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Abstract: Separation and detection are ubiquitous in our daily life and they are two of the most
important steps toward practical biomedical diagnostics and industrial applications. A deep un-
derstanding of working principles and examples of separation and detection enables a plethora of
applications from blood test and air/water quality monitoring to food safety and biosecurity; none of
which are irrelevant to public health. Microfluidics can separate and detect various particles/aerosols
as well as cells/viruses in a cost-effective and easy-to-operate manner. There are a number of papers
reviewing microfluidic separation and detection, but to the best of our knowledge, the two topics
are normally reviewed separately. In fact, these two themes are closely related with each other
from the perspectives of public health: understanding separation or sorting technique will lead to
the development of new detection methods, thereby providing new paths to guide the separation
routes. Therefore, the purpose of this review paper is two-fold: reporting the latest developments in
the application of microfluidics for separation and outlining the emerging research in microfluidic
detection. The dominating microfluidics-based passive separation methods and detection methods
are discussed, along with the future perspectives and challenges being discussed. Our work inspires
novel development of separation and detection methods for the benefits of public health.

Keywords: microfluidic system; lab-on-a-chip; separation; detection; public health

1. Introduction

Public health is closely related to human wellbeing at diverse levels from our neighbor
community to the national or even global security, covering the prevention, control, and
treatment of major diseases, especially infectious diseases and noncommunicable chronic
diseases, as well as supervision and control of food, drug, and public environmental
sanitation. The infectious diseases include avian influenza, influenza, mad cow disease, an
acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS),
and dengue fever, while noncommunicable chronic diseases include cancer, diabetes, and
hypertension. When an infectious disease affects a large geographical area, it may cause
death, destroy cities, politics, countries, disintegrate civilization, and even annihilate ethnic
groups and species [1–4]. For example, the influenza pandemic claimed a high death
toll in 1918, and SARS transmitted from bat broke out in 2002, affecting public health
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seriously [5,6]. Recently, SARS-CoV-2 virus has caused the unprecedented COVID-19
pandemic to occur and spread rapidly all over the world since December 2019 [7]. Up to
25 February 2021, there have been 111,999,954 confirmed cases and 2,486,679 confirmed
death of COVID-19 around the world, posing a great threat to human health [8]. All
these infectious diseases severely impact the development of the local economy and social
stability. Infectious diseases can spread through air transmission, water transmission, food
transmission, contact transmission, soil transmission, vertical transmission, body fluid
transmission, and fecal oral transmission. Each infectious disease is caused by its specific
pathogen, including viruses, bacteria, fungi, or parasites [9–12]. Based on the necessary
conditions for infectious diseases such as the infection source, transmission route, and
susceptible populations, three strategies can be deployed to manage infectious diseases
via controlling the source of infection, cutting off the transmission routes, and isolating
the susceptible populations, respectively. From the perspective of patients, the key lies
in early detection, early diagnosis, early report, and early isolation. There are two main
diagnostic targets for infectious diseases: pathogens or a specific antigen, antibody, or
nucleic acid of an infectious pathogen [13–16]. Some of the techniques are time-consuming,
labor-intensive, expensive, and unable to be carried out on-site detection because the use of
bulky instruments is inevitable, which thereby hinders their applications and makes them
insufficient to achieve rapid, accurate, and on-site diagnosis during a pandemic, especially
in the most common and serious resource-poor areas [17,18].

In addition to infectious diseases, noncommunicable chronic diseases are also an im-
portant threat to human health, such as cardiovascular and cerebrovascular diseases, cancer,
chronic respiratory diseases, and diabetes, which are mainly caused by unhealthy lifestyle
and living environment. These kinds of diseases have a high incidence rate, disability rate,
mortality rate, and medical expense, which can be thawed by early diagnosis and treat-
ment. The common diagnostic methods in clinic for noncommunicable chronic diseases
are tissue biopsy and liquid biopsy [19]. However, tissue biopsy is limited by sampling
bias, sampling difficulty for deep tissue, and harm to patients, while liquid biopsy presents
the challenges of a few samples, complex background, and gene typing polymorphism.

The health safety of food, drug, and public environmental sanitation has become a
global question, such as excessive content of metals and additives, pesticide residues, and
microbial contamination in food, water, gas, and soil. In the last few years, food safety
accidents have occurred repeatedly [20,21]. Improved food safety analysis and testing are
needed to control food contamination [22]. However, the traditional detection technology
based on instrumental analysis has the disadvantages of expensive instruments, long cycle,
large material consumption, complex operation, and low sensitivity, which cannot satisfy
the demand of on-site, real-time, fast, and portable detection of food [23–25]. Meanwhile,
with the increase in environment pollution, related detection, monitoring, and cleanup
technologies should be developed to detect and collect toxic wastes and pollutions [26,27].

In the past decade, microfluidic technology has developed rapidly and microfluidics
can lead to the combination of the sample pretreatment, separation, and detection processes
into a small chip to realize the miniaturized, automated, and multifunction integrated analy-
sis system, which find wide applications in molecular/cell biology, chemical/gene analysis,
medicine, food safety, environment sensing, and other fields, because of the advantages
such as less sample consumption, fast detection speed, facile operation, multifunctional
integration, small size, and portability [28–30]. Among the numerous applications, mi-
crofluidic sensors have been developed to detect toxic gases in industrial wastewater,
such as drinking water, heavy metals, and other waterborne pathogens. Microfluidic chip
technology can be further integrated with electrochemical techniques, optical techniques,
magnetic techniques, mass spectrometry, and other techniques to realize the separation
and detection of targeted samples [31–33].

There are several reviews that focus on the application of microfluidic technologies
in disease detection, food safety analysis, or environmental monitoring and detection.
Nevertheless, there are inadequate studies focusing on unveiling the connection of mi-
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crofluidics with public health, which has been arising as a global issue especially given
the present COVID-19 crisis sweeping across the world. For example, it is helpful for
determining infection risks to understand aerosol concentrations and persistence in public
spaces because they play an important role in coronavirus transmission. However, it is
difficult to measure the concentrations, which requires specialized equipment. The chal-
lenge may be tackled using microfluidics by taking advantaging of their high throughput
capability and high integration level. Thanks to the advances in microfluidic development
for cell separation and detection, point-of-care diagnostics are allowed, and monitoring of
individual health conditions at home is possible, which greatly eases the public healthcare
burden. The present study aims to give an overview of state-of-art microfluidic separation
and detection technologies from the perspectives of public health, and we focus on sep-
aration and detection because they are two of the most important steps toward practical
applications in disease detection, food safety analysis, and environmental monitoring
and detection. The reviewed topics are closely associated with public health based on
three aspects: (1) Prevention and early monitor of infectious diseases such as detection of
COVID-19 viruses necessitates the demand to apply the microfluidics-based separation
and detection methods; (2) Microfluidics also inspires novel routes to develop the vaccine
products to effectively treat the diseases which may result in big public health impacts;
and (3) The rapid growth of microfluidics-based separation and detection technologies also
leads to point-of-care diagnosis which enables people to monitor their health conditions
using portable devices at home, and this significantly mitigates the needs to seek medical
assistance at hospitals and therefore promotes the public health level. The review paper
is structured as follows: first, various microfluidic separation methods for public health
are summarized and discussed. Subsequently, microfluidic detection methods applied
to public health are systematically presented. Finally, the challenges and prospects of
microfluidic separation and detection technology are discussed.

2. Microfluidic Separation Methods

Microfluidics technology is an interdisciplinary subject with many applications in
various fields, such as biomedical, chemistry, disease diagnosis, and electronics indus-
try [34]. Microfluidic devices have key functions in biomedical research, such as sample
pretreatment, fluid processing, biosensing, separation and monitoring, and signal detec-
tion [35]. Among them, the microfluidic separation and classification of biological targets
is quite essential for biological analysis and clinical diagnosis [36], which can be achieved
with lab-on-a-chip (LOC), micrototal analytic systems (µTAS), and point-of-care (POC)
diagnostics [37]. Although the development of microfluidic technology is still in its early
stage, it has the potential to affect many fields from chemical synthesis and biological anal-
ysis to the disciplines of optics and information technology [38]. Microfluidic devices are
able to create dynamic environments where the gradient of physiological conditions (such
as pressure, temperature, and flow rate) can be kept constant, which have a low regent
consumption and realize the quantitative assessment of cell migration [39]. For instance,
the separation of cells to determine the content of biological molecules such as DNA, RNA,
proteins, and lipids is essential in cell biology research, as well as diagnostic and therapeu-
tic methods [40]. In the diagnosis of anemia, sorting and counting of red blood cells (RBCs)
is of great importance [41]; in the diagnosis and treatment of HIV disease, the separation
of CD4+ T cells from whole blood cells is essential [42]; and isolation of circulating tumor
cells (CTCs) from blood cells is important for early diagnosis of cancer [43]. Microfluidic
separation is also applied on the screening of cells, which is important in the detection
of cancer cells [44,45]. The microfluidic separation of cells is based on their differences
in physical properties [46]. When identifying CTCs, different cancer cells of epithelial
origin need to be separated [47]. Suresh et al. investigated connections between single-cell
mechanical properties and subcellular structural reorganization from biochemical factors
in the context of gastrointestinal tumor and malaria [48]. It was found that cancer cells have
larger sizes and higher deformability compared with healthy cells [49]. The deformability
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difference of normal red cells and red cells infected with malarial parasites can explain the
mechanism of the spleen to remove parasitized red cells from the circulation of hosts [50].
In the past few decades, various separation and sorting methods have been developed for
the separation of cells. Microfluidic separation and sorting has many advantages, including
decreasing sample volumes, speeding up sample processing, enhancing sensitivity and
spatial resolution, reducing device cost, increasing portability [51], reducing processing
cost [52], raising efficiency [53], and contributing to environmental compatibility [54].
The application of polymer materials in microfluidic devices fabrication provides simple,
cost-effective, and disposal advantages [55]. In order to avoid sample pollution by using
biochemical markers, microfluidic techniques for label-free differentiation and fractional
of cell population have been developed [40]. Droplets often act as microreactors for en-
capsulation. Since it can be important to ensure the droplets contain precise volume and
composition or to ensure uniformity of emulsions, the separation and sorting of droplets
should be taken in consideration, which can be realized by microfluidic approaches [56].

Microfluidics can be divided into two categories based on the scale: continuous mi-
crofluidics and digital microfluidics, [57–59]. Microparticle separation can be categorized as
active and passive methods based on their manipulating forces [60]. In passive techniques,
microfluidic devices do not use external forces for sorting or separation but rely purely
on microfluidic phenomena and the interaction of the fluid with the geometrics of the
microfluidic devices [61], while active sorting techniques involve an external field [62]. By
comparing the advantages and disadvantages of passive and active techniques, Sajeesh
and Kumar [36] concluded passive techniques are preferred in applications where energy
input is of critical concern, whereas active separation techniques are preferred where higher
particle sorting efficiency is required. The recent advances in separation and detection of
whole-blood components were reviewed by Doddabasavana et al. [63]. The performance of
microfluidic separation is evaluated according to the separation time, separation efficiency,
throughput rate, and clogging filtration. According to separation approaches, separation
techniques can be divided into passive and active methods [64]. The present paper focuses
solely on passive separation/sorting approaches because they are easier to implement
and thus can find more applications for public health, especially in developing countries
or regions where people have limited access to costly apparatuses to energize the active
separation approaches.

2.1. Pinched-Flow Fractionation (PFF)

The continuous sizing of particles in a microchannel is based on the characteristics
of the laminar flow profile [65], and complicated outer field control is eliminated, which
is usually required for other kinds of particle separation methods. Therefore, PFF can be
applied both for particle analysis and for the preparation of monodispersed particles where
energy input is of critical concern. The separation resolution in PFF is a function of the mi-
crochannel aspect ratio, particle size difference, and the microchannel sidewall roughness.

The work of Jain et al. [66] showed that particles with diameters on the order of the
sidewall roughness cannot be separated in PFF devices with symmetric channels due
to the same resistance in all outlet channels. Ma et al. [67] investigated the separation
performance of an as PFF device by employing an immersed boundary-lattice Boltzmann
method (IB-LBM), and the results showed that an adaptive regulating flux can be deter-
mined for each case to sort the cell mixture effectively. Yanai et al. [68] proposed a new
hydrodynamic mechanism of particle separation in asPFF microchannel networks based
on three-dimensional (3D) laminar flow profiles formed at intersections of lattice chan-
nels, and they confirmed that the depth of the main channel was critical for the particle
separation efficiencies.

Berendsen et al. [69] proposed a microfluidic chip (Figure 1) based on the tumbling
behavior of spermatozoa in pinched-flow fractionation which was used to separate sper-
matozoa from erythrocytes. Their study demonstrated a high extraction efficiency of 95%
spermatozoa from a sample containing 2.5% spermatozoa while removing around 90% of
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the erythrocytes. Maenaka et al. [70] examined the availability of PFF for monodisperse
droplets generated at the upstream T-junction via high-speed imaging. They reported a
microfluidic system for continuous and size-dependent separation of droplets utilizing
microscale hydrodynamics, which would be difficult for normal-scale schemes, such as
centrifugation or filtration. Morijiri et al. [71] developed a microfluidic system based on
the sedimentation effect of PFF, utilizing the inertial force of particle movement induced by
the momentum change in the curved microchannel and the centrifugal force exerted on the
flowing particles. In the study of Sai et al. [72], tunable pinched-flow fractionation (tunable
PFF) was proposed as a modification of PFF with the introduction of a microvalve, where the
effluent positions of the target particles can be controlled independently of the microchannel
structure, which succeeded in separation micron and submicron-size polymer particles. Vig
et al. [73] proposed a method for enhancing the separation of seven different polystyrene
bead diameters ranging from 0.25 µm to 2.5 µm in PFF devices by a serpentine structure in
the broadened segment, and the results demonstrated an amplification in the separation of
up to 70%. Among the current microfluidic separation approaches, PFF is a cost-effective
choice because of the simplicity of the device. However, there is a restriction for this method
when vortices occur after the pinched segment with high Reynolds number (Re >> 1).
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2.2. Inertia and Dean Flow

In fluid dynamics, secondary flow is a flow pattern, which is relatively weaker than
the primary flow. The secondary flow can be controlled by the fluidic forces and the shape,
size, and position of inserts [74]. In the study of macroscopic rigid spheres in Poiseuille flow
by Segre and Silberberg particles migrated away from the wall and then accumulated at an
equilibrium position of 0.6 from the axis around the tube radius due to lateral forces [75].
When a particle moves along a straight microchannel, two inertial lift forces are acting
on the particle: shear-gradient-induced lift force, and wall-effect induced lift force [76].
Deformable particles contained in biomedical suspensions are underlying deformability-
induced lift forces which lead to differences in dynamics [77]. The motion of a deformable
particle in shear flow was studied by Bayareh and Mortazavi [78–80] with neglecting the
gravity influence. Their results demonstrated that the equilibrium position of suspended
particles is affected by the wall effect, deformability and sizes of particles, Reynolds number,
density and viscosity ratio, etc. The nonlinear effects in finite-Reynolds-number flow were
investigated, including the tubular pinch effect in cylindrical pipes [75]. Liu et al. [81]
explored the focusing positions of different particle sizes in four focusing configurations for
the separation of plasma, red blood cells, and cancer cells from the blood. The wall-induced
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inertia is significant in the thin layers near the walls where the lift is close to that calculated
for linear shear flow, which increases dramatically with increasing Re above about 100 [82].
By analyzing the spatial distributions of spherical particles, Kim et al. [83] concluded the
lateral migration of particles are induced by the high shear rate due to the small-scale effect
and the particle equilibrium position as a function of Re. They observed the migration
of particles markedly occurs at a very low Reynolds number and the critical Re when in
the range of 20 to 30. Moreover, the inertial migration of spherical particles in a circular
Poiseuille flow was numerically investigated with a Re smaller than 2200 [84]. A conclusion
was drawn that the hydrodynamic interactions between the particles in different periodic
cells have significant effects on the migration of the particles. The lateral migrations of
viscous capsules [85], liquid drops, and vesicles [86] were also investigated.

Inertial microfluidics was applied in deformability-based cell classification and enrich-
ment to reduce the complexity and costs of clinical applications [87]. Dean flow is a kind of
secondary flow that can be generated by the fact that when a fluid flow in a curved pipe
with a small radius of curvature, the flow has helical streamlines [88]. Focusing of particles
suspended in solutions is largely independent of centrifugal forces, which suggests that
Dean drag is the dominant lateral force to balance the influence of lift forces [89]. Di Carlo
et al. [90] evaluated the migration attributed to lifting forces on particles in microfluidic
devices by fabricating straight and curved microchannels under laminar flow conditions,
when ordering is observed to be independent of particle buoyant direction. They devel-
oped a theoretical description of the underlying forces and a semiempirical relationship of
cutoff and the channel geometry [91]. Inertia and Dean flow fractionation were applied in
microfluidic separation and sorting of biochemical sample mixtures [40,75,92].

The concept of inertial microfluidics was used in continuous separation of a multipar-
ticle mixture in a simple spiral microchannel coupled with rotational Dean drag [93]. In
inertial microfluidic experiments, the particle diameters cannot be very small compared to
the characteristic channel length scale, and the Reynolds number of the particle is in order
of 10 [94]. A spiral lab-on-a-chip (LOC) was used for size-dependent focusing of particles at
distinct equilibrium positions across the microchannel cross-section from a multiparticle
mixture [95], which exhibited 90% separation efficiency. Lee at al. [96] developed a spiral
microchannel system for the synchronization and selection of cancer cells at different phases
of cell cycle of blood to predict the condition of disease as shown in Figure 2b. Yousuff
et al. [97] proposed a new configuration of spiral channel, where collection outlets are a se-
ries of side-branching channels perpendicular to the main channel of egress in which closely
spaced particle streams can be collected separately. A novel inertial separation technique
using spiral microchannel having a stair-like cross-section was introduced for size-based
particle separation [98]. A spiral microfluidic chip was also employed for continuous
separation of CTCs [99] and sperm-like-particles (SLPs) [100] from blood.

The secondary flow induced by a microchannel with arc-shaped groove arrays was
studied by Zhao et al. [101] with numerical approaches, and their results showed the
secondary flow can guide different-size particles to the corresponding equilibrium positions.
In the experiments, the performance of particles focusing was relatively insensitive to
the variation of flow rate, which proves the availability of flow-insensitive microfluidic
separation method in a reliable biosample preparation processing step for downstream
bioassays. Yoon et al. [95] developed a size-selective separation system for microbeads by
using secondary flow induced by centrifugal effects in a curved rectangular microchannel.
The effects of curvature angles and channel heights on inertial focusing of microparticles in
curvilinear microchannels were also investigated by Özbey et al. [102], and an optimum
condition/configuration was obtained with a curvature angle of 280◦ at Re of 144 in the
transition region.

Inertial size separation can be achieved in a contraction–expansion array (CEA) mi-
crochannel by a force balance between inertial lift and Dean drag forces in fluid regimes in
which inertial fluid effects are significant [103]. In CEA systems, similar effects compared to
Dean flows are produced by an abrupt change of the cross-sectional area, which is balanced
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by inertial lift forces throughout the contraction regions [81]. The CEA microchannels
are applied for high-yield blood plasma separation with a level of 62.2% yield [104]. A
fishbone-shaped microchannel was proposed by Kwak et al. [105] to separate platelets,
erythrocytes, and leukocytes from human blood.
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Sim et al. [76] developed a novel separation method named as multiorifice flow
fractionation (MOFF), where a microparticle moves laterally driven by the hydrodynamic
inertial forces due to a multiorifice structure (Figure 2a). To improve the low efficiency
of single-stage multiorifice flow fractionation (SS-MOFF) in separation for large particles,
multistage multiorifice flow fractionation (MS-MOFF) was developed to isolate rare cells
from human blood with a recovery increased from 73.2% to 88.7% while the purity slightly
decreased from 91.4% to 89.1% [106]. A parallel multiorifice flow fractionation (p-MOFF)
chip was developed and used for high-throughput size-based CTC separation, where CTCs
can be focused at the center of the channel due to the wall-effect-induced lift force [107].

Separation of suspension in symmetric and asymmetric serpentine microchannels is
also driven by inertial and Dean effects. Yuan et al. [108] investigated particle focusing
under Dean flow coupled with elasto-inertial effects in symmetric serpentine microchannels,
which demonstrated acceleration of particle focusing and reduction of channel length.

Compared with PFF, techniques based on inertia and Dean flow can be applied in
higher Reynolds number flow since they are based on the balance of inertial shear-gradient-
induced lift force and wall-effect-induced lift force, where the Reynolds number is generally
in the range of 10–270 [34].

2.3. Deterministic Lateral Displacement (DLD)

Deterministic lateral displacement (DLD) is a microfluidic particle-separation device with
asymmetric bifurcation of laminar flow around obstacles. When particles in solution moving
through an array of obstacles, their paths are determined based on their sizes and deformability.
The lateral displacement can be accumulated by a periodically arranged obstacle array which
lead to a macroscopic change in migration angle, thus realizing particle separation [109].
Frechette et al. [110] used Stokesian dynamics simulation to study the dynamics of non-
Brownian spheres suspended in a quiescent fluid and moving through a periodic array of
solid obstacles under the action of a constant external force. It was found that moving particles
were locked into periodic trajectories with an average orientation that coincides with one of
the lattice directions. Generally, the arrangement of obstacle array has two configurations: a
square array [111] and rhombic array obstacles (Figure 3a) [112]. The critical particle size for
fractionation was investigated by Inglis et al. [113] who built a model based on the micropost
geometry, where the fluid is driven by hydrodynamics or by electro-osmosis.

The fraction of whole-blood components and extraction of blood plasma without
dilution was achieved by a continuous-flow deterministic array without dilution [114,115].
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Blood components including white blood cells, red blood cells, and platelets can be sepa-
rated by their hydrodynamic diameters from blood plasma at flow velocities of 1000 µm/s
and volume rates up to 1 µm/min. A disposable parallel DLD device was applied for
enrichment of leukocytes from blood with a throughput of greater than 1 mL/min [116].
With the utilization of an array of triangular instead of circular posts, the performance of
DLD devices can be improved by reducing clogging, lowering hydrostatic pressure require-
ments, and increasing the range of displacement characteristics [117]. The DLD arrays
with other shapes were investigated, including triangle [117], airfoil [118], I-shaped [119],
L-shaped [120], asymmetric shape [121], and optimized shape [122], which have been used
instead of cylindrical one. The elastomeric properties of PDMS were utilized to achieve
tunable particle separation in DLD devices [123]. With the introduction of an external force,
a concept of force-driven DLD was proposed [124]. For overdamped particles under the
action of external forces, the trajectories are periodic, and the migration angle corresponds
to a tangent bifurcation [125]. Devendra et al. [126] investigated the continuous size-based
separation of suspended particles in gravity-driven deterministic lateral displacement
(g-DLD) devices. (Figure 3b) In their experiments, directional locking angles were strongly
depended on the size of the particle, and the results suggested that relatively small forcing
angles are well suited for size-fractionation purposes. In an upscaled DLD device, larger
gaps were utilized instead of micrometer-sized gaps between the posts, where particles
above a critical size were better separated [127].
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DLD devices are also employed for the separation of CTCs [128], sleeping para-
sites [111], and deformable particles [129–131] by applying different pressures to the
flowing fluids. A novel method for passive separation of microfluidic droplets by size
using DLD was proposed by Joensson et al. [132], which showed a rate of 12,000 droplets/s
with an 11 µm diameter. DLD separation for droplets can be accelerated by cell-induced
shrinking [133]. A microfluidic DLD device was applied for spore purification to reduce the
amount of debris in a suspension of fungal spores with almost 100% purity and recovery
in continuously microspheres [134]. DLD techniques are suitable for the sorting of kinds of
biological particles and droplets, but such a method requires an array of posts.
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2.4. Microscale Filters

Microscale filters are widely employed in the separation of bioparticles/droplets
based on size and deformability [40]. The most commonly used types of microfilters are
categorized as dead-end mode [135], where the low is perpendicular to the filter structure,
including membrane [136], planar [137], weir [138], pillar [139], and crossflow filters [114],
where the flow is in the direction of the filter plane [140].

Membrane-based separation is a pressure-driven process [141,142], which has been
widely used for microfiltration, ultrafiltration, reverse osmosis, ion-exchange, and gas sep-
aration [143]. The size-based crossflow separation can also be achieved using multistage
arc-unit structures in a microfluidic device as shown in Figure 4 [141]. Chen et al. [144]
proposed a method for preparation of microfiltration membranes made up with cellulose
acetate (CA) blended with polyethyleneimine (PEI), where PEI can provide coupling sites
for ligands in affinity separation or be used as a ligand for metal chelating, endotoxin
removal, or ion exchange. In the study of Aussawasathien et al. [145], electrospun nylon-6
nanofibrous membranes were employed as prefilters for separation of micron to submi-
cron particles from water due to their excellent chemical and thermal resistance as well
as high wettability. A PDMS-membrane microfluidic immunosensor was used for rapid
detection of foodborne pathogens integrated with a specific antibody-immobilized alu-
mina nanoporous membrane. By sandwiching a filter membrane between a two-layer
chip, Liu et al. [146] developed a vacuum-accelerated microfluidic immunoassay (VAMI),
which could simultaneously achieve higher sensitivity and require less time compared
with conventional microfluidic immunoassays. Nam et al. [136] proposed a novel effective
manufacturing process that uses reusable 3D silicon molds with microneedle and microb-
lade shapes to form submicron-sized nanopores and slit arrays in PDMS films. This process
has been successfully applied to trap submicron-sized bacteria with a filter recovery rate of
90.1%. A superhydrophilic membrane with rough and hierarchical structures was used
in the separation of oil-in-water emulsions since it can be fouled by surfactant-stabilized
oil and organic foulants [147]. Ng et al. [148] designed and fabricated different gradient
ceramic membranes including one-, two-, and three-layer ceramic membranes with a low
total resistance, which demonstrated that the gradient porous membrane can be used to
enhance the filtration performance.
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Besides membranes, various types of microfabricated filters have been developed
for microparticle separation. Crowley et al. [137] developed a planar microfilter for the
isolation of plasma from whole blood with a separation efficiency three times higher than
microporous membranes. An array of micropillars with a diameter of 12 µm and a height
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of 15 µm was arranged in I-shape as a filter for the separation of spherical and nonspherical
particles [139]. Compared with pillar type, the microfilters of weir type show a higher
separation efficiency due to the small gap of pillar [149]. A slanted weir microfluidic device
was applied for the separation of CTCs from the peripheral blood, which showed a 97%
separation efficiency as well as an 8-log depletion of erythrocytes and 5.6-log depletion of
leukocytes [138]. As a modification, a cascading weir-type microfilter was constructed by
Wu et al. [140] for plasma separation from blood samples.

The separation of microparticles was reported to be achieved in crossflow micro-
filters for cell biology research or various diagnostic and therapeutic applications, in-
cluding cells extraction [150–152], plasma fabrication [137,153], leukapheresis [154], and
myocytes/nonmyocytes from neonatal rat myocardium [155]. A microfluidic technique
was proposed for separation of white blood cells (WBCs) from whole human blood, where
the separation was performed in crossflow in an array of microchannels with a deep main
channel and a large number of orthogonal and shallow side channels [151], as shown in
Figure 5. The flow and shear stress characteristics inside a crossflow filter were studies by
Mielink et al. [156] with employing microparticle image velocimetry (micro-PIV) measure-
ments and computational fluid dynamics (CFD) analysis, demonstrating filter performance
can be improved since substantial increase in the local wall shear can reduce clogging and
cell cake formation.
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sectional view of channels in the separation network, dimensions are not to scale; (d) blowup of E
channels outlined with a dotted line in (a). Channel depths, 25, 9, and 3 µm, are grayscale coded in
(a,b,d). The figure has been reproduced with permission from the American Chemical Society [151].

Moorthy et al. [157] proposed in situ fabrication of porous filters using emulsion
photopolymerization for microsystems to mimic the functionality of the centrifuge and
power requirements as well as enabling the handling of small sample volumes. A novel
microfluidic device constituted by microfilter, micromixer, micropillar array, microweir,
microchannel, and microchamber was fabricated and used for isolation of WBCs from RBCs
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of whole blood [152]. Aran et al. [158] developed a microfiltration system consisted of a two-
compartment mass exchanger with two aligned sets of PDMS microchannels, separated by
a porous polycarbonate (PCTE) membrane. Lo et al. [159] described a multichamber device
with porous membranes incorporated with variable pore sizes between the compartments
within the microfluidic device, where nonhomogenous cell mixtures can be fractionated
into different compartments in stages and collected for further analysis.

2.5. Other Hydrodynamic Methods

Besides the methods listed above, other hydrodynamic methods are also explored to
be employed in separation of microparticles, including hydrodynamic filtration [160–163],
Zweifach–Fung effect [164–169], trilobite separator [170–174], microvortex [175], and micro-
hydrocyclone [176]. For particles flowing in a microchannel, their center positions cannot
be at a certain position where the distance from sidewalls is equal to the particle radius.
Yamada et al. [160] proposed the method of hydrodynamic filtration (HDF) for continuous
concentration and classification of particles within microfluidic devices. By withdrawing a
small amount of liquid repeatedly from the main streams through the side channels, parti-
cles are concentrated and arranged on the sidewalls by repeatedly drawing a small amount
of liquid from the main flow through the side channel. Then, the concentrated and arranged
particles can be collected through other side channels in downstream according to their
sizes. Therefore, continuous introduction of the particle suspension into the microchannel
can simultaneously perform particle concentration and classification. In this method, the
flow profile inside the precisely manufactured microchannel determines the size limit of the
filtered materials. Thus, the separation for small particles in much larger channels avoiding
the problem of channel clogging. This device was applied for blood cell classification [161],
as shown in Figure 6, and the sorting efficiency of hydrodynamic filtration device was
dramatically improved by employing a flow splitting and recombination scheme [162].
Chiu et al. [163] proposed a microfluidic chip to separate microparticles using crossflow
filtration enhanced with hydrodynamic focusing, which is needed to make soft lithograph
fabrication to create microchannels and uses novel pressure bonding technology to make
high-aspect-ratio filter structures.

Zweifach–Fung effect was the principle that a particle tends to follow the high-flow-
rate channel when it reaches a bifurcation region [164]. This effect was employed for the
separation of RBCs from plasma [165] and whole blood [166] and bacteria from blood [167].
The suspension stability of the blood was investigated by Fahraeus [168], and aggregation
was observed to occur at a high concentration of blood under the influence of gravity
and surface charge. Based on the characteristics of blood, Geng et al. [169] developed a
device for separation of plasma from whole blood using a combination of Zweifach–Fung
bifurcation law, centrifugation, and diffuser–nozzle effect.

Sample concentration or enrichment for rare particles in centrifugal separator often
results in the cell being crushed and congregated during processing. Aiming to develop
a nonclogging microconcentrator, Dong et al. [170] proposed a trilobite microchip for
CaSki cells concentration using streamlined turbine blade-like micropillars based on the
counter-flow principle. Hønsvall et al. [171] developed a microfluidic chip for continuously
concentrating rigid cells in moving fluids based on a trilobite structure, which appears to
be a promising tool for preconcentrating microalgae that are difficult to harvest due to their
repelling properties or small size. The separation and concentration characteristics of the
so-called trilobite separation unit was characterized experimentally by Mossige et al. [172].
With the introduction of a tunable structure, an increase in flow rate for low-pressure drops
can be realized thus enabling clog-free particle separation of complex algal cells [173,174].
Besides the methods above, microvortex manipulator (MVM) [175] and microhydrocy-
clone [176] are also categorized as hydrodynamic methods for microfluidic separation
and focusing of particles. The major public-health-related microfluidic separation/sorting
technologies working in a passive way are summarized in Table 1.
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Table 1. Public-health-related passive approaches for microfluidic separation.

Categories Examples References

Pinched-flow fractionation (PFF)

Symmetric PFF [65]
AsPFF [67,68,70,73]

Tumbling mechanism in PFF [66]
Sedimentation PFF [71]

Tunable PFF [72]

Inertia and Dean flow

Inertial and Dean flow fractionation [40,79,89,93]
Spiral microchannel [97–100]

Curvature angles [90,101,102]
CEA [83,103–105]

Multiorifice [66,106,107]
Serpentine microchannel [108]

Deterministic lateral displacement (DLD)

DLD [109–115,127–131,134]
Disposable parallel DLD [116]

Optimized shape [117–122]
Tunable DLD [123]

Force-driven DLD [124–126]
Droplet shrinking [132,133]

Membrane [136,144,145,147,148]

Microscale filter

Vacuum-accelerated microfluidic
immunoassay (VAMI) [146]

Planar microfilter [137,139]
Weir microfluidic device [138,140]

Crossflow microfilter [150–156]
Porous filter [156,158]

Multicompartment [159]

Other hydrodynamic methods

Hydrodynamic filtration [160–163]
Zweifach–Fung effect [164–169]

Trilobite separator [170–174]

Microvortex [175]

Microhydrocyclone [176]
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3. Microfluidic Detection Methods

Microfluidic-method-integrated detection equipment has been becoming an ideal
portable device for field sampling. Moreover, it improves the efficiency, sensitivity, and
accuracy of detection and has advantages of rapid analysis, less usage of sample, and real-
time characterization. Herein, microfluidic-based detection methods were summarized,
including electrochemical detection, optical detection, and magnetic detection.

3.1. Electrochemical Detection

Electrochemical methods have advantages of shorter testing time, simpler device,
and low cost, which can be classified into amperometric detection [177,178], impedimetric
detection [179,180], and potentiometric detection [181]. Amperometric detection was
formed when electroactive substances or electrolytes containing ions are under the action
of an electric field, and they can be separated and detected effectively. Shiddiky et al.
proposed an electrochemical detection method combined with micellar electrokinetic
chromatography to separate and detect trace phenolic compounds in water [182]. They first
used field-amplified sample stacking (FASS) and field-amplified sample injection (FASI) to
separate the samples from water and then used cellulose-double-stranded DNA modified
screen-printed carbon electrode to amplify the electrooxidation sensitivity of eight phenolic
compounds. Hiraiwa et al. developed a method that used microtip immunoassay to detect
the Mycobacterium tuberculosis (MTB) in sputum [183]. The microtip coated by antibodies
was used to capture targeted bacteria. After that, the microtip surface would be covered
by immunocomplex which can be detected by electric current. The detection limit of this
method was 100 CFU per milliliter.

Impedimetric detection is a method using electrochemical impedance spectroscopy
(EIS) for analysis. It has merits of the advantages of label-free and less amplitude distur-
bance [184]. As shown in Figure 7a, Cecchetto et al. proposed a label-free impedimetric
detection method with a gold electrode modified by an anti-NS1 and a nonstructural
dengue protein antibody to diagnose the dengue by detecting neat serum through the
resistance changes resulting from the target binding [185].

Potentiometric detection is based on the potential change in an electrode in an electro-
chemical cell. The advantages of potentiometric biosensors are small volume, fast response,
easy to use, low cost, anticolor, antiturbidity interference, and independent of sample
volume [186,187]. For example, an electrochemical paper-based analytical device (EPAD)
was designed to measure the concentrations of electrolyte ions (Cl−, K+, Na+, and Ca2+).
In this design, ions were able to across the paper channels slowly so that accuracy was
improved [188].

3.2. Optical Detection

Optical detection utilizes the properties of light, such as absorbance, fluorescence,
and the emission mode of the sample when excited. Among optical detection methods,
the fluorescence method is commonly used because it is sensitive, cheap, fast, and easy
to operate [189]. The key to designing a fluorescence biosensor is fluorescent dyes or
the labeling of fluorophores. Using fluorescence resonance energy transfer (FRET) is one
of the most typical strategies, referring to the energy transfer from a donor fluorophore
to an acceptor fluorophore [190]. Moreover, some nanomaterials also have fluorescence
signals under specific conditions base on their unique properties of physical, chemical,
and electronic transport. As shown in Figure 7b, Takemura et al. [191] designed an optical
detection method using quantum-dots-based immunofluorescence to detect nonstructural
protein 1 (NS1) of Zika virus. The fluorescence intensity signal was amplified and detected
by a localized surface plasmon resonance (LSPR) signal from plasmonic gold nanoparticles
(AuNPs). This sensor can detect NS1 of Zika virus ultrasensitively, rapidly, and quantita-
tively. In addition to the fluorescence method, absorbance of samples can be used to realize
target analysis. For example, the analysis of UV absorption of nitrite samples can be used
to determine the nitrite level in water [192].
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Recently, surface-enhanced Raman scattering (SERS) spectroscopy has advantages
of strong signal intensity, excellent photostability, biocompatibility, and especially the
multiplexing ability, which makes it become a popular optical imaging and detection
tool. For example, Wang et al. [193] first used folic acid (FA) functionalized gold (Au)
SERS nanoparticles to detect CTCs in the presence of white blood cells successfully. Wu
and co-workers have improved the sensitivity and specificity of CTC detection using the
SERS properties of gold or silver with various shapes [194]. Moreover, Quang et al. [195]
successfully demonstrated that the portable Raman spectrometer can be used to detect
dipicolinic acid (DPA) and malachite green (MG) in real time, combined with a micropillar
array chip.

3.3. Magnetic Detection

In the past few decades, the magnetic phenomenon of magnetic materials has been
widely concerned, which is used to realize the sensitive detection of analytes [196]. Com-
pared to the optical detection method, the magnetic detection method has advantages
of low cost and high detection efficiency because of the elimination of expensive optical
elements and the use of a magnetic field to shorten the sample preparation time [197,198].
Moreover, because biological samples have few magnetic background signals which can be
ignored, the magnetic detection method has high specificity, sensitivity, and signal-to-noise
ratio [199]. Hong et al. constructed an automated detection device for H7N9 influenza
virus hemagglutinin, assisted by three-dimensional (3-D) magnetophoretic separation and
magnetic label [200]. As shown in Figure 7c, a 3-D microchannel network with two-level
channels was generated with multilayer glass slides under a magnetic field perpendicular
to the microchannel. After the immunomagnetic separation, a magnetic-tagged complex
was captured by an antibody-modified glass capillary, which causes the change of voltage
in the miniature tube liquid sensor and therefore to obtain the detection signal. This work
achieved the detection limit of 8.4 ng mL−1 for H7N9 hemagglutinin, with good specificity
and reproducibility. Wu et al. [201] reported a Z-Lab point-of-care (POC) device which can
detect swine influenza viruses sensitively and specifically reducing the dependence on the
demands of sample treatment and operational skills sample handling and laboratory skill
requirements. In this work, a portable and quantitative, giant magnetoresistive (GMR)-
based immunoassay platform was designed to detect IAV nucleoprotein (NP) and purified
H3N2v. It can achieve quantitative results within 10 min with a detection limitation of 15 ng
per milliliter for IAV nucleoprotein, and 125 TCID50 per milliliter for purified H3N2v. Wu
et al. [202] also introduced a new magnetic particle spectroscopy (MPS)-based biosensing
scheme, where self-assembly magnetic nanoparticles (MNPs) can be used to detect H1N1
nucleoprotein molecules quantitatively. This work verified that it is reliable to use MPS
and the self-assembly of MNPs to detect ultralow concentrations of targeted biomolecules,
which can be applied on rapid, sensitive, and wash-free magnetic immunoassays.

Although these detection methods have good performance, they still have many
shortcomings [203]. For electrochemical detection methods, they have high sensitivity,
fast response, and low cost, but stability and susceptibility to interference are weak [204].
Optical detection methods have advantages of rapid response, flexibility, and experimental
simplicity, but they are impacted by a high fluorescence background and short fluorescence
lifetime [205]. Magnetic detection methods have advantages of low cost, high detection
efficiency, high specificity, sensitivity, and signal-to-noise ratio but are limited by a shortage
of miniaturized magnetic readout systems [206].
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plasmon resonance (LSPR)-amplified immunofluorescence biosensor. The figure has been reproduced with permission from
Takemura et al. [191]. (c) Schematic of the detection device based on the 3-D magnetophoretic separation and magnetic
label. The figure has been reproduced with permission from the American Chemical Society [200].

4. Prospects of Microfluidics for Public Health Applications

In this paper, the emerging microfluidics studies for separation and detection have
been overviewed, which have been widely applied in public health. In the context of an
epidemic of infectious diseases, point-of-care diagnostics have become a matter of great
concern, which enable people to implement home quarantine and real-time health moni-
toring. This method can cut off the source of infection and thus greatly reduce the rate of
infection rate. Meanwhile, the fast development of microfluidics in the field of medicine
enables point-of-care diagnostics to be realized. As mentioned above, microfluidics has ad-
vantages of less sample consumption, fast detection speed, facile operation, multifunctional
integration, lower cost, and portability. The employment of microfluidic devices combined
with point-of-care diagnostics can reduce the cost of public health care. Microfluidics can
be well applied on virus detection, for example COVID-19 diagnosis. COVID-19 can be
detected from saliva and respiratory samples of nasopharyngeal and oropharyngeal swabs
by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). COVID-19 can
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be identified through the variations of many biomarkers such as immunoglobulins, cy-
tokines, and nucleic acids. Fast and accurate detection of these biomarkers by microfluidic
system can be helpful in early diagnosis of COVID-19. Moreover, a microfluidic system
combined with smartphones may realize the real-time health monitoring of individuals
or populations during and after COVID-19 outbreaks. However, some detections such
as impedance-based microfluidic devices and optical microfluidic devices require bulky
instrumentation for the quantification of results. Besides, most samples require multiple
pretreatments before detection. Therefore, although microfluidics combined with point-
of-care diagnostics have the potential to allow the rapid detection of COVID-19 or other
diseases, there is still a gap to be bridged.

Microfluidic techniques can also be applied in continuous production of vaccines [207].
For instance, the range of technology platforms for COVID-19 vaccines includes nucleic
acid (DNA and RNA), virus-like particle, peptide, viral vector (replicating and nonreplicat-
ing), recombinant protein, live attenuated virus, and inactivated virus approaches, where
microfluidic approaches can be applied [208–210]. Microfluidic devices were employed
for vaccine therapy and delivery, especially for the administration of nucleic-acid-based
vaccines by employing the host cell’s transcriptional and translational capability to produce
the desired protein, since uniform microspheres of DNA/RNA with a very narrow size
distribution can be produced precisely [211]. Compared with other kinds of vaccines,
because the vaccines of DNA or RNA do not have a viral coating, there is no requirement to
invoke antibody reactions in order to suppress vaccine efficiency. Moreover, such vaccines
are safe and easy to produce, thus presenting the opportunity for combining the genetic
information of various antigen epitopes and cytokines [212].

5. Conclusions

Dramatic growth in microfluidic and lab-on-a-chip technologies has paved a way
for the development of appropriate separation and detection-based diagnostics with the
goal of improving local and global public health and thereby has attracted considerable
efforts and resources in the past decade. Access to effective and efficient separation and
detection methods has become increasingly important especially during the pandemic
period. However, there exist several key factors that affect the introduction, acceptabil-
ity, and sustainability of these technologies for practical applications; one of the greater
challenges in deploying microfluidic diagnostic systems on a larger scale and to a wider
extent is how to bring the cost down closer to the cost of the most inexpensive of current
tests. The second challenge is that the performance of these methods is not good enough
and needs to be further improved. This can be achieved by using a multistep method,
which may lead to higher particle or cell separation performance. At the same time, a
multistep method requires complicated configuration and a higher level of automation
and integration technology. In addition, the production capacity of microfluids is far from
meeting the actual needs. By increasing the number of devices running in parallel or the
number of separation or detection units in the same microfluidic system, it is inevitable to
enlarge the microfluidic technology. Accuracy and repeatability are also very crucial, and it
is expected that an automated apparatus should be used as much as possible without much
intervention from human operators. More sustainable efforts are required in the future to
apply microfluidic technologies in developing more effective clinical or point-of-care tools,
as well as detection systems to monitor the environmental conditions.
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