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ABSTRACT The Bayesian classification framework has been widely used in many fields, but the covariance
matrix is usually difficult to estimate reliably. To alleviate the problem, many naive Bayes (NB) approaches
with good performance have been developed. However, the assumption of conditional independence between
attributes in NB rarely holds in reality. Various attribute-weighting schemes have been developed to address
this problem. Among them, class-specific attribute weighted naive Bayes (CAWNB) has recently achieved
good performance by using classification feedback to optimize the attribute weights of each class. However,
the derived model may be over-fitted to the training dataset, especially when the dataset is insufficient to train
a model with good generalization performance. This paper proposes a regularization technique to improve
the generalization capability of CAWNB, which could well balance the trade-off between discrimination
power and generalization capability. More specifically, by introducing the regularization term, the proposed
method, namely regularized naive Bayes (RNB), could well capture the data characteristics when the dataset
is large, and exhibit good generalization performance when the dataset is small. RNB is compared with the
state-of-the-art naive Bayes methods. Experiments on 33 machine-learning benchmark datasets demonstrate
that RNB outperforms the compared methods significantly.

INDEX TERMS Attribute weighting, classification, naive Bayes, regularization.

I. INTRODUCTION
The Bayesian classification framework is fundamental to
statistical pattern recognition and widely deployed in many
machine-learning tasks [1]–[6]. Bayesian decision rule with
0/1 loss function leads to the optimal classification in statis-
tical pattern recognition [7]. However, the estimated covari-
ance matrix in Bayesian classification often deviates from
the data population due to the curse of dimensionality, which
may reduce classification performance [7]. To tackle the
problem, many naive Bayes (NB) approaches [8]–[11] have
been developed, which regularize the covariance matrix to a
diagonal matrix. In these methods, it is assumed that each
feature dimension is conditionally independent, and then the
posterior probability can be estimated separately for each
feature dimension. NB classifiers are competitive with many
latest classifiers as shown in [12], [13].

However, NB may be oversimplified as the assumption of
strong independence is often invalid, resulting in a decrease in
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classification performance [14]. Many improved naive Bayes
classifiers have been developed to alleviate the conditional
independence assumption, which can be broadly divided into
five categories: 1) Structure extension [15], [16]; 2) Instance
selection [17], [18]; 3) Instance weighting [19]; 4) Feature
selection [20], [21]; 5) Feature weighting [22]–[36]. Among
these methods, attribute-weighting methods [22]–[36] relieve
the independence assumption by assigning different weights
to different attributes so that the discriminative features will
have a larger weight.

Attribute-weighting methods can be further divided into
filter-based methods [22]–[27] and wrapper-based meth-
ods [28]–[36]. The former determines the attribute weights in
advance by using the general characteristics of the data, while
the latter determines the attribute weights by using classifi-
cation feedback to minimize the classification error. In most
cases, the filter-based methods calculate weights faster than
the wrapper-based ones, but the classification accuracy of the
latter is higher than that of the former.

Attribute-weighting methods often assign the same weight
to each attribute in different classes, e.g. Zaidi et al. weighed

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 225639

https://orcid.org/0000-0002-8371-6893
https://orcid.org/0000-0003-4619-6590
https://orcid.org/0000-0003-1722-568X
https://orcid.org/0000-0002-0038-9816


S. Wang et al.: Regularized Attribute Weighting Framework for NB

the attributes to alleviate naive Bayes’ independence assump-
tion (WANBIA) [34]. In class-specific attribute weighted
naive Bayes (CAWNB) [35], attributes of different classes
are weighted differently to enhance the discrimination power
of the model. CAWNB better captures the characteristics of
dataset and achieves significant performance improvements
compared with other attribute-weighting methods. However,
with more weights to be optimized, the model complexity
increases and hence over-fitting may occur, especially if the
dataset is small. To alleviate the problem, we propose to add a
regularization term to the formulation of CAWNB to penalize
the model complexity, which will tend to use simpler models
to avoid over-fitting, similarly as in [7], [37], [38].

Naive Bayes can be regarded as a regularized form of the
Bayesian classification framework by restricting the covari-
ance matrix to be diagonal [7]. L1- or L2-regularization
has been widely used in machine-learning tasks [39], [40].
L2-regularization [40] could be applied on the model param-
eters to encourage the attribute weights with poor effect to
decay towards zero and assign higher weights to attributes
with higher effect. Alternatively, L1-regularization could
be applied to the model parameters of CAWNB, which is
more robust to noise and outliers than L2-regularization.
L1-regularization in general produces better results, but at a
higher computational cost [39]. Sparse representation is an
example of L1-regularization [39].

Both L1-regularization and L2-regularization will intro-
duce a significant computational overhead. In this paper,
a simple yet effective way is proposed to regularize CAWNB,
i.e. add a simpler model to constrain CAWNB. Simpler mod-
els usually achieve better generalization performance [41].
WANBIA is simpler than CAWNB, as the number of weights
estimated in WANBIA are fewer than that in CAWNB.
Hence, it will improve the generalization capability of
CAWNB by integrating with the simpler model WANBIA.
Furthermore, it will not significantly increase the computa-
tional complexity by integrating these two models, as both
share similar procedures to solve the optimization prob-
lem [34], [35]. The proposed approach is named as regular-
ized naive Bayes (RNB).

In the proposed RNB, the target is to find the optimal
model parametersM = {W ,w, α} to minimize the difference
between the posterior derived from the ground-truth label and
the posterior P(M) estimated from the data, where

P(M) = αPD(W )+ (1− α)PI (w). (1)

PD(W ) is the posterior probability with attributes weighted
on a per-class basis, and W is the matrix to weight the
attributes differently for different classes. PI (w) is the pos-
terior probability with attributes weighted the same for all
classes, and w is the weight vector for the attributes. PD(W )
is a more complex model than PI (w), as more weights need
to be optimized inW than that in w. Thus, PI (w) is a simpler
model that can provide better generalization capabilities.

Now the challenge is how to jointly find the optimal
model parameters including W , w, and α. To achieve this,

a gradient-based optimization procedure is proposed, sim-
ilar to L-BFGS-M [42] used in CAWNB and WANBIA.
More specifically, the partial derivatives of P(M) w.r.t. W ,
w and α are derived, and a gradient-descent-based method
is utilized to iteratively update W , w and α respectively,
towards the objective of minimizing the classification error.
Compared with other regularization methods, the proposed
method requires minimal modifications to the optimization
problem of CAWNB, and it does not significantly increase
the computational complexity.

In the proposed formulation, α is used to automatically
adjust the trade-off between discrimination power and gen-
eralization capability. More specifically, when the dataset
is small and hence a simpler model is preferred, α will be
smaller and hence a larger weight will be assigned to PI (w),
which will ensure better generalization capabilities. This is
verified by the experiments shown in Section IV.

To validate the effectiveness of the proposed RNB, a series
of empirical comparisons have been conducted with state-
of-the-art naive Bayes on the collection of 33 benchmark
classification datasets from the University of California at
Irvine (UCI) repository [43]. Experimental results show that
the performance of RNB is significantly better than all com-
pared methods [8], [21]–[23], [33]–[36].

The contributions of this paper are summarized as follow:
1) The poor generalization capability of CAWNB is identified
and RNB is proposed to address the problem. 2) An opti-
mization procedure is designed to derive the optimal model
of the proposed RNB. 3) The proposed RNB improves the
generalization performance of previous methods and auto-
matically balances the discrimination power and the general-
ization capability, so that better performance can be obtained
regardless of the size of datasets.

The rest of the paper is organized as follows. Section II
reviews related work. Then, the proposed regularized naive
Bayes is introduced in section III. In section IV, experimental
comparisons with state-of-the-art naive Bayes are conducted
to demonstrate the effectiveness of the proposed method.
Finally, this work is concluded in section V.

II. RELATED WORKS
Naive Bayes classifiers have been widely used in many
applications [9]–[11]. As the strong assumption of feature
independence in NB is often invalid, many improvements
have been developed, which can be broadly divided into 5 cat-
egories. The first category is structure extension [15], [16],
which extends the structure of naive Bayes to represent
the feature dependencies. The second category is instance
selection [17], [18], which employs the principle of local
learning to build a set of local naive Bayes classifiers
using a subset of the dataset. The third category is instance
weighting [19], which weights the instances differently in
order to maximize the discriminant power. The fourth cat-
egory is feature selection [20], [21], which removes the
strongly correlated or irrelevant features, as those features
are harmful to reliable classification, and/or selects the most
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discriminative feature subset. The fifth category is weighted
naive Bayes, which tackles the problem by assigning differ-
ent weights to attributes so that the discriminative features
have a larger weight and hence the discriminative power will
increase [22]–[36]. The attribute-weighting methods can be
further categorized into filter-based methods [22]–[27] and
wrapper-based methods [28]–[36].

Filter-based methods [22]–[27] utilize the characteristics
of the data to determine attribute weights. Lee et al. deter-
mined the weights by using the Kullback-Leibler (KL) diver-
gence between attributes and class labels [25]. In [24],
Hall defined the weights by utilizing the minimum depth
in a decision tree. In [22], the conditional probabilities
of naive Bayes are estimated by deeply computing fea-
ture weighted frequencies. Recently, Jiang et al. developed
a correlation-based attribute-weighting NB, which defines
the weight of each attribute as a sigmoid transformation
of the difference between mutual relevance and average
mutual redundancy [23]. Filter-based approaches determine
the weights in advance bymeasuring the relationship between
features and classification variables, such as mutual informa-
tion, KL divergence and correlation.

Wrapper-basedmethods [28]–[36] utilize the classification
feedback to optimize attribute weights. Due to the itera-
tive process, wrapper-based methods usually have higher
time complexity and better classification performance than
filter-based ones. In [28], Zhang and Sheng updated attribute
weights based on a hill-climbing strategy to maximize the
classification accuracy. Wu and Cai utilized a differential
evolution algorithm to determine the weights [33]. In [36],
Yu et al. developed a hybrid attribute-weighting method by
initializing the weights through a correlation-based filter
and then adjusting them through a wrapper. Zaidi et al.
optimized attribute weights by minimizing the mean squared
error between predicted and ground-truth labels [34]. Very
recently, Jiang et al. developed CAWNB [35], which deter-
mines the optimal weight for each attribute of different
classes to capture more characteristics of the dataset, instead
of ignoring the class dependency as in [34]. Hence it achieves
excellent classification performance on many benchmark
datasets.

Unlike WANBIA [34] that assigns the same attribute
weight for all classes, CAWNB [35] assigns different weights
to different classes. Thus, the CAWNB model is more com-
plicated and more prone to over-fitting, especially when the
dataset is small. Some form of regularization to CAWNB is
required to improve its generalization performance.

III. REGULARIZED ATTRIBUTE-WEIGHTED NAIVE BAYES
A. PROBLEM ANALYSIS OF PREVIOUS NAIVE BAYES
METHODS
In the Bayesian classification framework, the posterior prob-
ability is defined as:

P(c|x) =
P(x|c)P(c)

P(x)
, (2)

where x is the feature vector and c is the classifica-
tion variable. Because it is difficult to reliably estimate
the likelihood P(x|c) due to the curse of dimensional-
ity, in naive Bayes methods, the likelihood is estimated
by assuming that the attributes are independent given the
classification variable c, which results in the following
formulation:

P(x|c) =
m∏
j=1

P(xj|c), (3)

where xj is the j-th dimension of the feature vector x, and m
is the feature dimensionality. Then, the posterior probability
can be estimated by:

P(c|x) =

P(c)
m∏
j=1

P(xj|c)

∑
c′ P(c′)

m∏
j=1

P(xj|c′)
. (4)

Naive Bayes regularizes the Bayesian framework by
assuming that each attribute is independent conditioned
on the classification variable, but this assumption is often
invalid. To alleviate the problem, weights are assigned to
attributes in WANBIA [34], and the weights are optimized
via minimizing the mean squared error between the estimated
posteriors and the posteriors derived using ground-truth
labels.

Jiang et al. showed that attribute weighting should be
class-specific to enhance the discrimination power of naive
Bayes [35]. Thus, different weights are assigned to the
attributes for different classes in CAWNB [35]. CAWNB is
more complicated than WANBIA considering the number of
model parameters. Class-specific attribute weights provide
CAWNB with greater discrimination. However, the model
complexity is considerably increased, so the generalization
capability may decrease. The problem will be severe when
the dataset is small, so the training samples are not enough to
derive a reliable naive Bayes model.

To improve the generalization capability of CAWNB,
we propose to add a simpler model, WANBIA, to constrain
CAWNB. Besides, CAWNB is an improved version ofWAN-
BIA, and both share the similar optimization procedure.
It will not significantly increase the computational complex-
ity by integrating WANBIA into CAWNB.

B. OVERVIEW OF PROPOSED REGULARIZED NAIVE BAYES
In the proposed method, the target is to use the classification
feedback to optimize the attribute weights. More precisely,
the target is to find the optimal attribute weights to minimize
the difference between the estimated posteriors and the poste-
riors derived from the ground-truth labels. The mean squared
error is often used to capture such differences:

f =
1
2

∑
xi∈D

∑
c

(P(c|xi)− P̂(c|xi))2, (5)
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whereD represents the whole dataset, P̂(c|xi) is the estimated
posterior of class c given xi, and the posteriors derived from
the ground-truth labels are defined as:

P(c|xi) =

{
1 if c = ci,
0 otherwise.

(6)

The posterior P̂(c|xi) consists of two parts. The first part
that emphasizes the discriminative power of themodel, whose
attributes are weighted on a class-dependent basis, is defined
as:

P̂D(c|x) =
πc
∏

j θ
wc,j
c,j∑

c′ πc′
∏

j θ
wc′,j
c′,j

, (7)

where π = [π1, π2, . . . , πl] are the prior probabili-
ties, and πc is the prior probability that sample x belongs
to class c. The matrix 2 of likelihood probabilities is
defined as:

2 =


θ1,1 θ1,2 · · · θ1,m
θ2,1 θ2,2 · · · θ2,m
...

...
. . .

...

θl,1 θl,2 · · · θl,m,


where θc,j is the likelihood of the j-th attribute of x given
the class c. π and 2 are estimated from training samples
using (13) and (14) respectively, as shown in section III-C
later on.

W =


w1,1 w1,2 · · · w1,m
w2,1 w2,2 · · · w2,m
...

...
. . .

...

wl,1 wl,2 · · · wl,m


is the attribute-weighting matrix on a per-class basis and wc,j
is the weight of the j-th attribute for class c.
The other posterior probability P̂I (c|x) that emphasizes the

generalization capability of the model, whose attributes are
weighted on a class-independent basis, is defined as:

P̂I (c|x) =
πc
∏

j θ
wj
c,j∑

c′ πc′
∏

j θ
wj
c′,j

, (8)

where w = [w1,w2, . . . ,wm] is the weight vector and wj is
the weight of the j-th attribute.
In the proposed RNB, the regularized posterior probability

is defined as:

P̂(c|x) = αP̂D(c|x)+ (1− α)P̂I (c|x), (9)

whereM = {W , w, α} consists of class-dependent attribute
weights W , class-independent attribute weights w and a
hyper-parameter α. α is used to balance the trade-off between
the discrimination power and the generalization capability.

The block diagram of the proposed regularized naive Bayes
is shown in Fig. 1. In the training process, the elements in
W and w are all initialized to 1 and α is initialized to 0.5,
so that the initial model is the original naive Bayes. Then,
P̂D(c|x) and P̂I (c|x) are estimated using training samples and

these two posteriors are integrated as the regularized posterior
P̂(c|x) with the weighting factor α, as shown in (9). Then, f
is calculated as the sum of the squared differences between
P(c|x) and P̂(c|x), as shown in (5). The model parameters
are optimized iteratively by using a gradient-descent-based
method to minimize f until convergence. The detailed pro-
cedures to derive the optimal model parameters are given in
Section III-D. The class-independent weights significantly
improve the generalization capability of the model, as evi-
denced in Section IV.

In the testing process, the estimated prior probabilities
π , the likelihood probabilities 2 and the optimal model
parameters M∗ = {W∗,w∗, α∗} are used to compute the
posterior probability P̂(c|t) for a given test instance t by using
(9). Finally, the class label of t is estimated by using MAP
estimation as follows:

ĉ(t) = argmax
c∈C

P̂(c|t), (10)

where C is the set of labels for all classes.

C. ESTIMATION OF PRIOR PROBABILITIES AND
LIKELIHOOD PROBABILITIES
Firstly, prior probabilities π and likelihood probabilities
2 are estimated based on training samples. Tradition-
ally, the prior probability πc for class c is estimated as
follows:

πc =

∑n
i=1 δ(ci, c)

n
, (11)

where n is the number of training samples, ci is the class label
of the i-th training instance, and δ(•) is a binary function,
which is 1 if its two parameters are identical and 0 otherwise.
The likelihood function θc,j for the j-th attribute of class c is
estimated as follows:

θc,j =

∑n
i=1 δ(xij, xj)δ(ci, c)∑n

i=1 δ(ci, c)
, (12)

where xij is the j-th attribute value of the i-th training instance
and xj is the j-th attribute.

To make the estimation numerically stable, e.g. to avoid
estimating πc to 0 due to insufficient training samples, in the
proposed method, the prior probability πc and the likeli-
hood θc,j are estimated by adding a regularization term as
follow:

πc =

∑n
i=1 δ(ci, c)+

1
l

n+ 1
, (13)

θc,j =

∑n
i=1 δ(xij, xj)δ(ci, c)+

1
nj∑n

i=1 δ(ci, c)+ 1
, (14)

where nj is the number of discretized values for the j-th
attribute.

The aforementioned procedures work for discrete features.
Continuous features are transformed into the discrete features
by using the Fayyad & Irani’s MDL method [44]. Then,
(13) and (14) are used to compute prior probabilities and
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FIGURE 1. Proposed regularized attribute weighting framework for naive Bayes. In the training process, the model parameters are initialized and the
posteriors P̂(c|x) are estimated from training samples, which consist of two parts: the posteriors with attributes weighted on a class-dependent
basis, and the posteriors with attributes weighted on a class-independent basis. Then, the model parameters are optimized iteratively through a
gradient-descent-based algorithm using the classification feedback. When the classifier error is small enough, the optimized model parameters will
be then used in the testing process. Finally during testing, the posterior for each testing sample t will be estimated and the class label for t is derived
by using MAP
estimation.

likelihood probabilities of continuous features respectively in
the same way as discrete ones.

D. SOLVING THE OPTIMIZATION PROBLEM
Now the challenge is how to jointly find the optimal model
parameters M including W , w, and α. To achieve this,
a gradient-descent-based optimization procedure is proposed,
similar to L-BFGS-M [42] used in CAWNB and WANBIA.
More specifically, the target is to find the gradient direction
of the objective function w.r.t. the model parameters W , w,
and α, respectively. Then, the model parameters are updated
iteratively along the gradient direction to minimize the error
function defined in (5).

The partial derivative of f w.r.t. each element of W , wc,j,
is given as follows:

∂f
∂wc,j

= −α
∑
x∈D

(
P(c|x)− P̂(c|x)

)
×

[
P̂D(c|x)(1− P̂D(c|x)) log(θc,j)

]
. (15)

Similarly, the partial derivative of f w.r.t. each element of
w, wj is calculated as:

∂f
∂wj
= (α − 1)

∑
x∈D

∑
c

(
P(c|x)− P̂(c|x)

)
P̂I (c|x)

×

(
log(θaj|c)−

∑
c′
P̂I (c′|x)log(θc′,j)

)
. (16)

The detailed derivations are omitted here and a brief deriva-
tion is described in Appendix. Finally, the partial derivative
of f w.r.t. α can be calculated as:

∂f
∂α
=

∑
x∈X

(
P(c|x)− P̂(c|x)

) (
P̂D(c|x)− P̂I (c|x)

)
. (17)

After deriving the partial derivatives of the objective func-
tion f w.r.t. the model parameters, the model parameters
W , w, and α are iteratively updated to minimize the clas-
sification error. After the i-th iteration of optimization, the
model parametersW i,wi, αi are updated using the following
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equations:

W i+1 = W i + ε∇W i, (18)

wi+1 = wi + ε∇wi, (19)

αi+1 = αi + ε∇αi, (20)

where∇W i is the gradient matrix whose elements are defined
in (15),∇wi is the gradient vector whose elements are defined
in (16), ∇αi is the partial derivative defined in (17) and ε is
the learning rate. The iteration will stop when:

fi − fi+1
max (|fi|, |fi+1|, 1)

< η, (21)

where η is a predefined small constant. The optimal model is
denoted asM∗ = {W∗,w∗,α∗}.
The learning algorithms for training and testing are sum-

marized in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Training Algorithm
Input: x: training samples, f : the objective function.
Output: the prior probabilities π , the likelihood proba-

bilities 2, and the optimal model parameters M∗ =
{W∗,w∗, α∗}.

1: Estimate the prior probability πc using (13).
2: Estimate the likelihood probability θc,j using (14).
3: Derive the posterior probability P(c|x) from the

ground-truth labels using (6).
4: Initialize attribute weights ofW and w to 1 and α to 0.5.
5: while stop condition (21) is NOT met do
6: Derive the class-dependent posterior P̂D(c|x) by (7).
7: Derive the class-independent posterior P̂I (c|x) by (8).
8: Derive the regularized posterior P̂(c|x) by (9).
9: Derive the objective function f using (5).
10: Derive the partial derivatives of f w.r.t.W , w, α using

(15), (16) and (17), respectively.
11: UpdateW , w and α using (18), (19) and (20), respec-

tively.
12: end while
13: Return the prior probabilities π , the likelihood prob-

abilities 2 and the optimal model parameters M∗ =
{W∗,w∗, α∗}.

Algorithm 2 Testing Algorithm
Input: t: a test instance,M∗ = {W∗, w∗, α∗}: the set of the

optimal model parameters, π : the prior probabilities,2:
the likelihood probabilities.

Output: the class label of the test instance t.
1: Derive the class-dependent posterior P̂D(c|t) using (7).
2: Derive the class-independent posterior P̂I (c|t) using (8).
3: Derive the regularized posterior P̂(c|t) using (9).
4: Determine the class label ĉ(t) of the test instance t using

(10).
5: Return the predicted class label ĉ(t).

TABLE 1. Description of competitors: original NB, Gaussian NB, one
feature-selection-based method, two filter-based attribute-weighting
methods and four wrapper-based attribute-weighting methods.

α is initialized to 0.5 so that the initial model will not bias
the discrimination power or the generalization capability. α
is optimized to achieve the best trade-off between discrim-
ination power and generalization capability. A small value
of α means that a small weight is assigned to P̂D(c|x), and
a large weight is assigned to P̂I (c|x). As a result, a better
generalization capability is expected. Note that in the extreme
case, the model is reduced to P̂D(c|x) for α = 1, or P̂I (c|x)
for α = 0. All the weights of W and w are initialized to 1,
which means that the model is initialized to naive Bayes at
the beginning. In the proposed regularized naive Bayes, not
only the prior probabilities and the likelihood probabilities
are regularized to avoid numerical instability as shown in (13)
and (14), but also the posterior is regularized to improve the
generalization capability as shown in (9).

IV. EXPERIMENTAL RESULTS
The proposed approach is compared with original naive
Bayes [45], Gaussian naive Bayes [8] and several state-of-
the-art NB algorithms. TCSFS-NB improves the performance
of naive Bayes through feature selection [21]. DAWNB [22]
and CFW [23] are two recent filter-based attribute-weighting
methods. The comparisons with them can illustrate the
performance gain of the proposed RNB over filter-based
approaches. DEAWNB [33], WANBIA [34], CAWNB [35]
and CWANB [36] are four wrapper-based attribute-weighting
methods in recent years. They can provide a comprehensive
comparison to wrapper-based attribute-weighting methods.
These competitors are summarized in Table 1.

A. EXPERIMENTAL SETTINGS
Comprehensive experiments are conducted on a collection
of 33 benchmark datasets from the UCI repository,1 which
represent a wide range of domains and data characteris-
tics [43]. Most datasets are from real-world problems e.g.
diabetes, hepatitis and primary tumor, vehicle classification,

1These 33 datasets could be downloaded from
‘‘https://archive.ics.uci.edu/ml/index.php’’
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TABLE 2. Most datasets are collected from real-world problems. The
number of instances is widely distributed in 57 and 20000 which can
provide a comprehensive evaluation on datasets of different sizes. The
number of attributes/classes of these datasets also varies significantly.
There are both numeric and nominal data in the datasets. Some datasets
contain missing values. These datasets are hence diverse and challenging.

letter recognition and so on. Besides, the characteristics of
the datasets including the number of instances, attributes
and classes are significantly different. The sizes of datasets
are between 57 and 20000, enough to evaluate how the
algorithms perform on datasets of different sizes. For exam-
ple, smaller datasets such as breast-cancer, heart-c and iris
will prefer methods with better generalization capabilities.
Attribute weighting methods with good discrimination power
will perform better on larger datasets such as sick, hypothy-
roid, waveform-5000 and mushroom. In addition, 17 out
of 33 datasets have missing values, which simulates the diffi-
culties in real life when collecting datasets, and imposes addi-
tional challenges for classifiers. Besides numeric values, the
attributes of some datasets are nominal values, which imposes
another challenge for classifier design. These 33 benchmark
datasets provide a comprehensive evaluation of the effec-
tiveness of the proposed RNB. The dataset descriptions are
summarized in Table 2.

The missing values in the datasets are replaced with the
average value of the numeric attributes or the mode of
the nominal attributes in the available data. In CAWNB,
they use Fayyad & Irani’s MDL method [44] to discretize

numeric attributes which may lead to information loss. Thus,
in the experiments, the Fayyad & Irani’s MDL method is
fine-tuned to reduce the information loss. Besides, two irrel-
evant attributes are deleted, i.e. ‘‘instance name’’ in ‘‘splice’’
and ‘‘animal’’ in ‘‘zoo’’.

The results of NB, DAWNB, DEAWNB, WANBIA and
CAWNB are obtained from [35]. The results of TCSFS-
NB, DAWNB and CWANB are obtained from [21], [22]
and [36], respectively. GNB is implemented using Weka
and the proposed RNB is implemented in MATLAB. The
classification accuracy of the proposed algorithm on each
dataset is derived via 10-fold cross-validation. During opti-
mization, η is set to 10−7 in the stop criterion defined in (21).
The learning rate ε is determined using the linear search
programs [46].

B. COMPARISON TO STATE OF THE ART
The comparisons to the state-of-the-art algorithms on
the 33 datasets are shown in Table 3. The symbol • represents
the statistically significant improvements achieved by the
proposed regularized naive Bayes for paired one-side t-test
with the p = 0.05 significance level. The average classifi-
cation accuracy and the Win/Tie/Loss on the 33 datasets for
all the algorithms are summarized at the bottom of Table 3.
The average classification accuracy over all the datasets can
provide a straightforward comparison for their performance.
Each entry of W/T/L in the table indicates that the com-
petitor wins on W datasets, ties on T datasets and loses on
L datasets compared to the proposed RNB.

From Table 3, it is obvious that the proposed RNB
obtains the highest average classification accuracy. Com-
pared with the original naive Bayes and Gaussian naive
Bayes, the proposed RNB achieves 2.34% and 6.15%
of improvement respectively on average. Compared with
filter-based approach, DAWNB [22] and CFW [23], the pro-
posed RNB achieves 2.26% and 1.82% of improvements
on average, respectively. Compared with feature-selection-
based approach, TCSFS-NB [21], RNB achieves 2.32% of
improvement on average.

Compared with the previous best algorithm, CAWNB,
the proposed RNB achieves more than 1% of improvement
for the average classification accuracy over the 33 datasets.
Among them, the improvements on some datasets are
significant. For example, the classification accuracies of
RNB on balance-scale, glass, sonar and vowel are more
than 5% higher than the most recent attribute-weighting
method, CAWNB. On relatively small datasets such as
glass, iris and sonar, the proposed approach significantly
outperforms CAWNB and the others because of the good
generalization capability. On relatively large datasets such
as segment and letter, the proposed RNB also shows sta-
tistically significant improvements. All these demonstrate
that the proposed approach could well adapt to the datasets
of different sizes, and automatically adjust the balance
between the discrimination power and the generalization
capability.
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TABLE 3. Experimental results for RNB versus NB [45], DAWNB [22], DEAWNB [33], WANBIA [34], CAWNB [35], CWANB [36], GNB [8], TCSFS-NB [21] and
CFW [23]. It is obvious that overall RNB achieves the best classification accuracy among all approaches. The average classification accuracy of RNB is
more than 2% higher than NB’s. Besides, RNB obtains more than 1% of improvement on average compared with the previous best attribute-weighting
method, CAWNB. The classification accuracies of RNB on some datasets e.g. balance-scale, glass, sonar, and vowel achieve about 5% of improvement
compared with CAWNB.

C. ANALYSIS OF EXPERIMENTAL RESULTS
In the statistical significance tests shown in Table 3, the
proposed approach significantly outperforms CAWNB [35],
CWANB [36], WANBIA [34], DEAWNB [33], CFW [23],
DAWNB [22], TCSFS-NB [21] and GNB [8] on 8, 9, 10,
12, 14, 17, 17 and 23 datasets, respectively. Compared with
the original NB, on more than half of the datasets, the pro-
posed RNB achieves statistically significant improvements.
Compared with the previous best algorithm, CAWNB [35],
the proposed RNB achieves statistically significant improve-
ments on 8 datasets, which demonstrates the effectiveness of
the proposed approach.

Table 4 summarizes the results for statistical significance
tests. For each entry u(v), u is the number of datasets on which
the proposed RNB outperforms the corresponding competi-
tor, and v is the number of datasets on which the perfor-
mance gain is statistically significant with significance level
p = 0.05. Table 4 shows that on average the classification
accuracies on more than two-thirds of 33 datasets improves
and half of them are statistically significant. It hence can be
concluded that the proposed RNB outperforms all compared
approaches.

From the experimental results, it can be seen that the
proposed regularized naive Bayes achieves a remarkable
performance improvement. The hyper-parameter α is opti-
mized along with class-dependent attribute weights and
class-independent attribute weights. The optimal value of α
on each dataset is shown in Table 5, together with the number
of instances and the number of instances per class. The values
of α∗ vary on different datasets. In general, larger the dataset,
higher the α∗ value.
To better see the trend, the average value of α∗ across

datasets and the performance gain of the proposed RNB
against the second best algorithm, CAWNB [35], are sum-
marized in Table 6. The 33 datasets are divided into small
and large datasets according to the number of instances
per class, e.g. if it is larger than 500, the dataset is con-
sidered large, and small otherwise. Table 6 shows that for
small datasets, the average α∗ value is significantly smaller
than that for large datasets. This indicates that α∗ could be
automatically adjusted during optimization so that for small
datasets, α∗ will be small to favor the generalization capabil-
ity, whereas for large datasets, α∗ will be large to favor the
discrimination power. It can also be seen that the proposed
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TABLE 4. Summary of the results for statistical significance tests. For example, RNB outperforms CAWNB on 21 datasets, among which 8 are statistically
significant.

TABLE 5. The number of instances, instances per class and the optimal
value of α on 33 datasets.

TABLE 6. The average value of α∗ and the performance gain of the
proposed RNB against CAWNB [35] for small/large datasets.

RNB indeed demonstrates good generalization capabilities
for small datasets by achieving a larger performance gain than
that on large datasets.

V. CONCLUSION
In this paper, after a thorough literature review of the state-of-
the-art attribute-weighting naive Bayes methods, we find that
class-dependent attribute-weighting naive Bayes has poor
generalization capabilities on relatively small datasets. There-
fore, we propose to add a regularization term to alleviate
the problem. The regularization term is extracted from a
simpler naive Bayes which has better generalization capabil-
ities. The proposed regularized naive Bayes is hence derived
by integrating the regularization term into the CAWNB.
A gradient-descent-based optimization procedure has been

designed to derive the optimal model parameters including
class-dependent weight matrix W , class-independent weight
vector w and the hyper-parameter α. Experimental results
on the 33 datasets validate the effectiveness of the proposed
RNB. The proposed method outperforms the previous best
algorithm CAWNB on 21 datasets, of which 8 are statis-
tically significant, and the average performance gain on
the 33 datasets is more than 1%.

APPENDIX A

In this section, a brief derivation of the gradients of f w.r.t
W and w is provided. Firstly, the partial derivative of f w.r.t.
each element ofW , wc,j, is calculated as:

∂f
∂wc,j

= −α
∑
x∈D

(
P(c|x)− P̂(c|x)

) ∂P̂D(c|x)
∂wc,j

. (22)

Denote γD(W ) = πc
∏

j θ
wc,j
c,j . Then, P̂D(c|x) defined in (7)

can be re-written as P̂D(c|x) =
γD(W )∑
c′ γD(W ) . It is easy to show

that

∂P̂D(c|x)
∂γD(W )

=

∑
c′ 6=c γD(W )

(
∑

c′ γD(W ))2
, (23)

∂γD(W )
∂wc,j

= γD(W ) log(θc,j). (24)

Derive ∂P̂D(c|x)
∂wc,j

using the chain rule by utilizing (23) and
(24), and then plug it into (22) to obtain the partial derivative
of f w.r.t. wc,j as defined in (15).

Secondly, the partial derivative of f w.r.t. wj is derived as:

∂f
∂wj
= −(1− α)

∑
x∈D

∑
c

(
P(c|x)− P̂(c|x)

) ∂P̂I (c|x)
∂wj

. (25)

Denote γI (w) = πc
∏

j θ
wj
c,j. Similarly, P̂I (c|x) defined in (8)

can be re-written as P̂I (c|x) =
γI (w)∑
c′ γI (w)

. Note that every term
in the summation of the denominator is a function of wj. The

partial derivative ∂P̂I (c|x)
∂wj

is calculated as:

∂P̂I (c|x)
∂wj

=
1∑

c′ γI (w)

(
∂γI (w)
∂wj

− P̂I (c|x)
∑
c′

∂γI (w)
∂wj

)

Similar to (24), it is easy to show that ∂γI (w)
∂wj
= γI (w) log(θc,j).

Plug it into (25), the partial derivative of f w.r.t. wj shown
in (16) can be obtained.
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