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Abstract

We propose a logic of directions for points (LD)
over 2D Euclidean space, which formalises primary
direction relations east (E), west (W ), and indeter-
minate east/west (Iew), north (N ), south (S) and in-
determinate north/south (Ins). We provide a sound
and complete axiomatisation of it, and prove that
its satisfiability problem is NP-complete.

1 Introduction
This work is motivated by the problem of matching spatial
objects represented in different geospatial datasets and veri-
fying the consistency of matching relations. A matching re-
lation states that a spatial object in one dataset is the same
as or part of a spatial object in the other dataset. In dif-
ferent datasets, the same real world object is usually repre-
sented using different geometries or coordinates. Previously,
we proposed a number of qualitative spatial logics (a logic
of NEAR and FAR for buffered points, a logic of NEAR
and FAR for buffered geometries and a logic of Part and
Whole for buffered geometries) which were developed to rea-
son about distance relations between spatial objects from dif-
ferent datasets, tolerating slight differences in their geomet-
ric representations [Du et al., 2013; Du and Alechina, 2016].
These spatial logics have been used to validate matching rela-
tions regarding the distance relations between spatial objects.
The intuition is that two spatial objects which are definitely
close in one dataset cannot be matched to two spatial objects
which are definitely far away in the other dataset. However,
these spatial logics do not cover the direction aspect, which is
an important dimension of spatial relations. In this work, we
propose a new spatial logic for validating matching relations
with respect to direction relations between spatial objects.
Using the relations defined in the new logic, the following
intuition can be formalised: if a spatial object a is definitely
to the east of a spatial object b in one dataset, then the spa-
tial object corresponding to a in the other dataset cannot be
definitely to the west of the spatial object corresponding to b.

Consider the case where every spatial object is represented
as a single point. We assume that the distance between every
pair of corresponding points from different datasets is less
than or equal to a positive real number σ. σ is referred to as

a margin of error. The value of σ can be determined empir-
ically by comparing two geospatial datasets representing the
same objects, and finding the largest ‘distortion’ which exists
between any pair of objects. With respect to a point p, if a
point q is within the bounding box of the σ-buffer of p (the
σ-buffer contains exactly all the points within σ distance of
p), then q is considered to be too close to talk about its exact
direction. We say that q is not to the north, not to the south,
not to the east and not to the west of p. In the logic of NEAR
and FAR for buffered points [Du et al., 2013], two points are
NEAR, if their distance is within 2σ; two points are FAR, if
their distance is greater than 4σ. A gap is left between NEAR
and FAR so that two points are not NEAR and not FAR, if
their distance is greater than 2σ and within 4σ. Similar to the
way in which the relations NEAR and FAR were defined, we
will leave some gaps or indeterminate regions between def-
inite directions like definitely east and definitely west. E.g.
for two points p, q with x coordinates xp, xq , we can define
the three relations definitely east, not east and not west, and
definitely west, as xp− xq > 3σ (p is definitely to the east of
q), −σ ≤ xp − xq ≤ σ (p is not to the east and not the west
of q) and xp − xq < −3σ (p is definitely to the west of q) re-
spectively. Instead of introducing a constant 3, we introduce
another parameter τ > 1 to represent gaps or indeterminate
ranges or regions. The parameter τ is referred to as the level
of indeterminacy in directions. For points p, q, if xp and xq
are within τσ distance, then the direction relation between
points p, q are not definitely east nor definitely west. Follow-
ing this initial idea, with respect to a central point p = (0, 0),
we divide the 2D Euclidean space into 25 totally or partially
bounded regions (see Figure 1). Points in different regions
have different direction relations with the central red point p.
E.g. for any point q in region 1, q is definitely to the north and
definitely to the west of p. The question is how to define the
25 different direction relations formally and provide a sound
and complete axiomatisation to reason with them.

Several qualitative spatial or temporal calculi have been de-
veloped for formalizing and reasoning about direction or or-
dering relations [Aiello et al., 2007; Ligozat, 2012]. These
include the point calculus [Vilain and Kautz, 1986] which
defines three ordering relations < (less than), > (greater
than) and eq (equal) for points in a 1D Euclidean space,
Allen’s calculus [Allen, 1983], the cardinal direction calcu-
lus (CDC) which extends the point calculus to 2D Euclidean
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Figure 1: The 2D Euclidean space is divided into 25 totally or par-
tially bounded regions. The red dot in region 13 is the central point
p = (0, 0).

space [Ligozat, 1998], the rectangle algebra [Balbiani et al.,
1998], the 2n-star calculi which generalize the cardinal direc-
tion calculus by introducing a variable n referring to the gran-
ularity or the degree of refinement for defining direction rela-
tions [Renz and Mitra, 2004], and cardinal direction relations
between regions [Goyal and Egenhofer, 1997; Skiadopou-
los and Koubarakis, 2004; Skiadopoulos and Koubarakis,
2005]. Beside these formalisms where direction or ordering
relations are defined using binary relations, there exist sev-
eral spatial formalisms which define direction relations us-
ing ternary relations. These spatial formalisms include the
LR calculus [Scivos and Nebel, 2004], the flip-flop calcu-
lus [Ligozat, 1993], the double-cross calculus [Freksa, 1992],
the 5-intersection calculus [Billen and Clementini, 2004],
etc., where relations like left, right, after, between, before,
etc. are defined.

In this paper, we propose a logic of directions for points
(LD) over 2D Euclidean space for defining and reasoning
about the direction relations shown in Figure 1. Differing
from the cardinal direction calculus, in the logic LD, we de-
fine direction relations with respect to the margin of error σ
for tolerating slight differences in geometric representations
in different geospatial datasets/maps, and the level of inde-
terminacy in directions τ . Over Euclidean spaces, there ex-
ist some sound and complete axiomatisations for spatial for-
malisms [Szczerba and Tarski, 1979; Balbiani et al., 2007;
Tarski, 1959; Tarski and Givant, 1999; Trybus, 2010]; how-
ever, none of them considers direction relations. Here we
provide a sound and complete axiomatisation for the spa-
tial logic LD which formalises direction relations between
points. Some spatial logics, which can encode directions, are
undecidable, e.g. the compass logic [Marx and Reynolds,
1999] and SpPNL [Morales et al., 2007]. The satisfiability
problem of some spatial logics (e.g. Cone [Montanari et al.,
2009] and SOSL [Walega and Zawidzki, 2019]) are PSPACE-
complete. Here we show that the satisfiability problem of LD
is NP-complete.

The logic LD could be used for checking consistency of
sameAs matches between two real world geospatial datasets
(e.g. Ordnance Survey of Great Britain and OpenStreetMap
data) regarding direction information. A sound and complete
axiomatisation of LD is an important and useful tool for de-
veloping an automated reasoner and performing automated
axiom pinpointing [Baader and Peñaloza, 2010] for debug-
ging matches between geospatial objects, as was done, for

dW sW nEW sE dE

dN dNdW dNsW dNnEW dNsE dNdE
sN sNdW sNsW sNnEW sNsE sNdE
nNS nNSdW nNSsW nNSnEW nNSsE nNSdE
sS sSdW sSsW sSnEW sSsE sSdE
dS dSdW dSsW dSnEW dSsE dSdE

Table 1: 25 jointly exhaustive and pairwise disjoint direction rela-
tions. Each entry in the table corresponds to the spatially corre-
sponding entry in Figure 1, e.g. nNSsW corresponds to entry 12.

example, in [Du et al., 2015] for the logic of Part and Whole
for buffered geometries.

2 A Logic of Directions For Points
We present a logic of directions for points (LD), which de-
fines six primary direction relations: east (E), west (W ), and
indeterminate east/west (Iew), north (N ), south (S) and inde-
terminate north/south (Ins). LD is a family of logics LDτ

parameterised by a level of indeterminacy parameter τ .
Let A be a finite set of individual names. The language

L(LD,A) (we omit A for brevity below) is defined as

φ, ψ := E (a, b) |W (a, b) | Iew (a, b) | N (a, b) | S (a, b) |
| Ins(a, b) | ¬φ | φ ∧ ψ

where a, b ∈ A, φ∨ψ =def ¬(¬φ∧¬ψ), φ→ ψ =def ¬(φ∧
¬ψ), φ↔ ψ =def (φ→ ψ) ∧ (ψ → φ), ⊥ =def φ ∧ ¬φ.

We interpret L(LD) over 2D Euclidean models based on
the 2D Euclidean space R2. Models of LDτ are called τ -
models.

Definition 1 (2D Euclidean τ -model of LDτ ). A 2D Eu-
clidean τ -model M is a tuple (I, σ, τ), where I is an inter-
pretation function which maps each individual name in A to
an element of R2, σ ∈ R>0 is a margin of error, and τ ∈ N>1

refers to the level of indeterminacy in directions. The notion
of M |=LD φ (a formula φ of LD is true in τ -model M ) is
defined as follows:

M |=LD E (a, b) iff xa − xb > σ;

M |=LD W (a, b) iff xa − xb < −σ;

M |=LD Iew (a, b) iff −τσ ≤ xa − xb ≤ τσ;

M |=LD N (a, b) iff ya − yb > σ;

M |=LD S (a, b) iff ya − yb < −σ;

M |=LD Ins(a, b) iff −τσ ≤ ya − yb ≤ τσ;

M |=LD ¬φ iff M 6|=LD φ;

M |=LD φ ∧ ψ iff M |=LD φ and M |=LD ψ,

where a, b ∈ A, I(a) = (xa, ya), I(b) = (xb, yb), φ, ψ are
formulas in L(LD).

τ is defined as a natural number rather than a real in order
to facilitate the proof of Lemma 5. In practice, an integer τ is
always likely to be sufficiently expressive.

The notions of τ -validity and τ -satisfiability of LD for-
mulas in 2D Euclidean τ -models are standard. An L(LD)
formula is τ -satisfiable if it is true in some 2D Euclidean τ -
model. An L(LD) formula φ is τ -valid (|=τ

LD φ) if it is true
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in all 2D Euclidean τ -models (hence if its negation is not τ -
satisfiable). The logic LDτ is the set of all τ -valid formulas
of L(LD).

As shown by Lemma 1 below, σ is a scaling factor.
Lemma 1. For every τ ∈ N>1, σ1, σ2 ∈ R>0, if an L(LD)
formula φ is true in a 2D Euclidean τ -modelM = (I, σ1, τ),
then it is true in a 2D Euclidean τ -model M ′ = (I ′, σ2, τ)
such that I(a) = (xa, ya) iff I ′(a) = (xaσ2

σ1
, yaσ2

σ1
).

The proof is by straightforward verification of truth condi-
tions in Definition 1.

We introduce the following definitions as ‘syntactic sugar’.
Definition 2.
definitely east dE (a, b) =def E(a, b) ∧ ¬Iew(a, b)

somewhat east sE (a, b) =def E (a, b) ∧ Iew (a, b)

neither east nor west nEW (a, b) =def ¬E (a, b)∧
¬W (a, b)

somewhat west sW (a,b)=def W (a,b) ∧Iew (a,b)

definitely west dW (a,b)=def W (a,b)∧¬Iew(a,b)

definitely north dN (a, b) =def N(a, b) ∧ ¬Ins(a, b)
somewhat north sN (a, b) =def N (a, b) ∧ Ins(a, b)

neither north nor south nNS (a, b) =def ¬N (a, b)∧
¬S (a, b)

somewhat south sS (a, b) =def S (a, b) ∧ Ins(a, b)

definitely south dS (a,b)=def S (a,b)∧¬Ins(a,b)

The definitions of definite or somewhat direction rela-
tions have τ ∈ N>1 as a parameter. By Definitions 1
and 2, M |=LD dE (a, b) iff (xa − xb) ∈ (τσ,∞); M |=LD

sE (a, b) iff (xa − xb) ∈ (σ, τσ]. Let us call (τσ,∞) the
range of dE (a, b), (σ, τσ] the range of sE (a, b). As τ de-
creases, the range of dE (a, b) becomes wider, the range of
sE (a, b) becomes narrower. If τ is allowed to be 1, then
dE(a, b) ≡ E(a, b) and sE(a, b) ≡ ⊥. τ plays a similar role
in defining other definite or somewhat direction relations.

There exist 5 × 5 = 25 jointly exhaustive and pairwise
disjoint relations, which can be defined using the primary re-
lations in the logic LD. The 25 direction relations are shown
in Table 1. Each of them is defined as a conjunction of one of
the relations dW, sW, nEW, sE, dE and one of the relations
dN, sN, nNS, sS, dS. These 25 direction relations corre-
spond to the 25 regions shown in Figure 1. For instance, with
respect to the central point p, for any point q in region 2, we
have dNsW (q, p) (q is definitely to the north and somewhat
to the west of p).

Similar to the logic LD, we could define a logic over 3D or
higher Euclidean space. If we only use east and west (or north
and south), we get a logicLD1 over 1D Euclidean space. The
soundness, completeness, decidability and complexity results
can be obtained similarly. The point calculus and the Cardi-
nal Direction Calculus can be seen as a special case of LD1
and LD respectively, if σ is allowed to be 0. Finally, we ob-
serve that there exist different (from LD) extensions of the
point calculus and Allen’s calculus, for example, introducing
the concept of granularity [Cohen-Solal et al., 2015]; a gran-
ularity is defined as a sequence of sets of time points where
the natural order of the time points are preserved.

3 A Complete Axiomatisation for LD
Here we will first describe some results for systems of linear
inequalities that are used later in the proofs. Then for each
level of indeterminacy τ , we present an axiomatisation (a set
of axioms) of LDτ , and prove soundness and completeness
of the axiomatisation.

3.1 Deciding Linear Inequalities by Computing
Loop Residues

We recap the definitions from [Shostak, 1981]. Let S be a set
of linear inequalities of the form ax+ by ≤ c, where x, y are
real variables and a, b, c are reals. Without loss of generality,
we assume one of the variables in S, denoted as v0, is special,
appearing only with coefficient zero. It is called the ‘zero
variable’. All other variables in S have nonzero coefficients.

The graph for S, denoted asG, is constructed as follows. G
contains a vertex for each variable in S and an edge for each
inequality, where each vertex is labelled with its associated
variable and each edge is labelled with its associated inequal-
ity. For example, the edge labelled with ax+by ≤ c connects
the vertex labelled with x and the vertex labelled with y.

Let P be a path through G, given by a sequence
v1, . . . , vn+1 of vertices and a sequence e1, . . . , en of edges,
n ≥ 1. The triple sequence for P is

(a1, b1, c1), (a2, b2, c2), . . . , (an, bn, cn)

where for each i ∈ [1, n], aivi + bivi+1 ≤ ci is the inequality
labelling ei. A path is a loop if its first and last vertices are
the same. A loop is simple if its intermediate vertices are
distinct. P is admissible if for i ∈ [1, n − 1], bi and ai+1

have opposite signs (one is strictly positive and the other is
strictly negative). Definitions and results that follow apply to
admissible paths.

The residue inequality of an admissible path P is defined
as the inequality obtained from P by applying transitivity to
the inequalities labelling its edges. The residue rp of P is
defined as the triple (ap, bp, cp),

(ap, bp, cp) = (a1, b1, c1) ∗ (a2, b2, c2) ∗ · · · ∗ (an, bn, cn)

where (a1, b1, c1), . . . , (an, bn, cn) is the triple sequence for
P and ∗ is the binary operation on triples defined by

(a, b, c) ∗ (a′, b′, c′) = (kaa′,−kbb′, k(ca′ − c′b))

where k = a′/|a′|. The residue inequality of P is aPx +
bP y ≤ cP , where x, y are the first and last vertices of P .

Lemma 2. [Shostak, 1981] Any point (i.e. assignment of
reals to variables) that satisfies the inequalities labelling on
admissible path P also satisfies the residue inequality of P .

Let P be an admissible loop with initial vertex x. By
Lemma 2, any point satisfying the inequalities along P also
satisfies aPx + bPx ≤ cP . If aP + bP = 0 and cp < 0,
then the residue inequality of P is false, and P is called an
infeasible loop.

Let G be the graph for S. A closure G′ of G is obtained by
adding, for each simple admissible loop P (modulo permuta-
tion and reversal) of G, a new edge labelled with the residue
inequality of P . A graph is closed if it is a closure of itself.
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Theorem 1. [Shostak, 1981] Let S be a set of linear inequal-
ities of the form ax+by ≤ c, where x, y are real variables and
a, b, c are real number constants; let G be a closed graph for
S. Then S is satisfiable iff G has no simple infeasible loop.

Theorem 1 is about inequalities of the form ax + by ≤ c
only. It was extended to include both strict and non-strict in-
equalities [Shostak, 1981]. We say an admissible path is strict
if one or more of its edges is labelled with a strict inequality,
i.e. an inequality of the form ax + by < c. Then a strict
admissible loop P with residue (aP , bP , cP ) is infeasible, if
aP + bP = 0 and cP ≤ 0. Corollary 1 is stated for the case
where inequalities are of the form x − y ≤ c or x − y < c.
Lemma 3 is provided to help readers understand Corollary 1.
It follows from the definition of closed graph.
Lemma 3. [Shostak, 1981] Let S be a set of linear inequali-
ties of the form x − y ≤ c or x − y < c, where x, y are real
variables and c is a real number constant. Then the graph for
S is closed.
Corollary 1. [Litvintchouk and Pratt, 1977; Pratt, 1977;
Shostak, 1981] Let S be a set of linear inequalities of the
form x − y ≤ c or x − y < c, where x, y are real variables
and c is a real number constant; G be a graph for S. The set
S is not satisfiable iff G has a simple infeasible loop.

3.2 Axiomatising LD
The calculus below (which we will also refer to as LDτ ) is
sound and complete for LDτ (for any τ ). Here, a and b are
meta variables which may be instantiated by any individual
name. There are 13 axiom schemas (AS 0 to AS 12) and one
inference rule.
AS 0 All tautologies of classical propositional logic
AS 1 ¬W (a, a);
AS 2 E (a, b)↔W (b, a);
AS 3 Iew (a, b)→ Iew (b, a);
AS 4 Iew(a, b)↔ (¬dE(a, b) ∧ ¬dW (a, b));
AS 5 For any n ∈ N>1:

R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 )→ ⊥, where for ev-
ery i such that 1 ≤ i ≤ n, Ri ∈ {W,dW,¬E,¬dE},
and number(W )+τ∗number(dW ) = number(¬E)+
τ ∗ number(¬dE);

AS 6 For any n ∈ N>0:
R1 (a0 , a1 )∧ · · · ∧Rn(an−1 , an)→W (a0 , an),
where for every i such that 1 ≤ i ≤ n,
Ri ∈ {W,dW,¬E,¬dE}, and number(W ) + τ ∗
number(dW ) > number(¬E) + τ ∗ number(¬dE);

AS 7 ¬S(a, a);
AS 8 N (a, b)↔ S (b, a);
AS 9 Ins(a, b)→ Ins(b, a);
AS 10 Ins(a, b)↔ (¬dN(a, b) ∧ ¬dS(a, b));
AS 11 For any n ∈ N>1:

R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , a0 )→ ⊥, where for ev-
ery i such that 1 ≤ i ≤ n, Ri ∈ {S, dS,¬N,¬dN}, and
number(S) + τ ∗ number(dS) = number(¬N) + τ ∗
number(¬dN);

AS 12 For any n ∈ N>0:
R1 (a0 , a1 ) ∧ · · · ∧ Rn(an−1 , an)→ S (a0 , an),
where for every i such that 1 ≤ i ≤ n,
Ri ∈ {S, dS,¬N,¬dN}, and number(S) + τ ∗
number(dS) > number(¬N) + τ ∗ number(¬dN);

MP Modus ponens: φ, φ→ ψ ` ψ.

In AS 5, 6, 11 and 12, n is the number of conjuncts
in the antecedent of an axiom, number(α) denotes the
number of occurrences of α in R1, . . . , Rn. In AS 5
and AS 11, n > 1 because at least two conjuncts are
required to make an equality like number(W ) + τ ∗
number(dW ) = number(¬E) + τ ∗ number(¬dE)
true. For AS 5, suppose that n = 4, number(W ),
number(dW ), number(¬E) and number(¬dE)
are all equal to 1, then an axiom satisfying this is
W (a0 , a1 ) ∧ ¬dE (a1 , a2 ) ∧ ¬E (a2 , a3 ) ∧ dW (a3 , a0 )→
⊥ (the order of the appearance of W,dW,¬E,¬dE does not
matter).

The notion of τ -derivability Γ `τLD φ in the LDτ cal-
culus is standard. An L(LD) formula φ is τ -derivable if
`τLD φ; a set of L(LD) formulas. Γ is τ -inconsistent if for
some formula φ it τ -derives both φ and ¬φ (otherwise it is
τ -consistent).

Theorem 2. For every τ ∈ N>1, the LDτ calculus is sound
and complete for 2D Euclidean τ -models, i.e. `τLD φ ⇔
|=τ
LD φ (every τ -derivable formula is τ -valid and every τ -

valid formula is τ -derivable).

For every τ ∈ N>1, the proof of soundness (every LD τ -
derivable formula is τ -valid) is by an easy induction on the
length of the derivation of φ. By truth definitions of the di-
rection relations (Definition 1), AS 1-12 are valid and modus
ponens preserves validity.

In the rest of this section, we prove completeness. We will
actually prove that for every τ ∈ N>1, if a finite set of L(LD)
formulas Σ is τ -consistent, then there is a 2D Euclidean τ -
model satisfying it. Any finite set of formulas Σ can be rewrit-
ten as a formula ψ that is the conjunction of all the formulas
in Σ. Σ is τ -consistent iff ψ is τ -consistent ( 6`τLD ¬ψ). If
there is a 2D Euclidean τ -model M satisfying Σ, then M sat-
isfies ψ, hence 6|=τ

LD ¬ψ. Therefore, by showing that ‘if Σ
is τ -consistent, then there exists a 2D Euclidean τ -model sat-
isfying it’, we show that ‘if 6`τLD ¬ψ, then 6|=τ

LD ¬ψ’. This
shows that 6`τLD φ ⇒ 6|=τ

LD φ and by contraposition we get
completeness.

First, we will show that the truth conditions of any set of
L(LD) formulas can be expressed as a set of inequalities of
the form x1 − x2 ≤ c or x1 − x2 < c.

Lemma 4. An L(LD) formula of the form (¬)E(a, b),
(¬)W (a, b), (¬)dE(a, b), (¬)dW (a, b), (¬)N(a, b),
(¬)S(a, b), (¬)dN(a, b), (¬)dS(a, b) is τ -satisfiable iff an
expression of the form x1 − x2 ≤ c or x1 − x2 < c is
satisfiable.

Proof. Definition 3 shows how to translate such formulas to
corresponding inequalities. The translation can be easily ver-
ified to correspond to the truth definitions in Definition 1.
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Definition 3 (τ -σ-translation). The ‘τ -σ-translation’ func-
tion tr(τ, σ) is defined as follows:
tr(τ, σ)(E(a, b)) = (xb − xa < −σ);
tr(τ, σ)(W (a, b)) = (xa − xb < −σ);
tr(τ, σ)(dE(a, b)) = (xb − xa < −τσ);
tr(τ, σ)(dW (a, b)) = (xa − xb < −τσ);
tr(τ, σ)(N(a, b)) = (yb − ya < −σ);
tr(τ, σ)(S(a, b)) = (ya − yb < −σ);
tr(τ, σ)(dN(a, b)) = (yb − ya < −τσ);
tr(τ, σ)(dS(a, b)) = (ya − yb < −τσ);
tr(τ, σ)(¬φ) = ¬(tr(φ)), where ¬(z1 − z2 < c) = (z2 −

z1 ≤ −c).
The completeness theorem below is proven by rewriting

a consistent L(LD) formula φ into disjunctive normal form,
where each disjunct φi is τ -satisfiable, iff a set of linear in-
equalities Si is satisfiable, iff the graphs of Si have no simple
infeasible loop (Corollary 1 of Theorem 1). We proceed by
contradiction, supposing every such graph has a simple in-
feasible loop P . From P we can obtain L(LD) formulas
as conjuncts in φi. Applying the axioms, we show ⊥ is τ -
derivable from every φi, thus ⊥ is τ -derivable from φ, which
contradicts that φ is τ -consistent.
Theorem 3. For every τ ∈ N>1, if a finite set of L(LD)
formulas Σ is τ -consistent, then there is a 2D Euclidean τ -
model satisfying it.

Proof. Take an arbitrary τ ∈ N>1. Suppose a finite set of
L(LD) formulas Σ is τ -consistent. We obtain Σ′ by rewrit-
ing every Iew(a, b) in Σ as ¬dE(a, b) ∧ ¬dW (a, b), every
Ins(a, b) in Σ as ¬dN(a, b) ∧ ¬dS(a, b). By AS 4 and AS
10, Σ and Σ′ are logically equivalent. Σ′ can be rewritten
as a formula φ that is the conjunction of all the formulas in
Σ′. We rewrite the L(LD) formula φ into disjunctive normal
form φ1 ∨ · · · ∨ φn (n > 0). Then every literal is of one
of the forms E(a, b), W (a, b), dE(a, b), dW (a, b), N(a, b),
S(a, b), dN(a, b), dS(a, b), or their negations. Then φ is sat-
isfiable in a 2D Euclidean τ -model, iff at least one of its dis-
juncts φi is τ -satisfiable. We obtain a set of inequalities Si
by translating every literal in a disjunct φi as in Definition 3.
Then the inequalities in Si are of the form xa − xb < c,
xa−xb ≤ c, ya−yb < c or ya−yb ≤ c, where xa, xb, ya, yb
are real variables and c is a real constant. We call variables
like xa, xb x variables and variables like ya, yb y variables.
Divide Si into two sets Sxi and Syi , such that Sxi and Syi con-
tain all the inequalities involving x variables and y variables
respectively. By Corollary 1 of Theorem 1, φi is τ -satisfiable
iff the graph Gxi of Sxi has no simple infeasible loop and the
graph Gyi of Syi has no simple infeasible loop. To show there
is a 2D Euclidean τ -model satisfying Σ, it is sufficient to
show there exists a disjunct φi such that the graph Gxi of Sxi
has no simple infeasible loop and the graph Gyi of Syi has no
simple infeasible loop.

We prove this by contradiction. Suppose for every disjunct
φi, the graph Gxi of Sxi has a simple infeasible loop (Case 1)
or the graph Gyi of Syi has a simple infeasible loop (Case 2).
We present the proof for Case 1. Case 2 is similar.

If Gxi has a simple infeasible loop P , then P is either strict
or non-strict. Let m denote the sum of the constants c around
the loop P . Based on the definition of infeasible loop, if P is
strict, then m ≤ 0; otherwise, m < 0. By Definition 3, if a
strict inequality xa − xb < c is in Sxi , then c is equal to −σ
or −τσ; if a non-strict inequality xa − xb ≤ c is in Sxi , then
c is equal to σ or τσ, where τ , σ are positive numbers (hence
c > 0). If P is non-strict, then all the inequalities in it are of
the form xa − xb ≤ c where c > 0 and the sum of such c is
positive. This contradicts the fact that m < 0 for non-strict
infeasible loops. Therefore P is strict, hence m ≤ 0. We
consider the two cases where m = 0 and m < 0 separately.

1. If m = 0, then the sum of the constants around the
loop P is equal to 0. Without loss of generality, let us as-
sume P consists of vertices xa0, xa1, ..., xan−1, xa0. Since
P is admissible, the linear inequalities in P are of the form
(xa0 − xa1)?c1, ..., (xan−1 − xa0)?cn, where ? is ≤ or <,
and for every i such that 1 ≤ i ≤ n, ci is σ, −σ, τσ or
−τσ. Then we translate the linear inequalities in P to for-
mulas as follows. We translate every linear inequality of the
form xa − xb < −σ to W (a, b); every xa − xb < −τσ to
dW (a, b); every xa−xb ≤ σ to¬E(a, b); every xa−xb ≤ τσ
to ¬dE(a, b). In this way, from P we obtain a sequence of
formulas of the formR1(a0, a1), ..., Rn(an−1, a0), where for
every i such that 1 ≤ i ≤ n, Ri ∈ {W,dW,¬E,¬dE}.
Since the sum of the constants around P is equal to 0,
number(W ) + τ ∗ number(dW ) = number(¬E) + τ ∗
number(¬dE) and n ≥ 2. By AS 5, R1(a0, a1) ∧ ... ∧
Rn(an−1, a0)→ ⊥. By Definition 3, for every occurrence of
W (a, b) in R1(a0, a1) ∧ ... ∧ Rn(an−1, a0), it or E(b, a) is
a conjunct in φi; similarly, for every occurrence of dW (a, b),
it or dE(b, a) is a conjunct in φi; for every occurrence of
¬E(a, b), it or ¬W (b, a) is a conjunct in φi; for every occur-
rence of ¬dE(a, b), it or ¬dW (b, a) is a conjunct in φi. By
AS 2, W (a, b) ↔ E(b, a). By Definition 2, AS 2 and AS 3,
dW (a, b)↔ dE(b, a). Therefore, ⊥ is τ -derivable from φi.

2. If m < 0, then the sum of the constants around
the loop P is negative. In the same way described above,
from P we obtain a sequence of formulas of the form
R1(a0, a1), ..., Rn(an−1, a0), where for every i such that
1 ≤ i ≤ n, Ri ∈ {W,dW,¬E,¬dE}. Since the sum of
the constants around the loop P is negative, number(W ) +
τ ∗ number(dW ) > number(¬E) + τ ∗ number(¬dE)
and n ≥ 1. By AS 6, R1(a0, a1) ∧ ... ∧ Rn(an−1, a0) →
W (a0, a0). By AS 1, W (a0, a0) → ⊥. Following the same
argument above, ⊥ is τ -derivable from φi.

In each case, ⊥ is τ -derivable from φi. Thus every dis-
junct φi is not τ -consistent, hence φ is not τ -consistent. This
contradicts the fact that Σ is τ -consistent.

4 Decidability and Complexity of LD
We show that for every τ ∈ N>1, the satisfiability problem
for LDτ is NP-complete.

Lemma 5. For every τ ∈ N>1, let S be a set of linear in-
equalities obtained by applying the ‘τ -σ-translation’ function
over L(LD) formulas as shown in Definition 3, where σ = 1;
n be the number of variables in S, n > 0. If S is satisfiable,
then it has a solution where for every variable, a rational
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number t ∈ [−nτ, nτ ] is assigned to it and the binary repre-
sentation size of t is polynomial in n and τ .

Proof. Take an arbitrary τ ∈ N>1. By Definition 3, every lin-
ear inequality in S is of the form x1−x2 ≤ c or x1−x2 < c,
where x1, x2 are real variables and c is a real number con-
stant. Let G be a graph for S. By Corollary 1, S is satisfiable
iff G has no simple infeasible loop. The construction of a so-
lution of S is by extending the proof of Theorem 1 [Shostak,
1981] (pp. 777 and 778), which is for non-strict inequalities
only, to include both strict and non-strict inequalities. If G
has no simple infeasible loop, a solution of S can be con-
structed as follows. Let v1, . . . , vn−1 be the variables of S
other than v0 (the zero variable). We construct a sequence
v̂0, v̂1, . . . , v̂n−1 of reals (a solution of S) and a sequence
G0, G1, . . . , Gn−1 of graphs inductively:
1. Let v̂0 = 0 and G0 = G.
2. If v̂i and Gi have been determined for 0 ≤ i < j < n, let

supj = min{ cPaP | P is an admissible path from vj to v0 in
Gj−1 and aP > 0 }

infj = max{ cPbP | P is an admissible path from v0 to vj in
Gj−1 and bP < 0 }

where min ∅ = ∞ and max ∅ = −∞. The range of v̂j is
obtained as follows.

• If there is an admissible path P from vj to v0 in Gj−1
such that the residue inequality of P is aP vj < cP ,
where aP > 0, and cP

aP
= supj , then v̂j < supj , other-

wise, v̂j ≤ supj .

• If there is an admissible path P from v0 to vj in Gj−1
such that the residue inequality of P is bP vj < cP ,
where bP < 0, and cP

bP
= infj , then v̂j > infj , oth-

erwise, v̂j ≥ infj .

Instead of letting v̂j be any real number in the range [Shostak,
1981], we assign a value to v̂j thus:

• if there exists an integer within the range of v̂j , we assign
an integer to v̂j ;

• otherwise, the range of v̂j is of the form infj < v̂j <

supj . Let v̂j =
infj +supj

2 .

LetGj be obtained fromGj−1 by adding two new edges from
vj to v0, labelled vj ≤ v̂j and vj ≥ v̂j respectively.

To ensure that v̂j and Gj are well defined, we need the
following two claims:
1. For 1 ≤ j < n, the range of v̂j is not empty.
2. For 0 ≤ j < n, Gj has no simple infeasible loop.

We prove them by induction on j, similar to the proof pre-
sented in [Shostak, 1981].
Base case j = 0. 1 holds vacuously; 2 holds since G0 = G.
Inductive step Suppose the claim holds for j−1, 0 ≤ j−1 <
n− 1. We will show the claim holds for j.
For 1, suppose, to the contrary, that the range of v̂i is empty.
Then in Gj−1, there exist an admissible path P1 from vj to
v0, where aP > 0, and an admissible path P2 from v0 to vj ,
where bP < 0. P1 and P2 forms an admissible loop. By
the construction of the range of v̂i described above, if this
range is empty, then the admissible loop formed by P1 and

P2 is infeasible, which contradicts the inductive hypothesis
that Gj−1 has no simple infeasible loop.
For 2, supposeGj has a simple infeasible loop P . SinceGj−1
has no such loop, and the loop formed by the two new edges
added to Gj−1 to obtain Gj is not infeasible, then P (or its
reverse) is of the form P ′E, where E is one of the two new
edges (say the one labelled vj ≤ v̂j ; the other case is handled
similarly), and P ′ is a path from v0 to vj in Gj−1. Since P
is infeasible, if P ′ is strict, v̂j ≤ cP ′

bP ′
, this contradicts that

v̂j > infj , since infj ≥ cP ′
bP ′

; if P ′ is not strict, v̂j <
cP ′
bP ′

, this
contradicts that v̂j ≥ infj , since infj ≥ cP ′

bP ′
. Q.E.D.

Now it remains to show that v̂j satisfies S. Let ax+by ≤ c
be an inequality in S. We will show that ax̂ + bŷ ≤ c. We
present the case where a > 0 and b < 0. The other cases are
similar. Let E be the edge labelled ax + by ≤ c in Gn−1.
Then, where E1 is the edge labelled x̂ ≤ x in Gn−1 and
E2 is the one labelled y ≤ ŷ, E1EE2 forms an admissible
loop. Since Gn−1 has no infeasible loop, E1EE2 is feasible.
Hence we have ax̂+ bŷ ≤ c. The proof for inequalities of the
form ax+ by < c is similar.

By Definition 3, −nτ ≤ cP ≤ nτ , aP = 1 for supj , bP =
−1 for infj . Therefore, supj ≤ nτ , infj ≥ −nτ . Hence
every v̂j (0 ≤ j < n) is a rational number in [−nτ, nτ ].

Now we will show that the representation size of v̂j (0 ≤
j < n) is polynomial in the size of n and τ . By the construc-
tion described above, v̂j is either an integer in [−nτ, nτ ] or
obtained by applying the ‘average operation’ v̂j =

infj +supj

2 .
Since τ is a natural number and σ = 1, inf1 and sup1 are
integers in [−nτ, nτ ]. Also, since 0 < j < n, the num-
ber of ‘average operations’ applied to obtain a v̂j is at most
n. Hence the largest denominator of the values of v̂j is 2n.
Therefore, v̂j can be represented in a binary notation (bits)
of size log(2nτ ∗ 2n), which is in O(n + log τ). Hence the
representation size of v̂j is polynomial in n and τ .

Definition 4. Let φ be an L(LD) formula. Its size s(φ) is
defined as follows:

• s(R(a, b)) = 3, where R ∈ {E,W, Iew, N, S, Ins};
• s(¬φ) = 1 + s(φ);

• s(φ ∧ ψ) = 1 + s(φ) + s(ψ),

where a, b ∈ A, φ, ψ are formulas in L(LD).

The combined size of L(LD) formulas in a set S is defined
as the size of the conjunction of all formulas in S.

Theorem 4. For every τ ∈ N>1, the satisfiability problem for
a finite set of L(LD) formulas in a 2D Euclidean τ -model is
NP-complete.

Proof. Take an arbitrary τ ∈ N>1. NP-hardness is from
propositional logic being included in LDτ . To prove that the
satisfiability problem for each LDτ is in NP, we show that
if a finite set of L(LD) formulas Σ is τ -satisfiable, then we
can guess a 2D Euclidean τ -model for Σ and verify that this
model satisfies Σ, both in time polynomial in the combined
size of formulas in Σ and τ . Let s and n denote the combined
size of formulas in Σ and the number of individual names in
Σ respectively. By Definition 4, n < s. As σ is a scaling
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factor, if Σ is τ -satisfiable, it is τ -satisfiable in a model where
σ = 1.

Following the proof of Theorem 3 (first paragraph), Σ is
satisfiable in a 2D Euclidean τ -model, iff there exists an Si
such that its subsets Sxi and Syi are both satisfiable, where
Sxi and Syi are sets of linear inequalities obtained by applying
the τ -σ-translation function over L(LD) formulas as shown
in Definition 3. By Lemma 5, if Sxi is satisfiable, then it has
a solution where for every variable, a rational number t ∈
[−nτ, nτ ] is assigned to it and the representation size of t is
in O(n+ log τ) (polynomial in n and τ ). The same holds for
Syi . Hence for every individual name in Σ, we can guess such
a pair of rational numbers for it in O(n+log τ). Thus we can
guess a 2D Euclidean τ -model M for Σ in O(n2 + n log τ),
in time polynomial in n and τ . To verify that M satisfies
Σ, we need to check every formula in Σ. For any R(a, b),
where R ∈ {E,W, Iew, N, S, Ins}, a, b ∈ A, checking that
R(a, b) is true in M takes O(n+ log τ) time by Definition 1
and applying bit operations. Hense, checking all formulas in
Σ takes time polynomial in s and τ .

An alternative decidability/membership of NP proof could
use reduction to a finite set of disjunctive linear relations
(DLRs) [Jonsson and Bäckström, 1998] or a Qbasic for-
mula [Kreutzmann and Wolter, 2014].

5 Conclusion and Future Work
We have introduced a new qualitative logic of directions LD
for reasoning about directions in 2D Euclidean space. We
have shown it to be sound and complete, and that its de-
cidability is NP-complete. The logic incorporates a margin
of error and a level of indeterminacy in directions, that al-
low it to be used to compare and reason about not perfectly
aligned representations of the same spatial objects in differ-
ent datasets (for example, hand sketches or crowd sourced
digital maps). While there have been many spatial calculi
previously proposed (as discussed in the introduction), LD
is unique in allowing indeterminate directions which we be-
lieve are crucial in practice. Moreover, many previous spatial
calculi have not been treated to the same theoretical analy-
sis that we do here (i.e. the soundness, completeness and
complexity results in this paper). In future work, we plan to
combine the logics for qualitative distances [Du et al., 2013;
Du and Alechina, 2016] and qualitative directions, and de-
velop reasoners for checking the consistency of matching re-
lations automatically.

We also plan to experiment with the logic on actual data
in a variety of possible application scenarios. One such sce-
nario could be in spatial data fusion. E.g. consider Figure 2;
this shows detections of possible ‘events’ (such as a karst or
an anthropomorphic structure) ahead of a Tunnel Boring Ma-
chine (TBM) from sensors mounted on the front of the TBM
at different times and spatial locations as the TBM advances
through the ground. The detected events will typically appear
at different absolute spatial locations because as the TBM ad-
vances the sensors are better able to detect and localise fea-
tures – sensors only ever give approximate locations. The
challenge is to determine which events at the different time
points correspond. The relative positions/directions of the

2 64 8 10 1412
In front of the Tulips system (m)

T
T+1
T+2
T+3

4

‐2

0

2

‐4

Ve
rt
ic
al
 d
ire

ct
io
n 
(m

)

Figure 2: Detected events (rectangles) and their centroids (circles
within the rectangles) at different times ahead of a TBM (from [Wei
et al., 2019]; best viewed in colour).

events can be represented using LD. (Of course LD is a logic
of points, not regions, but for the purposes of this example we
can use the centroid or, probably better, the end points, or just
the nearest endpoint since that will have best signal.) In [Wei
et al., 2019] simple overlap is used to decide whether two
events are the same or not. We hypothesize that it is possible
to build a more nuanced system using LD. Events which are
dE or dW of each other, may be regarded as discrete events;
but if they are nEW then they are candidates to be the same
event. By varying σ and τ different levels of tolerance and in-
determinacy could be considered and presented to the TBM
experts for further analysis and verification.
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