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Abstract

The majority of rural-urban migration is filtered through slums: informally established,

unplanned, and unrecognised by the government, scientists have a minimal understand-

ing of the 200,000 that exist worldwide, never mind enough insight into the millions of

individuals living there. This limited understanding often coincides with a more general

absence of data in traditional urban planning approaches, leading to most cities seeing

development, positive or otherwise, preceding planning.

Wesolowski and Eagle (2010) highlighted the key need to use models of human mobility to

help guide effective spatial planning policies. Previous research has shown that thinking

about the built environment alone cannot account for individual differences in behaviour,

and that we must also consider factors such as socio-economic circumstance and context

(which are far more likely to contain explanatory value than the geographies of points of

interest, such as home and work locations of individuals alone). However, this remains a

very difficult topic to study. Emerging economies are often characterised by institutions

struggling to keep even demographic data streams up to date. Combined with ineffective

data collection strategies, it is often realistic to expect stakeholders to retain any overview

of the dynamics of urban systems. This gap causes many issues, but particularly in East

Africa: expense and logistics restrict ability to deploy sensor technologies; fast-changing

environments reduce the utility of traditional household and census surveying; and even

when raw data exists there are distinct skill gaps for data analysis.

To address this, this thesis extends nascent work, and systematically investigates the use

of Call Detail Records (CDR) and Mobile Financial Service (MFS) transaction logs to

model mobility, demographics, land use and their interplay. Data used was automatically

generated as part of day-to-day operations of a major Tanzanian Mobile Network Opera-

tor. As part of this thesis, three empirical analyses are carried out to test the boundaries

of inferring activity-based land use, predicting cell tower coverage level socio-economic

levels and generating mobility metrics in the form of Origin-Destination matrices and

synthetic daily activity plans for the Tanzanian port city of Dar Es Salaam. Further,

shortcomings of CDR and MFS data, and ways to overcome these, are identified.
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Empirical chapters form the basis for the identification of factors from the spatial dimen-

sion focused on assessing the impact of the built environment, socio-economic circum-

stance and mobility behaviour allowing for the extension of traditional land use-transport

interaction (LUTI) models, through the inclusion of socio-economic characteristics. This

culminates in a new empirical LU(S)TI analysis for a sub-Saharan context. The metropoli-

tan area of the port city of Dar es Salaam, Tanzania, is a pertinent case study area as

it is facing similar challenges to many other fast-growing metropolitan areas in emerging

economies globally.
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Chapter 1

Introduction

Emerging economies are often characterised by governments and institutions struggling

to keep official statistics up to date. Ineffective or absent data collection and governance

strategies lead to a lack of current, fine-grained and reliable data on everything from land

use and mobility to development and socio-economic statistics. Devarajan (2013) [93]

referred to this as the ‘Statistical Tragedy’ affecting emerging economies throughout the

world and in Sub-Saharan Africa in particular.

“How would you feel if you were on an airplane and the pilot made the following

announcement: “This is your captain speaking. I’m happy to report that all

of our engines checked fine, we have just climbed to 36,000 feet, will soon reach

our cruising speed, and should get to our destination right on time.... I think.

You see, the airline has not invested enough in our flight instruments over

the past 40 years. Some of them are obsolete, some are inaccurate and some

are just plain broken. So, to be honest with you, I’m not sure how good the

engines really are. And I can only estimate our altitude, speed and location.

Apart from that, sit back, relax and enjoy the ride.” This is, in a nutshell,

the story of statistics in Africa.” [137]

The majority of official statistics in emerging economies are estimated with actual num-

bers on metrics such as maternal mortality or malaria only being collected in less than

20% of cases if at all [237].

1
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While data availability has significantly improved with the introduction of Demographic

and Health Survey (DHS) programs in the mid-1980s and later monitoring systems for

the Millennium Development Goals since 2000 and Sustainable Development Goals since

2015 collecting up to date, fine-grained and reliable data remains a persistent challenge.

This thesis examines how mobile phone generated ‘Big Data’ might bridge this gap

through: generating insights on land use; socio-economics; mobility at scale, and the

analysis of their interactions. While the potential for Big Data to improve official (de-

velopment) statistics have received significant attention in previous years, the majority

of this (empirical) work has focused on countries in the Global North, East Asia and

South America, which was most likely predicated by data set availability [121]. The

unfortunate side effect is increasing inequality in our understanding of urban contexts

and urban phenomena between emerging economies in the Global South and developed

economies elsewhere. While some of the research is transferable, a lack of specific insight

into urban phenomena and dynamics in Africa remains. This lack of empirical work is

particularly notable in East Africa, where conventional sensing technologies have not been

able to overcome the inability of manual surveying to capture insights in fast-changing

and particularly informal areas. Additionally, there is a gap in the usage of machine

learning techniques to improve official statistics over more traditional statistical analysis

techniques.

Geographically, the investigations of this thesis focus on the Tanzanian port city of Dar

es Salaam metropolitan area, the extent of which is shown in Figure 1.1. Dar es Salaam

is made up of the three municipalities – Ilala, Kinondoni and Temeke, which are akin to

Medium Super Output Areas in the UK. These are then further divided into 90 wards,

similar to Lower Super Output Areas in the UK, with 26 in Ilala, 34 in Kinondoni and

30 in Temeke. The data set used as part of this study also contains information for the

rest of the country. Mobile phone subscribers behaviour in other geographic locations
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were included to support the rationale and findings of this thesis for reasons which will

be expanded upon in the following chapters.

The remaining sections of this chapter introduce the geographic scope, research domain,

questions and contributions of this thesis, lastly describing the thesis structure.

1.1 Geographic Scope

Dar es Salaam is the former capital of Tanzania and was the first urban centre in Tanzania

to be named ‘city’ on December 9, 1961, [72]. The city population has doubled in the last

decade, bringing it to an estimated 4.3-5 million people with an expected rise in population

numbers by 85% by 2025 [2]. According to recent estimates, 70% of the city’s residents

live in informal slums that are outside the scope of official statistics. Dar es Salaam is

recognised as the second fastest-growing city in Africa after Kampala in Uganda and the

ninth-fastest-growing globally [62, 300]. It spans an area of approximately 1590km2 and

accounts for approximately 10% of the total Tanzania mainland population according to

the last census conducted in 2012. While Dar es Salaam has lost the status of national

capital to Dodoma (with some government bodies still being in the process of moving)

the city plays an integral part in Tanzania’s economy, accounting for almost 40% of the

countries GDP. It also remains home to most of the national government agencies, and as

a result, the central government retains considerable influence in city governance. Tanza-

nia, and particularly Dar es Salaam with its extensive port facilities, are of considerable

importance to economic development in East Africa as it is a transport hub for land-

locked neighbours including Burundi, Rwanda, and Zambia. As such the city continued

to invest heavily in infrastructure and was successful in attracting external funding for

several infrastructure investments including a $300million investment by the International

Development Association to fund a new open-access railway, and funding to build a new

terminal for Tanzania’s largest Airport Julius Nyerere located in Dar es Salaam, and for

the Mfugale overpass at the junction of the Mandela Expressway and Julius Nyerere Road.
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Mobile phones were first introduced in Tanzania in the mid-1990s with a single network

offering by Millicom‘s Tigo. In 1995, there were 2200 mobile phone subscribers in Tan-

zania. Similar to many other emerging economies, mobile phone adoption in Tanzania

grew rapidly to 10.4 million by 2008, and over 30 million by 2013. Current mobile phone

penetration and connection numbers vary, with some reporting 25.3 million unique sub-

scribers, 16.1 million mobile internet subscribers and 25.3% smartphone penetration [136]

with the Tanzania Telecommunications Regulatory Authority (TCRA) [328] reporting

over 39 million mobile connections within Tanzania indicating, that over 73% of adults in

Tanzania own at least one feature phone or smartphone [245, 250, 275].

The Mobile Network Operator (MNO) that provided the data within this work has ap-

proximately 19.6 million active users, which accounts for 40% of the Tanzanian population.

Studies in this thesis are based on a 20% sample of Mobile Network Data (MND) in the

form of mobile financial transaction logs and Call Detail Record (CDR) logs for calls for

one year, and SMS and internet data for six months.
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Figure 1.1: Extent of the Dar es Salaam, Tanzania, metropolitan area overlaid with administrative district (red) and ward (yellow)
boundaries
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1.2 Rural-Urban Migration

Estimations suggest that the global population will increase to ten billion by 2050 with

the majority living in urban areas and with the majority increase taking place in emerg-

ing economies [356]. This increase in population numbers coincides with an increasing

rural-urban migration leading to the majority of the global population living in formal

and informal urban and peri-urban areas. The emergence of slums is an inevitable result

of this shift, representing areas which are informally established, unplanned, and unrecog-

nised by the government.

High levels of congestion and poor infrastructure conditions, in particular, have been

recognised as significant challenges within Dar es Salaam. In recent years, these problems

have been exacerbated by frequent flooding and the rise of unplanned settlements. Flood-

ing has become an increasing threat to the low-lying coastal city of Dar es Salaam with

rising sea levels and more intense rainfalls. The rise in unplanned settlements is partly a

by-product of a housing shortage estimated at 3 million units with a projected increase

of an additional 200,000 housing units each year [300].

Both formal and informal urban areas within emerging economies commonly face frequent

land use changes. These changes often coincide with an absence of coordinated land man-

agement, unclear land use planning approaches and complex land tenure systems. This

has led to many urban areas around the world where development precedes planning,

giving rise to the emergence of vast slums and informal areas in the first place. Major

metropolitan areas in emerging economies such as Dar es Salaam in Tanzania or Kumasi

in Ghana are at the centre of countries’ “socio-economic development, and yet have poor

transport infrastructure and services, in terms of street connectivity, motorability and

ease of mobility within neighborhoods particularly in emerging residential and peri-urban

neighborhoods” [281, p.565].

This issue is exacerbated by settlement in the peripheries of cities, contributing to urban
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sprawl, a phenomenon that is not unique to emerging economies. In the United States as

well as elsewhere in the Global North, ‘sprawling’ low-density residential areas with com-

mercial strip development and dependence on extensive automobile use are commonplace

[178]. Overcoming the ‘Statistical Tragedy’ is essential to generating insights to guide

effective infrastructure investments and land management and land use planning that is

tailored to local contexts rather than simply copied from existing implementations in the

Global North [193, 223].

The majority of the rural-urban migration in emerging economies is channelled through

slums, areas which are informal, unplanned and unrecognised by the government. This

pattern is particularly pertinent in Dar es Salaam, as according to recent estimates, 70%

of the cities residents live in informal slums that are outside the scope of data collection

for official statistics. This issue will likely be exacerbated in the future, as Dar es Salaam

is the second-fastest-growing city in Africa after Kampala in Uganda and ninth-fastest-

growing globally [62, 300].

Understanding those migratory patterns is integral to understanding the growth of ur-

ban areas. Without understanding the relationship between urban growth and mobility

to guide transport infrastructure and service design, these urban spaces risk becoming

dysfunctional and unlivable [281]. The prevention of which is enshrined within goal 11 of

the United Nations SDGs [338]:

“Make cities and human settlements inclusive, safe, resilient and sustainable”

Sub-goal 11.2 pays specific attention to the role of mobility in ensuring the overall success

of goal 11:

“By 2030, provide access to safe, affordable, accessible and sustainable trans-

port systems for all, improving road safety, notably by expanding public trans-

port, with special attention to the needs of those in vulnerable situations,

women, children, persons with disabilities and older persons.”



8 Chapter 1. Introduction

Addressing those goals is at the core of land management and land use planning and

“correctly administered, it is an important tool for promoting investment,

development, environmental improvements and quality of life.” [339, p. 40]

As Chapter 2 will discuss, much of the land management and land use planning research

over the last three decades has focused on the relationship between land use and mobility

as well as land use determinants and travel time in the analysis of Land Use – Transport

Interaction (LUTI) [241, 320]. Biased by ‘urban sprawl’, much of the research indicates

a strong effect of land use on urban mobility, as residents in peri-urban areas tend to

rely on extensive automobile use compared to those in dense urban centres. The latter

assumption of reduced reliance in urban centres is frequently based on findings in areas

with efficient integration of public transport within a city’s land management and land

use planning approach. These findings have significant impacts on the design of cities

in the developed world and have been driving integrated land management and land use

planning in developed economies for years [320, 352].

Urban areas in developed countries generally have high levels of transport accessibility

and development tends only to commence once transport access and utilities such as wa-

ter and electricity are in place unlike in emerging economies, where development often

precedes planning [281, 320]. However, research and insight has mostly focused on coun-

tries in the Global North and is much more limited in emerging economies. There is a

particularly limited understanding of the approximately 200,000 slums worldwide and the

millions of individuals living within them [356].

The world has seen a rapid increase in the spread of Internet Communication Technologies

with the proliferation of cheap mobile devices and massive investments in telecommunica-

tion and broadband infrastructure [127, 319]. Chief among these developments has been

the drastic reduction in the price of mobile phones:

“In 10 short years, what was once an object of luxury and privilege, the mobile
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phone, has become a basic necessity in Africa.” Paul Kagame, President of

Rwanda 1.

The increasing proliferation of mobile phones, in particular, has led to them becoming a

proxy for data sources about human movement, generating vast amounts of data on hu-

man behaviour at scale and at low cost, effectively turning the mobile phone subscribers

operating them into what Goodchild (2007) coined ‘citizens as sensors’. MND generated

by all phones, both smart and feature, such as CDR is a promising alternative to closing

data gaps left by official data collection strategies while addressing some of the shortcom-

ings of traditional and often costly sensor-based data collection (discussed in more detail

in §5.2.1) to generate up to date, fine-grained data. While the potential for Big Data

to improve official (development) statistics have received significant attention in previous

years, the majority of this (empirical) work has focused on countries in the global, East

Asia and South America, which was most likely predicated by data set availability. The

unfortunate side effect is increasing inequality in our understanding of urban contexts,

urban phenomena and the ‘alternative’ relationship between emerging economies in the

Global South and developed economies elsewhere.

CDR data, in particular, has received extensive attention in fields such as epidemiology

[53, 217, 231, 327, 332, 344, 355], transport [12, 26, 33, 40, 60, 58, 63, 125, 142, 176,

177, 185, 209, 228, 335, 347, 359, 363], and urban planning [113, 114, 213, 226, 232,

233, 234, 260, 273, 315, 316, 336, 341, 369] as they are collected automatically and at

scale by the network operator for day-to-day operations such as network management

and billing purposes. CDR data is available quickly, often within minutes of the network

event, allowing for near real-time data collection [177, 293] and monitoring of changes in

human activity over a prolonged period. The combination of CDR data with new machine

learning methods has recently been proposed as a way to obtain this data without the

expense required by traditional census and household survey methods. While the clear

potential exists, the challenges of re-purposing such data with high utility in this context

1During a speech at Connect Africa Summit, October 29, 2007
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have seen limited study.

1.3 Thesis Motivation

While each country and its cities are unique, all of them are united by a need for accu-

rate and fine-grained data to design adequate urban spaces and provide public services to

their populace. This is of particular importance among emerging economies in the Global

South. Traditional methods of data collection such as census and household surveys are

unable to cope with rapid changes in the urban fabric driven by increasing rural-urban

migration and the emergence of informal slums. A pattern that is particularly pertinent

in Dar es Salaam, as according to recent estimates, a mere 30% of the city is formally

planned, with the remaining 70 % of the city being de-facto classed as slums with little or

no reliable, fine-grained data on land use, socio-economics or mobility or ways to collect

it effectively [173]. This issue will likely be exacerbated in the future, owing to its rapid

growth.

The rapid growth creates multiple gaps in the already ineffective data collection and

governance strategies and capacities of the responsible statistical and data-providing in-

stitutions. New data streams such as MND and, much more recently, drone imagery,

which can be collected quickly, at scale and low cost, have the potential to close or at

least lessen the gaps in data collection and governance.

1.4 Data in Dar es Salaam

Similar to many other emerging economies around the world, Tanzania is facing parts of

the ‘Statistical Tragedy’. In a report on the state of urbanisation in Dar es Salaam, Baker

(2011) [27, p.12] highlights, this as:

“accessing data, maps, and climate projections was problematic. Information

is scattered across many different agencies, departments, organizations, and

research institutions, with some reluctant to share data.”
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Figure 1.2: Technical, organisational, cultural and regulatory barriers affecting effective
data collection and governance, and data-driven planning and decision making [342]

This issue is further exacerbated through barriers spanning several different domains

that were identified as part of preliminary research by Roza Vasileva (2019) [342] at the

University of Nottingham (see Figure 1.2):

1. Technical barriers:

(a) Unsuitable data-collection approaches: Census data, which is the primary

source of numerous official statistics were last collected in 2012 and can be

reliably used by neither government nor other organisations and communities

for proper planning and service provision. More detailed household surveys

only provide data for extremely small sub-samples of the population while cen-

suses are coarse and rapidly out-of-date, and often conducted but once a decade

[93, 232].

(b) Capacity gaps: In addition to unsuitable data collection and governance ap-

proaches, the coordination between ministries within Tanzania is minimal as

staff with the necessary technical capabilities to analyse collected data are of-

ten overwhelmed, while others are struggling to contribute effectively in light

of the challenges faced by the city of Dar es Salaam [27]. Outside Ministries,

the technical capabilities are often even lower. From the author’s experience

(see Figure 1.3), the majority of ward leaders, for example, are struggling with

the interpretation of maps. The lack in capability creates gaps between the

collection of geospatial data and the ability use it effectively within decision-
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Figure 1.3: Mapping workshop with local ward officials facilitated by Dar Ramani Huria
and Humanitarian Open Street Map

making processes as well as general frustration when being confronted with the

information presented in ways that appear confusing [362, 381].

2. Organisational barriers: The process of requesting data is time-consuming as

highlighted earlier [27], which undermines the timeliness of evidence-based planning

and decision-making. The city’s complex governance structure further exacerbates

these coordination challenges, as political tensions hinder the smooth facilitation of

data sharing.

3. Cultural barriers: Traditionally, communities may have been incentivised to dis-

play weak (development, economic, etc.) performance in order to be eligible for

additional development funding, resulting in the non-disclosure or release of manip-

ulated data. While a core premise behind the opening and sharing of data is the

fostering of accountability, the prior incentives lead to a cultural climate in which

this step is not well-received [227, 307]. In other cases, decision-makers may not

understand the value of data, making the collection of it an afterthought to any

activity. This misunderstanding of data tends to strive in the absence of technical

capabilities outlined earlier.
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4. Regulatory barriers: The new Tanzania Statistics Act, which has been en-

acted in Tanzania in 2015 (with further amendments passed recently,) requires non-

governmental stakeholders within the country to obtain permits for data collection.

The Act regulates how non-governmental organisations can collect data and how

data should be used publicly. It clarifies the mission of the National Bureau of

Statistics of Tanzania “to produce quality official statistics and services that meet

needs of national and international stakeholders for evidence based planning and

decision making” and enshrines the NBS vision “to become a one-stop centre for

offical statistics [published] in Tanzania” [256, p.22]. The data shared through the

NBS portal covers geospatial data, census data, and socio-economic data, among

others. Complying with official regulations to obtain a permit for data collection

is difficult, however. Several organisations have raised concerns that the Act may

have harmful implications for anyone who works with data in Tanzania, especially

media and non-governmental organisations [309]. They argue that the Act hinders

the collection and analysis of data, as well as the publishing of new statistics and

reports.

1.5 Land Use – Transport Interaction (LUTI)

The importance of incorporating land use within the analysis of transport patterns has

been recognised since the 1960s with initial work by Forrester (1969) [123] in his Theory

of Urban Interaction. The initial spatial Land use – transport interaction model was an

aspatial model to study the interaction between population, employment and housing.

In a seminal work on slum analysis, Wesolowski and Eagle (2010) [356] have echoed the

need to understand human mobility to better aid land management and land use planning

policies.

In an inverse relationship, however, research has shown that the built environment alone

cannot account for individual differences in mobility behaviour [25]. Instead, socio-

economic circumstances and more subjective aspects such as culture, attitudes and pref-
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Figure 1.4: From Stead (2001)[320] defined the relationship between urban form and mo-
bility as (a) ‘traditional’ cause and effect relationship and (b) ‘alternative’ interdependent
relationship.

erences have been recognised to have additional explanatory value over the built environ-

ment and the physical location of Points of Interest (POI) and geographies such as home

and work alone [197, 320].

Through generating both land use, mobility variables and additional socio-economic fac-

tors, the opportunity exists to move beyond the traditional LUTI relationship analysis

as defined by Stead (2001) [320] and highlighted in Figure 1.4. In doing so, the oppor-

tunity exists to empirically examine the alternative relationship in Dar es Salaam as a

pertinent example of a fast-evolving urban space with high-levels of informal living in

the Global South. Structural Equation Modelling (SEM) will allow for the analysis of

multiple variables across several directions of influence [340].

1.6 Research Objectives

As is fully explored in the following chapter reviewing the literature, there are clear gaps in

the analysis of the traditional LUTI relationship in general, and difficulties investigating

it empirically in the emerging economies in particular:
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1. Traditionally, mobility, land use, and socio-economic factors have been analysed in

isolation due to the absence of data and often incompatible levels of aggregation.

Figure 1.4 highlights the traditional cause-effect relationship that has been the focus

of much research and the alternative relationship accounting for both land use and

socio-economic characteristics that has seen much more limited study.

2. There is a scarcity in empirical studies on both the traditional and the alternative re-

lationship in emerging economies. Those few studies analysing either the traditional

or the alternative relationship focus on India [8], Iran [117], China [218, 258, 377],

Thailand [343] with Ghana as the only African country on the list [281].

3. There is a general lack of work using data generated through non-traditional data

sources, such as household interviews, census surveys, fixed-sensor infrastructure,

or satellite-imagery generated within African countries.

Accordingly, the research question of the thesis is:

Is there value in using CDR and Mobile Financial Services (MFS)

data for generating insight into urban land use, socio-economic

levels and mobility trends, and can those be used to analyse the

alternative LUTI relationship in an emerging economy context?

This question will be addressed through the analysis of CDR and MFS data generated

by a Tanzanian MNO for the city of Dar es Salaam, ultimately creating methodological

contributions in the analysis of those features using MND and empirical findings for both

Dar es Salaam, and the alternative relationship for the city. To research and validate

these aims, a series of research objectives guide this thesis, namely:

Research Objective 1: to examine whether differences in activity-based land use and

density can be distinguished from behavioural patterns contained within CDR data;

Research Objective 2: the investigation of small area Socio-economic Level (SEL)

classification using CDR and MFS data through Supervised machine learning, and
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subsequent analysis of features used for classification to understand the main deter-

minants behind classification results;

Research Objective 3: exploration of synthetic daily activity plans based on the

previously-evidenced assumption that the majority of human movement is pre-

dictable, and the generation of transient Origin-Destination (OD) matrices to un-

derstand travel and mobility patterns for Dar es Salaam;

Research Objective 4: analysis of the alternative land use – transport interaction ac-

counting for socio-economic characteristics for Dar es Salaam using variables iden-

tified from CDR and MFS data through Research Objective 1-3;

Research Objective 5: identification of shortcomings of both CDR and MFS data,

and potential solutions to address those.

These objectives allow for a thorough investigation of the concepts and practices of MND

data analysis in the respective fields, while suitably defining the scope and methods de-

ployed in the analysis chapters of this thesis.

1.7 Thesis Contributions

Dar es Salaam is among the most pertinent examples of rapidly growing cities globally.

Increasing rural–urban migration, population growth, and the resulting urbanisation are

among the main challenges countries globally and in emerging markets, in particular, need

to solve. Conventional data sources such as manually collected surveys, satellite imagery

and sensor-based infrastructure are limited in their ability to produce up to date, fine-

grained data dynamically and at scale. This thesis argues that MND, using new machine

learning methods over traditional statistical approaches, could meet this gap. As such,

machine learning techniques are used to both generate insights into land use (Chapter

3), socio-economics (Chapter 4) and mobility patterns (Chapter 5) for the metropolitan

area of Dar es Salaam; to analyse the relationship between them (Chapter 6) to better

understand the city; and to identify limitations of CDR data analysis and ways to address
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those (Chapter 7).

Due to aforementioned issues of increasing rural–urban migration, population growth, and

the resulting urbanisation; and barriers to data collection in Dar es Salaam (§1.4) that

are common throughout the Global South, up to date and fine-grained insights generated

dynamically and at scale required for effective planning are seldom available. At the

same time, however, Sub-Saharan Africa is home to the most successful Mobile Financial

Services offerings and very high rates of mobile phone subscriber penetration leading to

the generations of mass amounts Mobile Phone generated ‘big data’ that has the potential

to supplement or even replace more conventional methods of data collection in emerging

economies. It is this gap, where this thesis aims to make its contributions.

In summary, the contributions of this thesis are as follows:

• Discussion on how data generated through mobile phone usage can be used to cre-

ate novel insights into land use, socio-economic and mobility patterns and their

interaction in lieu of traditional demographic data.

• Empirical analysis of the land use and socio-economic – transport interaction for

the metropolitan area of Dar es Salaam.

• Discussion of transferability of CDR/MFS methodology and avenues to overcome

limitations in the analysis of such data.

1.8 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 describes the MND data used as part of this thesis, reviews the relevant

literature on evidence-based planning and decision-making approaches in LUTI in

emerging economies, and the factors within the different dimensions used to anal-

yse the traditional and alternative relationship and further defines the problem

statement that this thesis addresses, expanding upon the rationale for the above-
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mentioned problem statement, research question, aims and objectives;

Chapter 3 reviews the relevant existing work in tracking activity-based land use, tra-

ditional sources of data used and develops activity-based land use features for Dar

es Salaam using the techniques of dimension reduction and unsupervised clustering

from SMS and call-derived activity signatures;

Chapter 4 reviews the relevant existing work in tracking fine-grained socio-economics

and traditional sources of data used, and derives features on basic usage, regularity,

diversity, activity and spatial behavior from both CDR and MFS data for SEL pre-

diction using supervised classification, and exploratory analysis to understand the

main determinants behind the classification results;

Chapter 5 reviews the relevant existing work in deriving OD matrices and compares

traditional transient approaches with a more synthetic daily activity plan approach;

Chapter6 analyses the alternative relationship within Dar es Salaam using variables

generated as part of this thesis using Structural Equation Modelling;

Chapter 7 discusses the individual-level, Base Transceiver Station (BTS)-level, population-

level and real-world usability limitations, and ways to address these, identified

through the analytical work in chapters 3-5 of this thesis;

Chapter 8 provides concluding remarks and proposes future research directions, against

which work can be evaluated and furthered.

Figure 1.5 shows the main structure of the thesis.
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Figure 1.5: Thesis Structure
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1.9 Chapter Summary

This chapter lays the foundations for this thesis by introducing the context, motivation

and outline of this program of research. The aims and objectives of the research have been

described. The structure of the various analyses and case studies are illustrated using a

research overview diagram in Figure 1.5.



Chapter 2

Background: Data and LU(S)TI

Dimensions

2.1 Chapter Introduction

Before the examination of existing literature on LUTI in emerging economies and reviews

of the dimensions and factors used to model mobility behaviour, this chapter begins by

providing a brief overview of major datasets that paved the way for the scientific analysis of

mobile phone datasets. Second, this chapter describes CDR and MFS data in more detail

by providing an overview of the data’s structure, and generation. The final part of this

chapter introduces the independent spatial, socio-economic and personality dimensions

and commonly-used mobility behaviour variables they seek to explain.

2.1.1 Enabling CDR Data Research

The following section provides an overview of datasets within the field of CDR data

analysis. While not an exhaustive list, it includes some of the key ones that have shaped

this emerging field of research.

21
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MIT Media Lab Reality Mining Project

MIT Media Lab Reality Mining project dataset that tracked BTS locations of a 100

students equipped with Nokia 6600 feature phones over nine months. The project was

aimed at studying community dynamics and interaction with the data set later published

as open data [104].

2012-2015 D4D Challenge

The Data for Development (D4D) challenge organised by Orange was the first major

initiative to make CDR data available to external researchers. It was launched in collab-

oration with Orange, University of Louvain, Belgium, and MIT.

“The goal of the challenge is to help address society development questions in

novel ways by contributing to the socio-economic development and well-being

of the Ivory Coast [and Senegale [89]] population.” [46]

Work using these datasets has focussed on country-level trends of patterns of commu-

nication and mobility, social network structure within communication networks and epi-

demiology [248, 45]. Two editions of the challenge were run, each focussing on a different

country.

Côte d’Ivoire 2012-2013 [46] Côte d’Ivoire has a population of approximately 20

million. At the time of the challenge, Orange Côte I‘Voire had an estimated 25% market

penetration with 5 million mobile phone subscribers. 2.5 billion calls and SMS CDR’s

generated over 150 days from December 1st 2011 until April 28th 2012 were used to

generate the four datasets used as part of the challenge. The CDR’s only account for

Orange customers and interactions between them. The study period encompassed 3600

hours worth of recording with 100 hours missing for technical reasons.

SET1 BTS-BTS traffic: Hourly counts of Erlang and number of calls aggregated to

different administrative levels in Côte I‘Voire
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SET2 Individual trajectories: High Spatial Resolution Data: High-resolution

trajectories for 50,000 randomly sampled users for 14 days at BTS level

SET3 Individual Trajectories: Long Term Data: 50,000 users for entire period

with reduced spatial resolution at sub-prefecture level (n = 255) with some sub-

prefectures not having any BTS

SET4 Communication Subgraphs: for 5000 randomly selected users

The first edition of the challenge received 260 applications with more than 83 papers using

the data sets being produced [89, 214].

Senegal 2014-2015 [89] The data for the second edition was provided by Sonatel of

the Orange Group. At the time of the challenge, Sonatel had approximately 9 million

mobile phone subscribers. CDR’s generated between January 1st, and December 31st

2013 were used to generate three datasets. Customers with less than 75% active days and

more than 1000 interactions per week were excluded from the analysis.

SET1 BTS-BTS traffic: Hourly counts for 1666 BTS in Senegal

SET2 Individual trajectories: High Spatial Resolution Data: High-resolution

trajectories for 14 days for originally 9 million mobile phone subscribers at BTS

level in addition to behavioral indicators for 300k users

SET3 Individual Trajectories: Long Term Data: Mobility traces for originally 9

million mobile phone subscribers for the entire period with reduced spatial resolution

at arrondissement level (n = 255) in addition to behavioral indicators for 146,352

randomly sampled users

Behavioural indicators in SET2 and SET3 had been generated using the Bandicoot toolkit,

an open-source Python kit for the analysis of MND [88], and include some of those gen-

erated for the classification of SEL in Chapter 4.
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2012 Cairo Transport App Challenge

Based on the success of the first edition of the D4D challenge on Côte d’Ivoire, Vodafone

initiated the Cairo Transport App Challenge in collaboration with the World Bank, Voda-

fone and IBM research. As part of the challenge, IBM was to use its AllAboard solution

developed as part of the D4D challenge to analyse mobility patterns in Cairo [40, 94].

Legal issues led to the eventual failure of the Cairo Transport App Challenge, however,

at the behest of the Egyptian National Telecoms Regulatory authority. The Authority

requested, that all CDR’s be retained within Egyptian state borders and only be accessed

by Egyptian nationals and that the AllAboard platform be run on Egyptian servers [214].

2013 Telefonica’s ’Datathon for Social Good’

Telefonica Dynamic Insights organised the Datathon for Social Good in conjunction with

the ODI and the MIT Human Dynamics Laboratory as part of the European Campus

Party. It included “Geo-localised open data sets in transportation, hospital admission

and emergency services location; non-localised Twitter data sets; and anonymised and

aggregated data from Telefnicas UK mobile network including calculations of footfall for

the London Metropolitan Area over the course of 3 weeks” [262].

2015 Telecom Italia Big Data Challenge

The Telecom Italia Big Data Challenge was organised by Telecom Italia in collaboration

with Politecnico di Milano, MIT Media Lab, Trento RISE and EIT ICT Labs [29, 329].

In total, more than 650 teams from over 100 universities participated with the data later

released under the Open Database License. Similar to the D4D challenge, two editions

were run based on the success of the initial challenge. At the time of the challenge,

Telecom Italia had approximately 34% market penetration within Italy.

Challenge 1: November 1st 2013 to January 1st 2014 The challenge datasets

included CDR, social pulse (geo-located tweets), weather, precipitation, electricity and

news data for the city of Milan and the Province of Trentino for 61 days from November to
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December 2013. As data was received from multiple different agencies and companies, it

was spatially aggregated into 235m× 235m grid cells in WGS84 (EPSG:4326) to account

for different spatial granularities of the datasets. The issue of different spatial granularities

and the need for aggregation is also discussed in more detail in §7.5.2. Milan was chosen

as a study site as it is a major economic hub in Italy without any scheduled major events

(such as the Fiere and Milan Design week) that could have introduced anomalous patterns

into the data throughout the study period. The CDR data was pre-aggregated into 10-

minute intervals, and included metrics on received and sent SMS, incoming and outgoing

call and data connections. Similar to the D4D datasets, only Telecom Italia customers

and interactions between those were included in the datasets.

Challenge 2: In addition to sets from Challenge 1, “the second edition also provides

private mobility data (trips performed by customers of some car security and insurance

companies), demographic data from Telecom Italia (e.g., gender, age-range and living

area) and detailed Italian companies’ information (e.g., number of employees, size and

locations)” [29, p.14]. Beyond the additional datasets, it was expanded to include the

cities of Bari, Milan, Naples, Rome, Turin, Venice and Palermo.

2.2 Mobile Network Data

This thesis makes use of datasets comprising CDR data for calls, SMS and Mobile Data

usage, and MFS transaction from a Tanzanian MNO for 2014. While MFS and CDR’s

comprising call events were available for the entire year of 2014, Mobile Data usage was

only available from January 1st until July 5th and SMS records from August 1st until

December 19th. Due to the unavailability of data for a period with overlaps across all

four event categories, periods with the SMS data were chosen over those with mobile

data usage due to the relatively low penetration of smartphones compared to feature ones

across all sectors of society at the time the data was collected for analysis in Chapters 3 to

5. The following section will provide a brief description of CDR and MFS data structure

and creation.
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2.2.1 CDR Data

CDR’s are automatically generated for every network event by MNO’s for billing, network

management and maintenance purposes. Those range from tracking handsets within the

network to understanding network performance [228]. They are generated whenever a

network event takes place, allowing for the capture of the individualistic, spatial and

temporal behaviour of users. They capture insight into both micro- and macro patterns

of human interaction while allowing for the preservation of individual anonymity through

spatial and temporal aggregation. Network events generating data include

• Active events

– Connection events when a handset is turned on or off, or losses or regains

connection

– Call events when a phone call is placed or received and when the handset

is moving between cells during a call. In the case of an intra-network call,

one CDR per user is created, which is indicated by a change in called-party

number and calling party number with corresponding charging times between

both CDR’s. The charging time corresponds with the time when the receiver

answered the phone.

– Text events when a text message is sent or received.

• Passive events

– Time-based events when no event is generated over a fixed time period such

as 3 hours.

– Movement events when a handset moves between Location areas or when

switching between 2G/3G/4G bands. With call events or data usage, ‘han-

dovers’ or LAU can take place. Both describe a change in BTS associated with

a network event due to movement and change in coverage. A LAU occurs when

a call is transferred between different BTS while the user is moving. In the

data set used as part of this study, LAU’s were identified when the subsequent
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Figure 2.1: Example of location management of a mobile phone: a phone call, handover
between different BTS and a LAU [209]

record for a user had a different BTS, but an identical called party and a wait

time of zero. A location area is a ‘supercell’, which is made up of multiple

BTS coverage cells. In the case of phone calls, it can be assumed that the

BTS associated with a CDR corresponds with the origin BTS for the network

event. Becker et al. (2011) [34] have shown, that handover patterns are con-

sistent across different routes, speeds, directions, handset models and weather

conditions. Figure 2.1 shows an example trajectory, including handovers and

an LAU during a phone call. Whether separate CDR’s for handover or LAU

events are generated depends on the location management preferences of the

network operator.

In its simplest form, each CDR log contains a wide range of meta-data including:

• Timestamp - when a network event occurred.

• Temporal Mobile Subscriber Identity - is used for security reasons to obscure

the identify of a subscriber
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Table 2.1: Structure of a simplified CDR depicting an anonymised identifier for the caller
and the recipient of the call, a cell coverage identifier, which can be linked to the BTS
used for the call, a timestamp of when the connection was terminated, the time from
placing the call until the recipient answered the phone, and the duration of the call itself.

Calling party Called Party BTS ID Timestamp Waittime Callduration
asjhldhfsf jdshfewuip 12038097523 13-02-2014 00:01:12 0:00:10 0:05:12

• Mobile Station International Subscriber Directory Number - The encoded

phone number. For privacy purposes, the mobile phone number of the caller and

called user are anonymised by the network provider using the secure SHA-3 algo-

rithm in line with Groupe Spcial Mobile (GSMA) guidelines [149].

• ’CallingcellID’ - is a unique sector antenna ID that is used to link a CDR to a

BTS. There can be multiple callingcellIDs associated with a single BTS. Network

events within the CDR are directly linked to BTS locations through a callingcellID

associated with each event. This cell tower is formally called a BTS, which has a

unique identifier, and latitude and longitude. As no signal strength information is

contained within the database, the CDR’s used as part of this study are of a more

coarse-grained resolution and associated with BTS rather than individual handset

triangulations.

• ’Waitduration’ and ’Callduration’ - are unique to call records and are used to

calculate Erlang and handovers

The structure of a sample CDR can be found in Table 2.1. More specific information

for the different types of network events such as a wait duration between a user dialling

a number and the phone being answered and the call duration can also be included. A

CDR record only contains meta-data about the network event and never any of the con-

tent transmitted as part of the interaction.

The data sets used as part of this thesis only contain data from active call and SMS

events, which are a subset of the mobility data that is available in cellular networks.
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2.2.2 Mobile Money Data

MFS is an umbrella term for a range of services offered by MNO, which include “sending

and receiving money, making savings deposits, bill payments, making non-cash payments

and transferring money from ones mobile phone account to bank accounts and vice versa”

[250, p.4]. Similar to CDR’s being recorded whenever an active or passive network event

takes place as discussed in §2.2.1, a MFS transaction record is generated whenever a

transaction takes place. Those transactions types include:

• Account management such as changing the pin, a statement showing the last

five transactions, and checking the remaining balance

• Money management which includes deposits, withdrawals, and transfers to sav-

ings accounts

• Payments for money transfers to others using Peer-to-Peer and bill payments

Each record contained several attributes collected by the network operator as part of the

day-to-day MFS provision. Those attributes include:

• SIM identifier: anonymised identifier for the handset

• Date: timestamp of when the transaction occurred

• Transaction amount: total monetary amount for the transaction, including ser-

vice charge

• Event type: the category of the good/ service purchased via the transaction

• Subtype: a categorization of the business which provided the good/service featured

in the transaction

• Error code: indicator of transaction success/failure, denoting the cause if the latter

• User type: account type of the individual invoking the transaction (e.g. sub-

scriber/agent)
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Each transaction could have either no error code (success) or one of the multiple error

codes (some of which indicate a successful transaction) attached. The full taxonomy of

error codes is explained in more detail in Appendix B.

Similar to the CDR data discussed above, the MFS data set has been made available

by a sizeable Tanzanian MNO. The datasets represent a random sample from the entire

subscriber base incorporating millions of mobile phone subscribers within the geographic

boundaries of Tanzania. The MFS data set contains transaction records for regular mobile

phone subscribers, businesses or agents and the network operator itself.

2.3 Land use – Transport Interaction

Much of the LUTI research over the last three decades has focused on the relationship

between land use and mobility behaviour only [25, 68, 69, 124, 198, 241, 320]. Most of

these studies found a correlation between dense development, mixed land use, accessible

design and a reduction in vehicle trips, travel distances and the increasing attractiveness

of public transit, walking and cycling. Due to differences in geographical settings and

urbanisation patterns, however, conclusions about the relative importance of the built

environment in determining mobility patterns may differ across empirical settings [340].

“European cities have a historic city centre, sometimes dating from the Middle

Ages. Their narrow and winding streets discourage intensive car use, unlike the

grid-like street pattern of North-American cities. [...] Moreover, the spatial

scale of cities in Europe is smaller than North-American cities. Combined

with a spatial planning tradition that favors compact developments, European

cities are more suitable for walking and cycling. Differences in culturally

defined norms and values may influence travel behavior as well. For instance,

Americans may be more inclined to move house in response to employment

changes than Europeans.” [340, p.340]

“These cities cannot rely only on the evidence of those in developed economies,
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given large differences between them, such as infrastructure, socio-economic

conditions and administrative capacities. Thus, this study identifies the main

determinants of urban mobility in India and draws lessons for promoting ef-

fective transportation policies fit for Indian and other cities in developing

countries.” [8, p.107]

Initially, aggregated models were employed to assess the impact of land use characteristics

on collective mobility behaviour in large geographical zones using aggregated data (e.g.

[124]) but this approach has fallen out of favour due to an alleged oversimplification of

the complex interactions of LUTI [198]. Additionally, research has shown that the built

environment alone cannot account for individual differences in mobility behaviour – in-

stead, economic circumstances and more subjective factors such as culture, preferences

and attitudes have been recognised to have additional explanatory value [25, 198, 320].

The following sections will provide an overview of the geographical setting of these studies

with a particular focus on work carried out in emerging economies and the different

dimensions that were being investigated as causal factors for mobility behaviour.

2.3.1 Geographical Setting

Predicated by the availability of necessary data sources LUTI studies have traditionally

focused on North America [25, 68, 69, 85] with some limited focus on other Western coun-

tries such as the UK [320], Austria [311], Italy [106] and the Netherlands [96, 285, 340].

The result is a scarcity in empirical studies on urban areas in emerging economies pred-

icated by limited availability of fine-grained, accurate and up to date data in the Global

South.

Among the first to analyse the relationship between land use and mobility patterns in an

emerging economy were Vichiensan et al. (2007) [343], who found a strong relationship

between the two when analysing urban railway development in Bangkok, Thailand using

transportation forecasting models. They noted that the full set of necessary data for
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their analysis was not available, and some of the factors were at incompatible levels of

aggregation, requiring a switch to a coarser level of analysis.

Ahmad and de Oliveira (2016) [8] analysed modal choice, and out-of-pocket travel expen-

diture as a proxy for traditional metrics such as distance or time travelled using household

survey data for the 98 largest cities in India. They found a difference in mass transit usage

between small and medium-sized cities (preference for private motorised transport) and

large cities (preference for public transit in favour of non-motorized transportation). The

prior difference most likely due to the absence of sufficient transit infrastructure, the lack

of non-motorized transportation due to city size in the latter.

Focusing on commuting patterns in Shirza, Iran, Etminani-Ghasrodashti and Ardeshiri

(2016) [117] found that Residential Self Selection (RSS) has a significant impact on mobil-

ity behaviours, while the influence of street density, accessibility and other design measures

was mixed.

Lin et al. (2017) [218] investigated the relationship between socio-economic character-

istics and home/work location on commuting times in Beijing using multiple linear re-

gression analysis. They found a strong relationship between the decentralisation of em-

ployment, RSS and commuting times with the extent varying depending on the extent

of sub-urbanisation of the different employment sectors. Their research also suggests a

correlation between income and education factors and commuting behaviour.

Another study focusing on China used CDR data as well as passive signalling data from

China mobile combined with a POI dataset and Traffic Management Zone (TMZ) stats

[258] to analyse urban OD flows in Hangzhou, China for a week in September 2015. They

used an OD spatial econometric model with auto-correlation to analyse the relationship

between socio-economic factors, the physical location of POIs, transit accessibility, and

commuting distance on OD trip counts. They found a positive correlation between per-
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manent population numbers, the number of crucial POI physically located in the area

(used as a proxy variable for land use) and transport accessibility (measured as road lane

length), and OD counts, while travel time was found to be negatively correlated with

counts.

Recognising a lack of research in the analysis of the interaction between the dimensions of

the built environment and mobility, Kandt (2018) [193] compared the cities of Sao Paulo,

Istanbul and Mumbai with a particular focus on motorized transportation. Data was col-

lected by Ipsos MORI through a sample of 1000 household surveys in all three cities. The

survey covered socio-demographic “data on the usual socio-demographic variables gen-

der, age, household size, socio-economic status, educational qualification and economic

activity as well as household vehicle ownership” [193, p.727] as well as regular trips and

their purpose and mode. Multinominal logit models of mode choice and Ordinary Least

Square regression models of trip duration were used. The study found, that each city

requires different policy interventions and priorities - Sao Paulo requires increasing public

transit accessibility in Favelas, Istanbul should reduce car ownership while in Mumbai the

car fills a gap left by a lack in support of public transit services.

Zhang et al. (2018) [377] focused on the prevalence of mass transit usage among the

elderly in 274 rural and urban neighbourhoods in Zhongshan, China. They used National

Household Travel Survey (NHTS), TMZ, land use and population data in their analysis.

The binominal regression model used highlighted a strong relationship between the ac-

cessibility of an area, gender, age and positive attitudes toward public transit and mass

transit uptake.

The only LUTI study on an African country was Poku-Boansi and Cobbinah (2018)

[281], who investigated the impact of land use on mobility behaviour in the urban area of

Kumasi, Ghana while providing a review of research into the link between urban travel,

transport accessibility and land use in Ghana. They found a weak effect of land use on

urban travel as areas experiencing a rapid change in land use had poor accessibility with
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overall poor conditions of transit services, infrastructure and high levels of congestion.

2.3.2 Exogenous, Causal Factors

Each factor can be classified across one of three dimensions – spatial, socio-economic,

personality [340]. Spatial and socio-economic factors are regarded as ‘objective’ factors,

with those on the personality dimension being regarded as ‘subjective’ factors giving rise

to an objective-subjective divide within the research community [303, 345]:

“focusing only on spatial and infrastructural characteristics tends to disregard

the reality of individual perception, evaluation and decision. On the other

hand, too much focus on the individual can obscure the fact that an individuals

travel behavior is still linked to objective factors such as urban form and

infrastructure.” as cited in [199, p.246]

Spatial dimension

As living, working, shopping and recreation are spatially separated activities, they induce

the need to travel. The need to travel does not derive its utility from the trip itself,

but rather from the inherent need to reach activity locations. As a result, the spatial

dimension was identified as key to understanding the drivers behind mobility patterns 1

early on with initial work in the late 60s by Forrester (1969) [123] in his Theory of Urban

Interaction. Since the 1990s, the spatial dimension has increasingly focused on assessing

the impact of the built environment through three latent constructs first described by

Cervero and Kockelman (1997) [69] as the three D‘s that were later expanded by Ewing

and Cervero (2010) [119] to include distance to transit and destination accessibility.

Density factors include population density, employment density, and job accessibility

[69]. Most studies have found a positive correlation between increases in density,

public mass transit and activity-based mobility uptake, and a reduction in motorised

trip numbers and car ownership due to reduced distances supporting the hypothesis

1For a comprehensive review of the built environment-travel literature until 2009 see [119] - focus on
environmental changes, i.e. urban core to peri-urban and related impact on daily mobility patterns
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that higher density increases the likelihood of activity locations being within reach

[8, 178, 219]. Ultimately, however, the relationship depends on the type of density

as industrial employment density results in shorter trips, whereas an increase in

commercial and residential density results in the opposite [124].

Diversity factors encompass the mixture of activity locations available within an area

and are commonly defined through an entropy index 2 to quantify the degree of bal-

ance across land use types [69, 70, 124]. Low values are associated with single-use

environments, whereas a higher value indicates the availability of more diverse land

use types such as commercial, business, industrial and residential [69, 119, 198].

The effects of diversity are similar to the effects of higher densities in terms of re-

duced motorised trip numbers, increase in public mass transit uptake and increasing

activity-based mobility (e.g. walking and cycling) [69, 124].

Design factors include street characteristics, pedestrian and sidewalk coverage, aver-

age block size, residential parking and accessibility [69, 205, 320]. Accessibility,

the distance to the nearest public transit point, in particular, was found to drive

increasing activity-based mobility [69], increasing public transit uptake [198], and

reducing vehicle miles travelled [119, 205]. While the overall distance and number

of trips per tour decreased with high accessibility, it resulted in an increased average

number of tours [205]. Similarly, Meurs and Haijer (2001) [241] found, that design

characteristics have more of an influence on mode choice for shopping, social and

recreational trips than work travel.

Socio-economic dimension

As mentioned above, daily mobility demand is derived from the desire to reach activity

locations. The focus here is on individuals as one of three possible sets of ‘actors’ within

the activity system with the other sets being firms and institutions [340]. Existing research

has shown that the overall impact of the built environment as an explanatory dimension

to mobility behaviour is reduced when accounting for socio-economic characteristics of

2as opposed to the lesser-used Herfindahl index
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the study population as it cannot account for the means that individuals have at their

disposal [320, 353]. The most commonly used factors include:

Household composition generally defined as the number of adults in a household

[285, 340]. The number of working adults in a household was found to have an

impact on car dependence and trip distance [69, 205]. Single people and couples

were found to favour public mass transit over private motorised transport during

mode choice while distances and travel times for work trips may be longer for work,

than for non-work due to an absence of childcare responsibilities [320, 340].

Age of a household member or average age of residents in an area. Older people using

private motorised transport were found to be more likely to have shorter trips [320].

The number of children, on the other hand, can have similar impacts on mobility

behaviour to working adults [205].

Gender split, as women are more likely to use public transit [304]. As a result of the

slower speed associated with public transit, they are likely to travel shorter distances

than men [320]. Stead (2001) [320], however, noted that this is perhaps due to a

generally lower income and employment in different job sectors, while car use is

potentially higher for non-work trips than car use of men.

Car ownership as either endogenous (explained by socio-economic variables), or ex-

ogenous (explaining mobility behaviour) [124, 340]

Education level, Employment status and Income are sometimes interwoven as

proxies for each other as higher levels of education open opportunities to work in

more senior positions with better levels of income [340]. Studies have shown a

correlation between high private motorised transport use, long trip distances and

commuting times among highly educated, employed, high-income groups [205, 320].

Life cycle stages as key personal or family events such as house moves, changes in

education or profession, or marriage [36]
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Those socio-economic and demographic factors are sometimes combined into latent con-

structs such as household responsibility or social status.

Personality dimension

Traditionally, mobility was considered as derived demand with mobility behaviour as-

sumed to be based on a cost-benefit analysis of different mobility options dictated by the

built environment to reach activity locations [351]. Existing research has shown, however,

that homogeneous groups with similar objective factors, show differences in ‘subjective’

factors such as attitudes and preferences toward mode choice, neighbourhood character-

istics and lifestyles that can have an impact on mobility behaviour, de facto overruling

traditional assumptions of derived demand [282, 303, 345, 351].

Kitamura et al. (1997) [198] were among the first to incorporate lifestyles as a factor

in the analysis when investigating the relative explanatory power of land use, socio-

economic and lifestyle factors for the San Francisco Bay Area. Their findings, that

attitudes and lifestyles explain that highest level of variation, was later confirmed by

Bagley and Mokhatarian (2002) [25] as well as Wee (2002) [351], who found that atti-

tudes, preferences and lifestyles have a more significant impact on RSS and by extension

travel demand than the spatial dimension alone. Past RSS choices were found to be an

adequate predictor for current mobility behaviour in what Beige and Axhausen (2012)

[36] termed ’state dependency’, which can in itself result in a dissonance between actually

selected and desired resident neighbourhood [345].

“modal changes at the new residential location are not determined by the

changed built environment but are an expression of a more adequate realisation

of travel-related preferences which already existed latently at the previous

residential location, but was not fully implemented due to constraints such as

local accessibilities.” [199].

While the above mentioned research has shown those factors to have an influence in certain

circumstances, they were not considered as part of this thesis research but are instead
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mentioned to provided a fuller background on factors and dimensions considered within

land use and socio-economic – transport interaction research.

2.3.3 Mobility Factors

There are a factors that are commonly used to model mobility patterns to be explained

through the exogenous dimensions discussed earlier:

Modal choice difference for either work and shopping trips was found to be different

depending on the geographical setting. In the Pudget Sound Area, USA density

explained much of the modal choice while diversity decreased in explanatory value

once socio-economic variation was taken into account [124]. In Austria, on the

other hand, socio-economic factors had significantly more explanatory value on mode

choice than either factor within the spatial dimension [311].

Trip distance or vehicle miles travelled was used as a principle mobility factor by

Krizek (2003) [205] and Stead (2001) [320] as it can be regarded as a proxy for

several environmental impacts including energy consumption and emissions.

Out of pocket travel expenditure has been used as a proxy for more traditional

mobility metrics such as distance or time travelled by Ahmad and de Oliveira (2016)

[8] for mobility analysis in India.

Trip frequency, trip counts or OD travel flow measures the number of inbound-

outbound trips for an area or between areas [219]. Ni et al. (2018) [258] were

the first to explore CDR-derived OD flows at an aggregated level using econometric

analysis.

2.4 Chapter Summary

This chapter described key data sets that enabled CDR data to be examined as a novel

source of data for understanding human behaviour on a micro- and macro level. It fur-

ther provided an overview of the common structure of CDR and MFS data as well as a
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description of when they are created.

The chapter also provided an overview of existing research on land use and socio-economic

– transport interaction within the Global South, highlighting a gap in wealth of research

compared to the Global North. The final part of the chapter outlined the three dimensions

used to explain mobility behaviour as part of land use and socio-economic – transport in-

teraction research. Specifically, this focused on commonly used factors within the spatial

dimensions defined through the three D’s of density, diversity and design, socio-economic,

and personality dimensions.

The following chapters examine the value in using CDR data to generate insights into

the spatial dimension (in chapter 3), the socio-economic dimension (in chapter 4), and

mobility behaviour (in chapter 5); the analysis of the interaction between land use, the

socio-economic dimension and mobility patterns (in chapter 6); and the limitations of

CDR and MFS data and ways to address those identified through the empirical analysis

in Chapters 3-6. Chapters 3-5 will include their own literature review specific to CDR

and MFS data analysis, while Chapter 6 will include a review of existing studies using

SEM for land use – transport interaction analysis.



Chapter 3

Tracking Activity-Based Land Use

3.1 Chapter Introduction

The previous chapter examined the characteristics of CDR and MFS data, the geograph-

ical context of existing LUTI research, and introduced the different dimensions used to

explain mobility behaviour. This chapter generates density and diversity factors explicitly

from the spatial dimension through the analysis activity-based land use using automati-

cally generated CDR data. The following research objective guides this chapter:

Research Objective 1: to examine whether differences in activity-based land

use and density can be distinguished from behavioural patterns contained

within CDR data.

Traditionally, land use encompasses land characteristics, ownership characteristics, and

the socio-economic and activity-based use of the land itself [17]. As discussed in §2.3.2 the

spatial dimension within the LUTI relationship is commonly analysed through the three

latent constructs comprising of 3D‘s - density, diversity and design [69]. While density

and design fall under land cover, the biophysical state of the land, diversity is associated

with human behaviour and activity. The activity-based land use of an area is a proxy

indicator for diversity within the area. High levels of diversity and density are generally

associated with reduced mobility-demand due to the availability of nearby activity loca-

40
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tions [69, 119, 124, 198]. Successful urban planning requires an understanding of land use

within the area itself and by extension, accurate measurements to assess both progress

and success of interventions.

This chapter takes an unsupervised approach to answering the research question as they

have the advantage of not requiring any pre-existing zoning data, thus increasing their

utility for land use classification in areas with poor ground truth data. Before detailing this

approach traditional data sources are discussed in Section 3.2.1, ultimately highlighting

numerous shortcomings which motivate the examination of alternate data sources. This

is followed by a discussion of existing approaches to conducting Land Use Analysis using

Mobile Network Data in Section 3.2.3. The research approach is discussed in Section 3.3

after a discussion of existing approaches (§3.2.3).

3.2 Literature Review

Traditionally, techniques to monitor land use have focused on manual surveys and satellite

imagery [172, 368]. The following section will highlight key works in the analysis of land

use using such data sources.

3.2.1 Traditional Data Sources

The majority of previous work on land use classification has been conducted using offi-

cial statistical data and satellite imagery with more recent approaches focusing on the

potential of social media data.

Official statistics

Statistical sources are the most widely used source of data for the tracking of ownership

characteristics, socio-economic and activity-based land use. Statistical sources include

spatially-referenced population data collected in the form of census surveys and pop-

ulation registers. Population registers are becoming more commonplace in European
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countries such as the Netherlands, Finland, Sweden and are more routinely updated than

census survey responses. In rare cases, additional data sets such as social surveys, hospital

patient registers, tax records and other administrative and industry collected customer

data, including loyalty card and customer survey data is used [213].

Ineffective or absent data collection and governance strategies, the ‘Statistical Tragedy’,

contribute to a lack of up to date, fine-grained and reliable data, however. Effective data

collection and governance requires technical know-how and infrastructure for dissemina-

tion, collection, processing and quality control. Emerging economies also

“face the additional challenges born from a lack of prior measurement of hous-

ing or infrastructure, significant population heterogeneity in literacy levels and

languages spoken, the presence and location of nomadic people” [232, p.47]

and presence of informal slums.

Generally, census surveys are only carried out every couple of years, with the gap increas-

ing rapidly in emerging economies around the world. In Tanzania, census surveys were

carried out in 1988, 2002 and 2012 1. The result is a lack of temporal and spatial resolution

that makes official statistics unsuitable for capturing changes in land use dynamically.

Satellite Imagery

An alternative data source allowing for the collection of land use and land cover data

at different temporal and spatial scale is satellite imagery. Satellite imagery are images

of the earth surface recorded in different spatial (recording size), spectral (wavelength),

temporal and radiometric (bit-depth and brightness) resolution 2. Advantages of satellite

imagery include global coverage, a high revisiting capability and relative ease of access,

making it the most pertinent data source for tracking land cover change over time [115].

Yuan et al. (2005) [372] for example used reflective spectral bands of satellite imagery

to identify land characteristics and classify the study area by land cover types including

1https://unstats.un.org/unsd/demographic-social/census/censusdates/
2https://www.sciencedirect.com/topics/earth-and-planetary-sciences/

spatial-resolution

https://unstats.un.org/unsd/demographic-social/census/censusdates/
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-resolution
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-resolution


3.2. Literature Review 43

urban land, agriculture, forest, grass, water, and wetland. Similarly, Aburas et al. (2015)

[1] have used satellite imagery to identify remote land cover features, including the nor-

malised difference vegetation index in Malaysia. Land cover information can be useful for

filtered area weighting during spatial interpolation and apportioning as will be discussed

in more detail in §7.5.2.

Through a combination of spectral and texture features contained in the imagery, satellite

imagery can be used to identify a range of design and density factors including building

locations, building density, road conditions, and proximity to the physical location of POI

such as schools and hospitals [373]. Research by Wu et al. (2009) [368] has shown, that

design and density factors alone are insufficient to reliably differentiate between different

land use types such as office, industrial, transportation unless additional data sets are

used. Instead, they proposed using additional data sets on contextual properties, while

others have chosen to use census data [240], Geographic Information System (GIS) data

sets [172, 371] or expert knowledge [370]. Hu and Wang (2013) [172] used aerial imagery

taken from a single-engine aircraft, land parcel boundary and land use layer data for

land use classification in Austin, Texas. They found building footprint and height to be

the most important factors for land use classification. Their study relies on pre-existing

ground reference data, which may be incorrect or missing in other countries.

While satellite imagery has shown much promise as a data source for land cover classi-

fication, its sole focus on biophysical characteristics, density and design have limited its

utility for the identification of diversity features from the spatial dimension (§2.3.2) of a

city.

“Another reason for the unsatisfactory accuracies is the definition of the land-

use scheme. Remote-sensing data mainly depict urban biophysical character-

istics, while the land use definition is based on the human use perspective.

There is a mismatch between urban land cover and urban land use, so the

diversification of the utilised characteristic of civic land use and the human
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operation is no doubt the main reason for the low accuracy” [172, p.800]

Empirical evidence has shown these approaches to be time-consuming, expensive, infre-

quent, and quickly outdated however.

3.2.2 Social Media

The proliferation of Global Positioning System (GPS) equipped mobile devices and basic

cartographic design skills have allowed for the increasing generation of geospatial data.

The generation of this data was previously restricted to professional with specialist equip-

ment [51, 127, 143, 319]. By the millennia,

“the cost of entry into map-making had fallen to no more than the cost of a

simple PC, and the role of the expert had been replaced by GPS, mapping

software, and other technologies” [144, p.232-233].

The proliferation of GPS equipped mobile devices, and the increasing pervasiveness of

the internet has given rise to the development of Location Sharing Services (LSS) such

as Twitter, Facebook, Foursquare and Flickr. The services generate vast amounts of

geolocalised user-generated content or Volunteered Geographic Information (VGI). Official

land use categories are strongly related to patterns of human activity. Human activity

data generated through LSS are thus a promising avenue for overcoming limitations of

official statistics and satellite imagery [130, 221, 261, 276, 295, 330, 350]..

Foursquare is a search-and discover based LSS. Its purpose is to provide recommen-

dations on the physical locations of POI and local businesses such as restaurants,

cafe‘s, business.

Twitter is a microblogging and social networking LSS. Using Twitter data for 49 days,

Fras-Martnez et al. (2018) [130] sought to both determine land uses for specific parts

of Manhattan and urban POI with high activity levels validated against official land

use and landmark statistics. Garca-Palomares et al. (2018) [132] sought to analyse

the link between land use and daily dynamics of the city of Madrid using ‘typical
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Twitter activity profiles’, TMZ land use and Cadastral data. The approach heavily

relied on pre-existing land use information only available at the TMZ level. They

found that while the approach had some utility that other techniques, particularly

remote sensing through satellite imagery, are “more reliable and easier to apply in

order to obtain land use maps” [132, p.311].

Flickr is an image and video hosting LSS. Focussing more on landscape descriptions,

Wartmann et al. (2018) [350] used on-site interviews, text data from hiking blogs

and Flickr tags to classify 10 study sites across Switzerland. Terroso-Saenz and

Munoz (2020) [330] combine user-centred text (Flickr) and venue-centred (Foursquare)

data to train a Random Forest classifier with land use categories based on the

Foursquare hierarchy for New York and San Francisco. Random Forest was used

as the base model for the construction of a multi-label classifier for the association

of discussed topics (generated through Latent Dirichlet allocation (LDA)) with pre-

defined land use labels as it outperformed Logistic Regression and Support Vector

Machine (SVM) for the classification task at hand. Land use areas were identified as

topics from point-based data contained in the user-centred text corpus using HDB-

SCAN. They found that the utility of this approach diminishes as the document

density decreases toward peri-urban ‘outskirts’.

Challenges of using social media data for land use classification include: a lack of interoper-

ability due to the vernacularity of the generated land use labels; and the under-utilisation

of available data sources as the focus is generally on user-centred text LSS rather than

a combination of different data sets. Unless land use labels are derived from specific

pre-defined taxonomy of categories such as those used in Foursquare 3, VGI is inherently

vernacular affecting their utility for coherent classification [51, 144].

“On the one hand, most proposals use different information retrieval and topic

modelling techniques in order to analyse the textual information contained

in VGI documents (e.g., the text written by a user in a tweet or the tags

3https://developer.foursquare.com/docs/resources/categories
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describing a photo on Flicker). Next, the outcome of these techniques is used

to label the regions of the target city describing their usage. This procedure

tends to generate ad-hoc labels which actually hamper the interoperability of

the generated land-use maps.” [330]

Furthermore, VGI is much more likely to be generated in dense urban areas and those

frequented by tourists, affecting its utility for land use classification in peri-urban and

rural areas. The always-recording nature of many LSS also raises concerns regarding

security, confidentiality and personal privacy [32, 111].

3.2.3 Land Use Analysis Using Mobile Network Data

A potential alternative, however, exists in the analysis of automatically generated MND

in the form of CDR transaction logs. Work on the remote identification of land use areas

using CDR data at the BTS level has been undertaken in several countries. MND based

land use detection generally follows a three-step process of signature construction, area

division and clustering. Signatures for subsequent classification and clustering are derived

from CDR event series and can be represent as time series of different temporal granular-

ity [233, 273, 315, 316, 336, 341, 369], different communication variables [234, 232, 260] or

matrices [113, 114, 213, 226, 234]. Area division approaches for study region identification,

and visualisation of land use maps have been on the grid-level [113, 114, 213, 273, 336]

and polygon-level [226, 232, 233, 234, 260, 315, 316, 341, 369]. Previous classification ap-

proaches can be divided according to the applied technique: semi-structured, supervised,

and unsupervised classification discussed in more detail below. An overview of studies

using MND for land use classification can is shown in Table 3.2.3.

Semi-structured approach

In Semi-structured learning, a small set of known POI is used to train a land use classi-

fier. Soto and Frias-Martinez (2011) [316] used semi-structured fuzzy c-means clustering

in their analysis of land use in Madrid. They used network event activity counts for

one month from October 1st to 31st, 2009 in 5-minute intervals in the form of Erlangs
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averaged to different signature levels: one day of the entire study period, one weekday,

one weekend and a week pattern. The areas are divided into polygons using Voronoi

tesselation. They found that the use of fuzzy c-means allows for the representation of

land use areas in terms of the balance across land use types.

Merging one month of CDR with Foursquare data, Noulas et al. (2013) [260] generated

a range of communication-based variables rather than time series signatures for land use

classification in Madrid and Barcelona. Study areas were dynamically generated using

DBSCAN for merging of BTS near one another before being divided into polygons using

Voronoi tesselation. They compared logistic regression, SVM, a multi-layer perceptron,

logistic model trees and DMNBText for classification of areas based on Foursquare hier-

archy derived labels. While binary class accuracy was at 65%, additional classes led to a

sharp drop in performance to below 50% once more than four classes were used.

Also using fuzzy c-means clustering, Pei et al. (2014) [273] classified land use areas in

the Singapore metropolitan area. Using Erlang for one week from March 28th to April

3rd, 2011 for 5500 BTS in Singapore, they constructed normalised signatures for a 4-day

mode - general weekday consisting of Monday to Thursday, Friday, Saturday and Sunday.

Areas were aggregated to 200m × 200m grids using inverse distance weighting. Classifi-

cation accuracy versus ground reference labels from the Urban Redevelopment Authority

in Singapore was 58.03% at best. The authors suspect that this error is due to more

considerable heterogeneity in land use.

Combining SET1 of the D4D challenge Senegal (§2.1.1) with POI data sets obtained

from OpenStreetMap and Facebooks Graph API, Mao et al. (2017) [233] examined Com-

mercial/ Business/ Industrial, and residential areas in Dakar, Senegal. They generated

average hourly time series for a week from 1 year of hourly BTS counts for 1666BTS

in Senegal from January 1st to December 31st, 2013 in addition to a ‘spatial residual’

variable. Areas were represented at the Polygon-level following Voronoi tesselation and
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Simple Area Weighting. Areas were classified as either Commercial/ Business/ Industrial,

or residential based on the ranking of Non-negative matrix factorization (NMF) vectors.

Supervised approach

Supervised approaches classify areas by land use using classifiers trained on pre-labelled

ground truth datasets. Existing research using supervised approaches are scarce due to

the lack of accessible ground truth data in many countries around the world.

Toole et al. (2012) [336] used Zoning labels from the MassGIS aggregated to 5 categories

(residential, commercial, industrial, parks, other) to train their land use classifier. They

used CDR for the Boston Metropolitan area for 600k subscribers for three weeks to gener-

ate average hourly time series without accounting for weekday/weekend differences. Those

are fundamentally different due to the absence of 7-day working weeks [63]. Random For-

est was used for classification of time series with areas as interpolated as 200m×200m grid

cells due to the difference in spatial granularity from triangulated point-based CDR and

tract-level zoning labels in the MassGIS data. They found that outdated zoning data used

for building models was the prime reason for the misclassification of the majority of areas.

Vanhoof et al. (2017) [341] used CDR data for 154 days from May 13th to October 14th,

2007 to classify land use in various French cities using French Urban Area Zoning data,

which is updated every 5 to 10 years. They generated four average one-day scenarios

of non-summer weekday, non-summer weekend, summer weekday and summer weekend.

Areas were divided into polygons using Voronoi tesselation and Spatial autocorrelation

with Voronoi circumference used as an additional variable to the four generated scenar-

ios. Three (Random Forest, Boosting trees and elastic net penalised logistic regression)

classifiers were used to classify urban areas.
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Unsupervised approach

Both supervised and semi-structured approaches have shown only average accuracy due

to inaccurate ground truth data used to train classifiers, and high heterogeneity in land

use. Unsupervised approaches have the advantage of not requiring any pre-existing zoning

data, increasing their utility for land use classification in areas with poor ground truth

data. Instead, land use categories can be presented once clusters are formed, and cate-

gorised spaces can then be compared to known locations of specific land use categories for

validation. This enables a data-driven classification of the traditional aspect of diversity

based on summaries of emergent groupings. It is of note that such an approach in general

does not guarantee clusters will distinguish or classify regions based on emergent features

of utility in the problem domain. However, in Section 3.4 it is shown empirically that

at least in the case of land use classification the approach does lead to clusters that are

distinguished by interpretable features with high utility.

Among the first to apply an unsupervised approach for land use classification was Soto

and Frias-Martinez [315], who applied K -means to Erlang data from Madrid in a similar

process to their other paper the same year [316].

Lenormand et al. (2015) [213] used CDR data for 55 days days from September to Novem-

ber 2009 for land use classification in the Spanish cities of Madrid, Barcelona, Valencia,

Seville and Bilbao using a community detection approach. Signatures were generated in

the form of hourly time series for weekdays with areas represented on Voronoi interpo-

lated with 500m× 500m grid cells. The classification was performed using a community

detection algorithm on the Pearson correlation matrix between cell activities.

Madhawa et al (2009) [226] used the principle components from hourly time series for

CDR data for Colombo, Sri Lanka, generated through Principal Component Analysis

(PCA) for classification. Areas were divided into polygons using Voronoi tesselation of

BTS and clustered using K -means.



50 Chapter 3. Tracking Activity-Based Land Use

Xing et al. (2018) [369] is following the same approach as [131] using traffic volume and

BTS time series on mobile data usage for four weeks from May 18th to June 14th 2016

in a north-eastern Chinese city. BTS under 100m were merged and subsequently repre-

sented as polygons generated through Voronoi tesselation resulting in 1143 analysis areas

(n = 3489 pre-merging). Three BTS-level signatures in the form of hourly time series for

weekday-weekend, median week and weekday-weekend median were generated for cluster-

ing using K -means++. Validation was undertaken using a distribution-based approach,

with POI assigned to Voronoi polygons. Here, NMF was used for quantification of the

land use mixture.

Using K -means, Manley and Dennett (2018) [232] generate variables on regional activity

and regional interactions from D4D Senegal (§2.1.1) data to classify polygon-level land

use by 11 classes. The regional activity was based on activity generated in the area akin

to time series used by other studies described above, with regional interactions measured

as the proportion of calls between an origin and a destination region. A building use

data set from the National Agency for Statistics and Demography of Senegal is used to

assess density and land use mixture within the study region. The 11 generated classes

were predominantly based on the relative density of certain land use categories such as

industrial, hotel and military.
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Table 3.1: Overview of research on land use classification using Mobile Network Data

Reference Data

Source

Sample Size Time

Period

Signature

Construction

Region

identification

Area

division

Clustering

Method

Target

Labels

Region

Soto and

Frias-

Martinez

(2011)

[315]

CDR 100m CDR 1 month 5min Erlang

Time series

(Total—total

week-

day/weekend—Daily)

Voronoi

tesselation

Polygon-

level

K -means Ad-hoc

labels

Madrid

Soto and

Frias-

Martinez

(2011)

[316]

CDR 100m CDR 1 month 5min Erlang

Time series

(Total—total

week-

day/weekend—Daily)

Voronoi

tesselation

Polygon-

level

Fuzzy

C-means

Ad-hoc

labels

Madrid

Toole et

al. (2012)

[336]

CDR &

MassGIS

Zoning

labels

600k

subscribers

3 weeks Average

hourly Time

series

Grid

interpolation

of CDR

(triangulated)

and Labels

(tract)

200m

Grid-level

Random

Forest

5 MassGIS

Zoning

labels

Greater

Boston Area
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Noulas et

al. (2013)

[260]

CDR &

Foursquare

12m

subscribers

1 Month User commu-

nication

entropy,

outgoing

tower

entropy,

remote com-

munications,

weekend

calls, night

time call

volume,

durations,

user return

times

DBSCAN for

nearby BTS

aggregation &

Voronoi

Tesselation

Polygon-

level

Logistic

Regression

& SVM

&Multi-

layer

Perceptron

& Logistic

Model

Trees &

DMNBText

Foursquare

hierarchy

Madrid and

Barcelona

Pei et al.

(2014)

[273]

Erlang &

URA

Zoning

labels

5500BTS 1 week Vector of

normalized

pattern and

Erlang

IDW 200m

Grid-level

Fuzzy

C-means

5 URA

Land use

types

Singapore

Metro Area

Lenormand

et al.

(2015)

[213]

CDR unknown 55 days Pearson

correlation

matrix

Voronoi

tesselation

500m

Grid-level

Community

Detection

Ad-hoc

labels

Madrid,

Barcelona,

Valencia,

Seville &

Bilbao

Madhawa

et al.

(2015)

[226]

CDR 10m

subscribers

1 month Hourly time

series derived

PCA

Voronoi

tesselation

Polygon-

level

k -means Ad-hoc

labels

Colombo, Sri

Lanka
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Mao et al.

(2016)

[234]

D4D &

Facebook

477 BTS 365 days Hourly time

series derived

NMF

matrices, Call

density,

Connectivity,

PageRank

Voronoi

Tesselation

Polygon-

level

Jaccard

Coefficient

Ten-class

land use

Dakar,

Senegal

Engelmann

et al.

(2017)

[113, 114]

CDR 415k

subscribers,

433.6m

CDR, BTS

122 days Hourly time

series derived

NMF

matrices

Voronoi

tesselation

500m

Grid-level

k -means Ad-hoc

labels

Dar Es

Salaam,

Tanzania

Mao et al.

(2017)

[233]

D4D,

OSM &

Facebook

488 BTS 365 days Hourly time

series (168)

&spatial

residual

Voronoi

tesselation &

Simple Area

Weighting

Polygon-

level

NMF 2 Ad-hoc

classes

Dakar,

Senegal

Vanhoof et

al. (2017)

[341]

CDR &

ZAUER

TMZ

18m

subscribers

154 days Hourly time

series

(weekdays

summer/non-

summer —

weekends

summer/non-

summer),

Voronoi

circumference

Vornoi

Tesselation &

Spatial

autocorrelation

Polygon

level

Random

Forest,

Boosting

Trees,

Elastic-

Net

penalized

logistic

regression

Downsampling

of ZAUER

labels (9

to 6)

France

Xing et al.

(2018)

[369]

CDR &

POI

Unknown 4 weeks Hourly time

series

Voronoi

tesselation

Polygon-

level

K -

means++

Ad-hoc

labels

North-eastern

Chinese City
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Manley

and

Dennett

(2018)

[232]

D4D,

OSM &

ANSD

Erlang 7 months Regional

activity &

Regional

Interactions

Voronoi

Tesselation

Polygon-

Level

K -means GIS

derived

11-class

Ad-hoc

labels

Dakar,

Senegal
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3.3 Research approach

The analysis of land use focused on BTS located in the metropolitan area of the Tanza-

nian port city of Dar es Salaam. It goes beyond other unsupervised studies by considering

activity signature (§3.3.2) activity for weekdays and weekends while accounting for het-

erogeneity (§7.4.3) in usage patterns between those. Unlike earlier research by Madhawa

et al (2009) [226] and Soto and Frias-Martinez [315], signatures were constructed based

on the network events rather than unique number of users, and Erlang respectively. An

unsupervised approach was chosen for this research, as while some form of ground truth

data that will be discussed in more detail in §4.3.1 was available, this is rarely the case

in other emerging economies making the approach less generalisable otherwise.

A core dataset of 565 BTS from Dar es Salaam, Tanzania, was identified. The analysis

followed a three-step process similar to other approaches discussed in the previous section

and by Xing et al. (2018) [369], who published following the completion and publishing of

research (same as K -means, Manley and Dennett (2018) [232]) described in this chapter:

1. Signature Construction: Raw CDR event series are aggregated into different

activity signatures representing hourly network event counts for each BTS. As part

of this step, BTS in very close spatial proximity where the location of a user cannot

be distinguished are merged. Three signatures are generated for detection of BTS

with unclear operational status. Feature scaling was used to standardise time series

for comparison. NMF and PCA were applied to the time series to extract matrices

of latent factors and principal components.

2. Clustering: K -Means was applied to the NMF matrices to cluster areas with

similar underlying behavioural patterns.

3. Area division: Polygons representing Voronoi shapes around BTS were generated

using Voronoi tesselation. Labelled Voronoi polygons are interpolated with a grid

to protect individual and commercial privacy.
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3.3.1 Data Description

The CDR data used as part of this study covers a total of 433.6 million CDR records

for call and SMS network events generated by 415k mobile phone subscribers across the

metropolitan area of Dar es Salaam over a period of 122 days in the autumn of 2014

4. As discussed in §2.2.1 a raw CDR record is automatically created for each network

event (§2.2.1) and includes a range of attributes including: timestamp of when the event

occured; an anonymised mobile phone subscriber ID; call duration; and a BTS identifier.

3.3.2 Signature Construction

First, time series representing hourly activity at each BTS were generated to represent

activity signatures. Second, time series were feature scaled for comparative purposes.

Third, the obtained relative hourly time series were averaged per hour of the day resulting

in activity profiles or ‘signatures’ for each BTS.

Timeseries

A series of network events were extracted for each BTS located in the Dar es Salaam

Metropolitan area. The event series for each BTS were aggregated as hourly time se-

ries with each bin representing the number of network events generated each day at every

hour. Timeseries account for the internal structure of longitudinally collected data includ-

ing diurnal patterns of day/night, working day/weekend and seasonal variation between

summer and non-summer months [63, 341].

Feature scaling

The network event counts within the per BTS time series differed quite significantly across

the study area, making a direct comparison and clustering difficult. Per BTS event counts

for signature2 ranged from 4424 to over 2.4 million network events. In order to compensate

for the differences, time series were standardised before signature construction prior to

4Due to both individual and commercial privacy, the anonymised data used as part of this study is
not publicly available, and was provided through a partnership with a major Tanzanian MNO
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clustering to match shape rather than magnitude [290]. There are three common methods

for standardisation:

• Standardisation uses the mean (µ) and standard deviation (σ) to calculate Z-scores

• Mean Normalisation uses the mean, min and max to redistribute values around a

mean µ of zero

• Min-Max Scaling uses the minimum and maximum values to standardise data be-

tween zero and one.

Mean normalisation and standardisation to z-scores was not possible in the present case,

as NMF does not allow for the input matrix to contain any negative values. Instead,

Min-Max scaling was used:

yi =
xi − xmin

i

xmax
i − xmin

i

vi is the normalised version of the original timeseries x for BTS i. xmin
i is the minimum

and xmax
i the maximum activity count for any given BTS in the sample respectively.

Signatures

Each BTS signature is represented through a feature vector of feature-scaled timeseries

vi. Signature 2 for example can be represented as:

vi(1), vi(2), ..., vi(168)

The combination of all signatures results in a matrix Vm×n with m=565 as the number

of BTS and n=168 as the length of a signature. Some time series showed a uniform

distribution of activity during day time, while others showed a higher network activity

pattern either at evening times only or at both morning and evening times. In total, three

sets of signatures representing different temporal granularities were generated per BTS

for both analysis and outlier detection:
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• Signature1 time series hours were averaged into a single day (n=24). One BTS

was excluded from the analysis as its signature only contained a single recording.

• Signature2 time series hours were averaged into a single week (n=168). BTS with

fewer than 72 recordings in its signature were classed as outliers. 72 was chosen as

the cutoff as it is equivalent to 3 weekdays worth of data to account for BTS being

switched off throughout the weekend with some tolerance for Friday evening and

Monday morning. As a result, an additional BTS with only 73 out of 168 recordings

made between midnight and 6 am was excluded.

• Signature3 represents the original time series for 122days (n=2928). BTS with

fewer than 1296 recordings were treated as outliers. 1296 recordings were chosen

as the cutoff as it is equivalent to 4 days per week worth of data to account for

towers being switched off throughout the weekend with some tolerance for Friday

evening and Monday morning for the entire study period similar to the approach

for Signature2. This lead to the exclusion of an additional 13 BTS.

Table 3.2: Aggregate statistics of activity signatures prior and post outlier removal

Signature Temporal

granularity

min

prior

min

post

max

prior

max

post

avg

prior

avg

post

σ

prior

σ post

Signature1 24=24x1 1 16 24 24 23.918 23.959 1.063 0.446

Signature2 168=24x7 1 115 168 168 166.758 167.218 9.352 4.811

Signature3 2928=24x122 1 1210 2928 2928 2778.71 2838.467 439.508 247.934

The removal of outliers had a drastic effect on the overall signature matrix V, as can

be seen in Table 3.3.2. The σ decreased by 58.04% (Signature1), 48.56% (Signature2)

and 43.59% (Signature3) respectively. Signature2 is used for subsequent classification of

land use. In contrast to signature1, it captures differences in weekday and weekend usage

patterns and was used to understand common behaviour within the area surrounding

the BTS over the course of a week to address the problem. Additionally, it is of a

reduced dimension compared to Signature3. In order to further address the curse of high
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dimensionality [138], reduce noise, and the overall feature space of the covariance matrix

V, factorisation is required [4].

3.3.3 Factorisation

Feature extraction and dimension reduction techniques can be used to uncover hidden

structures in large data sets. Techniques such as PCA, LDA and NMF have previously

been applied in fields such as facial recognition [210], document analysis [210, 134] and bio-

informatics [102]. In this research, NMF and PCA based on the scikit-learn Python library

implementation were used to decompose the input matrix V containing the signatures

and identify latent features occurring in weekly usage behaviour. Both NMF and PCA

factorise an input matrix V into two smaller matrices W and H with k dimensions:

V ' Wn×rHr×m

with W as the weight matrix, H as the basis vectors, and r as the number latent features

(NMF) or principal components (PCA) to extract. When multiplied together, the basis

vectors represent an approximation of the input matrix V. Each row of the matrix W

indicates the strength of association between the input items and latent features. De-

scriptions of the corresponding topics can be generated by ordering columns and selecting

top-ranked latent features or principal components. If the input is an item-value matrix

instead of a value-item matrix, the interpretations of W and H are reversed. NMF and

PCA differ in the constraints placed on the weight matrix W and the basis vectors H

[210].

PCA is an unsupervised data decomposition approach for feature learning. “PCA con-

strains the columns of W to be orthonormal and the rows of H to be orthogonal to each

other” [210, p.789]. With PCA, matrix V is approximated through a linear combination

of all the basis vectors H with negative values and subtractions allowed within the re-

sulting principal components. As a result, many principal components may lack intuitive

meaning, as was the case with the resulting components as can be seen in Figure 3.3a.
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NMF uses a group of unsupervised algorithms based on linear algebra to perform di-

mension reduction. While LDA is a probabilistic model for expressing uncertainty about

a range of topics associated with each item [44], NMF is a deterministic algorithm arriv-

ing at single representations [41, 210]. NMF requires all values in the matrices W and

H to be positive numbers. In contrast to PCA, NMF learns a parts-based representation

of the input signatures. Through the non-negativity constraints, latent factors of NMF

represent parts-based representations. NMF was chosen over LDA due to its deterministic

nature. The previously generated covariance matrix of signatures V550BTS × 168 Observations

was used as the input matrix.

3.3.4 Area Division

Each of the 550 BTS located in the metropolitan area of Dar es Salaam was represented

on the polygon-level. The coverage area of each BTS is approximated through Voronoi

polygons generated using Voronoi Tesselation in Qgis, resulting in an average study area

size of approximately 6.23km2. Voronoi polygons were assumed to represent the service

area of a given BTS and thus the area described by a BTS’s signature. In order to protect

individual privacy (§7.6.2) and commercial interests (§7.6.4) of the MNO that provided

the data areas were further interpolated with a 1km × 1km grid shown in Figure 3.1

following clustering discussed below.

3.3.5 Clustering

With these latent features and principal components in hand and each time series from

Signature2 projected into the lower dimensional space they represent, K -means clustering

technique was applied to identify clusters with similar underlying behavioural patterns.

As discussed in §3.2.3, the use of supervised and semi-structured approaches requires the

availability of (accurate and up to date) ground truth data for the training of classifiers.

An unsupervised approach was chosen for this research, as while some form of ground

truth data that will be discussed in more detail in §4.3.1 was available, this is rarely the

case in other emerging economies making the approach less generalisable otherwise. Here,
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Figure 3.1: 1km×1km grip map of Dar es Salaam used to protect individual privacy and
commercial interests
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Figure 3.2: Signature 2 of Centroids for each of the clusters identified through K -means.

the dataset was used for verification of labels assigned to the identified clusters. Labels

are primarily for the benefit of practitioners and to provide a qualitative understanding

whether the differences in behaviour corresponds to differences in land use as it has

traditionally been measured.

Similar to existing research [226, 232, 315] K -means clustering was used for land use

classification following the creation of latent feature spaces in the previous section. K -

means is an iterate spatial proximity-based clustering technique, which refines initial

cluster centroid estimates into final centroids in an attempt to minimise the sums of

squares of distances from each data point to the nearest cluster centroid. Unlike existing

studies, clustering was performed on the latent features rather than the original signatures.

The choice of n remains an arbitrary one dependent on the task in hand. As such, the

number of clusters n was varied from 2 to 15 clusters. Silhouette scores were considered

and an n of 5 was chosen. The signatures of the centroids for each of the resulting clusters

are illustrated in Figure 3.2.
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(a) Principal components

(b) Latent features

Figure 3.3: Six trends extracted via PCA (a) and NMF (b) from the CDR data. Each describes a
different underlying population behaviour, which form the building blocks for our activity based
land use clustering approach. With the exception of component 5, the latent features generated
through NMF are far more intuitive to interpret than the principal components of PCA.
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3.4 Results and Discussion

Manual analysis of the latent features and principal components extracted in §3.3.3 al-

lowed for the generation of land use labels for ascription to the distinct groups identified

through clustering. Empirical evidence suggests that the different behaviour components

illustrated in Figure 3.3 distinguish between usage patterns that correspond to more tra-

ditional concepts of land-use. As aforementioned, labels were generated for the benefit of

practitioners and to improve qualitative understanding. These are informative of popula-

tion behaviours, with common weekly trends being revealed. Component 2, for example,

reveals general underpinning network activity patterns (and is very similar to the average

weekly time series for all towers) with a gradual increase from 7 am until 10 am, plateau-

ing out before an early evening spike in network events. Component 3, however, reflects

a predominant residential activity pattern, with population leaving an area in the mid-

dle of the day, and returning after work. In contrast, Component 5 indicated workplace

behaviour, with high daytime activity, zero nighttime events, and a significant weekend

drop. Any particular area may be composed of a combination of land uses (for example,

half residential and half industrial), and so may express each of these building block be-

haviours to a different amount. These components provide a vocabulary through which

those combinations can be discussed, without need for imagery or demographic data. Due

to the presence of negative loadings, the principal components extracted using PCA (Fig-

ure 3.3a were found to be far harder to interpret than the latent features extracted using

NMF (Figure 3.3b). The components are not expected to represent land use behaviour

but rather serve as indicators to understand what cluster summaries, generated through

K -means, potentially represent.

Cluster 1 - Affluent-Commercial: consistent activity throughout the day (activity

spaces that bring people in due to tourism, job opportunities, amenities, etc.).

Cluster 2 - Slum: characteristic of a poor demographic with lower daytime activity,

low morning activity and significant peak in the early evening (perhaps due to lack

of mobility).



3.4. Results and Discussion 65

Cluster 3 - Residential-Commuting: this profile expresses a far higher expression

of component 3 (the residential activity pattern) than other behaviours, suggesting

a commuting pattern.

Cluster 4 - Industrial: high expression of component 5 (non-residential). Some com-

muting, but a highly significant lack of mobility activity in the mornings, evenings

and weekend.

Cluster 5 - Formal-Night-Active: average activity over the day, but with significant

spikes in the evening and night.

The map in Figure 3.4 shows a plot of the spatial distribution of these clusters for the

centre region of Dar es Salaam. In order to protect the commercial interests of the network

operator that provided the data, BTS catchment areas were interpolated with an overlaid

1km × 1km grid-cell representation. Purple grid cells represent ‘Affluent-Commercial’

regions, green areas are identified as informal areas or ‘Slums’, yellow areas represent

those classed as ‘Formal-Night-Active’, red areas are identified as ‘Industrial’ with blue

areas classed as ‘Residential-Commuting’.

3.4.1 Study Limitations

Representativeness and sub-sample bias CDR data is restricted to subscribers of

the network operator providing the data, which represents only a sub-sample of the entire

population in a country. It is not guaranteed, that the subset of mobile phone subscribers

used as part of this study evenly represents population samples across all of the different

areas.

High diversity in land use Many areas of Dar es Salaam are highly diverse areas

with different land uses in very close proximity, as seen in Figure 3.5. Ahas et al. (2015)

summarised this diversity in a study of urban activity in Harbin, China; Tallin, Estonia;

Paris, France:

“Cities not only contain monofunctional areas such as suburban ‘sleeping’
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Figure 3.4: Spatial distribution of activity-based land use areas across the metropolitan area
of Dar es Salaam region.
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Figure 3.5: Sample area within Dar. Residential, Commercial and Industrial activity is
condensed in a small area of high diversity

districts and industrial work areas but also include many multifunctional areas

as well with various activities entwined in the same buildings and/or districts.

For example, some people may work at home while conversely many household

activities are taken care of at work during the day.” [7, p.2021]

Non-uniform BTS density The decreasing density of BTS outside urban areas re-

duces the accuracy of the classification algorithm, as different usage patterns will be

averaged over a larger area. As population density reduces in the peri-urban outskirts

of the metropolitan area of Dar es Salaam, so does the density of BTS and associated
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coverage area size. This reduction in density and increase in area size further exacerbates

the issue of high diversity in land use discussed above.

Verification of cluster label interpretation Labels denoting different land use in-

terpretations were derived from the interpretation of latent components shown in Figure

3.3 in respect of traditional land use categorisations, and in the absence of accurate and

up to date ground reference data. This method provides no guarantee, however, that

clusters can be interpreted with respect to traditional land use characteristics.

3.5 Chapter Summary

The analysis leveraged activity signatures derived from 450.2 million call and SMS event

logs to generate insight into area-level activity-based land use across the Dar es Salaam

metropolitan area. Constructed signatures were feature scaled for comparison with NMF

used for extraction of matrices of latent factors representing underlying land use classes.

Unsupervised clustering was subsequently used to cluster BTS with similar signatures to

those represented by the latent factors.

This study demonstrated that NMF and k -means clustering could be used to identify

interpretable activity-based land use classifications from mass CDR datasets. However,

limitations remain, largely due to a need for more high-quality ground reference data for

validation and the inherent nature of MND data collection that results in sparse sampling

frequencies (§7.2.1). At the same time, this analysis will provide useful information in

metropolitan areas such as Dar es Salaam, where the majority of the city is made up of

informal housing, complicating both data collection and governance, and land manage-

ment and land use planning approaches.

The following chapter will use CDR and MFS data to generate insights into SEL, which

cannot be captured through activity signatures alone, and factors that may contribute

to RSS as endogenous factors for subsequent land use and socio-economic – transport
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interaction analysis in chapter 6.



Chapter 4

Tracking Urban Socio-Economic

Levels

4.1 Chapter Introduction

The previous chapter used CDR data to examine activity-based land use to understand

the diversity of the built environment of Dar es Salaam. This chapter is concerned with the

extraction features from the socio-economic dimension described in §2.3.2 from CDRand

MFS data for subsequent area-level SEL classification. The following research objective

guides this chapter:

Research Objective 2: the investigation of small area SEL classification using

CDR and MFS data through supervised machine learning, and subsequent

analysis of features used for classification to understand the main determi-

nants behind classification results.

The SEL of an area can be seen as a proxy indicator for poverty within the area. Tackling

poverty requires an intricate understanding of poverty in the area itself and by extension,

accurate poverty measurements to measure both progress and success of interventions.

In line with the ‘Statistical Tragedy’ affecting emerging economies around the world, re-

70
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search by Dang et al. (2019) [83] has shown that poorer countries with an increased need

for poverty reduction are also facing greater barriers in measuring poverty.

Traditionally, the most reliable way to estimate SEL and poverty has been through cen-

suses or household surveys. This pathway has proven both impractically expensive and

time-consuming in the majority of fast-evolving urban spaces in the Global South. These

surveys are often only conducted every few years and by the time results are available,

they are often already outdated. In addition to those general shortcomings, statistical

institutes in emerging economies often lack in technical and logistical capacity further pro-

hibiting the conduction of high-quality and large scale surveys [83]. As a result, (survey)

data collection is rarely a high priority among emerging economies, further exacerbating

the ‘Statistical Tragedy’ [93].

A solution, however, exists in the proliferation of cheap mobile phones and the new sources

of data generated through them, such as CDR and anonymized MFS transaction logs used

as part of this thesis research. MFS is a viable alternative to traditional banking services

in emerging economies, particularly utilized by citizens unable to obtain a bank account,

MFS transaction logs provide a mostly unexplored yet potentially more powerful data set

held by the same MNO [115]. Appendix B examines the nature and rise in popularity

and market penetration of MFS as an enabler of large-scale economic data collection in

emerging economies.

As a first step, this chapter provides a review of the literature on MFS research, mobile

money in Africa and approaches to mapping poverty and urban SEL. Second, the chapter

uses a sample of 329,530 mobile phone subscribers resident in Dar es Salaam, Tanzania,

(7.6m MFS records, 450.2m call and SMS event logs) to demonstrate the improvements

that can be made in SEL classification compared to traditional data sources. A custom

ground reference survey conducted over a 2 month period between late 2015 and early 2016
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as part of the EPSRC Neodemographics project1 and in collaboration with the Ramani

Huria program [84] was used as a poverty measure [115].

4.2 Literature Review

4.2.1 Mobile Financial Services

Existing research on MFS has mostly been limited to interview and survey-based work

that broadly falls under three areas:

Benefits and impact of MFS

There are several studies on the general reasons for the adoption and success of MFS

[118, 274, 289]. Minto-Coy and McNaughton (2016) [244] review reasons for the success

of MFS service in some countries with a more comparative review on why MFS services

are successful in emerging but not developed economies undertaken by Chaix and Torre

(2015) [71]. Others investigated more specific factors on MFS uptake and success, such

as the influence of word of mouth and social networks in rural areas [189, 235].

The reduced time commitment, costs and paperwork for initiating transfers compared to

traditional banking services [250] have been found to have a positive impact on female

empowerment in particular due to “simpler registration process and less burdensome doc-

umentation requirements” - transcending issues of financial illiteracy [180, 190].

Part of the success of MFS and its inherent benefits was increasing the availability of

financial data, allowing providers to make more informed decisions and by extensions

provide a wider range of micro-credits and loans [22]. The digital nature of MFS accounts

make these services the second most popular savings instrument after traditional hiding

places [245] and help build resilience by allowing for budgeting and saving of assets for

emergencies through the M-Pawa service. M-Pawa, a service offering mobile credit and

1“Neo-demographics: Opening Developing World Markets by Using Personal Data and Collaboration”,
EPSRC Reference: EP/L021080/1, 2015
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savings, was launched jointly by Vodacom and CBA in late 2014 and attracted nearly 5

million customers within the first two years since its introduction in Tanzania [151].

Inclusive development and rural usage

Second, research has investigated the impact of MFS services on rural and agricultural

areas in terms of inclusive development [23, 286]. Kim et al. (2018) [196] provide a compre-

hensive review on mobile-based financial inclusion and “contribute to the evidence-based

policy-making and practices on inclusive MFS by contouring the broad landscape of cur-

rent knowledge” at the intersection of MFS, financial inclusion and development.

Transporting money more securely is particularly vital in remote regions, where house-

holds commonly rely on remittances from family members working in urban centres, which

have traditionally been transported through informal services such as paying bus drivers

or through other risky means. It has been found, that the digital storage identified in the

previous section, and the ability to transfer money between account holders, allows for

the safer transmission of remittances [179, 180, 191].

There has also been work looking at MFS adoption among dedicated user groups such

as the work by Mpogole et al. (2016) [250] on students and businesses owners in Iringa,

Tanzania; Dzogbenuku (2013) [101] on students in Ghana; Mbogo (2010) [236] on micro-

businesses in Kenya; and Kikulwe et al. (2014) [195] on smallholder farmers in rural

Kenya 2.

Safety and Security

Finally, previous research has examined the safety and security of MFS services [155].

Compared to traditional hiding places, which are susceptible to theft or loss, MFS allows

significantly safer storage and savings options [180, 257]. The digital nature of MFS ac-

counts make these services the second most popular savings instrument after traditional

hiding places [245] and help build resilience by allowing for budgeting and saving of assets

2A wider review on review on mobile banking can be found in [308]
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for emergencies [10].

At the same time, however, insufficient trust, privacy concerns and technical literacy and

sophistication for both sender and receiver have been identified as non-price related barri-

ers to increased service adoption [107, 192, 229]. Trust in the agent that is the interface for

a lot of the customer base and essentially the backbone of the MFS system is particularly

key [235, 302]. Distrust can stem from a lack of liquidity management of vendors [100]

or professionally and qualification level of agents [22, 235]. Having agents within one’s

social network has been found to improve trust significantly [235].

Regulation of the MFS ecosystem can have a tremendous impact on the wide adoption

and by extension success of MFS in a country [81, 235]. Sanz and De Lima (2013) [302]

investigate the level of restrictions that allow an environment to thrive while preventing

malicious activity such as money laundering and terrorism financing [20, 81].

4.2.2 Poverty Mapping

The majority of previous work on poverty estimation using non-conventional data sources

has been conducted using satellite imagery. Satellite imagery has numerous advantages

over more conventional manual sampling approaches, including global coverage, a high

revisiting capability and relative ease of access. It allows for the collection of a range of

derived data such as Night Time Light (NTL), vegetation cover [265], and base data for

GIS driven analysis of an area’s proximity to the physical location of POI such as schools

and hospitals, and infrastructure (e.g. density, proximity to paved roads) [373]. NTL or

Light Based Growth Indicator, in particular, have received a lot of attention, showing a

good correlation with a country’s GDP [105, 110] and have been proposed as a supplement

to national accounting in data-poor countries [162]. NTL has shown a good correlation

with electrification and economic growth data for 5000 sub-districts in Indonesia between

1992 and 2008 [266].
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Recent work in the US [206], Bangladesh [313] and China, however, suggests that as

urban areas are nearing saturation levels of NTL and consequently the value of NTL as

an indicator is beginning to decrease. The analysis of satellite imagery is both costly and

static, contrasting sharply with dynamic and digitally logged behavioural data streams

such as CDR. While satellite imagery allows us to observe and understand the role of

natural resources and certain aspects of the spatial dimensions discussed in §2.3.2, it

cannot provide insight networks such as socio-economic ties, cultural interactions as well

as micro- and macro behaviour that is intrinsic to understanding poverty.

4.2.3 Poverty Mapping Using Mobile Network Data

Aside from Gutierrez et al. (2013) [153, 154], who used airtime top-up behaviour logged in

CDR records as an indicator or a users wealth under the assumption, that poorer people

are likely to have frequent top-ups in small amounts compared to infrequent large amount

top-ups 3, and Eagle et al. (2010) [103], who used average normalised entropy of the social

ties in a neighbourhood to find that they correlate strongly with the level of socio-economic

deprivation, a number of previous studies have utilized aggregate CDR data for poverty

prediction. An annotated bibliography is provided in Table 4.2.3, summarising details

and results of the key research papers on poverty mapping using CDR data discussed in

more detail below.

3Results, which were not validated against established wealth indicators in Côte d’Ivoire
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Table 4.1: Overview of research on poverty prediction and socio-economy analysis using Mobile Network Data

Reference Data

Source

Model (#

Features)

Sample

Size

Time

Period

Findings Spatial

Resolution

Poverty

Measure

Region

Soto et al.

(2011)

[317]

CDR SVM and

Random Forest

(279)

500k users 6 months r=0.8 920 BTS Region-level

SEL

Urban area in

a Latin

American city

Smith-

Clarke et

al. (2014)

[313]

CDR Linear

regression (10)

5M (Set1),

and 928k

users

5 months

and 6

weeks

255 sub-

prefectures/

176 areas at

the next

administrative

level down

IMF and

Asset-based

index

Côte d’Ivoire

and

undisclosed

region

Blumenstock

et al.

(2015) [47]

CDR and

phone

survey

Supervised

learning, Linear

regression

(5088)

1.5M users

(CDR)

and 856

(survey)

9 months Survey

respon-

dents

(r=0.68),

DHS

house-

holds

(r=0.917),

DHS

cluster

(r=0.79)

2148 Cells, 30

districts, 492

DHS Clusters

DHS composite

wealth index

Rwanda

Pokhriyal

and Dong

(2015)

[279]

CDR Linear

regression

9.54m

users

(Set1),

146k users

(Set3)

12 months r=0.82 14 regions and

123 arrondisse-

ments

OPHI MPI Senegal
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Letouze

(2016)

[215]

CDR Linear

Regression

5 million

(Set1) and

50k users

(Set3)

5 months r=0.3

(head-

count),

r=0.15

(inten-

sity)

1214 BTS MPI (Poverty

head-count)

Côte d’Ivoire

Pokhriyal

and

Jacques

(2017)

[280]

CDR and

environ-

mental

data

Gaussian

Process

Regression

9.54m

users

(Set1), en-

vironment

data

12 months

(CDR),

1960-2014

(Environ-

ment)

r=0.91 552 communes,

100m−1km

(Environment)

MPI Senegal

Engelmann

et al.

(2018)

[115]

CDR,

MFS,

Survey

Random Foret 7.6m MFS

records for

147k users,

450.2m

CDR for

329,530

users

4 months 65.9% -

73.4%

517 BTS Survey Dar es Salaam,

Tanzania
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CDR Data Studies

One of the first was Soto et al. (2011) [317], who used SVM and Random Forest predictors

and CDR data for 500k users over six months between February and July 2010 to predict

region-level derived SEL within an urban area in a major Latin American city. They

extracted 279 features including 69 behavioural variables (e.g. total number of calls and

SMS), 192 social network features (e.g. in-degree and out-degree) and 18 mobility vari-

ables (e.g. total travel distance and the number of visited BTS) from CDR from 920BTS

for 500k users over six months. In addition to CDR, they made use of 1200 Geographical

Regions between 1km2 and 4km2 in size and labelled as one of three socio-economic levels

as ground reference. Each BTS was assigned a weighted SEL variable for classification.

Their model showed 80% accuracy in the classification of SEL using 38 features selected

for the final classification task.

Focusing on Rwanda, Blumenstock et al. (2015) [47] combined a geographically stratified

random sample of 856 phone surveys with CDR data for 1 year for 1.5 million users.

They constructed a composite wealth index from the first principal component of several

survey responses related to wealth and DHS data from 2007 and 2010. The DHS does not

include income or consumption data, but rather information on asset ownership, health

and education that can be used for the construction of a Multidimensional Poverty Index

(MPI) [14, 15]. Following a feature engineering process to generate 5088features from

CDR data and feature selection, they generated a generalisable classification model and

found a cross-validated correlation coefficient of r = 068 for the 856 users with survey

responses. Using the survey-CDR model to predict wealth for the remaining users in the

CDR data set and linear correlation against DHS responses for 12,972 households, they

found strong correlations for households owning at least one mobile phone (r=0.917), all

surveyed households (r=0.916) and dis-aggregated clusters akin to a village (r=0.79).
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Orange D4D Challenge Côte d’Ivoire

Smith-Clarke et al. (2014) [313] used CDR data from the Orange D4D challenge and

poverty rate estimates IMF for 2008 at 11 subnational region level for Côte d’Ivoire, and

CDR data and an asset-based index derived from census data for an unspecified region.

The D4D data used was Set 1 (BTS-to-BTS traffic on an hourly basis) for 5 million

customers from December 1st 2011 until April 28th 2012 while the undisclosed region set

covered 928k customers and 40 million CDR for six weeks in early 2012. Features included

extracted activity (call volume and duration), gravity residual (the difference between ob-

served and expected interregional flow), network advantage (entropy measure capturing

call diversity across areas, and a measure of degree distribution) and introversion (vol-

ume comparison of inter- and intra-traffic) measures [313]. Poverty level estimation was

undertaken using a linear ordinary least squares regression model for 225 sub-prefectures

in Côte d’Ivoire and 176 areas at the next administrative level down in the unspecified

region. They found a negative correlation between activity and poverty that is hypoth-

esised to become less of an effective proxy as the telecommunications market matures,

similar to the weakening of NTL as a proxy [206, 313].

Using Set1 (BTS-to-BTS traffic on hourly basis) used by [313] and Set3, which covers

individual trajectories for 50k users over 12 months, Letouze (2016) [215] combined CDR

data with DHS survey data. Each of the 1214 BTS in the datasets was assigned per capita

call variables and self-constructed MPI headcount data from DHS clusters based on the

coverage of the Voronoi shapes of the BTS location. Population counts for normalization

were calculated from 2010 2.5 arc-minutes resolution raster data from the Center for In-

ternational Earth Science Information Network, Columbia University and administrative

population estimates at the level of 225 sub-prefectures provided by UN OCHA. Using

linear regression, he found a strong significance of the coefficients, with weak correlations

with the MPI headcount variable (r=0.3) and intensity of multidimensional poverty as the

average share of deprivations experienced by people classified as living in multidimensional

poverty (r=0.15).
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Orange/Sonatel D4D Challenge Senegal

Using 12 months’ worth of data from Senegal provided by Orange as part of the D4D

challenge, Pokhriyal and Dong (2015) [279] created poverty maps for 14 regions and 123

arrondissements in Senegal using two different approaches. The first is using hourly BTS-

to-BTS traffic for 1666 BTS (Set1 data) similar to those for Côte d’Ivoire used by [215, 313]

to generate virtual connectivity maps at the BTS, arrondissement and regional level for

linear correlation of graph-theoretic measures (e.g. centrality) and direct features (activ-

ity, eigenvector and page rank centrality, page rank, gravity residual and introversion) for

each area with an MPI. They found a strong negative correlation between the metrics and

the headcount ratio of poverty, a marked negative correlation with the incidence of the

poor, and also a region’s MPI. The second was using hourly location recordings on the

arrondissement level for 146,352 Orange customers (Set3 data) plus “a monthly set of 33

behavioural indicators which capture calling/texting patterns (14), mobility patterns (6),

and social behaviour (13) of each user” [279]. Conducting linear regression between the

median region level for each indicator and the MPI, they found that 11 of those indicators

were shown to have a Pearson‘s R of greater than r=0.9.

Extending on previous research [279], Pokhriyal and Jacques (2017) [280] used the CDR

datasets for Senegal provided by Orange in combination with environmental data (i.e.

food security, economic activity and facility access) to conduct Gaussian Process Regres-

sion. CDR was provided by Orange for 9.54m users and 11 billion interactions for 1666

BTS over 12 months, while environment data were collected from 1960-2014 in a resolu-

tion of 100m−1km. This was combined with 2013 census data for 1.4 million individuals

at the household level and a MPI for 2013 at the regional level (14 regions). Testing

correlation on the commune level (552), they found a strong correlation with Pearson‘s R

of r=0.91, similar to their previous findings [279].

Research gaps

Two gaps arise in the prior literature:
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First, a gap in conducting poverty prediction in small geographic areas such as wards

or Lower Super Output Area (LSOA) in part due to a lack in socio-economic data

at such a fine granularity. The spatial resolution of previous research highlighted in

Table 4.2.3 and discussed in more detail above varies from BTS-level [47, 115, 215,

317], DHS cluster4 or commune level [47, 280], sub-prefectures or arrondissements

level [279, 313], and regional or district level [47, 279]. Other studies including

Engelmann et al. (2018) were carried out on the BTS level, Soto et al. (2011) [317]

used CDR data for an undisclosed region with undisclosed sources for their area

level SEL used for validation. Blumenstock et al. [47] combined CDR data with a

composite wealth-index based on phone surveys with individuals contained within

the same dataset, resulting a validation index that cannot be easily replicated.

Finally Letouze (2016)[215], who found very weak results for CDR measures (r=0.3

for MPI headcount and r=0.15 for intensity) compared to the classification accuracy

for 65.9% to 73.4% achieved as part of this analysis.

Second, a reliance on communication rather than mobile financial service data. While

the research on MFS has looked in detail at the impact and barriers to adoption of

MFS services, such analysis has been limited to ethnographic studies rather than

the analysis of raw MFS data streams themselves. To date, no previous studies

exist that use features extracted from MFS transaction logs, a data stream that

one would expect to provide significant insight into a fine-grained socio-economic

analysis with the exception of Engelmann et al. 2018 [115] that is based on the

research conducted as part of this thesis. As the results of this research §4.4 show,

financial data can bring a significant improvement to classification results compared

to models using only CDR derived features.

4a geographic area designed to be comparable to a village
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BTS Level DHS cluster/
commune level

sub-prefecture/
arrondissements

region / district

Soto et al.
(2011) [317]

Blumenstock et
al. (2015) [47]

Smith-clarke et
al. (2014) [313]

Blumenstock et
al. (2015) [47]

Blumenstock et
al. (2015) [47]

Pokhriyal and
Jacques (2017)
[280]

Pokhriyal and
Dong (2015)
[279]

Pokhriyal and
Dong (2015)
[279]

Letouze
(2016)[215]

Engelmann et al.
(2018) [115]

Table 4.2: Spatial granularity of analysis in MFS papers.

4.3 Research Approach

Similar to the empirical analysis of activity-based land use conducted in the previous

chapter 3, the analysis focused on BTS for the metropolitan area of Dar es Salaam. A

core dataset of 517 BTS cells from Dar es Salaam were identified, with each cell being

labelled with a SEL based on a ground reference survey discussed below. Two testing

scenarios were formed, one considering prediction for all BTS cells within Dar es Salaam

that were assigned a SEL as part of the survey (n=517), and the second considering only

cells labelled as being predominantly residential (n=384). Three models were constructed

for each scenario (producing six scenarios in total) to allow direct statistical comparison

of the effectiveness of MFS versus CDR features. Competing models were generated

from either MFS derived features, CDR derived features or combined feature sets. The

performance of each model in predicting SEL was tested via a strict cross-validation

methodology with features further analysed through variable importance measures and

Partial Dependency plots to gauge their explanatory value for inclusion as input features

for the socio-economic dimension for subsequent land use and socio-economic – transport

interaction in chapter 6.
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4.3.1 Data Description

To address the research gaps highlighted in §4.2.3, this study leverages three disparate

data sets: mass CDR and MFS datasets for the generation of regularity, diversity, activity

and spatial features, and ground reference survey data for validation of classification

performance. The following subsections will provide an overview of the three data sets

used as part of the study. The spatial granularity for the features for subsequent analysis

was set at the BTS and surrounding Voronoi polygon resulting in an average study area

size of approximately 6.23km2.

CDR data

Residential location was calculated from CDR logs for SMS and call events for the whole

of Tanzania through the calculation of the mode BTS favoured by users between 10 pm

and 6 am. Only those users whose BTS was located within the Tanzanian municipalities

of Kinondoni, Ilala and Temeka, which are classed as the Dar es Salaam metropolitan

area, were included within the study. The approach used for home BTS detection is

similar to related approaches by Calabrese et al. (2011) [60], Isaacman et al. (2011) [177]

and Mamei and Ferrari (2013) [231] who chose 9pm to 6am for ‘home-events’ and 11am -

4pm for ‘work events’. An adapted home/work detection accuracy index based on prior

work by Berlingerio et al. (2013) [40] was further used to overcome issues of the frequent

visitation ranking technique misclassifying other frequently visited locations as home or

work respectively. A BTS was confirmed as a home location if the repetitiveness of the

home cell was greater than 0.5 and a user-generated network events on at least 60 days

during the study period. The repetitiveness of a home cell can be defined as

BTShome =
βhome

βevents

With BTShome as the confirmed home BTS, βhome as the number of nights when the BTS

is the most frequently used for home-events, and βevents as the number of nights when

network events are generated.
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The final CDR dataset used as part of this study covers a total of approximately 476

million call and SMS events for 329k mobile phone subscribers resident within the Dar es

Salaam region of Tanzania over 122 days from August 1st to December 1st, 2014. Due

to both individual and commercial privacy, the anonymised data used as part of this

study is not publicly available and was provided through a partnership with a Tanzanian

MNO with high market penetration in the case study area of Dar Es Salaam. Features

pertaining to residents of a BTS were aggregated to the respective BTS level as the

smallest granularity as highlighted in Table 4.2, ensuring both strict privacy and for

analysis purposes. By undertaking a Voronoi tessellation of each BTS, a set of irregularly

shaped cells was generated at an average size of 6.23km2. The subset of areas classed as

predominantly urban was 2.77km2 on average.

MFS data

As discussed in §2.2.2 MFS is an umbrella term for a range of services offered by network

operators, which include “sending and receiving money, making savings deposits, bill

payments, making non-cash payments and transferring money from ones mobile phone

account to bank accounts and vice versa” [250, p.4]. Similar to CDR being recorded

whenever an active or passive network event takes place as discussed in §2.2.1, a MFS

transaction record was generated whenever a transaction took place. The MFS features,

whose extraction is described in more detail below, were associated with a ‘home’ BTS

extracted from the CDR data set described in the previous section. While an antenna

identifier was included in the data set as a spatial reference, it was truncated to the point

where it was not possible to assign a MFS record to a BTS and by extension a rough

geographical area. Only users who made use of both call or SMS and MFS services could,

therefore, be included within the analysis of the MFS records. Ultimately, the analysis

is based on 47.6m MFS records of approximately 147k customers classed as residing with

the Dar es Salaam metropolitan area for the same 122 day period as covered by the CDR

data.
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Ground Reference Data

In the tradition of the ‘Statistical Tragedy’ [93], accurate and fine-grained ground reference

data necessary for supervised machine learning is extremely hard to find in East Africa.

Additionally, most of the available ground reference data sets are collected within existing

administrative zoning boundaries which seldom correspond to the shape of capture areas of

BTS. In order to overcome this limitation a custom ground reference survey that captured

SEL was conducted over a 2 month period between late 2015 and early 2016 as part of the

EPSRC Neodemographics project5 and in collaboration with the Ramani Huria program

[84]. In addition to SEL, the survey captured a range of attributes from the spatial,

socio-economic and mobility dimensions including the predominant land use, whether an

area is residential, and ‘social mobility’ for 517 areas across Tanzania’s largest city, Dar

es Salaam. The labelled areas are contiguous, irregular and cover nearly the whole of

the metropolitan area of Dar es Salaam. Survey coverage areas have been derived via a

Voronoi tessellation of WGS84 locations of each BTS in order to address the mismatch

between BTS capture areas expressed as Voronoi cells and administrative boundaries

within official statistics. Surveying was undertaken by local inhabitants from Ramani

Huria, with the aim of each area being surveyed at least twice for confirmation. Income

labels were chosen to be recorded at the most common recording interval. Ultimately,

areas associated with six BTS out of 565 were inadvertently missed out during surveying.

The overall SEL variable was chosen as the focus of our study, with each area being

labelled as either ‘very poor’ (n=5), ‘poor’ (n=137), ‘average’ (n=274), ‘wealthy’ (n=81)

or ‘very wealthy’ (n=42) within the study. This covariate served as the key poverty

measure for the modelling and evaluation process.

4.3.2 User Selection

Several users were excluded from the analysis from the onset. The majority of exclusions

from the MFS dataset were due to the nature of spatial constraints discussed above.

5”Neo-demographics: Opening Developing World Markets by Using Personal Data and Collaboration”,
EPSRC Reference: EP/L021080/1, 2015
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Additional exclusions were undertaken to prevent the occurrence of a high-frequency bias

during the aggregation from individual user features to BTS level features. This was done

following a multi-step process.

1. Exclusion of MFS users who were not contained in both the CDR and the MFS

datasets due to the aforementioned spatial considerations. The use of CDR services

was a necessary requirement to be able to add a geographical component to the MFS

data. While the MFS data did contain a spatial reference to the sector antenna

servicing the transaction, it was truncated and could not be assigned to a BTS with

enough confidence for use in this study. Features generated through the MFS data

are therefore assigned to the BTS identified as the preferred home BTS through

CDR data;

2. Exclusion of users not classified as subscribers as those are very likely to introduce

a high-frequency bias due to high-frequency usage patterns compared to the rest of

the area population;

3. Pair-wise deletion of users without both incoming and outgoing transactions in the

same month. This step was chosen to exclude users who are simply using MFS

services as a savings mechanism, rather than following an incoming and outgoing

pattern that is more akin to general financial usage;

4. Users with an average of more than 40 incoming or 100 outgoing MFS events per

month were excluded from the analysis, as these most likely represented unlicensed

businesses or informal street traders operating as regular subscribers.

4.3.3 Input Feature Engineering

To populate the input feature space of each of the three models, 17 features were extracted

from the CDR data similar to those in prior work by Pokhriyal and Jacques (2017) [280]

to form model 1. Going beyond their work, 22 features were derived from MFS data to

form model 2, with a combination of those features representing model 3. Features were

first extracted at the individual level before being aggregated to the BTS level as the
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lowest reliable level of spatial granularity available with the CDR dataset used as part of

this research. As discussed in §4.3.1, the home BTS corresponds to the most frequently

recorded BTS with timestamps between 10pm and 6am within a user’s CDR data and

was used for aggregation of features from individual users. Such aggregation provides

the analysis with an additional layer of privacy provision (recent estimates indicate over

4.3 million residents in Dar es Salaam, so the average number of people living in each of

the analysis cells is >8000). The derived-features were selected as they capture a diverse

range of human behaviour. This ranges from very basic usage of mobile devices to un-

derstanding regularity of interactions including responsiveness (expressed through inter

event time for example); diversity, which highlights the social network a user engages

with such as percent pareto; as well as activity to give insight into their initiative to start

interactions (percent initiated) or financial responsibility (e.g. percentage defaulted); and

spatial features as a proxy for movement.

While features in Model 1 and Model 2 are broadly comparable with each other, a number

of features unique to both CDR and MFS data set were generated. Examples for Model

1 (CDR) are features such as ratio of text and calls and response delay in SMS conver-

sations; with features such as average MFS in/out, percentage defaulted and percentage

balance checks for Model 2 (MFS). A closer examination of feature breakdown is supplied

below, with an overview of all features used provided in Table 4.3.3.
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Table 4.3: List of features generated from CDR and MFS data for area-level socio-economic prediction

Feature (total no. of fea-

tures)

Data source Description

Basic Use

The number of interactions (2) CDR, MFS The total number of incoming and outgoing SMS events and MFS transac-

tions for a user.

Number of users (2) CDR, MFS The total number of users within the area

Average transaction size (1) MFS Size of an average MFS transaction across both incoming or outgoing trans-

actions.

Average MFS in/out (2) MFS Average monthly inflow and outflow over the study period.

Total MFS in/out (2) MFS Total inflow and outflow over the study period.

Active Days (2) CDR, MFS The number of days during which the user was active.

The ratio of text and call interac-

tions (1)

CDR The ratio of text and call interactions.

Spending uptake (1) MFS The total spend in an area divided by the MFS uptake (the number of MFS

users divided by the number of CDR users in an area).

The ratio of incoming and outgo-

ing transactions (1)

MFS The ratio of incoming and outgoing MFS transactions.

Regularity

Inter event time (4) CDR, MFS The inter-event time between two records of the user. This feature is calcu-

lated as mean and SD for MFS, mean for calls and SD for calls and SMS.

Monthly events (1) MFS Average number of transactions per month.

Diversity
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Balance of contacts (2) CDR, MFS The balance of interactions per contact. This feature is calculated-each for

text and MFS. For every contact, the balance is the number of outgoing

interactions divided by the total number of interactions (in + out).

Interactions per contact (2) CDR, MFS The number of interactions a user had with each of his or her contacts via

call or MFS

Percentage Pareto interactions

(2)

CDR, MFS The percentage of user’s contacts that account for 80 of his or her call or

MFS interactions

The entropy of contacts (2) CDR, MFS The entropy of the user’s contacts for calls or MFS

Activity

Response delay (2) CDR The response delay of the user within a conversation (in seconds). Calculated

for text (SD and mean of the response delay).

Percentage initiated (3) CDR, MFS The percentage of network events initiated by the user for calls, call and

SMS, or MFS.

Percentage defaulted (1) MFS The percentage of transactions that failed due to insufficient account funds.

Percentage balance checks (1) MFS The percentage of transactions representing balance checks.

Spatial

Number of BTS (3) CDR, MFS The number of unique cells or BTS visited.

Frequent BTS (1) CDR The number of BTS that accounts for 80% of locations where the user was.

Entropy of BTS (1) CDR The entropy of visited BTS.
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CDR derived features:

Features for Model 1 (CDR) were derived from transactions generated by 329,530 users

over the study period and classed as living in the Dar es Salaam metropolitan area. These

include a range of features identified as important for poverty prediction as identified by

Pokhriyal and Jacques (2017) [280]. The features can be broadly classified as falling under

five different domains:

Basic usage: active days for both call and SMS, the ratio of call and text interactions

and the number of SMS interactions;

Regularity: the mean inter-event time for calls and standard deviation of inter-event

time for calls and text;

Diversity: the mean balance of contacts for SMS, the percentage of Pareto interactions

for calls, the mean call interactions per contact and the Entropy of contacts;

Activity: the mean, and standard deviation in response delay for texts, the per cent

initiated interactions for calls and the per cent of initiated conversations for call and

text;

Spatial: the total number of visited BTS, the most frequent BTS, the entropy of BTS

and the radius of gyration.

MFS derived features:

Features for Model 2 (MFS) were derived from transactions covering 147k users with

both incoming and outgoing MFS transactions occurring in every month of the sampling

period, and who were classed as living in Dar es Salaam. The ‘residency’ was determined

by cross-referencing records with the anonymized callingpartynumber id contained in both

CDR and MFS datasets and using the BTS identified as the most likely ‘home’ location.

As discussed in §4.3.2, only transactions by those users deemed to be regular subscribers

rather than commercial users were taken into account to calculate those features. With

some error codes changing over the year, only transactions without error codes or those

with code ‘200’ or ‘error000’ indicating success were included. A full list of error codes



4.3. Research Approach 91

is included in appendix B. Similarly, transaction amounts equal to or under 50Tanzanian

Shilling (TZS) were excluded from the analysis, as they mostly referred to balance inquiries

or pin changes, which involved minuscule service charges, that introduced significant noise

into the MFS feature calculation. The final data set used for feature engineering was

comprised of n=10,011,674 MFS records. Where applicable, features were calculated as

the average (across users) of averages (individual users’ transactions). The list below

comprises features that were not contained in Model 1 (CDR) but rather unique to being

derived from MFS data:

Basic usage: the average transaction size across both incoming or outgoing transac-

tions, the average MFS in/out representing the amount of money which was received

or spent during an average month, the total amount received and spent over the

study period, spending uptake as the total spending in an area divided by the MFS

uptake (calculated as the number of MFS users divided by the number of CDR users

within the same area), and the ratio of incoming and outgoing MFS transactions.

Regularity: the average number of MFS transactions for a given month within the

study period.

Activity: number of defaulted transactions identified as having failed due to error codes

indicating an insufficient account balance to complete a particular transaction as

highlighted in appendix B, and balance checks identified as transactions with an

event type for ‘balance inquiries’.

Purchase categories:

Each MFS record contained a servicetype and subtype with a coded reference to the type

of transaction carried out (servicetype), and the vendor involved in the particular transac-

tion (subtype). Nineteen distinct categories for the categorisation of service and product

purchases were generated using the MNO bill-paying categories advertised through their

website. The majority of codes contained in the subtype column were related to a vendor

and subsequently categorised based on Google searches of the code and local knowledge.
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While the subtype allowed for the categorisation of most vendors, not all subtypes could be

reliably identified, leading to the grouping of a large proportion of purchases as unknown.

Ultimately, category indicators were not used in the generation of the poverty classification

models due to their sparse nature. While there was a consideration to generate additional

scenarios by differentiating between all MFS users (n=523592 including those without bill

payments) and only MFS users that use the service for bill payments (n=122179 with bill

payments, n=122211 with bills and SMILE, and n=231938 with Xtreme Purchase), this

approach resulted in the exclusion of too large number a number of users to be viable.

4.3.4 Experimental Method

In order to investigate the utility of features derived from MFS versus CDR transaction

logs for remote SEL classification, a core prediction task was formulated. The prediction

task underpinning the scenarios was formulated as a ternary classification problem in

order to overcome the uneven distribution of class memberships in the raw survey data

introduced in §4.3.1. Output feature labels ‘very poor’ and ‘poor’ were merged, as were

labels ‘wealthy’ and ‘very wealthy’. This resulted in a relatively balanced data set with

202/143 areas labelled as poor, 153/102 as average and 163/140 as wealthy classes for

all/residential scenarios respectively.

For each scenario, Model 1 was trained using an input feature set drawn from CDR data,

with features fastidiously engineered to correspond directly to those used in the most

recent literature (see §4.3.3 for more details of this process). Model 2 was trained using

an MFS derived feature set. Many features in Model 2 echo those in Model 1 (to provide a

fair comparison), despite being seeded by transaction logs denoting MFS rather than call

or SMS events. A final predictor, Model 3, was trained using a combination of all features

used in the previous models. A number of different classification methods were tested

including logistic regression, decision tree, random forest and nearest neighbour alongside

a basic dummy classifier. The selection of methods was guided by prior research discussed
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earlier (see Table 4.2.3).

Logistic regression

Logistic regression modelling is an effective technique for the analysis of linear continuous

domains. Easy to implement regularisation methods exist for non-binary, discrete cate-

gorical domains [18, 171]. The resulting model can be easily updated for future scenarios.

It is an attractive technique to use because it is (1) better than probit by providing easier

interpretation (2) logistic regression accuracy is largely unaffected by the distribution of

the predictors [18], and (3) easy implementation while providing quick and robust results.

Unlike the majority of previous studies on SEL using CDR data discussed earlier in §4.2.3,

logistic regression is used purely as a benchmark against which to compare the more

advanced classification techniques against as part of this analysis. Traditional linear

per-feature correlation analysis was omitted as a core analysis model, given that the

primary focus is concerned with the analysis of the utility of features from the socio-

economic dimension, and all features were based on pre-collected and re-purposed data

with negligible acquisition cost.

Decision tree

Decision Trees are relatively simply predictive models, which have nonetheless proven to

be highly effective in both regression and classification tasks. They are an increasingly

popular choice for solving classification tasks because of their ease of use and interpretabil-

ity, and their ability to accommodate predictors measured at different measurement levels

(including nominal variables) [325]. Such models take a very different approach to classify

problems from SVM and Artificial Neural Networks, forming a set of classification decision

rules based on the given attributes of the data. Iteratively, a set of decision boundaries

are formed that create binary splits within the data set, minimising the entropy of each

class either side of the boundary, and hence gradually cutting the feature space into areas

favouring one of the k -classes.
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Figure 4.1: High-level overview of the Random Forest prediction model

Model
CDR fea-
ture set

MFS
feature set

Combined
feature set

Avg accuracy

Linear regression 51.663 59.067 59.545 56.797
Decision tree 52.751 59.828 54.222 53.774
Random Forest 57.320 58.754 56.983 56.924
Nearest Neighbour 52.202 59.256 51.653 55.320
Dummy classifier 35.343 37.987 38.037 37.448

Table 4.4: Accuracy Results for different classification techniques without grid search for
all three feature sets

Random Forests

Random Forest is an ensemble classifier based on the ideas of bootstrap sampling and

random feature selection [54, 317]. With ensemble learning an input dataset is split into

a bootstrap sample as a learning set and a training set respectively. The key objective of

ensemble learning techniques is the reduction of bias and variance. During the training

of the the three (an example of which can be seen in Figure 4.1) each node and its split

is calculated using a predetermined number m of randomly selected features with m ¡¡ M

with M as the dimensions of the feature space.
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4.3.5 Evaluation Setup

Initial exploratory analysis over a range of model classes carried out in the previous step

(Table 4.4) showed Random Forest to be performing highly effectively for the given sce-

narios. Given the ability of Random Forest to directly model multi-class classification

problems, handle non-linear relationships, and their association with well understood and

tractable variable importance measures [301], the subsequent evaluation focused on this

class of model.

To evaluate the comparative utility of the CDR versus MFS features in real-world ap-

plications, two predictive tasks are considered (1) predicting the economic status of only

residential regions populations and (2) predicting the economic status of all regions pop-

ulations. The first represents the more focused task of interest, while the second repre-

sents a common real-world use case with an absence of knowledge to the residential/non-

residential status of areas under study. Areas were excluded from the first prediction task

based on the collected ground-reference survey (§4.3.1). In each case, a combined model

with all features (CDR + MFS) and two models per data source (one only containing

CDR features, one only containing MFS features) was evaluated. Output labels were

generated based on this ground-reference data set, with each region labelled as either

’poor’, ’average’ or ’wealthy’.

For each model, the data was split via stratified random sampling into a training (66%)

and test set (33%) and the parameters for the Random Forest (number of trees, maximum

depth and the minimum samples per split) selected via a grid search underpinned by

stratified five-fold cross-validation using only the training set and the model finally trained

with the best parameters. The performance of each model was then tested on the held-out

test set. This was repeated 30 times arriving at 30 performance scores for each of the

three models across the six scenarios.
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4.3.6 Evaluation Criteria

The performance of each model was measured via the precision, recall and the F1 score

(harmonic mean of the precision and recall) for each of the 30 runs per model. The average

results overall runs are shown in Table 4.5, along with classification accuracy. Box-plots

showing the per-class distribution of the overall F1 scores per model are shown in Figure

4.7a for all areas and Figure 4.7b for residential areas only.

4.3.7 Analysis of Variable Importance

Of equal, if not greater importance than overall model accuracy, is the ability to break

apart the models to investigate the importance of the individual CDR and MFS features.

To achieve this, the final step in the investigation was a three-stage variable importance

analysis.

Firstly, and due to a large number of features proposed in the literature (and included in

this work), the candidate set was filtered to exclude those features shown to have minimal

impact on model performance using the Boruta algorithm [208, 324]. In contrast to other

popular feature selection approaches such as sklearn’s SelectFromModel, Boruta compares

features to a permutated (i.e. randomized) version of the feature. Boruta only consid-

ers variables as important if they provide a statistically significant increase in prediction

strength compared to the permutated version. The level required to achieve statistical

significance was set low (p = 0.1) to minimize the probability of inadvertently discarding

relevant features.

Secondly, surviving features were used to fit optimized Random Forest models for the

whole dataset, selecting optimized parameters via a grid search. The out-of-bag 6 OOB

F1 score was then checked to ensure the reduction in features did not cause a significant

decrease in overall generalized performance.

6Out-of-bag (OOB) refers to the use of only the trees in the forest for which the sample being predicted
was not part of during training. In this way, the resulting performance measure can be considered to
represent the generalized error [182].
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This then allowed a full permutation importance analysis to be undertaken. Permutation

importance was used due to both its interpretability (illustrating the mean decrease in

performance of omitting each feature) as well as its ability to attribute variance in the

case of non-linear interactions.

With important features thus identified, their behaviour within the model and across sub-

populations of the data was further examined using partial dependence plots (§4.4.3).

4.4 Discussion

4.4.1 Model Performance Results

The prediction task underpinning the models was formulated as a ternary classification

problem in order to overcome the uneven distribution of class memberships in the raw

survey data. Output feature labels ‘very poor’ and ‘poor’ were merged, as were labels

‘wealthy’ and ‘very wealthy’, resulting in a relatively balanced dataset (with 202/143 ar-

eas labelled as poor, 153/102 as average and 163/140 as wealthy classes for all/residential

scenarios respectively). Table 4.5 reports all results for the experiments, detailing the F1,

precision and recall scores averaged over each of the 30 experimental runs, accompanied

by an overarching classification accuracy score. Per-class F1 scores were calculated using

sklearn.metrics.precision recall fscore support [272]. Figure 4.2 illustrate the confusion

matrices for all three feature sets across the residential and all-area scenarios. As can be

seen, in all scenarios, Model 2 containing MFS features strongly outperform Model 1 that

uses CDR features alone. The final column, indicating per-class F1 scores for each model,

illustrates that this improvement is not due to one class being favoured, but occurs across

the board – and in particular improves prediction of average, middle-income areas.

Of note is the improvement in F1 scores of Model 1 against Model 2, with an increase

in accuracy of ∼ 9.7% for all areas, and ∼ 9.2% for residential areas. In both cases,
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Table 4.5: Accuracy Results for Random Forest prediction using different feature sets
over 30 randomly seeded experimental runs

Model

Feature Set

Model

Performance

Classification

Accuracy

Per-class

F1 score

CDR features

f1 score: 0.63

precision: 0.64

recall: 0.64

65.9%

Poor: 0.74

Average: 0.43

Wealthy: 0.74

MFS features

f1 score: 0.7

precision: 0.71

recall: 0.7

71.3%

Poor: 0.77

Average: 0.54

Wealthy: 0.8

Combined

(CDR + MFS)

f1 score: 0.71

precision: 0.72

recall: 0.71

72.3%

Poor: 0.78

Average: 0.55

Wealthy: 0.8

CDR features

residential

f1 score: 0.63

precision: 0.64

recall: 0.64

67.2%

Poor: 0.74

Average: 0.38

Wealthy: 0.77

MFS features

residential

f1 score: 0.71

precision: 0.71

recall: 0.71

73.4%

Poor: 0.79

Average: 0.51

Wealthy: 0.82

Combined

residential

f1 score: 0.7

precision: 0.71

recall: 0.71

73.4%

Poor: 0.79

Average: 0.49

Wealthy: 0.82
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while we can observe an increase in the performance of models containing MFS features,

there are only marginal differences in using combined data sets. These results indicate

that the MFS features appear to be a better indicator of underlying SEL compared to

baseline CDR features. Further, it provides evidence that MFS features are subsuming

the information contained in CDR features when it comes to SEL classification, and CDR

is likely capturing only a subset of the variance covered by the MFS feature set.

Models trained on residential-only data clearly function more effectively than those also

attempting to predict the level of poverty in non-residential areas (improving by 1.4%,

2.1% and 1.1% for Models 1-3 respectively), highlighting the difficulty in categorising

non-residential areas with an SEL label.

The scope of improvements made by models leveraging MFS features is illustrated in Fig-

ures 4.7a and 4.7b, which show box plots of per-class F1 scores for all three feature sets

in all six scenarios. We can observe in Figure 4.7a that F1 scores for middle-income areas

(0.51) are on average ∼ 39% lower than scores for poor (0.76) and ∼ 42% for wealthy

(0.78) areas. A similar, albeit even more pronounced trend, can be observed in the resi-

dential scenario with a low F1 score for average (0.46) and a difference in ∼ 50% to poor

(0.77) and ∼ 54% to wealthy (0.8) areas. Predicting average areas is tricky, with most

model features only supporting a binary poor/not-poor decision boundary.

Nevertheless, it is for middle-income areas that MFS features appear to make the most

gains over CDR, with a large gap between Model 1 (0.43) and Model 2’s performance

(0.54) across all areas. The box plots in Figure 4.7a clearly show that the variance of

CDR features in middle-income areas is extremely wide, rendering them ineffective in

delineating ’average’ areas from any other.
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(a) CDR feature set (b) MFS feature set (c) Combined feature set

(d) CDR feature set - residential (e) MFS feature set - residential (f) Combined feature set - residential

Figure 4.2: Subfigures (a) to (c) illustrate represent the confusion matrices for all three feature sets for all BTS in Dar es Salaam that
were used in this study. Subfigures (d) to (f) represent confusion matrices for all feature sets for areas classed as residential.
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4.4.2 Variable Importance

Given the advantage that experiments indicate MFS features have over CDR, consid-

eration turned to why this is occurring. To this end, permutation importance was in-

vestigated as per the methodology described in §4.3.7. For each model 1 feature within

the test set (OOB samples) at a time is permuted (simulating holding out that feature

without requiring a full model training) and the performance (F1 score) compared to the

performance obtained with the full model. Note that the use of OOB samples provides

the variable importance of the generalized predictor, rather than fitted (potentially over-

fit) model. Results for the combined feature set model are shown in Figure 4.7c, with

the x-axis being interpreted as the mean increase in F1 score that the inclusion of the

variable provides (assuming all other features are kept in the model). Six out of the seven

most predictive features are generated via MFS data (in fact the only useful CDR feature

relates to number of users, which is likely to reflect the population density in an area and

can be drawn from other sources). The top 4 MFS features overall are: average MFS in;

active MFS users ; percentage balance checks and average MFS spend. The average income

received by residents across an area clearly explains the most variance, contributing a 0.18

increase in F1 score. This is followed by the number of MFS users in second at 0.11; the

percentage balance checks at 0.03; and the average MFS out at 0.01.

4.4.3 Understanding MFS Feature Effects

To break down the feature effects further Partial Dependency Plot (PDP) were used to

visualize the increase/decrease of the probability of predicting a given output class (i.e.

wealthy) when a factor is varied while all others are kept fixed. PDP are highly effective in

showing us the model’s sensitivity to the feature in question and how its predictions will

respond as the variable’s value changes. In each diagram, the heavily weighted line shows

the mean change in the probability of a data-point being assigned to a particular class,

as the variable increases. Considered in conjunction with the permutation importance

scores, the PDP highlight the nature of the relationship between select MFS variables

and SEL [126, 138].
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As one might expect, the model identifies that as the amount of income of a BTS in-

creases the likelihood of that area being affluent also increases (as denoted by the large

areas under the curve for Figure 4.3a and c). However, the feature provides minimal in-

formation to the model for categorization for ‘average’ areas. There is, in fact, a relatively

wide variance of avg money in in ‘average’ areas (which can be both middle-income areas

or zones with combined informal/residential housing). Thus, we are left with a feature

which provides binary classification - Figure 1a and 1c being mirror images of each other.

There is a plateau to the informativeness of this effect, however, and as a predictor, its

partitioning effectiveness peaks at ∼ 35, 000 TZS (which thus might well define a heuristic

boundary between poor/wealthy users).

The number of residents who use mobile financial services in an area is negatively cor-

related with affluence, as illustrated in Figure 3c, where higher uptake of MFS increases

the probability of a wealthy classification. This may initially seem counter-intuitive, but

it is the ‘unbanked’ that have the highest propensity to need an alternative to traditional

financial services. As wealthier users are more likely to make use of traditional ‘brick and

mortar’ banking institutions than those ‘unbanked’ users on the lower end of the income

scale. At the same time, however, the convenience of payment services such as M-Pesa for

subscriptions may still have some of those users utilise MFS to pay for a range of services

from TV subscriptions and airline tickets to school fees and utility bills for electricity and

water. While the poor remain disengaged from credit card usage, mobile phone usage is

nigh ubiquitous, even in slum areas, resulting in this effect.

The most important feature to the model in classifying middle-income towers is average

MFS spend. It is this feature, which is likely improving the most over CDR data in

the assessment of such areas. Figure 4.4 shows that while the model broadly associates

an average MFS spend of ∼ 25, 000 TZS as the cut off line for poorer areas, it is only

at ∼ 29, 000 TZS where the likelihood of assignment as a rich area begins to jump. In
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between, the likelihood of a middle-income area being assigned increases. However, the

feature is not decisive, and the true situation remains blurry to the model with two broad

trends visible in Figure 4.4b. Half of the blue lines form a hump in the middle of the

graph (reflecting a strict middle-income sub-population perhaps) dropping once spend

crosses over a certain threshold, while the other half remains high (and thus will not be

distinguished from residents of a wealthy area). Such fuzziness is likely due to the different

types of ‘average’ areas that occur in reality - true middle-income areas, and those with

distinct mixtures of wealthy and less affluent communities.

A further useful feature identified by the model is the average of balance checks users

make to their mobile money accounts. As the number of balance checks increases, so

does the likelihood of an area correctly classed as poor (although this is not a monotonic

relationship). This is likely to be reflecting the fact that those living closer to the breadline

need to assess their exact financial situation far more regularly than those who are more

affluent.
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Figure 4.3: Partial Dependence Graphs highlighting the likelihood of an area being classed as poor, average or wealthy based on Average
TZS received via MFS by residents of a given area.

Figure 4.4: Partial Dependence Graphs highlighting the likelihood of an area being classed as poor, average or wealthy based on average
TZS spending via MFS by residents of a given area.
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Figure 4.5: Partial Dependence Graphs highlighting the likelihood of an area being classed as poor, average or wealthy based on the
number of MFS users within a given area.

Figure 4.6: Partial Dependence Graphs highlighting the likelihood of an area being classed as poor, average or wealthy based on the
number of balance checks among users within a given area.



106
C

h
ap

ter
4.

T
rack

in
g

U
rb

an
S
o
cio-E

con
om

ic
L

evels

(a) Per-class F1 scores across all BTS areas in
the dataset

(b) Per-class F1 scores across all Residential ar-
eas in the dataset

(c) Variable importance for combined (best per-
forming) residential model

Figure 4.7: Subfigures (a) and (b) illustrate the significant improvements made across all 3 classes (poor, average, wealthy) using M-Money
rather than CDR features. Variable importances in (c) are for a combined CDR/M-Money model.
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4.4.4 Study Limitations

User selection The study includes only MFS data for users also generating CDR

records through call and SMS events due to the lack of geographic indicators included

in the MFS data as geographic indicators were not present in MFS logs (although this

is a symptom of our sample, rather than the raw data). Furthermore, user types such

as subscriber or agent were provided by the MNO and accuracy was assumed. On the

ground analysis, however, has indicated a large informal economy of street traders op-

erate under the auspices of being regular subscribers. This led to the development of a

stringent multi-step user selection process, which may have led to the exclusion of several

legitimate high-frequency users from the analysis.

There are also potential issues around selection bias arising from mobile phone ownership

among different groups of society. In urban spaces in Tanzania mobile phone penetration

has been reported to be close to 92% resulting in a negligible uptake bias. Furthermore,

the MNO providing the study’s datasets has a 28% per cent market share, with over 70%

of overall customers reporting that they had not used another network, alleviating issues

of multiple-SIM ownership that are commonplace in emerging economies [245].

Accuracy of training data Supervised machine learning techniques require accurate

data for training and test. As part of this study, a custom ground reference survey

collected by volunteers within Dar es Salaam over a two month period was used. While

there is often a gap in collection periods and granularity between the socio-economic data

used as a poverty measure for validation and mobile phone data used to derive proxies,

the survey used as part of this research was collected around the same time as the mobile

phone data underpinning this research. Here, the sampled areas conformed to the same

BTS derived Voronoi tessellation, assignment of these areas into clear SEL was often

difficult for those collecting the data in (1.) the rural and peri-urban outskirts of Dar

es Salaam, where large coverage areas of individual BTS are encompassing a mixture of

affluence levels, and (2.) the dense urban center, where slums and formal residential areas
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can sometimes be found in very close proximity (as shown in a sample satellite image in

Figure 4.8). This issue of uncertainty over the accuracy of the ground reference data was

further exacerbated as there was no clear indication of what distinguish a poor from an

’average or a wealthy from very wealthy for example, leading to a potential mislabelling

of areas.

Data accessibility Many features require detailed knowledge of individuals’ mobile

phone usage, raising privacy concerns, and subsequently limiting the opportunity to obtain

data from MNOs [154, 313]. While initial guidelines for best-practice engagement with

third-party organizations to analyze CDR data have been developed by the GSMA [149]

(in the wake of the recent Ebola crisis), overarching policies are yet to be established in

regions where research can be of the most benefit.

Heterogeneity in usage Initial research by Jack and Suri (2011) [180] has shown,

that MFS usage is equally widespread across both banked and unbanked populations.

They do however, acknowledge that initiatives such as Equity Bank and Family Bank

are increasing the availability to traditional ‘brick and mortar’ bank accounts for the

previously ‘unbanked’ which could affect this balance in a similar way as light saturation

has weakened the explanatory value of NTL as a proxy for poverty.

4.5 Chapter Summary

The analysis leveraged a range of regularity, diversity, activity and spatial features de-

rived from 450.2m call and SMS event logs and 7.6m MFS records to generate insight into

area-level socio-economic status. Using ground reference, CDR and MFS data, features

were identified and quantified to accurately classify small-scale area SEL across the Dar

es Salaam metropolitan area. The approach compared baseline metrics extracted from

CDR data in line with previous approaches on harnessing CDR data for area-level poverty

assessment discussed in Table 4.2.3 with features extracted from MFS data, combinations

of those feature sets, and scenarios incorporating a differentiation in underlying land use.
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Figure 4.8: Sample area within Dar. A slum occurs in the centre with affluent housing
left and right of the corridor.

This study demonstrated that mass MFS datasets could provide sizable improvements in

SEL classification accuracy over recent CDR approaches. However, limitations remain,

largely due to a need for more high-quality ground reference data for training. At the

same time, this analysis will provide useful information to empower policymakers and

local municipalities to identify areas requiring interventions and revitalization programs

and assess the progress and success of those interventions, as according to the UNFPA:

“any indicative estimates would provide in certain situations where none are

currently available; even if they carried with them a significant level of un-

certainty such estimates would still represent a large improvement in many

cases” [313, p.519].

Comparing MFS data directly to CDR as used in prior work, the results show that MFS

provides an increase in SEL classification accuracy (average F1 score) from 65.9% (0.63)

to 71.3% (0.7) at a fine-grained spatial level. Notably, the combined use of MFS and CDR

data only increased prediction accuracy (expressed through the average F1 score) from

71.3% (0.7) to 72.3% (0.71), providing evidence that MFS is informationally subsuming
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CDR data. The following chapter will use CDR data to generate insights into transport

demand and travel distance as endogenous factors for subsequent land use and socio-

Economic – transport interaction analysis in chapter 6.



Chapter 5

Understanding Urban Mobility

Patterns

5.1 Chapter Introduction

The previous chapter used CDR and MFS data to extract features from the socio-economic

dimension described in §2.3.2 for subsequent area-level SEL classification and use in the

land use and socio-economic – transport interaction analysis to be undertaken in Chapter

6. This chapter is using CDR data to extract some of the mobility variables described

in §2.3.3. Specifically, trip distance and trip frequency measures for further analysis in

Chapter 6 through the creation of OD matrices, one of the fundamental tools in transport

planning, and synthetic daily activity plans. The following research objective guides this

chapter:

Research Objective 3: exploration of synthetic daily activity plans based on

the previously-evidenced assumption that the majority of human movement is

predictable, and the generation of transient OD matrices to understand travel

and mobility patterns for Dar es Salaam.

OD matrices represent the sum of trips undertaken in a specific time window between

111
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given geographical areas and are used to inform transport forecasting models as a proxy

of mobility demand [26]. Each trip is made up of two stops, an origin and a destination for

the trip. A stop can simultaneously be a destination for one trip and an origin for another.

Transient OD matrices are generated from stops and trips detected through a transient-

based approach, which, unlike other approaches, identifies stops solely based on temporal

parameters. While other approaches might only discover ‘major’ stops of home and work

as one trip as a user returns home, a transient-based approach might identify the user

stopping at a supermarket on the way, thereby identifying an additional trip (i.e. work

- supermarket, supermarket - home). Traditionally, mobility insights have been derived

from manual surveys, Road Side Interview (RSI), panel surveys or road traffic counts.

These data collection approaches are slow, expensive, infrequent while only providing a

micro-level snapshot of a particular period in time and space [147, 163, 164]. Rapid urban

expansion make them particularly unsuited in emerging economies, where mobile phones

are now nearly ubiquitous. CDR data similar to that used as part of this thesis research

has shown huge potential for the analysis of mobility behaviour as will be discussed in the

next section. An alternative to traditional surveying and sensor infrastructure generated

data discussed in §5.2.1, they provide the opportunity to monitor human behaviour at

scale, as the mobile phones have become nigh ubiquitous with human movement. This

research goes beyond existing research reviewed in §5.2.2 by comparing three different

approaches (transient-based, stop-based and frequency-clustering based) to OD matrix

generation.

As a first step, background on mobility demand and transport forecasting is provided.

Second, relevant literature on the analysis of different aspects of mobility behaviour using

traditional data sources and CDR data is reviewed. Third, the chapter uses a sample

of 329,530 mobile phone subscribers resident in Dar es Salaam, Tanzania, (450.2m call

and SMS event logs) to derive travel demand in the form of OD matrices using both a

synthetic plan and a more traditional transit-based trip extraction approach. In addition

to CDR data provided by a MNO in Tanzania, the research builds on work conducted as
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part of an industrial placement with the Transport Systems Catapult in 2017.

5.1.1 Mobility Demand

Increased mobility demand through urban expansion, increasing commuting distances and

times caused by urban sprawl, and congestion are serious problems impacting the quality

of life in cities around the globe [193]. While mass transit provides an opportunity to al-

leviate some of these issues, most of the worlds mass transit systems are ineptly designed

if they exist at all due to a lack of understanding off local mobility demand and patterns

[31, 298]. An estimated 35% of the worlds 100 largest cities do not have complete transit

route maps, with the number increasing to 92% in the 100 largest lower-middle-income

cities [204].

Tanzania, like many other emerging economies, is experiencing rapid urban expansion

while suffering from poor mass transit provision, poor infrastructure and high levels of

congestion [165, 281]. This urban expansion puts increasing pressure on often already

limited road infrastructure leading to a range of issues such as severe traffic congestion,

parking difficulties and increased traffic accidents. High levels of congestion and poor

infrastructure conditions, in particular, have been recognised as major challenges within

Dar es Salaam.

Besides being an inconvenience, endemic traffic congestion leads to huge economic costs,

which account for 411 billion TZS ($USD195m) annually in Dar es Salaam alone [165].

The building of the Mfugale overpass at the junction of the Mandela Expressway and

Julius Nyerere Road has significantly contributed to a reduction in traffic congestion in

the ring road area on the way from Julius Nyere airport into the city centre along Julius

Nyere road.

In emerging economies, informal bus services make up most of the mass transit provision.

Which, while filling a void left by formal operators, give rise to their own set of challenges
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[202, 207]. Up to 50% of bottleneck traffic is caused by small informal mass transit

vehicles with low fuel efficiency that could instead be served by larger vehicles which are

too expensive for small operators [40]. Low safety standards have contributed to African

countries having the highest road fatality ratings globally [156].

5.1.2 Transport Forecasting

Transport forecasting models use OD matrices to help estimate future mobility demand

and form the basis to determine the need for additional road capacity, changes to mass

transit services and infrastructure, and land use policy and patterns by forecasting the

impact of urban and transit interventions [64, 269]. Forecasting models “provide an aver-

age picture of the current state (average working day of a current year describing mainly

the number of trips between zones, used modes and routes, link flows, travel times, and

congestion problems), and a prediction of future states and expected effects of interven-

tions” [363, p.68]. The models can be broadly categorised as trip-based, activity-based

and system-based.

Trip-based models were first developed and implemented in the Detroit Metropolitan

Area Traffic Study RR-040A in 1956 and Chicago Area Transportation Study CATS in

the late 1950s and early 1960s on the back of major investments in road infrastructure

and rapidly increasing car ownership and usage. They were predicated on a need for

long-term aggregate level demand prediction of trips across modes and routes [269]. They

are fundamentally aggregate - focusing on mobility trends between zones rather than

individual mobility behaviour [292]. Trip-based analysis models are based on a four-step

forecasting process:

1. trip generation

2. trip distribution

3. mode choice
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4. route assignment

The first three represent the demand model and the latter, a network or infrastructure

assignment model [263]. In the trip generation step, the frequency of origins or destina-

tions of trips in each TMZ or other specified analysis area is determined by trip purpose

as a function of either or a combination of land use, household demographics, and other

socio-economic factors. TMZ have traditionally been designed manually based on ba-

sic principles of (1) cluster social, land use and economic characteristics; (2) frame zone

boundaries around natural and man-made boundaries such as rivers and rails; and (3)

selecting manageable traffic zone sizes; outlined by Ortuzar and Willumsen (2011) [269].

Geographical information, population data, land use characteristics, and socio-economic

characteristics as used to divide the study area into TMZ [98, p.279]. During the trip dis-

tribution step origins and destinations are aggregated into a priori OD matrices. During

the mode choice step the a priori OD matrices from step 2 are split by transport modes

such as car, activity-based (e.g. walking, cycling, etc.) and rail. Finally, the route or

traffic assignment step is used to allocate trips to potential routes between and origin and

destination of a trip along the existing road and rail infrastructure.

Activity-based models were first developed as part of the model improvement pro-

gram in the early 1990s based on theoretical frameworks proposed by Hgerstraand (1970)

[157] and Chapin (1974) [120]. They are the current state of the art approach for travel

forecasting as they bring with them a shift from aggregate statistics and relationships of

trip-based models to dis-aggregate models and micro-scale simulations. In activity-based

models, travel is considered in the broader context of activity scheduling in time and space,

and as an intrinsic component to satisfy the economic, physiological and social needs of

an individual to participate in spatially distributed activities [52, 64, 158, 278, 292].

In contrast to trip-based models, activity-based models consider travel as dis-aggregate.

The focus is on the daily trajectories, the chronological chain of users trips, rather than

aggregate summaries of individual trips between two points in space. They expand on
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trip-based models by considering the activity-motifs (i.e. the reason for conducting a trip

in the first place). Activities are defined to reflect basic personal and household needs

and are usually categorised as basic motifs such as home, work, education, recreation,

shopping, etc. Individuals are presumed to follow weekly/daily activity schedules and to

optimise trips to perform all activities with the required frequency taking into account

time constraints and available transportation and activity location infrastructure which

is shared with other individuals [131, 359].

System-based models, per-driver or per-agent models are based on initially derived

daily activity plans comprising activity locations, activity start time, duration and end

time, and mode and routes of trips connecting activities. Those plans are then fed into

microscopic time-dynamic traffic simulations to prescribe synthetic daily plans based on

system constraints given by the transport network and its attributes [28]. These synthetic

plans and individuals or agents can then be used for testing of future transportation, land

use and smart city concepts. The most common simulation environments are SimMobility

[3], SimAGENT [146], and MATSim [170], which combine mode, time, destination and

activity scheduling processes into a single consistent framework.

5.2 Literature Review

5.2.1 Traditional Data Sources

Data for transport forecasting models have traditionally been collected through manual

surveys, fixed sensor infrastructure or mobile sensor tracking. Each of those is discussed

in more detail below.

Manual sampling

Manual surveys and traffic counting are the most widely used sources of data for trip

generation. They are undertaken when the use of automated methods is not feasible due to

cost and effort implications or to gather data which cannot be obtained effectively through
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automated methods such as occupancy rate, travel mode classification or pedestrians.

Traffic counts are generally collected over a ‘representative’ one-day period when travel

flows are maximal without accounting for reasons for travelling or tracking the same

individuals to assess long-term changes [269].

RSI are similar to traffic counts in that they involve a small sample size over a time

period of a few hours at any given location [58]

Panel surveys are conducted at regular intervals, effectively tracing the same individu-

als over time. They provide opportunities to analyse (changes in) and model travel

behaviour, while often leading to completion fatigue, affecting both adherence and

accuracy [269].

Manual surveys are costly to undertake and quickly outdated in addition to being affected

by sampling biases and reporting errors [147, 163, 164]. The presence of new travel trends

is frequently only discovered after the release of new results [35].

Point detection methods

Point detection methods involve the use of spatially-fixed sensors for traffic data recording.

They help overcome the issues of data collection at sparse temporal intervals and human

observation bias inherent to manual data collection discussed in the previous section.

Prime data sources are point-based sensors such as loop detectors and overhead detectors,

which allow for the recording of occupancy rate, volumes and speed for particular road

sections.

Inductance loops are an expensive but reliable technology for measuring traffic along

roads. Installation and maintenance require the closure of lanes.

Video image detection was introduced to deal with some of the shortcomings affiliated

with inductance loops. Cameras are mounted above ground but do not work as well

in low-light and poor weather conditions.
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Microwave radar technology was mainly developed to overcome the shortcomings

posed by inductance loop and video image detection. While not being affected by

low-light and bad weather, it reports traffic counts with less accuracy than other

point detection methods.

While recording basic metrics, point-based methods do not allow for the generation of

time-space trajectories as they are unable to track specific cars as they are moving through

the sensor network. The only point-based data source allowing for tracking of individual

vehicles are automatic number plate recognition systems [129]. They are not widely

used, however, due to high installation costs and privacy and data protection issues.

Bacon et al. (2008) [24] examined the feasibility of wide-scale deployment of static sensor

infrastructure for traffic monitoring and found it unfeasible due to the high cost involved.

Ehmke et al. 2010 [108] have further found that data from static sensor networks need

to be supplemented with additional area-wide traffic data collection due to the large gaps

in static sensor infrastructure provision. Equipping cars with sensors and networking

capabilities were found to be a much better solution at the time.

Vehicle based detection methods

GPS technology has been the core focus of automated data collection methods for more

than 20 years. A lot of work has been undertaken using GPS traces from mobile phones,

busses and taxis for mobility analysis in particular, as it is easier and more cost-effective

to deploy than static sensing infrastructure [24, 259, 365].

GPS data has been applied to a wide range of methodological components inherent to

transportation forecasting as discussed in §5.1.2 including: Trip generation [21, 323, 364]

and activity-motif detection through matching of trip end locations with land use data

[364], Route assignment [167, 184, 216, 287], Travel mode detection [296, 337, 358] and

the calculation of expansion factors [55, 365].

While GPS traces generally boast high levels of spatial and temporal accuracy and there-



5.2. Literature Review 119

fore Spatio-temporal insight about individuals movements, the attainable sample size and

observation periods of GPS-assisted surveys are still limited [24, 37]. This is partly due to

the high privacy concerns that come with the recording of GPS data, as it is possible to

track individuals at all times fully [283, 284]. Another issue is the buy-in nature of most

GPS based studies, as data for GPS travel diaries are generally recorded through specific

mobile phone applications, which require user buy-in on a large scale to generate mean-

ingful levels of data. Opportunities exist in passive data collection through Automated

vehicle location sensors, which are increasingly installed in regular vehicles for security

purposes [200, 254, 299].

5.2.2 CDR Derived Stop Extraction and Trip Generation

Section 5.1.1 introduced the concepts of mobility demand and shortcomings of its anal-

ysis in areas facing rapid urban expansion. CDR data allows us to observe combined

trip generation and distribution directly, and to a certain extent also route choice for a

subset of the population that are captured by the data. Further, several studies have

discussed two core and one ancillary method to estimate mobility demand using CDR

data. Transient-based, Stay-based, and Frequency-based clustering. As discussed in the

chapter introduction, both transient-based and frequency-based approaches were chosen

as applicable tools to derive mobility demand for Dar es Salaam. This is due to the more

stringent spatial requirements akin to individual handset triangulations afforded by stay-

based approaches, as opposed to transient-based and frequency-based clustering, which

can be undertaken using BTS-level CDR data. Each of the three approaches is used to

identify trips.

A “trip(u,o,d,t) is characterised by a user ID u, origin location o, destination

location d and starting time t” [60, p.38].

Each origin location o and destination location d is defined as a stop. In the transient-

based and frequency-based clustering approach stops correspond with BTS associated

with one or multiple network events while they are often referred to as virtual locations
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rather than stops in the stay-based approach. Each stop can be a destination for one

trip and an origin for another at the same time. A trip consists of a pair of non-identical

consecutive pairs of stops (an origin and a destination). A user has n-1 trips per day, with

n being the number of detected stops for that day. The chronological order of stops is a

user’s daily trajectory.

OD matrices are generated through the aggregation of trips into predefined regions and

temporal windows. The OD matrix count is the flow, the sum of trips between matching

o and destination location d pairs during the specified period. As multiple approaches for

trip extraction exist, it is important to understand how they are related to understanding

their subtle differences in real-world application utility. Accordingly, the following sub-

sections explain the vocabulary, definitions and methods of transient-based, stay-based

and frequency-based clustering.

Transient-based approach

Transient-based approaches are sometimes also referred to as temporal-based or cell-flow

clustering approaches. Rather than simply selecting consecutive network events with non-

identical BTS to identify stops equaling to origin locations o and destination locations d,

this approach uses temporal filters to identify meaningful locations.

As discussed in more depth in §2.2.1, CDR data does not record individual’s locations,

but rather a non-precise proxy via the location of the BTS delivering the service. Sector

antenna range is dependent on factors relating to the location, height, and the technology

involved. Limitations in range are generally accounted for by MNO through intentional

overlaps in service area to reduce the risk of ’holes’ in signal coverage. Handsets will

automatically seek the BTS with the strongest, and therefore generally nearest, signal,

which can potentially result in false displacement where a user may appear to be moving

while remaining stationary in the physical realm [109]. As a result and due to the uncer-

tainty over a subscribers proximity to any specific BTS, location information cannot be
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assured, and devices may appear to be moving rapidly between surrounding BTS at times.

Within the transient-based approach, temporal filters are used to filter out noise that may

simply be an artefact of those rapid ’location jumps’ between surrounding BTS. Transient-

based approaches resemble trip-based approaches that identify segments of travel based

on limited data that lose much of its value in areas with a lower spatial resolution (i.e.

low BTS density) and high road network density. As filtering within the transient-based

approach is limited to the temporal scale, the approach is used to capture intermittent

(transient) points in addition to overall origin and destination points of a users daily tra-

jectory.

One of the first to apply a transient-based approach was [305], who used floating phone

data on LAU sequences from several months of phone activity of T-Mobile (Germany)

customers to attempt to close an initially perceived gap in the monitoring of long-distance

trips above 20km. They used three different temporal rules: a 60min-rule (remaining in a

location area longer than is necessary to traverse the area potentially has interzonal trip),

an extended 60min-rule (two or less LAU, more than 60 mins between the first log in and

the last logout), and a jumpiness rule (LAU/unique LAU >2 or 3+ unique LAU).

Among the first studies to use CDR for transient OD estimation was undertaken by Wang

et al. (2012) [347] using data from 360k Bay area users and 892 towers as well as 680k

users in 750 census tracts in Boston over three weeks. They applied a frequent-sequence

mining algorithm to identify frequent mobility trips for individuals. A trip was extracted

for BTS displacement in subsequent records of a user taking place within 10 minutes and

1 hour. The 10-minute re-sampling rate was used to alleviate the effects of localisation

errors and event-driven location measurements on individual trip determination similar

to Calabrese et al. (2011) [58]. False displacement effect can occur during peak times

when users are sometimes transferred to towers that are further away in order to balance

the load on the cell tower infrastructure. The upper bound of 1 hour was used to mitigate
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the effects of false displacement.

Using temporal variation of association rules, Fritz-Martinez et al. (2012) [125] infer

OD matrices from aggregated CDR for calls, SMS and MMS for a 2-month period from

October to November 2009 for 3.5m unique handsets in Madrid. The rules were first

introduced by Agrawal et al. (1993) [5] and used to identify home-work and work-home

commuting trips. They performed a priori OD matrix validation on home-work com-

muting time windows using National Statistical Institute (NSI) mobility matrices for the

state of Madrid.

Bahoken and Raimond (2013) [26] used CDR data for calls and SMS for 10 million users

over six weeks in France. They extracted all trips, which involved a displacement within

the space of 24 hours, and from 6 am-10 pm and 4 pm-8 pm. The time windows were

chosen to estimate travel demand over a day, as well as to identify demand for home-work,

and work-home commute. Unlike the more general definition of flows as the sum of all

trips in a specified time for a particular user by Calabrese et al. (2011) [60], they calculate

flow using the first and last two points of a users trajectory for the given temporal window.

Following a similar approach to Wang et al. (2012) [347], Iqbal et al. (2014) et al. [176]

use traffic count, and CDR data for 2.87million users in Dhaka, Bangladesh over a month

to estimate node-to-node transient OD matrices. 10 minutes were chosen as a minimum

time in order to reduce the false displacement effect. 1 hour was chosen as a maximum

time for a trip to ensure that only meaningful trips are inferred. CDR data is used to

generate a priori OD matrices before using traffic counts generated from video vehicle

detection to estimate final posteriori OD matrices for four time periods: 7am-9am, 9am-

12pm, 3pm-5pm, 5pm-7pm. The optimisation based approach was chosen to minimise

the difference between observed and simulated traffic.

Larijani et al. (2015) [209] build on prior work by [26] by examining active and passive
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network event logs (which include active CDR, and passive handover and LAU) for 1.4

million phone users in Paris over the course of a single day, with a particular focus on

morning commutes (6 am-10 am) and afternoon commutes (2pm-9pm). While having

access to 57 million logs, they identified nearly 50% of network events as being LAU.

Stay-based approach

Stay-based or time-distance clustering approaches are very similar to transient-based ap-

proaches, in that they are used to identify the trip start and end locations from consecutive

CDR records. In addition to temporal filters, spatial filters are used to further reduce noise

in the identification of meaningful locations where a user has stopped at the beginning or

end of a trip.

The maximum diameter “controls the spatial resolution at which stays are

identified. Higher values for D result in lower spatial resolution with a larger

upper bound for the area applicable for a stay” [228, p.788]

This follows the same approach as with GPS data, where boundaries are defined in line

with positioning errors and minimum dwell times [160]. In contrast to the transient-based

approach, the more strict spatial requirements lead to this approach, only capturing travel

between significant stay areas. Those stay areas can encompass one or more BTS within

the spatial parameter used for filtering, with the centroid often selected as the stop or

virtual location. This allows the summarising of consecutive network events that are

close enough into a single stop - activity location identification by filtering out passing-by

points/trips obtained from flows between stay locations. Identifying stay locations where

people conduct activities can help overcome those limitations by reducing noise in the

data [379].

As one of the first to apply a transient based approach, Calabrese et al. (2011) [60] ex-

amined CDR for 1 million users in the Boston Metropolitan area containing 829 million

CDR logs including BTS and a triangulated position for each network event provided by

the US-based company AirSage collected over a period of 4 months. In addition to a
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temporal low-pass filter of 10 minutes to alleviate the false-displacement effect similar to

transient-based approaches discussed above, they applied a spatial filter of 1km to cluster

locations and further reduce the false displacement effect. The data provider AirSage

identified a 1km uncertainty radius to be optimal in reducing the false displacement effect

during a pre-processing step common with GPS trace analyses. They chose the centroid

of all points within a cluster as the virtual location. Agglomerative clustering was used

to consolidate stars into a single semantic location regardless of the temporal sequence

of the CDR records. Each non-identical consecutive pair of virtual locations corresponds

to a trip. While agglomerative clustering to identify virtual locations did not consider

the temporal sequence, the daily trajectory is determined by the chronological order of

virtual locations.

Jiang et al (2013) [185] used a grid-clustering approach in their analysis of approximately

835m CDR for 1 million users over two months in Boston in 2010 for a more coarse-

grained analysis of travel motifs, preferential return and explorative characteristics. As

part of the grid-clustering approach, the entire study region was split into stay regions

with a roaming distance of 300m, corresponding with the maximum distance between any

two BTS collecting location data in the study area and as a reasonable walking distance

for activity detection. First, spatially close points are clustered by Euclidean distance

between consecutive CDR and compared to the spatial threshold set at 300m. Second,

clusters are considered stays when the time between the first and last CDR within the

cluster is greater than 10 minutes. Trips were identified if there was a change in stay

region and a minimum separation of 10 minutes between the first and the last record.

Comparing both transient-based and stay-based approaches, Maldeniya et al. (2015) [228]

used 1.4 billion CDR records from 10million users from different network operators in Sri

Lanka to test approach efficacy to derive a priori OD matrices. The average number of

network events per user per day was sparse, with around 25 events per user on average.

Ten minutes between displacement records was chosen as a low-pass filter to alleviate
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false displacement effect, where calling parties appear to be moving due to connecting

to different towers while remaining stationary. An upper-bound of 1 hour was chosen to

ensure meaningful trips were detected. 1km grids were chosen as a trade-off between spa-

tial granularity and noise reduction due to localisation errors (particularly in high-BTS

density areas) similar to the 300m × 300m grid approach chosen by Jiang et al. (2013)

[185].

Alexander et al. (2015) [12] use a stay-based approach to estimate OD’s for four periods

(AM, midday, PM, night) and purpose (home-based work, home-based other, non-home-

based) from triangulated data for 2 million users over 2 months in Boston, USA. Their

results indicate a strong correlation between trips inferred from CDR data and ground

truth data from Census Transportation Planning Products (average of 0.5) and NHTS

(over 0.95) similar to the MODLE project (§5.3.1.

Using the same Boston, USA dataset as [60, 185] and additional triangulated location

management data for 1 million customers for two weeks in 2012 Vienna, Austria, Widhalm

et al. (2012) [359] combined a low-pass filter with an incremental clustering algorithm

for robust stop extraction and daily trajectory identification. In order to account for a

potential low-frequency bias, they chose to exclude users with less than six observations

per day similar to [306]. The chosen approach considers the geometry of trajectories and

travel speed to adjust clusters to identify activity locations incrementally. In a follow-on

step, they combined the derived OD flows with external land use data to model location

choice behaviour for inclusion of a posteriori OD matrices in activity-based transport

forecasting models as discussed in §5.1.2 [197, 242, 271].

More recently, Wismans (2018) [363] used pre-aggregated data for one month for about

a third of dutch mobile phone subscribers provided by the data provider Mezuro for the

Netherlands to inform stay-based OD matrices for November 2014. Ground truth data

from the annual dutch NHTS OViN survey and the Rotterdam transport model is used



126 Chapter 5. Understanding Urban Mobility Patterns

for validation. Rather than using a low-pass filter of 10minutes as related to previous

research, the period for a trip is set as the mid-time between two consecutive stays of

over 30 mins in different areas. Location data was aggregated at the village or district

level, splitting the Netherlands into 1259 study zones. Scaling was undertaken using a

combination of trip-length distribution between OViN, and CDR derived OD counts based

on the assumption that both are inherently biased to some degree (§7.6.3 resulting in an

increase of trip counts between 8km and 13km, and a reduction of trip counts for those

between 14km and 40km long.

Frequency-based clustering approach

As location information is not directly observed but rather only collected when a user

actively engages with a mobile device through the creation of a network event, CDR data

contains a large amount of hidden movement. A user could use his or her mobile phone

at one point for example and then be in a completely different part of a city 6 hours later

without us having an idea how the person got there or what happened in the meantime.

The issue of hidden movement is especially pronounced with users with a low number

of irregular network events [63]. It can have similar effects to the oscillating ping-pong

effect caused by signal strength challenges that are not unique to sector antenna in the

underlying GSM network [211].

The frequency-based clustering approach indirectly addresses this phenomenon by seek-

ing to extract frequent (sequential) virtual location visit patterns. Rather than applying

temporal and/or spatial filters to consecutive CDR records, BTS are instead ranked by

visitation frequency to derive frequently visited points of interest such as home and work

and to extract synthetic daily activity plans representing a common trajectory for each

mobile phone subscriber. This approach is based on the key assumption that people have

regular patterns of mobility the physical locations of POI and geographies such as home

and work [6, 34, 142, 314].
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Bayir et al. (2010) [33] used the MIT Media Lab Reality Mining project dataset that

tracked BTS locations of a 100 students equipped with Nokia 6600 feature phones over

nine months for path construction. They observed the time spend at each BTS, transi-

tion time between adjacent BTS and observed and hidden destinations with duration’s

above-set thresholds. Weight-based hierarchical graph clustering is used to group adja-

cent BTS clusters and prevent the ping-pong effect before an AprioriAll [5] is used to

identify frequently visited stay areas. Resulting individual mobile phone profiles for each

student are specified by day of the week and specified periods of 6 am-12 pm, 12 pm-6

pm, 6 pm-12 am, and 12 am-6 am. Similar to existing research by Gonzalez et al. (2008)

[142], human trajectories were found to have a high level of regularity with an average

of 85% of observed stay time was at and between top-ranked BTS locations. Observed

mobility profiles are heavily biased toward specific locations; however, due to the limited

collection area, which mostly focussed on the MIT campus in Boston, MA.

Isaacman et al. (2011) [177], used a cluster-leader algorithm to rank the frequency of BTS

visits. In order to assign semantic meaning to the identified points, a logistic regression

model trained on a ground truth sample was used. The metrics included the number

of contact days during the study period, the period between first and last contact, and

inferred home and work ‘visits’. Despite the ground truth, a confusion between significant

and pass-by points remained.

Using Data from the D4D challenge datasets described in §2.1.1, Berlingerio et al. (2013)

[40] examined CDR for 50k users over a period of 2 weeks. They identified frequent travel

patterns that are outside the realm of existing public transit infrastructure in order to

identify service provision gaps. First, they determined travel and activity patterns by

deriving frequent virtual locations and patterns of mobility between those. Second, activ-

ity patterns and OD flows were aggregated to design new transit services. Finally, they

evaluated how well different categories of users were served by public transport services

in the area.
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Schneider et al. (2013) [306] adopted ‘motifs’ from complex network theory [243] with the

assumptions that a) the daily trajectory starts and ends at the identified home BTS based

on the intrinsic need for sleep, and b) each stop is visited at least once. Similar to previous

research by Bayir et al. [33], time spend at a stop and transition time between similar

activities or motifs is incorporated in the development of a model (perturbation-based) to

reproduce the frequency of a motif occurring. BTS with more than three oscillations in a

day were merged. The most frequently visited BTS in a 30minute segment on weekdays

was selected as a stay. Any day with less than eight observations was discarded so as

not to bias motif generation. A home BTS was identified as the most frequently visited

between midnight and 6 am.

5.2.3 From a Priori to a Posteriori OD matrices

The stop extraction and generation approaches described in the previous section are

used to generate a priori OD matrices representing travel patterns for a limited sub-

sample of the population. Scaling is necessary to generate more representative a posteriori

OD matrices from the sub-sampled matrices. The following section introduces scaling

approaches, and ways to validate OD matrices.

Scaling of a priori OD matrices

The scaling of a priori to a posteriori OD matrices requires the use of external data

to calculate appropriate expansion factors. The most commonly used expansion factor

in related research has been based on the ratio of the census populated and identified

BTS-based [12, 186, 347] or Location area [376] based home users within a census area.

Calabrese et al. (2011, 2013) [58, 59] for example compared population density calculated

from CDR data with census level population data and found that biases are exacerbated

in areas with low cell phone penetration. Census-derived expansion factors have a high

risk of introducing significant biases due to the (temporal) gaps in census collection,
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making them particularly unsuitable for application in fast-changing urban environments

in emerging economies. Even in a western context outside Africa‘s ‘Statistical Tragedy’,

however, they can be of limited utility as became apparent in a study of the Bristol region

as part of the Mobility on Demand Laboratory Environment (MODLE) project, where

developments under study only emerged following the last census collection.

A second approach exists in the derivation of expansion factors from traffic volume counts

collected manually or through road-side detectors at major node points [128]. From traffic

counts, expansion factors can be calculated either iteratively [225], through correlation

analysis [176] or as an optimisation problem [176, 335] using simulations.

Alternatively, Cai et al. 2017 [57] have used mobile phone ownership and MNO penetra-

tion rates to generate expansion factors. They calculated the expansion factor as

ODpeople =
ODmobile

α1α2α3α4

With ODpeople as the scaled passenger volume between each OD pair, α1 as the number

of mobile phones per person = 1.077, α2 as the penetration rate of mobile phone usage

among all residents = min(number of mobile phone users
permanent residents

), 1, α3 as the market penetration of the

MNO, and α4 as the probability of a mobile phone being detected = 0.84.

Validation

Following the generation of scaled posteriori OD matrices, related studies have sought to

validate their matrices using travel survey data such as OViN or NHTS. Early approaches

sought to use a combination of GPS data, GIS data, and individual and household de-

mographic data for validation [48, 74, 77, 140]. Calabrese et al. (2011) [60] and Frias-

Martinez et al. (2012) [125] used external NSI OD matrices for validation to compare

time intervals for home-work commuting.

Using NHTS data, Gong et al. (2015) [141] compared trip purpose distribution of NHTS
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trips and semantically labelled CDR derived trips. In an alternative approach, [363],

compared CDR derived a priori OD matrices with OViN, the dutch NHTS and used it to

improve traditional models of transport forecasting, finding a particular under represen-

tation in short trips (§7.3.1) similar to validation results in the MODLE project discussed

in §5.3.1.

Mapping of posteriori OD data

CDR derived OD matrices commonly represent transport demand on either the BTS level

or between Voronoi cell areas depending on the underlying datas spatial granularity and

trip extraction approach. In related research, these OD matrices have been spatially in-

terpolated to pre-determined zone structure such as grids, census tracts of traffic analysis

zones [12, 58, 76, 228, 374]. Interpolation to specified geographical representations has

been undertaken to either align CDR derived OD matrices with existing TMZ for integra-

tion into implemented transport forecasting models and/or to protect individual privacy

and commercial interest for visualisation of derived mobility trends.

Using triangulated device data, Jiang et al. (2013) [185], used a grid-clustering approach

with 300m× 300m grids as part of the stop extraction and trip generation process prior

to the aggregation of trips to OD matrices. Maldeniya et al. (2015) [228] instead use

spatial interpolation of generated trips as part of the a priori OD matrix generation to

distribute trips among pairs of existing TMZ in their comparative study using CDR data

from Sri Lanka.

While helping to preserve individual privacy, which is a particular concern with triangu-

lated device data used in stop-based approaches [60, 185], and commercial interests such

as the BTS location, this approach has been shown to lead to noisy and unbalanced OD

matrices when aggregating/apportioning to small spatial areas [76, 374]. As Alexander et

al. (2015) [12] have shown, this concern can be alleviated somewhat when aggregating to

larger zone sizes. An alternative to spatial interpolation of CDR-derived OD matrices to
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pre-determined zone structures is the mapping of CDR derived BTS Voronoi polygons to

the nearest road network node or metro station [176, 209].

5.3 Research Approach

Following the empirical analysis of activity-based land use conducted in chapter 3 and

socio-economic levels in chapter 4, the analysis focussed on BTS for the Tanzanian port

city of Dar es Salaam. A core dataset of 565 BTS located in the metropolitan area of Dar

es Salaam were identified. Two testing scenarios were formed, one considering a transient-

based approach for OD matrix estimation, and the second considering a frequency-based

clustering approach. In addition to OD matrices as a proxy for the inbound and out-

bound trip attraction of an area, travel distance metrics are derived from the synthetic

daily activity plans created through the frequency-based clustering approach as dependent

variables in the land use and socio-economic – transport interaction analysis in Chapter 6.

Based on a fixed definition of origins, destinations and trips, as well as understandings

of the transient-based and frequency-based clustering approach outlined in §5.2.2, the

following high-level process was undertaken to construct OD matrices and synthetic daily

activity plans from CDR data:

1. Data Cleansing: were raw CDR was converted into CDR time series. As part of

this step, BTS in very close spatial proximity where the location of a user cannot

be distinguished were merged. Data was further filtered to comply with the set

temporal and spatial thresholds for this study and low and very high-frequency

users excluded to prevent the introduction of frequency-biases.

2. Stop Extraction: Both transient-based and stop-based approaches were applied to

extract BTS represent potential origins and destinations for trips at the individual

level.

3. Trip generation: Trips, which do not meet predetermined thresholds are removed

at this stage.
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4. A priori OD matrix generation : the trips generated as part of the previous

step are filtered depending on the chosen application before being aggregated into

an initial OD matrix representation. Temporal (i.e. weekday/weekend and by time

of day) is undertaken as part of this step.

5. Scaling: raw OD matrices are scaled using traffic count data to more appropriately

scale to the number of trips detected to the full population from the sub-sample

represented in the a priori OD Matrices.

6. Posteriori OD matrix generation : scaled a priori OD matrices are interpo-

lated to the Ward Level

This process was similar to the data cleansing and OD generation process used as part

of the MODLE project discussed in more detail in §5.3.1. Here, data processing included

four key stages.

Data cleansing CDR and location management data was selected for neutral days (i.e.

weekdays that are not public holidays) during the study period. Event data was

converted into dwells and journeys. Internet of Things devices, tablets and users on

business contracts were removed from the analysis.

Stop extraction Identification of points of interests from frequent visits and categori-

sation of POI into the home, work and other. Using each users home location, an

expansion factor calculated as the number of homes in an area divided by the census

population was calculated.

Trip generation and semantic annotation Journeys were categorised by purpose

according to origin and destination POI category. Identification of journey mode

for road and rail trips. Using these journeys, only trips that penetrated the study

area cordon were selected. Those trips were assigned to one of the four-time of day

sections according to their start time.
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Posteriori OD matrix generation Journeys were aggregated by their respective

origin and destination, trip purpose, time, period and travel mode to form OD

matrices.

5.3.1 Data Description

This study uses mass CDR datasets for the generation of OD matrices and daily activity-

plans as proxies for the creation of mobility variables for further analysis in Chapter 6.

The spatial granularity for the features for subsequent analysis was set at the BTS and

surrounding Voronoi cell level resulting in an average study area size of approximately

6.23km2. The analysis of mobility behaviour in Dar es Salaam is based on CDR data

collected for approximately 2 million users in Tanzania during the year 2014 stored in

a Postgres [9.13] database. In the present case, only CDR for SMS and calls recorded

between August to December for users that connected to at least one BTS located within

the Tanzanian municipalities of Kinondoni, Ilala and Temeka, which are classed as the

Dar es Salaam metropolitan area and shown in Figure 1.1, were included within the study.

The final CDR dataset used as part of this study covers a total of 433.601.508 call and

SMS events for 415.341 mobile phone subscribers resident within the Dar es Salaam region

of Tanzania over a period of 122 days from August 1st to December 1st, 2014 1. Similar to

prior empirical analysis in Chapter 3 and Chapter 4 mobile data usage was excluded from

the analysis as there was no access to mobile data usage and SMS for the same period of

the year. A period with access to SMS transaction records was subsequently chosen over

mobile data, as only a small subset of users has access to mobile data capabilities.

MODLE

In addition to the CDR data provided by a Tanzanian MNO used for the empirical anal-

ysis of mobility behaviour in Dar es Salaam, CDR derived OD matrices are used for a

comparative assessment. Those OD matrices have been generated by a UK based MNO

1Due to both individual and commercial privacy, the anonymized data used as part of this study is
not publicly available, and was provided through a partnership with a major Tanzanian MNO
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using both active and passive events generated on weekdays between February and March

2016 using a multi-step process for the MODLE project. The Transport Systems Catapult

worked on an agent-based model to visualise demand in the peri-urban area to one side

of a major UK-based city. The MODLE project aims to demonstrate how activity-based

models can inform the operation of a mobility service provider and in which way new

data sets can be exploited and used in modelling tool to have a deeper understanding of

demand patterns and trip chains in urban areas.

The MODLE OD matrices were aggregated to UK census geography levels for use with

activity-based transport forecasting models. In addition to origin and destination, they

contained information on trip purpose, periods defined to be consistent with traditionally

transport modelling periods 2 and inferred travel mode.

5.3.2 Data Cleansing

Only CDR records for SMS and call events with timestamps between August 1st and De-

cember 1st were selected. Although MFS logs were available for the entire study period,

they were excluded from the analysis as the cell identifiers corresponding with BTS at the

centre of the cell were truncated, and BTS could therefore not be accurately identified

in most cases. Furthermore, mobile data usage was excluded from the analysis as there

was no access to data for mobile data usage and SMS for an overlapping period of the

year. A period with access to SMS data was subsequently chosen over mobile data, as

only a small subset of users has access to phones with mobile data capabilities. This

lack of access would have resulted in the exclusion of a large proportion of users from the

analysis. Furthermore, users that did not connect to at least one BTS located within the

Tanzanian municipalities of Kinondoni, Ilala and Temeka, which are classed as the Dar

es Salaam metropolitan area, were excluded from the dataset.

Records were further checked for integrity and missing attributes. This included the iden-

2AM peak (07:00 10:00), Interpeak (10:00 16:00), PM peak (16:00 19:00), Off-peak (19:00 07:00)
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Figure 5.1: Average number of CDR events incorporating calls and SMS considering days
when a mobile phone subscriber generated events.

tification of CDR logs with missing BTS information, which in the present case affected

approximately 0.56% of records. Those were removed from the analysis, as they could

not be reliably linked to a BTS as with MFS data discussed earlier.

As part of the integrity analysis, the spatial proximity of BTS was investigated through

the generation of the Cartesian product of all BTS in the Dar es Salaam metropolitan

area and the spheroid distance between the geographical locations. 14 BTS were found

to be within 50 meters of each other with 8 out of the 14 being within a proximity of

fewer than 10 metres to each other. Those BTS were subsequently merged to prevent the

location of a user becoming indistinguishable and to reduce noise within the data set.

As a final step, individual calling activity was examined in order to identify low-frequency

and high-frequency users, which could introduce potential biases into the identified mo-

bility behaviour. As showing in Figure 5.1, the majority of mobile phone subscribers only

produce a small number of CDR events, while the opposite extreme includes businesses

and agents that were most likely classed as subscribers erroneously, or constitute informal

businesses. Due to the sparsity in the event and by extension location recordings of low-

frequency users, consecutive events may be separated by significant time intervals, with

high amounts of hidden movement [63]. In order to identify and subsequently remove

these users from the analysis, a three-step process was used:
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1. all network events per user were summarised per weekday.

2. the average weekday activity per user was calculated over the course of a month.

3. five n-tiles were calculated to classify the population into different activity groups.

Earlier work by Wang et al. (2012) [347] also categorised users as belonging to one

of five categories, but considered fixed numbers of network events per month 3 rather

than a dynamic assignment. A similar approach also exists in the blanket exclusion

of all users with less than six network events per day [306, 359]. While this approach

accounts for a potential low-frequency bias, it neither addresses a potential high-

frequency bias nor does it account for differences in usage on weekdays/weekends

(§7.4.3).

5.3.3 Stop Extraction and Trip Generation

Two categories of parameters are used to extract stops from the cleansed CDR time series

generated through the previous step: temporal and frequency-based parameters. As part

of the frequency-based clustering approach and filtering, BTS associated with multiple

network events are extracted.

Temporal filter Stops for the transient-based approach were extracted using a tempo-

ral low-pass and upper-bound filter similar to related research [60, 176, 228]. The filters

were applied to the inter-event time between two subsequent records. Records which fell

outside either of the two filters were discarded from subsequent trip generation. The

low-pass filter was set to an inter-event time of 10 minutes in order to alleviate some of

the false displacement effect, where users appear to be moving as they are connecting to

different BTS while remaining stationary (§7.3.2). The upper bound filter was set to 60

minutes similar to previous approaches [176, 228] to mitigate the effect of hidden mo-

tion caused by the sparsity of records detected in the statistical analysis of average user

activity levels. Sequential network events pairs with inter-event times that fit with the

3below 10, 10-500, 500-1000, 1000-2000, over 2000
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temporal filters were selected as stops with the BTS servicing the initial network event

selected as a stop location.

Usage frequency Stops for the frequency-based clustering, were identified through

filtering on regular BTS usage rather than the filtering of inter-event times. All network

events for weekdays over the entire study period were aggregated into 30-minute bins

with a count assigned to each BTS, resulting in a potential 48 observations (24 hours /

30 minutes = 48 slots) for each BTS. Three parameter scenarios were formed for weekday

activity, one considering no filtering at all, one considering a minimum of 4 events within

the 30-minute bin, and one considering a minimum of 4 events that account for more than

60% of observations within the 30-minute bin. Using the parameters the most commonly

used BTS in each 30-minute bin was selected as a stopping point.

Trip generation Trips are generated through the chronological order of stops identified

using parameters discussed in the previous section. Each stop can be a destination for one

trip and an origin for another at the same time. A trip consists of a pair of non-identical

consecutive pairs of stops (an origin and a destination). In the case of usage frequency-

based clustering, the identified daily trajectory was regarded as a users synthetic daily

activity plan for common weekday activity.

5.3.4 A Priori OD Matrix Generation

In order to generate the a priori OD matrices, the trips generated as part of the previous

step were then aggregated for different periods with the matrix count as the flow, the

sum of all trips in a specified time frame, between matching origin and destination pairs.

Choosing appropriate periods requires an understanding of intrinsic rhythms that govern

urban spaces. Periods for flow analysis are defined according to different goals, including

peak hours, slack periods or work-day flow analysis. Using general perceptions of mobil-

ity in Paris, Bahoken and Raimond (2013) [26] chose time windows of 6 am-10 pm and 4

pm-8 pm as well as a full 24 hour period for their OD matrices. Building on this research,

Larijani et al. (2015) [209] use 6am-10am and 2pm-9pm to detect morning commutes and
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afternoon flow. Sinha et al. (2014) [312] chose to only focus on the morning AM peak

period between 9.30 am to 11 am in their analysis of mobility demand in Mumbai, India.

Diao et al. (2015) [95] chose 8 time segments to capture intra-day mobility variations

in Boston, USA: early morning (3-6am), morning peak-hour (6am-9am), morning-work

(9am-12pm), noon (12pm-2pm), afternoon work (2pm-5pm), afternoon peak hour (5pm-

8pm), night (8pm-12am), and midnight (12am-3am).

Four different periods were chosen in the generation of transient-based a priori OD ma-

trices similar to those in related research by Bahoken and Raimond (2013) [26]. Those

included 6 am to 10 am to capture morning commutes from home to work, 10 am to 4 pm

to capture general movement while the majority of the population is at work, 4 pm to 8

pm to capture the commute home from work, 8pm to 6am to capture general movement

while the majority of the population is expected to rest at home. While other approaches

as discussed above have been tested, one only captured morning AM periods without

providing windows for the remainder of the day [312], while another broke the day into

too many time segments [95] and would have exacerbated issues of data sparsity in some

areas. Weekends were excluded from the analysis, as the activity patterns differ from

working activities taking place during the week. This heterogeneity phenomenon (§7.4.3)

has been both discovered in existing literature [63, 113, 114] and in the analysis of activity

signatures to identify activity-based land use in Chapter 3 and specifically Figure 3.3b.

5.3.5 Scaling and Verification

One of the issues with undertaking research in developing nations is the fallacy of the

‘Statistical Tragedy’, a common sparseness of accurate and timely base data. In the

present case, neither traffic counts, nor GPS traces or information from travel surveys

were available to confirm the findings of the current study. Instead, the sparseness of

OD matrices was used as a verification criterion. Analysing the sparseness of BTS in

an OD matrix was first undertaken by Ton and Hensher (2002) [334] and later De Dios

and Willumsen (2011) [269]. They searched for BTS with 0 values between regions as
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indicators that those regions are not generating or attracting trips. 52 BTS were found

to not attract any incoming or outgoing trips during the study period following the appli-

cation of temporal filters during the stop extraction step. This cannot always be directly

attributed to the use of temporal filters but rather a result of changes in BTS operations

and the proximity of BTS.

5.4 Results and Discussion

5.4.1 Origin-Destination Matrices

Descriptive statistics for the transient-based, and frequency-based clustering approach to

trip extraction for different parameter scenarios is reported in Table 5.1. Figures 5.2a

and 5.2b illustrate the percent difference of detected trips between the transient-based

approach and three different filter scenarios for the frequency-based clustering OD matrix

generation approach.

The transient-based approach was run using a temporal low-pass filter of 10 minutes and

an upper-bound filter of 60 minutes between sequential CDR pairs with those within the

parameters and showing BTS displacement selected as trip pairs. A total of 2,546,677

inbound and 3,002,348 outbound trips were detected with a mean number of 4564 and

5471 trips respectively. The result is a percent difference of 16.246 % in the mean number

of detected inbound and outbound trips across the whole day. While the percentage dif-

ference across most of the day is negligible with 0.420 % in the morning, 0.229 % around

noon and 0.005% in the evening, the difference in detected inbound and outbound trips

spikes to 38.107% for the night-time period. This may be in part due to a known negative

morning bias as mobile phone subscribers tend to use their phone more toward later parts

of the day leading to fewer network events and by extension trips being detected in the

earlier portions of the day [11]. Additionally, this approach relies on the identification of

pairs from individual network events, which are more susceptible to differences in indi-

vidual usage patterns with previous research finding strong effects of heterogeneous usage
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(a) Inbound

(b) Outbound

Figure 5.2: Subfigures (a) and (b) illustrate the percent difference of detected trips be-
tween the transient-based approach and three different testing scenarios for the frequency-
based clustering OD matrix generation approach.
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patterns and individual-level sampling on network event generation and by extension trip

rate identification [11, 29, 63, 113, 114, 220]. As discussed in §5.3.4 a set of four time

periods, 6 am to 10 am, 10 am to 4 pm, 4 pm to 8 pm and 8pm to 6am was chosen to lend

insight into morning commutes, workdays, evening commutes and night time patterns

respectively. Those time periods are useful for practitioners looking to design effective

interventions such as road pricing to address challenges brought about by increasing mo-

bility demand [269]. A shortening of any of the periods to below 4 hours would have

exacerbated issues of sparsity (see §5.4.3 in the data used as part of this research. Ad-

ditionally, it may have introduced additional biases related to heterogeneity in call rates

and particularly negative morning bias.

The usage of a frequency-based clustering approach helps address some of these issues.

The approaches pattern-based nature helps uncover ‘hidden movement’ caused by sparse

temporal frequency and heterogeneity in usage. Here, the frequency-based clustering ap-

proach was run using three different parameter scenarios: unfiltered; a minimum of 5

network events at a given BTS within a 30-minute interval; and a minimum of 5 network

events accounting for more than 60 % of observations at a given BTS within a 30-minute

interval. The percent difference between the mean number of inbound and outbound

trips was significantly lower than for the whole day of the transient-based approach at

0.045% (unfiltered), 0.061% (minimum of 5), and 0.003% (minimum of 5 and 60%) re-

spectively. The percent difference between the total number of detected trips for inbound

and outbound journeys between both the inbound and unfiltered frequency-based clus-

tering approach is 10.584% for inbound and 5.820% for outbound trips, respectively. The

discrepancy is most likely caused by the significant difference in detected inbound and

outbound trips for the night-time period for the transient-based approach. Overall, the

percentage difference for the different parameter settings indicates the frequency-based

clustering approach to be less susceptible to individual-level sampling and heterogeneity

biases. Figures 5.2a and 5.2b highlight the percentage difference in detected trip num-

bers between the three parameter settings for the frequency-based clustering approach,
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compared to the transient-based approach.
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Table 5.1: Descriptive statistics for transient-based and frequency-based clustering trip extraction scenarios

Approach Time of day Parameter Direction Total Mean S.D. Min Max % 4

Transient

Morning
Lower & In 403188 721.267 421.875 1 2537

0.420
Upper bound Out 403019 720.964 427.766 3 2587

Noon
Lower & In 729950 1308.154 769.851 13 4561

0.229
Upper bound Out 729587 1305.165 768.202 1 4586

Evening
Lower & In 444568 795.292 465.831 2 2872

0.005
Upper bound Out 444590 795.331 466.277 1 2885

Night
Lower & In 968981 1733.419 1078.709 1 6481

38.107
Upper bound Out 1425152 2549.467 1606.950 3 10224

All day
Lower & In 2546677 4563.937 2599.912 25 15814

16.246
Upper bound Out 3002348 5370.927 3120.560 24 19703

based All day

None
In 2831268 5064.880 3046.040 27 17831

0.045
Frequency- Out 2832536 5067.148 3050.035 28 17883

5 minimum
In 686138 1227.438 709.007 9 4153

0.061
Out 686553 1228.181 717.918 11 4209

5 minimum In 509530 911.503 530.957 4 3176
0.003

& 60% Out 509515 911.476 544.194 5 3271

4Percent difference between mean inbound and outbound trips
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Mean S.D. Min Max

Trajectory distance 23599.521 8368.864 3346.101 79297.873

Trip Distance 4249.839 1492.331 411.593 11913.608

Table 5.2: Descriptive statistics for trip and trajectory travel distances inferred through
frequency-based clustering

5.4.2 Travel Distance

The frequency-based clustering approach with filtering of a minimum of 5 network events

was used to calculate both the trip and the total trajectory distance travelled by mobile

phone subscribers resident within Dar es Salaam. Each distance was calculated as the

euclidean distance between identified BTS pairs. Table 5.2 shows the descriptive statistics

for both distance metrics in meters. The average number of each trip across the whole

population sample is 4250m between BTS with the average trajectory, the sum of all trips

for a user in a given day, showing an average of 23600m across the population sample.

Distances travelled vary widely across the population as is evidenced by the high standard

deviation of 8368.864 and 1492.331 for trajectories and trips respectively.

5.4.3 Study Limitations

Individual-level sampling Due to the sampling nature of MND data (§2.2.1) a users

position is only recorded when they engage in a network event (§7.2.1). As a result, low-

frequency users generating only a small number of network events exhibit a potentially

very large amount of hidden movement. High-frequency users generating a dispropor-

tionate amount of network events, on the other hand, can lead to the introduction of

non-representative mobility behaviour into the final results (§7.2.2). As can be seen in

Figure 5.1 briefly discussed above, the CDR data used as part of this research has a very

high number of low-frequency users, with many only generating one or two network events

per day. The usage of a frequency-based clustering approach helps address the sampling

issue, as it both fills gaps left by hidden movement through the identification of common

patterns based on the assumption that the majority of human movement is predictable

[6, 34, 142, 314] as well as with high-frequency users, as OD matrices can be based on
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common routings rather than observation counts.

BTS-level accuracy In contrast to GPS, MND data does not record individual’s lo-

cations, but rather a non-precise proxy via the physical location of the BTS servicing the

mobile phone subscriber at a given time. Using signal strength data from a sector an-

tenna, which was not available as part of the data used for this research, triangulation of a

mobile phone subscribers location is theoretically possible (§7.3.1). The lack of this data

affects both the identification of trip rates and distances, and daily trajectory distances,

as BTS displacement and by extension, movement may not be detected in the larger peri-

urban areas with a lower BTS density (§7.3.3). Additionally, false displacement caused

by fluctuations in signal strength can lead to BTS displacement in consecutive network

events while the handset associated with these events remains stationary in the physical

realm (§7.3.2).

Population-level bias The aforementioned heterogeneity in network event generation

rates can lead to the generation of vastly different network events registered across the time

period (§7.4.3). Due to its pattern-based nature, the frequency-clustering based approach

to drip detection can help overcome this effect. Nonetheless, issues of representativeness

and sub-sample demographic bias inevitably remain as neither the MNO providing the

data for this study nor mobile devices itself have a market penetration of 100% (§7.4.1).

5.5 Chapter Summary

The analysis leveraged CDR data for 433.601.508 call and SMS events for 415.341 mobile

phone subscribers resident within the metropolitan area of Dar es Salaam over a period of

122 days from August 1st to December 1st, 2014. Both a transient-based and a frequency-

based clustering approach with three different parameter sets were used to extract trips

for the generation of OD matrices and distance metrics as mobility variables for further

analysis in the next chapter.
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This study demonstrated that the frequency-based clustering approach is less suscepti-

ble to differences in individual usage patterns including heterogeneity in call rates and

individual low- and high-frequency biases, which affected trip rates identified through

transient-based trip extraction. However, limitations remain, largely due to BTS-level ac-

curacy and population-level biases that result in a potentially large number of unidentified

trips for mobile phone subscribers within the data set, and a full exclusion of patterns of

those not generating data with the MNO in the first place. At the same time, this analysis

will provide useful information in fast-changing metropolitan areas such as Dar es Salaam,

where the use of traditional methods of data collection, including manual sampling and

sensor-based approaches are prohibitive.

The following chapter will use variables from the spatial dimension 3, socio-economic

dimension, and mobility metrics generated within this chapter to analyse the land use

and socio-economic – transport interaction for the metropolitan area of Dar es Salaam,

Tanzania.



Chapter 6

Land Use and Socio-economic –

Transport Interaction

6.1 Chapter Introduction

The previous chapters 3-5 used CDR, MFS and ground reference data to generate insight

into land use characteristics, SEL and mobility trends within the metropolitan area of

Dar es Salaam, Tanzania. This chapter is using factors initially generated at the BTS

and Voronoi-polygon level for the ward-level analysis of the land use and socio-economic

– Transport Interaction. The following research objective guides this chapter:

Research Objective 4: analysis of the alternative land use – transport inter-

action accounting for socio-economic characteristics for Dar es Salaam using

variables identified from CDR and MFS data through Research Objective 1-3.

The importance of incorporating land use within the analysis of transport patterns have

been recognised as early as the 1960s with initial work by Forrester (1969) [123] in his

Theory of Urban Interaction. The initial spatial land use model was an aspatial model to

study the interaction between population, employment and housing. Land use – transport

interaction models have evolved since then, as research has shown that the built environ-

147
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ment alone cannot account for individual differences in mobility behaviour [25, 197, 320].

Instead, transport interaction is now recognised as being influenced through a range of

variables in addition to the built environment, commonly described through the spatial di-

mension expressed through the 3D’s [201] – Density, Diversity, Design – and more recently

5D’s [119] – expanding 3D’s to include Distance to transit, Destination accessibility. This

‘traditional’ relationship has been further expanded to also consider the socio-economic

dimension or personality dimension discussed in Chapter 2 to propose an ‘alternative’

relationship as shown in Figure 1.4. Owing to the absence of up to date, fine-grained

and reliable data, often incompatible levels of aggregation among different datasets, and

choice in analysis approach, however, the different dimension remain analysed in isolation

through ‘traditional’ relationships in most cases. There has been minimal work using

data generated through non-traditional data sources such as LSS data, aerial imagery or

MND in the analysis of either LUTI relationships. As discussed in §2.3.1, there is also

a distinct scarcity in empirical studies LUTI studies in emerging economies. Those few

studies focused on India [8], Iran [117], China [218, 258], Thailand [343] with Ghana as

the only African country on the list [281].

This chapter will be addressing these shortcomings by analysing the influence of inde-

pendent variables from the spatial and socio-economic dimension on dependent mobility

variables generated from non-traditional MND in Dar es Salaam in an ‘alternative’ re-

lationship using Structural Equation Modelling (SEM) as it allows for the analysis of

factors in combination to account for indirect interaction. It will first provide a review of

literature using SEM for the analysis of land use – Transport Interaction before detailing

the research approach building on factors generated from CDR and MFS data.

6.2 Literature Review

Traditionally, features used in the analysis of land use – transport interaction have been

generated from official statistical sources and analysed in de-facto isolation using more

traditional multiple linear regression approaches. While the literature review in §2.3.1 has
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focused on research on the interaction in emerging economies, the section below highlights

LUTI research carried out using SEM, which allow for the parameterisation of independent

relationships to account for indirect interaction effects in the interconnected relationships

explaining mobility behaviour through multiple dimensions.

6.2.1 SEM Using the Spatial and Socio-economic Dimension

The different dimensions discussed in Chapter 2 have traditionally been analysed using

multiple linear regression. Structural Equation Models, on the other hand, allow for the

parameterization of independent relationships to explain mobility trends and RSS [25, 85].

Among SEM are three different types: SEM with a measurement model and a structural

model known as SEM with latent variables, a structural model without any measurement

models (SEM with observed variables), or a measurement model alone (confirmatory fac-

tor analysis). Latent variables are created to measure the joint effect of all characteristics

of a dimension. The mechanics behind those models are introduced more in-depth in

§6.3.3. An overview of SEM papers that investigated the relationship between factors of

the spatial and socio-economic dimension and its influence on mobility trends can also be

found in Table 6.2.1.

Bagley and Mokhatarian (2002) [25] constructed a SEM with observed variables to anal-

yse determinants for RSS and travel demand in an attempt to overcome the shortcomings

of traditional LUTI analysis using regression analysis. They used data from site surveys,

mail-out surveys and travel diaries conducted in 5 neighbourhoods in the San Francisco

area representing a range of design, diversity and density metrics in 1993 akin to pre-

vious work by Kitamura et al. (1997) [198]. The observed variables were mostly from

the socio-economic dimensions, while also accounting for attitudes and lifestyles from

the personality dimension. Dependent variables included residential location, attitudes

to explain RSS and mode choice, travel demand across modes and commuting distance

for work trips. Variables from the personality dimension were found to have the most

significant impact on RSS. Once the personality and socio-economic dimension has been
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accounted for, land use has negligible explanatory value for mobility behaviour. Their

work supports the argument that the interaction between land use and transport is driven

by correlation of each of the dimensional variables rather than one direct causality as tra-

ditionally assumed.

Simma and Axhausen (2003) [311] used travel survey and transport model-derived data

for 1992 for regions in Upper Austria to construct a SEM with latent variables of spatial

structure and personal and household characteristics. They investigated car-ownership

(as an endogenous, rather than is commonly used as an exogenous feature of the socio-

economic dimension), and mode split into walking, public transit and car trips. Similar

to other non-SEM based work [320, 205] they found gender and work status to be the

most important socio-economic characteristics. While the number of facilities was the

most important variable within the spatial structure construct, the spatial dimension it-

self contributed to little explanatory value compared to socio-economic variables.

Using municipal level Flemish Regional Travel Survey data for 2000-2001 for 5696 re-

spondents, Van Acker et al. (2007) [340] used Confirmatory Factor Analysis (CFA) to

construct latent variables for use in an SEM with latent variables to determine the causal

influence on travel distance (in km), travel time (in minutes) and the number of trips.

As the travel survey included only a limited amount of land use variables such as dis-

tance to public transit facilities and residential environment, a synthetic feature based

on municipal categories was created as a proxy for differences in the spatial dimension

concepts of density, diversity and design. Factors from the socio-economic dimension, on

the other hand, were split across two latent constructs of social status (of the individual)

and household responsibility. Travel behaviour was found to be predominantly influenced

by the respondents social status: a high social status was associated with more complex

travel behaviour. Travel behaviour was affected, especially indirectly, by the individuals

role within the household. The effect of land use was limited. Furthermore, indirect

effects remained important to understand the complexity of travel behaviour.
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Focusing on the Pudget Sound region, USA, Silva and Goulias (2009) [85] used trans-

portation panel survey data from 2000 for 1025 respondents and land use data for TMZ

and 750m× 750m grids to construct and SEM with observed variables and compare their

results with findings from Lisbon, Portugal. Observed variables included socio-economic

features, residence and workplace land use patterns, and commuting distance. The latter

in log form also being part of the endogenous travel behaviours alongside mobility de-

cisions classed as either short-term or long-term by the authors. They found that both

diversity and density have a significant impact on the attractiveness of activity spaces and

peoples willingness to travel. Activity space is a concept originating in the research field

of time geography and reflects attempts to understand the actual and possible undertak-

ing of an activity provided through given land use. People with different socio-economic

characteristics and income levels tend to work and live in areas of different density and

diversity. Those living or living and working in the city centre are more likely to travel

by public transit and less likely to own a car, while those living in less dense peri-urban

areas are willing to travel longer distances. While the models account for RSS based on

socio-economic characteristics, they also show, that the spatial dimension has a significant

impact on long-term decision making of individuals even when accounting for RSS. Minor

differences between the two cities can be attributed to the level of implementation of a

public transit system in the two cities.

Focusing on TMZ in Taipei, Taiwan, using trip distribution model and City Bureau of

Transport for 2000, Lin and Yang (2009) [219] use the maximum likelihood function within

LISREL to construct a SEM with latent variables to analyse trip generation and private

mode split. While data on vehicle-miles travelled was available, it was disregarded as

an exogenous variable due to the level of aggregation used. The authors created latent

variables on diversity; design with associated constructs of transit service and private-

mode facility; and density based on the concept of the 3Ds by Cervero and Kockelman

(1997) [69]. The socio-economic condition was captured through the social-condition and
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economic condition. Density was found to increase trip generation and reduce private

mode split, whereas diversity showed an opposite effect. Pedestrian-friendly design led to

a reduction in the private-mode facility. In contrast to US-based studies but consistent

with studies on Asian countries, they found that diversity increased private-mode split.

Eboli et al. (2012) [106] used census data from 2001 and GIS-based measures of land

use and accessibility to analyse census parcels for Cosenza, Italy, and surrounding areas

to construct a SEM with latent variables to analyse the number of internal and exter-

nal trips. They constructed two latent variables to measure the joint effect of both the

socio-economic dimension through socio-demographic and economic characteristics con-

structs and spatial dimension through constructs of density-based land use and design

based accessibility. The construct ‘economic characteristics’ was found to have the most

significant influence on both internal and external trips.

Analysing home-work commuting in Shirza, Iran, Etminani-Ghasrodashti and Ardeshiri

(2016) [117] used survey data for 22 residential areas from 2014 to construct their SEM.

They use a range of land use attributes, individual characteristics, job characteristics and

household characteristics to investigate their influence on the modal split for work-based

and non-work trips. They simplified traditional RSS assumptions by ignoring the person-

ality dimension and assuming that RSS occurs per socio-economic characteristics. While

diversity and density findings were in line with previous studies, design features were

found to be ambiguous in explaining the modal choice.

Focusing on the Netherlands, Puello et al. (2017) [285] used panel survey data for 2013-

2015 for 5042 households and 11,322 individual respondents to build a hybrid choice

model. They used individual level and household level features from the socio-economic

dimension, accessibility and urbanity from the spatial dimension and survey characteris-

tics to analyse both trip rates per group of respondents and attrition and completeness

of panel surveys. All of the variables were found to be significant in estimating mobil-
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ity while the explanatory power of attrition and completeness varies significantly across

waves, due to issues of adherence.
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Table 6.1: Overview of research on the relationship between the spatial and socio-economic dimension using SEM

Data source,

sample size,

study area

Analysis

approach

Spatial dimension Socio-economic dimension Mobility variables

Bagley

and

Mokhtar-

ian

(2002)[25]

1993 site surveys,

mail-out surveys

and travel diaries

for 5

neighbourhoods

in the San

Francisco area

SEM with

observed

variables

age, female, household size,

number of under 16yo,

square root number of

vehicles, years in the bay

area

residential location

(traditional, suburban),

attitudes (pro high-density,

pro-driving, pro-transit),

travel demand (log vehicle

miles, log transit miles, log

walk/bike miles), commute

distance (miles) to job

Simma

and

Axhausen

(2003)

[311]

1992 Upper

Austrian travel

survey and

transport model

SEM with

latent

variables

Spatial structure

(distance to district

capital, share of farms,

share of working women,

share of commuters, size of

shop base/ number of work

places, accessibility

measure,

pt-supply/car-supply)

Personal and household

(employed, male, number

of infants, number of

pupils, number of reachable

facilities)

car-ownership, walking

trips, public transit trips,

car trips
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Van Acker

et al.

(2007)

[340]

2000-2001

Flemish Regional

Travel Survey on

municipal level

for 5696

respondents

CFA and

SEM with

latent

variables

Land use (Categorization

by size [e.g. suburban,

large city], residential

percentage, distance to

public transit)

Social status (number of

cars, education, household

income, job status,

full/part time

employment), Household

responsibility (Age,

number of hh members,

gender frequency, marital

status)

Travel distance (km),

travel time (minutes),

number of trips)

Silva and

Goulias

(2009) [85]

2000 Pudget

Sound panel

survey with 1025

respondents, land

use and TMZ

data for Seattle,

USA

SEM with

observed

variables

Residence and

workplace land use

patterns (global

population density, built

floor space density, density

of arterial intersections,

distance to regional center,

land use entropy to

measure diversity balance,

bus supply)

Socio-economic (age,

gender, income (low,

medium, high), household

size, average age, household

with two members,

household with teenagers),

commuting distance

Log commute distance,

short-term decisions

(time spent between first

and last trips, number of

trips (non-motorized,

transit, car)) long-term

decisions (Transit pass,

No. of cars)



156
C

h
ap

ter
6.

L
an

d
U

se
an

d
S
o
cio-econ

om
ic

–
T

ran
sp

ort
In

teraction

Lin and

Yang

(2009)

[219]

2000 City bureau

of Transport

data, Trip

distribution

model for

173TMZ in

Taipei

Maximum

Likelihood

and SEM

with latent

variables

diversity (type-mix,

housing-job, housing-retail,

retail-job, land use

entropy), design (road

density, grid network,

sidewalk density), density

(residential, building,

employment) transit

service (bus stop density,

distance to metro station,

bus route density, transit

accessibility)

private-mode facility

(accessibility (car,

motorcycle), parking space

density)

social-condition

(alimentation ratio, student

ratio, female ratio)

economic condition

(household income, car

ownership, motorcycle

ownership)

Eboli et al.

(2012)

[106]

2001 census data

and GIS-based

measures of land

use and

accessibility for

census parcels in

Cosenza, Italy

SEM with

latent

variables

Land use (Houses surface,

Residential environment),

Accessibility (Distance to

bus stop, distance to road

junction, Attractiveness)

Socio-demographic

characteristics (density,

household members,

workforce population,

gender, marital status,

education), Economic

characteristics

(Employment rate,

Resident unemployed,

resident non-worker, sector

employees (primary,

secondary, tertiary)

Number of internal and

external trips
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Etminani-

Ghasrodashti

and

Ardeshiri

(2016)

[117]

2014 survey data

for 22 residential

areas in Shirza,

Iran

SEM Built environment

attributes (Residential

density, Job density,

Entropy index, Street

density, Internal

Connectivity, Distance (bus

stop, intersection,

sub-center, central business

district))

Individual

Characteristics (Sex,

Age, Income, Max desired

walking distance), Job

characteristics (No. of

jobs (part, full time), work

commute time),

Household

characteristics (18yos

(under, above), workers,

car ownership)

Number of car, transit,

non-motorized trips

Puello et

al. (2017)

[285]

2013-2015 panel

survey with 5042

households and

11322 individual

respondents

Hybrid

Choice

Model,

discrete

choice

model

Spatial level

(Accessibility, urbanity)

Individual level (age,

gender, employment, head,

education, license, life

event, e-shopping,

preferences), household

level (household size, gross

income, children, household

type, number of cars),

survey characteristics

(travel day, diary day,

stayer, year, month)

Trip rates per group of

respondents, attrition and

completeness of panel

surveys
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6.3 Research Approach

The empirical analysis of land use and socio-economic – transport interaction for the

metropolitan area of Dar es Salaam is undertaken on the ward level using factors generated

through the analysis of MND in Chapters 3-5 and additional data obtained from a ground

reference survey (§4.3.1) carried out over a 2 month period between late 2015 and 2016,

and building counts of Dar es Salaam obtained from the World Bank. The analysis

followed a three-step process:

1. Spatial interpolation

2. Ward-unique feature engineering

3. SEM model construction

6.3.1 Spatial Interpolation

Factors from the spatial dimension, socio-economic dimension and mobility were gener-

ated at the BTS level in chapters 3-5. Voronoi tesselation was used to generate Voronoi

polygons as coverage area proxies for each BTS. Those polygons, however, do not match

with pre-existing administrative boundaries.

In the analysis of activity-based land use in Chapter 3, grid interpolation was used for

visualisation of land use maps in an effort to protect individual privacy (§7.6.2) and com-

mercial interests (§7.6.4) of the MNO that provided the data. Here, Voronoi polygons

are apportioned with existing administrative ward boundaries to allow for the calculation

of ward-level statistics on density and mixture from the spatial dimension (§2.3.2), and

statistics on gender and income that have been recognised as influential in explaining the

socio-economic dimension in §2.3.2.

Dar es Salaam consists of 90 wards with 26 in Ilala, 34 in Kinondoni and 30 in Temeke.

Voronoi polygons generated around BTS classed as being located within the municipali-

ties of Ilala, Kinondoni and Temeke, which make up the Dar Es Salaam region, intersect
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with 89 of the 90 wards located within the region. No BTS within the ward of Pemba

Mnzani in Temeke municipality were included in the initial MND analysis carried out in

Chapters 3-5.

Similar to Mao et al. (2017) [233], simple area weighting was used for apportioning of

BTS voronoi polygons with official ward boundaries for Dar es Salaam. In simple area

weighting the value C of a ward polygon Ni is based on the proportion of the area of

intersections with other BTS Voronoi polygons Vj. Using equation 6.1, the value of a

ward CNi
is calculated based on the proportion of the wards area ANi

shared with that

of voronoi polygons Avj and their CDR and MFS derived attributes CVj
. The attribute

value limitations of this approach are discussed in §7.5.2.

CNi
=

∑
Vj

CVj

ANi
∩ Vj

ANi

(6.1)

There is a maximum number of 1276 intersections between coverage area of BTS-level

features expressed through the theoretical maximum of 600 Voronoi-polygons for BTS

within the wider metropolitan area of Dar es Salaam, and the 90 official ward boundaries

for each of the generated factors as shown in Table 6.2. There are 1084 intersections

for 88 wards with data for the factors available on the Voronoi level listed above. The

discrepancy between theoretical and observed intersections, wards and BTS stems from

different approaches to data filtering employed in the respective analyses. During the

interpolation process, the ward of Kimbiji in Temeke, directly adjacent to Pema Mnazi

(see Figure 6.1), was identified as lacking data for several metrics. It is located on the

coastal area outskirts to the south of the central part of Dar es Salaam. In addition, the

peri-urban wards of Chanika (58.77km2) and Msongola (65.02km2) within the Ilala mu-

nicipality were shown to have a low-level of Voronoi area intersection coverage of 29.98%

and 54.07% respectively. Figure 6.1 shows the relative location of Chanika, Msongola,

Kimbiji and Pema Mnazi within the Dar es Salaam metropolitan area.
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Figure 6.1: Wards of Chanika and Msongola in Ilala, and Kimbiji and Pema Mnazi in
Temeke
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Factor Dimension Source Intersections Unique Wards

Land use cluster Spatial - Diversity Chapter 3 1168 89

Percentage residential Spatial - Diversity §4.3.1 1271 81

CDR event count Spatial - Density Chapter 4 1196 89

Building Count Spatial - Density World Bank 1271 89

CDR users Socio-Economic Chapter 4 1197 89

MFS users Socio-Economic Chapter 4 1172 89

Income Socio-Economic Chapter 4 1166 89

SEL level Socio-Economic Chapter 4 1172 88

OD counts inbound Mobility Chapter 5 1165 89

OD counts outbound Mobility Chapter 5 1165 89

Avg trip distance (Weekday) Mobility Chapter 5 1170 89

Avg trajectory distance (Weekday) Mobility Chapter 5 1170 89

Frequent BTS Mobility Chapter 4 1169 89

Table 6.2: Factors generated on the Voronoi level

6.3.2 Ward-Unique Feature Engineering

In addition to the interpolated factors initially generated on the Voronoi-level shown in

Table 6.2 as part of Chapters 3-5, additional ward-level statistics were included in the SEM

model. The Voronoi-level factors were chosen as commonly used factors from the spatial,

socio-economic and mobility dimension respectively as discussed earlier in Sections 2.3.2

and 2.3.3.

Network Event density of a BTS is used as a proxy for density, one of the three

spatial dimensions to discuss the built environment discussed in §2.3.2. Similar to existing

research by Mao et al. (2016) [234], the network event density of a BTS is calculated as

p1 =
vi
ai

in which vi is the total number of network events made from or to a BTS i, and ai is

the area size of the Voronoi polygon of BTS i. BTS within the top quintile (20%) are

considered high-density areas with the bottom quintile representing low-density areas and

other quintiles representing medium-density areas.
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Land use mixture is based on a degree of ‘entropy’, a measure originally defined

for Thermodynamics based on the Greek word Entropein meaning transformation and

change. In information theory it describes the average uncertainty within a variables

possible outcomes. The use of entropy calculations in urban and regional models dates

back to Wilson (1969) [361] for the estimation of traffic distribution. It was first applied to

the calculation of balance between different land use classes by Cervero in 1989 [67] with

other well-known calculations of land use mix as an entropy index conducted by Frank

and Pivo (1994) [124] using geospatial analysis, and Kockelman (1997) and Cervero and

Kockelman(1997) [69, 201], who introduced standardisation through the log calculation

of the number of land use clusters log(n). Based on the Kockelman, and Cervero and

Kockelman approach, each ward is ranked from 0 (single-use) to 1 (high-mixture) with

the land use mixture defined as:

Entropy = −
i=1∑
n

Pn × ln(Pn)

ln(n)

in which n is the overall number of distinct land use clusters identified through the

activity-based land use analysis in Chapter 3 (n=5), and Pn is the proportion of land use

n’s coverage of the total ward polygon area.

While other approaches such as the Herfindahl index exist, a meta-analysis of different

LUTI papers by Ewing and Cervero (2010) [70] found the entropy-based land use mixture

index to be the most appropriate metric for assessing the Diversity aspect of the spatial

dimension (§2.3.2).

Table 6.3.2 provides the descriptive statistics of ward level variables from the spatial and

socio-economic dimension used as independent, and mobility factors used as depended

variables for the subsequent analysis through a SEM described in the next section. Figure

6.2 highlights the pearson correlation coefficients for the ward level variables. The trip

frequency variables are perfectly correlated as was expected, since entering an area will

ultimately require someone to leave the same area again. Trip distance and residential
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Figure 6.2: Pearson correlation coefficients for ward-level variables used for the analysis
of and use and socio-economic – transport Interaction
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mixture are strongly negatively correlated indicating that high levels of residential mixture

is associated iwth shorter trips, while the correlation between overall land use mixture and

trip distance is weaker. There is a strong positive correlation between spending uptake and

high income as more disposable income is available in those areas. There is also a strong

negative correlation between percent low income and percent high income, as poorer

areas tend to have less wealthier residents and vice versa. There are also strong positive

correlations between the trip frequency and percent low income in an area, indicating

high numbers of trips in and out of the areas. Maps visualising the different features are

furthermore included in Appendix C.
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Table 6.3: Descriptive ward-level statistics of dependent and independent variables for the analysis of land use and socio-economic –
transport Interaction

Factor Description Mean S.D. Min. Max.

Spatial dimension (independent) §2.3.2 and Chapter 3

Network event density Density of generated network events, continuous 274203.834 311048.0345 2739.0133 1343664.765

Land use mixture Entropy Index, continuous 0.478 0.2 0 0.948

Residential mixture Proportion of ward classed as residential,

continuous

63.442 32.549 0 99.993

Building density Building count relative to area size, continuous 339.4999 331.662 7.534 1466.452

Socio-Economic Dimension (independent) §2.3.2 and Chapter 4

Gender 1 = Male, 0 = Female, binary 0.501 1.63 0.431 0.546

High income Proportion of area classed as Wealthy, continuous 36.203 26.679 0.966 95.577

Medium income Proportion of area classed as Average, continuous 27.369 22.872 0.007 99.453

Low income Proportion of area classed as Poor, continuous 49.153 31.801 0.013 99.993

Spending uptake Income relative to the difference between MFS

users and mobile phone subscribers, continuous

1623257.292 740673.185 658395.717 4451629.988

Mobility Factors (dependent) §2.3.3 and Chapter 5

Trip distance Individual trajectory distance, continuous 21707.215 7585.104 10455.925 49947.1

Outbound trip frequency Frequency of trips starting in the area, OD count 4774.802 1915.095 633 9455

Inbound trip frequency Frequency of trips ending in the area, OD count 4778.221 1925.898 620 9456
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6.3.3 Structural Equation Modelling

SEM is an umbrella term for statistical methods for the investigation of relationships

between variables through the description of variance/co-variance structures of given data

sets.

“Structural Equation Modelling (SEM) can be defined as a diverse set of tools

and approaches for describing and estimating causal relationships between

variables, whether they be observable or latent” [135, p.1].

Simple SEM models were initially developed by Sewall Green Wright (1921) [367] in the

form of Path analysis to analyse observed variables. Modern SEM date back to the 1960s

and 70s and the development of factory analysis that allows for the analysis of latent

variables, CFA [188] and multivariate regression models within a single analysis.

SEM has been used in a range of fields from psychology, educational research and political

science to marketing research. In this Chapter, an SEM is constructed and tested alongside

multiple linear regression to investigate the ‘alternative’ relationship between land use,

socio-economic and mobility factors. SEM have advantages over more traditional multiple

regression analysis [139, 251, 294] including:

• the ability to build a more complex model to better account for direct and indirect

interaction effects such as the impact of socio-economic levels on land use density

within an area and subsequently on mobility

• the ability to include measurement models to describe latent variables with multiple

observed factors directly within the SEM to express constructs such as density as

an aspect of land use

• the correction of residual measurement errors across observed variables

Variables

SEM are used to analyse structural relationship between independent (exogenous) and

dependent (endogenous) variables. Variables can be either:
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Observed/manifest variables (indicators) which can be directly measured or ob-

served and can be both endogenous and exogenous.

Latent variables (constructs) which cannot be directly observed and are defined in

terms of underlying observed variables, which are assumed to represent the latent

variable.

An SEM can have any number of independent and dependent variables with each la-

tent variable defined through its own measurement model. Each variable has either a

measurement or a residual error assigned to it:

Measurement errors are associated with observed variables and reflect the adequacy

in measuring the related underlying variables within the latent construct(s).

Residual errors are associated with the prediction of endogenous from exogenous vari-

ables.

Exogenous variables can have a mutual effect on the endogenous variable (Figure 6.3a)

or one exogenous variable can influence the effect of another exogenous variable on the

endogenous variable (Figure 6.3b,c) [139]. Each variable can have one of three effects on

another:

1. Direct effect going directly from one variable to another (e.g. latent land use to

latent mobility, latent socio-economics to latent mobility and latent socio-economics

to latent land use)

2. Indirect effect, when two variables are influenced by one or more intervening

variables, “such as the relationship between socio-economic status and [mobility]

through land use”.

3. Total effect, which is determined by the combined direct and indirect effects of an

exogenous on an endogenous variable.

The arrows between latent and their manifest variables do not correspond to direct effects.

Instead, they contribute to the understanding of the structure of the latent construct itself.
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Figure 6.3: Interaction effects of endogenous and exogenous variables with full arrows as
main, and dotted arrows as indirect interaction effects in which ξ1 × ξ2

Structure

Unlike the single equation model of regression analysis, SEM can accommodate up to

three different sets of equations simultaneously.

1. Measurement models define the composition of latent variables through their

observed variables. It indicates how observed variables make up latent variables

(i.e. independent1 and independent2 may be indicators of the latent socio-economic

status)

(a) A measurement (sub)model for the dependent variables

y = λyη + ε

(b) A measurement (sub)model for the independent variables

x = λxξ + δ

in which x and δ are vectors of observed, manifest exogenous variables and errors,

respectively; λx is a structural coefficient matrix capturing the effects of latent ex-

ogenous on observed variables; y and ε are vectors of observed, manifest endogenous

variables and errors, respectively; λy is a structural coefficient matrix capturing the

effects of latent endogenous on observed variables [49, 106].

SEM’s can be made up only of a measurement model (CFA). CFA is commonly

used as either: exploratory to determine the number of and which latent vari-
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ables/constructs are needed to explain the relationship between the observed vari-

ables, or confirmatory to model the known relationships among observed variables.

2. A Structural model defines how observed and latent variables are linked to each

other for testing of the hypothesized causal dependencies. A basic structural model

is expressed through the following equation [49]:

η = βη + γξ + ζ

in which η is a vector of the latent endogenous variables, ξ is a vector of latent

exogenous variables, and ζ is a vector of random variables [106]. Both β (for en-

dogenous) and γ (for exogenous) represent structural coefficients or parameters of

the model.

In a SEM all of the equations are estimated simultaneously and make up the ‘SEM with

latent variables’. A ‘SEM with observed variables’ consists of a structural model without

any measurement model (The measurement model is not needed if all independent and de-

pendent variables are observed variables). Ordinary regression is a special SEM consisting

of one observed dependent variable and multiple observed independent variables.

Implementation

A two-step approach [19, 294] was used to generate latent variables (land use, socio-

economics, mobility) from observed variables similar to [340] and subsequently analyse

their relationship using the Python Semopy package. The package was chosen as it is

well documented, freely available and developed for use with Python unlike many other

popular SEM packages such as lavaan and sem that were developed for use within R [135].

First, measurement models are designed and set-up to corroborate what is known based

on prior research described in Chapter 2. CFA is used to confirm whether the underlying

observed variables appropriately measure the latent constructs or variables ‘land use’,
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‘socio-economics’, and ‘mobility’. Latent variables are considered appropriately designed

[340] if they fulfil the following properties:

1. Unidimensionality: each observed variable is related to only a single latent vari-

able;

2. Convergence validity: there is a degree of confirmation between two observed

variables of the same latent variable;

3. Reliability: can be evaluated by the composite reliability and the variance ex-

tracted;

4. Discriminant validity: is ascertained when two constructs are not correlated.

Three absolute fit indices (X2, GFI, RMSEA) and one incremental fit index (CFI) were

chosen to determine model fit as four commonly used measures of fit [168]:

• Chi2 (X2) as a traditional measure of absolute model fit and measurement of the

discrepancy between the input sample and fitted co-variances matrices

• Goodness of fit index (GFI) as an alternative to X2 for calculation of the difference

in variance accounted for through estimated population variance

• Root mean square error of approximation (RMSEA) to identify model fit to the

population covariance matrix with unknown yet optimized parameter estimates

• Confirmatory Fit Index (CFI) which compares the X2 of the model to that of the

null model, while accounting for small sample sizes making it a particularly suitable

measure of model fit in the present case due to the comparatively low sample size of

86 wards compared to the more common sample sizes of 200+ for SEM with latent

variables.

Table 6.4 shows the improvements in the goodness of fit for three different sets of mea-

surement models. The ‘Original model’ considered three measurement models, ‘Socio-

economics’, ‘Land use’ and ‘Travel patterns’ (see Figure 6.4a) based on the alternative
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Indices
X2 test GFI RMSEA CFI

MLW ULS MLW ULS MLW ULS MLW ULS

Benchmark p>0.05 >0.9 <0.03 p>0.95

Original model 521.860 510.181 0.663 0.656 0.326 0.322 0.683 0.677

Interim model 534.58 400.560 0.655 0.730 0.341 0.291 0.673 0.752

Adjusted model 562.607 277.774 0.669 0.822 0.368 0.247 0.684 0.845

Table 6.4: Goodness of fit in model development

relationship proposed by Stead [320] (see Figure 1.4). The ‘Interim’ and ‘Adjusted’ model

instead consider land use as two separate latent variables density and diversity (see Figure

6.4b). While the interim model still considered ‘trajectory distance’ to be a part of the

endogenous latent variable ‘Travel patterns’ this was removed in the ‘Adjusted’ model.

Here, measurement models express the observed (see Table 6.3.2) variables through four

latent constructs:

1. The latent exogenous variable ‘Socio-economics’ is explained by five observed vari-

ables, which are percent low income, percent medium income, percent high income,

spending uptake and percent female.

2. The latent exogenous variable ‘Density’ is explained by network event density and

building density

3. The latent exogenous variable ‘Diversity’ is explained land use mixture and percent

residential.

4. The latent endogenous variable ‘Travel patterns’ is explained by two observed vari-

ables inbound trips and outbound trips.

Second, a SEM with latent variables is designed and implemented to test the hypothe-

sised explanatory relationships and effects. The original model is akin to the alternative

relationship identified by Stead (2001) [320] shown in Figure 1.4. The interim model ex-

tends this by considering density and diversity as separate latent constructs in line the D’s

identified by Cervero and Kockelman (1997) [69] while considering ‘trajectory distance’

and inbound/outbound trip frequency as part of a combined latent construct ‘Travel Pat-

terns’.
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Based on the goodness of fit results from the previous step, a third ‘adjusted’ model

was designed (see Figure 6.4b). The adjusted model has three exogenous latent variables

(‘Socio-economics’, ‘Density’ and ‘Diversity’), an endogenous latent variable (‘Travel pat-

terns’) and considers (‘trajectory distance’) outside of the latent construct ‘Travel pat-

terns’.

6.4 Results and Discussion

Both the more conventionally used multiple linear regression and a SEM with latent

variables were used to analyse the LU(S)TI relationship in the Tanzanian port city of Dar

es Salaam.

6.4.1 Multiple Linear Regression

The data set was standardised before the application of multiple linear regression to test

the relationship between the different dependent variables for each set of independent

variables. The results for the regression analysis with each trajectory distance, inbound

trips, and outbound trips are shown in Table 6.4.1.

The results confirm earlier findings from India [8], Taipei [219] and elsewhere [69, 119, 178,

198], that both density, expressed through network event density, and land use mixture

are both significantly negatively correlated to the trajectory distance travelled. While the

trajectory distance travelled has a significant positive correlation to the percentage in low,

medium and high SEL in an area, there seems to be no strong differentiation between the

three and the distance travelled.

Inversely, however, both network event density and land use mixture are positively corre-

lated with the number of inbound and outbound trips, indicating that increasing density

and mixture lead to higher trip attraction. Similar to the trajectory distance, percent

low, medium and high-income exhibit a significant positive correlation to both inbound
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(a) Original SEM model

(b) Adjusted SEM model

Figure 6.4: Subfigures (a) and (b) illustrate the different SEM with latent variables with
the measurement sub-models for the exogenous constructs (green), sub-models for the
endogenous constructs (blue) and the structural model (red).
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and outbound trip rates to a higher degree than for distance.
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Table 6.5: Results of multiple linear regression for each of the three dependent variables and the set of variables from the socio-economic
and spatial dimension post-standardisation.

Category Variable
trajectory distance Inbound trips Outbound trips

Coeff t-Score Coeff t-Score Coeff t-Score

Socio-economics

Percent low income 1.0091*** 4.993 1.6209*** 6.837 1.6226*** 6.787

Percent medium

income

0.8683*** 6.801 0.8358*** 5.580 0.8362*** 5.537

Percent high income 1.0502*** 5.113 1.0215*** 4.239 1.0261*** 4.223

Spending uptake -0.1022 -1.276 -0.0863 -0.918 -0.0832 -0.878

Percent female -0.0491 -0.842 0.0485 0.708 0.0476 0.689

Land use

Network event density -0.3362*** -3.795 0.1215 1.169 0.1240 1.183

Building density -0.0486 -0.493 0.2242* 1.939 0.2245* 1.925

Land use mixture -0.2731*** -4.653 0.1043 1.515 0.1084 1.561

Percent residential -0.3619*** -4.422 -0.0687 -0.715 -0.0693 -0.716

Summary Statistics

Number of observations 86 86 86

Adj. R-squared 0.764 0.676 0.670

Log likelihood -55.050 -68.781 -69.499

Notes: significance is expressed: *** denotes significance at p <0.01, **denotes significance at p <0.05

and *denotes significance at p <0.1
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6.4.2 Structural Equation Model

Table 6.4.2 shows the results of the adjusted SEM model. The first and second column

contains the model variables; the third column contains the values of the coefficients of

the model (here named as ‘Regression Weights’); the fourth to sixth columns contain the

value of the standard error (S.E.) of each coefficient, the Z-Score and the probability level

(P) that the estimated coefficient is significantly different from zero, respectively.

Percent low income (ξ1) has the biggest impact on the latent variable socio-economics (η1)

followed by a significant negative impact of the percent high income. Percent medium-

income contribution to the overall latent construct socio-economics is almost negligible,

which may stem from the fuzziness of the label caused by the high level of diversity within

Dar es Salaam identified during the analysis of SEL in Chapter 4.

Network event density (ξ6) has the biggest impact on land use density (η2) as it can

be seen as a better proxy for identifying higher level of activity than the sheer building

density inferred from satellite imagery.

The land use mixture (ξ8) identified through analysis of activity signatures in Chapter 3

appears to have the biggest impact on the diversity of an area compared to the percent

residential (ξ9) of a ward area.

The latent endogenous variable travel patterns (η4) seems to be nigh equally affected by

the number of inbound and outbound trips due to relative similarity in scores. The latent

exogenous variable with the biggest positive effect on Travel patterns is socio-economics.

This finding confirms that the built environment alone cannot account for differences in

mobility behaviour and that once the socio-economic (and personality) dimension become

accounted for, the explanatory value of land use for mobility behaviour becomes nigh neg-

ligible [197, 205, 320]. Considering the latent endogenous construct of ‘travel patterns’

made up of inbound and outbound trip frequencies, density carries a significantly smaller

weight than socio-economics, while the explanatory value of diversity is negligible. While

density was found to increase trip generation similar to earlier research in Taipei by Lin
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and Yang (2009) [219], they found diversity to show an opposite effect on trip generation.

Both density and diversity have a significant negative effect on the trajectory distance

travelled, however. This confirms findings of the multiple linear analysis discussed above,

highlighting that high density and land use mixture increases the likelihood of activity

locations being in close proximity, therefore reducing trip distances.

In addition to the direct effects and regression weights discussed above and highlighted in

Table 6.4.2, it is necessary to discuss the indirect effects caused by the interrelationships

among the latent constructs. Those can have a combined total effect that may be different

from the direct effects above and can have different signs, leading to different conclusions.

Table 6.7 shows that, in terms of total effect, socio-economics remains the major latent

exogenous variable to influence travel patterns (η4), while Diversity now has a negative

effect on the travel trip attraction confirming earlier findings by Lin and Yang (2009) [219]

that were not confirmed without accounting for the socio-economic dimension.
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Table 6.6: Results of the Structural equation Model with latent variables.

St. Regression

Weights

SE Z-Score P-Value

Latent endogenous variable <– Latent exogenous variable

Travel patterns (η4) <– Socio-economics (η1) 0.796 0.101 7.886 0.000

Travel patterns (η4) <– Density (η2) 0.182 0.082 2.230 0.026

Travel patterns (η4) <– Diversity (η3) 0.036 0.096 0.377 0.706

Latent exogenous variable <– Latent exogenous variable

Socio-economics (η1) <– Density (η2) -0.023 0.102 -0.227 0.820

Socio-economics (η1) <– Diversity (η3) -0.123 0.124 -0.992 0.321

Diversity (η3) <– Density (η2) -0.083 0.106 -0.789 0.430

Observed endogenous variable <– Latent exogenous variable

Trajectory distance (ξ12) <– Density (η2) -0.756 0.062 -12.288 0.000

Trajectory distance (ξ12) <– Diversity (η3) -0.502 0.213 -2.356 0.018

Observed exogenous variable <– Latent exogenous variable

Percent low income (ξ1) <– Socio-economics (η1) 1.000 - -

Percent medium income (ξ2) <– Socio-economics (η1) -0.0760 0.126 -0.604 0.546

Percent high income (ξ3) <– Socio-economics (η1) -0.970 0.089 -10.866 0.000

Spending uptake (ξ4) <– Socio-economics (η1) -0.752 0.104 -7.218 0.000

Percent female (ξ5) <– Socio-economics (η1) 0.074 0.126 0.586 0.558
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Network event density (ξ6) <– Density (η2) 1.000 - -

Building density (ξ7) <– Density (η2) 0.761 0.079 9.650 0.000

Land use mixture (ξ8) <– Diversity (η3) 1.000 - - -

Percent residential (ξ9) <– Diversity (η3) 0.217 0.142 1.525 0.127

Observed endogenous variable <– Latent endogenous variable

Inbound trips (ξ10) <– Travel patterns (η4) 1.000 - - -

Outbound trips (ξ11) <– Travel patterns (η4) 1.001 0.003 376.208 0.000

Notes: significance is expressed: *** denotes significance at p <0.01, **denotes significance

at p <0.05 and *denotes significance at p <0.1
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Latent exogenous variable Direct Indirect Total effect

Socio-economics 0.796 - 0.796

Density 0.182 -0.023 × -0.083 0.184

Diversity 0.036 -0.123 -0.087

Table 6.7: Standardised total effects on latent variable Travel Patterns

6.4.3 Study Limitations

Missing data Due to different data gaps, and outlier detection procedures applied

during the analysis of MND in Chapters 3-5, BTS and by extension Voronoi-polygon

level metrics were not generated for all areas of Dar es Salaam across all the different

features listed in Table 6.2. Tandale, one of the most notorious slums in Dar es Salaam,

for example, was classed as 86% poor without any information for the remaining 14% as

the particular BTS accounting for the gap was excluded as part of the analysis of SEL due

to a gap in the ground-reference data used (§4.3.1). Figure 6.5 highlights the completeness

of ward-level metrics (Table 6.3.2) across the different wards in the metropolitan area of

Dar es Salaam included in the above analysis of land use and socio-economic – transport

interaction.

Objective-Subjective divide Prior research has recognised the explanatory power of

objective factors from the personality dimension in explaining mobility behaviour (§2.3.2.

Unfortunately, however, data on attitudes and lifestyles were not available for inclusion

within this thesis research and was therefore not considered.

Sample size One of the main advantages of MND over traditional data sources is the

scale at which it can be collected. Due to limited availability of external data such as

building counts and other ground reference (§4.3.1) data used as part of this research,

variables were only generated for 86 wards within the Dar es Salaam metropolitan area

resulting in a comparatively small sample size of <200, which is often regarded as the

minimum for the use of an SEM with latent variables. Despite this shortcoming, findings

appear to confirm earlier research.
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Figure 6.5: Percentage coverage overlap of BTS-level voronoi polygons with official Ward
boundary polygons for the metropolitan area of Dar es Salaam
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6.5 Chapter Summary

The analysis leveraged variables from the spatial dimension, socio-economic dimension,

and mobility mobility metrics generated at the Voronoi-polygon level in Chapters 3 to 5

to analyse the land use and socio-economic – transport interaction for the metropolitan

area of Dar es Salaam. Variables were apportioned with existing ward boundaries to allow

for the calculation of ward-level statistics on density, land use mixture, gender and SEL

for 86 wards within the metropolitan area of Dar es Salaam.

This study confirmed earlier findings that once the socio-economic dimension is accounted

for, the explanatory value of land use on mobility behaviour becomes nigh negligible [197,

205, 320]. Similarly, and in line with findings by earlier research [8, 69, 119, 178, 198, 219]

density and diversity were found to have a significant negative effect on the trajectory

distance travelled indicating, that high density and land use mixture increases the likeli-

hood of activity locations being in close proximity, therefore reducing trip distances.

In addition to the direct effects and regression weights, indirect interaction effects were

found to have an influence on trip frequency generation. While diversity was initially

showed a positive influence on trip attraction, it was found to have a negative effect on

the frequency of inbound and outbound trips captured through the latent endogenous

variable travel patterns, confirming earlier findings by Lin and Yang (2009) [219] that

were not confirmed without accounting for the socio-economic dimension.

The following chapter will explore limitations arising from the usage of CDR and MFS

data, and potential solutions to address those.



Chapter 7

Limitations and Opportunities of

Mobile Network Data

7.1 Chapter Introduction

This chapter explores the limitations arising from the usage of temporally and spatially

sparse CDR data identified during the analysis of land use in Chapter 3, socio-economics

in Chapter 4, and mobility trends in Chapter 5 highlighted in Figure 7.1. The following

research objective guides this chapter:

Research Objective 5: identification of shortcomings of both CDR and MFS

data, and potential solutions to address those.

Discussing each of the limitations in turn a brief description, and approaches to overcome

the limitations is presented. The challenges are broadly classed according to the salient

issue they affect or where they occur. Each of the limitations affects a different part of the

data collection, analysis and usage life cycle. Some of these shortcomings can be addressed

during the pre-processing stage, while others require a trade-off between granularity and

volume during subsequent analysis and usage.

183
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Figure 7.1: Overview of limitations of MND across the Individual-level, BTS-level,
Population-level, Usability, and Privacy and Ethics
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7.2 Individual-Level Data Completeness and Hidden

Movement

7.2.1 Sparse Temporal Frequency

Challenge: In contrast to GPS traces with customizable sampling frequencies, MND

data is only recorded when a network event takes place as discussed in §2.2.1. GPS traces

are generally recorded with a high-enough frequency to be treated as continuous trajec-

tories [63]. The average inter-event time, the duration between two consecutive network

events for a user such as sending an SMS before placing a phone call, for CDR data, on

the other hand, can range from a few seconds or minutes to multiple hours depending on

a user’s usage patterns. Related research has found average inter-event times of 8.2 hours

for 100.000 users over six months counting just active network events [142]. The lowest

durations were found to be 260 minutes on average with a median 84 minutes once CDR

was used in conjunction with location management data [58].

Given the long inter-event times within CDR datasets, it can be assumed that most users

exhibit some level of hidden movement. A user could use his or her mobile phone at

one point for example and then be in a completely different part of a city 6 hours later

without the dataset capturing how a user got there or what happened in the meantime.

While every user is likely to have some form of ‘hidden movement’ and contribute to a

resulting ‘low-frequency bias’, this is significantly exacerbated with users displaying low

numbers of irregular network events [63]. The low-frequency bias is likely to significantly

affect the representativeness of predictions unless findings are adjusted accordingly.

Discussion and solution: Human mobility is highly predictable; however, as hu-

mans tend to follow similar patterns such as commuting from home to work over time

[6, 34, 187, 314]. This assumption can be used to reduce the amount of hidden movement

and the associated low-frequency bias. The extraction of frequent mobility patterns from

longitudinal time series can be used to aggregate location information over time to fill
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gaps within a user’s mobility patterns. The frequency-clustering based approach to OD

matrix and synthetic activity plan creation used in Chapter 5 is based on this principle.

Alternatively, the inter-event times can be lowered through the use of passive location

management data such as LAU or handovers discussed in §2.2.1 and CDR’s on mobile

data usage. There is an increasing shift in usage patterns away from SMS and phone calls

toward social network services such as Facebook Messenger, Telegram and WhatsApp,

which rely on mobile data usage. This results in a decrease in the number of CDR’s

associated with SMS and phone calls being generated, further exacerbating the sparse

temporal frequency problem. While mobile data usage increases the number of logged

network events significantly [61], smartphone penetration varies quite strongly between

different demographic groups and between emerging economies and more economically

developed countries. This over-representation can lead cast severe doubts over the rep-

resentativeness of any predictions made using CDR data as the sole data source [63], an

issue which is discussed in more detail below in §7.4.1.

A low-frequency bias present in CDR data can also be addressed through the removal of

all low-frequency users from the analysis. The most straightforward approach would be

to identify users with distinct gaps in their usage, which could indicate that they have

moved network for intermittent periods, and remove them from the analysis. Demissie et

al. (2016) [91] for example, chose to exclude users with less than 75% of days containing

network events during the study period, and users with fever than 1000 network events per

week. A similar approach also exists in the blanket exclusion of all users with fever than six

network events per day [306, 359]. While this approach can generate more representative

insights, it is potentially excluding a vast majority of users from any subsequent analysis.

Using the same approaches as in the generation of transient and frequency-based OD

matrices in Chapter 5, for example, over 80% of users would have had to have been

excluded from the analysis. Nevertheless, normalising or even removing outliers with

abnormal usage patterns seems to be the most effective strategy for addressing a low-



7.2. Individual-Level Data Completeness and Hidden Movement 187

frequency bias.

7.2.2 Update Frequency Bias

Challenge: As CDR data is only created when network events are taking place, users

with a high network activity are over-proportionally represented within the data set and

may, therefore, appear significantly more mobile, leading to a high-frequency bias [79,

80, 291]. Similar to the observation-expectancy bias inherent in manual surveying, a

high-frequency bias present in CDR data can significantly affect the representativeness

of any predictions based on CDR data alone without further adjustments [63]. When

analysing transport demand, Wang et al. (2010) [346] for example, found it necessary to

adjust generated OD matrices to more accurately reflect transport demand. This issue

is exacerbated in the Global South, where costs can lead to multiple users using a single

device in exchange for a small fee, generating a high number of network events while

generating limited movement [46, 183].

Discussion and solution: Similar to the exclusion of low-frequency users discussed in

the previous section, various approaches have sought to address this issue through user

exclusion [91, 346]. Early work by Wang et al. (2012) [347] categorised users as belonging

to one of five categories, based on fixed numbers of network events per month 1. Those

mobility profiles were further developed by Berlingerio et al. (2013) [40] into low-high

intensity for network activity and low/high intensity for time travelled as user classes

based on the aggregation of individual behaviour within CDR data. Jiang et al. (2016)

[187] instead categorised active users, those with more than 50 stays and more than ten

homestays over six weeks, into commuters and non-commuters over the age of 16.

As part of the transient-based OD matrix analysis carried out in Chapter 5, users were

split across 5 activity levels through a dynamic rather than a fixed assignment as carried

out by Wang (2012) [347].

1below 10, 10-500, 500-1000, 1000-2000, over 2000
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7.3 BTS-Level Location Precision Issues and False

Movement

7.3.1 Limited Precision and Positioning Accuracy

Challenge: CDR data does not record an individual’s locations, but rather a non-

precise proxy via the location of the BTS delivering the service represented as a Voronoi

shape as a coverage area proxy. Sector antenna reception range is dependent on factors

relating to the location, height, and the technology involved. A device will seek the sector

antenna providing the strongest, and therefore usually nearest, signal [109]. Connection

or handover to the nearest BTS is therefore not guaranteed. As a result, the location of a

handset cannot be assured. Despite this uncertainty, it can be expected that BTS activity

is roughly indicative of activity in the surrounding coverage area commonly estimated as

a Voronoi polygon. Combined with a sparse sampling frequency (§7.2.1), the non-precise,

areal nature of Voronoi locations significantly affects the detection of short trips. It also

affects the estimation of geographical and built environment factors such as distance to the

nearest public transit point, which is recognised a key factor in the analysis of accessibility

and design within the Spatial dimension (§2.3.2).

Discussion and solution: Partly in order to overcome this issue, and partly due to con-

cerns over individual privacy and commercial interests discussed in §7.6.2, several studies

[59, 60, 185] have used triangulated data. In those studies, data was provided by Air-

Sage, a US-based private-sector company using its proprietary Wireless Signal Extraction

technology to anonymise, aggregate and analyse mobile phone signal data from multiple

MNO’s for real-time traffic speed and travel time prediction. Similar companies include

IntelliOne in the US, ITIS holding in the UK, Delcan in Canada and CellInt in Israel

[145]. Using procedures initially developed for GPS traces, Steenbruggen et al. (2013)

[321] have triangulated handset locations using signal strength data. As signal strength

data was not available in the datasets used as part of this research, handsets could not

be triangulated resulting in an aggregation of activity at the BTS level as well as their
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surrounding Voronoi cells instead.

Beyond collecting BTS information when a user is engaged in a network event, operators

need to keep track of a user’s location to direct incoming calls to the appropriate BTS

in the network. Redirecting is done through location management processes involving

the recording of passive time-based and movement events described in more detail in

§2.2.1. This location management can provide more reliable insights into a user’s journey.

Depending on the operator’s choice, location management can be either undertaken as:

Never-update: location information is not collected but rather all sector antenna are

’pinged’ to identify the active antenna to direct an incoming call to.

Always-update: the handset is informing the network whenever it is moving into a

new cell. While there is no paging cost, the network would most likely get quickly

overwhelmed by the frequent updates.

Location-area-update: this approach is a combination of the previous two, as cells

are grouped into location areas. The MNO is informed when a user moves between

location areas, and the sector antenna in the last recorded location area for a handset

are pinged to identify the currently active sector antenna for the direction of an

incoming call.

Outside of emerging economies in the United States and the European Union network op-

erators are mandated by law to keep track of handsets to provide emergency services with

location approximations in emergency scenarios. Under enhanced 112 in the EU [293]

and enhanced 911 in the US [318], operators have to locate users within a 50 meter radius

in 67% of cases and 150 meter in 95% of cases. Considering that the imposed accuracies

are not currently achievable through BTS-only positioning, new techniques for handset

tracking were developed. Operators can use network-centric cellphone positioning, which

uses existing network capabilities to triangulate handsets based on time, angle and dis-

tance measurements generated from the signal strength of sector antenna and handover

information captured through MSC’s [293, 318] or device-centric cellphone positioning
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using measurements and calculations within the handset itself to effectively triangulate

handsets.

7.3.2 False Displacement

Challenge: During periods of peak activity, users may be transferred to nearby BTS

in order to balance the load on the mobile network. As the location is based on the BTS

information contained in a CDR log, this effect leads to the misidentification of a user’s

location. This false displacement occurs without the knowledge of the user and follows a

similar pattern as handovers related to physical movement, as shown in Figure 2.1. This

issue is exacerbated when multiple unrelated network events take place in a short space

of time in areas with a high BTS and, by extension, cell density.

Signal jumps can also be caused by similar signal strength of different BTS being regis-

tered by the mobile device [175]. As antennas providing the highest signal strength in

a given area vary under different circumstances such as time of day, built environment

changes, surface reflection, etc. the link is mostly stochastic rather than deterministic

[181]. Limitations in the signal range are accounted for by MNO through the inten-

tional overlap of service coverage to minimise the risk of gaps in coverage, thus further

exacerbating the likelihood of false displacements taking place [109].

Discussion and solution: Different approaches have been developed to identify false

displacement caused by peak BTS redistribution: speed, patterns, and hybrid approaches.

Speed-based Methods require a high-temporal frequency within the dataset and can

be used to identify sequences where switch speed are above a predetermined thresh-

old. Identified logs are removed from the data with the main challenge in the iden-

tification of an appropriate threshold [175]. Horn [169] for example chose a filter of

250km/h to smooth travel speeds and times in their comparison of a recursive naive

filter, recursive look-ahead filter (both effectively low-pass filter) and Kalman filter.

One of the most effective ways to tackle the false displacement effect is through
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the usage of a lower-end temporal filter as part of the data analysis. A temporal

filter can be used to discard consecutive records with an ‘unrealistic’ displacements

within 10 minutes of each other [347, 349]. Previous studies [60, 176, 185, 347]

have routinely chosen a low-pass filter of 10 minutes in the detection of stops for

transient-based mobility analysis. While a temporal filter can alleviate the detec-

tion of false displacement somewhat, it can also lead to an increase in the amount

of hidden movement and reduction of short journeys detected. Similarly, it can pre-

vent the detection of movement occurring when a user is travelling on the boundary

between two BTS coverage areas or location areas.

Pattern based methods involve the identification of oscillations in chronological record-

ings. Lee and Hou (2006) [211] identified an oscillation during initial research with

Wi-Fi networks when three consecutive switches between a pair of locations are

observed and referred to it as the ping-pong effect. In those cases, the BTS with

the longest duration was selected as the stay BTS. Bayir et al. (2010) [33] recog-

nised a misidentification risk of oscillations for user frequently travelling between 2

locations. They chose to generate multiple mobility paths per day with trips esti-

mated using a frequent-sequence mining algorithm. Other studies have instead used

a spatial filter either ignoring cells that are Voronoi neighbours and only consider-

ing those above a certain distance [152] or grouping nearby events into a stop [60].

While this approach does not require the application of a temporal low pass filter, it

can still lead to a non-detection of activity unless movement takes place in densely

packed urban areas where BTS are generally close to one another. Another solution

to addressing peak BTS distribution can be the exclusion of surrounding towers as

part of the stop detection in areas of high BTS density.

Wang (2014) [348] combined speed and pattern-based methods by first detecting sub-

sequences using a pattern based approach before determining switching speeds and up-

dating BTS pairs above a specified speed threshold.
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7.3.3 Non-Uniform BTS Density

Challenge: Due to a lower population density and associated lower levels of activity,

network operators tend to operate fewer BTS in rural areas. This lack in demand can

result in BTS being located many kilometres apart in peri-urban and rural areas. Densely

populated urban areas, on the other hand, often have a median distance of just a few

hundred meters between BTS’s [59, 73]. The Colombo District in Sri Lanka, for example,

is both the most urbanised region in the country and accounts for a significantly higher

BTS density than any other district in the country [228]. The varying density in BTS

coverage impacts the accuracy of descriptive, predictive and prescriptive insight generated

outside of densely covered urban areas. Short and intra-area trips become harder to detect

as coverage areas increase [253].

Discussion and solution: Grid-based approaches have been suggested as a possible

way to mitigate the issues of appearing less mobile in rural areas and account for varying

the spatial intensity of BTS distribution [222, 360]. The study area is split into rectangular

grid cells with identical dimensions based on the level of analysis performed, for example,

5km square cells for district-level mobility flows or more high-resolution 1km cells for

road network traffic analysis. BTS situated within a cell are assigned to the centre of

the cell and grid cells not containing any BTS are excluded from the analysis. One

major limitation is the rising generation of artifacts for events that are close to the border

of the cells resulting from the quantisation of space. This is exacerbated through the

false-displacement effect, when an individual calling from within a particular cell may be

connected to a BTS in a neighbouring cell.

“Such artifacts can be accounted for by performing the analysis based on all

possible grids at the same resolution by shifting the grid on the area of interest

based on a suitable shifting distance and considering the average value of the

measures being used.” [228, p.792]

This approach also helps mitigate the impact of a single location being served by multiple

nearby BTS at different points in time by assigning average locations to neighbouring
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BTS based on the considered spatial resolution.

7.3.4 Operational Status of a BTS

Challenge: Operational status of BTS infrastructure can change over time due to mal-

functions and/or the installation of additional BTS’s to meet demand. What may appear

as a data integrity issue at first, can be directly related to real-world events such as power

outages or disasters affecting the structural integrity of a BTS. In the case of Kashmir, for

example, BTS had been deliberately shut off as they were used by militants for targeting

of specific groups [297]. At other periods, BTS may be put out of operation temporarily

by network operators to cut down on operation costs during periods of low network ac-

tivity. Besides limiting communication capabilities for users in the coverage areas, BTS

blackouts may affect predictions and results gained from longitudinal analysis using CDR

data. Such alterations directly affect the precision of location, and by extension, the

insights generated from CDR data analysis. In a study on population displacement fol-

lowing Port au Prince, Haiti earthquake in 2010 Bengtsson et al. (2011) [39] found an

impact on geographic positioning precision due to BTS malfunctions.

Discussion and solution: Detecting power down-time and assessing the impact on

the reliability of predictions can be difficult depending on the level of aggregation present

in CDR data available. Checking for towers with very low levels of activity in a process

called sparsity analysis can help identify BTS that are subject to frequent changes in

operation. Analysing the sparseness of BTS in an OD matrix was undertaken by [269].

They searched for towers with 0 values between regions as indicators that those regions

are not generating or attracting trips. Another approach could be to visualise analysis

results in the form of time-sliced Voronoi. Visualisation can be undertaken through grid-

interpolation to protect commercial interests, similar to the approach described in §7.3.3

on BTS density.
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7.4 Population-Level Data Completeness and Scaling

7.4.1 Representativeness and Sub-Sample Demographic Bias

Challenge: Representativeness is largely neglected in big data research, and some form

of demographic bias will always be inherent in any study on human behaviour [221, 378].

CDR data is restricted to subscribers of the network operator providing the data, which

represents only a sub-sample of the entire population in a country. This is caused by

competing operators and less than complete market penetration of the MNO providing

the data across the entire population with and without handsets. Each MNO’s CDR

data is likely to be further biased towards different population groups due to operator

marketing and pricing strategies.

Even with access to large amounts of CDR data from all network operators in a country

and the assumption that mobile phone penetration is close to 100%, findings will not

necessarily be representative. There will always be certain groups of people such as those

without access to mobile phones that are often from a lower socio-economic background

and/or within certain age group demographics. There are, however, also those users with

anomalous patterns that were removed as part of the pre-processing of data so as not to

skew results, that are not informing the final insights.

Zhao et al. (2016) [378] argue, that “the representativeness of individual

trajectories derived from CDRs are strongly influenced by peoples habit of

using mobile phones at certain locations and time in a day. For example,

CDR trajectories of a traveling salesperson who talks to his/her customers on

a mobile phone regularly may well depict his/her daily movements, whereas

CDR trajectories of a person who uses his/her phone occasionally should not

be used to understand his/her mobility pattern in space and time. As a

result, it is important to investigate to what extent we can trust the mobility

indicators derived from CDR trajectories and the conclusions drawn from these

indicators. It should be noted that using CDRs collected over a long period of
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time as a workaround cannot address this issue as people who rarely engage

in phone communication remain underrepresented.”

Due to these sub-sample biases, care must be taken not to further bias results towards the

specific demographic of users subscribing to the network providers services. Consequently,

all results must be considered as intermediary a priori results offering relative, rather than

absolute insight until scaling occurs.

Discussion and solution: Most studies have used some form of expansion factor

to account for sub-sample biases, which has shown some initial success [91, 354]. For

population-statistics-derived expansion factors, the actual population of a polygon is di-

vided by the number of users who have been classified as a zone’s residents [78]. The

approach, however, requires population statistics which generally come from census sur-

veys [12, 58, 78, 335]. Expansion factors derived from census information may be grossly

inaccurate in certain areas, however. Generally, censuses are only carried out every cou-

ple of years with the gap increasing rapidly in emerging economies around the world

due to the general ‘Statistical Tragedy’ affecting Africa in particular. Furthermore, new

growth location areas may be underrepresented in census information due to the relative

infrequency of data collection as was the case in the work on MODLE project with the

Transport Systems Catapult §5.3.1. Low numbers of CDR users in certain areas can fur-

ther contribute to inflated expansion factors [78].

Alternative data sources to census surveys for the calculation of expansion factors for mo-

bility studies include travel surveys such as RSI or panel surveys [38, 56, 59, 186, 238, 333,

335, 347, 357], combinations of census and travel surveys [38, 187], probe vehicle traces

[347], traffic flows from video recordings at main intersections [176], national travel sur-

vey and odometer readings from safety inspections of private vehicles [59] and pre-existing

OD’s from Census Transportation Planning Products and Rio transportation plan [78].

While existing information on transport demand and other mobility trends can be used to

validate the results, questions over the accuracy of the external information itself remain.
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An alternative approach for mobility studies with CDR data is the extrapolation of ex-

pansion factors through modelling and micro simulations. OD matrices have been shown

to work well with gravity models as they do not require knowledge of model parameter

values beyond a high adjusted R-squared [60, 82, 333]. Flow models, on the other hand,

have been shown to perform poorly with spatially and temporarily sparse CDR’s for OD

estimation and network assignment [152]. Another approach has been the usage of the

microsimulation platform MITSIMLab for calibration by Iqbal et al. (2014) [176]. The

scaling factors were based on cellular penetration (different provider and non-user), mo-

bile phone non-usage (not used at every transient point) and vehicle usage (users may not

use cars for every trip).

7.4.2 Single Network Activity

Challenge: It is not uncommon for mobile users in emerging economies to have access

to multiple SIM cards with each operator subsequently only receiving a sample of their

overall network events, potentially biased towards certain usage situations [9]. Switching

network operators briefly can offset some of the issues associated with limited network

coverage when travelling. Another reason for multi-SIM use includes the anticipation of

network downtime, which is a particular concern in rural areas within emerging economies.

Furthermore, intra-network calls, calls between two users of a particular network operator,

are often associated with lower usage costs than inter-network calls. Some users might,

therefore, opt to use different SIM cards for calls to different user groups [92, 97].

Single Network Activity bias can be broken down into three main challenges:

1. The systematic loss of network events due to usage behaviour;

2. The temporary loss (or gain) of network events due to the CDR operator’s network

(or their competitors) becoming temporarily unavailable; and

3. The systematic, per individual, loss of events in a given region as they change

providers to maintain/improve service.
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Discussion and solution: Although further work on bias correction methods is nec-

essary, ground-truth data has previously been used to estimate the impact of differential

ownership on inferred human mobility models in Kenya and found CDR generated insight

to be promising [354].

7.4.3 Heterogeneity in Usage

Challenge: Individual level insights are both positively and negatively affected by biases

in call rates and general usage [220].

• Positive biases occur in waiting areas such as bus or ferry terminals, where users

are stopping to wait for their transit services while potentially using their phones

at higher rates than normal to ‘kill time’ which can lead to an overestimation of

stop-frequencies.

• Negative landline biases may occur in locations such as home or work where land-

lines may be used in favour of mobile connections, which can lead to a significant

reduction of detected traffic. As users remain stationary for prolonged periods, there

can be a shift from using mobile phones to using landline connections. With reduced

mobile phone usage also comes an increased low-frequency bias (§7.2.1).

• Negative morning biases also occur as individuals tend to use their phone more

during the later portions of the day, leading to fewer events and therefore fewer

AM trips being detected [11]. Similar variations in seasonality also occur between

weekdays and weekends that generally show different levels of activity [29].

Discussion and solution: Negative biases related to landline usage are less of an issue

in emerging economies due to the high ratio of mobile phone vs landline connections.

A recent report by the International Telecommunication Union has shown that in 2012

mobile phone connections were on average 6× higher than landline connections in Asia-

Pacific, Latin America and the Middle East, compared to 3× in the European Union and

2.3× in Northern America. The most substantial gap was found in Sub-Saharan Africa
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where mobile connections were almost 50× higher than landline connections as can be

seen in 7.2. Ground truth information can be used to identify areas with heterogeneous

movement patterns such as ferry ports, airport terminals and bus terminals, where users

remain stationary for prolonged periods of times while using their phones more often than

usual. One can assume that these stationary high-activity patterns are higher in users

with access to mobile data services than those without. A more detailed classification of

scaling filter can potentially be used to overcome heterogeneity issues [176].

Figure 7.2: Disparity between land-line and mobile connections based on registration
statistics from 2012 [148]

7.5 Real-World Usability, Data Processing and Con-

textualisation

7.5.1 Missing Pre-Processing Standards

Challenge: There also remains much work left to do on developing standardised guide-

lines for the acquisition, conservation and usage of personal data. No pre-processing
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standards for CDR data currently exist due to the large variety in both CDR granularity

available to third parties due to considerations on privacy (§7.6.2) and commercial interest

(§7.6.4). Automatic procedures for the processing of large amounts of data in real-time,

and more flexible models, are however required for inclusion of this MND into already

implemented transport forecasting models as those discussed in §5.1.2 [212, 331].

Discussion and solution: Initial work in the new field of Human Data Interaction is

considering how infrastructure, models and interfaces are built to enable users of these to

understand and engage with data processing [249]. Common ways of storing and sharing

microdata should be defined. At least for geospatial data, the ESRI shapefile is generally

recognised as a standard data storage format with a white paper by ESRI providing

specifications for sharing of shapefiles across software solutions and platforms [116]

7.5.2 Spatial Interpolation and Apportioning

Challenge: As discussed in §5.1.2, inferred mobility insights are used for Transport

Forecasting across different TMZ in a city. TMZ have traditionally been designed manu-

ally based on basic principles of (1) cluster social, land use and economic characteristics;

(2) frame zone boundaries around natural and human-made boundaries such as rivers and

rails; and (3) selecting manageable traffic zone sizes outlined by Ortuzar and Willumsen

(2011) [269]. Voronoi cells used to visualise approximate coverage areas for CDR-based

studies rarely overlap with pre-existing TMZ areas, instead of requiring apportioning or

spatial aggregation.

Discussion and solution: One possible approach involves assigning BTS to adjacent

TMZ as was undertaken by Jiang et al. (2015) [186] for sub 200 meter distances in Sin-

gapore. An alternative approach involves designing a conversion matrix for zoning areas

based on building polygons from BDTopo database for filtered area weighting [50] and the

normalisation of observations [181]. The interpolation of discreetly bordered areal units

through apportioning or aggregation invokes the modifiable areal unit problem defined by

Openshaw [268]. The Modifiable areal unit problem, however, raises the question of what
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scale, and zonation or aggregation are appropriate for the analysis task at hand [75].

7.5.3 Contextual Understanding

Challenge: Traditional data collection approaches collect information on individual

travel reasons, mode choice, socio-economic and demographic characteristics, which are

not explicitly included in CDR data. Also, the understanding of individual behavioural

phenomena requires an understanding of external contexts that can influence user be-

haviour. The analysis of commuting patterns through transport forecasting models, for

example, involves an understanding of modal split and route options for network assign-

ment. When commuting from the south-eastern outskirts into the centre of Dar es Salaam,

for example, the two most common routes are a land route past the airport via Miburani

or taking a ferry via Kigamboni. Each route is affected by external factors such as the

anticipation of prolonged traffic jams or the impact of floods on the road infrastructure

and ferry timetables at different times. Traffic jams, in particular, affect commuting times

significantly and influence the time of the day at which people travel to and from work. In

contrast to RSI and panel surveys, CDR data lack directly recorded movement metadata

such as trip purpose, mode and vehicle occupancy.

Beyond the understanding of individual contexts, more comprehensive understandings are

necessary to design effective interventions. In the case of the Bus Rapid Transit system

in Dar es Salaam, for example, one of the depots was built in a high flood-prone area,

leading to frequent flooding of the depot. While additional walls to prevent flooding of

the depot were installed, these have instead pushed the water into nearby areas leading

to flooding of multiple-occupied tenements.

Discussion and solution: When generating descriptions of transport demand, it is

necessary to distinguish between activity-based travel such as running and cycling and

vehicle-based travel. While distinguishing between transport modes is possible using tra-

ditional road-side surveys or to a certain degree using sensor technologies such as smart
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cards for use with public transport or road-side cameras, the use of those technologies is

prohibitive in emerging economies and rapidly changing urban spaces due to scale factors

outlined in the previous section. CDR data does not currently allow us to detect whether

a user is travelling using an activity-based or a vehicle-based mode.

Some work has been undertaken on transport mode recognition and human mobility

modelling using different smartphone sensors [277, 296, 380]. Caceres et al. (2008) [253]

proposed a method to estimate the transport mode from a priori flows using criteria such

as travel speed, travel time and traffic information. An alternative approach by Lari-

jani et al. (2015) [209] sought to identify subway travel, assuming that dedicated BTS

serves subway tunnels. As part of the MODLE project discussed in §5.3.1, rail trips were

differentiated from automobile trips via the analysis of LAU patterns. Rail trips were

shown to have distinctively clustered LAU patterns compared to scattered patterns for

car journeys as passengers on a fast-moving train were travelling across boundaries quasi

simultaneously. Rail trips may have been misattributed as road trips in the case of short

trips between LSOA areas. Some trips may have been misclassified as walking trips and

subsequently been removed from the data during the mode detection step undertaken

by the data provider. Aeroplane journeys were identified as making use of BTS in two

distant LAU’s at high travel speeds and without distinctive LAU handover patterns.

These projects have however been undertaken in the developed world, where there are

fewer and easier distinguishable transport modes, i.e. train, tram, bus, metro [161]. Vehi-

cle classification in developing countries has so far only been attempted by Mallikarjuna

et al. (2009) [230] using video image processing from roadside cameras and Garg et al.

(2014) [133] using smartphone sensors for recognition. Both have limitations as camera

infrastructure may be limited, and smartphones are not as widely used as feature phones

in the developing world as discussed in §5.2.1.

Route detection from non-continuous data such as spatially and temporally sparse CDR
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data is nearly impossible due to the absence of intermediary stop points. Fillekes et al.

(2014) [122] tried applying map-matching techniques originally developed for use with

GPS trajectories for route assignment, but found those to perform poorly with CDR data

due to the temporal sparsity (§7.2) and spatial granularity (§7.3.1) of CDR data. This

issue is further exacerbated through the absence of accurate base-maps [99, 173]. Using

location management data to address both issues of temporal sparsity (§7.2.1) and spa-

tial granularity (§7.3.1), Gundlegard et al. (2016) [152] have shown, that ad hoc route

detection is possible for trips that cross multiple LAU boundaries only. Human mobility

was found to be highly predictable, and several studies have argued, that near-random

individual trajectories are rare as we follow similar patterns over time, allowing for longi-

tudinal identification of common routes such as home-work commutes [6, 34, 142, 314].

In addition to modal split and route options for network assignments of trip-based models,

activity-based models use activity-motifs, which correspond with daily activities such as

work, home, shopping, etc. There have been attempts to extract and characterise where

individuals stay and pass by in urban locations and subsequently infer types of activities

(i.e. activity-motifs) they engage in [185]. One option to identify motifs is through the

identification of points of interest in different parts of a study area and use these to guide

the identification of new activity area classes beyond home and work, such as going-out,

shopping or administration. Schneider et al. (2013) [306] for example identified 17 unique

network motifs with simple rules present in everyday activity. They were able to account

for 90% of the study population in different countries: each person was found to have

a motif persisting for several months similar distributions found phone and survey data

[185].
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7.6 Privacy and Ethical Implications of MND

7.6.1 Data Access

Challenge: Negotiating access to CDR data is difficult. There are no clear legal and

regulatory frameworks surrounding the sharing of CDR information. There are also pri-

vacy and security implications involved in sharing data in the first place. Replicability of

CDR based research, and (incremental) improvements continue to be a challenge due to

the limited access of third parties to mobile network data, including CDR and location

management datasets. Raw mobile network data are inherently proprietary, private data

sets, and it is not possible to make them fall under the purview of Open Data policies.

Discussion and solution: A clear plan for what research will be undertaken with the

CDR data and an understanding of what magnitude of data is required are useful for

showing confidence and building trust with network operators as part of access negoti-

ations. In the absence of clear ethical and regulatory frameworks, the Groupe Spcial

Mobile (GSMA) 2 developed guidelines for sharing MND with third parties following the

deadly Ebola epidemic in Western Africa [149, 112]. Those were first steps toward guiding

the third party and academic work with CDR; however, national legislation/government

agencies in many countries still fail to regulate the usage of MND formally - frameworks

instead exist for other sensitive data sources including NHTS, census surveys and data

on taxation [86].

Due to the private nature of personal information encoded in CDR repurposing should

only be undertaking using pre-anonymised data in line with GSMA emergent guidelines

[149] on the use of CDR data. This is a vital and initial, but not yet sufficient, approach to

addressing privacy concerns. Specifically, additional steps need to be undertaken to pre-

vent the re-identification of mobile phone subscribers identities through individual-specific

patterns within the data and external information [145].

2Most mobile phone operators around the world are members of the GSMA, the mobile phone industry
body.
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7.6.2 Individual Privacy

Challenge: The sharing and analysis of CDR raise serious individual privacy concerns

as mobile devices have become more of an integral part of our daily lives [43, 86]. As

discussed in earlier sections, human movement is highly predictable as we tend to visit a

limited number of places many times periodically, and many others just once [50]. The

identification of a few frequently visited points and approximate visit times can theoret-

ically be enough to identify individuals reliably [87, 375]. Additional concerns include

data use without consent, the use of identifiable data, data security and lack of trans-

parency. They are accompanied by technical obstacles, institutional fragmentation and

the cost associated with anonymisation and access control. Linking CDR datasets with

demographic and/or socio-economic data can raise additional privacy concerns. There are

potential challenges with overseas research due to differences in privacy protection laws.

Discussion and solution: The invasive nature of CDR data calls for considerations

over what data is actually required for a given analysis task. Out of considerations for

user’s privacy, all CDR should be anonymised by the network operators in line with GSMA

guidelines. There are several technical challenges associated with anonymising large data

sets that have been addressed to some extent, such as developing aggregation algorithms

that still maintain identity [255, 326] and finding the right level of granularity in data

abstraction without losing core characteristics [288]. Previous work, however, has shown,

that users can be re-identified even after the anonymisation of data sets [264]. While being

possible, the process is difficult and time-consuming [66]. The success of re-identification

also highly depends on the spatial granularity of the data. In contrast to GPS data with

a longitude and latitude, the geographical information contained with a CDR record is

linked to a BTS, which serviced the network event the CDR was created for, and may

not even be the closest one in the proximity of the user.

One of the most effective ways to avoid placing individual user’s privacy at risk is to focus

on the behaviour of masses rather than individuals through data aggregation. Analysing

hundreds, thousands or even millions of user’s data simultaneously can be an effective



7.6. Privacy and Ethical Implications of MND 205

Figure 7.3: Matrix of four models providing a balance between utility and privacy for the
privacy-conscientious use of MND proposed by De Montjoye et al. (2018) [86]

strategy for ensuring ’privacy in numbers’. While the principle of ’privacy in numbers’ is

inherent in the aggregation process, the difficulty lies in finding the right balance between

retaining detail necessary for generating insights and abstracting to safeguard privacy

[112].

Montjoye et al. (2018) [86] have proposed four different models, shown in Figure 7.3, for

the privacy-conscientious use of MND. All four models assume the use of pre-aggregated

rather than raw-data and provide a balance between intended use case and associated

privacy risk. This involves regulating who has access to the data (i.e. third parties or

only the operator), where it will be stored (i.e. on the operators servers or whether it

can be stored off-site) and how processing of the data will be carried out (e.g. whether

the operator will be processing queries themselves or if it can be done by third parties

remotely).
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7.6.3 Data-Biases

Challenge: Beyond individual privacy considerations (§7.6.2), there are also ethical

concerns as certain findings can lead to (unintended) structural discrimination in the

design of policy interventions. Poorly designed transport interventions for new mass

transit routes for example can lead to the isolation of certain groups or areas through

access to limited routes or modes of transport as input data may show limited demand

stemming from or trip attraction to those areas [267]. This often stems from but is

not limited to the aforementioned sub-sample bias (see §7.4.1), which can be further

exacerbated in the analysis, as low data areas can be subsumed by others or erroneously

excluded:

1. The efficacy of a model is limited by the input data used for training of a model.

Learning from inherently biased data leads to biased insights [270], a issue that is

only exacerbated with the common lack of accurate and timely ground truth data

symptomatic of Africa’s ‘Statistical Tragedy’.

2. Defining ground reference, such as what constitutes poor, average and wealthy in

the analysis of SEL in chapter 4 is often biased by cultural and social assumptions,

leading to a trade-off between prediction accuracy and fairness in the choice and

design of machine learning models. As discussed in Section 4.4.4, there was no clear

indication of what distinguished a ‘poor’ from an ‘average’ or a ‘wealthy’ from a ‘very

wealthy’ area for example in the input data used as part of this thesis, therefore

labels were assumed to be ‘fair’ within the analysis.

3. Sample-size disparity with low-representation groups (§7.2) can further influence

the results of algorithms [159].

4. Confounding variable removal such as ZIP codes does not prevent biases from oc-

curring in a lot of cases. Existing research has shown that algorithms are capable

of probabilistically infer previously excluded variables as discussed in the previous

section on individual privacy [264, 270].
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Discussion and solution: Overcoming bias requires an understanding of the data

and a combination of technical and design considerations in the selection of the analysis

approach. Design considerations of input feature selection and definition of fairness,

equitability and ethical standards can ultimately be a vicious circle considering point two

discussed in the challenge. Technical considerations such as similarity metrics, auditing

behaviour or statistical independence checks can result in an enforced trade-off between

prediction accuracy and fairness. An understanding of the (input) data, algorithmic

literacy and transparency in terms of informed scepticism over the results of analytical

tasks appear to be the most promising avenue for tackling biases [270].

7.6.4 Commercial Interest

Challenge: Beyond individual privacy, there are concerns for the network operators

themselves, including damage of public perception in case of data leaks, and commercial

interests such as the location of BTS. If it is known which operator’s data has been

utilised, the analyses can reveal insights into localised network penetration rates.

Discussion and solution: A common process for visualising coverage around a BTS

is through Voronoi cells. Voronoi cells are geographic areas, which include all points

that are closer to the BTS within the corresponding area than to any other BTS in the

area. While visualisations of Voronoi cells do not always include the points used to draw

the polygons, they can be easily reverse-engineered. As the points corresponding to the

geographical location of BTS cannot be given and are regarded as a commercial secret,

estimations have to be given. A common approach is to perform a grid interpolation,

a geographic process where grid cells are attributed to the underlying cell, in our case

Voronoi cells, occupying the largest part of the respective grid cell, in a process similar

to that used to address non-uniform BTS density (§7.3.3). As neither the sizes of the

respective Voronoi cells nor the distances between the different BTS can be revealed, an

effective approach involves assigning confidence scores to grid cells based on the building

counts for a respective cell. Steenbruggen et al. (2015) [322]
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“find that previous research follows one of three approaches best-serving poly-

gons, rasterisation, and Voronoi tessellation. Best-serving polygons and ras-

terisation are representations of the areas covered by specific BTS, and are

estimated by the mobile service provider on the basis of tower capabilities

and nearby urban form. Voronoi tessellations are a simplified representation

of service zones, creating regions associated with cell towers based on nearest

proximity alone.”

As BTS locations were provided in the current study without indications of the best-

service zone and signal strength, Voronoi tesselation is the most suitable approach to the

present dataset.

7.7 Chapter Summary

This chapter explored the shortcomings of potentially temporally and spatially sparse

CDR and MFS data identified through the analysis of activity-based land use in Chapter

3, socio-economics in Chapter 4, and mobility trends in Chapter 5. Those ranged from

individual-level challenges of data completeness and hidden movement caused by the

nature of network event generation, to BTS-level challenges of location precision and false

movement caused by differences in BTS density, fluctuations in sector antenna range,

and missing signalling data preventing the triangulation of handsets, population-level

challenges of data completeness of scaling caused by missing ground-reference data and

less than complete market penetration of the MNO providing the data across the entire

population with and without handsets as well as differences in heterogeneity of usage, to

challenges related to real-world usability of data processing and contextualisation, privacy

and ethics concerns. Discussing each of the limitations, in turn, a brief description and

approaches to overcome those limitations were presented. The proceeding chapter will

conclude this thesis.
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Summary and Reflections

8.1 Chapter Introduction

This thesis examined the utility of Call Detail Record (CDR) and Mobile Financial Ser-

vices (MFS) data for generating insights into urban land use, socio-economic levels and

mobility trends; how those can be used to analyse the alternative Land Use – Transport

Interaction (LUTI) relationship in an emerging economy context; and identified short-

comings of both CDR and MFS data, and potential solutions to address those. This

chapter concludes the thesis, examining the research questions, aims and objectives, how

they were achieved, and sets a future research agenda.

8.2 Meeting the Research Question, Aims and Ob-

jectives

Chapter 1 introduced the context of rural-urban migration, the ‘Statistical tragedy’ and

barriers to effective data collection and governance, which necessitate the introduction of

new approaches to data collection and analysis, in an emerging economy context using the

metropolitan area of Dar es Salaam, Tanzania, as a pertinent example of a fast-growing

city in the Global South. Further, it set the research question, aims and objectives guiding

this thesis. The following subsections examine how the overarching research question, the

209
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aims and objectives were met in the context of this thesis.

8.2.1 Mobile Network Data Analysis

Chapters 3-5 used CDR and MFS data to examine its utility as a novel data source to help

overcome shortcomings of more conventional methods of data collection such as manual

sampling and physical sensor infrastructure to help address Africa’s ‘Statistical Tragedy’.

Each chapter, in turn, addressed a particular research objective set in the introduction in

Chapter 1.

Research Objective 1: to examine whether differences in activity-based

land use and density can be distinguished from behavioural patterns contained

within CDR data.

Within chapter 3, Non-negative matrix factorization (NMF) was used as a dimension re-

duction technique to identify key activity-based land use patterns expressing underlying

activity spaces such as commuting, working and residential usage. Subsequently, unsu-

pervised k -means clustering was used to categorize areas of the metropolitan area of Dar

es Salaam according to the previously identified activity-based land use patterns. The

analysis highlighted the potential to use mass CDR datasets for the dynamic analysis of

easily interpretable activity-based land use classifications. Furthermore, it was found to

be possible to calculate network event density as a proxy for residential density from the

observed network events contained within the dataset.

Research Objective 2: the investigation of small area SEL classification us-

ing CDR and MFS data through Supervised machine learning, and subsequent

analysis of features used for classification to understand the main determinants

behind classification results.

The analysis in chapter 4 demonstrated that previously unused MFS datasets could pro-

vide sizable improvements in SEL classification accuracy over existing CDR approaches.

Comparing MFS data directly to CDR as used in prior work, the results show that MFS
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provides an increase in SEL classification accuracy (average F1 score) from 65.9% (0.63)

to 71.3% (0.7) at a fine-grained spatial level below most official administrative boundaries

as those of wards used within the analysis of the land use and socio-economic – trans-

port interaction in chapter 6. Notably, the combined use of MFS and CDR data only

increased prediction accuracy from 71.3% (0.7) to 72.3% (0.71), providing evidence that

MFS is informationally subsuming CDR data.

Research Objective 3: exploration of synthetic daily activity plans based on

the previously-evidenced assumption that the majority of human movement is

predictable, and the generation of transient OD matrices to understand travel

and mobility patterns for Dar es Salaam.

Finally, CDR data was used to analyse mobility patterns in the form of trip frequen-

cies, expressed as Origin-Destination (OD) matrices, and trajectory distances in chapter

5. A comparison of a transient-based and frequency-clustering based analysis approach

demonstrated that frequency-based clustering approaches, which rely on assumptions of

human movement being highly predictable, were found to be less susceptible to differ-

ences in individual usage patterns. Those differences included heterogeneity in call rates

and individual low- and high-frequency biases, which affected trip rates identified through

transient-based trip extraction.

8.2.2 Land Use and Socio-Economic – Transport Interaction

Research Objective 4: analysis of the alternative land use – transport inter-

action accounting for socio-economic characteristics for Dar es Salaam using

variables identified from CDR and MFS data through Research Objective 1-3.

Chapter 6 used variables generated through the analysis of both CDR and MND data

in the preceding chapters 3-5 to analyse the land use and socio-economic – transport

interaction for the metropolitan area of Dar es Salaam. The analysis confirmed earlier

findings that once the socio-economic dimension is accounted for, the explanatory value of

land use on mobility behaviour becomes nigh negligible [197, 205, 320]. Similarly in line
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with earlier findings, density and diversity were found to have a significant negative effect

on the trajectory distance travelled indicating, that high density and land use mixture

are associated with a higher likelihood of activity locations being in proximity, therefore

reducing trip distances [8, 69, 119, 178, 198, 219].

In addition to the direct effects and regression weights, indirect interaction effects were

found to influence trip frequency generation. While diversity has initially shown a positive

influence on trip attraction, it was found to have a negative effect on the frequency of

inbound and outbound trips captured through the latent endogenous variable travel pat-

terns once indirect effects of the socio-economic dimension, which were identified through

the use of Structural Equation Modelling (SEM)’s with latent variables, were taken into

account.

8.2.3 Limitations and Opportunities

Research Objective 5: identification of shortcomings of both CDR and

MFS data, and potential solutions to address those.

Chapter 7 explored the shortcomings of non-continuously collected CDR and MFS data

identified through the analysis of land use in Chapter 3, socio-economics in Chapter 4,

and mobility trends in Chapter 5. Challenges ranged across different levels and aspects

from the nature of data generation to analysis and real world implications:

• Individual-level challenges of data completeness and hidden movement caused by

the nature of network event generation in terms of relative sparsity as events are

only generated whenever a network event such as an incoming SMS or placing a

phone call occurs.

• BTS-level challenges of location precision and false movement caused by differences

in BTS density and activity, fluctuations in sector antenna range, and missing sig-

nalling data preventing the triangulation of handsets.
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• Population-level challenges of data completeness of scaling caused by missing ground-

reference data and less than complete market penetration of the MNO providing the

data across the entire population with and without handsets as well as differences

in usage of devices across the day and week

• Real-world usability challenges of data processing, contextualisation and spatial

interpolation and apportioning with existing analysis areas such as wards or traffic

zones.

• Privacy and ethics related challenges ranging from data access due to individual

privacy and commercial sensitivity to data biases in the analysis results.

Discussing each of the limitations, in turn, a brief description and approaches to overcome

those limitations were presented.

8.3 Suggested Further Research

This thesis has highlighted Africa’s ‘Statistical tragedy’ and barriers to effective data

collection and governance, which necessitate the introduction of new approaches over

conventional methods of data collection. The research has joined a growing body of re-

search on the use of automatically generated CDR data and illuminated both CDR’s and

MFS data’s potential as a pertinent data source for the generation of insights into land

use, socio-economic and mobility patterns, and their interaction at scale and speed to

suit the needs of policymakers in fast-changing urban environments. The analysis of MFS

data, in particular, is still in its infancy, and there are countless avenues to both continue

to research and to explore new potential research directions, offering exciting potential.

Chapter 4 briefly discussed purchase categories, which are included in the MFS dataset

provided by the Tanzanian MNO that forms the basis of this thesis research. Despite

the exclusion in this piece of research due to their sparse nature, there is the potential to

investigate more nuanced usages of MFS uptake among different user groups within Dar



214 Chapter 8. Summary and Reflections

es Salaam and potentially help improve the Socio-economic Level (SEL) carried out.

Chapter 6 analysed the relationship between land use, socio-economic characteristics and

mobility patterns in the metropolitan area of Dar es Salaam. It breaks new ground in

the Global South by both considering these interactions using SEM in an East African

context, and by using variables generated through CDR and MFS transaction logs as

proxies of human behaviour as the main input. One direction would be to both scale the

analysis to other urban spaces within Tanzania and to consider more nuanced variables

from network analysis that have seen study elsewhere.

The longitudinal nature of MND makes it a pertinent candidate for assessing change over

time, from changes in the sprawl of informal areas and socio-economic levels to changes

in mobility patterns caused by the extension of the cities Bus Rapid Transit Network

to changes caused by annual flooding. Further research should consider to what extent

rather than if historical data can be used to assess changes within urban areas in emerging

economies, and to what extent those changes can be predicted.

The use of CDR and MFS data and machine learning techniques in the generation of

insights and (official) statistics by policymakers would be a new direction. It could help

bridge challenges to effective data collection and governance in Tanzania and elsewhere.

8.4 Final Conclusions

This thesis concludes that despite the many shortcomings of CDR and MFS data, it pro-

vides a significant opportunity to overcome current gaps in official statistics by provid-

ing timely and at-scale insight into activity-based land use, socio-economic and mobility

patterns. Provided agreements with MNO‘s are in place, MND data can empower policy-

makers and local municipalities to identify areas requiring interventions and revitalization

programs and assess the progress and success of those interventions.

While results obtained through the analysis of CDR and MFS data may not necessarily
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be completely accurate in the absolute sense, they can provide a significant improvement

relative to the insight currently available as was summarized by the UNFPA:

“any indicative estimates would provide in certain situations where none are

currently available; even if they carried with them a significant level of un-

certainty such estimates would still represent a large improvement in many

cases” [313, p.519].
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Appendix A

Mobile Financial Services in Africa

A.0.1 Mobile Financial Services and the ‘Unbanked’

More than 2 billion people are struggling to access traditional ’brick and mortar’ banking

services with the highest numbers found in emerging economies in the Global South

[90]. The intrinsic lack of access forces them to rely on generally unsafe, inconvenient

and costly informal financial services or cash. At the same time, traditional banking

institutions are struggling to make their business model work for those at the lower end

of the socio-economic spectrum. A plight that is only exacerbated in rural areas due to

sparse residential density. Over the past decade, Mobile Financial Services (MFS) have

emerged as a major alternative to traditional banking services.

MFS is an umbrella term for several services offered by Financial Service providers:

Mobile banking is a channel to interact with a bank via mobile devices [30] and has

gained major traction with the introduction of the smartphone and mobile apps.

Mobile payment is the payment for goods and services using mobile devices either

remotely or at the point of sale [203]

Mobile money transfer or cross-operator transaction are Person to Person or

P2P transfers within and depending on inter-operability agreements across carriers

within a country [81, 151]

Mobile international remittance services are closely linked to mobile money trans-
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fers and are often used by migrant workers for remittance payments to family mem-

bers. There has been a shift from traditional providers such as Western Union or

MoneyGram to MNO services due to lower cost of services and a wider availability

of mobile devices [239]

Those MFS offered by MNO have been identified as a novel and effective avenue for

progressing toward financial inclusion, which has been recognised by the World Bank as

a key enabler for economic development [366], by providing accessible financial services

to the previously ’Unbanked’ [166, 194, 246, 310].

“The main goal of the service is financial inclusion for the financially excluded.

Mobile money is based on the offer of simple financial services for customers.

It provides access to electronic accounts where customers can deposit cash up

to a certain ceiling and from which they can withdraw cash and manage their

electronic money. Access and subscription to these accounts and associated

services are enabled usually by ownership of a national identity card. Opening,

crediting and managing accounts is free (only money transfers are taxed).

Mobile money services allow subscribers to send or receive money to/from

subscribers using the same service, or banked customers (domestic transfers

and/or international remittances) and/or allow bill payments. Mobile money

services users can rely on a growing network of service provider employees and

retail commercial partners, which allow them to deposit and withdraw cash.”

[274, p.155]

The offered services range from simple deposits, withdrawals and transfers to inter-

operable transfers between the MFS services of different MNO, bill payments, insurance

and saving accounts [150, 151, 246]. MFS offerings overcome two key issues: the cost of

traditional banking services and spatial proximity to banking infrastructure [247]. The use

of agents (such as small shops, street vendors, bank branches) enables ‘banking beyond

branches’ [13]. Agents can step in to tackle the lack of distribution network [224] and

close the proximity gap to traditional brick and mortar branches [42] by administering
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cash deposits and withdrawals for MFS customers in the field [235].

MFS are offered by MNO across Africa, Asia and Latin America [252].

“The numbers of mobile money users and countries with access to mobile

money services are growing constantly. Diffusion of mobile money within

countries was in an introductory stage up to 2012, after which it entered the

growth stage. The diffusion of mobile money services across countries has

continued to increase, but at a slower pace and can be said to be entering a

saturation phase.” [16]

While the availability of MFS offerings has increased drastically, a large number of ser-

vices have already had to shut down as they were not economically viable and failed

to offset setup, infrastructure and maintenance costs MNO incurred [118]. The growth

and failure of MFS services have received significant attention within the literature, as

will be discussed in more detail in §4.2.1. The most successful services can be found in

sub-Saharan Africa, where they were originally developed.

A.0.2 Mobile Financial Services in Africa

M-PESA 1 was first introduced by Safaricom in Kenya in March 2007 with similar systems

soon established in Sudan, Ghana, Tanzania and elsewhere. When surveying M-Pesa

usage in Kenya, Jack and Suri (2011) [180] found a sharp increase in account ownership

from 43% in 2008 to 70% in 2009 as services became more widely known and customers

developed trust into the services.

Mobile Money in Tanzania

The uptake in MFS services has been extremely high across East African countries. In

Tanzania, the MFS user base grew to 5.5 million users within the first four years from

the introduction of M-Pesa by Vodacom in Tanzania in 2008 and Tigo Pesa in 2010. By

1Pesa is the Kishawhili word for ‘money’ - M[obile] Money
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2013 MFS agents and outlets significantly outnumbered traditional offerings in Tanzania

with 17,541 MFS agents compared to only 1,117 ATM’s and 504 bank branches [65, 257].

This disparity reflects a wider trend within emerging markets, where at least nine other

countries have been found to have more MFS accounts than bank accounts [150]. It was

estimated, that over 50% of subscribers use MFS with over 35% of households having at

least one MFS user compared to only 2% having active bank accounts [107, 245, 257]. The

volume of MFS transactions nearly doubled between 2013 and 2015 as nearly one-third

of active MFS accounts in East Africa were registered with Tanzanian MNO by 2015

[136, 174]. The TCRA estimated there to be 16.5 million MFS accounts in March 2016

[328].



Appendix B

MFS Error Codes

The list below contains all error codes contained within the MFS dataset described in

§2.2.2. Those transaction that do not have an error code attached to them are assumed

to be successful transactions.

• Success

– 200 success

– error000

• Maximum balance exceeded

– 60028 Unable to complete transaction as transaction amount is more than the

maximum txn value for the recipient

– 60030 Unable to complete transaction as the payee account would go above

the maximum balance

• Maximum number of transactions

– 00008 Max percentage transfer reach limit

– 60011 Unable to complete transaction as maximum number of transactions per

day reached

– 60021 Unable to complete transaction as maximum number of transactions per

day for payee reached
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• Amount below minimum transaction size

– 00409 The transaction amount is less than the minimum value defined for this

service

– 60017 Unable to complete transaction as transaction amount is less than the

minimum txn value for sender

– 60027 Unable to complete transaction as amount is less than the minimum

limit

– elec016 Amount too low. Request amount exceeds the minimum amount for

this meter

– error015 requested amount is lower than the minimum amount set per trans-

action

• Amount above transaction limit

– 00031 Request amount more then allowed in the network

– 60024 Unable to complete transaction as maximum transaction value per day

reached

– 60026 Unable to complete transaction as maximum transaction value per month

reached

– 60017 Unable to complete transaction as amount is more than the maximum

limit

– 00410 Unable to complete transaction as amount is more than the maximum

limit

– 60014 Unable to complete transaction as maximum transaction value per day

reached

– 60016 Unable to complete transaction as maximum transaction value per day

reached

– error012 Amount is out of the range set for purchased in a single transaction
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• Insufficient balance

– 60019 Unable to complete transaction as account would go below minimum

balance

– error013 insufficient balance to complete transaction

– elec001 The specified customer has been blocked by Credit Control

• 00042 Requested amount not in multiple of allowed value



Appendix C

Ward-Level Feature Maps

The following maps for ward-level statistics on socio-economics, land use density, land use

diversity and mobility patterns were generated using CDR and MFS data as well as from

external ground reference data as discussed in more detail in Chapter 6.
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Figure C.1: Average trajectory distance across wards within the metropolitan area of Dar
es Salaam



266 Chapter C. Ward-Level Feature Maps

Figure C.2: Percent low-income across wards within the metropolitan area of Dar es
Salaam
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Figure C.3: Percent medium-income across wards within the metropolitan area of Dar es
Salaam
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Figure C.4: Percent high-income across wards within the metropolitan area of Dar es
Salaam
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Figure C.5: Spending uptake across wards within the metropolitan area of Dar es Salaam
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Figure C.6: Gender split across wards within the metropolitan area of Dar es Salaam as
percentage female
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Figure C.7: Network event density across wards within the metropolitan area of Dar es
Salaam
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Figure C.8: Land use mixture across wards within the metropolitan area of Dar es Salaam
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Figure C.9: Percent residential across wards within the metropolitan area of Dar es Salaam
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Figure C.10: Wards of Kibamba, Mabwepande, Somangila, Kisarawe II and Mbezi as
the only wards within the metropolitan area of Dar es Salaam classed as entirely non-
residential through their Voronoi intersections
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Figure C.11: Number of inbound trips across wards within the metropolitan area of Dar
es Salaam
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