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Abstract

This thesis considers the allocation of patrolling resources deployed in an effort
to thwart intelligent attackers, who are committing malicious acts at unknown
locations which take a specified length of time to complete. This thesis considers
patrolling games which depend on three parameters; a graph, a game length and
an attack length. For patrolling games, the graph models the locations and how
they are connected, the game length corresponds to the time-horizon in which
two players, known as the patroller and attacker, act and the attack length is
the time it takes an attacker to complete their malicious act. This thesis de-
fines patrolling games (as first seen in [16]) and explains its known properties
and how such games are solved. While any patrolling game can be solved by a
linear program (LP) when the number of locations or game length is small, this
becomes infeasible when either of these parameters are of moderate size. There-
fore, strategies are often evaluated by knowing an opponent’s response and with
this, patroller and attacker strategies give lower and upper bounds on the opti-
mal value. Moreover, when tight bounds are given by strategies these are optimal
strategies. This thesis states known strategies giving these bounds and classes
for which patrolling games have been solved. Firstly, this thesis introduces new
techniques which can be used to evaluate strategies, by reducing the strategy
space for best responses from an opponent. Extensions to known strategies are
developed and their respective bounds are given using known results. In addition
we develop a patroller improvement program (PIP) which improves current pa-
troller strategies by considering which locations are currently under performing.
Secondly, these general techniques and strategies are applied to find solutions to
a certain class of patrolling games which are not previously solved. In particu-
lar, classes of the patrolling game are solved when the graph is multipartite or
is an extension of a star graph. Thirdly, this thesis conjectures that a developed
patroller strategy known as the random minimal full-node cycle is optimal for
a large class of patrolling games, when the graph is a tree. Intuitive reasoning
behind the conjecture is given along with computational evidence, showing the
conjecture holds when the number of locations in the graph is less than 9. Finally,
this thesis looks at three extensions to the scenario modelled by the patrolling
game. One extension models varying distances between locations rather than as-
suming locations are a unitary distance apart. Another extension allows the time
needed for an attacker to complete their malicious act to vary depending on the
vulnerability of the location. For the final extension of multiple players we look
at four variants depending on how multiple attackers succeed in the extension.
In each extension we find some properties of the game and show that it possible
to relate extensions to the classic patrolling game in order to find the value and
optimal strategies for certain classes of such games.
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Chapter 1

Introduction

In this introduction, we provide our motivation behind studying the ideas of ‘Al-
locating patrolling resources to effectively thwart intelligent attackers’ in order to
prevent security issues from arising in a multitude of scenarios. We then provide
an overview of the content which is presented in this thesis, which will focus on
patrolling games from [16], the content of which is primarily focused on analyt-
ical solutions to such games. Finally this chapter contains a literature review,
explaining various models which have some resources to allocate/control in order
to find, stop or capture another resource. Our literature review concludes with a
summary of past work on patrolling games; with the mathematical background
to patrolling games taking place in chapter 2.

1.1 Motivation

Security is becoming an ever-increasing problem in today’s fast developing so-
ciety. Threats to the public are created in various ways, from physical acts of
terror to cybercrime and technological breaches exposing confidential informa-
tion. Terrorism has become an increasing threat within the 21st century, all over
the world. Extremists, varying in their opinions and religion, often feel that an
act of terror will help convey their beliefs. Unfortunately, these acts mainly target
innocent civilians in differing numbers. However, a terror attack even injuring
one civilian, is one injury and one terror attack too many. Terror attacks are
not specific to countries, nationalities, gender or economic status, leaving every-
one in the world susceptible to possible attacks. One of the most memorable
terror attacks occurred on the 11th September in 2001 in New York and other
locations in the United States. The twin towers; the North and South building
of the World Trade Centre, were crashed into by two commercial airliners. This
devastating act killed nearly 3,000 people including 19 hijackers involved in the
attack ([32]). Not only that, 6,000 people were injured, and the clean-up of the
horrific crash-site took a year to complete ([111]). This resulted in global shock
and many nations offered their support and solidarity. To this day, this attack
has never been forgotten and has left an ever-lasting impression. Terrorism and
their attacks have occurred throughout history but continue to this day. More
recently in 2017, a suicide bomber blew up the Manchester Arena in the United
Kingdom, during Ariana Grande’s music concert. This particular event killed 22
innocent people, including many children and young adults, as well as injuring
over 800 people ([133],[80]). As stated earlier, terror attacks do not only effect

1



CHAPTER 1. INTRODUCTION 2

developed countries. Many non-developed countries are also subject to terror
attacks ([131]); however, they are often less reported in the media. In Kajuru,
Nigeria on the 11th February in 2019, 141 innocent civilians were killed following
an attack on an Adara settlement. The frequency of terror attacks in recent years
have elevated concerns of attacks on personal and national safety across the globe.

Physical acts of terror are not the only threat that people, businesses or gov-
ernments need to be protected from. As technological advances are developing
each year, threats and attacks of a cyber nature are becoming increasingly more
prevalent. With more and more information being stored online from bank de-
tails to addresses, this type of information is attractive to cyber-attackers and
hackers. Not only is public personal data at risk from being used in online scams,
much more delicate technological information is at risk from being taken. Military
strategies and weaponry information/deployment are often coordinated and con-
trolled by computer programs. Because of attackers who aim to steal extremely
sensitive, confidential and powerful information, it is vital that this information
and computer code are protected.

To ensure the physical safety of populations, parliaments and data, nations must
increase their security efforts to prevent and catch any potential attacks. This
includes a number of preventative interventions including technology detectors
in airports for explosive devices to advanced coding and online data protection.
Physical protection of patrolling security personnel often increases the feel of
protection for the public as well as forming a physical barrier for terrorists to
contend with.

Safety and security are a crucial part of infrastructure to enable the protection
of all humans and their information and valuables. When security is mentioned,
the usual thought is the policing and protection of human beings, such as the
security of concerts, festivals and conventions. However, security can be applied
to multiple scenarios that do not just relate to the protection of human life. These
strategies can be used to monitor and protect wildlife, particularly endangered
species in regions that are susceptible to poachers. These situations may use
either stationary or mobile camera monitoring systems and alarms to signify
when, for example, poachers enter a particular area, alerting rangers to the area
of potential danger. Alongside these uses, security and policing strategies can be
used to monitor and protect buildings of interest such as museums which contain
objects of historic and monetary value. These scenarios will also use monitoring
systems and motion detectors to alert security of any adversaries entering the
building.

These situations can be modelled using mathematical models to provide us with
the most optimal methods of patrolling considering a number of parameters. A
real-life situation that has been implemented in Los Angeles airport (LAX), is the
Assistant for Randomised Monitoring over Routes (ARMOR). The three main im-
portant characteristics of ARMOR are that it: 1) can provide quality guarantees
in randomisation by appropriately weighing the damages and benefits of multiple
options i.e. choosing to protect fatalities over economic damage, 2) addresses the
uncertainty and limited information that policing and security departments have
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on potential adversaries and 3) enables a mixed-initiative interaction with poten-
tial users as ARMOR may be unaware of users’ real-world constraints and hence
users must be able to contribute to the schedule ([112]). Following a successful
six month trial of ARMOR at LAX, it was permanently installed and is still used
to this present day ([128]).

1.2 Overview of thesis content

In section 1.3, we provide a literature review which covers an overview of work
related to allocating a moving resource (often called a searcher) in an effort to
find other entities which may or may not want to be found. The literature review
contains works distantly and closely related to patrolling games, which this thesis
focuses on, but all of which have security applications in which similar techniques
and strategies are used to allocate a model’s resources. In all cases the main aim
is to solve the game by finding optimal strategies and the optimal value.

Concluding the literature review we provide a short explanation of what a pa-
trolling game is and why the game was developed. Following this, chapter 2
provides a detailed mathematical background (using some new notation) to the
work seen in [16]. In this chapter we define the patrolling game G(Q, T,m),
which is a two-player, zero-sum, simultaneous game with a mobile patroller mov-
ing around a graph to find an immobile attacker. In particular we define pure and
mixed strategies for both players and the payoff using such strategies result in.
We see why the game has an optimal value (and Nash equilibrium) when mixed
strategies are included and state methods that can be used to solve patrolling
games. For developed strategies we state their performance and conclude chapter
2 by stating for which classes (sets of parameters) the patrolling game G(Q, T,m)
has been solved. For a particular strategy called the diametric attacker strategy
we show that the lemma stated in [16] is incorrect. We find the performance of
the diametric strategy, and thus correct the lemma, in chapter 3.

In chapter 3 we provide some results which ease the computation needed for
finding the performance of an attacker strategy by reducing the set of pure pa-
troller strategies which are considered. We then develop some more generalised
strategies for both players by extending some previously studied strategies. Of
particular importance is the development of a random minimal full-node cycle
strategy πQRMFNC which provides a ‘Hamiltonian like’ bound for non-Hamiltonian
graphs by visiting nodes at constant time intervals. We then look precisely at
the performance of the this strategy at different nodes to find when the strategy
performs weakly. This is followed by the development of the patrol improvement
program(PIP) which can be used to improve a patroller strategy given a finite set
of other patroller strategies. Chapter 3 is then concluded by using our developed
techniques and strategies to solve the patrolling game G(Q, T,m) when Q is a
k-partite graph, focusing mainly on the case that the graph has all possible edges
(complete k-partite graph), but with acknowledgements to when our strategies
are optimal when only certain edges are present in the graph.



CHAPTER 1. INTRODUCTION 4

In chapter 4 we apply our techniques and strategies seen in chapter 3 to patrolling
games when the graph is an extended star graph. Namely, we study the patrolling
game when the graph is the elongated star graph Skn which is constructed by
placing a star graph Sn−1 at the end of a line graph Lk+2. This graph in the
patrolling game means we can consider how a border with a location at one end
should be patrolled. In doing so we develop bespoke strategies that are only
applicable for the elongated star graph. A more generalised star graph is then
studied, in which multiple borders are connected by a single central hub location,
for which we find that the random minimal full-node cycle strategy πQRMFNC is
optimal for a certain range of attack lengths. In addition the generalised star
graph is used to model a central hub with cities at various distances away from
the hub. However we find that it is better to model distances as later done in
chapter 6 rather than use such a patrolling game with a generalised star graph.

In chapter 5 we consider patrolling games on any tree Q, meaning bespoke strate-
gies cannot be created. We state optimal strategies for the game G(Q, T,m) when
m = 2 and conjecture about the optimality of the random minimal full-node cycle
strategy πQRMFNC, providing intuitive reasoning and computer testing as evidence
that our conjecture holds. In addition, we mention under what conditions it is
possible to adapt the solutions when the graph Q is not a tree.

In Chapter 6 we do not study the ‘classic’ patrolling game G(Q, T,m), but we
extend the patrolling game in order to model three different scenarios, further con-
sidering four payoff variations for one of the scenarios. Namely we add distances
onto edges in G(Q,D, T,m), we allow for vulnerable locations to be modelled
by making one parameter depend on the node in G(Q, T,m) and finally we pro-
vide four multiplayer variants where we there are k patrollers and l attackers in
Gi(k, l, Q, T,m) for i = 1, 2, 3, 4. For each extension we provide some general
results and solve some particular classes of games by utilising work done for the
classic patrolling game. Importantly for games with multiple attackers, we show
that it is possible to reduce the problem of finding the collective attacker strategy
to finding individual strategies for three of the four extensions.

The main findings of this thesis are concluded in chapter 7, which discusses the
implications of our significant results, as well as suggesting areas in which future
work could be carried out.

1.3 Literature review

While the main focus of this thesis is the patrolling game G(Q, T,m) (as in [16]),
we provide an overview of the work done on allocating an agent in a security
setting when searching is involved. The following provides an overview of search
theory and search games, including some variants, before reviewing applications
and finally concluding with a recent variant, the patrolling game, which forms
the main focus of this thesis.



CHAPTER 1. INTRODUCTION 5

1.3.1 Search theory

Early work considering the allocation of a searching agent focused on the problem
of finding the optimal probability distribution, of effort, at locations in order to
detect a target ([127]). A Bayesian approach was used, assuming a prior distri-
bution for the list of locations of the target is known to the agent along with
some conditional detection probabilities for detecting the target given the level of
effort. This problem is one-sided as only the agent is allowed to choose how to al-
locate effort. Optimal distributions of effort against a stationary target are known
when the conditional probability distribution for detecting a target is exponen-
tial ([86]). The exponential condition is generalised allowing for any stationary
non-decreasing function of conditional probability of detection ([44]), where sta-
tionary was defined to mean that the density function is a function of the total
effort level, regardless of how it is applied. The difference between stationary
and non-stationary conditional dectection probabilities, when the serach is split
into multiple parts is also discussed. This gives rise to solutions for maximal
performance for a given effort, when the conditional detection probability is a
function of the density of effort applied in that part, independent of that applied
in previous parts ([49]). The problem was also reformulated as a convex program-
ming optimization ([35]). The related problem, of minimizing the effort required
to obtain a chosen performance level (the probability of the searcher finding the
target) was solved ([43]). Necessary and sufficient conditions on the existence of
solutions were found for the optimization problems considered above ([147]).

While the above work focuses on a continuous distribution for the target’s loca-
tion, work was also done with discrete distributions. In most discrete problems
the objective is one of minimizing the time or cost to find the target, requiring
the optimal solution to be function of time, as well as a function of position. The
minimum time to find a target in one of n boxes is solved when the probability
of the target appearing in the ith box is known, with the time of its appearance
being uniform over a large interval ([29]). A modified version of this game was
studied in which objects arrive randomly to boxes, according to a Poisson process,
with the objective now to maximize the gain, an non-increasing function of time
and detection combined with the cost of scanning a box ([30]). Later the cost of
switching between two boxes is studied ([69]) and the idea of a cost related to the
distance between boxes is introduced ([72]). The idea of false detections are also
considered in certain setups ([114]). While it not necessary for problems to have a
periodic solution, it may be more applicable to real world applications and hence
has been studied, with conditions for the existence of a periodic solution to the
minimum cost problem being found ([98]). Rather than considering boxes in a
line, it is possible to model a continuous line in which the objective is to minimize
the expected distance traveled in order to find the target ([57]). Applications of
the above results can be seen applied to communication synchronization ([73]),
machine testing ([56],[71]) and locating lost satellites ([116]), which involved a
two-stage search procedure.

While so far all work in search theory has considered an immobile target, it was
seen to be of great interest to make the target mobile. A simple model for a
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moving target is one who moves in a Markovian fashion between boxes. In the
special case of two boxes an optimal solution was given, and an approximate
solution in the general case was also stated ([115]). From the solution to the
two box case, it was clear that solutions to extensions would be difficult. So an
extension into a continuous time model was done, finding the optimal solution
for two boxes which seemed easier to generalise to n boxes ([50]). This can also
be modeled as a partially observable Markov decision process over a finite time
horizon ([126]). The FAB (Forward And Backward) algorithm was developed to
produce search strategies which are at least as good as their predecessor, in turn
giving necessary and sufficent conditions for optimality ([33],[141]).

An optimal search on a continuous, possibly unbounded, line region was suggested
in [28], called the linear search problem. This problem has a mobile searcher and
an immobile target, who is distributed along the line according to a probability
distribution. While the general problem remains unsolved, for a discrete dis-
tribution dynamic programming can be used to produce a solution ([34]). An
approximate solution can be found for any probability distribution to any desired
accuracy level, at the cost of increasing computational time ([13]).

The above considers a moving target in a one-sided search, when only the agent
is searching for a target and the target is not controlled by a malicious entity but
is moving according to nature. However in a (two-sided) search game, the use of
game theory becomes relevant, as in addition to a player controlling the agent,
another player controls the target. In such setups both players are considered
to be intelligent, and so this is much more useful in modelling military security.
As the origins of search theory began during World War II in the Navy’s Anti-
Submarine Warfare Operations Research Group(ASWORG), the two-sided search
game provides a better model against an equally considerate enemy.

1.3.2 Search game

The search game was initially introduced in [78], developed in [60] and updated
in [13]. A search game is a two-player, zero-sum game which is characterised by
a search space Q. The search space is assumed to be either a compact Euclidean
space or an unbounded connected set, with an area µ. The searcher usually
starts from a specified point called the origin O , but choosing the starting point
is considered in some works. The searcher chooses some trajectory S inside the
search space, with a velocity, usually constrained to be 1 under a normalization.
The hider can be immobile or mobile, choosing a location or trajectory H. Neither
player has any information about the other until they are within a capture radius
r, of each other in which case the searcher captures the hider. For one-dimensional
sets (such as graphs) this radius is usually considered to be zero. Search and hider
trajectories (or simply a location for an immobile hider) give a payoff function
p(S,H), equivalent to the time taken for the searcher, using S, to find the hider,
using H. Mixed strategies consists of players choosing a randomization among
all possible trajectories (or locations for a immobile hider), denoted s and h for
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the searcher and hider respectively. So the payoff/expected search time becomes

p(s, h) =

∫
p(S,H)d(s× h).

The value of the game V , is the minimum search time required for a searcher to
find a hider, and its existence is given in [60] (and [12]).

Considered first was an immobile hider. In any two-dimensional convex region (a
weaker condition is available in [60]) the searcher has to find a closed curve that
covers all points of the region, in the sense that all points in the regions are within
the capture radius r at some point along the curve. The length of this covering
curve can be found to be less than (1 + ε) µ

2r
where ε → 0 as r → 0. Therefore

by encircling this curve equiprobably in each direction the searcher ensures an
expected search time of roughly µ

4r
. By using a uniform hiding distribution the

hider can achieve the same exptected search time. Hence the value is asymptotic
to a quarter of the ratio between the area and capture radius, i.e. V ∼ µ

4r
([60]).

Linking with the linear search problem ([28]), the linear search game is considered,
which deals with a region which is unbounded ([26]). To have a meaningful game,
they require the hider’s location distribution to be limited to λ from the origin.
They assume the game is sequential with the hider picking a strategy to maximize
the search time followed by a searcher picking a strategy to minimize it, called a
minimax game. They show that the minimax trajectory is to oscillate around the
origin, guaranteeing capture by at most a search time of 9λ. However the optimal
search does not depend on the hider’s restriction of λ ([26]). An alternative
approach was used, without the restriction on the hider, but with a payoff that is
normalized by the distance between the hider and the origin ([58]). This is now
commonly refered to as the competitive ratio ([31]).

The idea of a minimax solution is often used for unbounded domains. A minimax
search trajectory for a homogeneous unimodal hider function is always a geo-
metric sequence for discrete problems and an expoential function for continuous
problems ([63]). This result was developed into a general tool. In order to find
the minimax trajectory one need only minimize a simple function over a single
parameter (the generator of the sequence) instead of the entire trajectory space
([60]). Geometric trajectories are useful in other fields in order to obtain effective
algorithms, such as, bidding, minimum latency tours, scheduling and clustering
([38]). In these areas a ‘doubling’ method is used, essentially using geometrically
increasing estimates on an optimal solution in order to produce fragments of the
algorithm’s optimal solution ([37]). We note that we use a ‘doubling’ idea in
chapter 4, section 4.2.10, in order to adapt strategies.

An important extension to the linear search game is the star search game, a
problem on M ≥ 2 unbounded rays. A periodic trajectory, visiting every ray
every M th time, with a montone-increasing step size was found to be optimal
([58]) using the general tools for minimax search trajectories ([60]). Contrasting
the pure strategy case, as the optimality proof applied only to strategies which use
periodic and monotone trajectories ([81]). Further extensions have been consider
such as a bound on the distance from the origin λ ([96]) and when there are
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mutliple searchers ([97]). These extensions find the competitive ratio for the
game.

When the search space Q is a finite connected graph with edges being of a pre-
scribed length, the area µ is the total length of the distances associated with
edges. A pure strategy for the searcher is a walk in the graph S = S(t), satisfying
a unit speed condition. The search time is p(S,H) = min{t | S(t) = H}. It is
easy to see by the hider choosing a location uniformly hUni that the value of the
game V ≥ µ

2
. This follows because any walk S(t) has a unit discovery rate so

Pr(p(S, hUni) ≥ t) ≥ 1− t
µ

and thus E[p(S, hUni)] ≥ µ
2

([60]).

When considering a fixed starting position for the searcher, a natural way to
search the graph is to use a Chinese Postman Tour(CPT) ([54]), that is a closed
walk which visits all edges with minimal length. Immediately if the graph Q
is Eulerian the walk can choose any Eulerian tour SEul(t) for 0 ≤ t ≤ µ, using
the forward direction and backwards direction with equal probability (backwards
tour is SEul(µ − t) for 0 ≤ t ≤ µ). Following this strategy ensures V ≤ µ

2
and

hence it follows that V = µ
2

for all Euluerian graphs. Furthermore this only
holds for Eulerian graphs ([60]). For non-Euluerian graphs the strategy uses the
random CPT, with such a strategy being optimal if and only if the graph is weakly
Eulerian (a tree-like graph connecting Eulerian subgraphs) ([62]). In which case
the optimal hider strategy is constructed by a recursive algorithm. When a graph
is not weakly Eulerian the solution becomes very complicated ([109]). In general
finding the optimal solution to the search game on a graph with an immobile
is NP-hard ([138]). However if the search time is limited, logarithmically to the
number of nodes, the optimal strategy can be found in polynomial time. The game
can also be formulated as an infinite dimension linear program, so approximate
solutions can be found ([18]).

While the search game assumes players have a knowledge of the graph, it is
not necessary, but such a lack of knowledge costs the searcher a great deal of
optimality. A normal depth-first method, commonly used in computer-science,
was used and mistakenly claimed to be guaranteed to have a search time of
µ ([17]). It was later found to actually have a guaranteed search time of 2µ
([64]), and then under a randomization of the depth-first search was able to
achieve the original guaranteed search time for the searcher of µ ([64]), showing
the importance of a correct randomization for mixed strategies.

Work on an arbitrary starting position has been done, using a walk related to
the CPT, called the Chinese Postman Path(CPP), which visits all nodes of the
graph Q and has minimal length. A ‘Simple’ strategy was developed by using
the CPP with the searcher starting at each end with equal probability and then
going to the other end. If the CPP is a Eulerian path (a Eulerian tour without
the requirement to be closed) then this ‘Simple’ strategy is optimal, giving an
optimal search time of µ

2
([42]). While this case is easy to understand it turns

out the ‘Simple’ startegy is optimal for trees with an arbitrary start point ([42]).
This work was extended to have multiple Eulerian graphs connected by a tree,
where ‘Simple’ is still optimal ([5]). In a contradiction to the to the result of
the fixed start serach game, it has been shown that graphical characteristics for
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which ‘Simple’ is optimal are impossible to classify ([7]).

1.3.3 Serach game variants

Having a mobile hider has also been considered. The princess and monster game is
considered the most general form of the limited information problem of a mobile
hider (the princess) and a mobile searcher (the monster). Played in a search
space both players move along continuous paths, with the monster capturing the
princess if they get some fixed distance apart. The objective of the game for the
monster is to minimize the time until capture and for the princess it is to maximize
the time until capture, making the game zero-sum ([78]). Under the condition
that the search space is convex an optimal solution was given and the optimal
performance of the princess and monster game is related to the ratio between the
size of the search space and the distance at which the monster catches the princess,
for small distances ([59]). Later it was found that a much weaker condition
was needed for optimality ([60]). The optimal strategy found for princess is
interesting, as it has the princess go to a location, wait for a period of time which
is not too short but not too long and then repeat this process. The corresponding
optimal search strategy for the monster is to subdivide the region into many
narrow rectangles, searching one and then after some time moving to another
rectangle ([59],[13]). This strategy is not robust and an optimal strategy for the
monster which is more robust was developed which has the monster ‘bounces’
between boundaries ([89]). Such a strategy is robust to partial information, as
even if the princess’ position is known then the monster is unable to predict the
princess’s course for very long. However such a strategy is only effective in convex
search region. The original strategy is effective for non-convex regions and can
be easily adapted to general problems, such as where the probability of detection
depends on the distance between players ([65]).

While the above deals with the princess and monster game on a search space,
it was also initially proposed to play the game on a circle ([78]). When the
search region for the game is the discrete circle (cyclic graph) an optimal solution
was found ([142]). This optimal strategy consisted of having the monster start
at some point and move to its antipode (diametrically opposite) point, going
clockwise or anticlockwise depending on a fair coin flip, repeating this process
(with a small modification if the number of nodes was odd). When using the
continuous circumference of the circle as the search region (as initialy proposed
in [78]) the same nature of an optimal solution was found ([148],[1]). With a
fixed position for the monster, the hider can get an advantage by staying at the
antipode for a length of time ([1]). Aside from the circle, solving the princess
and monster problem on a graph is considered difficult. Even on the line the
optimality of the game remains an open problem. Intuitively one may believe
that the monster starting at one end and moving to the other end is optimal,
however this is not true. In response to such a strategy the princess may start
a distance from a random end and move to the other, leading to 0.75 expected
search time on the unit interval. However the patroller can do better and the
value of the game is approximately 0.7 ([10]). We note that the complexity of a
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game on a line is true holds true for patrolling games, as the solution to a line
requires careful study and bespoke solutions ([107]).

While the search game considers a minimizing searcher and maximizing tar-
get/hider, aiming to affect the expected search time, the rendezvous game, has the
target no longer hiding and now also aiming to minimize the search time. Thus in
the rendezvous game there are two searchers attempting to minimize the search
time. An example is two friends seeking to find each other in a shopping mall, but
the space need not be physical, as we can also imagine two agents communicating
with walkie-talkies consisting of several channels ([13]). This problem was first
studied on discrete locations, which found an optimal solution when there are
only two or three locations and for more locations only a bound on the value V
was given for the strategy ([19]). The problem was later studied in the continuous
location case which gave the foundations for the theory of rendezvous games ([3]).
An important aspect regarding the cooperation of the two searchers is discussed
and how they may be restricted to use the same search strategy. Such rendezvous
games where players must use the same strategy are called symmetric, otherwise
they are called asymmetric.

The rendezvous problem on the line has been thoroughly studied. In the asym-
metric version the ‘wait for mummy’ strategy (where one player waits at their
location and the other seeks them), a reduction to the linear search problem, is
never optimal ([61]). Work on the symmetric version was also done, providing im-
provements on the bounds ([23]). Along with the line, as is common with search
theory, the game was studied for graphs. Work on graphs extended the work done
for the rendezvous on discrete locations. In the asymmetric version the ‘wait for
mummy’ strategy is optimal for Hamiltonian graphs. In the symmetric version,
bounds are found when considering a restriction to Markovian strategies ([6]).
Deterministic algorithms have been determined to solve such graphical problems
([46]). A similar, but simpler, problem on a labelled graph has been solved in
the symmetric version with solutions being much easier as they have a reduced
selection of strategies ([4]).

A variation on the search game, known as the accumulation game, has a hider
place objects at locations with the searcher choosing locations to search in order
to find these objects. The hider wins if at any point in the time-horizon there
is a critical mass of objects hidden. The accumulation games was first studied
in the discrete case with discrete time, for which an algorithmic approach to
calculate the value of the game is given ([83]). The accumulation game was later
studied with continuous time, with objects assumed continuous, and in this case a
condition for which the hider can always win by a uniform strategy is given ([84]).
Further work looked at the accumulation game on a hypergraph structure, which
has a searcher choosing groups of nodes, unlike the previous accumulation games,
which are only optimization problems for the hider, this graph extension forms a
true game where both players have to act strategically ([8]). The idea of having
discrete locations with capacities, limiting the amount of material that can be
stored at them was studied. Finding optimal searching strategies when the payoff
for the patroller is determined by the amount of material found ([149]). We note
that the last game defines itself from a similar game known as the (search and)
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ambush game.

The ambush game involves a searcher using an ambush position or distribution
plan of barriers to capture a moving evader (target). The ambush game was fist
studied on a lattice, for which optimal solutions were achieved when limitations
on players were imposed ([120]). Work for the ambush game then considered a
continuous region, were the evader’s strategy is considered to be a continuous
function, and subequently found a near optimal strategy for the evader which
was developed algorithmically ([118],[121]). The techniques developed allow for a
similar search game in the square, with limitations on the target’s mobility and a
square capture radius for the seracher, to be solved ([121]). Other models involv-
ing ambushing behaviour have been used, but in different contexts. The ‘princess
and monster’ game is extended to include an additional mode of searching for the
monster in which they are allowed to ambush. The ambushing mode allows for
the capture of a moving hider and it was found the frequency at which the ambush
mode is used must increase with time ([11]). Further work was done when the
searcher is noisy and passes on some knowledge of their movements to the hider.
This noisy ambush game was shown to have an expected search time of 2

3
([9]). As

is common for search games, this result was previously conjectured (Conjecture
3.7 in [132]) but was unable to be shown without some new techniques.

The vast majority of work done in the field of search theory has security applica-
tions. In an effort to study how nations may conceal violations of arms treaties the
inspection game was proposed ([51]). At each stage in the game, the inspectee has
a chance to violate the treaty or comply, while the inspector dispatches inspection
teams. Rewards are gained at each stage of the game, and forms a sequential two-
player zero-sum game. Additional features were later incorporated into the model
to allow for imperfect detection ([122]) and incomplete information ([77]). The
model was also studied with more inspectees ([75]), as studies on the inspection
game are mainly focused on finding an effective strategy for the inspector ([21]).
An offshoot of inspection games are smuggling games, in which effective ways to
shut down the flow of drugs into a country was analysed ([130],[24]). Considera-
tion on the amount of contraband being smuggled was consider to see the effect
on the smugglers decisions ([76]). It is worth noting that inspection/smuggling
games are special search games as for the most part they have binary decisions
for players.

Another class of two-player games with security applications are evasion-search
games, a more general case of the princess and monster games. Initially modelled
as an evader who moves along a line to reach a target point while knowing the
searcher’s position, no optimal solutions were achieved, but focused on improving
the evader’s motion ([101]). Another model has an evader moving between cells
starting at one end of the line, with shelter at the other. The evader is able
to move to a few neighbouring cells and the searcher knows the current evader
position, with the payoff being the number of detections until the evader reaches
their destination ([91],[92]). Similar evasion-search games with detection prob-
abilities and targets for the evader have been studied ([103],[104]). On discrete
cells dynamic programming was often powerful enough to derive equilibrium by
recursion. When the evader has a goal, the game becomes one about a passage
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through a region. Initially used to model an evading boat seeking a target and
searching bomber who knows the current position but does not know where the
boat will be when the bomb lands, with the probability of a bomb hitting a ship
being the payoff ([52]). Such games are often referred to as infiltration games.
With the importance to the ASWORG, multiple researchers studied the problem
with varying considerations about the bombs ([36],[90]) and the speed at which
players move ([66]). Evasion is a feature of many other models which differ in
payoff and information. Such as a payoff linked to the travelling cost with play
continuing until detection for a given time-horizon ([140]). A multi-stage game
where reward is determined at each stage by player positions, called the cumula-
tive search-evasion game was studied ([53]). A game with no information between
players and probabilistic movement on a cyclic graph has been studied ([119]).
The probabilistic movement idea was used in other models ([41]).

The infiltration idea is of key importance to organisations which have to protect
a key resource which is vulnerable to attack. The general game was introduced in
[60] and has an immaterial seracher and an infiltrator moving on a graph. Initial
work studied and solved the infiltration game for a single arc (line) ([88]) and
following work solved the game for any number of arcs (star) ([20]) using the
same core idea for player strategies. These ideas were generalised for arbitrary
graphs ([2]). A generalisation involving the speed for the result on any number
of arcs was also done ([25]). A simplification to the searchers strategy was found,
which drastically reduces the number of potential pure strategies required ([67]).

We finish our review of search games to now look at various applications of these
types of games which have not already been mentioned, along with some imple-
mentations of theory. Afterwords we will look at our final variant of the search
game, the patrolling game G(Q, T,m), which this thesis focuses on.

1.3.4 Applications

Beginning in World War II, search theory has developed to cover a vast array
of problems relating to military and security issues where a search is required.
Mainly focused on boats and submarines, implementation was hidden due to
security concerns. In more recent years however, with the growing computer
literacy and power, it is becoming more widely implemented. We first look at
the suggested areas for the application of search theory before looking at actual
implementations and some real life issues that arise.

Theoretical models for locating sunk ships, detecting submarines, bombing ships
are some initial motivations for studying search theory in a military setting. Fur-
ther security issues can be modelled, such as inspecting nations for nuclear arms,
custom officers and bag searching. Search theory can be also used in the predator
prey dynamic to explain animal behaviour. Some additional models using search
theory follow.

In cyber security it has been applied to sample data packets with a given budget
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to detect malicious intruders ([85]). In terror protection the study of how to min-
imize the damage inflicted on an electrical grid has been studied ([123]). Further
to this the protection of road traffic ([27]) and rail traffic ([110]) was studied to
see how to minimize the effectiveness of a terrorist. The development of a model
where the defender fortifies facilities which may be attacked by a terrorists was
done using, as with most security applications, a Stackelberg game ([124]). Sim-
ilarly a model to detect damage inflicted by a terror attack was developed ([22]).
Search theory is also applied in non security applications, such as finance, where
it is often applied to labour markets to study unemployment and goods markets
([102]).

While a lot of work deals with theoretical applications of search theory, the im-
plementation of theory along with real life limiations is of key concern for security
experts. An early implementation was for coast guard patrols in search and res-
cue operations, in CASP (Computer-Assisted Search Planning) ([117]). Using
Bayesian updating and Monte Carlo simulations for original probabilities this
software allowed for the planning of search routes which once complete would
update and inform the users of the next search route.

A more recent and prominent real world application is that of ARMOR (Assistant
for Randomized Monitoring over Routes), which was software developed for the
patrol routes of various units in Los Angeles International Airport (LAX) ([112]).
ARMOR was applied to LAX security in 2007. Their patrol and monitoring
problem was modelled as a Bayesian Stackelberg game with the fastest known
heuristic algorithm, DOBSS (Decomposed Optimal Bayesian Stackelberg Solver),
applied ([108]). Their models allows for a variety of actions for LAX security and
for any number of adversary types each with their own variety of actions. To allow
for real life situations which are not predicted, the software allows for occasional
use adjustments or overrides based on local constraints, alerting the user if there
appears to be a degradation in the overall performance.

Following ARMOR, a similar application was studied in patrol routes for trains
by the use of TRUSTS (Tactical Randomization for Urban Security inTransit
Systems) in Los Angeles ([146]). Aimed mainly at fare-checking, the patrol
units are present to avoid fare evasion. Before TRUST human schedulers were
used, but were found to be incredibly poor at generating unpredictable schedules
([139],[129]), therefore the model requires employable strategies to require less
cognitive strain on the patrol units. The idea of Markovian strategies were seen
to be within 99% of the linear program upper bound ([79]). One of the main
differences in the model used in TRUSTS is that the threat of fare evasion from
the general populous is much higher than models used for counter-terrorism. Its
implementation to criminal and counter-terrorism was later done to allow the use
of TRUST to compute the best for each three scenarios and then combining these
([45]). More theoretical work has been done in areas related to fare evasion, such
removing the modelling assumption that train users follow a fixed route through
the graph ([40]).

Another use of software in allocating patrol units is IRIS (Intelligent Randomiza-
tion In Scheduling), which is used to help federal air marshals provide protection
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on commercial flights in the U.S ([134]). This software has to cope with a larger
search domain than that of ARMOR and the previous algorithm at ARMOR’s
heart (DOBSS) is unable to cope ([82]). Like the previous algorithm a mixed-
integer linear program, called ERASER-C ((Efficient Randomized Allocation of
SEcurity Resources - Constrained), is used. ERASER-C’s additional insight is
that the payoff of these games depend on whether or not the attacked target is
in a given region. This allows for the solution to be implemented in a reasonable
time frame. The tests on real life data seem to indicate IRIS’s usefulness and as
of 2008 it was under review for implementation.

Still related to airport security software, GUARDS (Game Theoretic Security
Allocation on a National Scale Categories and Subject Descriptors) was devel-
oped to aid in the deployment of TSA agents ([113]) to various airports. Two
unique challenges arise when developing such software, no centralized planning
agency can produce an optimal strategy for all airports and wanting to provide
a common standard for security among airports. After modeling considerations
DOBSS ([108]) was deemed applicable and so, as in ARMOR, forms the heart of
GUARDS solution. Numerical analysis on simulated data found that circumven-
tion is important against an intelligent attacker.

A system for allocating port patrols, called PROTECT (Port Resilience Opera-
tional/Tactical Enforcement to Combat Terrorism), was developed for the coast
guard in the port of Boston ([125]). PROTECT drops the assumption of the ad-
versary being perfect rational and relies on bounded adversary responses, called
quantal responses ([100]), which have seen benefits in applications to secuirty
games ([144]). This quantal response allows for the use of an algorithm called
PASAQ (Piecewise linear Approximation of optimal Strategy Against Quantal re-
sponse) ([145]). Numerical analysis on real world simulations shows PROTECT
visits higher valued targets consistently. It has been implemented in the port of
Boston and with its success has also been implemented in the port of New York.

After the successful implementation in transportation related infrastructures se-
curity games have been applied to green security, such as protecting against over-
fishing ([74]) and protecting wildlife from poaching ([143]). Applying security
games to green security provides multiple challenges, the particular challenge is
that there are multiple adversaries who attack frequently but do not conduct
extensive surveillance spending less time and effort in each attack. These initial
models and their implementation modelled the green security problems as a game
with multiple rounds, with each round being a security game. Three limitations of
this modelling are; the full-observation of the defenders strategy by the attackers;
the lag between observation and execution; and the use of Maximum Likelihood
Estimation (MLE) to learn paramters. The use of the MLE for individual attack-
ers has been shown to lead to skewed results and therefore a new model of green
security games was developed to overcome these limitations. Generalised green
security games, with general parameters, were studied and algorithms for such
games were also developed ([55]).
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1.3.5 Patrolling games and problems

Having given an overview of work done in the research field of search games,
we now look at the main search game studied in this thesis, the patrolling game
as defined in [16]. The patrolling game G(Q, T,m) is a search game with an
immobile hider on a graph. In the patrolling game we will refer to the searcher
as the patroller and the hider as the attacker. Unlike search games however, the
attacker not only chooses a location to hide but also a time at which to do so,
called the commencement time τ . This change will require a utilisation of the
times at which the attacker should commence their attacks. Along with this, the
attacker is only at their chosen node for a period of time, called the attack length
m, and if they are not found within this time window they win. Again this is
unlike the majority of search games which are games of degree (meaning there
are levels of success, using terminology from [78]) the patrolling game is a game
of type (meaning the outcome is binary and players either win or lose). Unlike
a search game’s hider, the patrolling game’s attacker more accurately models a
terrorist. This is because they are able to commence their attack at any point
in time and only need to remain undetected for a certain period of time before
detonating their bomb. Another application could be seen in cyber security where
a hacker attempting to destroy a network of computers need only have his virus
remain undetected for a certain period of time before it is able to complete its
task to destroy or harvest data from the network.

The initial paper ([16]) on patrolling games gave properties on the value of the
game, reduction techniques and generic strategies for both players. With these
strategies the solution to patrolling games for various graphs such as Hamiltonian
and complete bipartite were given. In addition partial solutions for the patrolling
game on the line graph were given. These results were given for certain ranges of
the attack length m ≥ n − 1, where n is the number of nodes in the line graph.
Later solutions for other attack lengths of m < n−1 were found in [107]. However
the development of such bespoke strategies required much careful consideration
with a heavy dependency on the attack length m.

In a similar regard work was done on the patrolling game in continuous time, with
continuous space on the line. Analogous results to that of the original patrolling
game on a line graph where found, with the patroller adopting the same core
strategy and resulting in the same value for the game ([14]). Extensions to this
work found optimal solutions for all Eulerian networks and studied the patrolling
game on R2 asymptotically as the capture radius goes to zero ([68]).

A peroidic version of the patrolling game is also defined in [16], which forces the
patroller to return to the starting location at the end of the game. Results are
adapted from those for the original patrolling game and have later been improved
upon to solve the periodic patrolling game on the line with some notion as to how
it can apply to generic graphs ([15]).

Alongside the work on the patrolling game, the patrolling problem, a one-sided
version of the game, was introduced. It assumed that the attacker attacks ran-
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domly in time, according a Poisson process, which they can manipulate the rate
of ([94]). The idea of Whittle indices ([70]) and their generated policies are used
in order to obtain heuristics for the problem. A further heuristic can then be ap-
plied to make a matrix/normal form game , which resembles the patrolling game
(albeit with strategies removed) and which can be solved by a linear program.
Further work extends the patrolling problem to allow for overlook, which required
a different formulation of the state space upon which indices are developed ([95]).
The idea to involve distances and speed as a way to extend the model are done
to the original patrol problem without overlook ([99]). Work was also done on
how to effectively utilise multiple patrollers ([99]).

1.3.6 Conclusion of literature review

In this literature review, we have provided an overview of search theory, including
the one-sided search problem and the two-sided search game. We have also seen
the vast majority of variants studied in the literature. We have seen that different
structures in the type of search region, payoff, mobility make the most difference in
how problems and games are searched. We have also noted that in general analytic
optimal strategies either require the use of bespoke strategies arising from careful
consideration of the game and its mechanisms. While computational methods
have been developed and showcased to find optimal solutions it is infeasible to do
so for large strategy spaces (according from a moderate graph or game length)
and in this situation the best practical approach is often to find near optimal
strategies. Our work leans towards the theoretical side and so finding strategies
can only be done by considering known strategies and the careful construction of
new bespoke ones.

Lastly we have given a recent account of patrolling games and patrolling prob-
lems with their currently solved extensions. In chapter 2 we provide a detailed
background on patrolling games G(Q, T,m), stating strategies and how to find
optimal strategies. In addition, we will state the performance of known strategies
and which classes of patrolling games have already been solved.



Chapter 2

Background on patrolling games

2.1 Introduction

In this chapter we explore a model for a game in which a patrolling entity, such as
that of a museum guard, traverses between a set of locations in order to locate and
thwart an attacking entity, such as a thief. We take the recent model propsed
in [16], which is a game theoretic model for such a scenario. This model is a
variant of the search game known as the patrolling game. In the patrolling game
a searcher, called a patroller, wishes to find a target who is immobile, called an
attacker. The patrolling game uses a graph structure for the search space and
is played in discrete time. In each unit time the patroller either remains at the
current node or moves to an adjacent node on the graph. This is done in an
effort to locate the attacker. Unlike most variants of the search game, which
have the target in the system from the start of the game until they are found,
in the patrolling game the attacker is only at a chosen node for a certain length
of time. In addition the attacker need not be at their chosen node initially and
may choose some time at which to commence their attack. This results in the
patroller only being able to find the attacker during a window of opportunity at
their chosen node. If the patroller is at the same node as the attacker chose during
this window of opportunity, then we say the patroller catches the attacker and
so wins the game. Otherwise if the attacker is not caught during the window of
opportunity they win the game. Therefore unlike most search games, where the
objective is to the minimize the time until the target is found, in the patrolling
game the goal is just to catch the attacker. Due to this, the patrolling game is a
win-lose game.

This chapter is structured as follows, we begin by explaining the mathematical
set-up of the pure version of the patrolling game in section 2.2.1. We then discuss
why playing pure strategies with probabilities (mixed strategies) are studied for
the patrolling game in section 2.2.2. This leads to a game in which we seek the
highest probability of the patroller catching the attacker, called the game’s value.
This is followed by a survey of known results developed in the initial paper ([16])
in section 2.3.1. Known strategies and their lower and upper bounds on the value
of the game, for both the patroller and attacker, are given in sections 2.3.2 and
2.3.3 respectively. We conclude these known results from the literature by stating
known classes of the patrolling game which are solved in section 2.3.4. From
the results for the line graph ([107]), we notice that the length of the window
of opportunity is crucial in deciding which strategies are optimal for both the
patroller and attacker.

17
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2.2 Definition of patrolling games

2.2.1 Pure patrolling game definition

A pure patrolling game is a two-player, zero-sum game in which player one,
henceforth called the patroller, attempts to catch player two, henceforth called
the attacker. It models many situations such as the following:

• An officer patrolling an airport in search of a terrorist who is attempting to
plant a bomb.

• A solider patrolling an occupied city with rebels propagating propaganda.

• Police units patrolling multiple districts in a city containing targets for
thieves.

A pure patrolling game G is characterized by the following three parameters:

• An undirected graph Q = (N,E), made up of a set of nodes N and a set
of edges E. Nodes represent locations at which the patroller or attacker
may be present at. Edges determine which locations are next to each other,
called adjacent, allowing movement between locations.

• A game length T ∈ N ∪ {∞}, representing how many units of time there
are before the game is over. This forms the time-horizon for the game
J = {0, ..., T − 1}.

• An attack length m ∈ N ∪ {∞}, representing how many units of time the
attacker must be present in the graph in order to complete their attack.
This is the length of the attack interval.

Therefore a pure patrolling game G is written as a 3-tuple G(Q, T,m) in which Q
is an arbitrary graph and T,m ∈ N∪{∞}. We note that for a game length T =∞
the corresponding time-horizon J = N ∪ {0} ≡ N0. In the game G(Q, T,m) the
pure strategies for players are as follows:

• The patroller chooses a pure patroller strategy W : J → N , such that for
all 0 ≤ t ≤ T − 2, W (t) = W (t + 1) or (W (t),W (t + 1)) ∈ E. So the
pure patroller strategy W is a walk of length T . That is at t = 0, the
patroller chooses a start node from N and between each subsequent time
period either waits at the current node or moves along an edge to another
node. The walks position at time t is W (t) and the image W (J ) ∈ NT is
vector which equivalently defines the walk.
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• The attacker chooses an attack node, j ∈ N , and a commencement time,
τ ∈ J , forming an pure attack strategy a = (j, τ). This means the attacker
is at their chosen node j for each time t ∈ I, where I = {τ, ..., τ + m − 1}
is the attack interval.

For clarity we note that the original defintion of the patrolling game, as in [16],
uses only the attack interval notation for which the commencement time is equiv-
alent. As pure patrolling strategies are allowed to wait at nodes even without a
loop and as multiple edges offer no benefit, we can immediately assume that the
graph Q is a simple graph.

For the game G(Q, T,m), all pure patroller strategies (walks) are collected in the
set W(Q, T,m) and similarly all pure attacker strategies are collected in the set
A(Q, T,m). The sets of pure strategies are dependent on the parameters Q, T
and m, however when the game’s parameters are clear we use W = W(Q, T,m)
and A = A(Q, T,m), for the pure patroller and pure attacker sets respectively.
In the case that N and T are finite, enumeration of all pure attacker strategies
is easy as A = N × J and thus |A| = |N |T . However, enumeration of all pure
patroller strategies is not as easy due to the multitude of choices depending on the
set of edges E, at most every node is adjacent and so we have |W| ≤ |N |T with
the exact value being combinatorially complex. While we do not enumerate the
setW we can choose an arbitrary bijection β1 :W → {1, ..., |W|} to give an order
to the pure patroller strategies so that W(x) = β−1

1 (x) for all x ∈ {1, ..., |W|}. In
addition we choose another arbitrary bijection β2 : A → {1, ..., |A|}, which orders
the pure attacker strategies so that a(y) = β−1

2 (y) for all y ∈ {1, ..., |A|}. The
bijections β1 and β2 allow us to write the pure patrolling game in normal/matrix
form, once player payoffs are defined.

A variant of the pure patrolling game, known as the periodic pure patrolling
game places a restriction on the walk performed by the patroller. In the periodic
patrolling game, a single patrolling game, with a finite time-horizon (T = k/J =
{0, ..., k− 1}), is repeated ad infinitum, to form a restricted infinite time-horizon
patrolling game (T =∞/J = N0). We formally define this game as Gp(Q, k,m),
the periodic patrol game with period k, with the restriction that the patroller’s
walk must start and end at the same node (otherwise the game is not repeatable
ad infinitum). This means in Gp(Q, k,m), the set of patroller strategies (walks)
is Wp = {W ∈ W | (W (k − 1),W (0)) ∈ E}. Such a restriction to the periodic
game may be important for modelling reasons. As an example, consider a police
unit searching for criminal activity, which must return to a base location (which
can be decided in the planning phase) after each shift, such that a new police unit
can oversee the same patrol. In contrast the original patrolling game is called the
one-off patrolling game in [16], however we will not use this terminology as the
periodic patrolling game does not form the basis of our study. This restriction, to
the periodic patrolling game, alleviates some of the issues with the combinatorial
complexity of the patroller’s strategy set in comparison to the (one-off) patrolling
game.

With the patroller choosing W ∈ W and the attacker choosing (j, τ) ∈ A, a
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combination of strategies (W, (j, τ)) is formed which decides who wins and who
loses the patrolling game. The patroller wins the patrolling game if the attacker
fails to complete their attack either by being caught by the patroller or running
out of time. As the attacker is at node j from time τ onwards they are at the
node for all times in the attack interval I = {τ, ..., τ + m− 1} and so run out of
time if and only if τ+m−1 > T−1. It is immediately clear that patrolling games
with T < m have the attacker always run out of time, so we will now assume that
T ≥ m. Furthermore, the attacker is limited to choosing a commencement time
τ ∈ T = {0, ..., T −m} ⊂ J so as to not run out of time, so with this A = N×T .
With this restriction the patroller wins if and only if j ∈ W (I) and hence the
payoff for the patroller playing W ∈ W against an attacker playing (j, τ) ∈ A is

Pp(W, (j, τ)) = I{j∈W (I)} =

{
1 if j ∈ W (I),

0 if j /∈ W (I),
(2.1)

where I{A} is the indicator function for event A. We know the attacker wins if
and only if the patroller does not catch them and so the payoff for the attacker
playing (j, τ) ∈ A against a patroller playing W ∈ W is

Pa(W, (j, τ)) = I{j /∈W (I)} = 1− Pp(W, (j, τ)). (2.2)

From equation (2.2) it is clear the game is zero-sum (note that the sum of payoff’s
for any given combination is 1) and hence we can just use the patroller’s payoff
as in equation (2.1), dropping the subscript. With this we define the pure payoff
matrix

P = (Pp(W(x), a(y)))x∈{1,...,|W|},y∈{1,...,|A|},

with a maximizing patroller and minimizing attacker. The order of play in the
pure patroller game is important with the second player choosing knowing the
first player’s strategy choice, giving the first player the advantage. We say that
the first player is the leader and the second player is the follower, with the follower
choosing the best strategy against a known strategy choice for the leader. As the
follower can respond with their best strategy, the evaluation of the leaders choice
can be thought of as the worst-case scenario implementation.

We define the pure MiniMax patrolling game G4(Q, T,m) in which the attacker
is the leader and the patroller is the follower. The optimal value of the game
G4(Q, T,m) is

O4(Q, T,m) = min
a∈A

max
W∈W

Pp(W, (j, τ)).

Optimal solutions to the game G4(Q, T,m) are W4 ∈ W and a4 ∈ A such that
Pp(W

4, a4) = O4(Q, T,m). Similarly we define the pure MaxiMin patrolling
game G5(Q, T,m) in which the patroller is the leader and the attacker is the
follower. The optimal value of the game G5(Q, T,m) is

O5(Q, T,m) = max
W∈W

min
a∈A

Pp(W, (j, τ)).
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Optimal solutions to the game G5(Q, T,m) are W5 ∈ W and a5 ∈ A such that
Pp(W

5, a5) = O5(Q, T,m).

When W ∗ ∈ W and a∗ ∈ A are optimal solutions to both the MiniMax and
MaxiMin patrolling games we say that the order of play is not important and
the game can be played simultaneously. This is what defines the optimal value,
if it exists, of a pure patrolling game as in in [16]. The optimal value of the pure
(simultaneous) patrolling game G(Q, T,m) is

O(Q, T,m) = min
a∈A

max
W∈W

Pp(W, (j, τ)) = max
W∈W

min
a∈A

Pp(W, (j, τ)).

Optimal solutions to the pure patrolling game are W ∗ ∈ W and a∗ ∈ A such that
Pp(W

∗, a∗) = O(Q, T,m). However, unlike the MiniMax and MaxiMin patrolling
games in which optimal solutions (and an optimal value) always exist, optimal
solutions to the pure patrolling do not always exist (and hence there may be no
optimal value).

The optimal value of the pure MiniMax and MaxiMin patrolling games are easy
to calculate by considering how the follower can respond. In the MiniMax game
O4(Q, T,m) = 1 as the patroller can choose W ∈ W such that W (τ) = j against
any attacker strategy (j, τ) ∈ A. In the MaxiMin game O5(Q, T,m) = 1 if
and only if ∃W ∈ W such that ∀a ∈ A the patroller’s payoff Pp(W,a) = 1 and
O5(Q, T,m) = 0 otherwise, as the attacker can follow the patroller’s strategy by
choosing a ∈ A against W ∈ W such that Pp(W,a) = 0. Therefore O(Q, T,m)
only exists if ∃W ∈ W such that Pp(W,a) = 1 ∀a ∈ A, that is there is some walk
W such that it visits every node at least every m time units. In other words,
the pure patrolling game has an optimal value if and only if there is a walk that
guarantees to catch all possible attacker strategies.

Figure 2.2.1 shows the pure payoff matrix for the patrolling game G(K3, 3, 2).
Notice that we need not enumerate all walks due the isomorphism which occurs
upon relabelling nodes. In the Minimax patrolling game an optimal solution is the
attack strategy a = (1, 1) and the walk W = (1, 1, 1) giving an optimal value of
1. In the MaxiMin patrolling game an optimal solution is the walk W = (1, 2, 3)
and the attacker strategy a = (1, 1) giving an optimal value of 0. It is clear
that the order in which the players go matters so there is no optimal value for
the patrolling game. This is equivalent to saying that there is no walk which
guarantees catching all attacker strategies, which would correspond to a row of
1s in the payoff matrix.

In an optimal strategy combination for the patrolling game G(Q, T,m) no player
would change their strategy knowing how the opponent chose, this means that a
optimal strategy is equivalent to a Nash equilibrium ([105]) for the game.

Definition 2.2.1 (Nash equilibrium). A pure patroller, attacker strategy combi-
nation, (W ∗, (j∗, τ ∗)) is a pure Nash equilibrium of the patrolling game G(Q, T,m)
if and only if

Pp(W
∗, (j∗, τ ∗)) ≤ Pp(W

∗, (j, τ)) ∀j ∈ N, τ ∈ T ,
and

Pp(W
∗, (j∗, τ ∗)) ≥ Pp(W, (j

∗, τ ∗)) ∀W ∈ W .
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1

2

3 W

(j, τ)



(1, 0) (1, 1) (2, 0) (2, 1) (3, 0) (3, 1)

(1, 1, 1) 1 1 0 0 0 0
(1, 2, 1) 1 1 1 1 0 0
(1, 2, 2) 1 0 1 1 0 0
(1, 2, 3) 1 0 1 1 0 1

...
...

...
...

...
...

...



Figure 2.2.1: Complete graph K3 and the payoff matrix P for the game
G(K3, 3, 2), with associated walks written aside their row and associated attacks
written atop their columns.

Essentially a Nash equilibrium is a strategy combination such that no player can
do better by changing there current strategy knowing their opponents strategy. As
Nash equilibria are equivalent to optimal strategy combinations for the patrolling
game, we know they only exist if and only if there is walk which guarantees
catching all attacker strategies. Therefore with pure strategies the patrolling
game G(Q, T,m) is solved, either having no optimal value or an optimal value of
1. To make the problem more interesting, we can now consider allowing players to
randomize among their available pure strategies to form a mixed strategy. Mixed
strategies choose a distribution over all pure strategies which are played with the
distribution’s appropriate probability. Allowing for mixed strategies means it is
always possible to get the optimal value and optimal strategy combinations/Nash
equilibria if T 6=∞ as the game is zero-sum and finite ([105]). For this purpose,
we will now assume that T 6=∞ and note that pure strategies can still be played
in the mixed game, so when pure Nash equilibria exist we can find them in the
mixed game.

2.2.2 Mixed patrolling game

In this section we explain the strategies available to the patroller and attacker in
the mixed patrolling game G(Q, T,m). We will see that Nash equilibria/optimal
strategy combinations are guaranteed and that this means the optimal value of
the mixed patrolling game always exists. We also include some new notation
which will make the proof of our contributions in chapter 3, section 3.2, easier to
follow.

The mixed patrolling game G(Q, T,m) uses the same three parameters as the
pure patrolling game G(Q, T,m), however mixed strategies are now probability
distributions on the set of pure strategies. The patroller chooses some probability
distribution π = (π1, ..., π|W|) such that πi is the probability of playing the ith

ordered walk W(i) ∈ W . Similarly, the attacker chooses some probability distri-
bution φ = (φ1, ...., φ|A|) such that φi is the probability of playing the ith ordered
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attack a(i) ∈ A. As π and φ are probability distributions

π ∈ Π(Q, T,m) =

x ∈ [0, 1]|W(Q,T,m)|

∣∣∣∣∣∣
|W(Q,T,m)|∑

i=1

xi = 1

 ,

φ ∈ Φ(Q, T,m) =

x ∈ [0, 1]|A(Q,T,m)|

∣∣∣∣∣∣
|A(Q,T,m)|∑

i=1

xi = 1

 ,

with Π(Q, T,m) being the set of mixed patroller strategies and Φ(Q, T,m) be-
ing the set of mixed attacker strategies for the game G(Q, T,m). As with pure
strategy sets when it is clear for the game G(Q, T,m) we state these sets by
Π = Π(Q, T,m) and Φ = Φ(Q, T,m) respectively. For a particular distribu-
tion π ∈ Π we say that a pure patroller strategy W ∈ W is a potential walk if
πβ1(W ) > 0. Similarly for a particular distribution φ ∈ Φ we say that the pure
attacker strategy a ∈ A is a potential attack if φβ2(a) > 0.

We introduce an equivalent notation for the attacker strategy φ ∈ Φ in the form
of a matrix

ϕ = (ϕj,τ )j∈N,τ∈T =


ϕ1,0 ϕ1,1 . . . ϕ1,T−m
ϕ2,0 ϕ2,1 . . . ϕ2,T−m

...
...

. . .
...

ϕn,0 ϕn,1 . . . ϕn,T−m

 , (2.3)

such that ϕj,τ = φβ2((j,τ)) for all j ∈ N and τ ∈ T is the probability of the
attacker playing the pure attacker strategy (j, τ). The matrix notation, as in
equation (2.3), allows us to more clearly see the probability distribution for an
attacker strategy as a distribution for nodes and commencement times. Further to
the matrix representation of an attacker distribution we can define the probability
an attacker is at node j ∈ N at time t ∈ J for a given distribution matrix ϕ (or
φ) as

Sj,t =
t∑

k=t−m+1

ϕj,k, (2.4)

and form the space-time probability matrix S = (Sj,t)j∈N,t∈J for the attacker
distribution matrix ϕ. We note that the time-space probability matrix S is able
to recover the matrix attacker distribution ϕ as ϕj,t = Sj,t − Sj,t−1 + ϕj,t−m
and ϕj,t = 0 for t ≤ −1 and hence is equivalent for the attacker to choose
in the game. Figure 2.2.2 provides the visual representation of a space-time
probability matrix, in which, for visualization purposes, space-time points are
filled grey to denote potential attacks, i.e. (j, t) such that ϕj,t > 0 are filled grey.
If the attacker strategy distribution is rational φ ∈ Q|A|, then we can instead
think of the distribution as a set potential agents, where each agent chooses
some (j, τ) ∈ A and the attacker strategy chooses between all agents with equal
probability. To do so we define agent equivalents to φ, such that the agent
attacker strategy is given by φA = φ × lcd(φ) with ϕA = ϕ × lcd(φ) and the
space-time agent matrix SA = S × lcd(φ), where lcd(φ) is the lowest common
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multiple of all denominators of the rational φi for i = 1, ..., |A|. The agent
equivalent of figure 2.2.2 is shown in figure 2.2.3. While equivalent, using agents
allows for a more instinctual way to adapt attacker strategies by adding, removing
and/or moving agents in space-time.
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Figure 2.2.2: Space-time probability matrix S of φ where ϕ1,2 = 1
2
, ϕ1,4 = 1
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ϕ2,1 = 1
8

and ϕ3,4 = 1
8

(with all other ϕj,t = 0).

A pure walk W can be chosen via a mixed strategy, by choosing π such that πi = 1
for i = β1(W ) and πi = 0 otherwise. Similarly, a pure attack strategy a can be
chosen by choosing φ such that φi = 1 for i = β2(a) and φi = 0 otherwise. Now
we have extended the strategies in the patrolling game to include mixed strategies
we can redefine the patroller’s payoff in the game G(Q, T,m) for choosing π ∈ Π
against an attacker playing φ ∈ Φ as

Pp(π,φ) =

|W |∑
i=1

|A|∑
j=1

Pi,jπiφj = πPφT , (2.5)

and the attacker’s payoff is Pa(π,φ) = 1 − Pp(π,φ), maintaining the zero-sum
nature of the game. The patroller’s payoff Pp(π,φ) can be interpreted as the
probability that the patroller choosing π catches the attacker choosing φ. For
ease of notation we write Pp(W,φ) = Pp(π,φ) where π ∈ Π is such that πi = 1
for i = β1(W ) and πi = 0 otherwise. Similarly, Pp(π, a) = Pp(π,φ) where φ ∈ Φ
is such that φi = 1 for i = β2(a) and φi = 0 otherwise. As the game is zero-sum we
drop the patroller player subscript p from the pure patroller payoff equation (2.1)
and the mixed patroller payoff (2.5) writing P (π,φ) and P (W,a) respectively.

When players are able to choose mixed strategies the MiniMax patrolling game
G4(Q, T,m) (attacker leads, patroller follows) has an optimal value of

V 4(Q, T,m) = min
φ∈Φ

max
π∈Π

P (π,φ). (2.6)

Optimal solutions to which are π4 ∈ Π and φ4 ∈ Φ such that P (π4,φ4) =
V 4(Q, T,m). Similarly, the MaxiMin patrolling game G5(Q, T,m)(patroller
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Figure 2.2.3: Space-time agent matrix SA of φA such that ϕA
1,2 = 4, ϕA

1,4 = 2,
ϕA

2,1 = 1, ϕA
3,4 = 1 (with all other ϕA

j,t = 0). In which φA is equivalent to φ such
that ϕ1,2 = 1

2
, ϕ1,4 = 1

4
, ϕ2,1 = 1

8
and ϕ3,4 = 1

8
(with all other ϕj,t = 0), whose

space-time probability matrix S is shown in figure 2.2.2.

leads, attacker follows) has an optimal value of

V 5(Q, T,m) = max
π∈Π

min
φ∈Φ

P (π,φ). (2.7)

Optimal solutions to which are π5 ∈ Π and φ5 ∈ Φ such that P (π5,φ5) =
V 5(Q, T,m). In either game the follower knows the strategy of the leader and
so choosing a mixed strategy is not necessary with the follower able to choose a
pure strategy that is the best response to the leader’s mixed strategy. That is we
have

V 4(Q, T,m) = min
φ∈Φ

max
W∈W

P (W,φ),

V 5(Q, T,m) = max
π∈Π

min
a∈A

P (π, a),

with the best response to φ4 ∈ Φ beingW4 ∈ W where P (W4,φ4) = V 4(Q, T,m)
and the best response to π5 ∈ Π being a5 ∈ A where P (π5, a5) = V 5(Q, T,m).

The (optimal) value of the patrolling game G(Q, T,m) is given by

V (Q, T,m) = min
φ∈Φ

max
π∈Π

P (π,φ) = max
π∈Π

min
φ∈Φ

P (π,φ), (2.8)

in which optimal strategies π∗ ∈ Π and φ∗ ∈ Φ are optimal solutions to the
both the MiniMax and MaxiMin patrolling game. While the optimal value to
the patrolling game G(Q, T,m) limited to pure strategies does not exist unless
there is a walk which is guaranteed to catch all attacker strategies, when mixed
strategies are allowed this optimal value always exists. This can be seen by the
application of the following theorem from [137].

Theorem 2.2.2. Let X ⊂ Rp, Y ⊂ Rq be compact convex sets. Then if f :
X × Y → R is continuous and convex, concave (i.e convex in X, concave in Y )
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we have
max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

By noting that the mixed strategy sets Π and Φ are compact convex sets and that
the payoff for any two mixed strategies P (π,φ) is continuous and convex, concave
we know by theorem 2.2.2 that Maximin is equivalent to MiniMax. Therefore,
we know the optimal value of the game G(Q, T,m) as in equation (2.8) exists
for any graph Q, for any m ≥ 1 and for any T ≥ m. We note that we cannot
apply theorem 2.2.2 when limited to pure strategies as the payoff function is not
continuous.

As the value of the patrolling game V (Q, T,m) always exists, it is always possi-
ble to find optimal strategies π∗ and φ∗. The strategy combination (π∗,φ∗) is
equivalent to a mixed Nash equilibrium for the patrolling game G(Q, T,m).

Definition 2.2.3 (Mixed Nash equilibrium). A mixed patroller, attacker strategy
pair, (π∗,φ∗) is a mixed Nash equilibrium of the mixed patrol game if,

P (π∗,φ∗) ≤ P (π∗,φ) ∀φ ∈ Φ,

and
P (π∗,φ∗) ≥ P (π,φ∗) ∀π ∈ Π.

As studied in [105], mixed Nash equilibria exist for any two-player finite zero-
sum game in which mixed strategies are considered, this is equivalent to applying
theorem 2.2.2 to such games. We now look at methods to solve patrolling games
G(Q, T,m) by finding the value V (Q, T,m) and optimal strategies π∗ and φ∗. For
the remainder of this thesis we will assume that strategies are mixed strategies
in order to ensure that value of the patrolling game exists.

2.2.3 Solving patrolling games

In this section we provide two linear programs which can be used to find the
value of the patrolling game G(Q, T,m). The two linear programs follow from
the MiniMax patrolling game G4(Q, T,m) and the MaxiMin patrolling game
G5(Q, T,m), which we have seen have equal optimal values. As many methods
for solving linear programs are known this approach is common for two player,
finite, zero-sum games in which mixed strategies are allowed ([135]). While the
use of linear programs is theoretically easy, the computational time required to
find the optimal solution grows with the number and nodes and the game length.
Therefore the linear programming approach is only practical for patrolling games
with a small number of nodes and a small game length and so the more common
approach in search theory, of finding equal upper and lower bounds on V (Q, T,m)
is used.
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The linear program for equation (2.6), the optimal value of the MiniMax patrolling
game, is formed by making the optimal max value into a decision variable

v = max
π∈Π

P (π,φ) ∈ R

along with the original decision variable of the attacker strategy φ ∈ Φ. In doing
so a constraint is enforced on the expected outcome of the attacker strategy for
each pure walk and hence the linear program in equation (2.9) is formed.

minimizev∈R,φ∈R|A| v

subject to v −
|A|∑
j=1

Pi,jφj ≥ 0, for all i ∈ {1, ..., |W|}

eTφ = 1,
φ ≥ 0,

(2.9)

where e is a row vector full of ones of appropriate size [1×|A|]. At an optimal value
to the linear program in equation (2.9) (v∗,φ∗), we have that v∗ = V 4(Q, T,m)
and φ∗ ∈ Φ is an optimal solution to the MiniMax patrolling game.

Similarly we can form the linear program for equation (2.7), the optimal value
of the MaxiMin patrolling game, by making the optimal value into a decision
variable

w = min
φ∈Φ

P (π,φ) ∈ R

along with the original decision variable of the patroller strategy π ∈ Π. In doing
so a constraint is enforced on the expected outcome of the patroller strategy for
each pure attack and hence the linear program in equation (2.10) is formed.

minimizew∈R,π∈R|W| w

subject to w −
|W|∑
i=1

Pi,jπi ≤ 0, for all j ∈ {1, ..., |A|}

eTπ = 1,
π ≥ 0,

(2.10)

where e is a row vector full of ones of appropriate size [1 × |W|]. At an op-
timal value to the linear program in equation (2.10) (w∗,π∗), we have that
w∗ = V 5(Q, T,m) and π∗ ∈ Π is an optimal solution to the MaxiMin patrolling
game.

For any patrolling game G(Q, T,m) to find it’s value V (Q, T,m) we need only
solve one of the linear programs in equations (2.9) and (2.10), however in order to
find an optimal strategy combination (π∗,φ∗) we are required to solve both linear
programs. As both linear programs search regions grow according to the number
of pure strategies these are computationally infeasible to use for moderately sized
patrolling games. An alternative approach is commonly used in which leader
strategies for the MiniMax and MaxiMin patrolling games are used to give upper
and lower bounds on the value of the game.
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For any attacker strategy φ ∈ Φ for the game G(Q, T,m) we know that

V (Q, T,m) = V 4(Q, T,m) ≤ max
W∈W

P (W,φ) ≤ 1, (2.11)

meaning that the attacker choosing φ ∈ Φ provides an upper bound on the value
of the game G(Q, T,m). Similarly, for any patroller strategy π ∈ Π for the game
G(Q, T,m) we know that

V (Q, T,m) = V 5(Q, T,m) ≥ min
a∈A

P (π, a) ≥ 0, (2.12)

meaning that the patroller choosing π ∈ Π provides a lower bound on the value
of the game G(Q, T,m). We define the performance of φ ∈ Φ as

V•,φ(Q, T,m) = max
W∈W

P (W,φ) (2.13)

and the performance of π ∈ Π as

Vπ,•(Q, T,m) = min
a∈A

P (π, a). (2.14)

Evaluating these performances requires knowing the best pure response to the
given strategy.

For all π ∈ Π and for all φ ∈ Φ we have

Vπ,•(Q, T,m) ≤ V (Q, T,m) ≤ V•,φ(Q, T,m), (2.15)

with equality if and only if the strategy combination (π,φ) is optimal for the
game G(Q, T,m). Finding π ∈ Π and φ ∈ Φ which have equal performances is
the most common way to solve patrolling games. In addition, such performances
can be calculated with generality allowing for classes of patrolling games to be
solved. Before looking at the performances of some stated strategies we first look
at some results for the patrolling game.

2.3 Known results

2.3.1 Known properties and techniques

In this section we provide an overview of properties on the value of the game and
techniques which can be used to reduce the search space for optimal strategies,
as given in [16]. More precisely, these properties consider changes in the three
parameters of patrolling games Q, T and m and what effect they have on the value
of the patrolling game. In addition, the reduction of the pure patroller strategy
set W and mixed strategy sets Π and Φ are done by considering dominating
strategies and the symmetry of the graph.

For the patrolling game G(Q, T,m) we can consider an increase in the attack
length from m to m+ 1 forming the patrolling game G(Q, T,m+ 1). As the set
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of pure attacker strategies for the game G(Q, T,m+ 1) is A(Q, T,m+ 1) = N ×
{0, ..., T−m−2} and the set of pure attacker strategies for the game G(Q, T,m) is
A(Q, T,m) = N ×{0, ..., T −m−1} it is clear that A(Q, T,m+1) ⊂ A(Q, T,m),
meaning the attacker has less strategies when the attack length is increased.
Hence for all simple graphs Q, for all m ≥ 1 and for all T ≥ m we have

V (Q, T,m+ 1) ≥ V (Q, T,m). (2.16)

That is an upper bound is achieved for V (Q, T,m), by the performance of an
attacker strategy which is optimal for the game G(Q, T,m+ 1). Likewise, we can
compare G(Q, T,m) and G(Q, T+1,m) and see thatA(Q, T,m) ⊂ A(Q, T+1,m)
and so increasing the game length increases the number of pure attacker strategies.
Hence for all simple graphs Q, for all m ≥ 1 and for all T ≥ m we have

V (Q, T + 1,m) ≤ V (Q, T,m). (2.17)

That is a lower bound is achieved for V (Q, T,m) by the performance of a patroller
strategy which is optimal for the game G(Q, T+1,m). We note that in the case of
increasing game length changes the set of pure walks for the patroller as they must
now go up to time T rather than time T−1. We can formW(Q, T+1,m) by taking
each walk W inW(Q, T,m) and concatenating it with each node j ∈ N such that
j = W (T−1) or (W (T−1), j) ∈ E to form W ′ = (W (0), ...,W (T−1), j). However
for any walk W ′ ∈ W(Q, T + 1,m) against any attacker strategy a ∈ A(Q, T,m)
we have

P (W ′, a)(Q, T + 1,m) = P (W,a)(Q, T,m),

where W = (W ′(0), ....,W ′(T − 1)) and hence the bound.

When considering an alteration to the graph Q = (N,E) we must consider how
the graph is altered, has there been a change in the set of nodes N or the set of
edges E. First consider introducing a new edge e to the current set of edges E
to form a new set of edges E ′ and the new graph Q′ = (N,E ′). Then comparing
the patrolling game G(Q, T,m) to G(Q′, T,m) it is clear that W(Q, T,m) ⊂
W(Q′, T,m), as all walks in G(Q′, T,m) can use all previous edges in E as well
as the additional edge e. Therefore, the addition of an edge increases the number
of pure walks for the patroller. Hence for all simple graphs Q = (N,E), for all
i, j ∈ N , for all m ≥ 1 and for all T ≥ m we have

V (Q′, T,m) ≥ V (Q, T,m), (2.18)

where Q′ = ((N,E ∪ {(i, j)}), T,m). That is a upper bound is achieved for
V (Q, T,m) by the performance of an attacker strategy which is optimal for the
game G(Q′, T,m). It is possible to get a similar result for the introduction of
additional nodes into a graph Q (see node-splitting in section 3.3.2), however in
[16] they consider merging two nodes via node-identification (see [47]).

Definition 2.3.1. The graphical operator of node-identification maps a (simple
undirected) graph Q = (N,E) onto Q− by identifying two nodes u, v ∈ N written
as Q−(Q, u, v) = Q−. The resultant graph Q− = (N−, E−) is such that N− =
(N ∪ {w} \ {u, v}) and E− = (E \ E ′) ∪ {(w, x)|(u, x) ∈ E or (v, x) ∈ E},
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where E ′ = {(u, v)} if (u, v) ∈ E and E ′ = ∅ if (u, v) /∈ E. Further, the node-
identification node and edge maps are given by N−(Q, u, v, j) and E−(Q, u, v, e)
respectively, which map nodes j ∈ N and edge e ∈ E of Q to nodes and edges of
Q−.

The process of node-identification merges two nodes u and v known as the parent
nodes into a child node w such that w is adjacent to all nodes that at least one
of it’s parents, u and v, were adjacent to. We can then consider the patrolling
games G(Q, T,m) and G(Q−, T,m) where Q− = Q−(Q, u, v) for some u, v ∈ N .
Every walk W ∈ W(Q, T,m) can be mapped to a walk W ′ = N−(Q, u, v)(W ) ∈
W(Q−, T,m) such that P (W ′, a)(Q−, T,m) = P (W,a)(Q, T,m) for any pure at-
tacker strategy a ∈ A(Q, T,m). However A(Q−, T,m) ⊂ A(Q, T,m), under an
isomorphic relabelling of the nodes, and therefore we get that merging two nodes
results in less pure attacker strategies and hence the following lemma.

Lemma 2.3.2 (Lemma 1, part 4, from [16]). For any game G(Q−, T,m) where
Q− is node-identified from the graph Q, for any m ≥ 1 and for for any T ≥ m
we have

V (Q−, T,m) ≥ V (Q, T,m),

with the upper bound on V (Q, T,m) achieved by an attacker strategy which is
optimal in the game G(Q−, T,m) .

In addition to results on the properties of patrolling games, in [16] they show
that some pure strategies can be removed from W and A when searching for
an optimal solution. Namely, any walk W can be removed from W if W (t) =
W (t+ 1) = W (t+ 2) for some t ∈ {0, ..., T − 3} and any pure attacker strategy
(j, τ) can be removed from A if m ≥ 3 and j is a penultimate node (that is it is
adjacent to a leaf node). While these can be removed from the pure strategy sets,
this is equivalent to setting strategy distributions to play such walks and pure
attacks with zero probability. Further reductions to the strategy sets Π and Φ
can be made by considering symmetric nodes. Consider two nodes i, j ∈ N which
are symmetric (that is there is an automorphism which swaps the symmetric
nodes), then an optimal attacker strategy φ exists such that ϕi,τ = ϕj,τ for all
τ ∈ T . Symmetric strategies in time can be considered by using φ1 and φ2

such that ϕ1,j,τ = ϕ2,j,T+1−τ−m, where ϕ1,j,τ is the probability of (j, τ) under the
distribution φ1 and ϕ2,j,τ is the probability of (j, τ) under the distribution φ2.
However the performance of such strategies are equal as given

W1 = arg max
W∈W

P (W,φ1)

then for W2(t) = W1(T − 1− t) for all t ∈ J we have

W2 = arg max
W∈W

P (W,φ2),

.

Having seen general properties of the value of the game, along with the reduction
of strategy sets, we now consider known patroller strategies along with their
respective performances, stating the lower bounds they provide on the value of
the game.
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2.3.2 Known patroller strategies

We now survey known patroller strategies π ∈ Π provided in [16] and their respec-
tive performances Vπ,•(Q, T,m) giving lower bounds on the value V (Q, T,m). We
start with a patrolling strategy which chooses a node j ∈ N with equal probability
and waits at node j for the entire time-horizon.

Definition 2.3.3. For the game G(Q, T,m) (Q = (N,E)) the choose and wait
patroller strategy πcw ∈ Π is such that πβ1(W ) = 1

|N | if W is such that W (t) = j
for all t ∈ J for some j ∈ N and πβ1(W ) = 0 otherwise.

Lemma 2.3.4 (Lemma 2 from [16]). For the game G(Q, T,m) for any graph
Q = (N,E), for all m ≥ 1, for all m ≥ 1 and for all T ≥ m we have

V (Q, T,m) ≥ Vπcw,•(Q, T,m) =
1

|N |
,

where the lower bound on V (Q, T,m) is achieved by the patroller choosing the
choose and wait patroller strategy πcw.

While the choose and wait patroller strategy πcw provides a lower bound on
V (Q, T,m) for any game G(Q, T,m), it is clearly ineffective for a large class of
patrolling games as we know for T ≥ 3 and m ≥ 2 that waiting for more than
2 time units at any node is dominated. Therefore, πcw is really only useful for
patrolling games in which m = 1.

We next consider a patroller strategy which can only be chosen in the class of
patrolling games G(Q, T,m) in which the graph Q is Hamiltonian.

Definition 2.3.5. A Hamiltonian cycle for the graph Q = (N,E) is a walk H of
length |N |, such that H(0) = H(|N |) and there exists some t ∈ {0, 1, ..., |N | − 1}
with H(t) = i for all i ∈ N . If the graph Q contains a Hamiltonian cycle it is
called a Hamiltonian graph. The set of all Hamiltonian graphs is denoted by H.

A Hamiltonian graph Q = (N,E) ∈ H has a Hamiltonian cycle H which can
be considered for use in creating pure patroller strategies/walks of length T . Let
Wi(t) = H(t+ i mod |N |) for all t ∈ J for i = 0, ..., |N | − 1, then Wi is the pure
patroller strategy that strategy that starts at the ith node along the Hamiltonian
cycle H and then follows it, repeating H as required for the time-horizon. Then if
m ≥ |N | we know that Wi({τ, ..., τ+m−1}) = N and hence for any j ∈ N, τ ∈ T
we know j ∈ Wi({τ, ..., τ + m− 1}) for any i = 0, ..., |N | − 1. Hence, Wi ∈ W is
guaranteed to catch any pure attacker strategy for any i = 0, ..., |N | − 1 and so
V (Q, T,m) = 1. Similarly, we can define a patroller strategy which plays the set
of walks {W0, ...,W|N |−1} with equal probability.

Definition 2.3.6. For the game G(Q, T,m) where Q = (N,E) ∈ H with a
Hamiltonian cycle H, the Hamiltonian pure patroller strategy (using H) is W ∈
W such that W (t) = H(t + i mod |N |) for all t ∈ J . The random Hamiltonian
patroller strategy (using H) is πrH such that πβ1(W ) = 1

|N | if W ∈ {W0, ...,W|N |−1},
where Wi(t) = H(t+i mod |N |) for all t ∈ J for i = 0, ..., |N |−1, and πβ1(W ) = 0
otherwise.
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Using a random Hamiltonian patroller strategy πrH the probability of a patroller
being at any node j ∈ N at any time t ∈ J is 1

|N | , hence any attacker strategy

(j, τ) ∈ A has a probability of catching the attacker of m
|N | .

Lemma 2.3.7 (Theorem 13 from [16]). For the game G(Q, T,m) for any Hamil-
tonian graph Q = (N,E) ∈ H, for all m ≥ 1 and for all T ≥ m we have

V (Q, T,m) ≥ VπrH ,•(Q, T,m) =
m

|N |
,

where the lower bound on V (Q, T,m) is achieved by the patroller choosing a ran-
dom Hamiltonian patroller strategy πrH (for any Hamiltonian cycle of Q).

As a patroller choosing a random Hamiltonian strategy has a constant probability
of 1
|N | for being at each node for each time, it can be thought to provide uniformity

across both space and time for the patroller. In chapter 3, section 3.3.4, we build
on this work, to allow us to use the same idea in non-Hamiltonian graphs. While
doing so no longer provides uniformity across nodes, we see that it is still possible
to obtain patroller strategies which retain their uniformity in time.

For the game G(Q, T,m) there may not be a pure patroller strategy which guar-
antees catching all pure attacks at each node within the graph Q. However we can
consider a subgraph of Q, Q1, in which there is a pure patroller strategy which
can catches all pure attacks meaning V (Q1, T,m) = 1. This concept of having a
pure patroller strategy which is guaranteed to catch all pure attacks at all nodes
within its walk is called intercepting.

Definition 2.3.8. For the game G(Q, T,m) a walk W ∈ W is called intercepting,
if

P (W, (j, τ)) = 1,

for all (j, τ) ∈ W (J )× J .

In the case that no intercepting walk exists for the whole graph Q, we can consider
multiple intercepting walks to ensure that at each node in the graph Q is in at
least one of the intercepting walks. That is we consider R intercepting walks each
distinct on subgraphs Q1, ..., QR, such that

Q =
R⋃
r=1

Qr.

This idea of having a collection of intercepting walks, on subgraphs which collec-
tively form the graph is called a covering set.

Definition 2.3.9. For the game G(Q, T,m) a set of intercepting walks C =
{W1, ...,WR} is called a covering set, if for each node j ∈ N there exists r ∈
{1, ..., R}, such that j ∈ Wr(J ).

For the game G(Q, T,m) with a covering set C = {W1, ...,WR} the patroller
can consider playing each intercepting walk Wi for i ∈ {1, ..., R} with equal
probability.
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Definition 2.3.10. For the game G(Q, T,m) with a covering set C the covering
patroller strategy using C is πCov such that πβ1(W ) = 1

|C| forW ∈ C and πβ1(W ) = 0
otherwise.

Using a covering patroller strategy for some covering set C for the gameG(Q, T,m)
gives a lower bound on the value of the game for all graphs Q, for all m ≥ 1 and
for all T ≥ m of

V (Q, T,m) ≥ VπCov,•(Q, T,m) =
1

|C|
. (2.19)

This can be seen as any pure attack (j, τ) ∈ A there exists some i ∈ {1, ..., R}
such that P (Wi, (j, τ)) = 1 which is played with probability 1

|C| . From equation

(2.19) it is clear that forming a covering strategy using a covering set with minimal
cardinality gives the best lower bound amongst all choices for covering strategies.

Definition 2.3.11. For a game G(Q, T,m) a covering set C is called a minimal
covering set if |C| = min

C′∈S
|C ′|, where S is the set of all covering sets for G(Q, T,m).

Moreover, the cardinality of such a set is called the covering number for the game
G(Q, T,m), denoted as CQ,T,m.

We note that finding the covering number CQ,T,m for a graph is related to the
minimal edge covering for a graph. In graph theory an edge covering is a set
of edges such that every node is incident (at one end) of an edge in the set.
For m = 2 intercepting pure patroller strategies are equivalent to edges, as the
patroller must alternate between two nodes. Therefore when m = 2 we may
utilise known results in order to find the covering number and minimal covering
set. However the problem of finding a minimal edge covering is widely known to
be NP-Hard ([48]). While exact algorithms exist, their computation time is such
that only small graphs, or graphs with structures which reduce the complexity of
the problem, can be solved within a reasonable time.

Lemma 2.3.12 (Lemma 12 from [16]). For the game G(Q, T,m) for any graph
Q = (N,E), for all m ≥ 1 and for all T ≥ m we have

V (Q, T,m) ≥ 1

CQ,T,m
,

where the lower bound on V (Q, T,m) is achieved by the patroller choosing a cov-
ering patroller strategy πCov, using a minimal covering set C.

The idea of using multiple intercepting walks in a covering set, divides the graph
into subgraphs in which the game played upon them is a guaranteed win for the
patroller (using the intercepting walks). However it is possible to use this idea
of decomposition, without requiring that each subgraph games G(Qr, T,m) has a
value V (Qr, T,m) = 1. For a decomposition of the graph Q into Q1, ..., QR such
that

Q =
R⋃
i=1

Qi,

the patroller can play the optimal strategy for each subgraph game with an ap-
propriate weighting.
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Definition 2.3.13. For the game G(Q, T,m) with a decomposition of Q into
Q1, ..., QR, we form the subgraph games G(Q1, T,m), ..., G(QR, T,m) with opti-
mal patroller strategies, π∗1, ...,π

∗
R. A decomposition patroller strategy using the

decomposition above πDec is such that πβ1(W ) =
R∑
i=1

piπ
∗
i,β1(W ), where

pi =
1

V (Qi, T,m)
R∑
r=1

1
V (Qr,T,m)

,

for i ∈ {1, .., R}.

That is a decomposition patroller strategy πDec using a decomposition of Q into
Q1, ..., QR plays an optimal strategy for the subgraph V (Qi, T,m) with probability
pi.

Lemma 2.3.14 (Lemma 6 from [16]). For the game G(Q, T,m) for any graph Q

with any decomposition Qi for i = 1, .., R (Q =
R⋃
i=1

Qi), for all m ≥ 1 and for all

T ≥ m we have

V (Q, T,m) ≥ VπDec
(Q, T,m) ≥ 1

R∑
i=1

1
V (Qi,T,m)

,

where the lower bound on V (Q, T,m) is achieved by the patroller choosing a de-
composition patroller strategy πDec using the decomposition Qi for i = 1, .., R.
Moreover, if the subgraphs Qi for i = 1, .., R are disjoint and disconnected we
have

V (Q, T,m) =
1

R∑
i=1

1
V (Qi,T,m)

.

If Q is a disconnected graph, lemma 2.3.14 shows we can just treat each connected
subgraph of Q separately. Henceforth we can assume that the graph Q is a
connected simple graph. In chapter 3, section 3.3.1, we extend lemma 2.3.14 to
cover the situation when the optimal strategies, π∗i for some i = 1, ..., R, are not
known. Having now seen known patroller strategies, which can be chosen by the
patroller to give a lower bound on the value of the game, we now look at known
attacker strategies.

2.3.3 Known attacker strategies

We now survey known attacker strategies φ ∈ Φ provided in [16] and their respec-
tive performances V•,φ(Q, T,m), giving upper bounds on the value V (Q, T,m).
We start with an attacker strategy which for a fixed constant commencement
time chooses amongst nodes uniformly.
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Definition 2.3.15. For the game G(Q, T,m) (Q = (N,E)) a position-uniform
attacker strategy φpu, using a fixed commencement time t ∈ T , is such that the
probability of choosing node (j, τ) is ϕj,τ = 1

|N | if τ = t for all j ∈ N and ϕj,τ = 0
otherwise.

As the position-uniform attacker strategy randomizes only over nodes and has a
fixed commencement time t, it is clear that the best pure patroller is one that
visits the most nodes during the time interval I = {t, ..., t + m − 1}. So the
performance V•,φpu(Q, T,m) = P (W,φpu) where W is such that W (I) has the
maximal number of distinct nodes ω∗ ≤ m. Note that ω∗ does not depend on the
interval and hence does not depend on the fixed commencement time t.

Lemma 2.3.16 (Lemma 2 from [16]). For the game G(Q, T,m) for any graph
Q = (N,E), for all m ≥ 1 and for all T ≥ m we have

V (Q, T,m) ≤ V•,φpu(Q, T,m) =
ω∗

|N |
≤ m

|N |
,

where ω∗ is the maximum number of distinct nodes a pure patroller can visit in
a walk of length m. The upper bound on V (Q, T,m) is achieved by the attacker
choosing a position-uniform attacker strategy φpu for any fixed commencement
time t ∈ T .

It is possible to randomize the commencement time uniformly among all τ ∈
T to achieve the same result as lemma 2.3.16. This uniform attacker strategy
φU is such that the probability of choosing the pure attacker strategy (j, τ) is
ϕj,τ = 1

|N |(T−m)
for all j ∈ N, τ ∈ T . While this result is not stated in [16] it is

easy to see that φU has an equal performance to φpu, as in lemma 2.3.16. This
follows as φU equally randomizations among a set of equally performing strategies
{φ0,pu, ...,φT−m,pu}, where φt,pu is the position-uniform attacker strategy using
the fixed commencement time t.

In a similar idea to covering sets for the patroller which contains intercepting
walks which are guaranteed to catch any pure attacker at a node they visit, an
independence set for the attacker can be formed in which no two pure attacks
can be caught by a single pure patroller strategy. In order to define this strategy
we must first define the distance between two nodes on a graph.

Definition 2.3.17. For a graph Q = (N,E) the distance between nodes i, j ∈ N ,
denote d(i, j), is the minimal length of a walk from i to j.

Thus if d(j, j′) ≥ m then no pure patroller can catch both (j, t) ∈ A and (j′, t) ∈ A
for any t ∈ T . In this case we call nodes j and j′ independent. We define
independent sets, which have each node independent of every other node.

Definition 2.3.18. For the game G(Q, T,m) a set of pure attacks L is called an
independent set, if τ = τ ′ and d(j, j′) ≥ m for all (j, τ), (j′, τ ′) ∈ L.

Definition 2.3.19. For the game G(Q, T,m) with an independent set L, the
independent attacker strategy using L is φInd such that the probability of choosing
(j, τ) is ϕj,τ = 1

|L| for (j, τ) ∈ L and ϕj,τ = 0 otherwise.
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Using an independent attacker strategy for some independent set L for the game
G(Q, T,m) gives an upper bound on the value of the game for all graphs Q, for
all m ≥ 1 and for all T ≥ m of

V (Q, T,m) ≤ V•,φInd
(Q, T,m) =

1

|L|
. (2.20)

This can be seen as for any W ∈ W the m nodes visited W (I) during the
attack interval I can only contain one node in L. From equation (2.20) it is
clear that forming an independent attacker strategy using an independent set
with a maximal cardinality gives the best upper bound amongst all choices for
independent strategies.

Definition 2.3.20. For the game G(Q, T,m) an independent set L is called a
maximal independent set if |L| = max

L′∈S
|L′| where S is the set of all independent sets

for G(Q, T,m). Moreover, the cardinality of such a set is called the independence
number for the game G(Q, T,m), denoted LQ,T,m.

As with the covering number, we note that independence number LQ,T,m is related
to the maximal vertex independence number for a graph. In graph theory, a vertex
independent set is a set of nodes such that no two are adjacent. We refer to it as
a vertex independent set to distinguish between our definition and that of some
graph theory literature. While the definitions for use in the patrolling game do
not exactly match these graph theory definitions unless m = 2, the core idea of
having spatially separated nodes remains the same. Determining the maximal
vertex independent set, like the minimal covering set, is NP-Hard ([39]). We
consider vertex independence in chapter 5.

Lemma 2.3.21 (Lemma 12 from [16]). For the game G(Q, T,m) for any graph
Q, for all m ≥ 1 and for all T ≥ m we have

V (Q, T,m) ≤ 1

LQ,T,m
,

where the upper bound on V (Q, T,m) is achieved by the attacker choosing an
independent attacker strategy φInd, using a maximal independent set L.

Another way to use nodes which are a distance apart is to use two such they are
the furthest distance apart.

Definition 2.3.22. For a graph Q = (N,E) the diameter is

d = max
(j,j′)∈N×N

d(j, j′),

where a pair of nodes (j, j′) such that d(j, j′) = d is called a diametric pair.

In [16] a diametric pair is considered to form the diametric attacker strategy such
that ‘the Attacker’s diametrical strategy is to attack these nodes [the diamet-
ric nodes] equiprobably during a random time interval I’ and the performance
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of these diametric attacker strategies give an upper bound. However, the arbi-
trary statement about randomness in the attack interval I causes issues with the
proposed upper bound in [16]. This issue of randomness amongst all possible
commencement times (equivalent to attack intervals) is discused in section 3.3.3.
For now we state the diametric attacker strategy and the upper bound proposed
in [16] and provide a counter-example to show that this upper bound does not
always hold.

Definition 2.3.23 (Diameteric attack as in lemma 9 from [16]). For the game
G(Q, T,m) a diametric attacker strategy φdi, using the diametric pair (j, j′), is
such that the probability of choosing the pure strategy (i, τ) ∈ A is

ϕi,τ =

{
1

2(T−m+1)
if i ∈ {j, j′} and τ ∈ T ,

0 otherwise.
(2.21)

Lemma 2.3.24 (Diametric attacker bound as in lemma 9 from [16]). For the
game G(Q, T,m) for any graph Q, for all m ≥ 1 and for all T ≥ m we have

V (Q, T,m) ≤ max

(
1

2
,
m

2d

)
,

where d is the diameter of the graph Q. The upper bound on V (Q, T,m) is
achieved by the attacker choosing a diametric attacker strategy φdi, for any dia-
metric pair (j, j′).

Notice that the upper bound in lemma 2.3.24 is the same as

V (Q, T,m) ≤

{
1
2

for m ≤ d,
m
2d

for d < m ≤ 2d,

with the case of m ≤ d being equivalent to the application of equation (2.20)
with the independent set L = {(j, 0), (j′, 0)}, where (j, j′) is the diametric pair.
Unfortunately, the upper bound provided by the attacker choosing a diametric
attacker strategy in lemma 2.3.24 is incorrect. We provide counterexample 2.3.25
to demonstrate the issue with lemma 2.3.24. The issue we can see from using
an equally chosen commencement time is that a pure patroller can catch more
potential attacks. This is because of the distribution in commencement time
and how many potential attacks a pure patroller who moves between the pair of
diametric nodes (with some waiting) can capture.

Counterexample 2.3.25. Consider the game G(L4, 7, 4). That is the game on
the line graph consisting of 4 nodes with a game length of 7 and an attack length
of 4. A pair of diametric nodes for the graph L4 is (1, 4) and hence φdi can be
formed and d = 3. Figure 2.3.1 shows the space-time probability matrix Sdi which
is equivalent to φdi along with the pure patroller walk W = (1, 2, 3, 4, 3, 2, 1) in
red. From the figure it it is clear that P (W,φdi) = 1

8
+ 4

8
+ 1

8
= 6

8
and so have a

performance of

V•,φdi
(L4, 7, 4) ≥ 6

8
>

4

6
.

However this contradicts the upper bound given in lemma 2.3.24 and therefore
lemma 2.3.24 does not hold.
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Figure 2.3.1: The space-time probability matrix Sdi for a diametric attacker
strategy φdi used in the game G(L4, 7, 4) with a pure patroller strategy W =
(1, 2, 3, 4, 3, 2, 1) shown in red.

We note that in counterexample 2.3.25 limiting the distribution of the commence-
ment times to choose equally from only {0, 1, 2}, rather than {0, 1, 2, 3} would
remedy the issue, achieving the upper bound as proposed in lemma 2.3.24.

In chapter 3, section 3.3.3, we find the corrected performance of the diametric
attacker strategy φdi, noticing a dependence on the game length T . Moreover,
we will see that the upper bound in lemma 2.3.24 holds if T = m− 1 + (k + 1)d
for some k ∈ N0. We will also show that limiting the distribution for an attacker
strategy in commencement time can achieve the upper bound equivalent to that
in lemma 2.3.24 but requires a game length T ≥ m + d − 1. As lemma 2.3.24 is
incorrect, it’s subsequent use in the patrolling game on the line graph Ln, leads
to an incorrect statement about the optimality of the game. In particular how
using φdi is only optimal when T = m− 1 + (k + 1)d for some k ∈ N0. However,
with our work in section 3.3.3 we are able to get the same optimal value as stated
in [107] when T ≥ m+n−2 by using our developed attacker strategy, alleviating
the aforementioned issue.

2.3.4 Solved patrolling games

In this section we will survey classes of patrolling games which have previously
been solved. We showcase the value of the game as well as the known optimal
strategies which were used to give tight bounds. We cover games in which m = 1,
followed by games on Hamiltonian, complete bipartite, and line graphs.

Any patrolling game with m = 1 have tight/equal lower and upper bounds which
are given by lemmas 2.3.4 and 2.3.16.

Lemma 2.3.26 (Lemma 2 from [16]). For the game G(Q, T, 1) for any graph
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Q = (N,E) and for all T ≥ 1 we have

V (Q, T, 1) =
1

|N |
,

achieved by the choose and wait patroller strategy πcw and any position-uniform
attacker strategy φpu (using any fixed commencement time t).

For G(Q, T,m) where Q ∈ H is Hamiltonian, the game is solved for any game
length and attack length as we get equal lower and upper bounds given by lemmas
2.3.7 and 2.3.16.

Lemma 2.3.27 (Hamiltonian lemma). For the game G(Q, T,m) for any graph
Q = (N,E) ∈ H, for all m ≥ 1 and for all T ≥ m we have

V (Q, T,m) =
m

|N |
,

achieved by a random Hamiltonian patroller strategy πrH (using any Hamiltonian
cycle H) and a position-uniform attacker strategy φpu (using any fixed commence-
ment time t).

A Hamiltonian graph with the least edges, containing n nodes, is the cyclic graph
of n nodes, Cn. Having a circular graphic structure, Cn forms the ‘backbone’
of any Hamiltonian graph and additional edges do not improve the value of the
game (later such edges are called superfluous). The Hamiltonian graph with the
most edges is the complete graph of n nodes Kn, in which each node is adjacent
to every other node. We highlight that fact that

V (Cn, T,m) = V (Kn, T,m) ∀n ∈ N, ∀m ≥ 1,∀T ≥ m,

as in chapter 3, section 3.3.4, we use a Hamiltonian graph to develop patroller
strategies for non-Hamiltonian graphs, and so we use the cyclic graph for simplic-
ity.

Next solved is the game G(Q, T,m) where Q is a complete bipartite graph. A
bipartite graph is graph such that there exists some non-empty node sets A and
B such that N = A ∪ B , A ∩ B = ∅, (i, j) /∈ E for all i, j ∈ A and (i, j) /∈ E for
all i, j ∈ B. A complete bipartite graph is a bipartite graph with the additional
condition on the sets A and B, that (i, j) ∈ E for all i ∈ A, j ∈ B. A complete
bipartite graphs Q may be written as Q = Ka,b where |A| = a and |B| = b where
without loss of generality 1 ≤ a ≤ b. We denote the set of all biparite graphs
by P2 and the set of all complete bipartite graphs by KP2. For Q ∈ P2, the use
of repeated node-identification along with lemma 2.3.27 was used to develop a
lower bound. An equal upper bound was found when Ka,b ∈ KP2 by having the
attacker choose pure attack (j, τ) with probability

ϕj,τ =


1
b

if j ∈ B, τ = t,m is even,
1
2b

if j ∈ B, τ = t, t+ 1,m is odd,

0 otherwise.
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Lemma 2.3.28 (Theorem 15 from [16]). For the game G(Q, T,m) for any graph
Q ∈ P2 (where 1 ≤ |A| = a ≤ |B| = b), for all m ≥ 1 and for all T ≥ m + 1 we
have

V (Q, T,m) ≤ m

2b
.

Further if the graph is complete, i.e Q = Ka,b ∈ KP2, then

V (Ka,b, T,m) =
m

2b
.

In chapter 3, section 3.5, we extend lemma 2.3.28 by discussing what is concretely
needed to obtain this bipartite solution when Q ∈ P2 \KP2. Furthermore we use
our new bounds, developed in section 3.3, to solve all complete k-partite graphs
for k ≥ 3.

A special complete bipartite graphs is the star graph defined by Sn ≡ K1,n for n ∈
N. By lemma 2.3.28 we know the value for all games on star graphs, V (Sn, T,m) =
m
2n

. While a special subset of complete bipartite graphs, we highlight the star
graph as in chapter 4 we will elongate it by mixing its structure with that of a
line graph.

Another special biparite graphs is the line graphs Ln = (N,E) such that N =
{1, 2, ..., n} and E = {(i, i+ 1) | i = 1, ..., n− 1} for n ∈ N. Any line graph Ln is
bipartite but not complete bipartite (unless n = 2, 3) and so lemma 2.3.28 does
not give the value. The value of the patrolling game G(Ln, T,m) was found for
all n ≥ 1, for all m ≥ 1 and for all T ≥ 2m in [107]. The optimal strategies
which provided equal upper and lower bounds depend on the attack length m.
The decomposition of the set of attack lengths N allowed for regions of attack
lengths to be solved. In one set of attack lengths bespoke attacker strategies are
needed which are only feasible strategies if T ≥ 2m, thus requiring this condition.
We will see that unlike previously solved graphs, increasing the attack length
increases the value in a non-linear fashion. We provide the decomposition of the
attack length set dependent on n. This is followed by the value of the game and
optimal strategies in the game.

• MLn
0 = {m : m = 1},

• MLn
1 = {m : m > 2(n− 1)},

• MLn
2 = {m : n− 1 < m ≤ 2(n− 1)},

• MLn
3 = {m : m = 2, n ≥ 3},

• MLn
4 = {m : m = n− 1, or m = n− 2 and m even},

• MLn
5 = {m : 3 ≤ m ≤ n− 3, or m = n− 2 and m odd}.
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Figure 2.3.2: The decomposition of the attack length sets N into attack length
regions MLn

i for i = 0, ..., 5 dependent on n. Shown for n,m = 1, ..., 12.

We note that the order of these regions are arbitrary and chosen to match those

used in [107]. Figure 2.3.2 shows the decomposition of N =
5⋃
i=0

MLn
i for various

n ∈ N in (n,m) ∈ N2 space.

Lemma 2.3.29. For the game G(Ln, T,m) for all n ∈ N,

• for all T ≥ 1 and m = 1 (m ∈MLn
0 )

V (Ln, T, 1) =
1

n
,

achieved by the choose and wait patroller strategy πcw and any position-
uniform attacker strategy φpu (using any fixed commencement time t).

• for all T ≥ m and m ∈MLn
1 ,

V (Ln, T,m) = 1,

achieved by oscillating (embedded Hamiltonian) patroller and any attacker
strategy.

• for T ≥ m and m ∈MLn
2 ,

V (Ln, T,m) =
m

2(n− 1)
,

achieved by the patroller choosing a random oscillation patroller strategy
(for details see [107]) and a diametric attacker strategy.
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• for T ≥ 2 and m = 2 (m ∈MLn
3 ),

V (Ln, T, 2) =
1⌈
n
2

⌉ ,
achieved by a covering patroller strategy using a minimal covering set C and
a independent attacker strategy using a maximal independent set L.

• for T ≥ m and m ∈MLn
4 ,

V (Ln, T,m) =
1

2
,

achieved by a covering patroller strategy using a minimal covering set C and
a independent attacker strategy using a maximal independent set L.

• for T ≥ 2m and m ∈MLn
5 ,

V (Ln, T,m) =
m

n− 1 +m
,

achieved by an end-augmented Hamiltonian patroller strategy and a bespoke
attacker strategies dependent on n− 1 mod m (for details see [107]).

Lemma 2.3.29 has the value V (Ln, T,m) = m
2(n−1)

, for m ∈ MLn
2 , achieved by

the attacker choosing a diametric attacker strategy φdi using the diametric pair
(1, n) (or equivalently (n, 1)). However, we saw in section 2.3.3 that performance
of this strategy does not always equal the value of m

2(n−1)
for the line graph. In

chapter 3, section 3.3.3, we provide an attacker strategy which does have an
equal performance and therefore restate this part of lemma 2.3.29 with a correct
optimal strategy. Note that this requires a restriction of the game lengths to
T ≥ m+ n− 2.

The decomposition of the set of all considered attack lengths N into regions in
which different optimal strategies and different values are found is needed in
chapter 4, where we mix the graphical structure of the star, Sn−1, and line, Lk+2,
to form the elongated star graph, Skn. Furthermore, while the decomposition of N
into MLn

i for i ∈ {0, 1, 2, 3, 4, 5} depends only on one graph parameter n for Ln,
our decomposition in chapter 4 depends on two graph parameters n and k.

To conclude our survey of known work we compare the values of two games
G(Ln, T,m) and G(Cn, T,m) for various attack lengths m, assuming T ≥ 2m, to
highlight the drastic difference, in value, the single edge (1, n) can make. Figure
2.3.3 shows the values of the two games for n = 10. The inclusion of the single
edge (1, n) causes drastic changes in optimal strategies as the patroller must
repeat nodes n − 1, n − 2, ..., 2 to get back to node 1 in Ln compared to Cn. In
non-Hamiltonian graphs the inclusion of additional edges can greatly affect the
value of the game if they lower the number of nodes which need to be repeated
to return to prior nodes. Another way to see this is look at Ln as C2(n−1) (by
node splitting), which has almost double the amount of nodes as Cn. This idea
of using a comparison to a cycle is extremely useful, as it allow us to get optimal
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bounds on graphs which are non-Hamiltonian. In chapter 3, section 3.3.4, we see
that it is possible to get a ‘Hamiltonian bound’ for non-Hamiltonian graphs. We
see in sections 3.5, 4.2.3 and 4.3.2 that this approach leads to optimal strategies
for a variety of patrolling games on different graphs. Furthermore, in chapter
5 we conjecture that under some conditions that this strategy is optimal for all
patrolling games on trees Q = (N,E) in which m ≥ |N | − 1.
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Figure 2.3.3: A comparison of the value of the game G(Q, T,m) for the cyclic
graph Q = Cn, shown in black, and the line graph Q = Ln, shown in red for
n = 10, when m = 1, ..., 2n+ 2 for any T ≥ 2m.

2.4 Concluding comments

In this chapter we have defined the patrolling game G(Q, T,m) and seen that the
common way to find its value V (Q, T,m) (and optimal strategies π∗ ∈ Π and
φ∗ ∈ Φ) is to find equal lower and upper bounds by looking at the performance of
strategies as in equation (2.15). We saw some known strategies for the patroller
and their performances, which provide a lower bound on the value and similarly
known strategies for the attacker and their performances, which provide an upper
bound on the value. We have seen the value of classes of patrolling games which
have been solved, these include patrolling games with: an attack length m = 1,
Hamiltonain graphs Q ∈ H, complete bipartite graphs Q ∈ KP2, and line graphs
Q = Ln for some n ∈ N. In particular we saw that solution to the patrolling game
on the line graph required decomposition and in some regions bespoke attacker
strategies (see [107] for details), leading in a complex solution for the class of
patrolling games on line graphs.
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This survey of the previous literature found an error with the performance of
the diametric attacker strategy φdi provided in [16]. In chapter 3, section 3.3.3,
we provide the performance of φdi and improve the strategy to provide a better
upper bound, with a lower performance matching that suggested in lemma 2.3.24.

In the following chapter we look at new techniques to reduce the strategy spaces
for games and produce more general strategies along with their performances and
bounds they provide on the value. These are applied to solve classes of patrolling
games when Q ∈ P2 \ KP2 and when Q ∈ KPk for k ≥ 3.



Chapter 3

New techniques and strategies

3.1 Introduction

In this chapter we provide new techniques for strategy space reductions for general
patrolling games G(Q, T,m) and in particular provide large reductions in the
search for the optimal walk W ∈ W in the evaluation of the performance of an
attacker strategy strategy φ ∈ Φ in V•,φ(Q, T,m) (as in equation (2.13)). We then
provide general patroller and attacker strategies, evaluating their performances
and therefore giving bounds on the value V (Q, T,m). In particular, we find the
performance of the diametric attacker strategy φdi and correct the result given
in [16]. We adapt the random Hamiltonian strategy πrH , which is only feasible
for Hamiltonian graphs, to non-Hamiltonian graphs and thus use the idea to find
a lower bound on the value for any graph. Furthermore, we look at the Patroller
Improvement Program (PIP) which can be solved in order to find an improved
patroller strategy with a greater performance.

This chapter is structured as follows, we begin in section 3.2.1 by considering how
shifting strategies in time can reduce the number of strategies we need to consider.
In section 3.2.2 we provide some reductions in the pure patroller space when cal-
culating the performance of an arbitrary attacker strategy. This is followed by
section 3.2.3 which provides further reductions for an attacker strategy with cer-
tain properties. After considering some strategy set reductions we present some
general strategies for both the patroller and attacker. In section 3.3.1 we con-
sider decomposition into subgraph games in which the optimal strategies are not
necessarily known. In section 3.3.2 we consider how node-identification can be re-
peated/reversed and how embedded strategies can be generated. In section 3.3.3
we find the correct performance of the diametric attacker strategy φdi and present
an alternative strategy which performs better. In section 3.3.4 we find ‘Hamil-
tonian like’ lower bounds for non-Hamiltonian graphs via embedding, creating a
strategy called the random minimal full-node cycle strategy πQRMFNC. This is fol-
lowed by section 4.2.5, which identifies nodes for which πQRMFNC performs weakly
at. Then in section 3.4 we present the Patrol Improvement Program (PIP) as
a way to improve patroller strategies given a finite group of strategies. Finally,
in section 3.5, we provide solutions to k-partite graphs by using techniques and
strategies seen throughout this chapter.

45
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3.2 Strategy reduction techniques

3.2.1 Time-shifting

In this section, we reduce the set of mixed attacker strategies Φ from which the
attacker can choose, by showing that for any φ ∈ Φ that any s-time-shifted strat-
egy φs has an equal performance. An s-time-shift performed on player strategies
moves each potentially played pure strategy s forward in time (or equivalently
moves the time-horizon s backwards).

Definition 3.2.1. A pure patroller strategy W ∈ W can be can be s-time-shifted,
for some s ∈ Z to form W s ∈ W , where

W s(t) =

{
W (t− s) if s ≤ t ≤ T + s− 1,

W ′(t) otherwise,

where W ′(t) is an arbitrary path such that:

• W ′(s) = W (0) if s ≥ 0.

• W ′(T + s− 1) = W (T + s− 1) if s < 0.

Let ξ(W, s,W ′) : W → W be the time-shifting function mapping W to W s for
the path choice W ′. A patroller strategy π ∈ Π can be s-time-shifted, for some
s ∈ Z, to form a strategy πs ∈ Π such that

πsβ1(W ) =
∑
U∈W

|W|∑
i=1

πβ1(ξ(U,s,W ′i )),

where W ′
i are the path choices for i ∈ {1, ..., |W|}.

Notice that for any patroller strategy π ∈ Π a large set of s-time-shifted exist
depending on the selection of the arbitrary path W ′(t) chosen for each W ∈ W .
Therefore, the performance of any particular s-time-shifted patroller strategy πs

compared to π depends greatly on the choice of W ′ for each W ∈ W . This is true
for any s ∈ Z so time-shifting patroller strategies is not useful for finding lower
bounds. However, when time-shifting attacker strategies we limit the s such that
their is no arbitrary pure attacker strategies which need to be chosen. That is, we
limit the time-shifting such that all pure attack intervals for an attacker strategy
remain within the time-horizon.

Definition 3.2.2. A pure attacker strategy a = (j, τ) ∈ A can be s-time-shifted
for some s ∈ Z such that τ + s ≥ 0 and τ + s+m− 1 ≤ T − 1 to form as, where
as = (j, τ + s). An attacker strategy φ ∈ Φ (which plays a pure attack (j, τ) with
probability ϕj,τ ) can be s-time shifted for some s ∈ Z such that

−min TY ≤ s ≤ T −m−max TY
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where,
TY = {τ ∈ T | ∃j ∈ N s.t. ϕj,τ 6= 0}

to form an attacker strategy φs, where φs plays a pure attack (j, τ) ∈ A with
probability ϕsj,τ = ϕj,τ−s.

Lemma 3.2.3. For any φ ∈ Φ for any s ∈ Z such that

−min TY ≤ s ≤ T −m−max TY

where,
TY = {τ ∈ T | ∃j ∈ N s.t. ϕj,τ 6= 0}

for any graph Q, for all m ≥ 1 and for all T ≥ m we have

V•,φ(Q, T,m) = V•,φs(Q, T,m).

Moreover, if W is an optimal response to φ , then the s-time-shifted walk W s is
an optimal response to the s-time-shifted attacker strategy φs.

The proof of lemma 3.2.3 follows as the responding pure patroller can time-shift
their walk by s, thus it is possible to get the same performance. Moreover, the
pure patroller cannot do better against φs than they could against φ.

Proof. We first notice that for any walk W ∈ W , any attacker strategy a ∈ A and
for any s, as given in the lemma, we have that Pp(W,a) = Pp(W

s, as), where W s

and as are s-time-shifted versions of W and a respectively. So for any W ∈ W ,
for any φ ∈ Φ and for any s ∈ Z we have that P (W,φ) = P (W s,φs), where φs

is the s-time-shifted version of φ.

Thus

V•,φ(Q, T,m) = min
W∈W

P (W,φ) = P (W ∗,φ)

= P (W s,∗,φs) ≥ min
W∈W

P (W,φs) = V•,φs(Q, T,m), (3.1)

where W ∗ is the optimal walk in response to φ and W s,∗ is the s-time-shifted
version of W ∗. Similarly,

V•,φs(Q, T,m) = min
W∈W

P (W,φ) = P (W ∗,φs)

= P (W−s,∗,φ) ≥ min
W∈W

P (W,φ) = V•,φ(Q, T,m), (3.2)

where W ∗ is the optimal walk in response to φs and W−s,∗ is the −s-time-shifted
version of W ∗. Hence, by equations (3.1) and (3.2), we have

V•,φ(Q, T,m) = V•,φs(Q, T,m).
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Corollary 3.2.4. For any game G(Q, T,m) if (π,φ) ∈ Π × Φ is an optimal
strategy combination then (π,φs) is an optimal strategy combination for any s ∈ Z
such that

−min TY ≤ s ≤ T −m−max TY
where,

TY = {τ ∈ T | ∃j ∈ N s.t. ϕj,τ 6= 0}.

Corollary 3.2.4 follows immediately from lemma 3.2.3 as the upper bound pro-
vided by choosing φ and φs are equal. Furthermore lemma 3.2.3 informs us that
we can find an optimal attacker strategy which has ϕj,0 > 0 for some j ∈ N . This
restriction reduces Φ to Φ′ = {φ ∈ Φ | ∃j ∈ N such that ϕj,0 > 0}, meaning we
will always consider an attacker strategy which has a potential attack commenc-
ing at time 0. In the following section we consider how to reduce the space of
responses for a pure patroller against a given attacker strategy.

3.2.2 Reduction of patroller response space for arbitrary
attacker strategy

In this section we aim to reduce the set of pure patroller responses for an arbitrary
attacker strategy, thus making the performance of an arbitrary attacker strategy
easier to find. That is for equation (2.13), viz.

V•,φ(Q, T,m) = max
W∈W

P (W,φ), (3.3)

we look at reducing the set of walks W played in response to any φ ∈ Φ, to find
the best pure patroller response W ∗ to φ such that V•,φ(Q, T,m) = P (W ∗,φ).
The space-time probability matrix S = (Sj,t)j∈N,t∈J , as given in equation (2.4),
can be used to find P (W,φ). Example 3.2.5 provides an idea of how S can be
used to calculate P (W,φ) for some walk W ∈ W .

Example 3.2.5. For the patrolling game G(K4, 10, 4) to calculate P (W,φ) for

W = (1, 4, 1, 2, 3, 4, 3, 1, 3, 3)

and φ such that the probability of choosing (j, τ) is given by

ϕj,τ =


1
2

if (j, τ) = (1, 2),
1
4

if (j, τ) = (1, 4),
1
8

if (j, τ) ∈ {(2, 1), (3, 4)},

we can see the unique probabilities in the space-time probability matrix S of φ
caught by the walk W . Figure 3.2.1 shows S and W , giving that

P (W,φ) = 0 + 0 +
1

2
+

1

8
+

1

8
+ 0 + 0 +

1

4
+ 0 + 0 =

7

8
.

We note that the walk W at time 6 is at node 3 and does not gain any probability
from this visit to node 3, as it would previous be caught by the prior visit to node
3 which occurred at time 4.
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Figure 3.2.1: Space-time probability matrix S for example 3.2.5 with the pure
walk W = (1, 4, 1, 2, 3, 4, 3, 1, 3, 3) shown in red.

Example 3.2.5, while showing the usefulness of the grid sum probability matrix
representation of a mixed attacker strategy φ, notes an issue with calculating
P (W,φ). The issue arises as the walk W may return to a node within m time
units of its previous visit, therefore possibly seeing the same pure attack again and
not gaining any additional probability. In order to avoid this issue and calculate
P (W,φ) we can define the space-time probability dependent on the time lj the
node j was last visited at, as

Sj,t(lj) =
t∑

k=max{t−m+1, lj+1, 0}

ϕj,k,

for all j ∈ N and for all t ∈ J . The lv-space-time probability matrix, for a
given vector l = (l1, ..., l|N |) of last visit times (where lj is the last visit time to
node j), is therefore S(l) = (Sj,t(lj))j∈N,t∈J . For a given walk W we can write
l(W, t) for the last visit times at time t, given by lj(W, 0) = −m for j 6= W (0),
lW (0)(W, 0) = 0 and lj(t) = lj(t − 1) if j 6= W (t), lW (t)(W, t) = t for t ≥ 1. Thus
we have

P (W,φ) =
T−1∑
t=0

SW (t),t(l(W, t)). (3.4)

While S(l) is more complicated to visualize, due to the dependence on the last
visit times l, the payoff of a pure walk W against a mixed attacker strategy φ
is easier to calculate and will prove extremely useful in evaluating walks against
attacker strategies.

In addition to this we introduce some notation given an attacker strategy φ ∈ Φ
let

NA = {j ∈ N | ϕj,t 6= 0 for some t ∈ T }
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be the set of nodes which are possibly attacked under φ. With this we can restrict
the last time nodes were visited along a walk l(W, t) to only contain lj(W, t) for
j ∈ NA. This restriction is useful for the direct computation of the performance
V•,φ(Q, T,m) by evaluating P (W,φ) for all W ∈ W , when |N | is large.

To show the complexity of decisions which need to be made to find a best response
pure patroller against φ ∈ Φ we present example 3.2.6. Even with the complexity
of determining the best response pure patroller for an arbitrary attacker strategy
φ, the results in this section provide some extremely useful reductions to the
search spaceW , thus reducing computational time. Moreover, in section 3.2.3 we
consider properties of the attacker strategies in order to get further reductions to
the already reduced search space.

Example 3.2.6. For the game G(Q, 6, 3) for which Q is the graph given in figure
3.2.2 consider the attacker strategy φ whose space-time probability matrix S is
given in figure 3.2.3. To find V•,φ(Q, 6, 3) we must consider all walks W ∈ W and
identify the best responses by choosing one that maximizes P (W,φ).

The payoff of the pure patroller strategy W1 = (1, 2, 3, 4, 5, 6), seen in red in figure
3.2.3, against φ can be calculated by using equation (3.4) giving

P (W1,φ) = 0.08 + 0.12 + 0 + 0 + 0.04 + 0 = 0.24.

It is clear that we can adjust W1, and do better, by simply avoiding moving from
node 3 to node 4, as there is no probability of a pure attack at node 4 and the
subsequent move to node 5 is available from node 3. This small adjustment from
W1 gives us a new pure patroller strategy W2, seen in blue in figure 3.2.3, with

P (W2,φ) = 0.08 + 0.12 + 0 + (0.04 + 0.04) + 0.2 + 0 = 0.48.

As P (W2,φ) = 2P (W1,φ) it is clear that W1 cannot be a best response pure
patroller against W1, however we cannot be sure that W2 is either. By a brute
force calculation of P (W,φ) for all W we find that a best response pure patroller
against φ is W ∗ = (5, 6, 5, 6, 5, 6) such that V•,φ(Q, 6, 3) = P (W ∗,φ) = 0.56.

1

2

4

3
5 6

Figure 3.2.2: Graph Q for example 3.2.6

We can first reduce the space W by considering only pure patroller strategies
such that W (0) ∈ NA.

Lemma 3.2.7. For the game G(Q, T,m) for any graph Q, for all m ≥ 1, for all
T ≥ m and for all φ we have

V•,φ(Q, T,m) = max
W∈W ′

P (W,φ),

where W ′ = {W ∈ W | W (0) ∈ NA}.
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Figure 3.2.3: Space-time probability matrix S for example 3.2.6. The two pure
patrollers W1 and W2, used in the example, are shown in red and blue respectively.

The proof of lemma 3.2.7 follows by the construction of a pure strategy in W ′
by changing the walk to wait at the first node in NA that it visits. Figure 3.2.4
shows the idea behind this change to a pure walk.

Proof. For all W ∈ W we seek to show that there exists a W ′ ∈ W ′ such that
P (W ′,φ) ≥ P (W,φ).

For W ∈ W let tfirst = min{t | W (t) ∈ NA} and construct W ′ ∈ W ′ such that

W ′(t) =

{
W (tfirst) if t ≤ tfirst,

W (t) otherwise.

Immediately note that l(W ′, t) = l(W, t) for all t ≥ tfirst and lW ′(t)(W
′, t) = t− 1

for all t ≤ tfirst (Note that we restricted the last visit time vector to only have
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elements j ∈ NA). So we have that

tfirst∑
t=0

SW (tfirst),t(l(W
′, t)) =

tfirst∑
t=0

t∑
k=max(t−m+1,t,0)

ϕW (tfirst),k

=

tfirst∑
t=0

ϕW (tfirst),t

≥
t∑

k=max(t−m+1,−m+t,0)

ϕW (tfirst),k

=

tfirst∑
t=0

SW (t),t(l(W, t)).

Therefore,

P (W ′,φ) =
T−1∑
t=0

SW ′(t),t(l(W
′, t))

=

tfirst∑
t=0

SW (tfirst),t(l(W
′, t)) +

T−1∑
t=tfirst+1

SW (t),t(lW (t)(W, t))

≥
tfirst∑
t=0

SW (t),t(l(W, t)) +
T−1∑

t=tfirst+1

SW (t),t(lW (t)(W, t))

= P (W,φ).

Hence, as P (W ′,φ) ≥ P (W,φ) for any W ∈ W we have

max
W∈W

P (W,φ) = max
W∈W ′

P (W,φ),

concluding the proof of the lemma.

From the proof of lemma 3.2.7 we are able to see when W ′ has a strictly better
payoff than W against φ. That is P (W ′,φ) > P (W,φ) if and only if tfirst ≥ m and
ϕW (tfirst),t > 0 for some t ≤ tfirst −m. Note that choosing an initial node to start
at, j ∈ NA, is equivalent to starting the patrol at the time t = min{t | ϕj,t > 0},
as this is when the first potential attack at node j commences.

Now that we are restricted to some W ∈ W ′, that is a pure patroller response that
is initially at some node j ∈ NA, the walk is still relatively general and can waste
time by wandering between nodes which are attacked. We can further restrict
the pure patroller response to φ to be one that takes a shortest path between any
two consecutively attacked nodes.

Lemma 3.2.8. For the game G(Q, T,m) for any graph Q, for all m ≥ 1, for all
T ≥ m and for all φ ∈ Φ we have

V•,φ(Q, T,m) = max
W∈W ′′

P (W,φ),

where W ′′ = {W ∈ W ′ | t2 − t1 = d(W (t1),W (t2)) where t2 = min{t ≥ t1 |
W (t) ∈ NA \ {W (t1)}} ∀t1 ∈ J such that W (t1) ∈ NA}.
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i ∈ NA

i′ ∈ NA

i′′ ∈ NA

Figure 3.2.4: The original pure patroller walk (black), with the first node visited
in NA being i′, can be improved initially by starting at i′ ∈ NA (red), and the
pure walks agree after arriving at i′ (green).

The proof of lemma 3.2.8 follows by the construction of a pure strategy inW ′′ from
one in W ′ by changing all paths between consecutive nodes in NA to a shortest
path between them (with length equal to the distance between the nodes). Figure
3.2.5 shows the idea behind the proof.

Proof. For all W ∈ W ′ we seek to show there exists a W ′ ∈ W ′′ such that
P (W ′,φ) ≥ P (W,φ).

For W ∈ W ′ \ W ′′ then there exists some t1 ∈ J with t2 = min{t ≥ t1 | W (t) ∈
NA \ {W (t1)}} such that t2 − t1 > d(W (t1),W (t2)). From W ∈ W ′ construct
W ′ ∈ W ′′ such that

W ′(t) =


W (t) for t ≤ t1 − 1,

PW (t1),W (t2)(t− t1) for t1 ≤ t ≤ t1 + d(W (t1),W (t2)),

W (t2) for t1 + d(W (t1),W (t2)) + 1 ≤ t ≤ t2,

W (t) for t ≥ t2 + 1,

where Pi,j(t) is a shortest path between nodes i and j, with distance d(i, j). For
notational convenience let i = W (t1), j = W (t2) and t′2 = t1 + d(W (t1),W (t2)).
Immediately note that l(W ′, t) = l(W, t) for all t ≤ t′2 − 1 and for all t ≥ t2. In
addition, lj(W

′, t) = t− 1 for t′2 + 1 ≤ t ≤ t2.
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So we have that

t2∑
t=t′2

SW ′(t),t(l(W
′, t)) =

t′2∑
k=max(t′2−m+1,lj(W,t),0)

ϕj,k +

t2∑
t=t′2+1

t∑
k=max(t−m+1,t,0)

ϕj,k

=

t′2∑
k=max(t′2−m+1,lj(W,t′2),0)

ϕj,k +

t2∑
t=t′2+1

ϕj,t

=

t2∑
k=max(t′2−m+1,lj(W,t′2),0)

ϕj,t

≥
t2∑

k=max(t2−m+1,lj(W,t2),0)

ϕj,t

=

t2∑
t=t′2

SW (t),t(l(W, t)).

Therefore,

P (W ′,φ) =
T−1∑
t=0

SW ′(t),t(l(W
′, t))

=

t′2−1∑
t=0

SW ′(t),t(l(W
′, t)) +

t2∑
t=t′2

SW ′(t),t(l(W
′, t)) +

T−1∑
t=t2+1

SW ′(t),t(l(W
′, t))

=

t′2−1∑
t=0

SW (t),t(l(W, t)) +

t2∑
t=t′2

SW ′(t),t(l(W
′, t)) +

T−1∑
t=t2+1

SW (t),t(l(W, t))

≥
t′2−1∑
t=0

SW (t),t(l(W, t)) +

t2∑
t=t′2

SW (t),t(l(W, t)) +
T−1∑
t=t2+1

SW (t),t(l(W, t))

=
T−1∑
t=0

SW (t),t(l(W, t)) = P (W,φ).

Hence, as P (W ′,φ) ≥ P (W,φ) for any W ∈ W ′ \W ′′, repeating this construction
process until we get some W ′′ ∈ W ′′ for which we known P (W ′′,φ) ≥ P (W,φ)
for any W ∈ W ′ \W ′′. Therefore,

max
W∈W ′

P (W,φ) = max
W∈W ′′

P (W,φ)

and along with lemma 3.2.7 the proof of the lemma is concluded.

We now define d(i, j, NA) as the distance between nodes i, j ∈ N , which does not
use nodes in NA. d(i, j, NA) is required as we need to considered the distance
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i ∈ NA

i′ ∈ NA

i′′ ∈ NA

Figure 3.2.5: The original pure patroller walk (black) can be improved by re-
placing any path between any two potentially attacked nodes with the shortest
path. Here i to i′ and i′ to i′′ are replaced by the shortest path between them
followed by waiting (red). The improvement follows the same path outside of
these improvements (green)

between consecutively chosen nodes. By lemma 3.2.8 in order to find the perfor-
mance of an attacker strategy we need only consider walks in the set W ′′. Any
walk W ∈ W ′′ can be written as

W (t) =



j1 if t1 = 0 ≤ t ≤ ν1,

Pj1,j2(t− ν1) if ν1 ≤ t ≤ t2,

j2 if t2 ≤ t ≤ t2 + ν2,

Pj2,j3(t− t2 − ν2) if t2 + ν2 ≤ t ≤ t3,
...

...

Pjk−1,jk(t− tk−1 − νk−1) if tk−1 + νk−1 ≤ t ≤ tk,

jk if tk ≤ t ≤ tk + νk = T − 1,

(3.5)

for some ji ∈ NA, νi ∈ {0, ..., T − 1− ti} for all i ∈ {1, ..., k} for some k ∈ N. In
equation (3.5) ti, the time of arrival at node jk is given by

ti =

{
0 if i = 1,

ti−1 + νi−1 + d(ji−1, ji, NA) if i ∈ {2, 3, ..., k},

and Pj,j′(t) for t ∈ {0, ..., d(j, j′, NA)} is a shortest path from j to j′ such that
Pj,j′(0) = j, Pj,j′(d(j, j′, NA)) = j′ and Pj,j′(t) /∈ NA for all t ∈ {1, ..., d(j, j′, NA)−
1}, where d(j, j′, NA) is the length of such a path Pj,j′(t).

As any W ∈ W ′′ can be written as in equation (3.5) for some choice of ji ∈ NA,
some choice of νi ∈ {0, ..., T − 1− ti} for i = 1, ..., k and some choices of shortest
path for each Pji,ji+1

for i = 1, ..., k − 1. Immediately we can remove all but an
arbitrary choice of shortest paths Pji,ji+1

for i = 1, ..., k − 1 as P (0) = j1 ∈ NA,
P (d(ji, ji+1, NA)) = ji+1 ∈ NA are necessary by definition and the real choice is
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P (t) /∈ NA for 1 ≤ t ≤ d(ji, ji+1, NA)−1. As ϕj,t = 0 for all j /∈ NA, this choice of
shortest path does not affect the payoff of walks. Therefore, it is possible to write
a walk W ∈ W ′′ in an equivalent form considering only the choice of ji ∈ NA and
νi ∈ {0, ..., T − 1− ti} for i = 1, ..., k.

Definition 3.2.9. A walk W ∈ W ′′, as in equation (3.5), has move-wait form
which is

ω = ((j1, ν1), (j2, ν2)..., (jk, νk))

for some node, waiting time pair (ji, νi) ∈ NA ×J for i = 1, ..., k for some k ∈ N
such that

• ji 6= ji+1 for all i ∈ {1, ...k − 1},

• Pji,ji+1
({1, ..., d(ji, ji+1, NA)− 1}) ∩NA = ∅ for all i ∈ {0, ..., k − 1},

• νk +
k−1∑
i=1

(νi + d(ji, ji+1, NA)) = T − 1.

For a given move-wait walk ω the arrival time of the visit to ji is given by ti(ω) =
i−1∑
r=1

(νr + d(jr, jr+1, NA)). Let Ω be the set of move-wait walks.

When required we write ji(ω) and ν1(ω) to be the ith node and wait time of move-
wait walk ω. In addition k(ω) is the number of nodes visited in the move-wait
walk ω.

The payoff for choosing ω ∈ Ω as a response to φ ∈ Φ is given by

P (ω,φ) =
k∑
i=1

Sji,ti(ω)(lji(ω)) +

ti(ω)+νi∑
t=ti(ω)+1

ϕji,t

 =
k∑
i=1

ti(ω)+νi∑
t=ni(ω)

ϕji,t, (3.6)

where
ni(ω) = max(ti(ω)−m+ 1, li(ω) + 1, 0),

is the new start time, in which

li(ω) = max
x=1,...,i−1 s.t jx=ji

(tx + νx)

is the last visit time for node ji, before the current arrival time ti(ω). As previously
mentioned the chosen shortest paths do not affect the payoff and so choosing W ∈
W ′′ is equivalent to choosing ω ∈ Ω and hence we may write P (W,φ) = P (ω,φ)
for all W ∈ W ′′ with the corresponding move-wait form ω ∈ Ω. Therefore the
performance of φ ∈ Φ is given by

V•,φ(Q, T,m) = max
ω∈Ω

P (ω,φ), (3.7)
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which is much easier to compute than equation (2.13). Further to this it is possible
to consider how slight changes to any ω ∈ Ω affect the payoff in equation (3.6).

A simple consideration is the manipulation of the amount of time a walk waits
at each node. For some i ∈ {1, ..., k} such that νi > 0 we can consider decreasing
this waiting at ji to νi− 1 and increasing the waiting at either ji−1 to νi−1 + 1 or
ji+1 to νi+1 + 1. That is for

ω = ((j1, ν1), ..., (jr−1, νr−1), (jr, νr), (jr+1, νr+1), ..., (jk, νk)) (3.8)

we can consider a forward transfer of waiting in the move-wait walk

ωf = ((j1, ν1), ..., (jr−1, νr−1), (jr, νr − 1), (jr+1, νr+1 + 1), ..., (jk, νk)) (3.9)

and a backwards transfer of waiting in the move-wait walk

ωb = ((j1, ν1), ..., (jr−1, νr−1 + 1), (jr, νr − 1), (jr+1, νr+1), ..., (jk, νk)). (3.10)

Theorem 3.2.10. For the game G(Q, T,m) for any graph Q, for all m ≥ 1, for
all T ≥ m and for all φ ∈ Φ we have

• Forward Transfer:

P (ωf ,φ)


> P (ω,φ) if Gf (ω, r) > Lf (ω, r),

= P (ω,φ) if Gf (ω, r) = Lf (ω, r),

< P (ω,φ) if Gf (ω, r) < Lf (ω, r),

for all ω ∈ Ω, where ωf is a forward transfer move-wait walk, as in equation
(3.9) for some r ∈ {0, ..., k − 1} where νr > 0 for ω, as in equation (3.8),
and where the gain is

Gf (ω, r) = I{E1(ω,r)}ϕjr+1,tr+1(ω)−m,

in which E1(ω, r) is the event that tr+1(ω) −m + 1 > max(lr+1(ω) + 1, 0),
and the loss is

Lf (ω, r) = I{E2(ω,r)}ϕjr,tr(ω)+νr(ω),

in which E2(ω, r) is the event that either; {i ∈ {r+2, ..., k} | ji = jr} = ∅ or;
both {i ∈ {r+2, ..., k} | ji = jr} 6= ∅ and tr(ω)+νr(ω) < max(tmin{i∈{r+2,...,k}|ji=jr}(ω)−
m+ 1, 0).

• Backwards Transfer:

P (ωb,φ)


> P (ω,φ) if Gb(ω, r) > Lb(ω, r),

= P (ω,φ) if Gb(ω, r) = Lb(ω, r),

< P (ω,φ) if Gb(ω, r) < Lb(ω, r),

for all ω ∈ Ω where ωb is a backward transfer move-wait walk, as in equation
(3.10) for some r ∈ {2, ..., k} where νr > 0 for ω, as in equation (3.8) and
where the gain is

Gb(ω, r) = Lf (ωb, r − 1) = I{E3(ω,r)}ϕjr−1,tr−1(ω)+νr−1(ω)+1,
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in which E3(ω, r) is the event that either; {i ∈ {r + 1, ..., k} | ji = jr} = ∅
or; both {i ∈ {r + 1, ..., k} | ji = jr} 6= ∅ and tr−1(ω) + νr−1(ω) + 1 <
max(tmin{i∈{r+1,...,k}|ji=jr}(ω)−m+ 1, 0) and the loss is

Lb(ω, r) = Gf (ωb, r − 1) = I{E4(ω,r)}ϕjr,tr(ω)−m+1,

in which E4(ω, r) is the event that tr(ω)−m+ 2 > max(lr(ω) + 1, 0).

We note the use of the indicator function in theorem 3.2.10 in the gains Gf , Gb

and losses Lf , Lb as it possible that these gains and losses are already caught
elsewhere in the walk. The proof of theorem 3.2.10 follows by comparing P (ω,φ)
to P (ωf ,φ) and P (ωb,φ). Figure 3.2.6 shows the idea behind the proof for a
forward transfer of waiting.

Proof. For forwards transfer ωf let X = {i ∈ {r + 2, ..., k} | ji = jr} then for all
i ∈ {1, ..., k} we have

ti(ω
f ) =

{
tr+1(ω)− 1 if i = r + 1

ti(ω) otherwise,

and

li(ω
f ) =

{
li(ω)− 1 if X 6= ∅ and i = minX,

li(ω) otherwise,

and hence

ni(ω
f )


max(ti(ω)−m+ 1, li(ω), 0) if X 6= ∅ and i = minX,

max(tr+1(ω)−m, lr+1(ω) + 1, 0) if i = r + 1,

ni(ω) otherwise.

For ease of notation we write x = minX if X 6= ∅.

Now we calculate the payoff of ωf against φ (as in equation 3.6) is

P (ωf ,φ) =
k∑
i=1

ti(ω
f )+νi(ω

f )∑
t=ni(ωf )

ϕji,t = A1 + A2 + A3 + A4,

where A1 =
r−1∑
i=1

ti(ω
f )+νi(ω

f )∑
t=ni(ωf )

ϕji,t, A2 =
tr(ωf )+vr(ωf )∑
t=nr(ωf )

ϕjr,t, A3 =
tr+1(ωf )+vr+1(ωf )∑

t=nr+1(ωf )

ϕjr+1,t

and A4 =
k∑

i=r+2

ti(ω
f )+νi(ω

f )∑
t=ni(ωf )

ϕji,t. We now manipulate A1,A2,A3,A3 to achieve the

desired result.

A1 =
r−1∑
i=1

ti(ω
f )+νi(ω

f )∑
t=ni(ωf )

ϕji,t =
r−1∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji,t.
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A2 =

tr(ω)+vr(ω)−1∑
t=nr(ω)

ϕjr,t =

tr(ω)+vr(ω)∑
t=nr(ω)

ϕjr,t − ϕjr,tr(ω)+vr(ω).

A3 =

tr+1(ωf )+vr+1(ωf )∑
t=nr+1(ωf )

ϕjr+1,t =

tr+1(ω)−1+vr+1(ω)+1∑
t=max(tr+1(ω)−m,lr+1(ω)+1,0)

ϕjr+1,t

= I{tr+1(ω)−m+1>max(lr+1(ω)+1,0)}ϕtr+1(ω)−m +

tr+1(ω)+vr+1(ω)∑
t=max(tr+1(ω)−m+1,lr+1(ω)+1,0)

ϕjr+1,t

= Gf (ω, r) +

tr+1(ω)+vr+1(ω)∑
t=nr+1(ω)

ϕjr+1,t.

A4 =
k∑

i=r+2

ti(ω
f )+νi(ω

f )∑
t=ni(ωf )

ϕji,t

= I{X 6=∅}

 tx(ω)+νx(ω)∑
t=max(tx(ω)−m+1,lx(ω),0)

ϕjx,t +
∑

i∈{r+2,...,k}\{x}

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji,t


+ I{X=∅}

k∑
i=r+2

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji,t

= I{X 6=∅}

(
I{lx(ω)+1>max(tx(ω)−m+1,0)}ϕjx,lx(ω) +

tx(ω)+νx(ω)∑
t=max(tx(ω)−m+1,lx(ω)+1,0)

ϕjx,t

+
∑

i∈{r+2,...,k}\{x}

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji,t

)
+ I{X=∅}

k∑
i=r+2

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji,t

= I{X 6=∅}

(
I{lx(ω)+1>max(tx(ω)−m+1,0)}ϕjx,lx(ω) +

k∑
i=r+2

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji,t

)

+ I{X=∅}

k∑
i=r+2

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji,t

= I{X 6=∅ and tr(ω)+vr(ω)+1>max(tmin X(ω)−m+1,0)}ϕjr,tr(ω)+vr(ω) +
k∑

i=r+2

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji,t

= (1− IE2)ϕjr,tr(ω)+vr(ω) +
k∑

i=r+2

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji,t.
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Hence we have

P (ωf ,φ) = P (ω,φ)− ϕjr,tr(ω)+vr(ω) +Gf (ω, r) + (1− IE2)ϕjr,tr(ω)+vr(ω)

= P (ω,φ) +Gf (ω, r)− Lf (ω, r)

and thus the results for forward transfer in the theorem are obtained.

For the results on the backward transfer we note that ω is a forward transfer on
ωb with the index r − 1 (instead of r). Hence we have

P (ω,φ)


> P (ωb,φ) if Gf (ωb, r − 1) > Lf (ωb, r − 1),

= P (ωb,φ) if Gf (ωb, r − 1) = Lf (ωb, r − 1),

< P (ωb,φ) if Gf (ωb, r − 1) < Lf (ωb, r − 1).

Equivalently,

P (ωb,φ)


< P (ω,φ) if Gf (ωb, r − 1) > Lf (ωb, r − 1),

= P (ω,φ) if Gf (ωb, r − 1) = Lf (ωb, r − 1),

> P (ω,φ) if Gf (ωb, r − 1) < Lf (ωb, r − 1),

and thus the results for the backwards transfer in the theorem are obtained.

jr ∈ NA

jr+1 ∈ NA

Gf (ω, r)

Lf (ω, r)

Figure 3.2.6: The loss and gain by transferring forward one unit of waiting time
from ω, shown in black, creating ωf , shown in red. ω and ωf are the same for
the majority of the walk shown in green with the loss Lf (ω, r) and gain Gf (ω, r)
for the forward transfer shown as circled in blue.

While theorem 3.2.10 provides the most generalised condition for waiting transfer,
it is rather complex to apply. However, we can consider simpler cases, such as
where there is definitely no loss in forward transfer to get reductions to the set Ω
for the performance of an arbitrary attacker strategy.

Lemma 3.2.11. For the game G(Q, T,m) for any graph Q, for all m ≥ 1, for
all T ≥ m and for all φ ∈ Φ we have

V•,φ(Q, T,m) = max
ω∈Ω′

P (ω,φ),

where Ω′ = {ω ∈ Ω | νr(ω) = 0 for all r ∈ {1, ..., k − 1} such that ϕjr,t =
0 for all t ≥ tr(ω) + 1}.
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The proof of lemma 3.2.11 follows by a forward transfer of any r ∈ {1, ..., k} such
that νr(ω) ≥ 1 and ϕjr,t = 0 for all t ≥ tr and applying theorem 3.2.10.

Proof. We first aim to show that

P (ω′,φ) ≥ P (ω,φ)

for all ω ∈ Ω such that there exists some r ∈ {1, ..., k − 1} such that νr ≥ 1 and
ϕjr,t = 0 for all t ≥ tr(ω) + 1, where ω′ is such that νi(ω

′) = νi(ω) for i 6= r and
νr(ω

′) = 0.

This follows from theorem 3.2.10 by sequentially constructing ωx by forward trans-
ferring the waiting time for the rth index. So that ωx = ωfx−1 for x ∈ {1, ..., νr(ω)}
and ω0 = ω. As ϕjr,t = 0 for all t ≥ tr(ω) + 1 we have Lf (ωx, r) = 0 for all
x = 1, ..., νr(ω) and hence

P (ωx,φ) ≥ P (ωx−1,φ),

for all x ∈ {1, ..., νr(ω)} and noting ωνr(ω) = ω′ we arrive at the result that
P (ω′,φ) ≥ P (ω,φ). Hence repeating this process as required gives

max
ω∈Ω

P (ω,φ) = max
ω∈Ω′

P (ω,φ), (3.11)

and along with equation (3.7) the proof is concluded.

A further reduction of the search space Ω′, as in lemma 3.2.11, can be made by
considering the initial waiting time given a chosen initial node j1. For φ ∈ Φ we
define

T (j,φ) = {τ ∈ T | ϕj,τ 6= 0},

to be the set, for node j ∈ N , of commencement times for which there is a
potential attack at under φ.

Lemma 3.2.12. For the game G(Q, T,m) for any graph Q, for all m ≥ 1, for
all T ≥ m and for all φ ∈ Φ we have

V•,φ(Q, T,m) = max
ω∈Ω′′

P (ω,φ),

where Ω′′ = {ω ∈ Ω′ | ν1(ω) ≥ min T (j1,φ)}.

The proof of lemma 3.2.12 follows by constructing a walk which skips this initial
node if ν1(ω) < min T (j1,φ).

Proof. We aim to show that

P (ω′,φ) ≥ P (ω,φ)
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for all ω ∈ Ω′ \ Ω′′ where

ω′ = ((j2, ν1 + d(j1, j2, NA) + ν2), (j3, ν3), ..., (jk, νk)).

We have for the walk ω′ that

ti(ω
′) =

{
0 if i = 1,

ti+1(ω) if i ≥ 2,

and letting X = {i ∈ {2, ..., k} | ji = j1} we have

li(ω
′) =

{
−m if X 6= ∅ and i = minX,

li+1(ω) otherwise.

Then

ni(ω
′) =


0 if i = 1,

max(ti+1(ω)−m+ 1,−m+ 1, 0) if X 6= ∅ and i = minX,

ni+1(ω) otherwise,

and so ni(ω
′) ≥ ni+1(ω) for all 1 ≤ i ≤ k − 1. Then as ϕj1,t = 0 for all t ≤ ν1 we

have

P (ω′,φ) =

k(ω′)∑
i=1

ti(ω
′)+vi(ω′)∑

t=ni(ω′)

ϕji(ω′),t

=

ν1(ω)+d(j1(ω),j2(ω),NA)+ν2(ω)∑
t=0

ϕj2(ω),t +

k(ω)∑
i=3

ti(ω)+vi(ω)∑
t=ni(ω)

ϕji(ω),t

=

ν1(ω)∑
t=0

ϕj1(ω),t +

ν1(ω)+d(j1(ω),j2(ω),NA)+ν2(ω)∑
t=0

ϕj2(ω),t +

k(ω)∑
i=3

ti(ω)+vi(ω)∑
t=ni(ω)

ϕji(ω),t

≥
k(ω)∑
i=1

ti(ω
′)+vi(ω)∑

t=ni(ω)

ϕji(ω),t = P (ω,φ).

Hence repeating this as required we can get a ω′′ ∈ Ω′′ for any ω ∈ Ω′ such that
P (ω′′,φ) ≥ P (ω,φ). Therefore,

max
ω∈Ω′

P (ω,φ) = max
ω∈Ω′′

P (ω,φ)

and along with lemma 3.2.11 the proof is concluded.

We can get further reductions by considering which nodes should not be visited.
We already know that only nodes in NA have a non-zero probability of catching
an attacker at, but further to this we can consider if there is still a non-zero
probability at time t given a walks prior choices. We define

NA(ω, x) = {j ∈ NA | ∃s ≥ tx(ω) + νx(ω) + d(jx, j, NA)−m+ 1 s.t. ϕj,s > 0},
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to be the set of nodes with a non-zero probability of catching the attacker under
walk ω, when leaving node jx (at time tx(ω) + νx(ω)) and arriving at the node
j ∈ NA(ω, x).

Theorem 3.2.13. For the game G(Q, T,m) for any graph Q, for all m ≥ 1, for
all T ≥ m and for all φ ∈ Φ we have

V•,φ(Q, T,m) = max
ω∈Ω′′′

P (ω,φ),

where Ω′′′ = {ω ∈ Ω′′ | jr′ , ..., jk ∈ NA(ω, r′ − 1)∀r′ ∈ {2, ..., k}}.

The proof of lemma 3.2.13 follows by constructing a walk that skips any node
jr /∈ NA(ω, r′) for some r′ ≥ r.

Proof. We first aim to show that it is possible to construct a walk ω′ such that

P (ω′,φ) ≥ P (ω,φ)

for all ω ∈ Ω′′. Consider any ω ∈ Ω′′ \ Ω′′′ then there exists some r such that
jr /∈ NA(ω, r−1). Then to construct a walk that skips jr we consider three cases.

Firstly if r = k then we construct ω′ such that ji(ω
′) = ji(ω) for all i ∈ {1, ..., k−1}

and νi(ω
′) = νi(ω) for all i ∈ {1, ..., k − 2} and νk−1(ω′) = νk−1(ω) + text where

text = d(jk−1(ω), jk(ω), NA) + νk(ω). So ti(ω
′) = ti(ω) for all i ∈ {1, ..., k − 1},

li(ω
′) = li(ω) for all i ∈ {1, ..., k − 1} and ni(ω

′) = ni(ω) for all i ∈ {1, ..., k − 1}.
As ϕjk(ω),t = 0 for all t ≥ tk(ω) we have

P (ω′,φ) =
k−1∑
i=1

ti(ω
′)+νi(ω′)∑

t=ni(ω′)

ϕji(ω′),t

=
k−2∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +

tk−1(ω)+νk−1(ω)+text∑
t=nk−1(ω)

ϕjk−1(ω),t

=
k−2∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +

tk−1(ω)+νk−1(ω)+text∑
t=nk−1(ω)

ϕjk−1(ω),t +

tk(ω)+νk(ω)∑
t=nk(ω)

ϕjk(ω),t

≥
k−2∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +

tk−1(ω)+νk−1(ω)∑
t=nk−1(ω)

ϕjk−1(ω),t +

tk(ω)+νk(ω)∑
t=nk(ω)

ϕjk(ω),t

=
k∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t = P (ω,φ).

Secondly if r 6= k and jr−1 = jr+1 then we can construct a walk ω′ such that

ji(ω
′) =

{
ji(ω) if i ≤ r − 1,

ji+2(ω) if r ≤ i ≤ k − 2,
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and

νi(ω
′) =


νi(ω) if i ≤ r − 2,

νr−1(ω) + text if i = r − 1,

νi+2(ω) if r ≤ i ≤ k − 2,

in which text = νr(ω) + d(jr−1(ω), jr(ω), NA) + νr+1(ω) + d(jr(ω), jr+1(ω), NA).
Therefore,

ti(ω
′) =

{
ti(ω) if i ≤ r − 1,

ti+2(ω) if r ≤ i ≤ k − 1.

and with X = {i ∈ {r + 2, ...., k} | ji(ω) = jr(ω)} and if X 6= ∅ let x = minX
then

li(ω
′) =


li(ω) if i ≤ r − 1,

lr(ω) if X 6= ∅ and i = x− 2,

li+2(ω) otherwise.

Hence,

ni(ω
′) =


ni(ω) if i ≤ r − 1,

max(tx(ω)−m+ 1, lr(ω) + 1, 0) if X 6= ∅ and i = x− 2,

ni+2(ω) otherwise.

We know that ϕjr(ω),t = 0 for all t ≥ nr(ω). In particular ϕjx(ω),t = 0 for all
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t ≥ nx(ω) and ϕjx−2(ω′),t = 0 for all t ≥ nx−2(ω′). Therefore we have

P (ω′,φ) =
k−2∑
i=1

ti(ω
′)+νi(ω′)∑

t=ni(ω′)

ϕji(ω′),t

=
r−2∑
i=1

ti(ω
′)+νi(ω′)∑

t=ni(ω′)

ϕji(ω′),t +

tr−1(ω′)+νr−1(ω′)∑
t=nr−1(ω′)

ϕjr−1(ω′),t +
k−2∑
i=r

ti(ω
′)+νi(ω′)∑

t=ni(ω′)

ϕji(ω′),t

=
r−2∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +

tr+1(ω)+νr+1(ω)∑
t=nr−1(ω)

ϕjr−1(ω),t +
k−2∑
i=r

ti+2(ω)+νi+2(ω)∑
t=ni+2(ω)

ϕji+2(ω),t

− I{X 6=∅}

tx(ω)+νx(ω)∑
t=nx(ω)

ϕjx(ω),t −
tx(ω)+νx(ω)∑
t=nx−2(ω′)

ϕjx(ω),t


=

r−2∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +
k−2∑
i=r

ti+2(ω)+νi+2(ω)∑
t=ni+2(ω)

ϕji+2(ω),t

+

tr+1(ω)+νr+1(ω)∑
t=nr−1(ω)

ϕjr−1(ω),t +

tr(ω)+νr(ω)∑
t=nr(ω)

ϕjr(ω),t

≥
r−2∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +
k−2∑
i=r

ti+2(ω)+νi+2(ω)∑
t=ni+2(ω)

ϕji+2(ω),t

+

tr−1(ω)+νr−1(ω)∑
t=nr−1(ω)

ϕjr−1(ω),t +

tr+1(ω)+νr+1(ω)∑
t=nr+1(ω)

ϕjr+1(ω),t +

tr(ω)+νr(ω)∑
t=nr(ω)

ϕjr(ω),t

=
k∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t = P (ω,φ).

Finally if r 6= k and jr−1 6= jr+1 then we can construct a walk ω′ such that

ji(ω
′) =

{
ji(ω) if i ≤ r − 1,

ji+1(ω) if r ≤ i ≤ k − 1,

and

νi(ω
′) =


νi(ω) if i ≤ r − 1,

νr(ω) + text if i = r,

νi+1(ω) if r + 1 ≤ i ≤ k − 1,

in which text = tr+1(ω)− tr−1(ω)− νr−1(ω)− d(jr(ω), jr+1(ω), NA). Therefore,

ti(ω
′) =


ti(ω) if i ≤ r − 1,

tr(ω)− text if i = r,

ti+1(ω) if r + 1 ≤ i ≤ k − 1.
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and with X = {i ∈ {r + 2, ...., k} | ji(ω) = jr(ω)} and if X 6= letting x = minX
then

li(ω
′) =


li(ω) if i ≤ r − 1,

lr(ω) if X 6= ∅ and i = x− 1,

li+1(ω) otherwise.

Hence,

ni(ω
′) =


ni(ω) if i ≤ r − 1,

max(tr+1(ω)− text −m+ 1, lr+1(ω) + 1, 0) if i = r,

max(tx(ω)−m+ 1, lr(ω) + 1, 0) if X 6= ∅ and i = x− 1,

ni+1(ω) otherwise.

We immediately have that ni(ω
′) ≤ ni+1(ω) for all i ≥ r. In addition we know

that ϕjr(ω),t = 0 for all t ≥ nr(ω). In particular ϕjx(ω),t = 0 for all t ≥ nx(ω) and
ϕjx−1(ω′),t = 0 for all t ≥ nx−1(ω′).

Therefore we have

P (ω′,φ) =
k−1∑
i=1

ti(ω
′)+νi(ω′)∑

t=ni(ω′)

ϕji(ω′),t

=
r−1∑
i=1

ti(ω
′)+νi(ω′)∑

t=ni(ω′)

ϕji(ω′),t +

tr(ω′)+νr(ω′)∑
t=nr(ω′)

ϕjr(ω′),t +
k−1∑
i=r+1

ti(ω
′)+νi(ω′)∑

t=ni(ω′)

ϕji(ω′),t

=
r−1∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +

tr+1(ω)+νr+1(ω)∑
t=nr(ω′)

ϕjr+1(ω),t +
k−1∑
i=r+1

ti+1(ω)+νi+1(ω)∑
t=ni(ω)

ϕji+1(ω),t

− I{X 6=0}

tx(ω)+νx(ω)∑
t=nx(ω)

ϕjx(ω),t −
tx(ω)+νx(ω)∑
nx−1(ω′)

ϕjx(ω),t


=

r−1∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +

tr(ω)+νr(ω)∑
t=nr(ω)

ϕjr(ω),t

+

tr+1(ω)+νr+1(ω)∑
t=nr(ω′)

ϕjr+1(ω),t +
k−1∑
i=r+1

ti+1(ω)+νi+1(ω)∑
t=ni(ω)

ϕji+1(ω),t

≥
r−1∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +

tr(ω)+νr(ω)∑
t=nr(ω)

ϕjr(ω),t

+

tr+1(ω)+νr+1(ω)∑
t=nr+1(ω)

ϕjr+1(ω),t +
k−1∑
i=r+1

ti+1(ω)+νi+1(ω)∑
t=ni(ω)

ϕji+1(ω),t

=
k∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t = P (ω,φ).
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Now we have seen that P (ω′,φ) > P (ω,φ) for all ω ∈ Ω′′ for some constructed
move-wait ω′. Repeating this construction while there exists some r, x ∈ {1, ..., k}
such that r ≥ x + 1 and jr /∈ NA(ω, x) means there is a resultant walk ω′′′ ∈ Ω′′′

such that P (ω′′′,φ) > P (ω,φ) for all ω ∈ Ω′′. Hence

max
ω∈Ω′′

P (ω,φ) = max
ω∈Ω′′′

P (ω,φ),

along with lemma 3.2.12 the proof is concluded.

In order to aid in the computation of the performance of an arbitrary attacker
strategy φ we can restrict the time-horizon of the game such that the game ends
when the maximal commencement time attack with a non-zero probability ends.
We define the restricted game length for φ ∈ Φ as

T ′(φ) = max
j∈NA

T (j,φ) +m,

the minimal time at which in the future there is a zero probability of catching a
pure attacker henceforth, under φ.

Lemma 3.2.14. For any φ ∈ Φ we have for all graphs Q, for all m ≥ 1 and for
all T ≥ T ′(φ) we have

V•,φ(Q, T,m) = V•,φ(Q, T ′(φ),m).

Proof. First we note that by the definition of T ′(φ) that φ is feasible in the game
G(Q, T ′(φ),m) (i.e φ ∈ Φ(Q, T ′(φ),m). Then as ϕj,t = 0 for all T ≥ T ′(φ) we
have,

max
W∈W(Q,T,m)

P (W,φ) = max
W∈W

T−1∑
t=0

SW (t),t(l(W, t))

= max
W∈W(Q,T,m)

T ′(φ)−1∑
t=0

SW (t),t(l(W, t)) +
T−1∑

t=T ′(φ)

SW (t),t(l(W, t))


= max

W∈W(Q,T,m)

T ′(φ)−1∑
t=0

SW (t),t(l(W, t))

= max
W∈W(Q,T ′(φ),m)

T ′(φ)−1∑
t=0

SW (t),t(l(W, t)) = max
W∈W(Q,T ′(φ),m)

P (W,φ).

Hence we conclude the proof.

Theorem 3.2.13 and lemma 3.2.14 make calculating the performance of an arbi-
trary attacker strategy φ much easier by having to search through all ω ∈ Ω′′′,



CHAPTER 3. NEW TECHNIQUES AND STRATEGIES 68

Input: Graph Q, attack length m, attacker strategy φ.
Result: Set Ω′′′

Working set Ωw = ∅ and final set Ωf = ∅ ;
for each j in NA do

Set j1 = j ;
if ϕj,t = 0 for all t ≥ 1 then

Set V = {0} ;
end
else

Set V = {min T (j,φ), ..., T − 1} ;
end
for each v in V do

Set ν1 = v ;
Form ω = ((j1, ν1)) ;
if ν1(ω) = T ′(φ)− 1 then

Add ω to Ωf ;
end
else

Add ω to Ωw ;
end

end

end
while Ωw 6= ∅ do

for each ω ∈ Ωw do
if NA(ω, k(ω)) = ∅ then

remove ω from Ωw ;
end
else

for each j ∈ NA(ω, k(ω)) do
Set jk(ω)+1 = j ;
if ϕj,t = 0 for all tk(ω)+1 + 1 ≤ t ≤ T ′(φ)− 1 then

Set V = {0} ;
end
else

Set V = {0} ∪ {1, 2, ..., T − tk(ω)+1 − 1} ;
end
for each v in V do

Set νk(ω)+1 = v ;
Form ω′ = (ω, (jk(ω)+1, νk(ω)+1)) ;
if tk(ω)+1(ω) + νk(ω)+1(ω) = T ′(φ)− 1 then

Add ω′ to Ωf ;
end
else

Add ω′ to Ωw ;
end

end

end

end

end

end
return Ω′′′ = Ωf

Algorithm 1: Algorithm to find the set Ω′′′ for an attacker strategy φ.
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rather than all W ∈ W , for a game with a reduced game length T ′(φ). Algorithm
1 constructs the set Ω′′′ for which we find P (ω,φ) for all ω ∈ Ω′′′ and take the
maximum, thus finding the performance V•,φ(Q, T,m).

To conclude this section, we remark that we know that an optimal response walk
to any attacker strategy φ admits a move, wait form. Further, we saw that the
chosen nodes and waiting times can be restricted given the attacker strategy.
This reduction from searching throughW to searching through Ω′′′ as in theorem
3.2.13, makes the performance of any attacker strategy easier to find. Thus
making it easier to find upper bounds on the value of a patrolling game. We will
see the results from this section applied in section 3.3.3 to find the performance
of a diametric attacker strategy φdi. In addition the results are used throughout
chapter 4 to find the performances of a variety of attacker strategies.

3.2.3 Response to attacker strategies with special proper-
ties

In this section we consider attacker strategies with certain properties that allow
for further reduction of the best response patroller strategy. That is we further
reduce the already reduced move-wait walk set Ω′′′, as in theorem 3.2.13, when
φ ∈ Φ has certain properties. We first define some classes of attacker strategies
which the majority of known attacker strategies belong to, before finding the
reduction of Ω′′′.

Definition 3.2.15. An attacker strategy φ ∈ Φ is called:

• non-decreasing on N ′ ⊂ NA if ϕj,t+1 ≥ ϕj,t for all j ∈ N ′ and for all
0 ≤ t ≤ T −m− 1.

• non-increasing on N ′ ⊂ NA if ϕj,t+1 ≤ ϕj,t for all j ∈ N ′ and for all
0 ≤ t ≤ T −m− 1.

• node-identical on N ′ ⊂ NA if ϕi,t = ϕj,t for all i, j ∈ N ′ and for all 0 ≤ t ≤
T −m− 1.

• semi-isolated on N ′ ⊂ NA if
⌈
m
2

⌉
≤ d(i, j) ≤ m for all i, j ∈ N ′.

Lemma 3.2.16. For the game G(Q, T,m) for any Q, for all m ≥ 1, for all
T ≥ m and for any φ which is node-identical on NA we have

V•,φ(Q, T,m) = max
ω∈ΩNid

P (ω,φ),

where ΩNid = Ω′′′ \ (Ωcon ∪ Ωnon) in which

Ωcon = {ω ∈ Ω′′′ | ∃r ∈ {1, ..., k − 2} such that jr = jr+2, d(jr, jr+1, NA) ≥ m}

and

Ωnon = {ω ∈ Ω′′′ |∃r ∈ {1, ..., k − 2} such that jr 6= jr+2, d(jr, jr+2, NA) ≤ d(jr, jr+1, NA),

d(jr, jr+1, NA) ≥ m, d(jr+1, jr+2, NA) ≥ m}
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The proof of lemma 3.2.16 follows by considering any walk ω ∈ Ωcon and showing
that it is possible to find an at a walk ω′ ∈ ΩNid such that P (ω′,φ) ≥ P (ω,φ).
This is then repeated for all ω ∈ Ωnon.

Proof. First we consider any walk ω ∈ Ωcon, then there exists an r ∈ {1, ..., k−2}
such that jr(ω) = jr+2(ω) and d(jr(ω), jr+2(ω), NA) ≥ m. Consider the walk ω′

in which

ji(ω
′) =

{
ji(ω) if i ≤ r,

ji+2(ω) if r + 1 ≤ i ≤ k − 2

and

νi(ω
′) =


νi(ω) if i ≤ r − 1,

νr(ω) + text if i = r,

νi+2(ω) if r + 1 ≤ i ≤ k − 2,

where text = νr+1(ω) + νr+1(ω) + d(jr(ω), jr+1(ω), NA) + d(jr+1(ω), jr(ω), NA).
Then

ti(ω
′) =

{
ti(ω) if i ≤ r,

ti+2(ω) if r + 1 ≤ i ≤ k − 2,

and with X = {i ∈ {r + 2, ..., k} | ji(ω) = jr+1(ω)} and if X 6= ∅ let x = minX,
we have

li(ω
′) =


li(ω) if i ≤ r,

lr+1(ω) if X 6= ∅ and i = x− 2,

li+2(ω) otherwise.

Hence

ni(ω
′) =


ni(ω) if i ≤ r,

max(tx(ω)−m+ 1, lr+1(ω) + 1, 0) if X 6= ∅ and i = x− 2,

ni+2(ω) otherwise.

Immediately note that nx−2(ω′) ≤ nx(ω). We have that nr+1(ω) ≥ tr(ω) + νr(ω)
and nr+2(ω) ≥ tr+1(ω) + νr+1(ω). In addition as φ is node identical we have
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ϕjr,t = ϕjr+1,t = ϕjr+2,t for all t ∈ T . Therefore we have

P (ω′,φ) =
k−2∑
i=1

ti(ω
′)+νi(ω′)∑

t=ni(ω′)

ϕji(ω′),t

=
r−1∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +

tr+2(ω)+νr+2(ω)∑
t=nr(ω)

ϕjr(ω),t +
k−2∑
i=r+1

ti+2(ω)+νi+2(ω)∑
t=ni+2(ω)

ϕji+2(ω),t

− I{X 6=∅}

tx(ω)+νx(ω)∑
t=nx(ω)

ϕjx(ω),t −
tx(ω)+νx(ω)∑
t=nx−2(ω′)

ϕjx(ω),t


≥

r−1∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +

tr+2(ω)+νr+2(ω)∑
t=nr(ω)

ϕjr(ω),t +
k−2∑
i=r+1

ti+2(ω)+νi+2(ω)∑
t=ni+2(ω)

ϕji+2(ω),t

≥
r−1∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t +

tr(ω)+νr(ω)∑
t=nr(ω)

ϕjr(ω),t +

tr+1(ω)+νr+1(ω)∑
t=nr+1(ω)

ϕjr+1(ω),t

+

tr+2(ω)+νr+2(ω)∑
t=nr+2(ω)

ϕjr+2(ω),t +
k−2∑
i=r+1

ti+2(ω)+νi+2(ω)∑
t=ni+2(ω)

ϕji+2(ω),t

=
k∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t = P (ω,φ).

Thus by repeating this process to any walk ω ∈ Ωcon constructing ω′′ ∈ Ω′′′ \Ωcon

such that P (ω′′,φ) ≥ P (ω,φ). Hence

max
ω∈Ω′′′

P (ω,φ) = max
ω∈Ω′′′\Ωcon

P (ω,φ). (3.12)

Secondly we consider a walk ω ∈ Ωnon, then there exists an r ∈ {1, ..., k − 2}
such that jr(ω) 6= jr+2(ω), d(jr, jr+2, NA) ≤ d(jr, jr+1, NA), d(jr, jr+1, NA) ≥ m,
d(jr+1, jr+2, NA) ≥ m. Consider the walk ω′ in which

ji(ω
′) =

{
ji(ω) if i ≤ r,

ji+1(ω) if r + 1 ≤ i ≤ k − 1

and

νi(ω
′) =


νi(ω) if i ≤ r,

νr+1(ω) + text if i = r + 1

νi+1(ω) otherwise,

where text = νr+2(ω)+d(jr(ω), jr+1(ω), NA)+d(jr+1(ω), jr+2(ω), NA)−d(jr(ω), jr+2(ω), NA).
Then

ti(ω
′) =


ti(ω) if i ≤ r,

tr(ω) + νr(ω) + d(jr(ω), jr+2(ω), NA) if i = r + 1,

ti+1(ω) if r + 2 ≤ i ≤ k − 1,
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and with X = {i ∈ {r + 3, ..., k} | ji(ω) = jr+1(ω)} and if X 6= ∅ let x = minX,
we have

li(ω
′) =


li(ω) if i ≤ r,

lr+1(ω) if X 6= ∅ and i = x− 1,

li+1(ω) otherwise.

Hence

ni(ω
′) =


ni(ω) if i ≤ r,

nr+1(ω′) if i = r + 1,

max(tx(ω)−m+ 1, lr+1(ω) + 1, 0) if X 6= ∅ and i = x− 1,

ni+2(ω) otherwise,

where nr+1(ω′) = max(tr(ω)+νr(ω)+d(jr(ω), jr+2(ω), NA)−m+1, lr+2(ω)+1, 0).
Immediately we have nx−1(ω′) ≤ nx(ω) and nr+1(ω′) ≤ nr+1(ω). In addition
nr+2(ω) ≥ tr+1(ω)+νr+1(ω). In addition as φ is node identical we have ϕjr+2(ω),t =
ϕjr+1(ω),t for all t ∈ T .
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Therefore we have

P (ω′,φ) =
k−1∑
i=1

ti(ω
′)+νi(ω′)∑

t=ni(ω′)

ϕji(ω′),t

=
r∑
i=1

ti(ω)+νi(ω
′)∑

t=ni(ω)

ϕji(ω),t +

tr+2(ω)+νr+2(ω)∑
t=nr+1(ω′)

ϕjr+2(ω),t +
k−1∑
i=r+2

ti+1(ω)+νi+1(ω)∑
t=ni+1(ω)

ϕji+1(ω),t

− I{X 6=∅}

tx(ω)+νx(ω)∑
t=nx(ω)

ϕjx(ω),t −
tx(ω)+νx(ω)∑
t=nx−1(ω′)

ϕjx(ω),t


≥

r∑
i=1

ti(ω)+νi(ω
′)∑

t=ni(ω)

ϕji(ω),t +

tr+2(ω)+νr+2(ω)∑
t=nr+1(ω′)

ϕjr+2(ω),t +
k−1∑
i=r+2

ti+1(ω)+νi+1(ω)∑
t=ni+1(ω)

ϕji+1(ω),t

≥
r∑
i=1

ti(ω)+νi(ω
′)∑

t=ni(ω)

ϕji(ω),t +

tr+2(ω)+νr+2(ω)∑
t=nr+1(ω)

ϕjr+2(ω),t +
k−1∑
i=r+2

ti+1(ω)+νi+1(ω)∑
t=ni+1(ω)

ϕji+1(ω),t

≥
r∑
i=1

ti(ω)+νi(ω
′)∑

t=ni(ω)

ϕji(ω),t +

tr+1(ω)+νr+1(ω)∑
t=nr+1(ω)

ϕjr+2(ω),t +

tr+2(ω)+νr+2(ω)∑
t=nr+2(ω)

ϕjr+2(ω),t

+
k−1∑
i=r+2

ti+1(ω)+νi+1(ω)∑
t=ni+1(ω)

ϕji+1(ω),t

=
r∑
i=1

ti(ω)+νi(ω
′)∑

t=ni(ω)

ϕji(ω),t +

tr+1(ω)+νr+1(ω)∑
t=nr+1(ω)

ϕjr+1(ω),t +

tr+2(ω)+νr+2(ω)∑
t=nr+2(ω)

ϕjr+2(ω),t

+
k−1∑
i=r+2

ti+1(ω)+νi+1(ω)∑
t=ni+1(ω)

ϕji+1(ω),t

=
k∑
i=1

ti(ω)+νi(ω)∑
t=ni(ω)

ϕji(ω),t = P (ω,φ).

Thus by repeating this process to any walk ω ∈ Ωnon constructing ω′′ ∈ Ω′′′ \Ωnon

such that P (ω′′,φ) ≥ P (ω,φ). Hence

max
ω∈Ω′′′

P (ω,φ) = max
ω∈Ω′′′\Ωnon

P (ω,φ). (3.13)

Thus the result of the lemma is obtained by equations (3.12) and (3.13) along
with theorem 3.2.13.

Further to the reduction in lemma 3.2.16, in which φ is node-identical on NA,
when φ is semi-isolated and non-increasing or non-decreasing on NA we can get
further reductions by considering when such walks such wait.

Corollary 3.2.17. For a game G(Q, T,m) for any graph Q, for all m ≥ 1, for
all T ≥ m and for any φ ∈ Φ which is node-identical on NA, semi-isolated on
NA and



CHAPTER 3. NEW TECHNIQUES AND STRATEGIES 74

• non-decreasing on NA we have

V•,φ(Q, T,m) = max
ω∈Ω↑

P (ω,φ),

where Ω↑ = {ω ∈ ΩNid | νr = 0 for all r ∈ {2, ..., k − 1}}.

• non-increasing on NA we have

V•,φ(Q, T,m) = max
ω∈Ω↓

P (ω,φ),

where Ω↓ = {ω ∈ ΩNid | νr = 0 for all r ∈ {i ∈ {3, ..., k − 1} | ∃i′ ∈
{1, ..., i} such that ji = ji′}}.

The proof of corollary 3.2.17 follows from theorem 3.2.10 by considering that the
waiting times can be transferred backwards in the case of non-decreasing and
forward in the case of non-increasing.

Proof. When φ is semi-isolated on NA we have that the event E3(ω, r) is true for
all r ∈ {2, ..., k − 1} and for all ω ∈ ΩNid \ Ω↑ as

max(tmin{i∈{r+1,...,k}|ji=jr}(ω)−m+ 1, 0) ≥ tr+1(ω)−m+ 1

= tr−1(ω) + νr−1(ω) + d(jr−1, jr, NA) + νr(ω) + d(jr, jr+1, NA)−m+ 1

≥ tr−1(ω) + vr−1(ω) + νr(ω) + 1 > tr−1(ω) + νr−1(ω) + 1.

In addition tr(ω)−m+1 = tr−1(ω)+νr−1(ω)+d(jr−1, jr, NA)−m+1 ≤ tr−1(ω)+
νr−1(ω) + 1 and so when φ is also node-identical on NA and non-decreasing on
NA we have whilst tr−1(ω) + νr−1(ω) + 1 ≤ T −m that

ϕjr−1,tr−1(ω)+νr−1(ω)+1 = ϕjr,tr−1(ω)+νr−1(ω)+1 ≥ ϕjr,tr(ω)−m+1.

Hence Gb(ω, r) ≥ Lb(ω, r) for all r ∈ {2, ..., k−1} such that tr−1(ω)+νr−1(ω)+1 ≤
T −m for all ω ∈ ΩNid \Ω↑ and so by theorem 3.2.10 we have P (ωb,φ) ≥ P (ω,φ).
Therefore we can transfer all waiting times backwards for any r ∈ {2, ..., k − 1}
such that tr−1(ω) + νr−1(ω) + 1 ≤ T − m without decreasing the payoff. For
r ∈ {2, ..., k − 1} such that tr−1(ω) + νr−1(ω) + 1 > T −m then tr + 1 > T −m
and so ϕjr,t = 0 for all t ≥ tr + 1 and so lemma 3.2.11 enforces that vr = 0 for
all such r (by forward transfer of the waiting). So we end up with some ω′ ∈ Ω↑
such that P (ω′,φ) ≥ P (ω,φ) for all ω ∈ ΩNid \ Ω↑. Hence

max
ω∈ΩNid

P (ω,φ) = max
ω∈Ω↑

P (ω,φ),

along with lemma 3.2.16 we attain the result.

For the second statement a similar approach can be taken. When φ is semi-
isolated onNA we have that the event E1(ω, r) is true for all r ∈ {i ∈ {3, ..., k−1} |
∃i′ ∈ {1, ..., i} such that ji = ji′} for all ω ∈ ΩNid \ Ω↓ as

tr+1(ω)−m+ 1 = tr−1(ω) + νr−1(ω) + d(jr−1, jr, NA) + νr(ω) + d(jr, jr+1, NA)−m+ 1

≥ tr−1(ω) + νr−1(ω) + νr(ω) + 1 ≥ lr+1(ω) + 1.
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In addition tr+1(ω)−m = tr(ω) + νr(ω) +d(jr, jr+1, NA)−m ≤ tr(ω) + νr(ω) and
so when φ is also node-identical on NA and non-increasing on NA we have

ϕjr+1,tr+1(ω)−m = ϕjr,tr+1(ω)−m ≥ ϕjr,tr(ω)+νr(ω)

HenceGf (ω, r) ≥ Lf (ω, r) for all r ∈ {i ∈ {3, ..., k} | ∃i′ ∈ {1, ..., i} such that ji =
ji′} for all ω ∈ ΩNid \ Ω↓ and so by theorem 3.2.10 we have P (ωf ,φ) ≥ P (ω,φ).
Therefore we can transfer any waiting forward and end up with some ω′ ∈ Ω↓
such that P (ω′,φ) ≥ P (ω,φ) for all ω ∈ ΩNid \ Ω↓. Hence

max
ω∈ΩNid

P (ω,φ) = max
ω∈Ω↓

P (ω,φ),

along with lemma 3.2.16 we attain the result.

Notice that in corollary 3.2.17 if φ is non-decreasing, semi-isolated and node
identical on NA then only ν1, νk 6= 0, which is equivalent to considering only
a choice of the initial waiting ν1 as tk + νk = T − 1 by definition. Essentially
for such φ there is one degree of freedom in the waiting of walks to consider,
while there may be an unknown amount of node sequences in the move-wait form
walk to consider. We will see corollary 3.2.17 used in section 3.3.3 to find the
correct performance of φdi for all game lengths T ≥ m. This work concludes
our contributions to the reduction of the response space for the patroller when
evaluating the performance of an attacker strategy.

3.3 General strategies

3.3.1 Decomposition into subgraph games

While lemma 2.3.14 provides a lower bound on the value V (Q, T,m) this bound
requires knowledge of the values of all subgraph games, this requirement can be
relaxed by considering arbitrary patroller strategies on subgraph games.

Definition 3.3.1. For the game G(Q, T,m) with a decomposition of Q into
Q1, ..., QR, we form the subgraph games G(Q1, T,m), ..., G(QR, T,m). Let πi ∈
Π(Qi, T,m) be an arbitrary patroller strategy chosen for the game G(Qi, T,m)
then the arbitrary decompsoition patroller strategy πADec using these strategies

is such that πβ1(W ) =
R∑
i=1

piπi,β1(W ), where

pi =
1

Vπi,•(Qi, T,m)
R∑
r=1

1
Vπr,•(Qr,T,m)

for i = 1, ..., R.
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An arbitrary decomposition is a more general decomposition idea than that pre-
viously presented and allows us to use strategies which we do not know are op-
timal in the subgraph games. While it is intuitive to use optimal strategies such
strategies may not be known and therefore arbitrary strategies can be used. By
evaluating the performance of any arbitrary decomposition patroller strategy we
can achieve a lower bound on the value of the game similar to that in lemma
2.3.14.

Lemma 3.3.2. For the game G(Q, T,m) for any graph Q, with any decomposition

Qi for i = 1, ..., R (Q =
R⋃
i=1

Qi), for any strategies πi ∈ Π(Qi, T,m) such that

Vπi,•(Qi, T,m) 6= 0 for i = 1, ..., R, for all m ≥ 1 and for all T ≥ m we have

V (Q, T,m) ≥ VπADec,•(Q, T,m) ≥ 1
R∑
i=1

1
Vπi,•(Qi,T,m)

,

where the lower bound on V (Q, T,m) is achieved by the patroller using a arbitrary
decomposition patroller strategy πADec using πi for i = 1, ..., R.

The proof of lemma 3.3.2 follows similarly to the proof of lemma 2.3.14 by bound-
ing the performance of an arbitrary decomposition πADec using πi for i = 1, ..., R.

Proof. As any node j ∈ N is in at least one subgraph Qi for some i ∈ {1, ..., R}
we have that with probability pi the patroller will play πi and hence

VπADec,•(Q, T,m) ≥ piVπi,•(Qi, T,m) =
1

R∑
r=1

1
Vπr,•(Qr,T,m)

.

Therefore we achieve the lower bound on V (Q, T,m).

We note the requirement that the performance of each arbitrary strategy be non-
zero. This is not an issue in lemma 2.3.14 as an optimal strategy must have a
non-zero performance (as a lower bound above zero is guaranteed by the choose
and wait patroller strategy). In addition to the lower bound in lemma 3.3.2
we briefly discuss when the use of decomposition provides a weak bound. If
the subgraphs are not disjoint, then it is possible to improve the decomposition
by removing the overlapping nodes from all but one subgraph. This can only
improve the performance of strategies which can be picked in the new subgraph
game as such nodes can be skipped and hence we should only consider disjoint de-
compositions. Furthermore decompositions which have some subgraph Qi where
Vπi,•(Qi, T,m) = 1, may be ineffective. In such a case if the pure patrol visits
every node at intervals less than m time units apart, then while it captures all
pure attacks, it has the potential to visit more nodes (outside the subgraph) and
still do so. While this fact is hard to use explicitly, as moving nodes between
subgraphs may cause the bound to decrease, it is an idea we should keep in mind
when using decomposition to obtain a lower bound. We use our contribution to
the decomposition in chapter 4, section 4.4, in order to obtain an optimal solution
for a graph with a highly generalised star structure.
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3.3.2 Simplification and expansion

In this section we formalise the process of repeated node identification, define its
inverse and state explicitly the resultant embedded strategies which generate the
bounds achieved by these processes. While the ideas of repeated node identication
and its inverse have been used in [16] and [107] to get the value of certain patrolling
games, the underlying strategies are not always clearly stated. Therefore, for
clarity of strategy implementation, we focus on the generated strategies after
discussing the formal operations.

Recall that node-identification is a graphical operation which performs a merging
of two parent nodes, into a child node which retains its parents adjacencies.
Consider a graph Q = (N,E) which undergoes node identification to Q− =
(N−, E−), then by lemma 2.3.2 we know V (Q−, T,m) ≥ V (Q, T,m). An upper
bound on V (Q, T,m) can be generated by looking at an attacker strategy φ− ∈
Φ(Q−, T,m) to get V (Q, T,m) ≤ V•,φ−(Q−, T,m). For the attack strategy in
the game G(Q, T,m) which generates this same bound, we need to embed the
strategy φ− ∈ Φ(Q−, T,m) to find a strategy φ ∈ Φ(Q, T,m). To embed the
attacker strategy, we must place all pure attacks at the child node at the parent
nodes. Therefore the embedded attack strategy has an arbitrary distribution
which shares the attack probabilities at the child node between the parents. We
formally define the embedded attack strategy as follow.

Definition 3.3.3. Given a node-identification from a graph Q to Q−, merging
nodes u, v ∈ N to node w ∈ N−, we define the embedded attacker strategy φ ∈
Φ(Q, T,m) embedding φ− ∈ Φ(Q−, T,m) such that the probability of choosing
the pure attack strategy (j, τ) ∈ A(Q, T,m) is

ϕj,τ =


ϕ−j,τ if j ∈ N \ {u, v},
Xτϕ

−
w,τ if j = u,

(1−Xτ )ϕ
−
w,τ if j = v,

for some arbitrary chosen Xτ ∈ [0, 1] for each τ ∈ T .

That is an embedded attacker strategy φ ∈ Φ(Q, T,m) embedding φ− ∈ Φ(Q−, T,m)
uses the same distribution among pure attacks and arbitrarily splits the distri-
bution at the node w ∈ N− to nodes u, v ∈ N for each commencement time,
according to Xτ ∈ [0, 1]. It is the embedded attack strategies which generated
the upper bound on V (Q, T,m) by node-identification (lemma 2.3.2), which need
not use optimal attacker strategies in the game G(Q−, T,m) for the embedding.

Lemma 3.3.4. Given a graph Q in which (u, v) are node-identified to form the
graph Q− and an attacker strategy φ− ∈ Φ(Q−, T,m) embedded to form φ ∈
Φ(Q, T,m), then for any m ≥ 1 and for any T ≥ m we have

V (Q, T,m) ≤ V•,φ(Q, T,m) ≤ V•,φ−(Q−, T,m).

V (Q, T,m) ≤ V (Q−, T,m).
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Lemma 3.3.4 follows by the same argument originally given for node-identification
bounds.

Proof. For any W ∈ W(Q, T,m) form a walk W ′ ∈ W(Q−, T,m) such that
W ′(t) = N−(Q, u, v)(W (t)) for all t ∈ T . Let w be the child of u and v, then
if w ∈ W ′(I) then either u ∈ W (I) or v ∈ W (I) for any attack interval I =
{τ, ..., τ +m− 1} (for any τ ∈ T ). So

P (W,φ) =
∑

j∈N\{u,v}

T−1∑
τ=0

ϕj,τ I{j∈W (I)} +
T−1∑
τ=0

ϕu,τ I{u∈W (I)} +
T−1∑
τ=0

ϕv,τ I{v∈W (I)}

=
∑

j∈N\{u,v}

T−1∑
τ=0

ϕ−j,τ I{j∈W (I)} +
T−1∑
τ=0

Xtϕ
−
w,τ I{u∈W (I)} +

T−1∑
τ=0

(1−Xt)ϕ
−
w,τ I{v∈W (I)}

≤
∑

j∈N\{u,v}

T−1∑
τ=0

ϕj,τ I{j∈W ′(I)} +
T−1∑
τ=0

ϕ−w,τ I{w∈W ′(I)}

= P (W ′,φ−).

Hence we have V•,φ(Q, T,m) ≤ V•,φ−(Q−, T,m) and therefore the result.

Having seen how node identification and embedded attack strategies generate
upper bounds, we look at the reverse of node identification, which we call node-
splitting. Node splitting takes a parent node and splits it into two resultant
child nodes, which are adjacent to each other and who between them inherit the
parent’s adjacencies.

Definition 3.3.5. The graphical operator of node-splitting maps a (simple undi-
rected) graph Q = (N,E) onto Q+ by splitting the node w, into two nodes u, v,
written as Q+(Q,w) = Q+. The resultant graph Q+ = (N+, E+) is such that

N+ = (N \ {w}) ∪ {u, v} and E+ = (E \ E ′) ∪ Y ′,

where E ′ = {(w, i) | i ∈ N, (w, i) ∈ E} are the incident edges to w for some
choice of edge transference set Y ′ ⊂ Y where

Y = {(u, x) | (w, x) ∈ E} ∪ {(v, x) | (w, x) ∈ E} ∪ {u, v}

where Y ′ must be chosen such that (u, v) ∈ Y ′ and for each x ∈ N if (, x) ∈ E
then either (u, x) ∈ Y ′ or (v, x) ∈ Y ′. Further we denote the node-splitting node
and edge maps as N+(Q,w, j) and E+(Q,w, e) respectively, which map nodes
j ∈ N and edge e ∈ E of Q to nodes and edges of Q+.

We note that the choice of the edge transference set Y ′ ⊂ Y in our definition
is arbitrary and some alternative definitions require Y ′ = Y , which we call full
edge transference, such that children each inherit all parent adjacencies. While we
could have adopted this requirement, as it means that the resultant graph Q+ will
have the most options for walks (among all choices of Y ′), it is not required for our
results and therefore we keep it as general as possible. In fact a smart choice of
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the edge transference set can keep the set of edges manageable when performing
repeated node-splitting (later known as expansion). While node-identification
and node-splitting perform the reverse ideas it is easy to see that they are not
inverse operations.

Performing node-splitting on a parent node followed by node-identification on the
resultant child nodes will result in the same graph, i.e Q−(Q+(Q,w), u, v) = Q,
in which u, v are distinct elements of N+(w),N+(w). Therefore, we say that
node-identification is left inverse for node-splitting. However performing node-
identification followed by node-splitting may not result in the same graph (unless
Y ′ is suitably chosen or Y ′ = Y ) and so it is not true that node splitting is the
left inverse for node-identification. Figure 3.3.1 shows an example of this, where
nodes lose previous adjacencies, as the edge (4, 3) no longer exists, and may gain
ones which were not previously present, but were shared by their sibling (the
other child form the parent), such as the edge (2, 6).

1 2

3

4

5

6

1 2

3 5

6

1 2

3

4

5

6

Figure 3.3.1: A graph, with nodes 2 and 4 undergoing node-identification followed
by there resultant node 2 being node splitting back into nodes 2 and 4. Note that
adjacencies are not necessarily recovered under node splitting.

As node-identification is the left inverse of node-splitting we know that V (Q, T,m) ≥
V (Q+, T,m), therefore it possible to consider the patroller strategy which gener-
ates this lower bound on V (Q, T,m) by considering the embedding of any strategy
π+ ∈ Π(Q+, T,m) to form a strategy π ∈ Π(Q, T,m).

Definition 3.3.6 (Embedded patroller strategy). Given a node-splitting of the
graph Q into Q+ = Q+(Q,w), which splits node w ∈ N into u, v ∈ N+, for some
choice of edge transference Y ′ we define the embedded walk W ∈ W(Q, T,m),
embedding the walk W+ ∈ W(Q+, T,m), such that W+(t) = N+(Q,w)(W (t))
for all t ∈ J . An embedded patroller strategy strategy π ∈ Π(Q, T,m), embedding
π+ ∈ Π(Q+, T,m), is such that

πβ1(W ) =
∑

W+∈W(Q+,T,m)

π+

β+
1 (W+)

I{W+(t)=N+(Q,w)(W (t)) ∀t∈J},

where β+
1 : W(Q+, T,m) → {1, ..., |W(Q+, T,m)|} is the arbitrary bijection cho-

sen for the ordering of the walks in the game G(Q+, T,m).
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That is an embedded walkW ∈ W(Q, T,m), embedding the walkW+ ∈ W(Q+, T,m),
follows W+ expect when it is at node u or v. When W+ uses either the edge (u, x)
or (v, x) for some x ∈ N+ \ {u, v}, then W uses the edge (w, x) in Q. If the walk
W+ uses the edge (u, v) the walk W waits at w. In addition an embedded pa-
troller strategy π ∈ Π(Q, T,m) embedding π+ ∈ Π(Q+, T,m) plays each walk
W ∈ W(Q, T,m) with a probability equal to the sum of all walks π+ played
which embed to W .

Lemma 3.3.7. Given a graph Q which undergoes node-splitting at node w to form
Q+ and a patroller strategy π+ ∈ Π(Q+, T,m) embedded to form π ∈ Π(Q, T,m),
then for any m ≥ 1 and for any T ≥ m we have

V (Q, T,m) ≥ Vπ,•(Q, T,m) ≥ Vπ+,•(Q
+, T,m).

Moreover,

V (Q, T,m) ≥ V (Q+, T,m).

The proof of lemma 3.3.7 follows similarly to the proof of lemma 3.3.4.

Proof. For any (j, τ) ∈ A(Q, T,m) form an attack (j′, τ) ∈ A(Q+, T,m) such that
j′ = j if j 6= w and j′ = u if j = w where u is child of w. Then if j′ ∈ W+(I) then
j ∈ W (I) where W ∈ W(Q, T,m) is the embedded walk of W ′ ∈ W(Q+, T,m)
and I = {τ, ..., τ +m− 1}. So

P (π, (j, τ)) =
∑

W∈W(Q,T,m)

πβ1(W )I{j∈W (I)}

=
∑

W∈W(Q,T,m)

∑
W+∈W(Q+,T,m)

π+

β+
1 (W+)

I{W+(t)=N+(Q,w)(W (t)) for all t∈J}I{j∈W (I)}

≥
∑

W+∈W(Q+,T,m)

π+

β+
1 (W+)

I{j∈W (I)}

≥
∑

W+∈W(Q+,T,m)

π+

β+
1 (W+)

I{j′∈W+(I)}

= P (π+, (j′, τ)).

Hence we have Vπ,•(Q, T,m) ≥ Vπ+,•(Q
+, T,m) and therefore the result. The

moreover result holds by considering any optimal patroller strategy π∗ ∈ Π(Q, T,m).

We have seen the embedded strategies which generate bounds on the value of
the game by merging or splitting nodes. As a single node-identification or node-
splitting may not generate optimal bounds, we extend the operations to simplifi-
cation and expansion, respectively, where a k-simplification operation performs k
node-identifications and an l-expansion operation performs l node-splittings. Us-
ing the inequalities for node-identification and node-splitting (lemmas 3.3.4 and
3.3.7 respectively) we obtain the following bounds.
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Corollary 3.3.8. For any (simple undirected) graph Q which can be k-simplified
to Q−k and l-expanded to Q+l, for all k ≥ 1, for all l ≥ 1, for all m ≥ 1 and for
all T ≥ m we have

V (Q+l, T,m) ≤ V (Q, T,m) ≤ V (Q−k, T,m).

Proof. From repeated application of the node-identification result in lemma 3.3.4
we get that

V (Q−k, T,m) ≥ V (Q−(k−1)) ≥ ... ≥ V (Q, T,m).

Similarly, from repeated application of the node-splitting result in lemma 3.3.7
we get that

V (Q+l, T,m) ≤ V (Q+(l−1)) ≤ ... ≤ V (Q, T,m).

As simplification and expansion are repeated node-identification and node-splitting
respectively, it is possible to get embed strategies from the games G(Q−k, T,m)
and G(Q+l, T,m) to get strategies for the game G(Q, T,m), by repeated em-
bedding of attacker and patroller strategies respectively. It is these repeatedly
embedded strategies which generate the bounds in corollary 3.3.8, along with the
optimal strategies for G(Q+l, T,m) and G(Q+k, T,m).

Definition 3.3.9. A k-embedded attack strategy is the repeated construction
of embedded attack strategy φ−(k−1) from φ−k k times for some collection of
choices for Xj,t for t ∈ T for each embedding step j = 1, ..., k. Similarly an
l-embedded patrol strategy is the repeated constructed of the embedded patrol
strategy π+(l−1) from π+l l times.

Corollary 3.3.8 provides us with a clear reasoning that if a k-embedded attack
strategy is optimal for the game G(Q, T,m) then we know a j-embedded attack
strategy that is optimal for the game G(Q−j, T,m) for j = 0, 1, ..., k − 1. Note
this is under the family of simplifications, i.e Q−(j+1) is simplified from Q−j.
Similarly knowing a l-embedded patrol strategy that is optimal in Q means we
know a j-embedded patrol strategy that is optimal for the game G(Q+j, T,m) for
j = 0, 1, ..., l − 1. Essentially this is because all the intermediate simplifications
or expansions bounds turn into equalities.

Thus, finding an optimal embedded attack strategy for a game on Q from some
game on Q+k for some k means all intermediate simplifications are solved by the
intermediate embedded attack strategy and the embedded patrol strategy where
Q+k is expanded to Q. A similar statement holds when an optimal embedded
patrol strategy is known in Q from some Q−l. Thus using simplification and
expansion to find optimal solutions, finds solutions for all patrolling games on
graph intermediates. This helps to solve a set of graphical structures at the same
time as solving a particular one. In particular one can see this idea in the solution
to the complete bipartite graph. For the complete bipartite, Ka,b, with a ≤ b,
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the value of the game does not depend on a, this is because node splitting is
repeated on its nodes in order to get the optimal embedded strategy when a = b,
by making the graph Hamiltonian.

So while finding an optimal embedded strategy provides us with solutions to all
intermediate games, it can be incredibly hard to find such a simplification or
expansion, each intermediate operation for simplification has

(
n
2

)
choices and for

expansion has n choices for the node to split along with d(w)2 choices for the edge
transfer when node w is chosen to be split, where d(w) is the degree of node w.

As searching for the best k-simplification and l-expansion may be extremely time
consuming, we may wish to reduce which nodes are considered. Consider a graph
with leaf nodes and its adjacent nodes, called penultimate nodes, we show that it
is not worth node identifying a leaf node with any other node than their adjacent
penultimate nodes. Thus limiting the node-identification operation when in the
search of optimality.

Lemma 3.3.10. For the game G(Q, T,m), for any graph Q with a leaf node i
and its penultimate node p, for all j /∈ {i, p}, for all T ≥ m and for all m ≥ 1,
we have

V (Q−(i, p), T,m) ≤ V (Q−(i, j), T,m),

where Q−(i, j) = Q−(Q, i, j).

Proof. For Q undergoing node-identification on i and j, forming Q−(i, j) =
(N−(i, j), E−(i, j)), which uses the relabelling of the child node w as j (isomor-
phic). Then we have N−(i, j) = N \ {i} and E−(i, j) = E ∪ {(p, j)}

Now consider Q undergoing node-identification on i and p, forming Q−(i, p) =
(N−(i, p), E−(i, p)), which uses the relabelling of the child node w as p (isomor-
phic). Then we have N−(i, p) = N \ {i} and E−(i, p) = E.

Thus we can see that Q−(i, j) is the same graph as Q−(i, p) except it contains the
edge (j, p). Hence as we know more edges can only increase the value (lemma 1
a) in [16]), we obtain that for all m ≥ 1 and for all T ≥ m that

V (Q−(i, p), T,m) ≤ V (Q−(i, j), T,m).

In section 3.3.4 we look at using a Hamiltonian expansion for non-Hamiltonian
graphs, along with the embedded Hamiltonian cycle, called a full-node cycle. In
doing so we present a ‘Hamiltonian like’ bound.

3.3.3 Generalising the diametric attack

In this section we first correct lemma 2.3.24, stating the performance of a dia-
metric attacker strategy φdi for any T ≥ m and hence the correct upper bound
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provided by playing such a strategy on the value V (Q, T,m) for any T ≥ m. In
doing so we will note that φdi only provides the upper bound given in lemma
2.3.24 for certain game lengths T . We introduce the time-limited diametric at-
tacker strategy φtdi, by limiting the distribution in commencement time for the
diametric attacker strategy, which achieves the upper bound proposed by lemma
2.3.24 for a significantly greater range of game lengths. Further to this idea, we
extend the notion of attacks at nodes which are spatially separated, to a generic
collection of nodes, the implementation of which depends on the minimum dis-
tance between nodes. This notion of spatial separation extends the idea of node
independence when nodes are not a distance at least m apart.

Recall the diametric attack strategy φdi, as defined in [16], chooses to attack a
pair of diametric nodes (j, j′) ∈ N2 equally for all commencement times. For φdi

the set of nodes which are possibly attacked is NA = {j, j′}. The diametric attack
strategy is node-identical on NA = {j, j′} and non-decreasing on NA = {j, j′}.
Hence by using lemma 3.2.16 and corollary 3.2.17 we can evaluate the performance
of φdi. Thus giving the correct upper bound playing the strategy provides on the
value of the game for all T ≥ m.

Lemma 3.3.11. For the game G(Q, T,m) for any graph Q, for all m ≥ 1 and
for all T ≥ m we have

V (Q, T,m) ≤ V•,φdi
(Q, T,m)

= max

(
1

2
,min

(
γ

2(T −m+ 1)
, 1

))
,

where

γ = m− d+m(α + 1)+ + (T −m+ 1− (α + 1)d)+ + (T −m+ 1− (α + 2)d)+,

in which α =
⌊
T−2m+1

d

⌋
, d is the diameter of Q and where (x)+ = max(0, x)

is the rectifier function. The upper bound is achieved by the attacker choosing
a diametric attacker strategy for any diametric pair (j, j′). Moreover, for T =
m− 1 + (k + 1)d for all k ∈ N0, or as T →∞, we have

V (Q, T,m) ≤ max

(
1

2
,
m

2d

)
.

The proof of this lemma 3.3.11 follows by evaluating the performance of φdi using
our work done on strategy reduction for the responding pure patroller walk.

Proof. We divide the proof into two cases, case 1: if d = d(j, j′) ≥ m and case
2: if d = d(j, j′) < m. Noting that the attack structure is node-symmetric and
non-decreasing on NA = {j, j′} we can use corollary 3.2.17 to reduce the problem
of finding the performance of φdi to

V•,φdi
(Q, T,m) = max

ω∈Ω↑
P (ω,φdi)
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Case 1: In the case of d ≥ m we know that by lemma 3.2.16 that Ω↑ = {ω1, ω2} in
which ω1 = ((j, T−1)) and ω2 = ((j′, T−1)). As these nodes are node-symmetric
we can without loss of generality assume that ω = ((j, T − 1)) is the only walk to
consider for the maximum. Therefore, the performance of φdi is

V•,φdi
(Q, T,m) = P (ω1,φdi) =

T−m+1∑
t=0

1

2(T −m+ 1)
=

1

2
.

Hence V (Q, T,m) ≤ 1
2

when d ≥ m.

Case 2: In the case of d < m we cannot simply use prior results to reduce the set
of walks to a single element, however we can still assume without loss of generality
that j can be the initial node. Then the only move, wait walks to consider start at
j wait some time and then move to j′ at which they do not wait before returning
to j again not waiting and returning to j′ repeating this alternating between j
and j′ for the entire time-horizon finishing by arriving at j or j′ at time T − 1.
That is Ω↑ = {ω(x) | x ∈ {0, ..., T − 1}} where ω(x) is such that

ji(ω(x)) =

{
j if i is odd,

j′ if i is even,

and νi(ω(x)) = xI{i=1} with the number of nodes visited k =
⌊
T−1−x+d

d

⌋
. Then

the time of visits to nodes is given by

ti(ω(x)) =

{
0 if i = 1,

x+ (i− 1)d otherwise,

and

ni(ω(x)) =


0 if i = 1,

max(x+ d−m+ 1, 0) if i = 2,

max(x+ (i− 1)d−m+ 1, x+ (i− 3)d+ 1, 0) otherwise.

Therefore the payoff for responding to φdi with ω(x) is

P (ω(x),φdi) =
x∑
t=0

1

2(T −m+ 1)
+

d+x∑
t=(x+d−m+1,0)

1

2(T −m+ 1)

+
k∑
i=2

x+(i−1)d∑
t=ni(ω(x))

1

2(T −m+ 1)

= min

(
∆

2(T −m+ 1)
, 1

)
, (3.14)

where

∆ = x+ 1 + I{x+d≤T−m}min(m,x+ d+ 1) +m(k − 2)+

+ (T − x− (k − 1)d)+ + (T − x− kd)+.
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Thus to find the performance of φdi we seek to maximize the payoff in equation
(3.14) by choosing x. By considering x and x + 1 it is clear to see that for
x ≤ m − d − 1 the payoff is non-decreasing and for x ≥ m − d − 1 the payoff is
non-increasing. Therefore, the best choice of x is x∗ = m−d−1 and furthermore

V•,φdi
(Q, T,m) = P (ω(x∗),φdi)

= min


[
m− d+m(α + 1)+ + (T −m+ 1− (α + 1)d)+

+ (T −m+ 1− (α + 2)d)+

]
2(T −m+ 1)

, 1

 .

Hence

V (Q, T,m) ≤ γ

2(T −m+ 1)
,

when d > m.

The remaining part of the lemma for T = m−1 + (k+ 1)d and as T →∞ follows
by inspection of the above bound.

Thus lemma 3.3.11 states that the upper bound proposed in lemma 2.3.24 (from
[16]) provided by playing φdi only holds for certain values of the game length T ,
or in the infinite time-horizon patrolling game. While the upper bound given in
lemma 2.3.24 (from [16]) does hold for these certain game lengths, it does not
hold for all game lengths T ≥ m and its implementation as an optimal attacker
strategy in the solution to the patrolling game on the line graph, as in lemma
2.3.29 (from [107]), is consequently invalid. Figure 3.3.2 shows the discrepancy
between the upper bound given by lemma 2.3.24 and our corrected lemma 3.3.11
for m ≥ d as the game length T changes.

As mentioned in section 2.3.4, the solution to the game G(Ln, T,m) relies on the
bound of V (Q, T,m) ≤ m

2d
to hold for all T ≥ m. Which as given in [107] is

achieved by the diametric attacker strategy φdi. However lemma 3.3.11 shows
that the optimality is actually reduced to game lengths with T = m−1+(k+1)d
for all k ∈ N0 or for T = ∞. This poses an issue with the patrolling game on
the line graph when m ∈MLn

2 . We will soon see that it is possible to get a lesser
restriction on the game length of T ≥ m + d − 1, by limiting the distribution
of the diametric attacker strategy in the commencement time. To adapt the
diametric attacker strategy we limit the distribution of commencement times to
τ ∈ {0, ..., d− 1}, to create the time-limited diametric attacker strategy.

Definition 3.3.12. For the game G(Q, T,m) (Q = (N,E)) a time-limited dia-
metric attacker strategy using the diametric pair (j, j′) ∈ N2 is φtdi ∈ Φ such
that the probability of choosing the pure strategy (j, τ) ∈ A is

ϕi,τ =

{
1
2d

if i ∈ {j, j′} and τ ∈ {0, ..., d− 1},
0 otherwise.



CHAPTER 3. NEW TECHNIQUES AND STRATEGIES 86

0.75

0.80

0.85

0.90

0.95

1.00

100 200 300 400

Time Horizon, T

U
p
p

er
B

ou
n
d

on
V

(G
)

Performance

V•,φdi
(Q, T,m)

Figure 3.3.2: This graphs shows, in black, the upper bound on the value
V (Q, T, 45) provided by playing the diametric attacker strategy φdi for any graph
Q with a diameter of d = 30. Shown for game lengths T ≥ m = 45. The green
baseline shows the performance of φdi as proposed by the upper bound in lemma
2.3.24 (from [16]). The green points show when the actual performance of the
diametric attacker agrees with that proposed in lemma 2.3.24. The blue trend
line shows that as the game length increases the upper bound tends to that given
in lemma 2.3.24.
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That is a time-limited diametric attacker strategy φtdi chooses between its di-
ametric pair of nodes uniformly and then chooses a commencement time from
a limited set {0, ..., d − 1}. This limited set is the difference between φtdi and
φdi and arises from the fact that φdi does provide the proposed bound in lemma
2.3.24 when T = d+m−1. The time-limited diametric attacker strategy will pro-
vide the proposed upper bound with a slight limitation to the game length. We
note that it is possible to limit the commencement set to {0, ..., kd− 1} for some
k ∈ N, to still achieve the proposed bound, however such a choice only leads to a
greater restrictions on game lengths for which the time-limited diametric attack
is a valid strategy when k 6= 1.

Lemma 3.3.13. For the game G(Q, T,m) for any graph Q, for all m ≥ 1 and
for all T ≥ m+ d− 1 we have

V (Q, T,m) ≤ V•,φtdi
(Q, T,m) = max

(
1

2
,min

(
m

2d
, 1

))
,

where d is the diameter of the graph Q. The upper bound on V (Q, T,m) is
achieved by the attacker choosing a time-limited diametric attacker strategy φtdi,
using any diametric pair (j, j′).

The proof of lemma 3.3.13 follows the same idea as that for lemma 3.3.11, that is
evaluating the performance of φtdi. Finding V•,φtdi

(Q, T,m) is much easier than
V•,φdi

(Q, T,m) as φtdi uses a limited set to place non-zero probability pure attacks
at in the commencement time.

Proof. We divide the proof into two cases, case 1: if d = d(j, j′) ≥ m and case
2: if d = d(j, j′) < m. Noting that the attack structure is node-symmetric and
non-increasing on NA = {j, j′} we can use corollary 3.2.17 and lemma 3.2.14 to
reduce the problem of finding the performance of φtdi to

V•,φtdi
(Q, T,m) = V•,φtdi

(Q, d+m− 1,m) = max
ω∈Ω↑

P (ω,φtdi)

Case 1: In the case of d ≥ m we know that by lemma 3.2.16 that Ω↑ = {ω1, ω2}
in which ω1 = ((j, d + m − 1)) and ω2 = ((j′, d + m − 1)). As these nodes are
node-symmetric we can without loss of generality assume that ω = ((j, d+m−1))
is the only walk to consider for the maximum. Therefore, the performance of φtdi

is

V•,φtdi
(Q, d+m− 1,m) = P (ω1,φtdi) =

d−1∑
t=0

1

2d
=

1

2
.

Hence V (Q, T,m) ≤ 1
2

when d ≥ m.

Case 2: In the case of d < m we can again look at what elements are in Ω↑. For
the sequence of nodes it must go either j, j′, j, ... or j′, j, j′, ... and as j and j′ are
node-symmetric we can without loss of generality assume that the sequence of
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nodes is j, j′, j, .... Therefore all move,wait walks in Ω↑ start at j and then wait
for some time before alternating between j′ and j. That is Ω↑ = {ω(x) | x ∈
{0, ..., d+m− 1}} where ω(x) is such that

ji(ω(x)) =

{
j if i is odd,

j′ if i is even,

and νi(ω(x)) = xI{i=1} with the number of nodes visited k =
⌊

2d+m−2−x
d

⌋
. Then

the time of visits to nodes is given by

ti(ω(x)) =

{
0 if i = 1,

x+ (i− 1)d otherwise.

and

ni(ω(x)) =


0 if i = 1,

max(x+ d−m+ 1, 0) if i = 2,

max(x+ (i− 1)d−m+ 1, x+ (i− 3)d+ 1, 0) otherwise.

Therefore the payoff for responding to φdi with ω(x) is

P (ω(x),φdi) =

min(x,d−1)∑
t=0

1

2d
+

min(x+d,d−1)∑
t=max(x+d−m+1,0)

1

2d
+

k∑
i=3

min(x+(i−1)d,d−1)∑
t=ni(ω(x))

1

2d

=

min(x,d−1)∑
t=0

1

2d
+

d−1∑
t=max(x+d−m+1,0)

1

2d

+
d−1∑

t=max(x+2d−m+1,x+1,0)

1

2d
. (3.15)

Thus to find the performance of φtdi we seek to maximize the payoff in equation
(3.15) by choosing x. It is clear from the equation that the choice of x∗ = d− 1
maximizes it and therefore the performance of φtdi is

V•,φtdi
(Q, d+m− 1,m) = P (ω(x∗),φtdi)

=
d−1∑
t=0

1

2d
+

d+m−1∑
t=2d−m+1

1

2d
+ 0

=
d

2d
+

min(m− d, d)

2d
= min

(
m

2d
, 1

)
.

Hence V (Q, T,m) ≤ min
(
m
2d
, 1
)

when d ≥ m.

From lemma 3.3.13 it is clear that the proposed upper bound is true for all
T ≥ m + d − 1. This can be seen in figure 3.3.3 where the performance of the
time-limited diametric attacker strategy provides an upper bound which is strictly
lower than the upper bound from the diametric bound.
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Figure 3.3.3: This graphs shows, in black, the upper bound on the value
V (Q, T, 45) of the game provided by the time-limited diametric attacker strategy
φtdi for any graph with a diameter of d = 30, shown for game lengths T ≥ m = 45.
The green baseline shows the upper bound as proposed in lemma 2.3.24 (from
[16]) for a diametric attacker strategy.
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While we are not able to prove the proposed bound is true for all T ≥ m, we are
able to show it for T ≥ m + d− 1. Hence we can edit lemma 2.3.29’s statement
in the region MLn

2 to become:

• for T ≥ m+ n− 2 and m ∈MLn
2 ,

V (Ln, T,m) =
m

2(n− 1)
,

achieved by the random oscillation patroller strategy and the time-limited
diametric attacker φtdi.

The proof of the time-limited diametric attack does not rely on the diameter of
the graph but the distance between the two nodes that from the chosen diametric
pair. Therefore, by considering two nodes at an arbitrary distance apart we arrive
at the following corollary.

Corollary 3.3.14. For a game G(Q, T,m) for any graph Q, for any pair of nodes
(j, j′) ∈ N2, for all 1 ≤ m ≤ 2d(j, j′) and for all T ≥ m+ d− 1 we have

V (Q, T,m) ≤ max

(
1

2
,

m

2d(j, j′)

)
.

Clearly using any pair (j, j′) such that d(j, j′) < d in corollary 3.3.14 provides a
worse upper bound than lemma 3.3.13. However by allowing for general distance
we can consider using a set of nodes, D, rather than just a pair. We choose
D such all nodes attacked are exactly a distance d apart, i.e. d(j, j′) = d for
all j, j′ ∈ D. Then using the same principle behind the time-limited diametric
attacker strategy, we can develop a much larger class of attacker strategies. As
the nodes in D essentially form a polygon with sides of length d, we call such an
attacker strategy a d-polygonal attacker strategy.

Definition 3.3.15. For the game G(Q, T,m) and a set of nodes D ⊂ N such
that there exists a d ∈ N such that d(j, j′) = d for all j, j′ ∈ D, the d−polygonal
attack strategy φpoly, using set D, is such that the probability of playing the pure
strategy (j, τ) ∈ A is

ϕj,τ =

{
1
|D|d for j ∈ D and τ ∈ {0, ..., d− 1},
0 otherwise.

A d-polygonal attack strategy using D for some d gives rise to a larger class of
bounds than the time-limited diametric bound, which is a d-polygonal attack
strategy using {j, j′} where d(j, j′) = d.

Lemma 3.3.16. For the game G(Q, T,m) for any graph Q, for all 1 ≤ m ≤ |D|d
and for all T ≥ m+ d− 1 we have

V (Q, T,m) ≤ V•,φpoly
(Q, T,m) = max

(
1

|D|
,min

(
m

|D|d
, 1

))
,

achieved by the d-polygonal attacker strategy φpoly, using the set D.
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The proof lemma 3.3.16 follows by evaluating the performance of the d-polygonal
attacker strategy φpoly. As this is extremely similar to the proof of lemma 3.3.13
we leave the proof to appendix A.2.

From lemma 3.3.16, we can see that for a chosen distance d, the best upper bound
uses the set D∗, where D∗ is the set of maximal cardinality, containing nodes
a distance of exactly d apart. Henceforth we will call the d-polygonal attack
strategy that uses a maximal set D∗ optimized. While a d-polygonal attacker
strategy requires the set of nodes to be exactly d apart. It is easy to relax this
assumption to assume that the nodes are at least a distance d apart from one
another.

Definition 3.3.17. For the game G(Q, T,m) and a set of nodes D ⊂ N such
that there exists a d ∈ N such that d(j, j′) ≥ d for all j, j′ ∈ D, the d−exterior-
polygonal attack strategy φepoly, using set D, is such that the probability of
playing the pure strategy (j, τ) ∈ A is

ϕj,τ =

{
1
|D|d for j ∈ D and τ ∈ {0, ..., d− 1},
0 otherwise.

Exterior-polygonal attack strategies allow us to form an attacker strategy given a
subset of nodes N1 ⊂ N . In particular we can form a exterior-polygonal attacker
strategy using D = N1 with a distance of

d = min
(j,j′)s.tj,j′∈N,j 6=j′

d(j, j′).

Using an exterior-polygonal attacker strategy gives a bound similar to that for
the polygonal attacker strategy (lemma 3.3.16).

Lemma 3.3.18. For the game G(Q, T,m) for any graph Q, for all 1 ≤ m ≤ |D|d
and for all T ≥ m+ d− 1 we have

V (Q, T,m) ≤ max

(
1

|D|
,
m

|D|d

)
,

achieved by the d-exterior-polygonal attacker strategy φepoly, using the set D.

It is intuitive that increasing the distance from d to d′ can do no harm to the
attacker strategy, as the patroller must travel further than in a d-polygonal at-
tacker strategy on the same number of nodes. We prove lemma 3.3.18 formally
by using simplification to create a graph in which the nodes in D are exactly a
distance of d apart.

Proof. Consider Q−l a simplification mapping which maps the graph Q to Q−l

(with node mapping N−l), for some l ∈ N, such that for all j, j′ ∈ D the distance
in Q′ has d(N−l(j),N−l(j′)) = d. Then we have

V (Q, T,m) ≤ V (Q−l, T,m) ≤ max

(
1

|D|
,
m

|D|d

)
,
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with the upper bound on the gameG(Q−l, T,m) being given by the performance of
a d-polygonal attacker strategy using the set N−l(D). This d-polygonal attacker
strategy can be embedded to create the d-exterior polygonal attacker strategy,
using D, for use in the game G(Q, T,m).

Note that such a simplification map, in the above proof, is always possible, as
repeated node identification of the attacked node and the nearest node along
the shortest path to another node of length greater than d, eventually yields a
shortest path of length exactly length d.

As with a d-polygonal attacker strategy, it is clear that for a given distance d,
using D∗d a maximal cardinality set of nodes at least a distance d apart provides
the best upper bound. We call the d-exterior polygonal attacker strategy on set
D∗d, the optimized d-exterior polygonal attacker strategy. Furthermore it is now
clear that the bound provided by lemma 3.3.18 depends on the distance d for
the optimized d-exterior polygonal attacker strategy. For each d ∈ {1, .., d − 1}
finding D∗d provides us with a bound. For d ≥ m, the upper bound becomes,

V (Q, T,m) ≤ 1

|D∗d|
.

Hence it is clear that for d ≥ m, the best upper bound is provided by the largest
cardinality among the sets D∗m, D

∗
m+1, .... Clearly D∗m is the largest cardinality

set and by definition D∗m = LQ,T,m. On the other hand for d < m, then the upper
bound becomes,

V (Q, T,m) ≤ m

d|D∗d|
.

In this case we can not reduce the best choice of d ∈ {1, ...m − 1} as the cardi-
nality of the set D∗d is multiplied by d. We summarize this optimization of the
exterior polygonal attack strategy in the following theorem. The exterior polygo-
nal attacker strategies can be thought as a generalisation of both the independent
attacker strategy and diametric attacker strategy.

Theorem 3.3.19. For the game G(Q, T,m) for any graph Q, for all m ≥ 1 and
for all T ≥ m+ d− 1 we have

V (Q, T,m) ≤ min

(
1

LQ,T,m
,min
d≤m

m

|D∗d|d
,

)
,

where D∗d is a maximal cardinality set of nodes in which each pair is at least a
distance d apart.

The proof of theorem 3.3.19 is simple as it combines the best result from lemma
3.3.18 and then uses lemma 2.3.21. The exact bound provided by theorem 3.3.19
is dependent on both the attack length m and the best exterior polygonal distance
d (or equivalently subset of nodes).

The optimized d-exterior polygonal attacker strategy becomes an already known
attacker strategies for particular choices of d, including the position-uniform at-
tacker strategy (when d = 1) and the bipartite attacker strategy (when d = 2), the
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independence attacker strategy (when d = m). Theorem 3.3.19 provides an im-
provement over lemma 3.3.13. To emphasize the use of exterior polygonal attack
strategies (for a not currently identified attacker strategy), we look at applying
it to the cyclic graph, Cn. For the game G(Cn, T,m) for all n ≥ 1, for all m ≥ 1
and for all T ≥ m, an optimal attacker strategy is the position-uniform attacker
strategy φpu (or equivalently an optimized 1-polygonal attacker strategy). How-
ever it is possible to get various other optimal attacker strategies for different
distances. For Cn, we know d =

⌊
n
2

⌋
and hence for the exterior polygonal attack

we can consider distances d = 1, 2, ...,
⌊
n
2

⌋
.

For each of these distances such that m ≥ d, the maximization of the product
d|D∗d| is required. For Cn and given d, maximizing |D∗d| is easy as we can simply
divide the nodes between this distance and rounding down, so |D∗d| =

⌊
n
d

⌋
. Hence

to maximize d|D∗d|, we need to choose d such that n = kd for some k ∈ N and
all of these generate the bound m

n
. Therefore, we get alternative optimal attacker

strategies for Cn where m ≥ d. Also note that in these cases the attacks will be
exactly d away from each other and so it is just an optimized d-polygonal attacker
strategy.

Corollary 3.3.20. For the game G(Cn, T,m), where n = kd for some k ∈ N
and some d = 1, ...,

⌊
n
2

⌋
, for all T ≥ m + d− 1 and for all m ≥ d, the optimized

d-polygonal attack strategy is optimal.

We illustrate a simple analysis of all exterior-polygonal attacks (d = 1, 2, 3, 4) for
the game G(C9, T,m) in example 3.3.21.

Example 3.3.21. For the game G(C9, T,m) for some T ≥ m + 2 and some
m ≥ 3, we look at the optimized d-exterior-polygonal attacker strategies using
d = 1, 2, 3, 4. The choice of nodes such attacker strategies make are shown in
figure 3.3.4, such that nodes in Dd are filled grey. In addition we state the
upper bound provided by lemma 3.3.18. By comparing the upper bounds for
d = 1, 2, 3, 4 we get that either d = 1 or d = 3 provide the best bounds and in
particular for the 3(-exterior)-polygonal attacker strategy the set of nodes used
is D = {1, 4, 7}. In addition we note that equivalent attacker strategies can be
made by using the sets D2 = {2, 5, 8} or D3 = {3, 6, 9}.

Another simple analysis can be conducted for the game on the line graphG(Ln, T,m).
By theorem 3.3.19 a d-exterior-polygonal attack provides an upper bound of

V (Ln, T,m) ≤ max

(
1

1 +
⌊
n−1
d

⌋ , m

d+ d
⌊
n−1
d

⌋) ∀m ≥ 1 ∀T ≥ m+ n− 2.

For this upper bound if we consider m ≥ d, it is clear that d = d = n − 1
provides the best upper bound by the exterior polygonal attack strategy which is
equivalent to the time-limited diametric attack strategy. Therefore no alternative
exterior-polygonal attackers strategy exists.
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Figure 3.3.4: The cyclic graph on nine vertices C9, with the four possible exterior-
polygonal attacks at polygonal distances d = 1, 2, 3, 4, with attacked nodes
coloured grey. The upper bound provided by theorem 3.3.19 is stated beside
each strategy.
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3.3.4 Embedding Hamiltonian cycles

In this section we obtain a ‘Hamiltonian like’ lower bound, similar to that in
lemma 2.3.7 albeit for non-Hamiltonian graphs Q /∈ H. This is done by taking
a closed walk which contains every node, but which, unlike a Hamiltonian cycle,
may repeat some nodes in order to do so. Note a closed walk always ends were it
starts but this is not considered a repeat of that node and that by definition for
Q /∈ H we know that such a closed walk must have repeated nodes.

Definition 3.3.22. For a graph Q = (N,E) a full-node cycle is a walk W :
{0, ..., L} → N of length L ∈ N such that W (L) = W (0) and for all j ∈ N there
exists some t ∈ {0, ..., L− 1} such that W (t) = j.

That is a full-node cycle is a closed walk that contains each node of the graph at
least once and the length of such a full-node cycle is the number of nodes (not
necessarily distinct) in the W omitting the last node. For convenience we omit
the final node W (L) when writing the full-node cycle as a vector W ∈ NL. A full-
node cycle of length |N | is a Hamiltonian cycle, as no node will be repeated.This
is the reason we refer to a full-node cycle as a cycle rather than a closed walk.
For the graph L4 an example of a full-node cycle is WFNC = (1, 1, 2, 3, 4, 3, 4, 3, 2),
which is of length 9. In WFNC the nodes 1,2 and 4 are repeated once and the
node 3 is repeated twice for a total repetition of 5 nodes. Note that for WFNC we
omit the final node (W (7) = 1) in the vector form as it is not consider a repeated
node.

For any graph Q = (N,E) any full-node cycle W is of length |N | + r for some
r ≥ 0, where r is the number of nodes which are repeated. We can then consider
an r-expansion of Q, by node-splitting each node according to the number of
times it is repeated in W , to form Q+r = (N+r, E+r). Such an expansion is
called a Hamiltonian expansion as the graph Q+r = (N+r, E+r) ∈ H. For this
expansion, we will make the following choice: for each parent node, the first child
node is adjacent to only the node prior to the parent in the full-node cycle and
the other child node; the second child node is adjacent to the node subsequent
to the parent in the full-node cycle and the other child node; with all remaining
adjacencies can be distributed between the children arbitrarily. While formally
this arbitrary distribution of remaining adjacencies is needed, the patroller does
not need to make use of them as the graph Q+r is Hamiltonian and so we can
make the decision to ignore these remaining adjacencies. This decision to ignore
the remaining adjacencies makes figures much easier to follow, as the graph Q+r

can be seen as cycle C|N |+r under some relabelling (isomorphism).

Using corollary 3.3.8 we know that for all m ≥ 1 and for all T ≥ m that
V (Q+r, T,m) ≤ V (Q, T,m), with the lower bound on the game G(Q, T,m) gen-
erated by the embedding the optimal strategy in the game G(Q+r, T,m). As
previously mentioned Q+r is Hamiltonian and so F = N+r(W ) is a Hamiltonian
cycle (where W is the full-node cycle used for the expansion and N+r is the node
mapping of the expansion). In addition

V (Q+r, T,m) =
m

|N |+ r
,



CHAPTER 3. NEW TECHNIQUES AND STRATEGIES 96

where πrH ∈ Π(Q+r, T,m), using Hamiltonian cycle F , is optimal. Note that as

V (C|N |+r, T,m) =
m

|N |+ r

and πrH ∈ Π(C|N |+r, T,m), using Hamiltonian cycle F is optimal, we have no
need for the reaming adjacencies previously mentioned in the construction of Q+r

and hence can think of Hamiltonian expansions as cyclic graphs. Embedding
πrH ∈ Π(Q+r, T,m), using Hamiltonian cycle F , into the game G(Q, T,m) will
therefore give us a strategy π ∈ Π(Q, T,m) such that

Vπ,•(Q, T,m) ≥ m

|N |+ r

Definition 3.3.23. For a graph Q with a full-node cycle W we define the random
full-node cycle patroller strategy πRFNC(W ), using full-node cycle W , as the
embedding of πrH ∈ Π(C|N |+r, T,m), using Hamiltonian cycle N+r(W ) (where
N+r is the node mapping of the Hamiltonian expansion from Q to C|N |+r).

Thus we have that

V (Q, T,m) ≥ VπRFNC(W ),•(Q, T,m) ≥ m

|N |+ r
, (3.16)

for any full-node cycle W of length |N | + r for some r ≥ 0. While infinitely
many full-node cycles exist for a graph, as nodes may be repeated, it is clear from
equation 3.16 that the best lower bound has the minimal number of repetitions
r. Therefore, it is clear that we should use a full-node cycle with the minimal
length.

Definition 3.3.24. For a graph Q we say a full node cycle W is a minimal
full-node cycle if the length of W is the minimal length of all full-node cycles
for Q. We let WQ

MFNC denote a full-node cycle. Likewise we call a random full-
node cycle patroller strategy, using a minimal full-node cycle WQ

MFNC, a random
minimal full-node cycle, letting πQRMFNC = πRFNC(WQ

MFNC).

Note that similar to the Hamiltonian cycle, in order to achieve a lower bound,
we need only consider one minimal full-node cycle as all give rise to the same
bounds. We remark that the random full-node cycle does not start at nodes
uniformly and follow the cycle, as in the random Hamiltonian, but starts at a
position along the full-node cycle uniformly. This is an important distinction as
subsequent movement may change depending on the selected position in the full-
node cycle. We now present example 3.3.25 which shows the use of Hamiltonian
expansion, and random full-node cycles.

Example 3.3.25. For the graph Q as seen in figure 3.3.5, we present two Hamil-
tonian expansions Q+3 and Q+2 also seen in the figure. The Hamiltonian ex-
pansions of Q into Q+3 and Q+2 arise from expanding the full-node cycles W1 =
(1, 2, 1, 3, 4, 5, 6, 4, 3) and W2 = (1, 2, 3, 4, 5, 6, 4, 3) respectively. We remark that
due to our decision about adjacency inheritance, Q+3 ≡ C9 and Q+2 ≡ C8 under
a relabelling (isomorphism). By using the patroller strategies πRNFC(W1) and
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πRNFC(W2) we get that for all m ≥ 1 and for all T ≥ m that V (Q, T,m) ≥ m
9

and V (Q, T,m) ≥ m
8

respectively. Hence it is clear that using W2 gives a better
lower bound in the random full-node cycle than W3. To implement πRNFC(W2)
the patroller should choose to either:

• Start at nodes 1, 2, 5, 6 each with probability 1
8

and follow the full-node
cycle.

• Start at nodes 3 with probability 1
4

and then with equal probability choose
to follow the full-node cycle starting at the third or eighth position (follow
either (3, 4, 5, 6, 4, 3, 1, 2, 3) or (3, 1, 2, 3, 4, 5, 6, 4, 3) both with probability
1
2
).

• Start at nodes 4 with probability 1
4

and then with equal probability choose to
follow the full-node cycle starting at the fourth or seventh position (follow
either (4, 5, 6, 4, 3, 1, 2, 3, 4) or (4, 3, 1, 2, 3, 4, 5, 6, 4) both with probability
1
2
).

1
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6
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Figure 3.3.5: Graphs Q and two different Hamiltonian expansions Q+3 and Q+2

used in example 3.3.25.

Having seen how to achieve the bound as in equation (3.16) for any random full-
node cycle we arrive at the following theorem for any random minimal full-node
cycle.

Theorem 3.3.26. For the game G(Q, T,m), for any graph Q, for all m ≥ 1 and
for all T ≥ m we have

V (Q, T,m) ≥ m

L
=

m

|N |+ r∗
,
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where L is the length of WQ
MFNC and r∗ is the number of nodes repeated in WQ

MFNC

repetitions (as L = |N |+ r∗). The lower bound is achieved by a random minimal
full-node cycle patroller strategy πQRMFNC. Furthermore if m ≥ L

V (Q, T,m) = 1,

achieved by the (random) minimal full-node cycle patroller strategy.

In theorem 3.3.26 we note that the second part follows as any minimal full-node
cycle must be intercepting and hence CQ,T,m = 1. While this idea of Hamiltonian
expansion has been used to solve the complete bipartite and line graph we have
provided a general bound for any graph. We acknowledge that the optimal pa-
troller strategy for the line graph when m ∈ MLn

2 (see lemma 2.3.29), called the
random oscillation in [107], is a random minimal full-node cycle πQRMFNC using
WLn

MFNC = (1, 2, ..., n, n − 1, ..., 2). Later, in section 3.5 we use theorem 3.3.26 to
find solve the patrolling game on complete k-partite graphs for k ≥ 3. In chapter
4 we also see that the random minimal full-node cycle is optimal for an extension
of the line graph for a certain region of attack lengths.

It is easy to see, that because the full-node cycle visits nodes with different fre-
quencies, those visited with a higher frequency have a higher chance of catching
the attacker at than those visited with lower frequencies. Furthermore the tim-
ings between repeated visits is important. In the following section we will look
at this weakness of minimal full-node cycles by looking at how well πQRMFNC per-
forms at catching an attacker at each node in the graph Q. In addition in chapter
5, section 5.3, we conjecture that m

|N |+r∗ is in fact the value for all trees when

m ≥ 1
2
(|N | + r∗), and that any random minimal full-node cycle is optimal. This

conjecture is supported by intuitive reasoning and numerical evidence.

3.3.5 Weakness of the random minimal full-node cycle

In this section, we define the performance of a patroller strategy at a node and
use this performance to identify the weakness of the random minimal full-node
cycle strategy.

Definition 3.3.27. For a game G(Q, T,m) (Q = (N,E)) the performance of a
patroller strategy π at node j ∈ N is defined by

Vπ,•,j(Q, T,m) = min
τ∈T

P (π, (j, τ)).

Considering the performance of π at each node allows us to split the problem of
finding the overall performance of the strategy by finding the minimum perfor-
mance amongst all nodes. That is we have

Vπ,•(Q, T,m) = min
j∈N

Vπ,•,j(Q, T,m).
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Node 1 2 3 4

Performance
13

14

12

14

12

14

5

14

Table 3.1: Table of performance at nodes for π1 = πRFNC(WFNC), using the
random full-node cycle WFNC = (1, 2, 3, 2, 2, 3, 1, 1, 3, 3, 1, 2, 1, 4), for the game
G(K4, 40, 5).

When the patroller strategy is a random full-node cycle strategy πRFNC(W ), using
full-node cycle W , the performance at node j ∈ N can be easily calculated by
considering when the node is repeated (if at all) during W . Let W = (i1, ..., i|N |+r)
then W repeats node j at indices iak for k ∈ {1, ..., l} such that ia1 , ..., ial = j for
some 1 ≤ a1 ≤ a2 ≤ ... ≤ al ≤ |N | + r for some l ∈ {1, ..., |N | + r}. Then the
performance at node j is given by

VπRFNC,•,j(Q, T,m) =

l∑
p=1

min(m, ap − ap−1 mod l mod |N |+ r)

n+ r
. (3.17)

Example 3.3.28 illustrates the calculation the performance of a random full-node
cycle strategy at a node.

Example 3.3.28. Consider for the game G(K4, 40, 5), played on the complete
graph with 4 nodes K4, the full-node cycle

WFNC = (1, 2, 3, 2, 2, 3, 1, 1, 3, 3, 1, 2, 1, 4)

being used to form a random full-node cycle strategy π1 = πRFNC(WFNC). To
calculate the performance at node 2 Vπ1,•,2(K4, 40, 5) we need to look at the time
the full-node cycle is at node 2. As W (1),W (3),W (4),W (11) = 2 we have that
a1 = 2, a2 = 4, a3 = 5 and a4 = 12 and by equation (3.17) performance of π1 at
node 2 is

Vπ1,•,2(K4, 40, 5) =
(2− 12 mod 14) + (4− 2) + (5− 4) + min(5, 12− 5)

14
=

12

14
.

The performance of π1 at all four nodes is shown in table 3.1. Taking the minimum
of these gives us the lower bound on the value which is achieved by the patroller
using the strategy π1, hence V (K4, 40, 5) ≥ Vπ1,•(K4, 40, 5) = 5

14
.

It is clear that the strategy given in example 3.3.28 is not optimal, as the value
of the game is known to be 1 (for example by using WK4

MFNC = (1, 2, 3, 4) a Hamil-
tonian cycle we achieve a performance at each node of 1). However it does
illuminate the fact that we should aim for a full-node cycle which repeats each
node uniformly and furthermore attempts to do so every m units of time.
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3.4 Patroller strategy improvement

In this section, we consider improving the performance of a baseline patroller
strategy π0 ∈ Π(Q, T,m), for the patrolling game G(Q, T,m) (Q = (N,E)),
where the current lower bound is given by

V (Q, T,m) ≥ Vπ0,•(Q, T,m) = min
j∈N

Vπ0,•,j(Q, T,m). (3.18)

Recall that Vπ0,•,j(Q, T,m) is the performance of the baseline patroller strategy
at node j ∈ N . As the minimal performing node, say j′, under the baseline
patroller strategy determines the lower bound provided by choosing said strategy,
we may seek to improve the strategies performance in order to raise the overall
performance of the strategy. To do so we can use additional strategies, which
have a greater performance at the worst performing node. A simple choice would
be to play with probability p a patroller strategy which just waits at the worst
node for all time, which has a performance of 1 at this worst node and 0 for all
others. For the best choice of p we should choose p such that

(1− p) min
j∈N\{j′}

Vπ0,•,j(Q, T,m) ≥ (1− p)Vπ0,•,j(Q, T,m) + p.

To formalise this improvement idea, we consider the creation of a hybrid patroller
strategy, πHybrid. This strategy is a hybrid of the baseline patroller strategy π0

and l chosen patroller strategies, πi for i = 1, ..., l, which aim to improve the
baseline patroller strategy. In the hybrid strategy, πHybrid, the patroller chooses
to use πi with probability pi for i = 1, ..., l. We can write the probability of
playing the baseline strategy as

p0 = 1−
l∑

i=1

pi

due to the fact that
l∑

i=0

pi = 1,

thus eliminating one choice variable. Therefore, the choice of variables pi for
i = 1, ..., l determines the exact hybrid patroller strategy which is being played.
We say that a hybrid patroller strategy πHybrid, for some choice of pi for i = 1, ..., l,
is a strict improvement over the baseline strategy if

min
j∈N

VπHybrid,•,j(Q, T,m) > min
j∈N

Vπ0,•,j(Q, T,m).

That is the lower bound provided by the hybrid strategy is strictly better than
that provided by the baseline strategy. In this case we say the baseline is improved
by the patroller strategies πi for i = 1, ..., l. We note that the choice of pi for
i = 1, ..., l affects whether the hybrid strategy is a strict improvement. Therefore
we develop a program to find the best choice of pi for i = 1, ..., l and hence
determine if strict improvement using πi for i = 1, ..., l is possible.
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We use the following program called the patrol improvement program (PIP, equa-
tion 3.19), to determine the best improvement using πi for i = 1, ..., l. We note
that it is possible to convert the PIP into a linear program, by incorporating the
constraint, which can be easier for computational implementation.

maximize min
j∈N

l∑
i=0

Vπi,•,j(Q, T,m)pi

subject to
l∑

i=0

pi = 1,

pi ∈ [0, 1], for i = 0, ..., l.

(3.19)

The optimal solution of the PIP gives us this best choice of pi for i = 1, .., l and
hence the best hybrid strategy that uses πi for i = 0, ..., l. Hence the optimal
value of the PIP gives the performance of the best hybrid strategy using πi for
i = 1, ..., l, and thus determines if using these improvement strategies leads to a
strict improvement.

While the PIP can find the best choice of probabilities pi for a given set of
patroller strategies πi for i = 1, .., l, the bound it generates depends on these
patroller strategies. Including more strategies is always possible, at the cost of
computational time. The PIP is a powerful tool when such strategies are carefully
selected to improve low performing nodes of baseline strategy. In addition to
saving computation time, a careful choice allows for analytic bounds to be found.
We provide example 3.4.1 to showcase the power of the PIP.

Example 3.4.1. For the game G(Q, 5, 3), on the graph Q as seen in figure 3.4.1,
we consider the initial patroller strategy π0 = πQRMFNC, using the minimal full-
node cycle WQ

MFNC = (1, 2, 4, 3, 4, 5, 6, 5, 4, 2). The performance of π0 at nodes
j ∈ {1, ..., 6} is, by equation (3.17),

Vπ0,•,j(Q, 5, 3) =


0.3 for j = 1, 3, 6,

0.5 for j = 2, 5,

1 for j = 4.

(3.20)

Figure 3.4.2 illustrates equation (3.20). It is clear that the worst performing nodes
are 1, 3 and 6, so some strategies that perform better at these nodes would be
good candidates for improvement.

Consider improving π0 by three pure intercepting patroller strategies, π1, π2, π3,
which simply wait at 1, 3 and 6 for all time, respectively. Let

B(i) =


1 if i = 1,

3 if i = 2,

6 if i = 3,

then πi catches all pure attacks (B(i), τ) for all τ ∈ T and no other pure attacks.
So Vπi,•,j(Q, 5, 3) = I{j=B(i)} for i ∈ {1, 2, 3} and by using the PIP with the
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reduction that p0 = 1− p1 − p2 − p3 we need to solve

maximize
min

(
f(p) + p1, g(p), f(p) + p2,

h(p), g(p), f(p) + p3

)
s.t pj ∈ [0, 1] for j = 1, 2, 3,

p1 + p2 + p3 ≤ 1,

(3.21)

in which p = (p1, p2, p3), f(p) = 0.3(1−p1−p2−p3), g(p) = 0.5(1−p1−p2−p3)
and h(p) = (1− p1 − p2 − p3). Solving equation (3.21) we immediately get that
p1 = p2 = p3 and along with knowing that h(p) ≥ g(p) for all choices of p, we
only need to consider solving f(p) + p1 = g(p) giving p1 = 1

8
. So p = (1

8
, 1

8
, 1

8
)

and hence for this hybrid strategy with p0 = 5
8

and pi = 1
8

for i ∈ {1, 2, 3} we get
a lower bound of 5

16
(optimal value of equation (3.21)). So using the PIP, along

with the chosen strategies we can achieve a strict improvement over the baseline
as

VπHybrid,•(Q, 5, 3) =
5

16
>

3

10
= Vπ0,•(Q, 5, 3).

1 2 4

3

5 6

Figure 3.4.1: Graph Q used in example 3.4.1

As previously mentioned, careful choice of the strategies πi for i = 1, ..., l for
some l ∈ N, help to determine if it possible to get a hybrid strategy which is strict
improvement. While the choice of patroller strategies available in Π is infinite,
we can determine a sufficient condition on when strict improvement is possible
over a baseline by considering using pure patrollers which are intercepting.

Lemma 3.4.2. For the game G(Q, T,m) it is possible to get a hybrid patroller
strategy which is a strict improvement over the baseline patroller strategy π0 ∈
Π(Q, T,m) if there exists some NI ⊂ N such that:

• for all j, j′ ∈ NI ,Vπ0,•,j(Q, T,m) = Vπ0,•,j′(Q, T,m),

• for all j ∈ NI and for all j′ /∈ NI , Vπ0,•,j(Q, T,m) < Vπ0,•,j′(Q, T,m) and

• for all j ∈ NI , Vπ0,•,j(Q, T,m) < 1
|NI |

.

The conditions in lemma 3.4.2 correspond to knowing all nodes in the set are
currently the minimal performing nodes and that this performance is low enough
that it can be improved by choosing |NI | strategies which for each j ∈ NI wait
at node j for the entire time-horizon. The construction of such a hybrid strategy
and following the PIP provides the proof of the lemma.
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Figure 3.4.2: Performance of π0 at nodes as in equation (3.20).

Proof. LetB : {1, ..., |NI |} → NI be an bijection, such thatB(i) for i ∈ {1, ..., |NI |}
maps to distinct node of NI . Then let πi be the patroller strategy Wi(t) = B(i)
for all t ∈ J for each i ∈ {1, ..., |NI |}, then

Vπi,•,j(Q, T,m) = I{j=B(i)}.

Consider improving the baseline π0 with π1, ...,π|NI | then from the PIP we im-
mediately know that pi = p ≤ 1

|NI |
for all i ∈ {1, ..., |NI |}, so we can reduce the

PIP to focus on a single node j ∈ NI for which we need to solve

(1− |NI |p) min
i∈N\NI

Vπ0,•,i(Q, T,m) = (1− |NI |p)Vπ0,•,j(Q, T,m) + p.

By the conditions imposed in the lemma it is clear that this reduced PIP has a
non-zero optimal solution, namely

p =

min
i∈N\NI

Vπ0,•,i(Q, T,m)− Vπ0,•,j(Q, T,m)

|NI |
(

min
i∈N\NI

Vπ0,•,i(Q, T,m)− Vπ0,•,j(Q, T,m)

)
+ 1

,

and an optimal value of

min
i∈N\NI

Vπ0,•,i(Q, T,m)− Vπ0,•,j(Q, T,m) + 1

|NI |
(

min
i∈N\NI

Vπ0,•,i(Q, T,m)− Vπ0,•,j(Q, T,m)

)
+ 1

> Vπ0,•,j(Q, T,m).

Hence as the performance at node j was minimal among all nodes in the strategy
π0, we have constructed a hybrid strategy which is a strict improvement over
π0.
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Following from the proof of lemma 3.4.2, we note that we do not necessarily
require the use of |NI | improvement strategies. We can instead use the mini-
mal number of intercepting patrols which between them contain all nodes in NI .
Therefore it is possible the conditions in the lemma can be relaxed. Furthermore,
other alternative strategies which have a higher performances at the nodes in
NI could be used instead of intercepting patrols. However, as we do not require
the use of such sufficient conditions in the remainder of this thesis we leave such
sufficient conditions for future work.

3.5 k-partite graphs

In this section we showcase the power of our contributions to techniques and
strategies shown throughout this chapter. We find solutions to patrolling games
on some bipartite graphs which are not complete. Further we provide the value of
the game for any complete k-partite graphs, discussing when certain edges from
such a complete graph can be removed without changing the found value.

By lemma 2.3.28 we know that for any complete bipartite graph Ka,b ∈ KP2,
with |A| = a ≤ b = |B|, the value of the game is given by

V (Ka,b, T,m) =
m

2b
,

with the lower bound derived from the complete bipartite graph Kb,b which is
Hamiltonian. Therefore the strategy used in the game G(Kb,b, T,m) is embedded
into the game G(Ka,b, T,m) to form a random minimal full-node cycle strategy

π
Ka,b

RMFNC. The optimal attacker strategy created in [16] for use in any bipar-
tite graphs (not necessarily complete) was such that the probability of choosing
(j, τ) ∈ A is

ϕj,τ =

{
1
2b

if j ∈ B, τ ∈ {0, 1},
0 otherwise.

We remark that this optimal attacker strategy, created just for bipartite graphs,
is equivalent to a 2-polygonal attack φpoly, using B. An intuitive reason that
such a strategy is optimal is that the set A is seen as a stepping stone, that the
patroller must pass through to get between nodes in B.

The upper bound given by choosing such an attacker strategy was given in [16]
as V (Q, T,m) ≤ m

2b
for any bipartite graph Q ∈ P2 with sets A,B such that

|A| = a ≤ b = |B|. While only giving value to complete bipartite graphs, the work
done in [16], does not explore the idea for optimality in non-complete bipartite
graphs. This can be done by considering the length of a minimal full-node cycle,
as if Q has a minimal full-node cycle WQ

MFNC of length 2b we get a lower bound
of V (Q, T,m) ≥ m

2b
and hence the value of the game. Therefore as a corollary of

theorem 3.3.26 we have the following.
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Corollary 3.5.1. For the game G(Q, T,m) where Q is any bipartite graph (with
A,B such that |A| = a ≤ b = |B|) which has a minimal full-node cycle of length
2b, for all m ≥ 2 and for all T ≥ m+ 1 we have

V (Q, T,m) =
m

2b
,

achieved by choosing a random minimal full-node cycle patroller strategy πQRMFNC

and 2-polygonal attacker strategy φpoly, using B.

The proof of corollary 3.5.1 follows immediately from theorem 3.3.26 for the lower
bound and lemma 3.3.16 for the upper bound.

While corollary 3.5.1 solves some non-complete bipartite graphs it is not appli-
cable to all that require some repetition of nodes in the larger set B during a
minimal full-node cycle. For example consider Ln for n ≥ 5, then the minimal
full-node cycle repeats the following number of nodes in B,{

n−3
2

if n odd,
n−2

2
if n even,

meaning it is impossible to apply corollary 3.5.1 and get the value. We provide an
example of a graph matching the condition for the length of the minimal full-node
cycle in example 3.5.2.

Example 3.5.2. Consider the graph Q in figure 3.5.1 we note that Q ∈ P2 \KP2

as many edges are missing compared to if it was the complete version K3,6. For
example, (b1, a3) is absent from Q. Regardless of these missing edges the value of
the game remains unchanged in comparison to that of the game on K3,6 as

WQ
MFNC = (b1, a1, b2, a1, b3, a2, b4, a3, b5, a3, b6, a1)

is a minimal full node cycle of length 12 = 2 × 6 satisfying the conditions of
corollary 3.5.1. Thus for all m ≥ 2 and for all T ≥ m+ 1 we have

V (Q, T,m) =
m

12
.

However if we remove the edge (b6, a3) from Q to form Q′ we can no longer say
that the value remains unchanged when compared to the game on K3,6, as the
length of a minimal full-node cycle in Q′ increases to 14 6= 2× 6.

In addition to being able to repeatedly remove some edges from Q ∈ KP2, as long
as it does not effect the length of the minimal full-node cycle, we can consider the
addition of edges to a Q. Any edge (j, j′) with j, j′ ∈ A may be added without
affecting the value of the game. This is because adding edges can only increase
the value (see equation (2.18)), but the upper bound still holds by lemma 3.3.18
for the 2-polygonal attack strategy φpoly, using B.

We now turn our attention to solving the game G(Q, T,m), where Q = Gr(n1, n2)
is the grid graph with parameters n2, n1 ∈ N such that n1 ≥ n2 ≥ 2. That is we
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b1 b2 b3 b4 b5 b6

a1 a2 a3

Figure 3.5.1: An incomplete bipartite Q using in example 3.5.2.

look at the patrolling game played on a grid of n1×n2 nodes each adjacent to its
orthogonal neighbouring grid points. The node set of Gr(n1, n2) is given by

N = {(i, j)|1 ≤ i ≤ n1, 1 ≤ j ≤ n2}

and the edge set is given by

E = {((i1, j1), (i2, j2))|1 ≤ i1 ≤ n− 1, 1 ≤ j1 ≤ n− 1, i2 = i1 + 1 or j2 = j1 + 1}.

We assume that n1, n2 ≥ 2 so that the game is not simply a line graph which has
already been solved and that n1 ≥ n2 by noticing that the grid can be transposed
if n2 > n1. For any n1 ≥ n2 ≥ 2 the grid graph Gr(n1, n2) is bipartite, with sets
A = {(i, j) ∈ N | i+ j = 1 mod 2} and B = {(i, j) ∈ N | i+ j = 0 mod 2} and
so {

|A| = |B| = n1n2

2
if n1 or n2 are even,

|A| = n1n2−1
2

, |B| = n1n2+1
2

if n1 and n2 are odd.
(3.22)

Furthermore the grid graph Gr(n1, n2) is only a complete bipartite graph if n1 =
n2 = 2 and in this case Gr(2, 2) ≡ K2,2 under a relabelling (isomorphism). By
lemma 3.3.16, the 2-polygonal attacker strategy φpoly, using B gives us, for any
n1 ≥ n2 ≥ 2, for all m ≥ 1 and for all T ≥ m, an upper bound of

V (Gr(n1, n2), T,m) ≤

{
m

n1n2
if n1 or n2 are even,

m
n1n2+1

if n1 and n2 are odd.
(3.23)

For an equal lower bound we look to constructing a minimal full-node cycle. A
minimal full-node cycle W

Gr(n1,n2)
MFNC can be constructed in the following way:

1. Starting at node (1, 1), go across the row to (1, n2).

1a. If n1 and n2 are both odd: Zig-zag left and right while going down to
(n1, n2), going down to (2, n2), across to (2, n2 − 1), down to (3, n2 − 1),
across to (3, n2)... going to the node (n1, n2). Go left to (n1, n2 − 1).

2. Zig-Zag up and down rows until (1, 1) is reached by going left (to (n1, n2−2)
if n1, n2 are both odd or (n1, n2−1) otherwise) , then up the column till the
second row (to (2, n2 − 2) if n1, n2 are both odd or (2, n2 − 1) otherwise),
then left (to (2, n2− 3) if n1, n2 are both odd or (2, n2− 2) otherwise), then
down the column till the final row (to (n1, n2 − 3) if n1, n2 are both odd or
(n1, n2 − 2) otherwise), repeating until (1, 1) is reached.
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An example of this construction of such for Gr(5, 7) and G(6, 7) can be seen in
figure 3.5.2. Notice that the initial zig-zagging at the bottom of the grid graph
is not required unless both n1 and n2 are odd (in which step 1a. needs to be
followed), and in this case one edge (and one node) is repeated. This zig-zagging
is done to remove a row, and revert the construction to the other case, at the cost
of one repeat.

Gr(7, 5) Gr(7, 6)

Figure 3.5.2: Two grid graphs, Gr(7, 5) and Gr(7, 6), each showing a constructed
minimal full-node cycle in red, aside form the repeated edge for Gr(7, 5) which is
highlighted in blue.

From the construction of such a minimal full-node cycle we see that Gr(n1, n2) is
Hamiltonian when n1 or n2 are both even, as the length of the minimal full-node
cycle is n1n2. On the other hand if either n1 or n2 is odd, then the length of a
minimal full-node cycle is n1n2+1, due to the single repetition (in our construction
this repetition is of node (n1, n2− 1)). Thus we obtain the following lower bound
by theorem 3.3.26: for all n1 ≥ n2 ≥ 2, for all m ≥ 2 and for all T ≥ m we have

V (Gr(n1, n2), T,m) ≥

{
m

n1n2
if n1 or n2 are even,

m
n1n2+1

if n1 and n2 are odd.
(3.24)

Equations (3.23) and (3.24) therefore prove the following lemma.

Corollary 3.5.3. For the game G(Gr(n1, n2), T,m), for any n1, n2 ∈ N \ {1},
for all m ≥ 2 and for all T ≥ m+ 1, we have

V (Gr(n1, n2), T,m) =

{
m

n1n2
if n1 or n2 are even,

m
n1n2+1

if n1 and n2 are odd,
(3.25)

achieved by the random minimal full-node patroller strategy π
Gr(n1,n2)
RMFNC and a 2-

polygonal attack strategy φpoly, using B = {(i, j) ∈ N | i+ j = 0 mod 2}.

Having seen that for a bipartite graph, the value is the same as the complete
bipartite graph, on the same half-sets, if there exists a full-node cycle of length
2b, we now move on to look at complete k-partite graphs for k ≥ 3.
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Definition 3.5.4. A graph Q = (N,E) is called k-partite if there exists sets
A1, ..., Ak such that the following criteria are met

•
k⋃
i=1

Ai = N ,

• Ai ∩ Ai′ = ∅ for all i, i′ ∈ {1, ..., k} such that i 6= i′ and

• (j, j′) /∈ E for all j, j′ ∈ Ai for all i ∈ {1, ..., k}.

The set of all k-partite graphs is denoted by Pk. Furthermore we say Q is a
complete k-partite if in addition to the above criteria we also have that (j, j′) ∈ E
for all j ∈ Ai, j

′ ∈ Ai′ for all i, i′ ∈ {1, ..., k} such that i 6= i′. In this case we
say the graph is Q = Ka1,...,ak where a1 = |A1| ≤ ... ≤ ak = |Ak|. The set of all
complete k-partite graphs is denoted by KPk

We first present results for complete tripartite (3-partite) graphs, followed by
analogous results on complete k-partite graphs for k ≥ 3. Let Ka,b,c be the
complete tripartite graph with node sets A, B and C with 1 ≤ |A| = a ≤ |B| =
b ≤ |C| = c. Unlike bipartite graphs which are never Hamiltonian, it is possible
for tripartite graphs to be Hamiltonian, as the graph does not contain only even
length cycles. When Ka,b,c is Hamiltonian the value of the game is immediately
known by lemma 2.3.27. To decide if a complete tripartite graph is Hamiltonian
we can use Ore’s theorem ([106]) which states that such a graph is Hamiltonian
if a + b ≥ c. However this does not give us a correspondence, we can easily seek
the inverse of this statement to get such a correspondence.

Lemma 3.5.5. A complete tripartite graph, Ka,b,c (1 ≤ a ≤ b ≤ c) is Hamiltonian
if and only if a+ b ≥ c.

Lemma 3.5.5 was developed after having found no such correspondence lemma
between complete tripartite graphs and the size of the sets. However, as one
can see from the following proof of the lemma, it is relatively easy using Ore’s
theorem. While we assumed this result trivial and thus not found in our initial
literature review we later found the result in [87], which finds such a Hamiltonian
cycle if a+ b > c.

Proof. We begin by formally showing that if a + b ≥ c then the graph is Hamil-
tonian using Ore’s theorem, which states that “For a graph Q = (N,E), if
d(i) + d(j) ≥ |N | for all i, j such that (i, j) /∈ E then Q is Hamiltonian”, where
d(v) is the degree of node v ∈ N . So we have the three inequalities to check:

2(b+ c) ≥ |N | = a+ b+ c,

2(a+ c) ≥ |N | = a+ b+ c,

2(a+ b) ≥ |N | = a+ b+ c.
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The first two conditions hold as 1 ≤ a ≤ b ≤ c, hence given that a + b ≥ c all
conditions hold and the complete tripartite graph is Hamiltonian.

Next we show that if the graph is Hamiltonian then a + b ≥ c. If the graph
is Hamiltonian then it must exhibit a Hamiltonian cycle, which will be of the
following form H = (∗1, j1, ∗2, j2, , ...., ∗c, jc,∼1,∼2, , ...,∼|A|+|B|−|C|) where ∗i for
i ∈ {1, ..., |C|} and ∼i for i ∈ {|1|, ..., |A| + |B| − |C|} are some unique listings
of nodes in A or B and ji ∈ C for i ∈ {1, ..., |C|}. The number of nodes from
A and B used in the Hamiltonian are exactly |A| + |B| = a + b, as no nodes
are repeated. So for the listings of ∗i and ∼i, there must be exactly a + b nodes
between them, clearly the total number of listing of ∗ and ∼ are greater than c
by the construction of H and hence a+ b ≥ c.

The proof also gives us an easily implemented Hamiltonian cycle for any Ka,b,c

(1 ≤ a ≤ b ≤ c) such that a+ b ≥ c, that being

H = (a1, c1, ..., a|A|, c|A|, b1, c|A|+1, ..., b|C|−|A|, c|C|, b|C|−|A|+1, ..., b|B|).

Lemma 3.5.5 implies that a complete tripartite graph being Hamiltonian is equiv-
alent to the largest node set having not more than half of the total number of
nodes. In the case of a+ b ≥ c we know that Ka,b,c ∈ H and so by lemma 2.3.27
the value of the game for all m ≥ 1 and for all T ≥ m is

V (Ka,b,c, T,m) =
m

a+ b+ c
. (3.26)

In contrast, if a + b < c then Ka,b,c is non-Hamiltonian, however a minimal full-
node cycle can always be constructed. To construct a minimal full-node cycle,
we can simply repeat nodes in A or B as necessary to visit all nodes in C. Doing
this leads to a full-node cycle WQ

MFNC of length a + b + c + (c − a − b) = 2c, as
c− a− b repeated nodes are necessary. Therefore, by theorem 3.3.26, we get that
for all m ≥ 1 and T ≥ m that

V (Ka,b,c, T,m) ≥ m

2c
, (3.27)

achieved by π
Ka,b,c

RMFNC. Lemma 3.3.18 gives for all m ≥ 2 and T ≥ m+ 1 an upper
bound of

V (Ka,b,c, T,m) ≤ m

2c
, (3.28)

achieved by the 2-polygonal attacker strategy φpoly, using C. The upper and
lower bounds in equations (3.27) and (3.28) are equal but require T ≥ m + 1.
In the case of m even we can reduce this to T ≥ m by choosing φu,C , a uniform
attacker strategy on C, such that the probability of choosing (j, τ) ∈ A is

ϕj,τ =

{
1
c

if j ∈ C, τ = 0,

0 otherwise.
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It is clear that for even m any pure patroller can only visit m
2

nodes in C and
hence choosing φu,C provides an upper bound of V (Q, T,m) ≤ m

2
× 1

c
= m

2c
for any

m ≥ 2 and T ≥ m. Therefore the value of the game G(Ka,b,c, T,m) is known for
any complete tripartite graph Ka,b,c, these results are collected in the following
lemma.

Lemma 3.5.6. For the game G(Ka,b,c, T,m) (with 1 ≤ a ≤ b ≤ c)

• if a+ b ≥ c then for all m ≥ 1 and for all T ≥ m we have

V (Ka,b,c, T,m) =
m

a+ b+ c
,

achieved by a random minimal full-node cycle patroller strategy π
Ka,b,c

RMFNC and
the position-uniform attacker strategy φpu.

• if a+ b < c then for all m ≥ 1 and for all T ≥ m+ I{m odd} we have

V (Ka,b,c, T,m) =
m

2c
,

achieved by a random minimal full-node cycle patroller strategy π
Ka,b,c

RMFNC and
a 2-polygonal attacker strategy using C if m is odd and a uniform attack
φu,C if m is even.

Similarly to a complete bipartite Ka,b for which stated that the inclusion of edges
(j, j′) for j, j′ ∈ A do not affect the value of a game, we obtain that for a complete
tripartite Ka,b,c that inclusion of edges (j, j′) such that j, j′ ∈ A or j, j′ ∈ B do
not affect the value of a game, because the upper bound still holds. Furthermore
edges can be removed if they do not effect the length of the minimal full-node
cycle so a full-node cycle remains of length a+ b+ c if a+ b ≥ c or 2c if a+ b < c.

All complete k-partite graphs admit the same optimal strategies of the random
minimal full-node cycle and either a position uniform attacker strategy or a 2-
polygonal attacker strategy using the largest set Ak. We present the analogous
results in the following theorem.

Theorem 3.5.7. For the game G(Ka1,...,ak , T,m)(with 1 ≤ a1 ≤ ... ≤ ak)

• if
k−1∑
i=1

ai ≥ ak then for all m ≥ 1 and for all T ≥ m we have

V (Ka1,...,ak , T,m) =
m
k∑
i=1

ai

,

achieved by choosing a random minimal full-node cycle patroller strategy

π
Ka1,...,ak
RMFNC and the position-uniform attacker strategy φpu.
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• if
k−1∑
i=1

ai < ak then for all m ≥ 1 and for all T ≥ m+ I{m odd} we have

V (Ka1,...,ak , T,m) =
m

2ak
,

achieved by choosing a random minimal full-node cycle patroller strategy

π
Ka1,...,ak
RMFNC and choosing the 2-polygonal attack strategy using Ak if m is odd

and the uniform attacker strategy φu,Ak
if m is even.

Furthermore,

• the addition of an edge (j, j′) such that j, j′ ∈ Ai for some i ∈ {1, ..., k− 1}
into the graph Ka1,...,ak does not affect the above result on the value of the
game.

• the removal of an edge (j, j′) ∈ E such that in either case the length of a
minimal full-node cycle remains the same does not affect the above result
on the value of the game.

As the proof of theorem 3.5.7 is analogous to that of the complete tripartite,
which has been explained previously, we leave it to appendix A.1. Of particular
note from the proof is the construction of minimal full-node cycle for the game,
which is constructed by alternating between a nodes in Ak and a node in N \Ak
using distinct nodes where possible. This means it is easy to see that the removal
of all edges such that (i, i′) for i ∈ Aj and i′ ∈ Aj′ with j 6= j′ and j 6= k 6= j′,
does not affect the length of a minimal full-node. Essentially, if all such edges are

removed the complete bipartite Kp,ak where p =
k−1∑
i=1

ai is formed, which omits the

same optimal solutions when the patrolling game is played on the graphs.

3.6 Concluding comments

In this chapter we started in section 3.2 by providing our contributions to strategy
reduction techniques which included; reducing the set of attacker strategies to
one which ensures at there is a non-zero probability of a pure attack with a
commencement time τ = 0; reducing the pure walk response set for the patroller
given an arbitrary attacker strategy, which included reducing the walks to move,
wait form in the set Ω′′′ by theorem 3.2.13. In doing such a reduction to searching
through ω ∈ Ω′′′ in order to find the maximum payoff against an arbitrary attacker
strategy φ finds V•,φ(Q, T,m), the performance of φ, and hence finds an upper
bound on the value of the game as V (Q, T,m) ≤ V•,φ(Q, T,m). More reductions
to Ω′′′ where shown when the attacker strategy φ is no longer arbitrary but has
some properties, making the process of finding the performance much easier in
such cases.
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Next, in section 3.3, we produced patroller and attacker strategies which can
be chosen to generate lower and upper bounds respectively on V (Q, T,m). In
particular we extended the idea of game decomposition into subgraph patrolling
games without known values (or optimal patroller strategies) and the idea of
node-identification. We then correctly stated the upper bound for the diametric
attacker strategy φdi, correcting the originally stated lemma 2.3.24 (lemma 9
from [16]) with our lemma 3.3.11. Further to this we developed the time-limited
attacker strategy φtdi which provides the bound as in the originally stated lemma
2.3.24, the development of which is essential as the bound (and therefore strategy)
is used in the solution to the line graph. Hence φtdi must replace previous results
which used φdi and in doing so must implement a condition on the game length
that T ≥ m + d − 1. Finally we developed a ‘Hamiltonian like lower’ bound by
the use of a random minimal full-node cycle πQRMFNC, using the minimal full-node
cycle WQ

MFNC, in theorem 3.3.26 giving us the lower bound

V (Q, T,m) ≤ m

L

where L is the length of WQ
MFNC. This lower bound proves extremely important

in finding the solution to the elongated star graph in chapter 4 and we conjecture
in chapter 5 that for certain conditions on the patrolling game that such a bound
is equal to the value of the game. We also provide some analysis of the weakness
of using a random minimal full-node cycle πQRMFNC by looking at performances
at each node, allowing us to locate spatial weaknesses.

We then, in section 3.4, provided the Patrol Improvement Program(PIP) which
can maximize the improvement the of a patroller strategy provided some other
patroller strategies are carefully chosen. In addition we provided some sufficient
conditions to show when improvement was possible and hence when a patroller
strategy is not optimal.

To conclude this chapter we used our contributions to techniques and strategies
to extend the previous solutions to patrolling games on complete bipartite graphs
Ka,b to some non-complete bipartite graphs Q ∈ P2 \ KP2 when the length of
a minimal full-node cycle on the graph Q remains the same as in the complete
bipartite graph. This was then extended to complete k-partite graphs and some
non-complete k-partite graphs with an analogous condition on the minimal full-
node cycle.



Chapter 4

Patrolling games on extended star

graphs

4.1 Chapter introduction

In this chapter we apply our contributions to techniques developed in chapter
3, specifically our results for a random minimal full-node cycle strategy πQRMFNC

in theorem 3.3.26 and our work on the reduction of the best response space
to a given attacker strategy as in sections 3.2.2 and 3.2.3, to patrolling games
on various extended star graphs. We will look at the following extensions to
star graphs, elongated star graphs, generalised star graphs, dual star graphs and
linked-generalised star graphs.

In section 4.2 we will study the patrolling game on the elongated star graph,
denoted Skn, which is formed by taking the star graph and performing k node
splitting operations on node 1 so that it is at a distance of k+ 1 from the centre.
The elongated star graph, Skn, merges the structure of a star graph, Sn−1, and a
line graph, Lk+2. Extending the star graph in such a way allows for the patrolling
game scenario in which there is a border with a small station at one end, which
contains several rooms. As with the solution to the line graph, for the solution
on the elongated star graph, we consider the decomposition of the set of possible
attack lengths into six regions. These attack length regions depend on both the
star and line parameters, n and k respectively. The first region of m = 1 is solved
for all graphs by lemma 2.3.26 so requires no work. In section 4.2.2 we find that
the (random) full-node cycle is optimal for another region. In subsection 4.2.3
we also see that the random full-node cycle is optimal, by finding an optimal
attacker strategy covering another region. In section 4.2.4 we see that the region
when m = 2 is solved by the covering patroller strategy and the independent
attacker strategy. For the remaining regions no currently known strategy provides
optimality for either player. In section 4.2.5 we look at why the random minimal
full-node cycle is not optimal in the remaining regions. In sections 4.2.6 and 4.2.8
we apply the PIP from chapter 3, section 3.4, to find improvements by selecting
some additional strategies which perform better at weakly performing nodes. In
sections 4.2.7 and 4.2.9 we will see that such improvements to the random minimal
full-node cycle strategy are optimal by finding and adapting attacker strategies
for the game. However, this is only done when ρ ≡ m − 2k − 2 mod 4 ∈ {0, 2}
and for ρ ∈ {1, 3} we find near optimal attacker strategies. The strategies for
each ρ are discussed in section 4.2.10 along with there respective upper bounds

113
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such strategies achieve. The work on the elongated star graph is summarized by
theorem 4.2.24 in section 4.2.11.

In section 4.3 we follow the work on the elongated star graph, by studying the
patrolling game on the generalised star graph, denoted Skn , where each node i
in the star graph undergoes ki node-splittings to be a distance ki + 1 from the
centre. Extending Skn to Skn allows us to model the scenario of a central location,
with any number of arbitrary length borders which need to be patrolled. The
patrolling game on a generalised star graph is one model of the cow path problem
(as in [96]), with variable arc lengths in the patrolling game set-up. We are able
to achieve optimal strategies in multiple regions of the attack length, remarking
that analogous attacker strategies are optimal when the random full-node cycle
is optimal. We do not produce a full solution for all attack length regions, due to
the complexity of finding bespoke attacker strategies when the random full-node
cycle is not optimal. We do however see that the PIP can still be used in order
to improve the random full-node cycle strategy.

In section 4.4 we look at linking disconnected star graphs. In particular we start
with section 4.4.1, which considers the dual-star graph Sn1,n2 , which connects two
disconnected star graphs, Sn1 and Sn2 , by an edge between their centres. We
use decomposition, along with a bespoke attacker strategy to find the optimal
solution to patrolling games on the dual-star graph. This is followed by section
4.4.2 in which we provide a partial solution for the patrolling game on a p-linked
generalised star graph, (Sk1

n1
, ..., S

kp
np | Qc). (Sk1

n1
, ..., S

kp
np | Qc) is constructed by

connecting each of the centres of Sklni
by the graph Qc. In finding this partial

solution we further show the idea of superfluous edges (first seen in section 2.3.4
with V (Kn, T,m) = V (Cn, T,m)), which do not effect the value of the game when
removed.

In chapter 2 we saw that a random minimal full-node cycle patroller strategy
πQRMFNC is optimal for all complete k-partite graphs for k ≥ 2, as well as for the
line graphs Ln when the attack length m ≥ n − 1. Throughout this chapter we
will see further evidence that πQRMFNC is the optimal solution for certain regions of
the attack length m when the graph Q is a variety of extensions to the star graph.
We draw your attention to such results as in chapter 5 we will make conjecture
5.3.2, stating that for all m ≥ |N | − 1 the random full-node cycle πQRMFNC is
optimal for any tree. Work done in this chapter will provide additional empirical
evidence that leads us to believe the conjecture.

4.2 Elongated star graphs

4.2.1 Introduction to the elongated star graph

The elongated star graph Skn, for some n ∈ N and k ∈ N, is formed by k node-
splittings on node 1, resulting in node 1 being a distance of k+ 1 from the centre.
Equivalently Skn can be formed by taking the star Sn−1 and the line Lk+2 and
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node identifying one end of the line graph (node k + 2) to the centre of the star
graph (node c). This node identification adds a branch of length k+ 1 to the star
graph, the remaining n − 1 branches being of the usual length, 1. We formally
define the elongated star graph and its node labelling below.

Definition 4.2.1. The elongated star graph is a graph Skn = (N,E) such that

N = {1, 2, ..., k + 1} ∪ {c, ∗1, ..., ∗n−1}

and

E = {(1, 2), (2, 3), ..., (k, k + 1), (k + 1, c)} ∪ {(c, ∗1), (c, ∗2), ...., (c, ∗n−1)}.

We denote the class of elongated star graphs by SE .

Figure 4.2.1 shows the elongated star graph S5
4 , which can be formed by node-

splitting a leaf node 1 five times or by node-identifying 7 from L7 and c from
S3.

1 2 3 4 5 6 c ∗2

∗1

∗3

Figure 4.2.1: The elongated star graph S5
4 ∈ SE .

We say that Skn has n branches, which all start at centre c and end at 1 or ∗i for i =
1, ..., n, which have branch lengths d(c, 1) = k+ 1 or d(c, ∗i) = 1 respectively. We
refer to n as the number of branches and k as the branch elongation parameter.
We call nodes 1 and ∗i for i = 1, ..., n branch ends.

For Skn, we note that if the number of branches n is one or two then the elongated
star graph is equivalent to a line graph: Sk1 ≡ Lk+2 and Sk2 ≡ Lk+3. Similarly, we
note that if the branch elongation k is zero, then the elongated star is equivalent
to a star graph: S0

n ≡ Sn. So for the purposes of our study of the patrolling game
on the elongated star graph we assume n ≥ 3 and k ≥ 1. We do however note
that n = 1, 2 and k = 0 can be used to compare strategies to those used for the
line and star graphs respectively.

As our aim is find the value of the patrolling game G(Skn, T,m) for all graphic
parameters n ≥ 3, k ≥ 1 and all game parameters m ≥ 1, T ≥ m, we decompose
the set of possible attack lengths m ∈ N into six regions, dependent on the number
of branches n and the branch elongation k. We consider the following regions for
the attack length m:
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• MSk
n

0 = {m : m = 1},

• MSk
n

1 = {m : m ≥ 2(n+ k)},

• MSk
n

2 = {m : 2(k + 1) ≤ m ≤ 2(n+ k)},

• MSk
n

3 = {m : m = 2},

• MSk
n

4 = {m : m > 2n,m < 2(k + 1)},

• MSk
n

5 = {m : 3 ≤ m ≤ 2n,m < 2(k + 1)}.

Note a similarity to that of the decomposition of the set of attack lengths as done
for the line graph (see section 2.3.4) with a similar chosen indexing scheme. In
our aim to solve the patrolling game G(Skn, T,m) we will place some requirements
on the game length T dependent on the attacker strategy and how they distribute
throughout the commencement time.

We remark that the solution for m = 1 (m ∈ MSk
n

0 ) is already known as lemma
2.3.26 gives the solution to the game G(Q, T, 1) for all graphs Q and all game
lengths T ≥ 1. Thus, for all n ≥ 3, for all k ≥ 1, and for all T ≥ 1 we have

V (Skn, T, 1) =
1

n+ k + 1
,

where optimal strategies are the choose and wait patroller strategy πcw and the
position-uniform attacker strategy φpu.

In section 4.2.2 we provide the solution for the game G(Skn, T,m) when m ∈MSk
n

1 ,

followed by the solution for the region m ∈MSk
n

2 in section 4.2.3. While the game

has the same optimal patroller strategy for m ∈MSk
n

1 and m ∈MSk
n

2 , an attacker

strategy is developed for the game in which m ∈MSk
n

2 . In the developed attacker
strategy the attacker weights their probability of choosing a branch end such that
it is proportional to the distance from the centre. This attacker strategy, called
time-centred attacker strategy has a higher concentration of potential attacks at
the elongated branch end (node 1) compared to other branch ends (nodes ∗i for

i = 1, ..., n−1). This work is followed by the solution to the game when m ∈MSk
n

3

(m = 2) in section 4.2.4, which uses the independent and covering strategies.

For the final two regions, M
Sk
n

4 and M
Sk
n

5 , an improvement for the lower bound
provided by the patrollers random minimal full-node cycle strategy can be found.
The weakness of such a strategy is discussed in section 4.2.5. The PIP from

chapter 3, section 3.4, is used in section 4.2.6 for the region M
Sk
n

4 to find an
improvement for the random full-node cycle strategy, leading to a greater lower
bound for the game. The lower bound is dependent on the attack length m and

therefore prompts a further decomposition of the region M
Sk
n

4 into two regions

M
Sk
n

4,0 and M
Sk
n

4,1 . In section 4.2.7, we provide a partial solution for M
Sk
n

4,0 , when
n = 3, by providing an optimal attacker strategy. In addition we provide an
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example to show that the improvement found in subsection 4.2.6 can be optimal
when n ≥ 4. In section 4.2.8 we again find an improvement over the random full-

node cycle strategy when m ∈ MSk
n

5 . Again the improved lower bound found is

dependent on m and prompts the further decomposition of M
Sk
n

5 into two regions

M
Sk
n

5,0 and M
Sk
n

5,1 . In section 4.2.9, we provide an attacker strategy which is optimal

for the region M
Sk
n

5,0 . In section 4.2.10 solutions for the region M
Sk
n

5,1 are given
by considering simplification. Optimal solutions are given for ρ ≡ m − 2k − 2
mod 4 ∈ {0, 2} and near optimal solutions are given for ρ ∈ {1, 3}, with each
attacker strategy requiring small manipulations arising from the case of ρ = 0.
In order to develop these strategies, it is worth noting the symmetry between the
star nodes, ∗i for all i ∈ {1, ..., n − 1}. We know that these must be attacked
and patrolled in the same way as each other, due to the isomorphism between a
relabelling of these star nodes. This helps us more easily consider strategies and
how they are improved and adjusted.

We now present details of our results for the game G(Skn, T,m) in the various
attack length regions, as detailed above.

4.2.2 Solution when m ∈MSk
n

1

We begin our solution of the game G(Skn, T,m) for m ∈MSk
n

1 , where

M
Sk
n

1 = {m : m ≥ 2(n+ k)},

by finding a minimal full-node cycle for the elongated star graph. It is easy to
identify one that starts at node 1, moves to c, and then visits each star node ∗i
for i = 1, ..., n− 1, and then returns to 1. That is we define a minimal full-node
cycle as

W
Sk
n

MFNC = (1, 2, ..., k + 1, c, ∗1, c, ∗2, ..., ∗n−1, c, k + 1, ..., 2). (4.1)

W
Sk
n

MFNC is of length k + 1 + 2(n − 1) + k + 1 = 2(n + k). Recall that a minimal
full-node cycle patroller strategies repeats the cycle as required to fill the time-
horizon. By theorem 3.3.26 we can immediately state a lower bound on value of

game G(Skn, T,m) for m ∈MSk
n

1 , that being V (Skn, T,m) ≥ 1 and hence along with
the trivial upper bound, given by equation (2.11), of V (Skn, T,m) ≤ 1 (for any
attacker strategy) we arrive at the value of the game V (Skn, T,m) = 1. Moreover,

the pure strategy W
Sk
n

MFNC guarantees a win for the patroller and the random

minimal full-node cycle patroller strategy π
Sk
n

RMFNC is not required to achieve the
value of the game. Therefore we arrive at the following lemma.

Lemma 4.2.2. For the game G(Skn, T,m) for all n ≥ 3, for all k ≥ 1, for all

m ∈MSk
n

1 and for all T ≥ m we have

V (Skn, T,m) = 1,

achieved by a minimal full-node cycle patroller strategy W
Sk
n

MFNC and any attacker
strategy.
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We note that there are multiple minimal full-node cycles which will achieve the

value in lemma 4.2.2 and that W
Sk
n

MFNC (as in equation (4.1)) is just one such
minimal full-node cycle.

4.2.3 Solution when m ∈MSk
n

2

We follow the solution when m ∈MSk
n

1 , by remarking that the minimal full-node

cycle W
Sk
n

MFNC does not provide optimality when m ∈MSk
n

2 , where

M
Sk
n

2 = {m : 2(k + 1) ≤ m ≤ 2(n+ k)},

as it can no longer guarantee the capture of all pure attacks. However, we can

still use theorem 3.3.26 and the random minimal full-node cycle π
Sk
n

RMFNC, using

W
Sk
n

MFNC, in order to provide a lower bound. By theorem 3.3.26, for all n ≥ 3, for
all k ≥ 1, for all m ≥ 1 and for all T ≥ m, we have

V (Skn, T,m) ≥ m

2(n+ k)
. (4.2)

Recall that the randomness in π
Sk
n

RMFNC comes from choosing a place within W
Sk
n

MFNC

uniformly, before following the full-node cycle. An alternative approach to un-

derstanding this strategy is to see π
Sk
n

RMFNC as the random Hamiltonian πrH in
the game G(C2(n+k), T,m) embedded into the game G(Skn, T,m), where Skn is
expanded to C2(n+k) by repeated node-splitting operations. Figure 4.2.2 illus-
trates an example of S2

3 expanded to C10. The nodes repeated in the minimal

full-node cycle W
S2

3
MFNC = (1, 2, 3, c, ∗1, c, ∗2, c, 3, 2) are 2, 3 and c, which undergo

node-splitting. Note that node c is repeated twice in the W
S2

3
MFNC and as a result

is node-split twice. We note the unusual labelling of the graph C10 is done in
order to show the node-splitting of; node 2 into 21 and 22; node 3 into 31 and 32;
and node c into c1, c2 and c3.

1 2 3 c ∗1

∗2

1

21 31 c1 ∗2

c2

22 32 c3 ∗1

C10

S2
3

Figure 4.2.2: A Hamiltonian expansion of S2
3 to C10. Achieved by node-splitting

nodes 2,3 once and node c twice, with appropriate edge inheritances chosen. Node
2 is node-split into nodes 21 and 22, similarly node 3 is node-split into nodes 31 and
32 and node c is node-split into c1, c2 and c3. The dashed lines help to highlight
this correspondence.
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To show that the random minimal full-node cycle patroller strategy is optimal,
we seek a tight upper bound on the value of the game with the lower bound given
in equation (4.2). A simple, but naive, approach for the attacker would be to use
the time-limited diametric attacker strategy πtdi, as in the solution to the line
graph. However for Skn, the diameter is d = k + 2 and thus, by lemma 3.3.13, we
have an upper bound of

V (Skn, T,m) ≤ max

(
1

2
,

m

2(k + 2)

)
.

So φtdi does not perform optimally (unless k = 0). This can be clearly seen in
figure 4.2.3, which has a great degree of sub-optimality occurring between the
strategies. While from this it is not immediately clear which players strategies

are sub-optimal, we later see in lemma 4.2.7 that π
Sk
n

RMFNC is optimal for m ∈MSk
n

2

and hence we seek to find an attacker strategy which generates a better upper
bound. The time-limited diametric attacker strategy seems naive as it only places
pure attacks at nodes ∗1 (without loss of generality) and 1 and therefore does not
utilise the symmetry between the star nodes ∗1, ..., ∗n−1, which must be attacked
with the same probability for the same time in an optimal strategy.
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Figure 4.2.3: This graphs shows for the game G(S10
6 , T,m), the lower bound from

the random minimal full-node cycle strategy π
S10

6
RMFNC in black and the upper

bound from the time-limited diametric attacker φtdi in red, for m = 1, ..., 2(n +
k + 1) and assuming T ≥ m+ k + 1.

Another approach for the attacker is to use the branch ends (nodes 1 and ∗i for
all i ∈ {1, ..., n−1}) proportional to that node’s distance from the centre c. That
is, have the attacker choose node 1, k+ 1 times more often than any star node ∗i
for i = 1, ..., n− 1.
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Definition 4.2.3. The weighted attacker strategy φW is such that the probability
of choosing to play the pure attack (j, τ) ∈ A is

ϕj,τ =


1

n+k
if j = ∗i for some i ∈ {1, ..., n− 1} and τ = 0,

k+1
n+k

if j = 1 and τ = 0,

0 otherwise.

That is for φW the attacker chooses node 1 with probability k+1
n+k

and node ∗i with

probability 1
n+k

for i = 1, ..., n − 1 and commences their attack at time 0. Note
that in φW the only potential attacks commence at time 0, which we choose in
order to make φW a feasible strategy for the most amount of game lengths T as
possible. It is however possible to perform time-shifting (as in section 3.2.1) to
have all the pure attacks commencement at time t such that t+m ≤ T .

An example of the weighted attacker strategy φW used in a game G(S3
n, 14, 8),

on the graph S3
n for any n ≥ 3, can be seen in figure 4.2.4. The figure shows φW

as its equivalent space-time agent matrix SA
W with ∗ representing all star nodes

∗i for i ∈ {1, ..., n − 1}, which are attacked identically. Recall that a space-time
agent matrix shows how many agents (and therefore the proportional probability)
that an attacker is at a space-time point and for the purpose of the figure the
space-time places at which pure attacks may commence are filled grey.

4

3

2

1

c

*

N
o
d
e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time

4 4 4 4 4 4 4 4

1 1 1 1 1 1 1 1

Figure 4.2.4: Space-time agent matrix SA
W for the weighted attacker strategy φW

for the game G(S3
n, 14, 8) for any n ≥ 3. Three example pure patrollers are shown

in red, green and blue. Catching 6, 5 and 4 of the attackers agents respectively,
out of n+ 3 total agents.

Using our contribution to how a pure patroller best responds to attacker strategies
(sections 3.2.2 and 3.2.3), we are able to find the performance, and therefore upper
bound, by the attacker using φW.

Lemma 4.2.4. For the game G(Skn, T,m) for all n ≥ 3, for all k ≥ 1, for all
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m ≥ 1 and for T ≥ m we have

V (Skn, T,m) ≤


k+1
n+k

for 1 ≤ m ≤ k + 2,
k+2+bm−k−3

2 c
n+k

for k + 3 ≤ m ≤ k + 2(n− 1),

1 for m > k + 2(n− 1),

(4.3)

achieved by the attacker using the weighted attacker strategy φW.

The proof of lemma 4.2.4 follows by evaluating V•,φW
(Skn, T,m), the performance

of φW, by relying on the work done in section 3.2.2.

Proof. We aim to calculate V•,φW
(Skn, T,m), to use this performance as an upper

bound, and by lemma 3.2.14 we can restrict the game length for such a calculation,
as the lemma gives us that

V•,φW
(Skn, T,m) = V•,φW

(Skn,m,m) = max
W∈W(Sk

n,m,m)
P (W,φW),

so we only need to consider pure walks for m units of time.

Furthermore by theorem 3.2.13 we have that

V•,φW
(Skn,m,m) = max

ω∈Ω′′′(Sk
n,m,m)

P (ω,φW),

and so we need only consider move-wait walks ω ∈ Ω′′′(Skn,m,m) such that

ω = ((j1, ν1), ..., (jq, νq)),

for some q ∈ N such that the following three conditions are met

• ji ∈ NA \ {j1, ..., ji−1} for all i ∈ {1, ..., q}, where NA = {1} ∪ {∗l | l ∈
{1, ..., n− 1}},

• νi = 0 for all i ∈ {1, ..., q} and

• ν1 +
q−1∑
i=1

(dNA
(ji, ji+1) + νi+1) ≡ tq + νq = m− 1.

That is a move-wait walk such that nodes belong to those at which non-zero
probability pure attacks are placed, with no waiting and that the arrival at the
final node plus the final waiting match the end of the time-horizon.

In addition as the star nodes ∗i for i ∈ {1, ..., n− 1} are symmetric and are such
that ϕ∗i,τ = ϕ∗i′ ,τ for all τ ∈ T and for all i, i′ ∈ {1, ..., n−1}, we can without loss
of generality assume the order of the visit to the star nodes in increasing index
order. That is ∗i is the ith star node visited by any move-wait walk ω, with the
node 1 also possibly being visited. We now consider two possible cases depending
if ω has j1 = 1 or j1 = ∗1.
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For the first case consider ω1 such that j1 = 1, then ji = ∗i−1 for i ∈ {2, ..., n}
and so the payoff is

P (ω1,φW) =
k + 1

n+ k
+

n−1∑
i=1

I{k+2i≤m−1}

n+ k

=


k+1
n+k

for 1 ≤ m ≤ k + 2,
k+1+1+bm−1−(k+2)

2 c
n+k

for k + 3 ≤ m ≤ k + 2(n− 1),

1 for m > k + 2(n− 1).

(4.4)

For the second case consider ω2 such that jr+1 = 1 for some r ∈ {1, ..., q−1} then
ji = ∗i for i ∈ {1, ..., r} and ji = ∗i−1 for i ∈ {r + 2, ..., q} and so the payoff is

P (ω2,φW) =
r∑
i=1

I{2(i−1)≤m−1}

n+ k
+

(k + 1)I{k+2r≤m−1}

n+ k
+

n−1∑
i=r+1

I2(k+i)≤m−1

n+ k

=


min(1+bm−1

2 c,r)
n+k

for 1 ≤ m ≤ 2r + k,
r+k+1
n+k

for 2r + k + 1 ≤ m ≤ 2(k + r + 1),

γ for 2(k + r + 1) + 1 ≤ m ≤ 2(k + n− 1),

1 for m > 2(k + n− 1).

(4.5)

where

γ =
r + k + 1 + min(1 +

⌊
m−1−2(k+r+1)

2

⌋
, n− 1− r)

n+ k
.

From equations (4.4) and (4.5) it is clear that P (ω1,φW) ≥ P (ω2,φW) for any
r ∈ {1, ..., q − 1} and hence

V•,φW
(Skn,m,m) = P (ω1,φW).

Therefore

V (Skn, T,m) ≤ V•,φW
(Skn, T,m) =


k+1
n+k

for 1 ≤ m ≤ k + 2,
k+2+bm−k−3

2 c
n+k

for k + 3 ≤ m ≤ k + 2(n− 1),

1 for m > k + 2(n− 1).

We provide figure 4.2.5 to showcase the sub-optimality of the performance of the
weighted attacker strategy φW. From the figure we see that when the attack
length is such that k + 3 ≤ m ≤ k + 2(n− 1), the upper bound provided by the
weighted attacker strategy and the lower bound by the random minimal full-node
cycle patroller strategy are near optimal. It is easy to see from lemmas 4.2.4 and
3.3.13, that φW provides a better upper bound on the value of the game than
φtdi. Therefore while the weighted attacker strategy is not optimal, the idea of
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Figure 4.2.5: This graphs shows for the game G(S10
6 , T,m), the lower bound from

the random minimal full-node cycle strategy π
S10

6
RMFNC in black and the upper

bound from the weighted attacker strategy φW in red, for m = 1, ..., 2(n+ k+ 1)
and for T ≥ m.

compensating a pure patroller for the distance by having a higher weighting at
node 1, is useful.

The weighted attacker strategy φW does not spread out attacks in commencement
times, meaning it does not require the best response pure patroller to wait at
nodes for any period of time. One way to spread out the weighting may be to
equally distribute the probability of choosing the pure attack (1, 0) among the
pure attacks (1, τ) for τ = 0, ..., k − 1. However such a spread, while providing a
better bound than the weighted attacker strategy, does not provide a tight upper
bound with the lower bound of equation (4.2). The reason that φW does not
give a tight upper bound is because it is not symmetric in the commencement
time, as the pure attacks played with a non-zero probability all commence at time
0. We achieve an attacker strategy which does provide a tight upper bound by
distributing the probability for being at node 1 amongst the commencement time
such that each commencement time has a probability equal to that of choosing
to attack a star node. Therefore, we could suggest using a strategy such that the
probability of playing (j, τ) ∈ A is

ϕj,τ =


1

n+k
if j = ∗i for some i ∈ {1, ..., n− 1} and τ = 0,

1
n+k

if j = 1 and τ ∈ {0, ..., k},
0 otherwise.

(4.6)

However the attacker strategy with probabilities as given in equation (4.6) is not
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symmetric as pure attacks at node 1 are skewed to start at earlier times. This
issue can be fixed by centring the attacker strategy and in doing so we develop
the time-centred attacker strategy.

Definition 4.2.5. The time-centred attacker strategy φtc is such that the prob-
ability of playing the pure attack (j, τ) ∈ A is

ϕj,τ =


1

2(n+k)
if j = ∗i for some i ∈ {1, ..., n− 1} and τ ∈ {k, k + 1}

1
2(n+k)

if j = 1 and τ ∈ {0, 1, ..., 2k + 1},
0 otherwise.

That is in the time-centred attacker strategy the attacker chooses; node 1 with
probability k+1

n+k
and then, given that they chose node 1, chooses a commencement

time τ ∈ {0, ..., 2k + 1} with equal probability; and node ∗i with probability 1
n+k

for each i ∈ {1, ..., n − 1} and then, given that they chose node ∗i, chooses a
commencement time τ ∈ {k, k + 1} with equal probability. An example of the
time-centred attacker strategy for use on a game with the graph S3

n, for any
n ≥ 3, can be seen in figure 4.2.6. The strategy is shown as its space-time agent
matrix SAtc in which 2(n + k) agents choose a space-time point to commence
their attack. In comparison to figure 4.2.4, for φW , we see that the time-centred
attacker strategy φtc, equally distributes its agents who are attacking node 1.
In addition, agents at a star nodes ∗i for i ∈ {1, ..., n − 1}, are centred so that
attack intervals are symmetric in the time-horizon. Note that the number of
agents in SAtc is double the number in SAW . While this does not affect probability,
it is required for symmetry when m is even. Intuitively not doing so makes the
best pure patroller response move between star nodes before moving to finish at
node 1, resulting in possibly seeing one more agent than needed for a tight upper
bound.

Looking at the three pure patrollers (in red, green and blue) shown in figure 4.2.6,
we see that they are each able to catch 8 out of the 2n+ 6 potential agents. Note
that this number of agents who are caught at 8 for any n ≥ 3. In addition note
that all ‘sensible’ pure patrollers, who move between unseen nodes in which they
would arrive in time to see at least one potential agent (arrive before max T (j)
for the node j) see the same number of potential agents. However if n = 3 instead
of n ≥ 4, the blue pure patroller is no longer sensible, as they will have already
seen all agents at nodes ∗1, ∗2 and ∗3. To correct this the blue pure patroller
should move to node 1 at time t = 7.

The cost of distributing in commencement time in φtc, compared to φW, is that
the game length T needs to be greater in order to for φtc ∈ Φ(Skn, T,m). Namely
we require T ≥ m+2k+1 for φtc to be feasible in the game G(Skn, T,m), whereas
φW only required T ≥ m.

Lemma 4.2.6. For the game G(Skn, T,m) for all n ≥ 3, for all k ≥ 1, for all
m ≥ 1 and for all T ≥ 2k +m+ 1 we have

V (Skn, T,m) ≤ max

(
k + 1

n+ k
,

m

2(n+ k)

)
,
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Figure 4.2.6: Space-time agent matrix SAtc for the time-centred attacker strategy
φtc for the game G(S3

n, 14, 8) for any n ≥ 4. Three example pure patrollers are
drawn in red, green and blue, all catching 8 agents out of the 2n+ 6.

achieved by the attacker using the time-centred attacker strategy φtc.

The proof of lemma 4.2.6 follows by evaluating V•,φtc(S
k
n, T,m), the performance

of φtc, by relying on the work done in section 3.2.2. However, unlike the proof of
lemma 4.2.4, when we have a distribution in the commencement time, we need
to consider waiting at the attacked nodes NA = {1, ∗1, ..., ∗n−1} as there is more
than one pure attack with non-zero probability at each node in NA.

Proof. We aim to calculate V•,φtc(S
k
n, T,m), to use this performance as an upper

bound, and by lemma 3.2.14 we can restrict the game length for such a calculation,
as the lemma gives us that

V•,φtc(S
k
n, T,m) = V•,φtc(S

k
n, 2k + 1 +m,m) = max

W∈W(Sk
n,2k+1+m,m)

P (W,φtc),

so we only need to consider pure walks for 2k + 1 +m units of time.

Furthermore by theorem 3.2.13 we have that

V•,φtc(S
k
n, 2k + 1 +m,m) = max

ω∈Ω′′′(Sk
n,2k+1+m,m)

P (ω,φtc),

and so we need only consider move-wait walks ω ∈ Ω′′′(Skn, 2k + 1 + m,m) such
that

ω = ((j1, ν1), ..., (jq, νq)),

for some q ∈ N such that the following three conditions are met

• j1 ∈ NA, ji ∈ NA(ω, i− 1) for all i ∈ {2, ..., q}, where NA = {1} ∪ {∗l | l ∈
{1, ..., n− 1}},
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• ν1 ∈ {k, k + 1} if j1 ∈ {∗l | l ∈ {1, ..., n− 1}}, ν1 ∈ {0, ...., 2k + 1} if j1 = 1,
νi = 0 for all i ∈ {2, ..., q} and

• ν1 +
q−1∑
i=1

(d(ji, ji+1, NA) + νi+1) ≡ tq + νq = 2k +m.

That is a move-wait walk such that nodes belong to those which have a non-zero
probability of catching the attacker at if travelled to, with no waiting aside from
at the initial node and that the arrival at the final node plus the final waiting
match the end of the time-horizon.

For any such walk ω ∈ Ω′′′(Skn , 2k +m+ 1,m) the payoff is given by

P (ω,φtc) =

q∑
i=1

ti(ω)+νi∑
ni(ω)

ϕji,t

=

ν1∑
t=I{j1 6=1}k

ϕj1,t +

q∑
i=2

(k+1)+I{ji=1}k∑
t=ni(ω)

ϕji,t.

=

min(ν1,(k+1)+I{ji=1}k)∑
t=I{j1 6=1}k

1

2(n+ k)
+

q∑
i=2

((k+1)+I{ji=1}k∑
t=n′i(ω)

1

2(n+ k)

≤
min(ν1,(k+1)+I{ji=1}k)∑

t=I{j1 6=1}k

1

2(n+ k)
+

q∑
i=2

(k+1)+I{ji=1}k∑
t=n′′i (ω)

1

2(n+ k)
. (4.7)

Where ni(ω) = max(0, li(ω) + 1, ti(ω) − m + 1), n′i(ω) = max(I{ji=1}k, li(ω) +
1, ti(ω) − m + 1) and n′′i (ω) = max(I{ji=1}k, ti(ω) − m + 1) in equation (4.7).
Essentially the inequality follows by ignoring when a node was last visited.

For any i′ ∈ {2, ..., q} such that n′′i′(ω) = ti′(ω)−m + 1 we have for all i ∈ {i′ +
1, ..., q} that (k+1)+I{ji=1}k > n′′i (ω) as ti′+1(ω) = ti′(ω)+2+I{ji′=1 or ji′+1=1}k >
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(k + 1) + I{ji′+1=1}k. Equation (4.7) therefore becomes

P (ω,φtc) ≤
min(ν1,(k+1)+I{ji=1}k)∑

t=I{j1 6=1}k

1

2(n+ k)
+

q∑
i=2

(k+1)+I{ji=1}k∑
t=n′′i (ω)

1

2(n+ k)

=
min(ν1 + 1− I{j1 6=1}k, (k + 2) + I{j1=1}k − I{j1 6=1}k)

2(n+ k)
+

i′−1∑
i=2

2(1 + I{ji=1}k)

2(n+ k)

+
max((k + 2) + I{ji′=1}k − ti′(ω) +m− 1, 0)

2(n+ k)

=
min(ν1 + 1− I{j1 6=1}k, 2(1 + I{j1=1}k))

2(n+ k)
+

i′−1∑
i=2

2(1 + I{ji=1}k)

2(n+ k)

+
max((k + 2) + I{ji′=1}k − ti′(ω) +m− 1, 0)

2(n+ k)

=
min(ν1 + 1− I{j1 6=1}k, 2(1 + I{j1=1}k)) + max(I{j1 6=1}k−ν1+m−1, 0)

2(n+ k)
(4.8)

From equation (4.8) it is clear that in order to maximize the payoff for the walk
ω it should have ν1 = (k + 1) + I{j1=1}k and hence we get that

P (ω,φtc) ≤
max(2(I{j1=1}k + 1),m)

2(n+ k)
.

So it is best for ω to have j1 = 1 and therefore we have

V•,φtc(S
k
n, 2k + 1 +m,m) ≤ max

(
k + 1

n+ k
,

m

2(n+ k)

)
. (4.9)

The upper bound on the performance of φtc, as in equation (4.9), gives

V (Skn, T,m) ≤ max

(
k + 1

n+ k
,

m

2(n+ k)

)
.

From the proof of lemma 4.2.6, we see that there are numerous pure patrollers
which are the best response to φtc, essentially any pure patrol that catches, on
average, one agent per unit of time between times 0 and m− 1 inclusive is a best
response to φtc. Together with the lower bound in equation (4.2), lemma 4.2.6
yields the following lemma. The game length T needs to be such that φtc is a
feasible attacker strategy, thus T ≥ 2k +m+ 1.

Lemma 4.2.7. For the game G(Skn, T,m), for all n ≥ 3, for all k ≥ 1, for all

T ≥ 2k +m+ 1 and for all m ∈MSk
n

2 we have

V (Q, T,m) =
m

2(n+ k)
,
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achieved by the random minimal full-node cycle patroller strategy π
Sk
n

RMFNC and the
time-centred attacker strategy φtc.

We are now left with finding the solution to the game G(Skn, T,m) when 1 < m <

2(k+ 1) (m ∈MSk
n

3 ∪M
Sk
n

4 ∪M
Sk
n

5 ). We next cover the case of m = 2 (m ∈MSk
n

3 ),
since this does not require bespoke strategies to be created for the patroller and
attacker and we can directly rely on general strategies which have already been
developed.

4.2.4 Solution when m = 2 (M
Sk
n

3 )

The solution for m = 2 (m ∈ M
Sk
n

3 ) follows the same approach as in the the
solution to the line graph which relies on the covering patroller strategy and in-
dependent attacker strategy and the respective lower and upper bounds given
in lemmas 2.3.12 and 2.3.21. In turn these rely on knowing the covering num-
ber (and a minimal covering set) and the independence number (and a maximal
independent set) and so in this section we aim to find these numbers by con-
structing such sets and using the lemmas above to arrive at the value of the game
G(Skn, T, 2).

For the game G(Skn, T, 2), for some n ≥ 3, k ≥ 1 and T ≥ 2, we can form
a minimal covering set by construction. Recall that for m = 2, elements of a
covering set are intercepting patrols which are equivalent to edges with the pure
patroller oscillating back and forth between the two incident nodes of the edge.
Therefore, we choose a set C containing the minimal number of edges such that
every node in the graph Skn is incident to at least one edge in C.

To construct C take Q1 = Skn and select any edge which has an incident leaf node
(node of degree 1), add this edge to C and then delete the edge and the two
incident nodes to form the graph Q2. Repeat this process on the graph Q2 until
for some l ∈ N we have that Ql = (Nl, El) is a graph such that the El = ∅. Then
for every node j ∈ Nl add a connected edge from the original graph Q1 = Skn.
Performing this process leads to

C = {(c, ∗i)|i = 1, .., n− 1} ∪ {(k + 1, k), (k, k − 1), ..., (2, 1)}.

That is C is the set of edges connecting the centre to the star nodes and every
alternating edges along the line section. Note if k = 1 then 2 ≡ c. The cardinality
of C gives us the covering number for the game G(Skn, T, 2) and so

CSk
n,T,2

= n+

⌊
k

2

⌋
.

Thus, by lemma 2.3.12, we obtain for all n ≥ 3, for all k ≥ 1 and for all T ≥ 2
the lower bound

V (Skn, T, 2) ≥ 1

n+
⌊
k
2

⌋ . (4.10)
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Similarly, we can find the a maximal independent set for the game G(Skn, T, 2) and
hence find the independence number LSk

n,T,2
. Using the same construction idea as

for the set C, we can get nodes a distance of m = 2 apart. Starting with all leaf
nodes we include these, then delete them and their adjacencies. We can repeat
this process, deleting nodes and adjacencies, to form a maximal independent set

L =

{
{∗1, ..., ∗n−1, k + 1, k − 1, ..., 1} if k is even,

{∗1, ..., ∗n−1, k + 1, k − 1, ..., 2} if k is odd.

That is L is the set of star nodes and every alternating node along the line section.
The cardinality of L gives us the independence number for the game G(Skn, T, 2)
and so

LSk
n,T,2

= n+

⌊
k

2

⌋
.

Thus, by lemma 2.3.21, we obtain for all n ≥ 3, for all k ≥ 1, for all T ≥ 2 the
upper bound of

V (Skn, T, 2) ≤ 1

n+
⌊
k
2

⌋ . (4.11)

From equations (4.10) and (4.11) we have tight bounds and hence the following
lemma, which gives value of the game G(Skn, T, 2).

Lemma 4.2.8. For the game G(Skn, T, 2) for all n ≥ 3, for all k ≥ 1 and for all
T ≥ 2 we have

V (Skn, T, 2) =
1

n+
⌊
k
2

⌋ ,
achieved by the covering patroller strategy πCov and the independent attacker strat-
egy φInd.

Lemma 4.2.8 is proven by knowing that the covering number and independence
number are the same. We see in chapter 5, section 5.2, that we can achieve this
for any game G(Q, T, 2) where Q is a tree (and T ≥ 2). However, these numbers
are not explicit and are found by an algorithm which simultaneously generates a
minimal covering set and a maximal independent set.

It is worth noting that when m > 2 the covering number is larger than the inde-
pendence number as two nodes a distance of m away cannot have an intercepting
patrol between them. Therefore covering and independent strategies are not both
optimal for m > 2. We return soon to considering the remaining attack lengths,

2 < m < 2(k + 1) (m ∈ M
Sk
n

4 and m ∈ M
Sk
n

5 ), in which the random minimal

full-node cycle π
Sk
n

RMFNC is no longer optimal. Before doing so we will first analyse

exactly why the π
Sk
n

RMFNC is no longer optimal for these game lengths. This anal-
ysis is done by examining the performance at node j ∈ N . We then apply the
patrol improvement program(PIP) from chapter 3, section 3.4, in order to find
the value of the game, and optimal strategies, when 2 < m < 2(k + 1).
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4.2.5 Weakness of the random minimal full-node cycle

In this section we find which nodes π
Sk
n

RMFNC performs weakly at, which depends
on the attack length m and hence explain a further decomposition of the attack
length region 2 < m < 2(k + 1) for which we later find the value of the game
G(Skn, T,m).

For the random minimal full-node cycle strategy π
Sk
n

RMFNC we have, by equation
(3.17), that its performance at node j ∈ N for all n ≥ 3, for all k ≥ 1, for all
m ≥ 1 and for all T ≥ m is given by

V
π

Sk
n

RMFNC,•,j
(Skn, T,m) =


min(m+2(j−1),2m)

2(n+k)
, for j ≤ n+k

2
+ 1,

min(m+2(n+k+1−j),2m)
2(n+k)

, for j > n+k
2

+ 1,
min(m+2(n−1),nm)

2(n+k)
, for j = c,

m
2(n+k)

, for j ∈ {∗1, ..., ∗n−1}.

(4.12)

It is clear from equation (4.12) that the lower bound from using the strategy

π
Sk
n

RMFNC (equation 4.2) arises from the nodes which have minimal performance.
Nodes 1 and ∗i for all i ∈ {1, ..., n− 1} have the minimal performance among all

nodes as they are visited only once per repetition of W
Sk
n

MFNC. This can be seen in
figures 4.2.7 and 4.2.8 which both have these nodes as the lowest performance. We
have provided two figures as the features of the performance depends on whether

m ∈ M
Sk
n

4 or m ∈ M
Sk
n

5 . Notice that in figure 4.2.7, when m ∈ M
Sk
n

5 , that the
performance in the line section (nodes 1, ..., k+1) is increasing and then constant.

On the other hand, in figure 4.2.8, when m ∈ M
Sk
n

4 , increases, then is constant
and then decreases for nodes in the line section.

From equation (4.12) we can see that the performance in the line section is non-
decreasing if,

min(m+ 2n, 2m)

2(n+ k)
=

m+ n

2(n+ k)
⇐⇒ m > 2n.

This fact is the reason the remaining attack lengths for which the gameG(Skn, T,m)

is not solved, 2 < m < 2(k+1), is divided into the regionsm ∈MSk
n

4 andm ∈MSk
n

5 .
Knowing this we must look at two separate improvements we can now use the pa-
trol improvement program(PIP) to find a patroller strategy that performs better

than π
Sk
n

RMFNC. This will be done by the use of carefully chosen patroller strategies

that perform better than π
Sk
n

RMFNC at nodes which it performs weakly at, which

differ between the two regions m ∈MSk
n

4 and m ∈MSk
n

5 .

4.2.6 PIP when m ∈MSk
n

4

In this section we use the patrol improvement program (PIP) from chapter 3,
section 3.4, to improve the random minimal full-node cycle patroller strategy
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Figure 4.2.7: This graph shows the performance of the random minimal full-node

cycle π
S5

4
RMFNC at each node for the game G(S5

4 , T, 4) for all T ≥ 4. Note m ∈MSk
n

5 .
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Figure 4.2.8: This graph shows the performance at each node of the random

minimal full-node cycle π
S6

3
RMFNC at each node for the game G(S6

3 , T, 8) for all

T ≥ 8. Note m ∈MSk
n

4 .
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π
Sk
n

RMFNC for the game G(Skn, T,m) when m ∈MSk
n

4 , where

M
Sk
n

4 = {m : m > 2n,m < 2(k + 1)}.

Recall, that when m ∈ M
Sk
n

4 , we have m > 2n so the performance of π
Sk
n

RMFNC

at the nodes in the line section decreases towards the end (node k + 1). Let

π0 = π
Sk
n

RMFNC be the baseline strategy for the PIP and seek to find strategies
which perform better at weakly performing nodes.

We can find a strategy that can be used for the weakly performing left nodes,
L = {1, ..., m̂+ 1}, where m̂ =

⌊
m
2

⌋
. This is done by forming the walk

WL = (1, 2, ..., m̂+ 1, m̂, ..., 2),

which is repeated for the time-horizon. WL is of length 2m̂ and as 2m̂ ≤ m
the walk is intercepting as it visits every node at most m time units apart. The
pure strategy WL will used as a candidate for improvement in the PIP, for nota-
tional convince we will denote the strategy in mixed form π1 = WL. Then the
performance at node j ∈ N is

Vπ1,•,j(S
k
n, T,m) = I{j∈L}. (4.13)

We can also find a strategy that can be used for the weakly performing right
nodes, R = {k+n+1−m̂, ..., k+1, c, ∗1, ..., ∗n−1}. We note that the performance

of π
Sk
n

RMFNC starts to decrease at node k + 1− (
⌊
m
2

⌋
− 2n) = k + n+ 1− m̂. This

is done by forming the walk

WR = (k + n− 1− m̂, ..., k + 1, c, ∗1, c, ..., ∗n, c, k + 1, ..., k + n− m̂),

which is repeated for the time-horizon. WR is of length 2m̂ and as 2m̂ ≤ m (as
m ≥ 2n) the walk is intercepting as it visits every node at most m time units
apart. The pure strategy WR will used as a candidate for improvement in the
PIP, for notational convince we will denote the strategy in mixed form π2 = WR.
Then the performance at node j ∈ N is

Vπ1,•,j(S
k
n, T,m) = I{j∈R}. (4.14)

Having got three patroller strategies we can form the simple hybrid strategy
πSimpHyb which plays πi with probability pi for i = 0, 1, 2 and use the PIP to
determine the best probabilities which achieve the best improvement over the

baseline strategy π0(= π
Sk
n

RMFNC). However before immediately using the PIP
with our left and right improvements, we must first consider if any nodes are
not contained within either improvement. That is if the set of middle nodes
M = N \ (L∪R) is empty or not. Figure 4.2.9 shows an example of an elongated
star graph game in which left and right improvements are used and contain the
entire node set, so M = ∅. Figure 4.2.10 shows the related game in which the
branch elongation k has been increased from 6 to 7. Note that in figure 4.2.10
the left and right improvements no longer contain the entire node set, so M 6= ∅.
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1 2 3 4 5 6 7 c ∗2

∗1
p1, L = {1, 2, 3, 4, 5}

p2, R = {6, 7, c, ∗}

Figure 4.2.9: The game G(S6
3 , 20, 8) with the left improvement, π1 played with

probability p1, shown in blue and the right improvement, π2 played with prob-
ability p2, shown in red. The sets are L = {1, 2, 3, 4, 5} and R = {6, 7, c, ∗1, ∗2}
(M = ∅).

1 2 3 4 5 6 7 8 c ∗2

∗1
p1, L = {1, 2, 3, 4, 5}

p2, R = {7, 8, c, ∗}

M = {6}

Figure 4.2.10: The game G(S7
3 , 20, 8) with the left improvement, π1 played with

probability p1, shown in blue and the right improvement, π2 played with proba-
bility p2, shown in red. The sets are L = {1, 2, 3, 4, 5}, R = {7, 8, c, ∗1, ∗2} and
M = {6}.
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By considering the node m̂+ 1 and k + n+ 1− m̂, we have that

M = ∅ ⇐⇒ m̂ ≥ n+ k − 1

2
.

We use this condition to further decompose M
Sk
n

4 into

M
Sk
n

4,0 = M
Sk
n

4 ∩
{
m | m̂ ≥ n+ k − 1

2

}
and

M
Sk
n

4,1 = M
Sk
n

4 ∩
{
m | m̂ <

n+ k − 1

2

}
.

The reason we must consider if M = ∅ or M 6= ∅ is that it affects PIP’s optimiza-
tion of the probabilities p1 and p2. The following lemma contains the improved

lower bound, over the lower bound achieved by using π
Sk
n

RMFNC (as in equation

(4.2)), for games when either m ∈MSk
n

4,0 or m ∈MSk
n

4,1 .

Lemma 4.2.9. For the game G(Skn, T,m) for any n ≥ 3, for any k ≥ 1, for any
T ≥ m,

• for all m ∈MSk
n

4,0 we have

V (Skn, T,m) ≥

{
1
2

for m < n+ k,
m

2(n+k)
otherwise,

achieved by the simple hybrid strategy πSimpHyb, with p1 = p2 = 1
2

(and
p0 = 0), called the simple improvement patroller strategy (with no middle
nodes).

• for all m ∈MSk
n

4,1 we have

V (Skn, T,m) ≥ m

m+ n+ k
,

achieved by the simple hybrid patroller strategy πSimpHyb, with p1 = p2 =
m

2(m+n+k)
(and p0 = n+k

m+n+k)
), called the simple improvement patroller strat-

egy (with middle nodes).

The proof of lemma 4.2.9 follows by the PIP with the hybrid strategy πSimpHyb.

Proof. First consider the case of m ∈ M
Sk
n

4,0 , so M = ∅, with the simple hybrid
strategy πSimpHyb. The PIP is

maximize min
j∈N

2∑
i=0

Vπi,•,j(S
k
n, T,m)pi

s.t. pi ∈ [0, 1], i = 0, 1, 2,
p0 + p1 + p2 = 1.
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We can now simplify the objective function as we have either j ∈ L or j ∈ R (as
M = ∅) and we know for the two sets that for any choice of p1 and p2:

• for all j ∈ L,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,1(Skn, T,m)pi,

• for all j ∈ R,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,∗1(Skn, T,m)pi.

Moreover
2∑
i=0

Vπi,•,∗k(Skn, T,m)pi is equal for any k ∈ {1, ..., n− 1} and so we need

only consider the nodes 1 and ∗1 in the PIP. Hence the PIP, along with the
performances (in equations (4.13) and (4.14)) and reduction of p0 = 1− p1 − p2,
becomes

maximize min

(
m

2(n+ k)
(1− p1 − p2) + p1,

m

2(n+ k)
(1− p1 − p2) + p2

)
s.t. pi ∈ [0, 1], i = 1, 2,

p1 + p2 ≤ 1.

From the objective function of the PIP we know that it is maximized when p1 =
p2. Hence, if m ≥ n+k we get the optimal solution that p1 = p2 = 1

2
as m

2(n+k)
≤ 1

2

when m ∈MSk
n

4,0 . Otherwise, if m < n+k we get the optimal solution p1 = p2 = 0,
so no improvement is made over π0. The optimal value gives the lower bound as
given in the lemma.

Similarly in the case of m ∈ MSk
n

4,1 we can simplify the objective function of the
PIP as for any choice of p1 and p2:

• for all j ∈ L,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,1(Skn, T,m)pi,

• for all j ∈M ,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi =

2∑
i=0

Vπi,•,m̂+2(Skn, T,m)pi = m
n+k

p0,

• for all j ∈ R,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,∗1(Skn, T,m)pi.

Moreover
2∑
i=0

Vπi,•,∗k(Skn, T,m)pi is equal for any k ∈ {1, ..., n− 1} and so we need

only consider the nodes 1, m̂+2 and ∗1 in the PIP. Hence the PIP, along with the
performances (in equations (4.13) and (4.14)) and reduction of p0 = 1− p1 − p2,
becomes
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maximize min

(
m

2(n+ k)
p0 + p1,

m

n+ k
p0,

m

2(n+ k)
p0 + p2

)
s.t. pi ∈ [0, 1], i = 1, 2,

p1 + p2 ≤ 1.

From the objective function of the PIP we know that it is maximized when p1 =
p2, and furthermore when (1− 2p1) m

2(n+k)
+ p1 = (1− 2p1) m

n+k
. Hence the optimal

solution has p1 = p2 = m
2(m+n+k)

and p0 = n+k
m+n+k

. The optimal value gives the
lower bound as given in the lemma.

From lemma 4.2.9 we remark that in the case of m ∈MSk
n

4,0 , we only have a strict

improvement over the baseline π
Sk
n

RMFNC, when m < n+ k.

When m ∈ MSk
n

4,0 when m < n + k, we have that that π1 and π2 are intercepting
walks and each node in N is in one of the walks, thus they form a covering set
C = {π1,π2}, which is in fact minimal (as it is not possible to get a covering
set with one patroller). Therefore CSk

n,T,m
= 2 and so we could alternatively use

lemma 2.3.12 to achieve the bound present in the lemma 4.2.9 rather than the
PIP.

We provide figure 4.2.11, showing the lower bound given by lemma 4.2.9. We
see a sharp rise in the lower bound between m = 11 and m = 12, when the set

of middle M transitions from being non-empty to empty, meaning π
Sk
n

RMFNC is no
longer played and the covering strategy is used.

In the following section we find a partial solution when m ∈ M
Sk
n

4 , by finding

tight upper bounds via bespoke attacker strategies for m ∈MSk
3

4,0 when m < 3+k.

After this we apply PIP to π
Sk
n

RMFNC when m ∈ M
Sk
n

5 to improve the bound in
equation (4.2), using similar strategies to those in this section to reach a strict
improvement.

4.2.7 Solution when m ∈MSk
3

4,0

In this section we present a partial solution form ∈MSk
n

4,0 , by providing the optimal
attacker strategy which provides a tight upper bound with the lower bound in
lemma 4.2.9 when n = 3. In addition we provide an example to show how it is
possible to get this tightness when n ≥ 4.

For m ∈ M
Sk
n

4,0 , we recall that the use of the simple hybrid patroller πSimpHyb

strategy (with no middle nodes) gives us a lower bound of

V (Skn, T,m) ≥

{
1
2

for m < n+ k,
m

2(n+k)
otherwise.
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Figure 4.2.11: Lower bound on the game G(S10
3 , T,m) provided by the simple

patroller strategy πSimpHyb, for m ∈MSk
n

4 (7 ≤ m ≤ 21). For any T ≥ m.

In addition, we recall that in the case of m < n + k, the patroller strategy is
equivalent to a covering strategy (as CQ,T,m = 2), and is just the random minimal

full-node cycle strategy π
Sk
n

RMFNC otherwise. In the case of m < n + k, by the

conditions on m ∈MSk
n

4,0 , we know the attack length region is just m = n+ k− 1,

where n < k − 1 and n+ k is odd. As the diameter of Skn is d = k + 2 we get by
lemma 3.3.13 an upper bound of

V (Skn, T,m) ≤ max

(
1

2
,min

(
n+ k − 1

2(k + 2)
, 1

))
,

achieved by the time-limited diametric attacker strategy φtdi. Hence we know
the value of the game when n = 3 as V (Skn, T,m) ≤ 1

2
and hence arrive at the

following lemma.

Lemma 4.2.10. For the game G(Sk3 , T, k + 2) with an even k such that k ≥ 6
and any T ≥ k + 2, we have

V (Sk3 , T, k + 2) =
1

2
,

achieved by the simple improvement patroller strategy πSimpHyb (or the covering
strategy πCov) and the time-limited diametric attacker strategy φtdi.

For n ≥ 4, we cannot use the time-limited diametric attacker strategy φtdi to get
a tight upper bound, as the bound is strictly greater than a half for all n ≥ 4.
While we have not been able to produce a general attacker strategy for n ≥ 4, we
provide example 4.2.11 to show that it is possible to get tight bounds with the
lower bound in lemma 4.2.9 when n ≥ 4.
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Example 4.2.11. Consider the game G(S10
5 , 20, 14). Note that m = 14 ∈ MS10

5
4,0

and 14 = n+ k − 1 and n+ k = 15 is odd. Consider using the attacker strategy
φ ∈ Φ such that the probability of choosing the pure attack (j, τ) ∈ A is given
by

ϕj,τ =

{
1
16

if j = 1 and τ ∈ {0, 1, ..., 7},
1
16

if j ∈ {∗1, ..., ∗4} and τ ∈ {3, 4}.

Using theorem 3.2.13 we know that we can evaluate the performance of φ by

V•,φ(S10
5 , 20, 14) = max

ω∈Ω′′′
P (ω,φ),

in which Ω′′′ is a set whose elements are move-wait walks

ω = ((j1, ν1), (j2, 0)..., (jl, 0))

such that l ∈ N where ji ∈ NA, for the set of possibly attacked nodes NA =
{1, ∗1, ..., ∗4} and

ν1

{
∈ {0, 1, ..., 7} if j1 = 1

∈ {3, 4} if j1 = ∗i for some i ∈ {1, 2, 3, 4}.

Then by computing P (ω,φ) for every element ω ∈ Ω′′′ we find that

max
ω∈Ω′′′

P (ω,φ) =
1

2
.

Hence V (S10
5 , 20, 14) ≤ V•,φ(S10

5 , 20, 14) = 1
2

and along with lemma 4.2.9, which
gives a tight lower bound, we get that

V (S10
5 , 20, 14) =

1

2
.

4.2.8 PIP when m ∈MSk
n

5

In this section we use the patrol improvement program(PIP) to improve the ran-

dom minimal full-node cycle patroller strategy π
Sk
n

RMFNC for the game G(Skn, T,m)

when m ∈MSk
n

5 , where

M
Sk
n

5 = {m : 3 ≤ m ≤ 2n,m < 2(k + 1)}.

Recall that when m ∈ MSk
n

5 , we have m ≤ 2n, so there is no decrease in perfor-
mance at nodes along the line section towards the end (node k+ 1), unlike when

m ∈ M
Sk
n

4 . Let π0 = π
Sk
n

RMFNC be the baseline strategy for the PIP and seek to
find strategies which perform better at weakly performing nodes.
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We can find a strategy that can be used for the weakly performing left nodes,
L = {1, ..., m̂+ 1}, where m̂ =

⌊
m
2

⌋
. This is done by forming the walk

WL = (1, 2, ..., m̂+ 1, m̂, ..., 2),

which is repeated for the time-horizon. WL is of length 2m̂ and as 2m̂ ≤ m
the walk is intercepting as it visits every node at most m time units apart. The
pure strategy WL will used as a candidate for improvement in the PIP, for nota-
tional convince we will denote the strategy in mixed form π1 = WL. Then the
performance at node j ∈ N

Vπ1,•,j(S
k
n, T,m) = I{j∈L}. (4.15)

We note that this is identical to the left improvement when m ∈MSk
n

4 .

We can find a strategy for the other weakly performing nodes, which are the star
node ∗i for all i ∈ {1, ..., n − 1}, at which π0 performs equally. However, unlike

in the case of m ∈ M
Sk
n

4 , this cannot always be done by a single intercepting
strategy as m ≤ 2n, as it is only possible when m ∈ {2n − 2, 2n − 1, 2n}. To
form the star improvement strategy π2, the patroller chooses each subset χ ∈
℘({∗1, ∗2, ..., ∗n−1}, m̂) with equal probability, where ℘(A, b) is the elements of
the power set of A which are of cardinality b. Once χ is chosen, an intercepting
walk is formed which contains all the nodes in χ, by repeating a closed walk which
visits the nodes in χ. Note that the order of the star nodes in the closed walk
is arbitrary. The star improvement π2 has a non-zero performance at nodes in
S = {c, ∗1, ..., ∗n−1}. As the chance any given ∗i is chosen to be in χ is m̂

n−1
for

all i ∈ {1, ..., n− 1}, the performance of π2 at node j ∈ N is

Vπ2,•,j(S
k
n, T,m) =


m̂
n−1

if j ∈ {∗1, ..., ∗n−1},
1 if j = c,

0 if j ∈ {1, ..., k + 1}.
(4.16)

We can now form the combinatorial hybrid strategy πCombHyb which plays πi with
probability pi for i = 0, 1, 2 and use the PIP to determine the best probabilities

which achieve the best improvement over the baseline strategy π0(= π
Sk
n

RMFNC).
However before immediately using the PIP with our left and right improvements,
we must first consider if any nodes are not contained within either improvement.
That is if the set of middle nodes M = N \ (L∪S) is empty or not. Figure 4.2.12
shows an example of an elongated star graph game in which the left and star
improvements are used and contain the entire node set, so M = ∅. Figure 4.2.13
shows the related game in which the branch elongation k is increased from 2 to
5. Note that the left and star improvements no longer contain the entire node set
N , so M 6= ∅.

By considering the nodes m̂+ 1 and k + 1 , we have that

M = ∅ ⇐⇒ m̂ ≥ k.

We use this condition to further decompose M
Sk
n

5 into

M
Sk
n

5,0 ≡M
Sk
n

5 ∩ {m | m̂ ≥ k} = {2k, 2k + 1}
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1 2 3 c ∗2

∗1

∗3

p1, L = {1, 2, 3}

p2, S = {c, ∗1, ∗2, ∗3}

p2

3

Figure 4.2.12: The game G(S2
4 , 20, 4) with the left improvement π1 played with

probability p1 shown in blue and the star improvement π2 played with probability
p2. The green box shows one of the three repeated closed walks, using the set
χ = {∗2, ∗3}, chosen from ℘({∗1, ∗2, ..., ∗n−1}, m̂) = {{∗1, ∗2}, {∗1, ∗3}, {∗2, ∗3}}.
The sets are L = {1, 2, 3} and S = {c, ∗1, ∗2, ∗3} (M = ∅).

1 2 3 4 5 6 c ∗2

∗1

∗3

p1 M = {4, 5, 6}

p2, S = {c, ∗1, ∗2, ∗3}

p2

3

Figure 4.2.13: The game G(S2
4 , 20, 4) with the left improvement π1 played with

probability p1 shown in blue and the star improvement π2 played with probability
p2. The green box shows one of the three repeated closed walks, using the set
χ = {∗2, ∗3}, chosen from ℘({∗1, ∗2, ..., ∗n−1}, m̂) = {{∗1, ∗2}, {∗1, ∗3}, {∗2, ∗3}}.
The sets are L = {1, 2, 3}, S = {c, ∗1, ∗2, ∗3} and M = {4, 5, 6}).
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and
M

Sk
n

5,1 ≡M
Sk
n

5 ∩ {m | m̂ < k}.

As in section 4.2.6, we make this distinction of M = ∅ or M 6= ∅, as it affects
the PIP’s optimization of probabilities p1 and p2. The following lemma contains

the improved lower bound, over the lower bound achieved by using π
Sk
n

RMFNC (as

in equation 4.2)) for games when either m ∈MSk
n

5,0 or m ∈MSk
n

5,1 .

Lemma 4.2.12. For the game G(Skn, T,m), for any n ≥ 3, for any k ≥ 1, for all
T ≥ m,

• for m ∈MSk
n

5,0 we have

V (Skn, T,m) ≥ m̂

m̂+ n− 1
,

achieved by the combinatorial hybrid strategy, πCombHyb , with p1 = k
k+n−1

,

p2 = n−1
k+n−1

(and p0 = 0), called the combinatorial improvement strategy
(with no middle nodes).

• for m ∈MSk
n

5,1 we have

V (Skn, T,m) ≥ 2m

2(n+ k) +m(1 + n−1
m̂

)
,

achieved by the combinatorial hybrid strategy, πCombHyb , with p1 = m
2(n+k)+m(1+n−1

m̂
)
,

p2 = m(n−1)

m̂(2(n+k)+m(1+n−1
m̂

))
and p0 = 2(n+k)

m+n+k
, called the combinatorial improve-

ment strategy (with middle nodes).

In which m̂ =
⌊
m
2

⌋
.

The proof of lemma 4.2.12 is similar to that of lemma 4.2.9 and follows from the
PIP.

Proof. First consider the case ofm ∈MSk
n

5,0 , with the combinatorial hybrid strategy
πCombHyb. The PIP is,

maximize min
j∈N

2∑
i=0

Vπi,•,j(S
k
n, T,m)pi

s.t pi ∈ [0, 1], i = 0, 1, 2,
p0 + p1 + p2 = 1.

We can now simplify the objective function as we have either j ∈ L or j ∈ S (as
M = ∅) and we know for the two sets that for any choice of p1 and p2,
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• for all j ∈ L,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,1(Skn, T,m)pi,

• for all j ∈ S,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,∗1(Skn, T,m)pi.

Moreover
2∑
i=0

Vπi,•,∗k(Skn, T,m)pi is equal for any k ∈ {1, ..., n− 1} and so we need

only consider the nodes 1 and ∗1 in the PIP. Hence the PIP, along with the
performances (in equations (4.15) and (4.16)) and reduction of p0 = 1− p1 − p2,
becomes

maximize min

(
m

2(n+ k)
(1− p1 − p2) + p1,

m

2(n+ k)
(1− p1 − p2) +

m̂

n− 1
p2

)
s.t pi ∈ [0, 1], i = 1, 2,

p1 + p2 ≤ 1.

From the objective function of the PIP we know that it is maximized when p1 =
m̂
n−1

p2 so we get the optimal solution that p1 = m̂
m̂+n−1

and p2 = n−1
m̂+n−1

as m
2(n+k)

≤
1
2

when m ∈MSk
n

5,0 . In addition, when m ∈MSk
n

5,0 implies that m̂ = k, so p1 = k
k+n−1

and p2 = n−1
k+n−1

. The optimal value gives the bound given in the lemma.

Similarly in the case of m ∈ M
Sk
n

5,1 , we have a simplification of the objective
function of the PIP as for any choice of p1 and p2,

• for all j ∈ L,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,1(Skn, T,m)pi,

• for all j ∈M ,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi =

2∑
i=0

Vπi,•,m̂+2(Skn, T,m)pi = m
n+k

p0,

• for all j ∈ S,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,∗1(Skn, T,m)pi.

Moreover
2∑
i=0

Vπi,•,∗k(Skn, T,m)pi is equal for any k ∈ {1, ..., n− 1} and so we need

only consider the nodes 1, m̂+2 and ∗1 in the PIP. Hence the PIP, along with the
performances (in equations (4.15) and (4.16)) and reduction of p0 = 1− p1 − p2,
becomes

maximize min

(
m

2(n+ k)
p0 + p1,

m

n+ k
p0,

m

2(n+ k)
p0 +

m̂

n− 1
p2

)
s.t pi ∈ [0, 1], i = 1, 2,

p1 + p2 ≤ 1.
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From the objective function of the PIP we know that it is maximized when p1 =
m̂
n−1

p2, and (1− (1+ n−1
m̂

)p1) m
2(n+k)

+p1 = (1− (1+ n−1
m̂

)p1) m
n+k

. Hence the optimal

solution has p1 = m
2(n+k)+m(1+n−1

m̂
)
, p2 = m(n−1)

m̂(2(n+k)+m(1+n−1
m̂

))
and p0 = 2(n+k)

m+n+k
. The

optimal value gives the bound as given in the lemma.

We provide figure 4.2.14 showing the lower bound given by lemma 4.2.12 which
highlights the issue with lower bound achieved by using πCombHyb as m alternates
between odd and even values. The increase in the lower bound between even to
odd attack lengths is shallow, due to choosing the set χ from ℘({1, ..., n− 1}, m̂)
as m̂ =

⌊
m
2

⌋
is the same for m odd and m− 1 which would be even. Thus m odd

and m− 1 have the same star improvement π2 played with the same probability
making the strategy πCombHyb inefficient.

0.1

0.2

0.3

0.4

3 4 5 6 7 8 9 10 11 12 13

Attack length, m

L
ow
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b

ou
n
d

on
V

(G
)

Performance

VπCombHyb,•(S
6
10, T,m)

Figure 4.2.14: Lower bound on the game G(S6
10, T,m) provided by the combina-

torial hybrid strategy πCombHyb for m ∈MSk
n

5 (3 ≤ m ≤ 13) and any T ≥ m.

To rectify the inefficiency, we can consider adjusting the star improvement strat-
egy π2, when m is odd, to form the adjusted star improvement strategy π′2, which
replaces π2 in πCombHyb, to form the adjusted combinatorial hybrid πAdjCombHyb.
To form π′2, we allow the use of non-intercepting patroller strategies, therefore
allowing for different length closed walks to be used. We define a proxy attack
length

m′ =

{
m if m even

m+ r if m odd,

for some r ∈ {1, 3, ..., 2(n − 1) − m}. This proxy attack length is used to
form a closed walk of length m′, in which m̂′ =

⌊
m′

2

⌋
star nodes are chosen
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for each pure patrol in the star improvement. That is π′2 now chooses each
χ ∈ ℘({∗1, ..., ∗n−1}, m̂′) with equal probability to form a closed walk visiting
only the nodes in χ. Then the performance of π′2 at node j ∈ N is

Vπ′2,•,j(S
k
n, T,m) =


m

2(n−1)
if j ∈ {∗1, ..., ∗n−1},

1 if j = c,

0 if j ∈ {1, ..., k + 1}.
(4.17)

We can see this as if j = ∗i for some i ∈ {1, .., n − 1}, then the performance
is formed by the product of the two independent event probabilities; choosing j
to be in the set χ, and j’s performance in the patrol. I.e. m̂′

n−1
× m

2m̂′
= m

2(n−1)
.

Another way to see this star improvement is to perform the repeated closed walk
(∗1, c, ∗2, ..., c, ∗n−1, c, ∗1) (r = 2(n − 1) −m) which is of length 2(n − 1) and so
provides a performance at star nodes of m

2(n−1)
. Using πAdjCombHyb, we can once

again apply the PIP and achieve better lower bounds that that achieved by using

π
Sk
n

RMFNC. The results of this are shown in the following lemma.

Lemma 4.2.13. For the game G(Skn, T,m), for any n ≥ 3, for any k ≥ 1, for all
T ≥ m, we have,

• for m ∈MSk
n

5,0 ,

V (Skn, T,m) ≥ m

m+ 2(n− 1)
,

achieved by the adjusted combinatorial hybrid strategy, πAdjCombHyb , with

p1 = m
m+2(n−1)

, p2 = 2(n−1)
m+2(n−1)

(and p0 = 0), called the adjusted combinatorial

improvement patroller strategy (with no middle nodes).

• for m ∈MSk
n

5,1 ,

V (Skn, T,m) ≥ 2m

2(n+ k) +m+ 2(n− 1)
,

achieved by the adjusted combinatorial hybrid strategy, πAdjCombHyb , with

p1 = m
2(n+k)+m+2(n−1)

, p2 = 2(n−1)
2(n+k)+m+2(n−1)

and p0 = 2(n+k)
m+n+k

, called the

adjusted combinatorial improvement patroller strategy (with middle nodes).

We leave the proof of lemma 4.2.13 to appendix B.1, as it is essentially the
same as that of lemma 4.2.12, with m̂ replaced with m

2
. This small adjustment

when m is odd provides a strict improvement. Figure 4.2.15 shows how this
adjustment smooths out the increase in the strategies performance (lower bound)
as m alternates between even and odd.

4.2.9 Solution when M
Sk
n

5

In this section, we provide a tight bound to the lower bounds in lemma 4.2.13

for the game G(Skn, T,m) when m ∈ MSk
n

5 . We first consider case 1: m ∈ MSk
n

5,0 ,
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Figure 4.2.15: Lower bounds on the game G(S6
10, T,m) provided by the combi-

natorial improvement strategy πCombHyb in black and the adjusted combinatorial

improvement strategy πAdjCombHyb in red. Shown for m ∈ M
Sk
n

5 (3 ≤ m ≤ 13)
, for any T ≥ m. The strategies can be seen to provide the same lower bound
when m is even, with points shown in green, as the adjustment is not needed.
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the case where M = ∅ in which we find that a reduced version of the time-
centred attacker strategy provides a tight upper bound. This is followed by case

2: m ∈MSk
n

5,1 , the case where M 6= ∅, in which we start by looking at simplification
as a method to obtain an optimal attacker strategy. Case 2 will be concluded
in the following section as it requires multiple bespoke attacker strategies to be
created in order to obtain a tight or near tight upper bound.

Case 1: m ∈MSk
n

5,0

Let us first recall that there are only two possible attack lengths of m = 2k, or

m = 2k + 1 when M = ∅. Further to this, m = 2k is only in the region M
Sk
n

5,0 if
k ≤ n and similarly m = 2k+ 1 is only in the region if k ≤ n−1. We seek a tight
upper bound to match that of the lower bound from lemma 4.2.13, viz.

V (Skn, T,m) ≥ m

m+ 2(n− 1)
. (4.18)

The time-centred attacker strategy φtc, for m < 2(k+1) gives us the upper bound
of

V (Skn, T,m) ≤ k + 1

n+ k
.

So the time-centred attacker strategy does not achieve a tight upper bound to
match equation (4.18), but it is extremely close. The strategy is not tight because
for m < 2(k+ 1), the best response pure patroller waits at node 1 to see 2(k+ 1)
out of the 2(n + k) potential attacker agents. Knowing that this is the reason
the time-centred attacker strategy is not tight with equation (4.18), allows us
to adjust it to match the desired lower bound. We can do this by reducing the
number of agents who attack node 1, reducing it from 2(k+1) agents to m agents.
This ensures that any pure patroller who waits at node 1 only catches m agents.
We define this attack formally as the reduced time-centred attacker strategy.

Definition 4.2.14. The reduced time-centred attacker strategy φrtc is such that
the probability of choosing the pure attack (j, τ) ∈ A is

ϕj,τ =


1

m+2(n−1)
if j = 1 and τ ∈ {0, 1, ...,m− 1},

1
m+2(n−1)

if j ∈ {∗1, ..., ∗n−1} and τ ∈ {m̂, m̂+ 1},
0 otherwise,

where m̂ =
⌊
m
2

⌋
.

In addition to altering how a pure patroller waiting at node 1 only gets m agents,
any pure patroller starting at ∗i for some i = 1, ..., n− 1 then arriving at node 1
will get less agents. An example of the reduced time-centred attack can be seen
in figure 4.2.16. The lowering of the attack length from m = 8 to m = 7 can be
seen when comparing figure 4.2.16 to the time-centred attack in figure 4.2.6, in
which we see the idea of reducing the number of agents that the pure patroller
catches. Using the reduced time-centred attacker strategy, we are able to find the
desired upper bound which is tight with equation (4.18).
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Figure 4.2.16: Space-time agent matrix SArtc for the reduced time-centred attacker
strategy φrtc for the game G(S3

n, 14, 7) for any n ≥ 4. Three example pure
patrollers are drawn in red, blue and green, catching at most 7 out of 7+2(n−1)
agents.

Lemma 4.2.15. For a game G(Skn, T,m), for all n ≥ 3, for all k ≥ 1, for all

m ∈MSk
n

5,0 and for all T ≥ 2m− 1 we have

V (Skn, T,m) ≤ m

m+ 2(n− 1)
,

achieved by the reduced time-centred attacker strategy φrtc.

We leave the proof of lemma 4.2.15 to appendix B.2, as it is essentially the same
as for lemma 4.2.6 with the waiting time ν1 for the move-wait walk starting at
node 1 reduced from a maximum of 2k+ 1 to m. Lemmas 4.2.15 and 4.2.13 have
tight upper and lower bounds and hence we know that for m ∈ M

Sk
n

5,0 that the
adjusted combinatorial patroller strategy with no middle nodes and the reduced
time-centred attacker strategy are optimal and so we know the value of the game.
We summarize this in the following corollary.

Corollary 4.2.16. For a game G(Skn, T,m) for all n ≥ 3, for all k ≥ 1, for all

T ≥ 2m− 1 and for all m ∈MSk
n

5,0 , we have,

V (Skn, T,m) =
m

m+ 2(n− 1)
,

achieved by the adjusted combinatorial patroller strategy πAdjCombHyb (with no mid-
dle nodes) and the reduced time-centred attack strategy φrtc.

Corollary 4.2.16 concludes the solution for case 1. It may seem natural to consider

further reduction to the time-centred attacker strategy when m ∈MSk
n

5,1 , however
the lower bound given in lemma 4.2.13 is not tight with this bound, as m

m+2(n−1)
≥

2m
2(n+k)+m+2(n−1)

for all m ∈ MSk
n

5,1 . Thus suggesting, if the adjusted combinatorial
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improvement strategy (with middle node) is optimal, that the attacker can make
an even more efficient attacker strategy, placing more agents. Intuitively, when
the attack length is very low, only attacking the leaf nodes seems suboptimal as
there are more nodes which are independent which could be attacked along the
line segment. We will see this to be true, and also that the placement of these
potential attacking agents for non-leaf nodes can be seen through simplification
followed by some bespoke adjustments as required.

Case 2: m ∈MSk
n

5,1

Case 2 deals with the case of M 6= ∅, that is middle nodes are present. We seek
a tight upper bound to match that of the lower bound from lemma 4.2.13, viz.

V (Skn, T,m) ≥ 2m

2(n+ k) +m+ 2(n− 1)
. (4.19)

To find such an upper bound to match that of equation (4.19) we first consider a
simplification of Skn to Sn+b k2c in which the set

Ns =

{
{1, 3, 5, ..., k} if k is odd,

{2, 4, 6, ..., k} if k is even,

are node-identified with the centre c. Figure 4.2.17 shows an example of this
simplification, when k = 5, simplifying S5

4 to S6. For the game G(Sn+b k2c, T,m)

the value and optimal strategies are known and hence we can use corollary 3.3.8
to get an upper bound on the game G(Skn, T,m) of

V (Skn, T,m) ≤ V (Sn+b k2c, T,m) =
m

2n+ 2
⌊
k
2

⌋ , (4.20)

achieved by the embedding of an optimal attacker strategy for the gameG(Sn+b k2c, T,m).

Namely φfs such that

ϕj,τ =

{
1

2(n+b k2c)
for j ∈ Ns ∪ {∗1, ..., ∗n−1} and τ ∈ {0, 1},

0 otherwise.

achieves the bound in equation (4.20).

It is clear that the upper bound in equation (4.20) does not match the lower
bound in equation (4.19) (unless m = 2, in which case this embedded attacker
strategy is equivalent to the independence attacker strategy and is optimal). We
provide figure 4.2.18 to highlight that using such a simplification, of Skn to Sn+b k2c,
produces a greatly suboptimal strategy. Note that while we do not know it is
suboptimal, we later see, in this section and the following section, that it is
possible to get the desired upper bound which matches that of equation (4.19)
and so the inequality in equation (4.19) becomes equality.

We see in the following section, which continues the solution for when m ∈MSk
n

5,1 ,
that by considering other simplifications we achieve a tight upper bound with
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Figure 4.2.17: Simplification of S5
4 to S6 with nodes 1, 3, 5 node-identified with

c shown in the figure with dashed lines. Note due to the symmetry of the star
nodes we have chosen to simply denote them by ∗ in the figure.
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Figure 4.2.18: Lower bound on the game G(S5
7 , T,m), provided by adjusted com-

binatorial improvement strategy πAdjCombHyb, in black, (which we later see is an
optimal strategy) and the upper bound provided by the simplified time-centred
attacker strategy φfs, in red. Plotted for m = 3, ..., 11 and for any T ≥ m+ 1.
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equation (4.19) for certain attack lengths in the set M
Sk
n

5,1 . To do so, we require
the simplification to depend on the attack length m, with the simplified graph
being an elongated star graph for which the patrolling game’s solution is known
for the attack length.

4.2.10 Optimal attacker strategies by simplification

In this section we continue to seek an upper bound which is tight with the lower

bound given in equation (4.19) (from lemma 4.2.13 in the case of m ∈MSk
n

5,1). We

consider the simplification of Skn to Sk−2l
n+l for some l ∈ {0, 1, ...,

⌊
k
2

⌋
+ 1} and by

doing so we immediately find a solution for a subset of M
Sk
n

5,1 , when m − 2k −
2 mod 4 = 0. For other attack lengths we require bespoke manipulations of
embedded attacker strategies in order to find effective attacker strategies. We

define ρ = m − 2k − 2 mod 4 to further divide the attack length regions M
Sk
n

5,1 ,
where the optimal attacker strategy differs. However we do not use new notation
for these attack length regions, as we predict that the value remains the same
for any ρ, with only the optimal attacker strategy varying dependent on ρ. In
fact we show that for ρ ∈ {0, 2} the value is the same and for ρ ∈ {1, 3} we have
extremely close bounds.

To simplify Skn to Sk−2l
n+l for some l = 0, 1, ...,

⌊
k
2

⌋
+ 1, each node in the set Ns(l) =

{k, k − 2, ..., k − 2(l − 1)} is identified with c. In addition we relabel nodes
j = k + 1, ..., k + 1 − 2(l − 1) as j = ∗n, ..., ∗n+l−1. By using the time-centred
attacker strategy φtc, which is optimal for the game on the graph Sk−2l

n+l , we get
the following bound, by corollary 3.3.8 and lemma 4.2.6. For any n ≥ 3, for any
k ≥ 1, for any m ≥ 2(k − 2l + 1) and for any T ≥ 2k +m+ 1− 4l, of

V (Skn, T,m) ≤ V (Sk−2l
n+l , T,m) =

m

2(n+ k − l)
. (4.21)

Note that it is also possible to get an upper bound for m < 2(k − 2l + 1), which
is V (Skn, T,m) ≤ k−2l

n+k−l , however this is not used. The time-centred attacker

strategy φtc for the game G(Sk−2l
n+l , T,m) chooses the pure attack (j, τ) ∈ A with

probability

ϕj,τ =


1

n+k−2l
for j = 1 and τ ∈ {0, ..., 2(k − 2l) + 1},

1
n+k−2l

for j ∈ {∗1, ..., ∗n+l−1} and τ ∈ {k − 2l, k + 1− 2l},
0 otherwise.

Embedding φtc from G(Sk−2l
n+l , T,m) into the game G(Skn, T,m) results in an at-

tacker strategy φ(l) which chooses (j, τ) ∈ A with probability

ϕj,τ =


1

n+k−2l
for j = 1 and τ ∈ {0, ..., 2(k − 2l) + 1},

1
n+k−2l

for j =∈ {∗1, ..., ∗n−1} and τ ∈ {k − 2l, k + 1− 2l},
1

n+k−2l
for j ∈ Ns(l) and τ ∈ {k − 2l, k + 1− 2l},

0 otherwise.

(4.22)
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That is φ(l) gives the bound in equation (4.21) and from this upper bound it
is clear that to achieve the best upper bound the attacker should choose the
minimal l possible. However, the bound is only valid for m ≥ 2(k − 2l + 1) and

so as we are considering m ∈MSk
n

5,1 we are limited to pick the minimal l such that

2(k − 2l + 1) ∈MSk
n

5,1 . That is we pick l to be l∗(m) =
⌊

2k+2−m
4

⌋
, and achieve the

best possible upper bound (by this simplification), for any n ≥ 3, for any k ≥ 1,

for any m ∈MSk
n

5,1 and for any T ≥ 2k +m+ 1− 4l∗(m) of

V (Skn, T,m) ≤ m

2(n+ k − l∗(m))
. (4.23)

We call the attacker strategy which generates the upper bound in equation (4.23),
the 0-simplified time-centred attacker strategy φ0−stc = φ(l∗(m)), which has the
probability of choosing (j, τ) as equation (4.22) with l = l∗(m). That is, for φρ=0

the attack chooses; with probability

2m

2(n+ k) +m+ 2(n− 1)

to attack node 1, then with equal probability choosing a commencement time
from 0, ...,m− 1; or chooses node ∗i for i = 1, ..., n− 1 with probability

2

2(n+ k) +m+ 2(n− 1)

and then with equal probability a commencement time from m
2
− 1, m

2
; or chooses

nodes j for j = k + 1, k − 1, ..., m
2

+ 2 with probability

2

2(n+ k) +m+ 2(n− 1)

and then with equal probability a commencement time from m
2
− 1, m

2
. Figure

4.2.19 shows the space-time agent matrix SA0−stc representation for the attacker
strategy φ0−stc.

The upper bound in equation (4.23) and the lower bound in equation (4.19) are
tight for attack lengths that are such that ρ = 0. This can be seen in figure 4.2.20
in which the upper and lower bounds are equal when ρ = 0. We note that ρ = 0
corresponds to when l∗(m) does not require rounding by the floor function and
so the upper bound in equation (4.23) becomes

V (Skn, T,m) ≤ 2m

2(n+ k) +m+ 2(n− 1)
. (4.24)

Hence, for ρ = 0 we arrive at the following lemma, as the upper bound in equation
(4.24) is tight with the lower bound in lemma 4.2.13.

Lemma 4.2.17. For the game G(Skn, T,m), for all n ≥ 3, k ≥ 1, for all m ∈
M

Sk
n

5,1 ∩ {m : ρ = 0} and for all for all T ≥ 2(k − 2l∗(m)) +m we have

V (Q, T,m) =
2m

2(n+ k) +m+ 2(n− 1)
,
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Figure 4.2.19: Space-time agent matrix SA0−stc for the 0-simplified time-centred
attacker strategy φ0−stc for the game G(S5

7 , 20, 8). With the strategy equivalent
to the embedded time-centred attacker strategy from the game G(S3

8 , 20, 8), for
which node 7 is identified with c and 6 is relabelled as a star node. Three example
pure patrollers are shown in red, green and blue.

achieved by the adjusted combinatorial improvement patroller strategy (with mid-
dle nodes) πAdjCombHyb and the 0-simplified time-centred attacker strategy φ0−stc.

Figure 4.2.20 shows our progression of finding tight upper bounds with the lower
bound in lemma 4.2.13 by using the upper bound in equation (4.24). Notice that
the bounds are tight when m is such that ρ = 0 and that for other values of m
there is a slight sub-optimality in the attacker using φ0−stc (as we see later that
πAdjCombHyb is optimal).

Having seen an optimal attacker strategy when ρ = 0 we are left to find optimal
attacker strategies for ρ = 1, 2, 3. We find an optimal attacker strategy for ρ = 2
and near optimal strategies for ρ = 1, 3 by creating bespoke attacker strategies.
Due to the way we will adapt the strategies for ρ = 1, 3, we present a ‘doubled’
space-time agent matrix for the 0-simplified time-centred attacker strategy, in
order to avoid changing half an agent. From the lower bound given in lemma
4.2.13, viz.

V (Skn, T,m) ≥ 2m

2(n+ k) +m+ 2(n− 1)
,

it should be clear why this doubling of the original representation is needed when
m is odd, which corresponds to ρ = 1, 3. Therefore the goal to is to find a
space-time agent matrix using 2(n + k) + m + 2(n − 1) agents in which any
pure patroller can at most catch 2m agents. However, we will find near optimal
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Figure 4.2.20: The graph shows the lower bound on the game G(S5
7 , 50,m) pro-

vided by adjusted combinatorial improvement patroller strategy (with middle
nodes) πAdjCombHyb in black (which will later see is optimal) and the upper bound
provided by the simplified time-centred attacker strategy φ0−stc, in red. Plotted
for m = 3, ..., 11 with cases of m such that ρ = 0 shown in green, for which we
know the bounds are tight.
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strategies in which any pure patroller can catch at most 2m + 1 agents. Figure
4.2.21 shows the same attacker strategy as figure 4.2.19, that being φ0−stc, with
a ring around a space-time point (j, τ) representing the presence of two agents.
Note that probabilities of the strategy φ0−stc remain the same, as we are doubling
the numerator and denominator of each probability of playing (j, τ).

6
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Time

2 4 6 8 10 12 14 16 14 12 10 8 6 4 2
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2 4 4 4 4 4 4 2

Figure 4.2.21: ‘Doubled’ space-time agent matrix for the 0-simplified time-centred
attacker strategy φ0−stc, for the game G(S5

7 , 20, 8). Equivalent in terms of strategy
to that shown in figure 4.2.19, with double the number of agents at each space-
time point, represented by an additional ring around nodes with double agents.

As each of the remaining ρ = 1, 2, 3 require different adaptations to create bespoke
attacker strategy, we cover them in the following three cases. We cover them in
descending order, ρ = 3, 2, 1, due to their creation coming from removing an agent
from the previously done case, while ensuring that any pure patroller to catches
at least one agent less than before.

Case 1: ρ = 3

For the case of ρ = 3, we have to remove a single agent from the ‘doubled’ strategy
that would be used for an attack length of m + 1 (that is the ρ = 0-simplified
time-centred attacker strategy for the game with m+1). We remove two potential
agents at the node 1 which commence at times 0 and 2(k − l∗(m + 1)) + 1. We
also introduce a single potential attack at node k+ 1− l∗(m+ 1) starting at time
k − l∗(m+ 1). This results in the following attacker strategy.

Definition 4.2.18. The 3-simplified time-centred attacker strategy φ3−stc is such



CHAPTER 4. PATROLLING GAMES ON EXTENDED STAR GRAPHS 155

that the probability of choosing (j, τ) is

ϕj,τ =



1
2(n+k)+m+2(n−1)

for j = 1, τ ∈ {0,m},
2

2(n+k)+m+2(n−1)
for j = 1, τ ∈ {1, ...,m− 1},

1
2(n+k)+m+2(n−1)

for j = m+1
2

+ 1, τ = m+1
2
− 1,

2
2(n+k)+m+2(n−1)

for j ∈ {k + 1, k − 1, ..., m+1
2

+ 2}, τ ∈ {m+1
2
− 1, m+1

2
},

2
2(n+k)+m+2(n−1)

for j ∈ {∗1, ..., ∗n−1}, τ ∈ {m+1
2
− 1, m+1

2
}.

That is φ3−stc chooses; with probability

2m

2(n+ k) +m+ 2(n− 1)

to attack node 1, then choosing a commencement time from τ = 0, ...,m with
probability 1

2m
for τ = 0,m and 2

2m
for τ = 1, ...,m − 1; or chooses node ∗i for

i = 1, ..., n− 1 with probability

4

2(n+ k) +m+ 2(n− 1)

and then with equal probability a commencement time from m+1
2
− 1, m+1

2
; or

chooses nodes j for j = k + 1, k − 1, ..., m+1
2

+ 2 with probability

2

2(n+ k) +m+ 2(n− 1)

and then with equal probability a commencement time from m+1
2
− 1, m+1

2
; or

chooses node m+1
2

+1 with probability 1
2(n+k)+m+2(n−1)

and a commencement time

of m+1
2
− 1.

Figure 4.2.22 shows an example of the space-time agent matrix SA3−stc for φ3−stc,
which can be compared to the ‘double’ space-time agent matrix in figure 4.2.21
in order to see the adaptation/removal of an agent. By removing two agents at
the ends of the commencement time distribution and adding agent above the last
node along the line which is simplified to a star node we are able to restrict the
best pure patroller to only catch 2m+ 1 agents. We formally state this result as
achieving the desired upper bound, in the following lemma.

Lemma 4.2.19. For the game G(Skn, T,m), for all n ≥ 3, k ≥ 1, for all m ∈
M

Sk
n

5,M ∩ {m : ρ = 3} and for all T ≥ 2m we have

V (Skn, T,m) ≤ 2m+ 1

2(n+ k) +m+ 2(n− 1)
,

achieved by the 3-simplified time-centred attacker strategy φ3−stc.

The proof of lemma 4.2.19, is left to appendix B.3.1, as it follows by computing
the performance of the strategy φ3−stc. The upper bound in lemma 4.2.19 is not
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Figure 4.2.22: Space-time agent matrix SA3−stc for the 3-simplified time-centred
attacker strategy φ3−stc for the game G(S5

7 , 15, 7). Four example pure patrollers
are shown in red, orange, green and blue each catching at most 15 out of 43
agents.

tight with the lower bound in equation (4.21), but does provide a very close upper
value. Therefore while φ3−stc may not be optimal it is near optimal as

2m

2(n+ k) +m+ 2(n− 1)
≤ V (Skn, T,m) ≤ 2m+ 1

2(n+ k) +m+ 2(n− 1)
.

Case 2: ρ = 2

For the case of ρ = 2, we have to remove a single agent from the ‘single’ strategy
that would be used for an attack length of m + 2 (that is the ρ = 0-simplified
time-centred attacker strategy for the game with m + 2). We first re-allocate
potential agents at node 1 which start at odd times, t, to start at t − 1, the
prior even times. We also remove the potential attacks at t = 2(k − l∗(m + 2))
and t = 2(k − l∗(m + 2)) + 1 at node 1. We then have to re-centralise the
potential agents commencing at nodes k + 2 − 2l∗(m + 2), ..., k and ∗i for i =
1, ..., n − 1 and re-allocate even commencement times, to commence at times
k− 2l∗(m+ 2)− 2,k− 2l∗(m+ 2). Finally as two potential agents are removed we
need to introduce a single potential agents, we do so at node k + 1− 2l∗(m+ 2)
commencing at time k − 2l∗(m + 2) − 1. This results in the following attacker
strategy.

Definition 4.2.20. The ρ = 2-simplified time-centred attacker strategy φ2−stc is
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such that the probability of choosing (j, τ) is

ϕj,τ =


4

2(n+k)+m+2(n−1)
for j = 1, τ ∈ {0, 2, ...,m− 2},

2
2(n+k)+m+2(n−1)

for j = m+4
2
, τ = m−2

2
,

2
2(n+k)+m+2(n−1)

for j ∈ {k + 1, k − 1, ..., m+4
2

+ 1}, τ ∈ {m−4
2
, m

2
},

2
2(n+k)+m+2(n−1)

for j ∈ {∗1, ..., ∗n−1}, τ ∈ {m−4
2
, m

2
}.

That is φ2−stc chooses; with probability

2m

2(n+ k) +m+ 2(n− 1)

to attack node 1, then choosing a commencement time from τ = 0, 2, ...,m − 2
with equal probability ; or chooses node ∗i for i = 1, ..., n− 1 with probability

4

2(n+ k) +m+ 2(n− 1)

and then with equal probability choosing a commencement time from m−4
2
, m

2
; or

chooses node j for j = k + 1, k − 1, ..., m+4
2

+ 1 with probability

4

2(n+ k) +m+ 2(n− 1)

and then with equal probability a commencement time from m−4
2
, m

2
; or chooses

node m+4
2

with probability

2

2(n+ k) +m+ 2(n− 1)

and a commencement time of m−2
2

.

Figure 4.2.23 shows an example of the space-time agent matrix SA2−stc for φ2−stc,
which can be compared to the ‘single’ space-time agent matrix in figure 4.2.19 in
order to see the adaptation/removal of an agent. Unlike the case of ρ = 3, as m
is even, ensuring even commencement times for the agents placed at node 1 allow
us to get an attacker strategy where the best pure patroller is only able to catch
m agents. We formally state this result as achieving the desired bound, as in the
following lemma.

Lemma 4.2.21. For the game G(Skn, T,m), for all n ≥ 3, k ≥ 1, for all m ∈
M

Sk
n

5,1 ∩ {m : ρ = 2} and for all T ≥ 2m− 3 we have

V (Q, T,m) ≤ 2m

2(n+ k) +m+ 2(n− 1)
,

achieved by the 2-simplified time-centred attacker strategy φ2−stc.
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Figure 4.2.23: Space-time agent matrix SA2−stc for the 2-simplified time-centred
attacker strategy φ2−stc for the game G(S9

7 , 18, 10). Three example pure patrollers
are shown in red, green and blue each catching 10 out of 27.

The proof of lemma 4.2.21, is left to appendix B.3.2, as it follows by computing
the performance of φ2−stc. The upper bound in lemma 4.2.23 is tight with the
lower bound in equation (4.21) and therefore φ2−stc is optimal.

Case 3: ρ = 1

For the case of ρ = 1, while it is possible to imagine it as a removal and re-
allocation of agents from the attacker strategy when the attack length is m + 3
(that is the ρ = 0-simplified time-centred attacker strategy when m + 3), it is
much easier to see the addition and re-allocation of potential agents when the
attack length is m−1 (that is the ρ = 0-simplified time-centred attacker strategy
when m+ 3). To adapt the ‘doubled’ attacker strategy with m− 1, we first time
shift the strategy forward by one time unit in order to allow for a new single
potential attack to be introduced at node 1 commencing at time 0 and then the
re-allocation of a single potential attack at node k − 2l∗(m− 1) + 2 commencing
at time k − 2l∗(m− 1) + 1 (originally at k − 2l∗(m− 1) before the time shift) to
node 1 commencing at time 2(k − 2l∗(m − 1)) + 3. This results in the following
attacker strategy.

Definition 4.2.22. The 1-simplified time-centred attack strategy φ1−stc is such
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that the probability of choosing (j, τ) is

ϕj,τ =



1
2(n+k)+m+2(n−1)

for j = 1, τ ∈ {0,m},
2

2(n+k)+m+2(n−1)
for j = 1, τ ∈ {1, ...,m− 1},

1
2(n+k)+m+2(n−1)

for j = m+3
2
, τ ∈ {m−1

2
, m−1

2
+ 1},

1
2(n+k)+m+2(n−1)

for j = 1 + m+3
2
, τ = m−1

2
,

2
2(n+k)+m+2(n−1)

for j ∈ {k + 1, k − 1, ..., m+3
2

+ 2, }τ ∈ {m−1
2
, m−1

2
+ 1},

2
2(n+k)+m+2(n−1)

for j ∈ {∗1, ..., ∗n−1}, τ ∈ {m−1
2
, m−1

2
+ 1}.

That is φ1−stc chooses; with probability

2m

2(n+ k) +m+ 2(n− 1)

to attack node 1, then choosing a commencement time from τ = 0, 1, ...,m with
probability 1

2m
for τ = 0,m and 2

2m
for τ = 1, ...,m − 1 ; or chooses node ∗i for

i = 1, ..., n− 1 with probability

4

2(n+ k) +m+ 2(n− 1)

and then with equal probability choosing a commencement time from m−1
2
, m+1

2
;

or chooses node j for j = k + 1, k − 1, ..., 2 + m+3
2

with probability

4

2(n+ k) +m+ 2(n− 1)

and then with equal probability a commencement time from m−1
2
, m+1

2
; or chooses

node 1 + m+3
2

with probability

1

2(n+ k) +m+ 2(n− 1)

and a commencement time of m−1
2

; or chooses node m+3
2

with probability

2

2(n+ k) +m+ 2(n− 1)

and then with equal probability chooses a commencement time from m−1
2
, m+1

2
.

Figure 4.2.24, shows an example of the space-time agent matrix SA1−stc for φ1−stc,
which can be compared to the ‘doubled’ space-time agent matrix in figure 4.2.21
in order to see the adaptation/removal of three agents. In addition we can see a
comparison to the space-time agent matrix in figure 4.2.22 in which two agents
are removed, by altering the closest agents along the line section to node 1. This
adaptation, like the others, means the best pure patroller is only able to catch
2m + 1 agents. We formally state this result as achieving the desired bound, as
in the following lemma.
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Figure 4.2.24: Space-time agent matrix SA1−stc for the 1-simplified time-centred
attacker strategy φ1−stc for the game G(S5

7 , 10, 5). Three example pure patrollers
are shown in red, orange, green and blue each catching 11 out of 41 agents.
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Lemma 4.2.23. For the game G(Skn, T,m), for all n ≥ 3, k ≥ 1, for all m ∈
M

Sk
n

5,1 ∩ {m : ρ = 1} and for all T ≥ 2m we have

V (Skn, T,m) ≤ 2m+ 1

2(n+ k) +m+ 2(n− 1)
,

achieved by the 1-simplified time-centred attacker strategy φ1−stc .

The proof of lemma 4.2.23, is left to appendix B.3.3, as it follows by computing
the performance of the strategy φ1−stc. The upper bound in lemma 4.2.23 is not
tight with the lower bound in equation (4.21), but does provide a very close upper
value. Therefore while φ1−stc may not be optimal it is near optimal as

2m

2(n+ k) +m+ 2(n− 1)
≤ V (Skn, T,m) ≤ 2m+ 1

2(n+ k) +m+ 2(n− 1)
.

4.2.11 Conclusion on elongated star graphs

In this section, we collate our results obtained throughout our work on the game
G(Skn, T,m) into the following theorem.

Theorem 4.2.24. For the game G(Skn, T,m), the value of the game is given by,
for all n ≥ 3, for all k ≥ 1,

• for all T ≥ 1 and m ∈MSk
n

0 = {m : m = 1},

V (Skn, T, 1) =
1

n+ k + 1
,

achieved by the choose and wait patroller strategy πcw and the position-
uniform attacker strategy φpu;

• for all T ≥ m and m ∈MSk
n

1 = {m : m ≥ 2(n+ k)},

V (Skn, T,m) = 1,

achieved by the minimal full-node cycle patroller strategy W
Sk
n

MFNC (or π
Sk
n

RMFNC)
and any attacker strategy;

• for T ≥ m and m ∈MSk
n

2 = {m : 2(k + 1) ≤ m ≤ 2(n+ k)},

V (Skn, T,m) =
m

2(n+ k)
,

achieved by the random minimal full-node cycle patroller strategy π
Sk
n

RMFNC

and the time-centred attacker strategy φtc;
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• for T ≥ 2 and m ∈MSk
n

3 = {m : m = 2},

V (Skn, T, 2) =
1

n+
⌈
k
2

⌉ ,
achieved by the covering patroller strategy πCov and the independent attacker
strategy φInd;

• for T ≥ 1 and m ∈MSk
n

4 {m : m > 2n,m < 2(k + 1)},

– if m ∈MSk
n

4,0 ≡M
Sk
n

4 ∩ {m | m̂ ≥ n+k−1
2
},

V (Skn, T,m) ≥ 1

2
,

achieved by the simple improvement patroller strategy πSimpHyb (with
no middle nodes) . Moreover V (Sk3 , T,m) = 1

2
, by the time-limited

diametric attacker strategy φtdi;

– if m ∈MSk
n

4,0 ≡= M
Sk
n

4 ∩ {m | m̂ < n+k−1
2
},

V (Skn, T,m) ≥ m

m+ n+ k
,

achieved by the simple improvement patroller strategy πSimpHyb (with
middle nodes);

• for T ≥ 2m and m ∈MSk
n

5 = {m : 3 ≤ m ≤ 2n,m < 2(k + 1)},

– if m ∈MSk
n

5,0 ≡ {2k, 2k + 1},

V (Skn, T,m) =
m

m+ 2(n− 1)
,

achieved by the adjusted combinatorial improvement patroller strategy
πAdjCombHyb (with no middle nodes) and the reduced time-centred at-
tacker strategy φrtc;

– if m ∈MSk
n

5,1 ≡M
Sk
n

5 ∩ {m | m̂ < k},
� and ρ ∈ {0, 2} then

V (Skn, T,m) =
2m

2(n+ k) +m+ 2(n− 1)
,

� and ρ ∈ {1, 3} then

2m

2(n+ k) +m+ 2(n− 1)
≤ V (Skn, T,m) ≤ 2m+ 1

2(n+ k) +m+ 2(n− 1)
,

achieved by the adjusted combinatorial improvement patroller strategy
πAdjCombHyb (with middle nodes) and the ρ-simplified time-centred at-
tacker strategy φρ−stc. Where ρ ≡ m − 2k − 2 mod 4 determines the
exact strategy the attacker takes (see sections 4.2.9 and 4.2.10 for de-
tails);
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Theorem 4.2.24 provides optimal solutions to the vast majority of patrolling games
played on the elongated star graph. We note that we require a game length of

at least 2m for the region of attack lengths M
Sk
n

5 in order to be able to use the
attacker strategies. Furthermore, we note that we were only able to find near
optimal solutions when ρ ∈ {1, 3}. While we did not find analytical bespoke

attacker strategies which match the upper bound when m ∈ M
Sk
n

4 , we provide
examples of games in which these were found to be tight. We highlight this now
as it is future work that can be investigated. The partial solution and examples
in section 4.2.7 may help to provide an insight on how to construct more optimal

strategies for M
Sk
n

4 .

Theorem 4.2.24 concludes our work on G(Skn, T,m). In the following section we
consider Skn where more star nodes undergo node splitting ending a distance ki+1
from the centre for each star node ∗i for all i ∈ {1, ..., n − 1}. We are able to
extend some of our strategies from theorem 4.2.24 to obtain the solution to the
game G(Skn , T,m).

4.3 Generalised star graph

To further extend the structure of elongated star graphs Skn ∈ SE , which model a
border with a star structure at one end, we introduce the generalised star graph.
The generalised star graph Skn , for some k ∈ Nn for some n ∈ N, is formed by
performing ki node-splittings on the node ∗i for all i ∈ {1, ..., n}, where ki is the ith

element of k. This node-splitting is done in a similar fashion as for the elongated
star graph, resulting in node ∗i being a distance of ki + 1 from the centre c. The
generalised star graph models multiple borders, of varying length, connected to
each other by a central location. In addition it models important locations, at
various distances from a central location. In this section we provide solutions to

the generalised star graph for attack length regions M
Skn
i for i = 0, 1, 2, 3, defined

analogous to those for the elongated star graph (M
Sk
n

i for i = 0, 1, 2, 3). In addition

we provide ideas for solutions for the final regions (analogous to M
Sk
n

4 and M
Sk
n

5 )

Definition 4.3.1. The generalised star (graph) is a graph Skn = (N,E) where
k ∈ Nn is the vector of branch extensions. The set of nodes is given by

N = {c}
n⋃
r=1

{∗i,1, ...∗i,kr+1},

and the set of edges is given by

E = {(c, ∗1,1), (c, ∗2,1), ..., (c, ∗n,1)}
n⋃
r=1

{(∗i,1, ∗i,2), ..., (∗i,ki , ∗i,ki+1)}.

We say ki is the ith branch extension and denote the set of all generalised star
graphs by SG.
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Figure 4.3.1 shows the generalised star graph S4,3,1,0
4 . The labelling of nodes

along branches is done such that ∗i,r is the rth node along the ith branch for all
r ∈ {1, ..., ki + 1} and for all i ∈ {1, ..., n}. For example the node ∗2,3 is the 3rd

node along the 2nd branch from the centre c.

c ∗1,1 ∗1,2 ∗1,3 ∗1,4 ∗1,5∗2,1∗2,2∗2,3∗2,4

∗3,1

∗3,2

∗4,1

Figure 4.3.1: The generalised star graph S4,3,1,0
4 ∈ SG.

We immediately note that SE ⊂ SG, under a relabelling (isomorphism) and that
if k has only one non-zero element, then the generalised star graph is an elongated
star graph. Further if n ∈ {1, 2} then the generalised star graph is a line graph.
Hence we assume that k has at least two non-zero elements and that n ≥ 3. We
will also assume that the branch extension vector k is in descending order, so that
ki+1 ≤ ki for all i ∈ {1, ...., n− 1}. In addition we omit any ki which are zero in
our notation to avoid excessive numbering, for example the graph in figure 4.3.1
could be written as S4,3,1

4 ≡ S4,3,1,0
4 . To avoid further notational clutter, we define

some summary notation for generalised star graphs.

Definition 4.3.2. For the generalised star graph Skn ∈ SG, with branch exten-
sions k ∈ Nn let:

• The sum of branch extensions be denoted by ksum =
n∑
i=1

ki.

• The maximum branch extension be denoted by kmax = max
i=1,...,n

ki.

In order to solve the game G(Skn , T,m) for various parameters we decompose the
set of attack lengths into regions for which the optimal strategies will differ. This
decomposition is done in analogous fashion to that as done for the elongated star
graph. We decompose the set of attack lengths into the regions:

• MSkn
0 = {m : m = 1},

• MSkn
1 = {m : m ≥ 2(n+ ksum)},

• MSkn
2 = {m : 2(kmax + 1) ≤ m < 2(n+ ksum)},
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• MSkn
3 = {m : m = 2},

• MSkn
4 = {m : 2 < m < 2(kmax + 1)}.

We provide optimal solutions and the value of the game G(Skn , T,m) when m ∈
M

Skn
i for i = 0, 1, 2, 3, but not for i = 4. When m ∈ MSkn

4 bespoke solutions for

the attacker strategy are required, as in M
Sk
n

4 and M
Sk
n

5 . Therefore due to the
complexity of adapting such solutions, we do not focus on solutions in the region

of m ∈ MSkn
4 , instead we provide ideas for solutions. For the scenario where Skn

is used to model multiple cities connected by a central hub, we can use work
done on patrolling games with edge distances in chapter 6, section 6.1, to find
optimal strategies by ‘ignoring’ all but the centre and leaf nodes, allowing us

to get strategies for m ∈ MSkn
4 without the need for bespoke attacker strategies.

While these games are not mathematically equivalent, as we cannot ignore nodes
in patrolling games, ignoring nodes can ease the complexity and allow for easier
results to be given when it is sensible to ignore locations which are otherwise
protected.

As all patrolling games with m = 1 are solved by lemma 2.3.26, we know optimal

strategies and the value of the game when m = 1 (m ∈ M
Skn
0 ). That is for all

n ≥ 1, for all k ∈ Nn, for T ≥ 1 the value of the game is

V (Skn , T, 1) =
1

n+ 1 + ksum

.

In the following sections we will consider m ∈MSkn
i for i ∈ {1, ..., 4} in turn.

4.3.1 Solution when m ∈MSk
n

1

For m ∈MSkn
1 we begin by looking for a minimal full-node cycle of the generalised

star graph. This is done analogous to the case of m ∈MSk
n

1 . An easily identifiable
minimal full-node cycle is one which starts at the centre and then goes along each
branch, reaching ∗i,ki+1 and then heading beck to the centre and repeating for all
i ∈ {1, ..., n}. So

W
Skn
MFNC = {c, ∗1,1, ..., ∗1,k1 , ..., ∗1,1, c, ∗2,1, ..., ∗2,k2 , ..., ∗2,1, c, ...∗n,1},

is a minimal full-node cycle of length 2(n + ksum) and so for m ∈ MSkn
1 it visits

every node at least every m time units and is therefore intercepting. As W
Skn
MFNC

is intercepting we know that the game is a guaranteed win for the patroller using
the pure strategy which repeats it for the time-horizon, so we know the value of
the game is 1 as using this pure strategy gives a lower bound of 1 (from having
CSkn ,T,m = 1 in lemma 2.3.12 or theorem 3.3.26) and the trivial upper bound for
any patrolling is 1. Therefore we arrive at the following lemma.
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Lemma 4.3.3. For the game G(Skn , T,m) for all n ≥ 3, for all k ∈ Nn, for all

m ∈MSkn
1 and for all T ≥ m we have

V (Skn , T,m) = 1,

achieved by a minimal full-node cycle patroller strategy W
Skn
MFNC and any attacker

strategy.

4.3.2 Solution when m ∈MSk
n

2

We can use W
Skn
MFNC, when m ∈ MSkn

2 , by utilising the random minimal full-node

cycle strategy π
Skn
RMFNC, using W

Skn
MFNC, to get the lower bound as given in theorem

3.3.26. That is for all n ≥ 3, for all k ∈ Nn, for all m ≥ 1 and for T ≥ m we have

V (Skn , T,m) ≥ m

2(n+ ksum)
, (4.25)

achieved by the random minimal full-node cycle strategy π
Skn
RMFNC.

As always with a random full-node cycle, we note that random means starting

in the cycle W
Skn
MFNC uniformly and not uniformly amongst nodes of the graph.

To get a tight upper bound with the lower bound in equation 4.25, we use a
similar idea to the time-centred attacker strategy used on the elongated star
graph. That is we use a weighting proportional to the distance from c for each
∗i,ki+1 for i ∈ {1, ..., n}. Then the commencement times are distributed and
centred according to this weighting. This gives us the following type-centred
attacker strategy.

Definition 4.3.4. The type-centred attacker strategy φtype is such that the prob-
ability of choosing to play the pure attack (j, τ) ∈ A is

ϕj,τ =

{
1

2(n+ksum)
for j = ∗i,ki+1, τ ∈ Ti for some i ∈ {1, ..., n},

0 otherwise,

where Ti = {kmax − ki, ..., kmax + ki + 1}.

That is the type-centred attacker strategy φtype chooses with probability

2(ki + 1)

2(n+ ksum)

to attack node ∗i,ki+1, then choosing a commencement time τ from the set

Ti = {kmax − ki, ..., kmax + ki + 1}

each with equal probability, for any branch i ∈ {1, ..., n}. As with all attack
strategies which distribute the potential attacks in the commencement time, the
typed type-centred attacker strategy requires a condition on the game length in



CHAPTER 4. PATROLLING GAMES ON EXTENDED STAR GRAPHS 167

order to be feasible. Namely T ≥ 2kmax + m + 1 is required so that φtype ∈
Φ(Skn , T,m). As with the time-centred attacker strategy, the idea of distributing
the weighting in commencement time is done so that any pure patroller moving
between attacked nodes arrives when all potential attacks have already begun.
Therefore we get an analogous result to lemma 4.2.6 in the following lemma.

Lemma 4.3.5. For a game G(Skn , T,m) for all n ≥ 1, for all k ∈ Nn, for all
m ≥ 1 and for all T ≥ 2kmax +m+ 1 we have

V (Skn , T,m) ≤ max

(
kmax + 1

n+ ksum
,

m

2(n+ ksum)

)
,

achieved by the type-centred attacker strategy φtype.

The proof of lemma 4.3.5 follows by evaluating V•,φtype(S
k
n , T,m), the performance

of φtype, by relying on the work done in section 3.2.2. This is done in a similar,
but more general fashion, than the proof of lemma 4.2.6.

Proof. We aim to calculate V•,φtype(S
k
n , T,m), to use this performance as an upper

bound, and by lemma 3.2.14 we can restrict the game length for such a calculation,
as the lemma gives us that

V•,φtype(S
k
n , T,m) = V•,φtype(S

k
n , 2kmax +m+ 1,m) = max

W∈W(Skn ,2kmax+m+1,m)
P (W,φtype),

so we only need to consider pure walks for 2kmax +m+ 1 units of time.

Furthermore by theorem 3.2.13 we have that

V•,φtype(S
k
n , 2kmax +m+ 1,m) = max

ω∈Ω′′′(Skn ,2kmax+m+1,m)
P (ω,φtype),

and so we need only consider move-wait walks ω ∈ Ω′′′(Skn , 2kmax + 1 + m,m).
That is move-wait walks such that

ω = ((j1, ν1), ..., (jq, νq)),

for some q ∈ N for which the following three conditions are met

• j1 ∈ NA, ji ∈ NA(ω, i − 1) for all i ∈ {2, ..., q}, where NA = {∗r,kr+1 | r ∈
{1, ..., n}},

• νi ∈ {kmax−kr, ..., kmax +kr + 1} when ji = ∗r,kr+1 for any i ∈ {1, ..., q} and

• ν1 +
q−1∑
i=1

(d(ji, ji+1, NA) + νi+1) ≡ tq + νq = 2k +m.

That is a move-wait walk such that nodes belong to those which have a non-zero
probability of catching the attacker at if travelled to, with no waiting aside from
at the initial node and that the arrival at the final node plus the final waiting
match the end of the time-horizon.
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For any such walk ω ∈ Ω′′′(Skn , 2kmax +m+ 1,m) let ri be such that ji = ∗ri,kri+1.
Then the payoff is given by

P (ω,φtype) =

q∑
i=1

ti(ω)+νi∑
t=ni(ω)

ϕj1,t

=

ν1∑
t=kmax−kr1

ϕji,t +

q∑
i=2

kmax+kri+1∑
t=ni(ω)

ϕji,t.

=

min(ν1,kmax+kr1+1)∑
t=kmax−kr1

1

2(n+ ksum)
+

q∑
i=2

kmax+kri+1∑
t=n′i(ω)

1

2(n+ ksum)
.

≤
min(ν1,kmax+kr1+1)∑

t=kmax−kr1

1

2(n+ ksum)
+

q∑
i=2

kmax+kri+1∑
t=n′′i (ω)

1

2(n+ ksum)
. (4.26)

Where ni(ω) = max(0, li(ω) + 1, ti(ω)−m + 1), n′i(ω) = max(kmax − kri , li(ω) +
1, ti(ω)−m+ 1) and n′′i (ω) = max(kmax − kri , ti(ω)−m+ 1) in equation (4.26).
Essentially the inequality follows by ignoring when a node was last visited.

For any i′ ∈ {2, ..., q} such that n′′i′(ω) = ti′(ω) − m + 1 we have for all i ∈
{i′ + 1, ..., q} that kmax + kri + 1 > n′′i (ω) as ti′+1(ω) = ti′(ω) + kri′ + 2 + kri′+1

>
kmax + kri′+1

+ 1. Equation (4.26) therefore becomes

P (ω,φtype) ≤
min(ν1,kmax+kr1+1)∑

t=kmax−kr1

1

2(n+ ksum)
+

q∑
i=2

kmax+kri+1∑
t=n′′i (ω)

1

2(n+ ksum)
.

=
min(ν1 + 1− kmax + kr1 , 2kr1 + 2)

2(n+ ksum)
+

i′−1∑
i=2

2(kri+1)

2(n+ ksum)

+
max(kmax + kri′ + 2− ti′(ω) +m− 1, 0)

2(n+ ksum)

=
min(ν1 + 1− kmax + kr1 , 2kr1 + 2) + max(kmax − ν1 − kr1 +m− 1, 0)

2(n+ ksum)
(4.27)

From equation (4.27) it is clear that in order to maximize the payoff for the walk
ω it should have ν1 = kmax + kr1 + 1 and hence we get that

P (ω,φtype) ≤
max(2(kr1 + 1),m)

2(n+ ksum)
.

So the best r1 is such that kr1 = kmax and therefore we have

V•,φtype(S
k
n , 2kmax +m+ 1,m) ≤ max

(
kmax + 1

n+ ksum

,
m

2(n+ ksum)

)
. (4.28)

The upper bound on the performance of φtype, as in equation (4.28), gives

V (Skn , T,m) ≤ max

(
kmax + 1

n+ ksum

,
m

2(n+ ksum)

)
.
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As the lower bound in equation (4.25) and the upper bound in lemma 4.3.5 are
tight we arrive at the following lemma.

Lemma 4.3.6. For a game G(Skn , T,m) for all n ≥ 1, for all k ∈ Nn, for all

m ∈MSkn
2 and for all T ≥ 2kmax +m+ 1 we have

V (Skn , T,m) =
m

2(n+ ksum)
,

achieved by a random minimal full-node cycle patroller strategy π
Skn
RMFNC and the

type-centred attacker strategy φtype.

4.3.3 Solution when m = 2 (m ∈MSk
n

3 )

When m = 2 the solution for the game G(Skn , T, 2) follows the same approach
as the elongated star graph, that is using the covering patroller strategy πCov

and the independence attacker strategy φInd. These require the construction of
a minimal covering set and a maximal independent set, in order to obtain the
covering number, CSkn ,T,2, and the independence number, ISkn ,T,2.

For the game G(Skn , T, 2) an intercepting patroller strategy is equivalent to an
edge, so we can form a covering set C in a similar fashion to that done for the
game G(Skn, T, 2) for some k ≥ 1. That is, to construct C select any edge which
has an incident leaf node (node of degree 1), add this edge to C and then delete
the edge and the two incident nodes to form the graph Q2. Repeat this process
on the graph Q2 until for some l ∈ N we have that Ql = (Nl, El) is a graph such
that the El = ∅. Then for every node j ∈ Nl add a connected edge from the
original graph Q1 = Skn . Performing this process leads to the minimal covering
set

C =


{(c, ∗1,1)} ∪

n⋃
x=1

N ′(k, x) if ki is odd for all i ∈ {1, ..., n},
n⋃
x=1

(N ′(k, x) ∪N ′′(k, x)) if ki is even for some i ∈ {1, ..., n},

where

N ′(k, x) =

{
{(∗x,kx+1, ∗i,kx), ..., (∗x,2, ∗x,1)} if kx is odd,

∅ otherwise,

and

N ′′(k, x) =

{
{(∗x,kx+1, ∗x,kx), ..., (∗x,1, c)} if kx is even,

∅ otherwise,
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The cardinality of C gives us the covering number for the game G(Skn , T, 2) and
so

CSkn ,T,2 =


1

1+
n∑

i=1

ki+1

2

if ki is odd for all i ∈ {1, ..., n},

1
n∑

i=1
d ki+1

2 e
if ki is even for some i ∈ {1, ..., n},

(4.29)

Similarly, to construct a maximal independent set we start at leaf nodes and look
at alternating nodes along branches at a distance of 2 apart. Hence we get a
maximal independent set,

L =


{c} ∪

n⋃
i=1

{∗i,ki+1, ∗i,ki−1, ..., ∗i,2} if ki is odd for all i = 1, ..., n,

n⋃
i=1

{∗i,ki+1, ∗i,ki−1, ..., ∗i,2} if ki is even for some i = 1, ..., n.

The cardinality of the set L gives us the independence number for the game
G(Skn , T, 2) and so

ISkn ,T,2 =


1

1+
n∑

i=1

ki+1

2

if ki is odd for all i ∈ {1, ..., n},

1
n∑

i=1
d ki+1

2 e
if ki is even for some i ∈ {1, ..., n},

(4.30)

As the numbers in equations (4.29) and (4.30) are equal we have, by lemma 2.3.12
and 2.3.21, tight lower and upper bounds and the value of the game.

Lemma 4.3.7. For a game G(Skn , T,m) for all n ≥ 1, k ∈ Nn, for T ≥ 2 and

for all m ∈MSkn
3 we have

V (Skn , T, 2) =


1

1+
n∑

i=1

ki+1

2

if ki is odd for all i ∈ {1, ..., n},

1
n∑

i=1
d ki+1

2 e
if ki is even for some i ∈ {1, ..., n},

achieved by the covering patroller strategy πCov and the independent attacker strat-
egy φInd.

4.3.4 Ideas for a solution when m ∈MSk
n

4

In this section we provide an idea, through example 4.3.8, on how to create
bespoke strategies which improve the lower bound given by the random minimal
full-node cycle (equation 4.25). In addition, we find a tight upper bound for the
example and hence know that the strategies are optimal.

Example 4.3.8. For the game G(S3,3
3 , 20, 3) we recall that a minimal full-node

cycle W
S3,3

3
MFNC is

(∗1,4, ∗1,3, ∗1,2, ∗1,1, c, ∗2,1, ∗2,2, ∗2,3, ∗2,4, ∗2,3, ∗2,2, ∗2,1, c, ∗3,1, c, ∗1,1, ∗1,2, ∗1,3),
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and that using it for a random minimal full-node cycle π
S3,3

3
RMFNC gives a lower

bound on the value of the game, by theorem 3.3.26, of

V (S3,3,
3 , 20, 3) ≥ 1

6
.

We consider improving this baseline strategy π0 = π
S3,3

3
RMFNC with three intercept-

ing pure patrols W1 = (∗1,4, ∗1,3), W2 = (∗2,4, ∗2,3) and W3 = (∗3,1, c) (repeated for
the time-horizon), which are played with probabilities p1, p2 and p3 respectively
to form π′1. We can then set up and solve the PIP (equation 3.19) in order to
try to improve the current lower bound of 1

6
. As the performance of the hybrid

strategy is minimal at the leaf nodes, ∗1,4, ∗2,4 and ∗3,1, we know the PIP must
have p1 = p2 = p3 ≡ p. Thus solving the PIP is equivalent to solving

(1− 3p)
1

6
+ p = (1− 3p)

1

3
.

Solving this gives p = 1
9

and hence a lower bound of the game,

V (S3,3
3 , 20, 3) ≥ 2

9
>

1

6
,

which means the hybrid strategy is a strict improvement.

However it is possible to get an even better improvement by not using π
S3,3

3
RMFNC

as a baseline strategy. Consider using the following full-node cycle, which is not
minimal and visits the leaf node ∗3,1 twice, WFNC which is

(∗1,4, ∗1,3, ∗1,2, ∗1,1, c, ∗3,1, c, ∗2,1, ∗2,2, ∗2,3, ∗2,4, ∗2,3, ∗2,2, ∗2,1, c, ∗3,1, c, ∗1,1, ∗1,2, ∗1,3),

to form a random full-node cycle πFNC. Using πFNC provides a better performance
at the node ∗3,1 but a worse performance at all other nodes. Using π0 = πFNC

with two intercepting pure patrols W1 = (∗1,4, ∗1,3) and W2 = (∗2,4, ∗2,3) played
with probabilities p1 and p2 respectively to form π′2, we can again solve the PIP
to get the best possible improvement. As before p1 = p2 ≡ p and we are left to
solve

(1− 2p)
3

20
+ p = (1− 2p)

6

20
.

This gives p = 3
26

and hence a lower bound provided of

V (S3,3
3 , 20, 3) ≥ 3

13
>

2

9
,

a strict improvement over the prior hybrid strategy.

To show that this second hybrid strategy π′2 is optimal, we develop a bespoke
attacker strategy which provides a tight upper bound with the above lower bound.
To do so we take the optimal attacker strategy for the game G(S3

3 , 20, 3) and make
use of node symmetry to create φb which is such that the probability of choosing
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(j, τ) ∈ A is

ϕj,τ =



1
26

for j ∈ {∗1,4, ∗2,4}, τ ∈ {0, 3},
2
26

for j ∈ {∗1,4, ∗2,4}, τ ∈ {1, 2},
1
26

for j ∈ {∗1,2, ∗2,2}, τ = 1,
2
26

for j ∈ {∗1,1, ∗2,1}, τ ∈ {1, 2},
2
26

for j = ∗3,1, τ = 1, 2.

(4.31)

Note that we leave the probabilities in equation (4.31) such that they have a
common denominator, so we can compare the number of agents at each space-
time point. Figure 4.3.2 shows the space-time agent matrix SAb for the attacker
strategy φb, with 26 agents placed at space-time points. A simple computation
shows that any pure patroller strategy can only catch a maximum of 6 potential
agents out of the 26 played by the attacker strategy φb. Hence we have the upper
bound

V (S3,3
3 , 20, 3) ≤ 6

26

which is tight with the lower bound given achieved by using π′2, so we know π′2
and φb are optimal strategies and

V (S3,3
3 , 20, 3) =

6

26
.

∗1,4, ∗2,4

∗1,3, ∗2,3

∗1,2, ∗2,2

∗1,1, ∗2,1

c

∗3,1

N
o
d
e

0 1 2 3 4 5 6 7 8 9

Time

1 3 5 5 3 1

1 1 1

2 4 4 2

2 4 4 2

Figure 4.3.2: Space-time agent matrix SAb for the attacker strategy φb as described
in equation 4.31 for example 4.3.8 for the game G(S3,3

3 , 20, 3). Three pure patroller
strategies are shown in red, green and blue.

Example 4.3.8 shows us, that unlike for the elongated star graph, for the gener-
alised star graph the baseline strategy may not be the random minimal full-node
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cycle when m ∈ MSkn
4 (analogous to M

Sk
n

4 ∪M
Sk
n

5 ). We provide no further work-
ing for the generalised star graph in this chapter and conclude our analysis here,
noting that future work could explore how to utilise these ideas to create bespoke
strategies. In chapter 6, section 6.1 we look at using distances on edges to allow
us to model the scenario of a central hub location and locations at various dis-
tances from it. Such a model can be used for patrolling multiple cities which are
at varying distances from a centralised hub. In the following section, we look at
linking star graphs by there centres.

4.4 Linking generalised star graphs

In this section we build on the work done for a single star graph (be it the original,
elongated or generalised) by linking them together to form more complex tree
graphs. We start by solving for all attack lengths the dual star graph, which is
formed by linking two star graphs, Sn1 and Sn2 , at their centres. We then follow
this by looking at linking multiple generalised star graphs, finding a solution for a
range of attack lengths in which the exact linking of the generalised star graphs’
centres has no effect.

4.4.1 Dual star graph

In this section we look at the dual star graph Sn1,n2 , which is formed by taking
two star graphs Sn1 and Sn2 which are initially disconnected and adding in an
edge between the two centres.

Definition 4.4.1. The dual star graph Sn1,n2 = (N,E), for n1, n2 ∈ N, is such
that the set of nodes is

N = {c1, ∗1,1, ..., ∗n1,1} ∪ {c2, ∗1,2, ..., ∗n2,2}

and the set of edges is

E = {(c1, c2)} ∪ {(ci, ∗r,i) | i ∈ {1, 2} and r ∈ {1, ..., ni}}.

We denote the set of all dual star graphs by SD

Figure 4.4.1 shows an example of the dual star S5,2. We note that when n1 = 1
or n2 = 1, then the dual star is an elongated star graph S1,n ≡ Sn,1 ≡ S1

n+1.
Therefore, we assume that n1, n2 ≥ 2. In addition, without loss of generality, we
assume n1 ≥ n2 ≥ 2. The nodes are labelled such that ∗r,i is the rth leaf node
adjacent to the ith centre, ci. The nodes ∗r,i for all r ∈ {1, ..., ni} for any i ∈ {1, 2}
are symmetric (under a relabelling), so an optimal attacker strategy must place
pure attacks with the same probability at such nodes.

To begin our analysis of the gameG(Sn1,n2 , T,m) we consider the decomposition of
the game G(Sn1,n2 , T,m) into the subgraph games G(Sn1 , T,m) and G(Sn2 , T,m).
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c1

∗1,1
∗2,1

∗3,1

∗4,1
∗5,1

c2

∗1,2

∗2,2

Figure 4.4.1: The dual star graph S5,2 ∈ SD.

By lemma 2.3.14 we achieve the following lower bound, by the performance of

the decomposed patroller strategy π
Sn1,n2
Dec of

V (Sn1,n2 , T,m) ≥ 1
1

V (Sn1 )
+ 1

V (Sn2 )

=
1

1
min(1, m

2n1
)

+ 1
min(1, m

2n2
)

=


m

2(n1+n2)
for m ≤ 2n2,

m
2n1+m

for 2n2 ≤ m ≤ 2n1,
1
2

for m ≥ 2n1.

(4.32)

When m ≤ 2n2 we can achieve a tight upper bound with the lower bound in
equation (4.32) by considering a simplification, and thus an embedded attacker
strategy. Consider the simplification of the dual star Sn1,n2 into the star Sn1+n2

by node-identifying the centres c1 and c2. By corollary 3.3.8 this simplification
gives the upper bound for any n1, n2 ≥ 2, for all m ≥ 1 and for all T ≥ m of

V (Sn1,n2 , T,m) ≤ V (Sn1+n2 , T,m) =
m

2(n1 + n2)
. (4.33)

An optimal strategy for the game G(Sn1+n2 , T,m) is the optimized 2-polygonal
attacker strategy, which gives V (Sn1+n2 , T,m). This strategy can be embedded
into the game G(Sn1,n2 , T,m) to form the attacker strategy φs such that the
probability of choosing (j, τ) ∈ A is

ϕj,τ =

{
1

n1+n2
for j = ∗r,i and τ = 0, 1 for i = 1, 2, r = 1, ..., ni,

0 otherwise,

which achieves the bound in equation (4.33). Therefore, the attacker strategy φs
and the decomposition patroller π

Sn1,n2
Dec strategy are optimal and give the value

of the game G(Sn1,n2 , T,m) for m ≤ 2n2.

Next for m > 2n2 we consider a minimal full-node cycle

W
Sn1,n2
MFNC = (c1, ∗1,1, c1, ∗2, 1, ..., ∗n1,1, c1, c2, ∗1,2, c2, ..., ∗n2,1, c2).
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The minimal full-node cycle W
Sn1,n2
MFNC is of length 2(n1 +n2 +1) and so, by theorem

3.3.26, the random full-node cycle patroller strategy π
Sn1,n2
RMFNC, gives us that for

any n1, n2 ≥ 2, for any m ≥ 1 and for any T ≥ m a lower bound of

V (Sn1,n2 , T,m) ≥ m

2(n1 + n2 + 1)
. (4.34)

For m > 2n2, we can get a tight upper bound with the lower bound in equation
(4.34) by using an attacker strategy with an asymmetric distribution in com-
mencement time, attacking nodes on each star (nodes ∗r,1 are nodes on star one
and nodes ∗r,2 are nodes on star two) with slightly different commencement time
distributions.

Definition 4.4.2. The time-spread attacker strategy φts is such that the proba-
bility of choosing the pure attack (j, τ) ∈ A is

ϕj,τ =


1

2n2(n1+n2+1)
for j = ∗r,1, τ ∈ {1, ..., 2n2}, for some r ∈ {1, ..., n1},

1
2n2(n1+n2+1)

for j = ∗k,2, τ ∈ {0, ..., 2n2 + 1}, for some k ∈ {1, ..., n2},
0 otherwise.

That is the time-spread attacker strategy chooses to attack node ∗r,1 with prob-
ability

2n2

2n2(n1 + n2 + 1)

for each r ∈ {1, ..., n1}, then chooses a commencement time from {1, ...., 2n2}
with equal probability; or chooses to attack node ∗k,2 with probability

2(n2 + 1)

2n2(n1 + n2 + 1)

for each k ∈ {1, ..., n2}, then chooses a commencement time from {0, ..., 2n2 + 1}
with equal probability. The time-spread attacker strategy is designed so that
it compensates the pure patroller who chooses to start at ∗r,1 for some r =
1, ..., n1 and travels to ∗k,2 for some k = 1, ..., n2 by having an additional unit of
commencement time for the additional unit of travel between nodes c1 and c2.
By evaluating the performance of φts we are able to get a tight upper bound with
the lower bound in equation (4.34).

Lemma 4.4.3. For the game G(Sn1,n2 , T,m) for all n1 ≥ n2 ≥ 2, for all m > 2n2

and for all T ≥ 2n2 +m+ 1 we have

V (Sn1,n2 , T,m) ≤ m

2(n1 + n2 + 1)
,

achieved by the time-spread attacker strategy φts.

The proof of lemma 4.4.3 follows by the design of the time-spread attacker strategy
compensating any pure patroller who moves between stars with an extra potential
agent for using one unit of time in moving between centres. We leave the proof of
lemma 4.4.3 to appendix B.4, as it follows similar arguments to that of the proof
of lemma 4.2.6. The results in this section yield in the following theorem.
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Theorem 4.4.4. For the game G(Sn1,n2 , T,m) for all n1 ≥ n2 ≥ 2, the value of
the game is given by,

• for all m ≤ 2n2 and for all T ≥ 2 we have

V (Sn1,n2 , T,m) =
m

2(n1 + n2)
,

achieved by the decomposition patroller strategy π
Sn1,n2
Dec (into subgraph games

G(Sn1 , T,m) and G(Sn2 , T,m)) and the embedded attacker strategy φs (from
G(Sn1+n2 , T,m))

• for all m > 2n2 and for all T ≥ 2n2 +m+ 1 we have

V (Sn1,n2 , T,m) =
m

2(n1 + n2 + 1)
,

achieved by a random minimal full-node cycle patroller strategy π
Sn1,n2
RMFNC and

the time-spread attacker strategy φts.

4.4.2 Multi general star graphs

In this section we look at p-linked general star graphs, (Sk1
n1
, ..., S

kp
np | Qc), which

are formed by taking generalised star graphs Sklnl
for l = 1, ..., p, which are initially

disconnected and have the graph Qc = (Nc, Ec), called the centre link graph,
where Nc contain all the centres of Sklnl

for l = 1, ..., p.

Definition 4.4.5. The p-linked general star graph, (Sk1
n1
, ..., S

kp
np | Qc) (where

Qc = (Nc, Ec) is a connected graph with Nc = {c1, ..., cp}) is a graph (N,E) such
that

N =

p⋃
l=1

({cl} ∪ {∗l,i,r | i = 1, ..., nl and r = 1, ..., ki + 1}) ,

and

E = Ec ∪

(
p⋃
l=1

(Ec(l) ∪ Eb(l))

)
,

where
Ec(l) = {(cl, ∗l,i,r) | r = 1, ..., nl}

and
Eb(l) = {(∗l,i,r, ∗l,i,r+1) | i = 1, ..., nl and r = 1, ..., ki}.

We denote the class of linked general star graphs by SL.

The nodes are labelled such that ∗l,i,r is the rth node along the ith branch of the
lth generalised star graph Sklnl

. In order to ease the notation, we let kl,i be the
ith element of the vector kl and as with generalised star graphs we define some
summary information:
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• kl,sum ≡
nl∑
i=1

kl,i,

• kl,max ≡ max
i=1,...,nl

kl,i.

To begin our analysis we will note it is possible to construct a minimal full-

node cycle W
(S
k1
n1
,...,S

kp
np |Qc)

MFNC via minimal full-node cycles W
S
kl
nl

MFNC for l = 1, ..., p and

the minimal full node cycle WQc

MFNC by inserting W
S
kl
nl

MFNC into WQc

MFNC when the
node cl for the first time for each l = 1, ..., p. Therefore we know the length of

W
(S
k1
n1
,...,S

kp
np |Qc)

MFNC is

2

p∑
l=1

(nl + kl,sum) + F (Qc),

where F (Qc) is the minimal full-node cycle length of the graph Qc. Note that we
know that as p ≤ F (Qc) ≤ 2(p − 1), by considering the best case scenario of Qc

being Hamiltonian and the worst case scenario of it being a line graph. Thus we
immediately know

V ((Sk1
n1
, ..., Skpnp

| Qc), T,m) = 1

if

m ≥ 2

p∑
l=1

(nl + kl,sum) + F (Qc)

as W
(S
k1
n1
,...,S

kp
np |Qc)

MFNC is an intercepting patroller strategy covering all nodes. When

m < 2

p∑
l=1

(nl + kl,sum) + F (Qc)

the patroller can get the lower bound, by theorem 3.3.26, of

V ((Sk1
n1
, ..., Skpnp

| Qc), T,m) ≥ m

2
p∑
l=1

(nl + kl,sum) + F (Qc)

, (4.35)

achieved by the random minimal full-node cycle patroller strategy π
(S
k1
n1
,...,S

kp
np |Qc)

RMFNC .

Figure 4.4.2 shows the 4-linked general star graph (S3,1,1
4 , S2

3 , S
2,1
2 , S1,1

2 | Qc), where
the centre link graph Qc has an edge set Ec = {(c1, c2), (c2, c3), (c2, c4), (c3, c4)}.
We do not label all the nodes on the graph in order to make the graph easy to
parse. In addition we provide a minimal full-node cycle on the graph Qc allowing

the construction of W
(S
k1
n1
,...,S

kp
np |Qc)

MFNC .

We now consider a patroller decomposition and an attacker simplification in order
to find the value of the game, which is independent of the graph Qc. Consider
the decomposition of the p-linked general star, into the corresponding separate
generalised star graphs, Sklnl

for l = 1, ..., p. By lemma 3.3.2, and the random

minimal full-node cycle strategies π
S
kl
nl

RMFNC for l = 1, ..., p, (for which the lower



CHAPTER 4. PATROLLING GAMES ON EXTENDED STAR GRAPHS 178

c1 c2

c3c4

Figure 4.4.2: The 4-linked star graph (S3,1,1
4 , S2

3 , S
2,1
2 , S1,1

2 , Qc), shown on the left
with the centre linking subgraph, Qc, as seen on the right. A minimal full-node
cycle for Qc is shown in red, repeating one node, c2, for a length of 5.

bounds are given by equation (4.2), we achieve the following lower bound, by the

performance of π
(S
k1
n1
,...,S

kp
np |Qc)

Dec , for

m ≤ 2 min
l=1,...,p

(nl + kl,sum),

of

V ((Sk1
n1
, ..., Skpnp

| Qc), T,m) ≥ m

2
p∑
l=1

(nl + kl,sum)

, (4.36)

We remark that we do not know the value of subgraph games G(Sklnl
, T,m)

for all m ≤ 2 minl=1,...,p(nl + kl,sum) for all l ∈ {1, ..., p}, however we do know
that the random minimal full-node cycle provides the lower bound given in
equation (4.25) thus giving equation (4.36). The limit on the attack length of
m ≤ 2 minl=1,...,p(nl +kl,sum) is to ensure that the lower bound on the value of the
subgraph games ( m

2(nl+kl,sum)
) does not go above 1 (for which would require us to

take the minimum with 1 of such a lower bound).

Consider the simplification of a p-linked star graph, by identifying nodes cl for l =
2, ..., p with c1. Therefore simplifying the graph from (Sk1

n1
, ..., S

kp
np | Qc) to, under

a relabelling (isomorphism), SKA , where A =
p∑
i=1

ni and K is the concatenation

(and reordering) of the vectors kl for l = 1, ..., p. Thus, by corollary 3.3.8, we
have for all p ≥ 1, for all nl ≥ 1, kl ∈ Nnl

0 , for all Qc, for all m ≥ 2(max(K) + 1)
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and for all T ≥ m that

V ((Sk1
n1
, ..., Skpnp

| Qc), T,m) ≤ V (SKA , T,m) ≤ m

2
p∑
l=1

(nl + kl,sum)

. (4.37)

The upper bound in equation 4.37 is achieved by the embedding of the time-
centred attacker strategy φtype ∈ Π(SKA , T,m) into the game G((Sk1

n1
, ..., S

kp
np |

Qc), T,m) resulting in φltype ∈ Φ((Sk1
n1
, ..., S

kp
np | Qc), T,m) such that the proba-

bility of choosing pure attack (j, τ) ∈ A is

ϕj,τ =


1

2
p∑

l=1
(nl+kl,sum)

for j = ∗l,i,ki+1, τ ∈ Tltype(l, i) for some l ∈ X, i ∈ Y (l),

0 otherwise,

where X = {1, ..., p}, Y (l) = {1, ..., nl}, Kmax = maxl∈{1,...,p}(kl,max) and

Tltype(l, i) = {2Kmax + 1− kl,i, ..., 2Kmax + 1 + kl,i}.

As the upper bound in equation (4.37) is tight with the lower bound in equation
(4.36) we arrive at the following lemma.

Lemma 4.4.6. For the game G((Sk1
n1
, ..., S

kp
np | Qc), T,m), for all p ≥ 1, for all

nl ≥ 1, for all kl ∈ Nnl
0 , for all Qc ⊂ Kp, for all 2(maxl=1,...,p(kl,max + 1) ≤ m ≤

2 minl=1,...,p(nl + kl,sum) and for all T ≥ m we have

V ((Sk1
n1
, ..., Skpnp

| Qc), T,m) =
m

2
p∑
l=1

(nl + kl,sum)

,

achieved by the decomposition patroller strategy π
(S
k1
n1
,...,S

kp
np |Qc)

Dec (into subgraph games
G(Sklnl

, T,m) for which the random minimal full-node cycle is played for l =
1, ..., p) and embedded type time-centred attacker strategy φltype (from the game
G(SKA , T,m)).

We note that lemma 4.4.6 has no dependence on Qc as the graphs are played on
separately by both players. We can say that the edges in Ec in such a case are
superfluous, as they are not needed by the patroller in order to achieve optimality.
In chapter 6, section 6.1, that this idea can allow extensions of the patrolling game
to utilise previous results.

4.5 Chapter conclusion

In this chapter we have defined multiple extensions to the star graph; the elon-
gated star graph , the generalised star graph, the dual-star graph and the p-linked
general star graph.
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The majority of the work focused on the class of patrolling games when the graph
is an elongated star graph Skn ∈ SE , for which we decomposed the set of attack

lengths into M
Sk
n

i for i = 0, 1, ..., 5 and found optimal strategies for all regions

aside from M
Sk
n

4 , in which we were only able to provide a solution when n = 3 for

m ∈MSk
n

4,0 .

We started by finding a minimal full-node cycle W
Sk
n

MFNC and were able to use

W
Sk
n

MFNC to state the value of the game in the region M
Sk
n

1 . This was followed

by using W
Sk
n

MFNC to form the random minimal full-node cycle strategy π
Sk
n

RMFNC

in order to find a lower bound in the region M
Sk
n

2 , which we then developed the
time-centred attacker strategy φtc in order to achieve a tight upper bound and

hence be able to state the value of the game. For the region M
Sk
n

0 the value was

already known by lemma 2.3.26 and for the region M
Sk
n

3 we were able to show
that the covering strategy πCov and independent strategy φInd were optimal and
hence we were able to state the value of the game.

For the two remaining regions M
Sk
n

4 and M
Sk
n

5 we used the patrol improvement

program(PIP) in order to improve the performance of π
Sk
n

RMFNC, focusing on nodes
for which it performed weakly at. In doing so we saw that PIP gave two different
lower bounds in each region dependent on the attack length m and hence decom-

posed M
Sk
n

4 and M
Sk
n

5 further into M
Sk
n

4,0 , M
Sk
n

4,1 , M
Sk
n

5,0 and M
Sk
n

5,1 . We then found a

tight upper bound in the region M
Sk
n

4,0 when n = 3 by creating a bespoke attacker
strategy. This was followed by the creation of four bespoke attacker strategies
φρ−stc dependent on ρ = m − 2k − 2 mod 4, which for ρ ∈ {0, 2} provided
tight upper bounds and for ρ ∈ {1, 3} provided near tight upper bounds. We
acknowledge, that similar to the patrollling games when Q = Ln for some n ∈ N,
finding bespoke attacker solutions is time-consuming and requires multiple at-
tacker strategies which are each used for different attack length values dependent
on ρ. Our findings are collated in theorem 4.2.24.

We then extended the class of elongated star graphs further to look at generalised

star graphs Skn ∈ SG and found the value and optimal strategies when m ∈MSkn
i

for i = 0, 1, 2, 3. However for the remaining attack lengths we halted our analysis,
providing an idea of how we could find optimal strategies, as we suspect that for
such attack lengths the game will require numerous bespoke attacker strategies.
In particular we solved the game G(Skn , T,m) when the random minimal full-node

cycle π
Skn
RMFNC is optimal.

When we extended star graphs to dual stars Sn1,n2 ∈ SD, we were able to find
the value of the game by adapting known strategies for both the attacker and
patroller. We then further extended the idea to linking generalised star graphs to
(Sk1

n1
, ..., S

kp
np | Qc) ∈ SL, solving the game in which the decomposition patroller

is optimal π
(S
k1
n1
,...,S

kp
np |Qc)

Dec , meaning that the graph Qc connecting the centres is
irrelevant and both the attacker and patroller play proportionally on each of the
generalised stars Sklnl

proportional to the value of the game G(Sklnl
, T,m).
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We conclude by remarking that for any game G(Q, T,m) when Q is a tree, we
have seen that the random minimal full-node cycle πQRMFNC is optimal for some
range of attack lengths. This idea forms the foundation of the following chapter,
in which we conjecture about the range of attack lengths for which πQRMFNC is
optimal for games when Q is a tree (or forest). More precisely we conjecture that
when the lower bound achieved by using πQRMFNC is at least a half, then πQRMFNC

is optimal.



Chapter 5

Patrolling games on general trees

5.1 Chapter introduction

In this chapter, we provide optimal strategies to the game G(Q, T,m) where Q is a
tree with n nodes. We provide optimal strategies when m = 2 and in addition we
conjecture about the optimality of the random minimal full-node cycle strategy
πQRMFNC when m > n − 1 in conjecture 5.3.2. Further to this we discuss when
these results might be applicable to non-tree graphs.

In section 5.2 we present a solution to the patrolling game G(Q, T, 2), where Q
is a tree. Optimality in this game is reached by the use of the covering and
independence strategies. While explicit covering and independence numbers are
known for previously studied graphs, for a general tree it is not possible to write
explicit values. However, even without explicit values these strategies will be seen
to be optimal as their corresponding numbers are equal. To this end, we provide
an algorithm to calculate the covering and independence number for any tree.

In section 5.3 we will present conjecture 5.3.2 about the optimality of the random
minimal full-node cycle, πQRMFNC, where Q is a tree. We conjecture about the
range of attack lengths for which πQRMFNC is optimal. While we are not able to
provide proof of our claim, we do provide an intuitive understanding as to why
we believe that the conjecture holds. In addition we note that for all games
on trees with known solutions that our about the optimality of πQRMFNC holds.
Furthermore, we see that the conjecture holds by an exhaustive search for the
solutions to the games G(Q, T,m), for all trees with n ≤ 8 nodes, which meet the
conjecture’s criterion.

5.2 Solution to G(Q, T, 2) when Q is a tree

In this section we find the solution to the game G(Q, T, 2), for any tree Q with n
nodes. We do so by the use of non-explicit covering and independent strategies.
Having already seen many examples of trees in chapter 4 for which these strategies
are optimal, we extend this idea to all trees. However unlike when the graph
strucutre is defined, we will not be able to give explicit covering and independence
numbers. In this section of work, we make use of the fact that when the attack
length m = 2, a covering set is an edge covering and an independent set is a

182
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vertex independent set. Known algorithms for trees allow us to construct such
sets in polynomial time ([136]). We will adapt these algorithms to find the sets
simultaneously, thus making them of equal size and hence providing optimality.
Lastly, we remark when this approach works for non-tree graphs.

To start we formally define the graph theoretic ideas of an edge covering and a
vertex independence set.

Definition 5.2.1. For a graph Q = (N,E), a set EC ⊂ E is called an edge
covering if for all i ∈ N , there exists a j ∈ N such that (j, i) ∈ EC . Such a set
of minimal cardinality is called a minimal edge covering and this cardinality is
called the minimal edge covering number, denoted ECQ ∈ N.

For a graph Q = (N,E), a set V I ⊂ N is called a vertex independent set if for
all i, j ∈ V I we have (i, j) /∈ E. Such a set of maximal cardinality set is called a
maximal vertex independent set and this cardinality is called the maximal vertex
independent number, denoted VIQ.

For a graph Q = (N,E), a set V C ⊂ N is called a vertex covering if for all
(i, j) ∈ E, there exists i ∈ V C (or j ∈ V C). Such a set of minimal cardinality
set is called a minimal vertex covering and this cardinality is called the minimal
vertex covering number, denoted VCQ .

We note that a vertex covering set is the complement of a vertex independent set
and therefore algorithms which find a minimal vertex covering set can be used to
find a maximal independent set. Therefore, any vertex covering algorithm can be
made into a vertex independent algorithm. We will later use this to find VIQ.

To utilise these graph theory concepts in our patrolling game G(Q, T, 2), we know
that the covering number for the game G(Q, T, 2) is CQ,T,2 = ECQ and similarly
the independence number for the game G(Q, T, 2) is IQ,T,2 = VIQ. Therefore, by
lemmas 2.3.12 and 2.3.21 we have for the game G(Q, T, 2), for any Q and any
T ≥ 2 that

1

ECQ
≤ V (Q, T, 2) ≤ 1

VIQ
. (5.1)

Hence if ECQ = VCQ for a graph Q, then we will have found optimal strategies to the
game G(Q, T, 2). Next, in example (5.2.2) we give examples of graphs, showing
that both equality and strict inequality of equation 5.1 are possible. Note that
in the example Q1 and Q2 are not trees, this is done in order to enforce the fact
that being a tree is not necessary to get equality from equation (5.1). We will
later see that being a tree is however a sufficient condition.

Example 5.2.2. ForQ1, as seen in figure 5.2.1, we haveEC
min = {(1, 2), (3, 4), (4, 5)}

and V I
max = {1, 5} (Note that other minimal and maximal sets are possible). So

ECQ1
= 3 and VIQ1

= 2. Therefore we cannot use the covering strategy and inde-
pendent strategy, equation (5.1) to immediately get the value of the game. At
least one of the strategies is not optimal.
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For Q2, as seen in figure 5.2.1, we have EC
min = {(1, 2), (3, 5), (4, 6)} and V I

max =
{1, 5, 6} (Again, other minimal and maximal sets are possible). So ECQ2

= 3 and
VIQ2

= 3. Therefore we immediately have, by equation (5.1), for any T ≥ 2 that

V (Q2, T, 2) =
1

3
.

1

2
3

4

5

Q1 1

2
3

4

5

6Q2

Figure 5.2.1: Graphs Q1 and Q2 as in example 5.2.2

We will now consider what graphical properties for Q are sufficient to get ECQ =
VIQ. To do so we will adapt a known algorithm which attempts to finds a maximal
independent set for any graph Q (algorithm 326 in [136]) into algorithm 2 which
attempts to find a minimal edge covering and a maximal vertex independent set
for the graph Q. While the algorithm is not guaranteed to produce a minimal edge
covering and a maximal vertex independent set for any graph Q it is guaranteed
to find them if Q is a tree. As such, we are able to say that Q being a tree
is a sufficient condition to get two such sets, and by the algorithm which adds
elements to both sets simultaneous these sets are of equal cardinality.

Algorithm 2 finds all leaf nodes (nodes with degree 1), adds them to the vertex
independent set and adds the edge to their adjacent node to the edge covering.
This is followed by a deletion of all leaf nodes and their adjacent nodes. This
process is repeated until there are no leaf nodes left, at which point if there
are no nodes left in the graph we have found a minimal edge covering and a
maximal vertex independent set for the graph Q. Otherwise, no such sets are
found and other similar algorithms (see [136]) would need to be attempted to
find sets simultaneous.

For the application of algorithm 2 we note that we previously assumed Q has no
loops. Therefore M [i, i] = 0 for all i ∈ N and so the sum of a row is equivalent
to the degree of the corresponding node. In addition we note that single node
inclusions, as done when j = NULL, are included in the minimal edge covering
in the form (i, k), where k is the lowest number node adjacent to i. However it is
possible to replace this edge with (i, x) for any x adjacent to i. This decision of
the adjacent node is irrelevant in the edge covering set which forms the covering
strategy by having the patroller use walks which alternate between nodes using
each edge with equal probability (which are intercepting walks), as the node x
is already used in another edge in the covering set. Therefore, even though this
choice may affect the performance at nodes, it does not affect the minimum of
these and hence does not affect the performance of the covering strategy. Essen-
tially an intercepting patrol can be chosen to wait at node i rather than repeatedly
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Input: Graph Q
Result: Minimal covering set for Q, EC

min and maximal vertex
independent set for Q, V I

max if final graph is empty. Otherwise
no result.

Covering set C = ∅, Independence set I = ∅, Original node numbering
V = (1, ..., |N |), M = Adjacency matrix of Q, i = 1 ;

while i ≤ number of rows of M do
if Sum of the ith row of M == 0 or 1 then

Add node corresponding to i to independence set, I = I ∪ {V [i]} ;
Set j = to the column such that M [i, j] == 1 ;
if j 6= NULL then

Add edge corresponding to (i, j) to the covering set,
C = C ∪ {(V [i], V [j])} ;

Remove nodes corresponding to i and j from the set of nodes,
V = V [(−i,−j)] ;

Remove nodes corresponding to i and j from the adjacency
matrix, M = M [(−i,−j), (−i,−j)] ;

else
Set k = first column such that M [i, k] == 1 ;
Add edge corresponding to (i, k) to covering set,
C = C ∪ {(V [i], V [k])} ;

Remove node corresponding to i from the set of nodes,
V = V [−i] ;

Remove node corresponding to i from the adjacency matrix,
M = M [−i,−i] ;

end
Graph Q′ is formed with removed nodes and edges, repeat process
from first row, i = 0 ;

end
No leaf node found, move to look at next row, i = i+ 1

end
if M == NULL then

return EC
min = C, V I

max = I
end

Algorithm 2: Algorithm to find a minimal edge covering set and maximal
vertex independent set for graph Q.
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move between i and x in the covering strategy as there is no loss at nodes with
minimal performance.

Algorithm 2 takes polynomial time to terminate and in the case of the null graph
at the end (M = NULL) returns a minimal edge covering and maximal vertex
independent set, which by construction have equal cardinality. A sufficient con-
dition for the algorithm to return such sets is that Q is a forest, as if Q is a forest
(a collection of disconnected trees) then a deletion of a leaf node and its adjacent
node from the graph results in a forest. Hence the algorithm will not stop adding
to the sets (and removing leaves) until the graph is made empty (M = NULL).
We note that we must consider forests as removing leaves and adjacencies from
trees can disconnect the graph resulting in trees. However this condition is not
necessary and algorithm 2 may terminate when Q is not a tree (see example
5.2.3).

While algorithm 2 is relatively fast, taking polynomial time to terminate, it is
possible to speed up its implementation by using parallel processing of leaf nodes.
However, care must be taken when two leaf nodes are adjacent/L2 is isomorphic
to a subgraph of the current graph. This approach is utilised in example 5.2.3 in
order to illustrate the gain in speed by parallelization.

Example 5.2.3. For the graph Q, as seen below, we apply algorithm 2 in an
attempt to find a minimal edge covering EC

min and a maximal vertex independent
set V I

max. Note that we used a parallelized version of the algorithm in which all
leaf nodes are considered at the same time.

1 2 3

4

5
6

7

8 9Q

3 ∅

Running algorithm 2 with Q as the input graph gives us,

• Initially: I = ∅, C = ∅.

• After 1 iteration: I = {1, 5, 6, 7, 9}, C = {(1, 2), (4, 5), (4, 6), (4, 7), (8, 9)}.

• Returned sets: V C
max = {1, 3, 5, 6, 7, 9},

EC
min = {(1, 2), (3, 2), (4, 5), (4, 6), (4, 7), (8, 9)}

(Where (3, 2) could be replaced by (3, 4) or (3, 8)).
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So for the graph Q the algorithm terminates as the final graph is empty so we
have CQ,T,2 = IQ,T,2 = 6. Hence,

V (Q, T, 2) =
1

6
.

Lemma 5.2.4. For the game G(Q, T,m) for any tree Q, for any T ≥ 2, we have

V (Q, T, 2) =
1

CQ,T,2
=

1

IQ,T,2
.

This is achieved by the covering patroller strategy and independence attacker strat-
egy. The exact value of CQ,T,2 = IQ,T,2 ∈ N is determined by algorithm 2 (with
CQ,T,2 = IQ,T,2 = |ECmin| = |V Imax|).

Having seen the value and optimal strategies, albeit non-explicitly, for the game
G(Q, T, 2) where Q is a tree (or for non-tree graphs when Algorithm 2 terminates
and returns sets), we move onto looking for solutions for much higher attack
lengths for trees (again with some remarks to non-tree graphs). More precisely
we conjecture that the random minimal full-node cycle, πQRMFNC, is optimal for
patrolling games on trees when m ≥ n− 1.

5.3 Conjecture on the optimality of πQRMFNC

In this section, we will discuss the optimality of the random minimal full-node
cycle patroller strategy πQRMFNC, for the game G(Q, T,m). We will initially allow
any graph Q, later restricting Q to trees and making conjecture 5.3.2. The idea
of having a single intercepting patroller which contains all nodes is easy to see
when considering a minimal full-node cycle under large attack lengths. That is
we consider when CQ,T,m = 1 by the use of a minimal full-node cycle WQ

MFNC. If

m ≥ F (Q), where F (Q) is the length of WQ
MFNC then WQ

MFNC is intercepting and
as it contains all nodes we have CQ,T,m = 1. Hence, we obtain lemma 5.3.1.

Lemma 5.3.1. For the game G(Q, T,m) for any graph Q, for any T ≥ m, for
any m ≥ F (Q), where F (Q) is the length of a minimal full-node cycle for Q, we
have

V (Q, T,m) = 1,

achieved by a minimal full-node cycle patroller strategy WQ
MFNC and any attacker

strategy.

This idea of the minimal full-node cycle has been used for a variety of graphs,
including the line graphs Ln (see [107]) and various star graphs such as the gen-
eralised star graph Q = Skn in chapter 4. Further to this when the attack length
m is lowered to be below the length of the minimal full-node cycle F (Q), we have
seen the solution in the next attack length region remains as the random minimal
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full-node cycle, πQRMFNC. The size of this attack length region depends upon at
what m there is a strict improvement πQRMFNC. The performance of πQRMFNC at
nodes is given by equation 3.17 and helps determine when such an improvement
is possible. In order to decide if strict improvement is possible, we must con-
sider how many and which nodes require improvement to improve the minimal
performance among all nodes. That is all currently minimal nodes must be con-
sidered in improvement strategies. As we are using a minimal full-node cycle, leaf
nodes are not repeated within WQ

MFNC and so have the same performance as each
other, which is the minimal among all nodes. Therefore in the case of Q being
a tree, then all the leaf node are minimal nodes as they are the only nodes not
repeated. Furthermore when Q is a tree, regardless of the edges of Q we know
that F (Q) = 2(n − 1) (where n = |N |). For the rest of this section we focus on
trees and thus assume Q is a tree, unless mentioned otherwise. The number of
leaf nodes for a tree can vary depending on the graph structure from 2 to n − 1
(corresponds with a line graph Ln and a star graph Sn−1 respectively). As the
number of leaf nodes increases the attack length at which strict improvement is
possible has been seen to lower. This is intuitive as for more leaf nodes more
intercepting patrols are needed and thus can only be effectively used for lower
attack lengths. Thus we know that that the highest such attack length among all
trees is given by that attack length for Ln i.e. m ≥ n − 1. We make the follow-
ing conjecture to formalise this idea, noting that we have already seen empirical
evidence that for all currently solved trees the conjecture holds.

Conjecture 5.3.2. For the game G(Q, T,m), where Q = (N,E) (|N | = n) is a
tree, if 1

2
≤ V (Q, T,m) < 1, then πQRMFNC is an optimal strategy for the patroller.

I.e, for any m ∈ N such that n− 1 ≤ m < 2(n− 1) and for any T ≥ 2m we have

V (Q, T,m) =
m

2(n− 1)
.

We may immediately note that we can limit ourselves to n ≥ 3 (where n = |N |)
as the only trees with n = 1, 2 nodes are L1 and L2 on which all patrolling games
are solved.That is any patrolling games with Q = L1 has a value of 1 and the only
patrolling game on Q = L2 to not have a value of one is G(L2, T, 2) for any T ≥ 2
which has value 1

2
by lemma 5.2.4 aligning with conjecture. Note that πQRMFNC

is optimal for the game G(L2, T, 2) as the lower bound it provides is equal to the
lower bound from the covering strategy.

As previously mentioned all patrolling games solutions provided in this thesis
alludes to the conjecture being true. That is it holds for Sn, Ln, Skn and Sn1,n2 .
Furthermore for those trees with more than 2 leaf nodes we have seen a much
larger attack length region for which πQRMFNC is optimal. In order to make the case
that the conjecture is likely to be true, we provide an intuitive reasoning when
we assume that we are able to restrict the set of patroller strategies to only using
closed walks. Afterwards, to further support our case about conjecture 5.3.2 we
provide exhaustive results by testing every game on every tree with n ≤ 8 nodes
(which are not covered by lemma 5.3.1).
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5.3.1 Intuitive reasoning for conjecture

In this section we provide the intuitive reasoning to why we make conjecture
5.3.2. Specifically, we show that πQRMFNC has no strict improvements when we
consider only using repeated minimal length closed walks between currently min-
imally performing nodes. While such an assumption invalidates this reasoning
as proof of the conjecture, it is intuitive to do so as only repeated closed walks
provide unifromity in their performance at each minimal node seen during the
closed walk for all time. Strategies which do not have this uniformity in time are
only considered at their weakest time interval and so do not perform as well.

To see why πQRMFNC has no strict improvements, let us first recall its performance
at the leaf nodes which is

m

2(n− 1)
.

Now in order to use the PIP (equation (3.19)) in an attempt to improve πQRMFNC,
we must decide on other strategies which give a better performance at these leaf
nodes. For the set of leaf nodes for the graph Q, L ⊂ N , we consider using all
minimal length closed walks (a subset of patroller strategies) where each closed
walk, Wi, contains a unique strict subset Li ⊂ L, for i = 1, ..., 2|L| − 2. Each
of these closed walks Wi are repeated in the time-horizon to form the patroller
strategies πi for i = 1, ..., 2|L|−2 which are considered for improvement of πQRMFNC

in the PIP. Let L(Wi) be the length of walk Wi, then the performance restricted
to consideration of leaf nodes is

Vj,πi,•(Q, T,m) =

{
m

L(Wi)
if j ∈ Li,

0 otherwise.

Note that we need not care about non-leaf nodes as the performance at such
nodes is strictly better than any leaf node in each πi for i = 1, ..., 2|L| − 2. The
PIP then becomes

maximize min
j∈N

 m

2(n− 1)
p0 +

2|L|−2∑
i=1

Vj,πi,•(Q, T,m)pi


subject to

2|L|−2∑
i=0

pi = 1,

pi ∈ [0, 1], for i = 0, ..., 2|L| − 2.

(5.2)

Thus to solve the PIP (equation 5.2) we must have
2|L|−2∑
i=1

Vj,πi,•(Q, T,m)pi equal

for all j ∈ L. Each j ∈ L is contained in 2|L|−1 − 1 of the 2|L| − 2 strategies, that
is each node j is contained in exactly half of all strategies. Therefore, regardless
of the performance Vj,πi,•(Q, T,m) and for any choice of pi for i = 1, ..., 2|L| − 2

we have
2|L|−2∑
i=1

Vj,πi,•(Q, T,m)pi ≤ 1
2
. Hence, to maximize the minimum among all
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nodes of this hybrid strategy the choice of p0 = 1 should be made and subsequently
we know the strategies πi for i = 1, ..., 2|L| − 2 provide no strict improvement for
πQRMFNC. Therefore we conclude that if we only consider closed repeated walks as
improvements then the best strategy is πQRMFNC for the game G(Q, T,m).

5.3.2 Computer testing

In this section we explain how we can test conjecture 5.3.2 using a computer
program. We use linear program (2.10) to find the value of the game G(Q, T,m)
and hence if πQRMFNC is optimal, doing so for each tree Q with a specific number
of nodes n for 3 ≤ m ≤ 2(n−1) with T = 2m. By doing so we see that conjecture
5.3.2 holds for all trees with n ≤ 8 and hence arrive at lemma 5.3.3.

To test the conjecture for a given number of nodes n we first generate all the
trees with n nodes. In order to ensure we have generated all trees with n nodes,
we take all trees with n − 1 nodes and consider adding a leaf node to each of
the nodes forming separate graphs, after which all isomorphic trees are removed.
Such tree generation is done by algorithm 3, to test for isomorphism in our tree
generation we use algorithm 4.

When all the trees for a given number of nodes are calculated we can then compute
the value of the game by using the linear program set up in section 2.2.3 (equation
(2.10)). We do this for n− 1 ≤ m ≤ 2(n− 1) to check the validity of conjecture
5.3.2 and for completeness we check 1 ≤ m < n− 1 decreasing down until a tree
is found to not have the value predicted by the conjecture (that is πQRMFNC is not
optimal).

While the number of trees grows exponentially with the number of nodes, for
our computational experiment we look at all trees with n = 3, 4, 5, 6, 7, 8 nodes
sequentially and hence only have to check 1, 2, 3, 6, 11, 23 trees respectively for
each number of nodes (for OEIS (Online Encyclopaedia of Integer Sequences)
A000055 is the sequence number for the number of trees with a given number of
nodes, where labelling isn’t relevant). While the number of trees we look at is not
considerably large the computation time for the linear program on the patrolling
game is considerable and this needs to be run for multiple attack lengths for each
tree. In addition we assume T = 2(n−1), so that the game length is large enough
to allow for the attacker to distribute in the commencement time which further
adds to the computation time due to the number of pure strategies exponentially
increasing. We present our results in figure 5.3.1 in which we see that in the green
region that the conjecture holds for all patrolling games on trees with up to 8
nodes. While it is possible to test out conjecture for all trees with n ≥ 9 nodes,
the computational time for one such game makes this infeasible. For example
testing the all the patrolling games on the 28 trees with 8 nodes takes multiple
days and in total our complete test took over a week with general computing
power. Therefore for patrolling games on trees with n ≥ 9 we only conjecture
about the optimality of πQRMFNC. Figure 5.3.1 shows the region concerning the
conjecture which has not been exhaustively tested in purple.
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Input: Maximum number of nodes in trees n.
Result: Set of adjacency matrices for trees Q with n nodes or less nodes.
Tree of one node’s adjacency matrix M = (1), Collection of trees
Q = {M} ;
CQ = Q ;
while i ≤ n do

Empty the working set of trees, NCQ = NULL ;
j = 1 ;
while j ≤ |CQ| do

Set M to jth adjacency matrix in the set CQ, Q = CQ[j] ;
k = 1 ;
while k ≤ number of rows of M do

Add leaf node to node k to the adajanceny matrix M to form
M ′ ;

if M ′ is not isomorphic to any graph in NCQ then
Add M ′ to NCQ ;

end
k = k + 1 ;

end
j = j + 1 ;

end
Set the set of trees with i+ 1 nodes to CQ = NCQ ;
Add set of trees with i+ 1 nodes to collection, Q = Q∪NCQ ;
i = i+ 1 ;

end
return Q

Algorithm 3: An algorithm to generate all trees which have up to n nodes
up to an isomorphic relabelling of nodes and edges.
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Input: Adjacency matrix M and set of adjacency matrices Q.
Result: TRUE if M is isomorphic to any matrix in Q, FALSE otherwise.
i = 1 ;
while i ≤ |Q| do

Set T equal to the ith adjancey matrix in Q, T = Q[i] ;
if number of rows of M == number of rows of T then

Set Perms = set of all permutations of
{1, ..., number of rows of T} excluding the permutation
(1, ..., number of rows of T ) ;
j = 1 ;
while j ≤ |Perms| do

Permute the rows of matrix T using the jth permutation from
Perms to form matrix TR ;

if TR == M then
return TRUE

end

end
j = j + 1 ;

end

end
i = i+ 1 ;
return FALSE

Algorithm 4: An algorithm to check if a graph is isomorphic to any graph
in a set of graphs.

Lemma 5.3.3. For the game G(Q, T,m), where Q = (N,E) is a tree and |N | =
n ≤ 8, if V (Q, T,m) ≥ 1

2
, then πQRMFNC is an optimal strategy for the patroller.

I.e, for any T ≥ 2m, and for any m ≥ n− 1, we have

V (Q, T,m) =
m

2(n− 1)
.

Further to this computer testing for the game G(Q, T,m) where Q is a tree, we
performed a similar test when Q is a non-tree graph in order to test the optimality
of πQRMFNC for non-trees. Initial computer testing seems to suggest that a similar
conjecture to conjecture 5.3.2 can be made where the boundary between regions
where πQRMFNC is guaranteed to be optimal depends on the comparison of the
attack length to the length of a minimal full-node cycle. For m ≥ 1

2
F (Q) (where

F (Q) is the length of the minimal full-node cycle for Q) we saw during computer
tests that πQRMFNC is optimal for non-trees as well as trees, thus we state conjecture
5.3.4.

Conjecture 5.3.4. For the game G(Q, T,m), if V (Q, T,m) ≥ 1
2
, then πQRMFNC

is an optimal strategy for the patroller. I.e, for any T ≥ 2m, and for any m ≥
1
2
F (Q), we have

V (Q, T,m) =
m

F (Q)
,
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m = n− 1

m = 2(n− 1)
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Figure 5.3.1: The figure shows different regions of (n,m) for which the blue region
has a known value by either lemma 2.3.26, 5.2.4 or 5.3.1. By computer testing
the green region has the conjecture hold true for all trees. The region below, in
red, has m < n − 1 and is not covered by the conjecture. In this region some
games have πQRMFNC as an optimal strategy, but not all. To the right of the green
region we have the purple region in which we predict the conjecture will be true.
To the right of the red region we have the orange region in which we know that
πQRMFNC is only optimal for some patrolling games on trees. We know this by
looking at the solution to the patrolling game on a star and tree. The regions are
divided by the boundary lines m = n− 1 and m = 2(n− 1) which are shown in
the figure. All results assume T ≥ 2(n− 1).
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where F (Q) is the length of a minimal full-node cycle for Q. Moreover if Q is a
tree then for any T ≥ 2(n− 1), and for any m ≥ n− 1

V (Q, T,m) =
m

2(n− 1)
.

5.4 Chapter conclusion

In this chapter we have found solutions to the patrolling games G(Q, T,m) where
Q is a tree. When m = 2 we did so by using the covering and independent
strategies. However as CQ,T,2 = IQ,T,2 are not explicit for trees we are not able to
explicitly state V (Q, T,m) and instead it must be calculated by algorithm 2. In
addition we found the solution for any tree when m ≥ 2(n− 1) (where |N | = n),
by the use of the (random) minimal full-node cycle which is intercepting in such
patrolling games.

Lastly we conjectured on the value of the patrolling game when n − 1 ≤ m <
2(n − 1), for T ≥ 2(n − 1), in conjecture 5.3.2. This was done by looking when
πQRMFNC is optimal, which we believe it is for this region of attack lengths. We
intuitively argued why πQRMFNC is optimal in this attack length region, by looking
at whether any improvement is possible through PIP. In doing so we restricted
the improvements to only use repeated closed walk, showing that the entire col-
lection of repeated closed walks provide no strict improvement over πQRMFNC. To
construct a formal proof one would have to show no improvement is possible for
all such strategies. While intuitively repeated closed walks seem the best consid-
erations for improvement we are unable to prove this claim. For further evidence
that the conjecture is true, by exhaustive computation, we showed that it holds
for any tree with n ≤ 8 nodes. As we are only able to conjecture such a result,
future work needs to be undertaken in order to prove our conjecture. Essentially
we must understand why it is possible to eliminate other strategies which are
not repeated closed walks. In addition through computational experiments we
are lead to believe that such optimality of πQRMFNC may be guaranteed for all
patrolling games on non-tree graphs when m ≥ F (Q) and T ≥ 2m. While this
was not the focus of our work, it provides an interesting direction of study for
future work.

This concludes our work on the classic patrolling game G(Q, T,m), in the next
chapter we will look at extensions to the patrolling game, which allow for more
varied patrolling scenarios to be modelled.



Chapter 6

Extensions to patrolling games

In this chapter, we extend the notion of the patrolling game G(Q, T,m) in several
directions, allowing for a larger class of patrolling scenarios to be modelled using
the patrolling game framework. We will describe the set-up for these extended
patrolling games before providing solutions to certain classes of these games. This
chapter will look at the following extensions to the patrolling game:

• Having an arbitrary distance on each edge rather than a constant unitary
distance, allowing us to model a situation where connections between loca-
tions take longer to use.

• Having the attack length be node dependent rather than constant, allowing
us to model situations where certain locations are more vulnerable than
others.

• Making the game multi-player, allowing for a wide variety of scenarios de-
pending on the coordination and symmetry of players and their collectives.

For each extension we will first describe the extension and formally state the
alterations to the patrolling game made. We then obtain some results by relying
on solutions to the patrolling game as studied earlier in chapters 2, 4 and 5. In
order to avoid confusion between the game defined in chapter 2 and the following
patrolling games with extensions, we refer to the previously defined patrolling
game G(Q, T,m) (as in chapter 2) as the classic patrolling game.

We start this chapter with the inclusion of edge distances in section 6.1, studying
the game G(Q,D, T,m) with D representing a positive real ‘weight’ for each
edge of the graph Q modelling the distance between nodes. Of particular note
in this section is the solution to a model of multiple cities at various distances
from a centralised hub city, as discussed in chapter 4, 4.3. By using the game
G(Q,D, T,m) rather than the classic G(Q, T,m) to model the scenario we are
able to provide the optimal solution because we can ignore internal nodes along
the branches of a generalised star graph Skn and instead use a distance between
the centre and branch end which represent the hub and a city respectively.

In section 6.2 we look at extending the attack length m to be node dependent
instead of constant, studying the game G(Q, T,m), where m ∈ Nn. The game
G(Q, T,m) allows the modelling of a patrolling scenario where there are fortified
or vulnerable locations, which respectively take the attacker longer or shorter
amounts of time to complete a successful attack at.

195
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Lastly, in section 6.3, we consider four different ways to introduce additional enti-
ties to either the patrolling or attacking side of the scenario, turning the game from
a two player patrolling game into a multi-player patrolling game Gi(k, l, Q, T,m)
for some i ∈ {1, 2, 3, 4}. In doing so we will consider four models including self-
ish attackers and collaborative attackers whose objectives differ in order to see
how altering the objective of the attackers alters optimal strategies between these
games.

6.1 A patrolling game with edge distances

6.1.1 Introduction to patrolling games with edge distances

In this section we extend the classic patrolling game G(Q, T,m) to the patrolling
game with edge distances G(Q,D, T,m) in which the additional parameter D
assigns a positive real length (‘weight’) to each edge of the graphQ. By allowingD
to be non-constant and non-unitary amongst edges we extend the classic patrolling
game as D can be chosen to allow the game to model the time taken in travelling
between locations. As in the classic game, we will still be under the assumption
that the patroller moves with unitary speed as otherwise a simple scaling of the
lengths will allow for a constant but non-unitary speed. As we do not restrict the
lengths of the edges to be natural numbers but instead allow real values the game
G(Q,D, T,m) is played in real time instead of discrete time with the position of
the patroller being along an edge or at a node.

The patrolling game with edge distances G(Q,D, T,m) is parametrized by a 4-
tuple (Q,D, T,m) where Q = (N,E) is a simple undirected graph, D : E → R
is the edge distance function, T ∈ R is the game length (with the time-horizon
J = [0, T ]) and m ∈ R is the attack length. While the classic patrolling game
G(Q, T,m) is a discrete game time game, with each move for the patroller taking
one time epoch and each time epoch the attacker is at a node counting towards the
required attack length m, the patrolling game with edge distances G(Q,D, T,m)
is a continuous time game. A continuous walk W of length l ∈ R is a function
W : [0, l] → N ∪ E such that for all t1 ∈ [0, l] if W (t1) ∈ N then t2 ≥ t1 +
D(W (t1,W (t2))), where t2 = min{t ∈ [t1, l] | W (t) ∈ N}. For a continuous walk
W , W (t) represents the position of the walk at time t ∈ [0, l] which is either a
node or edge. We note that the condition enforced on continuous walks is there to
ensure that time between subsequent nodes is at least the distance between those
respective nodes. While in the classic game there is no confusion on distance
between nodes in the patrolling game with edge distance we need to distinguish
between edge distances and shortest distances. We define the shortest distance
between two nodes j, j ∈ N as d(j, j′), the minimum length walk starting at node
j and ending at node j′. We note that d(j, j′) is not necessarily equal to D((j, j′))
as the minimal length walk need not use the edge (j, j′).

As with the classic patrolling game a pure patroller strategy is a walk around the
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graph until time T at which point the game ends. Therefore in the patrolling
game with edge distances a pure patroller strategy is a continuous walk W of
length T . In the patrolling game with edge distances a pure attacker strategy
still chooses a node and commencement time, however this commencement time
is now continuous, that is (j, τ) ∈ N × [0, T ], representing an attack at node j
commencing at time τ (which ends at time τ + m). By the same idea as in the
classic patrolling game, any attack commencing after T −m will fail to complete
and so we can limit the attacker to choices of τ ∈ [0, T −m]. The pure patroller
strategies are collected in the set W(Q,D, T,m) and the pure attacker strategies
are collected in the set A(Q,D, T,m) = N × [0, T −m] (noting that we may omit
the parameter space (Q,D, T,m)).

As in the classic patrolling game the patroller wins (and attacker loses) if the
patroller is at the chosen node during the attack interval, otherwise the patroller
loses (and attacker wins). Therefore the game is zero-sum and hence we only
need to define the payoff from the patrollers perspective, thus the payoff for the
patroller strategy W ∈ W against (j, τ) ∈ A is

P (W, (j, τ)) = I{j∈W ([τ,τ+m])}.

We can assume some ordering of the sets W and A by two arbitrary bijections
β1 : W → N and β2 : A → N respectively so W(x) = β−1

1 (x) and a(y) = β−1
2 (y).

Then we can form a pure payoff matrix

P = (P (W(x), a(y)))x∈{1,...,|W|},y∈{1,...,|A|}, (6.1)

with a maximizing patroller and minimizing attacker. Like the classic pure pa-
trolling game, the pure patrolling game with edge distances has a Nash equilib-
rium if and only if there is a pure patrolling strategy which guarantees catching
all pure attackers (i.e. there was a row of ones in the payoff matrix). There-
fore, as in the classic patrolling game, this prompts us to allow for the mixing
of strategies forming the mixed patrolling game with edges distances henceforth
called the patrolling game with edge distances.

In the mixed patrolling game with edge distances each player chooses a probability
distribution amongst all pure strategies. That is a mixed patroller strategy is
π = (π1, ..., π|W|) where πi is the probability of playing W(i) and a mixed attacker
strategy is φ = (φ1, ..., φ|A|) where φi is the probability of playing a(i). As π and
φ are probability distributions we have

π ∈ Π(Q,D, T,m) =

x ∈ [0, 1]|W(Q,D,T,m)|

∣∣∣∣∣∣
|W(Q,D,T,m)|∑

i=1

xi = 1

 ,

φ ∈ Φ(Q,D, T,m) =

y ∈ [0, 1]|A(Q,D,T,m)|

∣∣∣∣∣∣
|A(Q,D,T,m)|∑

i=1

yi = 1

 ,

where Π(Q,D, T,m) is the set of all mixed patroller strategies and Φ(Q,D, T,m)
is the set of all mixed attacker strategies (again often omitting (Q,D, T,m) when
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it is clear). For the game G(Q,D, T,m), the (patrollers) payoff for the patroller
choosing π ∈ Π and the attacker choosing φ ∈ Φ is

P (π,φ) =

|W|∑
i=1

|A|∑
j=1

Pi,jπiφj = πPφT , (6.2)

with the objective of a maximizing patroller and minimizing attacker. In the
same fashion as the classic game and it’s MiniMax and MaxiMin play variants,
a player choosing a strategy will determine a performance according to their
strategy leading and the optimal strategy chose by the following player. Thus the
performance of a patroller choosing the mixed patroller strategy π ∈ Π is given
by

Vπ,•(Q,D, T,m) = min
φ∈Π

πPφT = min
a∈A

P (π, a),

and the performance of an attacker choosing the mixed attacker strategy φ ∈ Φ
is given by

V•,φ(Q,D, T,m) = max
π∈Π

πPφT = max
W∈W

P (W,φ).

By theorem 2.2.2 we have the value of the game G(Q,D, T,m) which is played
simultaneously is given by

V (Q,D, T,m) = max
π∈Π

min
φ∈Φ

P (π,φ) = min
φ∈Φ

max
π∈Π

P (π,φ).

Hence the value is bounded below by the performance of any mixed patroller
strategy and above by any attacker strategy and therefore for all π ∈ Π and
φ ∈ Φ we have

0 ≤ Vπ,•(Q,D, T,m) ≤ V (Q,D, T,m) ≤ V•,φ(Q,D, T,m) ≤ 1.

Before presenting results on the game G(Q,D, T,m) we note that as mixed strate-
gies include pure strategies we will drop the term mixed.

6.1.2 Results for patrolling games with edge distances

In this section we look at comparing various patrolling games with edge distances
when the edge distance is increased and show that this can only result in a
decrease of the games value. We follow this by showing that we can use our
solutions to the classic patrolling game (Q, T,m) to solve patrolling games with
edge distances (Q,D, T,m) as long as the edge distance for edges used with a
non-zero probability in an optimal solution to the classic game are the only edges
with a non-unitary distance.

Before presenting any results, we can see from the payoff for any gameG(Q,D, T,m)
(in equation (6.1) and (6.2)) it is clear that pure patroller strategies/walks should
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not wait along edges (and may as well wait at nodes) and therefore we can restrict
the pure patroller strategy set to

W ′ = {W ∈ W | ∀t ∈ [0, T ] if W (t) ∈ N,W (t+ s) ∈ E for all 0 < s < min
e∈E

D(e)

then t′ = t+D(W (t),W (t′)) where t′ = min{s ∈ (t, T ] | W (s) ∈ N}}.

As any walk W ∈ W ′ moves between adjacent nodes while possibly waiting at
nodes we can write W as

W (t) =



j1 for t1 ≤ t ≤ ν1,

(j1, j2) for ν1 < t < t2,

j2 for t2 ≤ t ≤ t1 + ν2,
...

...

(jk−1, jk) for tk−1 + νk−1 < t < tk,

jk for tk ≤ t ≤ T,

for some k ∈ N, for some ji ∈ N for all i ∈ {1, ..., k} where

ti =

{
0 if i = 1,

ti−1 + νi−1 +D(ji−1, ji) if i = 2, 3, ..., k,

is the time of arrival at the ith node and tk + νk = T . It is therefore easier to
represent any walk W ∈ W ′ in general move-wait form

ω = ((j1, ν1), ..., (jk, νk)) (6.3)

where the pair (ji, νi) represents the patroller moving to node ji ∈ N , such that
(ji−1, ji) ∈ E, arriving at time ti. We let Ω be the set of all general move-wait form
walks equivalent to the set of non-edge waiting pure patroller strategies/walksW ′.
Then

V (Q,D, T,m) = min
φ∈Φ

max
ω∈Ω

P (ω,φ) = max
ω∈Ω

min
φ∈Φ

P (ω,φ).

We note that this general move,wait form considered for the gameG(Q,D, T,m) is
similar but not analogous to move,wait form used for evaluating the performance
of attacker strategies as done in section 3.2.2.

An intuitive result is that increasing the distance on an edge can only decrease
the value of the game as the patroller must spend more time to traverse it if its
required in the optimal strategy.

Lemma 6.1.1. For the patrolling games with edge distance G(Q,D, T,m) and
G(Q,D′, T,m) if D′(e) ≥ D(e) for all e ∈ E, then for all graphs Q, for all m ≥ 1
and for all T ≥ m we have

V (Q,D, T,m) ≥ V (Q,D′, T,m).
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The proof of lemma 6.1.1 follows by using an augmented version of the pa-
trollers strategy from the game G(Q,D′, T,m) in the game G(Q,D, T,m) to get
a lower bound and by using the exact same attacker strategy from the game
G(Q,D′, T,m) in the game G(Q,D, T,m).

Proof. First let us show that V (Q,D, T,m) ≥ V (Q,D′, T,m). Let π∗ ∈ Π(Q,D′, T,m)
be an optimal strategy to the game G(Q,D′, T,m) playing pure patrolling strate-
gies W1, ...,Wp with non-zero probability i.e. π∗β1(Wx) > 0 for all x ∈ {1, ..., p}
such that

p∑
x=1

π∗β1(Wx) = 1.

Let ω1, ..., ωp be the general move,wait form of the pure patrolling strategies
W1, ...,Wp and then augment these forming ω̃1, ..., ω̃p such that

ji(ω̃x) = ji(ωx),

and

νi(ω̃x) =

{
νi(ωx) if i = 1,

νi(ωx) +D′((ji−1, ji))−D((ji−1, ji)) if 2 ≤ i ≤ k,

for all i ∈ {1, ..., k(ωx)} for all x ∈ {1, ..., p}. That is ω̃x waits for some excess
time, equal to the difference between the edge distances, after using each edge
and follows the same nodes and edges as ωx.

These augmented pure patroller strategies in general move,wait form ω̃1, ..., ω̃1

have normal form equivalents W̃1, ..., W̃p ∈ W(Q,D, T,m) and hence playing

W̃x with probability π∗β1(Wx) for x = 1, ..., p creates a mixed patroller strategy

π̃ ∈ Π(Q,D, T,m). For the created strategy π̃ we have that P (π̃, a) ≥ P (π∗, a)
for any pure attack a ∈ A(Q,D, T,m), as any pure attack caught by ωx is caught
by ω̃x for all x ∈ {1, .., p}. In addition note that A(Q,D, T,m) = Q,D′, T ,m and
so we have that

V (Q,D, T,m) ≥ min
a∈A(Q,D,T,m)

P (π̃, a) ≥ min
a∈A(Q,D,T,m)

P (π∗, a) = V (Q,D′, T,m).

Hence we have shown V (Q,D, T,m) ≥ V (Q,D′, T,m).

While we initially assumed the game was of continuous time as we allowed D :
E → R we will now limit ourselves to using only rational distances on edges, that
is have a distance function such that D : E → Q, a rational game length T ∈ Q
and a rational attack length m ∈ Q. Furthermore by taking the lowest common
multiple of all denominators in the set D(E) ∪ {T,m} we can scale the problem
up by multiplying by this number to leave a game limited to the integers. So for
the remainder of our study on G(Q, T,m) we will assume the distance function
is such that D : E → N, T ∈ N and m ∈ N. In this case the time-horizon is
now J = {0, ..., T − 1}. We then note that since a pure patrollers strategy in
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general move,wait form is described as list of pairs, as in equation (6.3), (ji, νi)
has νi ∈ N.

In chapter 4, section 4.4 we briefly discussed that some edges have no effect on
the value of the classic patrolling game. Here we formally define this idea for the
classic patrolling game as superfluous edges and show how the distance mapping
of these edges is irrelevant to the the value of the patrolling game with distance.

Definition 6.1.2. For the (classic) patrolling game G = ((N,E), T,m) we call an
edge e ∈ E superfluous if V ((N,E), T,m) = V ((N,E \ {e}), T,m). Furthermore,
we call a set of edges F ⊂ E a superfluous set if V ((N,E), T,m) = V ((N,E \
F ), T,m).

That is the removal of a superfluous edge does not affect the value of the classic
patrolling game, and in other words if there is an optimal patroller strategy
which does not use the edge in the game then the edge is superfluous. As an
example consider the game G(Kn, T,m),on the complete graph of n nodes, then
as any random Hamiltonian strategy πrH is optimal it is easy to see that the
removal of any edge results in the new game having the same value, as it remains
Hamiltonian. While all edges are initially superfluous this does not mean the set
E is a superfluous set. To construct a superfluous set one must find a superfluous
edge add it to the set and then proceed to find a superfluous edge in the resultant
game with that edge removed. An example of a superfluous set can be found by
comparing G(Kn, T,m) to G(Cn, T,m), the patrolling game on the cyclic graph
of n nodes. In chapter 2, section 2.2.3 we saw that

V (Kn, T,m) = V (Cn, T,m) =
m

n
,

for all n ≥ 1, m ≥ n and for all T ≥ m. Letting E1 be the set of edges in Kn and
E2 be the set of edges in Cn we have that F = E1 \E2 is a superfluous set for the
game G(Kn, T,m). One can consider the construction of a superfluous set with

the same cardinality by the above method, adding in total n(n−3)
2

edges to a set
G and with appropriate choices it is possible that G = F .

When an edge is not superfluous, its removal has a varying effect on the value of
the game, depending on the importance of that edge in the patroller’s optimal
strategy. For example the removal of any edge from the graph in the game
G(Cn, T,m) results in the game G(Ln, T,m) which has a widely different value
dependent on the attack length m (see figure 2.3.3 for an example of the difference
for various attack lengths). We can now consider using the superfluous set/edge
for a classic patrolling game to form patrolling game with edge distances which
can still utilise the same optimal strategies.

Lemma 6.1.3. For the (classic) patrolling game G(Q, T,m) (Q = (N,E)) with
a superfluous set F ⊂ E and the patrolling game with edge distances G =
(Q,D, T,m) such that D(e) = 1 for all e ∈ E \ F we have

V (Q,D, T,m) = V (Q, T,m) ∀m ≥ 1, ∀T ≥ m.
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The proof of lemma 6.1.3 immediately follows from using the optimal strategies
of the classic patrolling game in the patrolling game with edges distances.

Proof. First we aim to prove that an optimal policy of the classic game does not
need to use the a superfluous edge. As

V ((N,E), T,m) = V ((N,E \ F ), T,m)

⇐⇒ max
π∈Π((N,E),T,m)

min
φ∈Φ((N,E),T,m)

P (π,φ) = max
π∈Π((N,E\F ),T,m)

min
φ∈Φ((N,E\F ),T,m)

P (π,φ)

we have that optimal strategies π∗ ∈ Π(N,E \ F, T,m) ⊂ Π(N,E \ F, T,m) and
φ∗ ∈ Φ(N,E \ F, T,m) = Φ(N,E), T,m) for the game G((N,E \ F, T,m) which
can be used in G((N,E), T,m) and hence no superfluous edge is used.

The optimal patroller strategy π∗ is feasible in the game G(Q,D, T,m) as any
edge used e ∈ E \ F has D(e) = 1. By using the strategy π∗ ∈ Π(Q,D, T,m) we
have

V (Q,D, T,m) ≥ Vπ∗,•(Q,D, T,m) = max
a∈A(Q,D,T,m)

P (π∗, a)

= max
a∈A(Q,T,m)

P (π∗, a) = V (Q, T,m). (6.4)

By using lemma 6.1.1 to compare the game G(Q, T,m) = G(Q, 1, T,m) to the
game G(Q,D, T,m) we get

V (Q,D, T,m) ≤ V (Q, 1, T,m) = V (Q, T,m) (6.5)

The lower bound in equation (6.4) and the upper bound in equation (6.5) are
equal and thus V (Q,D, T,m) = V (Q, T,m).

Lemma 6.1.3 immediately gives us the value and hence optimal strategies for
games with edge distance when we take a classic game with a known value and
change distances on any edge in a superfluous set. For example, lemma 6.1.3
tells us the value of G(Q,D, T,m) for which Q ∈ H and for which a Hamiltonian
cycle, H exists such that D((H(i), H(i + 1)) = 1 for all i = 0, ..., |N | − 1. It is
possible to get a stronger version of lemma 6.1.3 which compares the distances
on edges for various patrolling games with edges distances.

Lemma 6.1.4. For the game G(Q,D, T,m) and a set F ⊂ E for which the game
G(Q,D, T,m) has an optimal patroller strategy π∗ ∈ Π(Q,D, T,m) which does
not use any edge e ∈ F then

V (Q,D′, T,m) = V (Q,D, T,m) ∀m ≥ 1, ∀T ≥ m,

where in game G(Q,D′, T,m), D′ is any distance function such that D′(e) = D(e)
for e ∈ E \ F .

The proof of lemma 6.1.4 is left to appendix C.1, since it follows from the same
idea as the proof of lemma 6.1.3 in which we think about the set F being ‘su-
perfluous’. Lemma 6.1.4 allows us make a stronger statement about Hamiltonian
graphs.
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Corollary 6.1.5. For the games G(Q,D, T,m) and G(Q,D′, T,m) where Q =
(N,E) ∈ H and there exists some Hamiltonian cycle H for Q such that D((H(i), H(i+
1))) = D′((H(i), H(i+ 1))) for all i ∈ {0, ..., |N | − 1} then

V (Q,D′, T,m) = V (Q,D, T,m) ∀m ≥ 1, ∀T ≥ m.

The proof of corollary 6.1.5 follows immediately by noting that the conditions of
lemma 6.1.4 are satisfied by using any F ⊂ E \H({0, ..., |N | − 1}).

We have seen the value of the patrolling game with edge distances remains the
same, when only edges which are superfluous have their distance increased. This
is because the patroller need not use those edges. Similarly, we can look the
idea of using an attacker strategy which does not use a set of nodes. We start
by first looking at removing nodes on the graph in a similar process to that of
node-identification from section 2.3.1. However, unlike node-identification this
process will remove nodes while retaining the connections (and distances of said
connections) provided through the node being removed. We call this process
Sublimation and define it with our distance on edges. This process is an extension
of the smoothing operator (which can only be applied to nodes with degree two)
([47]).

Definition 6.1.6. The graphical operator of node-sublimation maps a (simple
undirected) graph Q = (N,E) and a distance edge function D to another graph
Q′ = (N ′, E ′) and a distance edge function D′ by sublimating a node n written
as Qs(Q,D, n) = (Q′, D′). The resultant graph Q′ is such that N ′ = N \ {n} and
E ′ = E \{(i, n)|(i, n) ∈ E}∪{(i, j)|(i, n), (j, n) ∈ E, (i, j) /∈ E} and the resultant
distance edge mapping D′ is given by

D′((i, j)) =


min(D((i, n)) +D((j, n)), D(i, j)) if (i, n), (j, n) ∈ E, (i, j) ∈ E
D((i, n)) +D((j, n)) if (i, n), (j, n) ∈ E, (i, j) /∈ E
D((i, j)) otherwise.

That is node-sublimation removes all incident edges to n and adds edges between
any pair of nodes adjacent to n to form the resultant graph, with the distance
mapping on the new edges preserving the distance of a walk between the pair of
nodes passing through n. We note that to keep the resultant graph simple and
undirected while preserving the distance we only keep the edge with the minimal
distance between any two nodes.

Figure 6.1.1 shows an example of how node sublimation can be used to reduce
the number of nodes we need consider for a graph, while modifying the distances
to maintain the same distances between remaining nodes. In the figure edges
(2, i) are removed for i = 1, 3, 4, 5 and replaced by all combinations of edges
between nodes 1, 3, 4, 5. The distance of these new edges is given by the sum of
the two edges used through node 2, as an example the edge (1, 3) has a distance
of D′((1, 3)) = D((1, 2)) + D((2, 3)) = 2 + 5 = 7. Note that the edge (4, 5) ∈ Q
had a distance of 5 and is ‘replaced’ by the new edge of distance 4.
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Figure 6.1.1: A graph Q with edge distances D as seen on the edges, showing the
process of sublimating node 2 creating the graph Q′ with edge distances D′.

As with superfluous edges, we can get useful results when using node-sublimation.
These results will immediately give the value of related patrolling games with
edges distances.

Lemma 6.1.7. For the game G(Q,D, T,m) for any graph Q = (N,E), for all
n ∈ N , for all D, for all m ≥ 1 and for all T ≥ m we have

V (Q′, D′, T,m) ≥ V (Q,D, T,m),

where (Q′, D′) = Qs(Q,D, n). That is G(Q′, D′, T,m) is the node-sublimated
game using node n.

The proof of lemma 6.1.7 follows by considering using the optimal patroller strat-
egy for the game G(Q,D, T,m) augmented for use in the game G(Q′, D′, T,m).

Proof. Let π∗ ∈ Π(Q,D, T,m) be an optimal strategy for the game G(Q,D, T,m)
playing pure patrolling strategiesW1, ...,Wp with non-zero probability i.e. π∗β1(Wx) >

0 for all i ∈ {1, ..., p} such that

p∑
x=1

π∗β1(Wx) = 1.

Let ω1, ..., ωp be the general move,wait form of the pure patrolling strategies
W1, ...,Wp and then look at the augmented walks ω̃1, ..., ω̃p which ‘pass through’
the node n to make them feasible in the game G(Q′, D′, T,m). To do this let us
first define a sequence of indices for us to keep by letting s0 = 0 and using the
recursive rule

si+1 =

{
si + 1 if jsi+1(ωx) 6= n,

si + 2 if jsi+1(ωx) = n,

to generate a finite sequence s1, ..., sL where L = {l | jl(ωx) 6= n} for a given walk
ωx for x = 1, ..., p.
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Then we can form augmented walks ω̃1, ..., ω̃p such that for all x = 1, ..., p we let
k(ω̃x) = k(ωx)− L and if k(ω̃x) 6= 0 we let ji(ω̃x) = jsi(ωx) and

νi(ω̃x) =

{
νsi−1(ωx) + νsi(ωx) if jsi−1(ωx) = n

νsi(ωx) otherwise.

Otherwise if k(ω̃x) = 0 we let ω̃x be any feasible walk in W(Q′, D′, T,m).

These augmented pure patroller strategies in general move,wait form ω̃1, ..., ω̃1

have normal form equivalents W̃1, ..., W̃p ∈ W(Q′, D′, T,m) and hence playing

W̃x with probability π∗β1(Wx) for x = 1, ..., p creates a mixed patroller strategy π̃ ∈
Π(Q′, D′, T,m). We have that P (π̃, a) = P (π∗, a) for all a ∈ A(Q′, D′, T,m) ⊂
A(Q,D, T,m) and hence

V (Q′, D′, T,m) ≥ min
a∈A(Q′,D′,T,m)

P (π̃, a) = min
a∈A(Q′,D′,T,m)

P (π∗, a)

≥ min
a∈A(Q,D,T,m)

P (π∗, a) = V (Q,D, T,m).

We also consider using attacker strategies from the game G(Q,D, T,m) in the
game G(Q′, D′, T,m) which do not attack the node which is chosen for node-
sublimation.

Lemma 6.1.8. For the game G(Q,D, T,m) for any graph Q, for all n ∈ N , for
all D, for all m ≥ 1, for all T ≥ m and for any φ ∈ Φ(Q,D, T,m) such that
ϕn,τ = 0 for all τ ∈ T we have

V•,φ(Q′, D′, T,m) = V•,φ(Q,D, T,m),

where (Q′, D′) = Qs(Q,D, n). That is G(Q′, D′, T,m) is the node-sublimated
game using node n.

The proof of lemma 6.1.8 follows by considering the best response from the pa-
troller given the attacker chooses φ in both gamesG(Q′, D′, T,m) andG(Q,D, T,m).

Proof. We first show that V•,φ(Q′, D′, T,m) ≤ V•,φ(Q,D, T,m), as for any W ′ ∈
W(Q′, D′, T,m) there exists some W ∈ W(Q,D, T,m) with W (t) = W ′(t) for all
t ∈ {s ∈ J | W ′(t) ∈ N \ {n}} and hence for any W ′ ∈ W(Q′, D′, T,m) there
exists some W ∈ W(Q,D, T,m) such that P (W ′,φ) = P (W,φ). Therefore

V•,φ(Q′, D′, T,m) = min
W ′∈W(Q′,D′,T,m)

P (W ′,φ)

≤ min
W∈W(Q,D,T,m)

P (W,φ) = V•,φ(Q,D, T,m). (6.6)

We secondly show that V•,φ(Q′, D′, T,m) ≥ V•,φ(Q,D, T,m), as similarly for any
W ∈ W(Q,D, T,m) there exists some W ′ ∈ W(Q′, D′, T,m) with W ′(t) = W (t)
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for all t ∈ {s ∈ J | W (t) ∈ N \{n}} and hence for any W ∈ W(Q,D, T,m) there
exists some W ′ ∈ W(Q′, D′, T,m) such that P (W ′,φ) = P (W,φ). Therefore

V•,φ(Q,D, T,m) = min
W∈W(Q,D,T,m)

P (W,φ)

≤ min
W ′∈W(Q′,D′,T,m)

P (W ′,φ) = V•,φ(Q′, D′, T,m). (6.7)

So with equations (6.6) and (6.7) we conclude the proof.

Theorem 6.1.9. For the game G(Q,D, T,m) for any graph Q, for all n ∈ N ,
for all D, for all m ≥ 1, for all T ≥ m if there exists an optimal attack strategy
φ∗ for the game G(Q,D, T,m) such that ϕ∗n,τ = 0 for all τ ∈ T then we have

V (Q′, D′, T,m) = V (Q,D, T,m),

where Q′, D′ are such that Qs(Q,D, n). That is G(Q′, D′, T,m) is the node-
sublimated game using node n.

Proof. By lemma 6.1.7 we know that V (Q′, D′, T,m) ≥ V (Q,D, T,m) and using
φ∗ in lemma 6.1.8 we get that

V (Q′, D′, T,m) ≤ V•,φ∗(Q
′, D′, T,m) = V•,φ∗(Q,D, T,m) = V (Q,D, T,m).

Hence we have V (Q′, D′, T,m) = V (Q,D, T,m).

Theorem 6.1.9 immediately gives us the value of a patrolling games with edge
distances created from a node-sublimation on a node which is not used in the
optimal attacker strategy for another patrolling game with edge distances. The
intuitive reason behind the lemma is that node-sublimation only reduces the
complexity of the patrolling game with edge distances.

In addition successive node-sublimations can be used each using Theorem 6.1.9
to achieve even more reduced complexity models. For notation purposes we let
Qs(Q,D, F ) represent the repeated node-sublimation of the initial graph and dis-
tance (Q,D) for each n ∈ F as long as the order of node-sublimation is irrelevant.
A prominent example of which is when for all n ∈ F , the degree of node n is 2.

We can achieve an analogous result to that of the decomposition result for the
classic game, as given in lemma 2.3.14. To do so we first define the analogous
decomposition strategy.

Definition 6.1.10. For the game G(Q,D, T,m) with a decomposition of Q into
Q1, ..., QR, we form the subgraph games G(Q1, D, T,m), ..., G(QR, D, T,m) with
optimal patroller strategies, π∗1, ...,π

∗
R. A decomposition patroller strategy using

the decomposition above πDec is such that πβ1(W ) =
R∑
i=1

piπ
∗
i,β1(W ), where

pi =
1

V (Qi, D, T,m)
R∑
r=1

1
V (Qr,D,T,m)

,

for all i ∈ {1, .., R}.
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Lemma 6.1.11. For the game G(Q,D, T,m) for any graph Q with any decom-

position into Qi for i = 1, .., R (Q =
R⋃
i=1

Qi), for all m ≥ 1 and for all T ≥ m we

have

V (Q,D, T,m) ≥ 1
R∑
i=1

1
V (Qi,D,T,m)

,

where the lower bound on V (Q,D, T,m) is achieved by the patroller choosing a
decomposition patroller strategy πDec using the decomposition Qi for i = 1, .., R.
Moreover if the subgraphs Qi for i = 1, .., R are disjoint and disconnected we have

V (Q,D, T,m) =
1

R∑
i=1

1
V (Qi,D,T,m)

.

The proof of lemma 6.1.11 follows by having the patroller choose πDec with the
moreover part following by forming a similarly defined decomposition attacker
strategy.

Proof. Considering πDec we have

V (Q,D, T,m) ≥ min
a∈A(Q,D,T,m)

P (πDec, a) ≥ min
i∈{1,...,R}

min
a∈A(Qi,D,T,m)

P (πDec, a)

= min
i∈{1,...,R}

min
a∈A(Qi,D,T,m)

piP (π∗i , a)

= min
i∈{1,...,R}

piV (Qi, D, T,m) = min
i∈{1,...,R}

1
R∑
i=1

1
V (Qi,D,T,m)

=
1

R∑
i=1

1
V (Qi,D,T,m)

. (6.8)

When Qi are all disjoint and disconnected subgraphs of Q then we can consider
the attacker using a decomposed attacker strategy φDec. Let φ∗i ∈ Φ(Qi, D, T,m)
be optimal in the game G(Qi, D, T,m) for i = 1, ..., R then let φDec be such that

φβ2(a) =
R∑
i=1

piφ
∗
i,β2(a) for i = 1, .., R. Then as W(Q,D, T,m) =

R⋃
i=1

W(Qi, D, T,m)

we have

V (Q,D, T,m) ≤ max
W∈W(Q,D,T,m)

P (W,φDec) = max
i∈{1,...,R}

max
W∈W(Qi,D,T,m)

P (W,φDec)

= max
i∈{1,...,R}

max
W∈W(Qi,D,T,m)

piP (W,φ∗i )

= max
i∈{1,...,R}

piV (Qi, D, T,m) = min
i∈{1,...,R}

1
R∑
i=1

1
V (Qi,D,T,m)

=
1

R∑
i=1

1
V (Qi,D,T,m)

. (6.9)
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Hence by equation (6.8) and (6.9) we have that

V (Q,D, T,m) =
1

R∑
i=1

1
V (Qi,D,T,m)

.

6.1.3 Value of patrolling games with edge distances

In this section, by using theorem 6.1.9 and lemma 6.1.11 in addition to classic
patrolling games with known value and optimal strategy, we can arrive at values
for patrolling games with edge distances. In addition we provide solutions to a
model of multiple cities connected to a central hub at various distances apart,
described and modelled in section 4.3 as G(Skn , T,m), by using edge distances in
the modelling.

Considering that G(Q, 1, T,m) ≡ G(Q, T,m) we can consider node-sublimation
of (Q, 1) at any node n giving us Qs(Q, 1, n) = (Q′, D′) for which we have the
lower bound

V (Q′, D′, T,m) ≥ V (Q, T,m),

by relying on the optimal patrolling strategy to the classic game. While node-
sublimation is great at reducing the amount of patroller and attacker strategies,
it can remove some features and we may have the patroller does strictly better
in the game G(Q′, D′, T,m) compared to the game G(Q, T,m) if every optimal
attacker strategy uses the node n which was chosen for the node-sublimation.
Moreover, we can consider repeated node-sublimation on a game G(Q, 1, T,m) to
still achieve a lower bound on the resultant game. However, as with a single node-
sublimation operation, node-sublimating a node n which is used in all optimal
attacker strategies makes the lower bound strict as it restricts the attackers choice
of positions.

Consider the common scenario of patrolling a border which has been modelled
as the line graph Ln, with a distance of n − 1 between the two diametric nodes
1 and n. Node-sublimation can be repeatedly used to create the graph L′n =
C2, which consists of these two diametric nodes with a single edge (1, n) with
D((1, n)) = n−1 between them. Solving the resultant patrolling game with edges
distances G(L′n, n − 1, T,m) is easy to solve in comparison to classic patrolling
G(Ln, T,m). For the game G(L′n, n−1, T,m) when m ≥ n−1 we can use theorem
6.1.9, as the nodes which are sublimated to create L′n from Ln are the internal
nodes (2, .., n − 1), which are not attacked in the optimal strategy (time-limited
diametric attack φtdi) of the classic game G(Ln, T,m). Hence for all n ≥ 3, for
all m ≥ n− 1, for all T ≥ m+ n− 2 we have

V (L′n, n− 1, T,m) = V (Ln, T,m) =
m

2(n− 1)
.
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For m < n−1 the classic patrolling game on the line G(Ln, T,m) required bespoke
attacker strategies, which are hard to find and place pure attacks at internal
nodes and so theorem 6.1.9 cannot be used to easily get the value of the game
G(L′n, n − 1, T,m). However, it is much simpler to get the solution to the game
G(L′n, n−1, T,m) for m < n−1 and now hard to find bespoke attacker strategies
are needed. Consider for m < n − 1 the attack strategy φ ∈ Φ(L′n, n − 1, T,m)
such that ϕ1,t = 1

2
and ϕn,t = 1

2
for a given fixed arbitrary t ∈ T , then it is clear

that as the distance between the two nodes is greater than m that

V (L′n, n− 1, T,m) ≤ 1

2
,

as any pure patroller can only see one of the pure attacks (either (1, t) or (n, t)
exclusively). For the patroller strategy consider a choose and wait style strategy
π such that πβ1(W ) = 1

2
if W (t) = 1 for all t ∈ T or W (t) = n for all t ∈ T . Then

it is clear that

V (L′n, n− 1, T,m) ≥ 1

2
,

as any pure attack must either be at node 1 or n and for any commencement time
there is probability of 1

2
they choice the node the patroller chose. Therefore

V (L′n, n− 1, T,m) =

{
m

2(n−1)
for m ≥ n− 1,

1
2

for m < n− 1.

It is worth noting that while the game G(L′n, n− 1, T,m) is easier to solve than
G(Ln, T,m), such a change to the classic game G(Ln, T,m) does not necessarily
accurately model the scenario of having to protect a border as it assumes the
only locations that may be attacked are the end points and that the border
has a impenetrable wall protecting the border which can be crossed at its ends.
Perhaps a more realistic scenario modelled by G(L′n, n − 1, T,m) is that of two
cities connected by a highway, of distance n − 1, with police patrolling between
them.

As shown above, we can consider node-sublimation in order to make models
previously using the classic patrolling game easier to solve by converting them into
patrolling games with edge distances, noting that the new model has a restriction
on the attacker’s choice of locations. As stated in theorem 6.1.9 when these
restrictions do not affect the attacker the new model will admit the same answers
as the classic model, however in the other case while the value will be higher it
is often much easier to find than of that for the classic model.

In chapter 4, section 4.3, we did not managed to solve the classic patrolling game
on the generalised star graph G(Skn , T,m) for all attack lengths m due to the
complexity of attacker solutions when the minimal full-node cycle strategy can
be improved. We will now show that by using node-sublimation it is possible to
get solutions when all internal branch nodes are node-sublimated.

We can use node-sublimation to get solutions for all attacks and in doing so
provide a solution to the scenario of a central hub location connected to multiple
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cities at varying distances from the central hub. We note that such a node-
sublimation does mean that the new game no longer models having a central hub
and multiple borders which can internally be attacked. However such a node-
sublimation is still appropriate for the model of a central hub city connected to
various other cities. We will first define this node sublimated graph, a star graph,
with an appropriate edge distance function arising from a node-sublimation of a
generalised star graph Skn .

Definition 6.1.12. The distant general star (graph and edge distance) is the

graph S̃kn(≡ Sn), along with an edge distance function Dn,k, for some n ∈ N
and some k ∈ Nn, in which the node set is N = {c, ∗1, ..., ∗n}, the edge set is
E = {(c, ∗i) | i = 1, ..., n} and D((c, ∗i)) = ki + 1 for i = 1, ..., n.

As with the generalised star graph we assume that k is in descending order and so
(S̃kn , Dn,k) = Qs(Skn , 1, F ), where F = {(∗i,j | i ∈ {1, ..., kj} for all j ∈ {1, .., n}}
is the set of internal branch nodes. That is a distant general star is a node-
sublimated generalised star graph. Figure 6.1.2 shows an example of the node-
sublimation of generalised star graph to a distant general star graph with the
appropriate edge distance shown on the edges.

From theorem 6.1.9 and lemma 4.3.6 we know that for the distant general star
(S̃kn , Dn,k) for all n ≥ 3, for all k ∈ Nn, for all m ≥ 2(kmax + 1) and for all
T ≥ 2kmax +m+ 1 that

V (S̃kn , Dn,k, T,m) = V (Skn , T,m) =
m

2(n+ ksum)
. (6.10)

We are able to use theorem 6.1.9 to arrive at this value for G(S̃kn , Dn,k, T,m) as
an optimal strategy for (Skn , T,m) is the type-centred attacker strategy φtc which
doesn’t use any potential attacks at nodes in the set of internal branch nodes
F . For m < 2(kmax + 1) while we did not find solutions to G(Skn , T,m) as it
would require bespoke attacker strategies, it is much easier to find solutions to
G(S̃kn , Dn,k, T,m). We will see that the optimal solution depends on the distance
of each branch Dn,k(c, ∗i) for i = 1, ..., n compared to the attack length m.

Let use first start by determining a distinct ordering on the branch extensions
ki forming the descending ordering k(1), ..., k(q) such that k(1) = kmax and k(i) =
max{ks | ks ≤ k(i−1), s = 1, ..., n} for 2 ≤ i ≤ q with k(q) = min{ks | s = 1, ..., n}.
Along with this descending ordering of the branch extensions we define the repeat
count of the ith order as bi = |{ks | ks = k(i)}|, that is the number of times k(i)

is seen in k. For example if k = (4, 2, 6, 4, 3) then we would have k(1) = 6, k(2) =
4, k(3) = 3, k(4) = 2 and b1 = 1, b2 = 2, b3 = 1, b4 = 1. With our descending
order along with the number of times they are repeated we now give the optimal
solution to the game G(S̃kn , Dn,k, T,m) for 2(k(i+1) + 1) ≤ m ≤ 2(k(i) + 1) for each
i = 1, ..., q − 1.

We now find a lower bound on the value of the game G(S̃kn , Dn,k, T,m) by consid-
ering a decomposition into multiple subgraph games dependent where we leave
the graph just consisting of a branch node node ∗j is such that kj ≥ k(i). That
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c ∗1,1 ∗1,2 ∗1,3 ∗1,4 ∗1,5∗2,1∗2,2∗2,3∗2,4

∗3,1

∗3,2

∗4,1

c ∗1∗2

∗3

∗4

54

2

1

Figure 6.1.2: The generalised star graph S4,3,1,0
4 (with a uniform unitary distance

function) sublimated to the distant star graph S̃4,3,1,0
4 . The distant star graph has

a distance function with D4,(4,3,1,0)((c, ∗i)) = ki + 1, with distances seen on edges
in the figure.
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is for 2(k(i+1) + 1) ≤ m ≤ 2(k(i) + 1) for each i = 1, ..., q − 1 we decompose the

game G(S̃kn̂ , Dn,k, T,m) into

G(S̃k̂n , Dn,k̂, T,m),

and
i∑

x=1

bx lots of the game

G(({1}, ∅), 1, T,m) ≡ G(({1}, ∅), T,m),

where n̂ = n −
i∑

x=1

bx and k̂ ∈ Nn̂ is the vector k with the first
i∑

x=1

bx entries

truncated (any entry kx > k(i+1) is therefore removed). By using lemma 6.1.11

and theorem 6.1.9 and knowing that in the game V (Sk̂n , Dn,k, T,m) there exists a
φ which does not attack any internal branch nodes we get that for all n ≥ 3, for
all k ∈ Nn, for all 2(k(i+1) + 1) ≤ m ≤ 2(k(i) + 1) for all i = 1, ..., q− 1 and for all
T ≥ m we have

V (S̃kn , Dn,k, T,m) ≥ 1

V (S̃k̂n , Dn,k̂, T,m)−1 +

(
i∑

x=1

bx

)
V (({1}, ∅), T,m)−1

=
1

V (S̃k̂n , T,m)−1 +

(
i∑

x=1

bx

)
V (({1}, ∅), T,m)−1

=
1

2
q∑

j=i+1
bj(kj+1)

m
+

(
i∑

x=1

bx

)
=

m

m

(
i∑

x=1

bx

)
+ 2

q∑
j=i+1

bj(kj + 1)

. (6.11)

While previous results with some carefully chosen decomposition gives the lower
bound as in equation 6.11, to find an equal upper bound we need to develop a
new attacker strategy.This attacker strategy will be adapted from the typed time-
centre attack strategy (see section 4.3), which is optimal for m ≥ 2(kmax + 1).

Definition 6.1.13. The distance from centre (DFC) attack strategy φDFC, in
the attack length range of 2(k(i+1) + 1) ≤ m ≤ 2(k(i) + 1) is given by

ϕj,τ =


1

m
i∑

x=1
bx+2

q∑
x=i+1

bx(kx+1)

for j = ∗r, τ ∈ Tr for some r ∈ {1, ..., n},

0 otherwise,

where

Tr =

{
{0, ...,m− 1} if m < 2(kr + 1),

{m̂− kr − 1, ..., m̂+ kr} if m ≥ 2(kr + 1),

in which m̂ =
⌊
m
2

⌋
.
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That is the strategy φDFC chooses each branch end ∗r with equal probability
and then given ∗r is chosen the commencement time is chosen uniformly from
Tr. Creating such a bespoke strategy adaptation is a lot simpler in the game
G(S̃kn , Dn,k, T,m), compared to the game G(Skn , T,m), as the set of nodes which
can be attacked is much smaller. The DFC attacker strategy φDFC restricts
the number of attacks placed at node ∗r for any r ∈ {1, ..., n}, restricting the
effectiveness of the pure patroller who collects all attacks at ∗r. By using the
DFC we are able to get the following bound and hence the know that it is an
optimal attacker strategy.

Lemma 6.1.14. For the game G(S̃kn , Dn,k, T,m), for all n ∈ N, k ∈ Nn, for all
T ≥ 2m, for all 2(k(i+1) + 1) ≤ m ≤ 2(k(i) + 1) we have

V (S̃kn , Dn,k, T,m) ≤ m

m
i∑

j=1

bj + 2
q∑

j=i+1

bj(kj + 1)

.

The proof of lemma 6.1.14 follows from the performance of φDFC, which means
we need to consider move wait walks.

Proof. As φDFC is such that ϕc,τ = 0 for all τ ∈ T we have, by lemma 6.1.8, that

V•,φDFC
(S̃kn , Dn,k, T,m) = V•,φDFC

(Q,D, T,m),

where Q is isomorphic to Kn with N = {∗1, ..., ∗n} and E = {(∗r′ , ∗r′) ∈ N2 |
r, r′ ∈ {1, ..., n}, r 6= r′} and D((∗r, ∗r′)) = kr + kr′ + 2. So we aim to find
V•,φDFC

(Q,D, T,m) and we have that

V•,φDFC
(Q,D, T,m) = max

W∈W(Q,D,T,m)
P (W,φDFC) = max

ω∈Ω(Q,D,T,m)
P (ω,φDFC).

Any move wait walk ω ∈ Ω(Q,D, T,m) we can write it in the form

ω = ((∗r1 , ν1), ..., (∗rq , νq)),

for some choice of indices rl ∈ {1, ..., n} and νl ∈ {minTrl , ...,maxTrl} for all
l ∈ {1, ..., q}, for some q ∈ N. We note that tq + νq = T − 1. The payoff for such
a move wait walk against φDFC is

P (ω,φDFC) =

q∑
l=1

tl(ω)+νl∑
t=nl(ω)

ϕ∗rl ,t

=

min(ν1,maxTr1 )∑
t=minTr1

1

d̂
+

q∑
l=2

min(tl(ω)+νl,maxTrl )∑
t=n′l(ω)

1

d̂

≤
min(ν1,maxTr1 )∑

t=minTr1

1

d̂
+

q∑
l=2

min(tl(ω)+νl,maxTrl )∑
t=n′′l (ω)

1

d̂
(6.12)
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where d̂ = m
i∑

j=1

bj + 2
q∑

j=i+1

bj(kj + 1), nl(ω) = max(0, l∗rl (ω) + 1, tl(ω)−m+ 1),

n′l(ω) = max(minTrl , l∗rl (ω) + 1, tl(ω)−m+ 1) and n′′l (ω) = max(minTrl , tl(ω)−
m+1). We can note that tl(ω)+νl > maxTrl for any l ∈ {2, ..., q} for any choices
of indices and so we can write equation (6.12) as

P (ω,φDFC) ≤
min(ν1,maxTr1 )∑

t=minTr1

1

d̂
+

q∑
l=2

maxTrl∑
t=n′′l (ω)

1

d̂
. (6.13)

Hence from equation (6.13) it should be clear that choosing νl = 0 for all l ∈
{2, ..., q} maximizes the payoff.

We also have that if tl′(ω)−m+1 > minTrl′ for some minimal l′ ∈ {2, ..., q} then
tl(ω)−m + 1 > maxTrl for all l ∈ {l′ + 1, ..., q}. Moreover, for l ∈ {2, ..., l′ − 1}
each rl must be such that m ≥ 2(krl + 1) and so we can write equation (6.13) as

P (ω,φDFC) ≤
min(ν1,maxTr1 )∑

t=minTr1

1

d̂
+

q∑
l=2

maxTrl∑
t=n′′l (ω)

1

d̂

=
min(ν1 −minTr1 + 1,maxTr1 −minTr1 + 1)

d̂

+

l′−1∑
l=2

(maxTrl −minTrl + 1)

d̂
+

max(maxTrl′ − tl′(ω) +m, 0)

d̂

=
min(ν1 −minTr1 + 1,maxTr1 −minTr1 + 1)

d̂

+

l′−1∑
l=2

2(krl + 1)

d̂
+

max(maxTrl′ − tl′(ω) +m, 0)

d̂
. (6.14)

From equation (6.14) it is clear that that choosing ν1 = maxTr1 maximizes the
payoff and in doing so equation (6.14) becomes

P (ω,φDFC) ≤
(maxTr1 −minTr1 + 1) + (maxTrl′ −maxTr1 − kr1 − krl′ − 2 +m)+

d̂
,

where (y)+ = max(y, 0) is the rectifier function. By considering if r1 and rl′ are
such that m < 2(kr1 + 1) or m ≥ 2(kr1 + 1) we get

P (ω,φDFC) ≤ m

d̂

and hence

V•,φDFC
(S̃kn , Dn,k, T,m) ≤ m

m
i∑

j=1

bj + 2
q∑

j=i+1

bj(kj + 1)

. (6.15)
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The upper bound on the performance of φDFC, as in equation (6.15), gives

V (S̃kn , Dn,k, T,m) ≤ m

m
i∑

j=1

bj + 2
q∑

j=i+1

bj(kj + 1)

.

The upper bound in lemma 6.1.14 along with the lower bound given in equation
6.11 give the the value of the game (S̃kn , D, T,m) for m ≥ 2(k(q) + 1). Then the
only region of attack length not yet solved is 1 ≤ m ≤ 2k(q) + 1, in this region

we will again use lemma 6.1.11 decomposing G(S̃kn , D, T,m) into n + 1 copies of
G(({1}, ∅), T,m). Therefore, for all n ≥ 3, for all k ∈ Nn, for all 1 ≤ m ≤ 2k(q)+1
and for all T ≥ m we have

V (S̃kn , Dn,k, T,m) ≥ 1

n+ 1
. (6.16)

To get an equal upper bound consider that for 1 ≤ m ≤ 2k(q) + 1 we have that
D((i, j)) ≥ m for all i, j ∈ {c, ∗1, ..., ∗n} and so we say they are independent
nodes as for the same commencement time no pure patrol can catch attacks more
than one attack. Forming an attacker strategy φ such that ϕj,0 = 1

n+1
for all

j ∈ {c, ∗1, ..., ∗n} means that any pure patroller will only be able to see one of the
potential pure attacks. Hence for all n ≥ 3, for all k ∈ Nn, for all 1 ≤ m ≤ 2k(q)+1
and for all T ≥ m we have

V (S̃kn , Dn,k, T,m) ≤ 1

n+ 1
. (6.17)

We conclude the results in this section with the following theorem.

Theorem 6.1.15. For the game G(S̃kn , Dn,k, T,m), for all n ∈ N, for all k ∈ Nn

and for all T ≥ 2m we have

V (S̃kn , Dn,k, T,m) =



m

2(n+
n∑

j=1
kj)

if m ≥ 2(k(1) + 1),

m

m
i∑

j=1
bj+2

q∑
j=i+1

bj(kj+1)

if 2(k(i+1) + 1) ≤ m ≤ 2(k(i) + 1)

for some i ∈ {1, ..., q − 1},
1

n+1
if m < 2(k(q) + 1).

Theorem 6.1.15 follows in three parts from the results previously shown, in par-
ticular; equation (6.10) for m ≥ 2(k(1) + 1); equation (6.11) and lemma 6.1.14 for
2(k(i+1) +1) ≤ m ≤ 2(k(i) +1) for some i ∈ {1, ..., q−1}; and equations (6.16) and
(6.17) for m < 2(k(q) + 1). As we can see from theorem 6.1.15 it is much easier to
get results for our scenario when we ignore the interior nodes along the branches.
While the process of node sublimation removes choices for the attacker strategies
it means that we are more easily able to get solutions. As previously mentioned,
the use of node-sublimation can be considered in order to make any classic pa-
trolling simpler to solve at the expense of removing locations the attacker can
choose.
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6.2 A patrolling game with node dependent at-

tack lengths

6.2.1 Introduction to patrolling games with node depen-
dent attack lengths

In this section we extend the classic patrolling game G(Q, T,m) to the patrolling
game with node dependent attack lengths G(Q, T,m) in which the attack length
for each node is given in the vector m ∈ N|N |. By allowing the attack length
to be dependent on the node the game G(Q, T,m) can be used to model the
vunerability of reinforcement of locations. This level of vulnerability can be rep-
resented in the model by a low attack length at the node, making it easier to
attack, similarly the reinforcement can be represented in the model by a high
attack length at the node, making it harder to attack. An example of this could
be seen by considering a border protected by a barrier which the attacker must
get through in order to cross. While the classic patrolling game would assume
the barrier is uniformly hard to cross at all points along the border, now we can
allow for different barriers to be placed at each location along the border, ranging
from concrete walls to no barrier at all. While the main concern in the classic
game is just the connectivity of locations, we must now additionally consider the
vulnerability of those connected locations.

The patrolling game with node dependent attack lengths G(Q, T,m) is parameter-
ized by a 3-tuple (Q, T,m) where Q = (N,E) is a simple undirected graph with
N = {1, ..., n} for some n ∈ N, T ∈ N is the game length (with the time-horizon
J = {0, ..., T − 1}) and m ∈ N|N | is the attack length vector. The attack length
for the node j ∈ N is the jth element of m, namely mj. The pure patroller
strategies in the game G(Q, T,m) remain the same as those in G(Q, T,m) as
there is no dependence on the attack length and thus the set of pure patrollers
W(Q, T,m) = W(Q, T,m). However, while the pure attacker strategies could
remain the same, we limit the possible commencement time to ensure that it is
possible to complete the attack before the end of the game and thus the set of
pure attackers A(Q, T,m) = {(j, τ) | j ∈ N, τ + mj − 1 ≤ T − 1} (omitting
(Q, T,m) when the game is clear). As with the classic pure patrolling game the
pure patrolling game with node dependent attack lengths is zero-sum and we
define the payoff when the patroller chooses W ∈ W and the attacker chooses
(j, τ) ∈ A, in terms of the patroller, as

P (W, (j, τ)) = I{j∈W ({τ,...,τ+mj−1})}.

That is 1 if the patroller wins (attacker loses) by catching the attacker and 0 if
the patroller loses (attacker wins) by failing to catch the attacker. We can assume
some ordering of the sets W and A by two arbitrary bijections β1 :W → N and
β2 : A → N respectively so W(x) = β−1

1 (x) and a(y) = β−1
2 (y). Then we can form

a pure payoff matrix

P = (P (W(x), a(y)))x∈{1,...,|W|},y∈{1,...,|A|}, (6.18)
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with a maximizing patroller and minimizing attacker. Like the classic pure pa-
trolling game, the pure patrolling game with node dependent attack lengths has
a Nash equilibrium if and only if there is a pure patrolling strategy which guar-
antees catching all pure attackers (i.e. there was a row of ones in the payoff
matrix). Therefore, as in the classic patrolling game, this prompts us to allow for
the mixing of strategies forming the mixed patrolling game with edges distances
henceforth called the patrolling game with edge distances.

As the differences in attack lengths between nodes determines their relative vul-
nerability to each other we will define

Mmin = min
j∈{1,...,|N |}

mj,

the minimal attack length, for which any node j ∈ N such that mj = Mmin is a
most vulnerable node. Similarly we define

Mmax = max
j∈{1,...,|N |}

mj,

the maximal attack length, for which any node j ∈ N such that mj = Mmax is a
least vulnerable node. The difference between mj and Mmin for any node j ∈ N
shows the relative security to the most vulnerable node and similarly the difference
between mj and Mmax for any node j ∈ N shows the relative vulnerability to the
most secure node.

In the mixed patrolling game with node dependent attack lengths each player
chooses a probability distribution amongst all pure strategies. That is a mixed
patroller strategy is π = (π1, ..., π|W|) where πi is the probability of playing W(i)

and a mixed attacker strategy is φ = (φ1, ..., φ|A|) where φi is the probability of
playing a(i). As π and φ are probability distributions we have

π ∈ Π(Q, T,m) =

x ∈ [0, 1]|W(Q,T,m)| |
|W(Q,T,m)|∑

i=1

xi = 1

 ,

φ ∈ Φ(Q, T,m) =

y ∈ [0, 1]|A(Q,T,m)| |
|A(Q,T,m)|∑

i=1

yi = 1

 ,

where Π(Q, T,m) is the set of all mixed patroller strategies and Φ(Q, T,m) is the
set of all mixed attacker strategies (omitting (Q, T,m) when the game is clear).
For the game G(Q,D, T,m), the (patrollers) payoff for the patroller choosing
π ∈ Π and the attacker choosing φ ∈ Φ is

P (π,φ) =

|W|∑
i=1

|A|∑
j=1

Pi,jπiφj = πPφT , (6.19)

with the objective of a maximizing patroller and minimizing attacker. In the
same fashion as the classic game and its MiniMax and MaxiMin play variants,
a player choosing a strategy will determine a performance according to their
strategy leading and the optimal strategy chose by the following player. Thus the
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performance of a patroller choosing the mixed patroller strategy π ∈ Π is given
by

Vπ,•(Q, T,m) = min
φ∈Π

P (π,φ) = min
a∈A

P (π, a),

and the performance of an attacker choosing the mixed attacker strategy φ ∈ Φ
is given by

V•,φ(Q, T,m) = max
π∈Π

P (π,φ) = max
W∈W

P (W,φ).

By theorem 2.2.2 we have the value of the game G(Q, T,m) which is played
simultaneously is given by

V (Q, T,m) = max
π∈Π

min
φ∈Φ

P (π,φ) = min
φ∈Φ

max
π∈Π

P (π,φ).

Hence the value is bounded below by the performance of any mixed patroller
strategy and above by any attacker strategy and therefore for all π ∈ Π and
φ ∈ Φ we have

0 ≤ Vπ,•(Q, T,m) ≤ V (Q, T,m) ≤ V•,φ(Q, T,m) ≤ 1.

We define the performance of a mixed patroller strategy π at a given node j when
the attack length at node j is m as

Vπ,•,j,m(Q, T ) = min
τ∈{0,...,T−m+1}

P (π, (j, τ)).

Then the performance of the strategy is

Vπ,•(Q, T,m) = min
j∈N

Vπ,•,j,mj
(Q, T ).

Before presenting results on the game G(Q, T,m) we note that as mixed strategies
include pure strategies we will drop the term mixed.

6.2.2 Results for patrolling games with node dependent
attack lengths

In this section we look at comparing various patrolling games with node dependent
attack lengths when the attack length vector varies and is compared to the classic
patrolling game. In particular we see that when the value of two patrolling games
with node dependent attack lengths are equal by looking at the performance of
optimal patroller strategies at each node in the graph. We then apply these results
to get the value of such games on the star graph and line graph.

We begin by comparing the game G(Q, T,m) to two classic games G(Q, T,Mmin)
and G(Q, T,Mmax).

Lemma 6.2.1. For the game G(Q, T,m) for all graphs Q, for all m ∈ Nn and
all T ≥Mmin we have

V (Q, T,Mmin) ≤ V (Q, T,m) ≤ V (Q, T,Mmax).
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The proof of lemma 6.2.1 follows as increasing the attack length at any node can
only remove attacker strategies and does not affect the patroller strategies.

Proof. By the definition we have

Φ(Q, T,Mmax) ⊂ Φ(Q, T,m) ⊂ Φ(Q, T,Mmin)

and
W(Q, T,Mmax) =W(Q, T,m) =W(Q, T,Mmin),

therefore
V (Q, T,Mmin) ≤ V (Q, T,m) ≤ V (Q, T,Mmax).

The effectiveness of the bounds given by lemma 6.2.1 depends on the range of
values in m. When m is not extremely varied between nodes the bounds given
can be relatively close. Although, we acknowledge that this closeness depends on
how the classic patrolling game changes with the attack length. Likewise we can
compare two patrolling games with node dependent attack lengths in which all
pure attacker strategies for one game are available in the other game.

Lemma 6.2.2. For the game G(Q, T,m) for all graphs Q, for all m ∈ N|N | and
for all T ≥Mmin we have

V (Q, T, m̃) ≤ V (Q, T,m),

where m̃ ∈ N|N | is such that m̃j ≥ mj for all j ∈ N .

Proof. By the definition we have

Φ(Q, T, m̃) ⊂ Φ(Q, T,m)

and
W(Q, T, m̃) =W(Q, T,m),

therefore
V (Q, T, m̃) ≤ V (Q, T,m).

In order to construct some optimal strategies when the attack length is dependent
on the node, we will study the effect on a currently known strategy when the
attack length at a node is decreased. Sequentially decreasing attack lengths at
given nodes allow us to introduce vulnerabilities into the game from a constant
attack length game. For any patroller strategy π we know that

V (Q, T,m) ≥ min
j∈N

Vπ,•,j,mj
(Q, T ),

with equality if π is optimal. This bound allows us to consider changing mj, the
attack length of node j ∈ N , to see if there is any change to the lower bound
given by π in the game G(Q, T,m). If changing mj doesn’t result in a change
the lower bound and π was optimal then it will remain optimal.
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Lemma 6.2.3. Consider a game G(Q, T,m) with an optimal strategy π∗. Then
π∗ is an optimal strategy for the game G(Q, T, m̃), where m̃j ≤ mj for all j ∈ N
if

min
j∈N

Vπ∗,•,j,m̃j
(Q, T ) = min

j∈N
Vπ∗,•,j,mj

(Q, T ).

Consequently, V (Q, T, m̃) = V (Q, T,m).

The proof of lemma 6.2.3 follows as π∗ is feasible in both games.

Proof. If the patroller chooses π∗ in the game G(Q, T, m̃) the patroller gets a
bound of

V (Q, T, m̃) ≥ min
j∈N

Vπ∗,•,j,m̃j
(Q, T ) = min

j∈N
Vπ∗,•,j,mj

(Q, T ) = V (Q, T,m).

Now as m̃j ≤ mj for all j ∈ N , by lemma 6.2.2 we have the bound

V (Q, T, m̃) ≤ V (Q, T,m).

Hence V (Q, T, m̃) = V (Q, T,m) and π∗ remains optimal.

Lemma 6.2.3 allows us to take known optimal solutions for the classic game
and verify that they remain optimal for certain choices of m. We now present
important graphical structures showcasing such results on the star graph Sn and
line graph Ln for particular attack length vectors m.

For the star graph Sn we can consider the game where the attack length at all
leaf nodes are equal and the centre’s attack length is less, but greater than 1.
This restriction to the attack lengths at nodes allows us to use lemma 6.2.3.

Corollary 6.2.4. For the star graph Sn = (N,E) with N = {1, ..., n + 1} and
E = {(1, i) |≤ i ≤ n + 1}, for all n ≥ 2, and for all m ≥ 1, for all T ≥ m, and
for all attack lengths at the centre m1 such that 2 ≤ m1 ≤ m we have

V (Sn, T,m) =
m

2n
,

where m = (m1,m, ...,m)

Corollary 6.2.4 is proved by considering a random minimal full node cycle πSn
RMFNC

which is optimal for the game G(Sn, T,m).

Proof. For πSn
RMFNC we have a performance at node j ∈ N of

VπSn
RMFNC,•,j,mj

(Sn, T ) =

{
m
2n

if 2 ≤ j ≤ n,

1 if j = 1.
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As πSn
RMFNC is optimal in G(Sn, T, (m, ...,m)) and

min
j∈N

VπSn
RMFNC,•,j,mj

(Q, T ) = min
j∈N

VπSn
RMFNC,•,j,m

(Q, T )

we have, by lemma 6.2.3, that

V (Sn, T, (m1,m, ...,m)) = V (Sn, T,m) =
m

2n
.

For the line graph Ln we have to place a more serve restriction on attack lengths
at nodes, to ensure the random Hamiltonian still gives the same performance.
That is we form the set of attack length vectors

M ′ ={m ∈ Nn | min(m1,mn) ≥ n− 1,

min(m1,mn) ≤ min(2mi,mi,mi + 2(n− i+ 1)) ∀i ∈ {2, ..., n− 1}},

so that πrH gives the worst performance at an end node 1 or n.

Corollary 6.2.5. For the line graph, Ln, we have for all n ≥ 2, for all m ∈M ′

and for all T ≥ min(m1,mn) + n− 2 we have

V (Ln, T,m) =
min(m1,mn)

2(n− 1)
.

Corollary 6.2.5 is proved by considering a random minimal full-node cycle strategy
πLn

RMFNC.

Proof. For πLn
RMFNC we have a performance at node j ∈ N of

VπLn
RMFNC,•,j,mj

(Sn, T ) =
min(2mj,mj + 2(j − 1),mj + 2(n− j))

2(n− 1)

As πLn
RMFNC is optimal in G(Ln, T,Mmin) and

min
j∈N

VπLn
RMFNC,•,j,mj

(Q, T ) = min
j∈N

VπLn
RMFNC,•,j,Mmin

(Q, T )

we have by lemma 6.2.3 that

V (Ln, T,m) =
min(m1,mn)

2(n− 1)
.

That is the optimal strategies of Sn and Ln remain as the random minimal full-
node cycle when some decreasing of the attack length at non-leaf nodes occurs.
This is because the random minimal full-node cycle provides a better probabil-
ity of interception for repeated nodes and leaf-node are not repeated, therefore
allowing the lowering of the attack length at repeated nodes while retaining the
same performance. While powerful, lemma 6.2.3 cannot be relied upon to solve
all patrolling games with node dependent attack lengths.
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6.2.3 Improvement of patrol strategies when attack lengths
decrease

We now turn our attention to that situation, where lemma 6.2.3 is not applicable.
That is the case that decreasing m to some m̃, with m̃i ≤ mi for all i = 1, ..., n,
gives us a strictly worse value for the game (and changes the optimal patrol
strategy). To do so, we will now restrict ourselves to the case when

min
j∈N

Vπ∗,•,j,m̃j
(Q, T ) < min

j∈N
Vπ∗,•,j,mj

(Q, T ). (6.20)

An example of this can be seen when we introduce vulnerable nodes into a Hamil-
tonian graph. In the classic game the optimal strategy for Hamiltonian graphs
is a random Hamiltonian which has the same performance at all nodes, ensur-
ing that decreasing the attack length at any given node decreases the value of
the lower bound provided on the value by the strategy. In section 6.2.4 we will
find solutions to the Hamiltonian graph when some nodes have mi = 1, called
instantaneous win nodes.

By our assumption, the optimal patroller strategy π∗ for G(Q, T,m) is no longer
optimal in G(Q, T, m̃). So we can look for improvements to π∗ by using another
other strategy. We will use an analogous idea to that developed in chapter 3,
section 3.4, noting that the constant m is replaced with a node dependent mj.
As we have seen, choosing a set of strategies to improve a strategy can be tricky
and does not always result in an optimal strategy. As mentioned previously this
process often requires knowledge of the graphical structure, and furthermore the
structure between nodes with low performances are connected under the current
strategy. The following are the current tools for improvement.

Suppose that πh is our hybrid strategy made up of some baseline strategy π0,
along with some πi which are played with probability pi for i = 1, ..., l. Then this
hybrid strategy has a performance of

Vπh,•,j,mj
(Q, T ) =

l∑
i=0

Vπi,•,j,mj
(Q, T )pi,

where p0 = 1 −
l∑

j=1

pj and 0 ≤ pj ≤ 1 for j = 0, ..., l. In order to say the hybrid

strategy is a strict improvement over the baseline strategy we need

min
j∈N

Vπh,•,j,mj
(Q, T ) > min

j∈N
Vπ0,•,j,mj

(Q, T ).

Like the PIP (equation (3.19)) we get the following equation in order to determine
the best choice of pi for i = 1, ..., l.

maximize min
j∈N

l∑
i=0

Vπi,•,j,mj
(Q, T )pi

subject to
l∑

i=0

pi = 1,

pi ∈ [0, 1], for i = 0, ..., l.

(6.21)
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Optimal solutions to the program in equation (6.21) give the best choice of pi for
i = 1, ..., l and the optimal value gives the lower bound provided by the hybrid
strategy using the optimal pi for i = 1, ..., l. The program in equation (6.21)
can be written as a linear program by implementing the objective function as a
constraint with an extra variable for computational implementation. As we are
looking at improving the previously optimal strategy π (optimal for the game
G(Q, T,m)), the question to now consider is what strategies should be picked to
possibly improve it. We can use a host of strategies but the careful selection of
them is important to find a good improvement with little analytical computation.
To this end we will discuss what sort of strategies should be used.

Let us first define the nodes which have a decreased attack length from m to m̃
as Nm↓ = {j ∈ N | m̃j < mj}. Next we can define a subset of these nodes which
effect the value of the game

NV ↓ = {j ∈ Nm↓ | Vπ∗,•,j,m̃j
(Q, T ) < V (Q, T,m) = Vπ∗,•(Q, T,m)}.

Clearly it is the problem of changing mj to m̃j for j ∈ NV ↓ that decreased the
value of the game and hence the performance at such nodes must be improved.
Exactly how to choose the improvement strategies, πi for i = 1, ..., l for some
l ∈ N is still a problem, but we know they must improve each node j ∈ NV ↓.

A simple, but effective, choice is the use of intercepting patrols to improve these
nodes. Each intercepting patrol containing the node j must return to j within
m̃j time units, for each j ∈ NV ↓. Therefore to find the minimal number of
intercepting patrols needed to cover such nodes j ∈ NV ↓ we must determine if an
intercepting strategy exists for each possible subset of decomposition of NV ↓. To
illustrate such a selection of intercepting patrols we provide example 6.2.6. We
will now assume a set of intercepting patrols WInt,NV ↓ is a minimal such set. We
can choose to use l = |WInt,NV ↓| improvement strategies each playing a distinct
intercepting patrol Wi from WInt,NV ↓ . Let πi = Wi for i = 1, ..., l, so they are
in mixed strategy notation. The set Nm↓ ∩Wi(J ) are the nodes in Nm↓ which
are also in the ith intercepting patrol strategy Wi, giving us the important nodes
to consider. Note that a node may be in more than one intercepting patrol. We
can then use the program in equation (6.21) to get the lower bound which follows
from using these improvement strategies.

Example 6.2.6. Consider the graph Q as shown in figure 6.2.1, an attack length
vector m̃ = (4, 2, 4, 3, 1, 4, 2), as shown in red on the nodes of the graph Q to
form the patrolling game with node dependent attack lengths G(Q, T, m̃) for
some T ≥ 4.

Say π∗ is an optimal solution to the game G(Q, T, 4) then as G(Q, T, 4) ≡
G(Q, T,m) where m = (4, 4, 4, 4, 4, 4, 4) it is optimal for G(Q, T,m) with a
value of V (Q, T,m) = 4

7
. For the game G(Q, T, m̃) the performance of node j

using π∗ is

Vπ∗,•,j,m̃j
(Q, T ) =

m̃j

7
.
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As nodes 2, 4, 5 and 7 are made more vulnerable by changingm = (4, 4, 4, 4, 4, 4, 4)
to m̃ = (4, 2, 4, 3, 1, 4, 2) these are the nodes requiring the improvement, i.e
NV ↓ = {2, 4, 5, 7} .

As m̃5 = 1 it is clear that one intercepting patroller strategy W1 must wait at
node 5 for the entire time-horizon. Nodes 2 and 4 can be covered by a single
intercepting patrolling strategy W2 which alternates between nodes 2 and 4 for
the time-horizon. Finally this leaves only node 7 for which a single intercepting
patroller strategy W3 can be used, as m̃7 = 2 we may as well have W3 alternate
between node 6 and 7 for the time-horizon. Therefore we use W1,W2,W3 as
improvement strategies π1,π2,π3 which are intercepting and thus

• Vπ1,•,j,m̃j
(Q, T ) = I{j=5},

• Vπ2,•,j,m̃j
(Q, T ) = I{j∈{2,4}} and

• Vπ3,•,j,m̃j
(Q, T ) = I{j∈{6,7}}

So using π0 = π∗ and π1,π2,π3 in equation (6.21) along with p0 = 1−p1−p2−p3

we get the following program.

max((1− p1 − p2 − p3)
4

7
, (1− p1 − p2 − p3)

1

7
+ p1,

(1− p1 − p2 − p3)
2

7
+ p2, (1− p1 − p2 − p3)

2

7
+ p3)

s.t p1, p2, p3 ≥ 0 and p1 + p2 + p3 ≤ 1.

From this program we can immediately note that p2 = p3, as both W2 and W3

are essentially as effective at improving the performance, as they both contain a
node with an attack length of 2. Solving gives p1 = 3

14
and p2 = p3 = 1

7
giving a

bound of

V (Q, T, m̃) ≥ 18

49
>

1

7
= Vπ∗,•(Q, T, m̃).

1 2

3

4

5

6 7

4 2

4

3

1

4 2

Figure 6.2.1: The graph Q used in example 6.2.6 with attack lengths for nodes
from m̃ shown in red alongside the node.
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6.2.4 Hamiltonian graphs with instantaneous win nodes

Having seen the complexity of searching for an improvement on the previously
optimal strategy we now look at patrolling games with node dependent attack
lengths G(Q, T,m) where Q ∈ H is a Hamiltonian graph where some nodes are
extremely vulnerable and can not be left alone for even one unit of time. We use
the improvement idea along with the program in equation (6.21) in order to get
a lower bound on the game. Further, we will solve to optimality the game on the
Hamiltonian graph when instantaneous win nodes are introduced.

Definition 6.2.7. For the game G(Q, T,m) we call a node j ∈ N an instanta-
neous win node if mj = 1. We define the set of instantaneous win nodes as

I(Q, T,m) = {j ∈ N | mj = 1}.

If a node j ∈ N is an instantaneous win node then if the patroller is not at the node
when the attacker commences their attack then they fail to catch the attacker
and hence the patroller loses. Therefore a game in which a node is instantaneous
win means the node is extremely vulnerable and can not be left alone for even a
moment without the risk of losing. So the game G(Q, T,m) where Q ∈ H can be
seen as the model of a circular perimeter with some unprotected locations, such
as those without protective barriers, with some additional connections between
nodes. In general these additional connections can affect how the patroller should
patrol between vulnerable nodes and while this is extremely complicated and
depends on which additional edges are present we can get a result if we assume
that all other nodes aside from instantaneous win nodes have the same attack
length.

For the game G(Q, T,m) where Q ∈ H and m is such that mj = m if j /∈
I(Q, T,m) and mj = 1 if j ∈ I(Q, T,m) we look at improving the random
Hamiltonian patroller strategy using equation (6.21) and improvement strategies
which wait at all instantaneous win nodes. Let π0 = πrH and then let πi for
i = 1, ..., |I(Q, T,m)| each play a distinct pure strategy W (t) = j for all t ∈ J for
each j ∈ I(Q, T,m). Then by equation (6.21) we have p1 = p2 = ... = p|I(Q,T,m)|
and letting p ≡ p1 and p0 = 1− |I(Q, T,m)|p we have

maximize min(1− |I(Q, T,m)|p)m
n
, (1− |I(Q, T,m)|p) 1

n
+ p)

subject to 0 ≤ p ≤ 1
|I(Q,T,m)|

(6.22)

Solving equation (6.22) gives us p = m−1
n+|I(Q,T,m)|(m−1)

and thus we arrive at the
strategy πirH which plays πrH with probability n

n+|I(Q,T,m)|(m−1)
and each πi with

probability m−1
n+|I(Q,T,m)|(m−1)

for i = 1, ..., |I(Q, T,m)|.
Definition 6.2.8. For the game G(Q, T,m) where Q ∈ H and m is such that
mj = m if j /∈ I(Q, T,m) andmj = 1 if j ∈ I(Q, T,m), the improved random Hamiltonian
patroller strategy πirH, using a Hamiltonian cycle H, is such that

πβ1(W ) =


1

n+|I(Q,T,m)|(m−1)
if W ∈ {W0, ...,Wn−1},

m−1
n+|I(Q,T,m)|(m−1)

if W (t) = j ∀t ∈ J ,
0 otherwise,



CHAPTER 6. EXTENSIONS TO PATROLLING GAMES 226

where Wi(t) = H(t+ i mod n) for all t ∈ J for all i ∈ {0, ..., n− 1}.

Lemma 6.2.9. For the game G(Q, T,m) where Q ∈ H and m is such that
mj = m if j /∈ I(Q, T,m) and mj = 1 if j ∈ I(Q, T,m), for any 1 ≤ m ≤ n and
any T ≥ m we have

V (Q, T,m) ≥ m

n+ |I(Q, T,m)|(m− 1)
,

achieved by the patroller choosing the improved random Hamiltonian πirH, using
any Hamiltonian cycle H.

The proof of lemma 6.2.9 follows immediately from the optimal value of the pro-
gram in equation (6.22) by substituting the optimal p. Equivalently by patroller
choosing πirH.

For classic games on Hamiltonian graphs the position-uniform attacker strategy
which chooses (j, 0) with equal probability for all j ∈ N is optimal. However
this can be augmented to give a better upper bound for the attacker in the game
G(Q, T,m) where Q ∈ H and m is such that mj = m if j /∈ I(Q, T,m) and
mj = 1 if j ∈ I(Q, T,m). To augment the strategy we have m pure attacks
happen at each instantaneous win node commencing at all times in the attack
interval for a non-instantaneous win node.

Definition 6.2.10. For the game G(Q, T,m) where Q ∈ H and m is such that
mj = m if j /∈ I(Q, T,m) and mj = 1 if j ∈ I(Q, T,m), let the augmented
position-uniform attacker strategy φapu be such that the probability of playing
(j, τ) is

ϕj,τ =

{
1

n+|I(Q,T,m)|(m−1)
for j /∈ N \ I(Q, T,m), τ = 0,

1
n+|I(Q,T,m)|(m−1)

for j ∈ I(Q, T,m), τ ∈ {0, ...,m− 1}.

Lemma 6.2.11. For the game G(Q, T,m) where Q ∈ H and m is such that
mj = m if j /∈ I(Q, T,m) and mj = 1 if j ∈ I(Q, T,m), for any 1 ≤ m ≤ n and
any T ≥ m we have

V (Q, T,m) ≤ m

n+ |I(Q, T,m)|(m− 1)
,

by the attacker choosing φapu

The proof of lemma 6.2.11 follows by looking at the performance of φapu.

Proof. We first note that all pure attacks occur with the same probability in φapu

and so we only need to consider how many pure attacks it is possible for any walk
to catch.

Consider any W ∈ W then for each t ∈ {0, ...,m − 1} we have either W (t) =
j /∈ I(Q, T,m) and then (j, 0) is caught if not previously caught, or W (t) =
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j ∈ I(Q, T,m) and then (j, t) is caught. Therefore for any W ∈ W we have
at most one potential attack caught for each time t ∈ {0, ...,m − 1}. Moreover
W (t) = j′ for all t ∈ J for some j ∈ I(Q, T,m) catches exactly m potential
attacks. Therefore

V (Q, T,m) ≤ V•,φapu(Q, T,m) =
m

n+ |I(Q, T,m)|(m− 1)
.

Theorem 6.2.12. For the game G(Q, T,m) for any Q ∈ H, and m such that
mj = 1 for j ∈ I and mj = m for j ∈ N \ I for any m ≥ 1 and any T ≥ m we
have

V (Q, T,m) =
m

n+ |I|(m− 1)
.

Theorem 6.2.12 follows from equal lower and upper bounds given in lemmas 6.2.9
and 6.2.11 respectively.

To conclude we note that these strategies of improvement and attacker adaptation
are not as effective when the vulnerabilities below Mmax are not instantaneous
win nodes. This is because, as is usual for patrolling games, finding an attacker
strategy is difficult and using the same idea of making more pure attacks dis-
tributed in commencement time, as used to from the attacker strategy φapu, does
not provide a tight bound. We note that theorem 6.2.12 means such games on the
graphs Cn and Kn have the same value and the additional edges between them
do not affect the performance.

6.3 Multiple players

We now look at introducing more players into the classic patrolling game. When
looking at a game with k ∈ N patrollers and l ∈ N attackers we must decide
how we model the interaction between players. Can players collaborate with
each other or are they selfish individuals who act individually? For the purpose
of this chapter we will assume that the k patroller players form a collaboration
and are controlled by a scheduler who decides how they patrol the graph. This
makes the patrollers act as one entity, picking a pure schedule of walks W =
(W1, ....,Wk) ∈ W(Q, T,m)k, where Wf ∈ W(Q, T,m) is the f th patrollers pure
walk for the schedule W (We often omit (Q, T,m) if these parameters are clear).
This models the scenario of a police dispatcher scheduling the patrols of multiple
police units. With the ordering of the set W(Q, T,m) done by some arbitrary
bijection β1 : W → {1, ..., |W|} so W(x) = β−1

1 (x) is the xth ordered walk. With
this bijection we describe any pure schedule W as the choice of ordered sets
β1(W ) = (β1(W1), ..., β1(Wk)) ∈ {1, ..., |W|}k, meaning the f th pure patroller
uses the β1(Wf )

th walk. The scheduler’s mixed strategy is a distribution over all
such pure schedules, that is some s ∈ ζ, where ζ is the set of all such mixed
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scheduler strategies. We denote the probability of playing the pure schedule
(W1, ....,Wk) by sβ1(W1),...,β1(Wk), that is si1,....,ik denotes the probability of playing
(W(i1), ...,W(ik)). Given a scheduler’s strategy of s ∈ ζ we can look at each
patrollers individual strategy

Definition 6.3.1. For a given s ∈ ζ we define the f th patrollers individualized
strategy πf (s) ∈ Π(Q, T,m) such that the probability of choosing the ith ordered
walk W(i) ∈ W(Q, T,m) is given by πfβ1(W(i))

(s) = sif for all i ∈ {1, ..., |W|} and

for all f ∈ {1, ..., k}, where

sif =

|W|∑
i1=1

· · ·
|W|∑

if−1=1

|W|∑
if+1=1

· · ·
|W|∑
ik=1

si1,...,if−1,i,if+1,...,ik

While this modelling seems the most obvious answer for the k patrollers, there
are a multitude of scenarios for the l attackers we may wish to consider. We
present work on four options for the l attackers:

• Selfish attackers in the game G1(k, l, Q, T,m).

• Collaborative attackers, who need all attackers to succeed in the game
G2(k, l, Q, T,m).

• Collaborative attackers, who want as many attackers as possible to succeed
in the game G3(k, l, Q, T,m).

• Collaborative attackers, who need one attacker to succeed in the game
G4(k, l, Q, T,m).

While the 5-tuple (k, l, Q, T,m) remains the same for each of the four games, with
k ∈ N being the number of patrollers, l ∈ N being the number of attackers and
(Q, T,m) as in the classic game, each game has different attacker strategies and
(attacker) payoffs denoted by the games subscript.

The following four subsections contain our work on the four options for the l
attackers respectively. In each we define the strategies and payoff for the attackers
(and patroller, by noting the game is zero-sum) and find optimal solutions often
relying on the classic patrolling game albeit with some dispersal or grouping of
the k patrollers and l attackers.

6.3.1 Selfish attackers

In the patrolling game G1(k, l, Q, T,m) we have k patrollers controlled by a single
scheduler playing against l selfish attackers who are individually controlled. In the
game G1(k, l, Q, T,m) the rth attacker picks a pure strategy (j, τ) ∈ A(Q, T,m)
(as usual we may omit (Q, T,m) when the parameters are clear) or a mixed
strategy φ ∈ Φ, where as in the classic game A is the set of all pure attacks and
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Φ is the set of all mixed attacks (distributions over all pure attacks) for r = 1, ..., l.
We denote the probability that the rth attacker plays the pure strategy (j, τ) by
ϕr,j,τ . As each attacker is selfish their strategy is chosen regardless of others,
hence G1(k, l, Q, T,m) is a l+ 1 player game in which one player is the scheduler
and l players are attackers. When the rth attacker chooses (jr, τr) for r = 1, ..., l
and the scheduler plays W we define the pure payoff of the game for the Rth

attacker as

Pa,R(W , (j1, τ1), ..., (jl, τl)) =
k∏

f=1

I{jR /∈Wf ({τR,...,τR+m−1})},

for each R ∈ {1, ..., l}. That is the Rth attacker, playing (jR, τR), wins (gets a
pure payoff of 1) if and only if they are not caught by any of the k patroller walks
used by the scheduler in W . Note that the Rth attacker’s payoff is independent
of all other attackers strategies and so we may write Pa,R(W , (j, τ)) for the payoff
of the Rth attacker choosing (j, τ) against W . To keep the zero-sum nature of
the game we define the scheduler’s payoff as

Ps(W , (j1, τ1), ...., (jl, τl)) = l −
l∑

r=1

Pa,r(W , (j1, τ1), ...., (jl, τl)).

That is the scheduler, playing W , gets a pure payoff equal to the number of
attackers that are caught when the rth attacker plays (jr, τr) for r = 1, ..., l.

For the mixed strategies, s ∈ ζ for the scheduler and φr ∈ Φ for the rth attacker
for r = 1, ..., l the payoff for the Rth attacker in the game G1(k, l, Q, T,m) is given
by

Pa,R(s,φ1, ...,φl)

=

|W|∑
i1=1

· · ·
|W|∑
ik=1

∑
j∈N

T−m∑
t=0

si1,....,ikϕR,j,tPa,R((W(i1), ...,W(ik)), (j, t)). (6.23)

That is the payoff is the probability that the Rth attacker is not caught by the
scheduler’s patrollers. Likewise the payoff for the scheduler is given by

Ps(s,φ1, ...,φl)

=

|W|∑
i1=1

· · ·
|W|∑
ik=1

l∑
r=1

∑
j∈N

T−m∑
t=0

si1,....,ikϕr,j,t(1− Pa,r((W(i1), ...,W(ik)), (j, t))). (6.24)

That is the payoff is the expected number of attackers caught by the scheduler.
We now define the value of the game as

V1(k, l, Q, T,m) = max
s∈ζ

min
φ1∈Φ

. . .min
φl∈Φ

Ps(s, (φ1, ...,φl))

= min
φ1∈Φ

. . .min
φl∈Φ

max
s∈ζ

Ps(s, (φ1, ...,φl)) (6.25)

We immediately note that from the definition of G1(k, l, Q, T,m) that when
k = 1 and l = 1 the game is equivalent to the classic patrolling game. I.e.
G1(1, 1, Q, T,m) ≡ G(Q, T,m) for any set of classic game parameters (Q, T,m).
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Lemma 6.3.2. For the game G1(k, l, Q, T,m) for any k ∈ N, for any l ∈ N, for
any graph Q, for any m ≥ 1, for any T ≥ m we have

V1(k, l, Q, T,m) = lV1(k, 1, Q, T,m).

In particular
V1(1, l, Q, T,m) = lV (Q, T,m).

The proof of lemma 6.3.2 follows from the fact that the each minimizing attacker
does not influence the other attackers.

Proof. We start by writing the payoff (for the scheduler) as a sum for each of the
l attackers, who only control one of the l parts of the sum.

Ps(s, (φ1, ...,φl)) =
l∑

r=1

∑
j∈N

T−m∑
t=0

ϕr,j,t

|W|∑
i1=1

· · ·
|W|∑
ik=1

si1,....,ik(1− Pa,r((W(i1), ...,W(ik)), (j, t)))

This allows us to write the value of the game as

V1(k, l, Q, T,m) =
l∑

r=1

min
φr∈Φ

max
s∈ζ

∑
j∈N

T−m∑
t=0

ϕr,j,t

×
|W|∑
i1=1

· · ·
|W|∑
ik=1

si1,....,ik(1− Pa,r((W(i1), ...,W(ik)), (j, t))),

where choosing ϕr,j,t for each j ∈ N and each t ∈ J is equivalent to choosing
φr ∈ Φ for each minimization.

By the definition of the payoff (equation (6.24)) and value of the game (equation
(6.25))we have

V1(k, l, Q, T,m) =
l∑

r=1

V1(k, 1, Q, T,m) = lV1(k, 1, Q, T,m).

For the second assertion of the lemma we note that V1(1, 1, Q, T,m) = V (Q, T,m)
by the equivalent definitions of strategies and value.

Lemma 6.3.2 allows us to now focus our efforts on investigating how a scheduler
can utilise k patrollers in an effort to catch one attacker. That is we now study the
game G1(k, 1, Q, T,m) for the rest of this subsection, focusing on how an optimal
scheduler should act. For the game G1(k, 1, Q, T,m) we can simplify the mixed
payoff for the scheduler using s ∈ ζ and the attacker using φ ∈ Φ in equation
(6.24) to

P (s,φ) =

|W|∑
i1=1

· · ·
|W|∑
ik=1

∑
j∈N

T−m∑
τ=0

si1,...,ikϕj,τ I{
j∈

k⋃
f=1

W(if )({τ,...,τ+m−1})
}.
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However this representation of the payoff does not explicitly tell us the effective-
ness of each patroller the scheduler is able to utilise. To see this better we can
write the contribution to the probability that the f th patroller has in catching
the attacker using φ ∈ Φ when the scheduler is using s ∈ ζ as

P (s,φ, f)

=

|W|∑
i1=1

· · ·
|W|∑
ik=1

∑
j∈N

T−m∑
τ=0

si1,...,ikϕj,τ I{j∈W(if )({τ,...,τ+m−1})}I{
j /∈

f−1⋃
r=1

W(ir)({τ,...,τ+m−1})
}.

That is the f th patroller only contributes if it is the lowest indexed patroller who

catches the attacker. We note that P (s,φ) =
k∑

f=1

P (s,φ, f). With this idea of

how much each successive patroller contributes we can easily see that the best
performance utilises patrollers who only catch distinct pure attacks. From this
idea we get the following lemma. For clarity we note the contribution against a
pure attack strategy (j, τ) ∈ A is

P (s, (j, τ), f) =

|W|∑
i1=1

· · ·
|W|∑
ik=1

si1,...,ikI{j∈W(if )({τ,...,τ+m−1})
}I{

j /∈
f−1⋃
r=1

W(ir)({τ,...,τ+m−1})
}.

Then we have P (s,φ, f) =
∑
j∈N

T−m∑
τ=0

ϕj,τP (s, (j, τ), f).

Lemma 6.3.3. For the game G1(k, 1, Q, T,m) for all k ∈ N, for all graphs Q,
for all m ≥ 1 and for all T ≥ m we have

V1(k, 1, Q, T,m) ≤ min(kV (Q, T,m), 1).

Furthermore we have equality, V1(k, 1, Q, T,m) = kV (Q, T,m), if there exists
s ∈ ζ such that

• for all W ∈ Wk such that sβ1(W ) > 0 then for all (j, τ) ∈ A if j ∈
Wi({τ, ..., τ+m−1)}) then j /∈ Wi′(τ, ..., τ+m−1}) for all i′ ∈ {1, ..., k}\{i}
for all i ∈ {1, ..., k} and

• the individualized patroller strategy πf (s) is such that

Vπf (s),•(Q, T,m) = V (Q, T,m), (6.26)

for all f ∈ {1, ..., k}.

The first condition for equality in lemma 6.3.3 is that for each pure attack there is
only one possible pure patroller contributing towards it’s capture and the second
is that each individualized patroller strategy is optimal in the classic patrolling
game with the same (Q, T,m). The proof of the lemma follows from the fact that
no individual can contribute more than they could have in the classic patrolling
game.
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Proof. For the first part of the lemma consider (s,φ) the optimal strategy pair
for the game G1(k, 1, Q, T,m) then for all f ∈ {1, ..., k} we have

P (s,φ, f) ≤
|W|∑
i1=1

· · ·
|W|∑
ik=1

∑
j∈N

T−m∑
τ=0

si1,...,ikϕj,τ I{j∈W(if )({τ,...,τ+m−1})} (6.27)

=

|W|∑
if=1

s
if
f ϕj,τ I{j∈W(if )({τ,...,τ+m−1})}

= P (πf (s),φ) ≤ V (Q, T,m). (6.28)

Therefore

V1(k, 1, Q, T,m) = P (s,φ) =
k∑

f=1

P (s,φ, f) ≤ kV (Q, T,m),

and along with the trivial bound of V (k, 1, Q, T,m) ≤ 1 we get the first result of
the lemma.

For the furthermore part of the lemma we note that the first condition gives us
equality in equation (6.27) and the second condition gives us equality in equation
(6.28) and hence

V1(k, 1, Q, T,m) = P (s,φ) =
k∑

f=1

P (s,φ, f) = kV (Q, T,m)

Lemma 6.3.3 shows us that having additional patrollers can at most linearly
increase the probability of catching the attacker. This is extremely useful, as it
means that if we can find a scheduler who can guarantee the conditions we reach
equality. That is we can find a scheduler who can coordinate the patrollers to
each collect distinct attacks while each individuals patroller strategy is optimal
in the classic game. This essentially comes down to proving the lower bound for
a scheduler’s strategy, which meet the sufficient condition given in the lemma.

We now present results on the value of the game G1(k, 1, Q, T,m). First consider
the game G1(|N |, 1, Q, T,m) in which the number of patrollers is equal to the
number of nodes, then having each patroller wait at a node means the scheduler
will catch every pure attack regardless of m.

Lemma 6.3.4. For the game G1(k, l, Q, T,m) for any graph Q = (N,E), for any
k ≥ |N | and any l ≥ 1, for any m ≥ 1 and for any T ≥ m we have

V1(k, l, Q, T,m) = l.
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The proof of lemma 6.3.4 follows by a pure scheduler W which has the first |N |
patrollers wait at distinct nodes for the entire time-horizon. With it proved we
will restrict ourselves to looking at games such that k < |N |.

Proof. Let W ∈ Wk be such that Wi(t) = β−1(i) for 1 ≤ i ≤ |N | where β : N →
{1, ..., |N |} is a bijection. Then for any (j, τ) ∈ A we have j ∈ Wi({τ, ..., τ +m−
1}) for some 1 ≤ i ≤ |N | and hence Pa(W , (j, τ)) = 0 and therefore

Ps(W , ((j1, τ1), ..., (jl, τl))) = l.

So it is clear that

V1(k, l, Q, T,m) = l.

When Q is Hamiltonian it is possible to find a scheduler strategy s ∈ ζ that
satisfies the two conditions for equality in lemma 6.3.3 by considering spreading
out the k patrollers who follow a Hamiltonian cycle. Moreover, it is possible to
do the same when the classic game omits an optimal solution which is a random
minimal full-node cycle. We first demonstrate how to satisfy the conditions when
the graph is Hamiltonian.

To ensure each of the k patroller catches distinct pure attacks while they individ-
ually follow a classic optimal patrol strategy, we can use the random Hamiltonian
cycle with some initial spacing between the k patrollers. To ensure that they
only catch distinct pure attacks we can have patroller start m places ahead on
the Hamiltonian cycle. An alternative to this is to space the patrollers evenly
throughout the Hamiltonian cycle. Note that with both of these we will have a
limit of how many patrollers we can place before they start to overlap in which
pure attacks they possibly catch. We define the following scheduler strategy,
which will give optimality in Hamiltonian graphs.

Definition 6.3.5. The random spread Hamiltonian scheduler strategy srsH is
such that the probability of playing W is

srsH,β1(W ) =

{
1
|N | if W ∈ X,
0 otherwise,

where

X = {W ∈ Wk |Wf (t) = H(t+ i+ (r − 1)m mod |N |)∀t ∈ J ∀f ∈ {1, ..., k},
for some i ∈ {0, ..., |N | − 1}, (6.29)

for some Hamiltonian cycle H.

Note that randomization of srsH is equally choosing i ∈ {0, ..., |N | − 1} which
determines the starting position of the first patroller, namely H(i). The scheduler
then starts the rth patroller at the node H(i+(r−1)m mod |N |) for r = 2, ..., k.
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Then for the time-horizon each patroller follows the Hamiltonian cycle H. Note
that the randomization is only done for the first patroller and all other patrollers
follow a definitive pattern, of being m places ahead in the Hamiltonian cycle,
given the starting place of the first patroller. They key is that the rth and r+ 1th

patrollers in each pure scheduler are at least m apart in an effort to never catch
the same pure attack (j, τ). However it is possible that there is overlap of attacks
but this just means that all pure attacks will be caught by the scheduler.

Theorem 6.3.6. For the game G1(k, 1, Q, T,m) for all k ≥ 1, for all Q =
(N,E) ∈ H, for all m ≥ 1, for all T ≥ m we have

V1(k, 1, Q, T,m) = min

(
1,
km

|N |

)
,

achieved by the random spread Hamiltonian scheduler strategy and the position
uniform attacker. Moreover for all l ≥ 1,

V1(k, l, Q, T,m) = min

(
l,
klm

|N |

)
,

Proof. Let us first consider G1(k, 1, Q, T,m) when k× m
|N | ≥ 1. Then for anyW ∈

X (as in equation (6.29)) we have that for all (j, τ) ∈ A that j ∈ Wf ({τ, ..., τ +
m− 1}) for some f ∈ {1, ..., k} as

k⋃
f=1

Wf ({τ, ..., τ +m− 1}) = N.

Therefore for any (j, τ) ∈ A and for any pure scheduler W ∈ X we have

Ps(W , (j, τ)) = 1.

So in this case

V1(k, 1, Q, T,m) = 1.

Secondly let us considerG1(k, 1, Q, T,m) when k× m
|N | < 1, then we will use lemma

6.3.3. Let us show that the first condition of the lemma holds by considering any
W ∈ X, then for all τ ∈ T we have that if j ∈ Wf ({τ, ..., τ +m− 1}) then

j /∈ Wf ′({τ, ..., τ +m− 1}) = Wi(I
′),

where I ′ = {τ + (i′ − i)m mod T, ..., (τ + (f ′ − f)m mod T ) + m − 1}, for
all f ′ ∈ {1, ..., k} \ {f} for all j ∈ N and for all f ∈ {1, ..., k}. For the second
condition we have that the f th patrollers individualized strategy is πf (srsH) = πrH

where πrH is the random Hamiltonian strategy using the Hamiltonian cycle H ′

such that H ′(t) = H(t + (f − 1)m) for all t ∈ {0, ..., |N | − 1}. Now by lemma
2.3.27 we know that πrH is optimal and so

VπrH,•(Q, T,m) = V (Q, T,m) =
m

|N |
.
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Therefore, as both conditions for equality in lemma 6.3.3 are satisfied, we have

V1(k, 1, Q, T,m) = kV (Q, T,m) =
km

|N |
.

Hence

V1(k, 1, Q, T,m) = min

(
1,
km

|N |

)
,

with the final part of the lemma following from lemma 6.3.2.

As seen in the proof of theorem 6.3.6 in the case of km
|N | ≥ 1 there is no need for

randomization for the scheduler. Furthermore, in the case of km
|N | < 1, full and

uniform randomization over i ∈ {0, ..., |N | − 1} for the initial starting position of
the first patroller is not needed. In the case that the distance between all starting
nodes is exactly m, the equal randomization over i ∈ {0, ..., (n− (k − 1)m)− 1}
is sufficient. This is because we can simply relabel of the k patrollers when they
change initial starting positions. More alternative spreading ideas can be used,
as long as they guarantee starting each patroller at least m nodes along the
Hamiltonian cycle. Another possible way to get the result in theorem 6.3.6 is to
use the following lemma to provide an upper bound, instead of lemma 6.3.3.

Lemma 6.3.7. For the game G1(k, 1, Q, T,m) for any k ≥ 1, for any graph
Q = (N,E), for any m ≥ 1 and for any T ≥ m we have

V1(k, 1, Q, T,m) ≤ min

(
1,
ω∗

|N |

)
≤ min

(
1,
km

|N |

)
,

where ω∗ is the maximum number of distinct nodes that k simultaneous walks can
visit in m units of time.

Lemma 6.3.7 is analogous result to lemma 2.3.16 the classic patrolling game, in
which the attacker choices a node uniformly for a fixed commencement time. As
with the classic case, the proof of lemma is done by stating how well the best
pure scheduler can do against the position uniform attacker strategy.

Proof. Consider φ ∈ Φ such that ϕj,0 = 1
|N | for each j ∈ N . Then during the

interval {0, ...,m − 1} the maximum number of distinct nodes a scheduler can
have k patrollers visit is ω∗, thus

V1(k, 1, Q, T,m) ≤ max
W∈Wk

P (W ,φ) =
ω∗

|N |
.

The second part of the inequality follows as ω∗ ≤ km as at best each of the k
patrollers can visit m distinct nodes which are distinct from all other patrollers.
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Lemma 6.3.7 provides a tight bound with the bound given by the random spread
Hamiltonian cycle (see appendix C.2) to give the same result as in theorem 6.3.6.
It also clarifies the idea that the best thing the scheduler can do is have patrollers
catch distinct attacker.

Simplification and expansion operations (as seen in section 3.3.2) can be used
on the graph Q in the patrolling game with multiple patrollers G1(k, 1, Q, T,m).
Considering these graphical operators allows us to consider embedded strategies
and bounds and we get analogous results as merging nodes in simplification can
only possibly help the k patrollers and therefore scheduler and splitting nodes
can only help the attacker.

Theorem 6.3.8. For any graph Q which can be x-simplified to Q−x and y-
expanded to Q+y, for all x ≥ 1, for all y ≥ 1, for all m ≥ 1 and for all T ≥ m
we have

V1(k, 1, Q+y, T,m) ≤ V1(k, 1, Q, T,m) ≤ V1(k, 1, Q−x, T,m).

Proof. We first show the result for simplification, V1(k, 1, Q, T,m) ≤ V1(k, 1, Q−x, T,m).
For any W ∈ W(Q, T,m)k there exists W ′ ∈ W(Q−x, T,m)k such that

P (W ,φ) = P (W ′,φ),

for any attacker strategy φ ∈ Φ(Q, T,m). Hence

V1(k, 1, Q, T,m) = min
φ∈Φ(Q,T,m)

max
W∈W(Q,T,m)k

P (W ,φ)

≤ min
φ∈Φ(Q,T,m)

max
W∈W(Q−x,T,m)k

P (W ,φ) = V (k, 1, Q−x, T,m)

Secondly we get that V1(k, 1, Q+y, T,m) ≤ V1(k, 1, Q, T,m) as Q+y can be y-
simplified to Q.

Theorem 6.3.8 lets us get results for non-Hamiltonian graphs, by using a full-
node cycle (as seen in section 3.3.4). As in the classic game we remark that the
optimality of such strategies we will develop depend on the attack length m. We
present the scheduler’s strategy which uses a minimal full-node cycle for a graph
and then present a similar result to theorem 6.3.6. Recall that a minimal full-
node cycle repeats of length |N |+x repeats x nodes and that the choice of such a
full-node cycle is arbitrary as it is minimal and therefore the number of repeated
nodes are minimal.

Definition 6.3.9. A random spread minimal full-node cycle scheduler strategy
sQRSMFNC ∈ ζ(k, 1, Q, T,m)l, using a minimal full-node cycle WQ

MFNC of length
|N |+ x, with a Hamiltonian expansion of the graph Q into Q+x, is such that

sβ1(W ) =
∑

W+∈W(k,1,Q+x,T,m)s.t.W+=N+x(W )

srsH,β+
1 (W ),

where N+x is the node mapping of the expansion from Q to Q+x and srsH,β+
1 (W+)

is the probability from the random spread Hamiltonian that W+ is played.
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That is sRSMFNC is the embedded scheduler strategy playable in G(k, 1, Q, T,m)
from the optimal strategy srsH for the game G(k, 1, Q+x, T,m) which is Hamilto-
nian.

Lemma 6.3.10. For the game G(k, 1, Q, T,m) for any k ∈ N, for any graph Q
with a minimal full-node cycle WQ

MFNC of length |N | + x, for any m ≥ 1 and for
any T ≥ m we have

V1(k, 1, Q, T,m) ≥ km

n+ x
,

achieved by the random spread minimal full-node cycle scheduler strategy sRSMFNC.

Proof. We have by theorem 6.3.8

V1(k, 1, Q, T,m) ≥ V1(k, 1, Q+x, T,m),

where Q+x is an x-expansion of Q which is Hamiltonian by node-splitting repeated
nodes in WQ

MFNC. Then by theorem 6.3.6

V1(k, 1, Q+x, T,m) = min

(
1,

km

n+ x

)
,

so therefore we obtain the result V1(k, 1, Q, T,m) ≥ km
n+x

.

Lemma 6.3.10 allows us to get results on the game G1(k, 1, Q, T,m) where the
graph Q is a f -partite graph. Recall that when f = 2 the complete bipartite graph
Ka,b is not Hamiltonian and when f ≥ 3 the graph Ka1,...,af may be Hamiltonian
dependent on the size of the partite sets a1, ..., af .

Theorem 6.3.11. For the game G1(k, 1, Ka,b, T,m) for any k ≥ 1, for any b ≥ a
(a, b ∈ N), for any m ≥ 2 and for any T ≥ m+ 1 we have

V1(k, 1, Ka,b, T,m) = min

(
1,
km

2b

)
.

For the game G1(k, 1, Kai,...,al , T,m) for any k ≥ 1, for any f ≥ 3 with 1 ≥ a1 ≥
... ≥ af (ai ∈ N for i ∈ {1, ...f}), for any m ≥ 2 and for any T ≥ m+ 1 we have

V1(k, 1, Kai,...,af , T,m) =


min

1, km
l∑

i=1
ai

 if
f−1∑
i=1

ai ≥ af ,

min
(

1, km
2af

)
if

f−1∑
i=1

ai < af .

The proof of theorem 6.3.11 follows from the lemma 6.3.10 and lemma 6.3.3.
Therefore, the random spread minimal full-node cycle and the 2-polygonal attack
are optimal strategies on a mutlipartite graph.
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Proof. For the game G1(k, 1, Ka,b, T,m) on the complete bipartite graph Ka,b a
minimal full node cycle alternates between the two partite sets and therefore
repeats b− a nodes and so by lemma 6.3.10 we have that

V1(k, 1, Q, T,m) ≥ km

a+ b+ b− a
=
km

2b
.

Then lemma 6.3.3 and lemma 2.3.28 give us that

V1(k,Q, T,m) ≤ min
(

1, k
m

2b

)
.

Therefore we have the result of equality.

For the game G1(k, 1, Kai,...,al , T,m) on the complete f -partite graph let us first

consider the case
f−1∑
i=1

ai ≥ af , for which Kai,...,al is Hamiltonian and thus is given

by theorem 6.3.6. In the second case of
f−1∑
i=1

ai < af , Kai,...,al but has a minimal

full-node cycle which repeats af −
f∑
i=1

ai nodes (which are not in largest partite

set) and so by lemma 6.3.10 we have that

V1(k, 1, Q, T,m) ≥ km

2af
.

Then lemma 6.3.3 and theorem 3.5.7 give us that

V1(k, 1, Q, T,m) ≤ min

(
1,
km

2af

)
.

Therefore we have the result of equality in this case.

Such is the power using the minimal full-node cycle, we can get the solution for
the line graph and generalised star graph, when they have a random minimal
full-node cycle patroller strategy being optimal in the classic game. This allows
us to use lemma 6.3.3 and 6.3.10 to easily get results.

Lemma 6.3.12. For the game G1(k, 1, Ln, T,m) for all k ≥ 1, for all n ≥ 2, for
all m ≥ 2(n− 1) and for all T ≥ n+m− 1 we have

V1(k, 1, Ln, T,m) =
km

2(n− 1)
.

For the game G1(k, 1, Sln, T,m) for all k ≥ 1, for all n ≥ 3, for all f ∈ Nn, for
all m ≥ 2(maxi fi + 1) and for all T ≥ 2 maxi∈{1,...,n}(fi) +m+ 1 we have

V1(k, 1, Sfn , T,m) =
km

2(n+
n∑
i=1

fi)
.
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Having seen the usefulness of having additional patrollers when the classic game
has an optimal random minimal full-node cycle, we move onto looking at another
scheduler strategy which has patrollers collect distinct attacks. Consider the idea
of intercepting patrols and the covering bound (in section 2.3.2). It is easy to
adapt the covering strategies for a single patroller to one for the scheduler control-
ling k patrollers. Let C be a minimal covering set for the game G(Q, T,m) with a
covering number of CQ,T,m = |C|. In the classic game these are played with equal
probability, to form the covering strategy, however in the game G(k, 1, Q, T,m)
the k patrollers can be used to have the scheduler simultaneously play k out of
CQ,T,m intercepting patrols in C. Therefore, if k ≥ CQ,T,m the scheduler can guar-
antee the capture of the attacker and if k < CQ,T,m then by playing schedules were
the k patrollers play distinct patrols in C we can achieve the following result.

Lemma 6.3.13. For the game G1(k, 1, Q, T,m), for any k ≥ 1, for any Q, for
any m ≥ 1 and for any T ≥ m we have

• if k ≥ CQ,T,m then
V1(k, 1, Q, T,m) = 1.

• if k < CQ,T,m then

V1(k, 1, Q, T,m) ≥ k

CQ,T,m
.

Moreover if the covering strategy is optimal for the game G(Q, T,m) then

V1(k, 1, Q, T,m) = min

(
1,

k

CQ,T,m

)
.

Proof. Given a minimal covering set C for the game G(Q, T,m) (such that |C| =
CQ,T,m) let X = {W ∈ W(Q, T,m)k | Wf ∈ C, Wf 6= Wf ′ ∀f 6= f ′}. Then for the
first case of k ≥ CQ,T,m let W ∈ X then

k⋃
f=1

Wf ({τ, ..., τ +m− 1}) = N.

Therefore for any (j, τ) ∈ A and for any pure scheduler W ∈ X we have

Ps(W , (j, τ)) = 1.

So in this case

V1(k, 1, Q, T,m) = 1.

For the second case of k < CQ,T,m we can form a scheduler strategy s ∈ ζ(k, 1, Q, T,m)
such that

sβ1(W ) =


1

( k
CQ,T,m

)
if W ∈ X,

0 otherwise.
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Then for any (j, τ) ∈ A(Q, T,m) it is such that for the walk W ′ ∈ C that
P (W ′, C) = 1 and so as W ′ is an element of the schedule W with probability

k
CQ,T,m

we have for any (j, τ) ∈ A(Q, T,m) that

P (s, (j, τ)) =
k

CQ,T,m
.

Hence

V1(k, 1, Q, T,m) ≥ k

CQ,T,m
.

Individual strategies from s are covering strategies for game G(Q, T,m) and hence
if they are optimal as assumed we get by lemma 6.3.3 that

V1(k, 1, Q, T,m) =
k

CQ,T,m
.

Again this allows us to solve G1(k, 1, Q, T,m) when the covering strategy was
optimal for G(Q, T,m). Two such graphs are the line graph and generalised star
graph when m = 2.

Lemma 6.3.14. For the game G(k, 1, Ln, T,m) for all k ≥ 1, for all n ≥ 2, for
all T ≥ 2 we have

V1(k, 1, Ln, T, 2) =
k⌈
n
2

⌉ .
For the game G(k, 1, Sfn , T,m), for all k ≥ 1, for all n ≥ 3, for all f ∈ Nn, for
all T ≥ 2 we have

V1(k, 1, Sfn , T, 2) =


k

1+
n∑

r=1

fr+1
2

if fr is odd for all r = 1, ..., n,

k
n∑

r=1
d fr+1

2 e
if fr is even for some r = 1, ..., n.

We have seen that the adaptation of an optimal patrolling strategy π∗ ∈ Π(Q, T,m)
into an optimal scheduler strategy s∗ ∈ ζ(k, 1, Q, T,m) can be done when pa-
trollers can be coordinated to catch distinct pure attackers. In such cases the
value of the game scales linearly with the number of patrollers, up to the natural
upper limit of 1, meaning that at some point the inclusion of another patroller
means the scheduler is guaranteed to win. Furthermore, the last patroller who
contributes an increase to bring the value of the game to 1 may contribute less
than others and so. Using such results it is easier to consider how many patrollers
are required to meet a certain performance threshold. Patrol strategies in the clas-
sic game which do not allow the spreading of patrollers to catch distinct attackers
require much more work for the scheduler in order to find the optimal strategy.
Such things are to be expected, as we have already seen for low attack lengths
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improvements to random minimal full-node cycle strategies are needed and im-
proved by using other strategies at weakly performing nodes. However the use
of such improvement strategies do not easily allow multiple patrollers to spread
out and catch distinct pure attacks. For example consider the game G(Ln, T,m)
for m ∈ MLn

5 an optimal solution plays the random minimal full-node cycle and
two intercepting patrols at either end of the line. Augmenting this optimal so-
lution for a scheduler with k patrollers requires more thought, as simply using k
patrollers on one intercepting patrol provides no additional benefit. The question
remains should one patroller be split between the two intercepting patrols and
one play the random minimal full-node cycle? This provides an area for future
work in augmenting optimal strategies which required improvement in the game
with only a single patroller.

6.3.2 Collaborative attackers, who need all attackers to
succeed

In the patrolling game G2(k, l, Q, T,m) we have k patrollers controlled by a sched-
uler and l attackers controlled by a mastermind. The mastermind, controlling
the l attackers, picks a pure mastermind strategy a = ((j1, τ1), ..., (jl, τl)) ∈
A(Q, T,m)l (as usual omitting (Q, T,m) when clear), in which the mastermind
chooses the rth attackers pure strategy (jr, τr) for r ∈ {1, ..., l}. While in terms
of pure strategies l attackers may coordinate and form a strategy formed that
could be formed by a mastermind, there is a true difference at the level of ran-
domization when l individual attackers are collaborating. A mastermind ran-
domizes over the entire collection of strategies in Al, whereas l selfish attackers
can only individually randomize over A unable to coordinate themselves. Es-
sentially the mastermind is able to sync the l attacker’s randomization using
a single distribution. Let β2 : Al → {1, ..., |A|l} be an arbitrary chosen bi-
jection to number the pure mastermind strategies. We denote a mastermind’s
mixed strategy by c ∈ ς, where ς is the collection of mastermind mixed strate-
gies, and denote the probability that the mastermind plays the pure strategy
a = ((j1, τ1), ..., (jl, τl)) by ϕ(j1,t1),...,(jl,tl) = cβ2(a). The game G2(k, l, Q, T,m) is a
two player game with the scheduler attempting to win against the mastermind
and this setup of strategies will be the same for the this game remaining two game
variants G3(k, l, Q, T,m), G4(k, l, Q, T,m) (in sections 6.3.3, 6.3.4) while each of
Gi(k, l, Q, T,m) for i = 2, 3, 4 has a different payoff structure.

In the game G2(k, l, Q, T,m) with the scheduler choosing W ∈ Wk and the
mastermind choosing a ∈ Al we define the pure mastermind payoff as

Pm(W ,a) =
l∏

r=1

k∏
f=1

I{jr∈Wf ({τr,...,τr+m−1})}

= I{jr /∈Wf ({τr,....,τr+m−1})∀f∈{1,...,k},r∈{1,...,l}}.

That is the mastermind wins if and only if none of the l attackers are caught and
in order to maintain the zero-sum nature of the game we define the pure payoff
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for the scheduler as

Ps(W ,a) = 1− Pm(W ,a)

= I{∃f∈{1,...,k},r∈{1,...,l} s.t. jr∈Wf ({τr,....,τr+m−1})}. (6.30)

That is the scheduler wins if and only if the mastermind loses by having any of
the l attacker caught. To put the pure game in matrix form define P2 the pure
payoff matrix in terms of the scheduler’s pure payoff.

For mixed strategies s ∈ ζ for the scheduler and c ∈ ς for the mastermind we
define the payoff of the game G2(k, l, Q, T,m) as

P (s, c) = sP2c
T =

∑
W∈Wk

∑
a∈Al

sβ1(W )cβ2(a)Ps(W ,a)

=

|W|∑
i1=1

· · ·
|W|∑
ik=1

∑
j1∈N

T−m∑
t1=0

· · ·
∑
jl∈N

T−m∑
tl=0

ξ, (6.31)

where ξ = si1,....,ikϕ(j1,t1),...,(jl,tl)Ps((W(i1), ...,W(ik)), ((j1, τ1), ..., (jl, τl))). That is
the payoff is the probability that the mastermind loses, or in other words the
probability that any l attacker is caught. We now define the value of the game as

V2(k, l, Q, T,m) = max
s∈ζ

min
c∈ς

Ps(s, c) = min
c∈ς

max
s∈ζ

Ps(s, c). (6.32)

From the fact that the mastermind loses if any of their l attackers are caught in
the game G2(k, l, Q, T,m), we can easily show that any mastermind pure strategy
should have l identical attackers and that only these such strategies can be played
with a non-zero probability in a mixed mastermind strategy.

Lemma 6.3.15. For the game G2(k, l, Q, T,m) for any k ∈ N, for any l ∈ N, for
any graph Q, for any T ≥ m, for any m ∈ N then there exists some mastermind’s
strategy c ∈ ς which is optimal and is such that

ϕa = 0 ∀a ∈ Al \ {a ∈ Al | (j1, τ1) = .... = (jl, τl)}.

Furthermore if V2(k, l, Q, T,m) < 1 such mastermind strategies are the only ones
which can be optimal.

The proof of lemma 6.3.15 follows by showing that the mastermind can improve
the performance of a strategy which doesn’t have the l attackers use the same
pure attack.

Proof. Consider, for the sake of contradiction, that there only exists optimal
mastermind strategies such that the condition is not met. Take such a mastermind
strategy c∗ playing a ∈ Al with probability ϕ∗a. Then there is some a in which
(jr′ , τr′) 6= (jr′′ , τr′′) for some attacker indices r′, r′′ ∈ {1, ..., l} such that ϕ∗a 6= 0.
Then we can construct another mastermind strategy c ∈ ς such that the attacker
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with index r′′ performs the same attack as the attacker with index r′. That is c
plays (j1, τ1), ..., (jl, τl) with probability

ϕ(j1,τ1),...,(jl,τl) =


∑

(jr′′ ,τr′′ )∈A
ϕ∗(j1,t1),...,(jl,tl)

if (jr′ , τr′) = (jr′′ , τr′′),

0 if (jr′ , τr′) 6= (jr′′ , τr′′),

for all ((j1, τ1), ..., (jl, τl)) ∈ Al. Then we can show that for any pure scheduler
strategy W ∈ Wk that P (W , c) ≤ P (W , c∗). To see this consider

P (W , c) =
∑
a∈Al

ϕaI
{∃x∈{1,...,l} s.t. jx∈

k⋃
f=1

Wf ({τx,....,τx+m−1})}

=
∑

a∈Al s.t. ∃x∈{1,...,l} s.t. jx∈
k⋃

f=1
Wf ({τx,....,τx+m−1})

ϕa

=
4∑
z=1

∑
a∈Al s.t Ez

ϕa =
∑

a∈Al s.t E1

ϕa +
∑

a∈Al s.t E4

ϕa

=
∑

a∈Al s.t E1 and (jr′ ,τr′ )=(jr′′ ,τr′′ )

 ∑
(jr′′ ,τr′′ )∈A

ϕ∗(j1,t1),...,(jl,tl)


+

∑
a∈Al s.t E4 and (jr′ ,τr′ )=(jr′′ ,τr′′ )

 ∑
(jr′′ ,τr′′ )∈A

ϕ∗(j1,t1),...,(jl,tl)


=

∑
a∈Al s.t E1

ϕ∗a +
∑

a∈Al s.t E4

ϕ∗a

≤
4∑
z=1

∑
a∈Al s.t Ez

ϕ∗a = P (W , c∗), (6.33)

where:

• E1 is the event that ∃x ∈ {1, ..., l} s.t. jx ∈
k⋃

f=1

Wf ({τx, ...., τx + m − 1})

and jr′ /∈
k⋃

f=1

Wf ({τr′ , ...., τr′ +m− 1}), jr′′ /∈
k⋃

f=1

Wf ({τr′′ , ...., τr′′ +m− 1}).

That is E1 is the event that an attacker is caught by a patroller but both
the r′ and r′′ indexed attackers are not caught,

• E2 is the event that ∃x ∈ {1, ..., l} s.t. jx ∈
k⋃

f=1

Wf ({τx, ...., τx + m − 1})

and jr′ ∈
k⋃

f=1

Wf ({τr′ , ...., τr′ +m− 1}), jr′′ /∈
k⋃

f=1

Wf ({τr′′ , ...., τr′′ +m− 1}).

That is E2 is the event that the r′ indexed attacker is caught but the r′′

indexed attacker is not caught,

• E3 is the event that ∃x ∈ {1, ..., l} s.t. jx ∈
k⋃

f=1

Wf ({τx, ...., τx + m − 1})

and jr′ /∈
k⋃

f=1

Wf ({τr′ , ...., τr′ +m− 1}), jr′′ ∈
k⋃

f=1

Wf ({τr′′ , ...., τr′′ +m− 1}).
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That is E3 is the event that the r′′ indexed attacker is caught but the r′

indexed attacker is not caught, and

• E4 is the event that ∃x ∈ {1, ..., l} s.t. jx ∈
k⋃

f=1

Wf ({τx, ...., τx + m − 1})

and jr′ ∈
k⋃

f=1

Wf ({τr′ , ...., τr′ +m− 1}), jr′′ ∈
k⋃

f=1

Wf ({τr′′ , ...., τr′′ +m− 1}).

That is E4 is the event that both the r′ indexed attacker and the r′′ indexed
attacker are caught.

This process can be repeated for any indices r′, r′′ until no such indices exist and
thus we reach a contradiction and thus have the first part of the lemma. For
the furthermore part notice that we have strict inequality in equation (6.33) as
V2(k, l, Q, T,m) < 1 and thus it is possible to have the events E2 and E3 occur.
In contrast when V2(k, l, Q, T,m) = 1 these events do not take place and there is
equality in equation (6.33).

Let us now assume that V2(k, l, Q, T,m) < 1, so the scheduler can not be guar-
anteed to catch any of the mastermind’s attackers, then we know that we can
restrict the set of mastermind strategies to place all attackers together in time
and space. Therefore, we restrict the set of pure attacks for the mastermind’s
mixed strategy, with the mastermind choosing a distribution among the restricted
pure mastermind set

AlRes = {a ∈ Al | (j1, τ1) = .... = (jl, τl)}.

A distribution among AlRes is equivalent to a distribution among A as all attackers
follow the same pure attack under any realisation of the distribution. Knowing
this, the mastermind can utilize the known optimal distribution among A for
the game with one attacker G2(k, 1, Q, T,m) in the game with multiple attackers
G2(k, l, Q, T,m).

Lemma 6.3.16. For the game G2(k, l, Q, T,m) for any k ∈ N, for any l ∈ N, for
any graph Q, for any m ∈ N and for any T ≥ m we have

V2(k, l, Q, T,m) = V2(k, 1, Q, T,m).

Moreover, if φ∗ ∈ Φ(Q, T,m) is the optimal strategy for the game G2(k, 1, Q, T,m)
then c ∈ ς(k, l, Q, T,m) such that

ϕa =

{
ϕ∗j1,t1 if a = ((j1, t1), ..., (jl, tl)) ∈ AlRes,
0 otherwise,

is optimal for the game G2(k, l, Q, T,m), where ϕ∗j1,t1 is the probability of playing
(j1, t1) ∈ A in φ∗.
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Proof. Let c be as described in the lemma we seek to show it is optimal. By
the definition of c we know that P (s, c) = P (s,φ∗) for any s ∈ ζ and therefore
V2(k, l, Q, T,m) ≤ P (s∗, c) = P (s∗,φ∗) = V2(k, 1, Q, T,m). However it is clear
from the pure scheduler payoff, in equation (6.30), that it is non-decreasing in the
number of attackers and hence so is the mixed payoff and hence so is the value

V2(k, l, Q, T,m) ≥ V2(k, 1, Q, T,m).

Therefore, we have

V2(k, l, Q, T,m) = P (s∗, c) = P (s∗,φ∗) = V2(k, 1, Q, T,m).

Moreover c is optimal for the game G2(k, l, Q, T,m).

We note the equivalence of the games with one attacker and multiple patrollers,
that is G2(k, 1, Q, T,m) ≡ G1(k, 1, Q, T,m), and so

V2(k, 1, Q, T,m) = V1(k, 1, Q, T,m).

Therefore we can use the work done in section 6.3.1 to get results for the game
G2(k, 1, Q, T,m) and therefore by using lemma 6.3.16 get results on the game
G2(k, l, Q, T,m).

6.3.3 Collaborative attackers, who want as many attack-
ers to succeed as possible

In the patrolling game G3(k, l, Q, T,m) we have k patrollers who are controlled
by a scheduler and l attackers controlled by a mastermind. The scheduler and
mastermind have the same strategies as in the game G2(k, l, Q, T,m), however in
the game G3(k, l, Q, T,m) we model the mastermind attempting to make as many
attackers succeed as possible. So for the scheduler choosing W ∈ Wk against the
mastermind choosing a ∈ Al in the game G3(k, l, Q, T,m) we define the pure
mastermind payoff as

Pm(W ,a) =
l∑

r=1

(
k∏

f=1

I{jr /∈Wf ({τr,...,τr+m−1})}

)
.

That is the mastermind gets a payoff equal to the number of attackers who succeed
in their attacks and in order to maintain the zero-sum nature of the game we define
the pure scheduler payoff as

Ps(W ,a) = l −
l∑

r=1

(
k∏

f=1

I{jr /∈Wf ({τr,...,τr+m−1})}

)
=

l∑
r=1

I{
jr∈

k⋃
f=1

Wf ({τr,...,τr+m−1})
}.
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That is the scheduler gets a payoff equal to the number of attackers caught. Using
the scheduler’s pure payoff we define the matrix form for the gameG3(k, l, Q, T,m)
as P3. The mixed payoff (in terms of the scheduler) is given by

P (s, c) = sP3c
T =

∑
W∈Wk

∑
a∈Al

sβ1(W )cβ2(a)Ps(W ,a)

=

|W|∑
i1=1

· · ·
|W|∑
ik=1

∑
j1∈N

T−m∑
t1=0

· · ·
∑
jl∈N

T−m∑
tl=0

ξ,

where ξ = si1,....,ikϕ(j1,t1),...,(jl,tl)Ps((W(i1), ...,W(ik)), ((j1, τ1), ..., (jl, τl))). So P (s, c)
is the expected number of attackers caught by a scheduler using s ∈ ζ against a
mastermind using c ∈ ς. We now define the value of the game as

V3(k, l, Q, T,m) = max
s∈ζ

min
c∈ς

P (s, c) = min
c∈ς

max
s∈ζ

P (s, c).

From the pure mastermind payoff we can see that each attacker being successful
is independent of the choice for all other attackers by the mastermind. That is

P (W ,a) =
l∑

r=1

P (W , ar) where

P (W , ar) =

(
k∏

f=1

I{jr /∈Wf ({τr,...,τr+m−1})}

)
.

This allows us to consider how each attacker should be distributed without having
to consider other attackers.

Lemma 6.3.17. For the game G3(k, l, Q, T,m) for any k ∈ N, for any l ∈ N, for
any graph Q, for any m ∈ N and for any T ≥ m we have

V3(k, l, Q, T,m) = lV3(k, 1, Q, T,m).

Proof. We start by obtaining a lower bound and then an upper bound for the
game by considering how individuals can act.

We know that P (W ,a) =
l∑

r=1

P (W , ar) and so

P (s, c) =
∑
W∈Wk

l∑
r=1

∑
(j,τ)∈A

sβ1(W )ϕr,j,τP (W , ar) =
l∑

r=1

P (s,φr),

where φr is the rth attackers individual distribution with a probability of playing
(j, τ) given by

ϕr,j,τ =
∑

a∈{((j1,τ1),...,(jl,τl))∈Al|jr=j,τr=τ}

ϕa.
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Therefore as choosing c ∈ ς is equivalent to choosing φr ∈ Φ for r = 1, ..., l we
have

V3(k, l, Q, T,m) = max
s∈ζ

min
c∈ς

Ps(s, c) = max
s∈ζ

min
φ1,...,φl∈Φ

l∑
r=1

P (s,φr)

= max
s∈ζ

l∑
r=1

min
φr∈Φ

P (s,φr) = lmax
s∈ζ

min
φ∈Φ

P (s,φ)

= lV3(k, 1, Q, T,m).

We note the equivalence of the games with one attacker and multiple patrollers,
that is G3(k, 1, Q, T,m) ≡ G1(k, 1, Q, T,m), and so

V3(k, 1, Q, T,m) = V1(k, 1, Q, T,m).

Therefore we can use the work done in section 6.3.1 to get results for the game
G3(k, 1, Q, T,m) and therefore by using lemma 6.3.17 get results on the game
G3(k, l, Q, T,m).

6.3.4 Collaborative attackers, who need one attacker to
succeed

In the patrolling game G4(k, l, Q, T,m) we have k patrollers who are controlled
by a scheduler and l attackers controlled by a mastermind. The scheduler and
mastermind have the same strategies as in the game G2(k, l, Q, T,m), however in
the game G4(k, l, Q, T,m) we model any attacker succeeding results in a win for
the mastermind. So for the scheduler choosing W ∈ Wk against the mastermind
choosing a ∈ Al in the game G4(k, l, Q, T,m) we define the pure mastermind
payoff as

Pm(W ,a) = 1−
l∏

r=1

k∏
f=1

I{jr∈Wf ({τr,...,τr+m−1})}

= I{∃r∈{1,...,l} s.t. jr /∈Wf ({τr,....,τr+m−1})∀f∈{1,...,k}}.

That is the mastermind wins if any attacker succeeds and in order to maintain
the zero-sum nature of the game we define the pure scheduler payoff as

Ps(W ,a) =
l∏

r=1

k∏
f=1

I{jr∈Wf ({τr,...,τr+m−1})}

= I{∃r∈{1,...,l} s.t. jr /∈Wf ({τr,....,τr+m−1})∀f∈{1,...,k}}.

That is the scheduler wins if they catch all attackers. Unlike all the other pa-
trolling games seen in this thesis we note that it is possible to get a mastermind
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strategy which can guarantee a win in G4(k, l, Q, T,m) for certain parameters as
well as it being possible to get a scheduler strategy which is a guaranteed win for
other parameters. We define the matrix form of the game G4(k, l, Q, T,m) as P4.
The game has a mixed payoff (in terms of the scheduler) is given by

P (s, c) = sP4c
T =

∑
W∈Wk

∑
a∈Al

sβ1(W )cβ2(a)Ps(W ,a)

=

|W|∑
i1=1

· · ·
|W|∑
ik=1

∑
j1∈N

T−m∑
t1=0

· · ·
∑
jl∈N

T−m∑
tl=0

ξ,

where ξ = si1,....,ikϕ(j1,t1),...,(jl,tl)Ps((W(i1), ...,W(ik)), ((j1, τ1), ..., (jl, τl))). So P (s, c)
is the probability that the scheduler wins the game, by catching all attackers, us-
ing s ∈ ζ against a mastermind using c ∈ ς. We now define the value of the game
as

V4(k, l, Q, T,m) = max
s∈ζ

min
c∈ς

P (s, c) = min
c∈ς

max
s∈ζ

P (s, c).

In the game G4(k, l, Q, T,m) as the scheduler must catch all attackers in order
to win we can get a result by relying on the independence of nodes at least m
apart. Consider a set of nodes L ⊂ N such that d(j, j′) ≥ m for all j, j′ ∈ L, then
a mastermind strategy can be formed by having each of the l attackers choose
nodes in L, such that they are always placed at distinct nodes if |L| ≥ l, for a
fixed commencement time. Intuitively the maximal cardinality of all such sets
should be used to form the mastermind strategy to give the l attackers the best
chance at using distinct nodes. The maximal cardinality of such a set is given by
LQ,T,m.

Definition 6.3.18. For a maximal cardinality independent set L (with |L| =
LQ,T,m) we define independence mastermind strategy cInd which chooses to play
the pure strategy a = ((j1, τ1), ..., (jl, τl)) ∈ Al with probability

ϕa =

{
1
|AI |

for a ∈ AI ,
0 otherwise.

In which

AI =


{a ∈ Ak | jr ∈ L, τr = 0 ∀r ∈ {1, ..., l},

jr 6= jr′ ∀r′ ∈ {1, ..., l} \ {r} ∀r ∈ {1, ..., l}}
if l ≤ LQ,T,m,

{a ∈ Ak | jr ∈ L, τr = 0∀r ∈ {1, ..., l},
jr 6= jr′ ∀r′ ∈ {1, ...,LQ,T,m} \ {r} ∀r ∈ {1, ...,LQ,T,m}}

if l > LQ,T,m.

That is AI is the set of pure mastermind strategies placing min(l,LQ,T,m) attackers
at distinct nodes in the independence set L and the remaining attacker able to
choose any node. In the independence mastermind strategy pure strategies in
the set AI are equally picked. The performance of the independence mastermind
strategy cInd gives an upper bound on the value of the game.
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Lemma 6.3.19. For the game G4(k, l, Q, T,m) for all k ∈ N, for all l ∈ N, for
all graphs Q, for all m ≥ 1 and for all T ≥ m we have

V4(k, l, Q, T,m) ≤


(k
l)

(IQ,T,m
l )

if l ≤ LQ,T,m,

I{k≥IQ,T,m} if l > LQ,T,m,

achieved by the independence mastermind strategy cInd. Moreover, if IQ,T,m ≥
l > k or if l > IQ,T,m > k then

V4(k, l, Q, T,m) = 0.

The proof of lemma 6.3.19 follows by evaluating the performance of the indepen-
dence mastermind strategy and then noting when the strategy guarantees a win
for the mastermind.

Proof. For any pure scheduler strategy W ∈ Wk and any pure mastermind strat-
egy a ∈ AI where L is the maximal independence set used we have that any
patroller who catches an attacker who chose (j, 0) ∈ L × {0} does not catch
any other attackers (j, 0) ∈ (L \ {j}) × {0} as d(j, j′) ≥ m for any j, j′ ∈ L.
Hence for any pure scheduler strategy W ∈ Wk against any pure mastermind
strategy a ∈ AI the most nodes j ∈ L which attackers can be caught at is k.
This can be achieved by choosing W ′ ∈ Wk such that Wi(t) = jq for all t ∈ J
for i = 1, ..., k, where jq ∈ L are such that jq 6= jq′ for all q ∈ {1, ...,LQ,T,m},
q′ ∈ {1, ...,LQ,T,m} \ {q}. Knowing that a scheduler can at most see attacks at
k distinct nodes we will need to get results in two cases, as if l > LQ,T,m then
not all attackers are at distinct nodes and if l ≤ LQ,T,m then all attackers are at
distinct nodes.

• If l > LQ,T,m then not all attackers are at distinct nodes and hence

P (W ′, cInd) =

{
1 if k ≥ LQ,T,m,
0 if k < LQ,T,m.

That is, for the case that k ≥ LQ,T,m we have that W ′ places a patroller
at each node in L and hence catches all attackers and in the case that
k < LQ,T,m there are not enough patrollers to do so and hence not all
attackers are caught.

• If l ≤ IQ,T,m then all attackers are at distinct nodes and hence

P (W ′, cInd) =


(k
l)

(IQ,T,m
l )

if k ≥ l,

0 if k < l.

That is, for the case that k ≥ l we have that W ′ has a(
k
l

)(IQ,T,m

l

)
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chance of placing its k patrollers at the same nodes randomly chosen for
the l attacker by the mastermind strategy cInd and in the case that k < l
there are not enough patrollers to catch all attackers.

Hence,

V4(k, l, Q, T,m) ≤ P (W ′, cInd) =


(k
l)

(IQ,T,m
l )

if l ≤ LQ,T,m,

I{k≥IQ,T,m} if l > LQ,T,m,

and along with the trivial lower bound of V4(k, l, Q, T,m) ≥ 0 we get that the
moreover result of the lemma.

From lemma 6.3.19 it is clear that we are not going to get some useful result which
decomposes the game with multiple attackers into games with a single attacker, as
the joint coordination of the attackers in the mastermind’s strategy can guarantee
a loss which is not possible with less attackers. This means, while the game
G4(k, 1, Q, T,m) ≡ G1(k, 1, Q, T,m), so V4(k, 1, Q, T,m) = V1(k, 1, Q, T,m) and
our work subsection 6.3.1 is able to get results for G4(k, 1, Q, T,m) we can not
use this to get results for G4(k, l, Q, T,m) for l > 1. In the patrolling game
G4(k, 1, Q, T,m) the amount of attackers the mastermind has at their disposal is
crucial to working out the performance of mastermind strategies.

6.4 Conclusion

In this chapter we have defined three extensions to the patrolling game: the
patrolling game with edge distances G(Q,D, T,m), the patrolling game with
node dependent attack lengths G(Q, T,m) and multiple player patrolling game
Gi(k, l, Q, T,m) for some i ∈ {1, 2, 3, 4}. For the multiple player patrolling game
we look at four variants depending on if the attackers where in collaboration and
if so the payoff given to their mastermind.

For the patrolling game with edge distances G(Q,D, T,m) we found that the
value is the same as the game G(Q,D′, T,m) if there is some optimal patroller
strategy which only uses edges such that the distance according to the mappings
D and D′ are the same. We also look at node-sublimation as a way to allow the
removal of nodes while retaining the distance between nodes, using such a graph-
ical operation we found that if an optimal attacker strategy did not use nodes
which undergo node-sublimation then the value of the game remained the same.
Using these results we were able to develop optimal strategies for the scenario of a
central hub with multiple cities at various distances, which is sublimated version
of the generalised star graph Skn defined in chapter 4, section 4.3. In general the
idea of node-sublimation makes developing strategies for the game much easier
at the cost of removing potential nodes to attack. Therefore when using node-
sublimation we must take in consideration what it is we are modelling in order
to decided if node-sublimation is a valid idea.
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For the patrolling game with node dependent attack lengths G(Q, T,m) we found
that varying some attack lengths mj does not affect the value of the game unless
the node j is a minimally performing node under the optimal strategy. In which
case the value only changes if all currently minimal performing nodes have their
attack lengths changed and moreover if the value is not changed then the optimal
patroller strategy remains optimal. As the value of the game is determined by the
performance at nodes we look at using the Patrol Improvement Program(PIP)
idea, as seen in chapter 3, section 3.4, to find improvements on patrolling strate-
gies. The PIP is then used to find an improvement which is optimal for games
on Hamiltonian graphs where mj is constant aside from at a set of nodes which
are instantaneous win nodes.

For the multiple player patrolling game we assume k patrollers are controlled by
a scheduler, but define four variants depending on how the l attackers act and
receive payoff. The first game variant G1(k, l, Q, T,m) models l selfish attack-
ers, for this variant we showed that the value of the game depends entirely on
G1(k, 1, Q, T,m) and that all l attackers use the same optimal strategy. Reducing
the game to G1(k, 1, Q, T,m) means we only have to consider how the scheduler
should act against one attacker, allowing us to get a variety of bounds on the game.
In particular, we find the value of the game G1(k, 1, Q, T,m) when Q ∈ H or
Q ∈ KPf for any f ≥ 2 and find a value for a range of attack lengths when Q = Ln
for some n ≥ 3. We leave to future work the value of games in which the classic
game does not omit optimal random full-node cycle strategies. The remaining
three game variants Gi(k, l, Q, T,m) for i = 2, 3, 4 models l collaborative attackers
controlled by a mastermind. In both G2(k, l, Q, T,m), which models all attackers
must succeed to win, and G3(k, l, Q, T,m), which models the want for the most
attackers to succeed we were able to reduce the value of the game to the value
of the game G2(k, 1, Q, T,m) and G3(k, 1, Q, T,m) respectively. Following this
reduction we then noted that by definition Gi(k, 1, Q, T,m) ≡ G1(k, 1, Q, T,m)
for i = 2, 3 so we rely on previous work in the section to find the values of such
games for certain parameters. For the final game variant G4(k, l, Q, T,m), which
models one attacker must succeed to win, we look at why it is not possible to get
a reduction to the game G4(k, 1, Q, T,m) as it is possible that there is a strategy
for the mastermind that guarantees a loss for the scheduler.



Chapter 7

Conclusion

7.1 Thesis summary

This thesis provided an in-depth look into ‘Allocating patrolling resources to
effectively thwart intelligent attackers’, by furthering techniques and strategies
for patrolling games. This allowed for various classes of patrolling games to be
solved before extending those ideas to allow for more realistic scenarios to be
modelled.

In chapter 2 the patrolling game G(Q, T,m) was introduced following the work
produced in [16] and [107]. Within this chapter the value of a game V (Q, T,m)
is defined along with a discussion of the performance of (mixed) patroller and
attacker strategies, π ∈ Π(Q, T,m) and φ ∈ Φ(Q, T,m) respectively. In particu-
lar, the performance of π gives a lower bound on the value and the performance
of φ gives an upper bound on the value. Though it is possible to solve a pa-
trolling game for particular a particular 3-tuple (Q, T,m), (graph Q, game length
T , attack length m) by the use of a linear program, this is not useful for solving
classes of patrolling games (patrolling games with certain general parameters).
Patrolling games are often solved by finding tight lower and upper bounds on
the value with the corresponding strategies being the optimal strategies. Within
the work discussed, specifically referring to the diametric attacker strategy φdi,
we find an issue with the performance of the strategy, with this issue cascading
into the solution for patrolling games when Q = Ln. However, we develop the
time-limited diametric attacker strategy φtdi, which has the suggested perfor-
mance and is able to replace φdi as the optimal attacker strategy for a class of
patrolling games when Q = Ln. Prior work was summarized by a list of attacker
and patroller strategies along with their respective bounds and for which classes
of patrolling games they were optimal.

The main work of this thesis is provided in chapter 3, which proposes, introduces
and describes new techniques and strategies which can be used in order to find
the value of patrolling games. The techniques developed aid the calculation of
strategy performances by reducing the computation required by removing pure
walks which cannot be the best response to an attacker strategy. These reductions
were accumulated in theorem 3.2.13. We saw that the notion of repeated node-
identification and node-splitting form simplification Q−k and expansion maps Q+l

respectively, and in particular that a patrolling strategy π′ ∈ Π(Q+l(Q), T,m)
can be embedded to make a patrolling strategy π ∈ Π(Q, T,m) and the lower
bound on the value provided by the performance of π. Importantly we saw that

252
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it is possible to perform an expansion to make any graph Q into a Hamiltonian
graph Q′ ∈ H and therefore embed the random Hamiltonian patroller strategy
πrH into any patrolling game. We defined a minimal full-node cycle WQ

MFNC as a
closed walk which visits every node with minimal length and use this to create the
random minimal full-node cycle patroller strategy πQRMFNC. The random minimal
full-node cycle strategy πQRMFNC is a crucially important patroller strategy as it
ensures that all nodes receive at least one visit within a constant time interval,
equal to the length of WQ

MFNC. Moreover πQRMFNC is optimal for many classes of
patrolling games and in particular is optimal when Q is an extended star graph,
which was seen in chapter 4. To further improve the performance of patrolling
strategies we developed the patrol improvement program(PIP) which can be used
to find the best hybrid patroller strategy given a finite set of patrolling strategies.
This chapter on general techniques and strategies was concluded by finding the
solution to G(Q, T,m) when Q ∈ KPk for some k ≥ 2. In particular we noted
that the solution to G(Q, T,m) when Q = (N,E) is a non-complete k-partite
graph is the same as the solution to G(Q′, T,m) where Q′ is the complete version
of graph Q (that is has all possible edges).

Chapter 4 applied the new techniques and strategies seen in chapter 3 to patrolling
games on three new graphs which all extend the star graph: elongated star graphs
Skn ∈ SE , generalised star graphs Skn ∈ SG and a graph made by connecting the
centre node of multiple star graphs. The graph Skn is important as it models the
scenario of a border with multiple rooms at one end of the border. Solving the
game G(Skn, T,m) for all graphical parameters n ≥ 3 and k ≥ 1 however required

the decomposition of the set of attack lengths into 6 regions, M
Sk
n

i for i = 0, ..., 5,

in which each have different optimal strategies. Aside from the regions M
Sk
n

0

and M
Sk
n

3 , solving G(Skn, T,m) required the creation of different bespoke attacker
strategies. In particular the time-centred attacker strategy φtc was created to

have a performance equal to that for the random minimal full-node cycle π
Sk
n

RMFNC.

For the regions M
Sk
n

i for i = 4, 5 we saw that π
Sk
n

RMFNC performed weakly at a
variety of nodes and improved the patroller strategy using PIP, which led to
a further decomposition of these regions. In particular for one of these regions,

namely M
Sk
n

5,1 , we found four attacker strategies which are optimal, or near optimal,
dependent on the parameter ρ. In general for lower attack lengths the creation
of bespoke attacker strategies requires some thought and heavily depend on the
attack length, this can be seen thoughout our work and in [107]. We then extended
the elongated star graph to the generalised star graph Skn ∈ SG which can be used
to model multiple borders of varying lengths with a single hub location or multiple
cities at varying distances from a given central hub. We provided solutions for
G(Skn , T,m) for attack lengths which did not require the creation of a multitude of
bespoke attacker strategies. However, in chapter 6 we saw that in the case when
the scenario you are trying to model is that of multiple cities at varying distances
from a central hub, we can solve such a scenario by modelling with distances on
edges rather than having intermediate nodes along the connection between the
hub and the cities.

In chapter 5 we focus on the patrolling game G(Q, T,m) when Q is a tree (or



CHAPTER 7. CONCLUSION 254

forest). For the game G(Q, T, 2) we proved that the covering patrolling strategy
πCov and the independent attacker strategy φInd are optimal. This was done by
an algorithm which generates a minimal covering set and maximal independent
set and ensures they have equal cardinality and hence the performance of πCov

and φInd are equal and hence V (Q, T, 2) = 1
CQ,T,2

= 1
IQ,T,2

. However as both

CQ,T,2 and IQ,T,2 are not found explicitly for every tree, the value of the game
is not explicit either and depends on the exact structure of the tree Q. While
this algorithm may not terminate when Q is a not a tree (due to at some point
having no leaf nodes), if it does terminate then we achieve the same result for the
value. In addition, we conjectured about the optimality of the random minimal
full-node cycle strategy πQRMFNC for the game G(Q, T,m) when Q = (N,E) is
a tree. In particular, in conjecture 5.3.2 we suggest that if m ≥ |N | − 1 then
πQRMFNC is optimal and so

V (Q, T,m) =
m

2(|N | − 1)
. (7.1)

We have seen empirical evidence throughout this thesis that conjecture 5.3.2 holds
for all currently studied patrolling games meeting the criteria. We also provided
an intuitive reasoning in the form of a ‘proof’ of conjecture 5.3.2 in which we
make the assumption that we can restrict the set of mixed patroller strategies
we must consider using. Following this, a computer algorithm was presented
which generates all trees for a given amount of nodes |N |. We then checked the
conjecture by solving multiple patrolling games, for all parameters, by the use of
a linear program. This was done exhaustively for all patrolling games such that
|N | ≤ 8 for which the conjecture held.

Unlike previous chapters chapter 6 does not attempt to solve the patrolling game
G(Q, T,m) for some set of parameters, but instead introduces three different
extensions to the patrolling game. These extensions are: patrolling games with
edge distances G(Q,D, T,m), which introduced a distance edge map D : E → N
assigning each edge a distance with pure patroller strategies now becoming walks
with a differing number of nodes visited; patrolling games with node-dependent
attack lengths G(Q, T,m), which changed the constant attack length m into m,
where mj is the attack length at node j ∈ N ; multi player patrolling games with
k patrollers controlled by a single scheduler and l attackers Gi(k, l, Q, T,m) for
i = 1, 2, 3, 4, where for i = 1 the attackers are uncoordinated and selfish and for
i = 2, 3, 4 the attackers are coordinated by a mastermind but each game has a
different payoff for the mastermind. Each extension was introduced, stating the
strategies and payoff for players before developing some techniques and strategies
and solving some games. In particular, we solve the game on the distant general
star graph G(S̃kn , Dn,k, T,m) which models the scenario of a central hub with
cities at varying distances from the hub. We also found that we are able to
reduce the problem of solving multi player patrolling games G2(k, l, Q, T,m) and
G3(k, l, Q, T,m) into solving G1(k, 1, Q, T,m). However, G4(k, l, Q, T,m) differs
as for certain parameters the game is a guaranteed attacker win, which is not
possible in any other patrolling game (as even one attacker succeeding in the
game means the mastermind wins). This results in the game G4(k, l, Q, T,m)
being more interesting to study and more importantly how intercepting patrol
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strategies are important as they guarantee that no attacker can succeed on a set
of nodes.

Overall, this thesis covers specific in-depth aspects of the patrolling gameG(Q, T,m),
beginning with describing the game and then proposing new techniques and
strategies, most notably πQRMFNC. These techniques and strategies were then
applied to a variety of patrolling games with different graphical structures. This
thesis also explored general solutions for the large class of graphical structures,
namely when Q is a tree. Furthermore, the patrolling game was extended to
increase the various scenarios it can model.

7.2 Future work

Future work leading from this thesis could use the ideas in chapter 4, section
4.3.4, to determine how the to create patroller and attacker strategies for the
game G(Skn , T,m), namely by identifying what full-node cycles are optimal when
2 < m < 2(kmax + 1). In doing so we continue to find out how best to patrol
multiple borders linked by a central hub location. In addition, work could consider

finding bespoke attacker strategies for the game G(Skn, T,m) when m ∈ M
Sk
n

5,1

and ρ ∈ {1, 3} in order to achieve optimal strategies rather than near optimal
strategies.

As mentioned in chapter 5, in our reasoning behind making conjecture 5.3.2 we
assume that it is possible to ignore all pure patroller strategies which do not
repeat closed walks for all of the time-horizon. Proving that such pure patroller
strategies are not optimal would then allow us to prove conjecture 5.3.2. This
would consequently have a large impact on the future study of patrolling games
on trees as we would then know the value when m ≥ |N |−1 and would only have
to consider games with m < |N | − 1.

Another avenue of future work is to consider how to convert our techniques and
strategies to be applicable in the periodic patrolling game Gp(Q, T,m). That is,
adapt our techniques and strategies to deal with an innate restriction ofW toWp

for which (W (0),W (T − 1)) ∈ E, meaning that the patroller is forced to choose
a base location and have a shift (of length T ) which starts and ends at the base.

The extension of the patrolling game to one with multiple patrollers and multiple
attackers, where only one attacker needs to succeed in order for the attackers to
win in G4(Q, T,m), presents an interesting avenue in considering how additional
patrollers should be utilised. In particular, how they can be used to ‘remove nodes’
from consideration for the other patrollers. Further to our current extensions
we could consider introducing a ‘toll’ to use to certain edges for the patrollers
or rewarding the attacker’s success dependent on the location they choose to
attack. While this thesis focuses on an intelligent attacker, models with random
attackers arriving at nodes according to a Poisson process have been introduced
in [94], which heuristically find ‘optimal’ strategies and value. The work done in
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[99] extended this patrolling problem to have distances and multiple patrollers
for which we could compare our results in chapter 6 to. In addition, it would
be interesting to study extensions in which the Poisson rate at nodes change
throughout the game and comparing them to results for the patrolling game. In
particular one could consider how successful attacks in such a model increase the
rate of future attacks introducing vulnerabilities in a similar fashion to the game
G(Q, T,m).

Tangential work would look at applying similar techniques and strategies seen
throughout this thesis to other related areas. Of particular interest would be the
applications of techniques to the hide and seek ([5]) game and rendezvous game
([93]) on graphs.
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Appendix A

Patrolling games

A.1 Proof of the complete k-partite patrolling

game value

For completeness we present the proof of theorem 3.5.7 which is analogous to the
proof of that for a tripartite graph (lemma 3.5.5 and 3.5.6) which was shown in
section 3.5

Proof. We begin by proving that Ka1,...,ak (with 1 ≤ a1 ≤ ... ≤ ak) is Hamiltonian

iff
k−1∑
i=1

ai ≥ ak. To show that
k−1∑
i=1

ai ≥ ak =⇒ Ka1,...,ak is Hamiltonian we use

Ore’s theorem. Ore’s theorem allows us to get the sufficient condition that for

all 1 ≤ j ≤ k that 2
∑
i 6=j

ai ≥
k∑
i=1

ai. All of these inequalities are satisfied either by

1 ≤ a1 ≤ ... ≤ ak (if j 6= k) or by the assumption of
k−1∑
i=1

ai ≥ ak.

Next we show that Ka1,...,ak being Hamiltonian =⇒
k−1∑
i=1

ai ≥ ak. As the graph is

Hamiltonian it must exhibit a Hamiltonian cycle of the form

{∗1, i1, ..., ∗ak , iak ,∼1,∼2, ...,∼r},

where ∗ and ∼ are listing of nodes in sets other than Ak and i ∈ Ak. As we know

the cycle is of length
k∑
i=1

ai and that no individual node is repeated, it is clear

that the number of nodes not in the set Ak is at least as many in Ak and hence
k−1∑
i=1

ai ≥ ak.

Now we’ve proven a necessary and sufficient condition for Ka1,...,ak to be Hamil-

tonian we can simply apply lemma 2.3.27 to get the result when
k−1∑
i=1

ai ≥ ak.

We now focus on the graph when it is not Hamiltonian, that is the case of
k−1∑
i=1

ai <

ak. In this case the patroller can use a random full-node cycle strategy on the

minimal full-node cycle. A repetition of ak −
k−1∑
i=1

ai is needed, giving a minimal

268



APPENDIX A. PATROLLING GAMES 269

full-node cycle of length 2ak and hence , by theorem 3.3.26 arrive at the lower
bound of bound

V (Ka1,...,ak , T,m) ≥ m

2ak
.

To find an equal upper bound we can use a 2-polygonal attack using the set Ak,
then by lemma 3.3.16 we get an upper bound of

V (Ka1,...,ak , T,m) ≤ m

2ak
.

Hence we get the result for the value of the complete tripartite graph for T ≥
m+ 1.

If m is even then we can reduce this condition to T ≥ m by considering a uniform
attacker strategy φu,Ak

which is such that the probability of choosing the pure
attack (j, τ) is

ϕj,τ =

{
1
ak

if j ∈ Ak, τ = 0,

0 otherwise.

It is clear that at most any pure patroller can only visit m
2

distinct nodes form
Ak in the time period {0, ...,m− 1} and hence

V (Ka1,...,ak , T,m) ≤ m

2ak
.

Therefore when m is even φu,Ak
is optimal for T ≥ m.

For the two furthermore parts of theorem we will first consider the addition of
an edge (j, j′) such that j, j′ ∈ Ai for some i ∈ {1, ..., k − 1}, as this does not
effect if the graph is Hamiltonian or not then we are left to only consider if it

changes for the case of
k−1∑
i=1

ai < ak. In this case the upper bounds generated by

lemma 3.3.16 and attacker strategy φu,Ak
still hold as there is still a distance of

2 between all nodes in Ak. Therefore along with equation (2.18) for adding edges
to a graph the lower bound still holds. Hence there is no affect on our value or
optimal strategies.

For the second furthermore part we consider the removal of an edge (j, j′) ∈ E
such that there is no change in the length of the minimal node cycle. Then if
the graph was Hamiltonian the graph is still Hamiltonian and so we are only left

to consider if it changes the case of
k−1∑
i=1

ai < ak. In this case the lower bound

generated using theorem 3.3.26 still holds. By considering adding the removed
edge back into the graph we get by equation (2.18) that the upper bound still
holds. Hence there is no affect on our value or optimal strategies.

A.2 Proof of polygonal bound

For completeness we present the proof of lemma 3.3.16.
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Proof. Let D = {v1, ..., v|D|}, then we divide the proof into two cases, case 1: if
d ≥ m and case 2: if d < m. Noting that the attack structure is node-symmetric
and non-increasing on NA = {v1, ..., v|D|} we can use corollary 3.2.17 and lemma
3.2.14 to reduce the problem of finding the performance of φtdi to

V•,φpoly
(Q, T,m) = V•,φpoly

(Q, d+m− 1,m) = max
ω∈Ω↑

P (ω,φpoly)

Case 1: In the case of d ≥ m we know that by lemma 3.2.16 that Ω↑ =
{ω1, ω2, ..., ω|D|} in which ωi = ((vi, d + m − 1)) for all i = 1, ..., |D|. As the
nodes in D are node-symmetric we can without loss of generality assume that
ω1 = ((v1, d+m− 1)) is the only walk to consider for the maximum. Therefore,
the performance of φpoly is

V•,φpoly
(Q, d+m− 1,m) = P (ω1,φpoly) =

d−1∑
t=0

1

|D|d
=

1

|D|
.

Hence V (Q, T,m) ≤ 1
|D| when d ≥ m.

Case 2: In the case of d < m we can again look at what elements are in Ω↑.
The sequence of nodes must be such j1 ∈ D and ji ∈ D \ {ji−1} for i ≥ 2 and
therefore Ω↑ = {ω(x) | x ∈ {0, ..., d+m−1}} where ω(x) is such that j1 ∈ D and
ji ∈ D \ {ji−1} for i ≥ 2 and νi(ω(x)) = xI{i=1} with the number of nodes visited
k =

⌊
2d+m−2−x

d

⌋
. Then the time of visits to nodes is given by

ti(ω(x)) =

{
0 if i = 1,

x+ (i− 1)d otherwise.

and

ni(ω(x)) =


0 if i = 1,

max(x+ d−m+ 1, 0) if i = 2,

max(x+ (i− 1)d−m+ 1, li(ω(x)) + 1, 0) otherwise,

in which li(ω) is the last visit time to node ji. Therefore the payoff for responding
to φpoly with ω(x) is

P (ω(x),φpoly) =

min(x,d−1)∑
t=0

1

|D|d
+

min(x+d,d−1)∑
t=max(x+d−m+1,0)

1

|D|d
(A.1)

+
k∑
i=3

min(x+(i−1)d,d−1)∑
t=ni(ω(x))

1

|D|d
. (A.2)

It is clear from equation (A.2) that the choice of the node sequence should be
such that the last time a node is visited is maximized, therefore as all nodes in D
are node-symmetric we can assume without loss of generality the node sequence



APPENDIX A. PATROLLING GAMES 271

is such that ji = vi mod |D|+1. Then equation (A.2) becomes

P (ω(x),φpoly) =

min(x,d−1)∑
t=0

1

|D|d
+

|D|∑
i=2

d−1∑
t=max(x+(i−1)d−m+1,0)

1

|D|d
(A.3)

+
d−1∑

t=max(x+|D|d−m+1,x+1,0)

1

|D|
. (A.4)

Thus to find the performance of φpoly we seek to maximize the payoff in equation
(A.4) by choosing x. It is clear from the equation that the choice of x∗ = d − 1
maximizes it and therefore the performance of φpoly is

V•,φpoly
(Q, d+m− 1,m) = P (ω(x∗),φpoly) (A.5)

=
d−1∑
t=0

1

|D|d
+

|D|∑
i=2

d−1∑
t=max(id−m,0)

1

|D|d
+ 0 (A.6)

=
d

|D|d
+

min(m− d, (|D| − 1)d)

|D|d
= min

(
m

|D|d
, 1

)
.

(A.7)

Hence V (Q, T,m) ≤ min
(

m
|D|d , 1

)
when d ≥ m.



Appendix B

Star graphs

B.1 Proof of the adjusted combinatorial bound

For completeness we present the proof of lemma 4.2.13.

Proof. First consider the case of m ∈ M
Sk
n

5,0 , with the adjusted combinatorial
hybrid strategy πAdjCombHyb. The PIP is,

maximize min
j∈N

2∑
i=0

Vπi,•,j(S
k
n, T,m)pi

s.t pi ∈ [0, 1], i = 0, 1, 2,
p0 + p1 + p2 = 1.

We can now simplify the objective function as we have either j ∈ L or j ∈ S (as
M = ∅) and we know for the two sets that for any choice of p1 and p2,

• for all j ∈ L,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,1(Skn, T,m)pi,

• for all j ∈ S,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,∗1(Skn, T,m)pi.

Moreover
2∑
i=0

Vπi,•,∗k(Skn, T,m)pi is equal for any k ∈ {1, ..., n− 1} and so we need

only consider the nodes 1 and ∗1 in the PIP. Hence the PIP, along with the
performances (in equations (4.15) and (4.17)) and reduction of p0 = 1− p1 − p2,
becomes

maximize min

(
m

2(n+ k)
(1− p1 − p2) + p1,

m

2(n+ k)
(1− p1 − p2) +

m

2(n− 1)
p2

)
s.t pi ∈ [0, 1], i = 1, 2,

p1 + p2 ≤ 1.

From the objective function of the PIP we know that it is maximized when p1 =
m

2(n−1)
p2 so we get the optimal solution that p1 = m

m+2(n−1)
and p2 = 2(n−1)

m+2(n−1)

272



APPENDIX B. STAR GRAPHS 273

as m
2(n+k)

≤ 1
2

when m ∈ MSk
n

5,0 . The optimal value gives the bound given in the
lemma.

Similarly in the case of m ∈ M
Sk
n

5,1 , we have a simplification of the objective
function of the PIP as for any choice of p1 and p2,

• for all j ∈ L,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,1(Skn, T,m)pi,

• for all j ∈M ,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi =

2∑
i=0

Vπi,•,m̂+2(Skn, T,m)pi = m
n+k

p0,

• for all j ∈ S,
2∑
i=0

Vπi,•,j(S
k
n, T,m)pi ≥

2∑
i=0

Vπi,•,∗1(Skn, T,m)pi.

Moreover
2∑
i=0

Vπi,•,∗k(Skn, T,m)pi is equal for any k ∈ {1, ..., n− 1} and so we need

only consider the nodes 1, m̂+2 and ∗1 in the PIP. Hence the PIP, along with the
performances (in equations (4.15) and (4.17)) and reduction of p0 = 1− p1 − p2,
becomes

maximize min

(
m

2(n+ k)
p0 + p1,

m

n+ k
p0,

m

2(n+ k)
p0 +

m

2(n− 1)
p2

)
s.t pi ∈ [0, 1], i = 1, 2,

p1 + p2 ≤ 1.

From the objective function of the PIP we know that it is maximized when p1 =
m

2(n−1)
p2, and (1− (1 + 2(n−1)

m
)p1) m

2(n+k)
+ p1 = (1− (1 + 2(n−1)

m
)p1) m

n+k
. Hence the

optimal solution has p1 = m
2(n+k)+m+2(n−1)

, p2 = 2(n−1)
2(n+k)+m+2(n−1)

and p0 = 2(n+k)
m+n+k

.
The optimal value gives the bound as given in the lemma.

B.2 Proof of reduced time-centred attacker bound

For completeness we present the proof of lemma 4.2.15.

Proof. We aim to calculate V•,φrtc(S
k
n, T,m), to use this performance as an upper

bound, and by lemma 3.2.14 we can restrict the game length for such a calculation,
as the lemma gives us that

V•,φrtc(S
k
n, T,m) = V•,φrtc(S

k
n, 2m− 1,m) = max

W∈W(Sk
n,2m−1,m)

P (W,φrtc),

so we only need to consider pure walks for 2m− 1 units of time.
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Furthermore by theorem 3.2.13 we have that

V•,φrtc(S
k
n, 2m− 1,m) = max

ω∈Ω′′′(Sk
n,2m−1,m)

P (ω,φrtc),

and so we need only consider move-wait walks ω ∈ Ω′′′(Skn, 2m− 1,m) such that

ω = ((j1, ν1), ..., (jq, νq)),

for some q ∈ N such that the following three conditions are met

• j1 ∈ NA, ji ∈ NA(ω, i− 1) for all i ∈ {2, ..., q}, where NA = {1} ∪ {∗l | l ∈
{1, ..., n− 1}},

• ν1 ∈ {m̂, m̂+ 1} if j1 ∈ {∗l | l ∈ {1, ..., n−1}}, ν1 ∈ {0, ....,m−1} if j1 = 1,
νi = 0 for all i ∈ {2, ..., q} and

• ν1 +
q−1∑
i=1

(d(ji, ji+1, NA) + νi+1) ≡ tq + νq = 2m− 2.

That is a move-wait walk such that nodes belong to those which have a non-zero
probability of catching the attacker at if travelled to, with no waiting aside from
at the initial node and that the arrival at the final node plus the final waiting
match the end of the time-horizon.

For any such walk ω ∈ Ω′′′(Skn, 2m− 1,m) the payoff is given by

P (ω,φrtc) =

q∑
i=1

∑
t

= ni(ω)ti(ω)+νiϕji,t

=

min(ν1,g(1))∑
t=f(1)

1

m+ 2(n− 1)
+

q∑
i=2

g(i)∑
t=n′i(ω)

1

m+ 2(n− 1)
,

where f(i) = I{ji 6=1}m̂, g(i) = I{ji=1}(m−1)+I{ji 6=1}(m̂+1), n′i(ω) = max(f(i), li(ω)+
1, ti(ω)−m+ 1). By ignoring the last time a node is visited we get the following
inequality

P (ω,φrtc) ≤
min(ν1,g(1))∑
t=f(1)

1

m+ 2(n− 1)
+

q∑
i=2

g(i)∑
t=n′′i (ω)

1

m+ 2(n− 1)
, (B.1)

where n′′i (ω) = max(f(i), ti(ω)−m+ 1).

For any i′ ∈ {2, ..., q} such that n′′i′(ω) = ti′(ω) − m + 1 we have for all i ∈
{i′+1, ..., q} that f(i) > n′′i (ω) as ti′+1(ω) = ti′(ω)+2+I{ji′=1 or ji′+1=1}k > g(i′+1).
Equation (B.1) therefore becomes

P (ω,φrtc) ≤
min(ν1 − f(1) + 1, g(1)− f(1) + 1)

m+ 2(n− 1)
+

i′−1∑
i=2

(g(i)− f(i) + 1)

m+ 2(n− 1)

+
max(g(i′)− (ti′(ω)−m+ 1) + 1, 0)

m+ 2(n− 1)
(B.2)
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Equation (B.2) is clearly maximized by having ν1 = g(1). In addition we know
that any i ∈ {2, ..., l′ − 1} must be such that ji 6= 1. Therefore equation (B.2)
becomes

P (ω,φrtc) ≤
g(1)− f(1) + 1 + 2(i′ − 2)

m+ 2(n− 1)

+
max(g(i′) +m− g(1)− 2(l′ − 1)− I{j1=1}k − I{jl′=k}, 0)

m+ 2(n− 1)

=
g(1)− f(1) + 1 + max(g(i′)− g(1) +m− 2− I{j1=1}k − I{jl′=k})

m+ 2(n− 1)
.

By considering if j1 and jl′ are node 1 we have

P (ω,φrtc) ≤
m

m+ 2(n− 1)
.

Therefore

V•,φrtc(S
k
n, 2m− 1,m) ≤ m

m+ 2(n− 1)
. (B.3)

The upper bound on the performance of φrtc, as in equation (B.3), gives

V (Skn, T,m) ≤ m

m+ 2(n− 1)
.

B.3 Proof of the bespoke attacker bounds

B.3.1 ρ=3

For completeness we present the proof of lemma 4.2.19.

Proof. We aim to calculate V•,φ3−stc(S
k
n, T,m), to use this performance as an upper

bound, and by lemma 3.2.14 we can restrict the game length for such a calculation,
as the lemma gives us that

V•,φ3−stc(S
k
n, T,m) = V•,φ3−stc(S

k
n, 2m,m) = max

W∈W(Sk
n,2m,m)

P (W,φ3−stc),

so we only need to consider pure walks for 2m units of time.

Furthermore by theorem 3.2.13 we have that

V•,φ3−stc(S
k
n, 2m,m) = max

ω∈Ω′′′(Sk
n,2m,m)

P (ω,φ3−stc),

and so we need only consider move-wait walks ω ∈ Ω′′′(Skn, 2m,m) such that

ω = ((j1, ν1), ..., (jq, νq)),

for some q ∈ N such that the following three conditions are met
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• j1 ∈ NA, ji ∈ NA(ω, i−1) for all i ∈ {2, ..., q}, where NA = {1}∪{m+1
2

+1}∪
N1∪N2 where N1 = {∗l | l ∈ {1, ..., n−1}} and N2 = {k+1, k−1, ...m+1

2
+2},

•

ν1 ∈


{0, 1, ...,m} if j1 = 1,

{m+1
2
− 1} if j1 = m+1

2
+ 1,

{m+1
2
− 1, m+1

2
} if j1 ∈ N1 ∪N2,

and νi = 0 for all i ∈ {2, ..., q} and

• ν1 +
q−1∑
i=1

(d(ji, ji+1, NA) + νi+1) ≡ tq + νq = 2m− 1.

We will define the beginning of the ‘single attacks’ as f(i) = (m+1
2
− 1)I{ji 6=1} and

the beginning of ‘addition attacks’ as

f ′(i) =


f(i) if ji ∈ N1 ∪N2,

f(i) + 1 if ji = 1,

T if ji = m+1
2

+ 1,

where T is chosen to indicate that no additional attacks take place at the node
m+1

2
+ 1. Similarly we define the end of ‘single attacks’ as

g(i) =


m+1

2
if ji ∈ N1 ∪N2,

m+1
2
− 1 if ji = m+1

2
+ 1,

m if ji = 1,

and the end of ‘additional attacks’ as

g′(i) =


g(i) if ji ∈ N1 ∪N2,

g(i)− 1 if ji = 1,

0 if ji = m+1
2

+ 1,

where 0 is chosen to indicate that no additional attacks take place at the node
m+1

2
+ 1.

Then for any such walk ω ∈ Ω′′′(Skn, 2m,m) the payoff is given by

P (ω,φ3−stc) =

q∑
i=1

ti(ω)+νi∑
t=ni(ω)

ϕji,t

=

q∑
i=1

min(ti+νi,g(i))∑
t=bi(ω)

1

d̂
+

min(ti+νi,g
′(i))∑

t=b′i(ω)

1

d̂


=

min(ν1,g(1))∑
t=f(1)

1

d̂
+

min(ν1,g′(1))∑
t=f ′(1)

1

d̂

 +

q∑
i=2

 g(i)∑
t=bi(ω)

1

d̂
+

g′(i)∑
t=b′i(ω)

1

d̂


≤

min(ν1,g(1))∑
t=f(1)

1

d̂
+

min(ν1,g′(1))∑
t=f ′(1)

1

d̂

+

q∑
i=2

 g(i)∑
t=ci(ω)

1

d̂
+

g′(i)∑
t=c′i(ω)

1

d̂


(B.4)
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where d̂ = 2(n+k) +m+ 2(n−1), bi(ω) = max(f(i), li(ω) + 1, ti(ω)−m+ 1) and
b′i(ω) = max(f ′(i), li(ω)+1, ti, ti(ω)−m+1) with ci(ω) = max(f(i), ti(ω)−m+1)
and c′i(ω) = max(f ′(i), ti(ω) −m + 1) giving the inequality by ignoring the last
visit time.

For any considered move wait walk ω, for the inequality in equation (B.4), if
ji′ ∈ N2 ∪ {m+1

2
+ 1} for some i′ ∈ {1, ..., q} then ω′ can be formed such that

ji 6= 1 for all i ∈ {i′ + 1, ..., q} with P (ω′,φ3−stc) ≥ P (ω,φ3−stc). Moreover these
ji for i ∈ {i′ + 1, ..., q} can be chosen such that they move towards the centre
c before visiting nodes in N1. In addition as visiting nodes in N1 and N2 are
equivalent we now need only consider three possible walks by considering the
starting positions.

For the first walk ω1 we consider starting at node 1. So for the purpose of
performance evaluation we have that

ji ∈


{1} if i = 1,

{m+1
2

+ 1} if i = 2,

N1 ∪N2 otherwise.

Note that we do not need to know the exact node sequence as all nodes bar node
1 and m+1

2
+ 1 have the same f(i),f ′(i),g(i) and g′(i). By equation (B.4) we have

P (ω1,φ3−stc) ≤
min(m+ 1, ν1 + 1) + min(m− 1, ν1)

d̂

+

I{ν1≤m−2} +
∞∑
x=0

2I{ν1≤m−(2+x)}

d̂

=
min(m+ 1, ν1 + 1) + min(m− 1, ν1)

d̂

+
I{ν1≤m−2} + 2I{ν1≤m−2}(m− 1− ν1)

d̂

=


2m

d̂
if ν1 = m,

2m−1

d̂
if ν1 = m− 1,

2m

d̂
if ν1 ≤ m− 2,

≤ 2m

d̂
.

For the second walk ω2 we consider starting at node m+1
2

+ 1. Note that in this
case ν1 = m+1

2
− 1 and that

ji ∈

{
{m+1

2
+ 1} if i = 1

N1 ∪N2 otherwise.

By equation (B.4) we have

P (ω2,φ3−stc) ≤
1 + 4 +

∞∑
x=0

2I{m≥(3+x)}

d̂
=

5 + 2I{m≥3}(m− 2)

d̂

=
2m+ 1

d̂
.
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For the third and final walk ω3 we consider starting at any node in N1 ∪N2 and
therefore ji ∈ N1∪N2 for all i ∈ {1, ..., q}, with a choice for ν1 of m+1

2
−1 or m+1

2
.

By equation (B.4) we have

P (ω3,φ3−stc) ≤
2 min(2, 2 + ν1 − m+1

2
) +

∞∑
x=0

2I{ν1≤m+1
2

+m−(3+x)}

d̂

=
2 min(2, 2 + ν1 − m+1

2
) + 2I{ν1≤m+1

2
+m−3}(

m+1
2

+m− 2− ν1)

d̂

=
2m

d̂
.

Therefore in any case we have that P (ω,φ3−stc) ≤ 2m+1

d̂
and so we have

V•,φ3−stc(S
k
n, 2m,m) ≤ 2m+ 1

d̂
=

2m+ 1

2(n+ k) +m+ 2(n− 1)
. (B.5)

The upper bound on the performance of φ3−stc, as in equation (B.5), gives

V (Skn, T,m) ≤ 2m+ 1

2(n+ k) +m+ 2(n− 1)
.

B.3.2 ρ=2

For completeness we present the proof of lemma 4.2.21.

Proof. We aim to calculate V•,φ2−stc(S
k
n, T,m), to use this performance as an upper

bound, and by lemma 3.2.14 we can restrict the game length for such a calculation,
as the lemma gives us that

V•,φ2−stc(S
k
n, T,m) = V•,φ2−stc(S

k
n, 2m− 3,m) = max

W∈W(Sk
n,2m−3,m)

P (W,φ2−stc),

so we only need to consider pure walks for 2m− 3 units of time.

Furthermore by theorem 3.2.13 we have that

V•,φ2−stc(S
k
n, 2m− 3,m) = max

ω∈Ω′′′(Sk
n,2m−3,m)

P (ω,φ2−stc),

and so we need only consider move-wait walks ω ∈ Ω′′′(Skn, 2m− 3,m) such that

ω = ((j1, ν1), ..., (jq, νq)),

for some q ∈ N such that the following three conditions are met
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• j1 ∈ NA, ji ∈ NA(ω, i−1) for all i ∈ {2, ..., q}, whereNA = {1}∪{m+4
2
}∪N1∪

N2 where N1 = {∗l | l ∈ {1, ..., n− 1}} and N2 = {k+ 1, k− 1, ..., m+4
2

+ 1},

•

ν1 ∈


{0, 1, ...,m− 2} if j1 = 1,

{m−2
2
} if j1 = m+4

2
,

{m−4
2
, m−2

2
, m

2
} if j1 ∈ N1 ∪N2,

and νi = 0 for all i ∈ {2, ..., q} and

• ν1 +
q−1∑
i=1

(d(ji, ji+1, NA) + νi+1) ≡ tq + νq = 2m− 4.

Then for any such walk ω ∈ Ω′′′(Skn, 2m− 3,m) the payoff is given by

P (ω,φ1−stc) =

q∑
i=1

ti(ω)+νi∑
t=ni(ω)

ϕji,t =

q∑
i=1

S(i), (B.6)

where the function S(i) is given by for i = 2

S(1) =


min(ν1,m−2)∑

t=0

2I{t=0 mod 2}

d̂
if j1 = 1,

1 if j1 = m+4
2
,

1 + I{ν1=m
2
} if j1 ∈ N1 ∪N2,

and for i ≥ 2

S(i) =


m−2∑

t=max(0,li(ω)+1,ti(ω)−m+1)

2I{t=0 mod 2}

d̂
if ji = 1,

I{max(li(ω)+1,ti(ω)−m+1)≤m−2
2
} if ji = m+4

2
,

I{max(li(ω)+1,ti(ω)−m+1)≤m
2
} + I{max(li(ω)+1,ti(ω)−m+1)≤m−4

2
} if ji ∈ N1 ∪N2,

where the denominator d̂ = n+ k + m
2

+ n− 1.

For any considered move wait walk ω, for the inequality in equation (B.6), if
ji′ 6= 1 for some i′ ∈ {1, ..., q} then ω′ can be formed such that ji 6= 1 for
all i ∈ {i′ + 1, ..., q} with P (ω′,φ2−stc) ≥ P (ω,φ2−stc). Moreover these ji for
i ∈ {i′ + 1, ..., q} can be chosen such that they move towards the centre c before
visiting nodes in N1. In addition as visiting nodes in N1 and N2 are equivalent we
now need only consider three possible walks by considering the starting positions.

For the first walk ω1 we consider starting at node 1. So for the purpose of
performance evaluation we have that

ji ∈


{1} if i = 1,

{m+4
2
} if i = 2,

N1 ∪N2 otherwise.
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Note that we do not need to know the exact node sequence as all nodes bar nodes
1,m+4

2
, as S(i) is the same function for all i ≥ 2 when ji ∈ N1 ∪N2. By equation

(B.6) we have

P (ω1,φ1−stc) ≤
min(2(

⌊
ν1

2

⌋
+ 1),m) +

∞∑
x=0

2I{ν1≤m−(3+2x)}

d̂

=
min(2(

⌊
ν1

2

⌋
+ 1),m) + 2I{ν1≤m−3}(

⌊
m−3−ν1

2

⌋
+ 1)

d̂

=
m

d̂
.

For the second walk ω2 we consider starting at node m+4
2

and so ν1 = m−2
2

and

ji ∈

{
{m+4

2
} if i = 1,

N1 ∪N2 otherwise.

By equation (B.6) we have

P (ω2,φ1−stc) ≤
1 + 1 +

∞∑
x=0

2I{m≥(3+2x)}

d̂
=

2 + 2I{m≥3}(
⌊
m−3

2

⌋
+ 1)

d̂

=
2 + 2(m−4

2
+ 1)

d̂
=
m

d̂
.

For the third and final walk ω3 we consider starting at any node in N1 ∪N2 and
therefore ji ∈ N1 ∪ N2 for all i ∈ {1, ..., q}, with a choice for ν1 of m−4

2
, m−2

2
, m

2
.

By equation (B.6) we have

P (ω3,φ2−stc) ≤
min

(⌊
ν1−m−4

2

2

⌋
+ 1, 2

)
+ 1 +

∞∑
x=0

2I{ν1≤ 3m
2
−(5+2x)}

d̂

=
min

(⌊
ν1−m−4

2

2

⌋
+ 1, 2

)
+ 1 + 2I{ν1≤ 3m

2
−5}(

⌊
3m
2
−5−ν1

2

⌋
+ 1)

d̂

=


m

d̂
if ν1 = m−4

2
,

m

d̂
if ν1 = m−2

2
,

m−1

d̂
if ν1 = m

2
,

≤ m

d̂
.

Therefore in any case we have that P (ω,φ2−stc) ≤ m

d̂
and so we have

V•,φ2−stc(S
k
n, 2m,m) ≤ m

d̂
=

2m

2(n+ k) +m+ 2(n− 1)
. (B.7)

The upper bound on the performance of φ2−stc, as in equation (B.7), gives

V (Skn, T,m) ≤ 2m

2(n+ k) +m+ 2(n− 1)
.
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B.3.3 ρ=1

For completeness we present the proof of lemma 4.2.23.

Proof. We aim to calculate V•,φ1−stc(S
k
n, T,m), to use this performance as an upper

bound, and by lemma 3.2.14 we can restrict the game length for such a calculation,
as the lemma gives us that

V•,φ1−stc(S
k
n, T,m) = V•,φ1−stc(S

k
n, 2m,m) = max

W∈W(Sk
n,2m,m)

P (W,φ1−stc),

so we only need to consider pure walks for 2m units of time.

Furthermore by theorem 3.2.13 we have that

V•,φ1−stc(S
k
n, 2m,m) = max

ω∈Ω′′′(Sk
n,2m,m)

P (ω,φ1−stc),

and so we need only consider move-wait walks ω ∈ Ω′′′(Skn, 2m,m) such that

ω = ((j1, ν1), ..., (jq, νq)),

for some q ∈ N such that the following three conditions are met

• j1 ∈ NA, ji ∈ NA(ω, i−1) for all i ∈ {2, ..., q}, whereNA = {1}∪{m+3
2
, m+3

2
+

1} ∪ N1 ∪ N2 where N1 = {∗l | l ∈ {1, ..., n − 1}} and N2 = {k + 1, k −
1, ...m+3

2
+ 2},

•

ν1 ∈


{0, 1, ...,m} if j1 = 1,

{m−1
2
, m−1

2
+ 1} if j1 = m+3

2
,

{m−1
2
} if j1 = m+3

2
+ 1,

{m−1
2
, m−1

2
+ 1} if j1 ∈ N1 ∪N2,

and νi = 0 for all i ∈ {2, ..., q} and

• ν1 +
q−1∑
i=1

(d(ji, ji+1, NA) + νi+1) ≡ tq + νq = 2m− 1.

We will define the beginning of the ‘single attacks’ as f(i) = (m−1
2

)I{ji 6=1} and the
beginning of ‘addition attacks’ as

f ′(i) =


f(i) if ji ∈ N1 ∪N2,

f(i) + 1 if ji = 1,

T if ji ∈ {m+3
2
, m+3

2
+ 1},

where T is chosen to indicate that no additional attacks take place. Similarly we
define the end of ‘single attacks’ as

g(i) =


m−1

2
+ 1 if ji ∈ N1 ∪N2,

m−1
2

if ji = m+1
2

+ 1,

m if ji = 1,
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and the end of ‘additional attacks’ as

g′(i) =


g(i) if ji ∈ N1 ∪N2,

g(i)− 1 if ji = 1,

0 if ji ∈ {m+3
2
, m+3

2
+ 1},

where 0 is chosen to indicate that no additional attacks take place.

Then for any such walk ω ∈ Ω′′′(Skn, 2m,m) the payoff is given by

P (ω,φ1−stc) =

q∑
i=1

ti(ω)+νi∑
t=ni(ω)

ϕji,t

=

q∑
i=1

min(ti+νi,g(i))∑
t=bi(ω)

1

d̂
+

min(ti+νi,g
′(i))∑

t=b′i(ω)

1

d̂


=

min(ν1,g(1))∑
t=f(1)

1

d̂
+

min(ν1,g′(1))∑
t=f ′(1)

1

d̂

 +

q∑
i=2

 g(i)∑
t=bi(ω)

1

d̂
+

g′(i)∑
t=b′i(ω)

1

d̂


≤

min(ν1,g(1))∑
t=f(1)

1

d̂
+

min(ν1,g′(1))∑
t=f ′(1)

1

d̂

+

q∑
i=2

 g(i)∑
t=ci(ω)

1

d̂
+

g′(i)∑
t=c′i(ω)

1

d̂


(B.8)

where d̂ = 2(n+k) +m+ 2(n−1), bi(ω) = max(f(i), li(ω) + 1, ti(ω)−m+ 1) and
b′i(ω) = max(f ′(i), li(ω)+1, ti, ti(ω)−m+1) with ci(ω) = max(f(i), ti(ω)−m+1)
and c′i(ω) = max(f ′(i), ti(ω) −m + 1) giving the inequality by ignoring the last
visit time.

For any considered move wait walk ω, for the inequality in equation (B.8), if
ji′ 6= 1 for some i′ ∈ {1, ..., q} then ω′ can be formed such that ji 6= 1 for
all i ∈ {i′ + 1, ..., q} with P (ω′,φ1−stc) ≥ P (ω,φ1−stc). Moreover these ji for
i ∈ {i′ + 1, ..., q} can be chosen such that they move towards the centre c before
visiting nodes in N1. In addition as visiting nodes in N1 and N2 are equivalent we
now need only consider four possible walks by considering the starting positions.

For the first walk ω1 we consider starting at node 1. So for the purpose of
performance evaluation we have that

ji ∈


{1} if i = 1,

{m+3
2
} if i = 2,

{m+3
2

+ 1} if i = 3,

N1 ∪N2 otherwise.

Note that we do not need to know the exact node sequence as all nodes bar nodes
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1,m+3
2

,m+3
2

+ 1 have the same f(i),f ′(i),g(i) and g′(i). By equation (B.8) we have

P (ω1,φ1−stc) ≤
min(m+ 1, ν1 + 1) + min(m− 1, ν1)

d̂

+

I{ν1≤m−1} + I{ν1≤m−2} + 3I{ν1≤m−3} +
∞∑
x=0

2I{ν1≤m−(4+x)}

d̂

=
min(m+ 1, ν1 + 1) + min(m− 1, ν1)

d̂

+
I{ν1≤m−1} + I{ν1≤m−2} + 3I{ν1≤m−3} + 2I{ν1≤m−4}(m− 3− ν1)

d̂

=


2m

d̂
if ν1 ∈ {m,m− 1}

2m−1

d̂
if ν1 = m− 2,

2m

d̂
if ν1 ≤ m− 3

≤ 2m

d̂
.

For the second walk ω2 we consider starting at node m+3
2

. Note that in this case
ν1 ∈ {m−1

2
, m−1

2
+ 1} and that

ji ∈


{m+3

2
} if i = 1,

{m+3
2

+ 1} if i = 2,

N1 ∪N2 otherwise.

By equation (B.8) we have

P (ω2,φ1−stc) ≤
min(2, ν1 + 1− m−1

2
) + 1 +

∞∑
x=0

2I{ν1≤m−1
2

+m−(2+x)}

d̂

=
min(2, ν1 + 1− m−1

2
) + 1 + 2I{ν1≤m−1

2
+m−2}(

m−1
2

+m− 1− ν1)

d̂

=
2m

d̂
.

For the third walk ω3 we consider starting at node m+3
2

+ 1.Note that in this case
ν1 = m−1

2
and that

ji ∈

{
{m+3

2
+ 1} if i = 1,

N1 ∪N2 otherwise.

By equation (B.8) we have

P (ω3,φ1−stc) ≤
1 + 4 +

∞∑
x=0

2I{m≥(3+x)}

d̂

=
5 + 2I{m≥3}(m− 2)

d̂
=

2m+ 1

d̂
.
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For the fourth and final walk ω4 we consider starting at any node in N1 ∪N2 and
therefore ji ∈ N1∪N2 for all i ∈ {1, ..., q}, with a choice for ν4 of m−1

2
or m−1

2
+ 1.

By equation (B.8) we have

P (ω4,φ1−stc) ≤
2 min(2, ν1 + 1− m−1

2
) +

∞∑
x=0

2I{ν1≤m−1
2

+m−(2+x)}

d̂

=
2 min(2, ν1 + 1− m−1

2
) + 2I{ν1≤m−1

2
+m−2}(

m−1
2

+m− 1− ν1)

d̂

=
2m

d̂
.

Therefore in any case we have that P (ω,φ1−stc) ≤ 2m+1

d̂
and so we have

V•,φ1−stc(S
k
n, 2m,m) ≤ 2m+ 1

d̂
=

2m+ 1

2(n+ k) +m+ 2(n− 1)
. (B.9)

The upper bound on the performance of φ3−stc, as in equation (B.9), gives

V (Skn, T,m) ≤ 2m+ 1

2(n+ k) +m+ 2(n− 1)
.

B.4 Proof of time-spread attacker strategy

For completeness we present the proof of lemma 4.4.3.

Proof. We aim to calculate V•,φts(Sn1,n2 , T,m), to use this performance as an
upper bound, and by lemma 3.2.14 we can restrict the game length for such a
calculation, as the lemma gives us that

V•,φts(Sn1,n2 , T,m) = V•,φts(Sn1,n2 , 2n1 +m+ 1,m) = max
W∈W(Sn1,n2 ,2n1+m+1,m)

P (W,φts).

Furthermore by theorem 3.2.13 we have that

V•,φts(Sn1,n2 , 2n1 +m+ 1,m) = max
ω∈Ω′′′(Sn1,n2 ,2n1+m+1,m)

P (ω,φts),

and so we need only consider move-wait walks ω ∈ Ω′′′(Sn1,n2 , 2n1 + m + 1,m)
such that

ω = ((j1, ν1), ..., (jq, νq)),

for some q ∈ N where the following three conditions are met
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• j1 ∈ NA, ji ∈ NA(ω, i − 1) for all i ∈ {2, ..., q} where the set of attacked
nodes NA = N1 ∪N2 in which N1 = {∗r,1 | r ∈ {1, ..., n1}} and N2 = {∗r,2 |
r ∈ {1, ..., n2}},

• νi ∈ {f(i), ..., ti(ω) − (2n2 + 1 − f(i))} for all i ∈ {1, ..., q} where f(i) =
I{ji∈N1},

• ν1 +
q−1∑
i=1

(d(ji, ji+1) + νi+1, NA) ≡ tq + νq = 2n1 +m.

The payoff for ω against φts is given by

P (ω,φts) =

q∑
i=1

ti(ω)+νi∑
t=ni(ω)

ϕji,t

=

q∑
i=1

min(2n2+1−f(i),ti(ω)+νi)∑
t=n′i(ω)

1

d̂
, (B.10)

where ni(ω) = max(0, li(ω)+1, ti(ω)−m+1), n′i = max(f(i), li(ω)+1, ti(ω)−m+1)
and d̂ = 2n2(n1 + n2 + 1).

Consider ω1 such that j1 ∈ N1 then we can replace this initial node with j1 ∈ N2

to create ω2 and we have P (ω2,φts) ≥ P (ω1,φts).

Therefore we can consider only ω such that j1 ∈ N2, now let us assume without
loss of generality that nodes in either set, N1 or N2, are visited in ascending index
order, then j1 = ∗1,2. Furthermore for any ω such that ji ∈ N1 for any 2 ≤ i ≤ n2

we can form ω′ by replacing these ji with nodes in N2 which does not lower the
payoff as P (ω′,φts) ≥ P (ω,φts). Thus we need only ω such that ji = ∗i,2 for
1 ≤ i ≤ n2.

Now given ω such that ji ∈ N2 for n2 + 1 ≤ i ≤ n1 +n2 we can replace these with
ji ∈ N1 creating ω′ which does not lower the payoff as P (ω′,φts) ≥ P (ω,φts).
Then given that we need only consider ω such that ji = ∗i,2 for 1 ≤ i ≤ n2 and
ji = ∗i−n2,1 for n2+1 ≤ i ≤ n1+n2 we know the only nodes left in NA(ω, n1+n2) =
N2 and so these are returned to in ascending order.

Therefore we only need to consider ω such that

ji =


∗i,2 for 1 ≤ n2,

∗i−n2,1 for n2 + 1 ≤ n1 + n2,

∗i−(n1+n2),2 for n1 + n2 + 1 ≤ n1 + 2n2,

and νi ∈ {0, ..., 2n2 + 1 −
i−1∑
i′=1

(2 + νi′)} for 1 ≤ i ≤ n2 and νi = 0 for i ≥ n2 + 1.
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With such restrictions we get that equation (B.10) becomes

P (ω,φts) =
min(ν1 + 1, 2n1 + 1)

d̂
+

n2∑
i=2

min(B1(i)− C1(i) + 1, 0)

d̂

+

n1+n2∑
i=n2+1

min(2n1 + 1− C2(i), 0)

d̂
+

n1+2n2∑
i=n1+n2+1

min(2n2 + 2− C3(i))

d̂
,

(B.11)

where B1(i) = min(2n2 + 1, 2(i− 1) +
i∑

i′=1

νi′), C1(i) = max(0, 2(i− 1)−m+ 1 +

i−1∑
i′=1

νi′), C2(i) = C1(i) + 1 and C3(i) = max(2(i − n1 − n2 − 1) + νi−n1−n2 + 1 +

i−n1−n2−1∑
i′=1

νi′ , 2i−m+ 1 +
i−1∑
i′=1

νi′).

From equation (B.11), with the limitations on the waiting times, we can see that
we need only consider ν1 6= 0 and νi = 0 for all i 6= 1. Further to this we see that
ν1 = 0 then maximizes the equation. Thus for m = n2 + x for some x ∈ N when
x is even we have

P (ω,φts) =

n2∑
i=1

(2i− 1)

d̂
+

x
2
× 2n2 +

n2∑
i=1

2(n2 − i)

d̂

=
n2(n2 + 1)

d̂
+
xn2 + n2(n2 − 1)

d̂
=
n2(n2 + x)

d̂
,

and when x is odd we have

P (ω,φts) =

n2∑
i=1

(2i− 1)

d̂
+

x−1
2
× 2n2 +

n2∑
i=1

(2(n2 − i) + 1)

d̂

=
n2(n2 + 1)

d̂
+

(x− 1)n2 + n2
2

d̂
=
n2(n2 + x)

d̂
.

So we have

P (ω,φts) =
mn2

d̂
=

m

2(n1 + n2 + 1)
.

Therefore

V•,φts(Sn1,n2 , 2n1 +m+ 1,m) =
m

2(n1 + n2 + 1)
. (B.12)

The performance of φts, as in equation (B.12), gives the upper bound on the value
of the game

V (Sn1,n2 , T,m) ≤ m

2(n1 + n2 + 1)
.



Appendix C

Extensions

C.1 Proof of changing distances on superfluous

edges

For completeness we present the proof of lemma 6.1.4 which uses the same idea
as that of the proof for lemma 6.1.3.

Proof. As π∗ does not use any edge e ∈ F and as D(e) = D′(e) for all e ∈
E \ F we have that π∗ ∈ Π(Q,D′, T,m) and hence by using π∗ in the game
G = (Q,D′, T,m) we have

V (Q,D′, T,m) ≥ Vπ∗,•(Q,D
′, T,m) = max

a∈A(Q,D′,T,m)
P (π∗, a)

= max
a∈A(Q,D,T,m)

P (π∗, a) = V (Q,D, T,m).

(C.1)

By using lemma 6.1.1 to compare the gameG(Q,D′, T,m) to the gameG(Q,D, T,m)
we get

V (Q,D′, T,m) ≤ V (Q,D, T,m). (C.2)

The lower bound in equation (C.1) and the upper bound in equation (C.2) are
equal and thus V (Q,D′, T,m) = V (Q,D, T,m).

C.2 Proof of random spread Hamiltonian cycle

We present an alternative proof for theorem 6.3.6. We do so by proving the lower
bound for the patroller using the random spread Hamiltonian strategy in a similar
fashion to the original way the random Hamiltonian was proved in [16]. For ease
of notation we can relabel the nodes of Q = (N,E) ∈ H to be N = {1, ..., n} such
that H(t) = t+ 1 for all t ∈ {0, ..., n− 1}. We therefore prove,

V (k, 1, Q, T,m) ≥ min

(
1,
km

n

)

287
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Proof. For any pure attack (j, τ) which has the attack interval I = {τ, ..., τ +m−
1}, each pure scheduler strategy W , played with non-zero probability in srsH , is
such that for each patroller r ∈ {1, ..., k} their implemented walk Wr is such that

k⋃
r=1

Wr(I) = {j mod n | j = i, ..., i+ km},

for some i ∈ {0, ..., n− 1} as each subsequent patroller is placed m ahead of the
previous. Hence if km ≥ n there are no missing nodes for any i and hence we get
a value of 1.

Thus for each starting position of patroller 1 (i = 1, ..., n), the number nodes in⋃k
r=1 Wr(I) form an km-arc. Hence as the starting position of patroller 1 is chosen

with equal probability from all nodes, the chance of any attack being caught is,

km

n
.

Hence we obtain the lower bound required for tightness with lemma 6.3.3.
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