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Abstract

We study the groups with presentation

(l,m|n, k|p, q) := 〈a, b|al, bm, (ab)n, (apbq)k〉,

in an attempt to characterise which parameter-sets give rise to a finite

group, using a combination of geometric and computational methods, along

with more elementary presentation manipulation techniques. We achieve a

full characterisation for the case l = 2p,m = 2q, and a characterisation with

a few families of exceptions under the simplifying assumption 1
n

+ 1
k
≤ 1

2
.
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1 Introduction

The presentations

(l,m|n, k) := 〈a, b|al, bm, (ab)n, (ab−1)k〉,

first introduced by Coxeter [1], have been the subject of substantial study

since their introduction, specifically pursuing the question of which val-

ues of (l,m, n, k) give rise to infinite groups. The answer to this question

was completed by Edjvet and Thomas [6] in 1997. Some generalisations of

these presentations have occurred, including Holt and Plesken [9] examining

finiteness in a subfamily of the presentations 〈a, b|al, bm, (ab)n, (ab2)k〉. Den-

nis [2] extends this question to the presentations 〈a, b|al, bm, (ab)n, (abq)k〉.

We approach a family of presentations extending these in turn, defining

the presentation

(l,m|n, k|p, q) := 〈a, b|al, bm, (ab)n, (apbq)k〉.

We shall generally restrict our attention to parameter-sets on which the

simplifying assumption 1
n

+ 1
k
≤ 1

2
holds, giving a full account of which

parameter-sets lead to infinite groups under this condition, with the ex-

ception of four three-parameter subfamilies. We are also able to abandon

our simplifying assumption and give a full characterisation for the groups

(2p, 2q|n, k|p, q), where p and q are greater than 1.

We note some symmetries of these presentations, and the simplifications

that they allow. (l,m|n, k|p, q) ∼= (m, l|n, k|q, p), allowing us to choose, in

cases where one of p or q is one, p = 1 without loss of generality. We can also

manipulate the value of p (and, by the previous symmetry, q), noting that

(l,m|n, k|p, q) ∼= (l,m|n, k|−p,−q), and (l,m|n, k|p, q) ∼= (l,m|n, k|p±l, q),

so that we can always choose p and q in the range 0 ≤ p ≤ l − 1,0 ≤

q ≤ m − 1. We exclude the cases p = 0 or q = 0, as they are trivially
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triangle groups, and note that the case (p, q) = (p,m−1) can be reduced to

(p, q) = (l−p, 1), and (p, q) = (1,m−1) can be reduced to (p, q) = (1,−1),

giving (l,m|n, k|p, q) = (l,m|n, k), for which finiteness is characterised.

Expressing (l,m|n, k|p, q) in compliance with the above simplifications,

our main results, as follow, along with the already known characterisation

of the groups (l,m|n, k), cover all (l,m|n, k|p, q) with 1
n

+ 1
k
≤ 1

2
, apart from

the four families explicitly excluded:

Main Theorem A: LetG be the group with presentation (l,m|n, k|p, q),

with 1 < p < l − 1, 1 < q < m− 1 and 1
n

+ 1
k
≤ 1

2
. Then G is infinite.

Main Theorem B: LetG be the group with presentation (l,m|n, k|1, q),

with, 1 < q < m− 1 and 1
n

+ 1
k
≤ 1

2
. Then if (l,m|n, k|1, q) is none of

� (3,m|3, k|1, q) : k ≥ 6, q 6= 2,

� (3,m|n, 5|1, q) : n ≥ 4, q 6= 2,

� (3,m|n, 4|1, q) : n ≥ 4, q 6= 2,

� (3,m|n, 3|1, q) : n ≥ 6 q 6= 2,

G is finite if and only if it is one of:

� (1,m|n, k|p, q)

� (2,m|n, k|1, 1) : 1
m

+ 1
gcd(n,k)

> 1
2
,

� (2,m|3, k|1, 2) : m ≥ 4, k ≥ 6, gcd(m, k) ≤ 5,

� (2, 2m̂+ 1|n, 3|1, m̂) : m̂ ≥ 2, k ≥ 6, gcd(m, k) ≤ 5,

� (2, 4|4, k|1, 2) : k ≥ 4,

� (2, 4|5, k|1, 2) : 4 ≤ k ≤ 5,
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� (2, 4|n, 3|1, 2) : 6 ≤ n ≤ 9,

� (2, 5|4, 4|1, 2) : k ≥ 4,

� (2, 5|4, 5|1, 2),

� (2, 5|5, 4|1, 2),

� (2, 6|3, k|1, 3) : k ≥ 6,

� (2, 6|7, 3|1, 2),

� (2, 7|n, 3|1, 2) : 6 ≤ n ≤ 8,

� (2, 7|3, k|1, 3) : 6 ≤ k ≤ 8,

� (2, 8|7, 3|1, 2).

Main Theorem A shall be proven in Section 3, along with the complete

characterisation of finiteness in the l = 2p,m = 2q case without the aid

of our simplifying assumption. Section 4, based on a paper jointly written

with Martin Edjvet, shall prove Main Theorem B, subject to the restriction

l = 2, while Section 5 covers the l > 2 case. Section 2 gives an overview

of the methodology used in Sections 3 and 4, and sets up notation and

convention for the remainder of the thesis.

As an attribution, we note that the topological model used in Proposi-

tion 4.15, and the related models used in other sections, are a simplification

of our original model, proposed by a referee to the paper that Section 4 is

based upon.
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2 Methods

Our approach shall largely be via the notion of pictures, graph-like objects

similar to van-Kampen Diagrams that represent classes of maps from a

disk or a sphere to a space related to the presentation complex of the

presentation P in question. An analysis of these structures allows us to

calculate the orders of certain elements of the group G that P represents,

fairly directly, and to calculate the rational Euler characteristic of G, a

quantity that must be equal to 1
|G| if G is finite, in terms of the rational

Euler characteristics of the factors of an amalgamated product expression

of G. We shall first introduce pictures, along with certain properties that

they may possess and operations that may be performed upon them, and

then give a brief account of some results that will be of use to us.

2.1 Pictures

In order to define pictures over a presentation P = 〈a, b|al, bm, (ab)n, (apbq)k〉,

we must express P as a quotient of a free product of cyclic groups (the same

construction can be applied to quotients of more general free products, see

for example [5], but for our purposes cyclic groups are the appropriate av-

enue), specifically, we view P as the quotient of the free product A ∗ B,

where A := 〈a|al〉 and B = 〈b|bm〉, by the relators (ab)n and (apbq)k, which

we shall denote α and β, respectively. Combinatorially, a picture consists

of the following: A picture Π over the presentation P consists of the fol-

lowing:

� A disk D2, including boundary δD2

� A collection of disjoint closed disks in the interior of D2 which we

shall call vertices

� A finite collection of disjoint arcs in D2 which we shall call edges,
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each of which is either a simple closed curve interior to D2 that does

not meet any vertex, or an arc whose endpoints are each in either

δD2 or the boundary of a vertex, and which does not otherwise meet

δD2 or any vertex

� A labelling, associating to each vertex a label of α, α−1, β or β−1,

and to each segment of δD2 and of the boundary of each vertex,

as separated by edges, an element of A ∪ B, such that reading the

labels clockwise around any vertex yields the word assigned to that

vertex, as a reduced word in A∗B (up to cyclic permutation), and the

labels along the boundary of each region of Π (that is, each connected

component of the complement of the edges and vertices of Π in D2)

are either all elements of A or all elements of B, and have product

1A, 1B, respectively.

We refer to vertices with label α as α-vertices, and likewise α−1-,β-

and β−1-vertices, referring to vertices whose label is α or β as positively

oriented, and vertices whose label is α−1 or β−1 as negatively oriented. In

cases where we do not specify orientation, we refer to vertices with label

α±1 as vertices of type α, likewise vertices of type β.

We call a region whose boundary labels are all in A an A-region, likewise

a B-region. A region that intersects δD2 is called a boundary region, whilst

one that does not is called an interior region. If no edge of Π meets δD2, we

call the picture spherical. In this case, there is only one boundary region,

which we refer to as the distinguished region.

The boundary label of the picture Π is the cyclically reduced word given

by reading the labels of the sections of δD2 in an anticlockwise direction.

In the case of a spherical picture, the boundary label is the inverse of the

product of the other labels of the distinguished region. It shall be important

to note that the boundary label of a picture is always a cyclically reduced
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word in A ∗B representing the identity element of G, and that, conversely,

given any such word w, a picture can be constructed whose boundary label

is w.

We call a picture empty if it contains no vertex.

Given presentation P , we define the space ZP to be the space obtained

by taking the wedge product of a pair of Eilenberg MacLane spaces of

types K(A, 1) and K(B, 1) (which, in a moderate abuse of notation, we

shall refer to themselves as A and B, where no ambiguity could arise, and

adding a pair of 2-cells α and β with boundary (āb̄)n and (āpb̄q)k, where ā

and b̄ are loops in A and B representing a and b, respectively. A map θ

from a disk to ZP can be represented by a picture Γ over P in the following

manner: θ can be perturbed in such a manner that the preimages of α

and β are a collection of disjoint disks, and the preimage of the basepoint

is a collection of disjoint arcs. If an arc γ had neither endpoint on the

boundary of a preimage of α or β, it is surrounded by the preimage of

A ∪ B. A and B only meet at the basepoint, so any loop surrounding γ

must pass through a point mapped to the basepoint. Thus, every loop

meets a preimage of α or β. Similarly, an arc with only one endpoint

on such a preimage would provide us with a path from A to B in A ∪ B

not passing through the basepoint, so every arc is either a closed curve or

has both endpoints on the boundary of a preimage of α or β. Taking the

preimages of α and β as our vertices, and labelling each segment of the

boundary of each vertex by the element of π1(Z) represented by its image,

taking the clockwise direction around the vertex as positive, the labelling

requirements of a picture follow directly. This process can be reversed by

taking a picture as an instruction set for a map from D to ZP , mapping the

edges to the basepoint, and each vertex to α or β in a manner consistent

with labelling. In the special case of a spherical picture whose boundary

label is trivial in A or B, we can contract the boundary to a disk, giving a
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map from a sphere to Z. Conversely, given a map from a sphere to Z, we

can perform an identical process to the disk case, choosing a region to serve

as the distinguished region to construct a spherical picture. Due to this

correspondence, elements of π2(Z) can be represented by spherical pictures

with trivial boundary. Our approach shall be to use this fact to construct

a generating set for π2(Z), in order to show that certain spaces containing,

and sharing a 2-skeleton with, Z have trivial second homotopy groups.

We have a procedure for modifying a picture without altering the class

of maps that it represents, or only altering this class by a known quantity.

Let γ be an arc whose endpoints are both on existing edges, and which

is otherwise on the interior of a region ∆. If all connected components of

∆−γ have boundary labels whose product is still 1A or 1B, we may modify

Π as per Fig. 1. We refer to this procedure as a bridge-move.

Figure 1: A bridge-move

Addition of or subtraction by an element represented by a spherical

picture Γ in π2(Z) corresponds to adding or removing a copy of Γ from

some other spherical picture - that is, replacing a simply connected portion

of anA- orB-region, as appropriate, with a copy of Γ, as noted, for example,

in [10]. Due to this, and the above, a set S of spherical pictures over P

represent a generating set for π2(Z) if every spherical picture over P can

be reduced to an empty picture (which corresponds to a map into the
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Eilenberg MacLane space A ∨ B) by bridge moves and the addition and

removal of elements of S.

Of note are a pair of spherical pictures that exist over every presentation

within our scope: we call the picture consisting of an α-vertex and an α−1-

vertex, sharing all of their edges, a (proper) dipole over α, Dα. We define

Dβ likewise. We note that over presentations in which l = 2p and m = 2q, a

spherical picture consisting of two β-vertices connected in the same manner

as Dβ arises, which we shall refer to as an improper dipole, D′β. Given any

edge connecting two vertices of the same type and opposite orientations,

we can use bridge-moves to create a proper dipole of the appropriate type.

We say that such a pair of vertices cancels. A fairly broad selection of the

presentations we study give rise to π2(ZP) generated by proper dipoles,

and it shall always be convenient to include them in our set of potential

generators, so we shall refer to a spherical picture that can be reduced

to an empty picture by bridge moves and the addition and removal of

copies of Dα and Dβ as dipole-reduced, defining dipole-reducible pictures in

a corresponding manner. Similarly, we call a spherical picture S-reduced if

it can be reduced to an empty picture by bridge moves and the addition

and removal of copies of Dα, Dβ and S.

Our approach shall be to suppose that some S/dipole-reduced spher-

ical picture exists, and take an example with as few vertices as possible.

This excludes from consideration all pictures containing cancelling pairs

of vertices, as these could be transformed into a dipole by bridge-moves

and removed, and all pictures containing a copy of part of S containing

more than half of the vertices of S, as this would allow us to complete

the copy of S by introducing dipoles and connecting them to the copy via

bridge-moves, and remove it, for a lower vertex-count.
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2.2 The Associated Graph

We describe a pair of edges between two vertices as parallel if they are the

only edges on the boundary of a simply connected region. We refer to a

pair of parallel edges as a double edge, and an edge which is not part of

such a pair a single edge. Given a connected spherical picture Π, we may

form a connected planar graph Γ by identifying each pair of parallel edges

into one edge, and contracting each vertex of Π from a disk to a point.

In general, when visualising these graphs, we shall depict vertices as disks,

labelled by their vertex-type in Π where relevant. Where convenient, we

shall annotate labels in the corners of regions by the power of a or b in

their original label.

We may define a notion of curvature upon the regions of this graph.

Defining, for a region ∆ whose boundary contains k vertices, of degrees

d1, d2, . . . , dk the curvature

c(∆) = (2− k)π + 2π
k∑
i=1

1

di
,

we note that Euler’s formula ensures that the sum of the curvature of all

regions ∆ of Γ must be 4π (we may more directly relate the quantity c(∆)

to the notion of curvature by contracting δD2 to a point, so that Γ is a

graph on a sphere in which all regions are simply connected, assigning to

each corner about a vertex of degree d the angle 2π
d

, and viewing c(∆) as

the discrepancy in total external angle around ∆).

Our method for proving a presentation P does not admit any nonempty

S-reduced spherical picture shall be to show that a vertex-minimal S-

reduced spherical picture over P cannot attain this required total cur-

vature of 4π. We approach this locally, attempting to demonstrate that

any positively curved interior region is necessarily accompanied by nearby

negatively curved regions with enough negative curvature in total that all
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nearby positive curvature can be compensated for.
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3 The initial case, p, q 6= ±1

In this section, we consider the presentations (l,m|n, k|p, q), where p, q > 1.

These presentations can be divided into three families, based on whether

neither, one or two of the conditions l = 2p and m = 2q hold. The first

family, in which l = 2p and m = 2q, allow for a complete characterisation

of the parameters for which the resulting groups are finite. The second, in

which (by convention over a symmetry, as shall be discussed momentarily)

m = 2q but l 6= 2p, permits an accounting of finiteness in all but a few

subfamilies of cases. The final family, those presentations in which l 6= 2p

and m 6= 2q , allow finiteness to be characterised under the assumption of

large n and k, but for smaller values eludes a curvature-based argument.

As is the case in general, adding any multiple of l to p, or any multiple

of m to q, gives an identical group, so we may assume without loss of

generality that p < l and q < m. Since (l,m|n, k|l−1, q) ∼= (l,m|n, k|1,−q),

we exclude p = l−1, and likewise q = m−1, so that l > p+1 and m > q+1.

If any of l = 1,m = 1, n = 1, then (l,m|n, k|p, q) trivially provides a finite

cyclic group. We also exclude the case k = 1 due to the following:

Lemma 3.1. Let G := 〈a, b|al, bm, (ab)n, ap = b−q〉. Then G is infinite if

and only if
1

hcf(l, p)
+

1

hcf(m, q)
+

1

n
≤ 1.

Proof. Let x be the highest common factor of l and p, and y the highest

common factor of m and q, so that we can write

G = 〈a, b|(ax)l′ , (by)m′
, (ab)n, (ax)p

′
= (by)−q

′〉.

Then since l′ and p′ are coprime, (ax) can be expressed as a power

of (ax)p
′
, which is itself equal to a power of (by). Likewise, (by) can be

expressed as a power of (ax). Thus, 〈(ax)〉 = 〈(by)〉 =: N . Since N is
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generated by a power of a, N commutes with a. Likewise N commutes

with b. Thus N is normal in G.

The quotient G/N can be presented as 〈a, b|ax, by, (ab)n〉, so is the von

Dyck group on parameters x, y, n, which is infinite precisely when 1
x

+ 1
y

+

1
n
≤ 1, as required.

It may be of note that, since the subgroup N in this argument is cyclic,

G is solvable precisely when the von Dyck group (x, y, n) is. In particular,

the cases leading to a finite, insolvable G are precisely those in which x, y

and n are some permutation of 2, 3 and 5.

Note also that this k = 1 case gives examples of what we shall later

refer to as collapse: presentations that give rise to groups in which a and b

need not have orders l and m. For instance, the presentation

〈a, b|a20, b20, (ab)6, a4 = b5〉

gives rise to a group in which a16 is trivial.

3.1 The restricted case: l = 2p, m = 2q

Over these presentations, pairs of β- or β−1-vertices can form improper

dipoles. As noted in section 2, we therefore seek conditions on our pa-

rameters under which any spherical picture over these presentations can

be reduced, by bridge moves and the addition and removal of proper and

improper dipoles, to an empty picture. These conditions may be discovered

by considering an example with fewest vertices amongst those that cannot

be so reduced. It shall be useful to note that, in such a minimal picture,

no edge may be found between any two vertices of type β, as this would

allow the formation of a dipole (either proper or improper, depending on

whether the two vertices had the same orientation) by bridge moves, which

could then be removed to provide a picture with fewer vertices. As such,
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all edges are either between like-oriented vertices of type α or between a

vertex of type α and a vertex of type β. Since none of these connections

admit multiple edges, vertices of type α have valence 2n, whilst vertices of

type β have valence 2k.

We shall begin with some preliminary results

3.1.1 Preliminary results

Lemma 3.2. Let q ≥ 4. Then the group G obtained from the presentation

(4, 2q|2, 2|2, q) is infinite.

Proof. Take the quotient ofG by 〈〈bq〉〉, to obtain the groupH := 〈a, b|a4, bq, (ab)2〉.

H is the triangle group (4, q, 2). Thus, H (and so G) is infinite if 1
4
+ 1

q
+ 1

2
≤

1, which is the case, since q ≥ 4.

Lemma 3.3. The group G with presentation (4, 4|2, k|2, 2) is a finite solv-

able group of order 8k2, with derived subgroup Z2
k.

Proof. This group is a quotient of the solvable triangle group (4, 4, 2) =

〈a, b|a4, b4, (ab)2〉 by the normal closure of the element (a2b2)k, so is itself

solvable. (4, 4, 2) is a Euclidean triangle group, so has no infinite proper

quotients, thus to establish finiteness of G it suffices to demonstrate that

(a2b2)k is nontrivial in (4, 4, 2). Consider the action of (4, 4, 2) on R2 in

which a acts by a rotation of π/2 anticlockwise about (0, 0), and b by a

rotation of π/2 anticlockwise about (1, 1), so that (ab) is a rotation by π

about (1, 0). Then a2b2 acts as a translation by (2, 2) Thus, (a2b2)k acts as

a translation by (2k, 2k), so (a2b2)k is nontrivial in (4, 4, 2) for all positive

k, as required.

To identify the order and derived subgroup ofG, we consider its Abelian-

isation, GAb, a direct product of Z4 and Z2, which can be generated as such

by the images of a and ab. As such, the derived subgroup G′ of G has index

8. We consider the corresponding cover of the presentation complex of G.

14



The vertices of this cover correspond to the elements of GAb. We give the

vertices corresponding to the images of e, a, a2 and a3 the labels v0, v1, v2, v3,

respectively, and those corresponding to the images of ab, aba, aba2 and aba3

the labels V0, V1, V2, V3, respectively.

The 1-cells of the presentation complex of G corresponding to the gen-

erators a and b lift to edges:

a0 := (v0, v1) a1 := (v1, v2) a2 := (v2, v3) a3 := (v3, v4)

A0 := (V0, V1) A1 := (V1, V2) A2 := (V2, V3) A3 := (V3, V4)

b0 := (v0, V3) b1 := (v1, V0) b2 := (v2, V1) b3 := (v3, V2)

B0 := (V0, v3) B1 := (V1, v0) B2 := (V2, v1) B3 := (V3, v2)

The relator a4 lifts to a0a1a2a3 and A0A1A2A3. b4 lifts to b0B3b2B1 and

B0b3B2b1. (ab)2 lifts to a0b1A0B1, a1b2A1B2, a2b3A2B3 and a3b0A3B0.

(a2b2)k lifts to (a0a1b2B1)
k, (a1a2b3B2)

k, (a2a3b0B3)
k, (a3a0b1B0)

k, (A0A1B2b1)
k,

(A1A2B3b2)
k, (A2A3B0b3)

k and (A3A0B1b0)
k.

Taking a0, a1, a2, b0, b1, b2, b3 as a spanning tree for the 1-skeleton of our

cover, this gives us a presentation for G′ with generators a3, A0, A1, A2, A3,

B0, B1, B2 and B3, and relators a3, A0A1A2A3, B3B1, B0B2, A0B1, A1B2,

A2B3, A3B0, B
k
1 , Bk

2 , Bk
3 , Bk

0 , (A0A1B2)
k, (A1A2B3)

k, (A2A3B0)
k and

(A3A0B1)
k. This reduces, via Tietze transformations, to the presentation

〈A0, A1|Ak0, Ak1, [A0, A1]〉, establishing that G′ ∼= Z2
k, as required.

3.1.2 Curvature arguments

We begin by identifying the positively curved regions that may occur in

pictures over these presentations.

Lemma 3.4. Let p, q, n, k ≥ 2, and let Γ be picture over the presentation

(2p, 2q|n, k|p, q). If Γ cannot be reduced to an empty picture by bridge moves

and the introduction and removal of dipoles, both proper and improper, then
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the only possible positively curved interior regions in Γ are those consisting

of a triangle between two like-oriented vertices of type α and one of type β.

Proof. Let ∆ be a positively curved interior region in a picture Γ satisfying

the conditions above. Since vertices of type α and type β have valence

2n ≥ 4 and 2k ≥ 4, respectively, no region with more than four vertices

could possibly be positively curved, so we may restrict our attention to

triangular regions. A triangular region can have at most one vertex of type

β, else two of them would share an edge. A triangular A-region or B-region

with three α vertices could only exist if 2p|3 or 2q|3, respectively. Neither

of these can occur, since p, q ≥ 2. Thus the only possibility is a triangular

region with precisely one vertex of type β, as required.

Observe that a such a region can only occur as anA-region when 2p|p±2,

so that p = 2. Likewise, such a region can only occur as a B-region when

q = 2. Further, a region ∆ consisting of two vertices of type α and one

of type β has curvature c(∆) = c(2n, 2n, 2k) = −π + 2π( 1
n

+ 1
2k

), which is

positive, within our established scope, when either n = 2 or (n, k) = (3, 2).

As such, we have the following:

Lemma 3.5. Let p, q, n, k ≥ 2. If either (p 6= 2 and q 6= 2) or (n 6=

2 and (n, k) 6= (3, 2)), then every spherical picture over the presentation

(2p, 2q|n, k|p, q) is D′β-reducible.

Proof. Let Γ be a vertex-minimal example of a non-D′β-reducible spherical

picture over (2p, 2q|n, k|p, q). If the first condition, p 6= 2 and q 6= 2, holds,

then no internal region of Γ can be a triangle consisting of two vertices

of type α and one of type β, so by Lemma 3.4 no internal region of Γ is

positively curved. If the second condition, n 6= 2 and (n, k) 6= (3, 2), holds,

then triangles consisting of two vertices of type α and one of type β are not

positively curved, so by Lemma 3.4 Γ cannot have any positively curved
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interior regions. Thus, in either case, all 4π curvature of Γ must originate in

the distinguished region. However, the curvature of a single region cannot

exceed 2π. Thus, our hypothetical Γ cannot exist, and so, in the absence

of a vertex-minimal example, there can be no non-D′β-reducible spherical

picture over (2p, 2q|n, k|p, q).

We consider, therefore, the cases where these conditions fail. Since n =

2 and (n, k) = (3, 2) are mutually exclusive, we deal with them separately.

The cases in which p = q = 2 are dealt with by other approaches, so we

assume that p = 2, q ≥ 3, .

Lemma 3.6. Let k ≥ 3, and suppose that p = 2, q ≥ 3 and (k, q) 6= (3, 3).

Then every spherical picture over (2p, 2q|2, k|p, q) is D′β-reducible.

Proof. Suppose we have a vertex-minimal counterexample Γ. Due to Lemma

3.4, every positively curved interior region of Γ is a triangular A-region with

two vertices of type α and one of type β, and every interior B-region is at

least a 4-region. Take a positively curved interior region ∆, and label ad-

jacent regions as in Figure 2. ∆L and ∆R are both B-regions, so each must

be either the distinguished region or a region of degree at least 4. We wish

to empty ∆ of its 2π( 1
n

+ 1
2k
− 1

2
) = π

k
curvature, so we transfer π

2k
to each

of ∆L and ∆R.

Figure 2: Neighbourhood of ∆

We first address the cases in which k ≥ 4, so that q may be equal to 3.
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A region with r vertices has curvature bounded above by c(4, . . . , 4),

which is nonpositive for r ≥ 4, and swapping a vertex of type α, with

valence 4, for one of type β, with valence 2k, reduces a region’s curvature

by π
2
− π

k
. Thus, a region with r ≥ 4 vertices, s of which are of type

β, has curvature bounded above by −s(π
2
− π

k
). Since a B-region only

receives curvature over edges between vertices of different types, any region

that receives curvature over t edges must have at least t
2

vertices of type

β. Thus, after the transfer of curvature, the curvature of a region that

receives curvature over t edges is bounded above by − t
2
(π
2
− π

k
)+ t π

2k
, which

is nonpositive since k ≥ 4.

For the remaining possibility, k = 3, so that q > 3, we begin our

redistribution of curvature similarly, noting that the difference in curvature

provided by a vertex of type β, with valence 6 and one of type α, of valence

4, is π
6
, so since every B-region has degree at least four, we can transfer π

12

to each of ∆L and ∆R without any possibility of either of them becoming

positively curved. In fact, the curvature of any B-region after this initial

transfer of curvature is bounded above by the curvature of a region of the

same degree whose vertices all have valence 4. We shall exploit this to

establish that the π
6

remaining in ∆ can be transferred across its remaining

edge to ∆D without ∆D becoming positively curved.

Since q > 3, so that 2q - 4, ∆D cannot be a square of four vertices of

type α. Likewise, we have 2q - q± 3, so ∆D cannot have one vertex of type

β and three of type α. Since vertices of type β cannot share an edge, and

∆D must have an edge between two vertices of type α, ∆D cannot be a

square with two or more vertices of type β, so we can rule out ∆D having

degree four.

The curvature of a region of degree 5 after the first round of curvature

transfer is bounded above by c(4, 4, 4, 4, 4) = −π
2

, so can receive curvature

over up to three α-α-edges. The only case where such a region could be
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required to receive over four or more α-α-edges is if ∆D has only vertices

of type α. Since 2q - 5, such a region cannot exist.

After the first round of transfer, a region of degree d ≥ 6 has curvature

not exceeding 2π − dπ
2
≤ −dπ

6
, so if ∆D is such a region it can accept π

6

across each edge without becoming positively curved.

Thus, in both the k ≥ 4 case and the k = 3 case, after all transfer of

curvature, no interior region is positively curved, and so all 4π curvature

of Γ must be in the distinguished region. The distinguished region has at

most 2π intrinsic curvature, so this requires that another 2π curvature be

received. This could only occur if the distinguished region had degree at

least six, at which point the arguments establishing that interior regions

receiving curvature remain nonpositively curved also apply to the distin-

guished region. Thus, a total curvature of 4π cannot be achieved, and so

the hypothesised vertex-minimal counterexample Γ cannot exist. Thus, no

counterexample can exist, so the lemma holds.

Lemma 3.7. Suppose p = 2, q > 2. Then every spherical picture over

(2p, 2q|3, 2|p, q) is D′β-reducible.

Proof. As above, we choose, without loss of generality, p = 2, q 6= 2, and

suppose a vertex-minimal counterexample Γ. By Lemma 3.4, all positively

curved interior regions are A-regions forming a triangle with one vertex of

type β and two of type α, and thus curvature C(4, 4, 6) = π
6
, and all inte-

rior B-regions have degree at least 4. Let ∆ be a positively curved interior

region. By a similar argument to that used in the previous lemma, an in-

terior B-region of degree r, with s α-vertices has curvature bounded above

by −sπ
6
. Thus, if we transfer all π

6
curvature out of each positively curved

region across the edge between its two vertices of type α, every receiving

region will have as many vertices of type α as it has edges over which it
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receives curvature. As such, this transfer leaves no interior region with

positive curvature, so all 4π curvature in Γ must be in the distinguished re-

gion. However, if the distinguished region has degree at least four, the same

argument as applied to interior receiving regions demonstrates that its cur-

vature after transfers is nonpositive, whilst if the distinguished region has

degree less than four, it cannot receive more than π
2

curvature in transfers,

so the total curvature of Γ is bounded above by 5π
2
< 4π. In either case, this

contradicts our assumption that a vertex-minimal counterexample exists,

so the lemma holds.

With the equivalences between homotopy classes of maps and spherical

pictures noted in section 2, this gives us the following:

Corollary 3.8. Let the presentation P = (2p, 2q|n, k|p, q) satisfy the con-

ditions of one of Lemma 3.5, Lemma 3.6 or Lemma 3.7. Then the second

homotopy group of the space ZP , as defined in section 2, has a generating

set whose elements correspond to the homotopy classes of maps represented

by the proper dipoles Dα and Dβ along with the improper dipole D′β.

These results also allow us to obtain the orders of a, b, (ab) and (apbq)

in the resulting groups:

Corollary 3.9. Let p, q, n, k satisfy the conditions of one of Lemma 3.5

Lemma 3.6 or Lemma 3.7. Then the orders of a b, (ab) and (apbq) in

the group with presentation (2p, 2q|n, k|p, q) are precisely 2p, 2q, n and k,

respectively.

Proof. These lemmas establish that spherical pictures over the presenta-

tions in question are D′β-reduced, that is, any spherical picture over any

such presentation can be reduced to an empty picture via bridge moves and

the addition and removal of proper and improper dipoles. Note that none of

these operations change the boundary label, as an element of 〈a|a2p〉∗〈b|b2q〉.
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Suppose first, then, that a has order r < 2p in the group with presenta-

tion (2p, 2q|n, k|p, q). Then there exists some picture over (2p, 2q|n, k|p, q)

whose boundary label is equal to ar, which is nontrivial in 〈a|a2p〉 ∗ 〈b|b2q〉.

By bridge-moves at the boundary, we may convert this into a spherical pic-

ture whose boundary label is ar. This picture is, by Lemma 3.5, Lemma 3.6

or Lemma 3.7, as appropriate, reducible by bridge moves and the addition

and removal of proper and improper dipoles to an empty picture. The last

step of this reduction must be the removal of a dipole (proper or improper),

so must be performed upon a picture that consists entirely of that dipole.

Since neither proper nor improper dipoles have boundary label nontrivial

in 〈a|a2p〉 ∗ 〈b|b2q〉, however, so such a picture cannot be reached by our set

of reductions from the spherical picture we began with. This contradiction

shows that our assumption that r < 2p cannot hold, so a must have order

2p, as required. An identical argument applies to the order of b.

Suppose now, then, that (ab) had order r < n. We may therefore

take a vertex-minimal picture Γ with boundary label (ab)r, and construct

a spherical picture Γ′ by attaching n/r copies of Γ around an α−1-vertex.

Note that the number of α-vertices in Γ′ minus the number of α−1-vertices

in Γ′ is congruent to −1 modulo n/r, and in particular is nonzero. Neither

bridge moves, nor the addition or removal of dipoles, change this quantity,

so this spherical picture cannot be D′β-reducible, contradicting Lemma 3.5,

Lemma 3.6 or Lemma 3.7, as appropriate. Thus, our initial assumption

that r < n cannot hold, so (ab) has order n.

We must approach apbq differently. Suppose that the order of apbq is

not k. Then there exist pictures whose boundary label is some (apbq)k
′
,

where 0 < k′ < k. We take a vertex-minimal picture with this property,

Π. Π cannot have any connected component that does not share an edge

with the boundary, as the boundary label of such a component would have

to be either trivial in A ∗B, in which case it could be removed to obtain a

21



picture with the same boundary and fewer vertices, or a nontrivial element

of 〈a|a2p〉 or 〈b2q〉 (since an element of 〈a|a2p〉 ∗ 〈b2q〉 not in 〈a|a2p〉 or 〈b2q〉

would force the component to have an external edge, which would have to

reach the boundary), which would require that the order of a or b not be

2p or 2q, respectively, contradicting the results we have already obtained.

We contract the boundary of Π to a disk, to form a spherical picture

Π′, with one non-standard vertex whose label is (apbq)k
′
, which we shall

call the distinguished vertex, v0. Since each connected component of Π

met the boundary, each connected component of Π′ − v0 shares an edge

with v0, so Π′ is connected. If the distinguished vertex shares an edge

with a vertex of type β, we may perform bridge moves as we would when

forming a dipole, adding more edges between the two vertices until all of

the distinguished vertices edges are to the same vertex of type β. Treating

this vertex and the distinguished vertex as a single vertex, we obtain a

new distinguished vertex, with boundary label (apbq)k−k
′
. Repeating this

process for as long as possible (noting that the label of the distinguished

vertex alternates between (apbq)k
′

and (apbq)k−k
′
, and that each iteration

of the process decreases the number of vertices of type β by one, so this

procedure cannot continue indefinitely), Π′ eventually reaches a state in

which the distinguished vertex is not adjacent to any vertex of type β.

Regions not incident to the distinguished vertex are subject to the same

arguments made in Lemma 3.5, Lemma 3.6 or Lemma 3.7, as appropriate,

so cannot be positively curved. We can apply the same arguments to

regions incident to the distinguished vertex to see that all positive curvature

in these regions arises from the difference in contribution between a vertex

of degree 2k and one of degree 2k′ or 2(k − k′). Thus, if the distinguished

vertex has label (apbq)k
′
, the 2k′ regions that it is incident to have curvature

bounded above by 2π( 1
2k′
− 1

2k
) < 2π

k′
, for a total less than 2π, and likewise

if the distinguished vertex has label (apbq)k−k
′
, the 2k − 2k′ =: 2k′′ regions
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that it is incident to have curvature bounded above by 2π( 1
2k′′
− 1

2k
) < 2π

2k′′
,

giving, again, a total positive curvature less than 2π. As such, with interior

curvature providing less than 2π curvature, and the distinguished region

doing the same, the 4π curvature that Π′ must have as a spherical picture

is absent. Thus, our starting assumption that the order of apbq 6= k cannot

hold.

3.1.3 The Homological Argument

After the previous segments of the argument, we have established that, if

the presentation P = (2p, 2q|n, k|p, q) satisfies the conditions of Lemma 3.5,

Lemma 3.6 or Lemma 3.7, all spherical pictures over P are D′β-reducible,

and so the second homotopy group of the space ZP , as defined in section 2,

is generated by elements represented by proper dipoles and D′β. We have

also established that collapse does not occur in any of the parameters of

these presentations (i.e. a and b have orders precisely 2p and 2q, (ab) and

(apbq) have orders precisely n and k).

We exploit these properties to identify the order of G(P) in the following

Proposition 3.10. Let G be the group with presentation P = (2p, 2q|n, k|p, q)

satisfying the conditions of one of Lemma 3.5, Lemma 3.6 or Lemma 3.7.

Then G is infinite.

Proof. We construct G as the push-out of groups

G0 := 〈c, d|〉 〈c, d|c2, d2, (cd)k〉 =: G1

G2 := 〈a, b|(ab)n〉 〈a, b|a2p, b2q, (ab)n, (apbq)k〉 = G

φ

ψ

where φ maps c to c and d to d, whilst ψ maps c to ap and d to bq.

To obtain the desired result from this pushout, we seek to use the

argument of [4]. This requires that we construct an aspherical space X,

with trivial second homotopy group, that we can express as a union of two
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aspherical spaces X1, X2 with fundamental groups G1, G2, respectively,

whose intersection X0 has fundamental group G0, with φ and ψ realised by

the inclusions of X0 into X1 and X2.

We begin by constructing a preliminary space X ′, which we shall extend

via extensions of subspaces X ′1 and X ′2 satisfying the fundamental group

requirements of X1 and X2 to form the required space.

Let X ′ be the presentation complex for the presentation

P ′ := 〈a, b, c, d|c = ap, d = bq, c2, d2, (ab)n, (cd)k〉.

We shall denote the subspace of X ′ corresponding to a presentation Q

whose generators and relators are found amongst those of P ′ by X(Q).

Let X ′1 be X(〈c, d|c2, d2, (cd)k〉) and X ′2, X(〈a, b, c, d|ap = c, bq = d, (ab)n〉).

Then X ′ = X ′1 ∪ X ′2 and X ′0 := X ′1 ∩ X ′2 = X(〈c, d|〉). These spaces

satisfy the conditions on first homotopy required of X,X1, X2 and X0, so

we proceed to extend them.

We extend X ′1 in stages. First, we extend X(〈c, c2〉) ⊂ X ′1, adding

cells of dimension three and higher to eliminate all higher homotopy, and

labeling the union of the added cells Y1(a). We then extend X(〈d, d2〉)

likewise, labeling the union of the added cells Y1(b). In the same manner,

we then extend the space X1 ∪ Y1(a) ∪ Y1(b), labeling the union of all cells

added in this series of extensions Y1.

Similarly, we extend X ′2 in stages. First extending X(〈a, c|ap = c〉),

labeling the union of added cells Y2(a) then extending X(〈b, d|bq = d〉),

labeling the union of added cells Y2(b), and finally extending X ′2∪Y2(a)∪Y2(b),

labeling the union of all cells added in this series of extensions Y2.

We define X1 := X ′1 ∪ Y1 and X2 := X ′2 ∪ Y2, taking X := X1 ∪ X2

and X0 := X1 ∩ X2 = X ′0. Each Xi is an Eilenberg-MacLane space with

2-skeleton X ′i, so we have an expression of X as a union of aspherical spaces

satisfying the required conditions on first homotopy.
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We now aim to use Theorem 4.2 of [10] to show that X is aspherical.

For this approach to work, we require that the kernels of the maps in first

homotopy induced by the inclusion of X0, X1 and X2 into X (that is, of the

maps from G0, G1 and G2 to G) have homological dimension not exceeding

1, 2 and 2, respectively, and that π2(X) = 0. The kernels can be dealt with

fairly directly:

Since G0 is free, the kernel K0 of the map from G0 to G must be free,

and thus has homological dimension of at most 1.

Since, by the same corollary, the orders of a, b and (apbq) do not collapse

in G, the kernel K1 of the map from G1 to G must not contain c, d or any

nontrivial powers of (cd). However, every nontrivial element of G1
∼= D2k is

conjugate to one of these, so K1 is trivial, and so certainly has homological

dimension not exceeding 2.

Since, by the same corollary, the orders of a and (ab) do not collapse in

G, the kernel K2 of the map from G2 to G cannot contain any nontrivial

power of a or (ab). Since G2 can be expressed as Z ∗Zn, with generators a

and (ab), every normal subgroup of G2 must either contain some nontrivial

power of one of a, (ab), or be free. Thus, K2 is free, and so has homological

dimension of at most 1.

To show that π2(X) = 0, we note that Corollary 3.8, gives generators

for the second homotopy group of Z, a space consisting of the wedge sum

of A and B, where A is a K(C2p, 1) space whose fundamental group is

generated by a loop ā and B is a K(C2q, 1) space whose fundamental group

is generated by a loop b̄, augmented by 2-cells whose boundary labels are

(āb̄)n and (āpb̄q)k.

We construct Z as a subspace of X. Let A = X(〈a, c|c = ap, c2〉)∪Y1(a)∪

Y2,(a), with the loop corresponding to a taking the role of ā, and similarly

let B = X(〈b, d|d = bq, d2〉) ∪ Y1(b) ∪ Y2,(b), with the loop corresponding

to b taking the role of b̄. Add the 2-cells associated to the relators (ab)n
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and (apbq)k to complete Z. Note that Z so constructed contains the entire

2-skeleton of X, so that every element of π2(X) can be represented by

an element of π2(Z). In particular, maps representing a generating set

of π2(Z) also represent a generating set of π2(Z). Thus, if we can show

that the generators of π2(Z) found in Corollary 3.8 all represent trivial

elements of π2(X), then π2(X) is trivial as required. Noting that X1 and

X2 are aspherical, it suffices to show that every element of π2(Z) can be

represented by a map whose image is within either X1 or X2.

Recall from Section 2 the process for converting a spherical picture (with

trivial boundary label) Γ over P into a map from S2 to Z. Contracting the

boundary of Γ to a point, to obtain a picture on a sphere rather than a disk,

we map edges to the basepoint, corners labelled with powers of a and b to

the loops ā and b̄, with appropriate orientation and multiplicity, depending

on the power of a or b present, the interiors of vertices to the interior of

the 2-cell corresponding to the same relator, and A and B regions to the

subspaces A and B. Note that A- or B-regions whose corner labels are all

of the form a±p or b±q can be mapped into the cells corresponding to c2 d2,

respectively, in X2.

The dipole over α contains A-regions, B-regions and vertices of type

α, so can be represented by a map from S2 whose image is contained in

the union of A, B and the 2-cell corresponding to (ab)n. Restricting our

attention to a B-region ∆ in this picture, we observe that the map in this

region is a map from a rectangle to B, in which one pair of opposing sides

are mapped to the basepoint, and the other pair mapped along b̄ in parallel.

As such, this restricted map corresponds to a homotopy between b̄ and

itself in B. Since B is an Eilenberg-MacLane space, any two homotopies

between the same maps are themselves homotopic, so without changing the

homotopy class of our map, we may use the trivial homotopy between b̄ and

itself as the interior of the rectangle, so that the entirety of ∆ is mapped
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to the image of b̄. Likewise, without any risk of changing the homotopy

class of our map, we may assume that each A-region is mapped entirely to

ā. Thus, the dipole over α can be represented by a map whose image lies

within X1, and as such must represent the trivial element of π2(X).

Dipoles over β, both proper and improper, are formed entirely of ver-

tices of type β, A-regions whose corner labels are all a±p, and B-regions

whose corner-labels are all b±q, so can be mapped in such a manner as to

have image contained in the union of the cells associated to c, d, c2, d2 and

(cd)k, all of which are in X1. Thus, these pictures represent trivial elements

of π2(X).

Having found a generating set of π2(X) and shown that its elements

are all trivial, we may conclude that π2(X) is trivial, as required, so fol-

lowing [10], X is aspherical. Thus, in the language of [4], our pushout is

geometrically Mayer-Vietoris. If G is finite, this allows us to calculate

1

|G|
= χQ(G) = χQ(G1) + χQ(G2)− χQ(G0)

=
1

2k
+

(
1

n
− 1

)
+ 1.

This gives 1
|G| >

1
n
, so that |G| < n, however by Corollary 3.9, G contains

an element of order n. Thus, G cannot be finite.

3.1.4 Assembling Results

In the final part of this section, we combine our results to characterise the

conditions under which (2p, 2q|n, k|p, q) presents a finite group.

Theorem 3.11. Let G be have presentation P = (2p, 2q|n, k|p, q) with

p, q 6= 1. Then G is finite if and only if one of the following conditions

hold:

(i) n = 1
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(ii) k = 1 and 1
p

+ 1
q

+ 1
n
> 1

(iii) p = q = n = 2

(iv) p = n = 2, q = k = 3

(v) p = k = 3, q = n = 2

Proof. If n = 1 then P satisfies condition (i), and is a finite cyclic group.

If k = 1 then by Lemma 3.1 G is finite if and only if condition (ii) holds.

Thus, we may restrict our attention to presentations in which n, k > 1.

If [p > 2 and q > 2] or [n 6= 2 and (n, k) 6= (3, 2)], then G is infinite,

by Proposition 3.10 as applied to Lemma 3.5. The remaining presentations

are those in which either one or both of p and q is 2, and either n = 2 or

(n, k) = (3, 2).

If (n, k) = (3, 2) and both p and q are 2, then (2p, 2q|n, k|p, q) =

(4, 4|3, 2|2, 2), whose third derived subgroup, by calculation in [7], has in-

finite Abelianisation. If only p = 2, then Proposition 3.10 as applied to

Lemma 3.7 shows that G is infinite. Likewise, noting the symmetry be-

tween p and q, if only q = 2 then G is infinite.

If n = 2 and both p and q are 2, then P satisfies (iii), and is finite by

Lemma 3.3. If only p is 2, then if k 6= 2 and (k, q) 6= (3, 3), Proposition

3.10 as applied to 3.6 shows that G is infinite. If k = 2, then G is infinite

via Lemma 3.2, while if (k, q) = (3, 3), P = (4, 6|2, 3|2, 3), satisfying (iv),

whose second derived subgroup, of index 6, is isomorphic to PSL(2, 11), by

calculation in [7], giving an order of 3960. As above, noting the symmetry

between p and q, if only q is 2, then G is infinite unless (k, p) = (3, 3),

satisfying (v), which gives the same group of order 3960.
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3.2 The Intermediate Case: l 6= 2p, m = 2q

We here consider the groups (l, 2q|n, k|p, q). Every group with presentation

(2p,m|n, k|p, q) with m 6= 2q is isomorphic to the group with presentation

(m, 2p|n, k|q, p), so this family of presentations covers, up to isomorphism,

all presentations (l,m|n, k|p, q) in which precisely one of l = 2p or m = 2q

holds. Since (l,m|n, k|l−1, q) is Coxeter’s group (l,m|n, k), we restrict our

parameters in this section to 1 < p < l − 1, q ≥ 2, forcing l > 4, since

otherwise p would have to be one of 1, l
2
, l − 1. We extend our conditions

on n and k to n ≥ 3, k ≥ 3.

Over these presentations, no improper dipole can exist, but adjacent

pairs of like-oriented vertices of type β can form double edges containing

A-regions. Since a bridge-move in an A-region alters no other A-regions, so

long as a picture Γ contains a like-oriented pair of vertices of type β con-

nected by only a single edge, we can perform a bridge-move in Γ decreasing

the number of such edges. Repeating this process until we are unable to

continue, we find Γ in a configuration such that any two like-oriented adja-

cent vertices of type β share a double-edge. As in the previous subsection,

we shall consider vertex-minimal spherical pictures that are reduced with

regard to various sets of spheres, always including the proper dipoles. Thus,

in the settings we consider, we may also assume that no edge exists between

two vertices of the same type and opposite orientation. As such, the only

types of edges present in pictures within the scopes we shall consider are

single edges between like-oriented vertices of type α, double edges between

like-oriented vertices of type β and single edges between vertices of differ-

ing type. This allows us to calculate that the valence of a vertex of type

α is always 2n, whilst the valence of a vertex of type β with r neighbours

of type β is 2k − r In particular, a vertex of type β incident to at least s

B-regions of degree greater than two (which we shall, for the remainder of
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Section 3.2 refer to as ’proper’ B-regions) and adjacent to at least t vertices

of type β has valence between k + s and 2k − t.

3.2.1 Curvature Arguments

We begin by identifying the potentially positively curved regions that may

occur in pictures over these presentations, and the conditions on our param-

eters required for them to exist, and for them to have positive curvature.

Lemma 3.12. Let 1 < p < l − 1, 1 < q, n ≥ 3, k ≥ 3. Let ∆ be

a positively curved interior region in a dipole-reduced spherical picture Γ

over P = (l, 2q|n, k|p, q). Then ∆ takes the form of one of the regions

depicted in Figure 3. If ∆ takes the form of ∆(j) in Figure 3, then the

conditions (j) and (j’) below hold.

(i) q = 2

(ii) l = p± 2 or p = 2

(iii) l = 2p± 1

(iv) l ∈ {3p, 3p/2}

(v) l = 4p

(vi) l ∈ {5p, 5p
2
, 5p

3
, 5p

4
}

(i’) n = 3 and k ∈ {3, 4}

(ii’) (n, k) = (3, 3)

(iii’) either k = 3 or

(n, k) ∈ {(3, 4), (4, 4), (5, 4)}

(iv’) k ≤ 5
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(v’) k = 3

(vi’) k = 3

Figure 3: Possibly positively curved regions. ∆(i) is a B-region, while the

others are A-regions.

Proof. Regions of degree 2 are considered the interior of either a double-

edge, in which case curvature is not assigned to them, or a dipole, which

cannot occur since Γ is dipole-reduced. Thus, we first suppose that ∆ has

degree three.
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If ∆ is an A-region, then since 2p - 3, 2p ± 1, 3p, ∆ is a region of type

∆(i). In order for such a region to be possible over P , P must satisfy the

conditions of (i). In order for such a region to be positively curved, P must

satisfy the conditions of (i’). l > p + 1 = 3, so no triangular A-region of

vertices of type α can exist over any picture P with parameters in the scope

that the Lemma sets out. If ∆ has one or two vertices of type β, then it

is of type ∆(ii), ∆(ii), which can exist precisely when (ii), (iii) holds, and

is positively curved precisely when (ii′), (iii′) holds, respectively. If ∆ is a

triangular A-region with three vertices of type β, then it is of type ∆(iv),

which can exist precisely when (iv) holds and is positively curved precisely

when (iv′) holds.

We now suppose that ∆ has degree four. If ∆ is a B-region, then it

cannot have any two adjacent vertices of type β, as they would share only

a single edge. Thus, all vertices of type β have valence of at least k+1 ≥ 4.

Since vertices of type α have valence of 2n ≥ 4, any B-region over these

presentations has curvature bounded above by c(4, 4, 4, 4) = 0, so ∆ cannot

be a degree four B-region. Supposing, then, that A is an A-region of degree

four, we note likewise that ∆ cannot have 0, 1, 2 or 3 vertices of type β,

else it must be nonpositively curved. If ∆ is a B-region of degree four with

all four vertices of type β, then it is of type ∆(v), which can exist precisely

when (v) holds and is positively curved precisely when (v′) holds.

Supposing now that ∆ has degree five, we note that if ∆ has any vertex

of type α, it cannot achieve positive curvature, so ∆ must be a pentagon

of five vertices of type β. Thus, ∆ takes the form of ∆(vi), which can

exist precisely when (vi) holds and is positively curved precisely when (vi′)

holds.

Observe that ∆ cannot have degree greater than five, as all vertices

have valence of at least three, so any region with degree six or higher has

curvature bounded above by c(3, 3, 3, 3, 3, 3) = 0. Thus, all possibilities for
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a positively curved interior ∆ require that it be one of ∆(i), . . . ,∆(vi), and

satisfy the corresponding conditions, as required.

Lemma 3.13. Let p, q,≥ 2, n, k ≥ 3 and l > p+ 1. If P = (l, 2q|n, k|p, q)

satisfies none of the pairs of conditions [(i), (i′)], . . . , [(vi), (vi′)] of Lemma

3.12, then every spherical picture over P can be reduced to an empty picture

by bridge moves and the introduction and removal of dipoles.

Proof. Let Γ be a counterexample with as few vertices as possible, so that

Γ is dipole-reduced. Then by Lemma 3.12, if any interior region ∆ of Γ

had positive curvature, then it would have to be of some form ∆(j), and

the conditions (j) and (j′) would have to hold. Since this is, by hypothesis,

not the case, Γ cannot have any positively curved interior region. The dis-

tinguished region cannot provide the 4π curvature that a spherical picture

must hold, so we reach a contradiction, finding that no counterexample

with fewest vertices - and thus no counterexample at all - can exist.

Lemma 3.14. Let p, q ≥ 2, n, k ≥ 3 and l > p+ 1. If P = (l, 2q|n, k|p, q)

satisfies precisely one of conditions (i), (ii) or (iii) and none of (iv), (v) or

(vi), then every spherical picture over P can be reduced to an empty picture

by bridge-moves and the introduction and removal of dipoles.

Proof. If the corresponding condition (i′), (ii′) or (iii′) does not hold, then

the result follows by Lemma 3.13, so we assume that whichever (j) holds

is accompanied by (j′).

Let Γ be a counterexample with as few vertices as possible, so that Γ is

dipole-reduced. Then by Lemma 3.12 all interior positively curved regions

in Γ take the form associated to ∆(i), ∆(ii) or ∆(iii), depending on which

condition holds. We aim to show that all interior positively curved regions

can be emptied of curvature, without any other regions becoming positively

curved. We separate our argument by which of the conditions holds:
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(i): Let ∆ be a positively curved interior region of Γ. In this case, we have

q = 2, so that ∆ is a B-region with two vertices of type α and one of

type β, which we shall label γ. Since (i′) holds, n = 3 and k ∈ {3, 4},

so that ∆ has curvature 2π
r
− π

3
, which we aim to transfer to ∆′ as

denoted in Figure 4. As such, we must show that the curvature of ∆′

remains nonpositive after receiving c(∆) ≤ π
6

over each edge between

two vertices of type α. Since conditions (ii) and (iii) do not hold and

l > 3, ∆L cannot have degree three, so must have degree d ≥ 4.

Figure 4: Neighbourhood of a region of type ∆(i)

Since ∆′ receives curvature over edges between vertices of type α, it

must have at least as many vertices of type α as it has edges over which

it receives curvature. Suppose ∆′ receives curvature over r ≥ 0 edges.

If all vertices of ∆′ have valence at least four (which is necessarily the

case as long as ∆′ does not have three vertices of type β in a row), then

we bound the curvature of ∆′ by c(∆′) ≤ c(4, . . . , 4)+2πr(1
6
−1

4
)+r π

6
=

c(4, . . . , 4), which is nonpositive if ∆′ has degree d ≥ 4.

It is only possible for ∆′ to have three vertices of type β in a row,

so that the above argument fails, if ∆′ consists of two vertices of

type α and three of type β, or ∆′ has degree d ≥ 6. In the for-

mer case, c(∆′) ≤ c(3, 4, 4, 6, 6) = −2π
3

and ∆′ has only one edge

between two vertices of type α, so ∆′ can certainly receive all re-

quired curvature without becoming positively curved. In the latter
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case, we use the same argument as in the previous paragraph, bound-

ing c(∆′) ≤ c(3, . . . , 3) + 2πr(1
6
− 1

3
) + r π

6
≤ c(3, . . . , 3), which is

nonpositive since ∆′ has degree d ≥ 6.

Thus, with after the transfer of curvature, no interior regions of Γ

holds a positive quantity of curvature.

(ii): Let ∆ be a positively curved interior region of Γ, so that ∆ is an

A-region with one vertex of type β and two of type α. Since (ii′)

holds, n = k = 3, so that c(∆) = 2π
k+2
≤ π

15
, which we aim to transfer

to the region denoted ∆D in Figure 5. As such, we seek to show that

after receiving π
15

curvature over each edge that connects two vertices

of type α, which we shall refer to as receiving edges, ∆D remains

nonpositively curved. Since (i) does not hold, q > 2, so that 2q > 4.

Thus, ∆D has degree at least four.

Figure 5: The neighbourhood of a region of type ∆(ii)

If ∆D has degree four, it must have three vertices of type α and one

vertex of type β, so has curvature c(∆D) ≤ −π
3

, so can certainly accept

π
15

over each of its receiving edges without becoming positively curved.

If ∆D has degree five, it can have only a single vertex of type β, giving

c(∆D) ≤ −25π
12

, once more allowing it to receive π
15

curvature over each

of its (three) receiving edges without becoming positively curved.

If ∆D has degree d ≥ 6, we follow our argument from case (i), noting
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that ∆D has at least as many vertices of type α as it has receiv-

ing edges, so if ∆D has r receiving edges, after transfer of curvature

c(∆D) ≤ c(3, . . . , 3) + 2πr(1
6
− 1

3
) + r π

15
≤ c(3, . . . , 3) ≤ 0.

Thus, after our transfer of curvature, c(∆), c(∆D) ≤ 0, so no interior

region of Γ holds positive curvature

(iii): Let ∆ be a positively curved interior region of Γ, so that ∆ is an A-

region with one vertex of type α and two of type β. Letting ∆L, ∆R

be as depicted in Figure 6, we note that ∆D may be another identical

positively curved region, so we aim to split the curvature of ∆ between

∆L and ∆R. By symmetry, it shall suffice to show that after receiving

c(∆)/2 curvature over each edge between a vertex of type α and one of

type β shared by a positively curved interior region (which now take

on the label of receiving edges), ∆L remains nonpositively curved.

Figure 6: The neighbourhood of a region of type ∆(iii)

We first consider the case n = k = 3. In this case c(∆) ≤ π
3
, so we

must transfer π
6

curvature to ∆L. By the same argument as used in

the previous case, ∆L must have degree at least four.

If ∆L has degree four, and has only one vertex of type β, it has

curvature c(∆L) ≤ −π
2

, so will certainly not be positively curved after

receiving π
6

curvature over each of its two receiving edges.

If ∆L has degree four, and has two vertices of type β, note that its
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vertices must alternate, else we have two vertices of type β sharing

a single-edge. The vertices of type α around ∆L must have opposite

orientations, else we have 2q|2. Choose one of the vertices of type

β incident to ∆L and label it γ. The edges of ∆L incident to γ are

to vertices of type α of differing orientations. If both of these edges

were shared with positively curved regions, one of these regions would

have label 2p+1 and the other would have label 2p−1. These cannot

both be valid regions, else l|2. Thus, only one of the edges of ∆L

incident to γ can be shared with a positively curved region. Applying

the same argument to the other vertex of type β in ∆L, we see that

at most two of the edges of ∆L can be shared with a region of positive

curvature. Thus, since c(∆L) ≤ c(4, 4, 6, 6) = −2π
6

, ∆L can accept π
6

curvature over every edge it shares with a positively curved region,

and remain nonpositively curved itself.

If ∆L has degree four, it cannot have three vertices of type β, else we

would find a single-edge between two vertices of type β.

If ∆L has degree d, then the curvature of ∆L after transfer is bounded

above by c(4, 6, . . . , 4, 6)+dπ
6

= 2π−dπ+dπ(1
4
+ 1

6
)+ dπ

6
= 2π− 5πd

6
< 0

whenever d ≥ 5. Thus, if ∆L has degree five or higher, it can accept

π
6

curvature over each receiving edge.

With all possible ∆L accounted for, by symmetry, transferring half of

c(∆) to ∆L and half to ∆R gives a distribution of curvature in which

no interior region holds positive curvature.

As we have only used the degrees of vertices to bound curvature from

above, and since the curvature of a region is decreasing in the va-

lences of that region’s vertices, an identical argument applies when-

ever n, k ≥ 3, which covers all other n, k pairs satisfying (iii′).

Having shown in all three cases that the curvature of Γ can be rear-
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ranged so that no interior region remains positive, without having moved

more than π
6

across any edge, we note that the distinguished region, of

degree d has curvature after transfer not exceeding c(4, . . . , 4) + dπ
6

=

2π − dπ
3
≤ 2π, so the total curvature of Γ falls short of the 4π required

of a spherical picture. Thus, in the absence of a vertex-minimal counterex-

ample, every spherical picture must be reducible to an empty picture by

means of bridge-moves and the introduction of dipoles.

Lemma 3.15. Let p, q ≥ 2, n, k ≥ 3 and l > p+ 1. If P = (l, 2q|n, k|p, q)

satisfies precisely one of conditions (iv), (v) or (vi) and none of (i), (ii)

or (iii), then every spherical picture over P can be reduced to an empty

picture by bridge-moves, the introduction and removal of dipoles and the

introduction and removal of one spherical picture denoted S(iv), S(v) or

S(vi) in Figure 7, respectively.
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Figure 7: Possible spherical pictures. Since S(iv)(a), S(iv)(b) and S(iv)(c) re-

quire different values of k, and so no two of them can be permitted by the

same presentation, we shall abuse notation by referring to all of them as

S(iv), where convenient. All edges depicted are double-edges.

Proof. As in the previous lemma, we note that if the corresponding con-

dition (iv′), (v′) or (vi′) does not hold then the result follows by Lemma

3.13, so we assume that whichever (j) holds is accompanied by (j′).

Again, we let Γ be a counterexample with as few vertices as possible,

so that Γ is S(j)-reduced. Lemma 3.12, then, establishes that all interior
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positively curved regions of Γ take the form ∆(iv), ∆(v) or ∆(vi), depending

on which of (iv), (v) or (vi) holds. Our aim, as previously, shall be to

show that all interior positively curved regions can be emptied of curvature

without any other regions becoming positively curved. We separate our

argument by which of the conditions holds:

(iv): As noted above, we may assume that (iv′) holds, so that 3 ≤ k ≤

5. Following our abuse of notation in Figure 7, the sphere that we

suppose Γ is reduced relative to depends upon the value of k, so we

split our argument further according to whether k = 3, 4 or 5.

Suppose k = 3. In this case Γ is S(iv)(a)-reduced, so cannot contain

a connected copy of more than half (by vertex-count) of S(iv)(a), a

tetrahedron of vertices of type β. However, ∆(iv), whose form all

positively curved interior regions of Γ must take, by Lemma 3.12, is

itself such a figure. Thus, no interior region of Γ can have positive

curvature, so the total curvature of Γ is bounded above by that of

its distinguished region, which cannot have more than 2π. Thus, no

such S(iv)-reduced spherical picture Γ can exist. In the absence of

a counterexample with fewest vertices, all spherical pictures over P

must be reducible to an empty picture by bridge-moves, dipoles and

S(iv).

Suppose now that k = 4. Then Γ is S(iv)(b)-reduced, so cannot contain

a connected copy of more than half (by vertex-count) of S(iv)(b), an

octahedron of vertices of type β. Let ∆ be a positively curved interior

region, which as above must take the form of a triangle of vertices of

type β. Then no other vertex of type β can share an edge with any

of the vertices of ∆, else we have a connected copy of five of the eight

vertices of S(iv)(b). As such, each of the vertices of ∆ has precisely two

double-edges, and thus has valence six, so c(∆) = c(6, 6, 6) = 0. Thus,
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Γ has no positively curved interior regions, so by the usual argument

cannot be a spherical picture, and so every spherical picture over

P are reducible to an empty picture via bridge-moves, dipoles and

S(iv)(b).

Finally, suppose that k = 5. Then Γ is S(iv)(c)-reduced, so cannot con-

tain a connected copy of more than half (by vertex-count) of S(iv)(c),

an icosahedron of vertices of type β. Let ∆ be a positively curved

interior region, which as above must take the form of a triangle of

vertices of type β. If all three vertices of ∆ have edges other than

double-edges to vertices of type β, then they have valence of at least

six, so c(∆) ≤ c(6, 6, 6) = 0. Thus, at least one of the vertices of ∆

must have five double-edges, giving us the arrangement depicted in

Figure 8, potentially after some bridge moves. Observe, then, that

if either of the vertices γ1 or γ2 have an edge to another vertex of

type β, then we have a connected copy of part of S(iv)(c) containing

seven of S(iv)(c)’s twelve vertices, which cannot be present in Γ, so γ1

and γ2 must each have at least four edges to vertices of type α, giving

c(∆) = c(5, 7, 7) < 0. Thus, Γ satisfying the conditions set out cannot

have any positively curved interior regions, so by the usual argument

every spherical picture over P is reducible to an empty picture via

bridge-moves, dipoles and S(iv)(c).

(v): In this case Γ is S(v)-reduced, so cannot contain a connected copy

of more than half (by vertices) of S(v), a cube of vertices of type β.

By assumption, (v′) holds, so k = 3. Let ∆ be an interior region of

Γ with positive curvature. Then by Lemma 3.12 ∆ takes the form

∆(v), a square of vertices of type β. No vertex of ∆ can have a third

double edge, as such would lead to another vertex of type β, giving

us a connected copy of five of the eight vertices of S(v). Thus, each
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Figure 8: a neighbourhood of a region of type ∆(iv)

vertex of ∆ is connected instead to a pair of vertices of type α, and

therefore has valence 4, so that c(∆) = c(4, 4, 4, 4) = 0.

Thus, Γ has no positively curved interior regions, and so has total

curvature of at most 2π, falling short of the 4π required of a spherical

picture. In the absence of a counterexample with fewest vertices, all

spherical pictures over P must be reducible to an empty picture by

bridge-moves, dipoles and S(iv).

(vi): In this case Γ is S(vi)-reduced, so cannot contain a connected copy

of more than half (by vertices) of S(vi), a dodecahedron of vertices of

type β. By assumption, (vi′) holds, so k = 3. Let ∆ be an interior

region of Γ with positive curvature. Then by Lemma 3.12 ∆ takes

the form ∆(v), a pentagon of vertices of type β. Each vertex of ∆ has

valence three if and only if it has a double-edge to a vertex outside

of ∆, and otherwise has valence four. We note that if more than one

vertex of ∆ had valence four, ∆ would not be positively curved. Thus,

we segment our argument according to whether ∆ has any vertex of

valence four.

Suppose first that all vertices of ∆ have valence three, so that each

vertex shares a double-edge with a β vertex outside of ∆. These

42



external vertices cannot have any other neighbours of type β, else

we have a copy of more than half of ∆(v). In this case, c(∆) =

c(5, 5, 5, 5, 5) = π
3
, so we transfer π

15
curvature to each adjacent region.

Letting ∆′ be a region adjacent to ∆, note that since (iv) and (v)

do not hold, ∆′ cannot have degree three or four. Since the external

vertices cannot be adjacent to vertices of type β other than their

neighbour in ∆, the boundary of ∆′ around the edge it shares with

∆ must consist of a vertex of type α followed by four of type β

and another of type α. Since the same must be found around any

other edge that ∆′ receives over, ∆′ must have degree at least five

times the number of edges over which it receives. Thus if ∆′ receives

curvature over r edges we can bound the pre-transfer curvature of ∆′

below the curvature of a region whose boundary is r repetitions of

a vertex of type α followed by four of type β, which is 2π − 5πr +

2πr(4
3

+ 1
6
) = 2π − 2πr. Thus, after transfer, c(∆′) ≤ 2π − 11πr

6
,

which is nonpositive for r ≥ 2. For the r = 1 case, note that ∆′

cannot have degree five, else we would have l|p± 1, so after transfer

c(∆′) ≤ c(3, 3, 3, 3, 6, 6) + π
6

= −π
2

. Thus, this transfer of curvature

cannot result in ∆′ becoming positively curved.

Suppose now that ∆ has one vertex of valence four, so that c(∆) = 1
6
.

The neighbourhood of ∆ is, then, as depicted in Figure 9. If γ1

and γ2 were both of type β, we have a connected copy of part of

S(vi) containing eleven of its twenty vertices, so at least one of the

two must be of type α. Assume without loss of generality, then,

that γ1 is of type α. We transfer the curvature of ∆ into ∆L. A

priori, it is possible that ∆L has degree four - that is, γ1 is one of the

vertices of type α adjacent to ∆’s vertex of valence four - however,

this would require l|3p± 1, whose only solution for which (vi) holds
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is l = 5, p = 3, which is ruled out as it satisfies (iii). Thus, ∆L

has degree at least five. If ∆L accepts curvature over only one edge,

c(∆L) ≤ c(3, 4, 4, 6, 6) = −2π
3
< −π

6
, so ∆L does not become positively

curved after receiving curvature. If ∆L receives curvature over r ≥ 2

edges, its boundary must contain at least r segments consisting of a

vertex of type α followed by three of type β and another of type α,

so ∆L has curvature c(∆) ≤ 2π − 2πr < −πr
6

. Thus, our transfer of

curvature leaves no interior region positively curved.

Figure 9: The neighbourhood of a region of type ∆(vi)

If some region ∆′ receives curvature via both of these types of transfer,

take the α−β−β−β−β segments over which ∆′ receives curvature

in the first type of transfer and concatenating them, to form a (hypo-

thetical) region ∆′1, and doing likewise for the second type of transfer

to form another region ∆′2. Then c(∆′) ≤ c(∆′1) + c(∆′2) − 2π. By

the arguments above, if ∆′1 received all the curvature that ∆′ does

by the first type of transfer, it would have curvature not exceeding π
15

(accounting for the one-receiving-edge case), and ∆′2, upon similar re-

ceipt, would have no more than π
6

curvature. These excesses are more

than balanced by the −2π in this expression, so ∆′ is not positively
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curved after both types of transfer of curvature are performed.

Thus, after the transfer of curvature, every interior region of Γ holds

nonpositive curvature. The intrinsic curvature of the distinguished

region cannot exceed 2π, and no more than π
6

curvature is transferred

over each edge, so in order to reach the 4π total curvature that Γ

must hold, the distinguished region must receive curvature over at

least twelve edges. However, a region with r edges has curvature not

exceeding 2π − rπ
3
< − rπ

6
for r ≥ 12. Thus, curvature transferred

to the distinguished region cannot possibly make up the shortfall. In

the absence of a counterexample with fewest vertices, all spherical

pictures over P must be reducible to an empty picture by bridge-

moves, dipoles and S(v).

For the following, and the rest of this section, we must extend our

assumption that n, k ≥ 3 to 1
n

+ 1
k
≤ 1

2
. This allows us to approach cases

in which more than one of the conditions (i), . . . , (vi) hold.

Lemma 3.16. Let p, q ≥ 2, 1
n

+ 1
k
≤ 1

2
and l > p + 1. Then every

spherical picture Γ over the presentation P = (l, 2q|n, k|p, q) is reducible to

an empty picture by bridge-moves, the introduction and removal of dipoles

and, if applicable, the introduction and removal of one of S(iv), S(v) or

S(vi).

Proof. By Lemma 3.13, we need only concern ourselves with cases in which

at least one of the pairs of conditions [(j), (j′)] holds. If only one condition

(j) holds, then Lemmas 3.14 and 3.15 suffice. Thus, we consider the case

where multiple such conditions hold. Our aim is to show that, with 1
n

+

1
k
≤ 1

2
, the curvature redistribution from Lemmas 3.14 and 3.15 serves to

eliminate all curvature. The conditions (i′) and (ii′) cannot hold, since
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1
n

+ 1
k
≤ 1

2
, so positively curved regions of types ∆(i) or ∆(ii) cannot exist in

pictures over these presentations. Thus, it suffices for us to show that any

use of the assumption that other conditions do not hold in the arguments

for (iii), . . . , (vi) are unnecessary given 1
n

+ 1
k
≤ 1

2
, and that when n and k

are such that more than one of (iii), . . . , (vi) can hold, no region receives

curvature under both redistributions.

The assumptions that multiple conditions do not hold are used in the

(iii), (iv), (v) or (vi) cases of Lemmas 3.14 and 3.15 to rule out the following

possibilities, which we must now address:

(1) A region of type ∆(i) being adjacent to one of type ∆(iii) in case (iii)

of Lemma 3.14.

(2) A region of type ∆(iv) or type ∆(v) being adjacent to one of type ∆(vi)

in the (vi) case of Lemma 3.15.

(3) A region with three vertices of type β and one of type α being adjacent

to a region of type ∆(vi) in the (vi) case of Lemma 3.15.

In dealing with case (1), (iii) holds and 1
n

+ 1
k
≤ 1

2
, so that either (n, k) ∈

{(4, 4), (4, 5)} or k = 3. Case (iii) of Lemma 3.14 removes curvature from

regions of type ∆(iii) across two edges, and regions of type ∆(i) have two

edges over which they can receive curvature, so it suffices to show that if ∆

is of type ∆(iii) and ∆′ is of type ∆(i) then c(∆) + c(∆′) ≤ 0. The vertices

of a region of type ∆(iii) have valence 2n, k+1 and k+1, whilst the vertices

of a region of type ∆(i) have valence 2n, 2n and k + 1. Direct calculation

shows that c(2n, k+ 1, k+ 1) + c(2n, 2n, k+ 1) ≤ 0 for all permissible pairs

(n, k).

Case (2) does not require any consideration of curvature, as if the re-

gions ruled out were possible over the presentations in question, then we

would have l|5p and either l|4p or l|3p, so that l|p < l.
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In case (3), the region in question is required to receive π
6

curvature,

and is in no danger of receiving over multiple edges. Since k = 3, we have

n ≥ 6, so the region has curvature c(3, 4, 4, 2n) = π
n
− π

3
≤ −π

6
, as required.

Thus, the single-condition assumptions underlying the curvature redis-

tribution from any given region in Lemmas 3.14 and 3.15 are not necessary

when 1
n

+ 1
k
≤ 1

2
.

We now consider how the redistribution of curvature under different

schemes from Lemmas 3.14 and 3.15 may interact. Note first, that the only

(l, p) pairs satisfying more than one of (iii), (iv), (v) and (vi) are (5, 2) and

(5, 3), satisfying (iii) and (vi). Curvature from a positively curved region

∆ in case (vi) transfers curvature only to A-regions, and cannot transfer to

a region of type ∆(iii), as if ∆ shared an edge with such a region, it would

not be positively curved. Curvature in case (iii) is only transferred to B-

regions. Thus, in a S(vi)-reduced picture over presentations satisfying both

(iii) and (vi), following the existing schemes for curvature transfer results

in a picture with no positively curved interior regions, and a distinguished

region carrying less than 4π curvature. Since this was the only problem

pairing (and noting that the conditions (iv), (v) and (vi) are incompatible,

so that there can be no ambiguity as to which sphere we reduce by), and

dipole- or S(j)-reduced spherical picture over a presentation satisfying the

conditions of the lemma must fall short of the 4π curvature required of a

spherical picture. Thus, every spherical picture over a presentation P sat-

isfying the conditions of the lemma must be reducible to an empty picture

by bridge-moves, dipoles and, as appropriate, one of S(iv), S(v) or S(vi).

Given the equivalence between homotopy classes of maps and spherical

pictures noted in Section 2, this gives us the following:

Corollary 3.17. Let P = (l, 2q|n, k|p, q), with p, q ≥ 2, 1
n

+ 1
k
≤ 1

k
, and

l > p+1. If P satisfies none of the pairs of conditions [(iv), (iv′)], [(v), (v′)]

47



or [(vi), (vi′)], then the second homotopy group of the space Z associated

to P) is generated by the homotopy classes of maps S2 → Z represented by

the proper dipoles Dα and Dβ. If P does satisfy some such pair, then the

second homotopy group of Z is generated by the classes represented by Dα,

Dβ and the appropriate S(j).

As in the l = 2p,m = 2q case, we also obtain a result on the orders of

elements:

Corollary 3.18. Let P = (l, 2q|n, k|p, q), with p, q ≥ 2, 1
n

+ 1
k
≤ 1

2
, and

l > p + 1. Then the orders of a b, (ab) and (apbq) in the group with

presentation P are precisely l, 2q, n and k, respectively.

Proof. The arguments used in Corollary 3.9 suffice to establish the orders

of a, b and (ab). Applying the argument that Corollary 3.9 uses for (ab) to

(apbq) establishes this element as having order k, as required.

3.2.2 Completing the Argument

Proposition 3.19. Let G be the group with presentation P = (l, 2q|n, k|p, q)

with p, q ≥ 2, 1
n

+ 1
k
≤ 1

2
and l > p + 1, satisfying one of the (mutually

exclusive) pairs of conditions [(iv), (iv′)], [(v), (v′)] or [(vi), (vi′)]. Then G

is infinite.

Proof. Suppose that G is finite. Corollary 3.17 establishes that π2(ZP) =

〈Dα,Dβ, S(j)〉, where P satisfies [(j), (j′)]. Corollary 3.18 establishes that

a, b (ab) and (apbq) have orders l, 2q, n and k, respectively. Observe that

these presentations can be expressed as

〈a, b|a
x
y
p, b2q, (ab)n, (apbq)k〉

with x, y coprime and x
y
p an integer, so that y|p, and in each case 1

x
+ 1
k
> 1

2
.

Expressing P in this way, we use the pushout
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G0 := 〈c, d|〉 〈c, d|cx, d2, (cyd)k〉 =: G1

G2 := 〈a, b|(ab)n〉 〈a, b|a
x
y
p, b2q, (ab)n, (apbq)k〉 = G

φ

ψ

where φ maps c to c and d to d, whilst ψ maps c to a
p
y and d to bq.

We use the same topological construction as used in Lemma 3.10, re-

placing factors of 2 with factors of p
y
, where appropriate. Since S(iv), S(v)

and S(vi) can all be mapped entirely into X1, the same argument as used

in Lemma 3.10 shows that this pushout is geometrically Mayer-Vietoris, so

that
1

|G|
= χQ(G) = χQ(G1) + χQ(G2)− χQ(G0).

As in Lemma 3.10, χQ(G2)− χQ(G0) = 1
n
. Since x and y are coprime, G1

is isomorphic to the finite triangle group (2, x, k), and thus has positive

rational Euler characteristic. Therefore, 1
|G| >

1
n
, which cannot be the case,

as G contains an element of order n. Thus, G must be infinite.

Proposition 3.20. Let G be the group with presentation P = (l, 2q|n, k|p, q)

with p, q ≥ 2, 1
n

+ 1
k
≤ 1

2
and l > p+ 1, satisfying none of the pairs of con-

ditions [(iv), (iv′)], [(v), (v′)] or [(vi), (vi′)]. Then G is infinite.

Proof. For this result, we require only non-collapse. A result of R.M.

Thomas [12] establishes that if G has presentation 〈x1, . . . , xi|rn1
1 , . . . , r

nj

j 〉,

and r1, . . . , rj have order n1, . . . , nj in G, then G can only be finite if

1

n1

+ · · ·+ 1

nj
− i+ 1 > 0.

In the case of the presentation P , we note that by Corollary 3.18, a, b, (ab)

and apbq have orders l, 2q, n and k, so that P satisfies the conditions of

[12], with i = 2, j = 4 and n1, n2, n3 and n4 equal to l, 2q, n and k. Thus,

for G to be finite would require

1

l
+

1

2q
+

1

n
+

1

k
> 1,
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but, by hypothesis, l > p + 1 ≥ 3, 2q ≥ 4, and 1
n

+ 1
k
≤ 1

2
, so that this

cannot be the case. Therefore, G is infinite.

Combining these two cases, we reach our result for this subsection:

Theorem 3.21. Let G be the group with presentation P = (l, 2q|n, k|p, q)

with p, q ≥ 2, 1
n

+ 1
k
≤ 1

2
and l > p+ 1. Then G is infinite.

3.3 The Broad Case: l 6= 2p,m 6= 2q

These presentations may be dispatched rather more quickly. We maintain

our assumption that 1
n

+ 1
k
≥ 1

2
, and continue to exclude those cases re-

ducible to p = 1 or q = 1, so that 1 < p < l − 1 and 1 < q < m − 1. In

a dipole-reduced picture over such a presentation, note that no region of

degree two can arise. Thus, double-edges do not occur over these presenta-

tions, so vertices of type α and β have valence 2n and 2k, respectively. Since

n and k are both, by hypothesis, at least three, all vertices in pictures over

these presentations have valence at least six. Therefore, any interior region

∆ of a picture over these presentations has curvature c(∆) ≤ c(6, 6, 6) = 0.

Thus, pictures over these presentation cannot have any interior curvature,

and so admit no spherical picture. Applying the arguments from Corollary

3.18 and Proposition 3.20, we reach

Theorem 3.22. Let G be the group with presentation P = (l,m|n, k|p, q)

with p, q ≥ 2, 1
n

+ 1
k
≤ 1

2
, l > p+ 1 and m > q + 1. Then G is infinite.

50



4 The p = 1 case: l = 2

We shall first approach these presentations via the method of pictures,

as described above, and then fill in remaining cases piecemeal via other

methods.

Our primary result from this section shall be the following:

Theorem 4.1. If m,n, k > 1, 1 < q ≤ m
2

, and 1
n

+ 1
k
≤ 1

2
, then the

presentation (2,m|n, k|1, q) represents a finite group if and only if it is one

of the following.

(2,m|n, k|1, 1) : 1
m

+ 1
gcd(n,k)

> 1
2

(2, 5|4, 5|1, 2)

(2,m|3, k|1, 2) : m ≥ 4, k ≥ 6, gcd(m, k) ≤ 5 (2, 5|5, 4|1, 2)

(2, 2m̂+ 1|n, 3|1, m̂) : m̂ ≥ 2, k ≥ 6, gcd(m, k) ≤ 5 (2, 6|3, k|1, 3) : k ≥ 6

(2, 4|4, k|1, 2) : k ≥ 4 (2, 6|7, 3|1, 2)

(2, 4|5, k|1, 2) : 4 ≤ k ≤ 5 (2, 7|n, 3|1, 2) : 6 ≤ n ≤ 8

(2, 4|n, 3|1, 2) : 6 ≤ n ≤ 9 (2, 7|3, k|1, 3) : 6 ≤ k ≤ 8

(2, 5|4, 4|1, 2) : k ≥ 4 (2, 8|7, 3|1, 2)

This result relies upon a variety of preliminary results, and two core

lemmas using the method of pictures discussed in previous chapters. We

will begin with the largely computational preliminary results, obtained

with [7], and then proceed to the core lemmas, which establish non-collapse

and certain homological conditions upon the presentation complexes of the

groups in question, allowing us to rule out finiteness via a combination of

a push-out construction, and arithmetic regarding the orders of the groups

in question. Before these, however, we note the following isomorphisms:

Lemma 4.2. (i) (2,m|n, k|1, q) ∼= (2,m|n, k|1,m− q)

(ii) (2, αq ± 1|n, k|1, q) ∼= (2, αq ± 1|k, n|1, α)

(iii) (2,m|n, k|1, 2) ∼= (n,m|k, 2|1,m− 1)
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Proof. (i) Since, in Gt := 〈a, b|a2, bm, (ab)n〉, (a−1b−q) is conjugate to

(b−qa−1) = (abq)−1, adding the relator (a−1b−q)k gives the same group

as adding the relator (abq)k. Since the relations a = a−1 and b−q =

bm−q also hold in Gt, adding the relator (abm−q)k also gives the same

group.

(ii) Setting c := bq, so that b = c±α, and replacing all occurrences of b in

each relator with this expression gives the required presentation on a

and c.

(iii) Set c := ab, so that a = cb−1 and replacing all occurrences of a in

each relator with this expression gives the required presentation on b

and c.

These identities allow us to make the following assumptions about

m,n, k and q in the groups in question:

(A1) 0 ≤ q ≤ m
2

Since adding any multiple of m to q gives an identical group, we may

minimise the absolute value of q, and use Lemma 4.2(i) to replace q with

m−q if negative, which after another subtraction of m gives a non-negative

value that is at most m
2

.

(A2) q > 2

Under (A1) we may already assume that q is non-negative, so we need

only rule out the values of 0, 1 and 2. If q = 0, then our group is either the

triangle group (2,m, n) (and thus is finite if and only if 1
m

+ 1
n
> 1

2
), if k is

even, or the cyclic group on hcf(m,n) elements, if k is odd. If q = 1, then

our group is the triangle group (2,m, hcf(n, k)), and so is finite if and only
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if 1
m

+ 1
hcf(n,k)

> 1
2
. If q = 2, then Lemma 4.2(iii) allows us to replace it

with (n,m|k, 2|1,m − 1), which is the group (n,m|k, 2) in the notation of

[6], in which finiteness amongst that family of groups was characterised.

Note that (A1) and (A2) imply m ≥ 6

(A3) m 6= 2q + 1

If m = 2q + 1, Lemma 4.2(ii) allows us to transform (2,m|n, k|1, q) to

(2,m|k, n|1, 2), which via the argument for (A2) we can already charac-

terise as finite or infinite.

4.1 Preliminary Results

Lemma 4.3. If 1
m

+ 1
n

+ 1
k
> 1

2
, n ≥ 4, k ≥ 4 and (n, k) 6= (4, 4) then G(P)

is infinite

Proof. 70 triples (n, k,m) satisfy these conditions, specifically (4, 5,m) :

6 ≤ m ≤ 19; (4, 6,m) : 6 ≤ m ≤ 11; (4, 7,m) : 6 ≤ m ≤ 9; (4, k,m) :

8 ≤ k ≤ 9, 6 ≤ m ≤ 7; (4, k, 6) : 10 ≤ k ≤ 11; (5, 4,m) : 6 ≤ m ≤ 19;

(5, 5,m) : 6 ≤ m ≤ 9; (5, 6,m) : 6 ≤ m ≤ 7; (5, 7, 6);(6, 4,m) : 6 ≤ m ≤ 11;

(6, 5,m) : 6 ≤ m ≤ 7; (7, 4,m) : 6 ≤ m ≤ 9; (7, 5, 6); (n, 4,m) : 8 ≤ n ≤

9, 6 ≤ m ≤ 7; and (n, 4, 6) : 10 ≤ n ≤ 11. Accounting for possible values

of q, given that 3 ≤ q ≤ m
2

, this translates to 140 presentations, each of

which is infinite-automatic via [7][8].

Lemma 4.4. If n = 3 and (k,m; q) is one of (7, 21, q) : q = 6 or 9; (7, 28, q) :

q = 5, 7, 11 or 13); (7, 36, q) : q = 5, 6, 7, 9, 11, 13 or 17; (7, 39, q) : q =

6, 9 or 12; (7, 40, q) : q = 5, 7, 9, 11, 15 or 17; (8, 12, 5); (8, 16, q) : q = 6 or 7;

(8, 18, q) : q = 5, 6, 7 or 8; (8, 20, q) : q = 5, 6, 8 or 9; (8, 21, q) : q =

6, 7, 8 or 9; (8, 22, q) : q = 5, 6, 8, 9 or 10; (9, 12, 5); (9, 15, q) : q = 5 or 6;
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(9, 16, 7); (10, 12, 5); (10, 14, 6); (11, 12, 5); (7, 36, 12); (7, 36, 15); (7, 40, 19),

then G(P) is infinite.

Proof. The groups (2, 18|3, 7|1, 12) and (2, 18|3, 7|1, 15) are infinite auto-

matic, and are quotients of (2, 18|3, 7|1, 12) and (2, 18|3, 7|1, 15), respec-

tively. (2, 40|3, 7|1, 19) has a subgroup of index 8 whose core, of index

336, has infinite Abelianisation. The remaining 49 groups are infinite au-

tomatic.

Lemma 4.5. (i) (2,m|3, k|1, 3) is infinite for m ≥ 8 and k ≥ 6.

(ii) (2, 8|n, 3|1, 3) is infinite for n ≥ 6

(iii) (2, 10|n, 3|1, 3) is infinite for n ≥ 6

Proof. (i) Since we have the relators a2 = 1 and (ab)3, bab = ab−1a is

an identity in each of the groups in this family. We may therefore

rewrite the relator (ab3)k, already expressible as (bab2)k, as (ab−1ab)k,

or (a−1b−1ab)k, so that (2,m|3, k|1, 3) can be identified with what [3]

denotes as (2,m, 3; k), which in the same paper is shown to be infinite.

(ii) Since we have the relators a2 = 1 and (ab3)3), ab3 = b−3ab−3a−1 is

an identity in each of the groups in this family. Since we also have

the relator b8, we may write the relator (ab)n as (ab3b6)n. Writing ab3

in terms of our identity above, this becomes (b−3ab−3a−1b6)n, which

is conjugate to (b3ab−3a−1)n. Writing the resulting presentation in

terms of a and c := b3, we obtain the presentation denoted in [3] as

(2, 8, 3;n), which the same paper shows to be infinite for n ≥ 6.

(iii) Expressing the presentation in terms of a and c := b3 shows that

(2, 10|n, 3|1, 3) is isomorphic to (2, 10|3, n|1, 3), which is infinite, by

part (i) of this lemma.
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Lemma 4.6. If k = 3 and (m,n, q) is one of (12, n, 5) : 8 ≤ n ≤

11; (14, 10, 6); (16, 9, 7); (17, 9, 5); (16, 8, q) : q = 6 or 7; (18, 8, q) : q =

5, 7 or 8; (20, 8, q) : q = 6 or 9; (21, 8, q) : q = 6, 8 or 9; (22, 8, q) :

q = 5, 6, 8 or 9; (28, 7, q) : q = 5 or 11; (36, 7, q) : q = 5, 7, 11, 13 or 15;

(40, 7, q) : q = 3, 7, 9, 11, 15, 17 or 19. Then G(P) is infinite.

Proof. The groups (2, 36|7, 3|1, 11), (2, 36|7, 3|1, 13), (2, 36|7, 3|1, 15),

(2, 40|7, 3|1, 9), (2, 40|7, 3|1, 11), (2, 40|7, 3|1, 15) and (2, 40|7, 3|1, 17) have

as quotients (2, 18|7, 3|1, 11), (2, 18|7, 3|1, 13), (2, 18|7, 3|1, 15), (2, 20|7, 3|1, 9),

(2, 20|7, 3|1, 11), (2, 20|7, 3|1, 15) and (2, 20|7, 3|1, 17), which are infinite au-

tomatic. The group (2, 40|7, 3|1, 19) has a subgroup of index 8 whose core,

of index 336, has infinite Abelianisation. The remaining 27 cases yield

infinite automatic groups.

Lemma 4.7. The group (2, 6|3, k|1, 3) is finite of order 6k2 for k ≥ 6 with

derived subgroup Z2
k, and is solvable.

Proof. For any k, the Abelianisation GAb of this group G is cyclic on 6 el-

ements, generated by the image of b, whose cube is the image of a. Thus,

the derived subgroup G ′ of G has index 6 in G. To find the order of this sub-

group, we consider the corresponding cover of the presentation complex of

G. The vertices of this cover correspond to the elements of GAb, and shall be

denoted v0, . . . , v5. The 1-cell of the presentation complex corresponding to

b lifts to edges y0 := (v0, v1), y1 := (v1, v2), y2 := (v2, v3), y3 := (v3, v4), y4 :=

(v4, v5) and y5 := (v5, v0), whilst the 1-cell corresponding to a lifts to edges

x0 := (v0, v3), x1 := (v1, v4), x2 := (v2, v5), x3 := (v3, v0), x4 := (v4, v1) and

x5 := (v5, v2). The 2-cells corresponding to the relators of G lift to 2-cells

xixi+3, yiyi+1yi+2yi+3yi+4yi+5, xiyi+3xi+4yi+1xi+2yi+5, (xiyi+3yi+4yi+5)
k (for

all 0 ≤ i ≤ 5, taking subscripts modulo 6). The edges y0, y1, y2, y3 and y4

form a spanning tree, which we collapse to obtain a space with one vertex,

giving us a presentation (omitting y5, since each of the cells containing only
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edges of type y now renders it trivial) is

G ′ = 〈x0, x1, x2, x3, x4, x5|x0x3, x1x4, x2x5, x0x4x2, x1x5x3, xki (0 ≤ i ≤ 5)〉

= 〈x0, x1, x2|xk0, xk1, xk2, x0x−11 x2, x1x
−1
2 x−10 〉

= 〈x0, x1|xk0, xk1, [x0, x1]〉

To observe that G is solvable, note that it is a quotient of the solvable

von Dyck group (2, 6, 3).

4.2 Curvature argument

As set out in Section 2, our approach to finiteness via the rational Euler

characteristic requires that we characterise the pictures that exist over a

given presentation. As related in the same section, we aim to assign to each

presentation P under consideration a set S of spherical pictures over P such

that any spherical picture over P can be reduced to an empty picture by

bridge moves, the addition and removal of dipoles, and the addition and

removal of elements of S. As noted, this suffices to provide us with the

generating set for the fundamental group of ZP .

Since we are dealing with the case l = 2, it is possible to encounter

double-edges with interior label a2 in pictures over these presentations. To

simplify later argument, we shall accumulate as many edges as possible into

such double-edges: So long as a picture Γ contains an A-region with more

than two corners, we can pick a pair of adjacent corners, and use a bridge

move to form them into a double-edge, as in Figure 10. This procedure

does not disassemble any double-edge containing an A-region, so strictly

increases the number of ’a’ labels inside double-edges, and so since the

total number of ’a’ labels in the picture, must decrease the number of ’a’

labels not inside double-edges. As such, we can repeat this process for as

long as Γ has any A-regions with more than two corners, so must reach
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an arrangement in which the only A-regions not inside double-edges have

only a single corner. Since m 6= 1, this can only be the distinguished

region. Since this region must have precisely one edge and one vertex, its

edge must meet its vertex twice. Thus, after undergoing this procedure,

all α-vertices have precisely n edges, up to parallelism, and all β-vertices

(excluding the case of an improper dipole, which shall be discussed below)

have precisely k, up to the same. We shall assume that all pictures we deal

with have undergone this procedure, and so dispense with the notation of

single, double, etc edges, simply referring to each double-edge as an edge.

Figure 10: Creating a double-edge via the arc γ

As it allows some measure of simplification, we shall cover the cases in

which it can be shown that S consists only of proper dipoles before those

in which some other spherical picture is required.

First, however, we establish the following:

Lemma 4.8. If ∆ is an interior, positively curved region of a dipole-

reduced picture Γ over the presentation (2,m|n, k|1, q) satisfying (A1),

(A2), (A3), m 6= 2q, and 1
n

+ 1
k
≤ 1

2
then ∆ is one of {T, Sj(1 ≤ j ≤

5), P}, as depicted in Figure 11.
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Figure 11: Possible positively curved regions

Proof. Since both 1
n

+ 1
k
≥ 1

2
, both n and k must be at least 3, so α-vertices

and β-vertices must both have at least 3 double-edges. Thus, we may

exclude all regions with at least 6 vertices from consideration. As such,

we proceed by the degree of the region. We may also rule out d(∆) = 1,

as this would require m = 1 or m = q, neither of which are permitted by

(A1) and (A2).

If d(∆) = 2, then ∆ must have label 0, 2,±q ± 1, or 2q. Whichever

of these values is taken must be a multiple of m, but the only values that

permit this are 0 and 2q. If the label of ∆ is 0, then the two vertices

bounding it must be of the same type, and in opposite orientation, so can

be transformed into a dipole by bridge moves. On the other hand, if the

label is 2q, this forces m = 2q, contradicting the hypotheses of the lemma.

If d(∆) = 3, then since m ≥ 6, the only possible label is 3q, which can

only be achieved via the region T .

If d(∆) = 4 then since 1
n

+ 1
k
≤ 1

2
rules out the possibility that ∆

has two ±α-vertices and two ±β-vertices. S1 through S4 cover all four

possibilities in which ∆ has one vertex of one type, and three of the other.

Since m ≥ 6, ∆ cannot have four α±1-vertices, which leaves S5 as the only
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remaining possibility.

If d(∆) = 5, then since 1
n

+ 1
k
≤ 1

2
∆ can only have positive curvature if

all vertices are of the same type. m ≥ 6 again rules out the all-α±1-vertex

case, leaving us only P .

Lemma 4.9. If any of the following hold, then no dipole-reduced picture

exists over (2,m|n, k|1, q).

(i) m > 2q ≥ 10, m /∈ {2q + 1, 3q ± 1} and either

(a) n ≥ 4, k ≥ 4 and either m 6= 3q, or k ≥ 6,

(b) n = 3, k ≥ 6,

or

(c) n ≥ 6, k = 3 and m /∈ {3q, 4q, 5q
2
, 5q}

(ii) m > 2q = 8, m /∈ {9, 11, 13} and either

(a) n ≥ 4, k ≥ 4, m 6= 8, and either m 6= 12 or k ≥ 6,

(b) n = 3, k ≥ 6 and m 6= 8,

or

(c) n ≥ 6, k = 3 and m /∈ {8, 10, 12, 16, 20}

(iii) m > 2q = 6, m 6= 7 and either

(a) n ≥ 4, k ≥ 4 and either m 6= 9 or k ≥ 6 and m 6= 6,

or

(b) n ≥ 6, k = 3 and m /∈ {8, 9, 10, 12, 15}

Proof. Dividing cases as in the statement of the lemma,
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(i)-(ii) Since q ≥ 4 and m 6= 3q ± 1, Lemma 4.8 permits only regions of the

forms T , S5 and P as positively curved interior regions of a spherical

picture Γ over (2,m|n, k|1, q). If T occurs then m = 3q which, within

conditions (i) and (ii), forces n ≥ 6, whereas T is positively curved

only when n < 6. The region S5 occurs only when m|4q, so since

m > 2q in both cases it can only occur when m = 4q. Within the

conditions of (i) and (ii), m = 4q implies k ≥ 4, however S5 is only

positively curved when k < 4. P only occurs when m divides 5q.

Given that m > 2q, this is only the case when m = 5q or m = 5q
2

.

This condition can only coincide with one of (i) or (ii) if k ≥ 4,

however P is only positively curved when k < 4.

Since (i) and (ii) permit T , S5 and P as interior regions only in

conditions under which they are not positively curved, and allow no

other potentially positively curved interior region, we must conclude

that the 4π total curvature that Γ must have, being spherical, lies

entirely within its distinguished region. However, the curvature of a

single region is bounded above by 2π, so this region must fall short,

contradicting our notion of a spherical picture.

(iii) For the cases in (iii), any of T, S1, S2, S3, S4, S5 and P are possible.

However, following the same argumentative pattern as for (i)-(ii),

we note that (iii) only permits m = 3q, and thus the existence of

regions of type T , when m = 9 so that k ≥ 6, precisely the condition

in which regions of type T are non-positively curved. S1 and S2

are only positively curved when n = 3 or (n, k) = (4, 3), neither

of which are permitted by (iii). For S3 or S4 to appear requires

m = 3q ± 1 = 9 ± 1, which under (iii) requires n ≥ 4, k ≥ 4, which

suffices to rule out S3 and S4 being positively curved. Internal regions

can only take the form of S5 when m = 12, which can only occur
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under (iii) if k ≥ 4, and regions of this form are only positively curved

when k < 4, so internal regions in the form of S5 cannot contribute

positive curvature. Similarly, P can only appear if m = 15, which is

only compatible with (iii) if k ≥ 4, whilst P is only positively curved

if k < 4.

Thus, by an argument identical to that of the (i)-(ii) case, no dipole-

reduced spherical picture can exist over (2,m|n, k|1, q) wherem,n, k, q

satisfy the conditions of (iii).

With the equivalences between homotopy classes of maps and spherical

pictures noted in section 2, this gives us the following:

Corollary 4.10. If m,n, k, q satisfy the conditions of Lemma 4.9, then

the second homotopy group of the space Z as defined in section 2 has a

generating set whose elements correspond to the homotopy classes of maps

represented by the dipoles Dα and Dβ.

We can also obtain some information about the structure of the groups

themselves:

Corollary 4.11. Let P be the presentation (2,m|n, k|1, q), where m,n, k, q

satisfy one of the conditions of Lemma 4.9. Then in G(P), the orders of

a, b, (ab) and (abp) are precisely 2, m, n and k, respectively.

Proof. For a and b, this follows fairly immediately from Lemma Suppose

ai were trivial in G(P). Then we could construct a picture Π over P whose

boundary label is this element. Since this label is an element of A of A∗B,

any boundary B-regions must have a trivial label on the boundary. Thus,

using a bridge move, we can reduce any boundary B-region to a region

bounded only by the boundary of the picture, and a single edge which
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only meets the boundary. Having done so, we can remove all such edges,

obtaining a picture whose boundary regions are all A-regions. Since an

edge cannot divide an A-region from another A-region, it must be the case

that our picture has only one boundary region, and so is spherical. Lemma

4.9, therefore, establishes that Π can be reduced to an empty picture by

bridge moves and the addition and removal of dipoles. Observe that neither

of these operations can change the element of A ∗ B represented by the

boundary word. Thus, considering the final step before reaching the empty

picture - that in which only a dipole remains - the boundary of a dipole,

which is trivial in A ∗ B must represent the same element of A ∗ B as the

boundary word of Π. Thus ai must be trivial in A ∗ B, so 2 | i. Thus, the

order of a in G(P) is 2. An identical argument applies to b to establish that

the order of b in G(P) must be m.

Suppose now that the order of ab were n′, with n = n′r and r > 1.

Then we can construct a picture Π over P whose boundary label is (ab)n
′
.

We use this picture to construct a spherical picture by taking one α−1

vertex and surrounding it with r copies of Π, to obtain a new picture Π′.

Define Cα(P ) to be the number of α-vertices in P minus the number of α−1-

vertices in P . Note that bridge-moves do not change vertex-count, and the

addition or removal of dipoles only adds or removes a pair of inverses, so

neither procedure changes Cα. Observe that, since Π′ is formed of one α−1-

vertex and r copies of another picture, Cα(Π′) ∼= −1 mod r, and r > 1,

so Cα(Π′) 6= 0. Thus, Π′ cannot be reducible to an empty picture by

bridge-moves and addition and removal of dipoles, contradicting Lemma

4.9. Thus, it must be the case that the order of ab is n. An identical

argument establishes that the order of abq is k.

We now approach the cases in which an additional sphere, beyond
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dipoles, is required.

Lemma 4.12. If any of the following conditions on m,n, k, q hold, then

all spherical pictures over (2,m|n, k|1, q) are reducible to an empty picture

by bridge-moves, the addition and removal of dipoles, and the addition and

removal of one other spherical picture. If the condition (i),. . . (vi) holds,

then this additional spherical picture is that denoted Sj in Figure 12, j =

1, . . . 6, respectively.

(i) m = 2q and one of

(a) n ≥ 4, k ≥ 4 and q ≥ 3

(b) n = 3, k ≥ 6 and q ≥ 4

or

(c) n ≥ 6, k = 3 and q ≥ 3

(ii) m = 3q, n ≥ 4, k = 4 and q ≥ 3

(iii) m = 3q, n ≥ 4, k = 5 and q ≥ 3

(iv) m = 3q, n ≥ 6, k = 3 and q ≥ 3

(v) m = 4q, n ≥ 6, k = 3 and q ≥ 3

(vi) (a) m = 5q, n ≥ 6, k = 3 and q ≥ 3

(b) m = 5q
2
, n ≥ 6, k = 3, q ≥ 3 and if m = 10 and q = 4 then n ≥ 8.
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Figure 12: Possible spherical pictures.

Proof. We shall approach these proofs by considering a minimal (by number

of vertices) counterexample. This allows us to assume that the pictures

we consider do not contain any dipoles, or pairs of vertices that can be

transformed into dipoles by bridge moves. We can also conclude that no

connected figure corresponding to an induced subgraph on any majority

of the vertices of the Sj in question can be present in the pictures we are

considering, else we would be able to add the remaining vertices of a copy

of Sj by introduction of dipoles followed by bridge moves, adding fewer
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vertices to the picture than are present in Sj, and remove the copy, attaining

a new picture with fewer vertices than the original. If we show that the

curvature of any picture satisfying these conditions can be distributed in

such a way that the total curvature must not reach 4π, then we establish

that no vertex-minimal counterexample to the claim of the lemma exists,

and so the lemma must hold.

(i) Since m = 2q, β-vertices and β−1-vertices have the same boundary,

and so for k ≥ 3 we can construct spherical pictures of the form S1,

which following previous sections we shall denote ’improper dipoles’.

Now consider a vertex-minimal spherical picture Γ over (2,m|n, k|1, q)

satisfying condition (i) of the lemma. If Γ contained any two vertices

of type β with an edge between them, we could use bridge moves

to form either a dipole or an improper dipole, which we could then

remove to reach a spherical picture with fewer vertices. Thus, any

interior region of Γ must be of form S1 or S2, by Lemma 4.8. But for

S1 or S2 to be present and positively curved requires q = 3 and either

n = 3 or n = 4 and k = 3, conditions ruled out by (i). Thus, since

no interior region contributes to curvature, and as noted in the proof

of Lemma 4.9 the distinguished region cannot provide 4π curvature

itself, Γ cannot be the minimal counterexample we supposed. As

such, every spherical picture over these presentations is reducible to

an empty picture by dipoles and S1.

(ii) Presentations satisfying this condition admit the sphere S2 of Figure

12. Letting Γ be, as above, a minimal counterexample to the claim of

the lemma, a positively curved interior region ∆ of Γ takes the form

of T , from Figure 11, and has curvature c(∆) = c(4, 4, 4) = π/2

If such a region ∆ is adjacent to a vertex of type β, then either a dipole

can be formed or a majority of S2 can be formed, and in either case, Γ
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fails to be vertex-minimal. Thus, the neighbourhood of ∆ is given by

Figure 13(i). Distributing c(∆)/3 = π/6 to each of the ∆̂i as shown

removes all curvature from ∆. Let ∆̂ be one of the ∆̂i, and assume

∆̂ is interior. Since q ≥ 3 we have m = 3q - 2q ± 2, so d := d(∆̂) ≥ 5

If d = 5 then c(∆̂) ≤ c(4, 4, 4, 4, 4) = −π/2, whereas ∆̂ receives cur-

vature only once (as two disjoint edges of a hexagon account for four

of its vertices, so there must be another edge connecting them). If

d ≥ 6 then c(∆̂) + dπ
2
≤ 2− d/3 ≤ 0. Thus, the only possible region

with positive curvature after the redistribution of curvature is the dis-

tinguished region. However, to reach the 4π total required, since the

distinguished region has at most 2π curvature of its own, we must have

d ≥ 12. If d = 12 then c(∆̂) ≤ c(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) < −2π,

and each additional vertex decreases the curvature of the region by a

further π
2
, which overwhelms the effect of any transferred curvature.

Thus, no such minimal counterexample Γ can exist, and so the claim

of the lemma holds.

(iii) These presentations admit the sphere S3 of Figure 12. Taking, as

above, ∆ to be a positively curved interior region of a vertex-minimal

spherical picture Γ not reducible to the empty picture by bridge-

moves, dipoles and S3, we note that ∆ is of type T as denoted in

Figure 11, and c(∆) = c(5, 5, 5) = π
5
. If ∆ has a neighbouring region

∆̂ such that d(∆̂) > 3 or ∆̂ is the distinguished region, then transfer

all c(∆) = π/5 to ∆̂. In the former case, note that since m = 3q,

no 4-region with two adjacent vertices of type β exists. If d(∆̂) =

5, then c(∆̂) ≤ c(4, 4, 4, 5, 5) = −7π
10

, so the transfer does not make

∆̂ positively curved. If d(∆̂) = 6, c(∆̂) ≤ c(4, 4, 4, 4, 4, 4) = −π,

allowing ∆̂ to receive curvature across up to five edges. If ∆̂ receives

curvature across all six edges, its vertices must all be of type β, so
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c(∆̂) ≤ c(5, 5, 5, 5, 5, 5) = −8π
5

, so no new positively curved region

is created by this transfer of curvature. For d := d(∆̂) > 6, c(∆̂) ≤

c(4, . . . , 4) = 2π−dπ+2dπ/4 < −dπ
5

, so these regions can also accept

all curvature they might have to without becoming positive.

If ∆ has no neighbour of degree greater than three, and is not adjacent

to the distinguished region, then it is ∆1 of the configuration shown

in Figure 13(ii). Note that none of the adjoining regions ∆̂1, . . . ∆̂6

can be of form T , else we would have a majority of S3, and be able to

reduce to a smaller counterexample. We have a total of 4π
5

curvature

across ∆1, . . .∆4 to distribute, and do so as Figure 13 depicts, splitting

the excess curvature evenly between ∆̂i; i = 1, . . . , 6 (and reverting

any previous transfer of curvature from ∆2,∆3 and ∆4). Since m = 3q

does not divide any of 2q, 2q± 1, 2q± 2, 3q± 1, 3q± 2 or 4q, it follows

that if ∆̂ = ∆̂i for some i = 1, . . . , 6, and ∆̂ is an interior region, then

d(∆̂) ≥ 5. Given that this transfer of curvature only occurs across

β − β-edges, and the recipient regions must have degree exceeding

three, the argument from the case in which ∆ does have a neighbour

of degree greater than three applies, and suffices to demonstrate that

this transfer of curvature cannot result in a positively curved region.

Our argument for the distinguished region is as in the previous case:

Since we have eliminated all positive curvature from the interior of

Γ, the only way that the 4π curvature of a spherical picture could be

present is if it were all in the distinguished region. This region’s own

curvature is bounded above by 2π, so if Γ is the spherical picture we

have supposed it to be, the distinguished region must have received at

least another 2π curvature. Our distribution rule only ever sends π/5

across any edge, so in order to have received so much curvature, the

distinguished region must have at least ten edges. However, a region
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of degree d, which has received π
5

additional curvature across each

edge has curvature bounded above by 2π − dπ + 2π(d/4) + πd/5 =

(2 − 3d/10)π, which for d ≥ 10 is negative. Thus, the distinguished

region cannot possibly be left holding enough curvature for Γ to be a

spherical picture, and thus, lacking a vertex-minimal counterexample,

the statement of the lemma must hold.

(iv) In this case, our identified spherical picture is S4. These presentations

admit only T as a positively curved region, however since S4 has only

four vertices, the region T itself constitutes a vertex-majority of S4.

Therefore, a spherical picture not reducible to an empty picture via

bridge-moves, dipoles and S4 would have to have no positively curved

interior regions. Thus, all positive curvature in such a picture would

have to come from the distinguished region, which can provide at

most 2π of the 4π required of a spherical picture. Thus, as with

the above cases, this section of the lemma has no vertex-minimal

counterexample, and so must hold.

(v) These presentations admit the sphere S5 of Figure 12. As in the pre-

vious cases, we suppose that Γ is a vertex-minimal spherical picture

not reducible to the empty picture by way of dipoles, bridge-moves

and S5. Letting ∆ be a positively curved interior region of Γ, Lemma

4.8 suffices to establish that ∆ can only be of the form S5. Notably,

this figure constitutes precisely half (by vertices) of a copy of S5, so

wherever it occurs in Γ, it must be surrounded by vertices of type

α, else we could reduce Γ to a smaller picture by either removing a

dipole or introducing three of them to complete the copy of S5, and

then removing it. As shown in Figure 13, we split the 2π
3

curvature

of ∆ evenly between adjacent regions, sending π
6

to each. Let ∆̂ be

an interior region that receives curvature in this way. Since m = 4q

68



divides none of 2q ± 1 or 2q ± 2, d(∆̂) must have degree at least

five, with at least two non-adjacent vertices of type α. Thus, there

must be at least four different edges of ∆̂ across which no curvature

is received. Thus, a receiving region with degree d has curvature

c(∆̂ ≤ c(3, . . . , 3, 6, 6) = (4− d)π/3 and receives (d− 4)π/6, so since

d > 4, the total curvature of ∆ after receiving must be negative. Hav-

ing eliminated all positive curvature from internal regions, we consider

the distinguished region. As in previous cases, the distinguished re-

gion has at most 2π curvature of its own, so must receive at least

another 2π curvature for there to be any possibility of it carrying the

4π curvature required of a spherical picture. A maximum of π/6 cur-

vature can be received over each edge, so this requirement demands

that the distinguished region have at least 12 edges. However, even if

it were to receive curvature across every edge, a region ∆̂ with degree

d has curvature c(∆̂) ≤ c(3, . . . , 3) = 2π − dπ/3 ≤ −dπ/6 for d ≥ 12.

Thus, the distinguished region cannot possibly provide the positive

curvature necessary for Γ to be a spherical picture. Therefore, as

with the previous cases, this case of the lemma lacks a vertex-minimal

counterexample, so must hold.

(vi) This final collection of cases admit the spherical picture S6. As with

the other cases, we suppose that Γ is a vertex-minimal spherical pic-

ture not reducible to an empty picture by bridge moves, the addition

and removal of dipoles, and the addition and removal of copies of S6.

Let ∆ be a positively curved interior region of Γ. Following Lemma

4.8, ∆ must be of the form P , as depicted in Figure 11, and so has

curvature c(∆) = c(3, 3, 3, 3, 3) = π/3. If ∆ is adjacent to a vertex of

type α, as in Figure 13(iv), split the curvature of ∆ evenly between

the regions marked as ∆̂1 and ∆̂2, adding π/6 to each. Otherwise,
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∆ must be surrounded by β-vertices, as a β−1-vertex would allow the

formation and removal of a dipole. Such a figure contains precisely

half of a copy of S5, so each of the adjacent vertices must in turn be

adjacent to vertices of type α, as depicted in Figure 13(v). In this

case, we divide the curvature between all adjacent regions, adding

π/15 to each as Figure 13 suggests.

Now let ∆̂ be an internal region of Γ that receives curvature in the

above scheme. Since neither 5q nor 5q/2 divides rq ± 1, ∆̂ must

contain more than one vertex of type α. Thus, since curvature is only

transferred across β−β-edges, if ∆̂ has degree d, it receives curvature

over at most d−3 edges. It follows that c(∆̂) plus all curvature added

to it is bounded above by c(6, 6, 3, . . . , 3) + (d− 3)π/6 = (5− d)π
6
, so

for d ≥ 5 there is no possibility that ∆̂ has positive curvature after

redistribution. Observe that if m = 5q there is no possibility of a

4-region with two adjacent vertices of type β, while if m = 5q
2

such a

region can occur, with label 2q + 2, requiring q = 4, so that m = 10,

and thus by condition (b), n ≥ 8. This gives c(∆̂) ≤ c(3, 3, 8, 8) < −π
6

,

so the region can accept π
6

curvature over its single β−β-edge without

becoming positively curved.

Having arranged curvature in such a way that no interior region has

positive curvature, we approach the distinguished region. As in pre-

vious cases, a spherical picture under these conditions requires that

the distinguished region have received 2π curvature. With a max-

imum transfer over a single edge being π/6, this requires that the

distinguished region have 12 edges. However, if the degree of the dis-

tinguished region is d ≥ 12, then it has curvature after transfers not

exceeding c(3, . . . , 3) + nπ/6 = 2π − dπ
6
< 0. Thus, the distinguished

region cannot provide the curvature required for Γ to be a spherical
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picture, contradicting our assumption that a vertex-minimal spheri-

cal picture satisfying the conditions of (vi) that is not reducible to an

empty picture via bridge moves, dipoles and S6. In the absence of a

vertex-minimal counterexample, the lemma holds on these presenta-

tions.

Figure 13: Redistribution of curvature

As with Lemma 4.9, this can be interpreted in homological terms to

give the following:

Corollary 4.13. If m,n, k, q satisfy condition (i),. . . ,(vi), respectively, of

Lemma 4.12, then the second homotopy group of the space ZP as defined in

section 2 has a generating set whose elements correspond to the homotopy

classes of maps represented by the dipoles Dα and Dβ, along with Sj; j =

1, . . . , 6, respectively.
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We can also obtain the same non-collapse condition on the presentations

satisfying a condition of Lemma 4.12 as we could on those satisfying a

condition of Lemma 4.9:

Corollary 4.14. Let P be the presentation (2,m|n, k|1, q), with m,n, k, q

satisfying one of the conditions of Lemma 4.12. Then the orders of a, b, ab

and abq are precisely 2,m, n and k, respectively.

Proof. Since S1, . . . ,S6 all have boundary-labels trivial in A∗B, and contain

no vertices of type α, the arguments regarding the orders of a, b and ab

proceed identically to those in Corollary 4.11. Establishing that the order

of abq is k, however, requires some additional reasoning.

In cases (iii), (iv), (v) and (vi), non-collapse in abq follows from non-

collapse in a and b, as k is prime, so any collapse would force a and bq to

have the same order, which is incompatible with the established orders of

a and b.

In case (ii), even if collapse occurs, abq cannot be trivial, for the same

reason as in the above cases. The only remaining possibility that we must

rule out, then, is that abq has order 2. However, this is amenable to the same

form of argument as was used to rule out collapse in ab: If abq has order

2, then we may construct a picture with boundary (abq)2. Attaching two

such pictures around a β−1-vertex gives a spherical picture. This picture

necessarily has an odd number of vertices of type β. Since S2 has an

even number of β-vertices, none of performing bridge moves, adding and

removing dipoles, or adding and removing copies of S2 change the parity

of the number of vertices of type β in a picture. This contradicts Lemma

4.12(ii), which requires that we be able to reach the empty picture, which

has 0 vertices of type β, with these moves.

We approach the order of abq in case (i) as we did that of apbq in Corol-

lary 3.9, supposing that the order of abq is k′ < k and using a picture
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Π witness to this fact to build a connected spherical picture Π′ with a

distinguished vertex whose label is (abq)k
′
. As in said corollary, the dis-

tinguished vertex can ’absorb’ adjacent vertices of type β, with its label

alternating between (abq)k
′

and (abq)k−k
′

as it does so. Having reduced Π′

to the smallest picture that can be reached by these absorptions along with

the usual reductions, we note that the distinguished vertex is not adjacent

to any vertex of type β. The arguments made in Lemma 4.12(i) estab-

lish that regions of Π′ not incident to the distinguished vertex cannot have

positive curvature, and that regions that include the distinguished vertex

have curvature bounded above by the difference in curvature contribution

between a vertex of valence k and one of valence k′ or k − k′, depending

on which the distinguished vertex arrived at. Thus, if the distinguished

vertex has valence k′, then the total positive curvature of Π′ is bounded

above by k′ ∗ 2π( 1
k′
− 1

k
) < 2π < 4π, and if the distinguished vertex has

valence k− k′, then the total positive curvature of Π′ is bounded above by

(k − k′) ∗ 2π( 1
k−k′ −

1
k
) < 2π < 4π. However, Π′ is a spherical picture, so

must have total curvature of 4π. This contradiction demonstrates that our

assumption k′ < k was false, so the order of abq must be k.

4.3 Pushout diagrams and the homological argument

The results we have obtained in this section so far allow us to obtain fairly

strong results on the order of the group G(P), where P satisfies one of the

conditions of lemmas 4.9 and 4.12, using the methods laid out in Section

2.

We shall begin with presentations satisfying one of the conditions of

Lemma 4.12.

Proposition 4.15. Let P be the presentation (2,m|n, k|1, q). If m,n, k, q
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satisfy one of the conditions of Lemma 4.12 other than (vi)(b), then G(P)

is infinite

Proof. These presentations can all be expressed as (2, pq|n, k|1, q), where

(p, k) is one of (2, k), (3, 3), (3, 4), (4, 3), (3, 5), (5, 3). In any of these cases,

the triangle group (2, p, k) is finite.

To try to exploit this structure, we approach these presentations via the

pushout

C2 ∗ Z ∼= 〈a, d|a2〉 〈a, d|a2, dp, (ad)k〉 ∼= (2, p, k)

C2 ∗ Cn ∼= 〈a, b|a2, (ab)n〉 〈a, b|a2, bpq, (ab)n, (abq)k〉 = G(P)

ψ

φ

with φ mapping a to a and d to d, and ψ mapping a to a and d to bq.

To obtain the required results from this pushout via Theorem 4.2 of [10],

we must build a corresponding pushout of topological spaces. Specifically,

we require a space X, with trivial second homotopy group, which we can

express as a union of two aspherical subspacesX1 andX2, with fundamental

groups 〈a, b|a2, (ab)n〉 and 〈a, d|a2, dp, (ad)k〉, respectively, which intersect

in such a manner that X0 := X1∩X2 has fundamental group 〈a, d|a2〉, and

the inclusions of X0 into X1 and X2 induce the maps φ and ψ, respectively,

in homotopy.

In pursuit of such a space X, we construct a preliminary space X ′, with

subspaces exhibiting the correct behaviour in homotopy, extending those

subspaces to Eilenberg-MacLane spaces to obtain X.

Take asX ′ the presentation complex of 〈a, b, d|a2, (ab)n, d = bq, dp, (ad)k〉.

For X ′1, take the subspace of X ′ consisting of the basepoint, along with the

cells corresponding to a, b, d, a2, (ab)n, and d = bq. Let X ′2 be the sub-

space consisting of the basepoint along with the cells corresponding to

a, d, a2, dp and (ad)k. Thus, X ′1 is the presentation complex for the pre-

sentation 〈a, b, d|a2, (ab)n, d = bp〉, X ′2 is the presentation complex for the
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presentation 〈a, d|a2, dp, (ad)k〉. Since all cells in X ′ are accounted for,

X ′ = X ′1 ∪ X ′2, whilst X ′0 := X ′1 ∩ X ′2 is a presentation complex for the

presentation 〈a, d|a2〉.

X ′1 and X ′2 have the required fundamental groups, and the inclusions of

X ′0 into each induce the correct maps in homotopy, so now we extend our

subspaces to eliminate higher homotopy. We begin by adding 3-cells and

higher to the subspace of X ′0 corresponding to 〈a|a2〉, denoting union of

added cells as Y0. We then perform the same process on the spaces X ′1∪Y0
and X ′2 ∪ Y0, denoting the unions of added cells Y1 and T2, respectively.

Finally, we define X1 := X ′1 ∪ Y0 ∪ Y1, X2 := X ′2 ∪ Y0 ∪ Y2, so that X0 :=

X ′0∪Y0. These are Eilenberg-MacLane spaces with 2-skeletons X ′1, X
′
2, X

′
0,

respectively, so satisfy our requirements on homotopy.

Taking X := X1 ∪ X2, we have the required space and subspaces. To

show that X is aspherical, we use Theorem 4.2 of [10]. This gives the

required result, so long as the kernels of the maps in homotopy induced by

the inclusions of X0, X1 and X2 into X have homological dimension not

exceeding 1, 2 and 2, respectively, and π2(X) = 0. The kernel of the map

induced by the inclusion X0 ⊂ X cannot contain any nontrivial power of a

or d, as this would mean the order of a or b in G(P) was less than 2 or pq,

respectively, contradicting Corollary 4.14, and thus, as a normal subgroup

of a free product of two groups, not containing any nontrivial element of

either, must be free. Thus, this kernel has homological dimension of at

most 1. Likewise, since π1(X1) can be expressed as a free product of 〈a〉

and 〈ab〉, and both a and ab must have in G(P) the same order as they

do in π1(X1), the kernel of the map induced by the inclusion of X1 into

X must be free, and so has homological dimension of at most 1. Since

π1(X2) is a triangle group, its only torsion elements are those conjugate to

a power of one of a, d or ad. Thus, the kernel of the map in first homotopy

induced by the inclusion X2 ⊂ X is torsion-free. Since π1(X2) is finite, this

75



establishes that the kernel is trivial, so certainly does not have homological

dimension greater than 2. With these conditions fulfilled, if π2(X) = 0,

then X is aspherical.

To show that π2(X) is trivial, note that Lemma 4.13 gives generators

for the second homotopy group of Z, the wedge sum of a K(C2, 1) space

A (in which we have chosen a loop ā representing the generator a of C2)

and a K(Cpq, 1) space B (similarly, having selected a loop b̄ representing

a generator b of Cpq), to which 2-cells have been attached along paths

corresponding to (ab)n and (abq)k, to give a space whose fundamental group

has presentation (2, pq|n, k|1, q). We construct Z as a subspace of X by

taking A as the union of the basepoint, the cells associated to a and a2, and

Y0, letting ā be the path along the 1-cell associated to a, taking as B the

basepoint, the cells associated to b, d, dp, and d = bq, along with subspaces

of Y1 and Y2 sufficient to eliminate all higher homotopy, and letting b̄ be

the path along the 1-cell associated to b. For the 2-cells of Z we take the

remaining 2-cells in X, those corresponding to the relators (ab)n and (ad)k.

Note that this subspace contains the 2-skeleton of X. As a result, every

element of π2(X) can be represented by a map from S2 to Z. In particular,

the maps representing a generating set of π2(Z) also represent a generating

set of π2(X). Since X1 and X2 are aspherical, it shall suffice to show that

the elements of π2(Z) can all be represented by maps to Z ∩X1 or Z ∩X2.

Recall from Section 2 the process for converting a spherical picture (with

trivial boundary label) Γ over P into a map from S2 to Z. Contracting the

boundary of Γ to a point, to obtain a picture on a sphere rather than a disk,

we map edges to the basepoint, corners labelled with powers of a and b to

the loops ā and b̄, with appropriate orientation and multiplicity, depending

on the power of a or b present, the interiors of vertices to the interior of

the 2-cell corresponding to the same relator, and A and B regions to the

subspaces A and B. Note that B-regions whose corner labels are all of the
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form b±q can be mapped into the cell corresponding to dp, in X2.

The dipole over α contains A-regions, B-regions and vertices of type

α, so can be represented by a map from S2 whose image is contained in

the union of A, B and the 2-cell corresponding to (ab)n. Restricting our

attention to a B-region ∆ in this picture, we observe that the map in

this region is a map from a rectangle to B, in which one pair of opposing

sides are mapped to the basepoint, and the other pair mapped along b̄ in

parallel. As such, this restricted map corresponds to a homotopy between

b̄ and itself. Since B is an Eilenberg-MacLane space, any two homotopies

between the same maps are themselves homotopic, so without changing the

homotopy class of our map, we may use the trivial homotopy between b̄ and

itself as the interior of the rectangle, so that the entirety of ∆ is mapped

to the image of b̄. Likewise, without any risk of changing the homotopy

class of our map, we may assume that each A-region is mapped entirely to

ā. Thus, the dipole over α can be represented by a map whose image lies

within X1, and as such must represent the trivial element of π2(X).

The dipoles over β, both proper and improper, along with the remaining

spheres Si; i = 2, . . . , 6, are formed entirely of β-vertices, A-regions, and

B-regions whose corner labels are all of the form b±q, so represent maps

whose image is contained in the cells corresponding to a, a2, (ad)k, and dp,

all of which are in X2. As such, these spherical pictures all represent the

trivial element of π2(X).

Having found a generating set of π2(X) and shown that all of its ele-

ments are trivial, we can conclude that π2(X) is trivial, and so following

[10], X is aspherical. Thus, our pushout of groups is geometrically Mayer-

Vietoris. If G(P) is finite, this allows us to calculate

1

G(P)
= χQ(G(P)) = χQ(C2 ∗ Cn) + χQ((2, p, k))− χQ(C2 ∗ Z).

The groups C2 ∗ Cn and C2 ∗ Z have rational Euler characteristics 1
n

+
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1
2
− 1 = 1

n
− 1

2
and −1

2
, respectively, and (2, p, k) is a finite group, so has

positive rational Euler characteristic. Thus,

1

|G(P)|
>

1

n
− 1

2
+

1

2
=

1

n

so that |G(P)| < n, but Corollary 4.14 establishes that G(P) has an ele-

ment, ab, of order n. Thus, G(P) cannot be finite.

Proposition 4.16. If P satisfies condition (vi)(b) of Lemma 4.12, then

G(P) is infinite.

Proof. This follows identically to the above argument, using the pushout

C2 ∗ Z ∼= 〈a, d|a2〉 〈a, d|a2, d5, (ad2)3〉 ∼= A5

C2 ∗ Cn ∼= 〈a, b|a2, (ab)n〉 〈a, b|a2, b 5q
2 , (ab)n, (abq)3〉 = G(P)

ψ

φ

with φ mapping a to a and d to d, and ψ mapping a to a and d to b
q
2

Proposition 4.17. If P satisfies the conditions of Lemma 4.9, then either

G(P) is infinite, or it has order N , where

1

N
=

1

m
+

1

n
+

1

k
− 1

2

Proof. In this case we use the pushout

F (s, t) ∼= 〈s, t|〉 〈s, t|sn, tk〉 ∼= Cn ∗ Ck

C2 ∗ Cm ∼= 〈a, b|a2, bm〉 〈a, b|a2, bm, (ab)n, (abq)k〉 = G(P)

ψ

φ

with φ mapping s to s and t to t, and ψ mapping s to ab and t to abq.

Since these presentations admit no spheres beyond (proper) dipoles,

they are quasi-aspherical. Following, for example, [5], we note that it suf-

fices to take the space obtained by taking a K(G, 1) spaces A, B and C
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corresponding to F (s, t), Cn∗Ck and C2∗Cm, with φ̂ and ψ̂ being maps from

A to B and A to C that induce φ and ψ, taking the union of the mapping

cylinders M(φ̂) and M(ψ̂), and identifying the ’tops’ of both, homeomor-

phic to A. The resulting space X is aspherical, so long as our presentations

are quasi-aspherical, and suffer no collapse. Since both of these conditions

hold, we use the same result on rational Euler characteristics to conclude

that, if G(P) is finite, then it has order N given by

1

N
=

(
1

2
+

1

m
− 1

)
+

(
1

n
+

1

k
− 1

)
− (−1) =

1

m
+

1

n
+

1

k
− 1

2

4.4 Assembling Results

We now combine the results of the previous subsection with our preliminary

results to obtain this section’s theorem.

Proposition 4.18. If n ≥ 4, k ≥ 4 and any of the following hold, then

G(P) is infinite.

(i) m ≥ 2q ≥ 10 and m /∈ {2q ± 1, 3q ± 1, 4q ± 1};

(ii) m ≥ 2q = 8 and m /∈ {9, 11, 13};

(iii) m ≥ 2q = 6 and m 6= 7.

Proof. If m = 2q, or if m = 3q and k ∈ {4, 5}, then applying Proposition

4.15 to conditions (i)(a), (ii) or (iii) of Lemma 4.12 suffices to show that

G(P) is infinite. If m /∈ {2q, 3q}, or if m = 3q and k ≥ 6, then apply-

ing Proposition 4.17 to conditions (i)(a), (ii)(a) or (iii)(a) of Lemma 4.9

establishes that 1
|G(P)| = 1

m
+ 1

n
+ 1

k
− 1

2
. If (n, k) 6= (4, 4), then 1

|G(P)| > 0

forces 1
m

+ 1
n

+ 1
k
> 1

2
, so the conditions of Lemma 4.3 hold, and so G(P)

must be infinite. On the other hand, if (n, k) = (4, 4), then we have
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1
|G(P)| = 1

m
+ 2

4
− 1

2
forcing G(P) to be a cyclic group of order m, generated

by b. This, however, cannot be the case, as if G(P) is Abelian, then the

relator (ab)4 reduces to b4, contradicting Lemma 4.17, which establishes

that the order of b is m ≥ 6.

The remaining results require one additional trick. Observe that given

a presentation P one may fairly trivially construct the Abelianisation of

G(P). If G(P) is known to have order, if finite, of N , and if N is small,

we may narrow the set of finite candidates for G(P) from all those of order

N to only those of order N with NAb ∼= G(P)Ab. If no such groups exist,

then we can conclude that G(P) is infinite. Our requirements only involve

the groups for which G(P)Ab is trivial, that is, the cases in which G(P) is

perfect. As such, we define the following:

Definition 4.19. The presentation P fails the perfect test if all three of

the following hold:

1. G(P) is perfect,

2. The order of G(P), if finite, must be N ,

3. No group of order N is perfect.

Clearly, a group that fails the perfect test must be infinite. We use this,

amongst other approaches, for the following results

Lemma 4.20. (i) Let n = 3. If G(P) has order, if finite, of 1/
(

1
m

+ 1
k
− 1

6

)
and (m, k, q) is one of (13, 11, 5); (16, 9, 6); (17, 9, 5); (17, 9, 7); (23, 8, q) :

q = 5, 7, 9 or 10; (21, 7, 7); (21, 7, 8); (28, 7, q) : q = 6, 8, 10 or 12;

(35, 7, q) : 5 ≤ q ≤ 8 or 10 ≤ q ≤ 11 or 13 ≤ q ≤ 16; (36, 7, q) : q =

8, 10, 14 or 16; (39, 7, q) : q = 5, 7, 8, 11, 13, 14, 16 or 17; (40, 7, q) :

q = 6, 8, 10, 12, 14, 16 or 18; (41, 7, q) : 5 ≤ q ≤ 9 or 11 ≤ q ≤

13 or 15 ≤ q ≤ 19; then P fails the perfect test.
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(ii) Let k = 3. If G(P) has order, if finite, of 1/
(

1
m

+ 1
n
− 1

6

)
and (m,n, q)

is one of (13, 11, 5); (16, 9, 6); (17, 9, 7); (23, 8, q) : q = 5, 7, 9 or 10;

(21, 7, q) : q = 6, 8 or 9; (28, 7, q) : q = 6, 8, 10 or 12; (35, 7, q) : q =

5, 6, 8, 10, 11, 13, 15 or 16; (36, 7, q) : q = 6, 8, 10, 14 or 16; (39, 5, q) :

5 ≤ q ≤ 9 or 11 ≤ q ≤ 12 or 14 ≤ q ≤ 18; (40, 7, q) : q =

6, 12, 14 or 18; (41, 7, q) : 5 ≤ q ≤ 9 or 11 ≤ q ≤ 13 or 15 ≤ q ≤ 19;

then P fails the perfect test.

Proof. In each of these 112 cases it can be verified, by checking the Abelian-

isations of the presentations in question and verifying with [7] that no per-

fect group of the given order exists, that the conditions for P to fail the

perfect test are satisfied.

Proposition 4.21. If n = 3, k ≥ 6 and any one of the following holds,

then G(P) is infinite:

(i) m ≥ 2q ≥ 10 and m /∈ {2q + 1, 3q ± 1, 4q ± 1};

(ii) m ≥ 2q = 8 and m /∈ {9, 11, 13};

(iii) m ≥ 2q = 6 and m ≥ 8.

Proof. (i) Ifm = 2q, then applying Proposition 4.15 to Lemma 4.12(i)(b),

G(P) is infinite, so we may assume m 6= 2q. In particular, given

m 6= 2q + 1, m ≥ 12. In this case, applying Proposition 4.17 to

Lemma 4.9(i)(b), we see that if G(P) were finite, it would have order

N such that 1
N

= 1
m

+ 1
k
− 1

6
. If k = 6, then this forces G(P) to be

cyclic of order m, generated by b. In this case, m must be even, since

the element a must have order 2, which can only be b
m
2 . With this

established, the relator (ab)3 forces b3+
m
2 = 1, which can only occur if

m = 6, which lies below our lower bound for m. Thus, if k = 6 G(P)
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is infinite. For the remaining (k,m), the only values which give an

integer value for N divisible by 6, m and k are k = 11, 12 ≤ m ≤ 13;

k = 10,m ∈ {12, 14}; k = 9,m ∈ {12, 16, 18, 20, 21, 22, 23}; and

k = 7,m ∈ {21, 28, 35, 36, 39, 40, 41}. Taking all values of q for these

cases consistent with the conditions of (i) gives 110 groups. 56 of

these fail the perfect test, by Lemma 4.20(i), and 52 more give infi-

nite groups by Lemma 4.4. Of the remaining two groups, the first is

(2, 39|3, 7|1, 15), which has an order if finite of 546, but can be shown

by [7] to have a subgroup of index 39 whose derived subgroup has

index 117, and the second is (2, 39|3, 7|1, 18), which has the same or-

der if finite, but which maps onto PSL(2,701). Thus, both remaining

groups are infinite.

(ii) If m = 2q then by the same argument as in (i), G(P) is infinite,

so again we assume m > 2q. Applying Proposition 4.17 to Lemma

4.9(ii)(b) again lets us conclude that if G(P) has finite order N , then

1
N

= 1
m

+ 1
k
− 1

6
. If k = 6 we can rule out a finite G(P) by the same

argument as in (i). Amongst the remaining (k,m), the only candi-

dates that give integer N with the required divisors are k = 7,m ∈

{21, 28, 35, 36, 39, 40, 41}; k = 8,m ∈ {12, 16, 18, 20, 21, 22, 23}; k =

9,m ∈ {12, 15, 16, 17}; k = 10,m ∈ {10, 12, 14}; k = 11,m = 12;

k = 12,m = 10; and k = 14,m = 10. Each of the resulting groups

can be shown with [7],[8] to be infinite-automatic.

(iii) Follows directly from Lemma 4.5(i).

Proposition 4.22. If n ≥ 6, k = 3 and any one of the following conditions

hold, then G(P) is infinite.

(i) m ≥ 2q ≥ 10 and m /∈ {2q + 1, 3q ± 1, 4q ± 1};
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(ii) m ≥ 2q = 8 and m /∈ {9, 11, 13};

(iii) m ≥ 2q = 6 and m 6= 7.

Proof. (i) If m ∈ {2q, 3q, 4q, 5q/2, 5q} then G(P) is infinite by Propo-

sitions 4.15 and 4.16 as applied to Lemma 4.12, and so we assume

otherwise. If G(P) is finite, of order N , then by applying Proposition

4.17 to Lemma 4.9(i)(c) we find 1
N

= 1
m

+ 1
n
− 1

6
. In the case n = 6, this

forces G(P) to be cyclic of order m, generated by b. However in this

case, the relator (ab)6 requires that b6 = 1, contradicting our condition

from Corollary 4.11 that m ≥ 10 is the order of b. The only remain-

ing values of n and m that give an integer order for G(P) with the

appropriate divisors are: n = 11, 12 ≤ m ≤ 13; n = 10,m ∈ {12, 14};

n = 9,m ∈ {12, 15, 16, 17}; n = 8,m ∈ {12, 16, 18, 20, 21, 22, 23};

and n = 7,m ∈ {21, 28, 35, 36, 39, 40, 41}. Taking all values of q con-

sistent with the conditions of (i) gives 94 groups, 56 of which fail

the perfect test by Lemma 4.20(ii) and 35 of which are infinite by

Lemma 4.6. This leaves the groups (2, 22|8, 3|1, 10), (2, 28|7, 3|1, 13)

and (2, 36|7, 3|1, 17). The first of these, if finite, has order 264, but

has a derived subgroup, of index 2, which is perfect, and no perfect

group of order 132 exists. The second, if finite, has order 84, but

maps onto PSL(2,187). The third, if finite, has order 252, but has a

subgroup of index 14 whose core has index 2184. Thus none of these

groups can be finite.

(ii) If m ∈ {8, 10, 12, 16, 20} then applying Propositions 4.15 and 4.16

to Lemma 4.12 suffices to show that G(P) is infinite, except in the

case where m = 10 and 6 ≤ n ≤ 7. This exception covers two

groups, (2, 10|6, 3|1, 4) and (2, 10|7, 3|1, 4), the first of which has a

subgroup of index 18 with infinite Abelianisation, and the second of

which is infinite automatic. Thus, if m ∈ {8, 10, 12, 16, 20} then G(P)
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is infinite, so we consider the case where m /∈ {8, 10, 12, 16, 20}. In

this case, if G(P) is finite, then applying Lemma 4.9(ii)(c) gives us

1
N

= 1
m

+ 1
n
− 1

6
. n = 6 can be ruled out by the same argument as in

(i). The remaining values of n and m which give an integer N with all

required divisors are n = 7,m ∈ {21, 28, 35, 36, 39, 40, 41}; n = 8,m ∈

{18, 21, 22, 23}; n = 9,m ∈ {15, 17}; and n = 10,m = 14. Each of

these possibilities give an infinite automatic group, by [7],[8], with the

possible exception of (2, 18|8, 3|1, 4). This final group has a subgroup

of index 8 whose core, of index 336, has infinite Abelianisation.

(iii) If m is 8 or 10, then by parts (ii) or (iii), respectively, of Lemma 4.5,

G(P) is infinite. If m ∈ {6, 9, 12, 15}, then applying Proposition 4.15

to Lemma 4.12 establishes that G(P) is infinite. Thus, we assume

otherwise, that m /∈ {6, 8, 9, 10, 12, 15}, so that P is within the scope

of Lemma 4.9(iii)(b), and so by Proposition 4.17 1
N

= 1
m

+ 1
n
− 1

6
.

As in the previous cases, n = 6 would force |G(P)| = m and force

collapse. Taking n ≥ 7, then, the values of n and m that give integer

N with all required divisors are n = 7,m ∈ {21, 28, 35, 36, 39, 40, 41};

n = 8,m ∈ {16, 18, 20, 21, 22, 23}; n = 9,m ∈ {16, 17}; n = 10,m =

14; n = 11,m ∈ {11, 13}; and n = 12,m = 11, each of which yields

an infinite automatic group by [7],[8].

With these results in hand, we assemble the main result of the section.

Since every (2,m|n, k|1, q) can be expressed in a form with m ≥ 2q, we

maintain our assumption (A1). (A2) and (A3), however, are based on

reductions to other groups, so for the sake of completeness, we suspend

them for this final step.

Proof of Theorem 4.1: Let P = (2,m|n, k|1, q) with, as given above, m ≥

2q. First, assume m 6= 2q + 1 and that 2 < q ≤ m
2

. If one of (q ≥ 5,m /∈
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{3q ± 1, 4q ± 1}), (q = 4,m /∈ {11, 13}), or q = 3, then G(P) is infinite, by

Propositions 4.18, 4.21 and 4.22, with the exception of (2, 6|3, k|1, 3), which

has order 6k2, by Lemma 4.7. Otherwise, we have m = 3q±1 or 4q±1, and

by Lemma 4.2(ii) we can reduce (2, 3q ± 1|n, k|1, q) to (2, 3q ± 1|k, n|1, 3)

and (2, 4q ± 1|n, k|1, q) to (2, 3q ± 1|k, n|1, 4), both of which satisfy the

conditions above, and so are infinite.

Suppose now that q = 1. ThenG(P) is the triangle group (2,m, gcd(n, k)),

and so is finite precisely when 1
m

+ 1
gcd(n,k)

> 1
2
, as required.

Finally, let m = 2q+1 or q = 2, so that by Lemma 4.2(ii) and (iii) G(P)

is isomorphic to one of the groups studied in [6]. Following the reductions

required, we see that (2, 2q+ 1|n, k|1, q) reduces first to (2, 2q+ 1|k, n|1, 2),

which in turn reduces to (k, 2q + 1|n, 2|1, 2q) ∼= (k, 2q + 1|n, 2), whilst

(2,m|n, k|1, 2) reduces to (n,m|k, 2|1,m − 1) ∼= (n,m|k, 2). Theorem 1.4

of [6] enumerates the groups (l,m|n, k) that are finite, and the remaining

presentations listed in Theorem 4.1 are precisely those that reduce to those

presentations. Of these, the presentations (2, 7|8, 3|1, 2), (2, 7|3, 8|1, 3) and

(2, 8|7, 3|1, 2) yield groups (in fact, a single group) originally found to be

finite (specifically, identified as a perfect group of order 10752) in [11],

whilst the rest yield groups that were originally identified as finite in [1],

and whose structures are identified in the same, and listed in Proposition

2.1 of [4].
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5 The p = 1 case: l > 2

These presentations are rather more resistant to our methods, but have

been studied in some depth in the Thesis of Mark Dennis [2]. We recount

results of his that establish certain presentations within our 1
n

+ 1
k
≤ 1

2
scope

are infinite, including a reduction that allows us to entirely characterise the

parameters within this scope, with the added assumption that l 6= 3, that

lead to a group of finite order. In the case l = 3, we note reductions that

allows us to settle all cases where n 6= 3 and k ≥ 6.

Theorem 5.1. Let l > 3, 1
n

+ 1
k
≤ 1

2
, 1 < q < m − 1. If G is the group

with presentation (l,m|n, k|1, q), then G is infinite.

Proof. [2] proves that the group with presentation (l,m|n, k|1, q) is infinite

whenever any of the following conditions occurs:

� k ≥ 11

� n ≥ 10 and k ≥ 4,

� n ≥ 6 and k ≥ 5,

� n ≥ 5 and k ≥ 6,

� n = 3 and k ≥ 6,

� n ≥ 4, k ≥ 4 and m 6= 2q − 1,

� k = 3 and m 6= 2q − 1

With our condition 1
n

+ 1
k
≤ 1

2
, this leaves only the cases in which m =

2q − 1 and (n, k) is one of: (4, 4), (5, 5), (4, k) : k ≥ 5, (n, 4) : n ≥ 5,

(n, 3) : n ≥ 6. Note that q and 2q − 1 are coprime, so that in the resulting

presentation 〈a, b|al, b2q−1, (ab)n, (abq)k〉, b ∈ 〈bq〉, and in particular b =

(bq)2. Thus, expressing our presentation in terms of a and c := bq, we
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have G ∼= 〈a, c|al, c2q−1, (ac)k, (ac2)n〉 = (l, 2q − 1|k, n|1, 2). [2] notes that

(l,m|n, k|1, 2) is reducible to (n,m|k, l). Thus, our remaining groups can

be expressed as (k, 2q−1|n, l), with n and k satisfying conditions as above,

all of which are infinite, via [6].

This leaves only the presentations with l = 3. As noted above, some of

these are beyond the reach of our analysis, but we can perform a pair of

reductions that reduces the space of groups in this family whose finiteness is

unknown from a four-parameter family to four three-parameter subfamilies.

We first note that, by the same reduction as used above, the presenta-

tion (3,m|n, k|1, 2) can be transformed into the presentation (3, n|k,m) of

[6], which is infinite if and only if

cos

(
2π

n

)
+ cos

(
2π

k

)
+ cos

(
2π

m

)
≥ 0.

Theorem 5.2. Let G be the group with presentation P(3,m|n, k|1, q), with

1
n

+ 1
k
≤ 1

2
and 2 < q < m− 1. If n 6= 3 and k ≥ 6, G is infinite.

Proof. Expressing 〈a, b|a3, bm, (ab)n, (abq)k〉 in terms of c := ab and d :=

b−1, we obtain the presentation 〈c, d|cn, dm, (cd)3, (cdm+1−q)k〉, which is the

presentation (n,m|3, k|1,m+ 1− q). Since k ≥ 6, 1
3

+ 1
k
≤ 1

2
. Since n 6= 3

and 1
n

+ 1
k
≤ 1

2
, n > 3. Finally, since 2 < q < m−1, 1 < m+1− q < m−1.

Thus, (n,m|3, k|1,m + 1− q) satisfies the conditions of Theorem 5.1, and

so must represent an infinite group.

This leaves as unsolved only the families (3,m|3, k|1, q) : k ≥ 6,

(3,m|n, 5|1, q) : n ≥ 4, (3,m|n, 4|1, q) : n ≥ 4 and (3,m|n, 3|1, q) : n ≥ 6,

with 2 < q < m− 1.
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