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Abstract 

The vibration of microlitre sized drops in partial contact with a substrate was 

used to extract the rheological properties of multicomponent fluids. Sessile 

and pendant drop vibration was triggered using a short mechanical impulse. 

Sessile drops were supported on superhydrophobic surfaces and their vibration 

monitored using laser light, refracted through the drops and focussed on the 

sensor of a photodiode. Pendant drops were suspended from clean pipette tips 

and their vibration was recorded using a high speed camera. Time dependent 

photodiode intensity/centre of mass variations were Fourier transformed to 

extract the frequency and spectral widths of vibration.

The vibration of aqueous glycerol sessile drops was tracked in real time as the 

drops evaporated. The changing surface tension and viscosity were extracted 

using a simple model describing the vibration of a viscous sessile drop. The 

values of surface tension and viscosity obtained for initial bulk solutions were 

shown to be in good agreement with literature values, however evaporating 

drops showed signs of surface contamination after ∼300s.

The vibration of sessile drops of aqueous poly(acrylamide-co-acrylic acid) so-

lutions was used to calculate the shear storage and loss moduli using a sim-

ple theoretical model. The resulting rheological properties were found to be in 

agreement with microrheology measurements of the same solutions. The model 

was also applied to pendant drops of aqueous poly(acrylamide-co-acrylic acid). 

The majority of the rheological data measured for the pendant drops agreed 

with microrheology and sessile drop data. Drop vibration therefore provides 

an accurate method of quantifying the rheological properties of single drops in 

short time.
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CHAPTER 1

Motivation

Understanding how the resonant frequency and oscillation amplitude of capil-

lary waves influence droplet atomisation [1, 2] provides insight into fuel injec-

tion [3], spray cooling and coating [4], and nebulization [5]. Drop vibration has 

also been used in the mixing and demixing of fluids [6, 7], the understanding 

and manipulation of drop motion (or ratcheting) on surfaces via the overcom-

ing of surface pinning and contact angle hysteresis [8–12], and as a tool for 

measuring the frequency dependent rheological properties of simple and vis-

coelastic liquids [13–16].

Conventional techniques for measuring the rheological properties of liquids 

are often restricted to measuring only one property at a time (e.g. viscosity 

or surface tension for simple liquids), and require millilitre volumes to be 

available [16–20]. The vibrated drop method of rheology can quickly and 

simultaneously measure the mechanical properties of small volumes of fluid 

(< 50µL) [16]. Levitated viscous [21–24] and viscoelastic drops [15, 25] have 

been used for drop vibration rheometry, however these are expensive and 

difficult to set up.

More accessible geometries include substrate supported (sessile) [16, 26–31] 

and suspended (pendant) [14, 32–34] drops. The rheological properties have 

been extracted from sessile drops placed on superhydrophobic substrates [16,

30, 35] and pendant drops suspended from pipette tips [32].

Droplet vibration rheometry has the potential to be applied to the analysis 

of fluids whose composition changes over time, tracking the surface tension, 

viscosity and viscoelastic properties of droplets with little external influence on 
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CHAPTER 1: MOTIVATION

the liquid. As such, the technique has a future in forensic and medical analyses, 

for example, measuring the coagulation rate of a small sample of blood or 

the measurement of time dependent changes in the rheological properties of 

aggregating protein solutions. This work aims to validate this technique as 

a means of tracking material properties of soft systems in real time. The 

vibrational behaviour of aqueous glycerol drops was tracked as the evaporating 

solvent caused the composition (and rheological properties) of the drops to 

change.

Very few papers have been published discussing the extraction of the rheologi-

cal properties of viscoelastic drops via the drop vibration technique [15, 33, 34]. 

The study of vibrating viscoelastic drops can provide further insight into the 

dynamics of atomic nuclear vibrations [36], crustal deformation of planets 

[37, 38], and energy relaxation mechanisms in neutron stars [39]. This work 

aims to show that the drop vibration technique may be applied to extracting 

the rheological properties from viscoelastic sessile drops on superhydrophobic 

substrates, as well as from small (< 30µL) viscoelastic pendant drops.
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CHAPTER 2

Introduction

Rayleigh [40] developed equations to describe the vibration of simple liquid 

drops as they are ejected from orifices of various shapes. Equation 2.0.1

describes the vibration of drops ejected into a vacuum from a circular orifice,

f 2 =
(n3 − n)γ
4π2ρR3 , (2.0.1)

with frequency of vibration f (Hz), resonance mode number n, surface tension 

γ, density ρ, and drop radius R.

Later, Lamb [41] produced a similar equation (Equation 2.0.2) to describe the 

capillary vibration of a small fluid drop submerged in an immiscible fluid (such 

as a water drop in air) in response to a small perturbation:

f 2 =
n(n − 1)(n + 1)γ

3πρV
, (2.0.2)

with droplet volume V= 4
3 πR3. In this equation the density of the surrounding 

fluid is assumed to be much less than the density of the drop.

Chandrasekhar [42] and Lamb [43] expanded on this to produce equations 

describing the damping of a spherical drop with arbitrary viscosity (Equation 

2.0.3):

∆ f ∼ η

ρR2 , (2.0.3)
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CHAPTER 2: INTRODUCTION

where ∆ f = 1
τ is a coefficient of decay (or the width of the vibrational 

mechanical resonance peak at half height) in the frequency domain, τ is the 

time constant of decay, i.e. the time for the vibration amplitude to fall to 1/e of 

the original amplitude (see Figure 2.1), and η is the fluid viscosity.

Figure 2.1: The top panel shows the vibration spectrum of a sessile water drop with 

amplitude A0 at initial time τ0 and amplitude A0
e after decay time τ. The 

bottom panel shows the corresponding Fourier transform, defining the 

frequency of vibration as f (position of the peak maximum) with the 

coefficient of decay in the frequency domain, ∆ f = 1
τ , as the width of 

resonant peaks at half height (full width at half maximum).
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CHAPTER 2: INTRODUCTION

In experiments on the applicability of vibrating drops to containerless crystalli-

sation in microgravity, the Rayleigh and Lamb equations have been used to cal-

culate the vibration frequency and damping of simple [22, 23, 44] and viscous 

[21, 45] levitated drops. Rearranging these equations has allowed researchers to 

extract the surface tension [46] and viscosity [21] from vibrated levitating drops. 

The use of drop vibration to measure the surface tension and viscosity of a fluid 

is not only fast when compared to other methods, such as the drop volume 

technique [17], but allows the use of significantly smaller volumes of material. 

Levitated drops do, however, require expensive and complicated equipment. 

In order to suspend a droplet as if in space the effects of gravity must be miti-

gated. This is usually done with the use of electrostatic repulsion [47], magnetic 

levitation of diamagnetic fluids [15], and acoustic levitation [44].

Figure 2.2: A sessile drop of high contact angle θ (defined as the three phase contact 

angle between the sessile drop and the surface it is resting on) with profile 

length l. The average height h of the drop, defined by Equation 2.0.6, is 

(in this case) a little over half the apex height of the drop.

Sessile drops and pendant drops are an attractive alternative. For drops with 

radius smaller than the capillary length lc =
√︂

γ
ρge f f

(where ge f f is the effec-

tive gravity acting on the drop), surface tension forces dominate and the effects 

of gravity become negligible. Such small drops have been placed on super-

hydrophobic surfaces (with contact angle close to 180°, Figure 2.2) in order to 
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CHAPTER 2: INTRODUCTION

closely mimic the shape of a levitating drop [35], however the vibrational be-

haviour of the drops has been shown to be impacted by the presence of a sub-

strate [16, 26, 30, 48].

Strani et. al. [26] performed a mathematical analysis for the vibration of a simple 

drop in partial contact with a substrate, representing a bed for crystal growth. 

They found an additional low frequency mode (when compared to levitated 

drop modes), which corresponds to centre of mass (CoM) motion from contact-

line depinning and drop motion across a substrate (Figure 2.3a) or from fluid 

compressibility allowing the drop to expand and contract during oscillation 

2.3b.

Lyubimov et. al. [49] described the vibration behaviour of an ideal hemispheri-

cal sessile drop with pinned contact line (see Figure 2.3) using Equation 2.0.4,

f 2 =
γω̃2

n
6πm

, (2.0.4)

with droplet mass m=ρV, and ω̃n being the roots of

F(ω̃n) =
∞

∑
n=1

(︃
n(4n + 1)

ω̃2
n − 4n(2n − 1)(n + 1)

)︃(︃
(2n − 1)!!

2nn!

)︃2

= 0.

Whilst this equation is very accurate for sessile drops with contact angles lower 

than 90°, it is not reliable for hydrophobic surfaces [50].

For contact angles > 90°, Mettu et. al. [50] found an equation from Noblin to be 

more accurate. Noblin [51, 52] suggested that the vibration of a small liquid 

drop (with pinned contact line) at resonance must have a half integer number 

of wavelengths around the surface of the drop (Figure 2.3), i.e. n = 2l
λ (profile 

length l, wavelength λ). To simplify the complex three-dimensional system of 

waves on a curved surface, Noblin considered the surface vibrations on sessile 

drops in the form of one dimensional capillary-gravity waves on a bath of 
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(a) n=1, mobile contact line (b) n=1, pinned contact line

(c) n=2, pinned contact line (d) n=3, pinned contact line

Figure 2.3: Diagrams of vibrating sessile drops with a half integer number of wave-

lengths around the profile. The panels show the n = 1 (mobile and pinned 

contact line, top left and top right), 2 (pinned contact line, bottom left), 

and 3 (pinned contact line, bottom right) modes of oscillation. The oscil-

lation amplitude is 15% of the drop radius.

For the depinned sessile drop in the n=1 mode, the single node occurs at 

the top of the drop, with antinodes occurring at the mobile contact line 

between the drop and the surface. The pinned drop in the n=1 mode ex-

pands and contracts during oscillation. The n=1 mode demonstrates a 

moving centre of mass in both situations. The later modes (n = 2 and 3) 

involve fluid shifting around the drop so that volume is preserved during 

vibration and the centre of mass remains stationary.
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height h. Noblin derived Equation 2.0.5 to describe the frequency of vibration 

for an ideal sessile drop, with negligible influence from gravity:

f 2 =
n3πγ

4ρl3 tanh
(︃

nπh
l

)︃
, (2.0.5)

where h is the average height of the drop at equilibrium, defined by Equation 

2.0.6 (Figure 2.2). The average height can be calculated using a weighted 

average of the heights for all points within the drop.

A contact angle dependent variation of the Noblin equation (Equation 2.0.5) 

was developed by Sharp et. al. [30], who derived an equation for calculating the 

average height (Figure 2.2) of a pinned sessile drop with radius of curvature Rc

and three phase contact angle θ:

h = Rc

(︃
sin θ

θ
− cos θ

)︃
, (2.0.6)

for which Rc =
l

2θ = nλ
4θ . For a spherical drop (θ = 180°) the average height 

would be equal to the drop radius.

The presence of a substrate influences the damping forces acting on a vibrating 

drop in addition to viscous dissipation effects. Sharp [16] compared the damp-

ing of vibration in pinned sessile drops of glycerol in water to theories of energy 

dissipation resulting from substrate effects [53], surface contamination effects 

[54, 55] and bulk viscous effects [1, 56, 57]. They found that (over timescales 

of ∼ 3s) the majority of damping within the vibration of a viscous sessile drop 

could be described most accurately by bulk damping equations ( ∆ fbulk, Equa-

tion 2.0.7), with substrate (boundary layer) damping ( ∆ fwall, Equation 2.0.8) 

having an increasing influence for contact angles less than ∼71°.

∆ fbulk =
2ηπ2n2

ρl2 , (2.0.7)

∆ fwall =
2
l

(︃
π f η

ρ

)︃1/2

. (2.0.8)
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For drops smaller than the capillary length, the already derived sessile drop 

equations can be applied to the pendant drop geometry [58]. Temperton et. al.

[32] applied the Noblin equation (Equation 2.0.5) for the vibrational frequency 

of a sessile drop and a bulk viscous dissipation coefficient from Landau et. al.

[56] to the vibration of viscous pendant drops smaller than the capillary length. 

Using these equations, they were able to calculate surface tension and viscosity 

values in agreement with literature values.

The vibrational and rheological properties of viscoelastic droplets are also of 

interest in the study of polymer, biopolymer and protein solutions. Akimoto 

et. al. [59] used an analytical method to calculate the viscosity of levitated vis-

coelastic drops. The rheological properties of viscoelastic fluids are, however, 

better described using the frequency dependent shear storage and loss moduli 

(G′ and G′′ respectively). Khismatullin et. al. [24], investigated the frequency 

and damping of viscoelastic drop vibration and found both to be influenced by 

the presence of elasticity. Measurements of the frequency and damping of drop 

vibration are therefore capable of providing information about G′ and G′′ for 

viscoelastic solutions. Temperton et. al. [15] used a dispersion relation for sur-

face capillary waves on a semi-infinite viscoelastic medium, derived by Pleiner 

et. al. [60], to describe small amplitude vibration of viscoelastic levitated drops 

(Equation 2.0.9):

4π2ρ( f + i∆ f )2 =
4i( f + i∆ f )(G′′( f )− iG′( f ))k2

f
+ γk3, (2.0.9)

with surface wavevector magnitude k= 2π
λ .

For vibrating levitating drops, waves are continuous around the surface and an 

integer number of vibrational wavelengths must fit around the circumference, 

i.e. nλ= 2πR, where R is the drop radius [15]. Inserting this result into Equa-

tion 2.0.9, Temperton et. al. [15] derived expressions to extract the frequency 

dependent shear storage and loss moduli (Equations 2.0.10 and 2.0.11) from 

vibrating levitated drops:

G′( f ) =
π2ρ f 2R2

n2

(︃
1 − γn3

4π2ρR3(∆ f 2 + f 2)

)︃
, (2.0.10)

9
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G′′( f ) =
π2ρ f ∆ f R2

n2

(︃
1 +

γn3

4π2ρR3(∆ f 2 + f 2)

)︃
. (2.0.11)

By varying the size (and hence the resonant frequency, Equation 2.0.1) of vi-

brated drops, G′ and G′′ can be measured at multiple frequencies. Temper-

ton et. al. [15] showed that when setting G′= 0 in Equation 2.0.10 (simulat-

ing purely viscous drops), the corresponding frequency and width equations 

are consistent with derivations made using the techniques described above 

[16, 40–42, 51]. In order to simulate purely elastic spheres, Temperton et. al.

[15] set G′′= 0 in Equation 2.0.11 and assumed that the effects of surface tension 

on sphere vibration would be negligible, deriving an estimate for the speed of 

sound within the sphere that was within a factor of two of the speed of sound 

through an elastic medium.

Whilst, to our knowledge, no theory exists to accurately describe viscoelastic 

drops in contact with a substrate, the approximations used to relate near 

spherical viscous sessile drops to viscous levitated drops can be repeated for 

viscoelastic drops with small solid-liquid contact area, i.e. sessile or pendant 

drops. Equations for the shear storage and loss moduli of sessile/pendant 

drops may be approximated by substituting the relation k = 2π
λ = nπ

l (from 

Noblin’s sessile drop condition λ= 2l
n ) into Equation 2.0.9. These equations do 

not have a factor accounting for boundary layer damping, however should be 

a good approximation for sessile drops with high contact angle or for pendant 

drops, as seen with simple liquids [16, 32].

2.1 Thesis structure

This thesis will first describe the experimental techniques used over the course 

of this research (Chapter 3). The following chapter (Chapter 4) explores the 

application of sessile drop vibration on a superhydrophobic substrate to moni-

toring the surface tension and viscosity of a multicomponent viscous droplet as 

the composition of the drop changes in real time. Chapter 5 aims to show that 

the drop vibration technique may be applied to the extraction of the rheologi-

cal properties from viscoelastic sessile drops on superhydrophobic substrates. 

The technique is then applied to the rheometry of viscoelastic pendant drops 

10
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in Chapter 6, and differences between pendant and sessile drop vibration are 

discussed. A summary of findings is presented in Chapter 7. Finally, Chapter 8

suggests areas of research that might be explored in the future.
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CHAPTER 3

Experimental techniques

3.1 Solution preparation

Solutions were prepared by weight using an analytical balance with draft shield 

(Ohause Pioneer PX, 0.0001g precision) and stored at room temperature in 

glass sample vials wrapped in Parafilm®. Glycerol (ReagentPlus® ≥ 99.0%, 

Sigma, UK) was mixed with deionised water (from an ELGA water purification 

system) to obtain solutions with concentrations of 1, 5, 25 and 50wt% glycerol 

in water with a relative error of 0.02. Poly (acrylamide-co-acrylic acid) powder 

(PAA, Mw = 5MDa, Sigma, UK) was dissolved in deionised water and made up 

to concentrations of 1.1, 2 and 3wt% PAA in water with a relative error of 0.035. 

The overlap concentration for this polymer [61] is ∼ 0.1wt% and as such all of 

the PAA solutions studied contain overlapping chains.

3.1.1 Evaporation rate of glycerol and water

The evaporation rate from a small orifice is given by

r = 3.45p

√︃
Mw

T
gmin-1cm-2, (3.1.1)

where r is the rate of evaporation per unit area, p is the vapour pressure at 

temperature T (Kelvin) in mmHg, and Mw is the molecular weight relative to 

hydrogen [62].

In the glycerol-water system, at T = 293K:

12
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p = 0.14mmHg at 18°C for pure glycerol and Mw = 92 [62] so

r = 3.45 ∗ 0.14

√︃
92
193

= 0.3335 gmin-1cm-2. (3.1.2)

For water p = 2.3392kPa [63] = 17.55mmHg, Mw = 18, so

r = 3.45 ∗ 17.55

√︃
18

193
= 18.4907 gmin-1cm-2. (3.1.3)

For short (1s) experiments, only 0.3g of water would be expected to evaporate 

from a 1cm2 surface.

3.2 Surface preparation

The surface on which a sessile drop rests influences the three phase contact 

angle (θ, defined by Figure 2.2) and hence the vibrational properties of a sessile 

drop. Changing the contact angle affects the solid-liquid contact area of drops 

of a fixed volume, influencing the surface/frictional damping forces acting on 

the drop vibration.

3.2.1 Glass substrates

Glass slides (Thermo Scientific Menzel Gläser, 76 x 26mm, 1mm thick) were 

sonicated (using a Langford Sonomatic 375 from Agar scientific) in toluene, 

rinsed in deionised water, and dried using a nitrogen air gun. The glass 

was then scribed using a glass cutter (Kennedy 130mm glass and tile cutter, 

Tungsten Carbide) and split into ∼ 20mm squares. The slides were placed on 

fresh lens tissues between scribing and splitting to reduce the risk of surface 

contamination. Dust left on the surfaces by the scribing technique could be 

removed using a nitrogen air gun and slides stored in slide boxes until used to 

create superhydrophobic surfaces.

13
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3.2.2 Candlesoot surfaces

Fluorinated candlesoot surfaces were received from Maxime Paven (Max Planck 

Institute for Polymer Research), having been prepared on glass surfaces in a 

similar way to that described by Deng et. al. [64, 65]. Candlesoot surfaces can 

be produced by holding a glass slide over a lighted (paraffin) candle flame. 

Holding a glass slide in the yellow region of the flame ensures an even and 

well ’bonded’ layer of soot is formed. The soot produced is superhydrophobic 

(θ>160°, see Section 3.3) but mechanically unstable so it is combined with silica 

to stabilise the surface [64].

The candlesoot coated slides were placed in a vacuum jar (previously filled with 

nitrogen to evacuate airborne impurities) with open dishes of 2mL tetraethoxy-

silane (TEOS, Sigma-Aldrich, 98%) and the catalyst, 2mL ammonium hydrox-

ide (VWR, 28%) [64]. The vacuum is turned on briefly to mist the solutions in 

the dishes, after which it is turned off and vapour deposition occurs over 72 

hours at room temperature.

Figure 3.1: Schematic diagram illustrating the sample preparation procedure for su-

perhydrophobic surfaces. (1) Candle soot is collected on a substrate by 

annealing glass in the flame of a paraffin candle. (2) Silica is deposited 

via chemical vapour deposition (CVD) of tetraethoxysilane (TEOS). (3) 

Sintering combusts the soot template leading to soot-templated silica 

surfaces. (4) Hydrophobization with a fluorosilane results in superhy-

drophobic surfaces.

14
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After 24 hours, an even (∼20 ± 5nm thick [64]) shell of silane was formed over 

the candlesoot and did not significantly increase over longer periods of time. 

The resulting substrates were annealed at 1000°C in the centre of a tube furnace 

for 3 hours to calcinate the soot and form a fractal-like silica network on the 

surface (see Figures 3.1 and 3.2). The substrate was returned to a vacuum jar 

for further chemical vapour deposition of a semi-fluorinated silane, with an 

open beaker of 0.1mL (tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane 

(Sigma, 97%) for 3 hours, at a pressure of 25mbar and room temperature [64]. 

At the end of 3 hours the chamber was evacuated under vacuum for 1 hour 

to remove any unreacted silane. The resulting substrates had an advancing 

contact angle of 180± 2°, a receding angle of 166± 2° and a roll-off angle of less 

than 2° for water [65].

Figure 3.2: A scanning electron microscope image of the surface of a superhydropho-

bic substrate.

3.3 Vibration of sessile drops

For small (smaller than the capillary length, Chapter 2) drops placed on super-

hydrophobic surfaces (Section 3.2), with a three phase contact angle of ∼ 180° 

(Figure 2.2), their shape, and therefore behaviour, can be approximated to that 

of a spherical drop with a small deviation resulting from the presence of a 

surface [35] and they remain approximately spherical during free vibration. If 

the drop dimensions are larger than the capillary length, gravitational force 

15



CHAPTER 3: EXPERIMENTAL TECHNIQUES

has a significant effect on the drop shape and vertical vibration would become 

antisymmetric as additional forces act on the drop’s downward motion [66].

Although a driving force (or mechanical impulse) may be applied vertically or 

horizontally, horizontal vibration increases the chance of the drop overcoming 

contact angle hysteresis and slipping across the surface [9, 66]. This makes its 

vibration harder to monitor as the drop position changes relative to the camera 

or laser (Sections 3.6 and 3.7), and changes the dynamics of the oscillating 

system [16, 30, 32, 48, 65] (see also Section 3.9). The triple phase contact angle 

is no longer steady around the drop contact line [67], and the frictional forces 

influencing vibration damping are increased under horizontal vibration. For 

the purpose of contact angle and stationary contact line analysis (see Section 

3.5), it is easiest to work with a pinned drop under purely vertical vibration. 

Low amplitude vertical vibration allows a drop to remain pinned to the surface 

[67]. The fundamental frequency for such a drop can be described by the mode 

number n=2, provided it is incompressible [16, 30, 32, 48, 65] (see also Section 

3.9).

Individual sessile droplets were carefully placed onto horizontal candlesoot 

substrates which had been affixed to an SF-9324 mechanical wavedriver (Pasco 

Scientific, see Figure 3.3b) using double sided tape. A short vertical mechanical 

impulse (∼ 5ms, 1V or ∼ 0.5mm amplitude, "top hat" square wave pulse) 

was applied from below using the wavedriver which was driven using a USB-

6211 data acquisition card (National Instruments) via a custom built amplifier, 

connected to a computer running LabView Software (National Instruments). 

After this pulse was applied, mechanical vibration was observed on the surface 

of the drops. In these experiments, the small regions of contact between 

the droplets and the substrate were observed to remain pinned during drop 

vibration.
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(a)

(b)

(c)

Figure 3.3: Panel (a) shows a diagram of the sessile drop laser optovibrometry 

setup. A drop rests on a surface on a mechanical wavedriver while a 

laser sends a beam through the drop and the refracted beam projects 

onto a photodiode on the opposite side. A camera is set up in front 

of the drop with a back light beyond. Above the drop a pipette tip is 

suspended for application of fresh drops. Superimposed on the diagram 

of the photodiode is a photograph of a fan refraction pattern projected 

onto the photodiode.

Panel (b) shows a labelled photograph of the same setup from a different 

angle. The surface is in the centre resting on the mechanical wavedriver, 

with the laser targeted towards the surface and a photodiode beyond. 

A camera and a back light are set up on opposite sides to one another 

across the surface. The inset (c) shows a photo of a sessile drop on a thiol 

surface from above. The refracted laser beam exits the drop at the top of 

the image.
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3.4 Vibration of pendant drops

If a drop is smaller than the capillary length, the physical system can be 

considered to be the same whether the surface is above or below the drop 

(Chapter 2). The pendant drop system involves a similar setup to that of a 

sessile drop, but in this case a surface or pipette suspends the drop upside down 

[32, 68]. When a pipette is used, the "surface" on which a drop rests consists of 

a liquid or gaseous reservoir surrounded by a solid ring, i.e. the pipette tip 

(Figure 3.4). To minimise the physical impact of the reservoir on drop vibration 

during these experiments, it was required that the liquid reservoir within the 

(translucent) pipette tip be deeper than the height of the drops and as consistent 

in depth as possible between experiments [69].

Figure 3.4: A diagram of a reservoir of liquid within a pipette tip from which is 

suspended a pendant drop. To the right of the image is a diagram of 

the "surface" from which a pendant drop hangs. The surface consists of a 

liquid reservoir surrounded by a solid ring formed by the pipette tip.

For the pendant drop experiments (Chapter 6) a retort stand was set up with 

a clamp to suspend a pipette (Gilson Pipetman, 2 - 20µL) in front of a diffuse 

white light source. The pipette tip (Gilson D1000, 1000µL) passed through 

a hole in a ∼ 1cm diameter metal bar connected to a mechanical wavedriver 

(Pasco Scientific SF-9324), at a height that snugly fit the tip (Figure 3.5, 1 - 2cm 

from the base of the pipette tip). This wider pipette tip was chosen to increase 

the maximum size of pendant drops on which the experiment could be carried 

out without the drops detaching or being drawn up the outer surface of the 

pipette tip [70, 71]. It was important for this that the tip be firmly attached to the 
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pipette with no leaks, otherwise the pressure within the tip could vary during 

experiments. Once a disposable tip had been attached to the pipette, the point 

of attachment between the tip and the pipette was surrounded by Parafilm® 

to improve the seal (inset in Figure 3.5). The tip was packed into the metal bar 

with blu tac to improve tip damping and reduce vertical motion while allowing 

drops suspended from the end to vibrate. A retort stand clamp was placed at 

the top of the pipette, and was gently tightened to prevent it from shifting, but 

kept loose enough to prevent the tip from detaching. A clean pipette tip and 

syringe were used for each concentration of solution.

Figure 3.5: A photo of the pendant drop equipment setup. A pipette tip passes 

through a metal bar connected to a mechanical wavedriver and the end of 

the tip sits between a backlight and a camera. The inset shows a zoomed 

in image of the connection between the pipette and the tip, which has 

been sealed with Parafilm®.

Despite these precautions, drops with higher PAA concentrations had a ten-

dency to be drawn up the inside of the pipette tip or to draw fluid from within 

the tip into themselves [69]. This resulted in rapidly changing drop sizes that 

could not be relied upon for accurate measurements. The pipette tip was there-

fore pre-filled with a 20µL reservoir of solution (Figure 3.4) and drops were 

carefully added to the end of the pipette using a fresh syringe (2.5mL Luer Slip, 

Terumo) with a needle (BD Microlance™ 3). If a drop was drawn up into the 

tip, more solution was added until an even pressure distribution between the 
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fluid within the pipette and the atmosphere outside the pipette was achieved 

and a consistent drop shape was reached [72]. It was only necessary to per-

form this initial stabilisation once for each experimental set, after which drops 

could be carefully removed using lens cleaning tissues (Whatman™) and new 

drops placed, ready to repeat the experiment. By this method, drops of 1.1%, 

2% and 3% PAA in water, with profile lengths ranging from 2mm to 11mm 

were placed with minimal (∼5% volume change) shrinking or growth over the 

timescales required for the experiments. Mechanical vibration was instigated 

via a short (∼5ms, 1V or ∼0.5mm amplitude top hat pulse) horizontal impulse 

(using the mechanical wavedriver setup described in Section 3.3) applied to the 

pipette tip, after which the droplets were observed to vibrate naturally at their 

resonant frequencies.

3.5 Drop shape parameters

For the droplets studied here, the profile length, l, could have been approxi-

mated to the circumference of the drop i.e. l ∼ 2πRc (where Rc is the droplet 

radius of curvature). The analysis described in Section 3.9 could therefore be 

performed using Rc or the mass of the drop as the parameter which quantifies 

the size of the drop [16, 30, 32]. However, the profile length was chosen for this 

work because its relationship to the drop radius of curvature mentioned above 

only holds for contact angles close to 180°. Use of the profile length allowed 

deviations in the contact angle to occur away from 180° without them signifi-

cantly influencing the data analysis. This reduced the uncertainties associated 

with the measured values of the drop size/profile length.

A Genie HC-640 C camera (Teledyne Dalsa, see Figure 3.3b) with a CCTV lens 

with variable focal length (Tamron, 1/2" aspherical, Focal length 10 - 40mm) 

attached was connected to the computer via an ethernet cable and used to 

image the drops, which were illuminated from behind by a diffuse white light 

source. A MatLab program was used to identify the outer edge of the drops 

and measure their profile length (see Figure 2.2). The images were binarised 

(converted to black and white) with the luminance threshold chosen to obtain 

a complete profile of the drop, as close to 0.5 (the threshold used for the 

calibration images) as possible.
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(a)
(b)

Figure 3.6: Panel (a) shows an image of a ruler suspended in focus above a sessile 

drop. Several mm markings are visible on the ruler. A red line indicates a 

7mm separation on the ruler. The profile length of the drop (l) is indicated 

by a purple line around the contour of the drop, the contact angle (θ) is 

the angle between the substrate and the tangent to the drop as the drop 

meets the substrate, calculated using Equation 3.5.1. The apex height (hA) 

is measured at the top of the drop, the base radius (RB) is the radius of 

the drop base and the drop radius (Rc) is the radius of curvature for the 

drop.

The upper image in panel (b) shows a pendant drop silhouette used 

to extract the profile length of a pendant drop with known pipette tip 

diameter, 1.42mm. The lower image in panel (b) is a photo of the ruler 

suspended above a sessile drop.
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Sessile drop (Section 3.3) images were calibrated (and the number of pixels per 

mm determined) using a ruler held above the drop (see Figure 3.6). For pendant 

drops (Section 3.4), the images were calibrated by measuring the pipette tip 

width using the camera (upper image in Figure 3.6b, the diameter of the pipette 

tip is known). This method agreed with measurements taken from photos of a 

ruler placed beneath the tip.

The contact angles for drops with base radius RB and apex height hA (See Figure 

3.6a) were measured using the relation

tan θ =
RB

Rc − hA
, (3.5.1)

where (Rc − hA) is the perpendicular distance between the centre of the chord 

defined by the surface and the centre of the circle describing the drop. Equation 

3.5.1 is the tangent equivalent of the equation derived by O’Brien et. al. [73] for 

drops smaller than the capillary length:

θ = cos−1
(︃

1 − hA

Rc

)︃
. (3.5.2)

3.6 Laser Optovibrometry

For laser optovibrometry, laser light (3mW, 670nm, Edmund Optics) was tar-

geted at a drop suspended from a pipette tip or resting on a horizontal surface 

(Figure 3.3). The drop acted as a convex lens (Figure 3.7) and the light refracted 

through the drop projected a refraction pattern [74] (photo overlaid onto pho-

todiode in Figure 3.3a) on a photodiode sensor (custom built, maximum 5V), 

beyond the drop. A neutral density filter (ThorLabs, optical density 1.0) was 

placed over the laser to reduce the light intensity incident on the photodiode. 

In order to counteract any refraction through the filter, a lens (ThorLabs, plano-

convex ⌀1", 150mm focal length) was also attached to the laser, which had the 

added benefit of focussing the laser at the drop. Drops were vibrated as de-

scribed in Sections 3.3 and 3.4.

As the free surface of the drop vibrated, the ’lens’ changed shape (Figure 3.8) 

and the refracted light moved across the photodiode, changing the measured 
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(a) (b)

Figure 3.7: Panel (a) shows a photograph of a sessile drop’s profile with a diagram 

of horizontal laser light approaching this drop at different heights and 

refracting within the drop, causing the light to converge to a focal point 

beyond the drop. Panel (b) shows an equivalent diagram of light passing 

through a convex lens. The light again converges at a focal point beyond 

the drop but in front of a surface onto which the refraction pattern would 

be projected.

Figure 3.8: Three states of the same mode of the vibration of a sessile drop superim-

posed over one another, taken shortly after vibration was first triggered 

(within the first three periods). The top of the drop moves above (teal bor-

der) and below (purple border) that for the same drop at rest (yellow bor-

der) by approximately one sixth (∼0.4mm) of the apex height (∼2.9mm).
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intensity. These intensity variations were recorded at a sampling rate of 1kHz 

over a 2 - 3 second period using the same data acquisition card used to generate 

the mechanical impulse. The photodiode’s output (Figure 3.9a) was read into 

LabView and displayed in the form of an intensity vs time curve and its 

corresponding fast Fourier transform (FFT), giving the mechanical vibrational 

spectrum of the droplet (Figure 3.9b).

Final processing was performed in MatLab, collecting the frequency and decay 

of oscillation from this spectrum. This was done by isolating the first peak 

in the FFT, extracting the peak frequency (referred to as the frequency, f ) and 

measuring the full width of the peak at half the maximum height (FWHM, also 

referred to as the [peak] width, ∆ f ), shown in Figure 3.9b. These frequencies 

and widths were used to calculate the rheological properties of the vibrated 

drops.

(a) (b)

Figure 3.9: Panel (a) shows a plot of the light intensity on the photodiode vs time 

(s) for drops of 0.25% PAA in water (black line, below) and 1.1% PAA in 

water (purple line, above) with profile lengths of 8.27mm and 8.36mm 

respectively. The vibration amplitude of 1.1% PAA is damped much 

faster than that of 0.25% PAA (within 0.2s rather than 0.6s). Panel (b) 

shows a portion of the fast Fourier transform of the data in panel (a) with 

a diagram to show how the peak frequency and the full width at half 

maximum (FWHM) of said peak are calculated. The peak for 1.1% PAA 

is at a higher frequency and wider than that for 0.25% PAA.
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3.7 Video capture

Another technique used for monitoring drop vibration was to record the motion 

of the drop using the high speed camera set up described in Section 3.5. The size 

of the region imaged by the camera was restricted to the area surrounding the 

drop in order to closely fit it as it vibrated (Figure 3.10). This allowed a much 

higher frame rate to be achieved than if the image were left at 480 x 640 pixels 

(A frame rate of 800fps can be achieved at 280 x 180px, 700fps at 280 x 200px). 

Drop vibrations were triggered as described in Sections 3.3 and 3.4. The camera 

was used to record drop vibration for a period of 1s, at a high frame rate 

(300 - 800fps). These videos can be analysed to track drop height (Figure 3.11a), 

side position or centre of mass (Figure 3.11b).

Figure 3.10: Overlayed images of pendant drops of 3% PAA with drop profile 

lengths 3.2mm, 5.2mm and 10.5mm. The pipette tip has a diameter of 

1.48mm at the base.

From the experiment videos, the position of the centre of mass (CoM) of drops 

was tracked during their vibration (Figure 3.11b). A "normalised CoM", defined 

as the displacement of the CoM from the origin (the top left corner of the 

image), relative to tip position, was obtained by subtracting the tip position 

from the CoM of the drop. As the majority of drops experienced horizontal 

vibration (insets in Figure 3.12), the horizontal normalised CoM (nCoMx) was 
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used in further analysis. The drop vibration behaviour was estimated from the 

nCoMx by fitting Equation 3.7.1 to the nCoMx with 95% confidence,

f itcurve = A1e−d f1∗2πt cos( f1 ∗ 2πt + b1)

+A2e−d f2∗2πt cos( f2 ∗ 2πt + b2)

+A3e−d f3∗2πt cos( f3 ∗ 2πt + b3) + c.

(3.7.1)

Here 0 < Ai < 10 is the vibration amplitude, 0 < d fi < 200 is the vibration 

damping coefficient, 0 < fi < ∞ is the vibration frequency, 0 < bi < 2π is the 

phase shift of vibration from the origin and 0< c<10 is a constant. The time, t, 

is the time from start of vibration [16, 75].

(a)

(b)

Figure 3.11: The upper panel (a) includes three frames showing the changing shape 

of a sessile drop of 2% PAA in water as it vibrates. The top is highlighted 

in each frame and prior drop positions are highlighted in later frames to 

show the changes in height.

The lower panel (b) shows a black and white image of three superim-

posed images of an oscillating pendant drop. The drop boundaries are 

highlighted in purple, green and red. The centre of mass for each image 

is marked by ’x’ symbols of the same colour. The profile length of the 

purple (central) drop is 5.2mm.
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The decision to fit three harmonic functions was made based on the presence 

of multiple oscillations resulting from external influences (such as background 

light intensity oscillation and pipette tip vibration). The value of f3 was 

often similar to the other frequencies ( f1 or f2) or extremely low (∼ 1Hz), 

and the size (width) of the confidence bounds was significantly (often two 

orders of magnitude) larger for f3. Fitting more frequencies would increase 

the processing time without significantly improving results.

This fitted equation was plotted on top of the nCoMx data (nCoMx displace-

ment vs time) to allow the user to view the level of agreement between the data 

and the fits (top panel in Figure 3.12). This method was found to be less reliable 

for drops vibrating at multiple frequencies (e.g. drops for which higher reso-

nance modes were not rapidly damped) so the frequency and width of drop 

vibration were instead extracted directly from an FFT of nCoMx (bottom panel 

in Figure 3.12, see also Section 3.6), and the fit from Equation 3.7.1 was reserved 

for use as an error checking tool. Additional oscillations in the environment, 

such as motion of the pipette tip and changes in overall light intensity, were 

tracked and the corresponding peaks in the FFT were used to identify sources 

of noise in the mechanical vibrational spectra.
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Figure 3.12: The top panel shows the oscillation of the horizontal centre of mass, 

relative to the pipette tip, (nCoMx, black line) of a pendant drop of 

3% PAA in water (with profile length l ≈ 3.6mm), fitted with the 

curve from Equation 3.7.1 (purple line, with 95% confidence), with 

estimated amplitudes A1 = 0.29 (0.26, 0.31), A2 = 0.08 (0.05, 0.11) and 

A3 = 0 (−70, 70); frequencies f1 = 97.8 (96.9, 98.7)Hz, f2 = 60 (55, 65)Hz 

and f3 = 0 (−200, 200)Hz; and decay rates d f1 = 14.9 (13.8, 15.9)Hz, 

d f2 = 14.9 (10.4, 19.5)Hz and d f3 = 12.8 (4.8, 20.8)Hz. Insets show the 

pendant drop at different stages of oscillation.

The bottom panel shows the Fast Fourier transform (FFT) of the nCoMx 

data (black line) and defines the full width half maximum (∆ f ) as the 

width of the peak at half the maximum peak height. The frequency and 

width of vibration were measured to be f ≈ 100Hz and ∆ f ≈ 30Hz 

respectively. For this drop, ∆ f is approximately double the estimated 

values d fi. Also plotted are the FFT of the vertical centre of mass, 

relative to the pipette tip (nCoMy, purple line), the peak positions of 

the horizontal (black dots, CoMx) and vertical (purple dots, CoMy) 

components of the centre of mass without normalisation, and the peak 

positions of the vertical pipette tip motion (Tipy, purple triangles).
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3.8 Surface tension (γ)

The surface tension of the polymer solutions was measured via the pendant 

drop method (Figure 3.13) [18]. Suspending a drop of solution larger than the 

capillary length causes the drop to distort under gravity. Measuring the shape 

of the distorted drop, described by Equation 3.8.1, allows the surface tension to 

be calculated from the shape parameter (β) [76].

Figure 3.13: A large pendant drop of 1.1% PAA in water distorted by gravity. The 

drop profile is highlighted in red and the calculated surface tension 

(69.152±0.098mNm-1) is displayed below the drop. A teal circle, of 

radius R≈ 1
b , is fitted to the profile at the base of the drop. The horizontal 

and vertical axes are defined as x and z respectively, with the origin 

(0,0) at the base of the drop. s is defined as the arc distance around the 

drop profile from the origin. For a point along the profile, φ is the angle 

between the normal to the drop curve and the x axis, and curvature, dφ
dx , 

is defined as the change in angle over changing x.
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The shape of a drop under the influence of gravity and surface pressure forces 

is given by

(2 + βz) =
dφ

ds
+

sin(φ)
x

, (3.8.1)

where dφ
ds is the curvature at point (x,z), φ is the angle between the normal to 

the curve at (x,z) and the x axis, s is the arc length between the base of the drop 

and the point at (x,z), and β is the shape parameter, defined by Equation 3.8.2:

β =
b2

lc2 , (3.8.2)

for which b is the curvature at the base of the drop, and lc =
√︂

γ
ρge f f

is the 

capillary length of the solution [76].

Therefore the surface tension of a pendant drop affected by gravity is given by:

γ =
ρge f f b2

β
. (3.8.3)

The densities of solutions were measured by applying a linear fit m = a+ρV

(Figure 3.14) to the masses (m, measured using the balance from Section 3.1) of 

several volumes (V) of solution (for bulk values between 0.5 and 5mL, as well 

as for increasing increments of 0.1mL from 0.1 to 2mL), with constant a.

Equation 3.8.3 can then be solved iteratively by fitting a circular arc to the 

base of the drop (teal line in Figure 3.13) to produce an initial estimate for 

the curvature, defining an initial surface tension γi = 50mJm-1, and fitting 

the Young’s Laplace differential equation (Equation 3.8.1) to the drop profile 

in order to obtain β.
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Figure 3.14: Mass vs. volume for 2% PAA in water with a linear fit

m = 0.0009+1.0075V for which 1.0075 is the density in g/mL. Circles 

show incremental (in 0.1mL steps) volume measurements from 0.1 to 

2mL, and diamonds show bulk measurements (for 0.75, 1, 2, 3, 4 and 

5mL).
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3.9 Rheological properties

Harrold et. al. [65, 77] recently showed that the generalised viscoelastic prop-

erties of a vibrating drop supported on a superamphiphobic substrate could 

be described by considering standing wave states on the surface of the drops. 

These authors used the dispersion relation for capillary waves on the surface 

of a viscoelastic fluid (Equation 2.0.9, first introduced by Pleiner, Harden and 

Pincus [60]) in conjunction with a condition that a half integer number of wave-

lengths (λ) fit around the profile length of the drops at resonance, i.e. n λ
2 = l, 

which gave values for the allowed wavevector magnitudes of k = 2π
λ = nπ

l . 

Inserting this result for k into Equation 2.0.9 and equating real and imaginary 

parts gave equations for the shear storage (G′, elastic component) and loss (G′′, 

viscous component) moduli of the vibrated sessile or pendant drops:

G′ =
ρ f 2l2

n2

(︃
1 − πγn3

4ρl3 (∆ f 2 + f 2)

)︃
, (3.9.1)

G′′ =
ρ f ∆ f l2

n2

(︃
1 +

πγn3

4ρl3 (∆ f 2 + f 2)

)︃
. (3.9.2)

As before, ρ is the solution density in kgm-3, f is the fundamental vibration 

frequency in Hz, l is the drop profile length in m, n is the mode number, γ

is the surface tension of the solution in Nm-1, and ∆ f is the full width at half 

maximum of the fundamental peak in Hz.

For the viscoelastic droplet solutions studied in Chapters 5 and 6, G′ and G′′

were calculated by inserting the measured values of l (Section 3.5), f and ∆ f

(Sections 3.6 and 3.7), with surface tension and density values from Table 3.1, 

into Equations 3.9.1 and 3.9.2.

In assigning the mode number, values of n = 2, 3, 4, ... were used. The justifi-

cation for choosing n=2 as the lowest vibrational mode is based on the droplet 

fluid being incompressible and pinned to the surface (having a fixed contact 

line) [16, 26, 30]. For an incompressible drop, which has constant density, the 

relation V = m
ρ means that fluid cannot change volume without a change in 

mass. As seen in Figure 2.3b, for the n=1 mode of vibration to occur for a drop 

with fixed contact line, the drop must expand and contract, changing volume 
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PAA Conc. Surface Tension

(mNm-1)

Density

(kgm-3)

0% (water) 72.1 ± 0.4 994.1 ± 0.1

1.1% 70.7 ± 0.3 1003.5 ± 0.1

2% 67.9 ± 0.4 1007.5 ± 0.1

3% 67.0 ± 0.6 1015.6 ± 0.1

Table 3.1: The measured surface tension (see Section 3.8) and density for solutions 

of poly(acrylamide-co-acrylic acid) (PAA) in water at room temperature, 

20 ± 2°C.

during vibration. For an incompressible fluid this mode can only occur if the 

contact line is allowed to move (Figure 2.3a). The n=2 mode, on the other hand, 

changes shape but preserves volume (Figure 2.3c). The fluid within the drop is 

able to move between the shape shown in Figure 2.3c and its reflection across 

the vertical axis. As a result, an incompressible drop with fixed contact line can 

oscillate in the n=2 mode with no changes in volume.

Sharp et. al. [30] confirmed this for sessile drops of water, comparing the shape 

of an oscillating drop to predictions, and matching mass-frequency behaviour 

to estimates and previous data from Daniel et. al. [9]. Temperton et. al. [32] also 

applied this condition to the analysis of oscillating pendant drops of deuterium 

oxide, formamide, and 1,1,2,2-tetrabromoethane.

For the simple liquids studied in Chapter 4, Equations 3.9.1 and 3.9.2 were 

simplified further by setting G′= 0 (i.e. no elastic component) and noting that 

the viscosity of the drops is given by η= G′′
2π f [78, 79]. This gave expressions for 

the surface tension and viscosity of the form

γ =
4ρl3

πn3

(︂
∆ f 2 + f 2

)︂
(3.9.3)

and

η =
ρl2

πn2 ∆ f . (3.9.4)
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The expressions given in Equations 3.9.3 and 3.9.4 have similar functional forms 

to those obtained for the corresponding equations (Equations 3.9.5 and 3.9.6

respectively) for levitated drops [23, 40, 42]:

γ =
ρl3

2π n(n − 1)(n + 2)
f 2 (3.9.5)

and

η =
ρl2

2π(n − 1)(2n + 1)
∆ f . (3.9.6)

The expressions derived in Equations 3.9.3 and 3.9.4 are modified slightly due 

to the requirement that a vibrational node must exist in the contact region with 

the substrate if the droplets remain pinned during vibration, i.e. n= 2l
λ [51, 52] 

– a condition which is not imposed on levitated drops [15] (which are instead 

confined by n = l
λ ). This additional constraint has the effect of changing 

the prefactor in Equations 3.9.3 and 3.9.4 when compared to the equivalent 

expressions for levitated drops (Equations 3.9.5 and 3.9.6 respectively).

Another difference between Equations 3.9.3 and 3.9.4 and those reported for 

levitated droplets is the addition of the width dependence in the surface ten-

sion equation. For inviscid fluids, this term is often neglected as damping is 

relatively weak and has little effect on the vibrational frequencies of the droplets 

and the corresponding surface tension values. However, for the fluids studied 

in Chapter 4 the viscosity could potentially vary over three orders of magni-

tude. Damping of the droplets will therefore have a significant effect upon their 

motion. This is particularly true for the higher glycerol concentrations where 

the increased viscosity is expected to influence the vibrational frequencies of 

the droplets [50]. The addition of the width dependence in Equation 3.9.3 takes 

these effects into account and compensates for the effects of shifts in vibrational 

frequency caused by damping of a mechanically vibrating system [75].

3.9.1 Treatment of uncertainties

In calculating the uncertainties associated with G′ and G′′, it is assumed that all 

the errors are randomly distributed and that the fractional uncertainties in the 
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physical parameters in Equations 3.9.1 and 3.9.2 can be added in quadrature, 

e.g.

∆G′ =

√︄(︃(︃
δG′

δρ

)︃
∆ρ

)︃2

+

(︃(︃
δG′

δ f

)︃
∆ f

)︃2

+

(︃(︃
δG′

δl

)︃
∆l

)︃2

+ ... (3.9.7)

We start with Equation 3.9.1,

G′ =
ρ f 2l2

n2

(︃
1 − πγn3

4ρl3(w2 + f 2)

)︃
=

ρ f 2l2

n2 X, (3.9.8)

where here, w is the width of the vibrational peaks (note the change of variable 

name to avoid confusion in calculating uncertainties with the over use of the ∆

symbol) and

X = 1 − πγn3

4ρl3(w2 + f 2)
. (3.9.9)

Adding the fractional errors in quadrature (using Equation 3.9.7) produces (︃
∆G′

G′

)︃2

=

(︃
∆ρ

ρ

)︃2

+

(︃
2∆ f

f

)︃2

+

(︃
2∆l

l

)︃2

+

(︃
∆X
X

)︃2

, (3.9.10)

where here ∆a represents the uncertainty in each variable, a, and (︃
∆X
X

)︃2

=

(︃
∆γ

γ

)︃2

+

(︃
∆ρ

ρ

)︃2

+

(︃
3∆l

l

)︃2

+ 4

(︁
w2∆w2 + f 2∆ f 2)︁

( f 2 + w2)2 (3.9.11)

so that(︃
∆G′

G′

)︃2

= 2
(︃

∆ρ

ρ

)︃2

+

(︃
2∆ f

f

)︃2

+ 13
(︃

∆l
l

)︃2

+

(︃
∆γ

γ

)︃2

+ 4

(︁
w2∆w2 + f 2∆ f 2)︁

( f 2 + w2)2 .

(3.9.12)

Inserting typical values of parameters of f = 50 ± 0.1Hz, w = 20 ± 0.1Hz, 

l = 8 ± 0.1mm, γ = 70 ± 0.2mJm-2 and ρ = 1010 ± 5kgm-3 gives values for 

the fractional error terms of 
(︂

2∆ f
f

)︂2
= 1.6x10−5, 2

(︂
∆ρ
ρ

)︂2
= 1x10−5, 13

(︂
∆l
l

)︂2
=

2x10−3, 
(︂

∆γ
γ

)︂2
=8x10−6 and 4

(︁
w2∆w2+ f 2∆ f 2)︁

( f 2+w2)2 =1.5x10−5.
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The dominant term (by at least two orders of magnitude) is associated with the 

uncertainties in the profile length, l, of the drops so that Equation 3.9.12 can be 

approximated as

∆G′ =
√

13
∆l
l

G′. (3.9.13)

A similar analysis for G′′ yields exactly the same form for the uncertainty in 

this variable, i.e.

∆G′′ =
√

13
∆l
l

G′′. (3.9.14)

These formulae were used to calculate the uncertainties of G′ and G′′ given in 

Figure 5.3.

Repeating the analysis for γ and η yields

(︃
∆γ

γ

)︃2

=

(︃
∆ρ

ρ

)︃2

+ 9
(︃

∆l
l

)︃2

+ 4

(︁
w2∆w2 + f 2∆ f 2)︁

( f 2 + w2)2 (3.9.15)

and (︃
∆η

η

)︃2

=

(︃
∆ρ

ρ

)︃2

+ 4
(︃

∆l
l

)︃2

+

(︃
∆w
w

)︃2

, (3.9.16)

with dominant term once again given by the uncertainty in the profile length 

(by two orders of magnitude for γ and one order of magnitude for η), approxi-

mating the uncertainties in γ and η to be

∆γ = 3
∆l
l

γ (3.9.17)

and

∆η = 2
∆l
l

η (3.9.18)

respectively.
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3.10 Microrheology

Microrheology enables measurement of the rheological properties of low vis-

coelasticity liquids. Methods include dynamic light scattering (DLS, single scat-

tering), measurement of probe particle mean square displacement (MSD), diffu-

sion wave spectroscopy MSD (multiple scattering) [80] and also single particle 

tracking techniques such as optical tweezers [81]. The microrheology data in 

this thesis was collected using DLS microrheology with a Zetasizer nano ZS 

from Malvern Instruments. The DLS technique is commonly used with liquids 

of known rheological properties to obtain the size of particles (or spheres) in 

a solution [82]. However the Zetasizer can be run for solutions with known 

sphere size to find the rheological properties of the liquid. This simply requires 

an adjustment of which parameters it considers constant and which are vari-

able.

Selecting sphere material, size and concentration can be challenging. The ma-

terial must be selected to reduce interactions with the solution. The size must 

be large enough (or have a high enough refractive index difference between 

the sphere and the solution) to dominate light scattering over the polymers 

within the solution, whilst being small enough to be unaffected by gravity and 

avoid distorting the polymer chains. Finally the sphere concentration must be 

appropriate to maintain the single scattering regime (indicated by an initial cor-

relation coefficient > 0.8 [83]). The suitability of selections can be confirmed by 

using the Zetasizer to measure the size of the microbeads in a solution with 

estimated rheological properties.

Nano- or micro-sized spheres (microbeads) of polystyrene (PL-Latex, Agilent) 

particles with a range of sizes (100 - 300nm diameter) were suspended in solu-

tions prepared as in Section 3.1. To prevent the microbeads from aggregating 

or large particles (such as dust) from contaminating the solutions, these sus-

pensions were refridgerated (for use within one month) in Parafilm® wrapped 

small glass sample vials which had been cleaned in a sonicator, dried in vac-

uum and repressurised with nitrogen. Prior to measurements, samples were 

brought close to room temperature and sonicated to encourage even microbead 

distribution and remove air bubbles [84, 85]. Cuvettes (DTS0012 polystyrene 

cuvettes, Malvern) containing these suspensions were placed in the Zetasizer, 
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which used non-invasive back scattering at 173° to characterise the solutions in 

a temperature controlled environment (20°C and 25°C, ± 0.1°C). Time depen-

dent changes in scattered light intensity were recorded as the thermal motion 

of the molecules in the solution jostled the microbeads [86].

Figure 3.15: The autocorrelation data collected from the Zetasizer for 1.1% PAA 

in water with 0.05% PL-Latex 50nm microbeads. Logarithmic decay 

from the y-intercept (correlation coefficient above 0.9) is followed by 

exponential decay (towards a correlation coefficient of 0).

After a sample had been tested, the Zetasizer returned an autocorrelation 

function, g1(τ), as a function of correlation time τ (see Figure 3.15). For 

correlation times τ ≳ 1ms, the autocorrelation curve follows an exponential 

decay of the form

g1(τ) = g1(0) exp
(︃
−q2

6

⟨︂
∆r2(τ)

⟩︂)︃
, (3.10.1)
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where g1(0) is the autocorrelation function at initial time τ=0, 
⟨︁
∆r2(τ)

⟩︁
is the 

MSD of the microbead as a function of the correlation time, and the scattering 

vector (q) is defined by

q =
4πni

λ
sin

(︃
φ

2

)︃
, (3.10.2)

with fluid refractive index (without microbeads) ni, light wavelength λ and 

scattering angle φ [80].

Rearranging Equation 3.10.1 to isolate the MSD gives:

⟨︂
∆r2(τ)

⟩︂
=

6
q2 (ln(g1(0))− ln(g1(τ))) . (3.10.3)

Defining time t such that t= τ/2π, Mason et. al. [86] showed that substituting 

τ = 2πt into Equation 3.10.3 and performing a power law expansion around 

t= 1
f (where f is a frequency to be evaluated in Hz) leads to:

⟨︂
∆r2(t)

⟩︂
≈

⟨︃
∆r2

(︃
1
f

)︃⟩︃
( f t)α( f ), (3.10.4)

where

α( f ) =
d ln

⟨︁
∆r2(t)

⟩︁
d ln t

⃓⃓⃓⃓
⃓
t= 1

f

. (3.10.5)

Mason et. al. applied a Fourier transform to Equation 3.10.4 and used the result, 

i fFu
{︁⟨︁

∆r2(t)
⟩︁}︁

≈
⟨︂

∆r2
(︂

1
f

)︂⟩︂
Γ [1 + α( f )] i−α( f ), to estimate the complex shear 

modulus (G∗) of a viscoelastic fluid in the form of the Generalised Stokes-

Einstein theorem [86]:

|G∗( f )| = kBT

πa
⟨︂

∆r2( 1
f )
⟩︂

Γ [1 + α( f )]
, (3.10.6)

With Gamma function Γ [1 + α( f )] ≈ 0.457(1 + α)2 − 1.36(1 + α) + 1.90 [86]. 

Using Euler’s equation eix = cos x + i sin x, the storage (Equation 3.10.7) and 
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loss (Equation 3.10.8) moduli can be taken from the real and imaginary parts of 

Equation 3.10.6 respectively:

G′( f ) = |G∗( f )| cos
(︃

πα( f )
2

)︃
, (3.10.7)

G′′( f ) = |G∗( f )| sin
(︃

πα( f )
2

)︃
. (3.10.8)

3.10.1 Refractive index

The refractive index of solutions used in the microrheology experiments was 

measured using a refractometer from Anton Paar (Abbemat 200), which em-

ploys the critical angle measurement technique. A prism was coated with a 

few drops of solution and the system was temperature-controlled during mea-

surements. The refractive index was measured at 20°C and 25°C to allow for 

the effects of inconsistent ambient room temperature during drop vibration ex-

periments. A laser beam was passed through the prism at different angles until 

the critical angle for the system was reached and a shadow covered a CCD sen-

sor as light was completely directed away from the sensor. The refractive index 

of the sample could then be calculated from the equation:

θc = sin−1
(︃

n2

n1

)︃
, (3.10.9)

where θc is the critical angle for total internal reflection, n2 is the refractive index 

of the sample, and n1 is the refractive index of the prism [87].

3.11 Rheology

A Kinexus rheometer (Malvern) in the cone-plate geometry (using a 50mm 

diameter cone with angle 1°) was used to analyse our samples in oscillation 

mode. For the cone-plate geometry, a torque is applied to the cone, producing 

shear stress and shear strain in the sample. The resulting torque in the sample 

can be used to extract the shear stress and the shear strain, which can be used 

to calculate the elastic shear moduli, loss moduli and viscosity. A normal force 
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sensor in the lower plate allows elasticity to be measured from the sample’s 

response to the applied rotational force.

It is possible to perform measurements keeping either the shear stress or the 

shear strain constant. Viscosity measurements are more accurate for high shear 

rates in constant stress measurements. Below a "yield value" of rotor speed, 

mechanical (equipment) inertia may dominate over the response of the solution 

and the torque sensor may record internal resistance before the fluid has begun 

to deform. High rotor speed on the other hand can cause turbulence rather than 

the laminar flow required for accurate analysis [88].

The accuracy of measured torque impacts the accuracy of shear stress/strain 

measurements and relies on equipment sensitivity, which decreases for low 

assigned torques as equipment error increases (e.g. from bearing friction). Low 

viscosity fluids require high rotor speeds or a large cone surface area to obtain 

significant torque signals with insignificant equipment error [89]. This limits 

the maximum shear rate or frequencies accessible to the system as well as the 

range of shear storage and loss moduli that can be measured [88].
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Tracking changes in the surface 

tension and viscosity of 

glycerol/water drops

4.1 Introduction

Droplet vibration has been studied for some time as a means of trying to 

extract physical properties such as the surface tension and viscosity of fluids 

[14, 16, 21–23, 30, 32, 51]. Much of the early work in this field concentrated 

on the study of levitated droplets of single component liquids [46], whose 

properties could be extracted using theories based upon the theoretical models 

developed by Rayleigh [40] and Chandrasekhar [42]. These authors showed 

that the vibrational frequencies and damping coefficients associated with the 

vibration of a free liquid globe (essentially a levitated liquid drop) could be 

related independently to the surface tension and viscosity of the fluid using a 

simple set of equations (Chapter 2).

Confirmation of the results predicted by Rayleigh came when the technology to 

levitate small liquid droplets became available in the form of acoustic [22] and 

magnetic levitation devices [23]. Much of the initial work in this area seems 

to have been motivated by the desire to perform containerless crystallisation 

studies on pure liquids in microgravity environments [7, 26]. Later work 

turned to the use of this technique for extracting the physical properties of the 
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drops and a number of authors were able to demonstrate the viability of drop 

vibration as a means of extracting surface tension [14, 45] and viscosity [14, 21].

Another method of extracting these properties is to vibrate substrate supported 

(sessile) or pendant drops. The ease with which a drop can be placed on a 

substrate, or suspended from a pipette and vibrated makes this approach more 

attractive and more accessible than magnetic levitation. There are, however, 

a number of challenges in interpreting the drop vibration data for substrate 

supported drops. Firstly, the presence of a substrate (or pipette) influences 

the drop shape and has an influence on the vibrational frequency [16, 30, 32]. 

Gravity can also play a role in changing the frequencies of vibration if the 

droplets exceed a critical size. This size is set by the capillary length of the fluid, 

lc, above which gravitational effects dominate the shape of the drop and below 

which surface tension tends to dominate [16, 30, 32]. In the surface tension 

dominated regime, sessile drops assume the shape of a spherical cap in attempt 

to minimise their surface area, while in the gravity-dominated regime the drops 

become flattened.

The contact of the substrate with the free surface of the drop also introduces 

additional energy dissipation mechanisms that are not present in levitated 

drops. These energy dissipation mechanisms affect the damping coefficients 

associated with the time dependent decay of the oscillations. The increased 

damping also causes an increase in the width of the peaks in the mechanical 

vibrational spectra of the drops [16].

One way to circumvent the difficulties associated with the presence of the 

substrate interface is to use non-wetting substrates such as superhydrophobic 

or superamphiphobic materials [64]. When drops are placed on these surfaces, 

the energetics of the interaction between the fluid and the substrate are such 

that the drops bead up and form spheres with three phase contact angles that 

are close to 180°. In this way the drops assume shapes that are reminiscent of 

levitated drops and much of the physics of vibration can be described by using 

similar models.

McHale et. al. [35] demonstrated the feasibility of this approach in studies 

of vibrating liquid marbles – liquid droplets stabilised by the adsorption of 

small particles on their surface. They showed that the vibrational frequencies 

of the liquid marbles could be described using expressions similar to those 
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used for levitated droplets. However, the particles were found to dominate 

their properties, giving this particular approach limited application in the 

measurement of surface tension and other (e.g. viscoelastic) properties.

Much of the work on drop vibration to date has concentrated on pure liquids 

or on viscoelastic systems where the concentration of added solute does not 

change significantly with time. Here the idea is proposed that drop vibration 

can also be used to track the surface tension, viscosity and viscoelastic proper-

ties of droplets supported on superamphiphobic substrates when the composi-

tion of the drops is changing with time. An automated combined light scatter-

ing and imaging technique is described for measuring the size, frequencies and 

spectral widths of vibrating drops of multicomponent fluids. These quantities 

are related to the surface tension and viscosity of the multicomponent fluid us-

ing a simplified model developed for extracting the properties of viscoelastic 

droplets on the same substrates (Chapter 2, [65]). A series of experiments using 

drops containing different initial compositions of glycerol and water are used to 

test the validity of the vibration technique for studying the kinetics of changes 

in surface tension and viscosity as the droplets evaporate.

The use of the simple system described here and the development of the 

experimental and theoretical protocols required to extract surface tension and 

viscosity enable us to validate this technique as a means of tracking material 

properties of soft systems in real time.

4.2 Method

Glycerol and water were used as a model system for these experiments because 

they are miscible in all proportions, the viscosity of their mixtures varies over 

three orders of magnitude (1mPas - 1Pas [90]) and glycerol is non-volatile at 

room temperature [91]. Microlitre droplets containing glycerol/water mixtures 

with compositions in the range 1 - 50wt% (0.008 - 0.44 volume fraction, Section 

3.1 [65]) were placed on the surface of the superamphiphobic substrates (pre-

pared as described in Section 3.2 [64, 65]) and vibrated as described in Sec-

tion 3.3. Drop vibration was monitored using laser light refracted through the 

droplets (see Section 3.6). Both the frequencies, f , and widths, ∆ f , of vibration 
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were found to depend upon the size and composition of the drops for each vi-

brational mode. Experiments were performed using these solutions within 4 

months of manufacture (< 1 month for 1 and 5%, and < 4 months for 25 and 

50%).

The profile length, l, and contact angle, θ, of the drops were measured using 

the technique described in Section 3.5 (Figure 3.6a). The drops studied had 

radii smaller than the capillary length of the fluids and as such had shapes that 

are close to that of a perfect sphere when deposited on the superamphiphobic 

substrates with contact angles close to 180° (Chapter 2).

For each drop, the experiment was repeated several times over the course of 

2500s, during which the drops shrunk as water evaporated (see Section 3.1.1). 

As the drops evaporated, Equations 3.9.3 and 3.9.4 (Section 3.9) were used to 

calculate the surface tension and viscosity respectively of the glycerol/water 

solutions. The minimum time resolution of the measurement and analysis pro-

cess was three seconds and allowed changes in surface tension and viscosity to 

be tracked in real time. All measurements were performed at room temperature 

which was maintained at 20± 2°C. The relative humidity in the room was mea-

sured to be 50 ± 5% during the measurements. Independent measurements of 

the density, ρ, and the surface tension, γ, of the glycerol solutions were obtained 

using the techniques described in Section 3.8.

4.3 Results and Discussion

Figure 4.1 shows examples of data collected for four drops of similar starting 

size that had different initial glycerol/water compositions. As the droplets 

evaporated, the size (profile length) of the drops was observed to decrease and 

both the frequency and width of the lowest vibrational mode increased with 

time. The increases in the latter two parameters occurred as a result of the 

shrinking dimensions of the drops and due to changes in the surface tension 

and viscosity. Smaller liquid drops have higher vibrational frequencies and 

experience more damping [16, 32]. In addition, the mass-loss over time of one 

or more of the droplet components is expected to cause changes in the material 

properties of the mixture.
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Figure 4.1: The panels show how the vibrational frequency (top), spectral width 

(middle) and profile length of droplets varies with time. Data are shown 

for four droplets of similar starting size having initial compositions of 

0wt% (black line), 1wt% (cyan circles), 5wt% (red squares), 25wt% (teal 

triangles) and 50wt% (purple diamonds) of glycerol. The initial com-

positions correspond to glycerol volume fractions of 0, 0.008, 0.04, 0.209 

and 0.44 respectively. The frequency and width increase with time, while 

the profile length decreases with time. The width increases as the start-

ing concentration of glycerol is increased; the frequency behaviour corre-

sponds to the profile length of the drops.
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When interpreting the data for the binary mixtures used in these experiments 

it was assumed that the dominant source of mass loss occurred as the result 

of evaporation of water (Section 3.1.1). This assumption was supported by the 

observation that pure glycerol droplets did not evaporate on the time scales 

of the experiments (∼2000s). However, microlitre droplets of pure water were 

observed to undergo significant mass loss as a result of evaporation over similar 

time scales.

Figure 4.2 shows the time dependent variation of the surface tension obtained 

for the droplet data shown in Figure 4.1. The measured values of f , ∆ f and l

in Figure 4.1 were used to calculate γ and η at each time point using Equations 

3.9.3 and 3.9.4. A value of n=2 was used for the lowest mode of vibration as 

has been discussed previously for vibrating drops with pinned contact regions 

[16, 30, 32, 48, 65].

The changing composition of the drops meant that their density varied some-

where in the range between 998kgm-3 (pure water [90]) and 1260kgm-3 (pure 

glycerol [90]) during the experiments. At each time point, the volume of the 

drop was calculated using the equation, V(t)= l3

6π2 , derived from the equation 

for the volume of a sphere, V = 4πR3

3 , with its circumference approximated to 

the profile length, l∼2πR. The volume fraction of glycerol was then calculated 

by assuming that mass loss occurred purely as the result of the evaporation of 

water. This gave an equation for the volume fraction of glycerol in the drop, 

φ(t), such that

φ(t) = φ0
V0

V(t)
, (4.3.1)

where φ0 and V0 are the initial glycerol volume fraction and volume of the drop 

respectively. Values of the density of the drops were then calculated using a fit 

to data obtained by Sheely [90] for bulk glycerol/water solutions (see Figure 

4.3). This fit gave the result that the density of the drops varied according to 

the equation ρ=988+270 φ(t). Insertion of the volume fraction dependence of 

the density in Equations 3.9.3 and 3.9.4 allowed the correct surface tension and 

viscosity values to be extracted for the evaporating droplets at each time point.
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Figure 4.2: A plot of the time dependence of the surface tension of evaporating 

glycerol/water solutions. Data are shown for four droplets of similar size 

having initial compositions of 1wt% (cyan circles), 5wt% (red squares), 

25wt% (teal triangles) and 50wt% (purple diamonds) of glycerol in water. 

The initial compositions correspond to glycerol volume fractions of 0.008, 

0.04, 0.209 and 0.44 respectively. The dashed horizontal lines at γ =

72mJm-2 and γ = 64mJm-2 correspond to the surface tensions of pure 

water and pure glycerol respectively. The surface tension of all droplets 

rapidly drops below that of pure glycerol, plateauing around 56mJm-2 for 

5wt% and 25wt%, and around 61mJm-2 for 50wt%. The surface tension 

of 1wt% decreases to 44mJm-2 without plateauing in the 2500s timescale. 

The inset shows the expected surface tension of different volume fractions 

(concentrations) of pure glycerol in water. The surface tension decreases 

as the concentration of glycerol increases. Data from Takamura et. al. [92] 

and The Glycerine Producers’ Association [93].
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Figure 4.3: Plot showing the density of glycerol/water mixtures as a function of the 

glycerol volume fraction. This relation holds because the mass, and as 

a result of incompressibility, the volume, of glycerol do not change over 

the timescales of these experiments, so φ1V1 = φ2V2. Data were taken 

from Sheely [90] and measured at 20°C. The solid line is a linear fit to the 

data which has the equation ρ= 988+270φ, where ρ is the density of the 

mixture and φ is the volume fraction.
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Figure 4.2 shows that the surface tension of the drops varies with time in a 

manner that is almost independent of the drops’ initial composition. Moreover, 

the surface tension varies over a range of values that is larger than that expected 

for glycerol/water solutions (Inset in Figure 4.2). If the changes in surface 

tension were caused purely by a change in composition of the drops then 

the surface tension values should vary in a range somewhere between that 

of pure water (72mJm-2 [54]) and pure glycerol (63mJm-2 [54]). The final 

values of the surface tension obtained from these experiments were as low as 

∼ 40mJm-2. Given that the drop vibration technique has already been shown 

to be a viable method of determining surface tension [14, 32, 45], this would 

seem to suggest that some contamination of the surface of the drops is occurring 

during the experiments. The fact that the kinetics associated with the changes in 

surface tension are similar for all the droplets studied regardless of their initial 

compositions is also consistent with the presence of surface contamination.

Contamination of the drop surface could have occurred either as a result of 

contact with the substrate or as a result of deposition of airborne contaminants. 

There was no visible evidence of surface contamination of the surface by 

soot particles from the substrate. However, submicron sized fragments of 

soot, TEOS or the fluorinated silane that was used to coat the candle soot 

could potentially have migrated across the surface of the droplets during the 

experiments. A series of simple tests were performed to determine whether 

this type of surface contamination was occurring. These simple tests were 

performed by filling a clean 20cm diameter glass beaker with water and gently 

dusting the surface with talc. Fine syringe needles were either dipped in the 

silane of interest, or used to mechanically scrape some of the candle soot residue 

off the surface of the substrates being used. These syringe needles were then 

gently pushed through the talc coated water surface at the centre of the glass 

beaker.

In the case of both TEOS and the fluorinated silane, a hole formed in the 

talc layer and was observed to grow to the diameter of the glass beaker in 

less than one second. This gives a lower bound for the spreading rate of 

these molecules of around 10cm s-1. Spreading of TEOS or the fluorinated 

silane across the surface of the drops was therefore not responsible for the 

surface contamination observed in the drop vibration experiments. The time 
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scale associated with the contamination of the microlitre drops studied would 

be ∼ 0.03 seconds for a drop with a profile length of ∼ 6mm. This is at 

least four orders of magnitude smaller than the timescale associated with the 

surface tension changes shown in Figure 4.2 and indicates that the candle soot 

substrates contain no free surfactant like molecules that could contaminate the 

surface. However, there was still a possibility that particles of soot were able to 

break off from the surface of the substrate and contaminate the drop surface. 

A similar test, repeated with mechanically scraped soot from the substrate 

showed no discernible change in the talc layer over a period of 2000s i.e. no hole 

was observed to form. While not entirely perfect, these simple tests suggest 

that the superamphiphobic substrates used in this work were mechanically 

and chemically stable on the timescales associated with the experiments and 

that they were not responsible for contaminating the drop surface. This would 

suggest that airborne contamination of the droplets surfaces is a more likely 

candidate for the surface tension changes observed in Figure 4.2.

Henderson and Miles [94] demonstrated that a clean water surface can become 

contaminated with low surface tension impurities such as organic deposits 

from the air on time scales of ∼ 5mins (300 seconds). Figure 4.2 shows that the 

surface tension of the glycerol/water drops changes on time scales of hundreds 

of seconds and falls below the surface tension of glycerol after ∼ 300 seconds 

for all the compositions studied. Both water and glycerol have relatively 

high surface tensions compared to organic materials, which typically have 

γ∼40−50mJm-2 [95]. It is therefore not unreasonable that contamination could 

occur as a result of the preferential adsorption of species with lower surface 

tension values on the drop surface. The fact that the surface tensions of the 

drops approached values similar to those associated with organic materials 

lends additional support to this argument.

The surface tension data in Figure 4.2 was plotted as a function of the instanta-

neous volume fraction of glycerol in the drop as shown in the inset in Figure 4.4. 

The initial values of the surface tension were found to agree with independent 

measurements of fresh solutions obtained using the pendant drop technique 

(white squares) before significant exposure to the air had occurred [18]. The 

agreement between the surface tension values at t = 0 and the pendant drop 

measurements gives us confidence that the technique is capable of measuring 
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Figure 4.4: Composition dependence of the properties of glycerol/water solutions. 

The main panel shows the variation of the viscosity of glycerol/water 

solutions obtained during the evaporation experiments as a function 

of the glycerol volume fraction. Data are shown for droplets having 

initial compositions of 1wt% (cyan circles), 5wt% (red squares), 25wt% 

(teal triangles) and 50wt% (purple diamonds) of glycerol. The initial 

compositions correspond to glycerol volume fractions of 0.008, 0.04, 0.209 

and 0.44 respectively. The white circles show results for the bulk viscosity 

of glycerol/water solutions obtained by Sheely [90] at 20°C. The majority 

of the evaporation data follows the trend of the bulk solution data, with 

greater deviation for lower concentrations. The inset shows a plot of the 

surface tension as a function of composition for the same droplets. The 

white squares in this plot are the results of pendant drop measurements of 

the surface tension obtained from clean solutions, prior to contamination 

from the air (see text). While the initial surface tension of the evaporating 

solutions correspond with bulk measurements, as evaporation occurs the 

surface tension significantly deviates from these values.
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the correct surface tension values for the initially uncontaminated drops. How-

ever, as time progresses and the exposure to air increases, the surface tension 

values obtained during the drop vibration experiments deviate from those ob-

tained for clean solutions.

Figure 4.5: A plot of the time dependence of the viscosity of evaporating glyc-

erol/water solutions. Data are shown for four droplets of similar size 

having initial compositions of 1wt% (cyan circles), 5wt% (red squares), 

25wt% (teal triangles) and 50wt% (purple diamonds) of glycerol. The ini-

tial compositions correspond to glycerol volume fractions of 0.008, 0.04, 

0.209 and 0.44 respectively. The viscosity increases as starting concentra-

tion increases. Over time the viscosity of the 25wt% and 50wt% solutions 

increases, whereas that of 1wt% decreases and 5wt% exhibits very little 

change.

Figure 4.5 shows how the viscosity of the droplets varies as a function of time. 

Unlike surface tension, viscosity is a bulk property and should therefore be un-

affected by the surface contamination effects discussed above. The plots in Fig-

ure 4.5 show that the initial viscosity obtained using Equation 3.9.4 increased 
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with increasing glycerol composition of the drops. Moreover, for the two high-

est initial glycerol/water compositions studied (25 and 50wt% glycerol), the 

viscosity was observed to increase further as the droplets evaporated and the 

glycerol composition increased – the range of values obtained being bounded 

by the viscosities of pure water (1mPas) and glycerol (1Pas).

To determine whether the values of viscosity shown in Figure 4.5 are consistent 

with values expected for the composition of the drops, the same data was 

plotted in the main panel of Figure 4.4 against the corresponding instantaneous 

volume fraction of glycerol in the drops. Values obtained from Sheely [90] 

for bulk glycerol/water solutions at a temperature of 20°C are also shown for 

comparison (white circles). The majority of droplet data is shown to agree with 

the bulk solution viscosity data within the limits of experimental uncertainty. 

Any small deviations of the drop vibration data away from the bulk data are 

believed to occur as the result of small temperature variations resulting from 

the environment not being temperature controlled during experiments (due to 

the air conditioning being turned off to prevent air circulation from inducing 

additional drop vibrations). Such a drift in temperature is likely to have caused 

the slight downward drift in viscosity with time observed for the two lowest 

initial compositions (0 and 5wt%) shown in Figure 4.5 [96, 97]. The fact that the 

viscosities obtained for these two compositions are consistent with literature 

values, within the limits of experimental uncertainty (as shown in Figure 

4.4), suggests that these data are representative of the glycerol water mixtures 

being studied. However, these data suggest that the changes in viscosity 

measured using the vibration techniques described above are more susceptible 

to variations in temperature for low glycerol concentrations – pointing to the 

need for greater temperature control.

Despite the small temperature related effects described above, the level of 

agreement observed between literature values and the volume fraction depen-

dence of the viscosity shown in Figure 4.4 is encouraging. It demonstrates that 

the model described above captures the essential physics of drop vibration. It 

also demonstrates the validity of the assumption that volume changes in the 

drops are caused by the evaporation of water.

The automated approach to drop vibration described above provides an inex-

pensive method of simultaneously tracking changes in the surface tension and 
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viscosity of microlitre liquid droplets – regardless of whether they occur as the 

result of surface contamination effects or simply as a result of changes in com-

position of the drops. One limitation of the technique is that the composition 

dependence of the density is required to obtain the surface tension and dynamic 

viscosity of the solutions. However, the ratio of these quantities to the density 

can be obtained directly from the measurements. In the case of viscosity, this 

ratio is referred to as the kinematic viscosity.

A further limitation of this approach is that the size of the droplet must be 

smaller than the capillary length of the fluid for the assumptions made in de-

riving the dispersion relation in Equation 2.0.9 to hold. However, the require-

ment for a small sample volume is likely to be of benefit for studying expensive 

samples and samples where volumes are low (such as blood samples).

Caution should also be exercised when applying the results of the simple model 

derived here to drop vibration studies. The dispersion relation of Pleiner et. 

al. [60] was derived for capillary waves on the surface of an infinitely deep 

(viscoelastic) fluid. Application of this dispersion relation to curved droplet 

interfaces is therefore questionable. In the limit where the amplitude of surface 

deflections of the drops becomes small compared to their size/radius (<0.1Rc) 

this approximation has been shown to hold. However, for larger amplitude 

vibrations and in cases where the contact region becomes depinned during 

vibration, the validity of this approximation becomes significantly weaker [65]. 

In such cases, more rigorous theories which consider a full expansion of the 

spherical harmonics associated with surface fluctuations of the droplets should 

be applied [26, 49, 98–100].

4.4 Conclusion

Automated light scattering measurements can be used to probe changes in the 

surface tension, viscosity and viscoelastic properties of multicomponent mi-

crolitre droplets simultaneously and in real-time. The viscosity and initial sur-

face tension values obtained from drop vibration measurements of evaporat-

ing glycerol/water droplets were found to be in good agreement with data ob-

tained from bulk glycerol/water solutions (using Section 3.8 and Figure 4.3). 

The simple apparatus described here is inexpensive and easy to implement. Its 
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portability lends it to applications in a broad range of settings including mi-

crofluidics devices, ambient, high pressure and ultra-high vacuum (e.g. ionic 

liquids) environments. Moreover, the ease with which this technique can be im-

plemented lends itself to the study of a range of soft matter systems including 

(but not limited to) aggregating protein solutions, blood droplet rheology, gela-

tion reactions, self-healing materials, viscoelastic polymer solutions and liquid 

crystals.
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CHAPTER 5

Mechanical Vibrations of 

Viscoelastic Drops on 

Superhydrophobic Surfaces

5.1 Introduction

Mechanical vibrations of viscoelastic drops hold significant potential as a meth-

od of determining the frequency dependent flow (or rheological) behaviour 

of microlitre volumes of non-Newtonian fluids such as polymer solutions. 

Drop vibration has already been demonstrated as a viable approach to the 

measurement of simple liquid properties such as surface tension and viscosity 

in levitated [21–23], sessile [16, 30, 51] and pendant [14, 32] geometries. This 

was developed in the previous chapter for solutions whose properties change 

over time, via the continuous monitoring of evaporating solutions of glycerol 

in water (Chapter 4).

Measurements of the frequency and spectral widths of mechanical vibrational 

peaks are capable of providing information about the frequency dependent 

shear storage and loss moduli (G′ and G′′ respectively) of viscoelastic solutions 

such as polymer, biopolymer and protein solutions [15, 28, 40, 42, 58]. If 

the vibrating drop is considered as a damped harmonic oscillator, then the 

frequency of vibration should be related to its effective spring constant and 

hence the storage modulus and surface tension of the material. At the same 

time, the width of the resonance provides information about viscous damping 
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in the drop which is determined by the loss modulus. The drop size can be 

varied to probe the mechanical response at different frequencies [51].

A key advantage of using drop vibration (rather than conventional rheometry) 

is that it provides access to higher frequencies for weakly viscoelastic materials. 

In conventional rheometry, inertial effects associated with the instruments tend 

to dominate the measurements at high frequencies and it becomes difficult to 

extract G′ and G′′. Although higher frequencies can be accessed using tech-

niques such as microrheology [101] and piezorheometry [19], the low cost, low 

sample volume, portability and ease of implementation of the drop vibration 

technique make it much more attractive.

This chapter demonstrates that the frequencies and widths of the mechanical 

vibrations of viscoelastic drops supported on hydrophobic substrates can be 

used to extract values of the frequency-dependent storage and loss moduli. 

This study is the first combined experimental and theoretical study of the 

vibration of sessile viscoelastic drops. As such, it represents a significant step 

forward in our understanding of the drop vibration phenomenon and our 

ability to measure the rheological properties in small sample volumes (∼µL 

to mL) – as is often the case with biological samples.

5.2 Method

Microlitre drops of poly(acrylamide-co-acrylic acid) (PAA) in water (prepared 

at concentrations of 1.1, 2 and 3 wt% using the technique described in Section 

3.1) were placed individually on to superhydrophobic substrates (Section 3.2

[64]) and vibrated as described in Section 3.3. Laser light was used to monitor 

drop vibration (see Section 3.6) and extract the frequency, f , and width, ∆ f , 

of the fundamental mode of vibration. The resonant frequencies and widths of 

vibration were found to depend on the size of the drops and their physical/me-

chanical properties. These experiments took less than one second to perform, 

so the drops would lose ≪1 g to evaporation over these timescales (see Section 

3.1.1). These experiments were performed within 3 months of solution manu-

facture.
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The physical dimensions of the drops – in particular their profile lengths, l, 

were measured using the technique described in Section 3.5 (Figure 3.6a). The 

density, ρ, and surface tension, γ, of the PAA solutions were measured as 

described in Section 3.8 and are shown in Figure 5.1.

Figure 5.1: Concentration dependence of the surface tension (purple circles) and 

density (black squares) of the viscoelastic solutions. The inset shows 

an image of an elongated pendant drop that was used to determine the 

surface tension of the viscoelastic fluids using axisymmetric drop analysis 

[18]. The red line on this image is the fit obtained when extracting the 

surface tension.

5.3 Results and Analysis

Figure 5.2 shows plots of the frequency and width of the lowest frequency 

vibrational peak obtained in the drop vibration experiments. These data are 
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shown as a function of the drop profile length for PAA solutions with concen-

trations in the range 1.1 - 3wt% , corresponding to drop volumes ranging from 

1 to 20µL. As the polymer concentration is increased, both the frequency and 

width of all the vibrational peaks increases. This is consistent with an increase 

in stiffness (from both viscous and elastic sources [102]) and a greater viscous 

damping in the drops with increasing polymer concentration. This stiffening 

occurs despite the decrease in surface tension and points to the fact that other 

material properties are influencing the vibrational response. It is therefore im-

portant to extract the shear storage and loss moduli of a solution to fully under-

stand its vibrational response.

In order to interpret the data shown in Figure 5.2 in a more quantitative manner, 

it is necessary to relate the frequency, f , and width, ∆ f , of vibrational peaks 

to the drop size as well as to G′ and G′′. This was done using the simple 

model of viscoelastic drop vibration described in Section 3.9 (Equations 3.9.1

and 3.9.2 respectively). Figure 5.3 shows plots of the values of G′ and G′′

obtained from the drop vibration data using these expressions – the G′ and 

G′′ values are plotted against the vibrational frequencies of the drops as this 

sets the frequency of the measurement probe. For these pinned drops, a value 

of n=2 was assigned to the fundamental mode of vibration [16, 26, 30].

Microrheology measurements of the same PAA solutions used in the drop 

vibration experiments were collected as described in Section 3.10 [86, 101,

103]. These microrheology measurements were used to obtain an independent 

measure of the G′ and G′′ values (solid lines in Figure 5.3) over the same 

frequency range used in the drop vibration experiments (10 - 300Hz) – a range 

that is not accessible for these weakly viscoelastic solutions using conventional 

rheological techniques. In each case, the G′ and G′′ values were found to agree 

for each particle size studied (see Figure 5.3). The G′ and G′′ values obtained 

using different particle sizes were averaged to obtain the final values for each 

PAA concentration.
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Figure 5.2: Plots of the vibrational frequency ( f ) and spectral width (∆ f ) as a 

function of the drop profile length (l). Data are shown for the lowest 

vibrational mode of drops of 1.1wt% (red circles), 2wt% (teal squares) 

and 3wt% (purple diamonds) PAA in water. The inset in the top panel 

shows how f and ∆ f are defined. The frequency and width of vibration 

both decrease as drop size increases. Overall, the frequency and width of 

vibration increase as the concentration of PAA increases.
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Figure 5.3: Rheological properties of vibrating drops. Values of G′ (left panel) and 

G′′ (right panel) were calculated by inserting measured values of f , ∆ f , 

l, ρ and γ in Equations 3.9.1 and 3.9.2 (Chapter 3). The values of G′

and G′′ are plotted against the vibrational frequency for ∼ 10 - 12 drops 

per concentration. Data are shown for 1.1wt% (red circles), 2wt% (teal 

squares) and 3wt% (purple diamonds) PAA in water and represent the 

average taken from 2 - 3 measurements per drop. The different modes 

of vibration are plotted as separate symbols. These are n = 2 (solid), 3 

(hollow), 4 (vertically stretched symbols) and 5 (horizontally stretched 

symbols). The black circles show results obtained from magnetically 

levitated drops of 1.1wt% PAA similar to those described by Temperton 

et. al. [15]. The solid lines are the results obtained from microrheology 

studies of the PAA solutions.
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5.4 Discussion

The plots in Figure 5.3 demonstrate agreement between the drop vibration tech-

nique and microrheology. This agreement is better for higher concentrations of 

PAA than for the 1.1wt%. The values obtained are also in agreement with pre-

vious results obtained from levitated drop studies of PAA solutions similar to 

those described by Temperton et. al. [15] (see Figure 5.3). However, despite the 

level of agreement, it is worth stressing that the model applied to describe the 

drop vibration phenomenon is simplified as curvature and the finite size of the 

drop may modify the dispersion relation (Equation 2.0.9) used to describe drop 

vibration. The simplified model used may account for the differences between 

the drop vibration data and microrheology in e.g. the slope of the G′′ data for 

the 1.1wt% PAA data in Figure 5.3.

The use of the semi-infinite medium assumption for the drop can, in part, be 

justified because the radius of the drops was typically an order of magnitude 

larger than the observed amplitudes of vibration (amplitudes of vibration were 

measured to be <16% of the drop radius). Also, the fact that very little of the 

interfacial area is in contact with the substrate means that the near spherical 

drops experience little substrate damping [16]. For larger amplitude vibrations 

(approaching the size of the drops) and or shallower three phase contact angles, 

the validity of this approximation is likely to break down. A rigorous theory of 

drop vibration would require correct expansion of the spherical harmonics of 

the drop and the application of appropriate boundary conditions associated 

with the presence of the drop interfaces.

The theory described above is also valid for droplets with radii that are smaller 

than the capillary length lc =
√︂

γ
ρg (∼ 2.7mm for the solutions studied here, 

where γ is the surface tension of the drop, ρ is the solution density and g is 

the acceleration due to gravity). For drops larger than lc an additional term 

of the form ρgk (where k is a wavevector magnitude) would need to be added 

the right hand side of Equation 2.0.9 to account for the effects of gravity on 

the drops [51]. In addition, there are limits on the values of G′ and G′′ that 

can be measured with this technique. As both G′ and G′′ depend upon f , 

∆ f and l, there is some scope for choosing an appropriate drop size that will 

enable these quantities to be determined. However, practical considerations, 
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such as the time resolution of the data collection, mean that there are limits on 

the sampling frequency that can be used to measure the drop vibrations, and 

the level of damping that can be present in the drops before the oscillations 

become critically damped, i.e. damped faster than can be measured. The range 

of frequencies that can be accessed is limited by the size range of the drop (due 

to the relation l = nλ
2 = nvλ

2 f , where vλ is the wavespeed on the drop) and 

external noise impacting photodiode measurements. Camera and calibration 

resolution limit the smallest drop size that can be measured to approximately 

1mm.

For the experimental setup used here, the highest frequency of vibration that 

could be measured is around 500 - 1000Hz depending on the sampling fre-

quency used, and whether multiple modes of drop vibration were observed. 

When only the fundamental mode could be isolated, the practical limit was re-

duced by difficulties exciting vibrations on the surface of small sessile drops, 

as well as noise from environmental oscillations becoming more difficult to dis-

tinguish from the rapidly damped high frequency drop vibrations. Assuming 

that the drop has the largest radius possible before gravitational effects start 

to become important i.e. R = lc, the corresponding profile length would be 

l∼2πlc. This gives an upper limit for G′ of order ∼ 70kPa for fluids of this kind 

according to Equation 3.9.1. However, this could be extended further if higher 

sampling rates and larger drops were used while accounting for the effects of 

gravity as discussed above.

In the case of G′′, the limiting factor is the droplet damping as it becomes dif-

ficult to measure the width of the resonant peaks when damping becomes too 

large. Larger drops tend to give better results as small drops tend to have larger 

spectral widths (shorter damping times) – a result that is consistent with mea-

surements of the dynamics of liquid air interface oscillations in microbubbles 

[104] and simple liquids [16, 30, 32].

In obtaining an approximation to the upper limit for G′′, the width of the 

peak has been set to be comparable to the vibration frequency of the drop i.e. 

f ∼ ∆ f such that the peak becomes very broad and almost indistinguishable 

as a peak. According to Equations 3.9.1 and 3.9.2, this should give a similar 

theoretical upper limit for G′′∼ 70kPa to that obtained for G′ when using the 

setup described here. However, caution must be exercised when analysing data 
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from very broad vibrational peaks, as both G′ and G′′ may vary strongly over 

the range of frequencies spanned by such peaks and the simple dependence 

described by Equations 3.9.1 and 3.9.2 will therefore be invalid.

Previous measurements of drop vibration in glycerol/water mixtures [16] and 

other simple liquids [32] have been used to extract viscosities between

1mPas< η < 1Pas with relative ease at frequencies up to 100Hz (G′′= 2π f η

∼ 0.63−630Pa). Hence the upper limiting value of G′′ is expected to lie some-

where in the range 1 - 70kPa for the experimental setup described here.

5.5 Conclusions

In the absence of a complete theory of viscoelastic drop vibration, the heuristic 

approach adopted here provides a reasonable description of the rheological 

properties of viscoelastic solutions; even for µL sized droplets. The fast, 

simple and non-invasive technique described lends itself to the measurement of 

liquid and viscoelastic properties in a range of different environments (ambient, 

high pressure, ultrahigh vacuum e.g. ionic liquids) and avoids the need for 

complex, bulky levitation apparatus. In contrast to Chapter 4, the drops were 

not observed to be contaminated on the shorter timescales involved in these 

experiments.
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CHAPTER 6

Video Capture of Oscillating 

Pendant Drops

6.1 Introduction

In previous chapters, the vibrational properties of evaporating viscous drops 

and stable (not evaporating) viscoelastic drops on superhydrophobic surfaces 

were studied. While these experiments were an improvement on levitated 

drops (which require expensive equipment to produce) they still present their 

own problems because of the need for a superhydrophobic substrate. These 

substrates are not readily available and can be difficult to produce (Section 3.2) 

[64]. One way to circumvent these difficulties is to use sessile drops on surfaces 

with contact angles < 180°. However previous work has shown that using 

drops with small contact angles introduces additional damping mechanisms 

and extracting the rheological properties is extremely difficult [16, 30]. A 

potentially more attractive way of accessing rheological properties involves 

the use of pendant drops, where a drop is suspended from a pipette, and a 

relatively small proportion of the drop is in contact with a solid surface, the rest 

of the "substrate" being a liquid reservoir within the pipette tip (Figure 6.1, see 

also Section 3.4). This results in less energy dissipation from the solid-liquid 

interface than if the entire substrate were a solid, and vibrational behaviour 

similar to that for levitated drops [32]. In this geometry, large pendant drops 

can also be used to extract the surface tension (Section 3.8) of the fluids at 

long times, and provide this important parameter for use in the equations that 

are used in the calculation of the shear storage and loss moduli (G′ and G′′
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respectively) of the viscoelastic solutions (Equations 3.9.1 and 3.9.2). These 

equations were derived for levitated spherical drops, but provide a useful 

starting point for pendant drops, for which additional damping factors (due 

to the presence of the pipette tip) may need to be taken into account (Chapter 

2).

Figure 6.1: The image shows a cross-section of the "surface" from which a droplet 

of 2wt% PAA in water (with profile length 4.4mm) hangs. The surface 

consists of a liquid reservoir surrounded by solid walls formed by the 

pipette tip. The pipette tip diameter is ∼1.46mm, with tip walls ∼0.1mm 

wide.

In this chapter, pendant drops of poly(acrylamide-co-acrylic acid) solutions 

were suspended from polypropylene pipette tips, and their vibrational motion 

tracked using a camera. The resulting motion of the drops was used to extract 

the vibrational frequency and damping of drop motion. These parameters were 

used in a similar method to that previously described (Section 3.9) in an attempt 

to extract the rheological properties of the fluid. Images of elongated drops of 

the same fluids were also used to extract the surface tension.

6.2 Method

Using the technique described in Section 3.1, solutions of poly(acrylamide-co-

acrylic acid) in water were made up to concentrations of 1.1, 2 and 3wt%. 

Droplets were suspended from a pipette tip and vibrated using the techniques 

described in Section 3.4. Drop vibration was monitored as described in Section 

67



CHAPTER 6: VIDEO CAPTURE OF OSCILLATING PENDANT DROPS

3.7. These experiments took less than one second to perform, so the drops 

would lose ≪1g to evaporation over these timescales (see Section 3.1.1). Two 

batches of solutions were prepared for these experiments. Experiments were 

performed on the first batch, which was the same batch used for Chapter 5, 

over the course of 12 months. The second batch was used within 2 months of 

manufacture.

The profile lengths, l, of the drops were measured using the technique de-

scribed in Section 3.5 (Figure 3.6b). The density, ρ, and surface tension, γ, of the 

PAA solutions were measured as described in Section 3.8. For these pendant 

drop experiments, the surface tension measurements could be taken without 

setting up any additional equipment.

The measured frequency, f , and width, ∆ f , of vibration were used to calculate 

the shear storage, G′, and loss, G′′, moduli as described in Section 3.9 (Equations 

3.9.1 and 3.9.2 respectively) using the surface tension and density values shown 

in Table 3.1.

These equations are approximations, valid for semi-infinite viscoelastic layers, 

and large spherical droplets as explained previously in Chapter 2. Given the 

previous successful use of these equations (Section 5.3), it is informative to 

determine how well they might predict the viscoelastic properties of pendant 

drops. The G′ and G′′ data obtained using Equations 3.9.1 and 3.9.2 were 

plotted as a function of oscillation frequency of the individual drops and 

compared to microrheology data (Section 3.10) for the solutions studied here.

The pipette tip was noted to continue to vibrate at low amplitudes < 0.05mm 

(after the initial impulse) and low frequency (< 10Hz) during these experi-

ments. Drop position measurements were therefore taken relative to the tip 

position (as described in Section 3.7) rather than relative to the camera.

6.3 Results and analysis

6.3.1 Vibration Data

Figure 6.2 shows plots for the frequency and width of the lowest vibrational 

peak obtained in the pendant (solid markers) and sessile (hollow markers) 
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drop vibration experiments (Section 5.3). These data are shown as a function 

of the drop profile length for PAA solutions with concentrations in the range 

1.1 - 3wt%. Using the relationships f ∝ Al−
3
2 from the Noblin equation 

(Equation 2.0.5) and ∆ f ∝ Al−2 from Sharp (assuming bulk viscous damping 

dominates [16], Equation 2.0.7), the lines in Figure 6.2 show fits calculated 

with 95% confidence applied to the sessile (thick lines) and pendant (thin lines) 

drop data. Table 6.1 shows the fits acquired for the sessile and pendant drop 

frequency data. Table 6.2 shows the fits acquired for the sessile and pendant 

drop width data.

Conc. Sessile Frequency fn. Pendant Frequency fn.

1.1% f = 1.3+1105 l−1.5 f =−10.8+547 l−1.5

2% f =11.3+1183 l−1.5 f =−10.2+579 l−1.5

3% f =20.0+1151 l−1.5 f =−15.4+759 l−1.5

Table 6.1: Fit functions (calculated with 95% confidence) for the dependence of 

sessile (obtained in Section 5.3) and pendant drop frequency ( f ) data on 

profile length (l) for 1.1, 2 and 3wt% PAA in water.

Conc. Sessile Width fn. Pendant Width fn.

1.1% ∆ f = 2.8+208 l−2 ∆ f =−1.0+280 l−2

2% ∆ f = 6.6+541 l−2 ∆ f =−0.7+243 l−2

3% ∆ f =16.2+553 l−2 ∆ f =−3.9+459 l−2

Table 6.2: Fit functions (calculated with 95% confidence) for the dependence of 

sessile (obtained in Section 5.3) and pendant drop width (∆ f ) data on 

profile length (l) for 1.1, 2 and 3wt% PAA in water.

As the polymer concentration was increased, the frequency of the fundamental 

mode increased, although at a different rate than that observed for sessile drops 

of the same solutions in Section 5.3. This behaviour is consistent with an 

increase in stiffness of the drops, either as a result of increasing surface tension 

or bulk elastic effects. Given that the surface tension is known to decrease with 

increasing PAA concentration (see Table 3.1), this increased stiffness is likely to 

arise from changes in the bulk rheology of the fluid.

The data obtained for the width of the vibrational peaks increases between 2% 

and 3%. However the 1.1% width has a wide spread and overlaps both the 2% 
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Figure 6.2: The upper panel shows a plot of the vibrational frequency, ( f ), of pendant 

drop vibration as a function of the drop profile length, l. The lower panel 

shows a plot of the spectral width, (width, ∆ f ), of pendant drop vibration 

as a function of the drop profile length, l. Data are shown for the lowest 

vibrational mode of drops of 1.1wt% (red circles), 2wt% (teal squares) 

and 3wt% (purple diamonds) PAA in water. Hollow markers show the 

sessile drop data obtained in Section 5.3, which are approximately three 

times greater in f and in ∆ f than the pendant drop data for all data apart 

from the 1.1% width data. Fits (Tables 6.1 and 6.2) are shown for the 

sessile (thick lines) and pendant (thin lines) drop data.
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and 3% data. This is contrary to expectations of rising width with increasing 

concentration (Section 3.6).

The sessile drop vibration frequency and width data from Chapter 5 were ap-

proximately three times higher (3, 3.4, and 3.6 times higher for 1.1%, 2% and 3% 

respectively) than the pendant drop frequency and width data for all concen-

trations apart from the 1.1% width data, which was the same magnitude as the 

corresponding sessile drop data (Figure 6.2). Alternatively, the profile length 

for sessile drops could be considered to have a multiple of two (1.9, 1.94, and 

1.78 times higher for 1.1%, 2% and 3% respectively) difference in the calibration 

from that for pendant drops. Performing either of these adjustments has a simi-

lar impact on the data, with a slightly greater change of shape (compared to the 

sessile drop data) from a profile length adjustment. Evaluating Equations 2.0.5

and 2.0.7, this common factor of three difference may indicate an error in the 

profile length calibration, perhaps because of the higher likelihood for sessile 

drops to move from the calibrated position, or that a lower vibrational mode 

(n=1) could be present in the case of pendant drops. Since the pendant drops 

were observed to remain pinned during experiments and the PAA solutions 

were considered to be incompressible, the frequency and width data were ex-

tracted from what was initially believed to be the peaks corresponding to the 

same vibrational mode as that studied for sessile drops in previous chapters 

(n=2).

The anomalous behaviour of the width of the 1.1% pendant drops is unusual, 

and suggests that these samples may have experienced an additional damping 

mechanism that was not present for 2% and 3% pendant drops or for any of the 

sessile drops measured in Chapter 5. Sharp [16] discussed several sources of 

damping within sessile drops of glycerol in water. They examined the effects 

of bulk viscous damping, solid-liquid boundary layer damping, and damping 

caused by drop surface contamination. Bulk viscous damping occurs as a result 

of energy dissipation due to velocity gradients within a viscous fluid [56]. Solid-

liquid boundary layer damping is caused by the no-slip/pinning condition at 

solid-liquid boundaries, which requires that fluid velocity must go from a finite 

value at the surface of the drop to zero at the substrate. More rapid decay of 

fluid velocities in a drop (relative to the bulk fluid) attached to a surface gives 

higher energy dissipation. Drop surface contamination produces an additional 
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energy dissipation mechanism at the liquid-air surface of the drop, and energy 

dissipated due to ”friction” in adsorbed layers of molecules produces similar, 

but stronger, damping effects to boundary layer damping [16].

For drops with sizes smaller than the capillary length (lc ∼ 2.7mm for the 

PAA solutions studied here), the pendant drop geometry is expected to be 

very similar to that obtained for sessile drops (see Sections 2.0 and 3.4) i.e. 

drop shape is not influenced by gravity [15, 32]. However, in contrast to a 

sessile drop, where much of the base of the drop is in contact with a substrate, 

only a small proportion of a pendant drop was in contact with a solid surface 

(Figure 6.3). As a result, boundary-layer damping effects should have a much 

smaller impact on pendant drop motion than Sharp [16] found for sessile drops. 

Temperton et. al. [32] found the damping effects on (viscous) simple liquid 

pendant drop vibrations to be similar to those for levitated drops and used 

bulk damping to successfully describe decay of oscillations.

Figure 6.3: Images of 2% PAA in water as a pendant drop (first panel) and a sessile 

drop (second panel) on a candlesoot substrate [64]. Both drops have 

profile length of 5.4mm. Purple marks indicate the equivalent position of 

the pipette tip walls. The solid-liquid contact area for the sessile drop is 

∼4.5 times that for the pendant drop. The contact angle, θ, of the pendant 

drop is defined as the angle between the pipette tip base and the tangent 

to the drop profile at the tip surface, as indicated by the teal lines.

It is unlikely that the spread in the spectral width of the lowest order vibration 

mode of 1.1% PAA is due to boundary-layer damping. The presence of the 

liquid reservoir increases the volume over which bulk viscous damping may 
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act beyond that of just the drop, i.e. fluid velocities can continue to decay 

into the pipette, giving something which looks much more like bulk damping 

of capillary waves on an infinitely deep liquid bath [32]. In this system, 

fluid velocity gradients are able to decay over larger distances and so are 

smaller. This reduces energy dissipation when compared to a sessile drop 

where velocity gradients are much steeper because of the presence of the 

substrate. Increasing the viscosity should increase the dominance of bulk 

damping.

Sharp [16] found that boundary layer damping dominates at contact angles 

lower than ∼ 38°, but only for low viscosities (η ≤ 10.07mPas). At higher 

viscosities bulk damping dominated regardless of the contact angle. Pendant 

drops have a high contact angle (∼ 133°, as defined in Figure 6.3 and Section 3.5) 

and drops of low viscosity (1.0, 3.3 and 9.7mPas) were found by Temperton et. 

al. [32] to behave in a similar way to levitated drops, meaning that they were 

unaffected by boundary layer damping.

Previous experiments with glycerol in water (Chapter 4) indicated contamina-

tion of the drop surfaces with organic compounds over timescales of ∼ 5mins 

(300 seconds). Henderson and Miles [94] demonstrated ∼ 300s to be the time 

scale over which a clean water surface can become contaminated with low sur-

face tension impurities such as organic deposits. The pendant drop experi-

ments were performed in the same environment as the glycerol in water exper-

iments. If the pendant drops were contaminated, it would be expected to be 

by the same contaminants as those which contaminated the glycerol in water 

drops, and the surface tension would be expected to drop to the same value as 

for glycerol in water. Drops were replaced between each experiment, leaving 

them exposed to the air for a maximum of 3 minutes, with measurements be-

ing taken within the first minute. Significant surface contamination is therefore 

unlikely to have occurred over the timescales of these experiments. The surface 

tensions of the PAA solutions were measured after the experiments (Table 3.1) 

and were found to be within 4mNm-1 of those measured previously for sessile 

drops of similar solutions (see Figure 5.1 in Section 5.3). This indicates a lack of 

surface contamination.
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6.3.2 Shear storage and loss modulii

The frequency and width data in Figure 6.2 were converted to the shear stor-

age (G′) and loss (G′′) moduli using Equations 3.9.1 and 3.9.2 (Figure 6.4), with 

surface tension and density values taken from Table 3.1, starting with the as-

sumption that the peak observed in the vibrational spectrum corresponds to 

the n=2 mode, as for pinned sessile drops (Section 3.9), and that the profile 

length was correctly calibrated. It was found that the majority of the G′ data 

was negative (first panel in Figure 6.4), and the non-negative values were ∼ 10 

times lower than the G′ results for sessile drops (on superhydrophobic candle-

soot substrates) and microrheology data (Section 5.3, Figure 5.3). Negative G′

values are unphysical as a positive stress-strain response is expected for the 

solutions used [15].

The G′′ data (second panel in Figure 6.4) clustered closely together and followed 

a steeper gradient, but were of a similar order of magnitude to the values 

obtained from microrheology data. The 1.1% solution data was higher than 

both the 2% and 3% data. Considering Figure 6.2, it is expected that the G′′

result was significantly influenced by the anomalous width data for the 1.1% 

solutions according to Equations 3.9.1 and 3.9.2.

As discussed in Chapter 2, Equations 3.9.1 and 3.9.2 are approximations based 

on a semi-infinite liquid bath (i.e. without the presence of a solid-liquid bound-

ary) and had previously only been applied to levitating spheres [15]. Sharp [16] 

showed that the presence of a surface can have significant impact on the damp-

ing of a vibrating drop, particularly for liquids with low viscosity. It might 

follow that the G′ and G′′ relations (Equations 3.9.1 and 3.9.2) would need to be 

adjusted to account for the additional damping mechanisms resulting from the 

presence of the surface and the size of the solid-liquid contact area relative to 

the drop size and viscosity. The presence of these additional damping mecha-

nisms is likely to have greater impact on the accuracy of Equation 3.9.2 due to 

its stronger dependence on ∆ f which is a direct measure of vibration damping.

However, it is first beneficial to understand the source of the negative G′ data, 

and to re-examine some of the initial assumptions above. Examining Equation 

3.9.1, in which all the variables are positive, the term in the brackets must be 

the source of the negative G′ values, i.e. πγn3

4ρl3(∆ f 2+ f 2)
> 1. This suggests that 
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Figure 6.4: Rheological properties of vibrating pendant drops of 1.1wt% (red circles), 

2wt% (teal squares) and 3wt% (purple diamonds) PAA in water. Values 

for the shear storage (G′, left panel) and loss (G′′, right panel) moduli 

(calculated by inserting measured values of f , ∆ f , ρ and γ into Equations 

3.9.1 and 3.9.2, for the mode number n=2) for different concentrations 

of pendant drops of PAA in water vs oscillation frequency. Thick lines 

indicate fits to microrheology data obtained in section 5.3.

The majority of the G′ data are negative, with the exception of 3% data 

for frequencies > 100Hz. G′′ increases with frequency. 3% and 2% data 

are clustered together, with 1.1% above them.
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either the surface tension values or the mode number assigned to the peak in 

the vibration spectrum are incorrect, or that the equations require significant 

reworking to describe the system.

The surface tensions were remeasured for these solutions and found to be 

in agreement with the values measured for sessile drops (Figure 5.1) so it is 

unlikely to be the surface tension values that are not correct. While sessile 

drops are able to migrate across a superhydrophobic substrate and the ruler 

(Section 3.5, Figure 3.6) must be carefully positioned accordingly, pendant 

drops remained pinned on the pipette tip and could be calibrated relative to 

the width of the tip. Image calibration is therefore assumed to have been more 

accurate for pendant drops than for sessile drops, but it was the pendant drop 

data which produced negative G′. An alternative solution presents itself in 

the form of the description of the drop motion. It is possible that using n=1, 

corresponding to centre of mass motion (top two panels in Figure 2.3), may 

improve the agreement with the sessile drop data. After all, the motion of 

the drops was observed to involve centre of mass motions and the majority of 

frequency and width data were lower for pendant drops than sessile drops in 

Figure 6.2. We discuss this possibility in further detail in the following section.

6.3.3 Compressibility

In the case of sessile drops, the n=1 mode was forbidden due to the incom-

pressibility condition and pinning constraints [16, 26, 30] placed on the drop 

motion by the presence of the substrate. However, the pendant drops expe-

rienced compressibility within the system, as evidenced by the up and down 

motion of the liquid within the pipette tip, particularly if there was air trapped 

above the fluid within the pipette.

In the video analysis (see Section 3.7), the centre of mass oscillations of drops 

was used to extract the vibration of the pendant drops, so it is likely that the 

n=1 mode, which corresponds to centre of mass oscillations, was present. The 

n=1 mode may also involve volume changes, which were observed for some 

drops which moved into the pipette tip during vibration. However, the volume 

changes observed resulted in only a 5% error in the profile length.
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Figure 6.5: Rheological properties of vibrating pendant drops of 1.1wt% (red circles), 

2wt% (teal squares) and 3wt% (purple diamonds) PAA in water, with the 

mode number, n, set to 1. Values for the shear storage (G′, left panel) and 

loss (G′′, right panel) moduli (calculated by inserting measured values 

of f , ∆ f , ρ and γ into Equations 3.9.1 and 3.9.2 with n=1) for different 

concentrations of pendant drops of PAA in water vs oscillation frequency. 

Thick lines indicate fits to microrheology data obtained in Section 5.3.
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Setting n=1 in Equations 3.9.1 and 3.9.2, improved agreement significantly for 

G′ (first panel in Figure 6.5) and removed all negative data. The order of 

magnitude for the G′′ data was in agreement with the microrheology data 

obtained in Section 5.3 (second panel in Figure 6.5), however the data continued 

to follow the steeper gradient seen previously (second panel in Figure 6.4) 

than the data from microrheology experiments. The concentration data were 

clustered very close together, with that for 1.1% PAA overlapping both 2% and 

3%.

There is still disparity between the pendant drop data and the microrheology 

data, particularly for 1.1% PAA. The factor of 3 difference observed in the 

1.1% width in Figure 6.2 is presumed to be the result of additional damping 

mechanisms. Equations 3.9.1 and 3.9.1 both have a ∆ f dependence, so this 

factor of 3 is expected to impact both G′ and G′′ (although it is expected to have 

a greater impact on the G′′ values). For Figure 6.6, the 1.1% width data was 

divided by a factor of 3 and input into Equations 3.9.1 and 3.9.2 with n=1 and 

all other data, including the 1.1% frequency, input as measured. The 2% and 

3% G′ and G′′ data were used from Figure 6.5.

Figure 6.6 shows an improvement in the agreement between the 1.1% data and 

the microrheology data as well as a clearer separation between the different 

concentrations. Repeating the above analysis with the profile length multiplied 

by a factor of ∼ 2 for the n=2 mode returns similar G′ and G′′ data, with 

the same damping factor present for 1.1%, however image calibration errors 

are assumed to be unlikely in the case of pendant drops. This suggests that 

the difference in magnitude between the pendant and sessile drop data was 

primarily the result of the different oscillation modes in each case, however 

the 1.1% width data highlights the presence of potential additional damping 

mechanisms that need to be accounted for. The pendant drop rheology data 

are not in perfect agreement with microrheology measurements, particularly 

for 3% PAA, however this is likely the result of the assumptions used to derive 

Equations 3.9.1 and 3.9.2 (Chapter 2).

Possible sources of damping that may impact 1.1% PAA but not 2% or 3% 

include bulk solution contamination, pipette contamination, reservoir surface 

contamination and increased dominance in reservoir damping.
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Figure 6.6: G′ and G′′ calculated for n=1 with the 1.1% width data divided by 3 to 

fit the factor of 3 difference identified for all other frequency and width 

data. The fit is improved.
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Bulk solution contamination would be expected to impact the frequency and 

surface tension of solutions, as well as the width. These experiments were 

carried out with both fresh and old solutions, and the surface tensions of both 

were measured. If both sets of solutions were impacted, the contaminant would 

be expected to also influence the 2% and 3% solutions, which were produced 

under the same conditions and within a day of one another.

Pipette tip surface contamination could result in contamination of the drop sur-

face. Although contamination from air sources takes ∼ 300 seconds [94], migra-

tion of contaminants from the pipette tip is likely to be faster. Tests were previ-

ously carried out (see Section 4.3) on the spreading rate of contaminants (TEOS, 

fluorinated silane, and candlesoot residue) over the surface of water. TEOS and 

the fluorinated silane were found to spread very rapidly (timescales of ∼ 0.03s 

for a drop with a profile length of ∼ 6mm). If the pipette tips were contami-

nated, it is likely that the pendant drops would have been contaminated before 

measurement could begin (the duration of the pulse applied to the drops prior 

to measurement was 1s). At least 3 pipette tips were used for each concentra-

tion so such contamination would have to have affected multiple tips, in which 

case 2% and 3% would also be impacted.

Reservoir surface contamination may have been possible since the reservoir 

of fluid inside the pipette remained throughout experiment sets (3 sets of 

∼ 24 drops per concentration) and came into contact with the air between 

each drop (< 15s for the majority of drop changes). However, this should 

have resulted in the contamination increasing (and the agreement decreasing) 

as more drops were measured (and more opportunities were provided for 

reservoir contamination). Drop sizes were placed at random yet all of the 1.1% 

width data were affected, meaning that contamination did not increase between 

drops. This is an unlikely source of contamination unless the contaminant 

saturated the surface of the reservoir before the first drop was placed (within 

30s). These timescales would also impact the drops and should be drop size 

dependent i.e. impact smaller drops faster/more strongly than larger drops. 

However the damping for 2% and 3% drops behaved as expected for these 

solutions, suggesting that they were unaffected by any such contaminants 

despite their high water content. The pipette tips were also taken from the 

same box, so prior contamination of the pipette tips themselves would be 
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expected to have influenced all experiments, some of which were made (for 

all concentrations) within the same day. This seems to be an unlikely solution 

to the problem.

Contamination of the liquid-air interface at the top of the reservoir may be more 

likely since the top of the reservoir was in contact with the air within the tip for 

∼ 30 minutes at a time. Once the reservoir was produced, the pipette was left 

alone, so the air inside the pipette was not subjected to changes in pressure and 

contamination should occur over timescales of 5 minutes [94] and should have 

a noticeable impact by the 6th drop. The pipette should be air tight in order to 

function, so contamination would be from air already in the pipette. Damping 

effects from the presence of any contaminants at the top of the reservoir are 

unlikely to have propagated through the reservoir to impact the vibration of 

the drop, unless the penetration depth for the solution was at least 5 times the 

radius of the drop.

The lower viscosity of 1.1% PAA in water, compared to 2% and 3%, increases 

the penetration depth (δ) of shear waves into the reservoir. As a result, the 

solid-liquid contact area and associated energy dissipation of 1.1% would be 

higher than for 2% and 3%. However, Temperton et. al. [32] successfully 

extracted the rheological properties of low viscosity (1, 3.3 and 9.7mPas) drops 

with no evidence of boundary layer damping. The most notable difference 

(aside from the presence of elasticity) in the PAA pendant drops compared 

to Temperton’s experiments is the presence of centre of mass motion resulting 

from the compressible air bubble above the reservoir. If the penetration depth 

were high enough, drop vibration might be influenced by the surface at the top 

of the reservoir and by boundary layer damping within the pipette tip.

The tips used in these experiments had an inner diameter Din ∼ 1.26mm and 

tip wall thickness 0.1mm. The solid-liquid contact area for penetration depths 

smaller than the drop radius (r) should be the area of the ring at the base of 

the tip, or 0.4mm2. As the penetration depth increases, the contact area "seen" 

by the vibrating drop should increase by πDin(δ−r), i.e. 4mm for every 1mm 

increase in δ. This would result in a very rapid increase in boundary layer 

damping if the penetration depth was larger than the drop size.

Penetration depth is defined as the position for which wave amplitude is e−1

of the amplitude at the surface [105]. For viscous liquids, this is defined by 
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Equation 6.3.1 [56, 106]. Using this equation, the penetration depth of surface 

waves at frequencies 30 and 50Hz were estimated for a 1.1% PAA solution with 

density 1004kgm-3 (from Table 3.1), and viscosity ∼ 20mPas. The penetration 

depth was estimated to be 0.46mm at 30Hz and 0.36mm at 50Hz. For these 

frequencies, drops had profile lengths over 3.5mm (over 4.5mm for 30Hz), 

corresponding to radii over ∼ 0.7mm (using l/2θ = r for θ = 144°). These 

penetration depths are comparable to the drop sizes and waves may penetrate 

a short distance into the pipette tip, increasing the influence of boundary layer 

damping,

δ =

√︄
2η

2πρ f
, (6.3.1)

where δ is the penetration depth (m) for waves of frequency f (Hz), η is the 

solution viscosity (Pas) and ρ is the solution density (kgm-3)[56, 106]

The additional damping for 1.1% may be the result of boundary layer damping, 

however this has not been confirmed. Other possibilities have presented them-

selves, many of which can be tested by performing experiments in controlled 

environments and comparing results.

6.4 Conclusion

The pendant drop vibration technique was capable of measuring the vibrational 

properties of viscoelastic pendant drops of poly(acrylamide-co-acrylic acid) in 

water. These measurements were however, difficult to achieve. The pipette 

tip did not always provide a stable surface to "pin" a drop to. Care had to be 

taken to ensure that drop sizes remained consistent during experiments. The 

pipette tip was prone to vibrating as a result of the mechanical impulse applied 

to trigger drop vibration, and without sufficient damping would interfere with 

drop vibration measurements. The motion of the tip needed to be tracked 

separately from the drop in order to isolate the drop vibrational frequencies.

A factor of ∼ 3 difference in the frequency and full width half maximum (width) 

data, or a factor of ∼ 2 calibration error in the profile length data, was observed 

between pendant and sessile drop vibration, for all but the 1.1% PAA width 
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data. Image calibration errors are assumed to be more likely in the case of 

sessile drops than pendant drops due to calibration techniques (Section 3.5), 

however assumptions that the pendant drop data was correct lead to a negative 

(unphysical) shear storage modulus (G′). This indicated that the pendant drops 

vibrated predominantly in the n=1 mode, rather than the n=2 mode measured 

for sessile drops, and that an additional damping mechanism was present for 

1.1% drops.

The shear storage and loss (G′′) moduli, calculated from Equations 3.9.1 and 

3.9.2 (using the measured surface tension and density for the solutions used 

and assuming the measured mode of vibration was n=1), was of the same or-

der of magnitude as microrheology data (Section 5.3) used for comparison. The 

G′ versus f data had similar gradients to sessile drop and microrheology com-

parison data and followed the expected trend of increasing G′ with increasing 

concentration. The separation in G′ between the different concentrations was 

lower than for the sessile drop and microrheology comparison data. The G′′

versus f data clustered close together with a steep gradient, behaving similarly 

to the full width half maximum (∆ f ) of frequency peaks. Dividing the 1.1% 

width data by 3 resulted in G′′ estimates that sat closer to the sessile drop and 

microrheology comparison data. The additional damping mechanism observed 

for 1.1% PAA was suggested to be the result of boundary layer damping from 

the inner walls of the pipette tip, however this remains unconfirmed.

Differences between the pendant drop results and microrheology/sessile drop 

technique results indicated that the model used to extract the rheological prop-

erties (G′ and G′′), which assumes a spherical levitated drop, needs to be 

adapted to account for differences in the pendant drop system. Of particular 

interest is the compressibility of the system resulting from the presence of an 

air bubble above the reservoir within the tip, as well as impact of the reservoir 

on the bulk viscous and boundary-layer damping.
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Conclusion

Optovibrometry techniques were used to extract rheological properties from 

sessile drops of glycerol in water and poly(acrylamide-co-acrylic acid) (PAA) in 

water as well as from pendant drops of PAA in water. Vibrations were triggered 

on the surface of microlitre droplets using a mechanical impulse. The frequency 

and full width at half maximum (width) of the resonant vibrations were used 

to examine the applicability of this technique to solutions whose properties 

change in real-time as well as to viscoelastic droplets.

A range of drop sizes (profile lengths between 2 and 11mm) were used in order 

to access multiple frequencies. For all of the drops studied here, the frequency 

and width of vibration decreased as the drop size increased, and increased as 

the polymer concentration increased.

Superhydrophobic surfaces provided by Deng et. al. [64] were used to produce 

sessile drops with high three phase contact angles (advancing contact angle of 

180± 2°, a receding angle of 166± 2° and a roll-off angle of less than 2° for water 

[65], Figure 2.2). The vibrational behaviour of the sessile drops were extracted 

using light scattering techniques described in Section 3.6.

Viscous sessile drops of glycerol in water were vibrated several times over the 

course of ∼ 2000s (Chapter 4). As the water evaporated from the drops, the 

changes in vibrational behaviour and drop size (profile length, tracked via a 

camera) were recorded. The surface tension and viscosity for these solutions 

were calculated using Equations 3.9.3 and 3.9.4 respectively.
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As the concentration of glycerol was increased, the viscosity increased and the 

surface tension of the solutions decreased. The initial surface tension and vis-

cosity values obtained from drop vibration measurements of evaporating glyc-

erol/water droplets were found to be in good agreement with data obtained 

from bulk glycerol/water solutions. As the water evaporated from the drops 

(and the glycerol concentration increased as the drops shrank), the agreement 

with bulk (near time t = 0) solutions steadily decreased (see Figure 4.4), particu-

larly for surface tension measurements (from Equation 3.9.3), although viscos-

ity measurements (from Equation 3.9.4) also deviated noticeably at low volume 

fractions (φ<0.2).

The surface tension of the glycerol/water drops changed on time scales of 

hundreds of seconds and fell below the surface tension of glycerol after ∼ 300 

seconds for all concentrations studied (see Figure 4.2). This is comparable to the 

time scales over which a clean water surface can become contaminated with low 

surface tension impurities such as organic deposits from the air on time scales 

of ∼ 5mins (300 seconds) [94].

The optovibrometry technique successfully measured the surface tensions and 

viscosities of aqueous glycerol solutions at short experimental times. For 

measurements on longer timescales, the technique was able to identify surface 

tensions indicative of contamination via low surface tension (∼ 40 - 55mJm-2

from Figure 4.2) impurities, such as organic materials, which typically have 

γ∼ 40 - 50mJm-2 [95].

After confirming the technique’s ability to extract rheological data from viscous 

sessile drops, the method was applied to viscoelastic sessile drops of PAA in 

water on short timescales (Chapter 5).

The shear storage (G′) and loss (G′′) moduli were calculated by inputting 

the measured frequency and width data, along with surface tensions and 

densities measured for the bulk solutions, Equations 3.9.1 and 3.9.2 respectively 

[15, 65]. As the concentration of PAA was increased, the G′ and G′′ values 

both increased, and were found to be in good agreement with data collected for 

the same solutions via dynamic light scattering microrheology (see Figure 5.3) 

[86]. The values obtained are also in agreement with previous results obtained 

from levitated drop studies of PAA solutions similar to those described by 

Temperton et. al. [15] (see Figure 5.3).
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Pendant drops, suspended from a polypropylene pipette tip, were recorded 

using a high speed camera (Dalsa Genie HC-640), and their (2D) centre of mass 

tracked as they vibrated (Figure 3.11b). Due to tip oscillations, it was necessary 

to also track the motion of the pipette tip. A vibration spectrum was created 

from the drop position relative to the pipette as a function of time (see Section 

6.2).

The technique was then applied to pendant drops of PAA in water with sizes 

smaller than the capillary length (∼ 2.7mm for the PAA solutions studied). 

These pendant drops of PAA in water experienced centre of mass oscillations 

indicative of the n=1 vibrational mode (rather than the n=2 mode observed 

for the sessile drops). The majority of the rheological data measured for the 

pendant drops agreed with microrheology and sessile drop data, however 1.1% 

PAA displayed increased damping. The source of additional damping for 1.1% 

PAA was suggested to be boundary layer damping from the inner walls of the 

pipette tip, however this remains unconfirmed.

The optovibrometry technique is a promising method for extracting the rhe-

ological properties from viscoelastic fluids and for monitoring the changes 

to these properties in real time. The agreement between the technique and 

conventional rheometry measurements has room for improvement, since the 

model is oversimplified and does not account for boundary layer damping or 

large amplitude vibrations. The technique is inexpensive compared to conven-

tional rheometry techniques and requires much smaller volumes of liquid (µL 

vs mL or cL), however it is vulnerable to external influences such as vibrations, 

air convection and (in the case of the laser scattering technique) external light 

sources.

The measurement range of this technique is limited by the size range of the 

drop (i.e. by the capillary length), damping and by equipment resolution. 

The upper limit for G′ was estimated to be 70kPa, and for G′′ was narrowed 

down to a range between 1 (from previous successful measurements [16, 32]) 

and 70kPa (at which f ∼∆ f is considered to produce a very broad and almost 

indistinguishable peak).
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The optovibrometry technique shows promise as a method for obtaining the 

rheological properties of small (microlitre) volumes of fluid for lower viscosi-

ties than can generally be accessed by conventional rheometry. Conventional 

techniques, such as microrheology, typically require millilitre volumes of fluid.

The small drop size requirements would be beneficial to the rheology of airway 

fluid in the human respiratory system, which has limited volume availability 

and a large viscosity range [107]. The technique also provides an alternative 

way to test for dry eye disease (keratoconjunctivitis sicca). Only a single tear 

would be required to measure the viscosity of tears, which is often lower in 

individuals with dry eyes [108]. In situations where the grade of lubricant 

being used is vital to ensuring efficient operation (such as with machine and 

clock oil) the drop vibration technique may quickly establish the viscosity of a 

single drop prior to application, thus preventing unnecessary breakdowns and 

delays. A feature that makes this technique useful to such applications is the 

ability to measure fluid properties without destroying the sample.

The technique has successfully estimated the rheological properties for both 

viscous and viscoelastic liquids [15, 32]. A greater range of incompressible 

viscoelastic drops should be investigated and used to improve the accuracy 

of the model describing the viscoelastic sessile drop system. This should 

include experiments at different temperatures, as well as the isolation of the 

contact angle dependence of the vibrational frequency and width of sessile 

drops discussed by Farmer et. al. [30], which is closely linked to boundary layer 

damping, particularly for fluids with high penetration depth. The unexpected 

damping source for 1.1% PAA pendant drops should also be investigated, 
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particularly the impact of boundary-layer damping from the reservoir within 

the pipette tip.

Once the contact angle dependence of the frequency and width have been 

established, changes to drop vibration (for a known fluid) may be used in 

surface characterisation, as a tool to identify the contact angle or potentially 

the damping properties of a substrate from the relationship between the solid-

liquid contact area, the contact angle and the width. The effect of surface 

elasticity on drop vibration may be analysed, and vibrating drops or drop 

impacts may be used to observe film oscillations with a greater understanding 

of the drop side of the interaction [109].

With enough information about the impact of temperature, ambient air flow 

and substrate composition, it is possible that a model may be put together to 

estimate when drops of fluid will drip off of a plant’s leaves or remain to be 

absorbed or evaporate. This may be used in agriculture to optimise the use of 

fertilisers and pesticides by selecting the conditions, droplet (spray/atomisa-

tion) size and fluid composition to encourage the active ingredients to remain 

on the leaves or drip down to the roots.

The ability of the technique to monitor changes in properties over time (shown 

in Chapter 4) indicates a promising way to measure blood coagulation rates us-

ing only a small volume of blood (microlitres vs millilitres) and not reliant on se-

lecting appropriate sample tubes [110, 111], a very important factor when deal-

ing with low clotting risk patients, animals, and forensic situations in which 

limited volumes are available. However, for this to be a viable technique for 

measurements on timescales longer than 300s (the contamination timescale for 

a water drop [94]), work needs to be done to eliminate/reduce contamination 

risks (such as through controlled air flow and filters or through additional air 

monitoring).

To better understand the sources (and impacts on drop vibration) of contamina-

tion, experiments can be carried out in a clean or controlled environment and 

contaminants deliberately added to the substrate (or pipette tip), air within a 

pipette (upper surface of the reservoir, Figure 6.1), drop surface, and bulk fluid 

independently to track their influence on drop vibrations. The changes in mea-

sured rheological properties for a single component drop, tracked over a period 

of time, can be used to identify the presence of contaminants in the environment 
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and estimate their rheological properties relative to the uncontaminated drop. 

This could be done prior to testing valuable fluids or performing sensitive tests 

in order to reduce the risk of contamination or to calibrate the results to the 

presence of a contaminant. The rate of contamination may also be used to esti-

mate the saturation of airborne contaminants in the environment. This may be 

adapted to the deliberate contamination of drops to improve the self cleaning 

properties of superamphiphobic substrates [112, 113].

Knowledge of the relationship between contaminants and drop vibration may 

be of use in the field evaluating global dimming [114, 115]. The impact of 

particulate type or size on (water) droplets [116] may indicate the conditions 

required for a contaminated cloud to precipitate and suggest techniques to 

trigger rainfall, dislodge drops from particulates or deliberately bind a drop 

to particulates to cleanse the air.

It would be beneficial to investigate the centre of mass oscillations observed 

in pendant drops of poly(acrylamide-co-acrylic acid) (PAA) in water and their 

impact on the model used to describe the relationship between drop vibration 

and rheological properties (Section 3.9), which assumes incompressibility and 

small vibration amplitude compared to drop size (Chapter 2). Compressible 

drops have not been thoroughly investigated using this technique, although 

the success of setting n=1 for the pendant drops (Section 6.3) suggests that the 

corrections required may be small. The vibrational properties of compressible 

fluids and bubbles should be investigated to improve understanding of fluid 

and thin film mechanics [117], as well as yield stress in small (microlitre) 

volumes [118]. The drop vibration technique may be used to research the 

behaviour of different gas bubbles trapped in a large volume of fluid [34] or 

in a thin film membrane. This may provide greater insight into gas properties 

and the impact of much lower "fluid" densities and varying film thickness on 

vibration.

Applying thin viscoelastic layers to the surface of a liquid drop, while difficult, 

may provide useful insight into the vibration of immiscible multi-component 

fluids. Some techniques for the manufacture of these layered drops include 

drop surface contamination (observed in Chapter 4), self assembly of a barrier 

from components within the drop [116, 119], the creation of a bubble filled with 

fluid rather than gas. The effects of layer thickness, multiple layers of different 
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materials [120], and layer viscoelasticity on vibration may be investigated and 

applied to models of complex systems such as planets [41] or (particularly if 

the technique can be applied to drops closer to the nanolitre scale) colloidal 

spheres.

Investigations into drop vibration can lead to an increased understanding of 

fluid responses in microfluidic systems [121, 122]. The optovibrometry tech-

nique can be used to provide automated analysis of the mechanical proper-

ties and/or surface tension of droplets within microfluidic systems. As an ex-

pansion on the current uses of microfluidic systems for cell culturing [123], it 

may be useful to examine the efficacy of a (vibrating) spherical drop for the 

growth of cells and bacteria while monitoring the mechanical properties of the 

drop/culture system.
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