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Forecasting tourism demand with an 
improved mixed data sampling model 

Abstract 

Search query data reflect users’ intentions, preferences and interests. The interest in using such 

data to forecast tourism demand has increased in recent years. The mixed data sampling 

(MIDAS) method is often used in such forecasting, but is not effective when moving average 

(MA) dynamics are involved. To investigate the relevance of the MA components in MIDAS 

models to tourism demand forecasting, an improved MIDAS model that integrates MIDAS and 

the seasonal autoregressive integrated moving average process is proposed. Its performance is 

tested by forecasting monthly tourist arrivals in Hong Kong from mainland China with daily 

composite indices constructed from a large number of search queries using the generalised 

dynamic factor model. The forecasting results suggest that this new model significantly 

outperforms the benchmark model. In addition, comparing the forecasts and nowcasts shows 

that the latter generally outperform the former. 

Keywords: Tourism demand forecasting; MIDAS; Search query data; Generalised dynamic factor 

model; Nowcasts 
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1. Introduction 

The perishable nature of the tourism industry makes accurately forecasting tourism demand an 

important task for tourism- and hotel-related decisionmakers. It is impossible to store unfilled 

airline seats and unsold hotel rooms. Therefore, accurate demand forecasts can help tourism 

practitioners make business decisions, such as those concerning scheduling, staffing and pricing. 

In addition, policymakers in tourist destinations need accurate forecasts to formulate tourism 

development policies, such as tourism infrastructure investments. 

Traditional tourism demand forecasting studies have often used historical tourism demand and 

macroeconomic data. However, macroeconomic data, such as GDP and CPI, are usually delayed 

and may take several weeks or months to be published. The rapid development of information 

technology and the Internet has given rise to massive-scale and readily available data (Kambatla 

et al. 2014). Such data often reflect users’ intentions and can serve as early indicators of various 

activities. For example, search queries have been used for various forecasting purposes, such as 

unemployment claims (Choi and Varian 2012), influenza epidemics (Ginsberg et al. 2009) and 

housing prices and sales (Wu and Brynjolfsson 2015). 

Search query data have also gained popularity in forecasting tourism demand. Tourists use 

search engines to look for travel information on weather, transportation, hotels, attractions, 

travel guides and other tourists’ opinions (Fesenmaier et al. 2011). These web search 

behaviours are recorded and reflect users’ intentions, preferences and interests. Therefore, 

they can be valuable predictors of tourism demand. Although the use of search query data in 

tourism demand forecasting is relatively new, interest in this area has increased rapidly in 

recent years. Search query data have often been aggregated and converted into the same 
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frequency as tourism demand variables in previous studies because they are often sampled at a 

higher frequency (Choi and Varian 2012; Li et al. 2017; Pan et al. 2012; Rivera 2016; Yang et al. 

2015). This can lead to information loss and poor forecasting performance because high 

frequency information is not used (Ghysels et al. 2007). Bangwayo-Skeete and Skeete (2015) 

were the first to introduce mixed data sampling (MIDAS) for tourism demand forecasting. They 

found that MIDAS performed better in forecasting monthly tourist arrivals using weekly Google 

Trends data in most forecasting exercises, whereas its performance was poor in other exercises. 

Compared with common benchmark models, such as the seasonal autoregressive integrated 

moving average (SARIMA) model, traditional MIDAS models often involve autoregressive (AR) 

components and are unable to incorporate moving average (MA) dynamics. Indeed, they are 

not effective when the underlying data include MA dynamics. In fact, in a recent study, Foroni 

et al. (2019) showed that MA components emerged in a MIDAS model in which the low 

frequency variable was the result of temporal aggregation. They investigated the effect of 

neglecting MA components in the forecasts and found that including MA components improved 

the forecasting performance of their Monte Carlo simulations and application to US 

macroeconomic variables. In this study, the same idea is introduced to tourism demand 

forecasting and the relevance of MA components is investigated in this context. In addition, 

Foroni et al. (2019) focused on forecasting macroeconomic variables and did not consider 

seasonal ARMA components. As tourism demand often exhibits strong seasonality, it is 

important to account for seasonality in the modelling process. Moreover, Foroni et al. (2019) 

arbitrarily determined the orders of AR and MA components in MIDAS models. Doing so may 

yield a higher probability of model misspecification. To overcome these problems, a new model 
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that integrates the MIDAS and SARIMA processes is proposed. This new model is an extension 

of traditional MIDAS models and is able to accommodate seasonal and non-seasonal ARMA 

components. The features of the MIDAS and SARIMA models are especially relevant in the 

tourism demand forecasting context. The mixed frequency aspect of the new model provides a 

more efficient way to utilise high frequency search query data. Furthermore, its seasonal and 

non-seasonal ARMA components capture important characteristics of tourism demand. In this 

study, the effectiveness of the model is investigated by forecasting monthly tourist arrivals in 

Hong Kong from mainland China, with daily composite indices constructed from a large number 

of search queries using the generalised dynamic factor model (GDFM). Previous studies have 

focused on forecasting or nowcasting tourism demand. In contrast, this study is the first to 

conduct a comparison analysis of forecasts and nowcasts. Such a comparison may be 

particularly useful for decisionmakers who need frequent updates to make more accurate 

forecasts. When forecasting tourism demand, traditional macroeconomic data, such as income 

level in the origin country and relative price level in the destination country, are often 

incomplete and subject to revision for the current and most recent periods. However, search 

query data are readily available on a daily and even hourly basis. They are especially useful in a 

nowcasting framework, which can enable more timely tourism demand forecast updates when 

new information becomes available. For example, timely and improved updates of nowcasts of 

demand are very valuable in hotel revenue management, which involves dynamic pricing. 

The remainder of this paper is organised as follows. Section 2 reviews the relevant literature. 

Section 3 presents the data and the construction of the search query index. Section 4 discusses 
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the details of the models and their estimation results. Section 5 presents the forecasting and 

nowcasting results. Finally, Section 6 concludes.  

2. Literature review 

2.1. Tourism demand forecasting 

Tourism demand forecasting is a well-established research area. The three main types of 

modelling techniques include non-causal time series, econometric and artificial intelligence 

(AI)-based methods. 

Traditional time series models include Naïve 1 models (no change), Naïve 2 models (constant 

growth rate), exponential smoothing models and simple AR models (Song and Li 2008; Wu et al. 

2017). They are often used as benchmarks in tourism forecasting studies. Autoregressive 

integrated moving average (ARIMA) models and SARIMA models are the most commonly used 

models, depending on the frequency of the time series. Various extensions of the ARIMA model 

have also been used in the literature. For example, Chu (2009) introduced an autoregressive 

ARMA (ARARMA) model and a fractionally integrated ARMA (ARFIMA) model to forecast tourist 

arrivals in nine destinations in the Asia-Pacific region and found that the ARFIMA model 

outperformed the SARIMA and ARARMA models. Similarly, Assaf et al. (2011) used several 

models based on fractional integration to forecast tourist arrivals in Australia, confirming that 

they outperformed the standard ARIMA and SARIMA models.  

Structural time series (Turner and Witt 2001) and generalised autoregressive conditional 

heteroskedastic (Divino and McAleer 2010) models have also been widely used in the tourism 

literature. In recent years, more advanced time series models have been used to generate 

better forecasting performance than traditional time series models, such as innovations state 
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space models for exponential smoothing (ETS; Athanasopoulos et al. 2011), singular spectrum 

analysis (SSA) models (Hassani et al. 2017) and time-varying parameter structural time series 

models (Song et al. 2011). Decomposition methods, such as SSA, empirical mode 

decomposition (Yahya et al. 2017) and ensemble empirical mode decomposition (Zhang et al. 

2017), have gained much popularity in recent years and have demonstrated good forecasting 

performance. These techniques have been used in univariate time series forecasting settings 

(Hassani et al. 2017; Hassani et al. 2015; Silva et al. 2019) and causal time series forecasting 

settings (Li and Law 2020). 

Unlike non-causal time series models, econometric models can analyse the relationship 

between tourism demand and its key determinants, and the information can be used to provide 

policy recommendations. Several important factors affecting tourism demand have been 

identified in the literature, such as tourist income, tourism prices in a destination relative to 

those of the country of origin, tourism prices in competing destinations and real exchange rates 

(Song and Li 2008; Wu et al. 2017). 

Spurious regression is often present in traditional regression analysis. Several modern 

econometric models have been introduced in tourism modelling and forecasting, such as the 

autoregressive distributed lag model (Song et al. 2012), the error correction model (Goh 2012), 

the vector autoregressive (VAR) model (Wong et al. 2006), the time-varying parameter model 

(Page et al. 2012), the almost ideal demand system model (Li et al. 2006) and the Bayesian VAR 

model (Gunter and Ö nder 2015; Wong et al. 2006). Numerous studies have concluded that 

econometric models perform better (Song et al. 2003), but some have confirmed that time 
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series models outperform econometric models in predicting tourism demand (Athanasopoulos 

et al. 2011). 

In addition to time series and econometric methods, a variety of AI-based methods have been 

introduced in the tourism forecasting literature. The dominant model is the artificial neural 

network (ANN) model. It consists of several layers, each of which can contain multiple neurons. 

The ANN model is a nonparametric and data-driven method that can be used to model 

non-linear relationships. It is also the most frequently used AI-based method in tourism 

demand forecasting studies (Claveria et al. 2015; Law et al. 2019; Sun et al. 2019). Other 

AI-based methods used to forecast tourism demand include the support vector machine model 

(Chen et al. 2015; Hong et al. 2011), the fuzzy system model (Aladag et al. 2014), the rough set 

model (Goh et al. 2008) and grey theory (Sun et al. 2016). 

Although various methods have been introduced and applied in the literature, there is a 

consensus that no model can outperform other models consistently under all conditions (Song 

and Li 2008). Using a meta-analysis, Peng et al. (2014) showed that their data characteristics 

and study features, such as demand measure, data frequency and origin/destination pairs, 

affected the forecasting accuracy of tourism demand. 

2.2. Forecasting with search query data 

People often search for information online and their search behaviour reflect their 

consumption preferences and decision-making processes (Du et al. 2014; Ghose et al. 2014). 

Search query data can serve as a powerful predictor to improve forecasting accuracy. Thus, 

forecasting using search query data has gained popularity in a number of research areas. 
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For example, Ginsberg et al. (2009) investigated a large number of Google search queries to 

track influenza-like illnesses; ultimately, their method improved early detection. Since then, 

researchers have explored the usefulness of search query data for forecasting unemployment 

rates (Askitas and Zimmermann 2009), consumer consumption (Vosen and Schmidt 2011), stock 

markets (Bordino et al. 2012; Da et al. 2011), automobile sales (Du and Kamakura 2012) and 

house prices and sales (Wu and Brynjolfsson 2015). 

In recent years, forecasting tourism demand using search engine data has also attracted 

attention. For example, Choi and Varian (2012) used Google Trends data for the first 2 weeks of 

each month to predict the number of visits to Hong Kong in a given month. Pan et al. (2012) 

chose five related Google search queries to forecast demand for hotel rooms in Charleston, US, 

improving forecasting performance by including search query data. Pan and Yang (2017) used 

Google search engine queries and website traffic data to forecast hotel demand in Charleston 

and found that their forecasts were more accurate when they included both data sources. 

Rivera (2016) pointed out that Google Trends data differ each week because the data are 

constructed as a relative volume and come from a periodic sample of queries. Therefore, he 

proposed using a dynamic linear model and treated Google Trends data as a representation of 

an unobservable process. In addition, the association between hotel demand and Google 

Trends data can be better understood when the data are downloaded on multiple occasions. 

Yang et al. (2015) used Google Trends and the Baidu Index, which represents the absolute 

volume of the chosen search queries, to forecast the number of visitors to a province in China. 

They found that although the data from both search engines improved forecasting accuracy, 

the Baidu Index performed better. Li et al. (2017) used the GDFM to construct the composite 
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index from a large number of Baidu search queries to forecast tourist arrivals in Beijing. They 

showed improved forecasting performance using the GDFM compared with another dimension 

reduction method, principal component analysis (PCA). Recently, studies have also used ANNs 

to model the relationship between tourism demand and search query data. Sun et al. (2019) 

used Google and Baidu search data to forecast tourist arrivals in popular destinations in China, 

showing better forecasting performance when using the kernel extreme learning machine 

model. Similarly, Wen et al. (2019) used the Baidu Index to forecast tourist arrivals in Hong 

Kong from mainland China, using a newly proposed hybrid model integrating the ARIMA and 

ANN models. They found that the hybrid model outperformed component models. Law et al. 

(2019) applied a deep learning approach to forecast tourist arrivals in Macau using search query 

data. They showed that the deep learning approach significantly outperformed the support 

vector regression model and the traditional ANN model. 

2.3. MIDAS regressions 

Time series data are often collected at different frequencies, but most models require variables 

to be converted to the same low frequency. During this process, the potentially valuable 

information contained in high frequency variables is smoothed and lost. To tackle this problem, 

Ghysels et al. (2004) used MIDAS regressions to directly estimate equations with variables 

sampled at different frequencies. 

The use of MIDAS regressions has proliferated in the macroeconomic literature. For example, 

Clements and Galvão (2008) used MIDAS to forecast quarterly output growth using monthly 

predictors and found significant improvement. Andreou et al. (2013) extracted a small set of 

daily financial data from a large panel of daily financial assets to predict quarterly real GDP 
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growth using MIDAS and elucidated the value of daily financial information. MIDAS has also 

been used to forecast inflation and oil prices. Monteforte and Moretti (2012) showed a 

reduction in inflation forecast errors in the euro area by including daily financial variables using 

MIDAS. Baumeister et al. (2015) investigated the predictive power of daily and weekly financial 

market data in forecasting monthly oil prices. They demonstrated that the preferred MIDAS 

model improved forecasting accuracy compared with no-change forecasts. 

MIDAS regressions have also been widely used in the financial literature. Ghysels et al. (2009) 

compared several models generating multi-period ahead forecasts of stock return volatilities 

and found that MIDAS performed best for longer horizon forecasts. Gurgul et al. (2018) used 

MIDAS-based models for systemic risk assessment in the banking sector and found that the 

information contained in the macroeconomic variables helped predict short- and long-term risk 

components. 

Bangwayo-Skeete and Skeete (2015) were the first to apply MIDAS with AR components in the 

tourism literature. Using weekly Google data to forecast monthly tourist arrivals in five 

Caribbean countries, they found that the MIDAS models generated better predictions than the 

baseline time series models for most of their experiments. However, MIDAS models can only 

accommodate AR dynamics and forecasting performance may deteriorate when MA dynamics 

are involved. They are not effective when the underlying data include MA dynamics. Foroni et 

al. (2019) showed that MA components in general emerged in a MIDAS model and improved 

the forecasting accuracy of US macroeconomic variables by including MA components. In this 

study, the relevance of MA components in tourism demand forecasting is investigated using an 

improved MIDAS model that incorporates seasonal ARMA components and automatically 
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selecting appropriate structures. This novel model combines the advantages of MIDAS and 

SARIMA and can offer desirable features for modelling tourism demand using search queries. In 

addition to accommodating the mixed frequency variables provided by MIDAS, it can also 

automatically choose appropriate seasonal and non-seasonal ARMA components, which are 

often present in tourism demand data. 

3. Data and composite index 

Hong Kong is one of the most popular tourist destinations in Asia. It is distinguished by its 

unique culture and often described as a place where ‘East meets West’. Despite the 

modernised lifestyles of the people in Hong Kong, traditional Chinese practices and cultural 

events have been preserved, such as feng shui and the dragon boat festival. Tourism is one of 

the four pillar industries of the Hong Kong economy. In 2016, it contributed to approximately 5% 

of Hong Kong’s GDP and 7% of total employment. After 2 years of decline in 2014 and 2015, the 

total number of arrivals reached a growth rate of 3.2% in 2017 with 58.5 million visitors 

(Tourism Commission—Tourism Fact Sheets 2018). Mainland China remains Hong Kong’s 

largest source market, accounting for approximately 76% of all visitors. The increase in the 

number of visitors from mainland China in recent decades has been largely fuelled by visa 

liberalisation policies, such as the 2003 Individual Visit Scheme and Shenzhen residents’ 

multiple-entry permits in 2009. The increased number of visitors from mainland has boosted 

tourism revenue and generated many job opportunities. However, it has also led to higher 

prices and a shortage of goods, causing tension between mainland visitors and Hong Kong 

residents. Thus, businesses and policymakers require accurate forecasts of tourist arrivals from 

mainland China to make informed decisions.  
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In this study, we used data on monthly tourist arrivals from mainland China to Hong Kong 

between January 2011 and February 2018. The data were collected from the Hong Kong 

Tourism Board’s B2B website, PartnerNet (https://partnernet.hktb.com). The data were 

sampled from 2011 because the Baidu Index data are only available from 2011. Following 

previous studies, the log transformation was applied before starting the modelling process. 

Although Google dominates the global market, it left the mainland China market in 2010 

following a dispute with the Chinese government. Baidu has since become the most popular 

search engine in China, holding the largest market share (Yang et al. 2015). Given this study’s 

interest in tourist arrivals in Hong Kong from mainland China, the Baidu Index was used. 

To apply the search query data to tourism forecasting, keyword selection was conducted first. 

The most common method for selecting search query data is based on the researcher’s 

intuition and prior knowledge (Brynjolfsson et al. 2014). This practice is common in the tourism 

field. For instance, Pan et al. (2012) chose five Google search queries to forecast hotel demand. 

Bangwayo-Skeete and Skeete (2015) also adopted this method and used ‘hotels’ and ‘flights’ as 

keywords to forecast tourist arrivals in the Caribbean. Although this method is easy to apply, it 

can omit important information by excluding relevant search queries. To mitigate this problem, 

the set of initial keywords can be extended by adding pertinent keywords using the functions of 

the search engine (Li et al. 2017; Yang et al. 2015). In this study, the initial set of keywords was 

thus extended and conducted according to the following steps to select the keywords in the 

Baidu Index: 

1. Six aspects of tourism planning were specified: dining, shopping, transportation, tours, 

attractions and lodging. Several initial keywords were determined for each aspect. 

https://partnernet.hktb.com/
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2. Keywords highly correlated to the initial keywords were added using a demand map 

interface provided by Baidu. This step was iterated until convergence. 

3. As Baidu does not provide the search query volume below a certain threshold, the 

availability of each search query was manually checked using the keywords. 

Ultimately, 101 Baidu search queries were collected (the names of the translated search 

queries can be found in Appendix A). 

With this large number of search queries, some AI models, such as the deep learning models 

used in Law et al. (2019), can directly incorporate these search queries and identify the most 

relevant ones. However, most econometric models, including the MIDAS models used in this 

study, cannot perform this task. As a result, the dimensionality of the search queries must be 

reduced before the modelling process. This can be done by extracting common components 

using various factor models, such as static and dynamic factor models. Static factor models 

express common components as a linear combination of a small number of unobserved static 

factors that are loaded simultaneously (Stock and Watson 2002). The GDFM proposed by Forni 

et al. (2000) encompasses the static factor model and its common components, χ𝑖𝑡, are driven 

by 𝑞 unobservable common factors, 𝑓𝑗𝑡, 𝑗 = 1, … , 𝑞. For the observed variables {X𝑖𝑡, 𝑖 =

1, … , 𝑛, 𝑡 = 1, … , 𝑇}, the model can be formulated as  

X𝑖𝑡 = χ𝑖𝑡 + ε𝑖𝑡, (1) 

χ𝑖𝑡 = 𝑏𝑖1(𝐿)𝑓1𝑡 + 𝑏𝑖2(𝐿)𝑓2𝑡 + ⋯ + 𝑏𝑖𝑞(𝐿)𝑓𝑞𝑡, (2) 

where 𝑏𝑖𝑗(𝐿) = ∑ 𝑏𝑖𝑗𝑘𝐿𝑘∞
𝑘=1  is the factor loading, 𝐿 is the lag operator and ε𝑖𝑡 is the 

idiosyncratic component. The GDFM has two important characteristics: it is dynamic and allows 

for cross-correlation among idiosyncratic components. Unlike static factor models, in which 
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lagged factors are added as additional static factors, the common components of the GDFM can 

accommodate AR and MA responses. Distinguishing between leading and coincident variables a 

priori is not needed. The common components of the GDFM depend on cross-correlations at all 

leads and lags, so they can incorporate different lead and lag information from the variables 

(Forni et al. 2000). This is advantageous for constructing a composite index from a large number 

of search queries. 

The GDFM has been adopted by several economic and financial institutions to analyse and 

predict economic activities. The Banca d’Italia published a real-time monthly coincident 

indicator of the euro area business cycle (Eurocoin) based on the GDFM (Altissimo et al. 2010). 

The Federal Reserve Bank of New York developed a similar index for estimating underlying 

inflation using these methods (Amstad and Potter 2009). In the tourism context, Li et al. (2017) 

were the first to use the GDFM to construct the composite index from Baidu search queries. 

They found that the GDFM-based index had better forecasting performance than PCA. 

Therefore, the GDFM was adopted in this study to construct the index. 

Before estimating the GDFM, a number of common factors, 𝑞, must be determined. To this 

end, Forni et al. (2000) used the variance contribution rate, where 𝑞 is the number of factors 

whose variance contribution rates converge. However, this is a heuristic eye inspection rule. 

Nevertheless, Hallin and Liška (2007) proposed a formal test, using the log criterion of their 

study with the penalty function 𝑝1 and lag window √𝑇 to choose the number of factors, the 

maximum number of factors being set to 50. 𝑐 is the coefficient associated with the penalty 

function, 𝑆𝑐 is defined as the variability of the estimated 𝑞 when the size of the subsample 

increases and 𝑞𝑐;𝑛
∗𝑇  is the estimated 𝑞 when the whole sample is used. The selection of 𝑞 can 
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be based on the plot of 𝑆𝑐 and 𝑞𝑐;𝑛
∗𝑇  on 𝑐, where 𝑐 is based on the second stability interval 

(more details are provided by Hallin and Liška 2007). This method was applied to the search 

queries of this study. The plot is shown in Fig. 1. 

 

(Insert Fig. 1 about here) 

 

The second stability interval appeared at the interval between 0.31 and 0.34 (with 𝑆𝑐 equal to 

0) and the estimated 𝑞 was equal to 4. Therefore, the number of common factors was set to 4 

for the search queries. 

The common components were then calculated using standardised search query data with a 

mean of 0 and a standard deviation of 1. The coincidental index at time t was constructed using 

the common components, 𝑧𝑡 = ∑ χ𝑖𝑡
𝑛
𝑖=1 . As the search queries were collected daily, this index 

also had a daily frequency. The relationship between the daily index and the log transformation 

of monthly tourist arrivals is plotted in Fig. 2.  

 

(Insert Fig. 2 about here) 

 

The close relationship between the daily index and monthly tourist arrivals is clearly illustrated.  

4. Research methods 

In this section, the specifications and estimation procedure of the following competing models 

are presented: the SARIMA model, the SARIMA model with an exogenous variable (SARIMAX) 

and the traditional and improved MIDAS models. Data up to February 2017 were used for the 
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estimation procedure and the remaining data were used to evaluate the forecasting 

performance. 

4.1. SARIMA and SARIMAX 

The SARIMA model can account for seasonality, which is a common feature of tourism demand. 

It is the most commonly used time series model in the tourism demand forecasting literature 

and is often used as a benchmark (Song and Li 2008; Wu et al. 2017). A SARIMA (p, d , q)(P, D , 

Q) model with seasonal frequency m can be specified as follows: 

Φ(𝐵𝑚)𝜙(𝐵)(1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + Θ(𝐵𝑚)𝜃(𝐵)𝜖𝑡, (3) 

where 𝑦𝑡 is the log of tourist arrivals, 𝐵 is the backshift operator, Φ(𝑥) and Θ(𝑥) 

represent the seasonal AR and MA components (which are polynomials of order P and Q), 

respectively, 𝜙(𝑥) and 𝜃(𝑥) represent the non-seasonal AR and MA components (which are 

polynomials of order p and q), respectively, and 𝜖𝑡 is a white noise process. The forecast 

package in the R program (R Core Team 2016) was used to automatically select the orders and 

estimate the coefficients (Hyndman and Khandakar 2008) as follows: 

1. The order of seasonal differencing 𝐷 was chosen using a test suggested by Wang et al. 

(2006), which is based on a measure of seasonal strength. 

2. The order of non-seasonal differencing 𝑑 was chosen using the KPSS unit-root test 

(Kwiatkowski et al. 1992). 

3. A stepwise procedure was used to traverse the model space and the orders and p, q, P and 

Q were chosen based on the corrected Akaike information criterion (AIC). 

The SARIMAX model simply adds an exogenous variable to SARIMA so that it becomes a 

regression model with SARIMA errors. Therefore, the estimation procedure of the SARIMAX 
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model is almost identical to that of the SARIMA model, except that the regression is conducted 

first. It can be formulated as follows: 

𝑦𝑡 = β0 + β1𝑥𝑡 + 𝑛𝑡 (4) 

Φ(𝐵𝑚)𝜙(𝐵)(1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑𝑛𝑡 = Θ(𝐵𝑚)𝜃(𝐵)𝜖𝑡, (5) 

where 𝑥𝑡 is the exogenous variable (which may include lagged variables) and 𝑛𝑡 is the error 

from the regression model. It is equivalent to substituting the differencing terms in the 

following regression equation: 

(1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑𝑦𝑡 = (1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑(β0 + β1𝑥𝑡) + 𝑛𝑡
′  (6) 

Φ(𝐵𝑚)𝜙(𝐵)𝑛𝑡
′ = Θ(𝐵𝑚)𝜃(𝐵)𝜖𝑡, (7) 

where 𝑛𝑡
′  is (1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑𝑛𝑡. Furthermore, this is equivalent to differencing 𝑦𝑡 and 𝑥𝑡 

before fitting the model with ARMA errors. As non-stationary errors suggest the existence of 

spurious regression, it is necessary to difference the variables first. 

The SARIMAX model can be rewritten as follows: 

(1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑Φ(𝐵𝑚)𝜙(𝐵)𝑦𝑡 = (1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑Φ(𝐵𝑚)𝜙(𝐵)(β0 + β1𝑥𝑡) +

Θ(𝐵𝑚)𝜃(𝐵)𝜖𝑡 (8) 

It can be seen that the same AR terms are applied to 𝑦𝑡 and 𝑥𝑡. 

The exogenous variable used in this study was the composite index constructed from the search 

queries using the GDFM. As it was available daily, temporal aggregation was conducted by 

averaging the daily index for each month. However, the number of days varies in different 

months. To enable a direct comparison between the SARIMAX and MIDAS models, the 30 days 

preceding the first day of each month were considered to be a full last month. The monthly 

composite index at time t is denoted as 𝑖𝑛𝑑𝑒𝑥𝑡. 
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The monthly index with at least one lag was added to the SARIMAX model and the lag length 

was determined based on the AIC and the Bayesian information criterion (BIC). A monthly index 

with one lag was found to generate the smallest AIC and BIC. 

After estimation, the fitted SARIMA and SARIMAX models can be written as 

𝑆𝐴𝑅𝐼𝑀𝐴:  (1 + 0.2651𝐵 − 0.5819𝐵2)(1 − 𝐵12)(1 − 𝐵)𝑦𝑡 = (1 − 0.6750𝐵12)(1 −

1.0745𝐵 + 1.2188𝐵2 − 0.4372𝐵3)𝜖𝑡  (9) 

𝑆𝐴𝑅𝐼𝑀𝐴𝑋:  {
𝑦𝑡 = 0.2122𝑖𝑛𝑑𝑒𝑥𝑡−1 + 𝑛𝑡

(1 − 0.8780𝐵 − 0.5241𝐵2)(1 − 𝐵12)(1 − 𝐵)𝑛𝑡 = (1 − 0.5468𝐵12)𝜖𝑡
 (10) 

The details of the estimation results are summarised in Table 1. 

 

(Insert Table 1 about here) 

 

The 𝑖𝑛𝑑𝑒𝑥𝑡−1 coefficient was positive and significant at the 1% level, indicating that an 

increase in search queries leads to an increase in tourist arrivals the following month. The 

smaller AIC and BIC values of the SARIMAX model suggest that including the search query index 

fitted the model better. A Ljung-Box test was conducted to check the residuals of the fitted 

models and the p values were reported. The large p values indicate that the residuals were 

independently distributed and that the models were properly specified. 

4.2. MIDAS models 

Search query data are available at a higher frequency than tourist arrival data. They contain 

potentially valuable information, and temporal aggregation can lead to information loss 

(Ghysels et al. 2007). Most time series regressions involve data sampled at the same frequency, 

so high frequency information cannot be used directly. As an alternative to the common 
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solution of converting all data to the same low frequency, MIDAS can directly accommodate 

variables sampled at different frequencies. MIDAS models can be applied in cases where high 

frequency variables are used to forecast a low frequency variable. In addition, they may have 

more salient advantages when the frequencies of the variables are significantly different, as 

using traditional methods can lead to greater information loss during temporal aggregation. 

Therefore, MIDAS models are well suited to this study using monthly tourist arrivals and daily 

search queries. 

The basic MIDAS model for a single explanatory variable can be written as 

𝑦𝑡 = 𝛽0 + 𝛽1 ∑ 𝜔(𝑖; 𝛩)𝐿𝐻𝐹
𝑖𝑙

𝑖=1 𝑧𝑡 + 𝜖𝑡, (11) 

where 𝑦𝑡 is the log of tourist arrivals, 𝐿𝐻𝐹 is the high frequency lag operator, 𝜔(𝑖; 𝛩) is a 

polynomial that assigns the weights to the high frequency variable 𝑧𝑡 at lag i, 𝑙 is the 

maximum lag on the high frequency variable and 𝜖𝑡 is a white noise process. 

Different weighting schemes can be used as functional constraints. A weighting scheme defined 

by the vector of parameters 𝛩 = (𝜃1, 𝜃2, … , 𝜃𝑝) can be written as 

𝜔(𝑖; 𝛩) =
𝑓(𝑖,𝛩)

∑ 𝑓(𝑗,𝛩)𝑙
𝑗=1

 (12) 

The most popular specifications for 𝑓(𝑖, 𝛩) include the exponential Almon function and the 

beta function (Ghysels et al. 2007). Ghysels et al. (2007) argued that the beta function was 

flexible enough to accommodate different weighting shapes with only two parameters. For 

comparison purposes, the exponential Almon specification used in this study also used two 

parameters. In addition, a Gompertz function was added as an additional comparison. The 

specifications of these three functions with two parameters (𝜃1, 𝜃2) are expressed below: 

Exponential Almon: 𝑓(𝑖, 𝛩) = exp (𝜃1𝑖 + 𝜃2𝑖2). 
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Beta: 𝑓(𝑖, 𝛩) =
(𝑘)𝜃1−1(1−𝑘)𝜃2−1Γ(𝜃1+𝜃2)

Γ(𝜃1)Γ(𝜃2)
, where 𝑘 =

𝑖

𝑙
 and Γ is the standard gamma function. 

Gompertz: 𝑓(𝑖, 𝛩) = exp(𝜃2𝑖) exp (−𝜃1 exp(𝜃2𝑖)). 

MIDAS models can be expanded to include AR dynamics. However, this process is not 

straightforward, as noted by Ghysels et al. (2007). Consider a MIDAS-AR model with one lag of 

𝑦𝑡: 

𝑦𝑡 = 𝛽0 + λ𝑦𝑡−1 + 𝛽1 ∑ 𝜔(𝑖; 𝛩)𝐿𝐻𝐹
𝑖𝑙

𝑖=1 𝑧𝑡 + 𝜖𝑡 (13) 

It can be rewritten as 

𝑦𝑡 = 𝛽0(1 − λ)−1 + 𝛽1(1 − λ𝐿𝐿𝐹)−1 ∑ 𝜔(𝑖; 𝛩)𝐿𝐻𝐹
𝑖𝑙

𝑖=1 𝑧𝑡 + 𝜖𝑡̃, (14) 

where 𝐿𝐿𝐹 is the low frequency lag operator and 𝜖𝑡̃ = (1 − λ𝐿𝐿𝐹)−1𝜖𝑡. The polynomial on 𝑧𝑡 

is a combination of 𝐿𝐿𝐹 and 𝐿𝐻𝐹. This generates a seasonal response of 𝑦𝑡 to 𝑧𝑡, whether 𝑧𝑡 

demonstrates seasonal patterns. This strategy is generally considered inappropriate. Therefore, 

Clements and Galvão (2008) suggested introducing AR dynamics in 𝑦𝑡 as a common factor, 

𝑦𝑡 = 𝛽0 + λ𝑦𝑡−1 + 𝛽1 ∑ 𝜔(𝑖; 𝛩)𝐿𝐻𝐹
𝑖 (1 − λ𝐿𝐿𝐹)𝑙

𝑖=1 𝑧𝑡 + 𝜖𝑡, (15) 

where the same AR dynamics are applied to 𝑦𝑡 and 𝑧𝑡 so that the response of 𝑦𝑡 to 𝑧𝑡 is 

non-seasonal. This model was adopted in this study as MIDAS-AR. Before estimating MIDAS-AR, 

the amount of seasonal and non-seasonal differencing for tourist arrivals was determined using 

the same tests as the SARIMA model (Kwiatkowski et al. 1992; Wang et al. 2006). The same 

orders of differencing were applied to the daily index for interpretability. In addition, the AR 

orders were chosen based on the AIC and BIC. 

MIDAS-AR models are less effective when MA dynamics are involved, therefore it is desirable to 

include MA components in MIDAS. Foroni et al. (2019) proved the usefulness of incorporating 

MA components into MIDAS models to predict US macroeconomic variables. However, they did 
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not consider seasonal components and the orders of ARMA components were determined 

arbitrarily. To remedy these shortcomings, an improved MIDAS model integrating MIDAS and 

SARIMA (MIDAS-SARIMA) was proposed. This model can be written as: 

𝑦𝑡 = 𝛽0 + 𝛽1 ∑ 𝜔(𝑖; 𝛩)𝐿𝐻𝐹
𝑖𝑙

𝑖=1 𝑧𝑡 + 𝑛𝑡 (16) 

The difference between this new model and a standard MIDAS is that 𝑛𝑡 is a SARIMA process. 

Thus, the MIDAS-SARIMA model can accommodate seasonal and non-seasonal ARMA dynamics. 

This model is distinguished from standard MIDAS models by its seasonal structure. In addition, 

it integrates the automatic order selection procedure of SARIMA models to determine the best 

structure of the MIDAS-SARIMA model. As a result, this model combines the advantages of the 

MIDAS and SARIMA models and offers considerable potential to improve forecasting accuracy.  

The MIDAS-SARIMA model applies the same AR dynamics to 𝑦𝑡 and 𝑧𝑡. The estimation 

procedure of the MIDAS-SARIMA model is the same as that of the SARIMAX model, except that 

the first step is a MIDAS regression instead of a linear regression. 

Unlike the SARIMAX model, which assigns the same weights to the high frequency variable after 

temporal aggregation, the MIDAS-SARIMA model relaxes this restriction, which is useful 

because the search query data for different days are likely to have different effects on monthly 

tourist arrivals. This may lead to different weights of the daily composite index. The flexibility 

provided by the MIDAS-SARIMA model probably improves the forecasting accuracy of monthly 

tourist arrivals. 

The number of lags of the daily composite index was set to 30 for MIDAS models in accordance 

with the SARIMAX model. That is, the 30 daily indices preceding the first day of the month were 

used to forecast tourist arrivals for the following month. This setting enabled a direct 
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comparison between the SARIMAX and MIDAS models. The estimation results of the MIDAS-AR 

and MIDAS-SARIMA models are summarised in Table 2. MIDAS-AR-Almon, MIDAS-AR-Beta and 

MIDAS-AR-Gom denote MIDAS-AR models with the exponential Almon, beta and Gompertz 

weighting schemes, respectively. MIDAS-SARIMA-Almon, MIDAS-SARIMA-Beta and 

MIDAS-SARIMA-Gom denote MIDAS-SARIMA models with the exponential Almon, beta and 

Gompertz weighting schemes, respectively. 

 

(Insert Table 2 about here) 

 

Seasonal and non-seasonal differencing were performed for all MIDAS models. The MIDAS-AR 

models gave the same structures, with two lags of the AR dynamics, and the estimated 

coefficients of the two AR components were close for different weighting schemes. The same 

was observed for the MIDAS-SARIMA models, which had the same MA(1) and SMA(1) 

structures and similar estimated coefficients. This suggests that the different weighting 

schemes made little difference in the estimation of the MIDAS models. This result is consistent 

with the results of Bangwayo-Skeete and Skeete (2015). The AIC and BIC values suggest that the 

MIDAS-SARIMA models had a better fit and were more appropriate than the MIDAS-AR models. 

The weights of the daily indices can be visualised. For example, the weights of the 30 daily 

indices for the MIDAS-SARIMA models are plotted in Fig. 3.  

 

(Insert Fig. 3 about here) 
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All three weighting schemes weighted the most recent indices more heavily. Most weights were 

put on the last 15 days, whereas the earlier days had almost 0 weight. Furthermore, the beta 

weighting scheme put the highest weight on Day 2, whereas Day 1 was given very little weight. 

The exponential Almon and Gompertz weighting schemes generated similar patterns to that of 

the beta weighting scheme. However, their weighting curves were much smoother than that of 

the beta weighting scheme. The close estimates of 𝛽1 shown in Table 2 suggest that the total 

weights of the daily indices were similar. 

5. Result evaluation 

5.1. Forecasting 

In this subsection, the forecasting performance of the models using data from March 2017 to 

February 2018 is evaluated. Search query data with one lag were used in the modelling process, 

with the tourist arrivals and search query data available up to time t. Thus, the ARIMAX and 

MIDAS models had to first be estimated using tourist arrivals data up to time t and search query 

data up to time t-1. The results were then used to generate the forecasts at time t+1, with 

search query data at time t. Therefore, only one-step-ahead forecasts could be generated in 

this study. Longer-term forecasts may be further investigated in a future study with a different 

estimation procedure that uses search query data of lags longer than one but not conducted 

here. An expanding window approach was used to generate the one-step-ahead dynamic 

forecasts. For example, the data on tourist arrivals up to February 2017 and the search query 

data up to January 2017 were first used to estimate the models, then the search query data for 

February 2017 were used to forecast tourist arrivals in March 2017. The estimation period was 

then extended by 1 month and the models were re-estimated using the same procedure. The 
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forecasts were generated at each round until all 12 one-step-ahead forecasts were calculated 

for the period from March 2017 to February 2018. 

Forecast accuracy was evaluated using five commonly used forecast error measures, including 

the mean absolute deviation (MAD), the mean squared error (MSE), the mean absolute 

percentage error (MAPE), the root mean square percentage error (RMSPE) and Theil’s U 

statistic (Goh and Law 2002; Law et al. 2019). The MAD and MSE are absolute error measures. 

In contrast, the MAPE and RMSPE are relative error measures. Finally, Theil’s U was constructed 

based on the error ratio of the underlying model to the seasonal naïve model. A seasonal naïve 

model basically predicts that monthly tourist arrivals for the following year will be the same as 

this year for the same month. A value less than 1 indicates that the performance of the model is 

superior to that of the naïve model. Their specifications are as follows: 

MAD =
1

𝑛
∑ |𝐴𝑡 − 𝐹𝑡|

𝑛

𝑡=1

 

MSE =
1

𝑛
∑(𝐴𝑡 − 𝐹𝑡)2

𝑛

𝑡=1

 

MAPE =
1

𝑛
∑

|𝐴𝑡 − 𝐹𝑡|

𝐴𝑡

𝑛

𝑡=1

 

RMSPE = √
1

𝑛
∑ (

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
)

2𝑛

𝑡=1

 

U =
√∑ (𝐴𝑡−𝐹𝑡)2𝑛

𝑡=1

√∑ (𝐴𝑡−𝐴𝑡−12)2𝑛
𝑡=1

, 
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where A𝑡 is the actual value, F𝑡 is the forecast value at time t and n is the length of the 

forecast period (n = 12 in this study). Two extra benchmark models have been added to the 

forecasting practice: the ETS and the seasonal naïve model. Athanasopoulos et al. (2011) found 

that the ETS performed particularly well for monthly data in their tourism forecasting 

competition. The seasonal naïve model is also widely used as a benchmark model in forecasting 

seasonal tourism demand (Athanasopoulos et al. 2011). Table 3 presents the results of the 

models’ forecasting performance. 

 

(Insert Table 3 about here) 

 

The rankings were mostly consistent based on the error measures. All of the models except for 

the seasonal naïve model had Theil’s U values of less than 1, suggesting that all of the models 

outperformed the seasonal naïve model in terms of the squared error (SE). 

Overall, the seasonal naïve model performed the worst, especially in terms of the MSE and 

RMSPE. In contrast, the ETS performed well in terms of the MSE and RMSPE. The SARIMAX 

model performed better than the SARIMA model based on the error measures and showed that 

search queries improved the forecasting accuracy of tourist arrivals. This result is consistent 

with the findings of previous studies (Li et al. 2017; Pan et al. 2012; Pan and Yang 2017; Yang et 

al. 2015). The MIDAS-AR models generated forecasts comparable to those of SARIMA and only 

outperformed SARIMA in terms of the MAPE and MAD. This result contrasts the findings of 

Bangwayo-Skeete and Skeete (2015). The MIDAS-AR models were also outperformed by the 

SARIMAX and MIDAS-SARIMA models, indicating that traditional MIDAS models have 
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limitations when using the information provided by high frequency search query data. The 

SARIMAX model performed well due to its flexibility to incorporate seasonal and non-seasonal 

ARMA components. Finally, the MIDAS-SARIMA models demonstrated the best performance in 

terms of all measures and remarkable improvements compared with the MIDAS-AR models. 

Thus, this improved MIDAS model combining the strengths of the MIDAS and SARIMAX models 

improved the forecasting performance. The results also suggest that forecasting performance 

was improved by integrating MA components into MIDAS models, which is consistent with the 

findings of Foroni et al. (2019). 

MIDAS-SARIMA-Almon demonstrated the best performance based on the MAD, MAPE and 

RMSPE, whereas MIDAS-SARIMA-Gom demonstrated the best performance based on the MSE 

and Theil’s U. Overall, different weighting schemes generated comparable forecasting 

performance, which is consistent with the findings of Bangwayo-Skeete and Skeete (2015). The 

results also indicate that the most recent search query data, which were assigned most weights 

in the MIDAS-SARIMA models, were the most valuable in predicting tourist arrivals. 

To further test the significance of forecasting differences between the two better benchmark 

models (SARIMA and ETS) and the models using search query data, a Diebold-Mariano (DM) 

test was conducted (Diebold and Mariano 1995). The test was based on the forecasting 

differences of four measures, namely the absolute deviation, the SE, the absolute percentage 

error (APE) and the squared percentage error (SPE), which were used to calculate the MAD, 

MSE, MAPE and RMSPE, respectively. As Theil’s U had the same denominator derived from the 

seasonal naïve model and its numerator was calculated from the MSE, the corresponding DM 

test largely depended on the MSE and was therefore omitted. Tables 4 and 5 present the 
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results of the DM tests for SARIMA and the ETS, respectively. The null hypothesis of the DM test 

is that the accuracy of the forecasts generated by the benchmark and alternative models does 

not differ. 

 

(Insert Table 4 about here) 

 

(Insert Table 5 about here) 

 

As indicated by the DM test statistics, although the SARIMAX model outperformed the SARIMA 

model, the difference was not significant. Only the MIDAS-SARIMA models performed 

significantly better than SARIMA based on the error measures (at least at the 10% significance 

level), confirming the superiority of the proposed model and highlighting the importance of 

added flexibility to accommodate MA dynamics in MIDAS models. In the case of the ETS, only 

MIDAS-SARIMA-Almon generated significantly better results in terms of all measures. 

MIDAS-SARIMA-Gom significantly outperformed the ETS in terms of the AE and APE. 

5.2. Nowcasting 

The traditional models used in this study, such as the benchmark models and ARIMAX, are 

unable to update the forecasts until a full month of search query data are available, as they 

cannot incorporate high frequency search query data that offer a new daily index after each 

day. However, daily nowcasts can be generated using MIDAS models as new search query data 

become available every day. For example, when the search query data for the first day of the 

month are available, they can be added to the MIDAS models and used to predict tourist 
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arrivals for that month (nowcasting). This can be repeated every day until the end of the month. 

Again, due to the variable number of days in each month, nowcasts with search query data for 

30 days starting from the first day of the same month were produced. As the MIDAS-SARIMA 

models had the best forecasting performance, their nowcasting performance was further 

investigated. Nowcasting is conducted in a similar way to forecasting. Nowcasting models must 

be refitted when new daily search query data become available, using the monthly tourist 

arrivals data until the end of the last month and the daily search query data until the end of 

that day. Then the nowcasts of the monthly tourist arrivals in the current month can be 

generated. This process can be repeated over an entire month to update the nowcasts of 

tourist arrivals in that month. The accuracy of these nowcasts can be investigated to determine 

whether updated nowcasts with more daily search query data perform better. 

Nowcasting performance is plotted against the number of days of search query data added in 

Fig. 4-8. The X axis represents the number of days of search query data added to generate the 

nowcasts. Day 0 denotes the forecasting performance of the same model. The horizontal 

dotted line drawn on the forecasting performance level facilitates the comparison between 

forecasts and nowcasts. 

 

(Insert Fig. 4 about here) 

 

(Insert Fig. 5 about here) 

 

(Insert Fig. 6 about here) 



29 

 

(Insert Fig. 7 about here) 

 

(Insert Fig. 8 about here) 

 

The nowcasts showed a certain level of fluctuation for all models. Overall, the exponential 

Almon weighting scheme gave the best results. In addition, most of the points were below the 

dotted forecasting line of the corresponding colour, which became more apparent as the 

number of days increased. This suggests that nowcasting generally outperforms forecasting 

using the MIDAS-SARIMA models, especially when more data become available. The percentage 

of the nowcasts outperforming the forecasts were calculated for each model, as shown in Table 

6. The exponential Almon and beta weighting schemes had more nowcasts that outperformed 

the forecasts based on all measures. However, the Gompertz weighting scheme had better 

nowcasts only with respect to the MAPE. Nevertheless, a downward trend was still visible for 

the Gompertz weighting scheme (as shown in Fig. 4-8), indicating that the nowcasts generally 

improved as more search query data became available. 

 

(Insert Table 6 about here) 

 

6. Conclusion 

Search query data are increasingly used to improve the accuracy of tourism demand forecasting. 

The aim of this study was to investigate the performance of an improved MIDAS model (the 
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MIDAS-SARIMA model) with the flexibility to accommodate seasonal and non-seasonal ARMA 

dynamics in predicting monthly tourist arrivals in Hong Kong from mainland China. The results 

confirmed the superiority of the proposed MIDAS-SARIMA model compared with traditional 

MIDAS and other benchmark models. 

Traditional MIDAS-AR models are ineffective when MA dynamics are involved. The MIDAS-AR 

models produced similar results to those of the benchmark model and were outperformed by 

the SARIMAX model. Although MIDAS-AR could better use the valuable information contained 

in the high frequency data, this advantage was outweighed by the limitation of its structure. 

The improved forecasting performance of the proposed MIDAS-SARIMA model compared with 

the MIDAS-AR models is consistent with the findings of Foroni et al. (2019), who demonstrated 

the relevance of MA components in MIDAS models in forecasting macroeconomic variables. In 

addition to accommodating MA components, the MIDAS-SARIMA model proposed in this study 

could incorporate seasonal ARMA components and automatically choose appropriate 

structures. As a result, the MIDAS-SARIMA model produced the best forecasts and was the only 

model that could significantly outperform the SARIMA benchmark model, as indicated by the 

DM tests. 

A comparison of forecasts and nowcasts was also conducted. As new search query data became 

available, their information could be incorporated into the MIDAS models using the mixed 

frequency structure and daily nowcasts could be generated. The nowcasts outperformed the 

forecasts most of the time for the exponential Almon and beta weighting schemes. Although 

the forecasts of the Gompertz weighting scheme outperformed most nowcasts, the scheme 
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overall showed a downward trend in error measures. Thus, the nowcasts were generally more 

accurate as more search query data became available. 

The results of this study have important implications for research in this area. Search query 

data have received considerable attention in forecasting tourism demand in recent years. 

However, using the valuable information contained in these data is problematic and requires 

appropriate methods. Bangwayo-Skeete and Skeete (2015) were the first to use MIDAS models, 

which were found to have better forecasting performance than benchmark time series models. 

However, they did not compare these MIDAS models with models that could also include 

search query information, such as the SARIMAX model. Therefore, whether the benefits of 

MIDAS can outweigh the cost of the limitations of its structure is unclear. Indeed, some studies 

have found no evidence supporting the use of mixed frequency methods (Rivera 2016). The 

forecasting performance of MIDAS models is likely to be hindered by their inability to 

accommodate MA dynamics. The improved MIDAS model proposed in this study not only 

overcame this shortcoming, but also accommodated seasonal dynamics. In addition, the 

automatic structure determination reduced the risk of misspecification. Overall, the forecasting 

results confirm the merits of this new model. 

The results of this study also have implications for decisionmakers in the tourism sector. 

Specifically, they confirm the value of search query data in forecasting tourism demand, 

showing that forecasting accuracy can be further improved using the improved MIDAS model. 

The benefits of this improved forecasting accuracy are significant, as indicated by the DM tests, 

whereas the cost is minimal, as the search engine data can often be retrieved for free. Once the 

model is developed, updating the forecasts and nowcasts is easy. As nowcasts can be generated 
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daily, they are particularly important for those who need frequent updates of tourism demand 

forecasts in their day-to-day business operations. 

Various possibilities exist for future research. First, only search query data were used in this 

study. Other forms of big data, such as social media and device data, may be valuable 

predictors that can improve forecasting accuracy. In addition, the results suggest that the most 

recent search query data have more forecasting power. Therefore, improved forecasting 

accuracy may gradually disappear as the forecasting horizon increases. As only short-term 

forecasts were generated in this study, it would be interesting to see whether the usefulness of 

search query data wanes as the forecast horizon increases. Finally, more origin and destination 

pairs should be used to further generalise the results of this study. 
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Appendix A 

No. Search query name No. Search query name No. Search query name 

Dining 33 Hong Kong travel map 66 Hong Kong Ocean Park 
1 Hong Kong food 34 Hong Kong subway price 67 Hong Kong Times Square 
2 Hong Kong snack 35 Hong Kong subway schedule 68 Hong Kong Mong Kok 
3 Hong Kong food tips 36 Hong Kong airport 69 Hong Kong Causeway Bay 
4 Hong Kong food recommendation 37 Hong Kong airport express 70 Hong Kong Avenue of Stars 

5 Hong Kong specialty 38 
Hong Kong airport duty free 
shop 

71 Hong Kong Victoria Harbour 

6 What are Hong Kong specialties 39 Octopus card 72 Hong Kong attractions 
7 Hong Kong specialty food 40 Citybus  73 Madame Tussauds Hong Kong 
8 Macau food 41 Futian Port 74 Hong Kong Ocean Park tips 
9 Tsui Wah Restaurant 42 Huanggang Port 75 Hong Kong Ocean Park ticket 
10 Taiwan food 43 Kowloon bus 76 Hong Kong Disneyland 
11 Hong Kong restaurants 44 Luohu Port 77 Hong Kong Disneyland Resort 

 
 

45 
Customs clearance time of 
Luohu Port  

78 Hong Kong Ocean Park ticket price 

Shopping 46 Shenzhen Bay Port 79 Hong Kong Disneyland ticket price 
12 Hong Kong shopping 47 Hong Kong International Airport 80 Hong Kong Disneyland tips 

13 Hong Kong shopping list 48 
Hong Kong Cross-Harbour 
Tunnel 

81 Macau tourist attractions 

14 Hong Kong shopping tips 49 Hong Kong airlines 82 Wong Tai Sin 
15 Hong Kong Ladies Market  83 Hong Kong Wax Museum 
16 What is worth buying in Hong Kong Tours 84 Hong Kong Museum of History 

17 Hong Kong shopping guide 50 Hong Kong travel tips 85 
Hong Kong tourist attractions 
encyclopedia 

18 Hong Kong shopping map 51 Hong Kong self-guided tour tips 86 Hong Kong tourist attractions pictures 
19 Hong Kong travel shopping guide 52 Hong Kong travel guide 87 Hong Kong Jockey Club 
20 Go to Hong Kong shopping tips 53 Hong Kong tourism tips 88 Hong Kong Victoria Harbour night view 

21 Hong Kong Mong Kok shopping tips 54 
Hong Kong tourism self-guided 
tour Lodging 

22 
Exchange rate of Hong Kong dollar to 
Chinese yuan 

55 Hong Kong weather 89 Hong Kong hotels 

23 Exchange rate of Hong Kong dollar 56 Hong Kong weather forecast 90 Peninsula Hotel Hong Kong 
24 Hong Kong shopping centers 57 Hong Kong one-day trip 91 Hong Kong hotels booking 
25 Hong Kong cosmetics 58 Hong Kong one-day trip tips 92 Hong Kong accommodation 
26 Hong Kong airport duty free shops 59 Hong Kong tips 93 Four Seasons Hotel Hong Kong 
27 Hong Kong duty free shops 60 Hong Kong travel agencies 94 Hong Kong hotels recommendation 
  61 Hong Kong Observatory  95 Hong Kong hotels booking website 

Transportation 62 Hong Kong self-help tour 96 Hong Kong hotels group-booking 
28 Hong Kong map 63 Hong Kong self-guided tour 97 L’Hotel Nina et Convention Centre 
29 Hong Kong subway  98 Hong Kong hotels map 
30 Hong Kong subway circuit map Attractions 99 Hong Kong hotels reservation 
31 Hong Kong whole map HD 64 Hong Kong tourist attractions 100 Hong Kong hostels 

32 Hong Kong subway map 65 
Hong Kong tourist attractions 
introduction 

101 Hong Kong accommodation guide 

Note: Keywords in bold indicate the initial keywords specified.  
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Table 1. Results of the SARIMA and SARIMAX models. 

SARIMA 

 

SARIMAX 

Non-seasonal 

differencing Yes 

 

Non-seasonal 

differencing Yes 

Seasonal differencing Yes 

 

Seasonal differencing Yes 

AR(1) 0.2651 AR(1) -0.8780*** 

AR(2) -0.5819*** AR(2) -0.5241*** 

MA(1) -1.0745*** SMA(1) -0.5468*** 

MA(2) 1.2188*** 𝑖𝑛𝑑𝑒𝑥𝑡−1 0.2122*** 

MA(3) -0.4372**   

SMA(1) -0.6750***   

Residual variance 0.00387 

 

Residual variance 0.00356 

AIC -150.22 

 

AIC -157.74 

BIC -135.45 

 

BIC -147.27 

Ljung-Box test 0.35 

 

Ljung-Box test 0.70 

Note: ***, ** and * indicate that the estimates are significant at the 1%, 5% and 10% levels, respectively. 
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Table 2. Results of the MIDAS-AR and MIDAS-SARIMA models. 

MIDAS-AR-Almon MIDAS-AR-Beta MIDAS-AR-Gom MIDAS-SARIMA-Almon MIDAS-SARIMA-Beta MIDAS-SARIMA-Gom 

Non-seasonal  
differencing 

Yes 
Non-seasonal  
differencing 

Yes 
Non-seasonal  
differencing 

Yes 
Non-seasonal  
differencing 

Yes 
Non-seasonal  
differencing 

Yes 
Non-seasonal  
differencing 

Yes 

Seasonal  
differencing 

Yes 
Seasonal  
differencing 

Yes  
Seasonal  
differencing 

Yes  
Seasonal  
differencing 

Yes  
Seasonal  
differencing 

Yes  
Seasonal  
differencing 

Yes  

𝛽1 
0.2342** 

𝛽1 
0.2349** 

𝛽1 
0.2376** 

𝛽1 
0.2932** 

𝛽1 
0.2788** 

𝛽1 
0.2881** 

𝜃1 
-0.1196 

𝜃1 
0.9607*** 

𝜃1 
1.9965 

𝜃1 
0.2809 

𝜃1 
1.1262 

𝜃1 
0.7226 

𝜃2 0.0026 𝜃2 1.0779 𝜃2 0.5920 𝜃2 -0.0281 𝜃2 8.1216 𝜃2 3.9867 

AR(1) -0.9096*** AR(1) -0.9274*** AR(1) -0.9141*** MA(1) -0.6464*** MA(1) -0.6559*** MA(1) -0.6465*** 

AR(2) -0.5265*** AR(2) -0.5348*** AR(2) -0.5353*** SMA(1) -0.5540*** SMA(1) -0.5077*** SMA(1) -0.5437*** 

AIC -139.10 AIC -138.91 AIC -138.65 AIC -145.96 AIC -145.86 AIC -146.21 

BIC -128.80 BIC -128.60 BIC -128.35 BIC -133.39 BIC -133.30 BIC -133.64 

Ljung- 
Box test 

0.29 
Ljung- 
Box test 

0.31 
Ljung- 
Box test 

0.27 
Ljung- 
Box test 

0.38 
Ljung- 
Box test 

0.53 
Ljung- 
Box test 

0.48 

Note: ***, ** and * indicate that the estimates are significant at the 1%, 5% and 10% levels, respectively. 
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Table 3. Evaluation of the one-step-ahead dynamic forecasts. 

Measure MAD MSE MAPE RMSPE Theil’s U 

Seasonal Naïve 288,795 1.77E+11 7.30% 10.01% 1 

ETS 286,297 1.24E+11 7.34% 8.70% 0.837 

SARIMA 290,781 1.45E+11 7.46% 9.33% 0.904 

SARIMAX 268,737 1.26E+11 6.94% 8.83% 0.844 

MIDAS-AR-Almon 285,371 1.54E+11 7.31% 9.63% 0.932 

MIDAS-AR-Beta 285,183 1.54E+11 7.30% 9.62% 0.933 

MIDAS-AR-Gom 280,302 1.52E+11 7.19% 9.58% 0.927 

MIDAS-SARIMA-Almon 248,653 1.08E+11 6.34% 8.08% 0.78 

MIDAS-SARIMA-Beta 255,198 1.17E+11 6.58% 8.52% 0.814 

MIDAS-SARIMA-Gom 250,081 1.06E+11 6.47% 8.16% 0.775 

Note: Figures in bold indicate the best forecasting performance for each measure. 
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Table 4. DM test statistics for SARIMA. 

Measure AE SE APE SPE 

SARIMAX -0.935 -1.083 -0.804 -0.818 

MIDAS-AR-Almon -0.179 0.370 -0.182 0.359 

MIDAS-AR-Beta -0.186 0.384 -0.201 0.358 

MIDAS-AR-Gom -0.334 0.296 -0.317 0.301 

MIDAS-SARIMA-Almon -2.107** -1.484* -2.260** -1.669** 

MIDAS-SARIMA-Beta -2.101** -1.431* -1.902** -1.334* 

MIDAS-SARIMA-Gom -2.081** -1.328* -2.084** -1.338* 

Note: ***, ** and * indicate that the estimates are significant at the 1%, 5% and 10% levels, respectively. 
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Table 5. DM test statistics for ETS. 

Measure AE SE APE SPE 

SARIMAX -0.757 0.189 -0.629 0.271 

MIDAS-AR-Almon -0.023 0.712 -0.025 0.693 

MIDAS-AR-Beta -0.029 0.719 -0.041 0.695 

MIDAS-AR-Gom -0.148 0.669 -0.138 0.655 

MIDAS-SARIMA-Almon -2.213** -1.578* -2.209** -1.656** 

MIDAS-SARIMA-Beta -1.323 -0.510 -1.193 -0.325 

MIDAS-SARIMA-Gom -1.812** -1.219 -1.628* -1.012 

Note: ***, ** and * indicate that the estimates are significant at the 1%, 5% and 10% levels, respectively. 
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Table 6. Percentage of nowcasts outperforming forecasts. 

Measure MAD MSE MAPE RMSPE Theil’s U 

MIDAS-SARIMA-Almon 0.73 0.83 0.60 0.90 0.83 

MIDAS-SARIMA-Beta 0.63 0.87 0.53 0.80 0.87 

MIDAS-SARIMA-Gom 0.50 0.33 0.63 0.37 0.33 
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Fig. 1. Log criterion for factor selection. 
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Fig. 2. Daily index and log of tourist arrivals. 
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Fig. 3. Different weighting schemes of the daily indices for the MIDAS-SARIMA models. The 

x-axis represents the number of days preceding the first day of the following month. 
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Fig. 4. MAD of nowcasting for the MIDAS-SARIMA models with different weighting schemes.  
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Fig. 5. MSE of nowcasting for the MIDAS-SARIMA models with different weighting schemes. 
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Fig. 6. MAPE of nowcasting for the MIDAS-SARIMA models with different weighting schemes. 
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Fig. 7. RMSPE of nowcasting for the MIDAS-SARIMA models with different weighting schemes. 
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Fig. 8.Theil’s U of nowcasting for the MIDAS-SARIMA models with different weighting schemes. 
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