Building 3D architectures for cardiomyocytes

Turgut, Aylin (2021) Building 3D architectures for cardiomyocytes. PhD thesis, University of Nottingham.

[img]
Preview
PDF (Thesis - as examined) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (15MB) | Preview

Abstract

Pharmaceutical companies currently rely on animal models for drug screening. This is a very expensive, time-consuming process and in some cases has been shown to be a poor predictor of human cardiac toxicity. Animal cells and tissue are not identical to their human counterparts. Therefore, it is not until human clinical trials at the later stages of drug screening that unexpected reactions to the drug are identified (Burridge et al., 2014). It would be greatly beneficial if this process could be shortened by identifying the risks of a drug earlier in the screening stages-chip based screening using mature human cardiomyocytes (CMs) is a route to achieve this. Substrates used to support CM growth have been identified including high-throughput chip-based screening strategies (Hook et al., 2013) (Celiz et al., 2014b) but so far stem cell derived CMs on these substrates do not adequately recapitulate the adult human CMs in terms of maturity (Denning et al., 2016). Many factors can affect how a cell matures from the soluble extracellular signals around it to the chemistry, topography, architecture/shape and mechanics of the substrate on which it is supported (Nikkhah et al., 2012). Mature cardiomyocytes have been successfully grown on 3 polymers synthesised by UV polymerisation-it has been confirmed that polymers like these can be successfully processed by 2-photon lithography. Photo initiator concentration has been optimised to create a complete structure. Glycerol propoxylate triacrylate and Tricyclodecane dimethanol diacrylate were shown to provide a wide operating window. Many relevant structures for CM growth were chosen and designed on AutoCAD to demonstrate the potential application of this material in CM culture. The 3D design freedom of the lithography approach will be used to explore the relationship between architecture and cell maturity. This will then enable a platform to be created using various architectures on a chip which will be utilised to assess cardiomyocyte maturity. This enables structure fabrication with more accuracy compared to previous methods due to the sub-micron scale of 2-photon lithography (Maruo et al., 1997). Greater resolution means improved results as cells interact on the sub-micron scale (~1µm) (Guck et al., 2010)Various architectures used for cardiomyocyte culture can show which ones are the most suitable to guide cardiomyocytes to a mature adult form.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Wildman, Ricky
Irvine, Derek
Alexander, Morgan
Hook, Andrew
Hu, Qin
Keywords: Cardiomyocytes, 3D architectures
Subjects: Q Science > QH Natural history. Biology > QH573 Cytology
Faculties/Schools: UK Campuses > Faculty of Engineering > Department of Chemical and Environmental Engineering
Item ID: 64351
Depositing User: Turgut, Aylin
Date Deposited: 16 Mar 2021 04:40
Last Modified: 16 Mar 2021 04:40
URI: https://eprints.nottingham.ac.uk/id/eprint/64351

Actions (Archive Staff Only)

Edit View Edit View