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Summary 
There are several local indicators of spatial association (LISA) that allow exploration of local patterns 

in spatial data. Despite numerous situations where categorical variables are encountered, few attempts 

have been devoted to the development of methods to explore the local spatial pattern in categorical 

data. To our knowledge, there is no indicator of local spatial association that can be used for both 

continuous and categorical data. We introduce ELSA, which can be used for exploring and testing 

local spatial association for continuous and categorical variables. We provide the R-package elsa for 

making these computations. 
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1 Introduction  

There are several local indicators of spatial association (LISA) that allow exploration of local 

patterns in spatial data.  Despite numerous situations where categorical variables are encountered, 

few attempts have been devoted to the development of methods to explore the local spatial 

pattern in categorical data. In this paper we introduce the entropy-based local indicators of spatial 

association (ELSA).  ELSA can be used for exploring and evaluating local spatial association for 

categorical variables, including categorical variables with different levels of similarity.  We also 

show how ELSA can be applied to continuous data.  We have written an R-package elsa for 

making these computations, which we have made publicly available.  

ELSA is elaborated in full in Naimi et al. (2019), which also gives examples based on raster data. 

In this paper we summarize the key aspects of ELSA and present some new developments based 

on point data and ordinal data.  

2 Methods 

2.1 The ELSA statistics 

ELSA (𝐸) is defined as: 

𝐸𝑖(ℎ)  =  𝐸𝑎𝑖(ℎ)  × 𝐸𝑐𝑖(ℎ)
 (1) 

and is calculated within a local neighbourhood centred on location, 𝑖. 𝐸𝑎𝑖 summarizes the

dissimilarity between 𝑥𝑖, the attribute at location 𝑖, and its neighbours, each denoted as 𝑥𝑗. Hence,

𝐸𝑎𝑖(ℎ) =  
∑ 𝑤𝑖𝑗𝑑𝑖𝑗𝑗

max{𝑑}∑ 𝑤𝑖𝑗𝑗
, 𝑗 ≠ 𝑖 

(2) 
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where 𝑤𝑖𝑗 is a binary weights matrix, which describes whether 𝑗 is within a specific distance, ℎ, 

of 𝑖 and 𝑑𝑖𝑗 is the dissimilarity between the pair of observations, 𝑥𝑖 and 𝑥𝑗 (see Section 2.2). 𝐸𝑎𝑖 

takes values between 0 and 1 inclusive, where low values indicate high similarity between 𝑥𝑖 and 

its neighbours and high values indicate a low similarity.  

 

𝐸𝑐𝑖 is the Shannon entropy at site i, normalized by log2𝑚𝑖: 

 

𝐸𝑐𝑖(ℎ) =  − 
∑ 𝑝𝑘log2(𝑝𝑘)
𝑚𝑤
𝑘=1

log2𝑚𝑖
, 𝑗 ≠ 𝑖 

 

(3) 

𝑚𝑖 =

{
 

 𝑚 if ∑ 𝑤𝑖𝑗
𝑗

> 𝑚

∑ 𝑤𝑖𝑗
𝑗

, otherwise
 

(4) 

Where 𝑚 is the total number of categories in the dataset and 𝑝𝑘is the probability of obtaining 

category 𝑘. This term quantifies the diversity of categories within the local neighbourhood. A high 

value indicates high diversity. A low value of 𝐸 indicates a high level of spatial association.  
 

2.2 Dissimilarity  

Consider two nominal categorical variables, 𝑥𝑖, and 𝑥𝑗. If the two attributes are the same then 𝑑𝑖𝑗 =

0. If the two attributes are different then set 𝑑𝑖𝑗 = 1. This is the most simple case.  

 

Often categories are organized hierarchically. For example we may have two categories and 

several sub-categories, as illustrated in Table 1. In this case we set 𝑑𝑎1,𝑎2 = 1 but 𝑑𝑎1,𝑏2 = 2. We 

consider two sub-categories in the same super category to be more similar than those from 

different super categories. This example is simplified from CORINE 2006 land cover map and 

can be extended to more than two levels.  

Table 1 Example of hierarchical categories. 

Code Category Sub-category 

a1 Forest  Broad-leaved forest 

a2  Coniferous forest 

b1 Scrub Natural grasslands 

b2  Transitional woodland-scrub 

 

We might also consider ordered categories (ordinal scale of measurement), such as household 

income or air quality. For example, air quality might be categorized as very poor (rank 4), poor 

(3), moderate (2) or good (1). In this example the maximum difference, 𝑑𝑖𝑗 = |𝑐𝑖 − 𝑐𝑗| = 4 −

1 = 3. 

 

We extend the notion of ordered categories to handle continuous data on the interval or ratio 

scale. ELSA works with categories so we need to bin the continuous data into ordered categories. 

Clearly this will lead to a loss of information. We handle this by progressively dividing the data 

into a larger number of bins. At each step we determine the Spearman’s rank correlation between 

the continuous and categorized data. We continue until a threshold is reached. An example of 

continuous data is air quality. For example, we could measure the concentration of PM2.5 in µg 

m-3 (particulate matter less than 2.5 µm in diameter) or aggregate over different pollutants to 

obtain an air quality index (AQI). 
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3 Demonstrations 

We used air quality data for central and western mainland Europe. These were obtained from 

Airbase (Air quality database for the European Economic Area, and are described in detail by 

Hamm et al. (2015).  The data for 4 April 2009 (mean: 41.9, median: 37.3, minimum: 3.0, 

maximum: 120.7, standard deviation: 24.2, units: g m-3) are shown in Figure 1. This day is 

characterized by a high pollution event over north-east France, Belgium, the Netherlands and 

northern Germany. The rest of Europe has comparatively lower PM10 concentrations. 

 

This example was chosen because it supports the evaluation of ELSA for both ratio scale 

continuous data and for ordered categories.  

 

Figure 1 PM10 data from Airbase for 2009-04-04. Units are g m-3. The map projection is the 

ETRS89 Lambert Azimuthal Equal-Area (LAEA) projection (EPSG: 3035), with unit km. 

 

We categorized the PM10 measurements into three levels –  low, moderate and high – based on 

WHO (2005) and European Union guidelines. According to these guidelines PM10 should not 

exceed 20 g m-3 on average over the year and should not exceed 50 g m-3 on any given day. 

The upper threshold should not be exceeded more than 18 times in a year.  This is illustrated in 

Figure 2.  
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Figure 2 PM10 by ordered category. Low (< 20 g m-3), moderate (between 20 and 50 g m-3) and 

high (>50 g m-3) PM10. Projection same as Figure 1. 

 

We first considered the calculation of ELSA within a local neighbourhood of ℎ = 150 km. This 

is illustrated first for the continuous data in Figure 3. 𝐸𝑎 summarizes the dissimilarity between an 

observation and its neighbours. This was lowest in Spain and Portugal and largest in central 

Germany and the Netherlands. 𝐸𝑐 summarizes the composition or diversity of values within the 

neighbourhood. This showed a larger range of values. The largest values of 𝐸𝑐 were found in 

northern Germany, the Netherlands and Belgium where there was a large range of high PM10 

values. The lowest 𝐸𝑐 values were found in Spain and Portugal, except for central Spain where 

there were some high 𝐸𝑐 values. Finally ELSA (𝐸) showed the lowest level of local spatial 

association in northern France and Germany, Belgium and the Netherlands and the highest spatial 

association was found in Portugal.  

 

Next we repeated this exercise for the categorized data. This revealed much clearer patterns 

(Figure 4).  The lowest values of 𝐸𝑎 were found in Portugal, Belgium and the Netherlands 

reflecting a cluster of low and high values respectively. Indeed there were 70 locations where 

𝐸𝑎 = 0, which means that 𝑐𝑖  had the same value as its neighbours. 𝐸𝑐 showed the full range of 

values. The larger values tended to occurs at the borders between different air pollution classes.  

Finally ELSA showed that the highest degree of spatial association was found in western Spain 

and Portugal (low PM10 values), eastern Austria and the Czech Republic (moderate PM10 

values) and Belgium, the Netherlands and north-west Germany (high PM10 values).  
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Figure 3 ELSA statistics computed for the continuous PM10 data (Figure 1) and ℎ =  150 km: 𝐸𝑎 

(top left), 𝐸𝑐 (top right), 𝐸 (ELSA, bottom). Projection same as Figure 1. 

 

 

Figure 4 As for Figure 3, but computed for the categorized PM10 data (Figure 2). 
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Categorizing the data did lead to information loss. Notably the range of values in the high 

category (50 to 120 g m-3) was larger than range of values covering the low (0 to 20 g m-3) and 

moderate (20 to 50 g m-3) categories. However, it did allow us to better visualize the patterns of 

in these categories, which are important from both regulatory and health perspectives.  

  

Finally, we explored the impact of changing, ℎ. Increasing ℎ increases the size of the window 

within which the ELSA statistics are calculated. This wass illustrated for ELSA (E) for ℎ =
 150, 300, 450 and 500 km (Figure 5) for the categorized data. Following Tobler’s First Law of 

Geography, we expected that measurements that are close together in space to be more similar 

that distant measurements. Hence, increasing ℎ was expected to lead to increased heterogeneity 

within the local window. We could then identify the scale at which similar categories tend to be 

clustered. As discussed above, for ℎ =  150 km we identified three clusters. These could still be 

identified when we set  ℎ =  300 km.  For ℎ =  450 km the cluster of high values over Belgium 

and the Netherlands was clear, although the cluster over Portugal was less clear. For ℎ =  600 

km none of the clusters were clear.  These changes reflected the size of the areas with low, 

moderate and high PM10 concentrations.  This was approximately 300 km, except for the cluster 

over Belgium and the Netherlands. The shift of ELSA towards higher values with increasing ℎ is 

illustrated in Figure 6.  

 

Figure 5 The ELSA (E) statistic for the categorized data for ℎ = 150 km (top left), 300 km (top 

right), 450 km (bottom left) and 600 km (bottom right). 

 

4 Conclusions 

In this paper we introduced the ELSA statistics. We illustrated how these can be used to explore 

patterns in point observations of air pollution represented as ratio and ordinal data. This adds to 

our previous work (Naimi et al., 2019) which considered only raster data and did not consider 

ordinal data. 
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Figure 6 Histograms for the data shown in Figure 5. 
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