

An in-depth analysis of system-level techniques for

Simultaneous Multi-threaded Processors in Clouds

Yaohua Wang, Rongze Li, Zhentao Huang, Xu Zhou

University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo,

315100, Zhejiang, China.

First published 2020

This work is made available under the terms of the Creative Commons

Attribution 4.0 International License:

http://creativecommons.org/licenses/by/4.0

The work is licenced to the University of Nottingham Ningbo China
under the Global University Publication Licence:
https://www.nottingham.edu.cn/en/library/documents/research-
support/global-university-publications-licence.pdf

http://creativecommons.org/licenses/by/4.0
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf

An In-depth Analysis of System-level Techniques for
Simultaneous Multi-threaded Processors in Clouds

Yaohua Wang
National University of Defense Technology

Changsha, China

yhwang@nudt.edu.cn

Rongze Li

University of Nottingham
Ningbo, China

scyrl1@nottingham.edu.cn

Zhentao Huang
University of Nottingham

Ningbo, China

scyzh3@nottingham.edu.cn

Xu Zhou *

National University of Defense Technology
Changsha, China

zhouxu@nudt.edu.cn

ABSTRACT
To improve the overall system utilization, Simultaneous Multi-

Threading (SMT) has become a norm in clouds. Usually, Hardware

threads are viewed and deployed directly as physical cores for

attempts to improve resource utilization and system throughput.

However, context switches in virtualized systems might incur

severe resource waste, which further led to significant performance

degradation. Worse, virtualized systems suffer from performance

variations since the rescheduled vCPU may affect other hardware

threads on the same physical core. In this paper, we perform an in-

depth experimental study about how existing system software

techniques improves the utilization of SMT Processors in Clouds.

Considering the default Linux hypervisor vanilla KVM as the

baseline, we evaluated two update-to-date kernel patches IdlePoll

and HaltPoll through the combination of 14 real-world workloads.

Our results show that mitigating they could significantly mitigate

the number of context switches, which further improves the overall

system throughput and decreases its latency. Based on our findings,

we summarize key lessons from the previous wisdom and then

discuss promising directions to be explored in the future.

CCS Concepts

• Software and its engineering~Software organization and

properties~Software system structures~Distributed systems

organizing principles~Cloud computing

Keywords

Simultaneous Multi-threading; Operating Systems; Hypervisor.

1. INTRODUCTION
In the era of cloud computing, Simultaneous Multi-Threading

(SMT) has been widely enabled to improve resource utilization and

system throughput [2, 8, 16, 23]. Out of its nature, enabling SMT

could allow multiple hardware threads to share one physical core

simultaneously, and the number of sharing threads are dependent to

the levels of resource partitions.

For better levels of resource utilization and energy consumption in

Clouds, multiple Virtual Machines (VMs) are often consolidated

on a single physical host, and multiple Virtual CPUs (vCPUs) often

time-share hardware threads. Hence, when one vCPU is

idling/busy-waiting or its time slice uses up, Virtual Machine

Management (VMM) deschedules the vCPU and re-schedule

another vCPU on this hardware thread to utilize system resources.

However, the frequent context switches and its accompanying high

overheads in Clouds have caused a huge performance gap, which

could be elaborated in two the following two aspects. Firstly, the

frequent context switches are caused by the intention of better

system resource utilization, due to the nature of VMM. Secondly,

in virtualized systems, the cost of context switches could be at least

5.6X than those in physical machines. And this has wasted system

resources and thus incurs significant performance degradation.

Towards the above performance challenges, several preliminary

system-level schemes have been proposed to mitigate such issues.

Taking Linux hypervisor vanilla KVM as an example, there are two

outstanding approaches to address and tackle these issues. One is

called IdlePoll, which prolongs the staying periods of idling threads

in its place, without being descheduled once idling [12]. The other

is called HaltPoll, which only keeps idling/busy-waiting vCPUs for

a shorter period than IdlePoll [11].

To better understand and obtain in-depth insights about the pros and

cons of those techniques, an in-depth and comprehensive

experimental study is needed in general. Hence, we performed such

a study through a rigorous and comprehensive study step-by-step.

We first implement the above two techniques through kernel-based

patches, by using vanilla KVM as the baseline. Then we select 14

real-world workloads to examine their benefits and issues, through

a comprehensive evaluations and analysis.

Our results present quantitative envidence that both IdlePoll and

HaltPoll could improve the throughput up and reduce the energy

consumption significantly. We also present several breakdown

analysis to explore other characteristics while deploying the above

approaches, in order to explore and vision the future of SMT in the

era of Cloud Computing

This paper are organized as follow. We present relevant

background information in Section 2. Then we illustrate details

regarding two key patches IdlePoll and HaltPoll and detailed setup

The corresponding author is Xu Zhou

SAMPLE: Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

1

mailto:yhwang@nudt.edu.cn
mailto:scyzh3@nottingham.edu.cn
mailto:scyrl1@nottingham.edu.cn
mailto:zhouxu@nudt.edu.cn

of our experimental study in Section 3. Next, we present the results

and analysis in Section 5. Finally, we discuss potential future work

and obtain key conclusions in Section 6 and 7 respectively.

2. BACKGOUND & MOTIVATION
In this section, we explore background and motivation of our study.

First, we briefly explore Simultaneous Multi-threading (SMT) in

Section 2.1. Then, we describes key characteristics of

Synchronization in Virtualized Systems in Section 2.2. Finally, we

end up with a lightweight experiment to support our hypothesis on

context switches in Section 2.3, which has substantially motivated

our study.

2.1 Simultaneous Multi-threading
Nowadays modern processors utilize Simultaneous Multi-

threading (SMT) to improve the level of resource utilization and

increase the overall system throughput [13, 14, 18, 22]. SMT

achieves such benefits by allowing physical cores to share multiple

hardware threads within the same set of pipeline, function units,

cache and so on. For better levels of resource occupancy and

efficiency, each hardware thread maintains their own hardware

contexts to fully utilize the shared resources properly. Though IBM

provides 8-way SMT support, hereby we focus on Intel processors

with 2-way SMT, which are usually referred as Hyper-threading.

Figure 1 gives out a conceputal comparison between cores with

SMT-enabled and those without, which was the initial design

motivation of such a promising technique. Figure 1 (a) shows that

when there is only one hardware thread running on the physical

core, resources such as pipeline, function units and cache are

underutilized (white boxes). Figure 1 (b) shows two hardware

threads sharing one SMT enabled physical core. The resource

utilization and system throughput of SMT enabled physical core is

higher since SMT can improve the resource utilization.

2.2 Synchronization within Virtual Machines
In virtualized systems, inter-vCPU synchronization incurs high

overheads and significant variations in the context of applications’

performance. More specifically, there are two basic primitives for

inter-vCPU synchronization: 1) Idling. It refers to that one vCPU

has been blocked blocking since its required resources are

unavailable and yields its resources for executions into another

ready vCPU; 2) Busy-waiting. It refers to that one vCPU has been

spinning, in order to check whether its required resources are

available so that it could continue to make progress. Particularly for

busy-waiting, modern hardware mechanisms, like Intel Pause-Loop

Exiting and AMD Pause Filter, could interrupt the busy-waiting

vCPU to avoid system resources’ wastes.

Whenever one vCPU has been either idling or busy-waiting, such

vCPU would yield its resources for execution to another vCPU by

performing a context switch. More accurately, such a context

switch starts from Virtual Machine Exit and ends up at vCPU

Resume. When one vCPU begins idling or busy-waiting, it traps

into Virtual Machine Mangement layer and the scheduler within

this layer would schedule another non-blocking vCPU to enters

Virtual Machine by resuming its context to continue progressing.

2.3 High Costs of Context Switches
In order to get a scratch about the high costs of context switches,

which were caused by its high volume and significant overheads,

we illustrate its through microbench as our motivation for indepth-

study among real-world workloads further. Hereby, we patched the

system with IdlePoll and select Parsec dedup (detnoted as p.dedup),

Splash2X volrend (denoted as s.volrend) and MatMuls (Matrix

Multiplication) as the workloads. We configure that 4 VMs are

consolidated in our host OS (i.e. Ubuntu 14.04) with 48 logical

cores, and each VM has 24 vCPUs and two vCPUs share one

logical core in average. Particularly, there are two separate case

studies to demonstrate the evidence of our concerns, which would

be elaborated in more details later.

We first illustrate performance degradation by low resource

utilization from the high volume of avoidable context switches. In

this case, we deploy each VM to run the same program, which has

been considered as sychronization-intensive. As Figure 2 shown,

the IdlePoll patch has improved the throughput of Parsec dedup by

around 53.6% and the throughput of Splash2X volrend by 80.8%,

compared with the default setting in the Vanilla KVM hypervisor.

Also, there are considerable performance degradation when

Vanilla KVM is deployed, compared with no virtualization support.

This is caused by extremely large resource wastes from

unnecessary context switches, as illustrated in Section 2.2. And

IdlePoll could mitigate such issues by prolonging the stay periods

of vCPUs, no matter the workloads has been executed.

Then we describe performance variation issues, which has been

caused also from the high volume of avoidable context switches.

Figure 2. 1st part of results from Lightweight Experimental

Study, where we address the low resource utilization from

the high volume of avoidable context witches.

2

As for this case, we distribute both sychronization-intensive and

computation-intensive workloads into four different virtual

machines. More specifically, VM1 and VM2 are responsible for

Pasrsec dedup and Splash volrend respectively, and VM3 and VM4

both run matmuls. As Figure 3 shown, the significant performance

variation has been caused and IdlePoll could mitigate such issue.

Particularly, IdlePoll has maximazied the throughput since all

avoidable context switches have been eliminated, which

substantially remove the performance interference between two

vCPUs on different logical cores from the same physical core.

However, the performance variation among four workloads are still

considered large, where the throughput of MatMuls workloads have

been lowered down. We believe this is because that both

computation-intensive vCPU and synchronization-intensive vCPU

are not always paired together on two different logical cores of the

same physical core, since IdlePoll configuration will occupy the

system resources with MatMuls-related vCPUs, even though it

might be idling.

3. IN-DEPTH STUDY DESIGN
In this section, we present detailed strategies and designs for our in-

depth experimental study. First, we took a revisit to all system-level

designs principles and relevant mitigation techniques. Then, we

introduce details about how we setup the experimental studies, in

the context of both host and guest machines. Finally, we describe

out experimental study methodology and details.

3.1 System-level Techniques Revisited
We have investigated all relevant strategies and we found there are

three major techniques, which are Default Vanilla KVM setting,

IdlePoll setting and HaltPoll setting. And we would elaborate their

characteristics separately in the following.

Vanilla KVM is the internal virtualization module of Linux

Operating System support, which has been abbreviated from

Kernel-based Virtual Machine. KVM allows the kernel to function

as the hypervisor. Both IdlePoll and HaltPoll are relevant kernel

patches, as previous tryouts, to utilize SMT resources in a more

efficient fashion. The main difference is that, IdlePoll keeps threads

polling until required resources become available, but HaltPoll

would keep them for a short period before necessary context

switches.

3.2 Experimental Setup
In this section, we report the configurations about the machines,

which have been used for our experimental study. All our

evaluations are done on a DELL TM PowerEdge TM R430 server

with 64GB of DRAM, and two 2.60GHz Intel Xeon E5-2690

processors. Each processor has 12 physical cores, and each physical

core has two hardware threads.

For our experiments, 4 Virtual Machines are launched on the

physical server. For each Virtual Machine, 24 vCPUs and 16 GB

memory are allocated. The Virtual Machine Management has been

decided as KVM, and both the host Operating System and guest

Operating Systems are Ubuntu 14.04. The kernel versions of host

OS and guest OS are both 3.16.39.

3.3 Real-world Workloads
In order to examine the real-world effects, we have selected 14 real-

world workloads and paired them properly. These 14 real-world

workloads are: Hadoop, a popular big data processing framework;

XGBoost, a widely used artificial intelligence library; MySQL,

MySQL OLTP benchmark with SysBench; Spark, an open-source

cluster-computing framework; SSDB, a widely used key value

storage system; PgSQL, a widely used databased management

system; DBT1, TPCW; HDFS, a distributed file system for big data;

ClamAV, an anti-virus system; Apache, a widely used web server;

MediaTomb, a popular media server for encoding and decoding

videos; FileServer, a FileServer with FileBench storage benchmark;

PageRank, a web searching algorithm; WaterMark, a watermark

application based on lighttpd ; MongoDB, a document-oriented

key-value store system.

Table 1 gives an outline of these applications. In general, one

synchronzaion-intensive and one computation-intensive workloads

are placed in two Virtual Machines respectively, and the other two

follow the same configuration.

3

4. RESULTS
In this section, we report results and implications from our

experimental study. We first examine the throughput, then we

break down the whole procedure with context switch statistics.

Finally we discuss the energy consumption of these approaches.

4.1 Context Switches Breakdown
Table 2 shows that all synchronization-intensive applications, and

details are as follow. IdlePoll incurs no context switches during the

whole procedure, and HaltPoll could reduce the context switches

significantly, compared with Vanilla KVM.

4.2 Throughput Overview
As Figure 4 shown, both IdlePoll and HaltPoll’s performance and

performance variation on 14 applications are clearly presented. To

showcase the effects properly, we have normalized all results bare-

metal (i.e. without virtualization).

IdlePoll avoids unnecessary context switch by keeping vCPUs

when they become idling. However, IdlePoll affects the

performance of co-running computation-intensive vCPUs on the

same physical cores. For instance, MediaTomb, DBT1 and

MongoDB could be highlighted since these applications usually

combine I/O and compute operations in each task. Besides, IdlePoll

does not pair synchronization-intensive vCPUs and computation

intensive vCPUs on the same physical cores to improve

performance.

As a comparison, Figure 4 also shows HaltPoll’s throughput on

computation intensive applications is much higher than IdlePoll on

average. HaltPoll only keeps vCPUs active for a short period to see

whether the contended resources are available. 1), HaltPoll still

incurs much unnecessary context switch. 2), HaltPoll does not

schedule synchronization-intensive and computation-intensive

vCPUs on the same physical cores to improve performance.

4.3 Energy Savings
Figure 5 presents the energy savings through IdlePoll and HaltPoll

through kembench, Exim and Metis benchmarks to evaluate. As the

results shown, IdlePoll and HaltPoll could significantly reduce the

energy consumption. However, HaltPoll couldn’t save more, which

indicates that it’s not necessary to use IdlePoll (i.e. keeping all

vCPUs without context switches).

Figure 4. Throughput Plots of 14 Real-world Applications through 4 Virtual Machines; each VM has 24 vCPUs. VM1 runs

synchronization-intensive application; VM2 runs computation-intensive application; VM3 and VM4 run the same application

as VM1 and VM2 respectively.

4

5. DISCUSSIONS
Through our in-depth experimental study, we have examined the

effectiveness of existing system-level approaches to mitigate

performance issues. Hence, we observe that the need of resource-

aware scheduling policies and detailed workload characterizations.

For resource-aware scheduling, we could enable schemes like

Symbiotic Jobscheduling to co-locate sychronization-intensive

threads and computation-intensive threads on the same core [4].

As for detailed workload characterizations, we could enable in-time

schedule changes, since workloads usually have different features

in different stages with their progress [7].

6. CONCLUSIONS
In this paper, we performed an in-depth experimental study of

system-level techniques for Simultaneous Multi-threaded

Processors in Clouds. After investigations, we have chosen two

most recent techniques IdlePoll and HaltPoll, and then perform an

experimental study among 14 real-world workloads. The results

show that these two techniques could significantly improve the

throughput and reduce energy consumption, by benefiting from

large reduction of context switches.

7. ACKNOWLEDGMENTS
We thank for valuable suggestions and feedbacks from HP3C'20.

This research is supported by ported by The Science and

Technology Planning Project of Hunan Province (2019RS2027).

8. REFERENCES
[1] Adding watermarks to images.

http://php.net/manual/en/image.examples-watermark.php.

[2] Amazon EC2 T-series instances.

https://aws.amazon.com/ec2/instance-types/t2/.

[3] Apache Server. http://www.apache.org.

[4] J. R. Bulpin and I. Pratt. Hyper-threading aware process

scheduling heuristics. In Proceedings of the annual

conference on USENIX Annual Technical Conference,

General Track, pages 399–402, 2005.

[5] ClamAV. http://www.clamav.net/.

[6] DBT1. http://osdldbt.sourceforge.net/.

[7] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.

Performance of multithreaded chip multiprocessors and

implications for operating system design. In Proceedings of

the annual conference on USENIX Annual Technical

Conference, pages 26–26. USENIX Association, 2005.

[8] Google Cloud F1 and G1 Instances.

https://cloud.google.com/compute/docs/machine-types.

[9] Hadoop Core System. http://hadoop.apache.org/core/

[10] Hadoop Distributed File System.

http://hadoop.apache.org/hdfs/.

[11] HaltPoll Kernel Patch. https://lkml.org/lkml/2017/6/22/296.

[12] IdlePoll Kernel Patch.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.

git/commit/?id=aca6ff29c4063a8d467cdee241e6b3bf7dc4a1

71

[13] IBM POWER9 Processor.

https://en.wikipedia.org/wiki/POWER9.

[14] Intel R64 and ia-32 architectures developer’s manual.

https://www.intel.com/content/www/us/en/architecture-and-

technology/64-ia-32-architectures-software-developer-

manual-325462.html.

[15] MediaTomb - Free MediaServer. http://mediatomb.cc/.

[16] Microsoft Azure B-series instances.

https://azure.microsoft.com/en-us/blog/introducing-b-series-

our-new-burstable-vm-size/.

[17] MySQL Database. http://www.mysql.com/.

[18] Oracle SPARC M8 Processor.

http://www.oracle.com/us/products/servers-storage/sparc-

m8-processor-ds-3864282.pdf..

[19] PostgreSQL Database. https://www.postgresql.org.

[20] Spark PageRank benchmark.

https://github.com/apache/spark/blob/master/examples/src/m

ain/java/org/apache/spark/examples/JavaPageRank.java.

[21] V. Tarasov, E. Zadok, and S. Shepler. Filebench: A flexible

framework for file system benchmarking. USENIX; login,

41, 2016.

[22] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous

multithreading: Maximizing on-chip parallelism. In

Proceedings. Of IEEE 22nd Annual International Symposium

on Computer Architecture, pages 392–403. 1995.

[23] VMware. Vmware horizon view architecture planning 6.0. In

VMware Technical White Paper, 2014.

[24] XGBoost. http://dmlc.cs.washington.edu/xgboost.html.

[25] Yahoo! Cloud Serving Benchmark.

https://github.com/brianfrankcooper/YCSB.

5

http://php.net/manual/en/image.examples-watermark.php.
https://aws.amazon.com/ec2/instance-types/t2/
http://www.apache.org/
http://www.clamav.net/
http://osdldbt.sourceforge.net/
https://cloud.google.com/compute/docs/machine-types
http://hadoop.apache.org/core/
http://hadoop.apache.org/hdfs/
https://lkml.org/lkml/2017/6/22/296.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=aca6ff29c4063a8d467cdee241e6b3bf7dc4a171
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=aca6ff29c4063a8d467cdee241e6b3bf7dc4a171
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=aca6ff29c4063a8d467cdee241e6b3bf7dc4a171
https://en.wikipedia.org/wiki/POWER9
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://mediatomb.cc/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
http://www.mysql.com/
http://www.oracle.com/us/products/servers-storage/sparc-m8-processor-ds-3864282.pdf
http://www.oracle.com/us/products/servers-storage/sparc-m8-processor-ds-3864282.pdf
https://www.postgresql.org/
https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java.
https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java.
http://dmlc.cs.washington.edu/xgboost.html
https://github.com/brianfrankcooper/YCSB

