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Abstract: Recently, the technology of mixing phase change materials with high thermal conductivity 

fillers was developed, which has allowed thermal energy storage to be implemented in a wide range 

of industrial technologies and processes. In the present study, a hierarchical bionic porous nano-

composite was prepared, which efficiently merged the nanomaterial characteristics of magnetism and 

high thermal conductivity in order to form a magnetically-accelerated solar-thermal energy storage 

method. The morphology and thermo-physical properties of materials were analysed. The 

experimental outcomes of phase change heat transfer demonstrated that the maximum storage 

efficiency increases by 102.7% when the hierarchical bionic porous structure is used, and a further 

27.1% improvement can be achieved with the magnetic field. At the same time, the heat transfer 

process of energy storage in hierarchical porous composites under external physical fields is explained 

by simulation. Therefore, this magnetically-accelerated method demonstrated the superior solar-

thermal energy storage characteristics within a hierarchical bionic porous structure which is 

particularly beneficial for the utilisation of solar direct absorption collectors and energy storage 

technology. 
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1. Introduction 

The world’s energy consumption has increased, due to the drastic development of human society 

which has caused global warming and environmental pollution [1,2]. As an excellent renewable energy 

source which can substitute fossil fuels, solar energy has successfully gained attention due to its 

environmental friendliness and lower cost [3-6]. Solar-thermal conversion depends on direct 

absorption solar collectors and has become a good method for harnessing solar energy [7-10]. In 

addition, it is the main cause of spreading industrial applications, such as thermal energy storage and 
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electricity and steam generation [11]. Solar-thermal energy storage is considered to be a key feature in 

sustainable solar-thermal conversion requests [12]. Through improvement in heat storage capacity and 

solar absorption ability, this is important for widely applying solar-thermal energy storage [13]. 

Therefore, thermal energy storage structures and materials are two important aspects which are often 

explored by researchers. 

When it comes to energy storage structures, pore-based shape-stabilised composite is more 

obtainable and profitable for exploring other excellent properties such as thermal conduction and flame 

retardancy comparing with a single organic or inorganic material, eutectics and mixtures and 

encapsulated phase change materials (PCMs) [14,15]. Currently, the hierarchical porous material is 

considered as a developing type of porous material which possesses a variety of levels of structure and 

porosity [16]. This helps in presenting the unique scale benefits from micro pores to a macro level [17]. 

Due to their integrated hierarchical porosity with a variety of length scales, they are quite suitable for 

mass loading and diffusion, electron and ion transport, and light-harvesting, because they are used for 

converting solar and chemical energy on a wider level [18,19]. The hierarchical porous architecture 

causes degradation to the structure of energy shortage and fast heat transfer incurred by volume 

expansion during the charge cycle process [20]. This process is also important for light-harvesting via 

multiple light reflections and scattering [21]. However, the machines of effect of hierarchically porous 

materials on their functions are not only simple micro-scale structures, but they also include structural 

parameters at different scales and interactions with each other [22]. The theory of flow and heat transfer 

in hierarchically porous materials has not been reported systematically, and there are still great 

challenges which must be faced in the development of hierarchically porous materials for thermal 

energy storage [23].  

Furthermore, thermal energy storage is achieved due to a change in internal energy material, such 

as chemical energy, latent heat, and sensible heat [24,25]. From the existing thermal energy shortage 

methods, latent heat storage is considered as a reliable and efficient method due to the solid-liquid 

phase material change [26-29], mostly due to the fact that it has a high density of thermal storage in a 

small volume change as well as a small temperature region during thermal energy storage [30, 31]. 

Phase change materials have the ability to absorb latent heat at the time of transition into liquid from 

a solid which is appropriate for storing solar-thermal energy [32,33]. In liquid PCMs, when 

nanoparticles are added, this results in nanofluid PCMs which possess high storage capacity and heat 

transfer, compared to one-component PCMs, such as paraffin wax and hydrated salts [34-36]. For 

example, a research experiment was conducted in order to determine the effects of nickel nanoparticle 

mass concentration on the performance of phase change in PCMs by Oya et al. [37]. The percolation 

clusters caused a high upsurge in determined heat conduction. Nourani et al. [38] created an original 



paraffin/Al2O3 mixture which exhibited enhanced thermal conductivity and reliability. However, very 

little research has been conducted on solar-thermal PCM systems on the basis of nanofluid PCMs, 

allowing separate expansion of the conversion of solar-thermal efficiency after applying the external 

physical fields, such as magnetic, sound, electric field [39-41], let alone studying the heat transfer 

process of solar-thermal storage and energy conversion in hierarchically porous structures under 

external physical fields. 

In this study, hierarchically bionic porous phase change materials were prepared by imitating 

natural systems combining superior thermal conductivity and phase change characters. The prepared 

hierarchically bionic porous phase change materials were considered, then the thermo-physical 

properties and optical properties were discovered. Therefore, a magnetically-accelerated solar-thermal 

energy storage method was suggested. Solid-liquid phase transition research with hierarchically bionic 

porous phase change materials was conducted, comparing to pure paraffin wax. In addition, the 

efficiency and storage capacity of various heat transfer performances were determined for the 

evaluation of the influence of the hierarchically porous structure and magnetism on phase change 

performances. Finally, the heat transfer process of photo-thermal energy conversion and storage in 

hierarchically porous materials under an external physical field was verified by simulation.   

2. Experimental research 

2.1. Material preparation  

To create an ultrapure water system in the lab, deionized (DI) water purification was performed, 

along with other experiments (Arium-mini plus, Sartorius, Germany). Firstly, the iron (III) chloride 

hexahydrate was thoroughly mixed for 10 minutes in the DI. Next, sodium citrate was added and mixed 

in the suspension and urea by ultrasonic agitation. Later, the suspension and polyacrylamide were 

mixed together completely for 15 min. A100 mL flask set at 160°C immersed in a water bath for 8h 

was used to transfer the final solution. Subsequently, ethanol was used to wash the black precipitates 

magnetic Fe3O4 composites through magnetic attraction prior to oven drying at 50 °C for 12 h. The 

MF nanoparticles were gradually mixed into the 40 mmol titanium (IV) tetrafluoride solution which 

was then stirred for 10 minutes. After this, the solution was moved into and placed in a Teflon-sealed 

autoclave and maintained at a temperature of 180 °C for 48 h. Finally, the poriferous magnetic TiO2 

(MT) was stirred vigorously in liquid paraffin wax (PW) within 5 wt.% to prepare the poriferous 

paraffin@magnetic TiO2 (PMT). The MF was stirred vigorously in liquid paraffin wax within 5 wt.% 

to prepare the poriferous paraffin@magnetic Fe3O4 (PMF). All above drugs were purchased from 



Aladdin Reagent (Shanghai, China) within the analytical reagent grade and were used as received. 

 

Figure 1. Preparation of the paraffin@magnetic Fe3O4 (PMF) and paraffin@magnetic TiO2 (PMT) 

2.2. Characterisation 

To further confirm the particles, the MF and MT nanomaterials were characterised by the scanning 

of microscopy regarding electrons (SEM, Zeiss Supra 55, Germany) along with transmission electron 

microscopy (TEM, 2010-JEM, Japan). An X-ray diffraction (XRD) pattern was gained using an X-ray 

diffractometer (AXS-Bruker GmbH, Germany, D8-Advance). Brunauer-Emmett-Teller (BET) was 

used in order to gain analysis of the particle size and surface area of the pores (Quantachrome 

Autosorb-1C-VP, US). Magnetism of nanoparticles was achieved by using a vibrating sample 

magnetometer (SQUID VSM-MPMS, Design Quantum, USA). The PCM’s thermo-physical 

properties, thermal conductivities, and particular heat volume and optical properties were determined 

using an ultraviolet-visible-near-infrared spectrophotometer (5000-CARY, Technology of Agilent, 

USA), a laser thermal diffusivity instrument (LFA 457, Netzsch, Germany), and a differential scanning 

calorimetry system (F1-204, Netzsch, Germany). 

2.3. Experimental setup 

The solar-thermal energy storage method is inspired by imitating natural systems in the ocean. 

Diatoms can track light sources through the holes in pores in order to capture solar energy by reflecting 

less sunlight. The silk network structure of diatoms not only prevents incident light from escaping and 

enhances their absorption, but it also enhances their adsorption and storage capacities within flexible 

and stable structures (Figure 2a). Based on this, bionic phase change composites within a hierarchical 

porous structure were prepared and a magnetically-accelerated method was developed for energy 

storage and solar-thermal conversion. The experimental setup is shown in Figure 2b: the light source 

used in the experiment was a sunlight simulator (CEL HXF300, Ceaulight, China) with a constant solar 

intensity (1000 W/m2), a magnetism generator (ELE-P80, Elecall, China) whose intensities were 

measured by a magnetometer (M943, Honor Top of Magnetic Technology, China); Test chamber (an 



acrylic beaker), thermocouples, a data collector, and a computer form a data collection system. The 

chamber had a 3.0 cm height and 4.0 cm diameter. In addition, temperature readings were obtained 

from the five thermocouples inserted in the middle of the sample to record temperature changes and 

noted by a data collection unit (CA34972, Technology of Agilent).  

 

Figure 2. (a) The schematic diagram of magnetically-accelerated method for solar absorption based on bio-inspired 

hierarchical porous phase change composites; (b) schematic of the experimental facility for energy storage through solar-

thermal conversion of magnetic phase change composites 

3. Results and discussion 

3.1. Characterisation of nanoparticles and composites  

SEM images depicted the shape of the prepared MF within uniform morphologies and well-

dispersed properties (Figure 3a). From Figure 3b and Figure 3c, it can be seen that the darkness of MF 

and MT are heterogeneously distributed, which could indicate that the nanoparticles have porous 

structure. For further clarification, the specific surface area of MT and MF was observed in the pore 

distributions and N2 adsorption-desorption isotherms (Figure 3d). The BET surface area was measured 

to be as high as 184.6 m2 g–1 (MT), compared to the 146.2 m2 g–1 MF nanoparticles, which were the 

result of their hierarchical pores within the nano-structure, visible in the desorption-adsorption 

isotherms and the distributions of pores. The diffraction peaks at 2θ=21.6° and 23.5° were due to the 

(110) and (200) reflection of paraffin wax (Figure 3e). The diffraction peaks detected at 2θ angles of 

24.9°, 37.6°, 48.1°, 54.8° and 62.6°, corresponded to the (110), (112), (101), (004) and (200) reflections 

of TiO2 (PDF No. 65-1119). Other diffraction peaks well matched the (220), (311), (400), (422), (511) 

and (440) likenesses of the magnetism phase (JCPDS No. 89-0691) [7]. The magnetisation of the 

magnetic PMT (4.8 emu/g) was transformed into MT (64.7 emu/g) on the basis of the measured weight 

percentage (Figure 3f).  



 

Figure 3. Structural characterisation of nanoparticles and composites: (a) scanning electron microscopy (SEM) images of 

MF; TEM images of the (b) MF and (c) MT; (d) Pore size distributions and N2 adsorption-desorption isotherms of the 

MF and MT; (e) X-ray diffraction patterns and (f) hysteresis loops of the MT and PMT  

Figure 4a shows the specific heat capacity in the phase change regions for different phase change 

composites with the temperature of 10~110°C, which was used to calculate the energy storage capacity. 

The value of the specific heat of solid (2.56 J/(ºC·g)) is less than that of liquid (2.97 J/(ºC·g)) of the 

PW, which are similar to the standard specific heat of paraffin wax (2.60 J/(ºC·g) and 2.89 J/(ºC·g)). 

It can be seen that the specific heat of the phase change composites had no obvious change during the 

melting and freezing process when adding nanoparticles. This indicates that magnetic nanoparticles 

within small mass concentration in phase change materials have a weak influence on heat storage 

capacity. Figure 4b displays the thermal conductivities of the PW, PMF and PMT over a temperature 

range of 30~90°C. The outcome showed a vibrant change in thermal conductivity when the 

nanoparticles were inserted into both liquid and solid forms of paraffin wax. PMT had a higher thermal 

conductivity, compared to PMF. PW had greater transmission in the instance of the liquid state in the 

noticeable range of light (Figure 4c), but the transmission of PMF and PMT was close to zero, due to 

the robust photo-absorption capacity of the nanostructure. It also can be seen that PMT has superior 

optical absorption performance. The transmission of different weight percentages of PMT were further 

characterized (Figure 4d). It can be seen that the transmittance of PMT was decreased with the increase 

of mass concentration at first, and it has no change when further increasing the mass concentration of 



nanoparticles, which is in order to determine the best mass concentration (5 wt. %) to conduct the 

solar-thermal conversion and phase change experiments [2,5]. 

 

Figure 4. (a) Specific heat capacity over the temperature range of 10~110°C, (b) conductivity over the temperature range 

of 30~90°C, and (c) transmittance of the phase change composites (PW, PMF, and PMT) at 80°C. (d) transmittance of 

different weight percentages of PMT at 80°C 

3.2. Solar-thermal conversion and phase change characteristics 

In order to further examine the solar-thermal conversion and heat transfer performance of phase 

change composites, both were determined based on the temperature variation and measured particular 

heat of the PCMs [2,21]: 
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where Qe is energy conversion capacity (storage or discharge) at time t, S is the direct solar area, qsolar 

is the solar radiation power, m is the mass, cp is the specific heat capacity, T is the temperature of the 

PCMs, and ηs and ηr are the heat storage/discharge efficiency. Optimal heat transfer and solar 

absorption are two requirements for achieving high energy conversion efficiency during the solar-

thermal conversion process. Therefore, based on the magnetism and absorbance of the bionic 

hierarchical porous materials, the effect of magnetic nanoparticles on phase change characteristics was 



investigated, and the mechanism of magnetically enhanced solar-thermal conversion was researched. 

3.2.1 Influence of the magnetic nanoparticles on phase change characteristics 

  The phase change composites melt robustly via straight solar radiation and the localized heating 

area shifts downwards by heat conduction. The experiments of phase change characteristics under 

solar illumination with PMF and PMT composites were conducted and compared with PW. Figure 5a 

shows the change in temperature at the time of changing processes. Compared to PW and PMF, the 

temperature of PMT increases rapidly during the charging process and has a higher steady temperature 

(94.2°C) due to its superior solar absorption ability and high thermal conductivity. For the release 

energy process, the temperature dropped rapidly initially and gradually achieved a stable state as a 

result of heat release and dissipation. To clarify the heating and cooling processes of phase change 

materials through solar irradiation, their rates of cooling and heating regarding time are shown in 

Figure 5b and Figure 5c. The initial peak of heating rate could be attributed to the specific heat capacity 

change in the process of the melting of the composite. The improved solar absorption ability of the 

liquid phase change materials, in addition to the latent heat effect disappearance, could be the source 

of the second peak. The heat storage/discharge capacity (Figure 5d) showed that the solar-thermal 

storage capacity of PMF and PMT had significant enhancements and contained at 353.2 J/g and 377.6 

J/g, which respectively increased by 14.8% and 22.7%, compared to that of the PW (307.7 J/g). The 

heat storage/discharge efficiency was determined by Equation (2) and Equation (3) on the basis of the 

heat storage/discharge capacity (Figure 5e and Figure 5f). The storage efficiency of the phase change 

materials improved initially and then reduced to a steady state, and the maximum storage efficiency of 

the PMF and PMT increased by 67.6% and 102.7%, compared to that of the PW. The discharge 

efficiency of the phase change materials was increased to a steady state which is consistent with the 

maximum storage efficiency. During the heat storage/discharge process, heat loss is minimal when the 

temperature is low, and many absorbed solar energies are utilised in phase change enthalpy which 

improves the efficiency of storage. At the time of the solid phase changing to the liquid phase, the 

increased temperature results in a greater loss of heat, and the volumetric efficiency decreases in 

relation to the improvement of illumination with time. In contrast, when the liquid phase changes to 

the solid phase, the discharge efficiency increases with time. In summary, the combination of magnetic 

nanoparticles enhances thermal conductivity, accelerates capacity efficiency, upsurges solar energy 

absorption, and increases storage capacity. 



 

Figure 5. Heating and cooling processes of PW, PMF and PMT. (a) temperature changes, (b) heating rate and (c) cooling 

rate as a function of heating time; Release characteristics and thermal storage of PW, PMF and PMT. (d) thermal storage 

capacity, (e) thermal storage efficiency and (f) thermal release efficiency as a function of heating time 

3.2.2 Enhanced magnetically solar-thermal conversion process 

Under simulated solar irradiation, when a solid PMT converts the liquid phase and also following 

a reduction in viscosity, the particles within magnetism become firmly combined to the paraffin. At 

the same time, the solar-absorbed nanoparticles are formed under magnetically volumetric force 

towards the solid-liquid phase interface. Therefore, the thermal-solar conversion takes place during 

the interface phase, mainly because of upper liquid paraffin layer, where due to no presence of 

nanoparticles, the transmission is high. After the experiment, the PMT’s steady temperature improved 

from 94.2°C to 103.9°C (Figure 6a) when applying the magnetic field. Initially, the change of phase 

was mainly due to thermal diffusion, while the magnetic nanoparticles changed into the new liquid-

solid phase interphase as more PMT was shifted into liquid phase with the help of magnetic volumetric 

force. The higher peak of heating rate could be attributed to magnetic nanoparticle movement in the 

composite melting process, which is shown in Figure 6b. The magnetism nanoparticles displayed a 

larger volumetrically magnetic force and shifted more quickly at the time of magnetism. Therefore, a 

large amount of concentrations of nanoparticles gathered in the interface phase and the upper PMT 

possess high transmission, which promotes superior efficiency of solar-thermal conversion process, 

causing phase transition enthalpy. As shown in Figure 6c, the magnetically controlled heat shift method 

reflected the improved storage capability, approximately 20.3% greater than that without magnetic 

field. The thermal-solar storage efficiencies exhibited rapid charging rate improvement in the initial 



stage with magnetic field strength and the highest storage efficiency was approximately 27.1% greater 

than that without magnetic field, as shown in Figure 6d. In order to further explain the mechanism of 

magnetically enhanced solar-thermal conversion, a two-dimensional mathematical model was created 

using commercial software assuming Newtonian, laminar and incompressible flow. The size and 

boundary conditions used for the simulation were consistent with the experiment. Material properties 

were applied to simulation in the form of piecewise functions of experimental values. From the 

simulation results and using the finite element method (Figure 6e), the PMT’s changes in temperature 

exhibited similar features to the research outcomes. By applying the magnetic field, the PMT 

temperature increased rapidly. The velocity distribution and magnetic field of PMT liquid showed that 

the circulation was initiated by using volumetric magnetism power. In addition, the normal volumetric 

magnetic force formed at the phase interface also increased the melting of paraffin. Table 1 concluded 

the comparison of phase change performance parameters of PW, PMF, and PMT without and with the 

magnetic fields. The numerical average temperature of the PMT was 372.6 K, which is similar to the 

outcome of the experiment (377.1 K). Comparison of experimental results with theoretical results was 

showed in Figure 6f with error bar. It can be seen that the numerical average temperature of the PMT 

was similar to the outcome of the experiment, and the errors are 1.7% without magnetic field and 1.2% 

with magnetic field. 

 

Figure 6. The influence of the magnetic field on photo-thermal conversion. (a) temperature changes, (b) heating rate and 

(c) thermal storage capacity; (d) thermal storage efficiency as a function of heating time (e) magnetically enhanced 

mechanism for heat transfer: the distribution of temperature, velocity and magnetic force; (f) experimental and numerical 

steady temperature with and without magnetic field during the phase change process 



Table 1 Phase change performance of PW, PMF, and PMT without and with the magnetic fields 

Phase change performance  PW PMF PMT 

Steady temperature 

(ºC) 

Without magnetic field  75.7 88.6 94.2 

With magnetic field (20 mT) - 97.5 103.9 

Storage capacity 

(J/g) 

Without magnetic field  307.4 353.3 377.8 

With magnetic field (20 mT) - 416.7 448.4 

 

4. Conclusion 

In the current study, phase change materials with hierarchical bionic porous were formed with the 

help of a two-step method with paraffin wax and porous magnetic nanoparticles. The morphology, 

specific surface area and magnetism of different particles were characterised, and the thermo-physical 

characteristics of hierarchically bionic porous phase change materials were further evaluated. A 

magnetically-accelerated solar-thermal energy storage method effectively was established by imitating 

natural systems, combining the nanomaterial characteristics of magnetism and superior thermal 

conductivity. Energy storage and release experiments were conducted in order to evaluate the phase 

change features of different phase change composites compared to pure paraffin. The storage efficiency 

of the phase change materials improved during the initial stage and then reduced to a stable state, and 

the maximum storage efficiency of the PMT increased by 102.7%, compared to that of the PW.  

Energy storage experiments and solar-thermal conversion reflected that the efficiency of phase 

change of hierarchically bionic porous materials can be further improved by magnetism. At the time 

of solar irradiation process, the photo-absorbed nanomaterials are concerned with moving to the 

interface of liquid-solid phase under the magnetic field. Therefore, the storage efficiencies of the solar 

thermal possess robust charging rate combined with magnetism power improvement at the starting 

point, and the highest storage efficiency was recorded at approximately 27.1% more than that without 

the magnetic field. A large number of photons were transformed into thermal energy with the help of 

solar-thermal conversion, and provided phase transition enthalpy at the time of the phase interface. At 

the same time, the heat transfer process of energy storage and solar-thermal conversion in 

hierarchically porous materials under the external physical fields was explained by simulation.  
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