Analysis of the relationship between scintillation parameters, multipath and ROTI

Li, Chendong, Craig, Craig M., Hamm, Nicholas A. S., Veettil, Sreeja V. and You, Chong (2020) Analysis of the relationship between scintillation parameters, multipath and ROTI. Sensors, 20 (10). ISSN 1424-8220

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution.
Download (12MB) | Preview

Abstract

Global Navigation Satellite System (GNSS) operation can be affected by several environmental factors, of which ionospheric scintillation is one of the most significant. Scintillation is usually characterized by two indices, namely the amplitude scintillation index (S4) and phase scintillation index (σφ). However, these two indices can only be generated by specialized GNSS receivers, which are not widely available all around the world. To popularize the study of scintillation, this article proposes to use more accessible parameters, namely multipath (MP) and rate of change of total electron content index (ROTI), to characterize scintillation. Using GPS data obtained on six days in total from three stations, namely PRU2 and SAO0P located in Sao Paulo, Brazil and SNA0P located in Antarctica, respectively, both the time series plots and 2D maps were generated to investigate the relationship of scintillation indices (S4 and σφ) with MP and ROTI. To prevent the effect of the real multipath error, a 30-degree satellite elevation mask is applied to all the data. As the scintillation indices S4 and σφ have a sampling interval of 1 min, MP and ROTI are calculated with the same sampling interval for a more direct comparison. The results show that the structural similarity (SSIM) and correlation coefficient (CC) between parameters was greater than 0.7 for 70% of outputs. In addition, the variogram and cross-variogram are applied to investigate the spatial structure of the MP, ROTI, S4 and σφ in order to support the results of SSIM and CC. With outputs in three forms, promising spatial and temporal relationships between parameters was observed.

Item Type: Article
Additional Information: This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution
Keywords: GNSS; scintillation parameters; multipath; ROTI; relationship
Schools/Departments: University of Nottingham Ningbo China > Faculty of Science and Engineering > School of Geographical Sciences
University of Nottingham Ningbo China > Faculty of Science and Engineering > Department of Civil Engineering
University of Nottingham, UK > Faculty of Engineering > Department of Civil Engineering
Identification Number: https://doi.org/10.3390/s20102877
Depositing User: Hamm, Nicholas
Date Deposited: 07 Sep 2020 03:53
Last Modified: 07 Sep 2020 03:53
URI: https://eprints.nottingham.ac.uk/id/eprint/61541

Actions (Archive Staff Only)

Edit View Edit View