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ABSTRACT 

 

The routine power line inspection is critical to maintain the 

reliability, availability, and sustainability of electricity supply. 

As a key part of inspection, power lines and pylons extraction 

is essential for resource management and power corridor 

safety, especially in the mountain regions. In this paper, we 

proposed a deep learning based method to extract power lines 

and pylons using ALS point clouds. First, a structure 

information preserved module is designed to mine the 

relationship of local neighborhood points. Then, a graph 

convolutional network (GCN) is used as basic module to 

extract point features. Finally, three categories, power lines, 

pylons and other objects are segmented from input point 

clouds. In addition, we provide an effective data enhancement 

strategy to generate enough samples to train the proposed 

model. Experiments demonstrate that our method achieves 

competitive results in accuracy and efficiency. The overall 

accuracy and mean time are 99.1% and 9.3 seconds. 

 

Index Terms— Power line, pylon extraction, ALS, point 

cloud, graph convolutional network 

 

1. INTRODUCTION 

 

Nowadays, electricity plays an indispensable role in social 

production, thus it is necessary to arrange power line patrol 

regularly to ensure the operation safety. Because ALS system 

can acquire 3D shape information accurately and efficiently 

in a large area, ALS point clouds has become a high priority 

data for many related tasks, such as power line classification, 

extraction and reconstruction [1, 2]. As a key part of these 

tasks, power lines and pylons extraction from ALS point 

clouds can be achieved by two ways, the manual-designed-

feature based method [3, 4] and property-based method [5, 6]. 

However, point features extracted by these two techniques 

are all shallow and low-discriminative, which would be of 

great negative impact on the power lines extraction. Recently, 

with the increase of available data and the improvement of  

 

 
Fig. 1: Power line and pylons extraction from ALS point clouds (top) 

with segmented powerlines (bottom left), pylon (bottom middle), 

and other objects (bottom right). 

 

hardware performance, deep learning (DL) [7] shows its 

powerful feature description ability in wide applications, 

especially in computer vison, such as the image and 3D point 

cloud processing [8, 9]. Therefore, in this paper, we aim to 

investigate the application of DL in power lines and pylons 

extraction using ALS point clouds.   

The key issue of applying DL in 3D data lies in the design 

of appropriate representation. Existing representations can be 

divided into three categories, voxel based, view based and 

point based methods [10]. These methods have achieved 

promising results in some synthetic datasets, such as 

ModelNet [11]. However, they may not be appropriate in 

processing unordered ALS point clouds. In this work, 

considering that the local geometric information is preserved 

in the relationship of neighbor points, we utilized the graph 

data structure to present the ALS point clouds and developed 

a new approach based on the graph convolutional network 

(GCN) to extract the power lines and pylons. Especially, we 

firstly designed a structure information preserved module to 

mine the relationship of local neighborhood points. Then, we 

used the graph convolutional network (GCN) as basic module 

to extract deep point features. Finally, three categories, power 

lines, pylons and other objects are segmented from input 

point clouds. In addition, we provide an effective data 

enhancement strategy to generate enough samples to train the 
proposed model. Fig. 1 shows the application of our approach  
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Fig. 2. The flowchart of our method. It consists of three parts: data 

enhancement, near-ground filtering and feature extraction. 

 

in extracting power lines and pylons. 

The rest of this paper organized as follows. Section 2 

presents the related works. Section 3 provides the details of 

the proposed method. Section 4 shows and discusses the 

experimental results. Section 5 concludes the paper. 

 

2. RELATED WORK 

 

Existing power line extraction methods can be divided into 

two categories: mathematical estimation and classification-

based methods. In the first kind of methods, Hough transform 

and random sample consensus (RANSAC) were usually used 

to extract power lines points. Guan et al. [6] proposed a 

method to determine the non-ground points based on incident 

angle and elevation, then combined with density and shape-

and-size filter to extract power lines, but results are affected 

by data density. Yadav et al. [12] used 2D point density-based 

refinement to remove building and tree points, and then used 

Hough transform to extract power lines. However, the result 

is sensitive to parameter settings. Lehtomaki et al. [13] 

voxelied the data then used principal components analysis 

(PCA) and RANSRC to extract power lines and pylon points, 

but voxelization loses some information. Classification-

based methods usually use machine learning methods, such 

as support vector machine (SVM) and random forest (RF). 

Wang et al. [14] constructed power line corridors through 

filtering and RANSAC. Then selected slant cylindrical 

neighborhood to extract geometric features. Finally, it used 

SVM to obtain results. However, this algorithm does not 

consider ground fluctuations. The Joint-Boost classification 

and 26 features were used in [15] to classify point clouds, but 

it need to use image segmentation results to improve accuracy. 

Peng et al. [16] built feature vectors based on density, 

elevation and vertical contour features. Then it used RF to 

obtain classification results. However, results generated by 

this method were sensitive to radius of feature extraction.  

In summary, features extracted by the above methods are 

shallow and low-discriminative. On the other hand, 

applications of DL in 3D point cloud [9, 17] has shown its 

power in learning deep features from 3D data. Therefore, in 

this work, we seek the possibility of applying DL in ALS 

point clouds using the graph data structure. To the best of our 

knowledge, this is the first application of GCN in power lines 

and pylons extraction. 

 

 
Fig. 3. The network of GCN used in our method. The graph inside 

the dotted line in the lower left corner represents the 

neighborhood information extraction module, and the red line 

represents the distance from the sample point to each point. 

 

3. METHOD 

 

As shown in Fig. 2, our method consists of three parts: data 

enhancement, near-ground filtering and feature extraction. 

 

3.1. Data enhancement 

 

Supervised approaches usually require a lot of training data. 

However, large number of samples are often unavailable in 

real life. In our work, to solve the problem of insufficient data, 

we develop a data enhancement strategy. Specifically, we 

randomly cut ground with a length and width of 100 meters 

from the original data, and generated a total of 10 scenes. 

Then, we selected pylons with obvious structures and 

maintained their power line connections. They were 

randomly placed on the ground and ensured that there were 2 

to 3 pylons in each scene, which greatly increased the number 

of samples. We generate a total of 150 training samples and 

randomly selected 30 samples for verification. The test 

samples are real scenarios. 

 

3.2. Near-ground filtering 

 

The imbalance between target and background is also an 

issue in object detection. The focal loss may be an available 

idea in solving this problem. However, after we tried this idea, 

the result was still unsatisfactory. Therefore, we sought a 

near-ground filtering method to quickly reduce ground points, 

while it can preserve the pylon and power line points.  

Specifically, we found that pylons and power lines are 

located above ground, but it is hard to directly use a single 

threshold to reduce ground points. Therefore, we developed 

a multi-threshold strategy. Firstly, the input is segmented into 

square parts with side length of 20 meters. Then, the points in 

each square part are sorted in descending order according to 

the 𝑧  axis. Finally, the first 𝑛𝑛𝑒𝑤 points are taken in the 

following way: 

𝑛𝑛𝑒𝑤 = {

15000, 𝑖𝑓 𝑛 ≥ 20000
𝑛 − 5000, 𝑖𝑓 12000 ≤ 𝑛 < 20000

𝑛      , 𝑖𝑓 𝑛 < 12000
          (1) 

where 𝑛 is the original number of points in each part. The 

principle of this strategy is that the ground points are dense  
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Table 1. Key statistics of test scenarios 

Statistics 

Area 

Elevation (m) Density 

(points/m²) Maximum Minimum Mean 

Area_1 142.27 54.95 95.99 42 

Area_2 187.67 58.17 107.91 70 

Area_3 152.58 57.11 94.46 48 

Area_4 184.16 69.47 106.98 39 

and other objects are distributed in areas with relatively high 

elevations. 

 

3.3. GCN network structure 

 

Local feature plays important rale in 3D point cloud labeling. 

Although the method proposed in [17] can handle point cloud 

data well, the performance is still far from satisfy and many 

improved versions have been proposed. In our method, we 

developed a GCN-based network to extract the local features 

efficiency. More specifically, as shown in Fig. 3, the input 

with shape of 𝑛 ×  3  is firstly put into the neighborhood 

information extraction module, where n is the number of 

points and 3  denotes the coordinates. Then, a multilayer 

perceptron (MLP) is used to extract the point features, 

following by two blocks with neighborhood information 

extraction and MLP modules. Besides, the skip connection is 

used to preserve more details. Finally, the global features are 

extracted through a max-pooling operation. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Dataset description and implementation 

 

Our data was collected by HawkScan X3, with fight height of 

150m, speed of 24m/s and scanning frequency of 400 kHz. 

We chose four real scenarios as test data. For a more intuitive 

understanding of the data, several important statistics were 

listed in Table 1. It can be inferred from the elevation mean 

and difference that those scenarios are undulating on the 

ground. Specifically, the maximum elevation difference 

exceeds 120m. What’s is worse, it can be seen from the data 

density that data is sparse. For extraction methods that are 

sensitive to data density and threshold settings, these are 

challenging.  

We implemented experiments in Ubuntu 16.04, Inter(R) 

Core (TM) i7-7700K 4.20GHz, Tesla P100-PCIE-16GB and 

16GB memory. We calculated the overall accuracy (OA) and 

the running time (RT). Besides, F1-score were also used to 

evaluate the extraction performance. We designed two 

comparative experiments, which use PCA to calculate 

dimensional feature and use feature with small angles 

between power lines points to extract power lines and pylons 

points, called Baseline_1 and Baseline_2, respectively. These 

two baselines used CSF [18] to separate ground and non-

ground points, then extracted the power lines and pylons 

points by setting reasonable thresholds. Those two methods 

were used as comparison because they are representative in 

traditional algorithms. 

Table 2. Comparison of raw point cloud data and filtered results 

Num 

Area 

Raw point clouds Filtered results 

Line Pylon Other Line Pylon Other 

Area_1 4,934 5,705 411,485 4,927 5,705 314,249 

Area_2 11,861 18,186 672,207 11,856 17,764 345,380 

Area_3 3,632 - 477,330 3,623 - 345,380 

Area_4 5,765 - 389,458 5,761 - 318,779 

Table 3. Comparison of overall accuracy (OA)                            

and running time (RT) 

       OA/RT 

(%/s) 
Area 

 

Ours 

 

Baseline_1 

 

Baseline_2 

Area_1 98.9/9.8 97.3/29.6 98.2/46.5 

Area_2 97.6/8.3 90.6/30.7 94.5/61.1 

Area_3 99.8/10.3 99.7/28.7 99.8/31.8 

Area_4 99.9/8.8 96.8/25.2 97.6/46.1 

Average 99.1/9.3 96.1/28.6 97.5/46.4 

Table 4. Quantitative results in F1-score (%) 

F1 (%)   
Area 

Ours Basline_1 Basline_2 

Pylon Line Pylon Line Pylon Line 

Area_1 74.2 82.8 44.3 64.8 60.1 89.8 

Area_2 70.0 83.5 11.7 16.1 29.2 65.8 

Area_3 - 94.1 - 89.5 - 95.2 

Area_4 - 96.2 - 58.5 - 67.4 

4.2 Experiment results 

 

Table 2 provides the comparison results of the number of 

points in raw and filtered point clouds. The results 

demonstrate that our filtering method can reduce part of the 

other clutter points, while retain most of the power lines and 

pylons points. 

As shown in Table 3, our method outperforms the 

comparison methods in terms of OA and RT. Specifically, 

our method achieves the best OA in every area. Furthermore, 

compared with Baseline_1, our method obtains an 

improvement of 3%. In addition, the RT of our proposed 

method was less than other two baselines. The average 

running time of our method was 9.3 seconds, which was one- 

third of that of Baseline_1 and one-fifth of that of Baseline_2.  

Table 4 shows F1-score results generated by our method 

and baselines. Obviously, our method obtains excellent F1 

values. More specifically, on Area_1, the F1-score of pylon 

extracted by our method was 74.2%, which was nearly 30% 

higher than that of Baseline_1. On Area_2, our method 

achieved the best performance in terms of pylon and line 

extraction. On Area_3 and Area_4, our method also obtained 

competitive results. In addition, we visualized several 

experimental results. As shown in Fig. 5, our method was 

able to extract targets pretty well, especially the pylon points 

in both relatively simple and complex scenes. Meanwhile, the 

height and structure information of the pylon were well 

preserved. The reason for all these promising results of our 

method lies in the consideration of the relationship of 

neighborhood points. The local features learnt by GCN in our 

method enhance the ability of preserving the structural 

characteristics of the pylons and power lines.  
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Fig. 5. Extraction results of (a) Ground truth, (b) Our method (after near-ground filtering), (c) Bseline_1 (after CSF [18] filtering), (d) 

Bseline_2 (after near-ground filtering). Our method can well extract targets, especially the pylon points, on both relatively simple and 

complex scenes.  The areas marked by the black boxes are areas with more mislabeling error point.

4. CONCLUDING REMARKS 

In this paper, we presented a new approach using a GCN-

based network to extract power lines and pylons points. We 

solved the problem of insufficient samples and imbalance by 

data enhancement strategy and near-ground filtering, 

respectively. We achieved excellent results in accuracy and 

efficiency. What’s more, due to the consideration of 

neighborhood information, we preserved the structure 

information of the extracted pylons. In some complex 

scenarios, some power lines points were mistakenly extracted 

as other points. In the future work, we will try to solve this 

problem by add dimensional feature. 
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