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ABSTRACT Electric variable speed drives (VSDs) based on two VSDs connected to a multiphase machine
are an attractive solution to replace high-power mechanic and hydraulic systems in many sectors of industry
and transportation because they present high performance with reduced cost, volume and weight. Among
the causes which affect the reliability of dual VSDs, the common-mode current flowing through the machine
bearing is an important issue. This paper faces the mitigation of the common-mode current by reducing the
common-mode voltage (CMV) generated by the operation of a dual VSD. The CMV reduction is carried out
without introducing any extra device and/or passive filtering method. This CMV reduction is performed by
applying a specific phase-displacement between the modulation strategies of each single inverter drive. The
proposed technique has been evaluated in a down scaled experimental setup in order to test its effectiveness.

INDEX TERMS Harmonic analysis, Pulse width modulation, Common-mode voltage.

. INTRODUCTION

The industry is moving from mechanical and hydraulic sys-
tems to the electrical drives because they present a better
performance with a cost reduction [1]. As an example, per-
manent magnet synchronous machines (PMSMs) are widely
used in electric vehicles owing to their advantages such as
high efficiency, reduced cost and high performance [2], [3].
In order to achieve these objectives, the efficient and reliable
variable speed drives (VSDs) are critical components of the
system. In particular, the use of VSDs in power conversion
systems presents many advantages such as high efficiency
and superior dynamic performance because of its better con-
trol of machine flux and currents.

In recent years, the multi-phase electric machines have
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attracted a lot of attention and the dual three-phase machine is
the most common structure among the multi-phase machine
ones [4], [S]. In a dual three-phase machine, two sets of
three-phase stator windings increase the fault-tolerant abil-
ity and make the integration with conventional three-phase
technology relatively simple [6]. Among the applications, it
is possible to find multi three-phase systems and more par-
ticularly the dual three-phase drive in aerospace and marine
applications [7].

Power converters for VSD applications have been inten-
sively developed in the last decades [8], [9]. New multi-
level power converter structures have been proposed and
advanced control strategies and modulation techniques have
been explored [10], [11]. However, although these converter
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FIGURE 1: Dual-drive of a multi-phase PMSM using two
three-phase two-level inverters
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topologies are available, the penetration in the industry is
still limited. The traditional three-phase two-level power
converter is nowadays leading the market in most industrial
solutions. As an example, in Fig. 1 a dual-drive for a multi-
phase motor using two three-phase two-level inverters is
shown.

In the literature, many strategies to control a VSD can be
found. Among them, the direct torque control (DTC), field
oriented control (FOC) or model predictive-based control
are very well-known [12], [13]. In the modulation stage, the
methods to operate a three-phase two-level converter can
be categorized in two main groups: space vector modula-
tions (SVM) and carrier-based pulse-width modulation (CB-
PWM) techniques [10]. Most of available control platforms
include a dedicate peripheral to deploy and use the PWM
modulation. Therefore, CB-PWM technique is the simplest
and most straight-forward way to operate the power con-
verter.

Although the use of VSDs presents many advantages, sev-
eral drawbacks directly affect to the performance, reliability
and the remaining lifetime of the system [14]-[16]. As a main
concern, the common-mode voltage (CMV) generated by the
drive is closely related to the system reliability because of
the corresponding bearings degradation. In fact, it has been
demonstrated that the CMV is the cause of more than 50%
of cases of motor failures [14], [15], [17]. In addition, the
shaft voltage and bearing current phenomena also appear in
induction machines [18], [19]. As a result of these issues,
there is a trend to develop an accurate-enough mathematical
approach to estimate and predict an early failure of the
machine components [20]—[23].

Bearing degradation through CMV has attracted the at-
tention of researchers in the last years. Multiple approaches
have been performed, which can be categorized in two main
streams: the CMYV filtering via the introduction of external el-
ements and the CMV mitigation considering a proper control

2

sa-lq} sb-f} SC-||5} .

- b

FIGURE 2: Equivalent circuit model of the motor shaft
voltage

strategy and/or modulation technique. Considering the intro-
duction of external elements, passive filtering and the use of
active canceler circuits can be found [24]-[27]. Despite of
these methods provide good results, the introduction of extra
passive filtering elements and/or active devices is undesirable
because the increase in cost, volume and weight. On the other
hand, if the CMV mitigation is performed by developing new
modulation methods, the academia provides several options,
most of them based on the proper switching pattern selection
using specific SVM techniques [17], [28]-[31]. In [32], [33],
the CMV mitigation for the dual drive is achieved applying a
SVM method at the expense of developing complex calcula-
tions in the modulation stage.

This work studies the CMV present in the dual drive
application shown in Fig. 1 and develops a simple CB-PWM
method to mitigate its negative effects on the system. To
perform this analysis, the CMV harmonic spectrum based on
double Fourier description is carried out. From this analysis,
a phase-shift between the PWM operation of both drives is
proposed in order to minimize the CMV harmonic distortion.
In the proposed method, the CMV mitigation is obtained
without external passive filtering elements and/or active
CMV canceler circuits. In addition, the proposed technique
is easily implementable on the most off-the-shelf mid-range
micro-controller control platforms.

The rest of the paper is organized as follows: in section
II the negative effects of the CMV over the motor bearing
and its degradation is presented. Section III analyzes the
harmonic spectrum of the CMV as consequence of the dual
drive operation. In section IV, the effect of the proposed
modulation technique in the machine currents is shown. In
section V, the validation of the modulation technique via
experimental results is performed and section VII highlights
the conclusions of the work.
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Il. BEARING DEGRADATION IN MULTI-PHASE PMSM
CAUSED BY THE CMV

In general, the motor bearing faults are caused by two rea-
sons, mechanical and electrical. Among the electrical rea-
sons, the shaft current is a key factor. According to bearing
manufacturers, 25% of the bearing faults are caused by the
shaft current, and this ratio is rising with the development of
power electronics devices [34].

When the voltage source inverter (VSI) is operated apply-
ing a conventional PWM method, the CMV is not zero, which
induces the rotor voltage with the coupling effect of the
internal parasitic capacitance of the motor. That rotor voltage
provokes a common-mode current flow path with the motor
bearing. As shown in Fig. 2, there are three types of parasitic
capacitances in the motor: C, ¢ is the parasitic capacitance
between the motor winding and stator core, C,,. is the
lumped capacitor that represents the distributed effects from
the windings to the rotor, and Cr, ¢ is the parasitic capacitance
between the motor stator core and the rotor. Additionally, C,
is the dc-link to earth capacitance and R, and L, are the
resistance and inductance of the ground path, respectively.
Cy is the equivalent capacitance of the bearings on the drive
side. Then, the bearing voltage u; can be introduced with the
effect of the parasitic capacitance [35].

The bearing faults caused by shaft current can be divided
into four types [36]:

1 & ; current, which are induced by the 6” of the CMV.
However the influence of this fact is small

2) EDM (Electric Discharge Machining) current. If the
shaft voltage exceeds the threshold value of the oil
film, the oil film will be broken down, resulting in the
discharge phenomenon, which can cause the heat in the
bearing and the corresponding lifetime can be reduced.

3) Circuital current, which is induced by the common-
mode grounding current at high frequency. It can in-
duce the high-frequency shaft voltage at both ends of
the motor rotating shaft and generate the circulating
bearing current.

4) Shaft to ground current when the motor frame is badly
grounded, there will be voltage difference between the
inner and outer rings of the bearing caused by rotor
grounding or by driving load grounding.

Because of the EDM current, discharge occurs when the
current passes through the bearing, which can increase the
temperature of the bearing and bearing faults may occur.
Therefore, reducing the shaft current is essential to increase
lifetime and reliability of the motor system.

lll. COMMON-MODE VOLTAGE (CMV) HARMONIC
DESCRIPTION IN A DUAL DRIVE SYSTEM

Considering the model of Fig. 2, there is a common-mode
path composed of the converter and the machine. Because
both converters are connected to the motor frame through the
parasitic capacitance and have the same dc-link, the equiv-
alent common-mode voltage (CMV) of the two-converter
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system is the summation of the individual CMV of the VSIs
as follows:

CMV =V,,0+ Vaso
Voo + Vo +Veo | Voo + Vo + Veo
B 3 3
To obtain an analytical expression of the resulting CMV in
the six-phase machine, the double Fourier series expression

is used. A periodical signal can be mathematically described
as

ey

_ 4w Z {A(m cos(nwot) + Bop sin(nwgt)

n=—oo

+ Z Z [ mn COS(Mmw, + nwot)

m=1n=—o0

+ Byun sin(mw, + nwot)] 2)

where coefficient 4oo/2 describe the average value of the
signal, Ag,, and By, correspond to the base-bands harmonic
components, and A,,, and B,,, determine the side-bands
harmonic components. Taking into account this fact and
considering the traditional PWM approach, the phase voltage
of phase z of a single VSI is determined as [8]:

M, Vae
Veo(t) = Td

VS S (b ()

m=1n=

cos (mwct + n(wot + 0z>)] 3)

where indices m and n represents each side-band group (m)
and each singular harmonic component inside the group (n).
M, is the modulation index of phase z (z = a,b,c) and 6,
is the phase displacement of the phase voltage in phase x.
Jn (%) is the first kind Bessel function of z and order n.

If the modulation indexes of all the phases in the VSI are
the same, it is imposed that M,=M. Also, it can be consid-
ered for the sake of simplicity that the phase displacement
of phase a is 8, = 0°. Following these assumptions, the
amplitude of the side-bands harmonics of the phase voltage
Vo of the a VSI can be mathematically described as:

2Vae 7. (WMx> sin <(m + n)w) @
mm 2 2

cos(wot + 0;)

Veo(n,m) =

As the key proposal of this work, in the dual drive system
shown in Fig. 1, the phase displacement angle between the
triangular carriers of the PWM methods in both VSIs of the
dual drive system is considered a degree of freedom in order
to improve the CMV of the overall system. In this sense, a
phase displacement angle () is considered in the triangular

3
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FIGURE 3: a) Traditional single-carrier PWM modulation
for the three-phase two-level motor dual drive system b)
Proposed multi-carrier modulation technique for the three-
phase two-level motor dual drive system

carrier of the second VSI. Therefore, the phase voltages in
second VSI system can be described, analogously to (3), as:

M, Ve
Voo(t) = ) 2

Wie o= = [ 1 mm . ((m+n)T
- mX::l nz::l {mJn <2Mm/> sin (2 )
cos (m (wct + 90) + n(wot + Qr/))] 5)

where ¢ is the phase displacement of the carrier signal
adopted for the second VSI with respect to the carrier signal
adopted for the first one. 8, is the phase displacement of the
phase voltage in phase z’ (z' = a/, b, ¢'). It can be observed
that the amplitude of the side-bands harmonics of the phase
voltage Vs, can be described similarly as was introduced in
4).

Taking into account these expressions, the resulting CMV
in the six-phase machine can be determined as the summation
of the CMV produced by both VSIs. More specifically,
assuming the same value of the modulation index for all
the phases (M=M_,=M, ), each machine CMV side-bands
harmonic component can be expressed by:

cos(wot + 6,+)

+

CMV(n,m)="V,,0(n,m)+ V,,0(n,m)

- i in (i )30

+ ej(nup-i-n@a/) + ej(nup-i-nab/) + ej(7rup+n9cx)):| ej(mwc-i-nwo)t
+ |:<1 + e—jneb + e—jnec + e—j(mga-i-n@a/) + e_j(m80+"95/)

+ ej(maern()C/)):l ej(mwn+nwa)t‘| (6)

In order to consider a wide frequency range in the resulting
CMY, it is possible to consider the CMV Total Harmonic

4

[(1 | einbo | pinbe

TABLE 1: Multi-phase PMSM parameters

Parameters ‘ Values
Rated power [kW] 18
Rated current [A] 71
Rated speed [rpm)] 3000
Pole pair number 4
Self inductance [mH| 0.347
Mutual inductance [mH] —0.131
Phase resistance [mf2] 8.5
Back-EMF coefficient K g 0.2506
Phase peak Back-EMF (at 25 Hz) [V] | 9.84
Stator inductance matrix
L[mH] | 0.248 | Mo [mH] | —0.099
M, [mH] | —0.099 | My [mH] | 0.032

Distortion (THD) with respect to the half of the dc-Link as
figure of merit.

N

J
‘ZC SN cMV(nm)2  (7)

m=1ln=—j

where N and j are parameters that define respectively the
number of harmonic groups and specific frequency compo-
nents in each group included in the THD calculation.

Observing expression (7), it can be seen that the minimum
value of the THD is always achieved with a carrier displace-
ment angle ¢ equal to 180°. In order to demonstrate this fact,
in Fig 4a the THD has been calculated through simulation
with a modulation index M equal to 0.4, 0.6 and 0.8. In
this test, the multi-phase PMSM machine parameters are
summarized in Table 1. The THD value has been calculated
up to a maximum frequency of 9kHz where the frequency
fe in the triangular carriers of the PWM method are equal
to 2kHz. Four complete harmonic groups (N=4) have been
considered into the THD calculation, while j is fixed to 6.

In order to compare the impact of applying ¢ = 180°
in the PWM technique in the dual drive system, the CMV
THD has been also computed for the whole modulation index
range considering the conventional PWM method where both
VSIs apply synchronized PWM methods (¢ = 0°) (shown
in Fig. 3a). Both modulation methods (¢ = 0° and ¢ =
180°) have been applied considering the scenario reported in
Table 1. As can been observed in Fig. 4b, the PWM method
with ¢ = 180° is always superior achieving an important
reduction of the CMV THD, specially with low values of the
modulation index.
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FIGURE 4: a) CMV THD value for a dual-drive system using the parameters reported in Table 1 with modulation index equal to
0.4, 0.6 and 0.8 b) CMV THD value for a dual-drive system using the parameters reported in Table 1 considering the traditional
PWM technique (p = 0°) and the phase-shifted PWM method with ¢ = 180°

IV. ANALYSIS OF THE CURRENT RIPPLE CONSIDERING
THE PROPOSED CMV MITIGATION TECHNIQUE
Considering the dual three-phase PMSM machine shown in
Fig. 1, the mathematical description of the stators winding
is given by the its corresponding inductance matrix which is
written as:

L My, My, M, M, M,
My L My My, M, M,
My Moy L My, My M
M, My My, L My M,
My My My My, L M
My My, My My My L

where M, M;, M> are real numbers.

Assuming an internal star connection of each subsystem
and according to the current Kirchhoff Law, the currents
through the windings fulfill that:

My,

®)

iq+ip+ic=0
G iy +ie =0 ©)

Neglecting the effect of low order back-EMF harmonics
on current harmonics at high frequencies (i. e. the switching
frequency and its superior multiples) and the voltage drop in
the phase resistance, the relationship between high-frequency
harmonic voltage (V},) and high-frequency harmonic current
(i) is determined by:

Vi = Mp——+ (10)
where V}, and 7;, are defined as:
T
Vi = [ Var Vo Ven Vi Vg Ve }
’ T
ih = [ ia,h ib,h ic,h ia',h ib’,h ic’,h } (11)
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Substituting (8) and (9) into (10), the harmonic voltage of
the phase = (x = a, b, ¢) is determined by:

dlm h dzx/ h
Vern = (L + M, — — (M M. 2
h = (L+ M) o (My + Ma) 7
di. di
Vo= L+ Mo)izt’h — (M + My) thh (12)

Considering the CMV calculation and the analysis per-
formed in section III, when the carriers of both VSIs are
synchronized (¢ = 0°) the phase voltages generated in both
VSIs are identical and therefore, as i, = i, equation (12)
can be rewritten as:

»
Vi = Vi g = (L My — My = Mp) =2 (13)

On the contrary, considering the CMV mitigation tech-
nique proposed in section III by fixing a carrier phase dis-
placement between both VSIs equal to ¢ = 180°, it is
fulfilled that ¢, = —%,. In this case, the phase voltages can
be described as:

diy
Ve =—Vy = (Lt Mo+ My +Mp) =% (14)

Then, through direct comparison between (13) and (14), a
higher impedance value results in the whole system when a
carrier phase displacement between both VSIs equal to 180°
is applied. As a consequence of this higher impedance, the
ripple of the current present in the system is reduced.

V. EXPERIMENTAL RESULTS

In order to validate the harmonic analysis and the effec-
tiveness of the proposed modulation technique, the down-
scaled laboratory experimental setup shown in Fig.5 has
been considered. The prototype consists of a dual three-
phase two-level VSDs connected to a dual-phase PMSM
machine. Each single three-phase VSl is built using the IGBT
IKW75N60T by Infineon Technologies [37]. Figure 6 shows
the PMSM control strategy based on the traditional FOC
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FIGURE 5: Experimental laboratory prototype of the dual
VSD connected to a multi-phase PMSM

i q
— O i

abc

Encoder

FIGURE 6: FOC control strategy implemented in the exper-
imental setup including the phase displacement between the
PWM methods (p = 180°)

strategy including the proposed CMV reduction method. In
this sense, the PMSM is driven by a speed and current
double closed control loop. This controller scheme as well
as the modulation techniques have been implemented using
a rapid control prototype platform PLECS RT box [38].
The details of the multi-phase PMSM machine are listed in
Table 1. The operation of the PMSM is analyzed in terms of
the total CMV generated applying both modulation method
approaches and the results are included in Fig. 7. Because
of some limitations present experimental setup to drive the
machine, the experiments has been performed considering a
reduced dc-link voltage equal to 40V, a switching frequency
of 4kHz and a speed reference of 600rpm.

The total generated CMV applying the traditional modu-
lation technique with synchronized PWM methods in both
VSDs (¢ = 0°) is represented in Fig. 7a and its harmonic
spectrum is shown in Fig. 7b considering also a zoomed de-
tail of the distortion at the carrier frequency and its multiples
in Fig. 7c. As it is clearly shown, there is a non-negligible
harmonic component located at the switching frequency

6

TABLE 2: THD values considering up to 30kHz

THDc vy (%) Phase current THD[%)]
Speed | Modulation | Traditional | Proposed || Traditional | Proposed
(rpm) index PWM PWM PWM PWM
(p=10° |(p =180 || (¢ =0 |(p=180°)
200 0.27 126.62 9.60 12.87 10.10
400 0.48 114.78 18.38 25.26 18.60
600 0.67 101.52 23.20 34.18 20.48

(with an approximately a magnitude of 50%) and at its
multiples as well. On the other hand, the proposed technique
applying a 180° carrier phase displacement between both
VSIs is also tested considering the same FOC strategy as
well as the same operational conditions in the machine. As
it can be observed in Fig. 7d, the peak-to-peak CMV has
been considerably reduced compared with that represented
in Fig. 7a. In addition, in Fig. 7e is represented a detail of
the resulting time-variant CMV. These narrow pulses are
provoked, among other reasons, because of the dead time
imposed by the IGBT driver circuit in the pulses generated
by each VSI. However, as it is illustrated in Fig. 7f, the first
(and third) harmonic groups of the resulting CMV harmonic
spectrum have been eliminated while the second harmonic
group remains unaltered as shown in Fig. 7f.

The operation of the PMSM has been also analyzed in
terms of the obtained phase currents and the corresponding
experimental results are represented in Fig. 8. Following the
discussion addressed in section IV, the currents obtained by
applying the proposed PWM strategy with ¢ = 180° present
a better performance because of the harmonic reduction in
high-frequency components. Through a direct comparison
between Fig. 8c and Fig. 8f, it is possible to observe this im-
provement as a harmonic mitigation at switching frequency
as well as the third carrier-order harmonic content. As it
happens with the CMV, the harmonic content located in the
second harmonic group remains unaltered.

In order to test the proposed PWM strategy with different
operational conditions, these experiments have been carried
out with different PMSM reference speeds. The resulting
harmonic distortion of the total CMV as well as the phase
currents THD data, considering up to 9kHz have been sum-
marized in Table 2. As it can be seen from the results, the
proposed total CMV mitigation method achieves superior
results as expected from the analysis introduced in section
III. Additionally, the resulting phase currents THD values
are also reduced as expected from the discussion provided in
section I'V. It is important to notice that each rotational speed
corresponds to an specific modulation index value because
the FOC method shown in Fig. 6 determines the reference
voltages to be generated by the VSDs in order to track the
speed. It is important to highlight that the obtained results fit
well with the expected results determined by simulation and
shown in Fig. 4b. The results summarized in Table 2 are just
three examples to show this fact.
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VI. IMPACT OF THE RESULTING CMV OVER LEAKAGE
CURRENT AND SHAFT VOLTAGE

As it was addressed in section II, the introduction of high
frequency CMV content accelerates the bearing degradation
because of the mentioned leakage currents and shaft voltage.
In this sense, due to the impossibility of measuring these
magnitudes in the experimental setup, the impact over the
leakage current as well as the shaft voltage has been deter-
mined using a specialized simulation environment consid-
ering the parasitic model shown in Fig. 9 and the measured
CMYV shown in Fig. 7 for both modulation techniques. This
electrical model has been conducted following the work
presented in [22].

In this sense, the common-mode circuit of the machine
winding is composed by an inductive (L) plus resistive (Rs)
components. Moreover, the parallel parasitic resistance of the
winding (due to insulation) is also considered with a lumped
resistor 1?,,. Additionally, there are two capacitive paths from
the windings to the frame which are represented by C,, ¢ and
the second path closes through the rotor and represented by
Cwr. The first one is the capacitance between the windings
and the frame whereas the second is the capacitance between
the winding and the rotor. A voltage across the rotor and
the frame appears (so-called shaft voltage) and it is an well-
known indicator regarding the bearing lifespan.

Additionally, some extra capacitive components are re-
quired to be introduced. C..; is the capacitance between
rotor and the frame and C}, is the capacitance due to the
bearings. The current that flows through this capacitance is
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responsible for the bearing degradation. The other parameters
regards the earth connection: R, and L, are resistance and
inductance of the path connecting the frame of the machine
to the earth point of the converter and C, represents the
high-voltage capacitors that are usually connected between
the dc-link of the converter and earth. The value of the
parameters can change depending on the type of the machine
(a reduced air-gap, for instance, reduces the Cy, ¢), however
it is always true that a reduced CMV excitation reduces the
current through Cj. The corresponding circuit parameters for
the experimental setup are properly listed in Fig. 9.

On one hand, it is possible to calculate the induced shaft
voltage in the machine by the application of both modula-
tion strategies. The obtained results are shown in Fig. 11.
As it can be observed, the application of the conventional
modulation technique with ¢ = 0° leads to relatively large
shaft voltage as shown in Fig. 11a. If the harmonic spectrum
is represented, there is a non-negligible dc component as
well as the magnitude of the first and third harmonic groups
are high as shown in Fig. 11b. On the contrary, as it is
presented in Fig. 11b and Fig. 11d, after the application of
the proposed modulation technique with ¢ = 180°, not only
the peak-to-peak magnitude of the shaft voltage is reduced
but the dc component is eliminated as well as the first and
third harmonic groups are greatly mitigated. These results
completely fit with the experimental results presented for the
CMYV reduction.

On the other hand, the leakage current has been also calcu-
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Parameter values

. = 2.83Q
= 10k
115.6uH
= 590pF
= 1.66nF
= 3nF

= 1pF

= 10pH

= 0.1Q

= 4nF

FIGURE 9: Circuit parameters for the modeling of the para-
sitic effects of the experimental setup shown in Fig. 5

lated using the simulation model and similar conclusions can
be drawn as it is shown in Fig. 10.

From these results, it can be concluded that the proposed
modulation technique presents a positive impact in the opera-
tion of the machine since the resulting CMV is mitigated and
therefore, the induced shaft voltage and the leakage current

8

are also minimized.

VIl. CONCLUSIONS

The use of multiphase machines being operated by several
converters connected to the same dc-link is nowadays an at-
tractive solution for many motor drive applications. However,
VSDs for motor drives present inherent problems related to
the reliability of the complete power system. As a main issue,
the motor bearing degradation because of the presence of
CMV in the VSD is actually a challenge to be overcome.
Among the solutions previously provided by literature, many
active canceler, passive filtering techniques and some SVM-
based modulation methods have been proposed to achieve the
mitigation of the CMV.

This paper proposes a simple carrier phase displacement
between the PWM methods of a dual VSD to mitigate
the resulting CMV harmonic content. The simplicity of the
proposed method is outstanding compared with previous
methods based on SVM strategies. This technique does not
require the usage of any external active or passive element
and it is easily implementable in most of the digital control
platforms. In order to validate theoretically the proposed
method, a detailed mathematical model based on double
Fourier series of the phase voltages and currents has been
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provided. From this analysis, it is demonstrated that the
best result is achieved when the carrier phase displacement
between both VSIs of the dual drive is fixed to o = 180°.
The proposed PWM technique has been tested in a down-
scaled dual PMSM machine considering different scenarios
achieving a superior performance. The impact on the leakage
currents and the shaft voltage has been also evaluated. The
results demonstrate that a superior system performance is
achieved.
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