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Abstract

This thesis investigates the properties of the interacting chiral boson model for

the maximally doubled string. We first introduce and briefly review double field

theory. We then review two world-sheet actions for the doubled string: Tseytlin’s

original duality symmetric string and a recent example of the double sigma model

based on Hull’s doubled formalism, which is constructed to be equivalent to

Tseytlin’s formulation. One feature of the latter concerns the underlying as-

sumption of a base-fibre split, which means the fibre metric depends only on

the base coordinates. In this thesis, we instead consider the case in which all

coordinates are doubled. Taking the most general form of the Tseytlin action

in which the fields possess arbitrary dependence on the full doubled geometry,

we investigate whether a generic approach to the interacting chiral boson model

- one which does not assume O(D,D) invariance from the outset - satisfies the

requirement of conformal invariance at the quantum level. This demands that the

doubled beta-functionals of the sigma model couplings vanish in the maximally

doubled space.
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Chapter 1

Introduction

1.1 History

String theory is the leading candidate for a self-consistent theory of quantum

gravity. Its full realisation is expected to correlate with the unification of all the-

ories of fundamental interaction. Crucial to its completion is to understand both

the wealth of string symmetries and to what extent these symmetries (when made

manifest) may be used to determine the fundamental structure of the underlying

theory.

The nature of this wealth of string symmetries is owed primarly to the extended

object of the string, which may be thought of as a generalisation of point particle

theory. As late as 1995, it was believed that the five string theories - type I, type

IIA, type IIB, and the two flavours of heterotic string theory (SO(32) and E8 ×
E8) were distinct. When it was eventually observed that the five string theories

are in fact deeply related by non-trivial dualities, it was proposed by Edward

Witten that rather than being distinct they actually represent different limits of

an overarching theory. This overarching theory is known as M-theory, with the

conception of a web of dualities based firstly on Witten’s observation that the

type IIA string and the E8×E8 heterotic string are related to eleven-dimensional

supergravity [1]. In that dualities find natural expression in the extended objects

of string theory [2], it is rather the evocative unification principle in which this

intricate web of string dualities are related that hints deeply at a unique theory

of quantum gravity.

Target-space duality (T-duality) and strong-weak duality (S-duality) are two

examples of string symmetries, with the former being fundamental in string the-

ory. Together T-duality and S-duality unify all ten-dimensional superstring theo-

ries. When these two duality transformations are combined they then define the
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unified duality (U-duality), which is anticipated to be a fundamental symmetry

of M-theory.

S-duality may be thought of in terms of a familiar description from classical

physics, notably invariance of Maxwell’s equations under the exchange of electric

and magnetic fields: E → B, B → − 1
c2
E . As suggested by its name, S-duality

transformation displays physical equivalence between strong and weak couplings

of a theory. The existence of S-duality in string theory was first proposed by

Ashoke Sen [3], where he showed that the Type IIB string with g coupling was

equivalent to the same theory with coupling constant 1
g .

On the other hand, T-duality, first observed by Balachandran Sathiapalan [4],

is a fundamental consequence of the existence of the string [5, 6]. This important

duality famously constitutes an exact symmetry of the bosonic string, encoded

by the transformations: R ↔ α′
R , k ↔ w. This implies an equivalence between

radius and inverse radius, with the exchange of momentum modes k and winding

modes w in closed string theory, or in the case of the open string an exchange of

Dirichlet and Neumann boundary conditions [7, 8, 9].

The reason that T-duality is considered a fundamental property of string the-

ory has precisely to do with the existence of these intrinsically stringy winding

modes. In that closed strings can wrap around non-contractible cycles in space-

time, the winding states present in string theory have no analogue in point particle

theory, and it is the existence of both momentum and winding states that allows

T-duality. In that it is closely related to mirror symmetry in algebraic geometry,

which in string theory is related to the important study of Calabi-Yau manifolds,

T-duality in many cases enables us to observe how different geometries for the

compact dimensions are physically equivalent.

Moreover, it is by this fundamental and intrinsic stringy duality that one of the

most remarkable features of string theory may be stated: namely, the equivalence

of string theories on dual backgrounds with very different geometries. More con-

cisely, if under T-duality transformation the momentum mode p is exchanged with

the winding mode w in which we also exchange R with α′/R, then it can be shown

that the mass spectrum of the closed string M2 = (N + N̄ − 2) + p2 α′
R2 + w2R2

α′
and the level-matching condition N − N̄ = pw remain invariant. Thus, from the

point of view of the string, it cannot distinguish whether it is propagating along a

circle with radius R or 1/R. In general, when d-dimensions are compactified on a

n-torus, we may generalise T-duality transformations under the group O(n, n,Z).

As it relates to this thesis, the importance of string dualities such as T-duality

is amplified in the context of string field theory. In the early 1990s, field theory
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emerged as a complete gauge-invariant formulation of string dynamics [5, 10].

This led to the development of a precise spacetime action whose gauge symmetry

arguably takes the most elegant possible form [11]. A key feature of string field

theory is that the momentum and winding modes are treated symmetrically and

on equal footing.

To better explain what this means, let us first denote the compact coordinates

Xa and the non-compact coordinates Xµ, with XI = (Xa, Xµ). Conventionally,

we define the indices such that I = 1, ..., D, µ = 1, ..., d, and a = 1, ..., n. If the

string field gives component fields that depend on momentum pa and winding wa,

then in position space we may assign the coordinates Xa conjugate to the mo-

mentum and new periodic dual coordinates X̃a conjugate to the winding modes.

One consequence is therefore that, if one attempts to write the complete field

theory of closed strings in coordinate space, the full theory depends naturally

on dual coordinates Xa and X̃a, which, again, is also to say that naturally the

full phase space of the theory accompanies both the momentum and the winding

modes. This is an incredibly interesting fact, because, to phrase it in a slightly

different manner, for toroidal compactification there is a zero mode Xa and X̃a,

and the expansion of a string field provides component fields that depend on

both momentum and winding. Thus, the arguments of all fields in such a theory

are doubled. For the doubled fields φ(Xa, X̃a, X
µ) we may write the following

seemingly simple action

S =

∫
dXa dX̃a dX

µL(Xa, X̃a, X
µ). (1.1)

For the integration measure dXa dX̃a dX
µ, one sees that it runs over the flat

d-dimensional spacetime as well as the full coordinate space. The advantages

of obtaining a completely understood closed string field theory are vast. It is

anticipated, for instance, that a fuller view of some of the fundamental properties

of perturbative string theory will emerge in addition to fundamental aspects of

the non-perturbative theory [11]. However, despite the appearance of the action

(1.1), L is in fact incredibly complicated and our understanding of Lagrangians

of this form is incomplete. In that one may argue that this doubled space - i.e.,

doubled fields depending on a doubled set of coordinates - is the true space of

string theory1, one issue has to do with how the physical content of the theory

becomes buried underneath unphysical and computationally inaccessible data,

1In his 2010 series of lectures at the Ludwig Maximilian University of Munich, as part of the
International School on Strings and Fundamental Physics, Zwiebach made explicit reference to
the point that, however we interpret it, doubled space is the true home of the string.

7



with the full closed string field theory comprising an infinite number of fields.

One simplification strategy is to therefore choose some finite subset of string

fields. An obvious choice for such a subsector of the full theory is the massless

sector. An important property of this sector of closed strings is of course that

it consists of gravitational fields gIJ with Riemann curvature R(g), the Kalb-

Ramond field bIJ with the conventional definition for the field strength H = db,

and a dilaton scalar field φ. The question is then to ask, if for the standard

bosonic string the low-energy effective action is famously

SSUGRA =

∫
dX
√
−g e−2φ[R + 4(∂φ)2 − 1

12
H2] + higher derivative terms,

(1.2)

where the integration measure dX is taken to be D-dimensional, what does

this action become in the case of doubled coordinates on tori? What symmetries

are present? Is T-duality manifest? Armed with these questions, the study of

double field theory (DFT) may be motivated at its very foundations. Indeed, one

way to think of DFT from first principles is by way of its proposal to develop

a manifestly spacetime invariant T-duality theory, whose origins may be traced

back to the important work of Tseytlin [12, 13] and Siegel [14, 15]. But it was

in fact following Nigel Hitchin’s introduction of generalised geometry [16, 17],

itself inspired by the existence of T-duality, that serious efforts materialised to

incorporate this mathematical insight into the study of the target-space geome-

try in which strings live [18, 19, 20, 21], beginning especially with the study of

phase space and invariance of respective Hamiltonians. In 2009, C M Hull and

Barton Zwiebach formulated such a T-duality invariant theory explicitly [18]. In

general, the theory is constructed on the product manifold Rd−1,1 × Tn with

coordinate space fields φ(Xµ, Xa, X̃a). The torus is naturally doubled, contain-

ing the spacetime torus and the torus parameterised by the winding modes, such

that (Xa, X̃a) are periodic on T 2n. The spectrum for the massless fields is then

described in terms of the supergravity limit of string theory.

With a fresh perspective on T-duality emerging in the last decade, the mani-

festly T-dual Lagrangians in DFT have been found to take on an intriguing struc-

ture, leading to a number of interesting applications. This has led to the develop-

ment of deeper connections between frontier theoretical physics and mathematics

through the appearance and use of Courant brackets and with the deepening role

generalised geometry seems to play in string theory. Additionally, concepts and

ideas to have emerged in the formalism have also been explored in the context of
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M-theory [22, 23], where exceptional field theory seeks to promote the U-duality

group to a manifest symmetry of the spacetime action. Parallel to the efforts

of DFT is also the development of a T-duality invariant world-sheet description

of string theory, which may be described as the doubled world-sheet and whose

origins may be traced back to the notable work of Duff [24] and again Tseytlin

[12, 13]. Much like the field theory, the doubled world-sheet theory was reinvigo-

rated in the last decade following breakthrough work by Hull [25, 26], who used

the formalism to define strings in a class of non-geometric backgrounds known

as T-folds [27, 28, 29, 30, 31]. These are non-geometric manifolds where locally

geometric regions are patched together such that the transition functions are

T-duality transformations (see [32, 33, 34, 35] for review). Such non-geometric

constructions are suspected to play an important role in moduli stabilisation,

and hence have implications with regards to the string landscape. Finally, it

may also be noted that all of these efforts with regards to the doubled string

have raised interesting questions and inspired recent exciting research pathways

in string cosmology.

1.2 Motivation: A return to Tseytlin and the

duality symmetric string

From the spacetime perspective, T-duality is a solution generating symmetry

of the low energy equations of motion. However, from a world-sheet point of

view, T-duality is a non-perturbative symmetry. Given its importance in access-

ing a potentially fuller view of the perturbative theory and the still underde-

veloped non-perturbative theory, the relatively recent realisation that T-duality

(and other string dualities) enables an extension of string backgrounds with tra-

ditional geometry (and physical fluxes) to a much broader class of generalised and

non-geometric objects - this has broken open a deeply exciting and fundamental

area of string research (e.g., see [25, 33, 36, 37, 38]).

At the heart of such research, as far as the present thesis is concerned, is

Tseytlin’s 1990/91 formulation [12, 13] of the duality symmetric string and world-

sheet theory for interacting chiral scalars. In [13], we observe a first-principle

formulation of manifestly T-duality invariant closed string theory based on a

double set of coordinates: X = X+ +X−, X̃ = X+−X−, where X+ and X− are

left and right-movers respectively. An essential aspect of Tseytlin’s formulation is

its extension of string theory by which T-duality becomes an off-shell symmetry,
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implying manifest invariance of the scattering amplitudes and the effective action.

Famously, Tseytlin’s formulation of the closed string sigma model for interacting

chiral scalars takes the form

STseytlin = −T
2

∫
d2ξ e[CIJ∂0X

I∂1X
J +MIJ∂1X

I∂1X
J ]. (1.3)

We will discuss this action and Tseytlin’s approach to the duality symmetric

string in Chapter 3. For now, however, we may note that T is the usual string

tension. We may also consider I = 1, ..., D, and we may think of CIJ and MIJ

as generic symmetric matrices. We take the conventional definition for the time

and spatial derivatives to be ∂0 = ∂/∂τ and ∂1 = ∂/∂σ, and, as we will discuss

later, e is the determinant of the zweibein that we pick up in the construction.

Importantly, what should be emphasised here is how, in the last decade especially,

this formulation and simple looking action has been refocused in various studies

concerning the nature of the doubled string and its geometry.

One notable example, which serves as the structure for the main part of this

thesis, pre-dates the first primary collection of DFT papers and, in many ways,

can be interpreted to give a prediction to DFT. In 2008 David S. Berman, Neil B.

Copland, and Daniel C. Thompson investigated the background field equations

for the duality symmetric string using an action equivalent to that of Tseytlin’s

but constructed in the context of Hull’s doubled formalism [39]. The details of this

construction will also be reviewed in Chapter 3, where we will discuss the action

from which the authors calculate the doubled beta-functionals for the interacting

chiral boson model in the case where the background fields depend trivially on the

doubled coordinates but non-trivially on the non-compact spacetime coordinates.

In recent years, a series of publications on the doubled sigma model have appeared

in [40, 41, 42, 43] in connection, where in [41] the double sigma model is directly

related to DFT.

Another example may refer directly to DFT from a different perspective. In

the years after 2009 when Hull and Zwiebach published their important paper, it

was recognised that while a deep connection exists between DFT and generalised

geometry, with DFT locally equivalent to the latter, it does not completely come

into contact with its formal mathematical structures. In fact, an open research

question remains motivated by the unmistakeable resemblance DFT has with

generalised geometry and the formal gap that remains between them. Recent

work in mathematics and physics has displayed some promise, suggesting that

the use of para-Hermitian and para-Kähler manifolds may be the solution [44,
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45, 46]. Related to these efforts is a recent reformulation of string theory under

the heading metastring theory [45, 47, 48, 49, 50], which begins, similar to the

studies on double sigma models, with a generalised version of the first-principle

Tseytlin action for the duality symmetric string. The metastring is therefore a

chiral T-duality invariant theory that, in many ways, wants to generalise from

DFT and make direct connection with things like Born geometry [47], relying on

the consistency of Tseytlin’s formulation.

If a direct consequence of making T-duality manifest is that the winding modes

are treated on equal footing with momentum, then for DFT all of these properties

are incorporated into one field theory. The result, as mentioned, is a doubled

coordinate space. In metastring theory, on the other hand, the target space of

the world-sheet formulation is a phase space, much like in Tseytlin’s original

construction. The coordinates of this phase space are indeed doubled, but unlike

in DFT they are also conjugate such that in this case the dual coordinates are

related directly to energy-momentum coordinates. In other words, X̃ is now

identified with p. This means that, instead of a physical spacetime formulation,

the goal of metastring theory is to construct a sigma model as a phase space

formulation of the string and its dynamics.

The implications of metastring theory, as they have so far been conjectured,

are intriguing. For example, there have been claims toward obtaining a family

of models with a 3+1-dimensional de Sitter spacetime, argued to be realised in

the standard tree-level low-energy limit of string theory in the case of a non-

trivial anisotropic axion-dilaton background [50]. A key statement here is that,

while string theory has purely stringy degrees of freedom (from first principles

consider simply the difference between the left and right-moving string modes),

these are not captured by standard effective field theory approaches and their

spacetime descriptions. Such approaches are usually employed when investigat-

ing de Sitter space. In the phase-space formulation of the metastring, these purely

stringy degrees of freedom (generally chiral and non-commutating) are argued to

be captured explictly. When it comes to the hope of obtaining an effective de

Sitter background, one of the major claims in this non-commutative phase-space

formalulation is how, in the doubled and generalised geometric description, the

effective spacetime action translates directly into the see-saw formula for the

cosmological constant. Furthermore, in this cosmic-string-like solution related

to the concept of an emergent de Sitter space, it is argued that the metastring

leads naturally to an expression of dark energy, represented by a positive cosmo-

logical constant to lowest order. Finally, it is argued that the intrinsic stringy
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non-commutativity provides a vital ingredient for an effective field theory that

reproduces to lowest order the sequestering mechanism [50, 51] and thus a radia-

tively stable vacuum energy. Such claims are worthy of investigation.

As it relates to these two examples, in this dissertation our interest is to

pursue a completely generic approach to the calculation of the doubled beta-

functionals for the interacting chiral model following primarily the structure of

[39]. To motivate such a calculation it is important to highlight that, because

in [39] a form of the Tseytlin action is constructed from within the doubled

formalism, what we will see is that one displeasing feature of such an approach is

the need to separate, from the outset, the base of the fibration with the doubled

fibration. This means the fibre metric depends only on the base coordinates.

Rather than assuming a base-fibre split, there is an argument to be made that a

more democratic approach is one in which everything becomes doubled [43].

What exactly does it mean to double everything and give the background fields

arbitrary dependence on the full doubled geometry? What are the implications?

Such are the questions we begin to observe in this thesis, and they are relevant not

only to the referenced studies on double sigma models but also to DFT, which,

as we will review in Chapter 2, is in its own way a highly constrained theory that

depends on only half of the doubled coordinates. In the calculations featured in

Chapter 4 we also seek to avoid a number of other assumptions made in [39] and

elsewhere when calculating the beta-functionals and investigating the quantum

consistency of the theory. For instance, O(D,D) invariance is assumed from the

outset and an important constraint, known as the chirality constraint, is applied

at the level of the action. Instead, the action we shall use is the most general form

the Tseytlin action can take and we shall calculate the doubled beta-functionals

in a completely generic fashion for the completely doubled theory. Additionally,

while in [39] the total divergence is described, comprising of both Weyl anomaly

and Lorentz anomaly terms, the latter are not explicitly calculated. Instead, the

authors leave the suggestion that due to ‘an equal number of Bosons of each

chirality’ all occurrences of such terms cancel. In this dissertation all Lorentz

anomaly terms are calculated explicitly for the totally doubled case.

In calculating the one-loop Weyl and Lorentz divergence for the background

doubled metric, and in investigating whether the totally doubled theory for in-

teracting chiral scalars satisfies the requirement of conformal invariance at the

quantum level, the broader goal of this thesis is to lay important groundwork

for planned future studies that investigate the full doubled geometry of the the-

ory. Due to restrictions in length, such discussions could not be included here,
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although such investigations prove deeply interesting. Instead, by ensuring the

fields have arbitrary dependence on the full doubled geometry from the outset,

the first phase of the calculation presented in Chapter 4 is presented. And it will

be noted that, in originally formulating this thesis, what we hoped to find was a

quantum consistent theory that would give foundation for further investigation

into possible effective spacetime theories that correspond to completely generic

non-geometric geometries and also world-sheet theories underlying completely

generic non-geometric string compactifications.

Finally, another advantage that this thesis offers is that, although we do not

consider here the metastring formulation, a consequence of the calculations that

proceed from Chapter 4 is the investigation into a number of intriguing claims.

One example is how, from the quantum effective action and the calculation of the

doubled beta-functionals we may investigate directly whether there are any hints

at the presence of the sequestering equations of motion [52, 53] in the general

formulation of the Tseytlin action. The presence of sequestering would be quite

interesting and would raise a number of questions for future study of the duality

symmetric string.

1.2.1 Structure of this thesis

This dissertation is organised as follows. In Chapter 2, we proceed with a light-

ning review of a few pertinent points in the construction of double field theory,

followed by a review of the T-duality transformation group O(D,D,Z), and fi-

nally we discuss briefly the geometrisation of the supergravity action. In Chapter

3, two approaches to the construction of the world-sheet action for non-geometric

backgrounds is introduced. We review both Tseytlin’s non-covariant formulation

of the doubled string action as well as Hull’s covariant formulation, concluding

with a formalisation of the doubled sigma model as found in [39]. In chapter 4, we

study the doubled sigma model action as it relates to the completely general ver-

sion of Tseytlin’s action for interacting chiral scalars. We perform a background

field expansion to obtain the one-loop effective action, and then calculate the

Weyl and Lorentz divergences. Finally, after lengthy calculation, we study the

total divergence of the theory and obtain an expression for the generalised Ricci,

followed with a study of the one-loop doubled beta-functionals. The thesis then

concludes with a summary of results and several closing comments are offered in

relation to a number of future sites of investigation.

13



Chapter 2

Target Space Duality, Double

Field Theory, and O(D,D,Z)

In this chapter we review a few pertinent points in the construction of double

field theory as formulated by Zwiebach, Hull, and Hohm [18, 19, 20, 21], with

emphasis particularly on the generalisation of T-duality for toroidal backgrounds.

The associated duality group O(D,D,Z) is also studied.

2.1 Double field theory

The standard formulation of DFT is known as the generalised metric formulation

(for a complete review of the fundamentals see [54]). The effort begins with

the NS-NS supergravity action (1.2). In the case of toroidal compactification

defined by D-dimensional non-compact coordinates and d-dimensional compact

directions, the target space manifold can be defined as a product between d-

dimensional Minkowski spacetime and an n-torus, such that Rd−1,1 × Tn where

D = n + d. We have for the full undoubled coordinates XI = (Xa, Xµ) with

Xa = Xa+2π being the internal coordinates on the torus. The background fields

are d× d matrices taken conventionally to be constant with the properties:

GIJ =

(
Ĝab 0

0 ηµν

)
, BIJ =

(
B̂ab 0

0 0

)
, and GIJGJK = δIK . (2.1)

We define Ĝab as a flat metric on the torus and ηµν is simply the Minkowski

metric on the d-dimensional spacetime. As usual, the inverse metric is defined

with upper indices. In (2.1) we also have the antisymmetric Kalb-Ramond field.
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Finally, for purposes of simplicity, we have dropped the dilaton. Of course one

must include the dilaton at some point so as to obtain the correct form of the

NS-NS supergravity action, and we will return to this point when discussing

the duality invariant doubled dilaton scalar in Section 2.3. In the meantime, in

conventional analysis, the dilaton may at first be dropped in what we will soon

define as the O(D,D) description of the theory, because the motivation for now

is primarily to study the way in which GIJ and BIJ come together in a single

generalised geometric entity, which we begin to construct with the internal metric

denoted as

EIJ = GIJ +BIJ =

(
Êab 0

0 ηµν

)
(2.2)

for the closed string background fields, with Êab = Ĝab+B̂ab as first formulated

by Narain et al [55]. It is important to note that the canonical momentum of

the theory is 2πPI = GIJ Ẋ
J +BIJX

′J , where, in the standard way, Ẋ denotes

a τ derivative and X ′ denotes a σ derivative. Famously, the Hamiltonian of the

theory may then also be constructed from the expansion of the string modes for

coordinate XI , the canonical momentum, and from the Hamiltonian density to

take the following form

H =
1

2
ZTH(E)Z + (N + N̄ − 2). (2.3)

Or, to write it in terms of the mass operator,

M2 = ZTH(E)Z + (N + N̄ − 2). (2.4)

In summary, in an n-dimensional toroidal compactification, the momentum pI

and winding modes wI become n-dimensional objects. So the momentum and

the winding are combined in a single object known as the generalised momentum

Z =

(
wI

pI

)
. This generalised momentum Z is defined as a 2D-dimensional

column vector, and we will return to a discussion of its transformation symmetry

in a moment. Meanwhile, in (2.3) and (2.4) N and N̄ are the usual number

operators counting the excitations familiar in the standard bosonic string theory.

One typically derives these when obtaining the Virasoro operators. We also see

the first appearance of the generalised metricH(E), which is a 2D×2D symmetric

matrix constructed from GIJ and BIJ with E = EIJ = GIJ + BIJ . We will

discuss the generalised metric in just a few moments.
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As is fundamental to closed string theory there is the Virasoro constraint

L0 − L̄0 = 0, where L0 and L̄0 are the Virasoro operators. This fundamental

constraint remains true in the case of DFT. Except in DFT this condition on the

spectrum gives N − N̄ = pIw
I or, equivalently,

N − N̄ =
1

2
ZTLZ, (2.5)

where

L =

(
0 I
I 0

)
. (2.6)

Given some state and some oscillators, the fundamental constraint (2.5) must

be satisfied, with the energy of such states computed using (2.3). For the time

being, we treat L somewhat vaguely and simply consider it as a constant matrix;

but in the next section it will prove important and its meaning will become

explicit. We denote I as a D ×D identity matrix.

Continuing with basic definitions, the generalised metric that appears in (2.3)

and (2.4) is similar to what one finds using the Buscher rules [56] for T-duality

transformations with the standard sigma model [9, 57]. That is to say, H takes

a form in which there is clear mixing of the background fields. It is defined as

follows,

H(E) =

(
G−BG−1B BG−1

−G−1B G−1

)
. (2.7)

One inuitive motivation for the appearance of the generalised metric is simply

based on the fact that, if we decompose the supergravity fields into the metric Gij

and the Kalb-Ramond field Bij , in DFT these then must assume the form of an

O(n, n) tensor. The generalised metric, constructed from the standard spacetime

metric and the antisymmetric two-form serves this purpose. On the other hand,

the appearance of the generalised metric can be approached from a more general

perspective that offers a deeper view on toroidal compactifications. In (2.3) what

we have is in fact an expression that serves to illustrate the underlying moduli

space structure of toroidal compactifications [34, 55], which, for a general manifold

M may be written as

Mn = O(n)×O(n)/O(n, n)\T-duality. (2.8)

The overall dimension of the moduli space is n2 which follows from the param-
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eters of the background matrix Eij , with n(n+ 1)/2 for Gij plus n(n− 1)/2 for

Bij . The zero mode momenta of the theory define the Narain lattice Γn,n ⊂ R2n,

and it can be proven that Γn,n is even and also self-dual. These properties ensure

that, in the study of 1-loop partition functions, the theory is modular invari-

ant with the description enabling a complete classification of all possible toroidal

compactifications (for free world-sheet theories). The feature of self-duality con-

tributes O(n,R)×O(n,R) in (2.8). The Hamiltonian (2.3) remains invariant from

separate O(n,R) rotations of the left and right-moving modes that then gives the

quotient terms. As for the generalised metric, we may in fact define it as the

O(n, n)/O(n)×O(n) coset form of the n2 moduli fields.

2.2 O(n, n,Z)

In a lightning review of certain particulars of DFT, we may deepen our discussion

of the T-duality group by returning first to the generalised momentum Z as

it appears in (2.4). If we shuffle the quantum numbers w, p, which means we

exchange w for p and vice versa, the transformation symmetry of Z is well known

to be

Z → Z = hTZ ′. (2.9)

For now, h is considered generally as a 2D × 2D invertible transformation

matrix with integer entries, which mixes pI and wI after operating on the gen-

eralized momentum. It follows that h−1 should also have invertible entries, this

will be shown to be true later on. Importantly, if we have a symmetry for the

theory, this means a transformation in which we may take a set of states and,

upon reshuffling the labels, we should obtain the same physics. Famously, it is in-

deed found that the level-matching condition and the Hamiltonian are preserved.

If we take Z → Z ′ as a one-to-one correspondence, the level-matching condition

(2.5) with the above symmetry transformation (2.9) gives

N − N̄ =
1

2
ZTLZ =

1

2
ZT ′LZ ′

=
1

2
ZT ′hLhTZ ′. (2.10)

For this result to be true, it is necessary as a logical consequence that the

transformation matrix h must preserve the constant matrix L. This means it is
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required that

hLhT = L, (2.11)

which also implies

hTLh = L. (2.12)

These last two statements can be proven, producing several equations that

give conditions on the elements of h. The full derivation will not be provided

due to limited space (complete review of all items in this section is again found

in [18, 19, 20, 21, 54]); however, to illustrate the logic, let a, b, c, d be D × D

matrices, such that h may be represented in terms of these matrices

h =

(
a b

c d

)
. (2.13)

The condition in which h preserves L demands that the elements a, b, c, d

satisfy in the case of (2.11)

aT c+ cT a = 0, bT d+ dT b = 0, and aT d+ cT b = 1. (2.14)

Likewise, similar conditions are found for the case (2.12), for which altogether

it is proven that h−1 has invertible entries. What this ultimately means, and why

it is relevant in the context of later discussions in this thesis, is that although

we previously considered h vaguely as some transformation matrix, it is in fact

an element of O(D,D,R) and L is an O(D,D,R) invariant metric. Formally, an

element h ∈ O(D,D,R) is a 2D × 2D matrix that preserves, by its nature, the

O(D,D,R) invariant metric L (2.6) such that

O(D,D,R) =

{
h ∈ GL(2D,R) : hTLh = L

}
. (2.15)

Finally, if the aim of DFT at this point is to completely fulfil the demand for

the invariance of the massless string spectrum, it is required from (2.3) for the

energy that, if the first term is invariant under O(D,D,R) then we must have

the following transformation property in the case ZTH(E)Z → Z ′TH(E′)Z ′:

Z ′TH(E′)Z ′ = ZTH(E)Z
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= Z ′ThH(E)hTZ ′. (2.16)

Proposition 1. By definition, given the principle requirement of (2.16) it is

therefore also required that the generalised metric transforms as

H(E′) = hH(E)hT . (2.17)

The primary claim here is that for the transformation of E we find

(E′) = h(E) =

(
a b

c d

)
(E) ≡ (aE + b)(cE + d)−1. (2.18)

One should note that this is not matrix multiplication, and h(E) is not a linear

map. What we find in (2.18) is actually a well known transformation in string

theory that appears often in different contexts, typically taking on the appearance

of a modular transformation. Given the notational convention that H is acting

on the background E, what we end up with is the following

(E′T ) =

(
a −b
−c d

)
(ET ) ≡ (aET − b)(d− cET )−1, (2.19)

where in the full derivation of this definition it is shown (E′T ) =

(
a −b
−c d

)
ET .

Proof. To work out the full proposition with a proof of (2.17), we may also demon-

strate the rather deep relation between (2.17) and (2.19). The basic idea is as

follows: imagine creating E from the identity background E′ = I, where conven-

tionally E = G+B and G = AAT . Recall, also, the definition for the generalised

metric metric (2.7). Then for E = hE(I), what is hE ∈ O(D,D,R)? To answer

this, suppose we know some A such that

hE =

(
A B(AT )−1

0 (AT )−1

)
. (2.20)

It then follows

hE(I) = (A · I +B(AT )−1)(0 · I + (AT )−1)−1

= (A+B(AT )−1)AT = AAT +B = E = G+B. (2.21)

19



This means that the O(D,D,R) transformation creates a G + B background

from the identity. Additionally, the transformation hE is ambiguous because it

is always possible to substitute hE with hE · g, where we define g(I) = I for

g ∈ O(D,D,R). In fact, it is known that g defines a O(D) × O(D) subgroup of

O(D,D) gT g = ggT = I.

In conclusion, one can show that H transforms appropriately, given that up to

this point hE was constructed in such a way that the metric G is split into the

product A and AT , with the outcome that only A is entered into hE . To find G

we simply now consider the product hEh
T
E ,

hEh
T
E =

(
A B(AT )−1

0 (AT )−1

)(
AT 0

−A−1B A−1

)

=

(
G−BG−1B BG−1

−G−1B G−1

)
= H(E). (2.22)

If we now suppose naturally E′ is a transformation of E by h, such that E′ =

h(E) = hhE(I), we also have E′ = hE′(I). Notice that this implies hE′ = hhEg

up to some ambiguous and so far undefined O(D,D,R) subgroup defined by g.

Putting everything together, we obtain the rather beautiful result

H(E′) = hE′h
T
E′ = hhEg(hhEg)

T = hhEh
T
Eh

T = hH(E)hT . (2.23)

Thus ends the proof of (2.17). A number of other useful results can be obtained

and proven in the formalism, including the fact that the number operators are

invariant which gives complete proof of the invariance of the full spectrum under

O(D,D,R).

In conclusion, and to summarise, in DFT there is an explicit restriction on the

winding modes wI and the momenta pI to take only discrete values and hence

their reference up to this point as quantum numbers. The reason has to do with

the boundary conditions of n-dimensional toroidal space, so that in the quantum

theory the symmetry group is restricted to O(n, n,Z) subgroup to O(D,D,R).

The group O(n, n,Z) is as a matter of fact the T-duality symmetry group in string

theory. It is conventional to represent the transformation matrix h ∈ O(n, n,Z)

in terms of O(D,D,R) such that
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h =

(
a b

c d

)
with,

a =

(
ã 0

0 1

)
, b =

(
b̃ 0

0 0

)
, c =

(
c̃ 0

0 0

)
, d =

(
d̃ 0

0 1

)
. (2.24)

Each of ã, b̃, c̃, d̃ are n × n matrices. They can be arranged in terms of h̃ ∈
O(n, n,Z) as

h̃ =

(
ã b̃

c̃ d̃

)
. (2.25)

In the remainder of this thesis, particularly as we begin to concentrate on

the doubled formalism and the duality symmetric string, the representations

O(D,D), O(d, d), and O(n, n) are used. Invariance under the O(D,D,Z) group

of transformations is generated by the following transformations. To simplify

matters, let us define generally the action of an O(D,D) element as

O =

(
a b

c d

)
= OTLO. (2.26)

Residual diffeomorphisms: If A ∈ GL(D,Z), then one can change the basis

for the compactification lattice Γ by AΓAT . The action on the generalised metric

is

OA =

(
AT 0

0 A−1

)
, A ∈ GL(D,Z), detA = ±1. (2.27)

B-field shifts: If we define Θ to be an antisymmetric matrix with integer

entries, one can use Θ to shift the B-field producing no change in the path integral.

For compact d-dimensions, this amounts to BIJ → BIJ + ΩIJ . It follows that

the O(D,D) transformation acts on the generalised metric,

OΩ =

(
1 Ω

0 1

)
, ΩIJ = −ΩJI ∈ Z. (2.28)

Factorised dualities: We define a factorised duality as a Z2 duality corre-

sponding to the R→ 1
R transformation for a single circular direction (i.e., radial

inversion). It acts on the generalised metric as follows
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OT =

(
1− ei ei

ei 1− ei

)
, (2.29)

where e is a D ×D matrix with 1 in the (i, i)-th entry, and zeroes elsewhere

(ei)jk = δijδik. Altogether, these three essential transformations define the T-

duality group O(D,D,Z), as first established in [58, 59]. To calculate a T-dual

geometry one simply performs the action (2.17) or (2.19) using an O(D,D,R)

transformation and, in general, one may view the formalism with the complete

T-duality group as a canonical transformation on the phase space of a given

system.

2.3 Geometrisation of the supergravity action

and the generalised Ricci

We may once again recall the supergravity action (1.2). In anticipating what is

to come in this thesis, it is important to emphasise that in DFT this action gets

geometrised, which is to say that it ultimately becomes expressed in terms of

a generalised Ricci scalar R and a generalised dilaton d (following conventional

notation, d replaces φ). The action that corresponds with these developments on

the doubled space looks similar to the Einstein-Hilbert action of general relativity,

SDFT =

∫
dDXe−2dR(H, d). (2.30)

In the background independent formulation, e−2d is shown to be a generalised

density owed to the way it transforms under gauge transformation establishing

the identity
√
−ge−2φ = e−2d.

The action (2.30) captures precisely the same dynamics as the supergrav-

ity action (1.2), given the definition for the generalised curvature scalar in 2D-

dimensions

R ≡ 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂NHKL∂LHMK . (2.31)

A derivation of R occurs naturally in DFT, and it is fairly straightforward

to prove its gauge invariance in which it becomes clear that we may treat this

generalised Ricci term as a scalar [54].
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To achieve a T-duality invariant theory at the supergravity level, one relies on

the fact that when n-dimensions are n-torus, the T-duality group is as previously

stated O(n, n,Z). In general, and in relation to what we have so far discussed, it

proves more useful to think of it as the subgroup of the O(D,D) transformation

group, which is the global T-duality group. So in that the objective is to formu-

late an O(D,D) invariant theory, it follows the entire action and the degrees of

freedom at the supergravity level should be arranged in the form of an O(D,D)

tensor. Famously, we can write R as the combination of familiar scalars that is

an O(D,D) invariant generalised scalar. It takes the form

R = R + 4

(
�φ− (∂φ)2

)
− 1

12
H2. (2.32)

In our study of the double sigma model constructed from Tseytlin’s non-

covariant approach, one objective will be to derive the generalised Ricci from

the effective action.

2.4 Strong constraint

Finally, it is important to also introduce the definitions of the strong and weak

forms of the level-matching constraint. These are vital ingredients of DFT, and

references to them will surface many times throughout the remainder of this

thesis. The level-matching constraint can be derived directly from the famous

Virasoro constraint L0 − L̄0 = 0. A more terse approach may express the weak

form of the constraint in terms of the differential operator

LMN∂M∂N = 2∂I · ∂̃I , (2.33)

in which L is the O(D,D) invariant constant metric and the tilde denotes

derivatives on the dual tangent bundle. This is a fundamental constraint. In

summary, the weak form of the constraint comes from closed string level-matching

in a toroidal background. The role of this operator ∂ · ∂̃ is to annihilate all

fields and gauge parameters of the theory [54]. But when we proceed to further

generalise DFT toward the construction of O(D,D) invariant actions, we come

to see that not only all fields and gauge parameters must satisfy (2.33), what is

required is an even stronger version that includes the product of two fields. In

other words, that ∂ · ∂̃ annihilates all fields and all products of fields. Formally

and generically put, if we let AI(x, x̃) be in general fields or gauge parameters

annihilated by the constraint ∂M∂M , we now require all products AIAJ are killed
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such that

∂MAI∂
MAJ = 0, ∀ I, J. (2.34)

Here ∂MAI∂
MAJ is defined as an O(D,D) scalar. The strong form of the

level-matching constraint is required in writing a background independent form

of the double field theory action. What makes this condition so strong is that it

kills half of the fields of the theory, and we in fact lose a lot of physics. In the full

doubled theory all of the coordinates are physical. Effectively, however, the above

statement implies that our fields only depend on the real space-time coordinates,

due to a theorem in O(D,D) that states there is always some duality frame

(x̃′I , x̃
′) in which the fields do not depend on x̃′I . So we only have dependence on

half of the coordinates.

In conclusion, one of the important facets of DFT is the unification of B-field

gauge transformations and diffeomorphisms acting on the spacetime manifold

M . The result is a generalisation of diffeomorphisms acting on the doubled space

P , which is a natural space of the full closed string field theory. But with the

strong constraint, what we have is in fact a highly constrained theory despite the

original notion of doubled coordinates, because, in a geometrical sense, the fields

and gauge parameters may only depend on the undoubled slice of the doubled

space.

Due to limitations in word length, we cannot discuss in detail these subtleties,

nor how the strong constraint relates to a discussion of generalised geometry.

But we may contextualise for the benefit of what is to come in Chapter 4 and its

motivation. Crudely speaking, the basic mathematical statement of generalised

geometry [16, 17] is that the tangent bundle TM of a manifold M is doubled in the

sum of the tangent and co-tangent bundle TM⊕T ?M . In this formalism we also

replace the Lie bracket with a Courant bracket, which we may write as something

of the form [X + ξ, Y + η]C = [X, Y ] + LXη − LY ξ − 1
2d(iXη − iY ξ) such that

Xξ, Y + η ∈ Γ(TM ⊕T ?M). Now, if in physics there is motivation to ask about

the geometry of spacetime in which strings propagate, and if the existence of

winding modes and the nature in which T-duality connects these winding modes

to momentum hints that perhaps the fundamental geometry of spacetime should

be doubled, one issue that we have is that the strong constraint does not offer a

unique solution. This means there is no geometrical information that describes

the remaining coordinates on which the fields depend. One interpretation of DFT

therefore concerns how there is an arbitrariness in its construction, because there
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is a freedom to choose which submanifold P is the base M for the generalised

geometry widely recognised to be deeply connected with what the doubled string

hints.

In what follows from the calculations in Chapter 4 for the duality symmetric

string on a completely generic doubled space, we hope to find deeper hints at

these connections and their related concepts.
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Chapter 3

The Doubled String: World-sheet

Actions for Non-geometric

Backgrounds

When it comes to the study of double sigma models, there are primarily two dou-

bled string actions that we may consider: one which displays general covariance

and one which displays general non-covariance. In that the two actions that we

will briefly review satisfy the requirement of T-duality appearing as a manifest

symmetry, they both have nuances that one must consider carefully.

The first world-sheet sigma model that we will describe is Tseytlin’s first-

principle formulation of the duality symmetric string [12, 13], which presents

a direct stringy extension of the Floreanini-Jackiw Lagrangians [60] for chiral

fields. In this approach, although explicit O(D,D) invariance emerges rather

organically as an intrinsic characteristic of the doubled string, the caveat is that

we lose manifest Lorentz covariance on the string world-sheet. What one finds is

that we must impose local Lorentz invariance on-shell.

The other primary action that is useful to study follows C M Hull’s doubled

formalism [25, 26]. In this formulation we have manifest 2-dimensional Lorentz

invariance from the outset, and a notable advantage is that there is a priori

doubling of the string coordinates in the target space. In other words, both

the Tseytlin approach and the Hull approach are formulated such that both the

string coordinates and their duals are treated on equal footing; hence one thinks of

the coordinates being doubled. But in Hull’s formulation, O(D,D) invariance is

effectively built in as a principle of construction. This is because for the covariant

double sigma model action, the target space takes the form R1,d−1 ⊗ T 2D, in

which we have a non-compact spacetime and a doubled torus. From the torus
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identifications we have manifest GL(2D;Z) symmetry. Then after imposing what

is defined as the self-duality constraint of the theory, which contains the O(D,D)

metric, invariance of the theory reduces directly to O(D,D;Z). In other words,

while the doubled formalism starts with a covariant action that involves doubled

coordinates, the invariance of this theory under O(D,D) is generated by imposing

this self-duality constraint, which, similar to the DFT case, effectively halves the

degrees of freedom and ensures that the remaining fields are physical.

The equivalence of these two doubled string actions on a classical and quantum

level has been shown in [61, 62, 63]. When it comes to the question of quantum

consistency, in advance of the discussion in Chapter 4 in which we calculate the

beta-functions of the doubled string with completely doubled coordinates, it is

useful to first review both approaches to the double sigma model and detail a

number of conventions.

3.1 Tseytlin’s non-covariant duality symmetric

string

As space is limited, we will not consider a comprehensive review of Tseytlin’s non-

covariant formulation of the doubled string. Instead, like in the previous chapter,

we will cover a few pertinent points as they relate to the main investigations of

this thesis beginning in Chapter 4. For a complete review see [12, 13, 64] as well

as [61, 62, 63].

To begin, we note that directly from 2-dimensional scalar field theory con-

structed to be symmetric in φ and φ̃, Tseytlin derives the Lagrangian density

Lsym = L+(φ+) + L−(φ−) (3.1)

with

L±(φ±) = ±1

2
φ̇±φ′± −

1

2
φ′2±. (3.2)

Here L+ and L− are the Floreanini-Jackiw [60] Lagrangian densities for chiral

and anti-chiral fields, with φ̇ = ∂/∂τ and φ′ = ∂/∂σ. The total Lagrangian

Lsym is itself constructed so that it is manifestly invariant under the exchange

of φ = 1√
2
(φ+ + φ−) with its Hodge dual φ̃ = 1√

2
(φ+ − φ−). Directly from the

equations of motion one can derive chirality conditions for this theory.

For our present purposes it is important to note that the goal for Tseytlin is
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to realise from 2-dimensional scalar field theory the corresponding formulation of

string theory, which indeed proves general enough to incorporate the world-sheet

dynamics of the winding sector. Writing the Lagrangian (3.1) for D scalar fields

XI and with a general background, in the Tseytlin approach we famously obtain

the action

S[ean, X
I ] = −1

2

∫
∑ d2ξ e[CabIJ (ξ) ∇aXI∇bXJ ]. (3.3)

Here I, J = 1, ..., D. We define the coordinates on
∑

such that ξ0 ≡ τ and

ξ1 ≡ σ. The two-dimensional scalar fields XI depend on ξ and they are vectors

in N -dimensional target space M. The number N of embedding coordinates is

kept general, because the purpose of this action is to be as generic as possible

while minimising assumptions for its construction. We also note that CIJ need

not necessarily be symmetric and, from the outset, we can treat it completely

generically. We also have the zweibein ean, where e = det ean. This term appears in

the definition of the covariant derivative of the scalar field XI : ∇aXI ≡ ean∂aX
I ,

where a is a flat index and n is a curved index.

In its first principle construction, which occupies the earliest sections of [13],

one can recover from this generic action (3.3) the standard manifestly Lorentz

invariant sigma model action for strings propagating in a curved background.

Furthermore, if we exclude the dilaton for simplicity we may define CabIJ =

T (ηabGIJ−εabBIJ ), where we reintroduce explicit notation for the string tension

T , G is the metric tensor on the target space, and B is the Kalb-Ramond field.

Keeping to a generic analysis with a general C, after a number of steps, one

finds that they can finally rewrite (3.3) in the following way,

S = −1

2

∫
d2ξ e[CIJ (ξ)∇0X

I∇1X
J +MIJ∇1X

I∇1XJ ]. (3.4)

Here it is conventional to define CIJ = C01
IJ + C10

JI and MIJ = MJI = C11
IJ .

The action is manifestly diffeomorphism ξn → ξ′n(ξ) and Weyl ean → λ(ξ)ean

invariant, but it is not manifestly invariant under local Lorentz transformations.

Moreover, notice that (3.4) must be invariant for the finite transformation of the

zweibein, because the physical theory should be independent of ean. This means

that if under such a transformation we have ean → e′an = Λab (ξ)ebn, where one may

recognise Λab is a Lorentz SO(1, 1) matrix dependent on ξ, we also have an induced

infinitesimal transformation of the form δean = ωab (ξ)ebn with ωab = −ωba. Now,

substituting ωab (ξ) = n(ξ)εab , we have an infinitesimal Lorentz transformation
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δean = n(ξ)εab (ξ)ebn. (3.5)

Due to the fact that the action (3.4) is not invariant under this infinitesimal

local Lorentz transformation, because, again, from first principles the chiral scalar

action is of Floreanini-Jackiw variety, it follows as has been stated elsewhere in

this thesis that the requirement of on-shell local Lorentz invariance is fundamental

to the entire discussion. As Tseytlin comments in a footnote [13], alternatively

we may prefer Siegel’s [14, 15] manifestly Lorentz covariant formulation, but

with that we obtain extra fields and gauge symmetries; whereas in extending

the Floreanini-Jackiw formulation it is fairly simple to introduce interactions

and, ultimately, we find that the condition in the Siegel approach that requires

decoupling of the Lagrange multiplier corresponds to what we will review as the

Lorentz invariance condition in the Floreanini-Jackiw approach.

For the action (3.4), a way to attack the requirement of local on-shell Lorentz

invariance is by seeing in [13] that it demands we satisfy the condition

εabtab = 0,where tba ≡
2

ε

δS

δean
ebn. (3.6)

The general idea is that the tree-level string vacua should be assumed to cor-

respond to S[X, X̃, e], which define the Weyl and Lorentz invariant quantum field

theory. In performing the background field expansion, something we will cover in

the general context in Chapter 4, we may take the expansion to be near the clas-

sical solution of the (X, X̃) equations of motion with the trace of the expectation

value of the energy-momentum tensor as well as the εab trace vanishing on-shell.

In Tseytlin’s formulation, t̂ denotes precisely this epsilon trace such that t̂ = εab t
b
a.

The vanishing of t̂ shows local Lorentz invariance. So let us now vary (3.4) under

local Lorentz transformation, which is proportional to the equations of motion

tba = −δba[CIJ (ξ)∇0X
I∇1X

J

+MIJ∇1X
I∇1X

J ] + δb0[CIJ∇aXI∇1X
J ]

+ δb1[CIJ∇0X
I∇aXJ ] + 2δb1MIJ∇aXI∇1X

J . (3.7)

This equation for tba is equivalent to equation 4.3 in [13]. In order for the

variation of the action to vanish under such a transformation, we derive the

condition
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εabtab = 0. (3.8)

In other words, the condition that must be satisfied to recover local Lorentz

invariance depends on the solution of the equations of motion for the zweibein.

In fact, one will recognise that what is observed is completely analogous to the

standard string theory formulation based on the Polyakov action, where one will

recall that the equations of motion for the world-sheet metric determines the

vanishing of the energy-momentum tensor [7].

This constraint must be imposed on a classical and quantum level. The key

point is that now we can choose the flat gauge ean = δan, thanks to the invariances

under diffeomorphisms, Weyl transformations, and finally local Lorentz invariance

imposed on-shell. This is crucial for the formulation of the dual symmetric string

in that, using the flat gauge for the zweibein, we are effectively performing the

analogous procedure as when fixing the conformal gauge in standard string theory.

Keeping C and M constant, we can compute the equations of motion for the field

XI to give

∇1[e(CIJ∇0X
J +MIJ∇1X

J ] = 0. (3.9)

In the flat gauge this result becomes

∂1[CIJ∂0ξ
J +MIJ∂1ξ

J ] = 0. (3.10)

From (3.10) a now famous identity appears, where, in the flat gauge and along

the equations of motion for ξI , the following constraint on C and M is obtained

[13]:

C = MC−1M. (3.11)

One may recognise the tensor structure of (3.11) from an earlier discussion

on the action of an O(D,D,Z) element. The important thing to highlight is

that throughout the lengthy calculation to get to this point, C and M are held

constant. (When C and M are not treated as constant, a number of interesting

questions arise which extend beyond the scope of the present discussion). What

is also important is that, after rotating ξI , the matrix C can always be put into

diagonal form such that

C = diag (1, ..., 1,−1, ...,−1). (3.12)
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It remains to be said that C = C−1, which means that the constraint (3.11)

defines the indefinite orthogonal group O(p, q) of N × N matrices M with N =

p+ q in Rp,q. The inner product may now be written as

C = MCM, (3.13)

in which the matrix C eventually takes on the explicit definition of anO(D,D,R)

invariant metric in the 2D target space M . Although, admittedly, this cursory

review has omitted many important and interesting details, the pertinent point

in terms of this thesis is as follows. The action (3.4) turns out to describe rather

precisely a mixture of D chiral ξ
µ
− and D anti-chiral ξ

µ
+ scalars. In demanding

local Lorentz invariance and the vanishing of the Lorentz anomaly, this requires

that p = q = D with 2D = N . In working through the complete logic of the calcu-

lation, we observe quite explicitly that inasmuch the requirement of local Lorentz

invariance is imposed through the condition (3.8), this leads one naturally to an

interpretation of the matrix C as a 2D target space metric with coordinates

ξI = (ξ
µ
−, ξ

µ
+), ds2 = dXICIJdX

J , I = 1, ..., 2D, and µ = 1, ..., D. (3.14)

To drive the point home in terms of our discussion in the last chapter on the

T-duality symmetry group, if we make a change of coordinates in the target space,

particularly by defining a set of new chiral coordinates, the matrix C takes on

the off-diagonal form of the previous considered O(D,D) constant metric L. This

fact will be utilised a number of times throughout the remainder of this thesis.

The chiral coordinates we define are

XI =
1√
2

(X
µ
+ +X

µ
−), X̃I =

1√
2

(Xν
+ −Xν

−). (3.15)

In this frame, the matrix C is then shown to be

CIJ = −ΩIJ = −

(
0 I
I 0

)
. (3.16)

It follows that the condition (3.11) transforms into the constraint

M−1 = Ω−1MΩ−1 (3.17)

on the symmetric matrix M , which can be parametrised by a symmetric matrix
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G and an antisymmetric matrix B. Therefore, remarkably, the symmetric matrix

M takes the precise form of the generalised metric (2.7) in which M is found to

be positive definite.

To conclude, in the chiral coordinates we arrive at a famous form of the Tseytlin

action,

S =
1

2

∫
d2ξ e[ΩIJ∇0X

I∇1X
J −MIJ∇1X

I∇1X
J ]. (3.18)

This action is manifestly O(D,D) invariant. When O(D,D) transformations

are applied to (3.18), we obtain exactly what we would anticipate for the standard

string in the sense of T-duality invariance under X → X̃ and for the generalized

metric M →M−1.

For completeness, from the action (3.4) in arriving at (3.18), it should be clear

that what we are working with is a sigma model for the dual symmetric string.

The generalised version of the celebrated action (3.18) is indeed often written as

SGeneral =
1

2

∫
d2ξ [−(CIJ + ηIJ )∂0X

I∂1X
J +HIJ∂1X

I∂1X
J )]. (3.19)

This final action can be argued to be a very natural generalisation for the

standard string on a curved background. It not only contains the generalised

metric HIJ , but also another symmetric metric ηIJ with (D,D) signature and

an antisymmetric 2-tensor CIJ . The coordinates are defined as before XI =

{XI , X̃I} with the background fields in general depending on XI .

It is this generalised version of the Tseytlin action to which we shall return in

our investigations in Chapter 4.

3.2 The doubled formalism

The doubled formalism as developed recently by C M Hull [25, 26] may be viewed

from its foundations as an alternative approach to DFT. It may be described as

a duality symmetric approach akin to the Tseytlin approach in that the doubled

formalism takes a world-sheet perspective. As expected it naturally employs a

sigma model description of the string with the target space doubled.

Much like conventional DFT, the theory is constructed around the generalised

metric. Typically, the target space for the sigma model is a torus fibration Tn

over a base N . One may think of this as a description of string theory in which
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the target space is locally a Tn bundle, while N is some generic base manifold

that may be thought of simply as a base space. The essential motivation is

to double the torus by then adding 2n coordinates such that the fibre is T 2n;

however, typically the fields depend only on the base coordinates. Finally, the

strategy is generally to proceed with a patch-wise splitting T 2n → Tn ⊕ T̃n so

that we have demarcated a strictly physical subspace Tn and its dual T̃n. For a

geometric background local patches are glued together with transition functions

which include group GL(n,Z) valued large diffeomorphisms of the fibre. For the

non-geometric case, this is approached by gluing local patches with transition

functions that take values in GL(n,Z) as well as in the complete T-duality group,

such that O(D,D,Z) is a subgroup of GL(2n,Z) large diffeomorphisms of the

doubled torus.

Importantly, and as alluded in the previous sections, the doubled formalism

has been found to be classically equivalent to the ordinary string sigma model,

with the added feature that T-duality is manifest. Quantum equivalence of such

sigma models has also been demonstrated using various methods in [26, 65, 66,

40, 67, 39]; however, it is a much more complicated endeavour. A key observation

is that by doubling the fibre co-ordinates it is necessary to introduce a chirality

(or duality) constraint to ensure no excess degrees of freedom. As mentioned at

the start of the chapter, the constraint is enforced so that for the physical content

in a certain frame only half the co-ordinates are left-moving chiral bosons and

the other half are right-moving. We will discuss this in more detail later. For

now the important thing to highlight is that in the primary paper [39] that we

follow in Chapter 4, the constraint is incorporated into the action and the price

is that although the dual symmetric string is formulated in the context of Hull’s

approach, Lorentz invariance is no longer manifest. This means that we have an

action akin to Tseytlin’s generalised action.

To understand what this means and to introduce the double sigma model from

the doubled formalism, we primarily follow [39, 43].

3.2.1 Lagrangian and double sigma model

If the objective is to describe a sigma model in the doubled formalism, we first

must establish local coordinates on the torus T 2n which we denote XI . We

also have coordinates on the base N conventionally denoted Y a. For a sigma

model description the string world-sheet is then mapped into T 2n by XI(σ). The

starting point of the double sigma model is the Lagrangian (an overall factor of
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2π is dropped here, following conventions in [39])

L =
1

2
HIJ (Y )P̂I ∧ ?P̂J − 1

2
LIJPI ∧ AJ + L(Y ) + Ltop(X). (3.20)

We note the following conventions. HIJ is the generalised metric. The 1-form

on the world-sheet is defined PI = dXI . From the definition of the 1-form a

connection on the bundle may be defined in the form AI = AIadY a, with the

covariant momenta P̂I = dXI +AI . In the Lagrangian (3.20) we have a strictly

topological term Ltop(X), which will feature later in our examination. We also

have L(Y ) term, which is a standard sigma model on the base N described by

the following:

L(Y ) =
1

2
gabdY

a ∧ ?dY b +
1

2
babdY

a ∧ dY b. (3.21)

3.2.2 Simplified Lagrangian and constraint

The Lagrangian (3.20) that is conventionally employed at the outset of the con-

struction is usually supplemented by the following constraint

P̂I = LIKHKJ ? P̂J , (3.22)

where LIJ is the constant and invariant O(D,D) metric introduced in (2.6).

This constraint is imposed on-shell to eliminate half of the degrees of freedom

and to ensure reduction to a physical subspace. We will discuss the role of

this constraint later in this section. Meanwhile, we can use LIJ to raise and

lower indices on H, and from the constraint (3.22) it is demanded for consistency

purposes that

LIKHKJLJLHLM = δIM . (3.23)

This is true for the O(D,D) coset form of the doubled fibre metric HIJ . Just

like before in the context of DFT, we may package the n2 moduli fields on the

fibre into coset form such that

HIJ (Y ) =

(
(G−BG−1B)ij (BG−1)

j
i

−(G−1B)ij Gij

)
, (3.24)

with the primary difference being that the moduli now rely on the base co-
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ordinates, although this isn’t strictly necessary. As it is currently written, and

as it appears in (3.20), the generalised metric for the doubled fibre depends on

the base. This is something that again we will have to revisit. Meanwhile, we

can still arrive at a more simple Lagrangian then in (3.20) following [43]. Mak-

ing the simplifying assumption that the fibre is trivial we can set the connection

AI = 0. This then means that for the physical fibration in T 2n → Tn ⊕ T̃n over

base N , we should demand for the background that the off-diagonal components

have an index in the torus and that the others set in the base are zero such that

Eai = Eia = 0. Also assuming that the antisymmetric 2-form bab on the base

vanishes, the Lagrangian describing the double sigma model finally becomes

L =
1

4
HIJ (Y )dXI ∧ ?dXJ + L(Y ) + Ltop(X). (3.25)

A consequence of constructing this simplified Lagrangian is that the constraint

placed on the fields also simplifies to the form,

dXI = LIJHJK ? dXK . (3.26)

These assumptions which lead to the above constraint, although perhaps seem-

ingly innocuous at first, prove fairly important and serve as a notable motivation

for the original calculations in the second half of this thesis. To understand why,

we follow the conventional approach [39, 41, 68, 43] by first introducing a viel-

bein to enable a change to the chiral frame (denoted by barred indices for the

remainder of this dissertation) where

HĀB̄(y) =

(
I 0

0 I

)
, LĀB̄ =

(
I 0

0 −I

)
. (3.27)

In the chiral frame, the constraint (3.26) becomes a chirality constraint. As

already mentioned, it is employed to ensure that half of the fields XĀ are chiral

bosons and the other half anti-chiral bosons. In the literature on chiral boson

models, there are several ways in which one may introduce this chirality con-

straint. Limiting to the formalism of the duality symmetric string, one approach

is to calculate the partition function using holomorphic factorisation [69, 70].

Another approach is canonical quantisation, using Dirac brackets and promoting

(3.27) as a second-class constraint. In Hull [26], the approach taken is to impose

the constraint by way of gauging the associated current.

To achieve the action used in [39] for the purpose of our investigations in

Chapter 4, at the classical level the chirality constraint is imposed at the level
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of the action using the method of Pasti, Sorokin and Tonin (PST) [71, 72, 73],

otherwise known as the PST procedure. In its standard formulation, consider the

simple example of a one-dimensional target space modelled as a circle [43]. Given

this target space has a constant radius R, on the fibre the action may be written

S1−dim =
1

4
R2
∫
dX ∧ ?dX +

1

4
R−2

∫
dX̃ ∧ ?dX̃. (3.28)

Now, by making a change of basis so that the fields become chiral, we have

the following definitions:

X+ = RX +R−1X̃, ∂−X+ = 0 (3.29)

and

X− = RX −R−1X̃, ∂+X− = 0. (3.30)

As a result of asserting that the radius of the target space is constant, the

chirality constraint takes a simple form and the action becomes

S1−dim =
1

8

∫
dX+ ∧ ?dX+ +

1

8

∫
dX− ∧ ?dX−. (3.31)

In the PST approach, one may then implement the constraint by defining the

1-forms:

P = dX+ − ?dX+, Q = dX− + ?dX−. (3.32)

These vanish on the constraint, which therefore allows the incorporation of

(3.26) into the action by way of two auxiliary closed 1-forms u and v. The final

PST action takes the form

SPST =
1

8

∫
dP ∧ ?dP +

1

8

∫
dQ∧ ?dQ− 1

8

∫
d2σ

(
(Pmum)2

u2
+

(Qmvm)2

v2

)
,

(3.33)

which works by introducing a new gauge symmetry, namely the PST symmetry.

Here m = 0, 1, 2, 3. This introduction of a new symmetry enables the gauging

away of any and all fields that do not obey the chirality constraint. It is not so

dissimilar to the rationale followed in the construction of DFT, where the only

remaining fields in the theory are physical.

From this point, one may either gauge fix the PST action at the cost of Lorentz
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invariance or invoke covariant quantisation and employ ghosts to manage to the

PST symmetry. Following the first prescription, this noncovariant option results

in a Floreanini-Jackiw style action. What is useful about this approach is that,

by then defining the auxiliary fields to be time-like, one obtains a chiral and

anti-chiral copy of the FJ action. As established in the literature, such an action

takes the form

SFJ =
1

4

∫
d2σ(∂1P∂−P − ∂1Q∂+Q). (3.34)

Crucially, especially for the purposes of the present thesis, if one re-expands

this action in the non-chiral basis, Tseytlin’s first-principle duality symmetric

string action is recovered [39],

STseytlin =
1

2

∫
d2σ[−(R∂1X)2 − (R−1∂1X̃)2 + 2∂0X∂1X̃]. (3.35)

The constraints can now be written as

∂0X̃ = R2∂1X and ∂0X = R−2∂0X̃, (3.36)

which arise after integrating the equations of motion. Interestingly, the string

wave equation is given by combining the constraint equations.

As for the general case, the PST procedure yields the action

SPST =
1

2

∫
d2σ[−Gαβ∂1X

α∂1X
β +Lαβ∂1X

α∂0X
β +Kαβ∂0X

α∂0X
β ]. (3.37)

In this case, we define the fields similar to the standard formulation of DFT,

where Xα = (XA, Y a) = (Xi, X̃j , Y
a). For the background fields, including the

topological term Kαβ , we have

G =

(
H 0

0 g

)
, L =

(
L 0

0 0

)
,K =

(
0 0

0 g

)
. (3.38)

One will notice that G contains the generalised metric H on the fibre and the

standard sigma model metric g on the base. Likewise, the topological term K
also contains the standard sigma model metric on the base.

On the fibre, the second-order equation of motion takes the form
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∂1(H∂1X) = L∂1∂0X. (3.39)

Using the gauge invariance of the action under XA → XA+f(τ) an integration

function of τ can be removed, and the equations of motion can be integrated to

recover the chirality constraint imposed on the action.
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Chapter 4

Double Everything: Generalising

the Interacting Chiral Boson

Model

Following an introductory review of several important concepts in the study of

the doubled string, the goal of this chapter is to work toward calculating the

beta-functionals for the duality symmetric string in the context of the interacting

chiral boson model. Given that the model of interacting chiral scalars is classically

consistent, solving the classical Lorentz invariance constraints [62], we face the

question of whether a completely generic treatment of the most general form of the

Tseytlin action is consistent at the quantum level. In comparison to past studies,

notably [39] which uses the action (3.37) and relies on a split between base and

fibre, the question of quantum consistency is all the more pertinent when working

from an action in which all coordinates are doubled. This means that we will

consider fields with arbitrary dependence on the full doubled geometry, which is

necessary in order to obtain effective spacetime theories corresponding to generic

non-geometric geometries and interesting from the perspective of studying world-

sheet theories on generic non-geometric backgrounds. In calculating the total

divergence of the theory, what we will achieve is in fact a completely general

tensor structure for the Weyl and Lorentz anomalies. And from this, we will then

investigate whether this generic approach to the interacting chiral boson model

satisfies the requirement of conformal invariance at the quantum level. Such a

study should stand out when compared to our review of other approaches in the

last two chapters.

To work toward calculating the beta-functionals for the completely doubled

theory, this amounts to computing all of the relevant contributions to the quan-
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tum effective action at one-loop, which, as we shall see in this chapter, include

two component terms that comprise the total divergence: Weyl anomaly pieces

and global Lorentz anomaly pieces. In contrast to the standard sigma model, the

global Lorentz anomaly terms arise because we are working with chiral bosons.

They signify phase dependence. On the other hand, the Weyl anomaly terms are

just like with the standard string, signifying the scale dependence of the theory.

In order for the Weyl invariance of the sigma model to be preserved at one-loop,

it is necessary that the beta-functional vanishes.

To this end, we follow the structure and basic strategy of [39]. However, as

mentioned in the introduction of this thesis, we would like to avoid a number

of assumptions the authors made in calculating the background field equations,

including avoiding the enforcement of the self-duality constraint that comes with

the doubled formalism discussed in Section 3.2.

We will set-up the lengthy calculation in several steps. In Section 4.1, we

introduce the form of the action that we will use and offer several opening com-

ments with regards to some of the subtleties that come with the fully doubled

theory. In Section 4.2, we employ the background field method to obtain the one-

loop effective action for the background fields of the model. In Section 4.3, we

then derive the general structure of the quantum effective action Γ at one-loop.

Following this result, we detail the general strategy used to ensure a completely

generic calculation of the final total divergence. We conclude with an updated

version of the second-order Lagrangian for the background fields. In Section 4.4,

we introduce the kinetic terms of the theory and derive the master expression

for the effective action. Then, in Section 4.5, we introduce the propagators of

the theory and calculate the fluctuation contractions described in Section 4.4.

To conclude the chapter, in Section 4.6 we combine all of our results to show

the final tensor structure for the total divergence of theory. We then proceed

to calculate the tensor algebra to give a final result for the Weyl and Lorentz

anomalies. In Section 4.7, we close the chapter with a calculation of the doubled

beta-functionals.

4.1 General action with arbitrary dependence

on full doubled geometry

In [39], the action (3.37) is used to calculate the background field equations. As

we saw in Section 3.2.2, one displeasing feature of this approach to calculating the
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chiral boson model (as it is formulated in the doubled formalism) is the require-

ment that the base and the fibre are separated, with the fibre doubled and the

base remaining undoubled. A more democratic approach, one could argue, is one

in which everything becomes doubled. But in return to the questions posed in the

introduction of this thesis: what exactly does it mean to double everything and

give the background fields arbitrary dependence on the full doubled geometry?

What are the implications?

To start, it means that we choose not to assume a base-fibre split. So we drop

any dependence on the base coordinates Y , such that for the doubled coordinates

we now have XA = XA = (Xi, X̃j) with X̃j the dual coordinates. We also

drop the topological term Kαβ , since, although it is useful to show double gauge

invariance, in [41] one sees that the topological term is Lorentz invariant and

does not affect the equations of motion, so it plays no role in calculating the

background field equations [39]. Thus, one immediate implication is that we

shall begin with an action of the tentative form

S =
1

2

∫
d2σ[−GAB(XA)∂1X

A∂1X
B + LAB(XA)∂1X

A∂0X
B ],

where G now contains only the generalised metric on the doubled space and L
resumes its familiar form

G =

(
H 0

0 0

)
, L =

(
L 0

0 0

)
. (4.1)

Given that we have dropped base dependence, all other quadrants are now

zero except for the first in both G and L. Therefore, we may avoid unnecessary

redundancy and write for both H and L explicitly. When plugging (4.1) into the

action we obtain

S =
1

2

∫
d2σ[−HAB(XA)∂1X

A∂1X
B + LAB(XA)∂1X

A∂0X
B ]. (4.2)

Although for the time being we will keep the definition of L generic, we note

that this is the sort of action considered by Tseytlin [12, 13] as well as more

recently by others in [41, 42]. It is an action for the dual symmetric chiral string

that takes the form proposed to lead directly to DFT [41]. One will notice that

its basic structure is that of (3.19), with the exclusion of the topological term. It

should be re-emphasised that this completely doubled action remains equivalent

to that which comes from Hull’s doubled formalism, and as it is equivalent to
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the Tseytlin action (3.19) it is also therefore equivalent to the standard Polyakov

action.

In principle, (4.2) is the most general doubled action we can write without

manifest Lorentz invariance, because it allows us to calculate the background

fields in a way in which the fields maintain arbitrary dependence on the full

doubled geometry. In that sense, in reading and following the structure of [39],

in this chapter the goal is in fact to employ a similar strategy of [42] in which

we’re ultimately seeking to set the foundation for an effective spacetime theory

that corresponds to completely generic non-geometric geometries.

The issue that we have, however, is that (4.2) is arguably too general. With all

of the coordinates doubled - and given that we want to ensure that the matricesH
and L maintain arbitrary coordinate dependence throughout the entire procedure

- the conventional argument is that this sort of action and approach ultimately

requires the implementation of some form of constraint [43] so that the theory

possesses: 1) first order equations of motion allowing half the degrees of freedom

to be eliminated; 2) emergent on-shell Lorentz invariance; and 3) an off-shell

invariance under a set of modified Lorentz transformations.

In general, there are two established pathways to solving these conditions. The

first is to use the DFT constraint, which means we set L(XA) to take the definition

of an O(D,D) invariant constant metric like we saw in Section 2.1. Indeed, as

we reviewed in Chapter 2, and as Tseytlin [13] originally observed, taking this

approach would provide a consistent model. But this approach ultimately means

that we set the matrix H(XA) to depend on only half of the coordinates, and

this defeats our primary motivation. Moreover, if H = H(XA) so that it can

depend on any of the doubled co-ordinates, including the dual coordinates, in

the DFT approach the freedom to have metric dependence on any of the doubled

coordinates follows with the restriction of the strong form of the level-matching

constraint. This is because one can always perform an O(D,D) rotation to find

the duality frame so that the fields only depend on Xi and not X̃j . In [39, 41, 42],

this is the path that is generally followed. The alternative to the DFT approach,

conventionally, is to use the Scherk-Schwarz ansatz assuming some underlying

group structure. We will not discuss here this solution to the above conditions.

In this thesis, neither of these options are satisfactory, as we wish to maintain

course in calculating the background field equations in a completely generic way

(i.e., without assuming O(D,D) invariance from the outset and without imposi-

tion of the chirality constraint). To achieve this, the strategy that we will employ

requires some subtle clarification and careful description, which we will establish
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and define over the next few sections. First, it is helpful to show the Lagrangian

for the expanded background fields from which we can go on to introduce the

most basic structure of the effective action. This will lead to a derivation of the

master expression for the effective action, which will enable us to finally describe

the strategy we undertake to ensure a completely generic calculation.

In what remains of this thesis we adopt the conventions of [39]. We will reserve

the Greek characters µ and ν to denote worldsheet indices. The worldsheet

signature is (+,−), with time and spatial derivatives ∂± = ∂0 ± ∂1. We shall

also use barred notation to denote chiral frame indices, which will be introduced

more formally later on.

4.2 Background field expansion

In proceeding to analyse the quantum behaviour of the doubled action (4.2), we

employ the background field method [74, 75, 76, 77]. This means we perform

a background field expansion in quantum fluctuations around a classical back-

ground XA = XA
0 + πA, where X0 = Xclassical is the stationary part of the

action and thus a solution of the classical equations of motion. The procedure is

the same as that which may be used for the standard sigma model, allowing the

perturbative study of UV divergences.

In expanding the background fields, the quantum field πA is generally defined

as a coordinate difference XA −XA
0 . This means that, under general coordinate

transformations, πA does not transform as a vector and therefore yields a non-

covariant expansion of the action. To rectify this, we follow the convention of

defining geodesic coordinates with ξA defined as the tangent to the geodesic from

XA
0 to XA

0 + πA. The arc length of the geodesic is equivalent to the distance

between these two points. As is easily verified from first-principles, the benefit of

this construction is that the ξA field transforms covariantly as a vector and so we

can expand the background fields covariantly as well. This means that we shall

perform a perturbative expansion in powers of ξA.

4.2.1 Algorithmic method

In calculating the background field expansion, we use the algorithmic method

developed in [77]. This allows us to obtain up to nth order the appropriately

expanded action by acting on the Lagrangian (4.2) with the operator
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∫
d2σξA(σ)DσA. (4.3)

As is understood from the derivation of this method, DσA is a covariant func-

tional derivative with respect to the fields XA(σ). It is obtained when we account

for infinitesimal changes in XA
0 along the geodesic map ξA to another vector un-

der parallel transport, enabling the operator (4.3) to be covariantly constant

along the geodesic path. The calculation of the background field equations then

proceeds by simply acting with the operator n times and then dividing by n!.

In general, the action of the operator yields several identities. The first identity

is ∫
d2σ ξA(σ)DσAξ

B(σ′) = 0. (4.4)

This means that when the functional derivative acts on the vectors ξA(σ)

there is no contribution. The functional derivative can of course also act on other

objects. When, for example, we act on tensors TA1...An
(X) we obtain

∫
d2σξA(σ)DσA TA1...An

(X(σ′)) = DBTA1...An
(X(σ′))ξB(σ′). (4.5)

For vectors ∂µX
A the action of the operator gives the identity,∫

d2σξA(σ)DσA(∂µX
B(σ′)) = DµξB(σ′). (4.6)

And finally for the vector DµξB we have,∫
d2σξA(σ)DσA(DµξB(σ′)) = RBACD∂µX

DξAξC(σ′). (4.7)

Given the added subtleties of the doubled formalism, we note here that RBACD
in (4.7) is the target space Riemann curvature tensor. It is evaluated at XA

0 . So,

too, is the arbitrary tensor TA1...An
of rank n evaluated at the classical solution.

By expanding to second order in ξA fluctuations, this will be sufficient to cal-

culate the one-loop background field equations. In the algorithmic computation,

this amounts to setting n = 2. The terms linear in ξ provide no contributions

to the one-loop effective action since, in general, they are proportional to the

classical equations of motion, which may be also observed when deriving the

structure of the quantum effective action (we will discuss the effective action in
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Section 4.3). The terms quadratic in ξ provide the kinetic terms for the fluc-

tuations as well as the interaction pieces. The equations we obtain at one-loop

give important information about the conditions on the background necessary

for world-sheet Weyl invariance to be preserved. The calculation to this order

will also provide sufficient information in order to analyse world-sheet Lorentz

invariance. It is through the background field equations that the connection to

double field theory can also be made [41].

4.2.2 Expansion of the background fields

The only assumption we make in expanding the background fields of (4.2) is that

we treat H as playing the role of the metric, although other choices may be made

[42]. Therefore, expanding the first term in the action (4.2), we obtain at first

order in ξ fluctuations

−HAB∂1X
AD1ξ

B , (4.8)

and at second order

−1

2
(HABD1ξ

AD1ξ
B +RCABD∂1X

C∂1X
DξAξB). (4.9)

We observe in (4.9) the presence of the Riemann curvature tensor, which again

should be emphasised that this is constructed from the metric H.

For LAB , we recall that the original plan is to treat this 2-tensor generically;

hence its expansion carries extra terms without much simplification

1

2
(LAB∂0X

AD1ξ
B + LABD0ξ

A∂1X
B +DKLABξ

K∂0X
A∂1X

B)

+
1

2
[LABD0ξ

AD1ξ
B +

1

2
(DADBLKD + LKCR

C
ABD + LDCR

C
ABK)∂0X

K∂1X
DξAξB

+DKLABξ
K(∂0X

AD1ξ
B +D0ξ

A∂1X
B)].

As it is convention, we may at this point invoke the classical equations of

motion of X0 and drop the terms linear in ξ. When collecting terms quadratic in

ξ we also move an overall factor of 1
2 to the left-hand side of the equality for the

following second order Lagrangian
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2L(2) = −HABD1ξ
AD1ξ

B + LABD0ξ
AD1ξ

B

−RKABD∂1X
K∂1X

DξAξB +DKLABξ
K(∂0X

AD1ξ
B +D0ξ

A∂1X
B)

+
1

2
DADBLKD∂0X

K∂1X
DξAξB +

1

2
(LKCR

C
ABD + LDCR

C
ABK)∂0X

D∂1X
KξAξB .

(4.10)

The effective action for the background fields at second order is given by (4.10).

We can now either simplify it by using the simplification method in [39] or proceed

as usual. In the present case, the Wick contractions are indeed found to made

more manageable if we follow the simplification procedure. It should be noted

that it does not fundamentally make a difference which path is chosen; although

in other approaches to the construction of double sigma models, the simplification

strategy that we will describe may in the end yield a more complicated form of

the effective action.

4.2.3 Simplification of the expanded background field ac-

tion

Before introducing vielbeins and moving the indices on the ξ fields, we first use

the equation of motion

D1(HAB∂1X
B) = LAB∂1∂0X

B (4.11)

to eliminate all L terms in (4.10) with exception of the L fluctuation kinetic

piece. In taking this step the calculation is lengthy (see especially eqn. 29 in

[39]), including the use of integration by parts and the use of multiple copies of

the equations of motion. Also, by expanding covariant derivatives and simplify-

ing the result using the equations of motion, what we end up with is of course a

second order Lagrangian no longer expressed in terms of covariant derivatives. It

is worth noting that this approach differs from [42], in which the authors choose

to maintain throughout explicit expression in terms of covariant derivatives. Re-

gardless of approach at this point, one will obtain an equivalent result [42, 68].

The reduced Lagrangian that we obtain when performing the above is as follows
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2L(2) = −HAB∂1ξ
A∂1ξ

B + LAB∂0ξ
A∂1ξ

B

− 2∂AHDB∂1X
DξA∂1ξ

B − 1

2
∂A∂BHKD∂1X

K∂1X
DξAξB . (4.12)

Interestingly, in using the simplification procedure the result we obtain is just

as the one we would get if, in a more direct way, we had performed a non-covariant

expansion from the outset. In any case, one can see in (4.12) how things simplify

as we are now only carrying four terms, two of which are the kinetic terms of the

theory. At this point, we may proceed to introduce the vielbein formalism. The

price we pay, however, is that we must introduce derivatives acting on vielbeins

such that

∂µξ
A = VA

Ā
∂µξ

Ā + ∂µVAĀξ
Ā. (4.13)

Generally, it also means we replace the connection in covariant derivatives of

fluctuations by the spin connection

Dµξ
A = ∂µξ

A + ΓAµBξ
B → ∂µξ

A + ΓAµBξ
B + ∂µVAĀV

Ā
Bξ

B

= ∂µξ
A + AAµBξ

B . (4.14)

There is a subtly with the connection that must be described carefully. De-

pending on the approach one takes, the pieces with derivatives acting on the

vielbeins usually are addressed by exchanging the standard connection for the

spin connection [76]. That is, in the standard string formulation it is well-known

that the pull back of this world-sheet spin connection transforms as a gauge field,

and it is well established for the undoubled sigma model that this gauge field does

not contribute at one-loop to the Weyl anomaly because it is minimally coupled.

But what about in the doubled formalism for the dual symmetric chiral string?

Things are now slightly different. The gauge connection is no longer minimally

coupled [39, 41], because in the doubled case the connection carries O(D,D)

rather than O(D) indices. So this argument does not stand and we should find

contributions from the gauge terms. Such contributions were for example explic-

itly found in [68]. However, taking into consideration the fact that we do not

wish to assume O(D,D) invariance from the outset, we must be careful in our

approach. For now, we proceed cautiously with the generic calculation.
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Finally, what we now want to do is replace all ξA fluctuations with their chiral

frame counterparts ξA = VA
Ā
ξĀ in (4.12) and then pull the vielbeins through the

derivatives. The cost being the addition of a few extra terms. The outcome is

that, in addition to (4.12) in the chiral frame, we obtain the following extra terms

to the second order Lagrangian

2LV =

− 2HĀB∂1VBB̄ ξ
B̄∂1ξ

Ā −HAB∂1VBB̄ ∂1VAĀξ
B̄ξĀ − 2∂ĀHKB∂1X

K∂1VBB̄ ξ
ĀξB̄

+ LĀB∂1VBB̄ ξ
B̄∂0ξ

Ā + LĀB∂0VBB̄ ξ
B̄∂1ξ

Ā + LAB∂1VBB̄ ∂0VAĀξ
B̄ξĀ. (4.15)

The outcome is therefore that we have two Lagrangians comprising the total

second-order action for the background fields, one with vielbeins and one without.

The main purpose and advantage of this strategy is to aid in finding the fluctua-

tion propagators. In the chiral frame it is generally understood how to define and

treat the propagators using the same techniques as in [12, 13]. One of the other

advantages is that, as discussed in Section 4.3.1, the vielbein formalism assists

in putting H(X) and L(X) in canonical form. Finally, the chiral frame proves

useful because we may approach the fluctuation contractions that will need to be

calculated later as if the indices are in the metric frame [39].

Compared with the result for the background fields in [39], when including

chiral frame indices in (4.12) in addition to the vielbein Lagrangian (4.15) we

find a term for term match, with the exception that we don’t have any base

dependent terms.

4.3 Structure of the effective action

There are a number of ways to compute the quantum effective action. As we

are using the background field method to perturbatively study ultra-violet di-

vergences at one-loop, it follows that we may begin by thinking of the effective

action with the standard formula 1

eiΓ[X0] =

∫
Dξ ei(S2[X;ξ]). (4.16)

The effective action Γ is itself taken to be Γ = Scl + Γ1, where we define Γ1

as the one-loop corrections. Here S2 denotes the second-order action, and we

may suppress the classical term in the effective action because ultimately it gets

1For simplicity we suppress ~.
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pulled out of the integrand. We also recall as an aid that ξ is the tangent vector

to the geodesic between X0 and π, with ξ our fluctuation field. Additionally,

from (4.16) we may obtain the loop propagator in momentum space. But for our

present purposes, we focus here on how we can decompose S2 into kinetic S2,k

and interacting S2,i parts such that, schematically, S2 = S2,k + S2,i. Doing so

gives

eiΓ[X0] =

∫
Dξei(S2,k+S2,i). (4.17)

We may now expand the interaction terms e
iS2,i

eiΓ[X0] =

∫
Dξ(1 + iS2,i +

i2

2
S2

2,i + ...)e
iS2,k . (4.18)

From (4.18) we can compute the equation explicitly for Γ1. In doing so we

drop the classical piece as well as any unneeded log terms that arise from the

standard procedure of derivation in Quantum Field Theory. We find as a result

Γ1 = 〈S2,i〉+
i

2
〈S2

2,i〉connected. (4.19)

It should be highlighted that we are only interested in connected diagrams,

and the terms in brackets 〈...〉 denote the expectation value with respect to the

kinetic term S2,k.

For the calculation of the Weyl and Lorentz anomalies we only need the diver-

gent contributions to (4.19). We obtain these by calculating 〈S2,i〉 which gives

single contractions 〈ξξ〉, and 〈S2
2,i〉connected which corresponds with double con-

tractions of the general schematic form 〈ξ∂µξξ∂νξ〉. For the double contractions,

we will have different combinations of world-sheet derivatives, as will become

clear later. Any terms of the form ξ∂ξ will contribute only to the logarithmic

divergence at second order in this expansion of the effective action, and we are

only interested in these logarithmic divergences.

4.3.1 General strategy

Now that we have expanded the background fields and derived the basic structure

for the quantum effective action at one-loop, it is an opportune time to lay out

our general strategy for calculating the beta-functionals. To achieve this, given

the generic approach of this thesis, we shall need to return to the discussion about

moving to the chiral frame in Section 4.2.3.
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To begin let us note that in calculating the background field expansion to

obtain (4.12) and (4.15), it was reasonable that we viewed HAB as the metric

on the totally doubled space. On the other hand, if in the approaches that use

the DFT constraint the object LAB is treated as an O(D,D) invariant constant

metric, we instead chose to treat LAB as a generic 2-tensor. This means we have

to be careful when it comes to arranging the kinetic terms for the fields ξ.

Moreover, if the approach in [39, 41, 42] is from the outset to take L (from the

first quadrant in L as per 4.1) to have off-diagonal form such that L =

(
0 1

1 0

)
,

the motivation for doing so pertains to the fact that this definition of L aids in

enabling O(2D) rotations. Conventionally, the aim then is to use the Lorentz

invariance condition to diagonalise L with ±1 entries. The final advantage in

taking these steps is that, after obtaining the background field expanded action,

with H and L diagonal in the chiral frame, as alluded before it is well-known

in the literature how to calculate the propagators for the fluctuations from the

kinetic terms in the Lagrangian (4.12).

We do not wish to make these same assumptions. So we need to therefore

obtain the same structure in principle - that is, we have to ensure H is diagonal

and then also put this generic 2-tensor L into diagonal form - albeit without

assuming O(D,D) and without applying the chirality constraint. To this end,

we pursue the following argument. It is observed in the Lagrangian (4.12) that

the quadratic form −HAB∂1ξ
A∂1ξ

B is not in canonical form, as we recall that H
depends on X. The same is true for LAB∂0ξ

A∂1ξ
B . Given that H and L can be

simultaneously put into canonical form if we assume O(D,D), but not otherwise,

we simply put H in that form and for L we write

L =

(
1 0

0 −1

)
plus corrections. (4.20)

This is precisely of the same form L as found in the literature, with exception

that it now carries corrections that vanish when reinstating the assumption of

O(D,D) invariance.

This means, firstly, that the vielbein Lagrangian for the background fields

(4.15) should be updated. If we want to be as generic as possible, then the

strategy on the level of the action is to ensure that for every instance in which

LĀB̄ deviates from

(
1 0

0 −1

)
we treat it as a perturbation. We therefore define

LĀB̄ = L
(0)

ĀB̄
+ δLĀB̄ . (4.21)
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That we arrive at equation (4.21) is important. As we will see, an outcome

of our approach will mean that we pick up δL correction terms in the total

divergence of the theory. One may also speculate about the form and properties

of this perturbation δLĀB̄ ; in this thesis we maintain a generic treatment and

a study of its properties will be saved for future work. The immediate result

of these steps is that the vielbein portion of the second-order background field

expanded Lagrangian now takes on an additional correction term

2LV =

− 2HĀB∂1VBB̄ ξ
B̄∂1ξ

Ā −HAB∂1VBB̄ ∂1VAĀξ
B̄ξĀ − 2∂ĀHKB∂1X

K∂1VBB̄ ξ
ĀξB̄

LĀB∂1VBB̄ ξ
B̄∂0ξ

Ā + LĀB∂0VBB̄ ξ
B̄∂1ξ

Ā + LAB∂1VBB̄ ∂0VAĀξ
B̄ξĀ

+ δLĀB̄∂1ξ
Ā∂0ξ

B̄ . (4.22)

With the inclusion of δL this final expression for the vielbein Lagrangian is

clearly different than in [39].

4.4 Master expression

4.4.1 Kinetic terms and interactions terms

Key to the stratgey described in the previous section concerns how the definition

of the L in (4.20) means that we obtain the correct kinetic terms of the theory,

given that in using the vielbein basis we may decompose the action into kinetic

and interaction terms for the tangent-space fields ξĀ. The kinetic term for the

fluctuations reads [39] as follows

S2,k =
1

2

∫
d2σ(−HĀB̄∂1ξ

Ā∂1ξ
B̄ + LĀB̄∂1ξ

Ā∂0ξ
B̄), (4.23)

with H and L defined as described above. This kinetic term is the sum of

Floreanini-Jackiw style Lagrangians (3.34) for n chiral and n anti-chiral bosons.

As for the interaction terms S2,i observed in the quantum effective action

(4.19), we approach their calculation generically following [42]. In doing so, we

are concerned for the time being only with the updated vielbein Lagrangian

(4.22), because as we see the Lagrangian (4.12) in the chiral frame gives only two

interaction terms without vielbeins. When calculating the square of S2,i these

non-vielbein terms do not cross multiply with the purely vielbein pieces found

51



in (4.22). So for now, we put the non-vielbein pieces to the side and note that

it will prove straightforward to read them off and substitute them when later

calculating the general tensor structure for the total divergence. Henceforth, we

write S2,i in schematic form by reading off the structure from the updated second

order vielbein Lagrangian (4.22) and include δL corrections

S2,i =
1

2

∫
d2σ (SĀB̄ξ

ĀξB̄ +QĀB̄ξ
Ā∂1ξ

B̄ + PĀB̄ξ
Ā∂0ξ

B̄

+ δLĀB̄∂1ξ
Ā∂0ξ

B̄), (4.24)

where we may make explicit the following definitions:

SĀB̄ := S11
AB∂1VBB̄ ∂1VAĀ + ∂ĀS

11
γB∂1X

γ∂1VBB̄ + S01
AB∂1VBB̄ ∂0VAĀ ,

QĀB̄ := Q1
ĀB

∂1VBB̄ +Q0
ĀB

∂0VBB̄ ,

PĀB̄ := P 1
ĀB

∂1VBB̄ . (4.25)

The use of upper indices in the definitions of S,Q, and P will aid in keeping

track of the derivative terms when we make the appropriate substitutions for S2,i.

We see already a general tensor structure emerging in (4.25). When we take

the square of the terms in (4.24) to obtain the second term in (4.19), it is clear

that we will obtain combinations of S,Q, P, and δL as well as their associated

fluctuations. One can therefore foresee how in the product of these terms we will

eventually obtain fluctuation contractions in the form of 4-point functions with

mixed spacetime derivatives.

4.4.2 Master expression for the effective action

With all of the results from the last few sections at hand, we can now start putting

things together. When we substitute (4.24) into (4.19) we obtain a lengthy list

of terms, not all of which are relevant. Only ξĀξB̄ terms appear at linear order

in (4.19), so we only pick up SĀB̄ terms here. This is because at second order in

(4.19) the square of SĀB̄ appears and comes with ξĀξB̄ξC̄ξD̄, but, upon explicitly

introducing the propagator in the next section, we see this amounts to its square.

Additionally, we are not interested in the expansion in higher order derivatives,

so we drop these and other similar terms. The result is that at quadratic order
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in (4.19) only combinations of ξĀ∂µξ
B̄ξC̄∂µξ

D̄ appear.

Full definition of the 4-point correlation functions that we obtain will be pro-

vided in the next section. For now, as an aid, we introduce the following short

hand

〈ξĀξB̄〉 ≡ 〈ξĀ(σ)ξB̄(σ)〉

and

〈ξĀ∂µξB̄ξC̄∂νξD̄〉 ≡ i

∫
d2σ 〈ξĀ(σ)∂µξ

B̄(σ)ξC̄(σ′)∂νξD̄(σ′)〉.

Now, finally making the substitution of (4.24) at first order 〈S2,i〉 and second

order 〈S2,i〉 in the effective action (4.19), we obtain the generic structure

Γ :=
1

2

∫
d2σ Γ00 + Γ01 + Γ11 + δL corrections + ΓNon−vielbein. (4.26)

After organising each collection of relevant terms, the master expression for

the effective action can be written as follows
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Γ00 :=
1

4
Q0
ĀB

Q0
C̄D

∂0VBB̄ ∂0VDD̄ 〈ξ
Ā∂1ξ

B̄ξC̄∂1ξ
D̄〉,

Γ01 :=

S01
AB∂1VBB̄ ∂0VAĀ 〈ξ

ĀξB̄〉 +
1

2
Q1
ĀB

Q0
C̄D

∂1VBB̄ ∂0VDD̄ 〈ξ
Ā∂1ξ

B̄ξC̄∂1ξ
D̄〉

+
1

2
Q0
ĀB

P 1
C̄D

∂0VBB̄ ∂1VDD̄ 〈ξ
Ā∂1ξ

B̄ξC̄∂0ξ
D̄〉,

Γ11 :=

S11
AB∂1VBB̄ ∂1VAĀ 〈ξ

ĀξB̄〉+ ∂K̄S
11
AB∂1X

A∂1VBB̄ 〈ξ
K̄ξB̄〉

+
1

4
Q1
ĀB

Q1
C̄D

∂1VBB̄ ∂1VDD̄ 〈ξ
Ā∂1ξ

B̄ξC̄∂1ξ
D̄〉

+
1

2
Q1
ĀB

P 1
C̄D

∂1VBB̄ ∂1VDD̄ 〈ξ
Ā∂1ξ

B̄ξC̄∂0ξ
D̄〉

+
1

4
P 1
ĀB

P 1
C̄D

∂1VBB̄ ∂1VDD̄ 〈ξ
Ā∂0ξ

B̄ξC̄∂0ξ
D̄〉,

δLcorrections :=

1

2
Q1
ĀB

δLC̄D̄∂1VBB̄ 〈ξ
Ā∂1ξ

B̄∂1ξ
C̄∂0ξ

D̄〉+
1

2
Q0
ĀB

δLC̄D̄∂0VBB̄ 〈ξ
Ā∂1ξ

B̄∂1ξ
C̄∂0ξ

D̄〉

+
1

2
P 1
ĀB

δLC̄D̄∂1VBB̄ 〈ξ
Ā∂0ξ

B̄∂1ξ
C̄∂0ξ

D̄〉+
1

4
δLĀB̄δLC̄D̄〈∂1ξ

Ā∂0ξ
B̄∂1ξ

C̄∂0ξ
D̄〉,

and lastly

ΓNon−vielbein :=

∂N̄HGB̄∂1X
G∂K̄HDĒ∂1X

D〈ξN̄∂1ξ
B̄ξK̄∂1ξ

Ē〉

− 1

2
∂N∂KHGD∂1X

G∂1X
D〈ξN ξK〉. (4.27)

The total list of terms comprising (4.27) is the most completely general ex-

pression for the quantum effective action that we can write. To make complete

sense of what this master expression is saying, we will need to calculate all of the

fluctuation contractions denoted by the 4-point functions for each combination of

world-sheet derivatives. We also have simple propagator contractions to calculate

for the SAB terms. What aids us in calculating the more complication 4-point

functions is that they can be broken down into a pair of propagator contractions

with derivatives acting on the fluctuation fields. A number of these contrac-

tions were originally calculated in [39], and we calculate them again to ensure
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accuracy. The inclusion of δL corrections also give completely new correlation

functions with three and four derivatives that we will have to calculate.

After calculating all of the correlation functions, we will also need to substitute

for the explicit values of S,Q, and P by reading them off from the final form of

the purely vielbein Lagrangian (4.22). Then, as a final step, we need to substi-

tute all of the results into the master expression (4.27), which will leave some

lengthy tensor algebra that we will need to calculate. We will start by first cal-

culating the fluctuation contractions, which means we need to finally introduce

the propagators of the theory.

4.5 Propagators

The propagators of the theory were first derived by Tseytlin [13] and were more

recently reviewed in [34, 39]. A full derivation is not offered here due to lack of

space; but we note that the quickest pathway is to generalise from the Floreanini-

Jackiw style kinetic terms, beginning with a standard 2-dimensional boson with

a kinetic Lagrangian of the form L0 = 1
2∂αφ∂

αφ. From this one can basically

read off the propagator.

As verified in the literature, the sum of a chiral and anti-chiral propagator is

directly proportional to the standard boson propagator

∆0(σ − σ′) = i

∫
d2p

(2π)2

1

p2
eip(σ−σ

′).

The difference, on the other hand, gives a phase θ, the definition of which is

also taken to ∆0 [39].

To calculate the contractions appearing in (4.27) we require the boson propa-

gator corresponding to the kinetic Lagrangian (4.23). Here one makes use of the

diagonal form of the H and L matrices as discussed in Section 4.3.1. The full

propagator takes the form

∆ĀB̄(σ − σ′) = 〈ξĀ(σ)ξB̄(σ′)〉 = HĀB̄∆(σ − σ′) + LĀB̄θ(σ − σ′) (4.28)

=
1

2
(H + L)ĀB̄∆+ +

1

2
(H− L)ĀB̄∆−,

where
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∆(σ − σ′) =
1

2
(∆+(σ − σ′) + ∆−(σ − σ′)) = − 1

4π
ln(σ − σ′)2 = 2∆0(σ, σ′),

θ(σ − σ′) =
1

2
(∆+(σ − σ′)−∆−(σ − σ′)) = − 1

2π
arctanh

σ − σ′

σ̄ − σ̄′
= 2θ(σ, σ′).

(4.29)

In this thesis we also follow the conventional notation in which

∆+(σ, σ′) = − 1

2π
ln(σ − σ′), ∆−(σ, σ′) = − 1

2π
ln(σ̄ − σ̄′). (4.30)

Explicitly stated, in (4.28) what we have are odd and even combinations of

the chiral propagators [13]. In (4.29) we observe a fairly intuitive structure. The

coefficients of ∆0 contain the UV divergence that requires regularisation and

normalisation, which means that in the path integral of the effective action the

term proportional to ∆0 will contribute to the Weyl anomaly (these terms are

scale sensitive and therefore related to the breakdown of Weyl invariance). On

the other hand, θ does not contain any divergence. Terms proportional to it will

correspond to a breakdown in world-sheet Lorentz invariance (these terms are

sensitive to rotation by phase shifts and hence contribute to parametrising the

Lorentz anomaly). In [39], although not explicitly computed the claim is that all

occurrences of θ in the effective action ultimately cancel, which means there is no

trace of a Lorentz anomaly. The explanation is that this has to do with having

‘an equal number of Bosons of each chirality’, which is owed to the assumption

of O(D,D) invariance. In this thesis we are of course not assuming O(D,D) and

so we will preserve θ throughout and calculate these terms explicitly.

4.6 Fluctuation contractions

Given the definition of the propagator in (4.28), the single contraction terms

〈ξξ〉 that appear in (4.27) are simple propagator contractions. So we may make a

straightforward substitution when the time comes. The double contraction terms,

on the other hand, are found using Wick’s theorem. Following the definitions in

[39], when calculating the contractions we use the fact that in momentum space

∆+ = 1
p1p−

and ∆− = − 1
p1p+

. Then when calculating the momentum integrals

we use the identity
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p0

p1

1

p2
±

=
1

p1p±
∓ 1

p2
±
,

and we discard integrals of the form 1
p2±

.

4.6.1 Original fluctuation contractions

Due to limited space, we will not rederive here all of the fluctuation contractions

originally calculated in [39]. However, we should note that in recalculating these

4-point functions we did find a number of corrections in the form of missing

factors. The impact of these corrections is that we have picked up additional

factors as featured in the following corrected results:

〈ξĀ∂1ξ
B̄ξC̄∂1ξ

D̄〉 ∼ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0,

〈ξĀ∂0ξ
B̄ξC̄∂0ξ

D̄〉 ∼ −(HĀ[C̄HD̄]B̄ + 3LĀ[C̄LD̄]B̄)∆0 − 2(HĀ[C̄LD̄]B̄ + LĀ[C̄HD̄]B̄)θ,

〈ξĀ∂1ξ
B̄ξC̄∂0ξ

D̄〉 ∼ −(HĀ[C̄LD̄]B̄ + LĀ[C̄HD̄]B̄)∆0 − 2LĀ[C̄LD̄]B̄θ. (4.31)

where ∼ represents up to finite terms. We use the convention Q[CQD] :=
QCQD−QDQC

2 . As the above contractions involve propagators of fields evaluated

at a coincident point, this means one requires a regularisation prescription to

handle any pathologies. We note that the propagators can be written in z-space

upon Wick rotation. We follow the conventions of [13, 39], where z = σ + iτ =

σ + τ and ∂σ = ∂ + ∂̄, ∂τ = ∂ − ∂̄. Then using z → 0 regularisation, for the

propagator we have the standard result ∂̄z−1 = πδ(2)(z).

4.6.2 New fluctuation contractions

In comparison with [39], we must also calculate the 3 new propagator contractions

that come with the inclusion of δL correction terms. We offer one example in

detail, using the procedure to calculate the correlation functions in (4.35), and

then quote the other two results.
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Example: Calculate 〈ξĀ∂1ξ
B̄∂1ξ

C̄∂0ξ
D̄〉

For example, consider the following 4-point function as found in the δL corrections

in (4.27)

i

∫
d2σ′〈ξĀ(σA)∂1ξ

B̄(σB)∂1ξ
C̄(σ′C)∂0ξ

D̄(σ′D)〉. (4.32)

Let us for the time being drop the bar notation on the chiral frame indices.

We will reinstate this notation after. To calculate this 4-point function, we use

the standard Wick procedure and we are only interested in connected diagrams.

Additionally, when using Wick contraction notation we will simply state the in-

dices to denote which terms are being contracted. We also use σA,B,C,D notation

in the argument for the fluctuation fields as a bookkeeping device. Therefore, in

using the Wick procedure we find

i

∫
d2σ′〈ξA(σA)∂1ξ

B(σB)∂1ξ
C(σ′C)∂0ξ

D(σ′D)〉 = ACBD + ADBC, (4.33)

where ACBD + ADBC is the sum of contractions we must compute.

Let us first consider the ACBD contractions. As we may pull out the deriva-

tives, what we end up with are simple propagator contractions. We may also at

this point substitute for the definition of the propagator. To simplify notation,

we use
∫
p to denote the more complete expression for the integration measure

i
∫ d2p

(2π)2
, understanding also that each integral comes with a factor of i. Taking

the above steps the result is

ACBD = ∂σC1 ∂σ
B
1 ∂σ

D
0 i3

∫
σ′

∫
p

∫
q

∆AC(p)∆BD(q)e
ip·(σA−σ

′
C )
e
iq·(σB−σ

′
D)
.

(4.34)

When computing the derivatives, we should be careful keeping track of the i’s

that come down from the exponential. We also obtain i terms from the two prop-

agator integrals, hence the factor of i3 out front. After calculating the derivatives

in (4.34) we find
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ACBD = i3
∫
σ′

∫
p

∫
q

∆AC(p)∆BD(q) (−ip1)(iq1)(−iq0) e
ip·(σA−σ

′
C )
e
iq·(σB−σ

′
D)
.

(4.35)

The σ′ integral sitting out front gives a delta function (2π)2δ(p+ q), just as it

does for the two derivative correlation functions calculated in (4.31). In fact, what

we obtain is the same general structure as that when calculating the left-hand

side of (4.31), with the only exception being that we have an extra derivative

which brings down an extra momentum term from the exponential.

Since we are only calculating propagators around a single loop, we can change

the variable ∆BD(q) = ∆BD(−p). This results in a cancellation of the negatives

signs on the p’s. Let us also collect all i’s and move them outside the integrand.

We end up with,

ACBD = i6
∫
p

∆AC(p)∆BD(−p) (p1p1p0). (4.36)

We may perform the same procedure for ADBC in (4.33). We end up with,

ADBC = i6
∫
p

∆AD(p)∆BC(−p) (p0p1p1). (4.37)

The next step is to collect all terms and then substitute for the propagators

given the definition (4.28). Dropping Wick contraction notation and making the

appropriate substitutions we find

ACBD + ADBC =

i6
∫
p
[∆AC(p)∆BD(−p) (p2

1p0)] + i6
∫
p
[∆AD(p)∆BC(−p) (p0p

2
1)]

= i6
∫
p

[
1

2
(H + L)AC∆+ +

1

2
(H− L)AC∆−

]
×
[

1

2
(H + L)BD∆+ +

1

2
(H− L)BD∆−

]
p2

1p0

+ i6
∫
p

[
1

2
(H + L)AD∆+ +

1

2
(H− L)AD∆−

]
×
[

1

2
(H + L)BC∆+ +

1

2
(H− L)BC∆−

]
p0p

2
1
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= i6
∫
p

1

4

[
(H + L)AC(H + L)BD∆+∆+ + (H + L)AC(H− L)BD∆+∆−

+ (H + L)BD(H− L)AC∆+∆− + (H− L)AC(H− L)BD∆−∆−

]
p2

1p0

+ i6
∫
p

1

4

[
(H + L)AD(H + L)BC∆+∆+ + (H + L)AD(H− L)BC∆+∆−

+ (H + L)BC(H− L)AD∆+∆− + (H− L)AD(H− L)BC∆−∆−

]
p0p

2
1. (4.38)

When we substitute for the propagators to obtain (4.38), the structure is pre-

cisely the same as that which we will always find for any combination of world-

sheet derivatives. To simplify matters, we may observe that the second integrand

is the same as the first just with A↔ B. Finally, we can also substitute for the

combinations of H and L. The result as follows

ACBD + ADBC =
i6

4

∫
p
[HACHBD(

1

p1p−

1

p1p−
p2

1p0) (4.39)

+HACLBD(− 1

p1p−

1

p1p+
p2

1p0)

+HBDLAC(− 1

p1p−

1

p1p+
p2

1p0)

+ LACLBD(
1

p1p+

1

p1p+
p2

1p0)]

+ (A↔ B).

The mixed pieces in (4.39) become negative. We can also account for the

i6 = −1 out front, so the signs in the integrand get flipped.

=
1

4

∫
p
[−HACHBD(

1

p1p−

1

p1p−
p2

1p0) (4.40)

+HACLBD(
1

p1p−

1

p1p+
p2

1p0)

+HBDLAC(
1

p1p−

1

p1p+
p2

1p0)

−LACLBD(
1

p1p+

1

p1p+
p2

1p0)]

+ (A↔ B).
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In (4.40) we find that the momentum integrals for the non-mixed terms vanish.

For instance, if p2
− = (p0 − p1)2 then

∫∞
−∞ dp0dp1

p0
(p0−p1)2

= 0 with the integral

odd in p. The same is true for the case of p2
+. So we are left only with momentum

integrals for the mixed pieces,

=
1

4

∫
p
[HACLBD(

1

p1p−

1

p1p+
p2

1p0) (4.41)

+HBDLAC(
1

p1p−

1

p1p+
p2

1p0)]

+ (A↔ B)

=⇒
∫
p

1

2
HACLBD 1

p1p−

1

p1p+
p2

1p0 (4.42)

+ (A↔ B).

However, in the analysis of this remaining momentum integral it is found that

∫
p

1

p1p−

1

p1p+
p2

1p0 (4.43)

=

∫
p

p0

p−p+

=

∫
p

p0

p2
0 − p

2
1

= 0.

In conclusion 〈ξĀ∂1ξ
B̄∂1ξ

C̄∂0ξ
D̄〉 = 0, so there are no corrections from this 4-

point function that contribute to the effective action. For similar reasons, we find

that 〈ξĀ∂0ξ
B̄∂1ξ

C̄∂0ξ
D̄〉 = 0, while the 4-point function 〈∂1ξ

Ā∂0ξ
B̄∂1ξ

C̄∂0ξ
D̄〉

with 4 derivatives does not trivially cancel. In summary, we find only one of the

correlation functions that arise as a result of the inclusion of δL to contribute to

the effective action. The full list of results is given below:

〈ξĀ∂1ξ
B̄∂1ξ

C̄∂0ξ
D̄〉 = 0,
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〈ξĀ∂0ξ
B̄∂1ξ

C̄∂0ξ
D̄〉 = 0,

〈∂1ξ
Ā∂0ξ

B̄∂1ξ
C̄∂0ξ

D̄〉 =
1

2
(HA[CHD]B − LA[CLD]B)

∫
p

1

p2
1p−p+

p2
1p

2
0. (4.44)

For the final 4-point function in (4.44) we have a remaining non-trivial diver-

gent momentum integral that we will need to calculate. We will address this in

Section 4.7.1.

4.7 The Weyl anomaly and the Lorentz anomaly

4.7.1 Final tensor structure

With several steps in the larger calculation complete, we now have everything

that we need to begin making our final substitutions. This will result in a final

generic tensor structure from which we will need to sort through all of the algebra

in order to then obtain a conclusive expression for the Weyl and Lorentz anomaly

terms. Importantly, in addition to the factors that we picked up in arriving at

(4.27), when we substitute for the propagator contractions we must be careful

to pay attention to any changes in sign and any additional factors. One sees,

moreover, that with some of the fluctuation contractions (4.31) and (4.44) we

pick up an overall negative sign for some of the Weyl anomaly pieces and some

of the Lorentz anomaly pieces.

Substituting (4.31) and (4.44) into (4.27) we find
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Γ00 :=
1

4
Q0
ĀB

Q0
C̄D

∂0VBB̄ ∂0VDD̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0,

Γ01 := S01
AB∂1VBB̄ ∂0VAĀ (HĀB̄∆0 + LĀB̄θ)

+
1

2
Q1
ĀB

Q0
C̄D

∂1VBB̄ ∂0VDD̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0

+
1

2
Q0
ĀB

P 1
C̄D

∂0VBB̄ ∂1VDD̄ [−(HĀ[C̄LD̄]B + LĀ[C̄HD̄]B̄)∆0 − 2LĀ[C̄LD̄]B̄θ],

Γ11 := S11
AB∂1VBB̄ ∂1VAĀ (HĀB̄∆0 + LĀB̄θ) + ∂K̄S

11
AB∂1X

A∂1VBB̄ (HK̄B̄∆0 + LK̄B̄θ)

+
1

4
Q1
ĀB

Q1
C̄D

∂1VBB̄ ∂1VDD̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0

+
1

2
Q1
ĀB

P 1
C̄D

∂1VBB̄ ∂1VDD̄ [−(HĀ[C̄LD̄]B + LĀ[C̄HD̄]B̄)∆0 − 2LĀ[C̄LD̄]B̄θ]

+
1

4
P 1
ĀB

P 1
C̄D

∂1VBB̄ ∂1VDD̄ [−(HĀ[C̄HD̄]B̄ + 3LĀ[C̄LD̄]B̄)∆0 − 2(HĀ[C̄LD̄]B̄ + LĀ[C̄HD̄]B̄)θ],

δLcorrections :=
1

2
δLĀB̄δLC̄D̄

[
(HA[CHD]B − LA[CLD]B)

∫
p

1

p−p+
p2

0

]
,

Γnon−vielbein := −1

2
∂N̄∂K̄HGD∂1X

G∂1X
D(HN̄K̄∆0 + LN̄K̄θ)

+ ∂N̄HGB̄∂1X
G∂K̄HDĒ∂1X

D(HN̄ [K̄HĒ]B̄ − LN̄ [K̄LĒ]B̄)∆0. (4.45)

From the definition of the propagator of the theory we may now decompose

the above list of terms such that its coefficients are written in terms of parts

that relate to the Weyl anomaly ∆(0) (breakdown of scale invariance) and the

Lorentz anomaly θ(0) (breakdown of Lorentz invariance). Schematically, the

effective action coefficients may be organised in the form

Γ
µν
IJ

:=
1

2

∫
d2σ Wµν

IJ∆(0) +
1

2

∫
d2σ LµνIJθ(0), (4.46)

where W and L are the total Weyl and Lorentz divergences, respectively. The

implication is that if the present model (or any double string model) is to describe

a consistent string background, it is required that the corresponding parts of the

effective action vanish on-shell. We find that the Weyl anomaly is therefore given

by
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W00
IJ :=

1

4
Q0
ĀB̄

Q0
C̄D

∂0VBB̄ ∂0VDD̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0,

W01
IJ := S01

AB∂1VBB̄ ∂0VAĀ HĀB̄∆0

+
1

2
Q1
ĀB

Q0
C̄D

∂1VBB̄ ∂0VDD̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0

− 1

2
Q0
ĀB

P 1
C̄D

∂0VBB̄ ∂1VDD̄ (HĀ[C̄LD̄]B + LĀ[C̄HD̄]B̄)∆0,

W11
IJ := S11

AB∂1VBB̄ ∂1VAĀ HĀB̄∆0 + ∂K̄S
11
AB∂1X

A∂1VBB̄H
K̄B̄∆0

+
1

4
Q1
ĀB

Q1
C̄D

∂1VBB̄ ∂1VDD̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0

− 1

2
Q1
ĀB

P 1
C̄D

∂1VBB̄ ∂1VDD̄ [(HĀ[C̄LD̄]B + LĀ[C̄HD̄]B̄)∆0

− 1

4
P 1
ĀB

P 1
C̄D

∂1VBB̄ ∂1VDD̄ (HĀ[C̄HD̄]B̄ + 3LĀ[C̄LD̄]B̄)∆0

− 1

2
∂N̄∂K̄HGD∂1X

G∂1X
D HN̄K̄∆0

+ ∂N̄HGB̄∂1X
G∂K̄HDĒ∂1X

D(HN̄ [K̄HĒ]B̄ − LN̄ [K̄LĒ]B̄)∆0. (4.47)

For the Lorentz anomaly we find L00
IJ = 0 and

L01
IJ := S01

AB∂1VBB̄ ∂0VAĀL
ĀB̄θ

−Q0
ĀB̄

P 1
C̄D̄

∂0VBB̄ ∂1VBB̄ LĀ[C̄LD̄]B̄θ,

L11
IJ := S11

AB∂1VBB̄ ∂1VAĀL
ĀB̄θ

−Q1
ĀB

P 1
C̄D

∂1VBB̄ ∂1VDD̄ LĀ[C̄LD̄]B̄θ

− 1

2
P 1
ĀB

P 1
C̄D

∂1VBB̄ ∂1VDD̄ (HĀ[C̄LD̄]B̄ + LĀ[C̄HD̄]B̄)θ

+ ∂K̄S
11
AB∂1X

A∂1VBB̄ LK̄B̄θ

− 1

2
∂N̄∂K̄HGD∂1X

G∂1X
D LN̄K̄θ. (4.48)

Finally, we have the remaining δL corrections which we will look at separately,

δLcorrections :=
1

2
δLĀB̄δLC̄D̄[(HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)

∫
p

1

p−p+
p2

0]. (4.49)
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The next task is to substitute for the explicit values of S,Q, and P by using

(4.24) and (4.25), reading off the terms from the purely vielbein Lagrangian

(4.22). To avoid cluttered notation, let us drop the derivative indices on the

2-tensors. We start with the Weyl anomaly terms:

W00
IJ :=

1

4
LĀBLC̄D∂0VBB̄ ∂0VDD̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0,

W01
IJ := LAB∂0VAĀ∂1VBB̄ HĀB̄∆0

−HĀBLC̄D∂0VDD̄∂1VBB̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0

− 1

2
LĀBLC̄D∂0VBB̄ ∂1VDD̄ (HĀ[C̄LD̄]B + LĀ[C̄HD̄]B̄)∆0,

W11
IJ := −HAB∂1VBB̄ ∂1VAĀ HĀB̄∆0 − 2∂K̄HBG∂1X

G∂1VBB̄H
K̄B̄∆0

+HĀBHC̄D∂1VBB̄ ∂1VDD̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0

+HĀBLC̄D∂1VBB̄ ∂1VDD̄ (HĀ[C̄LD̄]B + LĀ[C̄HD̄]B̄)∆0

− 1

4
LĀBLC̄D∂1VBB̄ ∂1VDD̄ (HĀ[C̄HD̄]B̄ + 3LĀ[C̄LD̄]B̄)∆0

− 1

2
∂N̄∂K̄HGD∂1X

G∂1X
D HN̄K̄∆0

+ ∂N̄HGB̄∂1X
G∂K̄HDĒ∂1X

D(HN̄ [K̄HĒ]B̄ − LN̄ [K̄LĒ]B̄)∆0. (4.50)

We see that after we make all of the appropriate substitutions for the Weyl

anomaly terms, what we end up with has precisely the same structure as found

in [39]. All factors and signs agree, and when we compute the tensor algebra we

should end up with a similar expression for the total Weyl divergence.

For the Lorentz anomaly terms we now also have
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L01
IJ := LAB∂1VBB̄ ∂0VAĀL

ĀB̄θ

− LĀBLC̄D∂0VBB̄ ∂1VDD̄L
Ā[C̄LD̄]B̄θ,

L11
IJ := −HAB∂1VBB̄ ∂1VAĀL

ĀB̄θ

+ 2 HĀB∂1VBB̄L
1
C̄D

∂1VDD̄ LĀ[C̄LD̄]B̄θ

− 1

2
LĀBLC̄D∂1VDD̄∂1VBB̄ (HĀ[C̄LD̄]B̄ + LĀ[C̄HD̄]B̄)θ

− 2∂K̄HBG∂1X
G∂1VBB̄ LK̄B̄θ

− 1

2
∂N̄∂K̄HGD∂1X

G∂1X
D LN̄K̄θ. (4.51)

And, again, the δL corrections, which we will analyse in a few moments:

δLcorrections :=
1

2
δLĀB̄δLC̄D̄[(HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)

∫
p

1

p1p−

1

p1p+
p2

1p
2
0].

(4.52)

We are now in position to calculate the tensor algebra for each collection of

terms in Wµν
IJ and LµνIJ . We begin with the Weyl anomaly pieces. We will give

the results term for term moving down the list appearing in (4.50):
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W00
IJ :=

1

4
LĀBLC̄D∂0VBB̄ ∂0VDD̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0 = (−1

8
∂0HAB∂0HAB)∆0,

W01
IJ :=

LAB∂0VAĀ∂1VBB̄ HĀB̄∆0 = (∂1VĀA∂0VAB̄δ
Ā
D̄

)∆0,

−HĀBLC̄D∂0VDD̄∂1VBB̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0 = 0,

− 1

2
LĀBLC̄D∂0VBB̄ ∂1VDD̄ (HĀ[C̄LD̄]B + LĀ[C̄HD̄]B̄)∆0 = (−∂1VĀA∂0VAB̄δ

B̄
Ā

)∆0,

W11
IJ :=

−HAB∂1VBB̄ ∂1VAĀ HĀB̄∆0 = (−∂1VAĀ∂1VĀA +
1

2
∂1HAB∂1HAB)∆0,

− 2∂K̄HBG∂1X
G∂1VBB̄H

K̄B̄∆0 = 0

+HĀBHC̄D∂1VBB̄ ∂1VDD̄ (HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)∆0 = 0,

+ 2HĀBLC̄D∂1VBB̄ ∂1VDD̄ (HĀ[C̄LD̄]B + LĀ[C̄HD̄]B̄)∆0

= (2∂1VAĀ∂1VĀA −
1

2
∂1HAB∂1HAB)∆0,

− 1

4
LĀBLC̄D∂1VBB̄ ∂1VDD̄ (HĀ[C̄HD̄]B̄ + 3LĀ[C̄LD̄]B̄)∆0

= (−∂1VAĀ∂1VĀA +
1

8
∂1HAB∂1HAB)∆0

− 1

2
∂N̄∂K̄HGD∂1X

G∂1X
D HN̄K̄∆0 = −1

2
∂K∂

KHGD∂1X
G∂1X

D∆0

+ ∂N̄HGB̄∂1X
G∂K̄HDĒ∂1X

D(HN̄ [K̄HĒ]B̄ − LN̄ [K̄LĒ]B̄)∆0

=
1

2
∂KHGBHBC∂KHCD∂1X

G∂1X
D∆0. (4.53)

We will return to these results shortly. In the meantime, the results for the

Lorentz anomaly terms may be similarly summarised:
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L01
IJ :=

LAB∂1VBB̄ ∂0VAĀL
ĀB̄θ = (−∂1VĀB∂0VAĀδ

B
A )θ,

− LĀBLC̄D∂0VBB̄ ∂1VDD̄L
Ā[C̄LD̄]B̄θ = (∂0VD̄B ∂1VDD̄ δ

B
D)θ,

L11
IJ :=

−HAB∂1VBB̄ ∂1VAĀL
ĀB̄θ = (∂1VĀD∂1VAĀδ

D
A )θ,

2 HĀBLC̄D∂1VBB̄ ∂1VDD̄ LĀ[C̄LD̄]B̄θ = (−2∂1VD̄B ∂1VDD̄ δ
B
D)θ,

− 1

2
LĀBLC̄D∂1VDD̄∂1VBB̄ (HĀ[C̄LD̄]B̄ + LĀ[C̄HD̄]B̄)θ = (∂1VD̄A ∂1VDD̄ δ

A
D)θ.

− 2∂K̄HBG∂1X
G∂1VBB̄ LK̄B̄θ = 2∂K̄HĀG∂1VĀC∂1X

GLK̄Cθ

− 1

2
∂N̄∂K̄HGD∂1X

G∂1X
D LN̄K̄θ = −1

2
∂N̄∂K̄HGD∂1X

G∂1X
D LN̄K̄θ.

(4.54)

Lastly, we have the δL corrections

δLcorrections :=
1

2
δLĀB̄δLC̄D̄[(HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)

∫
p

1

p1p−

1

p1p+
p2

1p
2
0].

(4.55)

It is now time to calculate the momentum integral on the far right-hand side

of (4.55). So let us consider it separately and start by making appropriate can-

cellations to the momentum terms,

∫
p

1

p1p−

1

p1p+
p2

1p
2
0 (4.56)

=

∫
p

p2
0

p+p−
.

Using similar methods as those employed to calculate the momentum integrals

that appear in the fluctuation contractions discussed in Section 4.6.1 and 4.6.2,

we can go to Euclidean space and make careful use of a regulator as well as invoke

the identity p± = p0± p1 =⇒ p0 =
p+ ± p−

2 . The calculation also requires that

we compute the appropriate residue, typically for z+ > 0, which results in a sgn

function [7]. When we substitute for p0 in (4.56) we get
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=
1

4

∫
p
(
p+

p−
+ 2 +

p−
p+

)eip·z. (4.57)

We may now use the standard formula S(z) = − i
2

∫ dp+dp−
(2π)2

1
p2∓
ei(

p+z−
2 +

p−z+
2 )

that one can derive from the definition of the propagator for chiral bosons. Plug-

ging (4.57) into this formula and now also writing explicitly for
∫
p as defined in

Section 4.6.2 we obtain,

= − i
8

∫
dp+dp−

4π
(
p+

p−
+ 2 +

p−
p+

) ei(
p+z−

2 +
p−z+

2 ). (4.58)

Let us drop the factors and focus specifically on the case for
p+
p− . What we end

up with is the following integral that can be calculated in a fairly straightforward

manner,

=

∫
dp+dp−

p+

p−
ei(

p+z−
2 +

p−z+
2 ) (4.59)

=

∫
dp+ p+ e

ip+z−
2

∫
dp−

1

p−
e
ip−z+

2

= δ(z−) sgn(z+).

The same procedure can then be made for the case of
p−
p+

in (4.57). What

we observe, as found in (4.59), is that the divergence is in fact not logarithmic.

Considering that we are only interested here in logarithmic divergences, this means

that there are no δL corrections coming from (4.55) and so we denote this by its

vanishing.

δLcorrections :=
1

2
δLĀB̄δLC̄D̄[(HĀ[C̄HD̄]B̄ − LĀ[C̄LD̄]B̄)

∫
p

1

p1p−

1

p1p+
p2

1p
2
0] = 0.

(4.60)

4.7.2 Final total Weyl divergence and Lorentz anomaly

As we near the conclusion of this chapter, the final total Weyl divergence is given

by summing all of the contributions from (4.53), in which the coefficient of ∆(0)

in (4.46) is obtained. Likewise, for the final total Lorentz anomaly, the coefficient

of θ(0) is given by summing all of the contributions from (4.54).
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For the Weyl anomaly we find,

W = (
1

8
∂1HAB∂1HAB −

1

8
∂0HAB∂0HAB −

1

2
∂K∂

KHGD∂1X
G∂1X

D

+
1

2
∂KHGBHBC∂KHCD∂1X

G∂1X
D). (4.61)

And for the Lorentz anomaly, interestingly, we find two remaining terms

L = 2∂K̄HĀG∂1VĀC∂1X
GLK̄C − 1

2
∂N̄∂K̄HGD∂1X

G∂1X
D LN̄K̄ . (4.62)

It is possible to simplify L a bit more, finding in the process that it carries

δL corrections. As in [41], it is suspected that the equations of motion may also

be used to show that the Lorentz anomaly vanishes. As space is restricted, such

an analysis must be saved for another time. Instead, we focus the remainder of

this chapter on the Weyl anomaly. After some brief calculation, where we use

integration by parts, the first two terms in W are shown to vanish. So the final

total Weyl divergence becomes

W = −(
1

2
∂K∂

KHGD −
1

2
∂KHGBHBC∂KHCD)∂1X

G∂1X
D. (4.63)

The structure for these two terms has some semblance of the structure we

observed in (2.31) for the generalised curvature scalar, albeit we have not included

the dilaton. Additionally, the main difference with our result when compared to

the findings in [39] is that we’re missing a connection term constructed from

the base metric. It is possible that we may find a complete description for the

generalised Ricci scalar on the maximally doubled space, however this pursuit

must again be saved for future study.

4.8 Doubled beta-functionals

The fluctuation contractions calculated earlier in this chapter involved propaga-

tors of fields, and these are evaluated in the limit σ → σ′. In this limit there

will be divergences at one-loop, because we are evaluating the propagators of

fields at the same point. For physical intuition, in terms of scalar particles one

may think of this limit at one-loop according to a field running the loop, where

the beginning and end-point ultimately coincide. This means, recalling the def-

initions of the propagators in (4.29), ∆(σ − σ′) → ∆(0) clearly diverges while
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θ(σ − σ′)→ θ(0) takes on an ambiguity such that arctanh σ−σ′
σ̄−σ̄′ can be taken to

equal some arbitrary constant.

For θ(0), following [42] if we set arctanh σ−σ′
σ̄−σ̄′ = tanh δ then upon regularisa-

tion the limiting expression takes the form

θ(0)→ − 1

2π
δ, (4.64)

where we simply interpret δ as the boost parameter.

Now, for the divergence coming from ∆(0) at one-loop, which again reflects the

UV divergence we would observe in the momentum integral around the loop, to

regularise and renormalise it the strategy is exactly the same as with the ordinary

non-doubled string [76], wherein we simply reduce the problem to an interacting

quantum field theory. That is, we regulate the divergence by introducing a UV

cut-off so that, after we renormalise the theory, the background fields of the

sigma model depend on a mass scale λ. In isolating the UV divergence of the

theory, we also introduce appropriate counter-terms. In fact, we’ve been utilising

this strategy from the outset, when we first chose to invoke the background field

method and to calculate the quantum fluctuations to quartic interaction. The

result of the overall procedure requires us to look at how the couplings of the

theory depend on λ, which is described by the beta-functionals.

Regularising ∆ by sending ln(σ − σ′)2 → ln((σ − σ′)2 + λ2) results in the

limiting expression

∆(0)→ − 1

2π
lnλ, (4.65)

where λ = µ
α′ . We define α′ = l2s , where l2s is the string length scale.

These two limiting expressions (4.64) and (4.65) describe precisely how we’ve

written the effective action (4.46), where for ∆(0) it is clear we have scale de-

pendence and for θ(0) we instead have phase dependence. It is worth noting

that by introducing a mass scale λ and then counter-terms, scale dependence is

ultimately absorbed in the definition of the renormalised couplings

{H, L} → {H(λ), L(λ)}. (4.66)

Then from (4.66) we can define a renormalised action, which, recalling our

original action (4.2), takes the form
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S(R) =
1

2

∫
d2σ[−H(R)

AB(λ)∂1X
A∂1X

B + L
(R)
AB(λ)∂1X

A∂0X
B ]. (4.67)

Schematically, in string theory the beta-functionals will typically have the

following structure

β[HAB ] ∼ ∂HAB(X;λ)

∂λ
, β[LAB ] ∼ ∂LAB(X;λ)

∂λ
, (4.68)

where we take the derivative of the background fields in the renormalised action

(4.67) with respect to the log of the mass scale. Here, the logarithmic derivative

of the coupling constant with respect to the scale is just the beta-function. In

this case, we have the following beta-functionals for the doubled geometry metric

couplings:

β[HAB ] = −WIJ and β[LAB ] = LIJ . (4.69)

By the requirements of conformal invariance we demand these beta-functionals

to vanish on-shell

β[HAB ] = −WIJ = 0 and β[LAB ] = LIJ = 0. (4.70)

It then follows that, given the vanishing of the beta-functionals, this is equiv-

alent to showing conformal invariance of the theory at the quantum level. The

result is that one obtains the background field equations.
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Chapter 5

Concluding Remarks

Let us now summarise the primary results of this thesis and point toward future

directions.

We began by utilising the background field method for the completely doubled

action. Having laid out our general strategy to ensure a generic calculation with

minimal assumptions, we derived the master expression for the effective action

at one-loop before calculating the final total divergence of the theory. The tensor

structure that we derived for the Weyl and Lorentz anomalies is completely gen-

eral, valid for any expansion of the doubled action (e.g., if instead one chooses to

expand (4.2) with respect to L instead of H). For the Weyl anomaly, we found a

number of elegant cancellations in the algebra, leaving only two terms compris-

ing the coefficient of W. We are heartened to note that this result matches that

found in [39] with the exclusion of any base dependent objects. For the Lorentz

anomaly, interestingly, we have two remaining terms which are expected to cancel

upon further study. It is also interesting to report that, for the δL corrections, we

didn’t find any logarithmic divergences. This result should perhaps be expected

with the use of dimensional analysis, but it is nonetheless curious.

There is much more to be said about the doubled beta-functionals and how

we might go about working with them directly in the future. In a sense, one

could view the doubled space of the duality symmetric string as an emergent

phenomenon insofar that it presents itself in clear view when T-duality is made

to be a manifest symmetry of the action. Taking a generic approach with the

completely doubled action for the interacting chiral boson model, do the beta-

functionals provide a fuller view of the linear and quadratic equations of motion

in DFT [18] as similarly conjectured in [42]?

The primary results of this thesis also pave the way for future work in a

number of other directions. If past studies (e.g., [39, 41, 42] to list a few) em-
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ploy formulations that depend on a doubled torus background or other types of

doubled geometry such as twisted doubled tori, it is important to investigate gen-

eralisations of chiral boson models for generic doubled geometries. The primary

motivation to date for using such torus-based doubled geometries has to do with

how the theory on a torus is generally tractable, with the extension to a twisted

torus a natural step to a more complicated case. But exploration of other doubled

geometries is in many ways still an uncharted savannah of stringy physics. These

geometries are certainly non-trivial and it is quite possible that mathematically

we remain at a point where the calculations are too unyielding. In any case, such

is no doubt a fundamental direction of study, with the challenge to construct

more exotic Lorentz invariant theories facing us head-on.

Belonging to such important efforts is the requirement to construct models that

realise completely the full web of string dualities. This point refers back to our

opening discussion in the introduction. When it comes to such frontier pursuits, a

natural first step would be to incorporate manifest S-duality in the manifestly T-

duality invariant theory, if possible. The purpose, among a large list of objectives,

would be to probe a deeper view of non-geometric string backgrounds. Finally,

we have to ask: in these models for interacting chiral scalars, how do we come into

complete contact with generalised geometry, if we take the view of understanding

such geometry in terms of a study of conventional geometry with a metric and B-

field on some D-dimensional manifold M on which O(D,D) finds natural action.

What are the implications, if any, for string cosmology given such intriguing

pathways of investigation?

The results of this paper for the maximally doubled interacting chiral boson

model have also left a number of other open questions. From the total Weyl

divergence, one such question relates to the derivation of some generalised scalar

curvature. It is also interesting to ask if, and how, we may build from the re-

sults in this paper in comparison with Tseytlin’s original results for the effective

action for the duality symmetric string [12, 13], including investigation into any

evidence for sequestering. In phase space formulations, such as the metastring,

what are the implications of the connection to Born geometries? Additionally, in

[64] Tseytlin comments on how the doubled action takes the Heterotic string to

its maximal logical completion, and this idea offers a few other interesting direc-

tions one may probe, given the importance of the Heterotic idea in string theory.

Finally, in using the most general form of the Tseytlin action, what happens

when we switch on the B-field and the dilaton for the case where the background

fields have arbitrary dependence on the generic doubled geometry? Indeed, the
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entire approach to the primary calculation of the effective action in this thesis

is positioned in such a way to explore effective spacetime theories for completely

generic non-geometries.
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