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Abstract 

 

Yersinia pseudotuberculosis is an enteropathogen that is transmitted through 

contaminated food or water and results in self-limiting fever and gastroenteritis. Y. 

pseudotuberculosis is closely related to Yersinia pestis, the cause of bubonic, 

pneumonic and septicaemic plague. Despite causing vastly different diseases, 

virulence and in particular, type three secretion (T3S) as well as biofilm formation, 

motility, and aggregation are controlled in both species by several interrelated 

regulatory systems including quorum sensing (QS). The latter depends on an N-

acylhomoserine lactone (AHL) system that incorporates two AHL synthases (YpsI and 

YtbI) and two LuxR-type response regulators (YpsR and YtbR).  

Recently a novel component of this network has emerged, the iron-sulfur cluster 

regulator, IscR. IscR is a transcription factor best understood for its role in regulating 

the formation of Fe-S cluster containing proteins in E.coli. It is now known that in Y. 

pseudotuberculosis IscR regulates type three secretion, a key virulence mechanism 

employed by pathogenic Yersinia spp. to inject effector proteins into host cells, which 

have a range of effects including dampening the immune response and inducing 

apoptosis.  

Considering the links between QS, T3S and other QS mediated phenotypes, this study 

set out to investigate how IscR contributes to this regulatory network, by creating a 

series of knock-out mutants in Y. pseudotuberculosis and Y. pestis. Yop secretion 

assays confirmed that IscR regulates T3S in Y. pseudotuberculosis and using 

chromosomal promoter:lux this fusions was found to be via action on yscW-lcrF and 

lcrF specific promoters. Further Yop assays showed that IscR’s effect on Yop secretion 

was lost in a QS response regulator gene mutant background, suggesting that IscR 

may further regulate T3S via the QS system. This was further supported by 
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promoter:lux fusion data that showed that IscR positively regulated the expression of 

ypsR and ytbR. However, IscR did not affect expression of either of the AHL synthase 

genes (ypsI and ytbI). Whether IscR affects the production of AHL signalling molecules 

remains inconclusive.  

Phenotypic characterisation of the mutants showed that IscR did not affect colony 

morphology, growth rate or biofilm formation on C. elegans in Y. pseudotuberculosis or 

Y. pestis. Nor did IscR have an effect on the iron scavenging abilities or motility of Y. 

pseudotuberculosis. The iscR mutant did show attenuation of biofilm formation on glass 

at 22oC, which was not influenced by QS-mediated repression. Mutating iscR also 

resulted in faster killing in a louse infection model which has been linked to 

dysregulation of biofilm production within the louse gut. A further link between IscR and 

T3S was identified through auto-aggregation, as this is significantly reduced in an iscR 

mutant. Interestingly, this trend was also observed in QS mutant backgrounds, which 

did not correspond to levels of Yops secreted, suggesting an alternative mechanism of 

regulation of auto-aggregation separate from T3S which is IscR-dependent.   

Considering these results, the regulation of T3S by IscR has been confirmed, and there 

is strong evidence for a regulatory link between IscR and QS. This places IscR as a key 

regulator of many virulence associated phenotypes, including T3S, QS, biofilm 

formation and aggregation. As a virulence regulator IscR could be a future target for 

alternative antimicrobial therapies, a necessity given the threat of multidrug resistance 

and the classification of Y. pestis as a re-emerging pathogen. 
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Introduction 

1.1 The Pathogenic Yersiniae 

The genus Yersinia is made up of eleven Gram negative species (Chen, Cook, Stewart, et 

al., 2010), three of which are important human pathogens: Yersinia pestis, the causative 

agent of bubonic, pneumonic and septicaemic plague, and Yersinia enterocolitica and 

Yersinia pseudotuberculosis, which cause gastoenteritis. 

Enteropathogenic Yersinia typically cause self-limiting fever and gut associated symptoms, 

including diarrhoea and abdominal pain often referred to as Yersiniosis. Infections are 

rarely fatal, although complications can arise such as reactive arthritis and septicaemia 

(Koornhof, Smego, and Nicol, 1999). Human infection usually occurs via the fecal-oral 

route, with infected food or water often acting as a reservoir. Raw or poorly cooked pork or 

unwashed vegetables such as lettuce are a common source of infection (Bottone, 1997). Y. 

pseudotuberculosis and Y. enterocolitica have been found to exist in a range of conditions 

but thrive in moist natural environments, such as soil. 

Y. pestis causes plague, a severe illness, which in the absence of effective antimicrobial 

therapy is often fatal. Plague can present in three forms, pneumonic, bubonic or 

septicaemic (Reviewed in (Perry and Fetherston, 1997)) and is usually transmitted to 

humans from an infected mammal via an intermediate vector, such as a flea. Person to 

person transmission can then occur, usually as a result of the aerosol transmitted 

pneumonic plague. Bubonic plague often results when Y. pestis enters the host through a 

skin lesion, either via an open wound or flea bite, and if the organism migrates to the blood 

stream, the infected individual may present with septicaemic plague. Pneumonic plague 

can either be a primary infection, caught by inhaling infected aerosols, or a secondary 

infection as a result of the bacteria spreading to the lungs from a bubonic or septicaemic 

infection (Perry and Fetherston, 1997).  

Bubonic plague presents between two and eight days after initial infection with symptoms 

including fatigue, headache, fever and the appearance of buboes due to swelling of 
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regional lymph nodes. Septicaemic plague presents as a typical Gram-negative 

septicaemia with fever, chills, headaches and gastrointestinal disease and has a very high 

mortality rate (Crook and Tempest, 1992; Perry and Fetherston, 1997). Pneumonic plague 

starts wth flu-like symptoms and progresses to serious pneumonia, with the majority of 

untreated cases resulting in death within 24-36 hours (Crook and Tempest, 1992; Pechous, 

Sivaraman, Stasulli, and Goldman, 2016). 

Y. pestis is infamous as the cause of three historic pandemics, including the fourteenth 

century ‘Black Death’ responsible for reducing Europe’s population by around a third 

(Cohn, 2008). However, plague is not just of historical interest as infections still persist 

today (Zietz and Dunkelberg, 2004) with natural plague foci in a number of countries 

including Madagascar, the Democratic Republic of the Congo and Peru (Figure 1.1). 

Sporadic cases are also observed annually in the United States (Kugeler, Staples, 

Hinckley, Gage, and Mead, 2015), Russia and adjacent countries. Y. pestis is also of 

increasing concern as several of its properties, including aerosol transmission, rapid 

disease progression and high mortality rates, make it an attractive agent for use in 

bioterrorism (Inglesby, Dennis, Henderson, et al., 2000). 

 

 

Figure 1.1 Global distribution of natural plague foci as of March 2016. 

Red areas show potential plague natural foci based on historical data and current 

information. Source: WHO/PED as of March 2016. 
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Y. pestis and Y. pseudotuberculoisis share strong DNA sequence homology, such that they 

are indistinguishable by DNA hybridisation methods and share 99.7% sequence identity in 

16s rDNA studies (Bercovier, Mollaret, Alonso, et al., 1980; Ibrahim, Goebel, Liesack, 

Griffiths, and Stackebrandt, 1993). Evidence indicates that Y. pestis evolved from Y. 

pseudotuberculosis as recently as 1500 – 2000 years ago, just before the first recorded 

human plague pandemic (Achtman, Zurth, Morelli, et al., 1999; Achtman, Morelli, Zhu, et 

al., 2004),. The most obvious genetic difference is in the acquisition of two additional 

plasmids by Y. pestis, pPCP (also known as pPla, pYP and pPst) and pMT, (otherwise 

known as pFra and pYT) (Ferber and Brubaker, 1981). In addition, the chromosome of Y. 

pestis has acquired a number of mutations and deletions. Based on these relatively few 

genetic differences, the differences in pathogenicity between the two species are striking 

(Hinnebusch, 1997). 

1.2 Pathology of Yersinia Infections 

The disease progression of the enteropathogenic Yersinia is markedly different to that of Y. 

pestis, with the former resulting in a chronic infection and plague an acute infection that 

kills its host relatively quickly. This difference is indicative of their modes of transmission, 

as a chronic infection ensures Y. pseudotuberculosis can be excreted for long periods of 

time. Y. pestis however favours a rapid, acute infection where the bacteria can quickly 

disseminate from the initial infection site and reach the vascular system, where its 

presence ensures access to the flea vector and the fatality of the host, forcing the flea to 

search for a new host and spread the bacteria (Brubaker, 1991). Despite clear differences 

in transmission routes and pathologies, all three human pathogenic Yersinia have common 

virulence features, including a tropism for lymphatic tissues and an enhanced ability to 

resist the innate immune response (Bliska, Wang, Viboud, and Brodsky, 2013).  

Upon consumption of contaminated food, the enteropathogenic Yersinia adhere to the 

small intestinal epithelial cells, and eventually cross the intestinal barrier via the antigen 
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sampling M cells (Galindo, Rosenzweig, Kirtley, et al., 2011; Grutzkau, Hanski, Hahn, and 

Riecken, 1990). The bacteria then replicate in Peyer’s patches. M cells, also known as 

microfold cells, are important factors in the immune response as they transport vesicular 

enclosed bacteria to antigen presenting cells in gut lymphoid tissue (Clark, Hirst, and 

Jepson, 1998). However, as Yersinia are not enclosed in vesicles when they are 

transported into Peyer’s patches, localisation relies on a number of adhesive and invasive 

virulence factors instead. These are essential to promote contact with and invasion of host 

cells, as are anti-phagocytic virulence factors needed to inhibit uptake by cells of the host 

immune system. The adhesins are essential to ensure close host contact and several have 

been identified, both chromosomally and plasmid encoded (Reviewed by Atkinson and 

Williams, 2016). Not all of the Yersinia adhesins are shared by the three human pathogens, 

but combinations act in each species to allow contact with host cells, helping to promote 

invasion or ensure successful delivery of effector proteins into the host. 

As enteropathogens, the ability to specifically adhere to and invade cells lining the surface 

of the gut is crucial for Y. pseudotuberculosis and Y. enterocolitica and two adhesins, 

Invasin and YadA, are vital for this process. Invasin, a chromosomally encoded outer 

membrane protein, plays a major role in allowing Y. pseudotuberculosis to pass into the 

lymphatic system via M-cells by binding to β1-integrins causing them to associate into 

clusters and resulting in cytoskeletal rearrangements (Clark et al., 1998) that promote 

internalisation of the bacteria by the epithelial cells and subsequent transfer into the 

lymphatic system. YadA, encoded on the virulence plasmid pYV, is the major adhesin 

responsible for contact with submucosal cells (Mühlenkamp, Oberhettinger, Leo, Linke, and 

Schütz, 2015) which along with invasin is primarily concerned with enteropathogenicity.  It 

is therefore unsurprising that are both found as pseudogenes in Y .pestis (Parkhill, Wren, 

Thomson, et al., 2001). 

Ail is a 17 kDa chromosomally encoded protein present in all three human pathogenic 

Yersinia ( Miller, Bliska, and Falkow, 1990; Miller and Falkow, 1988). In all three species Ail 

has cell adhesion properties as well as providing resistance to complement mediated killing 
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( Miller and Falkow, 1988; Felek and Krukonis, 2009; Bartra, Styer, O’Bryant, et al., 2008; 

Ke, Chen, and Yang, 2013). In Y. pestis, Ail is thought to facilitate attachment to host cells 

through binding to laminin and fibronectin, two components of the extracellular matrix 

(Tsang, Felek, and Krukonis, 2010). Interestingly, Ail from Y. pseudotuberculosis confers 

different adhesion and invasion functions to that of Y. pestis, which has been attributed to 

two amino acid substitutions (Miller, Beer, Heusipp, Young, and Wachtel, 2001; Ke et al., 

2013),. It is perhaps unsurprising that Ail plays a more prominent role in Y. pestis virulence 

when compared to Y. pseudotuberculosis, considering the functional redundancy between 

Ail and other virulence factors encoded by the enteropathogenic Yersinia which are not 

active in Y. pestis (Atkinson et al., 2016). 

Another adhesin found in all three human pathogenic Yersinia is the chromosomally 

encoded pH6 antigen (Psa) which was first identified in Y. pestis where it was shown to 

coat bacteria with a fibrillar matrix (Ben-Efraim, Aronson, and Bichowsky-Slomnicki, 1961, 

Lindler and Tall, 1993). In Y. pseudotuberculosis, (where it is known as MyfA), it has been 

shown to promote attachment to tissue culture cells (Yang, Merriam, Mueller, and Isberg, 

1996) and has also been shown to have anti-phagocytic effects (Huang and Lindler, 2004), 

perhaps through its ability to bind to β1-linked galactosyl residues in glycosphingolipids and 

apoB-containing LDL in human plasma (Payne, Tatham, Williamson, and Titball, 1998; 

Makoveichuk, Cherepanov, Lundberg, Forsberg, and Olivecrona, 2003; Ke et al., 2013). 

The differences in virulence between Y. pestis and Y. pseudotuberculosis is largely down 

to the acquisition by Y. pestis of two plasmids, pPCP and pMT, which possess additional 

virulence factors. The protease Pla, or plasminogen activator, which is encoded on pPCP 

allows Y. pestis to rapidly invade host tissue and disseminate from peripheral sites of 

infection as it converts plasminogen to plasmin, which subsequently degrades the 

extracellular matrix (Degen, Bugge, and Goguen, 2007). Pla has other activities that 

enhance Y. pestis migration and dispersal, including acting as an adhesin and preventing 

blood clotting through its fibrinolytic activity (Kienlel, Emody, Svanborg, and O’Toole, 1992; 

Lähteenmäki, Kukkonen, and Korhonen, 2001),. pPCP also encodes the bacteriocin 
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pesticin, and a pesticin immunity protein, which are used by bacteria to defend a niche 

environment from closely related species (Hu and Brubaker, 1974). Pesticin exhibits N-

acetylglucosaminidase activity, which is active against some strains of Y. 

pseudotuberculosis and Y. enterocolitica, as well as sensitive Y. pestis cells that have been 

cured of the pPCP plasmid (Hu and Brubaker, 1974; Ferber and Brubaker, 1979; Rakin, 

Boolgakowa, and Heesemann, 1996). 

pMT encodes the virulence factor fraction 1 (F1) antigen, made up of the fraction 1 

capsular antigen (Caf1) subunit (Zavialov, Berglund, Pudney, et al., 2003). Similar to Psa, 

F1 forms fimbrial structures on the bacterial surface that have anti-phagocytic activity and 

enhance extracellular survival (Du, Rosqvist, and Forsberg, 2002).  pMT also encodes the 

Yersinia murine toxin (Ymt), a phospholipase D homologue, named because of its highly 

toxic effects in mice (Schar and Meyer, 1956). The toxin is crucial for survival in the flea 

mid-gut and subsequent colonisation by Y. pestis (Hinnebusch, Fischer, and Schwan, 

1998; Hinnebusch, Rudolph, Cherepanov, et al., 2002). The phospholipase D activity is 

believed to protect the bacteria from a flea-derived cytotoxin and although the mode of 

action is unknown, two models have been proposed. The prophylaxis model proposes that 

Ymt modifies components of the bacterial membrane to make it impenetrable to the 

cytotoxin , and the antidote model suggests that Ymt directly or indirectly neutralises the 

cytotoxin upon contact with the bacteria (Hinnebusch et al., 2002).  

Although pPCP and pMT are Y. pestis specific, all three human pathogenic Yersinia 

possess an approximately 70 kb virulence plasmid known as pYV in Y. pseudotuberculosis, 

pCD1 in Y. pestis and pYVe in Y. enterocolitica (Gemski, Lazere, Casey, and Wohlhieter ’, 

1980; Laroche, van Bouchaute, and Cornelis, 1984),. The plasmid was often referred to as 

the low calcium response plasmid (Lcr), due to the observation that in sub-millimolar 

concentrations of calcium, Yersinia strains carrying the virulence plasmid show growth 

arrest at 37oC (Mehigh, Sample, and Brubaker, 1989; Straley, Plano, Skrzypek, Haddix, 

and Fields, 1993).  These conditions are believed to mimic the effect of host cell contact 

and offer a convenient way to study T3S in vitro. At Ca2+ concentrations less than 2.5mM 
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and at 37oC the virulence factors encoded on pYV are synthesised. High Ca2+ and lower 

temperatures resumes vegetative growth and represses expression of genes on the 

plasmid  (Sample, Fowler, and Brubaker, 1987a; G R Cornelis, Boland, Boyd, et al., 1998),. 

At the DNA level, the three pYV plasmids share a high degree of homology but the 

response to low Ca2+, such as the shut off of cell division, is amplified in Y. pestis (Carter, 

Zahorchak, and Brubaker, 1980; Brubaker, 1991),.  

Virulence factors encoded on this plasmid include the Yersinia outer proteins, or Yop 

effectors, which are injected directly into host cells. Yops primarily target the actin 

cytoskeleton and important signalling pathways which dampen the immune response. pYV 

also codes for the V antigen, or LcrV, a protein with multiple functions including modulation 

of the immune response and secretion control (Fields, Nilles, Cowan, and Straley, 1999). 

The plasmid also encodes a specialised apparatus used to secrete these virulence factors, 

known as the Type Three Secretion (T3S) system. Strains lacking this plasmid exhibit 

either a severe reduction or a complete attenuation of virulence (Portnoy and Falkow, 

1981; Portnoy, Moseley, and Falkow, 1981). 

 

1.3 Type Three Secretion  

1.3.1 The Injectisome  

The mechanism for delivering virulence effectors into host cells comes in the form of the 

pYV encoded type T3S system. T3S systems are analogous to a hypodermic needle 

(injectisome), injecting the effectors directly into the cytosol of the host cell. The T3S 

system is closely related to the flagellum, has a core of 8 proteins that are similar to 

components of flagella  export apparatus (Van Gijsegem, Gough, Zischek, et al., 1995). 

However, there is still debate over whether the injectisome is derived from flagellum or 

rather that they share a common ancestor (Gophna, Ron, and Graur, 2003).  
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T3S systems are not limited to Yersinia, and the injectisome is both structurally and 

functionally conserved in over 25 different  negative species (Troisfontaines and Cornelis, 

2005). The T3S system is usually encoded in a single gene cluster on a mobile genetic 

element, be it a plasmid or pathogenicity island (Guy R Cornelis, 2006; Schmidt and 

Hensel, 2004),. Evidence suggests that the injectisomes have evolved by lateral gene 

transfer into seven different families, with subtle differences between them (Gophna et al., 

2003). The archetypal system is the Ysc (Yersinia secretion) system found in Yersinia spp., 

and this will be discussed from here onwards.  

The injectisome is assembled from 21 Ysc proteins and the entire complex spans the inner 

and outer bacterial membranes, the extracellular space and the cellular membrane of the 

host, resulting in a direct and uninterrupted path for effectors to be delivered from bacterial 

cytoplasm into the host cytosol (Yip and Strynadka, 2006). The injectisome can be divided 

into three components: the basal body, needle and tip complex (Figure 1.2). 

The basal body is cylindrical in shape, similar to the flagellar basal body, and consists of 

two pairs of rings joined by a rod that span both the inner and outer bacterial membranes. 

The outer rings are associated with the outer membrane and peptidoglycan layer and 

consist of a 12-14mer of the secretin YscC. YscC belongs to a multifunctional family of 

proteins that are able to form pores in outer membranes and so participate in a variety of 

transport processes (Koster, Bitter, de Cock, et al., 1997). An outer membrane protein, 

YscW, assists with the oligomerisation and insertion of YscC into the outer membrane 

(Burghout, Beckers, de Wit, et al., 2004). The second ring, anchored to the inner 

membrane, is termed the MS (membrane and supramembrane) ring, and is composed of 

YscD and YscJ (Silva-Herzog, Ferracci, Jackson, Joseph, and Plano, 2008; Ross and 

Plano, 2011). The basal body complex is completed by a number of proteins in association 

with the rings (Dewoody, Merritt, and Marketon, 2013). This includes a set of five integral 

membrane proteins that form the export apparatus YscRSTUV which assembles separately 

to the scaffold proteins that make up the rings (Diepold, Wiesand, and Cornelis, 2011). The 

final two components are the ATPase complex YscNKL involved in producing the proton 
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motive force needed for export, and a component analogous to the flagellar C ring 

comprised of YscQ (Blaylock, Riordan, Missiakas, and Schneewind, 2006, Bzymek, 

Hamaoka, and Ghosh, 2012). 

The basal body then forms a platform for the assembly of the rest of the injectisome. The 

next part of the system is the needle, which is made up of around 100-150 helically 

polymerised subunits of YscF (Hoiczyk and Blobel, 2001). The needle is hollow, 

approximately 60-80 nm long and has an inner diameter of around 25Å. The length of the 

needle has been evolutionary adjusted relative to the size of other structures on the 

bacterial surface and so varies between different species, and even amongst different 

strains there can be as much as 20% difference (Guy R Cornelis, 2006). Precise needle 

length is essential and this is regulated by YscP, often known as a molecular ruler, which 

enforces a substrate specificity switch once the needle has reached the correct length, 

terminating YscF export ( Payne and Straley, 1999; Journet, Agrain, Broz, and Cornelis, 

2003; Agrain, Callebaut, Journet, et al., 2005),. 

At the end of the needle is the LcrV (V-antigen) tip complex or translocation pore which 

once secreted polymerises at the end of the YscF needle, forming a pentamer (Mueller, 

Broz, Müller, et al., 2005). This then acts as a platform allowing two pore proteins, YopD 

and YopB, to insert into the host cell membrane (Goure, Pastor, Faudry, et al., 2004; 

Mueller, Broz, and Cornelis, 2008). It is through this completed pore that effectors are 

transported across host cell membrane and into the cytosol.   
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Figure 1.2 The type three secretion injectisome of Yersinia species. 

Purple denotes scaffold proteins: YscC, YscD, YscJ; orange shows proteins comprising the 

export apparatus: YscR, YscS, YscT, YscV, YscU; Blue shows cytoplasmic proteins: YscN, 

YscL, YscK, YscQ; Red shows the needle tip complex comprised of LcrV and the 

translocation pore consisting of YopB and YopD.  Figure from (Dewoody et al., 2013) 

 

1.3.2 Yop effectors 

Whilst the injectisome structure is relatively conserved across species, over 100 effectors 

have been identified, with each pathogen using a distinct set. Their modes of action vary 

with target systems including those involved in phagocytosis, the inflammatory response, 

apoptosis and autophagy.  In Yersinia spp. there are five effectors, YopH, YopM, YopE, 

YopO and YopJ/P. Three target the actin cytoskeleton and the other two reduce the 

immune response by interfering with signalling pathways (Trosky, Liverman, and Orth, 

2008).  

YscP 
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YopH is a potent tyrosine phosphatase that targets focal adhesion proteins and other 

targets required for effective phagocytosis, dampening the immune response (Viboud and 

Bliska, 2005; Fällman, Persson, Schesser, and Wolf-Watz, 1998). YopE is a GTPase 

activating protein that disrupts the actin cytoskeleton by targeting and inhibiting members of 

the Rho family of small G-proteins including RhoA, Rac1 and Cdc42 (Von Pawel-

Rammingen, Telepnev, Schmidt, et al., 2000). YopM is the only effector with no known 

catalytic activity but it has been proposed to act as a scaffold protein, mediating protein-

protein interactions between two important cellular kinases, allowing Rsk1 to activate Prk2 

(McDonald, Vacratsis, Bliska, and Dixon, 2003). However, its full role in Yersinia virulence 

is still unclear. YopO, sometimes known as YpkA, is a multifunctional protein with both 

serine/threonine kinase and GDI (guanidine nucleotide dissociation inhibitor) domains, that 

are believed to act together to disrupt the actin cytoskeleton and impair phagocytosis (Lee, 

Grimes, and Robinson, 2015). YopJ is a serine/threonine acetyltransferase that inhibits 

several signalling pathways, including the Mitogen-activated protein kinase (MAPK) 

pathway, which dampens the immune response (Orth, Palmer, Bao, et al., 1999). 

1.3.3 Regulation of Type Three Secretion  

Both Y. pestis and Y. pseudotuberculosis exhibit biphasic lifestyles, with Y. 

pseudotuberculosis alternating between soil or aquatic environments and the mammalian 

gastrointestinal tract and Y. pestis needing to survive in the insect vector and mammalian 

host (Martínez-Chavarría and Vadyvaloo, 2015; Eisen and Gage, 2009). Virulence factors 

only need to be expressed when in a host and so both an increase in temperature to 37oC 

and host cell contact is needed to induce expression of the T3S system. The tight 

regulation of T3S is largely down to two transcriptional regulators, LcrF and YmoA. 

LcrF is an AraC-like transcriptional activator, encoded on pYV/pCD1, and highly conserved 

amongst all human pathogenic Yersinia. It is named due to the observation that mutations 

in this gene alter the low calcium response (lcr) phenotype (G R Cornelis, Biot, Lambert de 
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Rouvroit, et al., 1989). The lcr is characterised by restricted growth and synthesis of Lcr 

plasmid-encoded virulence functions in low Ca2+ concentrations and at 37oC (Mehigh et al., 

1989).  

At 37oC lcrF expression increases and activates transcription of the T3S system and 

associated Yop genes (G R Cornelis and Wolf-Watz, 1997; Hoe and Goguen, 1993). 

However, LcrF does not trigger translocation of effectors (Wattiau and Cornelis, 1994). lcrF 

expression is subject to thermoregulation, via a short stem loop structure or ‘RNA-

thermometer’ which at environmental temperatures conceals the lcrF ribosome binding site 

and prevents translation. It has been proposed that when temperature increases, hydrogen 

bonds in the AT-rich thermometer melt, unmasking the RBS and initiating lcrF translation 

(Hoe and Goguen, 1993; Böhme, Steinmann, Kortmann, Seekircher, Heroven, Berger, 

Pisano, Herbst, et al., 2012). 

The RNA thermometer is located in an intergenic region between lcrF and the T3S system 

chaperone yscW, which lies 123 bp upstream of lcrF, in the same operon and under the 

control of the same promoter (Böhme, Steinmann, Kortmann, Seekircher, Heroven, Berger, 

Pisano, Herbst, et al., 2012). In addition to the translational regulation, this operon is under 

the control of the transcriptional repressor, YmoA (Yersinia modulator). YmoA is a histone-

like protein that is proposed to prevent expression of lcrF at low temperatures through 

influencing DNA topology, such as compaction of chromatin and impacting on DNA 

supercoiling (G R Cornelis, Sluiters, Delor, et al., 1991; G R Cornelis, 1993). At 37oC the 

repressor activity of ymoA falls and allows for the assembly of the T3S system. This is 

partly due to ClpXP and Lon mediated proteolysis of YmoA, temperature-induced 

topological changes of the promoter and conformational changes in the regulatory proteins 

(Jackson, Silva-Herzog, and Plano, 2004; Ono, Goldberg, Olsson, et al., 2005). Several 

chromosomally encoded genes have also been identified as being necessary for effective 

regulation of T3S in Y. pestis including those involved in the biosynthesis or integrity of the 

cell envelope and in LPS biosynthesis (Houppert, Kwiatkowski, Glass, et al., 2012). Recent 



26 
 

lux promoter fusion studies in Y. pseudotuberculosis showed that ymoA expression is 

upregulated by QS and lcrF is downregulated, highlighting another regulatory mechanism 

for T3S (Slater, 2017). When studying lcrF promoter activity in QS mutant backgrounds, 

significant repressive activity of ytbR/ysR was observed supporting the phenotypic 

observations of a negative role for QS on T3S (Slater, 2017; Atkinson, Goldstone, Joshua, 

et al., 2011; Atkinson, Chang, Sockett, et al., 2006). Further promoter::lux fusions showed 

that YpsI/YtbI and YpsR/YtbR both activated ymoA expression. As YmoA represses T3S 

through lcrF, activation of ymoA by QS indirectly represses the T3S system (Slater, 2017). 

 

1.4 Quorum Sensing 

Until the early 1990’s it was generally accepted that individual bacteria in a population were 

autonomous entities. However, this belief has been superseded by the realisation that a 

bacterial community is capable of complex coordinated social interactions, facilitated by the 

release of extracellular signal molecules. The signal molecules are usually released in 

response to environmental challenge which results in a change in gene expression, and a 

coordinated change in community behavior. The ability to coordinate gene expression in 

this way can confer a number of advantages and improve the survival of the population, 

this includes enhancing access to nutrients, adapting to the host environment and 

defending against competitor organisms (Williams, 2007). Interestingly, cross talk between 

different genera has been observed as some species of different genera have been found 

to produce and respond to the same signal molecules (Williams, 2007).  

The process through which bacteria communicate is known as quorum sensing (QS) which 

represents a change in gene expression in response to the release and accumulation of a 

diffusible signal molecule within the environment. This increase in signal molecule 

concentration is dependent on the cell population density, so QS results in population 

dependent gene expression. However, the concentration of signal molecule depends on 

additional factors and as a result QS has also been referred to as diffusion, compartment or 
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efficiency sensing, as the signals provide information on the local environment and spatial 

distribution of cells, in addition to population density (Atkinson and Williams, 2009).  

There are several chemically distinct types of signalling molecules including modified 

peptides, alkylquinolones and furanones (Yates, Philipp, Buckley, et al., 2002) and QS 

systems are ubiquitous in Gram positive and negative bacteria. It was suggested that there 

may be a conserved QS system in the form of LuxS and the signalling molecule 

autoinducer-2 (AI-2) (Xavier and Bassler, 2003; X. Chen, Schauder, Potier, et al., 2002). 

Although Yersinia spp. possess a luxS gene, there is little evidence that it acts as a QS 

synthase in these bacteria, and as LuxS is a key metabolic enzyme, phenotypes attributed 

to the mutation of luxS may be a consequence of disrupted S-adenosylmethionine (SAM) 

recycling (Winzer, Hardie, Burgess, et al., 2002). 

 

The most widely studied class of signal molecules are the N-acylhomoserine lactones 

(AHLs) which are used by many different Gram-negative species. AHLs are synthesised 

from precursors of fatty acid and amino acid metabolism and there are many different 

variations. The basic structure consists of a homoserine lactone ring that is N-acylated with 

a fatty acyl group at the α-position and unsubstituted in the β and γ positions (Chhabra, 

Philipp, Eberl, et al., 2005). AHLs exhibit various saturation levels, oxidation states and acyl 

chain lengths however most have acyl chains that belong to either N-acyl, N-(3-oxyacyl) or 

N-(3-hydroxyacyl) classes, which are shown in Figure 1.3 (Williams, 2007). AHLs are 

usually but not always synthesised by an AHL synthase belonging to the LuxI family of 

proteins. A single LuxI homologue is often capable of producing a large number of different 

AHLs and many bacteria contain more than one AHL synthase.  
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Figure 1.3 The structures of common AHL signal molecules. 

Most have acyl chains belong to either N-acyl, N-(3-oxyacyl) or N-(3-hydroxyacyl) classes. 

Figure adapted from (Atkinson and Williams, 2009) 

 

AHL-mediated QS requires both a synthase and a signal transduction mechanism, 

represented in Figure 1.4. Depending on the length of the acyl chain, AHL molecules 

diffuse out or are pumped out of the cell, where they accumulate in the extracellular 

environment (Pearson, Van Delden, and Iglewski, 1999). Upon reaching a threshold 

concentration, AHLs exert their effect by binding to members of the LuxR family of 

transcriptional regulators, which repress or activate target genes.  
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Figure 1.4 Quorum sensing schematic. 

Quorum sensing involves the production of N-acylhomoserine lactone (AHL) signal 

molecules by members of the LuxI family of synthases. AHLs bind to members of the LuxR 

family of response regulators, which can then activate target genes. 

 

In Y. pseudotuberculosis, two QS systems homologous to LuxR/I have been identified, 

known as YpsR/I and YtbR/I (Atkinson, Throup, Stewart, and Williams, 1999).  Y. 

pseudotuberculosis is capable of producing 24 different AHLs with acyl chain lengths 

ranging from C4 to C15. The most abundant AHLs were found to be those with 3-oxo-

substituted C6, C7 and C8 as well as the unsubstituted C6 and C8 compounds (Ortori, 

Atkinson, Chhabra, et al., 2007b). Interestingly, not all AHLs are produced by both 

systems. YtbI is able to produce all 24 AHLs whereas YpsI is only able to synthesise 3-oxo-

C6-HSL, C8-HSL and 3-oxo-C7-HSL (Ortori et al., 2007b). In Y. pseudotuberculosis the 

four QS genes are present at two loci and are convergent and overlapping. YpsR/I 

activates itself and the YtbR/I system whereas the YtbI/R activates expression of ytbI and 

has no effect on ypsI/R, as shown in Figure 1.5  (Atkinson, Chang, Patrick, et al., 2008). 
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Figure 1.5  A model showing the convergent, overlapping organisation of the quorum 

sensing luxRI homologues in Y. pseudotuberculosis 

The four quorum sensing genes are arranged in an overlapping organisation. YpsR/I 

activates both its own expression and the expression of ytbR/I. YtbR/I positively regulates its 

own expression Lines ending in ▼ indicate activation. Adapted from (Atkinson et al., 2008; 

Slater, 2017). 

 

Y. pestis contain two QS loci, termed ypeR/I and yepR/I (Isherwood, 2001.; Swift, 

Isherwood, Atkinson, Oystom, and Stewart, 1999),. yepI is a homologue of ytbI and ypeI a 

homologue of the ypsI synthase gene of Y. pseudotuberculosis (Atkinson et al., 1999). 

YepI is known to produce 3-oxo-C8-HSL and 3-oxo-C6-HSL primarily, as well as 3-oxo-

C10-HLS, C6-HSL and C8-HSL (Kirwan, Gould, Schweizer, et al., 2006) but the full AHL 

profile of YpeI is still unclear.  
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1.5 Quorum Sensing Regulated Phenotypes  

QS systems are known to regulate a number of behaviours and phenotypes including 

swarming, antibiotic synthesis, plasmid transfer, biofilm development and virulence and in 

Y. pseudotuberculosis these include swimming motility, biofilm formation and aggregation. 

1.5.1 Flagellar-Mediated Motility 

Flagella-mediated motility is a tightly regulated system that involves structural and 

regulatory genes arranged in a hierarchy consisting of three gene clusters, I, II and III. 

Class I consists of flhDC, the master regulator operon that is required for the expression of 

all other flagellar genes. Class II includes the genes coding for the structural proteins 

needed for basal body and hook component assembly as well as the flagellar specific 

sigma factor, FilA, and its regulator FlgM. Class III genes are transcribed from FilA 

dependent promoters and encode proteins needed for the final maturation of the flagellum 

(MacNab, 1996).  

In Y. pseudotuberculosis the motility is in part regulated by QS, through regulation of flhDC 

and fliA expression (Atkinson et al., 2008). In swim agar plate and liquid media assays 

ypsR and ypsI mutants were found to be hypermotile when compared to the parent at 22oC 

(Atkinson et al., 1999) although the hypermotile phenotype was not observed in ytbI, ytbR, 

ypsI/ytbI and ypsR/ytbR mutants. This suggests that YpsR in association with YpsI-derived 

AHLs represses motility whereas the YtbR/I system has a role in activating the system. 

(Atkinson et al., 2008). Despite possessing one full and a second partial set of flagella 

genes and regulators, Y. pestis is non-motile due to a single base-pair mutation in the flhD 

regulator (Parkhill et al., 2001; Isherwood, 2001.). 

1.5.2 Biofilm Formation 

A biofilm is a community of bacteria surrounded by a self-produced matrix of extracellular 

polymeric substances (Costerton, Lewandowski, Caldwell, Korber, and Lappin-Scott, 

1995). Cells in biofilms are physiologically distinct from their planktonic counterparts and 

are provided with protection in harsh environments, including challenge from antibiotics, 
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bacteriophages, antibodies, and phagocytes. Biofilms are formed by a number of 

pathogenic bacteria and they are of significant interest as they reduce the effectiveness of 

antimicrobial therapies. Antibiotics are less effective because the matrix makes the 

bacterial cells harder to reach and the bacteria in biofilms are often in a state of slow 

growth (Costerton, Stewart, and Greenberg, 1999).  

The substances making up the matrix include proteins, nucleic acids, polysaccharides and 

lipids (Flemming and Wingender, 2010). The major component of Yersinia spp. biofilms is 

poly β-1,6-N-acetyl-D-glucosamine (GlcNAc), which is produced through the activities of 

the hmsHFRS operon (Hinnebusch and Erickson, 2008; Bobrov, Kirillina, Forman, Mack, 

and Perry, 2008). The operons nagE-nagBACD and glmUS are also involved in GlcNAc 

degradation and production respectively.The NagC repressor controls the expression of 

nagE-nagBACD involved in the uptake and degradation of GlcNAc. The glmUS operon 

encodes proteins necessary for the synthesis of UDP-GlcNAc and is also regulated by 

NagC (Plumbridge, 1995; Zhou and Yang, 2011). 

Biofilms are of specific interest in Yersinia research as they form a crucial part of the model 

for Y. pestis transmission by fleas. Within the flea vector, Y. pestis uses biofilms to attach 

to the surface of the spines that line the inside of the proventriculus. The proventriculus 

separates the insect foregut and midgut, and contains a series of teeth-like denticles 

capable of grinding up food particles to pass to the midgut (Hinnebusch and Erickson, 

2008). Heavy proliferation of bacteria blocks the gut, meaning no blood can pass into the 

midgut and the flea begins to starve (Hinnebusch, Perry, Schwan, et al., 1996; Hinnebusch 

and Erickson, 2008). This results in repeated attempts to feed, causing distension of the 

oesophagus but no blood movement. As starvation continues, eventually the flea relaxes 

its pharyngeal muscles, causing blood to be forced from the flea into the feeding site, 

taking Y. pestis into a new host (Darby, 2008; Bacot and Martin, 1915). Figure 1.4 shows a 

typical flea infected and blocked with Y. pestis. 
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Figure 1.4 A flea infected and blocked with Y. pestis. 

Fresh blood can be seen in the esophagus whilst the midgut only contains dark digestion 

products of previous meals. Image from (B J Hinnebusch et al., 1996). 

 

In addition to forming biofilms in the flea gut, Y. pestis also forms biofilms on the head and 

mouth region of the nematode worm Caenorhabditis elegans, as the matrix attaches 

directly to the nematode cuticle (Darby, Hsu, Ghori, and Falkow, 2002; Joshua, Karlyshev, 

Smith, et al., 2003; Tan and Darby, 2004). C. elegans is therefore a good model system for 

Yersinia biofilm production. Production of biofilms on C. elegans by Y. pseudotuberculosis 

is strain specific and the majority of strains do not form biofilms on nematodes (Joshua et 

al., 2003). However, a small number of strains do produce biofilms due to the inactivation 

of one or more inhibitory factors. This includes the widely used laboratory strain YPIII, 

which has a biofilm+ phenotype due to the inactivation of PhoP, a member of the 

PhoP/PhoQ two-component regulatory system (Sun, Koumoutsi, and Darby, 2009). 

Despite a biofilm+ phenotype, none of these Y. pseudotuberculosis strains are able to form 

biofilms in and colonise fleas. Another insect vector linked to Y. pestis transmission is 

Pediculus corporis, the human body louse, as studies have shown that P. corporis are 

capable of transmitting Y. pestis in rabbits, with as little as 10 lice needed for infection 

(Houhamdi, Lepidi, Drancourt, and Raoult, 2006). However, little is known about the 

mechanism of transmission and whether biofilm formation is involved.  
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It has been shown that the biofilm formation by Y. pseudotuberculosis on C.elegans is 

promoted by the QS system as double mutants in AHL synthase (ypsI/ytbI) and response 

regulator (ypsR/ytbR) genes showed a reduction in biofilm formation (Atkinson et al., 2011). 

This study also found that AHLs were detected in biofilms formed on C. elegans. 

Interestingly, deleting key genes involved in flagellar mediated motility, including flhDC and 

fliA which are regulated by the QS system, also resulted in loss of biofilm formation yet this 

is not because flagellar are required as mutants of the flagellin protein FliC form normal 

biofilms (Atkinson et al., 2011). This study also found that curing the pYV virulence plasmid 

restored biofilm formation in the flhDC and ypsI/ytbI mutants, suggesting that expression of 

the T3S system attenuates biofilm formation and that this is reciprocally regulated with 

motility, through the QS system (Atkinson et al., 2011). Similarly, a triple mutant of Y. pestis 

with mutated ypeR/I, yepR/I and luxS systems showed a mild reduction of biofilm formation 

in vitro (Bobrov, Bearden, Fetherston, et al., 2007). 

1.5.3 Aggregation 

In suspended cultures, many bacteria adhere together to form multi-cellular communities, 

in a process which in this thesis will be referred to as auto-aggregation. Auto-aggregation is 

often used by bacteria to adapt to and survive adverse conditions, and in this way may be 

thought of a suspended biofilm, offering similar levels of protection.  In Campylobacter  

jejuni for example, Joshua et al. (Joshua, Guthrie-Irons, Karlyshev, and Wren, 2006) 

identified aggregates encased in an extracellular matrix that provided similar advantages to 

forming surface biofilms.  

Aggregation of Y. pseudotuberculosis and Y. enterocolitica when grown at 37oC was first 

reported in the 1980’s (Laird and Cavanaugh, 1980). Later transposon mutagenesis 

identified the role of P1 protein, encoded on pYV, in auto-aggregation in Y. enterocolitica 

(Balligand, Laroche, and Cornelis, 1985). P1 was later reported to be the adhesin protein, 

YadA, and it was proposed that auto-aggregation was due to hydrophobic interactions 

mediated by YadA (Paerregaard, Espersen, and Skurnik, 1991). However, other studies 
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have suggested that P1 and YadA are not the same protein as P1 is 52.5 kDa and YadA is 

a homotrimer of 45 kDa subunits (Skurnik, Bölin, Heikkinen, Piha, and Wolf-Watz, 1984). 

Additionally, in Y. pestis yadA is non-functional, yet certain strains still auto-aggregate 

when grown in liquid medium at either 28oC or 37oC (Wessman and Miller, 1966; Rosqvist, 

Skurnik, and Wolf-Watz, 1988a; Felek, Tsang, and Krukonis, 2010; Laird and Cavanaugh, 

1980). Deletion of ompX, an ail homologue, in Y. pestis was shown to reduce aggregation 

significantly (Kolodziejek, et al., 2007). These findings suggest that auto-aggregation in 

Yersinia is not always yadA dependent.  

The presence of the virulence plasmid is essential for auto-aggregation in Y. 

pseudotuberculosis (Wiechmann, 2015). Analysis of the pYV encoded T3S system 

demonstrated via a series of deletion mutants that the needle tip protein, LcrV, is essential 

for auto-aggregation (Barratt, 2018). QS has also been identified as having an inhibitory 

role in auto-aggregation, as a mutant with both AHL synthase genes deleted (ypsI/ytbI) 

exhibits greater aggregation (Barratt, 2018). This T3S- and QS- mediated aggregation is 

distinct from the YadA-mediated aggregation, as these results were replicated when yadA 

was mutated (Barratt, 2018). 

1.5.4 Iron Use and Regulation 

The correct concentration and supply of intracellular transition metals is essential for the 

survival of bacteria as iron, zinc, copper and manganese are essential for many functions. 

However, in excess these metals can be extremely toxic through the production of reactive 

hydroxyl radicals and disruption of redox potentials (Hobman and Crossman, 2015). As 

they are so crucial, host defences often restrict their availability as an early line of defence, 

which is particularly true for iron acquisition and as a result, much of the research 

onYersinia has focused on iron uptake (Cassat and Skaar, 2013; S. Chen, Thompson, and 

Francis, 2016). With a lack of oxygen, iron is present in a soluble ferrous form (Fe2+) and in 

the presence of oxygen it is found in the insoluble ferric form (Fe3+). To maximise uptake, 

Yersinia has developed mechanisms to utilise both.  
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Analysis has shown that there is a high degree of similarity between the iron transport 

systems in both Y. pestis and the enteropathogenic Yersinia (Forman, Paulley, Fetherston, 

Cheng, and Perry, 2010). The major system present in all three human pathogenic Yersinia 

for the uptake of ferric iron is the yersiniabactin (Ybt) siderophore-based system. All the 

genes needed for the synthesis and regulation of Ybt are encoded on a mobile genetic 

element, the High Pathogenicity Island (Forman et al., 2010). However, some virulent 

Yersinia contain truncated or deleted Ybt operons, and instead rely on alternative uptake 

systems in the presence of oxygen. Alternative siderophore systems include the 

pseudochelin (Ynp) system, the yersiniachelin (Ysu) system and the aerobactin (Luc) 

system (Alexander Rakin, Schneider, and Podladchikova, 2012; Forman et al., 2010). In 

anoxic conditions, or in the presence of reducing agents, two systems seem to be the most 

common, Yfe and Feo, with some redundancy seen between them (Perry, Mier, and 

Fetherston, 2007). As an additional source of iron when in a mammalian host, Yersinia 

have the ability to use haem due to two transport systems, the Hmu ABC transporter and 

the Has haemophore system (Forman et al., 2010; Hornung, Jones, and Perry, 1996; 

Rossi, Fetherston, Létoffé, et al., 2001). Though in Yersinia no links between iron-uptake 

and QS have been reported, siderophores in Pseudomonas aeruginosa are known to act 

as signal molecules and regulate genes outside of iron acquisition (Lamont, Beare, 

Ochsner, Vasil, and Vasil, 2002). QS has also been linked to iron chelation in Erwinia 

carotovora, a member of the Enterobacteriaceae, as a mutant that does not produce AHLs 

was found to also not produce siderophores (Rasch, Andersen, Nielsen, et al., 2005).  

1.6 Iron Sulfur Cluster Regulator 

One of the many uses of cellular iron is in the formation of Fe-S proteins which are almost 

ubiquitous in nature and have a range of cellular functions. In order to avoid toxic 

accumulation of Fe2 and S2, their assembly involves a number of protein factors. These 

assembly factors are highly conserved, consisting of IscR, IscS, IscU, IscA, Hsc66, Hsc20 
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and ferredoxin, often found in the operon iscRSUA (Schwartz, Giel, Patschkowski, et al., 

2001).  

IscR belongs to the Rrf2 family of winged helix-turn-helix transcription factors, and is best 

understood for its role in regulating the formation of Fe-S proteins. IscR is itself an Fe-S 

protein, as it coordinates an iron-sulfur cluster [2Fe-2S] via 3 cysteine and 1 histidine 

residues. It is capable of binding to two types of DNA motifs, 1 

(ATASYYGACTRwwwYAGTCRRSTAT) and 2 (AWARCCCYTSnGTTTGMnGKKKTKWA), 

depending on its Fe-S state (Giel, Rodionov, Liu, Blattner, and Kiley, 2006b). Clusterless 

(apo) IscR only recognises type 2, whereas holo IscR can bind to both. Holo IscR 

represses the iscRSUA operon, decreasing the amount of Fe-S protein assembly, therefore 

forming part of an autoregulatory loop (Schwartz et al., 2001; Santos, Pereira, and 

Macedo-Ribeiro, 2015). The holo/apo ratio is affected by environmental cues such as iron 

starvation, oxidative stress and oxygen limitation, allowing these factors to effect gene 

expression via IscR (Giel, Rodionov, Liu, Blattner, and Kiley, 2006a).  

In addition to Fe-S cluster homeostasis, recent evidence has shown that IscR regulates the 

expression of many other genes with an array of functions and phenotypic traits. In V. 

vulnificus an iscR mutant showed significant reduction in motility, adhesion to host cells 

and survival under oxidative stress (Lim and Choi, 2014). IscR is also essential for 

virulence of V. vulnificus and together this evidence suggests IscR is a global regulator of 

gene expression (Lim and Choi, 2014).  Similarly, in Pseudomonas, IscR protects against 

oxidative stress and is essential for full pathogenicity (Somprasong, Jittawuttipoka, Duang-

nkern, et al., 2012; Romsang, Duang-Nkern, Leesukon, et al., 2014; Kim, Lee, Lau, and 

Cho, 2009). In E. coli, IscR regulates iron-dependent biofilm formation, through controlling 

the expression of type I fimbriae involved in cell attachment (Wu and Outten, 2009).  

Recently, a study has shown that IscR controls the T3S system in Y. pseudotuberculosis 

and that T3S is reduced in an iscR mutant (Miller et al., 2014). This is achieved through 
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binding to a promoter upstream of lcrF and regulating its expression. This study also 

observed a significant reduction in the colonisation of Peyer’s patches and mesenteric 

lymph nodes in a mouse model by an iscR mutant, suggesting it is essential for virulence. 

An  Fe-S clusterless, apo-locked IscR also resulted in both a growth and swimming motility 

defect (Miller et al., 2014).  

Transcriptome analysis identified IscR as a global regulator of gene expression in Y. 

pseudotuberculosis, repressing over 100 different genes and activating 92 (Miller et al., 

2014). This includes genes linked to biofilm formation, auto-aggregation, iron transport and 

QS. Several nag genes involved in the degredation of key biofilm component GlcNAc, 

including the key regulator nagC, were found to be up-regulated in an iscR mutant, 

suggesting IscR represses this system. The luxS gene was also found to be up-regulated 

in the mutant, as was the attachment invasion locus protein aiI which has been linked to 

auto-aggregation. Many genes involved in T3S are activated by IscR and consequently 

expression was reduced in the mutant, as were several genes comprising the Hmu haemin 

transport system, involved in the uptake of iron (Miller et al., 2014). However, the role of 

IscR in these pheonotypes remains to be determined.  

 

1.7 Aims of this study 

Yersinia possess a number of key virulence associated phenotypes that form part of a 

complex and interrelated network which includes T3S, motility, biofilm formation, auto-

aggregation, and QS. Although it is know that IscR regulates T3S in Y. pseudotuberculosis 

(Miller et al., 2014) it is unclear whether it is an integral part of this network, and its role in 

Y. pestis remains wholly uncharacterised. The aims of this study were therefore to:  

• Characterise iscR mutant phenotypes in parent and QS mutant backgrounds in Y. 

pseudotuberculosis and Y. pestis by studying: 

o Type Three Secretion 
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o Production of AHL signalling molecules  

o Biofilm formation 

o Auto-aggregation 

o Iron uptake 

• Develop a model for studying biofilm formation in P. corporis 

• Investigate the effect of IscR on expression of T3S transcriptional regulators, lcrF 

and ymoA 

• Investigate the effect of IscR on expression of QS system genes, ypsR/I and ytbR/I 
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2 Materials and Methods 

2.1 Culture Conditions 

Unless otherwise stated E. coli were grown at 37oC in LB-Miller (10 g/L tryptone [OxoidTM], 

10 g/L NaCl, 5 g/L yeast extract [OxoidTM]) (Bertani, 1951). Y. pseudotuberculosis was 

grown at 30oC in low-salt LB-Lennox (YLB) (10 g/L tryptone [OxoidTM], 5 g/L NaCl, 5 g/L 

yeast extract [OxoidTM]) (Lennox, 1955). Y. pestis was grown at 30oC in brain heart infusion 

(BHI) broth (OxoidTM) in 50 ml centrifuge tubes with vented caps (Corning). All strains were 

cultured aerobically with shaking at 200 rpm. When necessary, maintenance of a stable pH 

6.8 was achieved with a final concentration of 50 mM 3-(N-morpholino) propanesulfonic 

acid (MOPS). For maintenance of strains on solid media, 15 g/L of agar (OxoidTM) was 

added to the appropriate growth medium. For selective culture of Y. pestis, Yersinia 

selective agar (YSA) (Sigma-Aldrich) was used.  

To test for the presence of the pYV/pCD1 virulence plasmid strains were grown on Congo 

Red magnesium oxalate (CR-MOX) plates comprising 40 g/L tryptic soy agar (Sigma-

Aldrich) supplemented with 0.02 M sodium oxalate, 0.02 M MgCl2, 0.2% galactose and 

0.005% Congo red (Riley and Toma, 1989). Congo red uptake parallels hemin uptake, 

indicating that the ability to bind Congo red reflects a plasmid determined system for 

assimilating iron. pYV+ cells were identified as dark red pinprick colonies whilst large white 

colonies represented pYV- cells.   

For assays requiring Y. pseudotuberculosis growth in a defined media, Yersinia defined 

minimal medium (YDMM) was used. (1x M9 minimal salts (Gibco™), 0.4% glucose, 0.4% 

casamino acids, 10 mM MgCl2, 5 mM K2SO4 and 10 μg/ml thiamine) (Lavander, Ericsson, 

Bröms, and Forsberg, 2006). 

Semi-solid agar was used to observe swimming motility ((10 g/L tryptone, 5 g/l NaCl, 3 g/l 

agar (Difco-Bacto™)) (Atkinson et al., 1999).  
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C. elegans were maintained on nematode growth medium (NGM) containing 2.5 g/L 

peptone (Difco-BactoTM), 3 g/L NaCl and 17 g/L agar in 1 L of dH2O. After autoclaving this 

was supplemented with 2 ml cholesterol (5 mg/ml), 1 ml CaCl2 (1 M), 1 ml MgSO4 (1 M) 

and 25 ml KH2PO4 (1 M, pH 6) (Epstein and Shakes, 1995). 

Appropriate antibiotics were added to media for selection when required at the following 

concentrations: ampicillin (Ap) at 100 µg/ml, tetracycline (Tc) at 10 µg/ml, gentamicin (Gm) 

at 10 µg/ml, kanamycin (Km) at 50 µg/ml, chloramphenicol (Cm) at 10 µg/ml and 

erythromycin (Em) at 25 µg/ml, nalidixic acid (Nal) at 15 µg/ml and streptomycin (Sm) at 

100 µg/ml. For blue-white screening, 5-bromo-4-chloro-3-indolyl (X-Gal) was used at a 

concentration of 20 µg/ml. A list of strains used in this study and their antibiotic resistances 

is shown in Table 2.1.  

2.1.1 Strains  

Table 2.1 Bacterial strains used in this study and their antibiotic resistances 

Strain Description Reference 

Escherichia coli 

Top10 Laboratory cloning strain. (SmR) Thermo Fisher 
Scientific  

OP50 A uracil auxotroph nutrient source for C. 
elegans (TcR) 

(Hall, 1995) 

S17.1  λ –pir. Permissive host capable of 
transferring suicide plasmids requiring 
the Pir protein by conjugation to recipient 
cells (SmR) 
 

(Simon, Priefer, 
and Pühler, 1983) 

S17.1  pDM4 S17.1 λ-pir containing suicide vector 
pDM4 (CmR) 

(Milton, O’Toole, 
Horstedt, and Wolf-
Watz, 1996) 

S17.1 
pDM4∷iscR:Gm 

S17.1 containing the construct for the 
deletion/insertion mutation of iscR in Y. 
pseudotuberculosis on pDM4 (CmRGmR) 

This study 

S17.1 
pDM4∷iscR:Tc 

S17.1 containing the construct for the 
deletion/insertion mutation of iscR in Y. 
pseudotuberculosis on pDM4 (CmRTcR) 

This study 

S17.1 
pDM4∷iscR(pestis):
Gm 

S17.1 containing the construct for the 
deletion/insertion mutation of iscR in Y. 
pestis on pDM4 (CmRGmR) 

This study 

S17.1 
pDM4.2∷PymoA::lux 

S17.1 containing a lux fusion of the 
ymoA promoter of Y. pseudotuberculosis 
on pDM4.2 (GmR) 

Joanne Purves 
(unpublished) 
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S17.1 
pDM4.2∷PlcrF::lux 

S17.1 containing a lux fusion of the lcrF 
promoter of Y. pseudotuberculosis on 
pDM4.2 (GmR) 

Joanne Purves 
(unpublished) 

S17.1 
pDM4.2∷PyscW::lux 

S17.1 containing a lux fusion of the yscW 
promoter of Y. pseudotuberculosis on 
pDM4.2 (GmR) 

(Slater, 2017) 

S17.1 
pKNG10∷PypsR∷lux 

S17.1 containing a lux fusion of the ypsR 
promoter of Y. pseudotuberculosis on 
pKNG10 (SmR) 

(Atkinson et al., 
2008) 

S17.1 
pKNG10∷PypsI∷lux 

S17.1 containing a lux fusion of the ypsI 
promoter of Y. pseudotuberculosis on 
pKNG10 (SmR) 

(Atkinson et al., 
2008) 

S17.1 
pKNG10∷PytbR∷lux 

S17.1 containing a lux fusion of the ytbR 
promoter of Y. pseudotuberculosis on 
pKNG10 (SmR) 

(Atkinson et al., 
2008) 

S17.1 
pKNG10∷PytbI∷lux 

S17.1 containing a lux fusion of the ytbI 
promoter of Y. pseudotuberculosis on 
pKNG10 (SmR) 

(Atkinson et al., 
2008) 

S17.1 
pDM4∷PnagC∷lux 

S17.1 containing a lux fusion of the nagC 
promoter of Y. pseudotuberculosis on 
pDM4 (CmR) 

Anja Wiechmann 
(unpublished) 

DH5α 
pEX18Cm∷pPCP1r
eplicon 

DH5α containing the replicon of YPCO92 
pPCP1 on pEX18Cm (CmR)  

Vanina Garcia, 
unpublished 

DH5α 
pEX18Gm∷pPCP1r
eplicon 

DH5α containing the replicon of YPCO92 
pPCP1 on pEX18Gm (GmR)  

Vanina Garcia, 
unpublished 

Yersinia pseudotuberculosis  

YPIII Parent Parent strain of Y. pseudotuberculosis 
harbouring the virulence plasmid pYV. 
Serotype O:III (NalR) 

(Rosqvist, Skurnik, 
and Wolf-Watz, 
1988b) 

YPIII Parent pYV- Y. pseudotuberculosis parent cured of 
the virulence plasmid pYV (NalR) 

(Wiechmann, 
2015) 

YPIII ΔiscR YPIII lacking the iron-sulfur cluster 
regulator iscR (GmR) 

This study 

YPIII ΔiscR comp YPIII lacking the iron-sulfur cluster 
regulator iscR complemented with 
pHG327::iscR (GmR ApR) 

This study 

YPIII ΔiscR + 
pHG327 

YPIII lacking the iron-sulfur cluster 
regulator iscR harbouring empty pHG327 
(GmR ApR) 

This study  

YPIII ΔiscR (TcR) YPIII lacking the iron-sulfur cluster 
regulator iscR (TcR) 

This study  

YPIII ΔypsR YPIII lacking the quorum sensing 
response regulator ypsR (KmR) 

(Atkinson et al., 
1999) 

YPIII ΔypsI YPIII lacking the AHL synthase ypsI 
(KmR) 

(Atkinson et al., 
1999) 

YPIII ΔytbR YPIII lacking the quorum sensing 
response regulator ytbR (CmR) 

(Atkinson et al., 
1999) 

YPIII ΔytbI YPIII lacking the AHL synthase ytbI 
(CmR) 

(Atkinson et al., 
1999) 

YPIII ΔypsR/ytbR YPIII lacking the quorum sensing 
response regulators ypsR and ytbR (KmR 
CmR) 

(Atkinson et al., 
1999) 
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YPIII ΔypsI/ytbI YPIII lacking the AHL synthases ypsI and 
ytbI (KmR CmR) 

(Atkinson et al., 
1999) 

YPIII 
ΔypsR/ytbR/iscR 

YPIII lacking the quorum sensing 
response regulators ypsR and ytbR and 
the iron-sulfur cluster regulator iscR 
(KmR CmR GmR) 

This study 

YPIII ΔypsI/ytbI/iscR YPIII lacking the AHL synthases ypsI and 
ytbI and the iron-sulfur cluster regulator 
iscR (KmR CmR GmR) 

This study 

YPIII ΔypsR/iscR YPIII lacking quorum sensing response 
regulator ypsR and the iron-sulfur cluster 
regulator iscR (KmR GmR) 

This study 

YPIII ΔytbR/iscR YPIII lacking quorum sensing response 
regulator ytbR and the iron-sulfur cluster 
regulator iscR (CmR GmR) 

This study 

YPIII ΔlcrF YPIII lacking the virulence regulator lcrF 
(KmR) 

Atkinson et al 
(unpublished data) 

YPIII ΔnagC YPIII lacking the repressor of the 
GlcNAc-operon NagC (KmR) 

(Wiechmann, 
2015) 

YPIII parent GFP YPIII harbouring the GFP plasmid 
pXYLAP (ApR) 

(Wiechmann, 
2015) 

YPIII ΔiscR GFP YPIII ΔiscR harbouring the GFP plasmid 
pXYLAP (GmR ApR) 

This study 

YPIII ΔiscR comp 
GFP 

YPIII ΔiscR complemented harbouring 
the GFP plasmid pXYLAP (GmR ApR) 

This study 

YPIII PlcrF::lux lux fusion of the lcrF promoter of YPIII 
integrated into YPIII by pDM4.2 (GmR) 

(Slater, 2017) 

YPIII PyscW::lux lux fusion of the yscW promoter of YPIII 
integrated into YPIII by pDM4.2 (GmR) 

(Slater, 2017) 

YPIII PymoA::lux lux fusion of the ymoA promoter of YPIII 
integrated into YPIII by pDM4.2  (GmR) 

(Slater, 2017) 

YPIII PypsR::lux lux fusion of the ypsR promoter of YPIII 
integrated into YPIII by pKNG10  (SmR) 

(Atkinson et al., 
2008) 

YPIII PypsI::lux lux fusion of the ypsI promoter of YPIII 
integrated into YPIII by pKNG10  (SmR) 

(Atkinson et al., 
2008) 

YPIII PytbR::lux lux fusion of the ytbR promoter of YPIII 
integrated into YPIII by pKNG10 (SmR) 

(Atkinson et al., 
2008) 

YPIII PytbI::lux lux fusion of the ytbI promoter of YPIII 
integrated into YPIII by pKNG10 (SmR) 

(Atkinson et al., 
2008) 

YPIII PnagC::lux lux fusion of the nagC promoter of YPIII 
integrated into YPIII by pDM4  (CmR) 

(Wiechmann, 
2015) 

YPIII ΔiscR PlcrF::lux lux fusion of the lcrF promoter of YPIII 
integrated into YPIII ΔiscR (TcR) by 
pDM4.2 (GmR) 

This study 

YPIII ΔiscR 
PyscW::lux 

lux fusion of the yscW promoter of YPIII 
integrated into YPIII ΔiscR (TcR) by 
pDM4.2 (GmR) 

This study 

YPIII ΔiscR 
PymoA::lux 

lux fusion of the ymoA promoter of YPIII 
integrated into YPIII ΔiscR (TcR) by 
pDM4.2  (GmR) 

This study 

YPIII ΔiscR 
PypsR::lux 

lux fusion of the ypsR promoter of YPIII 
integrated into YPIII ΔiscR by pKNG10  
(GmR SmR) 

This study 

YPIII ΔiscR PypsI::lux lux fusion of the ypsI promoter of YPIII This study 



44 
 

integrated into YPIII ΔiscR by pKNG10  
(GmR SmR) 

YPIII ΔiscR PytbR::lux lux fusion of the ytbR promoter of YPIII 
integrated into YPIII ΔiscR by pKNG10 
(GmR SmR) 

This study 

YPIII ΔiscR PytbI::lux lux fusion of the ytbI promoter of YPIII 
integrated into YPIII ΔiscR by pKNG10 
(GmR SmR) 

This study 

YPIII ΔiscR 
PnagC::lux 

lux fusion of the nagC promoter of YPIII 
integrated into YPIII ΔiscR by pDM4  
(GmR CmR) 

This study 

YPIII ΔiscR PlcrF::lux 
comp 

lux fusion of the lcrF promoter of YPIII 
integrated into YPIII ΔiscR (TcR) by 
pDM4.2 (GmR) complemented with 
pHG327::iscR (ApR) 

This study 

YPIII ΔiscR 
PyscW::lux comp 

lux fusion of the yscW promoter of YPIII 
integrated into YPIII ΔiscR (TcR) by 
pDM4.2 (GmR) complemented with 
pHG327::iscR (ApR) 

This study 

YPIII ΔiscR 
PypsR::lux comp 

lux fusion of the ypsR promoter of YPIII 
integrated into YPIII ΔiscR by pKNG10  
(GmR SmR) complemented with 
pHG327::iscR (ApR) 

This study 

YPIII ΔiscR PypsI::lux 
comp 

lux fusion of the ypsI promoter of YPIII 
integrated into YPIII ΔiscR by pKNG10  
(GmR SmR) complemented with 
pHG327::iscR (ApR) 

This study 

YPIII ΔiscR PytbR::lux 
comp 

lux fusion of the ytbR promoter of YPIII 
integrated into YPIII ΔiscR by pKNG10 
(GmR SmR) complemented with 
pHG327::iscR (ApR) 

This study 

YPIII ΔiscR PytbI::lux 
comp 

lux fusion of the ytbI promoter of YPIII 
integrated into YPIII ΔiscR by pKNG10 
(GmR SmR) complemented with 
pHG327::iscR (ApR) 

This study 

YPIII ΔiscR 
PnagC::lux comp 

lux fusion of the nagC promoter of YPIII 
integrated into YPIII ΔiscR by pDM4  
(GmR CmR) complemented with 
pHG327::iscR (ApR) 

This study 

Yersinia pestis 

YPCO92 Parent strain. pPCP1 pCD1 pMT1 pgm+ 
(EmR) 

(Doll, Zeitz, 
Ettestad, et al., 
1994) 
Gifted by Professor 
Petra Oyston, 
DSTL 

YPCO92 ΔiscR YPCO92 lacking the iron-sulfur cluster 
regulator, iscR. (EmR GmR) 

This study 

YPCO92 ΔiscR 
comp 

YPCO92 ΔiscR complemented with 
pHG327∷iscR (EmR GmR ApR) 

This study 

YPCO92 ΔiscR + 
pHG327 

YPCO92 ΔiscR containing empty 
pHG327 (EmR GmR ApR) 

This study  

YPCO92 ΔnagC YPCO92 lacking the GlcNAc-operon 
repressor NagC, (EmR, GmR) 

(Elton, 2018) 
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2.2 Cloning 

2.2.1 Polymerase Chain Reactions (PCR) 

PCRs were performed in a programmable thermocycler using either GoTaq® G2 DNA 

polymerase (Promega) or Q5® High-Fidelity DNA polymerase (NEB) according to the 

manufacturer’s guidelines.  

A typical GoTaq® G2 DNA polymerase reaction mixture contained 1.25 U DNA 

polymerase, 1x GoTaq® flexi buffer, 2.5 mM MgCl2, 0.2 µM of each primer, 200 µM of each 

deoxynucleotide triphosphate (dNTP), ~1ng template DNA and sterile H2O to a final volume 

of 50 µl.  

A typical Q5® High-Fidelity DNA polymerase reaction was carried out at a final volume of 

50 µl, containing 0.5 µl Q5® High-Fidelity DNA Polymerase (New England Biolabs), 1x Q5 

reaction buffer (NEB), 0.2 mM dNTPs, 0.2 µM of each forward and reverse primer, ~1 ng 

template DNA and sterile H2O.  

Prior to ligation into pGEM®-T Easy, PCR products amplified with Q5® High-Fidelity DNA 

polymerase were subject to A-tailing using Go Taq® DNA polymerase (Promega). This 

added 3’ adenine overhangs to the otherwise blunt ended fragments for insertion into 

linearised pGEM®-T Easy which has 3’ terminal thymine overhangs. The reaction was 

carried out in a final volume of 50 µl containing <1 µg purified PCR fragment, 0.2 mM 

dATP, 1x GoTaq® flexi buffer, 2.5 mM MgCl2 and 1U DNA polymerase. This was incubated 

at 72oC for 20 min.  

2.2.1.1 Primers  

Oligonucleotide primers were synthesised by Sigma-Aldrich (Sigma-Aldrich) or Eurofins 

Genomics (Eurofins Scientific Group) and are listed in Table 2.2. Any introduced restriction 

endonuclease recognition sites are shown in bold.  
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Table 2.2 Oligonucleotide Primers  

 

 

Name Sequence (5’-3’) Restriction 
Sites 

Source 

M13_F  TGTAAAACGACGGCCAGT  (Norrander, 
Kempe, and 
Messing, 1983) 

M13_R CAGGAAACAGCTATGACC  (Norrander et 
al., 1983) 

pDM4_F TAGCGGAGTGTATATCAAGC  Jo Purves 
(unpublished) 

pDM4_R GGATGTAACGCACTGAGAAG  Jo Purves 
(unpublished) 

iscR_Up_F_XhoI 
 

CCCTCGAGAAGAAGAGGAAGAGG
CACC 

XhoI This study 

iscR_Up_R_XbaI_XmaI 
 

ATCCCGGGACTCTAGATAAAGTTA
CCTGTTGGTG 
 

XbaI, XmaI This study 

iscR_Dw_F_XhoI_XmaI 
 

CCCTCGAGAACCCGGGATTAACG
TCAATCTGC 
 

XhoI, XmaI This study 

iscR_Dw_R_SpeI 
 

CCACTAGTGCTCCAATTGGCGACA
GCTATC 
 

SpeI  This study 

Tet_F_XbaI 
 

ATTCTAGACGCAGTCAGGCACCG 
 

XbaI This study 

Tet_R_XmaI 
 

AACCCGGGGAGTGGTGAATCCGT
TAG 

XmaI This study 

Gm_F_XbaI CGTCTAGAGTCGATGTTAGTTGTT
ATG 
 

XbaI Jo Purves 
(unpublished) 

Gm_R_Xmal ACCCCGGGTTAGGTGGCGGTACT
TG 
 

XmaI Jo Purves 
(unpublished) 

IscR_Screen_F TTGCCGGATGTAGTTTGGT 
 

 This study 

IscR_Screen_R GTGCTTCAATACGAATACG 
 

 This study  

iscR_Comp_F_XbaI TCTAGATGATACTATCGAGCG XbaI This study 

iscR_Comp_R_HindIII AAGCTTCCGCAAATTCTGCTTA HindIII This study 

Lux_R CTACAACATCATAAAGGCC 
 

 Jo Purves 
(unpublished) 

IscR_promoter_F_XhoI 
 

CTCGAGTTATATCAATTGGTTATAA
TTAATTC 
 

XhoI This study 

IscR_promoter_R_XmaI
_SpeI 
 

AACGGACTAGTCCCGGGAATGTA
ATGCCA 
 

XmaI, SpeI This study 
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2.2.2 Gel Electrophoresis  

DNA gel electrophoresis was typically performed using 1% (w/v) agarose gels (1% 

agarose, 1x Tris-acetate-EDTA [TAE] buffer [50 x Stock: 2 M Tris-acetate pH 8, 0.05 M 

ethylene-diamine-tetraacetic acid]). 5 µl - 20 µl of each sample were loaded in 6 x loading 

dye (Promega) and 1 x SYBR® Safe DNA Gel Stain (ThermoFisher Scientific) to visualise 

DNA. Samples were electrophoresed for 45 min at 85 V in 1 x TAE buffer. An appropriate 

DNA ladder (usually 1 kb DNA ladder, Promega) was used as a size marker. 

2.2.3 DNA Extraction and Clean up 

PCR products, DNA fragments excised from agarose gels and digested vectors were 

purified and cleaned using the Wizard® SV Gel and PCR Clean up System (Promega), 

according to manufacturer’s instructions, and stored at -20oC unless otherwise stated.  

Sigma GenEluteTM Plasmid Miniprep Kit was used to extract plasmids, which were eluted in 

H2O.  

Genomic DNA (gDNA) was extracted using the GenEluteTM Bacterial Genomic DNA Kit 

(Sigma Aldrich) according to manufacturer’s instructions, then eluted in H2O and stored at 

4oC.  

2.2.4 Restriction Digests 

Restriction enzymes (Promega and NEB) and their corresponding buffers were used 

according to the supplier’s instructions. Reactions were incubated at 37oC for 1-4 h.  

2.2.4.1 Plasmids 

All plasmids used in this study are listed in Table 2.3. 

Table 2.3 Plasmids used in this study and their antibiotic resistances  

Plasmid Description Source 

pGEM®T Easy  High copy number cloning vector 
(ApR) 

Promega, UK 

pDM4 Suicide vector. mobRK2, oriR6K (pir 
requiring), sacBR of Bacillus subtilis 
(CmR)  

(Milton et al., 
1996) 
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pDM4∷iscR:Gm Suicide vector containing the 
construct for the deletion/insertion 
mutation of iscR in Y. 
pseudotuberculosis, replacing iscR 
with a Gm cassette (CmRGmR) 

This study 

pDM4∷iscR:Tc Suicide vector containing the 
construct for the deletion/insertion 
mutation of iscR in Y. 
pseudotuberculosis, replacing iscR 
with a Tc cassette (CmRTcR) 

This study 

pDM4∷iscR(pestis):Gm Suicide vector containing the 
construct for the deletion/insertion 
mutation of iscR in Y. pestis, 
replacing iscR with a Gm cassette 
(CmRGmR) 

This study 

pHG327 Low copy number complementation 
vector. (ApR) 

(Stewart, 
Libinsky-Mink, 
Jackson, Cassel, 
and Kuhn, 1986) 

pHG327∷iscR pHG327 carrying a functional copy of 
iscR (ApR) 

This study 

pxylAp Vector carrying GFP (ApR) Stephan Heeb 

pEX18Gm Source of Gm resistance cassette. 
oriT+, sacB+, gene replacement 
vector, MCS from pUC18 (GmR) 

(Hoang, Karkhoff-
Schweizer, 
Kutchma, and 
Schweizer, 1998) 

pBlueTet Source of Tc resistance cassette. 
pBluescript II KS+ encoding tetA gene 
from pBR322. (ApR, TetR) 

(Atkinson et al., 
2008) 

pBluelux pBluescript II KS+ Vector containing 
the luxCDABE operon (ApR) 

(Atkinson et al., 
2008) 

pKNG101::PypsI::lux Suicide vector containing a 
promoter::lux fusion of ypsI (SmR) 

(Atkinson et al., 
2008) 

pKNG101::PypsR::lux Suicide vector containing a 
promoter::lux fusion of ypsR (SmR) 

(Atkinson et al., 
2008) 

pKNG101::PytbI::lux Suicide vector containing a 
promoter::lux fusion of ytbI (SmR) 

(Atkinson et al., 
2008) 

pKNG101::PytbR::lux Suicide vector containing a 
promoter::lux fusion of ytbR (SmR) 

(Atkinson et al., 
2008) 

pDM4.2::PnagC::lux Suicide vector containing a 
promoter::lux fusion of nagC (CmR) 

(Wiechmann, 
2015) 

pDM4.2∷PymoA::lux Suicide vector containing a 
promoter::lux fusion of ymoA (GmR) 

Joanne Purves 
(unpublished) 

pDM4.2∷PlcrF::lux Suicide vector containing a 
promoter::lux fusion of lcrF (GmR) 

Joanne Purves 
(unpublished) 

pDM4.2∷PyscW::lux Suicide vector containing a 
promoter::lux fusion of yscW (GmR) 

(Slater, 2017) 

pEX18Cm∷pPCP1replicon pEX18Cm carrying the YPCO92 
pPCP1 origin of replication (CmR)  

Vanina Garcia, 
unpublished 

pEX18Gm∷pPCP1replicon pEX18Gm carrying the YPCO92 
pPCP1 origin of replication (GmR) 

Vanina Garcia, 
unpublished 

2.2.5 Ligations 
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Ligations of insert into vector were incubated overnight on a 30oC (30 s) and 10oC (30 s) 

cycle in a thermocycler. Reactions were carried out in a final volume of 20 µl consisting of 1 

unit of T4 DNA Ligase (Promega), 1x T4 ligation buffer (Promega), purified insert and 

vector at a 3:1 molar ratio, and H2O.  

2.2.6 Transformation of DNA into Competent Cells 

2.2.6.1  Electro-Competent Cells 

To make electro-competent cells, overnight cultures of Y. pseudotuberculosis or E. coli 

were diluted to an OD600 of 0.1 in 100 mls YLB/LB and grown until early exponential phase 

(OD600 = 0.6-0.8). Cells were pelleted by centrifugation (5000 x g, 4oC, 8 min) and re-

suspended and washed with H2O. This step was then repeated twice with 40 ml and 4 ml of 

10% glycerol. Finally, cells were re-suspended in 500 µl of 10% glycerol and stored in 50 µl 

aliquots at -80 oC.  

DNA was dialysed using 0.025 µm pore Millipore® filters (Fisher Scientific) in H2O for 20 

min. The sample was then added to competent cells, on ice, and the mixture transferred to 

a 1 mm electroporation cuvette. Cells were electroporated using a Gene Pulsar (BioRad) 

set to 2.5 kV,200 Ω,25 μF before being recovered in 500 µl YLB/LB. Cells were then 

incubated for 1 h at 30oC/37oC before plating onto LB containing the appropriate antibiotic.  

2.2.6.2 Chemical-Competent Cells 

Y. pestis was grown overnight in medium A (YLB broth supplemented with 10 mM 

MgSO4.7H2O and 0.2 % glucose) (Nishimura, Morita, Nishimura, and Sugino, 1990) and 

diluted 1/10 for further incubation in medium A until early exponential phase (OD600 = 0.5-

0.9) was reached. Cells were harvested by centrifugation at 13,000 x g for 1 min and 

washed in medium A. Centrifugation was repeated and the pellet suspended in 50 µl media 

A and 250 µl medium B (YLB broth supplemented with 36% (v/v) glycerol, 12% polyethene 

glycol (PEG) (MW7500) and 12 mM MgSO4.7H2O). Cells were stored in 50 µl aliquots at -

80oC.  
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For heat shock transformations, 1 ng DNA was added to thawed chemically-competent 

cells and incubated on ice for 20 min. Cells were then heat shocked at 37oC for 1 min 

before being recovered on ice for 5 min and plating onto BHI medium containing the 

appropriate antibiotics.  

2.2.7 DNA Sequencing and Analysis  

A Nano Drop® 1000 spectrophotometer (Fisher Scientific) was used to asses DNA purity 

and quantity. Sanger sequencing was carried out by Source Bioscience, Science Park, 

Nottingham, UK. Illumina sequencing (Shen, Fan, Campbell, et al., 2005) was carried out 

by MicrobesNG, University of Birmingham, and samples compared to Y. 

pseudotuberculosis YPIII NCBI reference sequence NC_010465.1 or Y. pestis CO92 NCBI 

reference sequence NC_003143.1. Variant analysis was carried out by MicrobesNG. 

Snapgene® Viewer 4.2.6 (GSL Biotech LLC) and Artemis Release 16.0.0 (Wellcome Trust, 

Sanger Institute, Pathogen Genomics Group) were used to analyse sequence data and to 

design virtual cloning strategies.   

2.2.8 Mutagenesis of iscR 

An in-frame deletion mutant was created by removing 442 base pairs from the iscR gene 

and inserting in its place either a tetracycline (Tc) or gentamicin (Gm) cassette, using the 

protocol previously described in (Atkinson et al., 2008). Using primers with engineered 

restriction sites (Table 2.2), upstream and downstream regions of iscR were amplified 

using Y. pseudotuberculosis YPIII or Y. pestis YPCO92 as a template. Tetracycline (TcR) 

and gentamicin (GmR) resistance cassettes were cloned from pBR322 and pEX18Gm 

respectively. PCR products were first ligated into pGEM®-T Easy and transformed in to E. 

coli Top10. Using the engineered restriction sites, TcR/GmR fragments were excised and 

ligated into the vector containing the upstream iscR fragment. The Up-TcR/GmR fragment 

was then excised and ligated into the downstream containing vector, resulting in an 

upstream – TcR/GmR – downstream insert. This insert was then digested and ligated into 

the suicide vector pDM4, which was propagated in E. coli S17-1.  
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Conjugations were carried our as described in (Milton et al., 1996). Overnight cultures of E. 

coli S17-1 containing the vector and YPIII parent, ΔypsR/ytbR or ΔypsI/ytbI were mixed in 

1:1, 3:1 or 9:1 ratios before being pelleted at 16000 x g for 2 minutes. Pellets were washed 

twice with BHI before being re-suspended in 30 µl in BHI and spotted onto a non-selective 

BHI plate. Plates were incubated at 30oC for 5 or 24 h before the bacteria were re-

suspended in 200 µl BHI and plated onto appropriate antibiotics. Plates were incubated at 

30oC until colonies appeared. Colonies were then patched onto various selective plates. 

Colonies that grew on 12% (w/v) sucrose and tetracycline or gentamicin were screened by 

PCR.  

2.2.8.1 Genetic complementation 

Primers with engineered restriction sites were used to amplify the iscR gene of Y. 

pseudotuberculosis or Y. pestis, including the promoter sequence. This fragment was 

ligated into pGEM®T-Easy and propagated in E. coli TOP10 before being excised and 

ligated into the low copy number vector pHG327, described in (Stewart et al., 1986). 

2.3 Phenotypic Assays 

2.3.1 Yersinia Outer Protein Expression and Extraction 

2.3.1.1  Induction of Type Three Secretion 

Cultures were grown overnight at 22oC in BHI and diluted to an OD600 of 0.1 in BHI or BHI 

with 20 mM sodium oxalate (NaOx), 20 mM magnesium chloride (MgCl2) and 0.2% (w/v) 

glucose. Cultures were incubated at 22oC for 2 h before being shifted to 37oC for 3 h to 

induce Yop expression. OD’s were standardised before the supernatant was filtered 

through a 0.2 µM filter. For Y. pestis, supernatants were filtered twice.  
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2.3.1.2  Trichoracetic Acid Precipitation 

Trichloracetic acid (TCA) at a final concentration of 10% was added to the supernatants on 

ice for 30 min, before centrifugation for 10 min, 10000 x g at 4oC. Pellets were 

resuspended in 10% (w/v) sodium dodecyl sulphate (SDS) and 1 ml of ice cold acetone. 

Proteins were pelleted at 16 000 x g, 4oC for 30 min and washed twice in ice cold acetone 

before being air dried. Finally, pellets were resuspended in 30 µl phosphate buffered saline 

(PBS).  

2.3.1.3 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

2x SDS loading buffer ((100 mM Tris-Cl, 4% (w/v) SDS, 20% (v/v) glycerol, 200 mM 

dithiothreitol (DTT) and 0.2% (w/v) bromophenol blue)) was added to the protein samples. 

Prior to loading samples were boiled at 98oC for 2 min.  Samples were analysed using 12% 

SDS-PAGE gels alongside ColorPlus™ Prestained Protein Ladder size markers (NEB) for 

80 minutes at 200 V. Proteins were stained using Coomassie Blue.  

2.3.2 C. elegans Maintenance and Biofilm Assays 

C. elegans were maintained at 22oC on nematode growth medium (NGM) seeded with E. 

coli OP50, a uracil auxotroph and food source for the nematodes. C. elegans were 

reseeded every 2-3 days onto a fresh plate by transfer of a 1 cm square patch of agar. 

Biofilm assays were carried out as previously described (Atkinson et al., 2011). 2 ml of an 

overnight culture of Y. pseudotuberculosis was diluted to an OD600 of 1.0 and spread onto a 

fresh NGM plate. For Y. pestis, OD600 0.4 was used. After drying the plate, 30 young adult 

C. elegans were aseptically picked over from the stock plate. After incubation for 24 h at 

22oC, biofilms were scored from 0 – 3 and an infection index was calculated using the 

following equation:  
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0 = No biofilm, 1 = A small biofilm around the head region 2 = Larger amount around head 

region 3 = Large biofilm on head that has extended to other areas of the body. (Atkinson et 

al., 2011).  

2.3.3 Biofilm Formation on an Abiotic Surface 

Strains were grown in 10 ml Yersinia defined minimal medium (YDMM) at 30oC overnight. 

Cultures were washed and equalised to an OD600 of 0.5 in freshly prepared YDMM. 1 ml 

volumes were added to a 24-well glass bottomed microtitre plate (Greiner, BioOne). Plates 

were sealed and incubated statically at 22oC or 37oC for 24 h. Growth medium was then 

removed and wells were washed twice with PBS to remove loosely associated bacteria and 

then air dried at 37oC. Cells were stained with 300 µl of 5 µg/ml Fluorescein conjugated 

Wheat Germ Agglutinin (WGA) (Vector Laboratories). Plates were incubated for 2 h at 4oC 

in the dark. After staining wells were washed twice in PBS and air dried at 37oC. 

Quantitative analysis of biofilm levels was performed by measuring fluorescence (484 nm 

absorption, 512 nm emission) with a Tecan SPARK® plate reader. A 15 x 15 circular scan 

was performed, emitting the outer 2000 µm.  

2.3.4 P. corporis Maintenance and Colonisation Assay 

2.3.4.1 Insect Handling and Maintenance 

P. corporis colonies were obtained from Dr Carola Kuhn and the Umweltbundesamt, Berlin, 

Germany. 

Before feeding, lice were maintained in modified 60 ml Sterilin polystyrene containers, with 

a voile mesh lid to allow air flow. A piece of corduroy (500 mm x 200 mm) was placed into 

the containers to allow the lice to hide. Temperature was controlled in Genlab Limited 

incubators (model INC/50/DIG) and humidity was maintained using plastic trays filled with 

water.  



54 
 

Lice were carefully moved between containers using a forceps. Fluon® (BioQuip Products 

Inc.) was used on the edge of work areas to prevent insects from escaping.  

2.3.4.2 Blood Reservoir Preparation 

The Hemotek® 5W1 (Hemotek Ltd.) system was used to artificially feed lice. To prepare 

the feeding chambers, 1 ml (195 mm2) reservoirs covered with Hemotek’s collagen feeding 

membrane were used to contain the blood. The membrane was stretched over the feeding 

chamber and secured with an O-ring, so there were no creases and the membrane was 

taut. The meal reservoirs were filled by carefully pipetting blood and bacteria into the 

chamber which was closed with polystyrene plugs. Usually, 200 µl of overnight bacterial 

(OD600 0.1, approximately 2 x 108) culture was added to 1 ml of human blood, alongside 2 

µl rhodamine labelled wheat-germ agglutinin (WGA) to stain poly-GlcNAc.  

2.3.4.3 P. corporis Feeding and Biofilm Assay 

P. corporis (usually 20) were transferred to 3 x 3 cm cardboard tubes (Crayford Tubes Ltd.) 

which had been previously been prepared with mesh glued to the one end to prevent 

escape and enable air flow. The tubes fit snugly to the Hemotek meal reservoirs on one 

end, allowing insects direct contact with the membrane and ensuring they cannot escape,   

The assembled reservoir and feeding house were placed onto the Hemotek feeding arm 

and insects were allowed to feed for 1 hour in the dark with the blood maintained at 37oC. 

A typical feeding experimental set up is shown in Figure 2.1. The unit was then transferred 

to an incubator at 30oC and 75% relative humidity for various incubation times.  
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Figure 2.1 Experimental set up for feeding P. corporis in CL2 

Photo shows the Hemotek artificial feeding system set up in the insect laboratory. (A) shows 

the Hemotek unit (B) shows the feeding arms and (C) cardboard tubes used for housing 

feeding insects. 

To kill lice for imaging they were placed at -80oC for 15 min and then submerged in 200 µl 

4% paraformaldehyde (PFA) for 20 min to kill surface bacteria. Insects were washed twice 

in distilled H2O and mounted in FluoroGel mounting medium (GeneTex Inc.). 

Once used, the reservoirs were cleaned with 5% Distel HLD4L (MediMark Scientific Ltd.) 

and rinsed thoroughly. Reservoirs used in CL3 were autoclaved prior to removal from the 

suite and further disinfecting.  

2.3.4.4 Human Blood 

An ethical licence (Number: A051016SA-Steve Atkinson), obtained from the School of Life 

Sciences Ethical Committee, was used to collect blood from human volunteers. 10 ml of 

blood was taken from the antecubital vein and deposited into a Sterilin tube. This was 

defibrinated by swirling approximately 5 glass beads (5 mm) in the blood for 5-10 min until 

a blood clot forms around them, a method modified from (Rodda, 1996). The liquid portion 

of blood was then stored in a fresh Sterilin tube for up to a week before being discarded, in 

accordance with the ethical licence guidelines.   

 

A 
B 

C 
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2.3.5 Swimming Motility Plates 

1 µl of overnight culture was pipetted directly into the centre of swim agar (10 g/L tryptone, 

5 g/L NaCl, 3 g/L agar (Difco-Bacto™)) and incubated statically at 22oC for up to 48 h. 

(Atkinson et al., 1999) 

2.3.6 Chrome Azurol S Assay 

This method was adapted from (Schwyn and Neilands, 1987). Initially, FeCl3 was diluted to 

1 mM in 10 mM HCL. 375 µl of this was mixed with 1.875 ml of 2 mM Chrome azurol S 

(CAS), 12.5 ml of 438 mg/l hexadecyltrimethyl ammonium bromide (CTAB), 9.2 ml of 

117.25 g/l piperazine pH 5.6, 1.05 ml dH2O and 500 µl 0.2 M 5-sulfosalicyclic acid. Care 

was taken to ensure reagents were added in order. The solution was filtered through a 0.2 

µm filter before 500 µl of solution was added to 500 µl of bacterial supernatant. The 

reaction was allowed to equilibrate for 15 min at room temperature before the OD630 was 

measured, using dH2O as a blank. M9 medium was used as a reference sample and the 

iron chelation unit was calculated using the following equation: 

 

 

 

For blue agar CAS plate assays, the protocol described in (Louden, Haarmann, and Lynne, 

2011) was followed. 

2.3.7 Haem Uptake Plate Assay 

Yersinia strains of interest were grown until stationary phase in YDMM and diluted to OD600 

0.1. 100 µl of culture was then vortexed into 5 ml molten semi-solid agar (0.8% w/v) 

containing 125 µM EDDA before the agar was poured on top of a solidified LB-agar plate. 

Whatman paper disks (6 mm diameter) were carefully placed onto the agar and spotted 
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with 10 µl of metal free water, 10 mM haemin hydrochloride or 10 mM FeCl3. Plates were 

incubated for up to 48 h at 22oC or 37oC and growth around the disks assessed.  

2.3.8 Cellular Aggregation 

2.3.8.1 Cuvette Assays 

The settling of Y. pseudotuberculosis autoaggregates under gravity was assayed in plastic 

cuvettes (Sarstedt, Germany). Cells were grown for 16 h in YLB at 37oC, cultures were 

diluted to standardise the OD600 values within each assay and 1 ml transferred to a cuvette. 

Cultures were incubated statically at 22oC for up to 60 min. The settling of Y. pestis 

aggregates under gravity in cuvettes was carried out in BHI broth and cuvettes incubated 

statically at 22oC for up to 120 min.  

2.3.8.2 Imaging of Cellular Aggregates 

Cuvettes were photographed using a Nikon D40 camera to look for suspended auto-

aggregates and settlement at the bottom. Aliquots (10 µl) of the cuvette sample were 

mounted onto glass slides with a coverslip and examined under an optical microscope at 

40 x magnification (Nikon Eclipse 50i).  

2.3.9 Promoter Fusions  

The putative promoter region of iscR was amplified using PCR with primer pair: 

iscR_promoter_F and iscR_promoter_R (Table 2.2) and ligated upstream of the luxCDABE 

operon of P. luminescens in pGEM®-T Easy. The construct was then sub-cloned into 

suicide vector pDM4 using the engineered restriction sites XhoI and SpeI. E. coli S17.1 

cells containing the donor suicide vector and Y. pseudotuberculosis strain of interest were 

mixed in ratios of 1:1, 3:1, 9:1 (donor:recipient) in a total volume of 1 ml. Cells were 

washed twice before resuspending in 30 µl YLB and spotting onto LB agar for incubation at 

37oC for 24 hours. Cells were then re-suspended in YLB, spread onto YLB agar plates 

containing the appropriate antibiotics and incubated at 30oC until colonies appeared. 

Colonies containing the fusion were identified using photon detecting imaging software 
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Wasabi® and the photon detection imaging camera (Hamamatsu Photonics Germany 

GmbH). The primer iscR_promoter_F was used with lux_R to confirm positive colonies via 

PCR. A similar strategy was used to transfer previously constructed promoter fusions 

(PypsI::lux, PypsR::lux, PytbI::lux, PytbR::lux, PnagC::lux, PymoA::lux, PlcrF::lux, PyscW::lux)(Table 2.3) 

in an iscR mutant background.  

2.3.9.1 Recording and Analysis of Promoter Activity 

Strains containing the promoter-lux fusion of interest were grown overnight at 30oC and 

sub-cultured to OD600 of 0.01. Cultures were grown at 30oC until exponential phase was 

reached. 1 ml of culture was washed twice in YLB before diluting to an OD600 of 0.006 in 

YLB-MOPS pH 6.8. Samples were plated in triplicate in a 96-well microtiter plate (Greiner 

Chimney black, GreinerBioOne). A Tecan Infinite®, Infinite Pro® or Genius Pro® 

luminometer/spectrophotometer was used to record optical density (OD600) and 

luminescence every 30 min for 15 h, with an integration time of 4500 ms.  

2.3.10 AHL Extraction and Analysis 

The production of AHL molecules was analysed using a protocol adapted from (Ortori, 

Atkinson, Chhabra, et al., 2007a). Cultures of Y. pseudotuberculosis were grown in 10 ml 

YLB-MOPs to early log, late log and stationary phase at 22oC and 37oC. Cultures of Y. 

pestis were grown in 10 ml YLB-MOPs to stationary phase at 22oC and 37oC.  

3 ml of cell free supernatant was mixed with an internal standard (d9-C5-AHL) at a final 

concentration of 10 µM. The deuterium component of the internal standard allows 

differentiation from C5-AHL by mass spec and allows the resulting concentration to be 

used as a control marker. 1.5 ml 100% acidified ethyl acetate was added to the 

supernatant before the sample was vortexed for 30 s and centrifuged at 3000 x g for 10 

min. The upper organic layer containing solubilised AHLs was pooled in a fresh tube and 

the process repeated twice more on the lower inorganic layer. The pooled sample was then 

dried using a centrifugal evaporator and resuspended in 10 µl acetonitrile.  
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The relative molar ratios of AHLs were calculated using the liquid chromatography-mass 

spectrometry (LC-MS/MS) technique described in (Ortori et al., 2007a), carried out by Nigel 

Halliday, Experimental Officer, School of Life Sciences, Centre for Biomolecular Sciences, 

University of Nottingham. 

2.3.11 Microscopy 

2.3.11.1 Dissection Microscope 

To analyse bacterial colony morphology, biofilm formation on C. elegans or to transfer C. 

elegans between plates, a dissecting microscope (Nikon SMZ100, Nikon) was used. To 

examine Y. pestis biofilm formation on C. elegans under CL3 conditions, the AMG Evos®xl 

core digital microscope was used.  

2.3.11.2 Confocal Microscopy 

Confocal microscopy was undertaken using a Zeiss LSM700 confocal microscope for C. 

elegans and abiotic biofilm imaging and a Zeizz Elyra PS.1 super resolution microscope for 

louse imaging.  

2.3.11.3 Environmental Scanning Electron Microscopy  

All Environmental Scanning Electron Microscopy (ESEM) work was done with the help of 

Nicola Weston, from the Nanoscale and Microscale Research Centre (nmRC), University of 

Nottingham. To study biofilm on glass, overnight cultures were standardised to OD 0.5 in 

YDMM and incubated on 10 mm diameter glass coverslips for 24 h at 37oC. Coverslips 

were then washed twice in PBS before being fixed in 10% formal saline overnight. Samples 

were washed well in dH2O prior to imaging on FEI Quanta 650 ESEM, using a Peltier stage 

to control temperature and relative humidity.  

2.3.12 Statistical Analysis 

All analysis was performed using GraphPad Prism 7.0 (GraphPad Software). Unless 

otherwise stated, results are expressed as mean ± standard deviation. Students (unpaired) 

T-tests were used to determine significance between conditions One-way analysis of 



60 
 

variance (one-way ANOVA) followed by Tukeys multiple comparison test was used to 

determine significance when more than two groups were compared to each other.  

2.4 Containment Level 3 Methods  

Special measures were taken and protocols were adapted for work with Y. pestis. 

Extensive training was necessary before being signed off as competent to work in the 

containment level 3 (CL3) laboratory. All CL3 level work was undertaken in a Class I MSC. 

All protocols from the CL2 laboratory were adapted where necessary and approved for CL3 

work, which included the addition of mandatory disinfection steps for all equipment and 

consumables with 2% Distel (Star Lab Group) alongside additional disposal measures. In 

order to remove sterile material for analysis in CL2 conditions, such as supernatants or 

PCR reaction mixtures, comprehensive sterility testing was carried out by plating onto BHI 

agar and incubating at 30oC for up to 48 h. 

 



61 
 

3 Exploring the Relationship Between Type Three Secretion, Quorum 

Sensing and the Iron Sulfur Cluster Regulator, IscR.  

3.1 Introduction 

All three human pathogenic Yersinia possess a 70 kb plasmid harbouring the T3S system 

and its associated effector proteins, known as Yops (Cornelis et al., 1998; Cornelis, 2006). 

T3S systems function as injectisomes, injecting effector proteins directly into the cytosol of 

host cells. Yops act to inhibit phagocytosis, reduce inflammatory responses, induce 

apoptosis and prevent autophagy (Reviewed in (Trosky et al., 2008)).  T3S system 

expression also imposes a high metabolic burden, leading to growth arrest (R R Brubaker, 

1987), therefore expression of T3S systems is under tight regulatory control, largely due to 

two transcriptional regulators, LcrF and YmoA. T3S expression is dependent on 

environmental conditions, specifically temperature and Ca2+ levels, due to the biphasic 

nature of Yersinia spp.  

The stringent pYV-based regulation of the T3S system is far from a stand alone system, as 

it is also impacted by QS. QS is a method of bacterial communication and represents a 

coordinated change in gene expression in response to the release and accumulation of a 

diffusible signal molecule within the environment. This increase in signal molecule 

concentration is dependent on the cell population density, so QS results in population 

dependent gene expression, allowing a collective change in behaviour in response to 

environmental signals (Williams, 2007; Atkinson and Williams, 2009). Behaviours known to 

be under QS control in Yersinia spp. include T3S, biofilm formation, aggregation and 

swimming motility (Atkinson et al., 2008; 2011).  

Yersinia spp. are able to form biofilms on a number of biotic and abiotic surfaces. Y. pestis 

transmission via the flea vector depends on its ability to form biofilms to block the 

proventriculus  (Reviewed in (Hinnebusch and Erickson, 2008)). Whilst fleas have been the 

primary model for the study for Y. pestis transmission, several studies have demonstrated 
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that human body lice are also capable of transmitting Y. pestis (Drali, Shako, Davoust, 

Diatta, and Raoult, 2015; Houhamdi et al., 2006). Recent work has shown that the biofilm 

regulator NagC plays a role in the colonisation of the louse gut by Y. pseudotuberculosis 

(Elton, 2018). Y. pestis and several strains of Y. pseudotuberculosis, including YPIII, are 

able to form biofilms on the mouth and body of C. elegans, blocking feeding when severe 

(Joshua et al., 2003). Both species are also able to form biofilms on a number of abiotic 

surfaces, including polystyrene and glass, which provide a more adaptable model for 

studying biofilm formation in different conditions (Joshua et al., 2003; Barratt, 2018; Slater, 

2017).  

QS coordination of biofilm formation allows a population wide approach of when to settle, 

synthesise biofilm components or migrate to new sites (Atkinson et al., 2006). Atkinson et 

al. (Atkinson et al., 2011) reported that biofilm formation on C. elegans by Y. 

pseudotuberculosis is mediated by QS, as AHLs were found in the biofilm matrix and 

strains with mutations in the QS systems, either AHL synthases or response regulator 

genes, show attenuation of biofilm production. Mutation of QS systems in Y. pestis also 

results in attenuation of biofilm production (Bobrov et al., 2007). In Y. pseudotuberculosis, 

QS regulation of biofilm production is proposed to be T3S system mediated, through 

inappropriate assembly of the injectisome in QS mutants (Atkinson et al., 2011). It was 

observed that biofilm formation was attenuated in strains carrying mutations in the QS-

controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA. These 

strains all shared an upregulation of Yop virulon proteins in a temperature and calcium 

independent manner. Similar observations were found for the QS mutants, which also 

show attenuated biofilm production. This suggested that the Yop virulon is repressed by 

QS via the master motility regulator flhDC. By curing the pYV plasmid from QS mutants, 

growing YPIII under conditions permissive for T3S needle formation but not Yop secretion, 

and by mutating T3S gene, yscJ, biofilm formation is restored in flhDC and QS mutants. 
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This data shows that T3S blocks biofilm formation and is reciprocally regulated with motility 

via QS (Atkinson et al., 2011). 

QS has been further linked to T3S through auto-aggregation. Whilst not fully understood, in 

Y. pseudotuberculosis, aggregation only happens at 37oC and is lost in the absence of the 

virulence plasmid, suggesting that it is T3S system dependent (Swift et al., 1999; 

Wiechmann, 2015). This was further confirmed by mutation of other genes on the plasmid, 

namely structural components of the T3S system, leading to ceased aggregation 

(Wiechmann, 2015; Barratt, 2018). QS has been shown to be a repressor of auto-

aggregation as a double AHL synthase mutant shows greater aggregation (Wiechmann, 

2015; Barratt, 2018). Y. pestis does not aggregate at 37oC, due to expression of Caf1, an 

adhesin that is absent in Y. pseudotuberculosis, but it has been shown to aggregate after 

growth at 28oC (Felek et al., 2010).  

Another recently identified regulator of T3S is the iron sulfur cluster regulator, IscR. Miller et 

al., (2014) suggested that IscR may control the activity of the T3S system by acting upon 

LcrF, and T3S is reduced in an iscR mutant. A transposon screen also identified many 

genes as regulated by IscR that are also under QS control, including those linked to biofilm 

formation and aggregation.  

No further work has been published on IscR in Yersinia, and considering the well-known 

links between T3S, QS systems and QS coordinated behaviours, it would be interesting to 

determine if QS plays a role in the regulation of T3S via IscR. In addition to this, little is 

known about other roles of IscR in Yersinia, and indeed it is completely uncharacterised in 

Y. pestis. This chapter aims to characterise the iscR mutant phenotype, particularly in 

regard to behaviours under the control of QS.   

3.1.1 Aims of this Chapter 

To date the only studies focusing on IscR in Yersinia have looked at IscR in Y. 

pseudotuberculosis strain IP2666, and have uncovered a role for IscR in regulating T3S. 
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To confirm these findings in Y. pseudotuberculosis YPIII and to expand the observations to 

Y. pestis this chapter describes the construction of iscR mutants in both strains which were 

subsequently used to investigate the role of IscR in regulating T3S in Y. 

pseudotuberculosis YPIII and determine whether this regulation is conserved in Y. pestis 

by: 

• Analysing the levels of secreted Yop effectors 

• Looking at the effect of iscR mutation on T3S associated growth arrest 

To determine whether QS is implicated in IscR-dependent regulation of T3S, triple mutants 

will be used to:  

• Analyse levels of secreted Yop effectors in iscR and QS mutant backgrounds 

Y. pseudotuberculosis and Y. pestis mutants will be characterised in a series of phenotypic 

assays to see if there is a role for IscR in: 

• Colony morphology 

• Growth Rate 

• Flagellar mediated motility 

• Biofilm formation on abiotic and biotic surfaces 

• T3S dependent autoaggregation 

• Iron uptake  

• Production of AHL signalling molecules 

If IscR is seen to affect any of these phenotypes, they will also be studied in a QS deficient 

background to establish any links to QS.  
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3.2 Results 

3.2.1 Mutagenesis of iscR 

3.2.1.1 Construction of an iscR mutant in Y. pseudotuberculosis and Y. pestis 

In order to explore the role of IscR in Yersinia spp., in-frame deletion mutants were 

constructed. Despite Y. pseudotuberculosis and Y. pestis iscR being 100% identical, the 

cloning strategy included the up- and down-stream intergenic regions in which 1 and 2 

bases differ respectively. The iscR locus is shown in Figure 3.1. Therefore, separate 

constructs were made for each species and in order to have a more flexibility in the number 

of compatible strains available for future experiments, a second Y. pseudotuberculosis iscR 

mutant was made following the same strategy using a tetracycline resistance cassette 

instead of gentamicin. Details of the cloning strategy can be seen in Figure 3.2. 

The most widely studied strains of Y. pestis are KIM (Kurdistan Iran  man) 10+, isolated 

from a clinical case in 1968 (Finegold, Petery, Berendt, and Adams, 1968; Deng, Burland, 

Plunkett, et al., 2002) and CO92 (Colorado 1992) isolated from a fatal case of pneumonic 

plague contracted from a domestic cat in the USA (Doll et al., 1994). However, most of the 

research conducted on Y. pestis is carried out on modified, avirulent variants of the KIM 

strain, which lack the pCD1 virulence plasmid (W. Sun, Six, Kuang, et al., 2011). When 

studying T3S it is beneficial to have a strain with all three plasmids present, so a fully 

virulent strain of CO92 was used harbouring all three virulence plasmids.  

Primers (Table 2.2) used for Y. pseudotuberculosis and Y. pestis iscR mutagenesis were 

IscR_Up_F and IscR_Up_R to amplify a 432 bp upstream fragment of iscR and 

IscR_Dw_F and IscR_Dw_R to amplify a 452 bp downstream fragment. For the antibiotic 

cassettes, which both lacked promoter and terminator sequences, Gm_F and Gm_R 

amplified a 570 bp gentamicin cassette and Tc_F and Tc_R were used to amplify a 1260 

bp tetracycline cassette. Engineered restriction sites (XhoI and SpeI) were used to clone 

these fragments stepwise into pGEM®-T (Table 2.3), and the resulting fragment was then 
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cloned into the pDM4.1 suicide vector (Table 2.3) as a XhoI/SpeI fragment. Once 

confirmed by PCR the mutated iscR constructs were conjugated into the appropriate 

strains of Y. pseudotuberculosis and Y. pestis and screened using sucrose selection. PCR 

(using primers IscR_Screen_F and IscR_Screen_R) (Figure 3.3 A) and Sanger sequencing 

were used to check that the mutants were correct (data not shown). 

To validate the mutations, complemented strains were constructed by adding a functional 

copy of IscR (amplified using primers IscR_Comp_F and IscR_Comp_R) via the low copy 

number vector pHG327 (Table 2.3) (Stewart et al., 1986) (Figure 3.3 B).   

 

 

 

 

Figure 3.1 Schematic representation of the isc locus and function of the gene products. The 

isc operon of E. coli is shown. The proposed or demonstrated functions of the gene products 

are indicated below each gene. Figure from (Jaroschinsky, Pinske, and Sawers, 2017) 
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Figure 3.2 Schematic of the construction of the iscR mutants in Yersinia by substitution of 

459 bp of iscR with a gentamicin resistance cassette using the suicide plasmid system pDM4. 
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A 

B 

Figure 3.3 Confirmation of iscR mutagenesis and complementation 

A) PCR amplification of the iscR region shows that the product of the iscR insertion-deletion 

mutant is smaller. Parent product = 2034 bp, ΔiscR product = 1969 bp. B) Minipreps show no 

plasmid in ΔiscR, empty pHG327 vector in ΔiscR +pHG327 and pHG327::iscR (+631 bp) in 

ΔiscR comp. The figure is representative of both YPIII and YPCO92 ΔiscR mutants. 
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3.2.1.2 Whole-genome sequencing of iscR mutants 

True complementation is often difficult to achieve, due to the complex nature of regulatory 

networks and factors such as differences in plasmid copy number, as a result the ΔiscR 

mutants of both Y. pseudotuberculosis and Y. pestis were subjected to whole-genome 

analysis via illumina sequencing, to identify any additional mutations or rearrangements 

that could explain any observed phenotypes in the mutant strains.  

3.2.1.2.1 Whole genome sequencing of Y. pseudotuberculosis strains 

The parent Y. pseudotuberculosis used in this study had been recently sequenced by 

Atkinson et al. (Slater, 2017) and variant calling and single-nucleotide polymorphism (SNP) 

analysis was carried out against the reference sequence for YPIII. This data was used as a 

comparison for the iscR mutant, to determine where the iscR mutant differed from the 

parent strain and omit any differences shared by both strains compared the reference 

sequence. A summary of the SNP’s identified in the chromosome of the Y. 

pseudotuberculosis iscR mutant are shown in Figure 3.4.   

A total of 7 SNPs were identified in non-coding regions of the genome, and 14 SNPs within 

coding regions resulted in synonymous SNPs (sSNP), where single base changes still 

resulted in the same amino acid being coded. These polymorphisms are less likely than 

others to have a phenotypic effect on the organism, however it cannot be assumed that 

they will all be silent, especially as the importance of non-coding regions of the bacterial 

genome for gene regulation becomes increasingly evident (Gil and Latorre, 2012).  

Non-synonymous SNPs (nSNP), are more likely to have a significant effect. They include 

missense polymorphisms, where a single base change in a coding region results in a 

different amino acid, the effect of which will depend on how much the amino acids differ in 

properties, and where on the protein, such as in an active site, the amino acid is located 

(Choi, Sims, Murphy, Miller, and Chan, 2012). A second type of nSNP are nonsense  
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polymorphisms, where a change in nucleotide leads to the introduction of a stop codon, the 

effect of which is likely to be strong. Variant analysis identified 4 missense SNPs and one 

nonsense SNP in the iscR mutant.  

The insertion or deletion of a number of nucleotides that is not divisible by three leads to a 

frameshift, where the reading frame of the DNA is altered. If a frameshift mutation occurs in 

a coding region, it can lead to a completely different translational product, so the effect of 

these mutations can be great. Variant analysis found one frameshift mutation in the iscR 

mutant. 

However, when considering variant calling results, it is necessary to consider the chance of 

obtaining false positives or negatives during analysis. For all SNPs listed at least 10% of 

the reads have that variant, suggesting that this is a true reflection of all true SNPs that are 

present. However, it is likely that some of these calls will be false positives and when 

discussing the impact of SNPs it is often taken that 95% of reads having the variant is the 

cut off for biological statistical significance (Olson, Lund, Colman, et al., 2015). Taking this 

into account, there is only one polymorphism that meets this cut off, highlighted in bold in 

Figure 3.4. This is an insertion/deletion in an intergenic region. As discussed above, whilst 

this is unlikely to have a major impact given that it is not in a coding region, any potential 

impact on regulatory regions must still be considered when analysing future results.  

In addition to variant calling, a simple assembly was performed and no large insertions, 

deletions or rearrangements were identified. 

Due to time constraints, variant analysis was not carried out on pYV, and this must be 

considered when analysing future results.  
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Nucleotide 

Position 

Base Change Codon 

Change 

Mutation 

Type  

Amino Acid 

Substitution 

Gene Max 

Frequency 

% 

174181 T - C gtT/gtC Silent - invC 10.64 

174542 G - A Gtc/Atc Missense V1283I invC 11.32 

174877 A - G acA/acG Silent - invC 11.71 

175189 G - C gcG/gcC Silent - invC 10 

175549 G - A gcG/gcA Silent - invC 11.48 

176384 A - G Aac/Gac Missense N1897D invC 10.57 

177611 G - A Gac/Aac Missense D2306N invC 11.11 

177625 T - G gcT/gcG Silent - invC 10.43 

182095 A - G acA/acG Silent - invC 12.36 

1292586 G - T - - - Non-coding  16.67 

1442555 C - G gcC/gcG Silent - invD 11.84 

1444439 G - A ccG/ccA Silent - invD 11.11 

1587830 A - T - - - Non-coding 13.04 

1587835 A - T - - - Non-coding 14.06 

1587838 T - C - - - Non-coding 11.76 

1587850 G - T - - - Non-coding 11.27 

1650233 C - A acC/acA Silent - vgrG 10.71 

1650284 G - A gaG/gaA Silent - vgrG 14.71 

1650323 C - A acC/acA Silent - vgrG 28.57 

1650716 G - A gaG/gaA Silent - vgrG 13.79 

1732042 C - G taC/taG Nonsense Y715* nuoG 35.53 

2540730 G - A acG/acA Silent - YPK_2291 10.45 

3486208 TCATTC - T - - - Non-coding 100 

3628536 C - G aCc/aGc Missense T1742S YPK_3312 10.42 

3628829 T - C acT/acC Silent - YPK_3312 12.7 

3998138 G - GCAGT - - - Non-coding 40.52 

4411742 AAGAAGCCC – A  ggggcttct/ Frameshift - pldA 94.38 

Figure 3.4 SNPs in the genome of a Y. pseudotuberculosis iscR mutant compared to the parent 

identified by Illumina sequencing. 

Nucleotide positions refer to NCBI reference sequence NC_010465.1. SNPs with frequency 

>95% are shown in bold. 
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3.2.1.2.2 Whole genome sequencing of Y. pestis strains  

Our parent Y. pestis CO92 strain was sequenced and analysed against the reference 

CO92 genome (Appendix 7.1) and the results were then compared to the variant calling of 

the iscR mutant, and any differences are shown in Figure 3.5. 

A number of sSNPs, nSNPs and frameshifts were identified and although the majority did 

not make the 95% cut-off three were biological significant (Figure 3.5, highlighted in bold), 

although all were in non-coding regions so unlikely to have a phenotypic effect.  

Variant analysis was also conducted on the three plasmids harboured by Y. pestis. The 

results of the plasmids in the parent strain vs the reference sequences are shown in 

appendix 7.1. No further differences were identified on any of the plasmids between the 

iscR mutant and the parent.  
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Nucleotide 

Position 

Base Change Codon 

Change 

Mutation 

Type 

Amino Acid 

Substitution 

Gene Max 

Frequency % 

82 C - A - - - Non-coding 100 

633753 T - G gAa/gCa Missense E599A YPO0587 11.9 

1047292 TC - T - - - Non-coding 17.86 

1221220 T - C - - - Non-coding 100 

1925703 C - A - - - Non-coding 18.75 

3058062 C - A acC/acA Silent - YPO2725 16.36 

3058182 A - G ccA/ccG Silent - YPO2725 35 

3058275 G - A gaG/gaA Silent - YPO2725 18.18 

3058308 G - A ccG/ccA Silent - YPO2725 17.07 

3058348 A - C Aca/Cca Missense T849P YPO2725 12.5 

3058362 G - A ccG/ccA Silent - YPO2725 10.64 

3058398 G - A ccG/ccA Silent - YPO2725 12.24 

3058434 G - A ccG/ccA Silent - YPO2725 17.24 

3081533 C - CGCTTATTG - - - Non-coding 25 

3081582 A - G - - - Non-coding 41.07 

3240727 C - A - - - Non-coding 100 

3471434 TG - T - - - ascB 17.54 

3955329 A - G - - - Non-coding 12.5 

4065224 A - G gcT/gcC Silent - cspa2 13.79 

 

Figure 3.5 SNPs in the genome of a Y. pestis iscR mutant compared to the parent identified 

by Illumina sequencing. 

Nucleotide positions refer to NCBI reference sequence NZ_CP009973.1. SNPs with frequency 

>95% are shown in bold. 
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3.2.2 Analysis of IscR, QS on T3S using SDS-PAGE 

3.2.2.1 T3S is reduced in a Y. pseudotuberculosis iscR mutant 

IscR was first implicated in the regulation of Yersinia type three secretion by (Miller et al., 

2014), when looking for genes important for T3S function via a transposon screen. This 

study demonstrated that deletion of iscR led to a decrease in the secretion of T3S system 

effectors relative to the parent strain. To show that the Y. pseudotuberculosis iscR mutant 

made in this study possesses this previously reported phenotype, supernatant protein 

assays in Yop-inducing conditions were carried out.  

Figure 3.6 shows that mutation of iscR leads to the production of less Yops, suggesting a 

defective T3S system, and this was partially restored by complementation with plasmid-

encoded iscR. The difference in secretion between mutant and parent in this study is not as 

severe as previously reported, as Yops are still visibly produced by the iscR mutant, and 

the secreted levels of different Yops were not equally affected by the deletion of IscR.  

Previously, mass spectrometry was used to identify which bands corresponded to secreted 

Yops and Yops M, B, D and E were easily identifiable as single bands (Wiechmann, 2015). 

The distinct bands shown in Figure 3.6 were subject to similar densitometry analysis and 

their densities calculated relative to the parent which revealed that mutation of iscR 

severely reduces the levels of Yops B, D and E up to 10-fold whereas YopM secretion only 

undergoes a 2-fold reduction. This is particularly interesting when comparing YopM and 

YopE as both of these are secreted effector proteins so an overall T3S reduction would be 

expected to affect both equally. 
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Figure 3.6 Analysis of Yop profiles of Y. pseudotuberculosis iscR mutant 

Strains were grown in conditions to induce T3S system expression (37oC, low Ca2+) and 

supernatant proteins were analysed by SDS-PAGE. The iscR mutant had reduced 

secretion of Yops and this was partially restored by complementation (A). Bands 

corresponding to each Yop were then subject to densitometry analysis and the density 

calculated relative to in the parent. Mutation of iscR severely reduces the levels of Yops 

B, D and E whereas Yop M secretion is less affected (B). Results are representative of 

three independent experiments. 

A 

B 
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3.2.2.2  Studying T3S secretion in a Y. pestis iscR mutant  

Because IscR is functionally analogous in Y. pseudotuberculosis and E. coli, and given the 

similarities between Y. pseudotuberculosis and Y. pestis it was hypothesised that IscR 

would have a similar role in T3S regulation in Y. pestis  (Bölin, Forsberg, Norlander, 

Skurnik, and Wolf-Watz, 1988; Schwiesow, Lam, Dersch, and Auerbuch, 2016). Whilst 

working with Y. pestis harbouring all three plasmids necessary for virulence provides more 

biologically relevant results, it posed problems when attempting to study T3S in vitro, and 

as such the assays used to study T3S in Y. pseudotuberculosis could not be utilised.  

Published T3S profiles in Y. pestis are performed in strains which lack the pPst plasmid 

because in vitro the plasminogen activator protease Pla which is located on pPst, degrades 

Yops when they are secreted into culture supernatants (Sample, Fowler, and Brubaker, 

1987b). This is shown in Figure 3.7, which compares the parent strain to an lcrV mutant 

(Natalie Barratt, Unpublished). LcrV is the needle tip protein and has shown to be essential 

for the secretion of Yop effectors (Dewoody et al., 2013). As there is no difference in 

protein profiles between the strains, this suggests that none of the visible bands 

correspond to secreted T3S proteins, and this method of studying T3S in vitro is unreliable 

in Y. pestis. Despite published protein profiles lacking Pla, this finding wasn’t taken into 

account until extensive optimisation of the T3S assay had been carried out in an attempt to 

replicate the protein profiles observed in Y. pseudotuberculosis.   
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Figure 3.7 Y. pestis Yop secretion assay. 

Parent and lcrV mutant strains show identical protein profiles when grown in low calcium 

media at 37oC and ran on SDS-PAGE. Results are indicative of three independent repeats. 

(Natalie Barratt, unpublished) 

 

For continuity between experiments it would be ideal to use a strain with all three plasmids 

present, so initially an inhibitor of Pla was added to cultures to try and prevent its activity. 

Pla is part of the Omptin family of proteases (Suomalainen, Haiko, Kukkonen, et al., 2007), 

which combine features of both serine and aspartate proteases, so the inhibitor aprotinin 

was chosen, as this has been shown to inhibit Pla activity in vitro (Brannon, Burk, Leclerc, 

et al., 2015). However, as shown in Figure 3.8 the addition of aprotinin during induction of 

T3S did not prevent degradation of Yops. This may be because a higher concentration 

would be needed for complete inhibition, but a higher concentration than the 20µM used 

severely inhibited growth. It may also be that the half-life of inhibition by Aprotinin is too 

short to last the duration of Yop secretion and action of Pla.   
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Figure 3.8 Y. pestis Yop secretion assay with protease inhibitor 

Parent (1) and iscR mutant (2) strains show identical protein profiles when grown in MOPs 

calcium chelated medium at 37oC and ran on SDS-PAGE. The addition of protease inhibitor 

aprotinin did not result in visible Yop production by the parent (3). Results indicative of three 

independent repeats. 

 

The decision was made to remove pPst from Y. pestis parent and mutant strains following 

the strategy outlined in (Ni, Du, Guo, Zhang, and Yang, 2008). This method is based on 

plasmid incompatibility as the pPst replicon is cloned onto plasmid pEX18Gm, which also 

contains a counter-selectable sacB gene. This was transformed via electroporation into Y. 

pestis and antibiotic selection used to select for strains carrying this recombinant plasmid in 

place of pPst, as the cells are unable to replicate both. Once the loss of pPst is confimed 

via PCR, the pEX18Gm plasmid can be cured using sucrose selection. A modified plasmid 

was made containing a chloramphenicol resistance cassette instead of gentamicin (Vanina 

Garcia, unpublished) to keep within limits on antibiotic resistance cassettes and to be 

compatible with the current library of Y. pestis mutants. However, due to time constraints 

this strategy could not be completed as only the initial rounds of conjugation screening 

were carried out. 
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3.2.2.3 Growth arrest is still observed during T3S in the absence of IscR  

An alternative method to observe T3S in vitro is to measure growth rate over time in the 

presence of chelated calcium and at 37oC. These conditions induce T3S expression, 

resulting in growth arrest in Yersinia spp. in a process known as the low calcium response 

(Mehigh et al., 1989). Figure 3.9 shows that in accordance with the literature, when grown 

at 37oC in the presence of the calcium chelator MOX, the Y. pseudotuberculosis parent 

shows severe growth restriction when compared to growth in BHI medium alone. Despite 

an iscR mutant secreting less Yops than the parent, Figure 3.9 shows that in Y. 

pseudotuberculosis, an iscR mutant still exhibits growth arrest in T3S inducing conditions. 

This is likely to be because the growth arrest is due to the expression of the complete T3S 

system, and not just the later stage secretion of Yops. 

 

 

Figure 3.9 Growth arrest is observed in T3S-inducing conditions in the Y. pseudotuberculosis 

parent and iscR mutant strains 

Cultures were grown in BHI-MOX (low calcium) or BHI (high calcium) medium at 30oC for 5 h 
before switching to 37oC to induce T3S expression in those with low calcium media. Growth 

(OD600) was measured every hour. Results show three independent repeats. 

 

BHI-
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BHI 
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Due to constraints of CL3 laboratory work a modified experiment was used to study growth 

arrest in Y. pestis. Growth was analysed at a single time point, 5 h after growth at 37oC in 

either BHI-MOX or BHI. Figure 3.10 shows that the parent strain grew less in BHI-MOX 

when compared to BHI alone. Interestingly, the iscR mutant did not exhibit growth arrest, 

although this change was only partially restored by complementation by a plasmid borne 

iscR. Despite being unable to confirm by analysis of protein profiles, the significant 

reduction in growth arrest suggests that T3S may be reduced or absent in the iscR mutant.  

 

Figure 3.10 Growth arrest is observed in Y. pestis parent but not iscR mutant in T3S inducing 

conditions. 

Cultures were grown in BHI-MOX (low calcium) or BHI (high calcium) at 30oC for 2 h before 

switching to 37oC to induce T3S expression in low calcium cultures. Growth (OD600) was 

measured after 5 h. Results show three independent repeats. 

 

3.2.2.4  The impact of QS and IscR on T3S in Y. pseudotuberculosis  

Previous phenotypic analysis has demonstrated a regulatory link between T3S and QS, as 

T3S has been shown to affect biofilm formation, aggregation and swimming motility 

BHI 

BHI-MOX 
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(Atkinson et al., 2006; 2008), which are phenotypes mediated by the QS system. Studies 

have shown that QS affects T3S via its activation of the master motility regulator FlhDC, 

which in turn represses T3S through LcrF (Atkinson et al., 2011; Slater, 2017). Given the 

links between T3S and IscR, it would be interesting to determine whether QS also plays a 

role in how IscR regulates T3S.  

3.2.2.4.1 Triple mutant construction 

To determine whether there are any links between IscR and QS, iscR knock out mutants 

were made in two QS mutant backgrounds, one in which both AHL synthase genes had 

been deleted (dI) and one in which the response regulator genes had been deleted (dR), 

following the strategy detailed in section 3.2.1.  

3.2.2.4.2 Identifying a link between IscR and QS through T3S assays  

The dR and dI YPIII mutants showed a reduction in Yop secretion similar to that seen by 

(Wiechmann, 2015). However this is opposite to the reported phenotype in (Atkinson et al., 

2011). Figure 3.11 shows that when iscR is mutated in an AHL synthase negative 

background (dI/iscR), the severe defect in Yop production is still observed. Interestingly, 

when iscR is mutated in a background lacking both regulators (dR/iscR), this defect is not 

seen. This suggests that a fully functional QS system is necessary for IscR to regulate T3S, 

and that this regulation may be direct through either one or both of the response regulators, 

YpsR and YtbR.  
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Figure 3.11 Analysis of Yop profiles of Y. pseudotuberculosis iscR, QS and iscR/QS mutants. 

Strains were grown in conditions to induce T3S system expression (37oC, low Ca2+) and 

supernatant proteins were analysed by SDS-PAGE.  ΔdI and ΔdR showed reduced Yop 

secretion. Additionally, mutation of iscR in the ΔdI background led to a further reduction in 

secretion, but not in the ΔdR background. Results are representative of three independent 

experiments. 

 

The next step was to determine if one or both of the response regulator genes are 

necessary for iscR to regulate T3S, and so iscR knockouts were made in both of these 

backgrounds and Yop secretion assays carried out. Figure 3.12 shows that the Yop 

secretion defect due to the iscR mutation is still observed in the absence of YpsR or YtbR 

and this is restored by complementation. This suggests that one QS response regulator is 

enough for IscR to regulate T3S, and suggests that one may be able to compensate for the 

loss of the other during this regulation.  
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Figure 3.12 Analysis of Yop profiles of Y. pseudotuberculosis iscR, QS response regulators 

and iscR/response regulator mutants. 

Strains were grown in conditions to induce T3S system expression (37oC, low Ca2+) and 

supernatant proteins were analysed by SDS-PAGE. A further reduction in Yop secretion is 

observed in ΔypsR and ΔytbR backgrounds when iscR is knocked out. Results are 

representative of three independent experiments. 

 

3.2.2.5  Does iscR affect the production of QS signalling molecules  

To determine whether iscR affected the levels of secreted AHL signalling molecules, and if 

perhaps this could be why T3S is affected differently in QS mutant backgrounds, AHL 

extraction and ananlysis was performed from Y. pseudotuberculosis parent, iscR mutant 

and complemented strains. Growth curves were carried out at 22oC and 37oC in YLB Mops 

to see if iscR affected growth rate and to allow for the correct identification of early 

logarithmic, late logarithmic and stationary phases to carry out the extractions (Figure 

3.13). As no difference in growth was observed, samples were taken for AHL extraction at 

the same time as previous studies to allow comparison (Slater, 2017), early log (OD600 

0.02), late log (OD600 1.0) and stationary phase (OD600 2).  
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Figure 3.13 Growth curves of Y. pseudotuberculosis parent and iscR mutant in YLB Mops at 

22oC and 37oC 

Strains were grown in YLB Mops at 22oC and 37oC and Growth (OD600) measured every 

hour.There is no difference in growth rate between the two strains present. Results show 

three independent repeats. 

To determine the consistency of the extractions and the validity of any data generated, the 

concentration of an internal standard extracted as the same time as AHLs was studied.The 

concentration of internal standard deuterated N-pentylhomoserine lactone (d9-C5-AHL) 
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was within 2 standard deviations of the mean in only 83% of the samples (Figure 3.14). As 

the standard was co-extracted alongside the AHLs, this low level of reproducibility suggests 

the extraction of AHLs was unsuccessful and subsequent analysis is unreliable. For this 

reason, it would be best to repeat AHL extractions before coming to any conclusions.  

 

Figure 3.14 AHL extraction consistency. 

The concentration of synthetically produced d9-C5-AHL extracted from each sample during 

LCMS is plotted against sample number. +/- 2 standard deviations are marked with blue lines, 

within which 83% of the data fall. 

 

3.2.3 Further phenotypic analysis of the iscR mutants 

3.2.3.1  Colony Morphology 

In order to establish any links between IscR and QS it is necessary to know which 

phenotypes are regulated by each system. Whilst this has been well established for QS 

mutants there are no details relating to the iscR mutant, so a number of phenotypic assays 

were conducted to characterise the respective mutant in Y. pseudotuberculosis and Y. 

pestis. Under normal growth in liquid media no growth defect or advantage was identified 

for the iscR mutant (Figure 3.13) and when growth was observed on solid media no 
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differences were observed in colony morphology between mutant and parent for Y. 

pseudotuberculosis or Y. pestis (Figure 3.15).  

 

Figure 3.15 Colony morphology of iscR mutant on Congo red agar. 

Colonies were streated onto agar plates and visualised under light microscopy (x4). No 

difference in morphology is seen between iscR mutant and the parent in Y. 

pseudotuberculosis or Y. pestis. Results representative of three independent repeats. 

 

3.2.3.2  Swimming Motility 

Goldstone (2012) reported that flagellar-mediated motility in Y. pseudotuberculosis is linked 

to T3S, since a yscJ mutant showed increased swimming motility. This hyper-motility has 

also been linked to QS as this increased motility was lost in a QS negative background. 

The QS mutant ypsR was also found to be hypermotile, as revealed when liquid cultures 

were viewed down a microscope and by the production a large, translucent circles when 

grown on swimming agar. The parent strain was previously shown to be non-motile under 

these conditions (Wiechmann, 2015) so the parent and ypsR mutant were used as controls 
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to determine if mutating iscR affected motility. Figure 3.16 shows that motility is not 

upregulated in the iscR mutant strain under these conditions.  

 

 

 

Figure 3.16 Mutation of Y. pseudotuberculosis iscR does not result in motility. 

Strains were spotted into swimming agar and incubated at 22oC for 24 h. ΔypsR is shown as 

a hypermotile control and swimming motility is shown as a halo. Like the parent strain the 

iscR mutant is non-motile under these conditions. Pictures represent 3 independent repeats. 

 

3.2.3.3  The effect of IscR on Biofilm Formation 

One of the phenotypes under the control of QS is biofilm formation. Having identified a 

relationship between QS and IscR in section 3.2.2 and as IscR is known to regulate biofilm 

formation in other species (Wu and Outten, 2009) and that several nag genes are up-

regulated in an iscR Y. pseudotuberculosis mutant (Miller et al., 2014), biofilm assays were 

conducted to investigate the effect of IscR on biofilm formation.  

3.2.3.3.1 Biofilm formation on C. elegans 

A useful model for Yersinia biofilm formation on a biotic surface is C. elegans, as both Y. 

pseudotuberculosis and Y. pestis form biofilms on the head and block nematode feeding 

(Joshua et al., 2003; Tan and Darby, 2004). Biofilm formation on nematodes has been 

proposed to offer protection from protozoan grazing (Atkinson et al., 2011; Matz and 

Parent ΔiscR ΔypsR 
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Kjelleberg, 2005). In environmental temperatures, QS, T3S and biofilm formation are 

linked, as both dR and dI QS mutants show reduced biofilm formation on C. elegans, which 

is further reduced if the virulence plasmid is present (Atkinson et al., 2011). Biofilm 

formation by the Y. pseudotuberculosis parent, iscR mutant and QS mutant strains on C. 

elegans was examined. As the nagC mutant produces a significantly reduced biofilm, it was 

used as a negative control strain (Wiechmann, 2015). 

There was a slight increase in biofilm from parent to iscR mutant, however this was not 

significant (Figure 3.17). The results support the finding that QS regulates biofilm formation, 

as both dR and dI mutants showed a reduction in biofilm formation, as previously reported 

(Atkinson et al., 2011). Upon further mutation of iscR in these backgrounds, the levels of 

biofilm increased to similar levels to the single iscR mutant and in both strains biofilm levels 

were partially restored by complementation with plasmid borne iscR.  
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Figure 3.17 Biofilm formation on C. elegans in the parent, ΔiscR, ΔdR, ΔdR/iscR, ΔdI, 

ΔdI/iscR and complemented Y. pseudotuberculosis strains. 

Nematodes were fed parent or mutant Y. pseudotuberculosis strains for 24 h before biofilms 

were visually inspected and given a severity rating (Infection index %). Reduced biofilm 

formation was observed for both ΔdR and ΔdI backgrounds. A slight increase is seen when 

iscR is knocked out both as a single mutant and triple in both QS backgrounds, though this 

was not significant. Negative control ΔnagC did not produce any biofilm. Results 

representative of three independent repeats. The data was analysed by one-way ANOVA 

column analysis where stars indicate results that differ significantly from the parent where * 

(P<0.1), **(P<0.01) and ****(P<0.0001). 

 

Previously, some strains have been found to have different distributions of biofilm when 

examined under a microscope (Goldstone, 2012; Wiechmann, 2015). Therefore C. elegans 

biofilms of parent and iscR mutant strains were examined using confocal microscopy, with 

fluorescently tagged WGA used to stain the poly(GlcNac) biofilm. There was no difference 



90 
 

in biofilm distribution between the strains, with most biofilm concentrated around the head 

region with occasional pockets along the body in severe cases (Figure 3.18). 

 

 

Figure 3.18 Confocal microscopy images of biofilm formation on C. elegans in Y. 

pseudotuberculosis. 

Nematodes were fed parent or iscR mutant Y. pseudotuberculosis strains for 24 h and 

poly(GlcNAc) was stained with WGA-F (Red) to visualise biofilm. Both strains mainly formed 

pockets around the nematode head. Images are representative of experimental triplicates. 

 

The effect of mutating IscR on biofilm formation in Y. pestis was also tested using C. 

elegans. The YPCO92 parent strain forms large amounts of biofilm around both the 

anterior and posterior regions of C. elegans and seeding with similar amounts of bacteria to 

Y. pseudotuberculosis resulted in 100% mortality of C. elegans in all strains tested (Barratt, 

2018). The number of bacteria seeded onto plates was reduced to allow formation of large 

biofilms without killing the nematodes, so infection severity could be calculated. No 

significant differences were found between the parent and iscR mutant (Figure 3.19).  
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Figure 3.19 Biofilm formation on C. elegans in the Y. pestis parent and iscR mutant. 

Nematodes were fed parent or iscR mutant Y. pestis strains for 24 h before biofilms were 

visually inspected and given a severity rating (Infection index %). No significant differences 

were found between biofilm levels formed by either strain. Results show three independent 

repeats.  

 

3.2.3.3.2 Abiotic Surface 

C. elegans assays cannot be carried out at 37oC as the nematodes are unable to survive at 

this temperature. Therefore, abiotic surfaces were used to study biofilm formation at a 

range of temperatures. Previous optimisation of abiotic biofilm assays for Y. 

pseudotuberculosis found that glass provided the most consistent results, so this protocol 

was used for this study (Slater, 2017; Barratt, 2018). The effect of IscR and QS on biofilm 

on glass was examined at 22oC and 37oC (Figure 3.3). At 22oC (Figure 3.3A), in the 

absence of iscR, biofilm formation is reduced which is opposite to the trend observed on C. 

elegans. However, complementation did not restore biofilm to levels similar to those seen 

in the parent. Mutations in the ypsR and ytbR or ypsI and ytbI genes also results in reduced 

biofilm production, and is comparable to the effect of the mutations on biofilm formation on 

C. elegans  (Figure 3.17) Mutating iscR in these backgrounds did not further impact on 
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biofilm levels. At 37oC, (Figure 3.2B) no significant difference was observed between the 

parent and any other iscR or QS mutant strain. Although a slight reduction in biofilm 

formation was observed on the ΔiscR strain and this could be complemented back to 

parental levels when a plasmid-based copy of iscR was introduced. These results support 

previous findings that mutating the QS system alone does not impact on biofilm formation 

on glass at 37oC, only at 22oC (Slater, 2017; Barratt, 2018). 
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Figure 3.20 Biofilm formation on glass in the parent, ΔiscR, ΔdR, ΔdR/iscR, ΔdI, ΔdI/iscR and 

complemented Y. pseudotuberculosis strains at 22oC and 37oC. 

At 22oC a reduction in biofilm production was observed in ΔiscR. Both ΔdR and ΔdI show 

attenuated biofilm production which was not affected by further mutation of iscR (ΔdR/iscR 

and ΔdI/iscR). At 37oC no significant differences were observed. Results representative of 

three experimental triplicates. The data was analysed by one-way ANOVA column analysis 
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where stars indicate results that differ significantly from the parent where * (P<0.1), 

**(P<0.01), ***(P<0.001) and ****(P<0.0001). 

As there were differences in the levels of biofilm formed by the iscR mutant on glass when 

compared to the parent, the distribution and morphology of cells within biofilms on glass 

was examined using ESEM to examine the parent, iscR mutant and complemented strains 

(Figure 3.21). All strains formed a multi-layered biofilm with evidence of ECM around cells, 

although the iscR mutant showed far less ECM and a thinner biofilm overall, with only a 

small number of cells attached in comparison. Parent and complemented strains formed a 

thick, multicellular biofilm layer with clear dark deposits representing ECM. Evidence of 

ECM is still visible in the iscR mutant but the biofilm is much thinner and appears to be 

largely a single-cell layer. This is a novel finding and supports the fluorescence data 

described above in figure 3.2, showing a clear role for IscR in biofilm formation.  
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Figure 3.21 ESEM images of biofilms on glass of the Y. pseudotuberculosis iscR mutant. 

Strains were grown for 24 h on glass coverslips at 37oC before being washed and fixed in 

formal saline. Samples were then imaged on FEI Quanta 650 ESEM. Dark deposits 

representing ECM (*).Image representative of three independent experiments. 
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3.2.3.3.3 Development of louse model for biofilm production 

Insects play a crucial role in Y. pestis transmission but has been little studied in the human 

body louse. Due to the differences in biofilm results previously obtained, a third model 

would be beneficial to see if the differences are due to changes in surface properties. 

Extensive work was done previously to determine the best practise for louse husbandry 

and infection assays (Elton, 2018), however optimisation was still needed, particularly 

before the assays could be conducted in CL3 conditions. Due to issues establishing a 

breeding lice colony, lice were regularly supplied by Carola Kuhn (Umweltbundesamt, 

Berlin, Germany) and used immediately for experiments, with no attempt to keep them 

alive long term. This provided the most successful experiments, with a feeding rate of 

between 80 – 90% when lice were placed on the feeding pods filled with defibrinated, 

freshly collected human blood for 1 hour (data not shown). Feeding success was 

determined by visual examination under a light microscope due to the relative transparency 

of the lice (Figure 3.22). A small percentage of lice turned red and died very quickly after 

feeding, which has previously been suggested to be due to epithelial cell rupture within the 

louse gut and erythrocytes from the fresh blood meal spreading to the haemolymph 

(Houhamdi, Fournier, Fang, Lepidi, and Raoult, 2002) (Figure 3.22). These lice were 

counted as ‘fed’ but would need to be discounted in future experiments to determine biofilm 

formation, as they do not represent a natural feeding model.  
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Figure 3.22 Comparison of non-fed and fed P. corporis. 

(A) Non-fed louse with an empty gut. (B) A fed louse with an abdomen of red blood. (C) An 

example of haemolytic epithelial cell rupture. Red colouration is observed across the entire 

abdomen, thorax and legs. Images representative of experimental triplicates. 

 

Once successful feeding and experimental conditions were optimised, the effect of IscR on 

biofilm formation in lice was investigated using P. corporis which had been fed on 

defibrinated human blood inoculated with the Y. pseudotuberculosis parent and iscR 

mutant, as well as uninfected blood as a negative control. Survival was measured by visual 

observation and the results shown in Figure 3.23. Survival of lice fed uninfected blood was 

consistent with previousl reports, with all lice dead 60 h post infection (Elton, 2018). Lice 

fed parental strains died rapidly, with a sharp drop observed after 36 h and complete killing 

by 48 h. Interestingly, the iscR mutant appeared to kill lice faster than the parent strain, with 

only around a 50% survival rate after 24 h, compared to 80% for the parent.  

A B C 
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Figure 3.23 P. corporis survival rates when fed blood infected with Y. pseudotuberculosis 

parent or iscR mutant 

Lice were fed blood containing either parent or iscR mutant Y. pseudotuberculosis strains 

and the number of live lice visually inspected every 12 hours. The iscR mutation negatively 

affected the survival of lice with the time to death decreasing compared to the parental 

strains. Uninfected blood is shown as a control. Results show experimental triplicates.  

 

To see the distribution of bacteria and biofilm within the fed lice, insects were imaged using 

CLSM at 24 h post infection (Figure 3.24). Texas-red conjugated WGA was added to blood 

meals in an attempt to identify biofilm within the insects, however no biofilm was detectable 

and instead it was found that the lice auto-fluoresce at this wavelength, so this was 

exploited during imaging. Lice that had clearly taken a blood meal were imaged. In the lice 

fed uninfected blood, no GFP was visible. Both the lice fed parent strains and the iscR 

mutant showed diffuse GFP throughout the abdomen. However, this did not appear to be 

concentrated in the gut as seen in previous studies of this model (Elton, 2018). Slight 

accumulation is observed for the iscR mutant, which could suggest this is the beginning of 

biofilm formation and colonisation of the gut, and later timepoints should have been 

analysed.  
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Figure 3.24 Confocal images of P. corporis 24 h post infection with Y. pseudotuberculosis. 

Lice were fed blood containing either parent or iscR mutant Y. pseudotuberculosis strains 

and imaged after 24 hours. No GFP (A) can be seen in the negative control insect fed sterile 

blood. Diffuse green fluorescence is seen in louse fed with parent and iscR mutant strains. 

Autofluorescence is used to provide an outline of the louse body (B). (C) The merged image 

is shown. Small pockets of GFP can be identified in those fed with iscR (→) suggesting 

colonisation of the gut. Lice were imaged at 5x magnification and images are representative 

of experimental triplicates. 

 

 

 

→ 
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3.2.3.4  Aggregation 

In Y. pseudotuberculosis QS mutants show an increase in non-YadA dependent 

aggregation, which is most pronounced after an overnight culture has been left statically for 

45 min in a cuvette. This phenotype is T3S dependent as strains that do not secrete Yops 

do not aggregate to the same degree as those that are permissive for Yop secretion 

(Wiechmann, 2015; Barratt, 2018). Given the links between IscR and T3S (Section 3.2.2), 

auto-aggregation was examined in the iscR mutant using cuvette based aggregation 

assays and microscopy. Figure 3.25 shows that the iscR mutant has a defective 

aggregation phenotype, and that this is restored by complementation. This is likely due to 

the reduction in YOP secretion observed in section 3.2.2.  
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Figure 3.25 A Y. pseudotuberculosis iscR mutant shows reduced auto-aggregation. 

Strans were grown overnight at 37oC and incubated at room temperature for 45 minutes, 

in cuvettes (A) before being mounted onto a glass slide (B). (A) After 45 min less cells 

accumulate at the bottom of the cuvette and instead remain planktonic in the iscR 

mutant and complementing plasmid vector control. When the cultures from (A) were 

examined under a light microscope large aggregates were observed for both parent and 
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complemented icsR mutant strains after 45 min but not for the iscR mutant (B). Results 

representative of experimental triplicates.  

 

When QS double mutants were examined, enhanced aggregation was seen in dR and dI 

mutants, consistent with previous reports. Further mutation of iscR in these backgrounds, 

reduced aggregation levels below that of the parent, and reached similar aggregation levels 

to those observed for the single iscR mutant. Increased aggregation was restored by 

complementation with plasmid borne IscR (Fig 3.2.3). These results do not correlate with 

the levels of Yops secreted by these strains (Figure 3.11), as ΔdR/iscR and ΔdI/iscR were 

found to secrete different levels of Yops. If reduced aggregation in the iscR mutant was 

purely due to less Yops, aggregation levels for ΔdR and ΔdR/iscR would be the same. This 

suggests that another as yet uncharacterised mechanism is involved in auto-aggregation in 

addition to T3S, and this may involve regulation by IscR, highlighting a novel potential 

pathway of regulation.  
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Figure 3.26 A Y. pseudotuberculosis iscR mutant shows reduced auto-aggregation in 

QS mutant backgrounds. 

Strans were grown overnight at 37oC and incubated at room temperature for 45 

minutes, in cuvettes before being mounted onto a glass slide. After 45 min smaller 

aggregates are observed in the iscR,  dR/iscR and dI/iscR mutants. The hyper 

aggregation phenotype of dR and dI strains is restored by complementation with iscR. 

Results represent experimental triplicates.  

0 Min 45 Min 
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Y. pestis strains did not show aggregation after incubation at 22oC or 28oC (data not 

shown), consistent with previous findings of our group (Barratt, 2018). Interestingly, 

although the parent strain did not aggregate at 37oC, again consistent with previous 

findings, the iscR mutant had settled after 40 min of aggregation, and this could be restored 

by genetic complementation (Figure 3.27). Unfortunately, due to constraints of CL3 

working, time 0 images could not be taken, and so the iscR mutant had already began to 

aggregate at this time. In addition, higher quality pictures or microscopy work were not able 

to be carried out at this time due to difficulties associated with double containing cultures 

and use of glass slides or coverslips under CL3.  

 

Figure 3.27 A Y. pestis iscR mutant shows increased auto-aggregation. 

After growth at 37oC cultures were left to settle at room temperature and settlement of 

aggregates on the bottom of the cuvette observed. After 45 minutes, settled cells can 

be observed at the bottom of the iscR mutant cuvette. Results represent experimental 

triplicates.  
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3.2.3.5  Iron uptake 

Iron witholding is a key part of host invasion, as hosts often sequester iron as a form of 

immune defence and so concentrations in host tissues are very low. Bacteria overcome 

this defence mechanism by using siderophores, which are able to chelate the iron due to 

having a higher affinity for iron than the host iron-binding proteins such as transferrin and 

lactoferrin (Miethke and Marahiel, 2007). 

As IscR coordinates an Fe-S cluster, and the presence of the iron cluster dictates what 

motifs IscR is able to bind (Giel, Rodionov, Liu, Blattner, & Kiley, 2006a), it would be 

interesting to see if deleting iscR regulates siderophore production or has any effect on iron 

acquisition. To determine this, iron acquisition at 22oC was examined in Y. 

pseudotuberculosis using a liquid CAS assay, as described in (Louden et al., 2011; Pérez-

Miranda, Cabirol, George-Téllez, Zamudio-Rivera, and Fernández, 2007). As Figure 3.28 

shows, no difference was noted in iron chelation between the iscR mutant and the parent 

strains.  
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Figure 3.28 . Iron scavenging activity of Y. pseudotuberculosis is not affected by IscR. 

A chrome azurol S assay was carried out to measure siderophore activity. A colour change of 

blue to orange is observed as iron is removed from the dye complex, which can be measured 

spectrophotometrically and used to calculate an Iron Chelation Unit. Assays were carried out 

in liquid form using bacterial supernatants. Deferoxamine mesylate salt (DMS) was used as a 

positive control. There was no difference between iscR mutant and parental strains. 

 

In addition to the uptake of free iron by siderophores, Yersinia are also able to use haem 

once inside a mammalian host. (Forman et al., 2010; Hornung et al., 1996; Rossi et al., 

2001). Several genes involved in the haemin transport system, hmu, were identified as 

being down regulated in an iscR mutant  (Miller et al., 2014), so a haem uptake assay was 

used to see if this phenotype was affected by the deletion of iscR. Iron-starved bacteria 

were plated and exposed to H2O, haem or free iron and left to grow at 37oC, corresponding 

to mammalian body temperature. Equivalent growth was seen around the haem disks in 

both the iscR mutant and the parent (Figure 3.29) suggesting that deletion of iscR does not 

affect haem scavenging ability, perhaps due to the ability of the Has haemophore system to 

compensate for the potential downregulation of Hmu.  
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Figure 3.29 Uptake of haem in Y. pseudotuberculosis iscR mutant. 

Iron starved bacteria were plated and growth observed around either water (A), Haemin 

hydrochloride (B) or free Fe3+ (C). No growth was observed around the negative control and 

a small amount around free iron. Both iscR mutant and parent strain grew equally when 

provided with haem (B). Results are representative of 3 independent repeats. 

 

 

 

 

3.3 Discussion 

Recently Miller et al suggested that IscR is crucial for virulence, and regulates the T3S 

system in Y. pseudotuberculosis (Miller et al., 2014). The work described in this chapter 

aimed to confirm this observation and further characterise the role of IscR in Y. 

pseudotuberculosis and Y. pestis. Insertion-deletion mutants were made to remove part of 

the iscR gene and replace with an antibiotic resistance casettes in both organisms. This 

strategy resulted in in-frame mutants that were confirmed by PCR and DNA sequencing 

initially, followed by whole-genome illumina sequencing and analysis. Variant analysis and 

complete confirmation of mutant fidelity was carried out to ensure that any phenotype 

attributed to the deletion of iscR was not a consequence of an unwanted secondary 

mutation.   

Variant analysis of the chromosome of Y. pseudotuberculosis ΔiscR found only one 

mutation that met the 95% cut off used to determine that all listed variants are true, and this 

Parent ΔiscR 

A 

B 

C 

A 

B 

C 
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was in an intergenic region. This is unlikely to have any phenotypic effect as it is located in 

a non-coding region, however the possibility of disrupted regulatory regions must be 

considered. In Y. pestis ΔiscR, three significant changes were identified, though again 

these were in non-coding regions. However, following a strict cut off for variant calling 

frequency means there is a chance of missing variants with less coverage. On further 

inspection of the variant calling data for Y. pseudotuberculosis ΔiscR, one additional 

mutant just missed out on this cut off, at 94.38%. This is a frameshift mutation in the coding 

region for pldA, coding for Phospholipase A1. This is an enzyme present in the outer-

membrane linked to pathogenesis by its role in the disruption of membranes during host 

cell invasion. (Istivan and Coloe, 2006.; Schmiel, Wagar, Karamanou, Weeks, and Miller, 

1998). A frameshift in the coding region would likely result in a non-functional protein, the 

phenotypic effects of which are unknown. The possibility of repairing this mutation through 

further cloning, or re-making the iscR mutant to try and avoid this secondary mutation, was 

considered. However, when considering time limitiations and the chance of incorporating 

additional SNPs when manipulating such a large genome it was decided that instead 

genomic complementation would be used to validate any phenotypic results. Due to time 

constraints during analysis, the pYV plasmid of Y. pseudotuberculosis ΔiscR was not 

subject to variant calling. As T3S is a crucial focus of this study, future work should look to 

complete this analysis and assure there are not further mutations on pYV.  

This study confirmed that mutating iscR in Y. pseudotuberculosis resulted in reduced 

secretion of Yops. However, the difference in secretion between the iscR mutant and 

parent was not as severe as reported (Miller et al., 2014). A possible explanation is that this 

study used BHI-MOX, which chelates the calcium from the medium but is otherwise 

nutrient rich, whereas previous studies used minimal media. The use of minimal media in 

previous studies may provide additional limiting factors for T3S and secretion of Yops. 

Repeating Yop secretion assays in a minimal medium, perhaps YDMM, may give a more 

comparable Yop profile.  
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Interestingly, the levels of Yops secreted were not equally affected by the deletion of iscR. 

This was most noticeable when analysing YopM and YopE, both of which are secreted 

effector proteins. It was initially thought that the difference could be because YopM does 

not require a chaperone protein to be effectively delivered, whereas YopE does, and IscR 

may regulate levels of this chaperone too (Dewoody et al., 2013; Boyd, Lambermont, and 

Cornelis, 2000). However, published RNA-seq analysis did not find that iscR changed the 

level of SycE, Yop E’s chaperone protein, so this is unlikely to be a limiting factor (Miller et 

al., 2014). Effector Yops are in constant competition to be secreted in what is an 

energetically costly process, and as it is such a finely balanced system, the iscR mutation 

could effect this in a number of ways. However, the phenotypic consequence of having a 

greater proportion of YopM secreted is not yet known but would be interesting to explore.   

Due to the high degree of homology between IscR and T3S systems among Yersinia spp. it 

was hypothesised that IscR would also regulate T3S in Y. pestis. Unfortunately, due to the 

activity of Pla this was unable to be tested, as Yops are rapidly degraded in vitro upon 

secretion. A number of strategies were discussed to try and solve this problem, and the 

possibility of using a Pla inhibitor was explored. However, this did not work as 

concentrations needed to have any effect also inhibited growth. A strategy was designed to 

remove pPst in the current strains, however this could not be completed in time. This would 

be a logical next step, as it would allow comparisons between mutant strains where the 

only difference is the plasmid, as opposed to remaking the whole mutant library in pPst 

negative strains and potentially introducing secondary mutations.  

Despite a reduction in Yop secretion, Y. pseudotuberculosis ΔiscR still showed growth 

arrest in T3S inducing conditions, and although a slight increase in growth rate was 

observed in the mutant, this was not significant. This is likely because growth arrest is due 

to expression of the entire T3S and not just late stage secretion of Yops, which may 

indicate that IscR does not impact these early stages of T3S. Interestingly, Y. pestis ΔiscR 

appeared to show complete relief from T3S system associated growth arrest. However, 
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due to constraints of working in a CL3 laboratory, namely restrictions on working hours and 

working around other lab users, this data currently only relies on one time point and would 

need to be repeated over time before any reliable conclusions can be drawn. However, this 

result does suggest a possible role for IscR in the regulation of T3S in Y. pestis, perhaps 

more significant than what is seen in Y. pseudotuberculosis. The Lcr is reported to be more 

severe in Y. pestis (Brubaker, 1991; Carter, Zahorchak, & Brubaker, 1980) so it may be 

that any relief from growth arrest due to IscR is amplified. This finding also adds further 

weight to the need to develop a way of studying T3S in Y. pestis in vitro. 

As there are known links between T3S and QS, and work outlined in this chapter explored 

the links between IscR and T3S, it was decided to explore any potential links between QS 

and IscR in Y. pseudotuberculosis. Triple mutants were constructed by using the same 

strategy as previously described to mutate iscR in either a strain lacking both QS response 

regulators (ypsR/ytbR), or both AHL synthases (ypsI/ytbI). These mutants were confirmed 

by PCR and DNA sequencing, but were not subject to whole-genome analysis and variant 

calling. As previously discussed, this is beneficial when doing phenotypic analysis as 

additional mutations can be unknowingly introduced that could have a phenotypic 

consequence. This is something that could be done for future experiments, but for now 

plasmid based genetic complementation was used by introducing a fully functional copy of 

iscR.  

When studying QS it is be best to use a strain that is completely QS negative, and has both 

ypsR/I and ytbR/I systems mutated. However, previous attemps to construct this quadruple 

mutant have proved to be difficult, so using the dR and dI backgrounds is currently the only 

option, neither of which has a fully functional QS system but still has some functional 

components. For future work, the construction of a quadruple QS mutant would be 

invaluable. 
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Similarly, investigating the link between QS and IscR in Y. pestis has not been possible at 

this time due to difficulties during mutagenesis and strict limitations on the number of 

antibiotic resistances that can be introduced to a single strain. Future plans to use the Flp 

recombinase system (Hoang et al., 1998) to remove resistance casettes at the end stages 

of mutagenesis should mean that creation of these mutants complying with GMO licencing 

will soon be possible. 

Yop secretion assays confirmed the previously reported defects in secretion in dR and dI 

strains (Atkinson et al., 2008), but the secretion defects were not as severe as in the iscR 

mutant. In a dI mutant background, the severe Yop secretion defect due to the mutation of 

iscR was still observed. However, this was not the case in a dR mutant background, and 

ΔdR and ΔdR/iscR showed similar levels of Yop secretion. As the severe secretion defect 

of ΔiscR is lost in the absence of both R genes it suggested that ypsR, ytbR or both are are 

necessary for IscR-dependent regulation of T3S. Further studies confirmed that only one R 

gene is necessary for the defect in secretion to occur, suggesting the presence of one R 

gene is enough for IscRs action on T3S, and this can be either ypsR or ytbR.  

LC-MS analysis of AHL levels was unsuccessful, likely due to experimental error, and due 

to premature shut down of laboratory research this was unable to be repeated, therefore 

this remains an interesting area to explore.  

After establishing a phenotypic link between IscR, T3S and QS, the IscR mutant phenotype 

was further characterised in a number of assays that had also previously been reported to 

be under QS or T3S control. No differences were observed in colony morphology or growth 

rate in Y. pseudotuberculosis or Y. pestis, indicating IscR does not regulate these.  

The effect on flagellar mediated swimming motility was studied using semi-solid swim agar 

plates, and it was found that the iscR mutant was not hypermotile. However, despite YPIII 

being previously reported as a motile strain, it is non-motile in these conditions, so if IscR 

was to negatively affect a swimming motility phenotype, this would be unclear. Additionally, 
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recent illumina sequence analysis of the Y. pseudotuberculosis parent strain found a 

missense SNP in fliC, which is hypothesised to disrupt the interaction of flagellin filaments 

and explain why the parent strain is now non-motile (Slater, 2017). The repair of this 

mutation or the introduction of a functional copy of fliC is the next step in studying motility. 

Therefore, further work is needed before conclusions can be drawn on IscR and motility.  

This study found that mutating iscR had no effect on the formation or distribution of Y. 

pseudotuberculosis biofilm on C. elegans. Although overall trends did suggest mutating 

iscR leads to an increase in biofilm formation, this was not significant. No differences was 

also observed in Y. pestis, although distribution was not examined at at this time so this 

would be interesting to follow up.  

To allow the study of biofilm formation at a range of temperatures, biofilm formation by Y. 

pseudotuberculosis on glass was investigated.  Biofilm formation was attenuated in an iscR 

mutant at 22oC, although this did not complement back to parent levels, but no difference 

was noted at 37oC. At 22oC biofilm is reduced in the QS mutants, but this was not affected 

by mutation of iscR. This suggests that iscR- and QS- regulation of biofilm formation on 

glass is not interdependent. In RNA-seq analysis, mRNA levels of nagC, nagA, nagB and 

nagE were up-regulated in an iscR mutant, suggesting that IscR represses the nagE-

nagBACD operon (Miller et al., 2014). This operon is responsible for the degradation of 

GlcNAc, a major component of biofilm. Increased expression would therefore likely lead to 

a reduction polyGlcNAc and consequentially biofilm formation in the iscR mutant, which 

may explain the phenotype observed here.  

This chapter described some of the refinements of a model for P. corporis infection, which 

allowed for successful feeding and infection of lice.  In Y. pseudotuberculosis an iscR 

mutant appeared to result in a higher kill rate of lice than the parent strain, however a 

genetically complemented strain was not analysed during this study. Microscopic imaging 

of the lice was unable to confirm if the change in survival rate was due to the production of 
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more biofilm in the gut, as methods to sustain fluorescent staining in the louse gut over 

time need to be refined. However, current models suggest that biofilm blockage of the 

louse gut, similar to that reported in the flea vector, enables the transmission of Y. pestis 

(Houhamdi et al., 2006) and Y. pseudotuberculosis is also capable of forming biofilm in the 

louse gut (Elton, 2018), so this phenotype may be biofilm mediated. Whilst the original 

intention was to establish the louse as a model of biofilm formation, at the current stage it is 

more representative of an infection model, as a clear link between the killing observed and 

biofilm formation has not yet been established. Following extensive discussions and 

approvals, adaptation of the feeding model was made to enable safe use in CL3 conditions, 

and practise runs were successful. This will offer a novel way for studying biofilm formation 

in Y. pestis and shed further light into whether and how P. corporis may aid plague 

transmission.  

Before the iscR mutants are used in future lice feeding assays, it would be good to study 

the differential survival of strains in blood, as a recent publication reported that an iscR 

mutant in Y. pseudotuberculosis has a survival defect when incubated in whole blood, that 

is independent of haem uptake, T3S, complement and the ability to replicate intracellularly 

(Schwiesow, Mettert, Wei, et al., 2018). If the iscR mutant has a different survival in whole 

blood then this may affect the results of future lice biofilm work. However, this would not 

explain the reduced survival of lice fed the iscR mutant, indeed the opposite result would 

be expected.  

QS and T3S are also linked to non-YadA dependent aggregation. Y. pseudotuberculosis 

QS mutants exhibit a hyper-aggregation phenotype, which was confirmed in this study, and 

strains deficient in Yops are also often deficient in aggregation (Barratt, 2018). The iscR 

mutant was found to aggregate much less than parental strains which could be due to the 

impaired Yop secretion previously discussed. However, the defective aggregation for iscR 

mutants was still observed in both dI and dR mutant backgrounds, which did not correlate 

with the levels of Yops secreted for these strains (Figure 3.11). This suggests a different 
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mechanism behind auto-aggregation, separate to the regulation by T3S.  The levels of ail 

mRNA is up-regulated in an iscR mutant, and it was hypothesised that Ail may regulate 

auto-aggregation, as OmpX, an ail homologue in Y. pestis was reported to positively 

regulate aggregation (Kolodziejek. et al., 2007; Miller et al., 2014). If this were true, 

upregulation of ail would likely result in increased aggregation, which was not observed 

here. This suggests that either Ail does not mediate aggregation in Y. pseudotuberculosis, 

or does so in a different way than in Y. pestis. It may also highlight a common problem 

when relying solely on RNAseq data, as transcription levels do not always correlate with 

translation.   

When iscR was mutated in Y. pestis, a hyper-aggregation phenotype was observed 

however this contradicts literature that says Y. pestis cannot aggregate at 37oC. In addition, 

no aggregation was seen at 22oC or 28oC which has been reported in Y. pestis. However, 

the presence of Pla must again be considered here, as whilst Yops are translated in vitro 

they are promptly degraded (Mehigh et al., 1989). YopH has been identified as key for 

auto-aggregation in Y. pseudotuberculosis (Barratt, 2018) so its absence may explain why 

aggregation was not observed in this assay. Again this highlights the benefits of 

constructing a pPst negative strain for future studies.  

No change in iron chelation nor haem uptake uptake was observed for the Y. 

pseudotuberculosis iscR mutant. The hmu operon is downregulated according to RNA seq 

data (Miller et al., 2014) and IscR has since been shown to be essential for the expression 

of hmuSTUV in the presence of inorganic iron, due to the direct action of IscR on a 

promoter in the intergenic region between hmuR and hmuS (Schwiesow et al., 2018). As 

no difference in haem uptake was observed between the iscR mutant and parent strain, it 

suggests that perhaps the Has haemophore is able to compensate for the down-regulation 

of the hmu operon.  
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4 Exploring the regulation of T3S by IscR using chromosomal promoter::lux 

fusions in Y. pseudotuberculosis.  

4.1 Introduction 

The work described in Chapter 3 demonstrates that IscR is necessary for the regulation of 

T3S, and Yop secretion is significantly reduced in an iscR mutant in Y. pseudotuberculosis, 

in accordance with previous reports (H. K. Miller et al., 2014). A phenotypic link between 

IscR, QS and T3S was also established, as the IscR-dependent suppression of Yop 

secretion is lost in a QS response regulator mutant background (Figure 3.11). How IscR 

regulates T3S still remains to be determined, although Miller et al., (2014) hypothesised 

that it may be through regulation of LcrF, and indeed they found that purified IscR bound to 

an identified lcrF promoter, and mRNA levels of lcrF and 24 other T3S genes were reduced 

in Y. pseudotuberculosis in the absence of iscR.  

LcrF is an AraC-like transcriptional activator, encoded on pYV/pCD1, and highly conserved 

amongst all human pathogenic Yersinia. At 37oC LcrF binds as a dimer to promoter 

sequences of target genes on the virulence plasmid (King, Schesser Bartra, Plano, and 

Yahr, 2013).  LcrF expression is subject to thermoregulation, via a short stem loop 

structure or ‘RNA-thermometer’ which at environmental temperatures conceals the lcrF 

ribosome binding site and prevents translation. It has been proposed that when 

temperature increases, hydrogen bonds in the AT-rich thermometer melt, unmasking the 

RBS and initiating lcrF translation (Hoe and Goguen, 1993; Böhme, Steinmann, Kortmann, 

Seekircher, Heroven, Berger, Pisano, Herbst, et al., 2012). 

The RNA thermometer is located in an intergenic region between lcrF and the T3S system 

chaperone yscW, which lies 123 bp upstream of lcrF, in the same operon and under the 

control of the same promoter (Böhme, Steinmann, Kortmann, Seekircher, Heroven, Berger, 

Pisano, Herbst, et al., 2012). In addition to the translational regulation, this operon is under 
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the control of the transcriptional repressor, YmoA (Yersinia modulator). YmoA is a histone-

like protein that is proposed to prevent expression of lcrF at low temperatures through 

influencing DNA topology, such as compaction of chromatin and influence on DNA 

supercoiling (Cornelis et al., 1991; Cornelis, 1993). At 37oC ymoA repression is removed 

and this is the trigger behind the thermo-dependent assembly of the T3S system. This is 

partly due to ClpXP and Lon mediated proteolysis of YmoA, temperature-induced 

topological changes of the promoter and conformational changes in the regulatory proteins. 

(Jackson et al., 2004; Ono et al., 2005). It has since been proposed that there is another, 

lcrF specific, promoter within the intergenic region of yscW and lcrF (Slater, 2017).  

 

Figure 4.1 lcrF expression is under the control of two different promoters 

yscW and lcrF are arranged in an operon under the control of a single promoter (A). A 

second, weaker promoter was identified in the intergenic region between yscW and lcrF (B). 

Adapted from (Böhme, Steinmann, Kortmann, Seekircher, Heroven, Berger, Pisano, Herbst, et 

al., 2012; Slater, 2017) 
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Figure 4.2 The T3S System is subject to thermo-dependent regulation 

At ambient temperatures (A), YmoA blocks transcription of the yscW-lcrF operon through 

chromatin compaction. lcrF translation is blocked by formation of a 5’ RNA thermometer 

which stops the formation of the ribosome complex. At elevated temperatures such as in the 

host (B) ClpXP and Lon proteases degrade YmoA, liberating the yscW promoter. The RNA 

thermometer melts, enabling the ribosome to target the RBS. IscR is believed to work 

upstream of the yscW promoter to enhance transcription. Adapted from (S. Chen et al., 2016) 

 

T3S is also regulated by QS in Yersinia spp. QS was first linked to the regulation of T3S in 

Y. pestis, as the addition of exogenous N-octanoyl-homoserine lactone (C8) or N-(3-

oxooctanoyl)-homoserine lactone (oxo-c8) led to a reduction in the virulence factor LcrQ 

(Gelhaus, Rozak, Nierman, et al., 2009), although this relied on high, non-physiological 

concentrations of AHLs. In Y. pseudotuberculosis, QS was linked to T3S through the 

regulation of motility and biofilm formation on C. elegans (Atkinson et al., 2008). Further 

links between QS and T3S have been identified through the repression of auto-aggregation 

as an increased aggregation phenotype is seen in an ypsI/ytbI QS synthase mutant, 

IscR 
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suggesting that QS is a repressor of auto-aggregation and therefore a repressor of T3S 

(Barratt, 2018). 

Previous studies on the regulation of T3S by IscR have employed RNA-seq analysis, and 

whilst this is an extremely powerful tool that provides an overall view of the transcriptome at 

any given timepoint, bioreporters can be used to monitor individual bacterial gene 

expression in a more targeted manner. Bioluminescent reporters allow the quantification of 

gene expression in real time, often with little effect on the host system. As very few non-

marine bacteria exhibit bioluminescence naturally there is minimal background signal, 

offering high sensitivity. The source of lux in this study is Photorhabdus luminescens, 

where lux genes are arranged into the luxCDABE operon. LuxAB codes for luciferase and 

luxCDE codes for the fatty acid reductase complex responsible for synthesizing long chain 

fatty aldehydes as substrates for the luminescence reaction (Meighen, 1991). Use of the 

lux cassette from P. luminescens is preferred to other species due to its higher thermal 

stability (up to 45oC) and in situ generation of the aldehyde meaning that the addition of 

substrate is not necessary (Meighen, 1991). By using the lux genes as reporters of gene 

expression, the strength and regulation of transcription from various promoters can be 

monitored in parent and mutant backgrounds.  

 

4.1.1 Aims of this Chapter 

There is not yet a clear picture of the full extent of the role IscR has in T3S regulation and 

whilst it appears to act through master regulator Lcrf, given the multi-faceted regulation of 

T3S, it is possible that IscR acts at more than one target promoter site. As a regulator of 

T3S, IscR also stands out as a potential therapeutic target in order to reduce virulence and 

minimise the pressure to acquire resistance. Therefore, a broader understanding of the 

regulatory network could be invaluable.  
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In order to elucidate more of this network, the work described in this chapter describes how 

promoter:lux fusions were used to examine the expression of key genes to determine the 

impact of IscR on the:  

• yscW-lcrF promoter 

• lcrF specific promoter 

• expression of ymoA  

A phenotypic link between IscR, QS and T3S  is described in Chapter 3. To determine 

whether IscR acts on the QS system at a transcriptional level, promoter:lux fusions were 

also used to investigate whether: 

• IscR regulates expression of  the QS response regulator genes, ypsR and ytbR 

• IscR regulates expression of the AHL synthase genes, ypsI and ytbI 
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4.2 Results 

4.2.1 Does IscR regulate T3S via LcrF in Y. pseudotuberculosis?  

T3S is controlled by the master regulator LcrF. The lcrF gene is part of an operon with 

yscW that previously was  believed to be under the control of a single promoter (Böhme, 

Steinmann, Kortmann, Seekircher, Heroven, Berger, Pisano, Thiermann, et al., 2012). This 

promoter is repressed by YmoA and exhibits temperature sensitivity. Previously, our group 

identified a second, LcrF specific, promoter with weaker expression which was also found 

to be temperature sensitive and under YmoA repression (Slater, 2017). Promoter:lux 

fusions of these regions were used to determine whether IscR regulates T3S through any 

of these promoters. 

4.2.1.1 Expression from the yscW-lcrF promoter  

It was previously reported (Miller et al., 2014) that IscR binds upstream of yscW, in the 

yscW-lcrF promoter, and hypothesised that this is the mechanism by which IscR regulates 

T3S. As we had previously constructed a lux fusion to this promoter, it was transformed 

into the parent, iscR mutant and genetically complemented backgrounds and expression 

analysed. Published RNA-seq data were derived from experiments carried out on strains 

grown for 3 h at 37oC in a minimal low calcium medium to induce expression of the T3S 

system (Miller et al., 2014). However, our previous lux reporter assays all used YLB, a rich 

medium with high calcium levels. Therefore, for comparison, yscW-lcrF promoter 

expression was investigated using both YLB and YLB-MOX (which contains a calcium 

chelator and so lacks free calcium) at both 22oC and 37oC. 

Figure 4.3 shows that no expression was observed from the parent at 22oC, in line with 

previous studies (Slater, 2017). However, very low levels of expression were observed in 

the iscR mutant at 22oC, which was partially complemented by a plasmid based functional 

copy of iscR. At 37oC a ~2 fold increase in expression in an iscR knockout strain compared 
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with the parent strain was observed, which was reduced to wild type by genetic 

complementation YLB-MOX conditions but not YLB. This confirms that iscR regulates 

expression of lcrF via the yscW-lcrF promoter. However, Miller et al. (2014) found the 

opposite of this, and in an iscR mutant a reduction in transcription of lcrF was observed. 

The calcium concentrations of the medium made no difference to the overall trend for 

expression levels at either temperature. However, the kinetics of expression, with regards 

to magnitude and the timing of switching off, were completely different. At 37oC with YLB-

MOX, conditions which trigger T3S expression, expression increases rapidly for a short 

space of time for all strains, whereas with high calcium the increase in expression is 

gradual and continues to increase for IscR after this time. This suggests that expression 

from this promoter is calcium dependent.  
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Figure 4.3 Transcription from the yscW-lcrF promoter region. 

Expression from the yscW-lcrF promoter region was determined by promoter:lux fusions. No 
expression from this promoter was observed at 22oC in the parent in contrast with the iscR 

mutant. At 37oC expression was greater from this promoter in the iscR mutant. This was 
restored to wild type by complementation with plasmid-borne iscR. The presence or absence 
of calcium (YLB or YLB-MOX) changed the expression profiles, with low calcium (YLB-MOX) 

resulting in a quicker but shorter lived expression. Results are representative of 4 
independent repeats. YLB only was ran as a control.  
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4.2.1.2 Expression from the lcrF specific promoter  

To determine whether iscR also acted on the lcrF specific promoter, the bioluminescence 

of Plcrf∷lux was studied in the parent, iscR mutant and genetically complemented 

backgrounds (Figure 4.3). As previously reported, no expression was observed at 22oC in 

the parent strain and, in contrast to the yscW-lcrF reporter, this remained the same when 

observed in the iscR mutant. This was expected as lcrF is not expressed at this 

temperature. At 37oC, expression was ~2 fold lower in the iscR mutant in the presence of 

MOX, and this was restored to parental levels by genetic complementation. This result is at 

odds with the knowledge that an iscR mutant has reduced T3S activity and reduced levels 

of LcrF mRNA (Miller et al., 2014). If IscR positively regulates lcrF expression as this 

promoter fusion suggests, an iscR mutant would be expected to show an increase in T3S, 

subject to other limiting factors in the system. However, this is a secondary promoter, and 

overall expression is substantially much weaker (~100 fold) than from the yscW-lcrF 

promoter, so it is unlikely to have a sigificant effect on lcrF expression when iscR is acting 

on both promoters. Again, the presence of MOX and consequential low calcium levels 

changed the expression profile from this promoter. As with yscW-lcrF, expression with Mox 

from the lcrF specific promoter shows the same early and sharp induction, which is short 

lived.  

These results reinforce work previously done by our group that suggest the presence of a 

novel, lcrF specific, promoter (Slater, 2017). Previous work on this promoter demonstrated 

very low levels of expression, often between 10 and 100 fold lower than observed with 

other reporters (Slater, 2017). However, this is the first time this promoter has been 

assayed in low calcium availability medium and, as can be seen in Figure 4.3, expression 

is much higher in these conditions. This highlights a potential role for this second promoter 

in the later stages of T3S expression, when the calcium blockade is removed and Yops are 

secreted, which would explain why its expression is dependent on low calcium 

concentrations.  
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Figure 4.4 Transcription from the lcrF specific promoter. 

Expression from the lcrF specific promoter region was determined using promoter:lux 
fusions. No expression from this promoter is observed at 22oC. At 37oC expression is 

reduced in the iscR mutant relative to the parent. This is restored by complementation with 
plasmid-borne iscR. The absence of available calcium (YLB-MOX) greatly increased 

expression levels from this promoter for all strains and resulted in different kinetics, with a 
short and brief period of expression instead of a longer, lower level. Results represent 3 

independent repeats. YLB only was ran as a control. 
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4.2.1.3 IscR does not regulate expression of ymoA 

To explore whether iscR could further influence lcrF levels via ymoA, which regulates LcrF 

expression through both yscW-lcrF and the lcrF promoters, the expression of ymoA was 

investigated in parent and iscR mutant backgrounds (Figure 4.4) No difference was 

observed between the strains, suggesting that IscR does not act transcriptionally on ymoA. 

Results in YLB and YLB-MOX were the same (data not shown).  

 

 

Figure 4.5 Transcription from the ymoA promoter. 

Expression from the ymoA promoter region was determined using promoter:lux fusions. No 
difference in expression was observed between parent and iscR mutant at 22oC or 37oC. 

(n=3) YLB only was ran as a control. 

 

4.2.2 Does IscR regulate T3S through QS in Y. pseudotuberculosis?  

Figure 3.11 (Chapter 3 Section 2) showed that the defect in Yop secretion attributed to 

IscR deletion was not observed when response regulator genes, ytbR and ypsR, had been 

knocked out, although the presence of either R gene alone was enough to retain this 

phenotype. This suggests that the IscR-dependent regulation of T3S may be QS 

dependent. Promoter:lux fusions were therefore used to determine whether IscR directly 

regulates the expression of the QS system regulator genes (ypsR and ytbR) or AHL 

synthases (ypsI and ytbI). 

22oC 37oC 

YLB 
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4.2.2.1 Expression of ypsR and ytbR is reduced in an iscR mutant 

To examine the impact of IscR on expression of the QS system response regulators YpsR 

and YtbR, PypsR::lux and PytbR::lux fusions were introduced into parent, iscR mutant and 

complemented strains and expression quantified as a function of growth at 22oC and 37oC. 

As previously, expression was studied in YLB or YLB containing a calcium chelator (YLB or 

YLB-MOX) but this made no difference to expression patterns (data not shown). Figure 4.5 

shows that expression from both the ypsR and ytbR promoter regions was reduced in the 

absence of IscR at both 22oC and 37oC. This suggests that IscR positively regulates the 

expression of the response regulators in both QS systems. However, complementation with 

a plasmid-borne copy of iscR did not restore the expression of ypsR to parental levels, and 

only partially complemented for ytbR.  

 

 

 

 

 

 

 

 

 



127 
 

 

 

 

 

 

 

Figure 4.6  Impact of iscR on transcription of ypsR and ytbR promoters. 

Expression of ypsR ytbR was investigated using promoter:lux fusions. At both 22oC and 37oC 

a large reduction in expression from both promoters is observed in the iscR mutant 

background. (N=3) YLB only was ran as a control. 

 

4.2.2.2 IscR does not regulate the expression of ytbI or ypsI 

To examine the impact of IscR on the AHL synthases YpsI and YtbI, PypsI::lux and PytbI::lux 

fusions were introduced into parent, iscR mutant and complemented strains and 

expression studied at 22oC and 37oC. Figure 4.7 shows that no difference was observed in 

the expression from either promoter between parent and iscR mutant backgrounds. 

Interestingly, when a plasmid based copy of IscR was introduced, expression from the ytbI 

promoter was increased significantly beyond that of the parent strain.   

yps

R 

ypsR 

ytbR 

22oC 37oC 
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Figure 4.7 Impact of iscR on transcription of ypsI and ytbI. 

Expression of ypsI and ytbI was determined using promoter:lux fusions. At both 22oC and 

37oC no significant difference was observed between expression in parental and iscR mutant 

backgrounds. When complemented with IscR on low copy number vector pHG327, 

expression of ytbI is significantly increased. (N=3) YLB only was ran as a control. 

 

4.3 Discussion 

The results presented in this chapter explored the regulation of genes involved in T3S and 

QS by IscR and found that:  

• IscR negatively regulates expression from the yscW-lcrF promoter   

• IscR positively regulates expression from the lcrF specific promoter 

• IscR has no effect on ymoA expression 

ypsI 

ytbI 
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• IscR positively regulates expression of ypsR at 22oC and 37 oC and ytbR at 22oC 

• IscR has no effect on the expression of ypsI or ytbI 

Promoter fusions showed that IscR negatively regulates the expression of LcrF through 

binding to the yscW-lcrF promoter, leading to increased expression in an iscR mutant. In 

contrast, expression from the lcrF specific promoter was around 2 fold lower in the iscR 

mutant. Whilst this does not fit with the knowledge that T3S is reduced in the absence of 

IscR, it is important to note that expression from this promoter is around 100 fold weaker 

than for yscW-lcrF, and so it is unlikely that action on this promoter would alter LcrF levels 

when IscR is acting on both.  IscR is sensitive to the environment and binds to different 

DNA motifs depending on its Fe-S status, therefore it is possible that IscR is capable of 

activating or repressing LcrF expression depending on the presence of the cluster, allowing 

iron availability to influence expression of T3S. Bioinformatic analysis on the lcrF specific 

promoter, to see if there is a type 1 or type 2 iscR motif present that would explain this 

regulation would be a good next step. This study has explored the effect of complete 

deletion of IscR, but for future experiments it may be beneficial to have an apo-locked IscR 

strain, to further explore the effect of iron on IscR’s regulatory activities.  

Both LcrF promoters are under the control of the temperature sensitive YmoA (Böhme, 

Steinmann, Kortmann, Seekircher, Heroven, Berger, Pisano, Thiermann, et al., 2012) so 

promoter fusions were used to see if IscR indirectly regulated the expression of LcrF and 

Yop secretion via action on YmoA. IscR did not affect the expression from the YmoA 

promoter, suggesting that the regulation of LcrF expression by IscR is direct, through 

binding to the two previously discussed promoter regions.  

One of the interesting things about these results was the effect of the presence of a 

calcium chelator on the expression profiles from LcrF promoters. The presence of Mox at 

37oC lead to much quicker peak in expression for both yscW-lcrF and lcrF promoters, both 

peaking after around 5 hours and expression being almost completely gone by 10 hours. 
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This highlights a benefit of fusion data over RNA seq, as the later only offers a snapshot of 

gene expression at a specific time and conditions. The expression of LcrF may be 

increased in low calcium and at 37oC, as these are T3S inducing conditions and indirect 

factors, such as the presence of Yops, may be driving expression from these promoters. 

The sharp fall in expression after the initial peak could be due to the energetics of the 

system, as it could begin to shut down as the substrate for Lux, FMNH2, is depleted. Before 

conclusions can be drawn about the changes in expression, it must first be ruled out that 

Mox does not affect the luciferase enzyme itself and this is the artefact we are seeing. A 

good test to do would be to run these assays with fusions of a constitutively active 

promoter, and see if Mox changes these expression profiles.  

Chapter 3 previously identified a phenotypic link between IscR, QS and the regulation of 

T3S, with data suggesting that IscR’s regulation of T3S is in some way linked and 

dependent on a functioning QS system. To explore this further, promoter fusions were used 

to see if IscR directly regulates the expression of QS genes. At 22oC expression of ypsR 

and ytbR was reduced in the iscR mutant, and ytbR was also reduced at 37oC. No change 

in expression of either AHL synthase was identified. These results indicate that IscR 

positively regulates both QS systems in Y. pseudotuberculosis, via direct regulation of the 

response regulator genes.  

With complex systems there are often reciprocal regulatory relationships, and it would have 

been good to see if LcrF, YmoA or any QS genes regulate the expression of IscR. To this 

aim, promoter-fusions of the iscR promoter were designed and constructed however this 

strategy could not be completed. Difficulties arose due to the large size of the luxCDABA 

operon, when attempting to ligate to such a small promoter, and ligation and transformation 

efficiency was very low. A possible work around for this in the future could be switching to a 

nano-lux strategy, which is a smaller modified lux system. Additionally, other reporter 

genes could be considered, such as fluorescent proteins like GFP.  
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5 Overall Conclusions 

A protein once believed to be exclusively involved in Fe-S biogenesis, IscR is now 

receieving greater attention as a global regulator of gene expression in many bacteria. 

Recently, IscR has been linked to virulence and T3S in Yersinia pseudotuberculosis (Miller 

et al., 2014) and this study set out to expland on this knowledge, characterising the role of 

IscR in Yersinia.  

IscR was confirmed to regulate secretion of Yops in Y. pseudotuberculosis, and 

promoter:lux fusions provided evidence that this regulation may be multifaceted, through 

direct action on both identified lcrF promoters, with IscR capable of either activating or 

inhibiting expression of LcrF. This may be based on the Fe-S status of IscR, allowing 

environmental conditions such as iron concentration to influence the regulation of T3S via 

IscR. 

As QS is also a regulator of T3S, with decreased Yop secretion seen in AHL synthases and 

response regulator mutants (Atkinson et al., 2011), whether QS is involved in how IscR 

regulates T3S was also explored. Phenotypic analysis found that the IscR associated Yop 

secretion defect was dependent on the presence of QS response regulator genes. 

Additionally, promoter:lux fusions showed that IscR positively regulates the expression of 

both response regulators. Together this suggests that IscR regulation of T3S is QS system 

dependent, specifically via direct regulation of ypsR and ytbR.  

QS-mediated phenotypes identified so far in Yersinia include T3S, swimming motility, 

aggregation and biofilm formation on C. elegans and glass (Atkinson et al., 2008; 2011; 

Wiechmann, 2015; Barratt, 2018). At 22oC swimming motility is activated as the flagellar 

master regulon flhDC is activated and the sigma factor fliA is downregulated by QS 

(Atkinson et al., 2008). Additionally, biofilm formation on C. elegans is promoted by FlhDC 

and QS, and is inhibited by assembly of the T3S system in environmental conditions in an 

AHL synthase mutant. This suggests a link between T3S and biofilm formation via QS. 

Together, it is clear that QS related phenotypes form a complex and inter-dependent 
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regulatory network. After a link between IscR, T3S and QS was identified, this study aimed 

to investigate the place of IscR in this network.  

IscR was implicated in non-YadA dependent auto-aggregation in Y. pseudotuberculosis, as 

aggregation was reduced in this mutant. This was first hypothesised to be solely because 

of the reduction in secreted Yops as observed in previous T3S mutants (Barratt, 2018). 

However, triple mutants of iscR in QS backgrounds showed that the aggregation levels did 

not correlate with the levels of Yops secreted in these strains, suggesting a regulatory role 

for IscR in auto-aggregation separate from both T3S and QS.  

The biofilm phenotype of iscR mutants proved to be interesting and varied depending on 

the model used. On C. elegans, IscR did not affect the levels or distribution of biofilm 

produced in Y. pseudotuberculosis or Y. pestis. However, on abiotic models at 22oC IscR 

appeared to reduce biofilm levels significantly from that of the parent, and this was 

independent of the QS mediated reduction in biofilm levels. To offer a different approach, 

and with the aim of furthering research into transmission of Y. pestis by insect vectors, this 

study further developed a model for feeding and infection of P. corporis, with steps taken to 

optimise the imaging process to analyse biofilm levels. Preliminary data suggests that the 

iscR mutant is much more virulent to human body lice, though whether this is due to 

increased biofilm colonisation of the gut or additional factors remains to be determined. 

Though it was not achieved in time for this study, this model is now ready to be used with 

Y. pestis under CL3 conditions, and offers an exciting new approach to researching Y. 

pestis biofilms and transmission.  

The decision to work with a fully virulent strain of Y. pestis posed many challenges 

throughout this project. Limitations on working hours and laboratory access, along with 

additional safety measures adding significant time onto otherwise simple assays, meant 

that time was always limited. There was also the added complications of GMO licences, 

which limited the amount and type of cloning that could be achieved. Protocols had to be 



133 
 

constantly redesigned and approved to make appropriate for CL3 work, and this took up a 

lot of time during this study. Whilst the body of this work focuses on Y. pseudotuberculosis, 

this has laid the ground work for taking these assays into Y. pestis. Preliminary data 

looking at T3S associated growth arrest suggests a role for IscR in T3S in Y. pestis, and 

with the protocols in place to remove pPst this can be soon studied. Despite these 

difficulties, the decision to work with all three plasmids offers the most biologically relevant 

results, particularly as the presence of pCD1 and the T3S system and effectors is so crucial 

to this study. Working with an attenuated strain lacking this plasmid would be far easier and 

quicker, but it would be difficult to gain a complete picture of IscR and translate any results 

into an active model of infection or transmission.  

Despite the issues encountered during this project the results so far have cemented the 

role of IscR as a novel member of the regulatory network associated with virulence in 

Yersinia. A summary of the network so far, along with pathways yet to be determined, is 

shown in Figure 5.1.  
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Figure 5.1 Regulation of phenotypes by IscR and QS at 22oC and 37oC. 

IscR activates T3S, aggregation and QS. It is not known whether the regulation of QS by IscR 

is reciprocal. Nor is it clear if IscR regulates biofilms or motility. QS negatively regulates T3S 

and aggregation and posively regulates biofilms, via motility. 
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7 Appendix 

7.1 Variant Calling 

Table 7.1 SNPs in the genome of Y. pestis parent plasmid pCD1 compared to the reference 

sequence identified by Illumina sequencing.  

Nucleotide positions refer to NCBI reference sequence NZ_CP009972.1. 

 

 

Table 7.2 SNPs in the genome of Y. pestis parent compared to the reference sequence 

identified by Illumina sequencing.  

Nucleotide positions refer to NCBI reference sequence NZ_CP009973.1. 

Nucleotide 

Position 

Base Change Codon 

Change 

Mutation 

Type  

Amino Acid 

Substitution 

Gene Max 

Frequency % 

29956 TTTAGA - 

CTCAGG 

- - - Non-coding 52 

30021 

 

C - T Cat/Tat Missense His27Tyr  51 

Nucleotide 

Position 

Base Change Codon 

Change 

Mutation 

Type  

Amino Acid 

Substitution 

Gene Max 

Frequency % 

16 AC - A 
   

Non-coding 100 

150946 C - A acG/acT Silent 
 

pckA 100 

351821 T - G caT/caG Missense H617Q YPO0342 100 

757473 A - AT 
   

Non-coding 40.59 

917155 A - G Agt/Ggt Missense S60G YPO0837 100 

1234971 G - GA 
   

Non-coding 97.96 
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1245196 T - C tAc/tGc Missense Y57C tnp 60.98 

1383648 G - A tGc/tAc Missense C57Y tnp 35.71 

1939828 T - G gcA/gcC Silent 
 

YPO1701 100 

1939841 A - G cTt/cCt Missense L555P YPO1701 100 

2052197 T - C 
   

Non-coding 11.11 

2273616 G - C aCg/aGg Missense T50R YPO2000 100 

2554169 A - G 
   

Non-coding 43.75 

3058095 G - A gaG/gaA Silent 
 

YPO2725 25 

3058116 C - A acC/acA Silent 
 

YPO2725 21.43 

3058149 G - A gaG/gaA Silent 
 

YPO2725 25 

3058167 G - A gaG/gaA Silent 
 

YPO2725 36.36 

3058260 C - A acC/acA Silent 
 

YPO2725 38.46 

3058293 G - A gaG/gaA Silent 
 

YPO2725 33.33 

3201494 T - G ctT/ctG Silent 
 

YPO2866 11.54 

3201872 C - T gaC/gaT Silent 
 

YPO2867 12 

3201891 G - A Ggt/Agt Missense G109S YPO2867 16 

3428103 T - C tAc/tGc Missense Y57C tnp 70.45 

3608932 T - C gAc/gGc Missense D109G gmhA 100 

3647867 C - T gCt/gTt Missense A347V pssA 100 

3655609 T - C Aaa/Gaa Missense K553E clpB 100 

3886839 T - C gaA/gaG Silent 
 

ibeB 100 

3955442 A - G 
   

Non-coding 14.71 

3955518 A - C 
   

Non-coding 10.87 

4000717 AG - A 
   

Non-coding 28.24 

4136713 AG - A 
   

Non-coding 47.47 

4390026 G - GC 
   

Non-coding 100 
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4440607 T - G acA/acC Silent 
 

YPO3944 15.48 

4624135 C - G cCc/cGc Missense P391R trmE 100 
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7.2 PIPS Reflective Statement 

Professional Internship at Framework for the Replacement of Animals in Medical 

Experiments (FRAME)  

To fulfil the criteria for a Biotechnology and Biological Science Research Council funded 

Doctoral Training Partnership PhD studentship, in addition to the process of training that 

happens through the first six-months of laboratory rotations, I also undertook a three-month 

professional internship at FRAME where I worked alongside their Scientific Liaison Officer. 

FRAME is an independent charity with the ultimate aim of the replacement of animals in 

medical experiments. They focus on promoting and researching new, ethical and valid 

scientific methods that will replace the need for laboratory animals in scientific research, 

education and testing.  Where the use of animals is still necessary, FRAME champion the 

reduction of numbers and refinement of methods to minimise suffering. They also fund the 

FRAME alternatives laboratory, who directly research these alternatives. For my placement 

I worked alongside FRAMEs Scientific Liaison Officer, who oversees the day-to-day 

running of the charity. My particular focus was on public engagement and creating content 

for the FRAME website.  

 

The activities I was involved in included:  

• Writing about the research of the FRAME alternatives laboratory for the general 

public 

• Liaising with researchers for relevant publications, images and arranging meetings 

• Preparing a variety of written material for the FRAME website including blog posts 

surrounding the wider issues animals in science 

• Attending a symposium and talks about animals in science and the principles of the 

3Rs 

• Identifying potential corporate sponsors for the upcoming FRAME symposium  
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The skills I developed during this project included: 

• Enhanced written communication skills to a wide audience 

• An understanding of motivations and values of the charity 

• An understanding of the process of obtaining sponsors and funding as a charity 

• Project management skills and an ability to manage multiple projects 

simultaneously  

• Greater understanding of animal experiments and the principles and 

implementation of the 3R’s 

• Greater understanding of mammalian cell-based research 

 

I am incredibly grateful for FRAME for the fantastic opportunity to work with them, in 

particular Amy Beale and Andrew Bennett who coordinated my project.  

 

 


