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Abstract 
The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is the 

primary target of drugs treating the symptoms of Parkinson’s disease and schizophrenia. 

However, drugs acting at the D2R to manage these diseases often display efficacy for only a 

subset of their symptoms and have poor side effect profiles. Therefore, it is desirable to 

rationally design drugs that better manage disease symptoms and reduce side effects. This 

would be greatly aided by gaining a detailed understanding of the kinetic aspects of D2R ligand 

binding, signalling, regulation and trafficking. 

Differences in binding kinetics at the D2R results in varying side effect profiles between 

antipsychotics. In chapter 2, a time resolved-fluorescence resonance energy transfer 

competition kinetic ligand binding assay is optimised at the D2R. The assay is used in 

combination with D2R mutants to determine the contribution of selected residues in the 

extracellular regions of the D2R in modulating binding kinetic association and dissociation 

rates. Findings showed that different residues in this region are important determinants of 

binding kinetics in a ligand-dependent manner.   

Some agonists with slow dissociation rates have been shown to display apparent biased 

agonism at the D2R. In chapter 3, it is investigated whether the length of time an agonist binds 

the D2R influences observations of biased agonism. Within the selected panel of ligands, for 

which both binding kinetic rates and functional effects were determined, no clear relationship 

between agonist dissociation rate and apparent biased agonism could be established. 

D2R G protein signalling is regulated through phosphorylation by G protein receptor 

kinases (GRKs). In chapter 4, antibodies specific for GRK2/3 phosphorylation sites on the D2R 

were generated and characterised. A GRK2/3 phosphorylation site within intracellular loop 3 

was identified that is phosphorylated on agonist activation of the D2R.  Phosphorylation of this 

site predicts arrestin recruitment. Measurements of D2R phosphorylation were included with 

other measurements of G protein activation and receptor regulation to profile selected D2R 

agonists. 

The D2R can couple pleiotropically to G proteins of the Gαio subfamily. In chapter 5 

the kinetics of D2R mediated activation of individual Gαi/o protein subtypes was investigated. 

Increases in agonist potency were observed when the D2R activated Gαz. This was shown to 

be dependent on the slow guanosine triphosphate (GTP) hydrolysis rate of Gαz by either 
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mutation of serine 42 within the GTP binding site or co-expression with regulator of G protein 

signalling 20. 

Investigating GPCR and D2R biased agonism in the relevant cell type has been 

challenging due to the lack of molecular tools. A useful method for interrogating GPCR 

signalling functions is using bacterially derived toxins, such as pertussis toxin, to inhibit their 

coupling and then evaluate the downstream changes. In chapter 6 we developed a new pertussis 

toxin-like protein tool that can inhibit all of the Gαi/o subfamily, including Gαz. Ga subunits 

that are insensitive to the toxin were characterised to serve as tools in combination with the 

toxin.  

Finally, chapter 7 discusses the key implications of the findings in the context of the 

current literature and future research recommendations.  
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1.1 G protein-coupled receptors 

1.1.1 GPCR classification and architecture 

G protein coupled receptors (GPCRs) are integral membrane proteins consisting of 

seven α-helical transmembrane domains (TMs) connected by three intracellular loops (ICL1-

3) and three extracellular loops (ECL1-3). The topology of GPCRs is such that the amino-

terminus is directed into the extracellular space and the transmembrane domains snake through 

the membrane with the carboxy-terminus oriented into the cytosol (1). GPCRs are generally 

localised to the cell surface where they serve as the main mechanism for mammals to carry 

extracellular messages across the plasma membrane and into the cell. GPCRs do this by being 

activated by diverse agonists, including neurotransmitters, peptides, hormones or light photons 

in the case of the GPCR rhodopsin, and subsequently transducing signals intracellularly via 

coupling to heterotrimeric GTP-binding (G) proteins. Due to this ability, GPCRs are harnessed 

as the targets of around 30% of currently approved therapeutics (2).  

GPCRs represent one of the largest protein superfamilies encoding over 800 different 

human proteins (3). They are classified phylogenetically into five major families that are the 

rhodopsin, secretin, adhesion, glutamate and frizzled/taste2 families (Fig.1.1) (4). Each of the 

GPCRs share common characteristics and structural features within their respective families. 

The rhodopsin family are the largest family of GPCRs within the human genome. Being the 

largest family of GPCRs, most approved GPCR drugs target the rhodopsin family (5). This 

family is generally identified by having a ligand binding site located within the TMs to bind 

small neurotransmitters or peptides (Fig. 1.1). Moreover, there are fifteen members of the 

secretin family and these can be defined by their extracellular hormone binding domain of 

around 70 amino acid residues (Fig. 1.1) (5). The secretin family GPCRs use their hormone 

binding domain to bind different agonist polypeptides such as parathyroid hormone (PTH), 

calcitonin and vasoactive intestinal polypeptide (VIP). The adhesion family earn their name by 

often binding molecules in the extracellular matrix appearing to play an adhesive role. Due to 

these functions, they usually have very long and richly glycosylated amino-termini. In addition, 

they are distinguished by a GPCR proteolytic site (GPS) motif as well as often containing 

several other common protein domains within their amino-terminus (4). The glutamate family 

differ from other GPCR families by their amino-terminal venus flytrap domain that is used to 

bind agonists and translate the signal through their cysteine-rich domain into the TMs (6). 

Another characteristic of the glutamate family is their quaternary structure as obligate dimers 

(Fig 1.1) (6). The frizzled/taste2 family consist of the smoothened receptor, the frizzed 
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receptors activated by their Wnt glycoprotein agonists and important in development, and the 

taste 2 subfamily of receptors that widely function as bitter taste receptors (5). 

 

 
Figure 1.1: Structural differences between GPCR classes.  
 
1.1.2 GPCR signalling 

Activation of a GPCR by an agonist results in a conformational change in the TM 

bundle. The most noticeable structural change upon GPCR activation is the outward movement 

of intracellular end of TM VI (Fig. 1.2A & B). TM V also moves in concert with TMVI as well 

as smaller changes and rotations in the other TMs, resulting in an opening of the intracellular 

TM core of the GPCR (7). This then permits coupling of heterotrimeric G proteins (G proteins). 

G proteins are comprised of a Gα subunit that binds guanine nucleotides and a Gβ and Gγ 

subunit that function together as a single entity. The Gα subunit is composed of an α-helical 

domain and a ras-like domain whereas the Gβ subunit contains a β-propeller domain (Fig. 

1.2B). Upon coupling, the G protein makes key interactions with the Gα’s carboxy-terminal α5 

helix extending into the intracellular TM core of the GPCR (Fig. 1.2B) (8,9). Having bound a 

heterotrimeric G protein, the GPCR then has the function of a guanine nucleotide exchange 

factor (GEF) acting on the Gα subunit of the G protein whereby the Gα subunit exchanges its 

bound guanine diphosphate (GDP) for guanine triphosphate (GTP) (Fig. 1.3). This results in 

the Gα subunit transitioning to an active conformation which dissociates from, or rearranges 

relative to, the Gβγ complex (10,11). Once active, the Gα subunit and Gβγ complex can then 

further activate downstream signalling cascades. When the G protein subunits dissociate to 

bind downstream effectors, they allow access for other heterotrimeric G proteins to the active 

GPCR again which can be activated. Furthermore, the Gα subunit has native GTPase activity 

that permits the Gα subunit to exist in an active conformation for an amount of time before its 
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GTP is hydrolysed back to GDP (Fig. 1.3). Thus, the now-inactive Gα subunit is capable of re-

associating with free Gβγ complexes. This means that the G protein heterotrimer is re-formed 

and can bind again to the active GPCR to start the signalling cycle again (for review see (12)). 

Furthermore, the G protein cycle can be accelerated by regulators of G protein signalling (RGS) 

proteins that as GTPase activating proteins (GAPs) on the active Gα subunit to increase the 

rate of GTP-hydrolysis (13). 

 
Figure 1.2: Atomic structures of an inactive GPCR, an active G protein-bound GPCR 
and an arrestin-bound GPCR. (A) Inactive structure of a GPCR – the M2R. The bottom of 
transmembrane helix VI is positioned in towards the centre of the protein occluding effector 
coupling. (PDB code: 3UON) (B) Active structure of a GPCR (the M2R) bound to a G protein 
heterotrimer. TM VI moves outwards (black arrow) upon activation, opening the intracellular 
side of the receptor. The α5 helix of the Gα subunit interacts with the intracellular core of the 
transmembrane domains of the GPCR. The M2R is bound to GαoAβ1γ2. (PDB code: 6OIK). (C) 
Active structure of the M2R bound to β arrestin-1.  TM VI is rotated outwards relative to the 
inactive structure (black arrow). The finger loop of the arrestin protein engages the intracellular 
core of the transmembrane domains of the GPCR. (PDB code: 6U1N). M2R is shown in blue 
cartoons, GαoA is shown in green cartoons, Gβ1 is shown in orange cartoons, Gγ2 is shown in 
red cartoons and β arrestin-1 is shown in purple cartoons. 
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Figure 1.3: Schematic of the G protein cycle. An agonist binds and activates a GPCR. The 
active GPCR can then bind a heterotrimeric G protein. The heterotrimeric G protein consists 
of a Gβγ dimer subunit and Gα subunit that binds guanine nucleotides. The G protein is initially 
in its inactive conformation and bound to GDP. Upon G protein coupling, the GPCR promotes 
the exchange of the bound GDP for GTP and also permits the separation, or rearrangement, 
of the active GTP bound Gα subunit and the Gβγ subunit. The G protein signalling is then 
terminated when the active Gα subunit hydrolyses its GTP back to GDP and the inactive GDP 
bound Gα subunit re-associates with Gβγ. The cycle can then begin again by the inactive 
heterotrimeric G protein recoupling to the GPCR.  
 

There are a huge variety of possible heterotrimeric G protein combinations as there are 

sixteen different Gα subunits, six different Gβ subunits and twelve different Gγ subunits 

encoded in the human genome (14). The different Gα subunits are categorised into four 

subfamilies (Gαi/o, Gαs/olf, Gαq/11 and Gα12/13) and each subfamily often activates the same 

secondary messengers. The Gαs/olf subfamily activates adenylate cyclases that catalyse the 

production of cyclic adenosine monophosphate (cAMP), Gαi/o subunits inhibit adenylate 

cyclase activation which results in a reduction in cytosolic cAMP (15), an activated Gαq/11 

subunit binds to phospholipase C-β leading to an increase in intracellular Ca2+ levels (16) and 

Gα12/13 subunits cause activation of Rho guanine nucleotide exchange factors (RhoGEFs) 

which activate RhoA (17). The Gαi/o subfamily is the largest Gα subfamily, consisting of Gαi1, 

Gαi2, Gαi3, Gαo, Gαz and also the taste and visual Gα subunits; Gαgust, Gαt1 and Gαt2 (18). 

Members within the Gαi/o subfamily can be ADP-ribosylated by pertussis toxin rendering them 

unable to couple to GPCRs. However, it should be noted that Gαz is insensitive to PTX as it 

lacks the conserved cysteine substrate site (19). Moreover, after G protein activation the Gβγ 

subunit is also capable of acting on downstream effectors. For example, different Gβγ subunits 

can modulate voltage-gated calcium channels, G protein coupled inwardly rectifying potassium 

(GIRK) channels and particular adenylate cyclases (14), Overall, the specificity of a GPCR for 
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different G proteins will determine the G proteins that are activated and hence the downstream 

responses that are mediated within the cell. 

 

1.1.3 GPCR regulation and G protein independent signalling 

Once GPCRs are activated, numerous proteins are involved in regulating a GPCR’s 

signalling response over time and within distinct intracellular domains. After having coupled 

to G proteins, many GPCRs are phosphorylated on the carboxy-terminal tail or ICL3 by a 

family of serine/threonine kinases called G protein-coupled receptor kinases (GRKs) (Fig. 1.3A 

& B). There are a total of seven GRKs (GRK1-7) in the human genome with GRK2 and 3 being 

the most widely expressed in the body (20). Other serine/threonine kinases such as protein 

kinase C (PKC) can also phosphorylate some GPCRs to regulate their function.  Following 

binding and phosphorylation by a GRK, the negatively charged phosphorylation sites on the 

GPCR can be recognised by members from the arrestin family, that comprises β-arrestin-1 

(arrestin-2), β-arrestin-2 (arrestin-3) and also the visual arrestins, arrestin-1 and arrestin-4. (Fig. 

1.3C). Arrestins are structurally characterised by two domains, each containing seven β-strands 

that form curved lobes (Fig. 1.2C) (21). When arrestins are initially recruited, the 

phosphorylated carboxy-tail of the GPCR binds to a crevice within the curved amino-terminal 

domain of the arrestin. Subsequently, arrestins compete with G proteins by binding via their 

finger loop to an overlapping site located within the intracellular side of the GPCR’s TM bundle 

(Fig 1.2C) (22,23). It is through this competition and steric occlusion of G proteins that β-

arrestins earned their name on account of the initial discovery in their ability to arrest the 

signalling of the β2-adrenergic receptor (β2AR) (24). Furthermore, having bound to the GPCR, 

arrestins can serve as recruiters of the adapter protein AP-2 which can then allow access of 

clathrin to mediate budding of a clathrin-coated pit (25,26). Subsequently, dynamin is recruited 

to enable endocytosis of the GPCR by “pinching off” the clathrin coated pit from the plasma 

membrane to form an endocytic vesicle. Following this, GPCRs generally follow two distinct 

pathways: GPCRs can be trafficked from early endosomes into late endosomes and then 

lysosomes where they are degraded, or, GPCRs can enter recycling endosomes where they are 

trafficked back to the cell surface (27). While the former trafficking pathway leads to a 

sustained termination of the GPCR signal until new protein is translated, the latter trafficking 

pathway is important for rapid re-sensitisation of the GPCR. 
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Figure 1.3: Arrestin mediated endocytosis of GPCRs. (A) GPCRs are activated upon 
agonist binding permitting their coupling to heterotrimeric G proteins producing a 
downstream signalling response. (B) GPCRs are then phosphorylated on their intracellular 
loops and carboxy-tail by GRKs. (C) Phosphorylation by GRKs allows recruitment of 
arrestins to the intracellular side that sterically hinder the coupling of G proteins. (D) 
Arrestins then allow the recruitment of the adaptor protein-2 (AP-2) followed by clathrin and 
dynamin which enable endocytosis of the GPCR. (E) GPCRs are then internalised into 
endosomes where they are either recycled back to the cell surface or it trafficked into 
lysosomes where they are degraded. 
 

GPCR trafficking is generally associated with desensitisation or re-sensitisation, 

however, trafficking can also be employed by the cell to elicit the desired signalling outcome. 

It is now appreciated that GPCRs can be trafficked to particular endocytic compartments where 

they can continue to signal from after having internalised. These observations have brought 

about the area of compartmentalised signalling at GPCRs whereby different responses may be 

elicited from a GPCR depending on the cellular localisation of the GPCR. Such 

compartmentalised signalling has been heavily investigated in regions such as endosomes, 

specific membrane microdomains and the nucleus (28-30).  

Of the different non-canonical intracellular signalling compartments, endosomes are 

the most well appreciated compartment to mediate the signalling of GPCRs. Some of the first 

evidence of endosomal G protein signalling came from observations of prolonged G protein 

dependent responses from the sphingosine-1 phosphate (S1P1) receptor, parathyroid hormone 

(PTH1) receptor and thyrotropin (TSH) receptor  (31-33). The prolonged responses mediated 

by these GPCRs were either sustained or only partially reversed after agonist washout or 

addition of a competing antagonist. Importantly, it was shown that G protein responses could 

be abolished using inhibitors of endocytosis (32). Indicating that agonist internalised GPCRs 
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can mediate responses and hence that GPCRs can have additional G protein signalling waves 

after their initial acute plasma membrane localised signalling. Furthermore, direct visual 

evidence of active GPCRs in internal endomembrane compartments has also been confirmed. 

To demonstrate this, researchers made use of nanobodies that were initially developed to 

stabilise active conformations of GPCRs for structural studies and repurposed these into 

biosensors. By tagging these different biosensors with GFP, they were able to sense the active 

state of GPCRs in live cells via fluorescence microscopy. It could be observed upon agonist 

addition that β2AR can be activated in endosomes, and, using a different nanobody, that the µ 

opioid receptor (MOPR) can be activated on endosomes and the golgi apparatus (29,34). 

Upon activation, GPCRs can also couple to other proteins to initiate G protein 

independent signalling. Some of the most intensely studied proteins involved in G protein 

independent signalling are arrestins. Once arrestins have recruited and activated, they are 

thought to be capable of scaffolding to enhance existing signalling processes or, potentially, to 

mediate their own signalling events (35,36). This arrestin-dependent signalling may often occur 

from internal endocytic compartments. Arrestins can act as signalling scaffolds to recruit and 

activate several proteins such as mitogen activated protein (MAP) kinases including 

extracellular signal related kinase (ERK) 1/2 and c-Jun N-terminal kinases (JNKs) (37). There 

are now known to be over one hundred different proteins that can interact with the non-visual 

arrestins, many of which are known cellular signalling transducers (38). Moreover, GRKs are 

activated by GPCRs and can serve as signalling molecules eliciting further effects (39). In 

addition to kinase domains, GRKs possess other domains to elicit or modify signalling. For 

example, the GRK2/3 family contain an RGS domain and pleckstrin homology (PH) domain 

that can modulate Gαq subunits and Gβγ respectively (39). 

GPCRs can exist in pre-formed complexes with scaffolding proteins and effector 

proteins, termed signallosomes, that are primed to elicit a response to an agonist. Some of the 

first evidence of GPCRs existing in a signallosome was as early as 1978 suggesting GPCR can 

complex with adenylate cyclase (40). Such signallosomes have been extensively studied at 

several GPCRs such as the dopamine D4 receptor (D4R) and the relaxin family peptide receptor 

1 (RXFP1) (41,42). There is also increasing documentation of the propensity of GPCRs to form 

homodimers, including at the dopamine D2 receptor (D2R) (43,44). GPCRs may also form 

heterodimers with other GPCRs. One of the most well studied class A GPCR heterodimers to 

date is the canonical D2R dimer consisting of the D2R and the adenosine A2A receptor (A2AR). 

Multiple levels of experimental evidence support the idea of D2R-A2AR heterodimers. Early 

work showed that activation of the A2AR modulates the affinity of ligands at the D2R; indicating 
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allosteric interactions between the two receptors (45). Subsequently, biophysical studies using 

FRET and BRET techniques further supported the existence of D2R-A2AR dimers (46). Ex vivo 

and in vivo studies have also confirmed both the presence and the functional role of D2R-A2AR 

dimers in the striatum (47,48). In addition, there has been a considerable amount of research 

into the existence and functional importance of D2R - neurotensin receptor 1 (NTS1R) 

heterodimers as well as D2R – dopamine D1 receptor (D1R) heterodimers (49-51).  

 
1.2 Ligand binding kinetics at GPCRs 

1.2.1 The importance of ligand binding kinetics 

Ligands binding a protein, such as a GPCR, have an association rate and a dissociation 

rate for the protein that are denoted kon (M-1 s-1) and koff (s-1) respectively. These two rates at 

equilibrium determine the binding affinity of the ligand for the protein, which is given by the 

dissociation constant (Kd) that is defined by the following equation: 

(1.1) 

𝐾ௗ =
𝑘௢௙௙

𝑘௢௡
   , (𝑛𝑀) 

This is the concentration of the ligand required to occupy half of the proteins (GPCRs) 

at equilibrium. Pharmacologists often use this number when describing the avidity with which 

a ligand binds to a GPCR. This is important as the affinity of a ligand lead is often increased 

through medicinal chemistry in the drug discovery process because a consequential potency 

increase in vivo is predicted. This process is commonly referred to as determining structure-

activity relationships (SAR). However, the affinity (or dissociation constant (Kd)) may be a 

poor predictor of drug action as the concentration in vivo will be in a constant flux governed 

by processes such as dosing regime, hepatic clearance and membrane absorption. Hence, the 

drug is unlikely to reach equilibrium in the target tissue or compartment (52). Therefore, a 

drug’s kinetic binding rate parameters may better predict it’s in vivo activity. Indeed, both the 

association rate and dissociation rate can shape the pharmacodynamics and micro-

pharmacokinetics of the drug (53-57).  

The dissociation rate is important as it determines the lifetime of the ligand-GPCR 

complex. The lifetime of the ligand-GPCR complex can also be termed the residence time (RT) 

of the ligand for the protein, (58) which is given by:  

(1.2) 

𝑅𝑇 =  
1

𝑘௢௙௙
   , (𝑠) 
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This measure is useful as a drug only elicits its effects when bound to the GPCR. The 

residence time can also be expressed as the half-life of the ligand-receptor complex (t1/2) which 

is given by ln2/koff. As mentioned above, the residence time or t1/2 may be a better predictor of 

in vivo drug efficacy. This is because at non-equilibrium conditions such as when drugs are 

rapidly cleared in the body, a drug’s action may be prolonged by having a long residence time. 

In agreement with this, the prolonged duration of action of candesartan at the angiotensin II 

receptor 1 (AT1R) is thought to be due to its slow dissociation from the receptor (59). Similarly, 

slow dissociation, or prolonged residence, time may sometimes  contribute to the sustained 

signalling of a agonists acting at their receptors (60).  

The ligand association rate is also an equally important consideration in lead 

optimisation. The association rate can contribute to rebinding, where rebinding is the ability of 

a ligand to remain in a close vicinity with the GPCR after having dissociated such that it cannot 

escape and therefore is more likely to re-associate with the receptor (54). Consequently, the 

association rate, similar to the dissociation rate, can increase the target occupancy by 

effectively prolonging the lifetime of the interaction. This occurs particularly in instances when 

rebinding effects are more pronounced in a tissue compartment that has reduced diffusion such 

as a synapse (55,61).  

1.2.2 Molecular determinants of ligand binding kinetics 

Understanding the molecular determinants of binding kinetic rates is important so that 

one can tailor a small molecule to have the desired binding kinetics. Miller and colleagues (62), 

collated data from over 2000 distinct compounds and showed that some common features 

broadly influence ligand binding kinetics at all proteins. Particularly, ligands that slowly 

associate were found to often have a slow dissociation rate. They additionally presented a 

correlation between the drug size and the residence time of the ligand-protein complex. 

However, simply increasing the molecular weight of a compound will have reduced penetration 

in vivo. Therefore, information specifically regarding the molecular determinants of each 

GPCR’s ligand kinetics are required to rationally modulate drug efficacy and potency. Yet, 

studies investigating GPCR-ligand binding have been historically dominated by performing 

mutagenesis around a proposed binding site and subsequent assessment of the equilibrium 

affinity. Although these studies have given insight into the amino acid residues that govern the 

orthosteric site, they provide no understanding of the influence these residues have on the rate 

of ligand association or dissociation. While reports investigating structure kinetics 

relationships (SKR) on drugs that bind GPCRs are increasing, only a handful of studies have 
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thoroughly explored this to date. Of note, a report investigating the binding kinetics of 

ZM241385 derivatives to the adenosine A2A receptor (A2AR), identified that some derivatives 

displayed markedly different dissociation rates while having very little change in binding 

affinity (63). Another study at the prostanoid DP2 receptor showed that the orientation of a 

hydrogen bond acceptor positioned at the tail of antagonists was critical for extending the 

dissociation rate (64). Together these studies demonstrated that association and dissociation 

rates can be adjusted based on structure. 

Technical advances have led to a rapid expansion in the number of GPCR x-ray crystal 

and cryo-electron microscopy structures being reported. These structures are only capable of 

providing static or averaged poses of the particular ligand bound. Nonetheless, the structures 

of GPCRs have provided useful data for molecular modellers to investigate the molecular basis 

of ligand binding kinetics at different GPCRs. In doing so, Dror and colleagues (65), provided 

the first evidence that GPCRs can contain an extracellular vestibule that makes initial contacts 

with the ligand before it traverses into the deep binding pocket between the TMs. This work 

also showed that the initial binding of the drug to the extracellular vestibule was enabled 

through dehydration of the residues on the extracellular vestibule. This ‘de-solvation’ presented 

the largest energy barrier to overcome for binding to occur, surprisingly larger than any 

subsequent process occurring before entry into the final binding pose. Additionally, the crystal 

structures of the muscarinic acetylcholine M2 receptor and M3 receptors (M2R and M3R) 

allowed for indirect information on ligand binding kinetics via molecular dynamics simulations 

(66,67). The two crystal structures were unable to provide a mechanism as to why tiotropium 

displays a residence time of 34.7h at the M3R but only 3.6h at the M2R (68), as the M2R and 

M3R structures exhibited a highly conserved orthosteric binding site for the co-crystallised 

antagonists. However, by using the crystal structures to perform virtual ligand dissociation 

dynamics experiments, it was observed that ECL2 of the M2R displays increased flexibility 

which allows key residues to rotate, opening an exit for tiotropium to dissociate more readily 

than at the M3R. Soon after, Tautermann et al (69) followed up these observations with more 

extensive wet lab binding experiments and molecular simulations to thoroughly map the 

residues important in determining tiotropium’s dissociation rate. 
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1.3 Biased agonism 

1.3.1 General introduction 

Biased agonism is the phenomenon of one agonist that acts to preferentially activate 

one signalling pathway more than another signalling pathway relative to another agonist at the 

same receptor (70) (Fig. 1.5). It is widely accepted that GPCRs are capable of existing in 

multiple conformational states (71,72). Hence, having this natural capability, biased ligands 

are thought to act via stabilising distinct states of the GPCR. The different conformational states 

then presumably lead to the differential coupling of heterotrimeric G proteins or other effectors 

(e.g. arrestins) and thus lead to signalling pathways being activated to different extents. 

Therefore, biased agonism can be explained through allostery at a GPCR (73) if one envisions 

a biased agonist acting allosterically to modulate a GPCR into distinct conformations that 

translate through to its “primary” intracellular G protein binding site to have different abilities 

to bind or activate G proteins and other intracellular effectors. Among some of the evidence 

showing the structural allosteric basis as the mechanism of bias are studies on the μ-opioid 

receptor (MOPR) (74), β2AR (75), AT1R (76) and the serotonin 5-HT2B receptor (77).  

The appeal of signalling bias is novel drugs can be designed which are highly targeted 

as they only activate the specific signalling pathways that are desired. For example, drugs such 

as morphine for acute pain relief target the MOPR, however their use is associated with severe 

adverse effects including respiratory depression, analgesic tolerance, hyperalgesia, 

constipation, and addiction. In the late 1990s it was shown that knockout mice that lacked the 

β-arrestin-2 (arrestin-3) subtype displayed enhanced morphine-induced analgesia but 

attenuated tolerance, respiratory depression and constipation suggesting that β-arrrestin-2 

mediated signaling underlies these adverse effects (78). This suggested when the MOPR is 

activated by these drugs, it is the signalling through arrestins that leads to these limiting side 

effects. This infers that the best pain relief drugs may be ones that are biased towards activating 

G proteins but negligibly recruit arrestins. This finding stimulated efforts to identify biased 

MOPR agonists that would activate G protein but not arrestin pathways as safer analgesics. 

One such apparent G protein biased ligand, TRV130, developed by the biotechnology company 

Trevena Inc. was reported to have an improved pre-clinical profile over morphine and 

underwent clinical trials in treating moderate to severe acute pain (79). Other biased MOPR 

agonists have been identified but remain experimental compounds (80,81).  

Recent contradictory reports, however, suggest that the abuse potential of these drugs 

is similar to morphine and that they can still cause respiratory depression and constipation (82). 
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Further, morphine was found to induce respiratory depression, constipation and withdrawal in 

a mouse in which the MOPR was replaced by a mutant MOPR that cannot activate β-arrrestin-

2 (83). Finally, a more recent study using the β-arrrestin-2 knockout mouse found that 

morphine could still cause respiratory depression in a manner indistinguishable from that 

observed for the wild-type (84). This illustrates that the clinical development of these biased 

agonists is challenging because it remains unclear how distinct downstream signalling 

pathways in different MOPR expressing cells and tissues control the therapeutic and adverse 

physiological effects of opioid analgesics. Determining which signalling pathways need to be 

activated and to what magnitude to have the desired physiological outcome is a major hurdle 

that the field faces (85). 

 
Figure 1.5: GPCR biased agonism. The balanced agonist (orange) binds the GPCR (blue), 
inducing an active conformation or conformations that lead to even relative activation of 
signalling pathways one and two. The biased agonist (red) is a chemically distinct agonist that 
binds and stimulates the same GPCR, yet, it preferentially activates signalling pathway two 
more so than pathway one (relative to the balanced agonist). By activating signalling pathways 
to different extents, the biased agonist produces a unique downstream cellular and 
physiological response. 
 
1.3.2 Quantification of biased agonism 

To determine whether an agonist displays bias, it is essential to have robust methods to 

quantify biased agonism. Measuring biased agonism is usually conducted by accurately 

detecting multiple signalling pathways in cellular assays, constructing concentration-response 

curves (Fig. 1.6A), fitting the data to a suitable model to quantify agonist action and then 

comparing to determine relative efficiency with which an agonist activates a particular pathway 

relative to another. While there are many methods for quantifying biased agonism, the most 

common is to use a method based on an operational model of agonism proposed by Black and 

Leff (86) to derive ratios of the agonists’ efficacy (τ) and functional affinity (KA), and then 
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compare the ratios between agonists. The equation re-arranged to fit to functional data is 

defined below: 

 (1.3) 

𝐸 =
𝐸௠𝜏௡[𝐴]௡

([𝐴] + 𝐾஺)௡  +  𝜏௡[𝐴]௡
 

Where, E is the pharmacological effect (or response), Em is the maximal effect (or 

maximal response) of the system, τ is termed the transducer ratio and is the agonist’s 

operational efficacy which is comprised of the receptor density ([Rt]) divided by the intrinsic 

efficacy (KE) of the agonist at the particular signalling pathway; [Rt]/KE, [A] is the agonist 

concentration, KA is the agonist’s dissociation constant for the receptor when acting at the 

particular signalling effector/pathway, and, n is the slope of the transducer function that links 

the agonist’s concentration to pharmacological effect (or response).  

The transducer slope (n) and the maximal effect (Em) are shared by all agonists. 

Therefore, parameters describing the agonist activity at a particular signalling pathway include 

both the functional affinity (KA) and the operational efficacy (τ) values. These values are 

usually, combined into a ratio called the transduction coefficient (Log(τ/KA)) (Fig. 1.6B) (87). 

Importantly, the transduction coefficients need to be normalised to a reference agonist before 

attempting to determine bias. This is because the transduction coefficient incorporates the 

differences in the coupling efficiency, cell type and signalling effector stoichiometry (system 

bias) as well as differences in the sensitivity and assay conditions (observational bias). 

Accordingly, an agonist is chosen to be the reference agonist and its transduction coefficient is 

subtracted from the agonists of interest in that particular pathway to determine their relative 

transduction coefficient (Δ Log(τ/KA)) (Fig. 1.6C). A further normalisation can then be made 

between two pathways of interest to graphically assess biased agonism as ΔΔLog(τ/KA) values 

between the two desired pathways (Fig. 1.6D).  
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Figure 1.6: Biased agonism quantification based on the Black-Leff operational model. 
(A) Agonist concentration response curves are determined for two separate signalling 
pathways or endpoints. Note that agonist 1 (red) is more potent and efficacious than agonist 
2 (green) in signalling pathway 1, however, this pattern is reversed in signalling pathway 2. 
(B) Agonist concentration response curves are fit to the operational model equation described 
in detail above to determine the Log(τ/KA) values (also called transduction coefficients). (C). 
The Log(τ/KA) values of the reference agonist (shown in blue) from each signalling pathway 
are subtracted from the corresponding Log(τ/KA) values of the other agonists of interest to give 
ΔLog(τ/KA) values. (D) The ΔLog(τ/KA) values of one signalling pathway are subtracted from 
another signalling pathway to determine the ΔΔLog(τ/KA) values (also called LogBias). Shown 
here, agonist 1 is biased towards signalling pathway 1 whereas agonist 2 is biased towards 
signalling pathway 2 – importantly the bias is all relative to the reference agonist. 
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1.3.3 The influence of binding kinetics on observations of biased agonism  

A key feature of allosteric communication is the ability of one ligand to modulate the 

affinity of the other. Likewise, a change in the binding kinetics at a receptor may indicate a 

change in the conformational state of that receptor such that the ligand has a different affinity 

for this state. For example, Birdsong et al. (88) showed that after prolonged agonist exposure 

to the MOPR, the binding affinity of the receptor for agonists is increased. This suggests that 

pre-exposing the receptor to an agonist may allow intracellular effectors to couple to the 

receptor, resulting in different conformational states being stabilised. In addition, a group was 

able to decrease the rate of dissociation of ligands by titrating in the concentration of G proteins 

to a purified receptor system (89), thus showing that increasing the concentration of proteins 

which interact with the GPCR will allosterically modulate the GPCR in vitro. These studies 

indicate that the kinetics of both the agonist and the effector at the receptor have a fundamental 

part in determining the response together. While the studies showing this are relatively recent, 

the concept that ligand binding kinetics can influence efficacy is not new. Indeed, one of the 

classic models of pharmacological action is Paton’s rate “theory of drug action” (90). Paton 

used different drugs on guinea-pig intestine and observed that their response onset rate was 

proportional to the magnitude of their response. It was therefore postulated that the a drug’s 

intrinsic efficacy would be proportional to the number of agonist-receptor interactions and as 

such, dependent on the association rate (90). Contrasting with Paton’s rate theory are many 

other studies demonstrating the opposite relationship. Studies at the M3R from two separate 

groups have shown that agonists with an increased residence time display increased agonist 

efficacy assessed at multiple endpoints (91,92). Similar findings have also been observed at 

the A2AR and the α2A-adrenceptor (93,94). Additionally, the β2AR agonist C26, displayed 

higher efficacy than adrenaline and isoprenaline which was thought to be due to its extended 

residence time (95). While these reports are elegant, overall the relationship between agonist 

binding kinetics and its influence on signalling efficacy remain incomplete.  

Our group recently extended these studies from kinetic studies on efficacy to kinetic 

studies on biased agonism. Interestingly, we reported that the kinetics of agonists can also lead 

to observations of apparent biased agonism (96). This was an important step for the field 

because distinct agonist-induced conformations are generally the assumed to be the molecular 

mechanism of biased agonism when examining pharmacological data. However, without any 

direct structural evidence this assumption may be problematic because biased agonism 

observations can occur through system bias, observational bias or potentially other molecular 
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mechanisms (87). Furthermore, our finding was exemplified at the dopamine D2 receptor 

(D2R) whereby agonists with different dissociation rates, meaning different agonist-GPCR 

residence times, displayed biased agonism between different pathways in a manner that 

changed over time. Depending on the pathway being measured, agonists with a fast dissociation 

rate such as dopamine and ropinirole either displayed no change in potency over time or a 

decrease in potency over time. In contrast, agonists with slower dissociation rates such as 

bifeprunox exhibited a concomitant increase in potency over time due to an increase in receptor 

occupancy over time. Therefore, one would presume that differences in receptor occupancy 

between distinct pathways would result in bias between pathways. Yet, while the apparent bias 

emerged from slow dissociating agonists relative to fast dissociating agonists, the bias was not 

entirely due to changes in receptor occupancy over time. Therefore,  Klein-Herenbrink et al. 

(96) suggested that the interplay between the agonist binding kinetics, the kinetics of signalling 

and the kinetics of the regulatory processes all are responsible for the apparent bias. Following 

this work, other reports have followed examining the relationship between agonist binding 

kinetics and biased agonism. It appears that at some serotonin receptors arrestin recruitment, 

but not G protein mediated pathways, can be altered by changing the drugs binging kinetics 

through receptor mutagenesis (97). In addition, neuropeptide Y1 receptor biased agonists 

appear to increase the relative lifetime of the G protein with the GPCR and by doing so impart 

their G protein bias relative to arrestins (98). Overall, these reports can lead one to hypothesise 

that agonists with a slow dissociation rate or extended residence time could permit different 

effectors, such as G proteins or arrestins, to engage the receptor for different amounts of time 

through inducing a different conformational landscape in the GPCR for an extended amount 

period and thus produce biased agonism (Fig, 1.7). Certainly, more evidence is required 

including studies on more distinct ligands and pathways in order to determine whether biased 

agonism through this mechanism can occur. 
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Figure 1.7: A potential mechanism of kinetic bias at a GPCR. GPCR’s can constantly 
sample multiple different conformations. Upon binding of an agonist, the agonist will induce 
the GPCR to exist in different conformational ensembles that have increased propensity to 
bind and activate downstream effectors. Agonists can have differing dissociation rates that 
determine the lifetime of the drug-receptor complex or residence time. An agonist with a slow 
dissociation rate may allow the receptor to remain in active conformations for an extended 
period as it has a long residence time. This in turn could lead to the ability of the GPCR to 
engage distinct G proteins, regulatory proteins or other effectors over time or engage these 
proteins for differing amounts of time. Subsequently, the GPCR will then explore a different 
repertoire of active conformations by engaging these proteins differently. (Figure adapted from 
Klein-Herenbrink et al. (96)).  
 
 
1.4 The dopamine D2 receptor 

1.4.1 Background 

The dopamine D2 receptor (D2R) is a constituent of a subfamily of five closely related 

GPCRs (D1-D5) within the broader rhodopsin (Class A) family of GPCRs. Receptors within 

the dopamine receptor subfamily share the monoamine dopamine as their endogenous agonist 

and thus have many similarities to other rhodopsin family monoamine receptors such as the 

adrenergic, histamine and serotonin receptors. The dopamine D1 and D5 receptors are termed 

the D1-like receptors and are coupled to the Gαs/olf subfamily of G proteins that stimulate 

adenylate cyclases. The D2-like receptors comprise the D2, D3 and D4 receptors that couple to 



Chapter 1 – General introduction 

35 
 

inhibitory Gαi/o subfamily G proteins. Interestingly, the two D1-like receptors are encoded by 

a single exon whereas the D2-like receptor genes consist of multiple exons and introns, allowing 

for translation of multiple isoforms due to alternative splicing (99). There are two splice 

variants of the D2R, termed D2 short isoform (D2SR) and D2 long isoform (D2LR), the D2SR 

lacks 29 amino acid residues in ICL3 compared to the D2LR and acts as an presynaptically 

autoreceptor (100,101). The D2R differs from most GPCRs in that it has no carboxy-terminal 

tail but instead has a very large ICL3. This large ICL3 is thought to reproduce the functions of 

the carboxy-tail in other GPCRs (102). The D2R has the widest expression in the central 

nervous system and modulates most of the effects of dopamine in the brain (103). Moreover, 

the D2R is the most intensely investigated dopamine receptor for drug discovery. The D2R is a 

key target for Parkinson’s disease, schizophrenia, restless legs syndrome, hyperprolactinaemia, 

depression, nausea and bipolar disorder (103-107).  

1.4.2 Dopamine D2 receptor expression 

The D2R has an extensive expression pattern in the central nervous system (CNS) and 

more restricted expression in the peripheral nervous system and other tissues. Of note, 

expression of the D2R has often been determined using radioligand binding or 

immunodetection, both of which are subject to cross-reactivity with other D2-like receptors. 

Nonetheless, the D2R is most abundant in the central nervous system where it is enriched in 

the striatum, the olfactory tubercle and nucleus accumbens (108,109). Within the striatum, 

D2Rs are located on medium spiny neurons (MSNs). More moderate labelling of the D2R has 

also been observed in many other brain regions including the substantia nigra pars compacta, 

olfactory bulb, superior colliculus and subthalamic nucleus (103,110). In addition, the D2R is 

expressed in smaller regions including the retina and arcuate nucleus (103). As is the case for 

all dopamine receptors, the majority of D2-like receptors are found on non-dopamine neurons 

(103,109). Moreover, Jang and colleagues (111), demonstrated in the substantia nigra pars 

compacta, that most expression of the D2R is the long isoform (D2LR) as opposed to the 

presynaptic D2SR (101). Furthermore, the D2R is also expressed in some endocrine tissues 

including the anterior pituitary and pancreatic β-cells (108,112). The D2R also appears to be 

expressed in the gut, for example, expression has been identified in the enteric nervous system 

of mice (113). Moreover, in rats, it has been determined by immunofluorescence and reverse 

transcription-polymerase chain reaction that the D2R is present in the gastric mucosa (114). 

The D2R has further been documented in the lymphocytes, implicating it in immune system 

function (115).  



Chapter 1 – General introduction 

36 
 

1.4.3 Dopamine D2 receptor physiological functions 

The most heavily investigated physiological functions of the D2R are those mediated 

by D2Rs expressed in different dopamine pathways in the CNS. Some examples of D2R 

functions include locomotor responses, motivation, cognition, reward behaviours, temperature 

regulation, learning and sexual behaviour. Many of these D2R functions are often overlapping 

with other dopamine receptors or dependent on their activity.  

One of the best characterised D2R functions is its role in locomotor activity. While 

locomotor activity is also regulated by the D1R and D3R, activation of the D2R has the largest 

effect (110). Specifically, activation of presynaptic D2R autoreceptors, that regulate dopamine 

release by dopaminaergic neurons, by drugs of abuse such as amphetamine and cocaine 

produce a reduction in the locomotion (103). In contrast, post-synaptic D2Rs oppose these 

functions and stimulate locomotor responses. Post-synaptic receptors generally activate 

signalling at higher concentrations than autoreceptors, therefore, locomotor activity can often 

be dependent on the concentration of the agonist. Moreover, learning and memory retention 

are also an important functions driven by the D2R. D2-like subtype selective agonists increase 

memory consolidation and subtype selective antagonists impairing this process (116). 

However, a similar relationship is also observed for the D1R. Drug reward is a neurobiological 

process associated with memory that is also influenced by the D2R. Mice lacking the D2R 

display a reduced preference to seek and consume ethanol (117). These types of process do not 

appear to be limited to addictive drugs and may be extended to general non-specific motivated 

behaviours. For example, an increase in the expression of the D2R in the nucleus accumbens is 

associated with increased motivation such as increased effort to obtain a goal (118). Moreover, 

there are a number of neuroendocrine duties of the D2R. In the pituitary, dopamine released 

from the hypothalamus acts at D2Rs on lactotrophs of the anterior pituitary to inhibit the 

production of prolactin and the subsequent lactation and developmental processes (119). 

Sexual behaviour can also be driven by the D2R through activation in the hypothalamus and 

interaction with the oxytocin system(120). Efficacious D2R agonists are well known to elicit 

hypothermia, demonstrating that the D2R regulates body temperature (110). The overarching 

roles that the receptor plays in many neurobiological and neuroendocrine functions highlights 

the reason why it has become such a common drug target. 

1.4.4 High resolution D2-like structures 

Recently there has been an explosion in the number of high-resolution structures of 

GPCRs including those of D2-like receptors. The D3R was the first dopamine receptor to have 



Chapter 1 – General introduction 

37 
 

its structure solved and was crystallised bound to the high affinity antagonist eticlopride (121). 

Subsequent structures were then solved of the D4R, followed by the D2R bound to risperidone 

(Fig. 1.8) (122,123). There are currently two reported structures of the D2R, with the second, 

most recent, structure solved bound to the typical antipsychotic haloperidol (123,124). These 

crystal structures revealed a very similar structure to other rhodopsin family (class A) GPCRs 

consisting of seven transmembrane domains positioned around in an anti-clockwise manner 

followed by a short helix 8 that runs parallel with the plasma membrane. Moreover, the D4R 

structure was solved at high enough resolution to visualise a conserved sodium site important 

for modulating ligand affinity and function at D2-like receptors (122). The D2-like structures 

confirmed work from previous radioligand binding and mutagenesis studies demonstrating that 

orthosteric ligands bind deep within the TM bundle. However, the structures have also aided 

further binding and molecular modelling studies to fine-tune our understanding of ligand-

receptor interactions (125,126).  

 
Figure 1.8: X-ray crystal structure of the D2R bound to risperidone. (A) Side view parallel 
to the plasma membrane of the D2R (green cartoon) bound to risperidone (magenta sticks). 
(B) Top view from the extracellular space of the D2R (green cartoon) bound to risperidone 
(magenta sticks). (PDB code: 6CM4) 
 
1.4.5 Molecular determinants of ligand binding at the dopamine D2 receptor  

Our understanding of the molecular processes that influence binding kinetics at the D2R 

is building. It is well appreciated that D2R ligands, such as dopamine, bind in the orthosteric 
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site comprising residues such as aspartate 114 located deep within the TMs (127). The 

orthosteric pocket is highly conserved among D2-like receptors, however, residues in the 

extracellular tips of the TMs and ECLs of GPCRs can form secondary binding sites and 

extracellular “vestibules” (65,67). These residues that constitute these sites are less conserved 

and hence can confer selectivity for specific ligands. While most studies investigating binding 

at the D2R have traditionally assessed effects on equilibrium affinity, an increasing number of 

studies are starting to reveal the intricacies of the whole binding and unbinding process. 

Tresadern et al (128) have investigated the influence of some physicochemical properties on 

the rate of dissociation of a large number of antagonists from the D2R. It was observed that 

increasing lipophilicity and larger molecular weight was related to slower dissociation rate 

from the receptor. Additionally, more targeted analysis on smaller sets of ligands has also been 

performed. One study examined the kinetics of a series of compounds at the D2R and suggested 

that a particular agonist-like moiety that the compounds shared was important for their fast 

dissociation rates from the D2R (129). However, this finding is only relevant for the particular 

moiety and cannot be extended to other compounds with different agonist moieties such as the 

agonist bifeprunox that is one of the slowest dissociating D2R ligands reported to date (96). 

Furthermore, Fyfe et al. (130) reported that modification of different moieties on the scaffold 

of haloperidol can significantly alter both the association and dissociation rates at the D2R. 

Together such studies have illustrated that ligands can be altered through medicinal chemistry 

to tune their D2R binding kinetics. Some studies have also started to explore the particular 

interactions ligands make with the receptor amino acid residues upon ligand binding. Early 

work by Shi and Javitch showed through substituted-cysteine accessibility that ECL2 lines the 

ligand binding site ‘crevice’ of the D2R (131). While the association and dissociation rates of 

ligands were not investigated, certain residues such as isoleucine 184 within ECL2 may be 

likely to influence binding kinetics. Interestingly, the structure of the D2R bound to risperidone 

(Fig. 1. 8) revealed a novel conformation of a tryptophan residue within ECL1 that is highly 

conserved among aminergic GPCRs. The tryptophan 100 residue was extended out over the 

top of the binding site. The tryptophan residue in this pose was suggested to be important for 

determining the residence time of risperidone (123). 

 
1.4.6 Dopamine D2 receptor G protein signalling  

The main effectors for the D2R are Gαi/o subfamily heterotrimeric G proteins. The D2R 

can activate all members of the non-visual Gαi/o family which are Gαi1, Gαi2, Gαi3, Gαo, and 
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Gαz (132,133). Downstream effects of D2R Gαi/o coupling include decreases in cAMP 

production by inhibition of adenylate cyclases (134), inhibition of P/Q-type and N-type calcium 

channels (135), activation of G protein-coupled inwardly rectifying potassium (GIRK) 

channels leading to increases in cytosolic potassium, and potentiation of stimulated arachidonic 

acid release (136).  

It is known that the D2R couples more strongly to Gαo isoforms (GαoA and GαoB) than 

the Gαi subtypes (137-139). In agreement with its G protein selectivity, the D2R is generally 

considered to elicit most of its effects in the brain through Gαo (140). Although, the method 

used to determine that Gαo coupling is the predominant form of coupling by the D2R was based 

on detecting the high affinity state of an agonist for the receptor-G protein complex. This is 

needs to be taken into consideration given that Gαo is the most plentiful G protein subtype in 

the central nervous system (141,142), such that, the experiment would be less sensitive at 

detecting other G protein subtypes expressed at lower levels. Certainly in pituitary cells it is 

appreciated that multiple Gαi/o subunits are involved in D2R mediated signalling responses such 

as inhibition of prolactin release (143). Additionally, Marcott and colleagues (144), provided 

evidence that the weaker coupling to Gαi subtypes may function to allow the D2R to display 

reduced sensitivity to dopamine in particular striatal sub-regions or cell types. While it was 

reported that multiple mechanisms likely explain differences in the kinetics of signalling 

between brain regions, the differences in signalling sensitivity in the nucleus accumbens 

relative to the dorsal striatum could be attributed to coupling to Gαo subunits in the nucleus 

accumbens compared to Gαi subunits in the dorsal striatum (144).  

In addition to Gαo and Gαi coupling, there is also evidence that the D2R can couple to 

Gαz to mediate some of its physiological effects. In contrast to other Gαi/o subtypes that are 

ubiquitously expressed, Gαz’s expression is largely specific to neuronal and some endocrine 

cell types, including regions enriched with the D2R such as the striatum and pituitary (145). 

The D2R and Gαz are also co-expressed in pancreatic islets (146,147). It has been hypothesised 

that the D2R mediates PTX-insensitive signalling through Gαz as determined by experiments 

performed on ex vivo rat pituitary tissue (148). Moreover, a well characterised behavioural 

reflex response mediated though D2R is the disruption to prepulse inhibition upon 

dopaminergic stimulation with drugs such as amphetamine (149). Interestingly, Gαz knockout 

mice display an increased disruption to prepulse inhibition upon stimulation with dopaminergic 

drugs (150). In addition, Gαz is also required for D2R mediated inhibition of dopamine release 

in the nucleus accumbans and its resultant suppression of locomotor activity (151). D2R 
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mediated adrenocorticotropic hormone (ACTH) secretion and hypothermia is also dependent 

on Gαz (151).  

1.4.7 D2R regulation and G protein-independent signalling 

Upon agonist activation of the D2R, several proteins other than G proteins are involved 

in regulating and coordinating the signalling response. The rate and magnitude of D2R G 

protein signalling can be regulated in the striatum by regulator of G protein signalling 9-2 

(RGS9-2) (152). Subsequently GRK2 and 3 are recruited and phosphorylate the receptor 

(102,153). In the case of the D2R, GRK recruitment is required for arrestin recruitment to the 

receptor although, interestingly, the phosphorylation of the receptor which occurs on ICLs has 

been shown to be not critical for arrestin recruitment (102). This observation goes against the 

current dogma within the GPCR field, as classically it is thought that arrestins recognise the 

phosphorylated serines and threonines on the receptor due to the GRK. The phosphorylation 

by GRK2 or 3 is instead thought to be important in recycling of the D2R back to the cell 

surface(102,153). Nonetheless, β-arrestin-2 is thought to be the main arrestin that binds to the 

D2R to sterically hinder G protein activation (154). The D2R is a relatively poor arrestin 

recruiter, this usually results in the receptor being recycled back to the plasma membrane 

instead of being trafficked into lysosomes for degradation. Moreover, one group has provided 

evidence of arrestin scaffolding at the D2R mediating a novel signalling cascade comprising 

protein phosphatase 2A (PP2A), Akt and GSK3 (155). In addition to agonist dependent 

regulation, heterologous desensitisation can occur at the D2R through activation of PKC (156). 

PKC can phosphorylate the receptor on intracellular loops, resulting in reduced G protein 

mediated responses and receptor trafficking. Finally, while it is beyond the scope of this thesis, 

it should be noted that many other proteins interact with the D2R to regulate or mediate their 

own signalling such as GIPC (157), NCS-1 (158,159), Spinophilin (160), Dysbindin-1 (161), 

and S100B (162). These proteins are termed dopamine receptor interacting proteins or DRIPs. 

  

1.5 The dopamine D2 receptor in Schizophrenia 

1.5.1 Dopamine hypothesis of schizophrenia 

Schizophrenia is a chronic mental illness with a prevalence of approximately 5 in 1000 

in the global population (163). The precise aetiology of the disease is poorly understood, 

however, there are a number of known risk factors involving parental age, ethnicity, birth 

issues, immune disorders, and cannabis usage (164). The disease is characterised by positive 
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symptoms such as delusion and hallucinations, negative symptoms such as social withdrawal 

and depression and cognitive symptoms including impaired working memory (165). 

The dopamine hypothesis of schizophrenia has evolved over time although broadly the 

fundamental assumption of the hypothesis is that schizophrenia is associated with a 

dysregulation of dopamine in the brain (166). Initially, antipsychotic drugs were 

extemporaneously discovered in the 1950s and found to treat the positive symptoms of the 

disease. Soon after this, the existence of dopamine receptors was starting to be established 

through work by Carlsson, Greengard and Kebabian (167-169). However, the “antipsychotic 

receptor” was not confirmed until 1976 by illustrating that the clinically used concentrations 

of all antipsychotics correlated with the concentration needed to inhibit binding of [3H] 

haloperidol to 50% in brain striatal tissue (170). This finding was made possible by the creation 

of [3H] haloperidol, that could specifically label what was later termed the dopamine D2 

receptor (171,172).  Having achieved this, the dopamine hypothesis of schizophrenia was born. 

1.5.2 Antipsychotic drugs 

Since the first antipsychotic drug, some newer and improved drugs have been approved 

yet their ability to block dopamine agonism at the D2R remains essential for robust efficacy 

(173). First generation antipsychotics are antagonists at the D2R. These first generation 

antipsychotics are largely a group of phenothiazines, of note is the first discovered 

antipsychotic chlorpromazine (174). After chlorpromazine, other first generation 

antipsychotics that were developed including ones with differing scaffolds such as the 

butyrophenone haloperidol (174). 

The first approved second generation antipsychotic was clozapine, which remains the 

gold standard treatment for schizophrenia today (175). Second generation antipsychotics are 

D2R and serotonin 5-HT2A receptor antagonists. The second generation antipsychotics have a 

reduced propensity to cause side effects such as extrapyramidal side effects due to differences 

in their binding kinetics at the D2R discussed in a following section (1.5.4) (61,176).  

The main feature of third generation antipsychotics is that they are weak partial agonists 

at the D2R (173). Although, they additionally display partial agonism at the serotonin 5-HT1A 

and 5-HT2B receptors. These antipsychotics currently include aripiprazole, cariprazine and 

brexpiprazole. These antipsychotics were originally proposed to act as dopamine stabilisers by 

functioning as agonists at the presynaptic autoreceptor but antagonists at the postsynaptic 

heteroreceptor (177). However, subsequent studies demonstrated that they act as partial 

agonists at postsynaptic receptors (178). Therefore, being partial agonists, they likely function 
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by reducing D2R signalling when there is too much dopamine released and increasing 

dopamine signalling when too little is released. In, addition the serotonin receptor agonism may 

also be advantageous through possibly boosting mood or reducing extrapyramidal side effects 

(179). Moreover, it has been suggested that the third generation antipsychotics may act through 

a mechanism involving biased agonism although this is not the current consensus in the field 

(173,180).  

1.5.3 The potential of biased agonism within the dopamine hypothesis 

The generally accepted hypothesis for pharmaceutical intervention in schizophrenia is 

that antipsychotics are antagonists or partial agonists which work by blockade of the D2R. 

However, recent work by Caron and colleagues have suggested that partial agonists that 

preferentially activate the arrestin pathways may be more efficacious. Inferring that this may 

be an example where biased agonism (or biased antagonism) may provide improved drug 

efficacy in vivo. However, the basis for arrestin biased agonism and antipsychotic efficacy is 

convoluted. Early studies showed that activation of β-arrestin-2 by the D2R in the striatum 

leads to specific dopamine-dependent behaviours in mice (181), demonstrating that not all D2R 

mediated effects in vivo are dependent on G protein cAMP/PKA. This work further developed 

into a mechanism of G protein independent activation of the Akt/GSK-3β/PP2A pathway 

whereby β-arrestin-2 recruitment by the D2R leads to deactivation of Akt which in turn 

promotes activation of GSK-3β (155,182). Additionally, it was shown that Akt protein levels 

are downregulated in patients with schizophrenia, suggesting a potential role for specifically 

pharmacologically antagonising β-arrestin-2 via D2Rs to increase Akt activity (182). Follow-

up studies by the Caron group then aligned with this hypothesis through molecular 

pharmacology by using clinically efficacious antipsychotics in mammalian cells and showing 

that they antagonise arrestin recruitment (183). However, more recent studies by the same 

group now oppose this view, whereby ligands that antagonise G protein mediated events but 

still retain the ability to recruit β-arrestin-2 are preferred. This was suggested through 

administration of an apparent arrestin-biased partial agonists in mouse models of psychosis as 

well as studies between arrestin knock-out and wild-type mouse models (184,185). Therefore, 

the relationship between arrestin bias and antipsychotic efficacy currently remains unclear. 

More recently, a separate group has investigated arrestin dependent effects at the D2R by using 

an engineered arrestin biased mutant receptor (186). Through these studies it was possible to 

discern that arrestin recruitment can independently enhance locomotion but not motivation 

behaviours. While it is unclear which downstream signalling pathways or mechanisms may be 
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involved, the work demonstrates that D2R mediated physiological effects could potentially be 

separated through biased agonism.   

 

1.5.4 The role of D2R-ligand binding kinetics in Schizophrenia 

Seminal work by Kapur and Seeman (176,187) lead to the “fast off” hypothesis for 

atypical antagonist antipsychotics at the D2R. Second generation (atypical) antipsychotics 

display less side effects such as hyperprolactinaemia, motor symptoms, and extrapyramidal 

side effects compared to first generation (typical) antipsychotics. Kapur and Seeman postulated 

that second generation antipsychotics produce less on-target side effects because they have a 

faster dissociation rate from the D2R. The fast dissociation rate of the second-generation 

antagonists then leads to a lower receptor occupancy in the striatum compared to first 

generation antipsychotics. The idea was further supported by the fact that at high doses of a 

second generation antipsychotic, which produce high receptor occupancy, on-target symptoms 

start to present akin to those of the first generation antipsychotics (188).  

Extending this work, Sykes et al (61), reassessed the both the association rate and the 

dissociation rate in regards to the side effects associated with different first and second 

generation antipsychotics. While an identical relationship was found between the dissociation 

rate and the propensity to induce hyperprolactinaemia, a different correlation emerged between 

the association rate and the tendency to cause extrapyramidal side effects (61). It was further 

suggested that this was due to rebinding of the antipsychotic inside the diffusion limited 

compartment of a synapse. 

Later investigations by Carboni and colleagues (189) took a similar approach to these 

studies to investigate the newer third generation antipsychotics. The third-generation 

antipsychotics are weak partial agonists at the D2R that include cariprazine, aripiprazole and 

brexpiperazole. Carboni et al. (189) investigated the agonist efficacy and binding kinetics in 

relation to prolactin release into the bloodstream in rats. The measurement was used as a 

surrogate to predict the likelihood of hyperprolactinamia in humans. Interestingly, they 

demonstrated with aripiprazole and several other partial agonists synthesised in-house, that 

slower dissociation of partial agonists produced a smaller increase in prolactin compared to the 

other partial agonists with similar efficacy. One key observation to come out of this study was 

that agonist maximal response did not correlate with prolactin release, suggesting that in vitro 

agonist efficacy may not be the best predictor of in vivo efficacy. Additionally, this relationship 

between kinetics for partial agonist antipsychotics was effectively the opposite of the work by 
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Kapur and Seeman as well as Sykes et al. with antagonist antipsychotics. This suggests then 

that the partial agonists may have a separate mechanism of action to antagonists. 

 

1.6 The dopamine D2 receptor in Parkinson’s disease 

1.6.1 Background  

Parkinson’s disease is a continual progressive neurodegenerative disorder. It is the 

second most prevalent neuropathological disorder after Alzheimer’s disease (190). The disease 

usually begins in a person’s 50s or 60s, although in rare cases early-onset Parkinson’s can occur 

before the age of 40. The high societal and economic impact of the disease is expected to grow 

substantially as the prevalence grows due to an aging global population (191). The disease is 

featured by motor symptoms including tremors, bradykinesias, muscular rigidity and reduction 

of postural balance. While in the community it is primarily thought of as a movement disorder, 

it is important to recognise that the disease is also associated with several non-motor symptoms 

including orthostatic hypotension, depression, skin conditions, anxiety, dementia, sleep 

problems and sensory impairments (192). Parkinson’s disease pathology is characterised by 

the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (193). As 

the neurons die over time this results in a loss of dopamine in the posterior striatum, where the 

dopaminergic neurons of the substantia nigra project to. It is this loss of dopaminergic tone that 

then leads to the motor symptoms observed in patients (194). This pathology is usually coupled 

with characteristic protein aggregate inclusions called Lewy bodies in certain regions of the 

brain (195).  

1.6.2 Pathogenesis 

Parkinson’s disease has been historically considered an idiopathic disorder. While it is 

still often unclear which components are responsible for initiating, spreading or worsening the 

disease, multiple environmental and genetic factors have become evident over time. Increasing 

age is the highest risk factor for the disease. This may be due in part to dopaminergic neurons 

in the substantia nigra being more susceptible to processes like mitochondrial disfunction than 

other neurons. Moreover, there are also many other triggers or risk factors including, exposure 

to some pesticides (196), brain trauma,  some bacterial and viral pathogens, changes in the gut 

microbiome (197) ethnicity, geography and sex (198).  

Specific genes were not identified as risk factors until mutations in the α-synuclein 

encoding gene SNCA were identified in a family with Parkinson’s disease in 1997 (199). 
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Shortly after identifying that mutations in α-synuclein can cause rare forms of the disease, it 

was shown that α-synuclein is a major component of Lewy bodies. This more directly linked 

the genetics to the pathogenesis because Lewy bodies are thought to be a toxic species to 

organelles. These results lead to several genome wide association studies (GWAS) and meta-

analyses to identify genetic risk factors. Now, there is an ever-increasing list of upwards of 20 

genes associated with the disease that display varying functions within the cell. The most 

common heritable form of the disease being due to genetic differences in leucine-rich repeat 

kinase 2 (LRRK2) (200,201). Other commonly associated genes are PTEN-induced kinase 1 

(PINK1) (202) and glucocerebrosidase (GBA)(203).  

1.6.3 Current treatment 

At present, pharmacological treatment mainly manages the motor symptoms of the 

disease, having efficacy towards only some of the non-motor symptoms (204). Using different 

small molecule approaches, all treatments aim to restore dopamine signalling in the striatum. 

This is managed by treatment with either L-dihydroxyphenylalanine (L-DOPA), a D2R agonist, 

a monoamine oxidase B (MAO-B) inhibitor, or a combination of these. 

L-DOPA is still the mainstay medical treatment for Parkinson’s disease (205). L-DOPA 

is converted by DOPA decarboxylase to dopamine and is the body’s natural dopamine 

precursor. Thus, in Parkinson’s treatment L-DOPA functions as a prodrug through which it can 

cross the blood brain barrier where it is then converted into dopamine to have its effect. 

Moreover, L-DOPA is usually taken in combination with a decarboxylase inhibitor such as 

carbidopa. This is to prevent conversion of dopamine outside of the brain because dopamine 

plays a dual role as a hormone in the periphery and a neurotransmitter in the brain. This then 

allows the use of lower initial doses of L-DOPA. Once treatment with L-DOPA has started, 

MAO-B inhibitors are often used in combination to enhance the effect and D2R agonists have 

also historically been used in combination. 

Taken orally or with a transdermal patch, small molecule D2R agonists cross the blood-

brain-barrier where they can act to enhance some dopamine receptor signalling in the striatum. 

These agonists generally have selectivity for the D2R and the D3R. First generation D2R 

agonists for Parkinson’s disease include lisuride, bromocriptine, pergolide and cabergoline that 

are derived from ergots. Some of these agonists have fallen out of favour due to their increased 

risk of cardiac valvular disease and fibrosis of other connective tissues (206,207). In particular, 

cabergoline and pergolide have been withdrawn from the market due to their serotonin 5-HT2B 

receptor agonism which leads to valvular pathologies (208). Bromocriptine remains a marketed 
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drug however it is mainly prescribed for other indications such as the treatment of 

hyperprolactinemia and acromegaly. Second generation agonists such as such as ropinirole, 

pramipexole, apomorphine, rotigotine and piribedil vary in structure and hence do not have the 

side effects common to some of the ergot-derived agonists. While these D2R agonists are 

generally considered to be less efficacious than L-DOPA, they can be used after L-DOPA shows 

“escape” or to delay the need for L-DOPA because they may have reduced risk for motor-

related complications such as dystonia, dyskinesia and motor fluctuations (209). Moreover, 

MAO-B inhibitors may be used for similar reasons in early stages of disease. In contrast to 

direct activation of D2Rs, MAO-B inhibitors boost dopamine signalling by permitting the 

body’s naturally produced dopamine to persist for longer in the synapse. After being released 

in the brain, dopamine is taken up by neurons or glia where it then undergoes oxidative 

deamination. MAO-B is the enzyme that is chiefly responsible for this action on dopamine 

(210). Therefore, in early stages of the disease a MAO-B inhibitor such as selegiline or 

rasagiline may be prescribed to enhance dopamine signalling in the nigrostriatal system.  

1.6.4 Scope for improving D2R targeted therapy 

It should be noted that there are numerous promising approaches targeting proteins 

other than the D2R that are being developed. However, any disease modifying therapy is only 

likely to be approved over the long term as these therapies are generally in the early clinical or 

pre-clinical stages. Some examples include drugs targeting other GPCRs (211,212), therapies 

designed to immunise against α-synuclein (213), modalities targeting other proteins such as 

LRRK2 and PINK1 (214), dopaminergic cell-based therapies (215), and gene therapies to 

restore dopamine production (216). 

In the shorter term, it may be more realistic to improve D2R targeting through detailed 

pharmacological characterisation of existing D2R agonists or through targeting the D2R via 

novel mechanisms such as biased agonism. Indeed, there is considerable scope in identifying 

the most efficacious existing drugs through post-approval research. Particularly in the case of 

the early stage of the disease where current therapeutic strategies vary, with a wide use of 

different agonists that display varying efficacies and binding kinetics. Current thinking 

suggests that the D2Rs simply need “switching on”, however we now know the agonists being 

prescribed are not equivalent. Indeed, ergot agonists are usually not prescribed by doctors 

anymore as mentioned earlier. Additionally, other D2R agonists could potentially display 

partial agonism or biased agonism with respect to dopamine. Therefore, it may be important to 

investigate the signalling properties of prescribed agonists in more detail to better understand 
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which drugs are the most efficacious or reduce side effects. In addition, investigating the 

molecular determinants of signalling and binding kinetics of D2R agonists could identify 

whether new small molecule D2R agonists can be developed with differing pharmacology to 

the currently available options. Altogether, this could improve the doctors guidelines as well 

as advise the dosing regimens of D2R agonists as it is somewhat complicated due to the existing 

drugs having different potencies (217).  
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1.7 Scope of thesis 

The dopamine D2 receptor (D2R) is a key target for various neuropsychiatric and 

neurological diseases. However, drugs acting at the D2R for these diseases often have limited 

efficacy and poor side effect profiles. Understanding the molecular mechanisms of binding and 

signalling of the D2R, including their kinetic rates will provide the foundation for the design of 

the next generation of improved D2R-targeted drugs.  

There are quite clear differences in the binding kinetics of clinically relevant ligands 

acting at the D2R. The work of Seeman and colleagues (187,218) and later by Sykes and 

colleagues (61) has highlighted the importance of binding kinetics in the side effect profile of 

antagonist antipsychotics at the D2R. Additionally, Klein-Herenbrink and co-workers (96) as 

well as Carboni and colleagues (189), have demonstrated that the functional differences of 

agonists can sometimes be attributed to differences in their binding kinetics. In chapter 2 we 

optimise a novel time resolved fluorescence resonance energy transfer (TR-FRET) competition 

kinetic binding assay to measure unlabelled ligands binding rates. We then use mutagenesis to 

understand the influence of distinct residues in the extracellular vestibule of the D2R on the 

binding kinetics of clinically relevant antagonists and agonists. 

In Klein-Herenbrink and colleagues’ study, it was found that some slowly dissociating 

partial agonists acting at the D2R can display apparent bias relative to fast dissociating agonists 

in a manner that changes over time. Based on this work, we hypothesise that agonists with a 

slow dissociation rate and hence a longer residence time may lead to observations of biased 

agonism through potentially allowing the receptor to sample different effector bound states. In 

chapter 3, we therefore extend the work of Klein-Herenbrink and colleagues (96) with several 

different approaches. We test a greater number of agonists, including agonists that display high 

efficacy and slow dissociation from the D2R. We expand the functional assessment to multiple 

receptor-proximal events and receptor trafficking to subcellular compartments.  

Continuing with our research on the mechanisms of D2R biased agonism, we investigate 

the relationship between biased agonism and D2R phosphorylation. This is important because 

GRK phosphorylation is often thought of as the “switch point” between G protein mediated 

signalling and arrestin recruitment (219). In chapter 4, we develop novel phosphorylation-site 

antibodies that target the intracellular loops of the D2R. We then use the antibodies coupled 

with bioluminescence resonance energy transfer signalling and proximity assays to assess D2R 
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regulation and its modulation by agonists, including those that display apparent biased 

agonism. We are able to further clarify the role GRKs play in these processes. 

Through our work investigating the biased agonism in chapters 3 and 4 it is appreciated 

that the pharmacological system needs to be understood in order to determine the mechanisms 

of biased agonism observations. The D2R’s main signalling effectors are G proteins of the Gαi/o 

subfamily and it is known to promiscuously couple to multiple different Gαi/o subunits. In 

chapter 5, we therefore simplify the system and focus in on signalling only at the level of 

different G proteins. We characterise and investigate the drivers of the kinetics of agonist 

induced D2R G protein activation. We describe kinetically distinct G protein signalling waves 

that are mediated by the D2R. The kinetically distinct waves are shown to be due to a generally 

unappreciated role for the GTP hydrolysis rate of the Gα subunits in determining agonist 

responses over time. 

In chapters 3, 4 and 5 we identify that D2R biased agonism is heavily dependent on the 

system in which it is studied in. In an ideal scenario, one would study D2R biased agonism in 

a tissue or animal model that is relevant to the disease to reduce this dependence. However, 

investigating biased agonism in the relevant setting has been challenging due to the lack of 

molecular tools. Consequently, in chapter 6, the final experimental results chapter, we develop 

and characterise a new tool for helping discern, in vivo or ex vivo, the dependence of different 

Gαi/o proteins and arrestins on particular signalling responses and physiological outcomes. We 

show that this tool has the novel property of abolishing all Gαi/o signalling including Gαz. We 

further develop G protein mutants that are not inhibited by this toxin that can complement this 

tool and suggest the means in which the toolkit can be utilised. 

Overall, this thesis provides a detailed molecular understanding of the determinants of 

ligand binding kinetics and receptor function at the D2R. The findings fundamentally help to 

clarify potential mechanisms of biased agonism. 
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Abstract 

The dopamine D2 receptor (D2R) is a prototypical GPCR as it has been a long-standing 

target for drugs that relieve the symptoms of Parkinson’s disease and schizophrenia. Multiple 

studies have highlighted the clinical importance of drug binding kinetics at the D2R. Therefore, 

the rational design of drug binding kinetics at the D2R is desired. In order to do this, an 

understanding of the molecular interactions involved in the binding process are required. 

Recent x-ray crystal structures are not able to completely explain the molecular mechanisms 

of differing binding kinetic rates between ligands. Additionally, many amino acid residues in 

the extracellular regions of the D2R are likely quite dynamic and as such cannot be fully 

appreciated in crystal structures. Therefore, temporal studies are required to provide 

sufficiently detailed molecular insight into the binding entry and exit pathways of ligands at 

the D2R. In this study we optimise a time resolved-fluorescence resonance energy transfer 

competition kinetic binding assay at the D2R. We subsequently use the assay on some mutants 

in the extracellular regions of the D2R to determine the contribution these residues have in 

modulating binding kinetic association and dissociation rates. We show that amino acid residue 

mutations in these regions, such as Trp100EL1Ala, can alter ligand binding kinetics and that 

distinct ligands are more sensitive than others depending on the residue. Overall, these studies 

demonstrate that one can use competition kinetic binding experiments to start to understand 

the binding pathways of the D2R with molecular detail. 
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2.1 Introduction 

G protein coupled receptors (GPCRs) are cell surface receptors characterised by seven 

α-helical transmembrane domains (TMs) that are connected by three extracellular loops (EL1-

3) and three intracellular loops (IL1-3). They bind agonists such as hormones, peptides and 

neurotransmitters on their extracellular side, permitting them to couple to heterotrimeric G 

proteins on their intracellular interface to transduce signals within cells. Drugs can be used to 

hi-jack GPCR signalling systems, in turn, altering cellular processes to modify the 

pathophysiology or symptoms of diseases. As a result of this, GPCRs represent the largest 

protein class of drug targets, accounting for around a third of all marketed small molecule drugs 

(220). 

Describing the relationships between small molecule leads and their GPCR target is 

essential to drug discovery efforts. To describe a particular ligands’ affinity for a GPCR, 

pharmacologists determine the dissociation constant (Kd). The dissociation constant is defined 

as the concentration of a ligand required to occupy half of the GPCRs at equilibrium. As such, 

the dissociation constant is typically determined through binding experiments such as 

saturation binding assays. Saturation binding assays are performed by mixing increasing 

concentrations of a ligand with a constant concentration of GPCR and measuring the bound 

population at equilibrium. Most studies perform these experiments due to their simplicity and 

practicality. However, a ligands’ dissociation constant for a GPCR is fundamentally comprised 

of the dissociation rate of the binding reaction (koff) divided by the association rate (kon). Indeed, 

determining the dissociation rates and association rates of ligand leads can provide a deeper 

understanding of the binding process. Binding kinetic rates can be determined by methods such 

as the one reported by Motulsky and Mahan (221) where a tracer ligand is co-added with 

increasing concentrations of a competitor ligand and tracked over time. Knowing the binding 

kinetics then allows one to incorporate these parameters when developing ligand leads in the 

drug discovery pipeline.  

It has been suggested that a drug’s binding kinetics, as opposed to its affinity, may 

better explain the in vivo efficacy in some instances (53,56). This is because a drugs’ 

concentration in the body does not reach equilibrium due to a several processes such as drug 

distribution and hepatic clearance. Therefore, effects related to a drugs’ binding kinetics can 

modulate the pharmacodynamics of the drug. For example, the slow dissociation rate of 

tiotropium at the muscarinic acetylcholine M3 receptor leads to prolonged duration of action, 

allowing for less frequent dosing compared to other chronic obstructive pulmonary disease 
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drugs (222). In addition, a fast-association rate may also produce sustained drug action due to 

an increased likelihood of rebinding (223,224), where rebinding describes the phenomenon 

whereby a drug that does not completely escape the receptor’s vicinity after its dissociation 

and subsequently rebinds (54). Therefore, there is significant scope for improvement of drugs 

by designing them with the desired binding kinetics. 

It is vital to understand the molecular basis of ligand binding kinetics at GPCRs. In 

particular, it is beneficial to understand the contribution that specific ligand-amino acid residue 

contacts have on ligand binding kinetics. Gaining knowledge on the roles of these binding 

contacts permits efforts to rationally design drugs with the desired binding kinetics. 

Consequently, a drug developed with the desired binding kinetic profile could be more 

efficacious or have a longer duration of action. Our understanding of GPCR structure has been 

greatly improved in recent years largely due to X-ray crystallography and cryo-electron 

microscopy (225). Through use of this structural data, the relationships between receptor 

structure and ligand binding kinetics have been amenable to investigations using molecular 

dynamics simulations. Dror and colleagues showed using long timescale simulations of the β2 

receptor that ligands entering the binding site first encounter a metastable site within the 

extracellular loops and the top of the transmembrane domains termed the extracellular vestibule 

(65). It is thought that when the ligand gets to this position there is a large energy barrier due 

to the significant de-wetting that occurs. Following this, the ligand can then enter the 

orthosteric site deep within the transmembrane domains. Molecular dynamics simulations on 

additional GPCRs have continued to support these observations of metastable ligand binding 

sites in the extracellular regions (126,226). Indeed, molecular dynamics simulations implicated 

the EL2 in the histamine H1 receptor and the adenosine A1A receptor as important for initial 

ligand contacts (226,227). Furthermore, a similar phenomenon has also been documented upon 

ligand exit at the adenosine A2A receptor (228). While these simulations have proven useful, 

the findings often remain to be validated by wet laboratory experiments. 

The dopamine D2 receptor (D2R) is a member of the dopamine family of GPCRs, 

consisting of the D1-like receptors (D1 and D5) and the D2-like receptors (D2, D3 and D4). The 

dopamine D1-like receptors couple to the Gαs subfamily to increase adenylate cyclase activity 

and the dopamine D2-like receptors couple to the Gαi subfamily to decrease adenylate cyclase 

activity (103). Expression of the D2R is enriched in many central nervous system regions such 

as the striatum, ventral tegmental area and substantia nigra pars compacta (109). While all 

dopamine receptors are important for many neurophysiological functions, the D2R is necessary 

for the majority of the roles of dopamine in vivo such as reward behaviours and locomotor 
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activity (229,230). The D2R is one of the most well-known GPCRs as it is the main target for 

drugs that relieve the symptoms of schizophrenia and Parkinson’s disease (231,232). Small 

molecule D2R antagonists or partial agonists are used to treat schizophrenia whereas 

efficacious agonists are used for the treatment of Parkinson’s disease. 

The importance of drug binding kinetics at the D2R has been highlighted by several 

studies. Kapur and Seeman have established the fast-off hypothesis of antipsychotic drugs 

acting at the D2R, positing that antipsychotics with fast dissociation rates have reduced side 

effects (187,218). In agreement with this hypothesis, we observe that the dissociation rate of 

an antagonist antipsychotic correlates with hyperprolactinaemia – a common side effect of 

these drugs. However, we observed that antagonists with faster association rates appeared to 

have increased likelihood of causing extrapyramidal side effects (61). Our group proposed that 

this is due to the rebinding within the diffusion limited compartment of a dopaminergic 

synapse. Moreover, the relationship between D2R agonist binding kinetics and clinical effect 

in Parkinson’s disease has not been thoroughly explored. Yet, D2R agonists with slow 

dissociation rates can also display differing functional profiles, including observations of 

biased agonism (96,189). Together, these studies indicate that ligand binding kinetics at the 

D2R may be tuned to have the desired therapeutic outcome. 

Our knowledge of the molecular determinants of binding kinetics at the D2R is still in 

its infancy. Some progress has been made towards understanding ligands’ structural elements 

that influence binding kinetics at the D2R. General trends are that higher molecular weight and 

increasing lipophilicity correlates with a slower antagonist dissociation rate at the D2R (128). 

More recently, Fyfe et al. have shown that structural modification of the scaffold of the 

antipsychotic haloperidol can yield a ligand with differing kinetics at the D2R (130). This work 

has demonstrated that ligand-receptor structure kinetic relationships can be optimised at the 

D2R. However, the interactions ligand moieties make with particular D2R amino acid residues 

upon entry and exit is largely unexplored. Traditional equilibrium binding studies coupled with 

site directed mutagenesis have established the main residues important for ligand binding such 

as Asp1143.32 that sits within the orthosteric binding pocket (233). Yet, whether a residue is 

more important for ligand association or dissociation is often unclear. For example, Shi and 

Javitch have previously shown that Ile184 within EL2 (Ile184 EL2) was important for the 

binding of 3[H]N-methylspiperone as this residue lines the top of the binding site (234). 

Whether this residue plays a role in granting access or egress of 3[H]N-methylspiperone is 

unclear.  
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There have been a number of recent reports of X-ray crystal structures of D2-like 

receptors that have helped drive investigations of ligand binding kinetics. Indeed, the first D2-

like structure of the D3R bound to eticlopride has been subsequently used to model the D2R 

and perform molecular dynamics simulations of ligand interactions on multiple occasions 

(121,125,126,235). Thomas et al. (126) used long timescale molecular dynamics simulations 

of a D2R that was based on the D3R-eticlopride structure to understand the association of two 

antipsychotics, clozapine and haloperidol. In doing so, they presented that Tyr3797.35 may be 

important for the ligand entry pathway of both ligands (126). Their simulations additionally 

indicated that haloperidol and clozapine also frequently interacted with Ile184EL2 along their 

binding entry pathway. Moreover, later structures of the D2R and D4R have also enabled 

additional molecular dynamics simulations and binding studies to improve our understanding 

of ligand entry and exit (122-124,236). In particular, Trp100EL1 was highlighted as an 

influential residue in the D2R-risperidone structure by potentially acting as a hydrophobic “lid” 

to increase the lifetime of ligands once bound (123).  

In this study, we aimed to use time resolved-fluorescence resonance energy transfer 

(TR-FRET) competition kinetic binding assays on extracellular vestibule mutants of the D2R 

to identify and characterise the roles these residues play in determining ligand binding rates. 

We identified that some residues in the extracellular vestibule are important drivers of the 

ligand binding kinetic rates. We showed that amino acid residue mutants in these regions can 

alter ligand binding kinetics in a ligand-specific manner. Generally, these residues appeared to 

alter the dissociation rate more so than the association rate. We noted that the effects of 

particular D2R residues on kinetic binding rates of different ligands cannot be easily predicted 

from the existing structural information. This study shows that TR-FRET competition kinetic 

binding represents a suitable platform for analysis of the molecular determinants of ligand 

binding kinetics at GPCRs to enable the design of drugs with the preferred kinetic profile. 

 
2.2 Methods 

Materials 

Dulbecco’s phosphate buffered saline (DPBS), Hank’s balanced salt solution (Cat. No. 

H8264) (HBSS), pluronic acid-F127, Gpp(NH)p, Quikchange primers, risperidone, spiperone, 

haloperidol and bromocriptine were purchased from Sigma-Aldrich. Saponin was from Fluka 

(now Sigma-Aldrich). Eticlopride hydrochloride was purchased from Tocris Bioscience (Bio-

Techne Corp Ltd.) 384-well white optiplate LBS-coated were purchased from PerkinElmer. 
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Bifeprunox and aripiprazole (>95% pure) were synthesised in the Medicinal Chemistry 

department at Monash Institute of Pharmaceutical Sciences, Monash University Parkville 

Campus as described previously (96). Polyethylenimine (PEI) MW 25,000 was purchased from 

Polysciences, Inc. Clozapine-Cy5 was synthesised in the Centre for Biomolecular Sciences at 

the University of Nottingham as described previously (237). 5 x SNAP/CLIP-tag labelling 

medium (Part No. LABMED), SNAP-Lumi4-Tb (terbium cryptate, Part No. SSNPTBC) and 

fluorescent Spiperone-d2 (Part No. L0002RED) were acquired from Cisbio (PerkinElmer).  

Mutagenesis 

Quikchange technique was used to perform site directed mutagenesis. This method was 

performed using Phusion® High-Fidelity DNA polymerase (New England BioLabs). 

Quikchange was carried out using DNA template of FLAG-SNAP-D2SR encoded in a pEF5-

DEST-FRT plasmid. Primers used for the mutagenesis were as follows:  

SNAP-D2SR-L942.64A:   

Fwd; 5’-CTGGGTTGTCTACGCGGAGGTGGTAGGTGAG-3’,  

Rev: 5’-CTCACCTACCACCTCCGCGTAGACAACCCAG-3’.  

SNAP-D2SR-W100EL1A:  

Fwd; 5’-GGAGGTGGTAGGTGAGGCGAAATTCAGCAGGATTC-3’,  

Rev; 5’-GAATCCTGCTGAATTTCGCCTCACCTACCACCTCC-3’.  

SNAP-D2SR-I184EL2A:  

Fwd; 5’-CAGAACGAGTGCATCGCTGCCAACCCGGCCTTC-3’,  

Rev; 5’-GAAGGCCGGGTTGGCAGCGATGCACTCGTTCTG-3’,  

this mutant construct has been previously described by our group (235).  

SNAP-D2SR-Y3797.35A:  

Fwd; 5’-CAACATCCCGCCTGTCCTGGCGAGCGCCTTCACGTG-3’,  

Rev: 5’-CACGTGAAGGCGCTCGCCAGGACAGGCGGGATGTTG-3’.  

After Quikchange mutagenesis, the full coding region was demonstrated to be correct 

and containing the desired mutations through Sanger sequencing method by the DNA 

Sequencing Laboratory, D98 Medical School, Queens Medical Centre. 

Stable cell line production 

Generations of stably expressing mutant D2R cell lines was achieved using the Flp-In™ 

system (ThermoFisher Scientific). Mutant SNAP-D2SR constructs were transfected into 

parental Flp-In CHO-K1 cells. The parental Flp-In CHO-K1 cells were grown in Dulbecco’s 

Modified Eagle’s Medium (DMEM)/F12 supplemented with 10% FBS, 100μg/mL 
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penicillin/streptomycin and 100μg/mL zeocin. The FlpIn CHO-K1 cells were seeded into T75 

flasks to be approximately 30% confluent the following day in complete media lacking zeocin. 

The next day, the cells were transfected with pOG44 together with the mutant pEF5-DEST-

FRT-FLAG-SNAP-D2SR construct in a DNA ratio of 9:1 (w/w) using polyethylenimine (PEI). 

48 hours after transfection, selection of genomic integration by replacing the media with 

DMEM/F12 supplemented with 10% FBS, 100μg/mL penicillin/streptomycin and 700μg/mL 

hygromycin B (Corning). Cells were then expanded into T175 flasks and passaged three times 

before freezing and storing. SNAP-D2SR mutant expression was confirmed by a functional G 

protein activation assay described in detail the following chapters. previously reported Flp-In 

CHO-K1 cells stably expressing SNAP-D2SR mutants were subsequently grown in 

DMEM/F12 supplemented with 10% FBS, 100μg/mL penicillin/streptomycin and 600μg/mL 

hygromycin B. 

Terbium cryptate labelling  

Terbium cryptate labelling of SNAP-tagged receptors in live Flp-In CHO-K1 cells was 

performed identically to our previously described method in Appendix 2 (125).  

Membrane preparation 

Membrane preparations were performed on terbium cryptate labelled thawed cell 

pellets identical to our previously described method in Appendix 2 (125). 

HTRF kinetic binding assay 

The kinetic binding assay was performed almost identically to our previously described 

method, for specific details please see this work (125). This method was adapted from our 

group’s earlier publications using the same technique (61,96). Briefly, 20µL of different ligand 

cocktails diluted in Hanks Balanced Salt Solution + 20mM HEPES + 0.02% Pluronic-F127 + 

1% dimethyl sulfoxide, pH 7.4 (with KOH) was added to each well of a 384-well white bottom 

optiplate LBS coated. After incubating the ligand cocktail in the plate and the membrane 

preparation in the injector system at 37°C, the PHERAstar FS (BMG Labtech) was then set to 

inject 20µL of cell membrane preparation in the same buffer +100µM Gpp(NH)p and 50µg/mL 

saponin at 400µL/s. The HTRF filter module detected the terbium cryptate at 337nm and the 

fluorescent ligand at 665nm simultaneously. The focal height was set to 10.4mm. The 

excitation source was set to laser and the number of flashes varied between 5-9 depending on 

the particular experiment and cycle time. Integration start: 60μs, Integration time: 400μs. Cycle 
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time varied between 2-5 seconds depending on experiment. All experiments were performed a 

minimum of four times and in singlet wells. 

Data analysis  

The TR-FRET binding values were determined by dividing the 665nm (fluorescent 

ligand acceptor) channel values by the 337nm (terbium cryptate donor) channel and 

multiplying by 10,000. This was then subtracted by the non-specific binding determined in 

each experiment providing the “specific HTRF ratio x 10,000”. All laboratory data was 

analysed with the curve-fitting software GraphPad Prism 8.2 using nonlinear regression. 

To determine kinetic binding parameters of fluorescent ligands in association binding 

experiments equation (2.1) was used. In GraphPad Prism this is named as the ‘Association 

kinetics – Two or more conc. of hot.’ model. L is the fluorescent ligand - either spiperone-d2 

or clozapine-Cy5 (concentration in M). 

(2.1) 

𝑘𝑜𝑏 = [𝐿] × 𝑘𝑜𝑛 + 𝑘𝑜𝑓𝑓 

To determine the affinity of the fluorescent ligands at each mutant equation (2.2) was 

then used. Where KD is the equilibrium dissociation constant. 

(2.2) 

𝐾𝑑 =
𝑘𝑜𝑓𝑓

𝑘𝑜𝑛
 

To determine the kinetic binding parameters of unlabelled competitor ligands, the data 

was fit to equation (2.3) for the kinetics of competitive binding described by Motulsky and 

Mahan (221). In GraphPad Prism this is named the ‘Kinetics of competitive binding’ model. 

Where; k1, kon of fluorescent ligand (M-1min-1); k2, koff of fluorescent ligand (min-1); k3, kon of 

unlabelled competitor ligand (M-1min-1); k4, koff of unlabelled competitor ligand (min-1); L, the 

fluorescent ligand (concentrations are in nM); I, the unlabelled competitor ligand 

(concentrations are in nM); Y, specific binding of the fluorescent ligand with the receptor 

(HTRF ratio x 10,000); X, time (minutes). 

(2.3) 

𝐾஺ = 𝑘ଵ[𝐿] × 10ିଽ + 𝑘ଶ 

 

𝐾𝐵 = 𝑘3 [𝐼] × 10−9 + 𝑘4 

 

𝑆 = ඥ(𝐾஺ − 𝐾஻)ଶ + 4 × 𝑘ଵ × 𝑘ଷ × [𝐿] × [𝐼] × 10ିଵ଼  
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𝐾𝐹 = 0.5(𝐾𝐴 + 𝐾𝐵 + 𝑆) 

 

𝐾𝑆 = 0.5(𝐾𝐴 + 𝐾𝐵 − 𝑆) 

 

𝑄 =  
𝐵௠௔௫ × 𝐾ଵ × [𝐿] × 10ିଽ 

𝐾ி − 𝐾௦
 

 

𝑌 = 𝑄 × (
𝑘ସ × (𝐾ி − 𝐾ௌ)

𝐾ி × 𝐾ௌ
+

𝑘ସ − 𝐾ி

𝐾ி
× 𝑒(ି௄ಷ×௑) −

𝑘ସ − 𝐾ௌ

𝐾ௌ
× 𝑒(ି௄ೄ×௑)) 

 

 

 
2.3 Results 

Determination of ligand kinetics at the wild-type D2R 

We initially aimed to determine the binding kinetics of several diverse ligands at the 

wild-type D2R. We subsequently aimed to assess the binding kinetics of these ligands at D2R 

mutants. Therefore, we were only able to assess a handful of ligands due to assay throughput 

constraints. Further, we selected high affinity ligands that would remain amenable to 

quantification with the assay despite a significant loss of affinity at a receptor mutant. In 

addition, we were interested in assessing agonists as well as antagonists to determine whether 

agonist efficacy may influence binding kinetic rates. We therefore selected three agonists; 

aripiprazole, bifeprunox and bromocriptine, as well as three antagonists; eticlopride, 

risperidone and spiperone (Fig. 2.1). The three agonists were chosen due to their clinical 

relevance, structural variability and variation in efficacy. Aripiprazole is the first of a novel 

class of antipsychotics that display very low levels of agonism (238). Bifeprunox is a partial 

agonist with a very slow dissociation rate that was initially under development for the treatment 

of schizophrenia but later discontinued (239). Aripiprazole and bifeprunox are both 

phenylpiperazine derivatives although they are structurally quite different from each other (Fig. 

2.1). Bromocriptine is a high efficacy agonist derived from ergots. It is prescribed for 

Parkinson’s disease and hyperprolactinemia among other indications (240). The three 

antagonists that we selected in this study were chosen based on their distinct chemotypes that 

we hypothesised may confer different D2R amino acid contacts upon binding.  In addition, we 

chose to assess eticlopride and risperidone because these antagonists had both been solved in 
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high resolution structures of D2-like receptors. This is important as it enables the first attempt 

to independently assess the accuracy of the reported structures as well as to relate accurate 

kinetic data to the static structures. Eticlopride is used primarily for research and was bound to 

the D3R in the only solved D3R crystal structure at the time of writing (121). Eticlopride has a 

similar substituted benzamide scaffold to other D2-like antagonists such as sulpiride and 

nemonapride. Risperidone is a benzisoxazole derivative that is an atypical antipsychotic and 

was reported bound to the D2R in the first D2R crystal structure (123,241). Spiperone is from 

the butyrophenone class of typical antipsychotics, a class that includes haloperidol that was 

bound in the second reported crystal structure of the D2R (124,242). 

 
Figure 2.1: Chemical structures of the D2R ligands assessed in this study. 

 

To determine the binding kinetics of our set of diverse ligands it was first necessary to 

characterise the fluorescent tracer ligands. We used two fluorescent tracers in this study; the 

high affinity tracer spiperone-d2 and a lower affinity tracer clozapine-Cy5. The binding 

kinetics of these two tracers were successfully determined using association kinetic binding 

assays at the wild type D2SR (Fig. S2.1A & B, Fig. S2.2A & B and Table 2.1). The binding 

kinetic parameters of the unlabelled ligands of interest were then obtained using the two tracers 

separately in competition kinetic binding experiments following the method of Motulsky and 

Mahan (Figure S2.1 & S2.2) (221). Importantly, the values determined with each tracer were 

in close agreement with each other (Table 2.1). Indeed, no significant differences were 

observed between the kon, koff or Kd values of unlabelled ligands when using clozapine-Cy5 as 

a tracer instead of spiperone-d2 as determined by unpaired t-test (P < 0.05). Aripiprazole, 

bifeprunox, risperidone and spiperone have previously had their binding kinetics determined 

by our group (61,96). The results here closely matched our previous results despite using 
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different fluorescent tracer ligands from our previous work. For example, bifeprunox 

dissociated slowly (2.92x10-2 min-1 using Spiperone-d2) from the D2R whereas risperidone 

dissociated at a moderate pace (8.49x10-1 min-1) (Table 2.1). Moreover, bromocriptine 

displayed the slowest association rate out of the ligands that we determined (6.69x106 M-1min-

1), whereas eticlopride displayed the fastest association rate (1.31x109 M-1min-1). Both 

bromocriptine and eticlopride also displayed relatively slow dissociation rates (Table 2.1). 
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Table 2.1: Kinetic binding parameters of ligands at the SNAP-D2SR-WT. 
Tracer Spiperone-d2 Clozapine-Cy5 
 kon, M-

1min-1
 

koff, 
min-1 

Kd, M (pKd) b n kon, M-

1min-1 
koff, 
min-1 

Kd, M (pKd) b n 

Spiperone-d2a 3.89 ± 
0.62 
x107 

9.81 ± 
1.28 
x10-2 

2.52 ± 0.52 
x10-9 
(8.60) 

9 - - - - 

Clozapine-
Cy5a 

- - - - 1.76 ± 
0.31 
x106 

1.96 ± 
0.21 

1.11 ± 0.23 
x10-6 
(5.95) 

7 

Aripiprazole 9.47 ± 
2.55 
x107  

1.57 ± 
0.12 
x10-1  

1.66 ± 0.46 
x10-9 

(8.78) 
 

8 6.52 ± 
1.88 
x107 

1.50 ± 
0.07 x 
10-1 

2.29 ± 0.67 
x10-9 

(8.64) 

7 

Bifeprunox 3.79 ± 
0.44 
x107 

2.92 ± 
0.54 
x10-2 

7.71 ± 1.69 
x10-10 

(9.11) 
 

8 2.86 ± 
0.44 
x107 

3.91 ± 
0.28 
x10-2 

1.36 ± 0.23 
x10-9 

(8.87) 

7 

Bromocriptine 6.69 ± 
1.20 
x106 

 

5.54 ± 
0.71 
x10-2 

8.29 ± 1.83 
x10-9 
(8.08) 

8 6.37 ± 
1.57 
x106 

6.10 ± 
0.40 
x10-2 

9.59 ± 2.44 
x10-9 
(8.02) 

7 

Eticlopride 1.31 ± 
0.06 
x109  
 

7.52 ± 
0.86 
x10-2 

5.73 ± 0.70 
x10-11 

(10.2)  
 

8 8.04 ± 
1.81 
x108 

6.93 ± 
0.24 
x10-2 

8.62 ± 1.96 
x10-11 

(10.1) 
 

6 

Risperidone 4.25 ± 
0.36 
x108 

8.49 ± 
0.31 
x10-1 

2.00 ± 0.18 
x10-9 

(8.70) 

7 3.16 ± 
0.26 
x108 

6.75 ± 
0.46 
x10-1 

2.14 ± 0.23 
x10-9 
(8.67) 

4 

Spiperone 9.59 ± 
0.91 
x108 

6.46 ± 
0.82 
x10-2 

6.74 ± 1.07 
x10-11 

(10.2) 
 

8 8.78 ± 
1.73 
x108  

8.21 ± 
0.91x10-

2 

9.35 ± 2.11 
x10-11 

(10.0) 
 

5 

All values are expressed as the mean ± SEM from ‘n’ number of experiments performed in 
singlet wells. aSpiperone-d2 and clozapine-Cy5 parameters were determined from association 
kinetic binding experiments. bKd and pKd values were calculated from the mean kon and koff 
values determined via competition kinetic binding experiments. 

 

 

The Trp100EL1Ala mutation markedly impacts ligand binding kinetics 

By determining the binding kinetics of several ligands at the D2R-WT, we established 

a reference dataset to then investigate the effects of mutations in extracellular vestibule 

residues. Due to the low affinity of clozapine-Cy5 it became inadequate as a tracer on mutant 

D2Rs. We ascertained that higher concentrations of clozapine-Cy5 were required when its 

affinity was reduced due to mutation of the D2R, this resulted in appreciable non-specific 

binding at these concentrations possibly through bystander FRET. The high non-specific 
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binding markedly increased the noise when acquiring temporal data (data not shown). 

Therefore, competition kinetic binding experiments were carried out using the higher affinity 

tracer spiperone-d2.   

Trp100EL1 in the D2R-risperidone structure is positioned over the top of the binding site 

suggesting that it could potentially act as a hydrophobic “lid” over the orthosteric binding site 

(Fig. 2.2A) (123). Another D2R structure, with haloperidol bound, shows disparity in its 

position of Trp100EL1 whereby it is rotated away from the orthosteric site and its sidechain 

pyrrole ring appears to make polar contacts with Ser1033.21 (superscript numbers indicate 

Ballesteros-Weinstein numbering (243)) on the very top of transmembrane domain (TM) III 

(Fig. 2.2B) (124). Trp100EL1 in this position would likely have less of an effect on ligand 

binding. Likewise, the corresponding Trp96EL1 in the closely related D3R-eticlopride structure 

is also in this position (Fig. 2.2C) (121), and the same pose of the TrpEL1 is observed in two 

separate D4R structures and other aminergic receptor structures (67,122,236,244). We therefore 

were interested in understanding what role Trp100EL1 plays in influencing ligand binding rates. 

We first assessed the effect of the Trp100EL1Ala mutation on the fluorescent tracer 

spiperone-d2. (Table 2.2). The dissociation rate of spiperone-d2 was significantly increased 

and its affinity was reduced (Fig. 2.2D). Plotting the observed association rate against the 

concentration of spiperone-d2 demonstrated that a linear relationship remained, indicating that 

the ligand-receptor binding reaction followed the law of mass action and hence spiperone-d2 

could continue to be used as a tracer on this mutant (Fig. 2.2E). Upon performing competition 

kinetic binding experiments using spiperone-d2 we observed that the mutation significantly 

reduced the affinity of all the ligands tested (Table 2.2). The three agonists; aripiprazole, 

bifeprunox and bromocriptine all displayed an accelerated dissociation rate with the largest 

change occurring on bifeprunox’s dissociation rate which increased approximately 112-fold 

(Fig. 2.2F). Moreover, bromocriptine was the only ligand to display a significantly increased 

association rate relative to that at the WT (2.5-foldΔ). In contrast to bromocriptine, the 

association rates of the antagonists eticlopride and risperidone were significantly decreased 

(eticlopride 0.17-foldΔ, risperidone 0.37-foldΔ), and spiperone’s association rate was not 

significantly changed (P = 0.057, one-way ANOVA with Dunnett’s multiple comparisons test). 

Risperidone’s dissociation rate and affinity were less attenuated relative to the other small 

molecules tested (Table 2.2 and Fig. 2.2G)). The sample size of the ligands is relatively small 

yet, overall, the loss of affinity at Trp100EL1Ala for the three agonists can be attributed to 

increases in dissociation rate, whereas for the antagonists, loss of affinity emerges from both a 

decrease in association rate and an increase in dissociation rate. 



Table 2.2: Kinetic binding parameters of ligands at SNAP-D2SR mutants. 
 L94A2.64 W100AEL1 I184AEL2 Y379A7.35 
 kon, 

M-

1min-1 

(foldΔ  

c) 

koff, 
min-1 

(foldΔ  

c) 

Kd 
b, M 

(foldΔ  

c) 

pKd 
b 

n kon, 
M-

1min-1 

(foldΔ  

c) 

koff, 
min-1 

(foldΔ  

c) 

Kd 
b, 

M 
(foldΔ  

c) 

pKd 
b 

n kon, 
M-

1min-1 

(foldΔ  

c) 

koff, 
min-1 

(foldΔ  

c) 

Kd 
b, 

M 
(foldΔ  

c) 

pKd 
b 

n kon, 
M-

1min-1 

(foldΔ  

c) 

koff, 
min-1 

(foldΔ  

c) 

Kd 
b, 

M 
(foldΔ  

c) 

pKd 
b 

n 

Spiperone-d2a 7.99 ± 
1.01 
x107 

(2.1) * 

1.59 ± 
0.15 
(16) * 

1.99 ± 
0.31 
x10-8 
(7.9) * 

7.70 5 5.36 ± 
0.64 
x107 

(1.4) 

2.01 ± 
0.19 
(21) * 

3.75 ± 
0.57 
x10-8 

(14.9) 
* 

7.43 9 4.41 ± 
0.56 
x107 

(1.1) 

5.77 ± 
0.67 
x10-2 

(0.59) 

1.31 ± 
0.23 
x10-9 
(0.52) 

8.88 5 9.17 ± 
1.31 
x107 

(2.4) * 

4.28 ± 
0.23 
x10-1 

(4.36) 

4.67 ± 
0.71 
x10-9 
(1.9) 

8.33 5 

Aripiprazole 9.85 ± 
4.04 
x107 

(1.0) 

4.26 ± 
0.96 
(27) * 
 

4.32 ± 
2.02 
x10-8 

(26) 

7.36 4 4.60 ± 
1.12 
x107 

(0.49) 

14.5 ± 
2.2 
(92) * 

3.15 ± 
0.90 
x10-7 
(190) * 

6.50 5 8.62 ± 
2.11 
x107 

(0.91) 

3.58 ± 
0.40 
x10-1 

(2.3) 

4.15 ± 
1.11 
x10-9 
(2.5) 

8.38 5 1.79 ± 
0.44 
x108 

(1.9) 

8.64 ± 
1.27 
x10-1 

(5.5) 

4.82 ± 
1.38 
x10-9 
(2.9) 

8.32 5 

Bifeprunox 6.70 ± 
1.54 
x107 

(1.8) 

1.03 ± 
0.18 
(35) * 

1.53 ± 
0.44 
x10-8 
(20) 

7.81 5 3.77 ± 
0.61 
x107 

(1.0) 

3.26 ± 
0.21 
(112) 
* 

8.64 ± 
1.50 
x10-8 
(112) * 

7.06 8 2.56 ± 
0.57 
x107 

(0.67) 

1.05 ± 
0.10 
x10-1 

(3.6) 

4.12 ± 
1.00 
x10-9 
(5.3) 

8.39 5 6.84 ± 
1.53 
x107 

(1.8) 

1.57 ± 
0.22 
x10-1 

(5.4) 

2.29 ± 
0.60 
x10-9 
(3.0) 

8.64 5 

Bromocriptine 1.61 ± 
0.19 
x107 

(2.4) * 

2.41 ± 
0.80 
(43) * 

1.50 ± 
0.53 
x10-7 

(18) * 

6.82 5 1.66 ± 
0.28 
x107 

(2.5) * 
 

4.34 ± 
0.82 
(78) * 

2.62 ± 
0.66 
x10-7 

(32) * 

6.58 4 2.61 ± 
0.38 
x106 

(0.39) 

3.02 ± 
0.63 
x10-1 

(5.5) 

1.16 ± 
0.30 
x10-7 

(14) 

6.94 5 1.71 ± 
0.32 
x107 

(2.6) * 

1.63 ± 
0.30 
(29) 

9.53 ± 
2.50 
x10-8 

(12) 

7.02 4 

Eticlopride 4.01 ± 
0.30 
x108 

(0.31) 
* 
 

3.16 ± 
0.53 
x10-1 

(4.2) * 

7.88 ± 
1.46 
x10-10 

(14) 

9.10 4 2.17 ± 
0.09 
x108 

(0.17) 
* 

1.38 ± 
0.15 
(18) * 

6.37 ±  
0.76 
x10-9 

(111) * 
 

8.20 4 1.24 ± 
0.15 
x109 

(0.95) 

4.55 ± 
0.38 
x10-1 

(6.0) * 

3.66 ±  
0.54 
x10-10 

(6.4) 

9.44 4 4.56 ± 
0.33 
x108 

(0.35) 
* 

1.79 ± 
0.09 
x10-1 

(2.4) 

3.92 ± 
0.34 
x10-10 
(6.8) 

9.41 4 

Risperidone 1.73 ± 
0.35 
x108 

(0.41) 
* 

1.85 ± 
0.44 
(2.2) 

1.07 ± 
0.33 
x10-8 

(5.3) 

7.97 5 1.55 ± 
0.28 
x108 

(0.37) 
* 

3.62 ± 
0.44 
(4.3) * 

2.33 ± 
0.51 
x10-8 

(12) * 

7.63 7 3.66 ± 
0.14 
x108 

(0.86) 

1.56 ± 
0.15 
x10-1 

(0.18) 

4.25 ± 
0.45 
x10-10 
(0.21) 

9.37 5 1.87 ± 
1.02 
x108 

(0.44) 
* 

2.00 ± 
0.37 
(2.4) 

1.07 ± 
0.61 
x10-8 
(5.3) 

7.97 5 

Spiperone 3.73 ± 
0.99 
x108 

(0.39) 
* 

1.45 ± 
0.30 
(22) * 
 

3.87 ± 
1.31 
x10-9 

(58) * 

8.41 5 6.17 ± 
0.82 
x108 

(0.64) 

1.95 ± 
0.12 
(30) * 

3.17 ± 
0.46 
x10-9 

(47) * 

8.50 7 6.93 ± 
0.89 
x108 

(0.72) 

8.09 ± 
0.81 
x10-2 

(1.3) 

1.17 ± 
0.19 
x10-10 
(1.7)  
 

9.93 5 8.89 ± 
1.65 
x108 

(0.93) 

2.78 ± 
0.38 
x10-1 

(4.3) 

3.13 ± 
0.73 
x10-10 
(4.6) 
 

9.50 5 
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All values are expressed as the mean ± SEM from ‘n’ number of experiments performed in singlet wells. aSpiperone-d2 parameters 
were determined from association kinetic binding experiments. bKd and pKd values were calculated from the mean kon and koff values 
determined with competition kinetic binding experiments. cfold change as compared to the parameters obtained at the wild type D2R 
using spiperone-d2 as a tracer. * Statistically significant (P < 0.05) from WT value determined with spiperone-d2 by one-way ANOVA 
and Dunnet’s multiple comparison’s test.



 

 
Figure 2.2: Assessment of ligand binding kinetics at the SNAP-D2SR-W100EL1A mutant. 
(A) Position of Trp100EL1 within the D2R structure (green cartoon) bound to risperidone (risp) 
(magenta sticks) (PDB code 6CM4). (B) Position of Trp100EL1 within the D2R structure (red 
cartoon) bound to haloperidol (halo) (black sticks) (PDB code 6LUQ). (C) Position of Trp96EL1 
within the D3R structure (blue cartoon) bound to eticlopride (etic) (orange sticks) (PDB code 
3PBL). (D) A representative association kinetic binding trace of increasing concentrations of 
spiperone-d2 to SNAP-D2SR-W100EL1A (experiment was performed in singlet and 
representative of 9 separate experiments).  (E) Observed association rate vs. concentration 
plot displays a linear relationship. Observed association rates were determined from one 
phase association fits at each spiperone-d2 concentration. Data represent the mean ± SEM 
(n=9). (F) A single representative competition kinetic binding trace with increasing 
concentrations of unlabelled competitor bifeprunox (representative of 8 separate experiments 
performed in singlet wells). (G) A single representative competition kinetic binding trace with 
increasing concentrations of unlabelled competitor risperidone (representative of 7 separate 
experiments performed in singlet wells).  
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The effects of the Leu942.64Ala mutation and the Trp100EL1Ala mutation show 

similarities 

Leu942.64 is positioned at the top of TM II where, in the D2R-risperidone structure, it 

appears to help coordinate Trp100EL1 over the top of the orthosteric binding site by making 

hydrophobic interactions (Fig. 2.3A) (123). In contrast, Leu942.64 in the D2R-haloperidol 

structure and Leu892.64 in the D3R-eticlopride structure do not appear to make large contacts 

with Trp100EL1 or Trp96EL1 respectively as this residue is turned away from the orthosteric site 

(Fig. 2.3A & B) (121,124). Consequently, we next examined the effects of a Leu942.64Ala 

mutation on several ligands to see whether this had related effects to the Trp100EL1Ala 

mutation.  

The Leu942.64Ala mutation significantly increased both the rate of association and 

dissociation for spiperone-d2 (Table 2.2 and Fig. 2.3D). The net effect was a reduction in 

spiperone-d2’s affinity. In competition kinetic experiments, the Leu942.64Ala mutation slowed 

the association rate of all the unlabelled antagonists while the agonists were either unchanged 

or increased in their association rate. For example, eticlopride’s association rate was 

significantly decreased by 0.31-fold (~30%), while aripiprazole’s association rate was 

unchanged (Fig. 2.3F &G). Furthermore, the effects on dissociation rate were more pronounced 

than effects on association rate. Indeed, the Leu942.64Ala mutation increased the rate of 

dissociation of all ligands tested, with the notable exception of risperidone that displayed a 

small increase that was not statistically significant. The largest increases in dissociation rate 

were observed for the agonists, all increasing more than 20-fold. On the whole, it could be seen 

that there was a broad relationship between the effects at the Leu942.64Ala mutant with those 

effects observed at the Trp100EL1Ala mutant. Dissociation rate was considerably increased for 

the agonists at Leu942.64Ala and even more so at Trp100 EL1Ala. Antagonist association rates 

were often slowed at these two residues whereas for agonists they were either unchanged or 

accelerated. 
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Figure 2.3: Assessment of ligand binding kinetics at the SNAP-D2SR-L942.64A mutant. 
(A) Position of Leu942.64 within the D2R structure (green cartoon) bound to risperidone (risp) 
(magenta sticks) (PDB code 6CM4). (B) Position of Leu942.64 within the D2R structure (red 
cartoon) bound to haloperidol (halo) (black sticks) (PDB code 6LUQ). (C) Position of Leu892.64 
within the D3R structure (blue cartoon) bound to eticlopride (etic) (orange sticks) (PDB code 
3PBL). (D) A representative association kinetic binding trace of increasing concentrations of 
spiperone-d2 to SNAP-D2SR-L942.64A (experiment was performed in singlet and representative 
of 5 separate experiments).  (E) Observed association rate vs. concentration plot displays a 
linear relationship. Observed association rates were determined from one phase association 
fits at each spiperone-d2 concentration. Data represent the mean ± SEM (n=5). (F) A single 
representative competition kinetic binding trace with increasing concentrations of unlabelled 
competitor aripiprazole (representative of 4 separate experiments performed in singlet wells). 
(G) A single representative competition kinetic binding trace with increasing concentrations of 
unlabelled competitor eticlopride (representative of 4 separate experiments performed in 
singlet wells). 
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No large consequences in ligand binding kinetics are caused by an Ile184EL2Ala 

mutation  

We next examined the effect of an Ile184EL2Ala mutation on ligand binding kinetics. In 

the D2R-risperidone structure, Ile184EL2’s side chain extends from its short α-helix in EL2 

across to the top of the orthosteric binding pocket and interacts with Trp100 on EL1 (Fig. 2.4A, 

2.2A & 2.3A) (123). However, in the D2R-haloperidol structure Trp100EL1 is turned away and 

thus does not interact with Ile184EL2 (Fig. 2.4B and 2.3B) (124). Additionally, the IleEL2 in the 

D3R structure (Ile183EL2) is in a different pose whereby EL2 is disordered, resulting in 

Ile183EL2 being directed downwards and the Ile183EL2 backbone hydrogen bonding with 

His3496.55 (His3936.55 in D2R) (Fig. 2.4C) (121). While these interactions of Ile184EL2 would 

suggest it may be important for ligand entry and egress, the Ile184EL2Ala mutation generally 

influenced ligand kinetics the least out of all amino acid residue mutants in this study (Table 

2.2). However, very little statistically significant differences were determined between this 

mutant and the WT. For example, risperidone’s dissociation rate did not significantly change 

at the Ile184EL2Ala mutant (P = 0.39, one-way ANOVA with Dunnett’s multiple comparisons 

test). Eticlopride was the only ligand significantly affected with its dissociation rate being 

increased approximately six-fold.  
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Figure 2.4: Assessment of ligand binding kinetics at the SNAP-D2SR-I184EL2A mutant. 
(A) Position of Ile184EL2 within the D2R structure (green cartoon) bound to risperidone (risp) 
(magenta sticks) (PDB code 6CM4). (B) Position of Ile184EL2 within the D2R structure (red 
cartoon) bound to haloperidol (halo) (black sticks) (PDB code 6LUQ). (C) Position of Ile183EL2 
within the D3R structure (blue cartoon) bound to eticlopride (etic) (orange sticks) (PDB code 
3PBL). (D) A representative association kinetic binding trace of increasing concentrations of 
spiperone-d2 to SNAP-D2SR- I184EL2A (experiment was performed in singlet and 
representative of 5 separate experiments).  (E) Observed association rate vs. concentration 
plot displays a linear relationship. Observed association rates were determined from one 
phase association fits at each spiperone-d2 concentration. Data represent the mean ± SEM 
(n=5). (F) A single representative competition kinetic binding trace with increasing 
concentrations of unlabelled competitor eticlopride (representative of 4 separate experiments 
performed in singlet wells). (G) A single representative competition kinetic binding trace with 
increasing concentrations of unlabelled competitor spiperone (representative of 5 separate 
experiments performed in singlet wells). 

 

  



Chapter 2 – Kinetic binding studies on D2R mutants 

71 
 

Some ligand’s association kinetics can be influenced by a Tyr3797.35Ala mutation 

Tyr3797.35 (Tyr4087.35 in D2LR) sits at the top of TM VII and makes a hydrogen bond 

with His3936.55. Broadly, Tyr3797.35 exists in two different poses in current D2-like X-ray 

crystal structures. In the D2R-risperidone structure, the Tyr3797.35 sidechain is positioned 

across towards TM VI (Fig. 2.5A)(123). Tyr3797.35 in the D2R-haloperidol structure is 

positioned with its side chain pointing in towards the orthosteric binding site and the hydroxy 

group hydrogen bonds with haloperidol (Fig. 2.5B) (124). This same pose is also observed in 

the D3R-eticlopride (Tyr3657.35) structure and other reported D4R structures (Fig. 

2.5C)(121,122,236). The position Tyr3797.35 adopts in the D2R-haloperidol structure and D3R-

eticlopride structure would in fact clash with risperidone as positioned in the D2R-risperidone 

structure. This indicates that the side chain of Tyr3797.35 is likely quite dynamic.  

Upon mutation of tyrosine 3797.35 to alanine, spiperone-d2’s association rate was 

increased. This increase was likely an effect of the attached fluorophore because unlabelled 

spiperone was unchanged in its association rate (Table 2.2 and Fig. 2.5A & B). Eticlopride 

(0.35-foldΔ) and risperidone (0.44-foldΔ) were both significantly slowed in their association 

rate at the Tyr3797.35Ala mutant. The Tyr3797.35Ala mutant significantly increased the 

association rate of bromocriptine approximately 2.6-fold (Table 2.2 and Fig. 2.5G). 

Additionally, no ligands displayed any significant differences in their dissociation rate or the 

affinity (Fig. 2.5F). Overall, Tyr3797.35 may be an important mediator of the association for 

some, but not all, agonists and antagonists. 
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Figure 2.5: Assessment of ligand binding kinetics at the SNAP-D2SR-Y3797.35A mutant. 
(A) Position of Tyr3797.35 within the D2R structure (green cartoon) bound to risperidone (risp) 
(magenta sticks) (PDB code 6CM4). (B) Position of Tyr3797.35 within the D2R structure (red 
cartoon) bound to haloperidol (halo) (black sticks) (PDB code 6LUQ). (C) Position of Tyr3657.35 
within the D3R structure (blue cartoon) bound to eticlopride (etic) (orange sticks) (PDB code 
3PBL). (D) A representative association kinetic binding trace of increasing concentrations of 
spiperone-d2 to SNAP-D2SR- Y3797.35A (experiment was performed in singlet and 
representative of 5 separate experiments).  (E) Observed association rate vs. concentration 
plot displays a linear relationship. Observed association rates were determined from one 
phase association fits at each spiperone-d2 concentration. Data represent the mean ± SEM 
(n=5). (F) A single representative competition kinetic binding trace with increasing 
concentrations of unlabelled competitor bifeprunox (representative of 5 separate experiments 
performed in singlet wells). (G) A single representative competition kinetic binding trace with 
increasing concentrations of unlabelled competitor bromocriptine (representative of 4 separate 
experiments performed in singlet wells). 

 

2.4 Discussion 

In this study, we made some of the first efforts towards understanding the roles residues 

in the extracellular regions of the D2R play in determining ligand binding kinetics. We 

demonstrated that some selected amino acid residues in the extracellular regions of the D2R 
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can dramatically alter ligand binding association and dissociation in a ligand-dependent 

fashion. This suggests that small molecule drugs can be rationally designed based on particular 

metastable binding sites as they enter and exit from the D2R. Hence, medicinal chemistry of 

ligands targeting the D2R can be guided by these new contact sites identified upon entry and 

exit of the receptor in addition to the ligand contacts in the final binding pose within the 

orthosteric site as is classically done. Furthermore, we highlighted the importance of measuring 

ligand binding kinetics at GPCRs by the fact that often the association rate and/or dissociation 

rate of a ligand was altered without the affinity being altered. Therefore, these changes in 

binding would not be detected in traditional equilibrium binding assays. Moreover, through 

selecting a panel of structurally diverse ligands including antipsychotics from different classes 

and agonists with varying efficacy, we were able to show that the same mutation can influence 

the binding kinetics of agonists and antagonists in a distinct manner. Indeed, at the 

Trp100EL1Ala mutation and the Leu942.64Ala mutation, agonists’ dissociation rates were 

increased whereas for antagonists both the association rates and dissociation rates were 

negatively impacted. This may reflect distinct binding pathways between agonists and 

antagonists at the D2R or possibly different conformational equilibria or the receptor. 

Our results on the Trp100EL1Ala mutant revealed that Trp100EL1 is critical for 

determining the binding kinetics of all the six ligands that were tested. This indicates that 

Trp100EL1 is likely important for the binding of most D2R ligands. The results at this mutant 

are consistent with Wang and colleagues radioligand binding experiments reporting that 

Trp100EL1 was an important residue for prolonging the dissociation rate of risperidone and 

some additional ligands (123). Indeed, in our experiments the Trp100EL1Ala mutation had a 

larger impact on dissociation rates than association rates. Moreover, Wang and colleagues first 

singled out the Trp100EL1 residue due to the unique “lid” position it adopts in the D2R-

risperidone structure (Fig. 2.2A & 2.3A). However, out of all the ligands tested in our study, 

risperidone’s dissociation rate and its affinity were the least impacted by the Trp100EL1Ala 

mutation (koff 4.3-foldΔ, Kd 12-foldΔ). It is not clear as to why this is the case for risperidone, 

although, future assessment of additional ligands at this mutant may further our knowledge of 

the mechanisms behind this observation. Moreover, bifeprunox displayed the slowest 

dissociation rate out of the ligands tested. Interestingly, the dissociation rate of bifeprunox was 

considerably impacted (112-foldΔ) by the Trp100EL1Ala mutation. Bifeprunox is a bitopic drug 

(Fig. 2.1), therefore the fact that Trp100EL1Ala influences its dissociation to such an extent may 

be evidence for bifeprunox’s benzyl group extending out and making contacts with Trp100EL1 

that helps maintain bifeprunox in the binding site for an extended period. 
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The changes in binding kinetics at the Leu942.64Ala mutant appeared to follow a similar 

trend to the Trp100EL1Ala effects. Certainly, most ligands’ dissociation rates were significantly 

increased at the Leu942.64Ala, this was consistent with previous research showing that the 

Leu942.64Ala mutation increases the dissociation rate of nemonapride from the D2R (123). The 

two mutants having similar effects suggests that Leu942.64 and Trp100EL1 interact. Given that 

ligand dissociation rates were often impacted suggests that one of these interactions is likely to 

be Leu942.64 stabilising Trp100EL1 in a position that extends the lifetime of the drug-receptor 

complex after the ligand has bound in some manner. For Trp100EL1 to exchange between the 

position in the D2R-risperidone structure and the D2R-haloperidol structure it may have to cross 

Leu942.64. However, whether the important pose of Trp100EL1 is Trp100EL1 in its “lid” position 

as shown in the D2R-risperidone structure or the outward position in the D2R-haloperidol 

structure or a completely different pose are unclear from these experiments. What is clear is 

that Leu942.64 likely contributes through coordinating Trp100EL1 and the region is likely quite 

dynamic because ligands display differing sensitivity to these mutations. Future work 

incorporating molecular dynamics simulations would help disentangle the poses and 

interactions that occur at these residues. 

There were limited changes in the binding kinetics of each of the ligands at the 

Ile184EL2Ala mutant. The only statistically significant finding was that of an increase in 

eticlopride’s dissociation rate. This is interesting considering that the analogous Ile183EL2 in 

the D3R-eticlopride structure appears to be coordinated downwards towards the ligand relative 

to the current D2R structures (Fig. 2.4A, B & C) (121). One could speculate tentatively that 

eticlopride may direct this residue along with EL2 into a different orientation as opposed to 

other ligands. Moreover, the overall observation that there were little effects at the Ile184EL2Ala 

mutant initially appears inconsistent with previous research, for example, early work by Shi 

and Javitch (234) identified this residue as important when scanning D2R EL2 residues with 

the substituted cysteine accessibility method. In this previous work, Ile184EL2 was substituted 

for cysteine and allowed to react with methanethiosulfonate substrate derivatives. Having a 

bulky methanethiosulfonate substrate derivative attached lead to the inhibition of the binding 

of the antagonist 3[H]N-methylspiperone, indicating that the residues’ side chain is directed 

towards the binding site (234). Indeed, the position of Ile184EL2 was directly observed upon 

solving the D2R-risperidone X-ray crystal structure where it was shown to be positioned 

inwards over the orthosteric binding site (Fig. 2.4A)(123). From the crystal structure, Wang 

and colleagues suggested that Ile184EL2 was important for ligand binding kinetics by making 

contacts with Trp100EL1. However, Wang and colleagues did not observe any significant effect 
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of the Ile184EL2Ala mutation on risperidone’s dissociation rate unless the mutation was 

combined with the Leu942.64Ala mutation (123). Together this suggests that Leu942.64 is 

probably more important for the correct coordination of Trp100EL1 than Ile184EL2 is. Certainly, 

in our experiments the Ile184EL2Ala effects did not relate to those of the Trp100EL1Ala like the 

Leu942.64Ala effects did. Therefore, our data illustrates that Ile184EL2 does not play a 

substantial role in determining ligand binding kinetics even though it can line the top of the 

binding site. In agreement with this, we previously showed that the Ile184EL2Ala mutation did 

not impact the equilibrium binding affinity of aripiprazole with radioligand binding assays 

(235). Additionally, we have demonstrated in a separate study using molecular dynamics 

simulations that the EL2 of the D2R is can be disordered and has a propensity spontaneously 

unwind from its largely α-helical nature (125) (Fig. 2.4C). Accordingly, if EL2 is unwound 

then IL184EL2 may be oriented differently and hence play a less important role in ligand 

binding. In addition, it is worth noting that the chemical divergence between the isoleucine to 

alanine mutation may not have been distinct enough to notice an effect. Future research could 

assess the effects upon mutation to a polar residue.  

The data on the Tyr3797.35Ala mutant suggests that Tyr3797.35 may be important for the 

association of some antagonists. A previous molecular dynamics study provided evidence that 

Tyr3797.35 can make initial contacts with clozapine and haloperidol, allowing these ligands to 

gain entry into the extracellular vestibule before entering into their final binding pose deeper 

in the orthosteric site (126). Therefore, the results here are in agreement with these previous 

molecular dynamics simulations and that eticlopride and risperidone may have a similar 

passageway of association as that proposed for clozapine and haloperidol. It is important to 

note, however, that spiperone’s association rate was not significantly decreased even though it 

shares a butyrophenone moiety with haloperidol. The specific lack of impact on spiperone 

warrants follow up studies on additional antagonists because it indicates that not all antagonists 

follow the same entry pathway. Indeed, antagonists following different entry pathways may 

permit the fine-tuning of antagonist association rates which is an major factor for determining 

an antipsychotic’s propensity to cause extrapyramidal side effects (61). 

We have shown that understanding the role of extracellular vestibule residues in 

determining ligand binding kinetics requires extensive dynamic experiments that cannot easily 

be predicted from a stationary crystal structure. Certainly, the Ile184EL2 residue would appear 

to be important for binding of many ligands based on its position in D2R receptor structures. 

However, X-ray crystal structures reflect only a single snapshot of one binding pose of a ligand 

in the receptor. In addition, the currently available D2R structures were solved by using 
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identical constructs that harbour the same thermostabilising mutations (123,124). 

Consequently, there could be constraints in these structures that do not represent the multiple 

different conformations that the D2R can adopt. Determining D2R structures with different 

receptor constructs as well as in apo- and active-states would provide a wider picture in 

understanding the possible roles different residues play in influencing ligand entry and exit.  

We encountered some technical challenges in this study that may explain why there has 

only been a handful of reports assessing the effects mutagenesis on the ligand binding kinetics 

of GPCRs. We identified that clozapine-Cy5, that has low D2R affinity, would not be a suitable 

tracer ligand at a number of the mutants due to an inability to use it at higher concentrations. 

We also identified that differing concentrations of ligands and measurement timescales were 

often required depending on the D2R mutant. Therefore, the assay throughput is reduced owing 

to the amount of optimisation required for each mutant and ligand combination. In addition to 

this, low affinity and fast dissociating unlabelled competitor ligands could not have their 

binding kinetics determined at mutant receptors because their binding kinetics were above the 

temporal limits of assay detection (245).  

While performing competition kinetic binding experiments is excellent for aiding drug 

discovery efforts due to its ease and throughput, there is also a limitation in that the kinetic 

rates of association and dissociation are average rates of potentially multiple binding pathways. 

Hence, there may be far more complexity in the entry and exit pathways of different ligands 

that is overlooked with this approach. Fitting with this idea, the dissociation of miroviroc at the 

CCR5 was argued to be a multi-step event as it displayed a two-phase fit that indicated that 

there is possibly two receptor bound states; one with tighter binding and one that dissociates 

faster (246). Therefore, coupling the data in this study with single molecule studies or 

molecular dynamics simulations would deepen our understanding of these processes. Single 

molecule fluorescent ligand binding studies could reveal multiple different populations that 

correspond to multiple different binding pathways or processes (247). In addition, molecular 

dynamics simulations would also allow for the high-resolution visualisation of the multiple 

different binding pathways. 

In summary, we have taken the first steps towards identifying amino acid residues that 

may be important in lining the ligand entry and exit pathways of the D2R. The results in this 

study may be used towards guiding design of D2R ligands with the appropriate kinetics for the 

particular indication of interest. In addition, we have provided a framework for interrogating 

ligand binding kinetics of mutant GPCRs with TR-FRET competition kinetic binding. Hence, 
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our study here and studies following our framework will be crucial to deepening our knowledge 

of the molecular determinants of binding kinetics at GPCRs to enhance rational drug design. 

 
  



Chapter 2 – Kinetic binding studies on D2R mutants 

78 
 

2.5 Supplementary Materials 

Figure S2.1: SNAP-D2SR-WT membrane binding with spiperone-d2 fluorescent ligand 
tracer. (A) Representative association kinetic binding trace of increasing concentrations of 
spiperone-d2 to SNAP-D2SR-WT (n=9). (B) Observed association rate vs. concentration 
plot displays a linear relationship. Observed association rates were determined from one 
phase association fits at each spiperone-d2 concentration. Data represent the mean ± SEM 
(n=9). (C-H) Single representative competition kinetic binding traces with increasing 
concentrations of unlabelled; aripiprazole (n=8) (C), bifeprunox (n=8) (D), bromocriptine 
(n=8) (E), eticlopride (n=8) (F), risperidone (n=7) (G) and spiperone (n=8) (H). 
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Figure S2.2: SNAP-D2SR-WT membrane binding with clozapine-Cy5 fluorescent ligand 
tracer. (A) Representative association kinetic binding trace of increasing concentrations of 
clozapine-Cy5 to SNAP-D2SR-WT (n=7). (B) Observed association rate vs. concentration 
plot displays a linear relationship. Observed association rates were determined from one 
phase association fits at each clozapine-Cy5 concentration. Data represent the mean ± SEM 
(n=7). (C-H) Single representative competition kinetic binding traces with increasing 
concentrations of unlabelled; aripiprazole (n=7) (C), bifeprunox (n=7) (D), bromocriptine 
(n=7) (E), eticlopride (n=6) (F), risperidone (n=4) (G) and spiperone (n=5) (H). 
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Abstract 

In the previous chapter it was highlighted that ligands binding the D2R can have quite 

different binding kinetics. In this chapter, we investigated what differing binding kinetics of 

agonists may mean for the functional effects of those agonists. It is well appreciated that 

GPCRs, including the D2R, can elicit pluri-dimensional signalling waves mediated by different 

G proteins, regulatory proteins and other signalling effectors. Moreover, some agonists are 

capable of preferentially activating one signalling pathway over another, a phenomenon termed 

biased agonism. By selectively activating the desired pathway, harnessing biased agonism can 

potentially reduce a drugs’ on-target side effects while maintaining the therapeutic benefit. 

However, the mechanisms responsible for biased agonism are largely unknown. Establishing 

the mechanisms of biased agonism allows for the rational design of biased agonists. Therefore, 

we aimed to investigate whether the length of time an agonist binds the D2R may influence its 

signalling and manifest biased agonism. Time resolved-fluorescence resonance energy transfer 

competition kinetic binding assays were used to determine the binding kinetics of a panel of 

ligands. The agonist’s functional effects were then assessed at multiple receptor-proximal 

events including G protein activation, regulatory protein recruitment and D2R trafficking using 

bioluminescence resonance energy transfer. Responses were quantified with an operational 

model of agonism and compared to their binding kinetic parameters. Modest biased agonism 

was detected mainly between well coupled G proteins and poorly coupled regulatory proteins. 

Agonist dissociation rate did not consistently correlate with biased agonism and no clear 

relationship between agonist dissociation rate and apparent biased agonism could be 

established. Both association rate and dissociation rate may partly contribute to biased agonism 

observations. Differences in the functional affinity of agonists may be responsible for most 

observations of bias at the D2R. Overall, further studies involving a larger number of agonists 

and providing more mechanistic insight are warranted to understand whether binding 

parameters influence D2R biased agonism detection. 
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3.1 Introduction 

G protein-coupled receptors (GPCRs) are the largest drug target in the world, 

accounting for approximately 30% of all marketed drugs (2). GPCRs are characterised by seven 

α-helical transmembrane domains that snake through the plasma membrane. They receive 

extracellular signals in the form of agonists such as hormones, neurotransmitters and odorants, 

that induce conformational changes in the GPCR, permitting signal transduction into the cell. 

Recent research has provided increasing examples of the multifaceted nature of GPCR 

signalling. Once activated, GPCRs can couple to heterotrimeric G proteins, consisting of a Gα 

subunit and a Gβγ obligate dimer. GPCRs can couple to multiple distinct G proteins, described 

according to the different Gα subfamilies that can act on different downstream signalling 

effectors (248). Having coupled to G proteins, GPCRs commonly bind G protein coupled-

receptor kinases (GRKs) and arrestins to regulate the G protein mediated signalling (249). In 

addition, arrestins may also act as a signalling scaffold to help elicit a distinct wave of 

signalling (250). Considerable efforts have been made to understand and harness this 

multifaceted nature of GPCR signalling in an effort to design improved drugs. This has 

spawned the notion of biased agonism. Biased agonism is the phenomenon of one agonist that 

acts to preferentially activate one signalling pathway more than another signalling pathway at 

the same receptor (70). It is widely accepted that GPCRs are capable of existing in multiple 

conformational states (71,72). Hence, having this natural capability, biased ligands are thought 

to act via stabilising distinct states of the GPCR (76). These different conformational states 

then presumably lead to the differential coupling of heterotrimeric G proteins or other effectors 

(e.g. arrestins) and thus lead to signalling pathways being activated to different extents. 

A GPCR at which biased agonism has previously been investigated is the dopamine D2 

receptor (D2R). The D2R has long been a validated therapeutic target for neuropsychiatric and 

neurological diseases. The D2R is known to promiscuously couple to all members of the Gαi/o 

family (132). While it is thought that the D2R mainly couples to the Gαo isoforms; GαoA and 

GαoB, in the brain (140), there is also strong evidence of D2R coupling to other G proteins. For 

example, the D2R may couple to a Gαi subtype (Gαi1, Gαi2 or Gαi3) in the dorsal striatum where 

the receptor has reduced sensitivity to dopamine (144). Similarly, coupling to Gαz may be 

important for D2R dependent hyperlocomotion, adrenocorticotropic hormone secretion and 

hypothermia (150,151). Furthermore, some D2R mediated behaviours may be dependent on 

arrestin scaffolding to mediate a signalling pathway distinct from those mediated by G proteins 

involving protein phosphatase 2, Akt and GSK3 (155). Therefore, by selectively biasing the 
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coupling towards different G proteins or arrestin, a D2R drug may have differential effects. For 

this reason, such drugs that display apparent bias at the D2R have already been generated 

including those that display bias between G proteins and arrestins and those that display bias 

between different G protein subtypes (184,251,252). Understanding how such agonists 

engender bias at the D2R is important because then one may be able to extend the mechanism 

to other GPCRs. If mechanisms are shared across GPCRs, such as agonists displaying a 

particular biochemical property or characteristic that is responsible for manifesting bias, then 

this would enable the rational design of biased agonists at other GPCRs, and in turn, greatly 

improve the efficiency of the drug discovery process. 

Ligand binding kinetics has long been implicated in efforts aiming to understand the 

functional effects of agonists. One of the early attempts to relate the binding kinetics to the 

action of drugs was proposed by Paton in 1961 (90). Paton’s “rate theory of drug action” was 

based on experiments with a range of ligands performed on guinea-pig ileum. It was observed 

that the magnitude of the response was proportional to the rate of the offset of the response. 

Paton concluded that a ligand must dissociate from the receptor before another ligand could 

bind and exert its effects, hypothesising that agonists act effectively as competitive antagonists 

after having induced signalling at the receptor. Hence, the theory states that agonist action is 

dependent on the number of interactions an agonist makes with the receptor. Following this, 

kinetic models have been developed based on the idea that an agonist can allosterically activate 

a GPCR that essentially acts as an enzyme to facilitate guanine nucleotide exchange on the G 

protein (253,254). It could be conceived from these models that a slower agonist dissociation 

rate may lead to higher efficacy because more productive G protein cycle events are able to 

occur before agonist dissociation. Following this logic, Sykes and colleagues were able to show 

a correlation between agonist efficacy and dissociation rate at the muscarinic acetylcholine M3 

receptor (91). Likewise, the same correlation has also been observed at the adenosine A2A 

receptor (93).  

While our laboratory did not observe any clear relationship between ligand binding 

kinetics and efficacy, we recently reported that the differing binding kinetics of agonists can 

lead to observations of apparent biased agonism (96). This was exemplified using the D2R as 

a prototypical GPCR, agonists with slow dissociation rates were shown to display biased 

agonism between distinct signalling endpoints in a manner that changed over time. The 

apparent bias emerged from slow dissociating agonists relative to fast dissociating agonists, 

and Klein-Herenbrink et al. (96) provided evidence that the interplay between agonist binding 

kinetics, the kinetics of cell signalling events and the kinetics of regulatory/desensitization 
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pathways altogether lead to apparent bias. Subsequent studies on the serotonin 5-HT2A and 5-

HT2B receptor used mutagenesis to alter the binding kinetics of agonists and by doing so, 

showed that β-arrestin-2 recruitment could be selectively modulated with minimal effects on 

G protein dependent pathways (97). Moreover, biased agonists acting at the Y1 receptor may 

impart their bias by increasing the relative residence time of the G protein with the Y1 receptor 

(98). Together these studies may indicate that agonists with a long residence time may induce 

a different conformational landscape in the GPCR for an extended amount of time and thus 

permit different effectors, such as G proteins or arrestins, to engage the receptor for different 

amounts of time, leading to biased signalling. In addition, other mechanisms may explain the 

bias observations due to differences in agonist dissociation rate. For example, Woolf and 

Linderman (255) used a kinetic two-dimensional Monte Carlo model to suggest that differently 

sized enrichment zones can be created on the plasma membrane due to differing dissociation 

rates of agonists, this in turn can result in GRK recruitment becoming partially disconnected 

from G protein signalling.  

Our groups’ previous work had some limitations that we sought to address in this study. 

Our previous research used a finite number of agonists in which all the slowly dissociating 

agonists were also partial agonists with a similar bitopic piperazine derivative structure. 

Additionally, all the higher efficacy agonists that were tested dissociated quickly from the D2R. 

Moreover, we only measured the activation of a subset of Gαi/o proteins and we measured the 

activation of downstream signalling events that may be more prone to cellular system effects 

such as cAMP inhibition, cellular impedance and ERK1/2 phosphorylation. To address these 

concerns in this study, we selected a larger panel of agonists with greater structural diversity 

and a wider range of agonist efficacy. This allowed us to draw stronger conclusions on 

relationships between agonist kinetics and particular functional measurements. In addition, we 

measured proximal signalling and regulatory events at the D2R, encompassing Gαi/o subfamily 

activation including Gαz activation, GRK2 recruitment, arrestin recruitment and D2R 

trafficking. By doing so, we allow for less kinetic steps to occur between ligand binding and 

the signalling response. We identified that while agonist dissociation rate may play a role in 

bias observations, agonist association rate may also play an equally important role – possibly 

through rebinding. Our results show that, even at proximal receptor events, high affinity 

agonists that increase in occupancy over time may display some apparent bias relative to 

agonists that have a relatively constant occupancy over time. Considering differing changes in 

agonist occupancy over time will be a critically important step for pre-clinical biased agonism 

drug discovery moving forward. 
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3.2 Methods 

Materials 

Drugs: aripiprazole, bifeprunox, cariprazine and pardoprunox were synthesised in 

house as previously reported (96,256). Brexpiprazole was synthesised in house. Ropinirole was 

sourced from BetaPharma Shanghai. Dopamine, S-3PPP, bromocriptine, rotigotine and 

spiperone were sourced from Sigma-Aldrich Corporation. ST-836 was a generous gift from 

Thomas P. Blackburn. PPHT-Red was from Cisbio. Clozapine-Cy5 was synthesised in house 

as previously described (237). 

 

Kinetic binding assays 

The terbium labelling of receptors, fluorescent ligand binding assays, determination of 

fluorescent ligand binding kinetics, competition kinetic binding assays and data analysis were 

performed as previously described (61), also as outlined in the previous chapter and in appendix 

2. Determination of kinetic parameters for ST-836 were performed identically except that 

clozapine-Cy5 was used as the fluorescent tracer. 

 

Cell culture 

Parental Flp-In HEK 293 cells and Flp-In HEK 293 cells stably expressing the human 

D2LR were cultured in plastic T175 flasks with DMEM + 10% FBS (+ 600µg/mL G418 for 

D2LR expressing cells). Cells were split 1/10 with 1xVersene + trypsin (0.5%) every 2 days 

and were not passaged beyond 30 passages. 

 

G protein activation 

G protein activation was measured by means of a bioluminescence resonance energy 

transfer (BRET) assay that has been described earlier (132,257). The mechanism by which the 

BRET technique functions is through the ability of the pleckstrin homology domain of GRK3 

to reversibly bind free Gβγ subunits such that when the Gα subunit becomes active (GTP bound 

conformation) the Gα subunit dissociates from Gβγ and then the BRET donor; masGRK3ct-

Rluc8, binds dissociated Gβ1γ2-venus subunits – the BRET acceptor. The BRET sensors were 

adapted from earlier FRET constructs, both first published by Hollins and colleagues (258).  
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Flp-In HEK 293 cells recombinantly expressing the human D2LR were initially 

harvested and plated into 10cm dishes at a density of 2.5 million cells. 24 hours after 

transferring the cells to dishes the cells were co-transfected with the different plasmid DNA 

constructs using polyethylenimine (PEI) at a ratio of 1:6 (µg DNA: µg PEI). The following 

constructs (in pcDNA3.1) were transfected in a ratio of 1:1:1:2 (µg): masGRK3ct-Rluc8, 

venus-156-239-Gβ1, venus-1-155-Gγ2, and either Gαi1/Gαi3/GαoA /GαoB-C351I, Gαi2-C352I or 

Gαz-WT. MasGRK3ct-Rluc8, venus-156-239-Gβ1 and venus-1-155-Gγ2 constructs were kind 

gifts from Nevin Lambert (Augusta University, USA). PTX insensitive mutant Gα subunits 

and Gαz were from the cDNA resource centre, cDNA.org. The following morning, the 

transfected cells were collected from the dishes and plated into poly-D-lysine coated white-

bottom 96 well optiplates. That night, the cells were treated in their plates with pertussis toxin 

(100ng/mL) in DMEM + 10% FBS for 16 hours. The next day the plates were taken out of the 

cell culture incubator and the media was aspirated, washed with Hank’s balanced salt solution 

(HBSS) pH 7.4 and replaced with 80μL HBSS. The plate was returned to 37°C for the 

remainder of the experiment. The cells were then left to equilibrate for 15 minutes in HBSS. 

10μL of coelenterazine-h (final concentration of 5μM) was then added to the wells with an 

electronic Eppendorf multi-step pipette and the plate was incubated for another 15 minutes 

before addition of the drugs. The plate was then detected in a PHERAstar® FS microplate 

reader (BMG LABTECH GmbH, Germany). The PHERAstar® FS is equipped for 

simultaneous dual emission detection of the donor 465-505nm and acceptor 505-555nm. The 

plate was continuously measured with a 30s cycle time, 2.5 minutes occurred before addition 

of the D2LR agonist of interest using a 12 channel Eppendorf electronic multi-pipette. The 

measurements from the acceptor channel were then divided by the donor channel to determine 

the BRET ratio. The BRET ratio was then normalised with the maximal effect produced by 

dopamine set to 100%. The setup of experiments measuring the functional re-association 

kinetics of GαoB heterotrimers was kept identical up until the day of the assay with the 

exception of cells being devoid of treatment with pertussis toxin. After washing the cells with 

HBSS on the day of the assay, 140uL of HBSS was added to each well and a cocktail of 40uL 

of coelenterazine-h was co-added with 100nM ropinirole, 33nM cariprazine, 100nM 

aripiprazole, 1nM rotigotine and 100nM bifeprunox 12.5 minutes before addition of 20uL of 

spiperone to make a final concentration of 20μM. For these experiments the data was 

normalised to wells with the particular agonist followed by the vehicle set to 100%. 
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GRK2 and arrestin recruitment 

GRK2 and arrestin recruitment experiments were performed essentially the same as 

previously described by our group and others with minor modifications (96,102,259). Briefly, 

2 million Flp-In HEK 293 cells were first plated into 10cm dishes. The following day after 

transferring the cells to dishes the cells were transfected using PEI in a ratio of 1:6 (µg DNA: 

µg PEI). The cells were transfected with pcDNA3.1+ encoding human D2LR-Nluc (0.25µg). 

Then, depending on the particular assay the cells were co-transfected with the additional 

constructs as follows: For GRK2 recruitment, the cells were additionally transfected with 

GRK-venus (4µg) and pcDNA3.1+ (3.5µg). For β-arrestin-1 recruitment, the cells were 

additionally transfected with GRK2 (2µg) and YFP-β-arrestin-1 (5.5µg). For β-arrestin 2 

recruitment, the cells were additionally transfected with GRK2 (2µg) and YFP-β-arrestin 2 

(5.5µg). The following day after transfection, the cells were harvested from the dishes and 

plated into poly-D-lysine coated white-bottom 96 well optiplates. The next day after the cells 

were transferred to plates, the assay was conducted keeping the buffers, incubators and plate 

reader at 37°C. The plate was first taken out of the incubator and the media was aspirated, 

washed once with HBSS and replaced with HBSS to 80μL. The cells were then left to 

equilibrate for 15 minutes at 37°C in the HBSS before addition of 10μL of 1/100 Nano-Glo 

substrate (Promega) was added to each well of the 96 well plate with an electronic pipette. The 

plate was then left for an additionally 15 minutes at 37°C before then being measured using the 

PHERAstar® FS microplate reader (BMG LABTECH GmbH, Germany). Individual wells 

were simultaneously measured for the luminescence emission signal of the luciferase Nluc 

(465-505nm) and the acceptor fluorescent protein YFP/venus (505-555nm). The plate was 

measured at 37°C over a 30-minute time-course upon addition of each D2LR agonist with a 12-

channel electronic-pipette for quick addition of compounds. The BRET was then quantified 

identically to the G protein activation assays. 

 

Trafficking 

D2LR trafficking assays were performed using cellular compartment BRET sensors 

described by Lan and colleagues (260). Trafficking for the D2R using this method has been 

performed and characterised by another group (261). The basis of the assay requires different 

endomembrane compartments to be tagged with a yellow fluorescent protein venus to serve as 

BRET acceptor and the D2LR is tagged with Nluc to serve as BRET donor. The changes in 

BRET are then monitored to indicate movement towards or away from various compartments. 
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First, 2 million Flp-In HEK 293 cells were harvested and dispersed evenly into a 10cm dish. 

The following day after the cells had adhered, the media was changed and the cells were 

transfected with PEI:DNA complexes in a ratio of 1:6 (µg/µg). The cells were transfected in a 

dropwise manner with D2LR-Nluc (0.25µg), GRK2 (2µg), β-arrestin-2 (4µg) and either KRas-

venus (1µg), Rab5a-venus (1µg) or Rab11-venus (1µg). The following day the cells were lifted 

off the dishes and plated in poly-D-lysine coated 96 well white bottom optiplates at 100µL per 

well. The next day the assay was started and performed as described for the GRK2 and arrestin 

recruitment assays with a PHERAstar® FS plate reader at 37°C in HBSS pH 7.4. The plates 

for the trafficking experiments were measured over a one-hour time course collecting data 

simultaneously with a 465-505nm (donor) channel and a 505-555nm (acceptor) channel. The 

BRET ratio was determined by dividing the acceptor channel by the donor channel. The raw 

BRET ratio was then plotted for five independent experiments. A one phase exponential 

equation was fit to the hour-long time course data to determine the trafficking rates for each 

agonist. 

Data analysis 

Data was analysed using GraphPad prism version 8. Concentration response curves 

were fit with a three-parameter fit to determine potency and maximal effect values. For 

quantifying bias parameters, an operational model of agonism described previously was used, 

this is also outlined in the subsequent chapter in more detail (86,87). 
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3.3 Results 

Measurement of the binding kinetics of agonists at the D2R  

We have previously determined the binding kinetics of several D2R agonists using TR-

FRET competition kinetic binding on cell membranes (96). To build on this work and obtain a 

more comprehensive panel of agonists with known binding kinetic parameters for the D2R, we 

set out to use this method again on some additional agonists. We initially characterised PPHT-

Red, the fluorescent tracer to be used for competition kinetic binding studies. In equilibrium 

saturation binding experiments, the fluorescent tracer behaved essentially as we had 

determined before (61,96); with low non-specific binding and a dissociation constant (Kd) of 

approximately 14.7 ± 1.8nM (Fig. 3.1A). The binding kinetics of PPHT-Red were then 

determined using increasing concentrations of the ligand in association kinetic binding 

experiments (Fig. 3.1B). PPHT-Red displayed an association rate (kon) of 2.3 ± 0.2 x 107 M-

1min-1 and a dissociation rate (koff) of 0.29 ± 0.02 min-1. These binding kinetic parameters also 

fit well with what we have previously described. When using the binding kinetic parameters to 

calculate an affinity (Kd =12.6 nM), this calculation agreed with the affinity that was 

determined from saturation binding at equilibrium. 

We were then able to determine the kinetics of some additional agonists through 

competition kinetic binding experiments. The binding kinetics of brexpiprazole, a relatively 

new antipsychotic drug with low agonist efficacy at the D2R, was determined (262). We 

observed that brexpiprazole displayed a high affinity for the D2R, associating very quickly and 

dissociating slowly relative to the other agonists (Table 3.1). We also determined the binding 

kinetics of bromocriptine and rotigotine, two efficacious agonists approved for the treatment 

of Parkinson’s disease (Table 3.1 & Fig. 3.1D & E)(263-265). The binding kinetics of 

bromocriptine and rotigotine varied substantially even though these two agonists are prescribed 

for the same indication. Bromocriptine dissociated quite slowly from the D2R (koff = 0.02 ± 

0.007min-1) whereas rotigotine dissociated relatively quickly (koff = 1.20 ± 0.21) (Table 3.1 & 

Fig. 3.1D & E). Additionally, we characterised a new investigational agonist for Parkinson’s 

disease – ST-836 (266). This agonist was the only ligand where the binding kinetics were 

determined with a different fluorescent tracer - clozapine-Cy5. We have previously 

demonstrated that using clozapine-Cy5 as a tracer instead of PPHT-Red in these assays leads 

to no noticeable difference in binding kinetics (237). ST-836 dissociated very rapidly from the 

D2R although it also displayed quite a fast association rate to the D2R that maintained its 
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binding affinity in the nanomolar range (Table 3.1). With these new agonists characterised, 

along with the previously characterised agonists, we then had a suite of eleven D2R agonists 

with varying binding kinetics and chemical structure (Fig. 3.1F & Table 3.1).  
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Figure 3.1: Determination of the binding kinetics of additional D2R agonists with tr-
FRET. (A) Saturation binding of SNAP-D2R membranes with the fluorescent ligands PPHT-
Red. Data represents the mean ± SEM, n=9. (B) Association kinetic binding of increasing 
concentrations of PPHT-Red to the SNAP-D2R. Data represents the mean, n=9. (C) A one 
phase association curve was fit to the binding of each concentration of PPHT-Red (shown in 
panel B) to determine the observed association rate (kobs). Each concentration of PPHT-Red 
is shown on the x-axis the kobs is plotted on the y-axis. The relationship between the two follows 
a linear relationship giving a y-intercept (koff) of 0.47 ± 0.04 min-1. Data represents the mean ± 
SEM, n=9. (D & E ) Single representative competition kinetic binding experiments with PPHT-
Red and bromocriptine (D) or rotigotine (E) are shown. (F) The binding kinetic parameters of 
agonists used in this study. Data represents the mean ± SEM. Agonists binding kinetic 
parameters were determined in this study and also from our groups previous published work 
(96).  
 
 
Table 3.1: Kinetic binding parameters of selected agonists for the human D2R. 
 Data are expressed as the mean ± SEM 
Agonist koff (min-1) kon (M-1 min-1) pKd 

 
Aripiprazole a 0.21 ± 0.02 1.01 ± 0.23 x 109 9.66 
Bifeprunox a 0.01 ± 0.00 1.84 ± 0.30 x 108 10.3 
Brexpiprazole 0.09 ± 0.01 1.60 ± 0.36 x 109 10.2 
Bromocriptine 0.02 ± 0.01 3.93 ± 0.52 x 107 9.40 
Cariprazine a 0.35 ± 0.05 1.27 ± 0.30 x 108 9.53 
Dopamine a 2.00 ± 0.30 3.14 ± 0.73 x 105 5.18 
Pardoprunox a 2.28 ± 0.56 1.25 ± 0.24 x 108 7.75 
Ropinirole a 2.60 ± 0.75 1.46 ± 0.46 x 106 5.73 
Rotigotine 1.20 ± 0.21 1.97 ± 0.44 x 108 8.21 
S-3PPP a 1.51 ± 0.35 3.25 ± 0.90 x 106 6.11 
ST-836 b 9.66 ± 2.81 2.42 ± 0.66 x 108 7.40 

a Determined in a previous study by our group (96). b determined using clozapine-Cy5 as the 
fluorescent tracer. 

 

Functional characterisation of agonist action over time 

We next monitored the functional effects of the panel of agonists. We used HEK 293 

cells and transiently transfected bioluminescence resonance energy transfer (BRET) sensors, 

enabling us to monitor the responses in live cells and in real time. The D2R mediated activation 

of six different inhibitory G proteins; Gαi1, Gαi2, Gαi3, GαoA, GαoB, and Gαz, was monitored 

with a sensor that measures the release of Gβγ (258). The detection method utilises the 

pleckstrin homology domain of GRK3 as a BRET donor that binds dissociated Gβγ-Venus 

subunits. Therefore, the wild type D2R and unlabelled Gα subunits are used, reducing the 

likelihood of altering the native G protein activation kinetics (257). In addition to this, we 

measured the recruitment of GRK2, β-arrestin-1 and β-arrestin-2 to the D2R. The direct 

recruitment of these three regulatory proteins was measured by tagging the D2R with a BRET 

donor (Nluc) and each one of the regulatory proteins with a BRET acceptor (YFP/Venus). In 
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general, all agonists inducing G protein activation or recruitment of regulatory proteins 

displayed signals that were sustained for over 30 minutes (Fig. S3.1-S3.11). Efficacious 

agonists, such as dopamine, produced large responses at all effectors (Fig. S3.6). Efficacious 

agonist responses were rapid and sustained when activating G proteins, however, when 

recruiting arrestins a peak followed by a smaller plateau was observed. Contrastingly, agonists 

with low efficacy, such as bifeprunox, produced weak responses over time when activating 

Gαi1, Gαi2, Gαi3 (Fig. S3.2). The greater potency and maximal effect of agonists acting at GαoA 

and GαoB relative to Gαi1, Gαi2 and Gαi3 was expected from previous studies demonstrating 

that the D2R is more efficiently coupled to these G proteins (138,139,267). Moreover, low 

efficacy agonists also very weakly induced the recruitment of GRK2, β-arrestin-1 and β-

arrestin-2 and no initial peak in recruitment was observed. 

Knowing each agonist’s binding kinetic parameters and having determined the 

functional effects over time, we then aimed to investigate how these two characteristics relate. 

We used the binding kinetic values and the different concentrations of each agonist that were 

used in our functional assays to simulate their expected receptor occupancy over time (Fig. 

3.2A, B & C). From these simulations, we observed that sub-saturating concentrations of the 

agonist had either a constant occupancy over time if the agonist dissociated quickly (e.g. 

dopamine) (Fig. 3.2A), or sub-saturating concentrations of agonist increased in occupancy over 

time if the agonist dissociated slowly (e.g. bifeprunox) (Fig. 3.2B). Therefore, we predicted 

that, when fitting concentration response curves for each measurement timepoint in our 

functional assays, agonists would either have a constant potency over time if they had a fast 

dissociation rate or they would increase in potency over time if they had a slow dissociation 

rate.  

When examining GαoA activation or β-arrestin-2 recruitment induced by the fast 

dissociating agonist dopamine, the relative responses at each concentration remained constant 

over time (Fig. 3.2D & G and Fig. S3.6). Hence, when fitting concentration response curves at 

30 second intervals over a 30-minute time course, dopamine’s potency (pEC50) remained 

constant over time for these pathways (Fig. 3.2J). Two other fast dissociating agonists, 

ropinirole and S-3PPP, had functional responses over time that fit with this pattern of agonist 

action (Fig. S3.8 & S3.10). Moreover, slow dissociating agonists including aripiprazole, 

bifeprunox, brexpiprazole, bromocriptine and cariprazine fit the expected profile whereby low 

concentrations of the agonist slowly increased in response over time, leading to an increase in 

potency over time (Fig. 3.2E, H & K and Fig. S3.1-S3.5). However, when we measured the 

functional responses of rotigotine over time, the temporal profile did not match the simulated 
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receptor occupancy (Fig. 3.2C, F, I & L & Fig. S3.9). Rotigotine had a relatively fast 

dissociation rate and hence it was expected to display a constant response at each concentration 

over time. Unexpectedly, we observed an increase in response over time for the lower 

concentrations that manifested as an increase in potency of approximately 25-fold at GαoA and 

21-fold at β-arrestin-2 (Fig. 3.2F, I & L). Additionally, pardoprunox and ST-836 also displayed 

a similar increase in potency over time to rotigotine while also having relatively fast 

dissociation rates from the D2R (Fig. S3.7 & S3.11). Overall, our temporal functional assays 

showed that potency changes over time at the D2R can usually, but not always, be predicted by 

their binding kinetics measured in membranes. 
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Figure 3.2: Concentration-response time course characterisation of agonists acting at 
the D2R. Simulated D2R occupancy of increasing concentrations of dopamine (A), bifeprunox 
(B) and rotigotine (C) over time based on the binding kinetics determined by tr-FRET 
experiments. D2R mediated GαoA protein activation over time in response to increasing 
concentrations of dopamine (D), bifeprunox (E) and rotigotine (F). Recruitment of β-arrestin-2 
over time by the D2R upon stimulation with increasing concentrations of dopamine (G), 
bifeprunox (H) and rotigotine (I). Concentration response curves were taken at each time point 
for GαoA activation (black circles) and β-arrestin-2 recruitment (grey squares), the potency 
estimates (pEC50) were then plotted over time for dopamine (J), bifeprunox (K) and rotigotine 
(L). Data for graphs D-L represent the mean ± SEM of between 3-6 separate experiments. 

 

Slow agonist dissociation is not essential for an increase in potency over time 

We further investigated the mechanism through which rotigotine, pardoprunox and ST-

836 exhibit an increase in potency over time in a manner that was inconsistent with their fast 

dissociation rates. Given that Birdsong and colleagues (88) have shown that over time agonists 

can exhibit an increased affinity at the μ-opioid receptor, we hypothesised that the agonists 

displaying an increase in potency over time at the D2R may ‘sense’ a different conformation of 
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the receptor over time which may lead to a slowed dissociation rate in live cells. Therefore, in 

a similar experimental design as that used by Birdsong and colleagues, we decided to measure 

the functional deactivation rate of the D2R after pre-incubation with a number of agonists, 

including rotigotine. Although there are obvious differences between the experimental design 

of this assay and our measurements of ligand binding kinetics above (Fig. 3.1, Table 3.1), we 

anticipated that this would serve as a good proxy estimate of the ligand binding dissociation 

rate in our live cell assays. We performed these experiments by initially stimulating cells with 

the agonist of interest, followed by adding an antagonist at high saturating concentrations to 

prevent the agonist from re-binding once it dissociated from the D2R. Before being 

outcompeted with spiperone, agonists were incubated with the cells for 12.5 minutes - a time 

that allowed for agonists to increase in potency as well as display a robust response. This 

experiment is analogous to binding assays in which an isotopic dilution method, using a 

saturating concentration of cold ligand, is used to visualise ligand dissociation by preventing 

radioligand rebinding. In this manner, we utilised the same BRET sensor for the earlier G 

protein activation assays and were able to essentially track the rate at which the G proteins 

become inactive and re-associate. This assay was chosen because it detects activation directly 

proximal to the receptor and can be measured with high temporal resolution (132,257). When 

we performed these experiments, we observed large differences in the deactivation rates 

between the panel of agonists (Fig. 3.3A). Moreover, the rate of re-association of the G protein 

heterotrimers correlated strongly with the ligand binding dissociation rate (Fig. 3.3B) (Pearson 

r = 0.988, P=0.003). Therefore, the signalling deactivation in live cells can be directly in line 

with the binding dissociation performed in membranes. Importantly, rotigotine’s functional 

deactivation rate approximated its binding dissociation rate (Fig. 3.3B and Table 3.2). This 

suggests that the dissociation rate, at least in the case of rotigotine, is not altered at all in the 

functional assays in this study. Consequently, the increase in potency in all functional events 

over time for rotigotine, pardoprunox and ST-836 is likely not conferred through a slowed 

dissociation rate over time. 
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Figure 3.3. The relationship between the agonist-specific G protein deactivation rate in 
live cells and direct ligand binding dissociation rate. D2R agonists were added to D2R 
expressing Flp-In HEK 293 cells and allowed to activate GαoB heterotrimers followed by being 
out-competed by a high concentration of the high affinity antagonist spiperone to track the rate 
of de-activation of GαoB protein signaling. (A) 100nM Bifeprunox (red squares), 100nM 
Aripiprazole (light blue circles), 33nM Cariprazine (brown diamonds) 1nM Rotigotine (pink 
triangles) and 100nM Ropinirole (orange squares) were incubated for 12.5 minutes before 
being out-competed with 20μM Spiperone. (B) Experimentally determined ligand binding 
dissociation rates (koff) plotted on the y-axis with GαoB protein re-association rate (deactivation 
– kdeact) in this study plotted on the x-axis showed a Pearson correlation with an R2 of 0.988 
(P=0.003). Data is plotted on a log10 scale for ease of visualization. 
 
 
Table 3.2: G protein deactivation rate after stimulation with different agonists. 
Data is represented as the mean ± SEM from three separate experiments. 

Agonist kdeact (min-1) 
Aripiprazole 0.085 ± 0.029 
Bifeprunox 0.005 ± 0.001 
Cariprazine 0.120 ± 0.013 
Ropinirole 15.10 ± 2.206 
Rotigotine 0.604 ± 0.104 

 
 

Quantitative assessment of agonist action at a single timepoint at proximal functional 

events 

We next wanted to quantitatively assess the different agonists’ functional responses at 

each effector. The agonists’ responses were assessed by taking a single timepoint and fitting 

concentration response curves. We chose a time of fifteen minutes after agonist stimulation to 

examine the responses because a robust window of response was maintained and most of the 

increases in potency had occurred by this time point. When assessing the activation of the 

different G proteins at 15 minutes we observed clear differences in the responses generated by 

each agonist at Gαi1, Gαi2 and Gαi3 as compared to those at GαoA, GαoB, and Gαz. As we had 

observed in the temporal responses, there were large differences in maximal effect between the 
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agonists when activating Gαi1, Gαi2 and Gαi3 but not GαoA, GαoB and Gαz. Regarding Gαi1, Gαi2 

and Gαi3 activation, known low efficacy agonists such as aripiprazole and brexpiprazole 

produced weak responses (262,268), whereas efficacious agonists such as dopamine and 

rotigotine produced more full responses (Fig. 3.4A, B & C and Table 3.3)(264). Indeed, the 

maximal Gαi2 response induced by brexpiprazole was approximately 23% that of dopamine’s 

response (Table 3.3). In contrast to the responses at Gαi1, Gαi2 and Gαi3, the activation of GαoA, 

GαoB, and Gαz produced more robust responses, with most agonists’ effects resembling a full 

agonist (Fig. 3.4D, E & F and Table 3.3). For example, brexpiprazole induced a maximal 

response at GαoA that was 89% that of dopamine’s response. Agonists were also usually more 

potent when activating GαoA, GαoB, and Gαz relative to Gαi1, Gαi2 and Gαi3. For instance, 

dopamine was approximately 10-fold more potent at activating GαoA over Gαi2 (GαoA pEC50 = 

8.32 ± 0.04 (EC50 = 4.79nM), Gαi2 pEC50 = 7.30 ± 0.03 (EC50 = 50.1nM)). The stronger 

responses at GαoA and GαoB reflect the selectivity of the D2R for these G proteins (138,139). 
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Figure 3.4: Agonist activation of different G protein subtypes by the D2R. Flp-In HEK 293 
cells stably expressing the D2R were transfected with BRET sensors and the activation of Gαi1 
(A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), and Gαz (F) was monitored in the live cells in 
response to increasing concentrations of a set of agonists with varying binding kinetics and 
efficacy. All responses shown were determined 15 minutes after stimulation. Data represents 
the mean ± SEM of 4-6 separate experiments. 
 



Table 3.3: Functional parameters of various agonists abilities to induce activation of different G proteins by the D2R. 
Activation was measured 15 minutes after stimulation. Data is represented as the mean ± SEM of 4-6 separate experiments. 

 G protein α subunit 
 Gαi1 Gαi2 Gαi3 GαoA GαoB Gαz 
Agonist pEC50 Emax pEC50 Emax pEC50 Emax pEC50 Emax pEC50 Emax pEC50 Emax 
Aripiprazole 7.18 

± 
0.08 

48.6 
± 
1.7 

7.30 
± 
0.11 

34.5 
± 
1.7 

7.14 
± 
0.10 

59.2 
± 
2.7 

7.48 
± 
0.04 

92.3 
± 
1.6 

7.50 
± 
0.1 

90.4 
± 
1.8 

7.24 
± 
0.05 

92.5 
± 
2.1 

Bifeprunox 7.34 
± 
0.08 

71.5 
± 
2.3 

7.21 
± 
0.09 

52.5 
± 
2.0 

7.28 
± 
0.07 

79.9 
± 
2.2 

7.69 
± 
0.07 

98.0 
± 
2.6 

7.66 
± 
0.07 

96.8 
± 
2.5 

7.54 
± 
0.07 

101.1 
± 
2.8 

Brexpiprazole 6.79 
± 
0.16 

28.2 
± 
2.2 

6.80 
± 
0.08 

23.4 
± 
1.0 

6.97 
± 
0.11 

43.3 
± 
2.1 

6.83 
± 
0.04 

89.0 
± 
1.7 

6.84 
± 
0.05 

83.1 
± 
1.9 

6.63 
± 
0.06 

87.6 
± 
2.5 

Bromocriptine 7.42 
± 
0.06 

92.2 
± 
2.3 

7.31 
± 
0.04 

90.6 
± 
1.6 

7.63 
± 
0.06 

93.7 
± 
2.3 

8.03 
± 
0.05 

110.2 
± 
2.1 

8.03 
± 
0.05 

105.8 
± 
2.0 

7.94 
± 
0.05 

105.2 
± 
2.0 

Cariprazine 6.32 
± 
0.08 

60.7 
± 
2.7 

7.40 
± 
0.07 

44.4 
± 
1.6 

7.40 
± 
0.09 

78.7 
± 
3.9 

7.68 
± 
0.05 

100.5 
± 
2.6 

7.70 
± 
0.07 

105.6 
± 
3.6 

7.56 
± 
0.07 

105.6 
± 
3.8 

Dopamine 7.59 
± 
0.06 

100.0 
± 
2.2 

7.30 
± 
0.03 

100.0 
± 
1.4 

7.81 
± 
0.06 

100.0 
± 
2.4 

8.32 
± 
0.04 

100.0 
± 
1.3 

8.23 
± 
0.05 

100.0 
± 
1.7 

8.28 
± 
0.04 

100.0 
± 
1.5 

Pardoprunox 8.05 
±  
0.07 

75.0 
± 
1.9 

7.89 
± 
0.06 

64.5 
± 
1.5 

8.35 
± 
0.09 

82.6 
± 
2.4 

8.67 
± 
0.04 

102.0 
± 
1.4 

8.60 
± 
0.05 

98.2 
± 
1.5 

8.55 
± 
0.05 

99.6 
± 
1.8 

Ropinirole 7.00 
± 
0.03 

94.0 
± 
1.3 

6.50 
± 
0.05 

92.0 
± 
2.2 

7.04 
± 
0.04 

98.3 
± 
1.7 

7.71 
± 
0.04 

99.3 
± 
1.4 

7.55 
± 
0.05 

97.8 
± 
2.0 

7.71 
± 
0.05 

104.3 
± 
1.9 

Rotigotine 8.99 
± 
0.03 

101.4 
± 
1.1 

8.71 
± 
0.04 

100.9 
± 
1.4 

9.15 
± 
0.03 

101.1 
± 
1.3 

9.65 
± 
0.04 

105.3 
± 
1.5 

9.62 
± 
0.04 

103.3 
± 
1.2 

9.67 
± 
0.03 

103.1 
± 
1.1 

S-3PPP 6.56 
± 
0.10 

55.9 
± 
2.2 

6.35 
± 
0.08 

44.7 
± 
1.5 

6.67 
± 
0.10 

63.1 
± 
2.6 

7.06 
± 
0.05 

97.5 
± 
1.7 

6.93 
± 
0.06 

95.6 
± 
2.0 

6.96 
± 
0.07 

97.1 
± 
2.4 

ST-836 7.85 
± 
0.04 

104.4 
± 
1.6 

7.60 
± 
0.03 

94.7 
± 
1.2 

8.01 
± 
0.06 

97.3 
± 
2.0 

8.59 
± 
0.03 

101.1 
± 
1.0 

8.43 
± 
0.05 

105.4 
± 
1.7 

9.05 
± 
0.05 

100.3 
± 
1.5 



 
In the G protein cycle, a single GPCR can catalytically activate multiple G proteins that 

results in the amplification of G protein signalling (269). Arrestin and GRK recruitment by 

GPCRs does not appear to have this level of amplification. For this reason, there is often a 

reduction in the potency when measuring the recruitment of arrestins and GRKs to GPCRs 

relative to the activation of G proteins (96,270). When we assessed the recruitment of GRK2, 

β-arrestin-1 and β-arrestin-2 our data supported this notion because agonists were generally 

less potent than they were at activating G proteins (Fig. 3.5A, B & C and Table 3.4). Moreover, 

when measuring the recruitment of any of the regulatory proteins, weaker efficacy agonists 

also displayed substantial reductions in the maximal effect they induced relative to dopamine. 

For example, the aripiprazole induced maximal effects for GRK2, β-arrestin-1 and β-arrestin-

2 were all less than 20% of dopamine’s response (Table 3.4). Certainly, some partial agonists 

displayed such weak responses when recruiting GRK2 and β-arrestin-1 that a sigmoidal 

concentration response curve could not be fit to their responses accurately (Table 3.4, r2 < 0.7 

indicated by ND). The fact that weaker efficacy agonists displayed dampened maximal effects 

may reflect previously published data that, relative to other GPCRs such as the vasopressin V2 

receptor, the D2R has a weak interaction with arrestins (271,272). In the GRK2 and arrestin 

recruitment assays, dopamine induced the largest maximal response, and this robust effect 

matches previous observations in arrestin recruitment assays (270). However, rotigotine was 

the most potent agonist in these assays as well as in the G protein activation assays.  
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Figure 3.5: Agonist induced recruitment of GRK2, β-arrestin-1 and β-arrestin-2 to the 
D2R. Recruitment of GRK2 (A), β-arrestin-1 (B), and β-arrestin-2 (C) to the D2R was monitored 
in live Flp-In HEK 293 cells with BRET. Concentration-response curves of different agonists 
with varying binding kinetics and efficacy at the D2R were plotted. All responses plotted were 
determined 15 minutes after stimulation. The data is presented as the mean ± SEM of 3-4 
separate experiments. 
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Table 3.4: GRK2 and β-arrestin recruitment parameters for different agonists.  
Measurements were taken 15 minutes after stimulation. Data represents the mean ± SEM of 
3-4 separate experiments. 

 Regulatory event 
 GRK2 β-arrestin-1 β-arrestin-2 
Agonist pEC50 Emax pEC50 Emax pEC50 Emax 
Aripiprazole 7.23 

± 
0.15 

9.1 
± 
0.6 

ND ~6 6.94 
± 
0.07 

15.1 
± 
0.5 

Bifeprunox ND ~19 ND ~9 7.39 
±  
0.12 

26.8 
± 
1.4 

Brexpiprazole ND ~3 ND ~4 6.93 
± 
0.15 

5.81 
± 
0.40 

Bromocriptine 7.26 
± 
0.07 

37.3 
± 
1.1 

7.25 
± 
0.07 

48.7 
± 
1.4 

7.20 
± 
0.06 

69.9 
± 
1.8 

Cariprazine 8.18 
± 
0.14 

8.2 
± 
0.5 

ND ~7 7.78 
± 
0.10 

13.6 
± 
0.6 

Dopamine 6.39 
± 
0.02 

100.0 
± 
1.0 

6.38 
± 
0.03 

100.0 
± 
1.2 

6.73 
± 
0.03 

100.0 
± 
1.2 

Pardoprunox 7.66 
± 
0.10 

17.9 
± 
0.6 

7.56 
± 
0.09 

20.4 
± 
0.7 

7.84 
± 
0.08 

32.8 
± 
0.9 

Ropinirole 6.52 
± 
0.10 

56.1 
± 
2.2 

6.31 
± 
0.05 

65.0 
± 
1.3 

6.51 
± 
0.04 

70.9 
± 
1.2 

Rotigotine 8.62 
± 
0.09 

78.2 
± 
2.4 

8.49 
± 
0.05 

93.4 
± 
1.7 

8.67 
± 
0.05 

97.2 
± 
1.7 

S-3PPP 6.49 
± 
0.22 

8.6 
± 
0.8 

ND ~9 6.12 
± 
0.07 

17.0 
± 
0.5 

ST-836 7.38 
± 
0.07 

62.5 
± 
1.9 

7.38 
± 
0.04 

73.0 
± 
1.3 

7.40 
± 
0.06 

81.3 
± 
1.9 
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Having determined the potencies at G proteins and regulatory pathways we were then 

able to compare these values to our determined affinities of the agonists. It is expected that the 

potency of each compound would not match their affinity due to the intrinsic efficacy of the 

particular compound. However, we observed very large differences between potencies and 

affinities, with some potencies much higher and some lower than the respective affinity. 

Interestingly, the group of bitopic partial agonists including aripiprazole, bifeprunox, 

brexpiprazole and cariprazine all displayed functional potencies that were orders of magnitude 

lower than their binding affinities. For example, aripiprazole displayed a kinetic pKd of 9.66 

whereas its potency (pEC50) for GαoA activation and β-arrestin-2 recruitment was 7.48 and 6.94 

respectively (Table 3.3 & 3.4). The responses and potencies of these agonists largely reach 

their maximal point at the 15-minute measurement timepoint (Figure S3.1-S3.11). Therefore, 

this observation is likely not due to the agonists not reaching equilibrium with the D2R. 

Moreover, the ergot agonist bromocriptine also displayed a decrease in its potency values 

(pEC50 GαoA = 8.03, pEC50 β-arrestin-2 = 7.20) relative to its affinity (pKd = 9.40). In contrast, 

some other agonists displayed higher or similar potencies in the functional assays as comapred 

to their binding affinities, such as dopamine (pKd = 5.18, pEC50 GαoA = 8.32, pEC50 β-arrestin-

2 = 6.73) and rotigotine (pKd = 8.21, pEC50 GαoA = 9.65, pEC50 β-arrestin-2 = 8.67). In these 

cases, the higher potency in the functional assay relative to the binding affinity is likely due to 

a combination of receptor reserve, agonist efficacy and signal amplification and such 

observations are consistent with many previous studies of agonist action at GPCRs (273). 

However, the lower potency of ligands like aripiprazole as compared to their binding affinity 

cannot be reconciled with this mechanism.  Together this demonstrates that the receptor 

occupancy of an agonist required to elicit a half-maximal response can be vastly different 

between distinct D2R agonists.  

While assessing differences in either the maximal effect or potency is useful, each of 

these measures are subject to differences in both the system and the specific assay detection 

method. Different functional endpoints can have different levels of amplification due to various 

phenomenon such as the efficiency of coupling to particular downstream effectors or positive 

feedback loops. Likewise, differences in detection sensitivity or amplification depending on 

the level of detection within the signalling cascade can also introduce similar effects. Due to 

this, observations of relative changes in potency or maximal effect between different pathways 

may appear as agonist bias. However, once the signalling system and the differences in assays 
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are taken into account, such bias may be insignificant. Therefore, we were also interested in 

comparing agonist activity in an integrated manner. We did this by applying an operational 

model of agonist activity adapted from work by Black and Leff (86,87). This enabled us to 

determine individual transduction coefficients for each agonist acting at each effector (Table 

3.5). The transduction coefficient is a parameter estimated from the concentration response 

curves that is comprised of the agonists’ affinity for the receptor-effector complex (KA) and 

the efficacy of the agonist to activate that effector (τ). This analysis showed rotigotine had the 

most powerful agonist activity, having the largest transduction coefficient for all effectors 

(Table 3.5). In general, the analysis displayed larger transduction coefficients for the agonists 

at GαoA, GαoB and Gαz, indicating that these G proteins were more efficiently coupled to the 

D2R relative to other effectors. Therefore, to more accurately assess the relative activities of 

the agonists acting at each effector, the relative coupling efficiency and/or amplification of 

each signalling pathway needs to be accounted for. This was achieved by normalising the 

different transduction coefficients at each effector to that of dopamine - the reference agonist. 

Having done this, we could then observe that some agonists selectively activated some 

effectors relative to the action of dopamine. In particular, multiple agonists appeared to 

preferentially recruit either GRK2, β-arrestin-1 or β-arrestin-2 relative to their activation of 

GαoA (Table 3.6). That is, several agonists displayed statistically significant biased agonism for 

these pathways. For example, bromocriptine and rotigotine both showed a significant 

preference for the recruitment of all three regulatory proteins over GαoA.  
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Table 3.5: Agonist transduction coefficients. 
Data represents the mean ± SEM of 3-6 separate experiments. 

 Log (τ/KA) 
Agonist Gαi1 Gαi2 Gαi3 GαoA GαoB Gαz GRK2 β-

arrestin-
1 

β-
arrestin-
2 

Aripiprazole 6.88 
± 
0.10 

6.91 
± 
0.10 

6.96 
± 
0.10 

7.52 
± 
0.04 

7.55 
± 
0.05 

7.29 
± 
0.05 

6.01 
± 
0.41 

ND 5.98 
± 
0.19 

Bifeprunox 7.21 
± 
0.07 

6.99 
± 
0.07 

7.22 
± 
0.07 

7.74 
± 
0.04 

7.72 
± 
0.04 

7.57 
± 
0.04 

ND ND 6.68 
± 
0.11 

Brexpiprazole 6.27 
± 
0.17 

6.25 
± 
0.15 

6.67 
± 
0.13 

6.87 
± 
0.05 

6.89 
± 
0.05 

6.70 
± 
0.05 

ND ND 5.60 
± 
0.45 

Bromocriptine 7.39 
± 
0.05 

7.28 
± 
0.04 

7.61 
± 
0.06 

8.12 
± 
0.03 

8.09 
± 
0.03 

8.01 
± 
0.04 

6.70 
± 
0.13 

6.90 
± 
0.08 

6.97 
± 
0.05 

Cariprazine 7.12 
± 
0.09 

7.11 
± 
0.09 

7.33 
± 
0.08 

7.70 
± 
0.04 

7.76 
± 
0.04 

7.64 
± 
0.04 

6.89 
± 
0.44 

ND 6.76 
± 
0.20 

Dopamine 7.57 
± 
0.04 

7.30 
± 
0.03 

7.80 
± 
0.05 

8.33 
± 
0.03 

8.25 
± 
0.03 

8.31 
± 
0.03 

6.37 
± 
0.05 

6.37 
± 
0.04 

6.71 
± 
0.04 

Pardoprunox 7.93 
± 
0.06 

7.74 
± 
0.05 

8.29 
± 
0.06 

8.70 
± 
0.03 

8.65 
± 
0.04 

8.59 
± 
0.04 

6.74 
± 
0.24 

6.81 
± 
0.16 

7.22 
± 
0.10 

Ropinirole 6.97 
± 
0.05 

6.49 
± 
0.04 

7.05 
± 
0.06 

7.77 
± 
0.04 

7.62 
± 
0.05 

7.77 
± 
0.04 

6.16 
± 
0.09 

6.09 
± 
0.05 

6.29 
± 
0.05 

Rotigotine 8.99 
± 
0.04 

8.72 
± 
0.03 

9.16 
± 
0.05 

9.70 
± 
0.03 

9.66 
± 
0.03 

9.72 
± 
0.04 

8.45 
± 
0.06 

8.44 
± 
0.03 

8.63 
± 
0.03 

S-3PPP 6.32 
± 
0.08 

6.06 
± 
0.08 

6.51 
± 
0.09 

7.11 
± 
0.04 

7.00 
± 
0.04 

7.02 
± 
0.04 

5.23 
± 
0.48 

ND 5.21 
± 
0.19 

ST-836 7.88 
± 
0.05 

7.59 
± 
0.04 

8.00 
± 
0.06 

8.61 
± 
0.04 

8.50 
± 
0.04 

9.07 
± 
0.04 

7.09 
± 
0.08 

7.22 
± 
0.05 

7.25 
± 
0.04 

ND – not determined, could not be calculated due to poor initial non-linear curve fit (r2 < 0.7). 
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Table 3.6: Relative Transduction coefficients. 
Data represents the mean ± SEM of 3-6 separate experiments. 
 ΔLog (τ/KA) 

Agonist Gαi1 Gαi2 Gαi3 GαoA GαoB Gαz GRK2 β-
arrestin-
1 

β-
arrestin-
2 

Aripiprazole -0.68 
± 
0.10 

-0.39 
± 
0.10 

-0.84 
± 
0.11 

-0.81 
± 
0.05 

-0.70 
± 
0.06 

-1.01 
± 
0.06 

-0.36 
± 
0.41 

ND -0.74 
± 
0.19 

Bifeprunox -0.36 
±
  
0.08 

-0.32 
± 
0.10 
* 

-0.59 
± 
0.08 

-0.59 
± 
0.05 

-0.53 
± 
0.05 

-0.73 
± 
0.05 

ND ND -0.03 
± 
0.12 * 

Brexpiprazole -1.30 
±
  
0.17 

-1.05 
± 
0.15 

-1.14 
± 
0.14 

-1.46 
± 
0.06 

-1.36 
± 
0.06 

-1.61 
± 
0.06 

ND ND -1.11 
± 
0.45 

Bromocriptine -0.18 
±
  
0.06 

-0.02 
± 
0.05 

-0.19 
± 
0.07 

-0.22 
± 
0.05 

-0.16 
± 
0.05 

-0.29 
± 
0.05 

0.34 
± 
0.14 * 

0.53 
± 
0.09 * 

0.25 
± 
0.06 * 

Cariprazine -0.45 
± 
0.10 

-0.19 
± 
0.10 

-0.48 
± 
0.10 

-0.64 
± 
0.05 

-0.49 
± 
0.05 

-0.66 
± 
0.05 

0.53 
± 
0.45 * 

ND 0.05 
± 
0.21 

Dopamine 0.00 
± 
0.05 

0.00 
± 
0.04 

0.00 
± 
0.07 

0.00 
± 
0.04 

0.00 
± 
0.05 

0.00 
± 
0.05 

0.00 
± 
0.07 

0.00 
± 
0.05 

0.00 
± 
0.05 

Pardoprunox 0.37 
± 
0.07 

0.44 
± 
0.06 

0.49 
± 
0.08 

0.37 
± 
0.05 

0.40 
± 
0.05 

0.29 
± 
0.05 

0.38 
± 
0.25 

0.44 
± 
0.16 

0.51 
± 
0.11 

Ropinirole -0.60 
± 
0.07 

-0.81 
± 
0.05 

-0.76 
± 
0.08 

-0.56 
± 
0.05 

-0.64 
± 
0.06 

-0.53 
± 
0.05 

-0.20 
± 
0.10 * 

-0.28 
± 
0.06 * 

-0.43 
± 
0.06 

Rotigotine 1.42 
± 
0.06 

1.42 
± 
0.04 

1.36 
± 
0.07 

1.37 
± 
0.05 

1.41 
± 
0.05 

1.42 
± 
0.05 

2.08 
± 
0.08 * 

2.07 
± 
0.05 * 

1.91 
± 
0.05 * 

S-3PPP -1.24 
± 
0.09 

-1.24 
± 
0.08 

-1.30 
± 
0.10 

-1.23 
± 
0.05 

-1.26 
± 
0.05 

-1.29 
± 
0.06 

-1.14 
± 
0.49 

ND -1.51 
± 
0.19 

ST-836 0.32 
± 
0.06 

0.29 
± 
0.05 

0.20 
± 
0.07 

0.27 
± 
0.05 

0.25 
± 
0.05 

0.77 
± 
0.05 * 

0.72 
± 
0.10 * 

0.85 
± 
0.06 * 

0.54 
± 
0.06 * 

* Agonist’s ΔLog (τ/KA) value is significantly different from the corresponding GαoA value within 
the row, P < 0.05 Ordinary one-way ANOVA with Dunnett’s multiple comparisons test. ND – 
not determined, could not be calculated due to poor initial non-linear curve fit (r2 < 0.7). 
 

 

The majority of D2Rs in the central nervous system are thought to be coupled to Gαo 

subunits (140). In addition, more compounds displayed significant bias when using either a 

Gαo isoform or Gαz as a reference pathway compared to using one of the Gαi subunits (for 

example Gαi2). Moreover, using a Gαi subunit as a reference pathway had a similar, albeit 

reduced, pattern of bias to using GαoA or Gαz. Hence, for these reasons, we next normalised the 
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relative transduction coefficient values to the values at the reference effector GαoA to obtain 

the final values of biased agonism (Table 3.7). With these values we could construct a web of 

bias to more easily visualise biased agonism (Fig. 3.6). From this, it could be observed that 

there was minimal biased agonism between the G protein subtypes, whereas multiple agonists 

displayed apparent bias towards the recruitment of regulatory proteins and away from GαoA. 

Rotigotine, ST-836 and bromocriptine, that are quite efficacious agonists, displayed significant 

biased agonism between GαoA activation and all of GRK2, β-arrestin-1 and β-arrestin-2 (Fig. 

3.6A & B and Table 3.6 & 3.7). Moreover, multiple partial agonists at the poorly coupled 

GRK2 and β-arrestin-1 recruitment endpoints produced an inadequate signal to be able to 

robustly fit the operational model. Consequently, the transduction coefficients of some of the 

partial agonists and their resultant biased agonism values could not be determined (Table 3.5, 

3.6, & 3.7). Nonetheless, the partial agonists cariprazine and bifeprunox displayed significant 

bias between GαoA and one of the regulatory proteins. Indeed, cariprazine displayed the largest 

significant difference in relative transduction coefficients of approximately 14-fold between 

GRK2 recruitment and GαoA activation (Fig. 3.6A and Table 3.6 & 3.7). In comparison, other 

partial agonists pardoprunox and S-3PPP displayed a consistent lack of bias at each endpoint 

(Fig. 3.6B). In general, applying this straightforward method of analysis by applying an 

operational model together with suitable internal references allowed us to observe statistically 

significant apparent bias primarily, but not exclusively, between the well coupled G proteins 

and the less efficient regulatory proteins. 
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Table 5.7: Bias quantification values relative to GαoA activation. 
 Data represents the mean ± SEM of 3-6 separate experiments. 

 ΔΔLog (τ/KA) 
Agonist Gαi1 Gαi2 Gαi3 GαoA GαoB Gαz GRK2 β-

arrestin-
1 

β-
arrestin-
2 

Aripiprazole 0.13 
± 
0.12 

0.42 
± 
0.12 

-0.03 
± 
0.12 

0.00 ± 
0.07 

0.11 ± 
0.08 

-0.20 
± 
0.08 

0.45 ± 
0.42 

ND 0.07 ± 
0.20 

Bifeprunox 0.23 
± 
0.09 

0.28 
± 
0.09 

-0.01 
± 
0.10 

0.00 ± 
0.07 

0.06 ± 
0.07 

-0.14 
± 
0.07 

ND ND 0.56 ± 
0.13 

Brexpiprazole 0.16 
± 
0.18 

0.41 
± 
0.16 

0.32 
± 
0.15 

0.00 ± 
0.08 

0.10 ± 
0.08 

-0.15 
± 
0.09 

ND ND 0.35 ± 
0.45 

Bromocriptine 0.04 
± 
0.08 

0.19 
± 
0.07 

0.02 
± 
0.09 

0.00 ± 
0.06 

0.05 ± 
0.07 

-0.08 
± 
0.07 

0.55 ± 
0.15 

0.74 ± 
0.10 

0.47 ± 
0.08 

Cariprazine 0.19 
± 
0.11 

0.44 
± 
0.11 

0.16 
± 
0.11 

0.00 ± 
0.07 

0.14 ± 
0.07 

-0.03 
± 
0.07 

1.16 ± 
0.45  

ND 0.68 ± 
0.21 

Dopamine 0.00 
± 
0.07 

0.00 
± 
0.06 

0.00 
± 
0.08 

0.00 ± 
0.06 

0.00 ± 
0.06 

0.00 
± 
0.06 

0.00 ± 
0.08 

0.00 ± 
0.07 

0.00 ± 
0.07 

Pardoprunox 0.00 
± 
0.08 

0.08 
± 
0.08 

0.12 
± 
0.09 

0.00 ± 
0.06 

0.03 ± 
0.07 

-0.08 
± 
0.07 

0.01 ± 
0.25 

0.07 ± 
0.17 

0.15 ± 
0.12 

Ropinirole -0.03 
± 
0.09 

-0.25 
± 
0.08 

-0.19 
± 
0.09 

0.00 ± 
0.08 

-0.07 
± 0.08 

0.03 
± 
0.08  

0.36 ± 
0.11 

0.28 ± 
0.08 

0.14 ± 
0.08 

Rotigotine 0.05 
± 
0.07 

0.05 
± 
0.06 

-0.01 
± 
0.08 

0.00 ± 
0.06 

0.04 ± 
0.07 

0.05 
± 
0.07 

0.71 ± 
0.09 

0.70 ± 
0.07 

0.54 ± 
0.07 

S-3PPP -0.02 
± 
0.10 

-0.02 
± 
0.10 

-0.07 
± 
0.11 

0.00 ± 
0.07 

-0.03 
± 0.07 

-0.07 
± 
0.07 

0.09 ± 
0.49 

ND -0.28 ± 
0.20 

ST-836 0.04 
± 
0.08 

0.02 
± 
0.07 

-0.08 
± 
0.09 

0.00 ± 
0.07 

-0.03 
± 0.07 

0.50 
± 
0.07 

0.45 ± 
0.11 

0.57 ± 
0.08 

0.27 ± 
0.08 

ND – not determined, could not be calculated due to poor initial non-linear curve fit (r2 < 0.7). 
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Figure 3.6: Web of biased agonism between the reference pathway GαoA activation and 
different functional pathways. (A) Web of biased agonism for aripiprazole, bifeprunox, 
brexpiprazole, bromocriptine and cariprazine. (B) Web of biased agonism for pardoprunox, 
ropinirole, rotigotine, S-3PPP and ST-836. Log(t/KA) values were determined for each agonist 
at each pathway 15 minutes after agonist stimulation. These values were subtracted from the 
reference agonist dopamine’s values to obtain ΔLog(τ/KA) values. The ΔLog(τ/KA) values for 
each pathway were then subtracted from theΔLog(τ/KA) values of GαoA activation to give 
ΔΔLog(τ/KA) values. The anti-logarithm (ΔΔτ/KA) of these values were then plotted to show a 
web of bias. The reference agonist dopamine is shown in black in both panels and has a 
ΔΔτ/KA value of 1 between each pathway. Filled in circles denotes where the biased agonism 
is statistically significant (P < 0.05) as determined by a one-way ANOVA between the 
ΔLog(τ/KA) values. 

 

No clear relationship between biased agonism and differences in agonist dissociation 

rate  

Having observed the most statistically significant apparent biased agonism between the 

regulatory proteins and the well coupled Gαo or Gαz proteins, we then sought to examine 

whether there is a relationship between an agonists’ dissociation rate and the bias towards a 

particular functional event. We plotted the different binding parameters we had determined 

against the biased agonism between multiple pathways detected at a single timepoint of 15 

minutes. A Spearman’s correlation was performed on these plots to assess the relationship 
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between the rank values of each parameter. We chose to perform this type of correlation 

considering the mechanisms behind the manifestation of bias are not entirely clear, such that 

one must consider the possibility that biased agonism between any two pathways may saturate 

at some point. We then examined the relationship between the binding kinetics and bias at 

GRK2 recruitment relative to GαoA activation because many agonists displayed bias between 

these two signalling events. We first performed a negative control correlation plot between this 

bias and the association rate of the agonist (Fig. 3.7A). As anticipated, we observed no 

correlation between the association rate and the bias at GRK2 recruitment relative to GαoA 

activation. Moreover, we also observed no statistically significant correlation between the bias 

towards GRK2 recruitment and the dissociation rate of the agonist (Fig. 3.7D). We next 

correlated the affinity of the agonist, again to serve as a negative control. Unexpectedly, a 

correlation was observed between agonist affinity and the bias towards GRK2 recruitment 

relative to GαoA activation (Fig. 3.7G). We next examined the bias between β-arrestin-2 

recruitment and GαoA activation. We observed no significant correlation between either the 

association rate or the dissociation rate and the bias for β-arrestin-2 recruitment relative to GαoA 

activation (Fig. 3.7B & E). However, performing a correlation between the affinity and the bias 

for β-arrestin-2 recruitment relative to GαoA activation displayed a statistically significant 

Spearman’s correlation (Fig. 3.7H). Moreover, some relatively large biased agonism was also 

observed between β-arrestin-2 recruitment and Gαz activation. When plotting the association 

rate with the bias between β-arrestin-2 recruitment and Gαz activation, no correlation was 

observed (Fig. 3.7C). In contrast, robust correlations were observed between both agonist 

dissociation rate or affinity and the bias of β-arrestin-2 recruitment relative to Gαz activation 

(Fig. 3.7F & I). In general, there was no clear relationship between bias and the dissociation 

rate of the agonist. In fact, there was a tendency for higher affinity agonists to display some 

bias towards the weakly coupled regulatory pathways such as GRK2 or β-arrestin-2 recruitment 

relative to the strongly coupled GαoA or Gαz.   
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Figure 3.7: Correlation between Log(τ/KA)/LogBias and different binding parameters. 
Correlation between Log kon and the Log bias between: GRK2 recruitment and GαoA activation 
(A), β-arrestin-2 recruitment and GαoA activation (B), and β-arrestin-2 recruitment and Gαz 
activation (C). Correlation between Log koff and the Log bias between: GRK2 recruitment and 
GαoA activation (D), β-arrestin-2 recruitment and GαoA activation (E), and β-arrestin-2 
recruitment and Gαz activation (F). Correlation between pKd and the Log bias between: GRK2 
recruitment and GαoA activation (G), β-arrestin-2 recruitment and GαoA activation (H), and β-
arrestin-2 recruitment and Gαz activation (I). All Log bias values were determined at 15 
minutes after stimulation. Two-tailed nonparametric Spearman correlation was performed that 
does not assume the Log bias values to be linear with the different kinetic binding parameters. 
The Spearman’s rank correlation coefficient, r, is shown as well as the P value.   

 

Assessment of agonist induced D2R trafficking over time  

We next assessed the ability of each agonist to induce trafficking of the D2R. We again 

decided to take a BRET approach to monitor the trafficking of the D2R in live cells. The cells 

were transfected with plasmids encoding the D2R tagged on the C-terminus with Nluc to serve 

as a BRET donor and different endomembrane compartment proteins were tagged with venus 

to serve as BRET acceptors. GRK2 and β-arrestin-2 were also transfected together with the 

BRET sensors as they are known to aid the internalisation of the D2R and increase the signal 
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in these assays (261). We measured the trafficking of the D2R over time after stimulation with 

a high concentration of each agonist such that most receptors would be rapidly occupied.  

When examining the movement of the D2R away from the membrane marker KRas-

venus, we saw large differences between agonists (Fig. 3.8A & D). The efficacious agonists, 

dopamine and rotigotine produced the largest decrease in BRET ratio that plateaued 

approximately 20 minutes after stimulation. Other agonists, such as bromocriptine and 

pardoprunox produced a weaker decrease in BRET ratio however the rate of the decrease in 

BRET was similar, reaching a plateau at about 20 minutes (Fig. 3.8G & J). In contrast, the 

lower efficacy agonists such as aripiprazole and S-3PPP produced no change in BRET ratio 

from baseline. In contrast to the KRas plasma membrane sensor, we observed an increase in 

BRET over time when assessing drug induced changes in proximity to Rab5a positive early 

endosomes (Fig. 3.8B & E). Furthermore, all agonists produced some detectable change in the 

BRET ratio (Fig. 3.8H). This may indicate that because the endosomes are a smaller 

compartment relative to the plasma membrane, the stoichiometry of the Rab5a-venus donor to 

the D2R-Nluc may be more favourable for sensing small changes in the average localisation of 

the D2R. Again, the most efficacious agonists such as, dopamine and rotigotine were the most 

robust at trafficking the D2R into early endosomes. These agonists with higher efficacy tended 

to induce faster observed rates of trafficking into the Rab5a positive endosomes (Fig. 3.8K). 

The overall rate at which agonists induced trafficking into the early endosomes was similar to 

the rate that the D2R moved away from the plasma membrane. Measuring the drug induced 

changes in proximity of the D2R with recycling endosomes using the Rab11 marker, agonists 

generally produced a slow increase in BRET ratio over time (Fig. 3.8C, F, I & L). The increase 

in proximity into this recycling endosome compartment was significantly slower than the KRas 

or Rab5a marked compartments, with the BRET ratio not coming to a compete plateau within 

60 minutes for any of the agonists tested. The slow increase in BRET ratio may be indicative 

of the population of receptors slowly recycling back to the plasma membrane after having first 

been internalised. Again, efficacious agonists such as dopamine produced the largest increase 

in trafficking into this endomembrane compartment. In general, the temporal trafficking 

experiments showed marked differences in the magnitude of trafficking between agonists with 

little difference in the rate of trafficking between agonists. 
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Figure 3.8: Agonist dependent trafficking of the D2R over time. (A & D) Trafficking of D2R-
Nluc away from the KRas-venus plasma membrane marker over time in response to different 
agonists. (B & E) Trafficking of D2R-Nluc towards Rab5a-venus positive early endosomes time 
in response to different agonists. (C & F) Trafficking of D2R-Nluc towards Rab11-venus 
positive recycling endosomes over time in response to different agonists. The agonist induced 
change in BRET ratio measured 60 minutes after stimulation for D2R-Nluc trafficking away 
from the KRas positive plasma membrane (G), Rab5a positive early endosomes (H) and 
Rab11 positive recycling endosomes (I). The observed rate from a one-phase exponential fit 
of agonist induced trafficking away from the plasma membrane (J), towards early endosomes 
(K) and towards recycling endosomes (L). All data represents the mean ± SEM from 5 
separate experiments. 

 

Agonist efficacy for G protein activation, GRK2 recruitment, β-arrestin-2 recruitment 

and receptor trafficking correlates 

To understand what drives agonist bias, one must determine the phenomenon that is 

responsible for differences in transduction coefficients. The parameters that underpin an 

agonists’ transduction coefficient are the efficacy (τ) and the functional affinity (KA)(86,87). 

Therefore, relative changes in the transduction coefficient can be driven by differences in either 
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of these values. Due to this duality, we therefore decided separate the transduction coefficient 

and investigate a single component separately. The functional affinity values for several 

agonists change over time in our data as their occupancy and potency changes over time. In 

addition, we did not use full concentration curves when measuring D2R trafficking and, as such, 

we were unable to determine functional affinity values for the D2R trafficking. Thus, we chose 

to focus on the estimated operational efficacy of each agonist at each pathway.  

Considering some historical models that aimed to relate efficacy to binding kinetics 

such as rate theory (90), we tested whether agonist efficacy at a particular pathway is influenced 

by either agonist association rate or dissociation rate. Hypothetically, having a slow agonist 

dissociation rate could be important to wholly elicit slow functional events including arrestin 

recruitment, whereas it may be less important for fast responses such as G protein activation. 

Consequently, some efficacy bias may emerge between fast and slow signalling events based 

on agonist dissociation rate. We therefore plotted correlations between the binding kinetic 

parameters and the Log τ values for Gαi2 activation, GRK2 recruitment and β-arrestin-2 

recruitment determined using an operational model described earlier (Fig. S3.12) (86,87). GαoA 

activation was not included in this analysis because only four agonists could have their τ values 

accurately determined due to this pathway being efficiently coupled. We observed no 

statistically significant correlation between either the association rate or the dissociation rate 

and efficacy at any signalling pathway (Fig. S3.12A-F). We also observed no correlation in the 

negative control plots examining the relationship between the agonist affinity and efficacy (Fig. 

S3.12G-I). Therefore, based on this modest panel of agonists, neither association rate nor 

dissociation rate appear to be the main drivers of efficacy for any tested D2R proximal event. 

Thus, bias observations are unlikely to be mediated by a mechanism that involves differences 

in binding kinetics driving changes in efficacy. 

We then sought to elucidate any further insights into the drivers of the efficacy (τ) 

values with the continued hope that these may in turn help to understand differences in 

transduction coefficients. Accordingly, we next aimed to identify whether our data describing 

the agonist efficacy for one signalling event could be used to help predict the agonist efficacy 

at another signalling event. To do this, we correlated the different agonist efficacies between 

each pathway. We chose to compare G protein activation values to the other events because G 

protein coupling has been the canonical function of GPCRs historically. When examining Gαi2 

activation, all ligands except the two most efficacious agonists, dopamine and rotigotine, could 

have their τ values estimated. We therefore correlated the Gαi2 activation τ value estimates with 

the other signalling events. When correlating the Log τ values of Gαi2 with GαoA, we observed 
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a statistically significant Pearson’s correlation (Fig. 3.9A). We then correlated the τ values for 

Gαi2 activation with other pathways.  Log τ values of agonists activating Gαi2, correlated with 

the Log τ values for GRK2 (Fig. 3.9B). Additionally, the Log τ values of agonists activating 

Gαi2 robustly correlated with the Log τ values for agonists in the β-arrestin-2 recruitment assay 

(Fig. 3.9C). We did not obtain full concentration response curves in the trafficking assays, such 

that we were unable to determine operational efficacy τ values. Even so, we were able to 

observe a strong correlation between the Gαi2 Log τ values and the increase in BRET when 

measuring trafficking of the D2R to Rab5a positive endosomes (Fig. 3.9D). Altogether, this 

demonstrated that the efficacy of an agonist at one D2R mediated pathway can be accurately 

predicted by measuring any other pathway. Moreover, the strong correlations may imply that 

divergence in efficacy values may not be the main mediators of bias at the D2R. 
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Figure 3.9: Correlation of agonist Log τ values between Gαi2 activation and other 
functional pathways. (A) Correlation between agonist Log τ values for Gαi2 activation and 
Log τ values for GαoA activation. (B) Correlation between agonist Log τ values for Gαi2 
activation and Log τ values for GRK2 recruitment. (C) Correlation between agonist Log τ 
values for Gαi2 activation and Log τ values for β arrestin-2 recruitment. (D) Correlation between 
agonist Log τ values for Gαi2 activation and increase in BRET ratio for Rab5a trafficking. All 
Log τ values were determined from concentration response curves 15 minutes after 
stimulation. The Rab5a increase in BRET ratio was taken 15 minutes after agonist addition 
with a saturating concentration. For each panel a Pearson correlation was performed, the 
Pearson correlation coefficient (r) and P value is shown. 

 

 
3.4 Discussion 

The concept of biased agonism suggests that a drug’s on-target side effects can be 

reduced while maintaining its therapeutic activity. Therefore, new drugs may be developed that 

have improved therapeutic windows through harnessing biased agonism (274). While this 

offers great potential, the mechanisms of biased agonism are not entirely clear. Consequently, 

biased agonism drug discovery efforts have relied on inefficient means such as complex high 

throughput screens that require multiple drug concentrations and signalling endpoints 

(251,275,276). Such approaches leave the probability of obtaining a biased agonist to chance 

and only explore a fraction of the total chemical space available. Understanding how biased 
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agonism materialises would allow for the rational design of biased agonists. This would greatly 

aid biased agonist drug discovery by reducing the time and costs associated with the process. 

In our previous research we identified a mechanism that may explain some biased 

agonism observations. We determined that some agonists that slowly dissociate from the D2R 

can display bias between proximal signalling measurements and downstream measurements 

(96). We concluded that this observation is due to the interplay between the differences in the 

kinetics of binding and the kinetics of signalling. In particular, bias was observed when 

comparing an upstream or transient signalling endpoint with one further downstream, and when 

the measurement of each pathway was taken at different timepoints. While this finding helped 

move forward views on biased agonism, we did not comprehensively explore the kinetic effects 

on all G protein subtypes, regulatory proteins such as arrestins, and receptor trafficking. In the 

present study, we aimed to further explore this by determining whether differences in agonist 

dissociation rate may contribute to apparent biased agonism when assessed at diverse proximal 

functional events.  

We were able to demonstrate that the dissociation rate of the agonist is likely not the 

sole determinant of biased agonism observations at proximal events at the D2R. We achieved 

this by taking a range of agonists with varying binding kinetics and structure, quantifying bias 

at multiple proximal events, and correlating the bias with the agonist dissociation rate. A 

correlation was observed between the dissociation rate in only one instance. Furthermore, we 

additionally performed the same correlations with the association rate and the affinity. In 

reality, the affinity of the agonist appeared to correlate more strongly than did the dissociation 

rate. Importantly, affinity is a composite of association rate and dissociation rate. Therefore, 

this may suggest that large differences in association rate, dissociation rate or a combination of 

both, may lead to observations of bias by some means. 

It could be reconciled that our results altogether provide preliminary evidence for a 

mechanism by which higher affinity agonists display bias through an increase in receptor 

occupancy over time. In our temporal functional assays, not only did we observe increases in 

potency over time for the slow dissociating agonists such as bifeprunox, but we also observed 

that some other agonists displayed an increase in potency over time. In particular, we observed 

that rotigotine, pardoprunox and ST-836 increased in potency over time in a manner that was 

inconsistent with their fast dissociation rate (Fig. S3.7, S3.9 & S3.11). We verified that 

rotigotine had a fast dissociation rate by measuring the deactivation of G proteins (Fig. 3.3) 

and a separate group has also determined that rotigotine dissociates from the D2R faster than 

aripiprazole and cariprazine through radioligand binding (277). Under further examination of 
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the properties of rotigotine, pardoprunox and ST-836, it can be seen that these agonists very 

rapidly associate with the D2R. This property is important because, along with the receptor 

density and factors influencing ligand diffusion, agonist association rate is also a major 

determinant of ligand rebinding (54,224). In this case ligand rebinding describes the action of 

a ligand, having dissociated from the receptor, remains in the close vicinity to the receptor and 

as such revisits the receptor binding site or another receptor site nearby. The plausibility of 

rebinding occurring in this study is supported by reports of the antagonist [3H]-spiperone 

displaying D2R rebinding characteristics in assays with a similar setup, and also, that many 

D2R ligands are likely to display rebinding propensity in vivo (61,278,279) . Therefore, we 

speculate that fast associating agonists, including rotigotine, pardoprunox and ST-836, may be 

rebinding in our assays leading to sub-saturating concentrations of the agonist increasing in 

receptor occupancy over time and in turn producing an increase in potency over time. 

The results in the present study agree with our previous work when re-examining the 

data. As mentioned earlier, our previous research led us to conclude that agonists with slow 

dissociation rates increased in potency over time that lead to apparent bias (96). We had not 

previously considered that association rate may also play a role in this process. Our group’s 

publication reported that bifeprunox was by far the slowest dissociating ligand in the study, 

however, it did not actually display any more bias than cariprazine or aripiprazole (96). The 

affinity and association rate of cariprazine, aripiprazole and bifeprunox are in a similar range 

and this may explain why differences in the magnitude of bias between the two ligands was 

not observed. In the case of cariprazine, aripiprazole and bifeprunox, both the association rate 

and dissociation rate may be partly involved. Therefore, increases in potency either through 

slow dissociation or through rebinding due to a fast association rate may explain these 

observations of bias.  

Moving forward, it would be useful to attempt to extend this mechanism to other 

datasets using additional GPCRs. One GPCR where bias has been extensively investigated is 

the angiotensin II receptor 1 (AT1R). There may be a similar trend for the AT1R as it appears 

that apparent biased agonists such as DVG and SII have reduced receptor affinity relative to 

the high affinity reference agonist angiotensin II (280,281). However, for most GPCRs, there 

is a lack of large datasets that include both ligand affinity and biased agonism. Additionally, 

there is often no consensus on which ligands are definitively biased. For example, initial reports 

suggested that PZM21 displayed G protein bias at the µ opioid receptor, however this was not 

supported by any statistically significant biased agonism when quantified (82). Future studies 

could design experiments to further explore this idea at other GPCRs. 
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While there was a trend for high affinity agonists to display bias relative to the low 

affinity reference agonist dopamine, the biased agonism was repeatedly observed towards the 

poorly coupled effectors and away from the well coupled effectors. Such bias was observed 

between the most efficiently coupled Gαo or Gαz proteins and poorly coupled GRK2, β-

arrestin-1 or β-arrestin-2. The fact that the bias routinely occurs in the same direction suggests 

that either each biased agonist is biasing the receptor in a similar fashion or that biased agonism 

is hard-wired by the system. By using a reference agonist together with the Black and Leff 

operational model we were able to reduce system bias by accounting for any differences in 

receptor reserve between pathways. However, we cannot completely rule out system bias if 

there are very large and irregular patterns of amplification in a particular pathway (282). As a 

theoretical example, continual increases in receptor occupancy may result in amplified 

increases in response in one pathway through mechanisms such as positive cooperativity or 

positive feedback until the response is saturated for one pathway, while having no effect at 

another pathway. This could result in relative differences in response if one agonist is much 

higher efficacy than another agonist as smaller occupancy levels may still lead to a very large 

response. Indeed, Onaran and colleagues (283) have demonstrated that using the Black and 

Leff operational model of agonism to determine ligand bias can result in a higher number of 

false positives than other methods. Moreover, when we did observe bias, there was appreciable 

noise in our final bias calculations resulting in some nonuniform bias patterns. For example, 

bifeprunox displayed statistically significant bias between GαoA and β-arrestin-2, however, 

bifeprunox’s transduction coefficient at GRK2 and β-arrestin-1 was not determined due to a 

poor signal in these assays. Therefore, it is unclear whether bifeprunox would display bias at 

GRK2 or β-arrestin-1 if there was a robust window in these assays. Similarly, ropinirole 

displayed very subtle bias at β-arrestin-1 relative to GαoA. However, no statistically significant 

bias was observed at β-arrestin-2 relative to GαoA. This makes interpretations of the data 

difficult because β-arrestin-1 and β-arrestin-2 would be expected to share similar patterns of 

recruitment due to their very high sequence identity (284).  

It should be noted that while our goal was to investigate the mechanisms of bias at the 

D2R, this task became challenging due to the underwhelming amount of bias that materialised. 

Having BRET as the sole detection technique and using identical buffers, detection times and 

temperatures, we expected to reduce the amount of observational bias. Nevertheless, we did 

not expect to observe few ligands displaying bias and the fold change in bias generally being 

less than 10-fold. In addition, we did not predict that there would be almost no statistically 

significant bias between G protein subtypes. GPCR-G protein selectivity is common, hence, if 
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an agonist induces different conformational states then one could envisage that these different 

states may have G protein selectivity as well. In agreement with this concept, apparent bias 

between G protein subtypes at the D2R has been observed before between Gαi1 and GαoA (252). 

Furthermore, G protein subtype bias has been identified at other GPCRs such as the dopamine 

D1 receptor and the free fatty acid 2 receptor (285,286). The reasons why we do not widely 

observe G protein subtype bias cannot yet be explained.  

We were able to investigate the drivers of agonist efficacy at the D2R. While rate theory 

advocates for association rate being proportional to efficacy (90), we did not observe this with 

our dataset. Other groups have also observed the opposite of rate theory, whereby slow 

dissociation leads to increased efficacy (91,93). However, we again did not see any correlation 

between dissociation rate and efficacy. It is important to note here that some ligands within the 

dataset have been through a drug discovery process that may have selected for increased or 

decreased agonist efficacy. Indeed, weak partial agonists are the preferred agonists for 

schizophrenia whereas efficacious agonists are desired for Parkinson’s disease (287). 

Nonetheless, we also compared the agonist efficacy between all the endpoints. Each endpoints’ 

Log τ showed a robust correlation with Gαi2 activation (Fig. 3.9). This matches another report 

at the µ opioid receptor where efficacy between G protein mediated signalling, arrestin 

recruitment and internalisation all correlated (288). While the number of agonists tested in our 

study is not totally all-encompassing, our results nevertheless indicate that the ligand-specific 

properties that determine intrinsic efficacy at the D2R are in fact identical at all signalling 

pathways. This has implications for targeting the D2R because it suggests that the relative 

maximal effects may be quite challenging to separate based on the agonist. That is, the strong 

correlation of Log τ values between all pathways may indicate that bias observations (as 

determined by relative Log(τ/KA) values) may only be able to be driven by KA values and not 

τ values at the D2R. Thus, further insight into how KA values can differ would be important to 

move the field forward. A possible mechanism explaining the manifestation of differences in 

KA values that in turn engenders bias may be through agonists having different affinities for 

the GPCR when bound to different effectors. This mechanism has been proposed by Strachan 

and colleagues (76), through designing AT1R fusion proteins of AT1R-Gαq and AT1R-β-

arrestin-2, they were able to demonstrate that biased agonists have a tighter binding affinity for 

the fusion protein consisting of the effector in which they are biased towards whereas balanced 

agonists displayed no preference.  

In summary, our study suggests that differences in the binding affinity of agonists may 

explain some observations of biased agonism. The mechanism accounting for why agonist 
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affinity appears to sometimes correlate with bias between well coupled G proteins and poorly 

coupled regulatory proteins may in part be due to increases in receptor occupancy over time. 

Future research may seek to investigate whether differences in affinity relate to bias at other 

GPCRs and if so, how it emerges. Understanding this could aid in the rational design of biased 

agonist therapeutics. 
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3.5 Supplementary Materials 

 

 
Figure S3.1: Measurement of aripiprazole induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 5 separate experiments. Recruitment over 
time of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 
4 separate experiments. 
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Figure S3.2: Measurement of bifeprunox induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 5 separate experiments.Recruitment over time 
of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 4 
separate experiments. 
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Figure S3.3: Measurement of brexpiprazole induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 5 separate experiments. Recruitment over 
time of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 
4 separate experiments. 
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Figure S3.4: Measurement of bromocriptine induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 5 separate experiments. Recruitment over 
time of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 
3 separate experiments. 
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Figure S3.5: Measurement of cariprazine induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 4 separate experiments. Recruitment over 
time of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 
4 separate experiments. 
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Figure S3.6: Measurement of dopamine induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 6 separate experiments. Recruitment over 
time of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 
3 separate experiments. 
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Figure S3.7: Measurement of pardoprunox induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 5 separate experiments. Recruitment over 
time of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 
3 separate experiments. 
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Figure S3.8: Measurement of ropinirole induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 4 separate experiments. Recruitment over 
time of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 
4 separate experiments. 
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Figure S3.9: Measurement of rotigotine induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 5 separate experiments. Recruitment over 
time of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 
4 separate experiments. 
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Figure S3.10: Measurement of S-3PPP induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 5 separate experiments. Recruitment over 
time of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 
3 separate experiments. 
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Figure S3.11: Measurement of ST-836 induced G protein activation and regulatory 
protein recruitment. Activation over time of Gαi1 (A), Gαi2 (B), Gαi3 (C), GαoA (D), GαoB (E), 
Gαz (F). Data represents the mean + SEM from 4 separate experiments. Recruitment over 
time of GRK2 (G), β arrestin-1 (H) and β arrestin-2 (I). Data represents the mean + SEM from 
3 separate experiments. 
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Figure S3.12: Correlations between Log(τ) values at different endpoints and different 
binding parameters. Correlation of the Log kon with the Log τ for: Gαi2 activation (A), GRK2 
recruitment (B), β arrestin-2 recruitment (C). Correlation of the Log koff with the Log τ for: Gαi2 
activation (D), GRK2 recruitment (E), β arrestin-2 recruitment (F). Correlation of the pKd with 
the Log for: Gαi2 activation (G), GRK2 recruitment (H), β arrestin-2 recruitment (I).F All τ 
values were determined at 15 minutes after stimulation. Two-tailed nonparametric 
Spearman correlation was performed that does not assume the τ values to be linear 
with the different kinetic binding parameters. The Spearman’s rank correlation 
coefficient, r, is shown as well as the P value.   
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Abstract 

 

The dopamine D2 receptor (D2R) is the target of drugs used to treat the symptoms of 

Parkinson’s disease and schizophrenia. D2R G protein signalling is regulated through 

phosphorylation by G protein receptor kinases (GRKs) and interaction with arrestins. In 

addition, D2R arrestin mediated signalling has been shown to have physiological functions 

distinct from those of G protein mediated pathways. Recent studies have explored the action 

of pathway biased agonists as an avenue for the development of improved antipsychotic 

treatments. Despite this interest, relatively little is known about the patterns of D2R receptor 

phosphorylation that might control these processes. Antibodies that selectively bind 

intracellular phosphorylation sites have proved useful tools to investigate such mechanisms at 

other GPCRs. Herein we generate and characterise the first antibodies specific for GRK2/3 

phosphorylation sites on the D2R. We identify a phosphorylation site in ICL3 that is 

phosphorylated by GRK2/3 on agonist activation of the D2R. Phosphorylation of this site 

predicts arrestin recruitment.   We incorporate measurements of D2R phosphorylation with 

other measurements of G protein activation and receptor regulation to profile selected D2R 

agonists including putative biased agonists. These studies demonstrate the utility of these 

phospho-site-specific antibodies to investigate D2R regulation, and as part of the 

characterisation of biased agonists at the D2R. 
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4.1 Introduction 

The catecholamine neurotransmitter dopamine (DA) is involved in many physiological 

processes in the central nervous system (CNS) such as cognition, motor control and reward 

(289). DA effects are mediated by 5 members of the G protein-coupled receptor (GPCR) 

superfamily. The dopamine D1 and D5 receptors (D1R & D5R) are coupled to stimulatory G 

proteins (Gs or Golf) whereas the D2-like DRs (D2R, D3R, D4R) are coupled to inhibitory G 

proteins (Gi/o/z). Dysregulation of dopamine signalling is associated with many CNS disorders 

and the D2R is a validated drug target in neurology and psychiatry. D2R agonists are used to 

treat the symptoms of Parkinson’s disease, whereas D2R antagonism is a necessary property of 

all clinically used antipsychotics(290).  

G protein signalling is rapidly desensitized by phosphorylation of the receptor by GPCR 

kinases (GRKs) followed by the recruitment of arrestins to the phosphorylated receptor(24). 

This inhibits G protein-signalling and leads to receptor internalization, dephosphorylation and 

recycling of receptors to the cell surface or trafficking to lysosomes for degradation. GRKs 2 

and 3 primarily mediate agonist stimulated D2R phosphorylation (291,292) and over-

expression of GRK2 has been shown to enhance D2R arrestin recruitment(293). The D2R lacks 

the long C-terminal tail that is the site of GRK phosphorylation for many GPCRs. Mutagenesis 

studies from Namkung and colleagues identified eight serine/threonine (Ser/Thr) residues that 

are phosphorylated by GRK2/3 and a further five residues that are phosphorylated by protein 

kinase C (PKC) within intracellular loop (ICL) 3(294). A subsequent study by Cho and 

colleagues identified additional residues in ICL2 and 3 that appear to be important for PKC-

meditated desensitisation of the D2R (292). 

In addition to their role in receptor regulation, arrestins may act as scaffolding proteins 

to initiate signalling pathways (295). Indeed, while Gαi/o/z G protein signalling appears to be 

responsible for many of the physiological consequences of D2R activation, a -arrestin-2-

mediated signalling cascade involving protein phosphatase 2A, Akt (PKB) and glycogen 

synthase 3 may also have an important physiological role (155,296). A global -arrestin-2 

knockout displayed a reduction in DA dependent locomotor activity (155). Two studies that 

used the expression of mutant D2Rs, compromised either in the ability to recruit -arrestin-2 

or to activate G protein signalling relative to the other signalling process, in D2R-expressing 

medium spiny neurons (D2R-MSNs), provided evidence that D2R-arrestin signalling is 

sufficient for normal locomotor activity but not incentive motivation (297,298). Elimination of 
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-arrestin-2 specifically in D2-MSNs reduced locomotor responses and blunted cocaine reward 

(299). Together these data suggest that D2R -arrestin-2 signalling may mediate physiological 

functions distinct from those controlled by D2R Gi/o protein signalling (300). ‘Biased agonism’ 

describes a phenomenon whereby different ligands stabilise distinct conformations of a single 

receptor such that they differentially engage distinct signalling effectors (301). By exploiting 

this concept, one may be able to develop signalling pathway-specific drugs that display a 

greater level of cell type or tissue specificity (302). Therefore, if the therapeutic and deleterious 

side effects of a drug are mediated through a single receptor, as is the case for antipsychotics 

at the D2R, then biased agonists may provide an approach to avoid such “on-target” side effects. 

Both arrestin and G protein biased ligands have been identified for the D2R (293,303). 

Intriguingly, the action of one series of arrestin-biased ligands both to attenuate amphetamine-

induced hyperlocomotion and avoid catalepsy was diminished by global knockout of -

arrestin-2 (293). 

Together these studies highlight D2R phosphorylation by GRK2/3 as a key step in 

modulating downstream to control distinct physiological responses to dopamine. We and others 

have shown that antibodies specific to phosphorylated residues of GPCRs are particularly 

useful in unravelling the complexities of such regulatory processes and in particular the 

hierarchy of phosphorylation patterns or barcodes (304-306). In this study we develop and 

characterise the first GRK phosphorylation site (phospho-site)-specific antibodies for the D2R 

and identify a site that is phosphorylated by GRK2 in response to D2R agonists. We compare 

the action of a number of agonists, including putatively biased agonists, at triggering receptor 

phosphorylation and correlate this to G protein activation, GRK2 recruitment and arrestin 

recruitment. 

 

4.2 Methods 

Plasmids 

DNA for the long splice variant of the hD2R was generated via artificial synthesis and 

cloned into pcDNA3.1 by imaGenes. The coding sequence for an amino-terminal HA-tag was 

added.  
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Antibodies 

Peptide sequences used for generating phosphosite-specific antibodies against 

individual phosphorylated forms of the long splice variant of the D2R are shown in Table 4.1, 

including a phosphorylation-independent antiserum targeting a proximal epitope in the D2R 

third intracellular loop. After HPLC purification, the respective peptides were coupled to 

keyhole limpet haemocyanin. The conjugates were mixed 1:1 with Freund´s adjuvant and 

injected into groups of three rabbits (5095-5097) for anti-pT287/288 antibody production, 

(5098-5100) for anti-pT293/S296 antibody production, (5101-2103) for anti-pS317/T318 

antibody production, and (5104-5106) for anti-D2R antibody production. The rabbits were 

injected at 4-week intervals. The serum was obtained 2 weeks after immunizations, beginning 

with the second injection. Specificity of the antisera was tested using dot blot analysis. 

Antibodies were affinity-purified against their immunizing peptide, immobilized using the 

SulfoLink kit (Thermo Scientific), for subsequent analysis. Anti-GRK2 (sc-562), anti-GRK3 

(sc-563), anti-GRK5 (sc-518005) and anti-GRK6 (sc-566) antibodies were purchased from 

Santa Cruz Biotechnology. The anti-HA IgG CF488A antibody (SAB4600054) was obtained 

from Sigma-Aldrich, anti-HA IgG CF640R antibody (20240) was purchased from Biotium and 

the anti-rabbit IgG HRP-coupled antibody (7074) was obtained from Cell Signaling.  

 

Table 4.1: D2R peptide sequences used for generation of phospho-site-specific 
antisera. List of peptide sequences used for generating phosphosite-specific antibodies 
against individual phosphorylated forms of the D2R and a phosphorylation-independent 
antiserum targeting the D2R at the proximal part of the third intracellular loop.  

Antiserum Name Sequence used for immunization 
Amino acid position 
in human D2 
receptor 

T287/S288 EMLSS-T(p)-S(p)-PPER 282-292 

T293/S296 PPER-T(p)-RY-S(p)-PIPP 289-300 

S317/T318 HHGLH-S(p)-T(p)-PDSP 312-322 

D2R 
(phosphorylation-independent) 

VNTKRSSRAFRAHLRAPLKGN 223-243 
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Drugs 

Terguride (ab144611) was obtained from Abcam. Aripiprazole (SML-0935), PMA 

(P8139) and pergolide mesylate (P8828) were purchased from Sigma-Aldrich. Apomorphine 

hydrochloride (2073), MLS1547 (6171), ropinirole (3680), quinpirole hydrochloride (1061), 

dopamine hydrochloride (3548), cabergoline (2664), bromocriptine mesylate (0427), forskolin 

(1099), SCH23390 (0925), PTX (3097), haloperidol hydrochloride (0931), L-741,626 (1003) 

and roxindole (1559) were obtained from Tocris. UNC9994 (A16087) was purchased from 

AdooQ® Bioscience. Lambda-phosphatase (P0753S) was obtained from Santa Cruz. 

Compound 101 (HB2840) was obtained from Hello Bio. Terguride, PMA, forskolin, L-

741,626, aripiprazole, pergolide, apomorphine, MLS1547, ropinirole, cabergoline, 

bromocriptine, haloperidol, roxindole, UNC9994 and compound 101 are DMSO-soluble and 

all the other mentioned compounds are water-soluble.  

 

Cell culture and transfection 

Human embryonic kidney 293 (HEK293) cells were obtained from the German 

Collection of Microorganisms and Cell Cultures GmbH (Deutsche Sammlung von 

Mikroorganismen und Zellkulturen; DSMZ). Cells were cultured in Dulbecco´s modified 

Eagle´s medium (DMEM), supplemented with 10% fetal bovine serum, 2 mM L-glutamine 

and 100 U/ml penicillin/streptomycin at 37 °C and 5% CO2. HEK293 cells were stably 

transfected with TurboFect (ThermoFisher Scientific). Cells stably expressing HA-hD2 

receptor were selected in medium supplemented with 400 µg/ml geneticin and cells stably 

transfected with HA-hD2 receptor and GIRK-eGFP were selected in medium supplemented 

with 400 µg/ml geneticin and 300 µg/ml hygromycin. To increase the number of HEK293 cells 

stably expressing HA-hD2 receptor or HA-hD2 receptor in combination with GIRK-eGFP, 

fluorescence-activated cell sorting was used as described previously (305,307). 

 

Small interfering RNA (siRNA) silencing of gene expression 

Chemically synthesized double-stranded siRNA duplexes (with 3-dTdT overhangs) 

were purchased from Qiagen for the following targets: GRK2 (5-

AAGAAAUUCAUUGAGAGCGAU-3), GRK3 (5-AAGCAAGCUGUAGAACACGUA-

3), GRK5 (5’-AAGCAGTATCGAGTGCTAGGA-3’) and GRK6 (5’-

AACACCUUCAGGCAAUACCGA-3’) and from GE Dharmacon a non-silencing RNA 
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duplex (5-GCUUAGGAGCAUUAGUAAA-3 and 3-UUUACUAAUGCUCCUAAGC-5). -

HEK293 cells stably expressing HA-hD2 receptor were transfected with 150 nM siRNA for 

single transfection or with 100 nM of each siRNA for double transfection for 3 days using 

HiPerFect. All experiments showed target protein abundance reduced by 80%.  

 

Western blotting analysis  

HEK293 cells stably expressing the HA-hD2R were plated onto poly-L-lysine-coated 

60-mm dishes and grown for 2 days to 80% confluency. Cells were treated with agonists or 

antagonists and subsequently lysed with detergent buffer (50 mM Tris-HCl, pH 7.4; 150 mM 

NaCl; 5 mM EDTA; 10 mM NaF; 10 mM disodium pyrophosphate; 1% Nonidet P-40; 0.5% 

sodium deoxycholate; 0.1% SDS) in the presence of protease and phosphatase inhibitors. 

Where indicated, cells were preincubated with GRK2/3 inhibitor compound 101 or D2 receptor 

antagonists for 30 min before agonist treatment. HA-tagged hD2 receptors were enriched using 

anti-HA-agarose beads after 30 min centrifugation at 4 °C. Samples were inverted for 2 hours 

at 4 °C. Where indicated, cell lysates were dephosphorylated with lambda protein phosphatase 

(Santa Cruz) for 1 hour at 30 °C. Following sample washing, proteins were eluted using SDS 

sample buffer for 30 min at 50 °C. Protein separation was performed on 7.5% or 12% SDS-

polyacrylamide gels. After electroblotting, membranes were incubated with 0.1 µg/ml 

antibodies to pT287/S288 (5095), pT293/S296 (5099) or pS317/T318 (5102) overnight at 4 °C. 

Enhanced chemiluminescence detection (ECL) was used to detect bound antibodies (Thermo 

Fisher Scientific). Subsequently, blots were stripped and reprobed with the phosphorylation-

independent antibody to the D2 receptor (5106) to ensure equal loading of the gels.  

 

G protein activation assay 

The G protein activation assay was performed based on a previously reported  

bioluminescence resonance energy transfer (BRET) detection method (257,308). Initially, 

2,500,000 Flp-InTM HEK 293 cells stably expressing the human D2LR were harvested into 

10cm dishes. 24 hours after harvesting cells, the cells were transfected with cDNA constructs 

using linear polyethylenimine (PEI) in a ratio of 1μg DNA: 6μg PEI. Cells were transfected 

with pcDNA3.1 encoding the following constructs: 1μg venus-1-155-Gγ2, 1μg venus-156-239-

Gβ1, 1μg masGRK3ct-Nluc and 2μg of either Gαi1-C351I or GαoA-C351I. 24 hours after 

transfection the cells were harvested from dishes and plated into poly-D-lysine coated Greiner 

white 96-well TC treated plates. The cells were left to adhere for approximately 8 hours and 
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then treated with 100ng/mL pertussis toxin overnight. The following day the plate was taken 

out of the incubator, washed once with Hank’s balanced salt solution (HBSS) pH 7.4 and left 

to equilibrate in HBSS 37°C for 30 minutes before BRET detection. 10 minutes prior to 

addition of agonist, 10μL of Nano-Glo substrate (Promega) was added to each well with a 

multi-step pipette (final dilution 1 in 1000). BRET was then measured using a PHERAstar FS 

microplate reader (BMG LABTECH). Luminescence was measured with the BRET1 plus filter 

for the emission signal of Nluc (445-505nm) and venus (505-565nm) simultaneously. 

Measurements were taken 10 minutes after agonist addition. The counts from the venus 

acceptor (505-555nm) was then divided by the donor Nluc (465-505nm) counts to give a BRET 

ratio. BRET ratios were then normalised to percent of the dopamine induced maximal 

responses where indicated. 

 

Membrane potential assay 

Membrane potential change was measured as previously described (309). HEK293 

cells stably expressing the HA-hD2and R GIRK-eGFP transfected HEK293 cells were plated 

into 96-well plates. After washing with Hank´s balanced salt solution (HBSS), buffered with 

20 mM HEPES (pH 7.4, containing 1.3 mM CaCl2; 5.4 mM KCl; 0.4 mM K2HPO4; 0.5 mM 

MgCl2; 0.4 mM MgSO4; 136.9 mM NaCl; 0.3 mM Na2HPO4; 4.2 mM NaHCO3; 5.5 mM 

glucose) cells were incubated with membrane potential dye (FLIPR Membrane Potential kit 

BLUE, Molecular Devices) for 45 min at 37 °C. Final used injection volume of compounds 

and vehicle was 20 µl. The initial volume in the wells was 180 µL (90 µL buffer plus 90 µL 

dye) and 20 µL of compound was added to the cells resulting in a final volume in the well of 

200 µL and a 1:10 dilution of the compound. Therefore, the compounds were prepared at 10x 

concentrations. Compounds or buffer were injected after a baseline reading for 60 sec and 

measurements were accomplished at 37 °C using a FlexStation 3 microplate reader (Molecular 

Devices). After data normalization to the baseline, the buffer-only trace for each corresponding 

data point was substracted.  

 

GRK2 and β-arrestin-2 recruitment 

GRK2 and β-arrestin-2 recruitment assays were measured by means of BRET detection. 

The BRET assays previously reported by our group (310) and by others (311) were improved 

by utilising NanoBRET technology. Flp-In™ HEK 293 cells were initially harvested and 

transferred into plastic 10cm2 dishes (Corning®) in DMEM + 10% FBS at a density of 
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2,000,000 cells. 24 hours after transferring the cells to dishes, the cells were transfected using 

linear polyethylenimine (PEI) in a 1:6 ratio of DNA:PEI (μg). For GRK2 recruitment, 0.25μg 

hD2LR-NLuc, 4μg GRK2-Venus and 3.5μg pcDNA3.1 were transfected. For β-arrestin-2 

recruitment, 0.25μg hD2LR-NLuc, 2μg GRK2 (untagged) and 5.5μg YFP-β-arrestin-2 were 

transfected. Approximately 30 hours after transfection the cells were harvested from the dishes 

and plated into poly-D-lysine coated Greiner white 96-well TC treated plates in DMEM + 10% 

FBS. Approximately 20 hours after cells were transferred to plates, the plate was washed with 

HBSS pH 7.4 and replaced with 80μL HBSS. The cells were then left to equilibrate for 30 

minutes at 37°C before agonist addition. 10 minutes prior to agonist addition, 10μL of Nano-

Glo Luciferase Assay Substrate (Promega) diluted in HBSS was added to each well with a 

multi-step pipette (final concentration 1 in 1000). Changes in BRET were then detected 10 

minutes after agonist addition in a PHERAstar FS microplate reader (BMG LABTECH) set to 

37°C. Individual wells were measured for the luminescence emission signal of NLuc (465-

505nm) and Venus/YFP (505-555nm) simultaneously. Data was analysed by taking the counts 

from the acceptor Venus/YFP (505-555nm) and dividing by the donor NLuc (465-505nm) 

counts to give a BRET ratio. The BRET ratio is baseline-normalised to vehicle wells as well 

as 100% defined as the maximal BRET ratio obtained by stimulation with dopamine or 

quinpirole where indicated. 

 

Data Analysis 

ImageJ 1.47v software was used for quantification of protein bands detected on western 

blots. GraphPad Prism 5 software was used for data analyzation. Densitometry of every protein 

band was carried out with Image J. We used the same area size to perform densitometry for 

every protein band from the same experiment for every phosphorylation site as well as the total 

receptor. Accordingly, an equally sized empty area from the blot/film was measured to subtract 

this value as background signal from every measuring point. Finally, phosphorylation signals 

were normalized to the total receptor (phosphorylation-independent antibody; D2R). SCR-

controls were defined as 100% and phosphorylation of every target protein was calculated as 

percentage phosphorylation in comparison to the respective control. Statistical analysis was 

carried out with one-way ANOVA followed by Bonferroni correction. P values <0.05 were 

considered statistically significant.  
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4.3 Results 

The development of novel phospho-site-specific antibodies for the D2R 

We set out to develop G protein-coupled receptor kinase (GRK) phospho-site-specific 

antibodies for the hD2R. Previous work identified putative GRK2 phosphorylation sites within 

the intracellular loops of the D2R using site-directed mutagenesis coupled with auto-

radiography(292,294). In particular, Namkung and colleagues identified several GRK2 sites in 

the rat D2LR (rD2LR) including Thr287, Ser288, Thr293 and Ser317(294). Note that in the 

human D2LR Ser317 is positioned next to another putative GRK site, Thr318, that is substituted 

for Asn in rD2LR (Fig. S4.1). Taking this work into consideration, we synthesised phospho-

peptides corresponding to regions within ICL3 of the hD2R (Table 4.1, Fig. 4.1A, Fig. S4.1) 

and used them to raise phospho-site-specific antibodies for the hD2R, targeting 

pThr287/pSer288, pThr293/pSer296 and pSer317/pThr318 (Fig. 4.1A). In addition to raising 

antibodies to distinct phospho-sites we also raised antibodies to a spatially separate region of 

ICL3 to serve as a hD2R loading control antibody (Table 4.1, Fig. 4.1A). All sites are conserved 

in the long (D2LR) and short (D2SR) isoforms of the D2R. 

When used in western blot experiments, all the antibodies detected the hD2R, showing 

a diffuse band at approximately 72 kDa consistent with preceding studies of N-terminally 

glycosylated D2Rs(312). While previous work suggested that Thr287, Ser288, and Thr293 are 

GRK2 phosphorylation sites(294), we were unable to detect significant agonist-induced 

changes in phosphorylation with the pThr287/pSer288 antibody or the pThr293/pSer296 

antibody (Fig. 4.1B). The pThr287/pSer288 and pThr293/pSer296 antibody recognition was 

phosphorylation dependent because the binding was lost when samples were treated with λ-

phosphatase (Fig. 4.1C). This indicates that these sites are likely to be constitutively 

phosphorylated. The antibody recognising pSer317/pThr318 showed a large increase in 

binding when cells were stimulated with the D2R-selective agonist quinpirole, and this agonist-

induced phosphorylation was lost when samples were treated with λ-phosphatase (Fig. 4.1B & 

C), or with the D2R antagonists haloperidol or L741,626 (Fig. S4.2). 
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Figure 4.1: Characterisation of phospho-site-specific D2R antibodies. (A) Schematic 
representation of the long splice variant of the human dopamine D2 receptor (hD2RL). All 
potential phosphate acceptor sites in the third intracellular loop are indicated (gray). 
T287/S288, T293/S296 and S317/T318 were targeted for the generation of phospho-site-
specific antibodies and the epitope used for generating a phosphorylation-independent 
antibody (D2RL) is indicated by a black line. (B) HEK293 cells stably expressing HA-tagged 
D2R were either untreated (-) or treated (+) with 1 µM quinpirole for 10 min at 37C. Cells were 
lysed and immunoblotted with the anti-pT287/288 antibodies (5095-5097), anti-pT293/S296 
antibodies (5098-5100) anti-pS317/T318 antibodies (5101-5103) or anti-D2R antibodies 
(5104-5106), respectively. Blots are representative, n=3. (C) Characterisation of phospho-site-
specific antibodies directed against T287/S288, T293/S296 and S317/T318 using -
phosphatase. Cells described in (B) were either untreated (-) or treated (+) with 1 µM 
quinpirole for 10 min at 37C. Lysates were then either incubated (+) or not (-) with -
phosphatase and immunoblotted with the phospho-site-specific antibodies to pT287/S288 
[5095], pT293/S296 [5099], or pS317/T318 [5102]. Blots were stripped and re-probed with the 
phosphorylation-independent antibody to D2R [5106] as a loading control. Blots are 
representative, n=3. Molecular mass markers (kDa) are indicated, left.  

 

 

GRKs 2 & 3 phosphorylate Ser317/Thr318 and enhance β-arrestin-2 recruitment 

Ser317 has been shown to be phosphorylated by GRK2 in the rD2R (294). We next 

wanted to confirm that phosphorylation of Ser317/Thr318 in the hD2R is also orchestrated by 

GRK2/3. No phosphorylation of Ser317/Thr318 was detected when cells were stimulated with 

either phorbol 12-myristate 13-acetate (PMA) or forskolin, that lead to activation of protein 
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kinase C (PKC) and protein kinase A (PKA) family members, respectively (Fig. 4.2A). 

Treatment of cells with the ATP-competitive inhibitor of GRK2 and 3, compound 101 

(cmpd101) (313), led to a concentration-dependent decrease in quinpirole-induced 

phosphorylation of Ser317/Thr318 (Fig. 4.2B). We used siRNA to confirm the GRK subtypes 

involved in phosphorylation of Ser317/Thr318. Transfection of siRNA directed at GRK2 

significantly reduced Ser317/Thr318 phosphorylation, as did siRNA directed at GRK3 (Fig. 

4.2C). Co-transfection of cells with the siRNAs directed at GRK2 and GRK3 together had a 

synergistic effect in decreasing the phosphorylation of Ser317/Thr318 further as compared to 

each siRNA alone (Fig. 4.2C). Moreover, experiments transfecting siRNA directed at the other 

ubiquitously expressed GRKs; GRK5 and GRK6, had no effect on agonist-induced 

phosphorylation (Fig. 4.2C and D). Finally, overexpression of GRK2 increased the 

phosphorylation of Ser317/Thr318 in response to quinpirole (Fig. S4.3). Together these data 

confirm that GRK2 or 3 activity is required for agonist-induced phosphorylation of 

Ser317/Thr318. 

In the prevalent model of arrestin recruitment to GPCRs, GRK-mediated 

phosphorylation of intracellular serine and threonine residues drives this process by increasing 

the affinity of arrestins for the GPCR(24,314). Having shown that GRK2 or 3 mediate agonist-

dependent phosphorylation of Ser317/Thr318, we next investigated the role GRK2-mediated 

phosphorylation plays in β-arrestin-2 recruitment to the D2R. β-arrestin-2 recruitment assays 

were performed with or without GRK2 overexpression (Fig. 4.2E & F). Quinpirole-induced β-

arrestin-2 recruitment was enhanced upon GRK2 overexpression. Pre-treatment of cells 

overexpressing GRK2 with compound 101 significantly reduced β-arrestin-2 recruitment 

(vehicle control Emax = 100.00 ± 0.91, compound 101 Emax = 28.89 ± 0.90, (mean ± SEM), 

P<0.0001, Extra sum-of-squares F-test) (vehicle control pEC50 = 7.29 ± 0.02 , compound 101 

pEC50 = 6.89 ± 0.07, (mean ± SEM), P<0.0001, Extra sum-of-squares F-test) (Fig. 4.2E). In 

cells expressing endogenous levels of GRK2, a more subtle but statistically significant 

reduction in maximal effect was observed on treatment with compound 101 (vehicle control 

Emax = 33.58 ± 1.33, compound 101 Emax = 29.09 ± 0.98 (mean ± SEM), P=0.0041, Extra sum-

of-squares F-test) (vehicle control pEC50 = 6.83 ± 0.08 , compound 101 pEC50 = 6.82 ± 0.05, 

(mean ± SEM) (Fig. 4.2F). Together these data demonstrate that there are both GRK2/3 

phosphorylation -dependent and -independent components of β-arrestin-2 recruitment to the 

hD2R.  
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Figure 4.2:  GRK2 and GRK3 mediate phosphorylation at Ser317/Thr318 and enhance 
β-arrestin-2 recruitment. (A) HEK293 cells stably expressing HA-hD2LR were stimulated with 
1 µM quinpirole, 1 µM PMA or 10 µM forskolin for 10 min at 37 °C. Cell lysates were 
immunoblotted with anti-pS317/T318 [5102] antibody. Blots were stripped and reprobed for 
D2R [5106] to confirm equal loading of the gel. Blots are representative, n=3. (B) Cells 
described in (A) were pre-incubated with either vehicle (DMSO; control (-)) or the GRK2/3-
specific inhibitor compound 101 (cmpd 101) at the indicated concentrations for 30 minutes at 
37 °C, then treated with water (-) or 1 µM quinpirole for 10 min at 37 °C. Lysates were 
immunoblotted as described in (A). Blots are representative, n=3. (C and D)  Cells described 
in (A) were transfected with siRNAs targeting GRK2, GRK3, or GRK2 and GRK3 (GRK2/3) or 
a scrambled control (SCR) (C) or with siRNAs targeting GRK5, GRK6 or GRK5 and GRK6 
(GRK5/6) or a scrambled control (SCR) (D). 72 hours post-transfection, cells were stimulated 
with 1 µM quinpirole for 10 min at 37 °C and cell lysates were immunoblotted as described in 
(A). Blots were stripped and reprobed for D2R. Densitometry analysis, shown above the blots, 
was normalized to the signal obtained in SCR-transfected cells, which was set to 100%. Data 
are mean  SEM from five to six independent experiments. (*p<0.05 vs. SCR by one-way 
ANOVA with Bonferroni post-test). (E and F) β-arrestin-2 recruitment to the D2R in the 
presence and absence of over expressed GRK2. FlpIn™ HEK 293 cells were transfected with 
cDNA encoding hD2LR-Nluc, YFP-β-arrestin-2, and either GRK2 (E) or pcDNA3.1 control (F) 
as described in the methods section. Transfected cells were then preincubated with either 
vehicle (DMSO) or 30µM cmpd 101 for 30 minutes at 37°C before stimulation with increasing 
concentrations of quinpirole for 10 minutes before BRET detection at 37°C.  Data represents 
mean ± SEM from 3-4 separate experiments and are normalised to the maximal effect of 
quinpirole in the presence of GRK2 overexpression. 
 

 

Ser317/Thr318 phosphorylation occurs rapidly after D2R activation 

As Ser317/Thr318 is phosphorylated by GRK2/3 (Fig. 4.2), we next monitored GRK2 

recruitment to the hD2R in live cells using BRET. GRK2 was rapidly recruited to the D2R, 

within one minute of dopamine addition, and the recruitment remained sustained over time 

(Fig. 4.3A).  We next used the pSer317/pThr318 antibody to monitor the time-course of D2R 

phosphorylation at these residues following application of the agonist quinpirole (1µM) and 

observed rapid and sustained phosphorylation over time, with maximal signal obtained within 

2.5 minutes (Fig. 4.3B). The kinetic profile of Ser317/Thr318 phosphorylation, then, is rapid 

and occurs on a timescale similar to that of GRK2 recruitment.  
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Figure 4.3: Time-course of GRK2 recruitment and Ser317/Thr318 phosphorylation. (A) 
Agonist-stimulated GRK2 recruitment to the D2R over time. Flp-In™ HEK 293 cells were 
transfected with hD2LR-NLuc and GRK2-Venus. Dopamine-induced recruitment of GRK2-
Venus was measured for 30 minutes at 37°C. The baseline-corrected increase in BRET ratio 
over time is plotted. Data represents mean ± SD (grey shading) of three separate experiments. 
(B) Agonist stimulated Ser317/Thr318 phosphorylation of the D2R over time. HEK 293 cells 
stably expressing HA-hD2LR were exposed to 1 µM quinpirole for the indicated times at 37 °C; 
lysates were immunoblotted with antibody to pSer317/Thr318 [5102]. Blots were stripped and 
re-probed for D2R. Blots are representative, n=4. 
 

 

D2R agonists vary broadly in their ability to stimulate the recruitment of GRK2, 

phosphorylation of Ser317/Thr318 and recruitment of β-arrestin-2 

Our pSer317/pThr318 antibody is a novel tool with which to measure agonist dependent 

GRK2/3 mediated phosphorylation of the D2R and complements our BRET assays to measure 

GRK2 and β-arrestin-2 recruitment. We next used these tools to measure the ability of 12 

structurally distinct D2R agonists to initiate these processes. This selection included the 

efficacious agonists pergolide, cabergoline, bromocriptine, ropinirole, apomorphine that are 

used clinically to treat Parkinson’s disease and hyperprolactinaemia. We also included the 

partial agonists roxindole, terguride and the antipsychotic aripiprazole as well as ligands that 

have previously been described as G protein (MLS1547) and arrestin (UNC9994) biased 

agonists(293,303). We have previously shown that the binding kinetics of D2R agonists can 

influence comparisons of agonist effect across measurements of different signalling endpoints 

(310). This effect is driven, to an extent, by measurements of agonist action at different 

signalling endpoints at distinct timepoints. To negate this effect, the agonist induced regulatory 

effects were all measured ten minutes after stimulation to allow comparison across all assays. 

There was a wide range in the maximal response of agonists to induce GRK2 recruitment to 
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the D2R (Fig. 4.4A, Table 4.2). Interestingly, DA produced a larger maximal effect than all 

other agonists tested. We used Schild analysis to determine whether the larger response induced 

by dopamine was due to action at endogenously expressed dopamine D1-like receptor subtypes 

using the selective D1-type antagonist SCH23390. Increasing concentrations of this antagonist 

caused a dextral shift of the DA concentration-response curve with no decrease of Emax. Schild 

analysis of these data gave a Schild slope of approximately unity (1.10 ± 0.04), indicating that 

SCH23390 inhibits a response mediated by a single receptor type, and an affinity that was 

consistent with the reported affinity of SCH23390 for the D2R (pA2= 6.28 ± 0.06, Fig. S4.4A 

and B). Thus, it appears that, with respect to GRK2 recruitment, DA displays superior efficacy 

to all other tested agonists. 

Quinpirole, apomorphine, ropinirole and cabergoline showed robust GRK2 recruitment 

to 50-60% that of dopamine (Fig. 4.4A & Table 4.2). Bromocriptine and roxindole behaved as 

less efficacious partial agonists. The antipsychotic and weak partial agonist aripiprazole, 

stimulated GRK2 recruitment very poorly such that an accurate measurement of maximal effect 

or potency could be determined. Surprisingly, both the previously reported G protein-biased 

agonist (MLS1547) and the arrestin biased agonist (UNC9994) induced GRK2 recruitment 

with similar low potency and efficacy (26.1% and 13.3% of DA, respectively at a concentration 

of 10 M (Fig. 4.4A & Table 4.2). Roxindole and terguride also displayed weak partial agonist 

efficacy in this assay (Emax 24% and 7% of DA, respectively) 

We next determined the level of Ser317/Thr318 phosphorylation induced by the twelve 

different agonists (Fig. 4.4B, Table 4.2). In general, the ability of the various agonists to 

stimulate GRK2 recruitment largely predicted their relative ability to induce phosphorylation 

at Ser317/Thr318 at saturating concentrations. For example, efficacious agonists such as 

dopamine and quinpirole produced robust phosphorylation whereas roxindole promoted 

phosphorylation to a lesser degree. To quantify this phosphorylation responses, we performed 

densitometry analysis in which the intensity of the pSer317/pThr317 bands were normalised to 

the corresponding intensity of the total D2R bands. The relative effect of a saturating 

concentration (10 M) of each agonist was then normalised relative to DA. Together these 

analyses allowed us to plot the concentration-dependent increases in Ser317/Thr318 

phosphorylation for each agonist. DA displayed higher intrinsic efficacy relative to all other 

agonists consistent with the GRK2 recruitment data and while observed potencies were 

generally lower for Ser317/Thr318 phosphorylation as compared to GRK2 recruitment the 

order of potencies was consistent (Fig. 4.4A & B, Table 4.2). Importantly, no significant 
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phosphorylation could be detected after treatment with aripiprazole, MLS1547 or UNC9994 as 

compared to the control condition (Fig. 4.4B). This is in line with the very low efficacy shown 

by these ligands in the GRK2 recruitment above.  

Next, we evaluated β-arrestin-2 recruitment to the D2R for the 12 agonists. Of note, β-

arrestin-2 recruitment assays were performed in the presence of GRK2 to enable us to observe 

both the GRK2 phosphorylation dependent and independent components that we previously 

distinguished (Fig. 4.2E & F). The maximal effects observed for β-arrestin-2 recruitment 

followed a very similar trend to that observed for GRK2 recruitment and Ser317/Thr318 

phosphorylation (Fig. 4.4C, Table 4.2). The more efficacious agonists dopamine, quinpirole 

and apomorphine produced robust responses whereas partial agonists such as aripiprazole 

produced weaker responses. DA was more potent in this assay as compared to our 

measurements of GRK2 recruitment or Ser317/Thr318 phosphorylation and all other agonists 

followed this trend, indicating. Surprisingly, the arrestin biased agonist UNC9994 displayed 

only modest β-arrestin-2 recruitment and a reduced maximal effect (23.3 ± 3.3 % DA Emax, 

Table 4.2) relative to previously reported values in a similar assay (>50 % Quinpirole Emax) 

(293). We subsequently assessed β-arrestin-2 recruitment in the absence of overexpression of 

GRK2. In these experiments, however, stimulation with a concentration of up to 10 M 

UNC9994 could not be distinguished from the vehicle control (Fig. S4.7)., In summary, the 

ability of agonists to stimulate GRK2 recruitment and Ser317/Thr318 phosphorylation predicts 

their efficacy to drive -arrestin-2 recruitment, in agreement with the canonical model of 

GPCR regulation. The pSer317/pThr318 antibody is, therefore, a useful tool with which to 

measure the action of D2R agonists to activate these regulatory events. 
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Figure 4.4: Agonist-induced GRK2 recruitment, Ser317/Thr318 phosphorylation and β-
arrestin-2 recruitment. (A) Agonist-induced GRK2 recruitment to the D2R. FlpIn™ HEK 293 
cells were transfected GRK2-Venus and hD2LR-Nluc. GRK2 recruitment was measured by 
BRET 10 minutes after agonist addition at 37°C. Data is presented as the increase in BRET 
ratio normalised to vehicle (0%) and the maximal effect of dopamine (100%). Data represents 
the mean ± SEM of 3-6 separate experiments performed in duplicate. (B) HA-hD2R expressing 
HEK293 cells were either stimulated with vehicle (solvent) or quinpirole, dopamine, pergolide, 
ropinirole, apomorphine, cabergoline, bromocriptine, terguride, roxindole, aripiprazole, 
MLS1547 or UNC9994 at concentrations ranging from 10-9 to 10-5 M for 10 min at 37 °C. 
Lysates were immunoblotted with antibody to pS317/T318 [5102]. Blots were stripped and 
reprobed for D2R. Blots are representative, n=3-4. (C) Densitometry analysis of Western blots. 
pS317/pT318 signals were normalised to the total D2R signal and expressed as a percentage 
of the signal detected when cells were stimulated with 10 M dopamine. These data are 
presented as concentration response curves. (D) Agonist-induced β-arrestin-2 recruitment to 
the D2R. FlpIn™ HEK 293 cells were transfected with hD2LR-Nluc, GRK2 and YFP-β-arrestin-
2. β-arrestin-2 recruitment was measured by BRET 10 minutes after agonist addition at 37°C. 
Data is presented as the increase in BRET ratio normalised to vehicle (0%) and the maximal 
effect of dopamine (100%). Data represents the mean ± SEM of 3-6 separate experiments 
performed in duplicate. 
 
 
Table 4.2:  Potency and maximal effect estimates for agonists activating different D2R 
pathways. 
Responses were analysed using a three-parameter fit. Values represent the mean ± SEM. 

Agonist pSer317/pThr318 GRK2 β-arr-2 
 pEC50 Emax pEC50 Emax pEC50 Emax 
Dopamine 6.40 ± 0.45 100 ± 7 6.84 ± 0.04 100.0 ± 2.1 7.13 ± 0.05 100.0 ± 2.3 
Apomorphine 7.42 ± 0.10 84 ± 3 7.68 ± 0.09 56.2 ± 2.1 7.85 ± 0.05 81.2 ± 1.7 
Aripiprazole ND ND ND ND 6.23 ± 0.25 10.3 ± 1.5 
Bromocriptine 6.84 ± 0.25 57 ± 2 7.18 ± 0.06 38.7 ± 1.1 7.10 ± 0.05 66.3 ± 1.3 
Cabergoline 7.38 ± 0.25 61 ± 2 8.36 ± 0.07 54.4 ± 1.4 8.29 ± 0.04 83.7 ± 1.2 
MLS1547 ND ND 5.20 ± 0.27 26.1 ± 7.8 5.59 ± 0.13 33.6 ± 3.8 
Pergolide 7.73 ± 0.46 79 ± 2 7.67 ± 0.06 50.8 ± 1.2 7.83 ± 0.04 76.7 ± 1.3 
Quinpirole 7.06 ± 0.17 83 ± 0.6 7.13 ± 0.04 62.9 ± 1.2 7.38 ± 0.03 88.6 ± 1.2 
Ropinirole 6.77 ± 0.22 77 ± 2 6.72 ± 0.07 59.1 ± 2.0 6.99 ± 0.04 76.8 ± 1.4 
Roxindole 7.52 ± 0.09 10 ± 0.6 8.73 ± 0.15 24.3 ± 1.3 8.83 ± 0.07 41.0 ± 1.0 
Terguride ND ND 8.10 ± 0.24 7.4 ± 0.7 8.33 ± 0.09 18.9 ± 0.6 
UNC9994 ND ND 5.45 ± 0.31 13.3 ± 3.8 5.63 ± 0.18 23.0 ± 3.3 

ND – Not determined: unable to be determined due to insufficient response to allow accurate 
fitting of the model.  
 

 

 

A putative arrestin-biased agonist displays robust activity in measurements of G protein 

signalling 

Two agonists previously described as arrestin and G protein-biased agonists both acted 

as low efficacy partial agonists at these regulatory endpoints. It was important, then, to extend 

our analysis to test the ability of these agonists to activate G protein-mediated pathways. We 

measured Gαi1 and GαoA G protein activation using BRET sensors that monitor the dissociation 
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of the Gβγ subunit from the Gα subunit (308,315). All agonists induced robust activation of 

Gαi1 (Fig. 4.5A & Table 4.3). Aripiprazole, roxindole and terguride acted as partial agonists 

for Gαi1 activation whereas most of the other agonists showed maximal responses equivalent 

to that of dopamine. Surprisingly, UNC9994, the arrestin biased agonist, displayed robust 

partial agonism in this assay (81.6% dopamine response) with a similar low potency to that 

observed in the -arrestin-2 recruitment assay (Fig. 4.5A & Table 4.3). The D2R is 

preferentially coupled to Gαo G proteins (316). Accordingly, in the GαoA activation assay, all 

agonists displayed a similar maximal response to dopamine and an increase in potency relative 

to that observed when Gαi1 activation was measured (Fig. 4.5B & Table 4.3).  

Finally, we measured activation of G protein inwardly rectifying potassium (GIRK) 

channels as a readout of the activation of Gαi/o G proteins using a membrane potential sensitive 

dye (309)(Fig. S4.5). In this case all agonists displayed the same maximal response as 

dopamine with the exception of terguride which acted as a partial agonist. In addition, while 

the relative order of potencies for the various agonists was consistent with that obtained in the 

G protein activation assays, aripiprazole, MLS1547 and UNC9994 displayed low potencies in 

this assay such that the maximal response was not obtained at the highest (1M) concentration 

used for each agonist (Fig. 4.5C & Table 4.2).  

Overall, all agonists displayed a similar relative trend in their responses in each of the 

three G protein-dependent signalling measurements. In addition, our observations were largely 

consistent with previous reports of agonist action, for example apomorphine is known to be a 

potent and efficacious agonist (317) and induced robust responses in all three G protein 

signalling endpoints and in measurements of receptor regulatory events. In contrast, 

aripiprazole is known to be a low efficacy agonist and behaved as such in all assays with the 

exception of the highly amplified GαoA activation assay (318,319). Interestingly, UNC9994, 

that was previously reported to be an arrestin biased agonist unable to activate G protein 

responses or antagonise G protein signalling stimulated by dopamine (293,320), acted as a 

weak partial agonist in measurements of both G protein activation and receptor regulation. 

Furthermore, we found that pre-treatment of cells with UNC9994 antagonised GIRK channel 

activation or pSer317/Thr318 down to a level consistent with its maximal effect in each assay 

(Fig. S4.6) These observations are in agreement with a previous study that characterised 

UNC9994 measuring GIRK channel activation in frog oocytes expressing the hD2R(321).  
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Figure 4.5. D2R mediated activation of Gαi1, GαoA and GIRK channels by distinct 
agonists. FlpIn™ HEK 293 cells stably expressing hD2LR were transfected with BRET 
sensors for (A) Gαi1 activation and for (B) GαoA activation as described in methods. Agonist 
responses were determined after 10 minutes at 37°C. The response is plotted as the increase 
in BRET ratio normalised to the vehicle control (0%) and the maximal response produced by 
dopamine defined as 100%. The data in (A) and (B) represent the mean ± SEM for 3-6 
separate experiments performed in duplicate.  (C) GIRK channel activation using a membrane 
potential kit. Data represents mean ± SEM performed in duplicate.  
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Table 4.3:  Potency and maximal effect estimates for agonists activating different D2R 
pathways. 
Responses were analysed using a three-parameter fit. Values represent the mean ± SEM. 
Agonist Gαi1 GαoA GIRK 
 pEC50 Emax pEC50 Emax pEC50 Emax 
Dopamine 7.50 ± 0.09 100.0 ± 3.5 8.63 ± 0.08 100.0 ± 2.6 8.70 ± 0.06 100.0 ± 2.5 
Apomorphine 8.10 ± 0.07 103.6 ± 2.5 9.07 ± 0.06 98.6 ± 1.9 9.13 ± 0.08 110.0 ± 3.5 
Aripiprazole 6.21 ± 0.17 67.5 ± 6.9 6.64 ± 0.08 97.6 ± 3.8 6.53 ± 0.11 54.6 ± 4.5 
Bromocriptine 7.07 ± 0.08 115.0 ± 4.1 7.84 ± 0.05 103.7 ± 2.0 7.38 ± 0.08 104.7 ± 4.3 
Cabergoline 8.13 ± 0.16 109.8 ± 6.5 8.80 ± 0.05 102.7 ± 1.7 9.01 ± 0.08 104.0 ± 3.4 
MLS1547 5.71 ± 0.20 123.9 ± 19.5 6.68 ± 0.08 106.5 ± 4.4 6.25 ± 0.08 129.3 ± 15.4 
Pergolide 7.73 ± 0.17 112.3 ± 7.3 8.73 ± 0.07 96.7 ± 2.3 9.28 ± 0.07 97.9 ± 2.7 
Quinpirole 7.81 ± 0.10 119.3 ± 4.6 8.93 ± 0.05 97.4 ± 1.5 8.98 ± 0.05 104.9 ± 2.1 
Ropinirole 7.33 ± 0.13 98.01 ± 5.2 8.55 ± 0.13 93.9 ± 3.7 8.23 ± 0.07 94.4 ± 3.4 
Roxindole 8.19 ± 0.12 86.6 ± 4.2 9.04 ± 0.04 90.7 ± 1.1 9.26 ± 0.06 89.7 ± 2.2 
Terguride 7.76 ± 0.18 66.2 ± 4.6 8.36 ± 0.05 100.1 ± 1.6 8.05 ± 0.08 53.3 ± 2.1 
UNC9994 5.74 ± 0.21 81.6 ± 13.4 6.55 ± 0.08 98.0 ± 4.1 ND ND 

ND – Not determined: unable to be determined due to insufficient response to allow accurate 
fitting of the model.  

 

 

Analysis of signalling data using an operational model of agonism allows quantitative 

evaluation of bias between G protein and regulatory events 

In general, our data suggests that the actions of the various agonists appeared, relative 

to each other, consistent across the various G protein-mediated and regulatory pathways. 

However, such qualitative comparisons of agonist action across different pathways can be 

confounded by system bias resulting from, for example, the relative efficiency with which each 

pathway is coupled to the receptor. Accordingly, we employed a more quantitative approach 

to determine the relative action of each agonist at each pathway by fitting our concentration 

response data to an operational model of agonism (322). Using this model, we can determine a 

transduction coefficient (τ/KA) that is a composite of the affinity of the agonist for the receptor-

effector complex (KA) and the efficacy with which the agonist acts at that effector (τ) (Table 

4.2). We then subtracted the values obtained for each agonist with the values obtained by 

dopamine to compare the relative transduction coefficients of agonists between pathways 

(Dlog[τ/KA]), Fig. 4.6 & Table 4.4). The transduction coefficients of apomorphine, 

aripiprazole, quinpirole, MLS1547, pergolide and ropinirole were not significantly different 

across the different signalling and regulatory endpoints, noting that the operational model could 

not be fitted to data describing the action of MLS1547 to stimulate GRK2 recruitment or 

pSer317/pThr318 likely due to the inefficient coupling of these pathways and the low affinity 
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and efficacy of this compound. No significant difference was seen across all regulatory 

endpoints measured for any of the compounds, illustrating that measurement of one of these 

steps (GRK2 recruitment, pSer317/pThr318 or -arrestin-2 recruitment) is likely to predict 

relative agonist action at the others. Moreover, for all agonists, there was no significant 

difference between the normalised transduction coefficient obtained in the Gi1 activation 

assay and any of the regulatory pathways. However, we did observe differences between the 

GoA activation or GIRK activation and the regulatory events for the agonists bromocriptine 

(GRK2 recruitment, pSer317/pThr318 and -arrestin-2 recruitment), carbergoline (GRK2 and 

-arrestin-2 recruitment), terguride (GRK2 and -arrestin-2 recruitment)  and pergolide 

(pSer317/Thr318 and -arrestin-2 recruitment versus GoA activation, Fig. 4.6, Table 4.4). In 

all cases, relative to the action of dopamine, these agonists were more efficient at activating 

the regulatory pathways (Fig. 4.6). While most of these differences were subtle (< 5-fold), 

bromocriptine displayed a 13-fold and 8-fold preference for GRK2 and -arrestin-2 recruitment 

over GIRK activation, respectively. Of particular note, however, is that two agonists previously 

described as arrestin biased (UNC9994) and G protein biased (MLS1547) did not display these 

profiles in our hands. UNC9994 acts as a low efficacy partial agonist at all pathways, displaying 

robust agonist action at more efficiently coupled pathways such as GoA activation but barely 

detectable action at less efficiently coupled endpoints such as pSer317/pThr318 or -arrestin-

2 recruitment. MLS1547 was able to stimulate both G protein activation and -arrestin-2 

recruitment. Our analysis revealed that this ligand does not display bias between these two 

endpoints. 
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Figure 4.6: Relative transduction coefficients (ΔLog (τ/KA)) for agonists to activate D2R 
pathways. Concentration response curves for each endpoint were fit to an operational model 
of agonism to determine (Log (τ/KA)), this was normalised relative to dopamine to determine 
the relative transduction coefficient (ΔLog (τ/KA), Table 4.4). Analysis of these data using a 
one-way ANOVA with Dunnet’s post hoc test revealed significant differences between the 
relative transduction coefficient, normalised to that of dopamine, determined for each agonist 
in the Go assay as compared to that obtained in the other signalling and regulatory endpoints 
(* = P < 0.05, data presented represents the mean  SEM of at least 4 independent 
experiments). 
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Table 4.4: Estimates of transduction coefficients and relative transduction coefficients for agonists activating D2R signalling pathways. 
Responses were determined and analysed using an operational model of agonism. Values represent the mean ± SEM.  

Agonist Log (τ/KA) ΔLog (τ/KA) 

 Gαi1 GαoA GIRK GRK2 pS317/pT318 β-arr-2 Gαi1 GαoA GIRK GRK2 pS317/pTr18 β-arr-2 

Dopamine 7.42 ± 0.14 8.68 ± 0.09 8.57 ± 0.06 6.90 ± 0.05 6.55 ± 0.18 7.19 ± 0.03 0.00 ± 0.20 0.00 ± 0.12 0.00 ± 0.09 0.00 ± 0.07 0.00 ± 0.07 0.00 ± 0.05 
Apomorphine 8.08 ± 0.12 9.09 ± 0.07 9.06 ± 0.07 7.55 ± 0.07 7.38 ± 0.18 7.87 ± 0.04 0.66 ± 0.19 0.42 ± 0.11 0.49 ± 0.10 0.65 ± 0.09 0.85 ± 0.09 0.69 ± 0.05 

Aripiprazole 6.02 ± 0.19 6.66 ± 0.06 6.10 ± 0.22 5.01 ± 0.52 ND 5.86 ± 0.25 -1.40 ± 0.23 -2.02 ± 0.11 -2.47 ± 0.23 ND ND -1.33 ± 0.25 
Bromocriptine 7.18 ± 0.11 7.93 ± 0.06 7.35 ± 0.06 6.94 ± 0.10 6.79 ± 0.17 7.09 ± 0.05 -0.24 ± 0.18 -0.75 ± 0.11 -1.23 ± 0.09 0.05 ± 0.11 0.24 ± 0.11 -0.10 ± 0.06 

Cabergoline 8.18 ± 0.10 8.89 ± 0.06 9.16 ± 0.14 8.22 ± 0.07 7.25 ± 0.17 8.31 ± 0.03 0.76 ± 0.17 0.22 ± 0.10 0.59 ± 0.15 1.32 ± 0.09 0.70 ± 0.19 1.13 ± 0.05 

MLS1547 5.91 ± 0.10 6.81 ± 0.06 6.43± 0.11 ND ND 5.46 ± 0.11 -1.51 ± 0.17 -1.87 ± 0.10 -2.14 ± 0.12 ND ND -1.73 ± 0.11 

Pergolide 7.83 ± 0.11 8.73 ± 0.06 9.18 ± 0.12 7.53 ± 0.08 7.21 ± 0.13 7.85 ± 0.04 0.41 ± 0.18 0.05 ± 0.11 0.61 ± 0.14 0.64 ± 0.19 0.66 ± 0.09 0.67 ± 0.05 

Quinpirole 8.00 ± 0.11 8.94 ± 0.06 8.95 ± 0.07 7.06 ± 0.07 7.02 ± 0.11 7.44 ± 0.03 0.58 ± 0.18 0.27 ± 0.11 0.38 ± 0.10 0.48 ± 0.18 0.48 ± 0.18 0.25 ± 0.05 

Ropinirole 7.21 ± 0.11 8.50 ± 0.07 8.45 ± 0.11 6.63 ± 0.07 6.63 ± 0.14 7.03 ± 0.04 -0.21 ± 0.18 -0.17 ± 0.11 -0.12 ± 0.13 -0.27 ± 0.09 0.09 ± 0.19 -0.16 ± 0.05 

Roxindole 8.08 ± 0.13 8.95 ± 0.06 9.31 ± 0.11 8.36 ± 0.13 6.17 ± 1.16 8.69 ± 0.07 0.67 ± 0.19 0.28 ± 0.10 0.74 ± 0.13 1.46 ± 0.14 -0.37 ± 1.2 1.51 ± 0.08 

Terguride 7.52 ± 0.18 8.40 ± 0.06 7.87 ± 0.12 7.54 ± 0.32 ND 7.99 ± 0.14 0.10 ± 0.23 -0.27 ± 0.11 -0.71 ± 0.14 0.64 ± 0.33 ND 0.81 ± 0.14 

UNC9994 5.64 ± 0.18 6.57 ± 0.06 5.75 ± 0.08 ND ND 5.44 ± 0.15 -1.78 ± 0.23 -2.11 ± 0.10 -2.82 ± 0.10 ND ND -1.75 ±0.15 

ND – Not determined: unable to be determined due to insufficient response to allow accurate fitting of the model.  
 



 

 

4.4 Discussion 

GPCR phosphorylation by GRKs is a key process for the regulation of most GPCRs by 

promoting arrestin binding and, thus, inhibition of G protein mediated signalling. Arrestin 

mediated signalling has been shown to mediate distinct physiological processes downstream 

of the D2R and arrestin-biased agonists have been proposed as an avenue for the development 

of more efficacious antipsychotic drugs (300). Antibodies raised against GPCR 

phosphorylation sites have been useful tools with which to understand the hierarchical and 

sequential pattern of multisite phosphorylation upon agonist stimulation (323,324). In this 

study we developed and characterised phospho-site-specific antibodies for the D2R against 

predicted phosphorylation sites within ICL3 and used them to provide an insight into the role 

GRK phosphorylation plays in D2R regulatory processes and how it is controlled by chemically 

distinct agonists including those thought to have pathway-biased actions. One of these 

antibodies revealed an increase in Ser317 and Thr318 phosphorylation upon agonist activation 

mediated by GRK2/3. Comparison of these data with measurements of GRK2 and arrestin 

recruitment revealed that the relative efficacy of all tested agonists at the level 

pSer317/pThr318 can predict their efficacy at these other regulatory processes. A challenge 

associated with measuring these regulatory processes is that such measurements often entail 

the overexpression of one or more regulatory proteins that are modified with a fluorescent tag 

such as those used in BRET assays. This may alter the stoichiometry of the different protein 

components associated with downstream signalling and may be particularly problematic if one 

wants to compare agonist action across different signalling pathways as is often done in studies 

aimed at identifying biased agonists. In this regard, the measurement of Ser317/Thr318 

phosphorylation can be used in both heterologous expression systems and native tissue without 

the need for the over-expression of modified proteins. Importantly, the antibodies described in 

the present study recognise phospho-sites present in both D2SR and D2LR. This is particularly 

relevant when considering future studies that use these antibodies in tissues or primary neuronal 

cultures as it will allow the detection of phosphorylation of both, pre- and post-synaptic 

receptors. 

Two other antibodies developed in this study recognised two additional sites, 

pThr287/pSer288 and pThr293/pSer296, that appear to be constitutively phosphorylated. The 

role of this constitutive phosphorylation is unclear. Interestingly, GRK2/3 phosphorylation has 
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been shown to play a role in post-endocytic trafficking and re-sensitisation (291,294,325) and 

Thr287, Ser288, and Thr293 have been identified as GRK2 phosphorylation sites important for 

post-endocytic trafficking (294). Interestingly, while Ser317 is conserved in humans and 

rodents, Thr318 is absent in both mice (Mus musculus) and rats (Rattus norvegicus) suggesting 

there may be species differences in the patterns of GRK phosphorylation. Moreover, other 

kinases have been shown to regulate D2Rs (326,327), for example PKC has been demonstrated 

to phosphorylate the D2R and regulate function through heterologous desensitisation (327,328). 

An antibody that recognizes a PKC phospho-site in ILC3 of the D2R has previously been 

described that, surprisingly, shows differences in phosphorylation between D2SR and D2LR 

(329). It should be noted that we observed significant arrestin recruitment in the presence of a 

GRK2/3 inhibitor, meaning that this process can occur independently of Ser317/Thr318 

phosphorylation. Future efforts to develop phospho-antibodies targeting other GRK and PKC 

sites, in combination with receptor mutants in which such phosphorylation sites are removed, 

will allow us to understand better the broader temporal pattern of D2R phosphorylation and 

how it might modulate D2R signalling. 

Recent interest in understanding GPCR regulatory processes such as arrestin 

recruitment has been driven, to some extent, by the appreciation that arrestin-mediated 

signalling may drive distinct physiological processes to those mediated by G protein signalling 

and that one may be able to selectively modulate these processes using biased agonists. GRK 

phosphorylation has been proposed to be the key event that controls the balance between G 

protein- and arrestin-mediated signalling. It is suggested that the unique phosphorylation 

pattern, or barcode, that can then lead to distinct downstream signalling through a mechanism 

that involves altered β-arrestin recruitment and/or stabilisation of distinct β-arrestin 

conformations (330).  There has been a surge of interest in D2R biased agonists over the last 

decade driven by their potential as novel, safer, treatments for schizophrenia and Parkinson’s 

disease (293,331-337). In this study we tested a range of agonists and compared their relative 

ability to stimulate Ser317/Thr318 phosphorylation to other measures of D2R activation 

including measurements of G protein signalling and arrestin recruitment. We included two 

ligands that have been described as biased agonists, the G protein-biased agonist MLS1547 

(331) and the arrestin-biased agonist UNC9994 (293). In addition, the atypical antipsychotic 

aripiprazole was initially described as a D2R partial agonist, but subsequent studies suggested 

it may act as a biased agonist (338,339). Initial reports using MLS1547 suggested that it is a G 

protein biased agonist that acts as an agonist to activate G protein pathways but antagonises 

the arrestin pathway (331). In our hands, stimulation with MLS1547 results in recruitment of 
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β-arrestin-2 as well as GRK2 recruitment and our analysis revealed no bias between G protein 

activation and β-arrestin-2 recruitment. In agreement with this finding, MLS1547 has 

previously been shown to induce recruitment of β-arrestin-2 (340), and produce some 

internalisation in striatal neurons (341), a process that is usually mediated through arrestins. 

UNC9994 was initially described as an arrestin biased agonist, acting as a robust partial agonist 

for β-arrestin-2 recruitment but with no apparent activity at G protein signalling pathways 

(293,342). In this present study, however, we found that even in the presence of over-expressed 

GRK2 UNC9994 promoted modest recruitment of β-arrestin-2 with both lower maximal effect 

and potency than that reported in its initial characterisation (293). Consistent with this 

observation, UNC9994 showed no detectable phosphorylation of Ser317/Thr318 and induced 

only very weak GRK2 recruitment. Furthermore, in the absence of GRK2 overexpression 

UNC9994 did not stimulate β-arrestin-2 recruitment. Together these data suggest that 

UNC9994 has low efficacy for GRK2 phosphorylation, GRK2 recruitment and β-arrestin-2 

recruitment. Surprisingly, we found that UNC9994 also acted as a weak partial agonist in G 

protein activation BRET assays as well as in an assay measuring G protein mediated GIRK 

channel activation. These observations match previous work by Ågren and co-workers in 

experiments measuring GIRK channel opening in frog oocytes (321). Analysis of our data to 

derive bias factors revealed that UNC9994 does not display bias between G protein and arrestin 

pathways relative to dopamine. Together these data are difficult to reconcile with the initial 

characterisation of UNC9994 as an arrestin biased agonist. Finally, we also found that 

aripiprazole did not display bias between G protein signalling and any of the regulatory 

processes such as arrestin recruitment. In original studies that identified MLS1547 and 

UNC9994 as biased agonists (293,331), no agonism was detected in the ‘unfavoured’ pathway 

and, thus, no quantitative measurement of bias could be made whereas in our studies we 

observed sufficient efficacy in all pathways to enable the quantification of their effect. The 

difference between these observations likely stems from differences in the sensitivity of the 

assays used to detect the different endpoints. These results, therefore, are not necessarily 

contradictory but instead illustrate how experimental conditions and cellular context can 

influence measurements of agonist action, particularly for very low efficacy partial agonists. 

Our study illustrates how the measurement of the action of putative biased agonists at multiple 

steps of a signalling pathway may provide further insight into their mechanism of action, 

particularly if the different endpoints are associated with different levels of amplification.  

Measuring this process by using phosphorylation-site specific antibodies, will likely be an 

effective approach to identify and characterise such ligands. 
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Beyond their potential therapeutic value, biased agonists that display a preference for 

one pathway over another can be extremely useful tools with which to interrogate the role of 

distinct downstream signals in a particular physiological process. In this regard, the utility of 

such biased agonists as tools is entirely dependent on the robustness of the pathway bias that 

they display. MLS1547 and UNC9994 have both been used to interrogate the contribution of 

arrestins and G proteins to D2R mediated physiological effects (185,293,300,342,343). The 

interpretation of the above studies that used these drugs as tool compounds should now be 

revisited considering our data that shows that neither UNC9994 or MLS1547 are biased 

agonists.  

The ability of all ligands to stimulate Gαi1 activation predicted their effect in the three 

regulatory endpoints. This observation agrees with β-arrestin recruitment being somewhat 

dependent on G protein activation through release of Gβγ that binds the pleckstrin homology 

domain of GRK2/3 recruiting it to the plasma membrane, leading to receptor phosphorylation 

and  β-arrestin recruitment (344-346). Gαo, however, has been proposed to be the primary G 

protein that the D2R is coupled to in vivo(347). While the relative action of the agonists 

dopamine, apomorphine, aripiprazole, quinpirole, ropinirole and roxindole, as well as the 

biased agonists UNC9994 and MLS1547 are consistent between Gαo activation and the 

regulatory endpoints, this is not the case for bromocriptine, cabergoline, terguride and 

pergolide. These agonists display a preference for the regulatory pathways as compared to Gαo 

activation. These agonists are used clinically to treat hyperprolactinaemia and/or Parkinson’s 

disease and, intriguingly, all have an ergoline scaffold. It is not apparent how this bias profile 

might influence their therapeutic effect, but this observation certainly warrants further 

investigation. 

In summary, we have developed the first antibodies specific for GRK phosphorylation 

sites on the D2R. We identify one phosphorylation site (pS317/pT318) within ICL3 that is 

phosphorylated on agonist activation of the D2R. The action of agonists to phosphorylate this 

site predicts their relative action at arrestin recruitment suggesting that phosphorylation of this 

site is important for arrestin binding to the D2R. We incorporate measurements of pS317/pT318 

with other measurements of G protein activation and receptor regulation to profile a number of 

D2R agonists including putative biased agonists. Our findings, in the light of the interest in G 

protein independent signalling, show the utility of measurements of receptor phosphorylation 

as part of such characterisations. 
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4.5 Supplementary Materials 

 

 

            214(HUMAN)                                         263 
DRD2_HUMAN  IVLRRRRKRV NTKRSSRAFR AHLRAPLKGN CTHPEDMKLC TVIMKSNGSF 
DRD2_PANTR  IVLRRRRKRV NTKRSSRAFR AHLRAPLKGN CTHPEDMKLC TVIMKSNGSF 
DRD2_BOVIN  IVLRRRRKRV NTKRSSRAFR ANLKAPLKGN CTHPEDMKLC TVIMKSNGSF 
DRD2_RAT    IVLRKRRKRV NTKRSSRAFR ANLKTPLKGN CTHPEDMKLC TVIMKSNGSF 
DRD2_MOUSE  IVLRKRRKRV NTKRSSRAFR ANLKTPLKGN CTHPEDMKLC TVIMKSNGSF 
 
            264                                                313 
DRD2_HUMAN  PVNRRRVEAA RRAQELEMEM LSSTSPPERT RYSPIPPSHH QLTLPDPSHH 
DRD2_PANTR  PVNRRRVEAA RRAQELEMEM LSSTSPPERT RYSPIPPSHH QLTLPDPSHH 
DRD2_BOVIN  PVNRRRVEAA RRAQELEMEM LSSTSPPERT RYSPIPPSHH QLTLPDPSHH 
DRD2_RAT    PVNRRRMDAA RRAQELEMEM LSSTSPPERT RYSPIPPSHH QLTLPDPSHH 
DRD2_MOUSE  PVNRRRMDAA RRAQELEMEM LSSTSPPERT RYSPIPPSHH QLTLPDPSHH 
 
            314                                                362 
DRD2_HUMAN  GLHSTPDSPA KPEKNGHAKD .HPKIAKIFE IQTMPNGKTR TSLKTMSRRK 
DRD2_PANTR  GLHSTPDSPA KPEKNGHAKD .HPKIAKIFE IQTMPNGKTR TSLKTMSRRK 
DRD2_BOVIN  GLHSTPDSPA KPEKNGHAKT VNPKIAKIFE IQSMPNGKTR TSLKTMSRRK 
DRD2_RAT    GLHSNPDSPA KPEKNGHAKI VNPRIAKFFE IQTMPNGKTR TSLKTMSRRK 
DRD2_MOUSE  GLHSNPDSPA KPEKNGHAKI VNPRIAKFFE IQTMPNGKTR TSLKTMSRRK 
 
            363      373 
DRD2_HUMAN  LSQQKEKKAT Q 
DRD2_PANTR  LSQQKEKKAT Q 
DRD2_BOVIN  LSQQKEKKAT Q 
DRD2_RAT    LSQQKEKKAT Q 
DRD2_MOUSE  LSQQKEKKAT Q 
 
Figure S4.1: Multiple amino acid sequence alignment of mammalian D2LR intracellular 
loop three. Primary amino acid sequence alignment of intracellular loop three for Homo 
sapiens (Human), Pan troglodytes (Chimpanzee), Bos Taurus (Bovine), Rattus norvegicus 
(Rat) and Mus musculus (mouse). Phosphosite-specific antibody sites (T287/S288, 
T293/S296 and S317/T318) are highlighted in grey. T318 is not present in rat or mouse D2R. 
Sequence absent from the short isoform (D2SR) is highlighted in yellow. Alignment was 
performed using Clustal Omega version 1.2.4. 
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Figure S4.2: Antagonist-selective inhibition of quinpirole-induced phosphorylation and 
G protein signaling. (A) Reversal of quinpirole-induced hyperpolarization by haloperidol 
using a fluorescence-based membrane potential assay. After baseline recording for 60 sec, 
HEK293 cells stably expressing HA-hD2 receptor and GIRK-eGFP were exposed to 1 µM 
quinpirole and 240 sec later, 10 µM haloperidol was added, yielding a final molar 
quinpirole/haloperidol ratio of 1:10. Shown are representative results from one of four 
independent experiments performed in triplicate. Vehicle-induced changes in fluorescence 
signal (background) were subtracted. (B) Stably HA-hD2 receptor expressing HEK293 cells 
were preincubated (+) or not (-) with 50 µM haloperidol or L-741,626 for 30 min at 37 °C, then 
treated with vehicle (water (-)) or with 1 µM quinpirole (+) for 10 min at 37 °C. Cell lysates were 
then immunoblotted with anti-pS317/T318 antibody. Blots were stripped and reprobed for 
D2R. Blots are representative, n=3.  
 

 
Figure S4.3: D2 receptor phosphorylation is increased by GRK2 overexpression. 
HEK293 cells stably expressing HA-hD2 receptor were transfected with GRK2 plasmid or 
empty vector (MOCK) for 48 hours. After stimulation with 1 µM quinpirole, 10 µM MLS1547, 
10 µM UNC9994 or 10 µM aripiprazole for 10 min at 37 °C, lysates were immunoblotted with 
anti-pS317/T318 antibody. Blots were stripped and reprobed for D2R to confirm equal loading 
of the gel. Densitometry, above the blots, was normalized to those in MOCK-transfected cells, 
which were set to 100%. Data are mean  SEM from seven independent experiments. 
(*p<0.05 vs. MOCK by one-way ANOVA with Bonferroni post-test).  
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Figure S4.4: Schild analysis of the effect of SCH23390 on dopamine-induced GRK2 
recruitment. (A) Recruitment of GRK2-Venus to the D2R-Nluc in response to dopamine with 
30 minutes prior treatment of increasing concentrations of the dopamine D1-type receptor 
selective antagonist SCH23390. Schild slope = 1.01 ± 0.03, pA2 = 6.28 ± 0.06 (mean ± SEM) 
(Analysis using a global fit to the Gaddum/Schild EC50 model with prism 8.1.2) (B) Schild plot 
linear regression analysis. Slope = 1.10 ± 0.04, pA2 = 6.06 ± 0.08. Data is presented as the 
mean ± SEM from three separate experiments. 
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Figure S4.5: Establishment of the membrane potential assay. (A, B) HEK293 cells stably 
expressing the HA-hD2 receptor and GIRK-eGFP were stimulated with quinpirole at the 
indicated concentrations. (C) Cells described in (A and B) were either not treated or treated 
with 300 ng/ml PTX for 24 hours and then stimulated with 1 µM quinpirole after baseline 
recording for 60 sec. (D) Cells described in (A and B) were treated with 1 µM quinpirole and 
subsequently either not treated or treated with 10 µM SCH23390 for 10 min. Shown are 
representative results of four independent experiments performed in quintuple (mean  SEM) 
for dose-response curves and four to five independent experiments performed in duplicate 
(mean  SEM) for experiments with PTX and SCH23390. Relative changes in fluorescence 
signal were shown. Background signal (vehicle-induced changes in fluorescence signal) were 
subtracted from agonist-induced changes at each given concentration. Fitting was performed 
using a Levensberg-Marquardt Iteration algorithm using a four-parameter nonlinear regression 
to obtain concentration-response curves with OriginPro software. 
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Figure S4.6: Inhibition of quinpirole-induced phosphorylation and G protein signaling. 
(A) Stably expressing HA-hD2R HEK293 cells were preincubated (+) or not (-) with 5 µM 
MLS1547, UNC9994 or aripiprazole for 30 min at 37 °C, then treated with vehicle (water (-)) 
or with 1 µM quinpirole (+) for 10 min at 37 °C. Cell lysates were then immunoblotted with anti-
pSer317/Thr318 antibody. Blots were stripped and reprobed for D2R. Blots are representative, 
n=3. (B, C, D) After baseline recording for 60 sec, HEK293 cells stably expressing HA-hD2R  
and GIRK-eGFP were exposed to 1 µM quinpirole and 240 sec later, (A) 10 µM MLS1547, (B) 
10 µM UNC9994 or (C) 10 µM aripiprazole was added, yielding a final molar 
quinpirole/MLS1547, quinpirole/UNC9994 or quinpirole/aripiprazole ratio of 1:10. Shown are 
representative results from one of four independent experiments performed in triplicate. 
Vehicle-induced changes in fluorescence signal (background) were subtracted.  
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Abstract 

The dopamine D2 receptor (D2R) is a G protein-coupled receptor that activates members of 

the Gαi family of heterotrimeric G proteins. We sought to investigate the kinetics of D2R mediated 

activation of individual Gαi protein subtypes to provide a further understanding of the biochemical 

processes that govern the ability of the D2R to activate a particular G protein. We used genetically 

encodable bioluminescence resonance energy transfer-based sensors to monitor either G protein 

activation or relative concentrations of cAMP in live cells. When the D2R was stimulated with 

ropinirole, the D2R robustly activated Gαo and Gαz proteins more so than Gαi1, Gαi2 and Gαi3. 

Ropinirole induced the activation of all G proteins tested at a significantly faster observed rate than 

the rate produced by the D2R agonist antipsychotic aripiprazole. Moreover, the efficient activation of 

Gαz by the D2R was shown to be dependent on the slow GTP hydrolysis rate of Gαz. The slow GTP 

hydrolysis rate lead to an accumulation of active Gαz over time when activated by the D2R, resulting 

in increased agonist potency over time. The increased potency over time was abolished by either 

mutation of serine 42 within the GTP binding site or co-expression with RGS20. Overall, we 

demonstrate that G protein mediated responses by the D2R are largely controlled over time by the 

efficacy and binding kinetics of the agonist as well as the GTP hydrolysis rate of the Gα subunit. 

 
  



Chapter 5 – Kinetically distinct D2R G protein signalling waves 
 

 
173  

 

5.1 Introduction 

G protein-coupled receptors (GPCRs) are integral membrane proteins that transduce cellular 

signals from a diverse range of extracellular stimuli such as neurotransmitters, hormones and light. 

Therapeutic exploitation of the ability of GPCRs to transduce such signals has been achieved by 

designing small molecule binders that can consequently control cellular and physiological outcomes 

in disease, thus GPCRs represent the largest class of drug targets (348).  

GPCRs respond to stimuli by coupling to and activating heterotrimeric G proteins. 

Heterotrimeric G proteins are comprised of an α subunit (Gα) that binds guanine nucleotides and a β 

and γ subunit that act together as a dimer (Gβγ). In the G protein cycle, GPCRs function as guanine 

nucleotide exchange factors (GEFs) by means of inducing a conformational change in the G protein 

such that the Gα subunit exchanges bound guanine diphosphate (GDP) for guanine triphosphate 

(GTP). This results in Gα dissociation, or rearrangement relative to, the Gβγ subunit (10,11). Once 

active, the Gα subunit and Gβγ complex can then further activate downstream signalling cascades. 

The signalling is then terminated by the Gα subunit’s native GTPase activity that permits the Gα 

subunit to exist in an active conformation before hydrolysis of the γ-phosphate of GTP, converting it 

to GDP. The inactive Gα subunit then re-associates with free Gβγ and is able to couple to the GPCR 

and start the cycle again (12). 

Despite there being over 800 GPCRs in humans, there are only sixteen genes encoding 

different Gα subunits for GPCRs to transduce signals through. The Gα subunits are categorised into 

four subfamilies (Gαi, Gαs, Gαq and Gα12) depending on their sequence homology. Gα subunits within 

the same subfamily often activate similar effectors. For example, the Gαi subfamily members 

commonly act to inhibit adenylate cyclases and activate G protein-coupled inwardly-rectifying 

potassium (GIRK) channels (349,350). Because of the restriction in variety of G proteins and 

downstream effectors, it is thought that GPCRs coordinate a distinct cellular response through 

discriminating between different G proteins over space and time. One specialised example of spatial 

coordination is in the retina where activation of Gαt leads to a large portion of  Gαt translocating from 

the rod outer segment to rod intracellular compartments (351). This translocation away from the 

receptor serves as a means of light adaptation, permitting the retina to work at higher levels of light 

than usual. Understanding the molecular mechanisms of how GPCRs can process extracellular stimuli 

and coordinate such a response has been a significant focus of the field.  

GPCR signalling can be tuned through activation by agonists with differing efficacy. Ligand 

efficacy describes the intrinsic ‘power’ of an agonist to elicit a cellular response in relation to its 

receptor occupancy (352). While an agonist with high efficacy might robustly activate all responses, 

an agonist with low efficacy may only poorly activate responses that are less efficiently transduced 
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by the receptor. Moreover, agonist binding kinetics can shape the texture of the response over time 

because the association and dissociation rate are responsible for determining the receptor occupancy 

at any given time. For example, an agonist with slow dissociation from the receptor will often slowly 

increase its receptor occupancy over time, leading to an increase in potency over time. Interestingly, 

agonist efficacy and binding kinetics do not appear to be completely independent from each other. 

Agonist binding kinetics has been proposed to play a role in influencing agonist efficacy and biased 

agonism at some GPCRs (91,93,95-97,353).  

The dopamine D2 receptor (D2R) is a GPCR that mediates many of the effects of the 

catecholamine dopamine in the central nervous system. The D2R has been the subject of intense study 

because it is a target for several neuropsychiatric and neurological disorders (104-107). Due to these 

investigations, there is a wealth of knowledge and pharmacological tools for the D2R such that it can 

serve as a good model for investigating GPCR signalling. The D2R can couple pleiotropically to the 

non-visual G proteins of the Gαi subfamily (Gαi1, Gαi2, Gαi3, Gαo & Gαz) upon activation. In the 

brain, the D2R is thought to mainly couple to the Gαo isoforms (140). However, when specifically 

examining the nucleus accumbens, where the D2R displays reduced sensitivity to dopamine, it is 

thought that D2R coupling to Gαo may be reduced relative to Gαi1, Gαi2 or Gαi3 subtype coupling 

(144). Additionally, there is also evidence that the D2R couples to Gαz, based on Gαz knockout studies 

in mice and experiments in rat primary tissue cultures (148,150,151).  

Here, we investigated the kinetics of D2R G protein coupling in live cells. We reconstituted 

the D2R signalling system with single Gα subunits to assess the activation of individual subunits in 

real time. We observed differences in maximal effect values and observed rates of activation when 

assessing the different agonists and G proteins. Potency estimates changed differently over time 

depending on the agonist and the G protein α subtype. We were able to attribute the changes in 

potency to disparities in either the agonist dissociation rate or the rate of GTP hydrolysis of the G 

protein. In doing so, we were able to determine the main molecular determinants responsible for 

shaping distinct G protein responses by the D2R. 

 

5.2 Methods 

Materials 

Ropinirole (>98% pure) was purchased from BetaPharma Co. Ltd. (Wujiang, China). 

Aripiprazole was synthesised as previously described and shown to be >95% pure (256). Spiperone 

was purchased from Sigma-Aldrich Pty Ltd (Castle Hill, NSW, AUS). Coelenterazine-h was 

purchased from Nanolight Technologies a division of Prolume Ltd. (Pinetop, AZ, USA). 96-well 
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CulturPlates were purchased from PerkinElmer (Beaconsfield, UK). Dulbecco’s Modified Eagle 

Medium (DMEM), Hanks Balanced Salt Solution (HBSS), foetal bovine serum (FBS), trypsin, Flp-

InTM 293 cells, pertussis toxin, geneticin® (G418 Sulfate) and the PierceTM BCA Protein Assay Kit 

were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Mini-PROTEAN® TGX 

Stain-FreeTM Gels and Immun-Blot® Low Fluorescence PVDF membranes were purchased from 

Bio-Rad (Hercules, CA, USA). Anti-Gαz rabbit polyclonal antibody #3904S and anti-β-actin mouse 

monoclonal antibody #3700 were purchased from Cell Signalling Technology, Inc. (Danvers, MA, 

USA). Anti-rabbit 800CW #926-32211 and anti-mouse 680RD #926-68070 IRDye® goat polyclonal 

antibodies were purchased from LI-COR (Lincoln, NE, USA).  

Plasmids encoding masGRK3ct-Rluc8, venus-1-155-Gγ2 and venus-156-239-Gβ1 were a 

generous gift from Prof. Nevin Lambert (Augusta University, GA, USA). pcDNA3L-6xHis-

CAMYEL plasmid encoding the BRET sensor was purchased from ATCC (Manassas, VA, USA). 

pcDNA3.1+ encoding human cDNA of D2LR, Gαi1-C351I, Gαi2-C352I, Gαi3-C351I, GαoA-C351I, 

GαoB-C351I, Gαz, Gβ5s, RGS9-2 and RGS20 were purchased from the cDNA Resource Centre 

(Bloomsberg, PA, USA). 

 

Mutagenesis 

Mutations were introduced into pcDNA3.1+ encoding wild-type Gαz or Gαi2-C352I at amino 

acid position 42 using the Phusion Site-Directed Mutagenesis Kit (Thermo Fisher Scientific). Primers 

were purchased from Integrated DNA Technologies (Baulkam Hills, NSW, AUS).  

Primers are as follows;  

Gαz->S42G;  

forward: 5’-CTCCTGCTGGGCACCGGAAACTCAGGCAAGAG-3’ 

reverse: 5’- CTCTTGCCTGAGTTTCCGGTGCCCAGCAGGAG-3’.  

Gαi2-C352I->G42S; 

forward: 5’-CTGCTGTTGGGTGCTAGCGAGTCAGGGAAGAG-3’ 

reverse: 5’-CTCTTCCCTGACTCGCTAGCACCCAACAGCAG-3’.  

Mutagenesis was confirmed by Sanger sequencing of the open reading frame (AGRF, 

Melbourne, AUS). 

 

Cell culture and transfection 

Creation and culture of stable cell line-Cells stably expressing the wild type D2LR were 

generated by initially harvesting 500,000 Flp-InTM 293 cells into a T25 flask. The following day cells 
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were transfected with 1ug of pcDNA3.1+ hD2LR. The cells were then cultured in DMEM 10% FBS 

and left to divide to reach 50% confluency in a T75 flask before selection with 600ug/ml G418. After 

selection, live single cells were then sorted into 96 well plates via fluorescence activated cell sorting 

(FACS). Individual cells were then cultured to obtain separate colonies and a single colony was 

selected based on [3H] spiperone radio-ligand binding, and functional receptor detection with the 

cAMP production inhibition assay. Flp-InTM 293 cells stably expressing the wild type D2LR were then 

aliquoted and frozen for later culturing in DMEM 10% FBS 600μg/mL G418. Cells were split 1 in 

10 with 0.5% trypsin in Versene every 2-3 days and were not used past 30 passages. 

Transfection for signalling assays and western blotting-2,500,000 Flp-InTM 293 cells stably 

expressing the D2LR were harvested into 10cm dishes. 24 hours after harvesting cells, the DNA 

constructs were mixed in 250uL PBS and linear polyethylenimine (PEI) was mixed in a separate tube 

of 250uL PBS in a ratio of 1ug DNA: 6ug PEI. The DNA-PBS mix was then combined with the PEI-

PBS mix, vortexed and incubated at room temperature for 10 minutes. In the incubation time, the 

media was removed from the cell culture dishes and replaced with 10mL DMEM +10% FBS 

containing penicillin (100U/mL) and streptomycin (100ug/mL). The DNA-PEI-PBS mix was then 

added drop-wise on top of the cell media and the dishes were returned to the incubator. 

 

G protein activation assay 

The G protein activation assay was based on a BRET detection method that has been 

previously reported (257,258). Initially, Flp-InTM 293 cells stably expressing the D2LR were 

transfected as described above with pcDNA3.1 encoding the following constructs: 1μg venus-1-155-

Gγ2, 1μg venus-156-239-Gβ1, 1μg masGRK3ct-Rluc8 and 2μg of either Gαi1-C351I, Gαi2-C352I, 

Gαi3-C351I, GαoA-C351I, GαoB-C351I, Gαz, Gαz-S42G, Gαi2-G42S-C352I or empty vector control. 

For the G protein activation assays where RGS proteins were also transfected, cells were transfected 

with 1μg venus-1-155-Gγ2, 1μg venus-156-239-Gβ1, 1μg masGRK3ct-Rluc8, 2μg of the Gα subunit 

of interest, 1μg Gβ5s and 1μg of either pcDNA3.1+, RGS9-2 or RGS20. 24 hours after transfection, 

the cells were harvested from dishes and plated into poly-D-lysine coated white 96 well CulturPlates. 

The cells were left to adhere for approximately 8 hours and then treated with 100ng/mL pertussis 

toxin overnight. The following day the plate was taken out of the incubator, washed once with Hank’s 

balanced salt solution (HBSS) pH 7.4 and left to equilibrate in HBSS 37°C for 30 minutes before 

BRET detection. 15 minutes prior to addition of agonist, coelenterazine-h was added to each well 

with an electronic multi-step pipette to make a final concentration of 5μM. For experiments using 

PDBu, 333nM PDBu was added 10 minutes before addition of ropinirole. BRET was then measured 

in a LUMIstar Omega microplate reader (BMG LABTECH). Individual well luminescence was 
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measured for the emission signal of RLuc8 (445-505nm) and venus (505-565nm) simultaneously. 

For slow temporal assays, measurements were conducted in ‘plate mode’ at a cycle time of 30 seconds 

with five cycles occurring before manual addition of agonist or spiperone with a 12 channel multi-

pipette. For fast temporal assays, the plate was measured in ‘well mode’ with a measurement interval 

time of 60 milliseconds and a baseline established for 10 seconds before automated injection of 20μL 

agonist or spiperone at 430μL/s. The counts from the venus acceptor (505-555nm) was then divided 

by the donor Rluc8 (465-505nm) counts to give a BRET ratio. The BRET ratio values were then 

subtracted by the vehicle control values to give ∆BRET ratio. 

 

cAMP inhibition assay 

Flp-InTM 293 cells stably expressing the D2LR were transfected with 3μg of pcDNA3L-6xHis-

CAMYEL and 2μg of either pcDNA3.1+ encoding Gαi2-C352I, GαoA-C351I, Gαz, Gαz-S42G or 

empty vector control. 24 hours later the cells were harvested and transferred into poly-D-lysine coated 

white 96 well CulturPlates. Approximately 8 hours after the cells were transferred to plates, the cells 

were treated with 100ng/mL pertussis toxin overnight. The following day the cells were washed once 

with HBSS (pH 7.4, 37°C) and left to equilibrate in HBSS for 30 minutes before taking luminescence 

measurements. Addition of coelenterazine-h to make a final concentration of 5μM was carried out 15 

minutes before agonist addition. Cells were then treated with 10μM forskolin 10 minutes before 

addition of increasing concentrations of agonist and detecting BRET at the indicated times. For 

experiments using spiperone to out-compete ropinirole, coelenterazine-h and ropinirole (100nM final 

concentration) were co-added 18 minutes before addition of 20μM spiperone. BRET was detected at 

37°C measuring luminescence at 445-505nm (RLuc) and 505-565nm (venus) simultaneously using a 

LUMIstar Omega microplate reader (BMG LABTECH). Plates were measured in ‘plate mode’ at a 

cycle time of 30 seconds with a baseline of 5 cycles established before addition of agonist or 

spiperone. Counts from the 505-555nm channel were then divided by the 465-505 channel to give a 

BRET ratio. The ratios were then baseline normalised whereby wells treated with 10uM forskolin 

were set to 0% and vehicle treated wells set to 100%. 

 

Western blotting analysis 

While plating transfected cells for G protein activation assays or cAMP inhibition assays the 

cells were also plated into Corning® Costar® 6 well plates. On the same day as performing signalling 

assays, protein samples were prepared from the cells for later blotting. Cells were washed with PBS 

and harvested in 1mL Versene. Cells were spun at 350g for 5 minutes at 4°C and supernatant was 
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removed. The cell pellet was then lysed in RIPA buffer (150mM NaCl, 1%NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS, 50mM Tris-HCl, pH8.0, cOmpleteTM protease inhibitor) and left to shake 

gently on ice for 30 minutes. The sample was then spun at 15,000g for 10 minutes at 4°C, the 

supernatant was kept and stored at -80°C for analysis. Protein concentration was determined by BCA 

assay and 30μg of protein in SDS-loading buffer (4% SDS, 10% β-mercaptoethanol, 20% glycerol, 

0.004% bromophenol blue, 0.125M Tris-HCl) was loaded for separation by SDS-PAGE (4-15% 

gradient gel). Samples were transferred onto Immun-Blot® Low Fluorescence PVDF membranes 

using a Trans-Blot® SD Semi-Dry Transfer Cell (Bio-Rad). Membranes were then blocked with 5% 

BSA in PBS 0.1% Tween 20 for 1 hour followed by overnight incubation with the primary antibody 

at 4°C. The Gαz and β-actin antibodies were used at a 1:1000 dilution and the Gαz antibody was raised 

against an epitope separate from the mutagenesis site. The membranes were then washed in PBS 0.1% 

Tween 20 and incubated with either anti-rabbit 800CW or anti-mouse 680RD secondary antibodies 

used at a dilution of 1:10,000 for 1 hour at 25°C. The membranes were then washed again in PBS 

0.1% Tween 20 before detection with an Odyssey Classic infrared imaging system (LI-COR, Lincoln, 

NE, USA). 

 

Data analysis 

Concentration response curves were fit with the log(agonist) vs. response (three parameter) 

equation and functional rates were determined by fitting a one-phase association or decay in 

GraphPad Prism 7.02. All data was analysed by first pooling the experimental replicates together 

followed by curve fitting. Western blot micrographs were analysed with Fiji. 

 
 
5.3 Results 

Monitoring G protein activation at the D2R 

To investigate D2R mediated activation of different G proteins in live cells we used a 

genetically encoded bioluminescence resonance energy transfer (BRET) sensor (Fig. 5.1A)(258). The 

BRET sensor monitors Gβγ release by utilising the pleckstrin homology domain of GRK3 (GRKct) 

that binds free Gβγ upon dissociation from the Gα subunit. While there are several methods for 

detection of G protein activation, this assay allows use of wild-type GPCRs and Gα subunits, hence 

it can be universally applied to any GPCR and Gα subunit. In addition, previous studies have 

demonstrated that the assay provides a robust signal-to-noise ratio and high temporal resolution 

(132,354).  



Chapter 5 – Kinetically distinct D2R G protein signalling waves 
 

 
179  

 

We used Flp-In HEK 293 cells stably expressing the long isoform of the D2R (Flp-In-293-

D2LR) and transiently transfected the BRET sensor together with pertussis toxin (PTX) insensitive 

Gαi subfamily proteins or wild-type Gαz (that is natively PTX insensitive) followed by treatment with 

PTX to abolish any signal from endogenous Gαi coupling. The D2R agonist ropinirole was used to 

probe G protein activation due to dopamine suffering from oxidation (355) and a potential lack of 

selectivity for dopamine D2 type receptors over endogenously expressed adrenergic receptors (356). 

In addition, ropinirole is a useful reference as it displays similar efficacy and binding kinetics to 

dopamine at the D2R (96,357). Upon stimulation of Flp-In-293-D2R cells with ropinirole, we detected 

activation of all Gα proteins known to couple to the D2R, including Gαz (Fig. 5.1B). The measured 

responses 15 minutes after stimulation with increasing concentrations of ropinirole fit well to a 

sigmoidal concentration-response curve. Ropinirole was approximately 10-fold more potent at 

activating GαoA, GαoB and Gαz subunits compared to Gαi2, and 5-fold more potent than at Gαi1 and 

Gαi3 (Fig 5.1C-E, Fig S5.1A-C & Table 5.1).  Additionally, ropinirole-induced activation of GαoA, 

GαoB and Gαz subunits produced a larger maximal effect (given as change in BRET ratio) compared 

to Gαi1, Gαi2 and Gαi3 subunits (Fig. 5.1B-E, Fig S5.1A-C & Table 5.1). While it has been 

demonstrated that the D2R preferentially activates GαoA subunits over Gαi1, Gαi2 and Gαi3 (139), the 

potency and maximal effect of ropinirole in the Gαz condition suggest that the D2R is also efficiently 

coupled to this G protein.  

Some studies using [35S]GTPγS binding assays to detect G protein coupling have failed to 

detect activation of some or all of Gαi1, Gαi2 and Gαi3 upon stimulation of the D2R with partial 

agonists (137-139). Therefore, we next stimulated the Flp-In-293-D2R cells with the partial agonist 

antipsychotic aripiprazole. Aripiprazole induced activation of Gαi1, Gαi2 and Gαi3 with approximately 

half the maximal effect of ropinirole, and induced activation of GαoA, GαoB and Gαz with responses 

almost equal to ropinirole’s maximal effect (Fig. 5.1B-E, Fig S5.1A-C & Table 5.1). Detection of 

aripiprazole-induced responses at Gαi1, Gαi2 and Gαi3 suggest that the BRET-based G protein 

activation assay has superior sensitivity for detecting G protein coupling compared to the [35S]GTPγS 

binding assays used in previous studies. 
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Figure 5.1: G protein activation assay accurately measures differences in agonist responses 
over time at the D2R. (A) Diagram of the detection method for G protein activation by the D2R. D2R 
activation of Gαi/o/zGβγ-venus heterotrimers induces a conformational change in the G protein that 
results in Gαi/o/z exchanging its bound GDP for GTP and dissociation of the Gβγ-venus subunit. The 
myristoylated and RLuc8-tagged pleckstrin homology domain of GRK3 reversibly binds free Gβγ-
venus subunits such that when the Gα subunit is inactive (GDP bound) it can outcompete the GRK3 
domain for Gβγ, yet once the Gα subunit becomes active (exchanges GDP for GTP) the Gα subunit 
dissociates from Gβγ. (B) Quantification of increases in BRET ratio in response to 2.5 minutes of 
stimulation with 10μM ropinirole (orange bars) or 10μM aripiprazole (grey bars) for cells transfected 
with the G protein activation sensor together with the indicated Gα subunit or Gα-free control. (C, D 
& E) Concentration response curves of cells transfected with cDNA encoding the G protein activation 
sensor together with Gαi2 (panel C), GαoA (panel D) or Gαz (panel E) measured at 15 minutes in 
response to increasing concentrations of ropinirole (orange circles) or aripiprazole (grey squares). 
(F, G & H) Potency changes over 30 minutes of Gαi2 (panel F), GαoA (panel G) or Gαz (panel H) 
activation plotted as pEC50 parameter values estimated from concentration response curves fitted at 
each measurement interval after stimulation of increasing concentrations of ropinirole (orange 
circles) or aripiprazole (grey squares). All values are expressed as mean ± SEM from 5-9 separate 
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experiments performed in single wells. Students unpaired t test was used to test for statistical 
significance between ropinirole and aripiprazole induced maximal values in panel B. *P<0.05, ** 
P<0.01, *** P<0.001.  
 
 
Table 5.1: Ropinirole and aripiprazole induced dissociation of various G proteins by the D2R. 
Potency (pEC50) and maximal effect (Emax – BRET units) parameter values represent the mean ± 
SEM from 5-9 separate experiments determined 15 minutes after stimulation 
 Ropinirole Aripiprazole 
Gα subunit pEC50 Emax pEC50 Emax 
Gαi1 6.95 ± 0.09 a 8.44 ± 0.34 x10-2 a 7.14 ± 0.12 4.40 ± 0.23 x10-2 b 
Gαi2 6.56 ± 0.06 9.95 ± 0.30 x10-2 7.28 ± 0.18 b 3.64 ± 0.28 x10-2 b 
Gαi3 6.90 ± 0.07 a 7.45 ± 0.26 x10-2 a 7.19 ± 0.13 4.27 ± 0.23 x10-2 b 
GαoA 7.65 ± 0.04 a 13.97 ± 0.25 x10-2 a 7.41 ± 0.08 12.76 ± 0.43 x10-2 a, b 
GαoB 7.54 ± 0.08 a 13.18 ± 0.45 x10-2 a 7.47 ± 0.09 12.05 ± 0.42 x10-2 a 
Gαz 7.83 ± 0.04 a 13.37 ± 0.20 x10-2 a 7.23 ± 0.05 b 12.19 ± 0.28 x10-2 a, b 

a Significantly different (P<0.05) from corresponding Gαi2 value within the column as determined by 
one-way analysis of variance with Dunnett’s multiple comparisons test 
b Significantly different (P<0.05) from corresponding ropinirole parameter value within the row as 
determined by student’s t-test 
 
 

Temporal patterns of G protein activation change depending on the agonist and the Gα 

subunit 

Having accurately detected G protein activation, we then analysed agonist action over time 

by fitting concentration response curves to the data at each measurement interval over a time-course 

of 30 minutes (Fig. S5.2). We were then able to plot potencies (pEC50) values over time to compare 

ropinirole and aripiprazole at each G protein (Fig. 5.1F-H, Fig. S5.1D-F). We have previously 

demonstrated that aripiprazole displays a fast association rate and a slow dissociation rate for the D2R 

such that upon addition of aripiprazole, the equilibrium between the bound and free species of the 

D2R will slowly be reached (96). Therefore, the potency in a functional assay is expected to increase 

over time as the occupancy of aripiprazole at the receptor increases. As predicted, aripiprazole 

displayed a large increase in potency over time for each of the different G proteins. In contrast, 

ropinirole is a fast dissociating agonist such that binding at the D2R will rapidly reach equilibrium. In 

agreement with ropinirole’s binding kinetics at the D2R, the potency for Gαi1, Gαi2, Gαi3, GαoA and 

GαoB activation remained constant over time. However, ropinirole displayed a 10-fold increase in 

potency over time at Gαz. Additionally, aripiprazole displayed a larger increase in potency over time 

for Gαz than any other Gα subunit, suggesting a ligand-independent difference at the level of the Gαz 

G protein. This was surprising as G protein activation is thought to occur on the millisecond-second 

timescale and thus might be expected to be limited by the rate of agonist binding to the D2R (11).  
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Gα subunit-specific cAMP inhibition reflects G protein activation 

The Gαi subfamily proteins, including Gαz, inhibit the production of cAMP by binding to and 

negatively modulating adenylate cyclases. This property allowed us to investigate if any downstream 

consequences result from the different temporal patterns seen at the level of G protein activation. 

Measurements of relative intracellular cAMP concentrations in Flp-In-293-D2R cells were 

determined with a conformational BRET sensor based on Epac1 (Fig. 5.2A) (358). We used the same 

rationale as the G protein activation assay to measure G protein-specific signalling whereby the G 

protein cDNA (PTX insensitive Gαi subunits or wild-type Gαz) was transfected together with the 

BRET sensor followed by overnight treatment with PTX. Gαi2 was used as a representative subunit 

for the Gαi1, Gαi2 and Gαi3 subunits, and GαoA was used as a representative of the GαoA and GαoB 

isoforms. Similar to the G protein activation assay, we observed that ropinirole was more potent at 

stimulating GαoA and Gαz mediated cAMP inhibition than Gαi2 (Fig. 5.2B, D & F & Table 5.2). 

Aripiprazole also showed maximal responses closer to ropinirole at GαoA and Gαz but produced 

approximately half the maximal effect of ropinirole when measuring Gαi2 dependent cAMP 

inhibition. Measuring potency over time showed that aripiprazole increased in potency over time for 

each of the three Gα subunits, consistent with its binding kinetics to the D2R (Fig. 5.2C, E & G). We 

then observed an increase in ropinirole’s potency for Gαz-dependent cAMP inhibition but not for Gαi2 

or GαoA. Accordingly, all measurements of D2R mediated cAMP inhibition closely matched the G 

protein activation assay, confirming that the observed temporal signalling patterns are dependent on 

the agonist as well as the G protein. The cAMP measurements also confirmed that the pattern of 

changing potency over time was not an artefact associated with the methods or plasmid constructs 

used in the G protein activation assay. 
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Figure 5.2: cAMP assay reports on individual G protein signalling kinetics. (A): Schematic of 
the intracellular cAMP detection method. Agonist activation of the D2R results in coupling to Gαi/o/z 

subunits that inhibit the production of forskolin stimulated cAMP. The relative amount of cAMP within 
the live cells is then detected by the BRET-based cAMP sensor – CAMYEL, that undergoes a 
conformational change upon binding to cAMP resulting in increased proximity of the Rluc and venus 
allowing for more efficient non-radiative energy transfer. Cells were transfected with the particular 
PTX-insensitive Gα subunit of interest and treated with PTX to measure the cAMP inhibition 
mediated through the single Gα species. (B, D & F) cAMP production inhibition concentration 
response curves of Flp-In-293-D2R cells transfected with cDNA encoding the cAMP BRET sensor 
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together with Gαi2 (B), GαoA (D) or Gαz (F) measured at 15 minutes in response to increasing 
concentrations of ropinirole (orange circles) or aripiprazole (grey squares). (C, E & G) Potency 
changes over 30 minutes of Gαi2 (C), GαoA (E) or Gαz (G) dependent cAMP production inhibition 
plotted as pEC50 parameter values estimated from concentration response curves fitted at each 
measurement interval after stimulation of increasing concentrations of ropinirole (orange circles) or 
aripiprazole (grey squares). All values are expressed as mean ± SEM from 4-7 separate experiments 
performed in duplicate wells.  
 
 
Table 5.2: Ropinirole and aripiprazole induced G protein-dependent cAMP inhibition by the 
D2R. 
Potency (pEC50) and maximal effect (Emax – % Forskolin inhibition) parameter values represent the 
mean ± SEM from 4-7 separate experiments determined 15 minutes after stimulation 
 Ropinirole Aripiprazole 
Gα subunit pEC50 Emax pEC50 Emax 
Gαi2 7.01 ± 0.02 80.0 ± 0.7 6.63 ± 0.10 b 44.5 ± 2.3 b 
GαoA 7.79 ± 0.03 a 75.7 ± 0.8 6.95 ± 0.06 a, b 72.1 ± 2.1 a 
Gαz 7.69 ± 0.05 a 82.2 ± 1.6 6.738 ± 0.05 b 76.8 ± 1.8 a 

a Significantly different (P<0.05) from corresponding Gαi2 value within the column as determined by 
one-way analysis of variance with Dunnett’s multiple comparisons test 
b Significantly different (P<0.05) from corresponding ropinirole parameter value within the row as 
determined by student’s t-test 

 

 

Observed G protein activation rate at the D2R is influenced by agonist efficacy 

We next investigated the differences in G protein activation kinetics between ropinirole and 

aripiprazole on a faster timescale. To perform these experiments, we used a high concentration of the 

agonist that was calculated, using rate constants determined from our previously published binding 

experiments (96), to occupy >95% of receptors within 1.5 seconds. Upon injection of ropinirole, we 

observed that Gαi2, GαoA and Gαz were all activated on a millisecond-second timescale consistent 

with what has been previously proposed for GPCR activation (Fig 5.3A, B & C) (359). Ropinirole-

induced GαoA activation was approximately 3-fold faster and 6-fold faster than ropinirole-induced 

activation of Gαi2 and Gαz respectively (Table. 5.3). Stimulation with aripiprazole produced rates of 

activation for each G protein that were all considerably (>6-fold) slower than the ropinirole-induced 

rates (Gαi2, GαoA & Gαz P<0.0001, student’s t test), highlighting that a key determinant of the 

observed G protein activation rate at the D2R is agonist efficacy. Furthermore, while ropinirole 

displayed 3-fold slower activation of Gαi2 compared to GαoA, the rates of activation of these two G 

proteins induced by aripiprazole was similar (Table 5.3). Moreover, aripiprazole produced a smaller 

total increase in BRET for Gαi2, consistent with its partial agonist action as detected by the 

concentration response curves measured at a later timepoint (Fig 5.1.). Therefore, activation of Gαi2 

by aripiprazole displays a unique temporal pattern whereby activation occurred almost as fast as 

observed for GαoA, but it only produces a partial response. 
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Figure 5.3: Differences in observed G protein activation rates in response to saturating 
concentrations of ropinirole and aripiprazole.  (A) D2R mediated Gαi2 activation response upon 
injection of 100μM ropinirole (orange circles) or 10μM aripiprazole (grey squares) over 50 seconds. 
All values represent the mean ± SEM (grey shading indicates error bars) of 5 separate experiments 
(ropinirole) or 3 separate experiments (aripiprazole). (B) D2R mediated GαoA activation response 
upon injection of 100μM ropinirole (orange circles) or 10μM aripiprazole (grey squares) over 50 
seconds. All values represent the mean ± SEM (grey shading indicates error bars) of 5 separate 
experiments (ropinirole) or 3 separate experiments (aripiprazole). (C) D2R mediated Gαz activation 
response upon injection of 100μM ropinirole (orange circles) or 10μM aripiprazole (grey squares) 
over 50 seconds. All values represent the mean ± SEM (grey shading indicates error bars) of 6 
separate experiments (ropinirole) or 3 separate experiments (aripiprazole). (D) Ropinirole (orange 
bars) and aripiprazole (grey bars) stimulated D2R dependent G protein activation rates determined 
by one phase association curve fit of the responses shown in panels A, B & C. Rate values are 
represented as mean ± SEM. Students unpaired t test was used to determine statistical significance 
between rates induced by ropinirole and aripiprazole. *** P<0.001. 
 
 
Table 5.3: Observed G protein activation rates induced by ropinirole and aripiprazole 
Kobs (s-1) values are determined from 3-6 separate experiments 
Gα subunit Ropinirole Aripiprazole 
Gαi2 6.18 ± 0.12 x10-1 9.46 ± 0.14 x10-2 b 
GαoA 16.79 ± 0.63 x10-1 a 1.36 ± 0.01 x10-1 a, b 
Gαz 2.79 ± 0.05 x10-1 a 2.27 ± 0.02 x10-2 a, b 

a Significantly different (P<0.05) from corresponding Gαi2 value within the column as determined by 
one-way analysis of variance with Dunnett’s multiple comparisons test 
b Significantly different (P<0.05) from corresponding ropinirole value within the row as determined 
by student’s t-test 
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Gαz remains active for an extended period 

High concentrations of ropinirole produced a rapid response at Gαz (Fig. 5.3C), yet low 

concentrations of ropinirole produced responses that slowly increased over several minutes (Fig. S5.2, 

Panel C). This increase in response over time for low concentrations of agonist resulted in an increase 

in the potency of ropinirole over time. Furthermore, saturating concentrations of ropinirole produced 

a slower activation rate for Gαz compared to Gαi2 and GαoA. Our previous ligand binding experiments 

revealed that the dissociation rate of ropinirole from the D2R is fast such that this increase in potency 

over time cannot be related to an increase in receptor occupancy over time (96). Furthermore, this 

increase in potency is specific to Gαz as no change in the potency of ropinirole is observed at the other 

Gα subunits. Thus, this difference must relate to a difference in the signalling properties of Gαz 

compared to the other Gαi subfamily G proteins. It is known that recombinant Gαz purified from 

Escherichia coli displays a slow basal GTP hydrolysis rate when compared to other Gα subunits (19). 

We therefore hypothesized that once active, Gαz may slowly hydrolyse its bound GTP in live cells, 

and thus remain in the active state for an extended period. This in turn would cause the active species 

of Gαz to accumulate over time. The active species could make multiple interactions with effector 

proteins which may effectively amplify the signalling response. This would then result in an increase 

in potency over time as the active Gαz species accumulates.  

We first tested whether Gαz remained active for an extended period by pre-stimulation with 

ropinirole followed by addition of a high concentration of the high affinity antagonist spiperone to 

rapidly stop the activation of the D2R upon ropinirole dissociation. Upon addition of spiperone, Gαz 

remained active for approximately 56-fold longer than GαoA, and 37-fold longer than Gαi2 as 

measured by a decrease in the BRET signal between Gβγ-venus and GRKct-Rluc8 (Table 5.4, Fig. 

5.4A & B). We observed the same pattern when using the CAMYEL biosensor to measure changes 

in intracellular cAMP; the downstream rate of cAMP increase upon addition of spiperone in the Gαz 

transfected condition was also significantly slower than that observed in the Gαi2 and GαoA conditions 

(P=0.0001 & P<0.0001 respectively, one-way ANOVA) (Table 5.4, Fig. 5.4C & D). Together these 

data indicate that, after activation, the Gαz subunit remains in the active state for a longer time as 

compared to the other Gαi subunits. However, the rate of inhibition of the Gαi2 and GαoA signals 

observed upon addition of spiperone were slower in the cAMP assay as compared to the rates detected 

using the direct G protein activation sensors. This suggests that the limiting step, at least for Gαi2 and 

GαoA-dependent cAMP inhibition lies at the level of adenylate cyclase whereas for Gαz, it lies at the 

level of the G protein. 
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Figure 5.4: Gαz exhibits an extended lifetime in the active state. (A) G protein deactivation of 
Gαi2 (orange circles), GαoA (grey squares) and Gαz (black triangles) over time. Flp-In-293-D2R cells 
transfected with the BRET sensor and specific Gα subunit were incubated for 18 minutes with 333nM 
ropinirole followed by injection with 20μM spiperone (antagonist) and changes in BRET were 
measured over time. All values represent mean ± SEM (light grey shading indicates error bars) of 4 
separate experiments (GαoA) or 6 separate experiments (Gαi2 & Gαz) performed in triplicate wells. 
(B) G protein deactivation rates for Gαi2 (orange bar), GαoA (grey bar) and Gαz (black bar) determined 
by one phase decay curve fit of the responses shown in panel A. Rate values are represented as 
mean ± SEM. (C) Increase in intracellular cAMP concentration due to deactivation of Gαi2 (orange 
circles), GαoA (grey squares) and Gαz (black triangles) over time. Flp-In-293-D2R cells transfected 
with the BRET sensor and the Gα subunit of interest were incubated for 18 minutes with 100nM 
ropinirole followed by injection with 10μM spiperone (antagonist) and changes in BRET were 
measured over time. All values represent mean ± SEM (light grey shading indicates error bars) of 3 
separate experiments performed in triplicate wells. (D) Rates of Gα specific increase in intracellular 
cAMP concentration for Gαi2 (orange bar), GαoA (grey bar) and Gαz (black bar) determined by one 
phase decay curve fit of the responses shown in panel C. Rate values are represented as mean ± 
SEM. A one-way analysis of variance with Dunnett’s multiple comparisons test was used to 
determine statistical significance between deactivation rates of Gαi2 and either GαoA or Gαz. ** 
P<0.01, *** P<0.001. 
 
 
Table 5.4: G protein deactivation rates determined by spiperone competition experiments 
Values are determined from 3-6 separate experiments 
 G protein sensor cAMP sensor 
Gα subunit Kdeact (s-1) t½ (s) Kdeact (s-1) t½ (s) 
Gαi2 17.24 ± 0.18 x10-2 5.8 7.72 ± 0.34 x10-3 129.5 
GαoA 26.40 ± 0.29 x10-2 a 3.8 9.89 ± 0.35 x10-3 a 101.2 
Gαz 4.68 ± 0.08 x10-3 a 213.9 3.39 ± 0.07 x10-3 a 294.6 

a Significantly different (P<0.05) from corresponding Gαi2 value within the column as determined by 
one-way analysis of variance with Dunnett’s multiple comparisons test 
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The unique signalling pattern of Gαz is dependent on serine 42 

Many nucleotide binding proteins contain a conserved phosphate binding loop (P-loop) motif 

(360). For heterotrimeric G proteins in particular, it has been demonstrated through structural and 

biochemical studies on Gαi1, that a highly conserved glycine residue within the P-loop is required for 

the fast hydrolysis of GTP (Table 5.5) (361). Gαz is unique among the heterotrimeric G proteins, as 

it possesses a serine residue at this position (Ser42) (Table 5.5). Accordingly, we postulated that 

mutation of Ser42 to the glycine present in all other heterotrimeric G proteins will increase the G 

protein turnover kinetics in live cells. In our G protein activation assay, the S42G mutation lead to a 

modest 2-fold increase in the observed rate of activation upon stimulation with a saturating 

concentration of ropinirole (Kobs = 5.90 ± 0.17 x 10-1 s-1, Fig. 5.5A & B), while the expression levels 

of the Gαz-S42G mutant were similar to wild-type (Fig. 5.5C). Moreover, the deactivation rate was 

increased by approximately 20-fold (Kdeact = 9.99 ± 0.01 x 10-2 s-1, (Fig. 5.5D & E), consistent with 

the hypothesis that serine 42 indeed governs the slow GTP hydrolysis rate of Gαz. This provides 

further evidence that it is not agonist dissociation rate from the D2R that likely determines the rate of 

Gαz deactivation but, rather, the rate of GTP hydrolysis.  

We then tested the effect of the S42G mutation on G protein activation response over time to 

increasing concentrations of ropinirole. Strikingly, this mutation completely abolished the increase in 

potency over time upon activation with ropinirole (Fig. 5.5G). Furthermore, the potency and maximal 

effect of ropinirole at Gαz-S42G was significantly decreased when measured 15 minutes after 

stimulation (Fig. 5.5F) (pEC50 = 7.27 ± 0.04, Emax = 8.884 ± 0.13 x 10-2 BRET units) (P<0.0001 & P 

<0.0001 respectively, student’s t-test) as compared to that observed at Gαz wildtype (pEC50 = 7.83 ± 

0.04 , Emax = 13.37 ± 0.20 x10-2 BRET units). Thus, the slow rate of GTP hydrolysis by Gαz is required 

for the increase in potency of ropinirole over time and may contribute to the higher potency observed 

at Gαz compared to Gαi2 observed at later time-points.  

 

Table 5.5: Alignment of G protein P-loop amino acid residues 
 
 
 
 
 
 
 

G protein Position Sequence 
Gαz 40 G T S N S G K S 
Gαi2 40 G A G E S G K S 
GαoA 40 G A G E S G K S 
Gαq 46 G T G E S G K S 
Gα12 64 G A G E S G K S 
Gαs 47 G A G E S G K S 
H-Ras 10 G A G G V G K S 
Ran 17 G D G G T G K T 
RhoA 12 G D G A C G K T 
Arf1 24 G L D A A G K T 
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Figure 5.5: Mutation of serine 42 to glycine confers fast Gαi2 kinetics to Gαz. (A) D2R mediated 
G protein activation of Gαz-WT (orange circles) and Gαz-S42G (grey squares) over time. Flp-In-293-
D2R cells transfected with the BRET sensor and Gαz-WT or Gαz-S42G were injected with 100μM 
ropinirole and changes in BRET were measured over time. All values represent mean ± SEM (grey 
lines indicate error bars) of 6 separate experiments performed in triplicate wells. (B) D2R mediated 
G protein activation rates for Gαz-WT (orange bar) or Gαz-S42G (grey bar) determined by one phase 
decay curve fit of the responses shown in panel A. Rate values are represented as mean ± SEM. 
(C) Expression levels of the different transfected Gαz subunits in G protein activation assays were 
determined by western blotting. A representative western blot is shown from cell lysates of 3 
experiments. (D) G protein deactivation of Gαz-WT (orange circles) and Gαz-S42G (grey squares) 
over time. Flp-In-293-D2R cells transfected with the BRET sensor and Gαz-wt or Gαz-S42G were 
incubated for 18 minutes with 333nM ropinirole followed by injection with 20μM spiperone 
(antagonist) and changes in BRET were measured over time. All values represent mean ± SEM 
(light grey lines indicate error bars) of 6 (Gαz-WT) or 4 (Gαz-S42G) separate experiments performed 
in triplicate wells. (E) G protein deactivation rates the Gαz-WT (orange bar) or Gαz-S42G (grey bar) 
determined by one phase decay curve fit of the responses shown in panel D. Rate values are 
represented as mean ± SEM. (F) Concentration response curves for D2R mediated activation of Gαz-
WT (orange circles) or Gαz-S42G (grey squares) measured 15 minutes after addition of increasing 
concentrations of ropinirole. (G) Potency changes over 30 minutes of Gαz-WT (orange circles) or 
Gαz-S42G (grey squares) activation plotted as pEC50 parameter values estimated from concentration 
response curves fitted at each measurement interval after stimulation of increasing concentrations 
of ropinirole. All values in panels F & G represent mean ± SEM of 4 separate experiments performed 
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in duplicate wells. Students unpaired t test was used to determine statistical significance between 
rates of Gαz-WT and Gαz-S42G. *** P<0.001. 

 

Next, we performed cAMP assays using cells expressing either Gαz-WT or Gαz-S42G. Similar 

to our observations in the G protein activation assay, we observed that the potency of ropinirole 

remained constant over time when the S42G mutant was expressed, while the potency increased in 

the presence of the WT G protein. Comparing concentration response curves obtained at a 15-minute 

timepoint we found that ropinirole displayed a statistically significant decrease in potency (pEC50 = 

6.95±0.1318, P=0.00015, student’s t test) and maximal effect (Emax =65.44±4.014 % FSK induced 

cAMP inhibition, P=0.0013, student’s t test) when Gαz-S42G was expressed as compared to the Gαz-

WT condition (Fig. 5.6A & B). Expression levels of Gαz-S42G were comparable to wild-type in this 

assay (Fig. 5.6C). These data support our findings in the G protein activation assay; illustrating how 

the slow GTP hydrolysis rate of Gαz has a profound influence on agonist potency in a time-dependent 

manner.  

 

 
Figure 5.6: Mutation of serine 42 abolishes potency increase when measuring Gαz-dependent 
cAMP inhibition. (A) cAMP production inhibition concentration response curves of Flp-In-293-D2R 
cells transfected with cDNA encoding the cAMP BRET sensor together with Gαz-WT (orange circles) 
or Gαz-S42G (grey squares) measured at 15 minutes after stimulation with increasing concentrations 
of ropinirole. (B) Potency changes of Gαz-WT (orange circles) or Gαz-S42G (grey squares) 
transduced cAMP production inhibition plotted as pEC50 parameter values estimated from 
concentration response curves fitted at each measurement interval after stimulation of increasing 
concentrations of ropinirole. Values in A & B represent mean ± SEM of 7 (Gαz-WT) or 4 (Gαz-S42G) 
separate experiments performed in duplicate wells. (C) Expression levels of the different transfected 
Gαz subunits in cAMP production inhibition assays were determined by western blotting. A single 
representative western blot is shown from three separate experiments. 

 

A mutation that decreases the GTP hydrolysis rate of Gαi2 confers changes in agonist potency 

over time. 

To demonstrate the relationship between GTP hydrolysis rate and time-dependent changes in 

agonist potency we replaced the conserved glycine residue within the P-loop of Gαi2 with a serine 



Chapter 5 – Kinetically distinct D2R G protein signalling waves 
 

 
191  

 

residue that is present in Gαz. We hypothesized that this mutation would confer a Gαz-like slow GTP 

hydrolysis rate that would in turn cause an increase in ropiniroles’ potency over time. Indeed, 

estimates of potency increased over time in the Gαi2-G42S condition and no increase in ropiniroles’ 

potency was observed in the WT Gαi2 condition (Fig. 5.7B). This potency increase was analogous to 

ropinirole induced activation of wild type Gαz - albeit on a faster timescale (Fig. 5.7B). When 

measuring the G protein activation response after 15 minutes, the G42S mutation within the P-loop 

of Gαi2 increased ropiniroles’ potency by over 10-fold as well as increasing the maximal effect (pEC50 

= 7.64 ± 0.05, Emax = 11.11 ± 0.22 x 10-2 BRET units) (Fig. 5.7A). Moreover, the rate of signal decay 

after competition of ropinirole with spiperone was slowed by approximately 20-fold (Kdeact = 8.31 ± 

0.30 x 10-3 s-1) compared to wild type Gαi2 (Fig. 5.7C & D). In summary, upon replacement of glycine 

42 for serine, the change in potency over time resembled that obtained in the presence of Gαz. 

 

 
 
Figure 5.7: Mutation of glycine 42 to serine in Gαi2 increases the active lifetime of the G 
protein. (A) Concentration response curves for D2R mediated activation of Gαi2-WT (orange circles) 
or Gαi2-G42S (grey squares) measured 15 minutes after addition of increasing concentrations of 
ropinirole. (B) Potency changes over time of Gαi2-WT (orange circles) or Gαi2-G42S (grey squares) 
activation plotted as pEC50 parameter values estimated from concentration response curves fitted at 
each measurement interval after stimulation of increasing concentrations of ropinirole. All values in 
panel A & B represent mean ± SEM of 3 separate experiments performed in duplicate wells. (C) G 
protein deactivation of Gαi2-WT (orange circles) or Gαi2-G42S (grey squares) over time. Flp-In-293-
D2R cells transfected with the BRET sensor and Gαi2-WT or Gαi2-G42S were incubated for 18 
minutes with 333nM ropinirole followed by injection with 20μM spiperone (antagonist) and changes 
in BRET were measured over time. All values represent mean ± SEM (light grey lines indicate error 
bars) of 6 (Gαi2-WT) or 3 (Gαi2-G42S) separate experiments performed in triplicate wells. (D) G 



Chapter 5 – Kinetically distinct D2R G protein signalling waves 
 

 
192  

 

protein deactivation rates of Gαi2-WT (orange bar) or Gαi2-G42S (grey bar) determined by one phase 
decay curve fit of the responses shown in panel C. Students unpaired t test was used to determine 
statistical significance between deactivation rates of Gαi2-WT and Gαi2-G42S. *** P<0.001. 

 

 

Co-expression of RGS proteins alters agonist potency over time  

Having identified that the GTP hydrolysis rate of the Gα subunit is crucial in determining the 

agonist response over time, we were then interested in investigating the temporal effects that RGS 

proteins could have on the D2R mediated responses. RGS proteins selectively bind to activated Gα-

GTP subunits acting as GTPase-activating proteins (GAPs) to increase the Gα subunits’ rate of GTP 

hydrolysis (362,363). By doing this, the RGS protein speeds up the rate of G protein deactivation 

within the G protein cycle. It is well appreciated that RGS proteins functioning in this manner can 

dampen the potency at a G protein-dependent signalling endpoint. Extending this, we wanted to 

determine the effect that RGS proteins have on the increase in agonist potency over time that we 

observe when measuring Gαz activation. We therefore performed G protein activation assays where 

we co-expressed RGS9-2 or RGS20. RGS9-2 is an RGS9 splice variant that is strongly co-localised 

with the D2R in the striatum where it regulates some D2R functions (364,365). RGS20 is a member 

of the RGS-Z family of RGS proteins; RGS17, RGS19 and RGS20, that selectively act on Gαz (366-

369).  

When assessing the responses 15 minutes after ropinirole stimulation, we observed that 

RGS9-2 and RGS20 had different effects depending on the Gα subunit being activated. When Gαi2 

was activated, the maximal effect was significantly decreased in the presence of both RGS9-2 and 

RGS20 (Fig. 5.8A & Table 5.6). RGS20 also significantly reduced the potency of Gαi2 activation by 

approximately half a log-unit, while the small reduction in potency caused by RGS9-2 was not 

statistically significant. Measuring GαoA activation, we observed that both the maximal effect and the 

potency were significantly reduced by RGS9-2 and RGS20 (Fig. 5.8B & Table 5.6). Although, GαoA 

activation was more impacted in the presence of RGS9-2 than it was by RGS20. The largest effect 

we observed by any RGS protein acting on a Gα subunit was the potency decrease induced by RGS20 

on Gαz (Gαz-pcDNA pEC50 = 7.88 ± 0.05, Gαz-RGS20 pEC50 = 6.81 ± 0.04, mean ± SEM). RGS20 

decreased the potency by approximately 10-fold, and also decreased the maximal effect of the 

response. Contrasting this, RGS9-2 had no effect on Gαz activation relative to the pcDNA control 

(Fig. 5.8C & Table 5.6).  

We next assessed the effect of RGS9-2 and RGS20 on potency estimates over time. Gαi2 and 

GαoA displayed altered potencies in the presence of either RGS9-2 and RGS20, however their 

potencies remained constant over time (Fig. 5.8D & E). This suggests that the Gαi2 and GαoA systems 
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quickly come to a condition that resembles a steady state. Furthermore, activation of Gαz in the 

pcDNA control condition displayed a large increase in potency over time that was consistent with our 

earlier experiments. The co-expression of RGS9-2 had no effect on this increase in potency. In 

contrast, however, in the presence of RGS20, the potency of ropinirole in the Gαz activation response 

did not increase in potency over time (Fig. 5.8F). This implies that GTP hydrolysis rate of Gαz was 

increased by RGS20, thus inhibiting the large accumulation of the active Gα-GTP species that 

mediates the increase in agonist potency in the control condition. 

 
Figure 5.8: RGS protein co-expression alters D2R mediated Gαi2, GαoA and Gαz activation 
responses over time. (A, B & C) Gαi2 (A), GαoA (B) and Gαz (C) activation responses mediated by 
the D2R 15 minutes after stimulation with increasing concentrations of ropinirole in the presence of 
transfected pcDNA control (orange circles), RGS9-2 (grey squares) or RGS20 (black triangles). Data 
represents the mean ± SEM of 3 separate experiment for all. (D, E & F) Potency (pEC50 parameter) 
values plotted over time after stimulation with ropinirole for Gαi2 (D), GαoA (E) and Gαz (F) activation 
in the presence of pcDNA control (orange circles), RGS9-2 (grey squares) or RGS20 (black 
triangles). Concentration response curves were determined at each timepoint as shown in panels A, 
B and C and the pEC50 values were taken and plotted over time. Data represents the mean ± SEM 
from 3 separate experiments for each data set. Gβ5s was co-transfected in all conditions for 
consistency as it forms a complex with RGS9-2. 
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Table 5.6: Ropinirole induced activation of G proteins by the D2R in the presence of RGS 
proteins. 
Potency (pEC50) and maximal effect (Emax – BRET units) parameter values were determined 15 
minutes after ropinirole stimulation and represent the mean ± SEM from 3 separate experiments  
 
Gα subunit 

pcDNA RGS9-2 RGS20 
pEC50 Emax pEC50 Emax pEC50 Emax 

Gαi2 7.01 ± 0.04 8.79 ± 0.14 
x10-2 

6.80 ± 0.05 5.86 ± 0.12 
x10-2 b 

6.52 ± 0.07 
b 

7.03 ± 0.20 
x10-2 b 

GαoA 7.86 ± 0.06 
a 

10.75 ± 
0.20 x10-2 a 

7.28 ± 0.03 
a, b 

8.58 ± 0.08 
x10-2 a, b 

7.43 ± 0.03 
a, b 

9.96 ± 0.11 
x10-2 a, b 

Gαz 7.88 ± 0.05 
a 

9.79 ± 0.16 
x10-2 a 

7.88 ± 0.04 
a 

9.58 ± 0.11 
x10-2 a 

6.81 ± 0.04 
a, b 

8.54 ± 0.13 
x10-2 a, b 

 
a Significantly different (P<0.05) from corresponding Gαi2 value within the column as determined by 
one-way analysis of variance with Dunnett’s multiple comparisons test 
b Significantly different (P<0.05) from corresponding ‘pcDNA condition’ parameter value within the 
row as determined by one-way analysis of variance with Dunnett’s multiple comparisons test 
 
 
5.4 Discussion 

A particular focus of the GPCR drug discovery field has been to ascertain how specific GPCRs 

can transmit unique intracellular signals while only activating a handful of communal effectors. In 

the present study, we reconstituted the D2R with individual Gαi proteins in live cells to assess the G 

protein signalling in a temporal manner. Stimulation with two different agonists yielded varying G 

protein signalling profiles depending on the agonist efficacy and binding kinetics to the D2R. In 

addition, G protein signalling was also highly dependent on the biochemical properties of the specific 

G protein α subunit. In this manner, we observed a D2R-Gαz signalling wave that was kinetically 

distinct from Gαi or Gαo signalling.  

The slow amplification of D2R-Gαz signalling, manifesting as an increase in potency over 

time, occurs by a mechanism involving the slow GTP hydrolysis rate of Gαz that leads to an 

accumulation of the active Gαz-GTP species over time. Indeed, ropinirole and aripiprazole, when 

activating Gαz, increased in potency over time approximately 10- and 140-fold respectively. Such an 

increase in the potency of ropinirole and aripiprazole can only partly be attributed to the relatively 

slow dissociation rate from the D2R of the latter and this mechanism could not explain the behaviour 

of ropinirole, a fast dissociating agonist. By rapidly ‘switching off’ the D2R with an antagonist, we 

were able to monitor the deactivation rate of the different G protein subunits. This revealed that 

Gαz slowly deactivates in live cells. This slow deactivation of Gαz has been observed before 

(354,370). We were able, through both mutagenesis of the P-loop as well as a secondary approach 

using co-expression with RGS20, to demonstrate that the slow deactivation of Gαz and the increase 

in agonist potency over time are due to its slow GTP hydrolysis rate. This was confirmed by 
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conferring the slow GTP hydrolysis rate into Gαi2 via mutagenesis, that conferred an increase in 

potency over time similar to that observed at Gαz.  

Our data demonstrate that the slow GTP hydrolysis rate of Gαz occurs in live cells, implying 

that this characteristic may serve a physiological role. Indeed, the Ser42 residue of Gαz that we 

demonstrate confers this slow hydrolysis rate is within the P-loop motif of the G protein subunit. 

As a key determinant of the GTPase activity, the P-loop has significant evolutionary pressure on it, 

hence, it is highly conserved across all G proteins. Therefore, it must be evolutionarily favourable to 

harbour a G protein within an organisms’ genome that has a slow deactivation rate for some particular 

function(s). We postulate that Gαz may be upregulated and coupled to by GPCRs when a slow 

signalling pattern is desired as opposed to a fast signalling response. This may be a logical purpose 

for Gαz considering that Gαz has similar downstream effectors to the other Gαi subfamily members 

and as such would not elicit a distinct biochemical response. Indeed, a previously suggested function 

of Gαz has been that the sustained signalling pattern of Gαz could be useful in regulating the slow 

control of the circadian clock by GPCRs such as GPR176 (371-373). Additionally, the expression of 

Gαz mRNA in mice appears to be upregulated perinatally and decreases over time into adulthood 

(374). Therefore, the slow G protein signalling via Gαz coupling to the D2R may be dependent on 

developmental stage. Furthermore, studies have shown unique patterns of Gαz expression in 

intracellular compartments (375-377). In addition to being localised to the plasma membrane, Gαz in 

Purkinje cells was shown to be localised to the outer membrane of the nuclear envelope, the 

endoplasmic reticulum and microtubules (375). It has further been determined that Gαz in the sciatic 

nerve can transport from the axon to the soma (retrograde axonal transport)(376,377). This leads one 

to hypothesise that the slow deactivation rate of Gαz may allow GPCR-activated Gαz to translocate 

from the plasma membrane to intracellular compartments for a sustained period to serve a distinct 

signalling role. Of course, this all must be considered in the context of RGS protein expression as our 

data illustrates that RGS20 can act on D2R-activated Gαz to increase the turnover rate. Thus, Gαz may 

behave as a fast cycling G protein when co-expressed with specific RGS proteins or exist as a slow 

cycling G protein when no such RGS proteins are present. It is possible then, that the relative 

expression of Gαz and its cognate RGS proteins may allow for fine tuning of temporal responses 

downstream of Gαi/o/z coupled GPCRs in individual tissues. 

The relative potency and maximal effect values suggest that perhaps there is an 

underappreciated role for the D2R to signal through Gαz in vivo. This contrasts with the most accepted 

view, that the D2R predominantly exerts its’ in vivo effects through the Gαo isoforms (140). Certainly, 

in line with this historical view, our data showed that the D2R couples more efficiently to GαoA and 

GαoB isoforms than to Gαi1, Gαi2 and Gαi3 as previously reported (139). However, our concentration-
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response curves demonstrated that the D2R can be as efficiently coupled to Gαz as it is to the Gαo 

isoforms. While it was previously known that the D2R can couple to Gαz (378), the selectivity of the 

D2R for all the Gαi subunits had not been quantitatively assessed in the same system. This selectivity 

pattern implies that the D2R may couple to Gαz natively. Furthermore, the evidence supporting Gαo 

as the main G protein transducer for the D2R is largely based around one study by Jiang and colleagues 

(140). They reported that high affinity agonist binding at the D2R was not present in membranes 

prepared from the brains of Gαo knockout mice but it was present in the Gαi1, Gαi2 and Gαi3 knockouts 

(140). Importantly, there are some limitations of this work: First, this study did not specifically 

investigate Gαz coupling. Second, Gαo is likely the most prevalent subunit in the brain and as such its 

effects are more easily measured than the other Gα subunits (141,142). Third, this direct agonist 

binding measurement provides an indication of agonist affinity for the receptor-G protein complex 

and as such, does not account for the proposed signal amplification associated with the longer lifetime 

of the active GTP-bound Gαz G protein. Our data suggests that it is this step that contributes to the 

relatively high potency of agonists when the D2R is coupled to Gαz. Thus, Gαz may have an 

unappreciated role in D2R signalling that would not be detected by such an approach. D2R-Gαz 

coupling in vivo can be supported by data demonstrating that Gαz is required for some D2R mediated 

responses. For example, Van Den Buuse and colleagues (150), demonstrated that either amphetamine 

or apomorphine induced disruption of prepulse inhibition is enhanced in Gαz knockout mice. The 

disruption of prepulse inhibition in mice induced by amphetamine and apomorphine is a D2R 

dependent process (149,379). Therefore, this is direct evidence that D2R signalling through Gαz may 

play a role in sensorimotor gating. Moreover, in mice lacking Gαz, the D2-type selective agonist 

quinpirole is less effective at decreasing locomotor responses, inhibiting dopamine release in the 

nucleus accumbens, eliciting hypothermia and increasing plasma adrenocorticotropic hormone 

(ACTH) (151). Additionally, Gαz may couple to the D2R in neuroendocrine systems. For example, 

Gαz has been postulated to play a role in D2R mediated inhibition of prolactin release from rat 

pituitary lactotrophs (148).  

Having identified molecular and cellular evidence for a unique D2R-Gαz signalling wave, 

future studies could aim to investigate this in vivo and with additional GPCRs. Whole mouse genetic 

knockout studies have suggested a role for D2R-Gαz signalling in the brain (150,151). This may be a 

crude approach to investigate the dependence of Gαz in some D2R mediated behaviours. Given that 

we now recognise an important functional difference of Gαz in its slow GTPase activity, a more 

targeted approach to investigate Gαz could be to use gene editing technologies to alter the GTPase 

activity of Gαz in vivo. D2R-dependent behaviours could then be assessed to understand the role the 

slow GTP hydrolysis rate plays. Additionally, both the D2R and Gαz have separately been studied for 
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their role in metabolism. The D2R and Gαz are expressed in pancreatic beta cells where they can 

modulate glucose-stimulated insulin secretion (146,147). Therefore, it could be worthwhile 

investigating whether the D2R can couple to Gαz in such a system. Furthermore, given that the distinct 

D2R-Gαz signalling wave we observed is in fact largely independent of the properties of the D2R, 

other Gαz coupled receptors are worth investigating such as the serotonin, opioid, melatonin and α-

adrenergic receptors (378,380-382). It would be of importance to determine whether an increase in 

potency over time is also observed upon activation of Gαz by these GPCRs. 

Detailed measurement of agonist-stimulated D2R-mediated G protein activation kinetics 

revealed that a saturating concentration of ropinirole stimulated activation of all tested Gα subunits 

with an observed rate that was statistically faster than aripiprazole stimulation. This is consistent with 

previous studies of GPCRs in which increasing agonist efficacy has been associated with faster 

nucleotide exchange rates (383,384) as well as observed G protein dissociation rates (385). The data 

in this study, although confined to just one high efficacy and one partial agonist, is in agreement with 

such a relationship between G protein heterotrimer dissociation rate and agonist efficacy at the D2R. 

Moreover, we found some nuances in the different agonist induced observed activation rates. Indeed, 

aripiprazole disproportionately activated Gαi2 at a faster observed rate relative to GαoA or Gαz subunits 

as compared to ropinirole’s relative rate of activation of these subunits. It is important to understand 

that this observed rate is a multiple of the rates within the G protein cycle and not simply dependent 

on the GEF ability of the agonist bound D2R. Consequently, we hypothesise that this faster relative 

rate of aripiprazole acting at Gαi2 is due to the G protein cycle being less perturbed by aripiprazole, 

and therefore, it finds a new equilibrium more quickly. In line with this, aripiprazole displayed a 

lower maximal effect when activating Gαi2 relative to ropinirole when compared to GαoA or Gαz 

activation. Our estimated deactivation rate of Gαz was about 50-fold slower than GαoA, whereas a 

previous study documented Gαz as having a 200-fold slower GTP hydrolysis rate (19). While the two 

assay readouts are different, the deactivation rate is entirely dependent on the GTPase rate. We believe 

this discrepancy may reflect differing experimental conditions in our BRET experiments as compared 

to the previous GTP hydrolysis assays (19). The experiments in this study, were performed in live 

mammalian cells at 37°C compared to the GTP hydrolysis assays performed at 30°C on Gαz purified 

from E.coli (19). Furthermore, being in live cells, our assays may be impacted by regulatory proteins 

within the cell and also the relative concentrations of all the signalling components within the system. 

We transfected constant amounts all components however it is difficult to have identical expression 

and localisation between the different transfection conditions. While the components within the GTP 

hydrolysis assays can be tightly controlled, the assays will be more influenced by the buffer 

conditions that can influence the G proteins differently. 
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‘Perfect’ biased agonism describes an observation where an agonist acting at a particular 

receptor can activate one signalling pathway while entirely avoiding activating another pathway 

whereas other non-biased agonists might display activity at all pathways. Such observations can be 

confounded by so called system bias. In this case a weak partial agonist might have robust activity at 

a particularly well coupled signalling endpoint but no measurable activity at a less efficiently coupled 

endpoint. While previous studies have suggested that ‘perfect’ biased agonism can occur at the D2R, 

our measurements of the responses of the weak partial agonist aripiprazole are not consistent with 

this notion. To date the majority of studies investigating both agonist efficacy and G protein 

selectivity at the D2R have used [35S]GTPγS binding assays to measure G protein activation (19,386). 

[35S]GTPγS assays have often failed to detect activation of either Gαi1, Gαi2 or Gαi3 by the D2R when 

stimulated with partial agonists even when overexpressing G proteins or using receptor-G protein 

fusions (137-139), inferring that some agonists can selectively activate Gαo isoforms without 

activating Gαi subunits. In contrast, we could detect robust responses induced by the weak partial 

agonist aripiprazole in the live cell BRET assay. We attribute this to the increased sensitivity in the 

new BRET assay as opposed to older methods. It would be interesting, therefore, to reassess such 

historical observations of bias using this more sensitive approach. 

In conclusion, we showed that kinetically distinct G protein signalling waves transduced by 

the D2R are determined by the nature of the agonist and the G protein. Agonists acting at the D2R can 

induce distinct signalling patterns based on their efficacy and binding kinetics. On the other hand, we 

identified that the GTP hydrolysis rate of the G protein is crucial in determining the temporal 

response. In particular, we observed a distinct signalling wave mediated by Gαz due to its 

considerably slower GTPase activity than all other Gα subunits. These findings bring increased 

importance to D2R-Gαz coupling as it may serve as a novel signalling platform to coordinate a unique 

response from the D2R. 
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5.5 Supplementary Materials 

 
Figure S5.1: G protein activation of Gαi1, Gαi3 and GαoB over time by the D2R. (A, B & C) 
Concentration response curves of cells transfected with the G protein activation sensors together 
with Gαi1 (A), Gαi3 (B) or GαoB (C) measured at 15 minutes in response to increasing concentrations 
of ropinirole (orange circles) or aripiprazole (grey squares). (D, E & F) Potency changes over 30 
minutes of Gαi1 (D), Gαi3 (E) or GαoB (F) activation plotted as pEC50 parameter values estimated from 
concentration response curves fitted at each measurement interval after stimulation of increasing 
concentrations of ropinirole (orange circles) or aripiprazole (grey squares). All values are expressed 
as mean ± SEM from 5 separate experiments performed in single wells. 
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Figure S5.2: Examples of G protein activation increase in BRET responses over time used for 
potency estimates. (A, B & C) Ropinirole induced D2R G protein activation responses over 30 
minutes at Gαi2 (A), GαoA (B) or Gαz (C). (D, E & F) Aripiprazole induced D2R G protein activation 
responses over 30 minutes at Gαi2 (D), GαoA (E) or Gαz (F). All values are expressed as mean ± 
SEM from 5-9 separate experiments performed in single wells. 
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Abstract 

Heterotrimeric G proteins are the main effector for G protein coupled receptors, including the 

D2R. Consequently, understanding G proteins’ functions is key to understanding how signalling 

responses and physiological effects of GPCRs emerge. A useful method for interrogating G proteins’ 

functions has been to use bacterially derived AB5 toxins, such as pertussis toxin, to inhibit their 

coupling and then evaluate the downstream changes. In chapter 3, some of the largest apparent biased 

agonism was observed between the well coupled G protein; Gαz, and the poorly coupled regulatory 

proteins. Additionally, we identified in chapter 5 that Gαz mediates a distinct signalling wave from 

the D2R that is slow and sustained. Together these results advocated for further investigations of D2R-

Gαz signalling. However, Gαz signalling has been historically neglected due to a lack of inhibitor 

tools available to study it. Therefore, in the present chapter we develop a new pertussis toxin-like tool 

that can inhibit Gαi subfamily G proteins, including Gαz. In addition, we characterise Gα subunits 

that are insensitive to the toxin to serve as tools in combination with the toxin. Used in the appropriate 

manner these tools will aid our laboratories’ studies on D2R-Gαz coupling. In addition, these tools 

should prove useful to the wider communities’ general GPCR-Gαi and GPCR-Gαz signalling studies.  

  



Chapter 7 – A pertussis toxin-like protein tool 
 

 
203  

 

6.1 Introduction 

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are signalling transducers 

that link cell surface receptors to intracellular effectors. Heterotrimeric G proteins are localised to the 

intracellular side of the plasma membrane where they can be activated by G protein-coupled receptors 

(GPCRs). Agonists such as a neurotransmitters, hormones, odorants or light can induce a 

conformational change in the transmembrane domains of GPCRs (7). This allows the G protein to 

couple to the GPCR, activate and then act on effectors downstream such as adenylate cyclases, 

phospholipase C isotypes and ion channels (387-389). 

Heterotrimeric G proteins consist of a Gα subunit that has a guanine nucleotide-binding 

domain, as well as a Gβ and Gγ subunit that function as an obligate dimer. The Gα subunit is 

responsible, to a large degree, in determining the specificity of the interaction with the activated 

GPCR. Upon coupling, an important interaction is made between the carboxy-tail of the Gα and the 

intracellular side of the active GPCR (8,9). Following this, the G protein becomes active by the Gα 

subunit exchanging bound guanosine diphosphate (GDP) for guanosine triphosphate (GTP) and 

dissociating from, or rearranging relative to the Gβγ dimer (10,390). Having dissociated, the Gα and 

Gβγ subunits are then able to act on downstream effectors (387-389). 

Gα subunits consist of four subfamilies (Gαs, Gαi, Gαq and Gα12) based on sequence similarity. 

The functions of the Gα subunits can be broadly generalised based on their subfamily classification. 

The stimulatory Gαs subfamily stimulates adenylate cyclases to produce cyclic adenosine 

monophosphate (cAMP), in contrast, inhibitory Gαi subunits are able to inhibit adenylate cyclases 

(349,387). The Gαq subfamily activates phospholipase C-β leading to increases in cytosolic Ca2+, and 

the Gα12 subfamily can activate Rho family GTPases that regulate cytoskeletal processes (388,391). 

However, the intricate functions of the individual subunits within each subfamily is far more complex 

than this. Understanding the details of how each subunit interacts with and regulates specific effectors 

is central to our comprehension of basic cellular signalling systems. Likewise, it is important to 

determine the role each individual Gα subunit plays in controlling particular physiological processes.   

One inhibitory Gα subunit of interest is Gαz because it displays some divergent characteristics. 

Gαz is a Gαi subfamily member that was identified in 1988 (392,393), just prior to the Gαq and Gα12 

subfamilies (394,395). It was shown that Gαz has a slow GDP-GTP exchange rate, slow GTP 

hydrolysis rate, unique Mg2+ dependence, and a restricted pattern of expression (19,147,392,393). 

Despite these unique biochemical characteristics, only a handful of reports have shed light on the 

functions of Gαz. While Kimple and colleagues have built a body of knowledge around Gαz’s role in 

the pancreas (147,396-398), , the functions of Gαz in other tissues largely remain elusive. This neglect 

of Gαz may be due to the lack of molecular tools for investigating its function. 
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AB5-type toxins have been attractive tools for the interrogation of mechanisms of signalling. 

AB5 toxins are virulence factors commonly secreted by pathogenic bacterial species. The toxins are 

characterised by a hetero-hexameric structure consisting of a single A subunit and pentameric ring of 

B subunits. The A subunit is an enzymatically active subunit that acts on a host protein within the cell 

to modulate the hosts’ behaviour. The B subunits are responsible for recognition of host cell receptors 

on the cell surface, aiding in cellular entry. AB5 toxins can have a varied functions on their targets to 

modulate host cell behaviour such as protease activity (399), RNA N-glycosidase activity (400) and 

NAD+-dependent ADP-ribosylation (401). While there are many AB5 toxins with a range of host 

protein targets, there are currently only a few of known interest to the G protein signalling field. 

Cholera toxin (CTX) acts on the Gαs subfamily and renders Gαs subunits constitutively active (402). 

Pasteurella multicoda toxin (PMT) has been identified to deamidate members of the Gαi, Gαq and 

Gα12 family, rendering them constitutively active (403). Pertussis toxin (PTX), from Bordetella 

pertussis, the organism responsible for whooping cough, can actively ADP-ribosylate the members 

of the Gαi subfamily, except for Gαz (404). The ADP-ribosylation by PTX occurs on a cysteine 

residue near the carboxy-tail of Gαi subunits, rendering them incapable of coupling to GPCRs. Cell 

signalling researchers have exploited the actions of CTX and PTX for decades to identify the Gα 

subunits responsible for certain cell signalling and phenotypic phenomena.  

A recent publication by Littler and colleagues (405), reported the identification and structural 

characterisation of a novel PTX-like protein derived from a uropathogenic Escherichia coli. The toxin 

has an active A subunit homologous to PTX and has maintained a similar overall structural fold (Fig. 

S6.1A &B). When using Gαi2 as a substrate in vitro, the novel toxin was shown to have a distinct site 

of ADP-ribosylation from that of PTX (405). The toxin ADP-ribosylated an asparagine residue eight 

amino acids from the carboxy tail, as well as a lysine residue ten amino acids from the carboxy tail. 

Interestingly, the toxins’ asparagine site - approximately one turn below PTXs’ cysteine site - is 

conserved across several heterotrimeric Gα subunits, suggesting that the toxin may have broader 

substrate specificity than PTX (Fig. 6.1A & B).  

In the present study, we demonstrate that the newly described toxin can inhibit the coupling 

of all Gαi subfamily members tested, including Gαz. Thus, we refer to it as GαO, GαZ and GαI 

inhibiting ToXin, or in short; OZITX. Additionally, we show that OZITX abolishes all Gαi subfamily 

mediated downstream inhibition of cAMP production. The active A subunit also remains functional 

upon transfection into mammalian cells, allowing for experiments without the need for toxin 

expression and purification. Moreover, we generate members of the Gαi subfamily that are OZITX 

insensitive, and hence, can serve as tools in combination with OZTIX treatment. Overall, we believe 

OZITX will be a useful molecular tool in the future. 
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Figure 6.1: Identification of Gα carboxy-tail amino acid residues that are putatively ADP-
ribosylated by OZITX. (A) Amino acid sequence alignment of carboxy-termini residues of 
heterotrimeric Gα proteins. Cysteine residues ADP-ribosylated by PTX are indicated in red. Putative 
lysine and asparagine residues ADP-ribosylated by OZITX identified by Littler and colleagues(405) 
are indicated in yellow. The asparagine residue that is a putative substrate is conserved across many 
Gα subunits. (B) The location of OZTX’s and PTX’s substrate amino acid sites within a GPCR-G 
protein complex. The structure of rhodopsin bound to Gαi1β1γ2 is depicted in cartoon (PDB code 
6CMO). Rhodopsin is shown in dark blue, Gαi1 in light blue, Gβ1 in green and Gγ2 in light green. The 
carboxy-terminal Cys351 residue ADP-ribosylated by PTX is shown in red spheres. Lys345 and Asn347, 
the putative residues ADP-ribosylated by OZITX, are highlighted in yellow spheres. Graphic 
constructed using UCSF chimera. 
 

6.2 Methods 

Materials 

Polyethylenimine (PEI), Linear (MW 25,000) was purchased from Polysciences, Inc. 

Ropinirole was purchased from BetaPharma (Shanghai) Co. Ltd. DAMGO ((ᴅ-Ala2, N-Me-Phe4, 

Gly-ol5)-enkephalin)) was purchased from Mimotopes. SKF83822, neurotensin residues 8-13 (NT8-

13), (-)-quinpirole hydrochloride (#1061), Acetylcholine chloride (#A2661), D-glucose (#G8270) 

and pertussis toxin (PTX) were purchased from Sigma-Aldrich. Isoproterenol (#1747) and 

endothelin-1 (#1160) was purchased from Tocris Bioscience (Bristol, UK). Coelenterazine-h was 

purchased from both NanoLight™ Technology and Dalton research molecules (#50303-86-9). 

Forskolin was purchased from Cayman Chemicals (#11018). Nano-Glo® luciferase assay system, 

containing the furimazine substrate, was purchased from Promega. Purified OZITX (EcPltAB) 

protein was a generous gift from Travis Beddoe, La Trobe University. 
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Plasmids 

pcDNA3.1(+) encoding human constructs of: long isoform of the dopamine D2 receptor 

(D2LR), μ opioid receptor (MOPR), dopamine D1 receptor (D1R), neurotensin receptor 1 (NTS1R), 

M1 muscarinic acetylcholine receptor (M1R), β2-adrenergic receptor (β2AR), endothelin A receptor 

(ETAR), Gαi1, Gαi2, Gαi3, GαoA, GαoB, Gαz, GαsS, GαsL, Gαolf, Gαq, Gα11, Gα14, Gα15-EE, Gα12 and 

Gα13 were from the cDNA Resource Centre (cDNA.org). pcDNA3L-His-CAMYEL was purchased 

from ATCC (ATCC MBA-277). masGRK3ct-Nluc, masGRK3ct-Rluc8, venus-1-155-Gγ2 and venus-

156-239-Gβ1 were from Nevin Lambert, Augusta University. pCAGGS-Ric8A and pCAGGS-Ric8B 

were from Asuka Inoue, Tohoku University. The active S1 subunit of OZITX (EcPltAB) was codon-

optimized, synthesized and inserted into pcDNA3.1+. OZITX resistant mutations were made in Gαi1, 

Gαi2, Gαi3, GαoA GαoB and Gαz using site directed mutagenesis. Primer sequences that were used for 

the mutagenesis can be found in Table 6.1.  

Table 6.1: Primers for mutagenesis to create OZITX resistant Gα subunits. 
Gα C-terminal sequence Primer Reverse with XhoI & XbaI digestion sites 
Gαi1 TDVIIKNALKDCGLF CTAGCTCGAGTTAAAAGAGACCACAATCTTTTAGAGCATTTTTTA

TGATGACATC 
Gαi2 TDVIIKNALKDCGLF CTAGCTCGAGTTAAAAGAGACCACAATCTTTTAGAGCATTTTTTA

TGATGACATC 
Gαi3 TDVIIKNALKECGLY CTAGCTCGAGTCAATAAAGTCCACATTCCTTTAAGGCGTTTTTAA

TGATGACATC 
Gαoa TDIIIANALRGCGLY CTATCTAGATCAGTACAAGCCGCAGCCCCGGAGGGCGTTGGCA

ATGATGATG 
Gαob TDVIIAKALRGCGLY CTATCTAGATCAGTAGAGTCCACAGCCCCGTAGGGCTTTGGCGA

TGATGACATCTG 
Gαz TDVIIQNALKYIGLC CTAGCTCGAGTCAGCAAAGGCCAATGTACTTGAGAGCGTTCTGT

ATGATGAC 
 

OZITX resistant mutations were made by changing the eighth-last amino acid to an alanine 

(indicated in red) by using site-directed mutagenesis with the reverse primers used to the right, the 

alanine mutation change is shown in red and restriction site chosen in blue (XhoI) or green (XbaI). 

The constructs were inserted into pcDNA3.1+ with KpnI and XhoI or XbaI as indicated. 

 

Cell culture 

HEK293T cells were purchased from ATCC (CRL-3216). HEK293A ΔGα-all CRISPR/Cas 

knockout cells and HEK293A ΔGαi/o CRISPR/Cas knockout cells were a generous gift from Asuka 

Inoue, Tohoku University. HEK293T cells, HEK293A ΔGα-all cells and HEK293A ΔGαi/o cells were 

cultured in T175 flasks with Dulbecco’s Modified Eagle Medium (DMEM) + GlutaMAXTM-I (Gibco, 

Invitrogen, Paisley, UK) with 10% foetal bovine serum (Corning #35-010) and 1% 
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penicillin/streptomycin (Corning #30-002). All Cells were grown in a humidified incubator in 5% 

CO2 at 37°C and sub-cultured at a ratio of 1/10-1/20. 

 

Transfection 

Briefly, cells were harvested from T175 flasks and plated into 6 well Nunc™ tissue culture 

plates at a density of 500,000 cells per well. The following day the media was removed and replaced 

with fresh media and transfected using PEI as the transfection reagent. The correct amounts of PEI 

and DNA were added to the buffer separately before mixing together, incubating for 20 minutes, and 

then adding dropwise on top of the cells in the fresh media.  

For the G protein activation assays where the toxin was added exogenously: The HEK293A 

ΔGα-all CRISPR knockout cells were transfected using PEI in a ratio of 6:1 PEI:DNA (w/w) in PBS. 

The cells were transfected with a cDNA mixture consisting of: 0.143µg GPCR, 0.286µg Gα, 0.143µg 

Gβ1-venus, 0.143µg Gγ2-venus, 0.143µg masGRK3ct-Nluc and 0.143µg Ric8A or Ric8B or 

pcDNA3.1. The chaperone Ric8A was transfected together with Gα14 and Gα15 and Ric8B was 

transfected with Gαolf.  

For the cAMP BRET assays where the toxins were exogenously added: The HEK293A ΔGαi/o 

CRISPR knockout cells were transfected using PEI in a ratio of 6:1 PEI:DNA (w/w) in PBS. The 

cells were transfected with a cDNA mixture consisting of: 0.143µg D2LR, 0.286µg 

Gαi2/GαoA/Gαz/pcDNA3.1 and 0.429µg CAMYEL sensor. 

Assays where the active A subunits of the toxins were transiently transfected had the 

following conditions: HEK293T cells were used and transfected using PEI in a ratio of 1.5 PEI: 1 

DNA (w/w) mixed in 150mM NaCl.  For the G protein activation assays the cells were transfected 

with Gβ1, Venus-Gγ2 and masGRKctRluc8 as well as the Gα subunit of interest together with a 

receptor suited for the specific G protein class and the chaperone proteins Ric8A for Gα14 and Gα15 

and Ric8B for Gαolf. For the cAMP production inhibition assays the cells were transfected with the 

CAMYEL sensor (ATCC MBA-277). For arrestin recruitment MeNArc assays (406), the cells were 

transfected with a membrane-anchor fused to the N-terminus of NanoLuc and β-arrestin-2 fused to 

the C-terminus, together with GRK2, D2R and either the active subunit of PTX (PTX-S1), OZITX 

(OZITX-S1) or pcDNA3.1+ as a control.  

 

G protein activation 

G protein activation was measured using a BRET assay that monitors Gβγ release(257,258). 

The HEK293A ΔGα-all cells were first transfected as described earlier and the following day the cells 
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were harvested and transferred into white 96 well CulturPlates (PerkinElmer) in DMEM +10% FBS. 

In the conditions where the cells were treated with OZITX or PTX, the cells were left to adhere before 

being treated in the 96 well plate 16-20 hours before performing the assay. The G protein activation 

assays were then performed approximately 24 hours after plating out the transfected cells. The media 

in each well was aspirated, washed with Hank’s balanced salt solution pH7.4 (HBSS), replaced with 

HBSS and then kept at 37°C for the remainder of the assay. Furimazine was added with a multi-

stepper pipette 15 minutes before agonist addition and left to equilibrate. The agonist was then added, 

and cells were incubated in a LUMIstar Omega (BMG Labtech) plate reader. The BRET 

measurements were then taken 2.5 minutes after agonist addition. Simultaneous dual emission filters 

were used in the LUMIstar Omega for detection of the luciferase at 445-505nm and venus at 505-

565nm, all measured at 37°C. For G protein activation assays where the toxin active A subunit cDNAs 

were transfected, the same protocol was followed with some exceptions: HEK293T cells were used 

instead of CRISPR/Cas gene editied cells, DPBS + 5mM glucose was used as the assay buffer, 96 

well black-white iso plates were used, and the plate was detected five minutes after agonist 

stimulation in a Pherastar FS (BMG Labtech). After acquiring the data, the ratio of the venus emission 

channel was then divided by the luciferase emission channel to determine the BRET ratio. The 

vehicle-subtracted raw BRET ratio (drug induced increase in BRET) is plotted for the G protein 

activation assay data.  

 

cAMP production inhibition 

The cAMP production inhibition assays’ principle is based on the ability of a genetically 

encoded conformational BRET sensor to detect the relative concentrations of intracellular 

cAMP(358). Initially, the transfected HEK293A ΔGαi/o cells were harvested and transferred into 

white 96 well CulturPlates in DMEM +10% FBS 24 hours after the transient transfection. When the 

cells were treated with OZITX or PTX, this occurred in the 96 well plate after adherence and about 

18 hours before the assay. Next, the cAMP inhibition assays were performed the following day after 

plating out the transfected cells and toxin or control treatment. On the day of the assay, the plate 

media was aspirated, washed once with HBSS pH 7.4 and replenished with HBSS pH 7.4 and then 

held at 37°C for the rest of the experiment. 5μM coelenterazine-h was added 15 minutes before 

agonist addition. 10µM Forskolin was added 10 minutes before agonist addition and the readings 

were then continuously taken in the live cells. Bioluminescence was detected on a LUMIstar Omega 

set to 37°C. Simultaneous dual emission filters were used for the BRET donor at 445-505nm and the 

acceptor at 505-565nm. The ratio of the acceptor channel was then divided by the donor channel to 

determine the BRET ratio. The data was then baseline-corrected to the vehicle control wells over 
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time. A slightly modified protocol was followed for the assays where the active subunit cDNAs of 

the toxins were transfected: HEK293T cells were used instead of the HEK293A ΔGαi/o cells, 96 well 

black-white isoplates were used, DPBS +5mM glucose was used as the assay buffer, a higher 

concentration of 30μM forskolin was used and this was co-added with the coelenterazine-h ten 

minutes prior to the addition of the agonist. The plate was then detected 20 minutes after agonist 

addition in a PHERAstar FS.  

 

Arrestin recruitment 

D2R mediated β-arrestin-2 recruitment to the plasma membrane was conducted using the split 

luciferase complementation-based assay – MeNArC (406). HEK293T cells were co-transfected with 

multiple constructs as described earlier in the methods section. The cells were transfected with; D2R, 

GRK2, a membrane-anchor fused to the N-terminal half of NanoLuc, β-arrestin-2 fused to the C-

terminal half of NanoLuc and either the active subunit of PTX (PTX-S1), OZITX (OZITX-S1) or 

pcDNA3.1+ as a control. 48 hours after transfection the cells were washed with DPBS (Corning #21-

031-CV), resuspended in DPBS +5 mM Glucose and seeded out into a 96 well black-white iso plate 

(Perkin-Elmer). Five minutes after the addition of 5µM coelenterazine-h, the D2R agonist quinpirole 

was added and luminescence was read after 20 minutes in a Pherastar FS (BMG Labtech).  

 

Data analysis 

GraphPad Prism 8 was used for data analysis and performing statistical tests. Figures 

depicting molecular structures were constructed using ICM-Browser (MolSoft LLC) and UCSF 

Chimera (407). 

 

6.3 Results 

OZITX treatment abolishes GPCR mediated activation of all Gαi subfamily members, 

including Gαz 

Gαz displays divergent biochemistry and a more restricted expression profile compared to the 

other Gαi members (19,392,393). The significance of these characteristics, however, has not been 

realised partly due to the lack of molecular biological tools for Gαz. We hypothesised that OZITX 

may serve as one such tool to investigate Gαz because we observed that Gαz possesses a conserved 

Asn348 residue eight amino acids from the carboxy tail that is thought to be ADP-ribosylated by 

OZITX (Fig. 6.1A) (405). Consequently, we sought to determine whether OZITX inhibits Gαz 
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coupling to GPCRs. To achieve this, we used a previously described NanoBRET assay that measures 

the release of Gβγ subunits from the Gα subunits upon activation of the heterotrimer (Fig. 6.2A) 

(257,258). While this assay provides a method for rapidly assessing G protein activation, the signal 

can potentially be partially contaminated by endogenously expressed Gα subunits in the cells 

(257,354). We therefore, adapted the assay for use in newly edited HEK293A CRISPR/Cas ΔGα-all 

cells whereby all the Gα subunits had been genetically knocked out (408). This allowed us to quickly 

monitor the Gβγ release from the activation of one particular Gα subtype of interest that had been 

exogenously transfected.  

The dopamine D2 receptor (D2R) was used as a prototypical Gαi subfamily coupled receptor 

to assess the effect of OZITX treatment on Gαi protein activation. The D2R is an ideal GPCR to use 

for these experiments as it promiscuously couples to all of the Gαi subfamily, including Gαo isoforms 

and Gαz (186,267). Cells transiently expressing the D2R were pre-incubated with PTX or OZITX 

followed by stimulation with the D2-like receptor selective agonist ropinirole (409). When doing this, 

it was observed that OZITX completely blocked the activation of Gαi1, Gαi2, Gαi3, GαoA and GαoB 

(Fig. 6.2B). This finding demonstrates that OZITX can function essentially the same as PTX - a 

finding that was in fact previously reported by Littler and colleagues (405). We extended our studies 

to see the effect of OZITX treatment on Gαz activation. As predicted from the carboxy-tail Asn348 

residue within Gαz, the D2R was incapable of activating Gαz upon ropinirole stimulation of cells that 

were pre-incubated with OZITX (Fig. 6.2B). In contrast, Gαz was insensitive to inhibition by pre-

treatment of cells with PTX, consistent with the absence of the required cysteine substrate site residue 

(Fig. 6.1A).  

Next, the same set of experiments was performed with another Gαi/o/z coupled GPCR; the μ 

opioid receptor (MOPR). Cells expressing the MOPR were pre-incubated with either OZITX or PTX 

and then stimulated with the agonist DAMGO (Fig. 6.2C). OZITX again inhibited coupling to each 

of the Gαi subunits completely, including Gαz. (Fig. 6.2C). This showed that OZITX does not 

discriminate between GPCRs when inhibiting G protein activation and thus may serve as a universal 

GPCR tool. We then sought to further characterise the toxin by measuring the activation of Gαi2 by 

the D2R after exposure to OZITX at different timepoints. Gαi2 activation decreased with increasing 

time of OZITX exposure until Gαi2 activation was completely abolished approximately sixteen hours 

after the addition of OZITX (Fig. 6.2D). This is consistent with the characteristics of PTX and hence 

suggests that OZITX, like PTX, would be best utilised in the laboratory by incubating with the cells 

overnight.  
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Figure 6.2: Activation of members of the Gαi subfamily in the presence of OZITX and PTX. (A) 
Representation of the BRET sensors used for detection of G protein activation. Cells are transfected 
with DNA encoding a GPCR, Gα, venus156-239-Gβ1, venus1-155-Gγ2 and masGRK3ct-Nluc. The 
Gαβγ heterotrimer is activated through agonist binding to the GPCR. Active Gα exchanges the bound 
GDP for GTP and the Gα and Gβγ-venus dissociates. Free Gβγ-venus is bound by masGRK3ct-
Nluc that serves as a BRET donor resulting in non-radiative energy transfer from Nluc to venus in 
the presence of the substrate furimazine. (B) D2R mediated activation of Gαi subfamily members in 
the presence of OZITX or PTX. Cells were pre-treated with either vehicle (black), OZITX (blue) or 
PTX (red) for 24 hours. Cells were then stimulated with 1μM ropinirole for 2.5 minutes followed by 
BRET detection. Data represents the mean drug induced increase in BRET ratio from vehicle ± SEM 
from 3-6 independent experiments. (C) MOPR mediated activation of Gαi subfamily members in the 
presence of OZITX or PTX. Cells were pre-treated with either vehicle (black), OZITX (blue) or PTX 
(red) for 24 hours. Cells were then stimulated with 1μM DAMGO for 2.5 minutes followed by BRET 
detection. Data represents the mean drug induced increase in BRET ratio from vehicle ± SEM from 
3 independent experiments. In (B) and (C), * represents where the response is significantly different 
(P < 0.05) from the respective vehicle toxin untreated control condition (black bar) as determined by 
a one-way ANOVA with Dunnett’s multiple comparisons test. (D) Time course of OZITX treatment 
on G protein activation. HEK 293 ΔGα-all cells were transfected with cDNA encoding the D2LR, Gαi2 
and G protein activation sensors. Cells were pre-treated with OZITX for the indicated times. BRET 
was measured 2.5 minutes after stimulation with 1µM ropinirole (blue open circles) or vehicle (blue 
filled circles). The basal BRET ratio prior to agonist stimulation has been subtracted to give the drug 
induced ΔBRET ratio. Data represents the mean ± SD from three separate experiments. * represents 
where the response is significantly different (P < 0.05) from the respective pcDNA control condition 
as determined by one-way ANOVA with Dunnett’s multiple comparisons test. 
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Gαi2, GαoA and Gαz mediated cAMP production inhibition is inhibited by OZITX 

Cell surface receptor signalling is commonly amplified in the subsequent steps down the 

signalling cascade to increase the cells’ sensitivity to extracellular stimuli. We wanted to confirm that 

OZITX also blocks the signalling at later stages in the cascade because a negligible response at the 

level of G protein activation could manifest as a larger signal further downstream. We therefore, 

assessed the effect of OZITX treatment on the downstream endpoint of intracellular cAMP since the 

Gαi subfamily are well-known to bind and inhibit adenylate cyclases (349,410). The intracellular 

cAMP levels were then monitored using CAMYEL; an intramolecular conformational BRET sensor 

based on EPAC (358). In these experiments, we used HEK293A cells that harboured a genetic 

knockout of all the Gαi subfamily members using CRISPR/Cas (HEK293A CRISPR/Cas ΔGαi). 

Individual Gαi subunits of interest were then transfected into the cell background to monitor their 

ability to inhibit cAMP production. The cells were then treated with forskolin to stimulate adenylate 

cyclase, resulting in an increase in the levels of cAMP. This was then followed by treatment with 

ropinirole to stimulate the D2R, leading to activation of the Gαi subunit of interest. Importantly, in 

the absence of a transfected Gα subunit, there was no detectable drug-induced inhibition of cAMP 

production, as observed by a lack of an increase in BRET ratio (Fig. 6.3A). When Gαi2 or GαoA were 

transfected, stimulation of the D2R produced a decrease in relative cAMP levels (indicated by an 

increase in BRET ratio) and this was completely abolished in cells treated with OZITX (Fig. 6.3B & 

C). In addition, cells transfected with Gαz also produced a decrease in cAMP, albeit to a slightly 

smaller amount, and this was again blocked in the presence of OZITX (Fig. 6.3D). This indicates that 

OZITX mediated ADP-ribosylation entirely occludes the Gαi protein members from coupling thus 

wholly preventing any downstream signalling. 
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Figure 6.3: OZITX’s effect on Gαi2, GαoA and Gαz mediated inhibition of cAMP production. 
Inhibition of forskolin stimulated cAMP production was detected in live cells using CAMYEL; a 
conformational BRET sensor based on EPAC. HEK 293 ΔGαi/o CRISPR cells were transfected with 
DNA encoding the D2R, CAMYEL and either (A) pcDNA3.1+ control, (B) Gαi2, (C) GαoA or (D) Gαz. 
Transfected cells were then incubated with either vehicle (black) or OZITX (blue) for 24 hours. Cells 
were then pre-stimulated with 10µM forskolin for 10 minutes before stimulation with either vehicle 
control (filled circles) or 1μM ropinirole (open circles). Data was baseline corrected to the cells not 
treated with OZITX or ropinirole and is shown as the mean ± SEM from four separate experiments. 
Values were deemed significantly different using an unpaired student’s t-test. * represents P<0.05.  

 

OZITX does not ablate Gαs, Gαq or Gα12 subfamily coupling  

In addition to the Gαi subfamily, the asparagine residue eight amino acids upstream of the 

carboxy-terminus is also conserved across some other Gα members (Fig. 6.1A). We therefore sought 

to further assess the substrate selectivity of OZITX as it could potentially be used as a tool to inhibit 

activation of a wider range of Gα subunits. We first measured the Gαs subfamily activation after 

treatment with OZITX to serve as a negative control because the Gαs subfamily possess a histidine 

residue instead of an asparagine in this position. This was performed using the well-established Gαs 

coupled receptor, the dopamine D1 receptor (D1R) together with the D1-type selective agonist 

SKF83822 for activation (411-414). Indeed, overnight incubation with OZITX did not inhibit Gαs or 

Gαolf activation by the D1R which was in line with our predicted mechanism of OZITX action (Fig. 

6.4A). 

Next, we measured the activation of the Gαq subfamily proteins using the Gαq coupled 

neurotensin receptor 1 (NTS1R)(415,416). Gαq, Gα11, and Gα14 but not Gα15 possess an asparagine 

residue as their eighth last amino acid such that one would expect only the former three subunits to 

be substrates for OZITX and hence not be activated by NTS1R in the presence of OZITX (Fig. 6.1A). 
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Upon stimulation of the NTS1R with a truncated version of the endogenous agonist neurotensin 

(neurotensin residues 8-13 (NT8-13)), OZITX pre-treatment was incapable of completely inhibiting 

activation of any of the Gαq members (Fig. 6.4B). OZITX had no effect on Gαq, Gα11 or Gα15 although 

Gα14 activation was partially decreased (vehicle control = 0.0840, OZITX treated = 0.0644, 

P=0.0012, one-way ANOVA with Dunnett’s multiple comparisons test).  

Moreover, both members of the Gα12 subfamily; Gα12 and Gα13, also harbour the putative 

asparagine site as their eighth-last amino acid (Fig. 6.1A). Consequently, we proceeded to assess the 

action of OZITX on the Gα12 subfamily. We used the NTS1R for activation again because it is known 

to also be capable of coupling to the Gα12 subfamily (417). While we were successful in detecting 

robust activation of Gα12 and Gα13 by the NTS1R, there was no inhibitory effect on the activation of 

either subunit when the cells were treated with OZITX (Fig. 6.4C). Taken together, despite the 

presence of the Asn residue with the Gαq and Gα12 subfamilies, no detectable inhibitory action was 

observed with the exception of Gα14 at which only partial inhibition was observed.  
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Figure 6.4: Gαs, Gαq and Gα12 subfamily activation in presence of OZITX and PTX. (A) 
Activation of Gαs subfamily members by D1R in the presence of OZITX and PTX. (B) Activation of 
Gαq subfamily members by NTS1R in the presence of OZITX and PTX. (C) Activation of Gα12 
subfamily members by NTS1R in the presence of OZITX and PTX. HEK 293 ΔGα-all CRISPR cells 
were transfected with cDNA encoding the particular GPCR and Gα together with the G protein 
activation sensors as described the methods. The cells were pre-treated with either vehicle (black), 
OZITX (blue) or PTX (red) for 24 hours before stimulation with the GPCR agonists 100nM SKF83822 
(D1R) / 1μM NT8-13 (NTS1R) for 2.5 minutes followed by BRET detection. The data is represented 
as the mean drug induced increase in BRET ratio from vehicle control ± SEM from 3-5 separate 
experiments. * represents where the OZITX or PTX treated condition is significantly different (P < 
0.05) from the vehicle treated condition (black) as determined by a one-way ANOVA with Dunnett’s 
multiple comparisons test. 
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The active A subunit of OZITX can be transfected into mammalian cells to act as an inhibitor 

In order to treat cells with AB5 toxin protein complexes both expression and purification of 

this toxin is required (405). We therefore sought to determine if this process could be circumvented 

when using OZITX in order to increase its accessibility to laboratories. Accordingly, we tested 

whether the toxin would be functional upon transfection of the cDNA encoding the active A subunit 

on its own (OZITX-S1). Indeed, the active A subunit of PTX alone can be transiently expressed to 

act this way (418,419). The cDNA sequence of OZITX-S1 was codon optimised for high expression 

in human cells and ligated into pcDNA3.1+. The plasmid encoding OZITX-S1 was then co-

transfected with the CAMYEL sensor into HEK293T cells to assess its effect in a cAMP production 

inhibition assay. Upon activation of the D2R with the agonist quinpirole, cells that were transfected 

with the pcDNA control showed a concentration-dependent decrease in intracellular cAMP levels, 

whereas this response was completely blocked in cells transfected with the positive control PTX-S1 

cDNA as well as the OZITX-S1 cDNA (Fig. 6.5A). This effect indicates that all endogenously 

expressing Gαi subunits were ADP-ribosylated by transfected OZITX-S1 consistent with the action 

of the purified toxin described above. Having identified that transfected OZITX-S1 is functional, we 

then further monitored the activation of the other Gα subfamilies in OZITX-S1 transfected cells in 

order to confirm our previous results using treatment of the complete OZITX protein complex (Fig. 

S6.2 & Fig. 6.4). Indeed, OZITX-S1 transfection was ineffective in abolishing activation of Gαs, Gαq 

and Gα12 subfamilies (Fig. S6.2). 

We next were interested in assessing the effect of OZITX on arrestin recruitment to GPCRs. 

This is of importance considering many studies seeking to detect arrestin-dependent signalling do so 

by using PTX under the assumption that all Gαi mediated signalling is blocked (420-426). We 

reasoned that OZITX may be more appropriately used in such situations given that PTX is an 

imperfect tool in such instances when the cells of interest express Gαz and the GPCR of interest is 

coupled to this G protein. Accordingly, we examined the effect of OZITX on agonist-induced β-

arrestin-2 (also termed arrestin-3) recruitment to the D2R using a new MeNArC assay. We found that 

OZITX-S1 had a negligible effect on β-arrestin-2 recruitment to the D2R, akin to the effect of 

transfected PTX-S1 (Fig. 6.5B). This illustrates that OZITX may be a useful tool to completely inhibit 

all Gαi subfamily members while permitting the assessment of arrestin-dependent signalling. 
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Figure 6.5: Effect of transfected cDNA encoding OZITX and PTX on cAMP inhibition and β-
arrestin-2 recruitment. (A) D2R mediated cAMP inhibition in the presence of OZITX and PTX cDNA. 
cAMP inhibition was performed after transfection of the either a pcDNA3.1+ control (black open 
circles), OZITX active subunit (OZITX-S1) (blue open circles), or PTX active subunit (PTX-S1) (red 
open circles) together with the D2R and CAMYEL as described in methods. Cells were pre-treated 
with 30μM forskolin 5 minutes before stimulation with increasing concentrations of quinpirole 
followed by BRET detection. Data represents the mean ± SEM of eight separate experiments. (B) 
Recruitment of β-arrestin-2 to the D2R in the presence of OZITX and PTX cDNA.  β-arrestin-2 
recruitment was performed after transfection of the either a pcDNA3.1+ control (black open circles), 
OZITX active subunit (OZITX-S1) (blue open circles), or PTX active subunit (PTX-S1) (red open 
circles).  β-arrestin-2 recruitment was measured in response to increasing concentrations of 
quinpirole using the MeNArC split luciferase complementation assay as outlined in the methods. 
Data represents the mean ± SEM of four separate experiments. 

 

Gαi subunits can be made OZITX insensitive 

Understanding the actions of a single Gαi subtype has historically been challenging because 

there are usually multiple Gαi members expressed within any given cell type. A method that has 

permitted the investigation of a single Gαi subunit is to use cells expressing a PTX insensitive Gαi 

mutant in combination with PTX pre-treatment of the cells (427). This uncouples any endogenously 

expressed PTX sensitive Gαi subunits and allows GPCR mediated activation of only the PTX 

insensitive mutant of interest. Appreciating this, we followed the same rationale by attempting to 

generate OZITX insensitive Gαi mutants in the hope of increasing the scope of OZITX applications. 

To render the Gαi/o/z subunits insensitive to OZITX, we replaced the asparagine eight amino acids 

from the carboxy-terminus to an alanine (Gαi1-N347A, Gαi2-N348A, Gαi3-N347A, GαoA-N347A, 

GαoB-N347A and Gαz-N348A)  as this was previously identified as the most likely substrate site using 

mass spectrometry (Fig. 6.1A) (405). We then performed G protein activation assays using the D2R 

to activate each Gαi mutant in the presence or absence of PTX-S1 or OZITX-S1 (Fig. 6.6 & Fig. 

S6.3). In contrast to the activation of the wild-type Gαi3, GαoA and Gαz that are all abolished by 

OZITX (Fig. 6.6A, B & C), activation of Gαi3-N347A, GαoA-N347A and Gαz-N348A were OZITX 

insensitive (Fig. 6.6D, E & F). Additionally, it was observed that the N347A/N348A mutation did 

not impact the PTX sensitivity of the Gαi subunits (Fig. 6.6D, E &F). Likewise, the well-known PTX 
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insensitive mutation (C351I) introduced into Gαi3 and GαoA, did not disturb the ability of OZITX to 

act on them (Fig. 6.6G & H). Having identified that the N347A/N348A mutation renders these Gαi 

members insensitive to OZITX without perturbation, the mutations were also extended into the 

remaining Gαi subunits and validated (Fig. S6.3).  

 
Figure 6.6: OZITX sensitivity of Gαi subfamily carboxy tail Asn347/348 mutants. (A) Gαi3-WT 
activation, n=4-11. (B) GαoA-WT activation, n=4. (C) Gαz-WT activation, n=5-6. (D) Gαi3-N347A 
activation, n=4. (E) GαoA-N347A activation, n=4. (F) Gαz-N347A activation, n=6-8. (G) Gαi3-C351 
activation, n=4-9. (H) GαoA-C351 activation, n=4. The G protein activation assay was performed on 
WT, Asn347Ala/Asn348Ala (putative OZITX site) and Cys351Ile (PTX insensitive) mutants. Cells 
were transfected with the D2R, the particular Gα mutant, the G protein activation sensors and either 
a pcDNA3.1+ control (black open circles), OZITX-S1 cDNA (blue open circles) or PTX-S1 cDNA (red 
open circles). Cells were then stimulated with increasing concentrations of quinpirole before BRET 
detection. Data represents the mean drug induced increase in BRET ratio from vehicle ± SEM.  

 

 

6.4 Discussion 

PTX and CTX have been useful tools in GPCR signalling research to interrogate signalling 

pathways responsible for particular physiological processes. Here we have demonstrated a new tool 

for the inhibition of GPCR mediated activation of the Gαi subfamily, including Gαz, through the use 

of a recently identified PTX-like protein - OZITX. OZITX has a distinct substrate site from that of 

PTX, enabling it to act on Gαz in addition to all the PTX sensitive Gα subunits. The unique substrate 
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site was shown to be an asparagine residue eight amino acids from the carboxy-tail, yet, harbouring 

the asparagine residue was insufficient in rendering the Gαq and Gα12 subfamilies sensitive to OZITX. 

Moreover, we showed that the transfected OZITX-S1 subunit is functional in mammalian cells, 

allowing for a more economical method of intracellular inhibitor delivery. Using this method of 

delivery, we finally showed that mutation of the Asn347 or Asn348 substrate site within Gαi subunits 

maintains their ability to couple to GPCRs while engendering them insensitive to OZITX.  

While OZITX inhibits the other Gαi subunits, we showed that OZITX can be used for the total 

prevention of GPCR-Gαz signalling. Used in this fashion, OZITX is a tool distinct from all the prior 

methods that have been used to interrogate Gαz signalling. Previous studies have relied on inventive 

strategies to inhibit Gαz signalling such as; overexpression of Gαz-specific RGS proteins (147), Gαz-

directed siRNA (428), and Gαz de-activation via PKC phosphorylation (148). However, these 

approaches do not completely block all activation of Gαz. This property is crucial for reliable results 

because any amplification in the signal transduction system may mask the partial inhibition that 

occurred upstream. Therefore, an ideal molecular tool can completely block all signalling via the 

pathway of interest. Genetic knockouts of the gene that encodes Gαz have been used for this reason 

(150,396). The genetic knockout approach is more robust than the earlier described methods, 

however, it is technically challenging compared to OZITX treatment. Additionally, OZITX can be 

used in a more acute manner by overnight treatment whereas gene-editing technologies provide 

greater time for compensatory mechanisms by the cell potentially leading to uncertain results. While 

a complete genetic knockout may be advantageous in some circumstances, post-translational 

modification is likely to have less off-target cellular effects because it occurs at a later stage - the 

level of the protein. 

Our results suggest that OZITX could serve as a replacement to PTX in most experimental 

paradigms aimed at interrogating Gαi/o/z signalling moving forward. One of the early demonstrations 

of PTX’s utility was to aid in identifying the Gαi subfamily by distinguishing it from the Gαs 

subfamily (349). PTX was shown to block the inhibitory effect that Gαi proteins have on adenylyl 

cyclases, thus building evidence for a separate Gα species with distinct functionality to Gαs. Since 

then, PTX has been widely used with the same rationale, that is, to differentiate GPCR responses 

mediated by Gαi proteins from other signal transducers (429). However, it has been known for 

decades that it is imperfect due to its lack of action on Gαz (392,393). We have now shown that this 

contrasts with OZITX, we determined that it can inhibit Gαz in addition to inhibiting Gαi1, Gαi2, Gαi3 

and the Gαo isoforms. Considering this, it should be recognised that the replacement of PTX by 

OZITX will occur assuming OZITX also inhibits the visual and taste Gα subunits; Gαt1, Gαt2 and 

Gαgust. We have not evaluated whether OZITX inhibits the coupling of these Gα subunits in the 
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present study. One would expect ADP-ribosylation by OZITX to occur on Gαt1, Gαt2 and Gαgust since 

they harbour an asparagine as their eighth-last amino acid residue in addition to having high sequence 

homology to the other Gαi subunits.  

While OZITX is expected to often replace PTX, one would consider that PTX will not become 

redundant because the reasons for using PTX will evolve. There are likely be cases where PTX is still 

required due to its contrast in Gα specificity. For example, disentangling the functions of Gαz from 

the other Gα subunits will require both the use of PTX and OZITX. Indeed, performing an experiment 

with an OZITX treated, a PTX treated and an untreated condition in parallel, would enable the 

signalling mediated by Gαz, PTX sensitive Gαi subunits and toxin insensitive Gα subunits to be 

separately measured. 

OZITX lacked the ability to abolish the coupling of the Gαq and Gα12 subfamily, despite the 

Gαq and Gα12 subfamilies carrying the conserved asparagine substrate site in their carboxy α-helix. 

OZITX only had a small effect on Gα14 activation and there was a lack of any effect on all the 

remaining Gαq and Gα12 subunits. This result complicated our predicted mechanism of action as we 

had presumed that the conserved asparagine residue was the main determinant for OZITX specificity. 

In line with our thinking, PTX can act on all the Gα subunits that contain the Cys351/352 substrate site. 

Certainly, our initial results supported this mechanism because the Gαs subfamily was not inhibited 

and it does not possess an asparagine in the appropriate position for ADP-ribosylation. However, our 

results together suggested that Gα14 is a very poor substrate for OZITX and that the Gαq and Gα12 

subfamilies are not the target of OZITX. Curiously, these findings can be explained when considering 

prior literature reporting that swapping the five carboxy-terminal residues of Gαi2 or GαoA onto Gαq 

does not produce a Gα subunit that is sensitive to PTX, even though the modified Gαq contains the 

required cysteine residue four amino acids from the carboxy-termini (430). This indicates that 

carrying the required substrate amino acid site alone is not enough to render the a Gα subunit sensitive 

to the PTX-like protein. In the case of OZITX, this hypothesis could be further supported by 

determining whether introducing the conserved asparagine residue into the Gαs subfamily has any 

effect on the subfamilies’ OZITX insensitivity. Furthermore, our results using OZITX together with 

previous findings using PTX would imply that the site of ADP-ribosylation is distinct from the 

binding recognition site of the PTX-like protein. Future studies could investigate the structural basis 

for the recognition of specific Gα subunits by OZITX and PTX. 

It was determined that the OZITX-S1 cDNA can be transfected for a more practical and 

economical approach to inhibit Gαi/o/z signalling as compared to use of the purified toxin. This means 

that the whole protein complex does not need to be expressed and purified, instead obtaining DNA 

that encodes the active A subunit is adequate. Previous studies have demonstrated that transfected 
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PTX-S1 can be used to reduce the time and cost associated with acquiring the purified protein 

(418,419). Indeed, this suggests that most ADP-ribosylating active subunits from PTX-like proteins 

will remain functional when transfected. Furthermore, we also demonstrated that using transfected 

OZITX does not prevent β-arrestin-2 recruitment to the D2R. Accordingly, OZITX may be used as a 

method for blocking any unwanted Gαi subfamily signalling when seeking to exclusively assess 

arrestin-dependent signalling. 

We showed that Gαi subunits can be made OZITX insensitive through an N347A/N348A 

mutation in the eighth-last amino acid position. Further studies may seek to check the alanine mutant 

and, if required, potentially swap the alanine with another residue that continues to prevent ADP-

ribosylation while more closely matching the biochemistry of the wild type protein. Mutations like 

this have previously been generated for the PTX insensitive Gαi subunits by changing the initially 

discovered PTX insensitive C351G/C352G mutation to the preferred C351I/C352I mutation (431). 

Nonetheless, the OZITX insensitive mutants can serve as a useful tool in combination with OZITX 

treatment to investigate single Gαi proteins in an endogenous Gαi null background. Building on this, 

OZITX insensitive Gα mutants and PTX insensitive mutants could be complementary to each other. 

For example, it could be of use to transfect both an OZITX insensitive Gα mutant and a PTX 

insensitive Gα mutant into the same cells and either treat with OZITX or PTX to assess the effect of 

one subunit in identical cellular conditions.  

Moreover, it was interesting that in our hands, mutation of the Asn347/348 residue alone was 

sufficient to render Gαi1, Gαi2 and Gαi3 resistant to OZITX. This is because these Gα subunits contain 

a lysine residue as their tenth-last amino acid (Lys345/346) that was suggested to be a site for OZITX 

by Littler and colleagues (Fig. 6.1A) (405). These results may suggest that this Lys345/346 site is a poor 

secondary substrate site that is very minimally ADP-ribosylated. Alternatively, another scenario may 

be that ADP-ribosylation of the Lys345/346 site may have no effect on the G protein coupling ability. 

However, this is less probable given that the Lys345/346 site would appear to have quite close proximity 

to the GPCR upon coupling. 

Finally, we have helped support the overarching idea that there is continuing value in the 

characterisation and use of novel AB5 toxins as laboratory tools. Host-pathogen arms races are 

hotspots of molecular evolution that result in proteins with extraordinary functionality. This is 

exemplified in the diversity of ADP-ribosylating AB5 toxins. At present, an unknown number of these 

toxins remain as a large untapped resource. Some ADP-ribosylating AB5 toxins that have been well 

characterised, such as PTX and CTX, have been widely used as tools in G protein signal transduction 

research. Here, we have now validated the use of OZITX and hence, it can be added to the ADP-
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ribosylating AB5 protein tool kit. Indeed, OZITX will be particularly useful when investigating 

aspects of Gαz signalling.  
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6.5 Supplementary Materials 

 

 
A 
 
OZITX_S1      -------------------MLKMFILFLISFSWYANATDFVYRVDSRPPEEIFRDGFRSH 41 
PTX_S1        MRCTRAIRQTARTGWLTWLAILAVTAPVTSPAWADDPPATVYRYDSRPPEDVFQNGFTAW 60 
                                  :  .   : * :*  :    *** ******::*::** :  
 
OZITX_S1      GFNRNLQQHLRGDSCAAGSRDSAFIATTTSLIET--YN---------IARQYYSSSGFHG 90 
PTX_S1        GNNDNVLDHLTGRSCQVGSSNSAFVSTSSSRRYTEVYLEHRMQEAVEAERAGRGTGHFIG 120 
              * * *: :** * ** .** :***::*::*   *  *            *   .:. * * 
 
OZITX_S1      RLYRYRIRANNIFYPIQPSV-NYLTQRGITFSG-FERIMMREQNEIVAVEHIPGENIVEA 148 
PTX_S1        --YIYEVRADNNFYGAASSYFEYVDTYGDNAGRILAGALATYQSEYLAHRRIPPENIRRV 178 
                * *.:**:* **    *  :*:   * . .  :   :   *.* :* .:** *** .. 
 
OZITX_S1      VELTYDRFNSQVSDGPGTTNARYVPGSTFVNPGVIPQLVVPTVSVRERINAFGSLISACF 208 
PTX_S1        TRVYHNGITG-ETTTTEYSNARYVSQQTRANPNPYTSRR-SVASIVGTLVRMAPVIGACM 236 
              ..: :: :..  :     :*****  .* .**.   .    ..*:   :  :. :*.**: 
 
OZITX_S1      ALKGVRRD---------GLNKRATYYEPEFYDARGVLKEIIK 241 
PTX_S1        ARQAESSEAMAAWSERAGEAMVLVYYESIAYSF--------- 269 
              * :.   :         *     .***   *.           

Figure S6.1: Structural comparison of OZITX-S1 and PTX-S1. (A) Amino acid sequence 
alignment of OZITX-S1 and PTX-S1 active subunits. Sequences were aligned with Clustal Omega 
version 1.2.4. ‘*’ represents a completely conserved residue. ‘:’ represents a conserved residue (>0.5 
in the Gonnet PAM 250 matrix). ‘.’ represents a weakly conserved residue (≤0.5 and >0 in the Gonnet 
PAM 250 matrix). (B) Structural superimposition of OZITX-S1 and PTX-S1 active subunits. OZITX-
S1 is depicted in blue cartoon (PDB code: 4Z9C). PTX-S1 is depicted in red cartoon (PDB code: 
1PRT). The toxins are presented in the oxidised state; the state whereby the A subunit is bound to 
the B subunits. The B subunits have been removed for clarity.  
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Figure S6.2: Gαs, Gαq and Gα12 subfamily activation upon transfection of OZITX active 
subunit. (A) β2AR activation of GαsS, GαsL and Gαolf, n=4-7. (B) M1R activation of Gαq, Gα11, Gα14 
and Gα15, n=6. (C) ETAR activation of Gα12 and Gα13, n=7. HEK 293T cells were transfected with 
cDNA encoding the particular GPCR, the Gα, the G protein activation sensors and either pcDNA3.1+ 
control (black), OZITX-S1 cDNA (blue) or PTX-S1 cDNA (red) as described in the methods. 48 hours 
after transfection the BRET assay was performed, stimulation of the cells was carried out by adding 
the agonists isoproterenol (β2AR) / acetylcholine (M1R) / endothelin 1 (ETAR) for 5 minutes followed 
by BRET detection. The data is represented as the mean ± SEM drug induced increase in BRET 
ratio from the vehicle control. 
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Figure S6.3: OZITX Resistant mutants of Gαi1, Gαi2 and GαoB can be engineered. (A) Activation 
of Gαi1-WT, Gαi1-N347A and Gαi1-C351I, n=4-8. (B) Activation of Gαi2-WT, Gαi2-N348A and Gαi2-
C352I, n=4-7. (C) Activation of GαoB-WT, GαoB-N347A and GαoB-C352I, n=4-6. G protein activation 
was performed in the presence of either transfected pcDNA3.1+ control (black), OZITX-S1 cDNA 
(blue) and PTX-S1 cDNA (red). HEK 293 cells were transfected with the Gα mutant subunit of 
interest, G protein activation sensors, the D2R and either a pcDNA3.1+ control, OZITX-S1 cDNA or 
PTX-S1 cDNA. Cells were then stimulated with quinpirole and the drug induced increase in BRET 
ratio baseline subtracted from the vehicle wells is represented. Data is shown as the mean ± SEM. 
* represents the response is significantly different from the respective pcDNA (non-toxin transfected) 
control response (black bar) using a one-way ANOVA with Dunnett’s multiple comparisons test.  
 



  
 

Chapter 7: 
General Discussion 



Chapter 7 – Discussion 
 

 
227  

 

 More clinically approved small molecules target GPCRs than any other protein family 

(2,432). Before the approval of a GPCR drug, lead molecules are selected for in a drug discovery 

process that is typically based on equilibrium estimates of affinity and potency.  However, a drug’s 

concentration in the body is usually in a constant state of change due to multiple physiological 

processes such as drug distribution, dosing regime, tissue absorption, hepatic metabolism and 

excretion (53,54). Therefore, this drug discovery process may be an inefficient means because a 

drug’s binding kinetic rates for the GPCR can often better predict its efficacy in vivo (52,55,56,60). 

The D2R is one such GPCR where ligand binding kinetics has been related to clinical 

outcomes. The D2R is a target to treat many neuropsychiatric and neurological disorders (103,433). 

D2R antagonist kinetics are thought to be important for determining the side effect profile of 

antipsychotic drugs (61,187,218). In the case of D2R agonists, differing binding kinetics has been 

linked to distinct functional effects including some observations of apparent biased agonism (96,189). 

However, the precise mechanisms as to how these findings arise are largely unclear.  

Given that G protein signalling, regulation by GRKs, desensitisation and trafficking of the 

D2R all occur over different timescales (96,102,153,261,434), the lifetime of the agonist-receptor 

complex could differently influence the ability of effectors to bind and function in these processes. 

Therefore, the primary hypothesis of this thesis was to determine whether differences in the residence 

time (or dissociation rate) of D2R agonists can function as a mechanism to manifest biased agonism. 

Before examining this however, we first wanted to determine whether ligands could have their 

binding kinetics rationally modulated. We aimed to do this by determining different ligand’s amino 

acid interactions along their binding pathway into the pocket of the D2R. After having investigated 

these first two aims, we appreciated that to wholly understand the mechanisms of biased agonism, 

one must first understand the drivers of the signalling systems. We consequently developed secondary 

questions in this area. We aimed to ascertain the role GRK regulation plays in determining bias, and 

also, the influence G protein signalling kinetics has on shaping agonist action.  

We made many key findings addressing the aims outlined in the above paragraph. Firstly, we 

observed that amino acid residue mutants in the extracellular regions of the D2R can alter ligand 

binding kinetic rates in a ligand-specific manner. This was encouraging as it suggests that in the future 

ligands can have their structure logically modified to tune their binding kinetics. When next assessing 

the primary aim of this thesis however, we observed no clear relationship between the agonist 

dissociation rate (or residence time) and biased agonism. The results were somewhat hampered by 

the small amount of statistically significant biased agonism that we observed. Nonetheless, we 

revealed that regulation by GRK2/3 phosphorylation is directly proportional to agonist efficacy in 

any D2R response. Suggesting that GRK biased “switching” between G protein responses and arrestin 
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scaffolding may be unlikely at the D2R. We then showed that the G protein Gαz can produce a distinct 

signalling wave by the D2R that is largely independent of the properties of the agonist but instead 

dependent on the hydrolysis rate of Gαz. We therefore had thoroughly examined D2R biased agonism 

in vitro. We next wanted to take steps to examine D2R bias in a more relevant context. One of the key 

challenges to further investigate D2R biased agonism phenomena in relevant cells or tissues is how 

to isolate and measure G protein versus arrestin signalling or indeed signalling from specific G protein 

subunits given the promiscuity of the D2R to activate all inhibitory G proteins. Therefore, we 

developed the pertussis toxin-like protein OZITX to inhibit all of the D2R mediated Gαi/o subfamily 

signalling, including Gαz. 

Showing that each ligand’s binding kinetics can be differently influenced by particular amino 

acid residues in the extracellular vestibule may be an important step for D2R drug discovery. For 

example, in Chapter 2 we were able to show that Trp100ECL1 and Leu942.64 had dramatic effects on 

the dissociation rate of most tested ligands although, risperidone appeared to be less influenced than 

others. The extracellular vestibule is generally less conserved between GPCRs and as such can offer 

receptor subtype selectivity (65). Consequently, we may be able to rationally design D2R drugs 

through medicinal chemistry such that they can make the sought-after interactions with extracellular 

vestibule residues. These interactions would tune the binding kinetics of the ligand while the ligand 

remains selective for the D2R receptor subtype. If the ability of a D2R agonist to activate particular 

signalling pathways is indeed related to its residence time, then one might be able to rationally 

modulate the agonist kinetics as a mechanism to design biased D2R drugs. However, our functional 

data in Chapter 3 and 4 do not support that such pathway bias can be achieved in this way. 

Nonetheless, there is a strong link between antagonist dissociation rate and the propensity to cause 

extrapyramidal side effects (61,187,218). Indeed, the “gold standard” treatment for schizophrenia 

remains as the second generation antagonist clozapine and not the third generation partial agonist 

antipsychotics (175,435). Therefore, developing antagonists with an even better binding kinetics 

profile than clozapine may be possible in the future.  

It would be exciting to extend these studies in Chapter 2 by performing assessments on a 

larger set of ligands as well as a larger number of D2R mutants to get coverage of the complete ligand 

binding site and pathway. Before doing this however, it would be necessary to develop the assay to a 

point where large-scale high throughput determinations of ligand binding kinetics can be conducted. 

Sykes and colleagues have shown that the injection time of the receptors with the cocktail of tracer 

and unlabelled competitor is very important for accurately determining binding kinetics rates with 

this assay (245). Additionally, the instrument detection cycle time that determines the temporal 

resolution is also crucial for determining fast dissociating ligands (245). Currently, each mutant and 
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ligand combination require careful optimisation in order to be able to acquire meaningful rate 

constants. Having done this, it could then be coupled with molecular dynamics simulations to wholly 

understand the binding entry and exit pathways of D2R ligands.  

In Chapter 3, we observed no clear relationship between the agonist’s binding kinetics and 

their biased agonism (of the panel of agonists that were tested). This was the primary result of the 

thesis that we set out to determine. This was achieved by assessing correlations between the binding 

kinetics and the relative transduction coefficients (ΔLog τ/KA) from an operational model of agonism 

(86,87). While some correlations were observed between affinity estimates and biased agonism, the 

results were largely uncertain in regard to the mechanism behind this. However, we can make some 

definitive conclusions from our findings. Paton’s rate theory argues for a positive relationship 

between the association rate and the efficacy of an agonist (90). We saw no relationship between any 

binding kinetic parameters and efficacy. This means that we can rule out rate theory or the opposite 

of rate theory (anti-rate theory - efficacy mediated by dissociation rate). Some recent reports suggest 

that anti-rate theory may explain efficacy at the M3R and A2AR as shown by a correlation between 

agonist dissociation rate and efficacy (91,93). However, based on our results at the D2R we suspect 

that this is a not a common property shared between all GPCRs. Furthermore, in the examples of the 

the M3R and A2AR, human selection in the drug discovery process may have selected for high 

affinity/potency and consequently, slower dissociating agonists, as well as selected for increased 

efficacy. Therefore, the results showing anti-rate theory at these receptors could potentially be due to 

this selective pressure.  

This also highlights a potential limitation in our study related to human selection. Klein-

Herenbrink et al (96) showed that apparent biased agonism occurs between slowly dissociating 

agonists and fast dissociating agonists at the D2R. Yet, all the slowly dissociating agonists in their 

study were low efficacy partial agonists (96). Therefore, in our study we deliberately incorporated 

both low efficacy (third generation antipsychotics) and high efficacy drugs. This reduced a 

confounder in our study and provided a wider range of efficacy to draw correlations. However, by 

potentially selecting compounds based on their efficacy we may have artificially influenced our 

correlations. Future work could seek to investigate this further by performing correlations where less 

human intervention is involved. We tested eleven separate compounds when the D2R has a whole 

library of agonists available to assess because it is such a popular drug target. Therefore, selecting a 

larger and a random sample of ligands with D2R activity may be a better approach. Similarly, future 

work could not only perform similar experiments on larger numbers of ligands but could also do this 

in a completely “receptor naïve” manner. This means, performing a large screen of a number of 

ligands with unknown efficacy at the D2R. If millions of compounds could be screened and a panel 
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have agonism at the D2R, then determining their transduction coefficient and determining their 

binding kinetics with identical methods to the ones we describe here could test this. This would mean 

that a random sample of agonists is selected with varying structure and efficacy. 

In Chapters 3 and 4 only very minimal biased agonism is observed. Almost no biased agonism 

is observed between G protein subunits in Chapter 3 and no statistically significant biased agonism 

is reported for the putative biased agonists MLS1547 and UNC9994 in Chapter 4 (184,251). When 

looking back through the examples of bias at the D2R our data here appears to follow a similar pattern 

that has occurred over the years: In 2002, dihydrexidine was the first reported biased agonist at the 

D2R (436,437). However, this ligand is generally no longer under investigation as a biased agonist, 

and, in fact, it was recently reported as a D1R biased agonist (285). Further, S-3PPP was reported 

soon after as another biased agonist at the D2R. This compound was reported as a “protean agonist” 

through GTPγS binding with different G proteins showing that it lacked the ability to activate some 

poorly coupled Gαi/o subunits (138,139). Subsequent BRET-based G protein activation assays that 

exhibit increased sensitivity have demonstrated that S-3PPP is capable of activating G proteins and 

is better defined as a partial agonist (96). Next, aripiprazole was identified as a biased agonist referred 

as “functionally selective” before biased agonism was the commonly recognised term (438,439) . 

Aripiprazole displayed bias for arachidonic acid release compared to MAPK activity (438).  Again 

aripiprazole was proven to act more so as a partial agonist than a biased agonist with more sensitive 

assays and also applying a model of agonist action to account for system bias (440). Moreover, 

UNC9975 and UNC9994 were identified as arrestin biased agonists and MLS1547 was said to be G 

protein biased (184,251). We here observe no statistically significant bias for these compounds. 

Interestingly, from literature it would appear that the order with which the putative biased agonists 

are reported aligns with their efficacy (dihydrexidine > S-3PPP > aripiprazole > UNC9994). This 

likely indicates that as more sensitive assay techniques were developed, weaker responses could be 

detected and agonists that originally displayed no activity in a particular pathway appear to act as 

partial agonists. Whether this pattern continues in the future will be fascinating to see. 

If one can expect that a biased D2R agonist found today will likely be re-characterised as a 

partial agonist in the future due to more sensitive laboratory techniques and more modern analytical 

approaches, then where does this leave D2R drug discovery? And what role does this have in the 

future for the pharmacological management of psychiatric and neurological diseases? For D2R drug 

discovery, it leaves two obvious options moving forwards; firstly, to go back to more traditional 

methods of small molecule drug discovery or, secondly, to harness system bias (system bias will be 

discussed in later paragraphs). In terms of going back to more traditional methods of pharmacology, 

this means focussing on classic parameters such as efficacy, binding kinetics rates and selectivity. 
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Therefore, for targeting the D2R in schizophrenia, the best approach will be to design drugs that are 

antagonists with a fast dissociation rate from the D2R and the appropriate receptor selectivity profile. 

Overall current guidelines should advocate for the use of clozapine as opposed to the approval and 

use of any existing reported biased agonist in the treatment of schizophrenia symptoms. For targeting 

the D2R in diseases where agonism is wanted, then the ideal amount of efficacy should be determined 

based on the particular indication. Regarding Parkinson’s disease, the results in this thesis show that 

dopamine is the most efficacious agonist when measuring regulatory responses. Given that L-DOPA 

is considered the most efficacious treatment clinically, this likely suggests that higher agonist efficacy 

in vitro corresponds to higher efficacy in vivo. Therefore, agonists could be developed that are higher 

efficacy than dopamine as an attempt to create even more efficacious drugs for the treatment of 

Parkinson’s disease. In terms of current treatment for Parkinson’s, the results in this thesis would 

suggest that L-DOPA should remain first line treatment, rotigotine also appears to offer superior 

agonist efficacy to other agonists and as such may be a good alternative to L-DOPA. 

This pattern also appears to match biased agonism studies for at least some other GPCRs. 

Indeed, a similar pattern to the one we observe at the D2R also seems to emerge when examining the 

history of biased agonism at the MOPR (441). The first reports of biased agonists later turned out to 

be partial agonists when further scrutinised (441). In addition,  subsequent purported biased agonists 

such as PZM21, actually have never been shown to display any statistically significant biased 

agonism when using the Black/Leff operational model to quantify the bias (80,82). Moreover, the 

angiotensin II type-I receptor (AT1R) may follow a similar narrative. The first reported biased agonist 

at the AT1R; [Sar1, Ile4, Ile8] Angiotensin II  or SII - was reported to be arrestin biased and lack any 

ability to stimulate the G protein dependent responses IP accumulation and [35S]GTPγS binding 

(442). Later, SII has proven to be a partial agonist at G protein mediated pathways and direct G protein 

activation (281,443). The discrepancies in these results may reflect the increased sensitivity of the 

BRET assays used in later studies investigating SII. Further, it would be fascinating to observe 

whether this pattern occurs for reported biased agonists at other GPCRs as their signalling pathways 

and pharmacology become better characterised. If this pattern continues to emerge then it will be 

clear that the field needs to revise early stage GPCR drug discovery pipelines to workflows that focus 

less heavily on biased agonism. 

In Chapters 3 and 4 we observe apparent bias between some agonists. Ligand bias, system 

bias and observational bias are the three main drivers of bias observations. It is commonplace to 

assume that these can be separated by using methods that the field has developed such as reference 

agonists and reference pathways. However, this may be more challenging that initially thought. 

Certainly, in our studies in this thesis it is often not clear which type of bias we are observing and 
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whether it could be a combination of the three types. We therefore propose that the three bias 

mediators may overlap or be dependent on each other (Fig. 7.1). 

 

Figure 1. Biased agonism components may not be separated. 
 

In our studies in Chapter 3 and 4 the statistically significant bias was generally detected 

between similar pathways and in the same direction. That is, we observed bias between a well coupled 

G protein pathways and a poorly coupled regulatory pathway and the biased agonism was usually 

directed towards the regulatory pathway. Therefore, this apparent bias is either due to all ligands 

acting in a similar manner or potentially the system is hard-wired to disproportionately amplify one 

pathway more than another. If this is system bias, then it is interesting as it may still be able to be 

harnessed. For example, Marcott and colleagues (144) have proposed that the D2R couples to Gαo in 

the nucleus accumbens and Gαi in the dorsal striatum. The D2R more efficiently couples to Gαo than 

Gαi such that all agonists are effectively full agonists at Gαo whereas partial agonism can be observed 

at Gαi (shown in Chapters 3, 4 and 5) (139,267). Therefore, by using either a full agonist or a partial 

agonist, the dorsal striatum will be activated to a different extent but the nucleus accumbens will have 

similar activity depending on the agonist. 

Another example where system bias could be employed without the need for ligand bias is at 

the D1R. A report by Yano et al (285) reveals agonists acting at the D1R that display bias at Gαs 

relative to Gαolf. The D1R has broad expression in the brain, the authors highlight Gαolf has the widest 

expression in the striatum whereas Gαs is expressed in the cortex and other brain regions (444). 

Therefore, the biased agonists are able to achieve brain region selectivity. However, system bias could 

have already been harnessed to achieve at least some tissue selectivity. It is shown that the D1R 

preferentially couples to Gαs relative to Gαolf (285). Agonists with lower efficacy display more robust 

responses and increased potencies at Gαs. Therefore, if it is desired to selectively target D1R signalling 

in the striatum then it can be achieved with a partial agonist, whereas if wanting to target both brain 

regions, a full agonist could be used. 
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We observed in both Chapter 3 and Chapter 4 that ergot agonists at the D2R displayed bias. 

This was unexpected particularly considering we carried along previously reported biased agonists in 

Chapter 4, with their bias being overshadowed. While the ergot agonists share common structural 

similarities, it is not entirely clear how this bias emerged. It requires further investigation into how 

this may manifest. 

In Chapter 5 we were able to convincingly show that an increase in potency at Gαz is due to 

its slow GTP hydrolysis rate which leads to an accumulation of the active Gαz-GTP species over time. 

Based on this work, we propose that the D2R temporal responses may be regulated depending on Gαi/o 

protein expression patterns (Fig. 7.2). At a neuronal synapse, dopamine is released and then rapidly 

taken up by dopamine transporters and broken down by MOA-B. Dopamine has a rapid dissociation 

rate from the D2R (96). Therefore, as dopamine is taken up, the dopamine will leave the receptor and 

the receptor will be rapidly deactivated. If a Gαi or Gαo subtype is expressed, then the G protein signal 

will be rapidly switched off as the G protein hydrolyses the bound GTP. Yet, if Gαz is expressed the 

it will continue to be active for several minutes (Fig. 7.2). Moreover, if there is sustained dopamine 

release or activation by exogenous agonists such as those in the treatment of Parkinson’s disease, then 

arrestins may couple to sterically occlude G protein coupling and turn off the signal. Similarly, Gαz 

will have already coupled and, based on our data in Chapter 5, it will again remain active in live cells 

for several minutes. We believe this model is highly plausible based on work in knockout mice 

demonstrating many D2R dependent behaviours are altered and additionally that the D2R has been 

suggested to couple to the Gαz in rat pituitary tissues (148,150,151). However, the model needs to be 

considered in light of RGS proteins that regulate G proteins responses such as RGS9-2, known to 

regulate the D2R in some instances (152). Furthermore, if this model does hold true this could also 

be a situation where natural system bias is harnessed. 
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Figure 7.2: Identification of a novel D2R G protein signalling wave and a new toxin for its 
inhibition. Dopamine is released from a neuron and can bind postsynaptic D2Rs. This leads to a 
rapid yet short period of activation of the D2R as dopamine dissociates and is then taken up by 
dopamine transporters and/or broken down by MOA-B. The D2R can produce a short and sharp 
signalling wave upon coupling to Gαi or Gαo subunits as their GTP hydrolysis rates are fast and thus 
will be deactivated shortly after the receptor deactivates. In contrast, Gαz coupling will produce a 
sustained signalling wave due to its slow GTP hydrolysis rate even though dopamine has dissociated 
from the D2R and the D2R is no longer active. This slow and sustained Gαz signalling wave may 
produce distinct physiological effects. Moreover, PTX is able to act on Gαi/o proteins to inhibit the 
rapid signalling wave produced by these proteins whereas the newly characterised OZITX can block 
these proteins in addition to the Gαz signalling, providing a new tool to study this largely unexplored 
signalling. 
 

Finally, in Chapter 6 we were able to demonstrate that a new AB5 toxin – OZITX , could 

completely abolish Gαz activation and Gαz dependent cAMP inhibition. Thus, this is the first pan 

Gαi/o inhibitor that importantly acts on Gαz (Fig. 7.2). OZITX can be used by the scientific community 

in many ways. Of relevance to the work in Chapter 5, OZITX could be used in combination with PTX 

to disentangle D2R signalling through Gαz from D2R signalling through other Gαi/o subunits. 

Additionally, OZTX can be used as a replacement for PTX when it is used to block Gαi/o signalling 

to assess arrestin dependent signalling. PTX is commonly used in this manner even though it lacks 

the ability to block Gαz (426). Any study that has not recognised that Gαz signalling is a potential 

contaminant should be re-assessed in this context.  Furthermore, the Chapter also presents the idea 

that AB5 toxins are underutilised tools. Some of the first work describing G protein signalling relied 
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heavily on the use of AB5 toxins such as PTX and CTX (349). These tools are underappreciated 

because they completely abolish coupling due to the covalent modifications that they make on the G 

protein. Other peptide and small molecule inhibitors for Gαq/11 and Gαs/olf are available, however, 

their inhibition is dependent on the concentration of the inhibitor that can be achieved within the cell 

(445,446). 

The use of BRET as a detection technique in Chapters 2, 3, 4 and 5 provides several 

advantages. These include high sensitivity, moderate throughput, ability to measure temporally, 

perform experiments at physiological temperatures and measure in live cells. Yet, BRET sensors 

generally require over-expression of the sensors. This may alter the stoichiometry of the interactions 

between effectors in some cases. This is as a potential limitation when examining biased agonism. 

However, this is likely not a major issue within the thesis because any over expression of the effectors 

should bias the signalling allosterically towards that pathway such that when assessing biased 

agonism the bias may be larger than in native cells. Very little biased agonism was observed in this 

research and therefore this effect is likely not a contributor. 

In conclusion, the studies presented here provide a detailed kinetic insight into D2R ligand 

binding, activation and regulation. Further, we propose a novel D2R Gαz signalling wave and we 

provide the first tool to entirely abolish Gαz activation – a pan Gαi/o acting toxin. Overall, the findings 

here should help guide future drug discovery efforts aiming to rationally develop biased agonists at 

the D2R. 
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