensitisation and any demonstrated inhibition.  

 

As previously described TRPV1, the functional receptor for capsaicin is crucial in the 

detection and regulation of bodily responses to thermal stimuli and is primarily 

expressed in C-fibre nociceptive afferents.  TRPV1, along with other TRP channels 

such as TRPA1, TRPV3, TRPV4 and TRPM8 is implicated as a potential means of 

sensory neuronal activation and sensitisation. Long term dysregulation of TRPV1 

has previously been linked to a number of painful neuropathies including diabetic 

neuropathy (Hulse et al., 2015). Indeed, both diabetic neuropathy and CIPN share 

components of early sensory sequelae originating in distal portions of the body, 

fingers and toes (Tesfaye, Boulton and Dickenson, 2013). In most cases, symptoms 

in these areas of the body manifest as thermal allodynia and noxious responses to 

otherwise non-harmful stimuli which is underscored by sensitisation of peripheral 

neurons and aberrant activation of the TRPV1 receptor nociceptive signalling 

pathway. As chemotherapy treatment continues the progression of these 
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neuropathies proceeds proximally from the extremities, also involving damage to 

larger fibres which results in paraesthesia and reductions in nerve conduction 

velocities as larger, myelinated fibres begin to degenerate. This culminates in severe 

ataxia, loss of reflexes and decreased proprioception and in many cases pain as the 

degeneration of large fibres alters the properties of adjacent intact C- and A-

nociceptors (Djouhri et al., 2012). However, as initial symptoms are linked to 

erroneous thermal signalling in the periphery investigations into the mechanisms 

underlying this phenomenon have been carried out in recent years, centred on TRP 

channel modulation of this nociceptive signalling.  

 

 

PKC/TRPV1 dependent neuropathy has been identified in rodent models of CIPN for 

vinca alkaloid, taxane and protease inhibitor chemotherapy agents (Tsubaki et al., 

2018). Tamoxifen, a known inhibitor of PKC and thus a key part of the TRPV1 

sensitisation axis was able to abolish vincristine and paclitaxel induced thermal 

allodynia in mice behavioural experiments. Furthermore, there is evidence to 

suggest treatment with chemotherapy results in increased expression of TRPV1 

within small diameter and medium diameter neurons in DRG cultures and whole 

DRG following in vivo application of paclitaxel and vincristine, indicating potentially 

pathologic changes in subsets of DRG neurons that based on size, are likely to be 

predominantly nociceptive populations. This is supported by behavioural 

experiments demonstrating that application of the TRPV1 inhibitor capsazepine, 

supplied to mice just 30 minutes prior to testing following a 14 day treatment with 

vincristine significantly reduced paw withdrawal frequency in von Frey behavioural 

testing (Chiba et al., 2017). This clearly demonstrates a rapid and comprehensive 

reversal and blockade of a mechanism of sensitisation in rodents that cannot be 
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attributed to neuronal cell death and long term damage. TRPV1 knockout studies 

have also revealed a critical role for the receptor in driving and maintaining 

pathological sensitisation in various neuropathies (Premkumar and Sikand, 2008) 

 

Despite the clear importance of TRP channels such as TRPV1 in sensitisation 

pathways, targeting the receptors themselves has proved difficult beyond the pre-

clinical stage. Inhibitors of TRPV1 and TRPM8 have both been withdrawn from 

Phase 1 clinical trials due to severe adverse effects, predominantly hyperthermia 

(Trevisani and Gatti, 2013). This is largely due to the fact both channels are key 

regulators of body temperature homeostasis and direct inhibition leads to disruption 

of these crucial functions. Therefore it is more pragmatic to target upstream 

mediators of sensitisation, rather than these receptors themselves to avoid these 

effects. Furthermore, targeting upstream signalling may have effects across a variety 

of TRP channels, rather than a solitary target. The experiments by Hulse, Beazley-

Long and Bestall demonstrated for the first time the differential effects of VEGF 

isoforms on nociceptor sensitivity. Furthermore, Blackley demonstrated that in 

dissociated DRG neurons, pre-treatment with an anti- VEGF-A165b antibody 

increased the calcium influx in response to capsaicin stimulation, suggesting that 

endogenous VEGF-A165b inhibited TRPV1-mediated responses (Blackley, 2019). 

Compounds that can alter VEGF-A splicing in favour of VEGF-A165b may therefore 

be capable of reversing neuronal sensitisation. Evidence for this was also provided 

by Blackley, as the SRPK1 inhibitor SPHINX31 reduced TRPV1-mediated calcium 

influx in otherwise untreated neurons and this was reversed by the anti-VEGF-A165b 

antibody suggesting the SPHINX31 inhibitory effect is mediated by production of  

VEGF-A165b. It remains to be seen whether the effect of SRPK1-mediated alternative 
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splicing can be replicated in neurons that are sensitised by chemotherapy or 

hyperglycaemia. Therefore, there is a clear rationale for testing inhibitors of SRPK1 

or the interacting CLK1 kinase for effects on nociceptor sensitisation via these VEGF 

mediated mechanisms. These experiments would also provide valuable insight into 

alternative splicing within neurons and the association with nociception, a fairly 

neglected area of the literature relative to investigations into the role of alternative 

splicing in oncological contexts.  

 

A final use for a chemotherapy sensitisation assay would be to screen new 

chemotherapy agents for off-target neuronal effects. Despite the increasing burden 

of CIPN, new chemotherapies are rarely if ever tested for these effects. A versatile 

and relatively straightforward pre-clinical first pass experiment such as the Fluo-4 

direct assay could provide valuable insight into how likely it is a compound will 

produce neuropathic symptoms or how severe these are compared to a currently 

used drug such as vincristine. Therefore I decided to examine the sensitising effects 

of the novel indole alkaloid jerantinine in a direct comparison with vincristine. Though 

previous work has identified jerantinine to be less damaging than other related 

compounds towards non-cancerous cells, this is the first time it has been applied to 

neurons. Effectively identifying any differences between the neurotoxic and 

sensitising capacity of the compound could then be used as a basis for more 

thorough in vivo investigations. 
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4.1.2: Hypotheses and Aims 

 

1. Treatment of dissociated primary DRG neurons with vincristine will result in 

acute neuronal sensitisation.  

 

 

2. DRG neurons treated with the novel indole alkaloid jerantinine, will exhibit 

reduced sensitisation compared to that induced by vincristine. 

 

3. SRPK1 inhibition will reduce DRG neuronal sensitisation induced by 

vincristine based on prior data demonstrating the anti-nociceptive effects on 

VEGF isoform expression. 

 
4. CLK inhibition will reduce DRG neuronal sensitisation induced by vincristine 

based on interactions with SRPK1.  

 
5. DYRK1A inhibition will reduce DRG neuronal sensitisation induced by 

vincristine.  

 

 

 

 

Experimental Aims:  

  

1. Determine whether primary DRG neurons can be acutely sensitised by 

vincristine.  
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2. Optimise a neuronal sensitisation model based upon the neuronal activation 

model described in Chapter 3. 

 

3. Use the sensitisation model to screen a novel chemotherapy agent and 

determine the level of sensitisation it induces in primary DRG neurons to 

assess transferability. 

 

4. Validate the sensitisation model by using it screen novel splicing kinase 

inhibitors as putative desensitising compounds.  

 

 

 

4.2 Methods 

 

4.2.1: Isolation and culturing of dissociated primary DRG neurons 

Dorsal root ganglia were isolated from adult male Wistar rats as described in section 

2.2.3. Briefly, terminally anaesthetised rats humanely sacrificed in accordance with 

Schedule 1 of the Animals in Scientific Procedures Act 1986 (ASPA) were subject to 

a laminectomy, exposing the spinal cord. DRG were then removed from all levels of 

the spine using fine forceps and micro-scissors. DRG were then placed in cold, basal 

Ham’s F12 media until the conclusion of the dissection. After this, removed DRG 

were carefully desheathed using the same instruments and had any remaining nerve 

roots removed. Desheathed DRG were then placed in a fresh aliquot of Ham’s F12 

and incubated for 2 hours at 37°C in a 0.0125% Collagenase Type IV solution. DRG 

were then mechanically triturated to create single cell suspensions and seeded at 
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2,000 cells per well of a black sided 96 well plate in coated with poly-L-lysine solution 

and 0.1µM/mL laminin in 100µL of DRG medium described in section 2.2.4. Plates 

were then left overnight to allow neurons to adhere to plates. The following morning, 

specific treatments detailed throughout this chapter were added and neurons were 

incubated for a further 24 hours. All treatment media also contained 30µg/mL of FdU 

to prevent glial cell proliferation.  

 

4.2.2: TRPV1 Sensitisation Assay 

All experiments in this chapter were carried out using the Fluo-4 Direct Calcium 

assay described in detail in section 2.8. In brief, 50µL of DRG medium with 

treatments or vehicle was removed and replaced by 50µL of 2x Fluo-4 Direct 

Calcium Assay Dye, diluting the dye 1:2. Plates were then incubated with the dye for 

at least 60 minutes. Following this incubation period, plates were placed in a Perkin 

Elmer Victor 4 plate reader set to 37°C. Background and baseline fluorescence were 

recorded as previously described. Cells were then stimulated with 1µM of TRPV1 

agonist capsaicin. The concentration of capsaicin used was optimised in section 

4.3.1, in these experiments capsaicin was used between 0.1µM and 5µM. Calcium 

influx and observed fluorescence were then recorded over a 120 second period. 

Measurements were then exported for downstream analysis such as calculation of 

area under the curve values and normalisation as described in section 2.8.3.  

 

4.2.3 Optimisation & Drug Treatments 

4.2.3.1: Optimisation of capsaicin concentration 

In order to establish an experimental window with which to detect any vincristine 

induced neuronal sensitisation above that neurons exhibited by cells treated with 
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vehicle controls it was essential to optimise the concentration of the TRPV1 agonist 

capsaicin. To accomplish this, neurons were treated for 24 hours with 1nM of 

vincristine or DMSO vehicle control (0.1%). Vincristine concentration was set at 1nM 

for these experiments as this closely matches the circulating levels of vincristine 

found in patients following a cycle of chemotherapy (D. V. J. Jackson et al., 1981) . 

Following 24 hour incubation, neurons were loaded with the Fluo-4 Calcium dye for 1 

hour and processed according to the sensitisation assay workflow before being 

stimulated with either 0.1µM, 0.5µM, 1µM or 5µM of capsaicin in Hanks Buffered Salt 

Solution (HBSS, NaCl 8g, KCl 0.4g, CaCL2 0.14g, MgSO4•7H2O 0.1g, MgCL2 • 6H2O 

0.1g, KH2PO4 0.06g). HBSS alone was used as a negative control for stimulation. 

The capsaicin concentrations used were selected due to their response profiles in 

previous experiments on DRG neurons in a similar assay, modelling diabetic 

neuropathy. Responses were recorded immediately following the addition of 

capsaicin and for a 120 second period.  

 

4.2.3.2: Assessment of Vincristine and Jerantinine induced nociceptive 

neuronal sensitisation 

Isolated neurons were treated with DMSO vehicle control (0.1%),  0.1nM, 1nM or 

10nM of vincristine for 24 hours. These concentrations were chosen based upon a 

range of recorded values for circulating vincristine doses in patients following a 

chemotherapy cycle (D. V. Jackson et al., 1981). Jackson et al. demonstrated that 

vincristine had a prolonged half-life within the blood of up to 37 hours. Therefore, this 

dose of vincristine circulating for this length of time and in such strength would likely 

result in nervous tissue being subject to sustained vincristine exposure. After 24 
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hours, neurons were loaded with Fluo-4 direct calcium assay dye and stimulated with 

1µM of capsaicin prior to recording of evoked fluorescence.  

 

Following determination of the acute effects of vincristine on neuronal responses by 

vincristine, additional isolated neurons were treated with 125nM, 250nM or 500nM of 

synthetic Jerantinine acetate A for 24 hours. As Jerantinine has not been used in 

humans or animal models, the concentrations selected were based on IC50 data from 

the Coyle Laboratory on the ability of jerantinine to prevent medulloblastoma colony 

formation. The concentrations in those assays were as effective as the 

concentrations of vincristine above at targeting colonies and therefore represent the 

concentrations that might be required for effective cancer treatment, however this 

remains to be established in anything other than an in vitro pre-clinical model. 

Responses to 1 µM of capsaicin were recorded after 24 hours as above.  

 

4.2.3.3: Assessment of the effect of Novel Splicing Kinase Inhibitors on 

nociceptive neuronal sensitisation.  

The novel splicing kinase inhibitors used for investigations into potential amelioration 

of acute chemotherapy induced neuronal sensitisation are listed in Table 4.1. These 

compounds were selected based on the rationale that their targets of inhibition may 

be key modulators of various components of the acute sensitisation mechanisms 

that activate following chemotherapy provision. For example, the aforementioned 

SPHINX31 is a potent and highly selective inhibitor of SRPK1 which is a major 

mediator of VEGFA alternative splicing. Control over VEGF splicing has been 

postulated to be anti-nociceptive due to the effects of alternatively spliced VEGF 

isoforms in the context of diabetic neuropathy. The Griffin compounds preferentially 
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inhibit the CLK kinases that have been found to operate in a close relationship with 

SRPK1. The DYRK1A kinase has been implicated in many neuronal development 

studies, with over-activity of the kinase linked to cytokine driven neuroinflammation 

observed in Alzheimer’s Disease. However its role and function within the PNS 

remains unexplored. Additionally, CLK and DYRK1A inhibiting compounds within the 

literature are being developed as potential cancer treatments, therefore any 

interactions between the novel compounds and a widely used chemotherapy agent 

are useful to establish. Of the 4 compounds used Griffin 6, Griffin 23 and Hippogriff 1 

were kind gifts, synthesised and received from Professor Jonathan Morris of the 

University of New South Wales. SPHINX31 was a gift from Exonate Ltd. 

 

Table 4.1: Outline of Novel Splicing Kinase Inhibitor Used & IC50s.  

To assess the therapeutic potential of the novel splicing kinase inhibitors DRG were 

isolated, dissociated and cultured as described previously. Following overnight 

incubation, neurons were treated with DMSO vehicle control (0.1%), 1nM of 

vincristine or a co-treatment of 1nM vincristine and one of the four splicing inhibitors 

listed. All splicing inhibitors were used at 1µM, 3µM, 5µM and 10µM. The IC50 values 

displayed in table 4.1 were derived from assays where only the test kinase and a 

substrate are present along with ATP and the inhibitor compound. Therefore these 

IC50s do not take into account several factors that may affect the ability of the 

compound to inhibit the kinase within cells, such as active transport and permeability 
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of the cell membrane. Therefore, to address this reduction in potency, concentrations 

were selected based on previous use of SPHINX31 in cell based assays and in vivo 

mouse models (Batson et al., 2017). Additionally, due to improvements in dissection 

and culturing technique, experiments using Griffin 6 and Hippogriff 1 included 

additional concentrations of 0.1µM and 0.5µM due to increased neuronal yield. 

Neurons were incubated with treatments for 24 hours before being loaded with the 

Fluo-4 Direct Calcium Assay Dye and incubated for 60 minutes. Following 

incubation, the plates were placed in the plate reader and then stimulated with 1µM 

of capsaicin as previously described. Evoked fluorescence was then measured over 

a 120 second period.  

 

4.2.4: Data Processing & Statistical Analyses  

The primary output for the assays contained in this chapter was the measurement of 

evoked fluorescence following neuronal stimulation by capsaicin. As described, 

background and baseline fluorescence were recorded prior to stimulation and the 

F/F ratio was then calculated using post stimulation values divided by unstimulated 

baseline value. The workflow of how these ratios were processed and statistically 

analysed is described in detail in section 2.8.3. In brief, as the effects of stimulation 

were measured at 15 discrete timepoints across a 120 second period it was possible 

to convert the F/F ratios into a total area under the curve (AUC) value (Graphpad 

Prism version 7+8 for Windows, GraphPad Software, San Diego, California USA, 

www.graphpad.com). AUC values for each internal replicate were then exported to 

Microsoft Excel and the means for each treatment group were calculated. 

Percentage change from the maximal mean response was then calculated for each 

internal replicate. In novel splicing kinase inhibitor and jerantinine experiments, the 
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1nM vincristine only control was the maximal mean response used to calculate 

percentage change. In the capsaicin optimisation experiment, the mean value used 

was that of 1nM vincristine treated neurons stimulated with 1µM of capsaicin. These 

values therefore appear as 100% mean response on associated graphs. However, 

due to each individual AUC value being normalised to the mean response, SEM 

error bars are also displayed denoting variability in response between cultures and 

internal replicates. The HBSS vehicle control was used as the normalising value for 

0% response in all experiments. Graphpad Prism was used for all statistical tests 

shown in figure legends. N numbers and information on internal replicates can be 

found in figure legends. All data are mean ± SEM unless otherwise stated.  

 

4.3: Results 

 

4.3.1: Vincristine treated neurons demonstrated significantly higher 

sensitisation in neurons than vehicle treated neurons  

In order to optimise and create a robust model of chemotherapy induced neuronal 

sensitisation, it was first necessary to discern the experimental window where 

vincristine treatment would evoke the maximal sensitisation, compared to vehicle 

treated neurons given the same concentration of capsaicin stimulation.  

Primary adult rat DRG neurons showed an increase in calcium response by the first 

reading at ~30s, which was maintained over the entire period of recording, 

irrespective of treatment (Fig. 4A). Responses to capsaicin in vehicle treated DRG 

neurons were significantly higher than the HBSS stimulation negative control 

responses, though no significant dose dependent increase in calcium influx was 

present across the 0.1µM-5µM capsaicin concentration range.  
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However, DRG neurons treated with 1nM vincristine for 24 hours showed a dose-

dependent calcium response to the TRPV1 agonist capsaicin. Stimulation of 

vincristine treated neurons with 1µM capsaicin (41±4 ΔF/F•s) demonstrated 

significantly increased calcium influx compared to vincristine treated neurons 

stimulated with 0.1µM (20.5 ±6 ΔF/F•s) and 0.5µM (21 ± 4 ΔF/F•s) respectively (Fig 

4B). Furthermore, vincristine-treated neurons stimulated with 1µM capsaicin showed 

a significantly larger calcium response than vehicle treated neurons subject to equal 

stimulation (41 ± 4 F/F•s vincristine compared to 17 ± 3 F/F• s vehicle treated 

neurons, Figure 4.1A&B). This represented the peak sensitisation in vincristine 

treated neurons as stimulation with 5µM of capsaicin  resulted in a lower calcium 

influx and change in capsaicin evoked fluorescence, with a mean AUC value of 26 ± 

5 F/F•s (Fig 4B).  This value was not significantly different from the evoked change 

in fluorescence and total response following 5µM capsaicin stimulation of untreated 

neurons (25 ± 3 F/F•s). Similarly there was no significant difference in evoked 

fluorescence in vincristine treated and untreated neurons when stimulated with 

capsaicin below 1µM. These results therefore demonstrate that a 24 hour treatment 

with 1nM vincristine acutely sensitises neurons to stimulation with the TRPV1 

agonist capsaicin, compared to untreated neurons and to vincristine treated neurons 

stimulated with capsaicin concentrations lower than 1µM.  
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Figure 4.1: Capsaicin evoked fluorescence in vincristine treated and untreated DRG neurons 
 
(A) Primary rat DRG neurons treated with vincristine or vehicle were stimulated with 0.1-5µM of the 
TRPV1 agonist capsaicin. Evoked calcium fluorescence was recorded over 120 seconds and divided 
over baseline fluorescence taken prior to stimulation to calculate F/F fold change with each well 
normalised to its baseline. Traces for 0.1-0.5µM are omitted for clarity. (B) Total response induced 
by capsaicin stimulation calculated from the F/F ratio denoting changes in calcium influx caused by 
differential concentrations of capsaicin. (C) Whole concentration range for vehicle treated neurons 
stimulated with 0.1-5µM capsaicin. (D) Whole concentration range for vincristine treated neurons 
stimulated with 0.1-5µM capsaicin. Data presented is from 3 rats with at least 3 internal replicates 
per plate, normalisation of data to individual baselines allowed pooling of data resulting in n=9-24 
replicates per treatment. *** p= 0.0001, One Way ANOVA with Sidak’s Multiple comparisons (Vinc 
1µM Cap v DMSO 1µM Cap). # p = <0.02, ## p = 0.01 One Way ANOVA with Sidak’s Multiple 
comparisons (Vinc 1µM v Vinc 0.1µM/Vinc 0.5µM).  
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4.3.2: Jerantinine did not sensitise neurons to the same extent as vincristine 

 

To investigate the hypothesis that the novel indole alkaloid jerantinine would be less 

sensitising compared to vincristine, I treated neurons with both compounds 

independently for 24 hours and assessed them in the same assay. Neurons treated 

with 1nM vincristine (Figure 4.2a) exhibited the maximal response to capsaicin (1nM 

Vinc AUC 32.9 ΔF/F•s ± 4.63 SEM). As noted in section 4.2.4, this value was then 

normalised as 100% response (± 12% SEM) and the value against which other 

values were compared against to calculate percentage change. Treatment with 

0.1nM vincristine and 10nM vincristine resulted in a reduced level of sensitisation 

compared to 1nM vincristine treatment (0.1nM: 74% ± 16 SEM, 10nM: 65% ± 6 

SEM). The response profile of jerantinine treated neurons (Figure 4.2b) differed from 

those treated with vincristine. Neurons treated with jerantinine did not exhibit the 

observed peak and subsequent desensitisation found in vincristine treated neurons 

across the concentration range used, indeed sensitisation in jerantinine treated 

neurons (125nM: 54% ± 10 SEM, 250nM: 58% ± 8 SEM, 500nM: 60 ± 7) was 

comparable with DMSO control (52% ± 8 SEM). There was a significantly lower in 

jerantinine induced sensitisation at all concentrations used compared to neurons 

treated with 1nM vincristine, however this effect was not observed when jerantinine  

treatments were compared to vincristine treatments at 0.1nM and 10nM.   
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Figure 4.2: The effects of vincristine and jerantinine treatment on neuronal sensitisation 
 
(A) Primary rat DRG neurons treated with vehicle, 0.1-10nM vincristine or 125-500nM jerantinine for 
24 hours were stimulated with 1µM capsaicin. Evoked fluorescence was recorded over 120 seconds 
and divided over baselines fluorescence calculated prior to stimulation to calculate F/F ratio. (B) 
Total responses evoked by capsaicin calculated from F/F ratios were then used to calculate 
percentage change from the maximal response which was then normalised using HBSS response as 
0% and maximal vincristine response as 100%. Data presented is from 4 rats with at least 4 internal 
replicates per plate. Normalisation of data allowed pooling of these replicates resulting in n=12-24 
replicates per treatment. * p= <0.04 One Way ANOVA with Tukey’s Multiple Comparisons (Vinc 1nM 
v Jerantinine 125-500nM) Data shown are mean ± SEM. 
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4.3.3.1: Co-treatment of vincristine treated neurons with the specific SRPK1 
inhibitor SPHINX31 significantly reduces sensitisation 
  

I next examined the potential of SPHINX31, a SPRK1 specific inhibitor to interrogate 

the hypothesis that inhibition of splicing kinases could be a novel therapeutic option 

for CIPN. Maximal sensitisation occurred as expected in the neurons treated with 

vincristine alone (Figure 4.3a). However this sensitisation was much reduced 

compared to previous experiments where 1nM vincristine was used both in 

optimisation protocols and in experiments probing jerantinine. Nonetheless, 

SPHINX31 co-treatment did significantly reduce sensitisation (Figure 4.3b) in a 

concentration dependent manner with an IC50 of 3.6µM. Maximal inhibition was 

achieved at the 5µM SPHINX31 concentration (5µM S31 2% of maximal response ± 

17). Non-significant inhibition was also observed at 3µM SPHINX31 (55% of maximal 

response ± 16) and 1µM SPHINX 31 (77% of maximal response ± 14). Following 

maximal reduction in activity at 5µM there was then a moderate increase in 

sensitisation at the highest concentration used though this was not significantly 

different than any other SPHINX31 concentration being used. These results 

demonstrate that SPHINX31 has the potential to ameliorate vincristine induced 

sensitisation in a concentration dependent manner.  
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Figure 4.3: The inhibitory effects of SPHINX31 adjunct treatment on vincristine sensitised 
neurons  
 
(A) Primary adult rat neurons treated with vehicle, 1nM vincristine alone or 1nM vincristine and 1-
10µM of the SRPK1 specific inhibitor SPHINX31 for 24 hours were stimulated with 1µM capsaicin. 
Evoked fluorescence was then recorded over a 120 second period and divided by baseline 
fluorescence recorded prior to stimulation in order to calculate F/F ratio. (B) Total responses evoked 
by capsaicin were calculated from the F/F ratio and used to calculate percentage change from 
response in the vincristine only treatment group. This was normalised as 100% with HBSS capsaicin 
negative control normalised as 0% response. Data presented is from 4 rats with at least 4 internal 
replicates per plate resulting in n=16-17 per treatment when pooled following normalisation. *** p= 
0.0004, One Way ANOVA with Dunnett’s multiple comparisons to vincristine only response.  
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4.3.3.2: Co-treatment of vincristine treated neurons with the CLK1/SRPK1 
inhibitor Griffin 23 significantly reduces neuronal sensitisation 
 

The next compound tested was the dual CLK1/2 and SRPK1 inhibitor Griffin 23 

which is more selective for CLK1 over SRPK1 and 16 fold more selective for CLKs 

than DYRK1A (Table 4.1). As previously, primary adult rat DRG neurons were 

dissociated and cultured and treated for 24 hours with 1nM vincristine alone or as a 

co-treatment with 1-10µM of Griffin 23, reflecting the potential use of the novel 

compound as an adjunct treatment to chemotherapy. As previously observed, 

maximal sensitisation occurred in neurons treated with vincristine alone (AUC 30.17 

ΔF/F•s ± 7.495, Fig 4.4a) which was subsequently normalised to 100% response (± 

23%). The response in co-treated neurons was variable (Fig 4.4b) with the lowest 

and highest concentrations of Griffin 23 culminating in significant inhibition of 

vincristine induced sensitisation compared to vincristine treatment alone (1µM G23: 

62% ± 8, 10µM G23: 33.0 ± 9). The IC50 for Griffin 6 was 6.2µM.  These values were 

comparable with the sensitisation observed in neurons treated with DMSO vehicle 

alone (DMSO: 46% ± 5.00). Indeed, in neurons treated with 10µM G23, sensitisation 

was below that observed in neurons treated with vehicle. At the intermediate 3µM 

and 5µM G23 concentrations, sensitisation was not reduced in a significant manner 

from the sensitisation of neurons treated with 1nM vincristine alone. Despite the 

heterogeneity of response observed in neurons treated with G23, these results 

demonstrate clearly that the compound does have the capacity to ameliorate 

chemotherapy induced sensitisation at 1µM before abolishing this sensitisation 

strongly at 10µM.  
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Figure 4.4: The inhibitory effects of Griffin 23 adjunct treatment on vincristine sensitised 
neurons. 
 
(A) Primary adult rat DRG neurons treated with vehicle, 1nM vincristine alone or 1nM vincristine 
and 1-10µM of the CLK1/2/SRPK1 inhibitor Griffin 23 for 24 hours were stimulated by 1µM capsaicin. 
Evoked fluorescence was then recorded over a 120 second period and divided over baseline 
fluorescence recorded prior to capsaicin stimulation to calculate F/F ratio. (B) Total responses 
induced by capsaicin were calculated from the F/F ratio and used to calculate percentage change 
from the vincristine only response. This was then normalised as the 100% response and HBSS vehicle 
as 0% response. Data presented is from 5 rats with at least 3 internal replicates per plate resulting in 
n= 15-24 when pooled after normalisation. * p = < 0.03, **** p = <0.0001, One Way ANOVA with 
Dunnett’s multiple comparisons to vincristine only response.  
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4.3.3.3: Co-treatment of vincristine treated neurons with the dual CLK1/CLK2 

inhibitor Griffin 6 significantly reduces neuronal sensitisation  

Following validation of Griffin 23 and SPHINX31 in vitro the next compound 

screened for anti-nociceptive properties driven by splicing kinase inhibition was the 

CLK family specific inhibitor Griffin 6. Griffin 6 has closely similar IC50s for CLK1 and 

CLK2 as shown in table 4.1 and is significantly more selective for CLKs over SRPK1 

and DYRK1A than Griffin 23.  As previously observed, maximal sensitisation was 

observed in the vincristine only treatment group (1nM vincristine AUC 21.97 ΔF/F●S 

± 4.85, Figure 4.5a) which was then defined as the 100% normalised response. In 

contrast to Griffin 23, the effect of Griffin 6 showed a bell-shaped response (Figure 

4.5b) with the lowest (0.1µM) and the highest concentrations (5µM and 10µM) 

having a significant inhibitory effect on vincristine induced sensitisation. (0.1µM 28% 

of maximal response ± 7, 5µM 22% of maximal response ± 11, 10µM 39% of 

maximal response ± 14). Intermediate concentrations from 0.5µM-3µM had minimal 

effects on vincristine induced sensitisation with up to 85% of maximal response 

observed in neurons co-treated with 3µM. These results suggest that Griffin 6 does 

have potential to ameliorate chemotherapy induced sensitisation depending on 

concentration.  
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Figure 4.5: The inhibitory effects of Griffin 6 adjunct treatment on vincristine sensitised 
neurons. 
 

A) Primary adult rat DRG neurons were treated with vehicle, 1nM vincristine alone or 1nM 
vincristine and 0.1µM-10µM of the CLK1/CLK2 inhibitor Griffin 6 for 24 hours and stimulated with 
1µM capsaicin. Evoked fluorescence was then recorded over a 120 second period and divided by 
baseline fluorescence recorded prior to stimulation in order to calculated F/F ratio. (B) Total 
responses induced by capsaicin were calculated from F/F ratio and used to calculate percentage 
change from the response in the vincristine only treatment group which was normalised as 100% 
response, with HBSS negative control being normalised as 0% response. Data presented is from 3 
rats with 3 internal replicates per plate resulting in n=9 when pooled following normalisation. ** p = 
<0.001, *** p = 0.0004. One Way ANOVA with Dunnett’s multiple comparison to vincristine control 
response.  
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4.3.3.4: Co-treatment of vincristine treated neurons with the dual 
CLK1/DYRK1A inhibitor Hippogriff 1 significantly reduces neuronal 
sensitisation  
 

The final compound assessed in the sensitisation assay was the dual kinase family 

inhibitor Hippogriff 1. Hippogriff1 is slightly more selective for CLK1 over DYRK1A, 

but is significantly more selective for these kinases than SRPK1. Neurons treated 

and sensitised with vincristine alone exhibited the largest capsaicin evoked response 

(Figure 4.6a), though this response (AUC 18.1 ΔF/F●s ± 5.5) was only marginally 

higher than the evoked response in neurons that were treated with DMSO vehicle 

only (AUC 14.1 ΔF/F ●s ± 4.6). The vincristine only response was normalised to 

100% and the responses of vincristine and Hippogriff 1 co-treated neurons were then 

compared against this. The response profile of Hippogriff 1 co-treated neurons 

(Figure 4.6b) was similar to that observed in neurons co-treated with Griffin 6 with a 

bell shaped concentration response relationship. At the lowest concentration (0.1µM) 

and highest (5µM) concentrations Hippogriff 1 significantly inhibited vincristine 

induced sensitisation (0.1µM 34% ± 8 SEM; 5µM 27% ± 12 SEM). Intermediate 

concentrations and the highest concentration (10µM) had no significant effects 

(Figure 4.6B). It should be noted that due to time constraints and disruption caused 

by the COVID19 pandemic, data shown for Hippogriff 1 was pooled from fewer 

samples than those used to assess SPHINX31, Griffin 6 and Griffin 23, specific 

information on samples and replicates can be found in the appropriate figure 

legends.   
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Figure 4.6: The inhibitory effects of Hippogriff 1 adjunct treatment on vincristine sensitised 
neurons. 
A) Primary adult rat DRG neurons were treated with vehicle, 1nM vincristine alone or 1nM 
vincristine and 0.1µM-10µM of the CLK1/DYRK1A inhibitor Hippogriff 1 for 24 hours and stimulated 
with 1µM capsaicin. Evoked fluorescence was then recorded over a 120 second period and divided 
by baseline fluorescence recorded prior to stimulation in order to calculated F/F ratio. (B) Total 
responses induced by capsaicin were calculated from F/F ratio and used to calculate percentage 
change from the response in the vincristine only treatment group which was normalised as 100% 
response, with HBSS negative control being normalised as 0% response. Data presented is from 2 
rats with 3 internal replicates per plate resulting in n=6 when pooled following normalisation. ** p = 
<0.007,      * p = 0.02. One Way ANOVA with Dunnett’s multiple comparison to vincristine control 
response.  
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4.3.4: Novel Splicing Kinase inhibitors reduce vincristine induced neuronal 

sensitisation, but effects vary depending on the compound used.  

 

Of the 4 novel splicing kinase inhibitors used, only the SRPK1 specific inhibitor 

SPHINX31 reduced sensitisation in a concentration dependent manner up to 5µM 

(Fig 4.7A). The remaining compounds significantly reduced sensitisation at the 

lowest and highest concentrations used. Griffin 6 and Hippogriff 1 which both inhibit 

CLK1 and CLK2, but with the latter additionally inhibiting DYRK1A produced 

remarkably similar curves despite the inhibition of an extra kinase in the case of 

Hippogriff 1. A similarity between all compounds is the observation that intermediate 

concentrations did not produce significant reductions in neuronal sensitisation 

though it should be noted that 1µM of Griffin 23 (Fig 4.7b) was effective in 

significantly reducing sensitisation whereas this effect was lost at the same 

concentration in the two other CLK inhibiting compounds Griffin 6 (Fig 4.7c) and 

Hippogriff 1 (Fig 4.7c) which displayed significant inhibition below 1µM. Finally, 

Griffin 23 at the highest concentration used is the only compound that demonstrates 

a reduction in sensitisation compared to the second highest concentration used. For 

SPHINX31 and Hippogriff1 the significant reduction in sensitisation was lost at the 

highest concentration and whilst the effect of the highest concentration in Griffin 6  

experiments was still significantly reduced compared to vincristine only treatments, 

there is still a mild increase in sensitisation in the highest concentration compared to 

the second highest concentration used. 
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Figure 4.7: Novel Splicing Inhibitor effects on vincristine induced sensitisation  
 
An overview of neuronal responses following treatment of primary neurons with vincristine alone or a 
co-treatment of vincristine and SPHINX31 (A), Griffin 23 (B) Griffin 6 (C) and Hippogriff (D) and 
subsequent stimulation with 1µM of capsaicin. All data shown are mean ± SEM. Individual statistical 
tests used and significance values are present in the figure legends in sections 4.3.3.1-4.3.3.4. n= 6-
24 pooled replicates from at least 2 separate rat primary tissue preparations. Details for each 

compound are provided in relevant figure legends above.  
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4.4: Discussion  

Firstly, I have demonstrated that the Fluo-4 direct calcium assay is a robust, 

sensitive and relatively high throughput tool with which to screen novel compounds 

and their potential to ameliorate chemotherapy induced sensitisation. Crucially, the 

results above have demonstrated that a common chemotherapy agent such as 

vincristine can have profound effects on neuronal sensitisation after relatively short 

term treatments. This provides evidence that pain mechanisms in CIPN may not be 

limited to the effects of long term exposure and neuronal damage often associated 

with sustained chemotherapy but can be triggered by acute treatment. This effect in 

vincristine has been further validated by comparative experiments with a proposed 

novel chemotherapy agent, the indole alkaloid jerantinine which demonstrated 

reduced sensitising capacity compared to vincristine. Finally, I used the sensitisation 

assay to screen 4 novel splicing kinase inhibitor compounds to assess their potential 

to block the observed sensitising effect vincristine had on primary neurons. In the 

case of all 4 compounds there was a significant reduction in observed sensitisation 

in neurons at some concentrations. Interestingly, the response pattern observed 

across these concentration ranges was often heterogeneous, with inhibition at the 

lowest or maximal concentrations used but no effect at intermediate concentrations 

indicating that patterns of inhibition may be related to the splicing kinase targeted 

and compound affinities for these kinase targets. 

 

 

 

 



   

 

165 

 

4.4.1: The ex-vivo nociceptor assay provides a robust tool with which to probe 

neuronal sensitisation  

 

A principle aim and key hypothesis of the investigations within this chapter was the 

creation of a robust assay with which to investigate the hypothesis that vincristine 

could induce sensitisation in neurons acutely and in the absence of long term 

neuronal damage.  I hypothesised that a relatively short term exposure of neurons to 

a relevant concentration of the vinca alkaloid vincristine would result in greater 

sensitisation of these neurons, manifested by elevated TRPV1 dependent calcium 

increases following stimulation with capsaicin. This hypothesis was made in 

consideration of previous data showing hyperglycaemia, another cause of TRPV1 

sensitisation could induce acute sensitisation in dissociated neurons without  

associated long term damage (Bestall et al., 2018). The results in section 4.3.1 

demonstrate that neurons treated with 1nM vincristine exhibited significantly elevated 

responses compared to untreated neurons stimulated with the same capsaicin 

concentration.  This indicates nociceptor sensitisation, thus providing a clear 

example of chemotherapy induced sensitisation that is independent of sustained 

exposure and long term neuronal damage as a result of long term chemotherapy 

treatment. This suggests that the onset of chemotherapy-induced enhanced 

nociception may occur before any neuronal damage by direct effects on neurons, 

and that by management of the mechanisms behind this sensitisation there is scope 

to alleviate earlier symptoms of the neuropathy. 

 

However, the importance of optimising the concentration of the capsaicin stimulation 

used was also demonstrated. Stimulation above or below the 1µM capsaicin used to 
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exhibit the sensitising effects of vincristine culminated in desensitisation of vincristine 

treated neurons in the former case and an inability to stimulate neurons adequately 

in the latter case. High concentrations of capsaicin, or more potent effects of 

capsaicin resulting from vincristine effects on TRPV1 function can lead to 

desensitisation of the TRPV1 receptor at lower capsaicin concentrations than under 

control conditions, which could potentially mask the full sensitising effects of 

chemotherapy on neuronal sensitisation (Smutzer and Devassy, 2016). Therefore 

optimisation must be carried out prior to using the Fluo-4 sensitisation model. TRPV1 

desensitisation in response to strong acute stimulation (high concentration) or 

repeated stimulation at lower concentrations, so called tachyphylaxis. Tachyphylaxis 

is regularly cited within the literature as the mechanism by which capsaicin can 

invoke TRPV1 desensitisation (Tian et al., 2019). Though not fully elaborated, acute 

TRPV1 desensitisation is mediated by post-translational changes to TRPV1 

channels following acute stimulation that take place as a possible feedback 

mechanism to protect the nociceptive neuron via prevention a potentially toxic 

overload of calcium ions (Touska et al., 2011). These changes are believed to be 

dependent on enzymes such calmodulin dependent serine-phosphatase which 

reverses the TRPV1 sensitising phosphorylation at serine 800 which is driven by 

PKC activation. Within the nociceptor assay, as capsaicin is only applied at a single 

point, the desensitisation of TRPV1 observed at 10µM capsaicin stimulation is likely 

to be driven by these mechanisms, which can decrease responses of TRPV1 within 

seconds of application. This dampened response is likely in response to the 

sensitisation of TRPV1 induced by the vincristine treatment and either direct or 

indirect activation of PKC leading to TRPV1 sensitivity. Previous work in the lab 

using the Fluo-4 sensitisation assay has shown similar TRPV1 desensitisation to 
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higher capsaicin concentrations (Bestall, 2017). In that prior research, neurons 

maintained in high glucose conditions modelling diabetic neuropathy exhibited higher 

calcium influx than neurons maintained in basal conditions. This influx then reduced 

when neurons were stimulated with higher capsaicin concentrations. This is 

encouraging as it reinforces a growing body of evidence demonstrating similarities in 

the mechanisms by which both conditions result in acute pain and sensitisation other 

than that mainly driven by long term neuronal damage. Most importantly however, 

these results clearly demonstrate the Fluo-4 sensitisation assay is sensitive enough 

to detect changes in neuronal sensitisation caused by vincristine. This therefore 

provides a clear experimental window with which to probe the efficacy of novel 

compounds in dampening this proposed mechanism of acute pain in CIPN, therefore 

satisfying the aim of creating a robust assay as laid out in section 4.1.2.  

 

4.4.2: Sensitisation induced by jerantinine was not as severe as that evoked by 

vincristine  

Determining the extent and severity of any neuronal sensitisation or neurotoxic 

effects induced by novel chemotherapies such as the novel indole alkaloid 

jerantinine should be of paramount importance when developing novel 

chemotherapy agents. Off target toxicity and neuropathy are associated with 

reduced quality of life and poorer mental health outcomes (Ewertz, Qvortrup and 

Eckhoff, 2015). However, both historically and in contemporary drug development 

this screening does not occur or has been deemed an acceptable risk to increase 

chances of patient survival. Whilst refinement of drug provision has been in progress 

since the discovery of vincristine the compound is still intrinsically neurotoxic and 

associated with high incidence of CIPN. Therefore, moving forward novel drugs must 
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at least match or retain the efficacy of traditional agents whilst aiming to reduce off-

target effects such as neuronal sensitisation. Screening candidates in sensitisation 

screens such as the Fluo-4 direct assay could be of benefit to this end. Jerantinine 

has been shown to be effective against vincristine-resistant cancer cells at sub micro 

molar concentrations in colony formation assays and did not cause cytoskeletal 

changes in off-target neural stem cells, which occurred with vincristine treatment 

(Roper, 2019). I therefore hypothesised that jerantinine would not induce 

sensitisation in primary DRG neurons as severely as that induced by vincristine 

treatment when using jerantinine at concentrations derived from the aforementioned 

colony formation experiments.  

 

At the concentrations used jerantinine induced less sensitisation than that induced 

by the 1nM vincristine treatment at least partially validating the hypothesis. However, 

there are several caveats to this finding. Firstly, vincristine treatment did not induce 

significant sensitisation at the 0.1nM or 10nM concentration with sensitisation 

comparable to both the DMSO vehicle control and the 125-500nM concentration 

range used for jerantinine. It is possible that 10nM vincristine treatment combined 

with 1µM stimulation with capsaicin recapitulated the TRPV1 desensitisation 

described in section 4.4.1. As demonstrated in that section, there is a bell shaped 

response to increasing capsaicin stimulation in neurons treated with 1nM vincristine. 

In combination with this, vincristine has been shown to directly sensitise TRPV1 in 

vivo via upregulation of TNF-α which then drives activation of PKC resulting in 

phosphorylation of TRPV1 at the serine 800 residue, thus sensitising the receptor 

(Wang et al., 2018). Within the literature, this relationship between PKC activation 

and vincristine has been explored by use of tamoxifen as a PKC inhibitor. Tamoxifen 
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was able to reverse vincristine induced peripheral neuropathy when applied with 

vincristine, possibly by reducing vincristine induced PKC activation and TRPV1 

sensitivity (Tsubaki et al., 2018).  It is possible that treatment of neurons with 10nM 

vincristine caused a left-wards shift of this bell shaped response and that peak 

evoked activity in neurons treated with 10nM vincristine would be recorded at 

capsaicin concentrations below 1µM.  S800 phosphorylation by PKC has been 

shown to increase TRPV1 sensitivity and lower response thresholds to both 

capsaicin and heat stimuli, underpinning this hypothesis (Por et al., 2013).  

 

Conversely, the 0.1nM vincristine concentration was likely not sufficient to sensitise 

TRPV1 to the same degree. The lower vincristine concentration in these experiments 

approximately 10 times more dilute than the average circulating dose recorded in 

patients following chemotherapy. Therefore this concentration may lack some 

physiological relevance to the patient context in which chemotherapy accumulates 

but does have utility both in establishing the bell shaped distribution of the vincristine 

sensitisation in addition to simulating the effects of lower circulating doses on 

neurons after a cycle. However, it important to therefore consider this bell shaped 

response in relation to any jerantinine induced sensitisation and the concentrations 

the novel compound was trialled at. As vincristine has been fully tested, validated 

and approved for human use for more than half a century, vincristine can be 

analysed for its sensitising properties at clinically relevant concentrations within in 

vitro assays both in terms of the dose at which it is deemed efficacious in treating 

patient tumours and the rate at which is clears from the body and how this effects the 

circulating concentration of vincristine that is responsible for inducing off-target 

effects. Equivalent clinical data for jerantinine does not exist, nor pre-clinical in vivo 
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data. Therefore as mentioned concentrations were derived from the limited pre-

clinical in vitro data generated by the Coyle Laboratory. Therefore, whilst it was 

encouraging that jerantinine did not appear to sensitise primary DRG neurons in a 

manner similar to 1nM vincristine treatment, it is possible the concentrations used 

are in reality at the lower end of the range for jerantinine usage and therefore it 

would be valuable to consider this experiment as more informative following the 

generation of in vivo data regarding the anti-tumour properties of jerantinine.  It 

would also be immensely useful in future work to compare rodent nociceptive 

behaviour following treatment with both compounds. However, as the compound is 

not commercially available and synthesis reported as complex it would be difficult to 

produce sufficient jerantinine for in vivo studies in the immediate future. As an 

alternative, establishing the properties of jerantinine in terms of neuronal toxicity and 

neuronal damage markers such as neurite outgrowth would be much more feasible 

and would provide a useful comparison to a notoriously neurotoxic agent in the form 

of vincristine.  

 

As previously described, whilst jerantinine is a microtubule inhibitor it binds primarily 

to the colchicine binding site on the microtubule as opposed to the vinca binding site 

occupied by vincristine (Smedley et al., 2018). There is increasing evidence in the 

literature suggesting this alternative binding site promotes the ability of colchicine 

site binding drugs to overcome paclitaxel and vincristine-resistant sub-populations 

through common resistance pathways such as tubulin mutations and 

overexpression.  Though jerantinine itself has not reached anything other than pre-

clinical in vitro screens, several other drugs which share the colchicine binding site to 

microtubules are currently undergoing assessment as potential alternatives to 
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traditional chemotherapy agents (Lu et al., 2012). Among these drugs, there is a 

range of adverse effects relating to the nervous system, for example the estrogen 

metabolite 2-Methoxyestradiol (2-ME) induced neuropathy symptoms in 50% of 

patients examined, though whether this neuropathy manifested as pain or numbness 

was not defined (Matei et al., 2009). Conversely indibulin, another colchicine binding 

site molecule had no observable neurotoxic effects in rodent models measuring 

nerve conduction velocity and rotor rod performance. However, these tests which are 

measures of co-ordination and neuronal damage do not take into account that 

sensitisation can occur independently of neuronal damage as demonstrated by the 

acute effect of vincristine. This provides a clear example of off target effects in 

chemotherapy development not being fully investigated (Kapoor, Srivastava and 

Panda, 2018). Despite this, Indibulin has been found to capable of discriminating 

between neuronal tubulin and nonneuronal tubulin due to post-translational 

modifications to neuronal tubulin. These modifications render the indibulin binding 

motif unable to access the colchicine binding site on the neuronal microtubule, 

depriving the ability of the molecule to depolymerise and disrupt neuronal 

microtubule dynamics.. This was shown to occur in tubulin polymerisation assays on 

SH-5YSY and PC12 cells with a disparity in tubulin inhibition shown pre and post 

differentiation of the cell line (Sawaguchi et al., 2015; Kapoor, Srivastava and Panda, 

2018). Whereas vincristine and paclitaxel had consistently inhibitory effects on 

neuronal tubulin polymerisation and depolymerisation respectively regardless of 

differentiation state. This is potentially a route of sensitisation and for the 

development of pain following use of these compounds. Evidence has shown 

blocking of microtubule dynamics and inhibition of axonal transport via vinca alkaloid 

application can result in c-fibre sensitivity without concomitant degeneration of the 
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axon, or damage to the neuronal cell body (Dilley and Bove, 2008). Conversely 

indibulin was unable to inhibit differentiated SH-5YSY tubulin, resulting in no 

disruption to the microtubule dynamics of these cells. Therefore, to further 

corroborate the observed absence of significant sensitisation in jerantinine treated 

neurons, it would also be of great benefit to assess whether jerantinine can indeed 

target neuronal tubulin or whether post-translational modifications to neuronal tubulin 

would prevent its access to the colchicine binding site as observed in indibulin 

treatments. Investigations into the effects of jerantinine and neurite outgrowth, a 

readout for microtubule inhibition can be found in Chapter 5.  

 

4.4.3.1: Novel compound inhibition of the SRPK1 and CLK splicing kinases 

prevents vincristine induced neuronal sensitisation  

As hypothesised, I observed significant reduction in neuronal sensitisation induced 

by vincristine following SRPK1 inhibition with SPHINX31. In addition hypothesised 

inhibition of CLK1 and CLK2 with (Griffin 23) and without (Griffin 6) SRPK1 inhibition 

also reduced vincristine induced neuronal sensitisation. The SRPK1 splicing kinase, 

which as previously mentioned is responsible for the phosphorylation of SRSF1, 

drives nuclear localisation of the SR protein. When this process is inhibited, SRSF1 

nuclear localisation does not occur (Harper and Bates, 2009). However, it has been 

shown that SRSF1 protein phosphorylated by SRPK1 can remain contained in so 

called “nuclear speckles”. It was originally thought that CLK1 would then additionally 

phosphorylate basally phosphorylated SRSF1 protein and release it from the 

speckles allowing full access to splicing machinery. However, Aubol et al. 

demonstrated that rather than act in discrete manner, with CLK1 activity directly 

dependent on SRPK1’s upstream actions on SRSF1 protein, it is actually the case 
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that SRPK1 forms a complex with CLK1 that works synergistically within the nucleus 

to release “hypophosphorylated” SRSF1 and invoke alternative splicing events 

(Aubol et al., 2016). It has also been shown that CLK1 is a much less efficient kinase 

than SRPK1 at inducing phosphorylation of SRSF1 protein when the kinases act 

independently and SRPK1 is the predominantly active kinase when the two form a 

complex. An overview of SRPK1/CLK1 interaction is shown in figure 4.8.Therefore, 

inhibition of one or both of these kinases at varying affinities is likely to have 

profound effects on downstream splicing events, such as those that govern the 

splicing of the VEGF isoform family.  

 

SPHINX31 along with another SRPK1 inhibitor, SRPIN340 have previously been 

found to induce major changes to VEGF splicing in in vivo models of age related 

neovascular eye disease at micromolar concentrations preventing choroidal 

neovascularisation (CNV) (Gammons et al., 2013; Batson et al., 2017). CNV is a 

hallmark of age related “wet” macular degeneration (AMD). Furthermore, in neurons 

Hulse et al. demonstrated that alternatively spliced isoforms of VEGF had differential 

effects on sensitisation when administered as recombinant protein. VEGF-A165a 

isoforms acutely sensitised neurons within 60 minutes of application and were 

responsible for generating ongoing activity in mechanosensitive nociceptors, co-

application of recombinant VEGF-A165b isoforms blocked this effect (Hulse et al., 

2014). Nerve injury is also associated with upregulation of VEGFR2 and expression 

of VEGF-A165a in DRG neurons which lowered mechanical withdrawal thresholds.  

These changes were abolished in injured neurons by application of SRPIN340, 

demonstrating clear modulation of neuronal sensitisation post injury via a SRPK1-

SRSF1-VEGF dependent mechanism. In section 4.3.3.1 I demonstrated that 
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SPHINX31 significantly reduced vincristine induced sensitivity to capsaicin in a 

concentration dependent manner. This effect was significant at a 5µM concentration, 

similar to that used in experiments by Blackley demonstrating VEGF-A165b 

alternative splicing as a key component of SPHINX31’s mechanism of action. 

 

It is reasonable to hypothesise therefore that this influence on VEGF splicing is likely 

to be the principle mechanism behind SPHINX31 ameliorating the effects of 

vincristine treatment, given the use of an identical compound on the DRG neurons 

and stimulation of the same receptor, TRPV1 via application of capsaicin. TRPV1 is 

sensitised by PKC mediated phosphorylation following activation of the kinase. This 

activation of PKC can be triggered by multiple routes in neurons including as 

previously discussed by vincristine itself, either directly or by upregulation of 

mediators of inflammation such as TNF (Wang et al., 2018). TNF has previously 

been shown to induce acute sensitisation in DRG neurons to capsaicin (Constantin 

et al., 2008). Activation of PKC is also associated with activation of SRPK1 and 

downstream VEGF-A165a expression (Harper and Bates, 2009; Hulse et al., 2014).  

SPHINX31 may therefore be harnessing alternative VEGF splicing to target these 

mechanisms. For example VEGF-A165b isoforms have been shown to significantly 

reduce TRPV1 phosphorylation at the serine 800 site in reducing sensitisation of 

TRPV1 (Bestall, 2017). This may be caused by VEGF-A165b isoforms not activating 

PKC downstream of VEGFR2 binding as has previously been demonstrated in 

endothelial cells which contrasts with the canonical effects of the VEGF-A165a 

isoform upon VEGFR2 binding following PKC activation of SRPK1. Therefore 

increasing the ratio of VEGF-A165b isoforms via SPHINX31 treatment would reduce 

VEGFR2 mediated PKC activation and downstream TRPV1 sensitisation. 
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Alternatively, it is possible that SPHINX31’s control of VEGF splicing ameliorated 

sensitisation via upstream targets of PKC activation. VEGF-A165b has been 

previously blocked TNF driven expression of ICAM in retinal pigmented epithelium 

cells, ameliorating a pathway of inflammation within the eye (Thichanpiang et al., 

2014). A similar effect in neurons could diminish TNF mediated activation of PKC.  

 

Nishida et al. demonstrated in an in vivo model of vincristine CIPN the release of the 

receptor for advanced glycation endproduct (RAGE) agonist High Mobility Group 

Protein B1 (HMGB1) into extracellular space following chemotherapy insult (Feldman 

et al., 2012; Nishida et al., 2016). Prophylactic dosing with a HMGB1 neutralising 

antibody prevented the onset of mechanical allodynia whereas therapeutic dosing 

was found to reverse observed neuropathy. There is also evidence demonstrating 

HMGB1 application to dissociated neurons similar to those used in above 

experiments results in sensitisation.  VEGF-A165b isoforms have been shown to 

prevent this HMGB1 induced sensitisation, this effect could be mediated by VEGF-

A165b isoform preventing HMGB1 binding to RAGE or by inhibition of downstream 

RAGE signalling (Bestall et al., 2018). Interestingly, HMGB1 mRNA in neurons has 

been found to localise within axons rather than neuronal cell bodies and that after 

paclitaxel treatment this disparity in expression between the two sites widened 

further. It is speculated that axonal HMGB1 may be secreted in response to axonal 

insult and that this secreted HMGB1 may be acting in a paracrine manner on 

neurons as discussed above (Merianda et al., 2015). Therefore, it is feasible that 

vincristine as an agent that targets axonal microtubules and can effect changes in 

axonal transport without associated long term damage, could in turn drive this 



   

 

176 

 

secretion leading to acute neuronal sensitisation and that SPHINX31 blocks the 

effects of this secretion by preventing paracrine signalling.  

 

In these experiments I also screened Griffin 23, a dual SRPK1 and CLK1/2 inhibitor 

and Griffin 6, which inhibits CLK1 and CLK2 only. As for SPHINX31, I hypothesised 

that adjunct treatment of vincristine treated neurons with Griffin 23 and Griffin 6 

would attenuate the increased neuronal sensitisation exhibited by these cells. 

Following assessment in the Fluo-4 sensitisation assay I observed a heterogeneous 

concentration response following treatment with both compounds (Figure 4.7). Unlike 

SPHINX31 treatment, treatment with both Griffin compounds resulted in both the 

lowest and maximal concentration producing a significant reduction of vincristine 

induced neuronal sensitisation compared to vehicle. The uneven response across 

the concentration range provokes the need for further interrogation of the potential 

mechanism behind CLK1+CLK2/SRPK1 inhibition and reducing acute TRPV1 

sensitisation. Information on the role of CLK kinases in the context of neuronal 

sensitisation is limited within the literature, however through exploration of the 

interactions between the SRPK1 and CLK kinases it is possible to examine the 

possible mechanisms underpinning the effects of the inhibitors. It is reasonable to 

suggest that Griffin 23 as an inhibitor of both SRPK1 and CLKs would have profound 

effects on this splicing complex that may manifest at differentially when used at lower 

and higher concentrations. Griffin 23 is preferentially selective for CLK1 and CLK2 

over SRPK1 (Table 4.1). Therefore at lower concentrations Griffin 23 mediated 

inhibition of these kinases would likely manifest in the CLKs rather than SRPK1. In 

terms of the SRPK1/CLK complex, such inhibition would prevent the ability of CLK1 

to release “hypophosphorylated” SRSF1 protein from nuclear speckles, preventing 



   

 

177 

 

access to cellular splicing machinery and leading to downstream splicing events 

such as the expression of VEGF-A165b and mediation of sensitisation via the putative 

VEGF mechanisms described. At the highest Griffin 23 concentration used, inhibition 

of both kinase classes will be less selective for the CLKs and there will not only 

sizeable inhibition of the CLK activity releasing primed SRSF1 protein from the 

speckles and reduced complex activity but also a reduction in cytoplasmic SRPK1 

phosphorylation of SRSF1 leading to a reduced “priming” of SRSF1 protein that 

translocates into the nuclear speckles. Downstream of this, there will be subsequent 

reduction in CLK1-SRPK1 complex activity on sequestered SRSF1 protein and 

interaction with the spliceosome. This would further dampen the expression via 

alternative splicing of potentially nociceptive growth factors and proteins possibly 

including VEGF and culminate in reduced sensitisation of neurons.  

 

Griffin 6 and Hippogriff 1 display similar properties to Griffin 23, although significant 

inhibition occurred following use of 0.1µM of both compounds compared to 1µM 

used in Griffin 23 experiments. Griffin 6 has two fold greater potency for CLK1 

inhibition compared to Griffin 23. Similarly, Hippogriff 1 is 1.5x more potent for CLK1 

than Griffin 23, therefore it was not surprising to see effects with these compounds at 

lower concentrations. Though it would be useful in future experiments to expand the 

range of Griffin 23 concentrations used to allow for comparisons at sub-micromolar 

concentrations, this was prevented by Griffin 23 experiments being conducted earlier 

and lower neuronal yield being acquired from dissection. Usage of both Griffin 

compounds and Hippogriff 1 did not replicate the concentration dependent inhibition 

of vincristine sensitisation observed following SPHINX31 treatment. Instead, 

intermediate concentrations were accompanied by increased responses to capsaicin 
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stimulation compared to the lowest concentrations used. This was consistent across 

all 3 CLK inhibiting compounds (Figure 4.7b,c,d) irrespective of the secondary 

SRPK1 and DYRK1A targets of Griffin 23 and Hippogriff 1, which suggests this effect 

may be more likely due to CLK inhibition. CLK1 is known to be a key mediator in the 

aforementioned TGF-β signalling pathway where it phosphorylates SRSF6, an SR 

protein responsible for distal splice site selection of exon 8 of the VEGFA gene 

(Nowak et al., 2008). This leads to expression of VEGF-A165b and runs in parallel to 

the SRPK1-CLK- SRSF1 splicing axis. The overall balance of activity in these 

pathways is ultimately a key factor in VEGF splicing and isoform expression. If 

inhibition mediated by the novel compounds manifests through the SRPK1-CLK1 

complex at low concentrations and then at intermediate concentration suppression 

the TGF-β pathway occurs this could potentially underpin the reduced efficacy of the 

compound inhibition of sensitisation as the VEGF-A165b pathway is suppressed. With 

regard to Hippogriff 1 and the possible effects of DYK1A inhibition there is limited 

information in the literature regarding DRYK1a activity in neurons and possible 

influences of the kinase in the context of pain. The neuronal response to Hippogriff 1 

treatment was very similar to that in Griffin 6 treated neurons. Hippogriff 1 inhibits 

CLKs with a similar potency to that of Griffin 6 so potential effects at low 

concentrations will be recapitulated in Hippogriff 1 treated neurons. Without a 

DYRK1A specific inhibitor, effectively the equivalent of SPHINX31 for SRPK1 it is 

difficult to identify the effects of DYRK1A inhibition would be on neuronal 

sensitisation. The stark similarity in response between Hippogriff 1 and Griffin 6 may 

suggest a possible redundancy of the DYRK1A kinase in ameliorating acute 

neuronal sensitisation. Nonetheless, there is some evidence of DYRK1A having a 

mediating role in the onset and maintenance pain. In a murine model of inflammatory 
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arthritis, the DYKR1a/CLK2 inhibitor lorecivivint was found to reduce expression of 

inflammatory cytokines such as TNFα via inhibition of components of the WNT 

pathway such as SIRT1 (Deshmukh et al., 2019). If DYRK1A inhibition could reduce 

potential inflammation induced by vincristine treatment this may provide a potential 

pathway which could reduce acute sensitisation, though further research and use of 

a DYRK1A specific inhibitor is needed to investigate this possibility further.  

 

In addition to the mechanisms discussed above, it is also important to consider that 

the activity of these kinases is not limited to the splicing of VEGF. Even though the 

compounds used are highly specific inhibitors, the various substrates of the 

respective kinases will also be effected by their inhibition. For instance, other targets 

of SRSF1 include MYC and BIM, both proto-oncogenes, the tumour suppressors 

BIN1 and MKNK2 and other angiogenic actors such as TEAD1 and RON (Oltean et 

al., 2012; Rowlinson et al., 2015; Tzelepis et al., 2018). Z Blackley demonstrated 

SPHINX31 mediated SRPK1-SRSF1 inhibition significantly reduced expression of 

MYC in 50B11 cells and similar effects have been shown in THP-1 leukaemia cell 

line. Though associated traditionally with pro-proliferative properties, in injured DRG 

neurons, MYC expression has been found to be enriched and associated with 

programmed neuronal cell death (Qin et al., 2018). Though other studies have found 

MYC to be involved in the regeneration of axotomised sensory neurons which is 

more aligned with the traditional properties of the gene though how these factors 

would influence pain is unclear (Belin et al., 2015). Other mediators of axonal 

regeneration, such as VEGF can be directly involved in nociception despite 

regenerative properties. MKNK2, a gene which encodes MNK2 a kinase responsible 

for the phosphorylation of eukaryotic initiation factor 4E (eIF4E) a translation 
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activating factor. eIF4E when phosphorylated by MNK2 has been implicated in the 

control of DRG neuronal  excitability and onset of CIPN. When SRSF1 is 

overexpressed and phosphorylated by SRPK1 it drives expression of the 

phosphorylative MNK2b isoform which in turn would exacerbate eIF4E activity (Amin 

et al., 2011). SPHINX31 in theory therefore should be able to reverse this MNK 

expression to a MNK2a an isoform associated with a MAPK binding domain which is 

associated with regulated and reduced eIF4E phosphorylation. However, when 

examined in rat 50B11 neurons alternative splicing of MNK2 was not detected, 

preventing examination of this hypothesis (Blackley, 2019). This is believed to be 

caused by MNK2 not being alternatively spliced in rodents which differs from findings 

in humans, highlighting the need for tissue/species specific experiments where 

possible. To conclude, this list of alternative targets is not exhaustive, but the myriad 

targets of SRPK1, CLKs and DYK1a emphasises the need for thorough RNA Seq 

investigations into downstream targets effected by novel splicing kinase inhibitor 

treatment. These investigations would give a much wider indication of the full range 

of downstream splicing targets for the compounds and would enable better 

understanding of the proposed mechanisms involving VEGF or putative 

supplementary components of acute chemotherapy induced sensitisation. 

 

 

4.4.4: Concluding Remark 

I have developed and optimised an in vitro model to show that vincristine treatment 

with a physiologically relevant concentration of the compound acutely sensitises 

neurons within a 24 hour time period which is demonstrated by sensitisation of the 

TRPV1 receptor and increased calcium ion influx following capsaicin stimulation. 
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This may be due to the involvement of the activation of the PKC-TRPV1 pathway as 

previously observed in diabetic rats nociceptive behaviour and more recent in vivo 

studies demonstrating PKC dependency for pain onset. Furthermore I have shown 

this sensitisation can be ameliorated via adjunct application of novel splicing kinase 

inhibitors, which may be attenuating sensitisation by alteration of the isoform 

expression of genes concomitant with nociception such as VEGF. I have also 

compared for the first time, the neuronal effects of the novel indole alkaloid synthetic 

jerantinine to a traditional chemotherapy agent, vincristine. Jerantinine did not 

sensitise neurons as severely vincristine did at its peak activity, though sensitisation 

was similar below this level. Further pre-clinical in vitro and in vivo data is essential 

for the development of understanding this reduction in sensitisation following 

jerantinine treatment in addition to information on neuronal toxicity and damage. 

Further exploration into the neuroprotective properties of Griffin 6 and SPHINX31 in 

reversing the effects of vincristine can be found in Chapter 5.  
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5: Investigation into the Neuroprotective Properties 

of Novel Splicing Kinase Inhibitors  

5.1.1 Neurite Dieback within CIPN 

Chemotherapy Induced Peripheral Neuropathy (CIPN) is a complex pathology with 

myriad clinical and physiological manifestations (Wolf et al., 2008). As one of the 

principle aims of chemotherapy is the sustained targeting and inhibition of rapidly 

dividing cells many agents are principally designed to inhibit the formation and 

activity of mitotic spindles during metaphase and thus inhibit the ability of a cancer 

cell to replicate (Jordan and Wilson, 2004). However, due to the non-specific nature 

of the effects chemotherapy exerts on cells, this also regularly results in the 

apoptosis of or critical damage to a variety of non-cancerous cells such as the 

various cell types of the immune system leading to detrimental effects such as 

severe immunosuppression in patients (Morrison, 2014).  

Crucially, the principle target of many chemotherapy classes such as taxanes and 

vinca alkaloids is the structural protein beta-tubulin (Naaz et al., 2019). Canonically, 

the two drug classes have subtly different mechanisms of action; taxanes primarily 

inhibit cell division by preventing the depolymerisation of microtubules. Microtubules 

are a key structural component of mitotic spindles which form during cell division 

(Meunier and Vernos, 2012). Taxanes bind to beta-tubulin sub-units and stabilise 

them within the microtubule and prevent their depolymerisation. This results in over-

accumulation of microtubule mass during cell division at the metaphase/anaphase 

boundary and thus an interruption to regular microtubule dynamics during 

chromosome separation. As a result, dividing cells remain in G2/M cell cycle arrest 

and undergo apoptosis due to aberrant division (Bates and Eastman, 2017). 
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Conversely, vinca alkaloids prevent the formation of microtubule dimers, formed of 

alpha and beta subunit tubulin molecules via inhibition of the polymerisation of beta 

tubulin monomers. This decreases the available microtubule polymer mass and 

again results in erroneous microtubule dynamics, culminating in apoptosis of the 

dividing cell due to cell cycle arrest (Kerckhove et al., 2017). An overview of how 

microtubule inhibitors operate within the cell cycle and mitosis can be seen in figure 

5.1. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Schematic of vinca alkaloid and taxane microtubule inhibition induced cell death 

Following transition from interphase, the microtubule network becomes activated during the 
metaphase of mitosis. In normal conditions, microtubules form mitotic spindles to separate 
chromosomes. Application of vinca alkaloids prevent formation of this assembly via 
depolymerisation of tubulin monomers whereas taxanes stabilise microtubule polymers preventing 
separation, leading to mitotic arrest. Mitotic arrest following inhibition of microtubules and 
alterations to microtubule dynamics results in apoptotic cell death within mitosis or erroneous 
division which is subsequently detected at the G1 cell cycle checkpoint. (Gascoigne and Taylor, 2009) 
 

However, as previously mentioned these effects are not specific and systemic 

application of these compounds during chemotherapy treatment risks the burden of 

these effects being placed on non-target cells which include those undergoing 
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normal cell division but also cells where tubulin is essential for structure and function. 

This includes the largely non-dividing cells of the peripheral and central nervous 

system (Zajaczkowską et al., 2019). Within the PNS and the CNS neuronal tubulin 

exists in the form of the β-III tubulin isotype, one of 7 such isotypes known to be 

expressed within the human genome. Though also present within testis, β-III tubulin 

is widely considered to be a neuronal marker and is often used to distinguish 

between neurons and support cells such as glia in nervous tissue samples, such is 

specificity of the isotype (Guo, Walss-Bass and Ludueña, 2010). In addition to 

providing structural support via formation of a heterodimer with α-tubulin and 

assortment into cytoskeletal microtubules, β-III tubulin is a critical component of 

axonal growth, development and transport. The microtubule inhibiting properties of 

chemotherapeutic drugs can have profound effects on essential neuronal activity. 

Among these, chemotherapy induced-neurite dieback and axonal degeneration are 

among the most common pathological events observed in in vitro preclinical studies 

and this is subsequently reflected in patient nerve conduction velocity examinations 

indicative of longer term damage to myelin and the Schwann cells responsible for its 

production (Gordon-Weeks, 2004; Argyriou et al., 2008; Ewertz, Qvortrup and 

Eckhoff, 2015). Interestingly, taxanes and vinca alkaloids appear to induce 

dedifferentiation of Schwann cells rather than outright cell death when used at 

clinically relevant concentrations in a pre-clinical rodent co-culture model with DRG 

neurons, though viability was decreased at higher concentrations. This contrasts with 

platinum-based compounds which failed to induce any changes to Schwann cell 

maturity, suggesting a heterogeneity of mechanism between microtubule inhibitors 

and drugs preventing DNA replication (Imai et al., 2017). Both mechanisms have 

been shown to reduce myelin formation in these models detected by Quantitative 



   

 

185 

 

sensory testing (QST), mirroring evidence of longer term fibre damage in patients. 

Via these methods, Dougherty et al. demonstrated that chronic vinca alkaloid pain in 

patients incorporated a sequential involvement of thickly myelinated Aβ fibres, 

followed by thinly myelinated Aδ fibres and eventually unmyelinated C-fibres. A 

similar study on chronic pain in taxane treated patients revealed similar findings in 

terms of A fibres, but an absence of C-fibre related pain (Dougherty et al., 2007). 

However, neurological symptoms such as paraesthesia and tingling can occur 

following the first provision of chemotherapy therefore whilst these clinical 

techniques help to elucidate potential causes of long-term pain they do not explain 

why pain can occur in the absence of long-term damage following acute treatment.  

 

In healthy neurite outgrowth and axonal development, microtubules provide the 

neurite with adequate scaffolding with which to develop in a proximal to distal fashion 

relative to the soma (Kapitein and Hoogenraad, 2015; Nirschl et al., 2017). This 

ensures both anterograde and retrograde axonal transport is maintained allowing the 

movement of lipids, proteins and mitochondria to occur. However, this process is 

dynamic, with depolymerisation and polymerisation occurring in equilibrium to 

provide optimal structural support. Disruption of this process by reduction of 

microtubule mass or organisation by vinca alkaloids or by so called “bundling” 

induced by taxanes and over stabilisation has been purported to be a potential cause 

of neurite dieback and axonal degeneration in many in vitro and in vivo studies of 

chemotherapy induced peripheral neuropathy (Jordan and Wilson, 2004). 

Additionally, degeneration of neurites projecting from DRG neurons predominantly 

occurs in a distal to proximal pattern, with neurites retreating towards their cell 

bodies following application of chemotherapy (Fukuda et al., 2017). This strongly 
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resembles “Wallerian Degeneration” (WD) observed in physical axon injury models. 

One of the key mediators of WD is SARM1 (sterile-alpha and toll interleukin-receptor 

[TIR] motif-containing protein 1) a highly conserved, pro-degenerative enzyme that 

has been described as the “central executioner” of the axonal degeneration process 

observed following injury and chemical insult (Gerdts et al., 2016). Investigations into 

SARM1 loss of function or knockout have resulted in the rescuing of axons post 

crush injury and prevention of vincristine mediated degeneration in vivo (Geisler et 

al., 2016; Tian et al., 2020). Conversely, gain of function experiments have resulted 

in axonal degeneration of otherwise healthy neurons in the absence of physical or 

chemical insult (Loring and Thompson, 2020). Schwann cells are also targeted by 

SARM1 and the interaction between these cells is likely also to be a contributing 

factor towards longer term chemotherapy damage. However, in the short term the 

onset of pain is likely to be caused by a combination of factors. In terms of 

vincristine, in vitro application in compartmentalised chambers revealed axonal 

dieback only in the treated chamber that did not cross into the chamber containing 

the cell body nor the chamber containing the sister axon (Geisler et al., 2019). If 

axonal transport deficit was the sole event in early dieback then these effects would 

have to be observed across the whole neuron. It is therefore more likely that damage 

to the most distal axon is likely the trigger for a cascade involving hypothesised 

pathways in Chapter 4, immune activation, inflammatory responses and changes to 

ion channel sensitivity that culminate in acute pain. Nonetheless, preventing damage 

to neurites either from long term application and eventual degeneration via Wallerian 

like mechanisms or preventing damage and activation of various sensitising 

pathways in the short term represents an attractive target for novel therapeutics. 
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Consequently, the fact that most established microtubule inhibitors are largely 

unable to distinguish between tubulin isotypes presents a fundamental challenge 

regarding their use as chemotherapeutic agents. However, since the discovery and 

synthesis of vincristine the 1960s, several semi-synthetic derivatives from the 

Catharanthus roseus have since been identified including vinorelbine which has 

demonstrable selectivity for mitotic tubulin over neuronal isotypes reducing the 

prevalence and severity of CIPN observed in patients (Stone and DeAngelis, 2016; 

Zhang, Yang and Guo, 2017). Unfortunately, vinorelbine is only approved for use in 

a limited set of cancer types compared to other members of the vinca alkaloid family 

and CIPN though less common does still occur, potentially via the mechanisms 

discussed in Chapter 4. Therefore, there is a pressing need to develop novel 

chemotherapy compounds that are as potent as older vincas, whilst retaining the 

specificity of microtubule inhibition demonstrated by vinorelbine. Jerantinine , the 

indole alkaloid tested in Chapter 4 has also demonstrated putative selectivity for 

mitotic tubulin with cytoskeletal damage to neural stem cells not observed at 

effective concentrations for treating cancer cells in vitro (Roper et al., 2018). The 

compound has shown in vitro pre-clinical efficacy against lung, colon and breast 

cancer cells suggesting possible use against a wider spectrum of targets compared 

to vinorelbine (Raja et al., 2014). Therefore, assessing the effects of Jerantinine on 

neurite outgrowth compared to vincristine in vitro would further bolster the 

encouraging results seen in Chapter 4 regarding its reduced sensitisation of neurons 

compared to vincristine and generate important pre-clinical data with regard to 

potential neurotoxicity. 
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In previous studies by Beazley-Long et al. application of alternatively spliced VEGF-

A165 isoforms was found to be neuroprotective in hippocampal neurons following 

application of toxic concentrations of glutamate (Beazley-Long et al., 2013). 

Furthermore, recombinant VEGF-A165b application was found to reduce expression 

of the apoptosis marker caspase in DRG neurons isolated from rat and treated with 

oxaliplatin. Additionally, application of the isoform increased neurite outgrowth of 

these peripheral neurons suggesting both a neuroprotective and neurotrophic role for 

the isoform in vitro (Beazley-Long et al., 2013). However, administration of 

recombinant proteins as therapeutics is limited by the need for routine 

administration, short plasma half-lives and antibody degradation (AlQahtani et al., 

2019). Therefore, use of the novel splicing kinase inhibitors could potentially be used 

to modulate splicing of these kinases such as SRPK1, CLK1/2 and DYRK1A in 

patients, recapitulating the observed in vitro neuroprotective effects. However, as 

many of the downstream mechanistic effects of splicing kinase inhibition remain 

unclear, it is essential to screen any novel compound capable of mediating 

alternative splicing in a physiologically relevant in vitro screen.  

 

An obstacle to elucidating both the short-term effects of chemotherapy and the 

impact of longer term damage is the rarity of which biopsies are taken from patients 

with CIPN. Much of the aforementioned understanding has been ascertained via in 

vivo models using rodents and from a variety of in vitro screens using DRG explants, 

dissociated ex vivo neuronal cultures or from immortalised cell lines such as N2A or 

SH-SY5Y cells (Flatters et al., 2017). These cells are derived from mouse and 

human neuroblastoma respectively and grow quickly, with large volumes of neuritic 

processes when differentiated (Haberberger et al., 2020). In the case of both of 
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these lines, the use of a single neuronal cell type is not reflective of the diverse 

nature of neuronal populations within the DRG and does not take into account the 

potential role of supportive cells such as glia in mediating the damaging effects of 

chemotherapy. Additionally, many DRG explant or single cell models utilise neonatal 

cultures due to the comparative ease of preparation and culture. Therefore effects of 

chemotherapy observed in treatment of these developing neurons may not be as 

physiologically relevant compared to an adult culture where neurons are terminally 

differentiated. It should also be noted that a lack of regenerative capacity in 

terminally differentiated neurons post axonal degeneration following the conclusion 

of treatment is proposed as a deleterious mechanism by which CIPN persists as 

exemplified Sahenk et al. in a study of taxol neuropathy, further exemplifying the 

advantage of using an adult rodent neurite outgrowth model (Sahenk et al., 1994).  

 

Thus, given the putative importance of neurite dieback and degeneration in CIPN, a 

physiologically relevant model with which to assess any novel therapeutic 

compounds is absolutely essential. Consequently, I have developed an adult rat 

DRG model of neurite dieback which is fully described in section 2.7 and the below 

sections including optimisation steps. With this model, I was able to investigate the 

potential neuroprotective benefits of novel splicing kinase inhibitors as an adjunct to 

chemotherapy treatment in addition to screening the novel chemotherapy agent 

jerantinine for the first time in a peripheral neuron model. Establishing this model via 

rigorous assessment of experimental parameters such as concentration of 

chemotherapeutic drug used, length of neurite regeneration period following 

dissection and length of chemotherapy treatment before imaging was fundamental in 

being able to thoroughly interrogate the below hypotheses.  
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5.1.2: Hypotheses & Aims 

Hypotheses: 

• SPHINX31 mediated SRPK1 inhibition protects against vincristine induced 

neurite dieback, but has no effect on neurite outgrowth as an independent 

treatment. 

• Griffin 6 mediated CLK1 and CLK2 inhibition protects against vincristine 

induced neurite dieback but has no effect on neurite outgrowth as an 

independent treatment 

• Hippogriff 1 mediated DYRK1A has no effect on neurite outgrowth as an 

independent treatment.  

• Jerantinine will cause reduced neurite dieback compared to the traditional 

chemotherapy agent vincristine. 

 

Aims: 

• Establish an in vitro model of neurite outgrowth  

• Demonstrate vincristine causes profound neurite dieback within the model 

• Use the model to screen novel splicing kinase inhibitors and a novel 

chemotherapy agent for neuroprotection and reduced toxicity respectively.  
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5.2 Methods 

5.2.1 Establishing a Neurite Outgrowth and Dieback Model  

Primary adult rat DRG neurons were acquired following humane killing and DRG 

dissection under Schedule 1 of ASPA. Neurons were processed as described in 

section 2.2 and cultured. The first stage of optimisation was to determine an 

adequate length of time for neurites to regenerate and whether this would provide a 

viable experimental window. To do this, following overnight incubation neurons were 

cultured in DRG media (see section 2.2.2) containing 8ng/mL NGF to encourage 

outgrowth and 30µg/mL FdU to prevent glial mitosis and then incubated for 72, 96 or 

120 hours before fixation and imaging. For these  experiments, the rat was the 

experimental unit with the dissected neurons split evenly across the different 

incubation periods, 3 rats were used in total and each treatment had 6 well 

replicates. To account for variability in plating density each well was imaged in 3 

different fields creating 18 internal replicates per treatment in the final analysis.  

 

To mirror sensitisation experiments, vincristine was selected as the chemotherapy in 

the neurite outgrowth model. It was essential to optimise the concentration and 

duration of vincristine treatment within the assay. To test this, following 72 hours of 

incubation neurons were treated with DMSO vehicle control or 0.1, 1, 5, 10nM of 

vincristine for 72 hours to match time allowed for neurite outgrowth. The results of 

these optimisations resulted in the final experimental model described in section 2.7.  

 

5.2.2 Drug Treatments to Ameliorate Neurite Dieback 

After the establishment of a viable and versatile in vitro neurite outgrowth model, the 

potential of novel splicing kinase inhibitors in ameliorating chemotherapy induced 
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neurite dieback could be assessed. In addition to assessing the reduced impact of 

the vincristine analogue, jerantinine on neurite dieback. The 3 novel splicing kinase 

inhibitors selected were SPHINX31, Griffin 6 and Hippogriff 1. These compounds 

target kinases that have been implicated in previous studies as potentially 

neuroprotective in studies of various physical and chemical insult. For information as 

to the targets for these novel compounds please consult Table 4.1 and their detailed 

description in section 1.4. Following standard neuron isolation and culturing 

procedures, neurons were incubated with 8ng/mL NGF and incubated for 72 hours in 

standard cell culture conditions. To test the effects of the novel splicing kinase 

inhibitors on neurite outgrowth and dieback independent of chemotherapy, neurons 

were treated with DMSO vehicle or 0.1-10µM of the novel splicing kinase inhibitors. 

To assess the efficacy of novel splicing kinase inhibitors in ameliorating 

chemotherapy induced dieback, neurons were treated with DMSO vehicle, 1nM 

vincristine or 0.1-10µM novel splicing kinase inhibitors in the presence of 1nM 

vincristine. Neurons with treatments were then incubated for 72 hours prior to fixation 

and immunocytochemistry protocols as described in section 2.7.2. Downstream 

analyses calculating mean neurite length per neuron were carried out following 

staining and imaging as described in sections 2.7.3 and 2.7.4 respectively.  

For investigations into the comparative effects of the novel indole alkaloid jerantinine 

and vincristine on neurite dieback, neurons were isolated and cultured as previously 

described with NGF and mitotic inhibitors for 72 hours. Neurons were then treated 

with vehicle control, 0.1-10nM of vincristine or 125-500nM of synthetic jerantinine 

acetate-A (SJAA). The concentrations used for jerantinine treatments were taken 

from IC50 values derived from jerantinine use in various metabolic assays to 

determine the effects of the novel compound on cancer cells. Neurons with 
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treatments were then incubated for 72 hours before fixation, staining, imaging and 

analysis.  

 

5.2.3 Statistical Analyses 

Following the image processing and mean neurite length per neuron calculations as 

described in section 2.7.4 all statistical analyses were carried out using GraphPad 

Prism V8. Specific statistical tests are denoted within figure legends, all error bars 

displayed are mean ± SEM unless otherwise stated. Relative size of scale bars are 

denoted within figure legends.  

 

 

Drug Target Vehicle Source 

Vincristine β Tubulin DMSO Sigma V8388 

Jerantinine β Tubulin DMSO UoN School of 

Pharmacy 

SPHINX31 SRPK1 DMSO Morris Lab, UNSW 

Griffin 6 CLK1/CLK2 DMSO Morris Lab, UNSW 

Hippogriff 1 CLK1/CLK2/DYRK1 DMSO Morris Lab, UNSW 

 

 

 

 

 

 

Table 5.1: Drugs used in neurite outgrowth models 
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5.3 Results 

5.3.1 Neurons Incubated for at least 72 Hours Exhibit Robust Neurite 

Outgrowth Post Isolation 

Establishment of a versatile and viable experimental neurite outgrowth model was 

fundamental to assessing the potential of novel compounds in ameliorating 

chemotherapy induced neurite dieback. Following dissection and isolation, DRG 

neurons plated at a density of approximately 2,000 cells per well were incubated 

across 72, 96 and 120 hour intervals to determine optimal timescale for regrowth of 

neurites following axotomy. No significant difference was found in neurite outgrowth 

between neurons incubated for 72 hours and those incubated for longer periods 

(figure 5.3.1). As such, 72 hours incubation was deemed appropriate for use in the 

neurite outgrowth model to expedite workflow.  
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Figure 5.3.1 Primary DRG Neurite outgrowth post isolation 

Representative images (A) of DRG neurons exhibiting robust neurite outgrowth 72-120 hours post 
incubation with NGF and FdU mitotic inhibitor. Neurons are stained with mouse anti β-III tubulin and 
Hoechst. Scale bar = 100µm. (B) When neurite outgrowth is normalised to the neurons count within 
a field of view, there was no significant difference in neurite outgrowth across all incubation periods. 
Data shown are mean ± SEM, n=3. Statistical test used: One Way ANOVA with Tukey’s multiple 
comparisons test, p = > 0.05 for all comparisons and thus no statistical significance detected, 72 v 96, 
72 v 120, 96 v 120.  
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5.3.2 Vincristine induces neurite dieback in a concentration dependent manner 

To establish the optimal concentration of chemotherapy to be used in the neurite 

dieback models, neurons were isolated, cultured and incubated for 72 hours to 

establish neurite outgrowth as denoted in section 5.3.1. Neurons were then treated 

with 0.1-10nM of the vinca alkaloid vincristine and incubated for a further 72 hours. 

At all concentrations, vincristine induced significant neurite dieback compared to 

DMSO control. This effect was also exhibited in a concentration dependent manner. 

Outgrowth was reduced from a mean of 294.6µm ±51.4µm per neuron in DMSO 

controls to a mean of 144.5µm ±30.54µm when treated with the minimal 

concentration of vincristine. This dieback was exacerbated further at the maximal 

concentration with neurons treated with 10nM vincristine exhibiting a mean neurite 

outgrowth of just 80.4µm per neuron as seen in figure 5.3.2.  
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Figure 5.3.2 The noxious effects of vincristine on DRG neurite outgrowth 

Representative images (A) of primary adult rat DRG neurons following treatment with 0.1-10nM of 
the vinca alkaloid vincristine for 72 hours. Neurons are stained with mouse anti-β-III tubulin and 
Hoechst. Scale bar = 100µm. (B) Vincristine treatment for 72 hours significantly reduces mean 
neurite outgrowth at all concentrations (IC50 = 1.75nM) in a concentration dependent manner 
compared to vehicle. Data shown are mean ± SEM. N=3 biological repeats per treatment group. 
Statistical test used: One Way ANOVA with Dunnett’s multiple comparison to vehicle control. * p= 
<0.05, ** p= <0.01.  
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5.3.3.1 SPHINX31 has no effect on neurite outgrowth independent of 

chemotherapy 

 

To test whether SPHINX31 would induce changes in neurite outgrowth independent 

of chemotherapy, primary DRG neurons incubated for 72 hours post isolation were 

treated with 0.1-20µM of SPHINX31 and incubated for a further 72 hours with the 

novel compound. SPHINX31 neither significantly reduced nor increased mean 

neurite outgrowth per neurons compared to DMSO vehicle at any concentration. (Fig 

5.3.3.1) Outgrowth was consistent across all concentrations other than 20µM which 

exhibited a reduced outgrowth comparative to other concentrations though this 

difference was non-significant. These data confirm that treatment of isolated DRG 

neurons with SPHINX31 independent of chemotherapy induces no significant 

changes in neurite outgrowth and thus any dieback observed in neurite outgrowth in 

chemotherapy co-treatments are not induced by novel compounds in a synergistic 

fashion.  
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Figure 5.3.3.1 DRG Neurons Display Robust Neurite Outgrowth Following SPHINX31 
Treatment  
 
Representative images (A) of rat primary DRG neurons treated SPHINX31 for 72 hours. All treatment 
groups display robust neurite outgrowth that is comparative to that of vehicle. Neurons are stained 
with mouse antiβ-III tubulin and Hoechst. Scale bar = 100µm. (B) Concentration response curve for 
SPHINX31 treatment, no statistical difference was detected between treatment groups and vehicle 
control.  N=3, statistical test used One Way ANOVA with Dunnett’s Multiple comparisons.  
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5.3.3.2 SPHINX31 Significantly Ameliorated Vincristine Induced Neurite 

Dieback in a 72 hour co-treatment 

To assess the potential of SPHINX31 as an adjunct therapeutic to ameliorate the 

deleterious adverse effects of vincristine, primary rat DRG neurons were co-treated 

with 10nM vincristine and a range of SPHINX31 concentrations. Following treatment 

with 10nM vincristine all groups exhibited significant neurite dieback compared to 

vehicle control which exhibited a mean neurite outgrowth per neuron of 546.5µm ± 

88.9µm. Treatment with vincristine alone resulted in mean neurite outgrowth per 

neuron of 75.79µm, a reduction of approximately of 87% from vehicle. However, 

despite significant neurite dieback and reduction in neurite outgrowth compared to 

vehicle, SPHINX31 co-treatment with vincristine resulted in higher neurite outgrowth 

compared to vincristine treatment alone at all concentrations of SPHINX31. These 

increases were significant in the 0.1µM and 0.5µM SPHINX31 co-treatment groups 

which had mean neurite outgrowth per neuron of 178.4µm ± 22.11 and 184.4µm ± 

20.22 respectively representing a 20% increase in neurite outgrowth as a percentage 

of vehicle compared to vincristine alone. These data demonstrate that SPHINX31 

confers a degree of neuroprotection at low concentrations when used as an adjunct 

to vincristine (Figure 5.3.3.2).  
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Figure 5.3.3.2 The effect of SPHINX31/Vincristine co-treatment on neurite outgrowth 
Representative images (A) of primary rat DRG neurons treated with 10nM vincristine or co-treated 
with vincristine and 0.1-20µM SPHINX31. All SPHINX31 treated groups display outgrowth greater 
than that of vincristine alone, but significantly reduced from vehicle control. Outgrowth in 0.1µM 
and 0.5µM SPHINX31 treatments was significantly higher than vincristine alone. DRG neurons were 
stained with mouse anti-βIII tubulin and Hoechst. Scale bar = 100µm. (B) Concentration response 
curve for S31/vincristine co-treatments displaying significant increases in neurite outgrowth at low 
SPHINX31 concentrations. N=3, statistical test used: One Way ANOVA with Dunnett’s Multiple 
Comparison to vincristine control. ** p= <0.003. Values without error bars were too small to display. 
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5.3.4.1 Griffin 6 has no effect on neurite outgrowth independent of 

chemotherapy 

To test whether the CLK1/2 inhibitor Griffin 6 would induce changes in neurite 

outgrowth independent of chemotherapy primary rat DRG neurons were treated for 

72 hours with 0.1-10µM of the novel compound. This treatment period followed the 

same 72 hour period to accommodate neurite outgrowth post isolation as previously 

described. Griffin 6 treatment neither significantly reduced nor increased neurite 

outgrowth following 72 hour incubation at all concentrations (Fig 5.3.4.1a). In a 

similar fashion to SPHINX31 the highest concentration in Griffin 6 exhibited a mild 

reduction in outgrowth though this was rendered statistically insignificant. These data 

demonstrate that Griffin 6 treatment of DRG neurons has no effect on neurite 

outgrowth independent of chemotherapy. Thus any changes in neurite outgrowth 

observed within the model can be attributed to the presence of vincristine within the 

co-treatments and neurite dieback is not being mediated by Griffin 6 in a synergistic 

fashion along with the chemotherapy. 
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Figure 5.3.4.1 DRG Neurons display robust neurite outgrowth following 72 hour Griffin 6 
treatment independent of chemotherapy. 
 
Representative images (A) of primary rat DRG neurons treated with 0.1-10µM of Griffin 6 for 72 
hours. All treatment groups display robust neurite outgrowth that is comparative to vehicle control. 
Neurons are stained with mouse anti βIII tubulin and Hoechst. Scale bar = 100µm. (B) Concentration 
response curve for Griffin 6 and mean neurite outgrowth per neuron. No statistical difference was 
detected in any treatment group compared to vehicle. N=3, Statistical test used: One Way ANOVA 
with Dunnett’s multiple comparisons compared to control.  
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5.3.4.2 Griffin 6 significantly ameliorated vincristine induced neurite dieback in 

a 72 hour co-treatment  

To assess the potential efficacy of Griffin 6 in ameliorating vincristine induced neurite 

dieback primary rat DRG neurons were treated with 10nM vincristine or a co-

treatment of vincristine and 0.1-10µM of Griffin 6 for 72 hours. Following treatment 

with vincristine all groups exhibited significantly reduced growth compared to that of 

DMSO vehicle. Vehicle control treated neurons exhibited a mean neurite outgrowth 

per neuron of 241µm ± 25.99µm SEM. Neurons treated with vincristine alone 

exhibited a mean neurite outgrowth of 50.13µm ± 6.7µm SEM, approximately 20% of 

the mean outgrowth in vehicle treated neurons. However, co-treatment of neurons 

with Griffin 6 revealed some significant increases in neurite outgrowth per neurons 

compared to vincristine alone. In Griffin 6 co-treatments at 0.1µM and 0.5µM, mean 

neurite outgrowth per neuron was 108.7µm ± 13.14µm SEM and 117 ± 13.87µm 

SEM respectively. This represents a significant increase in outgrowth compared to 

vincristine alone with the groups displaying approximately 45% and 48% of vehicle 

outgrowth. These data did not however replicate the properties in conferring 

protection to neurites at all concentrations. At 10µM Griffin 6 co-treatments mean 

neurite outgrowth per neuron was lower than vincristine treated neurons alone. 

(41.64µm ± 1.9µm SEM) However, these data confirm that Griffin 6 confers 

moderate neuroprotection to chemotherapy treated neurons when applied as an 

adjunct treatment at low concentrations. (Fig 5.3.4.2) 
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Figure 5.3.4.2 The effect of Griffin 6/Vincristine Co-treatments on neurite outgrowth  
 
Representative images (A) of primary rat DRG neurons treated with vehicle, 10nM vincristine or a co-
treatment of 0.1-10µM Griffin 6 and vincristine. Vincristine treatment significantly reduces 
outgrowth in all co-treatments comparative to vehicle, though 0.1µM and 0.5µM co-treatments do 
demonstrate robust outgrowth comparative to vincristine only control. Neurons are stained with 
mouse anti βIII tubulin and Hoechst. Scale bar = 100µm. (B) concentration response curve for Griffin 
6 co-treatment effect of mean neurite outgrowth per neuron. Co-treatments with 0.1-0.5µM of 
Griffin 6 partially reverse vincristine mediated neurite dieback which recapitulates at higher Griffin 6 
concentrations. N=3, Statistical Test used: One Way ANOVA with Dunnett’s multiple comparisons to 
vincristine control. * P = <0.05.  
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5.3.5.1 Hippogriff 1 had no effect on neurite outgrowth at low concentrations 

but induced moderate reductions in outgrowth at high concentrations  

To assess whether the CLK1/DYRK1 inhibitor Hippogriff 1 would induce changes in 

neurite outgrowth independent of chemotherapy primary rat DRG neurons were 

treated with 0.1-10µM of the novel compound for 72 hours. This followed the 

standard 72 hour incubation period post isolation to allow for neurite outgrowth 

following axotomy previously described. Between 0.1µM and 3µM, outgrowth was 

comparable to that of DMSO vehicle (220µm ± 15.5µm SEM). However, the robust 

growth exhibited at these concentrations was not replicated in the higher HG1 

concentrations with neurons treated with 5µM and 10µM exhibiting neurite outgrowth 

of 126.4µm ± 8.3µm SEM and 69.3µm ± 8.4µm SEM respectively. These data 

therefore differ from those observed following treatment of neurons with SPHINX31 

and Griffin 6 independent of chemotherapy which demonstrated robust neurite 

outgrowth across the low and moderate concentration ranges followed by mild drop 

off in outgrowth at the highest concentration. These data potentially suggest 

Hippogriff 1 could engage in some synergistic mediation of neurite dieback when 

given as an adjunct treatment to chemotherapy. (Fig 5.3.5).  
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Figure 5.3.5 The effect of independent Hippogriff 1 treatment on neurite outgrowth  
Representative images (A) of primary rat DRG neurons treated with 0.1-10µM of the novel splicing 
kinase inhibitor Hippogriff 1 for 72 hours. Treatment with low concentration recapitulate the robust 
neurite outgrowth demonstrated in vehicle control. This effect is eliminated at higher concentrations 
which exhibit significantly reduced growth compared to vehicle. Neurons are stained with mouse 
anti βIII tubulin and Hoechst. Scale bar = 100µm. (B) Concentration response curve for Hippogriff 1 
treatment of DRG neurons and associated neurite outgrowth. Hippogriff 1 concentrations above 
equal to or above 5µM induced dieback of neurites that was significant at 10µM independent of 
chemotherapy. N=3 Statistical test used: One Way ANOVA with Dunnett’s multiple comparisons to 
DMSO control. * p = <0.02 Data shown are mean ± SEM.  
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5.3.6 The novel chemotherapy compound jerantinine induced significant 
neurite dieback following 72 hour treatment, though not as severe as that of 
vincristine 
 

The novel indole alkaloid jerantinine has been proposed as an alternative 

chemotherapy agent to traditional microtubule inhibitors such as vincristine and 

paclitaxel. However, use of any microtubule inhibitor is likely to induce neurite 

dieback as an adverse effect. Jerantinine is putatively reported to high a higher 

affinity of tubulin within dividing cells over neuronal tubulin which would manifest as 

increased neurite outgrowth within this model. Thus I tested the hypothesis that 

treating DRG neurons with concentrations of jerantinine derived from the IC50 data 

in metabolic assays would result in reduced neurite dieback compared to vincristine 

treated neurons. Following 72 hours of incubation post dissection and culturing, 

primary rat DRG neurons were treated with vehicle, 125nM-500nM of jerantinine or 

0.1-10nM of vincristine for a further 72 hours. All treatment groups exhibited in 

significantly reduced neurite outgrowth compared to vehicle (312.5µm ± 34.91µm 

SEM). Vincristine induced dieback was concentration-dependent and was 

reminiscent of the previous data shown in section 5.3.2. Maximal vincristine 

treatment resulted in a neurite outgrowth of just 76µm ± 14.41µm SEM, an 

approximate decrease of 75% from vehicle control. By contrast, despite exhibiting 

significant decreases in neurite outgrowth compared to vehicle, there was no 

concentration dependent effect observed following jerantinine treatment. The 

maximal concentration of jerantinine resulted in a mean neurite outgrowth per 

neuron of 162.6µm ± 39.53µm SEM. This equated to approximately 52% of vehicle 

outgrowth. These values are comparable to the recovery in neurite outgrowth 

observed following provision of SPHINX31 and Griffin 6 as adjunct treatments at low 

concentrations. However, in this experiment the differences between the maximal 



   

 

209 

 

vincristine concentration and all jerantinine concentrations were not significant. 

These data therefore imply that there is a disparity in how the two compounds, 

jerantinine and vincristine manifest their impact on neurite dieback as an adverse 

effect of chemotherapy.  
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Figure 5.3.5 The effects of vincristine and jerantinine on neurite outgrowth following a 72 
hour treatment 
 
Representative images (A) of primary rat DRG neurons treated with either vehicle, 0.1-10nM 

vincristine or 125-500nM jerantinine. Vincristine treated neurons exhibit a gradual decrease in 

neurite outgrowth concomitant with concentration, which is not replicated by increasing 

concentrations of jerantinine. Neurons are stained with mouse anti-βIII tubulin and Hoechst. Scale 

bar = 100µm. (B) Concentration response curves for vincristine and jerantinine treatments. All 

concentrations of both drugs induced significant neurite dieback comparative to DMSO vehicle 

control. No statistical difference was observed between vincristine and jerantinine treatments. 

Statistical tests used, Neurite outgrowth compared to control = One Way ANOVA with Dunnett’s 

multiple comparisons to DMSO control, n=3 *** p= <0.0005, ** p= <0.007, * p = <0.03. Comparison 

between jerantinine concentrations and maximal vincristine = One Way ANOVA with Dunnett’s 

multiple comparisons to 10nM vincristine. No statistical significance detected. Data shown are mean 

± SEM.  
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5.4 Discussion 

As previously described, chemotherapy induced neurite dieback and disruptions to 

axonal transport as a result of microtubule inhibition are some of the principle 

manifestations of CIPN both during the acute treatment phase and possibly many 

years after the cessation of chemotherapy. Thus, development of physiologically 

relevant neuronal outgrowth models to screen new adjunct therapeutics and even 

the adverse neuronal effects of novel chemotherapies is of great importance in 

countering the growing burden of CIPN. The in vitro neurite outgrowth model 

described in this chapter successfully recapitulated the damage exerted by 

chemotherapeutic agents in previous in vitro studies that reflect some clinical 

findings in patient studies. Additionally the model provided the capacity with which to 

test 3 novel splicing kinase inhibitors as adjunct treatments to chemotherapy for the 

first time. Furthermore, the model examined for the first time the adverse neuronal 

effects of a novel chemotherapy agent, jerantinine  in a pre-clinical model of CIPN. 

Evidence of some degree of neuroprotection in response to chemotherapeutic 

challenge was exhibited by 2 compounds, SPHINX31 and Griffin 6. Additionally the 

novel indole alkaloid jerantinine demonstrated reduced neurotoxicity compared to 

vincristine, a traditional chemotherapy agent. These data therefore demonstrate the 

potential impact splicing mechanisms may play in the development and severity of 

CIPN, and that control of these mechanisms may provide a therapeutic option for 

treatment of this refractory condition. 
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5.4.1 Adult Rat Primary DRG Outgrowth is robust enough to establish a viable 

model 

In order to establish a viable model with which to screen novel compounds for their 

potentially neuroprotective properties a robust model of neurite outgrowth was first 

needed to be established. Although myriad models of neurite outgrowth have been 

developed and used in the past, many of these make use of immortalised cell lines 

or derive neurons from rodents in an early periods of development such as the 

embryonic or neonatal stage (Clarke et al., 2017; Flatters, Dougherty and Colvin, 

2017; Haberberger, Barry and Matusica, 2020). As such neurons contained are 

fundamentally of a different phenotype to those that are derived from adult 

populations. DRG neurons derived from adults rats have been found to have 

reduced neurite outgrowth following isolation and culturing compared to neonatal 

cultures and thus the latter have often been preferred for investigations into neurite 

dieback due to their relative regenerative capacity (Shewan, Berry and Cohen, 1995; 

Zhu and Oxford, 2011). Therefore, it was encouraging to see that adult DRG 

neurons within cultures demonstrate robust neurite outgrowth following isolation after 

just 72 hours of incubation (Fig 5.3.1) with a relatively low concentration NGF. 

Comparatively, previous studies have utilised up to 50ng/mL of NGF to simulate 

outgrowth following isolation concomitant with increases in GAP-43 protein 

expression following NGF supplementation. However, even this supplemented rise in 

GAP-43 a protein associated with growth cone development and neuronal plasticity 

is smaller than recorded GAP-43 upregulation in developing neurons treated with the 

same concentration of a neurotrophin after axotomy (Neto et al., 2017). This is likely 

due to the fact that unlike developing neurons in neonatal stages, adult DRG 

neuronal populations with terminally differentiated cells retain only a subset of 
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neurons capable of GAP-43 expression and consequently regeneration following 

isolation is limited. It should also be noted that adult neurons not expressing GAP-43 

following axotomy have also been demonstrated to regenerate suggesting that 

outgrowth is not GAP-43 dependent, but rather faster and more comprehensive in 

neuron populations with more GAP-43 expression such as neonatal cultures 

(Andersen and Schreyer, 1999). Evidence for this is also provided in the observation 

that DMSO controls in drug treatment experiments (Figures 5.3.2 – 5.3.5) lasting 144 

hours in total; with 72 hours of NGF supplementation and 72 hours without NGF had 

comparable neurite outgrowth to the NGF supplemented outgrowth across the whole 

experimental 72 hour period (Figure 5.3.1). This shows a clear reduction in the scale 

of outgrowth following withdrawal of NGF from the cultures. In future studies, 

potentially characterising these populations and their variation between isolations 

could be useful in standardising and assessing the quality of dissection and isolation 

procedures.  

Whilst the neurite outgrowth present at 96 hours and 120 hours incubation was not 

significantly different than 72 hour incubations there is a positive trend for continued 

growth (Fig 5.1.1). This suggests that cultures could be maintained with NGF 

supplementation for a longer period of time if desired and is further evidence that the 

model developed above is robust enough for a variety of different studies, not just 

limited to a CIPN context. However, for the purposes of investigations into 

chemotherapy and based off comparative literature of similar models I deemed the 

outgrowth at 72 hours to provide a sufficient experimental window with which to test 

the potency of vincristine in inducing dieback and the potential of novel compounds 

to ameliorate its effects.  
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5.4.2 Vincristine is a potent mediator of neurite dieback 

The vinca alkaloid vincristine is a common chemotherapy agent that has been 

implicated as one of the most potent agents associated with the onset of CIPN within 

patients (Mora et al., 2016). Additionally, vincristine has been demonstrated to 

induce severe neurite dieback in a number of preclinical models both in vivo and in 

vitro. Consequently, for the neurite outgrowth model described above to be 

considered a viable screening tool for potentially neuroprotective treatments the 

concentration of vincristine used must recapitulate these previously observed results. 

Concentrations of vincristine used in this model (Figure 5.3.2) were derived from 

previous work done by Roper et al. in cancer cell metabolism studies and from 

plasma concentrations found in patients following provision of chemotherapy (Roper, 

2019). The 72 hour treatment time is comparative to the levels of circulating 

vincristine sulfate in serum following dosing in a patient (D. V. J. Jackson et al., 

1981). Vincristine exhibited profound effects on neurite outgrowth with the minimal 

0.1nM concentration reducing outgrowth compared to vehicle by approximately 50% 

with maximal vincristine treatment of 10nM resulting in just ~25% of observed vehicle 

growth at the terminal end of a concentration dependent decrease in neurite 

outgrowth. Vincristine was therefore acting as hypothesised and having a significant 

impact on cultured neurons. This harsh reduction in neurite outgrowth is therefore in 

concordance with other pre-clinical models assessing the effects of 

chemotherapeutic agents on dieback. Interestingly, as with other pre-clinical models 

I observed no evidence of vincristine induced neuronal cell death, though without 

staining with an apoptotic marker such as caspase this was limited to purely 

morphological observations. There is reasonable evidence however that this is a 

common feature with microtubule inhibitors, as many studies have found neurite 
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dieback without accompanying cell death following treatment with paclitaxel or 

vincristine. Whereas chemotherapy targeting DNA itself such as platinum based 

treatments and the proteasome inhibitor bortezomib have been found to result in 

accompanying neuron death (Beijers, Jongen and Vreugdenhil, 2012; Wheeler et al., 

2015; Wing et al., 2017). This suggests that vincristine induced neuronal effects are 

much more likely to be caused by direct effects on neurites rather than as a result of 

soma pathology. In concordance with this, is the aforementioned body of literature 

identifying vincristine induced axonal degeneration and nerite dieback to resemble 

Wallerian degeneration of axons following acute nerve injury or axotomy (Wang et 

al., 2000; Hilliard, 2009; Berbusse et al., 2016). As previously mentioned, within this 

degeneration process axons die-back in a retrograde distal to proximal fashion as 

observed in CIPN models. In a comparative study with bortezomib (BTZ) a 

chemotherapy that exerts its effects primarily on neuronal soma and thus is 

purported to induce neuronal damage by activation of apoptotic pathways rather than 

Wallerian degeneration, the knockout of SARM1 was found to reduce axonal 

degeneration but not inhibit neuronal cell death induced by apoptosis following BTZ 

treatment. However, inhibition of the upstream mediators of the apoptosis pathway 

such as caspase or activation of anti-apoptotic molecules had no effect on vincristine 

induced Wallerian degeneration phenotypes (Geisler et al., 2019). This suggests 

clear differences in how chemotherapies manifest their noxious effects and that in 

terms of the above model it consolidates the decision to prioritise measurement of 

neurite outgrowth/dieback as a readout rather than direct effects on neuronal cell 

bodies because of the use of vincristine within the model. Though no direct 

investigations into SARM1 expression were carried out in the model detailed in the 

previous sections, for future work it could be useful to characterise SARM1 
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expression after isolation to assess basal thresholds of the most prominent pro-

degenerative factor in recently dissected cultures. This additionally could be 

extended to further validate and corroborate the proposed SARM1 mediation for 

vincristine induced dieback to ascertain whether SARM1 expression or activity is 

increased at higher vincristine concentrations.  

 

5.4.3 Novel Splicing Kinase Inhibitors do not induce neurite dieback 

independent of chemotherapy 

Treatment of primary rat DRG neurons with the novel splicing kinase inhibitors 

without a co-treatment of vincristine revealed promising data that was similar in 2 of 

the compounds utilised within the model. I hypothesised that novel splicing kinase 

inhibition as an independent treatment would not induce reduction in neurite 

outgrowth. To test this I applied the 3 compounds to the rat DRG outgrowth model 

for 72 hours. SPHINX31, the only novel compound that has been previously used on 

neuronal cultures demonstrated no deleterious effect of neurite outgrowth across a 

concentration range of 0.1-10µM for a 72 hour treatment (Figure 5.3.3.1). Only at the 

20µM range was there a non-significant decrease in the neurite outgrowth observed. 

It should be noted that a concentration of 20µM for SPHINX31 is considered high 

and likely to trigger multiple off target effects as the selectivity of the compound 

based on its SRPK1 affinity drops. This is based off previous experiments in other 

tissue types examining the effects of the compound both on the RPE cells derived 

from the retina and PC3 cells derived from prostate cancer (Mavrou et al., 2015).  

Despite this, it was still encouraging to see that even at this high concentration 

neurite outgrowth was not significantly inhibited to a level observed in the vincristine 

treatments detailed in figure 5.3.2.  
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The CLK specific inhibitor Griffin 6 was applied at a concentration range of 0.1-10µM 

to the neurite outgrowth model. In these experiments the 20µM treatment group was 

removed as similar to SPHINX31 this concentration is much higher than the 

proposed recommended concentration for usage and thus would be subject to the 

same drop off in selectivity of effects on the CLK1/CLK2 kinases as observed for 

SPHINX31 and SRPK1. Encouragingly as for SPHINX31 between the 

concentrations of 0.1-10µM Griffin 6 had no deleterious effect on neurite outgrowth 

compared to vehicle control. Outgrowth was lower in DMSO control in this 

experiment compared to that of others though this could possibly be explained by the 

age of the NGF aliquots used in these experiments. For experiments beyond this a 

fresh batch of NGF was purchased, aliquoted and applied to neurons. The absence 

of any effect of Griffin 6 across the concentration range suggests that the compound 

is safe to use on neurons at a wide range and that it would not synergistically 

contribute to decreases in neurite outgrowth when used in a co-treatment with a 

chemotherapy agent such as vincristine. This marks is the first time Griffin 6 has 

been used in vitro on primary cells and the absence of any damaging effects of 

neurons suggests it could now be applied safely to a range of other cell types in 

order to assess its viability as a CLK inhibitor in targeting a number of diseases 

driven by erroneous alternative splicing. More specific details discussing the 

potential mechanisms underpinning these observations for SPHINX31 and Griffin 6 

treated neurons can be found in section 5.4.4. 

 

The final compound I analysed in these experiments was the dual kinase inhibitor 

Hippogriff 1. Hippogriff 1 targets the both CLK1/CLK2 kinases as for Griffin 6 but 

additionally the DYRK1A kinase. Detailed information of all novel splicing kinase 
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inhibitors can be found in Chapter 1. To test the hypothesis that Hippogriff 1 would 

not induce reductions in neurite dieback I applied 0.1-10µM of the compound to cells 

as for SPHINX31 and Griffin 6. However, unlike the previous two compounds there 

did appear to be a detrimental effect on neurite outgrowth concomitant with 

increasing concentrations of the compound. This culminated in a significant 

reduction in neurite outgrowth at the maximal Hippogriff 1 concentration that was just 

31% of the outgrowth observed in vehicle control. However even at intermediate 

concentrations between 3-5µM there was a non-significant decrease in neurite 

outgrowth compared to vehicle with only low concentrations between 0.1-1µM 

displaying outgrowth comparable to vehicle control. The absence of this effect in 

Griffin 6 treated neurons suggests that these effects may be mediated by inhibition of 

the DYRK1A kinase as part of the dual specificity of Hippogriff 1. As previously 

mentioned, DYRK1A is a kinase highly associated with neuronal development with 

mutations and overexpression of the kinase implicated as a potential cause of Down 

Syndrome and autism spectrum disorder. Loss of function or reduced expression of 

the kinase is implicated in the development disorder MRD7 (Duchon and Herault, 

2016). Indeed in embryonic mouse models DYRK1A expression has been detected 

in neuroprogenitor cells and implicated as a mediator of expression in a number of 

downstream developmental and differentiation inducer genes such as Sirt1, Snr1 

and Spry2 and Tau proteins (Fernández-Martínez, Zahonero and Sánchez-Gómez, 

2015). However with regard to the above experiments, the most important 

association could be the association between the kinase and the microtubule 

associated protein 1b (MAP1B). MAP1B is primarily expressed during neuronal 

development in neonatal and postnatal stages though its expression does rebound in 

areas of the nervous system associated with high levels of plasticity or indeed 
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regenerating areas of the nervous system post injury (Bodaleo et al., 2016). The 

neurons contained within the above model were recently axotimised and isolated 

and therefore fall into the latter category, most likely partially undergoing the 

aforementioned Wallerian Degeneration. DYRK1A has been found to phosphorylate 

sites on the MAP1B protein which in turn primes the molecule for binding and 

phosphorylative behaviour of another kinase heavily associated with developmental 

neurite outgrowth namely GSK3β . Studies by Scales et al. revealed that 

pharmacological inhibition of the DYRK1A kinase yielded reduced neurite outgrowth 

in embryonic cortical neurons and indeed caused a reduction in the number of 

neurites that subsequently went on to form axons (Scales et al., 2009). Furthermore, 

microtubule stability has been found to impacted negatively by a lack of priming of 

kinase binding sites on the MAP1B protein to accommodate the binding and 

phosphorylative behaviour of GSK3β. As DYRK1A is one of the principle agents 

within this priming mechanism, inhibition of the kinase would therefore lead to fewer 

primed sites on the MAP1b protein and thus less binding of GSK3β and reduced 

microtubule stability. Further evidence of this is provided in the fact that neonatal 

cortical neurons with developing axons have reduced proportions of detyrosinated 

tubulin, which is a marker for stable microtubules. Therefore, it is possible to 

reasonably suggest that neurons within the neurite outgrowth model treated with 

HG1 were subject to a number of these different mechanisms. Said mechanisms 

may therefore provide an explanation for the reduction in neurite outgrowth observed 

following HG1 treatments compared to SPHINX31 and Griffin 6. Further similarities 

are provided by the fact that both vincristine and DYKR1A inhibition have profound 

effects on microtubule dynamics and this may be manifesting as interrupted neurite 

outgrowth at higher concentration of HG1. Studies on DYKR1A function and roles in 
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healthy, non-Down Syndrome/MRD7 affected adult neurons are limited, thus future 

directions for this study to further corroborate these proposals are required (Ackeifi et 

al., 2020). However, maximal concentration of HG1 treatment had equivalent effects 

on neurites as treatment with high vincristine concentrations (section 5.3.2), 

therefore it is reasonable to speculate that the mechanism behind this may be 

associated with deleterious activity against microtubule stability and normal function. 

 

5.4.4 SPHINX31 and Griffin 6 Ameliorated Vincristine induced neurite dieback 

in co-treatment experiments 

Following validation of the hypothesis that SPHINX31 and Griffin 6 would not inhibit 

neurite outgrowth as independent treatments I next hypothesised that they would 

confer neuroprotection to vincristine treated neurons in co-treatments. In all 

experiments a 72 hour, 10nM application of vincristine as an independent or co-

treatment caused a significant reduction in neurite outgrowth compared to untreated 

controls. This was concomitant with the data presented in section 5.3.2. However, 

despite significant reductions in neurite length compared to vehicle control, both 

compounds encouragingly displayed that at low concentrations of 0.1µM and 0.5µM 

they were capable of conferring some statistically significant protection to neurons in 

terms of neurite outgrowth compared to neurons treated with 10nM vincristine alone. 

This vincristine concentration is comparable to the circulating concentration detected 

in patients following a continuous infusion with vincristine sulphate in a 

chemotherapy cycle. Treatments in the aforementioned range for SPHINX31 

produced neurite outgrowth that was a third of vehicle control, but 20% greater than 

cultures treated with vincristine alone. For Griffin 6 these proportional increases in 

outgrowth were larger still. An explanation for this disparity however is likely to due to 
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differences in the outgrowth in the untreated vehicle control. In SPHINX31 

experiments neurite outgrowth in the vehicle control was over 500µm per neuron 

whereas in Griffin 6 experiments outgrowth in vehicle controls was approximately 

half of this. This change in experimental window could be caused by natural assay 

variability, quality of NGF in the 72 hour outgrowth period, quality of dissection and 

quality of culturing techniques. Therefore, caution must be used if drawing 

comparisons between the efficacies of the two compounds, future work examining 

the two compounds in the same experiment would provide a better basis for active 

comparisons between the two compounds. However, the two compounds do 

significantly ameliorate the effects of vincristine within their respective experiments 

and this serves as validation of the initial hypothesis that they would provide a level 

of neuroprotection to chemotherapy treated neurons.  

 

Interestingly, over the rest of the concentration range beyond the 0.5µM level there 

were some divergent effects seen between the two compounds. Neurons treated 

with SPHINX31 in vincristine co-treatments demonstrated growth that was higher 

than neurons treated with vincristine alone. Whereas neurons treated with Griffin 6 

above 0.5µM had neurite growth more comparable to vincristine only treatments. 

These findings could again be due to inter-assay variability between the experiments 

involving the two compounds but in the case of Griffin 6 they potentially suggest 

some synergistic effects between vincristine and high concentrations of the 

compound, possibly due to the off target effects of Griffin 6 exhibited at said 

concentrations and as has been observed in other studies assessing kinase 

inhibition in a variety of contexts. Crucially however, these in vitro data suggest that 

there is potential for splicing kinase inhibition as a means of protecting neurons from 
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high concentrations of vincristine. That said, elucidating the potential mechanisms 

behind this protection are of equal importance.  

 

Pharmacological inhibition of SRPK1, the principle mechanism of action of 

SPHINX31 has previously been investigated in the context of the neuroprotective 

capabilities of alternatively spliced VEGF isoforms (Beazley-Long et al., 2013; Hulse 

et al., 2014; Vencappa, Donaldson and Hulse, 2015). Additionally, various studies 

have also mirrored this effect by treating neurons with recombinant forms of VEGF-

A165b to assess neuroprotective potential in a variety of different contexts such as 

diabetic neuropathy and glutamate induced excitotoxicity (Verheyen et al., 2013; Ved 

et al., 2018). Though no definitive examination of whether the effects seen in the 

above experiments with SPHINX31 are VEGF dependent were performed, previous 

work using similar compounds and recombinant VEGF-A165b protein would suggest 

a potential role for VEGF alternative splicing. Under normal physiological conditions 

anti-angiogenic and non-nociceptive VEGF-A165b isoforms predominate over the 

VEGF-A165a isoforms once thought to the canonical form of the growth factor. 

However, upon insults such as crush injury or full axotomy or hypoxia this expression 

is reversed and the VEGF-A165a isoform becomes predominant. VEGF-A165a is 

associated with neurite outgrowth and neurotrophic behaviour within the DRG along 

with an upregulation of the VEGFR2 receptor, the principle site at which VEGF 

isoforms exert their effects on tissues. Thus it is likely following the dissection, 

isolation and subsequent culturing of DRG there is an upregulation of this isoform 

and receptor within cells and along with NGF supplementation as previously 

described is concomitant with robust neurite outgrowth described in section 5.3.1. 

Previous studies have shown this effect can be blocked by inhibiting VEGFR2 
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receptors further corroborating evidence that neurite outgrowth from neuronal cell 

bodies following injury and during development is at least in part mediated by VEGF 

(Hulse et al., 2014).  

 

Vincristine has been found to have anti-angiogenic properties in a wide number of 

cancers such as glioblastoma cell lines where it was found to reduce VEGF mRNA 

expression following vincristine treatment, though this was at concentrations up to 

1µM and therefore much higher than both the levels circulating within patients and 

the concentrations used in the neurite outgrowth model (Park et al., 2016). Similar 

effects were also observed when vincristine was applied various types of leukaemia 

cell lines (Avramis, Kwock and Avramis, 2001). This is in addition to profound 

deleterious effects observed when used on endothelial cell lines such as Human 

Umbilical Vein Endothelial Cells (HUVECs) which have high levels of VEGF-A165a 

expression (Bota et al., 2019). Therefore, if neurons within the neurite outgrowth 

model are expressing high levels of pro-angiogenic VEGF isoforms it is possible that 

vincristine would have profound effects on this expression. Furthermore, SPHINX31 

has been found to induce significant changes in VEGF splicing at equivalent 

concentrations to those used within the neurite outgrowth model, in a study of 

splicing changes in retinal pigmented epithelial samples (RPE) (Batson et al., 2017). 

Therefore it is reasonable to suggest that these effects may be occurring in neurons 

contained within the neurite outgrowth model and this expression of VEGF-A165b 

isoforms following pharmacological inhibition of SRPK1 is a factor in the 

neuroprotection conferred in the neurite outgrowth model. Recombinant VEGF-A165b 

has protected hippocampal, peripheral and retinal neurons both in vitro and in vivo 

from a variety of chemical and physical challenges. The absence of any further 
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neurite outgrowth above vehicle in independent SPHINX31 treatments and reduced 

growth SPHINX31/Vincristine co-treatments further supports the hypothesis that the 

neuroprotective effects observed could be mediated by altered VEGF-A splicing in 

favour of VEGF-A165b. As in experiments on the effects of SPHINX31 treatment 

alone, if modulation of alternative spicing was not being achieved one would expect 

to see further growth of the neurites even after the withdrawal of NGF 

supplementation because of the neurotrophic effects of VEGF-A165a predominating. 

However this was not observed at any concentration of SPHINX31 treatment which 

concurs with previous data from Batson et al. suggesting efficacy of SRPK1 

inhibition in inducing changes in splicing at concentrations as low as 0.1µM of 

SPHINX31. An argument against this hypothesis however is the fact that both 

isoforms are neuroprotective, and therefore a shift in splicing may not have a 

significant effect. This would suggest alternative targets of SRPK1 inhibition 

producing these ameliorating properties. Future work to assess these hypotheses 

could include assessment of basal VEGF isoform expression in DRG neurons post 

dissection and culturing to judge which isoform predominates post injury. 

Assessment of VEGF expression before and after vincristine treatment would 

indicate the effects of the vinca alkaloid on these mechanisms. Experiments 

investigating this expression would likely have to be pooled from multiple plates due 

to difficulties in collecting sufficient protein from neurons cultured in 96 well plates. 

Secondly, to judge whether the neuroprotection conferred by SPHINX31 is VEGF-

A165b dependent, a VEGF-A165b neutralising antibody could be applied to the model, 

if neurite outgrowth recovery is abolished in the concentrations where it was 

previously significant this would greatly increase the likelihood of the observed 

effects being VEGF-A165b isoform dependent.  
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In addition to the significant effects observed following use of the SRPK1 specific 

inhibitor, SPHINX31 there was also a significant neurite protective effect observed 

when the novel CLK1/2 specific inhibitor Griffin 6 was used in a co-treatment with 

vincristine. Unlike SPHINX31 this marks the first time that Griffin 6 has been used 

not only in vitro on primary neuronal cells, but also in any functional in vitro assays. 

Therefore comparisons to previous studies are not available to be discussed, 

however CLK1/2 inhibitors and indeed the role of the CLK1/2 kinases within neuronal 

and angiogenic contexts have been discussed previously in the literature (Nowak et 

al., 2008; Harper and Bates, 2009; Gu et al., 2017; Lee et al., 2019b). In the neurite 

outgrowth model, Griffin 6 only had protective actions at the two lowest 

concentrations and had no effect alone. This suggests that there may be an effect of 

CLK1/2 function and neurite outgrowth when neurons are challenged with a chemical 

insult, as was the case for SPHINX31, though CLK1/2 inhibition does not appear to 

have neurotrophic actions in itself based on evidence from the literature.  

 

CLKs have been implicated as active in neuronal function in a number of studies, 

one of the earliest of which demonstrated that CLK1 expression and activity was 

correlated with neuronal like differentiation of PC12 cells, a pheochromocytoma cell 

line from the adrenal glands. CLK1 works synergistically with NGF to induce 

differentiation however CLK1 alone was not able to promote cell survival of this cell 

line in the absence of NGF (Myers, Murphy and Landreth, 1994). This suggests 

CLK1 has role in neuronal function and development whilst not necessarily being 

associated with cell survival pathways within neurons. Additionally, more recent 

research has linked aberrant CLK2 activity to deficits in SHANK3 expression in 
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cortical neurons, which is linked to many of the phenotypes present in autism 

spectrum disorders (Bidinosti et al., 2016). This therefore, in a similar fashion to the 

closely related DYRK1A kinase implies a role of CLK2 in early neuronal 

development. Inhibition of CLKs using the TG003 inhibitor on primary cortical 

neurons in the same study restored dendritic spine outgrowth in SHANK3 

knockdown conditions, suggesting CLKs play a profound role in neurites and their 

functional capacity. Dendritic spines are minor protrusions from the dendritic 

membrane that receive input from an axon and are therefore a major source of 

synaptic transmission in the central nervous system. Additional evidence for a 

central nervous system role for CLK1 is provided in the fact erroneous splicing of 

Tau protein, a microtubule associated protein governed by CLK1, and mutations 

within this pathway are associated with neurodegenerative conditions such as 

Parkinson’s and Alzheimer’s disease (Glatz et al., 2006; Jain et al., 2014). However, 

information on CLK1/2 function within the peripheral nervous system is limited and 

therefore further hypotheses generated from these primary observations must be 

subject to further investigations and scrutiny. The majority of literature regarding CLK 

kinases is contained within the field of oncology, where CLK inhibition using other 

novel, non-selective compounds results in reduced phosphorylation of SRSF1. This 

is to be expected as both CLKs and SRPKs exert strong influence on this splicing 

factor (Araki et al., 2015; Iwai et al., 2018). However, the activity of SRSF1 is a major 

upstream mediator of the activity of the S6K kinase, itself an upstream mediator of 

the S6 ribosomal protein associated with cell size and proliferation governed by 

mammalian target of rapamycin pathway (mTOR) (Ben-Hur et al., 2013).  

The mTOR signalling pathway has a well-established role in the limited neuronal 

regeneration post injury seen within the CNS and is negatively regulated by 
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Phosphatase and Tensin Homolog (PTEN). Inhibition of PTEN has increased the 

regenerative capacity of CNS neurons following injury whereas inhibition of mTOR 

with rapamycin was found to dramatically decrease axonal regeneration in retinal 

and cortical neurons, both considered to be part of the CNS (Al-Ali et al., 2017). 

Indeed, many studies attribute the lack of CNS regeneration post injury to be 

attributed to the fact mTOR is essential to the process but is chronically inhibited by 

actions of glial cells within the CNS, cells also key in glial scarring in the CNS (Wei, 

Luo and Chen, 2019). In the PNS however, mTOR is not considered to be essential 

for regeneration post injury although a recent study suggests there is an activation of 

the pathway following injury within peripheral neuronal cell bodies (Chen et al., 

2016). Furthermore in a model of sciatic nerve ligation in the PNS neurites were 

present projecting from injured neurons treated with rapamycin an inhibitor of mTOR, 

though they were shorter than those not treated with the inhibitor (Abe et al., 2010)  

This demonstrates that outgrowth is possible in the PNS when mTOR is inhibited, 

supporting the conclusion that while mTOR may drive PNS regeneration, it is not 

essential to it. The mTOR pathway has various downstream mediators, one of which 

is the aforementioned S6K which has been found to have conflicting roles in the 

literature in the context of neurite regeneration with evidence for both stimulatory and 

inhibitory roles in this context (Yang et al., 2014; Al-Ali et al., 2017) 

 

This association between S6K activation by mTOR and neurite outgrowth is relevant 

to the inhibitory activity of Griffin 6 on CLKs splicing kinases and the effects on 

downstream SRSF1 signalling. CLKs induce strong inhibitory effects on canonical 

S6K activity and the splicing of S6K itself. Inhibition of CLK results in production of 6 

novel S6K kinase transcripts in addition to the canonical form linked to mTOR 
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signalling in breast cancer cell lines (Araki et al., 2015). The presence of these 

alternatively spliced S6K isoforms is associated with reduced cancer cell growth and 

reduced S6K activity. It is feasible, due to inhibition of the identical upstream kinase 

that Griffin 6 could recapitulate these effects in neurons, and produce multiple non-

functional S6K transcripts resulting in less phosphorylation of the S6K target, S6. 

There is conflicting evidence on the effect of S6 on neurite outgrowth with reports of 

both reduced and enhanced neurite outgrowth that may be a result of different 

alternative splicing events (Abe et al., 2010; Hubert et al., 2014; Yang et al., 2014; 

Al-Ali et al., 2017). Alternatively, as the mTOR pathway can be activated by a 

number of different signalling routes, it is possible that a CLK inhibitor could also 

stimulate mTOR-dependent neurite outgrowth via the PI3K pathway, which is 

negatively regulated by the activity of S6K as reported in CNS neurons  (Al-Ali et al., 

2017). Griffin 6 is a highly selective CLK inhibitor and may be efficacious at 

preventing neurite dieback at low concentrations where it is likely to be more 

selective for CLKs, thus exerting inhibitory effects on S6K splicing controls via 

upstream SRSF1 suppression in the presence of a cytotoxic chemical insult such as 

vincristine. This may cause activation of the mTOR pathway driving regeneration via 

another pathways, such as the PI3K, than through S6K which has also been found to 

regulate mTOR mediated PI3K regeneration in a negative feedback loop.  The PI3K 

pathway avoids inhibition of PTEN, a tumour suppressor linked to tumour cell 

vincristine resistance and thus might engage a more controlled mTOR activation that 

results in moderate neurite outgrowth. Given the wide-scale uncertainty in the 

literature, these hypotheses would need to be tested in further work. As an 

independent treatment, the hypothetical stimulation of the mTOR pathway by 

CLK/SRSF1 inhibition and downstream effects on S6K could be limited by the fact 
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that mTOR induced outgrowth is not essential for neurite to outgrowth and activation 

of other unidentified pathways may be required for further regeneration. In order to 

determine this, future investigations into Griffin 6 mediated CLK1/2 inhibition and 

neurite outgrowth could be focused on S6K transcripts following Griffin 6 

administration, the expression of mTOR activation markers after dissection, the 

phosphorylation state of S6, PI3K activation markers and inhibiting mTOR activation 

via rapamycin supplementation to cultures. 

 

5.4.5 Jerantinine and Vincristine significantly reduce neurite outgrowth, but to 

a different degree 

For the first time, the novel indole alkaloid synthetic jerantinine acetate A 

(Jerantinine) was used in vitro on primary sensory neurons in a direct comparison 

with a traditional chemotherapy agent, the long established vinca alkaloid vincristine. 

Though data on jerantinine is scarce, preliminary work identifying the anti-cancer 

properties of jerantinine have been described by Smedley et al. and Roper et al. 

(Roper et al., 2018; Smedley et al., 2018). The latter study identified that despite 

jerantinine demonstrating comparable efficacy to vincristine at sub-micromolar 

concentrations, the effect of the novel compound on neural stem cell structure and 

morphology were negligible compared to vincristine treated stem cells. These data 

suggested that jerantinine could potentially carry fewer severe off-target effects on 

non-cancerous cells, whilst retaining a potent effect on aberrantly dividing cells. 

Therefore, I hypothesised that when each compound was applied to adult rat primary 

dorsal root ganglia neurons, the neurons treated with a physiologically relevant 

concentration of jerantinine would exhibit reduced neurite dieback compared to 

neurons treated with the traditional compound vincristine.  
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The data presented in section 5.3.6 suggest at least partial validation of this 

hypothesis. Both compounds significantly reduced observed neurite outgrowth 

compared to vehicle. However, the decrease observed in neurons treated with 

jerantinine did not recapitulate the concentration-dependent effect observed with 

increasing vincristine treatments. The effect of the lowest concentration of jerantinine 

used (125nM) was almost equivalent to the maximal concentration (500nM). When 

normalised, there was an approximately three percent decrease across the 

concentration range. Comparatively, vincristine cause a 21% decrease in neurite 

length across the concentration range (0.1nM to 10nM). Whilst the difference 

between the compounds was not significant, this might suggest a difference between 

the mechanisms of the two compounds, possibly in the severity of their non-specific 

effects on non-cancerous cells. Though both compounds are microtubule inhibitors 

and function via destabilisation of the microtubules, an immediate difference in their 

mechanism of action is site at which each compound binds to the microtubule. As 

previously mentioned, vincristine and the vinca alkaloid class of compounds bind to 

the vinca domain on the β-tubulin subunit itself, whereas jerantinine binds to the so 

called colchicine binding site which is located at the β-tubulin interface with α-tubulin 

(Zhang, Yang and Guo, 2017; Smedley et al., 2018). Colchicine is traditionally a drug 

used in the treatment of gout. High toxicity severely limited its effectiveness as a 

potential cancer treatment, but related compounds that bind to the same site are 

under investigation as chemotherapy agents (Lu et al., 2012). The functional 

difference in the microtubule inhibition between the two sites is that binding at the 

vinca site is limited to tubulin molecules at the exposed tip of the microtubules and 

vinca alkaloids cannot bind to tubulin molecules already polymerised into 
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microtubules. In contrast, microtubule inhibitors binding at the colchicine site are able 

to copolymerise with tubulin molecules that are already formed and polymerised. The 

result is the formation of a complex between the colchicine binding molecule and the 

two tubulin subunit molecules. This in turn leads to the creation of “curved” tubulin 

dimers which at lower concentrations inhibit microtubule dynamics as lateral contacts 

with neighbouring dimers is lost. At higher concentrations this effect is exacerbated 

and colchicine binding compounds actively depolymerise and degrade the 

microtubules. Jerantinine abolishes tubulin polymerisation as effectively as other 

colchicine agents such as nocodazole (Raja et al., 2014).  

 

It is feasible given the observed reduction in dieback following jerantinine treatment 

compared to vincristine that the concentration used was sufficient to interrupt 

microtubule dynamics in this way, as jerantinine at 500nM is sufficient to initiate 

G2/M cell cycle arrest in cancer cells which active require microtubules to divide. 

This concentration may be low enough to limit the potential deleterious effects of 

actively depolymerisation and loss of microtubule mass, which would manifest as 

neurite dieback. This is supported by effects in breast cancer cells treated with 

jerantinine at concentrations above 1µM, where normal microtubule processes such 

as multipolar spindle formation, misaligned chromosomes and nuclear fragmentation 

were disrupted indicative of a severe reduction in available microtubule mass. Thus 

at jerantinine concentrations less than 1µM, such as those used in the neurite 

dieback model inhibition of microtubule dynamics rather than reduction of 

microtubule mass could be responsible for the absence any concentration- 

dependent effect on neurite outgrowth. With vincristine treatment, this window 

between interruption of microtubule dynamics and reduction in mass is reached at 
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lower concentrations than for jerantinine due to the higher potency and toxicity of 

vincristine, which results in a concentration-dependent effect (Jordan and Wilson, 

2004). It is also important to note that neurites, though they may not be in the 

process of degeneration while in the presence of splicing kinase inhibitors, could still 

be functionally affected as evidenced by neuronal sensitisation following acute 

vincristine or jerantinine treatment. Therefore, these findings and further hypotheses 

should be considered in conjunction with the sensitisation data found in Chapter 4. 

Nonetheless, the less severe neurite dieback in jerantinine treated neurons 

compared to vincristine treated neurons at these concentrations is encouraging 

given the concentrations used to obtain cytotoxic effects on cancer cells are usually 

between 125-500nM.  

 

The observed values of normalised outgrowth in jerantinine treated neurons, were 

comparable to that observed in neuronal co-treatments with vincristine and 

SPHINX31/Griffin 6. Therefore it would be interesting to assess how efficacious the 

novel splicing kinase inhibitors would be at further ameliorating the effects of 

jerantinine induced neuronal dieback. It is reasonable to hypothesise given the 

neuroprotective effects observed in vincristine treatments that the novel splicing 

kinase inhibitors might replicate these effects in a compound ostensibly inducing less 

neurotoxicity. These experiments represent an exciting future direction for both 

jerantinine and the novel inhibitors as it could further elucidate their potential as a 

combination therapy for use in cancer patients, for effective anti-cancer effects with 

mediation of any side effects. It would also be valuable to assess neurite outgrowth 

at concentrations previously reported as abolishing formation microtubule mass to 

see whether these effects would be replicated within the model. This would help to 
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corroborate the proposed hypothetical mechanism that at concentrations lower than 

1µM jerantinine is acting through inhibition of microtubule dynamics rather than 

reducing microtubule mass. However, a limitation of these studies is the existing 

supply of jerantinine. For these experiments the jerantinine used was kindly donated 

by Dr Tracey Bradshaw of the University of Nottingham, School of Pharmacy. 

Synthesis of the compound is extremely complicated and difficult and compound 

stability at temperatures above -80°C is low. Therefore, future experiments are 

subject to these limiting factors which could result in obstacles to the development of 

jerantinine. Nonetheless, the compound serves as proof that the neurite outgrowth 

model can be used for direct comparisons of the adverse effects of a putative and 

established chemotherapeutic agent.  
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Chapter 6: Assessment of Novel Splicing Kinase 

Inhibitors on Chemotherapy Efficacy 

 
 
6.1.1: Introduction 
 
 
Whilst the development of adjunct therapies to current chemotherapy regimens is 

essential in ameliorating the impact of CIPN suffered by patients it is of paramount 

importance that such therapies do not significantly interfere with the primary function 

of chemotherapy. (Flatters, Dougherty and Colvin, 2017) Putative pain relief 

therapies that carry these contraindications could potentially risk patient survival or 

require the patient to undergo more cycles of chemotherapy in order to achieve the 

pre-CIPN therapy tumour reduction. (Cavaletti et al., 2019) Thus, it is crucial that any 

potential adjunct CIPN therapeutics are suitably screened for such effects using 

relevant in vitro models. Traditionally, assays used to assess cytotoxicity caused by 

novel agents and cell survival such as MTT assays have been carried out using 

conventional 2D cell culture techniques using cell monolayers. (Ivanov et al., 2016) 

However, in many cases results generated using these models are then poorly 

replicated following in vivo experiments (Edmondson et al., 2014). Much of this can 

be attributed to the lack of physiological relevance that 2D cell culture models 

possess compared to a whole organism (Mehta et al., 2012). As such, there is a 

pressing need to use more advanced and physiologically relevant models of 

cytotoxicity within cancer.  

 

Recently, 3D cancer spheroid models have been shown to be much more effective in 

assessing the effects of anti-cancer drugs in vitro. (Präbst et al., 2017) This is largely 
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due to the fact that cancer cells growing in 3D resemble the growth patterns of in 

vivo tumours much more accurately than simple monolayer cultures. Consequently, 

increasingly well characterised spheroid models can serve as ideal screening assays 

for assessing the effects of novel splicing kinase inhibitors on the anti-cancer 

capabilities of vincristine.  

 

The novel splicing kinase inhibitors used in these experiments, Griffin 6, Hippogriff 1 

and SPHINX31 all have targets that have been implicated in studies of cancer. For 

instance SRPK1 and the CLK kinases are key mediators of alternative splicing of 

VEGFA, canonically a potent driver of angiogenesis. Many tumour types rely on 

dysregulation of VEGF expression and pathological angiogenesis to grow in situ and 

also to provide an opportunity for the cancerous cells to spread via bloodstream 

metastasis. A recent study by Gao et al. found that the hypoxia linked miRNA-210 

was upregulated in primary MB tissues alongside increased expression of VEGF-A. 

This upregulation was further enhanced in patients with secondary tumours and 

subarachnoid metastasis in addition to increased levels of both angiogenic 

components within the cerebrospinal fluid. Therefore, it is possible that novel splicing 

kinase inhibitors capable of targeting upstream mediators of differential VEGF 

isoform expression may be able to exert their effects synergistically with traditional 

chemotherapy agents in treating cancers. This could manifest as a direct effect on 

the solid tumour in situ by cutting off access to the bloodstream resulting in 

apoptosis, reducing tumour size or by preventing metastasis and subsequent 

dissemination of spread. However, the role of SRPK1 within medulloblastoma 

remains relatively obscured compared to other tumour types with CLK and DYRK1A 

functions in brain tumours explored even less. Therefore, assessing the capability of 
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the novel compounds inhibiting these aforementioned targets will provide a useful 

“first pass” analysis as to their capabilities as adjunct therapeutics to potentiate 

paediatric traditional brain tumour therapies such as vincristine. Furthermore it is 

also proposed that as the novel compound targets are all relevant to a variety tumour 

types that the novel compounds can potentially serve as discrete and independent 

treatments. SPHINX, a precursor of SPHINX31 has already been used in this 

manner in a pre-clinical in vitro study of prostate cancer, though none of the 

compounds presented for screening have been used previously in the context of 

medulloblastoma (Mavrou et al., 2015).  

 

6.1.2: ONS76 Cells 

ONS76 cells are an immortalised cell line derived from a 2 year old female patient  

with a Sonic Hedgehog (SHH) classification medulloblastoma. SHH 

medulloblastomas form the second largest subgroup of recorded diagnoses in 

patients and are regularly treated with the vinca alkaloid vincristine when the patient 

is considered to be both “standard” and “high” risk. In standard risk patients, 

vincristine is used at all phases of treatment, initially alongside radiotherapy before 

being used in conjunction with cisplatin and cyclophosphamide.  High risk refers to 

patients less than 3 years of age, with confirmed metastasis prior to treatment. For 

SHH hedgehog tumours, the metastasis rate at diagnosis is approximately 20% 

(Bonfim-Silva et al., 2019). Therefore given the prevalence of SHH tumours, ONS76 

cells have been used in traditional 2D drug screens targeting medulloblastoma for 

approximately 30 years and are well characterised in the literature. More recently 

they have been used in the development of 3D spheroid models (Ivanov et al., 

2016). Importantly, spheroids formed by ONS76 cells can be expediently grown with 
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minimal effort or technical expense other than use of ultra-low attachment plates. As 

such, ONS-76 cell spheroids were selected as the most practical option with which to 

assess the potential off-target effects of novel splicing kinase inhibitors on vincristine 

activity.  

 

 

6.1.3: Hypotheses & Aims 

Hypotheses:  

• Application of vincristine to ONS76 spheroids will result in disruption to 

spheroid morphology, causing fragmentation and reduction in size of tight 

spheroid conformation.  

 

• The novel splicing kinase inhibitors, SPHINX31, Griffin 6 and Hippogriff 1 will 

disrupt ONS76 spheroid morphology, causing fragmentation and reduction in 

size of tight spheroid confirmation as independent treatments.  

 

• Applying vincristine and a novel splicing kinase inhibitor to ONS76 spheroids 

as co-treatments will not inhibit the ability of vincristine to disrupt tight 

spheroid conformation and concomitant reduction in spheroid size. 

Furthermore, vincristine and the novel splicing kinase inhibitor used may 

synergistically disrupt spheroid size to a greater magnitude than as 

independent treatments.  

 
Aims:  

• Use the 3D ONS76 spheroid model as a preliminary screen for the effects of 3 

novel splicing kinase inhibitors as independent cancer treatments, in addition 
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to assessing potential contraindications when used in a co-treatment with 

vincristine.  

 

6.2: Methods – ONS76 Spheroid Formation 

This protocol was initially adapted from Ivanov et al. by S.Roper (Ivanov et al, 2016; 

Roper, 2019). ONS76 cells were grown to ~70% confluence as described in section 

2.1.3. Cells were then trypsinised and centrifuged at 100xg for 5 minutes to form a 

cell pellet. The pellet was then re-suspended in 1mL of RPMI1640 medium and cells 

were counted using a Neubauer Haemocytometer. Sufficient cells were then 

removed from the suspension to allow for a cell density of 150 cells/well of an ultra-

low attachment 96 well plate. These cells were then pelleted again using 

centrifugation as previously described above and re-suspended in appropriate 

volume of Neurosphere medium (DMEM/F12 + 2% B-27 supplement, 1% N2 

Supplement, 2µg/mL Heparin, 20ng/mL EGF, 10ng/mL FGF.) to allow for a volume 

of 200uL per well. If using a maximum of 60 wells this volume was 12mL. Cells were 

then evenly distributed at the aforementioned density in 200µL in a maximum of 60 

wells. HBSS was placed in the surrounding wells to prevent dry out of the central 60 

wells. Plates were then incubated at 37°C for 96 hours.  

Following the 96 hour incubation period, ONS76 spheroids were imaged using a 

CMEX-18 Pro microscope camera following calibration using a microscope scale 

calibration slide (AmScope). Images were taken at 10x magnification. These images 

were then processed using Image J (Fiji) software. The freehand selection tool was 

used to trace around the spheroid, calculating area as seen in figure 6.1. 
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Figure 6.1: Representative Spheroid following 96 hour incubation 

Figure denotes a screenshot representative of the spheroid measurement process. Images were 
opened using Image J software and freehand tool used to trace the circumference of the spheroid 
(yellow outline). Following this, the area traced was measured by pressing the M key. This created 
the output window visible in the top left of the figure, which contained the label of the image being 
quantified and the area of the traced zone. Scale bar = 100µm.  
 

 

Measured area (A) was then used in the following equations to calculate estimated 

spheroid radius (r), Diameter (d) and Volume (v).  

Radius = √
𝐴

𝜋
  

 

Diameter = 2r 

 

Volume = 
4

3
𝜋𝑟3 
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The volume calculated from these equations was then normalised as 100% for each 

individual spheroid, thus accounting for any heterogeniety in starting spheroid size. 

Immediately after imaging, cells were treated with vehicle, 10nM vincristine or co-

treated with G6, HG1 or S31 (0.1-3µM) for a further 72 hours after which they were 

imaged and processed using the same basic method previously described above. 

However, spheroids treated with chemotherapy agents often display a “halo” of 

cellular debris and apoptotic cells which do not retain the tight conformation of the 

spheroid seen in figure 6.1. Therefore, for measurements of treated spheroids, only 

the internal, tight morphological structure was traced.  An example of how freehand 

area selection was applied to disrupted spheroids following treatment can be seen in 

Figure 6.2.  

Figure 6.2: Representative image of vincristine treated spheroid 

(A) Spheroid retains a clearly defined circumference within the larger “halo” of cellular debris. (B) 
The same spheroid, with a blue circle denoting the area that was traced for measurement and used 
in spheroid growth calculations. Traced area measured as in figure 6.1. Scale bar = 100µm.  
 

The radius, diameter and estimated volume of the spheroids calculated after 

treatment was then expressed as relative to the volume (normalised to 100%) before 

treatment to assess the effects of kinase inhibitor treatment, and possible effects on 

vincristine activity. Statistical analysis was then carried out using Graphpad Prism. 
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6.3.1: Vincristine mediated reduction in ONS76 spheroid growth is not 

attenuated by co-treatment with SPHINX31. SPHINX31 does not reduce 

spheroid growth independently. 

ONS76 cell spheroids grew uniformly across the initial 96 hour timeframe prior to 

SPHINX and vincristine treatment (Fig 6.3). ONS76 cell spheroids co-treated with all 

concentrations of SPHINX31 and vincristine (Fig 6.3) exhibited inhibited growth that 

was comparable to vincristine treatment alone (F (9, 18 = 22. 42 p = 0.0001) which 

was significantly reduced compared to vehicle.  However there was no evidence of 

SPHINX31 potentiating vincristine reductions in volumetric growth in a synergistic 

manner. Additionally, cells treated with SPHINX31 alone did not grow significantly 

larger than spheroids that were subject to vehicle treatment only, however there was 

no reduction in spheroid growth as a result of independent SPHINX31 treatment. 

  

 

 
 
Fig 6.3: ONS76/SPHINX31 Spheroid Images  
 
(A) ONS76 cell spheroids 96 hours post seeding immediately before and 72 hours after the 
application of SPHINX31 as an independent treatment. Scale bar = 100µm 
(B) ONS76 cell spheroids 96 hours post seeding, immediately before and 72 hours after the 
application of vincristine or vincristine and SPHINX31 as a co-treatment. 
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Fig 6.4: Impact of SPHINX31 treatment on ONS76 volumetric spheroid growth  
ONS76 cell spheroid growth following 72 hour treatments with vehicle, vincristine, SPHINX31 or a co-treatment of 
both SPHINX31 and vincristine. Spheroid volume following treatment is expressed as a percentage of the estimated 
volume for the same spheroid calculated from images taken immediately prior to treatment, which was normalised as 
100%. This is represented by the dotted line. Data presented is from n=3 plate repeats containing 6 internal replicates 
per treatment, per plate. All data is mean ± SEM. SEM data for vincristine and vincristine + SPHINX31 is was smaller 
than the size of symbol. Two way ANOVA with Tukey’s Multiple Comparisons *** p = 0.0002 Vinc v DMSO. 
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6.3.2: Vincristine mediated reduction in ONS76 spheroid growth is not 

attenuated by co-treatment with Griffin 6. Griffin 6 does not reduce spheroid 

growth independently. 

ONS76 cells grew uniformly across the initial 96 hour timeframe prior to treatment 

with vincristine and the CLK specific inhibitor Griffin 6 (Fig 6.5). ONS76 spheroids 

treated with vincristine alone demonstrated significantly reduced volumetric cell 

growth compared to vehicle. When applied independently, Griffin 6 at all 

concentrations did not reduce spheroid growth compared to vehicle, though there 

was no significant increase in spheroid growth in Griffin 6 treated spheroids. 

Additionally, the inhibition of growth in vincristine and Griffin 6 co-treated spheroids 

was comparable to independent vincristine treatment, with neither a statistical 

increase nor decrease in growth observed.  

 

 

Fig 6.5: ONS76/Griffin 6 Spheroid Images:  
(A) ONS76 cell spheroids 96 hours post seeding immediately before and 72 hours after the application of Griffin 6 as an 
independent treatment. Scale bar = 100µm 
(B) ONS76 cell spheroids 96 hours post seeding, immediately before and 72 hours after the application of vincristine or 
vincristine and Griffin 6 as a co-treatment. Scale bar = 100µm. 
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Fig 6.6: Impact of Griffin 6 Treatment on ONS76 Spheroid Growth 
 
ONS76 cell growth following 72 hour treatments with vehicle, vincristine, Griffin 6 or a Griffin 6 and 
vincristine co-treatment. Spheroid volume following treatment is expressed as a percentage of the 
estimated spheroid volume for the same spheroid calculated from images taken immediately prior 
to treatment which was normalised as 100%. This is represented as the dotted line.. Data presented 
is from n =3 plate repeats with 6 internal replicates per treatment, per plate. All data is mean ± SEM. 
Where error bars are not visible, this is due to the bars being smaller than the height of the symbol. 
Two Way ANOVA with Tukey’s multiple comparisons, **** p = <0.0001 Vinc v DMSO. Ns = DMSO vs 
G6 0.1-3µM, Ns = Vinc vs G6 0.1-3µM + Vinc. 
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6.3.3 Vincristine mediated reduction in ONS76 spheroid growth is not 

attenuated by co-treatment with Hippogriff 1. Hippogriff 1 does not reduce 

spheroid growth independently.  

ONS76 cell spheroids grew uniformly across the initial 96 hour growth period prior to 

treatment with vincristine and the multiple splicing kinase inhibitor Hippogriff 1 (Fig 

6.7), ONS76 spheroids treated with vincristine alone demonstrated significantly 

reduced volumetric growth across the 72 hour treatment period than vehicle treated 

spheroids. When applied as an independent treatment, Hippogriff 1 at all 

concentrations neither significantly increased nor decreased volumetric cell growth in 

comparison to vehicle. In spheroids where Hippogriff 1 was used in a co-treatment 

with vincristine reduction in volumetric spheroid growth was comparable to the 

independent vincristine treatment control with no significant difference detected at 

any concentration of Hippogriff 1 co-treatment (Figure 6.8).  

 
Fig 6.7: ONS76/Hippogriff 1 Spheroid Images  
(A) ONS76 cell spheroids 96 hours post seeding and immediately before and 72 hours after the 
application of Hippogriff 1 as an independent treatment. Scale bar = 100µm. 
(B) ONS76 cell spheroids 96 hours post seeding and immediately before and 72 hours after the 
application of vincristine alone, or vincristine and Hippogriff 1 as a co-treatment.   
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Fig 6.8: Impact of Hippogriff 1 treatment on ONS76 spheroids 

 
ONS76 cell spheroids following 72 hour treatments with vehicle, vincristine alone, Hippogriff 1 or a co-treatment of 
vincristine and Hippogriff 1. Spheroid volume following treatment is expressed as a percentage of the estimated 
spheroid volume for the same spheroid calculated from images taken immediately prior to application of treatment 
which was then normalised to 100%. This is represented by the dotted line. Data presented is from n=3 plate repeats 
with 6 internal replicates per treatment, per plate. Data shown are mean ± SEM. Error bars for vincristine and 
vincristine + Hippogriff 1 co-treatments are no visible as they are smaller than the symbol. Two Way ANOVA with 
Tukey’s multiple comparisons: Vinc v DMSO **** p = <0.0001, V+ HG1 (0.1-3µM) = Ns, DMSO v HG1 (0.1-3µM) = Ns 
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6.4: Discussion 

Whilst there remains a deficit in effective treatments for CIPN there has been a 

myriad of investigations into potential therapeutic agents with which to combat its 

damaging effects. However, many of these potential treatments are often 

concomitant with severe side effects themselves or lack efficacy when applied to 

CIPN caused by a range of antineoplastic agents. (Gadgil et al, 2019) Much of this 

can be attributed to the lack of clear understanding of CIPN aetiology and how 

different mechanisms of the condition may be triggered by the differential properties 

of a variety of antineoplastic agents. It also reflects upon the various pre-clinical 

models used to assess adverse effects of CIPN treatments, many of which rely on 

monolayer cultures or relatively outdated techniques (Argyriou et al., 2014). For 

example, erythropoietin (EPO) was found to moderately restore nerve conduction 

velocity and provide protection to IENFs in rodent models of taxane and platinum 

based chemotherapy in addition to reducing the severity of anaemia of both ovarian 

and oesophageal cancer patients in clinical trials (Beijers, Jongen and Vreugdenhil, 

2012). However, there is substantial evidence that EPO supports anti-apoptotic 

behaviour and even supports tumour growth, leading to concern among clinicians as 

to its efficacy as a counter-CIPN agent (Wolf et al., 2008).  

 

In order to avoid this conflict, it is essential to identify as many possible 

contraindications as possible at the pre-clinical stage and utilising the most effective 

and contemporary models to do so. Utilising a 3D medulloblastoma spheroid model 

with which to assess the effects of novel splicing kinase inhibitors in relation to both 

the cancer cells themselves and in relation to the efficacy of the vincristine treatment 

meets this criteria on multiple levels. Additionally, the flexibility of the model results in 
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a relatively high-throughput assay for testing multiple potential treatments on one 

plate both in the presence and absence of an anti-neoplastic agent. The latter aspect 

of this model allows for assessment of the ability of the kinase inhibitors to reduce 

the volumetric growth of cancerous spheroid although this effect was not 

demonstrated in the context of medulloblastoma, there is now considerable data 

within the literature to suggest these effects may be present in other cancer cell 

types particularly those which have been shown to engage in elevated alternative 

splicing pathways such as prostate cancer. 

  

6.4.1: SRPK1 Inhibition does not reduce medulloblastoma spheroid 

growth independently, but does not inhibit the efficacy of 

vincristine  

Using the ONS76 cell spheroid model, I have successfully demonstrated that co-

treatments of SPHINX31 and vincristine were able to inhibit the volumetric growth of 

spheroids whilst independent SPHINX31 treatment did not recapitulate these effects. 

However, the observed volumetric cell growth was not elevated above vehicle 

indicating that SRPK1 inhibition in the context of medulloblastoma does not result in 

elevated neoplastic activity in a manner similar to the aforementioned recombinant 

EPO. As a result, based on this pre-clinical data I have shown that SPHINX31 and 

SRPK1 inhibition as a principle has potential to be an adjunct therapy to vincristine in 

the treatment of medulloblastoma, reducing the adverse effects of chemotherapy 

whilst not reducing the efficacy of vincristine as an anti-cancer agent.  Although the 

data presented exhibit a negligible effect of SRPK1 inhibition on reducing spheroid 

growth, the principle should not be discounted out of hand that kinase inhibition as a 

potential anti-cancer strategy could be used as a treatment independent of traditional 
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chemotherapy. It is also likely that the efficacy of SRPK1 as a novel therapeutic 

strategy may be greatly influenced by the context of the specific tumour type the 

inhibitors are used within.  

 

SRPK1 and its influence on alternative splicing have been observed in multiple 

tumour types and identified as a viable therapeutic target in many pre-clinical 

studies. Activation of the SRPK1-SRSF1 pathway has been shown in keratinocytes 

in a pre-clinical model of Human Papillomavirus (HPV) infection. HPV infects 

epithelial cells and predominantly causes the development of benign warts, however 

subsets of the virus are responsible for the majority of worldwide cervical cancers. 

Within infected cells, SRPK1-SRSF1 activity was found to influence the regulation of 

viral gene expression facilitating viral replication and possible progression to tumour 

phenotypes. Knockdown and therapeutic inhibition of SRPK1 via another novel 

splicing kinase inhibitor SRPIN340, was found to reduce SRSF1 levels within the 

keratinocyte nucleus in spite of putative upregulation of SRPK1 due to HPV infection 

(Mole et al., 2020). Furthermore in studies of gastric cancer (GC), SRPK1 was found 

via immunohistochemistry to be upregulated in the majority of paired tissue samples 

from GC patients. Further investigation into the role of SRPK1 in GC cell lines 

revealed universally high SRPK1 expression which when knocked down using 

siRNA significantly reduced colony formation and in vivo xenograft tumour size. 

However there is a lack of comparative literature on SRPK1 demonstrating similar 

effects within the context of SHH medulloblastoma, to my knowledge, this is the first 

time that SPHINX31 or even SRPK1 inhibition has been used on SHH group 

medulloblastoma cells either as a co-treatment or as an independent treatment. The 

above experiments therefore are one among a paucity of studies investigating the 
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potential role of SRPK1 in brain tumours. The reasons for this could at least in part 

be due to the myriad attractive targets suggested as major mediators of 

medulloblastoma taking preference.  

 

Despite the lack of studies centred on SRPK1 within medulloblastoma, SPHINX31 

itself has already been used in pre-clinical studies as a putative cancer treatment. 

For instance a study into acute myeloid leukaemia (AML) demonstrated that 

SPHINX31 had the capability to reduce cancer cell proliferation in a number of 

different leukaemia cell lines (Tzelepis et al, 2018). This was supported by the fact 

that SPHINX31 treatment and subsequent SRPK1 inhibition led to alternative 

splicing in a number of genes responsible for the maintenance and further 

development of AML. This includes one of the most influential moderators of AML, 

BRD4. Prominently, SPHINX31 was also found to work synergistically with clinical 

trial stage AML bromodomain inhibitors with minimal toxicity in vivo, further 

corroborating the potential of SPHINX31 as an adjunct treatment as outlined by the 

data above. Another cancer that has highlighted the potential of SPHINX31 as a 

standalone treatment is prostate cancer. SRPK1 governed VEGF-A165a expression 

is elevated in prostate cancer and has been implicated both in late stage disease 

and metastasis. However, using 2 novel inhibitors of SRPK1, the aforementioned 

SRPIN340 and SPHINX31 a recent study demonstrated that prophylactic treatment 

of PC3 cells with SRPIN340 and SPHINX31 significantly reduced EGF induced 

SRSF1 phosphorylation in vitro. (Oltean et al., 2012)  Additionally, administration of 

SPHINX31 to mice with PC3 tumour xenografts was found to significantly reduce 

tumour growth as a therapeutic agents, rather than prophylaxis. Both of these 

studies indicate that when applied to cancer with clear SRPK1 related pathogenesis, 
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SPHINX31 and SRPK1 inhibition as a whole has clear pre-clinical benefit in a variety 

of in vitro and in vivo models. 

 

Whilst data from these studies is promising, the data I have displayed regarding the 

use of SPHINX31 as a potential anti-medulloblastoma treatment itself does not 

replicate these findings. Though as mentioned previously, this is likely not surprising 

due to the lack of clarity regarding the role of SRPK1 in the development of brain 

tumours. Indeed the fact that the specific nature of angiogenesis and tumour 

microvasculature within medulloblastoma sub-types is relatively poorly understood 

compared to other tumours, even though many studies have clearly demonstrated 

there is reasonably high VEGF expression in medulloblastoma tissues. Additionally, 

comparative to other tumours, the links between prognosis of medulloblastoma 

cases and levels of angiogenesis have proved difficult to establish. However, recent 

studies have linked increased vascularity of group 3 medulloblastoma tumours in 

xenograft rodent models to decreased survival. (Thompson et al, 2017) This is 

logical, as group 3 tumours have a much higher metastasis rate than other sub-types 

but this does not elucidate on the nature and aetiology of aberrant angiogenesis in 

sub-types with lower metastasis association such as SHH and cell lines derived from 

these tumours, such as ONS-76 cells. (Grizzi, Weber and Di Ieva, 2008) 

Furthermore, anti-VEGF therapies such as bevacizumab have proved to have limited 

efficacy in treating brain tumours in addition to causing a range of side effects due to 

the abolition of VEGF mediated cytoprotection and possibly neuroprotection. (Guyot 

et al., 2016) A study of angiogenesis related growth factors in medulloblastoma 

revealed the diversity of genes and angiogenic mediators potentially involved in 

increased tumour vascularity including VEGF-A, VEGF-B, VEGF-C, ANG proteins, 
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TGF and FGF. (Menyhárt, Giangaspero and Gyorffy, 2019) Thus it is prudent to 

suggest targeting just one of these families, VEGF-A via SRPK1 in the case of 

SPHINX31 without in-depth knowledge of the key mediators of medulloblastoma 

growth comparative to AML and prostate cancer may not be sufficient to disrupt the 

growth of medulloblastoma cells. This hypothesis could in turn possibly explain the 

lack of impact that SPHINX31 had as an independent treatment on ONS-76 

spheroids, particularly as ONS-76 cell characterisation has focused primarily on cell 

surface proteins, and in vivo tumorigenic capacity rather than in-depth analyses of 

splicing processes related to angiogenesis resulting in the role of splicing inhibition 

within this context being obscured (Bonfim-Silva et al., 2019).  

 

Another possible factor behind the insensitivity of ONS-76 cells to SRPK1 inhibition 

via SPHINX31 treatment could be related to the concentration range used within the 

assay. SPHINX31 in these experiments was used at concentrations where it was 

effective in other assays involving neurons, conferring neuroprotection and reducing 

vincristine induced sensitisation as presented in Chapter 4 and Chapter 5. These 

concentrations may therefore not be appropriate in an assay on a different cell type 

and measuring a different output. There are also examples in the literature of 

SPHINX31 IC50 being subject to cell type heterogeneity. For example the 

aforementioned Tzelepis et al. observed large variations in recorded IC50s for 

reducing proliferation across a range of different leukaemia cell lines, with the most 

vulnerable lines having an IC50 that was approximately 70 fold lower than the most 

resistant cell line. Therefore it is reasonable to hypothesise that the fairly narrow 

range of concentrations used in the spheroid assays, chosen to match neuronal 

assays may not cover the range required to induce effects on ONS-76 spheroids that 
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would reduce volumetric growth (Tzelepis et al, 2018). Further to this, SRPK1 

inhibition influences several components of oncogenesis that are removed from 

promotion of aberrant angiogenesis. Inhibition of SPRK1 via SPHINX31 in 

endometrial carcinoma cell lines (EC) and the subset endometrial neoplasm, uterine 

serous cancer (USC) was found to alter the expression of ~2200 genes including 

significant downregulation of the prominent oncogenic target MYC (c-MYC) which is 

highly associated with aggressive ECs and poor prognosis. The role of MYC in 

medulloblastoma is varied, with Group 3 subsets the most aggressive and readily 

metastatic tumours demonstrating significantly higher MYC amplification than their 

SHH counterparts, which are canonically less aggressive and usually present without 

metastasis. ONS-76 cells, which therefore pertain to the latter subset would be 

unlikely to be sensitive to any SRPK1 inhibition relating to MYC downregulation that 

would culminate in apoptosis, due to the already low amplification of the oncogene 

within this tumour types which may partially explain the absence of effect on 

spheroids. Effects on MYC could bolster the rationale behind using SPHINX31 

against prostate cancer, as in addition to their established vascularity, prostate 

tumours are found to have elevated MYC expression in both early and 

developmental stages of the cancer.  

 

Despite these factors limiting SPHINX31 as an independent treatment for SHH 

medulloblastoma, the clear impact of SPHINX31 as part of a co-treatment with 

vincristine is highly encouraging. No disruption to the activity of vincristine is 

observable as a result of SPHINX31 treatment, when this is taken into consideration 

with the neuroprotection and reduction in sensitisation conferred by provided by 
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SPHINX31 treatments demonstrated in Chapter 4 and Chapter 5, it suggests viability 

of SPHINX31 as an adjunct agent to vincristine.  

 

 

 

6.4.2 CLK/DYRK1 Inhibition does not reduce medulloblastoma 

spheroid growth independently, but does not inhibit the efficacy of 

vincristine 

 

In a similar fashion to SPHINX31, I have shown the specific CLK inhibitor Griffin 6 to 

be successful in reducing spheroid growth as part of a co-treatment with a traditional 

chemotherapy agent. Co-treatment with Griffin 6 and vincristine recapitulated the 

inhibited growth demonstrated by vincristine treatment alone at all Griffin 6 

concentrations. This again serves as preliminary confirmation that Griffin 6 is a viable 

treatment option for use in patients suffering with CIPN, without compromising the 

efficacy of their chemotherapy regimen. As an independent treatment, Griffin 6 did 

not induce spheroid growth above that of vehicle providing further evidence of the 

relative safety of the compound compared to other suggested CIPN treatments. The 

lack of efficacy of Griffin 6 in reducing spheroid growth within this model is of note, 

as CLK inhibiting drugs have been effective in many recent studies with some 

reaching clinical trials (Xu et al., 2016). However, we believe these data represent 

the first use of a specific CLK inhibitor as a treatment of SHH medulloblastoma cells. 

As such, although the results shown did not display the viability of Griffin 6 or CLK 

inhibition as an independent therapy the exact nature as to why this might be the 
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case may yet be revealed in further studies which reveal the extent to which CLKs 

activity has an influence in the development, maintenance and progression of 

various cancer types.  

 

The importance of CLK activity and potential as a therapeutic target for cancer has 

recently been investigated in detail by several studies. As previously mentioned, CLK 

interactions with SRPK1 and SRSF1 within nuclear speckles are crucial in dictating 

the process of alternative splicing in both healthy and pathological functions. (Aubol 

et al., 2018)  Recently, a study identified CLKs as major mediators of tumour 

resistance to therapy, due to their increased expression in hypoxia (Bowler et al., 

2018). This effect was identified in prostate, colon and breast cancer cells. 

Additionally, as a result of this elevated expression, the alternative splicing of 12 

genes related to tumour suppression, management of cytoskeleton and cell motility 

were found to be altered by more than 25% suggesting that CLK may play a major 

role in how cancer cells adapt to varying conditions. (Araki et al, 2015) Furthermore, 

CLK inhibition using novel splicing inhibitors other than Griffin 6 has been carried out 

on Non-Small Cell Lung Carcinoma (NSCLC) A549 cells, a colorectal cancer cells 

line, HCT116 and a breast cancer cell line, MDA-MB-468. CLK inhibition using 3 

novel compounds specific for CLKs was found to significantly reduce the 

phosphorylation of SR proteins and increased nuclear speckle size within breast 

cancer cells. (Tam et al., 2020). CLK inhibition was also found to significantly alter 

the splicing of the S6K kinase, heavily linked canonically to protein synthesis and cell 

proliferation and observable in a number of breast cancer cell lines. CLK inhibition 

following use of the 3 novel compounds described in the paper was found to reduce 

proliferation of the breast cancer cell line (Iwai et al., 2018).  The authors further 
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confirmed the role of CLK in modulating the splicing of S6K and a novel interaction 

between CLK inhibition and potential sensitivity of MYC driven cancers to CLK 

inhibition, a process that has been suggested often in literature as a therapeutic 

avenue, due to the fact MYC itself is difficult to target and proposed interventions in 

MYC based cancers have been hypothesised as having to target the downstream 

effects of MYC at the mRNA level.   

 

Interestingly, though SHH medulloblastoma expression of n-myc and myc-l is 

considerably higher than that of other sub-groups and elevated expression of these 

two genes is heavily associated with poorer prognosis, expression of canonical c-

Myc as mentioned previously is lower in SHH tumours. Curiously, despite the 

prevalence of n-myc expression in SHH tumours, a study of ONS-76 cells also 

revealed there was an absence of n-myc expression in cell line representing a failure 

of the cell line to mirror a common aberration present in situ. (Roussel and Robinson, 

2013). It is therefore logical to suggest that Griffin 6 mediated inhibition of CLK, itself 

a key component of the splicing process within the cell would have limited anti-

cancer properties in a cell line derived from a low metastasis risk sub-group in the 

form of SHH signalling and with low expression of MYC (Chaturvedi et al., 2019), 

(Veo et al., 2019). In both the case of SPHINX31 and Griffin 6 it is possible both 

compounds could have a more profound effect on the Group 3 medulloblastoma 

subset, which demonstrates considerable MYC overexpression.  

 

To conclude, though not necessarily observed in these experiments, CLK inhibition 

represents and increasingly intriguing area of investigation in cancer research. Here 

we have demonstrated that Griffin 6, a CLK specific kinase inhibitor can potentially 
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be used safely as a therapeutic for CIPN in a co-treatment with a traditional 

chemotherapy agent, vincristine and neither encourages growth of the spheroid nor 

compromises the effectiveness of vincristine as a chemotherapy agent. Further 

enhancing the potential of Griffin 6 as an agent to challenge the growing burden of 

CIPN. 

  

In alignment with the two previously described compounds, treatment of ONS76 cell 

spheroids with Hippogriff 1 as a co-treatment with vincristine did not reduce the 

efficacy of the chemotherapy agent in disrupting the spheroid. Neither did the 

compound reduce or increase spheroid growth as an individual treatment. As such, it 

can be said that Hippogriff 1 appears to be suitable for use as an anti-CIPN adjunct 

therapy alongside traditional chemotherapy agents based on the in vitro evidence 

provided. However, as opposed to the other two compounds examined, Hippogriff 1 

is unique in that it is an inhibitor of more than one family of splicing kinases, the CLK 

family as previously discussed and the DRYK1a kinase. Comparatively to the other 

kinases mentioned, the role of DYRK1 in cancer and indeed, regular biological 

functions is much more poorly understood with the majority of studies assessing the 

role of the kinase in neurodegenerative conditions such as Alzheimer’s and the 

development of Down Syndrome due to the locus of the DYRK1A gene falling within 

the Down Syndrome (DS) critical region and the onset of the condition following over 

expression of the kinase. (Fernández-Martínez, Zahonero and Sánchez-Gómez, 

2015) However, DS patients have been found to have a higher prevalence of specific 

leukaemia cancer subsets such as acute lymphoblastic leukaemia (ALL), sparking 

speculation that DYRK1A may be a valid therapeutic target for cancer therapy. This 

was demonstrated within more recent studies which have found strong evidence 
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linking DYRK1A to a controlling role in the cell cycle and overexpression of DYRK1 

has been identified in a number of tumours (Li et al., 2019). The prevalence of 

DRYK1A has been identified as both a tumour suppressor and as a pro-oncogenic 

mediator in differential brain tumours and thus it is perhaps surprising that no such 

effects were observed when Hippogriff 1 was applied to a medulloblastoma cell line. 

For instance, effects of DRYK1A activity have been observed in the Sonic Hedgehog 

signalling pathway, where the kinase was responsible for retention of GLI1 within the 

nucleus, GLI1 is a major mediator of the SHH pathway and retention of GLI1 within 

the nucleus predisposes tumours to proliferation and metastatic activity. However, 

the exact mechanism by which DYRK1A achieves this and indeed the effects 

DYRK1 inhibition are yet to be fully elucidated (Jarhad et al., 2018). 

 

DYRK1A has also been found to be active in the caspase-9 apoptotic pathway in 

which it is responsible for the direct phosphorylation of the threonine 125, a site of 

caspase-9 inhibition and thus is capable of driving anti-apoptotic behaviour within 

cells. (Seifert, Allan and Clarke, 2008) Inhibition of the DYRK1A kinase by the β-

carboline harmine was found to not only eliminate the phosphorylation of the 

threonine 125 site within HeLa cells but also prevent maturation of the DYRK1A 

kinase via reducing autophosphorylation essential for enzyme activity, demonstrating 

a dual efficacy of Harmine as an inhibitor.  These effects were later replicated in 

further studies into harmine induced DYRK1 inhibition in the context of non-small cell 

lung carcinoma cell lines, which found harmine not only limited proliferation of cancer 

cells, but also potentiated the anti-cancer effects of the EGF tyrosine kinase inhibitor 

(EGF-TKI) AZD9291 in reducing cell growth (Li et al., 2019). It is interesting a similar 

effect was not observed within the ONS76 spheroids following Hippogriff 1 treatment, 



   

 

259 

 

though it should be noted the assays carried out in the confirmation of harmine 

activity on DYRK1 were done by traditional 2d monolayer assays such as propidium 

iodide staining and colony formation assays and as such they are subject to any and 

all of the limitations intrinsic to 2d assays that have been previously described. 

Elucidating the reason behind the absence of similar directly anti-cancer or indeed 

therapy potentiating responses of Hippogriff 1 within the spheroid model could 

potentially consist of a number of experiments at both the molecular and protein level 

to verify the DYRK1A phosphorylation state of threonine 125 following treatment with 

Hippogriff 1 which could mirror the concentration-dependent effect observed on the 

impact of a range of harmine concentrations. It would also be of immense value to 

assess the effects of Hippogriff 1 on DYRK1 related proteins such as the 

aforementioned GLI1 in SHH related tumours. However, as the main aim of this 

model was to assess the safety of Hippogriff 1 as a potential adjunct therapy and not 

primarily as an anti-cancer agent of itself these experiments serve as potentially 

important considerations for the development of Hippogriff 1 as a multifactorial 

therapeutic rather than of primary interest as a neuroprotective agent.  

 

6.4.3: Concluding Statement 

Application of vincristine to ONS-76 cells significantly disrupted the volumetric 

growth of the spheroid over a 72 hour period. This reduction in volumetric growth 

was not stymied or prevented when vincristine was applied in a co-treatment with 

either SPHINX31, Griffin 6 or Hippogriff 1 at concentrations that were found to be 

effective at reducing neuronal sensitisation and protecting neurite outgrowth. This 

therefore provisionally strengthens the possibility of using the compounds as adjunct 

treatments to limit the adverse effects of vincristine whilst maintaining an adequate 
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level of growth reducing activity against cancerous cells. No novel splicing inhibitor 

compound effectively reduced ONS-76 volumetric cell growth, though it is likely this 

was due to a combination of ONS-76 cells being insensitive to kinase inhibition and 

the compound concentrations used not being in an effective range. Nonetheless, the 

fact that the kinase inhibitors as independent treatments did not enhance spheroid 

growth above vehicle is also encouraging and further suggests that the compounds 

will be safe to use in cancer patients either as adjunct treatments to reverse negative 

effects or as independent treatments against more sensitive tumour types.  
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7: Synthesis 
 
Chemotherapy induced peripheral neuropathy is a growing healthcare burden that is 

exacerbated by a scarcity of adequate treatments to prevent or ameliorate 

neuropathic symptoms including pain, numbness and co-ordination deficits (Flatters, 

Dougherty and Colvin, 2017). This is largely due to the fact most existing analgesics 

do not alleviate symptoms, cannot prevent progressive damage from chemotherapy 

and that some of the most effective chemotherapy agents such as vinca alkaloids 

and taxanes are among the most neurotoxic agents in modern clinical use 

(Vencappa, Donaldson and Hulse, 2015; Luo et al., 2019). Therefore, there is an 

urgent need to develop novel therapeutics that harness innovative approaches to 

chemotherapy induced pain which affects a majority of patients and in the case of 

some drugs, nearly all patients.   

 

One such innovative approach is modulation and inhibition of alternative splicing 

kinases, which are already being investigated in multiple contexts including oncology 

and ophthalmology (Oltean et al., 2012; Mavrou et al., 2015; Donaldson and 

Beazley-Long, 2016). In this thesis I have detailed the design and optimisation of two 

in vitro models with which to assess the potential benefits of novel splicing kinase 

inhibition in the context of CIPN. Broadly, use of the vincristine sensitisation assay 

and vincristine induced neurite dieback model has demonstrated that there is a 

potential role for these novel splicing kinase inhibitors in the amelioration of the CIPN 

related sequalae. All compounds used displayed the capacity to significantly reduce 
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acutely induced neuronal sensitisation (Section 4.3), though this conclusion 

potentially oversimplifies some subtle but important differences observed between 

the compounds and the kinases they inhibit. Firstly, Hippogriff 1 and Griffin 6 are 

both inhibitors of CLK1 and CLK2. Whilst Griffin 6 is CLK specific, Hippogriff 1 

additionally inhibits DYRK1A, despite this there was a remarkable similarity between 

the two compounds and the response patterns observed (Sections 4.3.3.3 & 4.3.3.4) 

which suggests a lack of DYRK1A involvement in relation to vincristine induced 

neuronal sensitisation. This is further supported by evidence that Hippogriff 1 

actually induces neurite dieback when applied to neurons as an independent 

treatment, (Section 5.3.5) the only compound to do so within the dieback model. This 

suggests that inhibition of the DYRK1A kinase is not appropriate in the treatment of 

CIPN as it appears to have at best no effect on sensitisation and induces neuronal 

damage and would likely exacerbate neuropathic symptoms. This is particularly 

interesting given a recent study found a potential anti-nociceptive and anti-

inflammatory role for dual CLK/DYRK1A inhibition in a model of osteoarthritis 

((Deshmukh et al., 2019), this however highlights the need for condition specific 

approaches rather than broad spectrum analgesia across different nociceptive 

conditions which have largely failed up until this point. This study was also notable  

as DYRK1A was found to be largely acting on cartilage and inflammation within the 

arthritis model, rather than neurons themselves. 

 

Inhibition of SRPK1 by SPHINX31 was successful in ameliorating neuronal 

sensitisation (4.3.3.1)  and neurite dieback (Section 5.3.3). In the case of the former 

this corroborates previous work with the compound which demonstrated similar 

effects in prevention of neuronal activation via capsaicin (Blackley, 2019). In 
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previous studies, the inhibitory effects of SPHINX31 on neuronal activation were 

shown to be VEGF-A165b specific. It is reasonable to hypothesise this may also be a 

key factor in SPHINX31’s ameliorating effect on vincristine induced sensitisation, 

though other factors such MNK2 and MYC could be also be important players in this 

function (Section 4.4.3.1). Dual inhibition of CLK1, CLK2 and SRPK1 with Griffin 23 

(Section 4.3.3.2) also significantly reduced vincristine induced sensitisation, though 

in a different pattern to that of SPHINX31. The differences in the effects of Griffin 23, 

Griffin 6 and SPHINX31 potentially suggests that dual inhibition by Griffin 23 of both 

CLK and SRPK1 kinases at higher concentrations than 10µM could to reduce 

sensitisation further due to the combined inhibition of both kinases families which 

does not occur in Griffin 6 or SPHINX31 treatment. Whilst I was unable to test the 

effects of Griffin 23 in the dieback model, given that inhibition of SRPK1 with 

SPHINX31 and inhibition of CLK1/CLK2 with Griffin 6 did not induce neurite dieback 

as independent treatments, I hypothesise that combining this inhibition of these 

kinases with Griffin 23 would also not result in deleterious effects on neurites 

independently. I would also hypothesise that Griffin 23 treatment would ameliorate 

vincristine neurite dieback. Immediate future work would focus upon investigation of 

these hypotheses. Subsequent work would aim to elucidate the mechanisms behind 

the effects of CLK1/CLK2 and SRPK1 inhibition and the amelioration of vincristine 

induced neurite dieback. I discussed the possibility of putative roles for VEGF-A, 

S6K signalling, mTOR and the PI3K pathway (Section 5.4.3) in contributing towards 

this inhibitory effect on vincristine-induced neurite dieback, but further investigations 

involving RNA Seq and analyses of downstream targets of these pathways would 

help to uncover the specific mechanisms of alternative splicing kinase inhibition 

beyond the initial upstream targets of SRPK1 and CLK1/2.  
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Preliminary examination of Griffin 6, SPHINX31 and Hippogriff 1 in a cancer cell 

spheroid growth model revealed the compounds did not induce spheroid growth as 

independent treatments nor inhibit the ability of vincristine to halt and reduce 

spheroid growth. This demonstrates at an early stage the compounds are not likely 

to exacerbate tumour growth if given as an adjunct to chemotherapy. It was 

interesting that no compound demonstrated efficacy in reducing tumour growth 

independently, particularly as SRPK1 inhibition and CLK inhibition have been 

suggested as a potential oncology targets and demonstrated as effective in the 

context of prostate cancer and leukaemia (Mavrou et al., 2015; Tzelepis et al., 2018). 

However, it is important to consider both the concentrations used within the assay 

and the ONS76 medulloblastoma cell line used. It is reasonable to suggest the 

compounds may have anti-proliferative effects at higher concentrations, but such 

investigations were beyond the scope of this thesis. With regard to the ONS-76 cells 

used, this cell line has low MYC amplification, which has been suggested as an 

important target for approaches to cancer involving alternative splicing. Most 

importantly however, the compounds appear to have suitable properties for usage on 

a first pass experiment.  

 

Another aspect of the work presented was to determine whether it is viable to screen 

novel chemotherapy agents for the potential to cause CIPN at an early stage of their 

development. For this, I used a novel chemotherapy agent currently in development, 

jerantinine. Though jerantinine shares many aspects of traditional vincristine 

chemotherapy, such as microtubule inhibition in previous studies it has been shown 

to be less damaging to non-cancerous neural stem cells in culture(Roper et al., 
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2018; Smedley et al., 2018). Assessment of the capacity of jerantinine to induce 

neuronal sensitisation (Section 4.3.2) and neurite dieback (Section 5.3.6) showed 

that the novel compound had reduced effects on neurons with the two assays. These 

effects could be mediated by the differential microtubule binding site occupied by the 

respective compounds. Whilst these data look encouraging it is important to consider 

jerantinine is in an extremely early stage of development at the pre-clinical stage. 

Therefore, the concentrations of jerantinine used in these assays may be too low or 

not therapeutically relevant and thus the assays must be repeated at higher 

concentrations to further examine the off-target neuronal effects of the compound. 

Further development of jerantinine is also severely hindered by its difficult synthesis 

process, which makes producing large volumes of the compound difficult. Therefore, 

whilst the data presented here is of relevance, the main benefit of the investigations 

is that I have demonstrated that preliminary comparisons can be drawn between 

novel and existing chemotherapy drugs in two relatively straightforward assays. This 

does not routinely occur in drug development but given the growing prevalence of 

CIPN in cancer survivors may become increasingly explored. Models such as those 

described provide important information for these studies at the earliest stages of 

development which may expedite treatments and reduce unexpected off-target 

neuronal symptoms.  

 

To conclude, inhibition of alternative splicing kinases ameliorates vincristine induced 

sensitisation and neuronal damage. The compounds and the kinases they inhibit 

warrant future investigations into potential mechanisms underpinning these 

neuroprotective and anti-nociceptive effects. Translation of these models from in 

vitro assays to in vivo studies could additionally bolster these investigations.  
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7.1 Proposed future work: 

Future work and directions for the findings outlined in this thesis include the 

development of an in vivo model of vincristine induced peripheral neuropathy and 

use of this model to examine the systemic effects of the novel splicing kinase 

inhibitors. This would also facilitate corroboration of the in vitro findings described in 

Chapter 4 and Chapter 5 in a translational model. Furthermore, use of RNA 

sequencing techniques on harvested tissue would help to elucidate the downstream 

targets of splicing kinase inhibition. This is turn would uncover mechanisms of 

sensitisation and neurite dieback that are ameliorated with adjunct therapy and in 

turn establish a list of genetic targets which are associated with CIPN sequelae. It 

would also be preferable in the future for the established vincristine models 

described to be adapted to investigate the effects of the inhibitors on other classes of 

chemotherapy such as taxanes and platinum based compounds whilst again 

adopting RNA sequencing approaches to uncover commonly or differentially 

implicated genes in the onset and progression of CIPN. Ultimately, the end result of 

pursuing these future directions would be to potentially create a firm pre-clinical 

basis and justification with which to trial the novel compounds in human patients for 

eventual use in the clinic to provide a potential tool with which to ameliorate the 

damaging and painful effects of CIPN.  
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