

Optimised Task Allocation Using Dynamic

Production Data in Human-Robot Teams

Thomas Anthony Smith

Thesis submitted to the University of Nottingham for the

degree of Doctor of Philosophy

June 2020

i

Abstract

 The demand of both industrial and consumer customers for increasingly

higher degrees of customisation in products will see greater amounts of high

mix production in the future of manufacturing. Despite this, automation must

be implemented to improve the efficiency and output of manufacturing

processes. However, traditional automation methods are often unsuitable due

to long lead times for setup and little flexibility to adapt them to new tasks.

Human-Robot (HR) teams provide a potential way to implement easily

reconfigurable automation into future factories by utilising the best

characteristics of human workers such as adaptability and intelligence with

those of robot workers such as strength and repeatability. Robust task planning

is required to implement such HR teams. However, current approaches allow

adaptation to change in performance or composition of HR teams or

optimisation of tasks as a whole but not necessarily both.

In this research, a novel generalised task planning framework is

proposed that uses a semi-online task planning approach, utilising online

production data to determine worker capabilities then planning a

manufacturing task for the HR team offline between task iterations. A system

architecture is defined for such a framework but the focus of this research is

the development and testing of the core technologies required for the

framework to function to assess its utility. These include dynamic cost

functions utilising online production data to accurately quantify the capabilities

of human and robot workers across a work shift. These use continuous

variables to quantify gradual changes in worker performance across a work

shift; and discrete variables to detect instantaneous changes in capabilities that

occur during a single task iteration. Additionally, a dynamic task planner is

developed that implements dual layers of the Discrete Gravitational Search

Algorithm to search for an optimum set of task assignments and task plan for a

HR team given worker costs. Finally, mechanisms are proposed to intelligently

implement task replanning across a work shift to optimise a HR team’s

performance whilst ensuring it does not occur too frequently or unnecessarily.

These core technologies were tested individually in example cases then

combined together to test the ability of the task planning framework to

optimise the performance of a HR team in two example manufacturing tasks

across simulated work shifts. This showed that the dynamic cost functions

represent an effective way to quantify and detect any changes in a worker’s

capabilities across a work shift. Additionally, task replanning was shown to

improve the performance of the HR team in some scenarios, such as the human

worker being over fatigued, by reassigning subtasks to the robot worker as

their performance declines. Importantly, the proposed task planning

framework represents a generalised methodology that can easily be

redeployed to different manufacturing tasks or compositions of HR teams.

ii

Acknowledgements

I would like to thank a number of people whose support was instrumental in

allowing me to finish this thesis.

First of all, I would like to thank my supervisors David Branson, Atanas Popov

and Panorios Benardos for their invaluable guidance and support throughout

the course of my studies.

I would also like to thank all my colleagues in the Advanced Manufacturing

Building at the University of Nottingham whose kindness and encouragement

made it a pleasurable working environment.

Additionally, I would like to thank the members of the Chatty Factories project

across all of the institutions involved that were also a pleasure to work with.

Finally, but most importantly, I would like to thank my Mother and Father for

their encouragement, love and unfailing belief in me.

iii

Table of Contents
1. Introduction .. 1

1.1. Introduction and Background .. 1

1.2. Research Aims and Objectives ... 3

1.3. Contributions to Knowledge .. 4

1.4. Thesis Outline .. 4

2. Literature Review .. 6

2.1. Introduction ... 6

2.2. Existing Use of Automation in Industry ... 6

2.3. Human-Robot Collaboration .. 7

2.3.1. Breaking Down Fences.. 7

2.3.2. Robot Assistants ... 8

2.3.3. Robots as Peers to Human Workers ... 11

2.3.4. Direct Collaboration vs Collaborative Working 12

2.4. Task Planning in Robotics/Manufacturing ... 13

2.4.1. AND/OR Graph Search .. 13

2.4.2. Petri Nets .. 14

2.4.3. Hierarchical Task Network Planning ... 15

2.4.4. Metaheuristic Based Optimisation Algorithms 15

2.4.5. Summary of Methods ... 16

2.5. Offline Task Planning in Human-Robot Teams .. 16

2.5.1. Feasibility of Using Human or Robot Workers 17

2.5.2. Cost Functions to Evaluate Worker Capabilities 18

2.5.3. Modelling of Human Workers .. 18

2.5.4. Task Planning at High Levels of Abstraction 19

2.5.5. Summary of Methods and Definition of State of the Art 21

2.6. Online Task Planning in Human-Robot Teams .. 22

2.6.1. Planning by Observing the World State 23

2.6.2. Planning Given Updated Worker Information (Semi-Online

Planning) ... 24

2.6.3. Summary of Methods ... 25

2.7. Knowledge Gaps .. 26

2.8. Chapter Summary .. 27

iv

3. Research Methodology.. 28

3.1. Introduction ... 28

3.2. Structure of Research .. 28

3.2.1. Research Aims and Definition of Objectives 28

3.2.2. Outline of Research Approach and Thesis 29

3.3. Selection of Research Methods ... 31

3.4. Definition of Manufacturing Tasks .. 32

3.5. Proposed Architecture Overview .. 32

3.5.1. Operating Principle ... 32

3.5.2. Inputs to the System Architecture .. 33

3.5.3. System Processing of Data .. 34

3.5.4. Task Execution by the Human-Robot Team 34

3.6. Dynamic Cost Functions .. 35

3.7. Chapter Summary .. 36

4. Continuous Cost Function Variables ... 37

4.1. Introduction ... 37

4.2. Continuous Variable Example – Fatigue .. 38

4.2.1. Human Fatigue and its Relation to Continuous Variables 38

4.2.2. Baseline Model – The Digiesi Completion Time Model 39

4.2.3. Tolerances to Insignificant Completion Time Variation 40

4.2.4. Effect of Relative Performance on Cost and Definition of Fatigue

Variable ... 41

4.3. Continuous Variable Example – Completion Times 42

4.4. Continuous Variables Testing and Results ... 43

4.4.1. Assembly Subtasks for Testing ... 43

4.4.2. Parameter Setting: Subtask 1 Bolt Tightening 45

4.4.3. Parameter Setting: Subtask 2 Pick and Place 47

4.4.4. Results – Bolt Tightening Subtask ... 49

4.4.5. Results – Pick and Place Subtask .. 52

4.5. Chapter Summary .. 56

5. Discrete Cost Function Variable ... 59

5.1. Introduction ... 59

5.2. Structure of a Discrete Variable .. 60

5.2.1. Operating Principle for Discrete Variables 60

v

5.2.2. Cost Range of a Discrete Variable .. 61

5.3. Discrete Variable Example – Precision of Sealant Application 61

5.3.1. Sealant Pathways in Manufacturing ... 61

5.3.2. Manufacturing Subtask for Testing .. 62

5.3.3. Input Data Required to Assess Quality 65

5.3.4. Reacting to Small Variations in Subtask Completion.................. 71

5.3.5. Hierarchy of Severity of Discrete Events 72

5.3.6. Reacting to Sudden Significant Changes in Production Data 75

5.3.7. Final Formulation of the Discrete Variable 77

5.4. Precision of Sealant Application Variable Testing and Results 79

5.4.1. Experimental Setup .. 79

5.4.2. Experimental Results – Sealant Grading 82

5.4.3. Experimental Results – Discrete Variable Simulation Across a

Work Shift ... 92

5.5. Chapter Summary .. 104

6. Dynamic Task Planning of a Human-Robot Collaborative Manufacturing

Task .. 107

6.1. Introduction ... 107

6.2. Task Planning Using the Discrete Gravitational Search Algorithm 108

6.2.1. Task Plan and Task Assignments .. 108

6.2.2. Gravitational Search Algorithm .. 110

6.2.3. Discrete Gravitational Algorithm .. 111

6.2.4. DGSA Layer 1 – Task Assignment Determination 114

6.2.5. DGSA Layer 2 – Task Plan Determination 115

6.3. Task Planner Pre-Execution Constraints .. 120

6.4. Dynamic Task Planner Testing and Results: Generating Initial Set of Task

Assignments and Task Plan ... 121

6.4.1. Generating a Single Set of Task Assignments and Task Plan From

Historic Data ... 121

6.4.2. Simple Manufacturing Task .. 125

6.4.3. Complex Manufacturing Task ... 130

6.4.4. Testing of the Full Dynamic Task Planner 139

6.5. Chapter Summary .. 141

7. Utilising Dynamic Task Planning to Replan Manufacturing Tasks Across a

Work Shift .. 143

vi

7.1. Introduction ... 143

7.2. Task Assignments and Plan Re-Evaluation .. 144

7.2.1. Determining Intervals Between Replanning Attempts 144

7.2.2. Replanning Utility Checking Function 146

7.2.3. Modification to Task Planner Pre-Execution Constraints 147

7.3. Dynamic Task Planner Testing: Replanning Sets of Task Assignments and

Task Plans across a Work Shift ... 149

7.3.1. Simulating Work Shifts for Human and Robot Workers 149

7.3.2. Simulating Completion Times for Tasks Assigned to a Worker 149

7.3.3. Simulating Completion Times for Tasks Not Assigned to a

Worker .. 152

7.3.4. Generating Discrete Capability Data for Human and Robot

Workers .. 154

7.3.5. Generating Costs for Human and Robot Workers 155

7.3.6. Setup of the Simulated Work Shift for the Human-Robot Team

 .. 156

7.4. Dynamic Task Planner Results: Replanning Sets of Task Assignments and

Task Plans Across a Work Shift ... 158

7.4.1. Simple Manufacturing Task Across a Work Shift 158

7.4.2. Complex Manufacturing Task across a Work Shift 173

7.5. Chapter Summary .. 180

8. Conclusions ... 184

8.1. Overall Conclusions ... 184

8.2. Contributions to Knowledge .. 185

8.3. Future Work ... 186

8.3.1. Development of Long-Term Worker Predication 186

8.3.2. Further Development of Methodologies for Instigating Task

Replanning .. 186

8.3.3. Improving the Efficiency of The Dynamic Task Planner 187

References .. 188

Appendices ... 194

Appendix A: Derivation of the Synthetic Fatigue Variable for the Completion

Time Recovery Model ... 194

vii

Nomenclature

Symbol Description

A
where 𝐴 = [𝛼1, … , 𝛼𝑁]

A potential set of task assignments

𝐵𝑖 The ith simplified task plan

𝐶𝑖,𝑗 Cost for a worker j to complete a subtask i

𝐷𝑗 Average number of task iterations
completed in assignment period and
subtask j required for Digiesi’s fatigue

model

𝐸𝑖,𝑗 Expected completion time for subtask j at
task iteration i from Digiesi’s Fatigue

model

𝐹𝑖 The fitness value for the ith searcher agent
in DGSA Layers 1 & 2

𝐺(𝛿) Gravitational constant in iteration 𝛿 of the
main phase of DGSA

Hj Work element time for manufacturing
subtask j

I
where 𝐼 = [1,… ,𝑁]

The assembly plan

Ji,k The idle cost for a worker k whilst waiting
to complete a subtask i

K The number of best solutions in the DGSA

L Unique corresponding constraints list for a
subassembly

M Total completion time cost for a
manufacturing task

N Total number of subtasks in an overall
manufacturing task

O
where 𝑂 = [𝑜1, … , 𝑜𝑁]

Execution constraints list for an assembly
plan

P
where 𝑃 = [𝑝1, … , 𝑝𝑁]

A potential task plan

𝑄𝑖 The ith subassembly of a potential task plan

R The tolerance region boundary for the
fatigue variable defining the maximum or
minimum completion times that can be
considered insignificant variation from

expected completion times

S Number of searcher agents used in the
GSA/DGSA

𝑇𝑗,𝑘 Average assignment period length for
worker k and subtask j required for

Digiesi’s fatigue model

viii

U Swappable task plan elements

V Missing subtasks list

W Number of available workers

𝑋𝑖 Position of a searcher agent i in the
solution space of the DGSA

Z

Corresponding execution constraints list to
missing subtasks list

a The percentage area of the specified
sealant line over which sealant is applied

𝑏𝑖
𝑗
 The jth subtask in the ith simplified task plan

c The mean cost of previous discrete events
in the past κ number of task iterations

d A dimension of a GSA/DGSA solution space

𝑒𝑗

The maximum acceptable percentage
increase or decrease in completion times

from the expected completion time for the
fatigue variable

𝑓𝑖,𝑗 A cost function variable where i gives the
identity of a variable for a subtask j

𝑔𝑖,𝑗 A cost function variable weighting where i
gives the identity of a variable for a

subtask j

ℎ𝑗

The tolerance to natural variation in
completion times for subtask j required for

the fatigue variable

l The total completion time of a set of task
assignments and task plan

m A small move in the DGSA solution space

n The number of dimensions in the
GSA/DGSA solution space

𝑜𝑗 The execution constraints for a subtask j

𝑝𝑗

where 𝑝𝑗 ∈ 𝐼

A task plan element

𝑞𝑖
𝑗
 The jth subtask in the ith subassembly

𝑟𝑖,𝑗 The moving average completion time of a
worker for subtask j in the ith task iteration

𝑡𝑖,𝑗 The completion time for subtask j in the ith
task iteration

𝑢𝑗 The identifier of a subtask j in the
swappable task plan elements list, U

w Initial task iteration of the current task
assignment period for a worker

𝑥𝑖
𝑑 The position of the ith searcher agent in the

dth dimension of the DGSA

z The angle the applied sealant line deviates
from the specified line

ix

𝛤𝑗 The number of iterations of a
manufacturing task that would have been
completed whilst the human worker has

not been assigned the jth subtask

Θj The last task iteration that the jth subtask
was assigned to the human worker

Λ The base set of task assignments

Φ The cool down modifier function

Ψ The set of locked in task assignments

Ω The fatigue variable boundary defining the
completion times where the maximum or
minimum cost of the variable is reached

𝛼𝑗

where 𝛼𝑗 ∈ {1,… ,𝑊}

The jth task assignment in a set of task
assignments, A

β The number of available cost function
variables

δ The current iteration number of the main
phase of the DGSA

ε The number of successfully completed
iterations of a subtask since the last

discrete event

ζ The length of the moving average for
completion times, 𝑟𝑖,𝑗

η The threshold cost that must be exceeded
to indicate that a worker’s performance is
significantly better than other workers and
their task assignment should be locked in.

θ The maximum acceptable idle time for
workers

ι The number of occurrences of discrete
events in the past κ number of task

iterations

κ The number of past subtask iterations to
consider previous discrete events from

λ The maximum number of iterations used in
the main phase of the DGSA

μ The total number of primitive tasks which
a cost function variable influence

ν The percentage length of the specified line
over which sealant is applied

ξ A constant to attenuate the growth of the
frequency modifier function

ο A constant to attenuate the decay of the
cool down modifier function

ρi,k The idle time for worker k whilst waiting to
complete a subtask i

x

ς The frequency modifier function

σ The cost of an individual sealant
application

τ′𝑗

The synthetic measure of fatigue for a
subtask j used by Digiesi’s Fatigue model

υ The output cost of the discrete variable
after the last occurrence of a discrete

event

φ The small move operator to execute a
small move, m, in the DGSA solution space

𝜓𝑗 The locked in identifier for the jth subtask
of a potential task plan, P

ω The threshold cost difference to define
when a worker’s costs have changed

significantly enough from those in the last
task replanning attempt to execute the

current replanning attempt.

Acronyms

Acronym Full Name

DGSA Discrete Gravitational Search Algorithm

DML Dependant Movement Length

DMO Dependant Move Operator

GSA Gravitational Search Algorithm

HR Human-Robot

IML Independent Movement Length

IMO Independent Move Operator

Kbest Set of K best agents in DGSA

xi

List of Figures

Figure 2.1: A diagrammatic overview of the potential paths for the

implementation of HR teams in manufacturing tasks detailing the level of HR

collaboration using the categorisation method proposed in (el Zaatari et al.,

2019). This begins with current industrial implementations of HR teams, the

two roles for robot workers proposed by current research and the type of

production this would ultimately lead to. .. 12

Figure 3.1: Outline of the research approach. ... 30

Figure 3.2: A diagrammatic simplified overview of the task planning system

where the boxes represent elements of the system and the arrows represent

the flow of data. Additionally, this diagram highlights the elements of the

system that operate online and the elements that operate offline. 33

Figure 4.1: Experimental setup for the bolt tightening subtask....................... 44

Figure 4.2: Experimental setup for the pick and place subtask 44

Figure 4.3: Total costs for workers to complete the bolt tightening subtask. . 49

Figure 4.4: Completion cost function variable output costs for workers in the

bolt tightening subtask. .. 50

Figure 4.5: Fatigue cost function variable output costs for workers in the bolt

tightening subtask. ... 51

Figure 4.6: Total costs for workers to complete the pick and place subtask. .. 53

Figure 4.7: Completion cost function variable output costs for workers in the

pick and place subtask. ... 54

Figure 4.8: Fatigue cost function variable output costs for workers in the pick

and place subtask. .. 55

Figure 5.1: The simulated workpiece for the example sealant application

subtask. ... 63

Figure 5.2: A diagram detailing the measurements of the specified sealant line

applied to the simulated workpiece. .. 64

Figure 5.3: A simulated sealant line for a robot worker on the simulated

workpiece with the A4 card representing the workspace and the green screen

representing the image background that was isolated. 65

Figure 5.4: A diagram detailing the coordinate system and points required to

specify a sealant line for application on the simulated workpiece. This includes

four coordinates defining the bounding box of the sealant line in addition to

two endpoints defining the centreline of the specified sealant line for the

example sealant application task in this chapter. .. 66

Figure 5.5: The location of the specified sealant line isolated from the rest of

the workpiece when 26% of the area of the specified sealant line is applied by

a simulated robot worker. .. 67

Figure 5.6: A binary image of the isolated location of the specified sealant line

given in Figure 5.2 where the white pixels give the detected black sealant line

in Figure 5.5. ... 67

xii

Figure 5.7: An illustration of the dimensions of the workpiece used to

generate the values of the number of pixels per millimetre. This allows the

coordinates of the vertices of the bounding box of applied sealant lines and

the endpoints of the centreline to be transposed to the coordinate system of

the image to the real-world coordinate system of the workpiece. The applied

sealant line here is a simulated sealant application by a robot worker where

25% of the length of the sealant line is applied. This Figure is adapted from

Figure 5.16 which will be seen later in the results section. 68

Figure 5.8: An illustration of the methodology for determining the length of a

specified sealant line applied when only one endpoint of the applied sealant

line lies within the specified sealant line. This is achieved by calculating the

intersection point between the centreline of the applied sealant line and the

bounding box of the specified sealant line. Utilising the line segment between

this intersection point and the endpoint of the applied sealant line with

Pythagoras theorem allows the length of sealant applied to be determined.

The applied sealant line here is a simulated sealant application by a robot

worker where the applied sealant line deviates from the specified sealant line

by 10 degrees. This Figure is adapted from Figure 5.17 which will be seen later

in the results section... 69

Figure 5.9: An illustration of the methodology for determining the deviation

angle between the applied and specified sealant line. This is achieved by

determining the angle between the applied sealant line and the y axis since

the sealant line should be applied parallel to this. The applied sealant line

here is again a simulated sealant application by a robot worker where the

applied sealant line deviates from the specified sealant line by 10 degrees.

This Figure is adapted from Figure 5.17 which will be seen later in the results

section. .. 69

Figure 5.10: Isolated simulated workpiece for the robot worker completing

the sealant line as specified, with perceived and specified sealant lines

highlighted. ... 83

Figure 5.11: Isolated simulated workpiece for the robot worker completing

the sealant line with 76% of the specified area applied, perceived and

specified sealant lines highlighted. ... 85

Figure 5.12: Isolated simulated workpiece for the robot worker completing

the sealant line with 50% of the specified area applied, perceived and

specified sealant lines highlighted. ... 85

Figure 5.13: Isolated simulated workpiece for the robot worker completing

the sealant line with 26% of the specified area applied, perceived and

specified sealant lines highlighted. ... 85

Figure 5.14: Isolated simulated workpiece for the robot worker completing

the sealant line with 75% of the specified length applied, perceived and

specified sealant lines highlighted. ... 86

xiii

Figure 5.15: Isolated simulated workpiece for the robot worker completing

the sealant line with 50% of the specified length applied, perceived and

specified sealant lines highlighted. ... 86

Figure 5.16: Isolated simulated workpiece for the robot worker completing

the sealant line with 25% of the specified length applied, perceived and

specified sealant lines highlighted. ... 86

Figure 5.17: Isolated simulated workpiece for the robot worker completing

the sealant line with the trajectory deviating by 10°, perceived and specified

sealant lines highlighted. .. 87

Figure 5.18: Isolated simulated workpiece for the robot worker completing

the sealant line with the trajectory deviating by 15°, perceived and specified

sealant lines highlighted. .. 87

Figure 5.19: Isolated simulated workpiece for the robot worker completing

the sealant line with the trajectory deviating by 20°, perceived and specified

sealant lines highlighted. .. 87

Figure 5.20: Isolated simulated workpiece for the human worker completing

the sealant line as specified, with perceived and specified sealant lines

highlighted. ... 88

Figure 5.21: Isolated simulated workpiece for the human worker completing

the sealant line with approximately 76% of the specified area, perceived and

specified sealant lines highlighted. ... 90

Figure 5.22: Isolated simulated workpiece for the human worker completing

the sealant line with approximately 50% of the specified area, perceived and

specified sealant lines highlighted. ... 90

Figure 5.23: Isolated simulated workpiece for the human worker completing

the sealant line with approximately 26% of the specified area, perceived and

specified sealant lines highlighted. ... 90

Figure 5.24: Isolated simulated workpiece for the human worker completing

the sealant line with approximately 75% of the specified length, perceived

and specified sealant lines highlighted. .. 91

Figure 5.25: Isolated simulated workpiece for the human worker completing

the sealant line with approximately 50% of the specified length, perceived

and specified sealant lines highlighted. .. 91

Figure 5.26: Isolated simulated workpiece for the human worker completing

the sealant line with approximately 25% of the specified length, perceived

and specified sealant lines highlighted. .. 91

Figure 5.27: Isolated simulated workpiece for the human worker completing

the sealant line with the trajectory deviating by approximately 10°, perceived

and specified sealant lines highlighted. .. 92

Figure 5.28: Isolated simulated workpiece for the human worker completing

the sealant line with the trajectory deviating by approximately 15°, perceived

and specified sealant lines highlighted. .. 92

xiv

Figure 5.29: Isolated simulated workpiece for the human worker completing

the sealant line with the trajectory deviating by approximately 20°, perceived

and specified sealant lines highlighted. .. 92

Figure 5.30: A plot of the completion variable cost for workers across the

simulated 100 iterations of the sealant application subtask. 93

Figure 5.31: Plot of the discrete precision of sealant application variable cost

for the human and robot worker in the sealant application subtask with the

infrequent occurrence of sealant coverage errors for the human worker. 94

Figure 5.32: Plot of the total cost for the human and robot worker in the

sealant application subtask with the infrequent occurrence of sealant

coverage errors for the human worker. ... 94

Figure 5.33: Plot of the discrete precision of sealant application variable cost

for the human and robot worker in the sealant application subtask with the

infrequent occurrence of sealant gap errors for the human worker. 95

Figure 5.34: Plot of total cost for the human and robot worker in the sealant

application subtask with the infrequent occurrence of sealant gap errors for

the human worker. ... 96

Figure 5.35: Plot of the discrete precision of sealant application variable cost

for the human and robot worker in the sealant application subtask with the

infrequent occurrence of sealant trajectory errors for the human worker. 97

Figure 5.36: Plot of the total cost for the human and robot worker in the

sealant application subtask with the infrequent occurrence of sealant

trajectory errors for the human worker. .. 97

Figure 5.37: Plot of the discrete precision of sealant application variable cost

for the human and robot worker in the sealant application subtask with the

frequent occurrence of sealant coverage errors for the human worker. 98

Figure 5.38: Plot of the total cost for the human and robot worker in the

sealant application subtask with the frequent occurrence of sealant coverage

errors for the human worker. ... 99

Figure 5.39: Plot of the discrete precision of sealant application variable cost

for the human and robot worker in the sealant application subtask with the

frequent occurrence of sealant gap errors for the human worker. 100

Figure 5.40: Plot of the total cost for the human and robot worker in the

sealant application subtask with the frequent occurrence of sealant gap errors

for the human worker. ... 100

Figure 5.41: Plot of the discrete precision of sealant application variable cost

for the human and robot worker in the sealant application subtask with the

frequent occurrence of sealant trajectory errors for the human worker. 101

Figure 5.42: Plot of the total cost for the human and robot worker in the

sealant application subtask with the frequent occurrence of sealant trajectory

errors for the human worker. ... 102

Figure 5.43: Plot of the discrete precision of sealant application variable cost

for the human and robot worker in the sealant application subtask with the

xv

frequent occurrence of errors of increasing severity for the human worker.

 .. 103

Figure 5.44: Plot of the total cost for the human and robot worker in the

sealant application subtask with the frequent occurrence of errors of

increasing severity for the human worker. .. 103

Figure 6.1: A representative set of assembly precedence constraints. 109

Figure 6.2: A representative combined task plan and set of task assignments,

green nodes representing the human worker’s assigned subtasks with red

representing those of the robot. .. 110

Figure 6.3: The framework for the dynamic task planner, detailing the

interaction between Layer 1 and Layer 2, necessary to find the optimal set of

task assignments and task plan for a HR team. .. 114

Figure 6.4: The precedence relationships for the turbocharger assembly task

given in (Nikolakis et al., 2018). .. 125

Figure 6.5: Plot of the mean percentage cost difference between the solution

found by the task planner using only DGSA Layer 1 and the optimum solution

found using brute force, with varying number of searcher agents and

maximum number of iterations used by the main phase of DGSA Layer 1. .. 127

Figure 6.6: Plot of the mean difference in completion time of the simple

manufacturing task between the solution found by the task planner using only

DGSA Layer 1 and the optimum solution found using brute force, with varying

number of searcher agents and maximum number of iterations used by the

main phase of DGSA Layer 1. .. 128

Figure 6.7: Plot of mean execution time of DGSA Layer 1 with varying number

of searcher agents and maximum number of iterations used by the main

phase of DGSA Layer 1. It is important to note that the brute force search of

the solution space had an execution time of 687.4 seconds, but this is far

beyond the region shown in this plot. .. 129

Figure 6.8: The precedence relationships for the simulated more complex

assembly task. ... 131

Figure 6.9: A potential simplified task plan for the assembly plan defined using

the precedence relationships in Figure 6.8. ... 132

Figure 6.10: Plot of the mean percentage cost difference between the task

plans found for potential task assignments 4 by DGSA Layer 2 and the

optimum task plans found using brute force, with varying number of searcher

agents and maximum number of iterations used by the main phase of DGSA

Layer 2. .. 135

Figure 6.11: Plot of the difference in total completion times between the task

plans found for potential task assignments 4 by DGSA Layer 2 and the

optimum task plans found using brute force, with varying number of searcher

agents and maximum number of iterations used by the main phase of DGSA

Layer 2. .. 137

Figure 6.12: Plot of the mean execution time for DGSA Layer 2 when applied

to potential task assignments 1, with varying number of searcher agents and

xvi

maximum number of iterations used by the main phase of DGSA Layer 2 in

addition to the execution time of a brute force search of all potential task

plans for potential task assignments 1. .. 138

Figure 7.1: A representation of the procedure for scheduling task replanning

attempts for the simple manufacturing task. This illustrates the methodology

of scheduling task replanning at intervals of 10 complete task iterations with

the set of task assignments and task plan being implemented in the next task

iteration. An exception to this procedure occurs with a break period for a

human worker, where the task must instead be replanned after the last task

iteration before the human worker returns to the manufacturing task. Task

replanning then continues at the set interval of 10 task iterations from this

point. ... 145

Figure 7.2: A representation of the procedure for scheduling task replanning

attempts for the complex manufacturing task. This illustrates how the

methodology of scheduling task replanning at intervals of 10 complete task

iterations must be modified to account for the larger execution time of the

dynamic task planner when applied to the complex manufacturing task. Here

task execution by the HR team must continue whilst the task is replanned

with a new set of task assignments and task plan implemented when they are

ready. To accommodate this, the next task replanning attempts should occur

at an interval of 10 complete task iterations after the last set of task

assignments and task plans was implemented. Additionally, during the human

worker’s break period, it is necessary to ensure replanning is instigated with

enough time for the dynamic task planner to be executed so a new set of task

assignments and task plan is ready for their return. 146

Figure 7.3: A plot of the total cost for the simulated human and robot workers

to complete the simple manufacturing task across the work shift, with and

without the occurrence of task replanning, whilst the simulated human

worker was performing as expected. ... 159

Figure 7.4: A plot of the total completion time for the simulated human and

robot workers to complete the simple manufacturing task across the work

shift, with and without the occurrence of task replanning, whilst the

simulated human worker was performing as expected. 160

Figure 7.5: A plot of the percentage of subtasks assigned to the simulated

human and robot worker across the simulated work shift with the occurrence

of task replanning whilst the simulated human worker was performing as

expected. .. 161

Figure 7.6: A plot of the total execution time for each time the task planner

was utilised with the simple task across the simulated work shift whilst the

simulated human worker was performing as expected. 161

Figure 7.7: A plot of the total cost for the simulated human and robot workers

to complete the simple manufacturing task across the work shift, with and

without the occurrence of task replanning, whilst the simulated human

worker was over fatigued. .. 162

xvii

Figure 7.8: A plot of the total completion time for the simulated human and

robot workers to complete the simple manufacturing task across the work

shift, with and without the occurrence of task replanning, whilst the

simulated human worker was over fatigued. ... 163

Figure 7.9: A plot of the percentage of subtasks assigned to the simulated

human and robot worker in the simple task across the simulated work shift

with the occurrence of task replanning whilst the simulated human worker

was over fatigued. .. 164

Figure 7.10: A plot of the total cost for the simulated human and robot

workers to complete the simple manufacturing task across the work shift,

with and without the occurrence of task replanning, whilst the simulated

human worker was under fatigued. ... 165

Figure 7.11: A plot of the total completion time for the simulated human and

robot workers to complete the simple manufacturing task across the work

shift, with and without the occurrence of task replanning, whilst the

simulated human worker was under fatigued. .. 166

Figure 7.12: A plot of the percentage of subtasks assigned to the simulated

human and robot worker across the simulated work shift with the occurrence

of task replanning whilst the simulated human worker was under fatigued.

 .. 167

Figure 7.13: A plot of the total cost for the simulated human and robot

workers to complete the simple manufacturing task across the work shift,

with and without the occurrence of task replanning, whilst the simulated

human worker was performing as expected but subject to error scenario 3

occurrence set 1. .. 168

Figure 7.14: A plot of the total completion time for the simulated human and

robot workers to complete the simple manufacturing task across the work

shift, with and without the occurrence of task replanning, whilst the

simulated human worker was performing as expected but subject to error

scenario 3 occurrence set 1. ... 168

Figure 7.15: A plot of the percentage of subtasks assigned to the simulated

human and robot worker across the simulated work shift with the occurrence

of task replanning whilst the simulated human worker was performing as

expected but subject to error scenario 3 occurrence set 1. 170

Figure 7.16: A plot of the total cost for the simulated human and robot

workers to complete the simple manufacturing task across the work shift,

with and without the occurrence of task replanning, whilst the simulated

human worker was performing as expected but subject to error scenario 3

occurrence set 2. .. 171

Figure 7.17: A plot of the total completion time for the simulated human and

robot workers to complete the simple manufacturing task across the work

shift, with and without the occurrence of task replanning, whilst the

simulated human worker was performing as expected but subject to error

scenario 3 occurrence set 2. ... 172

xviii

Figure 7.18: A plot of the percentage of subtasks assigned to the simulated

human and robot worker across the simulated work shift with the occurrence

of task replanning whilst the simulated human worker was performing as

expected but subject to error scenario 3 occurrence set 2. 173

Figure 7.19: A plot of the total cost for the simulated human and robot

workers to complete the complex manufacturing task across the work shift,

with and without the occurrence of task replanning, whilst the simulated

human worker was performing as expected. ... 174

Figure 7.20: A plot of the total execution time for each time the task planner

was utilised with the complex task across the simulated work shift whilst the

simulated human worker was performing as expected. 175

Figure 7.21: A plot of the total cost for the simulated human and robot

workers to complete the complex manufacturing task across the work shift,

with and without the occurrence of task replanning, whilst the simulated

human worker was over fatigued. .. 176

Figure 7.22: A plot of the total completion time for the simulated human and

robot workers to complete the complex manufacturing task across the work

shift, with and without the occurrence of task replanning, whilst the

simulated human worker was over fatigued. ... 177

Figure 7.23: A plot of the percentage of subtasks assigned to the simulated

human and robot worker in the complex task across the simulated work shift

with the occurrence of task replanning whilst the simulated human worker

was over fatigued. .. 179

Figure 7.24: A plot of the total cost for the simulated human and robot

workers to complete the complex manufacturing task across the work shift,

with and without the occurrence of task replanning, whilst the simulated

human worker was under fatigued. ... 180

xix

List of Tables

Table 4.1: Initial conditions used for the simulated human worker in the bolt

tightening subtask. ... 46

Table 4.2: Initial conditions used for the simulated human worker in the pick

and place subtask. .. 48

Table 5.1: The hierarchy of errors for the example sealant application subtask.

 .. 73

Table 5.2: Table of costs for simulated coverage errors for a robot worker and

the data that defines the cost of these discrete events. 84

Table 5.3: Table of costs for simulated coverage errors for a human worker

and the data that defines the cost of these discrete events. 89

Table 6.1: Table of human historic initial completion times, initial robot

completion times and manufacturer’s desired work element times for each

subtask for the example manufacturing task. .. 122

Table 6.2: Cost function variable weightings for human and robot workers. 124

Table 6.3: Type of manufacturing task definition for each subtask and their

precedence constraints. ... 124

Table 6.4: New subtask precedence constraints for simulated more complex

assembly task. ... 131

Table 6.5: Potential sets of task assignments used to test DGSA Layer 2. 134

Table 6.6: A table showing a comparison of the highest mean cost of task

plans found by DGSA Layer 2 in comparison to those of the optimal task plans

found via a brute force search of the solution space for the potential sets of

task assignments given in Table 6.5. Additionally, the number of searcher

agents required to reduce mean percentage cost difference to zero regardless

of the maximum number of iterations, λ, used in the main phase of the search

algorithm are given. .. 134

Table 6.7: A table showing a comparison of the highest mean completion time

of task plans found by DGSA Layer 2 in comparison to those of the optimal

task plans found via a brute force search of the solution space for the

potential sets of task assignments given in Table 6.5. Additionally, the number

of searcher agents required to reduce mean percentage cost difference to

zero regardless of the maximum number of iterations, λ, used in the main

phase of the search algorithm are given. ... 136

Table 6.8: A table of the execution times of a brute force search of all

potential task plans for a proposed set of task assignments (given in Table 6.5)

in addition to the mean execution time of 30 runs of DGSA Layer 2 under the

proposed optimum settings. A comparison of the execution times of both

methods is also presented with the mean increase in execution times and the

corresponding percentage increase. .. 139

Table 6.9: A table of the mean cost and completion time of the solutions

generated by the dynamic task planner for the complex task as well as those

of the solution generated through a brute force search of the solution space.

xx

In addition to this the mean execution time of the dynamic task planner and

the execution time of the brute force method are presented. 140

Table 7.1: A table of the initial completion times and number of iterations of

the subtask completed in a time period of Tj = 3600 seconds for the human

worker under the three proposed fatigue scenarios. 152

Table 7.2: A table of the simulated error data for a human worker used for the

simple and complex manufacturing tasks to test the reaction of the dynamic

task planner to a rapid degradation in a human worker’s capabilities in

completing the subtask. These scenarios follow the format of the third group

of scenarios from Section 5.4.1. ... 155

Table 7.3: A table of subtask assignment changes implemented by the

dynamic task planner for the HR team completing the simple manufacturing

task across the simulated work shift when the simulated human worker was

over fatigued. .. 165

Table 7.4: A table of subtask ordering changes implemented by the dynamic

task planner for the HR team completing the complex manufacturing task

across the simulated work shift when the simulated human worker was

performing as expected. ... 174

Table 7.5: A table of the difference in cost and total completion time for the

HR team between the replanned task and the initial set of task assignments

and task plan. .. 177

Table 7.6: A table of subtask assignment changes implemented by the

dynamic task planner for the HR team completing the complex manufacturing

task across the simulated work shift when the simulated human worker was

over fatigued. Here a green box labelled H indicates that the human is

assigned the subtask whereas a blue box labelled R indicates that the robot is

assigned the subtask. .. 178

Table 7.7: A table of subtask ordering changes implemented by the dynamic

task planner for the HR team completing the complex manufacturing task

across the simulated work shift when the simulated human worker was over

fatigued. .. 179

1

1. Introduction

1.1. Introduction and Background

The future of manufacturing will see more high mix production as both

industrial and consumer customers require a high degree of customisation in

the products they order. Despite this, manufacturers still desire to implement

automation in their factories to improve the efficiency and output of

manufacturing processes. However, the limitations of traditional automation

methods prevent their use in these situations due to the traditional need for

long setup lead times and reduced adaptability in current static production

lines.

Future visions of manufacturing such as Industry 4.0 highlight Human-

Robot (HR) teams as a potential way to implement reconfigurable automation

into future factories. HR teams utilise the best characteristics of human

workers such as their adaptability and intelligence with those of robot workers

such as their strength and repeatability. The rapid commercial development of

human collaborative robots (cobots) over the past decade has resulted in

cobots with higher payload capacities and repeatability that are safe to work

closely amongst human workers. This enables HR teams to be realistically

considered for manufacturing tasks and has seen large areas of research to

develop methodologies to implement such teams.

Although the concept of HR teams provides a potential solution to

implement reconfigurable automation into future factories, innovative

methodologies are required to implement them in manufacturing tasks in a

useful way. Such methodologies must ensure that both robot and human

workers are implemented in task that they are best suited to. However, the

methodologies should also allow the HR team to be redeployed to another

manufacturing task quickly and allow adaptation to changing worker

capabilities.

The literature review in Chapter 2 highlights two potential ways to

implement robots amongst humans in HR Teams: as assistants to human

workers, where the robot indirectly participates in a task by interacting with

the human worker, or as their peers, where the robot takes turns with the

human worker to directly complete elements of the manufacturing task. Whilst

such measures can be helpful for a human worker, it can result in an

underutilisation of cobots that have an ever-increasing range of capabilities.

Utilising a robot worker as a peer to human workers allows them to instead

directly contribute to the completion of manufacturing tasks, fully utilising their

capabilities. This methodology is thus chosen to be further explored in this

research as it offers a path to partial automation in settings where full

2

automation of manufacturing tasks is not currently possible. However, to

implement HR teams with robots and humans as peers to each other, robust

task planning is required to ensure workers are implemented appropriately. To

achieve this, task planning must ensure that each task is assigned to the optimal

worker for completion based on the capabilities of the worker and the

requirements of each task.

The literature review in Chapter 2 also shows that two planning

methodologies, online and offline task planning, emerged to plan

manufacturing tasks for such HR teams. Online task planning methodologies

assign tasks one by one as they are being executed allowing adaptation to

change in performance or composition of HR teams but not necessarily

optimisation of tasks overall. This is typically achieved using machine vision

technologies that observe the shared workspace of the HR team and

implement the robot worker on tasks that are available for completion. Offline

task planning instead plans entire tasks offline based on static indicators or

models of the performance of workers, optimising tasks as a whole but not

allowing much adaptability. Task assignments and plans generated are then

typically executed by a HR team with limited capabilities to react to collisions

or failures allowing the robot worker to stop safely. In other recent research,

task planning methodologies have emerged for HR teams that consider offline

task planning but utilising online data regarding the current world state of the

manufacturing environment or the capabilities of human workers. This has

seen very limited use in previous research which developed semi-online task

planning methodologies around specific use cases for a defined manufacturing

task and HR team.

A knowledge gap is highlighted in the literature review for dynamically

planning tasks for HR teams based on the variability in performance and

capabilities of workers across a work shift. Semi-online methods of task

planning have the potential to allow efficient and adaptable implementation of

a HR team in a manufacturing task. However, such approaches have so far

focused on task replanning based on specific factors influencing HR teams and

the effect of these on the capabilities and performance of the HR team. These

existing semi-online task planning methodologies do not consider using multi-

variable cost functions, which update a cost for a worker to complete a

manufacturing subtask using data from the HR workspace. In addition to this,

existing semi-online task planning methodologies do not fully consider the re-

assignment of assembly subtasks with the changing capabilities of human

workers across a work shift. This knowledge gap can be further refined as the

requirement of a generalised methodology to allow for semi-online structured

task replanning of a manufacturing task over a work shift for a HR team given

the variability of workers capabilities.

3

In this research, a system architecture is proposed to apply a semi-

online task planning methodology across a work shift for a HR team. This

defines how online production data is used by multi-variable dynamic cost

functions to quantify the capabilities of workers as costs. These costs are then

used by an offline task planner to optimise the assignment and sequencing of

subtasks of an overall manufacturing task. As the HR team then execute the

manufacturing task, online production data is gathered, and the dynamic cost

functions must update worker costs based on this new data. Utilising these

updated costs, the task should be replanned offline at set intervals based on

the changing performance and capabilities of workers.

In this thesis, the core methodologies for this system architecture are

developed beginning with the dynamic cost functions required to quantify a

worker’s capabilities based on online production data. Cost function variables

are proposed to enable the use of continuous online data to determine gradual

changes in worker performance and discrete data to detect instantaneous

changes in their capabilities. In addition to this a dynamic task planner is

proposed to optimise both the assignment of subtasks to workers and the

sequence in which they must be completed. Finally, techniques are developed

to determine when task replanning attempts should occur across a work shift

and to determine whether task replanning is necessary.

1.2. Research Aims and Objectives

This work aims to provide a novel generalised methodology to

implement robot workers amongst human workers as a part of a HR team

whilst optimising implementation of both workers and allowing adaptability.

Based on this research aim and the knowledge gaps identified in the literature

review in Chapter 2, research objectives are defined given current limitations

in quantifying a worker’s capabilities using online production data and using

this information to replan tasks for HR teams during a work shift.

First, based on the limitations of utilising online production data to

quantify the current capabilities of a worker, the following research objectives

are defined:

• Formulate dynamic cost functions for human and robot workers,

consisting of variables that can use continuous or discrete production

data to quantify the capability of each worker to complete each subtask

of an overall manufacturing task;

• Develop mechanisms to update the output cost for a cost function

variable given online data obtained from the collaborative workspace

over iterations of a manufacturing task. These mechanisms must ensure

the output cost from a cost function variable accurately quantifies the

capabilities of human and robot workers.

4

Next, given the limitations of task planning in using such online production data

the following objectives are defined:

• Produce a task planning methodology to find an optimum set of task

assignments and task plan for a HR team given the costs generated for

each subtask whilst respecting task constraints and minimising worker

idle times;

• Implement mechanisms to ensure that subtasks are assigned to optimal

workers if there is a significant difference in worker capabilities;

• Implement mechanisms to trigger task replanning at appropriate

intervals but only if worker costs changes indicate this is necessary.

1.3. Contributions to Knowledge

The contributions to knowledge of this thesis are focused around

dynamically planning tasks for HR teams based on the variability in

performance and capabilities of workers across a work shift.

First, this thesis presents dynamic cost functions that can utilise online

production data to update knowledge on the capabilities of workers across a

work shift. These dynamic cost functions can react to gradual changes in the

performance of workers using continuous variables that analyse continuous

online data. The dynamic cost functions can also react to instantaneous

changes in the capabilities of workers using discrete variables that react to

discrete events in manufacturing subtasks.

Second, this thesis presents a dynamic task planner to optimise both

task assignments and task plans for a HR team. This represents a generalised

methodology that allows easy adaption to different manufacturing tasks.

However, this should also allow different compositions of HR teams containing

various numbers of human or robot workers.

Finally, this thesis presents techniques for implementing task

replanning across a work shift utilising intelligent methods to trigger when

replanning attempts occur and determine if it is necessary to replan tasks to

prevent unnecessary computational expense.

1.4. Thesis Outline

Over the course of this thesis the overall research aim is explored to

develop a novel task planning methodology to plan manufacturing tasks for HR

teams. This begins in Chapter 2 with a thorough literature review into the

various methodologies for implementing robot workers amongst human

workers in HR teams and identification of potential knowledge gaps. Chapter 3

contains a description of the research methodology beginning with the

transformation of identified knowledge gaps into a formal definition of the

5

research objectives. In addition to this a system architecture is outlined for the

task planning methodology proposed in this thesis including definition of the

core enabling technologies that are developed in this research to verify the

proposed semi-online task planning methodology. Next, Chapters 4 and 5

describe the development of techniques to quantify the changing capabilities

of human and robot workers across work shifts through the use of continuous

and discrete variables in dynamic cost functions. Chapters 6 and 7 then

describe the development of methodologies to utilise costs for workers to

generate an optimal set of task assignments and task plan then update them

as worker performance changes across a work shift. Finally, Chapter 8 presents

the conclusions of this research in addition to possible areas of future research

to further develop the methodologies outlined in this thesis.

6

2. Literature Review

2.1. Introduction

In this chapter a thorough literature review is presented to discuss the

works that this thesis builds upon. To provide motivation for this research it is

first necessary to discuss the existing uses of automation in industrial

manufacturing processes in Section 2.2 to illustrate the need for adaptable

Human-Robot (HR) teams for future high mix production. This is followed by a

discussion on HR collaboration in Section 2.3 detailing technologies that enable

such methodologies, potential roles for robots in HR teams and the levels of

collaboration that can be implemented.

 Given the description of HR teams it was next necessary to detail how

manufacturing tasks are planned to allow HR teams to be implemented. This

was broken down into three key areas, beginning in Section 2.4 with a

discussion of existing task planning methods within the field of manufacturing.

Following this, current research trends in task planning for HR teams are

discussed with offline and online task planning methodologies detailed in

Sections 2.5 and 2.6, respectively. Finally, Section 2.7 concludes with a

discussion of the knowledge gaps in task planning for HR teams highlighted

from this literature review that will be investigated within this thesis.

2.2. Existing Use of Automation in Industry

Automation has been implemented in industrial manufacturing for

several decades and can benefit manufacturers by lowering the unit cost to

manufacture products in addition to increasing the speed of production. Over

this time the conceptual methods and approach to implementing industrial

robots has, however, changed very little. Industrial robots are typically

implemented in highly repetitive simple tasks with minimal variation in the task

specification such as painting, welding or manipulation of production

components (Hägele et al., 2016). Such simple tasks are achieved by following

predefined trajectories with an end effector over high numbers of task

iterations in the production lifecycle of a product.

As a result of this type of implementation, large scale industrial robots

typically do not include sensors suites that make them aware of changes in

their environment and are highly susceptible to colliding with unexpected

objects in their workspace. The large size and mass of these robots combined

with their fast movement speed can result in lethal levels of force being

imparted on human workers that enter their workspace. This has necessitated

that these robots operate in isolated environments that are rigorously

enforced by interlocked cages to ensure robots cannot operate whilst human

workers are present in their workspace. The environment and safety

7

constraints of industrial robots offer little flexibility in use once installed and

require a large setup time when initially implemented or reconfigured for a

new production process. This setup typically takes place during the

commissioning of an assembly line in a factory and involves the robot being

programmed to complete their tasks by specialist engineers. Further tuning of

the robot’s tasks are often required when production starts over a large period

of time.

 A current example of this type of automation is in the automotive

industry where robots are installed on an assembly line to perform tasks such

as spot welding or spray painting the body shell of a car. The robot can be

implemented to perform this task repetitively over the lifecycle of the car

which could last a few years with minimal variation in the task the robot is

performing. This type of automation is suited to large scale production such as

this since the time and cost required to implement robots in these tasks can be

factored into the commissioning of a factory during the development of a new

car model. Although this type of automation is well suited to large scale

manufacturing, it is poorly suited to low volume high mix production used in

many smaller companies where the difficulty in reconfiguring the robots would

make their implementation uneconomical.

2.3. Human-Robot Collaboration

2.3.1. Breaking Down Fences

Research has identified HR collaboration as a solution to implementing

automation into manufacturing sectors where this was previously not possible.

HR collaboration consists of using the best characteristics of robots such as

their strength and repeatability with those of a human such as their

adaptability and intelligence. New opportunities for close collaborative work

between humans and robots were only made possible by the introduction of

human collaborative robots (cobots).

 Cobots were first proposed in the 1990s in (Colgate, Wannasuphoprasit

and Peshkin, 1996) which recognised the need for closer collaborative work

between humans and robots within manufacturing environments. Cobots

became more widely commercially available with the introduction of the single

arm Universal Robots UR5 in 2008 which has since seen many applications in

industrial settings. The availability of robots such as the Rethink Robotics

Baxter (Cremer, Mastromoro and Popa, 2016), a dual armed robot which was

widely purchased by universities, resulted in a significant increase in the levels

of research into HR collaboration.

 Typical cobots include several safety systems allowing humans to work

in close proximity whilst maintaining their safety. Such safety measures vary

widely in operating methodology using both software and hardware-based

8

measures, but all typically ensure a cobot can detect a collision with a human

worker and stop quickly whilst limiting the imparted force to prevent injuries.

The safety of cobots allow them to be implemented without interlocked cages

amongst human workers. Their size and weight also allow them to be mounted

on movable benches, requiring a much smaller footprint than traditional

industrial robots and allowing easy relocation within a workspace. Cobots can

also be reprogrammed on the factory floor through lead through programming,

allowing them to be reconfigured quickly for new tasks by a worker physically

moving through positions of a desired trajectory. The disadvantage of typical

cobots is that their lifting capacity, which can range from 0.5kg to 16kg, is much

smaller than traditional industrial robots which have lift capacities in the order

of hundreds of kilograms. As a result of this, research has also now attempted

to retrofit existing industrial robots with sensors to allow human workers to

work safely in close proximity (Bdiwi, Pfeifer and Sterzing, 2017; Lasota,

Rossano and Shah, 2014).

 Despite the possibilities cobots offer through HR collaboration, they are

typically implemented alone completing the same task repetitively in industry

(Salunkhe et al., 2019). HR collaboration has been explored much more in

research with the emergence of two different roles for robots in the future of

manufacturing. Such roles include viewing robots as assistants to human

workers or as peers working alongside them on manufacturing tasks.

2.3.2. Robot Assistants

The use of robots as assistants to human workers has emerged as a

strong theme in current research with the emergence of cobots as commercial

products. This form of HR collaboration revolves around the concept of a robot

only completing assistive actions for a human worker rather than directly

engaging in the manufacturing task. In this role the robot performs actions such

as handing tools or components to the human worker that they will need

during the manufacturing task to enhance the efficiency of their work (el

Makrini et al., 2017). Additionally, if components are cumbersome or require

support whilst a human worker completes tasks upon them, the robot can

perform actions such as holding the component in place to assist the human

worker (Goto, Miura and Sugiyama, 2013).

 Research in this field is heavily reliant on the observation of a human

worker and the workspace to allow a robot worker to recognise and anticipate

a human worker’s need for assistance in performing a task or detect a direct

request for assistance. Technologies required to achieve this can often pose

difficult research problems in themselves. It has been shown in previous

research such as (Chan et al., 2015) that simple tasks such as object handovers

prove difficult requiring a robot to be very aware of its environment and objects

within it to accomplish a successful handover of an object. This includes

9

ensuring an object is grasped to ensure a human can accept it without danger,

recognising the location of a human hand and recognising when to release the

grasp on an object. These actions are often highly dependent on sensors

monitoring a human worker with algorithms such as those for pose estimation

being computationally expensive (Asfour et al., 2018).

The recognition of the intended actions of a human worker or the task

they are currently completing pose similar research problems which often

require similar solutions to work successfully. Through observation of the

workspace and the human worker, a robot can determine which step of a

manufacturing task is taking place and enact a pre-programmed response to

assist the human worker. Previous research such as (Goto, Miura and

Sugiyama, 2013) has shown the possibilities and benefits of such capabilities to

aid HR collaboration in the assembly of a table. Here a human worker

presented a tabletop to a robot worker which located grasping points and held

the component whilst the human worker attached the table legs. Additionally,

the robot was able to determine when to release its grasp so the human could

rotate the table to access additional mounting points and push table legs to the

human worker if they were out of reaching distance. Similar assistive actions

were implemented in (Hawkins et al., 2013) where a human worker must

assemble a specified model from components located in bins, but not all bins

are within reach of the human worker. Here the robot worker was required to

predict which components the human worker would require next, enabling the

removal of bins that were no longer required and their replacement with bins

containing necessary components.

Another attempt at such collaboration was shown in (Asfour et al.,

2018) which developed a highly capable mobile dual armed cobot to assist

human workers that was capable of anticipating the need of assistance to a

human worker in addition to responding to a direct request of help. This was

achieved through visual detection utilising pose estimation and activity

recognition to autonomously determine if assistance was required or natural

language processing to perceive requests of help from a human worker.

Additionally, the robot was capable of altering its actions during a collaborative

carrying task by monitoring the force distribution in its hands and regrasping

the object in another position to optimise the provided support. Testing of the

system in (Busch et al., 2019) showed that in a factory environment the human

worker had to open and close a microphone to communicate with the robot to

prevent ambient noise from being misinterpreted as communication attempts.

Testing also showed multiple failure events were seen in the regrasping of

objects, where the robot didn’t grasp the object, and in voice recognition,

where the user used the wrong command, or the command was not detected

correctly. This highlights a potential problem with this type of HR collaboration

as the high dependency of the use of sensors for the robot to successfully

provide assistance to the robot worker.

10

In other research, this methodology has further evolved to allow a robot

worker to predict how best to provide assistive actions to a human worker

instead of providing a reactionary response. This was seen in (Grigore et al.,

2018) where a hidden Markov model was trained from a simulated training set

of human workers assembling a chair to predict which supportive measures to

provide to a human worker considering their preferences for assistance. The

model was then applied to predict which supportive actions to apply to a

human worker when assembling a chair through observation of the worker.

The research presented showed that this type of HR collaboration can

be beneficial to human workers in tasks that require components to be

supported during assembly actions. Such collaboration allowed the human

worker to use both hands to complete their tasks, increasing their dexterity

compared to having to support components and complete tasks with one hand.

It was also shown to be useful in tasks involving large objects by reducing the

strain on the human worker when carrying them. Importantly, it was shown

that through the use of sensors the robot worker could anticipate the needs of

the human worker autonomously and provide assistance through a

preprogramed response. This was beneficial as it allowed the human worker to

intuitively work with the robot worker as they would with another human. The

disadvantage of such methods is that they are highly dependent on sensors for

the completion of the manufacturing task meaning that if the sensor’s view is

occluded it may not be able to detect the human worker or objects, preventing

the robot from responding to the human worker. Additionally, supportive

measures requiring vocal commands from a human worker were shown to be

difficult due to the noise in factory environments and the variability of vocal

commands from workers.

 Despite these benefits to the human worker, utilising some cobots or

larger industrial robots in this way can result in underutilisation of their

capabilities in the manufacturing process. Cobots such as the Universal Robots

UR10 have a high repeatability of ±0.01mm and lift capacity of 10Kg meaning

that in some tasks they may prove as capable as human workers. This shows

the underutilisation of the UR10 in (Hawkins et al., 2013) as with the correct

programming and sensors the robot is capable of much more complex tasks

than passing bins of components to a human worker. This type of HR

collaboration would instead be better suited to other cobots such as the

Rethink Robotics Baxter due to its lower repeatability of ±5mm (Cremer,

Mastromoro and Popa, 2016) which limits its capabilities in manufacturing

tasks. Additionally, the utility of this type of HR collaboration is limited to

certain tasks involving heavy objects or those that require support during

assembly and may be of limited utility in other situations. Due to this, such

implementations of robot workers are not considered in this research as highly

capable robot workers can be better implemented by direct use on

manufacturing tasks to achieve a more efficient use of a HR team.

11

2.3.3. Robots as Peers to Human Workers

Using robots as peers to human workers is the other strong theme of

current research in implementing HR collaboration into industrial

manufacturing processes. In such roles, a robot would engage directly in the

completion of a manufacturing task alongside a human worker by completing

subtasks on work pieces themselves. This type of implementation utilises the

benefits of HR collaboration by assigning repetitive and tedious tasks to a robot

worker, leaving a human worker free to complete high value-added tasks

requiring high skill or experience levels.

To implement robot workers amongst human workers in this way, it is

necessary to understand the capabilities of both human and robot workers to

determine their level of suitability for a task. Several methods have been

proposed to form cost metrics using background information on human and

robot workers in addition to the specifications of manufacturing tasks

(Johannsmeier and Haddadin, 2017; Nikolakis et al., 2018). To make use of this

information, robust task planning methods are then required to generate

subtask assignments and a task plan for the overall manufacturing task based

on a manufacturer’s constraints. These methods ensure that a worker is

assigned tasks that they are capable of completing and are best suited to. Such

task planners take differing approaches to the variables included in the

objective function with some using only fatigue level of the human worker,

such as in (Li et al., 2019), whereas others consider multiple variables including

workload and operating costs, such as in (Johannsmeier and Haddadin, 2017;

Nikolakis et al., 2018). In previous research, these task planners often are used

within hierarchical systems with task planning occurring at a high level of

abstraction by assigning subtasks to workers and lower level systems

implementing robots in the task by carrying out the motion planning required.

Utilising robots as peers to human workers eases the strain on human

workers by reducing their workload or ensuring they are not assigned tasks

which could potentially cause them harm over long periods of time instead of

merely providing assistance. This method can also be seen as a stepping stone

to higher levels of automation, as tasks that are suited to automation can be

completed by a robot worker resulting in partial automation of the

manufacturing task. This also ensures that highly capable robots such as the

Universal Robots UR5 can make a significant contribution to the manufacturing

task and potentially increase the efficiency of the HR team completing the task.

The disadvantage of this type of collaboration is that it can leave both human

and robot workers idle whilst they are waiting for the other worker to complete

their tasks. In an extreme case, if a robot worker failed and could not complete

their tasks this could be highly disruptive to the completion of the task and

require the human worker to intervene. This would necessitate the human

12

stopping their work to reset the robot worker’s task and return the robot

worker to a safe position.

2.3.4. Direct Collaboration vs Collaborative Working

These two views of the role of robot workers in the future of

manufacturing provide very different visions on the level of HR collaboration in

manufacturing tasks. Previous research shows a great deal of variation with

differences including the level of autonomy of robots, the composition of HR

teams and the level of direct interaction. Research such as (Aaltonen, Salmi and

Marstio, 2018; Yanco and Drury, 2004, 2002) has attempted to classify levels of

HR interaction to allow researchers to define the level of HR collaboration to

consider.

Figure 2.1: A diagrammatic overview of the potential paths for the implementation of HR teams in
manufacturing tasks detailing the level of HR collaboration using the categorisation method proposed in
(el Zaatari et al., 2019). This begins with current industrial implementations of HR teams, the two roles

for robot workers proposed by current research and the type of production this would ultimately lead to.

Amongst the most recent work, (el Zaatari et al., 2019) developed a

categorisation methodology to define the level of HR collaboration within a

manufacturing workspace. Utilising this methodology, Figure 2.1 gives a

diagrammatic overview of the potential paths for the implementation of HR

teams in manufacturing and the categories of HR collaboration involved. As

shown, humans and robots mostly coexist with each other in current industrial

Full Automation

Robots as Assistants to

Human Workers

Supportive
Human and robot workers work
toward completing the same task
with the human worker being
dependent on the actions of the
robot

Current Industrial Human-Robot Collaboration

Independent
Human and robot workers
complete separate tasks on
separate work pieces within the
same workspace

Simultaneous
Human and robot workers
complete separate tasks on the
same work piece that are not
interdependent for completion

Robots as Peers to Human

Workers

Sequential
Human and robot workers both
complete sequential tasks on a
work piece with time dependency
between the tasks

Human Dependant

Production

13

HR collaboration with no interdependence between their tasks which was

categorised as independent or simultaneous collaboration. This is limiting as

the human and robot will complete the same tasks in rigid environments, with

little adaptability to variation in human performance.

The use of robots as assistants to human workers was categorised as

supportive collaboration. This role for robot workers leaves manufacturing

tasks still very reliant on human workers for completion, as shown in Section

2.3.2. Implementing robots in this way would ultimately maintain human

dependant production and be applied as a measure to prevent strain on a

workforce. As a result, the utility of this role for robot workers is limited to the

manufacture of larger and heavier products.

In contrast, the use of robots as peers to human workers was

categorised as sequential collaboration. As discussed in Section 2.3.3,

implementing robots in this way makes the completion of manufacturing tasks

equally dependant on human and robot workers. This implementation of

robots would ultimately provide a path to higher levels of automation as robot

capabilities improve. This role also allows appropriate implementation of highly

capable robots whilst enabling the reconfiguration of workers to optimise the

efficiency of a manufacturing task. It was chosen to pursue this role for robot

workers in this research due to these advantages to provide a novel adaptive

way to optimise the implementation of HR teams in manufacturing tasks.

2.4. Task Planning in Robotics/Manufacturing

Before reviewing previous research into online and offline task planning

for HR teams, it is necessary to conduct a broader review of task planning

methods in manufacturing as these are often used as a part of such task

planning methodologies. The methodologies presented in this section

encompass ways to generate task sequences and/or task assignments in

manufacturing processes, often considering optimality.

2.4.1. AND/OR Graph Search

A common method for representing assembly or disassembly tasks in

manufacturing are AND/OR graphs which were first applied in (de Mello and

Sanderson, 1986) for use with robot assembly cells. AND/OR graphs are

directed hypergraphs containing all possible assembly or disassembly

sequences for a product. In these graphs, nodes represent possible assemblies,

only appearing once if made of the same component parts, and hyperarcs

between them representing assembly or disassembly operations. In this

representation, the root node represents the fully assembled product whilst

terminal nodes represent its base components. Solution trees from the root

node of the AND/OR graph represent possible assembly and disassembly

sequences for the assembled product.

14

Traditional use of this representation in manufacturing provides

weightings for hyperarcs representing operations proportionally according to

a desired metric. This means the optimal assembly or disassembly sequence is

the solution tree with the lowest combined weight (de Mello and Sanderson,

1986). Finding the optimal solution tree requires a search algorithm capable of

traversing the AND/OR graph for which the A* search algorithm is commonly

used (Knepper et al., 2014; del Valle and Camacho, 1996).

Although designed for assembly sequencing this methodology has also

been used for the assignment of tasks in multi-robot teams such as in (del Valle

and Camacho, 1996). Here hyperarc weightings for assembly operations are

execution times calculated by using tool change time for a robot in addition to

the required execution time for the resources to complete the operation. The

optimisation metric was then considered as minimising the execution time for

the assembly task and the A* search algorithm was used to do this. This

methodology also allowed task planning in situations where sequential or

parallel task execution was possible.

2.4.2. Petri Nets

Another method for modelling manufacturing tasks is Petri nets which

were first applied to model assembly tasks in (Zhang, 1989). Petri net models

of dynamic systems are composed of a net structure representing the static

part of the system and a marking that represents a distributed overall state on

the structure (Rosell, 2004). This net structure consists of a weighted directed

bipartite graph containing a set of transitions and places connected by

weighted arcs. Markings move around the net by firing transitions which allow

them to move to new places. Transitions can only fire if all input places linked

to the transition contain the number of markers specified by the weighting of

the arc between them and the transition. The fired transition deposits tokens

in each output place according to the weightings of the arc between it and the

output places.

Petri nets are often used in assembly task planning since their structure

natively enables the inclusion of preconditions for assembly subtasks via the

defined transitions. Firing a transition represents a task being completed and a

new place representing an assembly state being reached. Early methods such

as in (Zhang, 1989) generated assembly plans by consecutively firing transitions

to traverse a petri net with rules in place to avoid conflicts when transitions

could be fired simultaneously. Later works proposed to translate AND/OR

graphs, as described in Section 2.4.1, and directly (Suzuki et al., 1993) or

indirectly (Cao and Sanderson, 1998) transform them into Petri nets. Works

such as (Suzuki et al., 1993), proposed using linear programming with

mathematical representations of Petri nets to find an optimal assembly

sequence for subtasks in an overall assembly task. This allowed the use of more

15

powerful algorithms such as the simplex algorithm to optimise a linear

objective function rather than the graphical search algorithms which must keep

traversing an AND/OR graphs until an optimal assembly sequence is found.

 Petri nets have evolved further into other models such as expert Petri

nets (Zha and Lim, 2000) or timed Petri nets (Gu, Bahri and Cai, 2003; Lee and

DiCesare, 1994) to further enhance their capabilities in planning applications.

Expert Petri nets allow greater levels of task knowledge to be utilised by a Petri

net whereas timed Petri nets include timings in the firing of transitions by

adding a delay before the output is achieved to aid scheduling approaches.

2.4.3. Hierarchical Task Network Planning

Hierarchical Task Network (HTN) planning is a well-established abstract

planning technique that has been applied over multiple domains (Ghallab, Nau

and Traverso, 2004). Such techniques include an initial world state description,

a task network that represents the target objective and domain knowledge

consisting of networks of primitive and complex tasks (Georgievski and Aiello,

2015). The included task network is a hierarchy of tasks which is composed of

executable primitive tasks and compound tasks that can be decomposed until

they form a series of primitive tasks. The HTN planning process operates by

decomposing the included initial task network until all complex tasks are

decomposed into primitive tasks. This fully decomposed task network

represents a solution to the task planning process as a series of primitive tasks

that could be applied to the initial world state.

Numerous implementation methods for the HTN planning principle

have been proposed with examples including SHOP2 (Nau et al., 2003) and

UMCP (Erol, Hendler and Nau, 1994). HTN planning has also been used in

robotics with implementations such as the SAHTN algorithm (Wolfe, Marthi

and Russell, 2010) which combined task and motion planning for a robot or the

HATP planner (de Silva, Lallement and Alami, 2015) which considered task

planning for multi robot and agent teams.

2.4.4. Metaheuristic Based Optimisation Algorithms

Metaheuristic search algorithms allow efficient exploration of a search

space to find near-optimal solutions to a problem (Blum and Roli, 2003) whilst

not being problem specific. Some metaheuristic algorithms make use of

memory to guide the search algorithm or use heuristics as domain specific

knowledge to guide the search algorithm. This has led to the application of

metaheuristic search algorithms in manufacturing or robotics problems.

However, as with Hierarchical Task Networks, metaheuristics represent a

search algorithm principle with multiple algorithms being developed. Multiple

metaheuristic search algorithms have been proposed with common search

algorithms applied in task planning including the Genetic algorithm, Ant Colony

16

Optimisation and Particle Swarm Optimisation. This methodology has often

been applied in assembly line balancing problems with factors such as task

assignment (Daoud et al., 2014; Dziki and Krenczyk, 2019) or the evaluation of

assembly plans (Bonneville, Perrard and Henrioud, 1995). Metaheuristic search

algorithms have often been shown to operate as local or global search

algorithms. However, modern algorithms such as the Gravitational Search

Algorithm (Rashedi, Nezamabadi-Pour and Saryazdi, 2009) instead widely

explore the solution space in early iterations but exploit the best solutions

through local searches of the solution space in later iterations.

2.4.5. Summary of Methods

The methodologies presented in this section showed various ways of

modelling manufacturing processes as a means to optimise the process. Whilst

methods such as searching AND/OR graphs or Petri nets represent well applied

methodologies they are highly problem specific, requiring a new AND/OR graph

or Petri net to be developed for each new assembly task. Despite this, these

methods allow an exhaustive search of all potential task assignments or task

sequences for the manufacturing task. Other methodologies such as

metaheuristic optimisation algorithms or Hierarchical Task Networks allow task

planning methods to be reapplied to other situations more easily. With

metaheuristic algorithms, it was shown that these methodologies provide an

efficient way to search a solution space, however, they do not guarantee that

an optimal solution is found. Given the research aim to produce a generalised

task planning methodology, metaheuristic search algorithms offer the best

solution of these previous methodologies as they can be reapplied to new

situations more easily than requiring a new model to be generated.

Additionally, metaheuristic search algorithms can search large solution spaces

more quickly and efficiently than traditional graph search methods that are

executed by traversing a graph structure.

2.5. Offline Task Planning in Human-Robot Teams

One trend that has emerged in task planning methodologies for HR

teams is offline task planning. Such methodologies plan entire tasks offline,

before they are executed by a HR team, based on static indicators or models of

worker performance. This allows optimisation of tasks as a whole but little

adaptability to change. Across this section methodologies utilising offline task

planning are explored, this includes methods for quantifying the performance

of workers in addition to methods for generating task assignments and plans

for HR teams.

17

2.5.1. Feasibility of Using Human or Robot Workers

To plan entire manufacturing tasks for a HR team, it is necessary to

quantify the capabilities of human and robot workers to determine subtask

assignments for workers to efficiently complete the overall assembly task. This

often began with first determining if human and robot workers can feasibly

complete each subtask. The result of this indicates if a specific worker, either

worker or both workers together can be implemented to complete the subtask.

The process of determining factors such as the workload of a task on a human

worker is a well-established area of human factors research, methodologies for

calculating this are shown in Chapter 18 of (Wilson and Sharples, 2015). Despite

such well-established techniques, previous research outlined the need for a

systematic approach to identify the utility of HR collaboration in manufacturing

tasks.

A strategy for determining the feasibility and utility of workers to

complete an assembly subtask was proposed in (Schröter et al., 2016) utilising

capability indicators that determine the capability of a human worker

compared to a robot worker. These capability indicators were generated for

each criteria from a criteria catalogue, a weighting is then applied and the mean

value of the capability indicators is taken as the overall capability indicator for

a worker to complete an assembly subtask. This process allowed for

comparison between human and robot workers in each subtask but was a

manual procedure that would be used in the commissioning of a production

process.

Other research attempted to develop similar strategies to determine

the feasibility of humans and robots to complete manufacturing tasks via

automated processes. A similar strategy proposed in (Bruno and Antonelli,

2018) considered the weight and displacement of an assembled part in addition

to accuracy and dexterity requirements to complete the subtask. Each of these

four subtask features were associated with a binary indicator which was

manually given a value of 1 if the factor was relevant to subtask completion

and 0 if not. These indicators were then used with a trained classifier to

determine if a subtask could only be completed by a human, a robot, by either

of them or with both of them collaboratively. This classification method did not

consider quantifying the capabilities of workers in subtasks that could be

feasibly completed by either a human or robot. However, a corresponding task

assignment process was described to utilise their classification method. This

first assigned tasks according to worker feasibility defined by the classifier then

assigned tasks either worker could complete based on worker availability and

task constraints.

18

2.5.2. Cost Functions to Evaluate Worker Capabilities

Section 2.5.1 showed that methodologies developed for determining

worker feasibility to complete manufacturing subtasks often did not consider

how to autonomously assign subtasks that either humans or robots could

feasibly complete. Other research proposed using cost functions in such

situations that consider multiple metrics to quantify worker suitability to

complete manufacturing subtasks allowing an optimal set of task assignments

to be determined. Significant previous work by Johannsmeier and Haddadin in

(Johannsmeier and Haddadin, 2017) proposed using metrics such as subtask

execution times, operational costs and risk factors to human workers. In

addition, the concept of a worker profile was proposed that could map metrics

such as attention level, general experience level and reliability to a cost

function for a human worker. Whilst a worker profile would allow task

assignments that are highly informed by worker capabilities, the metrics

proposed are highly subjective and would be difficult to evaluate fairly.

Additionally, factors such as reliability and attention level are likely to vary

significantly over time and utilising a static variable would not appropriately

illustrate such capabilities. In (Johannsmeier and Haddadin, 2017), separate

possible cost functions are suggested for human and robot workers, containing

execution time and power consumption metrics for a robot worker but instead

containing anticipated attention level and workload for a human worker. This

would be inappropriate as worker costs would reflect totally different

capabilities and could be considered an unfair comparison of workers.

Similar quantification of capabilities are considered in (Lamon et al.,

2019) which utilised metrics such as task complexity, agent dexterity and agent

effort to determine worker costs to complete subtasks of an overall

manufacturing task. In this case and in (Johannsmeier and Haddadin, 2017),

worker feasibility to complete subtasks is not considered prior to cost

evaluations. Instead, a worker is given an infinite cost if they are incapable of

completing the subtask to it is not assigned to them. In other research such as

(Nikolakis et al., 2018) manufacturing tasks are considered where it was

predetermined that human or robot workers could feasibly complete all

subtasks. In this case, a set of task assignments were assessed for optimality

using factors such as the cycle time for the task, total completion time of tasks

assigned to human workers, the total weight lifted by human workers across

the task and the operating cost of the human and robot workers.

2.5.3. Modelling of Human Workers

The methodologies presented in Sections 2.5.1 and 2.5.2 often

quantified the capabilities of human and robot workers using static variables.

The use of static variables to quantify the capabilities of a robot worker is

reasonable as it is well acknowledged in previous research that little variation

19

exists in their capabilities during a work shift, with the exception of a major

hardware or software failure. However, this is not appropriate for human

workers since their performance is highly variable across a work shift which can

affect the efficiency of the HR team as a whole. Additionally, proposed cost

function variables in (Johannsmeier and Haddadin, 2017) such as general

experience level can be highly subjective and may lead to an unfair assessment

of a worker’s capabilities.

Previous research has attempted to integrate models of factors such as

fatigue of human workers into task planning for HR teams as shown in (Hu and

Chen, 2017; Li et al., 2019). Such methodologies allow the quantification of

human workers capabilities to reflect the variable nature of their performance

across a work shift. This was shown in (Li et al., 2019) as part of task planning

for a HR team to complete batch disassembly of a gear pump for

remanufacturing. Here subtasks that either a human or robot worker could

feasibly complete were assigned based on the fatigue level of the human

worker generated by models proposed in (Glock et al., 2019). Additionally,

optimal task sequencing was determined utilising human completion times

when subject to fatigue generated by a model proposed in (Digiesi et al., 2009).

Although not implemented in such methods, many other models have

been proposed to determine the fatigue level of a human worker focusing on

factors such as muscular or mental fatigue (Dawson et al., 2011). Such

methodologies cannot fully solve the issue of representing the varying

capabilities of a human worker as models cannot take into account unexpected

events in a human workers life that could significantly affect their capabilities.

Factors such as this or model inaccuracies would result in inaccurate

quantification of a human worker’s capabilities and may limit the effectiveness

of a task planner. As a result of such limitations, some models have proposed

using machine vision systems to detect visual cues as evidence of fatigue to

better understand a human’s fatigue levels (Ji, Lan and Looney, 2006).

2.5.4. Task Planning at High Levels of Abstraction

The metrics for quantifying human and robot workers capabilities

outlined in Sections 2.5.1 to 2.5.3 are often utilised by task planners to

determine task assignments and/or task sequences for manufacturing tasks

completed by HR teams. Such task planners often operate at higher levels of

abstraction and allocate entire subtasks to a human worker, a robot worker or

a HR team to complete collaboratively. Lower level systems then allow robot

workers to execute a task by implementing trajectory planning and other

required functions to allow the robot worker to complete the task. Some lower

level systems also include limited abilities to react to dynamic events such as a

collision between a human and robot (Johannsmeier and Haddadin, 2017).

20

Task planning at this higher level of abstraction has been both manually

defined and autonomously executed in previous research. Manual generation

of task assignments was previously shown in (Schröter et al., 2016) and (Ranz,

Hummel and Sihn, 2017). However, this occurred during the process of

determining the feasibility and utility of workers to complete assembly

subtasks discussed in Section 2.5.1. In both cases task assignments were rigid

as a result and could not change to reflect changing worker capabilities or

errors in production without again being manually redefined. In comparison in

(Bruno and Antonelli, 2018), task indicators were generated manually when

determining workers feasibility to complete assembly subtasks, however, the

rest of the task assignment process was done autonomously. Optimisation was

not considered in when both human and robot workers were suitable to

complete the subtask and task assignments were based on worker availability

whilst respecting task precedence relations for subtasks.

Optimality of task assignments was considered in (Johannsmeier and

Haddadin, 2017) with the autonomous generation of task assignments. Here

an assembly task was represented by an AND/OR graph and the A* graph

search algorithm was utilised with costs for a worker to complete each

assembly subtask to determine an optimal set of task assignments for the HR

team. A similar approach was posed in (Lamon et al., 2019) but this approach

utilised different cost functions to determine worker capabilities as described

in Section 2.5.2. Such methods of representing tasks and planning their

execution are also commonly used in wider research in the field of

manufacturing engineering with teams consisting entirely of robots or other

manufacturing processes as shown in Section 2.4.1. The novelty of the research

presented in (Johannsmeier and Haddadin, 2017; Lamon et al., 2019)

compared to previous research is that task planning is applied to HR teams with

quantification of human and robot workers capabilities. Although the methods

presented allow capability based task planning in HR teams, they do not

consider reassigning manufacturing subtasks throughout a work shift. This can

prove disadvantageous for HR collaboration as it means task assignments are

not altered to reflect changes in a human worker’s capabilities as with the

quantification of worker capabilities in Section 2.5.2.

The need for task planning to reflect the variable nature of human

capabilities has been identified in previous research (Casalino et al., 2019a;

Ranz, Hummel and Sihn, 2017) and this has been partially achieved by using

models to simulate a human worker’s performance across a work shift. In (Li et

al., 2019), a human worker’s fatigue level was modelled to determine task

assignments and sequencing as their performance declines across a batch of

disassembly tasks. As described in Section 2.5.3, this methodology assigned

tasks to workers based on capabilities by assigning tasks that either humans or

robot could complete based on the fatigue level of the human worker. For each

generated set of task assignments, the optimal disassembly sequence was

21

determined using the Bees algorithm, a metaheuristic search algorithm, with

an objective function that optimised the total completion time of the task. This

was possible by generating expected human completion times via a model for

human completion times in repetitive tasks under the effects of fatigue

proposed in (Digiesi et al., 2009). Utilising a metaheuristic search algorithm

ensured a quick execution time and good solution is found to the task

sequencing problem, however, this does not guarantee an optimal solution is

found.

In comparison, (Hu and Chen, 2017) proposed to use a stochastic Petri

net framework to model the impact of fatigue on the dynamics of

manufacturing processes with stochastic time and event driven dynamics. This

was transformed into a continuous-time Markov decision process and using a

cascaded composition of a human fatigue model and the manufacturing

process model allowed the task planning problem to be solved through solving

a linear program. The disadvantages of the methodologies proposed in (Hu and

Chen, 2017; Li et al., 2019) is the heavy dependence on the fatigue models used

means that if the model is inaccurate the task plans generated may not obtain

the best performance for the HR team.

2.5.5. Summary of Methods and Definition of State of the Art

In this section methodologies have been presented for planning HR

collaborative completion of manufacturing tasks offline over various levels of

abstraction. Here the advantages of hierarchical approaches were shown by

allowing task assignment and planning at higher levels of abstraction based on

worker capabilities without considering factors such as replanning robot

trajectories. This can be advantageous over methods that integrated robot

motion planning into the task assignment process as it enables the possibility

of easily reapplying the task planner to various manufacturing tasks. Two

different areas of research should be considered as state of the art for different

aspects of the task planning problem.

Methods such as those proposed in (Johannsmeier and Haddadin,

2017) should be considered as state of the art in terms of quantifying a worker’s

capabilities to inform task assignments. This conclusion can be drawn as they

allow the assignment of tasks to an optimal worker based on multiple factors

including worker performance, operational cost and workload. This means that

task plans can be optimised to consider factors such as the effects of workload

on human workers in addition to more traditional factors such as production

rates. Given the research aim to optimise the implementation of Human and

robot workers, multivariable cost functions offer a suitable solution to quantify

worker capabilities to ensure this is achieved. The disadvantage of current

methods is that cost functions are not updated as a human worker’s

22

capabilities change across a work shift which must be addressed for these to

be utilised.

It was instead shown that the state of the art for offline planning of

manufacturing tasks are the methods proposed in (Li et al., 2019) which

generate multiple sets of task assignments and sequences to be enacted across

a work shift that factor in a human worker’s fatigue levels. This showed the

benefits of replanning a task across a work shift as it resulted in a lower fatigue

level for the human worker and a lower total completion time for a set number

of iterations of a disassembly task. Given the research aim to optimise the

implementation of HR teams whilst allowing adaptability, such an approach is

necessary to adapt the implementation of the HR team across a work shift as

the capabilities of workers change. Despite these capabilities, the task planning

method proposed in (Li et al., 2019) assigned tasks that could be completed by

a human or robot worker based on only the fatigue level of the human worker.

This is limiting as there are many other factors that could determine the

optimal worker for such a task which may result in a different assignment.

Similarly, the objective function for task sequencing was based solely on the

total execution time for a task iteration which is again limiting as many other

factors may be important to manufacturers. This reinforces the importance of

the methodology proposed in this research to use multivariable cost functions

to assess worker capabilities to ensure tasks are assigned to the optimal

worker.

Both the state-of-the-art methodologies presented in this section face

the limitation that they infer or model the performance of human workers. This

means that the optimum task plans generated will not be suitable for the HR

team if a worker has an unexpected change in performance or capabilities

across a work shift. To address these limitations, methods must be developed

in this research to utilise online data to similarly quantify the capabilities of

workers.

2.6. Online Task Planning in Human-Robot Teams

The other emerging trend in task planning methodologies for HR teams

is online task planning. Online task planning methodologies operate by

assigning tasks one by one as they are being executed, allowing adaptation to

change in performance or composition of HR teams but not necessarily

optimisation of tasks overall. Across this section two types of online task

planning are explored. This includes planning by observing the world state of a

HR team’s collaborative workspace in addition to semi-online task planning

based on updated information on the HR team.

23

2.6.1. Planning by Observing the World State

A common method for implementing online task planning operates by

assigning tasks on a task by task basis by observing the world state of the HR

team’s workspace utilising sensors such as depth cameras. As with the

implementation of robot assistants described in Section 2.3.2, such methods

adapt a robot’s actions around those of the human worker allowing the human

worker to complete tasks as they wish.

An example of this task planning theory was shown in (Riedelbauch and

Henrich, 2017) where observation of the world state of the work environment

was used to coordinate flexible HR teams. This utilised preconditions and post

conditions linked to operations to determine if they were available for

completion or had been completed. In hand mounted sensors allowed a robot

worker to use this methodology to observe the world state and determine an

available operation for it to execute to contribute to the manufacturing task.

This methodology was further improved in (Riedelbauch and Henrich, 2019) to

make the world model human aware by determining a measure of certainty

that an object is still in its stored location since the robot last observed the

world space, based on human motion and previously detected task progress.

This was combined with a novel action selection algorithm to execute

operations that were likely to succeed and trigger perception actions to refresh

the world model. This proposed methodology allowed flexible HR teams,

enabling a human worker to leave the workspace during the execution of a

manufacturing task whilst the robot completes any remaining operations which

would not be possible with offline planning methods. Despite this, the

methodology had the disadvantage that it did not consider optimality of task

assignments so they may not represent the optimum implementation of

human or robot workers in a collaborative task. Additionally, such collaboration

could be considered highly unstructured leading to different operations being

completed by the human and robot worker in each task iteration.

Other methodologies did seek to include optimality such as in (Wang et

al., 2018) where a sequential collaborative assembly was considered between

a human and a robot worker. Here through observation of the world state, a

cost function gave a cost for an operation performed by a human worker which

was then used to plan the robot worker’s action to ensure the total

collaborative assembly cost was minimised. Although this methodology

considered the optimisation of robot actions in online task planning, as with

(Riedelbauch and Henrich, 2017, 2019) it did not consider control of the

implementation of the human worker in HR collaborative tasks. This posed the

disadvantage that the human worker may not be implemented in the task in

an optimal way and as a result although optimised in this context, the robot’s

implementation may not be optimal either.

24

2.6.2. Planning Given Updated Worker Information (Semi-Online

Planning)

In other research, task planning methodologies were shown for HR

teams that consider offline task planning but utilising online data regarding the

current world state of the manufacturing environment or the capabilities of

human workers. Such methodologies consider various levels of

implementation and often were a part of a larger hierarchical task assignment

structure such as those seen in Section 2.5.4. Although discussed amongst

online task planning methodologies, this type of task planning is referred to as

semi-online task planning in this thesis due to the way it bridges the gap

between fully offline and fully online methodologies. As such this methodology

can be considered as analogous to the concept of HR collaboration in itself by

combining the benefits of online task planning, by reacting to changes in

worker capabilities, and offline task planning, considering the optimisation of

tasks as a whole. Such task planning approaches for HR teams can be

considered as state-of-the-art methods, however, research in this area is still

quite limited with the majority of research focusing on the fully offline or online

methods present in Sections 2.4 and 2.5.1, respectively.

A very basic implementation of such a methodology was proposed in

(Nikolakis et al., 2018) where subtask assignments for an assembly task could

be updated given the current availability of workers. This was enabled through

the use of a monitoring system that could determine worker availability and

trigger replanning of the task based on new knowledge of the composition of

the HR team. To illustrate this, an example was given for the assembly of a

turbocharger where a human worker was determined to be absent during the

completion of the first subtask of the assembly. The monitoring system

triggered a need for the remaining task assignments to be re-evaluated in

response, allowing any subtasks assigned to the missing worker in the initial set

of task assignments to be redistributed amongst the remaining workers based

on their capabilities. This method had the advantage that task assignments can

be updated given a change in the HR team but unlike the methodologies

presented in Section 2.6.1 considered the optimal use of all available workers.

Despite these capabilities, the implementation of the methodology proposed

by (Nikolakis et al., 2018) did not consider the changing capabilities of workers

across the work shift and still used static variables to quantify a human worker’s

capabilities.

A different level of implementation of this methodology was seen in

(Casalino et al., 2019b) where subtask scheduling was updated based on the

completion times of human and robot workers. This was enabled by using RGB-

D sensors such as the Microsoft Kinect to detect when the human worker

enters or exits areas of a workspace to determine their completion time for

subtasks. These completion times were used to update a model to predict the

25

completion time for a human worker to complete their individual assigned

subtasks of the overall manufacturing task. This data was used within a time

Petri net that modelled the HR team’s completion of the task from which an

optimal task sequencing was generated using Monte Carlo methods. This

implementation of semi-online task planning had the advantage of adapting

subtask sequencing to a human worker’s current performance whilst

optimising the sequencing as a whole to improve the production rate of the HR

team.

Although this implementation of semi-online task planning

demonstrates a promising approach to task planning utilising on current

worker performance data, it poses several limitations which would limit its

applications. One such limitation was that the system does not consider the

reassignment of subtasks with variation of worker performance which limits

the capability of the task planner to react to declining performance of a human

worker. This was reinforced by completion times being the only form of online

data collected, meaning discrete events such as errors could not be assessed

to determine a worker’s capabilities. Finally, this implementation of the

methodology used time Petri nets to model the HR team’s completion of the

manufacturing task. This can be considered as a disadvantage since this would

require an expert to develop a new time Petri net to model the HR team if it

were implemented on a different manufacturing task.

2.6.3. Summary of Methods

Across this literature review, several methodologies have been

discussed for online task planning in HR teams given current information about

the completion of tasks. The first of these task planning methodologies

described in Section 2.6.1, allowed a robot worker to independently determine

and execute subtasks available for completion in a manufacturing task

completed by a HR team. This had the advantage that HR teams could be highly

dynamic to the extent that the composition of the team could change during

an iteration of a manufacturing task. Despite the flexibility offered, this

methodology should not be considered for efficient implementation of HR

teams as tasks are assigned to robot workers on a task by task basis. Although

optimality was considered in some research for such task assignments, this

could still lead to non-optimal implementation of the human and robot workers

in addition to the task becoming unstructured.

 The semi-online task planning methods in Section 2.6.2 instead showed

a more promising methodology for efficiently implementing HR teams in

manufacturing tasks. This was achieved by optimising manufacturing tasks as a

whole whilst considering individual workers current capabilities using data

gathered from the shared workspace. The current research in this field is still

quite limited and focuses on the use of specific data to achieve a very specific

26

task planning goal. This was shown through assigning tasks based on worker

availability in addition to static measures of their capabilities (Nikolakis et al.,

2018) or task sequencing based on the current performance of human and

robot workers (Casalino et al., 2019b).

In this research, the use of semi-online task planning will be further

explored as its operating principle provides a way to fulfil the research aim of

optimising the implementation of human and robot workers whilst allowing

adaptability. However, its limitations must first be addressed to improve its

capabilities. To increase the utility of semi-online task planning, it is necessary

to implement multivariable cost functions, as seen in Section 2.5.2, utilising

multiple sources of online production data to quantify the current capabilities

of human and robot workers. Task planning must then occur throughout the

work shift considering optimisation of task assignments in addition to task

sequencing.

2.7. Knowledge Gaps

From the literature review presented in this chapter, it was determined

that a knowledge gap existed for dynamically planning tasks for HR teams

based on the variability in performance and capabilities of workers across a

work shift. Here, it was determined that semi-online methods of task planning,

such as those described in Section 2.6.2, had the potential to allow efficient

and adaptable implementation of a HR team in a manufacturing task. Such

approaches have so far focused on task replanning based on specific factors

influencing HR teams and the effect of these on the capabilities and

performance of the HR team. This was shown in previous research that has

focused on the assignment of tasks based on available workers or the

sequencing of tasks based on their current completion times.

 It was shown that existing semi-online task planning methodologies did

not consider using multi-variable cost functions, such as those for offline task

planning shown in Section 2.5.2, which update a cost for a worker to complete

a manufacturing subtask using data from the HR workspace. In addition to this,

existing semi-online task planning methodologies do not fully consider the

reassignment of assembly subtasks with the changing capabilities of human

workers across a work shift. This was considered for offline tasks as seen in (Li

et al., 2019). However, the replanning lacked structure since it was executed

for every iteration of the disassembly task considered.

 Given these factors, the knowledge gap can be further refined as the

requirement of a generalised methodology to allow for semi-online structured

task replanning of a manufacturing task over a work shift for a HR team given

the variability of workers capabilities. Such a methodology must utilise multi-

variable cost functions that can quantify a worker’s performance and

capabilities and updating this assessment using online data from workers

27

completing the task. This must then be used by an offline task planner to

optimise the assignment and sequencing of subtasks of an overall

manufacturing task.

2.8. Chapter Summary

This chapter began with a description of the current uses of automation

in industry to illustrate the importance of the research outlined over the

literature review. Following this, a detailed discussion was presented outlining

two proposed roles of robots in a HR team as either an assistant to a human

worker or working as their peer. Given the choice of investigating

methodologies for utilising robots as peers to human workers in this research,

a description of existing commonly used task planning methodologies was

presented for robots in manufacturing. The state-of-the-art research in offline

and online task planning was presented for use when robot workers act as

peers to human workers in HR teams. Utilising this discussion of state-of-the-

art methodologies, a knowledge gap was defined for semi-online task planning

to allow the efficient and adaptable implementation of HR teams explored

within this thesis. This knowledge gap was further refined as the requirement

for a generalised methodology for structured task replanning of a

manufacturing task for HR teams over a work shift given the variability of

workers capabilities. These challenges are addressed in this thesis through the

definition of a system architecture for a generalised task planning system in

Chapter 3 that can be applied to various manufacturing tasks and

configurations of HR teams. This is followed in later chapters by the

development of the core methodologies enabling the task planning system and

verification of the capabilities of intelligent semi-online task planning across a

work shift for a HR team.

28

3. Research Methodology

3.1. Introduction

Building on the knowledge gaps identified in the literature review in

Chapter 2, this research is motivated by improving the implementation of

Human-Robot (HR) teams in manufacturing tasks. In this chapter, the research

methodology utilised in this thesis is described, beginning with details of the

structure of research. Section 3.2 first defines the objectives of this research in

addition to an outline of the research approach and how this defines the

structure of the thesis. Given the research approach, Section 3.3 then describes

the selection of research methods providing a reasoning for the choice of

approaches or technologies used in this research. Following this, Section 3.4

describes how manufacturing tasks are defined and the level of decomposition

required for task planning with a HR team. Next, in Section 3.5, a system

architecture is proposed for the generalised methodology of semi-online task

planning. This is required in order to define how such an approach would be

implemented in a real-world situation, and where the core enabling

methodologies developed in the thesis would fit in to such a system. Finally, a

brief overview is given in Section 3.6 of how the proposed dynamic cost

functions operate in addition to their structures and the weighting of variables.

3.2. Structure of Research

3.2.1. Research Aims and Definition of Objectives

This work aims to provide a methodology to implement robot workers

amongst human workers as part of a HR team, whilst optimising

implementation of both workers and allowing adaptability. Utilising the

knowledge gaps defined in Section 2.7 in addition to the aims of this research,

it is possible to define the objectives of this research. First, based on the

limitations of utilising online production data to quantify the current

capabilities of a worker, the following research objectives are defined:

• Formulate dynamic cost functions for human and robot workers,

consisting of variables that can use continuous or discrete production

data to quantify the capability of each worker to complete each subtask

of an overall manufacturing task;

• Develop mechanisms to update the output cost for a cost function

variable given online data obtained from the collaborative workspace

over iterations of a manufacturing task. These mechanisms must ensure

the output cost from a cost function variable accurately quantifies the

capabilities of human and robot workers.

29

Next, given the limitations of task planning in using such online production

data, the following objectives are defined:

• Produce a task planning methodology to find an optimum set of task

assignments and task plan for a HR team given the costs generated for

each subtask whilst respecting task constraints and minimising worker

idle times;

• Implement mechanisms to ensure that subtasks are assigned to optimal

workers if there is a significant difference in worker capabilities;

• Implement mechanisms to trigger task replanning at appropriate

intervals but only if worker costs changes indicate this is necessary.

3.2.2. Outline of Research Approach and Thesis

Given the development of the research focus and objectives over this

section, it is necessary to define an overall research approach to achieve the

research objectives in Section 3.2.1. The overall research approach of the work

presented in this thesis is graphically outlined in Figure 3.1. This shows that the

research approach began with the thorough literature review presented in

Chapter 2, which resulted in the decision to explore HR teams, where robots

are utilised as peers to human workers. The knowledge gap existing for task

planning, using a semi-online methodology in such teams was then identified.

In the next phase of the research given in this chapter, the research

objectives are defined utilising the identified knowledge gap. From this it is also

necessary to define manufacturing tasks considered for task planning in

addition to the proposed system architecture for the semi-online task planning

system. As a part of this definition, it is necessary to define the elements of this

system developed within this research, in order to validate the proposed semi-

online task planning methodology for HR teams. Finally, it is also necessary to

define the structure of the cost functions used within this task planning system

in addition to their operating principle.

 The final phase of the research focuses on the development of the core

elements of this methodology required for it to function correctly, which are

explored and tested in Chapters 4, 5, 6 and 7. This includes the development of

cost function variables for continuous data in Chapter 4 and for discrete data

in Chapter 5. These are then implemented into a task planning methodology

which is tested for accuracy and execution time in Chapter 6. Finally, in Chapter

7 the task planning methodology was tested to determine the capabilities of

such a methodology to improve the efficiency of a HR team consisting of a

single human and a single robot worker in an example manufacturing task.

30

Figure 3.1: Outline of the research approach.

31

3.3. Selection of Research Methods

 To fulfil the research objectives in Section 3.2.1 and satisfy the research

aims, it is necessary to select the research methods and technologies that will

be used to achieve this. First, it is necessary to select a methodology that can

accurately quantify the capabilities of workers utilising online production data.

As described in the research objectives, multivariable cost functions that utilise

online production data are chosen to achieve this. These will be used as they

allow costs to be generated for workers whilst considering multiple factors

relating to their performance and capabilities, as highlighted in Section 2.5.2 of

the literature review. As stated in the research objectives, the variables used

by such cost functions should be able to utilise continuous and discrete online

production data. Here continuous data will be used by continuous variables to

assess gradual changes in worker performance over a work shift, with

completion times in subtasks chosen to achieve this. Completion times are

chosen as the completion times of human workers should gradually change

over a work shift with their performance levels, allowing inference of their

current performance level. In contrast discrete data will be used by a discrete

variable to assess sudden significant changes in a worker’s capabilities utilising

data from individual iterations of an example sealant application subtask. Such

an example task is chosen as sudden significant errors in individual iterations

of a subtask could imply a change in a worker’s capabilities.

Second, it is necessary to select a methodology to obtain an optimum

set of task assignments and task plan based on costs generated for workers.

Section 2.5 of the literature review highlighted that metaheuristic search

algorithms offered a promising to efficiently and intelligently search a solution

space. As shown in Section 2.4.4 of the literature review many metaheuristic

search algorithms exist such as Ant Colony Optimisation, Particle Swarm

Optimisation and the Genetic Algorithm. All of these algorithms intelligently

search solution spaces through an iterative process by exploring the solution

space based on knowledge of the solution space. However, in this research the

Discrete Gravitational Search Algorithm (DGSA) (Dowlatshahi, Nezamabadi-

Pour and Mashinchi, 2014) will be used to form a generalised task planning

methodology. This algorithm is chosen as it prioritises exploration of the

solution space in early iterations while exploiting the best solutions found in

later iterations through prioritising local searches. Additionally, this algorithm

has previously been applied to the Travelling Salesman Problem, a graph search

problem that shares many similarities to the task planning problem. The task

planning problem can be considered as a comparable graph search problem by

considering each subtask as a node with task precedence constraints defining

the vertices between them. This allows an optimal task plan to be found by

searching for the optimal Hamiltonian Path between the first subtask and last

subtask where all other subtasks are visited exactly once. This method is also

32

chosen since it can be used for permutation problems such as finding the

optimal set of worker task assignments.

3.4. Definition of Manufacturing Tasks

It is also necessary to determine how manufacturing tasks are defined

in this research and the level of task decomposition necessary to plan a

manufacturing task for a HR team. First, it is possible to define the level of task

decomposition based on the representations used in previous research such as

that seen in (Nikolakis et al., 2018), by focusing on task planning in HR teams.

In this work, a manufacturing task is broken down into a series of subtasks

consisting of one or more primitive actions. Here primitive actions consist of an

interaction that alters the state of a component, such as tightening a bolt,

moving a component or checking the specifications for a subtask. Subtasks are

instead considered as actions that move the product from one partially

assembled state to the next. A transformation to the next partially assembled

state can be achieved by adding components to the partially assembled

product or a subassembly of it through pick and place operations. Additional

transformations could include fastening components in place using bolt

tightening subtasks or applying sealant to the partially assembled product.

Decomposing manufacturing tasks to this level ensures that subtasks are

assigned at a level where they have a significant effect on the manufacturing

task ensuring a worker making a meaningful contribution to its overall

completion.

 Although subtasks are assigned at this level, it is also necessary to break

down some subtasks further into their primitive elements. This is to allow the

weighting of cost function variables used to define the cost for a worker to

perform a subtask of the overall manufacturing task. In particular, this

approach would be necessary for subtasks, such as a pick-and-place operation,

which require multiple primitive elements such as checking the task

specification, locating, retrieving parts, and then placing the parts in the correct

position. This is not required for subtasks, such as tightening a bolt, which

would also be considered as a primitive task.

3.5. Proposed Architecture Overview

3.5.1. Operating Principle

It is first necessary to define the operating principle of the proposed

task planning system to allow the definition of its structure. It was determined

through the literature review in Chapter 2 that a task planning methodology is

required that utilises online data to quantify the capabilities of workers whilst

still planning manufacturing tasks as a whole. To achieve this, it is proposed

here that the task planning system should be formed as presented in the

33

system diagram in Figure 3.2. Utilising such a methodology, it is proposed that

tasks are firstly planned offline, using historic data to generate costs for each

worker to complete each of the manufacturing subtasks. The HR team then

collaboratively complete the manufacturing task by using the initially

generated set of task assignments and task plan. As this occurs, data must be

collected on their performance to allow the costs for workers to complete

subtasks to be updated. After a set number of complete task iterations, the

task must again be planned offline to find the optimal set of task assignments

and task plan given the current worker costs. This process will continue until a

human worker enters a rest period, where the robot worker should take over

all tasks, or until the work shift is complete.

Figure 3.2: A diagrammatic simplified overview of the task planning system where the boxes represent
elements of the system and the arrows represent the flow of data. Additionally, this diagram highlights

the elements of the system that operate online and the elements that operate offline.

3.5.2. Inputs to the System Architecture

The input to the proposed task planning system is given by an abstract

assembly plan in addition to a worker profile as shown in Figure 3.2. Here an

assembly plan should contain all necessary information to plan a

manufacturing task and allow the workers to execute it. This assembly plan

should include an abstract representation of the manufacturing task that is

understandable by a human and useful for robot workers but can easily be

defined and utilised within a search algorithm as defined in Chapter 6. In

addition to this, other necessary information should include data required to

calculate cost function variables for each subtask, with examples given for

continuous variables in Chapter 4, and discrete variables in Chapter 5. Finally,

Assembly

Plan

Task

Planner

Worker

Profile

Cost

Function

Generator

Task

Execution

Analyse

Worker

Performance

Offline Elements

Online Elements

34

the assembly plan should contain the instructions on how each subtask should

be completed. However, the definition of a formalism for this and the overall

assembly plan file structure is considered outside of the scope of this research.

The other input to the system, the worker profile, should be considered

as a profile that stores the data collected from the shared workspace from the

human or robot worker completing assembly subtasks. In this research, the

data that would be contained in such a worker profile is simulated, with

examples given in Chapters 4 to 7. However, defining a formal structure for a

worker profile is also considered outside the scope of this research.

3.5.3. System Processing of Data

The processing elements of the task planning system are formed by a

cost function generator and a task planner which form the core focus of this

research and are utilised to demonstrate the principles of semi-online task

planning. The cost function generator will take input information from the

assembly plan and worker profiles to generate a cost for each worker to

complete each of the subtasks of an overall manufacturing task. In this

research, continuous and discrete variables are defined in Chapters 4 and 5,

respectively, whilst the methodology for defining the weighting of these

variables in a cost function for a subtask is given in Section 4.2. The costs

defined by the cost function generator for each worker to complete each

subtask are then used as input for the task planning processing element which

also retrieves information on the manufacturing task from the assembly plan.

The task planner used by the system contains the search algorithms

necessary to determine the optimal set of task assignments and task plan for

the HR team given the input information. In comparison to some of the task

planning methodologies presented in the literature review in Chapter 2, the

task planner must be adaptable to be used with various manufacturing tasks

and workers.

3.5.4. Task Execution by the Human-Robot Team

Given a generated set of task assignments and task plan for the HR

team, it is next necessary for them to be transferred to a system that can

manage the execution of the task by the team. This requires several complex

elements to successfully orchestrate, which can form a complex research

problem in itself and is considered beyond the scope of this research which has

the main focus of the task planner. Whilst the task is being executed, it is also

necessary to capture information from the collaborative workspace. This again

can form a complex research task in itself if done autonomously for human

workers, but possible methodologies are presented for the capture of discrete

data in Chapter 5. It is assumed, with continuous variables, that it is possible to

capture data such as completion times from human workers by having them

35

press a button when they start and finish a task instead of using more complex

vision-based methods.

3.6. Dynamic Cost Functions

In this research, dynamic cost functions will be utilised to quantify the

performance and capabilities of human or robot workers as they vary across a

work shift as defined in the research objectives in Section 3.2. To achieve this,

continuous and discrete cost function variables are needed to interpret

continuous and discrete changes, respectively, in online production data. These

variables must interpret the data separately as continuous variables must use

gradual changes in data that occur slowly across a work shift, whereas discrete

variables must detect instantaneous changes in data that occur during a single

task iteration. As stated earlier in this chapter, examples of continuous

variables will be developed in Chapter 4 and an example of a discrete variable

will be developed in Chapter 5. Before defining the proposed cost function

variables, it is necessary to define the overall structure of the dynamic cost

functions used in the cost function generator.

Cost functions must be adaptable to various production requirements

in addition to various human or robot workers, so it is necessary to use a basic

generic format for a cost function. To achieve this, the cost function to generate

a cost, 𝑐𝑗, for a worker to complete a subtask j of an overall manufacturing task

is defined as

𝑐𝑗 = ∑𝑔𝑖,𝑗𝑓𝑖,𝑗

𝑘

𝑖=1

 (3.1)

where 𝑓𝑖,𝑗 represents the ith cost function variable and 𝑔𝑖,𝑗 defines its weighting

for k available cost function variables. This generalised definition allows the

adaptability of the cost function generator to various manufacturing tasks and

workers but, the weightings, 𝑔𝑖,𝑗, used by the cost function must be equally

adaptable.

 To ensure the cost generated is relevant to the worker and subtask it is

applied to, a methodology is proposed that allows weightings to be easily

defined as a part of the initial implementation of the task planning system to a

manufacturing task. As assignable subtasks can be broken down into primitive

tasks, as stated in Section 3.3, it is proposed to associate commonly used types

of primitive task with relevant cost function variables. These associations allow

a method analogous to a keyword search to be employed to determine cost

function weightings that can be automated. For each subtask, it is necessary to

search the primitive tasks it is composed of in order to determine which cost

function variables influence the outcome of each primitive task. This allows the

total number of primitive tasks which a cost function variable influences to be

36

defined as 𝜇𝑖,𝑗 for the ith cost function variable in the jth subtask of an overall

manufacturing task. Using these values allows a subtask’s weighting to be

defined as

 𝑔𝑖,𝑗 =
𝜇𝑖,𝑗

∑ 𝜇𝑣,𝑗
𝑘
𝑣=1

 (3.2)

where there are k available cost function variables, which ensures all

weightings sum to one for each subtask and are also normalised between zero

and one.

3.7. Chapter Summary

In this chapter, it was possible to exploit the knowledge gaps found in

Chapter 2 in addition to the overall aims of this research, to define the research

objectives that will be attempted to be met in the thesis. From these objectives,

it was then possible to define the research approach to implement and how

this reflected in the structure of the thesis. Following this, an architecture was

proposed for a task planning system to enable the application of semi-online

task planning to a HR team collaboratively completing a manufacturing task

across a work shift. Although the focus of this research is not to develop such

an architecture in a readily implementable form for industry, this chapter

highlights where the core methodologies developed in this research should be

integrated into a semi-online task planning architecture. In addition, the

structure of the dynamic cost functions utilised in this research is introduced,

by including a methodology of weighting cost function variables to ensure cost

functions can be adapted to various workers and manufacturing subtasks.

37

4. Continuous Cost Function Variables

 The methodologies and results discussed within this chapter of the

thesis have previously been published in (Smith, Benardos and Branson, 2020).

The content of this chapter was presented in the journal article in a simplified

form whilst here it is presented within the context of the overall research

approach.

4.1. Introduction

In Chapters 2 and 3, a need was identified for dynamic cost functions to

use changes in online production data to update knowledge of a worker’s

current performance or capabilities. It is proposed to use continuous variables

in these dynamic cost functions to assess a worker’s performance as it

gradually changes across a work shift. These variables utilise continuous

production data obtained from human and robot workers to detect small

gradual changes in worker performance across a work shift. Such continuous

production data is collected from each iteration of a manufacturing subtask

and assessed against the manufacturer’s requirements and/or the workers

performance in previous work shifts for the manufacturing subtasks. This

provides a valuable source of data to quantify a worker’s capabilities, allowing

quantification of their performance against the manufacturer’s expectations

whilst also enabling inference of changes in their capabilities when their

performance has deviated from nominal. The former capability of these

continuous variables allows comparison between workers in factors such as

subtask completion times, whilst the later capability allows the inference of the

onset of factors such as fatigue that affect performance of human workers.

This chapter begins with the development of two examples of

continuous variables that can be implemented within the proposed dynamic

cost functions. First in Section 4.2, a fatigue variable is proposed to infer

relative fatigue levels through the difference between current completion

times and expected completion times for a human worker. Second in Section

4.3, a completion variable is proposed to quantify the standard of worker

completion times. These variables are tested with a real robot worker and a

simulated worker as a part of dynamic cost functions. To achieve this, it is first

necessary to discuss the experimental setup for the robot worker and the setup

of simulations for a human worker in the two example subtasks in Section 4.4.

Following this it is possible to present and discuss the generated test data to

assess the ability of the continuous variables to quantify the capabilities of

human and robot workers.

38

4.2. Continuous Variable Example – Fatigue

4.2.1. Human Fatigue and its Relation to Continuous Variables

Fatigue represents a key factor that affects human performance and

capabilities when working over long periods of time, and often manifests itself

in two distinct forms that have different effects on a human worker. The first

form of fatigue, physical fatigue, can result in reduced physical performance

leading to increased subtask completion times. The second form of fatigue,

mental fatigue, can result in reduced cognitive abilities such as concentration

leading to possible mistakes in tasks (Dawson et al., 2011). Due to this it is

desirable to minimise the level of fatigue for human workers to ensure that

they can complete tasks effectively and minimise production errors. Fatigue

represents an appropriate test case for continuous variables as the onset of

both forms of fatigue is gradual over long time periods, however, absolute

quantification of fatigue levels poses a significant research challenge.

Although its effects can be measured, a measure of fatigue level itself

is often considered as an abstract concept rather than something that can be

definitively measured. Previous research has attempted to directly detect

physical fatigue through the use of EMG sensors placed on the muscles of a

human worker (Potvin and Bent, 1997). However, this could prove difficult to

scale to multiple workers due to the infrastructure and processing required to

collect and analyse this data. Additionally, this could prove invasive for human

workers due to the collection of personal health data and would possibly be

rejected by workers and pose ethical questions for its use. In other research,

modelling has instead been used to predict or quantify the level of fatigue that

will be experienced by a worker using data relating to the applied

manufacturing task as shown in Chapter 2. Such existing models use factors

such as workload and time spent completing the task to determine fatigue of

the human worker. In other models, it was instead proposed to predict the

effect of fatigue on workers performance in completing tasks using historic

data of previous performance instead of attempting to quantify the level of

fatigue itself. This has been done for repetitive manufacturing tasks by

generating models that predict the increase in completion times with iterations

of a repetitive task based on historic data from previous work shifts. All of these

models face the limitation that they cannot react to unexpected events in a

human worker’s life that are unpredictable yet could severely affect their

performance in completing tasks.

In this research, it is instead proposed to attempt to detect an increase

in the level of fatigue as it is occurring, to ensure that the fatigue variable

accurately represents the level of fatigue the human worker is experiencing

during the current work shift. This is achieved by quantifying relative fatigue

instead of defining an absolute fatigue value for a human worker by using

39

existing models combined with real time production data. This relative level of

fatigue is inferred by comparing current completion times of a subtask for a

human worker with their nominal expected completion times for each subtask

of the overall manufacturing task. To define the fatigue variable in this way, a

frame of reference given by a baseline model is required to define the nominal

human completion times for a subtask across a work shift.

4.2.2. Baseline Model – The Digiesi Completion Time Model

Previous research, as stated in Section 4.2.1, has identified models that

relate the effect of fatigue on completion times to the number of iterations of

the task completed, validating the inference of the level of fatigue based on the

rate of completion time increase used in the fatigue variable. In (Digiesi et al.,

2009), a model was presented that is capable of modelling the effects of fatigue

and learning phenomena for a human worker on the completion times of a

repetitive task over numerous iterations of the task. This model was validated

against worker data from a real-world automotive assembly plant, where it was

found that in cognitive tasks the fatigue phenomenon prevailed over the

learning phenomenon. The model was then approximated in (Digiesi et al.,

2009) to remove the learning factor, for situations where the fatigue

phenomenon prevails over the learning phenomenon. The approximated

model proposed by (Digiesi et al., 2009) gives the completion time, Ei,j, for a

human worker as

 𝐸𝑖,𝑗 = 𝑡𝑤,𝑗 + 𝜏
′
𝑗 ln(𝑖) (4.1)

in the ith task iteration of a subtask j with initial completion time, tw,j, and

synthetic measure of fatigue, 𝜏𝑗
′. For the completion time to be calculated using

the model, historic data for the human worker are required. First, an initial

completion time, tw,j, is required from the first completed iteration of the

subtask in the current task assignment period from which the model evolves.

Since in this research, a subtask can be taken away from a worker and be

reassigned to them again later, it is necessary to specify the initial completion

time from task iteration, w, where

𝑤 = {

1 𝑖𝑓 𝑡𝑖,𝑗 ≠ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ ℤ∗

𝑠 + 1 𝑖𝑓 𝑠 = max(𝑖) |𝑡𝑖,𝑗 = 0
 (4.2)

to ensure the initial completion time, tw,j, is from the current assignment period

of the jth subtask to a human worker. Secondly, historic data from previous

work shifts are required to calculate the synthetic measure of the fatigue

phenomenon, 𝜏𝑗
′, used by the model. This synthetic measure of fatigue was

defined in (Digiesi et al., 2009) by the limit

𝜏′𝑗 ≤

𝑇𝑗 − 𝑁𝑗 ∙ 𝑡𝑤,𝑗

𝑁𝑗 ∙ ln(𝑁𝑗) − 𝑁𝑗
 (4.3)

40

for the ith task iteration of a subtask j where Nj is the number of task iterations

completed in a task assignment period of length Tj seconds. In this research the

upper limit is used for the synthetic measure of fatigue, given by

𝜏′𝑗 =

𝑇𝑗 − 𝑁𝑗 ∙ 𝑡𝑤,𝑗

𝑁𝑗 ∙ ln(𝑁𝑗) − 𝑁𝑗
 (4.4)

to provide the worst-case scenario of expected completion time change due to

the fatigue level for a human worker.

Using the model for human completion times in a repetitive task given

by Eq. (4.1), the fatigue variable, f1,j, in a subtask j is defined based on the

difference between current and expected human completion times for a

subtask. In this research, it is assumed that the level of fatigue presented by

this model is unavoidable and represents the natural way in which a human will

become fatigued as they complete a repetitive manufacturing subtask. This is

reasonable to assume because a human worker’s performance will naturally

decline over a work shift, despite the level of fatigue they are experiencing.

When the human worker’s completion times are as predicted by Eq. (4.1), this

nominal performance infers they have a natural level of fatigue and the fatigue

variable should remain at zero. If completion times increase from this level of

nominal performance, this worse than expected performance infers that the

worker’s relative fatigue level is “over fatigued” and that they might have been

assigned too much work. If completion times instead decrease from this level

of nominal performance, this better than expected performance infers that the

worker’s relative fatigue level is “under fatigued” and that they might be

underutilised. Before defining how the fatigue variable should increase or

decrease with these changing levels of fatigue, it is necessary to define a

tolerance to ensure the fatigue variable does not increase or decrease unfairly

due to natural variations in human performance.

4.2.3. Tolerances to Insignificant Completion Time Variation

It is widely accepted that human completion times are not consistent

and are subject to a natural variance that increases in magnitude with the

magnitude of completion times. Such a small variation in completion times

should thus be considered insignificant and not affect the output cost of the

fatigue variable as it is assumed this does not infer a change in fatigue levels of

the human worker. To account for this natural insignificant variation in

completion times, two methods are implemented to ensure the fatigue

variable is unaffected by insignificant changes in a human worker’s completion

times. First, the fatigue variable compares the expected completion from Eq.

(4.1) with a moving average of a set number of the most recent completion

times, 𝑟𝑖,𝑗, for the ith task iteration of a subtask j. A moving average is used to

calculate the output cost of the fatigue variable, f1,j, since using individual

41

completion times would cause the fatigue variable to change far too rapidly

due to the inconsistency in human completion times. This would also unfairly

represent a worker for unusually high or low completion times due to singular

outliers over a task assignment period which are not representative of their

overall current performance.

Second, to mitigate for the natural variation in human completion times

it is also required to set a difference tolerance region to allow a proportionally

small variation from the exact expected completion time before the fatigue

variable is affected. This is required as in reality when performing nominally, a

human worker’s completion times will not be exactly the same as the expected

completion times predicted by Eq. (4.1) due to the natural variance in human

completion times. To this end, a human worker should not be allocated an

unrepresentative output cost for the fatigue variable when the difference

between actual and expected completion times is proportionally small

compared to the expected completion time given by Eq. (4.1). To define this

difference tolerance region to variation in completion times for the fatigue

variable, it is first necessary to define a tolerance of hj seconds, for a subtask j,

of which human completion times can deviate from the model. This tolerance

will have to be set for each specific subtask based on the subtask length. In this

research, tolerances will be assigned by hand for the experiments in this

chapter, however, in an operational Human-Robot task planning system it

would be desirable for the tolerance to be set through autonomous generic

methods.

Using the tolerance to variation in completion times, hj, it is possible to

define the upper and lower limit completion times of the difference tolerance

region as

 𝑅+ = 𝐸𝑖,𝑗 + ℎ𝑗 (4.5)
 𝑅− = 𝐸𝑖,𝑗 − ℎ𝑗, (4.6)

respectively, for the ith task iteration of a subtask j. This enables the definition

that if the moving average completion time, ri,j, for the ith task iteration of a

subtask j exists within the region [R-, R+] then the output cost of the fatigue

variable, f1,j should remain at zero. Outside of this tolerance region the output

cost must increase or decrease to a maximum or minimum limit based on the

difference between the moving average completion time for a worker and the

expected completion time given by Eq. (4.1).

4.2.4. Effect of Relative Performance on Cost and Definition of

Fatigue Variable

 To define the output cost of the fatigue variable when the worker’s

performance deviates from nominal, it is necessary to define maximum and

minimum limits for completion times that represent when the output cost

42

should reach its maximum or minimum value. This enables the fatigue variable

to be normalised in a range of [-1, 1] as with the other continuous cost function

variable in addition to providing a limit for the maximum acceptable change in

a worker’s completion times. To define these limits, input from the

manufacturer is necessary to define a maximum acceptable percentage, ej,

increase or decrease in completion times from the expected completion time

𝐸𝑖,𝑗 for the ith task iteration of a subtask j. Using this maximum acceptable

percentage, the completion times that result in the fatigue variable reaching

its absolute maximum value are defined by

 𝛺+ = 𝐸𝑖,𝑗 (1 +
𝑒𝑗

100
) + ℎ𝑗 (4.7)

 𝛺− = 𝐸𝑖,𝑗 (1 −
𝑒𝑗

100
) − ℎ𝑗 , (4.8)

respectively, for the ith task iteration of a subtask j. Between these limits and

the upper and lower limits of the tolerance region the cost should increase or

decrease linearly to its maximum or minimum point. Collating the limits

defined by Eqs. (4.5), (4.6), (4.7) and (4.8) with this linear progression allows

the fatigue variable to be defined as

𝑓1,𝑗(𝑟𝑖,𝑗) =

{

1 𝑖𝑓 𝑟𝑖,𝑗 > 𝛺+
𝑟𝑖,𝑗 − 𝑅+
𝛺+ − 𝑅+

 𝑖𝑓 𝛺+ ≥ 𝑟𝑖,𝑗 > 𝑅+

0 𝑖𝑓 𝑅+ ≥ 𝑟𝑖,𝑗 ≥ 𝑅−

−(
𝑅− − 𝑟𝑖,𝑗
𝑅− −𝛺−

) 𝑖𝑓 𝑅− > 𝑟𝑖,𝑗 ≥ 𝛺−

−1 𝑖𝑓 𝑟𝑖,𝑗 < 𝛺−

 (4.9)

for the ith task iteration of a subtask j.

4.3. Continuous Variable Example – Completion Times

It is also proposed to use a continuous variable to quantify the standard

of completion times for human and robot workers completing a manufacturing

subtask. Subtask completion times are chosen as an additional continuous

variable as this allows a direct point of comparison between human and robot

workers in their ability to meet the performance specifications for a

manufacturing subtask. This is permissible, despite the dependency this

creates with the Fatigue variable, as the Fatigue variable uses this to define cost

for relative fatigue based on the difference between expected and current

completion times. However, the completion variable defines a cost based on

the magnitude of the completion times themselves and represents a different

aspect of human performance. Although such variables are inherently simple

by nature, they form a core that the dynamic cost functions can be built around

by allowing a direct point of comparison between human and robot workers.

These core variables can then be used in conjunction with other variables that

43

are specific to human or robot workers, such as the fatigue variable. This

enables the cost from the dynamic cost function to accurately reflect a worker’s

capabilities whilst retaining a base commonality between the cost functions for

workers.

To define this completion time cost function variable, it is first necessary

to provide context as to what is a good or bad completion time for the

manufacturing subtask in question. In an industrial manufacturing

environment, a manufacturer would expect a product to be completed within

a predetermined production time which can be broken down into work

element times for each subtask. These work element times give a suitable level

of context for the completion variable as it allows completion times to be

evaluated based on the manufacturer’s requirements. It is assumed that the

manufacturer implementing the system will provide a list of the desired work

element times for each subtask of an overall manufacturing task with the task

specifications.

As with the fatigue variable, it is necessary to set maximum and

minimum limits for completion times to allow the output cost of the variable

to be normalised over a range of [-1, 1]. To calculate the output cost of the

variable, the same moving average of a set number of the most recent

completion times, 𝑟𝑖,𝑗, is used as that in the fatigue variable. This is again

utilised to ensure a smooth stable change in output cost and reduce the

susceptibility of the variable to outliers in completion times that could unfairly

represent the capabilities of a worker. It is desirable to use the same moving

average to provide a commonality between the variables and ensure changes

in completion time affect the variable at the same rate. This enables the

completion variable to be defined as

𝑓2,𝑗(𝑟𝑖,𝑗) = {

𝑟𝑖,𝑗 − 𝐻𝑗

𝐻𝑗
 𝑖𝑓 0 ≤ 𝑟𝑖,𝑗 ≤ 2𝐻𝑗

1 𝑖𝑓 2𝐻𝑗 < 𝑟𝑖,𝑗

 (4.10)

for the ith task iteration of a subtask j, where Hj is the manufacturer’s desired

work element time for the subtask.

4.4. Continuous Variables Testing and Results

4.4.1. Assembly Subtasks for Testing

The Fatigue and Completion variables proposed in this research are

tested together within a single cost function for two example manufacturing

tasks representing subtasks of a possible overall manufacturing task. These two

example tasks are used to illustrate cases where one of the workers should be

better suited to the subtask being analysed, with one illustrating a case where

the use of a human worker is more appropriate and the other where use of a

44

robot worker is more appropriate. The first task consists of tightening a 3D

printed bolt into a threaded hole over its entire length, the bolt used is an M15

bolt with a thread length of 40mm and a pitch of 2mm. This primitive task

represents a case where the use of a human worker is more appropriate, as

their increased dexterity and motion speed allow them to complete the task

faster than a robot worker could. To complete the task, the worker must pick

up the bolt from a holder and screw its entire length into a fixing. The execution

time measured is only the time taken to tighten the bolt into the fixing. The

experimental setup for this primitive task can be seen in the image given in

Figure 4.1 for a robot worker.

Figure 4.1: Experimental setup for the

bolt tightening subtask.

Figure 4.2: Experimental setup for the pick and place

subtask

The second example task is a simple pick and place task, requiring a

worker to pick up four 3D printed nuts from a holder in sequential order and

place each nut in one of four predefined placement positions. The task

complexity is increased by randomly selecting the placement position for each

nut from one of the four predefined placement positions, simulating high mix

production by using the same production techniques but with changing

specifications. This example task represents a case where the use of a robot

worker is more appropriate, as a robot worker can quickly retrieve instructions

for each task iteration and follow them with high accuracy. In comparison, a

human worker must check the task specifications before executing it, then

verify the task has been completed correctly once finished, increasing their

completion time. Additionally, with the cognitive elements of the task such as

checking the required task specifications, fatigue can have a large impact on

the human workers performance and lead to mistakes in task execution. The

45

experimental setup for this example task can be seen in the image given by

Figure 4.2.

These example tasks are executed by an ABB YuMi robot (ABB, 2020) to

obtain completion times from a typical cobot for testing the cost functions

consisting of continuous variables. This cobot is used to generate test data

since its high level of human-safe features allows close working with a human

worker. Additionally, this robot has a high precision of movement and is

specifically designed to work in industrial manufacturing environments. To

complete the two example tasks, the robot is programmed using the Robot

Operating System (ROS) interface developed by Berkeley Automation (Liang,

2016). Completion times for the human worker are then simulated using the

model given by Eqs. (4.1) and (4.4) based on various simulated initial

completion times and simulated historic data. It is decided to simulate the

human worker’s completion times in this way to enable illustration of cases

where a human worker is considered as “over fatigued” or “under fatigued” in

addition to performing as expected for large numbers of task iterations. To

make these simulated human completion times more realistic, a random

variable generated from the standard normal distribution is added to each

simulated completion time to simulate the natural variation in human

completion times. The standard normal distribution is chosen as it is assumed

that the variation of human completion times from the model given by Eqs.

(4.1) and (4.4) is at most 3 seconds, due to the short length of completion times

for a human worker in such tasks. Over the next two subsections the methods

for generating the completion times for the robot worker and simulated human

worker are described for each example subtask. In addition to this, the

parameters required to formulate the cost functions, consisting of the fatigue

and completion variables, for the workers in the two example subtasks are

defined. These completion times and cost functions are evaluated within the

Matlab software package for both the bolt tightening and pick and place

example subtasks.

4.4.2. Parameter Setting: Subtask 1 Bolt Tightening

First, to generate completion times for the robot worker, the ABB YuMi

cobot is programmed to complete 15 iterations of the bolt tightening task and

completion times are recorded between the robot starting to tighten the bolt

in the fixing and the completion of the tightening of the bolt.

To evaluate the cost function variables for the robot worker, it is also

necessary to define the parameters required for the variables to function. For

this primitive subtask, only the completion variable, 𝑓2,𝑗, is used since the

fatigue variable, 𝑓1,𝑗, is not applicable to robot workers. To use the completion

variable, it is necessary to set the work element time, Hj, as 45 seconds since it

is assumed this would be set based on the fastest possible human completion

46

time. This is used as the human worker is faster than the robot worker to

complete this subtask which would be reflected in the manufacturer’s desired

work element time.

To calculate the cost for the robot worker to complete the subtask using

the dynamic cost function, it is necessary to set the weightings for the variables

by utilising the schema detailed in Section 3.6. For this primitive subtask, since

the fatigue variable, 𝑓1,𝑗, is irrelevant to the robot worker it receives a weighting

of zero whilst the remaining completion variable, 𝑓2,𝑗, receives a weighting of

one in the dynamic cost function.

 Second, the corresponding completion times for a typical human

worker are simulated for 15 iterations of the subtask using the model given by

Eqs. (4.1) and (4.4). Three sets of initial conditions, given in Table 4.1, are used

to illustrate the three potential levels of fatigue for the human worker where

they were performing as expected in addition to when they would be

considered as over fatigued or under fatigued. These initial conditions provide

the necessary data for the model, consisting of an initial completion time for

the work shift in addition to the number task iterations a worker can complete

over an hour-long time period. These data are estimated for a typical skilled

human worker based around the time taken to tighten the bolt in this test,

which is determined to be around 47 seconds for a human worker. It is assumed

that the initial completion time would only vary by a few seconds when the

worker is over or under fatigued due to the relatively short length of time that

the task takes. However, even a small change in the initial completion time

could result in a large variation in the number of task iterations completed over

the work shift if the worker is over fatigued or under fatigued and this is

reflected in the simulated initial conditions.

Table 4.1: Initial conditions used for the simulated human worker in the bolt tightening subtask.

Behaviour of Human
Worker

Initial Completion Time
(seconds)

Number of Task
Iterations Completed

Over Fatigued 50 64

Under Fatigued 45 75

As Expected 47 70

Historical 47 70

To evaluate the cost function variables for the human worker, it is also

necessary to define parameters required to calculate the cost function

variables for the human worker. For the fatigue cost function variable, 𝑓1,𝑗, it is

necessary to set the baseline expected completion times, 𝐸𝑖,𝑗, using Eqs. (4.1)

and (4.4). The initial conditions used for the simulated worker performing as

expected are again used as such performance occurs when the human worker

is performing as the historical data would suggest. Next, the tolerance to

variation in completion times, hj, is set at 3 seconds as it is assumed to be

47

sufficient for a task of such a short length. The final parameter required for the

variable, 𝑒𝑗, is set at 20% to allow Eqs. (4.7) and (4.8) to determine the increase

or decrease in completion times from the worker’s expected completion times

that should result in the output cost for the fatigue variable reaching its

maximum or minimum value. The percentage is set at this value as it is assumed

that a manufacturer would be less tolerant to decline in performance of the

human worker for such a simple task. To use the completion variable for the

human worker, it is necessary to set the work element time, Hj, as the same

value used by the robot worker.

 To calculate the cost for the human worker to complete the subtask

using the dynamic cost function, it is necessary to set the weightings for the

variables by again utilising the schema detailed in Section 3.6. For this primitive

subtask, both the fatigue variable, 𝑓1,𝑗, and the completion variable, 𝑓2,𝑗, are

considered equally important and so both receive a weighting of 0.5 in the

dynamic cost function.

4.4.3. Parameter Setting: Subtask 2 Pick and Place

To obtain the input data for the dynamic cost functions for the pick and

place task it is first necessary to generate completion times for the robot

worker. Here, the ABB YuMi cobot is programmed to complete 90 iterations of

the pick and place task with completion times recorded between the robot

moving to pick up the first nut and placing the final nut.

 Following this, it is necessary to define the parameters required to

evaluate the cost function variables for the robot worker. In this subtask only

the completion variable, 𝑓2,𝑗, is again used since the fatigue variable, 𝑓1,𝑗, is not

applicable to robot workers. To apply the completion variable, the work

element time, Hj, is set at 27 seconds since it is assumed this would be set based

on the fastest possible worker completion time which is from the robot worker

in this subtask.

To calculate the complete dynamic cost function for the robot worker

in this subtask, it is again necessary to set the weightings for the variables by

utilising the schema detailed in Section 3.6. For this example task, the fatigue

variable, 𝑓1,𝑗, again receives a weighting of zero since it is irrelevant to the robot

worker whilst the remaining completion variable, 𝑓2,𝑗, receives a weighting of

one in the dynamic cost function.

48

Table 4.2: Initial conditions used for the simulated human worker in the pick and place subtask.

Behaviour of Human
Worker

Initial Completion Time
(seconds)

Number of Task
Iterations Completed

Over Fatigued 51 61

Under Fatigued 45 74

As Expected 48 69

Historical 48 69

To obtain the input data for the dynamic cost functions, it is next

necessary to generate the completion times for a typical human worker to

complete the 90 iterations of the pick and place task using the model given by

Eqs. (4.1) and (4.4). Three sets of initial conditions, given in Table 4.2, are again

used to illustrate the three potential levels of fatigue for the human worker

where they are performing as expected in addition to when they would be

considered as over fatigued or under fatigued. These data are again estimated

for a typical skilled human worker based around the time taken to complete

the task, which is determined to be around 48 seconds.

 To evaluate the cost function variables for the human worker, it is again

necessary to define parameters required to calculate the cost function

variables for the human worker. For the fatigue cost function variable, 𝑓1,𝑗, the

baseline expected completion times, 𝐸𝑖,𝑗, are again set using Eqs. (4.1) and

(4.4). The initial conditions used for the simulated worker performing as

expected are again used as such performance occurs when the human worker

is performing as the historical data would suggest. Next, the tolerance to

variation in completion times, hj, and the variable, 𝑒𝑗, are set to the same values

used in the bolt tightening task due to the similarity in the initial human

completion times for each task. To use the completion variable for the human

worker, it is again necessary to set the work element time, Hj, as the same value

used by the robot worker.

 To calculate the cost for the human worker to complete the subtask

using the dynamic cost function, it is necessary to set the weightings for the

variables by again utilising the schema detailed in Section 3.6. The pick and

place subtask can be broken down into three primitive tasks, these include

checking the placement location of each nut, moving each nut to its position

and checking the placement locations are correct. In this subtask the

completion variable, 𝑓2,𝑗, only affects the physical elements of the task since

the time taken to complete the cognitive elements of the task can be

considered as negligible. In contrast, the fatigue variable, 𝑓1,𝑗, affects all

elements of the task since an over fatigued worker may make mistakes with

the cognitive elements of tasks and complete the physical elements more

slowly. Utilising the schema given in Section 3.6, the fatigue variable, 𝑓1,𝑗, is

49

given a weighting of 0.75 and the completion variable, 𝑓2,𝑗, is given a weighting

of 0.25.

4.4.4. Results – Bolt Tightening Subtask

Given the settings and data generated in Section 4.4.2 the total cost for

the robot worker across the 15 iterations of the bolt tightening subtask is given

in Figure 4.3 with the output cost of the completion variable being given in

Figure 4.4. In this subtask, the total cost for the robot worker to complete the

subtask immediately reaches a cost of one and remains at this across all the

task iterations simulated. This demonstrates that the robot worker is poorly

suited to the task as it achieves the maximum attainable cost for the subtask

for the entirety of the task assignment period. This is due to the completion

cost function variable which also immediately reaches a maximum cost of one

and is maintained across the task assignment period as seen in Figure 4.4. This

behaviour of the cost function variable is caused by the long completion times

for the robot compared to the work element time for the task since the robot

lacked the high dexterity and motion speed within its wrist joint required to

complete this task quickly.

Figure 4.3: Total costs for workers to complete the bolt tightening subtask.

The total cost for the human worker in the bolt tightening subtask can

also be seen in Figure 4.3, with the output cost for the completion and fatigue

cost function variables shown in Figure 4.4 and Figure 4.5, respectively. In this

subtask the human has a mean cost of 0.0511 over the task assignment period

when performing as expected with a maximum cost of 0.0665 at the 15th

50

iteration of the subtask and a minimum cost of 0.0443 at the 7th iteration of

the subtask. This total cost for completion of the subtask can be solely

attributed to the completion variable as Figure 4.5 shows that the fatigue

variable remains at zero for the entirety of the task assignment period for this

scenario of human performance. The completion variable is shown to have the

same behaviour as the total cost in this subtask except the magnitude is double

that of the total cost, as seen in Figure 4.4, due to the weighting of this variable

within the cost function for the human worker. This indicates that a human

worker performing as expected should not have a large increase in cost over a

task assignment period as human completion times naturally increase with

fatigue. This also demonstrates that when the worker is behaving as expected,

that the cost for the worker to complete the task should only be dependent on

the difference between their completion times and the manufacturer’s

expectations.

Figure 4.4: Completion cost function variable output costs for workers in the bolt tightening subtask.

Next in the scenario of the over fatigued human worker, Figure 4.3

shows that their mean total cost to complete the subtask is 0.1186 over the

task assignment period, with a maximum cost of 0.1705 during the 13th

iteration of the subtask and a minimum cost of 0.0782 during the 5th iteration

of the subtask. In comparison with the worker performing as expected, Figure

4.3 shows that the over fatigued worker’s total cost increases gradually over

the task assignment period, however, the total cost behaves noticeably more

unexpectedly at certain points. This is most noticeably seen as a significant

increase in total cost between the 8th and 9th iterations of the task and a

51

significant decrease in cost between the 13th and 14th iterations of the task.

Examining the output of the constituent cost function variables during the task

assignment period shows that the completion variable increases steadily in cost

over the majority of the task assignment period from an initial cost of 0.1564

to a final cost of 0.1970 as seen in Figure 4.4. In comparison, the fatigue variable

behaves more erratically with the variable producing a minimal output cost

until the 9th iteration of the task where it increases significantly followed by a

gentle increase until the 13th task iteration where the output cost significantly

decreases again. This period between the 9th and 13th iteration, where the

fatigue variable shows a greater magnitude of approximately 0.1 can be seen

to affect the total cost with an increase in cost over the same period.

Figure 4.5: Fatigue cost function variable output costs for workers in the bolt tightening subtask.

Finally in the scenario of the under fatigued human worker, Figure 4.3

shows that their mean total cost to complete the subtask is -0.0238, with a

maximum cost of 0.0084 during the 7th iteration of the subtask and minimum

cost of -0.0679 during the 10th iteration of the subtask. In comparison with the

worker in the other fatigue scenarios, Figure 4.3 shows that the under fatigued

worker’s total cost to complete the subtask behaves far more erratically across

the task assignment period with no overall obvious increasing or decreasing

trend in the total cost. Despite this, the total cost increases minimally overall

from -0.0318 during the 5th iteration of the subtask to -0.0177 during the 15th

iteration of the subtask. Determining the cause of this behaviour by examining

the output cost of the constituent cost function variables, it is shown that the

completion variable has a gentle overall increase in output cost from 0.0146

52

during the 5th iteration of the subtask to 0.0468 during the 15th iteration of the

subtask with a mean cost of 0.0332. The output cost of the fatigue variable

instead shows a similar pattern of increase and decrease in cost to that of the

total cost for the cost function during the task assignment period. The fatigue

variable has a mean output cost -0.0809 during the task assignment period with

a maximum cost of -0.0172 during the 7th iteration of the subtask and a

minimum cost of -0.1586 during the 10th iteration of the subtask. The greater

magnitude of the output cost of the fatigue variable in this task assignment

period causes its behaviour to be the dominant influence on the behaviour of

the total cost for the subtask generated by the cost function. This can be best

observed between the 10th and 12th iterations of the subtask, where the

magnitude of the fatigue variable is so large compared to the completion

variable that it defines the total cost for the worker to complete the subtask

resulting in a period of significant negative cost. The only instance where the

completion variable exerts such an influence on the total cost defined by the

cost function is during the 7th iteration of the task assignment period where it

has a greater magnitude than the fatigue variable, resulting in the maximum

total cost for the worker to complete the subtask over the task assignment

period.

 Now comparing the total cost for the workers in this test case, Figure

4.3 shows that the most suitable worker for the task is the human worker

regardless of the level of fatigue they are experiencing. Here, the high

completion times for the robot worker result in them attaining the maximum

possible cost to complete the subtask showing their unsuitability for

assignment of the task. Although the simulated human worker has a fairly low

cost to complete the subtask regardless of their level of fatigue, there are clear

distinctions between the total costs for them to complete the subtask for the

various fatigue levels.

4.4.5. Results – Pick and Place Subtask

Examining the results for the pick and place subtask, the total cost for

the robot worker across the 90 iterations of the subtask is given in Figure 4.6

with the output cost of the completion variable being given in Figure 4.7. In this

subtask, the total cost for the robot worker has a mean cost of 0.051 over the

task assignment period with a maximum cost of 0.0686 during the 88th task

iteration and a minimum cost of 0.0278 during the 39th task iteration. Since the

completion variable is the sole variable used in the robot worker’s cost function

it also provides the total output cost for the worker as shown in Figure 4.7. This

behaviour in the total output cost and completion variable can be seen since

the robot worker can complete the task close to the manufacturers specified

completion time. The variance in the completion time variable in this case can

be attributed to the change in placement location for each nut in each iteration

53

of the subtask resulting in different robot arm trajectories for each iteration

and thus different completion times.

Figure 4.6: Total costs for workers to complete the pick and place subtask.

In the pick and place subtask, Figure 4.6 shows the total cost generated

by the cost function for the simulated human worker to complete the subtask

with the output costs of the completion and fatigue variables being shown in

Figure 4.7 and Figure 4.8, respectively. For the scenario of the human worker

performing as expected, Figure 4.6 shows that their mean total cost to

complete the subtask is 0.2377 over the task assignment period, with a

maximum cost of 0.25 during the 86th iteration of the subtask and a minimum

cost of 0.2085 during the 5th iteration of the subtask. A degradation in

performance is more evident over the larger task assignment period of this

subtask as seen in Figure 4.6, however, this increase in cost is very gentle over

a large number of task iterations. Figure 4.8 shows that when the human

worker is performing as expected, the output cost of the fatigue variable

remains at zero meaning that the completion variable is the only variable

contributing to the total cost. Figure 4.7 shows the completion variable has a

much larger magnitude than the total cost with a much more significant cost

increase and greater variability. The mean output cost of the completion

variable over the task assignment period is 0.9510 with a maximum cost of one

during the 86th iteration and a minimum cost of 0.834 during the 5th iteration

of the task. Despite the large magnitude of the completion variable which

reaches its maximum output cost of 1 towards the end of the task assignment

period, the total cost for the human worker to complete the subtask when

54

performing as expected is much lower due to the weighting of the variable

within the cost function. Since the variable receives a weighting of 0.25, its

effect on the total cost of the worker to complete the subtask is massively

reduced with variability in its behaviour being smoothed. This again indicates

that a human worker performing as expected should not have a large increase

in cost over a task assignment period as human completion times naturally

increase with fatigue. Additionally, this again demonstrates that when the

worker is performing as expected, that the cost for the worker to complete the

task should only be dependent on the difference between their completion

times and the manufacturer’s expectations.

Figure 4.7: Completion cost function variable output costs for workers in the pick and place subtask.

Next in the scenario of the over fatigued human worker, Figure 4.6

shows that their mean total cost to complete the subtask is 0.6903 over the

task assignment period, with a maximum cost of 0.8335 during the 69th

iteration of the subtask and a minimum cost of 0.2622 during the 5th iteration

of the subtask. The over fatigued human worker’s cost shows a massive

increase over the task assignment period in comparison with the worker

performing as expected. Figure 4.6 shows that their total cost to complete the

subtask increases rapidly over the first 40 iterations of the subtask with a

gentler increase over the remaining iterations of the task assignment period. A

significant variation in the total cost of the worker to complete the subtask can

also be seen from the 35th iteration of the subtask onwards. Examining the

output cost of the constituent cost function variables, Figure 4.7 shows that the

completion variable has an output cost of 0.9724 during the 5th iteration of the

55

subtask which immediately increases to 1 during the 6th iteration of the subtask

and remains at this cost for the remainder of the task assignment period. This

results in the completion variable making a constant contribution of one

weighted at 0.25 to the total cost generated by the cost function for the worker

to complete the subtask. In comparison, the fatigue variable displays the same

behaviour as the total cost for the worker to complete the subtask but with a

lower magnitude as seen in Figure 4.8. This shows the fatigue variable has the

dominant effect on the output cost on the behaviour of the total cost for the

over fatigued worker to complete the subtask, despite the greater magnitude

of the completion variable. This behaviour is seen in the cost function since the

cost for the completion variable remains constant for the majority of the task

assignment period meaning that it doesn’t provide any variability to the total

cost and instead only boosts the magnitude of the fatigue variable to give the

total cost for the worker to complete the subtask.

Figure 4.8: Fatigue cost function variable output costs for workers in the pick and place subtask.

Finally in the scenario of the under fatigued human worker, Figure 4.6

shows that their mean total cost to complete the subtask is 0.1377, with a

maximum cost of 0.2105 during the 71st iteration of the subtask and minimum

cost of 0.0256 during the 63rd iteration of the subtask. Figure 4.6 shows that

there was a high variability in the total cost to complete the subtask over the

task assignment period which made an overall pattern of change hard to detect

as shown with the simulated under fatigued human worker in the bolt

tightening subtask. Determining the cause of this behaviour by examining the

output cost of the constituent cost function variables, Figure 4.7 shows that the

56

completion variable has a mean output cost of 0.8169 over the task assignment

period with a maximum cost of 0.8679 during the 71st iteration of the subtask

and a minimum cost of 0.7051 during the 5th iteration of the subtask. Figure 4.7

shows that the completion variable gently increases in output cost over the

task assignment period with none of the unpredictability seen in the behaviour

of the total cost to complete the subtask. However, Figure 4.8 shows that this

unpredictability can be seen in the output cost of the fatigue variable indicating

that the fatigue variable is the dominant influence on the total cost for the

worker to complete the subtask across the task assignment period. This occurs

since the completion variable shows a gentle increase in cost over the task

assignment period, the effect of this is further reduced by the variable’s lower

weighting of 0.25. In comparison to the completion variable, the fatigue

variable has a mean output cost of -0.0887 over the task assignment period,

with a maximum cost of -0.0087 during the 71st iteration of the subtask and

minimum cost of -0.2321 during the 63rd iteration of the subtask. Figure 4.8

shows that despite the fatigue variable having an output cost that was

approximately 10% of that of the completion variable, its higher weighting of

0.75 results in the total cost for the worker to complete the subtask being much

lower than the output cost of the completion variable.

 Comparing the total cost for the workers in this test case, Figure 4.6

shows that the most suitable worker for the task is the robot worker due to

their lower costs over the task assignment period. In this test case, the

simulated human worker when under fatigued and performing as expected has

a mean total cost of 0.1377 and 0.2377, respectively. In comparison to the bolt

tightening task where the robot worker has a much higher cost and is very

unsuitable for the task, here the human worker could take over when under

fatigued or performing as expected without a huge increase in cost. This is not

seen with the simulated over fatigued worker that has a mean cost of 0.6903

over the task assignment period making the worker much more unsuitable in

comparison.

4.5. Chapter Summary

In this chapter, continuous cost function variables are proposed to

quantify the severity of gradual continuous changes in the performance of

workers across a work shift. This is to assess and validate the dynamic cost

functions proposed in this thesis. Firstly, two potential continuous cost function

variables have been developed to test the concept of the adopted variables.

The first of these variables consisted of a fatigue variable that is capable of

determining when a human worker’s completion times deviated from expected

completion times as a measure of fatigue level. The second variable consisted

of a completion variable that quantifies the difference between a worker’s

completion times and the expectations of the manufacturer. Whilst the fatigue

variable can only be applied to human workers, the completion variable is

57

capable of acting as a core variable. A cost function can be built around this

variable to ensure that a commonality is retained between cost functions for

human and robot workers. This ensures the comparison of costs for workers

remains relevant and fair when cost function variables specific to human or

robot workers, such as the fatigue variable, are used. These variables have

been tested within cost functions for a robot worker and a simulated human

worker in two example subtasks where one of the workers is better suited to

complete the subtask. These variables were tested by obtaining data from a

robot worker completing the task in addition to simulating data for a human

worker whilst performing as expected in addition to when they were over or

under fatigued.

 It was shown in the two example subtasks that the costs generated by

the cost functions, containing the specific continuous variables, provided clear

distinctions between the robot worker and the simulated human worker under

the various fatigue conditions. In both example subtasks it was shown that the

total costs for the robot worker and the simulated human worker performing

as expected to complete the subtasks progressed in a predictable way over the

task assignment period. In the cases of the simulated human worker being

under or over fatigued it was instead shown that the total costs for the worker

to complete the subtask noticeably deviated from those of the human worker

behaving as expected, increasing and decreasing multiple times over the task

assignment period. The erratic behaviour of the total cost for the simulated

human worker to complete the subtask under these fatigue conditions was

shown to be influenced by the fatigue variable thus clearly identifying cases

where the human is over fatigued or under fatigued.

 In a bolt tightening subtask, it was shown that the robot worker had a

significantly larger cost to complete the subtask regardless of the level of

fatigue of the simulated human worker indicating that the robot worker was

unsuitable to complete the subtask. In the pick and place subtask, it was shown

that the robot worker had a lower cost to complete the subtask, however, the

cost for the simulated human worker to complete the subtask when they were

under fatigued or performing as expected was not significantly larger than that

of the robot worker. Due to this it was possible that the human worker could

be assigned the subtask under these fatigue conditions without a significant

increase in cost. This was shown despite the output cost of the completion

variable for the simulated human worker being significantly larger than that of

the robot regardless of the level of fatigue the simulated human worker was

experiencing. This showed the importance of variable weightings as the heavy

weighting of the fatigue variable resulted in a relatively low cost for the

simulated worker to perform the task when under fatigued or performing as

expected.

58

 The results in this chapter have shown that the proposed fatigue and

completion variables provided a way to quantify relative worker performance

using continuous production data. A clear distinction between costs generated

for workers meaning they can be used to allocate subtasks of an overall

manufacturing tasks to workers. However, the effect of the weighting of the

continuous cost function variables indicated that additional variables should be

used to form a complete cost function. In the next chapter, a discrete variable

is proposed to quantify the impact of instantaneous discrete events during

production. In contrast to the continuous fatigue and completion variables

which quantify worker performance, discrete variables instead quantify a

worker’s ability to complete a subtask. Combining continuous and discrete

variables then creates fully rounded dynamic cost functions that are capable of

quantifying a worker’s capabilities.

59

5. Discrete Cost Function Variable

5.1. Introduction

In this research it is proposed to use discrete variables in the dynamic

cost functions to quantify the impact of instantaneous discrete events during

production. Discrete events, in contrast to the continuous changes in workers

performance from Chapter 4, occur during a single task iteration and may have

a significant effect on the outcome of a manufacturing task caused by the

worker. These discrete events can include production errors or lack of precision

in execution of a subtask which result in the failure of the manufacturing

subtask, possibly indicating that the subtask should instead be reallocated to

another worker. Discrete variables, as with the continuous variables, must be

calculated individually for each subtask of the overall manufacturing task to

quantify the effect of discrete events on that subtask. This allows assessment

of worker capabilities using discrete variables in comparison to the ability of

continuous variables to assess performance related factors, such as fatigue or

completion time.

This chapter begins with an outline of a generalised structure of a

discrete cost function variable in Section 5.2. This includes the operating

principle of a discrete variable, which generates costs based on the frequency

and severity of discrete events, in addition to the range of output costs of a

discrete variable. Next, an example discrete variable is investigated in Section

5.3 for the precision of sealant application a sealant application manufacturing

subtask. It is necessary to develop the example discrete variable around as an

example subtask as it must be capable of detecting specific errors instead of

the generalised input data used by the continuous variables in Chapter 4.

Section 5.3 begins with a discussion on sealant pathways in manufacturing

followed by a description of the simulated sealant application subtask used in

this research. Following this a description is given of the data required to assess

the quality of sealant application and the machine vision methods used to

obtain this. Next, methodologies are given for grading individual iterations of

sealant application utilising this data and a hierarchy of the potential types of

error. Methodologies are then given to generate the output cost of the discrete

precision of sealant application variable given the frequency and severity of

previous errors in addition to reducing the cost when the subtask is completed

successfully. Section 5.3 concludes by combining all the methodologies

presented into an algorithm defining the discrete variable for precision of

sealant application.

Section 5.4 details the testing of the discrete precision of sealant

application variable with the simulated sealant application subtask. The

variable is utilised in a dynamic cost function, alongside the completion and

60

fatigue continuous cost function variables given in Chapter 4, to determine its

effect on the total cost for workers to complete the sealant application subtask.

This is tested by simulating several error scenarios for the human worker to

determine the effect on their cost in comparison to that of the robot worker.

This also allows analysis of changing worker capabilities on the cost for a

worker to complete a subtask and determine if this would result in them no

longer being considered the optimal worker to complete the subtask.

5.2. Structure of a Discrete Variable

5.2.1. Operating Principle for Discrete Variables

To develop an example of a discrete cost function variable, it is first

necessary to define an operating principle of how such a variable should utilise

discrete data. In this research, it is proposed that a discrete variable should

grade the output of each iteration of a subtask individually by providing it with

a cost. This is required as discrete events will occur in an individual task

iteration and not gradually over multiple task iterations as with the continuous

variables developed in Chapter 4. In cases where a discrete event has not

occurred, a small cost should be generated to determine the quality of task

completion between perfect completion and minimum acceptable tolerances.

If a discrete error does occur, a higher cost should be generated with this being

defined based on the level of severity of the discrete error.

Using the cost for the execution of a single task iteration, the output

cost for the discrete variable should be based on the severity and frequency of

occurrence of discrete events. To achieve this the output cost should be

tolerant to infrequent errors which are natural for a human worker but should

increase rapidly if frequent errors occur. This is necessary as frequent errors

could imply a change in capabilities for a worker. If the subtask remains

assigned to a worker after the discrete variable’s cost has increased, the cost

should decrease with successfully completed iterations of the subtask. This is

necessary as continued successful completion of the subtask implies that the

worker’s capabilities have not changed.

To allow a discrete variable to generate a cost for each worker for a

subtask utilising this methodology, it is proposed to split the model into three

elements which enable the core functionality of a discrete variable. These

elements are defined as a reaction to small variations in subtask completion, a

hierarchy of discrete events and reaction to sudden significant changes in

production. In comparison to the continuous variables developed in Chapter 4,

discrete variables must be developed around an example subtask as they need

to be tuned to the detection of specific errors instead of a generalised form of

input data.

61

5.2.2. Cost Range of a Discrete Variable

To define discrete variables, it is also necessary to define the range of

possible output costs in the interval [0,1]. Here an output cost of zero indicates

that the worker is capable of completing a subtask perfectly and an output cost

of one indicates that a worker has made numerous significant errors

completing a subtask indicating it should be reassigned. This decision is taken

as when quantifying capabilities, a worker can be capable or incapable of

completing a manufacturing subtask thus the cost of the variable should only

increase as capabilities change. In comparison the output cost for continuous

variables in Chapter 4 was defined in the interval [-1, 1] as workers can perform

better or worse than nominal performance so the cost should decrease and

increase, respectively, from zero.

5.3. Discrete Variable Example – Precision of Sealant

Application

5.3.1. Sealant Pathways in Manufacturing

Sealant pathways are lines in a manufacturing part or product over

which a sealant, such as an adhesive, must be applied to create a seal between

two parts. Simple easily repeatable tasks can be performed by robot workers.

However, more complex sealant pathways with ergonomic difficulties are still

often completed by human workers, utilising their skill and craftsmanship

(Maiolino et al., 2017). Such tasks require dispensing of a continuous and

uniform line of sealant along a specified path to ensure a correct seal has been

made. This clear task definition means a discrete change in a task iteration can

be easily defined when a task has not been completed within tolerances.

The application of sealant pathways provides a test case to develop a

discrete cost function variable. It represents a manufacturing subtask where

discrete events caused by a worker can occur in a single iteration of the subtask

and lead to failure in its completion. It also represents a manufacturing subtask

where small changes are seen in the production data when the subtask has

been completed successfully, due to natural variations in worker capabilities.

In this example case, it is possible to consider small variations in subtask

completion as small deviations in the applied sealant pathways from those

specified, where the application is still completed successfully within specified

tolerances. This manufacturing subtask also allows the definition of distinct

types of discrete event as significant errors in sealant application, which can be

ranked into an order of severity. These significant errors occur when the

application of sealant by the worker has deviated outside of the specified

tolerances resulting in the failure of the manufacturing subtask.

62

These possible small variations in completion of the subtask and

discrete events in a sealant application manufacturing task allow the testing of

the complete functionality of the precision of sealant application variable and

to demonstrate the possibly of assessing worker capabilities through online

production data. Importantly, these small continuous changes and discrete

events can also be detected autonomously using machine vision systems

without requiring a human supervisor to assess the errors made. Using such

technologies, it is possible to extract information about applied sealant

pathways from a captured image, allowing characterisation based on a

predetermined set of tolerances and a hierarchy of discrete events to

determine the severity of individual discrete events. Through these

autonomous methods, it is possible to track and characterise discrete events

across a work shift and to estimate costs for workers, regarding their capability

in the application of sealant through the discrete variable model.

5.3.2. Manufacturing Subtask for Testing

In this example case, a discrete variable is required to assess the quality

of application of a straight line of sealant to a workpiece by a human or a robot

worker. A straight line was chosen as it represents a simple case where it is

possible to easily determine if the subtask has been completed successfully, or

if there are any significant deviations between the applied and specified sealant

lines. In this example task, the simulated workpiece is a two-dimensional

representation of a thin sheet of metal with holes drilled along one side

generated in Microsoft Publisher with dimensions: 15 cm long and 4 cm wide

as shown in Figure 5.1. This is printed on a sheet of A4 card which represents

the workspace for this task. In the simulated sealant application subtask, the

specified sealant line should be applied over 13 cm with a width of 0.5 cm. This

line should be applied parallel with the edge of the workpiece such that the top

left corner of the sealant line is 0.5 cm to the right and 1 cm down from the top

left corner of the workpiece as shown in Figure 5.2.

63

Figure 5.1: The simulated workpiece for the example sealant application subtask.

To simulate sealant application errors for the robot worker, sealant

lines are drawn on the simulated workpiece in the drawing package using

quadrilateral shapes. This representation is used as robot workers can typically

perform tasks with a high degree of accuracy so any variation in a straight line

would be minimal. To account for errors in completion of the subtask for a

robot worker given their accuracy, it is assumed that these errors would occur

due to a failure of hardware or sensor systems detecting where to apply the

sealant line. To simulate sealant application errors for the human worker, a

clean workpiece is printed, and a simulated sealant line is applied by a human

with a black marker pen. This representation is used due to the similarities

between sealant applicators and a pen, in terms of the pressure effect applied

to the surface on area and the effect of unsteadiness on the quality of

application.

64

Figure 5.2: A diagram detailing the measurements of the specified sealant line applied to the simulated
workpiece.

A simplistic representation of a sealant application task is used in this

research because it allows rapid set up and execution. This provides enough

data for the required application errors of sealant on a flat surface,

representing discrete events in a subtask. In this research, the contribution to

knowledge in this chapter is a demonstration of the methodology of reacting

to discrete events in online production data for human and robot workers

across a work shift given input data regarding the execution of a subtask. Due

to this, this example task is considered appropriate as it provides example data

without the complex setup of a real-world sealant application task for a human

and robot worker. Using this example subtask as a basis, it is next necessary to

define the input data required for the proposed discrete variable to assess the

quality of sealant application in a single iteration of the subtask and how this

input data is obtained.

0.5 cm

0.5 cm

13 cm

1 cm

65

5.3.3. Input Data Required to Assess Quality

To assess the quality of a straight sealant line applied by a worker, it is

first necessary to define the specified sealant line which must be applied and

the tolerances that the line must be applied within to be satisfactorily

completed. To achieve this, it is necessary to assess the percentage area of the

specified sealant line over which sealant is applied, a, the percentage length of

the specified line over which sealant is applied, ν, and the angle the applied

sealant line deviates from the specified line, z. This data is used as the basis for

the application of the discrete variable to this manufacturing task as it allows

characterisation of the deviation of an applied straight sealant line from a

specified sealant line in categories with a definable order of severity. Following

this, it is next necessary to define how to obtain this data from a simulated

sealant line applied by a human or robot worker.

Figure 5.3: A simulated sealant line for a robot worker on the simulated workpiece with the A4 card
representing the workspace and the green screen representing the image background that was isolated.

The input data for the precision of sealant application variable is

obtained through machine vision systems using a still image captured of a

sealant pathway completed by a worker using a DSLR camera. This is required

as the methods presented in this chapter require a high-resolution image to be

successful, it is assumed that a manufacturer implementing this system would

use a similarly based industrial high-resolution imaging system. In this research,

the detection of the simulated workpiece and the sealant pathway applied on

it along with its grading, are coded in Python scripts to produce a cost for an

individual iteration of the sealant application subtask. To enable this, an image

of the A4 print out representing the workspace for the task on a green

background is taken as seen in Figure 5.3, this is copied across to the

66

development PC to allow it to be read by the Python scripts. Once the image is

input into the Python scripts, it is first necessary to increase the brightness of

the image to aid detection of objects within the image. Using Python libraries

developed in (Rosebrock, 2014) based on the open source OpenCV library, it is

possible to isolate the workspace from the rest of the original image and

transpose the image to the same plane as the workspace to give a top down

view. This is achieved by using grayscale conversion and canny edge detection

to locate the workspace in the image, followed by image isolation and

perspective transform to isolate the workspace from the image. From this

image the workpiece is then isolated from the simulated workspace using the

same process of brightening the image then applying the isolation and

transposition method provided in (Rosebrock, 2014). From this isolated image

of the workpiece it is possible to isolate the applied sealant pathway allowing

comparison against the specification of a sealant line defined by the

manufacturer. To achieve this, it is first necessary to determine how a

manufacturer specified sealant line should be defined.

Figure 5.4: A diagram detailing the coordinate system and points required to specify a sealant line for
application on the simulated workpiece. This includes four coordinates defining the bounding box of the

𝒚

𝒙

Endpoint 2

Endpoint 1

4 3

2 1

67

sealant line in addition to two endpoints defining the centreline of the specified sealant line for the
example sealant application task in this chapter.

In this research, a two-dimensional coordinate system is used to specify

sealant lines desired by a manufacturer with sealant lines being specified by

the four pairs of coordinates of their vertices (ordered clockwise from the point

closest to the origin) and the endpoints of the centreline (endpoint closest to

origin given first) given in millimetres. In this coordinate system, the top left of

the workpiece is considered as the origin with x coordinates progressing across

the workpiece towards the right and y coordinates progressing down the

workpiece as shown in Figure 5.4. This method is used as it follows the same

practice as the coordinates of pixels in images, allowing ease of integration with

the detection of sealant lines using machine vision. Given the isolated image of

the workpiece, it is possible to determine the number of pixels per millimetre

in each dimension of the image using the size of the image in pixels and the

dimensions of the workpiece in millimetres. This allows the coordinates

defining the manufacturer specified sealant line to be transposed into the pixel-

based coordinate system of the isolated image of the workpiece to allow

comparison between the specified and applied sealant lines.

Figure 5.5: The location of the specified sealant

line isolated from the rest of the workpiece when
26% of the area of the specified sealant line is

applied by a simulated robot worker.

Figure 5.6: A binary image of the isolated

location of the specified sealant line given in
Figure 5.2 where the white pixels give the
detected black sealant line in Figure 5.5.

To compare the applied and specified sealant lines it is first necessary

to determine the percentage area of the specified sealant line over which

sealant was applied, a. To achieve this the transposed coordinates of the

68

vertices of the specified sealant line are used to isolate the region of the

workpiece where sealant should be from the remainder of the image of the

isolated workpiece. This would result in the rectangle defined by points one to

four in Figure 5.4 being isolated and extracted for every sealant application in

this chapter. An example of this is shown in Figure 5.5 for a simulated sealant

application where a robot worker applies 26% of the specified sealant line’s

area. Following this, the isolated image of the specified sealant line location is

colour segmented using the OpenCV Python library to detect pixels of the black

applied sealant line located within this region. This binary image is processed

using image dilation and erosion to smooth the edges of the locations where

the black sealant line was detected to account for any errors in the colour

segmentation due to factors such as lighting. Applying this to the isolated

image given in Figure 5.5 for the example case where a robot worker applies

26% of the specified sealant line’s area results in the binary image given in

Figure 5.6. It is then possible to calculate the percentage area of the specified

sealant line over which sealant is applied, a, using the number of pixels where

the applied sealant line is detected and the number of pixels in the image of

the location of the specified sealant line.

Figure 5.7: An illustration of the dimensions of the workpiece used to generate the values of the number
of pixels per millimetre. This allows the coordinates of the vertices of the bounding box of applied

sealant lines and the endpoints of the centreline to be transposed to the coordinate system of the image
to the real-world coordinate system of the workpiece. The applied sealant line here is a simulated

sealant application by a robot worker where 25% of the length of the sealant line is applied. This Figure
is adapted from Figure 5.16 which will be seen later in the results section.

Known

measurements in

pixels of the image

and of the object in

the real world

69

Figure 5.8: An illustration of the methodology for
determining the length of a specified sealant line

applied when only one endpoint of the applied
sealant line lies within the specified sealant line.
This is achieved by calculating the intersection

point between the centreline of the applied
sealant line and the bounding box of the

specified sealant line. Utilising the line segment
between this intersection point and the endpoint

of the applied sealant line with Pythagoras
theorem allows the length of sealant applied to
be determined. The applied sealant line here is a
simulated sealant application by a robot worker
where the applied sealant line deviates from the

specified sealant line by 10 degrees. This Figure is
adapted from Figure 5.17 which will be seen later

in the results section.

Figure 5.9: An illustration of the methodology for

determining the deviation angle between the
applied and specified sealant line. This is

achieved by determining the angle between the
applied sealant line and the y axis since the

sealant line should be applied parallel to this.
The applied sealant line here is again a

simulated sealant application by a robot worker
where the applied sealant line deviates from the
specified sealant line by 10 degrees. This Figure
is adapted from Figure 5.17 which will be seen

later in the results section.

It is next necessary to determine the percentage length of the specified

line over which sealant was applied, ν, and the angle the applied sealant line

deviated from the specified line, z. To achieve this, it is necessary to now colour

segment the entire isolated image of the workpiece using the OpenCV Python

Intersection

point

Length of

sealant applied

Length of specified

sealant line

Applied

sealant line

deviation

angle

z

Endpoint 1

Endpoint 2

70

library to detect pixels of the black applied sealant line and create a binary

image showing the location of applied sealant on the workpiece. Minimum

bounding boxes are generated around contours of pixels above a defined

threshold size to ensure any image noise is ignored. Using the number of pixels

per millimetre in each dimension of the image of the isolated workpiece

defined earlier in this section, it is possible to transpose the coordinates of the

vertices and endpoints of the centreline of any sealant lines detected into the

real world coordinate system defined for the specified sealant line. Since the

applied sealant line may be broken into several line segments, this process is

completed for each detected segment of a sealant line.

To determine the percentage length of the specified line over which

sealant is applied, ν, it is necessary to use the coordinates of the vertices of the

specified sealant line addition to the coordinates of the endpoints of the

centrelines of the minimum bounding boxes around any detected applied

sealant lines. By generating the linear equations for the four edges of the

specified sealant line using its vertices, it is possible to determine if the end

points of the applied sealant line are located within the area of the specified

sealant line. This approach is applied by modifying the code in (Ruud de Jong,

2017), allowing substitution of the coordinates of the endpoints of the

centreline of an applied sealant line into the linear equations of all the edges

and determining the sign of the resulting answer. If both endpoints are

contained within the specified line, the line length is calculated using

Pythagoras theorem. If only one endpoint lies within the specified sealant line,

the modified code from (Ruud de Jong, 2017) is again used to determine the

intersection point between the centreline of the applied sealant line and the

relevant edge of the specified sealant line, with the Pythagorean Theorem then

being used between the intersection point and the end point as shown in Figure

5.8. Again, since the applied sealant line may be broken into several line

segments, this process is completed for each detected segment of a sealant

line and summing their total length to determine the length of the specified

sealant line applied and thus the percentage of the length applied to determine

ν.

Finally, to determine the angle the applied sealant line deviates from

the specified line, z, the end points of the centreline of the detected applied

sealant line are used to determine the angle of the line from the y axis of the

coordinate system as the specified sealant line is applied vertically down the

workpiece as shown in Figure 5.9. Again, since the applied sealant line may be

broken into several line segments, this process is completed for each detected

segment of a sealant line and the mean angle given as z. Using this data, it is

possible to assign a cost for an individual iteration of the sealant application

subtask.

71

5.3.4. Reacting to Small Variations in Subtask Completion

In the production data being monitored for discrete events, small

variations in completion of the subtask will often be seen even when the task

is completed within tolerances. These small variations can relate either to

natural variation in a worker’s capabilities or could indicate that a discrete

event is about to occur in a manufacturing subtask. In either case, these data

can provide a valuable insight into the capabilities and performance of a worker

and should not be discarded. Small variations in completion of the subtask are

considered as changes in production data that are within the tolerances of the

manufacturing subtask being executed and so should not have a significant

effect on the output cost for the variable. Using this definition, it is necessary

to define a set of tolerances to identify whether a change in production data is

acceptable or whether a discrete event has occurred. These tolerances are

dependent on the specifications of the subtask and must be defined by the

manufacturer. These tolerances should not be used to ensure a subtask has

been completed perfectly but instead be used to identify if a subtask has been

completed adequately to meet production standards.

These acceptable tolerances must be defined in terms of the input data

given in Section 5.3.3 including; the percentage area of the specified sealant

line over which sealant is applied, the percentage length of the specified line

over which sealant is applied and the angle the applied sealant line deviates

from the specified line. This tolerance should define the maximum acceptable

deviations of an applied sealant line from a specified sealant line that would

not cause failure of the subtask. The minimum percentage area and length over

which the sealant line must be applied is set at 95% as sealant application tasks

require high precision, so it is assumed that a high tolerance is required for

completion of the subtask. Due to this, the maximum acceptable angle

between the applied and specified sealant lines is set at 2° but this represents

an absolute value allowing deviation by this angle to the left or right of this

specified sealant line. This tolerance is set with such a small value as even a

minor change in angle can result in the majority of the sealant not being applied

in the specified location for long sealant lines.

 Although these tolerances define the maximum acceptable deviation of

an applied sealant line from that specified by the manufacturer, it is necessary

to define how the output cost of the discrete variable should increase for a

worker between perfect performance and these tolerances. Since the subtask

is still completed successfully in these cases, any deviation from perfect

performance in the three data types should affect the output cost of the

discrete variable equally. This is done since this represents a measure of a

worker’s capabilities via small changes in production data and any changes in

the three types of input data show an equally important deviation from perfect

application of sealant by the worker. Given this principle, it is then necessary

72

to define that the output cost for the discrete variable increases linearly over

the cost interval of [0,0.1] with each data type of the input production data

providing up to a third of the maximum cost available. Here, 0 represents

perfect performance and 0.1 represents the worst performance that is still

within the tolerances of the task. This range of small costs is chosen as it

ensures that a worker should still be assigned a subtask if they can complete it

within the defined tolerances and if performance variables such as the

completion variable have a much lower cost than for other workers. This means

it is possible to define the output cost of the discrete variable for small

continuous changes as

 𝜎 =
0.1

3
(
100−𝑎

100−95
+

100−𝜈

100−95
+
|𝑧|

2
). (5.1)

Beyond the tolerances defining the maximum acceptable deviation between

an applied sealant line and the sealant line specified by the manufacturer, it is

necessary to define all major types of discrete events and rank them in order

of their severity to identify worker capabilities with the discrete variable.

5.3.5. Hierarchy of Severity of Discrete Events

To understand the significance of a discrete event on the manufacturing

subtask it is necessary to characterise discrete events into types and define a

hierarchy to quantify the severity of each type of discrete event’s effect on the

manufacturing subtask. This is important as although a discrete event leads to

failure of the manufacturing subtask some may be recoverable, whereas others

can necessitate the scrapping of parts and require the subtask to be started

over. Within the defined hierarchy of discrete events, each tier should have an

associated range of output costs which discrete events of the type belonging

to that tier can be given. This hierarchy of discrete events allows a detected

discrete event to be characterised into a tier containing discrete events of its

type and, based on the range of available output costs for the tier, define an

output cost for the discrete event based on its severity within the tier of the

hierarchy. Such hierarchies must be defined before production by a

manufacturer and are specific to each subtask.

To define this hierarchy of discrete events, it is also necessary to define

the range of output costs that the hierarchy of discrete events is defined over

as the remaining cost interval of the discrete variable of (0.1,1]. This cost

interval is split into equal sections with each section being assigned to a tier of

the hierarchy of discrete events in ascending order of severity. Due to this

model for the hierarchy of discrete events, it is desirable to limit the number of

types of discrete event based on broad general factors that define the event

into a type of event and quantify its severity in comparison to other events of

that type. If this is not possible it is necessary to ensure costs are given to three

73

or four decimal places to allow clear definition of discrete events by severity

within tiers of the hierarchy of discrete events.

 To characterise discrete events of errors in sealant application and rank

them, it is first necessary to define the types of discrete event and define an

order of severity. Using the production data acting as input to the discrete

variable, as described in Section 5.3.3, it is possible to characterise an error in

application of sealant into one of the three major error types given in ascending

order of significance in Table 5.1. Given that discrete events may cause more

than one of these data types to increase above the tolerances, in these cases

the data which implies the discrete event with the highest severity has

occurred will be used to characterise the discrete event. Using this

methodology, it is necessary to define a cost range and method of defining a

cost for each type of major sealant application error based on the production

data input to the discrete variable.

Table 5.1: The hierarchy of errors for the example sealant application subtask.

Error
Severity

Error Description Data
Identifying
this Error

Cost
Range

for
Errors

1
Sealant

coverage
error

Sealant totally covers length
of line at correct angle but
not enough is applied to fill
application area

a < 95% (0.1,0.4]

2
Sealant

gap error

Sealant line is at correct
angle but there is a gap in
the applied sealant path

ν < 95% (0.4,0.7]

3
Sealant

trajectory
error

Sealant line has deviated
from specified line by
significant angle

|z|> 2° (0.7,1]

Of these three types of error, the sealant coverage error represents the

least significant error. Sealant coverage errors occur when the applied sealant

line is applied along the specified trajectory over the entire specified length

but, the area of the specified sealant line applied is not within acceptable

tolerances. This error is considered the least significant error because the

specified length and trajectory are applied implying that the worker can follow

the sealant path. However, the application of the incorrect area implies that

the worker has reduced capabilities in the techniques required for sealant

application. Since the output cost from the hierarchy of discrete events for

sealant coverage errors is defined over the interval (0.1, 0.4], the output cost

for a sealant coverage error should increase linearly with reduction of the

percentage area of the specified sealant line applied, a. This enables the output

cost for a sealant coverage error to be defined by

74

 𝜎 = 0.1 + 0.3 (
95−𝑎

95
). (5.2)

The error with the next level of severity is the sealant gap error which

occurs when the sealant line is applied along the specified trajectory but does

not cover the entire length of the sealant line specified by the manufacturer.

As the specified trajectory is followed, this again implies that the worker can

follow the sealant path. However, this error is considered the next most

significant as the incorrect length is applied implying that the worker has

greater reduced capabilities in the techniques required for sealant application.

Since the output cost from the hierarchy of discrete events for sealant gap

errors is given in the cost interval (0.4, 0.7], the output cost for a sealant gap

error should again increase linearly with reduction of the percentage length of

the specified sealant applied, ν. This enables the output cost for a sealant gap

error to be defined by

 𝜎 = 0.4 + 0.3 (
95−𝜈

95
). (5.3)

Finally, the sealant trajectory error represents the most significant type

of error and occurs when the sealant line is applied along the wrong trajectory.

This error is considered the most significant type of error since the specified

trajectory is not followed implying that the worker is not capable of following

the specified sealant path and thus has very low capabilities in completing the

application of the sealant. As the output cost from the hierarchy of discrete

events for sealant trajectory errors is given in the cost interval (0.7, 1], the

output cost for a sealant trajectory error should increase linearly with increase

of the absolute angle between the specified and applied sealant lines, |𝑧|. For

this type of error, an upper limit is placed on the value of |𝑧| that defines the

maximum cost as it represents an angle and not a not a percentage. Given the

severity a small increase in the angle between the specified and applied sealant

lines has on the subtask, the cost should increase linearly over the range (0.7,1]

proportionately to |𝑧| increasing over the range (2,45]. This enables the output

cost for a sealant trajectory error to be defined by

𝜎 = {

0.7 + 0.3 (
|𝑧|−2

45−2
) if |𝑧| ≤ 45°

1 if |𝑧| > 45°
. (5.4)

Once a discrete event is characterised and given a cost based on its severity

defined by the hierarchy of discrete events, it is necessary to define the new

output cost of the discrete variable based on the severity and frequency of

occurrence of previous discrete events.

75

5.3.6. Reacting to Sudden Significant Changes in Production Data

Although the hierarchy of discrete events allows the severity of a

discrete event to be assessed and generate a cost, it is also necessary to

intelligently assess factors such as the frequency of occurrences of discrete

events to generate the output cost of the discrete variable. This is important as

a single occurrence of a discrete event in an isolated case would not necessarily

imply that a worker’s capabilities have changed and that a task should be

reassigned. If after the occurrence of a discrete event the worker continues to

complete the manufacturing subtask correctly, this indicates that this was

indeed an isolated incident and the worker should continue to execute the

subtask. If this discrete event instead continues to occur, this suggests that the

worker’s capabilities have changed and that the cost from the discrete variable

should increase, possibly leading to the reallocation of the manufacturing

subtask. This illustrates the need to define “frequency modifier” and “cool

down modifier” functions to attenuate the output cost of discrete variables

based on the frequency of the occurrences of discrete events and their severity.

 Firstly, it is necessary to define a frequency modifier function that

generates the output cost of the discrete cost function variable when a discrete

event occurs based on the number of previous occurrences of discrete events

and their severity over a set number of previous iterations of the sealant

application subtask. This frequency modifier function is formed using an

exponential growth function where the number of occurrences of discrete

events drives the growth and the mean severity of the events defines the

magnitude. This is used as discrete variables should be tolerant of one or two

discrete events over a large number of subtask iterations, but the output cost

should rapidly grow when discrete events repeatedly occur. Using this

operating principle, the frequency modifier function, ς, is defined as

 ς = 𝑐 (𝑒ξι − 1) (5.5)

where c is the mean cost of previous discrete events, ι is the number of

occurrences of discrete events in the past κ number of task iterations and ξ is a

constant to attenuate the growth of the frequency modifier.

Here ι and c are autonomously generated but ξ and κ must be set by the

manufacturer to determine how tolerant the discrete variable should be to

multiple occurrences of discrete events within a set time frame. For the

example sealant application subtask, the past κ = 50 iterations of the

manufacturing subtask are used to determine the output cost. This represents

a significant number of iterations of the sealant task and as such if further

errors do not occur in 50 iterations of the subtask then an error can be

considered an isolated incident. To set the constant ξ, it is necessary to

determine how tolerant the discrete variable should be to the frequency of

76

previous discrete events. In this example case, it is defined that after three

errors have occurred in 50 iterations of the sealant application subtask that the

output cost of the discrete variable should be given by the mean cost, c, of

these error instances given by the hierarchy of discrete events. This is used as

one or two errors over 50 iterations could represent isolated incidents but once

three errors occur, this implies that worker capabilities appear to be declining.

Given this, it is possible to use Eq. (5.5) to define the constant defining the

growth of the frequency modifier function as 𝜉 =
ln(2)

3
.

 Secondly, it is necessary to define a cool down modifier function that

generates the output cost of the discrete variable following the last occurrence

of a discrete event by reducing it as the worker continues to complete the

subtask successfully. It is necessary to define this function based on the number

of successful iterations of the manufacturing subtask completed since the last

discrete event and apply it to generate the output cost for the discrete variable.

This cool down modifier function is formed using an exponential decay function

where the number of successful task iterations completed since the last

discrete event drives the decay. This is used as the discrete variable cost should

remain high for the first few successfully completed iterations after a discrete

event but once the worker has proven the event was an isolated case, the

output cost should decrease rapidly towards nominal levels. This allows the

cool down modifier function, Φ, to be defined as

 𝛷 = υ𝑒−οε (5.6)

where υ is the output cost of the discrete variable after the last occurrence of

a discrete event, ε is the number of successfully completed task iterations since

the last discrete event and ο is a constant to attenuate the decay of the cool

down modifier. Here υ and ε are generated autonomously but ο must be set by

the manufacturer to determine how many iterations of the subtask must be

successfully completed by the worker after a discrete event to show that their

capability to complete the subtask has not changed.

In this example sealant application subtask, it is defined that if a worker

has a current discrete variable output cost of one that completing 20 iterations

of the subtask successfully should reduce the discrete variable cost back down

to 0.1. This was chosen as it is assumed that this would be sufficient evidence

to show that a worker’s capabilities have returned to nominal levels. Given this,

it is possible to define the constant which attenuates the decay of the cool

down modifier as 𝜊 =
−ln(0.1)

20
. It is intended that the cool down modifier

function should generate the output cost for the discrete variable after a

discrete event has occurred until either another discrete event occurs, or the

output cost has returned to 0.1. Once the output cost has returned to 0.1 the

77

discrete variable output cost will once again be defined by reacting to small

continuous changes in production data.

5.3.7. Final Formulation of the Discrete Variable

Following the definition of the three core elements that define the

operating principle of the discrete variable in Section 5.3.4 to 5.3.6, it is

necessary to combine them into a single overall algorithm that defines the

discrete variable for the sealant application subtask. This is given in Algorithm

5.1 and provides the output cost of the discrete precision of sealant application

variable, f3,i,j, in task iteration i of subtask j given the input data for the variable.

As shown in Algorithm 5.1, the discrete variable must first determine if

a discrete event has occurred in the current iteration of the subtask by

analysing input production data and determining if the subtask has been

completed within defined tolerances. If a discrete event has occurred the

variable must determine a cost for the event using the hierarchy of discrete

events, then use the frequency modifier function to determine the output cost

for the discrete variable. As stated in Sections 5.3.5 and 5.3.6, this allows the

discrete variable to react to discrete events in subtask execution assessing their

severity individually and then defining an appropriate cost for the worker based

on the frequency and severity of any previous discrete events within 50

previous task iterations. If a discrete event has not occurred but a discrete

event has occurred within those past 50 iterations of the subtask, the cool

down function must be used to generate an appropriate cost for the worker.

This cool down function must also be used to determine the output cost for the

worker on subsequent iterations of the assembly task, providing another

discrete event does not occur, until the output cost from the cool down

function drops below 0.1. Once the cool down function has reduced the cost of

the discrete variable below 0.1, the output cost must be calculated based on

the last iteration of the task completed. As stated in Section 5.3.6, this allows

the discrete variable to fairly reduce the output cost for a worker to nominal

levels if they continue to perform the manufacturing subtask successfully after

a discrete event has occurred. In the cases where no discrete events have

occurred within the last 50 iterations of the subtask the output cost for the

discrete variable must also be generated in this way.

78

Algorithm 5.1: Precision of Sealant Application Discrete Variable

Input: percentage area of the specified sealant line over which sealant was

applied, a, percentage length of the specified line over which sealant was

applied, ν, the angle the applied sealant line deviated from the specified line,

z, iterations in which discrete events have occurred within the last κ number

of task iterations and corresponding output costs from hierarchy of discrete

events.

if a < 95 and ν ≥ 95 and |𝑧| ≤ 2

 Calculate σ for error using Eq. (5.2)

else if a < 95 and ν < 95 and |𝑧| ≤ 2

 Calculate σ for error using Eq. (5.3)

else if a < 95 and ν < 95 and |𝑧| > 2

 Calculate σ for error using Eq. (5.4)

else

 Calculate σ for error using Eq. (5.1)

end

if σ > 0.1

Determine output cost of discrete precision of sealant application

variable, f3,i,j, in task iteration i of subtask j by applying the frequency

modifier function given by Eq. (5.5)

else if σ < 0.1 and f3,i-1,j > 0.1

 Generate output cost of discrete precision of sealant application

 variable, f3,i,j, using cool down modifier function given by

 Eq. (5.6)

 if output cost of discrete variable is now below 0.1

 Generate output cost of discrete precision of sealant

 application variable, f3,i,j,using Eq. (5.1)

 end

else

 Generate output cost of discrete precision of sealant application

 variable, f3,i,j, using Eq. (5.1)

end

Output: Generated output cost of discrete precision of sealant application

 variable, f3,i,j

79

5.4. Precision of Sealant Application Variable Testing and

Results

5.4.1. Experimental Setup

To test the proposed discrete variable for precision of sealant

application, the output of the discrete variable is determined for several

simulated scenarios where discrete errors in the sealant application subtask

occur across a work shift with different frequencies and severity. To achieve

this, it is first necessary to simulate discrete errors of each category in the

hierarchy proposed in Section in 5.3.5 for a human and robot worker and to

grade them using the hierarchy of discrete events for sealant application. In

addition to this it is also necessary to simulate an example case where the

human and robot workers have completed the task within the defined

tolerances. For the robot worker, the application of sealant was represented

by lines being printed with the workpiece on a sheet of A4 card and for the

human worker these lines were hand drawn as described in Section 5.3.3.

For the human and robot workers three simulated errors are generated

for each of the three levels of error given in the hierarchy of discrete events in

Section 5.3.5. First, situations where a sealant coverage error is the most

significant error are tested by applying the sealant line over the specified length

and trajectory at the specified location but with the incorrect area. Three errors

are simulated with 76%, 50% and 26% of the area of the specified line being

applied by reducing the width of the line to 3.8 mm, 2.5 mm and 1.3 mm,

respectively. Second, situations where a sealant gap error is the most

significant error are tested by applying the sealant line with the specified

trajectory at the specified location but with the incorrect length. Three errors

are again simulated with 75%, 50% and 25% of the length of the specified line

being applied by applying 9.75 cm, 6.5 cm and 3.25 cm of the sealant line,

respectively. Finally, situations where a sealant trajectory error is the most

significant error are tested by applying the sealant line at the specified location

but on the wrong trajectory. Three errors were again simulated with the

applied sealant line veering to the right of its specified location by 10˚, 15˚ and

20˚. As stated in Section 5.3.2, these errors can be accurately created for the

robot worker by simulating the sealant application in the Microsoft Publisher

drawing package. However, for a human worker these are hand drawn so are

not replicated exactly, which is more in-line with what you would expect in

practice. To generate a cost for each of these individual sealant applications,

the input data (a, ν and z) are first generated in Python scripts from an image

of the sealant application as described in Section 5.3.3. Based on these input

data, a cost is also generated within Python scripts using either Eq. (5.1), (5.2),

(5.3) or (5.4) based on the type of sealant error as described in Algorithm 5.1.

80

The costs generated for each of the simulated sealant applications are then

output and saved in a text file.

Once these sealant application errors have been analysed and given a

cost, it is necessary to simulate the discrete variable over several work shifts

with different frequencies and severities of errors occurring to demonstrate

the response of the discrete error variable. To simulate this, three groups of

scenarios of error occurrences are considered that represent situations that

could occur for a human worker over 100 iterations of the sealant application

task being executed. In this research, these scenarios of error occurrences are

simulated for a human worker only with the robot worker completing the

sealant application subtask within the defined tolerances throughout the 100

task iterations. This is done as it is assumed that such errors for a robot worker

would be unlikely to occur due to their accuracy, and that the occurrence of

any such errors would be symptomatic of hardware or software failure which

may result in the removal of the robot from production. In each of these

simulated scenarios, the errors simulated in the experiments detailed at the

start of this section are used with the costs generated for individual errors given

in Section 5.4.2. These costs are imported into the MATLAB software package

from the text file output by the Python scripts allowing the simulation of the

discrete variable and cost functions over a work shift in these scenarios.

First, a group of scenarios are simulated where a human worker makes

errors that should not be considered as severe, given by infrequent

occurrences of errors which could be considered as isolated instances and do

not affect a worker’s general capabilities. In these scenarios, two errors in

sealant application occur for the human worker in task iterations 15 and 80 of

the 100 simulated iterations of the subtask. Three scenarios are considered, in

the first scenario the errors in task iterations 15 and 80 will be the 76% area

applied and 50% area applied errors, respectively, for the human worker. In the

second scenario the errors are the 75% length applied and 50% length applied

errors and in the last scenario the errors will be the 20° trajectory deviation and

15° trajectory deviation errors, respectively, for the human worker.

Second, a group of scenarios are considered where the human worker

makes frequent errors of the same type when completing the sealant

application subtask. These scenarios could occur when a human worker is

completing the sealant application subtask rapidly but at the expense of quality

of execution of the subtask. Here, frequent occurrences of low severity errors

should be considered as mildly severe, however, the frequent occurrence of

errors of a higher severity should be considered more significant. In these

scenarios, errors in sealant application occur for the human worker every 5 task

iterations between iterations 15 and 40 of the 100 simulated iterations of the

subtask. Three scenarios are again considered, in the first scenario the errors

consisted of 76% area errors in task iterations 15 and 20, 50% area errors in

81

task iterations 25 and 30 and 26% area errors in task iterations 35 and 40. In

the second scenario the errors consisted of 75% length errors in task iterations

15 and 20, 50% length errors in task iterations 25 and 30 and 25% length errors

in task iterations 35 and 40. Finally, in the last scenario the errors consisted of

10° trajectory deviation errors in task iterations 15 and 20, 15° trajectory

deviation errors in task iterations 25 and 30 and 20° trajectory deviation errors

in task iterations 35 and 40.

Third, a single scenario is considered where simulated errors made by a

human worker should be considered highly severe, given by the occurrence of

errors that increase in frequency and severity over a short period of time. For

a human worker, such a scenario could occur when they are experiencing

difficulty in completing a subtask due to difficulty of the subtask or possible

external factors indicating that their capability in performing the task has

greatly reduced. In this scenario, errors in sealant application occur for the

human worker every 5 task iterations between iterations 15 and 30 of the 100

simulated iterations of the subtask and consisted of the most severe errors in

each tier of the hierarchy of errors. Here, the errors consisted of the 26% area

error in task iteration 15, the 25% length error in task iteration 20 and 20°

trajectory deviation errors in task iterations 25 and 30.

In all of these groups of scenarios it is necessary to simulate the cost for

individual iterations of the sealant application subtask when completed within

tolerances for use by the discrete variable, which would be generated using Eq.

(5.1) with data from an individual subtask iteration in a real world application

of the system. In this research, it is assumed that the human worker has a mean

cost of 0.05 in this situation, halfway between perfect performance and the

maximum defined tolerance for the sealant application subtask. Given this,

their cost when the sealant application subtask is completed within tolerances

is simulated via randomly generated variables from an N(0.05,0.012)

distribution. For the robot worker, it is assumed that costs when the sealant

application subtask is completed within tolerances are also normally

distributed via the N(0.02, 0.0052) distribution as their higher accuracy would

mean they can apply the sealant pathway closer to perfect application and with

less variance in the quality of application. Both of these Normal distributions

are truncated between 0 and 0.1 to ensure costs are within the range for

workers performing nominally.

In addition to the discrete variable for precision of sealant application it

is also necessary to simulate a complete cost function for this subtask to

determine the effect of errors on the output cost for such a subtask and when

errors would cause a switch in the optimal worker to complete the sealant

application subtask. To complete this cost function, the completion variable

and fatigue variable, given in Chapter 4, are again used. However, to apply

these cost function variables, the parameters used to calculate them must first

82

be defined. Here, the fatigue variable is given by Eq. (4.9) where the maximum

acceptable percentage, ej, increase or decrease in completion times from the

expected completion time 𝐸𝑖,𝑗 is again set at 20%. A small modification is made

to the tolerance of the variable to natural completion time variance by defining

this as 5% of the expected completion times, allowing the tolerance to be

defined as ℎ𝑗 = 0.05𝐸𝑖,𝑗. For the completion variable given by Eq. (4.10), the

desired work element time for the task is set at 10.8 seconds which is 90% of

the expected completion time assumed for the human worker for this subtask.

Finally, to generate the complete dynamic cost function for the

simulated sealant application subtask it is necessary to provide weightings for

the dynamic cost functions in addition to the input data for the completion and

fatigue variables. In this subtask, sealant application is considered a primitive

task itself thus all cost function variables are given an equal weighting for the

human and robot workers using the schema in Section 3.6. Here, since all of

the variables are relevant to the human worker the discrete precision of sealant

application variable along with the fatigue and completion time variables are

given a weighting of 1/3. For the robot worker, the completion time and

discrete precision of sealant application variables are given an equal weighting

of 1/2 since the fatigue variable is not applicable to the robot worker. To

generate the completion times for the simulated human worker for the

completion and fatigue variables, Digiesi’s model (Digiesi et al., 2009) given in

Eq. (4.1) is again used. To calculate this, it is assumed that the human worker

has an initial completion time of 12 seconds and can complete 225 task

iterations over an hour. To simulate the natural variation in human completion

times, 5% of the initial human completion time is multiplied by a random

variable generated from the N(0,0.125) distribution and added to the

completion time generated from the model. In this case it is assumed due to

the high accuracy of a robot worker that the robot worker can complete the

task with a constant completion time of 18 seconds due to the repetitive nature

of the task but is slower than the human worker. As with the example subtasks

in Chapter 4, the Fatigue and Completion variables utilise a moving average of

the last 5 completion times so costs are given from task iteration 5 onwards

Given the complete definition of the simulated sealant application subtask and

the input data for the cost functions for the human and robot workers it is

possible to observe how the discrete precision of sealant application variable

would grade the individual discrete sealant errors described in this section.

5.4.2. Experimental Results – Sealant Grading

Utilising the experiment methodology presented in Section 5.4.1, it is

first necessary to observe how the discrete variable grades individual sealant

applications using Algorithm 5.1. In the case of the simulated robot worker

completing the task within tolerances, Figure 5.10 shows the isolated

workpiece with the perceived locations of the specified sealant line,

83

represented by the red box and the applied sealant line represented by the

green box. In this case, a cost of 0.0297 is generated based on the applied

sealant line being detected as covering 95.6% of the area and 99.9% of the

length of the specified sealant line with no deviation angle between the applied

sealant line and the specified sealant line. In this simulated case, the sealant

line should have been applied perfectly but an error is seen due to the machine

vision methods highlighted in Section 5.3.3. This error occurred as the

workpiece is not isolated perfectly resulting in it being offset slightly due to

some of the white area of the simulated workspace being included in the

isolated image. Although this error is small, the effect on the percentage area

of the specified sealant line applied is significant, being reduced to 95.6%

instead of 100% since it is perceived that part of the area of the specified

sealant line is not applied over the entire length of the specified sealant line as

seen in Figure 5.10. Despite this error, the machine vision system was used as

the gathering of data on the applied sealant lines is not the focus of the

research in this chapter and despite this error, the applied sealant line is graded

as within tolerances and given a low cost of 0.0297 due to the other measured

variables being close to perfect. If no errors occur for the robot worker this cost

would also be the output cost for the discrete precision of sealant application

variable and regardless of weighting would have minimal difference on the

output cost of the subtask for the robot worker.

Figure 5.10: Isolated simulated workpiece for the robot worker completing the sealant line as specified,
with perceived and specified sealant lines highlighted.

Next, it is necessary to observe how the discrete variable grades

individual sealant errors for the robot worker, with Table 5.2 showing the costs

generated for the robot worker for each error tested in addition to the data a,

ν and z that defines these costs. Observing the least severe type of error given

by sealant coverage errors, Figures 5.11, 5.12 and 5.13 show the isolated

workpiece for the errors where the robot worker applies 76%, 50% and 26% of

84

the area of the specified sealant line, respectively. It is shown that for 76% to

50% of sealant area coverage that the cost of the discrete error still remains

quite low in the first quartile of the defined cost range of [0,1] for individual

sealant applications. However, the cost increases beyond this into the second

quartile for the most serious error of this type. These costs are appropriate as

the data collected implies that the worker is still capable of completing the

sealant application subtask but is experiencing minor difficulty achieving the

accuracy required by the subtask.

Table 5.2: Table of costs for simulated coverage errors for a robot worker and the data that defines the
cost of these discrete events.

Error Cost for
Error
Event

Percentage of
Specified

Sealant Line
Area Applied,

a

Percentage of
Specified

Sealant Line
Length Applied,

ν

Difference
Angle

Between
Specified and

Applied
Sealant Lines,

z

76% Area
Applied

0.1573 76.9% 99.8% 0.162°

50% Area
Applied

0.2452 49% 100% 0.026°

26% Area
Applied

0.3163 26.5% 99.6% 0.192°

75%
Length
Applied

0.4632 69.2% 75% 0.071°

50%
Length
Applied

0.5408 48.4% 50.4% 0°

25%
Length
Applied

0.622 22.6% 24.7% 0°

10°
Trajectory
Deviation

0.7697 18.7% 20.4% -10°

15°
Trajectory
Deviation

0.8035 6.21% 6.18% -14.8°

20°
Trajectory
Deviation

0.84 4.85% 4.58% -20.1°

85

Figure 5.11: Isolated simulated
workpiece for the robot worker

completing the sealant line
with 76% of the specified area

applied, perceived and
specified sealant lines

highlighted.

Figure 5.12: Isolated simulated
workpiece for the robot worker

completing the sealant line
with 50% of the specified area

applied, perceived and specified
sealant lines highlighted.

Figure 5.13: Isolated simulated
workpiece for the robot worker

completing the sealant line
with 26% of the specified area

applied, perceived and specified
sealant lines highlighted.

Observing the next level of severity of error given by sealant gap errors,

Figures 5.14, 5.15 and 5.16 show the isolated workpiece for the errors where

the robot worker applies 75%, 50% and 25% of the length of the specified

sealant line, respectively. Due to the severity of these errors, Table 5.2 shows

the cost for each sealant application is significant, being in the second and third

quartile of the defined cost range of [0,1]. These costs are again appropriate as

the data collected for the sealant application implies that the worker is still

capable of following the sealant trajectory but is showing more severe difficulty

in the accuracy required by the sealant application subtask.

86

Figure 5.14: Isolated simulated
workpiece for the robot worker

completing the sealant line
with 75% of the specified

length applied, perceived and
specified sealant lines

highlighted.

Figure 5.15: Isolated simulated
workpiece for the robot worker

completing the sealant line
with 50% of the specified

length applied, perceived and
specified sealant lines

highlighted.

Figure 5.16: Isolated simulated
workpiece for the robot worker

completing the sealant line
with 25% of the specified length
applied, perceived and specified

sealant lines highlighted.

Observing the highest level of severity of error given by sealant

trajectory errors, Figures 5.17, 5.18 and 5.19 show the isolated workpiece for

the errors where the robot worker applies the sealant line on a trajectory that

deviated by 10°, 15° and 20° from the specified sealant line, respectively. Table

5.2 shows the largest costs for individual sealant applications can be seen here

and are in the fourth quartile of the available cost range of [0,1]. These costs

are again appropriate as the data collected for the sealant application implies

that the worker has significantly reduced capabilities of following the sealant

trajectory that has caused total failure of the sealant application subtask. This

is shown in Table 5.2 with the most severe error of a 20° trajectory deviation

for the specified sealant line where approximately only 5% of the length and

area of the sealant line is applied.

87

Figure 5.17: Isolated simulated
workpiece for the robot worker

completing the sealant line
with the trajectory deviating by

10°, perceived and specified
sealant lines highlighted.

Figure 5.18: Isolated simulated
workpiece for the robot worker

completing the sealant line
with the trajectory deviating by

15°, perceived and specified
sealant lines highlighted.

Figure 5.19: Isolated simulated
workpiece for the robot worker

completing the sealant line
with the trajectory deviating by

20°, perceived and specified
sealant lines highlighted.

It is next necessary to observe how the discrete variable given in

Algorithm 5.1 grades comparable individual sealant applications for the

simulated human worker for comparable sealant errors to those simulated for

the robot worker. For the simulation of a human worker completing the task

within tolerances, Figure 5.20 shows the isolated workpiece with the perceived

locations of the specified sealant line, represented by the red box and the

applied sealant line represented by the green box. Here, a cost of 0.0245 is

generated based on the applied sealant line perceived to be covering 97.9% of

the area and 99.2% of the length of the specified sealant line with it deviating

from the specified sealant line by 0.302°. Here, a similar cost is given to the

robot worker when the sealant is applied within tolerances. However, for the

human worker this cost is due to small inaccuracies in the area and length of

the applied sealant line, as shown in Figure 5.20, whereas for the robot worker

this is due to machine vision errors.

88

Figure 5.20: Isolated simulated workpiece for the human worker completing the sealant line as specified,
with perceived and specified sealant lines highlighted.

Following this, it is necessary to observe how the discrete variable

grades individual sealant errors for the simulated human worker, with Table

5.3 showing the costs generated for the robot worker for each error tested in

addition to the data a, ν and z that defines these costs. First observing the least

severe type of error given by sealant coverage errors, similar errors are

replicated to those for the robot worker where 76%, 50% and 26% of the area

of the specified sealant line was applied. For the human worker, the sealant

lines are applied with approximately 68%, 46% and 28% of the specified area

covered with Figures 5.21, 5.22 and 5.23, respectively, showing the isolated

workpiece. Table 5.3 shows similar costs are given to those of the robot worker

for these errors, despite the human worker applying the sealant line with

difference angles between the applied and specified sealant lines that are

slightly larger but still within acceptable tolerances.

89

Table 5.3: Table of costs for simulated coverage errors for a human worker and the data that defines the
cost of these discrete events.

Error Cost for
Error
Event

Percentage of
Specified

Sealant Line
Area Applied,

a

Percentage of
Specified

Sealant Line
Length Applied,

ν

Difference
Angle

Between
Specified and

Applied
Sealant Lines,

z

~68%
Area
Applied

0.1863 67.7% 100% 0.324°

~46%
Area
Applied

0.2537 46.3% 100% 0.518°

~28%
Area
Applied

0.3116 28% 100% 0.517°

~78%
Length
Applied

0.4549 76.1% 77.6% 1.31°

~53%
Length
Applied

0.5315 48.1% 53.4% 1.12°

~26%
Length
Applied

0.6178 22.6% 26% 0.212°

10°
Trajectory
Deviation

0.7752 17.9% 20.4% -10°

15°
Trajectory
Deviation

0.8033 11% 14.1% -14.8°

20°
Trajectory
Deviation

0.8381 7.54% 8.23% -19.8°

90

Figure 5.21: Isolated simulated

workpiece for the human
worker completing the sealant
line with approximately 76% of

the specified area, perceived
and specified sealant lines

highlighted.

Figure 5.22: Isolated simulated

workpiece for the human
worker completing the sealant
line with approximately 50% of

the specified area, perceived
and specified sealant lines

highlighted.

Figure 5.23: Isolated simulated

workpiece for the human
worker completing the sealant
line with approximately 26% of

the specified area, perceived
and specified sealant lines

highlighted.

Observing the next level of severity of error given by sealant gap errors,

it is again necessary to replicate similar errors to those of the robot worker

where 75%, 50% and 25% of the length of the specified sealant line was applied.

For the human worker, the sealant lines are applied with approximately 78%,

53% and 26% of the specified length covered with Figures 5.24, 5.25 and 5.26,

respectively, showing the isolated workpiece. Table 5.3 again shows that

similar costs are given for these errors to those of the robot worker, despite

the human worker applying the sealant line with difference angles between the

applied and specified sealant lines that are much larger but still within

acceptable tolerances.

91

Figure 5.24: Isolated simulated

workpiece for the human
worker completing the sealant
line with approximately 75% of
the specified length, perceived

and specified sealant lines
highlighted.

Figure 5.25: Isolated simulated

workpiece for the human
worker completing the sealant
line with approximately 50% of
the specified length, perceived

and specified sealant lines
highlighted.

Figure 5.26: Isolated simulated

workpiece for the human
worker completing the sealant
line with approximately 25% of
the specified length, perceived

and specified sealant lines
highlighted.

Finally, it is necessary to observe the highest level of severity of error

given by sealant trajectory errors. Here the errors with the robot worker where

there are trajectory deviations of 10°, 15° and 20° of the applied the sealant

line from the specified sealant were very closely replicated with Figures 5.27,

5.28 and 5.29 show the isolated workpiece, respectively. In these cases where

the sealant application errors for the robot worker and human worker are

identical for a deviation angle rounded to 3 significant figures, Table 5.3 shows

that the cost difference between the human and robot worker for the sealant

application instance differs by less than 0.006. This indicated that the discrete

variable gives a fair judgement on the capabilities of the human and robot

worker for these simulated errors and does not show bias towards a particular

worker.

92

Figure 5.27: Isolated simulated

workpiece for the human
worker completing the sealant

line with the trajectory
deviating by approximately 10°,
perceived and specified sealant

lines highlighted.

Figure 5.28: Isolated simulated

workpiece for the human
worker completing the sealant

line with the trajectory
deviating by approximately 15°,
perceived and specified sealant

lines highlighted.

Figure 5.29: Isolated simulated

workpiece for the human
worker completing the sealant

line with the trajectory
deviating by approximately 20°,
perceived and specified sealant

lines highlighted.

5.4.3. Experimental Results – Discrete Variable Simulation Across

a Work Shift

Given the costs of sealant application errors discussed in Section 5.4.2,

it is necessary to observe how such errors would affect the output cost of the

discrete precision of sealant application variable in addition to the total cost for

the simulated workers to complete the sealant application subtask in the

scenarios described in Section 5.4.1. It is first important to analyse the

completion variable for this subtask as seen in Figure 5.30 to determine any

effect it would have on the total cost for the human or robot worker to

complete the subtask. This shows that the completion variable for the human

worker increases gently from a cost of 0.1988 to a cost of 0.5122 across the

100 iterations simulated which is much lower than the constant cost of 0.6667

for the robot worker. Given that the weighting for this variable is 1/2 for the

robot worker and 1/3 for the human worker which should have a fatigue

variable cost of zero, this gives a maximum cost for the subtask of 0.1707 for

the human worker and 0.3334 for the robot worker if they complete the sealant

application perfectly. This implies that if the cost for the human worker to

complete the sealant application subtask rises above that of the robot worker

that this is due to the discrete variable and not the other variables. This

assertion applies to each of the scenarios discussed in this section as the same

completion time data is used to generate the output cost of the completion

variable for the human and robot worker in every scenario tested.

93

Figure 5.30: A plot of the completion variable cost for workers across the simulated 100 iterations of the
sealant application subtask.

For the scenarios described in Section 5.4.1, it is first necessary to

observe the group of scenarios where sealant application errors are isolated

incidents in task iterations 15 and 80 of the 100 simulated iterations of the

subtask. Within this group of scenarios, it is first necessary to analyse the first

scenario where these errors are the 76% area applied and 50% area applied

errors, respectively, for the human worker. Here, Figure 5.31 shows the output

of the discrete precision of sealant application variable and Figure 5.32 shows

the output total cost of the subtask given the cost functions described in

Section 5.4.1. Figure 5.31 shows that these isolated incidents of sealant

application errors did not noticeably affect the cost of the discrete precision of

sealant application variable. This demonstrates the tolerance of the discrete

precision of sealant application variable to isolated errors, as the output cost

of the variable is approximately 26% of the cost of the individual sealant errors.

Figure 5.32 showed that this tolerance resulted in the isolated sealant

application errors having no noticeable effect on the output total cost for the

human worker to complete the subtask. This meant that the human worker

had the lowest cost to complete the sealant application subtask across the task

iterations despite having a slightly higher discrete precision of sealant

application variable cost, since their completion variable cost is much lower

than that of the robot worker.

94

Figure 5.31: Plot of the discrete precision of sealant application variable cost for the human and robot
worker in the sealant application subtask with the infrequent occurrence of sealant coverage errors for

the human worker.

Figure 5.32: Plot of the total cost for the human and robot worker in the sealant application subtask with
the infrequent occurrence of sealant coverage errors for the human worker.

Next, for this group of scenarios it is necessary to analyse the second

scenario, where the isolated errors at task iterations 15 and 80 are the 75%

95

length applied and 50% length applied errors, respectively, for the human

worker. Here, Figure 5.33 shows the output of the discrete precision of sealant

application variable and Figure 5.34 shows the total cost to complete the

subtask given the cost functions described in Section 5.4.1. In comparison to

the previous scenario, Figure 5.33 shows that the sealant gap errors in this case

cause a small increase in the output cost of the discrete precision of sealant

application variable to 0.1182 and 0.1381 in task iterations 15 and 80,

respectively. However, these are comparatively much lower than the costs for

the 75% length applied and 50% length applied errors of 0.4549 and 0.5315,

respectively. Once these errors occur in iterations 15 and 80, it takes 2 and 3

iterations, respectively, of the human worker performing the sealant task

within tolerances for their costs to return to nominal levels. Figure 5.34 shows

that these errors also cause the total cost for the human worker to complete

the subtask to increase by 0.065 and 0.1052 in task iterations 15 and 80,

respectively, from the cost in the previous iteration. This relatively small

increase in total cost meant the human worker still has a much lower cost than

the robot worker over the task iterations simulated despite the occurrence of

more severe sealant application errors.

Figure 5.33: Plot of the discrete precision of sealant application variable cost for the human and robot
worker in the sealant application subtask with the infrequent occurrence of sealant gap errors for the

human worker.

96

Figure 5.34: Plot of total cost for the human and robot worker in the sealant application subtask with the
infrequent occurrence of sealant gap errors for the human worker.

Finally, for this group of scenarios it is necessary to analyse the third

scenario where the errors at task iterations 15 and 80 are the 10˚ trajectory

deviation and 15˚ trajectory deviation errors, respectively, for the human

worker. Here, Figure 5.35 shows the output of the discrete precision of sealant

application variable and Figure 5.36 shows the total cost for the workers to

complete the subtask given the cost functions described in Section 5.4.1. Figure

5.35 shows that these errors have a much greater effect on the output cost of

the discrete precision of sealant application variable, causing the cost for the

variable to rise to 0.2178 and 0.2088 in task iterations 15 and 80, respectively.

However, these costs are still much lower than the cost for the 10˚ trajectory

deviation and 15˚ trajectory deviation errors of 0.7752 and 0.8033,

respectively. After these error occurrences at iterations 15 and 80, it takes 7

iterations of the human worker performing the sealant task within tolerances

for their costs to return to nominal levels. Figure 5.36 shows that this has a

minor effect on the total cost for the human worker to complete the sealant

application subtask, raising their total cost in task iterations 15 and 80 by

0.1646 and 0.1759, respectively, from the previous iteration. Although the

trajectory deviation errors represent the most severe errors that a worker

could cause, Figure 5.36 shows that this is not enough to increase the cost for

the human worker to complete the subtask beyond that of the robot worker.

97

Figure 5.35: Plot of the discrete precision of sealant application variable cost for the human and robot
worker in the sealant application subtask with the infrequent occurrence of sealant trajectory errors for

the human worker.

Figure 5.36: Plot of the total cost for the human and robot worker in the sealant application subtask with
the infrequent occurrence of sealant trajectory errors for the human worker.

Next, it is necessary to analyse the group of scenarios where the same

sealant application errors frequently occur, in these cases this is every 5 task

98

iterations between iterations 15 and 40 of the 100 simulated iterations of the

subtask. For the first scenario consisting of frequent sealant coverage errors,

Figure 5.37 shows the output of the discrete precision of sealant application

variable and Figure 5.38 shows the output total cost of the complete cost

function for the subtask. Figure 5.37 shows that the cost of the discrete

precision of sealant application variable is not significantly affected for the first

two error occurrences of 76% sealant area errors in task iterations 15 and 20.

Further occurrences of sealant coverage errors quickly increases the cost of the

variable with a peak cost of 0.7517 reached with the 26% sealant area error in

task iteration 40. This peak output cost is approximately 2.4 times the cost of

the 26% sealant area sealant area error and demonstrates the variable’s severe

reaction to repeated frequent errors in the sealant application subtask. After

this final error, it takes 18 successfully completed iterations of the sealant

application subtask for the human worker’s cost to return to nominal levels.

Figure 5.38 shows that the increase in the discrete precision of sealant

application variable cost during these frequent sealant coverage errors has a

significant effect on the total cost for the human worker to complete the

sealant application subtask. For the occurrence of the 26% area error in task

iteration 40, which represents the sixth error within 50 iterations of the

subtask, it is shown that the cost for the human worker to complete the subtask

at 0.3967 increases beyond that of the robot worker at 0.3490.

Figure 5.37: Plot of the discrete precision of sealant application variable cost for the human and robot
worker in the sealant application subtask with the frequent occurrence of sealant coverage errors for the

human worker.

99

Figure 5.38: Plot of the total cost for the human and robot worker in the sealant application subtask with
the frequent occurrence of sealant coverage errors for the human worker.

For the second scenario consisting of frequent sealant gap errors, Figure

5.39 shows the output of the discrete precision of sealant application variable

and Figure 5.40 shows the output total cost of the complete cost function for

the sealant application subtask. Figure 5.39 shows that the frequent

occurrence of sealant gap errors causes a much quicker increase in cost for the

discrete precision of sealant application variable in this scenario. The variable

reaches a maximum possible cost of 1 with the 25% sealant length error in task

iteration 35, a further occurrence of this error in iteration 40 again caused the

variable to reach a cost of 1. After this final error, it takes 20 successfully

completed iterations of the subtask for the human worker’s cost to return to

nominal levels. The total cost for the human worker to complete the subtask is

again significantly affected by the increase in cost of the discrete precision of

sealant application variable during this scenario as shown in Figure 5.40. Here

it is shown that with the occurrence of the 50% length error in task iteration

30, which is only the fourth error within 50 iterations of the subtask, that the

cost for the human worker to complete the subtask at 0.3842 increases beyond

that of the robot worker at 0.3427. The total cost for the human worker to

complete the subtask reaches a peak of 0.4588 with the occurrence of the 25%

length error in task iteration 40, compared to a cost of 0.3490 for the robot

worker.

100

Figure 5.39: Plot of the discrete precision of sealant application variable cost for the human and robot
worker in the sealant application subtask with the frequent occurrence of sealant gap errors for the

human worker.

Figure 5.40: Plot of the total cost for the human and robot worker in the sealant application subtask with
the frequent occurrence of sealant gap errors for the human worker.

For the third scenario consisting of frequent sealant trajectory errors,

Figure 5.41 shows the output cost of the discrete precision of sealant

101

application variable and Figure 5.42 shows the output total cost of the

complete cost function for the subtask. Figure 5.41 shows that the frequent

occurrence of sealant trajectory errors causes the cost of the discrete precision

of sealant application variable to increase far more rapidly than the other

scenarios in this group. Here, the variable reaches its maximum cost of 1 in task

iteration 30 with the 15° deviation error, occurrences of the 20° deviation error

following this in task iterations 35 and 40 cause the variable to increase again

to a cost of 1. After this final error, it again takes 20 successfully completed

iterations of the subtask for the human worker’s cost to return to nominal

levels. Figure 5.42 shows that the increase in cost of the discrete precision of

sealant application variable during these occurrences of frequent sealant

trajectory errors has a significant effect on the total cost for the human worker

to complete the sealant application subtask. Here it is shown that with the

occurrence of the 15° deviation error in task iteration 25, which is only the third

error within 50 iterations of the subtask, that the cost for the human worker to

complete the subtask at 0.3891 increases beyond that of the robot worker at

0.3427. The total cost for the human worker to complete the subtask again

reaches a peak of 0.4588 with the occurrence of the 20˚ trajectory error in task

iteration 40, compared to a cost of 0.3490 for the robot worker.

Figure 5.41: Plot of the discrete precision of sealant application variable cost for the human and robot
worker in the sealant application subtask with the frequent occurrence of sealant trajectory errors for

the human worker.

102

Figure 5.42: Plot of the total cost for the human and robot worker in the sealant application subtask with
the frequent occurrence of sealant trajectory errors for the human worker.

Finally, it is necessary to analyse the scenario where error severity

increases with each error occurrence for the human worker, here errors occur

every 5 task iterations between iterations 15 and 30 of the 100 simulated

iterations of the subtask. Figure 5.43 shows the output cost of the discrete

precision of sealant application variable and Figure 5.44 shows the output total

cost of the complete cost function for the subtask. Figure 5.43 shows that the

first occurrence of a 26% area applied error only results in an insignificant

increase in cost of the discrete precision of sealant application variable shows

due to the low severity of the error. However, the cost of the discrete precision

of sealant application variable rapidly increases with the increasing severity of

errors and finally peaks at a cost of 0.99 with the final occurrence of the 20°

trajectory deviation error in task iteration 30. In this scenario, it takes 20

successfully completed task iterations after this final error for the cost of the

discrete precision of sealant application variable to return to nominal levels for

the human worker. Analysing Figure 5.44 shows that the increase in cost of the

discrete precision of sealant application variable in this scenario has a

significant effect on the total cost for the human worker to complete the

sealant application subtask. In this scenario, the occurrence of the 20°

trajectory deviation error in task iteration 30, which is only the third error

within 50 iterations of the subtask, causes the total cost for the human worker

to complete the subtask to increase to 0.3403 slightly exceeding that of the

robot worker at 0.3380. The total cost for the human worker to complete the

subtask reaches a peak of 0.4443 with the occurrence of the 20° trajectory

103

deviation error in task iteration 30, compared to a cost of 0.3427 for the robot

worker.

Figure 5.43: Plot of the discrete precision of sealant application variable cost for the human and robot
worker in the sealant application subtask with the frequent occurrence of errors of increasing severity

for the human worker.

Figure 5.44: Plot of the total cost for the human and robot worker in the sealant application subtask with
the frequent occurrence of errors of increasing severity for the human worker.

104

5.5. Chapter Summary

In this chapter, a methodology was proposed for a discrete variable for

the dynamic cost functions proposed in this thesis to quantify the severity of

instantaneous discrete events such as errors in the execution of manufacturing

subtasks during a work shift. This discrete variable acts as a counterpart to the

continuous variables proposed in Chapter 4 to ensure costs generated for

workers also reflect their current capabilities in completing subtasks regarding

factors such as quality of execution and accuracy. Given that such a variable

must by its nature be highly specific to the type of task it is applied to, this

methodology was demonstrated and tested through an example subtask of the

application of a straight line of sealant.

Through this methodology the discrete variable principle involved first

determining a series of parameters from a straight line of sealant through

machine vision that can be used to determine its accuracy. Through this data it

was first necessary to determine if an error had occurred in the sealant

application and if so, determine the severity of the current error using this data

and a predetermined hierarchy of discrete events. The variable must then

determine its output cost based on the frequency and severity of previous

errors, in addition to the current error, within a set number of task iterations.

If an error has not occurred the variable must determine its output cost based

on its output cost in previous iterations, reducing this with successfully

completed task iterations then determining the output cost from data on the

current sealant application.

This example discrete precision of sealant application variable was

tested by first simulating several sealant application errors for a human and

robot worker, to determine how the hierarchy of discrete events described in

Section 5.3.5 or Eq. (5.1) described in Section 5.3.4 would grade them. It was

shown in Section 5.4.2 that sealant application errors for the application of a

straight line of sealant could be graded autonomously based on a still image of

the sealant application on a workpiece located within a defined workspace. The

simulated sealant applications for the human and robot worker successfully

demonstrated the principle of the hierarchy of errors and Eq. (5.1) by

determining if an error had occurred, grading the type of error and then grading

the severity of the error within the hierarchy tier for that error.

Utilising these errors, it was next necessary to simulate the discrete

variable and total cost across a work shift to determine the effect of discrete

errors on the output costs of the sealant application subtask for the simulated

human and robot workers. Work shifts were simulated with three groups of

scenarios for possible error occurrences for the human worker. For the first

group of scenarios consisting of isolated incidents of sealant application errors,

it was shown that the discrete precision of sealant application variable was

105

tolerant of isolated errors from the human worker as these do not necessarily

imply a change in worker capabilities. Here it was shown that isolated incidents

of low severity errors did not have a noticeable effect on the discrete precision

of sealant application variable and the total cost for the subtask. However, as

the severity of the error increased a minor increase in the output cost of the

variable and the total cost for the subtask was shown. Despite this increase for

the most severe errors, the total cost for the human worker to complete the

sealant application subtask was shown to remain significantly lower than that

of the robot worker. This tolerance for isolated errors was necessary for the

discrete variable as it was not expected that a human worker would be able to

complete a task successfully 100% of the time over such long time periods and

thus leniency was required for infrequent errors. It was considered appropriate

that the total cost for the human worker to complete the subtask showed a

minor increase for more severe errors as while this does not imply a change in

capabilities, the severity of the error should be recognised.

For the second group of scenarios consisting of the frequent occurrence

of a single type of sealant application error, it was shown that the discrete

precision of sealant application variable reacted significantly to show the

implied change in the human worker’s capabilities. The behaviour of the

discrete precision of sealant application variable in these scenarios was

desirable as the frequent occurrence of errors resulted in the human worker’s

cost exceeding that of the robot worker with a lower number of error

occurrences required to achieve this for more severe errors. This demonstrated

the need for the discrete variable in the dynamic cost functions as a worker

required speed and accuracy in completion of the subtask to be the optimal

worker. The reaction of the variable given the severity of the errors was also

desirable as it should take a larger number of low severity errors for the

discrete precision of sealant application variable to reach its maximum value.

This was because, as stated in Section 5.4.1, the frequent occurrence of low

severity errors would likely indicate where a human worker is prioritising speed

of completing the sealant application subtask too much over quality. This

should not be considered as serious as frequent occurrence of higher severity

errors which would likely indicate a change in the capabilities of the human

worker.

In the third group of scenarios consisting of a single scenario where

each error occurrence increased the severity of the error type, the output cost

of the discrete precision of sealant application variable peaked at 0.99 with the

fourth error occurrence which was very close to its maximum value. This

behaviour was similar to that seen with the frequent occurrences of the most

severe type of error despite the first two errors of this scenario being of a lower

severity. It was again shown that the total cost for the human worker to

complete the subtask exceeded that of the robot worker after three error

occurrences by a very insignificant margin. However, the final error further

106

widened this cost increase over the robot worker. This behaviour of the

discrete precision of sealant application variable in this scenario was again

desired as frequent occurrences of errors of increasing severity implied that

the human worker’s capabilities were declining and reassigning the subtask

they were completing is a justifiable reaction.

Following the investigation of continuous variables in Chapter 4 and

discrete variables in Chapter 5, it is necessary to apply them both in full

dynamic cost functions and apply them to subtasks of a full manufacturing task

across a work shift. Utilising the costs generated for workers, it is necessary

develop a task planning methodology to determine an optimum set of task

assignments and task plan for a HR team.

107

6. Dynamic Task Planning of a Human-Robot

Collaborative Manufacturing Task

6.1. Introduction

It is proposed to use a semi-online method of task planning for Human-

Robot (HR) teams that utilises the advantages of online and offline planning

methods as described in Chapter 3. It is also proposed to use real-world

production indicators collected online during the execution of a manufacturing

task, to quantify worker capabilities via the dynamic cost functions proposed in

Section 3.6. These costs, based on worker capabilities, are then utilised by an

offline task planner that can search for an optimal set of task assignments and

task plan for a HR team. This task planner splits optimisation over two layers:

Layer 1, which optimises task assignments, whilst Layer 2, searches for the

optimal task plan for a given set of task assignments and acts as the objective

function for Layer 1.

To find optimum task assignments quickly and efficiently an intelligent

algorithm must be used to search the solution space. A metaheuristic search

algorithm is chosen to do this as such algorithms prioritise exploration of the

solution space in early iterations with exploitation of the best solutions being

prioritised in later iterations of the search algorithm. As described in Section

3.3, the Discrete Gravitational Search Algorithm (DGSA) (Dowlatshahi,

Nezamabadi-Pour and Mashinchi, 2014) is chosen to find an optimal solution

for worker task assignments in addition to the worker task plan. The DGSA is a

discrete adaptation of the original Gravitational Search Algorithm (GSA)

(Rashedi, Nezamabadi-Pour and Saryazdi, 2009), a metaheuristic search

algorithm that could only be used for continuous problems.

This chapter begins with a discussion of the methodology to generate a

set of task assignments and task plans using the DGSA in Section 6.2. Section

6.2 begins by detailing a methodology for encoding a set of task assignments

and a task plan for a HR team to enable the application of a search algorithm.

Following this, the operating principle of the GSA proposed by (Rashedi,

Nezamabadi-Pour and Saryazdi, 2009) is outlined in addition to the adaptations

required to form the DGSA proposed by (Dowlatshahi, Nezamabadi-Pour and

Mashinchi, 2014). Using this definition of the DGSA, a dual-layer dynamic task

planner is proposed to search for an optimal set of task assignments and task

plan. To achieve this, the implementation of the DGSA is detailed for the first

layer, which generates a set of task assignments, and the second layer which

generates a task plan given a set of task assignments. This chapter next details

a set of pre-execution constraints for this dynamic task planner in Section 6.3

to ensure workers are assigned subtasks when costs indicate they are

significantly more suited to a subtask than the other workers. The dynamic task

108

planner is then tested in Section 6.4 through application in example cases to

generate an initial set of task assignments and task plan using historic worker

data. The first layer of the task planner is tested alone with a real

manufacturing task with only two potential task plans. This manufacturing task

is then modified with a simulated set of precedence constraints to increase the

number of potential task plans, this allows testing of the second layer in

addition to the complete dynamic task planner. These results are compared

against the results from a brute force search of the solution space in terms of

accuracy and speed followed by analysis and conclusions on its effectiveness.

6.2. Task Planning Using the Discrete Gravitational

Search Algorithm

6.2.1. Task Plan and Task Assignments

A set of task assignments and a task plan must be generated to govern

the optimal way for human and robot workers to complete a manufacturing

task collaboratively. An optimal set of task assignments should ensure that the

most appropriate worker is assigned to each assembly subtask by utilising the

costs for each worker given by the cost functions described in Chapters 4 and

5. An optimal task plan should also ensure that assembly subtasks are ordered

such that the cycle time for the HR team and idle times for its workers are

minimised. Since task assignments and task plans are viewed from a high-level

of abstraction in this research, and it is assumed that a lower level controller

will execute subtasks for a robot as described in Chapter 3, task plans are

formed around precedence relationships.

The task assignments and plans are both generated using precedence

relationships and subtask specifications given as a part of an abstract assembly

plan. This abstract assembly plan contains two core elements used by the

dynamic task planner, the assembly plan and the assembly constraints. The

assembly plan, I, is given as a list of N sequentially ordered subtasks such that

𝐼 = (1,… ,𝑁)

where each assembly subtask is a series of a primitive tasks that combine to

carry out an element of the overall manufacturing task. A corresponding

constraints list, O, represents the precedence relationships for each subtask of

the assembly and is given by

𝑂 = (𝑜1, … , 𝑜𝑁),

where 𝑜𝑖 ⊂ 𝐼 represents a list of subtasks that must be completed before the

ith subtask is executed. However, the list of subtasks given by 𝑜𝑖 should only

include the subtasks the ith subtask is directly dependant on and not a complete

list of all subtasks that must be complete before it is executed. When the ith

109

subtask has no precedence relationships it is necessary to set 𝑜𝑖 = 0 to

represent that no subtask must be completed before the ith subtask is

executed. The assembly plan, I, and the constraints list, O, together represents

a typical precedence graph of subtasks given for a manufacturing task such as

that seen e.g. in Figure 6.1. As this shows, the nodes represent the subtasks of

I such that

𝐼 = (1,2,3,4,5,6,7,8,9)

and the directed edges represent the execution constraints, 𝑜𝑗, on a subtask

such that the corresponding constraints list, O, in this case is given by

𝑂 = (0,1,2,3,2,5,2,7, {4,6,8}).

Figure 6.1: A representative set of assembly precedence constraints.

The assembly plan, I, and the constraints list, O, give the basis which

allows the definition of sets of task assignments and task plans. When there are

W available workers, numbering them sequentially allows a set of task

assignments, A, to be given by

𝐴 = (𝛼1, … , 𝛼𝑁)

where 𝛼𝑖 ∈ [1,𝑊] gives the task assignment for the ith subtask. A task plan, P,

is defined as an ordering of the assembly plan, I, such that the task constraints,

O, are satisfied and is given by

𝑃 = (𝑝1, … , 𝑝𝑁)

where 𝑝𝑖 ∈ 𝐼 gives the ith subtask to be completed in the task plan. The set of

task assignments, A, and task plan, P, combine to give the instructions for a HR

team to collaboratively complete a manufacturing task. Again, considering the

example manufacturing task given in Figure 6.1, with 𝑊 = 2 available workers

where worker 1 is a human and worker 2 is a robot, a possible set of task

assignments can be given by

𝐴 = (1,2,2,1,2,1,2,1,2)

with a corresponding task plan being given by

1 2

3

5

7

6

4

8

9

110

𝑃 = (1,2,7,8,3,4,5,6,9).

The task plan and set of task assignments is represented by the graph in Figure

6.2, where the colour of the nodes is used to visualise A with green and red

nodes representing tasks assigned to human and robot workers, respectively.

The path of directed edges of the graph in Figure 6.2 represents the

corresponding task plan given by P which describes the order in which nodes

are visited in a Hamiltonian path.

Figure 6.2: A representative combined task plan and set of task assignments, green nodes representing
the human worker’s assigned subtasks with red representing those of the robot.

Defining manufacturing task constraints along with sets of task assignments

and plans in this way enables the definition of the solution space for finding the

optimal way for a human and robot to complete a manufacturing task.

Following this, it is necessary to apply a search algorithm to find the optimal

solution. For this, a metaheuristic search algorithm is chosen as the speed of

calculation is equally as important as the quality of the solution. To apply the

chosen Discrete Gravitational Search Algorithm, it is first necessary to detail the

operating principle of the original Gravitational Search Algorithm to define how

the Discrete adaptation operates.

6.2.2. Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) is a metaheuristic agent-

based search algorithm for solving optimisation problems, developed in

(Rashedi, Nezamabadi-Pour and Saryazdi, 2009), inspired by the laws of gravity.

The search algorithm was based on the concept of Newtonian gravity in that

objects of mass accelerate towards each other via a gravitational force. Based

on this concept, a population of S searcher agents are introduced into an n

dimensional solution space where the position of the ith agent, 𝑋𝑖, represents

a potential solution to the optimisation problem such that

𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
𝑛)

where 𝑥𝑖
𝑑 represents the position of the ith agent in the dth dimension of the

solution space i.e. a variable of a potential solution. The motion of these

searcher agents is simulated through the solution space using the Newtonian

1 2

3

5

7

6

4

8

9

111

laws of gravity to find an optimal solution to an optimisation problem. Each

agent is given a mass based on the fitness of the solution, calculated using an

objective function, with better performing agents being given a higher mass.

The idea behind the method is that heavier agents will have a larger attraction

radius and hence a greater intensity of attraction towards other agents with

gravitational forces.

The search strategy operates by first injecting the S searcher agents into

the solution space at random positions. The main phase of the search algorithm

then progresses by moving the population of searcher agents towards the K

best solutions, Kbest, of the current population where 𝐾 ∈ [0, 𝑆]. This

movement length in each dimension of the solution space is calculated using

two components, a velocity representing an Independent Movement Length

(IML) and an acceleration due to the gravitational forces from the Kbest

solutions representing a Dependant Movement Length (DML). The IML for each

agent is calculated by taking its previous velocity and multiplying it by a random

real number in the range [0,1], with the initial velocity being randomly

generated. This is independent as it only requires the agent’s previous velocity

(or movement length) and its current position. The DML is calculated by

determining the acceleration of the agent due to the gravitational force on the

agent by each of the K best agents. This is dependant as it requires knowledge

of the positions of all the solutions in Kbest in addition to their masses. After

each iteration of the search algorithm K and the gravitational constant, G, are

reduced, the mass of each agent is re-evaluated, and the new K best solutions

are found. The search algorithm will continue until K is reduced to one and an

optimal solution is found. Reducing the gravitational constant, G, across

iterations of the search algorithm results in reduction of the gravitational force

between searcher agents. To achieve this, functions must be defined to reduce

the value of G and K with each iteration, δ, of this main phase of the search

algorithm. A possible method to achieve this is by defining a maximum number

of iterations, λ, that the main phase of the search algorithm can execute. This

method of exploring the solution space allows large exploration of the solution

space in early iterations with exploitation of the best solutions found with more

local searches in later iterations.

6.2.3. Discrete Gravitational Algorithm

The GSA was developed for use in optimisation problems with a

continuous optimisation space (Rashedi, Nezamabadi-Pour and Saryazdi,

2009), however, Dowlatshahi et al (Dowlatshahi, Nezamabadi-Pour and

Mashinchi, 2014) developed the Discrete Gravitational Search Algorithm

(DGSA) to apply the same process to optimisation problems with discrete

solution spaces allowing its use in combinatorial optimisation problems. In

comparison to the GSA, the DGSA takes the Kbest solutions from the lifetime

of the execution of the DGSA, as a result of this the mass calculation for the

112

DGSA must include the combined populations of searcher agents, 𝑋𝑖, and

Kbest. This is done since the mass of an agent is calculated via its fitness relative

to the fitness of other agents thus the masses of the Kbest solutions must be

recalculated with each iteration of the search algorithm. The DGSA also

replaces the IML and DML with an Independent Movement Operator (IMO) and

Dependant Movement Operator (DMO), respectively. The IMO and DMO allow

movement through the solution space as operators since the DGSA has a

discrete solution space as opposed to the continuous solution space of the GSA

which requires the use of the continuous IML and DML. The DGSA carries out

the independent movement for each agent via a modified local search

algorithm, the modification stops the local search algorithm if the IML is equal

to the number of iterations of the search algorithm carried out or when no

better neighbouring solution exists.

To apply the DML in a discrete solution space, (Dowlatshahi,

Nezamabadi-Pour and Mashinchi, 2014) outlined the concept of a

Neighbourhood space within the solution space to define movement around

the solution space. This Neighbourhood space is defined by an undirected

graph where nodes correspond to potential solutions and edges correspond to

movements in the Neighbourhood space. Such movements between two

neighbour potential solutions are carried out by a small move operator, 𝜑, with

a small move, m. An example of this corresponding to the Travelling Salesman

Problem would be a swap operator represented by φ between an arbitrary pair

of swappable cities represented by m. In this example the swap operator would

be applied to a potential solution to swap the positions of two cities within the

potential solution sequence to form a neighbour solution. (Dowlatshahi,

Nezamabadi-Pour and Mashinchi, 2014) use the concept of path relinking to

define a path between two solutions in the solution space through applications

of a small move operator. Using this concept, it is then possible to define a

partial path between two solutions by additionally using a movement length

that gives the number of applications of a small move operator to generate the

path.

(Dowlatshahi, Nezamabadi-Pour and Mashinchi, 2014) applied the

DMO by using the concept of generating partial paths between solutions to

move a searcher agent towards each of the Kbest solutions. The movement

length towards each of the Kbest solutions was calculated by the acceleration

of the searcher agent towards them due to the gravitational force on the agent

given their masses. This movement of the searcher agent along partial paths to

the members of Kbest is applied individually and results in each movement

starting from a different position. Due to this, (Dowlatshahi, Nezamabadi-Pour

and Mashinchi, 2014) defined an order of precedence to determine the priority

with which these movements were applied. This precedence was defined by

the fitness of the members of Kbest, the highest priority was given to target

113

solutions with the highest fitness value and the lowest priority is given to the

target solutions with the smallest fitness value.

These adaptations to the Gravitational Search Algorithm produced the

Discrete Gravitational Search Algorithm. As stated in Section 3.3, this search

algorithm was chosen as it is appropriate for use with combinatorial

optimisation problems such as the Traveling Salesman Problem. If the task

planning problem is presented in a directed graph where nodes represent

subtasks and edges represent assembly constraints, then it can also be

considered as a path planning problem. This allows the task planning problem

to be considered as finding a Hamiltonian path from the first subtask where all

subtasks must be visited once in an optimal path. The DGSA can also be applied

to the task assignment problem which is instead presented as a permutation

problem.

 In this research it is proposed to utilise dual layers of the Discrete

Gravitational Search Algorithm (DGSA) to find an optimal set of task

assignments in addition to an optimal task plan within one optimisation

process. In this process Layer 1 optimises the task assignments with Layer 2

operating as the fitness function for Layer 1 by finding the optimal task plan

and cost for a given set of task assignments. This ensures that a balance is

achieved between optimising the selection of the best worker for each subtask

with optimising the manufacturing task as a whole. The operating principle for

the dynamic task planner is shown in Figure 6.3, demonstrating how the two

layers of the DGSA interact with each other to find the optimum set of task

assignments and task plan. Here the abstract assembly plan and cost function

generator, as described in Chapter 3, act as input to the dynamic task planner,

providing the costs for workers and manufacturing task specifications required

by the dynamic task planner. DGSA Layer 1 uses the potential task assignments

for the manufacturing task as the solution space, the fitness function for this

layer then passes the potential task assignment input into it to DGSA Layer 2.

DGSA Layer 2 uses potential task plans as its solution space, the fitness function

uses worker costs along with the resulting idle times for a potential task plan

and set of task assignments to find the optimal task plan for this potential set

of task assignments. DGSA Layer 2 then returns the optimal task plan to the

fitness function for DGSA Layer 1, with the associated cost being used as the

output of the fitness function in DGSA Layer 1. DGSA Layer 1 then outputs the

optimal task plan and set of task assignments so that they can be executed by

the HR team. Using this methodology, it is next necessary to detail the

application of the DGSA to each of the layers of this process.

114

Figure 6.3: The framework for the dynamic task planner, detailing the interaction between Layer 1 and
Layer 2, necessary to find the optimal set of task assignments and task plan for a HR team.

6.2.4. DGSA Layer 1 – Task Assignment Determination

The first layer of the DGSA is used to optimise task assignments by

formulating it as a permutation problem. To define the problem in terms of the

DGSA, it is necessary to first define the solution space and composition of the

searcher agents. Using the Assembly Plan, I, definition given in Section 6.2.1

containing N subtasks, results in an N dimensional solution space. The defined

format of task assignments, 𝐴𝑖, also defines the format of the searcher agent’s

positions, where the position of the ith searcher agent, 𝑋𝑖, is given by a potential

task assignment, 𝐴𝑖 and is defined as

𝐴𝑖 = (𝛼𝑖
1, … , 𝛼𝑖

𝑑, … , 𝛼𝑖
𝑁)

where 𝛼𝑖
𝑑 ∈ {1,… ,𝑊} represents the task assignment for the dth subtask when

there are W available workers.

The fitness function representing the objective function of the

optimisation problem for this layer operates by running Layer 2 of the dynamic

task planner as described later in Section 6.2.5. DGSA Layer 2 outputs an

optimal task plan, P, in the format described in Section 6.2.1 and the task plan

cost for the full manufacturing task. This optimal task plan is stored alongside

the task assignment and cost for later output if they are associated with the

optimal set of task assignments. From this, the fitness value, 𝐹𝑖, for the ith

searcher agent at position 𝑋𝑖 in the search algorithm is given by the optimal

cost for the task assignment output from DGSA Layer 2. A special case is defined

when 75% or greater of the subtasks in a set of task assignments, 𝐴𝑖, are

assigned to a single worker as it is assumed that both workers must always be

used. In such cases, it is undesirable for DGSA Layer 2 to be utilised since this

set of task assignments should not be used. The fitness value for the ith searcher

115

agent at position 𝑋𝑖 of the search algorithm, 𝐹𝑖, in such situations is then given

as 𝐹𝑖 = 2𝑁, twice the sum of the maximum cost for a worker to complete each

subtask, and the optimal task plan for the task assignment is not given. This is

done to ensure that such an undesirable set of task assignments is not used

and that DGSA Layer 2 is not executed wasting processing time.

This layer of the DGSA follows the standard format set out in Section

6.2.3 using the standard IMO and DMO to move agents around the solution

space, however, to apply this a small move operator, 𝜑, and small move m must

be defined. Since this is formulated as a permutation problem, the small move

operator for DGSA Layer 1, 𝜑1, is defined as changing a single task assignment

in the position of the ith agent 𝐴𝑖. The small move, 𝑚1, is then defined as from

the jth worker to the kth worker in dimension 𝑑 ∈ {1, . . , 𝑁} such that 𝛼𝑖
𝑑 = 𝑗 and

𝑘 ∈ {1,… ,𝑊} but 𝑗 ≠ 𝑘. An example application of 𝜑1 with move 𝑚1 in

dimension 𝑑 = 1 for a search space where 𝑁 = 3 with 𝑊 = 2 available workers,

on a searcher agent 𝐴𝑖 = (1,2,1) would be

𝐴𝑖 = 𝐴𝑖 𝜑1 𝑚1 = (2,2,1).

Operating DGSA Layer 1 with these inputs and this small move operator

outputs the optimum task assignment for the HR team alongside the optimum

task plan and cost generated from DGSA Layer 2. In addition, it is necessary to

set the number of searcher agents, S, and the stopping conditions for the main

phase of the search algorithm. However, these variables are dependent on the

optimisation problem and its solution space. It is also necessary to set functions

to reduce the size of the variable 𝐾 to govern the size of 𝐾𝑏𝑒𝑠𝑡 and to govern

the size of the gravitational constant, 𝐺(𝛿), for each in iteration 𝛿 of the main

phase of the search algorithm. However, these functions are dependent on the

stopping conditions for the main phase of the search algorithm. Since these

inputs and functions are problem dependant, they are defined for the example

cases given in Section 6.4.

6.2.5. DGSA Layer 2 – Task Plan Determination

The second layer of the DGSA was used to find the optimal task plan for

a given set of task assignments from DGSA Layer 1, using worker costs and

production indicators. Unlike DGSA Layer 1 this is considered as a combinatorial

problem and must find the optimal task plan by manipulating the order of

subtask execution within potential task plans. To define the problem in terms

of the DGSA, it is again necessary to define the solution space and composition

of the searcher agents. Using the task plan, P, defined in Section 6.2.1 the ith

task plan is defined as

𝑃𝑖 = (𝑝𝑖
1, … , 𝑝𝑖

𝑑 , … , 𝑝𝑖
𝑁)

116

where 𝑝𝑖
𝑑 ∈ 𝐼 is a subtask in the assembly plan, I, such that the task constraints

given by the constraints list, O, representing the precedence relationships for

each subtask of the assembly given by

𝑂 = (𝑜1, … , 𝑜𝑑 , … , 𝑜𝑁),

where 𝑜𝑑 are the execution constraints for subtask 𝑝𝑖
𝑑 with 𝑂𝑑 ⊂ 𝐼 are

satisfied. Within this definition, there is the possibility of subassemblies, Q,

occurring within the task plan consisting of several sequentially numbered

subtasks, such that 𝑄 ⊂ 𝐼. The ith subassembly, 𝑄𝑖, is defined by

𝑄𝑖 = (𝑞𝑖
1, 𝑞𝑖

2, … , 𝑞𝑖
𝑘) = (𝑗, 𝑗 + 1,… , 𝑗 + 𝑘 − 1)

where 𝑞𝑖
𝑘 is the kth subtask for a subassembly containing k subtasks beginning

with the jth subtask. Subassemblies must also have the unique corresponding

constraints list, 𝐿𝑖, such that 𝐿𝑖 ⊂ 𝑂 given by

𝐿𝑖 = (𝑜𝑗 , 𝑜𝑗+1, … , 𝑜𝑗+𝑘−1) = (𝑜𝑗 , 𝑗, … , 𝑗 + 𝑘 − 2)

for a subassembly containing k subtasks beginning with the jth subtask. The task

plans operate on the principle that these subassemblies are completed in

totality before new tasks or subassemblies are started as it is undesirable to

have multiple subassemblies in partial states of completion with work

constantly switching between subtasks. An exception to this is that the first

subtask of a subassembly which can be completed in parallel to the final

subtask of the previous subassembly, provided that task precedence relations

are not broken. This exception is acceptable as one worker will remain idle

whilst the other worker is completing the final subtask of a subassembly which

would leave them available to start the next subassembly.

 The presence of these subassemblies poses difficulty for the application

of the DGSA as a small move operator would have to swap subassemblies

consisting of various numbers of subtasks to reorder P, increasing the

complexity of its operation. Combining this increased complexity due to

subassemblies with the complex restrictions on the ordering of subtasks due to

the overall constraints list, O, would produce a highly complex small move

operator, 𝜑, and small move, m. In contrast to the example application of the

DGSA to the Travelling Salesman Problem given in (Nikolakis et al., 2018), the

small move operator cannot be a simple swap operator due to the complex

restrictions of O. Due to these factors it is required to encode the Task Plan, 𝑃𝑖,

in a simpler format which allows a simpler small move operator, 𝜑, to move

agents through the solution space.

An encoding method is developed to simplify potential task plans into a

new simplified task plan, 𝐵𝑖, and define a corresponding list of swappable task

plan elements, U, such that a small move operator, 𝜑, can be applied to 𝐵𝑖 to

make a small move, m, defined using U. Due to the dependency of this method

117

on the task plan it is applied to, it is described by utilising an example case. In

this example it is necessary to consider a task plan, 𝑃𝑖, given by

𝑃𝑖 = (𝑝𝑖
1, … , 𝑝𝑖

14) = (1,2,3,6,7,8,4,5,9,12,10,11,13,14)

with corresponding constraints list to its assembly plan, I, being given by

𝑂 = (𝑜1, … , 𝑜14) = (0,1,2,1,4,1,6,1, {3,5,7,8},9,10,9,9, {10,11,12,13}).

To generate the simplified task plan, 𝐵𝑖, all the subassemblies, 𝑄𝑗, are

identified in the task plan which in this case are

𝑄1 = (𝑞1
1, 𝑞1

2) = (2,3),

𝑄2 = (𝑞2
1, 𝑞2

2) = (4,5),

𝑄3 = (𝑞3
1, 𝑞3

2) = (6,7)

and

𝑄4 = (𝑞4
1, 𝑞4

2) = (10,11).

All subtasks of these subassemblies except the lead element, 𝑞𝑗
1, are then

removed from the Task Plan, 𝑃𝑖, to give the simplified task plan, 𝐵𝑖, such that

𝐵𝑖 = (𝑏𝑖
1, … , 𝑏𝑖

10) = (1,2,6,8,4,9,12,10,13,14).

The removed subtasks are stored in a missing subtasks list, V, such that

𝑉 = (3,5,7,11)

and their execution constraints, 𝑜𝑗, are given by the corresponding constraint

list, Z, such that

𝑍 = (2,4,6,10)

to reform the full task plan, 𝑃𝑖, when required. Note that V and Z will be the

same for all potential task plans and only need to be calculated once in the

execution of DGSA Layer 2.

To generate U, first subtasks in the potential task plan which are

dependent on the completion of more than one subtask in O are identified as

static subtasks that cannot be swapped and given an identifier of 0, in the

example case above such subtasks would be subtasks 9 and 14. In opposition

to this, swappable task plan elements are identified as subtasks where 𝑜𝑖 = 𝑜𝑗

for the ith and jth subtasks thus they can be swapped and still form a viable

simplified task plan. These swappable task plan elements are given a common

identifier sequentially as a positive integer in U, respectively, for example for

𝑗, 𝑘, 𝑠, 𝑣 ∈ 𝐵𝑖 with 𝑗 < 𝑘 < 𝑠 < 𝑣 and 𝑜𝑗 = 𝑜𝑘 ≠ 𝑜𝑠 = 𝑜𝑣 then j and k are

represented by 1 in U whereas s and v are represented by 2. A special case is

defined by a subtask acting as the single starting point for a potential task plan,

this would be a case where the constraints list for the first subtask 𝑜1 = 0 and

118

is unique. This special case would also result in the subtask being defined as a

static subtask and being given an identifier of 0 in U. Combining these rules

forms the steps required to find U which is given as

𝑈 = (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8, 𝑢9, 𝑢10) = (0,1,1,1,1,0,2,2,2,0)

in the example case discussed above.

This encoding method allows the definition of the solution space and

searcher agents used by DGSA Layer 2 for the task planning problem. Using the

simplified task plan definition, 𝐵𝑖, if this consists of j subtasks and

subassemblies, results in a j dimensional solution space. This definition also

provides the format of the searcher agent’s positions, where the position of

the ith searcher agent, 𝑋𝑖, is given by a potential simplified task plan, 𝐵𝑖, and is

defined as

𝐵𝑖 = (𝑏𝑖
1, … , 𝑏𝑖

𝑑 , … , 𝑏𝑖
𝑗
)

where 𝑏𝑖
𝑑 represents the dth subtask or subassembly to be completed in the

task plan.

The fitness function for DGSA layer 2 must produce the overall cost for

a given simplified task plan and task assignment to enable the best task plan to

be found in DGSA Layer 2 and the best task assignment to be found when costs

are output to DGSA Layer 1. The fitness function for DGSA Layer 2 must include

the cost for each worker to complete individual subtasks as given by the

dynamic cost functions given in Section 3.6 in addition to cost penalties for the

quality of the overall task plan in relation to worker idle times and overall

completion times for the task plan. This is done to ensure a balance between

assigning tasks to the best possible workers and efficient use of workers in the

overall task plan to optimise production rates.

 To calculate the fitness value, 𝐹𝑖, of a task plan, first it is necessary to

decode the simplified task plan, 𝐵𝑖, to the full task plan, 𝑃𝑖, as the details of all

subtasks are required to calculate the cost. In addition to this, the task

assignment, 𝐴𝑖, input into DGSA Layer 2 from the fitness function of DGSA Layer

1 as given by

𝐴𝑖 = (𝛼𝑖
1, … , 𝛼𝑖

𝑑, … , 𝛼𝑖
𝑁)

is also required to calculate the cost. The fitness, 𝐹𝑖, of the ith searcher agent of

DGSA Layer 2 is then given by

𝐹𝑖 =∑(𝐶𝑘,𝛼𝑘 + 𝐽𝑘,𝛼𝑘)

𝑁

𝑘=1

+𝑀

where 𝐶𝑘,𝛼𝑘 is the cost for worker 𝛼𝑘 assigned to complete the kth subtask given

by the dynamic cost functions in Section 3.6, 𝐽𝑘,𝛼𝑘 is the idle cost and 𝑀 is the

119

total completion time cost. The idle cost is used to ensure that idle times for

workers are not excessive, ensuring the balance between selecting the best

worker for each task and efficient worker utilisation is kept. Since it is

impractical to have no idle times, a scale is defined to quantify the severity of

idle times and calculate the idle cost 𝐽𝑘,𝛼𝑘. To provide such a scale a maximum

acceptable idle time, 𝜃, is defined for workers to allow the definition of the

idle costs as

𝐽𝑘,𝛼𝑘 =
𝜌𝑘,𝛼𝑘
𝜃

where 𝜌𝑘,𝛼𝑘 is the idle time for worker 𝛼𝑘 whilst waiting to start the kth subtask.

As with task information given in the abstract assembly plan described in

Chapter 3, it is assumed that the maximum acceptable idle time, 𝜃, would be

defined by the manufacturer implementing the system. The total completion

time cost, M, is used here to ensure that the total completion time, l, of a set

of task assignments is not excessive to again ensure a balance between

selecting the best worker for each task and the optimisation of the task as a

whole. To define such a cost, a scale is required to quantify if the total

completion time for the workers to complete a manufacturing task is

acceptable. To provide such a scale it is necessary to use the manufacturer’s

desired work element times, 𝐻𝑗, used by the completion variable for the jth

subtask allowing the definition of the total completion time cost as

𝑀 =
𝑙

∑ 𝐻𝑘
𝑁
𝑘=1

.

This layer of DGSA also follows the standard format set out in Section

6.2.3 and uses the standard IMO and DMO to move agents around the solution

space. However, in order to apply the IMO and DMO, a task plan, 𝑃𝑖, must be

encoded in its simplified form, 𝐵𝑖. As this problem is a combinatorial problem

the small move operator for DGSA layer 2, 𝜑2, is defined as swapping the

location of two subtasks in 𝐵𝑖 with each other. The small move, m, is then

defined as between a pair of subtasks j and k in dimensions s and v such that

𝑏𝑖
𝑠 = 𝑗 and 𝑏𝑖

𝑣 = 𝑘 with the constraint that 𝑢𝑠 = 𝑢𝑣.

Operating DGSA Layer 2 in this way outputs the optimum task plan and

cost for the HR team given the input task assignments used in DGSA Layer 1. To

operate DGSA Layer 2 it is also necessary to set the number of searcher agents,

S, and the stopping conditions for the main phase of the search algorithm,

however, these variables are dependent on the optimisation problem and its

solution space. It is also necessary to set functions to reduce the size of the

variable 𝐾 to govern the size of 𝐾𝑏𝑒𝑠𝑡 and the size of the gravitational

constant, 𝐺(𝛿), for each in iteration 𝛿 of the main phase of the search

algorithm. However, these functions are again dependent on the stopping

conditions for the main phase of the search algorithm. Since these inputs and

120

functions are problem dependant, as with DGSA Layer 1, they are defined for

the example cases given in Section 6.4.

6.3. Task Planner Pre-Execution Constraints

To find an optimum task plan efficiently and quickly it is desirable to

first minimise the solution space of possible solutions by eliminating

undesirable solutions. It is proposed to use pre-execution constraints for the

task planner to pre-allocate tasks for workers based on the worker costs given

by the dynamic cost functions in Section 3.6. This only applies to cases where

there is a significant difference in cost between workers and ensures

assignment of a subtask to the best worker in the generated set of task

assignments and task plan. The additional benefit of task pre-assignment is that

for each task pre-assigned before the task planner is executed, the solution

space of possible task assignments is reduced by a factor of W available

workers to complete the subtask.

To enable such a pre-execution constraint, it is first necessary to define

what would be considered a significant difference in cost between two

workers, which requires the definition of a threshold cost, η, by the

manufacturer implementing the system. This threshold cost allows distinction

between workers and should be set sufficiently high to ensure that the better

worker must receive the task assignment if it would be inappropriate to assign

another worker to the task. To ensure the task assignment is maintained by the

task planner it is necessary to define a list of “locked in” task assignments, 𝛹,

of the same size as the task assignments, 𝐴𝑖, given by

𝛹 = [𝜓1, … , 𝜓𝑁]

where 𝜓𝑗 is a “locked in” identifier for the jth subtask. Given the threshold cost

each “locked in” identifier, 𝜓𝑗, is given by

𝜓𝑗 = {
1 if 𝐶𝑗,𝑠 − 𝐶𝑗,𝑘 ≥ 𝜂 for all 𝑠 ∈ {1, … ,𝑊 |𝑠 ≠ 𝑘}

0 otherwise

where k is the proposed best worker and s represents another potential

available worker. This “locked in” list instructs the task planner that a task

assignment can be changed if 𝜓𝑗 = 0 and cannot be changed if 𝜓𝑗 = 1. To

define which worker is assigned a “locked in” task assignment, a corresponding

set of base task assignments, Λ, is defined as

Λ = [𝛼1, … , 𝛼𝑁]

where

𝛼𝑗 = {
𝑘 if 𝜓𝑗 = 1 for worker 𝑘

 0 otherwise
,

121

here a task assigned to worker 0 remains a placeholder for assignment by the

dynamic task planner.

6.4. Dynamic Task Planner Testing and Results:

Generating Initial Set of Task Assignments and Task Plan

6.4.1. Generating a Single Set of Task Assignments and Task Plan

From Historic Data

To test the dynamic task planner proposed in this chapter, an example

manufacturing task is utilised given by Nikolakis et al. (Nikolakis et al., 2018).

This is chosen as it is a real manufacturing task for the assembly of a

turbocharger and has been studied with relation to task planning in HR teams.

The task information given for this assembly task is also at a suitably high level

of abstraction to be utilised by the dynamic task planner and provides details

on task duration times for a human and robot worker. In this manufacturing

task, (Nikolakis et al., 2018) allow some subtasks to be completed by humans

and robots in direct collaboration. However, this option will not be used within

this research with the subtask only being assigned to either the human or robot

worker.

The dynamic task planner is first tested for a static set of completion

times to represent the case of generating an initial set of task assignments and

task plan, where real time production data is not yet available. Such a set of

task assignments and task plan would be executed by the HR team until enough

data is gathered to begin to assess the current capability and performance of

the workers via the full dynamic cost functions, following which the task

assignments and task plan would be re-evaluated. To apply the dynamic task

planner, it is first necessary to define how costs should be generated for the

workers, this will require pared down cost functions that are capable of being

used with historic data only. These cost functions will only use the completion

time variable in this case. However, to ensure weightings remain consistent

across the work shift the fatigue variable and precision of sealant application

variable will be included but remain at zero. The precision of sealant application

variable is used in these cost functions since the details of quality assurance

methods for subtasks that would be used to form discrete variables were not

provided in (Nikolakis et al., 2018) for the turbocharger assembly task. Utilising

the precision of sealant application variable thus allows the effect of discrete

errors on task replanning utilising the dynamic task planner to be tested.

To define the costs given by the completion variable used in this initial

set of task assignments and task plan, it is first necessary to define the historic

initial completion times for the human worker as defined in Section 4.2. These

historic initial completion times are defined using the task duration times for

the human worker given by (Nikolakis et al., 2018) and are given in Table 6.1.

122

These are used as these task duration times represent the expected

performance of the human worker thus are suitable to represent their historic

mean initial completion times. It is also necessary to define the completion

times for robot workers, these are again defined by the task duration times for

the robot workers given by (Nikolakis et al., 2018) as seen in Table 6.1. These

are used as the expected completion times for a robot worker should vary

minimally across a work shift under normal operation thus the expected

completion times provide a good measure of the robot’s performance for the

initial costs. Finally, to calculate the completion cost function variable for both

human and robot workers it is also necessary to define the manufacturer’s

desired work element time for each assembly subtask. It is assumed that the

manufacturer’s desired work element time would be slightly lower than that of

the best worker historically, thus these work element times for this task are set

at 90% of the completion time for the fastest worker and are given in Table 6.1.

Table 6.1: Table of human historic initial completion times, initial robot completion times and
manufacturer’s desired work element times for each subtask for the example manufacturing task.

Subtask
Number

Human Historic
Initial

Completion Time
(Seconds)

Initial Robot
Completion Time

(Seconds)

Manufacturer’s
Desired Work
Element Time

(Seconds)

1 6 12 5.4

2 4.7 9 4.23

3 16.6 18 14.94

4 8.1 10 7.29

5 3.9 7 3.51

6 1.7 3 1.53

7 7.9 11 7.11

8 18 21 16.2

9 19 23 17.1

10 5.3 9 4.77

11 2.4 4 2.16

12 1.7 5 1.53

13 2.7 6 2.43

14 3.3 8 2.97

15 8.5 10 7.65

16 8.8 15 7.92

17 13.5 25 12.15

18 9.5 12 8.55

19 1.9 4 1.71

20 2.4 3 2.16

21 7.2 8 6.48

22 12.3 15 11.07

23 17.7 20 15.93

24 2.6 4 2.34

123

Following this it is necessary to define the weightings utilised for the

cost functions for each worker in each subtask of the overall manufacturing

task. The subtasks in the example manufacturing task are grouped into three

general categories of subtask, screwing, pick & place and sensing, weightings

are defined for each of these and applied to all subtasks in that category. For

each of these categories of subtasks, it is necessary to break down the subtask

into its primitive elements to determine their weightings as described in

Section 3.5. Starting with the screwing task, this is considered a primitive task

and thus cost function variables that affect the task are weighted equally, with

those that do not being given a weighting of zero. For this subtask, the

completion and fatigue variables are used for the human worker, and only the

completion variable is used for the robot worker. An error checking variable is

not used in this case as errors that could occur, e.g. wrong bolt used or not

correctly tightened, would not be able to be detected with autonomous visual

checks such as those in Section 5.3. Due to this the analogous discrete precision

of sealant application variable is given a weighting of zero. Second for the pick

and place tasks, the subtask is broken down into checking the specification for

where to place components, picking and placing the components then verifying

the operation has been completed correctly. For this subtask with the human

worker, the completion variable would only affect the physical movement of

components with the fatigue and error detection variables instead affecting all

primitives of the subtask, both cognitive and physical. For the robot worker the

completion variable again only affects the physical primitive of the task with

the error detection variable again affecting all primitives of the subtask. Finally,

for the sensing subtasks (Nikolakis et al., 2018) do not detail what this entailed

so it is assumed that such tasks should be used as the verification of correct

completion of assemblies or visual inspection of parts. In this case it is

determined that for both workers a sensing task should not be dependent on

completion times as successful completion would be more important if the

sensing subtask is vital to the manufacturing task. Acknowledging this, it is

determined that the fatigue and error detection cost function variables should

have an equal effect on all primitives of the subtask for the human worker with

only the error detection variable affecting the primitives for the robot worker.

The effects of cost function variables detailed combined with the weighting

schema detailed in Section 3.5. results in the cost function weightings for each

worker for each subtask in Table 6.2.

124

Table 6.2: Cost function variable weightings for human and robot workers.

Table 6.3: Type of manufacturing task definition for each subtask and their precedence constraints.

Subtask Number Type of Manufacturing
Task

Precedence
Constraints

1 Pick & Place 0

2 Pick & Place 0

3 Pick & Place 2

4 Sensing {1,3}

5 Pick & Place 4

6 Pick & Place 5

7 Pick & Place 6

8 Screwing 7

9 Screwing 8

10 Pick & Place 9

11 Pick & Place 10

12 Pick & Place 11

13 Pick & Place 12

14 Pick & Place 13

15 Pick & Place 14

16 Screwing 15

17 Screwing 16

18 Pick & Place 17

19 Pick & Place 18

20 Pick & Place 19

21 Screwing 3

22 Screwing 21

23 Pick & Place 22

24 Sensing 23

In addition to the costs relating to the subtasks, it is also necessary to

define how to calculate costs relating to the idle times of workers. To achieve

this, it is necessary to define the maximum acceptable idle time, 𝜃, for each

 Cost Function Variable

Manufacturing
Task

Worker Completion Fatigue Precision of
Sealant

Application

Screwing Human 1/2 1/2 0

Robot 1 0 0

Pick & Place Human 1/7 3/7 3/7

Robot 1/4 0 3/4

Sensing Human 0 1/2 1/2

Robot 0 0 1

125

subtask of the overall manufacturing task. Here 𝜃 is set as 18 seconds as the

manufacturer’s desired work element times for subtasks in this manufacturing

task, given in Table 6.1, lie in the range of 1.53 to 17.1 seconds. It is assumed

here that the maximum acceptable idle time should be no longer than the

length of the longest subtask.

6.4.2. Simple Manufacturing Task

The dynamic task planner also requires the details of the overall

manufacturing task and the precedence relationships between the subtasks to

be executed. These details would be passed from the abstract assembly plan

as given in Table 6.3 and illustrated in Figure 6.4 and are based on the

precedence relationships for the assembly subtasks given in Table 6.3. In this

example assembly task, the abstract assembly plan included the assembly plan,

I, given by

𝐼 = (1,… ,24)

and the subtask execution constraints, O, given by

𝑂 =

(0,0,2, {1,3}, 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,3,21,22,23).

Due to these constraints and using the definition of a task plan in addition to

the definition of DGSA Layer 2, there are only two possible task plans for this

manufacturing task. This small number of potential task plans for each set of

task assignments means that it is inappropriate to use DGSA Layer 2 in this case

and instead the function of DGSA Layer 2 is executed by a brute force check of

the potential solutions.

Figure 6.4: The precedence relationships for the turbocharger assembly task given in (Nikolakis et al.,
2018).

Finally, to execute the dynamic task planner it is necessary to set the

parameters of DGSA Layer 1 required for its operation. These parameters

include the number of searcher agents, S, the stopping condition for the main

phase of the search algorithm and the functions to reduce K and the

gravitational constant, G, as the search algorithm progresses. In this example

manufacturing task, having two available workers results in 16,777,216

possible sets of task assignments giving quite a large solution space. Given the

size of the solution space it is chosen to test DGSA Layer 1 with various settings

of these parameters to assess the impact on execution time and the accuracy

1

2

4

3

5 6 19

21 22 23 24

20 …

126

of solutions. The number of searcher agents, S, is the first of these parameters

to be varied as this has an impact on the ability of DGSA to search the solution

space. Next, the stopping condition for the main phase of DGSA Layer 1 is

determined by setting a maximum number of iterations, 𝜆, that the main phase

of the search algorithm can execute and is the other setting to be varied. This

stopping condition allows the use of linear decreasing functions to reduce the

gravitational constant, 𝐺(𝛿), and the number of best solutions, K, over the

lifetime of the execution of DGSA Layer 1. This also allows maximum and

minimum values to be defined for the gravitational constant, 𝐺(𝛿), and the

number of best solutions, K, with the progression between the two being

defined by the current iteration number, 𝛿, of the main phase of DGSA. Utilising

this method over the lifetime of the main phase of DGSA layer 1, K is reduced

from the number of searcher agents S to 1 via

 𝐾 = 𝑆 − (
𝛿

𝜆
× (𝑆 − 1)). (6.1)

In addition to this 𝐺(𝛿) is reduced over the lifetime of the main phase of the

DGSA Layer 1 from 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to 𝐺𝑒𝑛𝑑 via

 𝐺(𝛿) = 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − (
𝛿

𝜆
× (𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐺𝑒𝑛𝑑)). (6.2)

The setting of 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝐺𝑒𝑛𝑑 is problem specific and is set as 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.4

and 𝐺𝑒𝑛𝑑 = 0.2 for DGSA layer 1 as determined by trial and error.

Utilising these parameters, the dynamic task planner is tested for

various numbers of searcher agents, S, and maximum number of iterations, 𝜆,

in DGSA Layer 1. This begins with a baseline, using S = 5 searcher agents over a

maximum number of 𝜆 = 25 iterations of the main phase of the search

algorithm. From this baseline, S is increased to 200 in steps of 5 and 𝜆 is

increased to 50 or 100 to form a grid search to determine the effect on

execution time and accuracy of solutions by altering these settings. For each of

these settings, the dynamic task planner is run 30 times for the simple

manufacturing task to determine accuracy of the solution and execution time

compared to the optimum set of task assignments and task plan generated

using a brute force search of all possible task plans for every possible set of task

assignments. This brute force search was achieved by generating all possible

sets of task assignments and task plans that satisfy the result of the task pre-

execution constraints then applying the objective function to each of them to

generate a data set. The set of task assignments and task plans with the

minimum cost was found by searching this data set using built in Minimum

functions of the MATLAB software package. Here, the dynamic task planner

and the brute force search of the solution space are both implemented in the

MATLAB software package. Analysis of the results also enables the

determination of the optimum number of searcher agents and maximum

number of iterations to be executed used by DGSA Layer 1 for this task planning

problem.

127

Figure 6.5: Plot of the mean percentage cost difference between the solution found by the task planner
using only DGSA Layer 1 and the optimum solution found using brute force, with varying number of

searcher agents and maximum number of iterations used by the main phase of DGSA Layer 1.

First, the accuracy of the task planner using only DGSA Layer 1 is

evaluated by determining the percentage difference in cost between the

solutions found by the task planner and the optimum solution found through

brute force, as shown in Figure 6.5. It is first important to note that a brute

force search of all potential solutions in the solution space finds a single

optimum set of task assignments and task plan which has a cost of 8.76. It is

shown that using the lowest number of searcher agents with S = 5, that the cost

of the found set of task assignments and task plan is much higher than the

optimal solution. The worst accuracy is achieved when using a maximum

number of λ = 25 iterations in the main phase of DGSA Layer 1 at a mean

difference in cost of 43.17% from the optimal solution, followed by 43.02%

difference with λ = 100 and 42.95% difference with λ = 50. This behaviour is

shown with a low number of searcher agents since, if a searcher agent gets

trapped in a local minimum in an IMO phase of DGSA Layer 1 it will attract

others towards it in the next DMO phase causing them to be trapped as well.

The effect of this is that the DMO will not cause agents to navigate the solution

space if all searcher agents are trapped at the same position and the IMO phase

cannot move solutions out of the local minimum. In such situations, the

maximum number of iterations of the main phase of DGSA Layer 1 used will

not affect performance and the variation in accuracy seen here is likely due to

the position of the randomly generated initial positions of agents within the

solution space.

128

Figure 6.5 shows that increasing the maximum number iterations in the

main phase of DGSA Layer 1 has an inconsistent effect on the accuracy of the

solution. However, increasing the number of search agents used by DGSA Layer

1 consistently improves the accuracy of solutions. Considering the number of

searcher agents used when a maximum of λ = 25 iterations in the main phase

of DGSA Layer 1, increasing the number of searcher agents to S = 50 resulted in

a mean percentage cost difference of 39.61% from the optimum solution.

Increasing the number of searcher agents to S = 100 results in a diminishing

return in the improvement in the accuracy of the search algorithm with a mean

percentage cost difference of 38.66%. Finally, increasing the number of

searcher agents to S = 200 results in a greater diminished return in the

improvement in accuracy with a mean percentage cost difference of 38.07%.

Figure 6.6: Plot of the mean difference in completion time of the simple manufacturing task between the
solution found by the task planner using only DGSA Layer 1 and the optimum solution found using brute

force, with varying number of searcher agents and maximum number of iterations used by the main
phase of DGSA Layer 1.

To test the accuracy of the task planner using only DGSA Layer 1, it is

also necessary to compare the difference in total completion time between the

sets of task assignments and task plans the task planner finds and the optimum

solution found through brute force, given in Figure 6.6. It is first important to

note that a brute force search of all possible solutions in the solution space

found an optimum set of task assignments and task plan with a total

completion time of 157.6 seconds. Figure 6.6 shows that with S = 5 searcher

agents the worst mean increase in total completion time of 32.46 seconds from

the optimal solution occurs when DGSA Layer 1 uses a maximum number of λ

129

= 25 iterations in its main phase. Similarly, a mean increase in total completion

time of 31.44 seconds is shown with λ = 50, however, the mean increase in

completion time is 32.28 seconds with λ = 100. Given the optimal completion

time of 157.6 seconds, this means at worst the completion times are

approximately 19.9% to 20.6% larger than that of the optimal solution.

However, the task plan is not solely optimising the completion time of the

simple manufacturing task. This shows that the mean completion time

difference of sets of task assignments and task plans found by the task planner

from the optimum solution when S = 5 and λ = 50 is smaller than those found

when S = 5 and λ = 100.

Figure 6.6 again shows that increasing the number of searcher agents

used by DGSA Layer 1 has a greater effect on the accuracy of solutions than

increasing the maximum number of iterations used in its main phase. Again,

considering the number of searcher agents used when a maximum of λ = 25

iterations in the main phase of DGSA Layer 1, using S = 50 searcher agents

increases the accuracy of solutions with a mean increase in completion time of

30.43 seconds from the optimum solution. Increasing the number of searcher

agents to S = 100 again results in a diminishing return in the improvement of

the accuracy of the search algorithm with a mean increase in completion time

of 30.2 seconds from the optimum solution. Increasing the number of searcher

agents to S = 200 again results in a further diminishing return in the

improvement in the accuracy of the search algorithm with a mean increase in

completion time of 29.93 seconds from the optimum solution.

Figure 6.7: Plot of mean execution time of DGSA Layer 1 with varying number of searcher agents and
maximum number of iterations used by the main phase of DGSA Layer 1. It is important to note that the

130

brute force search of the solution space had an execution time of 687.4 seconds, but this is far beyond
the region shown in this plot.

Following analysis of the task planner’s accuracy for the simple

manufacturing task, it is necessary to analyse the mean execution time

compared with a brute force search of each possible task plan for all possible

task assignments to determine its utility. It is first important to note that using

the brute force search of the solution space, the optimal set of task

assignments and task plan are found in an execution time of 687.4 seconds.

Figure 6.7 shows that the mean execution time of the task planner displays a

linearly increasing trend with an increase in the number of searcher agents, S,

in the main phase of DGSA Layer 1. However, the maximum number of

iterations it uses, λ, significantly affects the rate of this growth. Comparing the

mean execution time for the dynamic task planner utilising only DGSA Layer 1

with its accuracy, it is shown that increasing the number of searcher agents that

DGSA Layer 1 uses has a greater effect on the accuracy of the task planner than

increasing the maximum number of iterations it uses in its main phase. This

implies that priority should be given to increasing the number of searcher

agents DGSA Layer 1 uses rather than the maximum number of iterations it

uses in its main phase.

For the dynamic task planner in this task planning problem, the mean

execution time with a maximum of λ = 25 iterations in the main phase of DGSA

Layer 1 increases from 0.134 seconds with S = 5 searcher agents to 1.3 seconds

with S = 50 searcher agents and 2.52 seconds with S = 100 searcher agents.

When DGSA Layer 1 uses S = 200 searcher agents it has a mean execution time

of 5.13 seconds, meaning that with the tested settings the dynamic task

planner takes 0.0195% to 0.746% of the time of the brute force method.

Despite this small execution time with the highest settings tested, the optimal

settings for DGSA Layer 1 in this example case are to use between S = 50 and S

= 100 searcher agents with a maximum of λ = 25 iterations in the main phase

of the search algorithm. This is determined since the greatest increase in

accuracy is seen when increasing the number of searcher agents to S = 50 with

diminishing returns in accuracy seen when more than S = 100 searcher agents

are used. Additionally, utilising a more complex objective function in the search

algorithm, such as implementing DGSA layer 2, will massively increase this

execution time so it is undesirable to use more searcher agents given the

minimal increase in accuracy of the task planner.

6.4.3. Complex Manufacturing Task

Since the assembly task given by Nikolakis et al. (Nikolakis et al., 2018)

provides minimal opportunities to reorder subtasks to improve the efficiency

of the HR team it is required to develop a simulated more complex test case to

demonstrate the capabilities of DGSA Layer 2. It is chosen to use the same

example assembly task as given in (Dowlatshahi, Nezamabadi-Pour and

131

Mashinchi, 2014) but with a different set of precedence relations for subtasks

of the overall manufacturing task. These precedence constraints, given in Table

6.4 and illustrated in Figure 6.8, produce a manufacturing task with a higher

number of possible subtask orderings using the definition of a task plan in

addition to the definition of DGSA Layer 2.

Figure 6.8: The precedence relationships for the simulated more complex assembly task.

Table 6.4: New subtask precedence constraints for simulated more complex assembly task.

Subtask Number Precedence Constraints

1 0

2 0

3 0

4 {1,2,3}

5 4

6 5

7 6

8 7

9 8

10 4

11 10

12 11

13 12

14 13

15 14

16 15

17 16

18 4

19 18

20 19

21 20

22 21

23 4

24 {9,17,22,23}

1

2 4

3

5 6

18

10 11 17

9

…

19

…

22 …

23

24

132

This assembly plan allows the formation of multiple subassemblies, 𝑄𝑖,

as discussed in Section 6.2.5. which in this case are given by

𝑄1 = [5,6,7,8,9],

𝑄2 = [10,11,12,13,14,15,16,17]

and

𝑄3 = [18,19,20,21,22].

These subassemblies allow the formation of a potential simplified task plan

given by

𝐵𝑖 = [1,2,3,4,5,10,18,23,24]

and illustrated in Figure 6.9, along with its corresponding list of swappable task

plan elements given by

𝑈 = [1,1,1,0,2,2,2,2,0],

missing elements list given by

𝑉 = [6,7,8,9,11,12,13,14,15,16,17,19,20,21,22]

and missing elements execution constraints given by

𝑍 = [5,6,7,8,10,11,12,13,14,15,16,18,19,20,21].

Using the list of swappable task plan elements, there are 3 swappable subtasks

in group 1 and 4 swappable subtasks and subassemblies in group 2 giving a

total of 144 possible task plans for each set of task assignments.

Figure 6.9: A potential simplified task plan for the assembly plan defined using the precedence
relationships in Figure 6.8.

To execute the dynamic task planner, it is also necessary to set the

parameters of both DGSA Layer 1 and DGSA Layer 2 required for its operation.

These parameters are the same as those for DGSA Layer 1, however, now they

must be set individually for DGSA Layer 1 and DGSA Layer 2. As with the

1

2 4

3

5

18

10

23

24

133

previous manufacturing task, having two available workers results in

16,777,216 possible task assignments, however, for each of these there are 144

possible task plans. This results in 2,415,919,104 possible solutions to the

combined task assignment and task planning problem. In this simulated

manufacturing task DGSA Layer 1 will utilise the optimal parameters

determined for the real manufacturing task in Section 6.4.2. However, for the

execution of DGSA Layer 2 the parameters of the number of searcher agents,

S, and the maximum number of iterations, 𝜆, executed by the main phase of

the search algorithm are again varied to determine the effect on execution time

and accuracy of solution. DGSA layer 2 also uses linear decreasing functions to

reduce the gravitational constant, 𝐺(𝛿), and the number of best solutions, K,

over the lifetime of the DGSA execution. Utilising this method, K is again

reduced from the number of searcher agents S to 1 via Eq. (6.1) and 𝐺(𝛿) is

reduced from 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to 𝐺𝑒𝑛𝑑 via Eq. (6.2). The setting of 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝐺𝑒𝑛𝑑 are

again problem specific and are given by 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.4 and 𝐺𝑒𝑛𝑑 = 0.2 for DGSA

Layer 2 in this simulated case.

Utilising these parameters, it is first necessary to determine the

optimum number of searcher agents, S, and maximum number of iterations, 𝜆,

for the execution of the main phase of DGSA layer 2. As with the dynamic task

planner utilizing only DGSA Layer 1, this is necessary to determine the settings

for DGSA Layer 2 to optimise its accuracy and execution time. This begins with

a baseline using S = 2 searcher agents over a maximum number of λ = 4

iterations of the main phase of the search algorithm. From this baseline S is

increased to 10 in steps of 1 and λ is increased to 10 in steps of 2 to form a grid

search to determine the effect on execution time and accuracy of solutions.

Such small values are used for these parameters in comparison to those used

by DGSA Layer 1 due to the much smaller solution space of the task ordering

problem to generate a task plan. For each of these settings, DGSA Layer 2 is run

30 times for six potential sets of task assignments of the complex

manufacturing task, given in Table 6.5, to determine the accuracy of the

solution and execution time compared to the optimum task plans generated by

a brute force search of all possible task plans for a potential set of task

assignments. This brute force search was achieved by generating all possible

task plans for a potential set of task assignments then applying the objective

function to each of them to generate a data set. The task plans with the

minimum cost were found by searching this data set using built in Minimum

functions of the MATLAB software package. Here, DGSA Layer 2 and the brute

force search of the solution space are again both implemented in the MATLAB

software package.

134

Table 6.5: Potential sets of task assignments used to test DGSA Layer 2.

Name of Set of Task
Assignments

Task Assignments

potential task assignments
1

[1,1,2,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1]

potential task assignments
2

[1,1,2,1,1,1,2,1,2,2,2,1,2,2,1,1,2,2,2,2,1,1,1,1]

potential task assignments
3

[1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2]

potential task assignments
4

[1,1,2,2,1,1,2,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,2,2]

potential task assignments
5

[1,2,1,2,2,2,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,2,1,2]

potential task assignments
6

[1,1,2,2,1,1,2,1,1,2,1,1,1,1,2,1,1,1,1,1,1,1,2,2]

Table 6.6: A table showing a comparison of the highest mean cost of task plans found by DGSA Layer 2 in
comparison to those of the optimal task plans found via a brute force search of the solution space for the

potential sets of task assignments given in Table 6.5. Additionally, the number of searcher agents
required to reduce mean percentage cost difference to zero regardless of the maximum number of

iterations, λ, used in the main phase of the search algorithm are given.

Potential
Sets of Task
Assignments

Cost of
Optimum
Solutions
Found by
Brute Force
Search

Highest
Mean Cost
of Solutions
Found with
DGSA Layer
2 and
Settings
Used

Highest
Mean
Percentage
Cost Increase
of Solutions
Found with
DGSA Layer 2

Number of
Searcher
Agents, S,
Required to
Reduce Mean
Percentage
Cost
Difference to
Zero

1 15.67 15.88
S = 2, λ = 10

1.37% 7

2 11.98 11.98
S = 2, λ = 4

0% 2

3 13.48 13.62
S = 2, λ = 6

1.04% 5

4 9.58 9.77
S = 2, λ = 6

2.02% 10

5 14.07 14.16
S = 2, λ = 4
and λ = 10

0.67% 6

6 9.04 9.04
S = 2, λ = 4

0% 2

135

Figure 6.10: Plot of the mean percentage cost difference between the task plans found for potential task
assignments 4 by DGSA Layer 2 and the optimum task plans found using brute force, with varying

number of searcher agents and maximum number of iterations used by the main phase of DGSA Layer 2.

First, the accuracy of DGSA Layer 2 is evaluated by comparing the cost

of the solutions DGSA Layer 2 finds for the potential sets of task assignments in

Table 6.5, with those of the optimum solutions found through a brute force

search of the solution space. For the potential sets of task assignments given in

Table 6.5, the brute force search of the solution space finds a single optimal

task plan for potential task assignments 3 and 5 but finds 6 equally optimal task

plans for the other potential sets of task assignments. Table 6.6 shows the

highest mean cost of task plans found by DGSA Layer 2 in comparison to those

of the optimal task plans found via a brute force search of the solution space

for the potential sets of task assignments given in Table 6.5. Table 6.6 shows

that DGSA Layer 2 finds optimum or extremely close to optimum task plans for

potential task assignments 2 and 6 irrespective of the number of searcher

agents, S, and the maximum number of iterations, λ, DGSA Layer 2 uses in its

main phase. In contrast, DGSA Layer 2 finds task plans with a slightly higher

mean cost than the optimum solutions for potential task assignments 1, 3, 4

and 5 when a small amount of searcher agents, S, are used. The mean

percentage difference in costs between the task plans DGSA Layer 2 finds and

the optimum task plans for potential task assignments 4, which saw the highest

deviation, is shown in Figure 6.10. Figure 6.10 shows that increasing the

maximum number of iterations, λ, used in the main phase of the search

algorithm has an inconsistent effect on its accuracy. However, increasing the

number of searcher agents, S, used in the main phase of its search algorithm

136

consistently improves its accuracy. Here, S = 10 searcher agents are required

to consistently find the optimum or extremely close to optimum task plans

regardless of the maximum number of iterations, λ, used in the main phase of

the search algorithm. This behaviour is also shown when DGSA Layer 2 is

applied to potential task assignments 1, 3 and 5 with the corresponding

number searcher agents, S, required to consistently find the optimum or

extremely close to optimum task plans given in Table 6.6.

Table 6.7: A table showing a comparison of the highest mean completion time of task plans found by
DGSA Layer 2 in comparison to those of the optimal task plans found via a brute force search of the

solution space for the potential sets of task assignments given in Table 6.5. Additionally, the number of
searcher agents required to reduce mean percentage cost difference to zero regardless of the maximum

number of iterations, λ, used in the main phase of the search algorithm are given.

Potential
Set of Task
Assignments

Completion
Time of
Optimum
Solutions
Found by
Brute Force
Search
(Seconds)

Highest
Mean
Completion
Time of
Solutions
Found with
DGSA Layer 2
(Seconds)
and Settings
Used

Highest
Mean
Percentage
Completion
Time
Increase of
Solutions
Found with
DGSA Layer
2

Number of
Searcher
Agents, S,
Required to
Reduce Mean
Percentage
Completion
Time
Difference to
Zero

1 206.8 208.63
S = 2, λ = 10

0.88% 7

2 180.4 180.4
S = 2, λ = 4

0% 2

3 191.9 193.1
S = 2, λ = 6

0.63% 5

4 168.1 169.75
S = 2, λ = 6

0.98% 10

5 196 196.8
S = 2, λ = 4
and λ = 10

0.41% 6

6 163 163
S = 2, λ = 4

0% 2

137

Figure 6.11: Plot of the difference in total completion times between the task plans found for potential
task assignments 4 by DGSA Layer 2 and the optimum task plans found using brute force, with varying

number of searcher agents and maximum number of iterations used by the main phase of DGSA Layer 2.

To test the accuracy of DGSA Layer 2, it is also necessary to compare

the completion time of the solutions DGSA Layer 2 finds for the potential sets

of task assignments in Table 6.5, with those of the optimum solutions found

through a brute force search of the solution space. Table 6.7 shows the highest

mean completion time of task plans found by DGSA Layer 2 in comparison to

those of the optimal task plans found via a brute force search of the solution

space for the potential sets of task assignments given in Table 6.5. It is again

shown that the task plans DGSA Layer 2 finds have a slightly higher mean

completion time than the optimum solutions for potential task assignments 1,

3, 4 and 5 when a small amount of searcher agents, S, are used. The highest

deviation is again seen for potential task assignments 4, however, the

magnitude of this deviation is smaller than that seen for the cost of the task

plan. The mean completion time difference between the task plans DGSA Layer

2 finds and the optimum task plans for potential task assignments 4 is shown

in Figure 6.11. Figure 6.11 again shows that increasing the maximum number

of iterations, λ, used in the main phase of the search algorithm has an

inconsistent effect on its accuracy. However, increasing the number of searcher

agents, S, used in the main phase of DGSA Layer 2 again consistently improves

its accuracy. Table 6.7 shows that the searcher agents required to consistently

find the optimum or extremely close to optimum task plans regardless of the

maximum number of iterations, λ, used remains unchanged for the potential

task assignments in Table 6.5.

138

Figure 6.12: Plot of the mean execution time for DGSA Layer 2 when applied to potential task
assignments 1, with varying number of searcher agents and maximum number of iterations used by the
main phase of DGSA Layer 2 in addition to the execution time of a brute force search of all potential task

plans for potential task assignments 1.

To complete analysis of the performance of DGSA Layer 2, it is necessary

to assess the corresponding execution time of the search algorithm for each of

the potential task assignments in Table 6.5 compared to a brute force search

of the solution space. Here, Figure 6.12 shows the mean execution time of

DGSA Layer 2 when applied to potential task assignments 1 under the tested

settings in addition to the brute force execution time to find the optimum task

plan. This shows that, as with DGSA Layer 1, the mean execution time of DGSA

Layer 2 displays a linearly increasing trend when increasing the number of

searcher agents, S, it uses with the maximum number of iterations in its main

phase, λ, significantly affecting the growth rate. The same behaviour is shown

when DGSA Layer 2 is applied to each of the potential sets of task assignments

in Table 6.5. In all of these cases, increasing the maximum number of iterations,

λ, DGSA Layer 2 uses in its main phase has an inconsistent effect on its accuracy

compared to increasing the number of searcher agents. This again implies that

priority should be given to increasing the number of searcher agents DGSA

Layer 2 uses rather than the maximum number of iterations it uses in its main

phase.

 For potential task assignments 1, 3, 4 and 5 a mean number of S = 7

searcher agents is required to find an optimum or extremely close to optimum

task plan in all 30 runs of DGSA Layer 2 regardless of the maximum number of

iterations used in its main phase. This mean value does not consider the

139

accuracy for potential task assignments 2 and 6 since in those cases an optimal

task plan was found in all 30 runs regardless of the settings used in DGSA Layer

2. Table 6.8 shows the mean execution times of DGSA Layer 2 when using these

optimum settings of S = 7 searcher agents and a maximum number of λ = 4

iterations in the main phase of DGSA Layer 2, along with the execution times

of a brute force search of all potential task plans. Under these settings DGSA

Layer 2 is slower by a mean of 23%, however, it is important to note that this

increase only represents a few hundredths of a second. Although DGSA Layer

2 is slower in this case, it is important to note that for larger solution spaces

the execution time of the brute force method would not scale as efficiently as

that of DGSA Layer 2. As seen with the testing of the task planner utilising DGSA

Layer 1 only, in larger solution spaces the Discrete Gravitational Search

Algorithm is a far more efficient way of finding a good task plan for a set of task

assignments.

Table 6.8: A table of the execution times of a brute force search of all potential task plans for a proposed
set of task assignments (given in Table 6.5) in addition to the mean execution time of 30 runs of DGSA
Layer 2 under the proposed optimum settings. A comparison of the execution times of both methods is
also presented with the mean increase in execution times and the corresponding percentage increase.

Potential
Set of Task
Assignments

Execution
Time of
Brute Force
Method
(Seconds)

Mean
Execution Time
of DGSA Layer
2 (Seconds)
when S = 7 and
λ = 4

Mean
Increase in
Execution
Time
(Seconds)

Mean
Percentage
Increase in
Execution
Time

1 0.1012 0.1172 0.016 15.8%

2 0.0987 0.1215 0.0228 23.1%

3 0.0970 0.13 0.033 34%

4 0.0994 0.1161 0.0167 16.8%

5 0.0954 0.1276 0.0322 33.8%

6 0.1085 0.1244 0.0159 14.7%

6.4.4. Testing of the Full Dynamic Task Planner

Following the tests to determine the accuracy and runtime of DGSA

Layer 2 it is necessary to apply the full dynamic task planner to the complex

manufacturing task to determine its accuracy and execution time. For DGSA

Layer 1 and DGSA Layer 2 the same settings are applied as those used in the

testing contained within Sections 6.4.2 and 6.4.3, respectively. In this case, the

optimum number of searcher agents, S, and maximum number of iterations, 𝜆

the main phase of the search algorithm uses are set based on the results of the

experiments in Sections 6.4.2 and 6.4.3. Here DGSA Layer 1 utilises S = 70

searcher agents over a maximum number of λ = 25 iterations of its main phase

whereas DGSA Layer 2 utilises S = 7 searcher agents over a maximum number

140

of λ = 4 iterations. Again, the dynamic task planner is run 30 times to determine

accuracy of the solution and execution time compared to the optimum set of

task assignments and task plan generated using a brute force search of all

possible task plans for every possible set of task assignments. This brute force

search was again achieved by generating all possible sets of task assignments

and task plans that satisfy the result of the task pre-execution constraints then

applying the objective function to each of them to generate a data set. The set

of task assignments and task plans with the minimum cost was found by

searching this data set using built in Minimum functions of the MATLAB

software package. Here, the dynamic task planner and the brute force search

of the solution space are once again both implemented in the MATLAB

software package. The mean cost and total completion time of the solutions

generated by the dynamic task planner are shown in Table 6.9 alongside those

of the optimum solution obtained through a brute force search of the solution

space. Table 6.9 also shows the mean execution time of the dynamic task

planner in addition to the execution time of the brute force search of the

solution space.

 It is first important to note that the brute force search of the entire

solution space finds a single optimum set of task assignments with 6 optimal

task plans. Analysing Table 6.9 shows that the costs of the sets of task

assignments and task plans found by the dynamic task planner are a mean of

17.1% higher than those of the optimum solution. Additionally, the mean

difference in completion times from the optimal solution is 6.27 seconds

meaning they are approximately 4.7% larger. For the 30 runs of the complete

dynamic task planner in this task planning problem the mean execution time is

approximately 22.4 minutes which is approximately 1.05% of the execution

time of the brute force search.

Table 6.9: A table of the mean cost and completion time of the solutions generated by the dynamic task
planner for the complex task as well as those of the solution generated through a brute force search of

the solution space. In addition to this the mean execution time of the dynamic task planner and the
execution time of the brute force method are presented.

Method Cost of Solution Completion Time
of Solution
(Seconds)

Execution Time
to Calculate

Brute Force
Search

5.61 133.5 34.9 Hours

Dynamic task
planner (Mean
Value of 30
Runs)

6.57 139.77 22.4 Minutes

Here, a better accuracy is achieved for the full dynamic task planner

compared with when only DGSA Layer 1 is utilised with a few pre-set possible

task plans. Despite this it is shown that the optimal set of task assignments and

141

task plans are still not found by the dynamic task planner, but the solutions

found are still good solutions. In this case, the dynamic task planner has an

execution time of 22.4 minutes meaning a new set of task assignments and task

plan could not be generated after a task iteration and be implemented in the

next iteration. Instead in cases such as this where both layers of the task

planner are implemented, the dynamic task planner would be required to

operate whilst the task continues to be executed by the HR team with the

resulting task assignments and task plan being implemented when ready.

6.5. Chapter Summary

In this chapter a methodology was presented for generating new sets

of task assignments and task plans for HR teams in a manufacturing task. This

methodology utilised the Discrete Gravitational Search Algorithm (DGSA)

proposed in (Dowlatshahi, Nezamabadi-Pour and Mashinchi, 2014), a

metaheuristic search algorithm that allowed the solution spaces of the task

planning problem to be searched quickly to find a good solution. The Discrete

Gravitational Search Algorithm was implemented in a dual-layer dynamic task

planner with the first layer, DGSA Layer 1, searching for possible task

assignments for a HR team and the second layer, DGSA Layer 2, searching all

possible task plans for each potential set of task assignments as shown in Figure

6.3.

To test the accuracy and speed of this task planning methodology in

addition to determining the optimal settings for each layer of the DGSA, it was

applied to an example assembly task for a turbocharger given in (Nikolakis et

al., 2018) that was capable of being performed by a HR team. Given the task

precedence relations for this assembly task, there were only two possible task

plans, meaning that the second layer of the task planner, DGSA Layer 2, could

not be implemented. To allow the full dynamic task planner to be tested, two

example assembly tasks were simulated based on the turbocharger task given

in (Nikolakis et al., 2018). The first task, the simple task, consisted of the

unaltered turbocharger task whilst the second task, the complex task,

consisted of the same subtasks with a simulated set of precedence relations for

the completion of the subtasks allowing for multiple potential task plans.

For the simple assembly task, the dynamic task planner was applied

with DGSA Layer 2 replaced by a brute force check of the two possible task

plans. In this case the accuracy of the task planner meant that the found sets

of task assignments and task plans had a mean cost around 39% larger than the

solution found using a brute force search of the solution space with a mean

task completion time approximately 30 seconds larger under optimal settings.

Despite this accuracy, the task planner could be executed in a mean execution

time of 1 to 2 seconds, compared to 11.5 minutes for the brute force search,

meaning it could be executed after a task iteration with the new set of task

142

assignments and task plan being implemented in the next task iteration. Such

performance enables the viability of the overall task planning methodology

proposed in Chapter 3, allowing the task planner to be implemented at set

intervals to ensure the current set of task assignments and task plans for a HR

team reflects the current capabilities of each worker.

 For the complex task, it was first necessary to determine the accuracy

and speed of DGSA Layer 2 to find an optimum task plan for six potential sets

of task assignments in addition to determining its optimal settings. In these

cases, it was shown that DGSA Layer 2 was consistently capable of finding an

optimal or very close to optimal task plan given a set of task assignments,

regardless of the settings used. Through testing with these six potential sets of

task assignments the optimal settings for DGSA Layer 2 were determined that

balanced accuracy of the solution with minimising the execution time of the

search algorithm. Under these optimal settings, DGSA Layer 2 had a mean

execution time of 0.12 seconds which was on average 23% slower than a brute

force search of the solution space. Although slower, it was important to note

this difference in execution time was a few hundredths of a second and that

DGSA Layer 2’s execution times would scale far more favourably with larger

solution spaces than brute force methods.

 Once the optimal settings for DGSA Layer 1 and DGSA Layer 2 were

determined, the full dynamic task planner was applied to the complex task to

determine its accuracy and speed under these settings. It was shown that the

dynamic task planner had a better accuracy than in the simple task with the

found sets of task assignments and task plans having a mean cost that was

17.1% higher and a mean total completion time that was 6.3 seconds slower

than those of the optimal solution. Given the much larger solution space of this

problem, the mean execution time of the dynamic task planner was 22.4

minutes compared to the execution time of 34.9 hours for a brute force search

of the solution space. The large magnitude of the execution time of the

dynamic task planner in the complex task compared to that in the simple task

would mean that the task could not be re-planned between task iterations of

the manufacturing task. To enable the viability of the overall task planning

methodology proposed in Chapter 3 for such complex tasks, it would be

required for the task to be planned in the background whilst the human and

robot workers continue to execute the task and implement the new set of task

assignments and task plan when it is ready. Given the optimal completion time

of the complex task of 133.5 seconds, it could take 10 to 11 iterations of the

task before the new task plan would be ready and potentially mean the new

task plan could lose its relevance. It is important to note that the execution

time could be reduced with optimisation of the code executing the dynamic

task planner and better hardware. However, given the magnitude of the

completion time this would likely still require the dynamic task planner to be

executed in this way.

143

7. Utilising Dynamic Task Planning to Replan

Manufacturing Tasks Across a Work Shift

7.1. Introduction

Following the introduction of the task planning methodology and tests

of its accuracy in finding an optimum set of task assignments and task plan, it

is necessary to test the effects of dynamic task planning across a work shift to

determine the benefits that it can bring to optimising the use of Human-Robot

(HR) teams. In this research, work shifts are simulated to allow the testing of

multiple scenarios of human performance reflecting variation in their

capabilities and enabling analysis of how the task planner would react in these

situations. Two groups of scenarios are considered, the first of which relates to

changes in performance of a human worker detectable by continuous variables

described in Chapter 4. The second of these groups of scenarios relates to

changes in capabilities of the human and robot workers detectable by discrete

variables described in Chapter 5. These scenarios are tested with both the

simple and complex tasks described in Chapter 6 to determine the utility of task

planning, respectively, for the existing linear production task, described in

Section 6.4.1, in addition to the simulated more modular production task,

described in Section 6.4.3.

 This chapter begins with the definition of methods for determining

when task assignments should be re-evaluated in Section 7.2. To achieve this,

methods are first defined to determine the intervals between task replanning

attempts for the re-evaluation of task assignments and plans. Following this, a

checking function is defined to determine whether the change in worker

performance or capabilities is large enough to justify task replanning. Next, the

pre-execution constraints for the dynamic task planner are modified to ensure

that the pre-allocation of tasks does not restrict the capabilities of the dynamic

task planner. Additionally, modifications are defined to handle situations that

could potentially be problematic for the dynamic task planner. This chapter

continues with the detailed the setup of simulated work shifts for a HR team in

Section 7.3 to allow testing of the dual-layer dynamic task planner. To achieve

this, methodologies are defined for generating simulated production data for

human and robot workers which are then used to generate costs for the

workers to complete subtasks of the overall manufacturing task. To complete

the setup of the simulations, it is necessary to define the structure of the

simulated work shift to dictate the length of the work shift and when the

human worker should take breaks. Finally, the results of these simulations are

discussed in Section 7.4, analysing the effect of task replanning on the

efficiency of the simulated HR team.

144

7.2. Task Assignments and Plan Re-Evaluation

7.2.1. Determining Intervals Between Replanning Attempts

The task planning system proposed in this research is designed to re-

evaluate sets of task assignments and task plans at set intervals during a work

shift to minimise the increase in cost for the task plan over a work shift whilst

optimising the efficiency of the HR team. This is necessary as continuously

replanning task assignments over the course of a work shift with constant

switching of tasks would likely cause confusion in a real-life HR team and

negate the benefits of task replanning. The set intervals between task

replanning must be defined by the end user, by specifying the number of

iterations of the full manufacturing task completed before re-planning can

occur. This definition allows re-planning attempts to be made at regular

intervals whilst making the intervals easily definable by the end user.

Due to the limitations of the dynamic task planner, it is necessary to

define two separate procedures for instigating task replanning opportunities.

This is necessary due to the increasing magnitude of execution time for the

dynamic task planner with the increasing complexity of the task assignment

and planning problem. It was shown in Chapter 6 that for the simple task,

where DGSA Layer 2 was not employed, that the dynamic task planner had an

execution time of a few seconds. However, for the complex task, when using

both DGSA Layers 1 and 2, the full task planer could take up to 22 minutes. This

means that for the simple task, the task planner can replan the task between

task iterations, whereas for the complex task, the task must be replanned

whilst production continues with the new set of task assignments and task plan

being implemented when ready.

The procedure for scheduling replanning attempts for the simple task

operates by instigating attempts at set intervals of 10 task iterations with this

pattern broken only by worker break periods. For these break periods,

replanning attempts should occur after the last task iteration before the human

worker returns to the manufacturing task to ensure a new set of task

assignments and task plan is ready for their return. The following replanning

attempts should occur every 10 iterations from this new last occurrence of

replanning. A diagrammatic representation of this scheduling procedure is

shown in Figure 7.1.

145

Figure 7.1: A representation of the procedure for scheduling task replanning attempts for the simple
manufacturing task. This illustrates the methodology of scheduling task replanning at intervals of 10

complete task iterations with the set of task assignments and task plan being implemented in the next
task iteration. An exception to this procedure occurs with a break period for a human worker, where the

task must instead be replanned after the last task iteration before the human worker returns to the
manufacturing task. Task replanning then continues at the set interval of 10 task iterations from this

point.

The procedure for scheduling replanning attempts for the complex task

instead operates by instigating replanning attempts at set intervals of 10 task

iterations from the implementation of the last set of task assignments and task

plan. This is necessary to ensure that there is a consistent amount of data from

each implemented set of task assignments and task plan available to generate

costs for use in the next attempt at replanning. In addition to this, to ensure a

new set of task assignments and task plan is ready when the human worker

returns from their break period, it is necessary to ensure replanning is

instigated with enough time for the task planner to be executed. To achieve

this, it is necessary to instigate a replanning attempt when the time difference

between the human worker’s remaining break period and the mean execution

time of the task planner in the current work shift is less than twice the current

execution time of the manufacturing task. A diagrammatic representation of

this scheduling procedure is shown in Figure 7.2.

Replan task before human

returns to workspace

Time

Human and robot

complete task together

Human worker’s break period,

robot completes task alone

10 task

iteration

interval

Task

replanning

attempts

Work

shift

start

146

Figure 7.2: A representation of the procedure for scheduling task replanning attempts for the complex
manufacturing task. This illustrates how the methodology of scheduling task replanning at intervals of
10 complete task iterations must be modified to account for the larger execution time of the dynamic

task planner when applied to the complex manufacturing task. Here task execution by the HR team must
continue whilst the task is replanned with a new set of task assignments and task plan implemented

when they are ready. To accommodate this, the next task replanning attempts should occur at an
interval of 10 complete task iterations after the last set of task assignments and task plans was

implemented. Additionally, during the human worker’s break period, it is necessary to ensure replanning
is instigated with enough time for the dynamic task planner to be executed so a new set of task

assignments and task plan is ready for their return.

7.2.2. Replanning Utility Checking Function

Despite instigating task replanning attempts at set intervals, it may not

be necessary to execute replanning if worker costs have not significantly

changed. In this way, unnecessary computational expense to find the same or

similar set of task assignments and task plan is avoided. Additionally, in the

cases of multiple optimum task assignments and plans, replanning could result

in task assignment and task plan changes that do not reduce the cost for the

HR team to complete the manufacturing task or improve its efficiency. To this

end, it is desirable to introduce a checking function based on worker costs that

determines whether it is necessary to execute task replanning when a

replanning attempt is instigated. This checking function must determine if

there has been any significant change in worker costs, by assessing the current

costs for each worker against their costs from the last occurrence of task

replanning. The function is used to check several conditions which, if any are

satisfied, determine if the set of task assignments and task plan should be re-

evaluated. These conditions are designed to implement the task planner in

cases where replanning could potentially be appropriate to improve the

Dynamic task

planner execution

time

Time

Human and robot

complete task together

Human worker’s break period,

robot completes task alone

10 task

iteration

interval

Work

shift

start

Task

replanning

initiated

New task

assignments and

plan implemented

Task replanning implemented

during break period to ensure

new task assignments and plan

are ready for the return of the

human worker

147

efficiency of the HR team and if this is not possible minimise cost increase

across the work shift.

The first of these conditions handles cases where the optimal worker

for a subtask has changed between the current replanning attempt and the last

occurrence of task replanning. This situation necessitates replanning as a

change in the optimal worker for a subtask could result in a different set of task

assignments with a smaller overall cost to carry out the manufacturing task. To

assess such a change, it is necessary to define the optimal worker for each

subtask as the worker with the lowest cost to complete the subtask. This list of

optimum workers must then be reassessed with each task replanning attempt.

If the optimum worker has changed for one or more subtasks since the last

occurrence of task replanning then the condition for task replanning to be

executed is fulfilled.

The second of these conditions handles cases where the cost for a

worker to complete a subtask has increased significantly from their cost at the

last occurrence of task replanning. This situation necessitates task replanning,

even if the task assignment remains optimal, as a new task plan with a different

ordering of subtasks could reduce the overall cost for the HR team to complete

the manufacturing task. To assess this, the difference in cost between the

current iteration of the task and the costs from the last occurrence of task

replanning is calculated for each worker in each subtask. To determine if the

task should be replanned a threshold cost difference, ω, must be defined to

determine how significant the change in worker costs should be to warrant a

task replanning attempt. If any of the cost differences are greater than a

threshold cost difference, ω, then the DGSA task planner should be executed.

Combining these procedures for these re-planning conditions gives the

full checking function and the fulfilment of either of these conditions results in

the checking function returning a value of 1. If this occurs, the task can then

be re-planned with the dynamic task planner proposed in Chapter 6. However,

if the checking function returns a value of 0 then task replanning is not carried

out to avoid unnecessary computational expense.

7.2.3. Modification to Task Planner Pre-Execution Constraints

 To enable optimal application of the dynamic task planner across a work

shift, it is necessary to make several modifications to the task planner pre-

execution constraints proposed in Section 6.3. This is necessary due to the

operational limits of using online data to generate costs for human and robot

workers to complete manufacturing subtasks, in addition to ensuring the

dynamic task planner is not restricted by excessive pre-allocation of subtasks.

 First, it is necessary to mitigate for a possible task planning scenario

where a human worker is assigned a subtask but has not yet completed this

148

subtask in the current work shift. Such a situation would result in there being

no data from the current work shift relating to their current performance and

capabilities in completing this subtask, meaning an accurate cost could not be

calculated for the subtask to allow a fair comparison with the robot worker.

Second, it is necessary to ensure that the task planner pre-execution

constraints do not restrict the capabilities of the dynamic task planner to search

other task assignments through excessive pre-allocation of subtasks before use

of the dynamic task planner. This is necessary when human workers become

over or under fatigued as it is more likely that the cost difference between

them and the next best worker will increase beyond the threshold cost

difference, η, defined for this procedure unless it is set very high.

 These operational limits are mitigated by modifying the pre-execution

constraints in Section 6.3 to ensure that the task plan pre-execution constraints

cannot pre-assign more than 50% of the manufacturing subtasks to a worker

before the dynamic task planner is used. This is applied by instead generating

the pre-execution constraints with the following procedure:

1. The locked in identifier, 𝜓𝑖, is set as 1 for a subtask i in the list of locked

in task assignments, 𝛹, if it was assigned to the robot worker in the

initial set of task assignments. The corresponding task assignments, 𝛼𝑖,

in the corresponding set of base task assignments, Λ, are set as the

worker number for the robot worker.

2. The remaining percentage of pre-allocated subtasks are assigned as in

the task pre-allocation procedure defined in Section 6.3 with the

exception that assignment priority will be defined by the magnitude of

the difference in cost between a worker and the next best worker in

descending order from the maximum cost difference.

 The first step in this procedure ensures that tasks cannot be reassigned

to human workers during the work shift if they were assigned to a robot worker

in the initial set of task assignments generated at the start of the current work

shift. This step could only be overridden if the robot worker’s cost for a

manufacturing subtask increases significantly between task iterations for a task

locked in for them. This would allow the task to be reassigned to a human

worker as it indicates the robot worker’s capabilities have significantly

decreased. However, the consistency of robot completion times in completing

tasks means this scenario would only occur if a robot worker made significant

errors in completing a subtask resulting in the cost increasing for discrete

variables in that subtask. Due to the accuracy and tolerance to repetitive tasks

of robot workers, such a scenario is assumed to have a low probability of

occurrence and is not considered within this research. The second step of this

procedure allows tasks to be locked in as with the pre-execution constraints in

149

Section 6.3. However, it also ensures that pre-allocation of subtasks does not

restrict the search space of the dynamic task planner.

7.3. Dynamic Task Planner Testing: Replanning Sets of

Task Assignments and Task Plans across a Work Shift

7.3.1. Simulating Work Shifts for Human and Robot Workers

To test the effect of task replanning on the efficiency of the HR team, it

is decided to simulate the performance of a HR team completing a

manufacturing task across a work shift with and without implementation of the

dynamic task planner during a work shift. In both of these cases, the initial set

of task assignments and task plans for the HR team are generated by utilising

the historic data on worker performance as demonstrated in Chapter 6. This

allows testing of the dynamic task planner in multiple potential scenarios of

changes to the performance and capabilities of human and robot workers. This

testing is again conducted by applying the dynamic task planner to the simple

and complex example manufacturing tasks from Chapter 6 utilising one human

and one robot worker, again defined as workers 1 and 2, respectively. Costs for

these workers are generated using the full cost functions proposed in Section

6.4.1 including the fatigue and precision of sealant application variables. To

simulate these work shifts, it is necessary to generate the input data for the

cost functions in addition to setting the variables for their calculation and

defining the structure of the work shift in terms of work and break periods. This

setup is defined over Section 7.3 beginning with the simulation of completion

times for subtasks a worker is currently assigned followed by estimating what

their completion times would be when they are not assigned a subtask. Next

the generation of costs for workers across the simulated work shift is defined

followed by the setup of the simulated work shifts and which scenarios of

worker performance and capabilities these are designed to simulate.

7.3.2. Simulating Completion Times for Tasks Assigned to a

Worker

 To generate costs for the human worker using the full cost functions

from Section 6.4.1, it is first necessary to generate input data for the fatigue

and completion time variables defined in Chapter 4. To apply the fatigue

variable, it is first necessary to define how expected completion times for the

human are generated for each of the subtasks assigned to the human worker

in the example manufacturing tasks. As defined with the fatigue variable in

Chapter 4, the expected completion time, Ei,j, for the human worker in task

iteration i of subtask j is generated using the completion time model proposed

by (Digiesi et al., 2009) as given by Eqs. (4.1), (4.2) and (4.4) for subtasks the

human worker is assigned. To apply this model, it is first necessary to determine

150

the historic initial completion time for the human worker in a task assignment

period and generate the synthetic measure of fatigue, 𝜏𝑗
′, for a subtask j via Eq.

(4.4). In both example manufacturing tasks, the initial completion times, t1,j, of

subtask j for the human worker are given by the historic initial completion

times in Table 6.1. This initial completion time must change if the task is un-

assigned and later reassigned to the human worker to the initial completion

time of the current task assignment period, as defined by Eq. (4.2).

 To generate the synthetic measure of fatigue it is necessary to know

how many iterations, Dj, of a subtask j the human worker can complete in the

time period of length Tj seconds. It is assumed that the manufacturer

implementing this system will have or is able to obtain this information for each

subtask of a manufacturing task for a human worker. In the case of these

simulated work shifts, it is necessary to generate this information as this was

not provided in (Digiesi et al., 2009). In this research it is assumed that the

human worker, when performing as expected, can complete 75% of the task

iterations that would be completed if they completed the task consistently with

their historic initial completion time as given in Table 6.1. This allows the

definition of the number of iterations of a subtask j that the human worker can

complete in time period Tj as

 𝐷𝑗 = ⌊0.75
𝑇𝑗

𝑡𝑤,𝑗
⌋.

(7.1)

In this research, Dj is defined for each subtask by setting the time period Tj as

one hour as it is assumed that a manufacturer would give this information for

a pre-specified time period. Using the initial completion time tw,j for a task

assignment period of subtask j beginning in task iteration w, along with the

number of iterations, Dj, of the subtask completed in a time period of Tj = 3600

seconds it is possible to calculate the synthetic measure of fatigue 𝜏𝑗
′ using Eq.

(4.4).

 To apply the fatigue variable for human workers and completion time

variable for both workers defined in Chapter 4, it is also necessary to simulate

the completion times depicting those collected as workers are performing their

assigned subtasks. In this research, the initial completion times for the robot

worker given in Table 6.1 are used to simulate their completion times across a

work shift. These completion times are used as it is assumed that a robot

worker’s completion times would vary minimally compared to those of a

human worker due to their accuracy and repeatability. In contrast, for the

human worker it is decided to simulate three possible scenarios of human

performance to test the capabilities of the dynamic task planner. These

scenarios include the human worker performing as expected, in addition to

where the human worker is over or under fatigued representing worse or

better than expected performance, respectively. When over or under fatigued,

151

the human worker’s costs will increase or decrease significantly due to the

fatigue variable in addition to their completion times affecting the potential

idle time of workers. These changes in performance mean that the optimal set

of task assignments and task plan could change significantly compared to when

the human worker is performing as expected.

 To generate completion times for these scenarios, the completion time

model proposed by (Digiesi et al., 2009) is again used with over or under

fatigued performance being simulated by attenuating the historic initial

completion time of the human worker for each subtask. In the example case in

this research, it is assumed that when the human worker is over fatigued or

under fatigued that their initial completion time for a subtask at the beginning

of a work shift will increase or decrease, respectively, by 10%. Using this

assumption, the initial completion times for each subtask in the initial iteration

of the simulated work shift for each of these scenarios are given in Table 7.1 in

addition to the resulting number of iterations, Dj, of each subtask completed in

a time period of Tj = 3600 seconds generated with Eq. (7.1). These values allow

the synthetic measure of fatigue, 𝜏𝑗
′, to be generated for each subtask in each

of the fatigue scenarios using Eq. (4.4) and subsequently generate the

completion times across a work shift using Eq. (4.1).

 It is also necessary to add noise to the simulated real completion times

to simulate the natural variation in human completion times that would be

present in real data instead of the smooth increase in completion times

generated from the model proposed by (Digiesi et al., 2009). In this research, it

is assumed that this natural variation in the completion time for a subtask for

the human worker is at most ±5% of the initial completion time for the subtask

in the first iteration of the simulated work shift. Since this is considered at the

extremes, the actual variation for the human worker’s completion times in a

subtask j is generated as 0.05 𝑡1,𝑗 multiplied by a random variable generated

from the N(0,0.125) distribution. This distribution is chosen to ensure that the

extremes of the simulated variation in completion time can be reached but not

exceeded. This simulated natural variance in completion times is only added

from the second iteration onwards of every task assignment period.

152

Table 7.1: A table of the initial completion times and number of iterations of the subtask completed in a
time period of Tj = 3600 seconds for the human worker under the three proposed fatigue scenarios.

Subtask

Human Performing as
Expected

Under Fatigued Human
Worker

Over Fatigued Human
Worker

Initial
Completion
Time, t1,j

Number of
Iterations
Completed,
Dj

Initial
Completion
Time, t1,j

Number of
Iterations
Completed,
Dj

Initial
Completion
Time, t1,j

Number of
Iterations
Completed,
Dj

1 6 450 5.4 500 6.6 409

2 4.7 574 4.23 638 5.17 522

3 16.6 162 14.94 180 18.26 147

4 8.1 333 7.29 370 8.91 303

5 3.9 692 3.51 769 4.29 629

6 1.7 1588 1.53 1764 1.87 1443

7 7.9 341 7.11 379 8.69 310

8 18 150 16.2 166 19.8 136

9 19 142 17.1 157 20.9 129

10 5.3 509 4.77 566 5.83 463

11 2.4 1125 2.16 1250 2.64 1022

12 1.7 1588 1.53 1764 1.87 1443

13 2.7 1000 2.43 1111 2.97 909

14 3.3 818 2.97 909 3.63 743

15 8.5 317 7.65 352 9.35 288

16 8.8 306 7.92 340 9.68 278

17 13.5 200 12.15 222 14.85 181

18 9.5 284 8.55 315 10.45 258

19 1.9 1421 1.71 1578 2.09 1291

20 2.4 1125 2.16 1250 2.64 1022

21 7.2 375 6.48 416 7.92 340

22 12.3 219 11.07 243 13.53 199

23 17.7 152 15.93 169 19.47 138

24 2.6 1038 2.34 1153 2.86 944

7.3.3. Simulating Completion Times for Tasks Not Assigned to a

Worker

 To generate costs for the workers using the full cost functions from

Section 6.4.1, it is also necessary to generate input data for the fatigue and

completion time variables for subtasks that are not currently assigned to a

worker. Once a subtask is taken away from a worker it is necessary to model

how their performance should change to determine their cost for completing

the task. By determining costs in this way for subtasks the worker is no longer

assigned, this enables the task planner to determine if a worker’s performance

should have improved since the subtask was reassigned and possibly allow the

subtask to be reassigned back to them.

153

 Here, the initial completion times for the robot worker given in Table

6.1 are also used to simulate their completion times across a work shift when

they are not currently assigned a subtask. This is possible as the assumption, in

Section 7.3.2, that a robot worker’s completion times would vary minimally

compared to those of a human worker still holds in such cases. To generate

expected and current simulated completion times for a human worker, it is

instead necessary to define a recovery completion time model that determines

how a worker’s completion times for a task would improve when they are not

assigned a subtask of the overall manufacturing task. Through a literature

review, a counterpart model to the fatigue model proposed in (Digiesi et al.,

2009) for recovery of completion times in a repetitive manufacturing task was

not found. Due to this and to provide a recovery model required for simulating

a work shift, it is assumed that a human worker’s completion times would

recover at the same rate that they became fatigued, allowing the growth factor

of the model proposed in (Digiesi et al., 2009) to be reversed. As this recovery

model follows the same approach as the model proposed in (Digiesi et al.,

2009) it must be calculated individually for each subtask that is not currently

assigned to a human worker with the exception of subtasks the human worker

has never been assigned in the current work shift.

To generate the recovery model, it is first necessary to define an initial

completion time from which the completion times will reduce as the human

worker recovers. Since this recovery is from the completion time at the end of

the last task assignment period, the initial completion time for a subtask is set

as the expected completion time, 𝐸𝛩𝑗,𝑗, where Θj is the last task iteration that

the human worker was assigned subtask j. Following this, it is necessary to

define the synthetic measure of fatigue for use by the recovery model as the

factor determining the magnitude of recovery in completion times. The

synthetic measure of fatigue, 𝜏′𝑗, for subtask j, used in the last task assignment

period of the subtask cannot be used in this case and instead a new synthetic

measure of fatigue recovery must be defined. This is necessary as using the

synthetic measure of fatigue for a human worker defined in Eq. (4.4) would

only allow the completion time for a human worker in a subtask to recover to

the completion time of the first iteration of the last task assignment period of

the subtask for the human worker. In this research, it is instead assumed that

given enough time a human worker’s completion times can recover to their

initial completion times from the start of the work shift.

To determine this new synthetic measure of fatigue recovery, 𝜏−𝑗, for a

subtask j, it is assumed that recovery will reverse the cumulative fatigue gained

over the whole work shift. This requires the recovery model to ignore previous

recovery periods and determine the overall rate of fatigue for a worker over

the entire work shift. This allows the new synthetic measure of fatigue recovery

to be determined using the initial expected completion time for a subtask from

154

the current work shift and the expected completion time from the last iteration

of the last subtask assignment period. Using the justification provided in

Appendix A, it is possible to define the synthetic measure of fatigue recovery

for the recovery model as

𝜏−𝑗 =

(𝐸𝛩𝑗,𝑗 − 𝐸1,𝑗)

ln(1 + 𝛩𝑗)
 (7.2)

for a subtask j, where 𝐸1,𝑗 is the worker’s expected completion time during the

first task iteration and 𝐸𝛩𝑗,𝑗 is their expected completion time in the task

iteration, Θj, that they were last assigned the subtask.

 Finally, to generate the recovery model it is necessary to calculate the

number of iterations, Γj, of the entire manufacturing task that would have been

completed over the work shift in the length of time that a human worker has

not been assigned a subtask j at the current task iteration. To calculate this, the

total time elapsed during the work shift is stored after every task iteration to

enable calculation of the time elapsed since a worker was last assigned a

subtask and determine the task iteration at which the total work shift

completion time exceeds this. This enables the expected completion time for a

subtask j a human worker is not currently assigned to be defined as

 𝐸𝑖,𝑗 = 𝐸𝛩𝑗,𝑗 − 𝜏
−
𝑗 ∙ ln(𝛤𝑗). (7.3)

7.3.4. Generating Discrete Capability Data for Human and Robot

Workers

 In addition to production data for continuous variables, it is necessary

to generate production data from discrete variables to assess the task planner’s

ability to react to discrete instantaneous changes in a worker’s capabilities. A

barrier to this occurs as the details of quality assurance methods or error

checking for subtasks that would be used to form discrete variables were not

provided in (Nikolakis et al., 2018) for the turbocharger assembly task. As a

result, it is necessary to simulate a discrete variable to determine how the

dynamic task planner would react to discrete events causing a sudden increase

in cost for a human worker. To achieve this, as described in Section 6.4.1, the

discrete precision of sealant application variable from Chapter 5 is used, along

with costs generated for the individual sealant errors of the human worker, to

represent a typical discrete variable in the cost functions for workers in the

simple and complex manufacturing tasks. This variable is applied to the pick

and place subtask in addition to the sensing subtask to provide a representative

cost for a discrete variable.

155

 To apply the discrete precision of sealant application variable, it is first

necessary to simulate the cost of individual iterations of the sealant application

subtask when completed within tolerances. These costs are again generated

from the truncated normal distributions given in Section 5.4.1 in these cases.

This means costs for the human worker for these individual iterations of the

sealant application subtask are again randomly generated from a N(0.05,0.012)

distribution truncated between 0 and 0.1. The costs for the robot worker for

these individual iterations are instead randomly generated from an

N(0.02,0.0052) distribution also truncated between 0 and 0.1.

 As with the continuous cost function variables, two scenarios are

generated where the capabilities of the human worker deviate from their

nominal levels. These scenarios follow the format of the third group of

scenarios from Section 5.4.1 where a human worker’s capabilities in

completing the subtask degrade rapidly would resulting in errors that built in

severity with each occurrence. The series of discrete errors that formed these

scenarios are again those presented in Chapter 5 with Table 7.2 detailing the

errors that occur and the iterations they occur in for the human worker.

Table 7.2: A table of the simulated error data for a human worker used for the simple and complex
manufacturing tasks to test the reaction of the dynamic task planner to a rapid degradation in a human
worker’s capabilities in completing the subtask. These scenarios follow the format of the third group of

scenarios from Section 5.4.1.

Error
Scenario

Error Generation Data

3
Occurrence

Set 1

Task Iteration
Error

Occurred in
6 7 8 9

Error that
Occurred

26%
Area

25%
Length

20° Angle 20° Angle

3
Occurrence

Set 2

Task Iteration
Error

Occurred in
12 13 14 15

Error that
Occurred

26%
Area

25%
Length

20° Angle 20° Angle

7.3.5. Generating Costs for Human and Robot Workers

 To generate the dynamic cost functions for each of the workers and

their cost for each of the subtasks of the overall manufacturing task, it is

necessary to define the required parameters for each of the cost function

variables in addition to their weightings. First, the completion variable is

defined using the same parameters as used to generate the initial set of task

assignments and task plan in Section 6.4.1 to maintain consistency. This is also

the case for the discrete precision of sealant application variable which uses

156

the same parameters given in Section 5.3. For the fatigue variable it is

necessary to define new parameters for these simulated work shifts. Here the

expected completion time, 𝐸𝑖,𝑗, for the human worker in iteration i of subtask

j used by the fatigue variable are defined as described in Section 7.3.2 and

Section 7.3.3. Additionally, the tolerance to the natural variation in human

completion times, ℎ𝑖,𝑗, for the human worker in iteration i of subtask j is defined

as 5% of the expected completion time, 𝐸𝑖,𝑗, for the human worker for

simplicity. Finally, for the fatigue variable, the maximum acceptable

percentage, ej, increase or decrease in completion times from the expected

completion time, 𝐸𝑖,𝑗, is again defined as 20%. The final element required to

generate costs for each worker to complete subtasks of the overall

manufacturing task is the weighting for each cost function variable for each

subtask. The weightings defined in Table 6.2 for are again used for consistency

with the settings used for the dynamic task planner to generate the initial task

plan in Chapter 6.

7.3.6. Setup of the Simulated Work Shift for the Human-Robot

Team

 Following the setup of the simulated generation of costs for the human

and robot workers across a simulated work shift, it is necessary to define the

structure of the simulated work shifts for workers. The simulated work shifts

to test the task planning methodology are not setup based on an existing work

shift for the turbocharger assembly task presented in (Nikolakis et al., 2018),

but instead generated to highlight the benefits of task replanning as worker

capabilities change across a work shift. In this research, a work shift is defined

as consisting of three 1.5 hour work periods for human workers with a half hour

rest period between each. This does not represent a realistic work shift

structure from an industrial setting, but instead represents a hypothetical

situation with exaggerated break periods which allows the human worker’s

performance to return close to their original levels. This highlights the benefits

of task replanning by increasing the visibility of the ability of task replanning to

improve the performance of the HR team when a worker’s performance

improves in addition to when it declines. Although this work shift pattern is

used to test the task planning methodology, the task planner can be used in

conjunction with a work shift pattern defined by the manufacturer applying

this system.

 In this research, it is assumed that the human and robot worker work

collaboratively during each 1.5 hour work period until a human worker is

assigned a break period. During this work period, new sets of task assignments

and plans are generated based on the simulated worker performance under

the replanning constraints defined in Section 7.2. When the human worker is

due a break period, it is assumed that the current task iteration should be

157

completed with the human worker’s break starting from the beginning of the

next task iteration. This is reasonable to assume as the initial task completion

times given in Chapter 6 indicate that a task iteration should be completed in

approximately 2 minutes.

 During break periods for the human worker, it is proposed that the

robot worker would continue to complete the manufacturing task alone by

completing all available subtasks themselves. This is possible for the simulated

work shifts since the robot worker is capable of performing all subtasks in the

example manufacturing tasks described in Chapter 6, however, it is

acknowledged that this may not be possible for all industrial manufacturing

tasks. This is considered desirable as it allows production to continue for a HR

team’s manufacturing cell at a less efficient rate rather than stopping

completely during a break period for a human worker. It is once again assumed

that when a human worker returns from their break period, that the robot

should continue to complete the current task iteration alone with the human

worker being reintegrated into the task beginning with the next task iteration.

This is reasonable to assume given a task iteration length of a few minutes, as

leaving the human worker inactive for a few minutes would be less disruptive

than reintegrating a human worker into a partially completed manufacturing

task. Once the last active period for the human worker is completed, it is

assumed that the current task iteration is completed and then the simulated

work shift ends.

 As highlighted in Section 7.1, two groups of work shift scenarios are

simulated using this work shift structure with the simple and complex example

manufacturing tasks from Chapter 6. In the first group of scenarios, the task

planner is tested for reaction to changes in performance of the human worker

as detected by the continuous cost function variables defined in Chapter 4.

Such continuous changes in performance are defined by changes in completion

time and the scenarios considered include the human worker performing as

expected in addition to scenarios where the human worker is over or under

fatigued as described in Section 7.3.2. In these scenarios, it is assumed that the

capabilities of the human or robot worker do not change, and they completed

any subtasks with an associated error variable within the tolerances described

in Section 7.3.4.

 In the second group of scenarios, the task planner is tested for reaction

to changes in capabilities of the human and robot workers as detected by the

discrete cost function variable defined in Chapter 5. To generate this group of

scenarios the error scenarios shown in Table 7.2 are applied in subtask 5 as

described in Section 7.3.4. This subtask is chosen as the human worker should

be assigned this subtask when performing as expected. It is also assumed in

these scenarios that the human worker’s performance does not change and

their completion times are as expected across the simulated work shift. Given

158

the methodology defined across this section to generate costs for a human and

robot worker to complete the simple and complex tasks from Chapter 6 it is

possible to determine the effect of task replanning across the simulated work

shift.

7.4. Dynamic Task Planner Results: Replanning Sets of

Task Assignments and Task Plans Across a Work Shift

7.4.1. Simple Manufacturing Task Across a Work Shift

 Before presenting the results for task replanning for the HR team in the

simple task across a work shift, it is important to detail an inconsistency in the

number of task iterations between task replanning attempts. This was caused

by a coding error in the simulations which meant that after a break period

replanning occurs after 9 iterations for the first replan during the new work

period instead of 10. This should not have a significant effect on the

performance of the HR team as the task is still replanned in a structured way

which was the reasoning for using a set number of task iterations between task

replanning attempts.

 Acknowledging this inconsistency, it is first necessary to analyse the

dynamic task planner’s capabilities when the human worker performs as

expected and no errors are made for the simple manufacturing task. For this

simulated work shift, Figure 7.3 shows the total cost for the simple task in each

task iteration of the simulated work shift for the initial set of task assignments

and task plan generated from historic data in addition to when the task is

replanned across the work shift. Here Figure 7.4 shows the corresponding total

completion times for each task iteration across the simulated work shift and

Figure 7.5 shows the percentage of subtasks assigned to each worker across

the simulated work shift when the task is replanned. Finally, Figure 7.6 shows

the execution time for the dynamic task planner each time that task planning

occurs across the simulated work shift.

159

Figure 7.3: A plot of the total cost for the simulated human and robot workers to complete the simple
manufacturing task across the work shift, with and without the occurrence of task replanning, whilst the

simulated human worker was performing as expected.

 Figure 7.3 shows that task replanning is only attempted twice when the

simulated human worker is performing as expected, once towards the start of

the simulated work shift and once towards the end. It is shown in Figures 7.3

and 7.4 that the first occurrence of replanning has no effect on the total cost

or total completion time for the HR team to complete the task across the work

shift until the next task replan. This occurs as the task assignments and task

plan are not changed by task replanning, indicating that the dynamic task

planner could not find a better set of task assignments and task plan for the HR

team given the increase in cost over the first 10 iterations of the manufacturing

task. Figures 7.3 and 7.4 show that the second attempt at replanning results in

a very minimal improvement of the total cost and total completion time for the

HR team to complete the simple manufacturing task. This improvement is

generated by reassigning the 8th subtask from the human worker to the robot

worker with the task plan remaining unchanged.

160

Figure 7.4: A plot of the total completion time for the simulated human and robot workers to complete
the simple manufacturing task across the work shift, with and without the occurrence of task replanning,

whilst the simulated human worker was performing as expected.

 In the case of the simulated human worker performing as expected in

the simple manufacturing task it is shown that task planning does not improve

the overall performance of the HR team with 92 iterations of the simulated task

executed regardless of whether task planning occurs across the simulated work

shift. It is shown in Figure 7.6 that the execution time of the task planner more

than halves during the work shift from 1.86 seconds to generate the initial task

plan to 0.8 seconds and 0.82 seconds, respectively, for each task replan. This

behaviour is shown as a greater number of task assignments are “locked in” by

the input constraints across a work shift as worker performance deviates,

reducing the solution space for the task planner and thus improving its

performance.

161

Figure 7.5: A plot of the percentage of subtasks assigned to the simulated human and robot worker
across the simulated work shift with the occurrence of task replanning whilst the simulated human

worker was performing as expected.

Figure 7.6: A plot of the total execution time for each time the task planner was utilised with the simple
task across the simulated work shift whilst the simulated human worker was performing as expected.

162

 For the scenario when the human worker is over fatigued, Figure 7.7

shows the total cost for the simple task in each task iteration of the simulated

work shift for the initial set of task assignments and task plan generated from

historic data in addition to when the task is replanned across the work shift.

Here Figure 7.8 shows the corresponding total completion times for each task

iteration across the simulated work shift and Figure 7.9 shows the percentage

of subtasks assigned to each worker across the simulated work shift when the

task is replanned.

Figure 7.7: A plot of the total cost for the simulated human and robot workers to complete the simple
manufacturing task across the work shift, with and without the occurrence of task replanning, whilst the

simulated human worker was over fatigued.

 Figure 7.7 shows that task replanning is attempted much more

frequently in this scenario with eight occurrences, replanning occurs twice

during each work period for the human worker in addition to occurrences in

the last task iteration before the human worker returns from a break period. In

this scenario replanning is shown to cause a noticeable reduction in the total

cost for the HR team to complete the simple manufacturing task. The largest

reduction in cost occurs between the first replanning occurrence in task

iteration 11 and the end of the first work period for the simulated human

worker in task iteration 25, with a mean reduction in cost of 1.38. However, the

mean reduction in total cost due to replanning is much smaller during the

remaining two work periods for the human worker at 0.57 between task

iterations 34 and 57 and of 0.69 between task iterations 66 and 88. Figure 7.7

also shows that the HR team is able to complete an additional iteration of the

simple manufacturing task during the first two work periods for the human

163

worker due to the improvement in performance. This necessitates analysis of

the mean cost differences over the ranges shown as it would result in an unfair

comparison to compare costs with the human and robot competing the task

collaboratively to those of the robot completing the task alone which are much

higher.

Figure 7.8: A plot of the total completion time for the simulated human and robot workers to complete
the simple manufacturing task across the work shift, with and without the occurrence of task replanning,

whilst the simulated human worker was over fatigued.

 Figure 7.8 shows that the corresponding improvement in the total

completion time for the HR team to complete the simple manufacturing task is

also much higher in the first work period for the simulated human worker

compared to the other two work periods. This is shown by a mean reduction in

the total completion time for the HR team of 8.29 seconds between task

iterations 11 and 25 compared to a mean reduction of 5.33 seconds between

task iterations 34 and 57 and of 5.23 seconds between task iterations 66 and

88. In this scenario it is shown that the reduction in total completion time due

to task replanning results in minimal overall improvement in the efficiency of

the HR team. This is shown as 89 iterations of the task are completed when

replanning occurs in the simulated work shift and 88 iterations of the task are

completed when replanning does not occur.

164

Figure 7.9: A plot of the percentage of subtasks assigned to the simulated human and robot worker in
the simple task across the simulated work shift with the occurrence of task replanning whilst the

simulated human worker was over fatigued.

 Examining the cause of this improvement, Figure 7.9 shows that the

dynamic task planner reduces the percentage of subtasks assigned to the

human worker across the work shift from the 70.8% used in the initial set of

task assignments and task plan. It is also important to first note that the task

plan used remains the same across the work shift meaning that the

improvement in performance can be attributed to the change in assignment of

the subtasks shown in Table 7.3. These task assignment changes do not include

those for the human worker’s break periods where all tasks are assigned to the

robot worker. Figure 7.9 shows that the largest number of subtasks are

reassigned with the first occurrence of task replanning, reducing the

percentage of subtasks assigned to the human worker from 70.8% to 50%.

Table 7.3 shows that this reassigns subtasks 20 and 24 to the robot worker

which then remain with the robot for the rest of the work shift. A pattern

emerges for the remaining subtasks in Table 7.3 over a work period for a human

worker where the worker assigned to these subtasks reverses with each replan.

This pattern is shown for replan pairs 1 and 2, 4 and 5 in addition to replans 7

and 8. An exception is shown with replans 3 and 6 which occur when a human

worker returns from a break period resulting in subtasks 7, 8, 9 and 22 all being

assigned to the human worker instead.

165

Table 7.3: A table of subtask assignment changes implemented by the dynamic task planner for the HR
team completing the simple manufacturing task across the simulated work shift when the simulated

human worker was over fatigued.

 Subtasks Reassigned

Occurrence
of Task

Planning

Subtask
7

Subtask
8

Subtask
9

Subtask
20

Subtask
22

Subtask
24

Initial Human Human Human Human Human Human

Replan 1 Human Robot Robot Robot Robot Robot

Replan 2 Robot Human Human Robot Human Robot

Replan 3 Human Human Human Robot Human Robot

Replan 4 Human Robot Robot Robot Human Robot

Replan 5 Robot Human Human Robot Robot Robot

Replan 6 Human Human Human Robot Human Robot

Replan 7 Human Robot Human Robot Human Robot

Replan 8 Robot Human Robot Robot Robot Robot

Figure 7.10: A plot of the total cost for the simulated human and robot workers to complete the simple
manufacturing task across the work shift, with and without the occurrence of task replanning, whilst the

simulated human worker was under fatigued.

Next, it is necessary to analyse the effect of task replanning in the

scenario when the human worker is under fatigued. Here, Figure 7.10 shows

the total cost for the HR team to complete the simple task in each task iteration

of the simulated work shift for the initial set of task assignments and task plan

generated from historic data in addition to when the task is replanned across

the work shift. Figure 7.10 shows that task replanning has no effect on the total

166

cost for the HR team to complete the simple manufacturing task in this case as

despite 7 attempts at replanning, a better set of task assignments and task plan

could not be found. This also results in no overall improvement in the

performance of the HR team with 96 iterations of the simple task executed

regardless of whether task planning occurs across the simulated work shift. This

highlights a limitation of the dynamic task planner in that a human worker

cannot be assigned a subtask if they were not assigned the subtask in the initial

set of task assignments. It is shown in Figure 7.12 that 70.8% of subtasks are

assigned to the human worker across this simulated work shift, assigning any

additional subtasks to them would have resulted in the limit of no more than

75% of subtasks being assigned to a single worker being broken.

Figure 7.11: A plot of the total completion time for the simulated human and robot workers to complete
the simple manufacturing task across the work shift, with and without the occurrence of task replanning,

whilst the simulated human worker was under fatigued.

167

Figure 7.12: A plot of the percentage of subtasks assigned to the simulated human and robot worker
across the simulated work shift with the occurrence of task replanning whilst the simulated human

worker was under fatigued.

 It is next necessary to analyse the capabilities of the task planner when

the human has nominal fatigue levels but makes errors completing subtask 5

of the overall manufacturing task. First analysing the case of error scenario 3

occurrence set 1, Figure 7.13 shows the total cost for the HR team across the

simulated work shift with and without the occurrence of replanning. In this

scenario, the only difference in cost between the initial set of task assignments

and task plan compared with when replanning occurs is a mean cost increase

of 0.1708 between task iterations 11 and 20. Figure 7.14 shows that the

corresponding total completion time to complete the task increases by a mean

value of 2.47 seconds between task iterations 11 and 20. In this scenario the

HR team completes 92 task iterations with or without the occurrence of

replanning across the simulated work shift despite this increase in total

completion time.

168

Figure 7.13: A plot of the total cost for the simulated human and robot workers to complete the simple
manufacturing task across the work shift, with and without the occurrence of task replanning, whilst the

simulated human worker was performing as expected but subject to error scenario 3 occurrence set 1.

Figure 7.14: A plot of the total completion time for the simulated human and robot workers to complete
the simple manufacturing task across the work shift, with and without the occurrence of task replanning,

whilst the simulated human worker was performing as expected but subject to error scenario 3
occurrence set 1.

169

 Examining the cause of this behaviour, it is shown that only the

assignment of subtask 5 changes over the simulated work shift with the

exception of the reassignment of all subtasks to the robot worker in the human

worker’s break periods as shown in Figure 7.15. Despite this, the task plan for

the HR team to complete the simple task does not change in any replanning

attempt. In this simulated work shift, the task planner reassigns subtask 5 from

the human worker to the robot worker after the first replanning occurrence at

the end of task iteration 10. This can be attributed to the increase of the

discrete error variable for the human worker in this subtask triggered by the

errors induced by error scenario 3 occurrence set 1. Here, the discrete error

variable reaches its maximum value in task iteration 9 and its cost is still high

enough in subtask iteration 10, despite a successfully completed task iteration,

to affect the human worker’s total cost to complete that subtask and trigger

task reassignment.

 It is shown that subtask 5 is then reassigned back to the human worker

after the second replanning occurrence at the end of task iteration 20 and

remains so for the remainder of the work shift. This occurs as the recovery

model is used to generate completion times for the human worker when they

are no longer assigned the subtask, reducing them and in turn the cost of the

completion variable. This reduces their total cost to complete the subtask,

despite the discrete error variable remaining high, allowing the task to be

reassigned back to them. Across the remainder of the work shift, the discrete

error variable cost for the human worker reduces with successfully completed

iterations of the subtask, as it is assumed that the worker completes the

subtask within tolerances unless discrete events are triggered. This also

explains the deviation in cost between the replanned and initial sets of task

assignments and task plans as when the human worker continues to be

assigned the subtask it is simulated that they are completing the subtask

successfully. This results in the same effect of their cost for the discrete variable

being reduced with every successfully completed task iteration.

170

Figure 7.15: A plot of the percentage of subtasks assigned to the simulated human and robot worker
across the simulated work shift with the occurrence of task replanning whilst the simulated human

worker was performing as expected but subject to error scenario 3 occurrence set 1.

 Second, it is necessary to analyse the case of error scenario 3

occurrence set 2 to determine the effect on task replanning of error scenario 3

occurring at a different point in the simulated work shift. Here, Figure 7.16

shows that the total cost for the HR team to complete the simple task for the

initial set of task assignments and task plan generated from historic data in

addition to when the task is replanned across the work shift. Figure 7.16 shows

a very minimal improvement in cost is achieved between the fourth occurrence

of replanning and the end of the work shift, with a mean reduction in cost of

0.025 between task iterations 54 and 60 and of 0.035 between task iterations

68 and 92.

171

Figure 7.16: A plot of the total cost for the simulated human and robot workers to complete the simple
manufacturing task across the work shift, with and without the occurrence of task replanning, whilst the

simulated human worker was performing as expected but subject to error scenario 3 occurrence set 2.

 Figure 7.17 shows that there is a corresponding improvement in the

total completion time for the HR team to complete the simple manufacturing

task, however, the magnitude is minimal compared to the total completion

time for the task. This is shown by a mean improvement of total completion

time of 2 seconds between task iterations 54 and 60 and a mean improvement

of 0.39 seconds between task iterations 68 and 92. This minimal reduction in

total completion time for the HR team to complete the task does not improve

its efficiency as 92 task iterations are completed with or without the occurrence

of replanning across the simulated work shift.

172

Figure 7.17: A plot of the total completion time for the simulated human and robot workers to complete
the simple manufacturing task across the work shift, with and without the occurrence of task replanning,

whilst the simulated human worker was performing as expected but subject to error scenario 3
occurrence set 2.

 Examining the cause of this improvement shows that only the

assignment of subtask 8 changes over the simulated work shift with the

exception of all subtasks being reassigned to the robot worker during the

human worker’s break period as shown in Figure 7.18. It is again important to

note that throughout this simulated work shift the task plan for the HR team to

complete the simple task does not change. Here, the task planner reassigns

subtask 8 from the human worker to the robot worker in the fourth occurrence

of replanning at the end of task iteration 53, however, the subtask is returned

back to them with the fifth occurrence of replanning at the end of their second

break period in task iteration 67.

 In this scenario it is shown that the task planner does not reassign

subtask 5 to the robot worker given this error scenario. In error scenario 3

occurrence set 2, the cost of the discrete precision of sealant application

variable reaches its peak value with the final error in sealant application in task

iteration 15. As stated previously, unless discrete events are triggered in the

simulated work shift then it is assumed that a worker completes the subtask

within tolerances. This means that by task iteration 20, the cost of the discrete

error variable and thus the total cost for the human worker to complete

subtask 5 reduces to the point where it is not reassigned to the robot worker.

173

Figure 7.18: A plot of the percentage of subtasks assigned to the simulated human and robot worker
across the simulated work shift with the occurrence of task replanning whilst the simulated human

worker was performing as expected but subject to error scenario 3 occurrence set 2.

7.4.2. Complex Manufacturing Task across a Work Shift

 It is next necessary to simulate these scenarios of worker performance

across a work shift for the complex manufacturing task to analyse the

capabilities of the full dynamic task planner. First it is necessary to analyse the

case when the human worker performs as expected and no errors are made in

the complex manufacturing task. Here Figure 7.19 shows the total costs for the

HR team to complete the complex task for the initial set of task assignments

and task plan generated from historic data in addition to when the task is

replanned across the work shift. This shows that task replanning has no effect

on the total cost for the HR team to complete the task and that despite six

attempts at replanning no better set of task assignments are found. In contrast,

the task plan is changed in all replanning occurrences except the sixth replan

as shown in Table 7.4, however, this only involves changing the order of

completion of the first three subtasks. Despite these changes the HR team

completed the same number of 114 task iterations regardless of whether the

complex task is replanned or not over the simulated work shift.

174

Table 7.4: A table of subtask ordering changes implemented by the dynamic task planner for the HR
team completing the complex manufacturing task across the simulated work shift when the simulated

human worker was performing as expected.

 Subtask Order of Completion in Task Plan

Occurrence
of Task

Planning
1st 2nd 3rd

Initial 2 3 1

Replan 1 2 1 3

Replan 2 1 2 3

Replan 3 3 2 1

Replan 4 2 1 3

Replan 5 1 3 2

Replan 6 1 3 2

Figure 7.19: A plot of the total cost for the simulated human and robot workers to complete the complex
manufacturing task across the work shift, with and without the occurrence of task replanning, whilst the

simulated human worker was performing as expected.

 Figure 7.20 shows that, as with the simple manufacturing task, the

execution time of the dynamic task planner significantly decreases from

approximately 22.4 minutes to 9.8 minutes from the first task replanning

occurrence onwards. This behaviour again occurs as a greater number of task

assignments are “locked in” by the input constraints across a work shift as

worker performance deviates, reducing the solution space for the task planning

problem. Despite this performance improvement, the long execution time of

the task planner necessitates that the task is replanned whilst execution

175

continues, with the new set of task assignments and task plan being

implemented when ready. This means that after task replanning is instigated,

it takes a mean of five task iterations before the new set of task assignments

and task plan are implemented. This gap between the instigation of task

replanning and implementing its result risks the relevance of the new set of

task assignments and task plan, potentially negating the benefits of task

replanning.

Figure 7.20: A plot of the total execution time for each time the task planner was utilised with the
complex task across the simulated work shift whilst the simulated human worker was performing as

expected.

 For the scenario when the human worker is over fatigued, Figure 7.21

shows the total cost for the HR team to complete the complex task across the

simulated work shift with and without the occurrence of task replanning whilst

Figure 7.22 shows the corresponding total completion times. This shows task

replanning has an inconsistent effect across the simulated work shift with a

slight improvement in the total cost for the HR team to complete the complex

task in addition to a significant decline in performance. Here Table 7.5 shows

the mean cost difference and completion time difference between each set of

task assignments and task plans generated by replanning and the initial set of

task assignments and task plan generate from historic data. Table 7.5 shows

that the first and second occurrences of replanning result in a small mean

improvement in cost from those of the initial set of task assignments and task

plan. However, these replanning attempts also results in a small mean increase

in completion times from those of the initial set of task assignments and task

plan. In contrast, Table 7.5 shows that the third occurrence of replanning after

176

the human worker’s first break period results in a very significant mean

increase in cost and completion times compared to those of the initial set of

task assignments and task plan. Following this, a small mean improvement in

cost and a more significant mean improvement in total completion times for

the HR team is then seen with the implementation of the fourth replan.

However, whilst the fifth task replan maintains the mean improvement in the

total completion times for the HR team at a slightly lower magnitude, it instead

results in a very small mean increase in cost from those of the initial set of task

assignments and task plan. Figure 7.21 shows that despite the improvement in

total completion times for the HR team towards the end of the work period,

the HR team completes one less task iteration before the human worker starts

their second break period compared to when the initial set of task assignments

and task plans are used. Finally, it is shown in the last work period that the HR

team experiences an insignificant mean cost increase and a small increase in

completion times under replanning from those of the initial set of task

assignments and task plan between task iterations This changes with the final

occurrence of replanning which results in a small mean reduction in cost and

completion times for the HR team.

Figure 7.21: A plot of the total cost for the simulated human and robot workers to complete the complex
manufacturing task across the work shift, with and without the occurrence of task replanning, whilst the

simulated human worker was over fatigued.

177

Table 7.5: A table of the difference in cost and total completion time for the HR team between the
replanned task and the initial set of task assignments and task plan.

Occurrence
of Task

Planning

Task Iterations Mean Difference
in Cost

Mean Difference
in Total

Completion Time
(Seconds)

Replan 1 16 – 29 -0.1323 0.6195

Replan 2 30 – 32 -0.9891 0.3424

Replan 3 40 – 53 3.0506 16.9330

Replan 4 54 – 67 -0.1614 -3.0691

Replan 5 68 – 69 0.0311 -2.6924

Replan 6 79 – 91 0.0225 0.2916

Replan 7 92 – 105 0.0697 0.2147

Replan 8 106 – 107 -0.1517 -0.8704

 It is shown over the course of this simulated work shift that the HR team

complete one less task iteration with the occurrence of task replanning with

107 task iterations being completed compared to the 108 task iterations

completed if the initial set of task assignments and task plan are used. This

extra task iteration is not simulated as the number of task iterations simulated

is defined by the length of the work shift and the sum of the total completion

times across the work shift when the task is replanned.

Figure 7.22: A plot of the total completion time for the simulated human and robot workers to complete
the complex manufacturing task across the work shift, with and without the occurrence of task

replanning, whilst the simulated human worker was over fatigued.

178

 Examining the cause of this behaviour, Figure 7.23 shows the

percentage of subtasks assigned to each worker across the simulated work shift

when the task is replanned whilst Table 7.6 and Table 7.7 show the changes in

subtask assignments and task plans, respectively. Figure 7.23 shows an

inconsistent reaction in the percentage of subtasks assigned to the human

worker in each of the three work periods for the human worker. In the first and

third work periods, Table 7.6 shows a decreasing pattern in the percentage of

subtasks assigned to the human worker across the work period as shown with

the simple manufacturing task. However, Table 7.7 shows that the only

corresponding variation in the task plans is the ordering of the first three

subtasks with the larger subassemblies in the second half of the task being

completed in the same order. In contrast, Table 7.6 shows that the third task

replan does not shift the majority of the task assignments back to the human

worker following their break period causing the large increase in the cost and

completion time seen in Figures 7.21 and 7.22. Additionally, in replan 5 towards

the end of this work period, only 3 subtasks are reassigned to the robot worker

instead of the 8 shown at the end of the other two work periods. A large

variability is also shown in the task plans over this work period with changes in

the order of completion of the first three subtasks in addition to the larger

subassemblies in the second half of the task with each task replan.

Table 7.6: A table of subtask assignment changes implemented by the dynamic task planner for the HR
team completing the complex manufacturing task across the simulated work shift when the simulated
human worker was over fatigued. Here a green box labelled H indicates that the human is assigned the

subtask whereas a blue box labelled R indicates that the robot is assigned the subtask.

 Subtasks Reassigned

Occurrence of
Task Planning

5 7 8 10 13 14 16 19 20 21 22 23 24

Initial H H H H H H H H H H H H H

Replan 1 H H H H H H H H H H H H R

Replan 2 R R H R R H H R R R R H R

Replan 3 H H R H H H R H R R H R R

Replan 4 H H H H H H H H H H H H R

Replan 5 H H H H H R H H H H R R R

Replan 6 H H H H H H H H H H H H R

Replan 7 H H H H H H H H H H H H R

Replan 8 H R H R R H H R R R R R R

179

Table 7.7: A table of subtask ordering changes implemented by the dynamic task planner for the HR
team completing the complex manufacturing task across the simulated work shift when the simulated

human worker was over fatigued.

 Subtask/Subassembly Beginning with Subtask Order of
Completion in Task Plan

Occurrence
of Task

Planning
1st 2nd 3rd

4th
(Static)

5th 6th 7th 8th
9th

(Static)

Initial 2 3 1 4 23 18 5 10 24

Replan 1 3 1 2 4 23 18 5 10 24

Replan 2 3 2 1 4 23 18 5 10 24

Replan 3 2 1 3 4 23 5 10 18 24

Replan 4 3 1 2 4 23 18 5 10 24

Replan 5 1 2 3 4 23 5 10 18 24

Replan 6 3 2 1 4 23 18 5 10 24

Replan 7 1 3 2 4 23 18 5 10 24

Replan 8 3 2 1 4 18 23 5 10 24

Figure 7.23: A plot of the percentage of subtasks assigned to the simulated human and robot worker in
the complex task across the simulated work shift with the occurrence of task replanning whilst the

simulated human worker was over fatigued.

 For the scenario when the human worker is under fatigued, Figure 7.24

shows the total cost for the HR team to complete complex task in each task

iteration of the simulated work shift with and without the occurrence of task

replanning. This again shows that task replanning has no effect on the total cost

for the HR team to complete the task and despite six attempts at replanning no

180

better set of task assignments are found. The only variation in the

corresponding task plans is the order that the initial 3 subtasks are completed

in.

Figure 7.24: A plot of the total cost for the simulated human and robot workers to complete the complex
manufacturing task across the work shift, with and without the occurrence of task replanning, whilst the

simulated human worker was under fatigued.

 Finally, in the scenarios where the human worker is performing as

expected but subject to error scenario 3 in subtask 5, task replanning is shown

to have no effect on the total cost for the HR team to complete the task in both

occurrence sets 1 and 2 of error scenario 3. This is shown despite 7 and 6

occurrences of replanning, respectively, for error scenario 3 occurrence sets 1

and occurrence set 2. In both of these scenarios, the dynamic task planner

cannot find a better set of task assignments than the initial set generated from

historic data. Additionally, the only variation in the corresponding task plans

across the simulated work shifts are again the order that the initial 3 subtasks

are completed in. This means that the dynamic task planner does not reassign

subtask 5 to the robot worker with the build-up of cost for the human worker

due to the errors given by error scenario 3 with either error occurrence set 1

or 2.

7.5. Chapter Summary

 Over this chapter, the effect of utilising the dynamic task planner

proposed in Chapter 6 was analysed to determine the effect of task replanning

on the efficiency of a HR team over a simulated work shift. This involved

181

applying the dynamic task planner to the simple manufacturing task, utilising

only DGSA Layer 1, and the complex manufacturing task, utilising the full

dynamic task planner, over several scenarios of human performance. These

scenarios were used to determine how the dynamic task planner would react

to changes in the performance of the human worker in addition to the

occurrence of discrete errors as they are completing the manufacturing tasks

alongside the robot worker.

 First, in the simple task it was shown that the dynamic task planner

could not find a better set of task assignments, or task plan, over the majority

of the simulated work shift when the human worker was performing as

expected and no errors occurred. The dynamic task planner did find a better

set of task assignments towards the end of the work shift by reassigning a

subtask to the robot worker. However, this minimally reduced the total cost

and completion time for the HR team compared to the initial set of task

assignments and task plan. It was shown that the dynamic task planner’s

execution time reduced from 1.8 s to generate the initial set of task

assignments and task plan to approximately 0.8 s during the simulated work

shift, as more task assignments were “locked in” due to worker performance.

This demonstrates the utility of the dynamic task planner when only DGSA

Layer 1 was applied as it enables task assignments to rapidly be revaluated

between task iterations to ensure they reflect the current capabilities of the

human and robot workers.

 The benefits of task replanning were clearly shown when the simulated

human worker was over fatigued with a consistent improvement in cost and

task completion time with each task replan compared to the initial set of task

assignments and task plan. Despite this, the HR team only completed one

additional task iteration with the occurrence of task replanning compared to

persistent use of the initial set of task assignments and task plan. The dynamic

task planner achieved this by assigning more subtasks to the human worker

towards the start of their work period when their performance would be

better, then transferring more subtasks to the robot worker as their

performance declines across a work period. In comparison it was shown that

the dynamic task planner could not improve the performance of the HR team

when the simulated human worker was under fatigued. This was due to the

limitations of the dynamic task planner which prevented subtasks being

reassigned to the human worker if they were not assigned them in the first task

iteration of the work shift. This decision was made due to the lack of available

data on the human worker’s current capabilities in these subtasks. In order, to

improve the capabilities of the task planner when a human worker is under

fatigued it would be necessary to allow these subtasks to be reassigned to

human workers.

182

 It was shown that the dynamic task planner was able to react to a build-

up in errors and cost of a discrete error variable, that increased the cost for a

human worker to complete a subtask. However, this strategy was only

successful when the peak cost was achieved in a task iteration close to when

the task was replanned. In comparison, the dynamic task planner failed to react

to a build-up of errors when the peak cost (and last error) was achieved in a

task iteration far from when the task was replanned. This occurred as

successfully completed iterations of the subtask subsequent to the peak cost

reduced the cost to a level where the next replanning attempt would not be

executed. An additional issue also occurred when a subtask was reassigned to

a robot worker due to a build-up of errors for the human worker as the

recovery model reduced the completion times for the human worker when

they were not assigned the subtask. This resulted in the human worker’s cost

to complete the subtask reducing to the point where the subtask was

reassigned back to them regardless of the high cost of the discrete error

variable.

 Second, for the complex manufacturing task it was shown that the

effectiveness of the dynamic task planner was significantly reduced. Here, the

dynamic task planner could not find a better set of task assignments than those

generated initially when the simulated worker was performing as expected or

was under fatigued. Additionally, use of the dynamic task planner resulted in

minor changes in the task plan which could be considered unnecessary as they

did not improve the efficiency of the HR team. This behaviour was also shown

with both error scenarios tested where the dynamic task planner failed to

reassign the subtask with the occurrence of errors from the human worker in

both cases. Inconsistent performance of the dynamic task planner was shown

with the over fatigued simulated human worker, as replanning both improved

and reduced the performance of the HR team across the simulated work shift.

This resulted in a minor overall reduction in efficiency for the HR team when

compared to consistent use of the initial set of task assignments and task plan.

This may be attributed to the length of time taken to execute the dynamic task

planner in these situations which necessitated the task being replanned whilst

the HR team continue to execute the manufacturing task. This resulted in a new

set of task assignments and task plan being implemented several iterations

after task planning was initiated. This meant that the task assignments and task

plans may not represent the current worker capabilities as well as with the

immediate implementation shown with the simple manufacturing task. This

was also shown with the human worker’s break periods where the task planner

had to be executed far in advance of the end of the break period in order for a

new set of task assignments and task plan to be ready when the human worker

returned. Due to the limitations of the simulation with completion times for

workers being generated with each task iteration, this meant the completion

times of the human worker did not reflect the lower completion times that

183

would be expected with a sufficient break period. This could be remedied by

instantaneously modelling the reduction in human completion times given the

length of the break period. However, the dynamic task planner would still not

be able to react to any changes in the robot worker’s capabilities once task

replanning had been initiated.

 Overall, these simulations showed that the dynamic task planner could

prove to be effective for HR teams where task assignments can be reassigned

with a few potential task plans dictating the order of task completion. In

comparison, using the full dynamic task planner with much more

reconfigurable tasks meant that sets of task assignments and task plans could

not be recalculated as quickly, possibly hindering its effectiveness. As a result

of this, the dynamic task planner utilising only DGSA Layer 1 represents a much

more viable method for replanning tasks for HR teams across a work shift in

the short term. The full dynamic task planner still has the potential for the same

effectiveness, however, to achieve this further software engineering would be

required to allow the dynamic task planner to be executed faster. Another

possibility is to limit the application of the full dynamic task planner to

manufacturing tasks consisting of subtasks with larger completion times, i.e.

subtasks that take longer than 20 to 30 seconds. In such situations there would

be a smaller number of task iterations between task replanning being initiated

and a new set of task assignments and plans being ready for implementation.

This would help to ensure that sets of task assignments and task plans do not

loose relevance when they are ready for implementation.

184

8. Conclusions

8.1. Overall Conclusions

 The aim of the research presented in this thesis is to develop a

methodology to optimise the implementation of both human and robot

workers in a Human-Robot (HR) team whilst allowing adaptability. The

literature review in Chapter 2 revealed a knowledge gap for a generalised semi-

online task planning methodology for HR teams that updates knowledge on

worker capabilities using online data, then use this to plan entire tasks offline

to ensure optimisation. To bridge this knowledge gap, a system architecture

was proposed for a task planning system to optimise the implementation of HR

teams across a work shift. The focus of this research was to develop the core

technologies required for the architecture to function to verify the utility of the

generalised semi-online task planning approach.

 First, dynamic cost functions were developed, consisting of continuous

and discrete variables, to assess worker capabilities using online production

data. Example continuous and discrete variables were developed that fulfil the

research objective to use continuous or discrete data to quantify the capability

of workers to complete manufacturing subtasks. This was achieved as these

example variables produced a clear distinction in costs for a robot worker and

a human worker with varying capabilities. These variables also fulfil the

research objective to develop mechanisms for updating the output cost of a

cost function variable given online data obtained over iterations of a

manufacturing task to ensure their accuracy. This was achieved by using the

most recent data for a worker to define the variable cost, with the continuous

variables using the latest completion times and the discrete variable assessing

the last sealant application. Importantly the dynamic cost functions offer

expandability with the ability to add further variables monitoring other aspects

of worker capabilities important to manufacturers implementing the system.

 Second, a dual-layer dynamic task planner was developed to replan

manufacturing tasks across a work shift given worker costs generated form the

dynamic cost functions. Testing the dynamic task planner using DGSA Layer 1

only for a more linear manufacturing task, such as those seen currently in

industry, showed that it could find good but not optimal solutions in an

execution time of a few seconds. This allowed the dynamic task planner to be

implemented between task iterations allowing quick reconfiguration of a HR

team during a work shift. In contrast testing the full dynamic task planner for a

more reconfigurable manufacturing task showed it could find solutions much

closer to optimal solutions. However, its execution time requires it to be run in

the background whilst the task continues to be completed. This did not fulfil

the research objective of the task planning methodology finding an optimum

185

set of task assignments and task plan for a HR team. However, the dynamic task

planner did find good solutions for a HR team given costs generated for each

subtask whilst respecting task constraints and minimising worker idle times.

 Finally, intelligent methodologies were developed to implement this

dynamic task planner across a work shift. This included pre-execution

constraints to preassign subtasks to optimal workers if the cost difference

between workers exceeded a defined threshold. Additionally, a methodology

was developed to replan tasks at set intervals with separate implementations

based on the execution time of the dynamic task planner. This was combined

with a utility checking function to trigger task replanning if the optimal worker

for any subtask changed or if change in worker costs exceeded a defined

threshold since the last replanning attempt. These methodologies fulfil the

research objectives to implement mechanisms to ensure subtasks are assigned

to optimal workers if there is a significant difference in worker capabilities and

trigger task replanning at appropriate intervals but only if worker costs changes

indicate this is necessary. Importantly, these methodologies allowed the

dynamic task planner to improve the HR team’s performance across a work

shift with changing worker capabilities compared to without the use of task

replanning. The remainder of this chapter highlights contributions to

knowledge in Section 8.2 resulting from research described in this thesis. Next,

Section 8.3 details possible areas of future research to develop methodologies

to improve the utility, accuracy, or speed of the task planning system.

8.2. Contributions to Knowledge

 To highlight the utility of the research presented in this thesis, it is next

necessary to define the resulting contributions to knowledge. The first

contribution to knowledge is the development of dynamic cost functions that

utilise online production data to update knowledge on worker capabilities

across a work shift. This was achieved through continuous variables that react

to gradual changes in worker performance by analysing continuous online

production data. Additionally, a discrete variable was developed to react to

instantaneous changes in worker capabilities identified by discrete events in

manufacturing subtasks. These dynamic cost functions build upon previous

approaches of using cost functions to assess worker capabilities, however, the

introduction of these continuous and discrete variables for the first time ever

provides a way to update costs as capabilities change across a work shift.

The second contribution to knowledge is the development of a dual-

layer task planning algorithm to search both task assignments and task plans

for a HR team. This represents a generalised algorithm that allows easy

encoding of task information and adaption to different manufacturing tasks.

Unlike previous methodologies, the task planning algorithm can be adapted to

186

suit different compositions of HR teams containing various numbers of human

and robot workers whilst optimising the task as a whole.

The third contribution to knowledge is the development of a

methodology to implement task replanning across a work shift. This utilises

intelligent methods to trigger when replanning attempts occur and determine

if task replanning is necessary to avoid unnecessary computational expense.

Additional methodologies for this are implemented in preconditions of the task

planning algorithm itself, such as “locked in” subtasks to ensure a worker is

assigned a subtask if there is a sufficient cost difference between them and

other workers. This methodology of implementing task replanning across a

work shift builds upon state-of-the-art approaches to update task assignments

and plans during a work shift. However, the use of pre-execution constraints

and dynamic cost functions for the first time ever allows tasks assignments and

plans to be updated based on online knowledge of workers performance

obtained from the collaborative workspace.

8.3. Future Work

8.3.1. Development of Long-Term Worker Predication

 To further enhance the capabilities of task planning, another possible

research avenue is to develop long-term prediction of worker capabilities

through analysis of historic worker production data and its change across work

shifts with task replanning. This approach would allow the development of

methods to enhance the task replanning procedure by predicting how to

change task assignments and plans based on indicators of change in online

production data. Utilising such methods could also allow evolution of the

methodology for triggering task planning attempts by utilising indicators of

change in online production data to trigger when replanning should occur.

8.3.2. Further Development of Methodologies for Instigating

Task Replanning

 To allow the dynamic task planner to better react to a build-up of errors

by a worker, methodologies for instigating replanning attempts must be further

developed. Whilst task replanning at set intervals allowed reaction to gradual

changes in workers performance, Chapter 7 showed that this resulted in error

build ups being missed if the peak worker cost did not occur close enough to a

replanning attempt. To avoid such situations, it is instead necessary to check

for a significant increase in worker costs to complete subtasks and implement

replanning immediately when this is detected. However, it would also be

necessary to define when task replanning should next occur after this to ensure

that there is a suitable interval between task replanning attempts.

187

8.3.3. Improving the Efficiency of The Dynamic Task Planner

 Testing of the full dynamic task planner in Chapter 7 highlighted its large

execution time as a cause of inconsistent performance. Multiple avenues can

be explored to reduce the dynamic task planner’s execution time and improve

its performance. One possibility is to use parallel processing to implement

DGSA Layer 2 for each searcher agent in DGSA Layer 1 as these can be evaluated

independently. Additionally, further software development such as the

streamlining of the code implementing the dynamic task planner could be used

to improve its efficiency.

188

References

Aaltonen, I., Salmi, T. and Marstio, I. (2018) “Refining levels of collaboration

to support the design and evaluation of human-robot interaction in the

manufacturing industry,” Procedia CIRP, 72, pp. 93–98.

ABB (2020) YuMi® - IRB 14000 | Collaborative Robot. Available at:

https://new.abb.com/products/robotics/industrial-robots/irb-14000-yumi

(Accessed: April 3, 2020).

Asfour, T., Kaul, L., Wächter, M., Ottenhaus, S., Weiner, P., Rader, S., Grimm,

R., Zhou, Y., Grotz, M., Paus, F. and others (2018) “Armar-6: A collaborative

humanoid robot for industrial environments,” 2018 IEEE-RAS 18th

International Conference on Humanoid Robots (Humanoids)., pp. 447–454.

Bdiwi, M., Pfeifer, M. and Sterzing, A. (2017) “A new strategy for ensuring

human safety during various levels of interaction with industrial robots,” CIRP

Annals, 66(1) Elsevier, pp. 453–456.

Blum, C. and Roli, A. (2003) “Metaheuristics in combinatorial optimization:

Overview and conceptual comparison,” ACM computing surveys (CSUR), 35(3)

Acm New York, NY, USA, pp. 268–308.

Bonneville, F., Perrard, C. and Henrioud, J.M. (1995) “A genetic algorithm to

generate and evaluate assembly plans,” Proceedings 1995 INRIA/IEEE

Symposium on Emerging Technologies and Factory Automation. ETFA’95.,

Vol.2, pp. 231–239.

Bruno, G. and Antonelli, D. (2018) “Dynamic task classification and assignment

for the management of human-robot collaborative teams in workcells,” The

International Journal of Advanced Manufacturing Technology, 98(9–12)

Springer, pp. 2415–2427.

Busch, B., Cotugno, G., Khoramshahi, M., Skaltsas, G., Turchi, D., Urbano, L.,

Wächter, M., Zhou, Y., Asfour, T. and Deacon, G. (2019) “Evaluation of an

industrial robotic assistant in an ecological environment,” 2019 28th IEEE

International Conference on Robot and Human Interactive Communication

(RO-MAN). IEEE, pp. 1–8.

Cao, T. and Sanderson, A.C. (1998) “AND/OR net representation for robotic

task sequence planning,” IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 28(2) IEEE, pp. 204–218.

Casalino, A., Mazzocca, E., di Giorgio, M.G., Zanchettin, A.M. and Rocco, P.

(2019a) “Task scheduling for human-robot collaboration with uncertain

duration of tasks: a fuzzy approach,” 2019 7th International Conference on

Control, Mechatronics and Automation (ICCMA)., pp. 90–97.

189

Casalino, A., Zanchettin, A.M., Piroddi, L. and Rocco, P. (2019b) “Optimal

Scheduling of Human-Robot Collaborative Assembly Operations With Time

Petri Nets,” IEEE Transactions on Automation Science and Engineering, IEEE

Chan, W.P., Nagahama, K., Yaguchi, H., Kakiuchi, Y., Okada, K. and Inaba, M.

(2015) “Implementation of a framework for learning handover grasp

configurations through observation during human-robot object handovers,”

Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference

on. IEEE, pp. 1115–1120.

Colgate, J.E., Wannasuphoprasit, W. and Peshkin, M.A. (1996) “Cobots: robots

for collaboration with human operators,” American Society of Mechanical

Engineers, Dynamic Systems and Control Division (Publication) DSC. ASME,

Vol.58, pp. 433–439.

Cremer, S., Mastromoro, L. and Popa, D.O. (2016) “On the performance of the

Baxter research robot,” 2016 IEEE international symposium on assembly and

manufacturing (ISAM)., pp. 106–111.

Daoud, S., Chehade, H., Yalaoui, F. and Amodeo, L. (2014) “Solving a robotic

assembly line balancing problem using efficient hybrid methods,” Journal of

Heuristics, 20(3) Springer, pp. 235–259.

Dawson, D., Noy, Y.I., Härmä, M., Åkerstedt, T. and Belenky, G. (2011)

“Modelling fatigue and the use of fatigue models in work settings,” Accident

Analysis & Prevention, 43(2), pp. 549–564.

Digiesi, S., Kock, A.A.A., Mummolo, G. and Rooda, J.E. (2009) “The effect of

dynamic worker behavior on flow line performance,” International Journal of

Production Economics, 120(2), pp. 368–377.

Dowlatshahi, M.B., Nezamabadi-Pour, H. and Mashinchi, M. (2014) “A

discrete gravitational search algorithm for solving combinatorial optimization

problems,” Information Sciences, 258, pp. 94–107.

Dziki, K. and Krenczyk, D. (2019) “Mixed-model assembly line balancing

problem with tasks assignment,” IOP Conference Series: Materials Science and

Engineering., Vol.591, p. 12013.

Erol, K., Hendler, J.A. and Nau, D.S. (1994) UMCP: A Sound and Complete

Procedure for Hierarchical Task-network Planning. Aips.

Georgievski, I. and Aiello, M. (2015) “HTN planning: Overview, comparison,

and beyond,” Artificial Intelligence, 222 Elsevier, pp. 124–156.

Ghallab, M., Nau, D. and Traverso, P. (2004) Automated Planning: theory and

practice. Elsevier.

190

Glock, C.H., Grosse, E.H., Kim, T., Neumann, W.P. and Sobhani, A. (2019) “An

integrated cost and worker fatigue evaluation model of a packaging process,”

International Journal of Production Economics, 207, pp. 107–124.

Goto, H., Miura, J. and Sugiyama, J. (2013) “Human-robot collaborative

assembly by on-line human action recognition based on an fsm task model,”

Human-Robot Interaction 2013 Workshop on Collaborative Manipulation.

Grigore, E.C., Roncone, A., Mangin, O. and Scassellati, B. (2018) “Preference-

based assistance prediction for human-robot collaboration tasks,” 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).,

pp. 4441–4448.

Gu, T., Bahri, P.A. and Cai, G. (2003) “Timed Petri-net based formulation and

an algorithm for the optimal scheduling of batch plants,” International Journal

of Applied Mathematics and Computer Sciences, 13(4) University of Zielona

Gora & Lubusky Scientific Society, Zielona Gora, Poland, pp. 527–536.

Hägele, M., Nilsson, K., Pires, J.N. and Bischoff, R. (2016) “Industrial robotics,”

in Springer handbook of robotics. Springer, pp. 1385–1422.

Hawkins, K.P., Vo, N., Bansal, S. and Bobick, A.F. (2013) “Probabilistic human

action prediction and wait-sensitive planning for responsive human-robot

collaboration,” 2013 13th IEEE-RAS International Conference on Humanoid

Robots (Humanoids). IEEE, pp. 499–506.

Hu, B. and Chen, J. (2017) “Optimal Task Allocation for Human–Machine

Collaborative Manufacturing Systems,” IEEE Robotics and Automation Letters,

2(4), pp. 1933–1940.

Ji, Q., Lan, P. and Looney, C. (2006) “A probabilistic framework for modeling

and real-time monitoring human fatigue,” IEEE Transactions on systems, man,

and cybernetics-Part A: Systems and humans, 36(5) IEEE, pp. 862–875.

Johannsmeier, L. and Haddadin, S. (2017) “A hierarchical human-robot

interaction-planning framework for task allocation in collaborative industrial

assembly processes,” IEEE Robotics and Automation Letters, 2(1), pp. 41–48.

Knepper, R.A., Ahuja, D., Lalonde, G. and Rus, D. (2014) “Distributed assembly

with and/or graphs,” Workshop on AI Robotics at the Int. Conf. on Intelligent

Robots and Systems (IROS).

Lamon, E., de Franco, A., Peternel, L. and Ajoudani, A. (2019) “A Capability-

Aware Role Allocation Approach to Industrial Assembly Tasks,” IEEE Robotics

and Automation Letters, 4(4) IEEE, pp. 3378–3385.

Lasota, P.A., Rossano, G.F. and Shah, J.A. (2014) “Toward safe close-proximity

human-robot interaction with standard industrial robots,” 2014 IEEE

191

International Conference on Automation Science and Engineering (CASE). IEEE,

pp. 339–344.

Lee, D.Y. and DiCesare, F. (1994) “Scheduling flexible manufacturing systems

using Petri nets and heuristic search,” IEEE Transactions on robotics and

automation, 10(2) IEEE, pp. 123–132.

Li, K., Liu, Q., Xu, W., Liu, J., Zhou, Z. and Feng, H. (2019) “Sequence Planning

Considering Human Fatigue for Human-Robot Collaboration in Disassembly,”

Procedia CIRP, 83, pp. 95–104.

Liang, J. (2016) Berkeley AutoLab yumipy Documentation. Available at:

https://berkeleyautomation.github.io/yumipy/ (Accessed: April 3, 2020).

Maiolino, P., Woolley, R., Branson, D., Benardos, P., Popov, A. and Ratchev, S.

(2017) “Flexible robot sealant dispensing cell using RGB-D sensor and off-line

programming,” Robotics and Computer-Integrated Manufacturing, 48, pp.

188–195.

el Makrini, I., Merckaert, K., Lefeber, D. and Vanderborght, B. (2017) “Design

of a collaborative architecture for human-robot assembly tasks,” Intelligent

Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE,

pp. 1624–1629.

de Mello, L.S.H. and Sanderson, A.C. (1986) AND/OR Graph Representation of

Assembly Plans.

Nau, D.S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D. and Yaman,

F. (2003) “SHOP2: An HTN planning system,” Journal of artificial intelligence

research, 20, pp. 379–404.

Nikolakis, N., Sipsas, K., Tsarouchi, P. and Makris, S. (2018) “On a shared

human-robot task scheduling and online re-scheduling,” Procedia CIRP, 78,

pp. 237–242.

Potvin, J.R. and Bent, L.R. (1997) “A validation of techniques using surface

EMG signals from dynamic contractions to quantify muscle fatigue during

repetitive tasks,” Journal of Electromyography and Kinesiology, 7(2) Elsevier,

pp. 131–139.

Ranz, F., Hummel, V. and Sihn, W. (2017) “Capability-based task allocation in

human-robot collaboration,” Procedia Manufacturing, 9 Elsevier, pp. 182–

189.

Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. (2009) “GSA: a gravitational

search algorithm,” Information Sciences, 179(13), pp. 2232–2248.

Riedelbauch, D. and Henrich, D. (2017) “Coordinating flexible human-robot

teams by local world state observation,” Robot and Human Interactive

192

Communication (RO-MAN), 2017 26th IEEE International Symposium on. IEEE,

pp. 1000–1005.

Riedelbauch, D. and Henrich, D. (2019) “Exploiting a Human-Aware World

Model for Dynamic Task Allocation in Flexible Human-Robot Teams,” 2019

International Conference on Robotics and Automation (ICRA)., pp. 6511–6517.

Rosebrock, A. (2014) 4 Point OpenCV getPerspective Transform Example.,

pyimagesearch Available at: https://www.pyimagesearch.com/2014/08/25/4-

point-opencv-getperspective-transform-example/ (Accessed: November 26,

2019).

Rosell, J. (2004) “Assembly and task planning using Petri nets: a survey,”

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of

Engineering Manufacture, 218(8), pp. 987–994.

Ruud de Jong (2017) Calculate the area of intersection of two rotated

rectangles in python., stackoverflow Available at:

https://stackoverflow.com/questions/44797713/calculate-the-area-of-

intersection-of-two-rotated-rectangles-in-python/45268241#45268241

(Accessed: September 4, 2019).

Salunkhe, O., Stensöta, O., Åkerman, M., Berglund, Å.F. and Alveflo, P.-A.

(2019) “Assembly 4.0: Wheel Hub Nut Assembly Using a Cobot,” IFAC-

PapersOnLine, 52(13) Elsevier, pp. 1632–1637.

Schröter, D., Jaschewski, P., Kuhrke, B. and Verl, A. (2016) “Methodology to

identify applications for collaborative robots in powertrain assembly,”

Procedia CIRP, 55 Elsevier, pp. 12–17.

de Silva, L., Lallement, R. and Alami, R. (2015) “The HATP hierarchical planner:

Formalisation and an initial study of its usability and practicality,” Intelligent

Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE,

pp. 6465–6472.

Smith, T., Benardos, P. and Branson, D. (2020) “Assessing worker performance

using dynamic cost functions in human robot collaborative tasks,”

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of

Mechanical Engineering Science, 234(1) SAGE Publications Sage UK: London,

England, pp. 289–301.

Suzuki, T., Kanehara, T., Inaba, A. and Okuma, S. (1993) “On algebraic and

graph structural properties of assembly Petri net,” [1993] Proceedings IEEE

International Conference on Robotics and Automation., pp. 507–514.

del Valle, C. and Camacho, E.F. (1996) “Automatic assembly task assignment

for a multirobot environment,” Control engineering practice, 4(7) Elsevier, pp.

915–921.

193

Wang, W., Li, R., Diekel, Z.M. and Jia, Y. (2018) “Robot action planning by

online optimization in human–robot collaborative tasks,” International

Journal of Intelligent Robotics and Applications, 2(2), pp. 161–179.

Wilson, J.R. and Sharples, S. (2015) Evaluation of human work. CRC press.

Wolfe, J., Marthi, B. and Russell, S. (2010) “Combined task and motion

planning for mobile manipulation,” Twentieth International Conference on

Automated Planning and Scheduling.

Yanco, H.A. and Drury, J. (2004) “Classifying human-robot interaction: an

updated taxonomy,” 2004 IEEE International Conference on Systems, Man and

Cybernetics (IEEE Cat. No. 04CH37583)., Vol.3, pp. 2841–2846.

Yanco, H.A. and Drury, J.L. (2002) “A taxonomy for human-robot interaction,”

Proceedings of the AAAI Fall Symposium on Human-Robot Interaction., pp.

111–119.

el Zaatari, S., Marei, M., Li, W. and Usman, Z. (2019) “Cobot programming for

collaborative industrial tasks: an overview,” Robotics and Autonomous

Systems, 116 Elsevier, pp. 162–180.

Zha, X.F. and Lim, S.Y.E. (2000) “Assembly/disassembly task planning and

simulation using expert Petri nets,” International Journal of Production

Research, 38(15) Taylor & Francis, pp. 3639–3676.

Zhang, W. (1989) “Representation of assembly and automatic robot planning

by Petri net,” IEEE Transactions on Systems, Man, and Cybernetics, 19(2) IEEE,

pp. 418–422.

194

Appendices

Appendix A: Derivation of the Synthetic Fatigue Variable

for the Completion Time Recovery Model

An expected completion time generated using Eq. (4.1) at task iteration

i+v is given by

 𝐸𝑖+𝑣,𝑗 = 𝑡𝑤,𝑗 + 𝜏
′
𝑗 ln(𝑖 + 𝑣). (A.1.1)

Rearranging Eq. (A.1.1) gives

𝐸𝑖+𝑣,𝑗 = 𝑡𝑤,𝑗 + 𝜏

′
𝑗 ln (𝑖 (1 +

𝑣

𝑖
)) (A.1.2)

which using the rules of logarithms gives

 𝐸𝑖+𝑣,𝑗 = 𝑡𝑤,𝑗 + 𝜏
′
𝑗 (ln(𝑖) + ln (1 +

𝑣

𝑖
)) (A.1.3)

that can be expanded out to

 𝐸𝑖+𝑣,𝑗 = 𝑡𝑤,𝑗 + 𝜏
′
𝑗 ln(𝑖) + 𝜏

′
𝑗 ln (1 +

𝑣

𝑖
). (A.1.4)

Given that an expected completion time generated using Eq. (4.1) at task

iteration i is given by

 𝐸𝑖,𝑗 = 𝑡𝑤,𝑗 + 𝜏
′
𝑗 ln(𝑖) (A.1.5)

substituting Eq. (A.1.5) into Eq. (A.1.4) gives

 𝐸𝑖+𝑣,𝑗 = 𝐸𝑖,𝑗 + 𝜏
′
𝑗 ln (1 +

𝑣

𝑖
). (A.1.6)

Rearranging Eq. (A.1.6), gives the definition of the synthetic fatigue variable as

 𝜏′𝑗 =
(𝐸𝑖+𝑣,𝑗−𝐸𝑖,𝑗)

ln(1+
𝑣

𝑖
)

. (A.1.7)

for subtask j, given the expected completion times for the worker at task

iterations i and i+v.

