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ABSTRACT 
To improve the overall system utilization, Simultaneous Multi-

Threading (SMT) has become a norm in clouds. Usually, Hardware 

threads are viewed and deployed directly as physical cores for 

attempts to improve resource utilization and system throughput. 

However, context switches in virtualized systems might incur 

severe resource waste, which further led to significant performance 

degradation. Worse, virtualized systems suffer from performance 

variations since the rescheduled vCPU may affect other hardware 

threads on the same physical core. In this paper, we perform an in-

depth experimental study about how existing system software 

techniques improves the utilization of  SMT Processors in Clouds. 

Considering the default Linux hypervisor vanilla KVM as the 

baseline, we evaluated two update-to-date kernel patches IdlePoll 

and HaltPoll through the combination of 14 real-world workloads. 

Our results show that mitigating they could significantly mitigate 

the number of context switches, which further improves the overall 

system throughput and decreases its latency. Based on our findings, 

we summarize key lessons from the previous wisdom and then 

discuss promising directions to be explored in the future.  

CCS Concepts 

• Software and its engineering~Software organization and 

properties~Software system structures~Distributed systems 

organizing principles~Cloud computing 

Keywords 

Simultaneous Multi-threading; Operating Systems; Hypervisor. 

 

1. INTRODUCTION 
In the era of cloud computing, Simultaneous Multi-Threading 

(SMT) has been widely enabled to improve resource utilization and 

system throughput [2, 8, 16, 23]. Out of its nature, enabling SMT 

could allow multiple hardware threads to share one physical core 

simultaneously, and the number of sharing threads are dependent to 

the levels of resource partitions.  

For better levels of resource utilization and energy consumption in 

Clouds, multiple Virtual Machines (VMs) are often consolidated 

on a single physical host, and multiple Virtual CPUs (vCPUs) often 

time-share hardware threads. Hence, when one vCPU is 

idling/busy-waiting or its time slice uses up, Virtual Machine 

Management (VMM) deschedules the vCPU and re-schedule 

another vCPU on this hardware thread to utilize system resources. 

However, the frequent context switches and its accompanying high 

overheads in Clouds have caused a huge performance gap, which 

could be elaborated in two the following two aspects. Firstly, the 

frequent context switches are caused by the intention of better 

system resource utilization, due to the nature of VMM. Secondly, 

in virtualized systems, the cost of context switches could be at least 

5.6X than those in physical machines. And this has wasted system 

resources and thus incurs significant performance degradation. 

Towards the above performance challenges, several preliminary 

system-level schemes have been proposed to mitigate such issues. 

Taking Linux hypervisor vanilla KVM as an example, there are two 

outstanding approaches to address and tackle these issues. One is 

called IdlePoll, which prolongs the staying periods of idling threads 

in its place, without being descheduled once idling [12]. The other 

is called HaltPoll, which only keeps idling/busy-waiting vCPUs for 

a shorter period than IdlePoll [11]. 

To better understand and obtain in-depth insights about the pros and 

cons of those techniques, an in-depth and comprehensive 

experimental study is needed in general. Hence, we performed such 

a study through a rigorous and comprehensive study step-by-step. 

We first implement the above two techniques through kernel-based 

patches, by using vanilla KVM as the baseline. Then we select 14 

real-world workloads to examine their benefits and issues, through 

a comprehensive evaluations and analysis. 

Our results present quantitative envidence that both IdlePoll and 

HaltPoll could improve the throughput up and reduce the energy 

consumption significantly. We also present several breakdown 

analysis to explore other characteristics while deploying the above 

approaches, in order to explore and vision the future of SMT in the 

era of Cloud Computing 

This paper are organized as follow. We present relevant 

background information in Section 2. Then we illustrate details 

regarding two key patches IdlePoll and HaltPoll and detailed setup 
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of our experimental study in Section 3. Next, we present the results 

and analysis in Section 5. Finally, we discuss potential future work 

and obtain key conclusions  in Section 6 and 7 respectively. 

 

2. BACKGOUND & MOTIVATION 
In this section, we explore background and motivation of our study. 

First, we briefly explore Simultaneous Multi-threading (SMT) in 

Section 2.1. Then, we describes key characteristics of 

Synchronization in Virtualized Systems in Section 2.2. Finally, we 

end up with a lightweight experiment to support our hypothesis on 

context switches in Section 2.3, which has substantially motivated 

our study.  

2.1 Simultaneous Multi-threading 
Nowadays modern processors utilize Simultaneous Multi-

threading (SMT) to improve the level of resource utilization and 

increase the overall system throughput [13, 14, 18, 22]. SMT 

achieves such benefits by allowing physical cores to share multiple 

hardware threads within the same set of pipeline, function units, 

cache and so on. For better levels of resource occupancy and 

efficiency, each hardware thread maintains their own hardware 

contexts to fully utilize the shared resources properly. Though IBM 

provides 8-way SMT support, hereby we focus on Intel processors 

with 2-way SMT, which are usually referred as Hyper-threading. 

 

   

Figure 1 gives out a conceputal comparison between cores with 

SMT-enabled and those without, which was the initial design 

motivation of such a promising technique. Figure 1 (a) shows that 

when there is only one hardware thread running on the physical 

core, resources such as pipeline, function units and cache are 

underutilized (white boxes). Figure 1 (b) shows two hardware 

threads sharing one SMT enabled physical core. The resource 

utilization and system throughput of SMT enabled physical core is 

higher since SMT can improve the resource utilization. 

2.2 Synchronization within Virtual Machines 
In virtualized systems, inter-vCPU synchronization incurs high 

overheads and significant variations in the context of applications’ 

performance. More specifically, there are two basic primitives for 

inter-vCPU synchronization: 1) Idling. It refers to that one vCPU 

has been blocked blocking since its required resources are 

unavailable and yields its resources for executions into another 

ready vCPU; 2) Busy-waiting. It refers to that one vCPU has been 

spinning, in order to check whether its required resources are 

available so that it could continue to make progress. Particularly for 

busy-waiting, modern hardware mechanisms, like Intel Pause-Loop 

Exiting and AMD Pause Filter, could interrupt the busy-waiting 

vCPU to avoid system resources’ wastes. 

Whenever one vCPU has been either idling or busy-waiting, such 

vCPU would yield its resources for execution to another vCPU by 

performing a context switch. More accurately, such a context 

switch starts from Virtual Machine Exit and ends up at vCPU 

Resume. When one vCPU begins idling or busy-waiting, it traps 

into Virtual Machine Mangement layer and the scheduler within 

this layer would schedule another non-blocking vCPU to enters 

Virtual Machine by resuming its context to continue progressing. 

2.3 High Costs of Context Switches 
In order to get a scratch about the high costs of context switches, 

which were caused by its high volume and significant overheads, 

we illustrate its through microbench as our motivation for indepth-

study among real-world workloads further. Hereby, we patched the 

system with IdlePoll and select Parsec dedup (detnoted as p.dedup), 

Splash2X volrend (denoted as s.volrend) and MatMuls (Matrix 

Multiplication) as the workloads. We configure that 4 VMs are 

consolidated in our host OS (i.e. Ubuntu 14.04) with 48 logical 

cores, and each VM has 24 vCPUs and two vCPUs share one 

logical core in average. Particularly, there are two separate case 

studies to demonstrate the evidence of our concerns, which would 

be elaborated in more details later. 

 

We first illustrate performance degradation by low resource 

utilization from the high volume of avoidable context switches. In 

this case, we deploy each VM to run the same program, which has 

been considered as sychronization-intensive. As Figure 2 shown, 

the IdlePoll patch has improved the throughput of Parsec dedup by 

around 53.6% and the throughput of Splash2X volrend by 80.8%, 

compared with the default setting in the Vanilla KVM hypervisor. 

Also, there are considerable performance  degradation when 

Vanilla KVM is deployed, compared with no virtualization support. 

This is caused by extremely large resource wastes from 

unnecessary context switches, as illustrated in Section 2.2. And 

IdlePoll could mitigate such issues by prolonging the stay periods 

of vCPUs, no matter the workloads has been executed. 

 

Then we describe performance variation issues, which has been 

caused also from the high volume of avoidable context switches. 

 

 

Figure 2. 1st part of results from Lightweight Experimental 

Study, where we address the low resource utilization from 

the high volume of avoidable context witches. 
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As for this case, we distribute both sychronization-intensive and 

computation-intensive workloads into four different virtual 

machines. More specifically, VM1 and VM2 are responsible for 

Pasrsec dedup and Splash volrend respectively, and VM3 and VM4 

both run matmuls. As Figure 3 shown, the significant performance 

variation has been caused and IdlePoll could mitigate such issue. 

Particularly, IdlePoll has maximazied the throughput since all 

avoidable context switches have been eliminated, which 

substantially remove the performance interference between two 

vCPUs on different logical cores from the same physical core.  

However, the performance variation among four workloads are still 

considered large, where the throughput of MatMuls workloads have 

been lowered down. We believe this is because that both 

computation-intensive vCPU and synchronization-intensive vCPU 

are not always paired together on two different logical cores of the 

same physical core, since IdlePoll configuration will occupy the 

system resources with MatMuls-related vCPUs, even though it 

might be idling. 

 

3. IN-DEPTH STUDY DESIGN 
In this section, we present detailed strategies and designs for our in-

depth experimental study. First, we took a revisit to all system-level 

designs principles and relevant mitigation techniques. Then, we 

introduce details about how we setup the experimental studies, in 

the context of both host and guest machines. Finally, we describe 

out experimental study methodology and details. 

3.1 System-level Techniques Revisited 
We have investigated all relevant strategies and we found there are 

three major techniques, which are Default Vanilla KVM setting, 

IdlePoll setting and HaltPoll setting. And we would elaborate their 

characteristics separately in the following. 

 

Vanilla KVM is the internal virtualization module of Linux 

Operating System support, which has been abbreviated from 

Kernel-based Virtual Machine. KVM allows the kernel to function 

as the hypervisor. Both IdlePoll and HaltPoll are relevant kernel 

patches, as previous tryouts, to utilize SMT resources in a more 

efficient fashion. The main difference is that, IdlePoll keeps threads 

polling until required resources become available, but HaltPoll 

would keep them for a short period before necessary context 

switches. 

3.2 Experimental Setup 
In this section, we report the configurations about the machines, 

which have been used for our experimental study. All our 

evaluations are done on a DELL TM PowerEdge TM R430 server 

with 64GB of DRAM, and two 2.60GHz Intel Xeon E5-2690 

processors. Each processor has 12 physical cores, and each physical 

core has two hardware threads.  

 

For our experiments, 4 Virtual Machines are launched on the 

physical server. For each Virtual Machine, 24 vCPUs and 16 GB 

memory are allocated. The Virtual Machine Management has been 

decided as KVM, and both the host Operating System and guest 

Operating Systems are Ubuntu 14.04. The kernel versions of host 

OS and guest OS are both 3.16.39. 

3.3 Real-world Workloads 
In order to examine the real-world effects, we have selected 14 real-

world workloads and paired them properly. These 14 real-world 

workloads are: Hadoop, a popular big data processing framework; 

XGBoost, a widely used artificial intelligence library; MySQL, 

MySQL OLTP benchmark with SysBench; Spark, an open-source 

cluster-computing framework; SSDB, a widely used key value 

storage system; PgSQL, a widely used databased management 

system; DBT1, TPCW; HDFS, a distributed file system for big data; 

ClamAV, an anti-virus system; Apache, a widely used web server; 

MediaTomb, a popular media server for encoding and decoding 

videos; FileServer, a FileServer with FileBench storage benchmark; 

PageRank, a web searching algorithm; WaterMark, a watermark 

application based on lighttpd ; MongoDB, a document-oriented 

key-value store system.  

Table 1 gives an outline of these applications. In general, one 

synchronzaion-intensive and one computation-intensive workloads 

are placed in two Virtual Machines respectively, and the other two 

follow the same configuration. 
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4. RESULTS 
In this section, we report results and implications from our 

experimental study. We first examine the throughput, then we 

break down the whole procedure with context switch statistics. 

Finally we discuss the energy consumption of these approaches. 

4.1 Context Switches Breakdown 
Table 2 shows that all synchronization-intensive applications, and 

details are as follow. IdlePoll incurs no context switches during the 

whole procedure, and HaltPoll could reduce the context switches 

significantly, compared with Vanilla KVM. 

  

 

4.2 Throughput Overview 
As Figure 4 shown, both IdlePoll and HaltPoll’s performance and 

performance variation on 14 applications are clearly presented. To 

showcase the effects properly, we have normalized all results bare-

metal (i.e. without virtualization).  

IdlePoll avoids unnecessary context switch by keeping vCPUs 

when they become idling. However, IdlePoll affects the 

performance of co-running computation-intensive vCPUs on the 

same physical cores. For instance, MediaTomb, DBT1 and 

MongoDB could be highlighted since these applications usually  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

combine I/O and compute operations in each task. Besides, IdlePoll 

does not pair synchronization-intensive vCPUs and computation 

intensive vCPUs on the same physical cores to improve 

performance. 

As a comparison, Figure 4 also shows HaltPoll’s throughput on 

computation intensive applications is much higher than IdlePoll on 

average. HaltPoll only keeps vCPUs active for a short period to see 

whether the contended resources are available. 1), HaltPoll still 

incurs much unnecessary context switch. 2), HaltPoll does not 

schedule synchronization-intensive and computation-intensive 

vCPUs on the same physical cores to improve performance. 

4.3 Energy Savings 
Figure 5 presents the energy savings through IdlePoll and HaltPoll 

through kembench, Exim and Metis benchmarks to evaluate. As the 

results shown, IdlePoll and HaltPoll could significantly reduce the 

energy consumption. However, HaltPoll couldn’t save more, which 

indicates that it’s not necessary to use IdlePoll (i.e. keeping all 

vCPUs without context switches). 

 

  

 

   

 

Figure 4. Throughput Plots of 14 Real-world Applications through 4 Virtual Machines; each VM has 24 vCPUs. VM1 runs 

synchronization-intensive application; VM2 runs computation-intensive application; VM3 and VM4 run the same application 

as VM1 and VM2 respectively. 
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5. DISCUSSIONS 
Through our in-depth experimental study, we have examined the 

effectiveness of existing system-level approaches to mitigate 

performance issues. Hence, we observe that the need of resource-

aware scheduling policies and detailed workload characterizations. 

For resource-aware scheduling, we could enable schemes like 

Symbiotic Jobscheduling to co-locate sychronization-intensive 

threads and computation-intensive threads on the same core [4]. 

As for detailed workload characterizations, we could enable in-time 

schedule changes, since workloads usually have different features 

in different stages with their progress [7]. 

6. CONCLUSIONS 
In this paper, we performed an in-depth experimental study of 

system-level techniques for Simultaneous Multi-threaded 

Processors in Clouds. After investigations, we have chosen two 

most recent techniques IdlePoll  and HaltPoll, and then perform an 

experimental study among 14 real-world workloads. The results 

show that these two techniques could significantly improve the 

throughput and reduce energy consumption, by benefiting from 

large reduction of context switches. 

7. ACKNOWLEDGMENTS 
We thank for valuable suggestions and feedbacks from HP3C'20. 

This research is supported by ported by The Science and 

Technology Planning Project of Hunan Province (2019RS2027). 

8. REFERENCES 
[1] Adding watermarks to images. 

http://php.net/manual/en/image.examples-watermark.php. 

[2] Amazon EC2 T-series instances. 

https://aws.amazon.com/ec2/instance-types/t2/. 

[3] Apache Server. http://www.apache.org. 

[4] J. R. Bulpin and I. Pratt. Hyper-threading aware process 

scheduling heuristics. In Proceedings of the annual 

conference on USENIX Annual Technical Conference, 

General Track, pages 399–402, 2005. 

[5] ClamAV. http://www.clamav.net/. 

[6] DBT1. http://osdldbt.sourceforge.net/. 

[7] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. 

Performance of multithreaded chip multiprocessors and 

implications for operating system design. In Proceedings of 

the annual conference on USENIX Annual Technical 

Conference, pages 26–26. USENIX Association, 2005. 

[8] Google Cloud F1 and G1 Instances. 

https://cloud.google.com/compute/docs/machine-types. 

[9] Hadoop Core System. http://hadoop.apache.org/core/ 

[10] Hadoop Distributed File System. 

http://hadoop.apache.org/hdfs/. 

[11] HaltPoll Kernel Patch. https://lkml.org/lkml/2017/6/22/296. 

[12] IdlePoll Kernel Patch. 

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.

git/commit/?id=aca6ff29c4063a8d467cdee241e6b3bf7dc4a1

71 

[13] IBM POWER9 Processor. 

https://en.wikipedia.org/wiki/POWER9. 

[14] Intel R64 and ia-32 architectures developer’s manual. 

https://www.intel.com/content/www/us/en/architecture-and-

technology/64-ia-32-architectures-software-developer-

manual-325462.html. 

[15] MediaTomb - Free MediaServer. http://mediatomb.cc/. 

[16] Microsoft Azure B-series instances. 

https://azure.microsoft.com/en-us/blog/introducing-b-series-

our-new-burstable-vm-size/. 

[17] MySQL Database. http://www.mysql.com/. 

[18] Oracle SPARC M8 Processor. 

http://www.oracle.com/us/products/servers-storage/sparc-

m8-processor-ds-3864282.pdf.. 

[19] PostgreSQL Database. https://www.postgresql.org. 

[20] Spark PageRank benchmark. 

https://github.com/apache/spark/blob/master/examples/src/m

ain/java/org/apache/spark/examples/JavaPageRank.java. 

[21] V. Tarasov, E. Zadok, and S. Shepler. Filebench: A flexible 

framework for file system benchmarking. USENIX; login, 

41, 2016. 

[22] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous 

multithreading: Maximizing on-chip parallelism. In 

Proceedings. Of IEEE 22nd Annual International Symposium 

on Computer Architecture, pages 392–403. 1995. 

[23] VMware. Vmware horizon view architecture planning 6.0. In 

VMware Technical White Paper, 2014. 

[24] XGBoost. http://dmlc.cs.washington.edu/xgboost.html. 

[25] Yahoo! Cloud Serving Benchmark. 

https://github.com/brianfrankcooper/YCSB. 

 

5

http://php.net/manual/en/image.examples-watermark.php.
https://aws.amazon.com/ec2/instance-types/t2/
http://www.apache.org/
http://www.clamav.net/
http://osdldbt.sourceforge.net/
https://cloud.google.com/compute/docs/machine-types
http://hadoop.apache.org/core/
http://hadoop.apache.org/hdfs/
https://lkml.org/lkml/2017/6/22/296.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=aca6ff29c4063a8d467cdee241e6b3bf7dc4a171
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=aca6ff29c4063a8d467cdee241e6b3bf7dc4a171
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=aca6ff29c4063a8d467cdee241e6b3bf7dc4a171
https://en.wikipedia.org/wiki/POWER9
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://mediatomb.cc/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
http://www.mysql.com/
http://www.oracle.com/us/products/servers-storage/sparc-m8-processor-ds-3864282.pdf
http://www.oracle.com/us/products/servers-storage/sparc-m8-processor-ds-3864282.pdf
https://www.postgresql.org/
https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java.
https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java.
http://dmlc.cs.washington.edu/xgboost.html
https://github.com/brianfrankcooper/YCSB

