
Higher Inductive Types, Inductive
Families, and Inductive-Inductive Types

Jakob von Raumer

September 30, 2019

ii

Abstract

Martin-Löf type theory is a formal language which is used both as a foun-
dation for mathematics and the theoretical basis of a range of functional
programming languages. Inductive types are an important part of type
theory which is necessary to express data types by giving a list of rules
stating how to form this data. In this thesis we we tackle several questions
about different classes of inductive types.

In the setting of homotopy type theory, we will take a look at higher in-
ductive types based on homotopy coequalizers and characterize their path
spaces with a recursive rule which looks like an induction principle. This
encapsulates a proof technique known as “encode-decode method”.

In an extensional meta-theory we will then explore the phenomenon
of induction-induction, specify inductice families and discuss how we can
reduce each instance of an inductive-inductive type to an inductive family.
Our result suggests a way to show that each type theory which encom-
passes inductive families can also express all inductive-inductive types.

iii

iv

Acknowledgements

There are several people inside and outside university without whom my
pursuit of a PhD as well as this thesis would have been impossible. I am
grateful for everyone who supported and encouraged me during the past
four years.

First of all, I would like to thankmy supervisor Thorsten Altenkirch for
giving me the maximal amount of freedom in the choice of the direction
of my research, for being patient when progress was sluggish, for his good
advice, and for being understanding when I had to interrupt my studies.

I am grateful for the support both professional and emotional that I re-
ceived from the other members of the Functional Programming Lab at the
University of Nottingham, especially Nicolai Kraus and Paolo Capriotti.
The Lab has always been a place for good collaboration and broadening
my horizon.

Furthermore, I want to thank Ambrus Kaposi for giving me the oppor-
tunity to work with him in Budapest and to help me get unstuck with the
constructions on inductive-inductive types.

v

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Background . 1
1.2 Homotopy Type Theory and Higher Inductive Types 2
1.3 The Concept of Induction-Induction 3
1.4 Contributions and Publications 4
1.5 Structure of this Thesis . 5

2 Basic Type Theory 7
2.1 Dependent Type Theory . 7
2.2 Inductive Types . 15
2.3 Typal Equality and Homotopy Type Theory 18
2.4 Theorem Provers Based on Type Theory 27

2.4.1 Lean . 29
2.4.2 Agda . 31

3 Higher Inductive Types 33
3.1 Examples of Higher Inductive Types 33
3.2 Coequalizers as a Fundamental HIT 37
3.3 Encode-Decode Proofs . 40

4 Path Spaces of Higher Inductive Types 45
4.1 The Main Theorem: Path Spaces in Coequalizers 48
4.2 Equality in Pushouts . 57
4.3 First Applications . 59
4.4 Free Groupoids and a Higher Seifert-van Kampen Theorem 61

vii

viii CONTENTS

4.5 Formalization in Lean . 66

5 Specification of Inductive-Inductive Types 71
5.1 Signatures for Inductive-Inductive Types 73
5.2 Algebras of Inductive-Inductive Types 78
5.3 Morphisms of Algebras . 80

6 Specification of Inductive Families 85
6.1 Signatures for Inductive Families 85
6.2 Algebras of Inductive Families 89
6.3 Displayed Algebras and their Sections 91
6.4 Existence of Inductive Families 95

6.4.1 Internalization of the Syntax 96
6.4.2 Constructing the Term Model 103

7 Reducing Inductive-Inductive Types to Inductive Families 111
7.1 Example: Type Theory Syntax 113
7.2 Type Erasure . 116
7.3 The Wellformedness Predicate 121
7.4 The Initial Object . 126
7.5 The Eliminator Relation . 131
7.6 Formalization in Agda . 136
7.7 Conclusions and Future Work 138

Bibliography 143

Chapter 1

Introduction

1.1 Background

This thesis explores several problems in the field of type theory. By type
theorywewill alwaysmean various flavors of what is usually referred to as
Martin-Löf type theory or dependent type theory. Martin-Löf type theory
(MLTT) can serve as a foundational framework for mathematics as well as
an organization principle for functional programming languages [Martin-
Löf and Sambin, 1984].

In the field of type theory, many researchers either apply theoretical
considerations to achieve cleaner formalizations of mathematical content,
they create implementations of type theory which can be used as interac-
tive theorem proving systems, and they try to extend type theory to im-
prove its usability and justify these extensions with models.

In this spirit, this thesis will also explore ways to make certain kinds
of formalizations and certain constructions in type theory smoother and
easier to use. While it is mainly theoretical work, it has consequences for the
application of interactive theoremprovers, as they are used today. This the-
sis is broadly split in two halves. Both halfs will explore different classes of
language elements both of which are generalizations of a language feature
which is called inductive types. Inductive types are a commonway to define
collections of data in mathematics as well as computer science.

In the first half, we will encapsulate a common proof strategy which
is often used in the field of homotopy type theory and especially in syn-
thetic homotopy theory [Univalent Foundations Program, 2013]. We will
do this by proving a very general result about higher inductive types. These

1

2 1.2. HOMOTOPY TYPE THEORY AND HIGHER INDUCTIVE TYPES

are inductive types in which statements about equality between elements
of these data types carry a higher-dimensional structure, making them on the
one hand an interesting object of study in terms of their topology, but on
the other hand they are sometimes hard to handle. Our theorem allows an
easier way to prove propositions about these equalities of elements.

In the second half, we will explore the topic of induction-induction.
Inductive-inductive types [Nordvall Forsberg, 2013] are a class of inductive
types which allows us to define a data type simultaneouslywith data types
depending on values of the former type. Wewill give an exact definition of
what inductive-inductive types are, and, with a new definition of inductive
families provide a point of comparison which allows us to represent each
example of an inductive-inductive type as a construction based on a series
of inductive families.

1.2 Homotopy Type Theory and Higher Induc-
tive Types

Homotopy type theory is a relatively new field which connects the study
of dependent types with the field of higher category theory and homo-
topy theory. This synthesis has since offered a new perspective on how
to constructively have a formal representation of homotopy theory which
is synthetic, i. e. builds the spaces which are considered out of just a few
fundamental operations.

The connection to homotopy theory is based on the observation that one
might consider equality types, which by the proposition-as-types interpre-
tation of type theory, represent the statement that two elements x and y of
a type A are equal, as representing the spaces of paths modulo homotopy.
Extending on this equivalence, we can view types to represent spaces, and
types depending on the data of other types as fibrations.

In this setting, we want to consider types, which are inductively de-
fined, like for example the natural numbers, but which, besides the points
of the type also allow the (free) generation of new paths between points
and “higher” paths between other paths. These types are called higher in-
ductive types.

To prove facts about higher inductive types, for example in order to get
the type theoretic equivalent of the fact that the fundamental group of the
circle is equivalent to the integers, or the type theoretic Seifert-van Kam-

CHAPTER 1. INTRODUCTION 3

pen theorem, which characterizes the fundamental groupoid of a pushout
of spaces, a proof strategy with the name “encode-decode method” is em-
ployed.

In this thesis we provide a theorem which can be seen a generalization
of encode-decode proofs. The application of this theorem can help to re-
duce “boiler plate” overhead in formalizations and in reasoning about the
equalities between points of higher inductive types.

1.3 The Concept of Induction-Induction
While the first half of this thesis is aboutways tomake inductive types carry
higher-dimensional structure, the second half is about allowing for induc-
tive types which are more interdependent: There are situations in which we
might not only want to define one single type or type family, but instead
we want to define a type A and a type family B : A → U , or even a whole
system of new types, indexed over each other, mutually. “Mutually” here
means that the point constructors, which specify which elements we can
form can refer to any of the types being defined. And more than that, also
the signature of the type families which we define can be indexed over
other type families the definition of which is not finished.

To illustrate onemain application, imagine wewanted to formalize and
reason about the syntax of type theory in a type theoretic setting. The en-
vironment of variables which are at our disposal at a given point in a piece
of type theoretic syntax are captured in what is called a context. We can
model contexts as a type Con : U (U being the universe of all types). But
at the same time we want to model types as existing in a context, so we
want a simultaneous definition of a type family Ty : Con → U . To see that
we can not first define Con and then move on to define Ty, consider the
following data which Con and Ty should include:

Contexts can be seen as lists of types depending on previous entries in
that list. In that sense, it is obvious that for a context Γ : Con and a type
A : Ty(Γ) in that context, wewant a context which represents the extension
of Γ by A. This means that Con should have a constructor of the form

ext : (Γ : Con) → Ty(Γ) → Con,

and the fact that this constructor mentions Ty is already enough to exclude
a sequential definition of Con and Ty.

4 1.4. CONTRIBUTIONS AND PUBLICATIONS

Given the need for inductive-inductive types we can ask the question
of whether this concept is really stronger than inductive families without
dependencies between the sorts. At first glance it might seem as if they are
more expressive, but on a closer look we can discover that we can actually
reduce every example of an inductive-inductive type to an inductive family.

The second half of this thesis is about making this reduction, which
can easily be seen to work on specific examples, more general. To make it a
formal statementwewill have to give precise definitions of what inductive-
inductive types are andwhat, as our reference point, inductive families are.
While we don’t succeed at providing a full formal proof for the reduction,
the essential steps of it are complete and formalized in Agda.

1.4 Contributions and Publications
While parts of this thesis consists of the review and introduction of con-
structions and knowledge which is already established, other parts offer
new contributions which stand on the shoulders of these “giants”. The
contributions of this thesis include the following:

• The formalization of lots of homotopy theoretic notions in the theo-
rem prover Lean as described in Section 2.4.1.

• The formulation of the characterization theorem for path spaces of
homotopy Coequalizers Theorem 4.0.2, as well as its proof as given
in Section 4.1.

• The adaptation of this theorem for pushouts as described in Theo-
rem 4.2.1.

• The formulation of a possible higher Seifert-van Kampen theorem as
stated in Theorem 4.4.1.

• The formalization of Section 4.1 and Theorem 4.2.1 in Lean.

• An adaptation of the syntax for higher inductive-inductive types by
Kaposi and Kovács [2018a] to separate sort and point constructors,
as described, together with its semantics, in Chapter 5.

• A syntax of signatures for inductive families as given in Chapter 6.

CHAPTER 1. INTRODUCTION 5

• A formal specification of type erasure, wellformedness relation and
eliminator relation given as syntactic translations as described in Sec-
tion 7.2, Section 7.3, and Section 7.5.

• A formal definition of the “sigma construction” for an initial algebra
for inductive-inductive types as proposed in Section 7.4.

Parts of this thesis have been peer-reviewed and published already,
while other parts, especially Chapter 6 and Chapter 7 are not yet published
elsewhere.

• Together with Floris van Doorn andUlrik Buchholtz, a more detailed
description of our homotopy type theory formalizations was given
in the proceedings of the conference Interactive Theorem Proving – 8th
International Conference in 2017 [van Doorn et al., 2017].

• In joint work with Nicolai Kraus, the characterization of path spaces
was published in the proceeding of the conference Thirty-Fourth An-
nual ACM/IEEE Symposium on Logic in Computer Science (LICS) in
2019 [Kraus and von Raumer, 2019].

1.5 Structure of this Thesis
Wewill start off this thesis by giving amore detailed exposition of the back-
ground in type theory, which is the basis for the further content. In this en-
deavour, Chapter 2 does not only serve to give the necessary background
to readers unfamiliar with dependent types, it also sets notations and ter-
minology which we will re-use in the later chapters. In Section 2.4, it fur-
thermore gives a short characterization of the interactive theorem provers
Lean and Agda.

Chapter 3 will then first introduce some examples of higher inductive
types and will then go on to propose homotopy coequalizers as a funda-
mental higher inductive type which can serve as a common generaliza-
tion of all of these examples. Sketches for two proofs using the “encode-
decode” method will be given in Section 3.3.

Following the introduction of homotopy coequalizerswewill then (Chap-
ter 4) see how we can characterize their path spaces in order to replace
encode-decodeproofs. Apart fromproving this characterization (Section 4.1)
wewill demonstrate this use in some examples (Section 4.3 and Section 4.4).

6 1.5. STRUCTURE OF THIS THESIS

Switching not only the type theoretical setting fromhomotopy type the-
ory to set-truncated (or even extensional) type theory but also the focus of
the thesis, the second half will explore types which instead of higher di-
mensional structure carry intricate dependencies between multiple types
to be defined.

We will start this second half by first giving a syntax for inductive-
inductive types (Chapter 5) including its semantics, before comparing it
to the simpler fragment of inductive families (Chapter 6). The latter will
be reduced to indexed W-types in Section 6.4.

After reducing inductive families to indexed W-types we will try to
reduce inductive-inductive types to inductive families: In Chapter 7 we
will give a formal description about how to generate the inductive families
which correspond to erasing the inductive-inductive typing information,
recovering it with a wellformedness predicate, yielding a candidate for an
inital object in the target type theory. Then we will present a binary rela-
tion which could be used in the future to prove its initiality.

Chapter 2

Basic Type Theory

This chapter shall serve to introduce the basic notions of type theorywhich
wewill need for the subsequent content of this thesis. At first (Chapter 2.1),
we will have a general look on dependent type theory, its use and how it
differs from a set theoretic foundation, afterwards (Chapter 2.2) we want
to unify the notion of an inductive type using the concept of indexed W-
types. Then (Chapter 2.3), wewill explain how homotopy type theorywas
created to have a suitable language to reason about higher equalities and
how it provides a synthetic way to formalize topological insights. Finally,
in Chapter 2.4, we will give examples of two theorem provers based on
dependent types, Agda and Lean, and point out some of their differences.

2.1 Dependent Type Theory
The term “type theory” stems from the early nineteenth centry, when Bert-
rand Russell sought to lay out an alternative form of set theory which did
not suffer from the paradox which Russell discovered. Todays versions of
type theory have little in common with Russell’s attempts but rather rely
on the considerations of Per Martin-Löf (Martin-Löf and Sambin [1984],
Martin-Löf [1998]) who, starting in the 1970’s, built a new mathemati-
cal foundation based on the λ-calculus, himself drawing inspiration from
previous logicians and mathematicians like Alonzo Church and Haskell
Curry. Often, dependent type theory is also referred to as Martin-Löf type
theory (MLTT).

Based on aphenomenonknownas the “Curry-Howard correspondence”,
type theory can serve both as a theoretical foundation for a formal repre-

7

8 2.1. DEPENDENT TYPE THEORY

sentation of mathematics, as well as a principle for the specification for
strongly typed functional programming languages. It was implemented
in computer languages for programming and theorem proving which are
massively used in the field of formal verification and in the formalization of
mathematics. Among the most commonly used implementations are the
theoremproverCoq (Barras et al. [1997])which notably has a lot of users in
the field of hardware verification, the prover Agda (Norell [2009]), which
is popular amongst type theorists themselves, and the Microsoft Research
based project Lean(deMoura et al. [2015]), which has drawn considerable
attention from researchingmathematicians as a tool to formally verify their
proofs.

Type theory differs from a set theoretic mathematical foundation (let
us, as a point of reference, consider set theories based on first-order predi-
cate logic like Zermelo-Fraenkel set theory) in several important aspects:

• Type theory follows a paradigm called “propositions-as-types”. This
means that statements like theorems and conjectures are represented
using the same class of objects as other data like sets or (algebraic)
structures. In contrast to this, most set theoretic foundations are built
on a dichotomy between the propositions and the objects they describe:
They first start outwith a logical framework onwhich axiomatically a
theory of sets is introduced. The coherence between these two levels
must then be created using an axiom like the comprehension axiom
in Zermelo-Fraenkel set theory.

• Type theory is typed while set theory is untyped. While in set theory,
objects can be an element of different sets – consider the number two
which is an element both of the set of even integers as well as the set
of all integers – type theory is based on the principle that every piece
of data (every term) is assigned a unique type which is known at
the point of the creation of the data. This assignment, called typing,
is decidable, and we consider it a judgment rather than a provable
proposition that a given term t has type A.

• Type theory is inherently constructive while many set theoretic foun-
dations, such asZermelo-Fraenkel, are non-constructive. This has great
consequences for the computational use of the mathematics repre-
sented: Every type theoretic function the codomain of which are the
natural numbers, can compute a numeral for any given input.

CHAPTER 2. BASIC TYPE THEORY 9

• While in set theory, sets are the only primitives and all data is encoded
as sets, type theory provides often-used objects like functions and in-
ductively defined types as primitives. This means that we can use these
without having to care about how to assemble them from other prim-
itives.

Let us now fix some notation and some basic constructions which will
occur throughout this text. Asmentioned, wewill, wheneverwe talk about
a certain piece of type theoretic data, accompany it with its type, we need
a notation for this kind of type judgment: We write t : A to state that the
term t is of type A. This is similar to the element relation of a set, but it
also represents the fact that t is a proof for a proposition A. Sometimes, we
want to express that two terms s and t of the same type A only differ by an
unfolding or folding of a definition, or that the application of a reduction
rule to s results in t. We will notate this by s ≡ t. Our type theory will then
make no distinction between s and t. This means that if A and B are types
with A ≡ B, then s : A implies s : B. To keep type checking decidable it is
easy to see that it is important to keep the question whether two terms are
what we call definitionally equal decidable itself.

We said above that each piece of data, so each term, has a unique type
(up to definitional equality). This statement also holds true for types it-
self. Types which themselves contain types, are called universes and we
will denote them using U . The universe itself also needs a type, but as-
suming U : U is inconsistent. This is often referred to as “Girard’s para-
dox” [Girard, 1972, Hurkens, 1995] which can be seen as the type theoretic
equivalent to Russell’s paradox. The solution we assume for the remainder
of this text is to assume that we have an infinite chain of universes

U0 : U1, U1 : U2, U2 : U3, . . . ,

each contained in the next one. Most often, wewill chose to leave the index
implicit and regard our constructions as being universe polymorphic, mean-
ing that they are valid in any chosen universe. Some type theories are con-
structed to be cumulative in the sense that whenever we have a type A : Ui,
it is a type in the succeeding universe, so A : Ui+1. Our constructions will
not rely on cumulativity and they are formalized in non-cumulative type
theories.

Until now, we have not talked about any way to form types. In the
following, we will get to know the non-dependent version of some basic

10 2.1. DEPENDENT TYPE THEORY

types, some of which will later be generalized to a dependent form. These
type formers will be presented in a very similar way: We will give a rule
on how to form the type itself (called formation rule), rules on how to con-
struct elements of the type (called introduction rules), rules on how to use
the elements of the type (called elimination rules), and some of them will
be followed by some reduction rules offering definitional equalities used
to simplify terms. As we have mentioned in the comparison to set the-
ory, functions are basic building blocks in type theory. The non-dependent
functions formwhat is known as simply typed λ-calculus. The formation, in-
troduction, and elimination rules correspond to the fact that we can form
the function type of any type for its domain and any type for its codomain,
the fact that we can build a function by specifying its output for any given
input, and the fact that we can apply a function to any term of its domain:

→-FORM
A, B : U

A → B : U
→-INTRO

a : A ` Φ[a/x] : B

(λx.Φ) : A → B

→-ELIM
f : A → B a : A

f (a) : B

Here, Φ is a term that may have x as a free variable. Φ[a/x] denotes the
replacement of every free appearance of x by a. Additional to these rules
we also have η-conversion and β-reduction:

η
f : A → B

(λx. f (x)) ≡ f
β
(λx.Φ) : A → B a : A

(λx.Φ)(a) ≡ Φ[a/x]

In type theory, these functions are used to represent both functions be-
tween sets as well as implications between propositions. A special kind of
function are those of the form B : A → U . These so called type families
are used to represent set-valued functions as well as propositions with a
free variable in A.

Remark 2.1.1. When giving inference rules as the ones above, we always
assume an arbitrary context of variables for their premises as well as their
conclusion. Often, when presenting the syntax of a type theory, rules on
how to form these contexts ` Γ are given together with rules for the for-
mation of types Γ ` A in a given context Γ and the treatment of terms
Γ ` t : A of a given type A in context Γ. We will choose to be implicit
about the variable context in this chapter, while being more explicit about

CHAPTER 2. BASIC TYPE THEORY 11

them when we introduce other syntaxes in later chapter, for which a more
formal treatment is appropriate.

Since we want a representation of logics in type theory, and so far the
only logical connective we introduced are implications, we might next ask
for types representing the propositions “true” and “false”. Since the ele-
ments of this type should correspond to the proofs of “true” and “false”,
we can conclude that the type corresponding to “true” should contain one
canonical element, while the one corresponding to “false” should contain
none. Thus, we will call these two types the empty type and the unit type,
respectively and denote them with 0 and 1. The formation and introduc-
tion rules for these are not very surprising:

0-FORM
0 : U

1-FORM
1 : U

1-INTRO
⋆ : 1

The elimination rule for 0 says the we can derive a proof for any statement,
given a proof of “false” (“ex falso quodlibet”), while the elimination rule
for 1 specifies that when showing a statement about the elements of the
unit type, it suffices to consider its canonical element ⋆:

0-ELIM
C : 0 → U x : 0

elim0(C, x) : C(x)
1-ELIM

C : 1 → U p : C(⋆) x : 1

elim1(C, p, x) : C(x)

with the reduction rule elim1(C, p, ⋆) ≡ p. Some type theories assume so
called η-rules for types like 1, which say that for every x : 1, we have x ≡ ⋆.
We will not assume these rules to hold, but instead we will later be able to
express the fact that all instances of 1 are equal to ⋆ using propositional
equality.

To give an example for a type which contains more than just one ele-
ment, we can consider the type of booleans 2, containing elements 02 and
12. This time, we have more than just one constructor, and the elimination
rule requires us to give proofs for both of the two elements:

2-FORM
2 : U

2-INTRO1
02 : 2

2-INTRO2
12 : 2

2-ELIM
C : 2 → U p0 : C(02) p1 : C(12) x : 2

elim2(C, p0, p1, x) : C(x)

with the reduction rules elim2(C, p0, p1, 02) ≡ p0 and elim2(C, p0, p1, 12) ≡
p1.

12 2.1. DEPENDENT TYPE THEORY

As aminimal example of an infinite type, the set theoretic equivalent of
which would be introduced axiomatically, we can take a look at the type of
natural numbers. It is generated inductively by the zero element and the
successor function. The eliminator provides the principle of induction on
the natural numbers, which also makes sure that, when proving proper-
ties about the natural numbers, we can assume that every element of the
natural numbers is equal to a repeated applying the successor function to
zero:

N-FORM
N : U

N-INTRO
0 : U S : N → N

N-ELIM

C : N → U
p : C(0) qn : C(n) → C(S(n)) for all n : N x : N

elimN(C, p, q, x) : C(x)

with the reduction rules

elimN(C, p, q, 0) ≡ p and
elimN(C, p, q, S(x)) ≡ q(x, indN(C, p, q, x)).

Note that we regain, by restricting elimN to constant type families, the non-
dependent eliminator or recursor, corresponding to the usual way to recur-
sively define functions f : N → A for a type A : U by providing the value
f (0) and, for each n : N the recursive definition f (n) → f (S(n)). It has
the following type:

recN(A) ≡ ind(λx.A) : A → (N → A → A) → N → A.

So far we did not do the word “dependent” in the name of the type the-
ory much justice, but now we will move on to introduce some dependent
type formers. Thefirst of thesewill be Π-types or dependent function types.
When considering non-dependent functions, the codomain was a fixed
type B such that for all inputs a : A, the output f (a) is an element of B. For
dependent functions, however, the codomain is a type family B : A → U ,
and for each input a : A the output f (a) is of type B(a). Considering that
we want to use type families to represent propositions depending on a free
variable, these functions represent the universal quantification over this
free variable! While for application and λ-abstraction we don’t introduce
new notation for dependent functions, we will denote the type of all de-
pendent functions on a type family B : A → U as ∏(a:A) B(a), or, alter-
natively, as Π(B) (as a shorter variant) or (a : A) → B(a) (often called

CHAPTER 2. BASIC TYPE THEORY 13

“Agda-notation” in referral to the theorem prover of that name). The rules
to form the type of Π-types and to introduce and apply dependent func-
tions generalize the rules for non-dependent functions as follows:

Π-FORM
A : Ui B : A → Uj

(∏(a:A) B(a)) : Umax{i,j}
Π-INTRO

a : A ` Φ[a/x] : B(a)

(λx.Φ) : ∏(a:A) B(a)

Π-ELIM
f : ∏(a:A) B(a) a : A

f (a) : B(a)

Again, we have the rules for β-reduction and η-conversion like in the non-
dependent case, yielding reduction rules in the form of judgmental equal-
ities (λx. f (x)) ≡ f and (λx.Φ)(a) ≡ Φ[a/x]. Having Π-types at our dis-
posal allows us to state the rules governing a couple of further essential
type formers. Note that, once we have added dependent functions, we can
rediscover non-dependent functions as the special case of dependent func-
tions over a constant type family. When iterating Π-types, we will often
find that the argument of a dependent function is already determined by
an earlier argument, as in f : (a : A)(b : B(a)) → C(a, b). In this case, we
borrow the notation used bymany theorem provers and use curly brackets
to denote arguments which will be left implicit: If f : {a : A}(b : B(a)) →
C(a, b) and b : B(a), we write f (b) : C(a, b). If we later want to state these
explicitly wewill re-use curly brackets to denote that we reintroduce them:
f {a}(b) : C(a, b).

Two important logical connectives are still missing: Conjunction and
disjunction. In type theory these coincide with the product and disjoint
union (sum) of types. The rules for the product type are as follows:

×-FORM
A, B : U

A × B : U
×-INTRO

a : A b : B

(a, b) : A × B

×-ELIM
C : A × B → U p : (a : A)(b : B) → C(a, b) x : A × B

elimA×B(C, p, x) : C(x)

with the reduction rule elimA×B(C, p, (a, b)) ≡ p(a, b). The projections of
an instance x : A × B are then defined by induction:

pr1(x) :≡ elimA×B((λy.A), (λa.λb.a), x) : A and
pr2(x) :≡ elimA×B((λy.A), (λa.λb.b), x) : B,

14 2.1. DEPENDENT TYPE THEORY

yielding pr1((a, b)) ≡ a and pr2((a, b)) ≡ b judgmentally. The type repre-
senting disjunction has two constructors determining whether we provide
proof for its left or its right type:

+-FORM
A : U B : U

A + B : U

+-INTRO1
a : A

inl(a) : A + B
+-INTRO2

b : B

inr(b) : A + B

+-ELIM

C : (A + B) → U
p : (a : A) → C(inl(a)) q : (b : B) → C(inr(b)) x : A + B

elimA+B(C, p, q, x) : C(x)

For the sum type, we have the reduction rules

elimA+B(C, p, q, inl(a)) ≡ p(a) and
elimA+B(C, p, q, inr(b)) ≡ q(b).

Looking at the product type, we can find a generalization which is very
useful when we want to model existential quantification of a type family
B : A → U in type theory: A version of the product type where the type
of the second component of a pair (a, b) may depend on a : A via the type
family, i. e. b : B(a). The type holding this kind of pair for a fixed type
family B : A → U is called the Σ-type over B. We will again have three
different notations for this type, of which in this text we will mostly prefer
the latter one: The type is usually [Homotopy Type Theory, 2013] denoted
by ∑(a:A) B(a), mimicing mathematical notation for sums. Furthermore
there is the short variant of writing Σ(B) and an Agda-inspired notation
(a : A)× B(a). The inference rules for this type are just a slight general-
ization of the rules we have already seen for the non-dependent product
type:

Σ-FORM
A : U B : A → U
(a : A)× B(a) : U

Σ-INTRO
a : A b : B(a)

(a, b) : (a : A)× B(a)

Σ-ELIM

C : (a : A)× B(a) → U
p : (a : A)(b : B(a)) → C((a, b)) x : (a : A)× B(a)

elim(a:A)×B(a)(C, p, x) : C(x)

CHAPTER 2. BASIC TYPE THEORY 15

As our notation already suggests, we can view the product A × B as a spe-
cial case of a Σ-type where B is a constant type family. Note that also the
sum type A + B can be defined as a special case of the sigma type over
C : 2 → U with C(02) :≡ A and C(12) :≡ B. This is why Σ-types are some-
times also referred to as dependent sum types. By induction we can define
the projections

pr1 : ((a : A)× B(a)) → A and
pr2 : (x : (a : A)× B(a)) → B(pr1(x)).

which return the components of the dependent pairs. When we iterate Σ-
types an products we will be liberal with the notation and allow notation
like pr3, . . . as well.

With the type formers we met so far, we can already represent a lot of
mathematical definitions and knowledge. For example, if we wanted to
define what it means for a natural number to be odd, we could set

isodd :≡ recN(U , 0, (λn.λA.A → 0)) : N → U .

For example, this gives us the statement that the number one is odd, wit-
nessed by the following term:

(λx.x) : 0 → 0
≡ elimN((λx.U), 0, (λn.λA.A → 0), 0) → 0
≡ elimN((λx.U), 0, (λn.λA.A → 0), S(0))
≡ isodd(S(0)).

2.2 Inductive Types
So far, the presented type formers may seem like a zoo of unrelated, ran-
dom examples. Some are generalization of others (like Σ-types generalize
sums), but the question one might ask is if there is any overarching prin-
ciple behind the choice of those type formers. The feature that all of them
have in common is that, rather than by an enumeration of their elements,
they are defined by their formation, introduction, and elimination rules –
their elements are those which are generated inductively by their introduc-
tion rules, also called constructors.

Some of the type formers we have seen were parameterized by other
types, but more than that, dependent types allow us to specify indexed

16 2.2. INDUCTIVE TYPES

inductive types. One example for this is the type of vectors of a type A.
Vectors are a variant of lists, where we use the typing to keep track of the
length of its elements: The type of vectors on A is not a type but a type
family:

VecA : N → U .

It has two constructors and an eliminator of the following form:

nil : Vec(0)

n : N a : A v : Vec(n)

cons(a, v) : Vec(n + 1)

C : {n : N} → Vec(n) → U pnil : C(nil)
pcons : {n : N}(a : A)(v : Vec(n)) → C(v) → C(cons(a, v))

n : N v : Vec(n)

elimVec(C, pnil, pcons, v) : C(v)

with two reduction rules

elimVec(C, pnil, pcons, nil) ≡ pnil and
elimVec(C, pnil, pcons, cons(a, v)) ≡ pcons(a, v, elimVec(C, pnil, pcons, v)).

In natural language, the eliminator says that to show a statement about vec-
tors it is sufficient to prove it about the empty vector and that the statement
is stable under extending an arbitrary vector. Note that the natural number
in the conclusion of both introduction rules is not a variable, and the cons

evenmodifies the natural number. As such, we call the dependency on the
length in the type of vectors an index instead of a parameter.

While dependent andnon-dependent functionswere primitives needed
to even talk about other type formers, all other examples which we have
seen, can be captured by the concept of indexed inductive type. But since
we want to be more formal than to just assume the presence of indexed
inductive types based on giving a few examples, we will present different
attempts to make precise a definition of what an indexed inductive type is.
One schematic approach was made by Dybjer [1994], while the approach
which we want to introduce here requires an encoding of the constructors
in a very specific way to be able to present the inductive type as an instance
of a very general form of a tree. The types covered by this approach are
called indexedW-Types, and they cover a bigger fragment of inductive types
than the non-indexed version, which are also known as “Petersson-Synek

CHAPTER 2. BASIC TYPE THEORY 17

trees” [Petersson and Synek, 1989], and which are in a topos theoretic set-
ting, discussed by Moerdijk and Palmgren [2000]. The generalization to
indexedW-Types, as presented here, was found by Altenkirch et al. [2015].

Definition 2.2.1. Assume that we are given the following data:

• A type I : U of indices,

• a type A : U encoding the number and non-recursive input data or
shapes for contructors,

• a function o : A → I assigning to each piece of input data the corre-
sponding output index of the constructor,

• a type B : A → U of recursive occurrences or positions for each bit of
input data, and

• a function r : (a : A) → B(a) → I of indices of recursive occurrences.

Then, we assume that we have a type IWo,r
A,B : I → U with the following

introduction and elimination rules:

IW-INTRO
a : A c : (b : B(a)) → IWo,r

A,B(r(a, b))

sup(a, c) : IWo,r
A,B(o(a))

IW-ELIM

C : {i : I} → IWo,r
A,B(i) → U

p : (a : A)
(

c : (b : B(a)) → IWo,r
A,B(r(a, b))

)
→

(
(b : B(a)) → C(c(b))

)
→ C(sup(a, c))

elimIW(C, p) : (i : I)(w : IWo,r
A,B(i)) → C(w)

We furthermore assume that we are provided the reduction rule

elimIW(C, p, o(a), sup(a, c)) ≡ p(a, c, λb : B(a). elimIW(C, p, r(a, b), c(b))).

This definition may seem very confusing and overly complicated, but
this is necessary to capture all possible indexed inductive types in full gen-
erality. In words, the constructor describes that we chose a constructor
and giving possible non-recursive input data by providing a : A, and then,
based on this data, give data for all recursive occurrences of the type in
a constructor in the form of c, we get a new element sup(a, c) which is

18 2.3. TYPAL EQUALITY AND HOMOTOPY TYPE THEORY

reminiscent of the supremum of the given data. Conversely the elimina-
tion rule describes that to proof a statement C about this tree like structure
it is enough to prove C for sup(a, c) under the hypothesis that it holds for
all recursive input data c(b).

Assuming that we already have 0, 1, 2 and Σ-types at our disposal (al-
lowing us to define A + B), indexed W-types live up to our expectations
of capturing all previously mentioned inductive types. To provide a trans-
lation of these, including indexed inductive types still to be defined in the
next chapter, we will provide all the arguments for the respective indexed
W-types in Table 2.1, while often, in the case of I ≡ 1 describe 1 → A in
place of a type A itself.

Remark 2.2.2 (Plain W-Types). Indexed W-types can be reduced to the
simpler class of W-types, which only are specified by giving a type A : U
and a family B : A → U , without having a type of indices I : U , together
with o and r. We can think of them as the class of indexed W-types where
I ≡ 1.

The fact that we can present each indexed W-types by a non-indexed
one was shown by Altenkirch et al. [2015] using the K-rule, and by Sattler
[2015] without presence of the K-rule and under assumption of functional
extensionality.

In Chapters 5 and 6 we will introduce two more calculi to replace in-
dexed W-types.

2.3 Typal Equality and Homotopy Type Theory

Until now, the only equations we encountered were judgmental equalities
which aren’t “visible” internally in the type theory. But since we want to
follow the paradigm of propositions-as-types, we also want to have a way
to represent the statement that two terms of a type A : U are equal in-
side the type theory. To correct this, we introduce what is usually called
propositional equality or typal equality. For each type A : U and each
two elements a, b : A we want to have a type (a =A b) : U of proofs that
a and b are equal. We can view this as an inductive definition, giving only

CHAPTER 2. BASIC TYPE THEORY 19

Ty
pe

Fo
rm

er
I

:U
A

:U
B

:A
→

U
o

:A
→

I
r

:(
a

:A
)
→

B
(a
)
→

I

N
1

1 +
1

in
l(
⋆
)
7→

0
in
r(
⋆
)
7→

1
_
7→

⋆
_
7→

⋆

V
ec

A
N

1 +
A
×

N

in
l(
⋆
)
7→

0
in
r(

a,
n)

7→
1

in
l(
⋆
)
7→

0
in
r(

a,
n)

7→
n
+

1
− in
r(

a,
n)

7→
(⋆
)
7→

n

x
=

A
_

A
1

⋆
7→

0
⋆
7→

x
−

Ta
bl
e
2.
1:

Th
e
in
pu

td
at
a
fo
rt

he
in
de

xe
d
W

-ty
pe

sc
or

re
sp

on
di

ng
to

th
e
ty
pe

fo
rm

er
sg

iv
en

in
Ch

ap
te
r2

.1
.

20 2.3. TYPAL EQUALITY AND HOMOTOPY TYPE THEORY

the witness for this relation to be reflexive as a constructor:

=-FORM
A : U a, b : A

a =A b : U
=-INTRO

A : U a : A

refla : a =A a

=-ELIM

a : A C : (b : A) → a =A b → U
c : C(a, refla) b : A p : a =A b

elim=A(a, C, c, b, p) : C(b, p)

with the reduction rule elim=A(C, c, a, p, refla) ≡ c(a). It can be defined
as an indexed W-type as per Table 2.1. The elimination rule says that to
prove a statement indexed over varying right hand sides of an equality
and corresponding equality proofs, we can assume it to be the reflexivity
witness refl.

Remark 2.3.1. Apart from the above elimination rule, which is sometimes
referred to as J-rule, some type theories also assume the so called K-rule,
which in proofs also allow us to simplify a given equality proof to refl if the
type family which we want to inhabit varies both endpoints of the equality
simultaneously, as in the following:

=-K

C : (a : A) → a =A a → U
c : (a : A) → C(a, refla) a : A p : a =A a

elim′
=A

(C, c, a) : C(a)

We will assume this rule to hold in Chapter 5 and later chapters, but ex-
plicitly assume its absence in this and the following two chapters.

In literature, our version of =-ELIM is often called the based J-rule, be-
cause the equation’s left hand side is fixed, or Paulin-Mohring J-rule, after
Paulin-Mohring [1993]. An alternative, but provably equivalent version
is the so-called unbased J-rule in which the type family varies over both
sides of the equation:

=-ELIM’

C : (a, b : A) → a =A b → U
c : C(a, a, refla) a, b : A p : a =A b

elim′
=A

(C, c, a, b, p) : C(b, p)

While we introduced types as a means to represent sets and proposi-
tions, passing on the K-rule also gives rise to a further interpretation: We
can use types to model the homotopy types of topological spaces. This

CHAPTER 2. BASIC TYPE THEORY 21

principle, together with the univalence axiom which we will introduce in
the next chapter, is the underlying insight of the field of homotopy type the-
ory. This correspondencewas first explored byAwodey andWarren [2009]
and made precise by Kapulkin and Lumsdaine [2012], who, after an idea
by Vladimir Voevodsky, modelled homotopy type theory using simplicial
sets. In this correspondence – a succinct list of which can be found in Ta-
ble 2.2 – equality proofs correspond to paths, a name which we will use as
a synonym from using from now on.

But what does equality, as defined here, entail? The most important
observation is, that two equal objects are indiscernable by any attribute in
the sense that for any type family C : A → U if C(a) and a = b, then we
can prove C(b), as we can prove in the following lemma which defines an
operation to achieve this:

Lemma 2.3.2 (Transport). Let A : U and C : A → U . For any two elements
a, b : A with p : a = b we can define the transport operation on p:

p∗ : C(a) → C(b)

Proof. By induction, we can assume p to be refla, on which we can define
(refla)∗(c) :≡ c.

While it is obvious that equality should be an equivalence relation, we
only assume a witness for reflexivity. But what about its symmetry and
transitivity? It turns out that these can be proven by induction without the
need to add them as constructors:

Lemma 2.3.3. Let again be A : U , a, b : A, and p : a = b. Then, there is an
equality proof p−1 : b = a, called the inverse of p.

Proof. Applying the eliminator to p, we can reduce this problem to finding
a path (refla)−1 : a = a, which we can define to be refla itself.

Lemma 2.3.4. For A : U , elements a, b, c : A and paths p : a = b and q : b = c,
there is a path p � q : a = c, proving that propositional equality is transitive.

Proof. Here it suffices to apply induction on the second path and give the
definition

p � reflb :≡ p.

22 2.3. TYPAL EQUALITY AND HOMOTOPY TYPE THEORY
LogicalInterpretation

SetInterpretation
H
om

otopicalInterpretation

(closed)Type
A

:U
Proposition

Set
TopologicalSpace

Function
f

:A
→

B
Proofofim

plication
Function

betw
een

sets
Continuousm

ap

Type
fam

ily
B

:A
→

U
Proposition

w
ith

free
variable

in
A

Fam
ily

ofsetsindexed
by

A
Fibration

overbase
A

Pair
(a,b)

:A
×

B
Proofofconjunction

Pairin
cartesian

product
Pointin

productspace

Elem
ent

in
l(a)

:A
+

B
Proofofdisjunction

Elem
entofdisjointunion

Pointin
disjointunion

D
ep.fn.

f
:Π

(B
)

Proofofuniversalquantification
D
ep.setvalued

function
Section

offibration

D
ep.pair

(a,b)
:Σ

(B
)

Proofofexistentialquantification
D
ependentproduct

Pointin
totalspace

offibration

Equality
p

:a
=

A
b

–
Equality

in
A

Path
from

x
to

y

Equivalence
f

:A
'

B
Proofofbiconditional

Bijection
H
om

otopy
equivalence

Table
2.2:Three

interpretations

CHAPTER 2. BASIC TYPE THEORY 23

Having provided the proof that equality is an equivalence relation, we
can already conclude that it makes each type a setoid. But more than that
we can also prove that it carries the structure of a groupoid:

Lemma 2.3.5 (Groupoid laws). Let A : U , a, b, c, d : A and p : a = b,
q : b = c and r : c = d. Then,

• p = p � reflb = refla � p,

• p−1 � p = reflb, p � p−1 = refla,

• (p−1)−1 = p and

• p � (q � r) = (p � q) � r.

Proof. The first three laws can be proven by induction on the path p, the
last one by induction on r.

As a suitable notion of equality, propositional equality is respected by
functions:

Lemma 2.3.6. Let A, B : U , f : A → B, and a, b : A. Then, there is a function
ap f : (a = b) → (f (a) = f (b)) such that ap f (refla) ≡ refl f (a). �

Under this notion ap f , every function is functorial with respect to equal-
ity. Besides this, it is also functorial with respect to function composition.
The following laws can be proved by induction on the paths involved:

Lemma 2.3.7. Let A, B, C : U , f : A → B and g : B → C. For paths p : a =A b
and q : b =A c we have equalities

• ap f (p � q) = ap f (p) � ap f (q),

• ap f (p−1) = ap f (p)−1,

• apg(ap f (p)) = apg◦ f (p), and

• apidA
(p) = p. �

If in the above considerations f is instead a dependent function, we can
not necessarily consider the type f (a) = f (b) since the left and right hand
side need not have the same type. For this situation, there is a dependent
version of the above defined function ap f :

24 2.3. TYPAL EQUALITY AND HOMOTOPY TYPE THEORY

Lemma 2.3.8. Let A : U , B : A → U and f : (a : A)B(a). Then, we can
construct a dependent function

apd f : {a, b}(p : a =A b) → p∗(f (a)) =B(b) f (b),

such that apd f (a, a, refla) ≡ refl f (a). �

We continue by considering one of the representation of one of themost
import notions of homotopy theory: Homotopies between functions.

Definition 2.3.9 (Homotopy of functions). Two maps f , g : A → B are
called homotopic or pointwise equal if for all a : A we have f (a) = g(a).
We define the notation

f ∼ g :≡ (a : A) → f (a) = g(a).

We can define the same for two dependent functions f , g : ∏(a:A) B(a) over
the same type family.

Remark 2.3.10 (Function Extensionality). Since in homotopy theory, we
can find a path p : f = g in the space of functions, whenever f ∼ g,
we might ask if in homotopy type theory this holds as well – are two func-
tions equal as soon as they are pointwise equal? In the setting of homotopy
type theorywewill be able to derive this from univalence, while in settings
where we assume the K-rule, we will usually assume this property of the
function space, which is called function extensionality, axiomatically.

So far, we have not considered what it means for two types to be equal.
Of course, our definition of equality is valid for the universe itself as well,
but how does it relate to how we represent biconditionals of propositions,
bijections between sets, and homotopy equivalences between spaces? One
common representation of all of these three concepts is the notion of equiv-
alence of types:

Definition 2.3.11 (Equivalences). Let A, B : U . A function f : A → B is
called an equivalence between A and B, if there is a g : B → A such that
η : g ◦ f ∼ idA and ϵ : f ◦ g ∼ idB and furthermore

τ : ∏
a:A

ap f (η(a)) = f (g(f (a)))=a ϵ(f (a)) ≡ ap f ◦ η ∼ ϵ ◦ f .

We need τ to make sure that each two witnesses for the fact that f is an
equivalence are equal. Since τ is one of the two commutativity conditions

CHAPTER 2. BASIC TYPE THEORY 25

for pairs of adjoint functors, this kind of equivalence is also called a half
adjoint equivalence. The type of all equivalences between two types A, B :
U is denoted by

A ' B :≡ ∑
f :A→B

isequiv(f).

It is easy to show that the equivalence of types is indeed an equivalence
relation and that it behaves as we expect it to on easy examples such as
(1 → A) ' A, (0 + A) ' A, and (0 × A) ' 0.

But how can we now compare the equivalence and equality on types?
By induction the reflexivity proof for equivalence is enough to show that
equality implies equivalence: For each A, B : U there is

idtoeqvA,B : (A =U B) → (A ' B).

But how about the other direction? It turns out that there is no way to ob-
tain equality from equivalence, so one solution is to assume axiomatically,
that idtoeqvA,B has an inverse function. The consistency of this axiom has
been shown by Kapulkin and Lumsdaine [2012], after an idea by Vladimir
Voevodsky.

Axiom 2.3.12 (Univalence). For every A, B : U we asume that idtoeqvA,B is
itself an equivalence. This implies that

(A =U B) ' (A ' B)

and yields an inverse to idtoeqvA,B which we call

uaA,B : (A ' B) → (A =U B).

Remark 2.3.13. Postulating axioms is avoided as often as possible in type
theory, since it is detrimental to one of the desirable properties of the type
theory: normalization. To give an example, with an axiom like ua, not ev-
ery closed term of the natural numbers can be reduced to a numeral any
more. It is for this reason that type theorists have been looking for ways
to achieve univalence without postulating it as an axiom. One approach is
to not consider equality as an inductive type any more but to have it as a
primitive in the language. This approach is used in a variety of type theory
called “cubical type theory” [Cohen et al., 2016].

26 2.3. TYPAL EQUALITY AND HOMOTOPY TYPE THEORY

Another instance of equalities we have not explored so far are iterated
equalities: Equalities between equality proofs. Since for types A : U repre-
senting propositions we might only care about whether or not we have a
proof for it, it might not make sense to consider multiple elements, so we
might want that for all a, b : A we have a = b. For types that should rep-
resent sets we do want multiple elements, but we might not be interested
in having different equality proofs – so for a, b : A and p, q : a =A b we
might want to have a proof for p =a=b q. This effect, that at a certain level
of iteration, all equality proofs should become equal is called truncation:

Definition 2.3.14 (n-types). For a type A : U we set

is-(−1)-type(A) ≡ isProp(A) :≡ (a, b : A) → a = b,
is-0-type(A) ≡ isSet(A) :≡ (a, b : A)(p, q : a = b) → p = q, and

is-(n + 1)-type(A) :≡ (a, b : A) → is-n-type(a = b) for n : N.

and call A a (mere) proposition if isProp(A), a set if isSet(A) and more
general an n-type or n-truncated if is-n-type(A). We also extend this defi-
nition to include what it means for a type to represent a contractible space,
a singleton, or a true proposition:

is-(−2)-type(A) ≡ isContr(A) :≡ (a : A)× ((b : B) → a = b).

There are some important, but easy to prove facts about truncatedness:

Lemma 2.3.15. • If A : U is an n-type, then A is an (n + 1)-type.

• For each n ≥ −2 and A : U , the type is-n-type(A) is a mere proposition.

• If A : U is an n-type and B : A → U such that for each a : A, B(a) is an
n-type, then (a : A)× B(a) is an n-type as well.

• If A : U and B : A → U are such that B(a) is an n-type for each a : A,
then (a : A) → B(a) is an n-type as well.

• Let n ≥ −1. Then, A : U is an (n + 1)-type if and only if for all a : A, the
equality type a =A a is an n-type.

CHAPTER 2. BASIC TYPE THEORY 27

• Let n ≥ 0. Then, A : U is an n-type, if and only if for all a : A, the n-fold
iterated loop space Ωn+1(A, a) is contractible. The n-fold iterated loop
space is defined by recursion on n by

Ω1(A, a) :≡ (a =A a) and
Ωn+1(A, a) :≡ (refl. . .a

=Ωn(A,a) refl. . .a

).

�

Remark 2.3.16 (Uniqueness of Identity Proofs). Truncation levels are a no-
tion which behaves quite differently depending on whether we assume
presence of the K-rule or not.

If, as in homotopy type theory, we assume univalence and only the J-
rule, it is an easy exercise to find types which are not sets. In fact the uni-
verse U itself is not a set [Homotopy Type Theory, 2013, Example 3.1.9]:
We can construct two different automorphisms of 2: The identity function
and the map f : 2 → 2 with f (02) :≡ 12 and f (12) :≡ 02. It is easy to prove
that these are non-equal and as such, using univalence, yield different in-
stances of the type 2 = 2.

If on the other hand we do assume the K-rule, then it is immediate – by
first applying the J-rule to p and then the K-rule to q – that for every type
A we can use the rule to show the inhabitedness of the type family

(a, b : A)(p, q : a = b) → p = q,

and so A is a set.

2.4 Theorem Provers Based on Type Theory
As remarked at the beginning of Chapter 2, we value type theory not only
for its capability to represent mathematics and logics, but also for its good
computational behaviour. This suggests to have a look at how type theory
is implemented in different languages the focus of which can be either to
be a functional programming language based on dependent types or a the-
orem proving tool, or to be useful in both of these cases. With regards to
this thesis, introducing different implementations is relevant in two ways:

1. A good part of the new results in the form of definitions, lemmas,
and theorems, has been formalized in a one of these languages, and

28 2.4. THEOREM PROVERS BASED ON TYPE THEORY

2. both the higher Seifert-van Kampen theorem presented in Section 4.4
as well as the attempted reduction from inductive-inductive type to
inductive families in Chapter 7 suggest useful new features or exten-
sions of implementations of type theory.

Wewill thus concentrate on the two languageswe have used in this respect:
Lean [de Moura et al., 2015] and Agda [Norell, 2009]. This does not mean
that the content discussed is irrelevant to other implementations or that
these are less important. Au contraire – the theorem prover Coq [Barras
et al., 1997] is not only the implementation with the biggest user base but
also has a lot of distinguishing features.

Before we delve into the differences between Lean and Agda, we will
first take a look at what these provers have in common. The following list
contains both fundamental design principles as well as several features
which are important to improve the usability of the implementation:

• Implementation of Martin-Löf type theory with an unlimited chain of
universes. Construction can be made universe polymorphic by the use
of universe variables which are used as variable indices for the un-
vierses.

• Function types distinguish between explicit and implicit arguments.
The latter are useful to make definitions more succinct.

• Both languages are equipped with a system ofmodules or name spaces
used to organize definitions and their scope.

• There is a way to customize the implementation by the means of op-
tions. This enables us to switch between a set-truncated setting and
homotopy type theory.

• The implementations have an source code which is open and thus
reviewable and customizable by everybody.

• There are a one or several text editors which support an interactive
and well-integrated use of the language.

Let us next concentrate on Lean as our first specimen.

CHAPTER 2. BASIC TYPE THEORY 29

2.4.1 Lean

The development of the theorem prover Lean was started by Leonardo de
Moura at Microsoft Research in 2013. It aims to be both a useful tool for
the formalization of mathematics and the verification of programs writ-
ten in other languages, as well as to be a useful and performant program-
ming language itself. Another goal of Lean is to make automated theorem
proving (such as the solution for SMT-style problems) available in a de-
pendently typed theorem prover. As of now, Lean is in its third major ver-
sion, after a lot of the systemwas overhauled in the transition from Lean 2.
The fourth version is under development but not yet ready to be used as a
prover.

Lean – as its name suggests – relies on a relatively small trusted kernel
to which the user code is compiled to. This makes it easier to make claims
about the consistency of the prover. Let us first take a look at some of the
specifics of Lean’s type theory.

Lean is based on inductive families as described byDybjer [1994]. When-
ever the user writes down the definition of such an inductive family, Lean
generates its constructors and its dependent eliminator and makes it avail-
able to the user. For example, the following snippet shows a definition of
the natural numbers:

1 inductive nat : Type 0
2 | zero : nat
3 | succ : nat → nat
4

5 #check nat.succ nat.zero -- Prints nat.succ nat.zero : nat
6 #check @nat.rec_on -- Π {C : nat → Type u} (n : nat),
7 -- C nat.zero →
8 -- (Π (a : nat), C a → C (nat.succ a)) → C n

A widely used subclass of inductive types are structures, which are
similar to what is often referred to as “records”. Structures are induc-
tive types which are non-recursive and only have one constructor. That
means that they are equivalent to iterated sigma types but, among other ad-
vantages, have named projections. Structures provide a basic inheritance
mechanism as they can extend other structures:

30 2.4. THEOREM PROVERS BASED ON TYPE THEORY

1 structure graph (V : Type) ం=
2 (E : V → V → Type)
3

4 structure refl_graph (V : Type) extends graph V ం=
5 (refl : Π (v : V), E v v)
6

7 structure trans_graph (V : Type) extends graph V ం=
8 (trans : Π (u v w : V), E u v → E v w → E u w)

Lean features a strict and impredicative universe Prop of propositions.
Since this universe is incompatible with homotopy type theory, we have
to be careful to exclude its use whenever we want formalizations to hold
in a setting of homotopy type theory instead of truncated type theory.
Strict here means that if we have a proposition p : Prop and two proofs
a, b : P, these are considered judgmentally equal, thus for every type
family P → Type, the fibers P a and P b are judgmentally equal as well. Im-
predicative means, that for every type family valued in Prop, its universal
quantification ∀ a, P a is in Prop as well, even if A is not.

Lean makes heavy use of tactics. These are commands which can mod-
ify a given proof goal or a series of proof goals. They are accesible once the
user has switched from amode where she can enter literal proof terms to a
tactic-mode, which allows her to give proofs and definitions as a sequence of
tactic applications, which are then desugared as the do-notation of a tactic
monad. Here is an example for a tactic proof in lean, using a simplification
tactic, a rewriting tactic, and a tactic calling previously defined theorems:

1 example : ∀ (n : ℕ), n = 0 ∨ n > 0 ం=
2 begin
3 intro n,
4 induction n with n' IH,
5 simp,
6 right,
7 cases IH,
8 rw IH, constructor,
9 apply nat.zero_lt_succ

10 end

Lean has its own meta-language which allows the user to define new
language features like commands and tactics. It does so by providing away
to reflect arbitrary terms into an inductive type of expressions expr, such that
by recursion on this type, structural recursion on the term can be emulated.

CHAPTER 2. BASIC TYPE THEORY 31

Lean has several big libraries, the biggest one, which provides basic
data types, tactics, and formalization in different fields of mathematics, is
called Mathlib (https://github.com/leanprover-community/mathlib). It
is not recommended to use Lean without using Mathlib. Another big for-
malization effort it Lean’s homotopy type theory library, the development
of which has been described by van Doorn et al. [2017]. It was originally
written in Lean 2 and then ported to Lean 3. A good introduction to the
language can be found online [Avigad et al., 2015].

2.4.2 Agda
Agda is a theorem prover. Its first version was written by Catarina Co-
quand, while the development of the current major version, Agda 2, was
initiated byAndreasAbel andUlfNorell in 2005. There are biannual “Agda
Implementors Meetings” to discuss new ideas on how to improve Agda.

Compared to Lean, Agda implements a wider range of inductive types,
also allowing inductive-inductive types. In contrast to Lean it does not au-
tomatically produce the eliminator for an inductive definition but instead
provides an induction principle based on dependent pattern matching: The
user can write (dependent) functions with an inductive domain, by pat-
tern matching on its input. In the following example, an indexed type of
vectors and its head function are defined. Agda’s pattern matching algo-
rithm recognizes that it can exclude the case of the first constructor in the
definition of the head function.

1 data Vec (A : Set) : N → Set where
2 nil : Vec A Z
3 cons : ∀{n} → A → Vec A n → Vec A (S n)
4

5 hd : ∀{A n} → Vec A (S n) → A
6 hd (cons a v) = a

Agda has several options which make it possible to use it with a range
of different type theories: Homotopy type theory is supported by declaring
via an option --without-K that it should reject any use of the K-rule. Agda
also has an option --rewriting whic makes it possible to declare many
equalities as strict by declaring their proofs to be rewrite rules [Cockx and
Abel, 2016], giving the type theory the flavour of extensional type theory.

Agda has also beenmodified to support a type theorywhich provides a
constructive, non-axiomatic version of univalence. Based on the geometry

https://github.com/leanprover-community/mathlib

32 2.4. THEOREM PROVERS BASED ON TYPE THEORY

of its identity types, this type theory is called cubical type theory, and the
modified version has the name “Cubical Agda” [Vezzosi, 2018].

Chapter 3

Higher Inductive Types

3.1 Examples of Higher Inductive Types

The propositional equality discussed in the last chapter works just fine if
wewant to prove things to be equal. But inmathematics aswell as computer
science, we also often want to make things equal, in the sense that we might
want to consider a type A and two of its elements a, b : A andwant to obtain
another type which only differs from A in that a and b are equal. In short,
we want to take a quotient. In this chapter we will present different ways to
achieve quotients in the setting of homotopy type theory. Afterwards we
will showhowwe can derive all of these from the basic notion of a homotopy
coequalizer.

The generalway to achieve quotients is to go beyond the inductive types
whichwe encountered in the last chapters – andwhichwere all examples of
indexedW-types – and also allow for constructors which, in contrast to the
point constructors which we have seen so far, are path constructors. Instead
of adding new elements to the inductive type, these constructors are there
tomake instances of other constructors equal. In a setting where the K-rule
is present, and every type is a set (see Remark 2.3.16), this bigger class of
inductive types is called quotient inductive types, while, as we will see,
in homotopy type theory it is more fitting to call them higher inductive
types (HITs) given the fact that equality types carry not only proofs but
data. Higher inductive types allow the development of a synthetic version
of homotopy theory insideHoTT (cf. Buchholtz et al. [2018], Buchholtz and
Hou (Favonia) [2018], Buchholtz and Rijke [2016, 2017], Hou (Favonia)
and Shulman [2016], Licata and Finster [2014], Licata and Brunerie [2013],

33

34 3.1. EXAMPLES OF HIGHER INDUCTIVE TYPES

Brunerie [2017], Rijke [2017]). A main objective of this line of research
is to describe, classify, and compare path spaces (i. e. equality types) or
homotopy groups (i. e. truncated path spaces) of higher inductive types
such as circles and spheres.

A minimal example for a higher inductive type could be the following
definition of a type theoretic representation of the space of the interval I.
Its constructors are two points, but furthermore also a pathwhich connects
these two points:

I-INTRO1
0I : I

I-INTRO2
1I : I

I-INTRO3
seg : 0I = 1I

I-ELIM

C : I → U
c0 : C(0I) c1 : C(1I) p : seg∗(c0) = c1 x : I

elimI(C, c0, c1, p, x) : C(x)

It is easy to check that the unique map I → 1 is an equivalence, and so I is
contractible and thus a set. Butwhat if instead of two point constructorswe
only had one, as in the higher inductive types governed by the following
rules?

S1-INTRO1
base : S1 S1-INTRO2

loop : base =S1 base

S1-ELIM
C : S1 → U c : C(base) p : loop∗(c) = c x : S1

elimS1(C, c, p, x) : C(x)

We can see that loop introduces a new path from base to itself which cannot
be reduced to reflbase. This means that we can interpret it as a loop which
is not homotopic to the identity, and so the type represents the circle (cf.
Figure 3.1). The fact that loop is not equal to reflbase also makes it clear that
this type is not a set.

In the sameway inwhichwe can add arbitrary paths between construc-
tors, we can also use iterated equality types to express the addition of ar-
bitrary higher dimensional cells (surfaces, volumes). An example for this
is the definition of a twodimensional sphere, where we have one basepoint
and one surface:

S2-INTRO1
base : S2 S2-INTRO2

surf : reflbase =base=base reflbase

Besides these closed examples for higher inductive types, we can also
have important constructions which are parametrized over an arbitrary

CHAPTER 3. HIGHER INDUCTIVE TYPES 35

base
loop

Figure 3.1: A circle with a base point.

type. One important operation in topology, especially in the field of ho-
mologies, is the one of the suspension Susp(A) of spaces A which turns
an n-dimensional type into a (n + 1)-dimensional type. Suspensions will
also provide a way to conveniently define all higher-dimensional spheres
by setting Sn+1 :≡ Susp(Sn). The suspension has two point constructors
(sometimes called the north and south pole) and for each point in A a
path between those points:

N : Susp(A) S : Susp(A)

a : A

merid(a) : N = S

C : Susp(A) → U
cN : C(N) cS : C(S) cmerid : (a : A) → merid(a)∗(N) = S

elimSusp(A)(C, cN, cS, cmerid) : (x : Susp(A)) → C(x)

Another very general construction is the pushout of types. It does not
only depend on one a single type but instead has as input a whole span
of types, meaning three types L, M, and N, and functions f : L → M and
g : L → N. It consists of a type P ≡ MtLN the point constructors of which
are to functions inl and inr as in the following diagram:

L N

M P

f

g

inl

inr

The introduction rules are the same as for the sum type, but each instance

36 3.1. EXAMPLES OF HIGHER INDUCTIVE TYPES

of L contributes a new path in the resulting type:

m : M

inl(m) : MtL N

n : N

inr(n) : MtL N

l : L

glue(l) : inl(f (l)) = inr(g(l))

One can try to visualize the resulting type as the sum of M and N which
was glued along an L-shaped overlapping. The pushout is a very general
construction. In fact, it is easy to check that all the previous higher induc-
tive types we presented were just special cases of a pushout, for example
the suspension Susp(A) can also be defined as the pushout where both f
and g are the unique map A → 1.

An example of a higher inductive type, the importance of which is eas-
ily recognizable even we only care for propositions and sets is the one of
the truncation operator. It is a tool to bring types to the desired level of
truncation, as we can see in the following example: Remember that we rep-
resented the disjunctive logical connective with the sum type. But the sum
of two propositional types is not necessarily a proposition itself: For exam-
ple we have 1 + 1 ' 2. So how can we make it a proposition? The solution
is to add equations between all the points in the sum type and additionally
make sure that no trivial higher equality proofs exist – the second introduc-
tion rule below is a short way of saying that all these paths should exist.
Similar situations can happen for every truncation level. For example, a
collection of sets is generally not a set itself. The elimination principle for
this operation has to make sure that only functions on the truncated type,
which represent continuous maps, can be created, and so it has to require
that the fibers of the type family which we want to inhabit are truncated:

TRUNC-INTRO1
a : A

|a|n : ‖A‖n
TRUNC-INTRO2

is-n-type(‖A‖n)

TRUNC-ELIM

C : ‖A‖n → U
p : (x : ‖A‖n) → is-n-type(C(x)) q : (a : A) → C(|a|n)

elim‖A‖n
(C, p, q) : (x : ‖A‖n) → C(x)

Next, we will discuss how – parallel to how we unified the examples
for indexed inductive types using indexed W-types – find a general way to
express all higher inductive types which we need.

CHAPTER 3. HIGHER INDUCTIVE TYPES 37

3.2 Coequalizers as a Fundamental HIT
For a long time after homotopy type theory became its own field, the ques-
tion about what could be a suitable syntax and semantics for higher in-
ductive types remained open. To make up for the lack of core support for
higher inductive types in interactive theorem provers, users of Coq, Agda,
and Lean decided to come up with pragmatic definitions and implemen-
tations. In Agda and Coq, the common solution was to apply a trick first
documented by Licata [2011] which uses private inductive types to hide the
elimination principle generated by the prover and replace it by a manually
defined one. Another strategy which the homotopy type theory formaliza-
tions in Lean 2 are based on, and which are described by van Doorn et al.
[2017], is to find a single higher inductive typeswhich can serve as a univer-
sal examplewhich can be used to derive a big range of other instances. This
is similar to the generalized type of trees which make up indexedW-types.

The type we use as such a fundamental higher inductive type is much
simpler than the definition of indexed W-types, and it is a straightforward
generalization of quotients in set-based type theory. Suppose that we have
a type A : U and and equivalence relation ∼: A → A → U . For a type to
be justifiably called the quotient of A by∼, we want a projection map from
A into the quotient and we need to make sure that any a, b : A with a ∼ b
are projected to equal elements of the quotient. An elimination principle
should say that maps out of the quotient are the same as maps out of A
respecting the relation ∼. And these are exactly the features of the type of
homotopy coequalizerswhichwewill now introduce. The reasonwhywe
refrain from calling them quotients – even though van Doorn et al. [2017]
call them typal quotients – will become apparent in the remarks and exam-
ples wewill study after giving the inference rules and is due to the fact that
we differ from several common assumptions about quotients:

• The base type A : U does not need to be a set,

• the relation ∼: A → A → U does not need to be an equivalence
relation, and

• it does not have to be a relation at all, because for a, b : A, the type of
relatedness witnesses a ∼ b : U does not need to be a proposition but
can containmultiple elements and even structure in higher equalities.
(It might be reasonable to speak of a quotient by a higher relation,
which is the approach taken by Boulier et al. [2017].)

38 3.2. COEQUALIZERS AS A FUNDAMENTAL HIT

The formation, introduction, and elimination rules for the coequalizer are
the following:

COEQ-FORM
A : U _ ∼ _ : A → A → U

A�∼ : U

COEQ-INTRO1
a : A

[a] : A�∼
COEQ-INTRO2

a, b : A s : a ∼ b

glue(s) : [a] = [b]

COEQ-ELIM

P : A�∼ → U f : (a : A) → P([a])
e : {a, b : A}(s : a ∼ b) → glue(s)∗(f (a)) = f (b)

elimA�∼(P, f , e) : (a : A�∼) → P(x)

Remark 3.2.1 (Pathovers). Since we will often encounter equality types
with a transported term on one side, it merits its own name and notation:
Whenever we have a type family B : A → U , two points a, a′ : A, and a
path p : a = a′, we will for b : B(a) and b′ : B(a′) define the type of paths
over or dependent paths over p to be

(b =p b′) :≡ (p∗(b) = b′).

These path-overs have proven to be useful for many formalizations and
their attributes, as well as their generalizations to square-overs and cube-
overs have been described by Licata and Brunerie [2015].

Remark 3.2.2 (Coequalizer of Functions). In category theory as well as
homotopy theory, (homotopy) coequalizers are not defined on an object
and a relation but instead are a universal construction on two functions
f , g : X → A. It can be thought as an object in which for each x : X,
f (x) and g(x) are identified. This can be expressed in our variant of a
coequalizers by setting the relation on A to be

a ∼ b :≡ (x : X)× (f (x) = a)× (g(x) = b),

or, alternatively, by defining _ ∼ _ inductively by f (x) ∼ g(x) for each
x : X. It is then easy to see that the coequalizer of f and g is A�∼.

Vice versa, we can view A�∼ for an arbitrary A : U and∼: A → A → U
as the coequalizer on the maps

pr1, pr2 : (Σ(a, b : A).a ∼ b) ⇒ A.

CHAPTER 3. HIGHER INDUCTIVE TYPES 39

Another reasonwhywemight avoid to conflate homotopy coequalizers
with ordinary quotients is, that A�∼ is not always a set, even if A is: We
can express the circle which we have defined earlier as a coequalizer in the
following simple way: Set A :≡ 1 and for a, b : A, set a ∼ b :≡ 1. While
this, at first glance, might seem to yield a trivial coequalizer, it actually add
an additional path to the unit type, and it is easy to check that A�∼ ' S1.

To see the importance of not requiring the relation to be propositional,
consider the case of the pushout. It can be written as a coequalizer on
A :≡ M + N, but it is easy that the following definition for _ ∼ _ is not
necessarily a proposition, and in general it is neither reflexive, nor sym-
metric, nor transitive:

(inl(m) ∼ inl(m′)) :≡ 0,
(inl(m) ∼ inr(n)) :≡ (l : L)× (f (l) = m)× (g(l) = n), and

(inr(m) ∼ x) :≡ 0.

With the pushouts (and sequential colimits which are defined simi-
larly), and given that there aremore intricate constructions giving proposi-
tional truncations [vanDoorn, 2016, Kraus, 2016] andhigher truncations [Ri-
jke, 2017], we have presented ways to encode all the higher inductive types
which we have seen so far as coequalizers.

Remark 3.2.3 (Coequalizers as Pushouts). Basing all necessary higher in-
ductive types on homotopy coequalizers is a somewhat arbitrary decision
based on aesthetical considerations, since we can also derive coequalizers
from pushouts in the following way:

A + (a, b : A)× a ∼ b A

A P

f

g

inl

inr

with

f (inl(a)) :≡ a,
f (inr(a, b, s)) :≡ a,

g(inl(a)) :≡ a, and
g(inr(a, b, s)) :≡ b.

40 3.3. ENCODE-DECODE PROOFS

It is then easy to check that the pushout P is equivalent to A�∼. As a result,
we can conclude that pushouts and homotopy coequalizers are interderiv-
able in homotopy type theory.

3.3 Encode-Decode Proofs
To motivate our results, which we will present in the next chapter, we will
now look at some important problemswhich occur whenwewant to prove
facts about higher inductive types. Often, wewant to find outwhat specific
equality types of higher inductive types look like. For a very concrete ex-
ample, one of the most basic results in homotopy theory is the proof of the
statement that the fundamental group of the circle is isomorphic to the group Z of
integers. It is an example of a problemwhich in a classical, set theoretic set-
ting, is solved in a way which is very different from the approach which is
needed in its type theoretic counterpart. Licata and Shulman [2013] were
the first to translate this fact into the setting of homotopy type theory. An-
other fundamental theorem in homotopy theory is the theorem of Seifert-van
Kampen. It provides proof that the fundamental groupoid of a pushout of
two spaces is isomorphic to the pushout of the fundamental groupoid of
these spaces. This is an important help when trying to calculate homo-
topy groups of spaces which were “glued” together from more primitive
spaces using pushouts. Hou (Favonia) and Shulman [2016] documented
and formalized in Agda a type theoretic equivalent of the Seifert-van Kam-
pen theorem. In this chapter, we will revisit the proof ideas for both of
these results and discover, what they have in common.

The intuitive way to compare the integers with the loop space Ω(S1) of
the circle is the following: Each loop can be reached by following the con-
structor loop a number of times either in its actual direction or by reversing
the direction, i. e. concatenating with loop−1. Following an inverted loop
after a non-inverted one or vice versa cancels out since we have

loop � loop−1 = refl = loop−1 � loop.

The integer corresponding to a loop would then be the “exponent” of the
number of times we concatenate loop (with loop0 = refl). But translating
this intuition into a formal proof, especially in order to define a function
from the loop space to the integers, requires some tricks.

CHAPTER 3. HIGHER INDUCTIVE TYPES 41

Theorem 3.3.1 (Loop Space of the Circle, Licata and Shulman [2013]). The
loop space of the circle is equivalent to the type of the integers: Ω(S1, base) ' Z

Proof. Instead of directly defining a map Ω(S1, base) → Z, we perform the
type theoretic equivalent of constructing the universal cover for the circle.
Over each point of the circle, we will have a whole type, i. e. a type family
code : S1 → U and by the end we will be able to prove that this type family
satisfies the following equivalences:

(base = x) ' code(x) ' Z, (3.1)

after which we can get the desired result by plugging in x ≡ base. The
definition of this type family is determined by the following two equations:

code(base) ≡ Z

apcode(loop) = ua(S),

with S : Z → Z being the successor function on the integers, which is ob-
viously an equivalence. Formally speaking, we can achieve this by setting

code :≡ elimS1(λ_.U , Z, ua(S)).

We can then calculate that

loop∗(z) ≡ (apcode(loop))
∗(z) ≡ (ua(S))∗(z) ≡ S(z), (3.2)

and that, by the same reasoning, (loop−1)∗(z) = P(z) where P = S−1 is
the predecessor function on Z. After we gave the definition of code, the
second equivalence of (3.1) is straightforward to prove by induction on x,
while the first one is more involved. We call the map into code(x), which
we have to define, the encoding map and the inverse the decoding.

The encoding works by, for each path, transporting along this type in
the type family code, starting from zero:

encode : {x : S1}(p : base = x) → code(x)
encode(p) :≡ p∗(0)

This is the same as defining encode as 0 induction on p. It is easy to check
via (3.2) that encode(loop) calculates to S(z), encode(loop � loop) to S(S(z))
etc.

Defining the decoding function decode(x) : code(x) → (base = x) goes
by induction on the circle element x involved. For the induction we first

42 3.3. ENCODE-DECODE PROOFS

have to give the base case decode(base) : code(base) → (base = base)which
we set to the function which is constantly loop. We then have to prove that

loop∗(λ_. loop) = (λ_. loop),

where the transport is over the type family λx′. code(x′) → (base = x′), a
calculation we don’t want to detail here. This defines decode. It is then left
to prove by induction that

encode(decode)(c) = c for all c : code(x) and
decode(encode)(p) = p for all x : S1 and p : base = x.

completing the proof of the theorem.

Theproof for the Seifert-vanKampen theorememploys the samemethod
of providing a type family acting as a universal cover. It can be seen as a
generalization of the above theorem. Recall that in a classical topological
setting the statement of the theorem is the following:

The fundamental groupoid of the pushout of two spaces is equiv-
alent to the pushout of its fundamental groupoids.

So while the for the theorem about the circle the “right-hand side” of the
equivalence was rather clearly defined, here the question is whether we
find a good definition of the pushout of groupoids. Since we attempt an-
other example of an encode-decode proof, we might as well first define the
morphisms of the pushout of groupoids as the code itself. Intuitively, the
morphisms the pushout P :≡ MtL N are “zig-zags” consisting of mor-
phisms alternatingly in M and N, separated by morphisms in L.

Definition 3.3.2 (Codes for Groupoid Pushouts, Hou (Favonia) and Shul-
man [2016]). We define a type family code : P → P → U , by recursion on
both arguments. That means that it suffices to give families M → M → U ,
M → N → U , N → M → U , and N → N → U , which agree on f (l) and
g(l) for all l : L in either argument. We will omit proof of this consistency.

For the first case, i. e. if we have m, m′ : N, we want code(inr(m), inr(m′))
to be the inductive type where elements are characterized as lists

(p0, x1, q1, y1, p1, x2, q2, y2, p2, . . . , yk, pk),

CHAPTER 3. HIGHER INDUCTIVE TYPES 43

m g(x1)

f (x1) f (y1)

g(y1) g(x2)

f (x2) f (y2)

g(y2) m′
p0

q1

p1

q2

p2

Figure 3.2: “Zig-zag paths” in the pushout codes, vertical arrows corre-
spond to applications of glue, horizontal arrows to applications of apinl and
apinr.

the entries of which (cf. Figure 3.2) have the following type for each i : N

with 0 < i ≤ k:

xi, yi : L
p0 : ‖m = f (x1)‖0

pi :

{
‖ f (yi) = f (xk+1)‖0 for i < k

‖ f (yk) = m′‖0 for i = k

qi : ‖g(xk) = g(yk)‖0.

These lists have to be quotiented by the path constructors

(. . . , qi, yi, refl f (yi)
, yi, qi+1, . . .) = (. . . , qi � qi+1, . . .) and

(. . . , pi, xi, reflg(xi)
, xi, pi+1, . . .) = (. . . , pi � pi+1, . . .),

and the resulting type is made a set by the means of truncation. The type
families for the three remaining cases are likewise defined “zig-zags” in the
form of quotiented lists, where the parity of the length is changed and/or
the position of pi and qi are swapped.

With this definition, the statement of the theorem can be stated as the
following:

Theorem 3.3.3 (Seifert-van Kampen, Hou (Favonia) and Shulman [2016]).
For each x, y : P we have

‖x = y‖0 ' code(x, y).

Proof. Again, we define functions encode and decode constituting the equiv-
alence. The strategy is generally the same as for the characterization of
equalities in the circle: The encoding function

encode : {u, v : P} → ‖u = v‖0 → code(u, v)

44 3.3. ENCODE-DECODE PROOFS

can be defined by induction on the truncated type (since we truncated
code(u, v)) then on the path p : u = v involved, and setting the function to
be the trivial element in the respective type of lists:

encode(|refl|) :≡ (refl).

This is the same as transporting p along the type family λv. code(u, v). The
decoding function has to take a list and “glue together” the paths in the
pushout which it represents, as for example

decode(p0, x1, q1, y1, p1, . . .)

:≡apinl(p0) � glue(x1) � apinr(q1) � glue(y1)
−1 � apinl(p1) � . . .

The proof that these functions are inverse to each other is again done by
induction.

Remark 3.3.4 (The classical Seifert-van Kampen Theorem). How does the
statement of Theorem 3.3.3 relate to the classical version of the theorem?
The left side of the equivalence clearly correponds to morphisms between
x and y in the fundamental groupoid (i. e. the equalities) of the pushout of
the spaces, butwhat about the right-hand side? We can show that code(x, y)
is not some arbitrary construction but that its definition as a quotient of lists
can be straightforwardly generalized to a characterization of morphisms in
the pushout of any two groupoids.

Chapter 4

Path Spaces of Higher Inductive
Types

We have seen in the previous chapter that the encode-decode method can
be used in a variety of cases when we want to make statements about the
equality types – or path spaces – of higher inductive types. Going through
all necessary steps of such a proof can be somewhat tedious, but part of
it is very mechanical work. One main goal of this chapter is to present a
different method to directly work with equality types of coequalizers and
pushouts (and constructions based on these): Since elimination rules such
as the one for coequalizers characterize only the points of the type, but in
the constructors we create points and equalities simultaneously, we believe
that it is natural to hope for an “induction principle for equalities” which
is reminiscent of an elimination rule. More concretely, for our case of a
coequalizer A�∼ : U of a type A : U and typal relation _ ∼ _ : A → A → U ,
let us assume we are given a type family

Q : {a, b : A} → [a] = [b] → U .

Is it possible to have simple-to-check conditionswhich are sufficient to con-
clude Q(q) for a general q (instead of just glue(s) for some s : a ∼ b)?
Remark 4.0.1. Note that Q above quantifies over two elements of A and an
equality of A�∼. If instead we asked the same question for a type family

S : (x, y : A�∼) → x = y → U ,

the answer would be that we could use the J-rule to populate this family by
giving S(reflx). The principle we want for the applications we presented is
the version where endpoints are “restricted” as above.

45

46

It turns out that, like for the J-rule, there is a generalization of the above
question. We get this generalization by switching from an unbased (or
global) type family to a based (or local) one: We can fix one of the two end-
points to be [a0] : A�∼ and replace Q by a family which is indexed only
once over A:

P : (b : A) → [a0] = [b] → U . (4.1)
Like for the two versions of the J-rule, a principle answering the based ver-
sion of the question also answers the unbased one, which is why we will
focus exclusively on the former, and we will be able to easily derive the
latter from it.

In order to get some intuition for the subtleties of the equality types,
let us first look at a hypothetical principle which turns out to be wrong.
Usually, induction principles contain one case for every constructor, the
standard equality constructor is refl and with COEQ-INTRO2, we have one
further path constructor glue. Thus, we might try whether it is sufficient to
assume terms

r : P(a0, refl[a0]) and
p : (b : A)(s : a0 ∼ b) → P(b, glue(s))

to conclude that (b : A)(q : [a0] = [b]) → P(b, q)? It turns out that this
attempt fails: Consider the relation ∼ on the natural numbers defined by

(m ∼ n) :≡ m + 1 = n.

We can look at the coequalizer N�∼. Let us take 1 : N as the base point
and P : (n : N) → ([0] = [n]) → U defined by P(n, q) :≡ (n ≥ 1). The
terms r and p are constructed easily, but at the same time, it is clear that
P(0, glue(k)−1) is empty (here, k is a proof for 0 + 1 = 1).

The above naïve suggestion was easy to disprove, but let us try to un-
derstand why it was insufficient. Equalities that come from A can, by the
J-rule, be assumed to be refl; these are sufficiently covered. However this
is not true for equalities that are generated using the glue constructor. The
counterexample uses the fact that we have not explicitely closed them un-
der symmetry and similarity – we could have also used that we have not
closed them under transitivity.

How could we fix this? Given an equality q in A�∼, we can compose it
with glue(s) assuming the endpoints match. This suggests that the induc-
tion principle we are looking for should assume Q(q) → Q(q � glue(s)). But

CHAPTER 4. PATH SPACES OF HITS 47

we can also compose with glue(s)−1, suggesting that we also need a func-
tion Q(q) → Q(q � glue(s)−1). The operations of composing with glue(s)
and its inverse should furthermore be inverse to each other, wichmotivates
us to ask for only one of them and require this one to be an equivalence, i. e.
Q(q) ' Q(q � glue(s)). This finally leads us to a valid induction principle,
which is short, useful, and comes with two β-rules. Proving this princple
is the main result of this chapter:

Theorem 4.0.2 (Induction for Coequalizer Equality). Assume A and ∼ as
before, a point a0 : A, and we are further given a type family

P : (b : A) → [a0] = [b] → U ,

together with terms

r : P(refl[a0]) and
e : {b, c : A}(q : [a0] = [b])(s : b ∼ c) → P(q) ' P(q � glue(s)).

The we can construct a dependent function

indr,e : {b : A}(q : [a0] = [b]) → P(q)

with the following equalities reminiscent of β-rules:

indr,e(refl[a0]) = r (4.2)
indr,e(q � glue(s)) = e(q, s, indr,e(q)). (4.3)

Remark 4.0.3. The theorem can be proved in a way which makes the first
β-rule hold judgmentally. This is what we have done in our formalization,
but we will refrain from checking whether equalities hold strictly in this
chapter.

Remark 4.0.4 (Incorrect Principle). foo

In the following sections we will first prove this main result (Chap-
ter 4.1), then modify it to obtain a version for pushouts (Chapter 4.2), and
present a few smaller applications (Chapter 4.3) by characterizing the loop
space of the circle and proving that pushouts preserve embeddings, before
applying the approach to state a version of the Seifert-van Kampen the-
orem which instead of groupoids refers to higher fundamental groupoids
(Chapter 4.4). Most of the contents have been formalized in Lean, an effort
which we will comment on in Chapter 4.5.

48 4.1. THE MAIN THEOREM: PATH SPACES IN COEQUALIZERS

4.1 The Main Theorem: Path Spaces in Coequal-
izers

We will first formulate and prove the non-dependent version of the main
result by developing the corresponding categorical framework inside type
theory. This then allows us to derive the induction principle as stated in
Theorem 4.0.2.

Using categorical ideas to structure constructions and reason inside
type theory is standard. The dependent elimination principle can usually
equivalently be formulated as a recursion (or non-dependent elimination)
principle together with a uniqueness principle, often phrased as a universal
property. A principledway of doing this is to define objects andmorphisms
of a category; the statement then is that the inductive type in question is
(homotopy) initial in this category. For the specific case of homotopy type
theory, the connection between induction and initiality has been shown by
Awodey et al. [2017] for inductive types, and by Sojakova [2015] for some
higher inductive types.

However, category theory in homotopy type theory is subtle. The “ob-
vious” naïve definition of a category without imposing any truncation lev-
els on objects and morphisms (sometimes called a wild category) is not al-
ways a well-behaved notion. For example the slice of a wild category is
not a wild category anymore. The underlying reason is that the identity
and associativity equalities do not behave like laws (or properties) but like
higher morphisms in a higher category where additional coherences are re-
quired. One approach to higher categories in homotopy type theory is dis-
cussed by Capriotti and Kraus [2017]. Alternatively, the univalent categories
by Ahrens et al. [2015] restrict the truncation levels to avoid the issue. For
us, truncating is not a suitable strategy since it would not allow us to prove
our general result.

Although not well-behaved in general, wild categories are still a useful
tool for us. We do not think of them as “bad ordinary categories” but in-
stead as an approximation to (∞, 1)-categories, where most of the higher
data is omitted. However, since none of our constructions require us to
actually use the omitted data, we are able to get away with this. Most im-
portantly, we can talk about the concept of homotopy initiality without
ever referring to higher morphisms. Technically, we do not even need as-
sociativity – it could be excluded from the following definition without
consequences for the rest of the section.

CHAPTER 4. PATH SPACES OF HITS 49

Definition 4.1.1 (WildCategories). Awild categoryA, for simplicity hence-
forth simply category, consists of a type |A| : U of objects; for objects
X, Y : |A| a type A(X, Y) of morphisms; a composition operator ◦ and
identities of the following obvious types

_ ◦ _ : {X, Y, Z : |A|} → A(Y, Z) → A(X, Y) → A(X, Z),
id : {X : |A|} → A(X, X),

togetherwith the two standard equalities for the identities and one equality
which states that ◦ is associative:

id ◦ f = f ,
f ◦ id = f , and

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Initiality is one of the few notions which are still well-behaved in wild
categories: We can define it in terms of contractability.

Definition 4.1.2 (Initiality). An object X of a category A is called initial if
for every object Y the type of morphisms A(X, Y) is contractible.

For the whole remainder of the section, let us assume that a type A : U
together with a point a0 : A and a relation _ ∼ _ : A → A → U are given.
Our main category of interest is the following:

Definition 4.1.3 (Category of Coherent, Pointed Families). The category C
is defined as follows: Objects in |C| are “pointed type families respecting
∼”, by which we mean triples (K, r, e) of the types

K : A → U ,
r : K(a0), and
e : {b, c : A}(b ∼ c) → K(b) ' K(c).

Morphisms are “pointed fibrewise functions”. Explicitely, a morphism in
C((K, r, e), (K′, r′, e′)) is a triple (f , γ, δ) with

f : (b : A) → K(b) → K′(b),
γ : fa0(r) = r′, and
δ : {b, c : A}(s : b ∼ c) → e′(s) ◦ fb = fc ◦ e(s).

50 4.1. THE MAIN THEOREM: PATH SPACES IN COEQUALIZERS

It might be helpful to think of γ as an equality witnessing that, for any
s : b ∼ c the following square commutes:

K(b) K(c)

K′(b) K′(c)

e(s)

e′(s)
fb fc

(4.4)

The remaining components (identities, composition and their equations)
are straightforward to define. For example identities are given as

(λb. id, reflr, λs. refle(s)),

and composition is given by

(f ′, δ′, γ′) ◦ (f , δ, γ) :≡ (λb.(fb
′ ◦ fb), ap f ′a0

(δ) � δ′, γ′ ◦ γ),

where the last bit is given by pasting two vertically neighboring squares
(4.4).

A variation of Theorem 4.0.2, this time not as dependent elimination
principle but as a non-dependent recursor, together with uniqueness can
now be stated as follows:

Theorem4.1.4 (Initiality ofCoequalizer Equality). Consider the object (Ki, pi, ei)
of C, where the first part is given by

Ki(b) :≡ ([a0] = [b]),

i.e. Ki is given by equality in the coequalizer A�∼. The point is given by

ri :≡ refl[a0].

For every s : b ∼ c, the component ei(s) is the equivalence between ([a0] = [b])
and ([a0] = [c]) which is given by composition with glue(s); we simply write

ei(s) :≡ _ � glue(s).

Then, our statement is: The object (Ki, pi, ei) is initial in the category C.

CHAPTER 4. PATH SPACES OF HITS 51

In the following we will first provide a proof of this theorem, requir-
ing various constructions and lemmas, before then deriving the dependent
version. In order to prove Theorem 4.1.4, we consider a second category
which we call D. We will then show that C and D are isomorphic. The
point of this is that it is very easy to find the initial object inD, and, via the
isomorphism, it can easily be transported to C. A useful technical tool is
the formulation of coequalizer induction as an equivalence which is what
we start with:

Lemma 4.1.5 (Coequalizer Induction as Equivalence). Given a type family
P : A�∼ → U , there is a canonical map from the type

(x : A�∼) → P(x) (4.5)

to the type

(f : (a : A) → P([a]))×
(
{a, b : A}(s : a ∼ b) → f (a) =glue(s) f (b)

)
(4.6)

mapping g to the pair (g ◦ [−], λs.apdg(glue(s))). This canonical map is an
equivalence.

Proof. The standard induction principle for the coequalizer states that there
is a function from (4.6) to (4.5) with β-rules that essentially amount to stat-
ing that this function is a section of the canonical map above. Lemma 4.1.5
replaces “section” by “inverse”. This easily follows from the standard in-
duction principle. We are not the first to make this observation – a small
variation of the lemma is already present in the Lean library, formalized
by van Doorn and Buchholtz [2017].

Remark 4.1.6. Note that Lemma 4.1.5 crucially depends on the “non-recur-
siveness” of the coequalizer A�∼. For example, the analogous statement
about the natural numbers N is false (i. e. assuming it leads to a contradic-
tion).

In line with the strategy outlined above, we further consider the follow-
ing category D:

Definition 4.1.7 (Category D). D is the category of pointed families over
A�∼. Explicitly, objects in |D| are pairs (L, p) as in

L : A�∼ → U
p : L([a0]),

52 4.1. THE MAIN THEOREM: PATH SPACES IN COEQUALIZERS

and morphisms in D((L, p), (L′, p′)) are pairs (g, ϵ) of types

g : (x : A�∼) → L(x) → L′(x) (4.7)
ϵ : g(p) = p′ (4.8)

Again, the remaining components of the category are defined in the straight-
forward way.

The connection between C and D is as follows:
Lemma 4.1.8. The two categories are isomorphic, in the following sense. There is
a map

Φ0 : |D| → |C| (4.9)
which is an equivalence, and there is also a map

Φ1 : Π(X, Y : |D|).D(X, Y) → C(Φ0(X), Φ0(Y)) (4.10)

such that each Φ1(X, Y) is an equivalence. Moreover, identities and compositions
are preserved by the equivalence. This corresponds to the two wild categories be-
ing isomorphic objects in the category of wild category which as morphisms
contains the obvious notion of “wild functors”.
Proof. Let us unfold the type in (4.9); this is the type of the equivalence
that we want to construct:

(L : A�∼ → U)× L([a0])

' (K : A → U)× K(a0)× ({b, c : A}(s : b ∼ c) → K(b) ' K(c))
(4.11)

Lemma 4.1.5 gives us a tool to construct equivalences. Let us use that
lemma with the constant type family P(x) :≡ U ; this makes use of the
fact that the lemma works on all universe levels. The lemma then gives us,
simply by replacing P(x) by U , renaming variables, and using the fact that
we are now in the non-dependent special case, the following equivalence
φ0:

(A�∼ → U)
' (K : A → U)× ({b, c : A}(s : b ∼ c) → K(b) = K(c)).

(4.12)

Moreover, we know how φ0 is defined, namely by

φ0 :≡ (L ◦ [−], λs.apL(glue(s))) (4.13)

(since we are in the non-dependent case, apd became ap).
We claim that the function Φ0 of type (4.9) can be constructed from φ0

via two small modifications:

CHAPTER 4. PATH SPACES OF HITS 53

• First, if we compare the domain of Φ0 with the domain of φ0, and
furthermore their codomains, we see that the “point-component” is
missing from φ0, i. e. the component of the Σ-type L([a0]) is missing
in its domain and p : K(a0) is missing in its codomain. However,
we can ust extend domain and codomain with this component. The
Equation (4.13) tells us that this extension is completely trivial, since
K ≡ L ◦ [−], i. e. we extend φ0 with the identity on one additional
new component.

• The codomain of this extended φ0 only differes from the codomain of
Φ0 in that the component e in (4.12) concludes K(b) = K(c) instead
of K(b) ' K(c). To close this gap we can use the canonical function
idtoeqv which turns an equality between types into an equivalence.
The univalence axiom ensures that it is an equivalence itself.

This concludes the construction of the equivalence Φ0, and, using (4.13),
we can write down how the function part of it computes when applied to
a pair (L, p):

Φ0(L, p) ≡
(

L ◦ [−], p, λs.idtoeqv(apL(glue(s)))
)

(4.14)

The construction of Φ1 as in (4.10) is slightly more subtle, since it de-
pends on Φ0, but itworks in essentially the sameway. Assumewe are given
(L, p) and (L′, p′) in |D|. We unfold the desired type of Φ1((L, p), (L′, p′)),
making use of equation (4.14). This gives us the following type which we
want to inhabit:(

g : (x : A�∼) → L(x) → L′(x)
)
×

(
g(p) = p′

)
'

(
f : (b : A) → L([b]) → L′([b])

)
× (δ : f (p) = p′)

×
(
{b, c : A}(s : b ∼ c) →

idtoeqv(apL(glue(s))) ◦ f (b)

= f (c) ◦ idtoeqv(apL′(glue(s))
)

(4.15)

Let us use Lemma 4.1.5 again, this time with the type family P(x) :≡
(L(x) → L′(x)). Simply by plugging this into Lemma 4.1.5 and renam-

54 4.1. THE MAIN THEOREM: PATH SPACES IN COEQUALIZERS

ing variables we obtain the following equivalence φ1:

((x : A�∼) → L(x) → L′(x))
'

(f : (b : A) → L([b]) → L′([b]))× ({b, c : A}(s : b ∼ c) → f (b) =glue(s) f (c))
(4.16)

Similar to what we have done before, we have to use (4.16) to derive (4.15);
and as before, there are two steps. First, we need to add the equation for
the points (i. e. the components ϵ and δ), but this is as simple and direct
as before; we will not spell out the details here. Second, and more inter-
estingly, we have to show that the last components of the right hand side
of (4.15) and (4.16) coincide in the sense that their types are equivalent.
As very often in homotopy type theory when we want to prove something
for a specific equality (here glue(s)), the easiest way to do it is to general-
ize the statement and formulate it in terms of an arbitrary equality, which
then allows for path induction. The only red herring here is that f is a
family of functions. But since it is indexed over A and the equality in ques-
tion lives in A�∼, we cannot make use of this. The equivalence follows
from Lemma 4.1.9 below, by using f (b) for h, f (c) for k, and glue(s) for
q. It is easy to check that Φ1 preserves identities and composition of mor-
phisms.

Lemma 4.1.9. Let Z be a type, F, G : Z → U two type families, x, y : Z, and
q : x = y a path. Assume we have functions h : F(x) → G(x) and k : F(y) →
G(y). Then, the path-over type h =q k is equivalent to the type

idtoeqv(apG(q)) ◦ h = k ◦ idtoeqv(apF(q)).

Having shown Lemma 4.1.8, which constitutes the main technical dif-
ficulty of the proof of theorem Theorem 4.1.4, we can work with D instead
of C. The benefit is that it is easy to find the initial object of D.

Lemma 4.1.10. Let us consider the object (Li, pi) of D, given as follows:

Li(x) :≡ ([a0] = x)

pi :≡ refl[a0].

This object is initial in D.

CHAPTER 4. PATH SPACES OF HITS 55

Proof. Let (L, p) be any other object. After unfolding the definition of mor-
phisms in D, the type D((Li, pi), (L, p)) is given by(

g : (x : A�∼) → ([a0] = x) → L(x)
)
×

(
g([a0], refl) = p

)
.

This type is contractible by applying “singleton contraction” twice: first, we
use that an element x together with an equality [a0] = x form a contractible
pair, simplifying the above type to (g : L([a0]))× (g = p); and this type is
clearly contractible.

Having found the initial object in D, we transport it to C in order to
prove the categorical version of our main result, which is Theorem 4.1.4.

Proof of Theorem 4.1.4. Since Φ1, as constructed in Lemma 4.1.8, preserves
morphism spaces, Φ0 preserves the initial object. Thus, all we need to do
is to use the object found in Lemma 4.1.10 and compute using (4.14). This
gives us Ki and ri immediately. We obtain the last component ei by a stan-
dard “path induction”-argument.

As a last step we can now derive the dependent eliminator from the
non-dependent one. The main part of this derivation of Theorem 4.0.2 is
completely standard and follows known principles, which for example can
be found in the work by Awodey et al. [2017]. We use the “total space”
construction to turn the dependent case into the non-dependent one. Af-
terwards, we still need to derive the β-rules, and this is trickier; we use a
small trick to “strictify” equations.

Proof of Theorem 4.0.2. Assume that P, r and e are given. The “total space”
versions of these three components of an object (P, r, e) of the category C,
and they are defined as follows:

P : A → U
P(b) :≡ (q : [a0] = [b])× P(q)

r : P(a0)

r :≡ (refl[a0], r)

e : {b, c : A} → (b ∼ c) → P(b) ' P(c)
e(s) :≡ (_ � glue(s), e(_, s, _)) .

56 4.1. THE MAIN THEOREM: PATH SPACES IN COEQUALIZERS

Note that the definition of e(s) implicitely uses the fact that an equivalence
between Σ-types can be constructed from a pair of equivalences for the first
and second component. Explicitely, the function part of e(s) maps a given
pair (q, x) with q : [a0] = [b] and x : P(q) to the pair (q � glue(s), e(q, s, x)).
We have a morphism from the initial object of C to this newly constructed
object which from now on we will call (f , γ, δ), but we also have the “first
projection” in the other direction:

(f , δ, γ) : C
(
(Ki, pi, ei), (P, r, e)

)
(4.17)

(λb.pr1, reflri , λs.reflei(s)) : C
(
(P, r, e), (Ki, pi, ei)

)
(4.18)

It follows from initiality that the composition of these morphisms is the
identity on the object (Ki, ri, ei), i. e. we have a ψ of the following type:

ψ : (λb.pr1, reflri , λs.reflei(s)) ◦ (f , δ, γ) = (λb.id, reflri , λs.reflei(s)). (4.19)

In particular, given any q : [a0] = [b], we get an equality

ψ1
q : pr1(fb(q)) = q, (4.20)

and we can define indr,e(q) : P(q) by

indr,e(q) :≡ (ψ1
q)

∗(pr2(fb(q))). (4.21)

This defines the induction principle, but the two β-rules still need to
be justified. The equality ψ in (4.19) consists of three parts, one for each
component; let us write (ψ1, ψ2, ψ3) for them. The general idea is that, just
as ψ1 has allowed us to construct the induction principle (4.21), ψ2 allows
us to show the first β-equation and ψ3 gives us the second one. The main
difficulty here are themany transports or pathoverswhich are involved, since
the types of ψ2 and ψ3 depend on ψ1. The trick is to split f into (f1, f2) by
setting f 1

b :≡ pr1 ◦ fb and f 2
b :≡ pr2 ◦ fb, and similarly split γ and δ. Using

this, and calculating the left side of (4.19), we get

(ψ1, ψ2, ψ3) : (f 1, δ1, γ1) = (λb.id, reflri , λs.reflei(s)).

Now, we can generalize the situation: we claim that, for all (ψ1, f 1, . . .), we
can derive the induction principle plus two β-equalities. This formulation
allows us to use based path induction on (f 1, ψ1) and assume that f 1 ≡
λb.id, ψ1 ≡ reflλb.id. This lets the mentioned dependencies disappear and

CHAPTER 4. PATH SPACES OF HITS 57

we get ψ2 : δ1 = reflri as well as ψ3 : γ1 = λs.reflei(s). In addition, (4.21)
simplifies to indr,e(q) :≡ pr2(fb(q)).

For the first β-equality, we unfold the type of δ:

δ : (refla0 , indr,e(refla0)) = (refla0 , r)

We need to show that the second components are equal. From δ, we get
that the second components are equal when one is transported along the
δ1, and from ψ2, we get that this is a transport along refl.

The procedure for the second β-equation is similar. The details are best
seen by considering the following diagram:

[a0] = [b] (q : [a0] = [b])× P(q)

[a0] = [c] (q : [a0] = [c])× P(q)

γ_ � glue(s)

fb

fb

_ � glue(s),e(_,s,_)

γ says that this square commutes. Let us take some q : [a0] = [b] and see
how it is mapped (using f1 ≡ id and so on):

q (q, indr,e(q))

q � glue(s) (q � glue(s), ind(q � glue(s)))
(q � glue(s), e(q, s, indr,e(q))

Here, γ tells us that the two pairs at the bottom right are equal. As before,
we need that their second components are equal; and analogously to what
we did before, we use ψ3 to see that this is the case.

4.2 Equality in Pushouts
We already learned that pushouts and coequalizers are interderivable, so it
is an obvious questionwhat ourmain theorem translates towhen regarded
for pushouts instead of coequalizers. We write in : (M + N) → MtL N for
the map given by (inl, inr). To simplify notation, we keep the inclusions

58 4.2. EQUALITY IN PUSHOUTS

inl : M → (M + N) and inl : N → (M + N) implicit and only mention the
inclusions into the pushout.

Since pushouts are used a lot and play a vital role in the Seifert-van
Kampen theorem (cf. Section 4.4), we want to state our main result explic-
itly for pushouts instead of coequalizers. The proofs can straightforwardly
be obtained by expressing the pushouts as coequalizers, as described in the
introduction. (In Lean, this is simply a specialization).

Theorem 4.2.1 (Induction for Pushout Equality). Assume L, M, N : U , f :
L → M, g : L → N are given as in the definition of the pushout, together with a
point n0 : N. Assume we are given families P, Q and terms r, e as follows:

P : {m : M} → (inr(n0) = inl(m)) → U (4.22)
Q : {n : N} → (inr(n0) = inr(n)) → U (4.23)
r : Q(reflinr(n0)) (4.24)
e : (l : L) → (q : inr(n0) = inl(f (l))) → P(q) ' Q(q � glue(l)). (4.25)

Then, we can construct terms

indP
r,e : {m : M}(q : inr(n0) = inl(m)) → P(q)

indQ
r,e : {n : N}(q : inr(n0) = inr(n)) → Q(q)

with the following β-rules:

indP
r,e(reflinr(n0)) = r

indQ
r,e(q � glue(l)) = e(l, q, indP

r,e(q))

Remark 4.2.2. As before, the first β-rule holds judgmentally in our formal-
ization.

Theorem 4.2.3 (Initiality of Pushout Equality). Given the same data as in the
previous theorem, we can consider the category P , whose definition mirrors that
of C. Objects are quadruples (J, K, r, e),

J : M → U
K : N → U
r : K(n0)

e : (l : L) → J(f (l)) ' K(g(l))

CHAPTER 4. PATH SPACES OF HITS 59

and a morphism between (J, K, r, e) and (J′, K′, r′, e′) consists of fiberwise func-
tions which preserve r and commute with e. Then, the object (Ji, Ki, ri, ei) defined
by

Ji(m) :≡ (inr(n0) = inl(m))

Ki(n) :≡ (inr(n0) = inr(n))

ri :≡ reflinr(n0)

ei(l) :≡ _ � glue(l)
is initial in P .

4.3 First Applications
We anticipate that our main result, especially in the formulations of The-
orem 4.0.2 and Theorem 4.2.1, will be a very useful tool for a variety of
constructions in homotopy type theory. In this chapter, we will present
two short applications.

The loop space Ω(X) of a type X with an (implicitly given) point x0 : X
is defined to be x0 = x0. Thus, the loop space of the circle S1 is simply
base = base. We can use our main result to reprove Theorem 3.3.1 stating
that

Ω(S1) ' Z.

New proof for Theorem 3.3.1. Asdiscussed in Section 3.2, S1 can be expressed
as the coequalizer of 1 and the relationwhich has 1 as its value. This allows
us to apply Theorem 4.1.4 and, since all quantifications are now quantifi-
cations over the unit type, we can safely ignore them. Thus,

(
Ω(S1), refl, _ �

loop
)
is the initial object in the category of pointed types with an automor-

phism. Due to the uniqueness of initial objects, all we need is that (Z, 0, S)
is initial in this category. This statement is completely removed from the
higher inductive type S1; it is a basic property of the integers, analogous
to the fact that (N, 0, S) is initial in the category of pointed types with an
endofunction.

Of course, the difficulty of a concrete proof for the initiality property
depends on the concrete definition of Z that one uses. With the defini-
tion used by Licata and Shulman (essentially N + 1 + N), this is easy al-
beit some work. We will come back to definitions of the integers in Re-
mark 4.4.2.

60 4.3. FIRST APPLICATIONS

As a second application we will prove that a certain class of functions,
called embeddings, is preserved under pushouts.

Definition 4.3.1. An embedding is a map h : X → Y whose fibers are
propositions, i. e. where, for each y : Y, the type h−1(y) :≡ (x : X)× (y =
h(x)) is a proposition. Equivalently, h is an embedding if and only if

aph : {x, x′ : X} → (x = x′) → (h(x) = h(x′)) (4.26)

is a family of equivalences between path spaces.

As formalized by Finster [2017] via an encode-decode construction,
embeddings are closed under pushout. In the following, we present an
alternative (and significantly shorter) argument.

Theorem 4.3.2 (Pushouts preserve Embeddings). Embeddings are closed un-
der pushout. Explicitly, if f in following the diagram is an embedding, then so is
inr:

L N

M MtL N

f

g

inl

inr

Proof. Using (4.26), we need to show that apinr : (n0 = n) → (inr(n0) =
inr(n)) is an equivalence for all points n0, n. Thus, for any q : inr(n0) =
inr(n), we want to find something in the preimage of q. This tells us how
we need to choose the type family Q of Theorem 4.2.1: We fix n0 and define

Q : (n : N) → (inr(n0) = inr(n)) → U
Q(n, q) :≡ (p : n0 = n)× apinr(p) = q.

Wealso need to define the type family P. Given something in M, we “move”
it back to N by going via the fiber, which allows us to define P using Q:

P : (m : M) → (inr(n0) = inl(m)) → U

P(m, q) :≡
(
(l0, q0) : f−1(m)

)
× Q

(
g(l0), q � apinl(q0) � glue(l0)

)
.

The component r is the obvious one, r :≡ (refl, refl). For a given l : L
we know that, since f is an embedding, the type f−1(f (l)) is contractible
and we can assume (l0, q0) ≡ (l, refl). This implies P(f (l), q) ' Q(g(l), q �

CHAPTER 4. PATH SPACES OF HITS 61

glue(l)), which is exactly what we need in order to define the component
e. Thus, we have

indQ
r,e : {n : N}(q : inr(n0) = inr(n)) → (p : n0 = n)× apinr(p) = q,

i. e. a section s of apinr (a function such that apinr ◦ s = id). To show that
s ◦ apinr : (n0 = n) → (n0 = n) is the identity, we do path induction and
use the first β-rule.

4.4 FreeGroupoids and aHigher Seifert-vanKam-
pen Theorem

Fundamental groups in topology are quotients of spaces – in homotopy type
theory we represented them as 0-truncations of equality types. Thus, it is
natural to ask for a higher dimensional version of the theorem which does
not quotient or truncate. In homotopy theory, different versions have been
proved by Lurie [2009] and Brown et al. [2011]. In homotopy type theory,
it is an open problem how this could be done. The results of this chap-
ter suggest one possible such higher Seifert-van Kampen theorem (The-
orem 3.3.3), which we present in this section. Note that the precise for-
mulation of a theorem is part of the open question how to generalize the
Seifert-van Kampen theorem in homotopy type theory, since the analogue
of the code family by Favonia and Shulman has to be defined (and a trivial
solution exists: define this analogue to be the equality). Our justification
for why the analogue we suggest is reasonable is that, by 0-truncating, the
Favonia-Shulman theorem can be recovered relatively easily. As in Sec-
tion 4.2, let as assume L, M, N : U , f : L → M, and g : L → N. We write
P :≡ MtL N. A caveat is in order. In this section, we make used of indexed
higher inductive types, of which we expect that they can be encoded in terms
of higher inductive types, analogously to the fact that indexed inductive
types can always be encoded via inductive types, as proven by Altenkirch
et al. [2015], Sattler [2015].

To recall, the Seifert-van Kampen theorem in the version of Hou (Favo-
nia) and Shulman [2016] states that for x, y : M+ N there is an equivalence

‖in(x) =P in(y)‖0 ' code(x, y).

The central difficulty of a higher version of the theorem is, of course, avoid-
ing the set-truncation. Note that, in our description of the the lists used to

62 4.4. FREE GRUOPOIDS AND SEIFERT-VAN KAMPEN

define code, the set-truncations in

pi : ‖g(li) = g(ki+1)‖0 and
qi : ‖p(ki) = p(li)‖0

can be removed since we set-truncate later when taking the set-quotient.
This is essentially a repeated application of the equivalence

‖(a : A)× ‖B(a)‖n‖n ' ‖(a : A)× B(a)‖n.

This unnecessary set-truncation does make sense in the formulation of the
Seifert-van Kampen theorem, where all equality types are set-truncated,
but removing it makes it easier to motivate our higher Seifert-van Kampen
theorem.

Next, we suggest an alternative definition for the type of lists (before
quotienting/truncation). To simplify things further, let us fix n0 : N and
consider lists starting at this point. Let us now look at the following indexed
inductive type C0 : (M + N) → U with three constructors, where C0(x)
should be understood as a type of lists from n0 to x. Recall that we keep
the embeddings i1 : M → (M + N) and i2 : N → (M + N) implicit, and
that the data we are given are maps f : L → M and g : L → N.

C0-INTRO1
nil : C0(n0)

C0-INTRO2
l : L c : C0(f (l))

gl(l, c) : C0(g(l))
C0-INTRO3

l : L c : C0(g(l))

gl′(l, c) : C0(f (l))

Clearly, nil gives us the empty list. The other two constructors allow us
to switch between lists ending in a point in M to lists ending in a point
in N and vice versa. Intuitively, this is done simply by adding a glue at
the end of the list. This explains how to add the vertical lines of a list as
drawn in Figure 3.2. It may be surprising that we do not add the horizontal
components pi and qi explicitly. The reason is that they are automatically
and implicitly present in this encoding: the map (_)∗ of type

{l, l′ : L} → (g(l) = g(l′)) →
(
C0(g(l)) → C0(g(l′))

)
(4.27)

allows us to “insert” the upper horizontal components in Figure 3.2 and
(exchanging g by f) also the lower horizontal components.

The type C0(x) encodes lists from n0 to x, but we have not done the quo-
tienting, i.e. lists that should be the same are still different. To remedy this,

CHAPTER 4. PATH SPACES OF HITS 63

we can turn C0 into an indexed higher inductive type and add constructors
ensuring that gl(l, gl′(l, x)) = x and gl′(l, gl(l, x)) = x. If we set-truncate,
this would give us the correct type, namely something equivalent to the
code(n0, x) by Favonia and Shulman. Since we do not want to set-truncate,
we have to be more careful. gl(l) and gl′(l) together with the equality con-
structors will form a pair of quasi-inverses [Homotopy Type Theory, 2013],
and it is known that this type is not well-behaved. Instead, we mirror the
components that form an actual equivalence. Although there are several
formulations that would work, we use those that turn gl into a bi-invertible
map [Homotopy Type Theory, 2013], as with the following introduction
rules for a type family C : (M + N) → U :

C-INTRO1
nil : C(n0)

C-INTRO2
l : L c : C(f (l))

gl(l, c) : C(g(l))

C-INTRO3
l : L c : C(g(l))

linv(l, c) : C(f (l))
C-INTRO4

l : L c : C(g(l))

rinv(l, c) : C(f (l))

C-INTRO5
l : L c : C(f (l))

linv(l, gl(l, x)) = x
C-INTRO6

l : L c : C(g(l))

gl(l, rinv(l, y)) = y

This definition of C does certainly not look very appealing, and we only
give this presentation because it is the “standard”way of presenting higher
inductive types. If we allow ourselves to fold the last five constructors into
a single one, its introduction rule could look as follows:

C-INTRO2–6
l : L

C(f (l)) ' C(g(l))

It may also be interesting to do this in the formulation for a coequal-
izer instead of a pushout. As explained in Section 4.1, this is a completely
mechanical translation. Thus, assume A with a0 : A and _ ∼ _. Then, the
corresponding type G in the “folded” form looks as follows:

data G : A → U
nil : G(a0)

cons : {b, c : A} → (b ∼ c) → G(b) ' G(c)
(4.28)

Let uswriteG(a0, _) instead of G(_), in order to explicitlymention the point
a0. We can callG the free higher groupoid generated by ∼. This construction

64 4.4. FREE GRUOPOIDS AND SEIFERT-VAN KAMPEN

generalizes the explicit construction of a free higher group (based on an
idea by Kraus and Altenkirch [2018]). It also generalizes the “integer type
as a higher inductive type” (itself a special case of the free higher group)
whichwas independently suggested byPinyo andAltenkirch [2018] (based
on Capriotti’s idea), by van der Weide et al. in unpublished work, and in
a formalization by Cavallo and Mörtberg [Dec 2018]. This example is dis-
cussed further in Remark 4.4.2 below.

The type family C depends on the chosen point n0. To remove this
dependency, let us consider a version of C which is indexed twice over
(M + N): we write C(x, y) for the type which is defined by induction on
x to be C(n0, y) ≡ C(y) for n0 : N or the obvious modification of the first
introduction rule of C for C(m0, y) for m0 : M. This expression plays the
role of code in our higher analogue of the Favonia-Shulman result, Theo-
rem 3.3.3. While it can be extended to a family P → P → U in a straight-
forward way, we choose the following formulation for simplicity (and to
match Theorem 3.3.3 more closely):

Theorem 4.4.1 (Higher Seifert-van Kampen Theorem). For x, y : M + N,
we have an equivalence:

(in(x) =P in(y)) ' C(x, y). (4.29)

Proof. Like all (indexed/higher/ordinary) inductive types, our type fam-
ily C is initial in an appropriately formulated category of algebras (see
Awodey et al. [2017], Coquand et al. [2018], and others). Here is where
we draw the connection with the main result of the paper: The category in
which C is initial is the category P from Theorem 4.2.3.1 This is easy to see
when we use the general specification and definition of higher inductive-
inductive types given by Kaposi and Kovács [2018b, 2019], but see Re-
mark 4.4.2 below.

By the uniqueness of the initial object and by Theorem 4.2.3, C(x) is
equivalent to inr(n0) =P in(x). Letting n0 vary, we get the statement of the
theorem.

It is relatively straightforward to recover the set-truncated SvK state-
ment from the higher version (Theorem 4.4.1). We can simply set-truncate
both sides in (4.29) and thenprove that ‖C(x, y)‖0 is equivalent to code(x, y)
by constructing maps in both directions.

1To be precise, the object (C ◦ i1, C ◦ i2, nil, gl) is initial in P.

CHAPTER 4. PATH SPACES OF HITS 65

Remark 4.4.2. Theorem 4.4.1 and its proof deserve additional comments.
We think it is fair to say that the formal theory of indexed higher induc-
tive types is not yet well-established, but it is under very active develop-
ment. Kaposi and Kovács [2018b, 2019] have suggested a definition for
general higher inductive-inductive types which captures the case we need.
Indexed higher inductive types are considered in some of the cubical set-
tings; cf. Cavallo and Harper [2019], and there are plans to extend cubi-
cal Agda [Vezzosi, 2018, Mörtberg, 2018, Mörtberg and Vezzosi, 2018] and
redtt [Angiuli et al., 2018] with the concept (at the time of writing, a pos-
sibly not final version is available in cubical Agda). Our definition of C
would be covered by any potential implementation of indexed higher in-
ductive types. We think it would be desirable to also allow a direct syn-
tactical representation as in C-INTRO2-6, even if only as syntactic sugar for
the rules it replaces. Note that Kaposi and Kovács allow equalities between
types, which is very similar to allowing this family of equivalences.

The critical step in the above proof of Theorem 4.4.1 is to establish C
as the initial object of the category P . With the specification suggested by
Kaposi and Kovács allowing C-INTRO2-6, with equalities instead of equiva-
lences, this part is easy. However, we want to emphasize that the initiality
of C using C-INTRO2-6 is not immediate at all if we use what we could call
the direct induction principle 2. The direct induction principle is the “stan-
dard” principle one derives by giving one case for each constructor, as done
in the book [Homotopy Type Theory, 2013] and by current proof assistants
such as cubical Agda. Unfortunately, due to the type dependency in the
direct induction principle, it becomes very hard to “fold” the components
for the type C in order to achieve the principle one would expect from the
constructor C-INTRO2-6. We expect that implementing Theorem 4.4.1 in cu-
bical Agda would be extremely tedious for this reason.

The core of the problem with the direct induction principle is that it
does not allow us to “reason on the level of constructors”. As an exam-
ple, let us consider the interval with two point constructors and one path
constructor. If we can reason on the level of constructors, it is by “sin-
gleton contraction” clear that one point and the path constructor form a
contractible pair, and that the interval is therefore equivalent to the type
generated by a single point. With the direct induction principle, this style
of reasoning is not possible. It turns out to be easy enough to prove the

2The terminology was suggested by Anders Mörtberg.

66 4.5. FORMALIZATION IN LEAN

interval contractible, but in other cases, the situation is less fortunate.
As an example, proposals by Pinyo andAltenkirch [2018], unpublished

work by van der Weide et al., and a formalization by Cavallo based on a
remark by Mörtberg [Cavallo and Mörtberg, Dec 2018] suggest to define
Z as a higher inductive type, and their very definition is chosen such that
Z should become the initial object of the category of pointed types with
automorphism (cf. Section 4.3). Their definitions are versions of (4.28)
with A and ∼ replaced by the unit type and the relation constantly unit.
Crucially, they have to “unfold” the constructor cons, since this is what the
current cubical proof assistants require. It turns out that this makes it ex-
tremely tedious to prove the resulting type equivalent to other definitions
of the integers.

4.5 Formalization in Lean
Not all, but most results of this chapter have been formalized in the theo-
rem prover Lean:

• We formalized the two wild categories C and D of Definition 4.1.3
and Definition 4.1.7 as structures,

• we proved their equivalence as per Lemma 4.1.8,

• we provided the initial element of C as in Lemma 4.1.10,

• we use it to prove the non-dependent version of the main result, The-
orem 4.1.4,

• and then derive the dependent eliminator from the uniqueness of the
non-dependent one, as in the proof of Theorem 4.0.2,

• we specialize the result to pushouts, which in Lean, are a special case
of coequalizers,

• we formalize the two applications of the theorem as given in Sec-
tion 4.3.

The higher Seifert-van Kampen was not formalized, since we don’t have
indexed higher inductive types at our disposal in Lean.

CHAPTER 4. PATH SPACES OF HITS 67

Wewill now give a few code snippets as examples for how the contents
are represented in Lean. The formalization makes heavy use of Lean’s ho-
motopy type theory library [van Doorn et al., 2017]. The snippets contain
more syntax than what we introduced in Section 2.4.1, but we chose not to
“sanitize” the actual formalization and refer the reader to Lean’s complete
introduction [Avigad et al., 2015].

The wild categories C and D are encoded as structures, the definition
of objects and morphisms in the latter looking as follows:

1 @[hott] protected structure CatD_ob ం=
2 (L : D → Type w')
3 (n : L (ι x))
4

5 @[hott] protected structure CatD_mor (X Y : CatD_ob) ం=
6 (L : Π d, X.L d → Y.L d)
7 (n : L _ X.n = Y.n)

Note, that @[hott] is a user-define command which makes sure that the
strict universe of propositions is not used in any way, and thus our formal-
ization is indeed consistent with homotopy type theory.

The equivalence of C and D is, on objects defined and stated as follows
(we omit the proof itself here):

1 @[hott] private def CatCD_ob (X : CatC_ob) : CatD_ob ం=
2 ⟨hott.quotient.elim X.K X.c, X.n⟩
3

4 @[hott] private def CatDC'_ob (X : CatD_ob) : CatC_ob ం=
5 ⟨X.L ∘ ι, X.n, λ y z r, ap X.L (eq_of_rel R r)⟩
6

7 @[hott] private def CatCD_ob_equiv : CatC_ob ≃ CatD_ob ం= ...
8

9 @[hott] private def CatCD_mor_equiv (X Y : CatD_ob)
10 : CatD_mor X Y ≃ CatC_mor (CatDC'_ob X) (CatDC'_ob Y) ం= ...

The initial object of C is then defined by first giving the initial object of D
and then mapping it to C:

1 @[hott] private def CatD_init : CatD_ob ం= ⟨λ d, ι x = d, idp⟩

The non-dependent eliminator is manifested in the following:

68 4.5. FORMALIZATION IN LEAN

1 section elim'
2 parameters {Q : A → Type (max u v)}
3 (x : A)
4 (Qrefl : Q x)
5 (Qeq : Π y z (r : R y z), Q y = Q z)
6 include Qrefl Qeq
7

8 @[hott] def Q_obj' : CatC_ob x ం= ⟨Q, Qrefl, Qeq⟩
9

10 @[hott, elab_as_eliminator] protected def path_elim' (y : A) (p : ι x = ι y)
11 : Q y ం= ...

The version of the dependent eliminator for pushouts is obtained by a
simple specialization, as visible in the following snippet:

1 section
2 parameters (x : B ⊎ C)
3 (Q : Π (y : B ⊎ C), ι x = ι y → Type w')
4 (Qrefl : Q x idp)
5 (Qcons : Π (a : A) (p : ι x = inl (f a)),
6 Q (sum.inl (f a)) p ≃ Q (sum.inr (g a)) (p � glue a))
7 include Qrefl Qcons
8

9 @[hott] private def prel : B ⊎ C → B ⊎ C → Type _ ం=
10 @hott.pushout.pushout_rel A B C f g
11

12 @[hott] private def Qcons' (y z : B ⊎ C) (p : ι x = ι y) (r)
13 : Q y p ≃ Q z (p � eq_of_rel prel r) ం=
14 by { hinduction r with a; apply Qcons }
15

16 @[hott] protected def path_rec (y : B ⊎ C) (p : ι x = ι y) : Q y p ం=
17 begin
18 refine quotient.path_rec x Qrefl _ y p,
19 exact Qcons' f g x Q Qrefl Qcons,
20 end

To emphasize the benefits of our theoremwhen it comes to allowing for
short proofs of homotopy theoretic statements, let us look at the proof of
the theorem stating that pushouts preserve embeddings (Theorem 4.3.2)
in full:

1 parameters {A : Type u} {B : Type v} {C : Type w} (f : A → B) (g : A → C)
2 [is_embedding f]

CHAPTER 4. PATH SPACES OF HITS 69

3 include f g
4

5 @[hott] def motive {c₀} :
6 Π x (q : (inr c₀ : pushout f g) = quotient.class_of _ x), Type _
7 | (sum.inl b) q ం= Σ (a : fiber f b),
8 fiber (ap inr) (q � ap inl a.2⁻¹ � (glue a.1))
9 | (sum.inr c) q ం= fiber (ap inr) q

10

11 @[hott] def fib_rec (c₀ c q) : @motive c₀ (sum.inr c) q ం=
12 let Qcons : Π a (p : inr c₀ = inl (f a)),
13 motive (sum.inl (f a)) p ≃ motive (sum.inr (g a)) (p � glue a) ం=
14 λ a p, @sigma_equiv_of_is_contr_left _
15 (λ (a : fiber f (f a)), fiber (ap inr) (p � ap inl (a.2)⁻¹ � glue (a.1)))
16 (is_contr_of_inhabited_prop ⟨a, idp⟩) in
17 pushout.path_rec f g _ motive ⟨idp, idp⟩ Qcons _ q
18

19 @[hott] protected def preserves_embedding : is_embedding inr ం=
20 λ c c', adjointify _ (λ q, (fib_rec c c' q).1)
21 (λ p, (fib_rec c c' p).2) (λ p, by { hinduction p, refl })

70 4.5. FORMALIZATION IN LEAN

Chapter 5

Specification of
Inductive-Inductive Types

As we have mentioned in Section 1.3, we want to make a sharp pivot at
this point of the thesis and want to explore inductive-inductive types. This
chapter will first introduce inductive-inductive types by a few illustrative
examples, beforewewill start with itsmain purpose: Giving a formal spec-
ification of what inductive-inductive types are.

The treatment of inductive-inductive types, which includes all the sub-
sequent chapters, will happen in a type theorywhich admits the K-rule (cf.
Remark 2.3.1) and thus we will not have any meaningful higher equalities
in types. While some of the constructions are easily transferable to homo-
topy type theory, others rely on the K-rule and it is not obvious how to
make them coherent with respect to higher equalities. Further than having
the K-rule we will also take the liberties in regarding some equalities as
strict. We will use ≡ instead of = to denote strict equality.

Inductive-inductive types are a feature of type theories which comes
naturally in provers likeAgda,which are based ondependent patternmatch-
ing. A formal treatment of their syntax and semantics is still interesting for
several reasons: We like to give grounds to their soundness, wemightwant
to implement them in theorem provers which are not based on dependent
pattern matching but on a derivation of elimination rules, or we might use
them as a tool to prove the consistency of concepts like dependent pattern
matching.

The use case for inductive-inductive types is always of the following
nature: We want to define some data by the means of an inductive types,
but wewant its point constructors to refer to data from another type family

71

72

which is indexed over the very type we are just defining. In the following,
we will take a look at a few examples which we are going to revisit at var-
ious steps throughout this presentation:

Example 5.0.1 (Type Theory Syntax). Internalising type theory in itself has
been a useful tool for many insights about type theory. Danielsson [2006]
used induction to achieve this, while later Altenkirch and Kaposi [2016]
showed how to internalise the syntax of type theory inside type theory it-
self using a quotient inductive-inductive type. Leaving out terms and sub-
stitutions, we arrive at a fragment of type theoretical syntax specifying a
type of contexts and a type of types over a certain contexts, together with
type formers for a unit type and a Π-type: We want Con : U to be induc-
tively defined by

nil : Con and
ext : (Γ : Con)(A : Ty(Γ)) → Con ,

while simultaneously defining a family Ty : Con → U with constructors

unit : (Γ : Con) → Ty(Γ) and
pi : (Γ : Con)(A : Ty(Γ))(B : Ty(ext(Γ, A))) → Ty(Γ).

Example 5.0.2 (Free Dense Completion). Nordvall Forsberg [2013] pro-
posed the example of a “free dense completion” of an order (or, more gen-
eral, any relation) which for any type A : U and any type valued relation
_ < _ : A → A → U on A freely adds midpoints to all pairs of related
elements by _ < _. It does so by introducing a new type A′ : U inductively
generated by the original points and their midpoints:

ιA : A → A′ and
mid : {x, y : A′}(p : x <′ y) → A′.

But since our relation was only defined on A, we have to extend it to A′ by
postulating

ι< : {a, b : A}(p : a < b) → ιA(a) <′ ιA(b),
mid

l
: {x, y : A′}(p : x <′ y) → x < mid(p), and

mid
r

: {x, y : A′}(p : x <′ y) → mid(p) < y.

CHAPTER 5. SPECIFICATION OF IITS 73

5.1 Signatures for Inductive-Inductive Types
Inductive-Inductive Types are specified by giving a context in a small type
theoretic syntax which we will refer to as source type theory. This idea orig-
inates from the work by Kaposi and Kovács [2018a] on the syntax of higher
inductive-inductive types, whichwe adapt and rid of equality constructors
to only allow for inductive-inductive types. In contrast to their presenta-
tion we will leave the context of the ambient type theory implicit and, in-
stead of highlighting syntax of the ambient type theory, mark elements
of the source type theory in green. The only technical difference between
our type theory and this proposed source type theory is that we want an
explicit separation of sort and point constructors, which prohibit some of
the possible types which are possible in Kaposi and Kovács [2018a]. This
separation is achieved by introducing kinds (see below).

We assume that the source type theory makes use of the standard syn-
tax of type theory, using contexts, types, terms, and variables. We regard
the presentation to be intrinsic meaning that we will only ever consider
wellformed contexts, types, and terms. We will nevertheless use the turn-
stile notation of syntax, and, for examplewrite ` Γ, to say that Γ is a context
– instead of writing something like Γ : Con. We hope that this makes it less
confusing to the reader since we will also have type theoretical syntax as
one of our main examples for inductive-inductive types.

Types and terms are uniquely ascribed to one of two kinds: Either their
kind is S which indicates that the type contains sort constructors, or their
kind is P because elements of it describe point constructors. We will write
Γ ` A :: k to say that A is a type of kind k and Γ ` t : A :: k to state that t
is a term of the type A which in turn has kind k. Often, we will omit the
annotation of the sort, meaning that a judgment is to hold true for both S

and P, or that the kind of a term’s type has already been specified.
It’s important that contexts can be extended by sort and point types in

any order to be able to capture sorts which depend on previously defined
point constructors. So we have the usual two rules for context formation:

` ·
Γ ` A :: k

` Γ, A

We need one atomic building block for sort types: For plain types and
the codomain of function types we need a type U which serves as a token
for the universe. We will call terms of this universe “small types”. Positiviy

74 5.1. SIGNATURES FOR INDUCTIVE-INDUCTIVE TYPES

requires that these are the only (internal) types which are allowed in the
domain of functions. An operation El reifies these small types to big types,
making our version of universe what is commonly referred to as “Tarski-
style universe” (cf. Luo [2012]):

` Γ

Γ ` U :: S

Γ ` a : U
Γ ` El(a) :: P

For sorts which are type families over other sorts that we seek to define,
and for constructors which recursively refer to other constructors, we need
Π-types which have a small type as their codomain. One example for this
is the successor constructor of the natural number, which we will see in
Example 5.1.4. To distinguish them from the other function types, which
we will introduce below, we will often refer to them as recursive Π-types.
Note that whether we want to build a sort or a point type only depends on
the kind of the codomain of such a Π-type. To eliminate from Π-types we
want a rule for its application which turns a term of a Π-type into a term
of its codomain. Note that there is no introduction rule in the form of λ

terms for these functions, since they are not needed in the description of
inductive-inductive types.

Γ ` a : U Γ,El(a) ` B :: k

Γ ` Π(a, B) :: k

Γ ` f : Π(a, B)

Γ,El(a) ` app(f) : B

Additionally, we want sorts to be able to be parametrised by previously
defined types which are not part of the signature itself. The same goes for
point constructors. Since this cannot be captured using the previous Π-
type, we will do the obvious and just introduce another type former for
this occasion. We will usually call it external or non-recursive function type.
Note that external functions must have a fixed kind. This is to prevent
a function which, depending on the input returns sometimes a sort and
sometimes a point constructor. An example for an external Π-type can be
seen when considering the inductive family of vectors, depending on an
external type of natural numbers (see Example 5.1.5).

T : U (τ : T) → Γ ` B(τ) :: k

Γ ` Π̂(T, B) :: k

Γ ` f : Π̂(T, B) τ : T

Γ ` f (τ) : B(τ)

Since we are working with explicit substitutions, we need to postulate a
calculus for substitutions Γ σ−→ ∆ between any two contexts Γ and ∆. The

CHAPTER 5. SPECIFICATION OF IITS 75

substitutions should form a category as postulated by the following rules:

` Γ

Γ id−→ Γ

∆ σ−→ Σ Γ δ−→ ∆

Γ σ◦δ−→ Σ

id ◦ σ = σ

σ ◦ id = σ

(σ ◦ δ) ◦ γ = σ ◦ (δ ◦ γ)

We can pull back types and terms along substitutions, and these pull-
backs are functorial in the categorical structure:

∆ ` A :: k Γ σ−→ ∆

Γ ` A[σ] :: k

∆ ` t : A Γ σ−→ ∆

Γ ` t[σ] : A[σ]

A[id] = A
A[σ ◦ δ] = A[σ][δ]

t[id] = t
t[σ ◦ δ] = t[σ][δ]

We have a canonical substitution into the empty context and we can
extend substitutions by giving a term in a type pulled back to their domain.

` Γ

Γ ϵ−→ ·
Γ σ−→ ∆ ∆ ` A Γ ` t : A[σ]

Γ, A σ,t−→ ∆

Empty substituition and extension simplify by the following laws:

σ = ϵ for all Γ σ−→ ·, and

(δ, t) ◦ σ = (δ ◦ σ), t[σ] for Γ δ−→ ∆, Σ σ−→ Γ.

A substitution into an extended context allows us to project out a “shorter”
substitution and a term as a terminal component:

Γ σ−→ ∆, A

Γ
π1(σ)−→ ∆

Γ σ−→ ∆, A

Γ ` π2(σ) : A[π1(σ)]
, with

76 5.1. SIGNATURES FOR INDUCTIVE-INDUCTIVE TYPES

π1(σ, t) = σ,
π2(σ, t) = t, and

(π1(σ), π2(σ)) = σ.

Finally, we also need rules that tell us, how the constructors of the universe
and the Π-types behave when pulled back along an arbitrary substitution
Γ σ−→ ∆:

U [σ] = U ,
El(a)[σ] = El(a[σ]),

Π(a, B)[σ] = Π(a[σ], B[σ ∧ El(a)]),
app(f)[σ ∧ El(a)] = app(f [σ]),

Π̂(T, B)[σ] = Π̂(T, λτ.B(τ)[σ]), and
f (τ)[σ] = f [σ](τ).

This concludes the specification of the syntax for inductive-inductive types.

Definition 5.1.1. Above, σ ∧ A is one of several auxiliary constructions on
the syntax which are helpful when dealing with substitutions and which
can be derived from the other rules.

The first one is the operation known as weakening which for any Γ ` A

gives a substition Γ, A wk−→ Γ from the extended into the original context by
wk := π1(id).

Likewise, we can apply the second projection to the identity substitu-
tion such that whenever Γ ` A, we have the first variable of the context
vz := π2(id)with Γ, A ` vz : A[wk]. Transporting a term Γ ` t : A along the
weakening substitutiondefined above for any Γ ` B, we get Γ, B : t[wk] : A[wk].
We will write vs(t) := t[wk] for this variable. Together, vz and vs form typed
de Bruijn indices to select variables from a context via numbering themwith
a zero (vz) and a successor (vs).

For Γ σ−→ ∆ and Γ ` A we can “lift” σ along A to get a substitution
Γ, A[σ]

σ∧A−→ ∆, A. This operation can be defined by

σ ∧ A := σ ◦ wk, vz(A[σ]).

At last, every term Γ ` t : A gives rise to a substitution Γ
〈t〉−→ Γ, A, repre-

senting the extension of Γ by t, via

〈t〉 := id, t.

CHAPTER 5. SPECIFICATION OF IITS 77

Definition 5.1.2 (Application). Most often, we want to use the application
of the inductive function type in the form where we give the function term
and its input separately, as in the following rule:

Γ ` f : Π(a, B) Γ ` u : El(a)

Γ ` f (u) : B[σ]
,

for some substitution σ. Nowwe know that we can define this substitution
by

f (u) := app(f)[〈u〉],

and σ = 〈u〉.

Remark 5.1.3. The syntax with its postulated equations itself on the one
hand shows features of induction-induction itself – types are dependent on
contexts, etc. – but the equations turn it what is called a quotient inductive-
inductive type, as Altenkirch et al. [2018] and Kaposi et al. [2019a] define
it. Quotient inductive-inductive types are a very useful generalization of
inductive-inductive types, featuring path constructors beside sort and point
constructors. They can be used, for example to represent the type of real
numbers in type theory [Univalent Foundations Program, 2013].

We will now look at a few example to make it clearer on how to en-
code inductive-inductive declarations in the syntax presented above. To
see what the different function types are used for, consider the following
two examples:

Example 5.1.4 (Natural numbers). The encoding of the natural numbers
as would correspond to the following source type theory context using the
first :

·, U , El(vz), Π(vs(vz),El(vs(vs(vz)))).

Often, we will, instead of denoting variables using de Bruijn indices, use
names as binders in contexts and domains of Π-types to make example
contexts more legible. Assuming we always use fresh names, this is not
any more imprecise than restricting ourselves to use vz and vz instead:

·, N : U , 0 : El(N), S : Π(n : N,El(N)).

Example 5.1.5 (Vectors). The type of vectors over a type A : U can be rep-
resented using the “external” natural numbers N. In the following, the

78 5.2. ALGEBRAS OF INDUCTIVE-INDUCTIVE TYPES

constructor cons uses both the non-inductive and the inductive function
type:

·, vec : Π̂(N, λn.U), nil : El(vec(0)),
cons : Π̂(A, λa. Π̂(N, λn. Π(v : vec(n), El(vec(n + 1)))))

With de-Bruijn indices instead of names the signature Γvec would be

·, Π̂(N, λn.U), El(vz(0)),
Π̂(A, λa. Π̂(N, λn. Π(vs(vz)(n), El(vs(vs(vz))(n + 1)))))

Example 5.1.6 (Type Theory Syntax). The example of the syntax of type
theory 5.0.1 is represented by the following signature ΓConTy:

·, Con : U , Ty : Π(Γ : Con, U),
nil : El(Con),

ext : Π(Γ : Con, Π(A : Ty, El(Con))),
unit : Π(Γ : Con, El(app(Ty))),

pi : Π(Γ : Con, Π(A : app(Ty), Π(B : Ty(ext(Γ, A)), Ty(Γ))))

This is where the more general form of application, which we have defined
in Definition 5.1.2 comes handy to make the notation of signatures lighter.

5.2 Algebras of Inductive-Inductive Types
To give meaning to the codes expressed in the source type theory, we need
to interpret the contexts as a type in the ambient type theory whose ele-
ments are the algebras of of the specified inductive-inductive type. This
means that the interpretation of our contexts must give the types of the
sort and point constructors they specify.
Definition 5.2.1 (AlgebraOperator). By structural recursion over the source
syntax, we define an operation −A which assigns types to source contexts,
fibrations over those to types, sections of these fibrations to terms, and
maps between types to substitutions:

` Γ

ΓA : U1

Γ ` A :: S

AA : ΓA → U1

Γ ` A :: P

AA : ΓA → U0

Γ ` t : A

tA : (γ : ΓA) → AA(γ)

Γ σ−→ ∆

σA : ΓA → ∆A

CHAPTER 5. SPECIFICATION OF IITS 79

Wewill give the construction on contexts, types, subsitutions and terms
in the same order as there were presented in Section 5.1. On contexts, the
operation is defined by iterated Σ-types:

·A :≡ 1 and
(Γ, A)A :≡ (γ : ΓA)× AA(γ)

The universe in the syntax needs of course be mapped to the metathe-
oretic universe. We chose U1 as a target for context interpretation to make
sure U0 fits in there. The operation El is just there to make the conversation
between small and big types, which in turn is needed to ensure positivity
of the constructors. Since this distinction doesn’t have any semantic mean-
ing, El will just be ignored by the algebra operator:

UA(γ) :≡ U0

(El(a))A(γ) :≡ aA(γ)

Recursive Π-types become metatheoretic dependent function spaces, with
app the usual function application:

Π(a, B)A(γ) :≡ (α : aA(γ)) → BA(γ, α)

app(t)A(γ, α) :≡ tA(γ, α)

Non-recursive Π-types also become functions, but here we have to apply
the external argument to the codomain to be able to evaluate its interpre-
tation:

Π̂(T, B)A(γ) :≡ (τ : T) → B(τ)A(γ)

f (τ)A(γ) :≡ fA(γ, τ)

Unsurprisingly the category structure of substitution is achieved by in-
terpreting it into the one of metatheoretic functions between context inter-
pretations:

idA(γ) :≡ γ

(σ ◦ δ)A(γ) :≡ σA(δA(γ))

Pulling back a type or a term along a substitution means interpreting it
after applying the functionwhichweget from interpreting the substitution:

A[σ]A(γ) :≡ AA(σA(γ))

t[σ]A(γ) :≡ tA(σA(γ))

80 5.3. MORPHISMS OF ALGEBRAS

The interpretation of the empty substitution is the unique map into the
interpretation of the empty context. Extension of and projections from a
substitution now justify their name by being interpreted as the extension
of a function and the projections of a σ-type:

ϵA(γ) :≡ ⋆

(σ, t)A(γ) :≡ (σA(γ), tA(γ))

π1(σ)
A(γ) :≡ pr1(σ

A(γ))

π2(σ)
A(γ) :≡ pr2(σ

A(γ))

All the rules of the substitution calculus which were mentioned in Sec-
tion 5.1 are preserved definitionally, which, in the end, is due to types and
functions forming a strict category.

Example 5.2.2 (Natural numbers). Strictly speaking, the algebra interpre-
tation of the context from our example of natural numbers (Example 5.1.4)
would compute to the following iterated Σ-type:(

N′ : (N : >×U)× pr2(N)
)
×

(
pr2(pr1(N′)) → pr2(pr1(N′))

)
.

Obviously, this is unnecessarily complicated and we can easily transform
this type using equivalences to see that we can also express the algebras as
being elements of the type

(N : U)× N × (N → N).

5.3 Morphisms of Algebras
When we talk about the questions whether a language support inductive-
inductive types, we obviously don’t only want their constructors – in fact
there are many algebras which don’t meet our expectation of what the “re-
alization” of an inductive-inductive definition should be. Referring to Ex-
ample 5.2.2 above, any type N with a point z : N and a function s : N → N
is an algebra for the definition of the natural numbers, even types which
are either “too large” and contain much more points, think for example of
the real numbers, or too “too small” – the unit type 1 is an algebra for the
natural numbers as well. What we want is an algebra which is just large
enough that all constructors are injective. We will express this as a cate-
gorical property: We will equip the algebras over a context with a notion

CHAPTER 5. SPECIFICATION OF IITS 81

of a morphism of algebra that turns them into a category. The fact that the
type is equipped with a non-dependent eliminator will then correspond to
the fact that we can find a morphism from its realization to any other alge-
bra – the type is weakly initial. The fact that it also comes with η-rules is
expressed by the fact that this morphism is unique, making the realization
the initial algebra. In this section we first give the definition of morphisms
and then define initiality.

Definition 5.3.1 (Morphism Operator). Like for the algebra operator we
again perform structural recursion over the syntax to define, what the type
of morphisms between two of its algebras should be. Apart from contexts
wewill also give the operation on types, terms and substitutions, consisting
of data indexed over two algebras:

` Γ γ, δ : ΓA

ΓM(γ, δ) : U
Γ ` A :: k γ, δ : ΓA µ : ΓM(γ, δ)

AM(µ) : AA(γ) → AA(δ) → U

Γ ` t : A :: k γ, δ : ΓA

tM : (µ : ΓM(γ, δ)) → AM(µ, tA(γ), tA(δ))

Γ σ−→ ∆ γ, δ : ΓA

σM : ΓM(γ, δ) → ∆M(σA(γ), σA(δ))

We will again proceed in the order we presented the type theory in
Section 5.1, starting with the different ways we can form contexts. There
are no surprises here since we can define it by recursion and because the
empty context does not contain any information:

·M(γ, δ) :≡ 1 and
(Γ, A)M((γ, α), (δ, β)) :≡ (µ : ΓM(γ, δ))× AM(µ, α, β).

For the universe, the definition makes sure that morphisms between
sorts are indeed functions between their corresponding realizations. The
element operator requires a proof that the two ways we can obtain an al-
gebra of the term in the codomain of the morphism match:

UM(µ, γ, δ) :≡ γA → δA and

El(a)M(µ, α, β) :≡
(

aM(µ, α) = β
)
.

82 5.3. MORPHISMS OF ALGEBRAS

Recursive Π-types are mapped to dependent function spaces on the
set which is the algebra of the universe term. For the application we can
perform induction on the equality proof and thus we can assume it to be
refl.

Π(a, B)M(µ, π, ϕ) :≡
(

α : aA(γ)
)
→ BM

(
(µ, refl), π(α), ϕ(aM(µ, α))

)
app(f)M{γ, α}(µ, refl) :≡ fM(µ, α)

Morphisms between interpretations of non-recursive Π-types are func-
tions over the external parameter as well:

Π̂(T, B)M(µ, π, ϕ) :≡ (τ : T) → B(τ)M(µ, π(τ), ϕ(τ))

f (τ)M(µ) :≡ fM(µ, τ)

The treatment of substitutions looks almost identical to the one in the
algebra operator in that the cateogorical structure of subsitution gets inter-
preted as the strict category of functions in the outer type theory:

idM(µ) :≡ µ

σ ◦ δM(µ) :≡ σM(δM(µ))

A[σ]M(µ, α, β) :≡ AM(σM(µ), α, β)

t[σ]M(µ) :≡ tM(σM(µ))

ϵM(µ) :≡ ⋆

(σ, t)M(µ) :≡
(

σM(µ), tM(µ)
)

π1(σ)
M(µ) :≡ pr1(σ

M(µ))

π2(σ)
M(µ) :≡ pr2(σ

M(µ))

Substitution laws hold strictly again.
The definition of morphisms doesn’t yet make the algebras over a given

signature Γ a category: For this we would still need to define identity and
composition and prove the category laws. But these constructions are triv-
ial: In last consequence they are identity and composition of functions in
the outer type theory. Besides this, they are not necessary to state the most
important categorical attribute is definable without identity and composi-
tion: Initiality.

CHAPTER 5. SPECIFICATION OF IITS 83

Definition 5.3.2 (Initial Algebra). Analgebra γ : ΓA is calledweakly initial
if for every other algebra δ : ΓA we can find a morphism

µ : ΓM(γ, δ).

It is (strongly) initial, if this morphism is unique for every δ.

The existence of initial algebras for every possible context will be the
main topic of Chapter 7.

Remark 5.3.3. We now defined what it means for an algebra to admit a
non-dependent eliminator and its β-rules, but what about the dependent
eliminator? It is usually defined as the sections of an dependent morphism
or a displayed algebra, over the inital algebra – we will see this notion for the
inductive families in the next chapter. But, as Kaposi et al. [2019a] have
proven for their version of syntax for higher inductive-inductive types, the
dependent version can be recovered from the non-dependent one, repre-
senting the dependent morphism as a non-dependent one by taking its Σ-
type.

84 5.3. MORPHISMS OF ALGEBRAS

Chapter 6

Specification of Inductive
Families

Aswe have already seen in the last chapter, sometimes it is helpful to allow
point constructors of a collection of inductive types to be mutually depen-
dent. This means that to define several sorts simultaneously whose point
constructors may refer to the other types being defined. We will refer to
this class as inductive families, though others might call them, for example,
mutual inductive types. Inductive families are a class of inductive types
which at first glance seems more powerful than indexed W-types but less
than inductive-inductive types – sorts are not allowed to depend on other
sorts but only point constructors.

Previous specifications of mutual inductive families have taken differ-
ent approaches: Some are based on the notion of a polynomial functor [Al-
tenkirch et al., 2015, Dybjer and Setzer, 1999] while others, like the original
Dybjer [1994] description are based on a schematic description.

6.1 Signatures for Inductive Families
Applying the same principle as in the case of inductive-inductive types we
want to create a specification based on the contexts of type theory syntax.
We could imagine that we can obtain such a specification by just restricting
the syntax for inductive-inductive types to not use the recursive Π-type for
sorts, but this approach doesn’t capture the full extent of inductive families
being a much simpler concept than inductive-inductive types. Given the
strategy of our reduction we want the specification to capture at least the

85

86 6.1. SIGNATURES FOR INDUCTIVE FAMILIES

following features of inductive families:

• Sorts are either types or functions over existing types.

• Point constructors can also be indexed over existing (“external”) types.

• Point constructors can refer to any sort being defined.

We will use blue font to distinguish the new syntax from the ambient
type theory. The first point above says that we want the sort types S to
be inductively generated by a universe token and a constructor of external
functions for sorts which are meant to be type families:

U :: S

T : U B : T → S

Π̂S(T, B :: S)

For example, the sort of vectors over a type A : U would be described
by Π̂S(A, Π̂S(N, U)). Note that in contrast to the sort types of inductive-
inductive definitions these do not depend on a context.

Instead, we say that a sort context is just a list of sort types without any
interdependencies:

`S ·S
`S ΓS B :: S

`S ΓS, B

In order to refer to sorts we introduce a simplified term calculus based
on typed de Bruijn indices for bound variables and an application opera-
tion for type families:

`S ΓS B :: S

ΓS, B `S var(vz) : B

ΓS `S var(v) : B

ΓS, B′ `S var(vs(v)) : B

ΓS `S t : Π̂S(T, B) τ : T

ΓS `S t(τ) : B(τ)

Point constructors will be represented by point types over a given sort
context. This means that in contrast to inductive-inductive types, they can-
not depend on other point types. The type formers we need are the ele-
ment type for the universe U , an external, non-recursive function type like
the one we have for sorts, and an internal function type used for recursive

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 87

point constructors – which are non-dependent since point constructors only
depend on the sort context:

ΓS `S a : U
ΓS `S El(a)

T : U (τ : T) → ΓS `S B(τ)

ΓS `S Π̂P(T, B)

ΓS `S a : U ΓS `S A

ΓS `S a ⇒P A

As a last building block of the syntax, we can now form contexts con-
sisting of point constructors over a given sort context. Such a context Γ can
be formed over a given sort context ΓS which we will denote as a subscript
to the turnstile or omit when inferrable. The empty context can be formed
over any sort context, and an extension by a point constructor leaves the
sort context fixed:

`S ΓS

`ΓS
Γ

`ΓS
Γ ΓS `S A

`ΓS
Γ, A

Example 6.1.1 (Natural numbers, Vectors). A common example for induc-
tive types, the natural numbers, with one constructor for zero and one for
the successor function, are represented by the sort context ·S, U and the
points

El(var(vz)), var(vz) ⇒P El(var(vz)).
An example of a real indexed type would be the type family of vectors

over a fixed type A : U which is defined over the sort context ·S, Π̂S(n : N, U)
by

·,El(var(vz)(0)),
Π̂P(a : A, Π̂P(n : N, var(vz)(n) ⇒P El(var(vz)(n + 1)))).

An easy examplewith non-trivialmutual dependency between the point
constructors is the predicate of evenness and oddness on natural numbers:
The sorts are represented by ·S, ΠS(N, λn.U), ΠS(N, λn.U) and the point
constructors by

·,El(var(vs(vz))(0)),
Π̂P(n : N, var(vz)(n) ⇒P El(var(vs(vz))(n + 1))),

Π̂P(n : N, var(vs(vz))(n) ⇒P El(var(vz)(n + 1))).

Here, the first sort constructor represents evenness, the second one odd-
ness, the first point constructor the proof that 0 is even and the other two
the proof that evenness implies oddness of the successor and vice versa.

88 6.1. SIGNATURES FOR INDUCTIVE FAMILIES

Definition 6.1.2 (Sort Substitutions). One component of the syntax which
has completely gonemissing are substitutions. Sincewe cant refer to previ-
ous point constructors, we certainly don’t need them for the point contexts.
But since we also got rid of sort interdependencies, we could reduce the re-
cursive function types on points to a non-depenent one and thus don’t need
to use substitutions in the definition of application. It will still be helpful
for syntax transformations to use substitutions of the sort contexts which
we define as generated by

`S ΓS

ΓS
ϵ−→ ·S

and
ΓS

σ−→ ∆S ΓS `S t : B

ΓS
σ,t−→ (∆S, B)

.

These then allowus to substitute point types, point contexts, and sort terms
via the following “pullback” operations:

∆S `S A ΓS
σ−→ ∆S

ΓS `S A[σ]

∆S `S t : B ΓS
σ−→ ∆S

ΓS `S t[σ] : B

`∆S
∆ ΓS

σ−→ ∆S

`ΓS
∆[σ]

given by the defining rules for substitution

Π̂P(T, A)[σ] = Π̂P(T, λτ. A(τ)[σ]),
El(a)[σ] = El(a[σ]),

(a ⇒P A)[σ] = a[σ] ⇒P A[σ],
var(vz)[σ, t] = t,

var(vs(t))[σ, s] = var(t)[σ] for ∆S `S var(t) : B,
f (τ)[σ] = f [σ](τ) for ∆S `S f : Π̂S(T, B),

·[σ] = ·, and
(Γ, A)[σ] = (Γ[σ], A[σ]).

We can derive from this the gadgets of the substitutional calculuswhich
we are already acquainted with from the syntax of inductive-inductive
Types: We candefine theweakening of a subsitution ΓS

σ−→ ∆S to ΓS, B wkσ−→ ∆S

via recursion on σ by

wkϵ :≡ ϵ and
wkσ,t :≡ (wkσ, vs(t)).

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 89

Using wk, we can then recover the categorical structure of the substitutions

by defining the identity ΓS

idΓS−→ ΓS by recursion of the context ΓS:

id(·S) :≡ ϵ and
idΓS, B :≡ (wkidΓS

, vz).

Composition ΓS
σ◦δ−→ ΣS of substitutions ∆S

σ−→ ΣS and ΓS
δ−→ ∆S is de-

fined by recursion on the first context:

ϵ ◦ δ :≡ ϵ,
(σ, t) ◦ δ :≡ (σ ◦ δ, t[δ]).

Projections ΓS
π1(σ)−→ ∆S and ΓS `S π2(σ) : B of a substitution ΓS

σ−→ ∆S, B
can be defined as just that – projections. Any substitution between ΓS and
∆S, B is of the form σ, t and we can just set

π1(σ, t) :≡ σ and
π2(σ, t) :≡ t.

6.2 Algebras of Inductive Families
Like for inductive-inductive types, we have to give a way to semantify the
signatures by stating what kind of data they should represent.
Definition 6.2.1 (Algebra operator). Again, sort contexts will be mapped
to types, sort constructors to families over these types, their terms to sec-
tions of these families. Point contexts will give the same data, but depend-
ing on an interpretation of the sort contexts:

B :: S

BA : U
`S ΓS

ΓS
A : U

ΓS `S t : B :: S

tA : ΓS
A → BA

ΓS `S A :: P

AA : ΓS
A → U

`ΓS
Γ

ΓA : U

Going through all of these translation in order, we first define the alge-
bras of sorts to be interpreted into functions over the universe:

UA :≡ U
Π̂S(T, B)A :≡ (τ : T) → B(τ)A

90 6.2. ALGEBRAS OF INDUCTIVE FAMILIES

Sort contexts become iterated product types – note that we don’t even need
to use Σ-types since there are no dependencies between sorts:

·SA :≡ 1

(ΓS, B)A :≡ ΓS
A × BA

We use terms to navigate these iterated product via iterated projects, and
to apply function sorts:

var(vz)A(γ, α) :≡ α

var(vs(t))A(γ, α) :≡ var(t)A(γ)

t(τ)A(γ) :≡ tA(γ)(τ)

For point constructors, we need to interpret both types of functions into
functions while erasing the element operator, since it does not have any
semantic meaning:

El(a)A(γ) :≡ aA(γ)

Π̂P(T, A)A(γ) :≡ (τ : T) → A(τ)A(γ)

(a ⇒P A)A(γ) :≡ aA(γ) → AA(γ)

Just like for the sort contexts, point contexts are interdependency-free lists
of point constructors and as such can be interpreted as simple products
instead of Σ-types:

·A(γ) :≡ 1

(Γ, A)A(γ) :≡ ΓA(γ)× AA(γ)

Example 6.2.2 (Natural numbers). Looking at the signature of the natural
numbers from Example 6.1.1, we see that the algebra interpretation of its
sort context evaluates to

1 ×U
and given an element (⋆, N) : 1 ×U , the algebras of its point contexts, eval-
uated at this point result in

N × (N → N).

In the previous section, we introduced a substition calculus for the sort
contexts. Obviously, we might also want to consider algebras over these
substitutions.

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 91

Definition 6.2.3 (Algebras of substitutions). We can extend the algebra op-
erator by defining it on substitutions by functions between the interpreta-
tions of sort contexts:

ΓS
σ−→ ∆S

σA : ΓS
A → ΓS

A

This is done by setting

ϵA :≡ ⋆ and
(σ, t)A :≡ (σA, tA).

Lemma 6.2.4. It’s easy to check that this definition of algebras of a subtitution
respects the substitution calculus given in Definition 6.1.2 in the following sense:

A[σ]A(γ) = AA(σA(γ)),
t[σ]A(γ) = tA(σA(γ)),
idA(γ) = γ,

(σ ◦ δ)A(γ) = σA(δA(γ)),
wkσ

A(γ, α) = σA(γ),
π1(σ)

A(γ) = pr1(σ
A(γ)), and

π2(σ)
A(γ) = pr2(σ

A(γ)).

Proof. Wecanprove the first rule by recursion on the point type ΓS `S A :: P,
the second rule by recursing on the term ΓS `S t : B :: S, the third by induc-
tion on the context, and all other by induction by the substitution.

6.3 Displayed Algebras and their Sections
To represent the dependent eliminator, we need algebras which vary over
other algebras. To get a feeling about what these should look like, let us
first look at our usual simplest example:

Example 6.3.1. Take algebras (⋆, N) : 1 ×U and (⋆, z, s) : 1 × N × (N → N)
of the the signature of natural numbers (Example 6.1.1). A displayed alge-
bra over this should contain the datawhich the dependent eliminator of the
natural numbers takes as input: A type family P : N → U together with a
point pz : P(z) and a family of functions ps : (n : N) → P(n) → P(s(n)).

92 6.3. DISPLAYED ALGEBRAS AND THEIR SECTIONS

A section of this algebra would be a section f : (n : N) → P(n) of P re-
specting the other data by ensuring that f (z) = pz and that for all n : N,
we have f (s(n)) = ps(f (n)).

Let’s first concentrate on the first piece of data:

Definition 6.3.2 (Displayed Algebra Operator). As seen above, we want to
map sorts to type families over the given algebra. Sort context will likewise
be type families over an algebra:

B :: S

BD : BA → U
`S ΓS

ΓS
D : ΓS

A → U

Since sorts can themselves be interpreted as functions, we have to apply
them whenever we encounter a sort function. Sort contexts will again be
interpreted as iterated products.

UD(α) :≡ α → U
Π̂S(T, B)D(α) :≡ (τ : T) → B(τ)D(α(τ))

·SD(⋆) :≡ 1

(ΓS, B)D(γ, α) :≡ ΓD(γ)× BD(α)

The interpretation of point constructors and of point contexts now not
only depends on the algebra, but also on the interpretation of the underly-
ing sorts:

ΓS `S A :: P

AD : {γ : ΓS
A} → ΓS

D(γ) → AA(γ) → U

`ΓS
Γ

ΓD : {γ : ΓS
A} → ΓS

D(γ) → ΓA(γ) → U

ΓS `S t : B :: S

tD : {γ : ΓS
A} → ΓS

D(γ) → BD(tA(γ))

The definition on terms is almost the same as for fixed algebras:

var(vz)D(γD, αD) :≡ αD,
var(vs(t))D(γD, αD) :≡ var(t)D(γD), and

f (τ)D(γD) :≡ fD(γD)(τ).

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 93

Displayed algebras on point constructors are defined fiberwise, like the
ones for sorts:

El(a)D(γD
S , α) :≡ aD(γD

S , α)

Π̂P(T, A)D(γD
S , π) :≡ (τ : T) → A(τ)D(γD

S , π(τ))

(a ⇒P A)D(γD
S , π) :≡ {α : aA(γS)} → aD(γD

S , α) → AD(γD
S , π(α))

Finally, point contexts are interpreted as iterated products again:

·D(γD
S , γ) :≡ 1

(Γ, A)D(γD
S , (γ, α)) :≡ ΓD(γD

S , γ)× AD(γD
S , α)

Definition 6.3.3 (Section Operator). For sorts and sort contexts, we want
the sections of a displayed algebra to be the sections of the type family they
represent:

B :: S

BS : {α : BA} → BD(α) → U

`S ΓS

ΓS
S : {γS : ΓS

A} → ΓS
D(γS) → U

Both follow the structure of the underlying displayed algebra – fibrewise
for sort functions and by iterated products on sort contexts:

US(αD) :≡ (x : α) → αD(x)

Π̂S(T, B)S(πD) :≡ (τ : T) → B(τ)S(πD(τ))

·S(γD
S) :≡ 1

(ΓS, B)S(γD
S , αD) :≡ ΓS

S(γD
S)× BS(αD)

Sections of point constructors, point contexts, and sort termswill clearly
have to depend on a section of the underlying sort interpretation:

ΓS `S A :: k γS : ΓS
A γD

S : ΓS
D(γS) γS

S : ΓS
S(γD

S)

AS(γS
S) :

{
α : AA(γS)

} (
αD : AD(γD

S , α)
)
→ U

`ΓS
Γ γS : ΓS

A γD
S : ΓS

D(γS) γS
S : ΓS

S(γD
S)

ΓS(γS
S) :

{
γ : ΓA(γS)

} (
γD : ΓD(γD

S , γ) → U
)

ΓS `S t : B :: S γS : ΓS
A γD

S : ΓS
D(γS) γS

S : ΓS
S(γD

S)

tS(γS
S) : BS

(
tD(γD

S)
)

94 6.3. DISPLAYED ALGEBRAS AND THEIR SECTIONS

For point types we again descent fibrewise, but what to do about the ele-
ment operator? This is where the equations which we have seen in Exam-
ple 6.3.1 come into play: The elementwhichwe get out of the interpretation
of the section must coincide with the one we provided by giving the dis-
played algebra:

El(a)S(γS
S, αD) :≡

(
aS(γS

S, α) = αD
)

Π̂P(T, A)S(γS
S, πD) :≡ (τ : T) → A(τ)S(γS

S, πD(τ))

(a ⇒P A)S(γS
S, πD) :≡ (α : aA(γS)) → AS

(
γS
S, πD(aS(a, γS

S)(α))
)

The definition of sections of point contexts is easier as it is, again, just an
iteration of products:

·S(γS
S, γD) :≡ 1

(Γ, A)S(γS
S, (γD, αD)) :≡ ΓS(γS

S, γD)× AS(γS
S, αD)

At last, also terms follow the usual pattern of variables selecting sort inter-
pretations via projections of products and interpreting the application by
metatheoretic application:

var(vz)S(γS
S, αS) :≡ αS

var(vs(t))S(γS
S, αS) :≡ var(t)S(γS

S)

f (τ)S(γS
S) :≡ f S(γS

S)(τ)

Later on, we will need that, following Definition 6.2.3, we can interpret
sort substitutions with the means of displayed algebras, for which we also
need a definition of a section:
Definition 6.3.4 (Displayed Algebras of Substitutions). Given a sort sub-
stitution, its type of displayed algebras should be the type of function be-
tween the displayed algebras of its domain and codomain, where in the
latter we have to apply the function which we get from the algebra over the
substitution:

ΓS
σ−→ ∆S

σD :
{

γS : ΓS
A
}
→ ΓS

D(γS) → ∆S
D(σA(γS))

These are defined, like in the non-displayed case, by

ϵD(γD
S) :≡ ⋆ and

(σ, t)D(γD
S) :≡

(
σD(γD

S), tD(γD
S)

)
.

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 95

Definition 6.3.5 (Sections of Substitutions). A section of a displayed al-
gebra of a sort substitution is supposed to map sections of its domain to
sections of its codomain:

ΓS
σ−→ ∆S

σS :
{

γS : ΓS
A
}{

γD
S : ΓS

D(γS)
}
→ ΓS

S(γD
S) → ∆S

S(σD(γD
S))

Again, this is happening componentwise:

ϵS(γS
S) :≡ ⋆ and

(σ, t)S(γS
S) :≡

(
σS(γS

S), tS(γS
S)
)
.

6.4 Existence of Inductive Families
Having a specification for Inductive Families is not worth much if there
is no way to know what it means for a type theory to actually “support”
types of this specification. The intended meaning of the signatures is clear
from the definition of their algebras as seen in Section 6.2 and as discussed
in Section 6.3, candidates for their eliminators and computation rules are
specified in the definition of sections displayed algebras. This means that
we can formally say what it means for inductive families to exist in a type
theory. In this section, we will prove that any metatheory as premised in
Section 6.4 actually supports inductive families as specified here. Since we
make heavy use of indexed W-types, we can also see this endeavour as
reducing inductive families to indexed W-types.

Theorem 6.4.1 (Existence of Inductive Families). For every signature of in-
ductive families given by a sort context `S ΩS and a point context `ΩS

Ω, there
are are sort and point constructors in the form of

conS(Ω) : ΩS
A and

con(Ω) : ΩA(conS(Ω))

such that for each displayed algebra given by motives ωD
S : ΩS

D(conS(Ω)) and
methods ωD : ΩD(ωD

S , con(Ω)) we can prove an eliminator by the means of
giving sections

elimS(Ω, ωD) : ΩS
S(ωD

S) with
elim(Ω, ωD) : ΩS(elimS(Ω, ωD), ωD).

96 6.4. EXISTENCE OF INDUCTIVE FAMILIES

Our strategy to prove this theorem is to first extend our syntax with
elements that have been missing: terms and substitutions for point types.
For the extended syntax, we will than show that indexed W-types allow
us to find an internal representation of the syntax (Section 6.4.1) and then
construct a term model using the internalization, which we can then show
to be the initial algebra (Section 6.4.2).

6.4.1 Internalization of the Syntax
At first, we will need to make up for some of the short cuts and simplifi-
cations in our definition of signatures. In the theory of semantics of type
theory, which studies various models of different type theories, the model
which is initial in the category of all models is usually called the termmodel.
This is because in this model, a type get interpreted as the set of all of its
terms. Since our signatures form – or are at least strongly inspired by –
a type theoretic syntax as well, we might hope to deploy the same strat-
egy for inductive families. In the core of this interpretation is the issue of
how to find an interpretation for a given sort term a of the universe token
U . The interpretation of this ought to be the terms of the point type El(a)
associated with this sort term. But our syntax does not mention terms of
point types at all, since point constructor are not interdependent! So our
solution is to retrofit the theory with terms, as well as substitutions for the
point contexts:

Definition 6.4.2 (Point Substitution Calculus). Let us fix a sort context
`S ΓS. In total, there are four ways to construct reasonable terms of point
types in ΓS: Via two constructors for de-Bruijn indices to navigate point
contexts and by an application constructor for each of the two kinds of Π-
type present in the syntax.

`ΓS
Γ ΓS `S A

Γ, A ` var(vz) : A :: P

ΓS `S A ΓS `S A′ Γ ` var(t) : A :: P

Γ, A′ ` var(vs(t)) : A :: P

Γ ` f : (a ⇒P A) Γ ` t : El(a)

Γ ` f (t) : A :: P

Γ ` f : Π̂P(T, A) τ : T

Γ ` f (τ) : A(τ) :: P

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 97

Like with the sort substitutions defined in Definition 6.1.2, we define sub-
stitutions between point contexts over a fixed sort context `S ΓS to be lists
of point terms:

`ΓS
Γ

Γ
ϵP−→ ·

Γ
σP−→ ∆ Γ ` t : A :: P

Γ
σP, t−→ ∆, A

We can again define a pullback operation for terms – this time for point
terms – along substitutions in the form of

∆ `ΓS
t : A :: P Γ

σP−→ ∆

Γ `ΓS
t[σ] : A :: P

which is recursively defined by

var(vz)[σP, tP] :≡ tP,
var(vs(vP))[σP, tP] :≡ var(vP)[σP],

f (t)[σP] :≡ f [σP](t[σP]), and
f (τ)[σP] :≡ f [σP](τ).

Analogously to 6.1.2 we can define the weakening Γ, A
wkσP−→ ∆ of a point

substitution Γ
σP−→ ∆ along a point type ΓS `S A :: P, the identity substitu-

tion Γ
idP−→ Γ, and the Composition Γ

σP◦δP−→ Σ of substitutions ∆
σP−→ Σ and

Γ
δP−→ ∆ causing the analogous effect when being used to pullback point

terms:

tP[wkσP] = vs(tP[σP])
tP[id] = tP

tP[σP ◦ δP] = tP[σP][δP]

As an auxiliary construction for our existence proof we will further-
more need notions of algebra, displayed algebras, and sections for the point
terms and point substitutions:

Definition 6.4.3 (Algebras of Point Substitutions & Terms). We can give
semantic meaning to point types and point substitution by extending the

98 6.4. EXISTENCE OF INDUCTIVE FAMILIES

algebra operator with the following components, all over a fixed sort con-
text `S ΓS:

Γ `ΓS
tP : A :: P

tPA :
{

γS : ΓS
A
}
→ ΓA(γS) → AA(γS)

Γ
σP−→ ∆

σP
A :

{
γS : ΓS

A
}
→ ΓA(γS) → ∆A(γS)

These components are, in essence, defined as iterated tuples and projec-
tions. For point terms, these defining equations are

var(vz)A(γ, α) :≡ α,
var(vs(t))A(γ, α) :≡ var(t)A(γ),

f (t)A(γ) :≡ fA(γ)(tA(γ)), and
f (τ)A(γ) :≡ fA(γ)(τ),

while for point contexts we have the usual

ϵP
A(γ) :≡ ⋆ and

(Γ, A)A(γ) :≡
(

ΓA(γ), AA(γ)
)
.

Of course, apart from these defining equations, this definition of algebras is
also well-behaved under the other components of substitutional calculus:

tP[σP]A(γ) = tPA(σPA(γ)),
vs(tP)A(γ, α) = tPA(γ),
wkσP

A(γ, α) = σP
A(γ),

idP
A(γ) = γ, and

(σP ◦ δP)
A(γ) = σP

A(δP
A(γ)).

Definition 6.4.4 (Displayed Algebras of Point Terms & Subsitutions). Let
us for this definition fix a sort context `S ΓS with an algebra γS : ΓS

A aswell
as a displayed algebra γD

S : ΓS
D(γS) over γS. For the displayed version of

these algebras, the interpretation of point terms and of point substitutions
needs to depend on these and, additionally, on an algebra and displayed
algebra of the underlying point context. This leads to the addition of the

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 99

following rules:

Γ `ΓS
tP : A :: P

tPD :
{

γ : ΓA(γS)
}
→ ΓD(γD

S , γ) → AD(γD
S , tPA(γ))

Γ
σP−→ ∆

σP
D :

{
γ : ΓA(γS)

}
→ ΓD(γD

S , γ) → ∆D(γD
S , σP

A(γ))

We define them by setting

var(vz)D(γD, αD) :≡ αD,
var(vs(tP))D(γD, αD) :≡ var(tP)D(γD),

fP(tP)D(γD) :≡ fPD(γD)
(

tPA(γ), tPD(γD)
)
, and

fP(τ)D(γD) :≡ fPD(γD)(τ) for terms, and
ϵP

D(γD) :≡ ⋆ and

(σP, tP)D(γD) :≡
(

σP
D(γD), tPD(γD)

)
for point substitutions.

Again, substitution rules analogous to the ones in 6.4.3 hold:

tP[σP]D(γD) = tPD(σPD(γD)),
vs(tP)D(γD, αD) = tPD(γD),
wkσP

D(γD, αD) = σP
D(γD),

idP
D(γD) = γD, and

(σP ◦ δP)
D(γD) = σP

D(δP
D(γD)).

As a next step after having extended our syntax and defined the se-
mantics of this extension, we will show that any type theory with indexed
W-types is able to represent the whole syntax for inductive families inter-
nally.

Remark 6.4.5. While for the signatures of inductive-inductive types, con-
texts, types, and terms depend on each other, we can here define sort types,
sort contexts, terms, point types, and contexts in the presented order with-
out referring to later constructions. This means that unlike mentioned in
Remark 5.1.3, we can internalize this syntax just using inductive families,
as shown in the following agda implementation:

100 6.4. EXISTENCE OF INDUCTIVE FAMILIES

1 data TyS : Set₁ where
2 U : TyS
3 Π̂S : (T : Set) → (T → TyS) → TyS
4

5 data ConS : Set₁ where
6 ∙c : ConS
7 _▶c_ : ConS → TyS → ConS
8

9 data VarS : ConS → TyS → Set₁ where
10 vvz : ∀{Γc B} → Var (Γc ▶c B) B
11 vvs : ∀{Γc B B'} → Var Γc B → Var (Γc ▶c B') B
12

13 data TmS (Γc : ConS) : TyS → Set₁ where
14 var : ∀{A} → Var Γc A → TmS Γc A
15 _@S_ : ∀{T B} → TmS Γc (Π̂S T B) → (τ : T) → TmS Γc (B τ)
16

17 data TyP (Γc : ConS) : Set₁ where
18 El : TmS Γc U → TyP Γc
19 Π̂P : (T : Set) → (T → TyP Γc) → TyP Γc
20 _⇒P_ : TmS Γc U → TyP Γc → TyP Γc
21

22 data Con (Γc : ConS) : Set₁ where
23 ∙ : Con Γc
24 _▶P_ : Con Γc → TyP Γc → Con Γc

Note, that in the implementaion, variables and terms are defined in sep-
arate types to allow for var(v) to appear as a premise for the introduction
rule for vs(v). The extension of the syntax by sort substitutions of Defi-
nition 6.1.2 as well as the subsequent extension by point terms and point
substitutions as presented in Definition 6.4.2 is implementable as well:

1 data SubS : ConS → ConS → Set₁ where
2 ε : ∀{Γc} → SubS Γc ∙c
3 _,_ : ∀{Γc Δc B} → SubS Γc Δc → TmS Γc B → SubS Γc (Δc ▶c B)
4

5 data VarP {Γc} : Con Γc → TyP Γc → Set₁ where
6 vvzP : ∀{Γ A} → VarP (Γ ▶P A) A
7 vvsP : ∀{Γ A B} → VarP Γ A → VarP (Γ ▶P B) A
8

9 data TmP {Γc}(Γ : Con Γc) : TyP Γc → Set₁ where
10 varP : ∀{A} → VarP Γ A → TmP Γ A
11 _@P_ : ∀{a A} → TmP Γ (a ⇒P A) → TmP Γ (El a) → TmP Γ A
12 _^@P_ : ∀{T A} → TmP Γ (Π̂P T A) → (τ : T) → TmP Γ (A τ)
13

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 101

14 data SubP {Γc} : Con Γc → Con Γc → Set₁ where
15 εP : ∀{Γ} → SubP Γ ∙
16 _,P_ : ∀{Γ Δ A} → SubP Γ Δ → TmP Γ A → SubP Γ (Δ ▶P A)

To make this proof of internalizability formal, we will present the ex-
act definition of all the parts of the extended syntax as indexed W-types.
This means giving a type ConS : U of sort contexts, a type TyS : U of sort
types, a family VarS : ConS → TyS → U of variables of a given sort context
and sort type, extending the latter, a family WTmS

: ConS → TyS → U of
sort terms, a family TyP : ConS → U of point types in a given sort con-
text, and finally a type ConP : ConS → U of point contexts over a given
sort context. Afterwards, we will give the same treatment to the exten-
sions with sort substitutions between two sort contexts, with variables of a
point type, terms of a point type and point substitution between two point
contexts over the same sort context in the form of

SubS : ConS → ConS → U ,
VarP : {ΓS : ConS} → ConP(ΓS) → TyP(ΓS) → U ,
TmP : {ΓS : ConS} → ConP(ΓS) → TyP(ΓS) → U , and
SubP : {ΓS : ConS} → ConP(ΓS) → ConP(ΓS) → U .

In the following definition we will give all of these ten types and type fam-
ilies in general by giving the respective input data for indexed W-types as
described in Chapter 2.2.

Definition 6.4.6 (IF-Syntax as W-Types). We define the types mentioned
above as follows:

TyS :≡ IW
oTyS ,rTyS
ATyS ,BTyS

(⋆),

ConS :≡ IW
oConS ,rConS
AConS ,BConS

(⋆),

VarS(_, B) :≡ IW
oVarS (B),rVarS (B)
AVarS (B),BVarS (B),

WTmS
(ΓS) :≡ IW

oTmS
(ΓS),rTmS

(ΓS)

ATmS
(ΓS),BTmS

(ΓS)
,

SubS(ΓS) :≡ IW
oSubS

(ΓS),rSubS
(ΓS)

ASubS
(ΓS),BSubS

(ΓS)
,

TyP(ΓS) :≡ IW
oTyP ,rTyP
ATyP ,BTyP

(⋆),

ConP(ΓS) :≡ IW
oConP ,rConP
AConP ,BConP

(⋆),

VarP(_, A) :≡ IW
oVarP (A),rVarP (A)

AVarP (A),BVarP (A)
,

TmP(Γ) :≡ IW
oTmP

(Γ),rTmP
(Γ)

ATmP
(Γ),BTmP

(Γ),

SubP(Γ) :≡ IW
oSubP

(Γ),rSubP
(Γ)

ASubP
(Γ),BSubP

(Γ),

where the respective indices for the indexedW-types are given in Table 6.1.

102 6.4. EXISTENCE OF INDUCTIVE FAMILIES
i

Ii :U
A

i :U
B

i :A
i →

U
oi :A

i →
Ii

ri :
(a

:A
i)→

B
i (a)→

Ii

Ty
S

1
1+
U

in
l(⋆

)7→
0

in
r(T

)7→
T

_
7→

⋆
_
7→

⋆

C
on

S
1

1+
Ty

S

in
l(⋆

)7→
0

in
r(B

)7→
1

_
7→

⋆
_
7→

⋆

V
arS

C
on

S
C

on
S

+
C

on
S
×

W
Ty

S

in
l(Γ

S
)7→

0
in
r(Γ

S ,B
′)7→

1
in
l(Γ

S
)7→

(Γ
S ,B

)
in
r(Γ

S ,B
′)7→

(Γ
S ,B

′)
−in
r(Γ

S ,B
′)(⋆

)7→
Γ
S

T
m
S
(Γ

S
)

Ty
S

Ty
S

+
(T

:U
)×

(T
→

Ty
S
)×

T
in
l(B

)7→
0

in
r(_)7→

1
in
l(B

)7→
0

in
r(T

,B
,τ
)7→

B
(τ
)

−in
r(T

,B
,τ
)(⋆

)7→
Π̂

S
(T

,B
)

Sub
S
(Γ

S
)

1
1+
(B

:Ty
S
)×

T
m
S
(Γ

S ,B
)

in
l(⋆

)7→
0

in
r(B

,t)7→
1

_
7→

⋆
_
7→

⋆

Ty
P
(Γ

S
)

1
T

m
S
(Γ,U

)
+
U

+
W

T
m

S (Γ,U
)

in
l(a)7→

0
in
r(in

l(τ
))7→

T
in
r(in

r(a))7→
1

_
7→

⋆
_
7→

⋆

C
on

P
(Γ

S
)

1
1+

Ty
P
(Γ

S
)

in
l(⋆

)7→
0

in
r(A

)7→
1

_
7→

⋆
_
7→

⋆

V
arP

(A
)

C
on

P
(Γ

S
)

C
on

P
(Γ

S
)

+
C

on
P
(Γ

S
)×

Ty
P
(Γ

S
)

in
l(Γ

)7→
0

in
r(Γ,A

′)7→
1

in
l(Γ

)7→
(Γ,

A
)

in
r(Γ,A

′)7→
(Γ,

A
′)

−in
r(Γ,A

′)(⋆
)7→

Γ

T
m
P
(Γ
)

Ty
P
(Γ

S
)

(A
:Ty

P
(Γ

S
))×

V
arP

(Γ,A
)

in
l(A

,v
)7→

0
in
r(in

l(_))7→
2

in
r(in

r(_))7→
1

in
l(A

,v
)7→

A
in
r(in

l(A
,a))7→

A

in
r(in

r(T
,A

,τ
))7→

A
(τ
)

−in
r(in

l(A
,a))(0)7→

(a
⇒

P
A
)

in
r(in

l(A
,a))(1)7→

E
l(a)

in
r(in

r(T
,A

,τ
))(⋆

)7→
Π̂

P
(T

,
A
)

Sub
P
(Γ
)

1
1+
(A

:Ty
P
(Γ

S
))×

T
m
P
(Γ,A

)
in
l(⋆

)7→
0

in
r(A

,t)7→
1

_
7→

⋆
_
7→

⋆

Table
6.1:The

inputdata
forthe

indexed
W

-typesrepresenting
the

internalized
syntax

forinductive
fam

ilies.

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 103

6.4.2 Constructing the TermModel
For the remainder of this section, let us fix the sort context `S ΩS and the
point context `ΩS

Ω which we want to construct by giving

conS(Ω) : ΩS
A and

con(Ω) : ΩA(conS(Ω)).

Our definition of the constructor uses the trick to index several of the con-
structions by a second sort or point context together with a sort or point
substitution from ΩS or Ω. We can think of this second context as some
sort of a “sub-context” of a fixed context.
Definition 6.4.7 (The Sort Constructor). The generalized sort constructor
consists of the following data:

`S ΓS ΩS
σ−→ ΓS

conS(σ) : ΓS
A

We can define this recursively via

conS(ϵ) :≡ ⋆ and
conS(σ, t) :≡ (conS(σ), conS(t)) ,

where on sort terms we will define a constructor operation yielding an al-
gebra of the respective sort type:

ΩS `S t : B :: S

conS(t) : BA

This operation will on universe terms consist of the type of point terms,
while on external sort functions, it will return a function with constructor
of the applied term:

conS(a) :≡ TmP(Ω,El(a)) for ΩS `S a : U :: S and
conS(f) :≡ λτ. conS(f (τ)) for ΩS `S f : Π̂S(T, B) :: S.

This construction is already enough to give the sort constructor required
in Theorem 6.4.1 by pinning the substitution to be the identity:

conS(Ω) :≡ conS(idΩS
) : ΩS

A (6.1)

It is not immediately clear that the operation on substitutions and the oper-
ation on sort terms is well-behaved under the pullback along substitutions.
We can, however, show that this is indeed the case.

104 6.4. EXISTENCE OF INDUCTIVE FAMILIES

Lemma6.4.8 (Coherence of the Sort Constructor). For all subsitutions ΓS
σ−→ ∆S

and sort terms ΓS `S t : B :: S, taking a constructor of t pulled back along σ has
the same effect as taking the term algebra over the context algebra generated by the
constructor on σ, i. e.

tA(conS(σ)) = conS(t[σ]).
Proof. Let us first do a case distinction on the substitution. If it is ϵ, then
ΓS = ·S, and it is easy to see that there are no terms in the empty sort
context. Thus, we can assume the substitution to be of the form (σ, s). In
this case, lets recurse on the term and see that

var(vz)A(conS(σ, s)) = var(vz)A(conS(σ), conS(s))
= conS(s)
= conS(var(vz)[σ, s]),

var(vs(t))A(conS(σ, s)) = var(vs(t))A(conS(σ), conS(s))

= var(t)A(conS(σ))
= conS(var(t)[σ]) by induction
= conS(var(vs(t))[σ, s]), and lastly

f (τ)A(conS(σ, s)) = fA(conS(σ, s))(τ)
= conS(f [σ, s])(τ) by induction
= conS(f (τ)[σ, s]) for f : Π̂S(T, B).

We can now use this lemma to be able to do a trick with con(Ω) similar
to the trick we did for conS(Ω): Replace the fixed point context with a vari-
able one, together with a substitution from Ω, and define the constructor
recursively on point types.
Definition 6.4.9 (The Point Constructor). We define operations on point
contexts and point terms, resulting in algebras, in the formof the following:

`ΓS
Γ Ω

σP−→ Γ

con(σP) : ΓA(conS(Ω))

Ω `ΩS tP : A :: P

con(tP) : AA(conS(Ω))

The operation on point substitutions is defined recursively by

con(ϵP) :≡ ⋆ and
con(σP, tP) :≡ (con(σP), con(tP)) ,

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 105

wheres for point terms, note that if Ω ` tP : El(a) :: P, then by Lemma 6.4.8

tP : conS(a) ≡ conS(a[id]) = aA(conS(idΩS
)) ≡ El(a)A(conS(Ω)),

which allows us to define the constructor operator by

con(tP) :≡ tP for Ω ` tP : El(a),
con(fP) :≡ λtP. con(fP(tP)) for Ω ` fP : a ⇒P A, and
con(fP) :≡ λτ. con(fP(τ)) for Ω ` fP : Π̂P(T, A).

This concludes the definition of the constructors, since we can set, like
for the sort constructor

con(Ω) :≡ con(idΩ) : ΩA(conS(Ω)). (6.2)

Again, the construction comes with a property that makes it coherent un-
der pulled back point terms. Analogously to Lemma 6.4.8, this coherence
looks as follows:

Lemma 6.4.10 (Coherence of the Point Constructor). For all point subsitu-
tions Ω

σP−→ ∆ and point terms Γ `ΩS
tP : A :: P, pulling back has the same effect

as the point constructor as in

tPA(con(σP)) = con(tP[σP]). (6.3)

Proof. Repeating the strategy of the proof of Lemma 6.4.8, we again see that
we can assume the substitution to be of an extended form (σP, sP), since
there are no point terms in the empty point context. Now, by recursion on

106 6.4. EXISTENCE OF INDUCTIVE FAMILIES

the term we see that

var(vz)A(con(σP, sP)) = var(vz)A(con(σP), con(sP))
= con(sP)
= con(var(vz)[σP, sP]),

var(vs(tP))A(con(σP, sP)) = var(vs(tP))A(con(σP), con(sP))

= var(tP)A(con(σP))
= con(var(tP)[σP]) by induction
= con(var(vs(tP))[σP, sP]),

fP(tP)A(con(σP)) = fPA(con(σP))
(

tPA(con(σP))
)

= con(fP[σP])(con(tP[σP])) by induction
= con(fP(tP)[σP]), and

fP(τ)A(con(σP)) = fPA(con(σP))(τ)
= con(fP[σP])(τ) by induction
= con(fP(τ)[σP]).

With the constructors defined let us move on the construction of the
eliminator. Let us from now on fix displayed algebras ωD

S : ΩS
D(conS(Ω))

and ωD : ΩD(ωD
S , con(Ω)). We will proceed in the same order as for the

constructors and start by generalizing elimS(Ω, ωD) to arbitrary subcon-
texts of Ω by giving constructions on sort substitutions and sort terms.

Definition 6.4.11 (The Eliminator). The generalized eliminator will take
substitutions or sort terms to give sections of sort types or sort contexts,
respectively:

`S ΓS ΩS
σ−→ ΓS

elimS(σ) : ΓS
S(σD(ωD

S))

ΩS `S t : B :: S

elimS(t) : BS(tD(ωD
S))

Thefirst rule is definedby recursionusing the second construction as usual:

elimS(ϵ) :≡ ⋆ and
elimS(σ, t) :≡ (elimS(σ), elimS(t)) .

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 107

For the sort terms, we observe that, byLemmas 6.4.8 and 6.4.10, for ΩS `S a : U
and tP : aA(conS(Ω)) we have

US(aD(ωD
S), tPA(con(Ω))) = aD(ωD

S , tP)

and thus we can set, disregarding transports,

elimS(a) :≡ λtP. tPD(ωD) for ΩS `S a : U and
elimS(f) :≡ λτ. elimS(f (τ)) for ΩS `S f : Π̂S(T, B).

Similar to Lemma 6.4.8, these definitions are coherent in the following
form:

Lemma6.4.12. Given a sort substitutionΩS
σ−→ ΓS and a sort term ΓS `S t : B :: S,

the eliminator of a pulled back term is the section of the term, evaluated at the elim-
inator on a substitution:

elimS(t[σ]) = tS(elimS(σ)).

Proof. The proof strategy is exactly the same as for Lemma 6.4.8.

As a last step, we still need to prove the computation rules for the elim-
inator, consisting of section of given point contexts. Consistent with 6.4.7,
we generalize them to arbitrary point substitutions and point terms.

Lemma 6.4.13 (Computation Rules). We prove the computation rule for our
eliminator elimS(Ω) to be a section of subcontexts of Ω and on point terms of Ω:

`ΩS
Γ Ω

σP−→ Γ

elim(σP) : ΓS(elimS(Ω), σP
D(ωD))

Ω `ΩS
tP : A :: P

elim(tP) : AS(elimS(Ω), tPD(ωD))

Proof. Using the second rule, the first one can be proved in a straightfor-
ward way by recursion on the point substitution:

elim(ϵP) :≡ ⋆ and
elim(σP, tP) :≡ (elim(σP), elim(tP)) .

108 6.4. EXISTENCE OF INDUCTIVE FAMILIES

For the second rule we again need to consider the types needed for the
element case. The previous lemmas tell us that for Ω ` tP : El(a) :: P we
can prove the required rule by

aS
(
elimS(idΩS

), tPA(con(Ω))
)

=aS(elimS(idΩS
), tP) by Lemma 6.4.10

=elimS(a)(tP) by Lemma 6.4.12
=tPD(ωD).

For the case of Ω ` fP : Π̂P(T, A), we see that we can recursively define
elim(fP) by proving elim(fP(τ)) for all τ : T. Likewise in the case of a
recursive function term Ω ` fP : a ⇒P A, we prove elim(fP) recursively by
elim(fP(tP)).

Proof of Theorem 6.4.1. Lemma6.4.13 completes the construction of the elim-
inator and setting

elimS(Ω, ωD) :≡ elimS(idΩS
) and

elim(Ω, ωD) :≡ elim(idΩ)

completes the existence proofs for our specification of inductive families.

Example 6.4.14 (Natural numbers). To give insight on how this construc-
tion works for a concrete example, let us look at the type of natural num-
bers, which we have represented by a signature in Example 6.1.1: Let us
look at the construction at the following sort and point context:

ΩS ≡ (·S, U)
Ω ≡ El(var(vz)), var(vz) ⇒P El(var(vz)).

The sort constructor computes as follows

conS(Ω) ≡ conS(ϵ, var(vz))

≡ (⋆, conS(var(vz)))

≡ (⋆, TmP(·,El(var(vz))))
≡ (⋆, {varP(vs(vz)), varP(vz)(varP(vs(vz))), . . .})
= (⋆, {varP(vz)n(varP(vs(vz))) | n : N}),

CHAPTER 6. SPECIFICATION OF INDUCTIVE FAMILIES 109

while the point constructor gives the following:

con(Ω) ≡ con(ϵ, var(vz), var(vs(vz)))

≡ (⋆, varP(vs(vz)), λn. varP(vz)(n)).

110 6.4. EXISTENCE OF INDUCTIVE FAMILIES

Chapter 7

Reducing Inductive-Inductive
Types to Inductive Families

Wehave now learned howwe can express all inductive-inductive types and
all inductive families by signatures consisting of a context in a type theory
which is made specifically for this purpose. Now we want to pursue the
question of whether every inductive-inductive type can be represented in
a type theory that only supports (indexed) W-types, and thus inductive
families.

To explore howwe can transform an inductive-inductive signature into
a sequence of constructions of inductive families, we will have to deal with
four type theories: We imagine that we live in an ambient type theory in
which all of our constructions will take place. This type theory must be
powerful enough to represent the syntaxes of the other type theorywe use,
and thus should support quotient inductive types. Then, we have what we
call target type theory, which is the language in which the reduced types
should be available. This language must at least contain indexed W-types.
At last, we also have the two “domain specific” type theories which we use
to encode inductive-inductive types and inductive families. A graphical
overview of the relations between these last three type theories can be seen
in Figure 7.1.

The end goal of the reduction is to construct for any given signature Γ of
an inductive-inductive type an object con(Γ), such that it is initial as defined
in Definition 5.3.2: For any other given algebra γA : ΓA of the signature we
get a morphism

elim(Γ, γA) : ΓM(con(Γ), γA).

111

112

Inductive-Inductive
Syntax

U
,E

l,Π
,Π̂

Inductive
Fam

ily
Syntax

Sorts
Π̂

S ,U

Points
E
l,Π̂

P ,⇒
P

TargetType
Theory

0,1,2,Σ
,Π

,IW

Γ
E,Γ

W
(γ

),Γ
R
(γ

,γ
A
)

Γ
A,Γ

M
(γ

,δ),Γ
Σ
(γ

,δ)
Γ
A,Γ

M
,Γ

D,Γ
S

Providesdom
ain

for
Π̂
,Π̂

Figure
7.1:The

Type
Theoriesused

in
thisChapter.

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 113

Before we attempt the reduction in the general case, it is useful to first
look at how it works in a special case.

7.1 Example: Type Theory Syntax
As a prime example we chose Example 5.0.1 which describes the contexts
and types of a type theoretic syntaxwith a base type and Π-types. To recall
the specifics of the example: We want to define a type Con : U of contexts
and a type family Ty : Con → U which gives the type of types over a
context. These are populated by constructors, providing the empty context,
context extension, the base type former and the type former for the Π-
types:

nil : Con,
ext : (Γ : Con) → Ty(Γ) → Con,

unit : (Γ : Con) → Ty(Γ), and
pi : (Γ : Con)(A : Ty(Γ)) → Ty(ext(Γ, A)) → Ty(γ).

Since the dependency between the two sorts Con and Ty can not be rep-
resented directly with inductive families, we might, as a first approxima-
tion, simply forget about all the indices of the sort – that is, the Con-index
in Ty – and adapt the point constructors accordingly: Let Con′ : U and
Ty′ : U be plain types generated by the following four mutually dependent
constructors:

nil′ : Con′,
ext′ : Con′ → Ty′ → Con′,

unit′ : Con′ → Ty′, and
pi′ : Con′ → Ty′ → Ty′ → Ty′.

But this transformation, which we will call type erasure loses important
information about the constructed types: In the syntax generated by Con′

and Ty′, all types exist in the same context. There is no way to tell that the
codomain of the Π-types may depend on its domain, and that the Π-type
itself exists in the same context as its domain. This justifies that we might
call the above types the presyntax associated to the syntax given by Con and
Ty, consisting of precontexts and pretypes.

114 7.1. EXAMPLE: TYPE THEORY SYNTAX

To counteract this shortcoming, we reintroduce the typing relation as a
pair of predicates over the presyntax. These inductively defined predicates
capture whether an instance of Con′ or Ty′ is wellformed according to the
original typing. For the contexts, this is a simple property wCon : Con′ → U ,
while for types, it needs to state what precontext a pretype is wellformed
in: wTy : Con′ → Ty′ → U . Note that these are inductive families since the
definition of all indexing types is concluded at the point of the definition of
WCon and WTy. The point constructors for the wellformedness predicates
simply state that is preserved by all constructors of Con′ and Ty′, in the
case of Ty′ given the correct index:

wnil : WCon(nil′),
wext : {Γ : Con′}{A : Ty′} → WCon(Γ) → WTy(Γ, A)

→ WCon(ext′(Γ, A)),
wunit : {Γ : Con′} → WCon(Γ) → WTy(unit′(Γ)), and

wpi : {Γ : Con′}{A, B : Ty′} → WCon(Γ)

→ WTy(Γ, A) → WTy(ext′(Γ, A), B) → WTy(Γ, pi′(Γ, A, B)).
Nowwe can use the predicates to cut out the correct subset of Con′ and

Ty′: A context is a precontext together with a proof of its wellformedness
just as a type is a pretype together with a welltypedness witness:

Con :≡ (Γ : Con′)× WCon(Γ) and
Ty(Γ) :≡ (A : Ty′)× WTy(pr1(Γ), A).

The four point constructors are then easy to define as pairs:
nil :≡ (nil′, wnil),

ext(Γ, A) :≡
(
ext′(pr1(Γ), pr1(A)), wext(pr2(Γ), pr2(A))

)
,

unit(Γ) :≡
(
unit′(pr1(Γ)), wunit(pr2(Γ))

)
, and

pi(Γ, A, B) :≡
(

pi′(pr1(Γ), pr1(A), pr1(B)), wpi(pr2(Γ), pr2(A), pr2(B))
)
.

This definition clearly has the correct type signature but for it to be
the correct replacement for the intended inductive-inductive type, we also
need to construct its eliminator: For any given C : U and T : C → U with

n : C,
e : (γ : C) → T(γ) → C,
u : (γ : C) → T(γ), and
p : (γ : C)(a : T(γ)) → T(e(γ, a)) → T(γ),

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 115

we need to construct functions recCon : Con → C and recTy : {Γ : Con} →
Ty(Γ) → T(recCon(Γ)) such that the preservation of the point constructors
is manifested in the following β-rules:

recCon(nil) = n,
recCon(ext(Γ, A)) = e(recCon(Γ), recTy(A)),

recTy(unit(Γ)) = u(recCon(Γ)), and
recTy(pi(Γ, A, B)) = p(recCon(Γ), recTy(A), recTy(B)).

The intricate dependencies between the types make it difficult to de-
fine these functions straight away, but it turns out that we will be able to
define an eliminator relation between the presyntax (Con′, Ty′) and the mo-
tive (C, T) which we can show restricts to the graph of a function on the
wellformed parts of the syntax. Just like the wellformedness predicate,
this relation is defined inductively as a type family over the presyntax.
The signature of this relation is RCon : Con′ → C → U for contexts and
RTy : (Γ : Ty′){γ : C} → T(γ) → U and the constructors for the relation
state that relatedness is preserved by each constructor of the presyntax:

rnil : RCon(nil′, n),
rext(Γ, A, γ, a) : RCon(Γ, γ) → RTy(A, a) → RCon(ext′(Γ, A), e(γ, a)),

runit(Γ, γ) : RCon(Γ, γ) → RTy(unit′(Γ), u(γ)), and
rpi(Γ, A, B, γ, a, b) : RCon(Γ, γ) → RTy(A, a) → RTy(B, b)

→ RTy(pi′(Γ, A, B), p(γ, a, b)).

Since we want a morphism to the model (C, T, n, e, u, p) instead of a
relation, we now need to prove that the relation is in fact the graph of a
function – i. e. it is right-unique and left-total.

Lemma 7.1.1. The relation is right-unique on contexts and types. That is, for
γ, γ′ : C with RCon(Γ, γ) and RCon(Γ, γ′), we have γ = γ′, and, regarding
types, for γ : C and a, a′ : T(γ), with RTy(A, a) and RTy(A, a′), we have a = a′.

Proof. Let us first apply induction on the presyntactic variables Γ and A,
respectively. This leaves us to consider the cases of the four constructors of
Con′ and Ty′. For the case of nil′, we observe that the only constructor re-
sulting in RCon(nil′, γ) for some γ is rnil : RCon(nil, n) andwe can conclude
that both γ and γ′ must be equal to n. The reasoning analogously applies

116 7.2. TYPE ERASURE

to the other cases as well: There is only one relatedness constructor for
each of the constructors of the presyntax, sowe can always obtain the right-
uniqueness for all arguments via the induction hypothesis and, by congru-
ence, infer that the uniqueness carries over to the constructor in consider-
ation. As an example, in the case of δ and δ′ with RCon(ext′(Γ, A), δ) and
RCon(ext′(Γ, A), δ′), we first conclude that δ = e(γ, a) and δ′ = e(γ′, a′) for
some γ, γ′, a, and a′, we see that for these RCon(Γ, γ), RCon(Γ, γ′), RTy(A, a),
and RTy(A, a′) have to hold and from this we infer that γ = γ′ as well as
a = a′ and thus δ = δ′.

Lemma 7.1.2. The eliminator relation is left-total on wellformed presyntax: For
Γ : Con′ with WCon(Γ) there is γ : C such that RCon(Γ, γ). Analogously, for
A : Ty′(Γ) with WTy(Γ, A) and γ : C with RCon(Γ, γ) there is a : T(γ) such
that RTy(A, a).

Proof. Again, we first perform induction on the presyntactic argument to
the statement – that is, Γ or A. The case of nil′ is trivial by providing n and
rnil. So let us look at the case of ext′(Γ, A). From the induction hypothesis,
we get witnesses for the wellformedness of the arguments in the form of
WCon(Γ) and WTy(Γ, A), as well as related data from the algebra: γ : C
with RCon(Γ, γ), and a : T(γ)with RTy(A, a). But this is all the input to use
rext to obtain RCon(ext′(Γ, A), e(γ, a)). The other two cases can be proved
analogously.

The left-totality will suffice to define the recursor functions by simply
setting recCon(Γ) and recTy(A) to be the respective witnesses gained from
Lemma 7.1.2. This means that the β-rule for the non-recursive constructor
nil will be definitional, while to prove β-rules for the recursive constructors
will require the use of Lemma 7.1.1:

To prove, for example, that recCon(ext(Γ, A)) = e(recCon(Γ), recTy(A))
holds, we observe that both the left-hand side and the right-hand side pro-
vide elements in C which by RCon are related to ext′(Γ, A), so the lemma
give us the desired equality.

7.2 Type Erasure
As seen in the example, the first step to prove the reducability is to formally
define the operation which we will call flattening or – inspired by the syn-
tax example – type erasure. This operation strips away any dependencies

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 117

between the sorts of a signature as well as all external indices to sorts. The
operation should take arbitrary inductive-inductive signatures (contexts)
and return signatures for inductive families. Let us look at what type era-
sure should do with our running examples:

Example 7.2.1 (NaturalNumbers). Since the inductive-inductive signature
of the natural numbers 5.1.4 doesn’t contain any indexed sorts, type erasure
should “do nothing” with it. That is, returning the sort context and point
context of the inductive family syntax which looks like a obvious corre-
spondence to it (cf. Example 6.1.1) while ignoring all entries of the other
kind: Let

Γnat :≡ (·, U , El(vz), Π (vs(vz), El(vs(vs(vz))))).

We want to have the following split into sort types and point types:

Γnat
E
S = (·S, U) and

Γnat
E = (·, El(var(vz)), var(vz) ⇒P El(var(vz))).

Example 7.2.2 (Vectors). In the example of vectors 5.1.5 we need to erase
the natural numbers index of the only sort under consideration:

Γvec
E
S = (·S, U) and

Γvec
E = (·, El(var(vz)), Π̂P(a : A, Π̂P(n : N, var(vz) ⇒P El(var(vz))))).

Note that the erasure of the vectors does not coincide with the vectors rep-
resented as an inductive family (Example 6.1.1), because its sort lacks the
indexing over the natural numbers. In fact, it’s easy to see that the alge-
bras of this signature would be isomorphic to the type of lists over the type
A × N.

To go from examples to the general case, we will present the different
components of the type erasure operation in roughly the same order in
which they appear in Section 5.1, most often needing to distinguish be-
tween sort and point constructors.

Definition 7.2.3 (Type Erasure). First of all, each context will need to be
split into a sort context and a point context:

` Γ

`S ΓE
S

` Γ

`ΓE
S

ΓE

118 7.2. TYPE ERASURE

To descent down the components of the contexts, wewill need to define the
operation on types as well. Since we are erasing all information from the
sorts, we will only need this for point types, though. Unsurprisingly, we
want them to be translated to point types in the appropriate sort context:

Γ ` A :: P

ΓE
S `S AE :: P

Using this we will be able to define the operation creating sort contexts by

·ES :≡ ·S,

(Γ, B)ES :≡
(

ΓE
S , U

)
for B :: S, and

(Γ, A)ES :≡ ΓE
S for A :: P.

The generated point context over this sort context has to be extended in the
case where the input is an extension by a point type. In the case where it
is an extension by a sort type, we want to return the unextended context,
but to make up for the definition above, we need to weaken to account for
the extension of the resulting sort context:

·E :≡ ·,
(Γ, B)E :≡ ΓE[wkid] for B :: S, and

(Γ, A)E :≡
(

ΓE, AE
)
for A :: P.

So how dowe define AE for a point type A? The fact the we have to recurse
on El(a) makes it clear that we will have to extend our operation to terms
of sort types at least. That is, together with AE we also need the following:

Γ ` t : B :: S

ΓE
S `S tE : U

And indeed, with this we can set

El(a)E :≡ El(aE).

For recursive Π-types, we need only care about the ones yielding point
types. Note that the operation turns a Π-type into a non-dependent func-
tion type!

Π(a, A)E :≡ aE ⇒P AE

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 119

Since we forgot about the indexing of sort types, erasure of sort-kinded
application terms is just erasure of its Π-type term:

app(f)E :≡ f E for Γ ` f : Π(a, B) :: S.

External Π-types convert directly into their respective counterparts in the
syntax of inductive families. For application of terms of sort-kinded Π-
types we need to erase the argument since we erased the Π-type itself.

Π̂(T, A)E :≡ Π̂P(T, λτ. A(τ)E), and
f (τ)E :≡ f E for Γ ` f : Π̂(T, B) : S

Defining the erasure on point types and sort terms pulled back along a
substitution, we see that wewill also need to erase entire sort substitutions.
This is achieved by extending the operation as follows:

Γ σ−→ ∆

ΓE
S

σE
S−→ ∆E

S

We will then be able to use this in a straight forward way to define the
pullbacks:

A[σ]E :≡ AE[σE
S] for Γ ` A :: P and

t[σ]E :≡ tE[σE
S] for Γ ` t : B :: S.

Erasure of substitutions is built recursively, ignoring point types. Likewise,
the first projection will ignore point types:

idES :≡ id,
(σ ◦ δ)ES :≡ σE

S ◦ δES ,
ϵES :≡ ϵ,

(σ, t)ES :≡ (σE
S , tE) for Γ ` t : B[σ] :: S,

(σ, t)ES :≡ σE
S for Γ ` t : A[σ] :: P,

π1(σ)
E
S :≡ π1(σ

E
S) for Γ σ−→ (∆, B :: S),

π1(σ)
E
S :≡ σE

S for Γ σ−→ (∆, A :: P), and
π2(σ)

E :≡ π2(σ
E
S).

This concludes the definition of the erasure operation.

120 7.2. TYPE ERASURE

For the steps that follow it will be necessary to equip the algebras of the
resulting signatures with a substitution calculus that also considers point
contexts instead of only sort contexts. To this end, we extend the operation
of type erasure by assigning a map between the types of algebras of the
erasure to each substitution. To be able to build these maps, we further-
more need to find a way how to get an element of the algebra of point type
for any given term of this type.

Definition 7.2.4 (Erasure for Point Substitutions). We define the following
operation on substitutions and terms of point types:

Γ σ−→ ∆ γS : ΓE
S
A

σE : ΓEA(γS) → ∆EA
(

σE
S(γS)

)
Γ ` t : A :: P γS : ΓE

S
A

tE : ΓEA(γS) → AEA(γS)

While in for σE
S we ignored point constructors, this time we will to the op-

posite and ignore all sort constructors:

idE(γ) :≡ γ,

σ ◦ δE(γ) :≡ σE
(

δE(γ)
)
,

ϵE(γ) :≡ ⋆,
(σ, t)E(γ) :≡ σE(γ) for Γ ` t : B[σ] :: S,

(σ, t)E(γ) :≡
(

σE(γ), tE(γ)
)

for Γ ` t : A[σ] :: P,

π1(σ)
E(γ) :≡ σE(γ) for Γ σ−→ (∆, B :: S),

π1(σ)
E(γ, α) :≡ σE(γ) for Γ σ−→ (∆, A :: P).

On point constructors we descend recursively by following the structure of
the respective algebra:

app(f)E(γ, α) :≡ f E(γ)(α) for Γ ` f : Π(a, A :: P),
f (τ)E(γ) :≡ f E(γ)(τ) for Γ ` f : Π̂P(T, A),
t[σ]E(γ) :≡ tE(σE(γ)) for Γ σ−→ ∆, and

π2(σ)(γ) :≡ pr2(σ
E(γ)) for Γ σ−→ (∆, A :: P).

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 121

7.3 The Wellformedness Predicate
To remove the ambiguity created by the type erasure we will now have to
find a way to select those instances of the types which are “wellformed” in
the sense that they lie in the correct fibers of dependent sorts. This predi-
cate will be a proposition dependent on a realization of the erased signa-
ture, i. e. on contexts, it will be a function on the type of algebras of the era-
sure. It is important keep this dependencies and not only to use the initial
such algebra, since when we will recursively define this wellformedness
predicate, the corresponding piece of signature will not always be initial –
in the sameway in which a projection of an initial algebra is not necessarily
initial anymore.

Example 7.3.1 (Natural Numbers). Taking up the example of Γnat from
7.2.1, we observe that algebras of Γnat

E
S take the form of (⋆, N) with N : U

and, given N, those of Γnat
E are of the form (⋆, z, s) with z : N and s : N →

N. Our wellformedness predicate in this case will encode a type family on
N, inductively populated by elements “over” z and n. The code for its sort
and point constructors looks as follows:

Γnat
W
S (⋆, z, s) =

(
·S, Π̂S(N, U)

)
and

Γnat
W(⋆, z, s) =

(
·, El(var(vz)(z)), Π̂P(n : N, var(vz)(n) ⇒P El(var(vz)(s(n))))

)
Example 7.3.2 (Vectors). For vectors on a type A : U , the duties of the
wellformedness predicate are less trivial: We have to add back the length
information which we erased, as described in 7.2.2: Empty vectors should
have length zero and appending an element should increase its length by
one. This can be achieved by, given the data from an erasure algebra in
the form of V : U , n : V, and c : A → N → V → V, having a predicate
encoded by

Γvec
W
S (⋆, n, c) =

(
·S, Π̂S(n : N, Π̂S(v : V, U))

)
,

with point constructors that ensure the correct lengh by setting Γvec
W(⋆, n, c)

to be the point context

·, El(var(vz)(0, n)),
Π̂P(a : A, Π̂P(n : N, Π̂P(v : V, var(vz)(n, v) ⇒P El(var(vz)(n + 1, c(a, n, v)))))).

Like for the type erasure, we will now proceed to generalize this to ar-
bitrary inductive-inductive types.

122 7.3. THE WELLFORMEDNESS PREDICATE

Definition 7.3.3 (Wellformedness Predicates). Again, we start by consider-
ing the resulting type on contexts. Clearly, we want the operation to result
in the sort context and the point context of another signature of an induc-
tive family. As we have alredy seen in the previous exapmles, there needs
to be a dependency on an erasure algebra which leads to the following
rules:

` Γ γS : ΓE
S
A γ : ΓEA(γS)

`S ΓW
S (γ)

` Γ γS : ΓE
S
A γ : ΓEA(γS)

`ΓW
S (γ) ΓW(γ)

To be able to do recursion we will again need to provide a suitable op-
eration on types. We need to distinguish between sort and point types.
For sort types, note that we don’t have an erasure operation of which we
could take an algebra, but since, implicitly, every input sort turns into the
inductive-family universe token U , we know that we can act as if its uni-
verse is a plain type. Also, we need to know the interpretation of the era-
sure of the context the type is based on.

Γ ` B :: S γS : ΓE
S
A γ : ΓEA(γS) α : U

`S BW(γ, α) :: S

Γ ` A :: P γS : ΓE
S
A γ : ΓEA(γS) α : AEA(γS)

ΓW
S (γ) `S AW(γ, α) :: P

The recursion of the context then looks very much like the one in the defi-
nition of type erasure: Extending the sort context whenever we encounter
a sort type in the inductive-inductive signature and extending the point
case for each point type. Again, we can not leave the point context fixed
“on the nose” when encountering a sort type since we need to weaken it to

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 123

account for the new sort:

·WS (γ) :≡ ·S
(Γ, B :: S)WS {γS, α}(γ) :≡

(
ΓW
S (γ), BW(γ, α)

)
(Γ, A :: P)WS (γ, α) :≡ ΓW

S (γ)

·W(γ) :≡ ·
(Γ, B :: S)W(γ) :≡ ΓW(γ)[wkid]

(Γ, A :: P)W(γ, α) :≡
(

ΓW(γ), AW(γ, α)
)

Like in the definition of type erasure, recursing on El(a) makes it nec-
essary to extend the definition at least to sort types. So we will also give an
operation producing the following data:

Γ ` t : B :: S γS : ΓE
S
A γ : ΓEA(γS)

ΓW
S (γ) `S tW(γ) : BW(γ, tEA(γS))

Let us nowproceed to give the definition on all type formers. Then each
sort of the input signature should become a predicate. Since a predicate is
the same as a type familywith propositional values, we set thewellformed-
ness on the universe to be a type family, the domain of which is given by
the set we obtain from the algebra of the erased context. Note that this type
family is a non-dependent, non-recursiveΠ-type. The interpretation ofEl(a)
has to make up for this shift by applying to the wellformedness predicate
corresponding the sort term a the element we get from the erasure of El(a):

UW(γ, α) :≡ Π̂S(x : α, U) and

El(a)W(γ, α) :≡ El
(

aW(γ)(α)
)
.

For sort-kinded, recursive Π-types, we again need to remember that
in the definition of type erasure, we turned them into instances of U , so to
add the information backwhich we erased, the wellformedness has to turn
them into non-recursive Π-types over the erasure of sort term which is the
domain of the Π-type we started with. The interpretation of application
terms has to follow this step accordingly:

Π(a, B :: S)W{γS}(γ, ϕ) :≡ Π̂S(α : aEA(γS), BW((γ, α), ϕ)) and
app(f)W(γ, α) :≡ fW(γ)(α) for Γ ` f : Π(a, B :: S).

124 7.3. THE WELLFORMEDNESS PREDICATE

The treatment of Π-types in point constructors is arguably the tricki-
est part of the definition. A non-technical description of the effect of the
wellformedness operation on these Π-types is the following: For each bit
of input data from an algebra of the erasure, wellformedness of this input
data should imply wellformedness of the result.

Π(a, A :: P)W{γS}(γ, ϕ) :≡ Π̂P(α : aEA(γS), aW(γ)(α) ⇒P AW((γ, α), ϕ(α)))

Let us next look at the non-recursive function types. Since we erased
them just like the recursive ones, they are processed similar to the defi-
nitions above, with the difference that for point constructors, there is no
wellformedness of the domain that we have to presuppose to infer well-
formedness of the codomain:

Π̂(T, B :: S)W(γ, ϕ) :≡ Π̂S(τ : T, B(τ)W(γ, ϕ)),
Π̂(T, A :: P)W(γ, ϕ) :≡ Π̂P(τ : T, A(τ)W(γ, ϕ(τ))), and

f (τ)W(γ) :≡ fW(γ)(τ).

Again, we need to extend the definition to substitutions to be able to
specify it on pulled back types and terms:

Γ σ−→ ∆ γS : ΓE
S
A γ : ΓEA(γS)

ΓW
S (γ)

σW
S (γ)
−→ ∆W

S (γ)

Their category structure is a direct translation to the sort substitutions of
the inductive family syntax. Note that here, we need to refer to 7.2.4 to
carry the algebra of the erase point context along the substitution:

idWS (γ) :≡ id and
(σ ◦ δ)WS (γ) :≡ σW

S (δE(γ)) ◦ δWS (γ).

The pullback operations can afterwards defined by

B[σ]W(γ, α) :≡ BW(σE(γ), α),
A[σ]W(γ) :≡ AW(γ, α)[σW

S (γ)], and
t[σ]W(γ) :≡ tW(σE(γ))[σW

S (γ)] for Γ ` t : B :: S.

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 125

The remaining pieces of substitutional calculus are straightforward and
look the same as for the type erasure:

ϵWS (γ) :≡ ϵ,

(σ, t)WS (γ) :≡
(

σW
S (γ), tW(γ)

)
for t : B :: S,

(σ, t)WS (γ) :≡ σW
S (γ)

π1(σ)
W
S (γ) :≡ π1(σ

W
S (γ)) for Γ σ−→ ∆, B :: S,

π1(σ)
W
S (γ) :≡ σW

S (γ) for Γ σ−→ ∆, A :: P,
π2(σ)

W
S (γ) :≡ π2(σ

W
S (γ)) for Γ σ−→ ∆, B :: S,

π2(σ)
W
S (γ) :≡ σW

S (γ) for Γ σ−→ ∆, A :: P,

For the next step – using the wellformedness predicate to define the
initial object itself – we will need data which provides evidence that the
point contexts of the wellformedness predicate behave as well as the sort
substitutions. Since we don’t have point substitutions as part of the syn-
tax of inductive families, we will proceed like in Definition 7.2.4 and work
directly on algebras. To be able to give the definition we will also need a
corresponding operation on the terms of point types.

Definition 7.3.4 (Wellformedness for Point Substitutions). We give a well-
formedness predicate operation on substitutions and point terms in the
following form:

Γ σ−→ ∆ γS : ΓE
S
A γ : ΓEA(γS) δS : ΓW

S (γ)A

σW(γ) : ΓW(γ)A(δS) → ∆W(σE(γ))A
(

σW
S (γ)A(δS)

)
Γ ` t : A :: P

γS : ΓE
S
A γ : ΓEA(γS) δS : ΓW

S (γ)A δ : ΓW(γ)A(δS)

tW(γ, δ) : AW(γ, tE(γ))A(δS)

The definition will follow the structure of the algebra, ignoring the oc-

126 7.4. THE INITIAL OBJECT

curence of sort terms:

idW(γ, δ) :≡ δ,
σ ◦ δW(γ, δ′) :≡ σW(δE(γ), δW(γ, δ′)),

ϵW(γ, δ) :≡ ⋆,
(σ, t)W(γ, δ) :≡ σW(γ, δ) for Γ ` t : B[σ] :: S,

(σ, t)W(γ, δ) :≡
(

σW(γ, δ), tW(δ)
)

for Γ ` t : A[σ] :: P,

π1(σ)
W(γ, δ) :≡ σW(γ, δ) for Γ σ−→ (∆, B :: S), and

π1(σ)
W(γ, δ) :≡ pr1(σ

W(γ, δ)) for Γ σ−→ (∆, A :: P),

app(f)W(γ, α)(δ, ω) :≡ fW(δ)(α)(ω) for Γ ` f : Π(a, A :: P),
f (τ)W(γ, δ) :≡ fW(γ, δ)(τ) for Γ ` f : Π̂P(T, A),
f [σ]W(γ, δ) :≡ fW(σE(γ), σW(γ, δ)) for Γ σ−→ ∆, and

π2(σ)
W(γ, δ) :≡ pr2(σ

W(γ, δ)) for Γ σ−→ (∆, A :: P).

7.4 The Initial Object
Since we now have a way to “carve out” the wellformed elements from the
typeswe created via type erasure, we cannowdefine our desired inductive-
inductive types itself. In this section, this will amount to defining just one
specific algebra over the given inductive-inductive signature. This cor-
responds to giving sorts with the correct point constructors. What distin-
guishes this algebra from others is that we have strong reasons to believe
that, besides constructors, it also admits a dependent eliminator, or, equiv-
alently, that it is initial among all algebras.

The construction of the initial object obviously presupposes the exis-
tence of initial algebras of inductive families. Nevertheless, we need to
apply the same strategy as in the definition of the wellformedness pred-
icate: The construction will depend on arbitrary algebras of type erasure
and wellformedness instead of just depending on the initial one. This al-
lows us to descend recursively and still refer to the correct algebra of the
respective inductive families.

Like in the last two steps of the construction, let us again start off by
taking a look at our set of running examples:

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 127

Example 7.4.1 (Natural Numbers). Continuing from Example 7.3.1, we
again assume sort and point algebras (⋆, N′) and (⋆, z′, s′) of the erasure of
natural numbers Γnat

E
S and Γnat

E. Given this data, the algebras of the well-
formedness predicate take the form of (⋆, WN) and (⋆, wz, ws) with types

WN : N′ → U ,
wz : W(z′), and
ws : (n′ : N′) → WN(n′) → WN(s′(n′)).

Then, we want the inductive-inductive algebra con(Γnat) : Γnat
A to consist

of the subsets of erased types which (in this case trivially) fulfil the well-
formedness condition, with the point constructors lifted to these subsets:
con(Γnat) = (⋆, N, z, s) with

N = (n′ : N′)× WN(n′),
z = (z′, wz), and
s = λ((n′, wn) : N). (s′(n′), ws(n′, wn)).

Example 7.4.2 (Vectors). Let us next consider the type of vectors on a type
A : U . The assumed algebras of the type erasure give us V′, n′, and c′

as in 7.3.2. With those as input, algebras of the sort and point part of the
wellformedness predicate Γvec

W
S and Γvec

W look like (⋆, WV) and (⋆, wn, wc)
with

WV : N → V′ → U ,
wn : WV(0, n′), and
wc : (a : A)(m : N)(v′ : V) → WV(m, v′) → WV(m + 1, c′(a, m, v′)).

This suggests thatwewill have an algebra con(Γvec) : ΓA
vec definedby con(Γvec) =

(⋆, V, n, c) with

V = λ(n : N). (v′ : V′)× WV(n, v′),
n = (n′, wn), and
c = λ(a : A)(m : N)((v′, wv′) : V). (c′(a, m, v′), wc(a, m, v′, wv′)).

Let us now consider the case of an arbitrary signature ` Γ. The form
which our operationwill take is clear – for each signaturewe need to return
an algebra of that signature:

` Γ

con(Γ) : ΓA

128 7.4. THE INITIAL OBJECT

But as we saw before, recursion is easier when we make the dependent on
arbitrary algebras of the previous steps – that is, arbitrary algebras over
type erasure and the wellformedness predicate. After we succeed in defin-
ing this more general construction ΓΣ, we will eliminate this dependency
by fixing these algebras to be the initial ones which we assume to exist in
this chapter.

Definition 7.4.3 (Sigma Construction). As mentioned, the more general
constructionwill depend on both the type erasure and thewellformedness,
so that the operation will take the following form:

` Γ γS : ΓE
S
A γ : ΓEA(γS) δS : ΓW

S (γ)A δ : ΓW(γ)A(δS)

ΓΣ(γ, δ) : ΓA

To recurse on the contexts, we again need to extend the operations to
types, distinguishing between sort and point constructors, resulting in the
following two rules:

Γ ` B :: S γS : ΓE
S
A γ : ΓEA(γS)

δS : ΓW
S (γ)A δ : ΓW(γ)A(δS) α : U ω : BW(γ, α)A

BΣ(γ, δ, ω) : BA
(

ΓΣ(γ, δ)
)

Γ ` A :: P γS : ΓE
S
A γ : ΓEA(γS)

δS : ΓW
S (γ)A δ : ΓW(γ)A(δS) α : AEA(γS) ω : AW(γ, α)A(δS)

AΣ(γ, δ, ω) : AA
(

ΓΣ(γ, δ)
)

These operations allow us two define the sigma construction as straight-
forward as we have seen in the previous constructions:

·Σ(γ, δ) :≡ ⋆

(Γ, B :: S)Σ(γ){δS, ω}(δ) :≡
(

ΓΣ(γ, δ), BΣ(γ, δ, ω)
)

(Γ, A :: P)Σ((γ, α), (δ, ω)) :≡
(

ΓΣ(γ, δ), AΣ(γ, δ, ω)
)

Again, the necessity to define El(a)Σ forces us to extend the definition
on terms as well. The treatment for sort and point terms differs because
type erasure and wellformedness predicate are defined as maps between
algebras of inductive family syntax instead of syntax itself: We do not need
to give data, but instead we have to make sure that, when given a term, the

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 129

two ways of getting an element of the interpretation of its type – via the
Σ-construction on contexts and via the Σ-construction on types – coincide:

Γ ` t : B :: S
γS : ΓE

S
A γ : ΓEA(γS) δS : ΓW

S (γ)A δ : ΓW(γ)A(δS)

tΣ(γ, δ) : tA
(

ΓΣ(γ, δ)
)
= BΣ

(
γ, δ, tW(γ)A(δS)

)
Γ ` t : A :: P

γS : ΓE
S
A γ : ΓEA(γS) δS : ΓW

S (γ)A δ : ΓW(γ)A(δS)

tΣ(γ, δ) : tA
(

ΓΣ(γ, δ)
)
= AΣ

(
γ, δ, tW(δ)

)
We will now go through all the type formers in order, starting with

the universe. It justifies the name of the construction, producing a sigma
type of the erasure and its wellformedness. For the element operator, we
need the above equation for terms to be able to populate these sigma types
accordingly:

UΣ(γ, δ, ω) :≡ (x : α)× ω(x) and

El(a)Σ(γ, δ, ω) :≡
(

aΣ(γ, δ)−1
)∗

(α, ω)

Let us next look at the recursive Π-types and their application: Let
(α, ω) be the result of

(
aΣ(γ, δ)

)∗
(ξ), then we can set

Π(a, B :: S)Σ(γ, δ, ϕ)(ξ) :≡ p∗
(

BΣ((γ, α), (δ, ω), ϕ(α))
)

and

Π(a, A :: P)Σ(γ, δ, ϕ)(ξ) :≡ p∗
(

BΣ((γ, α), (δ, ω), ϕ(α, ω))
)
,

where p is a proof for

BA
(

ΓΣ(γ, δ),
(

aΣ(γ, δ)−1
)∗

(α, ω)
)
= BA

(
ΓΣ(γ, δ), ξ

)
.

For the application we provide app(f)Σ((γ, α), (δ, ω)) for Γ ` f : Π(a, B)
by the following identity proofs:

app(f)A
(
(Γ, El(a))Σ((γ, α), (δ, ω))

)
≡ fA

(
ΓΣ(γ),

(
aΣ(γ, δ)−1

)∗
(α, ω)

)
= Π(a, B)Σ

(
γ, δ,

(
aΣ(γ, δ)−1

)∗
(α, ω)

)
by fΣ

≡
{

BΣ
(
(γ, α), (δ, ω), f EA(γS)

(
fW(γ)A(δS)

))
for B :: S and

BΣ
(
(γ, α), (δ, ω), f E(γ)

(
fW(δ)

))
for B :: P.

130 7.4. THE INITIAL OBJECT

The case for non-recursive Π-types is a rather straightforward descent,
compared to the recursive ones:

Π(a, B)Σ(γ, δ, ϕ, τ) :≡ BΣ(γ, δ, ϕ(τ)) and

f (τ)Σ(γ, δ) :≡ happly
(

fΣ(γ, δ), τ
)

This concludes all type formers, though we still need to have a defini-
tion on typeswhich are the result of pullback along a substitution, and thus
need to extend the operation to substitution with the following rule, which
introduces equalities similar to the ones that we already saw for terms:

Γ σ−→ ∆ γS : ΓE
S
A γ : ΓEA(γS) δS : ΓW

S (γ)A δ : ΓW(γ)A

σΣ(γ, δ) : σA
(

ΓΣ(γ, δ)
)
= ∆Σ

(
σE(γ), σW(δ)

)
With this rule we can provide the correct operations on pulled back types
and terms:

B[σ]Σ(γ, δ, ω) :≡
(

σΣ(γ, δ)−1
)∗ (

BΣ(σE(γ), σW(δ), ω)
)

for Γ ` B :: S, and for a term Γ ` t[σ] : B[σ], we use σΣ in the proof of the
equality t[σ]Σ:

t[σ]A(ΓΣ(γ, δ))

≡ tA(σA(ΓΣ(γ, δ)))

=
(

σΣ(γ, δ)−1
)∗ (

tA(∆Σ(σE(γ), σW(δ)))
)

=
(

σΣ(γ, δ)−1
)∗ (

BΣ(σE(γ), σW(γ, δ), tW(γ)A(σW
S (γ)A(δS)))

)
≡ B[σ]Σ(γ, δ, tW[σW

S (γ)]A(δS))

and similarly for Γ ` A :: P.
The substitutional calculus for this rule is easily defined since idΣ(γ, δ)

and ϵΣ(γ, δ) holddefinitionally, the composition rule σ ◦ δΣ(γ, δ′) for ∆ σ−→ Σ

and Γ δ−→ ∆ is justified by

σA
(

δA
(

ΓΣ(γ, δ′)
))

= σA
(

∆Σ(δE(γ), δW(γ, δ′))
)

by δΣ(γ, δ′)

= ΣΣ(σE(δE(γ)), σW(δE(γ), δW(γ, δ′))) by σΣ(. . .).

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 131

To prove the coherence of a substitution extended by a term (σ, t) with
Γ σ−→ ∆ and Γ ` B[σ] :: S, we use σΣ(γ, δ) and tΣ(γ, δ) simultaneously to
obtain the required equation (the variant for point terms follows in similar
fashion):

(σ, t)A(ΓΣ(γ, δ))

≡
(

σA(ΓΣ(γ, δ)), tA(ΓΣ(γ, δ))
)

=
(

∆Σ(σE(γ), σW(γ, δ)), BΣ(σE(γ), σW(γ, δ), tW(γ)A(δS))
)

≡(Γ, B)Σ(σE(γ), σW(γ, δ)).

The remaining equations follow in similarly obvious way.

Definition 7.4.4 (Initial Object). Using the generalized sigma construction
we are now able to define the initial object by plugging in the respective
initial objects of the inductive families:

con(Γ) :≡ ΓΣ(con(ΓE), con(ΓW(con(ΓE)))) : ΓA

7.5 The Eliminator Relation

Now that we have defined a candidate for the initial object in the category
of algebras, the obvious next step is to prove its initiality. The strategy for
this is, as we have seen in Chapter 7.1, to first define a relation for the non-
dependent eliminator, before showing that this relation is right-unique and
left-total and as such, a function. Like the wellformedness predicate, the
construction of this relation relies on the fact that we are provided with an
initial algebra for the type erasure.

Again, we start by taking on the running examples of natural numbers,
vectors, and type theoretic syntax, to get a feeling for what the construction
is supposed to look like.

Example 7.5.1 (Natural Numbers). Continuing the construction from Ex-
ample 7.2.1 and parallel to Example 7.3.1, we assume sort and point alge-
bras (⋆, N′) : Γnat

A and (⋆, z′, s′) : Γnat
A(⋆, N′). Furthermore, our relation

should relate these algebras to an arbitray algebra of Γnat, so we assume

132 7.5. THE ELIMINATOR RELATION

that we are given

(⋆, N, z, s) : Γnat
A with

N : U ,
z : N, and
s : N → N.

Since, as we observed in Example 7.2.1, no erasure takes place, this alge-
bra already contains the same amount of information as ((⋆, N′), (⋆, z′, s′)).
Like type erasure and wellformedness predicate, the eliminator relation
will come in the form of the sort and point context of an inductive family.
The sort context simply describes the one of a type family indexed both
over N and N′ (we will use variable names instead of de-Bruijn indices):

Γnat
R
S = (·S, RN : Π̂S(N, Π̂S(N′, U))).

The point context will now populate this relation by witnesses for the fact
that the corresponding point constructors are related, or, for s, that they
preserve relatedness:

Γnat
R =

(
·, rz : El(RN(z)(z′),

Π̂P(n : N, Π̂P(n′ : N′, RN(n)(n′) ⇒P El(RN(s(n))(s′(n′)))))
)
.

Since, as we remarked earlier, the type erasure on Γnat is without effect, we
can expect this relation to be the same as the graph of the non-dependent
eliminator on N′ already.

Example 7.5.2 (Vectors). Tomove on to an examplewhere on the one hand
no real induction-induction is happening, but we still have a non-trivial ef-
fect by type erasure, let us consider the type of vectors over an external type
A : U . Again, we assume that we already have constructed point and sort
algebras (⋆, V′) and (⋆, n′, c′) as in Example 7.3.2. We also assume an arbi-
trary algebra of the vectors in Γvec, which comes in the form of (⋆, V, n, c)
where

V : N → U ,
n : V(0), and
c : (a : A)(n : N) → V(n) → V(n + 1).

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 133

Since V is a type family, the relation will also need to be indexed by its
codomain and so we obtain the following for the sort context describing
the relation:

Γvec
R(...) =

(
·S, RV : Π̂S(n : N, Π̂S(V(n), Π̂S(V′, U)))

)
.

The point context again describes that relatedness is preserved by all point
constructors:

Γvec
R =

(
·,El(RV(0)(n)(n′)),

Π̂P(a : A, n : N, v : V, v′ : V′, RV(n)(v)(v′) ⇒P RV(n + 1)(c(a, v))(c′(a, v′)))
)
.

Definition 7.5.3 (EliminatorRelation). Aswehave noticed before, the spec-
ification of the eliminator relation bears many similarities with the one of
the wellformedness predicate, with the difference that we now also de-
pend on an arbitrary algebra over the inductive-inductive signature under
consideration. The definition on contexts again produces both a sort and a
point context:

` Γ γS : ΓE
S
A γ : ΓEA(γS) γA : ΓA

`S ΓR
S (γ, γA)

` Γ γS : ΓE
S
A γ : ΓEA(γS) γA : ΓA

`ΓR
S (γ,γA) ΓR(γ, γA)

For the definition on types, we can make a a big simplification on sort
types: The definition does not depend on the erasure of the remaining con-
text, but only on the erasure of the type itself. For point types, we are not
able to make this simplification.

Γ ` B :: S γA : ΓA α : U αA : BA(γA)

BR(α, αA) :: S

Γ ` A :: P
γS : ΓE

S
A γ : ΓEA(γS) γA : ΓA α : AE(γS) αA : AA(γA)

ΓR
S (γ, γA) `S AR(γ, α, αA)

As usual, we define the operation on contexts by a simple recursion,
using the definition on types, ignoring extensions by types of the respective

134 7.5. THE ELIMINATOR RELATION

other kind:

·RS (γ, γA) :≡ ·S
(Γ, B :: S)RS{γS, α}(γ, (γA, αA)) :≡

(
ΓR
S (γ, γA), BR(α, αA)

)
(Γ, A :: P)RS ((γ, α), (γA, αA)) :≡ ΓR

S (γ, γA)

·R(γ, γA) :≡ ·
(Γ, B :: S)R{γS, α}(γ, (γA, αA)) :≡ ΓR(γ, γA)[wkid]

(Γ, A :: P)R((γ, α), (γA, αA)) :≡
(

ΓR(γ, γA), AR(γ, α, αA)
)

Before giving the definition on type formers, we need again care about
how to handle at least sort terms. For those, we introduce a construction
of the following type:

Γ ` t : B :: S γS : ΓE
S
A γ : ΓEA(γS) γA : ΓA

ΓR
S (γ, γA) `S tR(γ, γA) : BR(tEA(γS), tA(γA))

Using this we can give the definition on the universe – producing the
relation itself – and the element operator, populating the relation via the
following definitions:

UR(α, αA) :≡ Π̂S(α
A, Π̂S(α, U))

El(a)R(γ, α, αA) :≡ El(aR(γ, γA)(αA)(α))

To continue to recursive Π-types, we observe that we need sort-kinded
Π-types to be translated to Π-typeswhich the generated relation is indexed
over, including the appropriate application, while point-kinded Π-types
are translated to the fact that relatedness is preserved for all point con-
structors.

Π(a, B :: S)R(ϕ, ϕA) :≡ Π̂S(α
A : aA(γA), BR(ϕ, ϕA(αA)))

Π(a, A :: P)R(γ, ϕ, ϕA) :≡ Π̂P

(
αA : aA(γA), α : aEA(γS)

aR(γ, γA)(αA)(α) ⇒P BR((γ, α), ϕ(α), ϕA(αA))
)

app(f)R((γ, α), (γA, αA)) :≡ fR(γ, γA)(αA)

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 135

The treatment of external Π-types is a simple one-to-one translation
using the respective external Π-types in the generated inductive-family:

Π̂(T, B :: S)R(ϕ, ϕA) :≡ Π̂S(τ : T, B(τ)R(ϕ, ϕA(τ)))

Π̂(T, A :: P)R(ϕ, ϕA) :≡ Π̂P(τ : T, A(τ)R(ϕ(τ), ϕA(τ)))

f (τ)R(γ, γA) :≡ fR(γ, γA)(τ)

To provide the relation for types pulled along substitutions, we again
have to provide data for substitutions, in the form of sort substitutions:

Γ σ−→ ∆ γS : ΓE
S
A γ : ΓEA(γS) γA : ΓA

ΓR
S (γ, γA)

σR
S (γ,γA)
−→ ∆R

S (σ
E(γ), σA(γA))

As the sort substitutions of inductive families, these follow the categorical
structure trivially:

idRS (γ, γA) :≡ id and
σ ◦ δRS (γ, γA) :≡ σR

S (δ
E(γ), δA(γA)) ◦ δRS (γ, γA).

Pulled back sort types are invariant under pullback while point types and
sort terms are pulled back with the operation we gave in Definition 6.1.2:

B[σ]R(α, αA) :≡ BR(α, αA) for Γ ` B :: S,
A[σ]R(γ, α, αA) :≡ AR(σE(γ), α, αA)[σR

S (γ, γA)] for Γ ` A :: P, and
t[σ]R(γ, γA) :≡ tR(σE(γ), σA(γA))[σR

S (γ, γA)].

The remaining parts of the substitutional calculus are given by their coun-
terparts in the sort substitutions of inductive families as they were defined
in Definition 6.1.2:

ϵRS (γ, γA) :≡ ϵ,
(σ, t)RS (γ, γA) :≡ (σR

S (γ, γA), tR(γ, γA)) for Γ ` t : B :: S,
(σ, t)RS (γ, γA) :≡ σR

S (γ, γA) for Γ ` t : A :: P,
π1(σ)

R
S (γ, γA) :≡ π1(σ

R
S (γ, γA)) for Γ σ−→ (∆, B :: S),

π1(σ)
R
S (γ, γA) :≡ σR

S (γ, γA) for Γ σ−→ (∆, A :: P),
π2(σ)

R
S (γ, γA) :≡ π2(σ

R
S (γ, γA)) for Γ σ−→ (∆, B :: S) .

This concludes our construction of the eliminator relation.

136 7.6. FORMALIZATION IN AGDA

7.6 Formalization in Agda
Most parts of this chapter have been formalized in the theorem prover
Agda. In the following, we will describe this formalization including the
problems we faced. The formalizations can be found online at https://
github.com/javra/indind-agda.

The syntax of inductive families has been straightforward to internalize
in Agda, using indexed inductive types. One trick we had to apply
was to define variables and terms as separate types, with an inclusion
map from variables to types (cf. Remark 6.4.5).

Algebras of inductive families including their morphisms, and further-
more their variant of displayed algebras and sections have been for-
malized by recursion on the syntax. We want the algebras to be as
strict as possible, so we do not refrain from turning certain rules from
the substitution calculus into rewrite rules, like in the following ex-
ample of the mapping an algebra over a sort context along the iden-
tity substitution is without effect:

1 idᵃ : ∀{ℓ Γc} → (γc : _ᵃc {ℓ} Γc) → (id ᵃs) γc ≡ γc
2 idᵃ {ℓ}{∙c} γc = refl
3 idᵃ {ℓ}{Γc ▶c x} (γc , α) = ,≡ (idᵃ γc) refl
4 {-# REWRITE idᵃ #-}

The syntax of inductive-inductive types is, asmentioned inRemark 5.1.3,
only representable directly as a quotient inductive-inductive type.
This is why we only postulate it like in the following excerpt:

1 postulate
2 Con : Set
3 Ty : Con → PS → Set
4 Tm : ∀ Γ → ∀ {k} → Ty Γ k → Set
5 Sub : Con → Con → Set
6

7 ∙ : Con
8 _▶_ : ∀{k}(Γ : Con) → Ty Γ k → Con
9 ...

10 ass : ∀{Γ Δ Σ Ω}{σ : Sub Σ Ω}{δ : Sub Δ Σ}{ν : Sub Γ Δ}
11 → (σ ∘ δ) ∘ ν ≡ σ ∘ (δ ∘ ν)

https://github.com/javra/indind-agda
https://github.com/javra/indind-agda

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 137

Algebras and morphisms of inductive-inductive types are fomalized in
record which follow the definition of the syntax:

1 record Con : Set₂ where
2 field
3 ᴬ : Set₁
4 ᴹ : ᴬ → ᴬ → Set₁
5 ...
6 _▶S_ : (Γ : Con) → TyS Γ → Con
7 Γ ▶S B = record {
8 ᴬ = Σ Γ.ᴬ B.ᴬ ;
9 ᴹ = λ { (γᴬ , αᴬ) (δᴬ , βᴬ) → Σ (Γ.ᴹ γᴬ δᴬ) λ γᴹ → B.ᴹ γᴹ αᴬ βᴬ } ;

10 ...

Wedonot define a “map” from the postulated syntax to these records,
but instead we work directly with the “stack” of construction on the
syntax, in the style of a shallowembedding (cf. Kaposi et al. [2019b]).

The construction steps of ΓE, ΓW ΓΣ, and ΓR are just further entries in the
above-mentioned records. At the time of writing a formalization of
the fact that these constructions do respect the substitutional equal-
ities in the syntax of inductive-inductive types, is still incomplete,
since it is quite tedious without the presence of a proper extensional
ambient type theory. The following code snippet shows the specifi-
cation of all of these operations on sort types. The interpretation of
the universe then is the core of the definitions as presented in the last
chapter:

138 7.7. CONCLUSIONS AND FUTURE WORK

1 record TyS (Γ : Con) : Set₂ where
2 module Γ = Con Γ
3 field
4 ᴬ : Γ.ᴬ → Set₁
5 ᴹ : ∀{γᴬ δᴬ} → Γ.ᴹ γᴬ δᴬ → ᴬ γᴬ → ᴬ δᴬ → Set
6 w : ∀(γc : Γ.Ec ᵃc) → Set → S.TyS
7 R : ∀{γᴬ}(α : Set)(αᴬ : ᴬ γᴬ) → S.TyS
8 sg : ∀{γc}(γ : (Γ.E ᵃC) γc){δc}(δ : (Γ.w γ ᵃC) δc)
9 (α : Set)(ω : _ᵃS {zero} (w γc α)) → ᴬ (Γ.sg γc γ δc δ)

10

11 U : {Γ : Con} → TyS Γ
12 U {Γ} = record { ᴬ = λ γ → Set ;
13 ᴹ = λ γᴹ γᴬ δᴬ → γᴬ → δᴬ ;
14 w = λ γ α → α S.⇒̂S S.U ;
15 R = λ T Tᴬ → Tᴬ S.⇒̂S (T S.⇒̂S S.U) ;
16 sg = λ γ δ α ω → Σ α ω }

Several Examples are formalized as a “sanity check” for the constructions.
It might be helpful to the reader to check those for a good piece of
insight into how the derivation of the running examples in this thesis
work. Here is the encoding of the vector example:

1 module TestVec (A : Set) (N : Set) (z : N) (s : N → N) where
2

3 Γ : Con
4 Γ = ∙ ▶S Π̂S N (λ _ → U)
5 ▶P El (âppS vz z)
6 ▶P Π̂P A (λ a → Π̂P N (λ n' → ΠP (âppS (vs{S}{P} vz) n')
7 (El (âppS (vs{S}{P} (vs{S}{P} vz)) (s n')))))

7.7 Conclusions and Future Work
It is obvious that the work presented in this chapter is incomplete. This
section shall serve to address what is missing to obtain a complete reduc-
tion of inductive-inductive types to inductive families, and to discuss how
the constructions can be applied to implement inductive-inductive types.

Remark 7.7.1 (Functionality of the Relation). Whilewe succeeded in defin-
ing the eliminator relation, we do not show that it is actually the graph of
a function. In Section 7.1, we saw that the next step in the construction of

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 139

the eliminator would be to show that, for each algebra γA : ΓA the initial
algebra of the relation ΓR(con(ΓE), γA) is right-total and left-unique.

While it is easy to state this property as a predicate on the algebra, prov-
ing it poses major problems that still need to be solved, and the solution of
which we consider to be beyond the scope of this thesis.

As we can see in Lemma 7.1.1, the proof of uniqueness relies on the
fact that if we are given two inhabitants xA0 , xA1 : αA where αA : UA ≡ U
is some interpretation of a sort in the signature, and if we assume their
relatedness to the same presyntactic datum in the form of r0 : αR(xA0 , x) and
r1 : αR(xA1 , x), where αR : UR(. . .)A ≡ (αA → α → U) is an interpretation
of the relation itself, then we can conclude that x0 = x1. But to achieve
this, we need to apply induction over two witnesses of relatedness. But this
double induction over the inductive family which represents the relation is
special in the sense that it only needs to be supplied with linearly many
inductive cases since the constructors of the relation are over different of
its presyntactical indices. Capturing this phenomenon has not been done
yet for our notion of inductive families and it is unclear how to formally
prove the necessary properties for the general case, even though they are
intuitively fulfilled in every conceivable example.

An alternative to the double induction would be to prove the unique-
ness by inversion on the relation: In the context of Section 7.1 this means
that whenever we have r : RCon(ext′(Γ, a), γ) we determine the form of γ

by finding an instance of the following Σ-type:

(γ′ : C)× (α : T(γ))× (γ = e(γ′, α)).

This inversion can obviously replace the double induction needed in the
proof of Lemma 7.1.1, but it turns out that it is also difficult to define and
prove. Instead of defining inversions, the samemight be achieved by defin-
ing wellformedness predicate and eliminator relation recursively instead of
an inductive definition, though our version of the syntax for inductive-
inductive types makes this this recursive approach difficult as well, and
we have not suceeded in generalizing this construction.

Remark 7.7.2 (FromRelations toMorphisms). Assuming thatwe have suc-
ceeded in proving that the initial algebra for ΓR(con(ΓE), γA) is the graph of
a function, how do we turn it into an actual morphism in ΓM(con(Γ), γA)?
It turns out that while it is difficult to generalize a proof for the functional-
ity of the eliminator relation, we can easily state this property by defining a

140 7.7. CONCLUSIONS AND FUTURE WORK

type ΓF(γ, γA, δ, ρ) : U for each algebra γ of the type erasure, an arbitrary
algebra γA : ΓA, an algebra over the wellformedness predicate δ and one
over the relation itself ρ. Using this, we can define an embedding into the
sets of morphisms in the form of an following operationwith the following
signature:

` Γ
γS : ΓE

S
A γ : ΓEA(γS) γA : ΓA δS : ΓW

S (γ)A δ : ΓW(γ)A(δS)

ρS : ΓR(γ, γA)A ρ : ΓR(γ, γA)A(ρS) φ : ΓF(γ, γA, δ, ρ)

Γm(γ, γA, δ, ρ, φ) : ΓM
(

ΓΣ(γ, δ), γA
)

This then gives us the desired non-dependent eliminator.

Remark 7.7.3 (Implementation of IITs). Another bit of future work on the
topic of reduction is to implement it in a suitable theorem prover. While
Agda already provides inductive-inductive types, Coq and Lean both do
not come equippedwith away to define them, and they are both extensible
enough to use this reduction strategy to define a command for the defini-
tion of inductive-inductive types as “syntactic sugar”. In Lean 3, such an
implementation has been attempted but it is still far away from being us-
able. Lean 4 will come with a more reasonable interface to automatically
add definitions of inductive families to the environment, suggesting that
we could process the use input of an inductive-inductive type as follows:

1. Reflect the input from Lean’s own expression type expr into a repre-
sentation of the syntax of inductive-inductive types minus the sub-
stitutional equalities. This is where we implicitly check the input for
positivity.

2. Add inductive families corresponding to type erasure, wellformed-
ness predicate and eliminator relation to the environment.

3. Define the constructors using the Σ-construction.

4. Define the non-dependent eliminator using the eliminator relation.

5. Prove its uniqueness using a proof of the relation’s right-uniqueness.

6. Derive the dependent eliminator from the non-dependent one with
the strategy laid out in [Kaposi et al., 2019a].

CHAPTER 7. REDUCING INDUCTIVE-INDUCTIVE TYPES 141

Remark 7.7.4 (Internalization-Based Approach). It is important to note
that there is an unpublished alternative approach to the reduction which
uses an internalization of the syntax for inductive-inductive types and a
term model, similar to our construction in Section 6.4. Ambroise Lafont
formalized this approach in Agda. The drawbacks of this approach might
be that there is a bigger overhead in a potential implementation based on
this idea, due to the indirect nature of the construction.

142 7.7. CONCLUSIONS AND FUTURE WORK

Bibliography

Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9.
Bibliopolis Naples, 1984. (Cited on pages 1 and 7.)

The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations ofMathematics. http://homotopytypetheory.org/book, Insti-
tute for Advanced Study, 2013. (Cited on pages 1, 14, 27, 63, 65, and 77.)

Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis,
Swansea University, 2013. (Cited on pages 2 and 72.)

Ambrus Kaposi and András Kovács. A syntax for higher inductive-
inductive types. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 108. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018a.
(Cited on pages 4 and 73.)

Floris vanDoorn, Jakob von Raumer, andUlrik Buchholtz. Homotopy type
theory in lean. In Mauricio Ayala-Rincón and César A. Muñoz, editors,
Interactive Theorem Proving - 8th International Conference, ITP 2017, Brasília,
Brazil, September 26-29, 2017, Proceedings, volume 10499 of Lecture Notes in
Computer Science, pages 479–495. Springer, 2017. ISBN 978-3-319-66106-3.
(Cited on pages 5, 31, 37, and 67.)

Nicolai Kraus and Jakob vonRaumer. Path spaces of higher inductive types
in homotopy type theory. arXiv preprint arXiv:1901.06022, 2019. (Cited
on page 5.)

Per Martin-Löf. An intuitionistic theory of types. In Giovanni Sambin and
Jan M. Smith, editors, Twenty-five years of constructive type theory (Venice,
1995), volume 36 of Oxford Logic Guides, pages 127–172. Oxford Univer-
sity Press, 1998. (Cited on page 7.)

143

http://homotopytypetheory.org/book

144 BIBLIOGRAPHY

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet,
Cesar Munoz, Chetan Murthy, et al. The Coq proof assistant reference
manual: Version 6.1. 1997. (Cited on pages 8 and 28.)

Ulf Norell. Dependently typed programming in Agda. In Advanced Func-
tional Programming, pages 230–266. Springer, 2009. (Cited on pages 8
and 28.)

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van
Doorn, and Jakob von Raumer. The lean theorem prover (system de-
scription). In Automated Deduction - CADE-25 - 25th International Confer-
ence on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceed-
ings, pages 378–388, 2015. (Cited on pages 8 and 28.)

J. Y. Girard. Interpretation fonctionelle et elimination des coupures dans
l’aritmetique d’ordre superieur. 1972. (Cited on page 9.)

Antonius JC Hurkens. A simplification of girard’s paradox. In Interna-
tional Conference on Typed Lambda Calculi and Applications, pages 266–278.
Springer, 1995. (Cited on page 9.)

Peter Dybjer. Inductive families. Formal aspects of computing, 6(4):440–465,
1994. (Cited on pages 16, 29, and 85.)

Kent Petersson and Dan Synek. A set constructor for inductive sets in
martin-löf’s type theory. In Category Theory and Computer Science, pages
128–140. Springer, 1989. (Cited on page 17.)

Ieke Moerdijk and Erik Palmgren. Wellfounded trees in categories. Annals
of Pure and Applied Logic, 104(1-3):189–218, 2000. (Cited on page 17.)

ThorstenAltenkirch, Neil Ghani, PeterHancock, ConorMcBride, and Peter
Morris. Indexed containers. Journal of Functional Programming, 25, 2015.
(Cited on pages 17, 18, 61, and 85.)

Christian Sattler. On relating indexed w-types with ordinary ones, 2015.
Abstract, presented at TYPES’15. (Cited on pages 18 and 61.)

Christine Paulin-Mohring. Inductive definitions in the system Coq - rules
and properties. In Marc Bezem and Jan Friso Groote, editors, Typed

BIBLIOGRAPHY 145

Lambda Calculi and Applications (TLCA), number 664 in Lecture Notes
in Computer Science, 1993. (Cited on page 20.)

SteveAwodey andMichael AWarren. Homotopy theoreticmodels of iden-
tity types. InMathematical proceedings of the cambridge philosophical society,
volume 146, pages 45–55. Cambridge University Press, 2009. (Cited on
page 21.)

Chris Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of
univalent foundations (after voevodsky). arXiv preprint arXiv:1211.2851,
2012. (Cited on pages 21 and 25.)

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cu-
bical type theory: a constructive interpretation of the univalence axiom.
arXiv preprint arXiv:1611.02108, 2016. (Cited on page 25.)

Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem proving
in lean, 2015. URL https://leanprover.github.io/theorem_proving_
in_lean/theorem_proving_in_lean.pdf. (Cited on pages 31 and 67.)

JesperCockx andAndreasAbel. Sprinkles of extensionality for your vanilla
type theory. Abstract of a talk at TYPES, 2016. (Cited on page 31.)

Andrea Vezzosi. Cubical Agda, 2018. Extension to Agda, available in
the main Agda repository at https://github.com/agda/agda. (Cited
on pages 32 and 65.)

Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. Higher groups in ho-
motopy type theory. In Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS ’18, pages 205–214, New York,
NY, USA, 2018. ACM. ISBN 978-1-4503-5583-4. (Cited on page 33.)

Ulrik Buchholtz and Kuen-Bang Hou (Favonia). Cellular cohomology in
homotopy type theory. In Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, 2018. (Cited on page 33.)

Ulrik Buchholtz and Egbert Rijke. The Cayley-Dickson construction in ho-
motopy type theory. arXiv preprint arXiv:1610.01134, 2016. (Cited on
page 33.)

Ulrik Buchholtz and Egbert Rijke. The real projective spaces in homotopy
type theory. In Proceedings of the 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 1–8, 06 2017. (Cited on page 33.)

https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://github.com/agda/agda

146 BIBLIOGRAPHY

Kuen-Bang Hou (Favonia) and Michael Shulman. The Seifert-van Kam-
pen theorem in homotopy type theory. In 25th EACSL Annual Conference
on Computer Science Logic (CSL 2016), volume 62 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 22:1–22:16, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-
3-95977-022-4. URL http://drops.dagstuhl.de/opus/volltexte/2016/
6562. (Cited on pages 33, 40, 42, 43, and 61.)

Daniel Licata and Eric Finster. Eilenberg-MacLane spaces in homotopy
type theory. In Proceedings of the 29th Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 66–74. ACM, 2014. (Cited on page 33.)

Daniel Licata and Guillaume Brunerie. πn(Sn) in homotopy type theory.
volume 8307 of LNCS, pages 1–16. Springer, 2013. (Cited on page 33.)

Guillaume Brunerie. The James construction and π4(s3) in homotopy type
theory. CoRR, 2017. URL http://arxiv.org/abs/1710.10307. (Cited on
page 34.)

Egbert Rijke. The join construction. arXiv:1701.07538, 2017. (Cited on
pages 34 and 39.)

Dan Licata. Running Circles Around (In) Your Proof Assistant; or,
Quotients that Compute, 2011. URL https://homotopytypetheory.
org/2011/04/23/running-circles-around-in-your-proof-assistant.
(Cited on page 37.)

Simon Boulier, Egbert Rijke, and Nicolas Tabareau. A coinductive ap-
proach to type valued equivalence relations. 2017. Abstract presented
at the workshop on HoTT/UF in Oxford. (Cited on page 37.)

Daniel R Licata and Guillaume Brunerie. A cubical approach to synthetic
homotopy theory. In 2015 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 92–103. IEEE, 2015. (Cited on page 38.)

Floris van Doorn. Constructing the propositional truncation using non-
recursive hits. In Proceedings of the 5th ACM SIGPLAN Conference on Cer-
tified Programs and Proofs, Saint Petersburg, FL, USA, January 20-22, 2016,
pages 122–129, 2016. (Cited on page 39.)

http://drops.dagstuhl.de/opus/volltexte/2016/6562
http://drops.dagstuhl.de/opus/volltexte/2016/6562
http://arxiv.org/abs/1710.10307
https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant
https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant

BIBLIOGRAPHY 147

Nicolai Kraus. Constructionswith non-recursive higher inductive types. In
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 595–604, New York, NY, USA, 2016. ACM. ISBN 978-1-
4503-4391-6. (Cited on page 39.)

Daniel Licata and Michael Shulman. Calculating the fundamental group
of the circle in homotopy type theory. In Proceedings of the 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 223–232, 2013.
(Cited on pages 40 and 41.)

Steve Awodey, Nicola Gambino, and Kristina Sojakova. Homotopy-initial
algebras in type theory. J. ACM, 63(6):51:1–51:45, January 2017. ISSN
0004-5411. (Cited on pages 48, 55, and 64.)

Kristina Sojakova. Higher inductive types as homotopy-initial algebras. In
Principles of Programming Languages (POPL), pages 31–42, NewYork, NY,
USA, 2015. ACM. ISBN 978-1-4503-3300-9. (Cited on page 48.)

Paolo Capriotti and Nicolai Kraus. Univalent higher categories via com-
plete semi-segal types. Proc. ACM Program. Lang., 2(POPL):44:1–44:29,
December 2017. ISSN 2475-1421. (Cited on page 48.)

Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent
categories and the Rezk completion. Mathematical Structures in Computer
Science (MSCS), pages 1–30, Jan 2015. ISSN 1469-8072. (Cited on page
48.)

Floris van Doorn and Ulrik Buchholtz. The dependent univer-
sal property, 2017. Lean library file, available on GitHub at
https://github.com/gebner/hott3/. (Cited on page 51.)

Eric Finster. Agda library file pushoutmono, 2017. Avail-
able on GitHub at https://github.com/HoTT/HoTT-
Agda/blob/master/theorems/stash/modalities/gbm/PushoutMono.agda.
(Cited on page 60.)

Jacob Lurie. Derived algebraic geometry vi: Ek algebras. arXiv preprint
arXiv:0911.0018, 2009. (Cited on page 61.)

Ronald Brown, Philip J Higgins, and Rafael Sivera. Nonabelian algebraic
topology. 2011. (Cited on page 61.)

https://github.com/gebner/hott3/blob/64a297c4c1effa4886abcdc08dd88824a7b27455/src/hott/hit/quotient.lean#L96
https://github.com/HoTT/HoTT-Agda/blob/master/theorems/stash/modalities/gbm/PushoutMono.agda
https://github.com/HoTT/HoTT-Agda/blob/master/theorems/stash/modalities/gbm/PushoutMono.agda

148 BIBLIOGRAPHY

Nicolai Kraus and Thorsten Altenkirch. Free higher groups in homotopy
type theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’18, pages 599–608, New York, NY, USA,
2018. ACM. ISBN 978-1-4503-5583-4. (Cited on page 64.)

Gun Pinyo and Thorsten Altenkirch. Integers as a higher inductive type,
2018. Abstract, presented at TYPES’18. (Cited on pages 64 and 66.)

Evan Cavallo and Anders Mörtberg. Successor on biinv-int which can-
cels pred exactly, Dec 2018. Redtt implementation, available on-
line at https://github.com/RedPRL/redtt/blob/master/library/cool/
biinv-int.red. (Cited on pages 64 and 66.)

Thierry Coquand, Simon Huber, and Anders Mörtberg. On higher in-
ductive types in cubical type theory. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages 255–
264, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5583-4. (Cited
on page 64.)

Ambrus Kaposi and András Kovács. A syntax for higher inductive-
inductive types. In 3rd International Conference on Formal Structures for
Computation and Deduction (FSCD 2018), volume 108 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 20:1–20:18, Dagstuhl, Ger-
many, 2018b. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN
978-3-95977-077-4. URL http://drops.dagstuhl.de/opus/volltexte/
2018/9190. (Cited on pages 64 and 65.)

Ambrus Kaposi and András Kovács. Signatures and induction principles
for higher inductive-inductive types. arXiv preprint arXiv:1902.00297,
2019. (Cited on pages 64 and 65.)

Evan Cavallo and Robert Harper. Higher inductive types in cubical com-
putational type theory. Proceedings of the ACMon Programming Languages,
3(POPL):1, 2019. (Cited on page 65.)

Anders Mörtberg. Cubical agda, 2018. Blog post at
https://homotopytypetheory.org/2018/12/06/cubical-agda/. (Cited
on page 65.)

AndersMörtberg andAndrea Vezzosi. An experimental library for cubical
agda, 2018. Online at https://github.com/agda/cubical. (Cited on page
65.)

https://github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red
https://github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red
http://drops.dagstuhl.de/opus/volltexte/2018/9190
http://drops.dagstuhl.de/opus/volltexte/2018/9190
https://arxiv.org/abs/1902.00297
https://homotopytypetheory.org/2018/12/06/cubical-agda
https://github.com/agda/cubical

BIBLIOGRAPHY 149

Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper,
Anders Mörtberg, and Jon Sterling. redtt – cartesian cubical proof assis-
tant, 2018. Talk available online at http://www.jonmsterling.com/pdfs/
dagstuhl.pdf, implementation at https://github.com/RedPRL/redtt.
(Cited on page 65.)

Nils Anders Danielsson. A formalisation of a dependently typed language
as an inductive-recursive family. In International Workshop on Types for
Proofs and Programs, pages 93–109. Springer, 2006. (Cited on page 72.)

ThorstenAltenkirch andAmbrus Kaposi. Type theory in type theory using
quotient inductive types. In ACM SIGPLAN Notices, volume 51, pages
18–29. ACM, 2016. (Cited on page 72.)

Zhaohui Luo. Notes on universes in type theory. http://www.cs.rhul.ac.
uk/home/zhaohui/universes.pdf, November 2012. Accessed: March 22,
2019. (Cited on page 74.)

Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and
Fredrik Nordvall Forsberg. Quotient inductive-inductive types. In In-
ternational Conference on Foundations of Software Science and Computation
Structures, pages 293–310. Springer, Cham, 2018. (Cited on page 77.)

Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing
quotient inductive-inductive types. Proceedings of the ACM on Program-
ming Languages, 3(POPL):2, 2019a. (Cited on pages 77, 83, and 140.)

Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-
recursive definitions. In International Conference on Typed Lambda Calculi
and Applications, pages 129–146. Springer, 1999. (Cited on page 85.)

Ambrus Kaposi, András Kovács, and Nicolai Kraus. Shallow embedding
of type theory is morally correct. arXiv preprint arXiv:1907.07562, 2019b.
(Cited on page 137.)

http://www.jonmsterling.com/pdfs/dagstuhl.pdf
http://www.jonmsterling.com/pdfs/dagstuhl.pdf
https://github.com/RedPRL/redtt
http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Homotopy Type Theory and Higher Inductive Types
	1.3 The Concept of Induction-Induction
	1.4 Contributions and Publications
	1.5 Structure of this Thesis

	2 Basic Type Theory
	2.1 Dependent Type Theory
	2.2 Inductive Types
	2.3 Typal Equality and Homotopy Type Theory
	2.4 Theorem Provers Based on Type Theory
	2.4.1 Lean
	2.4.2 Agda

	3 Higher Inductive Types
	3.1 Examples of Higher Inductive Types
	3.2 Coequalizers as a Fundamental HIT
	3.3 Encode-Decode Proofs

	4 Path Spaces of Higher Inductive Types
	4.1 The Main Theorem: Path Spaces in Coequalizers
	4.2 Equality in Pushouts
	4.3 First Applications
	4.4 Free Groupoids and a Higher Seifert-van Kampen Theorem
	4.5 Formalization in Lean

	5 Specification of Inductive-Inductive Types
	5.1 Signatures for Inductive-Inductive Types
	5.2 Algebras of Inductive-Inductive Types
	5.3 Morphisms of Algebras

	6 Specification of Inductive Families
	6.1 Signatures for Inductive Families
	6.2 Algebras of Inductive Families
	6.3 Displayed Algebras and their Sections
	6.4 Existence of Inductive Families
	6.4.1 Internalization of the Syntax
	6.4.2 Constructing the Term Model

	7 Reducing Inductive-Inductive Types to Inductive Families
	7.1 Example: Type Theory Syntax
	7.2 Type Erasure
	7.3 The Wellformedness Predicate
	7.4 The Initial Object
	7.5 The Eliminator Relation
	7.6 Formalization in Agda
	7.7 Conclusions and Future Work

	Bibliography

