
Mathematical Aspects of Word
Embeddings

Rachel Carrington, MMath

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

April 2021

Contents

Abstract . 5

1 Introduction 6

1.1 Definitions & notation . 7

1.2 Datasets . 10

1.3 Contributions of the thesis . 10

1.4 Overview of thesis . 11

2 Literature review 13

2.1 Word embeddings via Singular Value Decomposition 14

2.2 Quantifying performance of word embeddings 16

2.3 Word embedding methods . 18

2.3.1 Topic modelling . 19

2.3.2 Probabilistic Latent Semantic Indexing 20

2.3.3 Latent Dirichlet Allocation . 21

2.3.4 Correlated Topic Model . 22

2.3.5 Non-Negative Matrix Factorization 23

2.3.6 Skip-Gram with Negative Sampling 23

2.3.7 Global Vectors . 24

2.3.8 Positive Pointwise Mutual Information 25

2.3.9 Singular Value Decomposition 25

2.4 Practical considerations . 26

1

2.4.1 Choosing the embedding dimension 26

2.4.2 Word choice and preprocessing 29

2.5 Time-dependent word embeddings . 31

2.5.1 Time-dependent topic modelling 31

2.5.2 Other time-dependent word embedding methods 32

2.6 Factor analysis . 36

2.7 Multidimensional scaling . 38

2.7.1 The majorization algorithm 39

2.7.2 Stochastic gradient descent . 41

2.7.3 Non-metric MDS . 42

2.7.4 Link between GloVe and MDS 44

2.8 Datasets . 44

3 Non-identifiability of word embeddings 47

3.1 Introduction . 47

3.2 Non-identifiability of word embeddings 48

3.2.1 LSA . 49

3.2.2 GloVe . 49

3.2.3 SGNS . 50

3.3 Assessing performance of word embeddings 50

3.3.1 Word similarity tasks . 52

3.3.2 Word analogy tasks . 52

3.3.3 Incompatibility between invariances of f and g 56

3.4 Addressing identifiability . 60

3.4.1 Imposing identifiability conditions 60

3.4.2 Optimizing over UT+(r) . 66

3.5 Conclusion . 76

2

4 Semi-supervised word embeddings 79

4.1 Motivation . 80

4.2 Introduction . 81

4.3 Multidimensional scaling . 84

4.3.1 MDS with inner product . 86

4.4 Semi-supervised word embeddings with MDS 87

4.4.1 Identifiability . 88

4.4.2 Optimizing the objective function 89

4.4.3 Majorization . 89

4.4.4 Stochastic Gradient Descent 95

4.5 Results . 102

4.5.1 Optimization via Majorization and Stochastic Gradient Descent102

4.5.2 Implementation on subset of COHA 106

4.6 Conclusion . 108

5 Dynamic word embeddings: Testing for time dependence 111

5.1 Motivation . 111

5.2 Introduction . 115

5.3 Dynamic LSA model . 116

5.3.1 Identifiability . 118

5.3.2 Properties of the dynamic model 125

5.4 Extensions . 127

5.4.1 Factor model . 129

5.5 Developing testing framework . 130

5.5.1 Set-up . 130

5.5.2 The test statistic under the dynamic model 135

5.5.3 Testing on COHA . 140

5.5.4 Eigenvalues . 142

5.5.5 Choice of embedding dimension 150

3

5.5.6 Invariance of the test . 152

5.6 Conclusion . 158

6 Conclusion 161

Bibliography 164

Appendix A Proof of the distribution of A under the assumption that

B0 is fixed 174

A.1 Notation . 174

A.2 Case 1: A, B0, and σ2 fixed . 175

A.3 Case 2: A and B0 fixed, σ2 unknown 177

A.4 Case 3: A and σ2 fixed, B0 unknown 179

A.5 Case 4: A fixed; B0 and σ2 unknown 182

Appendix B Derivation of majorizing functions for MDS 184

B.1 Euclidean distance . 184

B.2 Inner product . 186

4

Abstract

Word embeddings are a popular way of modelling relationships between words.

Words are represented as low-dimensional vectors, such that the distances between

the vectors reflect relationships between the words: words which are more similar

to each other should be closer together in the embedding space.

This thesis explores several different aspects of word embeddings. First, we look

at the problem of non-identifiability: word embeddings are generated by optimizing

an objective function, but the optimal embedding set is not unique. This has con-

sequences for how embeddings are evaluated, and for making comparisons between

different word embedding methods. We explain why this is the case and propose

some solutions for dealing with it.

We then explore the potential for generating semi-supervised word embeddings,

with the aim being to more accurately capture the relationships between words,

compared to using standard unsupervised embedding methods. We introduce three

semi-supervised objective functions, derive algorithms for optimizing them, and im-

plement them on simulated and real data.

Finally, we look at the generation of time-dependent word embeddings, in par-

ticular the development of statistical tests for assessing whether certain words have

changed in meaning or usage over a given time period. We introduce a time-

dependent word embedding model and use it to test for change over time. However,

we find that we are unable to distinguish between the presence of time dependence

and a misspecified embedding dimension.

5

Chapter 1

Introduction

This thesis is concerned with the area of word embeddings. Word embeddings are

a popular way of representing language mathematically, where each word is repre-

sented by a low-dimensional vector, or embedding. The aim is to generate a set of

word embeddings in such a way that the distances between the embeddings (defined

by some metric) reflect the linguistic relationships between words. For example,

we would expect that words which have similar meanings (such as “car” and “au-

tomobile”) should be close together in the embedding space. Word embeddings

have a range of applications in areas such as sentiment analysis ([Liu, 2017, Acosta

et al., 2017, Yu et al., 2017]), machine translation ([Mikolov et al., 2013b, Jansen,

2017]), sentence classification [Kim, 2014], story generation [Purdy et al., 2018],

search engine indexing [Deerwester et al., 1990], and document summarization [Ng

and Abrecht, 2015].

In the past few years, there has also been a growing interest in the development

of time-dependent word embeddings, which are able to encapsulate changes in word

relationships across time. This can be used, for example, to evaluate how certain

words have changed in usage as well as how attitudes towards certain topics have

changed.

Recent well-cited papers in the area of word embeddings include [Mikolov et al.,

2013c], [Mikolov et al., 2013a] and [Pennington et al., 2014], which introduce models

6

which are used in a wide variety of applications, and [Hamilton et al., 2016], which

looks at trends across time. In this thesis we will consider several aspects of word

embeddings, including using them to test for change in word usage across time.

1.1 Definitions & notation

There are a number of different methods for generating word embeddings. We will

discuss some of the most popular of these in more detail in Chapter 2, but here we

give a general idea of the process for generating word embeddings. In doing so we

will also introduce some of the main definitions and notation which will be used in

this thesis.

We start with a text corpus, consisting of n documents – such as newspaper

articles, books, or other forms of text – and containing p unique words. In order

to represent the corpus mathematically, we convert it into a matrix representation.

There are two main ways of doing this:

Definition 1. The document-term matrix is an n×p matrix, where each row of

the matrix corresponds to a document, and the entries of the row are the number of

times each word occurs in that document. The ijth element of the document-term

matrix is the number of times word j occurs in document i.

Definition 2. The co-occurrence matrix is a p × p matrix which contains, for

a given L, counts of how many times each pair of words occur within L places of

each other in the corpus. (When words i and j occur within L places of each other,

we say that word i occurs in context j, and vice versa.) The ijth element of the

co-occurrence matrix is the number of times word j occurs in context i.

For example, in the following sentence, with L = 2, the words which co-occur

with the word example are those which occur within L = 2 places of it: is, an, of,

a:

This is an example of a sentence.

7

Text

corpus

Matrix

representation

Word

embeddings

Test

score

Figure 1.1: Figure illustrating the process of generating word embeddings. We start with

a text corpus which is converted to a matrix representation X. The word embeddings are

generated using some method (examples are given in Chapter 2), and their performance

is assessed on test data D (see Section 2.2).

We denote the data matrix – which may be either the document-term matrix

or co-occurrence matrix, or a transformation of one of these (see below) – by X.

From X we generate an r× p matrix of word embeddings, B, where r < min{n, p}

is the embedding dimension, and the jth column of B (denoted bj) corresponds

to the embedding associated with word j. For many word embedding methods we

will also generate a matrix of context embeddings A, which will be either n × r

or p × r depending on the dimension of X. The ith row of A is denoted ai, and

is the embedding corresponding to document i (if X is the (possibly transformed)

document-term matrix) or context i (if X is the co-occurrence matrix). In order

to do this we optimize some objective function f , which is a function of the data

matrix X, word embedding matrix B and auxiliary matrix A:

(A,B) = arg min
A,B

f(X,A,B). (1.1)

The interpretation of A depends on the data matrix used. For example, if X is the

document-term matrix, then there is an r-dimensional embedding ai associated with

each document. These can be used in applications such as document classification

or clustering. However, in this thesis the main focus will be on the word embeddings

B.

Once the embeddings have been generated, they are assessed using a test function

g(D,B), where D is a test dataset. Examples of functions used for both f and g

8

are given in Chapter 2.

Usually, the data matrix X used to generate word embeddings is a transforma-

tion of the document-term matrix or co-occurrence matrix. The main reason for

using such a transformation is to reduce the impact of large documents or frequent

words, as these may have a disproportionate effect on the results. For example, nor-

malizing the rows of X so that they sum to 1 gives equal weight to all documents

or contexts. Another option is to take the log of X (or more usually of 1 + X,

to avoid infinite entries); this means that the difference between the largest and

smallest entries is not so great. A more complex function which combines these two

approaches is the Pointwise Mutual Information (PMI) (introduced by [Church and

Hanks, 1990]) or Positive Pointwise Mutual Information (PPMI) (defined below).

The idea is that we divide the observed xij’s by the expected value each of them

would take under the assumption that all words and contexts were independent. We

then take the log of this, so that a positive value indicates that a word-context pair

occurs more frequently than we would expect if they were independent, and hence

indicates an association between them.

Definition 3. The Pointwise Mutual Information (PMI) matrix of an m× n

matrix X is a matrix whose ijth element is

PMI (i, j) = log

(
xij∑n

k=1 xik
∑m

l=1 xlj

m∑
k=1

n∑
l=1

xkl

)
(1.2)

Definition 4. The Positive Pointwise Mutual Information (PPMI) of a ma-

trix is defined as

PPMI (i, j) = max{PPMI (i, j) , 0} (1.3)

Using PPMI rather than PMI avoids the issue of PMI taking value −∞ when

xij = 0, so it is often preferred in practice [Levy et al., 2015].

Another possible transformation is to use tf-idf (term frequency-inverse docu-

ment frequency) [Zhang et al., 2011]. This is where the columns associated with

each word are scaled, with a scaling factor which is inversely proportional to the

9

number of documents in which a word appears. So a word which appears in all of

the documents will have its entries made much smaller, as this is assumed to be a

very common word which is not of much interest. A word which appears in only a

small number of documents will be raised in importance.

1.2 Datasets

Most of the results on real data given in this thesis are based on the Corpus of

Historical American English (COHA) ([Davies, 2010, 2012]). This consists of a

collection of novels, non-fiction, newspaper and magazine articles published between

the 1810s and 2000s, containing over 400 million words in total. The documents are

not evenly distributed across this time period – there are fewer documents for the

earlier years – but it is balanced so that the proportion of each genre remains the

same. The data can be accessed, for a fee, at https://www.english-corpora.org/

coha/.

We also make use of word embeddings trained on the Google News dataset,

which contains about 100 billion words. The dataset is not publicly available, but

the pre-trained embeddings are available at https://code.google.com/archive/

p/word2vec/.

1.3 Contributions of the thesis

In this thesis we investigate several mathematical aspects of word embeddings: iden-

tifiability, semi-supervised embeddings, testing for time dependence/statistical in-

ference.

First, we consider the issue of identifiability. In most word embedding algorithms,

the solution is not identifiable; in other words, there is not a unique embedding set

which minimizes the objective function. This has consequences for model assessment

and comparison, as sets of embeddings which perform equally well with respect to

10

https://www.english-corpora.org/coha/
https://www.english-corpora.org/coha/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

the model objective may not be considered equally good when used in applications.

It is also a problem if we want to use the embeddings for statistical inference, where

identifiability of the parameters is often a necessary assumption. In Chapter 3 we

look at the issue of non-identifiability in several popular word embedding meth-

ods. We show why it occurs, and discuss the consequences of non-identifiability and

possible solutions for dealing with it. In later chapters, which focus on other mathe-

matical aspects of word embeddings, we consider how the issue of non-identifiability

relates to these aspects.

Secondly, we explore the idea of generating semi-supervised word embeddings,

which make use of both a large text corpus and some supervised information about

the relations between words, for example, human-assigned similarity scores between

pairs of words. The aim is that using semi-supervised word embedding algorithms

will enable us to generate better embeddings, particularly in situations where we

may only have relatively small datasets available.

Thirdly, we look at applying statistical inference for time-dependent embeddings.

In particular, we investigate the issue of testing for whether particular words change

across time in meaning or usage: this is important as it is necessary to determine

whether any changes we observe are statistically significant. We also link this issue

to the issue of identifiability, as parameter identifiability is important for statistical

inference to be performed.

1.4 Overview of thesis

The thesis is outlined as follows.

Chapter 2 reviews the literature on word embeddings, covering the most popu-

lar methods used, the ways in which different sets of word embeddings are evaluated,

the efforts at extending these methods to incorporate time dependence, and some

of the open problems which still remain in this area.

Chapter 3 looks at the issue of non-identifiability in word embedding models

11

– that is, the existence of multiple optimal solutions with respect to the model

objective functions – and the consequences of this for assessing the performance of

the embeddings. We show that different sets of word embeddings which are equally

good according to the model’s objective function can perform quite differently on

test data, and propose two possible solutions for addressing this. The last part of

the chapter looks at the impact of this issue on time-dependent word embeddings.

Chapter 4 investigates the possibilities of using multidimensional scaling to

generate semi-supervised word embeddings, by combining standard word embedding

objectives with a supervised component. In particular, we look at how this relates

to the non-identifiability issues investigated in Chapter 3, as well as how this can

help to improve performance on test data.

Chapter 5 introduces a new model for time-dependent embeddings, which at-

tempts to circumvent some of the statistical issues with present approaches, such

as the problem of non-identifiability. We make use of theory from factor analysis

to introduce a statistical test which may be used to indicate the presence of time

dependence in a dataset, and investigate via a simulation study in which situations

the test is useful. We also show some results on data from COHA.

Chapter 6 gives a summary of the work presented and some suggestions for

further research.

12

Chapter 2

Literature review

Word embeddings have been an area of increasing interest over the last few decades.

This is mainly due to large increases in computer power and in the amount of

data available, which has allowed embeddings trained on very large datasets to

capture semantic relationships between words more accurately than was previously

possible. Methods such as Skip-Gram With Negative Sampling (SGNS) [Mikolov

et al., 2013a,c] and Global Vectors (GloVe) [Pennington et al., 2014] have become

very popular, with over 10,000 citations each, and word embeddings are used in

a wide range of applications, such as machine translation [Mikolov et al., 2013b],

story generation [Purdy et al., 2018], sentiment analysis (e.g. [Acosta et al., 2017,

Liu, 2017]), search engine indexing (e.g. Latent Semantic Indexing, [Deerwester

et al., 1990]), and document summarization [Ng and Abrecht, 2015]. Recently, word

embedding methods have begun to be applied to other forms of data as well, for

example to generate product recommendations (e.g. [Grbovic et al., 2016]) and to

model networks ([Perozzi et al., 2014]), but we shall not focus on these in this thesis.

In this chapter we explain how word embeddings are generated and assessed,

and discuss some of the recent work in this area. Section 2.1 illustrates the pro-

cess of generating word embeddings using the example of one embedding method

(the Singular Value Decomposition). Section 2.2 looks at how word embeddings are

evaluated, in order to determine how well they capture the relationships between

13

words. In Section 2.3 we discuss some popular methods for generating word embed-

dings, including those regarded as the current state-of-the-art. Section 2.4 looks at

practical considerations to be taken into account when implementing a word embed-

ding method, such as how to choose the embedding dimension. Section 2.5 looks at

how some of these methods have been extended to generate time-dependent word

embeddings.

Sections 2.6 and 2.7 outline two dimension reduction methods, factor analysis

and multidimensional scaling, which have not been applied to word embeddings but

which will be made use of in Chapters 4 and 5. Section 2.8 summarizes the datasets

used in this thesis.

2.1 Word embeddings via Singular Value Decom-

position

The main idea behind most word embedding methods is to take a data matrix X

(usually the document-term matrix or co-occurrence matrix, or some transform of

one of these: see Section 1.1) and approximate it by the product of two low-rank

matrices

X ≈ AB,

where A and B are the matrices of context and word embeddings respectively.

(“Context” usually refers to co-occurrences: the contexts of a word are the words

with which it co-occurs. Here, it can also mean the document in which a word

occurs.)

The Singular Value Decomposition (SVD) of an n× p matrix X is defined as

X = UΣV T ,

where Σ is a diagonal matrix containing the m singular values ofX (m = min{n, p})

arranged in descending order along its diagonal, and U and V are respectively n×m

14

and p ×m matrices containing the corresponding left and right singular vectors of

X. Both U and V have orthonormal columns, so UTU = V TV = Im.

For r < m, the reduced-rank SVD of X is obtained by setting

X ≈ UrΣrV
T
r = X∗r ,

where Ur and Vr are n × r and p × r matrices containing only the first r columns

of U and V respectively, and Σr is the r × r top left-hand corner of Σ. This gives

the best rank-r approximation of X, as Lemma 1 states.

Lemma 1. [Schmidt, 1907] The rank-r SVD of a matrix X gives the best approx-

imation to X that has rank less than or equal to r, in the sense that it minimizes

the difference between X and Xr when this is measured using the Frobenius norm:

X∗r = UrΣrV
T
r = arg min

Xr

||X −Xr||F ,

where the Frobenius norm || ||F is defined as

||X||F =

(∑
i,j

x2
ij

)1/2

.

To generate word embeddings using SVD, we first choose the data matrixX. La-

tent Semantic Analysis (LSA) [Deerwester et al., 1990] takes X to be the document-

term matrix (see Section 1.1); SVD has also been used to generate word embed-

dings using functions of the co-occurrence matrix, for example the PPMI of the

co-occurrence matrix [Levy et al., 2015], and the square root and log of the co-

occurrence matrix [Pennington et al., 2014]. (See Section 2.3.9 for more details.)

Whichever matrix we decide to use, we choose an embedding dimension r, which is

small compared to the dimensions of X, and compute the rank-r SVD of X:

Xr = UrΣrV
T
r .

We take A = Ur to be the matrix of context embeddings and B = V T
r the matrix

of word embeddings. Usually Σr is absorbed into either A or B; it is also possible

15

to split it, taking the embedding matrices as A = UrΣ
1−α
r , B = Σα

rV
T
r [Levy et al.,

2015, Bullinaria and Levy, 2012]. We will explore this further in Chapter 3, so for

now we will assume that the word embedding matrix is B = V T
r .

2.2 Quantifying performance of word embeddings

The aim of word embedding methods (such as those described in the next section)

is to generate representations that capture the meanings of and relations between

words. In order to determine how good a particular method is at doing this, the

performance of the embeddings is assessed on a set of test data, or tasks. There are

two main types of tasks: word similarity and word analogy.

For word similarity tasks, the test data consists of a set of pairs of words, with

human-assigned similarity scores between them, usually averaged over scores as-

signed by a number of people. For example, in the WordSim-353 test set [Finkelstein

et al., 2001], each pair is rated by between 13 and 16 people. In the SimVerb-3500

test set [Gerz et al., 2016], there were 843 raters, each of whom rated a subset of

the word pairs. We denote the test data by D, the set of human-assigned scores by

y(D), and the number of triples (wi1 , wi2 , yi) by d. Table 2.1 shows an example of

what the test data looks like.

Word 1 Word 2 Similarity score

love sex 6.77

tiger cat 7.35

tiger tiger 10

book paper 7.46

computer keyboard 7.62

Table 2.1: The first few rows of the WordSim-353 test set [Finkelstein et al., 2001]. Each

word pair has a similarity score between 0 and 10.

To compute the test scores for the embeddings, we first calculate a similarity

16

score for each pair of words in the test set, by calculating the cosine similarity

(defined below) between the corresponding embeddings for the two words in each

pair. Then we take the correlation between the sets of human-assigned and word

embedding similarity scores. This gives a value between −1 and 1: a score closer to

1 indicates that the word embeddings perform better with respect to the test set.

Hence, we can write the word similarity test function as

g(D,B) = ρ (y (D) , z (D,B)) , (2.1)

where y is the vector of human-assigned similarity scores contained within the test

data, and zi is the cosine similarity between words wi1 and wi2 :

zi = cos (〈b(wi1), b(wi2)〉) , (i ∈ {1, ..., d}) ,

where b(wk) denotes the embedding associated with word wk. Table 2.6 lists some

commonly used word similarity test sets with brief descriptions.

For word analogy tasks, we look for relationships of the form “wi1 is to wi2 as wi3

is to wi4” (for example, “ “king” is to “queen” as “man” is to wi4”), where the word

embeddings are assessed on their ability to predict wi4 , given the first three words.

The most common way to solve an analogy [Levy and Goldberg, 2014b, Mikolov

et al., 2013a, Pennington et al., 2014, Mnih and Kavukcuoglu, 2013] is to find

ŵi = arg max
w∈{w1,...,wp}

cos (b(wi1)− b(wi2) + b(wi3), b(w)) .

[Levy et al., 2015] uses 3CosMul, where we find

ŵi = arg max
w∈{w1,...,wp}

cos (〈b(w), b(wi2)〉) cos (〈b(w), b(wi3)〉)
cos (〈b(w), b(wi1)〉)

.

The test score is the rate of accuracy for the embedding set: i.e., the proportion

of tasks for which ŵi = wi4 . An example of an analogy test set is the Google

Analogy test set [Mikolov et al., 2013a], which contains 19544 analogies to be eval-

uated. There are 14 different types of analogy (for example, country/capital, coun-

try/currency, male/female, etc.). A few examples are given in Table 2.2.

17

wi1 wi2 wi3 wi4

Athens Greece Bangkok Iraq

Havana Cuba Minsk Belarus

India rupee Japan yen

son daughter boy girl

amazing amazingly apparent apparently

bad worse big bigger

Table 2.2: Examples of analogies from the Google Analogy test set [Mikolov et al., 2013a].

The last word in each row is the one that must be predicted using the word embeddings.

2.3 Word embedding methods

In this section we discuss some popular methods for generating word embeddings.

These methods can be divided into several categories:

Topic models. These are models for the document-term matrix, where the corpus

is assumed to consist of a number of topics; for example, a corpus of news articles

may include topics such as politics, the environment, business, sport, etc. Each

dimension in the word and context embeddings (i.e. each column of A and row of

B) corresponds to a topic; a larger entry indicates that a word or document is more

strongly associated with that topic.

Non-negative matrix factorization. Here we assume that all entries of A and B

are non-negative. This is essentially a subset of topic models (see above), which is

employed because it is often easier to interpret non-negative results.

Machine learning methods. Here the method is defined by an objective function,

which we are trying to optimize with respect to the word and context embeddings,

rather than by a statistical model for generating the corpus.

In Chapter 3, we discuss identifiability with respect to Latent Semantic Analysis

(LSA), which comes under topic models, and machine learning methods such as

SGNS and GloVe. In Chapters 4 and 5, the novel approaches we develop are based

18

predominantly on Latent Semantic Analysis. Other methods, such as non-negative

matrix factorization, are not discussed in any detail later on, but are included here

for the sake of completeness.

Section 2.3.1 explains the topic model set-up, with Sections 2.3.2, 2.3.3, and

2.3.4 giving examples of topic models. Section 2.3.5 covers non-negative matrix

factorization. Sections 2.3.6 to 2.3.9 cover machine learning methods. Table 2.3

summarises the main methods described in this section.

2.3.1 Topic modelling

In topic modelling we interpret the r dimensions of the word embeddings as corre-

sponding to r different topics, of which the corpus is composed. These topics are

assumed to correspond to meaningful entities; for example, in a corpus of news ar-

ticles we may expect to see topics such as politics, health, sport, etc.; although in

practice, it may sometimes be difficult to discern a meaningful interpretation of a

topic. As well as word embeddings, we generate document embeddings, which quan-

tify the association between each document and each topic. Hence, we approximate

the document-term matrix by

X ≈ AB,

where A is the n× r matrix of document embeddings, and B is the r× p matrix of

word embeddings.

The simplest such method is Latent Semantic Analysis (LSA), which we dis-

cussed in Section 2.1. LSA approximates the document-term matrix by its rank-r

SVD, thus minimizing the objective function

||X −AB||2F =
n∑
i=1

p∑
j=1

(
xij − aTi bj

)2
.

Minimizing this is equivalent to maximizing the likelihood of the model

xij
ind∼ N(aTi bj, σ

2).

19

The log-likelihood of the model is

l =
n∑
i=1

p∑
j=1

(
−1

2
log
(
2πσ2

)
− 1

2σ2

(
xij − aTi bj

)2
)

= −np
2

log
(
2πσ2

)
− 1

2σ2

n∑
i=1

p∑
j=1

(
xij − aTi bj

)2

= − 1

2σ2
||X −AB||2F + constant.

Hence, we can link the LSA method with a Normal model for the data. This

will be useful when we consider extending LSA to generate time-dependent word

embeddings in Chapter 5.

2.3.2 Probabilistic Latent Semantic Indexing

Probabilistic Latent Semantic Indexing (PLSI) [Hofmann, 1999] is a similar method

to LSA. However, in PLSI the elements of A and B are interpreted as probabilities.

We assume that in each document, each word in the document belongs to one topic.

The ith row of A, ai, is the topic probability distribution for document i; in other

words, aik is the probability that a word selected at random from document i,

belongs to topic k. The kth row of B, bk, is the word probability distribution for

topic k: if we pick a random word from the corpus which belongs to topic k, the

probability that it is word j is bkj. Hence, we assume that the rows of A and B

contain non-negative entries which sum to 1. We obtain this by scaling the rows of

the document-term matrix so that they sum to 1, meaning that the entries of X

are now proportions, rather than counts; this means that if we have the rows of B

summing to 1, the rows of A will do so also:

1 =

p∑
j=1

xij =

p∑
j=1

r∑
k=1

aikbkj =
r∑

k=1

aik

p∑
j=1

bkj =
r∑

k=1

aik 1 =
r∑

k=1

aik.

The probability model for word wj, document di, and topic zk is

P (wj|di) =
r∑

k=1

P (wj|zk)P (zk|di) =
r∑

k=1

bkjaik = aTi bj.

20

Hence, if Ni is the number of words in document i, xi ∼Multinomial
(
BTai

)
, with

Ni trials. This has mean NiB
Tai and variance NiΣi where

Σi = diag
(
BTai

)
−BTai

(
BTai

)T
= diag

(
BTai

)
−BTaia

T
i B,

where diag
(
BTai

)
is a diagonal matrix with the elements of the vector BTai along

its diagonal. Hence, when we row-normalize the document-term matrix, the nor-

malized vector x̃i = 1
Ni
xi will have mean BTai and variance 1

Ni
Σi.

If the document length Ni is large, and BTai is not near the boundary of the

parameter space, then the Multinomial distribution can be approximated by a mul-

tivariate Normal distribution

N
(
NBTai, NΣi

)
.

(As BTai is required to be non-negative, the boundary of the parameter space is

the set of non-negative r-dimensional vectors which contain at least one 0.) Thus

the vector of proportions would approximately follow the distribution

x̃i ∼ N

(
BTai,

1

N
Σi

)
,

which means we can write

X = AB +Z,

where zi ∼ Np

(
0, 1

N i
Σi

)
, where Σi is a function of BTai. However, in practice D

will contain a large proportion of zero entries, so if we assume non-negativity then

it is unlikely that we would not get values of aTi bj on or near the boundary.

2.3.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [Blei et al., 2003] is another topic model for the

document-term matrix. As in PLSI, the distribution of the rows of the document-

term matrix is given by

xi ∼Multinomial
(
BTai, N

)
,

21

where B is an r × p matrix, ai an r × 1 vector, and N the number of words in the

document.

However, in LDA we also specify a distribution for the document embeddings ai

ai ∼ Dir (α) .

The Dirichlet distribution is defined on the (r− 1)-dimensional simplex. A random

variable following this distribution will be an r-dimensional vector where all elements

are non-negative and sum to 1. The topics are assumed to be independent.

The advantages of using this method over PLSI are: (1) that there are fewer

parameters to estimate, as we only have to estimate α (r parameters) rather than

all the entries ofA (nr parameters), and the number does not grow with the number

of documents; and (2) that it can be used for generating a corpus of any size (in

PLSI, each document has a separate topic vector associated with it, which means

that if more documents are added to the corpus, they cannot be generated using

the existing model).

The model is computationally expensive to fit for large datasets [Mikolov et al.,

2013a].

2.3.4 Correlated Topic Model

The Correlated Topic Model (CTM) [Blei and Lafferty, 2005] is similar to LDA, but

uses the Logistic Normal distribution for ai rather than the Dirichlet distribution.

This is defined on the same parameter space as the Dirichlet distribution, so it is

still true that the elements of ai are non-negative and sum to 1. However, unlike

LDA, which assumes that topics are independent, in CTM the topics are allowed to

be correlated with each other, thus giving it added flexibility. In practice, it might

be expected that some topics would be correlated, especially if a relatively large

number of topics is used. The model for the document embeddings is now

ai ∼ LogisticNormal (α,Σ) ,

22

with the rest of the model as for LDA.

2.3.5 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) [Xu et al., 2003, Pauca et al., 2004]

attempts to find the best approximation to X of the form

X ≈ AB,

where A and B are non-negative matrices of size n×r and r×p respectively, where

r << min{n, p}. NMF is sometimes preferred to SVD in certain applications, such

as topic modelling, because the results are easier to interpret. The entries of the

matrices can be viewed as relative proportions or strengths of association between

a word and a topic (and between a topic and a document), but it is not clear what

negative entries would mean in this context. The matrices can be scaled so that

their rows sum to 1, in which case their elements can be interpreted as probabilities

or proportions.

2.3.6 Skip-Gram with Negative Sampling

Skip-Gram with Negative Sampling (SGNS) is a machine learning method that

generates word vectors using co-occurrence counts. It was developed in [Mikolov

et al., 2013c] and [Mikolov et al., 2013a]. The objective function (to be maximized)

is
p∑
i=1

p∑
j=1

xij log
(
σ
(
aTi bj

))
+ k

∑p
l=1 xil

∑p
m=1 xmj∑p

k=1

∑p
l=1 xkl

log
(
σ
(
−aTi bj

))
,

where σ(x) = (1 + e−x)
−1

and k is a hyperparameter that can take positive integer

values. The objective function is maximized with respect to the context embeddings

ai and word embeddings bj. The idea is that we are trying to maximize σ
(
aTi bj

)
for observed word pairs (i, j) (xij > 0), and minimize 1 − σ

(
aTi bj

)
(equivalent

to maximizing σ
(
−aTi bj

)
) for unobserved pairs. The term

∑p
l=1 xil

∑p
m=1 xmj∑p

k=1

∑p
l=1 xkl

is the

expected value of xij if the words in the corpus were ordered at random.

23

Topic models

Method Model

LSA xi ∼ N
(
BTai, σ

2I
)

PLSI xi ∼Multinomial
(
BTai

)
LDA xi ∼Multinomial

(
BTai

)
ai ∼ Dirichlet (α)

CTM xi ∼Multinomial
(
BTai

)
ai ∼ Logistic Normal (α,Σ)

Word embedding models

Method Target matrix Objective function

PPMI XPPMI None

SVD F (X) ||F (X)−AB||F

SGNS XPMI
∑p

i=1

∑p
j=1 xij log

(
σ
(
aTi bj

))
+ k

∑p
l=1 xil

∑p
m=1 xmj∑p

i=1

∑p
j=1 xij

log
(
σ
(
−aTi bj

))
GloVe X

∑
i

∑
j f (xij)

(
aTi bj − (log (xij)− ci − c̃j)

)

Table 2.3: Table summarising the main word embedding models discussed in this litera-

ture review. (For SVD, F (X) denotes an element-wise function of X; various examples

are used in the literature (see Section 2.3.9).)

Although SGNS does not directly factorize a matrix, [Levy and Goldberg, 2014b]

shows that it is implicitly factorizing a matrix M , where

mij = PMI (i, j)− log k = log

(
xij
∑p

k=1

∑p
l=1 xkl∑p

k=1 xik
∑p

l=1 xlj

)
− log k,

where PMI (i, j) is the Pointwise Mutual Information of i and j, defined in Section

1.1. This is equal to negative infinity if xij = 0, but the SGNS objective function

ignores such values.

2.3.7 Global Vectors

Global Vectors (GloVe) [Pennington et al., 2014] also uses co-occurrence counts.

The objective function (to be minimized) is

∑
i

∑
j

f (xij)
(
aTi bj − (log (xij)− ci − c̃j)

)
,

24

where ci and c̃j are bias terms that must be estimated during optimization, along

with ai and bj, and f is a weighting function

f(x) = min

((
x

xmax

)α
, 1

)
,

for hyperparameters α and xmax. The paper states that the choice of weighting

function is fairly arbitrary and that it is possible to choose a different function.

In [Pennington et al., 2014] this method was found to perform better than SVD

and SGNS on most sets of tasks. However, in [Levy et al., 2015] it performed less

well. (These two papers used different embedding dimensions and hyperparameter

settings.)

2.3.8 Positive Pointwise Mutual Information

In [Levy et al., 2015], one method used is to take the rows of the PPMI of the

co-occurrence matrix (see Section 1.1) to be the word embeddings. Although the

dimension of the embeddings is much larger than usual, the embeddings generated

using this method were found to perform competitively on some word similarity

tasks, although they did less well on analogy tasks.

2.3.9 Singular Value Decomposition

We have already looked at Latent Semantic Indexing (LSA), which uses the SVD

of the document-term matrix, but there are also several papers that generate word

embeddings using the SVD of a transformation of the co-occurrence matrix. For ex-

ample, [Pennington et al., 2014] investigated taking the SVD of
√
X and log (1 +X)

(where each transformation is applied element-wise), whereX is a truncated version

of the co-occurrence matrix that contains the number of co-occurrences of each word

with each of the top 10,000 words. [Levy et al., 2015] takes the SVD of the PPMI

matrix to generate word embeddings.

25

2.4 Practical considerations

There are several practical issues that must be taken into account when generating

word embeddings, regardless of which method is used to do this. For example,

we have to choose the dimension of the embedding, and whether to discard words

which occur with frequency below a certain threshold. We could also consider using

transformations of the data matrix such as row-normalization or PPMI.

2.4.1 Choosing the embedding dimension

One thing we must determine when generating embeddings is deciding what di-

mension the embeddings should have. Increasing the embedding dimension gives

more degrees of freedom, so we can do better with respect to the objective function.

However, if the embedding dimension is too high then we risk overfitting, and the

embeddings will perform less well on test data. This will also be important when we

consider generating time-dependent word embedding models in Chapter 5, partic-

ularly with regard to carrying out statistical tests for whether words have changed

over time.

There is no general method for determining a good embedding dimension, al-

though r = 300 is a common choice (e.g. [Mikolov et al., 2013c, Levy and Goldberg,

2014a, Suzuki and Nagata, 2015]). There are several papers that compare empirically

the performance of sets of word embeddings with different embedding dimensions.

In [Suzuki and Nagata, 2016], embeddings are trained with dimension 32, 64, 128,

256, 512, and 1024. They find that the performance of the embeddings increases up

to r = 512, but the performance decreases or stays the same when r is increased

again to 1024. The perceived superiority of SVD over PPMI in [Levy et al., 2015]

also shows that increasing r too much leads to a negative effect on performance

(PPMI is equivalent to SVD with r = p).

Figure 2.1 shows how performance on the WordSim-353 test set changes as the

embedding dimension increases, for LSA and SGNS embeddings trained on COHA.

26

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Embedding dimension

Te
st

 s
co

re

●

●

●

● ●

●

●

●

● ●

LSA

0 100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Embedding dimension

Te
st

 s
co

re

●

● ● ●

●

●
● ●

SGNS

Figure 2.1: Graphs showing how performance on the WordSim-353 test set changes with

embedding dimension r. The left-hand graph is for LSA embeddings and the right-hand

graph is for SGNS embeddings. In both cases embeddings are trained on COHA.

The left-hand graph is for LSA embeddings and the right-hand graph is for SGNS

embeddings. In both cases the performance increases up to r = 100, then it levels

off (and even decreases slightly). For this dataset, there does not seem to be much

to gain from increasing r above 100.

Figure 2.2 shows how the performance of SGNS embeddings trained on COHA

changes with r. Each line represents one of the seven test sets listed in Table 2.6.

The values of r used are 10, 100, 300, 500. We can see that in each case, performance

increases significantly between r = 10 and r = 100, and in some cases there is a

slight increase in performance between r = 100 and r = 300, but there is not much

difference between r = 300 and r = 500.

Tables 2.4 and 2.5 compare the word similarity test scores (see Section 2.2) of

word embeddings trained on COHA, for different embedding dimensions and pre-

processing choices. The test data is the WordSim-353 test set of similarity tasks

[Finkelstein et al., 2001]. As with Figures 2.1 and 2.2, we see that increasing the

embedding dimension tends to improve the performance of the embeddings up to a

27

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

P
ea

rs
on

 c
or

re
la

tio
n

●

●

●
●

●

●

● ●

●

● ● ●

●

●
● ●

●

●

● ●

●

●

● ●
●

● ● ●

Pearson correlation

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

S
pe

ar
m

an
 c

or
re

la
tio

n

●

●
● ●

●

●

● ●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

● ●
●

● ● ●

Spearman correlation

Figure 2.2: Performance of SGNS embeddings on seven different test sets when the

embedding dimension r takes different values. The embeddings were trained on COHA,

with values of r = 10, 100, 300, 500.

point, but continuing to increase the embedding dimension above this point does not

increase performance further, and is sometimes detrimental. The optimal embed-

ding dimension is usually around 100, although in a few cases we can increase the

test score by increasing the dimensionality to 300 or 500. In the literature, the most

common choice of embedding dimension is r = 300; however, the COHA dataset

is relatively small compared to other datasets used to train word embeddings (e.g.

Google News), so it is likely that overfitting happens more easily. Thus we need

to take the size of the dataset into account when choosing the embedding dimen-

sion. In particular, it is important to be aware that increasing the dimension of the

embeddings will not necessarily lead to an increase in performance.

We also see that normalizing the rows of the document-term matrix leads to an

improvement in performance of the embeddings, compared to just using the raw

counts, and using the PPMI of the document-term matrix produces even better

results, even outperforming SGNS.

28

Method r = 10 50 100 200 300 500

SGNS 0.451 0.648 0.641 0.641

SVD, plain 0.306 0.446 0.480 0.489 0.477 0.470

SVD, row-normalized 0.379 0.517 0.541 0.507 0.507 0.485

SVD, PPMI 0.464 0.617 0.635 0.627 0.622 0.605

Table 2.4: Pearson correlations between human-assigned similarity scores and cosine

similarity between embeddings, using word embeddings trained on COHA with different

preprocessing steps. SVD refers to SVD of the document-term matrix. The test set used

is the WordSim-353 similarity test set [Finkelstein et al., 2001]. For each row, the highest

score is in bold.

2.4.2 Word choice and preprocessing

There are other preprocessing choices that have to be made when training a set of

word embeddings. These include the context window size and weighting of contexts

(when working with the co-occurrence matrix), whether to discard infrequent words

(and what threshold to choose for this), and whether to downsample frequent words.

Context window size. For methods based on co-occurrence counts, we must

choose the size of the context window. Common choices are 2 [Levy et al., 2015],

5 [Levy et al., 2015, Suzuki and Nagata, 2016], and 10 [Mikolov et al., 2013a, Pen-

nington et al., 2014, Levy et al., 2015, Suzuki and Nagata, 2015].

Weighting of contexts. It is generally assumed that contexts that are closer

to a given word will be more important than those that are further away. Therefore,

it is common to weight contexts to give greater importance to those closer to a given

word (compared to contexts that are further away, but are still within the context

window). This is done in [Pennington et al., 2014], for example, by assigning contexts

a weight 1
d
, where d is the distance from the given word. Other papers ([Levy et al.,

2015, Mikolov et al., 2013a]) use a dynamic context window, where the context

window for each word in the corpus is sampled uniformly from 1, 2, ..., L. This has

the effect of down-weighting co-occurrences that occur further apart, but is faster

29

Method r = 10 50 100 200 300 500

SGNS 0.443 0.663 0.659 0.660

SVD, plain 0.317 0.439 0.492 0.507 0.507 0.535

SVD, row-normalized 0.392 0.533 0.557 0.532 0.535 0.547

SVD, PPMI 0.466 0.638 0.687 0.704 0.711 0.701

Table 2.5: Spearman rank correlations between human-assigned similarity scores and

cosine similarity between embeddings, using word embeddings trained on COHA with

different preprocessing steps. SVD refers to SVD of the document-term matrix. The test

set used is the WordSim-353 similarity test set [Finkelstein et al., 2001]. For each row, the

highest score is in bold.

to implement as not all the co-occurrences need to be observed.

Frequency threshold. Words that occur below a certain number of times in

the corpus are discarded. This helps to reduce the size of the dataset, and results

in cleaner data.

Dealing with frequent words. Very high-frequency words (such as “the”, “a”,

“and”) are usually not of much interest [Mikolov et al., 2013c], but will generally

have large values associated with them (in either the document-term matrix or

co-occurrence matrix). Hence, it is often useful to implement some preprocessing

steps to downgrade their importance, to prevent these words from dominating when

embeddings are generated. Some common approaches are:

• Subsampling. In [Mikolov et al., 2013a], frequent words are subsampled in

order that they do not dominate the training process. Words are removed

with probability

1−
√

t

fi
,

where fi is the frequency of word i. t is a hyperparameter, which in [Mikolov

et al., 2013a] and [Levy et al., 2015] is taken to be 10−5. We also have to

decide whether to remove these words before or after fixing context windows

(i.e., whether to delete or just ignore them).

30

• Term frequency-inverse document frequency (tf-idf) [Ramos, 2003]. This is a

weighting scheme where entries of the document-term matrix are weighted by

the inverse of the proportion of documents. The entries of the tf-idf weighted

document-term matrix are

xij = x0
ij log

(
n

fj

)
,

where x0
ij is the raw count for the number of times word j occurs in document i,

n is the number of documents in the corpus, and fj is the number of documents

word j occurs in. The weighting results in xij being smaller for words that

occur in most or all of the documents, and larger for words that occur in only

a few documents.

Normalization. Whether we are working with the document-term matrix or

co-occurrence matrix, there is an option to normalize the rows (and/or columns).

For the document-term matrix, dividing each row by its sum results in entries that

are equal to the proportion of each document made up by each word, rather than

the counts. This prevents the results from being dominated by a large document.

Alternatively, we could use a different weighting system such as PPMI.

Many word embedding methods also have hyperparameters that need to be cho-

sen, such as the number of negative samples in SGNS.

2.5 Time-dependent word embeddings

2.5.1 Time-dependent topic modelling

Several papers, such as [Blei and Lafferty, 2006] and [Jacobi et al., 2016], use an

LDA framework 2.3.3 to look at topic change across time. This requires producing a

document-term matrix for each time stage (for example a year) and analysing them

separately, then seeing how the results change across time.

31

Topics-Over-Time [Wang and McCallum, 2006] presents a time-dependent ex-

tension of LDA, where the topics are assumed to follow a Beta distribution, with

the aim being to infer the posterior distribution of the topics over a time period.

The paper is concerned with trying to infer how the prevalence of each topic changes

over time within the corpus, rather than trying to make inferences about the words.

This method is used by [Wijaya and Yeniterzi, 2011]. Their approach is to take

a word of interest and extract all its co-occurrences for each year (using Google

Ngrams). These sets of co-occurrences are then treated as documents. Topics-Over-

Time is used to generate document embeddings and these are then clustered using

K-means. It is assumed that a topic change occurs when two consecutive years are

assigned to different clusters.

2.5.2 Other time-dependent word embedding methods

The extension of word embedding methods to incorporate a temporal component has

been a growing area of interest in the past few years. The aim is to construct time-

dependent embeddings that encode changes in word meaning and usage over time,

enabling us to uncover trends in how words change. Several papers (e.g. [Hamil-

ton et al., 2016, Dubossarsky et al., 2015]) attempt to predict how much a word

will change (where ‘change’ is defined as movement in the embedding space) based

on certain of its features, such as its frequency or polysemy (how many different

meanings or ‘senses’ a word has). As well as semantic change – where a word has

either changed its meaning, or gained an additional meaning, we also detect change

in usage, where the meaning of a word remains the same, but changes in discourse

lead to it being used in different contexts. For example, one of the words that is

found to have changed in [Hamilton et al., 2016] is the word ‘male’; this is assumed

to be due to changes in the way gender is perceived and talked about in society.

The most common approach to generating time-dependent word embeddings

(e.g. [Hamilton et al., 2016, Kim et al., 2014, Dubossarsky et al., 2015]) is to divide

32

the dataset into discrete time periods, such as years or decades, and generate sepa-

rate sets of embeddings for each period using static word embedding methods such

as SGNS. The embeddings must then be aligned so that cross-period comparisons

can be made. There are several different ways of doing this: [Hamilton et al., 2016]

finds the rotation of the set of word embeddings for each time period that is closest

to the set of embeddings for the previous period, using an orthogonal Procrustes

algorithm, whilst [Kim et al., 2014] and [Dubossarsky et al., 2015] find the embed-

dings for each period sequentially, using the embeddings from one period as initial

values for the optimization algorithm for the next period.

[Bamler and Mandt, 2017] criticises this approach; dividing up the data in this

way and generating multiple sets of embeddings leads to a large increase in the num-

ber of parameters, although the number of data points is the same, which increases

the risk of overfitting. In addition, word embedding objective functions are usually

non-convex so there is no guarantee that the algorithm used will converge to the

same set of values each time. This may be problematic when trying to compare

word embeddings across times.

A different approach is to optimize the objective over all time periods at once.

This is the approach taken in [Yao et al., 2018], whose objective function includes a

penalty term that is related to sum of the norms of the differences in the matrices

of word embeddings for each pair of consecutive time periods. This has the effect of

forcing embedding sets for subsequent time periods to be closer together.

Other ways of generating time-dependent embeddings include those of [Bamler

and Mandt, 2017] and [Rosenfeld and Erk, 2018]. [Bamler and Mandt, 2017] imple-

ments a time-dependent Bayesian skip-gram model (the static version is described in

[Barkan, 2017]; it has the same objective function as SGNS with a Gaussian prior).

The corpus is divided into m time periods. The distribution of the matrices of word

33

and context vectors for time τt+1, conditional on times τt, are

Wt+1|Wt ∼ N

(
Wt

1 + σ2
t /σ

2
0

,
1

σ−2
t + σ−2

0

I

)
Ct+1|Ct ∼ N

(
Ct

1 + σ2
t /σ

2
0

,
1

σ−2
t + σ−2

0

I

)
,

where σ2
t = D (τt+1 − τt); D is a global diffusion constant.

[Rosenfeld and Erk, 2018] attempts to model words as a continuous function of

time, using a neural network model that is based on SGNS.

Determination of how much a word has changed is usually done by finding the

cosine distance between embeddings associated with that word at different time

periods. The words that have changed the most between times ti and tj are those

for which the cosine distance between the respective embeddings of that word at

those times is the greatest.

[Hamilton et al., 2016] attempt to detect a set of 28 known shifts in word mean-

ing, by looking at whether each of the words known to have changed meaning are

moving towards or away from other similar words (for example, “gay” moving away

from “happy” and becoming closer to “homosexual”). They find that in most cases

the direction of movement was correct but the distance moved was not always sta-

tistically significant. They also posit two “Laws of Semantic Change” that predict

how much words change: the law of conformity (more frequent words change more

slowly) and the law of innovation (polysemous words change more quickly).

[Dubossarsky et al., 2015] use a clustering algorithm on the word embeddings,

and find that there is a correlation between the distance of a word from its cluster

centre and the speed at which it changes. [Dubossarsky et al., 2016] propose that

verbs change more quickly than nouns, and nouns change more than adjectives.

However, [Dubossarsky et al., 2017] claims that the significance of the results

found in [Hamilton et al., 2016] and [Dubossarsky et al., 2015] may be overstated.

They suggest that many findings in this area may be artefacts of the text models

and comparison methods used. They also show that the average cosine distance

between two i.i.d. count vectors is negatively correlated with frequency and posi-

34

tively correlated with polysemy score, which suggests that the two laws of semantic

change claimed by [Hamilton et al., 2016] may arise merely as a result of using cosine

distance to measure similarity, rather than from patterns in the data. There is no

attempt to control for false positives in [Hamilton et al., 2016], so it is difficult to

tell whether their findings are genuinely significant or not.

Open problems

[Kutuzov et al., 2018] lists some open problems in the field of diachronic text analysis.

These include:

1. Analysis of languages other than English. A little work has been done in

this area, but not much. It may be that different conclusions can be drawn

about other languages (for example, [Hellrich and Hahn, 2016] draws different

conclusions when analysing German text than when they analyse English text).

2. Creation of methods that work on small datasets, which is necessary for some

applications, such as biomedical applications.

3. Creation of gold standard test sets of semantic shifts, similar to those used for

static word embeddings. ([Hamilton et al., 2016] uses a set of 28 known shifts

for evaluation, but this is very small.)

4. Development of more rigorous mathematical models, for example accounting

for false positives.

5. Analysis of types of shift: e.g. broadening vs. narrowing (or positive/negative)

In Chapter 5 of this thesis, which looks at time-dependent word embeddings, we

focus mostly on addressing problem 4, the development of more rigorous mathemat-

ical models.

35

2.6 Factor analysis

We now briefly look at two other dimension reduction methods: factor analysis and

multidimensional scaling. These are not used to generate word embeddings, but we

will make use of them in Chapters 4 and 5, and hence we provide a summary of

these methods here. This section deals with factor analysis, and Section 2.7 with

multidimensional scaling.

Factor analysis is a more general approach for analysing data matrices that are

assumed to have an underlying low-rank structure. It is widely used in areas such

as psychology and economics (e.g. [Ford et al., 1986, Bai et al., 2015]). It does not

appear to have been applied to the generation of word embeddings, although it is

related to the topic modelling approaches described in Section 2.3. We include an

outline of it here as we will make use of it in Chapter 5.

In factor analysis, we have an observed data matrix X, consisting of n observa-

tions (rows) of p variables (columns). As in the topic modelling scenario (Section

2.3.1), each row of X is interpreted as being composed of a set of r latent factors,

where r << {n, p}. The factor model for each row of X, xi, is defined as

xi = µ+BTai + zi (i = 1, ..., n) , (2.2)

where µ is a constant mean vector, ai is an r×1 random vector with mean 0, B is an

r×p matrix, and zi is a p×1 vector of errors. zi has mean 0 and is usually assumed

to be normally distributed. The elements of ai can either be assumed to be fixed

parameters, or random variables from some distribution. In the latter case, they

are usually taken to be i.i.d. Normal random variables. If we relax the assumption

that ai has mean 0, then the µ term can be absorbed into BTai, and the model is

written as

xi = BTai + zi,

or, in matrix form,

X = AB +Z,

36

which, under the assumption that zi ∼ N(0, σ2I), is the same as the Normal model

for LSA (see Section 2.3.1). In factor analysis, however, it is more common to use a

slightly more general model where zi ∼ N(0,Σz), with Σz restricted to be diagonal.

One necessary decision in factor analysis is how to make the parameters of the

model identifiable, so that they can be uniquely identified. This is done by imposing

constraints on A and B. Some common choices are:

• Requiring Ma = 1
n−1

∑n
i=1 (ai − ā) (ai − ā)T = I and BTΣ−1

z B to be diago-

nal [Anderson and Amemiya, 1988, Anderson and Rubin, 1956].

• Requiring either the first or last r × r block of B to be the identity matrix

(B = (Ir,β) or B = (β, Ir), where β is an r× (p− r) matrix) [Amemiya and

Fuller, 1987, Anderson and Amemiya, 1988, Anderson and Rubin, 1956].

• Requiring specified elements of B to be 0 [Anderson and Rubin, 1956]. This is

usually done when we have prior information about the data that would lead

us to believe that certain elements of B should be 0.

There are several ways of obtaining estimates forA andB. One method is to use

principal components analysis (PCA) [Dunteman, 1989]. PCA seeks to find a small

number of principal components; that is, vectors v which maximize vTMxv, where

Mx is the covariance matrix of X (vTMxv is the variance of vTx =
∑

i vixi). The

principal components are the eigenvectors of Mx, which means that if X is centred,

then PCA gives the same estimates as SVD.

Another common method is to find the maximum likelihood estimates of B

and Σz, usually under the assumption that ai and zi are independently normally

distributed. In this case the model is

xi ∼ N
(
µ,BTΣaB + Σz

)
,

where Σa and Σz are the covariance matrices of ai and zi respectively. Σz is assumed

to be diagonal, so the elements of zi are independent; if the variances are assumed

37

to be equal (Σz = σ2Ip), then the maximum likelihood estimates are the same as

the PCA estimates.

The asymptotic behaviour of parameter estimates for the factor model, which

will be of particular interest in Chapter 5, is well studied. [Amemiya and Fuller,

1987] derives the limiting distribution for the maximum likelihood estimates of B,

Σa and Σz under the assumption that the ai’s are Normally distributed, as well as

the maximum likelihood estimates ofB, Ma = 1
n−1

∑n
i=1 (ai − ā) (ai − ā)T , and Σz

under the assumption that the ai’s are fixed. In both cases the estimates converge

to the true parameter values with rate n−1/2. However, this result only holds when

n is large compared to p.

There also exists a time-dependent version of factor analysis, dynamic factor

analysis, (e.g. [Bai, 2003]) where ai is modelled as a multivariate time series.

2.7 Multidimensional scaling

Multidimensional scaling (MDS) is a method of projecting high-dimensional data

into a lower dimensional space. We are presented with data in the form of a set

of pairwise dissimilarities or distances between objects, and the aim is to construct

a set of low-dimensional embeddings (one for each object) such that the distances

between embeddings are as close as possible to the given dissimilarities.

MDS tries to minimize the objective function

LMDS =
∑
i<j

wij (δ (xij)− ||bi − bj||)2 ,

where the xij’s are the given dissimilarities, bi is the low-dimensional embedding

associated with object i, and the wij’s are non-negative weights that control the

relative importance of each (i, j) pair (for example, wij = 0 if xij is unobserved). δ

is a function of the dissimilarities that may be either selected in advance or estimated

during optimization (more details below): we write δij = δ(xij). The minimization

38

is with respect to B: we try to find

B = arg min
B

∑
i<j

wij (δ (xij)− ||bi − bj||)2 .

There are two main types of MDS: metric and non-metric. In metric MDS, δ

is specified to be a particular function of xij: the simplest case is δ(xij) = xij. In

non-metric MDS, we are interested only in the rank-order of the xij’s, rather than

their precise values. In this case, rather than specifying δ in advance, we estimate

it along with B in the minimization of LMDS. We require only that the order of

the xij’s is preserved: i.e., if xij ≤ xkl, then δij ≤ δkl. To minimize the objective, we

alternate between solving for ∆ and solving for B, whilst keeping the other fixed.

2.7.1 The majorization algorithm

A standard method for minimizing the MDS objective function is to use a majoriza-

tion algorithm (given in e.g. Chapter 8 of [Borg and Groenen, 1997]). The idea of

majorization is that for a function f(x), we find a function m(x, x̃) that is simpler to

minimize than f(x), and for which m(x, x̃) ≥ f(x) for all x̃, with equality if x = x̃.

The value of x is updated at each stage of the algorithm, by finding the updated

value xk+1 such that m(xk+1, xk) ≤ m(xk, xk). This gives the series of inequalities

f(xk+1) ≤ m(xk+1, xk) ≤ m(xk, xk) = f(xk).

Thus, the sequence {f(xk)} is non-increasing, and so, as long as f is bounded below,

it will converge to a local minimum of f (although it is not guaranteed to converge

to the true minimum).

A majorizing function for the MDS objective function

LMDS(B) =
∑
i<j

wij(δij − ||bi − bj||)2

is [Borg and Groenen, 1997]

m(B, B̃) = η2
δ + tr

(
BTY B

)
− 2 tr

(
BTH(B̃)B̃

)
, (2.3)

39

where

η2
δ =

∑
i<j

wijδ
2
ij;

Y is a matrix with

yij =


∑n

k=1,k 6=iwik, if i = j

−wij, if i 6= j;

and H(B̃) has elements hij, where

hij =


− wijδij

||b̃i−b̃j ||
if i 6= j and ||b̃i − b̃j|| 6= 0

0 if i 6= j and ||b̃i − b̃j|| = 0

−
∑n

k=1,k 6=i hik if i = j.

A derivation of this is given in the Appendix (Appendix B.1), since it will be useful

in Chapter 4.

Algorithm 1 gives the majorization algorithm for metric MDS.

Algorithm 1 Majorization: Metric MDS

Require: B̃ = B[0] and k = 0.

objective[0] = LMDS

(
B[0]

)
.

while convergence = 0 do

k = k + 1.

B[k] = Y +H(B̃)B̃, where Y + is the Moore-Penrose inverse of Y .

objective[k] = LMDS

(
B[k]

)
.

if objective[k−1] − objective[k] < ε then

convergence = 1.

else if k = maxiter then

convergence = 1.

end if

B̃ = B[k].

end while

40

2.7.2 Stochastic gradient descent

In this section we give an outline of stochastic gradient descent, which we will also

use to optimize the MDS objective in Chapter 4.

Gradient descent (Algorithm 2) is an optimization algorithm for minimizing a

function f(x). At each iteration, we calculate the gradient at the current value

of the parameters, and update the parameter values by taking a small step in the

opposite direction from the gradient, until we reach a point where the gradient is 0.

Algorithm 2 Gradient Descent

Require: B[0], γ.

k = 0.

while | ∂f
∂B[k] | > 0 do

k = k + 1.

Calculate ∂f
∂B[k−1] .

B[k] = B[k−1] − γ ∂f
∂B[k] .

end while

The parameter γ is the learning rate, which we must tune to achieve a good rate

of convergence. If γ is too small, then convergence will be very slow; if γ is too large,

then the value of the gradient may increase instead of decreasing, and the algorithm

may not converge at all. It is also possible that the algorithm may converge to a

local minimum, rather than the overall minimum.

Stochastic gradient descent is used when the gradient at a pointB can be written

as a sum:

∂f

∂B
=

m∑
i=1

gi(B),

for some functions g1, ..., gm. Instead of calculating the full gradient, we approximate

it by taking the sum over a subset of the gi’s:

∂f

∂B
≈
∑
i∈M

gi(B),

41

where M is a random sample from {1, ...,m}. If the batch size |M| is small, then

this is much quicker to compute than the full gradient, so although it is less accurate,

it is often preferred in practice.

The algorithm for stochastic gradient descent is given in Algorithm 3.

Algorithm 3 Stochastic Gradient Descent

Require: B[0], γ, mb.

k = 0.

while | ∂f
∂B[k] | > 0 do

k = k + 1.

Take a M to be a random sample of size mb from {1, ...,m}.

B[k] = B[k−1] − γ
∑

i∈M gi(B).

end while

2.7.3 Non-metric MDS

In non-metric MDS we are only interested in the rank-order of the dissimilarities.

In the objective function we use estimated disparities δ̂ij:

LMDS(B) =
∑
i<j

wij

(
δ̂ij − ||bi − bj||

)2

= η2
δ̂

+ η2(B)− 2ρ(∆̂,B).

It is usual to constrain the δ̂ij’s so that η2
δ̂

= 1
2
n(n − 1), as otherwise the objective

would be minimized by the trivial solution ∆̂ = 0,B = 0.

In non-metric MDS, we are only interested in the ordering of the dissimilarities,

and δ is not directly specified. The requirement is:

If xij < xkl, then δ̂ij ≤ δ̂kl.

The majorization algorithm for non-metric MDS is given in Algorithm 4.

In order to find

δ̂[0] = arg min
δ̂

∑
i<j

(
δ̂ij − ||b[0]

i − b
[0]
j ||
)2

,

we use Kruskal’s up-and-down-blocks algorithm [Kruskal, 1964].

42

Algorithm 4 Majorization: Non-metric MDS

Require: B̃ = B[0], k = 0, ε.

δ̂
[0]
ij = γδ̂

[0]
ij , where γ is chosen such that we get η

[0]

δ̂
= 1

2
n(n− 1).

Compute LMDS

(
B[0]

)
.

while convergence = 0 do

k = k + 1.

B[k] = Y +H
(
B̃
)
B̃.

δ̂
[k]
ij = arg minδ̂

∑
i<j

(
δ̂ij − ||b[k]

i − b
[k]
j ||
)2

.

δ̂
[k]
ij = γδ̂

[k]
ij , where γ is chosen such that we get η

[k]

δ̂
= 1

2
n(n− 1).

Compute LMDS

(
B[k]

)
.

if LMDS

(
B[k−1]

)
− LMDS

(
B[k]

)
< ε then

break.

else

B̃ = B[k].

end if

end while

43

2.7.4 Link between GloVe and MDS

The GloVe objective function [Pennington et al., 2014] is

LGloV e(A,B) =
∑
i

∑
j

f(xij)
(
log xij − aTi bj − ci − c̃j

)2
. (2.4)

This is similar to Equation 2.7, if we ignore the bias terms ci and cj, and replace the

Euclidean distance || · || with the inner product (as we will consider doing for MDS

later, in Section 4.3.1). We have wij = f(xij) and δij = log xij. The difference is

that in Equation 2.7, we just have one set of word embeddings rather than separate

sets of word embeddings (B) and context embeddings (A). However, if X is a

symmetric matrix (for example the word-word co-occurrence matrix), then because

of the non-identifiability of the solution set (see Chapter 3) we can achieve A = BT

by multiplying both A and B by a non-singular r × r matrix. Hence, with the

additional bias terms included, GloVe can be viewed as a generalization of MDS.

2.8 Datasets

In this section we outline the datasets used in this thesis.

Training data. Most of the results on real data given in this thesis are based

on the Corpus of Historical American English (COHA) ([Davies, 2010, 2012]). This

consists of a collection of novels, non-fiction, newspaper and magazine articles pub-

lished between the 1810s and 2000s, containing over 400 million words in total. The

documents are not evenly distributed across this time period – there are relatively

few documents for the early years. However, it is balanced so that the proportion

of documents in each genre remains the same across the time frame. The data can

be accessed, for a fee, at https://www.english-corpora.org/coha/.

We also make use of word embeddings trained on the Google News dataset, which

contains about 100 billion words. These are available from https://code.google.

com/archive/p/word2vec/.

44

https://www.english-corpora.org/coha/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

Test data. In Chapters 3 and 4 we make use of some test datasets for word

embeddings. For word similarity tasks (see Section 2.2), we use several different

test sets, which are summarised in Table 2.6. For word analogy tasks, we use the

Google Analogy test set, which contains 19544 analogies to be evaluated. There are

14 different types of analogy, which are listed in Table 2.7.

Test set Description Reference

MTurk-287 287 word pairs assessed by similarity [Radinsky et al., 2011]

MTurk-771 771 word pairs assessed by relatedness [Halawi et al., 2012]

RW rare words [Luong et al., 2014]

SimLex-999 999 pairs of words assessed by similarity [Hill et al., 2015]

SimVerb-3500 3500 pairs of verbs assessed by [Gerz et al., 2016]

semantic similarity

Verb-143 143 pairs of verbs [Baker et al., 2014]

WordSim-353 353 pairs of words assessed by relatedness [Finkelstein et al., 2001]

YP-130 130 pairs of verbs [Yang and Powers, 2005]

Table 2.6: Examples of test sets used for word similarity tasks.

45

Type of analogy Number of tasks

Country–Capital (common) 506

Country–Capital (less common) 4524

Country–Currency 866

US city–State 2467

Male–Female 586

Adjective–Adverb 992

Adjective–Opposite 812

Adjective–Comparative 1332

Adjective–Superlative 1122

Verb infinitive–Present participle 1056

Country–Demonym 1599

Present participle–Past tense 1560

Singular noun–Plural 1332

Verb infinitive–3rd person present form 870

Table 2.7: Categories of analogy tasks in the Google Analogy test set [Mikolov et al.,

2013a], with the number of tasks in each category.

46

Chapter 3

Non-identifiability of word

embeddings

In this chapter, we investigate the issue of non-identifiability in word embedding

methods: that is, the existence of multiple sets of embeddings which optimize the

objective function. We explain how this arises as a consequence of objective func-

tions being based on inner products between word and context embeddings. We

explore what the consequences are for the assessment of word embeddings on test

data, and propose two solutions.

3.1 Introduction

In Chapter 2, we looked at several different word embedding methods, including

LSA (Section 2.1), SGNS (Section 2.3.6), and GloVe (Section 2.3.7). Each of these

methods is implemented by finding a matrix of word embeddings which optimizes

some objective function. In this chapter we show that a set of embeddings generated

from any one of these methods is non-identifiable: for any given embedding set that

optimizes the objective function, we can find multiple (indeed, infinitely many) other

solutions that do the same. These different solutions may perform very differently

on test data (see Section 2.2), as we shall show later on (see Tables 3.4, 3.6, and

47

3.7). This makes it difficult to compare different embedding methods.

In this chapter, we first show (Section 3.2) that most popular word embedding

methods can be expressed implicitly in terms of matrix factorization, and we explain

how this leads to non-identifiability. We then investigate the implications of this for

assessing performance on tasks (Section 3.3), both for word similarity and analogy

tasks, and discuss some possible solutions (Section 3.4).

To illustrate the problem of non-identifiability, we take the general case of matrix

factorization (on which most word embedding methods are based). Let X be an

n × p matrix. To find a low-rank matrix factorization of X, we choose a rank

r < min{n, p}, and solve

(A∗,B∗) = arg min
An×r,Br×p

||X −AB||, (3.1)

where || · || denotes some norm. If we impose no constraints on the matrices A and

B other than requiring them to be of dimension n× r and r × p respectively, then

A and B cannot be uniquely determined. If (A∗,B∗) is a minimum of Equation

3.1, then we can take any invertible r × r matrix C, and set Ã = A∗C−1 and

B̃ = CB∗. Then ÃB̃ = A∗B∗, so
(
Ã, B̃

)
is also a solution of the minimization

problem. However, we can make (A∗,B∗) unique by imposing further constraints;

this will be discussed in Section 3.4.1.

3.2 Non-identifiability of word embeddings

We now consider some of the different word embedding methods discussed in Chapter

2: LSA (and other SVD-based methods), GloVe, and SGNS. We show that they all

have the same non-identifiability issue as Equation 3.1.

First, we show that the objective function for each method can be written in the

form

f (X,AB) ,

48

where X is some representation of the data (e.g. the document-term matrix or co-

occurrence matrix), and A and B are the matrices of context and word embeddings

respectively. This means that the objective function is a function of the data X

and the matrix product AB only. As in Equation 3.1, replacing A and B with

Ã = AC−1 and B̃ = CB does not change the value of the objective function, so

non-identifiability arises in the same way.

3.2.1 LSA

The LSA objective function is

f(X,AB) := ||X −AB||F ,

where || · ||F denotes the Frobenius norm:

||M ||F =

(∑
i

∑
j

m2
ij

)1/2

. (3.2)

This is clearly a function only of X and AB. The same applies to other ways

of generating word embeddings using SVD, such as those discussed in Section 2.1,

which use the same objective function with a different X. (It is true that when we

compute the SVD it gives us matrices with orthonormal columns, but we can still

multiply A and B by any non-singular matrix without changing the value of the

objective function.)

3.2.2 GloVe

The objective function to be minimized for GloVe [Pennington et al., 2014] is

f(X,AB) :=

p∑
i=1

p∑
j=1

h (xij)
(
aTi bj + ci + c̃j − log xij

)2
,

where h is an element-wise weighting function and ci and c̃j are bias parameters

estimated during optimization. As for SGNS, this depends on the word and context

embeddings only through the elements of the matrix AB, and so again can be

written in the form f (X,AB).

49

3.2.3 SGNS

The SGNS objective function [Levy and Goldberg, 2014b] is

f(X,AB) :=

p∑
i=1

p∑
j=1

xij log
(
σ
(
aTi bj

))
+ k

∑p
l=1 xil

∑p
m=1 xmj∑p

i=1

∑p
j=1 xij

log
(
σ
(
−aTi bj

))
,

where σ(x) = (1 + e−x)
−1

and k is a hyperparameter that can take positive integer

values.

This depends on the word and context embeddings only through the inner prod-

ucts aTi bj, which are the elements of the matrix AB. Therefore we can write the

objective function as f (X,AB).

Remark. This problem does not occur with the PPMI method, where the word

embeddings are taken to be the rows of the PPMI of the co-occurrence matrix (see

Section 2.3.8). This is because there is no auxiliary matrix A for this method.

Figure 3.1 illustrates the possible result of a set of word embeddings B being

multiplied by a non-singular matrix C. In the left-hand graph the word embeddings

are divided into two groups, and words tend to be closest to other words that have

similar meanings. In the right-hand graph, it is difficult to distinguish the two

groups, and in some cases unrelated words are closer together than words that are

similar.

3.3 Assessing performance of word embeddings

We have seen that some popular word embedding methods are non-identifiable. We

now consider the implications of this on how word embeddings are assessed. We

show that different sets of embeddings that are jointly optimal with respect to the

objective function may perform quite differently on test data, which makes it hard

to compare the performance of different methods.

As discussed in Section 2.2, word embeddings are assessed in terms of how well

they perform on a series of tasks. We consider two types of tasks: word similarity

50

●
●

●

●

●

●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4

computerscreen

apple

apps

windows

device

coach

players

referee

match

score

●

●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
3

−
2

−
1

0
1

2
3

computer

screen

apple

apps

windows

device

coach

players

referee

match

score

Figure 3.1: The left-hand graph shows a set of simulated word embeddings in two di-

mensions. The embeddings divide clearly into two main groups. The right-hand graph

shows the result of the same set of embeddings having being multiplied by a non-singular

transformation matrix C ∈ R2×2. The different groups are no longer distinct, potentially

leading to quite different inferences about the relationships between the words based on

the embeddings.

51

and word analogy. Details are given in Chapter 2, but we summarise here how this

is implemented.

First, we introduce some notation. Let g(D,B) denote the test score, where D

is the test data, and B is the embedding set. To distinguish the two types of tasks,

we write gS(DS,B) for word similarity tasks and gA(DA,B) for word analogy tasks.

We use g and D, without subscripts, to refer generically to the test function or test

data for either type of task.

3.3.1 Word similarity tasks

For word similarity tasks, the test data DS consists of a list of triples (wi1 , wi2 , yi),

where wi1 and wi2 are words, and yi is a human-assigned similarity score for words

wi1 and wi2 . Some examples of these are given in Table 3.1, which shows the first few

rows of the WordSim-353 test set [Finkelstein et al., 2001]. We calculate gS(DS,B)

as follows. For each i, we let b(wi1) and b(wi2) represent the word embeddings

corresponding to words wi1 and wi2 . We denote the cosine similarity between these

two embeddings by zi:

zi = cos

(
〈b(wi1), b(wi2)〉
|b(wi1)| · |b(wi2)|

)
.

The test score is then given (as in Equation 2.1) by

gS(DS,B) = ρ(y(DS), z(DS,B)),

where ρ is the Spearman or Pearson correlation coefficient between y and z. The

idea is that a higher correlation between y and z indicates that word pairs that have

high human-assigned similarity scores (yi) also have high cosine similarity between

their embeddings (zi).

3.3.2 Word analogy tasks

For analogy tasks, the test data DA is a list of sets of four words (wi1 , wi2 , wi3 , wi4).

Each set forms an analogy, “wi1 is to wi2 as wi3 is to wi4 .” For example, “king is

52

Word 1 Word 2 Similarity score

love sex 6.77

tiger cat 7.35

tiger tiger 10.00

book paper 7.46

computer keyboard 7.62

Table 3.1: The first few rows of the WordSim-353 test set [Finkelstein et al., 2001]

to queen as man is to woman.” The aim is to use the set of word embeddings to

predict the final word.

The usual way to solve an analogy is to find ŵ that satisfies

ŵ = arg max
{w1,...,wp}

cos (〈b(wi1)− b(wi2) + b(wi3), b(w)〉) , (3.3)

where b(wk) denotes the embedding corresponding to word wk. An alternative

method used in [Levy et al., 2015] is to solve

ŵi = arg max
{w1,...,wp}

cos (〈b(w), b(wi2)〉) cos (〈b(w), b(wi3)〉)
cos (〈b(w), b(wi1)〉)

. (3.4)

In either case, gA(DA,B) is the proportion of analogies for which the predicted final

word is correct:

gA(DA,B) =
1

d

d∑
i=1

Iŵi=wi4
,

where d is the number of analogies in DA and I is the indicator function:

Iŵi=wi4
=


1 if ŵi = wi4

0 otherwise.

In both Equations 3.3 and 3.4, ŵi, and hence gA(DA,B), depends on the word

embeddings only through their cosine similarities.

We have shown that for both word similarity and analogy tasks, gS and gA only

depend on the word embedding set B through the cosine similarities between the

53

embeddings. Hence, for any transformation of the embeddings to which the cosine

similarity function is invariant, the test functions gS and gA will also be invariant.

We now define some notation which will be used in this section.

Definition 5. GL(r) := {C ∈ Rr×r : |C| 6= 0}

Definition 6. O(r) := {Q ∈ Rr×r : QTQ = QQT = Ir}

Definition 7. cO(r) := {cQ : c > 0,Q ∈ O(r)}

Remark. We have c > 0 in the definition of cO(r), because a sign change can be

absorbed into the matrix Q ∈ O(r).

Lemma 2 states that the cosine similarity between two word embeddings is in-

variant to orthogonal and scale transformations (elements of cO(r)), but not to

general non-linear transformations (elements of GL(r)).

Lemma 2. Suppose we have context and word embedding matrices A and B, and

define Ã = AC−1 and B̃ = CB, where C ∈ GL(r). If C ∈ cO(r), then the cosine

similarity between columns i and j of B is the same as that between columns i and

j of B̃.

Proof. If C ∈ cO(r), then there exist c > 0 and Q ∈ O(r) such that C = cQ. Thus,

cos
(
〈b̃i, b̃j〉

)
=

bTi CC
Tbj

|C|2 · |bi| · |bj|
=

bTi c
2QQTbj

|cQ|2 · |bi| · |bj|
||

=
bTi (c2Ir) bj
c2 · |bi| · |bj|

=
bTi bj
|bi| · |bj|

= cos (〈bi, bj〉) .

Thus, if we have two embedding sets B and B̃, such that B̃ = CB, then if C

can be written as C = cQ, where c is a scalar and Q an orthogonal matrix, then

these two embedding sets will give the same value for both f and g. If C is not

of this form then we will still have f(X,AB) = f(X, (AC−1) (CB)), but we may

not have g(D,B) = g(D,CB).

54

The non-identifiability issue is apparent when we consider word embeddings

based on SVD. Here, the objective function is

f = ||X −AB||2F . (3.5)

We know that, to minimize f in Equation 3.5, the matrix product AB must satisfy

AB = UrΦrV
T
r ,

where Φr is a diagonal matrix with its diagonal elements equal to the r largest

singular values of X, and Ur and Vr are n× r and p× r matrices with orthonormal

columns equal to the corresponding singular vectors [Eckart and Young, 1936]. There

are thus three matrices, which we need to decide how to divide into A and B. For

example, we could take

A = Ur, B = ΦrV
T
r ,

which is called by [Bullinaria and Levy, 2012] the “simple SVD” solution. However,

we could alternatively take

A = UrΦr, B = V T
r ,

or indeed, as is investigated in [Bullinaria and Levy, 2012] and [Turney and Littman,

2002],

A = UrΦ
1−α
r , B = Φα

rV
T
r ,

for α ∈ R. For each α, Φα
rV

T
r is a different element of the solution set, with the

set of such solutions forming a subset of the whole solution set (as {Φα
r : α ∈ R}

is a subset of GL(r)). [Bullinaria and Levy, 2012] and [Turney and Littman, 2002]

investigate the performance of different values of α; although [Bullinaria and Levy,

2012] only consider a few different values, they observe that that α = 1
2

tends to

perform better than α = 0 or 1. Later, in Section 3.4.2, we will consider optimizing

over the set of possible α’s. However, we will next investigate in more depth the

effect of the discrepancy between the invariances of f and those of g.

55

3.3.3 Incompatibility between invariances of f and g

In order to investigate the implications of non-identifiability upon the test function

g, and in particular the discrepancy between the set of transformations to which g

is invariant and the set of transformations to which f is invariant, it is helpful to

formalize the situation using a group-theoretic framework.

We are interested in the set of transformations of the embedding set B ∈ Rr×p

to which the objective function f is invariant, but not the test function g. First

we characterize the sets of transformations to which each of f and g are invariant

(Lemmas 3 and 4).

Lemma 3. f is invariant to transformations of the embedding set by GL(r), in the

sense that for all C ∈ GL(r), f(X, (AC−1)(CB)) = f(X,AB).

Lemma 4. g is invariant to transformations of the embedding set by elements of

cO(r): for all C ∈ cO(r), g(D,CB) = g(D,B).

Let Fr denote the set of transformations to which f is invariant but g is not:

Fr = {C ∈ Rr×r : C ∈ GL(r),C /∈ cO(r)}.

The dimensions of GL(r) and cO(r) are r2 and 1
2
r(r − 1) + 1 respectively. Hence,

the dimension of Fr is r2 − 1
2
r(r − 1)− 1 = 1

2
r(r + 1).

In order to characterize this set, let UT+(r) be the set of upper triangular r × r

matrices with positive diagonal elements which sum to 1:

Definition 8. UT+(r) := {R ∈ GL(r) : rij = 0 for j > i, rii > 0,
∑

i rii = 1 }

We note that as C ∈ GL(r) is non-singular, it can be decomposed uniquely into

the form C = QR, where Q ∈ O(r) and R is upper triangular [Nicholson, 2019,

p. 454–455]. Since transformation of the embedding set by an orthogonal Q does

not have an effect on g, we need only consider the upper triangular component

R. However, scale transformations also do not affect g, so we can also take out a

56

scale factor c and write C = cQR. To ensure that this decomposition is unique,

we require c > 0 (a change of sign can be absorbed into Q), and we also need

a constraint on the scale of R, for example requiring
∑r

i=1 rii = 1. Hence, each

C ∈ GL(r) can be decomposed uniquely into C = cQR, where c > 0, Q ∈ O(r),

and R ∈ UT+(r). This is useful because only the R part of the decomposition has

an effect on g.

Remark. We could equivalently decompose C as C = cLQ, where L is a lower

triangular matrix with positive diagonal elements that sum to 1, and c and Q are

as above.

We now use this to show that Fr can be identified with UT+(r) (Proposition 1).

To do this, we first need the following lemma:

Lemma 5. cO(r) is a subgroup of GL(r).

Proof. To show this, we need to show that each of the following hold:

1. cO(r) contains the identity matrix Ir

2. For all C1,C2 ∈ cO(r), C1C2 ∈ cO(r)

3. For all C ∈ cO(r), C−1 ∈ cO(r)

Since Ir is an orthogonal matrix, it must be an element of cO(r), since O(r) ⊂ cO(r)

(with c = 1).

For the second condition, if C1,C2 ∈ cO(r), then there exist c1, c2 > 0 and

Q1,Q2 ∈ O(r) such that C1 = c1Q1 and C2 = c2Q2. Then

C1C2 = (c1Q1)(c2Q2) = (c1c2)(Q1Q2) ∈ cO(r),

since the product of two orthogonal matrices is an orthogonal matrix, and c1, c2 >

0⇒ c1c2 > 0.

Finally, if C = cQ ∈ cO(r), then C−1 = c−1Q−1 = c−1QT ∈ cO(r). Thus, cO(r)

is a subgroup of GL(r)

57

Definition 9. Let GL(r)/cO(r) denote the set of left cosets of GL(r) with respect

to cO(r).

Remark. Lemma 5 is necessary to ensure that GL(r)/cO(r) is well-defined.

Proposition 1 (Structure of Fr). The set Fr can be identified with the set UT+(r)

of upper triangular matrices that have positive diagonal elements which sum to 1.

Proof. First, we define an equivalence relation on GL(r), and show that the equiva-

lence classes are the same as the right cosets of cO(r) in GL(r). We show that the

set of equivalence classes, and hence the set GL(r)/cO(r), is bijective with UT+(r).

We showed earlier that each element C ∈ GL(r) can be uniquely written as

cQR, where c > 0, Q ∈ O(r) and R ∈ UT+(r). Hence, we can define a mapping

h : GL(r)→ UT+(r) such that

h(C) = R. (3.6)

Since cO(r) is a subgroup of GL(r), we can define an equivalence relation ∼ on

GL(r) such that for two matrices C1 and C2 ∈ GL(r), C1 ∼ C2 if there exists a

matrix Q̃ ∈ cO(r) such that C1 = Q̃C2.

We need the following proposition:

Proposition 2. Define an equivalence relation between two matrices C1 and C2 ∈

GL(r) such that

C1 ∼ C2 ⇐⇒ there exist c > 0,Q ∈ Q(r) such that C1 = cQC2

Two matrices C1 and C2 ∈ GL(r) belong to the same equivalence class if and only

if there exists R ∈ UT+(r) and c1Q1, c2Q2 ∈ cO(r) such that C1 = c1Q1R and

C2 = c2Q2R.

Proof. Suppose that C1 ∼ C2. Then there exist c > 0, Q ∈ O(r) such that C1 =

cQC2. Using the QR decomposition, we can write C1 = c1Q1R1 and C2 = c2Q2R2.

Hence, we get

C1 = c1Q1R1 = cQ (c2Q2R2) = (cc2) (QQ2)R2. (3.7)

58

Since cc2 ∈ R and QQ2 ∈ O(r), Equation 3.7 gives two QR decompositions for C1.

By the uniqueness of the QR decomposition we must haveQ1 = QQ2 andR1 = R2.

Hence, writing R = R1 = R2, we have C1 = c1Q1R and C2 = c2Q2R.

Now, suppose that there exist c1, c2 > 0, Q1,Q2 ∈ O(r) and R ∈ UT+(r) such

that C1 = c1Q1R and C2 = c2Q2R. Then,

C1 = c1Q1R = c1Q1

(
c−1

2 Q2

)T
(c2Q2)R = c1c

−1
2 Q1Q

T
2C2, (3.8)

where c1c
−1
2 Q1Q

T
2 ∈ cO(r). Hence, C1 ∼ C2.

Thus, each of the equivalence classes [C] is associated with a unique element

R ∈ UT+(r), so the set of such classes is bijective with this set. Thus, the set

GL(r)/cO(r) can be identified with the set UT+(r).

Figures 3.2 and 3.3 show how the test scores for a set of embeddings can vary

when the embedding set is multiplied by a series of random elements of UT+(r).

In Figure 3.2, the embeddings are LSA embeddings trained on COHA, which are

multiplied by a series of random diagonal matrices in UT+(r); in Figure 3.3, the

embeddings are SGNS embeddings trained on the Google News dataset, and are

multiplied by a series of random elements of UT+(r). In each case the test scores

vary as the embeddings are multiplied by different non-singular matrices, with the

difference between the smallest and largest scores attained being between around

0.06 and 0.15. (For context, in [Pennington et al., 2014] GloVe is reported to out-

perform SGNS on the WordSim-353 test set by a margin of 0.03 and SVD by 0.019,

when trained on the same training data. Hence, the differences in performance in

Figures 3.2 and 3.3 are of the order that would be significant for model compari-

son.) We find that in each case, although the test score obtained on the original

embedding set falls at the upper end of the range, it is possible to obtain higher

scores by transforming the embedding set by an element of UT+(r). It is not clear

why the original embeddings should always be at the higher end of the range: this

59

may be due to tuning of hyperparameters to optimize performance, or to some form

of regularization being imposed during optimization.

3.4 Addressing identifiability

We now consider two methods for dealing with identifiability: imposing constraints

on the solutions (Section 3.4.1) and optimizing g over UT+(r) (Section 3.4.2).

3.4.1 Imposing identifiability conditions

One solution to the problem of non-identifiability is to apply constraints to the

matricesA andB, reducing the set of possible transformations from GL(r) to cO(r).

In some cases, we may want to impose stricter constraints to reduce the set of

transformations to {Ir}, so that A and B are completely uniquely identified. For

example, this is necessary when we want to find the asymptotic distributions of

the parameters in order to make inferences about them; the parameters must be

uniquely identifiable for their asymptotic distributions to be well-defined. (This will

be of interest in Chapter 5.)

Since C contains r2 free parameters, in order to ensure complete identifiability

(C = Ir) we need to impose r2 constraints. If we only want to restrict the set of

transformations to GL(r)/cO(r), then we only need 1
2
r(r + 1)− 1 constraints.

One way of ensuring complete identifiability is to require ATA to be diagonal

and BBT = Ir (or ATA = Ir and BBT diagonal). This is done in SVD when

we take A = UrΦr and B = V T
r . (If we only want to restrict the set of possible

transformations to cO(r), it is sufficient to require that BBT = cIr for some c,

with no constraints on A.) We could also require certain elements of the matrices

to be 0 or 1. For example, requiring the first or last r × r block of B to be the

identity matrix (as in e.g. [Amemiya and Fuller, 1987]) ensures that A and B are

identifiable.

60

ρ

F
re

qu
en

cy

0.42 0.44 0.46 0.48 0.50 0.52 0.54

0
50

10
0

15
0

20
0 WordSim-353, Pearson

ρ

F
re

qu
en

cy

0.06 0.08 0.10 0.12 0.14

0
50

10
0

15
0

20
0

25
0

30
0

SimVerb-3500, Pearson

ρ

F
re

qu
en

cy

0.40 0.45 0.50 0.55

0
50

10
0

15
0

20
0

25
0

WordSim-353, Spearman

ρ

F
re

qu
en

cy

0.06 0.08 0.10 0.12 0.14

0
50

10
0

15
0

20
0

25
0

30
0 SimVerb-3500, Spearman

Figure 3.2: Performance of LSA embeddings trained on the COHA document-term ma-

trix, (r = 300 and B = V T
r), where the embeddings are multiplied by a series of different

diagonal matrices R ∈ UT+(r). For each R, the diagonal elements are simulated from

|N (0, 1) |, before the matrix is scaled so that
∑

i rii = 1. The red line on each histogram

shows the performance of the original embeddings.

61

ρ

F
re

qu
en

cy

0.56 0.58 0.60 0.62 0.64 0.66

0
50

10
0

15
0

20
0

25
0

WordSim-353, Pearson

ρ

F
re

qu
en

cy

0.32 0.33 0.34 0.35 0.36 0.37 0.38
0

50
10

0
15

0
20

0

SimVerb-3500, Pearson

ρ

F
re

qu
en

cy

0.58 0.60 0.62 0.64 0.66 0.68 0.70

0
50

10
0

15
0

20
0

WordSim-353, Spearman

ρ

F
re

qu
en

cy

0.31 0.32 0.33 0.34 0.35 0.36 0.37

0
50

10
0

15
0

20
0

SimVerb-3500, Spearman

Figure 3.3: Performance of SGNS embeddings, trained on 100 bil-

lion words of the Google News dataset with r = 300 (downloaded from

https://code.google.com/archive/p/word2vec/), where the embeddings are multiplied by

a series of different and upper triangular matrices R ∈ UT+(r) (with non-zero elements

simulated from |N (0, 1) |). The red line on each histogram shows the performance of the

original embeddings.

62

It is desirable to treat all words equally, rather than having the embeddings

depend on the (perhaps arbitrary) ordering of the words, as is the case for the

second option above. In SVD, both U and V have orthonormal columns; we can

ensure identifiability by requiring the columns of A and rows of B to be orthogonal,

and for either the columns of A or the rows of B to have norm 1 (or we can split Φ

in a different way between them). To prevent permutations of the embeddings and

multiplication of columns of A and rows of B by −1, we can require the columns of

A and rows of B to be ordered by singular value, and the first entry in each column

of A to be positive.

Lemma 6 states that if we have two sets of word embeddings B and B∗ which

both minimize the objective function, then they can be related by a transformation

in cO(r).

Lemma 6. Let B = {B ∈ Rr×p : BBT = c2Ir for some c > 0}. Given two sets

of word embeddings B and B∗ that are solutions of the constrained optimization

problem

arg min
B∈B

{f(X,AB)}, (3.9)

we can find a matrix cQ ∈ cO(r) such that B∗ = cQB.

Proof. Suppose B and B∗ both satisfy Equation 3.9. From earlier, we know that

there exists C ∈ GL(r) such that B∗ = CB. Since there exist c, c∗ > 0 such that

BBT = c2Ir and B∗B∗T = c∗2Ir, we have

Ir = c∗−2B∗B∗T = c∗−2CBBTCT = c2c∗−2CCT ,

so C ∈ cO(r).

Lemma 7 gives a set of constraints that will guarantee the uniqueness of A and

B, given some conditions on the singular values of AB:

Lemma 7. Given an n × p matrix X̃r of rank r, which has r distinct non-zero

singular values, there is only one matrix pair (A,B), such that

X̃r = AB, A ∈ Rn×r,B ∈ Rr×p ,

63

and which satisfy the following constraints:

1. The columns of A are orthogonal (ATA is diagonal)

2. The rows of B are orthonormal (BBT = Ir)

3. The diagonal elements of ATA are ordered in descending order

4. The first entry of each column of A is positive

Proof. By the singular value decomposition theorem [Horn and Johnson, 1991, p.

144], we can find orthogonal matrices U and V and a diagonal matrix Φ such that

X̃r = UΦV T .

Since X̃r is of rank r, this can be reduced to

X̃r = UrΦrV
T
r ,

where Ur and Vr contain the first r columns of U and V respectively, and Φr

contains the r × r upper left corner of Φ. This decomposition is unique up to the

sign of each column of Ur and Vr, as long as the r non-zero singular values of X̃ are

all unique [Blum et al., 2020, p. 35]. If we require the first element of each column

of UrΦr to be positive, then this decomposition is unique. Hence, A and B that

satisfy the constraints can be uniquely identified as UrΦr and V T
r respectively.

Remark. In factor analysis, one common way of ensuring identifiability is to have

either Σa = Ir and 1
p
BΣ−1

z B
T diagonal, or Σa diagonal and 1

p
BΣ−1

z B
T = I. If

we require (as in the SVD case) that Σz be diagonal, then these conditions are

equivalent to the SVD ones, up to a scaling factor of 1
p
.

Remark. If X is a symmetric matrix, as is often the case with word embedding

methods based on co-occurrence counts, then the problem of generating word em-

beddings is symmetric in A and B, and we can interpret either the rows of A or

the columns of B as word embeddings. In this case it seems sensible to choose A

64

Test set

r = 100 r = 300

Original With identifiability Original With identifiability

score conditions score conditions

Verb-143 0.439 0.501 0.460 0.518

YP-130 0.557 0.665 0.616 0.705

MTurk-287 0.695 0.693 0.701 0.644

MTurk-771 0.646 0.654 0.669 0.652

SimVerb-3500 0.269 0.329 0.311 0.385

SimLex-999 0.397 0.454 0.441 0.487

WordSim-353 0.652 0.683 0.645 0.613

Table 3.2: Test scores gS(D,B) for seven different test sets, for SGNS embeddings trained

on COHA. gS is calculated using Pearson correlation. The results are given both before

and after applying the constraint that BBT = Ir (which was done in R using the QR

decomposition). In most cases applying these identifiability conditions increases the test

scores.

65

and B such that A = BT . For the SVD case, this is equivalent to choosing α = 1
2
,

as for symmetric X we get U = V in the SVD. In general, given a solution (Ã, B̃)

we can achieve symmetry by finding a C such that ÃC−1 = B̃TCT .

We should consider how imposing identifiability conditions affects the perfor-

mance on tasks. Table 3.2 gives the performance of 100- and 300-dimensional SGNS

embeddings, trained on COHA, before and after identifiability (BBT = Ir) is ap-

plied. In most, though not all, cases applying the identifiability conditions increases

the test scores, perhaps because applying these constraints has a similar effect to

using regularization during optimization. Since the performance of the embeddings

after imposing identifiability conditions is generally similar to or better than the

performance of the original embeddings, it seems that this is a reasonable solution

to the problem of non-identifiability.

3.4.2 Optimizing over UT+(r)

Another way of addressing the problem of non-identifiability is to optimize the test

score g over the set of possible transformations C ∈ GL(r), for a particular set of

embeddings. Since C contains r2 total parameters, this is a very high-dimensional

optimization (e.g. r = 100 gives 104 parameters to optimize over). However, as

discussed previously, we can write C = cQR, where c > 0, Q ∈ O(r) and R ∈

UT+(r). Since multiplication by cQ does not affect g, we need only optimize over

R ∈ UT+(r). This reduces the number of parameters in the optimization to 1
2
r(r+

1)− 1.

Earlier we considered the possibility of optimizing over a one-dimensional subset

of UT+(r), indexed by α; we now investigate this further. Figure 3.4 shows how

the value of gS changes with different values of α, where B = Φα
rV

T
r , with Φr and

Vr coming from SVD. Table 3.3 shows the optimal values of α (found using the

optimize function in R) for each of seven different test sets, using both Pearson and

Spearman correlation to calculate gS. We note that there is no overall best choice of

66

Figure 3.4: Performance of the word embeddings on the Word Similarity-353 test set,

with α taking values between 0 and 1. The graph shows Spearman correlation coefficient

(red) and Pearson correlation coefficient (blue) between the human-assigned similarity

scores and the cosine similarities of the word pairs in the test set. The crosses mark the

“best” value according to each criterion.

Test set
Pearson Spearman

α g α g

Verb-143 -0.675 0.398 -0.357 0.277

YP-130 2.546 0.269 3.607 0.241

MTurk-287 0.564 0.640 0.458 0.617

MTurk-771 0.492 0.503 0.287 0.546

SimVerb-3500 -0.406 0.125 -0.381 0.144

SimLex-999 0.869 0.174 -0.029 0.202

WordSim-353 0.463 0.505 0.309 0.536

Table 3.3: For LSA embeddings trained on COHA, with B = ΦαV T , the optimal g with

respect to α was found using the optimize function in R. The table displays the optimal

values of g obtained for each test set, and the value of α at which this value was attained.

67

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

Graph showing how g changes with alpha, SimLex−999 test set

α

g

Plot of g against α

Figure 3.5: Plot of g against α for the SimLex-999 test set, using 300-dimensional LSA

embeddings trained on COHA. The blue line shows g calculated using the Pearson corre-

lation coefficient, and the red line shows g using the Spearman correlation coefficient.

α; the optimal values of α vary a lot between test sets, and for the SimLex-999 test

set, the optimal α’s are quite different depending on whether we use Pearson and

Spearman correlation. Figure 3.5 shows how the value of gS changes with α for the

SimLex-999 test set. The blue line on the graph represents Spearman correlation

and the red line is Pearson correlation. Although the optimal values of α for the

different correlation coefficients are further apart for this test set than for the others,

we can see that the graph has a similar shape for Pearson and Spearman correlation,

with values of α that perform better on one test set also performing better on the

other.

We can see that by optimizing over α, we can significantly improve the perfor-

mance of the LSA embeddings (although we note that there is a danger of overfitting

to a particular test set; this will be discussed more later). However, we need not

restrict ourselves to this subset: we can consider optimizing over α where the em-

68

bedding set is

ΛαB∗,

where B∗ is an embedding set and Λ is any diagonal r × r matrix such that all its

diagonal elements are positive and sum to 1 (as any such matrix will be an element

of UT+(r)). Figure 3.6 shows the result of multiplying an embedding set by Λα for

different choices of Λ and α; Λ = Φ does not perform significantly better than the

other choices.

We now consider optimizing gS over UT+(r). (We will look at analogy tasks

later.) The optimization is done in R by running optim repeatedly, using the final

value of one run as the starting value for the next, until the difference between the

value of gS for two successive runs falls below 10−5. Since the test score must stay

the same or increase for each run, this gives a better value than just running optim

once. This process is still not guaranteed to converge to the overall maximum, but

it gives a lower bound for how much test scores can be increased.

We aim to find R which solves

arg max
R∈UT+(r)

gS(D,RB).

In Table 3.4, the original embeddingsB are LSA embeddings trained on COHA with

r = 300. The table shows the performance of the original embeddingsB and of R̂B,

where R̂ is the optimal R found during our optimization, on each test set. Tables

3.6 and 3.7 give the same results for SGNS embeddings trained on COHA, with

r = 100 and r = 300 respectively, and Table 3.8 gives results for SGNS embeddings

trained on the larger Google News dataset. In each case we are able to significantly

improve performance on each test set using this optimization procedure.

It is not clear, however, whether optimizing over one test set necessarily leads

to better quality embeddings; there is a risk of overfitting the model to one test

set. Hence, for each test set, Table 3.5 gives the performance of R̂B where R̂

is found by optimizing over that test set, on both that set and each of the other

embedding sets. The embeddings found by optimizing with respect to one test set

69

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

α

ρ

B∗ = ΦrV
T
r , Pearson

−2 −1 0 1 2
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

α

ρ

B∗ = ΦrV
T
r , Spearman

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

α

ρ

B∗ = V T
r , Pearson

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

α

ρ

B∗ = V T
r , Spearman

Figure 3.6: Plots showing gS(D,B), where D is the WordSim-353 test set, when B is

of the form ΛαB∗. To get B∗, we take the rank-r SVD of the document-term matrix

(r = 300): X = UrΦrV
T
r , and take B∗ to be either ΦrV

T
r (top) or V T

r (bottom). Each

line on the graphs corresponds to a different Λ. In each case Λ = diag (λ1, ..., λr), taken as

the following: Λ = Φr (red lines); λi = i (green); λi ∼ U(0, 1) (blue); and λi ∼ |N(0, 1)|

(purple). There is not much difference in performance between the different Λ’s. The

dataset used is the Corpus of Historical American English (COHA).

70

Test set
Pearson Spearman

Original Best Original Best

Verb-143 0.380 0.882 0.276 0.480

YP-130 0.287 0.852 0.285 0.535

MTurk-287 0.627 0.811 0.599 0.847

MTurk-771 0.495 0.638 0.539 0.668

SimVerb-3500 0.122 0.278 0.140 0.298

SimLex-999 0.163 0.367 0.202 0.353

WordSim-353 0.493 0.736 0.517 0.699

Table 3.4: For each of seven different test sets, the word similarity score for a set of LSA

embeddings trained on COHA, and the best score that can be achieved by multiplying

the embedding matrix by a R ∈ UT+(r), found by using optim in R. r = 300.

do often perform slightly better when assessed on other test sets, but in other cases

performance decreases. Hence, we should be cautious about doing this.

Analogy tasks

So far we have considered optimizing the word similarity test score gS for a particular

embedding set. In this section we consider doing this for the analogy test score gA.

Word analogies are questions of the sort “king” is to “queen” as “man” is to “?”.

As discussed in Section 3.3, gA (like gS) is invariant to transformation by elements

of cO(r), but not by GL(r).

Table 3.9 shows the performance of SGNS embeddings, multiplied by different

diagonal and upper triangular matrices C, on the Google Analogy test set. The

test set contains 19544 different analogy tasks in 14 different categories, with the

performance of the embeddings varying between categories (Figure 3.7). Unlike with

the similarity tasks, none of the new sets of embeddings gives an improvement in

performance over the original embeddings, and for the upper triangular matrices the

accuracy is much worse. This may be because the analogy tasks are more sensitive

71

Optimized on

Verb-143 YP-130 MT-287 MT-771 SV-3500 SL-999 WS-353

Verb-143 0.882 0.306 0.567 0.447 0.110 0.133 0.461

YP-130 0.328 0.852 0.576 0.475 0.123 0.175 0.522

MTurk-287 0.301 0.276 0.811 0.455 0.108 0.147 0.483

MTurk-771 0.278 0.237 0.574 0.638 0.104 0.188 0.500

SimVerb-3500 0.211 0.264 0.585 0.466 0.278 0.196 0.500

SimLex-999 0.260 0.274 0.539 0.442 0.144 0.367 0.497

WordSim-353 0.233 0.244 0.573 0.445 0.097 0.161 0.736

Table 3.5: Performance of LSA embeddings optimized over each test set on all test sets.

All correlations in the table are Pearson correlations. The values in bold are those that

exceed the test scores for the original LSA embeddings for each test set. We see that in

many cases the embeddings optimized over one test set perform better on others as well.

However, the embeddings optimized over SimVerb-3500 and SimLex-999 tend to perform

worse on other test sets; indeed, the embeddings optimized on the MTurk-287, MTurk-

771 and WordSim-353 test sets perform better on SimVerb-3500 and SimLex-999 than the

embeddings optimized over these test sets. So this optimization may or may not increase

performance overall.

72

Test set
Pearson Spearman

Original Best Original Best

Verb-143 0.439 0.735 0.399 0.615

YP-130 0.557 0.821 0.566 0.757

MTurk-287 0.695 0.803 0.676 0.757

MTurk-771 0.646 0.734 0.647 0.729

SimVerb-3500 0.269 0.382 0.255 0.369

SimLex-999 0.397 0.532 0.369 0.514

WordSim-353 0.652 0.777 0.663 0.768

Table 3.6: Table showing the original and optimized test scores using 100-dimensional

SGNS embeddings, trained on COHA, for each of seven different test sets.

Test set
Pearson Spearman

Original Best Original Best

Verb-143 0.460 0.844 0.387 0.438

YP-130 0.616 0.942 0.599 0.627

MTurk-287 0.701 0.867 0.680 0.792

MTurk-771 0.669 0.780 0.676 0.761

SimVerb-3500 0.311 0.465 0.301 0.451

SimLex-999 0.441 0.595 0.423 0.548

WordSim-353 0.645 0.821 0.659 0.724

Table 3.7: Table showing the original and optimized test scores using 300-dimensional

SGNS embeddings, trained on COHA, for each of seven different test sets. It should be

said that this optimization process is not guaranteed to converge to the true optimum,

which explains why sometimes the “optimum” score for the 300-dimensional embeddings

is sometimes lower than that for the 100-dimensional embeddings.

73

Test set
Pearson Spearman

Original Best Original Best

SimLex-999 0.453 0.617 0.441 0.583

WordSim-353 0.652 0.838 0.700 0.797

Table 3.8: Table showing the original and optimized test scores using 300-dimensional

SGNS embeddings, trained on the 100-billion word Google News corpus (downloaded from

https://code.google.com/archive/p/word2vec), for two different test sets.

Minimum Mean Maximum

Initial score 0.736

R diagonal 0.677 0.692 0.703

R upper triangular 0.242 0.247 0.254

Table 3.9: Proportion of correctly guessed words using the Google Analogy test

set, for SGNS embeddings (downloaded from https://code.google.com/archive/p/

word2vec/) when they are multiplied by a series of random matrices R ∈ UT+(r), with

non-zero elements sampled from U(0, 1). For the diagonal and upper triangular cases,

there were a total of 20 runs.

74

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

2 4 6 8 10 12 14

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Category

A
cc

ur
ac

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3.7: Performance of SGNS embeddings multiplied by a diagonal matrix C on the

14 different categories of analogies. The larger black points show the accuracy scores for

the original embedding set. There is a lot of variation in performance across the different

categories of embeddings.

to changes in the embedding set. In order to correctly solve an analogy, we must

select the correct word out of tens or hundreds of thousands, so a small distortion

of the embedding set may cause a significant drop in the accuracy rate.

Although the original embeddings seem to perform optimally on the analogy

task set, we hypothesize that this is due to some regularization included in the

optimization algorithm, which may implicitly be imposing identifiability constraints.

It is also possible that hyperparameter tuning, or the use of multiple runs of the

algorithm, play a role. We acknowledge that we may not always be able to improve

performance of the embedding set using the methods in this chapter; however, we

75

Minimum Mean Maximum

Initial score 0.218

R diagonal 0.180 0.189 0.197

R upper triangular 0.067 0.073 0.071

Table 3.10: Proportion of correctly guessed words using the Google Analogy test set,

using LSA embeddings trained on COHA, when they are multiplied by a series of matrices

R ∈ UT+(r), with non-zero elements sampled from U(0, 1). For the diagonal and upper

triangular cases, there were a total of 10 runs.

note that the objective function does not distinguish between the embeddings that

give an accuracy of 73.6%, and those giving an accuracy of 24.2%.

Table 3.10 shows the same results for LSA embeddings trained on COHA. Not

all of the words in the Google Analogy test set appear in COHA, so the embeddings

are only evaluated on the set of analogies for which all four words appear in the

dataset, which gives a total of 13,946 words.

For analogy tasks, it is too computationally expensive to optimize over the set

UT+(r), as we did for word similarity tasks. However, we can still investigate the

effect of multiplying the embedding set by Λα, as we previously did for similarity

tasks. In Figure 3.8, we take the rank-300 SVD of the document-term matrix of

COHA, UrΦrV
T
r , and investigate taking the embedding set to be Φα

rV
T
r , where α

takes values between −2 and 2. We find that the embeddings perform best when

α = 1.2. Interestingly the proportion of correctly solved analogies seems to be a

fairly smooth function of α; it is not clear why this is the case.

3.5 Conclusion

In this chapter we have explored the issue of non-identifiability in word embedding

methods. We have shown how it arises, as multiplying the embedding set by a

non-singular matrix does not change the value of the objective function. We have

76

−2 −1 0 1 2

0.
18

0.
20

0.
22

0.
24

α

P
ro

po
rt

io
n

co
rr

ec
t

Figure 3.8: Plot showing the proportion of correctly solved analogies (using the Google

Analogy test set) as a function of α, where B = Φα
rV

T
r , where the rank-r SVD of the

document-term matrix is UrΦrV
T
r . The embeddings were trained on COHA with r = 300.

The optimal value of α seems to be around α = 1.2.

77

also explored the consequences of this. In particular, we have identified that the

set of transformations of the word embeddings to which the objective function f

is invariant, is larger than the set of invariances to which the test function g is

invariant, which means that solutions that are equally optimal with respect to the

objective function may perform differently on test data.

We have proposed two solutions for dealing with this non-identifiability: impos-

ing identifiability conditions on the embedding set in order to make it unique, and

optimizing over the set of solutions with respect to a test set. We have implemented

both of these methods on sets of word embeddings, where we found that embeddings

with identifiability conditions imposed tend to perform fairly well on test data. We

also found that, when testing the embeddings on word similarity tasks, it is pos-

sible to significantly increase the test score for a set of embeddings by multiplying

the embedding set by an invertible r × r matrix C. In some cases optimizing over

one test set also gave superior results on others. For analogy tasks, we found that

multiplying by a random diagonal or upper triangular matrix generally lead to a

significant decrease in performance. However, we did find that, when using SVD

to generate embeddings, we were able to slightly increase performance on analogy

tasks by changing the value of α, where the embedding matrix was Φα
rV

T
r . We were

unable to optimize gA over UT+(r) because it was too computationally expensive to

do so, but this is something that could be interesting to explore.

78

Chapter 4

Semi-supervised word embeddings

In this chapter we explore the potential of semi-supervised word embeddings. In

the previous chapter we looked at embeddings which were optimized over an ob-

jective function f(X,AB) and assessed on a test function g(D,B), where X is

an unsupervised dataset, D is a supervised test dataset, B is the matrix of word

embeddings, and A is an auxiliary matrix of context or document embeddings. In

this chapter, we consider optimizing over an objective function in which both f and

g play a role:

L = λf(X,B) + (1− λ)g(D,B).

The unsupervised part (f) is a function of the word embeddings B and the observed

data matrix X. The supervised part (g) is a function of the word embeddings and

of a supervised dataset D that is human-generated; for example, a word similarity

test set such as those discussed in Section 2.2.

The hope is that, by combining a large unsupervised dataset with some super-

vised data, we will be able to improve the performance of the word embeddings,

compared to performance from training embeddings on just the unsupervised data.

In order to avoid overfitting, performance must be assessed on other test sets than

those on which we train the data.

We propose a semi-supervised version of multidimensional scaling, where we use

79

information in the data matrix X as well as information from a word embedding

test set to generate a set of embeddings, which we implement on some simulated

and real datasets. We will discuss briefly how identifiability issues similar to those

described in the previous chapter relate to this method.

4.1 Motivation

Word embedding algorithms (such as LSA, SGNS, GloVe) are generally unsuper-

vised. This is a necessity due to the huge amount of data involved in training the

algorithms: the number of words we typically want to generate embeddings for is

so large that it would be impractical to generate enough labelled data to be able to

train a supervised algorithm.

However, small supervised datasets exist in the form of word similarity test

sets D that are used to evaluate the performance of word embeddings (discussed in

Sections 2.2 and 3.3.1). These are sets of word pairs, with human-assigned similarity

scores for each pair. Word embeddings are considered to perform well if the cosine

similarities between pairs of words are highly correlated with the human-assigned

scores. (See Section 2.2 for more details.)

It is possible instead to formulate a word embedding model in terms of the super-

vised data D. In this case, the aim would be to generate a set of word embeddings

with the direct goal of being as consistent as possible with the human-assigned

scores. However, these datasets are much too small to be able to generate useful

word representations: both in terms of the number of total words included (typically

a few hundred or thousand at most), and also in the number of pairwise similar-

ity scores given for words in the test set. For example, the WordSim-353 test set

[Finkelstein et al., 2001] contains 353 total word pairs, and there are many cases

where, for a given word, we only have a human-assigned similarity score between

that word and one other word.

In this chapter we explore how we can combine two types of data – large datasets

80

in the form of document-term/co-occurrence matrices, and small supervised test

sets – to generate semi-supervised word embeddings. The aim is that by using an

objective function that contains both an unsupervised component (similar to the

objective function of an existing unsupervised word embedding algorithm) and a

supervised component (based on one of these small datasets), we will be able to

generate “better” word embeddings, by leveraging the information available in the

supervised dataset D alongside the information in the unsupervised data matrix

X. This may be particularly useful in applications where X is relatively small,

as we would then expect the impact from also including the supervised dataset

to be greater. This may be useful in applications of word embeddings which use

smaller specialised datasets. For example, [Stenetorp et al., 2012] uses the biomedical

corpora containing between 90,000 and 450,000 total words, compared to 400 million

words in COHA and 100 billion words in the Google News dataset.

A semi-supervised approach, combining both supervised and unsupervised data,

is used in other applications where there is a large amount of unsupervised data,

but supervised data is difficult or time-consuming to collect, for example speech

recognition and webpage classification [Chapelle et al., 2006]. This differs from our

approach, however, as the supervised and unsupervised data are usually of the same

form (except that data in the supervised dataset has labels associated with each

point). In our case, the training and test datasets are of different forms.

4.2 Introduction

Let the objective function be of the form

L(B) = λf(X,B) + (1− λ)g(D,B), (4.1)

where f is a function of the word embeddings and the data matrix X, g is a function

of the word embeddings and the supervised data D, and λ is a hyperparameter

controlling the relative importance of f and g. (Note that we will sometimes write

81

f(X,B) and g(D,B) as f(B) and g(B) for brevity.)

For example, we could take f to be the function (equivalent to the LSA embed-

ding function when we require B to have orthogonal columns; see Chapter 3)

f(X,B) = ||X −BBT ||F , (4.2)

and g to be the word similarity test function (Equation 2.1)

g(D,B) = ρ(z(D,B),y(D)). (4.3)

Here, as in Section 2.2, the test dataD consists of a set of triples (wi1 , wi2 , yi), where

wi1 and wi2 are words and yi the human assigned similarity between them, and z is

defined as

zi = cos (〈bi1 , bi2〉) ,

where bi1 and bi2 are the word embedding vectors associated with words wi1 and

wi2 respectively.

Theorem 1 motivates our approach: it says that if we optimize L in Equation

4.1, obtaining the embedding set B̂L, then B̂L will give a “better” embedding with

respect to g than the embedding set optimized on f (denoted B̂f), for any λ < 1.

Theorem 1. Suppose we have functions f(x) and g(x). For λ ∈ [0, 1], define

h(x) = λf(x) + (1− λ)g(x),

and let x̂f = arg min f(x). Then any x for which h(x) ≤ h(x̂f) is such that g(x) ≤

g(x̂f). Further, if h(x) < h(x̂f), then g(x) < g(x̂f).

Proof. Take any x such that h(x) ≤ h(x̂f). Then,

λf(x) + (1− λ)g(x) ≤ λf(x̂f) + (1− λ)g(x̂f),

so

λ(f(x)− f(x̂f)) ≤ (1− λ)(g(x̂f)− g(x)),

82

so

g(x̂f)− g(x) ≥ λ

1− λ
(f(x)− f(x̂f)) .

Since x̂f minimizes f , we must have f(x̂f) ≤ f(x), so f(x)− f(x̂f) ≥ 0, and hence

g(x̂f)− g(x) ≥ 0.

If h(x) < h(x̂f), then most of the inequalities become strict:

λf(x) + (1− λ)g(x) < λf(x̂f) + (1− λ)g(x̂f),

so

λ(f(x)− f(x̂f)) < (1− λ)(g(x)− g(x̂f)),

so

g(x)− g(x̂f) >
λ

1− λ
(f(x)− f(x̂f)) ≥ 0.

Hence, g(x̂f) > g(x).

Hence, if we define f and g as in Equations 4.2 and 4.3, the embeddings trained

on the semi-supervised objective function (Equation 4.1) must perform at least as

well with respect to g as LSA embeddings trained just on f . Hence, the embedding

set trained on f gives a lower bound for performance on g with the semi-supervised

embeddings. This result holds of course for the performance on the training data;

the potential for overfitting means that it may not perform well on new test data,

and this is a question we will address in this chapter.

The rest of this chapter is outlined as follows. Section 4.3 gives a brief overview

of multidimensional scaling, which we use to derive the semi-supervised objective

function. Section 4.4 introduces the objective function for semi-supervised word

embeddings and explains two strategies we consider for optimizing it, majorization

and stochastic gradient descent. Section 4.5 gives results from both small simulated

datasets, and from real data. Section 4.6 summarizes the findings of this chapter

and describes some extensions to this chapter that could be explored in future work.

83

4.3 Multidimensional scaling

Our approach to semi-supervised word embeddings is based on multidimensional

scaling (MDS). MDS is a dimension reduction technique used for generating lower-

dimensional representations of high-dimensional data. We use it here because it is

a well-understood dimension reduction framework that is more flexible than SVD

(which is a special case).

Section 2.7 gave an overview of MDS; we briefly recap this here. We have a

set of objects and a matrix of pairwise dissimilarities between them, which we here

denote X. These could be distances between the objects in high-dimensional space,

or subjective quantities such as psychological factors. We aim to generate a low-

dimensional representation for each object, by minimizing the objective function

LMDS(B) =
∑
i<j

wij(xij − ||bi − bj||)2,

where the xij’s are the dissimilarities, wij’s are weights (usually 0 or 1), and B is

the matrix of object representations; in our case, these are word embeddings. The

objective function is minimized when the Euclidean distances between the embed-

dings, ||bi − bj||, are as close as possible to the dissimilarities xij (subject to the

weights wij).

More generally, we can replace xij in the objective with δ(xij) = δij, where δ is

a function of X:

LMDS(B) =
∑
i<j

wij(δij − ||bi − bj||)2. (4.4)

In non-metric MDS, we are only interested in the rank-order of the dissimilarities,

not in their precise values. This is used when the dissimilarities are based on sub-

jective judgments, such as the word similarity tasks in Chapter 3 (where the test

function g is taken to be the correlation between the human-assigned similarity

scores and the embeddings). We assume that words with higher similarity scores

are more closely related than those with lower scores, but the absolute differences

between the scores are difficult to interpret. In this case the function δ is not de-

84

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Dimension 1

D
im

en
si

on
 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.1: Figure illustrating the separation of points in different classes in [Witten and

Tibshirani, 2011]. The points in class 2 (blue) all have greater values than points in class

1 (red) in both Dimension 1 and Dimension 2. The points in class 3 (brown) have larger

values than those in both class 1 and class 2.

termined in advance, but estimated along with B, subject to the constraint that

xij ≤ xkl ⇒ δij ≤ δkl.

With respect to identifiability, the Euclidean distance between embeddings bi

and bj is invariant to multiplications of the embeddings by the set of orthogonal

transformations O(r), and hence the objective function in Equation 4.4 is invari-

ant to orthogonal transformations of the embedding set. This is also true of the

inner product, which we shall use later instead of the Euclidean distance. Later in

this chapter, in Section 4.4.1, we discuss how this relates to semi-supervised word

embeddings.

[Witten and Tibshirani, 2011] presents a semi-supervised variant of metric MDS.

In the paper, they assume that there are class labels associated with the data points,

85

and the aim is that, after applying MDS, the classes will be separated in the output.

This separation is achieved by requiring that bik > bjk when the class label of point

i is greater than that of point j for all k. This means that, for example, the points

in class 2 will have greater values in all embedding dimensions than the points in

class 1, but smaller values than the points in class 3. (Figure 4.1 illustrates this for

r = 2, with three classes.) Hence the objective function in the paper is (using our

notation)

(1− λ)
1

2

p∑
i,j=1

(xij − ||bi − bj||)2 + λ
∑

i,j:yj>yi

(yj − yi)
r∑

k=1

(
xij√
r
− (bjk − bik)

)2

,

where the yi’s are the class labels. This is similar to what we are proposing to do

with word embeddings, but as the supervised data we are using is in a different

form, the supervised part of the objective function will be different.

4.3.1 MDS with inner product

The MDS objective is a function of the Euclidean distances between the embeddings.

However, most word embedding algorithms (such as SGNS (Section 2.3.6), GloVe

(Section 2.3.7), and LSA (Section 2.1)) are based on the inner products between the

embeddings. Hence, we could define a modified objective that is a function of the

inner products, rather than Euclidean distances. The metric version is

L
′

MDS(B) =
∑
i<j

wij
(
xij − bTi bj

)2
, (4.5)

and the non-metric version is

L
′

MDS(B) =
∑
i<j

w̃ij

(
δ̂ij − bTi bj

)2

.

In this case, we take X = X
′T
X
′
, where X

′
is the document-term or co-occurrence

matrix, so bi approximates x
′
i for each i. This is thus closer to the objectives used

in other word embedding algorithms. (It is the same as the objective function used

in LSA, except that there we use X
′

instead of X. However, a word embedding

86

Case f g

Case 1 f1 =
∑

i<j wij (xij − ||bi − bj||)2 g1 =
∑

i<j w̃ij

(
δ̂ij(D)− ||bi − bj||

)2

Case 2 f2 =
∑

i<j wij
(
xij − bTi bj

)2
g2 =

∑
i<j w̃ij

(
δ̂ij(D)− bTi bj

)2

Case 3 f3 =
∑

i<j wij
(
xij − bTi bj

)2
g3 = 1− ρ(z(D,B),y(D))

Table 4.1: Summary of the three different semi-supervised objectives we are using.

matrix B which minimizes this objective will also minimize the LSA objective.) We

will look at using both the standard MDS objective and this modified objective in

generating semi-supervised embeddings.

4.4 Semi-supervised word embeddings with MDS

We propose the semi-supervised MDS objective function

L(B) = λf(X,B) + (1− λ)g(D,B),

where f(X,B) is the unsupervised part of the objective, g(D,B) is the supervised

part, and λ is a hyperparameter controlling the relative weighting of the two. We

consider three cases, with different choices of f and g, which are given in Table 4.1.

Each of these three cases has different reasons for choosing it. Case 1 is directly

based on ordinary MDS, with Euclidean distances; we are just combining the metric

and non-metric objectives with two different datasets (X and D). Case 2 is as Case

1, but uses inner products between the embeddings instead of Euclidean distances,

which makes it more similar to the usual word embedding algorithms, where the

objective is a function of the inner products between embeddings. Case 3 uses the

word similarity test function g (Equation 2.1) as the supervised part. This is further

from standard MDS, and is a more complicated function to optimize, but it is more

directly related to optimizing word embedding performance on test data.

Hence, the objective functions for each of the three cases are given below:

87

L(1)(B) = λ
∑
i<j

wij (xij − ||bi − bj||)2 + (1− λ)
∑
i<j

w̃ij

(
δ̂ij − ||bi − bj||

)2

; (4.6)

L(2)(B) = λ
∑
i<j

wij
(
xij − bTi bj

)2
+ (1− λ)

∑
i<j

w̃ij

(
δ̂ij − bTi bj

)2

; (4.7)

L(3)(B) = λ
∑
i,j

wij
(
xij − bTi bj

)2
+ (1− λ) (1− ρ(z(D,B),y(D))) . (4.8)

4.4.1 Identifiability

As discussed earlier (Section 4.3), the supervised part of the MDS objective function

f with either Euclidean distance or inner product (Equations 4.4 and 4.5) is invariant

to transformations of the embeddings by elements of O(r) (the set of orthogonal r×r

matrices):

f(B) = f(QB) for Q ∈ O(r) .

This is in contrast with most word embedding algorithms that involve a product

of two matrices A and B, where the objective function is invariant to transforma-

tions of the embedding set by an arbitrary non-singular matrix (see Section 3.2).

As with the test functions in the previous chapter, the supervised part of the objec-

tive function, g, is invariant to both orthogonal and scale transformations: the set

cO(r) = {cQ : c > 0,Q ∈ O(r)}. (This holds for all three cases.)

Hence, we do not have the same problem as in Section 3.3, where there were

transformations to which the training objective f was invariant but the test function

g was not. In fact, in this case, if we let

F = {C : f(CB) = f(B) for all B} = O(r)

and

G = {C : g(CB) = g(B) for all B} = cO(r),

then we have F ⊂ G.This means that g is less sensitive than f : embedding sets that

give different values for f may perform equally well according to g. However, we

88

could avoid this by standardizing the embedding set to have a fixed norm, thus not

allowing scale transformations.

4.4.2 Optimizing the objective function

We investigate two ways of minimizing the objective function. A standard approach

for minimizing the objective function in MDS is to use a majorization algorithm (see

Section 2.7.1), and we derive here majorization algorithms for optimizing the semi-

supervised objective in Case 1 (Equation 4.6) and Case 2 (Equation 4.7). However,

majorization can be slow to converge [de Leeuw, 1988], and this approach is infeasi-

ble for large datasets due to computational issues. Hence, we also derive a stochastic

gradient descent algorithm for each case. Most machine learning optimization meth-

ods are based on a form of this. This is faster, but has the disadvantage of having

hyperparameters (the learning rate and batch size, which we will explain later) that

must be tuned in order for the algorithm to converge well: if the learning rate is

too high, the value of the objective function may increase, whereas if it is too low,

convergence will be very slow. Hence, for a small problem it may be easier to use

majorization. We investigate in which situations it is better to use one or the other.

4.4.3 Majorization

Majorization is a way of minimizing an objective function, where we use a secondary

(majorizing) function instead of our desired objective, which is easier to minimize.

(See Section 2.7.1 for more details.) In order for a function h to be a majorizing

function of a function f , h must satisfy h(x, x̃) ≥ f(x) for all x̃, with equality if

x = x̃. We generate a series of inequalities

f(xk+1) ≤ h(xk+1, xk) ≤ h(xk, xk) = f(xk),

which, as long as f is bounded below, is guaranteed to converge to a local minimum.

89

Case 1

The objective function is (Equation 4.6):

L(1)(B) = λ
∑
i<j

wij (xij − ||bi − bj||)2 + (1− λ)
∑
i<j

w̃ij

(
δ̂ij − ||bi − bj||

)2

.

The following theorem gives a majorizing function of L(1).

Theorem 2. Let L(1)(B) be defined as in Equation 4.6. A majorizing function of

L(1)(B) is

m(B, B̃) = η̃2
x + tr

(
BT Ỹ B

)
− 2 tr

(
BTH̃(B̃)B̃

)
,

where

η̃2
x =

∑
i<j

wijx
2
ij + λw̃ij δ̂

2
ij,

ỹij =


− (λwij + (1− λ)w̃ij) if i 6= j∑n

k=1,k 6=i (λwik + (1− λ)w̃ij) if i = j,

h̃ij

(
B̃
)

=


−λwijxij+(1−λ)w̃ij

ˆdeltaij

||b̃i−b̃j ||
if i 6= j and ||b̃i − b̃j|| > 0

0 if i 6= j and ||b̃i − b̃j|| = 0

−
∑

k=1,k 6=i
λwikxik+(1−λ)w̃ik δ̂ik

||bi−bk||
if i = j.

Remark. This is related to the majorizing function of metric MDS given in Equation

2.3.

Proof. To show this, we use the same method as in [Borg and Groenen, 1997] (which

is outlined in Section B.1). We first divide the objective function into three parts:

L(1)(B) =
∑
i<j

(
λwijx

2
ij + (1− λ)w̃ij δ̂

2
ij

)
+
∑
i<j

(λwij + (1− λ)w̃ij) ||bi − bj||2

− 2
∑
i<j

(
λwijxij + (1− λ)w̃ij δ̂ij

)
||bi − bj||

= η̃2
x + η̃2(B)− 2ρ̃(B).

90

As before, η̃2
x does not depend on B. η̃2(B) is the same as η2(B), but with wij

replaced with λwij + (1− λ)w̃ij:

η̃2(B) =
∑
i<j

(λwij + (1− λ)w̃ij) ||bi − bj||2

=
∑
i<j

tr
(
BT ((λwij + (1− λ)w̃ij)Yij)B

)
= tr

(
BT Ỹ B

)
,

where, as before, Yij is a matrix with its iith and jjth elements equal to 1, its ijth

and jith elements equal to −1, and all other elements equal to 0. We now get

ỹij =


− (λwij + (1− λ)w̃ij) if i 6= j∑n

k=1,k 6=i (λwik + (1− λ)w̃ik) if i = j.

For ρ̃(B), as in Section B.1, we use the Cauchy-Schwarz inequality to show that

r∑
k=1

(bik − bjk)
(
b̃ik − b̃jk

)
≤

(
r∑

k=1

(bik − bjk)2

)1/2(r∑
k=1

(
b̃ik − b̃jk

)2
)1/2

= ||bi − bj|| · ||b̃i − b̃j||.

Given that ||b̃i − b̃j|| 6= 0, we can rearrange this to get

− ||bi − bj|| ≤ −

∑r
k=1 (bik − bjk)

(
b̃ik − b̃jk

)
||b̃i − b̃j||

(4.9)

When ||b̃i − b̃j|| = 0, we cannot do this, but we still have that −||b̃i − b̃j|| ≤ 0.

Thus, as we still have
r∑

k=1

(bik − bjk)
(
b̃ik − b̃jk

)
= tr

(
BTYijB̃

)
,

we get

−ρ̃(B) = −
∑
i<j

(
λwijxij + (1− λ)w̃ij δ̂ij

)
||bi − bj||

≤ −
∑
i<j

(
λwijxij + (1− λ) w̃ij δ̂ij

||b̃i − b̃j||

)
tr
(
BTYijB̃

)
= −

∑
i<j

tr

(
BT

(
λwijxij + (1− λ)w̃ij δ̂ij)

||b̃i − b̃j||
Yij

)
B̃

)

= − tr
(
BTH̃(B̃)B̃

)
,

91

where h̃ij(B̃) is equal to

h̃ij =


−λwijxij+(1−λ)w̃ij δ̂ij

||b̃i−b̃j ||
if i 6= j and ||b̃i − b̃j|| > 0

0 if i 6= j and ||b̃i − b̃j|| = 0∑
k=1,k 6=i h̃ij (B) if i = j.

Note that, if B = B̃, then there is equality in Equation 4.9, and hence we have

−ρ̃(B) = − tr
(
B̃TH̃

(
B̃
)
B̃
)

.

Thus,

L(1)(B) ≤ η̃2
x + tr

(
BT Ỹ B

)
− 2 tr

(
BTH̃(B̃)B̃

)
= m

(
B, B̃

)
,

with equality if B = B̃, and so m(B, B̃) majorizes L(1)(B).

The majorization algorithm for L(1) is given in Algorithm 5. As in Section

2.7.3, δ̂ij is estimated at each stage using Kruskal’s up-and-down blocks algorithm

[Kruskal, 1964].

Case 2

Here, the part of the objective function in Equation 4.7 that corresponds to the

unsupervised part,

f (B) =
∑
i,j

wij
(
xij − bTi bj

)2
, (4.10)

is the same as the objective function for weighted SVD. A majorizing function for

this is derived in [Groenen et al., 2003]:

m
(
B, B̃

)
= M

∑
i,j

(
rij − bTi bj

)2
+ wij

(
1− wij

M

)(
xij − b̃Ti b̃j

)2

,

where M = maxi,j{wij} and rij =
(
1− wij

M

)
b̃Ti b̃j +

wij

M
xij. (The proof of this is

outlined in Appendix B.2; we make use of it to derive a majorizing function for

Equation 4.7.)

92

Algorithm 5 Majorization: Case 1

Require: B̃ = B[0] and k = 0.

Find an optimal set of values for δ̂ij that minimizes
∑

i<j

(
δ̂ij − ||b[0]

i − b
[0]
j ||
)2

,

subject to the constraint in Equation 2.7.3.

Compute L(1)
(
B[0]

)
.

while convergence = 0 do

k = k + 1.

B[k] = Y +H(B̃)B̃ (with xij’s replaced by δ̂ij’s).

Find an optimal set of values for δ̂ij that minimizes
∑

i<j

(
δ̂ij − ||b[k]

i − b
[k]
j ||
)2

,

subject to the constraint in Equation 2.7.3.

Compute L(1)
(
B[k]

)
.

if L(1)
(
B[k−1]

)
− L(1)

(
B[k]

)
< ε then

convergence = 1,

else if k = maxiter then

convergence = 1,

end if

B̃ = B[k].

end while

93

The objective function we want to minimize (Equation 4.7) is:

L(2)(B) =
∑
i,j

λwij
(
xij − bTi bj

)2
+ (1− λ)w̃ij

(
δ̂ij − bTi bj

)2

=
∑
i,j

(
λwijx

2
ij + (1− λ)w̃ij δ̂

2
ij

)
− 2

(
λwijxij + (1− λ)w̃ij δ̂ij

)
bTi bj

+ (λwij + (1− λ)w̃ij)
(
bTi bj

)2
.

In order to derive a majorization algorithm for this objective function, we first

introduce another function h(B) that differs from the objective function by a con-

stant, and is simpler to minimize than the objective function.

Let

h(B) =
∑
i,j

γij

(
cijxij + (1− cij)δ̂ij − bTi bj

)2

,

where γij = λwij + (1− λ) w̃ij, and, if wij = w̃ij = 0, cij = c̃ij = 0; otherwise

cij =
λwij

λwij + (1− λ)w̃ij
=
λwij
γij

.

Let

σij(B) = λwij
(
xij − bTi bj

)2
+ (1− λ)w̃ij

(
δ̂ij − bTi bj

)2

and

hij(B) = γij

(
cijxij + (1− cij)δ̂ij − bTi bj

)2

.

If wij = w̃ij = 0, then σij(B) = hij(B) = 0. Otherwise,

hij(B) = γij

(
cijxij + (1− cij)δ̂ij − bTi bj

)2

= γij

((
cijxij + (1− cij)δ̂ij

)2
− 2

(
cijxij + (1− cij)δ̂ij

)
bTi bj +

(
bTi bj

)2)
= f1

ij

(
xij , δ̂ij , wij , w̃ij , λ

)
− 2γij

(
cijxij + (1− cij)δ̂ij

)
bTi bj + γij

(
bTi bj

)2
= f1

ij

(
xij , δ̂ij , wij , w̃ij , λ

)
− 2

(
λwijxij + (1− λ)w̃ij δ̂ij

)
bTi bj + γij

(
bTi bj

)2
,

and

σij(B) = λwij
(
xij − bTi bj

)2
+ (1− λ)w̃ij

(
δ̂ij − bTi bj

)2

=
(
λwijx

2
ij + (1− λ)w̃ij δ̂

2
ij

)
− 2

(
λwijxij + (1− λ)w̃ij δ̂ij

)
bTi bj + γij

(
bTi bj

)2

= f 2
ij

(
xij, δ̂ij, wij, w̃ij, λ

)
− 2

(
λwijxij + (1− λ)w̃ij δ̂ij

)
bTi bj + γij

(
bTi bj

)2
.

94

Hence,

h(B)− L(2)(B) =
∑
i,j

f 1
ij

(
xij, δ̂ij, wij, w̃ij, λ

)
− f 2

ij

(
xij, δ̂ij, wij, w̃ij, λ

)
= f

(
xij, δ̂ij, wij, w̃ij, λ

)
,

which does not depend on B. Thus, the difference between h(B) and L(2)(B) is

constant inB, so the two functions are minimized by the same value ofB. Therefore,

we can minimize h(B) instead of L(2)(B), which is a weighted least-squares problem

in B, as is the case for Equation 4.10.

Minimizing h(B) is equivalent to a weighted SVD problem. To solve weighted

SVD we minimize the objective function

W =
∑
i,j

ωij
(
ξij − bTi bj

)2
,

which is equivalent to h(B), where

ωij = γij = λwij + (1− λ)w̃ij,

and

ξij = cijδij + (1− cij)δ̂ij.

Thus, h(B) can be majorized by the function

m(B, B̃) = M
∑
i,j

(
rij − bTi bj

)2

+ γij

(
1− λwij + (1− λ)w̃ij

M

)(
cijxij + (1− cij)δ̂ij − b̃Ti b̃j

)2

,

where M = maxi,j{γij} and

rij =

(
1− λwij + (1− λ)w̃ij

M

)
b̃Ti b̃j +

λwij + (1− λ)w̃ij
M

(
cijxij + (1− cij)δ̂ij

)
.

4.4.4 Stochastic Gradient Descent

Stochastic gradient descent is an optimization algorithm commonly used in machine

learning: an overview is given in Section 2.7.2.

In order to apply stochastic gradient descent to our semi-supervised objective

functions, we must first calculate ∂L
∂B

for each case.

95

Case 1

The objective function is

L(1)(B) = λ

p∑
i=1

p∑
j=1

wij (xij − ||bi − bj||)2 + (1− λ)

p∑
i=1

p∑
j=1

w̃ij

(
δ̂ij − ||bi − bj||

)2

= 2λ

p−1∑
i=1

p∑
j=i+1

wij (xij − ||bi − bj||)2 + 2(1− λ)

p−1∑
i=1

p∑
j=i+1

w̃ij

(
δ̂ij − ||bi − bj||

)2

,

since xii = ||bi − bi|| = 0, and xji = xij and ||bi − bj|| = ||bj − bi||.

We can rewrite this as

L(1)(B) = 2L1 − 4L2 + 2L3,

where

L1 =

p−1∑
i=1

p∑
j=i+1

(
λwijx

2
ij + (1− λ) w̃ij δ̂

2
ij

)
,

L2 =

p−1∑
i=1

p∑
j=i+1

(
λwijxij + (1− λ) w̃ij δ̂ij

)
||bi − bj||,

and

L3 =

p−1∑
i=1

p∑
j=i+1

(λwij + (1− λ) w̃ij) ||bi − bj||2,

L1 is not a function of B, so ∂L1

∂B
= 0.

We can rewrite L2 as

L2 =

p−1∑
i=1

p∑
j=i+1

(
λwijxij + (1− λ) w̃ij δ̂ij

)(r∑
k=1

(bik − bjk)2

)1/2

.

Then

∂L2

∂blm
=

p∑
j=1,j 6=l

(
λwljxlj + (1− λ) w̃lj δ̂lj

)
· 1

2
· 2 (blm − bjm)

(
r∑

k=1

(blk − bjk)2

)−1/2

=

p∑
j=1,j 6=l

(
λwljxlj + (1− λ) w̃lj δ̂lj

)
(blm − bjm) ||bl − bj||−1.

We can rewrite L3 as

L3 =

p−1∑
i=1

p∑
j=i+1

(λwij + (1− λ) w̃ij)
r∑

k=1

(bik − bjk)2 .

96

Then

∂L3

∂blm
=

p∑
j=1,j 6=1

(λwij + (1− λ) w̃ij) · 2 (blm − bjm)

= 2

p∑
j=1,j 6=1

(λwij + (1− λ) w̃ij) (blm − bjm) .

Hence,

∂L(1)

∂blm
= 4

p∑
j=1,j 6=1

(
γ

(1)
lj − γ

(2)
lj ||bl − bj||

−1
)

(blm − bjm) ,

where

γ
(1)
lj = λwij + (1− λ) w̃ij

and

γ
(2)
lj = λwljxlj + (1− λ) w̃lj δ̂lj.

Hence,

∂L(1)

∂bl
= 4

p∑
j=1,j 6=l

(
γ

(1)
lj − γ

(2)
lj ||bl − bj||

−1
)

(bl − bj) .

Now, let Ξ be a matrix such that

ξij =


γ

(1)
ij − γ

(2)
ij ||bi − bj||−1 if i 6= j

0 if i = j.

Then,

∂L(1)

∂bi
= 4

p∑
j=1

ξij (bi − bj) = 4
((
ξTi 1p

)
bi + ξTi B

)
.

Hence,

∂L(1)

∂B
= 4

(
p∑
j=1

diag (ξj)B −
p∑
j=1

ξjb
T
j

)
.

Hence, to obtain an estimate of the gradient with respect to a batch S = {j1, ..., jq} ⊂

{1, ..., p}, we calculate

∂L(1)

∂B
≈ 4

(∑
j∈S

diag (ξj)B −
∑
j∈S

ξjb
T
jk

)
.

97

Case 2

Using the inner product formulation, the objective function (Equation 4.7) is

L(2)(B) = λ
∑
i,j

wij
(
xij − bTi bj

)2
+ (1− λ)

∑
i,j

w̃ij

(
δ̂ij − bTi bj

)2

.

In order to calculate the gradient for each bkj, rewrite L(2) as

L(2)(B) =

p∑
i=1

λwii(xii − r∑
k=1

b2
ik

)2

+ (1− λ)w̃ii

(
δ̂ii −

r∑
k=1

b2
ik

)2


+

p∑
i=1

p∑
j=1,j 6=i

λwij (xij − r∑
k=1

bikbjk

)2

+ (1− λ)
∑
i,j

w̃ij

(
δ̂ij −

r∑
k=1

bikbjk

)2
 .

Then,

∂L

∂bil
= (−4bil)

(
λwii

(
xii −

r∑
k=1

b2
ik

)
+ (1− λ) w̃ii

(
δ̂ii −

r∑
k=1

b2
ik

))

+ 2

p∑
j=1,j 6=i

(−2bjl)

(
λwij

(
xij −

r∑
k=1

bikbjk

)
+ (1− λ)w̃ij

(
δ̂ij −

r∑
k=1

bikbjk

))

= −4λ

(
bilwii

(
xii −

r∑
k=1

b2
ik

)
+

p∑
j=1,j 6=i

bjlwij

(
xij −

r∑
k=1

bikbjk

))

− 4 (1− λ)

(
bilw̃ii

(
δ̂ii −

r∑
k=1

b2
ik

)
+

p∑
j=1,j 6=i

bjl (1− wij)

(
δ̂ij −

r∑
k=1

bikbjk

))

= −4

p∑
j=1

bjl

(
λwij

(
xij −

r∑
k=1

bikbjk

)
+ (1− λ) w̃ij

(
δ̂ij −

r∑
k=1

bikbjk

))
.

Hence, the gradient with respect to B is

∂L(2)

∂B
= −4

(
λW ⊗

(
X −BBT

)
+ (1− λ) W̃ ⊗

(
∆̂−BBT

))
B,

where ∆̂ is a matrix whose ijth element is δ̂ij.

We can write this as a sum

∂L

∂B
= −4

p∑
j=1

(
λW ⊗

(
X −BBT

)
+ (1− λ) W̃ ⊗

(
∆̂−BBT

))
,j
bTj ,

where C,j denotes the jth column of a matrix C, and bj is the jth row of B.

98

For stochastic gradient descent, we use only a subset of the j’s, S ⊂ {1, ..., j}. To

calculate the approximate gradient with respect to a batch S, let B̃ be a matrix con-

taining the rows of B that correspond to the indices in S. Then the approximation

of ∂L
∂B

we use is

∂L

∂B
≈ −4

(
λW ⊗

(
X −BB̃T

)
+ (1− λ) W̃ ⊗

(
∆̂−BB̃T

))
B̃.

Case 3

In order to calculate the gradient, we split the objective function into its supervised

and unsupervised components. We denote the unsupervised part by f(B) and the

supervised part by g(B): so

f(B) = λ
∑
i,j

wij
(
xij − bTi bj

)2

and

g(B) = (1− λ) (1− ρ(z(D,B),y(D))) ,

where ρ is the Pearson correlation coefficient between z and y.

The derivative of f we have already calculated, as it is the same as the first part

of the objective function in Case 2. To calculate the derivative of g with respect to

B, we use the chain rule.

∂g

∂B
=
∂g

∂z

∂z

∂B
.

To calculate ∂g
∂z

, we use the derivative of the Pearson correlation function [Strick-

ert et al., 2008]

∂ρ (z,y)

∂zi
=

(yi − ȳ)− Syz

Sz
(zi − z̄)

(SySz)
1/2

, (4.11)

where

Syz =
m∑
k=1

(zk − z̄) (yk − ȳ)

Sz =
m∑
k=1

(zk − z̄)2

Sy =
m∑
k=1

(yk − ȳ)2 .

99

Hence,

∂g

∂zi
= − (1− λ)

(
(yi − ȳ)− Syz

Sz
(zi − z̄)

(SySz)
1/2

)
. (4.12)

Each zi is a function of two word embeddings, which we denote bi1 and bi2 . For

each zi, we have

zi = cos (〈bi1 , bi2〉) =

∑r
k=1 bi1,kbi2,k(∑r

k=1 b
2
i1,k

)1/2 (∑r
k=1 b

2
i2,k

)1/2
=

S̃12

S̃
1/2
1 S̃

1/2
2

,

where

S̃12 =
r∑

k=1

bi1,kbi2,k

S̃1 =
r∑

k=1

b2
i1,k

S̃2 =
r∑

k=1

b2
i2,k
.

So, we get

∂zi
∂bi1,l

=
S̃

1/2
1 S̃

1/2
2 · ∂

∂bi1,l

(
S̃12

)
− S̃12 · ∂

∂bi1,k

(
S̃

1/2
1 S̃

1/2
2

)
(
S̃

1/2
1 S̃

1/2
2

)2 .

Now,

∂S̃12

∂bi1,l
=

∂

∂bi1,l

(
r∑

k=1

bi1,kbi2,k

)
= bi2,l,

∂S̃1

∂bi1,l
=

∂

∂bi1,l

(
r∑

k=1

b2
i1,k

)
= 2bi1,l,

and

∂

∂bi1,l

(
S̃

1/2
1 S̃

1/2
2

)
=

1

2
S̃
−1/2
1 · 2bi1,l · S̃

1/2
2 =

(
S̃2

S̃1

)1/2

bi1,l.

So,

∂zi
∂bi1,l

=

(
S̃1S̃2

)1/2

bi2,l − S̃12

(
S̃2

S̃1

)1/2

bi1,l

S̃1S̃2

=
bi2,l − S̃12S̃

−1
1 bi1,l(

S̃1S̃2

)1/2
=

bi2,l(
S̃1S̃2

)1/2
− bi1,lzi

S̃1

,

and, by symmetry,

∂zi
∂bi2,l

=
bi1,l(

S̃1S̃2

)1/2
− bi2,lzi

S̃2

.

100

Hence,

∂zi
∂bi1

=
(
S̃1S̃2

)−1/2

bi2 − ziS̃−1
1 bi1 ,

and

∂zi
∂bi1

=
(
S̃1S̃2

)−1/2

bi1 − ziS̃−1
2 bi2 .

Since a particular embedded word bj can appear in more than one row of the

test set — in other words, there may be multiple iq’s (q = 1, 2) with j = iq — we

now need to take account of this. We can use the indicator function, so that we can

write

∂zi
∂bj

= Ij=i1
(
S̃1S̃2

)−1/2

bi2 − ziS̃−1
1 bi1 + Ij=i2

(
S̃1S̃2

)−1/2

bi1 − ziS̃−1
2 bi2 .

Putting this together with Equation 4.12 gives

∂g

∂bj
=

m∑
i=1

∂g

∂zi

∂zi
∂bj

= −(1− λ)
m∑
i=1

h
(i)
1 (y, z)h

(i)
2 (z, bj),

where

h
(i)
1 (y, z) =

(yi − ȳ)− Syz

Sz
(zi − z̄)

(SySz)
1/2

and

h
(i)
2 (z, bj) = Ij=i1

(
S̃1S̃2

)−1/2

bi2 − ziS̃−1
1 bi1 + Ij=i2

(
S̃1S̃2

)−1/2

bi1 − ziS̃−1
2 bi2 .

Hence,

∂L(3)(B)

∂bj
= −4λ

p∑
i=1

wij
(
xij − bTi bj

)
bi − (1− λ)

m∑
k=1

h
(k)
1 (y, z)h

(k)
2 (z, bj).

Hence, the batch gradient is

∂L(3)(B)

∂bj
≈ −4λ

∑
i∈S1

wij
(
xij − bTi bk

)
bi − (1− λ)

∑
k∈S2

h
(k)
1 (y, z)h

(k)
2 (z, bj), (4.13)

where we take S1 to be a sample from {1, ..., p} and S2 to be a sample from {1, ...,m}.

101

4.5 Results

We now investigate generating semi-supervised embeddings using simulated and real

datasets.

4.5.1 Optimization via Majorization and Stochastic Gradi-

ent Descent

In this section we apply the majorization and stochastic gradient descent algorithms

to two simulated datasets. In the first example, the data is simulated with p = 100,

and we find that majorization is both faster than gradient descent and achieves a

lower value for the objective function. In the second example, with p = 10000,

we show that the stochastic gradient descent algorithm converges much faster than

majorization, but majorization achieves a lower value of the objective function.

Small example

To compare using majorization and stochastic gradient descent to minimize the

objective, we use a small simulated dataset, with p = 100 and r = 2. X is simulated

as DDT , where elements of D are simulated independently from U(0, 1). V is

generated by selecting 50 random pairs of indices (i, j), where we choose i uniformly

from {1, ..., p − 1}, and j uniformly from {i + 1, ..., p}. Each (i, j) pair is assigned

a value in U(0, 1). (All other entries of V are assumed to be unobserved.) We use

the objective for Case 2 (Equation 4.7). For stochastic gradient descent, we use a

batch size of 50.

First, we investigate using stochastic gradient descent with different learning

rates. Table 4.2 and Figure 4.2 give the times and objectives after 1000 iterations,

for different learning rates. For each learning rate, the algorithm was run 10 times,

and the minimum and mean values are given. This is to give an idea of what might

be a good learning rate, without running the algorithm all the way to convergence,

102

Learning rate Min time (secs) Mean time (secs) Min objective Mean objective

0.001 4.29 5.06 6.56 17.21

0.002 4.74 5.47 3.05 4.51

0.005 4.29 5.20 3.05 3.06

0.010 4.25 4.52 3.03 3.08

0.015 4.53 4.95 32.93 122.97

0.020 4.28 4.53 14.47 922.07

Table 4.2: Time taken and objective reached after the first 1000 iterations, for different

learning rates

0.005 0.010 0.015 0.020

4
5

6
7

8
9

Learning rate

T
im

e
(s

ec
on

ds
)

●

●

●

●
●

●

●

● ●
● ●

●
●

● ●

●

● ●
● ●

0.005 0.010 0.015 0.020

1
2

3
4

5
6

7
8

Learning rate

lo
g(

ob
je

ct
iv

e)

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●

●

●

Figure 4.2: Plots showing the times and objectives for 1000 iterations, for different learn-

ing rates. Each plot shows the minimum (blue circle), mean (red triangle), and maximum

(green diamond) values for learning rates between 0.001 and 0.02, across 10 runs of the

algorithm. The value of the objective is plotted on a log scale for better visualization.

103

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Number of iterations

O
bj

ec
tiv

e

Learning rate 0.001

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0

Number of iterations

O
bj

ec
tiv

e

Learning rate 0.005

0 200 400 600 800 1000

0
10

00
20

00
30

00
40

00

Number of iterations

O
bj

ec
tiv

e

Learning rate 0.02

Figure 4.3: Plots showing how the objective function changes over the first 1000 iterations,

for different values of the learning rate.

which could take a very long time if the learning rate is much too small. There does

not seem to be a pattern in the times, with differences in run times probably being

due to random variation. For the objective, we see that increasing the learning rate

at first allows the objective to decrease more quickly, but if the learning rate is too

high the objective will increase, and there is much more variation in its values (see

Figure 4.3). The algorithm seems to do best when the learning rate is between about

0.003 and 0.014.

Figure 4.4 shows that increasing the rate of decay results in a higher value of the

final objective, especially when the initial learning rate is higher. This is because

decaying the learning rate too fast means the algorithm is more likely to get stuck in

a local minimum. The right-hand plot shows that the time to convergence decreases

as the rate of decay increases, but the initial learning rate does not seem to have

much influence on the time to convergence. Thus, a higher rate of decay means that

the algorithm converges to a limit faster, but it converges to a higher value of the

objective function. There is therefore a trade-off to be made between having faster

convergence versus converging to a better value of the objective.

Using majorization, the algorithm converges to an objective value of 2.998 in

0.407 seconds. This is a better result than stochastic gradient descent in terms of

both objective value and time to converge. Hence, for a small dataset it makes sense

to use majorization.

104

0.002 0.004 0.006 0.008 0.010

0
10

20
30

40
50

60
70

Rate of decay

F
in

al
 o

bj
ec

tiv
e

0.020.0180.016
0.0140.012

0.01

0.008

0.006

0.004

0.002

Learning
rate

0.002 0.004 0.006 0.008 0.010

2
3

4
5

6
7

8

Rate of decay

T
im

e
to

 c
on

ve
rg

en
ce

 (
se

co
nd

s)

0.02

0.0180.016
0.0140.0120.010.0080.0060.0040.002

Learning
rate

Figure 4.4: Plots showing the value of the objective function (left) and time to conver-

gence (right) for different values of the initial learning rate and rate of decay. Each line

corresponds to a different initial learning rate. The values given are the average values

over 10 runs of the algorithm.

Larger example

We repeated this analysis with a larger example, where p = 10000 and r = 100. The

data is simulated in the same way as previously (with 500 entries in V). As before,

we investigated using stochastic gradient descent with different initial learning rates

and rates of decay, with a batch size of 50. We found similar patterns as we did

previously: increasing the rate of decay leads to faster convergence, but usually a

higher value of the final objective (Figures 4.5, 4.6, 4.7).

With stochastic gradient descent, the lowest value of the final objective we

achieved was 17,552,469; this took 2414 seconds, or about 40 minutes, to converge.

It is possible that a better result would have been possible, using a different combi-

nation of initial learning rate, rate of decay, and batch size, since it is of course not

possible to try all possible combinations. With majorization, after 100 iterations we

reached a lower objective value of 16,375,798, but this took 3.6 days to achieve. It

is likely that a faster implementation of the algorithm could reduce this time, but

105

0.02 0.04 0.06 0.08 0.10

0
10

00
00

00
00

30
00

00
00

00
50

00
00

00
00

70
00

00
00

00

Rate of decay

F
in

al
 o

bj
ec

tiv
e

0.0010.00090.00080.00070.00060.00050.00040.0003
0.0002

0.0001

0.02 0.04 0.06 0.08 0.10

17
50

00
00

18
00

00
00

18
50

00
00

19
00

00
00

19
50

00
00

20
00

00
00

Rate of decay

F
in

al
 o

bj
ec

tiv
e

0.0010.00090.00080.00070.00060.0005
0.0004

0.0003

0.001 0.0009 0.0008

Figure 4.5: Plots showing how the value of the objective function changes for different

values of the learning rate and rate of decay. The right-hand graph shows the same as

the left-hand one, but with a different scale for the y-axis so it is easier to see. Each line

corresponds to a different initial learning rate between 0.0001 and 0.001. The values given

are the averages over 10 runs of the algorithm.

this is also true for stochastic gradient descent. So it seems certain that stochastic

gradient descent is much faster. However, majorization seems to give a better result,

and has the advantage of not having to find good values for the learning rate and

rate of decay, by trial and error. Hence, which method we choose to use for the

optimization will depend upon the time and resources available.

4.5.2 Implementation on subset of COHA

Table 4.3 shows the result of applying Case 3 (Equation 4.8) to some real data. We

take the unsupervised dataset X to be the portion of the document-term matrix

corresponding to the 10,000 most frequent words in COHA, and the supervised

dataset D to be the WordSim-353 test set (restricted to the word pairs where both

words are inX). Table 4.3 gives the performance of the semi-supervised embeddings

on the WordSim-353 and three other test sets, for different values of λ. We see that

106

0.02 0.04 0.06 0.08 0.10

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

Rate of decay

lo
g(

 ti
m

e
to

 c
on

ve
rg

en
ce

 (
se

co
nd

s)
)

0.001

0.0009
0.0008

0.0007

0.0006

0.00050.00040.0003

0.0002
0.0001

Figure 4.6: Plot showing how the time to the convergence (shown on the log scale) changes

with different learning rates and rates of decay. There is some variation in the results, but

generally using a higher learning rate results in faster convergence.

●

●

●

●
●

●
●●

●●

●

●

●

●
●

● ●●●●

●

●

●
●
●

●
●●

●●

●

●

●
●

●
●●●

●●

●

●

●
●

●
●●

●●●

●

●

●
●

●●
●●●

●

●

●

●

●●●
●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●●
●

●●

●

●

●

●
●

●●
●●●

●

●

●

●
●

●●●
●●

●

●

●

●
●●

●●●●

●

●

●

●
●●●

●●●

●

●

●
●

●●●●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●
●

●
●

●●
●●

●

●

●
●

●
●●

●
●●

●

●

●
●

●
●●●

●●

●

●

●
●

●
●●

●●●

●

●

●
●

●
●●●

●
●

●

●

●
●●●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●
●●

● ●
●

●

●

●

●
●●

●
●●●

●

●

●

●
●●●

● ●
●

●

●

●

●
●●

●●●●

●

●

●
●

●●●●●
●

●

●

●
●●

●●
●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●
●

●●
●●

●

●

●

●

●
●

●
●

●●
●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●●
●

●●●

●

●

●
●

●●
●●●

●

●

●

●
●

●
●●●

●

●

●

●
●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●
●

●
●●●

●

●

●

●

●
●

●●●●
●

●

●

●

●
●

●●● ●
●

●

●

●

●●●●●●
●

●

●

●
●

●
●

●●●
●

●

●

●
●

●
●●

●
●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●

●

●

●

●

●
●●

●● ●

●

●

●

●
●

●●●
●●

●

●

●

●
●

●●
● ●●

●

●

●
●

●
●●●●

●

●

●

●
●

●
●●●

●●

●

●

●●
●

●●
●

●

●

●

●

●●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●●●
●

●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●
●●●●

●

●

●

●
●

●●
● ●●

●

●

●

●●
●

●●●●

●

●

●
●

●●
●●

●●

●

●

●
●

●●●●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●
●

●
●●

●●

●

●

●

●
●

●●●
●●

●

●

●

●
●

●
● ●

●●

●

●

●
●

●●
●●●

●

●

●

●
●

●
●●

●
●●

●

●

●
●

●●●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●●
●●

●

●

●

●

●
●

●●●
●

●

●

●

●
●

●
●●

●●

●

●

●
●

●
●

● ●
●●

●

●

●
●
●

●●
●●

●

●

●

●

●
●●●

●●
●

●

●

●
●●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

0 1000 2000 3000 4000

17
50

00
00

18
00

00
00

18
50

00
00

19
00

00
00

Time (seconds)

F
in

al
 o

bj
ec

tiv
e

Figure 4.7: Plot of the objective function against the time taken to run the algorithm,

for different runs (with different learning rates and rates of decay). (Some points with a

very high final objective value are omitted, so that the graph is easier to see.)

107

performance on the WordSim-353 test set increases as λ decreases, which we would

expect, as a lower value of λ means that the supervised part of the algorithm has

a greater weight in the algorithm. However, the performance of the embeddings

does not change much on the other test sets. We hypothesize that this is because

including the supervised part of the algorithm only has a significant effect on the

small subset of words that occur in the WordSim-353 test set, and the embeddings

corresponding to words not in the test set are not much affected. (There is some

overlap between test sets in terms of individual words — for example, the SimLex-

999 test set contains 1028 unique words, 124 of which also occur in WordSim-353

— but there are no word pairs in the WordSim-353 test set that occur in any of the

other test sets.) If the supervised dataset were larger, relative to the unsupervised

dataset, we would expect to see more of an impact, and the value of λ having a

larger effect on the test scores for the different test sets. Hence, the choice of λ

would have a more significant effect on the results.

4.6 Conclusion

In this chapter we have explored the possibility of generating semi-supervised word

embeddings, which combine a large unsupervised dataset with a small supervised

dataset. The aim was to generate higher-quality embeddings compared to using

unsupervised data alone.

We introduced three objective functions for generating semi-supervised embed-

dings. The first two of these were based on the MDS objective function, whilst the

third was closer to a combination of standard word embedding training and test

objectives. We use two different methods for optimizing the objectives, majoriza-

tion and stochastic gradient descent. The choice of which optimization algorithm

we should use depends on the situation; majorization is more accurate and does

not require tuning of hyperparameters, whilst stochastic gradient descent converges

faster, especially for larger datasets. We confirmed this through simulated examples.

108

Test set

λ WordSim-353 SimLex-999 SimVerb-3500 MTurk-771

1 0.494 0.179 0.082 0.504

0.2 0.801 0.181 0.015 0.463

0.01 0.912 0.177 0.016 0.460

0.005 0.928 0.174 0.018 0.457

0.001 0.937 0.172 0.020 0.458

Table 4.3: Results of implementing Case 3 (Equation 4.8) with stochastic gradient de-

scent (Algorithm 3, using the gradient in Equation 4.13), for some different values of

λ. (The values of f and g are of a similar order for λ = 0.01. For larger λ, f domi-

nates, and for smaller λ, g dominates.) The dataset the embeddings are trained on is the

COHA document-term matrix, restricted to the 10,000 most common words in COHA.

The WordSim-353 test set is used in the objective function and we can see that perfor-

mance on this test set increases, and more so as λ decreases (as the importance of the

supervised part of the objective function increases). However, performance on other test

sets does not change much.

109

We created semi-supervised embedding sets using a subset of COHA, for different

values of the hyperparameter λ. This showed that although (as we would expect)

optimizing the semi-supervised objective leads to embeddings that perform better

on the supervised test set D used in the training, the performance on other test sets

does not significantly improve. We hypothesize that this is because D is very small

compared to the unsupervised dataset X, and including D in the semi-supervised

embedding algorithm only seems to affect the words which occur inD. However, it is

possible that we would gain more from using semi-supervised embeddings, compared

to unsupervised embeddings, when X is small.

In future, it would be interesting to investigate the potential of semi-supervised

word embeddings on smaller datasets. In addition, in each of the three objective

functions we have used for generating semi-supervised embeddings, the supervised

part of the objective is related to the LSA objective, which we have chosen because

it is a simple model. However, it would be interesting to explore the possibilities for

generating semi-supervised word embeddings used objectives based on other models,

such as GloVe and SGNS.

110

Chapter 5

Dynamic word embeddings:

Testing for time dependence

In this chapter we investigate testing whether words change over time using word

embeddings, including how this relates to the identifiability issues discussed in the

previous chapter. We discuss carrying out statistical tests for whether a set of words

has changed across time using a time-dependent extension of LSA. We make use of

a factor analysis test and show, using simulations, that it has power against the

presence of time dependence in our model. However, we show that although such a

test is invariant to the choice of identifiability criteria (see Chapter 3), it is unable to

distinguish between the presence of time dependence and a misspecified embedding

dimension.

5.1 Motivation

A particular area of interest in recent research is the development of dynamic (time-

dependent) word embeddings that aim to represent changing relationships between

words over time. In Section 2.5 we discussed some of the recent work in this area

and outlined a number of challenges that need to be solved. We discuss here issues

with identifiability for time-dependent embeddings (the static case was covered in

111

Chapter 3), which we use to motivate the material introduced in this chapter.

Usually, time-dependent word embeddings are generated by dividing the time

period up into smaller periods, such as years or decades, and using a static word

embedding method to generate a set of embeddings for each period. The set of

embeddings for each time period is non-identifiable: multiplying the embedding set

by a matrix C ∈ GL(r) (where GL(r) is the set of non-singular r × r matrices)

does not change the value of the objective function. However, there are additional

issues when comparing words across time periods. The amount of change a word

has undergone between times ti1 and ti2 is measured as the cosine similarity between

the embeddings for that word at times ti1 and ti2 :

change = cos (〈bj(ti1), bj(ti2)〉) . (5.1)

Multiplying an embedding set at one time period, say times ti1 , by a matrix C ∈

GL(r) will change the value of this:

cos (〈bj(ti1), bj(ti2)〉) 6= cos (〈Cbj(ti1), bj(ti2)〉) .

In the static case, cosine similarities between embeddings remained the same if the

embedding set was multiplied by a matrix of the form cQ, where c > 0 andQ ∈ O(r).

This is because, in the static case, all the embeddings were multiplied by the same

transformation, and the cosine similarity between two vectors multiplied by the

same transformation matrix is not affected by these transformations. However, in

the time-dependent case, embeddings at different time periods can be multiplied by

different transformation matrices, so unlike in the static case orthogonal and scale

transformations are an issue here.

This issue was partially addressed by [Hamilton et al., 2016]: for each time

period, they find the orthogonal transformation of the embedding set for that time

period that is as close as possible to the embedding set for the previous time period.

However, they do not appear to consider any transformations outside of the set O(r),

although any element of GL(r) will lead to the same problem.

112

−4 −2 0 2 4

−
4

−
2

0
2

4

●

●

●

●

−4 −2 0 2 4
−

4
−

2
0

2
4

6

●

●

●

●

−2 −1 0 1 2 3 4

−
4

−
2

0
2

4

●

●

●

●

−4 −2 0 2 4

−
2

0
2

4

●

●

●

●

Figure 5.1: Figure showing how considering only orthogonal embeddings can be an issue,

with four words and three time points. The top two graphs represent the same set of

embeddings, but for each time point the embeddings used in the right-hand graph have

been multiplied by a different matrix C ∈ GL (r). Below, the two graphs have been aligned

across time using a Procrustes algorithm. For each graph, the four words are represented

by four different colours, and the circle, square and triangle correspond to times 0, 1 and

2 respectively.

113

Word cos (〈b0
i , b

1
i 〉) cos (〈b0

i , b
2
i 〉) cos (〈b1

i , b
2
i 〉)

1 0.492 0.587 0.994

2 0.779 0.813 0.268

3 0.755 -0.893 -0.379

4 -0.091 0.999 -0.060

1 0.982 0.671 0.519

2 0.925 0.681 0.352

3 0.970 0.503 0.279

4 0.758 0.926 0.456

Table 5.1: Cosine similarities between the positions of each word at different time periods,

using embeddings corresponding to graphs (c) and (d) in Figure 5.1. The top half of the

table is for Figure 5.1 (c), and the bottom half is for Figure 5.1 (d).

Figure 5.1 shows how this can be an issue. The top two graphs show the same

set of embeddings across three time periods, where for one the embeddings at each

time points have been transformed by an element C ∈ GL (r) (by a different C

for each time points). The bottom two graphs show the embeddings after they

have been aligned by finding the closest orthogonal transformation of the time-1

embeddings to time-0 embeddings, and then the closest orthogonal transformation

of time-2 embeddings to the time-1 embeddings. We would want these graphs to

look the same, so that the embeddings are not affected by multiplication by elements

of GL (r), but this is clearly not the case.

Since the amount a word is changed is determined by measuring the cosine

similarity between the positions of that word in successive time periods (Equation

5.1), the fact that (as we have shown) non-singular transformations of the word

embeddings at each time period can lead to these cosine similarities being quite

different is problematic.

Hence, in this chapter, we attempt to develop a test for whether words have

changed over time, which is not affected by multiplication of the embeddings by a

114

non-singular matrix, or by the choice of identifiability conditions imposed.

5.2 Introduction

This chapter mainly focuses on developing a more rigorous statistical framework

to determine whether the embeddings associated with a given set of words have

changed significantly over time. To do this, we first introduce a time-dependent

word embedding model that we will make use of. We then consider the properties

we would like such a test to have; in particular, we would like it to be invariant to

the choice of identifiability conditions in the model. In Chapter 3 (Section 3.2), we

showed that a word embedding matrix can be multiplied by a non-singular matrix

without changing the value of the objective function, so to get a unique solution it is

necessary to impose constraints on the embeddings. However, we would not like the

test to be affected by the choice of constraints, as the choice is somewhat arbitrary.

We employ a factor analysis test for adequacy of the static model. We show that

it has power to reject the null hypothesis when there is time dependence in the data,

and show that the test statistic is impervious to transformations of the embedding

set by a non-singular matrix, and hence to the choice of identifiability conditions.

However, we also show that the test is unable to distinguish between the presence

of time dependence and a misspecified embedding dimension.

In the first part of this chapter (Sections 5.2 to 5.5), we introduce a time-

dependent extension of LSA, and discuss issues of identifiability and some prop-

erties of this model. Then, in Sections 5.6 to 5.8, we develop a statistical framework

for testing whether a word or set of words significantly changes over time within a

particular dataset.

115

5.3 Dynamic LSA model

We introduce here a dynamic (time-dependent) version of Latent Semantic Analysis

(LSA) that will be used in this chapter.

Recall from Section 2.3.1 that LSA takes the n × p document-term matrix X,

and approximates it by

X ≈ AB,

where A and B are n× r and r× p matrices of document and word vectors respec-

tively, with r << min{n, p}.

For the dynamic case, we make use of the fact that we can associate a time with

each row of the document-term matrix. To incorporate these times into the model,

we allow the word embeddings bj to be functions of time: bj = bj(t). The simplest

case incorporating time dependence is when the functions bj(t) are linear:

bj(t) = b0
j + b1

j t,

where both b0
j and b1

j are r-dimensional vectors. Hence, the objective function is

J(A,B0,B1|X) = ||X−AB0+TAB1||2F =
n∑
i=1

p∑
j=1

(
xij − aTi b0

j − tiaTi b1
j

)2
. (5.2)

We saw in Section 2.3.1 that minimization of the objective function for LSA with

respect to A and B was equivalent to maximizing the likelihood of the model

xij
ind∼ N

(
aTi bj, σ

2
)

i = 1, ..., n;, j = 1, ..., p,

or, equivalently,

X = AB +Z,

where zij
iid∼ N(0, σ2). In the same way, for the dynamic case we have the model

X = AB0 + TAB1 +Z, (5.3)

116

where

A =
(
aT1 , ...,a

T
n

)T
,

B0 =
(
b0

1, ..., b
0
p

)
,

B1 =
(
b1

1, ..., b
1
p

)
,

T = diag (t1, ..., tn) .

A is n× r, B0 and B1 are r × p, Z is n× p T is n× n.

Remark. Observe that if T = 0, then we recover the static LSA model.

This model has the advantage that it avoids dividing the data up into broad time

periods (such as decades or years). In addition, using the document-term matrix

makes it easier to incorporate time dependence than when we use the co-occurrence

matrix, because each document (and thus each row of the document-term matrix)

has a time associated with it. Since the co-occurrence matrix aggregates data across

the corpus, to retain temporal information we would need to produce a co-occurrence

matrix for each time point, which would be much more computationally challenging.

It is necessary to consider whether this is a suitable model for the data. The

Normal distribution assumes data is continuous and can take positive or negative

values, whereas the data that we have is discrete and non-negative. Probabilistic

Latent Semantic Indexing (PLSI) uses a Multinomial distribution for the document-

term matrix (see Section 2.3.2), which seems more appropriate. However, this can

be approximated by a Normal distribution as long as the length of the documents

is sufficiently large; so a Normal distribution seems reasonable as long as the counts

are away from zero. Having zero (or very small) counts in the document-term matrix

may still be an issue, as this is on the boundary of the Multinomial parameter space

and so the Normal approximation will not work well. Despite this issue, we proceed

with this model as it is the simplest means of implementing a time-dependent model.

It is hoped that the results could later be generalized to other, more realistic, models.

We also note that while a dynamic version of the factor model exists (see e.g.

[Bai, 2003]), where ai is modelled as a multivariate time series, this does not seem

117

an appropriate model here, as it involves a time-dependent model for A, but not B,

which is what we are interested in. (The time series model also seems inappropriate

for ai, as it would necessitate having only one document per time point, which is

not the case for our data.)

5.3.1 Identifiability

Similarly to the static methods we looked at in Chapter 3, the solution to the

minimization problem

arg min
A,B0,B1

J(A,B0,B1)

is not unique. In particular, for any (A,B0,B1), and any C ∈ GL(r) (where GL(r)

is the set of invertible r × r matrices),

J
(
AC,C−1B0,C

−1B1

)
= J(A,B0,B1).

Identifiability is an issue for developing statistical tests (see Section 5.5) where we

have to estimate the true values of parameters; they must be identifiable in or-

der for their true values to be well-defined. In addition, since there are multiple

solutions which optimize the objective function, we do not want the conclusion

drawn from a test to be dependent upon which solution we choose. Therefore,

we want the test statistic to be invariant to the transformation (A,B0,B1) →

(AC,C−1B0,C
−1B1).

As in Section 3.4.1, the solution can be made unique by adding constraints to

the matrices A, B0 and B1. There are a number of ways this can be done. We

present two ways below in Theorems 3 and 4, and then discuss why we might prefer

one of these over the other.

Theorem 3 (Identifiability of dynamic model: 1). Assume that:

i. A has full column rank;

ii. For all i = 1, ..., n, ti 6= 0;

118

iii. J(A,B0,B1) = J(Ã, B̃0, B̃1)⇒ AB0 + TAB1 = ÃB̃0 + TÃB̃1

Then the following constraints guarantee uniqueness of the solution set (A,B0,B1):

1. A has orthonormal columns.

2. The ith column of A has its first r − i entries equal to 0.

3. The first non-zero entry in each column of A is positive.

That is, if there are two solutions (A,B0,B1) and (Ã, B̃0, B̃1) that both sat-

isfy these constraints, such that J(A,B0,B1) = J(Ã, B̃0, B̃1), then (Ã, B̃0, B̃1) =

(A,B0,B1). In addition, for any given solution (A,B0,B1) that does not satisfy

the constraints, it is possible to find a solution that has the same value of the objec-

tive function and that does satisfy the constraints. The proof of this theorem will

be given below.

Alternatively, we can use similar constraints to SVD:

Theorem 4 (Identifiability of dynamic model: 2). Under the same assumptions as

Theorem 3, with the additional assumption that the first r singular values of AB0

are all distinct, the following constraints guarantee uniqueness of the solution set up

to multiplication by a permutation matrix:

1. A has orthogonal columns.

2. B0 has orthonormal rows.

3. The first non-zero entry of each column of A is positive

The proof of Theorem 4 is given below.

Remark. We can make A, B0 and B1 uniquely identifiable by fixing the order of

the columns of A and rows of B0 and B1, for example by ordering them by the

magnitude of the corresponding singular values of AB0.

119

Remark. It is not necessary to impose constraints on B1: if A and B0 are fixed,

then there is a unique B1 that minimizes the objective function. Thus, if we can

uniquely identify A and B0, then B1 will also be identifiable.

The constraints imposed may affect how we interpret the embeddings we obtain,

so we should consider this when choosing which constraints to use. The first set of

constraints treat the first few rows of A (and hence documents in X) differently

to the others, by imposing zeros in their corresponding document vectors, which is

undesirable unless we have a particular justification for doing this. For the second

case, all rows of A are placed under the same constraints, and the same is true for

the columns of B0. Therefore, it seems that the second set of constraints make more

sense from the point of view of interpretation.

The model in Equation 5.3 contains nr + 2pr parameters. Both sets of iden-

tifiability conditions reduce the number of degrees of freedom by r2. For the first

set of conditions, there are 1
2

(r − 1) r parameters fixed at 0; the requirement that

the columns of A are orthogonal adds another 1
2

(r − 1) r constraints, and another

r constraints are added by the requirement that the columns have norm 1. For the

second set of constraints, we still have that the columns of A are orthogonal and

have norm 1, giving a total of 1
2
r (r + 1) constraints, and the requirement that the

rows of B0 are orthogonal adds another 1
2

(r − 1) r, bringing the total to r2 again.

Proof of Theorem 3

Proof. Assume that A has full column rank, and that ti 6= 0 for all i = 1, ..., n. The

latter can be assumed without loss of generality: if there is an i for which ti = 0, this

can be fixed by adding a constant each ti. (It will be shown in Section 5.3.2 that doing

this does not change the value of the objective function (Equation 5.2).) Assume

also that if J(A,B0,B1) = J(Ã, B̃0, B̃1), then AB0 + TAB1 = ÃB̃0 + TÃB̃1.

This implies that if, given that X is fixed, we have J(A,B0,B1) = J(Ã, B̃0, B̃1),

then there exists C ∈ GL(r) such that (Ã, B̃0, B̃1) = (AC,C−1B0,C
−1B1).

120

First, we show that if two solution sets that satisfy the constraints in Theorem

3 give the same value for the objective function, then they must be identical.

Suppose that both A and Ã = AC satisfy the given constraints:

1. A has orthonormal columns.

2. The ith column of A has its first r − i entries equal to 0.

3. The first non-zero entry in each column of A is positive.

Constraint 1 implies that

Ir = (AC)T AC = CTATAC = CTIrC = CTC,

so C is an orthogonal matrix.

Constraint 2 implies that, for i ∈ {1, ..., n}, k ∈ {1, ..., r}, if i ≤ r − k (or

equivalently if k ≤ r − i), then aik = (AC)ik = 0. Hence for all i, k

(AC)ik =
r∑
l=1

ailclk =
r∑

l=r−i+1

ailclk,

which equals 0 if i ≤ r − k.

Taking k = 1, and letting i = 1, ..., r − k, we get the r − 1 equations:

a1r cr1 = 0;

a2,r−1 cr−1,1 + a2r cr1 = 0;

...

ar−1,2 c21 + ar−1,3 c31 + ...+ ar−1,r cr1 = 0.

Assuming a1r 6= 0, the first equation gives cr1 = 0. Substituting this into the second

equation gives cr−1,1 = 0, and so on, until we get c21 = 0 from the (r − 1)-th

equation. This leaves only c11 from the first column of b. Since we have shown that

the columns of b have norm 1, this must be equal to ±1.

121

For k = 2, i = 1, ..., r − 2, we get:

a1r cr2 = 0;

a2,r−1 cr−1,2 + a2r cr2 = 0;

...

ar−2,3 c3,2 + ...+ ar−2,r cr2 = 0.

Following the same process as before, we get ci2 = 0 for i = 3, ..., r. Also, since the

second column of C must be orthogonal to the first we get

r∑
l=1

cl1cl2 = c11c12 = 0,

and since c11 6= 0, this gives that c12 = 0. This leaves only c22 from the second

column of b so, by the same argument as before, this must be equal to ±1.

By a similar process, we get that for k = 3, ..., r − 1, the equations given by∑r
l=r−i+1 ailclk, i = 1, ..., r−k give that cjk = 0 for j = k+1, ..., r, and orthogonality

with previous columns gives cjk = 0 for j = 1, ..., k − 1. Hence, the only non-zero

element of the kth column of C is ckk, which must be equal to ±1.

Therefore, in order to satisfy the first two constraints C must be a diagonal

matrix with all its entries equal to ±1. This means that the entries of AC would be

the same as those of A, except that each column may have a sign change. However,

Constraint 3 implies that the first non-zero element of each column of both A and

AC must be positive, so the columns of A and AC must have the same signs.

Therefore, we must have C = I.

It remains to be shown that, for any (A,B0,B1), it is possible to find (Ã, B̃0, B̃1)

that satisfy the constraints such that J
(
Ã, B̃0, B̃1

)
= J(A,B0,B1). This can

be done by finding a C ∈ GL(r) such that AC satisfies the constraints. Then

(AC,C−1B0,C
−1B1) will be a valid solution set with the same objective function

as (A,B0,B1).

First, to make the columns of A orthonormal, we use the QR decomposition: we

can find Q ∈ Rn×r with orthonormal columns and R ∈ UT(r) such that A = QR.

122

Let A∗ = Q, B̃0 = RB0 and B̃1 = RB1. Then A∗ has orthonormal columns. We

note that this will also be true for A∗C where C ∈ O(r).

To satisfy Constraint 2 we need

(A∗C)ij =
r∑

k=1

aikckj = 0 for 2 ≤ i ≤ r, 1 ≤ j ≤ i− 1.

Since we also require C ∈ O(r), we get the following set of equations (of which there

are r2 in total):

r∑
k=1

cki ckj = 0 for 2 ≤ i ≤ r, 1 ≤ j ≤ i− 1;

r∑
k=1

c2
ki = 1 for 1 ≤ i ≤ r;

r∑
k=1

aik ckj = 0 for 2 ≤ i ≤ r, 1 ≤ j ≤ i− 1.

(5.4)

where the first two sets of equations come from the columns of C being orthogonal,

and each having norm 1.

For j = 1, we must solve

r∑
k=1

aik ck1 = 0 for 1 ≤ j ≤ r − 1;

r∑
k=1

c2
k1 = 1.

The first set of equations can be written as
a11 ... a1r

...

ar−1,1 ... ar−1,r




c11

...

cr1

 =


0

...

0

 .

This is a system of linear equations, but there is one fewer equation than there are

coefficients. It can be rewritten as
a11 ... a1,r−1

... ...
...

ar−1,1 ... ar−1,r−1




c11

...

cr−1,1

 = −


a1r

...

ar−1,r

 cr1.

123

If we set cr1 = 1 initially, then we can solve for the other ci1’s in terms of cr1. Then

dividing through by
∑r

k=1 c
2
k1 will give the solution for C that satisfies Equation

5.4.

For i = 2 the last row of the equation matrix is replaced by c11, ..., c1,r−1 and the

last element of the vector by c1r, as there is one fewer of the first type of equations,

but we now need to ensure that c2 is orthogonal to c1. Then for i = 3 the second-

to-last row of the matrix is replaced with c2 (minus the last entry), and so on, until

for i = r the matrix is just the first (r − 1) rows of C minus the rth column, and

the vector is equal to minus this column. Thus we can determine the elements of C

using this method, such that AC satisfies the zero constraint.

To satisfy the constraint that the first non-zero element of each column of A

should be positive, it may be necessary to multiply some columns of A∗C by −1.

Let F be a diagonal entries with

fii =


1 if a1i > 0;

−1 otherwise.

Let C∗ = CF . Then, we get the solution Ã = A∗C∗, with B̃0 = (C∗)−1RB0 and

B̃1 = (C∗)−1RB1. Provided that C∗ is invertible this will always provide a valid

solution that satisfies ÃB̃0 + TÃB̃1 = AB0 + TAB1.

Proof of Theorem 4

Proof. Since the matrix product AB0 is of rank r, it is equal to its rank-r SVD:

AB0 = UrΣrV
T
r .

Let

A = UrΣr, B0 = V T .

Then A and B0 satisfy Constraints 1 and 2. If the first r singular values of AB0

are all distinct, then the corresponding normalized left and right singular vectors

124

of AB0 will be unique, up to a change of sign [Blum et al., 2020, p. 35]. For the

rank-r SVD, we only use the first r singular vectors, so we only require the r largest

singular values to be distinct. Hence, Ur, Σr and Vr (and thus A and B) will be

unique up to multiplication by a permutation matrix (Ũr = UrP , Σ̃r = PΣrP ,

Ṽ T
r = PV T

r). The sign change is taken care of by Constraint 3, the requirement

that the first non-zero entry of each column of A be positive.

Hence, given
(
Â, B̂0, B̂1

)
, to find a solution that satisfies these identifiability

criteria we do the following:

1. Find the SVD of ÂB̂0: ÂB̂0 = UΣV T .

2. Set Ã = UrΣr and B̃0 = V T
r , where Ur and Vr contain the first r columns

of U and V respectively, Σr is the top left r × r block of Σ. Since ÂB̂0 has

rank r, we will get ÃB̃0 = ÂB̂0.

3. For any columns of Ã for which the first element is negative, multiply that

column and the corresponding row of B̃0 by −1, to get A and B0.

4. Now, we want to find B1 such that AB0 +TAB1 = ÂB̂0 +TÂB̂1. Since we

have AB0 = ÂB̂0, we require TAB1 = TÂB̂1, and so AB1 = ÂB̂1, given

that T is invertible. This is solved by B1 =
(
ATA

)−1
AT ÂB̂1.

Remark. Although in the constraints we specify that B0 has orthonormal rows, we

could equally set Ã = UrΣ
1/2
r and B̃0 = Σ

1/2
r V T , which would make the constraints

symmetrical in A and B0, as discussed in Chapter 3.

5.3.2 Properties of the dynamic model

We consider in this section how robust the method is to certain arbitrary choices: (i)

permutation of the columns ofX (re-ordering the words), (ii) scaling of T (changing

125

the scale used to measure time), and (iii) translation of T (changing the starting

point from which time is measured).

Proposition 3 (Properties of the dynamic model). Let (A,B0,B1) be a set of

matrices that satisfy the identifiability conditions given in Theorem 3. Then, under

the following three transformations of the data:

1. Permutation of the columns of X;

2. Scaling of T by a constant;

3. Translation of T by a constant,

we can find (Ã, B̃0, B̃1) that also satisfy the constraints, such that

J(Ã, B̃0, B̃1|X̃, T̃) = J(A,B0,B1|X,T),

where X̃ and T̃ are the transformed X and T . Thus, the minimum value of the

objective function remains unchanged.

Proof. (1) As X is n × p, permuting the columns of X is equivalent to right-

multiplyingX by a p×p permutation matrix P . Since multiplying by a permutation

matrix does not change the value of the Frobenius norm || · ||F [Li and Mehta, 1995],

we get

||X −AB0 − TAB1|| = || (X −AB0 − TAB1)P ||

= ||XP −AB0P − TAB1P ||,

so

J(A,B0P ,B1P |XP ,T) = J(A,B0,B1|X,T).

(2) If T̃ = γT for some constant γ, then

AB0 + T̃AB1 = AB0 + (γT)AB1 = AB0 + TA (γB1) ,

so by replacing B1 with B̃1 = 1
λ
B1, we can obtain the same value for the objective

function.

126

(3) If T̃ = T + λI, then

AB0 + T̃AB1 = AB0 + (T + λI)AB1

= AB0 + TAB1 + λAB1

= A (B0 + λB1) + TAB1,

so we can replace B0 with B0 + λB1 and retain the same value for the objective

function.

In each case we can find new values of A, B0 and B1 that give the same value

of the objective function as before. In addition, using the first set of identifiability

conditions,A is unchanged in each of these cases. Using the second set of constraints,

where there are conditions on both A and B0, applying the constraints in the

translation case will change the values in A.

5.4 Extensions

The linear model used so far allows general trends across time to be captured, but

cannot pick up more complex trends. For example, if there were a pair of words that

become increasingly related in the first half of the time period, but move further

apart in the second half, it is quite likely that the linear model would not pick

this up. Adding more terms to the model would allow for the observation of more

complicated relationships:

X = AB0 + TAB1 + ...+ T qABq +Z,

or, more generally,

X =

q∑
k=0

TkABq +Z, (5.5)

where each Tk is a diagonal matrix with (Tk)ii = fk (ti), where the fk’s are a set of

basis functions.

We can use the same identifiability conditions as in either Theorem 3 or Theorem

4: they apply only to A and B0 but are sufficient to fix identifiability for the

127

extended model. This is because we can rewrite Equation 5.5 as

X =
(
T0A T1A ... TqA

)

B0

B1

...

Bq


+Z,

so, if A and the Tk’s are fixed, there is a unique solution (which can be found using

least squares) for B̃ =
(
BT

0 ,B
T
1 , ...,B

T
q

)T
, and hence for each Bk.

We must be careful, however, not to over-parameterize the model. The number

of parameters is nr+(q+1)pr, where q+1 is the number of basis functions (minus r2

parameters for identifiability). This must be lower than the number of data points,

np, for the model to be well-defined, and in order for the model to be useful we would

want nr+ (q+ 1)pr << np. So the number of basis functions we can reasonably use

depends on r: the higher r is, the simpler the functions need to be. On the other

hand, using a smaller embedding dimension would allow us to use a greater number

of basis functions.

One option is to consider fixing most of the words, and allowing a small subset of

words of interest to change across time. This requires making the assumption that

the vast majority of the words will not change over the time period. We acknowledge

that this is a fairly strong assumption, which may or may not be justified depending

on our knowledge of the dataset, and the length of time it covers: it would seem

reasonable to assume that most words will not change in the short-term at least.

Introducing this assumption reduces the number of parameters in the model, as

most of the entries of Bk will be fixed at zero for k ≥ 1. If we denote the set of

words which are allowed to move by S, then this model can be written as

X = AB0 +

q∑
k=1

T kABS
k +Z,

where BS
k has bkj = 0 for j /∈ S, where bkj is the jth column of Bk. This has the

advantage of allowing more complicated functions to be used, as the number of extra

128

parameters required for each basis function we add is proportional to the size of the

set of words allowed to change over time, so if this is small we will be able to use a

greater number of basis functions without increasing the number of parameters too

much. However, there is still a risk of overfitting with respect to the words in S,

and we also need to consider whether the assumption about most words being fixed

is valid for the dataset we are using.

5.4.1 Factor model

We also consider a variant of the dynamic LSA model where instead of having

zij
iid∼ N(0, σ2), we have zij

ind∼ N(0, σ2
j). As is usual in factor analysis, we use µ to

represent the mean of the xi’s, so that E (ai) = 0. Hence, the model is

xi = µ+ (B0 + tiB1)T ai + zi, (5.6)

where

zi
iid∼ N(0,Σz),

with Σz diagonal. Note that we can rewrite Equation 5.6 as

xi − µ = (B0 + tiB1)T ai + zi. (5.7)

Hence, we shall generally assume that X has been centred so that 1
n

∑n
i=1 xi = 0,

which is equivalent to estimating µ (by µ̂ = 1
n

∑n
i=1 xi) and subtracting it from xi.

When T = 0, the static model we regain is the factor analysis model from

Section 2.6. Using this model will allow us to use some existing asymptotic results

from factor analysis literature in the testing section. It is also a more realistic

assumption, as the variances for more frequent words will likely be greater than

those for less frequent words. The main disadvantage is that is is harder to optimize

the likelihood.

As stated in Section 2.6, the ai’s can be regarded as either fixed or Normally dis-

tributed, with these cases being asymptotically equivalent. Hence, unless otherwise

stated, we shall assume that ai
iid∼ N(0,Σa).

129

5.5 Developing testing framework

In this section we discuss testing for whether there is significant change across time

in a dataset. This is something that has not been done rigorously (see Section 2.5.2),

but is necessary to determine whether any findings are statistically significant. In

particular, we need to control for false positive results, which is not done in, for

example, [Hamilton et al., 2016].

We first define formally the test we would like to carry out, and list some desirable

properties that we would like the test to have. (In particular, we want it to be

invariant to the choice of identifiability conditions.) We then explain why we cannot

use a standard likelihood ratio test. Using the factor analysis variant of the dynamic

model allows us to use a test for adequacy of the null model. Using a simulation

study, we investigate how sensitive the test is to deviations from the null hypothesis,

and discuss the difficulty of distinguishing misspecified r from the presence of time

dependence.

We then show theoretically that the test is unable to distinguish between data

that comes from the dynamic model with embedding dimension r, and data from

the static model with embedding dimension 2r. We show that the test statistic is

impervious to transformations of the embedding set by a non-singular matrix, and

hence that any test statistic that is invariant to this transformation will have the

same issue.

5.5.1 Set-up

Suppose we want to test whether there is change over time for words in a text corpus.

First, we need to define mathematically what we mean by this. Firstly, we need a

model which we can use to develop a test. We want this to be a simple model so

that the test is not too complicated to develop. It also must be a parametric model.

130

Hence, we use the dynamic LSA model defined earlier in this chapter:

X = AB0 + TAB1 +Z. (5.8)

A word changes over time if the column of B1 associated with that word is non-zero.

If there is no change in the full set of words, then B1 = 0. So the null hypothesis

(that there is no change) is

H0 : B1 = 0,

whilst our alternative hypothesis is

H1 : B1 6= 0.

We may want to investigate only whether words in a particular subset of interest

have changed across time. In this case, we are only interested in whether the columns

of B1 that correspond to words in this subset are equal to 0. Let S = {s1, ..., sq}

denote the set of indices of the words of interest (where q < p). The columns of

B1 corresponding to words not in the subset S can either all be assumed to be 0

(Equation 5.9) – in which case we assume that these words are all stationary – or

can be left unspecified (Equation 5.10; we allow them to be moving over time, but

are not interested in whether they are moving).

If we denote the jth column of B1 by B1j, then in the first case the two hy-

potheses are

H0 :B1 = 0,

H1 :B1j 6= 0 for all j ∈ S;B1j = 0 for all j /∈ S.
(5.9)

In the second case, we have

H0 :B1j = 0 for all j ∈ S,

H1 :B1j 6= 0 for all j ∈ S.
(5.10)

We would like such a test to have the following properties:

131

• Invariance to choice of identifiability conditions: the choice of identifiability

constraints used to ensure uniqueness of B1 should not affect the result of the

test. (Naturally, any test statistic will be (implicitly or explicitly) dependent

on having a consistent estimate of B1.)

• Power against H1: the test should reject H0 when the data are from the

dynamic model in Equation 5.8, with B1 6= 0.

• Ability to distinguish between the presence of time dependence in the dataset

and a misspecified static model under H0.

We proceed looking at the case where only a subset of the words are of interest,

with hypotheses defined in Equation 5.10. (The case where all words are moving is

a special case of this, where S = {1, ...p}.)

The likelihood ratio statistic is

−2 log Λ = −2 log

maxL
(
A,B0,B

0
1
S
)

maxL(A,B0,B1)

 ,

where B0
1
S

has the restriction that the columns corresponding to the elements in S

are equal to 0.

By Wilks’ theorem [Wilks, 1938], under certain conditions this quantity asymp-

totically follows a χ2
qr distribution, where q = |S|. However, one of the necessary

conditions for this theorem to apply is that the number of parameters in the model

be fixed as the number of data points, n, increases. In our model, the number of

parameters is nr + pr + qr (or nr + 2pr if we allow all words to move), which de-

pends on n, so this condition is not satisfied. In addition, the maximum likelihood

estimates of the parameters of interest B0 and B1 may not be consistent (converge

to their true values) as n→∞ [Neyman and Scott, 1948].

If we knew A, then the distribution of the likelihood ratio statistic would be

exactly χ2
qr (Theorem 5). But in practice, since we do not know A, we cannot

guarantee that −2 log Λ converges to the correct distribution. Figure 5.2 shows that

132

●

●
●
●

●

●

●
●

●
●
●●

●
●

●
●●●

●
●
●●

●

●●

●

●

●

●
●
●
●●●

●●●

●
●●●●
●●●●
●
●
●●●●
●●
●
●●●
●
●
●●●
●
●●
●●
●●
●●●●●
●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●
●●●
●●●
●
●●
●
●●
●
●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●●

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
00

0.
05

0.
10

0.
15

0.
20

n

M
ea

n
di

ffe
re

nc
e

be
tw

ee
n

el
em

en
ts

 o
f t

ru
e

an
d

es
tim

at
ed

 B
0

Figure 5.2: Plot of 1
n

∑
i,j |b0

ij − b̂0
ij | against n under H0 (p = 10, r = 2). Identifiability

conditions are applied so that there is a unique “true” B0. It appears that B̂0 is not

converging to the true value of B0.

under H0, the maximum likelihood estimate of B0 does not converge to the true

value of B0 as n→∞.

Theorem 5 (Distribution of likelihood ratio statistic when A is known). Assuming

A is known, the distribution of the likelihood ratio statistic is exactly χ2
qr distribution

if σ2 is known, or Fqr,nr−qr if σ2 is unknown.

The proof of this theorem is given in the Appendix.

To summarise: we would like to test for time dependence in the corpus, but we

cannot use Wilks’ theorem because of the increasing number of parameters as n

increases. The scenario we want to investigate is

H0 : X = AB0 +Z vs. H1 : X = AB0 + TAB1 +Z. (5.11)

Using the factor analysis version of the dynamic model, with Σz diagonal, we

can use a factor analysis test for the adequacy of the model under H0:

H0 : Σx = BT
0 ΣaB0 + Σz vs. H1 : Σx positive definite, (5.12)

133

where

Σx = E

(
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)T
)
,

with x̄ = 1
n

∑n
i=1 xi. The null hypotheses of the two tests in Equations 5.11 and 5.12

are the same, but the alternative hypothesis in the test in Equation 5.12 is more

general than the alternative hypothesis in the first test. Hence, we might expect

that if H0 is rejected in the first test it will also be rejected in the second, but that

this might not be the case the other way around.

The likelihood of the model is

L (Σx,µ) = (2π)−np/2 |Σx|−n/2 exp

(
1

2

(
n∑
i=1

(xi − µ) Σ−1
x (xi − µ)

))
.

The maximum likelihood estimate of µ (under H0 or H1) is simply µ̂ = 1
n

∑n
i=1 xi.

The maximum likelihood estimate of Σx underH0 is Σ̂0
x = B̂T

0 Σ̂aB̂0+Σ̂z. The maxi-

mum likelihood estimate underH1 for Σx is Σ̂1
x = Mx = 1

n−1

∑n
i=1 (xi − x̄) (xi − x̄)T .

[Anderson and Rubin, 1956] states that, under the assumption that the ai ∼

N(0,Σa), the likelihood ratio statistic −2 log Λ converges asymptotically to the χ2
ν

distribution, where ν is equal to the difference in the number of parameters under

H0 and under H1:

ν =
1

2
p (p+ 1)−

(
pr + p+

1

2
r (r + 1)− r2

)
=

1

2
p (p+ 1) +

1

2
r (r − 1)− p (r + 1) .

The likelihood ratio statistic [Anderson and Rubin, 1956] is

− 2 log Λ = −2 log

(
|Mx|n/2enp/2

|Σ̂x|n/2en/2 tr(MxΣ̂−1
x)

)
. (5.13)

[Amemiya and Anderson, 1990] gives an alternative formulation:

T = n trMxΣ̂
−1
x − n log |MxΣ̂

−1
x | − np. (5.14)

134

These are equivalent:

−2 log Λ = −2
(n

2
log |Mx|+

np

2
− n

2
log |Σ̂x| −

n

2
tr
(
MxΣ̂

−1
x

))
= n

(
log |Σ̂x|+ tr

(
MxΣ̂

−1
x

)
− log |Mx| − p

)
= n

(
tr
(
MxΣ̂

−1
x

)
− log

(
|Mx|
Σ̂x

)
− p
)

= n
(

tr
(
MxΣ̂

−1
x

)
− log |MxΣ̂

−1
x | − p

)
= T .

Hence, we can use either formulation.

Fixed ai

Suppose now that instead of following a Normal distribution, the ai’s are regarded

as fixed parameters. We use Ma = 1
n−1

(ai − ā) (ai − ā)T , rather than Σa, as the

parameter of interest. This is assumed to tend to some limit as n→∞.

The asymptotic distribution of T given in the previous section is derived under

the assumption that ai
iid∼ N(0,Σa), but [Anderson and Rubin, 1956] claims that

it also holds (with Σa replaced with Ma) under the assumption that the ai’s are

fixed.

5.5.2 The test statistic under the dynamic model

In this section we ascertain, via simulations, how large n needs to be relative to p for

the distribution of T to be approximately the same as its asymptotic distribution.

All simulations were carried out in R. The elements of the matrices A and B0

were simulated independently from N(0, 1) unless otherwise stated. Details of the

simulation of B1 are given in the relevant sections below. The test was implemented

using R’s factanal function, which estimates the model parameters and calculates

an estimate of T . The number of runs for each simulation was 1000. When time

dependence is included, the n times were equally spaced between −1 and 1.

We simulated under H0:

X = AB0 +Z, (5.15)

135

Chi−squared statistic

D
en

si
ty

60 80 100 120 140 160

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

n = 25

Chi−squared statistic

D
en

si
ty

60 80 100 120 140

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

n = 50

Chi−squared statistic

D
en

si
ty

60 80 100 120 140 160

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

n = 100

Figure 5.3: Histograms of T (Equation 5.14) under H0, with r = 5 and p = 20, and n

taking values 25, 50, 100.

Histogram of test statistic

Chi−squared statistic

D
en

si
ty

1000 1050 1100 1150 1200 1250 1300 1350

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

n = 55

Chi−squared statistic

D
en

si
ty

900 950 1000 1050 1100 1150

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

n = 100 Histogram of test statistic

Chi−squared statistic

D
en

si
ty

850 900 950 1000 1050 1100 1150

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

n = 200

Figure 5.4: Histograms of T (Equation 5.14) under H0, with r = 5 and p = 50, and n

taking values 55, 100, 200.

where zi ∼ N (0,Σz) (µ is taken to be 0), and plotted histograms of T (Equation

5.14) to ascertain that it follows the expected distribution. In particular, since we

only know the asymptotic distribution of T , it is necessary to find out how large

n has to be, relative to p and r, for the distribution of T to be close enough to its

asymptotic distribution for the test to be useful.

Hence, Figures 5.3 and 5.4 show data simulated under H0 (Equation 5.15) for

different values of n and p. The red line on each graph shows the theoretical distribu-

tion which T should follow under H0. In both cases we can see that the distribution

of T does not match the theoretical distribution when n is close to p, but the dis-

tributions match when n is larger (at least several times p).

We now investigate the distribution of T when we simulate under the dynamic

136

model

X = AB0 + TAB1. (5.16)

We investigate changing the magnitude of the elements of B1, simulating B1 from

different distributions, and conducting simulations where only some of the columns

ofB1 are non-zero (to represent the situation where a subset of the words are moving

across time).

Figures 5.5 and 5.6 show histograms of T in Equation 5.14 under the dynamic

model (Equation 5.16). These two sets of histograms are simulated under the same

scenario, both with n = 1000, but with different values of p and r; in Figure 5.5,

p = 20 and r = 4, and in Figure 5.6, p = 50 and r = 5. In both cases, the elements

of B1 are simulated independently from N(0, φ2), where φ2 takes different values

between 0.0001 and 1. This is in order to investigate the effect of the magnitude of

B1 on T ; when the variances of the entries of B1 are larger, their magnitude will in

general also be larger (since we are simulating from a distribution which has mean

0), and so we would expect B1 to have a greater effect on T . The vector of times

is taken to be a set of equally spaced values between −1 and 1.

This is shown to be the case in Figures 5.5 and 5.6; T takes larger values when

φ2 is larger, but even for φ2 = 0.01, where the entries of B1 will be very small

compared to those in A and B0, we can see that the distribution of T is different

from its distribution under H0, and that H0 will usually be rejected. Hence, the test

is sensitive to the presence of time dependence in the simulated data.

In Figure 5.7, we simulate the elements of B1 from three different distributions:

N(0, 0.01), U(0, 0.1), and Exp(10). In each case the estimated value of T takes

much larger values than those it would take under H0.

In Figure 5.8 we move only a subset of the words (so most of the columns of B1

equal to 0). Hence,

X = AB0 + TAB̃1,

where B̃1 has all of its columns equal to 0 except for those corresponding to a small

137

Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

60 80 100 120 140 160

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

φ2 = 0.0001

Chi−squared statistic

D
en

si
ty

80 100 120 140 160 180

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

φ2 = 0.0025

Chi−squared statistic

D
en

si
ty

100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

φ2 = 0.01

Chi−squared statistic

D
en

si
ty

400 600 800 1000 1200 1400

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

φ2 = 0.04 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

3000 4000 5000 6000 7000 8000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

φ2 = 0.25 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

8000 10000 12000 14000 16000 18000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

0.
00

02
5

φ2 = 1

Figure 5.5: Histograms of T (Equation 5.14) under H1, with n = 1000, p = 20, and r = 4.

In each case the elements of B1 simulated as i.i.d. random variables with distribution

N(0, φ2), where φ2 = {0.0001, 0.0025, 0.01, 0.04, 0.25, 1}. We see that even small values of

B1 can have a significant effect on the distribution and rejection rate.

138

Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

850 900 950 1000 1050 1100 1150

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
φ2 = 0.0001 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

850 900 950 1000 1050 1100 1150 1200

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

φ2 = 0.0025 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

1200 1400 1600 1800 2000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

φ2 = 0.01

Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

3000 4000 5000 6000 7000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

φ2 = 0.04 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

22000 24000 26000 28000 30000 32000 34000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

φ2 = 0.25 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

50000 55000 60000 65000 70000

0.
00

00
0

0.
00

00
2

0.
00

00
4

0.
00

00
6

0.
00

00
8

0.
00

01
0

0.
00

01
2

φ2 = 1

Figure 5.6: Histograms of T (Equation 5.14) under H1, with n = 1000, p = 50, and r = 5.

In each case the elements of B1 are i.i.d. random variables with distribution N(0, φ2),

where φ2 = {0.0001, 0.0025, 0.01, 0.04, 0.25, 1}. B0 is simulated so that its entries have

distribution N(0, 1). We see that even small values of B1 can have a significant effect on

the distribution and rejection rate.

Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

12000 14000 16000 18000 20000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

0.
00

02
5

0.
00

03
0

B1 ∼ N(0, 0.01) Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

6000 7000 8000 9000 10000 11000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

B1 ∼ U(0, 0.1) Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

20000 25000 30000 35000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

B1 ∼ Exp(10)

Figure 5.7: Histograms of T (Equation 5.14) under H1 : X = AB0 + TAB1, where B1

is simulated from (i) N(0, 0.01); (ii) U(0, 0.1); (iii) Exp(10).

139

number of words, q. The non-zero elements of B1 are simulated from N(0, φ2) where

φ2 takes values 0.0001, 0.01, and 0.25, so we can also investigate the effect that the

size of the non-zero elements of B1 has on T . We use different values of p, r, and

q for the two sets of histograms (see figures and captions).

Figure 5.8 shows histograms of T where a subset q of the words are moving, for

different values of q. For q = 2 and q = 5, the distribution of T does not deviate

much from its distribution under H0. For q = 7, this is still true when φ2 = 0.0001

or φ2 = 0.01, but when φ2 = 0.25 the distributions are different, although the curve

and the histogram overlap.

Thus, we have found that the impact of adding B1 to the model depends upon

the size of the entries of B1 and the number of words which have non-zero dynamic

components in B1. When the entries of B1 are very small compared to those of A

and B0, or only a small number of words are moving, then the distribution of T

does not deviate much from its distribution under H0 and hence the test may not

detect the presence of time dependence. However, as long as there are enough words

moving, or the entries of B1 are sufficiently large, the test is quite sensitive to the

presence of time dependence.

5.5.3 Testing on COHA

We implement the test on subsets of the Corpus of Historical American English

(COHA). The whole corpus contains 116597 documents and 49564 words (after

removing infrequent words), which means that the document-term matrix is too

large for implementing the test on all of the data to be feasible. Instead, we take

random subsets of p = 100 and p = 500 words; all documents are included, as

the size of n is not an issue computationally. The document-term matrix has been

normalized so that all its rows sum to 1, to remove the effect of document length.

In this case, we do not know the “true” value of r. Hence, we carry out the

test for several different values of r. The rejection rate given is the proportion of

140

Chi−squared statistic

D
en

si
ty

850 900 950 1000 1050 1100 1150

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

q = 2, φ2 = 0.0001

Chi−squared statistic

D
en

si
ty

850 900 950 1000 1050 1100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

q = 2, φ2 = 0.01

Chi−squared statistic

D
en

si
ty

900 1000 1100 1200 1300 1400 1500

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

q = 2, φ2 = 0.25

Chi−squared statistic

D
en

si
ty

800 900 1000 1100 1200

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

q = 5, φ2 = 0.0001

Chi−squared statistic

D
en

si
ty

850 900 950 1000 1050 1100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

q = 5, φ2 = 0.01

Chi−squared statistic

D
en

si
ty

1000 1500 2000 2500 3000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

q = 5, φ2 = 0.25

Chi−squared statistic

D
en

si
ty

850 900 950 1000 1050 1100 1150

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

q = 10, φ2 = 0.0001

Chi−squared statistic

D
en

si
ty

850 900 950 1000 1050 1100 1150 1200

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

q = 10, φ2 = 0.01

Chi−squared statistic

D
en

si
ty

2000 3000 4000 5000 6000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

6e
−

04

q = 10, φ2 = 0.25

Figure 5.8: Histograms of T (Equation 5.14) under H1 where only a subset of the words

are moving (n = 1000, r = 5). q is the number of words moving, out of p = 50 total words.

For words that are moving, b1ij
iid∼ N(0, φ2), where φ2 = 0.0001, 0.01, 0.25.

141

p r Rejection rate

100 5 0.112

100 10 0.001

100 25 0.002

500 5 1

500 10 1

times H0 is rejected out of 1000 implementations. For p = 100, the rejection rate

decreases as we increase r. For p = 500, H0 is always rejected, which suggests either

the presence of time dependence, or that the embedding dimension is too small.

However, since we do not know the “correct” value of r, we cannot tell which of

these reasons is the true one.

5.5.4 Eigenvalues

We now seek to understand more about T by understanding how it changes under

deviations from H0. We first make explicit the link between T and the eigenvalues

of MxΣ̂
−1
x .

Let λ1, ..., λp denote the eigenvalues of MxΣ̂
−1
x (such that λ1 ≥ λ2 ≥ ... ≥ λp).

We can rewrite Equation 5.14 as:

T = n tr
(
MxΣ̂

−1
x

)
− n log |MxΣ̂

−1
x | − np

= n

p∑
i=1

λi − n log

(
p∏
i=1

λi

)
− np

= n

p∑
i=1

(λi − log λi − 1) .

(5.17)

If the model fits perfectly (Mx = Σ̂x) then T = 0 (MxΣ̂
−1
x = Ip, so λi = 1 for

i = 1, ..., p). Let

f(λ) = λ− log λ− 1. (5.18)

Figure 5.9 shows a graph of f(λ) for λ between 0 and 10. f takes its minimum at

λ = 1, with f(1) = 0, and increases as λ moves away from 1. When λ is close to 0,

142

0 2 4 6 8 10

0
1

2
3

4
5

6

λ

f(λ
)

Graph of f(λ)

Figure 5.9: Graph of f(λ) (see Equation 5.18).

f(λ) ≈ − log λ, and when λ > 1, f(λ) ≈ λ − 1, so f is approximately linear in λ.

Hence, T is larger when the eigenvalues of MxΣ̂
−1
x are further away from 1.

Figures 5.10 and 5.11 show plots of the eigenvalues of MxΣ̂
−1
x for 1000 simula-

tions from H0 and H1. The elements of B1 are simulated from N(0, φ2), where φ2

takes values {0.0001, 0.0025, 0.01, 0.04, 0.25}. In Figure 5.10 n = 1000, p = 20 and

r = 4; in Figure 5.11 n = 1000, p = 50 and r = 5. In both cases, the smallest and

largest eigenvalues deviate most from 1 when the elements of B1 are larger (that is,

when φ2 is larger). Hence, we would expect T to be larger for these B1’s, as was

indeed shown to be the case by earlier simulations (Figures 5.5 and 5.6).

Table 5.2 shows some results for simulations under the dynamic model (X =

AB0 +TAB1 +Z), where B1 is simulated from different distributions. The values

of T are stated, along with the largest and smallest eigenvalues of MxΣ̂
−1
x , in

each case. We can see that the cases for which T is higher are those for which

the eigenvalues deviate farthest from 1 – the largest eigenvalues are larger and the

smaller ones are smaller. When T is smaller, the eigenvalues are all close to 1.

Figure 5.12 shows plots of the eigenvalues of MxΣ̂
−1
x where the data is simulated

from the dynamic model with only a subset of words moving. As the number of

143

5 10 15 20

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Index

E
ig

en
va

lu
es

H0

5 10 15 20

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Index

E
ig

en
va

lu
es

H1, φ2 = 0.0001

5 10 15 20

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Index

E
ig

en
va

lu
es

H1, φ2 = 0.0025

5 10 15 20

0.
8

1.
0

1.
2

1.
4

1.
6

Index

E
ig

en
va

lu
es

H1, φ2 = 0.01

5 10 15 20

0.
5

1.
0

1.
5

2.
0

2.
5

Index

E
ig

en
va

lu
es

H1, φ2 = 0.04

5 10 15 20

0
1

2
3

4
5

Index

E
ig

en
va

lu
es

H1, φ2 = 0.25

Figure 5.10: Eigenvalues of MxΣ̂
−1
x for 1000 simulations, under H0 and under H1 where

b1ij
iid∼ N(0, φ2). (n = 1000, p = 20, r = 4.)

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Index

E
ig

en
va

lu
es

H0

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Index

E
ig

en
va

lu
es

H1, φ2 = 0.0001

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Index

E
ig

en
va

lu
es

H1, φ2 = 0.0025

0 10 20 30 40 50

0.
5

1.
0

1.
5

2.
0

Index

E
ig

en
va

lu
es

H1, φ2 = 0.01

0 10 20 30 40 50

1
2

3
4

Index

E
ig

en
va

lu
es

H1, φ2 = 0.04

0 10 20 30 40 50

0
2

4
6

8
10

Index

E
ig

en
va

lu
es

H1, φ2 = 0.25

Figure 5.11: Eigenvalues of MxΣ̂
−1
x for 1000 simulations, under H0 and under H1, where

b1ij
iid∼ N(0, φ2). (n = 1000, p = 50, r = 5.)

144

Run T Largest eigenvalue Smallest eigenvalue

1 138 000 3.279 0.007

2 133 000 3.540 0.017

3 85 000 4.989 0.055

4 71 000 4.395 0.074

5 69 000 4.806 0.090

6 50 000 4.363 0.125

7 42 000 3.367 0.127

8 12 000 1.811 0.160

9 600 1.319 0.873

10 500 1.250 0.854

Table 5.2: Results of simulating from the dynamic model. We simulated B1 from ten

different distributions. For each simulation, the table gives the value of T and the largest

and smallest eigenvalues of MΣ̂−1
x . We observe that T is larger when the largest and

smallest eigenvalues are further from 1.

145

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Index

E
ig

en
va

lu
e

q = 0

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Index

E
ig

en
va

lu
e

q = 1

0 10 20 30 40 50

0.
5

1.
0

1.
5

Index

E
ig

en
va

lu
e

q = 2

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Index

E
ig

en
va

lu
e

q = 5

0 10 20 30 40 50

0
1

2
3

4

Index

E
ig

en
va

lu
e

q = 10

0 10 20 30 40 50

0
1

2
3

4
5

6
7

Index

E
ig

en
va

lu
e

q = 20

0 10 20 30 40 50

0
2

4
6

8

Index

E
ig

en
va

lu
e

q = 30

0 10 20 30 40 50

0
2

4
6

8
10

Index

E
ig

en
va

lu
e

q = 40

0 10 20 30 40 50

0
2

4
6

8
10

12

Index

E
ig

en
va

lu
e

q = 50

Figure 5.12: Eigenvalues of MxΣ̂
−1
x for 1000 simulations, simulating under the dynamic

model with q words moving (where q is between 0 and p). (p = 50, r = 5, n = 1000.)

146

words moving increases, the eigenvalues become more spread out.

We now investigate further what happens to Mx and Σx under H1. Recall the

dynamic version of the factor model (Section 5.4.1),

xi = (B0 + tiB1)T ai + zi,

where zi
iid∼ N(0,Σz), with Σz diagonal.

As in Section 2.6, let Mx be defined as

Mx =
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)T .

In the static model, where xi = BT
0 ai + zi, this is equal to

M 0
x = BT

0 MaB0 +BT
0 Maz +MT

azB0 +Mz,

where

Ma =
1

n− 1

n∑
i=1

(ai − ā) (ai − ā)T ,

Maz =
1

n− 1

n∑
i=1

(ai − ā) (zi − z̄)T ,

and

Mz =
1

n− 1

n∑
i=1

(zi − z̄) (zi − z̄)T .

We also get

Σ0
x = E

(
M 0

x

)
= BT

0 ΣaB0 + Σz, (5.19)

as E (Maz) = 0.

In the dynamic model, we get

M 1
x = BT

0 MaB0 +BT
0 M

t
aB1 +BT

1 M
t
a
T
B0 +BT

1 M
tt
a B1 +BT

0 Maz

+MT
azB0 +BT

1 M
t
az +M t

az
T
B1 +Mz,

where

M t
a =

1

n− 1

n∑
i=1

(ai − ā)

(
tiai −

1

n

n∑
j=1

(tjai)

)T

,

M tt
a =

1

n− 1

n∑
i=1

(
tiai −

1

n

n∑
j=1

(tjaj)

)(
tiai −

1

n

n∑
j=1

(tjai)

)T

,

147

and

M t
az =

1

n− 1

n∑
i=1

(
tiai −

1

n

n∑
j=1

(tjaj)

)
(zi − z̄)T .

Proposition 4. If ai
iid∼ N(0,Σa) (i = 1, ..., n), then

Σ1
x = BT

0 ΣaB0 +

(
1

n

n∑
i=1

ti

)(
BT

0 ΣaB1 +BT
1 ΣaB0

)
+

(
1

n

n∑
i=1

t2i

)
BT

1 ΣaB1 + Σz.

(5.20)

Proof. We get

Σ1
x = E

(
M 1

x

)
= BT

0 E (Ma)B0 +BT
0 E
(
M t

a

)
B1 +BT

1 E
(
M t

a

)T
B0

+BT
1 E
(
M tt

a

)
B1 +BT

0 E (Maz) + E (Maz)
T B0 +BT

1 E
(
M t

az

)
+ E

(
M t

az

)T
B1 + E (Mz) .

Now,

E (Ma) = Σa,

E (Mz) = Σz,

E (Maz) =
1

n− 1

n∑
i=1

E
(

(ai − ā) (zi − z̄)T
)

= 0,

and

E
(
M t

az

)
=

1

n− 1

n∑
i=1

E

((
tiai −

1

n

n∑
j=1

tjaj

)
(zi − z̄)T

)
= 0.

For E (M t
a), we get

E
(
M t

a

)
=

1

n− 1

n∑
i=1

E

(ai − ā)

(
tiai −

1

n

n∑
j=1

tjaj

)T


=
1

n− 1

(
n∑
i=1

tiE
(
aia

T
i

)
− 2

n

n∑
i,j=1

tiE
(
aja

T
i

)
+

1

n2

n∑
i,j,k=1

tjE
(
aka

T
j

))

=
1

n− 1

((
n∑
i=1

ti

)
Σa −

2

n

(
n∑
i=1

ti

)
Σa +

1

n

(
n∑
i=1

ti

)
Σa

)

=
1

n− 1

(
1− 1

n

)(n∑
i=1

ti

)
Σa

=
1

n

(
n∑
i=1

ti

)
Σa.

148

and for E (M tt
a), we get

E
(
M tt

a

)
=

1

n− 1

n∑
i=1

E

(tiai − 1

n

n∑
j=1

tjaj

)(
tiai −

1

n

n∑
k=1

tkak

)T


=
1

n− 1

(
n∑
i=1

t2iE
(
aia

T
i

)
− 2

n

n∑
i,j=1

titjE
(
aja

T
i

)
+

1

n2

n∑
i,j,k=1

tjtkE
(
aja

T
k

))

=
1

n− 1

((
n∑
i=1

t2i

)
Σa −

2

n

(
n∑
i=1

t2i

)
Σa +

1

n

(
n∑
i=1

t2i

)
Σa

)

=
1

n− 1

(
1− 1

n

)(n∑
i=1

t2i

)
Σa

=
1

n

(
n∑
i=1

t2i

)
Σa.

Thus,

Σ1
x = BT

0 ΣaB0 +BT
0

(
1

n

n∑
i=1

tiΣa

)
B1 +BT

1

(
1

n

n∑
i=1

tiΣa

)
B0

+BT
1

(
1

n

n∑
i=1

t2iΣa

)
B1 +BT

0 0 + 0TB0 +BT
1 0 + 0TB1 + Σz

= BT
0 ΣaB0 +

1

n

n∑
i=1

ti
(
BT

0 ΣaB1 +BT
1 ΣaB0

)
+

1

n

n∑
i=1

t2iB
T
1 ΣaB1 + Σz.

Corollary 1. If 1
n

∑n
i=1 ti = 0 and 1

n

∑n
i=1 t

2
i = 1, then

Σ1
x = BT

0 ΣaB0 +BT
1 ΣaB1 + Σz. (5.21)

Proof. This can be clearly seen by substituting 1
n

∑n
i=1 ti = 0 and 1

n

∑n
i=1 t

2
i = 1 into

Equation 5.20.

This is useful because we can scale and translate the time vector without affecting

the model (Proposition 3); hence, we can replace the times ti with

t̃i =
ti − 1

n

∑n
i=1 ti√

1
n

∑n
i=1

(
ti − 1

n
t2j
)2
,

and so make use of Equation 5.21. If we take as an identifiability condition that

Σa = I, Equation 5.21 reduces to

Σx = BT
0 B0 +BT

1 B1 + Σz. (5.22)

149

Remark. The times ti (i = 1, ..., n) do not appear in this equation.

Proposition 5. If X is simulated under the static model with embedding dimension

2r: that is,

xi = BTai + zi, (5.23)

where B is a 2r × p matrix, and ai a 2r × 1 vector; and we write

B =

 B0

B1

 , (5.24)

then, under the application of suitable identifiability conditions, we can write

Σx = BT
0 B0 +BT

1 B1 + Σz.

Proof. Combining Equations 5.23 and 5.24 gives

xi =
(
BT

0 BT
1

)
ai + zi = BT

0 a
0
i +BT

1 a
1
i + zi.

If we take Σa = I2r, then a0
i ,a

1
i
iid∼ N (0, Ir). Hence, xi

iid∼ N(0,Σx), where

Σx = BT
0 IrB0 +BT

0 0rB1 +BT
1 0rB0 +BT

1 IrB1 + Σz = BT
0 B0 +BT

1 B1 + Σz.

Hence, a test based on Mx and Σx will not be able to distinguish between the

dynamic model with embedding dimension r and the static model with embedding

dimension 2r. This is an issue when, in practice, we do not know the correct

embedding dimension.

5.5.5 Choice of embedding dimension

We investigate further the problem of misspecifying the embedding dimension, via

simulations.

Figure 5.13 shows simulations of T (Equation 5.14), where the data is simulated

under H0 (Equation 5.15) with r = 4, and the test is implemented with four different

150

Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

15000 20000 25000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

r = 2 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

5000 10000 15000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

r = 3

Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

80 100 120 140 160

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

r = 4 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

60 80 100 120 140

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

r = 5

Figure 5.13: Histograms of T when different values of r are used than the true value. The

data is simulated under H0 with n = 1000, p = 20 and r = 4, but the model is fitted using

four different values of r (2, 3, 4, 5). In the first two cases T is much larger than it should

be, so that H0 is rejected in every case. (The 5 % critical values of the χ2 distribution

for these cases are 180.7 and 160.9 respectively, which are clearly much smaller than the

values in the histogram.) In the third case, with r = 4, the χ2 curve matches the shape of

the histogram, as we would expect. In the fourth case, where the fitted r is too large, T

is smaller than it should be, and H0 is rejected in only 6 out of 1000 cases.

values of r. When the test is carried out with r < 4, T takes values much larger

than would be expected under H0 with the correct embedding dimension. When

r = 4, as we would expect, T follows the expected theoretical distribution. When

r = 5, the values of T are smaller than would usually be expected, so the histogram

sits a little to the left of the curve representing the theoretical distribution. This

would result in H0 being rejected less often than the size of the test.

Figure 5.14 shows histograms of T when data is simulated under both H0 (Equa-

tion 5.15) and H1 (Equation 5.16), and the parameters of the model are estimated

using several different values of r. The first three histograms are simulated under

151

H0 with r = 2, and the model is using three different values of r. As before, the

histogram of T sits to the left of the curve showing the theoretical distribution when

the value of r used to fit the model is larger than the value under which the data is

simulated.

The bottom row of histograms are simulated under H1, again with r = 2, and

in each case the parameters are estimated under the null model with three different

values of r. As expected, when r = 2, T is larger than it should be according to

the theoretical distribution. However, when r = 5 and r = 8, despite the data

having been simulated under H1, T is smaller than it should be according to the

theoretical distribution and hence H0 will rarely be rejected in these cases. Thus,

the test seems unable to detect the presence of time dependence in the data if the

embedding dimension used to fit the model is too large.

Figure 5.15 shows the eigenvalues of MxΣ̂
−1
x for three different situations: in the

top row the data is simulated and the model is fitted underH0 (the static case); in the

middle row the data is simulated from the static model with embedding dimension

2r, but the model is fitted with embedding dimension r; and in the third row the

data is simulated from the dynamic model, with embedding dimension r, and the

model is fitted under the static model, with the same embedding dimension. We

see that for the last two cases, the eigenvalue plots look the same, so a test statistic

based on the eigenvalues of MxΣ̂
−1
x will be unable to distinguish between these two

scenarios.

5.5.6 Invariance of the test

In order to implement the test, we need to be able to estimate Σ̂x consistently,

which requires consistent estimation of Σ̂a, B̂ and Σ̂z. For this to be possible,

we must apply identifiability conditions to Σa and B to ensure that they can be

uniquely identified, so that their estimates will converge to a unique limit. As

previously discussed (Section 5.2), this choice is fairly arbitrary, so we want the test

152

Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

1000 1100 1200 1300

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

H0, r = 2 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

800 850 900 950 1000 1050

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

H0, r = 5 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

600 650 700 750 800 850

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

H0, r = 8

Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

1100 1200 1300 1400 1500 1600 1700 1800

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

H1, r = 2 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

800 850 900 950 1000 1050 1100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

H1, r = 5 Histogram of chi−squared statistic

Chi−squared statistic

D
en

si
ty

650 700 750 800 850

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

H1, r = 8

Figure 5.14: Histograms of T where the value of r used is too large. In the first row, the

data is simulated under H0 with r = 2 (n = 1000, and p = 50). The model is fitted using

r = 2, 5, 8, and the test implemented. When the value of r used is too large, the histogram

sits to the left of where it should be, so H0 is rejected less often than it should be. In the

second row, the data is simulated under H1, where B1 ∼ N(0, 0.01), again with r = 2. As

expected, the curve sits to the left of the histogram when the model is fitted with r = 2,

meaning that H0 is rejected more often than it should be under H0. However, when the

model is fitted with higher values of r, the curve is to the right of the histogram, so H0 is

rarely rejected, meaning that the presence of time dependence in the data is not detected.

153

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Index

E
ig

en
va

lu
e

H0 with r = 2

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Index
E

ig
en

va
lu

e

H0 with r = 5

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Index

E
ig

en
va

lu
e

H0 with r = 10

0 10 20 30 40 50

0
5

10
15

Index

E
ig

en
va

lu
e

H0 with 2r

0 10 20 30 40 50

0
2

4
6

8
10

Index

E
ig

en
va

lu
e

H0 with 2r

0 10 20 30 40 50

0
1

2
3

4
5

6
Index

E
ig

en
va

lu
e

H0 with 2r

0 10 20 30 40 50

0
2

4
6

8
10

12

Index

E
ig

en
va

lu
e

H1 with r

0 10 20 30 40 50

0
2

4
6

8
10

Index

E
ig

en
va

lu
e

H1 with r

0 10 20 30 40 50

0
1

2
3

4
5

6

Index

E
ig

en
va

lu
e

H1 with r

Figure 5.15: The top row of plots are of the eigenvalues of MxΣ̂
−1
x , where the data

is simulated under the null model, and the model fitted under the same model, for three

different values of r (r = 2, 5, 10). The middle row of plots show the eigenvalues of MxΣ̂
−1
x

when the data is simulated under the null model with embedding dimension 2r, but the

model is fitted with embedding dimension r. In the bottom row the data is simulated

under the dynamic model with embedding dimension r, but the model is fitted under the

null model (also with embedding dimension r). There does not appear to be a significant

difference between the last two cases, so the test is unable to distinguish between the

presence of time dependence in the dataset and a misspecified choice of r.

154

statistic T to be invariant to the choice of identifiability conditions we impose. The

test statistic we have been using so far is a function of the eigenvalues of MxΣ̂
−1
x

(Equation 5.17), so for T to be invariant to the choice of identifiability conditions,

it is sufficient to show that the set of eigenvalues of MxΣ̂
−1
x is invariant to the

identifiability conditions.

Theorem 6 states that the set of eigenvalues of MxΣ̂
−1
x (where Σ̂x is estimated

under H0) is impervious to transformations of the form (A,B0) → (AC,C−1B0).

Applying such a transformation to A and B0 is equivalent to applying a different

set of identifiability conditions.

Theorem 6. Given that either:

(i) pr − 1
2
r(r − 1) ≤ 1

2
p(p− 1), or

(ii) Σz is assumed to be of the form Σz = σ2I,

the set of eigenvalues of MxΣ̂
−1
x is impervious to the choice of identifiability condi-

tions (or, equivalently, to transformations of the form (Σa,B0)→ (C−TΣaC
−1,CB0)).

That is, (a) applying such a transformation does not change the values of the eigen-

values of MxΣ̂
−1
x ; (b) if we have two estimates Σ̂−1

x and Σ̃−1
x , such that the eigen-

values of MxΣ̂
−1
x and MxΣ̃

−1
x are the same, then there exists a C ∈ GL(r) such that

the estimates of (Σ̂a, B̂) and (Σ̃a, B̃) can be related by a transformation: B̂ = CB̃

and Σ̂a = C−T Σ̃aC
−1.

Proof. First, we show that the eigenvalues are invariant to such a transformation.

Case 1: ai
iid∼ N(0,Σa). Let Σ̃a = C−T Σ̂aC

−1 and B̃0 = CB̂0. We have

B̃T
0 Σ̃aB̃0 =

(
C−1B̂0

)T (
CT Σ̂aC

)(
C−1B̂0

)
= B̂0C

−TCT Σ̂aCC
−1B̂0

= B̂T
0 Σ̂aB̂0.

Hence,

Σ̃x = B̃T
0 Σ̃aB̃0 + Σ̂z = B̂T

0 Σ̂aB̂0 + Σ̂z = Σ̂x.

155

Case 2: The ai’s are fixed. Let M̃a = C−TM̂aC
−1 (which is equivalent to

Ã = ÂC−1) and B̃0 = CB̂0. Then Σ̂x = B̂TM̂aB̂ + Σ̂z. We get

B̃T
0 M̃aB̃0 =

(
C−1B̂0

)T (
CTM̂aC

)(
C−1B̂0

)
= B̂0C

−TCTM̂aCC
−1B̂0

= B̂T
0 M̂aB̂0.

Hence,

Σ̃x = B̃T
0 M̃aB̃0 + Σz = B̂T

0 M̂aB̂0 + Σ̂z = Σ̂x.

In either case, Σ̂x is unchanged and as Mx is free from A and B0, MxΣ̂
−1
x will

be the same, and hence its eigenvalues will also remain unchanged.

To show (b), we first show that, if MxΣ̂
−1
x and MxΣ̃

−1
x have the same eigenval-

ues, then Σ̃x = Σ̂x. Then, we show that Σ̃x = Σ̂x implies that both B̃T
0 Σ̃aB̃0 =

B̂T
0 Σ̂aB̂0 and Σ̃z = Σ̂z. The result follows.

Step 1. Suppose MxΣ̂
−1
x and MxΣ̃

−1
x have the same eigenvalues. Using the

Singular Value Decomposition, we can write

MxΣ̂
−1
x = Y ΛY T

and

MxΣ̃
−1
x = Ỹ ΛỸ T ,

where Y and Ỹ are orthogonal matrices, and Λ is the diagonal matrix of eigenvalues.

Hence,

Λ = Y TMxΣ̂
−1
x Y = Ỹ TMxΣ̃

−1
x Ỹ ,

and so

MxΣ̂
−1
x = Y Ỹ TMxΣ̃

−1
x Ỹ Y

T .

However, since Mx = Y Ỹ TMx, we must have Y Ỹ T = I, and so Y = Ỹ . Hence,

MxΣ̃
−1
x = Y ΛY T = MxΣ̂

−1
x . Since Mx is invertible (provided n > p), Σ̃−1

x = Σ̂−1
x ,

and so Σ̃x = Σ̂x.

156

Step 2. We show that, given that an exact decomposition of Σ̂x into the sum of

a rank-r matrix and a diagonal matrix exists, the decomposition is unique.

First, we consider the simpler case where Σz = φ2I. Let Ξ̂ = B̂T
0 Σ̂aB̂0. In this

case, we have

Σ̂x = Ξ̂ + σ̂2I, (5.25)

where Ξ̂ is of rank r. Suppose there is also a matrix Ξ̃ of rank r, and a positive

number σ̃2, such that

Σ̂x = Ξ̃ + σ̃2I. (5.26)

Let the eigenvalues of Ξ̂, Ξ̃ and Σ̂x be denoted respectively by {λξ̂1, ..., λξ̂p},{λ
ξ̃
1, ..., λ

ξ̃
p},

and {λΣ
1 , ..., λ

Σ
p }, where, in each case, the λi’s are in descending order, so λ1 ≥ λ2 ≥

... ≥ λp. By Equation 5.25, the eigenvalues of Σ̂x solve

|
(
Ξ̂ + σ̂2I

)
− λΣI| = 0,

or, equivalently,

|Ξ̂−
(
λΣ − σ̂2

)
I| = 0,

and, by Equation 5.26, they also solve

|Ξ̃−
(
λΣ − σ̃2

)
I| = 0.

Hence, we get

λΣ
i = λξi + σ̂2 = λξ̃i + σ̃2.

Since both Ξ̂ and Ξ̃ are of rank r, their last p − r eigenvalues will all be 0, and so

for j > r, we get

λΣ
j = σ̂2 = σ̃2.

Hence, σ̃2 = σ̂2, and Ξ̃ = Σ̂x − σ̂2I = Ξ̂.

Now let Σz be diagonal. We want to show that if Σ̂x can be expressed as

Σ̂x = Ξ̂ + Σ̂z, (5.27)

157

where Ξ̂ is a symmetric positive definite matrix of rank r and Σ̂z is diagonal, then

this representation is unique. Suppose that Equation 5.27 holds, with the conditions

on Ξ̂ and Σ̂z. Since Σz is diagonal, we know that the off-diagonal elements of Ξ̂

must be equal to those of Σ̂x. Since Ξ̂ is symmetric and positive definite, there

exists a p× r matrix Y such that

Ξ̂ = Y Y T .

Hence, the matrix Y must solve

r∑
k=1

yikyjk =
(
Σ̂x

)
ij

for i < j. This gives a total of 1
2
p(p − 1) equations. If r is too large relative

to p then there will be more parameters in Y than equations and Ξ̂ will not be

unique. Since Y Y T is invariant to orthogonal transformations of Y , the effective

number of free parameters is pr − 1
2
r(r − 1), so we need r to be small enough that

pr− 1
2
r(r−1) ≤ 1

2
p(p−1), in order to have at least as many equations as parameters.

Since we know that a solution exists, we do not need to worry about having more

equations than parameters; in this case some equations will be redundant. A unique

solution will exist as long as we have pr − 1
2
r(r − 1) independent equations.

If the ai’s are fixed instead of random, we can replace Σa with Ma, and Step 2

of the proof proceeds in the same way.

Step 3. We have shown that, if MxΣ̂
−1
x and MxΣ̃

−1
x have the same eigenval-

ues (where Σ̂x = B̂T
0 Σ̂aB̂0 + Σ̂z and Σ̃x = B̃T

0 Σ̃aB̃0 + Σ̃z), then Σ̂z = Σ̃z and

B̂T
0 Σ̂aB̂0 = B̃T

0 Σ̃aB̃0. It then follows that B̂0 and B̃0 must be related through a

transformation of the form B̃0 = CB0, where C ∈ GL(r).

5.6 Conclusion

In this chapter we have focused on methods for generating dynamic word embed-

dings, and testing for whether words have changed across time. We have introduced

158

a new model for dynamic word embeddings based on LSA, and have demonstrated

how we can estimate the parameters and make the model identifiable. We have also

shown that the model is not affected by the scale we use to measure time, or by the

order in which the documents are placed.

We investigated testing procedures for determining whether there is significant

change across time within a dataset using a modification of our previously introduced

model, where we allowed the variances for each word to be different, rather than

requiring them all to be the same. In the static case this is equivalent to the factor

model. This allowed us to make use of asymptotic theory from factor analysis, which

we used to develop a test for adequacy of the null (static) model.

We used simulations to verify that, under H0, T followed the expected distribu-

tion, as long as the number of data points was sufficiently large (n approximately

equal to three or four times p appeared to be sufficient). We also showed that, when

simulating from the dynamic model, H0 was rejected, unless the values in B1 were

very small compared to those in A and B0. We showed that it is possible for H0 to

be rejected when only a few words are moving, depending on the size of the entries

in B1 corresponding to those words. However, we also found that H0 is rejected

when the value of r used to fit the model is smaller than the true value.

We showed that if we re-scaled the times to have mean 0 and variance 1, then it

was possible to equate Σx under the dynamic model with embedding dimension r

with Σx under the static model with embedding dimension 2r. Further, we showed

in Section 5.5.6 that the eigenvalues of MxΣ̂
−1
x , of which T is a function, are imper-

vious to the transformation of Σa and B by a non-singular matrix. This means that

the test is invariant to the choice of identifiability conditions (as changing the iden-

tifiability conditions is equivalent to multiplying the embeddings by a non-singular

matrix), and this will apply to any test statistic which is a function of the eigen-

values of MxΣ̂
−1
x . However, such a test will not be able to distinguish between the

dynamic model with embedding dimension r and the static model with embedding

159

dimension 2r (Proposition 5).

It seems likely that similar problems will arise with any other method for gen-

erating time-dependent embeddings, unless we are able to determine the “correct”

dimension of the embeddings. If adding a time-dependent component to the model

effectively increases the dimensionality of the embeddings (as it does here), then

increasing the dimension of the static component of the embeddings may hide any

time dependence in the data, as the time-dependent component will be absorbed

into the extra dimensions of the static component. On the other hand, if the em-

bedding dimension is too small the reverse may happen, with a time component

appearing to be present in the data, when it is not. Thus, any method for test-

ing for time dependence based on word embeddings must be either independent of

the embedding dimension, or dependent upon having some way of determining the

correct embedding dimension for the data.

160

Chapter 6

Conclusion

In this thesis we have looked at several aspects of word embeddings: identifiability,

semi-supervised embeddings, and testing for time dependence within a dataset.

In Chapter 3, we looked at the issue of non-identifiability in word embedding

methods. We explored some of the consequences of this, in particular the impli-

cations of the different sets of invariances for the objective function f , which the

embeddings are optimized with respect to, and the test function g, on which the

word embeddings are evaluated. The function f is invariant to non-singular trans-

formations of the embedding set, whereas g is invariant only to orthogonal and scale

transformations. As a result, different embedding sets which perform equally well

with respect to the objective function may perform differently on test data, which

we showed to be the case.

We explored two possible ways of resolving this issue. The first was to impose

identifiability conditions on the embeddings, ensuring that the set of embeddings

that optimized the objective function could be uniquely determined (up to possible

orthogonal and scale transformations of the embeddings, which do not affect g). We

found that embeddings with such conditions imposed performed well on test data.

The second solution we explored was to optimize over the set of non-singular

transformations of the embeddings, with respect to g. In order to prevent over-

fitting, we evaluated the performance of the embeddings generated in this way on

161

other test sets, as well as the test set used for optimization. For word similarity

tasks, we found that it was possible to significantly increase performance on a test

set for similarity tasks, and that optimizing over one test set usually gave improved

results for other test sets, although this was not always the case.

The results for analogy tasks were less promising: transforming the embeddings

by random diagonal or upper triangular matrices led to a significant decrease in

performance. However, we did explore, for SVD, multiplying the embedding set by

Λα, and found that it is worth exploring values of α (at least slightly) outside the

range (0, 1). Interestingly, the accuracy as a function of α appeared to be a fairly

smooth curve.

We were not able to optimize over g for word analogy tasks as we did for word

similarity tasks, because the analogy test function takes a much longer time to

evaluate, which rendered doing this computationally infeasible. However, this would

be something worth investigating in the future: it would be interesting to see whether

it is possible to increase performance on analogy tasks by optimizing over the set

of non-singular transformations of the embeddings. If this were possible, it would

be necessary to find some way of determining whether the embeddings generated

using this method were indeed “better” than the original embeddings, or just better

at solving these particular kinds of analogies, since the Google Analogy test set

contains only a small number of kinds of analogies.

In Chapter 4, we explored the possibility of generating semi-supervised word

embeddings using methods based on multidimensional scaling, where the objective

function combines an unsupervised dataset X with a supervised dataset D. We im-

plemented our algorithm on simulated and real data, showing that we could improve

results on test data by using the semi-supervised algorithm, compared to an unsu-

pervised algorithm. We also compared the benefits of using two different algorithms

to optimize the objective function, majorization and stochastic gradient descent.

We found that majorization gives better convergence, but is much slower when the

162

number of words is large. Hence, which algorithm we choose to use would depend

upon the size of the dataset and the amount of computing resources available.

Although we have demonstrated the potential of semi-supervised word embed-

dings based on MDS, there is more work to be done in terms of determining what

value they may have in practice. In particular, it would be interesting to explore

the potential of semi-supervised embeddings in applications where we have smaller

datasets available; as unsupervised learning requires large amounts of data, we would

expect the benefits of using some supervised data to be larger in these cases.

In Chapter 5, we looked at time-dependent word embeddings, and in particular

the problem of testing for time dependence. We introduced a linear model for

time-dependent word embeddings, which is an extension of LSA in the static case.

We explored some of the properties of this model and tested it on simulated data.

We then looked at testing for time dependence, using a modified version of the

LSA model so that we could use results from factor analysis. We used a test for

adequacy of the null model, and found, through simulations, that the test statistic is

rejected when simulating under the time-dependent model, even if only a few words

are moving (unless B1 is very small). However, we found that it was not possible,

using this model and testing framework, to distinguish between the presence of time

dependence in the data and a misspecified embedding dimension. Since the choice

of embedding dimension is somewhat arbitrary, this means that such a test may not

be useful in practice. Developing a test which could distinguish between these two

situations, perhaps based on a different time-dependent embedding model, would

be a subject for further research.

163

Bibliography

Karim M. Abadir and Jan R. Magnus. Matrix Algebra. Cambridge: Cambridge

University Press, 2005.

Joshua Acosta, Norissa Lamaute, Mingxiao Luo, Ezra Finkelstein, and Andreea

Cotoranu. Sentiment analysis of Twitter messages using word2vec. Proceedings

of Student-Faculty Research Day, CSIS, Pace University, 2017.

Yasuo Amemiya and T. W. Anderson. Asymptotic chi-square tests for a large class

of factor analysis models. The Annals of Statistics, 18(3):1453–1463, 1990.

Yasuo Amemiya and Wayne A. Fuller. The asymptotic distribution of some estima-

tors of a factor model. Journal of Multivariate Analysis, 22:51–64, 1987.

T. W. Anderson and Yasuo Amemiya. The asymptotic normal distribution of esti-

mators in factor analysis under general conditions. The Annals of Statistics, 16

(2):759–771, 1988.

T. W. Anderson and Herman Rubin. Statistical inference in factor analysis. In Pro-

ceedings of the Third Berkeley Symposium on Mathematical Statistics and Proba-

bility, volume 5, pages 111–150. University of California Press, 1956.

Anita Bai, Swati Hira, and P. S. Deshpande. An application of factor analysis in

the evaluation of country economic rank. Procedia Computer Science, 54:311–317,

2015.

164

Jushan Bai. Inferential theory for factor models of large dimensions. Econometrica,

71(1):135–171, 2003.

Simon Baker, Roi Reichart, and Anna Korhonen. An unsupervised model for in-

stance level subcategorization acquisition. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), pages 278–289.

Association for Computational Linguistics, 2014.

Robert Bamler and Stephan Mandt. Dynamic word embeddings. arXiv preprint

arXiv 1702.08359v2, 2017.

Oren Barkan. Bayesian neural word embedding. In Proceedings of the Thirty-

First AAAI Conference on Artificial Intelligence (AAAI-17), pages 3135–3143.

Association for the Advancement of Artificial Intelligence, 2017.

Dennis S Bernstein. Matrix Mathematics: Theory, Facts, and Formulas with Appli-

cation to Linear Systems Theory. Princeton, N.J.; Oxford: Princeton University

Press, 2005.

David M. Blei and John D. Lafferty. Correlated topic models. In Proceedings of the

18th International Conference on Neural Information Processing Systems, pages

147–154. MIT Press, 2005.

David M. Blei and John D. Lafferty. Dynamic topic models. In Proceedings of the

23rd International Conference on Machine Learning, pages 113–120. ACM, 2006.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.

Journal of Machine Learning Research, 3:993–1022, 2003.

Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of Data Science.

Cambridge University Press, 2020.

Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling: Theory and

Applications. New York: Springer, 1997.

165

John A. Bullinaria and Joseph P. Levy. Extracting semantic representations from

word co-occurrence statistics: stop-lists, stemming, and SVD. Behavior Research

Methods, 44(3):890–907, 2012.

Olivier Chapelle, Bernhard Sch olkopf, and Alexander Zien. Introduction to Semi-

Supervised Learning, pages 1–12. MITP, 2006.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual infor-

mation, and lexicography. Computational linguistics, 16(1):22–29, 1990.

Mark Davies. The Corpus of Contemporary American English as the first reliable

monitor corpus of English. Literary and Linguistic Computing, 25(4):447–464,

2010.

Mark Davies. Expanding horizons in historical linguistics with the 400-million word

Corpus of Historical American English. Corpora, 7(2):121–157, 2012.

Jan de Leeuw. Convergence of the majorization method for multidimensional scaling.

Journal of Classification, 5(2):163–180, 1988.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and

Richard Harshman. Indexing by latent semantic analysis. Journal of the American

Society for Information Science, 41(6):391–407, 1990.

Morris H DeGroot and Mark J Schervish. Probability and Statistics. Pearson Edu-

cation, 2012.

Haim Dubossarsky, Yulia Tsvetkov, Chris Dyer, and Eitan Grossman. A bottom

up approach to category mapping and meaning change. In Word Structure and

Word Usage, pages 66–70, 2015.

Haim Dubossarsky, Daphna Weinshall, and Eitan Grossman. Verbs change more

than nouns: a bottom-up computational approach to semantic change. Lingue e

linguaggio, 15(1):5–25, 2016.

166

Haim Dubossarsky, Eitan Grossman, and Daphna Weinshall. Outta control: Laws of

semantic change and inherent biases in word representation models. In Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing,

pages 1136–1145. Association for Computational Linguistics, 2017.

George H. Dunteman. Basic Concepts of Principal Components Analysis. SAGE

Publications Ltd: London, 1989.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower

rank. Psychometrika, 1(3), 1936.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi

Wolfman, and Eytan Ruppin. Placing search in context: The concept revisited.

In Proceedings of the 10th International Conference on World Wide Web, pages

406–414, 2001.

J. Kevin Ford, Robert C. MacCallum, and Marianne Tait. The application of ex-

ploratory factor analysis in applied psychology: A critical review and analysis.

Personnel Psychology, 39:291–314, 1986.

Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and Anna Korhonen.

SimVerb-3500: A large-scale evaluation set of verb similarity. arXiv preprint

arXiv:1608.00869, 2016.

Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,

Jaikit Savla, Varun Bhagwan, and Doug Sharp. E-commerce in your inbox: Prod-

uct recommendations at scale. arXiv preprint arXiv:1606.07154v1, 2016.

P. J. F. Groenen, P. Giaquinto, and H. A. L. Kiers. Weighted majorization algo-

rithms for weighted least squares decomposition models. Technical report, Econo-

metric Institute Report EI 2003-09, 2003.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and Yehuda Koren. Large-scale

learning of word relatedness with constraints. In Proceedings of the 18th ACM

167

SIGKDD international conference on Knowledge discovery and data mining, pages

1406–1414. ACM, 2012.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic word embeddings

reveal statistical laws of semantic change. arXiv preprint arXiv:1605.09096, 2016.

Johannes Hellrich and Udo Hahn. Bad company–neighborhoods in neural embed-

ding spaces considered harmful. In Proceedings of COLING 2016, the 26th In-

ternational Conference on Computational Linguistics: Technical Papers, pages

2785–2796, 2016.

Felix Hill, Roi Reichart, and Anna Korhonen. SimLex-999: Evaluating semantic

models with (genuine) similarity estimation. Computational Linguistics, 41(4):

665–695, 2015.

Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the

22nd annual international ACM SIGIR conference on Research and development

in information retrieval, pages 50–57, 1999.

Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge

University Press, 1991.

Carina Jacobi, Wouter van Atteveldt, and Kasper Welbers. Quantitative analysis

of large amounts of journalistic texts using topic modelling. Digital Journalism,

4(1):89–106, 2016.

Stefan Jansen. Word and phrase translation with word2vec. arXiv preprint

arXiv:1705.03127, 2017.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882v2, 2014.

168

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde, and Slav Petrov. Tem-

poral analysis of language through neural language models. arXiv preprint

arXiv:1405.3515, 2014.

J. B. Kruskal. Nonmetric multidimensional scaling: A numerical method. Psy-

chometrika, 29(2):115–129, 1964.

Andrey Kutuzov, Lilja Øvrelid, Terrence Szymanski, and Erik Velldal. Diachronic

word embeddings and semantic shifts: a survey. arXiv preprint arXiv:1806.03537,

2018.

Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In Proceedings

of the 52nd Annual Meeting for the Association for Computational Linguistics

(Short Papers), pages 302–308, 2014a.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factor-

ization. In Advances in Neural Information Processing Systems 27 (NIPS 2014),

pages 2177–2185, 2014b.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity

with lessons learned from word embeddings. Transactions of the Association for

Computational Linguistics, 3:211–225, 2015.

Chi-Kwong Li and Paras P. Mehta. Permutation invariant norms. Linear Algebra

and its Applications, 219:93–110, 1995.

Haixia Liu. Sentiment analysis of citations using word2vec. arXiv preprint

arXiv:1704.00177, 2017.

Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech

Zaremba. Addressing the rare word problem in neural machine translation. arXiv

preprint arXiv:1410.8206, 2014.

169

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among

languages for machine translation. arXiv preprint arXiv:1309.4168, 2013b.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In Ad-

vances in Neural Information Processing Systems 26 (NIPS 2013), pages 3111–

3119, 2013c.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with

noise-contrastive estimation. In Advances in Neural Information Processing Sys-

tems 26 (NIPS 2013), pages 2265–2273, 2013.

J. Neyman and Elizabeth L. Scott. Consistent estimates based on partially consistent

observations. Econometrica, 16(1):1–32, 1948.

Jun-Ping Ng and Viktoria Abrecht. Better summarization evaluation with word

embeddings for ROUGE. arXiv preprint arXiv:1508.06034, 2015.

W. Keith Nicholson. Linear Algebra With Applications. Lyryx, 2019.

V. Paul Pauca, Farial Shahnaz, Michael W. Berry, and Robert J. Plemmons. Text

mining using non-negative matrix factorizations. In Proceedings of the 2004 SIAM

Conference on Data Mining, pages 452–456. SIAM, 2004.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global

vectors for word representation. In Proceedings of the 2014 Conference on Em-

pirical Methods in Natural Language Processing (EMNLP), pages 1532–1543. As-

soication for Computational Linguistics, 2014.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online learning of

social representations. arXiv preprint arXiv:1403.6652v2, 2014.

170

Christopher Purdy, Xinyu Wang, Larry He, and Mark Riedl. Predicting generated

story quality with quantitative measures. In Proceedings of the Fourteenth Artifi-

cial Inteligence and Interactive Digital Entertainment Conference (AIIDE 2018),

2018.

Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. A

word at a time: computing word relatedness using temporal semantic analysis.

In Proceedings of the 20th international conference on World wide web, pages

337–346. ACM, 2011.

Juan Ramos. Using TF-IDF to determine word relevance in document queries. In

Proceedings of the first instructional conference on machine learning, pages 133–

142. Piscataway, NJ, 2003.

Alex Rosenfeld and Katrin Erk. Deep neural models of semantic shift. In Proceedings

of NAACL-HLT 2018, pages 474–484. Association for Computational Linguistics,

2018.

Erhard Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen.

I. Teil: Entwicklung willk urlicher Funktionen nach Systemen vorgeschriebener.

Mathematische Annalen, 63:433–476, 1907.

Pontus Stenetorp, Hubert Soyer, Sampo Pyysalo, Sophia Ananiadou, and Takashi

Chikayama. Size (and domain) matters: Evaluating semantic word space repre-

sentations for biomedical text. Proceedings of SMBM’12, 2012.

Marc Strickert, Frank-Michael Schleif, and Udo Seiffert. Gradients of Pearson

correlation for the analysis of biomedical data. Inteligencia Artificial. Revista

Iberoamericana de Inteligencia Artificial, 12(37):37–44, 2008.

Jun Suzuki and Masaaki Nagata. A unified learning framework of skip-grams and

global vectors. In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

171

Language Processing (Short Papers), pages 186–191. Association for Computa-

tional Linguistics, 2015.

Jun Suzuki and Masaaki Nagata. Learning compact neural word embeddings by

parameter space sharing. In Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence (IJCAI-16), pages 2046–2052, 2016.

Peter D. Turney and Michael L. Littman. Unsupervised learning of semantic ori-

entation from a hundred-billion-word corpus. arXiv preprint arXiv:cs/0212012,

2002.

Xuerui Wang and Andrew McCallum. Topics over time: a non-Markov continuous-

time model of topical trends. In Proceedings of the 12th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 424–433. ACM,

2006.

Derry Tanti Wijaya and Reyyan Yeniterzi. Understanding semantic change of words

over centuries. In Proceedings of the 2011 international workshop on DETecting

and Exploiting Cultural diversiTy on the social web, pages 35–40. ACM, 2011.

S. S. Wilks. The large-sample distribution of the likelihood ratio for testing com-

posite hypotheses. The Annals of Mathematical Statistics, 9(1):60–62, 1938.

Daniela M. Witten and Robert Tibshirani. Supervised multidimensional scaling for

visualization, classification, and bipartite ranking. Computational Statistics &

Data Analysis, 55(1):789–801, 2011.

Wei Xu, Xin Liu, and Yihong Gong. Document clustering based oon non-negative

matrix factorization. In Proceedings of the 26th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 267–273,

2003.

Dongqiang Yang and David M. W. Powers. Measuring semantic similarity in the

taxonomy of WordNet. In Proceedings of the Twenty-eighth Australasian confer-

172

ence on Computer Science, pages 315–322. Australian Computer Society, Inc.,

2005.

Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and Hui Xiong. Dynamic word

embeddings for evolving semantic discovery. In Proceedings of the Eleventh ACM

International Conference on Web Search and Data Mining, pages 673–681, 2018.

Liang-Chih Yu, Jin Wang, K. Robert Lai, and Xuejie Zhang. Refining word embed-

dings for sentiment analysis. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, pages 534–539, 2017.

Wen Zhang, Taketoshi Yoshida, and Xijin Tang. A comparative study of TF*IDF,

LSI and multi-words for text classification. Expert Systems with Applications, 38

(3):2758–2765, 2011.

173

Appendix A

Proof of the distribution of A

under the assumption that B0 is

fixed

A.1 Notation

In this section the following notation is used:

• x =
(
xT1 ,x

T
2 , ...,x

T
p

)T
: vectorized X,

• b0 =
(

(b0
1)
T
, ...,

(
b0
p

)T)T
: vectorized B0,

• b1 =
(

(b1
1)
T
, ...,

(
b1
p

)T)T
: vectorized B1,

• b =
(
bT0 , b

T
1

)T
,

• A∗: block diagonal matrix containing A repeated p times along the diagonal,

• T∗: diagonal matrix containing the vectors of times t repeated p times along

the diagonal,

• A∗∗: block diagonal matrix containing (A,TA) repeated p times along the

diagonal,

174

where xj denotes here the jth column of X and bqj denotes the jth column of Bq.

Using this notation the model under H0 is

H0 : x ∼ N
(
A∗b0, σ

2I
)
,

and under H1,

H1 : x ∼ N
(
A∗b0 + T∗A∗b1, σ

2I
)
,

or alternatively,

H1 : x ∼ N
(
A∗∗b, σ

2I
)
.

Let the estimated values of the parameters under H0 be denoted Â∗ and b̂0, and

the estimated values under H1 be Ã∗, b̃0, and b̃1. Then the likelihood ratio statistic

can be written as

−2 log Λ =
1

σ2

np∑
j=1

((
xj −

(
Â∗b̂0

)
j

)2

−
(
xj −

(
Ã∗b̃0 − T∗Ã∗b̃1

)
j

)2
)

=
1

σ2

((
x− Â∗b̂0

)T (
x− Â∗b̂0

)
−
(
x− Ã∗b̃0 − T∗Ã∗b̃1

)T (
x− Ã∗b̃0 − T∗Ã∗b̃1

))
.

The proof is divided into four sections: one when A∗, b0 and σ2 are all known;

one when just A∗ and b0 are known; one when A∗ and σ2 are known, and one when

just A∗ is known.

A.2 Case 1: A, B0, and σ2 fixed

If A∗, b0 and σ2 are fixed, then under H0 there is nothing to estimate, and under

H1 we only have to estimate b1. This is equivalent to minimizing

|| (x−A∗b0)− (T∗A∗) b1||

by least squares, and so we get

b̃1 =
(

(A∗T∗)
T A∗T∗

)−1

(A∗T∗)
T (x−A∗b0) .

Let c = x−A∗b0 and G = T∗A∗

(
(T∗A∗)

T T∗A∗

)−1

(T∗A∗)
T . Then

T∗A∗b̃1 = Gc,

175

and so the likelihood ratio statistic is

1

σ2

(
cTc− (c−Gc)T (c−Gc)

)
.

Multiplying out gives

−2 log Λ =
1

σ2

(
cTc− cTc+ cTGc+ cTGTc− cTGTGc

)
.

Now G is symmetric and idempotent, so G = GT = GTG. Thus most of the terms

cancel and we are left with

−2 log Λ =
1

σ2
cTGc.

G is np× np, but is of rank rp, so we can compute the rank-rp SVD of G and get

G = UrpΣrpV
T
rp , where Urp and Vrp are np×rp matrices with orthonormal columns,

and Σrp is an rp× rp diagonal matrix. Using G = GTG, we get

UΣV T = V ΣUTUΣV T = V Σ2V T .

Right-multiplying by V Σ−1 gives

UΣV TV Σ−1 = V Σ2V TV Σ−1,

which simplifies to

UΣΣ−1 = V Σ2Σ−1,

and then to

U = V Σ,

so G = UΣV T = UUT . Thus,

−2 log Λ =
1

σ2
cTUUTc =

(
1

σ
UTc

)T (
1

σ
UTc

)
.

Under H0,

x ∼ N
(
A∗b0, σ

2I
)
,

so

c ∼ N
(
0, σ2I

)
,

176

so

1

σ
UTc ∼ N(0,UTU).

But UTU = I, as U has orthonormal columns. So

1

σ
UTc ∼ N(0, I),

so, letting ν = 1
σ2U

Tc, we get

−2 log Λ = νTν =

rp∑
j=1

ν2
i ,

and so under H0 the likelihood ratio statistic is the sum of the squares of rp inde-

pendent Normal random variables with mean 0 and variance 1, and therefore follows

a χ2
rp distribution.

A.3 Case 2: A and B0 fixed, σ2 unknown

The F-statistic is

F =

(∑np
j=1

(
xj − (A∗b0)j

)2

−
∑np

j=1

(
xj − (A∗b0)j − (T∗A∗b1)k

)2
)
/rp(∑np

j=1

(
xj − (A∗b0)j − (T∗A∗b1)k

)2
)
/(np− rp)

.

By definition, if Y1 ∼ χ2
ν1

and Y2 ∼ χ2
ν2

, and Y1 and Y2 are independent, then

Y1/ν1
Y2/ν2

∼ Fν1,ν2 [DeGroot and Schervish, 2012].

Defining c and G as before, we get

F =
cTGc/rp

cT (I −G) c/(np− rp)
.

As shown previously, cTGc =
(
UTc

)T
UTc, where 1

σ
UTc ∼ Nrp (0, I), so 1

σ2c
TGc ∼

χ2
rp.

As G is idempotent, so is (I −G), as (I −G) (I −G) = I−G−G+G2 = I−G.

The rank of an idempotent matrix is equal to its trace Abadir and Magnus [2005],

so we get

rank (I −G) = trace (I −G) = trace(I)− trace(G) = np− rank(G) = np− rp.

177

Therefore, using the same process as for Case 1m we can write I − G = V V T ,

where V is an np× (np− rp) matrix with orthonormal columns. So

cT (I −G) c = cTV V Tc =
(
V Tc

)T
V Tc,

where V Tc ∼ Nnp−rp
(
0,V T (σ2I)V

)
, i.e.

V Tc ∼ Nnp−rp
(
0, σ2I

)
,

so

1

σ2
cT (I −G) c ∼ χ2

np−rp.

Also,

Cov(UTc,V Tc) = UT · var (c) · V = σ2UTV .

We know that

UUT + V V T = G+ I −G = I.

Multiplying all terms by UT on the left and V on the right gives

UTUUTV +UTV V TV = UTV ,

which simplifies to

UTV +UTV = UTV ,

i.e.

UTV = 0,

so

Cov
(
UTc,V Tc

)
= 0.

So, we have that cTGc and cT (I −G) c are independent χ2 random variables with

degrees of freedom rp and np− rp respectively, and so we get

(σ2)
−1
cTGc/rp

(σ2)−1 cT (I −G) c/(np− rp)
∼ Frp,np−rp

exactly. The σ2 terms cancel to give the required F statistic.

178

A.4 Case 3: A and σ2 fixed, B0 unknown

If A∗ is fixed, but not b0, then under H0 we get

b̂0 = arg min
b0

||x−A∗b0||2 =
(

(A∗)
T A∗

)−1

(A∗)
T x,

and under H1, we get

b̃ = arg min
b
||x−A∗∗b||2 =

(
(A∗∗)

T A∗∗

)−1

(A∗∗)
T x.

The likelihood ratio statistic can then be written as

−2 log Λ =
1

σ2

(
x−A∗b̂0

)T (
x−A∗b̂0

)
−
(
x−A∗∗b̃

)T (
x−A∗∗b̃

)
,

which is equal to

1

σ2
(x−Gx)T (x−Gx)− (x−Hx)T (x−Hx) ,

where G = A∗
(
AT
∗A∗

)−1
AT
∗ and H = A∗∗

(
(A∗∗)

T A∗∗

)−1

(A∗∗)
T . Hence

−2 log Λ =
1

σ2

(
xT (I −G)x− xT (I −H)x

)
=

1

σ2
xT (H −G)x,

using that (I −G) and (I −H) are both symmetric and idempotent.

Under H0, where x = Axb0 + z, this is equal to

−2 log Λ =
1

σ2
(A∗b0 + z)T (H −G) (A∗b0 + z) ,

where z ∼ N (0, σ2I).

In order to show that this follows a χ2
pr distribution, we need to show that

(H −G) is an idempotent matrix of rank pr.

We have that

H =
(
A∗ T∗

) AT
∗A∗ AT

∗ T∗A∗

AT
∗ T∗A∗ AT

∗ T
2
∗A∗

−1 AT
∗

AT
∗ T∗

 .

Using the formula [Bernstein, 2005] A B

C X

−1

=

 A−1 +A−1b (X −CA−1B)
−1
CA−1 −A−1B (X −CA−1B)

−1

− (X −CA−1B)
−1
CA−1 (X −CA−1B)

−1

 ,

179

the required inverse is equal to  Y11 Y12

Y21 Y22

 ,

where

Y11 =
(
AT

∗A∗
)−1

+
(
AT

∗A∗
)−1

AT
∗ T∗A∗

(
AT

∗ T
2
∗A∗ −AT

∗ T∗A∗
(
AT

∗A∗
)−1

AT
∗ T∗A∗

)−1

AT
∗ T∗A∗

(
AT

∗A∗
)−1

,

Y12 = −
(
AT
∗ T

2
∗A∗ −AT

∗ T∗A∗
(
AT
∗A∗

)−1
AT
∗ T∗A∗

)−1

AT
∗ T∗A∗

(
AT
∗A∗

)−1
,

Y21 = −
(
AT
∗A∗

)−1
AT
∗ T∗A∗

(
AT
∗ T

2
∗A∗ −AT

∗ T∗A∗
(
AT
∗A∗

)−1
AT
∗ T∗A∗

)−1

,

and

Y22 =
(
AT
∗ T

2
∗A∗ −AT

∗ T∗A∗
(
AT
∗A∗

)−1
AT
∗ T∗A∗

)−1

.

Letting

F =
(
AT
∗ T

2
∗A∗ −AT

∗ T∗A∗
(
AT
∗A∗

)−1
AT
∗ T∗A∗

)−1

=
(
AT
∗ T∗ (I −G)T∗A

)−1
,

this becomes (
AT
∗A∗

)−1
+
(
AT
∗A∗

)−1
AT
∗ T∗A∗FA

T
∗ T∗A∗

(
AT
∗A∗

)−1 −FAT
∗ T∗A∗

(
AT
∗A∗

)−1

−
(
AT
∗A∗

)−1
AT
∗ T∗A∗F F

 ,

and hence H is equal to

H =A∗
(
AT
∗A∗

)−1
AT
∗ +A∗

(
AT
∗A∗

)−1
AT
∗ T∗A∗FA ∗T T∗A∗

(
AT
∗A∗

)−1
AT
∗

− T∗A∗FAT
∗ T∗A∗

(
AT
∗A∗

)−1
AT
∗ −A∗

(
AT
∗A∗

)−1
AT
∗ T∗A∗FA

T
∗ T∗ + T∗A∗FA

T
∗ T∗

= G+GT∗A∗FA
T
∗ T∗G− T∗A∗FAT

∗ T∗G−GT∗A∗FAT
∗ T∗ + T∗A∗FA

T
∗ T .

Letting K = T∗A∗FA
T
∗ T∗, we get

H = G+GKG−KG−GK +K, (A.1)

180

so

H −G = GKG−KG−GK +K

= (G− I)KG− (G− I)K

= (G− I) (KG−K)

= (G− I)K (G− I)

= (I −G)K (I −G) .

As I −G is idempotent, we get,

((I −G)K (I −G)) ((I −G)K (I −G)) = (I −G)K (I −G)K (I −G) .

But

K (I −G)K =
(
T∗A∗

(
AT
∗ T∗ (I −G)T∗A∗

)−1
AT
∗ T∗

)
× (I −G)

(
T∗A∗

(
AT
∗ T∗ (I −G)T∗A∗

)−1
AT
∗ T∗

)
=
(
T∗A∗

(
AT
∗ T∗ (I −G)T∗A∗

)−1
AT
∗ T∗

)
= K,

so we get

((I −G)K (I −G))2 = (I −G)K (I −G) ,

and so H −G is idempotent.

Alternatively, we can see this using

(H −G) (H −G) = H −HG−GH +G.

Using Equation A.1, we get that

HG = (G+GKG−KG−GK +K)G = G+GKG−KG−GKG+KG = G,

and

GH = G (G+GKG−KG−GK +K) = G+GKG−GKG−GK+GK = G.

So

(H −G) (H −G) = H −G−G+G = H −G,

181

so H −G is idempotent.

As H is of rank 2pr and G is of rank pr, H −G must have rank pr, as

rank (H −G) = trace (H −G) = trace (H)− trace (G) = rank (H)− rank (G) .

Also, using x = A∗b0 + z, where z ∼ N (0, σ2I) under H0, we get

(I −G)x =
(
I −A∗

(
AT
∗A∗

)−1
AT
∗

)
(A∗b0 + z)

=
(
A∗b0 + z −A∗b0 −A∗

(
AT
∗A∗

)−1
AT
∗ z
)

= (I −G) z,

so (H −G)x = (I −G)K (I −G)x = (I −G)K (I −G) z = (H −G) z. There-

fore,

xT (H −G)x = zT (H −G) z = zTWW Tz,

where W is an np× rp matrix with orthonormal columns. So, under H0,

−2 log Λ =
1

σ2
xT (H −G)x ∼ χ2

rp.

A.5 Case 4: A fixed; B0 and σ2 unknown

From the previous section, we know that

1

σ2

(
np∑
j=1

(
xj − (A∗b)j

)2

−
∑
j

(
xnpj=1 − ((A∗ T∗A∗) b)j

)2
)

=
1

σ2
xT (H −G)x ∼ χ2

rp,

and that

1

σ2

np∑
j=q

(
xj − ((A∗ T∗A∗) b)j

)2

=
1

σ2
xT (I −H)x,

where H is an idempotent matrix of rank 2rp. Since H is idempotent, I − H

is an idempotent matrix of rank rank(I) − rank(H) = np − 2rp. Substituting

H = (I −G)K (I −G) +G and using (I −G)x = (I −G) z gives:

(I −H)x = (I − (I −G)K (I −G)−G)x

= (I − (I −G)K) (I −G)x

= (I − (I −G)K) (I −G) z

= (I −H) z,

182

so

(I −H)x ∼ Nnp−2rp

(
0, σ2I

)
,

and so

1

σ2
xT (I −H)x ∼ χ2

np−2rp.

Also

Cov ((H −G)x, (I −H)x) = (H −G)σ2I (I −H)

= σ2 (H −G) (I −H)

= σ2
(
H −H2 −G+GH

)
= 0,

as H2 = H and GH = G, as shown previously. So the two distributions are

independent, and thus,

F =
xT (H −G)x/rp

xT (I −H)x/(np− 2rp)
∼ Frp,np−2rp.

183

Appendix B

Derivation of majorizing functions

for MDS

B.1 Euclidean distance

In this section we show that

g(B, B̃) = η2
δ + tr

(
BTY B

)
− 2 tr

(
BTH(B̃)B̃

)
is a majorizing function of the objective

LMDS(B) =
∑
i<j

wij(δij − ||bi − bj||)2.

Write

LMDS(B) =
∑
i<j

wij (δij − ||bi − bj||)2

=
∑
i<j

wijδ
2
ij +

∑
i<j

wij||bi − bj||2 − 2
∑
i<j

wijδij||bi − bj||

= η2
δ + η2(B)− 2ρ(B),

where η2
δ =

∑
i<j wijδ

2
ij, η

2(B) =
∑

i<j wij||bi − bj||2, and ρ(B) =
∑

i<j wijδij||bi −

bj||.

To show that g is a majorizing function of LMDS, we need to show that (i)

LMDS(B) ≤ g(B, B̃) for all B and B̃; and (ii) LMDS(B̃) = g(B̃, B̃).

184

First, we rewrite the expressions η2(B) and ρ(B) to get them in a more conve-

nient form. Since η2
δ is constant in B, we can ignore it for now.

For η2(B), we note that for each (i, j) pair, we can rewrite ||bi − bj||2 as

||bi − bj||2 = tr
(
BTYijB

)
,

where Yij is an n×n matrix with its iith and jjth elements equal to 1, its ijth and

jith elements equal to −1, and all other entries equal to 0. Thus we get

η2(B) =
∑
i<j

wij||bi − bj||2 =
∑
i<j

wij tr
(
BTYijB

)
=
∑
i<j

tr
(
BT (wijYij)B

)
= tr

(
BTY B

)
,

where Y =
∑

i<j wijYij, and hence has elements

yij =


∑n

k=1,k 6=iwik if i = j,

−wij otherwise.

Hence η2(B) is a quadratic function of B.

For ρ(B), we use the Cauchy-Schwarz inequality

r∑
k=1

pkqk ≤

(
r∑

k=1

p2
k

)1/2(r∑
k=1

q2
k

)1/2

.

Substituting pk and qk with (bik − bjk) and (b̃ik − b̃jk) gives

r∑
k=1

(bik − bjk)(b̃ik − b̃jk) ≤

(
r∑

k=1

(bik − bjk)2

)1/2(r∑
k=1

(
b̃ik − b̃jk

)2
)1/2

= ||bi − bj|| · ||b̃i − b̃j||.

If ||b̃i − b̃j|| 6= 0, we can rearrange this to get

−||bi − bj|| ≤ −

∑r
k=1 (bik − bjk)

(
b̃ik − b̃jk

)
||b̃i − b̃j||

.

185

If ||b̃i − b̃j|| = 0, we cannot do this since the right-hand side of the inequality

will be undefined. However, since ||bi − bj|| must be non-negative, we know that

−||bi − bj|| ≤ 0. Defining Yij as before, we can write

r∑
k=1

(bik − bjk)
(
b̃ik − b̃jk

)
= tr

(
BTYijB̃

)
,

and combining the previous two equations gives

−ρ(B) = −
∑
i<j

wijδij||bi − bj|| ≤ −
∑
i<j

tr

(
BT

(
wijδij

||b̃i − b̃j||
Yij

)
B̃

)

= − tr
(
BTH(B̃)B̃

)
,

where the ijth element of H(B̃) is

hij =


− wijδij

||b̃i−b̃j ||
if i 6= j and ||b̃i − b̃j|| 6= 0,

0 if i 6= j and ||b̃i − b̃j|| = 0,

−
∑n

k=1,k 6=i bik if i = j.

Thus, we get

−ρ(B) = − tr
(
BTH(B)B

)
≤ − tr

(
BTH(B̃)B̃

)
,

with equality if B = B̃; and so

LMDS(B) = η2
δ + η2(B)− 2ρ(B) ≤ g(B, B̃),

with equality if B = B̃.

B.2 Inner product

In this section we outline a proof (from [Groenen et al., 2003]) that

g
(
B, B̃

)
= m

∑
i,j

(
rij − bTi bj

)2
+ wij

(
1− wij

m

)(
dij − b̃Ti b̃j

)2

is a majorizing function of

LMDS (B) =
∑
i,j

wij
(
δij − bTi bj

)2
. (B.1)

186

Let eij = δij − bTi bj. Let ẽij = δij − b̃Ti b̃j for some B̃. Let m = maxi,j{wij}.

Then,

wij (eij − ẽij)2 ≤ m (eij − ẽij)2 ,

and so

wije
2
ij − 2wijeij ẽij + wij ẽ

2
ij ≤ me2

ij − 2meij ẽij +mẽ2
ij.

Thus,

wije
2
ij ≤me2

ij − 2meij ẽij + 2wijeij ẽij − wij ẽ2
ij +mẽ2

ij

= me2
ij − 2meij

(
1− wij

m

)
ẽij + 2m

(
1− wij

m

)
ẽ2
ij

= m
(
e2
ij − 2eij

(
1− wij

m

)
ẽij

)
+m

(
1− wij

m

)
ẽ2
ij

= m
(
eij −

(
1− wij

m

)
ẽij

)2

−m
(

1− wij
m

)2

ẽ2
ij +m

(
1− wij

m

)
ẽ2
ij

= m
(
eij −

(
1− wij

m

)
ẽij

)2

+ wij

(
1− wij

m

)
ẽ2
ij.

Then,(
eij −

(
1− wij

m

)
ẽij

)2

=
((
δij − bTi bj

)
−
(

1− wij
m

)(
δij − b̃Ti b̃j

))2

=
(
δij − bTi bj − δij + b̃Ti b̃j +

wij
m
δij −

wij
m
b̃Ti b̃j

)2

=
((

1− wij
m

)
b̃Ti b̃j +

wij
m
δij − bTi bj

)2

=
(
rij − bTi bj

)2
,

where rij =
(
1− wij

m

)
b̃Ti b̃j +

wij

m
δij.

Thus,∑
i,j

wij
(
δij − bTi bj

)2
=
∑
i,j

wije
2
ij

≤ m
∑
i,j

(
rij − bTi bj

)2
+ wij

(
1− wij

m

)(
dij − b̃Ti b̃j

)2

= g
(
B, B̃

)
.

The second part of g
(
B, B̃

)
is constant in B, depending only on B̃. The first

part is an unweighted least-squares problem, solvable via SVD. Also, if B = B̃, and

187

hence eij = ẽij for all i, j,

g
(
B̃, B̃

)
= m

∑
i,j

(
rij − zTi zj

)2
+ wij

(
1− wij

m

)
ẽ2
ij

=
∑
i,j

m
(
ẽij −

(
1− wij

m

)
ẽij

)2

+ wij

(
1− wij

m

)
ẽ2
ij

=
∑
i,j

m
(wij
m

)2

ẽ2
ij + wij

(
1− wij

m

)
ẽ2
ij

=
∑
i,j

(
w2
ij

m
+ wij −

w2
ij

m

)
ẽ2
ij

=
∑
i,j

wij ẽ
2
ij

= LMDS

(
B̃
)
,

so g
(
B, B̃

)
is a majorizing function of LMDS (B).

188

	Abstract
	Introduction
	Definitions & notation
	Datasets
	Contributions of the thesis
	Overview of thesis

	Literature review
	Word embeddings via Singular Value Decomposition
	Quantifying performance of word embeddings
	Word embedding methods
	Topic modelling
	Probabilistic Latent Semantic Indexing
	Latent Dirichlet Allocation
	Correlated Topic Model
	Non-Negative Matrix Factorization
	Skip-Gram with Negative Sampling
	Global Vectors
	Positive Pointwise Mutual Information
	Singular Value Decomposition

	Practical considerations
	Choosing the embedding dimension
	Word choice and preprocessing

	Time-dependent word embeddings
	Time-dependent topic modelling
	Other time-dependent word embedding methods

	Factor analysis
	Multidimensional scaling
	The majorization algorithm
	Stochastic gradient descent
	Non-metric MDS
	Link between GloVe and MDS

	Datasets

	Non-identifiability of word embeddings
	Introduction
	Non-identifiability of word embeddings
	LSA
	GloVe
	SGNS

	Assessing performance of word embeddings
	Word similarity tasks
	Word analogy tasks
	Incompatibility between invariances of f and g

	Addressing identifiability
	Imposing identifiability conditions
	Optimizing over UT+ (r)

	Conclusion

	Semi-supervised word embeddings
	Motivation
	Introduction
	Multidimensional scaling
	MDS with inner product

	Semi-supervised word embeddings with MDS
	Identifiability
	Optimizing the objective function
	Majorization
	Stochastic Gradient Descent

	Results
	Optimization via Majorization and Stochastic Gradient Descent
	Implementation on subset of COHA

	Conclusion

	Dynamic word embeddings: Testing for time dependence
	Motivation
	Introduction
	Dynamic LSA model
	Identifiability
	Properties of the dynamic model

	Extensions
	Factor model

	Developing testing framework
	Set-up
	The test statistic under the dynamic model
	Testing on COHA
	Eigenvalues
	Choice of embedding dimension
	Invariance of the test

	Conclusion

	Conclusion
	Bibliography
	Appendix Proof of the distribution of A under the assumption that B0 is fixed
	Notation
	Case 1: A, B, and s fixed
	Case 2: A and B0 fixed, s unknown
	Case 3: A and s fixed, B0 unknown
	Case 4: A fixed; B0 and s unknown

	Appendix Derivation of majorizing functions for MDS
	Euclidean distance
	Inner product

