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Abstract 

The current study reviews the recent development in the direct conversion of methane into 

syngas, methanol, light olefins, and aromatic compounds. For syngas production, nickel-

based catalysts are considered as a good choice. Methane conversion (84%) is achieved 

with nearly no coke formation when the 7% Ni-1%Au/Al2O3 catalyst is used in the steam 

reforming of methane (SRM), whereas for dry reforming of methane (DRM), a methane 

conversion of 17.9% and CO2 conversion of 23.1% are found for 10%Ni/ZrOxMnOx/SiO2 

operated at 500oC. The progress of direct conversion of methane to methanol is also 

summarized with an insight into its selectivity and/or conversion, which shows that in 

liquid-phase heterogeneous systems, high selectivity (>80%) can be achieved at 50oC, but 

the conversion is low. The latest development of nonoxidative coupling of methane 

(NOCM) and oxidative coupling of methane (OCM) for the production of olefins is also 

reviewed. The Mn2O3–TiO2–Na2WO4/SiO2 catalyst is reported to show the high C2 yield 

mailto:tao.wu@nottingham.edu.cn


2 

 

(22%) and a high selectivity toward C2 (62%) during the OCM at 650oC. For NOCM, 98% 

selectivity of ethane can be achieved when a tantalum hydride catalyst supported on silica 

is used. In addition, the Mo-based catalysts are the most suitable for the preparation of 

aromatic compounds from methane. 

Keywords: Methane; catalytic conversion, low temperature, catalysis, direct-methane-to-

methanol 

1. Introduction 

Methane is the main component of natural gas with a typical volumetric fraction of about 

70-90% 1, 2. To date, a significant amount of work has been conducted to convert methane 

into useful chemicals, for instance, syngas, methanol, light olefins, aromatic compounds, 

etc. Syngas is made of H2 and CO, which plays an important role in chemical industry 

because it is the feedstock for the manufacture of a wide range of chemicals, such as 

ammonia, acetic acid, MTBE, methanol, olefins, gasoline, phosgene, oxo-alcohols and 

synthetic liquid fuels 3. Although it can be generated using raw materials such as coal, 

biomass, petroleum coke and natural gas, its production using natural gas as the feedstock 

is the most cost-effective option 4. However, due to the highly stable bonds between the C 

atom and the four H atoms, the steam reforming of methane has to be conducted at high 

temperatures and high steam to carbon ratios (S/C) 5-7, while the dry reforming of methane 

(DRM) still faces technical problems such as severe coke formation 8-10. Therefore, the 

conversion of methane into syngas at low temperatures is still full of challenges 5, 11. 

Methane can also be used as a feedstock for the synthesis of methanol, a type of bulk 

chemicals 10. Currently, the indirect synthesis of methanol using methane is employed by 

industries, which requires the conversion of methane firstly into syngas. However, the 

production of clean syngas requires 60 to 70% of the capital investment of a methanol 

manufacture unit 12. This makes the indirect methane-based production of methanol 

production an energy-intensive and cost-ineffective option. Therefore, direct conversion of 

methane to methanol (DMTM) through the oxidation of methane is highly desirable due to 
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its better process economics and greater environmental benefits as compared with indirect 

methane-based methanol production. However, this route is of significant challenges, such 

as low selectivity and low conversion efficiency 13. 

Other value-added products, such as olefin and aromatic compounds, are of great interests 

and can be produced using methane as the feedstock. Currently, there are two options for 

the direct conversion of methane into olefins, i.e., oxidative coupling of methane and non-

oxidative coupling of methane 14. Recently, the production of methane-based aromatics via 

the non-oxidative coupling route has received growing attention 15, 16.  

In this article, the low temperature conversion of methane into syngas is reviewed with a 

focus on the catalysts that had been developed for the steam reforming of methane (SRM) 

and the dry reforming of methane (DRM) together with the measures that had been 

proposed for the mitigation of coke formation during these two processes. In addition, the 

latest development of methane-based direct and indirect synthesis of methanol was 

reviewed. Lastly, the challenges and opportunities in the conversion of methane into olefins 

via OCM and NOCM at low temperatures are reviewed. The progress of the development 

of catalysts for this purpose is summarized with a special focus on the Mo-based catalysts 

for aromatic compounds production at low temperatures.  

2. Methane to Syngas 

To date, there are seven reforming technologies for the generation of syngas using methane 

as the feedstock, i.e., steam reforming of methane, dry reforming of methane, auto-thermal 

reforming (ATR), partial oxidation (POX), reforming with a membrane, combined 

reforming of methane (CRM) and tri-reforming of methane (TRM). In this article, the most 

widely studied two reforming processes under relatively low temperature, i.e., SRM and 

DRM, are reviewed.  
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2.1 Steam Reforming of Methane 

The SRM process is the commonly adopted route for H2 production 11, which involves two 

major reactions: 

CH4 + H2O ⇌ CO + 3H2 ΔHo
298= 206.1 kJ/mol  (R1) 

CO + H2O ⇌ CO2 + H2 ΔHo
298= -41.2 kJ/mol  (R2) 

Due to the high endothermicity of R1, the industrial SRM process is conducted at high 

temperatures (800-1100 ºC) in the presence of metal-based catalysts 6, 7, 17, which makes 

the process energy-intensive. The other problems associated with the high operating 

temperature include metal sintering, coke formation due to thermal cracking of methane, 

etc., which subsequently deteriorate activity of the catalysts.  

Operating under low-temperature conditions offers many advantages including lower 

energy consumption. However, it also leads to a low CH4 conversion owing to the 

thermodynamic limitations. The thermodynamic equilibrium study on the influence of S/C 

ratio and pressure in the temperature range of 400 to 700 ºC showed that both CH4 

conversion and H2 yield increase when S/C ratio increases 18. When the temperature was 

550 ºC, the CH4 conversion and H2 content reached 60% and 70%, respectively when the 

S/C ratio was kept at 3. The CH4 conversion reached 97.1% at 700 ºC and S/C=3. Besides, 

it is found that high pressure suppressed steam reforming of methane 18. All these findings 

were validated by Roh et al. 19, which showed that SRM at low temperatures is 

thermodynamically feasible. However, these calculations did not consider carbon 

formation and how it affects the SRM at low temperatures. To promote H2 yield, studies 

were carried out on the use of a Pd membrane to separate H2 from the product stream. It is 

demonstrated that the equilibrium conversion of methane of such an innovative design was 

improved, which demonstrates a practical approach to address the low methane conversion 

efficiency for the low-temperature SRM2.  
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Normally, catalysts play critical roles in determining methane conversion, hydrogen 

production and coke formation. Catalysts that are of high methane conversion, good 

stability and high coke resistivity under relatively low temperatures (<550 ºC) are highly 

desirable 11.  

Generally, the Group VIII metals can be used to catalyse most of the SRM reactions 20. 

Among these metals, nickel is usually regarded as the most suitable active component to 

be used in SRM catalyst, while the other metals have their specific problems. For instance, 

iron can be quickly oxidized; catalytic performance of cobalt cannot be sustained when 

steam exists in the gas phase; noble metals (Pt, Rh, Ir, Ru and Pd) are too expensive for 

commercial applications 20. However, the formation of coke is the major technical issue 

when the Ni-based catalyst is employed in SRM, which leads to the deactivation of catalyst 

and subsequently a short catalyst lifespan 11. In some research, noble metals (such as Ag 

and Au) were added to mitigate coke formation 21, 22. Materials such as ɑ-alumina, 

magnesia, calcium aluminate and magnesium aluminate are commonly used as the support 

of catalysts 8, 23-28.  

2.1.1 Nickel-Based Catalyst 

The comparison between theoretical and experimental data using a modified Ni-based 

catalyst (Ni/Ce-ZrO2/θ-Al2O3) is shown in Figure 1 (S/C=2.98, GHSV=5010 ml CH4/(gcat 

h), pressure = 1 atm) 18. Such a Ni-based catalyst is of high catalytic performance at low 

temperatures. It is reported that the increase in reaction temperature resulted in the 

formation of more CO but a lower H2/CO ratio. It agrees with the fact that water gas shift 

reaction (WGSR) is exothermic and is therefore unfavored at high temperatures. 

Furthermore, it is found that the catalyst exhibited an excellent stability for 200 h, during 

which the CH4 conversion, CO selectivity and H2 yield had very little change.  
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Figure 1 Impact of temperature on catalytic performance. Dash line: thermodynamic 

data. Solid line: experimental data. Copyright 2002, Journal of Power Sources 18. 

Generally, nickel is less active compared with noble metals and is more easily to deactivate 

due to the formation of coke 29. However, promoters and support also play important roles 

and affect catalytic performance of the catalyst at low temperatures. It was reported that 

for low-temperature SRM, some supports improve the stability of the catalyst and 

indirectly enhance the activity of the catalysts via the improved metal dispersion on the 

support 6, 18, 30. Table 1 summarizes Ni-based catalysts for SRM at low temperatures 

(<550oC). However, it should be noted that the conversion values of Reference 30 30 cannot 

be compared to the others because the methane conversions were calculated based on 

methane concentration variation, whereas the others listed in the table were based on 

methane flows.  

To date, the influence of support (such as ZrO2, SiO2, Al2O3, ZnAl2O4 and MgAl2O4) on 

the catalytic performance of Ni-based catalysts has been investigated by many researchers 
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6, 31. Table 1 shows the methane conversion of Ni/ZrO2, Ni/Al2O3 and Ni/SiO2 at 0.5 h on 

the stream 6. The catalytic performance of the 20 wt.% Ni/SiO2 was the highest among 

these three catalysts initially but decreased gradually and completely deactivated at 4 h on 

the stream. The mass spectrometer detection for hydrogen showed it decreased after 2 h on 

the stream and almost became zero at 4 h on the stream. The deactivation of Ni/SiO2 was 

ascribed to the phenomenon that nickel particles were gradually oxidized by steam. The 

initial activity of Ni/Al2O3 was observed to decrease, which was induced probably by the 

formation of spinel NiAl2O4, which reduces the active sites on the surface. The Ni/ZrO2 

was found to be stable in the test with little coke formed on the catalyst. At 4h on the stream, 

the methane conversion over the Ni/ZrO2 increased to 25.5%, which was the highest value 

among the three supports studied. Furthermore, the investigation on the influence of 

different nickel loadings demonstrated that the catalytic performance increased with nickel 

content. The 5 wt.% of nickel on ZrO2 support showed a higher activity than the 20 wt.% 

of nickel on Al2O3, which also demonstrated the impacts of support on the catalytic 

performance. Besides, the order of catalytic performance at steady state was found to be 

Ni/MgAl2O4 ≈ Ni/ZnAl2O4> Ni/Al2O3 > Ni/SiO2 
31. The Ni/SiO2 lost its activity after about 

10 mins on the stream, while Ni/ZnAl2O4 showed the least coke formation (1.5 wt.%) after 

2 h on the stream.  

To mitigate the formation of coke on the Ni-based catalysts, other species such as Ce 32-34, 

La 30, 35, Mn 36, 37, Co 36, 38 have been used as promoters. Generally, CeO2 is a good option 

since it possesses required properties, such as good mechanical resistance, excellent 

thermal stability and sufficient oxygen storage capacity. The high oxygen storage capacity 

is vital in the consumption of coke once it is formed at the active sites 34. It is found that 

the presence of more oxygen vacant sites in CeO2 promotes the mobility of atomic oxygen 

from steam and/or CO2, which facilitates the oxidation of coke deposited on the surface of 

the catalyst 32-34. It was reported 30 that the addition of 6 wt.% ceria to the Ni/Al2O3 catalyst 

contributed to a 10 wt.% increase in CH4 conversion at 550 ºC, while no significant change 

in conversion was observed when 6 wt.% of La2O3 were added ( as shown in Table 1). 

Graphitic carbon formed after Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts had been 48 h on the 
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stream, which subsequently resulted in partial deactivation of the catalysts. In addition, 

porous amorphous carbon was formed on the surface of the Ni/CeO2-Al2O3 but activity of 

the catalyst was not influenced after 48 h on the stream.  

Table 1 SRM at low temperatures over nickel-based catalysts at atmospheric pressure 

in the fixed bed continuous flow reactor 

Catalyst 
T 

(ºC) 

S/C 

ratio 

WHSV 

(mL/gcath) 

Methane conversion/ 

conversion rate 

Coke 

formation 

(%) 

Ref. 

20%Ni/Al2O3 500 2.00 15000 15.0 % N/A 6 

20%Ni/SiO2 500 2.00 15000 21.8 % N/A 6 

20%Ni/ZrO2 500 2.00 15000 14.1 % N/A 6 

8.4%Ni/SiO2 500 2.00 18000 0.02 mol g Ni
-1h-1 0.5 31 

8%Ni/ -Al2O3 500 2.00 18000 1.10 mol g Ni
-1h-1 0.1 31 

7%Ni/ZnAl2O4 500 2.00 18000 2.88 mol g Ni
-1h-1 1.5 31 

8.6%Ni/MgAl2O4 500 2.00 18000 0.69 mol g Ni
-1h-1 3.2 31 

7%Ni/Al2O3 550 4.00 3000 75.0 % 3.16 30 

7%Ni-6%CeO2/Al2O3 550 4.00 3000 82.0 % 13.81 30 

7%Ni-6%La2O3/Al2O3 550 4.00 3000 74.2 % 16.41 30 

10%Ni/Ce0.15Zr0.85O2 500 2.00 54000 10.0 % N/A 39 

12%Ni/Ce-ZrO2/θ-Al2O3 500 2.98 20000 45.0 % N/A 18 

In addition, apart from the promoters and the supports that influence the performance of 

Ni-based catalysts, the size of Ni clusters also significantly affects the coke resistance even 

at a temperature as high as 700 ºC 40. It is reported that smaller particle size leads to less 

severe of coke formation 41-45. Recently, experimental and theoretical studies of the effects 

of Ni cluster size (8.3 - 12 nm) on catalytic activity at low temperatures (500-575oC) 

showed that the activity improved with the decrease of particle size. It is concluded that 

reducing Ni particles (<6 nm) could be a promising method to improve SRM efficiency 46.  
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Although all the SRM catalysts were tested under different experimental conditions in 

terms of space velocity, S/C ratios, metal loading, it is generally the case that the use of 

ZrO2 and CeO2 as promotors improved the performance of Ni-based catalysts in the low-

temperature SRM through the mitigation of coke formation and the increase of the catalytic 

activity.  

2.1.2 Bimetallic Catalysts 

Although noble metals are expensive, there are still extensive studies being carried out 

owing to their high performance and good resistivity to coke formation. To date, many 

bimetallic catalysts that coupling nickel with noble metals have been developed, aiming at 

reducing the cost and improving the catalytic performance 11. 

The doping of Rh in Ni/ γ-Al2O3 was found to improve the catalytic activity by the 

enhanced dispersion of metal on the support and therefore raised the quantity of active sites 

on the surface 47. According to their research, at 525oC, the bimetallic catalyst with the 

addition of 0.2 wt.% of Rh reached nearly 26% increase in conversion than the primary 

catalyst (as shown in Table 2). The addition of Au to the Ni/MgAl2O4 catalyst was found 

preventing the formation of coke in the steam reforming of n-butane at 550 ºC 48. In this 

research, a superficial alloy was observed in the Ni-Au binary system, which blocks the 

high energy steps and the edge sites mitigated coke formation 48. It is also found that the 

incorporation of Au suppresses the coke formation on the catalyst, while the doping of Au 

in Ni/Al2O3 led to a 10% improvement and the significant mitigation of carbon formation 

as compared with the non-incorporated catalyst at 550 ºC 30. The doping of 0.01-1.0 wt.% 

of Pt on the 15% Ni/MgAl2O4 catalyst showed that a synergetic effect only occurred with 

a lower loading of Pt at 600 ºC and 1 bar 49. The optimum Pt loading level was reported as 

0.1 wt.%, which enhances catalytic performance and dispersion of metal. The higher Pt 

addition led to the agglomeration of the active metals, which subsequently result in the loss 

of the catalyst stability as well as activity.  
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Generally, most studies indicated that the reduced coke formation could be achieved by the 

interaction of the noble metals, such as Rh, Au and Pt, with Ni due to a higher barrier being 

created for Ni sintering 50. The better catalytic performance of noble metal doped Ni-based 

catalyst at low temperatures (<550 ºC) is attributed to the increased number of active sites 

and the improved metal dispersion on the surface 11. However, the high cost of noble metal 

can be compensated by the low loading level of these noble metals as promoters. It can be 

concluded that in order to apply this type of bimetallic catalyst in commercial scale, a trade-

off among the improved catalyst activity, reduced coke deposition and increased cost is 

necessary.  

Table 2 Bimetallic catalysts for methane to syngas reaction under ambient pressure 

in the fixed bed flow reactor 

Catalyst 

Reaction 

Temperature 

(ºC) 

WHSV 

(mL/gcath) 

S/C 

ratio 

CH4 

conversion 

(%) 

Coke 

formation 

(%) 

Ref. 

7% Ni/Al2O3 550 3000 2 75 3.16 30 

7% Ni-1% 

Au/Al2O3 

550 3000 2 84 0 30 

10.2% Ni/Al2O3 525 N/A 3 17.8 N/A 47 

10.2%Ni-0.05% 

Rh/Al2O3 

525 N/A 3 21.8 N/A 47 

10.2%Ni-0.2% 

Ru/Al2O3 

525 N/A 3 30.1 N/A 47 

8.8% Ni/MgAl2O4 550 3300000 1 9 121.1* 48 

8.8%Ni-

0.1%Au/MgAl2O4 
550 3300000 1 6.5 108.2* 48 

*: Cumulative amount of coke deposition after 500 min SRM. 
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2.2 Dry Reforming of Methane  

DRM uses CO2 as one of the reactants and is the route with significant potential in 

generating syngas using CO2, a greenhouse gas that is abundant and cheap, as a feedstock. 

This approach is therefore an environmentally friendly option and has attracted significant 

attention 51, 52. The process can be described by following reaction, 

CH4 + CO2 ⇌ 2CO + 2H2 ΔHo298= 248 kJ/mol      (R3) 

For DRM, the CO to H2 molar ratio is usually around 1. The gas product can be further 

applied in the F-T synthesis to produce long-chain hydrocarbons or oxygenate chemicals 

53, 54. Despite the obvious economic and environmental benefits, the DRM process is still 

not fully commercialized due to various challenges, which include the coke formation and 

the rapid sintering of the catalyst leading to the rapid deactivation of catalytic performance 

9, 55, 56.  

Generally, the DRM reaction is slightly more endothermic than SRM reaction and the coke 

formation is more easily to occur during the DRM than the SRM. Therefore, the DRM is 

often performed under at a temperature higher than >800 ºC 10, 57-60, and very little research 

on the DRM has been conducted at low temperatures (<550 ºC). However, the high-

temperature DRM not only has the drawback of high cost but also problems such as catalyst 

sintering and coke formation 61-65, it is therefore highly desirable to develop novel catalysts 

to enable the DRM process to occur at low temperature conditions.  

Thermodynamic modelling demonstrated that theoretically H2 could be produced at about 

100 ºC and CO at about 300 ºC by the low-temperature activation of CH4 and CO2
66, which 

requires highly efficient novel catalysts. To date, much research has been conducted to 

show the effects of noble metal-based catalysts, such as Pt 67, 68, Rh 69-71 and Ir 72, at low 

temperatures (around 450 ºC) owing to their better propensity in coke resistivity and 

catalytic performance. However, the commercialization of these precious metal-based 

catalysts is hindered by the high cost associated with these noble metals. Many researchers 

shifted their study to focus on nickel-based catalysts by choosing different support and 
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doping different promoters to enhance its catalytic performance 67, 73-76. Table 3 

summarizes the recently reported Ni-based catalysts at temperatures below 500 ºC. It can 

be seen that the lowest operating temperature was 400 ºC, but poorer CH4 and CO2 

conversions were achieved compared to those experiments carried out at high temperatures, 

under which both CH4 and CO2 conversion were greater than 80% 77.   

Table 3 Performance of Ni-based catalysts in the DRM under ambient pressure in the 

fixed bed flow reactor 

Catalysts GHSV 

h-1 

T (ºC) Conversion 

(%) 

Yield(%) H2/CO Ref. 

CH4 CO2 H2 CO 

1%Ni-SiO2 180,000 500 7 13 N/A N/A 0.4-

0.15 

73 

10%Ni/ZrOx 

MnOx/SiO2 

24,000 500 17.9 23.1 9.2 14.5 0.64 74 

10%Ni/ZrOx/ 

MnOx/SiO2 

24,000 400 2.2 4.9 1.4 2.3 0.56 74 

5%Ni-

CaO/La2O3-ZrO2 

5882 450 9.8 12.9 5.8 9.9 0.58 74, 75 

10%Ni-Zr/SiO2 24,000 400 2 2 0.8 1.2 0.67 76 

10%Ni-Zr/SiO2 24,000 450 6.5 9.1 0.2 0.3 0.61 76 

0.5Pt/8%Ni/Mg/C

e0.6Zr0.4O2  

68000 454 10 10 N/A N/A 0.23 67 

5%Ni/ƴ-Al2O3 18000 500 12 15 N/A N/A N/A 78 

11%Ni-

2.9%Sc/Al2O3  

N/A 450 10 12 N/A N/A N/A 79 

1.2%Ni/TiO2 N/A 450 3.2 5.9 N/A N/A N/A 80 

Al2O3 is the most extensively studied support for a DRM catalyst, which has been 

commercially used in a wide range of applications 81. It is demonstrated that Al2O3 support 

prepared via a novel templated synthesis method 82 presented a higher CH4 conversion due 

to the higher basicity and surface area than the commercial one. Although the DRM tests 

were conducted at 800 ºC, it can be concluded that the performance of a catalyst could be 

altered by adjusting properties of the support with a novel preparation method. 
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Many researchers have studied the interactions between nickel and other supports, such as 

MgO, TiO2 and SiO2, and showed that the active components interact with the support and 

influence metal dispersion, electronic effects and nickel particle size 80, 83, which 

subsequently affect in the catalytic performance of the catalysts. It is showed that there are 

strong interactions existing between Ni particles and the TiO2, which increased the electron 

density of the metal crystallites and efficiently activated the C-H bond in CH4 at 450oC 80. 

It is also suggested that a solid solution of NiO-MgO was formed in the Ni/MgO catalyst, 

the Ni-O bond directly enhanced the stability of Ni-Ni bonds because of the exceptional 

strength of the strong electron donor. Thus, the higher surface stability prevents nickel 

surface reconstruction, prohibiting carbon diffusion and reducing carbon formation. Their 

stability results showed that this catalyst could be stable up to 44 h on stream. On the 

contrary, the activity of Ni/MgO is the lowest among these three supports. When Ni/SiO2 

was used, some filamentous carbon was formed as a result of the weaker interaction 

between the metal and the support than the other two supports 80.  

Investigation of the impacts of morphological properties of La2O3-ZrO2 on the stability of 

catalysts showed that mesoporous Ni/La2O3-ZrO2 possessed the higher stability than 

microporous and macroporous structures because of confinement effect of the pores 84. 

Generally speaking, the addition of promoters (i.e. La, Ce and Ce0.75Zr0.25O2) 
83 can 

enhance the performance of the Ni-based catalysts by improving the reduction of nickel 

oxide and the basic site 85-87.  

The above studies indicated that the nickel-support interactions influence the activity of 

the catalyst in the DRM process. Generally, the strong interactions between the metal and 

the support can enhance catalytic activity and resistivity to coke formation. Besides, the 

mesoporous structure of the support generally leads to an enhancement in the catalyst 

stability at low-temperature DRM.     



14 

 

3. Direct Methane to Methanol  

Theoretically, the DMTM reaction is spontaneous at room temperature 88. Nonetheless, the 

stability of methanol is lower than the other oxidation products. Also, because of the 

stronger C-H bond in methane, its reactivity is lower than methanol (the dissociation 

energy of C-H bond is 440 KJ mol-1 for methane and 393 kJ mol-1 for methanol). Table 4 

shows how temperature affects the direct oxidation of methane to different products 88. The 

Gibbs free energy value shows that methanol production from methane is favoured at lower 

temperatures. However, more stable products such as CO and CO2 are easier to be produced, 

which results in the difficulty in achieving a high methanol selectivity in the one-step 

process 13. 

Table 4 Gibbs free energy of the oxidation of methane via different routes 88.  

Note: more negative value is energetically more favourable in reaction. 

Theoretically, the highest conversion that can be achieved at 25 ºC is near 33%, which 

corresponds to a maximum selectivity of around 5%, much lower than that of the 

conventional indirect process, which is ca. 70 to 75% 89.  

To date, worldwide researchers have developed catalyst-free, solid-catalysed and aqueous 

catalyzed oxidation processes for the direct methanol production over the past century. In 

this review, the focus is on the catalytic processes at relatively low temperatures, i.e., below 

550 ºC. There are numerous articles on transition metal oxides-based catalysts for the direct 

Reaction 
∆𝐆 values 

298K 650K 800K 1000K 

CH4 + 0.5O2 → CH3OH -111 -93 -86 -76 

CH4 + O2 → HCHO + H2O -288 -294 -295 -298 

CH4 + 1.5O2 → CO + 2H2O -544 -573 -582 -603 

CH4 + 2O2 → CO2 + 2H2O -801 -800 -799 -798 
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oxidation of methane. Among these, molybdenum, copper-zinc and iron compounds-based 

catalysts are among the ones being most extensively studied 10, 13. 

3.1 Molybdenum-based Catalysts  

One of the earliest and the most impressive reports about molybdenum-based catalyst in 

the DMTM application was published in 1971 by Dowden and Walker 90. A series of 

molybdenum catalysts with and without a support at 50 bar was investigated in a 

temperature range between 439 and 493 ºC. It is found that the most active catalyst was 

Fe2O3 (MoO3), resulting in the formation of 869 g methanol/(kg cat h) 90. The selectivity 

of methanol was 65%, whereas methane conversion was as low as 2.1%. However, it is 

also found that the methanol selectivity could be raised efficiently by adding steam to the 

feed gas 91.  

The study on the ZrO2 and La-Co-O supported MoO3 catalysts using oxygen as an oxidant 

at 400 and 420 ºC, respectively, showed that only a trace amount of methanol was found 

when MoO3/ZrO2 catalyst was used 92. Different amounts of MoO3 were tried on the La-

Co-O support and showed that the best catalytic performance was achieved when 7 wt.% 

MoO3/La-Co-O was used, which showed a methanol selectivity of 60% and a methane 

conversion of 11.2%. 

However, gaseous hydroxide species form when water exists in the reaction system 

because of the high volatility of molybdenum. Hence, it is difficult to apply this type of 

catalyst into commercial applications 93. Therefore, very limited studies on molybdenum 

catalyst for DMTM have been reported in recent years. 

3.2 Iron and Copper-based Catalyst 

In the late 20th century and early 21st century,  there is increasing attention being paid to 

study iron and copper-based catalysts, which is to replace molybdenum-based catalyst in 

the DMTM 1. This change was originated from the discovery of zeolites (e.g. mordenite 

and ZSM-5), stabilize binuclear iron 94, 95 as well as the methane monooxygenase (MMO) 
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enzymes that exist in methanotrophic bacteria. The catalytic activity of Fe/Cu-based 

catalysts for the DMTM is listed in Table 5.  

Table 5 Comparison of Fe/Cu-based catalysts in the partial oxidation of methane to 

methanol.  

Catalyst  Reaction 

temperature (ºC) 

Pressure 

(bar) 

CH4 

conversion (%) 

CH3OH 

selectivity (%) 

Ref. 

Fe-HZSM-5 630 1 11.22 16.51 96 

Fe-NaZSM-5 390 1 0.06 74.37 96 

Cu-ZSM-5 50 30.5 0.3 83 97 

Cu-Fe/ZSM-5 50 30.5 0.7 85 97 

Fe-MFIa 50 30 N/A 85 98 

Cu-MORb 400 7 N/A 97 99 

Cu-MORb 200 1 N/A 80c 82 

Cu-NU-1000 150 1 N/A 45-61c 100 

a: heterogeneous liquid phase system 

b: Cu-MOR: Mordenite structured copper-exchanged zeolites 

c: sum of methanol and dimethyl ether 

Normally, the DMTM route via gas-solid phase heterogeneous catalytic process requires a 

high temperature (>473 K) due to the strong chemical stability of methane, and CO2 is 

likely to be generated. The Fe-ZSM-5 together with Fe-NaZSM-5 was used for the 

conversion of methane at ambient pressure and at a temperature below 650 ºC. It is showed 

that the catalytic performance of these catalysts increased with the increase in iron loading 

level 96. However, the over oxidation to form CO2 was unavoidable, hence reducing the 

methanol selectivity. For instance, the highest methanol selectivity (74.37%) was obtained 

at 390 ºC by using Fe-NaZSM-5 with a Si/Fe ratio of 45, whereas the conversion is only 

0.06%. On the contrary, the higher conversion was achieved with Fe-HZSM-5 catalyst, 

while the corresponding methanol selectivity was lower than 16.51%.  
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In the liquid-phase homogeneous catalytic process, a high methane conversion together 

with a high methanol selectivity were achieved, but highly concentrated acids have to be 

employed 98. The liquid system with heterogeneous catalyst often used environmentally 

friendly oxidants, such as H2O2 and O2 
98. Study on a series of iron and copper-based 

catalysts in an aqueous system with hydrogen peroxide as the oxidizing agent under mild 

conditions (50-70 ºC, 30.5 bar) showed that a low-energy pathway for methane oxidation 

could be realized by the interaction between the catalyst and hydrogen peroxide, whereas 

hydrogen peroxide as a terminal oxidant inhibited over-oxidation to formic acid and CO2
97. 

The optimal methanol selectivity was found to be 96% with a conversion of 10% by 

adopting appropriate reaction conditions. The low methane conversion was believed to be 

associated with the low solubility of methane in the aqueous system 98. Most recently, 

research on an organic solvent sulfolane, a stable polar solvent, showed that the increase 

in the methane solubility in H2O2 aqueous system in the presence of the Fe-MFI zeolite 

catalyst resulted in the methane selectivity being raised to a maximum of 85% and led to a 

high methane conversion 98.  

It is also stated that there are two types of MMO present in bacteria, i.e., particulate MMO 

(pMMO) and soluble MMO (sMMO), which can transform methane selectively into 

methanol at ambient temperature 101. It is generally accepted that the diiron sites (Figure 2) 

in the sMMO enzyme are the active sites for the methane oxidation into methanol 102, 103. 

A dinuclear FeIV cluster is discovered in the intermediates of the reaction process, which 

was a bis-µ-oxo diamond core structure 104. Conversely, such precise evidence is still 

missing about the structure of and mechanism of pMMO. Most researchers have considered 

that its catalytic site is trinuclear copper cluster 105-107, which effectively catalyzes the 

oxygen insertion into the C-H bond at a high rate of 1 s-1 turnover frequency 108. 
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Figure 2 Proposed diiron center in sMMO 1. Copyright 2017, Angewandte Chemie 

International Edition. 

Subsequently, a number of biomimetic catalysts inspired by MMO enzymes emerged. 

Some tricopper cluster complexes by mimicking pMMO have also been developed and 

studied 105, which can effectively oxidate hydrocarbons (activate C-H bond) under ambient 

temperature and pressure. These researchers reported a tricopper complex [CuICuICuI(7-

N-Etppz)]1+ where (7-N-Etppz) refers to the ligand 3,3’-(1,4-diazepane-1,4- diyl)bis[1-(4-

ethylpiperazine-1-yl)propan-2-ol] to successfully convert methane to methanol in 

acetonitrile. They also pointed out that the spent catalyst was recovered by the addition of 

an appropriate amount of hydrogen peroxide after the oxygen atom was transferred to 

methane. Compared to a lot of the previous methane catalytic oxidation systems 109-111, the 

biomimetic tricopper complex takes the advantage of low temperature required.  

In addition, research has also been carried out on biomimic area and showed that the 

selective transformation of methane into methanol can be achieved on the single-site 

trinuclear copper-oxygen cluster in mordenite 82, in which the mordenite microporours 

structure stabilizes the trinuclear copper-oxo clusters 82.  

Although the solid-based catalysts have been widely investigated by many researchers, it 

is still challenging to simultaneously achieve high methanol selectivity and high methane 

conversion. For instance, the high selectivity of methanol (~74%) was achieved with a very 

low methane conversion 0.06%, while a higher conversion (~32%) corresponds to a poor 

methanol selectivity (~11%). It is concluded that the liquid-phase heterogeneous catalysts 
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system is promising for the low-temperature DMTM process. Besides, developing catalysts 

mimicking pMMO enzymes is an effective strategy to enhance methanol selectivity.   

4. Direct Conversion of Methane to Light Olefins 

Although the activation of methane at low temperatures faces various challenges, it is still 

necessary to develop processes that enable the yield of methane-derived value-added 

chemicals using methane as the feeds, for instance, hydrocarbon-based chemicals, via the 

direct conversion of methane 112. Generally, there are two major routes for the direct 

conversion of methane to light olefins, i.e., OCM and NOCM. 

4.1 oxidative coupling of methane 

The OCM is an exothermic reaction when the oxidant is added to overcome the 

thermodynamic restrictions and make the reaction exothermic. The general reaction is 

expressed as CH4 + ½ O2  1/2 C2H4 + H2O. ΔHo
298= -175 kJ/mol. Nevertheless, a high 

temperature is still required to activate the high bond energy of C-H in methane. Usually, 

a relatively high temperature (700 - 850 ºC) is necessary for the OCM, while no C2 

hydrocarbon can be detected below the temperature of 550-600 ºC 113. Apart from that, the 

separation of by-product should be carried out under low temperature (below 100 ºC). 

Therefore, the energy consumption of value-added C2 hydrocarbon collection should be 

considered and be reduced. In the whole process of producing C2, the catalysts become the 

main factor to influence methane conversion rate and C2 selectivity. Consensually, over 

30% of C2 yield could meet the industrial requirement and development. Table 6 

summarized various catalysts studied by many other researchers.  

Table 6 Catalytic performance for OCM  

Catalyst Temp. (℃) Pressure 
Space 

velocity 

XCH4 

(%) 

SC2 

(%) 

YC2 

(%) 
Ref. 

Active metal 
Supporting 

materials 
 Mpa mL/(g.h)     
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2%Mn- 

Na2WO4 
n-SiO2 

800 
0.1 N/A 28.5 73.3 18.5 114 

0.1 36000 36.8 64.9 23.0 115 

800 

(Chemical 

looping) 

0.1 N/A 18.0 89.0 17.0 116 

1%Mn-8%Na-

3.1%W 
SiO2 800 NA N/A 30.2 63.4 19.1 117 

Li- TbOx n-MgO 700 0.1 N/A 24.9 63.6 14.5 

118 Li- PrOy n-MgO 700 0.1 N/A 25.6 60.6 12.9 

Na- Sm2O3 n-MgO 700 0.1 N/A 25.5 57.8 13.7 

Na Cs/Mg/Cl 880 0.1 N/A 30.0 82.0 20.0 119 

Fe SiO2 1090 0.1 21400 48.1 20.0 9.0 120 

Pt CeO2 702 0.1 6000 14.4 74.6 N/A 121 

XCH4: Conversion of methane 

SC2: C2 selectivity  

YC2: C2 yield  

The study of the OCM into C2 hydrocarbon can be dated back to 1980s122, 123. Since then, 

extensive efforts have been made in this area, resulting in the development of a series of 

catalysts for the OCM, which include Mn-Na2WO4/SiO2, ABO3 type perovskite oxide, 

Li/MgO, and RexOy (Re: Rare earth). Among these catalysts, the Mn-Na2WO4/SiO2 

demonstrated a C2 yield of 18–25% under ambient reaction conditions and showed 

excellent stability for an extended period (>450 h) 114, while the Li/MgO showed a 

selectivity of C2 around 20% and a yield reached the highest at relatively high temperatures 

(780 ºC) 124. However, under a high-temperature condition, the active sites are unstable and 

can be damaged leading to the loss of lithium.  

Another series of promising catalysts for OCM is rare earth metal oxides. It is reported that 

the RexOy displayed a much-improved reaction performance at low-temperature region 

(<750 ºC) and with a C2 yield of around 15%. Lately, a number of RexOy catalysts (Re=Sm, 
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Tb, Pr and Ce) modified by adding Li, Na, Mg and/or Ca metals have been tried for the 

OCM 118. The doping of alkali and alkaline earth metal alters basicity property of the 

catalysts to influence the stability of the catalysts, the C2 selectivity and the catalytic 

activity. It was reported  that catalysts with more basic sites tend to become more selective 

towards C2 formation 119. It is also stated that Li-TbOx/n-MgO was superior to all the others 

in catalytic activity and C2 selectivity at temperatures above 600°C. Despite this, the low 

OCM performance of the Li-TbOx/n-MgO below 600°C can be attributed to the problems 

associated with the regeneration of active oxygen sites on the bare MgO under low 

temperature 118. In contrast, at lower temperatures, Ca-CeO2/n-MgO, Ca-Sm2O3/n-MgO, 

and the undoped Sm2O3/n-MgO catalysts obtained more C2 yields than the Li- and Na-

doped catalysts, because the activity sites of latter catalyst are not fully activated at low 

temperature 118.  

Most recently, it is found that MnTiO3 showed high activity at low-temperature OCM, 

which resulted in a methane conversion of 20% and a C2 selectivity of 70%125. As for the 

enhanced catalytic performance, it was found that during the OCM reaction, Mn2O3 and 

TiO2 were converted to MnTiO3 (achieved during the initial OCM reaction at 800°C), 

which subsequently led to an enhanced OCM performance (CH4 conversion is 22%, C2 

selectivity is 62%) at 650°C.126  

In summary, as a promising process for methane conversion, the OCM still faces the 

challenge of low selectivity (<50 %) toward value-added chemicals (ethane/ethylene), 

which leads to the reduced process economics and therefore hinders its industrial 

applications 14. Thus, there is a need for the development of novel catalysts/processes to 

achieve simultaneously high carbon selectivity and high conversion to yield C2 

hydrocarbons from methane in non-oxidative conditions.  

4.2 Nonoxidative coupling of methane  

Since the 1990s, numerous efforts have been made to produce hydrocarbons through the 

NOCM, the aim of which is to enhance carbon atom economy 127, 128. It has been elucidated 
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that hydrogen and C2H6 can be immediately yielded when CH4 was fed continuously to a 

6wt% Pt/SiO2 catalyst at 250°C 129. However, these two products disappeared when time-

on-stream exceeds 8 min, which is caused by the accumulation of surface carbonaceous 

residue. This shows that the activation temperature of methane in NOCM can be lower than 

the temperature commonly adopted at OCM processes (>700°C). It is also reported 130 that 

a selectivity of 98% ethane was achieved at temperatures below 500°C over tantalum 

hydride supported by silica although the methane conversion was lower than 0.5%. It is 

stated that 48% methane conversion over a Fe/SiO2 catalyst was achieved via the NOCM 

at 950°C leading to the production of ethylene, naphthalene and benzene with a selectivity 

of 53 %, 25% and 22%, respectively 131. Similar products over a Pt-Sn catalyst at 700°C 

were produced, whereas the methane conversion was lower than 0.3% 132. These 

demonstrate that a higher temperature favours a higher methane conversion during the 

NOCM. 

5. Direct Aromatization of Methane 

Direct aromatization of methane is direct, a non-oxidative pathway to produce higher 

hydrocarbons. It is considered as an endothermic reaction with a quite high reaction 

temperature (800-1000oC) required in most reports 139,140. This is an energy-intensive 

process and as far as our knowledge, the lowest temperature used in this reaction is around 

650oC. Here in this section, catalytic reactions performed under relatively low temperatures 

are reviewed.  

Thermodynamically, the conversion of methane into aromatics is more favourable than 

into olefins. The dehydroaromatization of methane (DAM) was firstly conducted in a fixed-

bed reactor and lead to the yield of benzene and H2 over a Mo/HZSM-5 zeolite supported 

catalyst 133, which outperformed some other catalysts in the selective formation of benzene 

under similar conditions. The main reason can be attributed to the framework of zeolite, 

whose pore and channel containing many active sites, and intrinsic properties of pores (size 

and shape) 134. It is a common approach to improve catalytic performance, selectivity and 

stability of the catalyst via modifying the structure of the zeolite supports and adjusting 
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metal species and acidity. Extensive studies 135 on the production of methane-derived 

aromatics showed that those novel catalysts demonstrated better performance and 

suppressed the excessive formation of coke during the reaction. Aiming at achieving high 

conversion and low coke formation, a few studies 127, 136-138 were carried out to demonstrate 

the effect of catalytic support, the nature of the transition metal on the support (Mo, Mn 

and W would be most active metal to achieve better results), and the introduction of the 

second metallic promoter (Pt remains exceedingly controversial), as shown in Table 7. It 

is evident that HZSM-5 is still considered as a potential support.  

Table 7 Catalyst performance for methane aromatization reaction 

Catalyst  
Temp. 

C 

Pressure 

(MPa) 

Space 

velocity 

(mL/(g.h)) 

Methane 

conversion 

(%) 

Aromatic 

conversion 

(%) 

Ref. 

3%Mo/HZSM-5  700 0.1 1600 5.9 91.3 139 

10%Mo/HZSM-

5 (MA) 
1500 0.1 973 11.8 87.1 140 

4% Mo-1% 

ZnHZSM-5  
750 0.1 15.8 7.4 99 141 

3%Mo/SiO2  700 0.1 1520 5.3 9.37 142 

2%Mo/MCM-22  700 0.1 1500 5.7 75.7 143 

Zn/HZSM-5 700 0.1 1500 1 79.1 141 

2%W/HZSM-5 750 0.1 1500 5.7 99 141 

4%Mn/HZSM-5 700 0.1 1600 2.1 91.5 144 

2%Ni/HZSM-5  700 0.1 1500 0.01 N/A 145 

1%Pt-

2%Mo/HZSM-5  
700 0.1 1400 6.4 82.2 139 

1%La-

2%Mo/HZSM-5  
650 0.1 1440 3.3 93.9 146 
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1%V-

2%Mo/HZSM-5  
650 0.1 1440 2.7 88.9 146 

1.2%Pt-

6%Mo/HZSM-5  
750 0.3 2700 7.2 93.3 147 

Recently, it is reported that the Mo/HZSM-5 catalyst, which is of a novel capsule structure, 

is superior to conventional solid catalysts, which showed significantly enhanced 

conversion, increased rate of formation for benzene, and mitigated formation of coke that 

is attributed to the hollow structure-accelerated mass-transfer rate 148. The ZSM-5 zeolite 

based on the template of activated carbon was synthesized via hydrothermal crystallization, 

and the catalysis system showed significantly improved benzene formation performance 

and stability. For the synthesis of meso-/microporous zeolite catalysts, the impregnation of 

Mo into multilamellar support material (i.e. MWW) was attempted and led to the formation 

of a Mo/lamellar MWW catalysts, which showed a greater conversion, the formation of 

more naphthalene, and the yield of less benzene and toluene, as compared with those of 

Mo-loaded microporous MWW 149. This can be attributed to the accessible active sites in 

the mesopores of MWW. 

Furthermore, the other metal promoters were also tested, for example, eight different metal 

species have been used as dopants to promote the performance of Mo/HZSM-5 through a 

co-impregnation approach 150. The results demonstrated that only the doping of Fe showed 

enhanced catalytic performance. In further investigations, a series of characterization and 

testing techniques were attempted to reveal the mechanism of the iron addition on the 

enhanced catalytic performance 151. It was speculated that the generation of carbon 

nanotubes inhibited the formation of coke on iron species, and therefore promoted the 

catalytic activity.  

In addition, a mechanistic study has also been conducted with several possible DAM 

mechanisms over a number of Mo-based zeolite catalysts 152, which indicated that the 

reaction pathways are very complicated and involves around 54 reactions.  
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6. Conclusions and Perspective 

This article reviews the latest research on the four routes for the direct conversion of 

methane to high-value chemicals at low-temperatures, typically below 550C. Although an 

enormous amount of effort has been made in this field, there are still many challenges, 

which also indicate opportunities for future research.  

The SRM and DRM are the two most widely studied syngas production process from 

methane. However, the coke formation on catalyst remains the biggest challenge, which 

leads to the deactivation of the catalyst. Nickel is considered the most suitable metal for 

both SRM and DRM catalysts but supports as well as promoters also affects its catalytic 

performance. ZrO2 and Al2O3 are found to be good support for nickel-based catalysts with 

good stability and high activity, whereas CeO2 is the good option as a promoter to increase 

catalytic activity and reduce coke formation. In addition, it is found that the smaller nickel 

cluster size, the stronger interactions between the metal and the support, and appropriate 

surface properties of the support facilitate better catalytic activity and enhance the 

resistivity to coke formation. Therefore, to develop catalysts with well-dispersed small 

metal particles, for example, metal organic framework-confined nanoclusters is a 

promising direction for future research in the methane-based syngas production. 

For the DMTM, the main challenge is either the low selectivity of methanol or the low 

conversion of methane. The liquid heterogeneous system using environmentally friendly 

oxidants (H2O2) is considered as the most promising area for research in which the C—H 

bond can be activated at low temperatures (50–70C). In addition, the catalyst mimicking 

the pMMO enzymes is a promising choice to enhance the selectivity of DMTM at low 

temperatures. 

 

For the OCM, the Na2WO4–Mn/SiO2 has shown the potential for industrial-scale use, 

which demonstrates a long-term stability, especially after some challenges are resolved, 
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such as the overoxidization under oxidative conditions resulting in the selectivity toward 

CO/CO2. The recently discovered MnTiO3 for lowtemperature OCM greatly stimulates the 

hope of further improvements in the OCM process. Generally, the NOCM can improve the 

selectivity of C2 production, but there is a need to study how methane conversion can be 

enhanced while C2 selectivity can be maintained high. 

Mo-based catalyst is of great potential in the direct aromatization of methane; however, the 

formation of coke and polyaromatics is still a challenge that requires further research. 

Moreover, the removal of hydrogen from the reaction system is found to be a promising 

strategy to lower the temperature for the efficient direct aromatization of methane. 
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