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Experimental and derived data from three Helically Coiled 

Oscillating Heat Pipes (HCOHPs) charged with ethanol, 

methanol and deionized water working fluids respectively 

are presented. The data was obtained from prototypes of the 

HCOHPs fabricated out of copper and tested under laboratory 

conditions. The primary data presented covers the HCOHP as- 

pects, charging of the working fluid and temperature mea- 

surements from Omega K-type Thermocouples installed on 

the evaporators, condensers, adiabatic sections, and on the 

cylindrical copper vessel integrated with it. The derived data 

covers the HCOHPs performances and thermal contact resis- 

tance experienced during laboratory testing. The data on the 

aspects and charging of the working fluid provides useful in- 

formation for the validation of design parameters of other 

heat pipes. The measured temperature data and the derived 

performance data can used to validate the performance of 

heat pipes in other studies and to depict performance pro- 

files in standard text and reference books. The nature of the 

data presented as a whole would be useful for comparative 

analysis involving heat pipes and other passive heat transfer 

devices. 
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pecifications Table 

Subject Mechanical Engineering 

Specific subject area Thermal and Fluids Engineering 

Type of data Table 

Image 

Chart 

Graph 

Figure 

How data were acquired Primary data obtained from Omega K type thermocouples, Yokogawa MV 20 0 0 

data logger, Personal Computer, Vacuum Pump for evacuating HCOHPs, 

HCOHPs pressure testing using DynAir compressor, and derived data from 

primary data applied to established equations. 

Data format Raw 

Analyzed 

Parameters for data collection Data was collected under ambient laboratory conditions. Standard atmospheric 

pressure was approximately 101,325Pa. Ambient laboratory temperature ranged 

between 18–20 °C. 

Description of data collection The primary raw temperature data was obtained by connecting three Omega K 

type thermocouples to the evaporator and condenser coils, respectively. Two 

Omega K type thermocouples were connected to the two adiabatic sections of 

each HCOHP and two more were connected to the inside and two to the 

outside of the cylindrical copper vessel for the heat transfer to the evaporator 

coils. The Omega K type thermocouples were connected to the Yokogawa MV 

20 0 0 data logger which was connected to a personal computer to log the raw 

temperature data every 5.00 s. The HCOHP pressure testing data was obtained 

directly from the pressure gauge on the DynAir compressor. The evacuation 

pressure data was obtained directly from the Vacuum Pump. The raw primary 

temperature data along with the property and aspect data of the set-up were 

applied to equations for the derivation of the thermal resistance, thermal 

contact resistance and heat input power. 

Data source location Institution: The University of Nottingham Ningbo China 

City/Town/Region: Ningbo, Zhejiang Province. 

Country: P.R. China 

Data accessibility Repository name: Mendeley Data 

Data identification number: doi: 10.17632/wnf5jwzp3c.2 

Direct URL to data: http://dx.doi.org/10.17632/wnf5jwzp3c.2 

Related research article S. K. Yeboah, J. Darkwa. Thermal performance of a novel helically coiled 

oscillating heat pipe (HCOHP) for isothermal adsorption. An experimental 

study. International Journal of Thermal Sciences, Volume 128, June 2018, Pages 

49-58. https://doi.org/10.1016/j.ijthermalsci.2018.02.014 

alue of the Data 

• The raw primary data shows the temperature profiles of the evaporator, condenser, and adi-

abatic sections of the Helically Coiled Oscillating Heat Pipes along with the temperature pro-

files of the inner and outer surfaces of the vessel transferring heat to the evaporators. These

raw primary data can be useful in comparative analysis involving heat pipes using similar

working fluids or even having different configurations. The derived primary data represent-

ing results associated with the thermal performance and thermal contact resistance can be

suitably used as data for thermal performance comparison and verification. Also, the trends

from the data can be used to show typical performance profiles in standard text and refer-

ence books for students and practitioners. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17632/wnf5jwzp3c.2
http://dx.doi.org/10.17632/wnf5jwzp3c.2
https://doi.org/10.1016/j.ijthermalsci.2018.02.014
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• Researchers, experts and industry practitioners in fluids and thermal engineering can benefit

from such data for comparative analysis. They can also use this data to validate the perfor-

mance of their heat exchangers and other passive heat transfer devices. 

• This data can be used to visualize thermal performance of the HCOHPs as obtained from

the experiment for illustrations in standard text and reference books. Data on the design

parameters can be used in the calibration of other heat pipes so they have representative

parameters. 

• The data supports the design of a passive heat transfer device for temperature flattening

in adsorption processes. Comparison with other systems geared towards similar aim will be

invaluable to other researchers to gauge how much contribution or improvement they can

gain using their own design. 

1. Data Description 

The data presented here are for ethanol, methanol and deionized water charged Helically

Coiled Oscillating Heat Pipes (HCOHPs) tested under laboratory conditions at three different heat

inputs [1] . The tests were designated Run 1 or (R1), Run 2 or (R2) and Run 3 or (R3) represent-

ing maximum heat input element temperatures of 100 °C, 125 °C and 192 °C, respectively. The

ethanol, methanol, and deionized water HCOHPs were referred to as EOHP, MOHP and WOHP,

respectively. The raw primary data are in the Mendeley repository as Excel Files [2] captioned

HCOHP Primary Data – Run 1, HCOHP Primary Data – Run 2, and HCOHP Primary Data – Run

3. Within each Excel File are the raw temperature data in degrees Celsius ( °C) from the three

Omega K type thermocouples connected to the evaporator and condenser respectively and num-

bered 1 to 3 accordingly. Also, here are the raw temperature data for the adiabatic sections and

the temperature data obtained from the inner and outer surface of the cylindrical copper vessel

that transferred heat to the evaporators. The first tab of each HCOHP Primary Data Excel file

has all the temperature data obtained for the EOHP, MOHP, WOHP, the inner and outer vessel

temperatures. Subsequent tabs are captioned with the HCOHP type and the test run number for

those specific raw primary data. Above the data are the Yokogawa MV20 0 0 channel numbers for

data collection. The data was obtained at sampling time interval of 5.00 s. 

The derived results from the primary data are in the Mendeley repository as Excel files [2] la-

belled HCOHP Derived Data – Run 1, HCOHP Derived Data – Run 2, and HCOHP Derived Data –

Run 3. Here, each file has one spreadsheet tab with data generated from the average evaporator

and condenser temperatures of the EOHP, MOHP and WOHP tested under the three conditions

in the laboratory. The inner and outer vessel temperatures obtained were also averaged to de-

termine the average heat output from the cylindrical copper vessel. The temperature measure-

ments obtained from the three Omega K type thermocouples connected to the evaporators and

condensers of the EOHP, MOHP and WOHP were averaged for each test run and presented in

Fig. 1 . 

The average temperature differences between each evaporator and condenser of the HCOHPs

were used to determine the transient overall thermal resistances shown in Fig. 2 . The overall

thermal resistance data obtained makes it possible to compare the performance of the HCOHPs

against each other. In the derived dataset, the various temperature differences, the thermal con-

tact resistances, and the heat fluxes from the copper vessel are presented. 

2. Experimental Design, Materials and Methods 

2.1. Fabrication data 

Fig. 3 shows the sketch of the helically coiled closed loop oscillating heat pipe (HCOHP) with

relevant dimensions. The HCOHPs were fabricated out of copper pipe with the specifications in

Table 1 . 
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Fig. 1. Average Evaporator and Condenser Temperatures in °C for the three test runs. 

Table 1 

Specifications for the HCOHPs. 

Parameter Value Units 

Inner Diameter 2 mm 

Thickness 1 mm 

Diameter of Coil 8 cm 

Length of Compressed Coil 10 cm 

Number of Turns 10 - 

2
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.2. Pressure testing 

Prior to experimentally investigating their thermal performances, they were pressure tested

sing a DynAir compressor (See Fig. 4 ). Here, a tube was connected to the compressor and the

nlet valve of the HCOHP. The compressor was then turned on to generate a maximum air pres-

ure of about 8 kPa. The compressor valve was then opened to allow the air to fill each HCOHP.

 maintained pressure of about 3bar ( ∼41 psi) was recorded for each HCOHP tested. Pressure

esting was essential to ensure that vacuum can be created within the pipe. Khandekar et al.

3] for instance fitted a T-connector on their PHP with a filling/metering valve, tested the final

ssembly under vacuum, and found that a pressure of 10 −4 mbar could be easily maintained. 
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Fig. 2. Transient Thermal Resistance Profiles for the HCOHPs during the three test runs. 

Table 2 

HCOHP Working Fluid Charging Data. 

Heat Pipe 

Working 

Fluid 

Dry HCOHP 

Weight, kg 

Weight @ 

60% Filled 

Volume, kg 

Mass of 

Working 

Fluid in 

HCOHP, kg 

Fully Filled 

Volume, ml 

Partially 

Filled (60%) 

Volume, ml 

Evacuation 

Pressure, 

MPa 

EOHP 1 Ethanol 0.679 0.696 0.017 ∼26 ∼16 ∼0.001325 

EOHP 2 Ethanol 0.671 0.683 0.012 ∼26 ∼16 ∼0.001325 

EOHP 3 Ethanol 0.681 0.693 0.012 ∼26 ∼16 ∼0.001325 

MOHP 1 Methanol 0.679 0.691 0.012 ∼26 ∼16 ∼0.001325 

MOHP 2 Methanol 0.677 0.689 0.012 ∼26 ∼16 ∼0.001325 

MOHP 3 Methanol 0.677 0.691 0.014 ∼26 ∼16 ∼0.001325 

WOHP 1 Deionized 

Water 

0.637 0.656 0.019 ∼26 ∼16 ∼0.001325 

WOHP 2 Deionized 

Water 

0.637 0.648 0.011 ∼21 ∼12.6 ∼0.001325 

WOHP 3 Deionized 

Water 

0.636 0.657 0.021 ∼25 ∼15 ∼0.001325 

 

 

 

 

 

2.3. Charging the HCOHPs with Working Fluids 

Before charging the HCOHPs with working fluid, they were evacuated by a maximum pres-

sure of about ∼0.001325 MPa using a vacuum pump (See Fig. 5 ), under standard atmospheric

pressure of approximately 101,325 Pa. 

The HCOHPs were then weighed empty and their individual weights recorded as shown in

Table 2 . Once evacuated, the HCOHPs were then fully filled with working fluid using a labora-

tory syringe and the volume that completely filled them was recorded. The fully filled HCOHPs



6 S.K. Yeboah and J. Darkwa / Data in Brief 33 (2020) 106505 

Fig. 3. Sketch of the HCOHP with annotation and dimensions. 
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v  
ere then weighed again. They were then evacuated completely using the vacuum pump before

lling to about 60% volume with working fluid using a laboratory syringe in a fume cupboard

under ambient laboratory temperature and atmospheric pressure). Once again, the respective

eights of the partially filled HCOHPs were recorded. According to Senjaya and Inoue [4] high

eat transfer rate occurs when OHPs are charged at the optimum filling ratios (about 50–60%),

hich are higher than those of conventional heat pipes. The filling process involved evacuating

he HCOHP and then closing the inlet valve to maintain the evacuation pressure. The required

orking fluid volume was subsequently drawn from a container using the laboratory syringe.

he laboratory syringe containing the working fluid was then securely connected to the inlet

alve of the HCOHP and the valve subsequently opened to draw the working fluid into the
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Fig. 4. Pressure Testing of the HCOHPs. 

Fig. 5. Evacuation and Filling of HCOHPs in the Laboratory. 

Table 3 

Thermophysical Properties and Figure of Merit for the Selected Working Fluids at 30 °C. 

Working 

Fluid 

Temperature, 

°C 

Density 

(kg/m 

3 ), 

ρl 

Latent 

Heat of 

Evapora- 

tion(kJ/kg), 

λ

Surface 

Tension 

(N/m), 

σ

Liquid 

Viscosity 

(cP), μl 

Figure of 

Merit M 

(W/m 

2 ) Comments 

Ethanol 30 781 888.60 0.024 1.02 1.6 × 10 7 Figure of merit 

calculated with 

data from Reay 

et al. [5] 

Methanol 30 782 1155.00 0.022 0.52 

3.78 × 10 7 

Water 30 996 2430.50 0.071 0.80 

2.15 × 10 8 

 

 

 

HCOHP. Once all the working fluid was automatically drawn into the HCOHP (due to the vac-

uum pressure), the inlet valve was closed to ensure the HCOHP maintained the vacuum pressure.

Leaks were checked by immersing the whole HCOHP in a water bath at ambient temperature. 

The thermophysical properties of the working fluids along with their Figures of Merit are

presented in Table 3 . 
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Fig. 6. HCOHP Test Rig in the Laboratory. 

Table 4 

HCOHP Dimensions. 

Parameter Area (m 

2 ) Length (m) 

Evaporator 0.02 0.19 

Condenser 0.02 0.19 

Adiabatic Section - 0.2 

Table 5 

Dimensions of the Heat Transfer Vessel. 

Component Length (cm) Inner Diameter (cm) Outer Diameter (cm) 

Copper Vessel 30.00 7.80 8.00 

2

 

Y

 

b  

n  

t  

c  

c  

i  

t  

H  

T

2

 

a  

u  

H  
.4. Data collection and measurement devices 

The primary data collection devices used in this study was Omega K-type thermocouples, a

okogawa MV20 0 0 and a desktop computer as shown in the test rig in Fig. 6 . 

The Omega K-type thermocouples were connected to the condensers, evaporators, and adia-

atic sections as shown in the thermocouple map in Fig. 7 . The thermocouples were then con-

ected to the Yokogawa DX 20 0 0 data logger and the desktop computer for the collection of

emperature data. The evaporator sections were then subjected to varied heat input with the

ondensers exposed to the ambient surroundings. Since the original purpose of the helically

oiled HCOHPs were to fit around a copper vessel, testing was carried out with hot air blown

nto the copper vessel and the heat generated via the walls transferred to the evaporators. For

his approach three test runs were carried out namely Run 1, 2 and 3. The dimensions of the

COHP are presented in Table 4 while that of the cylindrical copper vessel can be found in

able 5 . 

.5. Temperature and power input measurements 

The HCOHPs were oriented vertically with the evaporators at the bottom and the condensers

t the top as shown in testing schematic in Fig. 8 . The power input to the HCOHPs was achieved

sing a cylindrical copper vessel integrated with the helically coiled evaporator sections of the

COHPs as shown in Fig. 7 . To ensure that the conditions were the same for all the HCOHPs
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Fig. 7. Thermocouple Map for Experimental Set-up. 

Fig. 8. HCOHP testing schematic. 
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Table 6 

Absolute Uncertainties for the Temperature Measurement Instruments. 

Parameter Measurement Device Absolute Uncertainty Units 

Temperature FLIR T640 Infrared Camera ±2 °C 
Temperature Omega K Type Thermocouples ±0.1 °C 
Temperature AZ 8829 sensor and data logger ±0.6 (from -20 ∼50 °C), ±1.2 (others) °C 
Temperature Sentry ST 732 Hotwire Anemometer ±2 (from -20 ∼100 °C) °C 

d  

t  

m  

s  

o  

p  

e  

w  

d  

p  

u  

a

2

 

w

 

 

 

u

 

 

t  

l

 

 

uring testing, the cylindrical copper vessel was pushed through the helical evaporator coils of

he three HCOHPs and insulated together using a 20mm thick nitrile rubber thermal insulation

aterial for each test run. OMEGA K-type thermocouples attached to the inner and outer wall

urfaces of the cylindrical copper vessel provided the temperature readings of the inner and

uter surfaces for the input flux and power to be calculated. To ensure the accuracy of the tem-

erature measurements obtained from the Omega K type thermocouples, they were doubled for

ach probe point to avert failure. Also the inlet air temperature of the copper vessel was verified

ith the Omega K type thermocouples using a Sentry ST732 Hotwire Anemometer and AZ8829

ata logger to ensure that the measured values were consistent. A final verification of the tem-

erature measurements of the condensers exposed to the ambient surroundings was carried out

sing the FLIR T640 Infrared camera. The absolute uncertainty of the temperature measurement

nd verification instruments can be found in Table 6 . 

.6. Relevant design and analysis equations 

The rate of heat transfer though the walls of the empty cylindrical copper vessel integrated

ith the HCOHPs was determined using equation (1) [6] . 

q w 

= −k A s 
dT 

dr 
= 2 πLk 

T i − T o 

ln 

(
r o / r i 

) (1)

The evaporator heat flux was determined from Fourier’s Law given by equation (2) [7] . 

Q = −kA 

dT 

dx 
(2)

Each HCOHP thermal performance was evaluated by determining the thermal resistance (R)

sing equation (3) obtained from Hao et al. [8] . 

R = 

T̄ e − T̄ c 

Q 

(3)

The thermal resistance between the two contacted solid surfaces of the evaporator coils and

he cylindrical copper vessel resulting from the surface irregularities and asperities was calcu-

ated using equations (4 and 5 ) obtained from Zhang et al. [9] . 

R c = 

T v − T e v ap 

q a v 
(4)

q a v = 

q v + q e v ap 

2 
(5)

Where 

• A = cross sectional area, (m 

2 ) 

• A s = surface area of cylindrical copper vessel (m 

2 ) 

• k = material thermal conductivity (W/m • K) 

• L = length of the material (m) 

• Q - heating power input (W) 
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• q a v = the average heat flux of the vessel and evaporator coils (W/m 

2 ) 

• q v = heat flux from the vessel (W/m 

2 ) 

• q e v ap = heat flux at the evaporator (W/m 

2 ) 

• R = thermal resistance ( °C/W) 

• r i = inner radius of packed bed vessel (m) 

• r o = outer radius of packed bed vessel (m) 

• T̄ c - Condenser temperature ( °C) 

• T̄ e - Evaporator temperature( °C) 
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