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Abstract

Magnetism plays a fundamental role in nature existing in almost every
conceivable domain of the physical world ranging from stars and planets to
our brains and hearts. Some magnetic phenomena are easy to observe and
measure, whilst others are small and subtle making them almost impossible
to detect. Developments in precision magnetometry, utilising the quantum
nature of atoms has given access to the world of small and subtle enabling
the understanding of such signals as well as pushing the boundaries of
knowledge of the fundamental forces of nature. In this thesis we describe
theoretical and experimental methods to dispersively detect all three vector
components of an external magnetic field using radio-frequency dressed
alkali atoms based on the Voigt effect. To achieve this, we measure the
linear birefringence of the radio frequency dressed atomic medium via
polarization homodyning. This gives rise to modulated polarization signals
at the first and second harmonic of the dressing frequency. The vector
components of the external magnetic field are mapped onto the quadratures
of these harmonics. Our scheme requires only one frequency of modulation
and has a simple single axis beam geometry making it advantageous for
miniature magnetic field sensors. Furthermore, we extend our Voigt effect
scheme to dressed microwave spectroscopy and show that it can be used
to infer the prepared state populations paving the way towards partial
quantum state tomography.
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Introduction

1.1 Review of Optically Pumped Magnetometry
The phenomena of light-matter interaction in the presence of magnetic fields have
been known and studied since the beginning of modern physics [1]. The two most
well known of these so-called magneto-optical interactions are the Faraday and the
Voigt effects. In the Faraday effect, the light-matter interaction results in a rotation
of the polarisation of light in the presence of a longitudinal magnetic field while for
the Voigt effect, the polarisation rotation occurs in the presence of a transverse field.
In both cases the magnitude of the angular rotation depends on the magnitude of the
external magnetic field and occurs as a consequence of phase shifts experienced by the
different polarisations of the probe light. Magneto optical effects have been exploited
extensively in commercial optical isolators utilising the Faraday effect. They rely on
solid state based materials such as flint glass which posses a typical Verdet constant
V ≈ 3× 10−5 rad G−1cm−1 which describes the amount of polarisation rotation per
unit field and length [2]. The pioneering work in optical pumping of alkali atoms has
enabled access to precisely control and enhance optical properties of vapour based sys-
tems with non-linear magneto optical rotations exceeding V ≈ 104 rad G−1cm−1 [2–5].
This has spawned the field of optically pumped magnetometers. To put things into
perspective, optically pumped rubidium vapour produces a factor 1020 larger rota-
tion per atom compared to flint glass. With the advent of narrow-line frequency
stabilised lasers and techniques to produce optically dense atomic vapours with long
spin-coherence lifetimes it became possible to achieve magnetic field sensitivities
exceeding 10−15 T/

√
Hz [7,8].

With such ultra-high levels of sensitivity, optically pumped magnetometers (OPMs)
have become the state of the art magnetic field sensors out-competing other types of
magnetic field sensing devices such as superconducting quantum interference devices

1
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Figure 1.1: Typical noise performance and bandwidth characteristics of some magnetic
field sensors. Low T SQUID - low temperature liquid helium cooled super conducting
quantum interference device. SERF OPM - spin-exchange-relaxation-free optically
pumped magnetometer.

(SQUIDs), Nitrogen Vacancy (NV) centres as well as the more conventional fluxgate
and Hall effect based magnetometers, see Fig. 1.1 for performance [10]. Of course, the
reasons behind such a huge interest in OPMs goes beyond their ultra-high sensitivity.
One of the key advantages of OPMs over other devices is their simplicity and com-
pactness making them ideal for making miniature and portable devices. Moreover,
they can be tuned to work across a very large magnetic field range making them a
very flexible tool across many disciplines, something that SQUID based sensors or
fluxgate sensors would not be able to do. In addition, they can have a frequency
independent gain meaning that they can reliably detect fields across a large range
of frequencies - again, this is a major limitation in flux based magnetic field sensors.
Often times, measurements of absolute fields require a precise calibration of the sensor
which can be difficult and expensive to acquire, not to mention the fact that the
architecture of some of the magnetic field sensors have dependence on the external
environment (e.g. thermally induced drifts) which necessitates for repeated calibration
a routine task. This is especially suboptimal in applications with remote sensing. The
inherent advantage of OPMs is that they can be configured to measure the magnetic
field through fundamental physical constants thus completely removing any need for
calibration. These inherent advantages have ushered a new era of precision magnetic
field sensing with extremely broad areas of applications ranging from fundamental
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Figure 1.2: Field range and frequencies of various magnetic field phenomena. Adapted
from [9].

physics experiments to medical physics. Examples include measurements of the elec-
tric dipole moment (EDM) [11, 12] and searches for exotic physics [13] as well as
magneto-encephalography (MEG) [14,15] and magneto-cardiography [16–18]. Some of
the applications with field and frequency range are given in Fig. 1.2.

In its simplest operation, an OPM uses a pump-probe laser to measure the atomic Lar-
mor frequency, i.e. the frequency of spin precession due to an external magnetic field.
This is achieved by the probe light interacting with atoms that have been prepared in
a magnetically sensitive state through optical pumping. The light-matter interaction
between the probe light and the optically pumped atoms results in a magneto optical
effect which rotates the polarisation of the probe beam i.e., the polarisation of the
probe is modulated by the atomic Larmor precession which allows one to infer the ex-
ternal magnetic field by measuring this frequency. To date, most of the OPM schemes
are based on pump-probe configurations that rely on measuring the Faraday effect. As
a result, the majority of such schemes require an orthogonal pump-probe geometry for
high efficiency of detection and typically enable the measurement of two orthogonal
magnetic field components [19]. However, this geometry adds complexity towards
developing miniature sensors, because it requires additional space for optical access
to accommodate the orthogonal pump/probe beams. This makes the cell fabrication
process complex, requiring precision glass blowing techniques which are difficult to
realise on a large scale. On the other hand, a parallel pump/probe architecture is
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compatible with chip-scale and compact atomic magnetometers, especially because the
cells can be easily mass produced to a high degree of homogeneity through anodically
bonded processes [20].

In some applications it may be desirable to be able to extract full vector field infor-
mation. Some OPM schemes employ a scalar magnetometer that runs as a vector
magnetometer by applying a rotating low frequency bias magnetic field [21,22]. An-
other possible approach uses multiple radio-frequency modulations to map the three
vector components onto the harmonics of the signal [23,24]. The effects of the field
orientation on the resulting signal phase have been studied for different configurations
of a modulating field and may be used for full vector magnetometry [25]. Also an
all-optical scheme with crossed beams was demonstrated to extract the three field
components [26]. However, the schemes described above largely rely on measuring the
Faraday effect which requires an orthogonal pump/probe beam geometry as well as
multiple radio-frequency fields making the detection as well as the signal interpretation
into its constituent field components not trivial.

1.2 Motivation
The motivation of this work has been a curiosity driven serendipitous scientific discov-
ery. The first stage of this PhD program, was focused on theoretical and experimental
work on dispersive detection of radio-frequency dressed clock-states using cold atomic
gases of 87Rb [27]. The primary motivation of this work was centred around non-
destructive probing of atomic states and the measurement of their corresponding
atomic populations for use in applications in atomic clock schemes as well as atom
interferometers. The latter part is a key area of focus in our experimental research
group developing matter-wave Sagnac interferometer [28,29]. During the process of
the experimental work undertaken to measure the populations of the clock states
it was realised that vector information of the external field could be mapped onto
the polarisation of the probe beam interacting with the dressed atoms. Follow up
theoretical work allowed us to compute what the field response would be which was
soon confirmed experimentally using cold atoms. A cold atomic system for measuring
magnetic fields is not of practical use due to its complexity and size and limited
bandwidth, as a result, this motivated us to build a hot vapour setup and investigate
these ideas and observations further which ultimately led to this thesis.

The magnetometer described in this thesis is a Bell-Bloom type, free induction
decay, three-dimensional vector magnetometer based on the Voigt effect of radio-
frequency dressed aligned states [5, 6]. It operates in a pump/probe regime with a
single radio-frequency field dressing the atomic medium. This gives rise to modulated
polarisation signals at the first and second harmonic of the dressing frequency. The
demodulation of the probe’s ellipticity onto orthogonal quadratures of the first and
second harmonic of the dressing frequency yields information about external magnetic
fields, see Fig. 1.3. For small external fields, the field mapping is linear.
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Figure 1.3: Illustration of the Voigt-effect based three-dimensional vector magnetome-
ter. Atomic spin precession dressed with a radio-frequency field encodes the external
field information onto the polarisation of light during the light-matter interaction. For
small external magnetic fields, the polarisation rotation is linearly proportional to
applied fields.

Actively driving the atoms with a radio-frequency field gives rise to a phase-locked spin
precession resulting in low technical noise from the operation at radio-frequencies and
the use of lock-in detection. Moreover, operating the magnetometer in a pump/probe
regime, we are able to minimise pump induced light shifts and noise. Furthermore,
a pump/probe architecture allows us to reset the spin state for each measurement
point avoiding hysteresis in the system [30]. The probing is done with a low-power
off-resonant probe beam to minimise spin-decoherence effects as a result of the mea-
surement process. The radio-frequency dressing can be arbitrarily tuned providing a
high dynamic range of operation both in shielded and unshielded environments with a
flat frequency response. Finally, the single beam pump/probe geometry makes this
sensor architecture ideal for miniaturisation.

This thesis is organised as follows:

Chapter 2 outlines the main theoretical ideas behind light-matter interaction in
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off-resonant regime. In particular, it lays out the formalism of Stokes vectors to exper-
imental observables and how they can be used to measure external magnetic fields
through birefringent light-matter interactions. We discuss the scope and limitations
of the proposed models as well as various optical broadening mechanisms pertinent in
thermally broadened atomic vapours. We quantitatively discuss the state preparation
process via optical pumping and the effects on the prepared state via the interaction
with an off resonance probe.

Chapter 3 is devoted to a new and previously unexplored theoretical description of
radio-frequency dressed states in an external magnetic field and how the resultant
atomic spin dynamics measured via the Voigt effect maps the three vector components
of the external field. The chapter discusses the various theoretical approaches used
to model the magnetometer response with their scope and limitations. We further
extend the theoretical work in showing how the Voigt effect signal can be used to
perform partial state tomography using microwave spectroscopy.

Chapter 4 lays out the experimental apparatus, its intricacies and performance
in terms of the laser system, optics, electronic and magnetic shielding hardware.
Experimental sequence, data acquisition and processing methods are discussed in
relation to magnetometer bandwidth, noise performance as well as the limitations.

Chapter 5 summarises the experimental results obtained in both unshielded and
shielded operation of the magnetometer and compares them to the theoretical results.
Scope and limitations are discussed in relation to the theory and experiment.

Chapter 6 concludes the thesis and where possible, provides an outlook on future
work.

List of Publications
[I] S. Jammi, T. Pyragius, M. G. Bason, H. Marin Florez, T. Fernholz, Dispersive
detection of radio-frequency-dressed states, Phys. Rev. A, 97, 043416, (2018).

[II] T. Pyragius, H. Marin Florez, T. Fernholz, Voigt-effect-based three-dimensional
vector magnetometer, Phys. Rev. A, 100, 023416, (2019).
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Light-Matter interaction

This chapter outlines the theory of light matter interaction. In particular, the discussion
centres around resonant and off-resonant light matter interactions in the context of
optical pumping - during the state preparation process and dispersive light matter
interaction - during probing of the prepared state. Attention is given to a number of
optical broadening and decoherence mechanisms.

2.1 Stokes Variables
A common technique used to detect the atomic spin precession around an external
magnetic field of an optically pumped magnetometer is by measuring the change in
polarisation through the light-matter interaction [32]. This change in light polarisation
can be conveniently parametrised using the Stokes vector formalism. This is achieved
by decomposing the polarisation of light into its polarisation intensity components
(see Fig. 2.1). For classical coherent and monochromatic light of intensity I, Stokes
vector is given by

S0 = 1
2cnε0|E|

2 = I, (2.1)

Sx = Ix − Iy, (2.2)
Sy = I+45◦ − I−45◦ , (2.3)
Sz = I+ − I−, (2.4)

where c is the speed of light in vacuum, n is the refractive index of the medium, ε0
is the permittivity of free space and E is the amplitude of the electric field. Here
the Ii terms are the intensity decomposed polarisation components, see Fig. 2.1 for
illustration. The Stokes vector satisfies

S2
0 = S2

x + S2
y + S2

z . (2.5)

7
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Figure 2.1: Light-matter interaction causes a polarisation rotation. The rotation in
polarisation is analysed by decomposing the light into its constituent components
using a waveplate and a polarising beam-splitter which allows us to measure Stokes
vectors in terms of the intensity of the decomposed light polarisations.

In certain conditions, where for example quantum effects play a dominant role, the
classical observables have to be appropriately transformed for a proper quantum
mechanical treatment. This is readily achieved by applying the second postulate
of quantum mechanics by replacing our classical observables with linear Hermitian
operators. Here we follow a continuous description of electromagnetic fields previously
described in ref. [33]. Since our Stokes vectors are defined in terms of light intensity,
we can apply the second quantisation to the electric field

Ê =
∑
j

(Êj + Ê†j ), (2.6)

where the operators take the following form in the Fourier space (taking propagation
only along the z-direction)

Êj(z, t) = gej
1√
2π

∫
âk,je

i(kz−ωLt)dk, (2.7)

where âk,j is the lowering operator of the electromagnetic field in the second quantisa-
tion, k = 2π/λL is the wave vector of the laser light with λL being the wavelength of
the laser with

g =
√

~ωL
2ε0A

, (2.8)

where ωL is the frequency of the monochromatic light source, A is the cross-sectional
area of the atomic medium and ε0 is the permittivity of free space. The quantity g,
scales the field strength per photon, and ej are unit polarisation vectors. Using the
expressions above allows us to write the quantised electric field in terms of creation
and annihilation operators

Êj(z, t) = g[âj(z, t)ej + â†j(z, t)e∗j ], (2.9)

where the commutation relations read

[âi(z, t), â†j(z, t′)] = δi,jδz(z)δ(t− t′). (2.10)
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Using the quantised expression for the electric field in eq. (2.9) and substituting it
into eqns. (2.1)-(2.4) yields the quantum mechanical Stokes operators Ŝx

Ŝy
Ŝz

 = c

2

 â†xâx − â†yây
â†+45◦ â+45◦ − â†−45◦ â−45◦

â†+â+ − â†−â−

 = c

2

 â†+â− + â†−â+

iâ†−â+ − iâ†+â−
â†+â+ − â†−â−

 , (2.11)

where we have defined

â+,− = 1√
2

(âx ∓ iây), (2.12)

â+45◦,−45◦ = 1√
2

(±âx + ây), (2.13)

with â+45◦,−45◦ , and âx,y describing circular σ±, linear ±45◦, and horizontal/vertical po-
larisations, respectively. In addition, the Stokes vector components obey commutation
rules of angular momentum, i.e.,

[Ŝi(t), Ŝj(t′)] = iδ(t− t′)εijkŜk(t), (2.14)

where εijk is the Levi-Civita tensor

εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

0 if i = j, or j = k, or k = i.

(2.15)

2.2 Off-resonant light-matter interaction

2.2.1 Birefringence effects in light-matter interaction in the
semi-classical limit

In general, the optical properties of a material are largely governed by their intrinsic
electron energy level structure. For gaseous media, the effects of light-atom interaction
are well described by the first order susceptibility χ(1) with the real, Re[χ(1)] and
imaginary parts Im[χ(1)] containing the response of the refractive index n and the
coefficient of absorption α as a function of frequency of the applied field, respectively.
In classical terms, an electromagnetic wave propagating through a homogeneous
dielectric medium can be described by Maxwell’s wave equation [34,35]

c2∇2~E = ∂2~E
∂t2

+ 1
ε0

∂2~P
∂t2

, (2.16)

where ~E is the electric field vector, ~P = ε0χ
(1)~E is the polarisability vector, c is the

speed of light in vacuum and ε0 is the permitivity of free space. Considering a 3D
case, the wave equation (2.16) has a general solution given by

~E = ~E0e
−kI·rei(kR·r−ωLt), (2.17)
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with kI and kR being the momentum propagation constants which relate to the
complex refractive index ñ and further by the sum of ordinary refractive index nR
and the extinction coefficient nI which is responsible for the absorption

k = kR + kI = ωL
c

ñ = ωL
c

(nR + inI). (2.18)

We can relate the first order susceptibility χ(1) to the complex refractive index by the
following relation [36]

ñ = (nR + inI) =
√

1 + χ(1). (2.19)

In the case where the light-matter interaction results in no light absorption (far
off-resonant beam), we can neglect the contribution from nI ≈ 0 and the resultant
classical electromagnetic wave only experiences phase shifts which are dependent on
the refractive index nR

~E = ~E0e
i(kR·r−ωLt). (2.20)

If the polarisability of the dielectric medium is directional (i.e. anisotropic) due to
χ(1), then the different polarisations of the electromagnetic wave will experience phase
shifts due to the fact that the refractive indices for the different polarisations are
different. This phenomena is known as birefringence. Quantum mechanically, the
atomic polarisability of the medium can be expressed using the density operator [37]

Pij = N ~dijρij, (2.21)

where N is the atomic number density, ~dij is the transition dipole moment which
depends on the Clebsch-Gordan coefficients [38]

~dij =
〈
Fi,mi

∣∣∣ ~d ∣∣∣Fj,mj

〉
= (−1)Fi−mi

〈
Fi
∥∥∥ ~d ∥∥∥Fj〉

(
Fi 1 Fj
−mi q mj

)
, (2.22)

where q corresponds to the polarisation state such that

q =


0, π-polarisation,

+1, σ+-polarisation,
−1, σ−-polarisation.

(2.23)

Using the classical definition of polarisability together with the quantum mechanical
one, we can derive a semi-classical version of the first order susceptibility

χ(1) = 1
Ωij

N

ε0~
d2
ijρij, (2.24)

where the Rabi frequency Ωij is given by

Ωij =
~dij · ~E0

~
. (2.25)
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Figure 2.2: Phase shift of the polarisation as a consequence of the light-matter
interaction. Here an off-resonant light beam of a well defined polarisation interacts with
atoms prepared in a stretched state. The different polarisation components of the light
have different Clebsch-Gordan coefficients and as a result, different refractive indices
which introduce phase shifts in the polarisation during the light-matter interaction.

Combining equations (2.19) and (2.24) and assuming the limit of no absorption, the
refractive index is given by

nijR =
√

1 + 1
Ωij

N

ε0~
d2
ijρij. (2.26)

From the equation above we can observe the following; different polarisations of light
will yield different Clebsch-Gordan coefficients, and as a result, will give different
refractive indices which will introduce phase shifts in the outgoing electromagnetic
wave rotating the polarisation, Fig. 2.2 illustrates the basic principle schematically.
For light of wavelength λ interacting with a birefringent sample of length l, the plane
of polarisation between e.g. two circular components of light rotates by an angle φ
given by [41]

φ = (n+
R − n−R)πl

λ
. (2.27)

This näıve toy model is effective in giving a qualitative explanation of how the light-
matter interaction results in phase shifts of the polarisation of light. However, it
lacks descriptive power relating the effects to observable quantities such as the Stokes
vectors. Moreover, the energy level structure of the atoms is in general complex, and
as a result may have additional contributions to the polarisation phase shifts. Finally,
our goal is to be able to encode the spin-magnetic field interaction onto the light
matter interaction which would allows us to optically probe the local magnetic field
information sensed by the atomic medium.
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2.2.2 Birefringence effects in light-matter interactions in the
quantum limit

In quantum mechanics, the general light-atom interaction Hamiltonian is given by the
scalar product between the dipole transition moment operator d̂ and the quantised
electric field

ĤE = −d̂ · Ê(z, t), (2.28)

where as before, the electric field in the second quantisation reads

Ê(z, t) =
∑
j

(Êj(z, t) + Ê†j (z, t)). (2.29)

Here we have explicitly considered the light propagation to be along z in one dimension
[33]. In our case we are interested in describing light-matter interaction in the off-
resonant regime where absorption of the fields can be neglected. As a result of this,
the interaction reduces to spin and polarisation dependent dispersion, governed by the
frequency dependent polarisability tensor α̂ of the atomic medium. The interaction
energy can be expressed as a second-order perturbation with state-dependent dipole
density d̂, i.e., as a light-shift of atomic ground states. The effective Hamiltonian can
be stated as [27,38]

Ĥeff = −
∫

(Ê†α̂Ê)Adz =
∑
n

∫ Ê†d̂nd̂†nÊ
~∆n

Adz, (2.30)

where the sum is over the contributions from transitions to excited states with resonant
frequencies ωn and corresponding detunings ∆n = ωL−ωn. Here A is the cross-sectional
area of the interaction medium. For alkali atoms in their electronic ground state, the
atomic dipole moment depends on the individual spin F̂i, which we describe by a
continuous operator function f̂(z) for dimensionless spin per atom. The collective spin
of N atoms distributed over any finite length L with density ρ(z) are expressed as

N∑
i=1

F̂i =
∫
L
ρ(z)̂f(z)~Adz. (2.31)

Using this description, the effective interaction Hamiltonian for an atomic (sub)ensemble
in one of the electronic ground-state hyperfine manifolds (L = 0, J = 1

2) of certain F ,
can be expressed with irreducible tensor components (see references [27, 33,42–44] for
detailed description)

Ĥeff = g2

c

∫ L

0

[
2α(0)

F Ŝ0 + 2α(2)
F Ŝ0

(
f̂ 2
z −

1
3 f̂

2
)

︸ ︷︷ ︸
Stark Shift

+ 2α(1)
F Ŝzf̂z︸ ︷︷ ︸

Faraday Effect

+α
(2)
F

(
Ŝ+f̂

2
− + Ŝ−f̂

2
+

)
︸ ︷︷ ︸

Voigt Effect

]
ρAdz, (2.32)



2.2. Off-resonant light-matter interaction 13

Figure 2.3: a) For the circular birefringence, we have a polarised state where the
atomic spins precess around some static field. A light pulse propagating along z with
a 45◦ polarisation will experience a polarisation phase shift when interacting with the
sample due to the fact that the indices of refraction nσ+ 6= nσ− . The rotation will
occur between Ŝx and Ŝy whilst Ŝz will remain constant. b) For the case of linear
birefringence where the sample is in an aligned state, the same light polarisation will
experience a phase shift due to the fact that nx 6= ny. The rotation will occur between
Ŝy and Ŝz whilst Ŝx will remain constant. A linearly polarised beam will acquire
ellipticity.

where the quantities in the equation above are defined as follows

f̂± = f̂x ± if̂y, (2.33)
Ŝ± = Ŝx ± iŜy. (2.34)

Here the effective interaction Hamiltonian contains three terms describing phase shifts
in light polarisation relating to the Stokes vectors, Ŝi, polarisibailities, α(i)

F as well as
the atomic spin f̂i. The first two terms coupled to the Stokes vector S0 describe global
phase shifts of the light beam, without any change in polarisation, also known as the
Stark shift. The third term, containing the Stokes vector Ŝz describes the circular
birefringence of the atomic medium, known as the Faraday Effect. Here the phase
shifts in light polarisation are caused by the difference in interaction strengths between
the atomic medium and the two circularly polarised components of light. The last
term in the interaction Hamiltonian containing the Ŝ± Stokes vectors corresponds
to the linear birefringence of the atomic medium, also known as the Voigt effect.
The Voigt effect causes light polarisation phase shifts between vertical and horizontal
polarisation components and the atomic medium. See Fig. 2.3 for illustration of the
two effects. The quantities α(k)

F are scalar, vector and tensor polarisabilities and they



2.2. Off-resonant light-matter interaction 14

depend on the frequency detuning from the energy levels as well as their transition
dipole moments. In the off-resonant case, satisfying electric dipole transition rules
F → F ′ = F, F ± 1 the polarisabilities are given by

α
(0)
F =AF−1

F +AFF +AF+1
F , (2.35)

α
(1)
F =3

2

[
−A

F−1
F

F
− AFF
F (F + 1) + A

F+1
F

F + 1

]
, (2.36)

α
(2)
F =3

2

[
AF−1
F

F (2F − 1) −
AFF

F (F + 1) + AF+1
F

(F + 1)(2F + 3)

]
, (2.37)

where the three scalar polarisabilities AF ′F for transitions from F to F ′ are expressed
in terms of the reduced dipole moments (which, by isotropy convention, sum up three
orthogonal polarisations) and the respective detunings

AF ′F = 1
3 ·
|〈J, F ||d||J ′, F ′〉|2

~∆F,F ′
= πε0c

3ΓJ ′
∆F,F ′ω3

J ′
(2J ′ + 1)(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

,

where we have used a Wigner 6-j symbol and introduced decay rate ΓJ ′ and frequency
ωJ ′ of spontaneous emission from the excited J ′ levels [48]. We also defined detunings
∆F,F ′ = ωL − ωF,F ′ of the light field with respect to the optical F → F ′ transition
frequencies. We assume AF ′F = 0 for non-existing transitions and the higher order
terms are α(1)

F = α
(2)
F = 0. In our experiments we use 87Rb with nuclear spin I = 3/2

in F = 2 driven near the D1 lines (J ′ = 1/2) the resulting tensor components are
explicitly given by

α
(0)
2 =αJ

′

2

[
1

∆2,1
+ 1

∆2,2

]
, (2.38)

α
(1)
2 =− αJ ′

8

[
3

∆2,1
+ 1

∆2,2

]
, (2.39)

α
(2)
2 =αJ

′

8

[
1

∆2,1
− 1

∆2,2

]
, (2.40)

where the far-detuned, scalar polarisability coefficient is given by

αJ ′ = ε0λ
3
J ′ΓJ ′

8π2 , (2.41)

which depends on the D1-line parameters ΓJ ′ = 2π × 5.75 MHz and λJ ′ = 795 nm. In
our case, the thermal atoms are in a Doppler broadened medium, and as a result each
atom sees different detuning of the light. Typically in the experiments (outlined in later
sections) the probe detuning is ∆2,1 = 550 MHz red detuned from the F = 2→ F ′ = 1
transition of the D1 line (∆2,2 = 1366 MHz for F = 2 → F ′ = 2). The Doppler
valley at full-width-half-maximum (FWHM) of room temperature 87Rb of the D1
line is ΓD ≈ 560 MHz. As a result, the fraction of atoms being in a velocity class
experiencing resonant interactions due to the Doppler effect with the probing beam
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Figure 2.4: An illustration of the polarisation rotation due to the circular birefringence
of the atomic medium. Here at each atomic layer characterised by the atomic number
dn = ρAdz the light polarisation rotates by a small angle dθ.

will be negligible and as a result can be ignored.

We want to understand how our observables, i.e. Stokes vectors evolve in time
and space given the light-matter interaction Hamiltonian described above. This can
be computed using the Heisenberg equation of motion

(∂t + c∂z)Ŝ(z, t) = 1
i~

[Ŝ(z, t), Ĥeff ]. (2.42)

Here the the non-zero time derivative in the Heisenberg equation describes the effects
of light retardation. The speed of light in a medium is inversely proportional to
the refractive index of that medium, v = c/n. In our case, the Clebsch-Gordan
coefficients for the different polarisations are not equal and as a result, the effective
refractive indices and the speed of light for the two light polarisation components
will be different. Moreover, as the light propagates through the atomic medium, the
atomic state will be randomly perturbed as a result of the measurement - this is
known as quantum back-action [45]. This will consequently change the strength of
the light-matter interaction because the initially prepared atomic state has changed.
The quantum back-action effects increase in strength as the probe detuning, ∆→ 0
where the probe light comes into resonance with the atomic transitions.

Inserting the expressions for the Stokes vectors defined in the previous section with
the off-resonant light matter interaction Hamiltonian, Ĥeff , and neglecting the light
retardation effects, i.e. ∂tŜ(z, t) = 0, the Heisenberg equations of motion for the
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Stokes vectors read

∂Ŝx
∂z

=2g2ρA

~c
[
−α(1)

F Ŝyf̂z + α
(2)
F Ŝz(f̂ 2

+45◦ − f̂ 2
−45◦)

]
, (2.43)

∂Ŝy
∂z

=2g2ρA

~c
[
α

(1)
F Ŝxf̂z − α(2)

F Ŝz(f̂ 2
x − f̂ 2

y )
]
, (2.44)

∂Ŝz
∂z

=2g2ρA

~c
α

(2)
F

[
Ŝy(f̂ 2

x − f̂ 2
y )− Ŝx(f̂ 2

+45◦ − f̂ 2
−45◦)

]
, (2.45)

where
f̂+45◦,−45◦ = 1√

2
(±f̂x + f̂y). (2.46)

Recall that the collective spin of N atoms distributed over any finite length L with
density ρ(z) are expressed as

N∑
i=1

F̂i =
∫
L
ρ(z)̂f(z)~Adz. (2.47)

Assuming that the thermal atoms have a uniform density distribution, ρ(z)→ ρ and
further neglecting the back-action effects on the atomic spin states due to the far-off
resonant probing and low light intensity, for small optical phase shifts in polarisation
(� 1 rad) the spin operator terms in equations (2.43, 2.44, 2.45) can be approximated
to

X̂x =
∫
ρ(f̂ 2

x − f̂ 2
y )~2Adz =

N∑
i

(F̂ 2
x,i − F̂ 2

y,i), (2.48)

X̂y =
∫
ρ(f̂ 2

+45◦ − f̂ 2
−45◦)~2Adz =

N∑
i

(F̂ 2
+45◦,i − F̂ 2

−45◦,i), (2.49)

T̂z =
∫
ρf̂z~Adz =

N∑
i

F̂z,i. (2.50)

Using these definitions and integrating equations (2.43, 2.44, 2.45) yields the form of
the Stokes operators after the off-resonant probe interaction with the atomic medium

Ŝout
x = Ŝx −

2g2

c~2α
(1)
F ŜyT̂z + 2g2

c~3α
(2)
F ŜzX̂y, (2.51)

Ŝout
y = Ŝy + 2g2

c~2α
(1)
F ŜxT̂z −

2g2

c~3α
(2)
F ŜzX̂x, (2.52)

Ŝout
z = Ŝz + 2g2

c~3α
(2)
F

[
ŜyX̂x − ŜxX̂y

]
. (2.53)

In our experiments the probe light is linearly polarised at 45◦ in the x-y plane, hence,
Ŝx = Ŝz ≈ 0 (refer to Fig. 2.1 on page 8 for illustration). In addition, we assume
that the probe light is sufficiently strong in intensity such that the correspondence
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principle applies giving Ŝy ≈ Sy i.e. the probe beam is classical. With these further
assumptions, the above equations reduce to

Ŝout
x = −2g2

c~2α
(1)
F Sy

N∑
i

F̂z,i, (2.54)

Ŝout
y = Sy, (2.55)

Ŝout
z = 2g2

c~3α
(2)
F Sy

N∑
i

(F̂ 2
x,i − F̂ 2

y,i), (2.56)

where we have made the substitutions for X̂x and T̂z given in equations (2.48-2.50). The
experimental observables which are our Stokes vectors are then found by computing
their expectation values. Assuming that all of our atoms, nF are prepared in the same
quantum state, the expectation values are given by〈

Ŝout
x

〉
= −g(1)

F SynF
〈
F̂z
〉
, (2.57)〈

Ŝout
z

〉
= g

(2)
F SynF

〈
F̂ 2
x − F̂ 2

y

〉
, (2.58)

here nF is the atomic number density. Furthermore, we have let

g
(k)
F = 2g2α

(k)
F

c~k+1 . (2.59)

The equations (2.57) and (2.58) describe the Faraday and Voigt effects respectively. We
can immediately observe that the birefringence effects of both the Faraday and Voigt
effects depend on the vector and tensor polarisabilities which in turn depend on probe
detuning and the line transition strength. In addition, the signals are proportional to
the number of atoms prepared in a state that maximises the expectation values. In
the case of the Faraday effect, the expectation value,

〈
F̂z
〉
, is maximised, when the

prepared state is a stretched state〈
F̂z
〉

=
〈
F, Fz

∣∣∣ F̂z ∣∣∣F, Fz〉 = ~m, (2.60)

where m is the magnetic quantum number of the hyperfine Zeeman states. For the
Voigt effect the expectation value using pure states in the x-basis is given by

〈
F̂ 2
x − F̂ 2

y

〉
=
〈
F, Fx

∣∣∣ F̂ 2
x − F̂ 2

y

∣∣∣F, Fx〉 = 1
2~

2(F (F + 1)− 3m2). (2.61)

For a fixed hyperfine state manifold F , the maximum expectation value is achieved
for pure states in cases where m = 0 and m = ±F . The case for m = 0 is sensitive to
external fields via the Voigt effect, but does not yield maximum sensitivity. On the
other hand, a state, |ψ〉 constructed to satisfy m = ±2 would yield maximal sensitivity
to the external fields. Prepared in the x-basis, an example ansatz state that would
satisfy such properties would be an equal statistical mixture of |F = 2,m± 2〉 states.
Such statistical mixture cannot be expressed in the standard ket basis, but can be
trivially defined using the density matrix approach
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Figure 2.5: An atomic spin precesses around a weak external field with an interaction
Hamiltonian given by the linear Zeeman effect. The spin precession of the atom affects
the transition dipole moment and therefore the light-matter interaction Hamiltonian.
The dynamics of the interaction Hamiltonian can be measured using Stokes vectors
which then allow us to extract the magnetic field information.

ρ̂ =
∑
i

pi |ψi〉 〈ψi| =
1
2 (|↓〉 〈↓|+ |↑〉 〈↑|) , (2.62)

where the |↑〉 = |F = 2,m = +2〉 and |↓〉 = |F = 2,m = −2〉. The expectation value
for the Voigt effect is given by〈

F̂ 2
x − F̂ 2

y

〉
= Tr

[
ρ̂
(
F̂ 2
x − F̂ 2

y

)]
. (2.63)

We can now relate the hyperfine spin operators F̂i to external magnetic field. For weak
external fields, the spin-field interaction Hamiltonian is given by the linear Zeeman
effect

HB = −µBgF
~

F̂ ·B, (2.64)

which can be used to compute the spin dynamics and substituted into the light-matter
expression for the Voigt effect. The details of the field-spin interaction Hamiltonian
and the corresponding dynamics will be discussed in detail in Chapter 3.

It is noteworthy to reiterate the scope of the light-matter interaction Hamiltonian
presented here. The model assumes far-off resonant interaction between light and the
atomic ensemble and low light power which allows us to neglect the back-action effects
as a result of the weak perturbation of the atomic state during the measurement. This
assumption will break down if the probe becomes close to the atomic resonance. If we
assume that the probe is sufficiently detuned such that the system can be treated as a
two-level atom, then the spin decoherence rate due to the probe beam, Γprobe, can be
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described using the following relation [46]

Γprobe = Γ
2

s

1 + s
≈ 3λ3Γ2

16π2~c∆2 I, (2.65)

where the saturation parameter is given by

s = I

Isat

(
1 +

(
2∆
Γ

)2
) , (2.66)

with
Isat = 2π2~cΓ

3λ3 . (2.67)

Moreover, the picture is more complicated by the fact that we have a Doppler broadened
medium which means that the back-action effects vary across the different atomic
velocity classes since they experience different probe detunings. Another physical aspect
that was neglected in order to simplify the theoretical analysis was the retardation of
light. In principle, if the sample is short, and the light-matter interactions are weak,
the retardation effects will be small for the different light polarisations. However, for
strong fields and/or high atomic density (large interaction volume) the birefringence
effects may be strong enough to produce sufficiently significant light retardation
influencing the dynamic effects of the Stokes vectors.

2.3 Optical Broadening Mechanisms

2.3.1 Doppler Broadening
Optically pumped magnetometry experiments are commonly carried out using room
temperature alkali vapours which act as the field sensing medium. Unfortunately,
thermal motion of the individual atoms in the vapour complicate the light-matter
interaction picture. Consider a single atom moving with a velocity vz~ez along the
direction of propagation of a laser beam of frequency ωL. The light perceived by the
atom acquires a frequency shift where the new frequency ω′ is given by the Doppler
effect

ω′ = ωL

(
1± vz

c

)
, (2.68)

where the ± sign indicates whether the atom is co- or counter-propagating with respect
to the travelling light beam and c is the speed of light. However, the atomic vapour
has many atoms and as a result, the velocities have a statistical distribution which is
given by the Maxwell’s probability distribution

P (vz)dvz = m

2πkBT
e
− mv2

z
2kBT , (2.69)

where m is the atomic mass and T is the temperature of the vapour and kB is the
Boltzmann’s constant. If the atoms are at rest, the absorption cross-section of a
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two-level atom is given by
σ(∆) = σ0

Γ0

4∆2 + Γ2
0
, (2.70)

where ∆ = ωL − ω0 is the light detuning from the resonance of the transition, ω0, σ0
is the absorption cross section on resonance

σ0 = ~ω0Γ0

2Isat
, (2.71)

and Γ0 is the natural linewidth of the transition which can be computed using [48]

Γ0 = ω3
0

3πε0~c3
2J + 1
2J ′ + 1 | 〈J ‖ d ‖ J

′〉 |2, (2.72)

where d is the dipole transition moment, J and J ′ are the angular momenta of the
states. In the limit where the Doppler width is much larger than the natural linewidth
of the atomic transition, ΓD � Γ, the absorption cross-section takes the following
form

σ(δ) = σDe
−
(

∆
ΓD

)2

, (2.73)

where σD is given by [61]

σD =
√
π

2
Γ0

ΓD
σ0. (2.74)

For room temperature 87Rb isotope, the Doppler broadened linewidth is on the order
of 560 MHz. Here the thermally broadened Doppler linewidth, ΓD, is given by

ΓD = ω0

c

√
8kBT ln2

m
. (2.75)

2.3.2 Transit-Time Broadening
Another effect that contributes to the line broadening is the transit-time broadening.
This effect occurs due to a finite interaction time between the atom and the laser.
Consider the case where thermal atoms are travelling through a monochromatic laser
beam of diameter d and frequency ω0, the transit time is defined by τ = d/|v⊥|, where
v⊥ is the mean velocity perpendicular to the beam’s direction of propagation. For a
monochromatic laser source, the electric field is given by E(t) = E0 cos(ωLt). For an
atom traversing this electric field the intensity spectrum is given by computing its
Fourier transform

E(ω) = 1√
2π

∫ τ

0
E0 cos(ωLt)e−iωtdt, (2.76)

with the intensity profile given by I(ω) = E∗(ω)E(ω). In the limit where (ω−ωL)� ωL
the intensity profile yields [61,66]

I(ω) = I0
sin2[(ω − ωL)τ/2]

(ω − ωL)2 , (2.77)
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where I0 is a normalisation constant. In reality, the field distribution across a laser
beam is not uniform. If our beam intensity profile has a Gaussian beam shape described
by TEM00 transverse electromagnetic mode then the electric field is given by

E = E0e
−r2/w2

0 cos(ωLt), (2.78)

where 2w0 gives the diameter of the Gaussian beam profile where zR = πw2
0/λ is the

Rayleigh length. If we apply the same recipe as before by computing the Fourier
transform of the electric field and then the corresponding intensity profile in the
Fourier plane, we obtain

I(ω) = I0 exp
(
−(ω − ωL)2 w

2
0

2v2
⊥

)
, (2.79)

which gives a transit–time limited linewidth (FWHM) of

Γt = 1
τ

=
√

2v⊥
w0
. (2.80)

We therefore have two possibilities to tune the effects of transit–time broadening.
The diameter of the laser beam can be changed or the thermal speed of the atoms.
Increasing the beam diameter is useful in the context of optical pumping since it
maximises the pumped atomic volume and reduces the transit time broadening. On
the other hand, reducing the temperature to reduce the atomic velocities reduces
the transition broadening but has the technical disadvantage of decreasing atomic
number density compromising signal strength. Typically, for room temperature 87Rb
atoms interacting with a pump beam of 1/e2 diameter of ≈ 7 mm the transit time
broadening is of the order Γt ≈ 0.04 MHz. In other words, the transit-time broadening
dominates the natural lifetime of our state, τ � 1/Γ0. This assumes a gas with a
pressure in the unsaturated regime.

2.3.3 Pressure Broadening
Another spectral line broadening effect that is common in gaseous media is pressure
broadening. It arises due to collisions between atoms or the atoms colliding with
the walls of the container. In cases where buffer gases are used, then heterogeneous
atom-buffer atom collisions are also present. When the two atoms are in close prox-
imity, the interaction between their electrostatic potentials results in polarisation of
their respective dipole moments which result in spectral line shifting and broadening.
Since the interactions are non-linear, the resultant broadened line shape tends to be
non–Lorentzian [39].

Atomic collisions can be elastic or inelastic in nature. For inelastic collisions, there
exists spectral line broadening. This is due to the fact that each collision result
in additional depopulation of the excited state along with the natural spontaneous
emission. The collision rate is directly related to the pressure of the gas, and as a
result a change in pressure will change the transition probability and therefore the
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linewidth of the state. Thus, for inelastic collisions, the optical transition linewidth
changes according to [40]

Γ = Γ0 + Γpress = Γ0 + nRbσcv̄, (2.81)

where σc is the collisional cross section, v̄ is the average relative thermal velocity and
nRb is the atomic number density of rubidium. The number density is temperature
dependent and is given by [48,49]

nRb(T ) = 1
T

1021.866+A−B
T , (2.82)

in units (cm−3), where A and B are alkali-specific coefficients [50]. On the other hand,
in elastic collisions, the linewidth of the transitions is not affected. However, the peak
of the resonance position changes. This is due to the fact that for each collision, the
atom acquires a random phase kick which when averaged over an entire ensemble,
the emitted radiation acquires a frequency shift in the intensity peak [61]. When we
consider both types of elastic and inelastic collisions, the combined intensity profile
takes the form [66]

I(ω) ∼ (Γ0 + Γpress)2

4(ω − ωL −∆ω)2 + (Γ0 + Γpress)2 , (2.83)

where, ∆ω is the line shift proportional to the cross section of elastic collisions.
Increasing the atomic density increases the degree of rotation in the Stokes vectors
(see eq. 2.58 on page 17), thus, increasing the temperature would increase the signal
strength. However, the increase in atomic density increases the collision rate, which
further increases the rate of depopulation of the magnetically sensitive atomic states.
Therefore it is possible that the competition between the two effects may produce
some limit where a further increase in the atomic density does not improve the signal
strength. This will be discussed in more detail the next chapter.

2.3.4 Power Broadening
So far the optical broadening mechanisms outlined in this section originate from the
thermal motion of the atoms with the somewhat partial exception to the transit time
broadening where the size of the beam also plays a role. There also exists a spectral
line broadening mechanism which is dependent upon the intensity of the optical field.
This arises as a consequence of reduced absorption cross section near resonance where
the intensity of the optical field is larger than the saturation intensity [65]. The natural
linewidth, Γ0 of a two level atom has a Lorentzian profile. If we take into account of
the power broadening effects then we need to include a frequency dependant saturation
parameter, S which also has a Lorentzian profile of the following form [66]

S(ω) = S(ω0) (Γ0/2)2

(ω − ω0)2 + (Γ0/2)2 . (2.84)
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Using the equation above, the corresponding intensity profile of a power broadened
medium is then given by

IS(ω) = I0(ω0) (Γ0/2)2

(ω − ω0)2 + (Γ0/2)2 . (2.85)

With this modified intensity profile, the new linewidth in a power broadened medium
takes the following form [65]

ΓI = Γ0

√
1 + I

Isat
= Γ0

√√√√1 + 2
(

Ω
Γ0

)2

, (2.86)

where Isat and I are the saturation intensity and laser intensities respectively and Ω is
the Rabi frequency of the transition. In the case where the intensity of the optical field
is comparable to the saturation intensity, I ≈ Isat, the linewidth can be approximated
to ΓI =

√
2Γ0 [51]. Table 2.1 summarises the various broadening mechanisms and

their respective contributions.

Table 2.1: Summary of broadening mechanisms and typical values for 87Rb D2
52S1/2 → 52P3/2 on resonance transitions at T = 295 K, P = 2 mW with beam
diameter d = 7.1 mm.

Type of Broadening Relation Value

Transit Broadening Γt =
√

2(v⊥/w) ≈ 0.04 MHz

Pressure Broadening Γp = nRbσcv̄ ≈ 0.5 MHz

Power Broadening ΓI = Γ0
√

1 + 2(Ω/Γ0)2 ≈ 8 MHz

Doppler Broadening ΓD = ω0/(2πc)
√

8kBT ln2/m ≈ 560 MHz

2.4 Optical Pumping and Probing

2.4.1 State Preparation with Optical Pumping
A crucial part in being able to measure the Voigt effect and detect external magnetic
fields is to efficiently prepare a magnetically sensitive state. As we discussed in the
previous subsection 2.2.2 on page 12, an ansatz optimal state that is sensitive to exter-
nal magnetic fields that also maximises our Voigt effect signal is an equal statistical
mixture of the 87Rb hyperfine ground state |F = 2,mF = ±2〉. By inspection of the
energy level structure of the D1 and D2 lines of 87Rb such a state can be prepared by
using a combination of π−polarised pump and repump beams addressing the F = 1
and F = 2 ground states via optical pumping.
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Table 2.2: Gyromagnetic ratios gF for the D1 and D2 ground and excited states

State
/

Line 52S1/2 52P1/2 52P3/2

F = 1 gF = −1/2 gF = −1/6 gF = 2/3

F = 2 gF = 1/2 gF = 1/6 gF = 2/3

Typically, the optical pumping processes are modelled via the Liouville-von Neumann
equation using the density matrix approach [52]. The advantage of this approach
is that it contains the populations of the states as well as the coherences which
contains the full picture of our system. It can also take into account of various
optical broadening mechanisms, collisions, magnetic field influence to name just a
few. However, for systems containing many non-degenerate energy levels, the process
becomes complicated and computationally intense [53]. In addition, depending on the
complexity of the system (e.g. Doppler broadening) and the interactions involved, a
number of approximations can be made allowing for a significant simplification of the
optical pumping processes with minimal sacrifice of the accuracy of the results.

In our case, the optical fields used to drive the atomic transitions to prepare the
sensitive states as well as probe them have optical field intensities below the satu-
ration intensity of the states, I < Isat. As a result, due to the low light intensities,
the rate of absorption of light by atoms, Ξ, is much slower than the atomic decay
due to spontaneous emission, Γ0, such that Ξ < Γ0. Consequently, the light-matter
interaction process is dominated by the rate of absorption of light. This allows us to
model the optical pumping processes with simple rate equations and ignore the effects
of coherences [38, 54]. The scattering rate for a ground state level |gj〉 excited to |ek〉
is given by

Ξj,k(I,∆) = I/Isat

1 + I/Isat + (2∆j,k/Γk)2
γj,kΓk

2 , (2.87)

where Γk is the natural linewidth of the excited state. Here ∆j,k is the light detuning
from resonance and I is the intensity of the optical field. The branching ratios, γj,k,
are computed using

γe,g(|Je, I, Fe,me〉 → |Jg, I, Fg,mg〉) = γg,e(|Jg, I, Fg,mg〉 → |Je, I, Fe,me〉) =

(2Fe + 1)(2Jg + 1)(2Je + 1)×
{
Jg I Fg
Fe 1 Je

}2

×
(
Fg 1 Fe
mg q −me

)2

, (2.88)

where the curly and round brackets around the matrices represent the Wigner-6j and
Wigner-3j symbols respectively. The element q corresponds to the polarisation state
such that
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Figure 2.6: Branching ratio diagram for |F = 2,mF = 0〉 state with π−polarised light
pump and repump light in the x-basis with scattering rates Ξ2 and Ξ1 respectively.
Here, Ξ1 corresponds to the pumping/scattering rate of the repump beam, Ξ2 is the
pumping rate for the pump with I/Isat = 1 and ∆ = 0 MHz for both beams. The
branching ratios γj,k are computed using eq. (2.88), see Appendix A.1 on page 171 for
the corresponding values.

q =


0, π-polarisation,

+1, σ+-polarisation,
−1, σ−-polarisation,

(2.89)

with the natural lifetimes for the D1 and D2 lines given by

Γk =

2π × 5.746MHz, D1-line,
2π × 6.065MHz, D2-line.

(2.90)

The branching ratios, γj,k are normalised against the D2 line transition strength

|Fg = I + 1/2,mg = Fg〉 → |Fe = I + 3/2,me = Fe〉 , (2.91)

to be unity. See tables in Appendix A.1 on page 171 for the relevant branching ratios.

The time dependent population for each ground level ρn is governed by the following
rate equation [54]

∂tρn(t) =
∑
j 6=n

ρj(t)
(∑

k

Ξj,kγj,kγn,k

)
− ρn(t)

∑
k

Ξn,kγn,k(1− γn,k), (2.92)
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Figure 2.7: Pump and Repump dynamics on during the state preparation process on
resonance. For our experimental parameters, we have I/Isat = 1 and both the pump
and repump have π−polarisation. This model assumes an initial input state to be a
thermal state with equally distributed populations in the F = 1 and F = 2 manifolds.
Some of the colours of the populations are not visible because they overlap with other
state colour labels.

where the sum over j is over the ground state levels and the sum over k is for the
excited state levels. In our case, we take the pump to address |F = 2〉 → |F ′ = 1〉 of
the D1 line with π−polarisation and on resonance with the transition. The repump
beam addresses |F = 1〉 → |F ′ = 2〉 of the D2 line also having π−polarisation and on
resonance with the transition. For example, the rate equation for the population of
|F = 2,mF = 0〉 state represented by ρ6 reads (see Fig. 2.6 for the contributions to
the population for |F = 2,mF = 0〉 state)

∂tρ6(t) =− ρ6(t)γ6,10(γ10,5 + γ10,7 + γ10,1 + γ10,3)Ξ2

+ (ρ5(t)γ5,9γ9,6 + ρ7(t)γ7,11γ11,6)Ξ2

+ (ρ1(t)γ1,13γ13,6 + ρ3(t)γ3,15γ15,6)Ξ1, (2.93)

where for example ρ5 represents the state population of the |F = 2,mF = −1〉 state
and ρ1, ρ2 and ρ3 correspond to the state populations of the |F = 1,mF = −1〉,
|F = 1,mF = 0〉 and |F = 1,mF = +1〉 respectively. The full set of coupled differential
equations are given in Appendix A.1 on page 171. These can be solved analytically
using any symbolic/numeric math package. In the absence of collisional depolarisation,
other broadening mechanisms and the fact that I < Isat we find that during the state
preparation process using π−polarised light for the pump and the repump beams we
achieve a steady state corresponding to an equal statistic mixture of |F = 2,mF = ±2〉,
see Fig. 2.7. However, our model has several limitations. Experimentally, the pump is
pulsed in phase with the radio-frequency dressing field with a duty cycle of 9%. This is
due to the fact that the radio-frequency field driving the atomic precession constantly
changes the quantisation axis in the lab frame. As a result, efficient pumping occurs
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when the polarisation of the pump is sufficiently well aligned with the quantisation
axis of the precessing spins. The overlap between the rotating quantisation axis and
polarisation of the pump during the 9% duty cycle means that some of the atoms will
be pumped to a different state which this model does not take into account. This
may pose a limitation in understanding how efficient our state preparation process is.
Moreover, experimentally, the pump and repump beams travel along a relatively long
cell, as a result of the resonant interaction between the light and the atoms, significant
absorption can occur given by the Beer-Lambert law

I(z) = I0e
−nRbσ0z, (2.94)

where I0 is the initial intensity, nRb is the atomic density (cm−3), σ0 is the resonant
absorption cross section and z is distance travelled by the beam across the atomic
medium. From this we can observe that scattering rate given by eq. (2.87) on page 24
will be influenced as the beam propagates across the atomic medium. As a result, the
state preparation may not be homogeneous across the atomic medium. This limitation
can be avoided by using a short cell. These effects will be explored further in the
following chapters.

2.4.2 Far-off-resonant probing of the prepared state
The state preparation process is followed by a probing cycle where a far-off resonant
beam interacts with the atomic ensemble. The probe acquires a phase shift in
polarisation which is dependent on the external magnetic field. Whilst the probe
beam is detuned to be far-off resonance of the |F = 2〉 → |F ′ = 1〉 transition of the D1
line there nevertheless will be some light scattering which will have optical pumping
effects. This will affect our prepared state. To understand the impact of the probe on
our state we employ the rate model outlined above. The probe is weak and below the
saturation limit of the state, I/Isat = 0.6. Our probe light has 45◦ polarisation and
a detuning of ∆ = −550 MHz. Here the 45◦ polarisation enters the calculation via
the branching ratios where the light can be decomposed into π− and σ± polarisations
with the branching ratios calculated according to eq. (2.88) on page 24 for the given
polarisations. The rate equation for the |F = 2,mF = −2〉 population is given by

∂tρ4(t) = −ρ4(t)γ4,9(γ9,5 + γ9,6 + γ9,1 + γ9,2)Ξ2

+ ρ5(t)γ5,9γ9,4Ξ2 + ρ6(t)γ6,9γ9,4Ξ2, (2.95)

see Fig. 2.8 for the breakdown. The rest of the equations can be found in Appendix A.2
on page 173. Solving this set of equations and taking their time evolution allows us
to see how the state populations change during the probe cycle. Experimentally, the
probe cycle lasts roughly 3 ms. Looking at Fig. 2.9 we observe that by the end of the
probe cycle, the |F = 2,mF = ±2〉 populations drop by 20% to a population fraction
of 0.4. The |F = 2,mF = 0,±1〉 states acquire a population fraction of 0.01 and 0.05
respectively with the ground state |F = 1〉 having a near equal distribution of the
remaining fraction. To reduce the depopulation through pumping one could further
increase the probe detuning which would decrease the scattering rate. However, this
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Figure 2.8: Branching ratio diagram for |F = 2,mF = −2〉 state corresponding to
the ρ4(t) population with 45◦ polarised light in the x-basis. Here, Ξ2 corresponds to
the scattering rate of the probe beam with I/Isat = 0.6 and ∆ = −550 MHz. The
branching ratios γj,k are computed using eq. (2.88), see Appendix A.1 on page 171 for
the corresponding values.

has a diminishing return since that would also reduce our light-matter interaction due
to the fact that the second-order polarisability tensor, α(2), is dependent upon the
detuning of the probe. Alternatively, we could reduce the power of the probe which
would reduce the scattering and as a result, the depopulation rate. Again, whilst this
is also a valid strategy, the limit is imposed by the electronic and light shot noise
dominating at low light powers. The effects of probe detuning and light power will be
explored experimentally in the subsequent chapters.
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Figure 2.9: Evolution of the populations with ∆ = −550 MHz probe detuning from
|F = 2〉 → |F ′ = 1〉 on the D1 line with I/Isat = 0.6. The initial state is the statistical
mixture prepared during the pump/repump cycle. Here the probe has a 45◦ polarised
light. Here the 3 ms duration of the evolution during the probe coincides with our
experimental probe duration. Some of the colours of the populations are not visible
because they overlap with other state colour labels.
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Spin Dynamics in an external magnetic field

This chapter outlines the generalised theory of the dynamics of a radio-frequency
(rf) dressed spin-1 particle in an external magnetic field. It consists of three sections
discussing three novel and separate models which are used to describe the magnetometer
response due to the Voigt effect. All three sections carefully detail the general
assumptions, theory, scope and limitations of the proposed models. In each case, we
outline theoretical predictions which can be experimentally falsified.

3.1 Geometric interpretation of spin dynamics in
a rf-dressed field

An atom with a non-zero magnetic moment µ subjected to an external magnetic, B
field will begin to precess about that field at a Larmor frequency ωrf = γB, where γ is
the gyromagnetic ratio of the atom. If the magnetic field is small, then the magnetic
moment µ is independent from the external field and the atom acquires energy given
by

E = −µ ·B. (3.1)
If we consider the total angular momentum of the atom F = I + J with I being
the nuclear spin angular momentum and J = L + S total angular momentum of the
electron consisting of the orbital and spin angular momenta, then the Hamiltonian of
the atom in a weak external magnetic field yields

Ĥ = −µBgF
~

F̂ ·B, (3.2)

where µB is the Bohr magneton, ~ is the reduced Planck’s constant and gF is the
nuclear Landé g-factor which is given by

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1) +gI
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1) , (3.3)

30
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where we have explicitly included the effects of the magnetic moment of the nucleus.
In our case, we consider atoms interacting with a static field Bdc = Bdcez and a field
oscillating at a radio-frequency ωrf in a transverse direction Brf(t) = Brf cos(ωrft −
krf · r)ex. For weak fields, the time-dependent interaction Hamiltonian of an atom
with spin F̂ of constant magnitude can be approximated by

Ĥ = −µBgF
~

F̂ · (Brf(t, r) + Bdc) . (3.4)

Here, the spin operator F̂ is given by

F̂ =

F̂xF̂y
F̂z

 , (3.5)

where F̂i are the spin-1 matrices (see Appendix B.6.1 on page 187 and onwards for
details). Physically, the wavelength of the rf-field, λrf , is much larger than the atom
size, thus we can approximate the rf-dressing field to

Brf(t) ≈ Brf cos(ωrft)ex for λrf � r. (3.6)

After the approximations, the Hamiltonian takes the form

Ĥ = −µBgF
~

F̂ · (Brf(t) + Bdc) . (3.7)

We want to remove the time dependence and solve the Hamiltonian in the rotated
frame. Depending on the sign of the gF factor, using positive ωrf , we transform the
coordinates to a frame rotating about the z-axis with a unitary rotation operator

Û = eiωrftF̂z/~, (3.8)

where ωrf is the angular frequency of the rf-field. Note that this unitary transformation
is time dependent. As a result, the transformed Hamiltonian takes the following form
(see Appendix B.1 on page 175 for detailed evaluation)

Ĥ ′ = i~
dÛ

dt
Û † + ÛĤÛ †. (3.9)

Neglecting counter-rotating terms and applying the rotating wave approximation
(RWA), the transformed, effective Hamiltonian takes the form

Ĥeff = −µBgF
~

F̂ ·Beff . (3.10)

The effective magnetic field in this frame is given by

Beff = Bρex + (Bdc −Bres)ez, (3.11)
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a) b)

Figure 3.1: Geometrical depiction of the effective field in the rotating frame. a) The
effective field encloses an angle θ with the z-axis. An external field variation Bext

z

changes the angle θ → θ′. b) The presence of transverse external fields By and Bx also
changes the orientation of the effective field, rotating it by angles α and β, respectively.

where Bρ = Brf/2, and Bres = ±~ωrf/µBgF corresponds to a fictitious magnetic field
that defines a resonance condition for the Larmor precession. As depicted in Fig. 3.1
a), the angle enclosed by the effective field and the z-axis is

θ = π

2 − tan−1Bdc −Bres

Bρ

. (3.12)

Here the angle θ defines the direction of the effective magnetic field Beff which our
dressed state follows adiabatically. To satisfy the adiabaticity condition the rate of
change of the adiabatic field angle, |θ̇| needs to be much smaller than the effective
magnetic field such that the state can follow it [27]

|θ̇| � µBgF |Beff |/~. (3.13)

In other words, if the rate of change of the amplitude of the rf-field, Bρ, the static field
Bdc or the Bres field change faster than the |Beff | field, the state will no longer be able
to follow these changes adiabatically and as a result, will no longer be an eigenstate
of the Hamiltonian. In the rotated frame, the dressed state takes the form

|Ψrot〉 = eiθF̂y/~ |F, Fz〉 . (3.14)

Here the dressed state refers to the eigenstate of the radio-frequency dressed atom-spin
Hamiltonian. We can transform this state into the lab frame

|Ψ(t)〉 = Û−1(t) |Ψrot〉 = e−iωrftF̂z/~e−iθF̂y/~ |F, Fz〉 = R̂(t) |F, Fz〉 . (3.15)

Experimentally, the lab measurements take the form of the expectation values of our
observable operators. Thus, it is conducive to translate from the Schrödinger picture
to the Heisenberg picture where the states are constant in time and the operators
evolve in time. We can write this as follows

〈Ψ(t)| Ô |Ψ(t)〉 = 〈F, Fz| R̂(t)ÔR̂−1(t) |F, Fz〉 . (3.16)
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Using the Baker-Hausdorff Lemma [55]

eÂB̂e−Â = B̂ + [Â, B̂] + 1
2! [Â, [Â, B̂]] + ..., (3.17)

it can be shown that for a Cartesian vector operator, the corresponding Heisenberg
operator is given by a geometric rotation, i.e. (see Appendix B.2 on page 177)

Ô′(t) = R̂(t)ÔR̂−1(t) = R(t)Ô. (3.18)

If we take Ô = F̂i to be our spin operators with the definition of R̂(t) = e−iωrftF̂z/~e−iθF̂y/~,
then, the time dependent geometric rotation is given by

F̂′(t) = R̂(t)F̂R̂−1(t) = R(t)F̂ (3.19)
F̂ ′x(t)
F̂ ′y(t)
F̂ ′z(t)

 =

 cos θ cosωrft − sinωrft − sin θ cosωrft
cos θ sinωrft cosωrft − sin θ sinωrft

sin θ 0 cos θ

 ·
 F̂x
F̂y
F̂z

 ,
where R(t) = Rz(ωrft)Ry(−θ) are standard rotation matrices, namely

Rz(ωrft) =

 cosωrft − sinωrft 0
sinωrft cosωrft 0

0 0 1

 , (3.20)

Ry(−θ) =

 cos θ 0 − sin θ
0 1 0

− sin θ 0 cos θ

 . (3.21)

From the definition of the adiabatic angle θ we see that the an external magnetic field
in the z-direction will affect the spin evolution which is nothing else but an effective
rotation. The presence of transverse fields can also be represented by effective rotations
as shown in Fig. 3.1 b). Field components Bext

x and Bext
y rotate the static field about

the x, y-axes by angles β and α, respectively. Hence, we can use a sequential rotation
M(α, β) = Rx(α)Ry(β), which transforms the atomic spin operator in the laboratory
frame as

F̂′ = M(α, β)F̂ =

 1 0 0
0 cosα − sinα
0 sinα cosα

 ·
 cos β 0 − sin β

0 1 0
− sin β 0 cos β

 ·
F̂xF̂y
F̂z

 , (3.22)

where unprimed the coordinates are aligned with the actual field. The angles α and β
are given by

α = arctan
(
−Bext

y

B′ext
z

cos(β)
)
, (3.23)

β = arctan
(
Bext
x

B′ext
z

)
, (3.24)
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where B′ext
z = Bext

z +Bres +Bρ. With the small angle approximation the above reduces
to

α ≈
−Bext

y

B′ext
z

, (3.25)

β ≈ Bext
x

B′ext
z

. (3.26)

For a complete description at larger angles, we need to include the fact that the
transverse fields increase the actual static field strength to

Bdc =
√

(B′ext
z )2 + (Bext

x )2 + (Bext
y )2, (3.27)

and that the applied rf-field is not co-rotated, leading to a reduction of its effective
amplitude in the rotating frame, given by Bρ = (Brf/2)cosβ. With this, the total
rotation due to external fields in the lab frame is given by

F̂′′Lab = M(α, β)R(t)F̂ = Rx(α)Ry(β)Rz(ωrft)Ry(−θ)F̂. (3.28)

If we let sν (cν) to stand for sin(ν) (cos(ν)) with ν ∈ {α, β, θ, ωrft} the transformed
operators take the following form

F̂ Lab
x (t) = (cωrftcβcθ + sβsθ)F̂x − sωrftcβF̂y − (cωrftcβsθ + cθsβ)F̂z, (3.29)
F̂ Lab
y (t) = (cβsαcθ + (cωrftsαsβ + cαcθsωrft))F̂x − (sωrftsαsβ − cωrftcα)F̂y

− (sαcβcθ + sθ(cωrftsαsβ + sωrftcα))F̂z, (3.30)
F̂ Lab
z (t) = ((sωrftsαcθ − cωrftcαsβ)− cαcβsθ)F̂x + (sωrftcαsβ + cωrftsα)F̂y

+ (cαcβcθ + (cωrftcαsβ − sωrftsαsθ))F̂z. (3.31)

3.1.1 Linear Birefringence of the rf-dressed spin
In order to detect the spin evolution due to the presence of external magnetic fields,
we incorporate the formalism of the light-matter interaction discussed in the previous
chapter. The interaction between the atomic medium and the off-resonant light field
leads to linear or circular birefringence which depends on the atomic-spin dependent
polarisability tensor. After the propagation through the medium, neglecting absorption
and assuming sufficiently small phase angles, the resulting Voigt rotation can be
described by Stokes operators〈

Ŝ ′z(t)
〉

= g
(2)
F SynF

〈
F̂ 2
x (t)− F̂ 2

y (t)
〉
, (3.32)

where Ŝ ′z represent the polarisation’s ellipticity as photon flux imbalances of the output
light, measured in linear basis. The coupling strengths g(k)

F depend on light detuning,
interaction cross section, and the rank-k components of the polarisability tensor. In
these equations, we assume interaction with nF atoms in the same spin state within
one hyperfine F -manifold and neglect dispersive back-action on the atoms (Stark
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a) b)

Figure 3.2: Spectral decomposition of Voigt rotation proportional to
〈
F̂ 2
x − F̂ 2

y

〉
, with

harmonics n = 1 a), n = 2 b) given by eq. (3.38) where θ is given in eq. (3.12).

shifts) [27].

We square the operators,
(
F̂ Lab
i (t)

)2
, obtained in eqs. (3.29-3.31) on page 34 and

substitute them into the expression for the Voigt rotation eq. (3.32). Evaluating this
we obtain spectral decomposition of the signal which leads to

〈
Ŝ ′z(t)

〉
= 1

2g
(2)
F SynF~2ξF (Fz)

2∑
n=0

hn(θ)einωrft + c.c., (3.33)

where
〈F, Fz| F̂ 2

x − F̂ 2
y |F, Fz〉 = ~2(F (F + 1)− 3F 2

z )/2 = ~2ξF (Fz). (3.34)

The spectral amplitudes, hi vary as

h0 = 1 + 3 cos 2θ
4

(
cos2β

2 −
(3− cos 2β) cos 2α

4

)
, (3.35)

h1 =
(

1
2 cosα sin 2β ∓ i

4 sin 2α(3− cos 2β)
)

sin 2θ, (3.36)

h2 = −
(

1
4 cos2 α(3− cos 2β) + 1

2 cos 2β ∓ i

2 sinα sin 2β
)

sin2 θ. (3.37)

In the small external field approximation, where the transverse fields are small, i.e.
α, β ≤ 1, the spectral components hn can be reduced to the following

(h0, h1, h2)T (θ) ≈

 0
(β ∓ iα) sin 2θ
− sin2 θ

 . (3.38)

The principal behaviour of these functions is shown in Fig. 3.2. The transverse
field components are mapped onto the quadratures of the first harmonic β − iα ≈
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a) b)

Figure 3.3: Magnetometer dispersive and resonant profiles at different radio-frequency
field amplitudes. As can be observed increasing the rf-field amplitude increases the
linewidth of the resonance profile as well as decreasing the steepness of the dispersive
curves.

(Bext
x + iBext

y )/B′ext
z , with a dispersive shape and an oscillation amplitude proportional

to sin 2θ. Maximal amplitude is reached at θ = π/4 and θ = 3π/4, i.e. when the
static field is Bdc = B±sense = Bres ±Bρ. The maximum sensitivity and approximately
linear response to Bext

z is also met at Bdc = B±sense. Hence, the Voigt rotation enables
detection of all three magnetic components by evaluating the first and second signal
harmonics.

3.1.2 Magnetometer response to external fields (Geometric
Model)

In order to measure external magnetic fields, we extract three quadratures from the
first and second harmonic signals. We separate the first harmonic, h1 into real and
imaginary parts, and evaluate the real part of the second harmonic, h2. The result is
given by

hx =Re(h1) = 1
4(3− cos 2β) sin 2α sin 2θ, (3.39)

hy =Im(h1) = 1
2 cosα sin 2β sin 2θ, (3.40)

hz =Re(h2) = −1
4
(
(3− cos 2β) cos2 α + 2 cos 2β

)
sin2 θ. (3.41)

The characteristic shape of the functions hx, hy and hz are shown in Fig. 3.4. For
the Voigt effect measurements where we have small longitudinal and transverse field
perturbations due to external field sources, i.e. Bext

x,y,z � B+
sense, we work on the high

field side of the rf resonance, by applying a field in the z-direction of strength

B+
sense(α = β = 0) = Bres +Bρ, (3.42)
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a) b)

Figure 3.4: Atomic response, mapping the external magnetic field vectors onto
harmonic signal components on the sensitive field point B+

sense = Bres + Bρ. a)
Theoretical response of the signal quadratures at frequency ωrf , as a function of the
transverse field components Bext

x and Bext
y for constant Bext

z . b) Full 3-dimensional
response, including the real part of the signal amplitude at frequency 2ωrf , which
allows for the measurement of the longitudinal field Bext

z . Here the insets in a) and
b) show the OPM response in the case where the external fields are small described
by equations (3.43-3.45). The response in the insets is obtained by linearly sweeping
Bext
x,y fields for a given Bext

z where Bext
x,y,z � B+

sense.

which enables full 3D vector field sensitivity. At this setting, the explicit second order
Taylor expansion of the three relevant signal quadratures is given by

hx ≈+
(

1
B+

sense
− Bext

z

B2
sense

)
Bext
x , (3.43)

hy ≈−
(

1
B+

sense
− Bext

z

B2
sense

)
Bext
y , (3.44)

hz ≈−
1
2 + Bext

z

Brf
−
(
Bext
z

Brf

)2

+ 2B+
sense +Brf

4B2
senseBrf

(Bext
x )2 + B+

sense +Brf

2B2
senseBrf

(Bext
y )2, (3.45)

where Bext
i components correspond to the measured external magnetic fields. According

to this model, the sensitivity of the magnetometer to the external magnetic fields can
be tuned. One of the parameters to tune this sensitivity is the amplitude of the radio-
frequency dressing field, Bρ. Increasing the radio-frequency field amplitude increases
the linewidth of the 2ωrf resonance profile which in turn reduces the slope of the
resonance at the B+

sense point, see Fig. 3.3. Moreover, this reduces the sensitivity in the
transverse field sensing directions which are mapped onto the ωrf dispersive resonance.
The reduction in sensitivity to all three components can be seen more clearly in the low
external field perturbation limit given in equations (3.43-3.45) where increasing the
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rf-field amplitude decreases the signal quadrature values in hx, hy and hz for the same
external fields. Another parameter that tunes the sensitivity of the OPM, in this case,
only in the transverse field directions i.e. the hx and hy components is the frequency
of the dressing field, ωrf . In order to achieve sensitive field measurements we need
to tune the OPM B+

sense = Bres +Bρ, however, the resonance field Bres = ~ωrf/µBgF
depends linearly on the frequency of the dressing field. Increasing the rf-dressing field
frequency increases Bres field and consequently B+

sense which in effect reduces the hx,y
signal quadrature values since they are inversely proportional the B+

sense field. The
strategy to increase the sensitivity of the OPM in the transverse field directions would
be to simply reduce the dressing field frequency, ωrf , which effectively increases the
magnitude of the geometric angles α and β for the transverse fields. However, this
poses a limitation on the bandwidth of the magnetometer as well as efficient state
preparation process because the spin coherence lifetime becomes comparable to the
rf-field time period. This will be discussed in more detail in the following chapters.
On the other hand, increasing the frequency poses an upper limit where the effects of
the second order Zeeman effect will become relevant since the sensitive field point,
B+

sense = Bres +Bρ, becomes large enough resulting in non-linear energy level splitting.

3.1.3 Scope and Limitations of the Geometric model
The geometric model described in this section gives a rough estimation of the mag-
netometer response to various field parameters. It predicts that higher rf-dressing
frequencies linearly decrease the OPM response in the transverse field directions
as well as the fact that at higher rf-dressing amplitudes, the OPM resonance and
dispersive curves broaden further decreasing the OPM sensitivity to transverse and
longitudinal fields. Moreover, we find that at higher transverse and longitudinal fields,
the orthogonality between the field mapping quadratures becomes compromised and,
as a result, a characteristic ovoid shape is observed when the field scan range is
comparable to B+

sense. For low external fields, the model predicts linear response, ideal
for magnetic field measurements.

Despite a number of assumptions that have been made to derive this model, we
find that it gives us a broad understanding of the various properties of the system.
However, it may be hiding some important details in explaining the experimental
results. One of the assumptions that we have made in this model is that we are
dealing with pure quantum states. This is not the case since (as will be discussed
in later chapters) the state that we prepare is a mixed state in the hot vapour case.
Furthermore, the assumed choice of the input state may not be fully accurate since the
model gives no description on the state preparation process with various decoherence
effects due atomic collisions, gradient fields, light power, temperature effects etc. This
makes it difficult to assess the contribution these important parameters may have and
how they influence the OPM response over a range of values that may be present in
the experiment. Moreover, another important assumption that we have made in our
model is that our prepared dressed-state follows the effective field Beff adiabatically
allowing us to define the adiabatic angle θ. In reality, this assumption is valid only
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in cases where the rate of change of the effective field Beff is much smaller than the
Larmor frequency of precession, namely

|θ̇| � µBgF |Beff |/~. (3.46)
In the next section, we develop an approach which takes into account of most of
the effects which we have neglected so far. The model is based on the Heisenberg
equation of motion of the atomic spin F̂ which includes phenomenological state
preparation/pumping terms as well as decoherence effects due to collisions and gradient
fields.

3.2 Heisenberg interpretation of spin dynamics in
a rf-dressed field

3.2.1 The Hamiltonian of a Spin in a radio-frequency dressed
field

We begin with the same assumption outlined in the previous section about the spin-field
interaction Hamiltonian

Ĥ = −µBgF
~

F̂ ·B. (3.47)

In the radio-frequency dressed scenario, we set the magnetic field to have the following
form

B = (Brf cosωrft+Bext
x )ex +Bext

y ey + (Bdc +Bext
z )ez, (3.48)

where Brf is the amplitude of the rf-field and Bdc is the static field along the longitudinal
direction which are experimentally controlled. Additionally, we have the external
fields Bext

i with i = x, y and z, which originate from external sources. Substituting the
expression for the field and letting g′F = gF/~ and Ωi = µBg

′
FBi with i = rf, dc, x, y

and z the Hamiltonian takes the following form
Ĥ(t) = (Ωrf cos(ωrft) + Ωext

x )F̂x(t) + Ωext
y F̂y(t) + (Ωdc + Ωext

z )F̂z(t). (3.49)
We want to understand how the spin operators evolve in time subject to these external
fields, i.e. we want to obtain a time dependent equation of motion of the spin operators,
since they are our experimental observables. To do this, we apply the formalism of
the Heisenberg representation

dF̂i(t)
dt

= − i
~
[
F̂i(t), Ĥ(t)

]
, (3.50)

which after evaluation we obtain
dF̂x(t)
dt

= −(Ωdc + Ωext
z )F̂y(t) + Ωext

y F̂z(t), (3.51)

dF̂y(t)
dt

= (Ωdc + Ωext
z )F̂x(t)− (Ωrf cos(ωrft) + Ωext

x )F̂z(t), (3.52)

dF̂z(t)
dt

= −Ωext
y F̂x(t) + (Ωrf cos(ωrft) + Ωext

x )F̂y(t). (3.53)
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a) Collisions b) Pumping

Figure 3.5: a) Due to the thermal motion of the atoms, there will be collisions between
the atoms themselves as well as the collisions between the atoms and the cell walls.
These two processes introduce decoherence by depolarising the atoms from the initially
prepared state. b) Atoms, initially in a thermal state are optically pumped in order
to make the spin precession sensitive to the external magnetic fields. The pumping
may have a time dependent and arbitrary intensity profile which influences the final
atomic state to which the atoms will be prepared.

The above system of equations can be conveniently expressed in the matrix form∂tF̂x(t)∂tF̂y(t)
∂tF̂z(t)

 =

 0 −Ωdc − Ωext
z Ωext

y

Ωdc + Ωext
z 0 −Ωrf cos(ωrft)− Ωext

x

−Ωext
y Ωrf cos(ωrft) + Ωext

x 0

 ·
F̂x(t)F̂y(t)
F̂z(t)

 ,
(3.54)

which we can write in a more compact form

dF̂(t)
dt

∣∣∣∣∣
coher

= (B0(t) + B(0)
ext)F̂(t), (3.55)

where

B0(t) =

 0 −Ωdc
Ωdc 0 −Ωrf cos(ωrft)
0 Ωrf cos(ωrft) 0

 , (3.56)

B(0)
ext =

 0 −Ωext
z Ωext

y

Ωext
z 0 −Ωext

x

−Ωext
y + Ωext

x 0

 . (3.57)

This equation of motion governs the dynamics of the spin in a radio-frequency dressed
field and can be solved using the Floquet expansion which will be discussed in detail
in the follow up sections. However this picture is not complete since experimentally,
a number of processes including the pumping cycle and collisions affect the spin
dynamics and therefore will influence the magnetometer response.

3.2.2 Spin dynamics with Collisions and Pumping
The most common approach used to describe the evolution of the spin dynamics
is through the Bloch equations [56]. It is a powerful phenomenological model that
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takes into account pumping and decoherence of precessing spins. For a polarised spin
Pi =

〈
F̂i
〉

the optical Bloch equation of motion is given by

dP
dt

= γB×P− 1
T2

(Pxex + Pyey)−
1
T1

(Pz − P0), (3.58)

where γ is proportional to the Larmor frequency and the polarisation vector is
P = (Px, Py, Pz) with Pi =

〈
F̂i
〉
. The decoherence T1 accounts for relaxation of the

spins along the longitudinal direction from magnetic field gradient, collisions with the
walls and atoms that are pumped with spin polarisation P0. From the results derived
in our light-matter interaction chapter, solving the Bloch equations would allows us
to model the magnetometer response for the Faraday effect〈

Ŝout
x

〉
= −g(1)

F SynF
〈
F̂z
〉
. (3.59)

However, the observables that determine the Voigt effect are not linear like in the
Faraday effect, but instead are bi-linear

〈
F̂ 2
i (t)

〉
and so their dynamics cannot be

modelled using the Bloch equations. Thus, we need a new approach in order to see
how the decoherence and pumping enter the equations of motion of the second order
moments.

We begin to describe our approach by first starting with decoherence effects. Thermal
atoms colliding in a space of finite volume (without any buffer gases) have ballistic
trajectories and occasionally collide with each other as well as the cell walls. These
collisions result in the atomic spin depolarisation. The energy provided by the thermal
bath is driving these collisions which in turn dissipate this energy - in other words,
there exists a fluctuation-dissipation type process which is random by nature. We can
model this random process using the Langevin equation of motion [57]. We take the
spin operator term and embed it into a large reservoir which causes the system to relax
due to the interaction with the Langevin forces which in our case are the collisions
with the assumption that they can be modelled by a pure white noise process. Thus,
the Langevin forces of our operators can be written as follows (excluding the coherent
spin dynamics terms) [32,57]:

dF̂(t)
dt

∣∣∣∣∣
Γrel

= −ΓrelF̂(t) + F̂(t), (3.60)

where the Langevin force satisfies the following relations〈
F̂(t)

〉
= 0, (3.61)〈

F̂(t)F̂(t′)
〉

= Γrelδ(t− t′), (3.62)
with the relaxation matrix given by

Γrel =

Γx 0
0 Γy 0
0 0 Γz

 , (3.63)
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Figure 3.6: In the Voigt effect measurements, the state preparation process results in
a mixed state with atoms accumulating in the extreme ends of the their corresponding
hyperfine states. This prepared state has a mean value of

〈
F̂z(t)

〉
= 0 so the dynamics

described by the first order equation of motion would not be able to give us useful
information about the magnetometer response.

where the relaxation processes in general have relaxation rates that are different in
transverse and longitudinal directions. Commonly it is considered that the transverse
direction is affected equally by spin exchange collisions such that Γx = Γy = Γ2. On
the other hand, processes like wall collisions, decoherence induced by the pump and
magnetic field gradients, may relax the longitudinal direction at a different rate, given
by Γz = Γ1 [49, 56].

To describe the pumping, we employ a similar model based also on Langevin dynamics
where we introduce some average input state,

〈
F̂in

〉
(state that we ideally expect to

prepare) that is not dependent on the input dynamics with a randomly fluctuating
force F̂ in(t) which causes spin flips satisfying the following relations〈

F̂
in(t)

〉
= 0, (3.64)

〈
F̂

in(t)F̂ in(t′)
〉

= Γp(t)δ(t− t′). (3.65)

The Langevin equation for pumping then takes the form

dF̂(t)
dt

∣∣∣∣∣
Γp

= −Γp(t)
(
F̂(t)−

〈
F̂in

〉)
+ F̂ in(t), (3.66)

where Γp(t) is a time dependent pumping rate. The operator F̂in is given simply by
the spin-1 angular momentum operators:

F̂in =

F̂x(0)
F̂y(0)
F̂z(0)

 . (3.67)
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By combining the coherent, pumping and collisional spin dynamics, we obtain the full
equation of motion of the spin operators

dF̂(t)
dt

∣∣∣∣∣
Tot

= dF̂(t)
dt

∣∣∣∣∣
coher

+ dF̂(t)
dt

∣∣∣∣∣
Γp

+ dF̂(t)
dt

∣∣∣∣∣
Γrel

. (3.68)

Substituting in the terms yields

dF̂(t)
dt

∣∣∣∣∣
Tot

= (B0(t) + B(0)
ext)F̂(t)− Γp(t)

(
F̂(t)−

〈
F̂in

〉)
+ F̂ in(t)− ΓrelF̂(t) + F̂(t).

(3.69)
In principle, solving this equation of motion in some conditions, whether being in the
steady state or time dependent and dynamical form it would allow us to extract the
necessary information of the spin dynamics of the magnetometer. This would mean
that to solve the equation above we would need to choose some state by taking the
expectation value〈

dF̂(t)
dt

〉
= (B0(t) + B(0)

ext)
〈
F̂(t)

〉
− Γp(t)

(〈
F̂(t)

〉
−
〈

F̂in
〉)

+
〈
F̂

in(t)
〉

− Γrel
〈
F̂(t)

〉
+
〈
F̂(t)

〉
. (3.70)

As a consequence of the Langvein dynamics, the stochastic forces are zero, and so the
equation of motion above reduces to〈

dF̂(t)
dt

〉
= (B0(t) + B(0)

ext)
〈
F̂(t)

〉
− Γp(t)

(〈
F̂(t)

〉
−
〈

F̂in
〉)
− Γrel

〈
F̂(t)

〉
. (3.71)

Which corresponds to the Bloch equation (3.58) on page 41. However, recall that the
measurement of the Voigt effect in terms of Stokes’ operators is given by〈

Ŝ ′z(t)
〉

= g
(2)
F SynF

〈
F̂ 2
x (t)− F̂ 2

y (t)
〉
, (3.72)

and in general
〈
F̂i(t)

〉2
6=
〈
F̂ 2
i (t)

〉
. As a result, we cannot use the equation of motion

derived above which is typically used in the Faraday type magnetometry in order to
model the magnetometer response in the Voigt configuration. We need to be able to
derive the second order moment equation which governs the time dependent dynamics
of
〈
∂tF̂

2
i (t)

〉
.

3.2.3 Covariance Matrix and the Second Order Moments
Experimentally, our observables correspond to the second moments of the angular
momentum operators i.e. in the lab frame the measurements have the form of
〈F̂ 2

x (t) − F̂ 2
y (t)〉. The autocorrelation function σ(t, t + τ) provides the information

about the correlation of the second moments and how they evolve in time. In our case,
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a) b) c)

Figure 3.7: Three components that govern the total spin dynamics. a) Spin-Field
interaction. b) Spin-Pump Field interaction. c) Spin Depolarisation through pumping
and atomic collisions.

we define the autocorrelation function function in terms of our angular momentum
operators:

σ(t, t+ τ) =
〈

F̂(t) F̂T (t+ τ)
〉

=


〈
F̂x(t)F̂ T

x (t+ τ)
〉 〈

F̂x(t)F̂ T
y (t+ τ)

〉 〈
F̂x(t)F̂ T

z (t+ τ)
〉〈

F̂y(t)F̂ T
x (t+ τ)

〉 〈
F̂y(t)F̂ T

y (t+ τ)
〉 〈

F̂y(t)F̂ T
z (t+ τ)

〉〈
F̂z(t)F̂ T

x (t+ τ)
〉 〈

F̂z(t)F̂ T
y (t+ τ)

〉 〈
F̂z(t)F̂ T

z (t+ τ)
〉
 . (3.73)

Since we are interested in the pure second moments and not the time correlation, we
can set τ = 0 which gives a simple expression for the matrix elements

σij(t) =
〈
F̂i(t) F̂ T

j (t)
〉
, (3.74)

where we can see that now our autocorrelation matrix contains the terms
〈
F̂ 2
x (t)

〉
and

〈
F̂ 2
y (t)

〉
that are contained in our expression for the Voigt effect. In addition, we

want to understand the dynamics of the time evolution of the covariance matrix since
it contains time dependent fields such as the rf-field and the pumping. To get the
dynamics of the correlation function we simply take the time derivative of it. From
the spin dynamics we can determine the dynamics of the second moment

dσ(t)
dt

=
〈
dF̂(t)
dt

F̂T (t)
〉

+
〈

F̂(t) dF̂
T (t)
dt

〉
. (3.75)

Substituting eq.(3.69) into the above expression yields

dσ(t)
dt

= B(t)σ(t) + σ(t)BT (t)− Γp(t)
[
2σ(t)−

〈
F̂in

〉〈
F̂T (t)

〉
−
〈
F̂(t)

〉〈
F̂inT

〉]
+
〈
F̂

in(t) F̂T (t)
〉

+
〈
F̂(t) F̂ inT (t)

〉
+
〈
F̂(t) F̂T (t)

〉
+
〈

F̂(t) F̂T (t)
〉
, (3.76)
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where we have defined B(t) = B0(t) + B(0)
ext − Γrel. For states with

〈
F̂in

〉
= 0 (which

are the kind of states we prepare in the experiment), the equation above reduces to
(see Fig. 3.7 for illustration)

dσ(t)
dt

= B(t)σ(t) + σ(t)BT (t)︸ ︷︷ ︸
Coherent

− 2Γp(t)σ(t)︸ ︷︷ ︸
Pumping

+
〈
F̂

in(t) F̂T (t)
〉

+
〈
F̂(t) F̂ inT (t)

〉
︸ ︷︷ ︸

Pump Noise

+
〈
F̂(t) F̂T (t)

〉
+
〈
F̂(t) F̂T (t)

〉
︸ ︷︷ ︸

Thermal Noise

. (3.77)

The first terms on the right hand side of the equation above containing B(t), describe
the coherent dynamics between the spin and the magnetic field. The second expres-
sion containing Γp(t) models the dynamics of the pumping process. The last two
terms of the equation can be interpreted as the stochastic contributions due to the
noise generated during the pumping process and the thermal state contribution from
depolarised atoms which is a consequence of collisional effects.

Whilst we know the form of the coherent and pumping terms of the spin dynamics,
the last two terms describing the noise induced due to the pump and collisions are
unknown to us. Therefore, we need to find their exact contribution which we shall do
in the following sections.

3.2.4 Spin Operator Collisional Diffusion Matrix
We want to derive an expression for the thermal noise component (which acts as a
momentum diffusion coefficient) in the second moment equation of motion which takes
the form

D =
〈
F̂(t) F̂T (t)

〉
+
〈

F̂(t) F̂T (t)
〉
. (3.78)

As described in the previous section, the spin relaxation process can be modelled using
the Langevin equation of motion

dF̂(t)
dt

∣∣∣∣∣
Γrel

= −ΓrelF̂(t) + F̂(t), (3.79)

where as before the relaxation matrix takes the form

Γrel =

Γx 0
0 Γy 0
0 0 Γz

 , (3.80)

and the stochastic force operator satisfies〈
F̂(t)

〉
= 0, (3.81)
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〈
F̂ i(t)F̂ j(t′)

〉
= (Γ̃)ijδ(t− t′), (3.82)

where the last expression corresponds to the relaxation matrix associated to the
correlation matrix of the stochastic operators. This correlation matrix becomes
relevant when the dynamics of the second order moment need to be considered.
Here Γ̃ is our diffusion matrix which we will now begin to calculate. Since the
linear birefringence of the Voigt effect depends on the square operator dynamics, the
stochastic effects, which are given by the mean square value, are not zero and therefore
need to be accounted for in the spin dynamics. The Langevin equation of motion has
a general solution of the form [57]:

u(t) = u(0)e−γt + e−γt
∫ t

0
eγt
′Fi(t′)dt′. (3.83)

Thus, if we take our operator equations from the above, we obtain the following
general solution:

F̂i(t) = F̂i(0)e−Γit + e−Γit
∫ t

0
eΓit

′F̂(t′)dt′. (3.84)

We assume that the reservoir has no memory i.e. it has a Markov property which is
satisfied by the following relation

〈F̂ i(t)F̂ j(t)〉 = Γijδ(t− t′). (3.85)

Here we adopt the approach from [33], to determine the diffusion matrix by integrating
the solution of the spin operators given by eq. (3.79). Using this approach and the
standard angular momentum commutator relations[

F̂i(t), F̂j(t)
]

= εijkF̂k(t), (3.86)

where εijk is the Levi-Civita tensor, after some algebra (see Appendix B.4 on page 181
for detailed calculation), the full Γ̃-matrix reads:

Γ̃ =

Γxx Γxy Γxz
Γyx Γyy Γyz
Γzx Γzy Γzz

 =

 2Γxσ0
xx (Γx + Γy)σ0

xy (Γx + Γz)σ0
xz

(Γx + Γy)σ0
yx 2Γyσ0

yy (Γy + Γz)σ0
yz

(Γx + Γz)σ0
zx (Γz + Γy)σ0

zy 2Γzσ0
zz

 , (3.87)

which we can write in a simplified form

Γ̃ = Γrelσ0 + σ0Γrel, (3.88)

where we have defined
〈
F̂i(t)F̂ T

j (t)
〉

= σij . The Γ̃ matrix is analogous to the diffusion
coefficient which characterises the fluctuations of the Langevin forces acting on the
operators F̂i with Γi characterising the dissipation force acting on F̂i [58]. In general
each direction is subjected to different decoherence rates. As a result, it is commonly
considered that the transverse direction is affected equally by spin exchange collisions
such that Γx = Γy = Γ2. On the other hand, processes like wall collision, decoherence
induced by the pump and magnetic field gradients, may relax the longitudinal direction
at a different rate, given by Γz = Γ1.
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Now we can substitute the solution to the first order moment spin dynamics into the
momentum diffusion expression

D =
〈
F̂(t) F̂T (t)

〉
+
〈

F̂(t) F̂T (t)
〉
, (3.89)

with

F̂(t) =
∫ t

t0
dt′

dF̂(t′)
dt′

∣∣∣∣∣
Tot

, (3.90)

substituting eq. (3.69) and integrating gives

F̂(t) =F̂(t0) +
∫ t

t0
dt′[B(t′) + Bext(0)− Γp(t′)]F̂(t′)

+
∫ t

t0
dt′
[
Γp(t′)

〈
F̂in

〉
+ F̂ in(t′)

]
+
∫ t

t0
dt′F̂(t′). (3.91)

We can substitute this solution into the momentum diffusion eq. (3.89) terms
〈
F̂(t)FT (t)

〉
=
〈
F̂(t0)F̂T (t)

〉
+
∫ t

t0
dt′
[
B(t′) + B(0)

ext − Γp(t′)
] 〈

F̂(t′)F̂T (t)
〉

+
∫ t

t0
dt′Γp(t′)

〈
F̂in

〉〈
F̂
T (t)

〉
+
∫ t

t0
dt′
〈
F̂

in(t′)F̂T (t)
〉

+
∫ t

t0
dt′
〈
F̂(t′)F̂T (t)

〉
.

(3.92)

We note that for white noise type stochastic operator, the correlation function between
the stochastic operator and an observable Ô is zero, i.e.〈

Ô(t′)F̂T (t)
〉

=
〈
Ô(t′)

〉〈
F̂
T (t)

〉
= 0, ∀ [t, t′] . (3.93)

Physically, this is due to the fact that the system is embedded into an infinite size
and memoryless bath, which produces the random force fluctuations. If the system
possessed non-Markov property meaning that it had memory, the correlation between
the observable and the stochastic forces would be non-zero. In other words, the
interaction between the observable quantity Ô and the bath has no effect on the
statistical properties of the bath. Additionally, the correlation between separate baths
is also zero, thus 〈

F̂
in(t′)F̂T (t)

〉
= 0, ∀ [t, t′] . (3.94)

Once again, the stochastic processes with different physical origins are statistically
independent of each other and mutually exclusive, resulting in no effective correlations
between them since the two baths are not coupled through any physical process. We
further note that for Langevin type forces

〈
F̂(t)

〉
= 0. With this, eq. (3.92) reduces to

〈
F̂(t)F̂T (t)

〉
=
∫ t

t0
dt′
〈
F̂(t′)F̂T (t)

〉
. (3.95)
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The operation for the transposed element is identical. This correlation function satisfies
the Markov property which we derived in eq. (B.117). Substituting it for both terms
gives (see eq. B.84 on page 181)〈
F̂(t) F̂T (t)

〉
+
〈
F̂(t)F̂T (t)

〉
=
∫ t

t0
dt′Γ̃(t) δ(t′ − t) +

∫ t

t0
dt′Γ̃(t′) δ(t− t′). (3.96)

Now we apply a change of variables t′′ = t′ − t for the first integral and t′′ = t− t′ for
the second integral. This yields〈
F̂(t) F̂T (t)

〉
+
〈
F̂(t)F̂T (t)

〉
=
∫ t−t0

0
dt′′Γ̃(t) δ(t′′) +

∫ 0

−(t−t0)
dt′′Γ̃(t′′ + t) δ(t′′).

(3.97)

In our case, the relaxation process which models the rate of atomic collisions is a time
independent process Γ̃(t)→ Γ̃ hence, the above integral reduces to〈

F̂(t) F̂T (t)
〉

+
〈
F̂(t)F̂T (t)

〉
= Γ̃ = Γrelσ0 + σ0Γrel. (3.98)

Now, since the collisions depolarise our prepared state, we make the assumption that
this depolarised state is thermal. In other words we let σ → σ0 such that

ρ̂0 = 1
2F + 1


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1

 , (3.99)

with the thermal second order matrix element given by

σij0 = Tr
[
ρ̂0F̂iF̂j

]
. (3.100)

Thus, the relaxation term of the second moment reads

Γ̃ =
〈
F̂(t) F̂T (t)

〉
+
〈

F̂(t)F̂T (t)
〉

= Γrelσ0 + σ0Γrel. (3.101)

3.2.5 Spin Operator Pumping Diffusion Matrix
The next term we want to find a form for is the term due to the noise induced by the
pumping process which results in random spin flips. In eq. (3.77) it is given by

Dp =
〈
F̂

in(t) F̂T (t)
〉

+
〈

F̂(t) F̂ inT (t)
〉
. (3.102)

As before, using the solution given in eq. (3.91) and substituting into the expression
above and expanding (showing the work on the second term) gives〈

F̂(t)F̂ inT (t)
〉

=
〈
F̂(t0)F̂ inT (t)

〉
+
∫ t

t0
dt′
[
B(t′) + B(0)

ext − Γp(t′)
] 〈

F̂(t′)F̂ inT (t)
〉

+
∫ t

t0
dt′Γp(t′)

〈
F̂in

〉〈
F̂
inT (t)

〉
+
∫ t

t0
dt′
〈
F̂

in(t′)F̂ inT (t)
〉

+
∫ t

t0
dt′
〈
F̂(t′)F̂ inT (t)

〉
.

(3.103)



3.2. Heisenberg interpretation of spin dynamics in a rf-dressed field 49

Following the same reasoning, we assume the stochastic forces that produce random
spin flips have the Markov property and are memoryless with no correlations between
the observables Ô and the stochastic terms. In addition, other stochastic processes
that are present in the system, but have different physical origin (i.e. collisions) are
mutually exclusive and do not correlate, this implies〈

F̂
inT (t)

〉
= 0, (3.104)〈

F̂(t0)F̂ inT (t)
〉

=
〈
F̂

in(t)F̂T (ti)
〉

= 0, (3.105)〈
F̂(t′)F̂ inT (t)

〉
=
〈
F̂

in(t)F̂T (t′)
〉

= 0. (3.106)

Thus, the spin operator pumping diffusion matrix reduces to

Dp =
∫ t

t0
dt′
〈
F̂

in(t)F̂ inT (t′)
〉

+
∫ t

t0
dt′
〈
F̂

in(t′)F̂ inT (t)
〉
. (3.107)

Using the correlation function derived in eq. (B.117) and substituting it for both terms
given in the above〈
F̂

in(t) F̂T (t)
〉

+
〈
F̂(t)F̂ inT (t)

〉
=
∫ t

t0
dt′Γ̃p(t) δ(t′ − t) +

∫ t

t0
dt′Γ̃p(t′) δ(t− t′).

(3.108)

Applying a change of variables t′′ = t′ − t (and t′′ = t− t′ for the second integral) we
have

Dp =
∫ t−t0

0
dt′′ Γ̃p(t)δ(t′′) +

∫ 0

−(t−t0)
dt′′ Γ̃p(t′′ + t)δ(t′′). (3.109)

Now, our diffusion matrix for the spin flips is time dependent since it is dependent
upon the rate of optical pumping Γp(t). For a time dependent case it is then convenient
to apply an ε > 0 around zero, for a proper definition of the integral with a δ(t)
function, such that

Dp =
∫ t−t0

ε
dt′′ Γ̃p(t)δ(t′′) +

∫ ε

−ε
dt′′ Γ̃p(t)δ(t′′) +

∫ −ε
−(t−t0)

dt′′ Γ̃p(t′′ + t)δ(t′′)

+
∫ ε

−ε
dt′′ Γ̃p(t′′ + t)δ(t′′). (3.110)

From this, the first and third terms are zero since they are evaluated in a range of
time where δ(t′′) = 0. The only non-zero contribution is given by

Dp =
∫ ε

−ε
dt′′ [Γ̃p(t)δ(t′′) + Γ̃p(t′′ + t)δ(t′′)], (3.111)

and consequently, we have

Dp =2Γ̃p(t) = (Γp(t)σin + σinΓp(t)). (3.112)
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Here Γp(t) is the pump matrix rate, which can take any form in time. For convenience,
we can express this arbitrary pump rate as harmonic superposition, namely

Γp(t) = Γ(0)
p +Γ(1)

p eiωrft + Γ(−1)
p e−iωrft + Γ(2)

p e2iωrft + Γ(−2)
p e−2iωrft + · · · . (3.113)

The spectral distribution and the values of these coefficients depends on the pumping
profile that is used to prepare the atomic state, such that for example, for a square
wave intensity profile of frequency ωrf and duty cycle, d, the coefficients take the form

Γ(0)
p = Γb d, (3.114)

Γ(n)
p = Γ(−n) = Γb

nπ
sin(nπd). (3.115)

where Γb is the amplitude of the pumping rate. For completeness, the pumping rate
matrix is simply given by

Γp(t) = Γp(t)I, (3.116)

where I is the identity matrix. Using the expression above and combining it with
eq. (3.112), the diffusion matrix for spin flips is given by

Dp = 2Γp(t)Iσin. (3.117)

In the ideal scenario, the pumping process prepares the state such that it is sensitive
to the external magnetic fields. In our experiment, we choose such a state to be a
mixed state which when prepared in the x-basis has the following density operator
form

ρ̂xin =



1
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

2

 . (3.118)

Now the light propagation is along the z-basis so we need to transform the above state.
In order to transform to another basis, we need to perform a unitary transformation
on ρ̂xin

ρ̂zin = Û †ρ̂xinÛ, (3.119)

where
Û = |ψ〉z 〈ψ|z , (3.120)

which is an outer product of the normalised eigenvectors of the F̂x matrix in the
z-basis. The unitary transformation has the form:

Û =



1
4

1
2

√
6

4
1
2

1
4

−1
2 −

1
2 0 1

2
1
2√

6
4 0 1

2 0
√

6
4

−1
2

1
2 0 −1

2
1
2

1
4 −1

2

√
6

4 −1
2

1
4

 . (3.121)
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Thus, the stochastic nature of the interaction between the pump beam and the input
state will flip such a spin. In this case, we define our second order moment input state
σin matrix element

σijin =
〈
F̂i(0)F̂ T

j (0)
〉

= Tr
[
ρ̂zinF̂iF̂j

]
, (3.122)

where the ρ̂zin is expressed in the basis where the measurement takes place. Hence, the
final diffusion matrix form that models random spin flips due to the pump process is

Dp = 2Γp(t)Iσin. (3.123)

We have derived the expressions for the decoherence effects due to atomic collisions
and pumping based on the Langevin dynamics where the stochastic forces have a zero
mean value and a delta function correlation which is stationary in time. Moreover,
the random forces follow a Gaussian distribution of values. The second order moment
equation is now fully defined. The next steps are to solve it with some well defined
boundary conditions that are experimentally meaningful.

3.2.6 Spin Dynamics in the Liouville Space
The complete second order moment dynamics reads

dσ(t)
dt

= B(t)σ(t) + σ(t)BT (t)− 2Γp(t) [σ(t)− σin] + Γrelσ0 + σ0Γrel. (3.124)

We would like to solve the second moment dynamics for σ which contains the infor-
mation about the operators

〈
F̂ 2
i (t)

〉
used for the Voigt effect. However, the equation

above cannot be trivially solved for a number of reasons. First of all, the second order
moments σ are square matrices. The form of this equation does not have a simple set
of coupled linear equations of motion which would be trivial to solve by finding an
inverse matrix. Moreover, matrix multiplication is non-commutative i.e. AB 6= BA
and so we can not trivially rearrange the equation above for the σi terms to be on the
right hand side of the other operators. A standard procedure to overcome this is to
transform the above equation of motion into Liouville space. This converts σi which
is a square matrix (n× n, where n is the matrix dimension) into σi → X which is a
vector (n2 × 1). Consider the following, we have a case where an n× n operator acts
on an n× n state which in our case is σi. Trivially, this can be expressed as

σ′ = AσB, (3.125)

where A, B and σ are all square matrices of the same dimension. For example, using
the terms in eq. (3.124) we could write

σ0Γrel = Iσ0Γrel, (3.126)

and
Γrelσ0 = Γrelσ0I, (3.127)

where I is the identity matrix. In the Liouville space, we can find a superoperator
such that

ˆ̂LσL =
(
BT ⊗A

)
σL, (3.128)
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where ˆ̂L is an n2 × n2 square matrix operating on the density operator transformed in
the Liouville space which is now a n2 × 1 vector. Here the tensor product for square
matrices is defined as

[
a1,1 a1,2
a2,1 a2,2

]
⊗
[
b1,1 b1,2
b2,1 b2,2

]
=


a1,1

[
b1,1 b1,2
b2,1 b2,2

]
a1,2

[
b1,1 b1,2
b2,1 b2,2

]

a2,1

[
b1,1 b1,2
b2,1 b2,2

]
a2,2

[
b1,1 b1,2
b2,1 b2,2

]


=


a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2
a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2
a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2
a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2

 . (3.129)

Additionally, we distinguish the Liouville operators in cases where the matrix operators
act on the operator σi from the left or the right, i.e.

Ô σ →L(Ô)X, (3.130)
σ Ô→R(Ô)X. (3.131)

Using these results and applying them to eq. (3.124) we transform into the Liouville
space

dX(t)
dt

=C(t)X(t)− 2Γp(t) [X(t)−Xin] + Λrel X0, (3.132)

where we have defined

C(t) = L(B(t)) +R(B(t)T ), (3.133)
Λrel = L(Γrel) +R(Γrel), (3.134)

with the second moment matrices which now have a vector form

X(t) =



〈
F̂x(t)F̂ T

x (t)
〉〈

F̂x(t)F̂ T
y (t)

〉
...〈

F̂z(t)F̂ T
z (t)

〉

 , (3.135)

and

Xin =



〈
F̂x(0)F̂ T

x (0)
〉〈

F̂x(0)F̂ T
y (0)

〉
...〈

F̂z(0)F̂ T
z (0)

〉

 =


Tr(ρ̂zinF̂xF̂x)
Tr(ρ̂zinF̂xF̂y)

...
Tr(ρ̂zinF̂zF̂z)

 =



4
0
0
0
1
0
0
0
1


, (3.136)
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with the thermal state given by

X0 =


Tr(ρ̂0F̂xF̂x)
Tr(ρ̂0F̂xF̂y)

...
Tr(ρ̂0F̂zF̂z)

 =



2
0
0
0
2
0
0
0
2


, (3.137)

where ρ̂0 is given in eq. (3.99) on page 48. Note that we didn’t need to change the
basis for the thermal state since it has a form of an identity matrix with a numerical
factor, and any matrix transformation on an identity matrix produces no effect on the
identity matrix itself.

Now, the eq. (3.132) which we transformed in the Liouville space has a form that
could in principle be solved using matrix methods in some conditions. However, we
immediately encounter a problem because the radio-frequency field as well as the
pumping fields have a time dependent profile which prevent us from using trivial
methods to solve this first order differential equation.

3.2.7 Spin Dynamics in the Floquet Space
Recall that in the Liouville space the second moment dynamics are given by

dX(t)
dt

=C(t)X(t)− 2Γp(t) [X(t)−Xin] + Λrel X0. (3.138)

In order to solve this time dependent dynamical equation, we propose to employ
a Floquet expansion. We start by showing that we can spectrally decompose the
coherent dynamics and the pumping into its harmonics, namely, we can write

C(t) =C(0) + C(1) eiωrft + C(−1) e−iωrft, (3.139)

and

Γp(t) = Γ(0)
p +Γ(1)

p eiωrft + Γ(−1)
p e−iωrft + Γ(2)

p e2iωrft + Γ(−2)
p e−2iωrft + · · · =

∑
n=0

Γ(n)
p einωrft.

(3.140)

Note that that these operator functions obey periodic properties which satisfy

C(t+ T ) =C(t), (3.141)
Γp(t+ T ) =Γp(t), (3.142)

where T is the time period of the system. The properties of periodicity of our dynamical
system satisfy Floquet’s theorem. In the context of quantum mechanics and more
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specifically, the formalism of the Heisenberg equation of motion which we are dealing
with here, the theorem states that if we have first-order linear differential equation of
the form

∂tF̂ (t) =− i[Ĥ(t), F̂ (t)]

=− i ˆ̂L(t)X(t), (3.143)

where ˆ̂L(t) is the Liouvillian superoperator and X(t) is our second order moment
in the Liouville space, then we can transform the time dependent Liouvillian ˆ̂L(t)
into a time independent Liouvillian by expanding the original Liouvillian as a Fourier
series [59, 60].

ˆ̂L(t) =
∞∑

j=−∞

ˆ̂Ljeijωrft, (3.144)

where the time dependent Liouvillian satisfies the periodicity condition ˆ̂L(t+T ) = ˆ̂L(t)
and T is the time period of the system. Now the spectral decomposition of the Li-
ouvillian removes the time dependence at the expense of significantly increasing the
matrix space where we must solve for each Liouvillian ˆ̂Lj component simultaneously.
We note that, in principle, there exists an infinite number of spectral components
which for practical means is not reasonable when solving such an equation. The
typical approach is to truncate the problem at twice the frequency of the highest
frequency component present in the Hamiltonian [60]. This is somewhat akin to the
Nyquist criteria. In our case, the magnetic field information is encoded in the first
and the second harmonic, so as a good rule of thumb, we can truncate the solution
at the fourth harmonic. However, this criteria for truncation does not consider our
pumping profile which has a square shape in the time domain, and as a result, high
harmonic composition in the Fourier space. This may impact the calculations of the
state preparation process and the consequent spin-dynamics. Therefore, it may not
be sufficient to base the truncation process solely on the coherent part of the dynami-
cal system without considering the potential impact of the driving terms in the system.

The next part of the Floquet expansion is the form of the propagator Π(t) which
operates on our observables, i.e. X(t). This propagator can also be decomposed in
the Fourier series

X(t) = Π(t)X(0) =
∞∑

k=−∞
Πk(t)eikωrftX(0), (3.145)

which allows us to spectrally decompose our second order moment expression trans-
formed in the Liouville space

X(t) = X(0)(t)+X(1)(t) eiωrft + X(−1)(t) e−iωrft + X(2)(t)e2iωrft + X(−2)(t) e−2iωrft + · · · .
(3.146)

Taking eqns. (3.139, 3.205, 3.146) and substituting them into eq. (3.138) and expanding
(see Appendix B.5.1 on page 186 for details) and by grouping the terms with the same
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harmonic frequency, we can generalise the expansion to an nth harmonic which has
the following relation

dX(n)(t)
dt

=C(0)
n X(n)(t) + C(1)X(n−1)(t) + C(−1)X(n+1)(t)− 2

∑
i

Γ(n−i)
p X(i)(t)

+ 2Γ(n)
p Xin + Λrel X0 δn,0. (3.147)

We can express the recursive relation given in eq. (3.147) in a more compact form by
defining a new linear space. We define a harmonic vector X such that

X =



X(−n)e−inωrft

...
X(−1)e−iωrft

X(0)

X(1)eiωrft

...
X(n)einωrft


, (3.148)

and by defining a matrix N with matrix elements Nij = jδij and j spanning for all
possible harmonics, the spin operator can be written as

X(t) = eiωrfNtXF , (3.149)

where

XF =



X(−n)

...
X(−1)

X(0)

X(1)

...
X(n)


. (3.150)

If we additionally define a vector V with Vi = 1 for all i’s, the second order moment
operator can be written as X(t) = V · X(t). With these definitions we can write the
eq. (3.147) in a more compact form

dX(t)
dt

=V · eiNωrft ([C− �] XF + �inXin + �relX0) , (3.151)

where the pump matrix term reads

(�)nm = Γ(n−m)
p I, (3.152)

(�in)nm =

Γ(n)
p I, for n = m,

0, otherwise,
(3.153)
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with (Xin)n = Xin. The unpolarised drift matrix is

(�rel)nm =

Λrel, for n = m = 0,
0, otherwise.

(3.154)

We need to see what is the form of the first derivative since this is what governs the
dynamics, applying the product rule to differentiate X(t) we get

dX(t)
dt

=V ·
(
iNωrfe

iNωrftXF + eiNωrft
dXF

dt

)
. (3.155)

Equating eq. (3.151) and eq. (3.155) and rearranging for dXF

dt
we get

dXF (t)
dt

=[C̃− �] XF + �inXin + �relX0, (3.156)

where we have defined C̃ = C− iNωrf with the following components

C̃nm =


C(0) − inωrfI, for n = mn

C(±1), for m = n∓ 1,
0, otherwise.

(3.157)

Recall the definition for C(t) = L(B(t)) +R(B(t)T ), taking this with the zero order
term defined in the expression above we can write

C(0) − inωrfI = L
[
B(0) − inωrf

2 I
]

+R
[
B(0)T − inωrf

2 I
]
, (3.158)

which corresponds to an atomic spin resonances at multiples of ωrf/2 frequencies where
ωrf is the frequency of the rf-field. The resonance occurs when Ωdc = ωrf/2. Note that
this additional resonance condition is not predicted in the geometric approach that
was outlined in section 3.1.

3.2.8 Magnetometer response to external fields (Heisenberg
Model)

The magnetometer cycle has two stages, the first stage is the state preparation process
where a combination of pumping and repumping laser beams prepare our atomic
state to the one given in eq. (3.118), see page 50. With sufficient laser driving using
pump/repump beams against the decoherence effects in a given amount of time, the
system will reach a steady state. This steady state is a stationary state which can be
mathematically expressed as

dXF (t)
dt

∣∣∣∣∣
pump

= [C̃− �] XF + �inXin + �relX0 = 0, (3.159)
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dXF (t)
dt

∣∣∣
pump

= [C̃− �] XF + �inXin + �relX0
dXF (t)
dt

∣∣∣
probe

= C̃XF + �relX0

Figure 3.8: Magnetometer sequence. The first stage consists of state preparation
process whereby the atoms are dressed by a uniform radio-frequency field and syn-
chronously pumped into a magnetically sensitive state. The static field to match the
sensitive field point is ramped simultaneously with the external magnetic fields. The
system is driven in such a state until it reaches a steady state. Once the steady state is
reached, the pumping is instantly switched off which is then followed by a continuous
wave (CW) probe beam which interrogates the state for a given duration, T . The
radio-frequency fields as well as the static fields are present as before, and now the
state evolves in time. The equations below each section of the OPM cycle correspond
to the spin dynamics of the second moment.

which can be solved trivially for XF by rearranging the expression above. This gives

XF =− [C̃− �]−1(�inXin + �relX0). (3.160)

This is the equation of motion during the pumping cycle in steady state conditions.
We can see that it depends on the coherent dynamics of the spin-field interaction which
is encoded in the matrix C̃, the pumping cycle contained in expressions � and �in
and the contribution from the thermal state which depends on the various relaxation
mechanisms as well as the coherent and pumping dynamics. The next stage of the
magnetometer cycle is the probing stage whereby a far detuned laser beam probes
the atomic state. During the probing stage, the pumping is off (� = �in = 0), and
the system evolves freely in time. In this regime, we probe for a short time duration
where the atomic dynamics do not reach a steady state, and so the time derivative of
the second moment dynamics is no longer zero. Thus, the equation of motion in the
probing cycle reads

dXF (t)
dt

∣∣∣∣∣
probe

= C̃XF + �relX0. (3.161)

Solving this ordinary differential equation by integrating yields

XF (t) =eC̃ t XF (0) + C̃−1(eC̃ t − I) �relX0. (3.162)
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a) b)

Figure 3.9: a) Theoretical magnetometer response of hx and hy as a function of the
static field Bz of the first harmonic. The first resonance is the predicted Ωdc = ωrf/2
resonance. The inset shows the dispersive profiles of the first harmonic which are
sensitive to the transverse magnetic fields Bext

x,y . Here at the bottom of the inset we
show the theoretical sequence that is used to produce the theoretical OPM response.
b) theoretical magnetometer response of the second harmonic, hz. Here we obtain
a Lorentzian type resonance profile. The inset shows the zoomed in version of the
profile. In these theoretical calculations, we truncate our Floquet expansion at Q = 4
where Q is the harmonic number, so that the square pumping profile is approximated
using terms up to the fourth harmonic which satisfies the minimal harmonic condition
for the Floquet expansion to be reliable.

Experimentally the probing happens over a time period T and so the resultant signal
measured is averaged over that time period. Our initial state XF (0) is equal to the
steady state reached during the pump cycle, namely

XF (0) = −[C̃− �]−1(�inXin + �relX0), (3.163)

which we substitute into the solution obtained for the probe cycle

XF (t) = −eC̃ t
(
[C̃− �]−1(�inXin + �relX0)

)
+ C̃−1(eC̃ t − I) �relX0. (3.164)

After probing, the second order moments read

Xout
F = 1

T

∫ T

0
dt′XF (t′) = 1

T
(C̃)−1

(
eC̃ T − I

)
XF (0)

+ 1
T

(C̃)−1
[
(C̃)−1

(
eC̃ T − I

)
− T

]
�relX0, (3.165)
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where the vector elements of Xout
F are extracted by recalling that

XF =



X(−n)

...
X(−1)

X(0)

X(1)

...
X(n)


, (3.166)

with

X(t) =



〈
F̂x(t)F̂ T

x (t)
〉〈

F̂x(t)F̂ T
y (t)

〉
...〈

F̂z(t)F̂ T
z (t)

〉

 , (3.167)

such that the resultant ωrf and 2ωrf quadratures containing hx, hy and hz are given by

hx = Re
(
XF

(
ωrft,

〈
F̂x(t)F̂ T

x (t)
〉)
− XF

(
ωrft,

〈
F̂y(t)F̂ T

y (t)
〉))

, (3.168)

hy = Im
(
XF

(
ωrft,

〈
F̂x(t)F̂ T

x (t)
〉)
− XF

(
ωrft,

〈
F̂y(t)F̂ T

y (t)
〉))

, (3.169)

hy = Re
(
XF

(
2ωrft,

〈
F̂x(t)F̂ T

x (t)
〉)
− XF

(
2ωrft,

〈
F̂y(t)F̂ T

y (t)
〉))

. (3.170)

The characteristic profiles of the magnetometer response as a function of the static field
Bz which tunes the magnetometer response are shown in Fig. 3.9 where we have used
the sequence of state preparation and probing given in Fig. 3.8. From the figure we can
observe that the scan of the longitudinal Bz field reproduces ωrf and 2ωrf resonance
profiles which have a characteristic dispersive and Lorentzian shapes, though the
2ωrf resonance has additional wings present. We also observe additional structure at
Ωdc = ωrf/2 which is not predicted using the geometric model. This resonance, whilst
large in the amplitude in the quadrature at ωrf is extremely weak in the quadrature
at 2ωrf which makes it impractical for sensing all three vector components of the field.
Moreover, we see additional oscillatory behaviour in between the resonances which
are a result of transient effects produced by suddenly switching the pumping beams
off and switching the probe on. These oscillations vanish when probing is done during
the pump cycle in continuous wave mode, (cw). The model above also shows that the
transverse field quadrature profiles hx and hy are not perfectly symmetric despite the
fact that quantitatively the relaxation and pumping dynamics are symmetric for the
transverse field components which is not the case for the longitudinal field Bz. This is
shown in Fig. 3.9 a) inset as the dispersive curves do not overlap perfectly.

As in the case of the geometric model, we want to understand the theoretical
magnetometer response over small and large external field range set on the sensitive
field point where the OPM can detect all three vector field components. We set the
longitudinal field to Boffs = B+

sense = Bres + Bρ + Bext
z and scan the transverse fields,
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a) b)

Figure 3.10: Ovoid profiles mapping the full magnetometer response for all 3 field
directions. We set the magnetometer to a field sensitive point given by Boffs = B+

sense =
Bres +Bρ +Bext

z which are indicated by black, blue and red diamond ticks on in the
inset a) of the Lorentzian resonance profile. Each of the colours corresponds to a
different Boffs point. The transverse fields Bx and By are then scanned. The scans are
done over a large and small field range where the smaller insets in a) bottom 2D grid
and b) top 3D grid show linear OPM response in the presence of small external field
perturbation compared to the Bz field whilst the large figures depicting the ovoids in
2D and 3D show the OPM response for large transverse field scans.

Fig. 3.10 shows the OPM response for all three vector components over small and
large field scan range. The theoretical state preparation and probing sequence to
generate the full OPM response is given in Fig. 3.8. From Fig. 3.10 we can qualitatively
infer that the Heisenberg model produces similar behaviour to the geometric model
shown in Fig. 3.4 on page 37. Both, the Heisenberg and the geometric models display
characteristic ovoid shape in the large field scan regime and the flat plane behaviour in
the small external field regime. A key distinguishing feature in the Heisenberg model is
the distortion and asymmetry of the ovoid which is not observed in the geometric case.
On the scale where the external field perturbation is small, the distortion manifests as
field leakage in the transverse field directions i.e. the quadratures hx and hy are not
orthogonal to each other. When the external fields are large, i.e. Bext

x,y,z ≈ B+
sense, the

ovoid displays asymmetric 3D structure where the hx and hy field mapping components
have a different response to the same external magnetic fields. This distortion is less
prominent for higher radio-frequency dressing fields, ωrf , at the expense of reducing
sensitivity of the OPM to transverse fields. The parameter space of the Heisenberg
model for the OPM is relatively large and their effects are non-trivial which is the
topic of discussion in the following subsection.

3.2.9 OPM parameter space of the Heisenberg Model
As noted in the previous subsection, the description of the OPM response using the
Heisenberg formalism gives access to a large number of various physical mechanisms
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which influence the spin dynamics of the OPM. This physics-rich parameter space is
worth understanding and exploring since it necessarily provides an insight into the
effects each parameter has on the system, how sensitive the dynamics are to these
effects, and moreover, whether there is some non-trivial coupling mechanisms between
the various effects at play. Thus, having a more complete picture of such complex
interplay of different phenomena not only allows one to get a better understanding
of the behaviour of the system itself, but also provide a way to build such a system
to work in the most optimal conditions, which in the context of magnetometry could
mean highest sensitivity at the highest bandwidth.

A pictographic summary of this parameter space is shown in Fig. 3.11 on page 62.
The parameter space is categorised into three distinct groups which correspond to the
three distinct physical processes derived in the formalism of the Heisenberg equation
of motion of the second order moments, eq. (3.77) on page 45. These are: coherent
spin dynamics, pumping dynamics, and depolarisation due to pumping and collision-
s/broadening effects. It is noteworthy to consider these effects individually and explore
their influence and coupling to other effects.

Radio-frequency field amplitude, Ωrf (Fig. 3.11 b)). As we have shown in
the geometric model (see Fig. 3.3 on page 36), the increase in the Ωrf amplitude
broadens both the ωrf and 2ωrf resonance profiles which ultimately reduces the OPM
sensitivity in all three field directions, see Fig. 3.12 on page 63. The broadening
of the resonance profile also affects the state preparation process. Since the state
preparation process happens near resonance at Boffs = B+

sense = Bres +Bρ +Bext
z , the

broadening of the resonance and the reduction in sensitivity to all field directions
means that the state preparation process is less sensitive to the external perturbing
fields. Whilst the behaviour of the quantities like amplitude and FWHM are difficult
to infer directly from the equations in the Heisenberg model, the theoretical results
show that the figure of merit, characterised by 2ωrf signal amplitude over the FWHM
of the resonance decreases as a function of the rf amplitude.

Frequency of the dressing field, ωrf (Fig. 3.11 c)). The frequency of the dressing
field affects the coherent dynamics as well as the pumping. First, the frequency of
the dressing field sets out the magnitude of the longitudinal static field Bz to achieve
resonance or the sensitive field point, since this is given by Bres = Bz = ~ωrf/µBgF .
Note that this equation is valid for sufficiently small fields where the second order
Zeeman shifts can be neglected. In this regime, the static field depends linearly on
the dressing frequency. This has several implications. First, the higher the dressing
frequency, the higher the static Boffs = B+

sense = Bres + Bρ + Bext
z field and thus the

smaller the relative perturbation of transverse fields. This implies that the coherent
spin dynamics will be largely determined by the longitudinal static field and the
transverse field effects will play a smaller role. Consequently, the OPM response in the
transverse field directions will be reduced. In some cases this may be desirable, e.g. in
an unshielded environment where the external fields may be large, in order to operate
the OPM on the sensitive point, we may want to be less sensitive to the longitudinal
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Figure 3.11: Parameter space and its tuning. a) Coherent dynamics of the spin
interaction with the magnetic field. b) Amplitude of the radio-frequency dressing
field. The larger the amplitude of the rf-field, the broader the OPM dispersive and
the resonance profiles are resulting in lower field sensitivity. c) Frequency of the
radio-frequency field. Reducing the frequency increases the sensitivity of the OPM
to the transverse fields and vice versa. d) External field strength. Broadens the
resonance and reduces the sensitivity of the OPM. e) Pumping dynamics. f) Pumping
intensity profile. Influences the state preparation dynamics and ultimately influences
the OPM sensitivity which depends on how sensitive the state is to external magnetic
fields. g) Pumping phase relative to the rf-field phase. Affects the state preparation
process where the out of phase pump does not transfer the driven atoms efficiently. h)
Pumping duty cycle. In this context if the pumping follows a square intensity profile,
the duty cycle again affects the state preparation. i) Depolarisation of the atomic
states. j) Temperature of the cell. Increasing this increases the rate of atom-atom,
atom-wall collisions and as a result the rate of spin destruction. k) Anti-relaxation
coating lifetime. The quality of the coating influences the lifetime of the prepared
atomic states due to atom-wall collisions. l) Atomic density. Affects the collision
rate as well as increases the signal to noise ratio. The atomic density is temperature
dependent. m) Gradient fields. Broaden the atomic resonances and decrease the
sensitivity of the OPM due to the fact that atoms see different magnetic fields in
different spatial locations and therefore precess at different rates.
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Figure 3.12: 2ωrf resonance profile amplitude and linewidth at FWHM (Figure of
Merit, FOM) as a function of the radio-frequency dressing field amplitude Ωrf . The
FOM in this case is independent of Bres. Here the transverse fields, Bext

x,y � Bres.

and transverse fields which would otherwise at low frequency of the dressing field would
pose a problem by driving the OPM away from the sensitive field point. Moreover, in
some cases, the technical or environmental noise at low dressing frequencies may be
large enough to pose a problem when attempting to measure external fields of interest.
In our case the magnetic field information is coded into the harmonic components of
the dressing field which is then extracted using lock-in detection techniques. As a
result, the ability to change the modulation field allows us to move to a low-technical
noise region and perform the measurement there. Going to the other extreme of having
a low frequency dressing field we immediately encounter the problem of the OPM
bandwidth i.e. the range of external magnetic field frequencies we can detect. This
also couples to the optical pumping process where the low bandwidth of detection also
means that there are fewer cycles of the pumping and they are spaced out by larger
time intervals which leave a longer time for atomic collisions to take place resulting in
decoherence effects.

External magnetic fields Ωext
x,y,z (Fig. 3.11 d)). The entire function of the OPM

is to detect external magnetic fields. We have already shown the effects of external
magnetic fields on the OPM mapping e.g. the ovoid profile in Fig. 3.10 on page 60.
If the external transverse fields are large such that the OPM response is no longer
linear, the orthogonality of the OPM quadratures is lost and it is no longer possible to
distinguish the direction of the field nor the precise magnitude of such field. Moreover,
if the external fields are large, transverse and/or longitudinal, then the total effective
field Bdc =

√
B2
z +B2

x +B2
y 6= Boffs = B+

sense = Bres +Bρ +Bext
z which drives the OPM

away from the sensitive field point which effectively changes the sensitivity of the OPM.
Large external field perturbation also affect the state preparation process. Typically,
the state preparation process is done on (Boffs = Bres) or near the resonance point
(Boffs = Bres +Bρ +Bext

z ) which makes the synchronous pumping process efficient in
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transferring the atoms into the mixture |F = 2,mF = ±2〉 state. This is not the case
when external magnetic fields are sufficiently large such that the pumping is no longer
done on the sensitive field point which consequently creates a state with a statisti-
cal mixture composed of |F = 2,mF = ±2〉, |F = 2,mF = ±1〉 and |F = 2,mF = 0〉
states which is less sensitive to the external fields when using them to measure the
Voigt effect.

Pumping profile Γp(t) (Fig. 3.11 f)). Here the pumping profile refers to the
intensity profile of the pump beam as a function of time (see Fig. 3.11 f)). When
the atomic state is dressed with a radio frequency field, the atomic precession of
the spins is being actively driven. In the lab frame this atomic precession manifests
as a rotation of quantisation axis in time at the frequency of the dressing field, ωrf .
This change of quantisation axis in time makes efficient state preparation problematic
because the dressed state is time dependent in the lab frame and as a result the dipole
transition moment 〈e(t)| qr̂ |g(t)〉 is time dependent (depending whether we are in the
Schrödinger or the Heisenberg picture). To remedy this, we can switch the pump
beam at times such that the dipole transition moment is appropriately aligned, thus
ensuring an efficient state transfer, this is known as synchronous optical pumping [47].
The intensity profile of the pump beam as a function of time can therefore influence
the magnetically sensitive state that we prepare. For the purposes of maximising the
sensitivity of the magnetometer, we want to maximise the efficiency of pumping. The
theory of the OPM response contains a pumping term that is time dependent such
that it can allow us to compute the spin dynamics and the OPM response for any
arbitrary time dependent intensity profile of the pump beam as long as such profile
can be trivially decomposed into its constituent Fourier components. For example, for
a pumping rate Γp(t) given by the spectral expansion

Γp(t) = Γ(0)
p +Γ(1)

p eiωrft + Γ(−1)
p e−iωrft + Γ(2)

p e2iωrft + Γ(−2)
p e−2iωrft + · · · , (3.171)

the corresponding Fourier components with a duty cycle d, for square, triangular and
sawtooth waves read

square =

Γ(0)
p = Γp d,

Γ(n)
p = Γ(−n)

p = Γp

nπ
sin(nπd),

(3.172)

triangular =

Γ(0)
p = Γp d,

Γ(n)
p = Γ(−n)

p = Γp

(nπ)2 sin2(nπd),
(3.173)

sawtooth =

Γ(0)
p = 0,

Γ(n)
p = Γ(−n)

p = Γp
(

1
(nπ)2 sin(nπd)− d

nπ
cos(nπd)

)
.

(3.174)

Figure (3.13) shows the OPM response for different pumping profiles with all other
parameters being held constant. The square intensity profile generates the best OPM
response characterised by high amplitude to linewidth ratio of the dispersive and
Lorentzian resonances.
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Figure 3.13: Magnetometer response of the ωrf and 2ωrf profiles as a function of the
longitudinal Bz field at different pumping profiles at 10% duty cycle. a-b) Square
pumping profile. c-d) Triangular pumping profile. e-f) Sawtooth pumping profile. g-h)
Continuous-Wave pumping profile. The small insets show the zoomed-in dispersive
and Lorentzian profiles. We see that for the same conditions, the square pumping
profile generates the best OPM response which is characterised by the ratio of signal
amplitude to field resonance linewidth.
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Figure 3.14: Normalised Figure of Merit (FOM) of the a) 2ωrf and b) ωrf resonance
and dispersive profiles as a function of the duty cycle of the pump. Here the FOM is
the ratio of the normalised resonance height over the normalised full-width-at-half-
maximum (FWHM) of the 2ωrf and ωrf profiles. The amplitude and the FWHM of
the resonance profile changes with the duty cycle of the pump. The optimal point is
around 13% pump duty cycle for 2ωrf quadrature and 10% pump duty cycle for the
ωrf quadrature.

Pumping duty cycle, d (Fig. 3.11 h)). The duty cycle in the context of opti-
cal pumping refers to the fraction of time the pump beam is switched on relative to the
time period of the system. In our case, the time period is given by the frequency of the
rf dressing field, ωrf = 2π/T . It has already been discussed that due to the dressing
of the atomic states, the dipole transition moment is a time dependent quantity
and as a result, in order to achieve an efficient state preparation process we have to
carefully engineer the intensity profile of the pump beam. In addition to the general
form of the intensity profile, the duty cycle of the pump beam gives an additional
degree of freedom to manipulate the state preparation process. This is crucial if we
want to produce short pulses of arbitrary intensity profile over a time period where
the quantisation axis can be assumed to be constant in time. This, however, comes
at a cost, the shorter the pulse, the less power it carries, and as a result the state
preparation process may become inefficient as we are not able to saturate the atomic
medium. On the other hand, long pulse duration i.e. high duty cycle, will mean
that the pump is switched on for a period of time where the quantisation axis has
changed appreciably acting as a spin decoherence process, resulting in inefficient state
preparation and therefore reduced OPM sensitivity. Therefore, it is possible that the
competition between these two effects may produce some optimal duty cycle for which
the efficiency of the state preparation process is maximised. Figure (3.14) on page 66
show the effects on OPM sensitivity for all three quadratures as a function of the duty
cycle. The theoretical curves predict that there exists an optimal duty cycle in the
10− 15% region for the ωrf and 2ωrf quadratures. For lower duty cycles, the decay
rolls off more rapidly which suggests the state preparation is not effective against
decoherence due to collisions and other broadening effects. At higher duty cycles the
pump is on during times where the quantisation axis is no longer aligned with the
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Figure 3.15: Normalised 2ωrf amplitude as a function of the relative phase between the
pumping pulse and radio-frequency dressing field. The pump has a square intensity
profile with 10% duty cycle. Here we see the relative phase between the pump and the rf-
field changes the amplitude of the OPM response. Same effect (not shown) is observed
on the ωrf quadratures. The fitted function has the form A = A0 sin(2πφ+ φ0) + c.

polarisation of the pump, as a result, the pumping is not efficient as the atoms are
pumped into states that have a lower linear birefringence.

Pumping phase, φ (Fig. 3.11 g)). Here pumping phase refers to the relative
phase between the radio-frequency dressing field and the pump pulses applied during
the state preparation process. The radio frequency field actively drives the atomic
precession and so the quantisation axis or the alignment of spin relative to the electric
field of the pump beam changes in time. As a result, the state preparation process
is influenced by this relative phase. It is therefore imperative to understand how
does the relative phase influence the OPM response and whether it is significant.
Mathematically, the relative phase between the pump and the rf-field is introduced
through the time dependent pumping equation

Γp(t+ φ) = Γ(0)
p +Γ(1)

p eiωrf(t+φ) + Γ(−1)
p e−iωrf(t+φ) + Γ(2)

p e2iωrf(t+φ) + Γ(−2)
p e−2iωrf(t+φ) + · · · ,

(3.175)

the corresponding Fourier components with a duty cycle d, for a square wave read

square =


Γ(0)
p = Γp d,

Γ(n)
p = Γp

nπ
sin(nπd) (cos(nφ) + i sin(nφ)) ,

Γ(−n)
p = Γp

nπ
sin(nπd) (cos(nφ)− i sin(nφ)) .

(3.176)
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Note that the Fourier coefficients are no longer symmetric around the n = 0 index and
are complex numbers. Figure (3.15) on page 67 shows the variation of the normalised
amplitude of the 2ωrf resonance as a function of the relative phase between the pump
pulses and the rf-field. We note that due to the harmonic truncation in the Floquet
space the pump harmonics are truncated, typically around Q = 4 where Q is the
highest harmonic component. From the figure we observe typical periodic behaviour,
however, it’s not perfect. One of the reasons due to this is as the phase changes,
the characteristic dispersive and Lorentzian profiles of the OPM not only reduce in
amplitude, but also become distorted to the point where their characteristic shapes are
lost, this makes the amplitude calculations difficult since the profiles have additional
features such as ringing in the off-resonance regions. This is reflected in the figure
plot where some regions appear to have discontinuities and higher residuals from the
ideal sinusoidal fit. Nevertheless, the theoretical results show that the relative phase
between the pump and the rf-field have significant effects on the OPM response.

Temperature of the cell, T , atomic density, nRb, collisions and coating
(Fig. 3.11 j), l)). The temperature of the cell affects a number of parameters of the
magnetometer. Firstly, some of the 87Rb atoms in the cell are in a gaseous form
with an equilibrium vapour density which is a temperature dependent quantity. The
equilibrium vapour pressure, nRb (cm−3) for 87Rb at temperature T is given by [49]

nRb = 1
T

1021.866+A−B
T , (3.177)

where A = 4.857 and B = 4215K. Recall that the Voigt effect signal is given by〈
Ŝ ′z(t)

〉
= g

(2)
F SynF

〈
F̂ 2
x (t)− F̂ 2

y (t)
〉
, (3.178)

where nF is the number of atoms in the prepared mixed state. Thus, increasing the
temperature, increases the number of atoms and as a result increases the signal to
noise ratio enhancing the sensitivity of the OPM. However, the vapour inside the
cell to a good approximation follows Maxwell-Boltzmann statistics. Due to thermal
motion of the atoms they occasionally collide and exchange momentum with each
other and the walls surrounding them. The rate of the collisions is dependent not only
on the density of the atoms, but also the speed at which they are moving. Just like
the density, the speed of the atoms is also a temperature dependent quantity. The
mean speed v̄ of atoms at temperature T and mass m is given by

v̄ =
√

8kBT
m

, (3.179)

where kB is the Boltzmann constant. The collision rate between the 87Rb atoms
themselves with a density nRb, velocity v̄ and a collision cross section σc is given by

Γself = nRbσcv̄. (3.180)

In the case where we have buffer gas of density n′, then total collision rate is the sum,
namely

Γself+buffer = nRbσcv̄ + n′σ′v̄′, (3.181)
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Figure 3.16: Atom number adjusted figure of merit (FOM) of the a) 2ωrf and b) ωrf
resonance and dispersive profiles as a function of the temperature of the cell. Here
the FOM is the ratio of the resonance height over the full-width-at-half-maximum
(FWHM) of the 2ωrf and ωrf profiles times the atomic density at a given temperature T.
We observe that the competition between the collision rate and the signal strength has
an optimum point. This optimum point is different for the ωrf and 2ωrf quadratures.
The most obvious contribution to this difference is down to the difference between the
transverse and longitudinal relaxation rates.

where v̄′ is the mean speed of the buffer gas, n′ is the density of buffer gas and σ′ is the
collision rate between 87Rb and the buffer gas. In addition, for a spherically shaped
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cell with a cross sectional area Acell and a volume Vcell the average time between the
collisions of the atoms with the cell walls is given by [49]

τwall = 4Vcell

v̄Acell
, (3.182)

such that the rate of collisions between the atoms and the walls is given by

Γwall = v̄Acell

4Vcell
= Acell

4Vcell

√
8kBT
m

. (3.183)

Here it is apparent that the geometric considerations in designing the cell can reduce
or increase the the atom-wall collision rate. Combining the different collisional
mechanisms gives

ΓTot = Γwall + Γself =
√

8kBT
m

( 1
T

1021.866+A−B
T σc + Acell

4Vcell

)
, (3.184)

where we have neglected the atomic collisions with the buffer gas atoms since our cells
are paraffin coated. The increase in atom number density increases the signal to noise
ratio when measuring the Voigt effect, but at the same time there is an increased rate
of spin-destruction which depolarises the atoms due to the atom-atom, atom-wall col-
lisions. A natural question to ask is whether this competition results in some optimal
temperature point where the OPM sensitivity is maximised i.e. is there a stationary
point such that ∂

〈
Ŝ ′z(t, T )

〉
/∂T = 0? A mere inspection of the equation of motion for〈

Ŝ ′z(t)
〉

is not sufficient to make that conclusion (see e.g. eq. 3.124 on page 51), but if
we look at the magnetometer response of the 2ωrf resonance curve which sets the OPM
sensitivity by changing the temperature we find that the competition between the
collision rate and the signal to noise ratio does indeed produce an optimal point (see
Fig. 3.16). Here we have to note that there are several issues with the model as well as
the physical interpretation of such optimal point. First of all, the prediction of the op-
timal point does not take into account of the degradation of the anti-relaxation coating.
For example, paraffin melts at around 60-80◦C whilst OTS can stand up to 170◦C [49].
The quality of such coating will influence the atom-wall spin destruction collision rate
and so the optimum point is dependent upon it. Moreover, because of the difference
between the transverse and longitudinal relaxation rates, these optimal points may be
different for the transverse and longitudinal field sensing directions, as seen in Fig. 3.16
comparing ωrf and 2ωrf optimal points. This is affected by the geometry of the cell.
Finally, the maximum for the figure of merit (A/Γ) is dependent on the magnitude
of the transverse fields as well as the rf amplitude, Ωrf , since they affect the state
preparation process and therefore the number of atoms, nF , prepared in the ideal state.

Magnetic field gradients. Atoms in an anti-relaxation coated cell are free to
move and through atom-atom, atom-wall collisions end up randomly exploring the
entire volume of the cell. If there exists an external magnetic field across the volume
of the cell, then the polarised atoms precess around that effective field. Now, if
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additionally, a magnetic field gradient is present across the cell due to an external
field source inhomogeneity or technical inhomogeneity of the coils or both, then the
atoms exploring the volume of the cell will experience different effective fields around
which they will precess. Every time a collision occurs, the velocity and the direction
of travel of the atom is changed and as a result the field experienced by the atom
changes - in effect, the atoms experience magnetic field fluctuations. In the case where
Larmor precession frequency, ΩL = γB+

sense = γ(Bres +Bρ +Bext
z ), is much faster than

the total rate of collisions ΩLR/v̄ � 1, then the longitudinal relaxation time Γ1 due
to field gradients is given by [61]

Γ1 ∼
(

v̄∆B
γB+

senseR

)2
v̄

R
, (3.185)

where ∆B � B+
sense is the amplitude of the fluctuating field, R is the size of the cell

(for a spherical or cubic cell). In the case where the Larmor precession is slower than
the collision rate, ΩLR/v̄ � 1 the relaxation due to the field gradients is then given
by

Γ1 ∼
R

v̄
(γ∆B)2. (3.186)

Additionally, the transverse field relaxation rate follows a similar form to the longitu-
dinal relaxation rate in the limit of the Larmor precession being much smaller than
the collision rate

Γ2 ∼
R

v̄
(2γ∆B)2. (3.187)

Now, in all of the stated cases, the relaxation effects due to the gradient fields are
not only dependent on the actual magnetic field gradients, but also the mean velocity
of the atoms, which in turn depend on the temperature of the cell. In addition,
because the radio-frequency dressing field ωrf sets our sensitive field point B+

sense, the
longitudinal relaxation rates can exist in different regimes since the Larmor precession
frequency and the collision rate product set the longitudinal relaxation scaling laws.

3.2.10 Scope and Limitations of the Heisenberg model
The Heisenberg model outlined in this section allows us to take into account many
of the effects that influence the spin dynamics of the OPM ranging from coherent
spin dynamics, pumping and decoherence. As a result, it provides us with a solid
theoretical framework in understanding and modelling the OPM response using a
large parameter space. However, the Heisenberg equation of motion is limited to
only being able to provide information of one particular observable relative to the
Hamiltonian of the system. The model does not provide any information on how the
state populations evolve in time during the pumping and the probing cycles and more
importantly, does not take into account that we are dealing with large ensembles of
atoms. Moreover, as has been shown, additional complexity arises when attempting
to model higher order moments of the observables, where in particular, the form of
the decoherence effects take non-trivial forms and require extensive treatment using
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the fluctuation-dissipation theorem. Furthermore, the form of the decoherence effects
are dependent on the properties of the observables (e.g. commutation relations), and
as a result if a different observable is to be measured, a significant amount of effort
has to be expended in order to derive the form of such decoherence effects.

The density matrix approach can circumvent some of these problems with an additional
advantage that it can provide the information about the state populations in time, as
well as their coherences. Moreover, it can be generalised to calculate any observable
of any order since the expectation value is simply given by the trace of the product
between the density operator and the observable, i.e.

〈
Ôn
〉

= Tr
[
ρ̂Ôn

]
where n ∈ Z.

The density operator approach also allows us to deal with quantum systems which are
more general than the ensembles described by a pure state wavefunction. This is a
crucial part in the case of the Voigt effect OPM since the input state is a mixed state
and cannot be described by a wavefunction. Moreover, the modelling of decoherence
and pumping effects take a more simplistic phenomenological approach whereby it
is given as the difference between the current state of the ensemble and some input
state governed by some rate, i.e. Γ(ρ̂ − ρ̂in). Finally, the density matrix approach
enables the addition of other types of interactions in the system e.g. a microwave or
optical fields, which the Heisenberg formalism is unable to cater for. Consequently,
this enriches our theoretical toolbox as well as the knowledge and interpretation of the
theoretical results. However, the richness and power of the density matrix approach
comes at a cost of vastly increasing the size of the vector and matrix spaces which
result in a significant increase in computational resources and time required to study
the problems.

3.3 Density matrix interpretation of spin dynam-
ics in a rf-dressed field

3.3.1 Liouville-von Neumann equation of motion
An ensemble in a mixed state can be described by a density operator expressed as an
outer product of pure states where the coefficients represent probabilities

ρ̂(t) =
∑
n

pn |ψn〉 〈ψn| , (3.188)

where pn is the probability of the ensemble being in state |ψn〉 after the measurement.
For any observable of order n, Ôn the expectation value using the density operator
formalism is given by 〈

Ôn
〉

= Tr
[
ρ̂Ôn

]
. (3.189)

Now the state evolution is given by the Schrödinger equation

i~∂t |ψ(t)〉 = Ĥ |ψ(t)〉 . (3.190)
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Taking the time derivative of eq. (3.188) and substituting into the Schrödinger equation
after some algebra yields the Liouville-von Neumann equation of motion which describes
the time evolution of the density operator given some Hamiltonian, Ĥ

∂tρ̂(t) = 1
i~
[
Ĥ(t), ρ̂(t)

]
, (3.191)

where
[
Ĥ(t), ρ̂(t)

]
is a commutator relation. As before, the Hamiltonian of a radio-

frequency dressed spin with external fields is given by

Ĥ(t) = (Ωrf cos(ωrft) + Ωext
x )F̂x(t) + Ωext

y F̂y(t) + (Ωdc + Ωext
z )F̂z(t). (3.192)

The above describes the coherent dynamics of the spin. To add the pumping and
decoherence mechanisms a phenomenological approach is followed whereby the state
preparation process consists of two processes namely the pumping dynamics and
decoherence due to the pump [53]. These are modelled as positive and negative
contributions respectively in the density matrix, whereby active pumping positively
contributes to the total rate of change Γiρ̂i with the decoherence rate modelled by
−Γiρ̂(t). Here ρ̂i is some ideal state which we pump into. In the scenario where the
rate Γi may be time dependent, i.e. Γi → Γi(t) (e.g. time dependent pumping profile)
the total contribution to the density matrix dynamics due to pumping and pump
decoherence takes the following general form

∂tρ̂i(t) = −Γi(t) (ρ̂(t)− ρ̂i) . (3.193)

In our case, the pumping follows a time dependent profile, Γp(t) such that it can be
spectrally decomposed and we have an input state, ρ̂in, defined in the basis where the
measurements takes place. Therefore, the contribution to the density matrix due to
pumping dynamics is simply given by

∂tρ̂(t)|pump = −Γp(t) (ρ̂(t)− ρ̂in) . (3.194)

Equivalently, the decoherence effects characterised by the rate Γrel and the contribution
of the thermal state given by (as before), ρ̂0. The contribution to the density operator
due to relaxation dynamics is given by

∂tρ̂(t)|rel = −Γrel (ρ̂(t)− ρ̂0) . (3.195)

Combining the coherent, pumping and relaxation terms of the density operator yields
the full dynamics

∂tρ̂(t) = 1
i~
[
Ĥ(t), ρ̂(t)

]
︸ ︷︷ ︸
Coherent Dynamics

−Γp(t) (ρ̂(t)− ρ̂in)︸ ︷︷ ︸
Pumping

−Γrel (ρ̂(t)− ρ̂0)︸ ︷︷ ︸
Decoherence

. (3.196)

However, as encountered previously in section (3.2.6), we cannot solve the equation
above trivially, we need to transform it into Liouville space.
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3.3.2 Density Matrix in the Liouville Space
Using the same procedure as outlined in detail in Sec. (3.2.6) we transform eq. (3.196)
into the Liouville space. First, we define the following super (Liouville) operators

Ô ρ̂→L(Ô)X, (3.197)
ρ̂ Ô→R(Ô)X. (3.198)

Using these results, we can write eq. (3.196) as

dX(t)
dt

=C(t)X(t)− Γp(t) [X(t)−Xin]− Λrel [X(t)−X0] , (3.199)

where Λp(t) and Λrel are pumping and relaxation constants with

C(t) = L(Ĥ(t)) +R(Ĥ(t)T ). (3.200)
(3.201)

The density matrix in the Liouville space is written in a vector form is

X(t) =


ρ11
ρ12
ρ13
...

 . (3.202)

As before, we cannot trivially solve the equation above due to the oscillating rf-field as
well as the time dependent pumping processes. The pumping and the rf-dressing field
have periodicity which satisfies the Floquet theorem. Therefore, the same method
will be applied to transform the density operator equation of motion into the Floquet
space.

3.3.3 Density Matrix in the Floquet Space
The Liouville-von Neumann equation in the Liouville space is given by

dX(t)
dt

=C(t)X(t)− Γp(t) [X(t)−Xin]− Λrel [X(t)−X0] , (3.203)

where we can spectrally decompose the coherent dynamics and the pumping into its
harmonics, namely, we can write

C(t) =C(0) + C(1) eiωrft + C(−1) e−iωrft, (3.204)

and

Γp(t) = Γ(0)
p +Γ(1)

p eiωrft + Γ(−1)
p e−iωrft + Γ(2)

p e2iωrft + Γ(−2)
p e−2iωrft + · · · =

∑
n=0

Γ(n)
p einωrft,

(3.205)
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Note that that these operator functions obey periodic properties which satisfy

C(t+ T ) =C(t), (3.206)
Γp(t+ T ) =Γp(t), (3.207)
dX(t+ T )

dt
=dX(t)

dt
. (3.208)

We spectrally expand the density operator expression in the Liouville space

X(t) = X(0)(t)+X(1)(t) eiωrft + X(−1)(t) e−iωrft + X(2)(t)e2iωrft + X(−2)(t) e−2iωrft + · · · ,
(3.209)

and substitute the expressions for C(t), Γp(t) and X(t) into the equation of motion
which we generalise to the nth harmonic

dX(n)(t)
dt

=C(0)
n X(n)(t) + C(1)X(n−1)(t) + C(−1)X(n+1)(t)−

∑
i

Γ(n−i)
p X(i)(t)

+ Γ(n)
p Xin − ΛrelX(n)(t) + Λrel X0 δn,0. (3.210)

As before, we can express the recursive relation given in eq. (3.210) in a more compact
form by defining a new linear space. We define a harmonic vector X such that

X =



X(−n)e−inωrft

...
X(−1)e−iωrft

X(0)

X(1)eiωrft

...
X(n)einωrft


, (3.211)

and by defining a matrix N with matrix elements Nij = jδij and j spanning for all
possible harmonics, the spin operator can be written as

X(t) = eiωrfNtXF , (3.212)

where

XF =



X(−n)

...
X(−1)

X(0)

X(1)

...
X(n)


. (3.213)

If we additionally define a vector V with Vi = 1 for all i’s, the second order moment
operator can be written as X(t) = V · X(t). With these definitions we can write the
eq. (3.210) in a more compact form

dX(t)
dt

=V · eiNωrft ([C− �T ] XF + �inXin + �relX0) , (3.214)
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where the pump matrix term reads

(�T )nm = Γ(n−m)
p I + ΛrelI, (3.215)

(�in)nm =

Γ(n)
p I, for n = m,

0, otherwise,
(3.216)

with (Xin)n = Xin. The unpolarised drift matrix is

(�rel)nm =

ΛrelI, for n = m = 0,
0 otherwise.

(3.217)

The first derivative governs the dynamics, applying the product rule to differentiate
X(t) we get

dX(t)
dt

=V ·
(
iNωrfe

iNωrftXF + eiNωrft
dXF

dt

)
. (3.218)

Equating eq. (3.214) and eq. (3.218) and rearranging for dXF

dt
we get

dXF (t)
dt

=[C̃− �T ] XF + �inXin + �relX0, (3.219)

where we have defined C̃ = C− iNωrf with the following components

C̃nm =


C(0) − inωrfI, for n = m,

C(±1), for m = n∓ 1,
0 otherwise.

(3.220)

Recall the definition for C(t) = L(Ĥ(t)) +R(ĤT (t)), taking this with the zero order
term defined in the expression above we can write

C(0) − inωrfI = L
[
Ĥ(0) − inωrf

2 I
]

+R
[
Ĥ(0)T − inωrf

2 I
]
, (3.221)

which gives rise to the same atomic spin resonances at multiples of ωrf/2 frequencies
where ωrf is the frequency of the rf-field as in the case of the Heisenberg model. The
resonance occurs when Ωdc = ωrf/2.

3.3.4 State space using density operator approach
So far, in the analysis of the spin dynamics using the density operator approach we
have not specified the form of the input states ρ̂in and ρ̂0. In the previous sections,
where we have used the Heisenberg approach to model the second order spin dynamics
we have only considered a single manifold of the 87Rb ground state i.e. F = 2 of
the 52S1/2 ground state. This made the definitions of the states trivial to compute.
However, the model does not say anything about the state evolution. This becomes
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Figure 3.17: Density elements and their relations within the F = 1 + F = 2 manifold.

crucially important if we want to perform microwave spectroscopy which couples the
F = 1 → F = 2 manifolds. Since the performance of the OPM depends heavily
on how well we prepare our magnetically sensitive states, microwave spectroscopy
enables us to probe the system and assess the efficacy of this state preparation process.
Moreover, having control over the various parameters in the Hamiltonian we can in
principle partially probe the state both, theoretically and experimentally which allows
us to understand the consequent evolution of the state.

We begin by defining the density operator for the complete F = 1 + F = 2 manifold
of the 87Rb ground state

ρ̂ =



ρ11 ρ12 ρ13 ρ14 ρ15 ρ16 ρ17 ρ18
ρ21 ρ22 ρ23 ρ24 ρ25 ρ26 ρ27 ρ28
ρ31 ρ32 ρ33 ρ34 ρ35 ρ36 ρ37 ρ38
ρ41 ρ42 ρ43 ρ44 ρ45 ρ46 ρ47 ρ48
ρ51 ρ52 ρ53 ρ54 ρ55 ρ56 ρ57 ρ58
ρ61 ρ62 ρ63 ρ64 ρ65 ρ66 ρ67 ρ68
ρ71 ρ72 ρ73 ρ74 ρ75 ρ76 ρ77 ρ78
ρ81 ρ82 ρ83 ρ84 ρ85 ρ86 ρ87 ρ88


, (3.222)

where the relations between the energy levels are depicted in Fig. 3.17. Now the spin
operators (in the z-basis) for the complete manifold are given by the

F̂Full
i =

[
F̂ F=1
i 0
0 F̂ F=2

i

]
, (3.223)
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where for example, the F̂Full
x operator is given by (see Appendix B.6.1 on page 187 for

the full description of other spin operators)

F̂Full
x =



0 1
2

√
2 0 0 0 0 0 0

1
2

√
2 0 1

2

√
2 0 0 0 0 0

0 1
2

√
2 0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 1 0

√
3
2 0 0

0 0 0 0
√

3
2 0

√
3
2 0

0 0 0 0 0
√

3
2 0 1

0 0 0 0 0 0 1 0


. (3.224)

The definition of our input state in the x-basis corresponds to an equal statistical
mixture of |F = 2,mF = ±2〉, such that the density input state takes the form

ρ̂xin =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

2


, (3.225)

where, after applying a unitary transformation to transform the state in z-basis where
the measurement takes place, the state takes the form

ρ̂zin = Û †ρ̂xinÛ =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

16 0 3
16

√
2
3 0 1

16
0 0 0 0 1

4 0 1
4 0

0 0 0 3
16

√
2
3 0 3

8 0 3
16

√
2
3

0 0 0 0 1
4 0 1

4 0
0 0 0 1

16 0 3
16

√
2
3 0 1

16


, (3.226)

where Û is computed using eq. (3.120) on page 50. The thermal state is simply given
by

ρ̂0 = 1
8I8×8, (3.227)

where I8×8 is a 8× 8 identity matrix. As before, the Voigt effect is given by eq. (3.32)
on page 34. Using the density operator approach, the Voigt effect can the be expressed
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Figure 3.18: Magnetometer response as a function of longitudinal magnetic field
Bz using the density operator approach. The sequence, is the same as outlined in
sec. (3.2.8) where the state preparation is done using synchronous pumping using
square pulses followed by a cw probing.

in terms of the coherences, namely〈
Ŝ ′z(t)

〉F=1
= g

(2)
F=1SynF TrF=1

[(
(F̂Full

x )2 − (F̂Full
y )2

)
ρ̂
]

= g
(2)
F=1SynF (ρ13 + ρ31) ,

(3.228)〈
Ŝ ′z(t)

〉F=2
= g

(2)
F=2SynF TrF=2

[(
(F̂Full

x )2 − (F̂Full
y )2

)
ρ̂
]

= g
(2)
F=2SynF

(√
6ρ46 +

√
6ρ64 +

√
6ρ68 +

√
6ρ86 + 3ρ57 + 3ρ75

)
, (3.229)

where we have traced over F = 1 and F = 2 manifolds to show their contributions
individually.

3.3.5 Magnetometer response to external fields (Density Ma-
trix Model)

The procedure to derive the OPM response in the pump and probe regions are
equivalent to the Heisenberg model section. We thus proceed by simply stating the
solutions to the pump and probe sequences. For the pump, the steady state solution is

Xpump
F =− [C̃− �T ]−1(�inXin + �relX0). (3.230)

During the probe, the pumping is off, and the state evolves freely in time. We average
the OPM response over a few cycles, giving

Xprobe
F = 1

T
(C̃′)−1

(
eC̃
′ T − I

)
Xpump
F + 1

T
(C̃′)−1

[
(C̃′)−1

(
eC̃
′ T − I

)
− T

]
�relX0.

(3.231)

where C̃′ = C̃−�rel. The OPM response as a function of longitudinal Bz field is depicted
in Fig. 3.18. As can be observed from the figure the density operator theory approach
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provides the same qualitative response when compared to the Heisenberg model
depicted in Fig. 3.9 on page 58. Whilst the density operator approach contains complete
information about the system such as the populations and coherences compared to the
Heisenberg model, this, however, comes at the expense of having a larger state space
which is computationally more intense. For example, using the Heisenberg approach,
the Liouville-Floquet space results in a square matrix dimension (2F + 1)2 × (2Q+ 1)
whilst for the density matrix approach ((2F1 + 1) + (2F2 + 1))2× (2Q+ 1), where F1,2
are the manifolds of the hyperfine states and Q is the harmonic cut-off frequency index
nω, −Q ≤ n ≤ Q for the Floquet approximation. The equations of motion derived in
both the Heisenberg model and the Density matrix model are equivalent. Thus, the
theoretical results for the density operator based on various OPM parameters which
were shown in the Heisenberg model will not be repeated. Instead, the focus will shift
towards the theoretical investigation of the microwave spectroscopy in the context
of the Voigt effect. The motivation for this (which will become more obvious in the
coming sections) is due to a number of reasons. First, due to the complexity of state
preparation process in the rf-dressed atomic state picture, it is not trivial to infer
that our input state is a statistical mixture of |F = 2,mF = ±2〉 states. We want
to be able to assess the efficiency of this state preparation process and understand
how the parameter space affects it. Moreover, in this work, the Voigt effect measures
the square difference of the angular momentum operators which we can relate to the
angular momentum probability surfaces. The knowledge of the angular momentum
probability surfaces allows one to reconstruct partial density matrix. This allows us
to discriminate between the different states that can be generated during the process
of optical pumping. This is extremely useful because the microwave spectrum of the
state allows us to assess what is the prepared state before the measurement (probing)
takes place.

3.3.6 Angular Momentum Probability Surfaces
The density matrix can be visualised graphically by transforming it into an angular
momentum probability surface [38, 63]. In our case, the density matrix is expressed in
terms of the Zeeman sublevels of the hyperfine manifold with a total angular momentum
F , where the diagonal elements of the density matrix represent state populations of
each sub-level and the off-diagonal elements are coherences which represent correlations
between any two given states within the manifold. The probability of measuring the
state being in a hyperfine sublevel m is given by ρm,m = 〈F,m | ρ̂ |F,m〉. We can
express the probability of finding the system in an m sublevel along the (θ, φ) direction
using the following relation [38]

ρF (θ, φ) = 〈F,m | ρ̂ |F,m〉 =
∑
m,m′

(
D

(F )
m,F

)∗
(φ, θ, 0)ρ̂m,m′D(F )

m′,F (φ, θ, 0), (3.232)

where D(F )
m′,m(φ, θ, 0) are the Wigner D-functions which are given by

D
(F )
m′,m(φ, θ, 0) = e−iφm

′
d

(F )
m′,m(θ), (3.233)
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and the general form of d(F )
m′,m(θ) is given by

d
(F )
m′,m(θ) =

∑
k

(−1)k−m+m′

√
(F +m)!(F −m)!(F +m′)!(F −m′)!

(F +m− k)!k!(F − k −m′)!(k −m+m′)!

× cos
(
θ

2

)2F−2k+m−m′

sin
(
θ

2

)2k−m+m′

, (3.234)

such that for and F = 2 manifold where our state is prepared, the matrix d(F=2)
m′,m (θ)

reads (see Appendix B.6.2 on page 189 for a detailed calculation)

d
(2)
m′,m(θ) =

c4
θ/2 −2c3

θ/2sθ/2
√

6c2
θ/2s

2
θ/2 −2cθ/2s3

θ/2 s4
θ/2

2c3
θ/2sθ/2 4c4

θ/2 − 3c2
θ/2 (

√
6cθ/2 − 2

√
6c3
θ/2)sθ/2 −4c4

θ/2 + 3c2
θ/2 −2c3

θ/2sθ/2√
6c2
θ/2s

2
θ/2 (2

√
6c3
θ/2 −

√
6cθ/2)sθ/2 6c4

θ/2 − 6c2
θ/2 + 1 (

√
6cθ/2 − 2

√
6c3
θ/2)sθ/2

√
6c2
θ/2s

2
θ/2

2cθ/2s3
θ/2 3s2

θ/2 − 4s4
θ/2 (2

√
6c3
θ/2 −

√
6cθ/2)sθ/2 4c4

θ/2 − 3c2
θ/2 −2c3

θ/2sθ/2
0 2s3

θ/2cθ/2
√

6c2
θ/2s

2
θ/2 2c3

θ/2sθ/2 c4
θ/2

,

(3.235)
where cnθ/2 = cosn(θ/2) etc. The Wigner functions describe rotations of a state written
in the basis of the angular momentum eigenstates. We can use these relations to plot
the probability surfaces for our input state which is an equal statistical mixture of
|F = 2,mF = ±2〉. In the rotated frame in the x-basis density operator has the form

ρ̂xin =



1
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

2

 , (3.236)

where, using eq. (3.232) the probability surface matrix ρF (θ, φ) is given by

ρxF (θ, φ) = 〈F = 2,m | ρ̂xin |F = 2,m〉 =
∑
m,m′

(
D

(F )
m,F

)∗
(φ, θ, 0)ρ̂m,m′D(F )

m′,F (φ, θ, 0),

(3.237)
ρxF (θ, φ) = 1

2 sin8
(1

2 θ
)

+ 1
2 cos8

(1
2 θ
)
. (3.238)

For a qualitative comparison, a state in the same basis with the following density
matrix

ρ̂ = 1
3


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 , (3.239)

has the following probability surface

ρF (θ, φ) = −2
3 cos8

(1
2 θ
)

+ 4
3 cos6

(1
2 θ
)
− 2 cos4

(1
2 θ
)

+ 4
3 cos2

(1
2 θ
)
, (3.240)
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on the other hand, a thermal state, given by

ρ̂th = 1
5


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (3.241)

where we note the fact that the thermal state has the same form regardless in which
basis we work in. The probability surface is given by

ρth
F (θ, φ) = 1

5 . (3.242)

To visualise the surfaces, we convert from the spherical polar coordinates to Cartesian
coordinates using

x = ρF sin(θ) cos(φ), (3.243)
y = ρF sin(θ) sin(φ), (3.244)
z = ρF cos(θ), (3.245)

where ρF is the radius of our probability surface calculated in the expressions above
and 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. Figure 3.19 on page 83 shows surface plots for each
calculated state. As can be seen, the topology of the surface can tell whether the
state is polarised or not, the degree of this polarisation and whether there exists
a preferential axis for the polarisation. These symmetry properties can be further
utilised to infer the properties of the density operator. More, rigorously

Theorem 1. There exists a one-to-one mapping between the density matrix defined
for the manifold of Zeeman sublevels of a state with a total angular momentum F and
the corresponding angular momentum probability surface, ρF (θ, φ) [38, 62].

For example, the thermal state has no preferred axis or direction, which means that
any form of rotation of the probability surface will have no effect - the only matrix
form that satisfies this property is the identity matrix, which means that the den-
sity matrix must have only diagonal elements. On the other hand, the mixed state
|F = 2,mF = ±2〉 in the x-basis, Fig. 3.19 a), has a preferred axis of symmetry which
is the quantisation axis. This makes it easy to infer the state of polarisation and
the rough distribution of the populations. Moreover, the peanut shaped probability
surface has a preferred axis of symmetry, but no preferred direction. This is known
as an aligned state. In contrast to the mixed state surface, the pure state depicted
in b), not only has a preferred symmetry axis, but also a direction that coincides
with it, this is known as a polarised state. The polarisation, alignment and symmetry
properties of the state determine the optical anisotropies the states can have [38,62].
For instance, an aligned state can have properties where the interaction between light
polarisation and the state result in linear birefringence effects. This occurs when the
interactions between vertically and horizontally decomposed light polarisations with
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Figure 3.19: a) Angular momentum surface of the ρ̂xin, |F = 2,mF = ±2〉 state ex-
pressed in the x-basis. b) Angular momentum surface of the |F = 2,mF = −2〉 state
expressed in the z-basis. c) Angular momentum surface of the thermal state, ρ̂th. d)
Angular momentum surface of the state in the x-basis which is given by the probability
surface in eq. (3.240).

the atoms is different. Meanwhile, for a polarised state, the light-atom interactions
result in no linear birefringence, but instead, circular birefringence i.e. the difference
in light interaction with the atoms between the σ± components.

The theoretical OPM response in the context of the density operator approach
contains information about the state populations as well as the coherences between
them. In the model, we assume that the input state is given by ρ̂xin which then evolves
in time and is affected by various parameters such as pumping, decoherence as well
as longitudinal field setpoint, B+

sense, which governs the overall OPM sensitivity. It is
therefore instructive to understand how our ideal input state is affected and modified
during the pump and probe cycles. During the pumping stage, the OPM dynamics
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Figure 3.20: a) 2ωrf resonance indicating the different field points where density matrix
of the zeroth harmonic is obtained and its corresponding probability surface calculated.
The colours of the points match the colours of the surfaces. b) Angular momentum
surface of the mixed |F = 2,mF = ±2〉 input state expressed in the x-basis. This is
the initial state before OPM dynamics are taken into account. c) Angular momentum
probability surface of the mixed |F = 2,mF = ±2〉 input state on the 2ωrf resonance,
Boffs = Bres = ~ωrf/µBgF . d) Angular momentum surface of the same state on the
sensitive point, Boffs = B+

sense = Bres +Bρ. e) Probability surface when the field, Boffs
is off resonance. All states are shown here in the x-basis and in steady state conditions
during the pumping cycle.

reach steady state conditions characterised by

Xpump
F =− [C̃− �T ]−1(�inXin + �relX0), (3.246)
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Figure 3.21: a) 2ωrf resonance indicating the different field points where density matrix
of the zeroth harmonic is obtained and its corresponding populations plotted. b)
Populations of the mixed |F = 2,mF = ±2〉 input state expressed in the x-basis. This
is the initial state before OPM dynamics are taken into account. c) Populations of the
mixed |F = 2,mF = ±2〉 input state on the 2ωrf resonance, Boffs = Bres = ~ωrf/µBgF .
d) Populations of the same state on the sensitive point, Boffs = B+

sense = Bres +Bρ. e)
Populations where Boffs is off resonance.

where the quantity, Xpump
F contains our density matrix in vector form. The sensitivity

of the OPM for all three vector field directions is dependent on the longitudinal offset
field, Boffs. We look at three limiting cases where the longitudinal field is set on
resonance, i.e. Boffs = ~ωrf/µBgF , sensitive field point, Boffs = B+

sense = Bres +Bρ, and
far off resonance. Fig. 3.20 on page 84 shows the corresponding angular momentum
probability surfaces starting with the initial input state given by ρ̂xin. The surfaces are
extracted by taking the density matrix of the zeroth harmonic. From the figure one can
observe that when the state preparation occurs on resonance, the key characteristics
of the probability surface are preserved, though the state populations in stretched
states, |F = 2,mF = ±2〉, decrease to 36.5% from 50%, the |F = 2,mF = ±1〉 states
acquire 10.4% with the clock state |F = 2,mF = 0〉 having a population of 6.2%,
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see Fig. 3.21 on page 85. Further down the resonance on the sensitive field point,
Boffs = B+

sense = Bres +Bρ, the state is deformed further almost completely losing the
characteristic peanut shape. The population distribution in the stretched states is
further reduced to 28%, the |F = 2,mF = ±1〉 states acquire 15% with the remaining
14% population residing in the clock state. Finally, in the off-resonance limit, the
state has populations close to the thermal state distribution, as evidenced by having
a nearly spherical probability distribution. These results show that efficient state
preparation is heavily dependent on whether the longitudinal static field matches the
resonance condition set by the frequency of the rf-dressing field. In the case where the
OPM is operated as a vector magnetometer, the longitudinal field setpoint degrades
the optimally chosen state due to the pumping process becoming less efficient, thus
compromising the sensitivity of the OPM. The density operator approach coupled
with the angular momentum probability surface formalism gives a much deeper insight
into the fundamental state dynamics which is unavailable in the Heisenberg formalism
outlined in the previous sections.

The next step involves exploring the state evolution during the probing cycle. The
time evolution of the density operator in the probe region is given by

Xprobe
F (t) = −eC̃′ t

(
[C̃− �T ]−1(�inXin + �relX0)

)
+ C̃′−1(eC̃′ t − I) �relX0. (3.247)

Varying the time t after which we probe the state and looking at the corresponding
populations allows us to track the time evolution of the state, this is depicted in
Fig. 3.22 on page 87. Once again we consider cases where the probing times relative
to the relaxation lifetime are given by T � 1/Γrel, T ≈ 1/Γrel and T � 1/Γrel. Where
Γrel is the relaxation time. The evolution of the state is performed on the sensitive
field point, Boffs = B+

sense = Bres +Bρ. Here the input state takes the form of the one
depicted in Fig. 3.20 a). The time evolution of the states at the zeroth harmonic is
depicted in Fig. 3.22. As can be seen from the figure, probing the system shortly after
the pump cycle where the relaxation has not had time to dominate the dynamics, the
state looks almost identical to the input state obtained during the pump cycle. As
the time for the evolution increases, the state begins to lose its features as the state
populations begin to redistribute. In the limit where the evolution is much longer
than the relaxation time, the state converges to a thermal state, which is characterised
by a perfect spherically symmetric surface.

The various symmetry properties of the angular momentum probability surfaces
depend on the chosen states which in turn depend on the angular momentum quantum
numbers. The symmetry properties of such states can tells us whether the state
is aligned or oriented and what kind of light-matter interactions will be dominant.
Geometrically, it is possible to express the probability surfaces in terms of linear
combinations of spherical harmonic functions, Ym,l(θ, φ). As a result, because the
density operator is related to the angular momentum probability surface, it is possible
to spectrally decompose the density operator into components that correspond to
the coefficients of the spherical harmonic functions, Ym,l(θ, φ). Mathematically, the
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Figure 3.22: a) For reference; input state before pump/probe evolution takes place.
b) Angular momentum surface of the mixed |F = 2,mF = ±2〉 input state expressed
in the x-basis after pumping and then evolved for 5 rf-cycles in the probe region. c)
Same as in the previous plot, but the probe is now extended to 20 rf-cycle duration.
d) state after 1000 rf-cycle duration. Here T = 2π/ωrf . The plots containing time
evolution are obtained from the density matrix of the zeroth harmonic.

density operator can be decomposed into the following [38,63]

ρ =
2F∑
κ=0

κ∑
q=−κ

ρκqT κq , (3.248)

where the quantity ρκq is known as the polarisation moment. The matrix element of
the polarisation operator, T κq is given by

T κq = (−1)F−m 〈F m′ F,−m |κ q〉 , (3.249)

where the quantities in 〈F m′ F,−m |κ q〉 are the corresponding Clebsch-Gordan
coefficients calculated using the Wigner-3j symbols. If we have the form of the density
operator, ρ, we can find the polarisation moments by taking the trace

ρκq = Tr
[
ρT κq

]
=
∑
m,m′

(−1)F−m′ 〈F m F,−m′ |κq〉 ρm′,m, (3.250)
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where ρm,m′ is the density operator element. Using the equation above, we can directly
compute the general form of spectral decomposition for each polarisation moment
for F = 2 state (see Appendix B.6.3 on page 191 for detailed calculation). For the
case where we consider our input state ρ̂xin expressed in the x-basis (see eq. (3.236) on
page 81 and Fig. 3.22 a) on page 87), the only non-zero spectral components, ρκq , are

ρ̂xin → ρκq =
∑
m,m′

(−1)F−m′ 〈F m F,−m′ |κq〉 ρm′,m =


ρ0

0 = 1√
5 ,

ρ2
0 =

√
2
7 ,

ρ4
0 = 1√

70 .

(3.251)

For the particular state considered here, we have contributions from the monopole
moment, ρ0, quadrupole moment, ρ2, and hexadecapole moment, ρ4. The even power
contributions indicate that the state is an aligned state. Odd powers would indicate
an oriented state. In general, polarisation moments taking the form ρκq=0 describe
polarisation along the quantisation axis or the longitudinal polarisation. Conversely, if
ρκq 6=0 6= 0, then we have contributions from the coherences and the state has transverse
polarisation. The polarisation moments, ρκq , combined with the spherical harmonics
functions, Ym,l(θ, φ), can be used to compute the angular momentum probability
surfaces using the following relation [62,63]

ρF (θ, φ) =
√

4π
2F + 1

2F∑
κ=0

κ∑
q=−κ

〈F F κ 0 |F F 〉 ρκqYκq(θ, φ), (3.252)

where 〈F F κ 0 |F F 〉 ρκq are Clebsch-Gordan coefficients in the Wigner-3j symbol
form. Using the coefficients calculated above for the ρ̂xin state, the angular momentum
probability surface is (see Appendix B.6.3 on page 191 for detailed calculation)

ρF (θ, φ) = 1
16 + 3

8 cos2(θ) + 1
16 cos4(θ), (3.253)

which looks different to the probability surface derived for the same state in eq. (3.238)
on page 81. Upon inspection and the use of De Moivre’s theorem, (cos(θ)+ i sin(θ))n =
cos(nθ) + i sin(nθ) it is found that the two expressions given by eqns. (3.238) and
(3.253) are equivalent, as they should be. The spherical harmonic decomposition
of the angular momentum probability surface allows us to see which polarisation
moments contribute to the overall structure of the desired state and how much of
a contribution they produce. For example, the decomposition of the ρ̂xin state into
its constituent spherical harmonics is shown in Fig. 3.23 on page 89. From the
decomposition and the coefficients, ρκq, we observe that the two largest contributions
are from the monopole moment, ρ0, and the quadrupole moment, ρ2. The monopole
moment, ρ0, represents the population of the density operator divided by

√
2F + 1,

and so the spherical component, Y0,0(θ, φ), is always present in the decomposition.
The higher moments of the decomposition further describe the distribution of the
corresponding populations. In the case of the measurements of the Voigt effect, it is
more instructive to transform the state into the basis z-basis along which we set our
static field Bz. The density matrix given in eq. (3.226) used to describe our input
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Figure 3.23: a) For reference; input state before pump/probe evolution takes place.
b) Spherical harmonic, Y0,0(θ, φ). c) Spherical harmonic, Y2,0(θ, φ). d) Spherical
harmonic, Y4,0(θ, φ). Note here that the spherical harmonics are not prescaled. To
compute the ρF we multiply each harmonic shown here by its corresponding ρκq

moment coefficient and take the sum. Note that the states c) and d) are not physical.

state in the z-basis contains coherences. The coherences are the quantities probed in
the experiment. If we constrain ourselves to the F = 2 manifold, the general form of
the density matrix is given by

ρ̂ =


ρ11 ρ12 ρ13 ρ14 ρ15
ρ21 ρ22 ρ23 ρ24 ρ25
ρ31 ρ32 ρ33 ρ34 ρ35
ρ41 ρ42 ρ43 ρ44 ρ45
ρ51 ρ52 ρ53 ρ54 ρ55

 . (3.254)

Thus, the corresponding matrix elements that contribute to the Voigt effect are given
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by〈
Ŝ ′z(t)

〉F=2
= g

(2)
F=2SynF Tr

[(
(F̂F=2

x )2 − (F̂F=2
y )2

)
ρ̂
]

= g
(2)
F=2SynF

(√
6ρ13 +

√
6ρ31 +

√
6ρ35 +

√
6ρ53 + 3ρ24 + 3ρ42

)
. (3.255)

Using the general result for the decomposition of the density matrix into polarisation
moments, ρκq, for the F = 2 manifold, calculated in the Appendix B.6.3 on page 191,
the moments which contribute to the Voigt effect signal are

〈
Ŝ ′z(t)

〉
∝
∑
κ,q

ρκq =


ρ2
±2,

ρ3
±2,

ρ4
±2.

(3.256)

Taking our input state in the z-basis

ρ̂zin = Û †ρ̂xinÛ =



1
16 0 3

16

√
2
3 0 1

16
0 1

4 0 1
4 0

3
16

√
2
3 0 3

8 0 3
16

√
2
3

0 1
4 0 1

4 0
1
16 0 3

16

√
2
3 0 1

16


, (3.257)

and using multipole decomposition gives the following non-zero multipole moments

ρ̂zin → ρκq =
∑
m,m′

(−1)F−m′ 〈F m F,−m′ |κq〉 ρm′,m =



ρ0
0 = 1√

5 ,

ρ2
0 = − 1√

14 ,

ρ2
±2 = 1

2

√
3
7 ,

ρ4
0 = 1√

70
3
8 ,

ρ4
±2 = − 1

8
√

7 ,

ρ4
±4 = 1

16 .

(3.258)

We see that the state in the z-basis contains multipole moments which are also
contained in the Voigt effect signal,

〈
Ŝ ′z(t)

〉
. However, we also observe a significant

portion of the multipole moments in the input state which are redundant in relation
to the Voigt effect signal. The only contributions to the Voigt effect signal using the
state ρ̂zin come from the ρ2

±2 and ρ4
±2 components. Knowing which of the multipole

moments contribute to the measured signal, it is possible to construct an ansatz form
of the density matrix which would allow to maximise the response of the quantity of
interest by using the multipole moments to derive the density matrix

ρm′m =
2F∑
κ=0

κ∑
q=−κ

(−1)F−m′ 〈F m F,−m′ |κq〉 ρκq . (3.259)

If the system is prepared in some state, we would like to know what that state is and
quantify it. Direct optical probing addresses the entire ground state F = 2 manifold
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and therefore it is difficult to discriminate between the differently prepared states.
However, if we use an additional field to couple the low energy levels, i.e. F = 1
and F = 2 manifolds by means of a microwave field, then we can appreciably change
the population levels of the prepared state which would be sensitive to the optical
probing - this is because the populations contributing to the signal would be changed
thus changing the signal level. In our case, during the state preparation process the
F = 1 manifold is empty (or almost empty) due to pumping and repumping, the
application of a microwave field allows us then to infer the state of the system in the
F = 2 manifold by removing the populations from it. However, because the atoms are
dressed using a radio-frequency field, the spectrum can be somewhat more complicated
(due to the rf-field coupling between each hyperfine mF sublevels) which makes it
less trivial to infer the distribution of the Zeeman populations in the F = 2 manifold.
The density operator model outlined above allows us to incorporate the microwave
field and calculate the theoretical response which we can compare to the experimental
results and thus partially deconstruct our density matrix. The microwave interaction
Hamiltonian and the OPM response is outlined in the next subsection.

3.3.7 Interaction Hamiltonian with a Microwave Field
The interaction Hamiltonian between the atom in an electronic ground state and a
microwave field BMW(t) is given by [64]

ĤMW(t) = µB
~
(
gI Î + gJ Ĵ

)
·BMW(t), (3.260)

where

gJ = gL
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1) + gS
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1) .

(3.261)
In the 87Rb ground state 2S1/2, L = 0, hence Ĵ = L̂ + Ŝ = Ŝ. Moreover, gI � gJ
and for the purposes of the MW spectrum we can neglect the contribution from the
nuclear term, Î. Thus, the microwave interaction Hamiltonian reduces to

ĤMW(t) = µB
~
gsŜ ·BMW(t), (3.262)

where gs ≈ 2. We want to find the form of the operator Ŝ which induces the transitions
in our ground state from F = 1 to F = 2. First, we note that the states that we have
been dealing with to compute ρ̂in etc., are expressed in the |F,mF 〉 basis which we
cannot use to compute Ŝ because the basis is different. The total angular momentum
state |F,mF 〉 can be expressed as a combination of product states |S,mS〉 |I,mI〉,
namely [38]

|F,mF 〉 =
∑
mS

∑
mI

〈S,mS, I,mI |F,mF 〉 |S,mS〉 |I,mI〉 , (3.263)

where 〈S,mS, I,mI |F,mF 〉 are the Clebsch-Gordan coefficients, given by

CF
mI ,mS

= 〈I, S,mI ,mS |F,mF 〉 = (−1)−I+S−mF (2F+1)
(
I S F
mI mS −mF

)
, (3.264)
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Figure 3.24: Microwave transitions for π, σ− and σ+ polarisations of F = 1→ F = 2
hyperfine manifold.

where the 2× 3 matrix represents the Wigner-3j symbols. The detailed calculations of
the states are given in the Appendix B.6.4 on page 194. In this new basis, we can now
define the interaction between the microwave field BMW(t) and the spin operator Ŝ.
First, the microwave radiation produces fields that have π and σ± polarisations. The
interaction between the fields and the spin drive the transitions to the various levels
as depicted in Fig. 3.24. We can consequently decompose the interaction between the
fields and the spin into its separate components

ĤMW(t) = Ωπ(t)Ŝπ + Ωσ+(t)Ŝσ+ + Ωσ−(t)Ŝσ− , (3.265)

where Ωi(t) = µBgs/~Bi(t). The matrix elements for the spin operators can be
computed in two ways. The first method involves using the basis states |S,mS〉 |I,mI〉
and computing the matrix elements for each allowed transition depicted in Fig. 3.24.
The matrix element reads

Skij =
〈
i
∣∣∣ Ŝk ∣∣∣ j〉 . (3.266)

The second method involves computing the magnetic dipole transition moment ele-
ments for π, σ− and σ+-transitions respectively (see Appendix B.6.5 on page 198 for
a full calculation) [64]

Sπ =
〈
F + 1,mF

∣∣∣ Ŝπ ∣∣∣F,mF

〉
=

= (−1)F+mF−1

√
2I(I + 1)

2I + 1

(
F + 1 1 F
−mF 0 mF

)
, (3.267)

Sσ
− =

〈
F + 1,mF − 1

∣∣∣ Ŝσ− ∣∣∣F,mF

〉
=

= (−1)F+mF

√
4I(I + 1)

2I + 1

(
F + 1 1 F

−(mF − 1) −1 mF

)
, (3.268)

Sσ
+ =

〈
F + 1,mF + 1

∣∣∣ Ŝσ+

∣∣∣F,mF

〉
=

= −(−1)F−mF

√
4I(I + 1)

2I + 1

(
F + 1 1 F

−(mF + 1) 1 mF

)
, (3.269)
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which for example, the Ŝπ operator takes the form

Ŝπ =



0 0 0 0
√

3
4 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0
√

3
4 0

0 0 0 0 0 0 0 0√
3

4 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0
0 0

√
3

4 0 0 0 0 0
0 0 0 0 0 0 0 0


. (3.270)

We further note that the hyperfine splitting energy between F = 1→ F = 2 levels is
∆. This gives the bare atom Hamiltonian for the hyperfine state [48,64]

ĤAtom = A

~2 Î · Ĵ = −
∑
i,j

∆ |i〉 〈j| δij, (3.271)

where A is the hyperfine structure constant and δij is the Kronecker delta. In our
case, the bare atom Hamiltonian in the rotated frame matrix reads

ĤAtom =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −∆ 0 0 0 0
0 0 0 0 −∆ 0 0 0
0 0 0 0 0 −∆ 0 0
0 0 0 0 0 0 −∆ 0
0 0 0 0 0 0 0 −∆


, (3.272)

where ∆ corresponds here to the detuning from the resonance of the hyperfine clock
transition |F = 1,mF = 0〉 → |F = 2,mF = 0〉. The interaction between the magnetic
field and the hyperfine sublevels is given as before

ĤB(t) = (Ωrf cos(ωrft) + Ωext
x )F̂x(t) + Ωext

y F̂y(t) + (Ωdc + Ωext
z )F̂z(t). (3.273)

Thus, combining the two, we obtain the interaction between the atomic energy levels
and the external magnetic and microwave fields

ĤTotal = ĤAtom + ĤMW(t) + ĤB(t). (3.274)

After transforming the Hamiltonian into the rotated frame and applying the rotating
wave approximation, (RWA), the time dependence of the ĤMW vanishes since the MW
frequency is much higher than the hyperfine Zeeman splitting set by the static and the
rf-fields. Thus, the only time dependence remains in the ĤB(t), where as in previous
sections we have applied the Floquet expansion. Due to the simplified form of the
MW Hamiltonian after the RWA, the Liouville and Floquet space produce the same
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equations of motion with an additional term added to the DC (zero order) component.
Namely, the equation of motion reads

dXF (t)
dt

=[C̃− �T ] XF + �inXin + �relX0, (3.275)

where as before we have

C̃nm =


C(0) − inωrfI, for n = m,

C(±1), for m = n∓ 1,
0, otherwise,

(3.276)

but in this case, the definition of C(0) contains the microwave field and bare atomic
Hamiltonians when the microwave field is applied

C(0)
MW − inωrfI = L

[
Ĥ

(0)
B + ĤAtom + ĤMW −

inωrf

2 I
]

+R
[
Ĥ

(0)
B

T
+ ĤT

Atom + ĤT
MW −

inωrf

2 I
]
. (3.277)

When the microwave field is off, the coherent spin dynamics are simply given by

C(0) − inωrfI = L
[
Ĥ

(0)
B −

inωrf

2 I
]

+R
[
Ĥ

(0)
B

T
− inωrf

2 I
]
. (3.278)

3.3.8 Magnetometer response to CW Microwave Fields (Den-
sity Matrix Model)

The magnetometer microwave spectrum has three stages, synchronous pumping,
microwave pulse and the probe pulse, these are shown schematically in Fig. 3.25 on
page 95. Each sequence is characterised by the following equation of motion

dXF (t)
dt

=



[C̃− �T ] XF + �inXin + �relX0, Pump Cycle,

[C̃MW − �rel] XF + �relX0, MW Cycle,

[C̃− �rel] XF + �relX0, Probe Cycle.

(3.279)

During the pumping stage, as before, a steady state is reached. This is given by

XPump
F =− [C̃− �T ]−1(�inXin + �relX0). (3.280)

After reaching the steady state, the pump pulse is switched off, which is immediately
followed by an application of a microwave pule. During microwave cycle, the system
evolves freely which is described by the following equation of motion

dXF (t)
dt

∣∣∣∣∣
MW

= [C̃MW − �rel] XF + �relX0. (3.281)
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Figure 3.25: Sequence to produce the MW spectroscopy.

Integrating the equation above allows us to compute the evolution of the density
matrix after time, t, namely

XMW
F (t) = e(C̃MW−�rel)tXPump

F + (C̃MW − �rel)−1(e(C̃MW−�rel)t − I)�relX0. (3.282)

If the microwave is on for an integer number of rf cycles tMW = n/ωrf , then the state
at a later time is simply

XMW
F (tMW) = e(C̃MW−�rel)tMWXPump

F +(C̃MW−�rel)−1(e(C̃MW−�rel)tMW−I)�relX0. (3.283)

After the microwave pulse, a probe pulse is applied for a given time duration tProbe.
During the probing, the equation of motion reads

dXF (t)
dt

∣∣∣∣∣
Probe

= [C̃− �rel] XF + �relX0, (3.284)

which has a solution

XProbe
F (t) = e(C̃−�rel)tXMW

F (tMW) + (C̃− �rel)−1(e(C̃−�rel)t − I)�relX0. (3.285)

The total signal is recovered by taking the average of the solution by integrating over
some number of rf cycles. This gives the following output response

XProbe
out = 1

T

∫ T

0
XProbe
F (t)dt = 1

T
(C̃− �rel)−1

(
e(C̃−�rel)T − I

)
XMW
F (tMW)+

+ 1
T

(C̃− �rel)−1
(
(C̃− �rel)−1

(
e(C̃−�rel)T − I

)
− T

)
�relX0, (3.286)

where as before, the quadrature responses hx,y,z are extracted according to eqns. (3.170-
3.170) on page 59. The microwave radiation provides additional coupling between
the hyperfine states corresponding to coherences in the density matrix which contain
important information about the correlations between any two given populations. The
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Figure 3.26: Illustration of the microwave coupling of the ground state manifolds in
the continuous-wave (CW) model. Here the states in each manifold rotate in opposite
directions due to the different gF -factors. The microwave radiation transfers the state
populations between the two energy levels at different cone orientations during the
evolution.

picture is made more complicated by the fact that our atomic spins are dressed with a
radio-frequency field which additionally couples the hyperfine sublevels, see Fig. 3.26
for a schematic illustration. If the mw-field is turned on all the time, then the evolution
of the mw-field and the state is averaged, i.e. different relative orientations between
the cones end up contributing to the overall spectrum. The coupling of the mw-field
from one manifold to the other probes the orientation of those two cones relative to
each other as the mw-field frequency is continuously scanned. This allows the probing
of all the possible transitions and a big forest of lines is observed because each cone
orientation is probed. In fact, the standard selection rules are no longer valid and with
the rotating cones, transitions between |F = 1,mF = −1〉 and |F = 2mF = 2〉 are
possible giving rise to many transitions some of which are degenerate. As a result, the
microwave spectrum can no longer be interpreted trivially since the the combination of
a microwave and radio-frequency photons give rise to two-photon transitions enabling
the coupling between any two given states [64]. Typically, for a microwave field
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composed of σ±− and π− polarisations applied to F = 1→ F = 2 in a presence of
an external magnetic field, there are a total of 9 possible microwave transitions three
of which have the same transition energy (see Fig. 3.24 on page 92). This results in 7
distinct resonance peaks in the undressed microwave spectrum when the microwave
field frequency is scanned (assuming a thermal state in each manifold). The transitions
are known as group transitions. For example, in the undressed microwave spectrum
(Ωrf = 0), if there is a thermally distributed population in the Zeeman sublevels in
F = 2 manifold, all 7 groups can be observed due to the microwave transitions. If the
state is polarised, e.g. we have a stretched state, then only that group will be observed.
And in our case, if an equal mixture |F = 2,mF = ±2〉 is prepared, then the two
extreme groups can be observed. Therefore, probing the hyperfine manifolds using
microwave radiation can be useful in probing the state populations and assessing the ef-
ficacy of the state preparation process. Unfortunately, this picture is complicated in our
scheme because the presence of the radio-frequency photons causes additional coupling
between hyperfine levels which results in extra transitions within the Zeeman sublevels.
This gives rise to structure within each of the microwave transition groups making
the interpretation about the populations of the Zeeman sublevels difficult. However,
our density matrix model contains complete information about the populations of
the system as well as the coherences, this information coupled with the theoretically
computed microwave spectrum using the Voigt effect can be used as a reference point
when interpreting such spectra in an experimental setting in similar working conditions.

We have already looked at the effects on the state preparation process and probing
and their influence on the observed state through the angular momentum probability
surface formalism as well as the Heisenberg model. However, whilst it is important to
investigate such effects theoretically, ideally, we would like to bridge the gap between
the theory and the experiment in order to make our theory falsifiable. Our magne-
tometer response curves outlined in sections (3.1), (3.2) and (3.3) provide us with a
varying degree of predictability which is experimentally testable. However, the models
so far have not given us tools to probe the fundamental building block of our system
which is our state or the density matrix. The reason why this is important is that
not only do we gain understanding of how well we prepare our state, but also how
the state evolves in time and decoheres which are important processes for sensitive
measurements. Moreover, it may provide the motivation and additional tools for a
more robust state preparation process or the ability to prepare exotic states which
may yield higher sensitivity to the external field and are better protected against
decoherence effects.

The microwave spectrum is obtained by computing the theoretical OPM response
given in equation (3.286). Figs. 3.27 and 3.28 show the computed spectrum of the
Re(m2) demodulated signal amplitude for F = 2 and F = 1 manifolds respectively.
Here the input state used is shown as a probability surface in Fig. 3.20 c) on page 84
corresponding to a sate prepared on resonance Bz = Bres. In the model we assume that
the field strength contribution for each polarisation is equivalent, i.e. Ωπ(t) = Ωσ±(t).
The dressed microwave spectrum provides a unique fingerprint of the probed system
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a)

b)

Figure 3.27: Theoretically computed microwave spectrum of Re(m2)= hz quadrature
response in a pump-microwave-probe type sequence at ωrf = 2π × 90 kHz dressing
frequency. The static field is set on resonance, Bz = Bres. The state is prepared until
a steady state is reached, given by eq. (3.280), then a CW MW pulse is applied for
20-rf cycles followed by a probe. The F = 1 state is empty to a good approximation.
a) Dressed microwave spectrum probing F = 2 manifold with pump and repump on.
b) Dressed microwave spectrum probing F = 2 manifold with pump on and repump
off. Here the MW frequency refers to frequency detuning from |F = 1,mF = 0〉 →
|F = 2,mF = 0〉 clock state transition. Here the MW frequency refers to frequency
detuning from |F = 1,mF = 0〉 → |F = 2,mF = 0〉 clock state transition.

which is dependent on its quantum state. In the case where the two microwave coupled
manifolds both posses non-zero populations and therefore non-zero density matrices,
the resultant microwave spectra result in further complexity. In the case where only one
manifold is empty, the microwave coupling removes/adds the population (depending
on which manifold is probed) resulting in an increase/decrease of the measured linear
birefringence. Here in Fig. 3.27 a) the ground state F = 2 manifold contains most of
the population while the F = 1 manifold is basically empty. As a result, the coupling of
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a)

b)

Figure 3.28: Theoretically computed microwave spectrum of Re(m2)= hz quadrature
response in a pump-microwave-probe type sequence at ωrf = 2π × 90 kHz dressing
frequency. The static field is set on resonance, Bz = Bres. The state is prepared until a
steady state is reached, given by eq. (3.280), then a CW MW pulse is applied for 20-rf
cycles followed by a probe. a) Dressed microwave spectrum probing F = 1 manifold
with pump and repump on. b) Dressed microwave spectrum probing F = 1 manifold
with pump on and repump off. Here the MW frequency refers to frequency detuning
from |F = 1,mF = 0〉 → |F = 2,mF = 0〉 clock state transition.

the microwave field between the two energy levels results in a removal of the population
from the F = 2 manifold and adding it to the F = 1 manifold - this manifests as a de-
crease in the Voigt effect signal amplitude when the probing is done on the F = 2 level.
This is not the case if both of the manifolds contain non-zero populations, here the
microwave coupling transfers some of the populations from one manifold to the other,
which are then further redistributed by the radio-frequency photons. This results in
peaks or troughs depending on whether the population of the probed energy level is
increased or decreased respectively. The theoretical microwave spectra computed in
the figures convey unique fingerprints of the prepared states and can be used as an
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indicator to infer the characteristics of the prepared state. It is important to note
some additional features of these theoretical spectra. The spacing between each group
is determined by the static field Bz, in our case Bz = ∆group = ~ωrf/µBgF . In addition,
within each group, the spacing between the subgroup peaks is given by the strength of
the rf-field Ωrf = ∆subgroup. The spectroscopic features of the peaks depend both on the
static and rf-fields which are coupled to fundamental properties of the atomic spin and
their respective constants. This can be used to obtain absolute field values for both
the static and rf-fields which provides a method for absolute ac and dc field calibrations.

The measured Voigt effect signal only provides a limited number of density ma-
trix elements, and so the microwave spectra computed for the particular state may not
be unique. However, it may be a good starting point to infer some of the properties of
the state, especially if the theoretical results which allow us to extract the full density
matrix can be used in conjunction with the experimentally obtained spectra. The
clear drawback of the dressed microwave spectroscopy is that it’s not easy to interpret
in what state the system is without the full knowledge of the density operator (to infer
the populations) as well as the comparison to the experimentally obtained dressed
spectrum. This complexity is largely down to the fact that within the microwave
pulse cycle, the quantisation axis of the system changes in time due to the rf-dressing
field. This issue was encountered already with the state preparation cycle, whereby
to circumvent this problem, the pump was pulsed in phase with the rf-field at some
small duty cycle such that the effective quantisation axis for each pulse points in the
same direction. The microwave field can also be pulsed such that the quantisation
axis relative to the electric and magnetic fields of the mw-pulse is constant. This will
remove significant complexity from the microwave spectrum and allow for an easier
interpretation of the results.

3.3.9 Magnetometer response to pulsed Microwave Fields
(Density Matrix Model)

In order to understand the microwave spectra in pulsed conditions, we need to first
compute the Liouville-von Neumann equation in the pulsed conditions of the mw-field.
We begin with the microwave Hamiltonian

ĤMW(t) = Ωπ(t)Ŝπ + Ωσ+(t)Ŝσ+ + Ωσ−(t)Ŝσ− =
∑
k

Ωk(t)Ŝk, (3.287)

where Ωk(t) = µBgs/~Bk(t). In this case, the microwave field is pulsed in the same
way as the pump pulse. As a result, the microwave field can be spectrally decomposed
to the following

Ωk(t+ φ) = Ω(0)
k +Ω(1)

k eiωrf(t+φ) + Ω(−1)
k e−iωrf(t+φ) + Ω(2)

k e2iωrf(t+φ) + Ω(−2)
k e−2iωrf(t+φ) + · · · ,

(3.288)

where the index k corresponds to the polarisation of the mw-field i.e. k = 1, 2, 3→
π, σ± and φ is the phase relative to the rf-field. In the case of a square pulse with a
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Figure 3.29: Sequence to produce the pulsed MW spectroscopy.

duty cycle d, the spectral components read

Ω(0)
i = Ωi d, (3.289)

Ω(n)
i = Ωi

nπ
sin(nπd)einφ, n ∈ Z>0, (3.290)

Ω(−n)
i = Ωi

nπ
sin(nπd)e−inφ, n ∈ Z>0. (3.291)

The full equation of motion in the Liouville space reads
dX(t)
dt

= C(t)X(t)︸ ︷︷ ︸
HB +HAtom

+
(∑

k

Ωk(t)Πk

)
X(t)︸ ︷︷ ︸

Pulsed HMW

−Γp(t) [X(t)−Xin]︸ ︷︷ ︸
Pumping

−Λrel [X(t)−X0]︸ ︷︷ ︸
Decoherence

,

(3.292)

where the Πk terms are the microwave Hamiltonian operators in the Liouville space.
The nth harmonic term of the equation of motion above is given by

dX(n)(t)
dt

=C(0)
n X(n)(t) + C(1)X(n−1)(t) + C(−1)X(n+1)(t)

+
(∑

k

∑
i

Ω(n−i)
k (t)ΠkX(i)(t)

)
−
∑
i

Γ(n−i)
p X(i)(t)

+ Γ(n)
p Xin − ΛrelX(n)(t) + Λrel X0 δn,0. (3.293)

Using the same recipe as before to convert the expression above into Floquet space
we obtain

dXF (t)
dt

=[C̃ +
∑
k


k�k − �T ] XF + �inXin + �relX0, (3.294)

where

(
k)nm = Ω(n−m)
k I, (3.295)

�̃nm = Π, for n = m, (3.296)
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Figure 3.30: Illustration of the microwave coupling of the ground state manifolds
during stroboscopic microwave probing. Here the states in each manifold are probed
only at a specific time which means that the population transfer between the two
levels happens only at a certain orientation between the two cones.

and as before

C̃nm =


C(0) − inωrfI, for n = m,

C(±1), for m = n∓ 1,
0, otherwise,

(3.297)

but in this case, the definition of C(0) contains the microwave field and bare atomic
Hamiltonians when the microwave field is applied and the pulsed microwave field is
separated

C(0)
MW − inωrfI = L

[
Ĥ

(0)
B + ĤAtom −

inωrf

2 I
]

+R
[
Ĥ

(0)
B

T
+ ĤT

Atom −
inωrf

2 I
]
, (3.298)

where as before the microwave sequence has three stages described in the previous
section 3.3.8 on page 94.
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Figure 3.31: Theoretically computed stroboscopic microwave spectrum of Re(m2)= hz
quadrature response in a pump-microwave-probe type sequence at ωrf = 2π × 90 kHz
dressing frequency. The static field is set on resonance, Bz = Bres. The state is
prepared until a steady state is reached, given by eq. (3.280), then a square microwave
pulse in phase with the rf-field is applied for 20-rf cycles followed by a probe. Dressed
microwave spectrum probing F = 2 manifold with pump on and repump on. Here the
MW frequency refers to frequency detuning from |F = 1,mF = 0〉 → |F = 2,mF = 0〉
clock state transition.

The mw spectrum measurement by pulsing the mw field is stroboscopic. This means
that we probe the states at a certain time in their evolution as they precess around
the static and rf-fields, see Fig. 3.30. As a result, when the mw field is pulsed and its
frequency scanned, only a certain part of the cone configuration is probed and so the
spectrum acquires only the bare spectrum shape, or rather, the spectrum is obtained
based on a single orientation of the cones. Imagine this as a certain effective angle
between the cones that happens at a certain time window and each pulse probes only
at that specific cone orientation - this is stroboscopic probing. The bare spectrum
for a short mw pulse reveals the information of relative population sizes for each
state. Therefore, by playing with pump frequency, polarisation and the repump laser
one wants to make sure that the bare spectrum yields populations which are in the
extremes - implying that most of the atoms are prepared in the stretched states,
see Fig. 3.31 for results. The theoretical calculations show that when the system is
prepared in an equal statistical mixture of the stretched states and then is probed
stroboscopically using mw radiation in phase with the dressing rf-field, the state
populations appear as the two extrema peaks in the dressed microwave spectrum
repeated over the 7 groups. The repeated pattern arises as a consequence of the train
of square mw pulses. This is because the Fourier transform of a a train of square
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pulses, produces a train of pulses in frequency space. In a fully undressed scenario,
such a state would produce the same features, but only in the two extreme groups. As
a result, this stroboscopic microwave probing can be used as a smoking gun to infer
the prepared state and its corresponding population levels. In addition, if the phase of
the microwave pulse is changed, then we end up probing different orientations during
the state evolution. If we probe the spectra at different rf-phases and then add them,
this would yield the mw spectrum when the mw is in cw mode.
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Experimental Apparatus

This chapter outlines and discusses the experimental apparatus, its intricacies and
sequence of operation to run the magnetometer. In the first few sections the dis-
cussion centres around laser light preparation, stabilisation and control and give an
overview of the shielded setup and its optics. The discussion is then followed by
the experimental requirements for magnetic field generation and stabilisation in the
unshielded environments with a particular emphasis on generating uniform field coils,
their performance as well as the necessary electronics required to drive such a coil
system. The chapter is concluded with data acquisition and signal processing in the
context of magnetometry, focusing on experimental sequence procedures and how that
influences signal characteristics and magnetometer bandwidth.

4.1 Laser Optics and Magnetic Shield System
Laser Locking. The laser system depicted in Fig. 4.1 is housed on a vibrationally
insensitive table consisting of three frequency stabilised diode lasers, pump, repump
and probe. The pump and repump lasers are used for state preparation of the
magnetically sensitive states whilst the probe laser is used for the measurement of
the Voigt effect which allows us to infer information about the local magnetic field.
The pump laser is a commercial Toptica DL Pro whilst the repump and probe lasers
are home built DFB and cat-eye laser designs respectively (see Appendix C.1 for a
detailed description, characterisation and schematics of the cat-eye laser). The pump
and repump lasers are locked using an error signal derived from Doppler-free-saturated-
absorption spectroscopy [65–67]. The error signal is generated by modulating the
laser current at high frequency (typically <100 kHz) and detecting the corresponding
response via lock-in detection, see Fig. 4.2. The error signal is fed to a piezo driver to
stabilise the laser onto the atomic line. We lock the pump on the F = 2 → F ′ = 1
transition of the D1 line and the repump on the F = 1→ F ′ = 2 transition of the D2.

105
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The probe laser is locked in a master-slave setup where the pump acts as the master.
The locking point for the probe beam is typically set at −550 MHz red detuned from
the F = 2→ F ′ = 1 of the D1 line. The locking error signal is generated via detection
of the frequency beat signal between the pump and the probe in a Mach-Zehnder type
interferometer configuration [68]. A fast photodetector beat signal is split into two
equal parts where one half of the beat signal is passed through a delay line. This
causes a phase shift between the two beams which is dependent on the path-length
difference ∆L and the beat frequency, f ,

φ = 2πf∆L
c

. (4.1)

In the ideal case, the corresponding interference fringes have the following intensity
profile

I = I0 (1− cosφ) . (4.2)

The path-length difference, ∆L is fixed and determines the fringe spacing of the beat
signal. In our case, we choose this to be 50 MHz between successive peaks or troughs.
Inside the coaxial cable, the speed of light is roughly vlight = 2/3c, the spacing between
the fringes is then simply given by ∆f = (2/3)c/∆L. Figure 4.2 on page 108 illustrates
the layout of the master-slave Mach-Zehnder type lock. The beat lock method is
advantageous over the atomic reference lock method because it is not constrained
by the inherent spacing and distribution of the spectroscopic features. This provides
great flexibility in tuning the laser over a large frequency range. This is important to
us because we want to find an optimal value of the probe detuning which maximises
the signal strength of the measured Voigt effect. However, the disadvantage of this
method lies in the fact that the stability of the lock is dependent on how robust and
stable the master laser is. If the master lasers is unlocked so will the slave laser be, and
moreover, if the master lock has inherent frequency noise, then this frequency noise
may be translated in the beat signal adding additional noise to the slave frequency
stability.

Pulse Generation. The magnetometer operation typically consists of the state
preparation and probing stages, which occur in succession. A key requirement for
this is to be able to generate well timed laser pulses of arbitrary duration and phase
relative to our radio-frequency dressing field. This is important because as the theory
calculations outlined in sec. 3.2.9 suggest that phase, duty cycle, pulse profile as
well as duration of the probing influence the OPM response. We use acousto-optical-
modulators (AOMs) to produce the pulses. Within the shortest experimental time
scale, which are of the order of 1 rf cycle (e.g. 200 µs at 5 kHz rf and 11 µs at 90 kHz rf),
we can trivially generate < 1 µs pulses with fractional rise and fall times of the power
and typical delays of ≈ 1µs which can be easily corrected through software/hardware
adjustments. The rise and fall times of the AOMs depend on the switching electronics
as well as the beam waist.

Fibres and Polarisation. The light is coupled into polarisation maintaining single
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a)

b)

Figure 4.2: a) Mach-Zehnder type beat lock schematic layout. With the exception of
the fast photodiode, the electronic components with ID numbers are from Minicircuits.
The delay line is a simple 50 Ω BNC coaxial cable. b) Doppler-free-saturated absorption
locking schematic. Here the lock-in amplifier is a commercial device with the rest of
the electronics being home built. The LD CC is the laser diode current controller.

mode fibres (Thorlabs P3-780PM-FC) with a experimentally measured polarisation
extinction ratio of between 55-60 dB. We check this with a polarisation analyser
(Thorlabs PAX5710IR1-T) by mechanically and thermally stressing the fibre and
looking at the corresponding polarisation change on the Poincaré sphere. The pump
and repump light is combined over a beam splitter and is coupled into the same
fibre. This ensures a good spatial overlap between the two laser sources for the state
preparation process. The clear disadvantage of this approach is the loss of 50% of the
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Figure 4.3: Schematic and experimental layout of the µ-metal chamber optics.

power in each beam. With additional beam shaping, the typical light power coupling
efficiency into the fibres is around 70%.

µ-metal shield table and the cell. After light conditioning on the main opti-
cal table, we then send it through fibres to a separate vibrationally isolated table with
non-magnetic optomechanics where the 4 layer µ-metal shield (Twinleaf MS-2) houses
our paraffin coated cell (from Precision Glass Blowing), see Fig. 4.3. The shield has
precision coils which we drive with our home built low noise Hall-Librecht-Durfee
current drivers [77,78]. The cell has a diameter d = 26 mm and length l = 106 mm, is
anti-reflection coated and enriched with 87Rb with a density of approximately 1010

atoms per cubic cm at room temperature (see eq. (2.82) on page 22). When the shield
is first opened to place the cell, the innermost µ-metal shield acquires some remnant
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a) b)

Figure 4.4: a) Laser pulses during the state preparation process. The pump and
repump beams are linearly polarised with respect to the rf-field in the x-axis. The
dashed red line represents the fact that the pump beam is pulsed whilst the solid blue
line of the repump indicates a cw mode b) Red detuned probe laser addressing the
prepared atomic state. Here the probe is at 45◦ to the x-axis.

magnetisation due the Earth’s field. This acquired remanent magnetisation may not be
uniform across the shield and therefore may introduce magnetic field gradients inside
which may be difficult to compensate for despite having gradient field coils. To remedy
this, we de-Gauss the innermost shield by applying a linearly decaying sinusoidal wave
through the de-Gaussing coils with a start current amplitude of 20 A and frequency
of 10 Hz. The frequency of the current is kept constant during the de-Gaussing
process. The decay time from 20 A max amplitude to 0 A takes around 100 s. The
de-Gaussing procedure is done with the shield covers on. Overtime, because of the
constantly changing magnetic fields inside the shield (though small), the innermost
layer acquires some residual magnetisation due to hysteresis. The de-Gaussing pro-
cedure is mainly useful for removing the residual DC fields present inside the shield [69].

Light characteristics. From Fig. 4.3, the pump/repump beam counter-propagates
relative to the probe beam along the z-axis. This is for ease of use of gaining enough
optical access without needing to overlap pump/repump with the probe over a beam
splitter further reducing the power. As a result, the pump/repump beam is at a slight
angle relative to the probe beam as well as the longitudinal Bz field. This introduces
some distortion in the OPM response profile because the pump/repump and/or the
probe beams are not perfectly aligned with the quantisation axis (this is discussed
in detail in the following chapter). For state preparation, the pump and repump
beams share the same Gaussian intensity profile with 7.3 mm diameter (1/e2) and
2.2 mW/cm2 and 1.6 mW/cm2 peak intensity, respectively with linear polarisation
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along the x-axis and address F = 2 → F ′ = 1 of the D1 line and F = 1 → F ′ = 2
of the D2 line respectively, see Fig. 4.4. The probe beam has a Gaussian profile of
3.4 mm diameter (1/e2) and 2.6 mW/cm2 peak intensity and linear polarization set to
45◦ with respect to the rf field and off-resonantly addresses F = 2→ F ′ = 1 transition
of the D1 line.

4.2 Magnetic Field Control (Unshielded Environ-
ment)

4.2.1 Field Coils
One of the challenges in operating magnetometry experiments in magnetically un-
shielded environments is the presence of external magnetic fields originating from
various sources, be it the Earth’s magnetic field, ferromagnetic mechanical components
such as screws or power supplies, to name just a few. These magnetic field sources
typically produce a combination of uniform and gradient magnetic fields, which can
also vary in time. This becomes a problem if the magnetic field has to be carefully
controlled and compensated in order to create optimal working conditions for magne-
tometry experiments. Our magnetometer setup requires a single-axis optical access
and therefore a cylindrical coil geometry is a suitable choice for magnetic field control
and compensation. The two most widely used cylindrical geometries for uniform field
generation in the longitudinal and transverse directions are the solenoidal and cos θ
coil geometries respectively [81–83]. For a solenoid, of n number of turns and length,
L, the helical current carrying wire distribution is given by the following parametric
equations

x = R cos(nθ), (4.3)
y = R sin(nθ), (4.4)
z = L, (4.5)

where θ is the polar angle in cylindrical polar coordinates. Using this geometry, the
total field generated by a finite length solenoid can be calculated using the Biot-Savart
law

B(r) = µ0I

4π

∫
C

dl× r′

|r′|3
, (4.6)

which we compute numerically [80]. We use problems with known analytical solutions
to confirm the validity of the numerical field calculations of Biot-Savart law. To
generate uniform transverse fields, including a uniform radio-frequency field we use
the cosθ geometry. The distribution of current sources and sinks for a cos θ coil is
given by (see Fig. 4.5)

xn = R cos θn, (4.7)
yn = Rȳn, (4.8)
z = L, (4.9)
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Figure 4.5: Biot-Savart field simulation of cos θ coil for the y-field. a) vector field
distribution cross-section at the centre of the coil. The blue and red dots represent
the negative and positive current flow and distribution. b) Field profile along x-axis
of the coil at (y = 0, z = 0). c) 3D plot of the coil profile including the saddle. d)
Field distribution along the z-axis of the coil from the (x = 0, y = 0) coordinate point.
Due to the saddles as the wire returns over the arc of the shell, additional fields are
generated causing inhomogeneities in the field profile.

where R is the radius of the coil. The expression for ȳn is given by

ȳodd
n = −

(
1− 1

2∆yodd
)

+ n∆yodd, (4.10)

ȳeven
n = − (1−∆yeven) + n∆yeven, (4.11)

where ∆yodd = 2/N and ∆yeven = 2/(N + 1) with N being the number of source-sink
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Figure 4.6: a) Maxwell gradient field coil generates a linear field gradient ∂Bz/∂z.
b) Golay gradient field coil generates a linear field gradient ∂Bz/∂x and ∂Bz/∂y
depending on the orientation [84]. The blue arrows indicate the field variation along
the axis.

pairs. The angle is given by
θn = sin−1(ȳn). (4.12)

Note that for cos θ geometry, the vertical spacing between each successive conductors
is the same. In practice, the cos θ geometry is not simply made of finite straight wires,
but contains additional saddle geometries as a result of the wire being distributed
around a cylinder. The saddle arc depends on the nth position of the current carrying
wire defined by the following parametric equations

φn = π − |2θn|, (4.13)
−φn/2 ≤ θn ≤ φn/2, (4.14)

xn = R cos θn, (4.15)
yn = R sin θn, (4.16)

which introduce additional field non-uniformities. The field profiles generated by the
cos θ coil are shown in Fig. 4.5. For the compensation of linear gradients, we use a com-
bination of Golay and Maxwell coils. The corresponding geometries for the Golay and
Maxwell Coils are shown in Fig. 4.7. With the Maxwell and Golay coils it is possible to
compensate linear gradient fields in the x, y and z directions with respect to the Bz field.

The coils are are designed using CAD software1 and then wire wound on a 3D
printed shell which contains trenches outlining the current distribution. We use a
standard commercial 3D printer2 utilising Polylactic acid (PLA) plastic as the material
for printing. The cylindrical coil geometries of each coil allow for nested design making
the entire structure compact. Table 4.1 on page 115 summarises each coil layer and
its function.

The home made cos θ coils have a typical radius r ≈ 40 mm with length l = 300 mm
1Solidworks
2Ultimaker 2+ Extended
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Figure 4.7: Full Coil Assembly based on the layer structure given in Table 4.1. For
each layer there are linear grooves which automatically align the coil axes when the
coils are nested. The bottom rendered pictures depict the cross sections of the coils
along the optical axis and perpendicular to it.

and a typical number of 11 pairs of current carrying wires. The resistances and
inductances of our coils are of the order of R ≈ 2 Ω and L ≈ 30 µH respectively with
the current-to-field conversion of ≈ 0.8 G/A. Our solenoid has N ≈ 100 turns with a
resistance R ≈ 7 Ω and an inductance L ≈ 0.3 µH. The field to current conversion for
the solenoid is ≈ 4 G/A. Because the range of field frequencies in the experiment are
well below � 1 MHz, the wavelength of the rf-field is much larger than the features
of the coils, it is not necessary to consider finite size effects, which would otherwise
become important at higher frequencies.

In the simulations, the typical field uniformities for both the cos θ and solenoid
coils are around ≤ 0.1% in the x-y plane and ≈ 1% along the z-axis of symmetry
within the dimensions of the cell, i.e. diameter of the cell d = 26 mm in the x-y
plane and length l = 106 mm along the z-axis. We investigated the effects on the
field uniformity as a result of the deviations from the ideal track geometry. This was
simulated by introducing a random Gaussian distributed deviation from the ideal
point of the order of σ = ±1 mm for each finite element point and computing the
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resultant field profile. The simulations indicate that the field uniformity degrades by
approximately a factor of 2 across all directions. The 3D printer tolerances are of
similar order. The field homogeneity of the coils can be further increased by increasing
the coil length and reducing the diameter. The former dimensional change has a
stronger effect on the field homogeneity due to finite length effects. However, due to
the limitations of our 3D printer, longer length coils would mean that the printing
assembly would have to be broken up further into smaller parts increasing alignment
imperfections and potentially spoiling the homogeneity.

Table 4.1: Composite field coil system
Layer Coil Function

1 Golay 1 coil ∂Bz/∂x
2 Golay 2 coil ∂Bz/∂y
3 cos θ x coil DC, uniform field x
4 cos θ y coil DC, uniform field y
5 Solenoid z coil DC, uniform field z
6 cos θ x coil rf-dressing field x
7 Maxwell coil ∂Bz/∂z

4.2.2 PID Stabilised bi-polar current source
As was discussed at the beginning of this section, the environment contains many
external sources of magnetic fields which can vary on a day to day basis. Having
constructed a system of coils with the capability to generate uniform magnetic fields
as well as cancel out the various inhomogeneities, the next step involves constructing
a current driver capable of supplying the the proposed coil system.

Our bipolar current source is based on Class B Amplifier which is also known as a
push-pull amplifier, see Fig. 4.8 [85]. It consists of two complementary transistors
with matching characteristics except their polarity, one being PNP whilst the other
NPN. Both transistors have the same input signal at their gates. When the voltage
signal input at the base of the transistor is sufficient to satisfy the gate threshold
voltage, then current flows from the emitter to the collector (PNP) which ultimately
passes through the coils. In this case, the current flow is proportional to the gate
voltage as well as the resistance of the coils. Note that the gate voltage for the other
transistor (NPN) will have the opposite sign and as a result no current will flow from
its corresponding emitter to the collector. A problem arises when the input voltage
signal is smaller than the minimum gate voltage required for the transistor to emit - i.e.
no current flows from either of the transistors despite the voltage being non-zero. This
region is known as the zero-crossover distortion. It can be remedied by biasing the
gates of the transistors with diodes causing a voltage drop equivalent to the minimum
voltage required to activate the transistors. This results in a class AB-type push-pull
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Figure 4.8: Class B type push-pull circuit topology used for our bipolar current source.
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Figure 4.9: Flow diagram decpiting our home made PI-stabilised Class B type bipolar
current source with fluxgate sensor and the coils.

current amplifier.

The design of our home made PI stabilised bipolar current source consists of three
major functional components, see Fig. 4.9. The first is the proportional-integral part
which computes the error signal by taking the difference between the set-point field
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Figure 4.10: Tuning of PI source using the Ziegler-Nichols method. a) Only the
proportional gain is non zero. As the gain is increased, the system begins to oscillate
at its natural resonance frequency. This allows us to derive the time period Tmax for
the integral gain as well as scale the proportional gain. b) Optimised proportional
and integral gains in effect. We no longer see any oscillations and no overshoot. The
yellow square wave is the setpoint reference which is running at 50 Hz.

value and the actual field measured by a commercial fluxgate magnetometer3 inside
the coil assembly. The error signal is then split into a proportional and integral parts
of the circuit which computes the correction signal which is then sent to the push-pull
transistors. The push-pull transistors then output the current which is sent to the
coils to produce the desired field.

To optimise noise cancellation and stabilisation, the PI loop is tuned heuristically
using the Ziegler-Nicholls method [86]. The procedure is as follows; the setpoint is
chosen to be a time varying square wave at 50 Hz. Initially, the integral gain (assume
no differential part of the PID loop is present) is set to zero. The proportional gain
Kp is then tuned from zero to Kmax where the output begins to oscillate at a constant
frequency and amplitude. From this we calculate the period of oscillation Tmax. Then,
according to the Ziegler-Nichols method, the proportional and integral gains in terms
of the maximum proportional gain and the corresponding time period of the oscillation
frequency of the system are given by

Kp = 9
20Kmax, (4.17)

Ki = Kp

Tmax
. (4.18)

The different stages of PI tuning are depicted in Fig. 4.10 with the noise perfor-
mance comparison between PI regulated and unregulated field compensation given in
Fig. 4.11, as measured by the in-loop fluxgate. With PI regulation, the noise floor

3Stefan-Mayer 3-axis Magnetic Field Sensor FLC3-70
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Figure 4.11: a) Fluxgate environmental noise without PI stabilisation b) Fluxgate
environmental noise with PI stabilisation. Here the fluxgate is a 3-axis Stefan-Mayer
Instruments FLC3-70.

(excluding the harmonic components) is reduced by approximately a factor of 4 in
the range 2 Hz ≤ f ≤ 250 Hz, the 50 Hz harmonic is reduced by nearly an order of
magnitude with the additional 150 Hz and 250 Hz harmonics reduced by a factor
of 5 and a factor of 2 respectively. The noise floor of the fluxgate magnetometer
used in this frequency range is 0.12 nT/

√
Hz which is more than order of magni-

tude lower than the environmental noise, therefore we can ignore the contribution
from the fluxgate noise added to the PI servo loop when actively compensating the field.

To achieve a higher level noise suppression of the ac line noise due to the 50 Hz
and its harmonics a phase sensitive feed-forward could be added to the existing PI
loop. An added feature to further minimise the noise of PI loop and the bipolar
current sources would be to include a battery powered supply. We have implemented
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this only in an unshielded environment and observed a marginal improvement. An
additional feature which would potentially improve the PI performance would be
a software-enabled PI loop. This not only provides a flexible way to tune the PI
parameters, but also removes a significant amount of thermal drifting which can affect
the gain constants for the P and I components of the loop as well as the value of
the field setpoint. Moreover, there exists a number of software library packages (e.g.
Arduino PID Library) which offer self-tuning capabilities.

4.3 Data Acquisition and Digital Signal Process-
ing

4.3.1 Signal Detection, Processing and Bandwidth
Balanced Homodyne Detection. The Voigt rotation signal, which contains in-
formation about external magnetic fields is detected using a method of balanced
homodyne detection. Balanced homodyne detection refers to a technique where an
incident beam (signal) with a well defined frequency and phase is split into two equal
components which are read by two photodetectors, the resultant signals are then
subtracted or added electronically, depending on the application. If the beam (signal)
has properties (e.g light polarisation) that interact differently with the medium (e.g.
the atomic medium), the phase information, as well as the signal strength for those
components may change and will result in an imbalance in the subtracted signals
providing the information about the interaction in terms of the amplitude and the
phase. Typically, no interaction results in a differential (subtracted) signal equal to
zero and any fluctuation due to interactions will introduce an imbalance manifesting
in a positive or negative differential signal output. In our case, since we measure
the linear birefringence of our Stokes’ vectors, our linearly polarised beam set to 45◦
relative to the x-axis produces a balanced signal with a differential output equal to
zero. This is assuming the medium is not pumped, i.e. the atoms are in a thermal
state, and the probe beam is far detuned to remove any light-matter interactions.
However, atoms pumped to our aligned state with a radio-frequency dressing field
induce a modulated linear birefringence at ωrf and 2ωrf frequencies and as a result,
the light-matter interaction results in our probe light acquiring elliptical polarisation
modulated at ωrf and 2ωrf frequencies. Using a quarter-wave plate this ellipticity can
be decomposed into linear polarisation components which are further spatially split
into vertical and horizontal polarisation components by a polarising beam splitter.
The corresponding light is then incident on our balanced photodetector4. Figure 4.3 on
page 109 illustrates the optics setup used to measure the Voigt effect. The advantage
of balanced homodyne detection is that it has a high common mode noise rejection
which allows to suppress intensity and polarisation fluctuations in the probe laser
and other sources of noise. Moreover, since our homodyne signals are modulated at
rf-harmonics the important field information is encoded within them. This allows us

4Thorlabs PDB210A/M
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to implement phase-sensitive lock-in detection to further remove additional sources of
noise.

Signal Processing. The detected Voigt effect signal on the balanced photodetector
is given by

U(t) = gel
〈
Ŝ ′z(t)

〉
= gelg

(2)
F SynF

〈
F̂ 2
x (t)− F̂ 2

y (t)
〉
, (4.19)

where gel is the electronic gain of the photodetector. Experimentally, U(t) has voltage,
[V] dimensions. The signal is low-pass filtered with a cut-off frequency of 400 kHz at
3 dB to prevent aliasing from the analog input from a Field-Programmable-Gate-Array
(FPGA)5 running at sampling rate of 800 kHz. The detected signal carries field
information at ωrf and 2ωrf frequencies. We demodulate the raw balanced signal
digitally at those frequencies. The complex demodulated signal amplitudes mk for ωrf
and 2ωrf (k = 1, 2) are given by

mk =
∫ t2

t1
e(−ikωrf−γ)tU(t)dt/

√∫ t2

t1
e−2γtdt =

√
2γ

1− e−2γTp

∫ t2

t1
e(−ikωrf−γ)tU(t)dt,

(4.20)
where γ is the atomic decay, which is due to collisions and other decoherence mecha-
nisms. Here, t1 and t2 are the interval times of the probe pulse with Tp = t2 − t1. For
small external magnetic fields

m1 ∼ Bext
x + iBext

y , (4.21)
m2 ∼ Bext

z , (4.22)

see equations (3.43)-(3.45) on page 37 for comparison. The demodulated signal am-
plitudes, mk have units [V

√
s]. With a proper digital phase adjustment, the real

and imaginary parts of m1 can be related to the measured external field components
Bext
x and Bext

y whilst the real part of the m2 component is related to the longitudinal
field measurement Bext

z . The response functions mk are directly associated with the
dispersive and Lorentzian profiles when the longitudinal field Bz is scanned.

Theoretical OPM Bandwidth. The OPM sequence consists of state prepara-
tion and probing which have a square pulse profile. This sequence is repeated at
some rate fs which depends on various OPM parameters such as the pump/probe
powers, coherence time of the cell etc. With each discrete probe pulse of duration
Tp we acquire a signal U(t) with the corresponding mode amplitude mk. Running
this sequence for ns cycles at a rate fs gives the total sampling time Ts = ns/fs
and frequency resolution ∆f = fs/ns with the ith component of demodulated signal
amplitude, mi. The total demodulated signal amplitude reads

mTot = 1
Tsfs

Tsfs∑
i

mi, (4.23)

5National Instruments PCIe-7852
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where
mi = 1√

Tp

∫ ti+Tp

ti
U(t)dt. (4.24)

The quantity mTot contains the time trace of the demodulated signal amplitudes which
contain the external field information. Typically, to evaluate the OPM performance
we are interested in computing the power spectral density (PSD). This gives us the
power distribution over the frequency components that make up the signal. Using the
definition of the demodulated signal amplitudes the PSD is given by

〈
m2

Tot

〉
= SUU
Tsfs

= Smm
Ts

, (4.25)

where we have used the fact that

〈U(t)U(t′)〉 =SUUδ(t− t′). (4.26)

In other words, decreasing the total sampling time Ts increases the noise level of the
demodulated mode amplitudes. However, the picture is not complete. The finite probe
pulse time as well as the atomic signal decay within the probing region can further limit
the magnetometer bandwidth which should be considered in detail. Theoretically, the
rf-driven atomic precession in an external magnetic field results in the modulation of
the linear birefringence of light, which is dominated by the first and second harmonics
of the modulation frequency, ωrf . With the atomic decay, and multiple pump/probe
cycles, the ith signal can be described by the following relation (see Fig. 4.12 for
illustration)

Ui(t) = gele
−γ(t−iTs)H(Tp − t+ iTs)H(t− iTs)V(ωrf , 2ωrf), (4.27)

where H(t) is the Heaviside step function, Ts is the sampling period and Tp is the
probing time period. The definition of the Heaviside step function is given by

H(t) =

0, for t < 0,
1, for t ≥ 0.

(4.28)

The sampling frequency is affected by the duration of the state preparation and
probing stages. The pumping time, i.e. the minimum time to fully pump the
atomic medium to an aligned state is dependent on the pump power, rf-dressing
frequency as well as the coherence lifetime of the cell. The probing time Tp is
affected by the probe power, detuning and also the coherence lifetime of the cell.
Here, V(ωrf , 2ωrf) ∼

〈
F̂ 2
x (t)− F̂ 2

y (t)
〉
. We can model the envelope of the signal decay,

Uenv(t), within the probing region using the following function

Uenv(t) = gele
−γtH(Tp − t)H(t). (4.29)

Because of the decaying atomic signal as well as finite sampling time, the OPM
response gain function has a frequency as well as the decay rate, γ, dependent profile.
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Figure 4.12: Probe pulse sequence. Here the probe of duration Tp is pulsed at a rate
of fs = 1/Ts - which is our sampling frequency which approximately determines the
magnetometer bandwidth ∆B = fs/2. Here the probe pulse signals oscillate at ωrf
and 2ωrf frequencies and the black sinusoidal traces represent the external magnetic
fields and their sampling by the probe pulses which are seen as regions of overlapping.
The gaps between the probe pulses corresponding to Ts − Tp are the pumping stages
where the Voigt effect is not measured. The black sinusoidal waves represent how the
external magnetic field source of various frequencies are sampled by the probe beam
via the Voigt effect. The signal is averaged over the probe time Tp.

The decay rate represents the coherence lifetime of the cell which is dependent on
various parameters discussed in sec. (3.2.9). The normalised gain profile can be found
by taking the Fourier transform of the envelope function Uenv(t) and computing the
normalised amplitude response as a function of frequency

Π(ω) =
√
|Uenv(ω)|2 =

√√√√ γ2

γ2 + ω2
cosh(Tpγ)− cos(ωTp)

(cosh(Tpγ)− 1) , (4.30)

where we have explicitly assumed that the decay γ > 0. The gain correction function,
Π(ω) is dimensionless as its normalised to unity. Hence, the decay and square probe
time adjusted field noise spectrum is given by

Nfield(ω) = gel

Π(ω)

√
〈m2

Tot(ω)〉, (4.31)

where Nfield(ω) has units V
√

s/
√

Hz. To convert to field units we use the voltage-to-
field calibration which in the linear OPM regime is a constant and has units V

√
s/T,

where [T] are the field units in Tesla. The field noise spectrum in field units T/
√

Hz
is then given by

Nfield(ω) = gcalgel

Π(ω)

√
〈m2

Tot(ω)〉. (4.32)

4.3.2 Experimental Sequence
Hardware intricacies and experimental sequence generation. The hardware
architecture consists of four levels, see Fig. 4.13. The first level consists of experimental
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Analog Output

8 - channel, 
16-bit, 1Ms/s,

+/- 10V output  

Coil Drivers
x, y, z, RF

AOM RF amp 
Level

Field	Programmable	Gate	Array	(FPGA)

Analog Input
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+/- 10V input

Digital I/O
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Output: 0V to 3.3V
Input: 0V to 5.5V

LabView	Computer	Control	(PC)

AOM
Pulse TTLBalanced PD

Figure 4.13: Functional block diagram showing the basic layout of the computer
control hardware and its interface with the experimental apparatus.

computer control software which is based on LabView visual programming language.
It has a dual functionality. It sends instructions to the field programmable gate array
(FPGA) in order to control the experimental equipment to produce the necessary
sequence of laser pulses and magnetic fields as well as analyse the retrieved data from
the FPGA to visualise and estimate the magnetometer response. The data analysis
involves taking the raw balanced photodetector signal, digitally demodulating it and
computing the corresponding OPM mode amplitudes, mk. The second level consists of
the FPGA. In our experiments we use National Instruments PCIe-7852 which provides
digital as well as analog input and output channels to control our hardware. The
final level consists of the peripheral hardware equipment that directly influences the
magnetic field and laser light properties to control the magnetometer response as well
as measure it.

OPM Sequence. As has been outlined in the theoretical section, the OPM
sequence consists of two stages in our typical magnetometer sequence (where we have
excluded the additional microwave stage). The cycle begins with a state preparation
sequence consisting of synchronous optical pumping and cw repump beams with the
dressing and other magnetic fields ramped immediately. We typically use a train of
pump pulses at 10% duty cycle and in phase with a uniform 5 kHz rf-field of ≤0.1 mG
near resonant with Bz static field. The typical state preparation process in our setup
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Figure 4.14: a) Experimental sequence diagram consisting of two stages involving
the state preparation process and probing. The control magnetic fields as well as
the radio-frequency field are ramped instantaneously. The laser pulses have square
time profiles. The typical state preparation procedure takes 5 ms with the probing
stage lasting 3 ms. b) theoretical plot of the balanced PD signal for the two stages of
the OPM cycle. Here the yellow curve represents the oscillating rf-dressing field, the
dashed black pulses represent the pump pulses and the blue decaying signal represents
the Voigt rotation.

lasts 5 ms and is primarily limited by the coherence time of the cell. This results
in an approximately incoherent mixture of |F = 2,mF = ±2〉. After this stage, the
pump/repump beams are switched off which is then followed immediately by a cw
probe pulse for 3 ms. The rf as well as the static fields remain constant, see Fig. 4.14.
The entire sequence is then repeated again at a rate fs which is our sampling frequency.
The probe pulse allows us to extract the mode field amplitudes, mk, which contain
the vector information of the external magnetic fields.

OPM Resonance Profiles. The theoretical models outlined in Chapter 3 al-
lowed us to compute the OPM response as a function of the longitudinal magnetic
field Bz which produce characteristic dispersive and Lorentzian profiles. To obtain
these profiles experimentally, we generate the OPM sequence described above and
shown in Fig. 4.14. For each pulse sequence, we change the Bz field whilst keeping
all other parameters constant and extract the corresponding mode field amplitudes,
mk from the ωrf and 2ωrf field quadratures. The mode field amplitudes are then
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Figure 4.15: Diagram depicting how the spin-field interaction is used to measure
magnetic fields. The spin-field interaction and the subsequent light-spin interaction
induces linear birefringence which results in the linearly polarised beam acquiring
ellipticity which is modulated at ωrf and 2ωrf frequencies. The balanced photo detector
signal is then decomposed spectrally by taking its Fourier transform. The amplitudes
of the quadratures at those frequencies correspond to external magnetic fields and are
then digitally demodulated. The dispersive and Lorentzian profiles are obtained when
the longitudinal magnetic field is scanned.

plotted against the Bz field, see Fig. 4.15 for details. The OPM response expressed
in terms of the mode field amplitudes, mk, as a function of the Bz field is a starting
point in optimising signal strength of the magnetometer. In general, the narrower the
resonances, and the larger the amplitude of those resonances, the more sensitive we
are to the external fields. Moreover, the OPM response to the longitudinal Bz field
gives us a good starting point in comparing our theory to the experiment.

Demodulation Phase adjustment. The dispersive and Lorentzian resonance pro-
files characterised by the extracted mode field amplitudes mk as a function of the
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Bz field are obtained by digital demodulation. Like any lock-in detection, it requires
careful phase adjustment relative to the phase of our referenced local oscillator (rf-field)
in order to make sure that we can extract the correct field quadratures corresponding
to external fields. First, we make sure that the external transverse fields are zero, such
that we measure m1 = 0 + i0 for the transverse field quadrature. We then scan the
longitudinal Bz field and measure the corresponding m2 mode amplitude response and
adjust the phase digitally until we obtain a Lorentzian profile, see Fig. 4.15. For the
phase adjustment in the transverse field directions we set the longitudinal field on the
sensitive point, Bz = Bres +Bρ, and scan the transverse fields over a small range such
that the OPM response of the m1 amplitudes is linear. If only one transverse field is
scanned, then the corresponding m1 quadrature response should be observed only in
the real or imaginary part (depending on which transverse field is scanned). If the
phase for the m1 mode amplitude is not properly adjusted, then the OPM response
for the transverse fields will be seen in both m1 quadratures to varying proportion.
Hence, the phase is adjusted until the response is detected only in the corresponding
quadrature related to that external field. This is only the case for small external fields.

OPM Calibration. The magnetometer response to external magnetic fields is
measured via the light-matter interaction where the polarisation of the probe beam
acquires ellipticity which depends on the external magnetic field. This ellipticity
is detected on a balanced photodetector where the photon flux is converted to a
photo-current giving rise to a voltage when measured on a photodector. This is
not very useful if we want to extract the actual field information in field units, e.g.
Gauss or Tesla. We want to find a way to convert the measured voltage signals into
magnetic field units. Our magnetometer relies on dressing the atoms using an rf-field
oscillating at frequency ωrf . If there are no transverse fields present, then the maximal
magnetometer response at 2ωrf amplitude is given by

Bz = Bres = ~ωrf

µB|gF |
. (4.33)

In other words, the characteristic Lorentzian resonance profile has a maximum when the
resonance field condition, Bres is met. To make sure that there are no transverse fields
present, we monitor the presence of ωrf frequency quadrature and adjust the transverse
fields such that it is zero when the Bz field is scanned. The coil current drivers are
voltage controlled by the FPGA which have a linear voltage to current conversion
[V/A]. The magnetic field generated by uniform field coils is linearly proportional to
the current running across them, [A/T]. Hence, by varying the dressing frequency ωrf
and measuring the location of the maximum peak for a given field setpoint in terms
of the voltage, gives us the voltage to field conversion for the 2ωrf quadrature which
for small external fields corresponds to mapping of the Bext

z field. The calibration of
the transverse fields follows a similar method. If one of the transverse fields is present
in addition to the longitudinal magnetic field Bz, then the new resonance condition of
the 2ωrf Lorentzian profile is given by

Bres =
√
B2
z +B2

x,y = ~ωrf

µB|gF |
. (4.34)
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To determine the voltage to field calibration for Bx and By quadratures, we set the
external transverse field to some value and scan the Bz field to obtain the OPM
response of the 2ωrf Lorentzian profile. Because of the presence of the transverse field
the new location of the resonance as a function of the Bz occur at a lower value of
the Bz. From the previous calibration of the Bz field we can easily determine what
that field is, which allows us to calculate the remaining field contribution from the
transverse field direction, Bx and By. Since we know the voltage set point for the
transverse field, we can relate this to the calculated value. By varying the transverse
field as a function of voltage, and calculating the remainder field by locating the
new 2ωrf resonance location, we can obtain the voltage to field calibration for the
transverse fields. The advantage of using this magnetic field calibration is that it does
not require additional external field sensors. Nevertheless, to confirm the reliability of
the calibration, we use a commercial 3-axis fluxgate magnetometer (FLC3-70) and
scan the external magnetic fields using our coil drivers to confirm our calibration.
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Results and Discussion

This chapter outlines and discusses the main experimental results obtained for the
Voigt magnetometer in both unshielded and shielded environments. The two sections
of this chapter explore the general characteristics of the Voigt effect magnetometry,
touching upon typical raw Voigt effect signals, the demodulated response quadratures
which contain the 3D field information, field sensitivity as a function of various
experimental parameters such as probe power, detuning, temperature of the cell etc.
Where possible, we attempt to compare our theoretical results with experimental
observations.

5.1 Unshielded Operation
Historically, the experiment was started in an unshielded environment due to the fact
it was not clear at the time whether Voigt effect magnetometry would even be possible.
As a result, the constructed setup including the laser system and experimental control
were a lot more pragmatic and simpler compared to the shielded setup outlined in
the experimental chapter section. Nevertheless, the core principles of pump-probe
sequence, signal demodulation as well as field control remained the same. Consequently,
due to a variety of experimental imperfections and our inexperience in this field the
results obtained in the unshielded environment were far from perfect, but were more
than sufficient to convince us to build a magnetically shielded setup. In the following
we discuss major results of the unshielded magnetometer setup.

5.1.1 Voigt effect signal and quadrature responses
Based on the experimental setup and sequence procedures outlined in the Experimental
Apparatus chapter (see page 109 for example) the raw balanced Voigt effect signals
with the corresponding power spectral density of the trace are shown in Fig. 5.1. Here

128
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a)

b)

Figure 5.1: Typical experimental signals. a) Raw balanced signal of the Voigt rotation.
The state preparation occurs within the first 6 ms of the cycle followed by a 5 ms
probing pulse. The trace is obtained where Bz ≈ Bres. b) Single-sided, power spectral
density (psd) of the amplified signal during the probe pulse. Atomic signals arise at
ωrf and 2ωrf , where ωrf = 2π × 90 kHz is the dressing frequency of the rf-field. Here
we see a strong signal 2ωrf and a comparatively weak ωrf response due to the fact that
the trace is taken on resonance. Here the synchronous pumping is at 14% duty cycle
and the probe has -400 MHz detuning from the F = 2→ F ′ = 1 transition on the D1
line.

a ωrf = 2π × 90 kHz radio-frequency field is used to dress the atoms with an rf-field
amplitude Ωrf ≈ 2 mG. The choice of the dressing frequency is large enough to avoid
environmental low frequency magnetic field noise whilst also being comparatively
small such that second order Zeeman shifts can be neglected. As can be seen from
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a)

b)

Figure 5.2: Experimental magnetometer response in the unshielded environment.
Panels a) to b) show the three relevant quadratures of the mode amplitudes m1 and
m2, i.e. responses at frequencies ωrf and 2ωrf , for a scan of the longitudinal field
Bz across the rf resonance. Here, non-zero transverse fields Bext

x and Bext
y are kept

constant. The mode amplitudes, extracted according to eq. (4.20) on page 120, follow
the predicted behaviour, see eqns. (3.39-3.41) on page 36.

the figure, the pumping to steady state takes roughly 3 ms with the 1/e decay time
being ≈ 2 ms. The mechanisms affecting the time to reach a steady state as well
as the signal decay time are numerous. The presence of field gradients, collisions,
probe induced signal decay etc., all negatively contribute to the state preparation and
signal decay. Unlike in the shielded setup, the unshielded setup had optomechanics
that possessed ferromagnetic properties, e.g. screws, mirror mounts etc., along with
many power supplies and other electronic modules in the close vicinity of the OPM.
The gradient fields across the cell, some of which were time dependent, were found to
be a dominant source of noise in these experiments. The Voigt rotation spectrum is
taken on Larmor resonance with the transverse fields around zero. The power spectral
density of the probing window (indicated in the figure) reveals a presence of a strong
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2ωrf resonance with a small ωrf resonance. As we can see in the spectrum, there exist
other noise frequencies with amplitudes similar to that of the ωrf resonance which
are of nuisance since they may be influencing the atomic spin dynamics acting as
additional rf-dressing fields.

If we scan the longitudinal Bz field around the Larmor resonance whilst simulta-
neously demodulating the signals at ωrf and 2ωrf frequencies we obtain the signal
amplitudes mk which are proportional to the external magnetic fields, see Fig. 5.2 and
Fig. 4.15 on page 125 for diagrammatic illustration of the process. The demodulated
signal amplitudes have dispersive and Lorentzian resonance profiles, which are con-
sistent with the profiles predicted by our geometric, Heisenberg and density matrix
models (see pages 35, 58, 79 for reference). However, there are qualitative differences
in the fact that our experimentally obtained Lorentzian resonance profile does not
posses wings present in the Heisenberg and density matrix models whilst it agrees well
with the geometric model. This is due to the fact that the dispersive and resonance
profiles were obtained with the probe being applied across the state preparation and
probing sequences. In this case the probe provides additional pumping affecting the
state preparation in the off-resonant regime thus affecting the birefringence of the
medium.

In the next subsection we investigate magnetometer response by varying various
experimental parameters. The motivation behind this was to optimise for performance
as well as test the predictions of our models.

5.1.2 Magnetometer characterisation in the unshielded envi-
ronment

Probe Power and Detuning. The parameter space of the magnetometer is vast,
and as a result, our initial rationale was to focus on a select few parameters that would
allow us to optimise the performance i.e. high signal to noise ratio. Since the Voigt ef-
fect signal is obtained through dispersive light-matter interaction, the signal is directly
affected by the probe power and detuning from the atomic transition. The performance
is evaluated by setting the longitudinal static field to Boffs = B+

sense = Bres +Bρ which
maximises the sensitivity of all three quadratures and applying a small linear field
ramp (≈ ±0.01 G) for each quadrature sequentially for a given probe power and
detuning (see page 122 for details on the sequence). For small linear field ramps, the
corresponding OPM response is linear which yields an OPM quadrature response mk

as a function of the external field. The gradient ∆mk/∆Bk yields the OPM sensitivity,
with larger values indicating higher sensitivity to external fields. Fig. 5.3 shows the
results for all three quadratures. Here we observe that increasing the probe power
decreases the signal scale factor. A major contributing effect to this is that increasing
optical powers increases the light scattering rate, and so the probe begins to act
as a pump with increased absorption rates affecting the off-resonance light-matter
interaction. From the figure, we also observe that the signal strength increases with
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a)

b)

Figure 5.3: Field sensitivity as a function of probe detuning and power. a) field
sensitivity at ωrf corresponding to Im(m1)∝ hy mode amplitude. b) field sensitivity
at 2ωrf corresponding to Re(m2)∝ hz mode amplitude.

increasing probe detuning getting close to the atomic resonance. Unfortunately, due
to the limitations of our initial setup, we were not able to explore the interaction as
a function of the detuning further (this is explored in greater detail in the Shielded
section).

Radio-frequency amplitude. The effects of the amplitude of the radio frequency
field on the linewidth were also investigated. In the geometric model, the linewidth of
the 2ωrf Lorentzian is described by an envelope given by

hz ∝ sin2(θ) = sin2
(
π

2 − tan−1Bdc −Bres

Bρ

)
. (5.1)
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Figure 5.4: Signal scale factor of the 2ωrf quadrature corresponding to mz demodulated
field signal scale factor. The signal scale factor is a quantity that should be maximised
as it is proportional to the magnetometer’s sensitivity to the external magnetic fields.
The mV amplitude range corresponds to mG range field amplitude.

From this, increasing the rf-amplitude will linearly increase the linewidth of the ωrf
and 2ωrf dispersive and resonance curves. This has the consequence of reducing the
sensitivity of the quadratures for increasing rf-field driving amplitude. However, in
some cases increasing the dressing field amplitude may be required where the environ-
mental field noise in the system begins to dominate. Fig. 5.4 shows signal scale factor
of the 2ωrf quadrature corresponding to mz demodulated field signal scale factor as a
function of the amplitude of rf-dressing field. As can be seen, the signal scale factor
has a 1/Ωrf dependence predicted by both the geometric and Heisenberg models (see
pages 36 and 63 for comparison).

Synchronous Pumping. The spin precession of our OPM is actively driven by
a radio-frequency dressing field. As a result of this, the quantisation axis in the lab
frame is rotating in time. This makes efficient state preparation with continuous
wave (cw) light problematic because during the rf-cycle, the precessing atoms have a
changing quantisation axis, and as a result the cw pumping results in an inefficient
state preparation, with few atoms ending up in the desired state that is useful for Voigt
magnetometry. Consequently, this can significantly affect the signal strength and the
OPM sensitivity. To remedy this issue, the pumping light is synchronously pumped at
the rf-field frequency and in phase with the rf-field [47]. The state preparation process
also involves having a repump beam to repopulate the atoms from the F = 1 ground
state. Here pulsing the repump synchronously is not necessary since its purpose is to
transfer the atoms back to the F = 2 ground state which is then redistributed by the
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Figure 5.5: Re(m2)∝ hz resonance profile as a function of Bz field in different cw and
synchronous pumping conditions. Here the synchronous pumping method reproduces
the expected Lorentzian profile whilst cw pumping results in significant distortion in
the OPM response with a greatly reduced amplitude.

pump. A comparison between cw pumped and synchronously pumped 2ωrf profiles
is shown in Fig. 5.5. As can be seen from the figure, the cw resonance profile has
an irregular shape and is of low amplitude compared to the profile obtained using
synchronous pumping. Here the synchronous pumping is done at 90 kHz and ≈14%
duty cycle and in phase with the rf-field. The duty cycle, as well as the relative phase
to the rf influence the ωrf and 2ωrf profiles. This will be discussed in more detail in
the Shielded results section.

Temperature and Vapour density. A common practice to increase signal
strength in experiments with hot vapours is to heat the cell thus increasing the vapour
density. As discussed in the theory section (see e.g. page 69) whilst increasing the
temperature does indeed increase the atomic density and the signal strength, it also
increases the atomic collision rate which results in depolarisation and ultimately signal
loss, hence there is a trade-off. We looked into these effects by heating the cell with
hot air (to avoid ac/dc generated magnetic fields due to Joule heating), and measuring
the corresponding increase in signal amplitude of the Re(m2) quadrature, see Fig. 5.6.
The data shows that increasing the temperature and thus, the atomic density can
improve the signal amplitude by over a factor of 2. However, passed the 40◦C mark,
the signal saturates and does not increase in strength for an increase in vapour density.
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a)

b)

Figure 5.6: a) Re(m2)∝ hz amplitude as a function of temperature/atomic density. b)
Normalised transmitted cell pump/repump power as a function of temperature of the
cell.

Unfortunately, due to the fact that paraffin begins to melt around 60◦C we were not
able to explore the effects on the signal strength beyond that point. Furthermore,
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there may be a number of additional reasons which may be limiting the improvement
of the signal strength. As already mentioned, the effect of increasing the temperature
results in an increased rate of collisions and the consequent increase in the rate of spin
destruction. Additionally, the increase in temperature increases the atomic velocities,
which in turn increase the relaxation rate due to the gradient fields, (see the discussion
of the gradient fields on page 71). However, the temperature change in our experiment
is small which means that the contribution of these effects is small. Another effect that
should be considered is the change in the optical density as a function of temperature
which is due to an increase in atomic density. Given that our pump/repump beams
are on resonance, the increase in optical density would result in the beam attenuation
across the medium, especially because our cell is long (l = 106 mm). As a result,
the increase in atomic density would not necessarily result in an increase of signal
strength because the pump/repump beams do not have a sufficient power to pump
all of the atoms. Indeed, monitoring the transmitted output power of the pump
and repump beams at the output as a function of the temperature of the cell shows
significant effects of absorption, see Fig. 5.6 b) on page 135. To address this, a
counter-propagating pump/repump beams could be used to pump the medium more
efficiently or indeed a shorter cell.

5.1.3 3D Vector Mapping and Noise
3D Vector Mapping. The theoretical models outlined in Chapter 2 predict what the
response of the magnetometer should be to external magnetic fields. In all cases, but
to a varying qualitative degree, the models suggest that the OPM response follows an
approximate ovoid shape in the large external field range, i.e. Bext

x = Bext
y ∼ B+

sense (see
pages 37 and 60 for reference). Recall that in the geometric model, the demodulated
atomic response of each quadrature maps the field according to

hx =Re(h1) = 1
4(3− cos 2β) sin 2α sin 2θ, (5.2)

hy =Im(h1) = 1
2 cosα sin 2β sin 2θ, (5.3)

hz =Re(h2) = −1
4
(
(3− cos 2β) cos2 α + 2 cos 2β

)
sin2 θ, (5.4)

where

α = arctan
(
−Bext

y

B′ext
z

cos(β)
)
, (5.5)

β = arctan
(
Bext
x

B′ext
z

)
. (5.6)

To obtain the magnetometer vector response, we set the longitudinal field B
′ext
z =

B+
sense +Bext

z = Bres +Bρ +Bext
z and scan the transverse fields Bext

x and Bext
y sequen-

tially with a linear field ramp and demodulate the corresponding signal quadratures
mk ∝ gelhk. Fig 5.7 shows the results at ωrf = 2π × 90 kHz dressing frequency. From
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a) b)

c) d)

Figure 5.7: Atomic response to external magnetic fields. Here a) shows the experimen-
tal transverse field quadrature response at ωrf frequency as a function of transverse
fields Bx, By and constant Bz. b) Shows full 3D experimental response of the mode
amplitudes m1 and m2. c) and d) is the theoretical response calculated according to
the theory based on the geometric model equations (3.43)-(3.45) on page 37. The
additional noise apparent in some of the lines are due to the fact that the repump
laser was temporarily out of lock affecting the state preparation process.

the figure, we can observe that the experimental results in the unshielded case confirm
our theoretical predictions of the ovoid response. The slight distortion of the 2D ovoid
characterised by tilted lines are most likely due to imperfect demodulation phase
adjustment between the transverse field quadratures resulting in imperfect quadrature
orthogonality. Moreover, the ovoid profile does not appear to possess the same level
of asymmetry/distortion as predicted by the Heisenberg model (see page 60 for plot
details). This is due to the fact that the distortion effects on the ovoid shape have
a much stronger influence for lower rf-dressing fields as well as rf-amplitudes (e.g.
unshielded experimental rf-dressing field is at ωrf = 2π × 90 kHz with Ωrf = 10 mG
whilst in the simulation we have ωrf = 2π × 5 kHz with Ωrf = 0.25 mG). This can be
explained more intuitively using the geometric model; the effective field angles α and
β, which map the transverse fields, are much larger for low rf-dressing frequencies
because the Larmor resonance field and furthermore the sensitive field point B+

snese
depend on the rf-dressing frequency. As a result, any geometric beam misalignment
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a)

b)

c)

Figure 5.8: OPM Noise at room temperature 21◦C with 90 kHz radio-frequency
dressing. The noise estimate is done in the range 1−45 Hz. a) and b) convey the noise
spectrum of the transverse field quadratures Bx and By respectively. c) measures
the noise of the longitudinal direction corresponding to the Bz field. In all cases the
atomic noise is above the shot noise and electronic noise limit. The light noise is
obtained by detuning the laser well off-resonance (∆ > 10 GHz) and measuring the
corresponding demodulated signals. For the electronic noise, the noise is obtained by
additionally blocking the probe light incident upon the balanced photodetector.
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may result in larger imperfections in field mapping manifesting into field leakage and
non-linear distortion in the field mapping. In both cases, the scanned field range
is the same, and as can be seen from the figure, the transverse field quadratures
have a near identical field response indicating similar field sensitivity. The magni-
tude of the field response in the Bz field quadrature also has the same range of response.

Unshielded Noise Performance. Measuring noise is one of the key performance
indicators of the magnetometer. To perform the noise measurements we detune the
static Bz field to Bz = B+

sense, which optimises the magnetometer sensitivity for all
three components. We then adjust the transverse fields such that the first harmonic
signal vanishes. Based on the field calibrations described on page 126, we record field
equivalent signal noise for the three field components. To measure the light noise, we
block the pump and repump light and detune the probe beam such that no Voigt
rotation is observed. We then measure the corresponding mode amplitudes mk for the
same duration and sampling frequency. The electronic noise is measured by further
blocking the probe beam and recording the mode amplitude response. The noise
amplitude spectrum is then computed according to eq. (4.32) (see page 122). However,
in the unshielded case the probing happens across both the state preparation and
probing regions, see Fig. 5.1 on page 129 for the sequence layout, this complicates
the interpretation of the magnetometer bandwidth as well as the gain profile of the
mode amplitude response function outlined on page 122. For all three quadratures,
the noise level is around ∼nT/

√
Hz in the range if 1−45 Hz.

There are several limitations in OPM noise performance. First, the environmen-
tal noise, manifesting in gradient fields and other time dependent field phenomena
not only affects the state preparation process, but also broadens the resonances of
the OPM in the probe region - this ultimately reduces the overall sensitivity. In
addition, because of the inherent environmental noise at the rf frequencies and a
significant 1/f noise at low frequencies, the choice of the dressing field frequency had
to be sufficiently large. This negatively impacts the sensitivity to transverse fields,
because the geometric tilt of the quantisation axis as a result of external transverse
fields becomes smaller and consequently, more difficult to measure. Note that due to
the fact that the field control is PI regulated using an external fluxgate sensor, we
may be inadvertently adding noise into the system. This is because the fluxgate has
it’s own noise floor which is fed into the servo loop of the PI regulated bipolar current
source which then converts it into the field noise. As a result, this poses a limit on
the level of field stabilisation and ultimately affects the OPM noise performance.

A way to improve the noise performance is to increase the temperature of the cell
thus increasing the signal to noise ratio; however, as it has been shown in the previous
section, there are temperature induced saturation effects which do not result in a
significant improvement in the sensitivity. Due to a variety of technical reasons, it
was not possible to explore the OPM parameter space well enough in order to really
probe and understand the OPM response, let alone optimise it. More importantly, the
various sources of noise and experimental imperfections, make it difficult in interpreting
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the results and comparing them to the theory models, since a significant portion of
the noise cannot be compensated for. In addition, due to the simplicity of the initial
experimental setup, the precise control of various OPM parameters was not possible,
e.g. pump duty cycle and phase, probe and pump pulse shaping and timing, OPM
bandwidth control, to name just a few. This lack of control further hampered the
degree to which we could experimentally test our theories (see Fig. 3.11 on page 62 for
the OPM parameter space). As a result, these were major driving factors in motivating
us to build a shielded OPM setup.

5.1.4 Dressed State Microwave Spectroscopy
In the ideal case, the theoretical magnetometer response outlined in Chapter 3 is
produced using an equal statistic mixture of |F = 2,mF = ±2〉 states which during
the pumping and probing cycles is modified by the various physical processes such as
the rf and static fields, collisions and other broadening mechanisms responsible for
the decoherence of the state. These effects and their influence on the spin dynamics
and the quantum state can be understood using the density matrix, which contains
complete information about the quantum state. However, quantifying the prepared
quantum state experimentally is difficult. As we saw in Chapter 3, subsection 3.3.8
on page 94 the coupling of a microwave field between the two hyperfine ground state
levels enables the probing of the quantum state via the measurement of the Voigt
effect. Scanning the frequency of the microwave field yields a microwave spectrum
with features that are dependent upon the prepared state (see Fig. 3.27 on page 98 and
onwards for the theoretical microwave spectra in different conditions). In this picture
we explicitly assume that one of the ground states are empty, yielding a zero density
matrix for F = 1 manifold. This becomes more complicated when the two hyperfine
ground states are populated where the density matrices for each manifold are non-zero.
Here the microwave field couples two different states making the interpretation of the
resultant microwave spectrum even more difficult.

The experimental techniques and conditions used to produce the microwave spectra
of the magnetometer follow the methods described in the Experimental chapter with
a few additional modifications. There exists an extra step in the OPM sequence after
the state preparation process where a microwave pulse is produced for a certain period
typically for a millisecond duration followed by the probing sequence. The microwave
field is generated by a home made dipole antenna resonant at the 6.834 GHz frequency
to match the hyperfine ground state splitting of the F = 1→ F = 2 transition. The
dipole antenna is aligned along the z-direction coinciding with the direction of the
static Bz field that is used to set the Larmor resonance. The radiating elements of
the antenna are perpendicular to the rf-dressing field such that the corresponding
magnetic field produced by the antenna is parallel to the x-axis with the electric field
oscillating along the y-axis. The polarisation of the microwave field is composed of
π− and σ±− polarisations. The antenna is placed at a distance of < 1 cm from the
cell to maximise the strength of the driving field. The static field is set on Larmor
resonance Bz = Bres to maximise the microwave signal strength. This is also the point
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a)

b)

Figure 5.9: a) Theoretical, and b) experimental, dressed microwave spectra at ωrf =
90 kHz dressing frequency, on resonance Bz = Bres, with synchronous pumping,
cw repump and mw measuring the Voigt effect at Re(m2) quadrature. The probe
addresses F = 2 → F ′ = 1 transition with a detuning of ∆ ≈ −500 MHz. Here
the MW frequency refers to the MW frequency detuning from the clock transition
|F = 1,mF = 0〉 → |F = 2,mF = 0〉.

where theoretically the prepared state is close to the ideal input state, see Fig. 3.20
on page 84 for reference. The microwave field is then scanned and the corresponding
Voigt effect of the demodulated mode amplitude Re(m2) measured. Figs. 5.9, 5.10
5.11 and 5.12 show the results of microwave spectra in different state preparation and
probing conditions.

From the experimental microwave spectra we observe that to a good approxima-
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a)

b)

Figure 5.10: a) Theoretical, and b) experimental, dressed microwave spectra at
ωrf = 2π × 90 kHz dressing frequency, on resonance Bz = Bres, with synchronous
pumping, repump off and cw mw measuring the Voigt effect at Re(m2) quadrature.
The probe addresses F = 2→ F ′ = 1 transition with a detuning of ∆ ≈ −500 MHz.
Here the MW frequency refers to the MW frequency detuning from the clock transition
|F = 1,mF = 0〉 → |F = 2,mF = 0〉.

tion, the addition of the repump beam inverts the peaks/troughs of the microwave
spectra when compared to the mw-spectrum without the repumping beam. The
absence of the repump beam, results in a thermal distribution of populations of the
Zeeman sublevels in the F = 1 manifold containing a ≈50-75% fraction of the total
population. Probing the F = 2 manifold to obtain the mw spectrum and comparing
it to the theoretical spectra we find a good qualitative agreement between the spectra
with repump beam off reproducing key spectral features. However, the microwave
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a)

b)

Figure 5.11: a) Theoretical, and b) experimental, dressed microwave spectra at
ωrf = 2π × 90 kHz dressing frequency, on resonance Bz = Bres, with synchronous
pumping, cw repump and mw measuring the Voigt effect at Re(m2) quadrature. The
probe addresses F = 1→ F ′ = 1 transition with a detuning of ∆ ≈ −500 MHz. Here
note that the Voigt effect signal amplitude is centered around zero, this is because
the ground state F = 1 is in a thermal state which has no linear birefringence. Here
the MW frequency refers to the MW frequency detuning from the clock transition
|F = 1,mF = 0〉 → |F = 2,mF = 0〉.

spectra obtained with the repump on don’t share many spectroscopic features. One of
the reasons to explain this discrepancy is that the theoretically-computed state after
the pumping sequence differs from the steady state reached during the experimental
pump cycle. In addition, the appearance of peaks and troughs in the experimental
microwave spectra with the repump on suggests that perhaps the repump is not
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a)

b)

Figure 5.12: a) Theoretical, and b) experimental, dressed microwave spectra at
ωrf = 2π × 90 kHz dressing frequency, on resonance Bz = Bres, with synchronous
pumping, repump off and cw mw measuring the Voigt effect at Re(m2) quadrature.
The probe addresses F = 1→ F ′ = 1 transition with a detuning of ∆ ≈ −500 MHz.
Here note that the Voigt effect signal amplitude is centered around zero, this is because
the ground state F = 1 is in a thermal state which has no linear birefringence. Here
the MW frequency refers to the MW frequency detuning from the clock transition
|F = 1,mF = 0〉 → |F = 2,mF = 0〉.

efficient enough to depopulate the ground state F = 1 manifold which means that
some of the populations in the F = 2 manifold increase.

Fig. 5.13 shows the result of pulsed microwave spectrum probing the F = 2 ground
state manifold of the Re(m2) quadrature of the Voigt effect. Here the microwave field
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a)

b)

Figure 5.13: a) Theoretical, and b) experimental, dressed microwave spectra at
ωrf = 2π × 90 kHz dressing frequency, on resonance Bz = Bres, with synchronous
pumping, cw repump and synchronously pulsed mw with 10% duty cycle and in phase
with the rf-dressing field measuring the Voigt effect at Re(m2) quadrature. The probe
addresses F = 2 → F ′ = 1 transition with a detuning of ∆ ≈ −500 MHz. Here
the MW frequency refers to the MW frequency detuning from the clock transition
|F = 1,mF = 0〉 → |F = 2,mF = 0〉.

is pulsed with the same duty cycle of 10% and in phase with the radio-frequency
dressing field. Here the experimental stroboscopic microwave spectrum shows only
two peaks per group, which lie on the two extreme edges. This is consistent with the
theoretical calculations indicating that the majority of the populations reside in the
Zeeman sublevels of the |F = 2,mF = ±2〉 mixed state thus confirming that our state
preparation process works. This methodology can be extended to the radio-frequency
dressed Faraday measurements to map the state population profile.
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The theoretical and experimental results presented on the dressed microwave spectra
are far from complete and require significant future work. Firstly, we have not explored
what happens to the mw spectra when the state is prepared on the sensitive field point
Bz = B+

sense where the OPM acts as a full vector magnetometer. The density matrix
analysis in Fig. 3.21 on page 85 suggests that a significant proportion of the total
population reside in the |F = 2,mF = 0,±1〉 sublevels. In addition, we talked about
how the mw-spectrum could be used to track the evolution of the state by obtaining
the microwave spectra by probing the system at different times. The presence of
external sources of noise in the unshielded setup are of nuisance and are responsible
for a variety of broadening mechanisms which affect the state preparation process,
decoherence etc. Dressed microwave spectroscopy in magnetically shielded conditions
would provide a cleaner and more controlled environment improving the quality of
the results.

5.2 Shielded Operation
The experimental results obtained in the unshielded magnetometer setup have con-
firmed our main hypothesis of being able to measure three dimensional vector fields
with a single-beam axis geometry via radio-frequency dressed linear birefringence
of the atomic medium. However, many questions remained unanswered regarding
its characteristics as a function of its vast parameter space and crucially the noise
performance. These reasons provided great impetus to build and develop a new
magnetometer setup with a flexible and robust laser system with precise and high
resolution pulse timing control and data acquisition hardware in a low magnetic field
noise environment. The key advantage of the magnetically shielded setup is that it
enables the creation of a comparatively noise-free system where the various limitations
and scope of the magnetometer performance could be understood. This allowed us to
test our theoretical models as well as optimise the sensitivity of the OPM. For further
reference of the shielded system, refer to Chapter 4.

5.2.1 Voigt effect signal and quadrature responses
The experimental setup and sequence procedures to measure the Voigt effect were
outlined in the Experimental Apparatus chapter (see page 109 for example). The raw
balanced Voigt effect signals with the corresponding power spectral density of the trace
are shown in Fig. 5.14. Here a 5 kHz radio-frequency field is used to dress the atoms
with an rf-field amplitude of /0.1 mG. The choice of the dressing frequency is small
compared to the unshielded setup such that the field sensitivity in the transverse field
directions are maximised. The dressing field effects will be discussed in the follow-up
sections. As can be seen from the figure, the raw atomic signal decays due to a finite
state lifetime. In the shielded case, this is predominantly limited by the atom-atom
and atom-wall collisions as well as the absorption induced decay of the probe beam.
In our case, the limiting factor on the cell lifetime is dominated by the exchange of
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a)

b)

Figure 5.14: Typical experimental signals. a) Raw balanced signal of the Voigt rotation.
The state preparation occurs within the first 5 ms of the cycle followed immediately
by a 3 ms probing pulse. b) Single-sided, power spectral density (psd) of the amplified
signal during the probe pulse. Atomic signals arise at ωrf and 2ωrf . Weak harmonics at
3ωrf and 4ωrf can also be observed, which may arise due to non-linear magneto-optical
effects [88] and non-linearities in the electronic detection path.

atoms between the main body of the cell and the stem with the Rb reservoir. A
longer L-shaped stem with a capillary or a lockable stem mechanism would in principle
increase the finite state lifetime by restricting the exchange between the pump and
the unpumped atoms [87]. Due to the fact that the atomic exchange is the dominant
factor of the cell lifetime, it is difficult to assess the quality of the anti-relaxation
coating.
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a)

b)

Figure 5.15: Experimental magnetometer response. Panels a) to b) show the three
relevant quadratures of the mode amplitudes m1 and m2, i.e. responses at frequencies
ωrf and 2ωrf , for a scan of the longitudinal field Bz across the rf resonance. Here, non-
zero transverse fields Bx and By are kept constant. The mode amplitudes, extracted
according to Eq. (4.20) on page 120, follow the predicted behaviour, see Eq. (3.32) on
page 34.

The Voigt rotation spectrum is taken near Larmor resonance with the transverse
fields around zero. The power spectral density of the probing window (indicated in
the figure) reveals a presence of a strong 2ωrf resonance with a small ωrf resonance.
These code the external field information. As we can see in the spectrum, there exist
additional harmonic frequencies of the dressing field at 3ωrf and 4ωrf . A number of
physical processes may be contributing to the existence of these harmonics, such as
electronic non-linearities in the signal detection, additional non-linear magneto-optical
effects as well as non-adiabatic ramp-up/down of the pumping and probing beams
during the state preparation and probing stages, respectively [88]. The latter effects
have impulse response profiles which increase the probability of higher harmonic
excitation in the atomic dynamics.
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a)

c)

b)

d)

Figure 5.16: Theoretical and Experimental behaviour of the hx, hy and hz quadratures
as a function of the static Bz field. Here, a) and b) are the theoretical simulations
compared to the experimental results obtained in c) and d). The pumping follows a
square intensity profile with a 10% duty cycle at 5 kHz rf-dressing frequency in both
the theoretical and experimental traces. After the system reaches a steady state in
the pumping region, we switch the pump off and then probe the system as a function
of static field Bz. The small insets show a more detailed structure of the hx, hy and
hz dispersive and Lorentzian quadrature responses as well as the experimental and
theoretical sequences of state preparation and probing. Here the theory is based on
the Heisenberg model approach outlined on page 58.

As before, if we scan the longitudinal Bz field around the Larmor resonance whilst
simultaneously demodulating the signals at ωrf and 2ωrf frequencies we obtain the
signal amplitudes mk which are proportional to the external magnetic fields, see
Fig. 5.15. The demodulated signal amplitudes have dispersive and Lorentzian reso-
nance profiles, which are consistent with the profiles predicted by our, Heisenberg and
density matrix models (see pages 58, 79 for reference). From the figure we observe that
experimentally obtained Lorentzian resonance profile posses wings that are consistent
with the predictions given by the Heisenberg and the density matrix models. The
geometric model does not predict magneto-optical resonance effects beyond the Larmor
resonance. This is in contrast to the Heisenberg and density matrix models which
show there are additional resonance phenomena predicted at ωrf/2 frequency field
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value. This was investigated by sweeping the longitudinal magnetic field Bz from
0 to past the ωrf resonance field and observing the demodulated response of each
quadrature, see Fig. 5.16. As can be seen from the figure, the experimental OPM
response agrees well with the theory. The ωrf/2 response appears to be significantly
larger in the ωrf quadrature response than in 2ωrf as well as the responses occurring
at ωrf . Unfortunately, the ωrf/2 resonances are not of practical use for 3D vector
magnetometry as they do not show the same linear response observed in the reso-
nances at ωrf . Both the experimental and theoretical results show ringing effects in
the off-resonant regime. The ringing arises as a consequence of a fast switch-off/on
(non-adiabatic) of the pump and the probe pulses, which become prominent closer to
the resonances. The ringing vanishes when the probing is done in cw mode i.e. across
the state preparation and probing regions.

5.2.2 Magnetometer characterisation in the shielded environ-
ment

Effects of RF power. The strength of the dressing field, which actively drives the
atomic precession, has been predicted to decrease the signal scale factor as a function
of increasing rf-field amplitude, see Fig. 3.12 on page 63. In the unshielded case the
results showed that increasing the rf-field amplitude decreased the signal scale factor,
consistent with the predictions. Fig. 5.17 shows the results in the shielded scenario.
As can be seen from the figures, the general trend is that increasing the rf-amplitude,
decreases the signal scale factor of the OPM in all field quadratures. This is due to
the fact that the 2ωrf resonance broadens reducing in amplitude and increasing in
linewidth which results in a reduced sensitivity to the external fields. We also, see
that there exists a maximum in the ωrf field quadratures which is not coincident with
the 2ωrf resonance behaviour. In fact, in the experiments, as the rf-amplitude tends
to a zero value, the dispersive profiles at ωrf lose their characteristic dispersive shape
and no longer map the transverse field information. This does not appear to be the
case for the 2ωrf resonance. There also appears to be a difference in the sensitivity
of ωrf quadratures. The most likely reason for this difference is the external offset
fields present in the chamber. Typically, additional transverse fields are applied such
that the demodulated field amplitudes are mx,y ≈ 0 on the sensitive field point B+

sense.
However, geometric misalignment between the probe and the rf-field can change the
sensitivity between the quadratures where one quadrature readings become more
sensitive than the other.

Effects of Pump Duty Cycle and Phase. As was shown by the results in
the unshielded section, the state preparation process plays a crucial role in enabling
sensitive magnetic field measurements. The train of pump pulses with a well defined
duty cycle and phase relative to the rf-field affect the efficiency of optical pumping.
The theoretical results considering these effects obtained on pages 66−67 predict a
global maximum in sensitivity with a monotonically decaying profile as a function
of duty cycle, while the relative phase harmonically modulates the amplitude of the
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a)

b)

Figure 5.17: a) Signal scale factor of the ωrf quadratures corresponding to mx and my

demodulated field signal scale factors. b) Signal scale factor of the 2ωrf quadrature
corresponding to mz demodulated field signal scale factor. The signal scale factor
is a quantity that should be maximised as it is proportional to the magnetometer’s
sensitivity to the external magnetic fields. Here the results are obtained at 5 kHz
dressing frequency on the sensitive field point B+

sense = Bres +Bρ.

signal. The effects on the linewidth as a function of pump phase were only investigated
qualitatively since the phase affects the overall profile of the dispersive and Lorentzian
curves rendering it impossible to extract their linewidths. Nevertheless, where it is
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a)

b)

Figure 5.18: a) Experimental figure of merit of the Re(m2) quadrature as a function
of the pump duty cycle. The data shows a global peak at around 9% duty cycle
with monotonically decreasing sensitivity and then a temporary revival. The pump
pulses have a frequency ωrf and are in phase with the rf-dressing field. Here the
discontinuities in the data are due to the fact that they were taken over a long time
period where thermal drifts begin to play a role in the fibre/AOM coupling etc. Here
the results are obtained at 5 kHz dressing frequency. b) Theoretical figure of merit
based on the Heisenberg model.
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Figure 5.19: Normalised Re(m2) amplitude as a function of the relative phase between
the pump pulses and the rf-dressing field. Here we observe periodic behaviour consistent
with the theoretical model. Here the results are obtained at 5 kHz dressing frequency.

possible to do the calculation, the linewidths of the dispersive and resonance curves in-
crease with the increasing the phase difference and follows a harmonic profile consistent
with the period observed in the amplitude vs phase results. The experimental results
depicting the scale factor and amplitude response as a function of the pump duty cycle
and phase respectively are shown in Figs. 5.18 and 5.19. Unfortunately, it was not
possible to test the effects of different intensity profiles (e.g. triangular and sawtooth
pump pulse trains) on the magnetometer response due to hardware limitations. As can
be seen from the experimental results and the theoretical calculation on pages 66−67,
the model is effective in describing the behaviour observed in the experiments. As can
be seen from the figures, higher pump duty cycles and out of phase pumping reduce
the magnetometer sensitivity and are not practical if sensitivity is an important factor.
Moreover, the reduced sensitivity implies that the state we are pumping into is not an
equal statistical mixture of the |F = 2,mF ± 2〉 states. An obvious technical drawback
of synchronous pumping technique is the fact that most of the laser power is wasted
due to a low duty cycle. One of the limitations of our theoretical models is that they
do not take into account of pumping/probing effects of a Doppler broadened medium
during the spin dynamics, which may result in non-trivial pumping mechanisms due
to velocity-class-dependent pumping. Whilst these effects were considered in the
light-matter interaction section, their effects were decoupled from the atomic spin
dynamics. These simplifying assumptions may help explain some of the differences
seen between the experimental data and the theory. However, an additional complexity
arises due to the fact that we have a thermally broadened medium rendering more
detailed and accurate calculations tricky to accomplish.
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a)

b)

Figure 5.20: Signal scale factors as a function of optical powers for ωrf quadratures. a)
Signal scale factors ∆Ay/∆By and ∆Ax/∆Bx as a function of probe power. b) Signal
scale factors ∆Ay/∆By and ∆Ax/∆Bx as a function of pump power. Here the results
are obtained at 5 kHz dressing frequency on the sensitive field point B+

sense = Bres +Bρ.

Effects of Optical Power and Detuning. As mentioned already, our theo-
retical models do not take into account the various light-matter interaction effects such
as power and detuning when modelling the magnetometer response. This is largely
complicated by the fact that we have a Doppler-broadened medium. Nevertheless, it
was still highly instructive to understand the effects of light power and detuning on
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the magnetometer response qualitatively. Figs. 5.20 and 5.21 show the signal scale
factors as a function of pump and probe powers for all three quadratures. Increasing
the probe power increases both the ωrf and 2ωrf quadrature signal scale factors where
at higher powers we observe potential saturation effects due to the fact that higher
probing power increases the light scattering rate, which begins to have pumping effects
affecting the state and consequently reducing the signal strength. Increasing the pump
power for a fixed probe and repump power and detuning also increases the signal scale
factor in all quadratures, however, it also begins to show saturation effects at higher
powers. It is highly probable, that the major feature limiting the increase in signal
strength scale factor is down to the rate of exchange of unpumped atoms between the
cold finger and the cell. Additionally, the rate of atom-atom and atom-wall collisions
will contribute towards the spin destruction processes, further affecting the final steady
state during the pump cycle.

In our experiments the pump and repump beams have intensities I ≈ Isat, where the
pump/repump diameters are of the order of the size of the cell’s diameter. This means
that the pumping volume is near its maximum. Due to the free exchange between the
unmpumped atoms in the cold finger and the body of the cell, it is not possible here
to assess the quality of the anti-relaxation coating and its contribution to the spin
destruction due to atom-wall collisions. The variation of the signal scale factor as a
function of the repump power (not shown) is much less strong (due to a lower branching
ratio of the optical transition from the excited states to F = 1 during the pump cycle);
however, the absence of the repump reduces the signal scale factor by approximately
a factor of 2 over the duration of the state preparation process. Experimentally, the
pump and repump frequencies were generated using separate laser sources that were
then coupled into the same polarisation maintaining fibre. As a result of this scheme,
50% of pump and repump powers were lost due to a non-polarising-beam-splitter
which was used to combine the two beams. An easier and more practical solution
would be to use a sideband-suppressed EOM to generate the repump from the pump
beam [90]. Since the repump does not require much power, it would not only sim-
plify the laser system, but also the make it more practical for miniaturisation purposes.

The light-matter interaction describing the Voigt effect assumes a far detuned
probe where the effects of absorption can be ignored. The strength of this interaction
is still dependent on the detuning from the atomic resonance which is given by the
tensor polarisabilities (see page 14 for reference). The tensor polarisabilities predict
the signal scaling as a function of the probe detuning, however, they do not take into
account of the effects of Doppler broadening nor the absorption and light retardation
effects. These become dominant for probe detunings close to the atomic optical
resonance, but can be ignored for detuning ∆ > ΓD, where ΓD is the width of the
Doppler valley. As a result it becomes difficult to know a priori for which choice of
detuning the signal scale factor (or sensitivity) will be maximised, and whether the
signal scale factors will all be equally maximised for the same detuning in the first
place. Fig. 5.22 shows the results of the quadrature signal scale factors as a function
of the probe detuning. The probe is scanned in steps of 50 MHz over nearly a 3 GHz
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a)

b)

Figure 5.21: Signal scale factors as a function of optical powers for 2ωrf quadratures.
a) Signal scale factor of Re(m2) as a function of probe power. b) Signal scale factor of
Re(m2) as a function of pump power. In all cases we observe that increasing optical
power increases the signal scale factor which begins to saturate. Here the results are
obtained at 5 kHz dressing frequency on the sensitive field point B+

sense = Bres +Bρ.

range and the resultant signal scale factors are obtained by scanning the longitudinal
and transverse fields when the longitudinal field is set on the sensitive field point, B+

sense.
The results in the figure show that the signal scale factors are maximised for probe
detuning values roughly being ±550 MHz red/blue detuned from |F = 2〉 → |F ′ = 1〉
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×100

Figure 5.22: Experimental estimates for the three signal scale factors as a function of
probe detuning. For the longitudinal field, this is the slope of the 2ωrf resonance profile,
estimated as 2A/Γ. Near the chosen probe detuning of -550 MHz (dashed lines), all
scale factors are close to maximal, and the first order responses to orthogonal external
fields are orthogonal. Here the results are obtained at 5 kHz dressing frequency
on the sensitive field point B+

sense = Bres + Bρ. The dash-dotted line indicates the
|F = 2〉 → |F ′ = 2〉 transition for reference.

and |F = 2〉 → |F ′ = 2〉 transitions respectively with the former giving a slightly
higher sensitivity. The signal scale factors reach minimal values on resonance to the
atomic transitions. This is expected since the probe experiences significant absorption
at detuning ∆ ≈ 0, which begins to dominate the phase shifts introduced by the ac
Stark effect and our theoretical model is no longer valid in effectively describing the
physics. Moreover, as the detuning approaches the resonance transitions, i.e. ∆1,2 → 0
the field mapping to quadratures becomes no longer orthogonal, and as a result, a
significant amount of field leakage is observed. Consequently, the magnetometer is
no longer capable of mapping vector information. Coupled to this, the characteristic
dispersive and Lorentzian profiles of the OPM as a function of the longitudinal Bz
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Figure 5.23: Signal scale factor as a function of the cell body temperature. The
transverse field quadrature signal scale factors are multiplied by a factor of ×100 to
put the signals on the same plot scale. The signal scale factors show a general positive
correlation with respect to the cell body temperature. Here the results are obtained
at 5 kHz dressing frequency on the sensitive field point B+

sense = Bres +Bρ.

field become highly distorted and no longer follow the theoretically predicted shapes,
primarily due to the fact that the probe begins to act as a pump, redistributing the
prepared state. Interestingly, we observe that the quadrature signal scale factors in
phase with the rf-field, i.e. ∆Ax/∆Bx and 2A/Γ follow the same trend as a function of
the probe’s detuning whilst the out of phase quadrature signal scale factor ∆Ay/∆By

does not. Recall that the equation describing the Voigt effect in the off resonance
regime is given by 〈

Ŝout
z

〉
= g

(2)
F SynF

〈
F̂ 2
x − F̂ 2

y

〉
, (5.7)

where we have let

g
(k)
F = 2g2α

(k)
F

c~k+1 , (5.8)

which clearly indicates the the entire Voigt effect signal distributed over harmonics ωrf
and 2ωrf should scale identically with the detuning given by the tensor polarisability.
However, as observed in Fig. 5.22, this is not the case for the out of phase quadrature,
Im(m1). In order to explain this, it is possible that the out of phase quadrature compo-
nent acquires an additional detuning dependent factor which was not considered in the
tensor polarisability component. The origin of this factor would arise as a consequence
of the rf-dressing field which introduces in-phase and out-of-phase detuning dependent
component in the dipole transition moment.
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Temperature effects. The temperature effects on the signal scale factors were
further investigated in the shielded conditions. Fig. 5.23 shows the results for all
three quadratures. The heating of the cell was achieved by means of Joule heating
using high-resistance, coated wire wrapped around the cell. After the cell reached
thermal equilibrium, the heater would be switched off and the measurement taken.
This is a suboptimal experimental situation since the cell begins to cool down during
the measurement, which takes roughly 16 s. This made the measurements at higher
temperatures unreliable due to a temperature gradient between the cell and the
surrounding environment. According to eq. (5.7), the Voigt effect signal amplitude
should scale linearly with the atomic density, whilst we see this in the unshielded
environment data at low densities (see Fig. 5.6 on page 135) we do not see a clear
linear relationship in the shielded case in Fig. 5.23. The stem of our relaxation coated
cell, where most of the 87Rb is kept, is very short and straight making the exchange
of the unpumped atoms between the stem and the main cell body a very significant
process as the temperature increases. This negatively impacts the contribution to
the overall increase in signal to noise ratio because an increasingly large fraction of
unpumped atoms begins to interact with the probe. To remedy this, a longer and
L-shaped stem with a capillary would be a possible solution to this issue.

5.2.3 3D vector mapping and characterisation
A key feature of the Voigt magnetometer is its capability of mapping all three vector
components of the magnetic field. The 3D vector response is achieved when the
longitudinal magnetic field is set to Bz = Bres +Bρ which corresponds to the steepest
slope of the Re(m2) resonance and maximum amplitudes of the Re(m1) and Im(m1)
dispersive profiles. We map the magnetometer response at the sensitive field point by
linearly scanning the transverse and longitudinal fields sequentially and measure the
corresponding quadrature responses, see Fig. 5.24. As can be seen from the figure,
for large external fields (Bext

x,y,z ≈ B+
sense), the OPM response generates a characteristic

ovoid shape consistent with the qualitative predictions given by both the Geometric
and Heisenberg models (see pages 37 and 60 for reference). The full ovoid profiles
display asymmetric distortion and offsets from mx,y

1 = 0 point. The origin of the
distortion and offset are suspected to arise as a consequence of geometric misalignment
of the pump/probe beams relative to the rf and longitudinal static fields. We confirm
this by introducing misalignment through pump/probe beam steering and observing
the corresponding ovoid profile. Larger misalignment causes larger distortion of the
field mapping. Increasing the dressing frequency of the rf-field reduces these distortion
effects in the transverse field directions. This is due to the fact that effective geometric
field angles α, β ≈ By,x/B

+
sense become smaller due to a larger B+

sense field required for
sensitive field operation resulting in reduced sensitivity to misalignment. Unfortu-
nately, increasing the rf-field frequency inadvertently decreases the OPM sensitivity
to transverse fields while the sensitivity to the longitudinal field remains unchanged.
The sensing range of the longitudinal field is dependent upon the resonance linewidth
and can be extended by increasing the rf-field amplitude at the expense of reducing its
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Figure 5.24: Mapping of the OPM response to external fields at 5 kHz radio frequency
dressing. a) Quadratures of the first harmonic signal as a function of raster scanned
transverse fields Bx,y ranging over ≈ ±180 nT for constant Bz. Each colour represents
a different Bz field ranging over ≈ ±0.3 nT. The top inset shows the location of the Bz

field with respect to the resonant signal at 2ωrf . b) Inclusion of the second harmonic
signal produces oviforms in the three-dimensional representation and demonstrates the
full vector mapping. The behaviour in the linear regime for small field perturbations
is shown in the insets. We attribute deviations from the ideal profiles to geometric
misalignment between the pump/probe beams and static and rf fields. The asymmetric
distortion increases for lower bias fields, consistent with imperfect orthogonality
between static field coils and their alignment with the direction of the probe beam. c)
and d) are theoretically calculated ovoid profiles at 5 kHz dressing frequency.

sensitivity. For small external fields, Bx,y,z � B+
sense, the OPM response is linear to the

applied field. Here the three calibration values can be used to convert the demodulated
signal amplitudes mk (mV

√
s) to fields mk (T). In principle, the linear field response

and the range of the OPM can be extended further by placing it in a closed loop system.
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Characterisation of the Ovoid. The OPM ovoid appearance, its shape and,
size convey important information about the magnetometer’s response to external
magnetic fields. We have already explored some of the parameters affecting the
sensitivity of the magnetometer (e.g. see Figs. 5.17, 5.18, 5.20, 5.21 and 5.22); however,
these effects are only valid for small external fields, Bx,y,z � B+

sense. Furthermore, the
theoretical models described in this work do not take into account of the more detailed
effects of light matter interaction such as detuning, power, optical transitions etc.,
which as has been shown in the previous section have significant effects. To this end,
the motivation was to explore some of the parameter space and establish qualitative
relationships between the parameters and observables, and where possible, compare
them to the theoretical predictions. The parameters explored were the dressing field
frequency and its amplitude, probe power and the optical transitions of the pump
beam. These parameters one of the major contributors to the field sensitivity. Fig. 5.25
shows the results.

The rf-field dressing frequency tunes the static field resonance point Bres = ~ωrf/µBgF
which further influences the operational field setpoint where the magnetometer is
sensitive to all three field directions, B+

sense = Bres + Bρ. Increasing this frequency,
reduces the field sensitivity to transverse field directions whilst keeping the longitudinal
field sensitivity constant. As a result, for the same range of fields, the OPM ovoid
should shrink in the x-y field sensing plane. This is consistent with the observations,
see Fig. 5.25 a). For increasing rf-dressing field frequency, the ovoid begins to shrink
in the x-y plane. There is some variation in the z-field peak point of the OPM’s
ovoid responses which are possibly due to imprecise B+

sense setpoint. The rf-dressing
frequency gives the freedom to precisely tune the field sensitivity to transverse fields
enabling high dynamic range operation. The dynamic range is further extended for
the longitudinal, z-field, where the sensitivity is tuned with the rf-field amplitude, see
Fig. 5.25 b). Here increasing the rf-field amplitude increases the volume of the ovoid
affecting the sensitivity in the longitudinal as well as transverse field directions. Here
the picture is somewhat more complicated because the rf-field amplitude increases
the peak amplitudes of the dispersive and Lorentzian resonance profiles of the mk

quadratures and simultaneously broadens the linewidths of the response functions.

We have already seen that the state preparation process which is primarily dom-
inated by the pumping beam has a strong effect on the sensitivity of the OPM as a
function of the duty cycle, phase and optical power. However, we have not consid-
ered how the choice of optical transitions of the pump would affect the sensitivity
of the OPM. Fig. 5.25 c) shows the results. The pumping from F = 2 → F ′ = 1
using π-polarised light yields a larger volume ovoid compared to F = 2 → F ′ = 2
optical transition. This is due to the fact that the Clebsch-Gordan coefficients for
F = 2 → F ′ = 1 are larger compared to the F = 2 → F ′ = 2 transitions mak-
ing the pumping more efficient. Moreover, the branching ratios of the decay from
F ′ = 2 → F = 1 are larger compared to F ′ = 1 → F = 1, further enhancing the
efficiency of the pumping. In the regime where the OPM response is linear to external
fields, the field sensitivity was observed to scale approximately linearly for low probe
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a)

c)

b)

d)

Figure 5.25: a) ovoid profiles at different rf-field frequencies. Increasing the rf-field
frequency reduces sensitivity to transverse fields whilst keeping the longitudinal field
sensitivity unchanged. b) ovoid profiles at different rf-field amplitudes. Increasing the
rf-amplitude increases the volume of the egg for all three quadratures. c) ovoid field
profiles for different optical transitions of the pump which for F = 2→ F ′ = 1 pump
results in an equal statistical mixture of |F = 2,mF = ±2〉 and for F = 2→ F ′ = 2
pump results in a preparation of |F = 2,mF = 0〉 state. d) ovoid profile at different
probe powers.

powers and then saturate at higher powers. For a full field scan range, the ovoid
response has a similar response, where the increase in probe power increases the overall
volume of the ovoid in all three quadratures indicating higher field sensitivity for the
same field range, see Fig. 5.25 d).

Evidently, the parameter space explored in this section is far from complete. We have
not considered the effects of pump/repump power, repump optical transitions, probe
detuning to name just a few. However, these effects were largely explored in the linear
field regime where the OPM sensitivity can be characterised by a signal scale factor
which corresponds to the figure of merit that we are trying to optimise when the OPM
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is operated on the sensitive field point B+
sense.

5.2.4 Noise performance and characterisation
To perform the noise measurements we detune the static Bz field to Bz = B+

sense,
which optimises the magnetometer sensitivity for all three components. We then
adjust the transverse fields such that the first harmonic signal vanishes, i.e. the noise
measurements are done near the apex of the middle (blue) ovoid in Fig. 5.24 b). Based
on the field calibrations described on page 126, we record field equivalent signal noise
for the three field components over ≈ 16 s (2048 cycles at 125 Hz). Here the sampling
frequency refers to the rate at which the state preparation and probing pulses are
pulsed at (see Fig. 4.12 on page 122 for illustration). To measure the light noise, we
block the light for the state preparation process and detune the probe beam such
that no Voigt rotation is observed. We typically switch the magnetic fields off as well
as the rf-dressing field. We then measure the corresponding mode amplitudes mk

for the same duration and sampling frequency. The electronic noise is measured by
further blocking the probe beam and recording the mode amplitude response. The
noise amplitude spectrum is then computed according to eq. (4.32) (see page 122).
Fig. 5.26 shows the spectral noise performance for the two quadratures at ωrf and the
in-phase quadrature at 2ωrf .

At 5 kHz rf dressing frequency and a temperature of 36◦C, the magnetometer operates
with an average noise level of ≈ 2.2 pT/

√
Hz for the transverse fields over the range

of 10-62.5 Hz, dominated by photon shot noise. Longitudinal fields can be measured
with a sensitivity of 0.4 pT/

√
Hz. The noise floor of our 4-layer µ-metal shield is

≈11 fT/
√

Hz in the 1-100 Hz frequency band [89]. As was discussed in the previous
section, the dominant constraint on the noise level is the short coherence time of
the cell (τ ≈ 2 ms) which is limited by the quality of the paraffin coating and the
exchange of the atoms between the main cell body and the stem with the Rb reservoir.
Typically, paraffin or OTS coated cells have coherence times ranging from 30 ms to
300 ms [91, 92]. Longer coherence time would improve the field sensitivity of the
OPM due to a larger fraction of atoms remaining in the field sensitive state. In
addition, higher quality paraffin coating would also shorten the pump/repump pulse
time needed to (re-)prepare the stretched states, allowing for increased cycle rate
and thus higher bandwidth as well as higher duty cycle and thus reduced aliasing
of magnetic field noise. The bandwidth of the OPM could further be increased by
significantly shortening the pumping cycle by using a nano-second pulsed laser as a
pump with high peak power [30]. A pulse duration of typically 150 ns with a peak
power of ≈10 W and a 20 GHz spectral bandwidth would allow to significantly shorten
the state preparation process. The spectrally broad laser would also act as a repump,
which would allow us to further simplify the laser system. In our case, the 5 ms of
pumping time would be reduced to ≈1 µs which would leave us with 3 ms of probing
extended the OPM bandwidth to ≈160 Hz.

Recall that the mode amplitudes are acquired by demodulating a decaying windowed
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a)

b)

c)

Figure 5.26: OPM noise at 36◦C vapour cell temperature in a shielded environment
at 5 kHz radio frequency dressing. Noise floor values are estimated for the range
10 Hz - 62.5 Hz. Panels a) and b) show noise performance for the two orthogonal
transverse fields. The light noise in one of the signal quadratures shows phase-locked,
low-frequency fluctuations of cross talk between the rf generation and detection paths.
Panel c) shows the noise performance for the longitudinal field component. The
light noise levels (photon shot noise) are obtained with a far-detuned probe laser and
disabled pump/repump lasers. The electronic noise is recorded without probe light
and no rf field present. The calibration of field equivalent noise amplitudes includes
an ≈ 5%-drop of the low-pass frequency response function, which is predominantly
determined by the mode function entering eq. (4.20) on page 120.
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Figure 5.27: OPM noise response with an external control signal in blue. Here the
same amplitude sinusoidal wave in blue is injected into the x-coil and the corresponding
OPM noise spectrum is taken for the quadrature at different driving frequencies of the
control field. The right hand side axis models the gain profile due to a finite probe
window in addition to the signal decay. The red line is the theoretical gain given by
eq. (5.10) as a function of frequency. The decay time of the signal is 1/γ ≈ 2 ms with
the probing time Tp = 3 ms.

probe signal which takes the following form

Uenv(t) = gele
−γtH(Tp − t)H(t). (5.9)

This introduces a frequency dependent gain on the signal model amplitudes (see
page 122 for additional details) given by

Π(ω) =
√
|Uenv(ω)|2 =

√√√√ γ2

γ2 + ω2
cosh(Tpγ)− cos(ωTp)

(cosh(Tpγ)− 1) , (5.10)

where Tp is the probing time and 1/γ is the 1/e signal decay time constant. These
two constants affect the bandwidth of the magnetometer by acting as a low-pass filter
function. The longer the probing time, Tp, and the shorter the coherence lifetime 1/γ,
the bigger the roll-off of the gain at higher frequencies. Fig. 5.27 shows the OPM
noise response at difference frequencies of the same amplitude control signal. With
the probe time of Tp = 3 ms and the 1/e decay time 1/γ ≈ 2 ms, the gain drops by
5% given by the Π(ω). At higher frequencies, the inductance of the coils needs to be
considered when a constant amplitude signal is fed since the impedance as well as
inductance of the circuit is in general complex and frequency dependent. In our case,
the coil inductance is in ≈ µH range and its effects can be neglected from control
signal frequencies in the 102 Hz range.
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a)

b)

Figure 5.28: Dependencies of the noise performance. a) OPM noise as a function of
the vapour cell temperature. b) OPM noise as a function of radio frequency of the
dressing field.

Increasing the temperature of the cell thus increasing the atomic density increases the
signal scale factors which correspond to the sensitivity of the OPM. However, as it
is shown in Fig. 5.28 a), the signal-to-noise-ratio saturates already at temperatures
of approximately 32◦C for the transverse fields and at even lower temperatures for
the longitudinal fields. Initially, increasing signal amplitudes lead to better sensitivity,
especially for the transverse fields where the signals are closer to photon shot noise.
However, additional atomic processes such as resonance broadening limit the perfor-
mance at higher temperature where the figure of merit saturates. A similar saturation
effect using paraffin coated cells was previously observed in ref. [93], where higher
atomic concentrations lead to an increase of the collisional and surface relaxation
rates, depolarising the prepared state.



5.2. Shielded Operation 167

As was previously shown, the sensitivity of the OPM to transverse fields does not
only depend on the shape of the resonance, but also on the chosen dressing frequency
because the corresponding signals arise from the geometric rotation of the static field.
The rotation angle and consequently the signal strength increases for smaller offset
fields, see eqs. (3.43) and (3.44) on page 37. The resulting linear dependence of sensitiv-
ity on dressing frequency is shown in Fig. 5.28 b). Over the range of 40 kHz to 2.5 kHz
the transverse field noise performance varies by a factor of four. This strategy is limited
by the linewidth of the rf resonance and other factors such as the required precision
of alignment increased susceptibility to magnetic field gradients distorting the ovi-
form mapping as well as the pump cycle duration and the coherence lifetime of the cell.

The vector field sensitivity of the OPM is of similar order of magnitude in all three
directions. This makes the OPM practical for 3D vector measurements. Moreover, the
sensitivity for z and x-y quadratures can be tuned appropriately to match the field
conditions.



6

C
h

a
p

t
e

r

Conclusion and Future Work

In this work we have presented theoretical and experimental results of a novel Voigt-
effect-based three-dimensional vector magnetometer. Our scheme requires only a single
optical axis geometry for both the state preparation and probing making this sensor
architecture ideal for miniaturisation. A key advantage of our magnetometer is the
radio-frequency dressing field which encodes the external magnetic field information
into its first and second harmonic components. This allows us to extract external field
information via lock-in detection techniques removing significant sources of technical
noise.

The theoretical models outlined in this thesis have been successful in aiding our
understanding of the magnetometer in the experimental setting and feeding back
to our efforts in optimising its performance. In addition, the proposed models are
capable of taking into account a large parameter space with an extensive dynamical
range of values as well as the ability to include arbitrary time-dependent profiles (e.g.
pumping) and ancillary interaction effects (e.g. microwave field) combined with a full
description of the atomic state using the density matrix approach. The combination of
latter two approaches have been instrumental in understanding the state preparation
process through dressed microwave spectroscopy paving the way towards realising
methods of partial quantum state tomography.

Throughout this work we have encountered a number of theoretical and experi-
mental challenges, which have put a limit on our current understanding of this new
type of magnetometer. Theoretically, one of the major limitations in our work has
been the absence of a complete description of pump-probe light matter interaction
in a Doppler-broadened medium and its impact on the spin dynamics. This may be
considered to be unnecessary since our light-matter interaction model used to derive
the Voigt-effect is only valid in the far-off resonant regime, where the Doppler effect
of thermal atoms can be neglected to a good approximation. A major portion of the
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encountered limitations in this work have stemmed largely from the experimental end
of things. It is possible that one of the major limiting factors of OPM noise perfor-
mance are the anti-relaxation coating as well as the cold finger geometry. However,
the results to support this hypothesis need further investigation to be conclusive and
will form a part of the future work.

With some of the limitations outlined in the previous paragraph, there is a clear
and significant number of directions both theoretical and experimental which are
worthy to be pursued in continuation of developing this new class of Voigt effect based
magnetometers. From the theoretical end of things, a full treatment using the density
matrix approach to add the light-matter interaction due to pumping and probing in
the off-resonant limit. This would provide a better picture of pump/probe interaction
with the spin dynamics and allow us to investigate and understand theoretically the
fundamental noise limits. Moreover, this would open the opportunity to study the
theoretical performance of the OPM with squeezed light and non-classical quantum
states (e.g. using a superposition of |F = 2,mF = ±2〉 instead of a statistical mixture).
Finally, the addition of a microwave field provides us with an extra degree of control
where the states can be manipulated and probed.

Experimentally, there is a lot of room for improvement as well as new windows
of opportunity to explore. On a basic technical level, the major limitation in our
OPM performance has been the cell. Obtaining a properly designed cold finger to
minimise exchange of the unpumped atoms with the main cell body as well as having
long coherence time with good paraffin coating may allow us to bring the OPM to
the fT/

√
Hz noise range. Due to the variability in the quality of the paraffin coated

cells [94], it may be more conducive to switch to buffer gas cells. This would also allow
us to compare the OPM performance in buffer type against anti-relaxation coated cells.

The limitations of the coherence time of the cell as well as the efficiency of the
synchronous pumping are currently setting limits to the bandwidth of the OPM. To
improve these a couple of alternative pumping methods could be considered. A pulsed
laser with high peak power could be used which would almost completely eliminate
the pumping time in relation to the probing. To further increase the sensitivity of
the OPM a low finesse cavity or Herriott-type mirrors could be placed around the
magnetometer [95]. They would increase the optical density through an increased
light path. Consequently, this would allow us to eliminate the need to heat the cell
simplifying the experimental setup. Another way of enhancing the sensitivity of the
OPM would be to use a squeezed light source based on an optical parametric oscillator
or four-wave mixing methods [96]. The squeezed light method has an experimental
drawback of requiring an extensive and comparatively complex laser and optics setup
making it impractical for use in miniature sensors. Since the unshielded setup was
far from optimal in control and execution, it would be important to reinvestigate
the OPM performance in the unshielded environment and determine its fundamental
sensitivity.
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The work done on the dressed microwave spectroscopy should be further investi-
gated, but in shielded conditions. This would remove significant sources of noise that
were present in the unshielded environment where the previous results were taken.
Placing the cell in a magnetron cavity [97], or using a microwave horn would further
allow us to study the dressed microwave spectrum of the prepared state, as well as
explore the use of novel quantum states for magnetometry measurements.

In summary, the system is rich in physics, with many interesting questions and
challenges left in both, theoretical and experimental domains. This work has been a
consequence of a serendipitous scientific discovery, and the hope is that it will continue
as such.
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Appendix: Light-Matter Interaction

A.1 Optical rate equations for resonant π-polarised
pump/repump

The time dependent population for each ground level ρn is governed by the following
equation of motion [54]

∂tρn(t) =
∑
j 6=n

ρj(t)
(∑

k

Ξj,kγj,kγn,k

)
− ρn(t)

∑
k

Ξn,kγn,k(1− γn,k). (A.1)

We begin defining the terms in the equation by computing the transition probabilities
for all the possible states for the D1 and D2 lines with the following using π−polarised
pump and repump beams using

γe,g(|Je, I, Fe,me〉 → |Jg, I, Fg,mg〉) = γg,e(|Jg, I, Fg,mg〉 → |Je, I, Fe,me〉) =

(2Fe + 1)(2Jg + 1)(2Je + 1)×
{
Jg I Fg
Fe 1 Je

}2

×
(
Fg 1 Fe
mg q −me

)2

, (A.2)

where the curly and round brackets around the matrices represent the Wigner-6j and
Wigner-3j symbols respectively. The element q corresponds to the polarisation state
such that

q =


0, π-polarisation,

+1, σ+-polarisation,
−1, σ−-polarisation,

(A.3)

with the natural lifetimes for the D1 and D2 lines given by

Γk =

2π × 5.746MHz, D1-line,
2π × 6.065MHz, D2-line.

(A.4)
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The branching ratios, γj,k are normalised against the D2 line transition strength

|Fg = I + 1/2,mg = Fg〉 → |Fe = I + 3/2,me = Fe〉 , (A.5)

to be unity.

Table A.1: |F = 1〉 → |F ′ = 2〉 D2 Line

π−transition σ−−transition σ+−transition

γ1,13 = 1
4 γ1,14 = 1

4 γ2,13 = 1
12

γ2,14 = 1
3 γ2,15 = 1

12 γ3,14 = 1
4

γ3,15 = 1
4

Table A.2: |F = 2〉 → |F ′ = 2〉 D2 Line

π−transition σ−−transition σ+−transition

γ5,13 = 1
12 γ5,14 = 1

4 γ5,12 = 1
6

γ6,14 = 0 γ6,15 = 1
4 γ6,13 = 1

4

γ7,15 = 1
12 γ7,16 = 1

6 γ7,14 = 1
4

Table A.3: |F = 2〉 → |F ′ = 1〉 D1 Line

π−transition σ−−transition σ+−transition

γ5,9 = 1
4 γ5,10 = 1

12 γ9,4 = 1
2

γ6,10 = 1
3 γ10,11 = 1

4 γ6,9 = 1
4

γ7,11 = 1
4 γ11,8 = 1

2 γ7,10 = 1
12
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Table A.4: |F = 1〉 → |F ′ = 1〉 D1 Line

π−transition σ−−transition σ+−transition

γ1,9 = 1
12 γ1,10 = 1

12 γ2,9 = 1
12

γ2,10 = 0 γ2,11 = 1
12 γ3,10 = 1

12

γ3,11 = 1
12

The population rate equations read
∂tρ1(t) = −ρ1(t)γ1,13(γ13,4 + γ13,5 + γ13,6 + γ13,2)Ξ1

+ ρ2(t)γ2,14γ14,1Ξ1 + (ρ5(t)γ5,9γ9,1 + ρ6(t)γ6,10γ10,1)Ξ2, (A.6)
∂tρ2(t) = −ρ2(t)γ2,14(γ14,5 + γ14,7 + γ14,1 + γ14,3)Ξ1

+ (ρ1(t)γ1,13γ13,2 + ρ3(t)γ3,15γ13,2)Ξ1

+ (ρ5(t)γ5,9γ9,2 + ρ7(t)γ7,11γ11,2)Ξ2, (A.7)
∂tρ3(t) = −ρ3(t)γ3,15(γ15,8 + γ15,7 + γ15,6 + γ15,2)Ξ1

+ ρ2(t)γ2,14γ14,3Ξ1 + (ρ7(t)γ7,11γ11,3 + ρ6(t)γ6,10γ10,3)Ξ2, (A.8)

∂tρ4(t) = ρ1(t)γ1,13γ13,4Ξ1 + ρ5(t)γ5,9γ9,4Ξ2, (A.9)
∂tρ5(t) = −ρ5(t)γ5,9(γ9,4 + γ9,6 + γ9,1 + γ9,2)Ξ2

+ ρ6(t)γ6,10γ10,5Ξ2 + (ρ1(t)γ1,13γ13,5 + ρ2(t)γ2,14γ14,5)Ξ1, (A.10)
∂tρ6(t) = −ρ6(t)γ6,10(γ10,5 + γ10,7 + γ10,1 + γ10,3)Ξ2

+ (ρ5(t)γ5,9γ9,6 + ρ7(t)γ7,11γ11,6)Ξ2

+ (ρ1(t)γ1,13γ13,6 + ρ3(t)γ3,15γ15,6)Ξ1, (A.11)
∂tρ7(t) = −ρ7(t)γ7,11(γ11,8 + γ11,6 + γ11,3 + γ11,2)Ξ2

+ ρ6(t)γ6,10γ10,7Ξ2 + (ρ3(t)γ3,15γ15,7 + ρ2(t)γ2,14γ14,7)Ξ1, (A.12)
∂tρ8(t) = ρ3(t)γ3,15γ15,8Ξ1 + ρ7(t)γ7,11γ11,8Ξ2, (A.13)

where Ξ1 and Ξ2 are computed on resonance to their respective transitions, ∆ = 0 MHz

Ξj,k(I,∆ = 0) = I/Isat

1 + I/Isat + (2∆j,k/Γk)2
γj,kΓk

2 = I/Isat

1 + I/Isat

γj,kΓk
2 . (A.14)

A.2 Optical rate equations for a far-detuned probe
We begin with the same time dependent population for each ground level ρn is governed
by the following equation of motion [54]

∂tρn(t) =
∑
j 6=n

ρj(t)
(∑

k

Ξj,kγj,kγn,k

)
− ρn(t)

∑
k

Ξn,kγn,k(1− γn,k). (A.15)
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In this case we have a probe that has 45◦ polarisation which can be decomposed into
π− and σ±−polarisations. The probe addresses |F = 2〉 → |F ′ = 1〉 of the D1 line.
The rate equations take the following form

∂tρ1(t) =
(

(ρ4(t)γ4,9 + ρ5(t)γ5,9)γ9,1+

+ (ρ6(t)γ6,10 + ρ7(t)γ7,10)γ10,1

)
Ξ2, (A.16)

∂tρ2(t) =
(
ρ4(t)γ4,9 + (ρ5(t)γ5,9)γ9,2

+ (ρ7(t)γ7,11 + (ρ8(t)γ8,11)γ11,2

)
Ξ2, (A.17)

∂tρ3(t) =
(

(ρ8(t)γ8,11 + ρ7(t)γ7,11)γ11,3+

+ (ρ6(t)γ6,10 + ρ7(t)γ7,10)γ10,3

)
Ξ2, (A.18)

∂tρ4(t) = −ρ4(t)γ4,9(γ9,5 + γ9,6 + γ9,1 + γ9,2)Ξ2

+ ρ5(t)γ5,9γ9,4Ξ2 + ρ6(t)γ6,9γ9,4Ξ2, (A.19)
∂tρ5(t) = −ρ5(t)γ5,9(γ9,4 + γ9,6 + γ9,1 + γ9,2)Ξ2

− ρ5(t)γ5,10(γ10,6 + γ10,7 + γ10,1 + γ10,3)Ξ2

+
(
ρ4(t)γ4,9γ9,5 + ρ7(t)γ7,10γ10,5

+ ρ6(t)γ6,10γ10,5 + ρ6(t)γ6,9γ9,5

)
Ξ2, (A.20)

∂tρ6(t) = −ρ6(t)γ6,10(γ10,5 + γ10,7 + γ10,1 + γ10,3)Ξ2

− ρ6(t)γ6,9(γ9,4 + γ9,5 + γ9,1 + γ9,2)Ξ2

− ρ6(t)γ6,11(γ11,7 + γ11,8 + γ11,2 + γ11,3)Ξ2

+ ρ4(t)γ4,9γ9,6 + ρ8(t)γ8,11γ11,6 + ρ7(t)γ7,11γ11,6 + ρ7(t)γ7,10γ10,6

+ ρ5(t)γ5,9γ9,6 + ρ5(t)γ5,10γ10,6, (A.21)
∂tρ7(t) = −ρ7(t)γ7,11(γ11,8 + γ11,6 + γ11,3 + γ11,2)Ξ2

− ρ7(t)γ7,10(γ10,6 + γ10,5 + γ10,3 + γ10,1)Ξ2

+
(
ρ8(t)γ8,11γ11,3 + ρ5(t)γ5,10γ10,7

+ ρ6(t)γ6,10γ10,7 + ρ6(t)γ6,11γ11,7

)
Ξ2, (A.22)

∂tρ8(t) = −ρ8(t)γ8,11(γ11,7 + γ11,6 + γ11,3 + γ11,2)Ξ2

+ ρ7(t)γ7,11γ11,8Ξ2 + ρ6(t)γ6,11γ11,8Ξ2, (A.23)

where the probe is off-resonance ∆ = −550 MHz

Ξj,k(I,∆ = −550 MHz) = I/Isat

1 + I/Isat + (2∆j,k/Γk)2
γj,kΓk

2 . (A.24)
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Appendix: Spin Dynamics

B.1 RF-dressed Spin Hamiltonian
The rf-dressed Hamiltonian takes the form

Ĥ = gFµB(Bdcez +Brf cos(ωt)ex) · F̂, (B.1)

We want to transform the Hamiltonian above into a rotating frame such that we
can cancel any time dependencies that exist in it. To do this, we apply a unitary
transformation using the following ansatz:

Û = eiωtF̂z , (B.2)

where ω is the angular frequency of the rf-field. Note that this unitary transformation
is time dependent. As a result, the transformed Hamiltonian from the original form is
given by:

Ĥ ′ = i~
dÛ

dt
Û † + ÛĤÛ †. (B.3)

Evaluating the first part gives:

i~
dÛ

dt
Û † = −~ωF̂z, (B.4)

where we have expanded Û in power series:

Û = eiωtF̂z =
∞∑
n=0

in(ωtF̂z)n
n! , (B.5)

Û =
∞∑
n=0

(−1)n(ωtF̂z)2n

(2n)! + i
∞∑
n=0

(−1)n(ωtF̂z)2n+1

(2n+ 1)! . (B.6)

175



B.1. RF-dressed Spin Hamiltonian 176

We note the following:

F̂ 2n+1
z = F̂z, (B.7)
F̂ 0
z = I, (B.8)

F̂ 2n
z =


1 0 0
0 0 0
0 0 1

 . (B.9)

From the relation above, we can simplify the unitary transformation. The first term
reads

∞∑
n=0

(−1)n(ωtF̂z)2n

(2n)! = I− (ωt)2

2! F̂ 2
z + (ωt)4

4! F̂ 4
z − ..., (B.10)

∞∑
n=0

(−1)n(ωtF̂z)2n

(2n)! =


cos(ωt) 0 0

0 1 0
0 0 cos(ωt)

 , (B.11)

with the second term taking the form

∞∑
n=0

(−1)n(ωtF̂z)(2n+1)

((2n+ 1))! = ωtF̂z −
(ωt)3

3! F̂ 3
z + ..., (B.12)

∞∑
n=0

(−1)n(ωtF̂z)(2n+1)

((2n+ 1))! =


sin(ωt) 0 0

0 0 0
0 0 − sin(ωt)

 . (B.13)

Then, combining the two we obtain:

Û =


cos(ωt) 0 0

0 1 0
0 0 cos(ωt)

+ i


sin(ωt) 0 0

0 0 0
0 0 − sin(ωt)

 , (B.14)

which simplifies to

Û =


eiωt 0 0
0 1 0
0 0 e−iωt

 . (B.15)

From which we obtain the previously stated result when we evaluate the first term of
the Hamiltonian transformation:

i~
dÛ

dt
Û † = −~ωF̂z. (B.16)

Now we perform a unitary transformation on the second term:

ÛĤÛ † = eiωtF̂zµBgF (BdcF̂z +Brf F̂x)e−iωtF̂z , (B.17)
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where the rf-field is given by:

Brf(t) = Brf

2 (eiωt + e−iωt). (B.18)

We separate the two terms in the Hamiltonian and deal with them individually. The
first term with the static field in the z-direction gives:

eiωtF̂zµBgFBdcF̂ze
−iωtF̂z = µBgFBdcF̂z, (B.19)

which has no effect as there are no time dependent terms and also the fact that it is
in the same reference frame. The RF term is more involved:

eiωtF̂zµBgFBrf(t)F̂xe−iωtF̂z =

~µBgFBrf

2
√

2


0 −i(e2iωt + 1) 0

i(1 + e−2iωt) 0 −i(e2iωt + 1)
0 i(1 + e−2iωt) 0

 . (B.20)

We now apply the Rotating Wave Approximation to remove the fast rotating terms in
the equation above. After simplification this gives:

eiωtF̂zµBgFBrf(t)F̂xe−iωtF̂z ≈ 1
2µBgFBrf F̂x. (B.21)

Combining all of these terms yields the new Hamiltonian transformed in the rotating
frame:

Ĥ ′ = i~
dÛ

dt
Û † + ÛĤÛ † = µBgF

(
Bdc −

~ω
µBgF

)
F̂z + 1

2µBgFBrfF̂x. (B.22)

B.2 General case using the Baker-Hausdorff Lemma

The result derived for 〈Ŝ ′z(t)〉 was obtained in the Schrödinger picture where the
operators are stationary and the states are evolving in time. It is more general to work
in the Heisenberg picture where the states are stationary in time and the operators
are evolving:

〈Ŝz(t)〉 = a2 〈ψz(0)| F̂ 2
y (t)− F̂ 2

z (t) |ψz(0)〉 , (B.23)

with
F̂i(t) = Û †(θ)Û †(ωt)F̂i(0)Û(ωt)Û(θ), (B.24)

Û †(θ)Û †(ωt)F̂y(0)Û(ωt)Û(θ), (B.25)

where

Û(θ) = eiθF̂y , (B.26)
Û(ωt) = eiωtF̂z . (B.27)
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Using the Baker–Hausdorff Lemma

eÂB̂e−Â = B̂ + [Â, B̂] + 1
2! [Â, [Â, B̂]] + ..., (B.28)

Expanding this using the Lemma gives:

Û †(ωt)F̂y(0)Û(ωt) = F̂y − iωt[F̂z, F̂y] + 1
2! [−iωtF̂z, [−iωtF̂z, F̂y]] + ..., (B.29)

where the commutators read:

[F̂z, F̂y] = −iF̂x, (B.30)
[F̂y, F̂z] = iF̂x, (B.31)

we apply this first to the F̂y operator Evaluating the terms from the Baker–Hausdorff
power series for the first 4 terms gives for ωt:

− iωt[F̂z, F̂y] = −ωtF̂x, (B.32)
− iωt[F̂z, [−iωtF̂z, F̂y]] = −(ωt)2F̂y, (B.33)
− iωt[F̂z, [−iωtF̂z, [−iωtF̂z, F̂y]]] = (ωt)3F̂x, (B.34)
− iωt[F̂z, [−iωtF̂z, [−iωtF̂z, [−iωtF̂z, F̂y]]]] = (ωt)4F̂y, (B.35)

where we have missed additional iωt terms in the commutator brackets. Combining
these terms gives us the following result for the unitary transformation

Û †(ωt)F̂yÛ(ωt) = F̂y cos(ωt)− F̂x sin(ωt). (B.36)

Now we have to apply the Lemma again to evaluate the transformation for the
operator Û(θ). First, we observe that the first term in the equation above containing
F̂y commutes with Û(θ) since it also contains F̂y. As a result, we only need to
transform the term containing the F̂x operator:

Û †(θ)F̂xÛ(θ) = F̂x − iθ[F̂y, F̂x] + 1
2! [−iθF̂y, [−iθF̂y, F̂x]] + ..., (B.37)

where the commutation relations read:

[F̂y, F̂x] = −iF̂z, (B.38)
[F̂y, F̂z] = iF̂x. (B.39)

Evaluating the first 4 terms:

− iθ[F̂y, F̂x] = −θF̂z, (B.40)
− iθ[F̂y, [−iθF̂y, F̂x]] = −θ2F̂x, (B.41)
− iθ[F̂y, [−iθF̂y, [−iθF̂y, F̂x]]] = θ3F̂z, (B.42)
− iθ[F̂y, [−iθF̂y, [−iθF̂y, [−iθF̂y, F̂x]]]] = θ4F̂x. (B.43)
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Recognising the cos and sin power series we arrive at:

Û †(θ)F̂xÛ(θ) = F̂x cos θ − F̂z sin θ. (B.44)

Hence, the full transformation reads:

F̂y(t) = Û †(θ)Û †(ωt)F̂y(0)Û(ωt)Û(θ) = F̂y cos(ωt) + F̂x sin(ωt) cos θ− F̂z sin(ωt) sin θ.
(B.45)

Equivalently, for the F̂z operator we have:

Û †(θ)Û †(ωt)F̂z(0)Û(ωt)Û(θ). (B.46)

First, we note that the operator Û(ωt) commutes with F̂z hence, the first unitary
transformations has no effect. Hence, using the Baker–Hausdorff Lemma we get:

Û †(θ)F̂z(0)Û(θ) = F̂z − iθ[F̂y, F̂z] + 1
2! [−iθF̂y, [−iθF̂y, F̂z]] + ... . (B.47)

The first 4 power series terms for θ:

− iθ[F̂y, F̂z] = θF̂x, (B.48)
− iθ[F̂y, [−iθF̂y, F̂z]] = −θ2F̂z, (B.49)
− iθ[F̂y, [−iθF̂y, [−iθF̂y, F̂z]]] = −θ3F̂x, (B.50)
− iθ[F̂y, [−iθF̂y, [−iθF̂y, [−iθF̂y, F̂z]]]] = θ4F̂z. (B.51)

Combining this gives:

F̂z(t) = Û †(θ)Û †(ωt)F̂z(0)Û(ωt)Û(θ) = F̂z cos θ + F̂x sin θ. (B.52)

If the differential measurement is done in the F̂ 2
y −F̂ 2

x frame, then the DC component of
the signal vanishes. To compute this, first we need to find the unitary transformation
of

F̂x(t) = Û †(θ)Û †(ωt)F̂x(0)Û(ωt)Û(θ). (B.53)
First, we compute the inner transformation by applying the Baker-Hausdorff Lemma.
The first 4 terms read

− iωt[F̂z, F̂x] = ωtF̂y, (B.54)
− iωt[F̂z, [−iωtF̂z, F̂x]] = −(ωt)2F̂x, (B.55)
− iωt[F̂z, [−iωtF̂z, [−iωtF̂z, F̂x]]] = −(ωt)3F̂y, (B.56)
− iωt[F̂z, [−iωtF̂z, [−iωtF̂z, [−iωtF̂z, F̂x]]]] = (ωt)4F̂x. (B.57)

Combining this and identifying the series terms:

Û †(ωt)F̂x(0)Û(ωt) = F̂x cos(ωt) + F̂y sin(ωt). (B.58)

Applying the second unitary transformation:

F̂x(t) = Û †(θ)
(
F̂x cos(ωt) + F̂y sin(ωt)

)
Û(θ), (B.59)
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where we note that the second term above commutes with Û(θ). Thus, we want to
compute:

F̂x(t) = Û †(θ)
(
F̂x cos(ωt)

)
Û(θ) + F̂y sin(ωt). (B.60)

Once again, applying the Baker-Hausdorff Lemma and computing the first 4 terms:

− iθ[F̂y, F̂x] = −θF̂z, (B.61)
− iθ[F̂y, [−iθF̂y, F̂x]] = −θ2F̂x, (B.62)
− iθ[F̂y, [−iθF̂y, [−iθF̂y, F̂x]]] = θ3F̂z, (B.63)
− iθ[F̂y, [−iθF̂y, [−iθF̂y, [−iθF̂y, F̂x]]]] = θ4F̂x, (B.64)

F̂x(t) =
(
F̂x cos θ − F̂z sin θ

)
cos(ωt) + F̂y sin(ωt). (B.65)

In summary, the full list of transformed operators gives

F̂x(t) = F̂x cos(θ) cos(ωt) + F̂y sin(ωt)− F̂z sin θ cos(ωt), (B.66)
F̂y(t) = −F̂x sin(ωt) cos θ + F̂y cos(ωt) + F̂z sin(ωt) sin θ, (B.67)
F̂z(t) = F̂x sin θ + F̂z cos θ, (B.68)

which we can express this as a rotation

R(ωt, θ) · F =


cos(θ) cos(ωt) sin(ωt) − sin θ cos(ωt)
− sin(ωt) cos θ cos(ωt) sin(ωt) sin θ

sin θ 0 cos θ

 ·

F̂x

F̂y

F̂z

 . (B.69)

B.3 Raising and lowering spin operators

We define the F̂x and F̂y in terms of the raising and lowering operators

F̂y = − i2
(
F̂+ − F̂−

)
, (B.70)

F̂x = 1
2
(
F̂+ + F̂−

)
, (B.71)

with the squares given by:

F̂ 2
y = −1

4
(
F̂ 2

+ + F̂ 2
− − F̂+F̂− − F̂−F̂+

)
, (B.72)

F̂ 2
x = 1

4
(
F̂ 2

+ + F̂ 2
− + F̂+F̂− + F̂−F̂+

)
, (B.73)

with

F̂−F̂+ = F2 − F 2
z − Fz, (B.74)

F̂+F̂− = F2 − F 2
z + Fz, (B.75)
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where we have set ~ = 1. Here, the operators perform the following operation on our
state |F, Fz〉:

F̂z |F, Fz〉 = Fz |F, Fz〉 , (B.76)

F̂2 |F, Fz〉 = F (F + 1) |F, Fz〉 , (B.77)

F̂± |F, Fz〉 =
√

(F ∓ Fz)(F ± Fz + 1) |F, Fz ± 1〉 . (B.78)

Before we evaluate the expectation values we notice the following things; the expec-
tation values of the anticommutators will be zero for our chosen |F, Fz〉 state. This
is because, for example for the expectation values involving 〈Fz, F | {F̂i, F̂z} |F, Fz〉,
where i = x, y the anticommutator will produce orthogonal states to |F, Fz〉 due to
the fact that we have F̂x,y operators which can be expressed as a sum of raising and
lowering operators making the new state orthogonal to |F, Fz〉. On the other hand, the
expectation values of anticommutators 〈Fz, F | {F̂x, F̂y} |F, Fz〉 will produce products
of the raising and lowering operators F̂ 2

± which again will produce orthogonal states.
In addition, the products of raising and lowering operators F̂±F̂∓ will cancel each
other out in the summation since they will have the opposite signs (this can be easily
demonstrated by computing the {F̂x, F̂y} anticommutator in terms of raising and
lowering operators which after simplification leaves only the F̂ 2

± operators in place with
the products F̂±F̂∓ cancelling each other in the sum. We now evaluate the expectation
values of F̂ 2

x , F̂ 2
y and F̂ 2

z :

〈Fz, F | F̂ 2
x |F, Fz〉 = 1

2
(
F (F + 1)− F 2

z

)
, (B.79)

〈Fz, F | F̂ 2
y |F, Fz〉 = 1

2
(
F (F + 1)− F 2

z

)
, (B.80)

〈Fz, F | F̂ 2
z |F, Fz〉 = F 2

z . (B.81)

B.4 Derivation of the diffusion coefficients for the
Voigt Effect

The Langevin equation of motion has a general solution of the form:

u(t) = u(0)e−γt + e−γt
∫ t

0
eγt
′Fi(t′)dt′. (B.82)

Thus, if we take our operator equations from the above, we obtain the following
general solution:

F̂i(t) = F̂i(0)e−Γit + e−Γit
∫ t

0
eΓit

′F̂(t′)dt′. (B.83)

We assume that the reservoir has no memory i.e. it has a Markov property which is
satisfied by the following relation:

〈F̂ i(t)F̂ j(t)〉 = kijδ(t− t′). (B.84)
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If we make an additional assumption that the macroscopic mean value of 〈F̂i(t)〉 to
be independent of time then we can write [33]

i
〈
F̂k(t)

〉
= i

〈
F̂k(t+ ∆t)

〉
=
〈[
F̂i(t+ ∆t), F̂j(t+ ∆t)

]〉
. (B.85)

Note that the expectation value done here is over quantum states and not time. Here
∆t is a small time step and the square brackets represent the commutator relations
which follow the standard angular momentum commutator relations[

F̂i(t), F̂j(t)
]

= εijkF̂k(t), (B.86)

where εijk is the Levi-Civita tensor. Expanding the commutator〈[
F̂i(t+ ∆t), F̂j(t+ ∆t)

]〉
=
〈
F̂i(t+ ∆t)F̂j(t+ ∆t)− F̂j(t+ ∆t)F̂i(t+ ∆t)

〉
.(B.87)

Taking the general solution of F̂i(t) and F̂i(t+ ∆t) to the commutator. First, we know
the general solution for F̂i(t), we now need to propagate F̂i(t+ ∆t) and derive its form

F̂i(t+ ∆t) = F̂i(0)e−Γi(t+∆t) +
∫ t+∆t

0
eΓi(t′−t−∆t)F̂ i(t′)dt′. (B.88)

Now we note the following∫ t+∆t

0
. . . dt′ =

∫ t

0
. . . dt′ +

∫ t+∆t

t
. . . dt′. (B.89)

Expanding F̂i(t+ ∆t)

F̂i(t+ ∆t) = F̂i(0)e−Γi(t+∆t) + e−Γi(t+∆t)
∫ t

0
eΓit

′F̂ i(t′)dt′

+ e−Γi(t+∆t)
∫ t+∆t

t
eΓit

′F̂ i(t′)dt′. (B.90)

Now if we take a factor of e−Γi∆t out of the equation above, we get

F̂i(t+ ∆t) = e−Γi∆t

F̂i(0)e−Γit + e−Γit
∫ t

0
eΓit

′F̂ i(t′)dt′︸ ︷︷ ︸
F̂i(t)

+e−Γit
∫ t+∆t

t
eΓit

′F̂ i(t′)dt′

 .
(B.91)

Hence
F̂i(t+ ∆t) = F̂i(t)e−Γi∆t + e−Γi(t+∆t)

∫ t+∆t

t
eΓit

′F̂ i(t′)dt′. (B.92)

Now that we know the form of the operator after a step ∆t we can work out what the
commutator looks like. After some algebra〈[

F̂i(t+ ∆t), F̂j(t+ ∆t)
]〉

=
〈[
F̂i(t), F̂j(t)

]〉
e−(Γi+Γj)∆t

+ e−(Γi+Γj)(t+∆t)
〈∫ t+∆t

t

∫ t+∆t

t
e(Γi+Γj)(t′+t′′)

[
F̂ i(t′), F̂ j(t′′)

]
dt′dt′′

〉
. (B.93)
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Note that we can move the brackets inside the integral because it is the expectation
value over the states. We know that the product of the Langevin operators satisfy the
following

〈F̂ i(t)F̂ j(t)〉 = kijδ(t− t′). (B.94)
Thus, after the integration and Taylor expansion for small ∆t we arrive at〈[

F̂i(t+ ∆t), F̂j(t+ ∆t)
]〉

= (1− (Γi + Γj)∆t)
〈[
F̂i(t), F̂j(t)

]〉
+ ∆t (kij − kji) .

(B.95)
The next quantity we want to calculate is the anti–commutator.〈{

F̂i(t+ ∆t), F̂j(t+ ∆t)
}〉
. (B.96)

After some algebra and cancelling some terms we get〈{
F̂i(t+ ∆t), F̂j(t+ ∆t)

}〉
=
〈{
F̂i(t), F̂j(t)

}〉
e−(Γi+Γj)∆t

+ e−(Γi+Γj)(t+∆t)
〈∫ t+∆t

t

∫ t+∆t

t
e(Γi+Γj)(t′+t′′)

{
F̂ i(t′), F̂ j(t′′)

}
dt′dt′′

〉
, (B.97)

where we have assumed that i 6= j the noise induced by a Langevin force in one
quadrature is not correlated in the other one. This is given by〈

F̂i(t)F̂ j(t)
〉

= 0 for i 6= j. (B.98)

In general for a polarised state, that is not a superposition e.g. |ψ〉 = |F = 2,mF = 2〉
the effect of the anticommutator

〈{
F̂i(t), F̂j(t)

}〉
= 0 on such a state would give zero.

However, experimentally, in our case, the states that we prepare are a set of equal
population of mixed states in |F = 2,mF = −2〉 and |F = 2,mF = 2〉, where it is not
the case 〈{

F̂i(t), F̂j(t)
}〉
6= 0. (B.99)

Again, applying the same recipe as before, after some algebra and setting ∆t to be
small we arrive at〈{

F̂i(t+ ∆t), F̂j(t+ ∆t)
}〉

= (1− (Γi + Γj)∆t)
〈{
F̂i(t), F̂j(t)

}〉
+ ∆t (kij + kji) .

(B.100)
The commutator and anticommutator relations will allow us to determine the off–
diagonal elements of the matrix k which contains the Langevin force dynamics. We
need to calculate the diagonal elements〈

F̂ 2
i (t)

〉
=
〈
F̂i(t+ ∆t)F̂i(t+ ∆t)

〉
. (B.101)

Substituting the expression for F̂i(t) into the above and multiplying out the terms
gives〈

F̂i(t+ ∆t)F̂i(t+ ∆t)
〉

= e−2Γi(t+∆t)

〈F̂ 2
i (t)

〉
+
∫ t+∆t

t
eΓit

′ 〈
F̂i(t)F̂i(t′)

〉
dt′

+
∫ t+∆t

t
eΓit

′ 〈F̂i(t′)F̂i(t)〉 dt′ + ∫ t+∆t

t

∫ t+∆t

t
eΓi(t′+t′′)

〈
F̂ i(t′)F̂ i(t′′)

〉
dt′dt′′

.
(B.102)
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The cross terms containing 〈F̂i(t)F̂ i(t′)〉 vanish because the operator and the Langevin
force are not correlated for different times other than t′ = t [58]. Thus, the above
reduces to〈

F̂i(t+ ∆t)F̂i(t+ ∆t)
〉

=

e−2Γi(t+∆t)

〈F̂ 2
i (t)

〉
+
∫ t+∆t

t

∫ t+∆t

t
eΓi(t′+t′′)

〈
F̂ i(t′)F̂ i(t′′)

〉
dt′dt′′

. (B.103)

We recognise as before that

〈F̂ i(t)F̂ j(t)〉 = kijδ(t− t′). (B.104)

Thus, for small ∆t we get〈
F̂i(t+ ∆t)F̂i(t+ ∆t)

〉
= (1− 2Γi∆t)

〈
F̂ 2
i (t)

〉
+ kii∆t. (B.105)

If we assume steady state conditions over a short time period ∆t then the operator
values do not vary much in time such that〈

F̂i(t+ ∆t)F̂i(t+ ∆t)
〉
≈
〈
F̂ 2
i (t)

〉
. (B.106)

Hence, after some rearrangement and algebra, we can write the diagonal elements as
follows

kii = 2Γi
〈
F̂ 2
i (t)

〉
for i = x, y, z. (B.107)

In the same way, after doing some algebra with commutator and anti-commutator
terms we get

kyz − kzy = i(Γy + Γx)
〈
F̂x(t)

〉
, (B.108)

kzx − kxz = i(Γz − Γx)
〈
F̂y(t)

〉
, (B.109)

kxy − kyx = i(Γx − Γy)
〈
F̂z(t)

〉
, (B.110)

kyz + kzy = (Γy + Γz)
〈{
F̂z(t), F̂y(t)

}〉
, (B.111)

kxy + kyx = (Γx + Γy)
〈{
F̂y(t), F̂x(t)

}〉
, (B.112)

kxz + kzx = (Γx + Γz)
〈{
F̂z(t), F̂x(t)

}〉
. (B.113)

Now combining the last 6 equations we can calculate the off diagonal elements of the
k matrix

kyz = (Γy + Γz)
〈
F̂z(t)F̂y(t)

〉
and kzy = (Γz + Γy)

〈
F̂y(t)F̂z(t)

〉
, (B.114)

kzx = (Γz + Γx)
〈
F̂z(t)F̂x(t)

〉
and kxz = (Γx + Γz)

〈
F̂x(t)F̂z(t)

〉
, (B.115)

kxy = (Γx + Γy)
〈
F̂x(t)F̂y(t)

〉
and kyx = (Γy + Γx)

〈
F̂y(t)F̂x(t)

〉
. (B.116)

Hence, the full Γ̃-matrix reads

Γ̃ =

kxx kxy kxz
kyx kyy kyz
kzx kzy kzz

 =

 2Γxσxx (Γx + Γy)σxy (Γx + Γz)σxz
(Γx + Γy)σyx 2Γyσyy (Γy + Γz)σyz
(Γx + Γz)σzx (Γz + Γy)σzy 2Γzσzz

 . (B.117)
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B.5 Coherent Dynamics of Spin-1 Particle in a
Static External Magnetic Field with RF dress-
ing: Floquet Analysis

We introduce additional weak transverse field to obtain a more complete picture of
the dynamics of the Hamiltonian, namely, the field is

#»

B = Bx
#»e x +

Brf
y

2
(
eiωt + e−iωt

)
#»e y +By

#»e y +Bz
#»e z. (B.118)

The atomic Hamiltonian then reads

Ĥ = µBgF F̂ ·
#»

B = µBgF
(
F̂xBx + F̂yBy(t) + F̂zBz

)
. (B.119)

Again, we transform the Hamiltonian into a rotated frame

H̃ = i~
dÛ

dt
Û † + ÛĤÛ †. (B.120)

The unitary transformation of the form

Û(t) = eiωtF̂z . (B.121)

Which gives

H̃ = µBgF (Bx cos(ωt) +By sin(ωt)) F̂x + µBgF

(
Bz −

~ω
µBgF

)
F̂z

+ µBgF

(1
2B

rf
y +By cos(ωt)−Bx sin(ωt)

)
F̂y. (B.122)

Which we can simplify to

H̃ = α(t)F̂x + β(t)F̂y + γF̂z. (B.123)

The coherent dynamics is then given by

∂tF̂i = − i
~
[
F̂i, Ĥ

]
, (B.124)

∂tF̂x∂tF̂y
∂tF̂z

 =

 0 −γ β(t)
γ 0 −α(t)
−β(t) α(t) 0

 ·
F̂x(t)F̂y(t)
F̂z(t)

 = M(t) ·

F̂x(t)F̂y(t)
F̂z(t)

 . (B.125)

Which can further be written as

∂tF̂ = M(t)F̂. (B.126)
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Note that M(t) = M(t+ p) where p is some constant which satisfies the periodicity of
M(t). In addition, we can take M(t) and decompose it into its spectral components

M(t) = M0 + εM (−1)e−iωt + εM (+1)eiωt, (B.127)

where ε is a small dimensionless parameter. The ε is justified here because it is
proportional to the transverse DC fields Bx and By which are by definition very small
perturbations relative to the static Bz field. The spectral expressions for M are given
by

M0 =

 0 −∆ δ
∆ 0 0
−δ 0 0

 , (B.128)

M (−1) =

 0 0 1
2(Bx +By)

0 0 1
2(By −Bx)

−1
2(Bx +By) 1

2(Bx −By) 0

 , (B.129)

M (+1) =

 0 0 1
2(By −Bx)

0 0 −1
2(Bx +By)

1
2(Bx −By) 1

2(Bx +By) 0

 , (B.130)

where

∆ =
(
Bz −

~ω
µBgF

)
, (B.131)

δ = 1
2B

rf
y . (B.132)

B.5.1 Floquet Expansion of the second order moment dy-
namics

The second order moment dynamics in the Liouville space reads

dX(t)
dt

=C(t)X(t)− 2Γp(t) [X(t)−Xin] + Λrel X0, (B.133)

where we can spectrally decompose the coherent dynamics and the pumping into its
harmonics, namely, we can write

C(t) =C(0) + C(1) eiωt + C(−1) e−iωt, (B.134)

and

Γp(t) = Γ(0)
p +Γ(1)

p eiωt + Γ(−1)
p e−iωt + Γ(2)

p e2iωt + Γ(−2)
p e−2iωt + · · · =

∑
n=0

Γ(n)
p einωt.

(B.135)

Using the spectral expansion of our second order moments

X(t) = X(0)(t)+X(1)(t) eiωt + X(−1)(t) e−iωt + X(2)(t)e2iωt + X(−2)(t) e−2iωt + · · · ,
(B.136)



B.6. Spin dynamics using the density matrix formalism 187

and substituting equations (B.134,B.135,B.136) into equation (B.133) and expanding
we get

dX(t)
dt

= dX(0)(t)
dt

+
[
dX(1)(t)

dt
+ iω

]
eiωt +

[
dX(−1)(t)

dt
− iω

]
e−iωt + · · · (B.137)

=[C0 + C1 eiωt + C−1 e−iωt][X(0)(t) + X(1)(t) eiωt + X(−1)(t) e−iωt + · · · ]
− [Γ(0)

p + Γ(1)
p eiωt + Γ(−1)

p e−iωt + · · · ][X(0)(t) + X(1)(t)eiωt + X(−1)(t)e−iωt + · · · ]
+ [Γ(0)

p + Γ(1)
p eiωt + Γ(−1)

p e−iωt + · · · ][X(0)
in,F (t) + X(1)

in,F (t)eiωt + X(−1)
in,F (t)e−iωt + · · ·

+ X(0)
F,in(t) + X(1)

F,in(t)eiωt + X(−1)
F,in (t)e−iωt + · · · ]

=(C0X(0)(t) + C1X(−1)(t) + C−1X(1)(t))−
∑
i

Γ(−i)
p X(i)(t)

+
∑
i

Γ(−i)
p [X(i)

in,F (t) + X(i)
F,in(t)]

+ [(C0X(1)(t) + C1X(0)(t) + C−1X(2)(t))−
∑
i

Γ(1−i)
p X(i)(t)

+
∑
i

Γ(1−i)
p [X(i)

in,F (t) + X(i)
F,in(t)]]eiωt

+ [(C0X(−1)(t) + C−1X(0)(t) + C1X(−2)(t))−
∑
i

Γ(−1−i)
p X(i)(t)

+
∑
i

Γ(−1−i)
p [X(i)

in,F (t) + X(i)
F,in(t)]]e−iωt + · · · ,

and with the identities given, the compactification in the Floquet space reduces the
above equation to

dXF (t)
dt

=[C̃− �] XF + �inXin + �relX0. (B.138)

B.6 Spin dynamics using the density matrix for-
malism

B.6.1 Spin matrices in the F=1 + F=2 manifold
We start with the spin matrix definition in the z-basis for F=1 and F=2 respectively

F̂z =


1 0 0
0 0 0
0 0 −1

 , (B.139)

F̂y = 1√
2


0 −i 0
i 0 −i
0 i 0

 , (B.140)
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F̂x = 1√
2


0 1 0
1 0 1
0 1 0

 . (B.141)

Equivalently, for F=2 we have

F̂z =



2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2


, (B.142)

F̂x =



0 1 0 0 0
1

√
3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0


, (B.143)

F̂y =



0 −i 0 0 0
i −i

√
3
2 0 0

0 i
√

3
2 0 −i

√
3
2 0

0 0 i
√

3
2 0 −i

0 0 0 i 0


. (B.144)

Combining them, defines the spin operators for the enlarged F=1+F=2 manifold

F̂Full
i =

[
F̂ F=1
i 0
0 F̂ F=2

i

]
, (B.145)

which gives the following for all three operators

F̂Full
z =



−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −2 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 2


, (B.146)
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F̂Full
y =



0 1
2i
√

2 0 0 0 0 0 0
−1

2i
√

2 0 1
2i
√

2 0 0 0 0 0
0 −1

2i
√

2 0 0 0 0 0 0
0 0 0 0 i 0 0 0
0 0 0 −i 0 i

√
3
2 0 0

0 0 0 0 −i
√

3
2 0 i

√
3
2 0

0 0 0 0 0 −i
√

3
2 0 i

0 0 0 0 0 0 −i 0


, (B.147)

F̂Full
x =



0 1
2

√
2 0 0 0 0 0 0

1
2

√
2 0 1

2

√
2 0 0 0 0 0

0 1
2

√
2 0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 1 0

√
3
2 0 0

0 0 0 0
√

3
2 0

√
3
2 0

0 0 0 0 0
√

3
2 0 1

0 0 0 0 0 0 1 0


. (B.148)

B.6.2 Wigner D-functions and Angular Momentum Surfaces
The probability surface is defined as

ρF (θ, φ) = 〈F,m | ρ̂ |F,m〉 =
∑
m,m′

(
D

(F )
m,F

)∗
(φ, θ, 0)ρ̂m,m′D(F )

m′,F (φ, θ, 0), (B.149)

where D(F )
m′,m(φ, θ, 0) are the Wigner D-functions which are given by

D
(F )
m′,m(φ, θ, 0) = e−iφm

′
d

(F )
m′,m(θ), (B.150)

and the general form of d(F )
m′,m(θ) is given by

d
(F )
m′,m(θ) =

∑
k

(−1)k−m+m′

√
(F +m)!(F −m)!(F +m′)!(F −m′)!

(F +m− k)!k!(F − k −m′)!(k −m+m′)!

× cos
(
θ

2

)2F−2k+m−m′

sin
(
θ

2

)2k−m+m′

. (B.151)

The form for the Wigner D-function D(F )
m,m(φ, θ, 0) is general, and we want to specify

it for our case such that we can calculate the matrix elements directly. In our case,
we need to write out the case for

(
D

(F )
m,F

)∗
(φ, θ, 0)ρ̂m,m′D(F )

m′,F (φ, θ, 0)

D
(F )
m′,m(φ, θ, 0) = e−iφm

′
d

(F )
m′,m(θ)→

(
D

(F )
m,F

)∗
(φ, θ, 0) = eiφm

′
d

(F )
m,F (θ), (B.152)
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where d(F )
m,F (θ) is given by

d
(F )
m,F (θ) =

∑
k

(−1)k−F+m

√
(2F )!(F +m)!(F −m)!

(2F − k)!k!(F − k −m)!(k − F +m)!

× cos
(
θ

2

)3F−2k−m

sin
(
θ

2

)2k−F+m

, (B.153)

and equivalently, for D(F )
m′,F (φ, θ, 0)

D
(F )
m′,m(φ, θ, 0) = e−iφm

′
d

(F )
m′,m(θ)→ D

(F )
m′,F (φ, θ, 0) = e−iφm

′
d

(F )
m′,F (θ), (B.154)

where d(F )
m′,F (θ) is given by

d
(F )
m′,F (θ) =

∑
k

(−1)k−F+m′

√
(2F )!(F +m′)!(F −m′)!

(2F − k)!k!(F − k −m′)!(k − F +m′)!

× cos
(
θ

2

)3F−2k−m′

sin
(
θ

2

)2k−F+m′

. (B.155)

The code used to calculate the relations is given below.

Listing B.1: SageMath Code calculating 〈F,m | ρ̂ |F,m〉
def wigner D (F, beta ) :

Wigner matrix D = matrix (SR, 2∗F+1, 2∗F+1)

k max = 10
m1 = range(−F,F+1, 1)
m2 = m1

for i in range (2∗F+1) :
for j in range (2∗F+1) :

for k in range ( k max ) :

a = (F + m1[ i ] − k )
b = (F − m2[ j ] − k )
c = ( k − m1[ i ] + m2[ j ] )
d = (F + m1[ i ] )
e = (F − m1[ i ] )
f = (F + m2[ j ] )
g = (F − m2[ j ] )

l o g i c g a t e = ( a >= 0) ∗ (b >= 0) ∗ ( c >= 0) ∗ (d >= 0) ∗
( e >= 0) ∗ ( f >= 0) ∗ ( g >= 0)

i f l o g i c g a t e == 1 :
Wigner matrix D [ i , j ] += (−1) ∗∗( k − m1[ i ] + m2[ j ] ) ∗

s q r t ( f a c t o r i a l (d ) ∗ f a c t o r i a l ( e ) ∗ f a c t o r i a l ( f ) ∗
f a c t o r i a l ( g ) ) /( f a c t o r i a l ( a ) ∗ f a c t o r i a l ( k ) ∗
f a c t o r i a l (b) ∗ f a c t o r i a l ( c ) ) \
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∗ cos ( beta /2) ∗∗(2∗F−2∗k+m1[ i ] − m2[ j ] ) ∗ s i n ( beta
/2) ∗∗(2∗k−m1[ i ] + m2[ j ] )

else :
a2 = 1

return Wigner matrix D

which is just a simple summation over m,m′ → i, j indices in the ρF (θ, φ) expression.
For F = 2 manifold the matrix d(F )

m′,m(θ) reads

d
(2)
m′,m(θ) =



c4
θ/2 −2c3

θ/2sθ/2
√

6c2
θ/2s

2
θ/2 −2cθ/2s3

θ/2 s4
θ/2

2c3
θ/2sθ/2 4c4

θ/2 − 3c2
θ/2 (

√
6cθ/2 − 2

√
6c3
θ/2)sθ/2 −4c4

θ/2 + 3c2
θ/2 −2c3

θ/2sθ/2√
6c2
θ/2s

2
θ/2 (2

√
6c3
θ/2 −

√
6cθ/2)sθ/2 6c4

θ/2 − 6c2
θ/2 + 1 (

√
6cθ/2 − 2

√
6c3
θ/2)sθ/2

√
6c2
θ/2s

2
θ/2

2cθ/2s3
θ/2 3s2

θ/2 − 4s4
θ/2 (2

√
6c3
θ/2 −

√
6cθ/2)sθ/2 4c4

θ/2 − 3c2
θ/2 −2c3

θ/2sθ/2
0 2s3

θ/2cθ/2
√

6c2
θ/2s

2
θ/2 2c3

θ/2sθ/2 c4
θ/2

.

(B.156)

B.6.3 Polarisation moment decomposition
For the F = 2 manifold, the general density matrix is given by

ρ =


ρ11 ρ12 ρ13 ρ14 ρ15
ρ21 ρ22 ρ23 ρ24 ρ25
ρ31 ρ32 ρ33 ρ34 ρ35
ρ41 ρ42 ρ43 ρ44 ρ45
ρ51 ρ52 ρ53 ρ54 ρ55

 . (B.157)

The code given below calculates polarisation moments given by the following relation

ρκq =
∑
m,m′

(−1)F−m′ 〈F,m F,−m′ |κq〉 ρm′,m, (B.158)

where ρm,m′ is the density operator element and the 〈F m′ F,−m |κq〉 are the corre-
sponding Clebsch-Gordan coefficients which we express and calculate using Wigner-3j
symbols.

Listing B.2: SageMath Code calculating polarisation moments, ρκq
F=2
m1 ar = range(−F,F+1, 1)
m2 ar = range(−F,F+1, 1)
k = [ 0 , 1 , 2 , 3 , 4 ]

rho kq = matrix (SR, len ( k ) ,2∗ len ( k )−1)

r h o s t a t e = matrix ( [ [ 1 / 2 , 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 , 1 / 2 ] ] )

for i in range ( len ( k ) ) :
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q = range(−k [ i ] , k [ i ]+1 ,1)

for j in range ( len ( q ) ) :
for n in range (2∗F+1) :

for l in range (2∗F+1) :

j 1 = F
m1 = m1 ar [ l ]
j 2 = F
m2 = −m2 ar [ n ]
j 3 = k [ i ]
m3 = q [ j ]

rho kq [ i , j ] += (−1) ∗∗(F−m2) ∗ c l ebsch gordan ( j1 , j2 , j3 ,m1,
m2,m3) ∗ r h o s t a t e [ n , l ]

rho kq

This yields the following

κ = 0, q = 0

ρ0
0 =
√

5
5 (ρ11 + ρ22 + ρ33 + ρ44 + ρ55), (B.159)

κ = 1, q = −1

ρ1
−1 =

√
3
10(ρ32 + ρ43) + 1

5(ρ21 + ρ54), (B.160)

κ = 1, q = 0

ρ1
0 =

√
2
5(ρ55 − ρ11) + 1√

10
(ρ44 − ρ22), (B.161)

κ = 1, q = +1

ρ1
+1 = −

√
3
10(ρ23 + ρ34)− 1

5(ρ12 + ρ45), (B.162)

κ = 2, q = −2

ρ2
−2 =

√
2
7(ρ31 + ρ42 + ρ53), (B.163)

κ = 2, q = −1

ρ2
−1 = 1√

14
(ρ43 − ρ32)−

√
3
7ρ21, (B.164)

κ = 2, q = 0
ρ2

0 = 1√
14

(2ρ11 + 2ρ55 − ρ22 − 2ρ33 − ρ44), (B.165)

κ = 2, q = +1
ρ2

+1 = 3
7(ρ12 − ρ45) + 1√

14
(ρ23 − ρ34), (B.166)

κ = 2, q = +2

ρ2
+2 =

√
2
7(ρ13 + ρ24 + ρ35), (B.167)
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κ = 3, q = −3
ρ3
−3 = 1

2(ρ41 + ρ52), (B.168)

κ = 3, q = −2
ρ3
−2 = 1

2(ρ53 − ρ31), (B.169)

κ = 3, q = −1

ρ3
−1 =

√
3
10(ρ21 + ρ54)− 1√

5
(ρ32 − ρ43), (B.170)

κ = 3, q = 0

ρ3
0 =

√
1
10(ρ55 − ρ11) +

√
2
5(ρ22 − ρ44), (B.171)

κ = 3, q = +1

ρ3
+1 = −

√
3
10(ρ21 + ρ54) + 1√

5
(ρ32 − ρ43), (B.172)

κ = 3, q = +2
ρ3

+2 = 1
2(ρ35 − ρ13), (B.173)

κ = 3, q = +3
ρ3

+3 = −1
2(ρ14 + ρ25), (B.174)

κ = 4, q = −4
ρ4
−4 = ρ51, (B.175)

κ = 4, q = −3
ρ4
−3 = 1√

2
(ρ52 − ρ41), (B.176)

κ = 4, q = −2

ρ4
−2 =

√
3
14(ρ31 + ρ53) + 2√

7
ρ42, (B.177)

κ = 4, q = −1

ρ4
−1 =

√
1
14(ρ54 − ρ21) +

√
3
7(ρ32 − ρ43), (B.178)

κ = 4, q = 0
ρ4

0 = 1√
70

(ρ11 − 4ρ22 + 6ρ33 − 4ρ44 + ρ55), (B.179)

κ = 4, q = +1

ρ4
+1 =

√
1
14(ρ12 − ρ45) +

√
3
7(ρ34 − ρ23), (B.180)

κ = 4, q = +2

ρ4
+2 =

√
3
14(ρ13 + ρ35)− 2√

7
ρ24, (B.181)
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κ = 4, q = +3
ρ4

+3 = 1√
2

(ρ14 − ρ25), (B.182)

κ = 4, q = +4
ρ4

+4 = ρ15. (B.183)
Using the polarisation moments with the corresponding spherical harmonics, we can
write

ρF (θ, φ) =
√

4π
2F + 1

2F∑
κ=0

κ∑
q=−κ

〈F F κ 0 |F F 〉 ρκqYκq(θ, φ), (B.184)

which we compute using the code below

Listing B.3: SageMath Code calculating angular momentum probability surface using,
ρκq and spherical harmonics Yκq(θ, φ)
k = [ 0 , 1 , 2 , 3 , 4 ]

rho FF = 0

for i in range ( len ( k ) ) :

q = range(−k [ i ] , k [ i ]+1 ,1)

for j in range ( len ( q ) ) :

j 1 = F
m1 = F
j2 = k [ i ]
m2 = 0
j3 = F
m3 = F

rho FF += rho kq [ i , j ] ∗ ( sphe r i ca l ha rmon i c ( k [ i ] , q [ j ] , theta , phi
) ) . conjugate ( ) ∗ c l ebsch gordan ( j1 , j2 , j3 ,m1,m2,m3)

rho FF = ( rho FF∗ s q r t ( (4∗ pi /(2∗F+1) ) ) ) . f u l l s i m p l i f y ( )

B.6.4 Method 1: Clebsch-Gordan Coefficients for the MW-
field states and MW-field operators

We start by expressing |F,mF 〉 in the product basis

|F,mF 〉 =
∑
mS

∑
mI

〈S,mS, I,mI |F,mF 〉 |S,mS〉 |I,mI〉 , (B.185)

where 〈S,mS, I,mI |F,mF 〉 are the Clebsch-Gordan coefficients. We use the Wigner-
3j symbols to calculate the Clebsch Gordan coefficients. In the general case, the
Clebsch-Gordan coefficients can be related to the Wigner-3j symbols by the following
relation

Cj
m1,m2 = 〈j1j2m1m2 | j1j2jm〉 = (−1)−j1+j2−m(2j + 1)

(
j1 j2 j
m1 m2 −m

)
, (B.186)
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where the angular momenta satisfy the triangular inequalities

|j1 − j2| ≤ j ≤ j1 + j2, (B.187)

and j1 + j2 + J ∈ Z. Now, converting the generalised expression given by to our
case gives the following expression for the Clebsch-Gordan coefficients in terms of the
Wigner-3j symbols

CF
mI ,mS

= 〈I, S,mI ,mS |F,mF 〉 = (−1)−I+S−mF (2F + 1)
(
I S F
mI mS −mF

)
.

(B.188)
We use SageMath, a Python based environment to calculate the Clebsch-Gordan
coefficients using the clebsch gordan(J, I, F, mJ, mI, mF) function. We proceed
to write out the states in the new basis.

F = 1, |F,mF 〉 = |S,mS〉 |I,mI〉

|F = 1,mF = −1〉 =− 1
2

∣∣∣∣12 ,−1
2

〉 ∣∣∣∣32 ,−1
2

〉
+
√

3
2

∣∣∣∣12 , 1
2

〉 ∣∣∣∣32 ,−3
2

〉
, (B.189)

|F = 1,mF = 0〉 = 1√
2

∣∣∣∣12 , 1
2

〉 ∣∣∣∣32 ,−1
2

〉
− 1√

2

∣∣∣∣12 ,−1
2

〉 ∣∣∣∣32 , 1
2

〉
, (B.190)

|F = 1,mF = +1〉 =−
√

3
2

∣∣∣∣12 ,−1
2

〉 ∣∣∣∣32 , 3
2

〉
+ 1

2

∣∣∣∣12 , 1
2

〉 ∣∣∣∣32 , 1
2

〉
, (B.191)

F = 2, |F,mF 〉 = |S,mS〉 |I,mI〉

|F = 2,mF = −2〉 =
∣∣∣∣12 ,−1

2

〉 ∣∣∣∣32 ,−3
2

〉
, (B.192)

|F = 2,mF = −1〉 =1
2

∣∣∣∣12 , 1
2

〉 ∣∣∣∣32 ,−3
2

〉
+
√

3
2

∣∣∣∣12 ,−1
2

〉 ∣∣∣∣32 ,−1
2

〉
, (B.193)

|F = 2,mF = 0〉 = 1√
2

∣∣∣∣12 , 1
2

〉 ∣∣∣∣32 ,−1
2

〉
+ 1√

2

∣∣∣∣12 ,−1
2

〉 ∣∣∣∣32 , 1
2

〉
, (B.194)

|F = 2,mF = +1〉 =
√

3
2

∣∣∣∣12 , 1
2

〉 ∣∣∣∣32 , 1
2

〉
+ 1

2

∣∣∣∣12 ,−1
2

〉 ∣∣∣∣32 , 3
2

〉
, (B.195)

|F = 2,mF = +2〉 =
∣∣∣∣12 , 1

2

〉 ∣∣∣∣32 , 3
2

〉
. (B.196)

Now to derive the microwave transition operators we have three possibilities, where
the transition F = 1→ F = 2 changes the magnetic quantum number of the hyperfine
Zeeman states by 0, or ±1 which correspond to π, and σ± transitions. The operators
governing these properties take the initial state and transform it into the final state
times so eigenvalue that normalises the state. These can be computed heuristically.
For linearly polarised microwave radiation, the possible transitions between the states
are

|F = 1,mF = −1〉 → |F = 2,mF = −1〉 , (B.197)
|F = 1,mF = 0〉 → |F = 2,mF = 0〉 , (B.198)
|F = 1,mF = +1〉 → |F = 2,mF = +1〉 . (B.199)
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This allows us to write a matrix expression for the π-transitions

Ŝπ =



0 0 0 0 S15 0 0 0
0 0 0 0 0 S26 0 0
0 0 0 0 0 0 S37 0
0 0 0 0 0 0 0 0

S51 0 0 0 0 0 0 0
0 S62 0 0 0 0 0 0
0 0 S73 0 0 0 0 0
0 0 0 0 0 0 0 0


, (B.200)

where the indices correspond to indices of the density operator transitions. Now we
compute the matrix elements for these states

Ŝπ |S,mS〉 = mF |S,mS〉 , (B.201)

S15 =
〈
F = 2,mF = −1

∣∣∣ Ŝπ ∣∣∣F = 1,mF = −1
〉

=

=
(

1
2

〈1
2 ,

1
2

∣∣∣∣ 〈3
2 ,−

3
2

∣∣∣∣+
√

3
2

〈1
2 ,−

1
2

∣∣∣∣ 〈3
2 ,−

1
2

∣∣∣∣
) ∣∣∣Ŝπ∣∣∣(

−1
2

∣∣∣∣12 ,−1
2

〉 ∣∣∣∣32 ,−1
2

〉
+
√

3
2

∣∣∣∣12 , 1
2

〉 ∣∣∣∣32 ,−3
2

〉)
=
√

3
4 , (B.202)

S26 =
〈
F = 2,mF = 0

∣∣∣ Ŝπ ∣∣∣F = 1,mF = 0
〉

= 1
2 , (B.203)

S37 =
〈
F = 2,mF = +1

∣∣∣ Ŝπ ∣∣∣F = 1,mF = +1
〉

=
√

3
4 , (B.204)

the same result is obtained for the conjugate elements. Hence, the full matrix takes
the form

Ŝπ =



0 0 0 0
√

3
4 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0
√

3
4 0

0 0 0 0 0 0 0 0√
3

4 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0
0 0

√
3

4 0 0 0 0 0
0 0 0 0 0 0 0 0


. (B.205)

For Ŝσ+ the operation is defined by a raising operator of the form

Ŝ± |S,mS〉 =
√

(S ∓mS)(S ±mS + 1) |S,mS ± 1〉 , (B.206)
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S16 =
〈
F = 2,mF = 0

∣∣∣ Ŝσ+

∣∣∣F = 1,mF = −1
〉

= −
√

2
4 , (B.207)

S27 =
〈
F = 2,mF = +1

∣∣∣ Ŝσ+

∣∣∣F = 1,mF = 0
〉

= −
√

6
4 , (B.208)

S38 =
〈
F = 2,mF = +2

∣∣∣ Ŝσ+

∣∣∣F = 1,mF = +1
〉

= −
√

3
2 , (B.209)

S41 =
〈
F = 1,mF = −1

∣∣∣ Ŝσ+

∣∣∣F = 2,mF = −2
〉

=
√

3
2 , (B.210)

S52 =
〈
F = 1,mF = 0

∣∣∣ Ŝσ+

∣∣∣F = 2,mF = −1
〉

=
√

6
4 , (B.211)

S63 =
〈
F = 1,mF = +1

∣∣∣ Ŝσ+

∣∣∣F = 2,mF = 0
〉

=
√

2
4 , (B.212)

Ŝσ+ =



0 0 0 0 0 −
√

2
4 0 0

0 0 0 0 0 0 −
√

6
4 0

0 0 0 0 0 0 0 −
√

3
2√

3
2 0 0 0 0 0 0 0
0

√
6

4 0 0 0 0 0 0
0 0

√
2

4 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (B.213)

For Ŝσ− we have

S14 =
〈
F = 2,mF = −2

∣∣∣ Ŝσ− ∣∣∣F = 1,mF = −1
〉

=
√

3
2 , (B.214)

S25 =
〈
F = 2,mF = −1

∣∣∣ Ŝσ− ∣∣∣F = 1,mF = 0
〉

=
√

6
4 , (B.215)

S36 =
〈
F = 2,mF = 0

∣∣∣ Ŝσ− ∣∣∣F = 1,mF = +1
〉

=
√

2
4 , (B.216)

S61 =
〈
F = 1,mF = −1

∣∣∣ Ŝσ− ∣∣∣F = 2,mF = 0
〉

= −
√

2
4 , (B.217)

S72 =
〈
F = 1,mF = 0

∣∣∣ Ŝσ− ∣∣∣F = 2,mF = +1
〉

= −
√

6
4 , (B.218)

S83 =
〈
F = 1,mF = +1

∣∣∣ Ŝσ− ∣∣∣F = 2,mF = +2
〉

= −
√

3
2 , (B.219)
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Ŝσ− =



0 0 0
√

3
2 0 0 0 0

0 0 0 0
√

6
4 0 0 0

0 0 0 0 0
√

2
4 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−
√

2
4 0 0 0 0 0 0 0
0 −

√
6

4 0 0 0 0 0 0
0 0 −

√
3

2 0 0 0 0 0


. (B.220)

B.6.5 Method 2: Magnetic Dipole Moment for MW-field op-
erators

For linearly polarised microwave radiation, the possible transitions between the states
are

|F = 1,mF = −1〉 → |F = 2,mF = −1〉 , (B.221)
|F = 1,mF = 0〉 → |F = 2,mF = 0〉 , (B.222)
|F = 1,mF = +1〉 → |F = 2,mF = +1〉 . (B.223)

This allows us to write a matrix expression for the π-transitions

Ŝπ =



0 0 0 0 S15 0 0 0
0 0 0 0 0 S26 0 0
0 0 0 0 0 0 S37 0
0 0 0 0 0 0 0 0

S51 0 0 0 0 0 0 0
0 S62 0 0 0 0 0 0
0 0 S73 0 0 0 0 0
0 0 0 0 0 0 0 0


, (B.224)

where the indices correspond to indices of the density operator transitions. Following
from a previous work1 we can compute the transition dipole moment elements by
writing

Sπ =
〈
F + 1,mF

∣∣∣ Ŝπ ∣∣∣F,mF

〉
=

= (−1)F+mF−1

√
2I(I + 1)

2I + 1

(
F + 1 1 F
−mF 0 mF

)
,

(B.225)
1https://arxiv.org/pdf/1904.12073.pdf
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where the matrix represents the Wigner-3j symbols. Computing the elements explicitly,
for example |F = 1,mF = −1〉 → |F = 2,mF = −1〉 gives the Sπ15 element

Sπ15 = Sπ51 = (−1)1+1−1

√
15
8

(
2 1 1
1 0 −1

)
=
√

3
4 , (B.226)

Sπ26 = Sπ62 = 1
2 , (B.227)

Sπ37 = Sπ73 =
√

3
4 . (B.228)

Hence the full matrix reads

Ŝπ =



0 0 0 0
√

3
4 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0
√

3
4 0

0 0 0 0 0 0 0 0√
3

4 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0
0 0

√
3

4 0 0 0 0 0
0 0 0 0 0 0 0 0


. (B.229)

For negative circularly polarised microwave radiation, the possible transitions between
the states are

|F = 1,mF = −1〉 → |F = 2,mF = −2〉 , (B.230)
|F = 1,mF = 0〉 → |F = 2,mF = −1〉 , (B.231)
|F = 1,mF = +1〉 → |F = 2,mF = 0〉 . (B.232)

The only non-zero matrix elements for the σ−-transitions are

Ŝσ− =



0 0 0 S14 0 0 0 0
0 0 0 0 S25 0 0 0
0 0 0 0 0 S36 0 0

S41 0 0 0 0 0 0 0
0 S52 0 0 0 0 0 0
0 0 S63 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (B.233)

We can compute the transition dipole moment elements by writing

Sσ
− =

〈
F + 1,mF − 1

∣∣∣ Ŝσ− ∣∣∣F,mF

〉
=

= −(−1)F+mF

√
4I(I + 1)

2I + 1

(
F + 1 1 F

−(mF − 1) −1 mF

)
, (B.234)
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Sσ
− =

〈
F,mF

∣∣∣ Ŝσ− ∣∣∣F + 1,mF − 1
〉

=

= (−1)F+mF

√
4I(I + 1)

2I + 1

(
F + 1 1 F

−(mF − 1) −1 mF

)
, (B.235)

where the matrix represents the Wigner-3j symbols. Computing the elements explicitly,
for example |F = 1,mF = −1〉 → |F = 2,mF = −2〉 gives the Sσ−14 element

Sσ
−

14 = −(−1)1+1

√
15
8

(
2 1 1
−2 −1 −1

)
=
√

3
4 , (B.236)

Sσ
−

25 =
√

6
4 , (B.237)

Sσ
−

36 =
√

2
4 , (B.238)

Sσ
−

61 = −
√

2
4 , (B.239)

Sσ
−

72 = −
√

6
4 , (B.240)

Sσ
−

83 = −
√

3
2 . (B.241)

The full matrix reads

Ŝσ− =



0 0 0
√

3
2 0 0 0 0

0 0 0 0
√

6
4 0 0 0

0 0 0 0 0
√

2
4 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−
√

2
4 0 0 0 0 0 0 0
0 −

√
6

4 0 0 0 0 0 0
0 0 −

√
3

2 0 0 0 0 0


. (B.242)

For σ+-transitions we have the following possibilities

|F = 1,mF = −1〉 → |F = 2,mF = 0〉 , (B.243)
|F = 1,mF = 0〉 → |F = 2,mF = +1〉 , (B.244)
|F = 1,mF = +1〉 → |F = 2,mF = +2〉 , (B.245)

with the magnetic dipole transition matrix given by

Ŝσ+ =



0 0 0 0 0 S16 0 0
0 0 0 0 0 0 S27 0
0 0 0 0 0 0 0 S38

S41 0 0 0 0 0 0 0
0 S52 0 0 0 0 0 0
0 0 S63 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (B.246)
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For σ+ radiation, the dipole moment is given by

Sσ
+ =

〈
F + 1,mF + 1

∣∣∣ Ŝσ+

∣∣∣F,mF

〉
=

= (−1)F−mF

√
4I(I + 1)

2I + 1

(
F + 1 1 F

−(mF + 1) 1 mF

)
, (B.247)

Sσ
+ =

〈
F,mF

∣∣∣ Ŝσ+

∣∣∣F + 1,mF + 1
〉

=

= −(−1)F−mF

√
4I(I + 1)

2I + 1

(
F + 1 1 F

−(mF + 1) 1 mF

)
. (B.248)

Computing the elements explicitly, for example |F = 1,mF = −1〉 → |F = 2,mF = 0〉
gives the Sσ+

16 element

Sσ
+

16 = Sσ
+

61 = −(−1)1−1

√
15
8

(
2 1 1
0 1 −1

)
= −
√

2
4 , (B.249)

Sσ
+

27 = −
√

6
4 , (B.250)

Sσ
+

38 = −
√

3
2 , (B.251)

Sσ
+

41 =
√

3
2 , (B.252)

Sσ
+

52 =
√

6
4 , (B.253)

Sσ
+

63 =
√

2
4 , (B.254)

(B.255)

Ŝσ+ =



0 0 0 0 0 −
√

2
4 0 0

0 0 0 0 0 0 −
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Appendix: Experimental Apparatus

C.1 Cat-Eye Laser design
The key working principle of the cat-eye laser design is that the wavelength tuning
is provided by a low-loss interference filter in contrast to commonly used diffraction
gratings in the Littrow ECDL configuration [70, 71, 73]. An interference filter is a
passive optical element which reflects and transmits light depending on the wave-
length through interference effects between the incident and reflected light at the thin
film boundary. Normally, in the grating ECDL design, the grating provides optical
feedback as well as the wavelength selection. This tends to result in the output beam
steering when the laser wavelength is scanned. The cat-eye laser design avoids this
by separating the optical feedback and wavelength selection through the use of two
separate optical elements - a partially reflective mirror - outcoupler and an interference
filter (see Fig. C.1). This gives the freedom in choosing the optical feedback elements
independently of the wavelength tuning, something that the grating based ECDL
designs can seldom offer. Another advantage of the cat-eye geometry is that it allows
for a linear cavity design for wavelength tuning and feedback which is mechanically
more robust than the typical Litrrow type ECDL laser geometry making it passively
more robust [73,76].

Our home made design closely follows the work done in [73–75]. First, our laser
diode (LD)1, is collimated using a high NA, short focal length, f = 3.1 mm lens
in an adjustable collimation package2. The collimation package is mounted inside
a small thermal mass cube which is temperature stabilised to ≈ 0.3 mK by four
Peltier elements3, (see Fig. C.3) for temperature stability. The collimated light is then

1EagleYard EYP-RWE-0810-03010-1300-SOT02-0000
2Thorlabs LTN330-B
3RS Stock No. 490-1272
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Figure C.1: a) Laser housing. b) Side cross-sectional view of the laser. P1 and P2
- laser head peltiers. LD - laser diode chip. L1 - laser diode collimation lens. P3
and P4 - laser bottom baseplate peltiers. IF - interference filter. L2 - collimation
lens which focuses on the cavity outcoupler, OC. PZT - piezo stack that moves the
partially reflective cavity mirror. OC - outcoupler, partially reflective cavity mirror
which provides optical feedback to LD. L3 - collimation lens. PP - prism pair for
beam shaping. c) Top down schematic drawing of the laser components.

incident upon the interference filter, IF4 at an angle θ. The wavelength tuning as a
function of the angle of incidence θ between the incoming light and the interference
filter is given by [72]

λ(θ) = λ0

√√√√1−
(

sin θ
neff

)2

, (C.1)

4Radiant Dyes Interference filter for 798 nm
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where λ0 is the wavelength at θ = 90◦ and neff ≈ 2 is the refractive index of the
interference filter. After the interference filter, a second lens5 is used to focus the
beam onto a planar outcoupler (OC)6 which provides the optical feedback of the laser.
The optical feedback is adjusted by mounting the laser diode into a cylinder which can
be rotated to adjust the angle normal to the outcoupler. The outcoupler is glued onto
a piezo-electrical ring (PZT)7. The loaded piezo of mass m with a loaded outcoupler
mass M will have a resonance frequency given by

fres = f0

√
m

m+ 3M ≈ 48 kHz, (C.2)

where f0 = 1/2π
√
k/m ≈ 55 kHz with k = 720 N/µm and m = 6 g for NAC2124-

H06, M = 0.5 g for OC. This is the piezo locking bandwidth limit. After the
outcoupler, the light is re-collimated with another lens L38. We use an additional
anamorphic prism pair9 after the last lens L3 to correct for the ellipticity of the
output beam. The cavity laser baseplate is stabilised independently from the LD
head using TEC coolers10. This has a large thermal mass and further increases the
long term stability to thermal drifts. The temperature sensing is done using small
time constant NTCs11. To ensure better thermal contact between the peltiers and the
contact surfaces we add self-adhering thermally conductive graphite pads. To reduce
outgassing, where gluing is required, two component vacuum compatible glue is used12.

The lasing threshold optimisation is done in a two stage process. First, without
any optical feedback, the laser is collimated using the collimator L1. Once the output
is collimated, a focussing lens L2 is used to focus on the outcoupler OC and the optical
feedback is monitored on the output of the laser. In this case, the interference filter,
IF, is not present during this process. The laser head is adjusted by rotating it in
order to optimise for the beam alignment relative to the outcoupler - this additionally
optimises the optical feedback. Once the feedback is optimised, then a focus-walk
method is employed to fine adjust it. In this case, L1 and L2 are adjusted sequentially
and iteratively to improve the feedback - this tunes the mode matching condition of
the reflected beam from the outcoupler. After the optical feedback is optimised, the
interference filter is inserted to adjust the wavelength. The procedure involves setting
the laser at an operational current producing sufficient power for the experiments. A
wavemeter after an optical isolator is used to monitor the wavelength. The temperature
of the laser head is set in the range of 18− 22 C◦ with the cavity temperature set close
to the temperature of the lab. The interference filter is then rotated incrementally
until we get close to the desired wavelength and then locked in by two fixing screws.

5Thorlabs A280TM-B
6Laseroptik R= 15% 780 nm/0◦ (R±2%) with AR 780 nm/0◦ on D = 10 mm, t = 3 mm
7Noliac NAC2124-H06, 6 mm height, 6.6 µm stroke, 920 nF capacitance
8Thorlabs A220TM-B
9Thorlabs PS871-B

10RS Stock No. 765-0028
11Digi-Key 495-75198-ND
12Torr Seal Low Vapor Pressure Epoxy
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Figure C.2: a) Cavity and beam profiler setup to test and optimise the Cat-Eye laser
performance. Here the beam profiler is Thorlabs BC106N-VIS/M and the cavity
is Toptica FPI 100. b) Laser cavity scan in free running mode of the laser. Single
longitudinal cavity modes are seen. c) Laser beam profile in different running modes.
LEFT: No optical feedback, free running. RIGHT: Optimised beam profile with
optical feedback at 200 mA.
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Figure C.3: a) Cat-eye laser head temperature stability over time. b) Histogram show-
ing the binned temperature readings indicating an approximate Gaussian distribution.
The inset image shows the laser head of the body that is temperature stabilised. c)
Temperature trace of the laser cavity baseplate. d) Histogram showing the binned
temperature data indicating a bimodal distribution. The inset shows the baseplate
body which the temperature controller stabilises.

Fine adjustments of the wavelength are further done using temperature and current
of the laser. We use a Fabry-Perot cavity to confirm that the laser is running single
mode, see Fig. C.2. The temperature control of the laser is done using a commercial
temperature controller13. A key feature of this particular temperature controller is
that it has a self-tuning PID function which allows us to avoid the use of heuristic
PID tuning methods. Our current controllers are home made and are based on the
Hall-Libbrecht-Durfee design [77, 78]. The key feature of this current driver is that
the current setpoint is done digitally using a micro-controller and a high resolution
DAC which improves current stability and removes long term temperature induced
current drifts typical of current drivers which have analog setpoint architectures. To
further improve signal stability and reduce EMI noise, our current driver board is
designed on a commercially milled 4-layer PCB (instead of the standard 2-layer layout)
where each layer plane is used exclusively for signals, ground, positive and negative
supply connections. Having 4 separate layers avoids breaking up the ground plane,

13Meerstetter Engineering TEC-1091
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Figure C.4: Laser power as a function of current. The gradient in the linear region is
the laser efficiency curve which is characterised as the gradient of the power over the
current.

which prevents the formation of current loops which produce noise, especially if the
divided planes have different temperatures due to the proximity of different electronic
elements. Moreover, having separate ground, supply and signal planes enables better
routing reducing additional cross-talk [79].

Over a one year period of continuous operation the only adjustments for optimal
operation were small laser current adjustments (typically ±5 mA). No mechanical
(interference filter movement) or temperature adjustments were needed. The warm up
time to stability was measured to be typically < 10 mins before locking. The only
significant drawback of the current design is the long cavity length which reduces the
free spectral range of the laser. This can be trivially circumvented with an improved
filter - cavity design.
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