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/  eat, 1 thrive, therefore I  am 

Not muscl’d  steer, nor virile ram 

But growing pig in every sense;

In life, in limb, in soul... And hence 

With snuffling snout and grateful grunt, 

Forsaking all but fare in front 

And that which appetite must dictate 

I  clear the trough, my aim; to sate.
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Abstract

Problems caused by excessive phosphate output from the animal production sector 

were addressed by examining means of lowering phosphate excretion of growing pigs. 

A review of literature looked at the requirement, dietary allowance, and availability 

of phosphorus to growing pigs. Variation in estimated phosphorus requirements 

needed to be resolved before dietary allowances could be matched to requirements. 

It was recognised that phytate-phosphorus present naturally in cereals would be 

sufficient to meet the pig’s requirement for phosphorus if it could be hydrolysed prior 

to or during digestion. The use of Aspergillus niger phytase to improve phytate - 

phosphorus availability, and thereby lower faecal phosphate output, was explored.

A series of trials assessed the efficacy of phytase from Aspergillus niger (var ficuum) 

and looked at the phosphorus requirement of growing pigs. The first studied the 

effects of phytase on apparent ileal and total tract digestibility, and examined whether 

an alteration in fermentation induced by dietary inclusion of yeast (Saccharomyces 

cerevisiae) could influence phosphorus availability. Six gilts, cannulated at the 

terminal ileum, were used in a 3 x 3 latin square balance trial. A high-phytate barley 

based diet containing 4.7g phosphorus (2.3g present as phytate-phosphorus) was fed 

(1) as a control, (2) with 2.5g (1000 units) Aspergillus niger phytase/ kg or (3) with 

5g Saccharomyces Cerevisiae yeast/ kg. For each period, a 10-day acclimatization to 

the diet was followed by a 5-day total faeces and urine collection period, and 

thereafter by a 5-day ileal sampling period. Phytase addition resulted in an increased 

apparent ileal digestibility of phosphorus from 0.259 to 0.387 (p =  0.094, s.e.d. =  

0.054), an increased total tract digestibility from 0.0483 to 0.632( p =  0.074, s.e.d. 

=  0.070), and a 37% reduction in faecal phosphate output (p =  0.018). Any 

alteration in fermentation as a result of yeast addition did not influence phosphorus 

digestibility. It was concluded that the addition of 1000 phytase units/kg feed caused 

hydrolysis of phytate and therefore an improved availability of phytate phosphorus.

A second balance trial looked at the relationship between level of dietary phytase and 

phosphorus digestibility, in order to derive an optimum inclusion rate. 12 gilts of



25kg liveweight were used in a triplicated 4 x 4  latin square trial. Treatments were 

a maize-soya basal diet (1) containing 5g/kg phosphorus (of which half was present 

as phytate phosphorus) to which was added phytase at levels of 500 (2), 1000 (3), and 

1500 units phytase/kg (4). Calcium to phosphorus ratio was 1.5:1. Each 10 day 

acclimatization period was followed by a 5 day total faeces and urine collection. 

Addition of phytase increased apparent phosphorus digestibility (over the control) at 

all levels of inclusion (p =  0.05, s.e.d. = 0.025). The quadratic response of 

phosphorus digestibility to dietary phytase was described by the equation y =  0.5832 

+  0.000162x - 0.84E'7x2 (p =  0.048; y =  apparent phosphorus digestibility, x =  

phytase units/kg feed). The maximum response was calculated at 1000 units/kg, 

however, the shape of the curve indicated that 400-500 units/kg was the economic 

optimum.

Having established repeatable increases in phosphorus digestibility with phytase, two 

growth trials were used to assess the amount of phytate-phosphorus that could become 

available through use of the enzyme. In both trials, graded levels of non-phytate 

phosphorus were achieved by addition of inorganic phosphate to a low phosphorus 

basal diet. Each phosphorus level was fed ad libitum either with or without phytase 

added at 1000 units/kg feed. The first trial looked at young pigs growing from 10 to 

25kg liveweight. Growth performance, whole body mineral content, bone strength and 

bone mineral content were used as response criteria. 72 individually penned piglets 

weighing 10kg were assigned randomly within sex to 2 (basal diet), 2.5, 3, 3.5, 4,

4 .5, 5, 5.5 or 6 g non-phytate phosphorus/kg at a constant calcium level (8 g/kg). At 

25kg the pigs were killed, and the right femur and right third and fourth metatarsal 

bones removed for breaking force determination using an Instron detector. Samples 

of the ground whole body were analyzed for phosphorus content.

Reduced daily gain of pigs receiving the basal (2g/kg) diet was counteracted by the 

addition of phytase, approaching that of pigs on the 3.5 g/kg diet (p=  0.085, sed =  

0.056). Femur strength and phosphorus content of the body were increased both by 

increasing the level of inorganic phosphorus in the diet and by phytase addition. 

Linear and quadratic relationships between non-phytate phosphorus intake and growth, 

bone strength, bone mineral content and carcase mineral content were apparent, but



were destroyed by addition of phytase to the diet. A daily intake of 5.5g digestible 

phosphorus was necessary for maximum growth, whereas 4g/day was sufficient for 

maximum bone strength. 3.7 g digestible phosphorus/kg diet was recommended for 

pigs of 10-25kg liveweight. Based on combined criteria it was concluded that adding 

phytase to a phytate-rich diet at low levels of digestible phosphorus made 

approximately 70% of the phytate-phosphorus available for bone accretion.

The final trial used pigs growing from 25 to 60 kg liveweight. Levels of non-phytate 

phosphate were 0.85 (basal diet), 1.25, 1.65, 2.05, 2.45, 2.85, 3.25, 3.65, and 

4.05g/kg. 72 individually penned male pigs weighing 25kg were assigned to one of 

the diets, fed either with or without phytase, at a constant calcium level (8 g/kg).Pigs 

were slaughtered at 60kg. The left third and fourth metatarsals were removed for 

breaking force determination and subsequently for mineral analysis.

A lowered daily gain of pigs receiving the basal (0.85g/kg) diet was overcome by the 

use of phytase and approached that of pigs receiving the 1.65 g/kg diet (p =  0.015, 

sed =  50.1). Linear and quadratic responses of bone strength to intake of non-phytate 

phosphorus were observed. Daily digestible phosphorus requirement was estimated 

at 6g for optimum feed conversion efficiency and maximum bone strength, and 9g for 

maximum growth rate. Addition of phytase resulted in an increased breaking strength 

of both the third and the fourth metatarsal (p =0.045, p =0.011, respectively). Based 

on growth and bone strength data it was calculated that phytase addition to the basal 

diet enabled 50% of the phytate phosphorus to be utilised. However, the contribution 

of liberated phytate-phosphorus to that utilised diminished as the dietary phosphorus 

level increased towards requirement.

It was concluded that addition of Aspergillus tiiger phytase resulted in hydrolysis of 

phytates, allowing 50-70% of phytate-phosphorus to be utilised, and if used correctly, 

could substantially reduce phosphorus output from the growing pig sector.
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Chapter 1 Introduction

Concern about the polluting effects of phosphorus has initiated research into 

optimising the phosphate content of diets fed to pigs. Approximately two thirds of the 

total phosphorus in pig diets is present in the form of phytates, the mixed salts of 

myo-inositol hexaphosphoric acid or phytic acid. Phytate bound phosphorus is largely 

unavailable to pigs, necessitating dietary supplementation with relatively expensive 

inorganic phosphates such as dicalcium and monocalcium phosphate. In the UK in 

1990, 2.4 million tonnes of compound feed was used for pigs, of which inorganic 

phosphate sources contributed between 8 and 41% of the total phosphorus. While 

these phosphate supplements are absorbed to variable extents, most of the organic 

phosphate passes undigested through the animal and is excreted in the faeces. In 

addition, because the amount of available inorganic phosphorus in the diet is usually 

above requirement, a proportion of dietary phosphorus is excreted via the urine.

Application of slurry to the land causes leaching of phosphate into the soil, eventually 

leading to eutrophication of water sources. In Europe, the livestock sector, in 

particular pig production, has received much of the blame for phosphorus pollution, 

and has been targeted in an attempt to relieve the phosphorus burden on the land. The 

North Sea agreement signed by the Paris commission in 1989 committed participating 

countries to reducing phosphate outputs by 50% between 1985 and 1995. In terms of 

animal production, particularly in regions of intensive pig production, this can be 

translated into a gradual reduction in the number of pigs that may be kept in an area.

There are two effective steps that can be taken to alleviate the problem. The first is 

a closer matching of feed to requirement. The values advocated as phosphorus 

recommendations differ widely from country to country, as does the methodology 

used to define these requirements. Furthermore, the data used in computing the 

requirements, having been obtained from several decades’ work, do not reflect 

accurately the requirements of today’s modern fast-growing genotypes. In the short 

term, a more accurate description of requirements, and a closer matching of the feed 

to meet these requirements will play some part in reducing the phosphorus output.
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The second method is to improve the dietary availability of phytic phosphorus, either 

by physical processing or with the use of dietary additives such as enzymes. The 

enzyme phytase (myo-inositol hexaphosphate phosphohydrolase; EC 3.1.3.8.) 

dephosphorylates phytates, releasing phosphorus for absorption by the animal. Phytase 

is present intrinsically in most feeds of plant origin, and in animals, the enzyme is 

produced by microbial flora in the intestine. The contribution of the former to phytate 

hydrolysis is doubted, as the enzyme is unlikely to survive the acid conditions of the 

stomach, and the relative quantity of microbial phytase present naturally in the gut 

precludes it from being significant for phytate hydrolysis in pigs.

Microbial phytase from Aspergillus niger has been developed commercially and tested 

in pigs by several groups of workers. Responses to phytase range from an increase 

in apparent digestibility of phosphorus and other nutrients, to an improved growth 

rate, feed conversion efficiency and protein deposition rate. Perhaps the most 

meaningful aspect of the work to date is that it indicates that performance can be 

maintained even in the absence of supplemental inorganic phosphate. Increased use 

of the phosphorus naturally present in feedstuffs leads to the expectation of a 

reduction in the amount excreted.

Despite these improvements, there remains some scepticism surrounding use of the 

enzyme, not least because of the variation in results that has been brought about due 

to a lack of standardisation of conditions, and the use of different sources of enzyme. 

Furthermore, uncertainty about the actual phosphorus requirement can sometimes 

constrain satisfactory interpretation of data. At the commencement of this project, 

research into phytase was in its early stages. Thus this programme was undertaken 

with two purposes; to further evaluate the effects of phytase on phosphorus 

availability using selected aspects of pig performance as criteria of response, and as 

a basis for this, to assess the phosphorus requirement of growing pigs.

2



Chapter 2 Review o f literature

2.1 The phosphorus requirement of pigs

2.1.1 Importance of phosphorus to pigs

The vitalistic nature of phosphorus is manifest in its distribution throughout the body 

(table 2.1). Phosphorus makes up approximately 1 % of the mature body weight of the 

pig. In the soft tissues, phosphorus occurs as a constituent of cells, membranes and 

body fluids. Blood plasma contains mostly ionizable phosphorus, which is involved 

in energy utilization and transfer via adenosine tri-phosphate and adenosine di

phosphate, phospholipid formation and fatty acid transfer,’ and synthesis of amino 

acids and protein. Phosphorus is also imputed to be involved in the control of appetite 

and in the efficiency of feed utilization, by a mechanism as yet unknown.

The imperative requirement for dietary phosphorus is for development and 

maintenance of the skeleton, in which it is co-precipitated with calcium in the 

hydroxy-apatite bone complex [Ca92+(H30+)2(PO43')6(OH)2][Ca2+.Mg2+O.3 CO32- 

.(C6O7Hs5 )0.3]. Skeletal tissue undergoes continual accretion and degradation and the 

resulting growth of the bone is the most important influence on phosphorus balance. 

Relatively large amounts of phosphorus must be ingested daily in order to satisfy the 

requirements of the growing pig. Although a severe deficiency is unlikely under 

commercial conditions, marginal inadequacy can occur with a consequential reduced 

appetite, bone malformation and lowered fertility.

2.1.2 Absorption of phosphorus

2.1.2.1 Site of absorption

Most phosphorus is absorbed from the small intestine as inorganic phosphate although 

some phospholipids may be absorbed. Phosphosugars, phosphorylated amino acids
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and phospho-nucleotides are hydrolysed at the brush border of the enterocyte by 

alkaline phosphatase, liberating inorganic phosphate which is then absorbed. Intestinal 

absorption is active and dependent on sodium transport (Berner et al., 1976; Harrison 

and Harrison, 1961; Taylor, 1974). Absorption occurs most intensively at the 

proximal half of the small intestine, where solubility is greatest. The peak of 

absorption after an oral dose of radiophosphorus was 30 minutes after administration, 

and absorption was almost complete within 3 hours (Guéguen and Rerat, 1967). In 

porcine tissues, phosphate absorption occurs predominantly in the jejunum and to a 

lesser extent in the duodenum (Breves and Schroder, 1991). Phosphorus is also 

secreted into the lumen of the intestine, and reabsorption from the lower segments of 

the small intestine has been demonstrated (Moore and Tyler, 1955).

The extent of phosphorus absorption from the hindgut is unknown. Despite earlier 

work (Guéguen et al., 1968) where no absorption of radiolabelled phosphorus from 

the large intestine could be detected, more recent work (Drochner, 1984; Guéguen 

et al., 1981) indicated that the absorption of phosphorus from the large intestine 

should not be neglected. It has been demonstrated in the rat that 8% of total 

phosphorus absorption occurs in the colon (Cramer, 1961). Results of Partridge 

(1978a) indicated that in pigs, approximately 12% of total phosphorus absorption 

occurred beyond the ileum, but this may depend on the dietary phosphorus level. The 

sites of absorption and reabsorption in the gut are represented by figure 2. 1.

2.1.2.2 Mechanism of absorption

Transepithelial phosphate transport consists of an active saturable and a passive non

saturable component. Active transport of phosphorus across the gut wall is 

represented in figure 2.2. Transport through the luminal cell membrane occurs as an 

electroneutral cotransport with sodium (Kinne et al., 1977; Quamme, 1985), the low 

intracellular sodium concentration being maintained by a sodium-potassium pump on 

the basolateral membrane. Transport of phosphate from the serosa to body fluids 

occurs independently of sodium, possibly by facilitated diffusion. Evidence of a 

secondary active sodium-phosphate cotransport system across the brush border

4



membrane of the rat and rabbit small intestine has been found (Quamme, 1985; 

Berner et al., 1976). The maximum velocity ( V ^  of this system is increased by a 

phosphorus deficiency. It is not yet clear whether the carrier preferentially accepts 

either the monovalent or the divalent form of phosphate.

Measurements of intracellular phosphate transport are complicated by intracellular 

compartmentalization. In the rat, absorbed phosphate moves-through the intestinal cell 

without entering the cytoplasmic phosphate pool (Kowarski and Schachter, 1969). 

Thus, absorbed phosphorus could perhaps remain independent of the cell contents by 

incorporation into vesicles or phosphorylated derivatives.

2.1.3 Renal control of phosphate level

The fate of absorbed phosphorus is influenced largely by the quantity absorbed in 

relation to requirement. The kidney is the major regulatory mechanism controlling 

phosphorus level; reabsorption here is saturable, any phosphorus in excess of the 

maximal transport capacity being excreted into the urine. In addition to phosphorus 

level, renal regulation depends on intrarenal calcium concentration and acid-base 

balance. Most plasma phosphorus is in the form of phospholipids and phosphate 

esters, and thus, unable to filter across the glomerulus into the vascular system. In 

contrast, inorganic phosphate is almost completely ultrafiltrable at the proximal 

convoluted tubule, although the cellular mechanisms are unclear. Phosphorus 

reabsorption in the proximal tubule is highly dependent on the presence of sodium 

ions in the lumen and may be linked to active sodium ion transport.

It has been suggested (Apfelbaum and Tresmolieres, 1963) that 2 discrete phosphorus 

pools exist; one dependent closely on phosphorus intake, comprising mainly mineral 

phosphates with a fast turnover rate, and a second pool independent of intake, 

containing phosphorus compounds with a slower turnover. Thus excess phosphorus 

in the diet may be passed directly from the fast pool to urine, without entering the 

slow pool (figure 2.3). This concept may be extended to include that phosphate with
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a slow turnover remains independent of cell contents, whereas that with a fast 

turnover remains freely exchangeable with the blood (Kowarski and Schächter, 1969).

2.1.4 Regulation of absorption and retention

Because the principal regulatory site of blood phosphorus level is the kidney, changes 

in the dietary supply do not greatly influence absorption percentage. However the 

subsequent fate of phosphorus is greatly influenced by quantity absorbed, excess over 

requirement being excreted into the urine, and to a lesser extent, endogenously into 

the faeces. Dietary factors affecting phosphorus absorption and retention are discussed 

in Section 2.2. An overview of the hormonal influences is given in this section.

2.1.4.1 Parathyroid hormone

Parathyroid hormone (PTH) influences phosphorus balance by depressing reabsorption 

in the kidney, and may have a minor direct or indirect influence on intestinal 

absorption. Parathyroid extract increased the transfer of phosphorus from mucosa to 

serosa by 70%, and uptake by the tissue from the mucosal site by 30% (Borle et al., 

1973). However, no effect of parathyroidectomy on absorption or urinary excretion 

was found in rats (Clark and Rivera-Cordero, 1973).

An increase in intestinal phosphorus absorption in response to dietary phosphorus 

restriction was not dependent on the parathyroid glands but in parathyroidectomized 

animals a dose of 0.22 PTH units per kg per hour increased phosphorus absorption 

from the jejunum from 0.045 to 0.102 mmol/30 minute absorption period (Fox and 

Care, 1978; Fox et al., 1978). Differences in phosphorus excretion rates in 

thyroparathyroidectomized rats on low and high phosphorus diets, even when plasma 

phosphate was controlled by infusion (Bonjour et al., 1973), may indicate that dietary 

phosphorus activates a mechanism for phosphorus reabsorption other than PTH and 

plasma phosphorus concentration.
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Table 2.1 Phosphorus concentrations in the fresh tissue of the pig

Tissue/Organ Phosphate concentration

Crude defatted tissue 7.0 g/kgr

Whole blood 20 mg/lOOmT

Serum 4.6 mg/lOOmT

Skeletal muscle 1.15 g/kgT

Kidney 2.208 g/kg+

Brain 400 mg/kg+

Skin 556 mg/kg+

Liver 381 mg/kg+

Lung 2.112 g/kg+

r  Georgievski, 1981

-jf- Adapted from Widdowson

- |-  Adapted from Widdowson

and Dickerson, 

and Dickerson,

1960

1964
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Figure 2.1 Sites of phosphorus absorption
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Figure 2.3 Model of two discrete phosphate pools - based on

concept of Apfelbaum and Tresmolieres (1963)

and Kowarski and Schächter (1969)
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In the skeleton, PTH stimulates reabsorption of bone mineral from the matrix, 

resulting in the release of calcium and phosphorus into the circulation. Calcitonin, 

which inhibits reabsorption from the ascending loop of Henle and distal convoluted 

tubule, resulting in a reduced plasma phosphate level, may be more important than 

PTH for phosphate homeostasis in pigs (Pointillart et al., 1978 a,b). However, there 

is no evidence that this hormone has a direct effect on intestinal absorption.

2.1.4.2 Thyroxine and growth hormone

Thyroxine may have an indirect influence through its effects on the growth of bone. 

Injection of thyroxine into rats had no effect on mucosal uptake values but depressed 

the rate of phosphorus transfer from mucosa to serosa by 32% (Noble and Matty, 

1967). Administration of thyroxine (Espinosa et al., 1984) and growth hormone 

(Hammerman et al., 1984) increased phosphate reabsorption and the activity of the 

sodium-phosphate cotransport system in the brush border membranes in the kidney.

Growth hormone stimulates endochondral bone formation and increases skeletal mass 

by accelerating subperiostal bone apposition. The effect of growth hormone on bone 

is dependent on thyroxine, however, there appears to be no direct effect of thyroxine 

and growth hormone on phosphorus metabolism.

2.1.4.3 Vitamin D

1,25 dihydroxycholecalciferol (1,25-DHCC), a metabolite of vitamin D, is a potent 

regulator of calcium and phosphorus movement in the intestine and bone. In rats, 

stimulation of phosphorus absorption by vitamin D is greatest in the duodenum, 

decreases at the jejunum and does not occur in the ileum or colon (Lee et al., 1981). 

Fontaine et al. (1985) found that the absorption of phosphorus in vitamin D - depleted 

pigs was only half of that found in pigs receiving supplementary vitamin D3 (1000 

IU/kg diet). The renal cell responds to excess phosphorus by decreasing fractional 

phosphate reabsorption. It has been suggested (Bonjour et al., 1977) that the renal
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cell can adapt more effectively to high dietary phosphorus when vitamin D is present.

Although a direct affect of vitamin D on mineralization has not been shown, in pigs, 

lack of vitamin D results in a decreased performance, reduced bone ash content and 

a lowered bone breaking strength. Miller et al. (1965 a,b) found that when no vitamin 

D was given to young pigs, excessive excretion of calcium and phosphorus and thus 

a lower absorption and retention percentage occurred compared with use of 100 IU/kg 

diet. When glucose and soya bean protein were used instead of glucose and casein, 

more than 100 IU per kg diet was required. In the case of growing pigs (10-60kg 

liveweight) with phosphorus levels of 0.6% or 1.4%, omission of vitamin D from the 

diet resulted in rickets and a reduced bone ash content occurred. This effect was not 

seen when the calcium to phosphorus ratio was maintained at 2:1. It has often been 

suggested that the positive influence of vitamin D on phosphorus absorption may be 

mediated simply through enhancing calcium absorption, thus reducing the level of 

calcium ions and decreasing precipitation of insoluble calcium phosphate.

2.1.5 Measurement of phosphorus requirement

2.1.5.1 Empirical versus factorial computation of requirement

Mineral requirements can be assessed using either an empirical or a factorial 

approach. The former evaluates a range of dietary concentrations using single or 

multiple criteria. Conventionally, growth rate, feed conversion efficiency, bone 

composition and strength, and blood components are used as criteria of response, 

although some of these lack the sensitivity to discriminate between small dietary 

changes. The factorial method, which computes absolute requirement based on 

obligatory losses, retention and production requirements, has been proposed by 

Gueguen and Perez (1981) as scientifically the more satisfactory of the two methods 

as it can be applied to various systems of production. The dietary requirement is 

calculated by dividing the sum of these by the phosphorus availability ie, for growth:
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Dietary requirement =  POL +  Pq

Availability

where P0l =  Obligatory loss of phosphorus

PG =  Phosphorus retained for growth

Such an approach is possible for phosphorus as a result of numerous studies using 

radio-isotopes which enable the discrimination between undigested and obligatory 

endogenous losses of phosphorus. The former component of endogenous loss is of 

dietary origin, excreted to remove excess from the body, while the obligatory loss is 

defined as the amount excreted at the requirement intake of the mineral. The 

obligatory loss originates from within the body; from digestive secretions, tissue 

turnover etc., and increases with age and liveweight of an animal. The amount also 

depends to some extent on the level of phosphorus supply. Faecal endogenous losses 

increase up to 15mg/kg liveweight/day when a high phosphorus diet is fed, with an 

additional lOmg/kg/day urinary loss; thus up to 25mg/kg/day may be required for 

maintenance on high phosphorus diets. A net maintenance requirement of 5mg/kg 

liveweight/day has been suggested (Gueguen and Perez, 1981) for pigs receiving a 

low phosphorus diet.

Figure 2.4 shows schematically the various fractions of mineral during digestion and 

assimilation. Obligatory endogenous losses together with retained phosphorus 

constitute the net requirement in the factorial approach. But the assumption in this 

method that obligatory losses and availability are constant at a given level of intake, 

and at a particular stage of growth may not be correct. It may be that balance studies 

can give a more accurate reflection of mineral requirements as they give information 

concerning digestibility, retention and excretion of phosphorus, and indeed the ARC 

(1981) concluded that due to uncertainties of factorial estimates, empirically 

determined values should be given preference.
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Figure 2.4 Digestion and assimilation of phosphorus 

(After Thompson, 1964)
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2.1.5.2 Criticism of conventional approach

Much controversy exists as to the requirement for growing pigs, due mainly to the 

varying methodology and criteria of evaluation used in experiments. In many cases, 

basal diets were not analyzed for phosphorus. Furthermore, intervals between 

different phosphorus levels in the trial are too large. In addition to changing the level 

of phosphorus in the diet, calcium:phosphorus ratio also changes, however, ratios less 

than 1 or greater than 2 lower performance. Performance is often measured at only 

2 liveweights, but since, absorption and retention of phosphorus change according to 

liveweight, several liveweights should be used. Bone parameters are often used as 

response criteria, but only 75-77 % of total body phosphorus is contained within the 

skeleton, so these may not reflect the phosphorus requirement of the whole body.

The concept of an optimum phosphorus retention needs to be explored. Phosphorus 

surplus to cellular requirement is stored in the bone and drawn upon during dietary 

deficiencies, thus the level of phosphorus required for optimum skeletal development 

is greater than that required for optimal growth. The current practice in the UK of 

slaughtering pigs at less than 100kg annuls the need for maximum bone 

mineralization; the definitive question is therefore: "How much bone does a pig 

require for adequate support if the diet contains adequate phosphorus for other body 

functions?" On the other hand, although the requirement for growth is probably below 

that for maximal retention, replacements for breeding stock are often selected from 

the growing herd, thus potential bone weaknesses at higher liveweights should be 

avoided. This should be considered when defining the minimum phosphorus level 

which sustains an acceptable standard of performance.

2.1.5.3 Requirement for maintenance

Maintenance requirement of phosphorus is determined by calculating the endogenous 

loss in faeces and phosphate losses in the urine. Jongbloed (1987) concluded that the 

amount of faecal endogenous loss was low and dependent to some extent upon the 

dietary level. For diets containing adequate levels of phosphorus, a maintenance
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requirement of 10mg/kg liveweight/day is assumed. However, it has been proposed 

(Beers and Jongbloed, 1992) that for pigs fed low-phosphorus diets the maintenance 

requirement drops to 4mg/kg liveweight/day. The absorption coefficient of 

phosphorus is lower when dietary phosphorus is surplus to requirement. Thus in 

practise, where animals are fed above their requirement, the maintenance requirement 

will be slightly higher than that obtained under experimental conditions.

2.1.5.4 Requirement for growth

The amount of phosphorus required for growth can be estimated either from balance 

data or from carcase analysis. Data from the former approach are presented in figure

2.5 (Woodman and Evans, 1948). The rates of phosphorus gain fell as liveweight 

increased; this was more pronounced after a liveweight of 30kg was reached. Results 

from carcase analysis showed that total phosphorus in the body increases with body 

size (Weniger and Funk, 1953; figure 2.6). The estimated net gain was 4.5g of 

phosphorus per kg liveweight increase (from 30-150 kg). Jongbloed (1987) claimed 

that this method was the more accurate for estimating phosphorus requirement for 

growth, as in most balance experiments phosphorus retention was overestimated.

Net phosphorus requirements estimated by the Agricultural Research Council (1981; 

table 2.2) are based on liveweight gain, feed conversion efficiency and degree of bone 

mineralization. Although earlier findings on the net requirement of phosphorus for 

growth were in agreement, more recent work shows disparities, particularly between 

"unselected" and fast growing pigs; the latter having a higher net requirement. The 

mineral composition of gain is more constant in meat-type, less fatty pigs and may 

increase in lean pigs (Gunther and Rosin, 1970). High daily accretion of protein, 

usually occurring at high growth rates, can result in an increased phosphorus 

requirement, hence it may be appropriate to express mineral requirements in relation 

to body protein and fat gain. In view of the increasing pressure to reduce phosphate 

output, it is necessary to define more accurately the actual requirement.
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Early establishment of a relationship between empty body weight and amount of 

phosphorus in the body (P =  -64.9 +  9.98 EBW - 0.05 EBW2; Mudd et al., 1969) 

suggested a decrease in phosphorus retention per kilogram empty body weight as pigs 

become heavier. Thus it may be prudent to alter phosphorus concentration of the diet 

according to liveweight. Jongbloed (1987) determined that the requirement for growth 

was on average 5.1 g P/kg liveweight gain. Two types of growth were defined; 

normal (<54%  meat in carcase) and very lean (>55%  meat in carcase). There was 

a small non-significant quadratic effect which was taken into account when calculating 

the requirements, as it was in agreement with previously accepted growth models, and 

because there was a significant quadratic effect when empty body weight was used 

as an independent variable. The requirements calculated from this work are given in 

table 2.3. These indicate higher requirements (approximately 0.25 g/kg body weight 

gain) for very lean than for normal pig types.

The value of 5.4 g P/kg liveweight gain for pigs from 10 to 20kg is lower than values 

proposed by Gueguen and Perez (1981; 6.5 g P/kg liveweight gain) and the ARC 

(1981; 8.5 g P/kg liveweight gain). However, in more recent studies in the 

Netherlands (IVVO) with piglets a value of 4.9-5.0 g P/kg liveweight gain was found 

(Dellaert et al. , 1990).

2.1.5.5 Dietary phosphorus requirement

The controversy associated with net phosphorus requirement is intensified when 

dietary recommendations are considered; not least because of the discrepancies arising 

from estimates about phosphorus availability. Dietary phosphorus recommendations 

vary widely in different countries, two notable extremes being the ARC (1981) and 

the National Research Council (1988; table 2.4). ARC (1981) values are based on net 

requirements calculated to dietary requirements, whereas NRC are based on typical 

maize-soya diet, where a 50% availability of phosphorus is assumed.

Differences in pig breeds typically used in different countries mean that values 

obtained from one research institute are not necessarily applicable to pigs in other
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countries. But in order to recommend any suitable dietary phosphorus level, both the 

feed intake and the availability of the phosphorus in that feedstuff must be quantified 

with a degree of accuracy. Generally, estimates of the former are compatible between 

different research bodies but values ascribed to digestibility can vary markedly. 

Furthermore, because each individual raw feedstuff has a different phosphorus 

availability, and because of the diet changes associated with least cost ration 

formulation, it is not appropriate to assign an availability value to the feedstuff as a 

whole; the phosphorus availability of each component part must be considered.

Typically, dietary allowances are made up of a net requirement plus a safety margin 

which allows for performance level differences between animals and between herds, 

and for lack of sufficient confidence in our estimates of requirements and allowances. 

The 5-10% safety margin can be lowered only if dietary recommendations can be 

given with confidence. This relies on valid estimates of phosphate availability.

2.2 Availability of phosphorus

2.2.1 Definition of availability

A precise description of availability has been given as: that proportion of a nutrient 

source provided in the feed that, at a stated concentration and level of feeding, can 

be extracted, absorbed and utilized by the animal to meet its net requirements (ARC, 

1981). However, a prerequisite for phosphorus to be utilised is that it can be brought 

into solution in the intestinal tract. Thus in the case of phosphorus, availability is 

largely a function of the diet, and represents the amount of phosphorus available in 

the digestive tract. Thus a revised definition of phosphorus availability was adopted 

by the ARC (1981) as: the proportion of dietary phosphorus that is not combined with 

compounds that interfere with its digestion, absorption or utilisation by the animal.
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This may be represented by the equation:

A =  I - (F-Fo)-(U-Uo)

where A =  Availability 

I =  Intake

F =  Total faecal excretion of mineral 

Fo =  Faecal obligatory loss 

U =  Total urinary excretion of mineral 

Uo =  Urinary obligatory loss

The non-phytate portion of dietary phosphorus may be used to give an indication of 

dietary availability, ie the amount of phosphorus which is available for absorption 

across the gut wall. This must not be confused with true availability, which is the 

amount that, once absorbed, is retained in the skeleton or soft tissues. However, it 

is reasonable to suggest that since phosphorus absorption is not regulated to any great 

extent at the gut level, most free phosphate will be absorbed across the intestinal 

membrane. Providing the dietary phosphorus level is not in excess of requirement, 

and endogenous losses are minimal, dietary availability, or apparent digestibility will 

give a good indication of the true, or biological availability.

A number of terms have been used to denote the availability of phosphorus in feeds; 

availability (true and apparent), utilization, digestibility (true and apparent), 

absorption, and retention. While precise definitions exist, the terms have often been 

used synonymously without definition. For the purpose of this thesis, apparent 

digestibility of phosphorus was used as an indication of dietary phosphorus 

availability. Dietary available phosphorus was defined as: non-phytate phosphorus 

plus inorganic phosphorus (taking into account the published availability of the 

inorganic phosphorus). Retention was defined as: the fraction of mineral absorbed 

into the tissues for growth and production. It was assumed that all soluble inorganic 

phosphate plus non-phytate phosphorus was absorbed, and that subsequent utilization 

was dependent on the phosphorus status of the animal, not on the phosphate source.
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Figure 2.5 Phosphorus requirement for growth based on balance data 

(Woodman and Evans, 1948)
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Figure 2.6 Phosphorus requirement for growth based on carcase analysis 

(Weniger and Funk, 1953)
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Table 2.2 ARC (1981) estimated phosphorus requirements for growing pigs

Liveweight Net requirement (g/day) requirement (g/day)

5 2.7 3.4

25 4.6 6.1

45 5.2 7.4

90 5.8 8.9

Table 2.3 Calculated phosphorus requirements for growth 

(g/kg liveweight gain; Jongbloed, 1987)

Liveweight 10 30 50 60 70 90

Normal 5.13 5.08 5.05 5.03 4.98 4.93

V. lean 5.45 5.38 5.35 5.35 5.33 5.28

Table 2.4 Dietary phosphorus recommendations of ARC (1981) 

and NRC (1988)

Liveweight 10-25kg 25-50kg 50-100kg

total phosphorus in diet g/kg

ARC (1981) 7.8 6.3 5.8

NRC (1988) 5.3 4.9 4.2
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2.2.2 Measurement of phosphorus availability

The total content of phosphorus in any dietary source gives little indication of its 

usefulness to the animal unless it is accompanied by a coefficient denoting its 

availability to the animal. The methods most commonly associated with assessment 

of the availability of phosphorus in foodstuffs are the slope ratio and the balance 

methods. A slope ratio assay involves comparing the slope of the response of growing 

pigs to graded levels of the test phosphorus with the slope of a response to a standard 

phosphorus (figure 2.7). Monosodium phosphate (NaH2Po4.H20) is used as the 

reference and the availability of its phosphorus is assumed to be 100%. The criterion 

of response is usually bone breaking strength, bone ash percentage, or phosphorus 

retention in the empty body. Blood phosphorus and alkaline phosphatase activity are 

also used, although these are not very sensitive and do not show a linear response to 

the amount of phosphorus absorbed. In addition, they may be influenced by diurnal 

variation and stress during sampling. In young, growing animals, daily liveweight 

gain and feed conversion efficiency can also be used, although these indicators are 

assumed to be less sensitive than bone parameters or phosphorus in the empty body.

Inconsistencies in values have been reported (Ketaren et al., 1993), depending on 

whether bone bending moment or phosphorus retention in the empty body is used. 

Further inaccuracies can occur because monosodium phosphate is assumed to be 

100% utilizable, but only approximately 90% is digested, and a percentage of this is 

utilized. Work by Dellaert et al. (1990) suggests that availability figures obtained by 

the slope ratio technique (using monosodium phosphate as a reference) should be 

multiplied by 0.9 to obtain true digestibility coefficients.

The balance technique uses phosphorus digestibility as an estimate of availability; this 

has been found to have a higher correlation with retention than blood or bone related 

parameters (Dellaert et al., 1990) and can therefore be used as a reliable estimate for 

the nutritive value of phosphorus in feedstuffs. Two assumptions are made; firstly, 

that dietary phosphorus concentration does not affect digestibility and secondly, that 

all digestible phosphorus can subsequently be utilized. This technique does not 

consider endogenous losses which are used in tissue turnover and are therefore
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excreted and measured as undigested. Thus the balance method measures apparent 

digestibility as opposed to true digestibility.

True digestibility can also be measured using radiolabelling techniques; this gives a 

precise indication of mineral availability. Methodology for determination of true 

digestibility has been reviewed by Whittemore (1970) and can be summarised as:

- Specific nutrient inanition which measures the output of mineral in the faeces 

of animals fed on diets free of the element

- Regression of the mineral balance against mineral intake of an a n im a l, 

Animals are fed different levels of the same mineral source, and the constant 

of the regression indicates the endogenous faecal excretion.

- Isotope dilution which involves the injection of a tracer dose of the radio 

isotope into the vein or muscle, causing the element to become uniformly 

labelled throughout the body.

- Comparative balance involving a pair of animals, one dosed orally and one 

intravenously, to determine the endogenous faecal loss.

- The urine ratio method based on a modification of the above comparative 

balance method, using mineral loss in the urine to calculate the proportion of 

the oral dose which, after being absorbed, is excreted in the urine.

- The carcase ratio method, again, a modification of the comparative balance, 

using isotope recovery from the whole carcase as an estimate of availability.

The latter two techniques avoid the need for faecal endogenous data by determining 

directly the movement of phosphorus across the gut. Measurements of true 

digestibility involve use of the heavy isotope 32P, which is expensive and impractical 

to use, and precludes the use of many replicates. In view of these difficulties, it may 

be more practical to use balance data and to correct for endogenous losses to obtain
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true digestibility, or alternatively to use apparent digestibility of a low phosphorus 

diet for which it is known that endogenous losses will be obligatory only.

For the feed mineral industry, studies on biological availability are expensive and 

time consuming, and thus chemical tests are used. No chemical test exists which gives 

an unequivocal correlation to biological availability, instead, comparative evaluations 

are made on the basis of reactivity and solubility of different feed phosphates. The 

tests that are used are:

determination of total phosphorus content

determination of phosphorus soluble in 2 % citric acid

determination of phosphorus soluble in neutral ammonium citrate

determination of phosphorus soluble in alkaline ammonium citrate at 

ambient temperature (Petermann method)

determination of phosphorus soluble in water (only for products containing 

water soluble phosphorus)

For water-insoluble phosphates, it has been proposed (Guéguen, 1977) that solubility 

in citric acid is the most reliable estimate of bioavailability of water-insoluble feed 

phosphates, even if it does not discriminate well between highly available phosphates.
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Figure 2.7 Slope ratio bioassay for measurement of phosphorus availability
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2.2.3.1 Mechanism of interaction

As was previously indicated, availability of phosphorus is largely a function of the 

source of the mineral. In the digesta, minerals can exist in three forms: as metallic 

ions in solution, as constituents of metallo-organic complexes in solution, or as 

constituents of insoluble compounds. Ions are readily absorbed, whereas metallo- 

organic complexes have variable digestibility. Insoluble compounds are not absorbed 

at all. The relative availability of phosphate from vegetable, animal and mineral 

origin is discussed fully in Section 2.3.

The composition of the diet also plays a role in determining phosphorus availability. 

Phosphate in its soluble or partly solubilised form interacts with many of the other 

nutrients in the digestive tract. These interactions can be either antagonistic, as in the 

case of calcium and phosphorus, which inhibit the absorption of each other, or 

synergistic, where the elements mutually enhance their absorption in the gut and 

jointly fulfil some metabolic function at the tissue or cell. The effects can be direct 

or indirect. For phosphorus, the following associations are potentially significant:

- interaction through intermediary phosphorylation processes in the intestinal 

wall and the activity of digestive enzymes (ie the effect of phosphorus on 

liberation from the feed and the absorption of other elements)

- direct interaction with calcium at the tissue level to form hydroxyapatite

- activation of enzyme systems and intensification of synthetic processes 

requiring the presence of other minerals.

2.2.3 Effects of dietary constituents on phosphorus availability
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2.2.3.2 Calcium to phosphorus ratio

In pigs, interactions between phosphate and calcium are perhaps of most importance. 

Although transport of phosphorus is not coupled to calcium, it is unclear whether the 

presence of calcium is necessary for phosphorus uptake. For skeletal growth, calcium 

and phosphorus should be present in body fluids in the ratio of 2.2(Ca):l(P). An 

excess of either causes formation of insoluble calcium phosphate. However, while 

small increases in the ratio may lower the proportion of phosphorus absorbed with 

respect to that ingested, final retention is not significantly altered (Whiting and Bezau, 

1958; Gueguen and Rerat, 1965). ARC recommended ratios are shown in table 2.5

The emphasis which has been placed on calcium:phosphorus ratio tends to lead to the 

assumption that use of the correct ratio will ensure that the animal’s requirement is 

met. However, optimal Ca:P ratio is valid only when dietary levels are supplied in 

the correct amounts, and varies with the levels of calcium and phosphorus in the diet. 

It has been suggested (Whittemore, 1970) that the influence of calcium:phosphorus 

ratio should be considered both in relation to the intestinal absorption, and absorption 

into the body pool. The minerals are mutually antagonistic at the gut level but must 

be present in the ratio 2:1 in the blood to form the hydroxy-apatite complex.

2.2.3.3 Magnesium

Based on the observation that a magnesium deficiency reduced the concentration of 

serum phosphorus and increased urinary phosphorus, it was proposed (Lifshitz et al., 

1967) that magnesium indirectly affects the phosphorus transport system. When both 

dietary calcium and phosphorus were low, magnesium did not effect phosphorus 

absorption, but as the phosphorus level increased, absorption was stimulated by 

magnesium (Clark, 1968). Stimulation of calcium absorption by magnesium would 

decrease the amount of calcium available for precipitation in the intestine, which may 

cause an increased phosphorus absorption. Very low magnesium levels are unusual 

in practical pig feeding; an excess of magnesium is more likely. In most experiments, 

an increased magnesium level decreased urinary phosphorus excretion (Clark and

26



Bélanger, 1967; Clark, 1968; Ballavia and Wallach, 1973; Pointillart and Guéguen, 

1973; Rogel and Chenoweth, 1976). Formation of a magnesium-phosphorus complex 

in the gastro-intestinal tract has been postulated (O’Dell, 1960) but it may be that the 

antagonism between phosphorus and magnesium occurs at the renal level.

2.2.3.4 Protein

Protein can influence the absorption and retention of phosphorus by altering growth 

rate; a higher retention of protein results in an increased phosphorus requirement 

because of its relatively high concentration in the fat-free soft tissues. Increased 

absorption and retention of phosphorus when protein level is raised has been 

demonstrated (Hendricks et al., 1970; Mulller and Kirchgessner, 1974). Thus far, 

there have been few experiments to study the effects of individual amino acids on 

phosphorus absorption. L-phenylalanine, an inhibitor of alkaline phosphatase, 

inhibited intestinal radiophosphorus absorption in chicks (Wasserman and Taylor, 

1973) as did lysine (Chow et al., 1972).

2.2.3.5 Energy level

Assessment of the effects of energy level on mineral uptake is confounded by the 

inability to maintain a constant mineral intake and alter the energy level, whilst 

feeding the same diet. When the concentration of dietary phosphorus was adjusted to 

achieve a constant daily mineral intake, it was found (Moinizadeh, 1975) that 

retention percentage increased with energy intake, up to a maximum of 3.5 x 

maintenance (table 2.6). In contrast, no differences in phosphorus absorption or 

retention were observed between pigs fed at a high or low level of the same diet 

(Sauer et a l ,  1982). If an increased feeding level is to result in fat synthesis, a 

concomitant increase in mineral intake may not be necessary. However, muscle and 

bone development require phosphorus, thus, for growing pigs it may be necessary to 

increase the mineral level in proportion to energy.
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Table 2.5 ARC (1981) recommended calcium to phosphorus ratios

Table 2.6

Liveweight calcium to phosphorus ratio

up to 20 kg 1.7:1

20 -55  kg 2.0:1

55 - 90 kg 2.4:1

Effect of energy supply on phosphorus retention 

(Moinizadeh, 1975)

Energy Supply* Retention (%)

2.0 8.6

2.5 14.6

3.0 16.0

3.5 18.2

4.0 17.6

* =  multiples of maintenance requirement (M=0.65W 569 MJ Nef)
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2.2.3.6 Fat

Saponification occurring between calcium and long chain saturated fatty acids may 

facilitate phosphorus absorption; furthermore, enhancement of fat-soluble vitamin 

absorption may have a positive effect on phosphorus uptake. An increased phosphorus 

absorption was found when dietary fat was raised from 3% to 15% (Jorgensen and 

Fernandez, 1984) however the concomitant increase in energy level may have 

influenced absorption. No alteration in phosphorus absorption was found with addition 

of fat by Gundel and Kemenez (1980) or by Holler and Hill (1968, 1969).

2.2.3.7 Carbohydrates

Glucose is essential as an energy source for phosphorus absorption, however pig feeds 

are generally sufficient in starch and sugar so that their effects on phosphate uptake 

are not of concern. Structural carbohydrates interfere with phosphorus absorption by 

acting as cation-exchange resins to bind minerals, effectively reducing mucosal 

concentration and increasing intestinal phosphorus secretion. Properties of cellulose 

other than its cation-binding capacity may be involved in its ability to reduce mineral 

absorption, for example, the increased rate of passage associated with fibre may 

reduce the opportunity for mineral absorption.

The binding capacity for phosphorus decreases from lignin - >  hemicelluloses - >  

cellulose (Bagheri et al., 1982). Phosphorus absorption from the terminal ileum was 

found to be negative and further depressed by addition of cellulose and lignin 

(Drochner, 1984) which suggests that intestinal mineral secretion is enhanced by 

fibre. However it has been proposed (Partridge, 1978b) that the reduction in apparent 

phosphorus digestibility occurs in the large intestine.
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2.3 Availability of phosphorus in pig feeds

2.3.1 Availability in feeds of plant origin

While early estimates of availability were 30-35 % in phosphates of plant origin, it is 

now realised that a much wider spread exists. In fact, the availability of phosphorus 

in feedstuffs of plant origin varies from around 10 to around 50%, and it is generally 

assumed that at least two thirds of organic phosphorus in the diet is unavailable to the 

pig. Table 2.7 gives recent estimates of phosphorus digestibility from different 

feedstuffs of plant origin.

Most phosphorus in most plant sources is present in the form of phytates which are 

the mixed salts of myo-inositol hexaphosphoric acid, or phytic acid (1,2,3,4,5,6- 

dihydrogen phosphate myo-inositol; IUPAC-IUB, 1968). It has been suggested 

(Nelson, 1980) that a close approximation to the available phosphorus content of the 

diet is the non-phytate portion. Frequently the non-phytate phosphorus is termed 

‘available’ and represents the amount of phosphorus which the animal can digest.

2.3.1.1 Phytate content of feedstuffs

Phytic acid content of cereals, oilseeds and their protein products is shown in table 

2.8 . Phytate content of cereals ranges from 0.50 to 0.89% of the dry weight, and 

from 0.4 to 5.2% in legumes and oilseeds, containing up to 88% of the total 

phosphorus present. In general there is a high degree of correlation between total 

phosphorus content and phytic acid level. Protein products derived from phytate- 

containing seeds are also high in phytate.

In most seed types, the phytic acid is associated with specific components; O ’Dell et 

al. (1972) reported a level of 0.32% phytate in the whole kernel of wheat; 

approximately 87% associated with the aleurone layer, 13% in the germ and 2% in 

the endosperm. Lolas et al. (1976) found a range of 4.59 to 5.52% phytic acid in
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wheatbran as compared with 0.62 to 1.35% in the whole kernels. In com, almost 

90% of phytic acid is concentrated in the germ portion. In oilseeds, which contain 

little or no endosperm, the phytates are distributed throughout the kernel, located 

within aleurone grains. A range of 0.54-1.58% phytic acid has been reported in beans 

(Phaseolus vulgaris-, Lolas and Markakis,1975) and there exists a high degree of 

correlation between total phosphorus content and phytic acid level.

2.3.1.2 Structure of phytic acid

9 stereoisomeric forms of inositol exist; /nyo-inositol, cp/-inositol, alio-inositol, cis- 

inositol, scyllo-inositol, neo-inositol, mwco-inositol, D  chiro-inositol and L  chiro- 

inositol. Myo-inositol is the most abundant naturally occurring inositol; the structure 

proposed by Anderson (1912; cited in Erdman, 1979) is shown in figure 2.8. Phytate 

present in various feeds has different characteristics which may influence its potential 

hydrolysis and subsequent release of phosphorus. Phytate in mature seeds is myo

inositol hexaphosphate, but the native state is not the same for all seeds.

Differences in the solubility of phytate from different sources (De Boland et al., 

1975), suggests differences in the degree of hydrolysis and subsequent utilisation of 

phytate-phosphorus by animals. These differences in solubility of phytate from 

different sources affect the extent of enzyme degradation and subsequent utilization 

by the animal. Availability of com phytate-phosphorus is low (12%) whereas that 

from wheat is -approximately 48% available (as estimated from bone strength 

measurements; Cromwell, 1980).

2.3.1.3 Mechanism of phytate interaction with other nutrients

Once ingested, dietary phytic acid is soluble and rapidly reacts with cations, forming 

insoluble complexes containing calcium and a trace element. Variability of phyate 

stereochemistry increases reactivity in the gastro-intestinal tract. Weingartner and 

Erdman (1978) proposed a partially dissociated Anderson-based structure occurring
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at neutral pH when phosphorus groups have either 1 or 2 negatively charged oxygen 

atoms (figure 2.9), enabling strong chelation of cations between two phosphate 

groups, or weaker binding within a phosphate group (figure 2.10).

The solubility of phytate-mineral salts is pH dependant, increasing as the pH 

decreases from 6 to 3.5. At pH 7.4 phytic acid complexes with metals in the 

following decreasing order of stability: Cu2+ >  Zn2+ >  Co2+ >  Mn2+ >  Fe2+ >  Ca2+ 

(Meddaiah et al., 1964). However at the duodenum, where maximum absorption of 

divalent metal ions takes place, the pH is more acidic (approximately 6.0) and 

interaction between these ions and calcium-phytate occurs, resulting in precipitation 

of mixed calcium phytate complexes; the extent of which depends on the presence of 

high concentrations of each constituent in the solution of the intestine. A synergistic 

effect between metal ions has been demonstrated in vitro (Oberleas, 1973). When two 

or more cations are present simultaneously the quantity of metallic phytate 

precipitated is increased. These metal-bound phytates are not readily hydrolysed in 

the pH range of the digestive tract.

Reduced availability of essential minerals by phytate and phytate-protein complexes 

depends on concentration of phytic acid and minerals in the feed, hydrolysis of 

phytate in the intestine, ability of endogenous carriers in the intestine to absorb 

minerals bound to phytate, presence of inhibitors of hydrolysis and effects of 

processing. Only soluble phytate can be hydrolysed (Hill and Tyler, 1954). After 

hydrolysis, the lower inositol phosphates are less able to precipitate with calcium at 

neutral pH in vitro (Thomas and Tilden, 1972) so hydrolysis would lead to increased 

solubility of metals in the intestine.
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Table 2.7 Apparent phosphorus digestibility of feedstuffs of vegetable origin

Feedstuff P (g/kgDM) Mean Range

Barley 4.4 ±  0.3 39 34-44
Maize 3.2 ±  0.4 17 12-26
Wheat 4.1 ±  0.4 47 45-51
Wheat middlings 12.0 ± 0.8 28 18-35
Maize gluten feed 9.8 ±  1.6 20 12-32
Maize meal solv. extr. 7.4 ± 0.8 20 11-31
Peas 4.8 ± 0.9 45 42-51
Beans (Phaseolus sp.) 5.2 ±  0.4 38 29-48
Soyabean meal solv. extr. (XF> 7%) 6.6 ±  0.5 37 36-38
Soya bean meal solv. extr. (XF<3.5%) 7.3 ±  0.6 38 33-41

Source: (Jongbloed etal., 1991)

Table 2.8 Phytic acid phosphorus content of feedstuffs

Feedstuff Phytic acid P (% of DM) Phytic P % of total P

Barley 0.28 64

Maize 0.21 66
Wheat 0.29 71
Wheat middlings 0.96 80
Maize gluten feed 0.63 64
Maize meal solv. extr. 0.54 73
Peas 0.24 50
Beans (phaseolus sp.) 0.17 33
Soyabean meal solv. extr (XF>7% 0.40 61
Soyabean meal solv. extr.(XF<3%) 0.42 58

Source: (Jongbloed et al., 1991)
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Figure 2.8 Anderson structure of phytic acid
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Figure 2.9 Partially dissociated Anderson-based structure of phytate allowing 

chelation of cations between phosphate groups 

(Weingartner and Erdman, 1978)
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Figure 2.10 Binding of cations within a phosphate group 

(Weingartner and Erdman, 1978)
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2.3.1.4 Calcium-phytate interactions

Calcium is the most abundant divalent cation in most pig diets, and calcium-phyate 

is therefore predominant. Solubility of calcium phytate is low, dissolving at pH4 at 

a molar ratio of 6:1 (calcium: phytate; Wise and Gilburt, 1981). The fate of soluble 

phytate in the intestine will depend on whether it is hydrolysed to yield inorganic 

phosphorus or becomes insoluble thus preventing hydrolysis. The concentration of 

calcium determines the solubility and thus the fate of phytate. When there is a low 

calcium to phytate ratio in the diet, the majority of the products of phyate hydrolysis 

appear to be metabolised. Nahepetian and Young (1980) found that a large percentage 

of 14C-labelled calcium phytate was exhaled as 14C 02 by rats. Furthermore, when mice 

were fed a diet containing a low ratio of calcium to phytate, a high percentage of the 

phosphorus present in the phytate was absorbed; that which was not utilized was 

subsequently excreted in the urine (Yoshida et al., 1987).

2.3.1.5 Magnesium-phytate interactions

Early reports (Roberts and Yudkin, 1960) suggested that magnesium deficiency 

symptoms could be aggravated by addition of sodium phytate to casein-based diets. 

A mixture of calcium and magnesium with phytate leads to precipitation of the mixed 

salt phytin. It has been suggested (Wise, 1983) that the ratio-(calcium +  magnesium): 

phytate determines the fate of phytate in the intestine. At low calcium concentrations, 

phytate is not precipitated and can therefore be hydrolysed. As calcium increases, 

calcium phytate precipitates and the phytate passes to the caecum where it may be 

hydrolysed by hind-gut bacteria.

2 .3.1.6 Interactions between phytic acid and other minerals

Numerous studies have implicated phytic acid as a causative factor in poor zinc 

absorption from plant foods. Likuski and Forbes (1965) established an inverse 

relationship between phytic acid content and zinc bioavailability of animal diets.
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At pH values of the gut, zinc forms the most stable (insoluble) metal complex with 

phytic acid. It has been suggested (Rackis and Anderson, 1977) that differences in 

zinc bioavailability are most likely to be due to the phytate-protein-mineral 

interactions formed during processing, rather than specific phytate contents. Trace 

minerals such as copper, manganese, molybdenum and cobalt may also be affected 

by phytates, leading to imbalances due to preferential binding. Strong binding of zinc 

to dietary phytic acid to form insoluble complexes would favour copper absorption 

and therefore change the zinc:copper ratio (Klevay, 1977).

2.3.1.7 Phytate-protein interactions

Most phytate in stomach acid is either soluble or complexed with protein; on its 

arrival in the small intestine it may co-precipitate as the metal-phytate complex due 

to neutralization of the acid. Pepsin digestion of casein and bovine serum albumin 

were significantly (p <  0.05) decreased in the presence of phytate; this reduction was 

linearly dependent on phytate level (Knuckles et al., 1985; figures 2.11 and 2.12). 

Similar effects of phytate on protein digestibility have been reported by Barre (1956). 

Decreased digestion of proteins in the presence of phytate hydrolysates suggest that 

other inositol phosphate esters may affect protein digestion.

Phytic acid forms complexes with proteins in both acidic and alkaline conditions. At 

low pH the negative charge on the phytate interacts with the positive amino groups 

of protein, whereas at high pH multivalent cations, for example Ca2+, mediate 

complexing between protein and phytate. When soybean protein (high phytate) was 

digested, the proportion of insoluble nitrogen in the duodenum was 50% as compared 

with 28% from a casein-gluten source (Zebrowska, 1978). It is possible that the 

protein-calcium-phytate complexes are favoured in the presence of low calcium 

concentrations and that these are more soluble than calcium phytate.

Figure 2.13 shows the structure of a phytic acid-protein complex at alkaline pH 

proposed by de Rham and Jost (1979). Fontaine et al. (1946) suggested that up to 

approximately pH 3.5, most of the phytate is bound to proteins, however, as proteins
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pass through their iso-electric points, the complexes dissociate. Above pH7, there 

may be re-association of phytates with protein. The strength of binding between 

phytate and proteins varies with protein source (O’Dell and de Boland, 1976; 

Erdman, 1979), probably due to differences in protein configuration.

The interaction between protein and phytic acid is thought to be ionic (de Rham and 

Jost, 1979) and causes reduced solubility of proteins; thus inhibiting proteolytic 

degradation. Calcium ions interact with protein and phyate to further decrease 

solubility (Saio et al., 1967). Complexing between soya protein and phytate was 

disrupted when the calcium ion concentration was increased at neutral pH, and 

calcium phytate was precipitated (de Rham and Jost, 1979).

2.3.1.8 Interactions between carbohydrates and phytate

There may be an effect of phytate on starch digestion in the gut. At pH 6.9 and 4.2 

in vitro, phytate reduced starch digestion by salivary amylase to 78.3% of the control 

(Knuckles and Betschart, 1987). However, the effect of phytate on starch digestion 

differs with enzyme source. The effect appears to be due to non-competitive 

interactions of the ester with the enzyme; possibly by phytate blocking the active 

sites. Other more highly phosphorylated inositol phosphate esters from hydrolysed 

phytic acid may also affect the enzyme digestion of starch. Cereal fibre is closely 

associated with phytic acid, and some of the effects of fibre are often confounded 

with phytic acid. There may be an interactive effect between soluble fibre and phytate 

to further decrease phosphorus availability.

2.3.2 Availability of phosphorus from animal sources

In a series of balance trials (Jongbloed and Kemme, 1990a) apparent digestibility 

coefficients were determined for products of animal origin. The results, together with 

results of Dellaert et al. (1990) using the slope-ratio technique, are given in table
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2.9). Although availability of phosphorus in feedstuffs of animal origin is higher than 

that of vegetable origin (68-91%), total phosphorus content can vary by as much as 

30%. Thus the amount of phosphorus obtained from these sources is often 

overestimated.

2.3.3 Availability of inorganic phosphates

The contribution of feed phosphates of mineral origin must not be ignored. 

Commercial phosphates are manufactured by dissolving apatite with an acid, followed 

by purification and extraction of the product. In recent years there has been a sharp 

increase in phosphate rock prices, with an accompanying increase of feed phosphate 

price. Consequently, more attention has been drawn to biological availability. Several 

types of phosphates are produced commercially, with different availabilities, reflecting 

differences in their chemical configuration (for example, particle size and 

crystallinity). Concentration of other elements and pH also influence availability of 

the various phosphates. It has been shown that for feed phosphates, digestibility of 

phosphorus has a higher correlation with phosphorus retained than blood or bone- 

related parameters (Dellaert et al., 1990). An extensive review of phosphorus 

availability from various mineral sources was undertaken by Jongbloed (1987), the 

results of which are summarised in table 2.10.

2.3.4 Implications of low phytate-phosphorus availability

Although supplementation of highly available phosphates into the diet satisfies the 

requirement of the pig, it does not address the matter of pollution. Pig slurry contains 

1-2% phosphorus (DM basis) of which up to 60% can be of organic origin (Gerritse 

and Zugec, 1977). In Britain, the pig sector contributes approximately 47,000 tonnes 

of phosphate annually to the already critical burden on the environment. While it is 

possible to supplement the diet with a highly available phosphate source at the 

expense of those with a lower availability, it may be that limitations imposed on the
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that limitations imposed on the inclusion of ingredients in pig diets will cause these 

ingredients to be used elsewhere. Thus the a lowered phosphorus excretion by pigs 

may be outweighed by an increased excretion from other species.

In order for the phosphate output to be lowered to an acceptable level, three steps 

must be taken. Firstly, the requirement of growing pigs must be more critically 

defined. Experimental error must be accounted for and a consensus reached between 

the different research bodies as to the actual requirements, rather than averaging 

values from a diverse range of experimental conditions. Secondly, close attention 

should be paid to the availability of phosphorus in feedstuffs, and diets formulated 

taking these into consideration. And thirdly, ways of improving the availability of 

phytate-phosphorus must be explored.

2.3.5 Hydrolysis of phytates

Although phytates are stable compounds, some degradation may occur during 

processing and/or subsequent digestion. Breakdown of plant cell membranes, and 

release of phytates from the globoid bodies exposes them to hydrolysis. Early 

experiments (Averill and King, 1926) showed that dry or moist cooking decreased 

phytate content of ingredients. More recently, it was reported that pelleting increased 

the utilisation of phytate phosphorus by 25% (Summers et al., 1967). During 

processing, some phytate is hydrolysed to other myo-inositol phosphate esters, 

varying in degree of phosphorylation depending on pH and temperature.

If phytate in feed becomes soluble in the intestine, its subsequent fate will depend 

upon whether it is hydrolysed to yield inorganic phosphate or becomes insoluble, thus 

preventing hydrolysis. Either way, the amount of phosphorus released is small 

compared with the animal’s need. Figure 2.14 shows the rate of loss of phytate 

during autoclaving inositol hexaphosphate and various natural products at 115°C (de 

Boland et a l ,  1975). Removal by this method is impractical; 30 minutes’ autoclaving 

reduced phytate content of cereals and oilseeds by less than 10%.
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Figure 2.11 Reduced digestion of casein in the presence of phytate

(Knuckles e t a l . ,  1985)

- H -  0 12.5 - t -  25.0 - B -  50.0

Phytate levels 0,12.5, 25 and 50 g per 0.5mg casein

Figure 2.12 Reduced digestion of bovine serum albumin in the presence

of phytate (Knuckles e t a l . , 1985)
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Phytate levels 0,12.5, 25 and 50 g per 0.465mg BSA
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Figure 2.13 Structure of phytic acid-protein complex at alkaline pH

(de Rham and Jost, 1979)

C a

Protein



Figure 2.14 Rate of loss of phytate during autoclaving inositol hexaphosphate 

and natural products at 115°C (de Boland e t a l., 1975)
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remaining

43



Table 2.9 Phosphorus content and availability in feedstuffs of animal origin

Feedstuff Phosphorus (g/kg DM) Phosphorus digestibility ( % )

Meat meal 22.5 74

Meat meal 33.1 85
Bone meal 85.7 68
Fish meal 25.2 86
Hydrolysed feather meal 1.6 75
Skimmed milk powder 10.6 91
Whey powder 14.8 82

Bone precipitate 176.3 87

Meat and bone meal 87.6 80

Source: Jongbloed et aL, 1991



Table 2.10 Phosphorus content and relative availability of mineral phosphates

Mineral source phosphorus

Ammonium polyphosphate 32

Chloroapatite 17

Curacao island phosphate 15

Dicalcium phosphate 18

Deflourinated phosphate 14

Disodium phosphate 3

Hostaphos 17

Monoammonium phosphate 27

Monocalcium phosphate 25

Magnesium phosphate 19

Monosodium phosphate 20

Natural rock phosphate 13

Phosphoric acid 28

Soft phosphate 15

Sodium pyrophosphate 23

Sodium tripolyphosphate 25

Superphosphate 15

Tricalcium phosphate 20

Trisodium phosphate 17

Triple superphosphate 21

decreasing availability

Source: Jongbloed (1987)
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2.4 Use of phytase to improve phytate-phosphorus availability

2.4.1 Mechanism of action

In its free form, phytic acid is unstable and undergoes hydrolysis. Myo-inositol 

hexaphosphate phosphohydrolase, or phytase, catalyses the déphosphorylation of 

phytic acid by stepwise removal of orthophosphates, resulting in the intermediates 

inositol mono to penta-phosphate (IP^IPj) and free myo-inositol. Commercially 

available extrinsic phytases for pigs are defined as non-specific mono-esterases, 

belonging to the group of acid phosphatases. 2 classes are recognised: 6 phytase (EC 

3.1.3.26) is specific for inositol hexaphosphate, initially hydrolysing orthophosphate 

from the 6-C position of phytic acid and thereafter splitting phosphoric acid from 

alternate carbon atoms, whereas 3 phytase (EC.3.1.3.8) initially removes 

orthophosphate from the 3 position of phytic acid. The mode of action is:

Myo-inositol hexakis phosphate (IP6) -------------> D-myo-inositol 1,2,4,5,6 pentakisphosphate

The reaction proceeds in a stepwise manner, producing the five classes of 

intermediate products; myo-inositol pentakis-,tetrakis-,tris-,bis- and monophosphates 

(IP5, IP4, IP3, IP2, IP, respectively).

Present in most feedstuffs of plant origin, phytase 6 activity is influenced by storage 

and processing but appears to retain some activity after ingestion. However, at a pH 

of less than 2.5 the enzyme is irreversibly inactivated therefore it is unlikely that plant 

phytase could survive the acid conditions of the stomach to resume activity in the 

small intestine. Lim and Tate (1971) studying the enzyme hydrolysis of wheatbran 

concluded that there are several pathways by which the penultimate myo-inositol-2- 

phosphate is produced. The major pentaphosphate formed is D  myo-inositol

+H20 + orthophosphate (PO.)

2.4.2 Phytase of vegetable origin
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1,2,3,4,5, pentakis-phosphate which is also the major pentaphosphate formed from 

soybean phytase. Properties of soyabean phytase have been studied by Gibson and 

Ullah (1990). The pH optimum is 4.5-4.8, activity falling rapidly at pH 6 and above. 

This optimal pH is typical of many acid phosphatases as weil as phytases (Nayini and 

Markakis,1986). The optimum temperature is 50°C, with denaturation occurring at 

60°C. Although the enzyme shows specificity for phytic acid, a variety of 

phosphoesters can be used as substrates. The turnover rate is extremely slow which 

may be due to competitive end-product inhibition.

Attempts have been made to quantify the effect of plant phytase on phosphorus 

digestibility. The presence of phytase present in wheat enhanced phosphorus 

digestibility in wheat from 31-49% (Jongbloed and Kemme, 1990b). Lantzsch et al. 

(1992) reported that due to dietary plant phytase approximately 38% of phytate 

phosphorus from maize was absorbed in the stomach and the proximal half of the 

small intestine, whereas 55 % was absorbed in the distal region of the small intestine.

2.4.3 Intestinal phytase activity

Whether or not phytase is secreted by the intestinal mucosal cells of monogastrics is 

subject to debate. Despite the differences in pH-activity and substrate-activity profiles 

between phytase and alkaline phosphatase (EC 3.1.3.1), their similar distributions, 

regional variations in activity and dependence on Mg2+ and Zn2+ for maximal activity 

have led to the suggestion that ‘phytase’ activity of the small intestine may be a 

manifestation of alkaline phosphatase activity (Davies and Flett, 1977). Alkaline 

phosphatase activity of the intestine is not due to a single enzyme but to a number of 

isoenzymes which are characterized by an ability to hydrolyse phosphate-ester 

linkages at pH values greater than 7, and it would seem likely that at least some of 

the isoenzymes which contribute to alkaline phosphatase activity may function as 

phytases. Morris and Ellis (1976) proposed that intestinal phytase was of little 

significance in aiding metal ion absorption because they would be rapidly hydrolysed 

to insoluble hydroxides at the pH of small intestine. However, Cooper and Gowing
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(1983) suggested that as phytase was present at the mucosal surface, absorption of 

released metal ions could occur before the complexing reactions rendered them 

unavailable. Furthermore, it has been suggested (Ramakrishan and Bhandari, 1977) 

that intestinal phytase may play a role in phospho-inositide metabolism in the mucosal 

cells. Intestinal alkaline phosphatase and phytase activities are largely influenced by 

dietary composition and hormonal balance. Excess dietary calcium and magnesium 

decrease the activity of both enzymes, whereas vitamin D3 increases activity (Mccuaig 

et al., 1972). The effect of vitamin D in vivo may be enhanced by changes in calcium 

and phosphorus absorption in response to vitamin D.

In pigs, intestinal phytase activity was found to be negligible compared with alkaline 

phosphatase activity (Pointillart et al., 1985) even when the phosphorus intake was 

very low and mostly in the form of phytate. In contrast, alkaline phosphatase activity 

of the duodenum was stimulated when pigs were fed a low phosphorus diet. There 

is some evidence to suggest that adaptation to phytase hydrolysis increases with age 

in pigs, but intestinal phytases and phosphatases are ineffective for phytate hydrolysis 

in balanced swine diets, probably because of the adverse effects of calcium, which 

at a ratio of 6:1 (Ca:phytate) or more reduces the mucosal activity (Bhandari, 1989).
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2.4.4 Microbial phytase

When addition of phytate to human diets is prolonged, the initial negative calcium 

balance becomes positive (Walker, 1951) possibly due to increased microbial 

production for phytate hydrolysis. The activity of microbial phytase in the digestive 

tract is governed by factors such as pH, source and concentration. Microbial 

hydrolysis of phytate is of negligible importance in the stomach or small intestine of 

rats, but occurs in the caecum and continues in the colon, so that the concentration 

of hydrolysis products is greatest in the faecal pellet (Wise et al., 1983). The 

mechanism of hydrolysis is unknown, but it is possible either that bacteria employ a 

different mode of attack to that of mucosal phytase or that they have more time to 

perform the reaction on the digesta in the caecum than the mucosal enzyme.

Various strains of micro organisms produce phytase intracellularly; the most active 

extracellular sources are the filamentous fungi. In a study of micro organisms (Shieh 

and Ware, 1968) it was found that Aspergillus niger (var ficuum, NRRL 3135) 

produced maximal phytase. This phytase has been purified and characterised (Gibson 

and Ullah, 1990). Aspergillus niger secretes a phytase and 2 acid phosphatases 

representing approximately 8.5% of the total protein in the crude culture filtrate.

2.4.4.1 Properties of A sperg illu s n iger  phytase

Aspergillus niger phytase is a glycoprotein with a molecular mass of 85-100 KDa. 

The enzyme is highly active and fairly thermostable; in its purified form retaining 

40% of its activity after being subjected to a temperature of 68°C for 10 minutes. 

The temperature profile is asymmetric (fig. 2.15) with an optimal activity between 

60 and 70° C, however the exact optimum may depend upon the type of cereal to 

which its added. Irreversible inactivation occurs at temperatures of 80°C or more.

2 distinct pH optima are shown (fig.2.16) The highest activity is at pH 5.0 and a 

second peak is observed at pH 2.5. The enzyme retains most of its activity at pH 6.0, 

but no activity is observed at pH 7.0 or higher. The Aspergillus niger phytases are
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acid and heat resistant over a broad pH and temperature range (pH 2-6, and up to 

60°C) Therefore, they may reasonably be expected to be active and to function in the 

stomach of pigs under physiological conditions.

2.4.4.2 Commercial manufacture of phytase

Present commercial development follows one of two procedures. The first involves 

conventional genetic improvement of existing phytase-producing micro organisms. 

The second approach entails isolating the gene controlling phytase production from 

a wild-type Aspergillus strain and splicing it into the genetic code of a hyper- 

producing industrial strain. The resultant increase in phytase production can be 50- 

200 times that observed from more classical techniques (Power, personal 

communication). For large-scale manufacture of the enzyme, fungal spore 

preparations are transferred through a series of batch fermentations, and the batch 

culture products used as inocula for final fermentation. Phytase production is maximal 

when phosphate is limiting (<0.0004%  w/v).

2.4.4.3 Dephosphorylation of phytate

Phytase has a higher affinity for phytic acid than for other phosphorylated substrates, 

although it has a broad specificity towards other phosphorylated monoesters. D-myo- 

inositol 1,2,4,5,6 pentakis phosphate is the major component of hydrolysis, with a 

minor component of D-myo-inositol 1,2,3,4,5 pentakis-phosphate.

It is generally accepted that phytase can completely hydrolyse phytic acid to the 

monophosphate stage, and perhaps to free inositol and orthophosphate. However, it 

has been found that phytase from Aspergillus shows reduced turnover number with 

increasing incubation time (Gibson and Ullah, 1990) This may reflect lowered affinity 

of phytate for intermediate inositol forms; myo-inositol- 1-monophosphate was not 

utilised as a substrate and myo-inositol was only poorly utilised.
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A non-purified preparation of intracellular acid phosphatase (EC 3.1.3.2) from a 

waste mycelium of A spergillus niger was tested for enzymic hydrolysis of phytate 

compounds in v itro . Complete déphosphorylation of soybean protein isolates was 

achieved using 12 units per gramme of feed, this was accompanied by protein 

degradation which was imputed to proteolytic activity of the phytase as other 

proteolytic enzymes were inhibited during preparation (Zyla e t a l . ,  1989). Phytase 

from A spergillus ficuum  (NRRL 3135) resulted in hydrolysis of 63% and 42% of the 

phytate of soybean meal and cottonseed meal respectively (Han, 1989), and indicated 

that phytate hydrolysis in vivo  would be largely diet dependant. Thus far, no 

correlation has been found between extent of phytic acid degradation and total 

phosphorus digestibility. This requires quantification of intermediates and comparison 

of phosphorus digestibility with the amount of orthophosphate.

2.4.5 Use of phytase in animal feeds

2.4.5.1 Early work with poultry

Pioneering work using phytase in the diet was carried out by Nelson e t a l. (1968, 

1971). A crude enzyme preparation from A spergillus ficuum  (NRRL 3.1.3.5.), 

consisting of a non-specific orthophosphoric monoester hydrolase and phytase, was 

supplemented into corn-soybean meal diets at levels of 1-8 g/kg feed. Performance 

was compared to that of chicks fed different levels of inorganic phosphate. The 

increase in percentage bone ash obtained when diets contained either 4 or 8g phytase/ 

kg was equivalent to 0.16 and 0.17 % of added inorganic phosphate; this represented 

total hydrolysis of phytate. Bone ash percentage of these chicks was higher than those 

fed the diets supplemented with inorganic phosphate to contain 0.24% available 

phosphorus, but less than that of chicks fed the diet containing 0.33% available 

phosphorus. Almost all the dietary phytate was hydrolysed with 3g/kg phytase.

Later, Zyla et a l. (1989) supplemented calcium phosphate into diets in order to 

provide the same amount of phosphorus as that calculated to be released by phytase.

51



After 3 weeks, body weight of enzyme-fed chicks was significantly lower (p<0.05) 

than those with the mineral supplement, however, after 8 weeks body weight was 

significantly greater (p <0.05) when the enzyme was used. Feed conversion efficiency 

and tibia mineralization did not differ significantly between the groups.

A similar preparation of Aspergillus phytase significantly improved the apparent 

digestibility of phosphorus in broilers, with almost maximal phosphorus availability 

achieved by the addition of 800 units of phytase/kg feed (Simons et al., 1990). 

Growth rate and feed conversion efficiency were significantly improved and 

dependent on the level of phytase; the optimum level for growth rate from 0-4 weeks 

was 1500 units. Increased phosphorus digestibility resulted in a decreased faecal 

phosphorus excretion; in addition, increased calcium retention was observed.

2.4.5.2 Use of phytase to improve phosphorus availability to pigs

Initial experiments to test the effect of phytase on phosphorus digestibility in pigs was 

carried out in the Netherlands (Simons et al., 1990). Pigs were cannulated at two 

sites of the gut; approximately 180mm beyond the pylorus and 200mm proximal to 

the ileo-caecal junction. Experimental diets were based either on corn-soybean meal 

or tapioca-hominy feed. Addition of 1000 units of Aspergillus niger phytase per kg 

feed resulted in an increase of 9-42 percentage units (p<0.01), indicating that 

approximately 50% of the phytate-phosphorus was made available for absorption.

It was presumed that phytase increased hydrolysis of phytate at the gut lumen and 

thus liberated ortho-phosphates could be absorbed across the gut membrane.

These results provided the basis for renewed interest in phytase research, particularly 

in countries where phosphorus levels were of growing concern. Recent published 

works are listed in table 2.11. In most studies, phytase was obtained by a strain of 

Aspergillus, which produces 3 - phytase (EC 3.1.3.8). Criteria of response included 

digestibility of phosphorus and other nutrients associated with phytase, bone breaking
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strength or carcase mineralization. Since the initial work, further experiments have 

indicated that if phytase is used correctly, up to a 50% reduction of faecal phosphorus 

output may be possible (Kessler and Egli, 1992; Pallauf et al., 1992a).

Further work using cannulated pigs (Jongbloed et al., 1991) showed that in the 

presence of phytase, 60-74% of phytic acid could be hydrolysed before reaching the 

end of the small intestine, whereas only 10% of phytic acid from unsupplemented 

diets was hydrolysed. Apparent ileal digestibility of phosphorus was increased by 

18.5% (p<0.05) and 29.8% (p<0.01) for maize-based and tapioca-based diets 

respectively. Total tract phosphorus digestibility increased by 29.7% (Maize) and 

27.0% (Tapioca). Concentration of myo-inositol pentakis and tetrakis phosphates was 

higher in ileal digesta than in duodenal digesta, and the amounts were related to 

phytate sources. No phytase activity could be detected in the ileal digesta, and it was 

concluded that phytate degradation occurred in the gastro-duodenum; subsequently, 

liberated orthophosphates were absorbed in the small intestine. Concentration of 

phosphorus in the faeces was reduced from 21 to 13.6g/kg when a corn-soy diet was 

fed, and from 15.8 to 10.4 g/kg with a tapioca-hominy diet.

These authors found lower values for phytic acid digestibility at the ileum compared 

to the duodenum, and postulated that this may be due partly to de now  synthesis of 

myo-inositol phosphates in the small intestine. However, while such synthesis has 

been observed in the blood of some species, there is no evidence to suggest that myo

inositols can be absorbed across the gut wall. Thus the decreased digestibility at the 

ileum may have been a manifestation of increased absorption at the duodenum 

compared to the ileum, as seen by Partridge (1978).

Further work showed that the response was also dependent on the concentration of 

phytase activity in the diet (Beers, 1992; Young et al., 1993; Cromwell et al., 1993). 

Although the shape of the response curve obtained differed between experiments, a 

common feature appeared to be a diminution of response as the dose level increased 

past approximately 400-500 units/kg.
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Figure 2.15 Temperature-activity profile of Aspergillus n iger phytase

Figure 2.16 pH-activity profile of A sperg illu s n iger  phytase



Table 2.11 Summary of recent phytase trials using growing pigs

Reference D iet P h y tase  a c tiv ity  M ain  resu lts
(IU /k g  feed )

B e e rs , 1992 m aiz e , so y b ean
+  h o m in y , su n flo w er, ra p ese e d

2 2 0 -1 7 8 0 E x ponen tia l in c re ase  in  P  d igestib ility  
L og istic  " "

B eers  an d  Jo n g b lo e d , 1992 m aiz e , b a rle y , soya 1450 In c reased  P  d igestib ility  fro m  0 .3 9  to  0 .6 0  
Im p ro v ed  D L W G , FI an d  F C R

C ro m w ell e ta l . ,  1992 c o m , so y b ean 2 5 0 , 5 0 0 , 1000 In c reased  P  d igestib ility  fro m  0 .2 5  to  0 .5 7  
1/3 p h y ta le -P  c o n v e rted  to  a n  availab le  form

C ro m w ell et a l.,  1993 c o rn , so y b ean 5 0 0 , 1000 , 2 0 0 0 , 4000 R ed u ced  g ro w th , F C R  an d  b o n e  streng th  caused  by 
low  d ie ta ry  p h o sp h o ru s  co u n te rac ted  b y  phytase

D u n g e lh o e f et a l.,  1994 m aize  
w h e a t . 
tritica le

7 5 0 I n c r e a s e d  P  d ig e s t ib i l i ty  f ro m  0 .1 8  to  0 .5 6  
" " 0 .6 2  to  0 .7 4  
" " 0 .5 2  to  0 .6 7

E ec k h o u t an d  d e  P a e p e , 1992a m aize , so y b ean  
w h e a t, so y b ean

1000 In c reased  P  d igestib ility  fro m  3 5 .6  to  54.796 
” " 5 3 .8  to  6 8 .3%  
30%  re d u c tio n  o f  faecal P  e x cre tio n

E ec k h o u t a n d  d e  P a e p e , 19 9 2 b ,c m a iz e , so y b ean  
+  w h e a t m idd lings

2 5 0 , 500 M icro b ia l p h y tase  74%  m o re  effic ien t th an  w heat phy tase  
80%  activ ity  a t p H  o f  s to m ach  con ten ts (pH 3)
W h ea t p h y tase  to ta lly  inactive  a t  s im ila r pH
D ifferen ces in  trans it tim e, g u t p H  v a lu e s , and  pro teo ly tic  activ ity
b e tw ee n  p ig le ts an d  50kg  d id  n o t a ffec t phy tase  efficacy

H o ld e r  e f a / . ,  1991 m aiz e , so y b ean 50 0 , 1000 In c reased  p lasm a  Z in c  co n cen tra tio n



Table 2.11 cont.

Reference D iet

H o p p e  e ta l . ,  1993 c e re a l, so y b ean

Jo n g b lo e d  et a l.,  1992 c o m , so y b ean  
tap io ca , hom iny

K em m e a n d  Jo n g b lo e d , 1993 m aize , tap io c a , p e a s , 
p o ta to  p ro te in , so y b e a n

K e ss le r  an d  E g li, 1992 liqu id  feed

K e ta re n  et a l.,  1993b su g a r, so y b ean

L a n tz sc h  a n d  W js t, 1992 b a rle y , so y b e a n , su n flo w e r m ea l

L e i e t a l.,  1993a m aiz e , so y ab ean

L e i e ta l . ,  1993b m aiz e , so y b ean

P h y tase  a c tiv ity M a in  resu lts

( lU /k g  feed)

125, 2 5 0 , 5 0 0 , 1000 3 8 0  un its p h y tase  eq u iv a len t to  l g  ino rgan ic  phospha te  
B ased on  to ta l b o d y  P  re ten tion

1500 In c reased  ileal P  d igestib ility  fro m  2 6 .4  to  4 4 .9  
" " 16 .0  to  45 .8

500 P hy tase  e fficacy  no t d ep en d en t o n  phy tate  in  feeds 
S o ak in g  in c re ased  e ffec t o f  phy tase

500 D ecreased  u rin ary  p lus faecal p h o sphorus output b y  50%

1000 In creased  g a in  fro m  741 to  835  g /d ay
Im p ro v ed  F C R  fro m  2 .3 7  to  2 .1 6
In creased  p ro te in  d ep o sitio n  ra te  fro m  108 to  123 g /day

1000 Inc rease  in  d ig es tib le  ca lc ium  o f  be tw een  0 .1 4 -0 .7 9  g /k g

2 5 0 , 5 0 0 , 7 5 0 L in e a r  in cre ase  in  D L W G  an d  D F I 
L in e a r  in crease  in  p lasm a  in o rg an ic  phosphate  
L in e a r  d e c re ase  in  p lasm a a lkaline  phosphatase

7 5 0 , 1050, 1250, 1350 Q u ad ratic  re sp o n se  o f  D L W G , F I an d  F C E
" p lasm a  a lka line  phospha tase
S ta tionary  po in ts  a t  1200 u n its /k g
1000 un its o f  p h y tase  su p p o rted  re ten tion  o f  1.1 m g P
=  0 .9 1 m g  P  fro m  m o n o -d ib asic  calcium  phospha te



Table 2.11 cont.

Reference D ie t P h y ta se  activ ity  
fIU /k c  feed)

M ain  resu lts

L e i et a l . , 1993c m aize , so y b ean 1350 P hy tase  o r  Z n  in creased  p lasm a  Z n  an d  alkaline p hospha tase  
P hy tase  p lus Z n  d e c re ased  p lasm a  a lka line  phosphatase  activ ity

M ro z  et a l.,  1991 m aize , tap io ca , so y b e a n 8 0 0 In creased  ileal d igestib ility  o f  m eth io n in e , cystine , 
a rg in in e , iso leuc ine  a n d  ph en y la lan in e

M ro z  e t a l.,  1994 m aize , tap io ca , b a r le y , so y b e a n 300
6 0 0

L ib era ted  0 .6 g  d iges tib le  P  fro m  phytate  
" 0 .9 1 g

N a s ï a n d  H e la n d e r , 1994 b a rle y , so y b ean 1200 N o e ffec t o f  soak ing  o n  d igestib ility  
In c reased  P  d igestib ility  from  0 .4 5  to  0 .6 4

P a lla u f  et a l.,  1992a m aiz e , so y b ean 1000 P hy tase  cou ld  re p la ce  0 .2 %  in o rg an ic  P  supplem ents 
R ed u ced  faecal P  e x cre tio n  by  50%

P a lla u f  et a l.,  1992b m aiz e , so y b ean 500
1000

In c reased  M g, Z n , F e  an d  C u  a b so rp tio n , M n  unchanged  
1000 U  fu rth e r  im p ro v ed  Z n

P a lla u f  et a l.,  1994 F aba  b ean s , w h ea t, p e a s , b a rle y 3 5 0
7 0 0

In c reased  P  d igestib ility  from  0 .4 8  to  0 .6 6  
" " 0 .4 8  to  0 .71  

Sm all in c rease  in O M  an d  D M  d igestib ility  w ith  700U

S im o n s et a l.,  1990 m aiz e , so y b ean  
tap io c a , h om iny  feed

1000 In c re a se d  P  d igestib ility  fro m  0 .2 0  to  0 .4 6  
" " 0 .3 4  to  0 .5 6

S im o es  N u n e s  1994 m aiz e , ra p ese e d , b a rle y 2 0 0 R ed u ced  faecal P  e x cre tio n  b y  25%

Y o u n g e r  a l.,  1993 C o m , so y b e a n , c an o la T 5 0 0 , 1000 In c reased  a sh  an d  p h o sp h o ru s  o f  m eta ta rsa l 
R esp o n se  equ iva len t to  1 .7 g P  fro m  c alc iu m  phospha te



2.4.5.3 Phosphorus equivalence of phytase

If most of the phosphorus present in cereals fed to pigs was made available for 

digestion, it should be sufficient to satisfy the requirement of growing pigs. Thus far, 

few experiments have addressed the question of phosphorus/ phytase equivalence. 

Using the slope-ratio method based and a range of criteria such as growth 

performance, mineral content of the body and bone ash, a low-phosphorus cereal- 

soybean meal diet was supplemented with increasing phytase up to 1000 units/kg 

(Hoppe and Schwarz, 1993). Based on phosphorus retention in the total body and 

bone ash it was calculated that lg of inorganic phosphate from monocalcium 

phosphate was equivalent to 380-400 units of phytase. Lei et al. (1993a) based their 

response on growth performance and plasma alkaline phosphatase concentration of 

weanling pigs. 1000 units of phytase supported retention of l.lm g  P from a corn-soy 

diet, and was equivalent to 0.91mg from monodicalcium phosphate. The substantial 

difference in these two estimates indicate the need for further research in this area 

before phytase can be confidently substituted for inorganic phosphorus.

2.4.5.4 Effect of phytase on digestibility of other minerals

As previously described in Section 2.3, phytate complexes may be formed between 

phytic acid and other minerals, such as calcium, magnesium and trace minerals. 

During degradation of phytates by hydrolysis it is feasible that these minerals may be 

liberated and their digestibility improved. Increases of between 7 and 17 percentage 

units in calcium digestibility in response to phytase were reported in pigs of 20-25kg 

liveweight (Lantzsch and Wjst, 1992). In a series of experiments at the IVVO DLO 

in the Netherlands (Jongbloed et al., 1993), phytase supplementation to a range of 

dietary sources resulted in increases in digestible calcium of between 0.14 and 0.79 

g/kg. Further work showed that the increase in calcium digestibility was related to 

the dietary level of calcium, with the maximal increase (10.8 percentage units) 

obtained at the lowest level of calcium (4g/kg; Mroz et al., 1993).

Little information exists about the effects of phytase on trace mineral availability.
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Studies of Pallauf et al. (1992) showed that apparent digestibility of magnesium, zinc, 

copper and iron increased by 8-13, 7-13, 3-7 and 2-9 percentage units, respectively. 

Conversely, no effect of phytase on plasma magnesium, iron or copper concentration 

were found by Lei et al. (1993c) although plasma zinc concentration was increased.

2.4.5.5 Effect of phytase on digestibility of protein and amino acids

Interactions occurring between phytate and proteins in the digestive tract prevent the 

degradation of proteins by proteolysis, resulting in a decreased protein digestibility. 

By disrupting the phytate molecule during hydrolysis, phytase may cause phytate- 

protein bonds to be cleaved, allowing liberation of proteins for absorption. Proteases 

that may be present in the enzyme preparation may also exert an effect.

No effect of phytase on apparent total tract digestibility of nitrogen was observed by 

Nasi (1991). Other workers found an improved apparent digestibility of ileal nitrogen 

(p<0.01) and increased nitrogen retention when 800 units/kg phytase were used 

(Mroz et a l , 1991). Increased apparent ileal digestibility of methionine, arginine, 

(p <0.01), cystine, isoleucine and phenylalanine (p <0.05) was observed with addition 

of the enzyme. It was postulated that while the increased digestibility of individual 

amino acids may have reflected their increased availability for absorption, the 

increased luminal pool of orthophosphates may also have enhanced energy metabolism 

at the cellular level, thereby increasing active transport of amino acids across the 

basolateral membrane. Increases in digestibility of amino acids in this experiment 

were in the order of 3-6 percentage units, in contrast to later results where increases 

of 7-12 percentage unit increases in ileal digestibility of essential amino acids were 

observed (Officer and Batterham, 1992).

No improvement of nitrogen digestibility was detected when phytase was added to 

grower pig diets (Ketaren et al., 1991) although protein deposition rate was 

significantly increased with phytase (123 vs 108 g/day). One explanation was that the 

diets were so deficient in phosphorus that protein deposition was limited; this was 

overcome by the release of phosphorus caused by phytase.
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2.4.5.6 Effect of phytase on growth performance

Replacement of inorganic phosphates by phytase is possible only if growth is not 

compromised. Having established repeatable improvements in phosphorus 

digestibility, attention has more recently turned towards growth performance. 

Addition of 1450 phytase units/kg to a diet containing 1.6g/kg digestible phosphorus 

(4.2g/kg total phosphorus) resulted in an improved feed intake (802 vs 695 g/day; 

p< 0 .05 ), daily liveweight gain (529 vs 424 g/day; p< 0 .05) and feed conversion 

ratio of piglets (1.52 vs 1.65; p< 0 .05 ; Beers and Jongbloed, 1992). Similar 

improvements in feed intake (0.89 vs 0.81 kg/day), daily liveweight gain (0.54 vs 

0.45) and FCR (1.65 vs 1.8) were found by Young et al. (1993) when 1000 units of 

phytase/kg were used in a piglet diet containing 5.7g/kg total phosphorus.

No effect of phytase on carcase composition has so far been reported, although as 

previously described, increased protein deposition rate of pigs growing from 20kg- 

50kg liveweight was seen in response to phytase (Ketaren et al., 1993). In this 

experiment, improved growth rate (835 vs 741 g/day; P < 0 .05) and feed conversion 

ratio (2.16 vs 2.37; P< 0 .01) of pigs receiving phytase were also observed. In 

another experiment, addition of phytase partially overcame a reduced growth 

performance caused by low phosphorus (Cromwell et al., 1993). Growth of pigs 

receiving the 3g/kg phosphorus supplemented with phytase was 790 g/day, compared 

with 853 g/day of pigs receiving 5g/kg phosphorus.

The improved growth performance seen when phytase is added to phosphorus 

deficient diets has been associated with the re-establishment of normophosphataemia. 

When 2000 units/kg phytase were added to a phosphorus - deficient diet based on 

maize, rapeseed and barley diet fed to growing pigs, improved liveweight gain (505 

vs 414 g/day; p< 0 .05) was accompanied by an increase in blood phosphorus from

2.04 to 2.97 mmol/litre; Simoes -Nunes, 1994).
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2.4.5.7 Practical considerations of phytase application

The concept of using microbially-derived phytase to improve phytate-phosphorus 

availability is not a new one. However, application of the concept to diets of growing 

pigs has only relatively recently been realised, due to technological difficulties and 

economic concerns which still partly preclude its widespread use. More recently, 

improvements in microbial strain and efficiency have overcome some of the cost 

constraints. The main existing problem is the severe loss in activity at high processing 

temperatures. Pelleting of pig feeds is carried out in order to reduce dust and spillage, 

and for a possible improvement in digestibility. While phytase is stable up to 60°C, 

beyond this temperature, a dramatic loss in activity is observed. The feed industry is 

thus faced with the problem of retaining biological activity of enzymes applied to 

compound feed. One solution that has recently been adopted is application of the 

liquid enzyme after pelleting. Another option which extends from this is the use of 

phytase in liquid feeds. Phytase increased the phosphorus digestibility of a phytate- 

rich diet from 0.27 to 0.44; when the diet was soaked for 8-15 hours prior to feeding, 

phosphorus digestibility increased further to 0.52 (Kemme and Jongbloed, 1993).

In vitro studies of Hans and Wilfred (1988) indicated that hydrolysis of phytic acid 

in feedstuffs was related to incubation time. This would suggest that in practise, 

feeding frequency and level may reflect on the effectiveness of the supplemented 

microbial phytase. In growing pigs, plane of nutrition (2.3 or 2.8 x maintenance 

energy requirement) had little influence on the effect of phytase. However, feeding 

frequency influenced the apparent ileal digestibility of phytate (Mroz et al., 1994). 

In contrast, feeding frequency and level influenced phytase activity only to a minor 

extent in piglets (Kemme and Jongbloed, 1994). In spite of these differences, it 

appears that there is little interaction between phytase activity and age; thus the 

possibility exists to use phytase in the diet of breeding stock and piglets, as well as 

growing and finishing pigs.
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2.5 Overview and introduction to experimental work

Large amounts of microbially derived phytase can now be commercially produced, 

bringing it closer to economic feasibility as an alternative to inorganic phosphate. 

Perhaps the most meaningful aspect of work to date is the indication that performance 

can be maintained even in the absence of phosphate supplements. One could anticipate 

that if used correctly, phytase could largely replace inorganic phosphate, particularly 

in regions where soil phosphate levels sources are of concern.

Despite the increase in phytase research over the past few years, and the general 

acceptance of the enzyme as a tool for reducing phosphate outputs, some key areas 

of research remain unsolved. Variation in responses obtained between different groups 

of workers demonstrate the lack of standardisation across experiments. Basic design 

elements have not always been followed and the phytase has not always been applied 

correctly. For example, uniform distribution of the enzyme within the feed is difficult 

to ensure but is a prerequisite to valid experimental data. Underlying the differences 

in results obtained from many of the experiments is the lack of consensus about the 

phosphorus requirement of growing pigs, due to many of the reasons already 

discussed. Finally, few data exist which allow commercial evaluation of phytase. 

Calculations of the amount of inorganic phosphate that can be replaced by the 

enzyme, and of the optimum inclusion level of phytase remain vague.

These considerations laid the foundation of this research programme. A series of 

trials was undertaken to assess the potential of phytase; its effect on digestibility of 

phosphorus and other nutrients, optimum inclusion level, and effect on growth and 

bone development of growing pigs. An extensive range of response criteria, including 

apparent ileal and total tract digestibility, growth performance, carcase composition, 

and bone strength and mineralization, were used to establish the phosphorus 

requirement of growing pigs, to assess the effect of phytase on phytate -phosphorus 

availability, and finally, to establish the net effect of replacing inorganic phosphate 

with phytase in the diet of growing pigs.
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Chapter 3 General m aterials and m ethods

3,1 Introduction

This chapter describes the general materials and methods implemented during the 

experimental work. A total of four trials were carried out; two of which were 

metabolism trials (one involving cannulated pigs) and two growth trials. The 

metabolism studies were performed in order to look at the effect of Aspergillus niger 

phytase and Saccharomyces cerevisiae yeast on apparent ileal and total tract 

digestibility of phosphorus, and to determine an optimum dietary inclusion level of 

phytase, using total tract digestibility of phosphorus in growing pigs (25-60kg) as the 

criterion of response. The growth trials were undertaken in order to establish a 

dietary phosphorus requirement and to assess the effect of phytase on phosphorus 

availability using a range of criteria including growth, carcase composition, bone 

strength and bone mineralization as indicators of requirement and availability in 

young pigs weighing 10-25 kg and in growing pigs weighing 25-60kg.

3.2 Experimental diets

The experimental diets were formulated to contain low levels of phosphorus of which 

a high proportion was present as phytate-phosphorus, in order to maximize any 

response to the enzyme. Values of phytate-phosphorus were obtained from published 

tables (Jongbloed, 1987; table 3.1). In all experiments a basal ration was produced 

and the appropriate amount of enzyme was then added. For the first experiment 

involving cannulated animals, powdered titanium dioxide was mixed into the basal 

ration at a level of lg/kg as a dietary marker. With the growth trials, increasing 

levels of phosphorus were achieved by the addition of mono-ammonium phosphate. 

With the exception of phosphorus, all nutrients were included at or in excess of the 

ARC (1981) recommended levels.

63



3.2.1 Preparation and testing of the phytase

The enzyme used was prepared by Alltech Biotechnolgy Inc. using fermentation of 

a strain of Aspergillus niger (var ficuunr, NRRL 3135). The culture medium consisted 

of corn starch, sodium nitrate, magnesium sulphate, potassium chloride, ferric 

sulphate and sodium phytate. The dried preparation, containing fungal phytase and 

other enzyme secretions, was packaged in polythene and stored at -4°C. Specific 

activity of each enzyme batch was determined prior to incorporation into the diet, 

using an assay described in Section 3 .6 .7. Specific activity was determined at the 

University of Nottingham and verified at the University of Galway (Galway, Ireland). 

The acceptable variance was 5%. A  5% loss in activity was expected over 1 year 

under normal storage conditions.

3.2.2 Preparation and testing of the yeast

The yeast product was prepared by Alltech Inc. Live Saccharomyces cerevisiae 

(NCYC1026) were grown on a medium composed of ground corn, malt and cane 

molasses. The yeast cells were harvested and tunnel-dried. Viability was tested at the 

point of production (Alltech Biotechnology Center, Kentucky, USA) before 

incorporation into the diet. The final product, containing 5xl09 organisms/gram and 

some growth medium, was stored in polythene at -4°C.

3.2.3 Preparation of experimental diets

The basal feed ingredients were ground in a hammer mill (screen size 3.5mm) and 

then mixed in a one-tonne capacity vertical mixer. The diets were bagged into 25kg 

lots using conventional feed bags, and kept in a cool feed store until time of use. For 

the metabolism trials, titanium dioxide, yeast and phytase were added to the 

appropriate diets and mixed in a concrete mixer in 10kg batches prior to feeding. For
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the growth trials this was not practical as much larger quantities of feed were needed, 

thus the enzyme was added at the mill to the appropriate diets, along with the relevant 

amount of mono-ammonium phosphate.

3.2.4 Sampling of diets

Sampling of the diets was carried out throughout each experiment. Two samples each 

weighing approximately 200g were taken from representative bags. The samples were 

bulked and a sub-sample taken and stored at 5°C for laboratory analysis.

3.3 Experimental animals

The pigs used in these experiments were progeny of British Landrace boars 

backcrossed to British Landrace x Large White sows, supplied from the University 

of Nottingham pig herd. Health status of the animals was generally high; any illnesses 

encountered were dealt with according to veterinary and Home Office 

recommendations. Piglets were ear notched for identification, had their ‘eye’ teeth 

and tails cut and received an intra-muscular injection of an iron dextran solution at 

birth. Piglets were weaned at approximately 4 weeks of age and received a pelleted 

creep feed. After 4-5 weeks they entered the grower house where they were offered 

a standard grower diet ad libitum.

3.4 Housing of experimental animals

3.4.1 Pig metabolism trials

Prior to and between collection periods, animals were housed separately in holding
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pens containing a feeding trough and drinker. Ambient temperature was maintained 

at 18-22°C by thermostatically controlled fan heaters, and extractor fans were used 

to maintain airflow. Illumination was provided constantly in accordance with Home 

Office regulations for metabolism trials. Pens were cleaned daily. During collection 

periods the pigs were kept in adjustable metabolism crates with pvc-coated meshed 

floors which allowed drainage of water during washing of the cannula (figure 3.1).

3.4.2 Pig growth trials

For the first growth trial using young pigs, the animals were kept in separate holding 

pens of similar design to those used in the metabolism trial. Ambient temperature was 

20-25°C and extractor fans operated continuously. During the second growth trial the 

pigs were accommodated in larger holding pens with concrete floors. Ventilation was 

provided by extractor fans, and gas heaters were used to achieve an ambient 

temperature of 18-22°C.

3.5 Experimental procedure

3.5.1 Cannulation experiment

3.5.1.1 Preliminary treatment of animals

Female pigs weighing approximately 25kg liveweight were selected from the grower 

house and transferred to individual holding pens. 500g of the standard pig grower diet 

were offered twice daily; to this was added water in a ratio of 2:1 (weight water: 

weight feed). After 3 days all pigs were injected with 1ml of the antibiotic Tribrissen" 

48% (Trimethoprim +  Sulphadiazine) before morning feeding; this treatment was 

continued for the next 2 days in preparation for surgery. Animals were starved for 

24 hours preceding surgery, during which time water was offered ad libitum.
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Table 3.1 Phosphorus and phytate-phosphorus content of dietary ingredients

Ingredient Phosphorus g/kg Phytate P g/kg

Barley 3.9 2.5

Maize 2.6 1.7

Soya 50 6.8 4.2

Rapeseed meal 6.7 2.3

Spring peas 4.3 2.2

Wheat 3.3 2.4

Oatfeed - -

Dicalcium phosphate 180 -

Dried skim 10.0 -

Whey powder 6.6 -

Betamix 314 - -

Fish 66 33 -

Fat premix 2.0 -
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Figure 3.1 Design of metabolism crates
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3.5.1.2 Surgical procedure

The pigs, now weighing approximately 35kg liveweight were transferred to the 

surgery area and washed. Each was sedated with an intra-muscular injection of 

StresnilR at a rate of 4mg/kg followed 30 minutes later by an intravenous injection of 

Thiopentone at a rate of 1.5mg/kg. The vocal cords were sprayed with a 2% 

lignocaine solution. An endotracheal tube was inserted, through which a halothane/ 

nitrous oxide/ oxygen mixture was administered. The right side of the animal was 

shaved, washed with antiseptic solution and wiped with chlorohexidine.

The animal was secured to the operating table and a subcostal incision was made 

approximately 2cm from the last rib, through which the caecum and terminal ileum 

were expressed. A purse string suture was made in the terminal ileum, approximately 

10cm from the caecum, and the sterilised cannula inserted through an incision and 

exteriorised through a stab wound below the incision line. Thereafter the cannula was 

assembled and the peritoneum, muscle, subcutaneous tissue and skin were closed 

using iodine spray dressing between the skin layers.

3.5.1.3 Post-operative care of animals

Immediately after cannulation 0.7ml of Finadyne analgesic was administered intra

muscularly, and this was continued for 2 days after surgery. Tribrissen treatment was 

continued as previously described for a period of 4 days post-operatively. After 

recovery from anaesthesia, pigs were transferred to their holding pens where the 

ambient temperature was increased to 22-24°C. Water only was provided on the day 

of surgery; over the next two days up to 1 litre of milk replacer (Denkavit) was 

offered twice daily, and for the subsequent two days increasing amounts of the basal 

experimental diet were substituted into the meals. Thereafter, the amount of feed 

offered was gradually increased to 1200 grammes per day.

Every day throughout the trial the cannula and surrounding skin were washed with 

a diluted antiseptic solution and covered with talcum powder. The experimental period
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commenced 18 days after cannulation by which time the animals were readily 

consuming the feed offered. The trial then proceeded as described in Section 3.5.2.

3.5.2 Pig metabolism trials

3.5.2.1 Acclimatization

Upon arrival at the metabolism building the gilts were weighed and transferred to 

holding pens, and introduced immediately to twice daily feeding with the standard pig 

grower diet. The feeding scale used was that derived by Morgan (1972) based on the 

equation y =  0.816 +  0.021x (where y =  kg DM feed/day; x =  kg bodyweight; 

table 3.2). Animals were fed daily at 0800 hrs and 1600 hrs, with access at feeding 

time limited to 30 minutes per meal.

A summary of the procedure followed throughout the metabolism trials is given in 

appendix I. Following successful adaptation to the feeding conditions, each pig was 

assigned randomly to one of the experimental diets for a preliminary 10 day 

acclimatization period. On day 8 of the adaptation period, pigs were weighed and 

transferred to metabolism crates, in order to adapt them to the conditions inside the 

crate prior to the commencement of collection. An indwelling bladder catheter (Wame 

surgical products) was inserted into each pig to facilitate urine collection. The size 

of the catheter used depended on the liveweight of the pig; 14 gauge (5-15ml) was 

used for the first two collection periods and thereafter 16 gauge (10-15ml) was used. 

The catheter and the area around the vulva were disinfected with a dilute solution of 

Savlon, the catheter was inserted and the balloon inflated with sterile water injected 

through a tube running outside the catheter tube. Each catheter was connected to a 

polythene tube fastened to the side of the metabolism crate. The free end of the tube 

was inserted into a large urine bottle positioned at the rear underneath the crate.
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Table 3.2 Dailly feeding allowance of pigs during metabolism trials

Liveweight (kg) Feed (kg/day)

30-35 1.425

35-40 1.550

40-45 1.670

45-50 1.790

50-55 1.895

55-60 2.000

60-65 2.100

65-70 2.195

Figure 3.2 Structure of experimental periods (cannulation experiment)

Adaptation Faeces and urine collection Ileal collection

10 days 5 days 5 days
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3.5.2.2 Faeces and urine collection

Total faecal output was collected over a 5 day period using a marker-to marker 

technique. On day 10 of the adaptation period powdered indigo carmine dye was 

mixed into the afternoon feed at a level of 5g/kg. Collection of faeces commenced 

with the appearance of the dye in the faeces of each pig. A sheet of plyboard was 

fitted to the floor of the metabolism crate behind each animal onto which most of the 

faeces was deposited. Any faeces that was not deposited onto the board fell through 

the meshed floor and was collected from the underlying metal tray. Faecal output was 

collected twice daily (at feeding), accumulated in polythene bags and stored at -18°C. 

At the end of the collection period, faeces for each animal was thawed, weighed 

accurately and homogenised for 15 minutes in a Hobarts baker’s mixer. Duplicate 

subsamples (weighing approximately 150g) were collected into plastic cups and 

freeze-dried for analysis. The remainder of the faeces was discarded.

Urine collection commenced at 0900 hours on the day following the addition of the 

dye into the feed, and continued for 5 days, during which total urinary output was 

collected into the urine bottle containing 25ml of 50% sulphuric acid. Total urine 

output was weighed each morning and a 1% aliquot was transferred into a plastic 

beaker. The remaining urine was discarded, and the empty urine bottle was 

replenished with 25ml sulphuric acid. Samples of the urine from all 5 days were 

pooled and stored at -18°C.

On the 5th collection day, indigo carmine was again introduced into the afternoon 

meal, and collection was terminated as soon as the dye appeared in the faeces. In the 

first metabolism trial where cannulated pigs were used, the animals remained in the 

metabolism crates for a further 5 day ileal sampling period. In the second metabolism 

trial where total tract digestibility only was being measured, the pigs were weighed 

and transferred to the holding pens. The feeding level was adjusted according to the 

equation and the diet was changed according to the latin square design. A 10-day 

adaptation period was followed by the 5-day total collection as in period 1. This was 

repeated for periods 3 and 4.
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3.5.2.3 Seal sampling

Ileal sampling took place on alternate days during the 5-day collection period ie days

1,3 and 5. Ileal digesta samples were collected at 0, 4, 8, and 12 hours after the 

morning feed through the T-cannula barrel after releasing the plug. Samples were 

frozen immediately, freeze-dried and pooled for each animal, then ground finely and 

subsampled for analysis.

At the end of the collection period, the pigs were weighed and transferred to holding 

pens. The feeding level was adjusted according to the equation and the diet changed. 

The adaptation period of 10 days was followed by faecal and ileal collections as in 

period 1 (figure 3.2). This procedure was repeated for period 3.

3.5.3 Pig growth trials

3.5.3.1 Growth performance measurements

The first growth trial was carried out using 72 weaner piglets (36 male, 36 female) 

selected from the University pig herd at between 6-10kg liveweight. The piglets were 

transported to the experimental building where they were fed the standard grower 

feed ad libitum. All animals were weighed weekly; in addition those nearing the start 

or finish weight were weighed between weekly weighings. Each animal was assigned 

to its experimental diet when it reached 10kg liveweight, or on the first weighing 

subsequent to this, and each animal was deemed to have finished the trial when it 

reached 25kg liveweight or at the first subsequent weighing. During this time, 

sufficient feed was always available in each trough to satisfy the appetite of the 

corresponding pig. Fresh feed was offered every morning, and troughs were checked 

again in the evening, and replenished where necessary. Troughs were emptied weekly 

and any stale feed discarded. Feed intakes were recorded daily.
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In order to dispense with gender variation, the second growth trial used 72 boars, 

which were selected at weights between 18-26kg. The standard grower diet was fed 

until the pigs reached 25kg or the first subsequent weighing, thereafter the 

experimental diet was introduced and maintained until the pig reached 60kg or the 

first weighing after 60kg. The feeding procedure followed was the same as for the 

first growth trial.

3.5.3.2 Slaughter of the animals and collection of samples

On reaching the predetermined slaughter weight, pigs were starved for 24 hours 

preceding slaughter; then reweighed to obtain the starved liveweight, slap-marked and 

transferred to the University’s slaughter house where they were killed by electrical 

stunning and ex-sanguination. For the first trial analysis of the whole body was 

required, thus blood was collected into a polythene bag, and weighed. The alimentary 

canal was removed and weighed full, then cleaned, dried and weighed empty. The 

empty carcase was then weighed.

The right hind femur and the right third and fourth metatarsal bones were removed 

and sealed in individual plastic bags. Bones were stored frozen at -18°C. The empty 

carcase, blood and digestive tract were frozen prior to grinding in a Wolfking 

Mincer. Each pig was passed 3 times through the mincer to ensure thorough grinding, 

this also achieved sufficient mixing of the carcase to enable representative samples 

to be taken. Samples of approximately 150g were collected in duplicate into polythene 

pots and freeze-dried for laboratory analysis.

3.5.3.3 Carcase measurements

Pigs from the second growth trial were not used for whole-body analysis, and thus 

after slaughter conventional abattoir practises were followed. Carcases were chilled 

at 3°C for approximately 24 hours after slaughter and then weighed. The following 

linear carcase measurements were taken from the left side of the carcase:
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1 Length of the carcase - measured from the anterior edge of the symphysis 

pubis to the vascular impression on the anterior edge of the first rib while the 

carcase was hanging (figure 3.3)

2 Depth of the backfat plus the subcutaneous layer -

at its widest in the region of the shoulder (maximum shoulder)

at its thinnest in the region of the mid-back (minimum midback)

at its thinnest over the middle of the exposed cross-section of the 

m. gluteus medius (minimum gluteus medius)

at its thickest in the region of the loin at the anterior edge of the 

m. gluteus medius (anterior gluteus medius)

at its thickest in the region of the loin at the posterior edge of the 

m. gluteus medius (posterior gluteus medius)

3 Fat deposition at P I, P2, P3, - measured on the cut surface of the last rib 

(figure 3.4)

4 Degree of lean and fat deposition measured around the longissimus dorsi 

muscle of the carcase quartered at the last rib (figure 3.4);

A The greatest width of the muscle cross-section 

B The greatest depth of the muscle cross-section at right-angles to A 

C The depth of subcutaneous fat plus skin directly over B

Following the carcase measurements the left third and fourth metatarsals were 

removed, separated and sealed in polythene bags for storage at -20°C.
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Figure 3.3 Linear carcase measurements taken during Experim ent 3

1 length of carcase

mm = mlmimum midback

ms = maximum shoulder

pgm posterior gluteus médius

mgm = minimum gluteus médius

agm = anterior gluteus médius



Figure 3.4 Measurements taken on the cut surface of the Longissim us dorsi

muscle during Experim ent 3
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3.6 Laboratory analysis

Throughout the project, conventional analytical techniques were employed with slight 

modifications where appropriate. Analysis of samples of feed, enzyme, faeces, urine, 

ileal digesta, ground whole body and bone were in duplicate. The upper limit of 

variation was 5% beyond which the analysis was repeated in duplicate.

3.6.1 Proximate analysis

Freeze-drying of ileal digesta and faeces was achieved by transferring the frozen 

samples to a freeze-dryer for 10 days (digesta) or 7 days (faeces) during which a 

constant dry weight was achieved. Samples of the diets, freeze-dried ileal digesta and 

freeze-dried faeces from the first metabolism trial were analyzed for proximate 

components (dry matter, ether extract, crude fibre, ash and crude protein; N x 6.25) 

according to the methods outlined by the Association of Analytical chemists (AOAC, 

1980). Samples of diet from the second trial were likewise subjected to proximate 

analysis. Freeze-dried faeces from the second metabolism trial were analyzed for dry 

matter, ash and crude protein (N x 6.25).

Feed samples from the growth trials were not analyzed for proximate components as 

digestibility of these nutrients was not being measured.

3.6.2 Gross energy determination

A Gallenkamp ballistic bomb calorimeter was used to determine gross energy of 

duplicate subsamples of feed, dried faeces and ileal digesta. Gross energy of the diets 

was confirmed using a Parr 1241 adiabatic oxygen bomb calorimeter.
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3.6.3 Titanium analysis

Absorbance of titanium was measured at 408nm against standards prepared for a 

O.lmg T i02/ml solution using a Pye Unicam Ultra-violet spectrophotometer which 

was blanked using a 10% solution of sulphuric acid (Jagger, 1987).

3.6.4 Mineral analysis

3.6.4.1 Preparation of samples for mineral analysis

Phosphorus and calcium analysis of all diets from the four trials and from each batch 

of phytase used throughout the trials was carried out. Phosphorus and calcium 

analysis of faeces and urine was carried out for the metabolism experiments. In 

addition, phosphorus and calcium content of the yeast and of the ileal digesta was 

measured in experiment 1, and of the samples of the ground whole body in 

experiment 3. The standard AO AC (1980) method of determination for organic 

materials was followed, using approximately 2g of sample weighed out accurately.

3.6.4.2 Preparation of urine samples

The level of phosphorus in the diet was low compared to the animal’s requirement 

and consequently a low concentration of phosphorus was expected in the urine. To 

avoid being unable to detect the urinary phosphorus, approximately 40g of fresh urine 

was used for phosphorus analysis. The urine was weighed out accurately into a glass 

beaker, and the standard AOAC technique followed.
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3.6.4.3 Preparation of bone samples

Following fat extraction as described in Section 3.6.6, the whole bone was ashed at 

580°C, cooled and weighed accurately to obtain the ash weight. Duplicate samples 

of the ashed bone were prepared for phosphorus and calcium analysis using the 

procedure described in Section 3.6.3.2.

3.6.4.4 Measurement of phosphorus content

Preparation o f phosphorus standards Aliquots of potassium phosphate (K2H2P 0 4) 

standard solution containing 0.5, 0.8, 1.0 and 1.5 mg phosphorus were transferred 

to 100 ml volumetric flasks. 20ml molybdovanadate reagent was added, and the 

solution diluted to volume with distilled water, shaken thoroughly and allowed to 

stand for 10 -30 minutes. These standards were used in the determination of faeces, 

ileal digesta and bone samples. For determination of phosphorus content of the urine 

a series of standards having a lower concentration (0.1, 0.2, 0.3, 0.4, 0.5 mg) of 

phosphorus was prepared.

Construction o f the standard curve A Pye Unicam UV Spectrophotometer was used 

to measure colorimetrically the per cent transmission of each standard solution. The 

wavelength was set at 400 nm and the 0.5 mg standard injected into the cell. The 

spectrophotometer reading was adjusted to 100, the cell was emptied and the 0.8mg 

standard injected. The new reading, which was less than 100, was recorded and this 

was repeated for the 1.0 and the 1.5 standard. For the urine samples, the most dilute 

standard of O.lmg was set at 100%T and subsequent readings taken of the more 

concentrated standards (0.2-0.5mg). For each set of standards a simple linear 

regression was generated and the equation of the line used to predict the amount of 

phosphorus in the sample aliquot.

Estimation o f phosphorus content o f the samples After preparing the samples as in 

Sections 3.6.3.1 and 3.6.3.2, an aliquot of each solution was transferred to a 100ml 

volumetric flask and 20ml of molybdovanadate solution was added. The volume of
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the aliquot varied from 0.1-3.0 ml, depending on the nature of the sample. Bone 

analysis required only 0.2ml aliquots to bring the resulting transmission within the 

range of the standards, whereas urine required up to 5ml in order to obtain a 

detectable transmission. The size of the aliquot taken was, however, kept constant 

between like samples. The solution was made up to volume with distilled water, 

shaken thoroughly, and left to stand for 10-30 minutes.

The resulting solutions were injected into the spectrophotometer and the sample 

reading recorded. Each duplicate sample was injected twice into the 

spectrophotometer or until a constant reading was obtained. The reading obtained was 

used to calculate the amount of phosphorus (mg) in the corresponding sample using 

the equation of the line generated from the standard curve. This in turn was used to 

calculate the amount of phosphorus in the original sample using the equation :

% Phosphorus = mg phosphorus in aliquot/ (g sample in aliquot x 10)

3.6.4.5 Calcium analysis

Prior to addition of ammonium molybdovanadate to the samples, a 10ml aliquot was 

collected for calcium analysis using atomic absorption (Varian SpectraAA 20) at a 

wavelength of 422.7nm. The standard range was 4-40ppm; some samples had to be 

diluted to T in 100 in order to achieve a reading between this range.

3.6.5 Determination of bone breaking strength

3.6.5.1 Preparation of bones for breaking strength determination

Bones were defrosted to room temperature before breaking tests. Extraneous tissue 

was removed with a blunt scalpel, taking care not to scratch the surface of the bone.
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Figure 3.5 Bone measurements taken during Experim ents 3  and 4
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During the dissection, the bones were kept moist in a solution of 0.9 molar saline. 

The third and fourth metatarsals of the piglets from the first growth trial were 

dissected apart in the laboratory; the metatarsals from the larger pigs of the second 

trial were separated at the slaughter house, following their removal from the carcase.

Bone length (1), the diameter across the midshaft of the bone (y) and the diameter 

perpendicular to y (z) were measured using vernier callipers (figure 3.5).

3.6.5.2 Flexure test

An Instron Universal testing machine (model 1140) was used to determine the 

maximum force that could be withstood by each bone. A force was applied at a 

constant speed of lOOmm/min to the bone supported at each end, and a chart recorder 

set at 0.8mm/second was used to plot the force deformation curve. The test was 

stopped when the curve levelled off or reached a peak. This was considered to be the 

maximum force that could be withstood as although most bones did not break apart 

at this point, the bone failed to withstand any increases in force.

The femurs and the third and fourth metatarsals of the young pigs in the first growth 

trial (Experiment 3), and the third and fourth metatarsals of the growing pigs in the 

second growth trial {Experiment 4) were subjected to the flexure test.

3.6.6 Preparation of bones for mineral analysis

After mechanical testing, bones were autoclaved at 116°C at 1.3 kg/cm2 for 10 

minutes, and all remaining extraneous tissue was removed using a scalpel. Fat 

extraction of the third and fourth metatarsals was carried out using ether extraction 

(AOAC, 1980). This was impractical for the femurs due to their large size; these 

bones were therefore ’snap-frozen’ in liquid nitrogen for 60 seconds, and crushed in
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a purpose-built hydraulic apparatus. The whole crushed bone was then agitated for 

24 hours with a petroleum ether to remove fat. The whole femur, and the whole third 

and fourth metatarsals were ashed for 5 hours at 580°C and used for phosphorus and 

calcium determination as described in Sections 3.6.3  and 3.6.4.

3.6.7 Phytase activity

Phytase activity was measured by monitoring the release of inorganic phosphate from 

phytate using a Spectrophotometer at 335nm, as described Simons et al., (1990). 1 

unit was defined as the amount of enzyme which liberated 1/xmol of phosphate from 

phytate in 1 minute at 37°C and pH 5.5.

3.7 Calculation of results

3.7.1 Calculation of digestibility results

Apparent total tract digestibility in the digestibility studies, apparent digestibility 

of nutrients as opposed to true digestibility was measured, as endogenous losses were 

not sequestered from faecal and urinary losses. Apparent total tract digestibility of 

each nutrient was calculated as a coefficient using the formula:

Digestibility = ((FI x Nf) - (FO x N * » /(H  x Nf)

where FI 

FO

Nf

N fc

total feed intake during collection period 

total faecal output during collection period 

nutrient concentration of the feed 

nutrient concentration of the faeces
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Apparent ileal digestibility apparent ileal digestibility coefficients 

calculated using the formula:
were

Digestibility 

where Nd 

Nf 

Md 

Mf

1 -((Nd x Mf) /  (Md x Nf)) 

nutrient concentration in the digesta 

nutrient concentration in the feed 

marker concentration in the digesta 

marker concentration in the feed

3.7.2 Calculation of mineral balance

The amounts of phosphorus and calcium retained were determined by subtracting 

urinary and faecal losses from the respective intakes during the collection period. 

These were expressed as absolute amounts (g), percentage of intake (I %), and 

percentage of that digested (Dg%).

3.7.3 Calculation of growth results

Mean daily feed  intake from the recorded daily feed intake, the total feed 

consumed during the time on test was calculated and divided by the number of 

days on test to give the mean daily feed intake

Average daily liveweight gain was obtained from the slope of the linear 

regression of liveweight against ‘days’

Feed conversion efficiency was calculated by dividing the total feed eaten during 

the experimental period by the total liveweight gain over the same period.
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3.8 Statistical analysis

3.8.1 Pig metabolism trials

A latin square design was used for the two metabolism trials. The first experiment 

consisted of a replicated 3 x 3  latin square, having 3 treatments and 3 periods; the 

second used a triplicated 4 x 4  design with 4 treatments and 4 periods. Digestibility 

and balance data were subjected to analysis of variance using Genstat 5 (Lawes 

Agricultural Trust, 1984) to test for the significance of differences between the 

treatment means. Effects of treatment, period and pig were tested, and a blocked 

structure used to test for interactions between pig and period.

In the second metabolism trial, where the optimum level of phytase inclusion was 

being investigated, apparent phosphorus digestibility and retention were regressed 

against enzyme level (units/kg feed). Linear (y =  a +  bx) and curvilinear ( y =  a 

+  bx +  cx2) models were produced by genstat 5, and a probability value denoting 

the goodness o f fit of each line was generated.

3.8.2 Growth trials

For the growth experiments, analysis of variance was carried out to test effects of 

phosphorus level, phytase sex and the interactions on growth performance parameters. 

For the bone strength, bone mineral and carcase mineral data, analysis of covariance 

using ‘slaughterweight’ and ‘days on test’ as covariates was performed. Use of 

covariates was in order to dispense with the differences due to different finishing 

weights of the pigs, and due to the fact that some were more mature than others 

although the finish weight may have been equal. For the analysis of carcase 

measurements, finish weight was used as the sole covariate, as the amount of time 

spent on test by the animals was confounded with the differences in feed intake as a 

result of diet differences, and was anticipated to have a direct effect on measurements 

of fat and lean taken from the carcase.
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Chapter 4 Experiment 1 - Effect o f phytase and  

yeast on apparent digestibility o f  

phosphorus in growing pigs

4.1 Introduction

In order to provide a basis for further research it was considered necessary to conduct 

a pilot trial to test the efficacy of dietary agents that reportedly improve phosphorus 

availability. Enzymic hydrolysis of phytates has been shown to increase the apparent 

digestibility of phosphorus and other nutrients associated with phytates, such as 

calcium and proteins. There may also be a beneficial effect of dietary yeast on 

phosphorus digestibility. Fermentation has formerly been associated with the hind-gut, 

but recent work (Dierick, 1989) indicates that some fermentation may occur anterior 

to this site. By using yeast to increase fermentation there may be an opportunity to 

liberate phosphorus from phytate before it reaches its site of absorption in the small 

intestine, and thereby improve its availability in the digestive tract. Furthermore, 

alteration of fermentation patterns in the large intestine and concomitant release of 

bound phosphorus from the soluble fibre with which it is associated, could promote 

any absorption of phosphorus that may take place beyond the ileum at this site.

In the experiment reported here, a high-phytate diet was used to study the effects of 

phytase on the dietary availability of phosphorus and other nutrients associated with 

phytates, and to determine whether an alteration in fermentation induced by dietary 

yeast influenced availability of phosphorus in the gut, using apparent digestibility as 

an indicator of dietary availability. Determination of apparent ileal and total tract 

digestibility of nutrients was made possible by using surgically modified animals fitted 

with a simple T-piece cannula. It was hoped to achieve an insight into the action of 

the dietary agents, and to the site of absorption of the nutrients, particularly 

phosphorus.
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4.2 Materials and Method

4.2.1 Experimental design

The experiment utilised a replicated 3 x 3  latin square, consisting of 6 pigs tested 

over three periods. The treatments were:

C control; unsupplemented basal diet

P basal diet +  2.5g phytase/kg diet

Y basal diet +  5g yeast/kg diet

The design of the latin square is given in figure 4.1

4.2.2 Animals

Six gilts weighing approximately 25 kg liveweight were used. A simple T-piece 

cannula was inserted into the terminal ileum of each animal under standard operating 

procedures, as described in Section 3.5.1.2 o f the materials and methods.

4.2.3 Diet

The basal diet was barley based and was formulated to contain a relatively low level 

of phosphorus (4.67 g/kg) with approximately half (2.34g/kg) present in the form of 

phytate phosphorus. The composition and nutrient specification of the basal diet are 

given in tables 4.1 and 4.2. Crude fibre content of the diet was relatively high in 

order to maximize response to the yeast.

Phytase produced by Aspergillus niger (\avficuum) having an activity of 400 units/g 

was added to the feed at a level of 2.5g/kg freshweight, providing a resultant activity 

of 1000 units/ kg feed.

88



Figure 4.1 Latin square design of experiment

Period

Pig I II h i

1 y c p

2 c p y

4 p y c

Period

Pig I II h i

6 y c p

3 c p y

5 p y c



Table 4.1 Formulation and phosphorus/phytate content of experimental diet

Ingredient g/kg phosphorus (g/kg FW) total phosphorus 

contribution to diet

phytate phosphorus (%) phytate-phosphorus 

contribution to diet

Barley 615 3.9 2.34 64 1.50
Soya 50 175 6.8 1.16 62 0.71
Rapeseed meal 60 6.7 0.37 35 0.13
Fat 50% premix 100 - - - -
Soya oil 25 - - - -
Betamix 314 12.5 - - - -

Fish 66 10 44 0.44 - -

Dicalcium phosphate 2 180 0.27 - -
Synthetic lysine 0.5 - - - -

Total 1000 4.67 2.34
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Table 4.2 Nutrient specification of experimental diet

Nutrient g/kg freshweight

Digestible energy (MJ/kg) 14.14

Crude protein 185.58

Oil 68.79

Crude fibre 49.19

Lysine 10.26

Methionine 3.12

Methionine + cystine 6.47

Threonine 6.74

Isoleucine 7.83

Tryptophan 2.45

Leucine 13.14

Histidine 4.33

Phenylalanine +  tyrosine 15.01

Valine 9.22

Phenylalanine 4.01

Ash 53.08

Calcium 7.05

Phosphorus 4.67

Salt 3.63

Linoleic acid 13.44



The yeast used was a strain of Saccharomyces cerevisae (NCYC1026), which contained 

approximately 5 x 109 organisms/g. This was added to the basal diet at a level of 5g 

per kg feed.

Powdered titanium dioxide (Ti02) was used as a marker for the ileal digesta. This 

was added to the feed at a rate of lg/kg freshweight.

4.2.4 Procedure

Following an initial post-operative recovery period, the treatment levels of feed were 

introduced and maintained for a 10-day acclimatization period, and thereafter 

throughout the First collection period of 10 days as described in Section 3.5.2  of the 

preceding chapter. Total faeces and urine were collected for 5 days, followed by a 

5-day ileal sampling period during which digesta was collected through the cannula 

four times daily on alternate days. This procedure was repeated for periods 2 and 3.

4.2.5 Statistical analysis

Digestibility data were subjected to analysis of variance (Genstat 5) to test for the 

significance of the difference between the treatment means, and to test for the 

significance of the difference between ileal and total tract digestibility.
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4.3 Results

4.3.1 Health of the animals

Problems of cannula leakage occurred, particularly towards the end of the trial as 

increasing levels of feed imposed a stress on the gut around the site of the cannula. 

A full health report is given in Appendix II. Cannula leakage resulted in the loss of 

2 of the animals before the end of the trial. In these cases, the mean digestibility 

values were based on the surviving animal for the treatment.

4.3.2 Analysis of the diet

Results from the laboratory analysis of the diet are shown in table 4.3. The actual 

phosphorus level was higher than that predicted during ration formulation (5.67 g/kg 

DM as opposed to 5.25 g/kg), which meant that the level of deficiency aimed for at 

the start of the trial was not wholly achieved.

4.3.3 Analysis of phytase and yeast

Mean phytase activity as measured under the standard assay procedure was 415 

units/g (range 404-445 units; n=8). The phosphorus and nitrogen content of the 

phytase and yeast are given in table 4.4. These levels did not effect the overall dietary 

levels of phosphorus and nitrogen in the experimental diets.
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Table 4.3 Laboratory analysis of experimental diet

Nutrient g/kg dry matter

Dry matter (%) 89.0

Gross energy (MJ/kg) 19.98

Fat 79.28

Protein (N x 6.25) 184.42

Crude fibre 50.56

Phosphorus 5.67

Calcium 7.33

Ash 58.26

Table 4.4 Nitrogen and phosphorus content of 

phytase and yeast

yeast(n=5) phytase (n=5)

Nitrogen 23.4% 33%

Phosphorus 0.13% 0.24%



4.3.4 Phosphorus digestibility

A summary of the apparent ileal and total tract digestibility values is presented in 

table 4.5. Addition of phytase resulted in an increased ileal digestibility of phosphorus 

from 0.259 to 0.387 (p=0.094). This could be ascribed to hydrolysis of phytates 

occurring anterior to the ileum. Total tract digestibility was increased from 0.483 to 

0.632 (p=0.074); a larger difference than was observed at the ileum (figure 4.2), 

suggesting that phytate hydrolysis was occurring further along the digestive tract. In 

each treatment case, relatively large differences in ileal and total tract values 

suggested the occurrence of post-ileal phosphorus absorption. There was no notable 

effect of yeast on either ileal or total tract phosphorus digestibility.

Values of phosphorus intake, faecal output, and digestibility obtained for each animal 

are given in Table 4.6. Pigs receiving phytase had a significantly lower phosphorus 

concentration in the faeces (1.121%, vs 1.627 control and 1.622 yeast; p =  0.05, sed 

=  0.171), which was reflected in the total faecal phosphorus excretion which, during 

the 5 day collection period was considerably lower for pigs fed the phytase diets 

(16.67g, vs 26.41g control and 23.72g yeast; p =  0.018, sed =  2.247).

4.3.5 Urinary phosphorus excretion

Urinary phosphorus excretion was low, varying from less than 30mg/litre up to 500 

mg/litre, resulting in a 5-day output that ranged from less than 0.15g up to 4.85g. 

The urinary phosphorus concentrations across all periods for the four pigs that 

completed the trial are shown in table 4.7. Statistical analyses were not appropriate 

as in some cases urinary concentrations were so low as to make an accurate 

determination of the phosphorus output infeasible. However, it could be seen that for 

each animal, phytase addition resulted in an increased output of urinary phosphorus.
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Table 4.5 Deal and total tract digestibility of nutrients

Treatment means P sed

Control Phytase Yeast

Ileal

Phosphorus 0.259 0.387 0.283 0.094 0.054

Nitrogen 0.553 0.681 0.699 0.077 0.064

Calcium 0.479 0.492 0.483 0.985 0.078

Total Tract

Phosphorus 0.483 0.632 0.478 0.074 0.070

Nitrogen 0.814 0.855 0.840 0.076 0.017

Calcium 0.660 0.652 0.652 0.677 0.049

Dry matter 0.784 0.794 0.797 0.745 0.016

Gross energy 0.772 0.784 0.773 0.768 0.017

Ether extract 0.706 0.736 0.771 0.273 0.039
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Figure 4.2 Effect of phytase and yeast on apparent ileal and 

total tract phosphorus digestibility
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Table 4.6 Phosphorus balance of experimental animals

Treatment P intake 

(g)

% P in  
faeces

P excreted 
in faeces (g)

Total tract 
digestibility

%P in 
digesta

y 46.006 1.330 19.010 0.587 0.860
c 46.006 1.325 19.328 0.580 0.689
c 36.484 1.350 14.476 0.603 0.800

p 34.363 1.144 9.402 0.725 1.193

p - - - - -

y 22.998 1.313 9.288 0.598 0.885

c 49.568 2.280 35.536 0.283 0.820

p 53.130 0.769 10.872 0.795 0.695

p 53.130 1.220 20.430 0.616 0.320

y 41.406 1.800 24.990 0.397 1.150

y . - - -
c 49.568 1.200 19.407 0.615 0.290

p 58.769 1.590 34.426 0.414 1.170

y - - - - -

y 62.331 2.040 34.536 0.446 1.060
c 56.362 1.780 34.507 0.398 1.080
c - - - - -

p 37.992 1.113 17.291 0.552 1.450



Table 4.7 Urinary phosphorus excretion of 

experimental animals

Pig Treatment mg P/litre 5-day output

(g)

Period I

1 y 280 3.254

2 c <  30 <0.414

3 c <  30 <  0.494

4 p 160 0.801

5 p - -

6 y < 30 <0.150

Period II

1 c 170 0.272

2 p 60 0.964

3 p 60 0.678

4 y 60 0.534

5 y - -

6 c 130 1.369

Period III

1 p 210 2.636

2 y - -

3 y 60 0.688

4 c 60 0.688

5 c - -

6 p 500 4.489
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4.3.6 Calcium digestibility

Effects of phytase and yeast on apparent calcium digestibility are presented in table 

4.8. There were no discernable effects of either phytase or yeast on ileal or total tract 

calcium digestibility (P >  0.10). Total tract digestibility of calcium was significantly 

higher than ileal digestibility (p < 0.001).

4.3.7 Nitrogen digestibility

Nitrogen digestibility coefficients are presented in table 4.9. Addition of phytase 

resulted in an increased ileal nitrogen digestibility from 0.553 to 0.681 (p=  0.077) 

and an increased total tract nitrogen digestibility from 0.814 to 0.855 (p=  0.076; 

figure 4.3). Dietary yeast inclusion caused an increased ileal nitrogen digestibility 

from 0.553 to 0.699, possibly due to stimulation of proteolytic bacteria since yeast 

itself is not actively proteolytic. This increase was not reflected in the total tract 

digestibility value, which, although higher than the ileal digestibility (0.84 vs 0.699) 

was not significantly higher than that obtained from pigs fed the control diet (0.814).

4.3.8 Digestibility of dry m atter, gross energy, and ether extract

Increases in digestibility of dry matter, gross energy and fat with yeast and phytase 

addition were small and non-significant, results are summarized in table 4.10. It was 

not possible to measure the gross energy and fat content (ether extract) of ileal digesta 

due to small amount of sample remaining from other laboratory analyses. 

Furthermore, determination of dry matter digestibility at the site of the ileum was 

inappropriate due to the extreme variations in the nature of the digesta which ranged 

from semi-solid to liquid.
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Table 4.8 Calcium digestibility

Pig DO. T reatm ent C a

intake (g)

% C a in 

faeces

Period I

1 y 38.833 0.928

2 c 38.833 .920

3 c 30.796 .934

4 P 29.007 1.012

5 P - -

6 y 19.417 0.892

Period  II

1 c 41.839 0.850

2 p 44.846 0.478

3 p 44.846 0.654

4 y 34.950 0.928

5 y - -

6 c 41.839 0.776

Period  III

1 p 49.606 0.990

2 y - -

3 y 52.612 0.754

4 c 47.602 0.764

5 c - -

6 p 33.555 0.901

C a excreted T otal trac t % C a in Ileal

in faeces (g) digestibility digesta digestibility

13.26 0.659 0.614 0.455

13.42 0.654 0.558 0.381

10.015 0.675 0.402 0.580

8.347 0.712 1.270 0.356

6.29 0.676 0.690 0.563

13.248 0.683 0.584 0.352

5.069 0.887 0.354 0.810

16.443 0.633 0.982 0.377

12.881 0.632 0.736 0.585

13.227 0.684 0.818 0.481

21.434 0.568 0.654 0.488

12.765 0.757 0.726 0.355

17.467 0.633 0.674 0.540

11.691 0.652 0.654 0.567



Table 4.9 Deal and total tract digestibility of nitrogen

Pig no. Treatment Ileal Total tract

Period I

1 y 57.50 79.77

2 c 47.48 76.71

3 c 35.83 79.10

4 P 73.78 84.80

5 P - -

6 y 71.95 81.61

Period II

1 c 50.98 82.49

2 p 77.37 86.35

3 p 45.42 86.78

4 y 78.07 82.03

5 y - -

6 c 68 82.73

Period III

1 p 62.35 84.72

2 y - -

3 y 66.77 89.10

4 c 64.64 83.60

5 c - -

6 p 75.90 85.59
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Figure 4.3 Effect of phytase and yeast on apparent ileal 

and total tract nitrogen digestibility
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Table 4.10 Total tract digestibility of dry matter, gross energy 

and fat (ether extract)

Pig no. Treatment Dry matter Gross energy Ether extract

Period I 

1 y 0.793 0.778 0.715

2 c 0.789 0.775 0.712

3 c 0.804 0.761 0.723

4 p 0.840 0.834 0.824

5 p - - -

6 y 0.796 0.775 0.955

Period II

1 c 0.790 0.775 0.720

2 p 0.823 0.808 0.713

3 p 0.790 0.768 0.689

4 y 0.776 0.752 0.726

5 y - - -

6 c 0.782 0.766 0.671

Period III

1 p 0.754 0.743 0.694

2 y - - -

3 y 0.819 0.791 0.752

4 c 0.771 0.778 0.704

5 c - - -

6 p 0.731 0.717 0.675
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4.3.9 Growth performance

Liveweight changes of the individual animals during each period are presented in 

table 4.11. Due to the surgical modification of the animals, and their periods of 

confinement in metabolism crates, growth performance was substantially lower than 

would be expected in a commercial environment.

4.4 Discussion

4.4.1 Cannulation of experimental animals

Cannulation of the pigs enabled a comparison of fore and hind-gut digestion and gave 

insight into the sites of action of the dietary treatments. Cannulation of the small 

intestine allows many collections of digesta from the same animal and avoids the 

effects of slaughter on epithelial cell loss. In the duodenum, the liquid phase flows 

much faster than the solid phase, a phenomenon associated with gastric emptying 

(Low et al., 1978). It was therefore necessary to obtain samples at regular intervals 

after feeding in order to achieve steady state conditions. In this trial, sedimentation 

due to the fibrous nature of the diet caused difficulties in obtaining a representative 

sample of digesta.

Food intake, growth, and feed conversion efficiency have been shown to be reduced 

by the insertion of simple T-piece cannulae. (3%, 6% and 4% respectively; 

Livingstone, 1982). Cannulation could affect the microbial ecology of the gut, the 

anaerobic conditions at the site of the cannula and perhaps even the digestive 

processes. Unavoidable leakage of digesta around the site of the cannula exacerbates 

these changes. Alternative methods for the collection of ileal digesta include the re

entrant cannula, the ileo-colic post valvular procedure, and the ileo-rectal anastomosis 

technique; these have been reviewed by Jagger (1987).
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Table 4.11 Liveweight changes during metabolism experiment

Liveweight (kg)

Pig Period I Period II Period III

Adaptation Collection Adaptation Collection Adaptation Collection

I 32.5 38 45 50 65 73

2 33 38 47 57 - -

3 32 39 45.5 52.5 62.5 72

4 24 27.5 37 44 53 63

5 30 33 - - - -

6 32 38 40 50 59 68
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The nature of this experiment made it impractical to use more than 3 treatments as 

cannula leakage was noticeable by the end of the third collection period due to 

increased weight of digesta. Although it has been suggested that an acclimatization 

period of 10 days may not be enough for dietary adaptation, a longer period would 

have meant that effects of age on phosphorus requirement may have become apparent. 

The animals were not being adapted to a wholly new diet as the basal ingredients 

remained constant, and in this case a 10 day adaptation was probably sufficient.

4.4.2  Use of apparent digestibility

Apparent digestibility is not generally considered as being an accurate indicator of 

phosphorus availability. However, in this experiment a low phosphorus, high phytate 

diet was used in order to minimise endogenous losses. Indeed, it can be assumed that 

only the obligatory amount of endogenous phosphorus was lost, which consisted of 

the phosphorus secreted with gastric, pancreatic, bile and intestinal juices. Obligatory 

endogenous losses in the faeces has been estimated at 10mg/kg/day under normal 

feeding conditions (Guéguen and Perez, 1979). The overall importance of these losses 

to gastro-intestinal phosphorus turnover was therefore minor. Thus, because 

phosphorus absorption across the gut wall was not regulated under the conditions of 

a low phosphorus level, apparent digestibility could be used as a realistic indicator 

of dietary phosphorus availability.

4.4.3 Diet

The purpose of using a high phytate diet was to maximize response to the phytase, 

similarly, a high relatively level of crude fibre was used to maximize response to the 

yeast. Use of a low phosphorus diet was in order to reduce endogenous losses to 

those which were obligatory. It could be assumed that approximately one half of the 

dietary phosphorus in the control diet was able to be utilized. This was confirmed by
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total tract digestibility results of pigs on the control diet; mean phosphorus 

digestibility was 0.48 which corresponded to 2.30 g/kg of digested phosphorus 

(compared with 2.34 g/kg non-phytate phosphorus which was estimated to be the 

amount of digestible phosphorus).

Diets were fed in meal form because effects of pelleting on phosphorus digestibility 

were uncertain. Mechanical disruption of the cell walls of cereals releases intrinsic 

phytase from the globoid bodies into contact with phytate (Pointillart, 1993) and this 

may have confounded the digestibility results.

4.4.4  Experimental design

The latin square design allowed a relatively large number of replicated observations 

from few animals. The experiment used six gilts in a duplicated 3 x 3  latin square, 

from which 18 replications were achieved. Few animals were used because of the 

complexity of cannulation. However, this meant that sensitivity of the comparison of 

means was reduced because the main effects of treatments were compared to the mean 

square for animals within the treatment, which could be inflated by positive 

correlations among repeated observations (Gill, 1986). A coefficient of variation in 

digestibility of around 8-10% was expected, based on results of a previous trial (Cole 

et al., unpublished data), thus, in order to detect a 10% difference in digestibility 

with 80% certainty, a minimum of 12 replicates were required.

Actual coefficients of variation encountered in digestibility results deviated widely 

from the expected 8-10%; variation in ileal digestibility being generally much larger 

than between total tract digestibility. For example, coefficient of variation for ileal 

phosphorus digestibility was 52.5%, whereas for total tract phosphorus digestibility 

was 9.1 %. It is accepted that large variation in phosphorus metabolism exists between 

animals, and present results indicated that this variation should be given due 

consideration when formulating phosphorus allowances.
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4.4.5 Phosphorus balance

When phytase was added to the basal diet a 50% improvement in apparent ileal 

digestibility of phosphorus was obtained, from 0.26 to 0.39. In a similar cannulation 

experiment (Simons eta l., 1990) an increased ileal phosphorus digestibility from 0.20 

to 0.46 was observed, and it was concluded that approximately 50% of the phytic 

phosphorus present in a maize/soybean diet was made available by use of the enzyme.

Results were similar to those o f Jongbloed et al. (1992) who also used 6 pigs fed 

diets based either on corn-soybean or tapioca-hominy feed. Addition of phytase to the 

former increased ileal digestibility from 0.26 to 0.45, and with the tapioca-hominy 

diet an increase from 0.16 to 0.46 was observed. Total tract digestibility increased 

from 0.13 to 0.43 (maize-soya) and from 0.27 to 0.55 (tapioca-hominy).

Supplementation of yeast into the control diet gave no notable improvements in either 

ileal or total tract phosphorus digestibility. It has been suggested that the phytase 

produced by Saccharomyces may result in increased phosphorus availability but our 

results did not indicate this. On the other hand, the expected increase in digestibility 

would be less than that achieved with phytase, suggesting that greater replication may 

have been needed.

The reduction in faecal phosphorus concentration obtained with phytase resulted in 

a 37% lowering of total faecal phosphorus output, and was similar to the reduction 

of 37% obtained by Simons et al. (1990) using pigs of a similar liveweight. A strong 

period effect (p=0.001) on the amount of phosphorus excreted was noted. Although 

the faecal phosphorus concentration remained fairly constant, the increasing amount 

of faeces excreted as the pigs grew resulted in an increased excretion of phosphorus. 

This reflected directly the amount of phosphorus taken in, rather than changes in 

digestibility, and indicated that the concentration of phosphorus in the feed should be 

decreased in several phases towards the finishing stage.

The low urinary phosphorus concentrations obtained when pigs were fed the control 

diet indicated that the animals were deficient in phosphorus. The level of digestible
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phosphorus, at 2.34/kg, was lower than the NRC (1988) and the ARC (1981) 

recommendations for digestible phosphorus, but corresponded to requirements 

proposed (Jongbloed et al., 1991) for pigs of 30-50kg liveweight (2.3-2.0g/kg). 

Present results suggested that the latter estimates of requirements, which were 

obtained using factorial estimates, would not satisfy the requirements of growing pigs.

When phytase was added to the diet the increased dietary availability of phosphorus 

resulted in a greater absorption into the body pool. In order to counteract the 

increase, some of the absorbed phosphorus was off-loaded into the urine. On the 

whole, urinary phosphorus excretion was fairly inconsistent and followed no clear 

trend. For example, the two pigs that started the trial on the control diet appeared to 

have been extremely deficient in phosphorus as addition of phytase did not greatly 

increase their phosphorus excretion. The skeletal system acts as a buffer against low 

blood phosphorus during dietary deficiency of phosphorus. It could be presumed that 

upon addition of phytase, some dietary phosphorus was used to make up the skeletal 

deficit that had been induced in these two pigs which were receiving the control diet 

for an extended period (ie during the recovery period until the end of the first 

experimental period). This was reflected in a maintained low urinary phosphate 

excretion.

The fact that in only one of the yeast-fed animals was there an increased urinary 

phosphorus excretion (over the control) suggested that the animals receiving yeast 

suffered a similar phosphorus deficiency as the control animals. Results were 

consistent with the digestibility results, ie little or no extra phosphorus was made 

available by yeast, and therefore no excess phosphorus was excreted into the urine.

4.4.6 Calcium digestibility

The lack of increase in calcium digestibility due to microbial phytase was surprising 

as calcium ions are bound within phytates and were expected to have been released 

upon degradation of the phytate complex. Other workers (eg Simons et al., 1990;
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Lantzsch and Wjst, 1992; Hoppe et a l., 1992) reported increased calcium digestibility 

when microbial phytase was supplemented to the diet. Mroz et al. (1993) found that 

the effect o f phytase on calcium was dependent on the dietary calcium level. These 

workers tested phytase with levels of 4,6 and 8g/kg calcium and found the maximum 

response at the lowest level of dietary calcium.

The barley based diet used meant that the phytate was present in the form of 

potassium and magnesium salts unlike the calcium-magnesium complexes present in 

most other cereals (Pomeranz, 1973). This may explain the lack of response of 

calcium. Furthermore, the diet was not designed to be deficient in this mineral. 

Absorption of calcium across the gut wall can be regulated to suit requirements. 

Therefore even if availability was improved, the fact that it was already sufficient in 

the diet may have prevented further absorption.

Feedstuffs rich in phytate also have a high concentration of fibre, and it has been 

suggested (Reinhold et a l., 1975) that fibre rather than phytate largely determines the 

availability o f bivalent metals for absorption. However, due to the lack o f response 

with either yeast or phytase it was not possible to judge whether fibre or phytate was 

the main determinant of calcium availability.

4.4.7 Nitrogen digestibility

The increased nitrogen digestibility obtained due to microbial phytase was similar to 

that observed by Officer and Batterham (1992). These workers found increases of 

between 7 and 12 percentage units in the ileal digestibility of crude protein and 

essential amino acids when phytase was used. Results indicated that the phytate 

protein complexes which build up in acid medium by amino groups or in alkaline 

medium by Ca2+ ions (Maga et al., 1982) were being degraded during phytate 

hydrolysis. The effect may have been partly related to an increased proportion of 

liberated orthophosphates in the gut lumen changing the ratio of nitrogen to digestible 

phosphorus, resulting in an improved nitrogen absorption, as proposed by Mroz et al.
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(1991). These workers noticed an increased ileal digestibility of methionine, cystine, 

arginine, isoleucine and phenylalanine with phytase. Total tract digestibility of all 

these amino acids, except lysine, was increased. In contrast, no effect of microbial 

phytase on total tract digestibility of protein was observed by Nasi (1991).

The increased ileal digestibility due to yeast inclusion may have been due to 

stimulation of proteolytic bacteria since yeast itself is not actively proteolytic. This 

increase was not reflected in the total tract digestibility, suggesting that perhaps the 

dietary yeast was acting on the proportion of protein that would normally be degraded 

in the hindgut, in which case it would be of more benefit. Reduced availability to 

hindgut micro-organisms could cause an alteration of hindgut fermentation patterns, 

but it was assumed that these changes did not create any improvement in phosphorus 

digestibility as if so, there would have been an improved total tract digestibility.

4.4.8 Energy

No notable difference in gross energy digestibility between the diets was observed. 

Differences may have been too small to detect with the number of replicates used. 

Supplementation of yeast into the diet would be expected to achieve an improved 

energy digestibility, particularly due to the fibrous nature of the diet. It has been 

suggested that phytate inhibits alpha-amylase activity (Knuckles and Betschart, 1987), 

thus there may be associated effects of phytase on starch digestibility. However, this 

was not apparent from these results.

4 .4 .9  Site of action of phytase and yeast

N o measurable phytase activity was detected in the ileal digesta or the faeces, 

suggesting that the Aspergillus niger phytase was active anterior to the terminal ileum. 

Previous workers (eg Gu6guen et al., 1968, Jongbloed et al., 1992) agreed that a
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substantial degradation of phytic acid occurs in the gastroduodenum. Lantzsch et al. , 

(1992) concluded that approximately 70% of total dietary phytic acid was hydrolysed 

by the time digesta had reached the end of the small intestine.

Physico-chemical properties of soluble and insoluble dietary fibres indicate that they 

affect digestion and absorption processes in different sections of the gut (Jongbloed 

and Kemme 1990). Enzymes which cleave the bonds of non-starch polysaccharides 

(NSP) are normally not present in the small intestine of pigs. Most NSP are recovered 

at the terminal ileum, although some are broken down by the microflora in the large 

intestine. From the increase in nitrogen digestibility obtained with dietary yeast it 

could be inferred that it influenced the digestive contents proximal to the ileum. Yeast 

functions by influencing the gut microbial populations rather than a direct effect upon 

specific nutrients. In horses, dietary yeasts survive through the small intestine to the 

caecum (Pagan 1989), and in ruminants, yeasts flow out of the rumen amongst the 

digesta (Chesson, 1992). Thus it could be postulated that the yeast began its effect in 

the stomach and continued thereafter throughout the digestive tract.

4.4.10 Absorption of phosphorus

A substantial increase in apparent ileal phosphorus digestibility suggested that 

absorption of phosphate was occurring anterior to the terminal ileum, but differences 

in ileal and total tract digestibility values also indicated the occurrence of post-ileal 

absorption. It was previously reported (Lantzsch et al. , 1992) that due to plant 

phytase, 55% of phytate-phosphorus from maize was absorbed by the end of the small 

intestine, and nearly 40% of the absorption took place in the proximal half. Their 

post-slaughter studies showed that plant and microbial phytases in the stomach and 

small intestine caused hydrolysis of approximately 33% of ingested phytate- 

phosphorus within 3 hours, while around 42% was released 9 hours post-prandially. 

However, Jongbloed et al. (1992) determined that although phytate complexes were 

hydrolysed in the stomach and duodenum, liberated ortho-phosphates were not 

absorbed until they reached the ileum. Results of the present trial indicated that
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phosphorus was being absorbed further along the digestive tract. The hind-gut has 

previously been dismissed as insignificant for phosphorus absorption in pigs, but early 

work (Partridge, 1978) indicated some net absorption of phosphorus, dependent on 

the dietary level, and recently, Jongbloed et al. (1992) found a net disappearance of 

phosphorus distal to the terminal ileum.

4.4.11 Level of phytase and yeast used

The level of phytase used (1000 units/kg) had previously been shown to be efficacious 

in obtaining an increase in phosphorus digestibility (eg Simons et a l., 1990; 

Jongbloed et al., 1992), and was sufficient in this experiment to achieve a substantial 

degradation of phytic phosphorus. The rate of dietary yeast inclusion was based on 

the amount of a similar culture used by Pagan (1989). Using lOg yeast/day, increases 

in phosphorus digestibility (p<0.01) were achieved. It may have been that the level 

of yeast used in our diets were not high enough to exert an effect. On the other hand, 

when 15 g/kg Saccharomyces cerevisiae were added to a maize soya diet for pigs, no 

improvement in the availability of phosphorus as measured by growth performance 

and bone strength was observed (Cromwell and Stahly, 1978)

4.4.12 Efficacy of phytase and yeast

The digestive tract of the pig offers limited opportunity for exogenous enzyme action 

due to the pH, the high viscosity of digesta, and the lack of discreet 

compartmentalisation of the digestive contents. Nonetheless, it seemed that the 

phytase from Aspergillus was sufficiently active in vivo to cause phytate hydrolysis 

and concomitant release of orthophosphates which were then absorbed. Degradation 

of phytate takes place in a stepwise manner, producing the intermediates IPl5 IP2, IP3, 

IP4 and IP5. Only IP„ the free inositol phosphate, can be absorbed across the gut 

membrane. It has been previously indicated that due to the diversity of phytate
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products, it may be necessary to use different enzymes, each specific for a particular 

inositol phosphate. Intermediate compounds were not measured, however, based on 

the large increase in phosphorus digestibility obtained with the phytase, it was 

assumed that phytate compounds were degraded to free inositol phosphates. It was 

calculated (table 4.12) that approximately one third of the phytate-phosphorus present 

in the diet was made digestible in the small intestine by using phytase.

The phytase used was a crude, unpurified preparation which contained other enzymes 

such as cellulases, proteases and amylases. It may be argued that improved 

digestibility of other nutrients associated with phytates, such as proteins, was brought 

about by these exogenous enzymes rather than due to an effect of phytase. However, 

the activity of these associated enzymes was much lower than would be needed to 

show a notable response (table 4.13).

Aleurone secondary cell wall material contains cellulose, arabinoxylans and phytates. 

During digestion the cell wall breaks up giving access to enzymes. Hence an 

increased phosphorus digestibility with dietary yeast would have been expected. In 

view of the apparent post-ileal absorption of phosphorus it would be interesting to 

study the inclusion of both yeast and phytase into the diet to alter fermentation and 

phosphorus absorption simultaneously. It may be postulated that increased availability 

of substrate due to pre-caecal fermentation would precede hydrolysis of phytate, 

resulting in a further improvement of phosphorus digestibility.

4.5 Conclusions

It was concluded that the addition of 1000 units of Aspergillus niger phytase/kg diet 

was sufficient to cause phytate hydrolysis and therefore an increased phosphorus 

digestibility. Any alteration in fermentation as a result of yeast addition did not 

influence phosphorus digestibility. In practical diets fed to growing pigs, one half to 

two thirds o f organic phosphorus is phytic, thus phytase could be used to in these 

diets to replace a large proportion of supplemented inorganic phosphate.
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Table 4.12 Calculation of the amount of phosphorus made digestible 

due to phytase addition

Phosphorus content of diet = 4.67 g/kg

Phytate content of diet = 2.34 g/kg

Ileal phosphorus digestibility without phytase = 0.26

Digested phosphorus = 0.26 x 4.67

= 1.21g

Ileal phosphorus digestibility with phytase = 0.39

Digested phosphorus = 0.39 x 4.67

= 1.82g

Amount of phosphorus made digestible = 1.82-1.21

= 0.61 g

Assume all extra phosphorus digested is phytate 

Proportion of phytate digestible due to phytase = (0.61/2.34) x 100%

= 26%

Table 4.13 Activity of enzymes other than phytase present 

in the enzyme preparation

Enzyme units activity relative

(units/g) significance'

Cellulase Filter paper units 18 insignificant
Alpha-amylase Bacterial amylase units 0 insignificant
Protease Haemoglobin units on 725 insignificant

tyrosine basis

t Comparison with cellulase, alpha amylase or protease enzyme preparation
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Chapter 5 Experiment 2 - Determ ination o f the 

optimum dietary phytase level

5.1 Introduction

The use of phytase to lower phosphorus excretion of pigs has been reported (eg 

Simons et al., 1990, Beers and Jongbloed, 1992, Cromwell et al., 1993, Ketaren et 

al., 1993). However, information pertaining to dose-response relationships between 

phytase level and phosphorus digestibility is insufficient to enable determination of 

an optimum phytase level. Typically, 800-1000 units/kg feed is the defined dose but 

this may not represent the optimum. Young et al. (1993) obtained an increase in 

apparent phosphorus digestibility from 0.63 to 0.71 with the addition of 500 units 

phytase/kg but this increased only to 0.74 when the amount of enzyme was doubled. 

In contrast, plasma phosphate concentration of weanling pigs increased linearly in 

response to graded levels of phytase up to 750 units/kg (Lei et al., 1993).

Differences in enzyme source and preparation between batches may be reflected as 

inconsistencies between results obtained from separate experiments, hence 

standardisation of assay conditions across experiments is important. One unit of 

phytase activity is defined as the amount of enzyme necessary to liberate 1 /¿mol of 

phosphate from phytate at 37°C and pH 5.5. Activity depends upon the source of the 

phytase-secreting microbe and the method of preparation. It is thus inappropriate to 

compare responses at different levels between experiments using different batches of 

the enzyme, unless the standard assay procedure has been followed.

In order to provide a basis for future trials, it was considered necessary to conduct 

a metabolism trial to investigate the relationship between level of phytase inclusion 

into the diet and phosphorus digestibility, so that the optimum level of dietary phytase 

inclusion could be determined.
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5.2 Materials and Method

5.2.1 Experimental Design

12 gilts weighing approximately 25kg liveweight were randomly allocated to 1 of 4 

treatments and used in a triplicated 4 x 4  latin square experiment. The treatments 

consisted of an unsupplemented basal diet (1), to which was added 500 phytase 

units/kg (2), 1000 units/kg (3) and 1500 units/kg (4). A plan of the latin squares is 

given in figure 5.1

5.2.2 Diet

The basal diet was a maize/soya based diet (table 5.1) which contained a low level 

of digestible phosphorus. Of the 5g/kg present in the diet approximately 2g were 

present as phytate phosphorus. Calciumrphosphorus ratio was 1.5:1. The nutrient 

specification of the experimental diet is presented in table 5.2

Activity of the phytase was approximately 400 units/gram. The enzyme was premixed 

into 10kg batches of the diet. The resulting diets A, B, C, and D contained 0, 1.25, 

2.5g, and 3.75 grammes of phytase/kg respectively.

5.2.3 Procedure

The procedure followed was that described in section 3.5.2  of the General Materials 

and Methods. In total, there were four periods, each consisting of a 10 day 

acclimatization followed by a 5-day total collection period. During the collection 

period, the animals were catheterised and restrained in metabolism crates.

118



Figure 5.1 Latin square design of experiment

PERIOD PERIOD

PIG I II III IV PIG I II III IV

1 A D C B 5 A D C B

2 B A D C 6 B A D C

3 C B A D 7 C B A D

4 D C B A 8 D C B A

PERIOD

PIG I II III IV

9 A D c B

10 B A D C

11 C B A D

12 D C B A
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Table 5.1 Composition and phosphorus/ phytate content of experimental diet

Ingredient g/kg phosphorus (g/kg FW) Total phosphorus phytate-phosphorus (%) phytate-phosphorus

contribution to diet contribution to diet (g/kg)

Maize 450 2.6 1.17 66 0.78

Soya 50 180 6.8 1.22 61 0.75

Spring peas 150 4.3 0.64 50 0.32

Wheat 110 3.3 0.36 73 0.27

Fat 50% premix 90 2.0 0.18 - -

Betamix 314 12.5 - - - -

Dicalcium phosphate 8.0 180 1.44 - -

Lysine 0.25 - - - -

Threonine 0.08 - - - -

Total 1000.8 5.01 2.12
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Table 5.2 Nutrient specification of experimental diet

Nutrient g/kg freshweight

Dry matter (%) 88.03

Digestible energy (MJ/kg) 14.89

Oil 68.14

Crude fibre 35.57

Lysine 10.02

Methionine 2.68

Methionine + cystine 5.72

Threonine 6.52

Calcium 7.33

Phosphorus 5.01

Ash 49.84

Linoleic acid 15.0

Salt 3.03
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5.2.4 Laboratory Analysis

Samples of feed and faeces were analyzed for dry matter, gross energy, crude protein 

(N x 6.25), calcium and phosphorus as reported in Section 3.6  of the General 

Materials and Methods. Phosphorus content of the urine was determined 

colorimetrically at 400nm using vanadium molybdate as the reducing agent.

5.2.5 Statistical Analysis

Digestibility and balance data were subjected to analysis of variance using Genstat 5 

(Lawes Agricultural Trust) to test for the significance of the difference between the 

treatment means. Effects of phytase level, period and pig were tested, and a block 

structure used to test for a pig x period interaction.

Phosphorus digestibility was regressed against phytase level (units/kg diet). Linear 

and curvilinear models were produced by Genstat 5 and a probability value denoting 

the goodness of fit of each line was generated.

5.3 Results

5.3.1 Health of the animals

During the second collection period pig number 5 (basal diet +1500 units/kg) refused 

feed for 2 days, consequently the data from the animal for this period were excluded, 

and ‘missing values’ generated by Genstat 5 during the statistical analysis. No notable 

differences in growth rate occurred amongst the treatment groups; mean growth rate 

was 590 g/day (range 530-670 g/day).
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5.3.2 Phosphorus balance

A summary of the results of the phosphorus balance is presented in table 5.3. A 

marked variation in phosphorus digestibility between animals was observed (p=0.007, 

sed=0.043). In addition, there was a decrease in digestibility from the first to the 

final period (p=0.094; table 5.4). Addition of phytase at 500,1000 and 1500 units/kg 

to the basal diet resulted in an increased phosphorus digestibility (P = 0.054) 

however, following the initial increase in digestibility when 500 units phytase/kg were 

added to the diet, any further changes in phosphorus digestibility with increased 

phytase addition were relatively small and non-significant. Corresponding to the 

increase in phosphorus digestibility with phytase, faecal phosphorus concentration 

decreased with addition of the enzyme, on average, from 1.6% without phytase, to 

1.3% with phytase (p=0.085). Output of phosphorus increased significantly 

(p <  0.001) from the first to the last period, while there was a tendency of a reduction 

in phosphorus digestibility from periods I to IV.

Urinary phosphorus excretion increased quite distinctly (PC.001) with increasing 

phytase additions (figures 5.2 and 5.3). Urinary phosphorus concentration gives an 

indication of the phosphorus status of an animal, as homeostasis occurs via the 

kidney. The animals receiving the basal diet which contained low amounts of 

digestible phosphorus were excreting only minimal amounts via the urine, but as the 

amount of digestible phosphorus effectively increased due to enzyme addition, 

increasing quantities of phosphorus were excreted by this route.

No significant differences in phosphorus retention between the treatments were found, 

furthermore there were no notable differences in phosphorus retention as a proportion 

of dietary phosphorus intake between the diets. Phosphorus retained as a proportion 

of that digested decreased from period I to IV (92.1% to 77.2%; p =0.002). 

Regression analysis performed on the digestibility data showed that the response was 

best described as a quadratic curve (p=0.048; figure 5.4). The equation of the curve 

was y =  0.583 +  0.00016x - 0.84E7x2 (y=  phosphorus digestibility, x =  units 

phytase/kg feed). From this it was seen that the maximum response was achieved 

using 900-1000 units phytase/kg.
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Table 5.3

Intake (g/day)

Concentration in faeces (g/kg) 

Total output in faeces (g)' 

Digestibility

Concentration in urine (g/100g) 

Total output in urine (g)r 

Retained (g/day)

Retained / intake (%)

Retained /  digested (%)

T In 5-day collection period

K>4̂

Phosphorus balance data

Treatment means

Basal + 500

8.71 8.92

16.12 12.92

17.60 16.50

0.59 0.64

0.011 0.040

1.92 5.42

4.80 4.53

56.0 50.6

92.1 80.0

+ 1000 +1500

8.93 9.09

13.05 13.19

16.50 16.79

0.65 0.64

0.043 0.055

6.36 7.92

4.49 4.38

49.6 48

77.0 77.2

p sed

ns 1.374

0.085 1.418

ns 2.271

0.051 0.025

<0.001 0.008

<0.001 1.160

ns 0.35

ns 4.26

0.002 4.15



Intake (g/day)

Concentration in faeces (g/kg) 

Total output in faeces (g)T 

Digestibility

Concentration in urine (g/kg) 

Total output in urine (g)' 

Retained (g/day)

Retained / Intake (%)

Retained / Digested (%)

In 5-day collection period

Period effect on phosphorus balance

Period Means

I II

7.95 7.26

1.38 1.24

13.03 15.50

0.66 0.63

0.035 0.051

4.45 6.29

4.80 4.53

56.0 50.6

92.1 80.0

III IV

9.26 9.38

1.45 1.48

17.01 21.73

0.64 0.59

0.025 0.001

5.48 5.40

4.49 4.38

49.6 48

77.0 77.2

p sed

<0.001 1.12

ns 0.148

<0.001 1.824

0.094 0.025

ns 0.040

ns 1.16

ns 0.35

ns 4.26

0.002 4.15
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Figure 5.2 Urinary phosphorus concentration

igure 5.3 Total urinary phosphorus excreted during 5-day period
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5.3.3 Calcium balance

Calcium balance results are summarised in tables 5.5 and 5.6. Mean digestibility 

decreased from the first to the last period (from 0.86 to 0.71, p <0.001). However, 

no notable changes in digestibility of calcium were achieved due to enzyme addition. 

Furthermore, the concentration of calcium in the faeces and the amount excreted 

during each period were unaltered by phytase addition. In contrast, the concentration 

and total amount of calcium in the urine were significantly lowered (P=0.04, 

P= 0 .02 , respectively) with the addition of 500 units phytase/kg diet. This was 

reversed at the higher level of phytase inclusion, so that a greater concentration and 

subsequently a greater amount of urinary calcium was excreted (figures 5.5 and 5.6).

5.3.4 Ash digestibility

Mean ash digestibility coefficients are presented in table 5.7. Although the 

probability value obtained indicated that differences between treatments were non

significant (p>0.10), the difference in ash digestibility between the control and the 

highest level of phytase inclusion (from 0.49 to 0.58) suggested that there was an 

effect of the enzyme at the highest inclusion rate. There was a strong period effect 

(p <0.001) which probably reflected the changes in calcium digestibility.

5.3.5 Nitrogen, energy and dry matter digestibility

Mean digestibility coefficients for nitrogen, energy and dry matter are given in table 

5.8. No influence of phytase on nitrogen or gross energy digestibility of the diets was 

detected. There was a slight decrease in dry matter digestibility between the basal diet 

and the 1000 units/kg diet, and an increase between the basal diet and the 1500 

units/kg diet.
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Table 5.5 Calcium balance data

Treatment means

Basal + 500 + 1000 + 1500 P sed

Intake (g/day) 12.0 13.4 13.8 13.0 ns 1.63

Digestibility 0.78 0.77 0.79 0.80 ns 0.22

Concentration in faeces (g/kg) 11.1 11.7 11.1 11.3 ns 0.59

Total faecal Ca output (g)r 13.2 15.4 14.5 13.0 ns 1.22

Concentration in urine (mg/ml) 860 360 620 1160 0.04 270

Total urinary Ca output (g)' 11.3 4.2 9.58 16.4 0.02 3.64

Retained Ca (g)r 30.5 39.0 34.4 35.1 ns 3.70

Retained /  intake (%) 51.9 58.1 54.3 54.3 ns 3.97

Retained /  digested (%) 58.8 74.5 66.6 67.4 ns 6.38



Table 5.6

I

Intake (g/day) 12.1

Concentration in faeces (g/kg) 8.7

Total output in faeces (g)T 8.45

Digestibility 0.86

Concentration in urine (g/kg) 1.05

Total output in urine (g)T 11.8

Retained (g/day) 7.16

Retained / intake (%) 65.1

Retained /  digested (%) 69.7

In 5-day collection period

Period effect on calcium balance

Period Means

II III IV P sed

10.2 13.4 15.1 <0.001 0.822

9.19 11.43 15.82 <0.001 0.586

10.34 15.43 21.89 <0.001 1.220

0.82 0.77 0.71 <0.001 0.215

0.63 0.31 1.00 0.037 0.270

6.9 7.6 15.1 ns 3.64

6.8 6.48 7.38 ns 0.74

58.1 46.2 49.1 <0.001 3.97

71.0 57.1 69.4 ns 6.38



Figure 5.5 Urinary calcium concentration

Figure 5.6 Total urinary calcium excreted during 5-day period



Table 5.7 Effect of enzyme and period on ash digestibility

Phytase g/kg Basal 500 1000 1500 P sed

0.490 0.553 0.500 0.577 ns 0.041
Period I II in IV P sed

0.599 0.560 0.518 0.442 <0.001 0.036

Table 5.8 Digestibility of nitrogen, energy and dry matter

Nutrient Basal +500 + 1000 + 1500 P sed

Nitrogen 0.85 0.86 0.85 0.85 ns 0.009

Gross energy 0.85 0.86 0.85 0.87 ns 0.009

Digestible energy 14.75 14.85 14.78 15.07 ns 0.155

Dry matter 0.85 0.85 0.83 0.86 0.02 0.010
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5.4 Discussion

5.4.1 Phosphorus balance

Addition of phytase resulted in an increase in phosphorus digestibility up to a 

maximum of 6 percentage units, this was lower than the 15 percentage unit increase 

obtained in the previous experiment, and lower than the increases reported by 

previous workers (Simons et al., 1990; Jongbloed et al., 1992; Ketaren et al., 1993, 

Pallauf et al., 1992 and Eekhout and de Paepe, 1992) who achieved improvements 

in apparent phosphorus digestibility ranging from 20-30% units. However, Young et 

al. (1992) achieved an increase in phosphorus digestibility of only 11 percentage units 

with a level of 1000 unit/kg. A summary of phosphorus digestibility responses to 

phytate is given in table 5.9.

Although there was a slight decrease in faecal phosphate output with phytase, this was 

not significant. Total faecal phosphorus output throughout the 5-day period averaged 

17.6g without phytase, and 16.6g with phytase. Previous workers have obtained large 

reductions in faecal phosphorus output when phytase was used (eg Ketaren et al. , 

1993 achieved a decrease from 22.5 to 14.4 g/kg; Simons et al., 1990 found a 

decrease from 21 to 13.6g/kg; Lei et al., 1993 reported a decrease from 20 to 

11 g/kg).

The relatively small difference in total faecal phosphorus output obtained with phytase 

in the present experiment is difficult to interpret since the concentration of phosphorus 

in the faeces was significantly lowered with the enzyme. The increase in total faecal 

phosphorus output across the periods was consistent with results of the previous trial, 

and is further evidence that the phosphorus content of the diet should be lowered in 

several phases as the pig nears its finishing weight. This increase is also interesting 

in that it confirms suggestions of phosphorus regulation at the gut level (Gutte et al., 

1961; Vemmer, 1982). As the pig nears its mature size, the daily amount of dietary 

phosphorus increases due to an increased daily feed intake. It may be that a 

‘saturation point’ of the intestinal membrane transport system is reached, after which 

excess phosphorus must be excreted via the faeces. This would differ from the more
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finely controlled regulatory system of calcium homeostasis. On the other hand, the 

declining phosphorus digestibility with increasing age may be due simply to an effect 

of age on the physiological digestive processes, for example, a decline in the 

efficiency of the transport system as the pig ages.

Contrary to the results obtained in this experiment, Lei et al. (1993) found no 

interaction of time with treatment when different levels of phytase were used, 

suggesting that any changes in phosphorus requirement with time were not large 

enough to confound the phosphorus balance. Likewise, Kemme and Jongbloed (1992) 

concluded that digestibility of phosphorus was not affected by the age or weight of 

pig in the range of 30 to 70kg.

The increase in urinary phosphorus excretion with increasing phytase (figures 5.2 and 

5.3) clearly demonstrates the homeostatic mechanisms which regulate phosphorus 

level in the pig. The animals receiving the unsupplemented basal diet excreted urine 

containing a low phosphorus content. Upon addition of phytase to the diet, which 

caused a greater amount of phosphorus to become available to the an im a l, renal 

regulatory mechanisms acted to shunt some of this extra phosphorus into the urine. 

The extent of fine-tuning of this mechanism is unknown, but on the basis of the 

current results it would appear to be quite sensitive.

As the level of dietary phosphorus effectively increased incrementally due to phytase 

additions, a greater amount of phosphorus was excreted into the urine. Because the 

concentration of urinary phosphorus increased even at the lowest level of phosphorus 

(500 units/kg) it could be assumed that a low level of phytase caused release of 

phosphorus sufficient to meet the animals’ requirements. There was a further increase 

in urinary phosphorus excretion at 1500 units/kg, although from the digestibility data 

a slight decrease in urinary phosphorus excretion would have been expected.
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Table 5.9 Comparison of present and published responses to phytase

Source Diet % unit increase in P 

digestibility

Simons et al., 1990 Maize-soya 26
Tapioca-hominy feed 22

Jongbloed et al., 1992 Maize-soya 30
Tapioca-hominy feed 27

Leunissen et al., 1992 Maize-soya 11

Eekhout and de Paepe, 1992 Maize-soya 19

Pallauf et al., 1992 Maize-soya 35

Ketaren et al., 1993 Artificial (sucrose) 24

Present results Maize-soya 6
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Upon addition of phytase to the diet, urinary phosphorus excretion counteracted 

phosphorus intake to such an extent that the amount retained in the body remained 

almost constant. This was surprising since an increase in retention would have been 

expected between the basal diet and those with added phytase. Lei et al. (1993) 

observed that pigs fed phytase retained 50% more phosphorus daily than control pigs. 

These workers used a total phosphorus level of 0.32%, with no supplementary 

inorganic phosphate, thus diets were deficient to a greater extent than in the present 

experiment. Almost a complete retention of phosphorus was achieved with both 

control and phytase-supplemented diets, and with the latter, there was an almost 

identical increase in apparent digestibility and retention (table 5.10). There was only 

a marginal effect of the enzyme on the proportion of phosphorus retained to that 

digested, indicating that the increase in retention due to phytase were solely due to 

an increased digestibility, rather than an increased retention rate per se.

It is assumed that in the present experiment the addition of phytase caused an excess 

of phosphorus which was then excreted to keep the amount retained almost constant. 

This was further illustrated by the amount of phosphorus retained as a proportion of 

that digested, which decreased with increasing phytase additions (p=  0.002, sed= 

4.14; figure 5.7). Phosphorus retention, at more than 4g/day, was relatively high. 

Data of Lei et al. (1993) are presented for comparison in table 5.11.

It seemed apparent from current observations that the basal diet was almost sufficient 

to meet requirements for phosphorus. Animals in metabolism crates grow more 

slowly than under commercial conditions, and thus would be expected to have lower 

daily requirements for phosphorus.
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Figure 5.7 - Retained phosphorus as a percentage of digested phosphorus
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Table 5.10 Effect of phytase on phosphorus retention of growing pigs 

(data of Lei e t a l . , 1993)

Phosphorus

- phytase + phytase

2.046 2.228Retained (g/day)

As % of intake 54.5 69.3

As % of digested 76.9 82.9

Table 5.11 Effect of increasing phosphorus level on phosphorus balance 

(data of Lei et a l ., 1993 and present experiment)

Lei et al., 1993 Present results

(weanling pigs) (growing pigs)

0.29% P 0.62% P 0.5 %P + phytase’

Intake mg/day 1092 1618 8710 8930

Retained (% of intake) 27 50 56 50

Retained (% of digested) 99 95 92 77

Digestibility 0.28 0.53 0.59 0.65

Faecal mg/kg 792 763 176 165

Urinary mg/kg 3 39 11 43

1000 units phytase/kg feed
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Mroz et al. (1994) considered 0.5% total phosphorus to be close to the requirement 

of growing pigs. Had a lower level of phosphorus in the basal diet been used, 

addition of phytase would have been expected to result in a greater retention. On the 

other hand, because of the uncertain efficacy of phytase at low inclusion levels, it 

seemed prudent to provide a level of phosphorus that would not cause a severe 

deficiency in the event that no extra phosphorus was made available, particularly as 

animals undergoing metabolism trials are subject to rigorous welfare regulations.

The diet was formulated to provide a relatively high level of phytate phosphorus with 

an equivalent amount of non-phytate phosphorus. The phosphorus level used in the 

experimental diet was approximately 5g/kg. Of this it was presumed that 2.1g/kg was 

present as phytate-phosphorus and was indigestible without the addition of phytase. 

It was intended that the diet should remain deficient in phosphorus even if some 

phytate-phosphorus was released. But it seems that the requirement may have been 

overestimated, either because of the slower growth of these animals compared with 

those under commercial conditions, or because the recommended requirements for 

growth given by the ARC (1981) are too high. A lower level of phosphorus in the 

basal diet would have been made possible by excluding the dicalcium phosphate.

It has been proposed that smaller increases in digestibility would be obtained at higher 

dietary levels of phosphate (Lei et al., 1993). However, whether or not dietary 

phosphorus influences phosphorus transport across the gut is questionable. Earlier 

work by Whittemore (1973) suggested that phosphorus transport across the gut, unlike 

that of calcium, was mainly independent of phosphorus level. Inorganic phosphate is 

a strong inhibitor of phytase activity (Shieh and Ware, 1968; Gibson and Ullah, 1988) 

and in this experiment this effect may have come into play. However, there was a 

relatively large increase in digestibility at the lowest level of phytase (500 units/kg) 

and if there was an inhibitory effect it would have been expected that this would have 

been seen here. This was not the case - it was at higher levels of phytase that no 

additional benefits were seen.
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5.4.2 Shape of the response

The relationship between apparent phosphorus digestibility and phytase level could 

be described with a quadratic curve, as previously presented in figure 5.4. The 

response was in contrast to the exponential curve obtained using 6 levels of phytase 

from 0 to 2000 units/kg in a maize-soybean diet for growing pigs (Beers, 1992). 

However, the latter results also showed a rapid increase in digestibility at levels of 

up to 400 units/kg, and thereafter a diminishing increase. The magnitude of response 

of the present experiment was similar to that obtained by Young et al. (1993) who 

fed 0, 500 and 1000 units/kg to piglets, and obtained phosphorus digestibility 

coefficients of 0.63, 0.71 and 0.74 respectively. Present results may also have fitted 

a "broken stick" response, but since only four levels of phytase were used, the point 

of inflection would be difficult to determine. A broken stick response would have 

implied that at a certain discreet level of phytase the response reached a maximum, 

and that up to this point the increase in digestibility of phytase was the same for each 

unit of phytase, whereas the quadratic model implied that as the phytase built up the 

effects of the enzyme became limiting.

Given the known physiological mechanisms of enzyme inhibition, the latter model 

seemed more realistic. In terms of biological response, it known that phosphorus 

uptake is not finely regulated (with respect to dietary phosphorus intake) at the level 

of the gut in pigs. Thus the changes in apparent digestibility reflect changes in 

availability of phosphorus in the gut and in this case, could be attributed to enzyme 

activity in the gut. There may be a cumulative ‘limiting’ effect of the enzyme either 

directly by end-product inhibition or indirectly by altering the gut environment which 

could become unfavourable to the enzyme.

The equation of the curve was y =  0.5832 +  0.000162x -0.84E7x2 (p=0.048; 

y=apparent phosphorus digestibility, x =  phytase units/kg feed). From this it could 

be estimated that the maximum response would be achieved using 900-1000 units 

phytase per kg. However, a large response obtained at levels of up to 400 units/kg, 

followed thereafter by a diminishing increase (table 5.12) suggested that 400 -500 

units/kg may be a more prudent dosage to use.
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When the response of weanling pigs to graded levels of phytase (0, 250, 500 and 750 

units/kg) was measured (Lei et a l ,  1993) it was found that plasma phosphate 

concentration increased linearly with dietary phytase addition. There was no 

maximum break point of plasma phosphate concentration; indeed, linear effects of 

phytase activity up to 750 units/kg were very consistent. Similar response patterns in 

chicks to supplementary phytase have been reported by Nelson et al. (1971) and 

Schoner et al. (1991). However, it is unlikely that the response would be linear at 

higher levels of phytase. Indeed, it would be expected that, if the ‘cumulative limiting 

effect’ does apply, the enzyme would become limiting at a lower level than with pigs 

because of the effectual separation of the crop from the rest of the gastro-intestinal 

tract in birds.

In pigs, growth and bone strength increased linearly with phytase level up to 1000 

units/kg (Cromwell et a l ,  1993). Again, a higher level of phytase was not used, and 

it would seem unlikely that the response would continue linearly. Based on urinary 

phosphate output, which is a recognised indicator of phosphorus adequacy, the present 

work suggested that even at low levels (400-500 units/kg) of phytase enough 

phosphorus was released to satisfy the requirements of the animals under these 

conditions. This is lower than the optimum level of (1000) units/kg level suggested 

by Simons et al. (1990). However, animals were slow-growing in comparison to 

those under commercial conditions, thus it is probable that their nutrient requirements 

were also lower. On the other hand, given the relatively high costs of enzyme 

supplementation, a level of 400-500 units/kg, while not attaining maximum release 

of phytate-phosphorus, may be sufficient to satisfy the phosphorus requirements of 

growing pigs.
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Table 5.12 Incremental response of phosphorus digestibility to phytase level ( y =  0.5832 +  0.000162x -0.84E'7x2 )

Units phytase/kg feed 0 100 200 300 400 500 600

Phosphorus digestibility 0.583 0.599 0.612 0.624 0.639 0.643 0.650

Change in digestibility 0 0.016 0-013 0.012 0.011 0.008 0.007

Units phytase/kg 700 800 850 900 950 1000 1100

Phosphorus digestibility 0.655 0.659 0.660 0.661 0.661 0.661 0.660

Change in digestibility 0.005 0.004 0.001 0.001 0.000 0.000 -0.001



5.4.3 Calcium balance

The lack of change in calcium digestibility due to enzyme addition was consistent 

with results of the previous experiment using cannulated pigs, but in contrast to 

increases in calcium digestibility which have previously been reported by Nasi (1990) 

and Simons et al. (1990). Lei et al. (1993) found that pigs receiving phytase achieved 

a 13% increase in apparent digestibility and a 14% increase of retained calcium as 

a proportion of intake. Daily faecal output of pigs fed phytase was reduced by 52% 

whereas daily urinary calcium output was not altered. These workers suggested that 

phytase may increase calcium utilisation indirectly by an increased phosphorus 

utilisation, because dietary calcium is utilised for skeletal growth only when dietary 

phosphorus is simultaneously utilised.

The decrease in urinary calcium concentration from the basal diet to that containing 

500 phytase units/kg, and to a lesser extent from the basal diet to that containing 1000 

phytase units/kg, was similar to the decrease in urinary calcium obtained when dietary 

phosphorus level was raised (Mroz et a l., 1994). However, at the highest level of 

phytase (1500 units/kg) urinary calcium excretion exceeded that of the basal diet. In 

view of these results, the effect of phytase on urinary calcium concentration could be 

interpreted as a phosphorus level x calcium level interaction. Initially, diets were 

deficient in phosphorus, but addition of dietary phytase caused release of phosphorus 

so that the calcium: phosphorus ratio became more favourable for apatite formation, 

and thus urinary calcium excretion was lowered. However, as the level of phytase 

increased to 1500 units, the ratio o f calcium: phosphorus became unfavourable, this 

time due to an excess of phosphorus, and calcium was excreted via the urine.

An evaluation of the validity of this proposed mechanism must also consider previous 

work by Hansard et a l  (1961) and Miller et al. (1962, 1964), which indicated little 

effect of dietary phosphorus on urinary calcium excretion. On the other hand, Mroz 

et al. (1994) found that urinary calcium excretion was low (3-17 mg/kg compared to 

100-150 mg/kg) when dietary phosphorus level was greater than or equal to calcium 

level, and increased as dietary calcium exceeded the level o f dietary phosphorus
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Under practical conditions, urinary calcium losses are estimated to be around 1 % of 

daily intake (Pointillart, 1991). Approximately 50% of the total calcium in the urine 

is ionized (Calvo et al., 1982), the remainder being complexed with anions such as 

phosphates, citrates, sulphates and oxalate. Since these calcium complexes are not 

readily absorbed, an increase in plasma or renal phosphorus would be expected to 

increase the total calcium excretion in the urine. This may interact with the improved 

ratio causing an enhanced uptake.

In the present experiment, addition of phytase effectively lowered the calcium to 

phosphorus ratio from 1.46 to 1.38; this may have confounded any effects of the 

enzyme on calcium and/or phosphorus digestibility. Vipperman et al. (1974) proposed 

that the utilisation of phosphorus was affected by the calcium to phosphorus ratio to 

a greater extent than the utilisation of calcium, but whether or not the calcium to 

phosphorus ratio contributed to the overall values of phosphorus digestibility is 

unclear. In vitro studies of Krol-Kramer (1992) found inhibiting effects of elevated 

calcium supply on the liberation of orthophosphates, particularly at levels above 

7g/kg. Mroz et al. (1994) looked at the influence of graded calcium supply on 

microbial phytase efficacy in starter diets at a constant phosphorus level of 4.3 g/kg, 

of which phytate phosphorus was 2.1-3.4 g/kg. They found that calcium and 

phosphorus content of the urine, was influenced by interactions between calcium level 

and phytase dose, and proposed a level of 0.75% calcium and 0.5% phosphorus.

It is generally considered that calcium to phosphorus ratio becomes important only 

at low levels of phosphorus. In order to overcome the changing ratio it would have 

been necessary to adjust the calcium level with each level of phytase, but this would 

have required knowledge as to the amount of phosphorus being made available by the 

enzyme. Alternatively, a range of calcium levels could have been used at each dietary 

phytase level, which would either require more animals in total (which was 

impractical) or fewer animals per treatment (which would have lowered the statistical 

power of the experiment).
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5.4.4 Digestibility of ash

Although there was a lack of significant effect of the enzyme on overall digestibility 

of ash (any slight differences probably being due to changes in the digestibility of 

phosphorus) there was a strong period effect, with ash digestibility decreasing steadily 

from the first to the last period. This may have been partly an effect of phosphorus 

digestibility, but is likely to have been mainly due to the declining calcium 

digestibility from the first to the last period, which was somewhat more apparent.

5.4.5 Nitrogen, energy and dry matter

The lack of effect of phytase on nitrogen digestibility was surprising since the 

previous trial indicated an increase in ileal and total tract digestibility with the 

enzyme. This discrepancy is further confused by findings of Ketaren et al. (1993) that 

an increased protein retention with the enzyme occurred only when animals were 

deficient in phosphorus. It may be that an effect of the enzyme on nitrogen 

digestibility can only be expected if the phosphorus level remains deficient. Earlier 

assumptions of the enzyme cleaving phytate-protein bonds may need to be modified, 

since this would be independent of the phosphorus level.

The lack of enzyme effect on digestibility of dry matter or energy was in accordance 

with the previous trial, confirming that the enzyme was not removing the inhibitory 

effect of phytate on alpha amylase. The latter enzyme is active proximal to the 

stomach, and it could be assumed that phytate hydrolysis takes place too late to allow 

disinhibition of alpha amylase.

5.4 .6  Efficacy of the phytase used

Since the optimum suggested level of phytase inclusion had previously been assumed 

to be 1000 units/kg, it seemed reasonable in this experiment to use a level o f phytase
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either side of this suggested level. Alternatively, 6 levels of phytase could have been 

used, with 300-unit increments, but since the inclusion level at the lowest level of 

phytase would have been less than lg/kg, thorough mixing would have been more 

difficult to ensure. More importantly, in order to discriminate differences with an 

80% degree of certainty, a minimum of 12 animals per treatment was needed (based 

on 10% expected coefficient of variation. Thus 0, 500, 1000 and 1500 phytase per 

kg of feed seemed to be the most appropriate levels to use.

The phytase assay used measured the amount of free orthophosphate liberated from 

phytate by phytase. Very recently, it has been suggested (TNO Netherlands, pers. 

communications, 1994) that this test is insufficient, as it does not give an indication 

of the degradation pattern, and that high performance liquid chromatography, which 

enables measurement of intermediate products of hydrolysation, is more appropriate. 

However, while partial hydrosylates of phytic acid are powerful inhibitors of 

calcification in vitro (Thomas and Tilden, 1972), there is no evidence to indicate that 

these can be absorbed from the gut in pigs. It was assumed for our experiments that 

as only the free orthophosphate could be utilised, therefore the sodium phytate test, 

which measures free orthophosphate, was considered appropriate. Despite this, HPLC 

analysis may be useful to discriminate between a so-called ‘potent’ phytase, ie one 

that degrades phytate completely to free orthophosphate, and a phytase that may show 

the same resultant activity, but which produces a large number of intermediates 

without further hydrolysis to inorganic phosphate.

When 1000 units/kg phytase was used, the 6% unit increase in phosphorus 

digestibility enabled 14.2% of the phytate-phosphorus to be digested (table 5.13). 

This was lower than the estimate of Cromwell et al. (1993) who fed graded levels of 

phytase with a corn-soybean diet and concluded that 1000 units/kg converted 

approximately one third of the phytase phosphorus to an available form.

The increase in digestibility obtained at a phytase level of 1000 units/kg in the present 

experiment was also smaller than obtained in the previous experiment at a similar 

inclusion level, using similar sized pigs of the same sex. The explanation may have 

lay in the different diets used; the previous diet used a barley-based diet whereas
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maize was the main cereal used in the present experiment. In a similar experiment 

with piglets, the increase in apparent phosphorus digestibility obtained by addition of 

1000 units phytase/kg was greater when a maize-based diet was fed than with a 

wheat-based diet (Eekhout and de Paepe, 1992). It has been suggested (Jongbloed et 

al., 1993) that the phytase dose response depends on the source and amount of 

phytate in the diet. These authors found that maximal efficiency of 500 units/kg feed 

was obtained up to 1.2 g phytate/kg feed. The relatively high level of inorganic 

phosphate used in the present trial may have exerted a negative influence on the 

activity of the phytase. But despite the lower increases obtained in the present 

experiment, addition of phytase still released a substantial amount of phytate- 

phosphorus for digestion. This work therefore gave strong indications that a lower 

level of phytase than previously assumed could be used efficaciously to improve 

phosphorus digestibility. Given the relatively high cost of the enzyme, use of 500, 

rather than 1000 units/kg may make it a cost-effective alternative to phosphates, 

particularly in areas of intensive livestock production, where pollution is prohibitive.

5.5 Conclusions

The response of pigs fed a high-phytate diet to phytase could be described as :

y =  0.583 +  0.00016x - 0.84E V  

where y =  phosphorus digestibility 

x =  units phytase/kg feed

From this it was concluded that the maximum increase in apparent phosphorus 

digestibility was achieved at an inclusion rate of 900-1000 phytase units/kg. However 

a level of 400 - 500 units/kg also gave a relatively large increase in digestibility and 

in economic terms would be the sensible dose rate to use.
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Table 5.13 Calculation of phytate-phosphorus made digestible

by addition of 1000 units phytase/kg feed

P digestibility without phytase 0.59

Digestible P without phytase 2.96 g/kg

P digestibility with pbytase 0.65

Digestible P with phytase 3.26 g/kg

Assuming extra P digested

is of phytate origin

Percent of phytate P made digestible (3.26 - 2.96/2.12) * 100 

=  14.2%



C hapter 6 Experim ent 3 - Effect o f  phosphorus 

and phytase on growth and bone  

developm ent o f young pigs

6.1 Introduction

The dietary phosphorus requirement of young pigs is not well established. Values of 

a net requirement estimated by the ARC (1981) extend from 2.7 g/day for 5kg 

liveweight pigs to 4.6 g/day for 25 kg liveweight pigs, but figures obtained from the 

literature deviate somewhat from this. The discrepancy occurs when attempts are 

made to define requirement in terms of dietary intake. Although there is general 

agreement as to the daily dry matter intake, estimates of phosphorus availability differ 

markedly. The NRC (1988) defines its requirements on the assumption that at least 

30% of dietary phosphorus is of plant or animal origin. Daily recommended 

phosphorus intakes are 3g for 5-10kg pigs and 7.5g for 25kg pigs, or 6.5-6.0 g/kg 

freshweight. The ARC (1981) suggested dietary levels of 9.2-5.9 g/kg were based on 

70-80% availability which may be unrealistic.

Brown et al. (1972) showed that maximum bone formation occurs within the first 

twelve weeks of life. Although compensatory mineralization has been shown to occur, 

effects on later development are unknown. Thus, when defining a requirement for 

pigs of this size it must be considered that although maximum bone mineralization is 

not necessary for optimum growth performance, later bone development must not be 

impaired by a mineral deficiency. Bone strength has been used as an indicator of 

mineral availability. Crenshaw et al. (1981) found that femur strength was responsive 

to dietary phosphorus level in pigs between 2 and 4 months of age, whereas strength 

of the metacarpal and metatarsal bones were more sensitive indicators in older pigs.

It may be possible supplement phytase into phytate-rich diets for young pigs, thus
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reducing the need for inorganic supplements. Use of the enzyme in piglet diets has 

been attempted (Beers and Jongbloed 1992; Hoppe et al., 1993; Eekhout and de 

Paepe, 1992) resulting in an increased growth performance over and above that which 

would be expected by an increased phosphorus availability alone.

By establishing a response both with and without phytase at increasing levels of 

dietary phosphorus, it may be possible to calculate the amount of phosphorus made 

available by the phytase enzyme. The following experiment was therefore conducted 

to clarify the requirement for phosphorus in piglets, and to quantify the amount of 

phosphorus made available by the use of phytase.

6.2 M aterials and Method

6.2.1 Experimental Design

9 levels of non-phytate phosphorus were achieved by incremental addition of 

inorganic phosphorus to a basal diet. Each diet was fed either with or without 

phytase, to give a total of 18 diets, each of which was fed ad libitum to 4 piglets (2 

male, 2 female).

6.2.2 Diet

The diet formulation and nutrient specifications are shown in tables 6.1 and 6.2 

respectively. The basal diet contained a low level of non-phytate phosphorus (2 g/kg; 

assumed to be readily digestible) with an equivalent amount of phosphorus present in 

the form of phytate phosphorus. 9 levels of dietary phosphorus were achieved by the 

addition of mono ammonium phosphate to the basal diet. A summary of the diets is 

given in table 6.3. Each of the 9 dietary levels of phosphorus were fed either with or 

without phytase added at a level of 1000 units/kg freshweight.
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Table 6.1 Formulation and phosphorus/phytate content of basal diet

Ingredient g/kg phosphorus (g/kg FW) Total phosphorus 

contribution to diet

Phytate-phosphorus (%) Phytate-phosphorus 

contribution to diet

Maize 385 2.6 1.00 66 0.66
Wheat 185 3.3 0.60 73 0.44
Barley 50 3.9 0.20 64 0.13
Rapeseed meal 23 6.7 0.15 35 0.05
Soya 50 180 6.8 1.22 61 0.75
Soya oil 50 - - - -
Dried skim milk 100 10 1.0 - -
Bet ami x 314 12.5 - - - -
Limestone 7.0 - - - -
Lysine 4.0 - - - -
Methionine 1.0 - - - -
Threonine 2.0 - - - -
Tryptophan 0.5 - - - -
Total 1000 4.17 2.02



Table 6.2  Nutrient specification of basal diet

Nutrient g/kg Freshweight

Dry matter (%) 89.0

Digestible energy (MJ/kg) 15.59

Crude protein 195.37

Oil 72.65

Crude fibre 25.25

Lysine 13.66

Methionine 4.30

Methionine + cystine 7.49

Threonine 9.02

Tryptophan 2.28

Phenylalanine + tyrosine 16.45

Ash 37.03

Calcium 7.89

Phosphorus 4.17

Salt 4.47

Linoleic acid 37.31
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Phosphorus and phytase of experimental diets

non-phytate P g/kg total P + /- phytase

2.0 4.2 -

2.5 4.7 -

3.0 5.2 -

3.5 5.7 -

4.0 6.2 -

4.5 6.7 -

5.0 7.2 -

5.5 7.7 -

6.0 8.2 -

2.0 4.2 +

2.5 4.7 +

3.0 5.2 +

3.5 5.7 +

4.0 6.2 +

4.5 6.7 +

5.0 7.2 +

5.5 7.7 +

6.0 8.2 +
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6.2.3 Procedure

The trial was conducted according to the procedure in Section 3.5.3  of the General 

Materials and Methods. Piglets were assigned randomly within sex to one of the 18 

diets. Growth performance was monitored from 10-25 kg liveweight after which pigs 

were slaughtered. The carcase with blood and offal was ground, and samples of the 

ground tissue analyzed for ash, phosphorus and calcium percent in the dry matter 

(DMAsh%, DMP%, DMCa%). Total ash, phosphorus and calcium (Ash, P, Ca) 

were calculated by multiplying the sample percent by the dry weight of the pig. Ash, 

calcium and phosphorus content of the freshweight (FWAsh%, FWCa%, FWP%) 

were obtained by dividing total ash, P and Ca by the freshweight of the whole body.

Physical measurements of the right hind femur and the right third and fourth 

metatarsals (freshweight, longitudinal length and breaking strength were determined 

on the fresh bones. Thereafter ash, phosphorus and calcium content o f the fat-free 

bones were evaluated (Ash%, P%, Ca%); these were multiplied by the fat free weight 

of the bones to obtain total ash, phosphorus and calcium.

6.2.4 Statistical Analysis

Growth, feed intake and feed conversion efficiency data were subjected to analysis 

of variance. Analysis of covariance using ‘slaughterweight’ as the covariate was 

performed for bone data and carcase composition data. For the analyses of variance 

and covariance, ‘level of non-phytate phosphorus in the diet’ (g/kg freshweight), 

phytase, and gender were used as treatments. Bone physical measurements 

(freshweight, length, strength), bone mineral content (total ash, ash%, total 

phosphorus, P%, total calcium, Ca%) and carcase mineral data (ash, P, Ca, 

DMAsh%, DMP%, DMCa%, FWAsh%, FWP%, FWCa%) were regressed against 

daily intake of non-phytate phosphorus and daily intake of total phosphorus. Finally, 

correlations between bone strength and bone mineral content, bone strength and 

carcase mineral content, and between carcase mineral content and bone mineral 

composition were investigated using linear and non-linear regression analyses.
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6.3 Results

6.3.1 Health of the pigs

Throughout the trial some scouring problems occurred; these were treated with the 

antibiotic depocillin. All pigs treated recovered fully to complete the trial. No 

locomotory problems were seen.

6.3.2 Growth performance

Growth performance of individual animals is presented in appendix III. The effects 

of phosphorus level, phytase, sex and interactions on feed intake, daily liveweight 

gain and feed conversion efficiency are summarised in table 6.4. It could be seen 

from the sed value that there was an effect of enzyme between diets 1 (basal diet; 2g 

non-phytate phosphorus/kg) and diet 10 (basal diet +  phytase), despite the non

significant probability value obtained from analysis. As the probability values for the 

effects of enzyme attained by this analysis were mean values across all phosphorus 

levels, further analysis of enzyme effect between diets 1 and 10 was carried out; the 

results of which are shown in table 6.5.

A lowered feed intake of pigs receiving the diet containing 2g/kg non-phytate 

phosphorus (mean 775 g/day) was compensated for by the addition of phytase (mean 

902 g/day; p =  0.085) and approached that of pigs on the 4g/kg non-phytate 

phosphorus diet (mean 925 g/day; figure 6.2). These results were reflected in the 

daily liveweight gains which showed a similar trend although the differences here 

were statistically non-significant (p=  0.121; figure 6.1). There was no difference in 

feed conversion efficiency across the treatment groups (figure 6.3) Mean feed 

conversion ratio was 1.48. Growth rate was not different between sexes, but boars 

had lower feed intakes and a better feed conversion efficiency than gilts.
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Regression analysis revealed strong linear and quadratic responses of daily feed intake 

and daily liveweight gain, both to daily non-phytate phosphorus intake and to daily 

total phosphorus intake (table 6.6). Addition of phytase destroyed the response of 

average daily gain to phosphorus intake, and weakened the response of feed intake 

to phosphorus intake. No relationships between feed conversion efficiency and 

phosphorus intake were apparent, either with or without phytase.
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Table 6.4 Significance of effects of phosphorus level, phytase, sex and 

interactions on growth, feed intake and feed conversion efficiency

feed intake liveweight gain feed conversion ratio

P sed P sed P sed

P level ns 0.048 ns 0.035 ns 0.059

phytase ns 0.022 ns 0.016 ns 0.028

sex 0.053 0.022 ns 0.016 0.032 0.028

P level * phytase ns 0.067 ns 0.049 ns 0.083

P level * sex ns 0.067 ns 0.049 ns 0.083

phytase * sex ns 0.031 ns 0.023 ns 0.039

P level * phytase * sex ns 0.095 ns 0.070 ns 0.012

Table 6.5 Significance of effect of adding phytase 

to the basal diet

Treatment means

- phytase +  phytase P sed

Liveweight gain 0.507 0.604 0.121 0.057

Feed Intake 0.775 0.902 0.085 0.056

Feed conversion ratio 1.545 1.500 0.393 0.047
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Figure 6.1 Effect of phosphorus level and phytase on

daily liveweight gain of young pigs
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Figure 6.2 Effect of phosphorus level and phytase on

daily feed intake of young pigs
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Figure 6.3 Effect of phosphorus level and phytase on

feed conversion ratio of young pigs
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Table 6.6 Regression of growth parameters (y) against daily phosphorus intake (x)

- phytase + phytase

Daily non-phytate phosphorus intake

equation of response p % vari equation of response P % vari

linear
daily liveweight gain y = 0.518 +  0.022x 0.002 21.9 ns >0.10 -

feed intake y =  0.755 + 0.035x 0.002 22.2 y =  0.823 +  0.025x 0.031 10.5
feed conversion ratio ns >0.10 - ns >0.10 -
Daily total phosphorus intake
daily liveweight gain y = 0.491 +  0.018x 0.001 24.6 ns >0.10 -
feed intake y =  0.701 +  0.030x <0.001 29.5 y = 0.772 +  0.023x 0.008 16.7
feed conversion ratio ns >0.10 - ns >0.10 -

Daily non-phytate phosphorus intake Quadratic
daily liveweight gain y =  0.46 +  0.063x - 0.006x2 0.007 21.7 ns >0.10 -

feed intake y =  0.69 4- 0.080x - 0.006x2 0.008 21.0 y =  0.91 - 0.029x +  0.007x2 0.078 9.1
feed conversion ratio ns >0.10 - ns >0.10 -
Daily total phosphorus intake
daily liveweight gain y =  0.40 +  0.053x - 0.003x2 0.004 24.2 ns >0.10 -
feed intake y =  0.60 +  0.066x - 0.003x2 0.002 28.2 y =  0.92 - 0.029x +  0.004x2 0.023 15.5
feed conversion ratio ns >0.10 - ns >0.10 «

T Percentage variance accounted for
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6.3.3 Carcase mineral composition

The effects of phosphorus level, phytase, gender and the interactions on mineral 

composition of the body are summarised in table 6.7. Concentration of mineral in the 

dry matter of the tissue appeared to be the most responsive to the treatments. 

Addition of phytase resulted in an increased percentage of phosphorus in the dry 

matter of the whole body at levels of up to 5.5 g/kg non-phytate phosphorus (p<  

0.001); thereafter a decrease was observed (figure 6.6). Addition of phytase resulted 

in an increased percentage of ash in the dry matter except at 4.0 and 4.5 g/kg non- 

phytate phosphorus, where those animals not receiving phytase seemed to have more 

ash in the dry matter (figure 6.7). Boars had a higher percentage of phosphorus and 

ash in the dry matter than gilts (p=0.014, p <  0.001 respectively). Neither 

phosphorus level, phytase or sex influenced the amount of calcium in the carcase. 

Mean data sets for the treatment groups are presented in tables 6.8 to 6.17.

There were significant linear and quadratic relationships between daily non-phytate 

phosphorus intake and mineral content of the body, and between daily total 

phosphorus intake and mineral content of the body. Equations describing the 

responses are presented in tables 6.18 and 6.19. Linear and quadratic responses of 

DMP% to daily intake of non-phytate phosphorus are illustrated in figure 6.8. These 

relationships were destroyed by the addition of phytase due to altered levels of 

phosphorus.
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Table 6.7 Significance of effect of phosphorus level, phytase, sex and

the interactions on whole body mineral content

Variate Factor P sed

Total phosphorus - ns -

DMP% Diet 0.041 0.045

Enzyme <0.001 0.021

Sex 0.014 0.021

Enzyme x Sex 0.071 0.030

FWP% - ns -

Total calcium - ns -

DMCa% - ns -

FWCa% - ns -

Total Ash Enzyme 0.056 15.80

Diet * Enzyme 0.019 48.34

DMash% Diet 0.029 0.321

Enzyme 0.001 0.149

Sex <0.001 0.149

FWash% Enzyme 0.048 0.060

Diet x Enzyme 0.009 0.183

Dry matter (%) - ns -
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Figure 6.7 Effect of phosphorus level and phytase on percent ash in the dry

matter of the body
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Table 6.8 Total phosphorus in the whole body - treatment group means

- phytase + phytase
female male female male

Phosphorus level' phosphorus (g) in the whole body

2.0 125.2 110.2 128.2 130.7
2.5 128.4 123.4 134.1 144.3
3.0 128.5 109.8 134.8 136.5
3.5 119.0 122.5 134.6 142.7

4.0 129.9 149.6 145.7 126.1

4.5 144.1 132.8 134.1 128.7

5.0 137.4 133.6 117.1 115.8

5.5 132.0 128.5 116.4 153.8

6.0 120.2 133.9 131.0 132.3

Table 6.9 Percent phosphorus in the dry m atter of the

whole body - treatm ent group means

- phytase + phytase
female male female

Phosphorus level' % phosphorus in the dry matter

2.0 1.448 1.494 1.513 1.650

2.5 1.436 1.597 1.612 1.630

3.0 1.606 1.499 1.602 1.740

3.5 1.627 1.526 1.623 1.604

4.0 1.563 1.710 1.632 1.813

4.5 1.518 1.538 1.685 1.629

5.0 1.611 1.565 1.527 1.759

5.5 1.512 1.578 1.512 1.709

6.0 1.565 1.506 1.509 1.518

T non-phytate phosphorus g/kg freshweight diet
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Table 6.10 Percent phosphorus in the fresh weight of the

whole body - treatment group means

- phytase +  pbytase

Phosphorus level’
female male

% phosphorus
female

in freshweight
male

2.0 0.489 0.432 0.514 0.520
2.5 0.493 0.483 0.532 0.566
3.0 0.512 0.449 0.529 0.544
3.5 0.476 0.475 0.518 0.561
4.0 0.516 0.584 0.575 0.500
4.5 0.570 0.525 0.521 0.511
5.0 0.540 0.534 0.464 0.465
5.5 0.525 0.515 0.461 0.600

6.0 0.503 0.521 0.532 0.527

Table 6.11 Total calcium in the whole body

- treatm ent group means

- phytase +  phytase
female male female male

Phosphorus level’ calcium (g) in the whole body

2.0 443 343 216 742

2.5 237 341 87 720

3.0 690 122 276 875

3.5 125 513 297 532

4.0 373 517 763 806

4.5 869 781 692 619

5.0 752 506 331 203

5.5 636 466 751 365

6.0 125 705 550 636

non-phytate phosphorus g/kg freshweight diet
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Table 6.12 Percent calcium in the dry matter of the

whole body - treatment group means

- phytase +  phytase
female male female male

Phosphorus level’ % calcium in dry matter of the whole body

2.0 4.94 4.56 2.70 8.99
2.5 2.62 4.01 1.22 7.78
3.0 8.59 2.00 3.09 10.57
3.5 2.04 5.53 3.56 5.72
4.0 4.60 5.79 8.20 11.18
4.5 9.04 9.13 8.82 7.94
5.0 8.58 5.93 4.29 3.32
5.5 7.16 5.57 9.66 4.09
6.0 1.65 8.42 6.12 7.23

Table 6.13 Percent calcium in the fresh weight of the 

whole body - treatm ent group means

- phytase +  phytase
female male female male

Phosphorus level’ % calcium in freshweight of the whole body

2.0 1.73 1.33 0.83 2.85

2.5 0.90 1.30 0.41 2.71

3.0 2.77 0.58 1.03 3.48

3.5 0.57 1.95 1.09 2.03

4.0 1.45 1.92 2.94 3.09

4.5 3.39 3.14 2.76 2.46

5.0 2.94 2.05 1.32 0.84
5.5 2.47 1.95 2.96 1.44
6.0 0.62 2.91 2.21 2.50

T non-phytate phosphorus g/kg freshweight diet
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Table 6.14 Total ash in the whole body

- treatment group means

- phytase +  phytase
female male female male

Phosphorus level7 ash (g) in whole body

2.0 565.2 509.7 622.3 627.0
2.5 616.5 575.5 663.3 696.7
3.0 595.5 618.7 689.8 704.7
3.5 563.2 600.6 664.2 735.4
4.0 656.0 768.3 678.2 625.3

4.5 728.5 694.6 592.3 598.0

5.0 633.7 626.2 566.2 669.1

5.5 623.0 641.9 606.3 768.4

6.0 589.4 691.2 694.7 658.0

Table 6.15 Percent ash in the dry m atter of the whole body

- treatm ent group means

- phytase +  phytase
female male female male

Phosphorus level' % ash in dry matter of the whole body

2.0 6.488 6.914 7.360 7.946
2.5 6.899 7.471 7.958 7.874
3.0 7.450 8.322 8.235 9.052
3.5 7.709 7.454 8.023 8.279
4.0 7.925 8.798 7.599 9.006
4.5 7.668 8.092 7.392 7.546
5.0 7.421 7.326 7.394 10.10
5.5 7.188 7.888 7.862 8.552

6.0 7.676 7.794 8.020 7.553

7 non-phytate phosphorus g/kg freshweight diet
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Table 6.16 Percent ash in the fresh weight of the 

whole body - treatm ent group means

- phytase +  phytase
female male female male

Phosphorus level* % ash in freshweight of whole body

2.0 2.194 1.996 2.495 2.506
2.5 2.373 2.244 2.629 2.734

3.0 2.369 2.499 2.714 2.815
3.5 . 2.260 2.326 2.551 2.892
4.0 2.599 2.995 2.673 2.480
4.5 2.876 2.757 2.278 2.378

5.0 2.486 2.503 2.247 2.662

5.5 2.486 2.565 2.398 3.001

6.0 2.463 2.697 2.826 2.619

Table 6.17 Dry m atter content of the whole body

- treatm ent group means

-phytase +  phytase
female male female male

Phosphorus levelr % dry matter o f the whole body

2.0 33.93 28.87 34.22 31.50
2.5 34.35 30.45 33.17 34.71
3.0 31.79 30.14 33.15 31.26
3.5 29.42 31.19 31.98 34.92
4.0 32.92 34.06 35.08 27.62

4.5 37.52 34.13 30.72 31.50

5.0 33.44 34.15 30.42 26.65

5.5 34.61 32.77 30.53 35.15

6.0 32.19 34.59 35.11 34.72

T non-phytate phosphorus g/kg freshweight diet
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Figure 6.8 Response of percent phosphorus in the dry m atter of the body (y) 

to intake of phosphorus (x)

Response equations

Linear y = 1.47 +  0.02x

Quadratic y = 1.32 +  0.12x-0.01x*

p = 0.055 % var = 7.7

p = 0.056 % var = 10.9
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Table 6.18 Regression of phosphorus and ash content of the body (y) against daily non-phytate phosphorus intake (x)

Variate Linear Quadratic

Equation of response P % varr Equation of response P % varr

Total phosphorus y =  103.6+ 6.87x <0.001 30.2 y = 82.2 +  20.8x - 1.97x2 <0.001 31.6

DMP% y = 1.47 +  0.02x 0.055 7.7 y = 1.32 +  0.12x -O.Olx2 0.056 10.9

FWP% y =  0.44 + 0.02x 0.007 17.1 y = 0.35 +  0.08x -0.01x2 0.008 21.0

Total ash y =  490.6 +  38.20x <0.001 26.0 y = 311.0 +  155.lx - 16.62x2 <0.001 30.8

DMash% y =  6.98 +  0.17x 0.087 5.7 y = 5.31 +  1.26x - 0.16x2 0.044 12.2

FWash% y =  2.10 +  0.1 lx 0.006 17.5 y = 1.31 + 0.62x - 0.07x2 0.002 26.9

% variance accounted for



Table 6.19 Regression of phosphorus and ash content of the body (y) against daily total phosphorus intake (x)

Variate Linear

Equation of response P % varT

Ouadratic

Equation of response P % varr

Total phosphorus y =  96.22 +  5.36x <0.001 31.9 y =  65 +  16.9x - 0.98X2 0.001 32.6

DMP% y =  1.45 +  0.02x 0.055 8.0 y =  1.23 +  O.lOx - O.Olx2 0.070 9.7

FWP% y =  0.43 +  O.Olx 0.008 16.6 y =  0.23 + 0.07x - O.Olx2 0.010 19.6

Total ash y =  452.2 +  29.37x <0.001 26.5 y =  189 +  126.7x - 8.30x2 <0.001 29.9

DMash% y =  6.84 +  0.13x 0.096 5.2 y = 4.41 +  1.02x - 0.08x2 0.072 9.6

FWash% y =  2.01 +  0.08x 0.008 16.5 y = 0.81 +  0.52x - 0.04x2 0.004 23.8

% variance accounted for



6.3.4 Physical properties of bone

The effects of phosphorus level, phytase, gender and the interactions on the physical 

properties of the femur and the third and fourth metatarsals are shown in table 6.20. 

Addition of phosphorus or phytase to the diet resulted in significant increases in 

femur strength (p <  0.001); the enzyme resulting in an increased femur strength at all 

levels of dietary phosphorus (p<0.001, figure 6.9). In general, boars had heavier 

femurs than gilts, but this was not reflected in an increased strength.

No effects of phosphorus level on the physical characteristics of the third or fourth 

metatarsals were observed. Addition of phytase to the diet increased the strength of 

the fourth metatarsal, but not the third. Gender effects were apparent, with females 

having shorter and stronger metatarsals, although weight of these did not differ 

significantly between the sexes. Strength of the third metatarsal strength was more 

responsive to phytase in boars than in gilts. Data sets showing treatment group means 

are presented in tables 6.21 to 6.29.

Increasing daily intake of non-phytate phosphorus resulted in an increased femur 

strength. Linear and quadratic response curves of femur strength against daily non- 

phytate phosphorus intake are shown in figure 6.10. The responses were destroyed 

by the addition of phytase which altered the levels of non-phytate phosphorus. 

Equations describing the linear and quadratic responses of femur physical 

measurements (freshweight, length and strength) to daily intake of non-phytate 

phosphorus and daily intake of total phosphorus are presented in table 6.30.

Linear and quadratic relationships between increasing daily intake of phosphorus and 

the physical properties of the metatarsals were not apparent. There was a slight linear 

relationship between third metatarsal strength and daily intake of non-phytate 

phosphorus (p = 0.095), and between third metatarsal strength and daily intake of total 

phosphorus (p=  0.085). These are given in table 6.31.
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Table 6.20 Significance of the effects of phosphorus level, phytase, sex 

and the interactions on physical properties of bones

Variate Factor P sed

Femur

Freshweight sex <0.001 2.87

Length ns >0.10 -

Strength P level <0.001 8.32

phytase <0.001 3.85

3rd Metatarsal

Freshweight ns >0.10 -

Length sex <0.001 1.63

enzyme x sex 0.094 0.758

Strength sex 0.071 2.34

4th Metatarsal

enzyme x sex 0.061 3.35

Freshweight ns >0.10 -

Length sex 0.002 0.555

Strength ■ sex 0.024 0.565
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Figure 6.9 Effect of phosphorus level and phytase on femur breaking strength

1800

600 3 3.5 4 4.5
-phytate phosphorus

5 5.5
(g/kg)

| - phytase V //A  +  phytase
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Table 6.21 Mean femur freshweight (g) of the treatment groups

P level - phytase +  phytase

female male female male

2.0 117.2 111.5 117.7 129.5

2.5 114.2 112.2 128.6 123.0

3.0 102.3 123.1 118.1 116.0

3.5 114.9 117.2 121.3 128.7

4.0 100.8 128.1 112.0 123.9

4.5 115.3 122.7 113.3 124.1

5.0 107.1 127.1 93.5 121.1

5.5 114.6 128.7 97.4 136.9

6.0 115.8 119.2 122.9 130.5

Table 6.22 Mean femur length (mm) of the treatm ent groups

p level - phytase +  phytase

female male female male

2.0 133.7 132.9 131.8 132.5

2.5 134.0 130.1 130.3 129.0

3.0 126.6 134.6 134.1 133.0

3.5 133.3 132.1 128.2 135.8

4.0 128.3 133.4 126.2 133.3

4.5 131.3 133.3 132.9 134.5

5.0 132.6 130.5 123.3 136

5.5 129.4 131.8 127.2 135

6.0 131.6 130.6 135.9 130.8

non-phytate phosphorus g/kg diet
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Table 6.23 Mean femur strength (newtons) of the treatment groups

P level_____________ - phytase__________ +  phytase

female male female male

2.0 570 823 1122 1181
2.5 1158 933 1399 1753
3.0 976 1218 1305 1388
3.5 1221 1078 1453 1278
4.0 1398 1313 1271 1817
4.5 1342 1306 1358 1474
5.0 1430 1287 1475 148
5.5 1102 1145 1529 1498
6.0 1064 1147 1416 1304

Table 6.24 Mean th ird  metatarsal freshweight (g) of the treatm ent groups

- phytase________________+ phytase

P level female male female male

2.0 12.94 12.22 13.40 16.73
2.5 12.64 14.95 13.34 11.83
3.0 13.85 14.47 13.34 13.99
3.5 14.75 12.97 13.94 12.55
4.0 12.24 12.45 11.97 10.28
4.5 13.83 13.61 17.00 13.82
5.0 13.08 12.44 15.29 12.75

5.5 13.64 14.28 13.58 13.61

6.0 12.73 11.53 14.07 13.13

non-phytate phosphorus g/kg diet
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Table 6.25 Mean third metatarsal length of the treatment groups

P  lev e l____ - Dhvtase +  Dhvtase

fem ale m ale fem ale m ale

2.0 58.8 59.7 57.8 60.5
2.5 63.6 61.3 57.1 61.1
3.0 59.5 63.0 59.9 57.9
3.5 56.6 60.1 56.8 60.9
4.0 58.9 63.5 56.4 60.2
4.5 57.9 60.4 55.9 60.2
5.0 59.2 57.4 56.1 61.4
5.5 61.1 59.3 58.3 61.3
6.0 58.1 59.3 60.1 62.2

Table 6.26 Mean th ird  metatarsal breaking strength (newtons) 

of the treatm ent groups

P level - phytase _______+ phytase

female male female male

2.0 440 267 461 384

2.5 307 319 443 400

3.0 418 256 325 439

3.5 453 347 287 359

4.0 539 286 414 443

4.5 476 340 369 544

5.0 403 382 498 386

5.5 428 415 422 446

6.0 415 453 532 378

non-phytate phosphorus g/kg diet



Table 6.27 Mean fourth metatarsal freshweight (g) of the treatment groups

P level___________ - phvtase____________ ±  phytaSS,
female male female male

2.0 15.21 13.42 12.20 14.77

2.5 14.45 16.20 13.73 14.17

3.0 16.37 14.38 20.70 14.43

3.5 14.05 14.87 14.55 17.18

4.0 13.76 18.60 13.55 14.57

4.5 12.66 13.35 13.65 13.73

5.0 15.51 15.89 13.43 16.81

5.5 11.89 14.11 13.18 13.80

6.0 15.16 15.62 12.47 15.02

Table 6.28 Mean fourth metatarsal length (mm) of the treatm ent groups

p level - phytase___________ + phytase

female male female male

2.0 62.7 62.8 60.0 62.5

2.5 62.9 60.8 59.0 62.3

3.0 61.4 65.1 62.0 60.9

3.5 59.7 59.9 58.1 65.7

4.0 62.34 66.2 58.6 62.8

4.5 69.9 61.7 57.6 60.5

5.0 62.1 61.4 58.0 62.2

5.5 61.0 61.1 59.4 63.0

6.0 60.6 62.2 61.6 59.3

non-phytate phosphorus g/kg diet
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Table 6.29 Mean fourth m etatarsal breaking strength (newtons) 

of the treatm ent groups

p level - phytase_____________ + phytase

female male female male

2.0 364 253 326 299

2.5 253 227 329 329

3.0 312 426 351 320

3.5 357 285 356 336

4.0 391 251 499 317

4.5 374 323 359 279

5.0 342 319 557 331

5.5 373 262 301 335

6.0 240 389 368 332

non-phytate phosphorus g/kg diet
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Figure 6.10 Response of femur breaking strength (y) to phosphorus intake (x)

Response equations
Linear y = 77.7 +  10.23x p = 0.001 % var =  24.6

Quadratic y =  -35.3 +  83.6x -10.44 x2 p <  0.001 % var = 59.7
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Table 6.30 Regression of femur physical properties (y) against daily phosphorus intake (x)

Linear Quadratic

Daily non-phytate P intake
P % varT response equation P % varT response equation

Freshweight 0.057 7.6 y =  103.97 +  3.41x ns - -
Length ns - - ns - -
Strength
Daily total P intake

0.001 24.6 y =  77.7 +  10.23x <0.001 59.7 y =  -35.3 +  83.6x -10.44 x2

Freshweight 0.051 8.1 y =  100.33 +  2.65x ns - -
Length ns - - ns - -
Strength <0.001 26.2 y =  66.6 +  8.01x <0.001 59.3 y = -115.4 +  75.2x-5.73 x2

Table 6.31 Linear response of th ird  m etatarsal strength (y) to daily phosphorus intake (x)

p % varr equation of response

Daily non-phytate P intake 0.095 5.7 y = 29.65 +  2.62x
Daily total P intake 0.085 6.2 y = 26.87 +  2.04x

T percentage variance accounted for



6.3.5 Bone Mineralization

6.3.5.1 Femur

The effect o f phosphorus level, phytase, gender and the interactions on mineral 

content of the fat free femur are given in table 6.32. Treatment group means are 

presented in tables 6.33 to 6.39. Total phosphorus in the femur was increased by 

addition o f phytase (p=0.013; figure 6.11), although percent of phosphorus in the 

femur was not affected. Addition of phytase increased the fat free weight and ash 

content of the femur. Neither phosphorus level or phytase influenced the amount or 

percentage of calcium in the femur. Boars had heavier femurs, but gilts had a greater 

percentage of ash, although total ash did not differ between sexes.

A strong quadratic relationship between percent phosphorus in the femur and daily 

intake of non-phytate phosphorus (p= 0.003), and a weaker linear relationship 

(p=0.03) was apparent, as illustrated in figure 6.12. There were strong linear and 

quadratic relationships between daily non-phytate phosphorus intake and total ash, 

percent ash, and total phosphorus of the fat free femur. These are described in table 

6.40. Equations describing linear and quadratic relationships between daily total 

phosphorus intake and femur mineral content are presented in table 6.41.
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Table 6.32 Significance of the effects of phosphorus level, phytase, sex 

and the interactions on mineral content of the fem ur

Variate Factor P sed

Fat free weight P level 0.043 3.942
Phytase 0.012 1.823

Sex 0.002 1.826
P level * phytase 0.088 5.584

Total ash P level 0.002 0.792
Phytase <0.001 0.367

P level * phytase 0.001 1.124

% ash P level 0.016 1.053
Phytase 0.021 0.487

Sex 0.004 0.488
P level * phytase 0.080 1.491

Total phosphorus Phytase 0.013 0.150

% phosphorus ns - -

Total calcium ns -

% calcium ns - -

Table 6.33 Fat free weight of the femur - treatm ent group means

- phytase +  phytase

femal male female male

Phosphorus lever fat free weight of the femur (g)

2.0 75.00 75.70 74.69 94.73

2.5 77.96 81.63 92.53 81.42

3.0 82.64 90.38 86.21 74.65

3.5 77.26 80.34 84.63 85.29

4.0 75.68 85.35 78.07 81.90

4.5 77.57 85.75 79.88 90.01

5.0 90.02 78.59 75.95 130.71

5.5 84.32 83.00 77.92 86.59

6.0 72.88 81.58 79.55 87.68

non-phytate phosphorus g/kg freshweight diet



Table 6.34 Total ash in the femur - treatment group means

- phytase +  phytase

female male female male

Phosphorus lever total ash in the femur (g)

2.0 11.82 12.72 16.72 16.52

2.5 15.36 12.97 19.54 17.72

3.0 15.37 15.80 17.93 16.07

3.5 17.32 15.50 17.58 16.88

4.0 17.42 17.05 17.50 17.89

4.5 17.89 17.74 16.90 19.00

5.0 18.72 16.15 17.97 19.56

5.5 16.75 16.04 17.21 19.25

6.0 15.94 17.68 17.64 17.76

Table 6.35 Percent ash in the femur - treatm ent group means

- phytase +  phytase

female male female male

Phosphorus lever % ash in the femur

2.0 15.42 16.71 22.47 17.42

2.5 19.67 15.44 20.15 . 21.78

3.0 18.53 17.82 20.93 21.57

3.5 22.59 19.24 20.75 19.79

4.0 23.14 19.81 22.50 • 21.82

4.5 23.05 20.66 21.10 21.14

5.0 20.75 20.81 23.70 15.52

5.5 20.02 19.38 22.06 22.56

6.0 21.83 21.65 22.16 20.19

T non-phytate phosphorus g/kg freshweight diet



Table 6.36 Total phosphorus in the femur - treatment group means

- phytase +  phytase

female male female male
Phosphorus leveF total phosphorus in the femur (g)
2.0 2.30 2.42 3.29 • 3.478
2.5 3.28 2.81 4.47 3.49
3.0 2.63 2.89 3.61 3.01
3.5 3.78 3.17 3.60 1 3.57
4.0 3.95 3.86 3.29 4.07
4.5 2.96 3.57 3.67 3.27
5.0 3.57 3.24 3.63 4.16
5.5 3.32 3.58 3.18 4.15

6.0 3.37 2.74 3.74 2.83

Table 6.37 Percent phosphorus in the femur - treatm ent group means

- phytase +  phytase

female male female male
Phosphorus lever % phosphorus in the femur

2.0 2.94 3.18 4.49 3.67

2.5 4.19 3.32 4.08 4.27

3.0 3.15 3.30 4.26 4.03

3.5 4.90 3.93 4.28 4.21

4.0 5.25 4.49 4.24 4.96

4.5 3.85 4.17 4.59 3.67

5.0 3.98 4.19 4.83 3.31

5.5 4.04 4.31 4.09 4.91

6.0 4.60 3.35 4.68 3.21

r non-phytate phosphorus g/kg freshweight of diet
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Table 6.38 Total calcium in the femur - treatment group means

- phytase +  phytase

female male female male
Phosphorus level1 total calcium in the femur (g)
2.0 4.55 6.17 8.88 9.60
2.5 8.03 5.53 9.14 8.42
3.0 7.24 10.25 7.99 7.73
3.5 9.46 7.11 9.10 4.76
4.0 8.48 8.89 8.36 10.10
4.5 9.88 8.06 7.88 11.07
5.0 10.33 7.74 9.95 8.36
5.5 9.34 7.97 6.32 11.11
6.0 8.14 4.92 7.53 8.20

Table 6.39 Percent calcium in the femur - treatm ent group means

- phytase +  phytase

female male female . male
Phosphorus level7 % calcium in the femur

2.0 5.78 8.14 12.02 10.17

2.5 10.49 6.53 9.96 10.34

3.0 8.71 11.46 9.31 10.18
3.5 12.24 8.83 10.77 5.84

4.0 11.50 10.28 10.72 12.62

4.5 12.73 9.79 9.95 12.26

5.0 11.47 9.96 13.10 6.77

5.5 11.16 9.47 8.16 12.95

6.0 11.08 6.03 9.66 9.29

non-phytate phosphorus g/kg freshweight diet
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Figure 6.11 Effect of phosphorus level and phytase on

total phosphorus in the femur

- phytase +  phytase



Figure 6.12 Response of percent phosphorus in the femur (y)

to phosphorus intake (x)

Response equations
Linear y = 3.081 +  0.247x p =  0.03 % var =  10.6

Quadratic y = 0.45 + 1.95x - 0.24x2 p = 0.003 ' % var = 25.0



Table 6.40 Regression of femur mineral content (y) against daily non-phytate phosphorus intake (x)

Linear Quadratic

Variate Equation of response P % varT Equation of response P % var’

Total ash in FFW y = 10.80 +  1.46x <0.001 50.6 y =  4.01 +  5.88x - 0.63x2 <0.001 61.9
Percent ash in FFW y =  15.21 +  1.30x <0.001 35.9 y =  7.40 +  6.37x - 0.72x2 <0.001 49.5
Total phosphorus in FFW y =  2.19 +  0.28x 0.002 22.0 y =  0.27 +  1.69x - 0.20x2 <0.001 36.2
Percent phosphorus in FFW y = 3.081 +  0.247x 0.030 10.6 y =  0.45 +  1.95x - 0.24x2 0.003 25.0
Total calcium in FFW y =  6.95 +  0.065x 0.019 16.6 - ns -

Percent calcium in FFW y = 9.178 +  0.044x 0.046 12.0 - ns _

% variance accounted for



Table 6.41 Regression of femur mineral content (y) against daily total phosphorus intake (x)

Linear Quadratic

Variate Equation of response P % var Equation of response P % var

Fat free weight (FFW) y =  69.63 +  1.88x 0.036 9.8 - ns -

Total ash in FFW y = 9.21 +  1.14x <0.001 53.6 y = -1.37 + 5.05x - 0.33x2 <0.001 63.5

Percent ash in FFW y = 13.86 +  l.Olx <0.001 37.3 y = 1.17 +  5.69x -0.401 x2 <0.001 50.3

Total phosphorus in FFW y = 1.85 +  0.22x 0.001 24.8 y = -1.7 +  1.537x - 0.1 lx2 <0.001 38.8

Percent phosphorus in FFW y = 2.79 +  0.20x 0.022 12.0 y = -1.65 +  1.84x - 0.14x2 0.002 8.0

Total calcium in FFW y =  6.60 +  0.035x 0.019 16.7 - ns -

Percent calcium in FFW y = 8.86 +  0.025x 0.051 11.5 - ns -

%  variance accounted for



6.3.5.2 Metatarsals

The effect of phosphorus level, phytase, sex and the interactions on fat free weight 

(FFW), total phosphorus, percent of phosphorus (%P), total calcium, percent of 

calcium (%Ca), total ash and percent of ash (%ash) in the fat free weight of the third 

and fourth metatarsals are given in table 6.42.

Addition of phytase to the diet resulted in an increased phosphorus weight of the 

fourth metatarsal (p=  0.003). There was an interacting phosphorus level x phytase 

x gender effect on the percent of phosphorus in the third metatarsal (p=  0.051) and 

fourth metatarsal (p=  0.015). Addition of phosphorus or phytase to the diet resulted 

in an increased ash content of the fourth, but not the third metatarsal.

Treatment means are presented in tables 6.43 - 6.56. Results suggested that the 

mineral content of the fourth metatarsal was sensitive to phosphorus level, but the 

third metatarsal, being less responsive, was not suitable as an indicator of phosphorus 

availability.

Strong linear (p=0.002) and quadratic (p<0.001) relationships between phosphorus 

in the fourth metatarsal and daily non-phytate phosphorus intake were observed 

(figure 6.13); and similarly between phosphorus in the fourth metatarsal and daily 

total phosphorus intake. Responses of fat free weight and ash of the fourth metatarsal 

to daily phosphorus intake were also seen. These are described in tables 6.57-6.60.
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Table 6.42 Significance of the effects of phosphorus level, phytase and sex

on mineral content of the metatarsal

Variate Factor P sed

3rd Metatarsals
Fat free weight sex 0.058 0.411

Total ash ns - -

% ash ns - -

Total phosphorus ns - -

% phosphorus p level * phytase * sex 0.051 1.529

Total calcium ns - -

% calcium ns “ -

4th metatarsals
Fat free weight P level 0.089 0.747

P level * sex 0.054 1.048

Total ash P level 0.011 0.102
phytase 0.003 0.047

P level * phytase 0.060 0.145
sex 0.081 0.047

% ash P level 0.063 3.750

Total phosphorus phytase 0.003 0.018

% phosphorus P level * phytase * sex 0.015 1.688

Total calcium ns - -

% calcium ns - -
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Table 6.43 Fat free weight of the third metatarsal - treatment group means

- phytase +  phytase

female male female male
Phosphorus levelr fat free weight of MT3 (g)
2.0 6.68 7.53 7.15 9.15
2.5 6.87 8.99 8.54 8.83
3.0 7.16 9.71 8.22 7.00

3.5 7.80 6.07 7.30 10.15

4.0 6.89 8.53 6.36 8.27

4.5 7.43 8.52 8.38 7.59

5.0 7.63 10.86 7.91 8.71

5.5 8.05 8.25 6.72 8.08

6.0 11.79 7.42 6.31 8.02

Table 6.44 Fat free weight of the fourth metatarsal - treatment group means

- phytase +  phytase

female male female male

Phosphorus level’ fat free weight of MT4 (g)

2.0 4.25 7.47 4.85 8.17

2.5 4.23 6.46 6.69 7.83

3.0 4.94 6.29 6.82 4.46

3.5 8.73 5.72 7.75 6.62

4.0 7.75 4.67 5.93 8.36

4.5 6.96 7.76 6.36 6.03

5.0 6.30 7.27 5.72 6.74

5.5 7.37 8.27 9.71 7.84

6.0 6.38 7.47 6.91 7.19

r non-phytate phosphorus g/kg freshweight diet
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Table 6.45 Total ash in the third metatarsal - treatment group means

- phytase + phytase

female male female male
Phosphorus levelT total ash in fat free MT3 (g)
2.0 1.20 1.57 1.86 1.87
2.5 1.22 1.42 2.59 2.20
3.0 1.89 3.43 2.34 1.77
3.5 2.01 1.73 1.71 2.94
4.0 2.15 1.88 1.93 2.04
4.5 1.96 1.79 1.82 2.22
5.0 1.77 3.94 2.09 2.46
5.5 2.11 2.05 1.69 2.27

6.0 2.02 2.23 1.91 1.20

Table 6.46 Percent ash in the third metatarsal - treatment group means

- phytase +  phytase

female male female male

Phosphorus levelT % ash in fat free MT3
2.0 18.79 20.98 26.46 20.60

2.5 16.98 15.72 29.79 24.99

3.0 26.39 33.97 30.66 28.81

3.5 25.60 29.39 24.59 29.53

4.0 31.17 22.43 30.29 24.45

4.5 26.37 21.28 22.96 28.78

5.0 23.60 34.81 25.99 27.96

5.5 25.69 24.60 25.24 27.60

6.0 21.21 30.09 30.67 24.89

r non-phytate phosphorus g/kg freshweight diet



Table 6.47 Total ash in the fourth metatarsal - treatment group means

- phytase +  phytase

female male female male
Phosphorus levelT Total ash in fat free MT4 (g)
2.0 1.28 1.53 1.74 1.89
2.5 1.75 1.49 1.92 2.17-
3.0 1.83 1.87 2.09 1.79
3.5 1.76 1.72 1.83 2.08
4.0 2.03 1.99 1.90 1.95
4.5 1.93 1.88 1.79 2.21
5.0 1.98 1.91 2.01 2.18
5.5 1.80 1.70 1.95 2.05
6.0 1.77 2.44 1.88 1.90

Table 6.48 Percent ash in the fourth metatarsal - treatment group means

- phytase +  phytase

female male female male
Phosphorus leveU % ash in fat free MT4
2.0 32.18 20.68 36.91 23.47

2.5 41.93 23.95 28.28 27.85
3.0 37.72 29.75 33.10 40.23
3.5 19.66 30.70 24.17 33.60
4.0 26.19 42.82 32.20 23.22
4.5 27.69 25.08 29.03 36.88
5.0 33.50 31.85 35.49 34.78
5.5 23.72 20.15 19.24 25.76
6.0 27.96 32.63 27.36 27.28

non-phytate phosphorus g/ kg freshweight diet



Table 6.49 Total phosphorus in the third metatarsal

- treatment group means

- phytase + phytase

female male female male
Phosphorus lever Total phosphorus in fat free MT3 (g)
2.0 0.25 0.28 0.12 0.45
2.5 0.33 0.18 0.24 0.32
3.0 0.36 0.22 0.33 0.29
3.5 0.31 0.28 0.34 0.36
4.0 0.46 0.41 0.25 0.31
4.5 0.22 0.33 0.35 0.25
5.0 0.33 0.26 0.24 0.36
5.5 0.33 0.24 0.48 0.46
6.0 0.24 0.39 0.43 0.29

Table 6.50 Percent phosphorus in the third metatarsal 

- treatment group means

- phytase +  phytase

female male female male

Phosphorus leveV % phosphorus in fat free MT3
2.0 3.77 3.74 2.83 5.51

2.5 5.24 1.90 3.27 3.73

3.0 5.03 2.33 4.26 5.07

3.5 3.91 4.62 4.72 3.60

4.0 6.72 4.95 3.93 3.69

4.5 3.01 3.90 4.51 3.23

5.0 4.43 2.10 3.03 4.23

5.5 4.12 2.91 5.12 5.55

6.0 2.47 5.08 6.92 3.62

non-phytate phosphorus g/kg freshweight diet
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Table 6.51 Total phosphorus in the fourth metatarsal

- treatment group means

- phytase +  phytase

Phosphorus lever
female male

Total phosphorus
female

in fat free MT4 (g)
male

2.0 0.21 0.24 0.37 0.43
2.5 0.38 0.27 0.36 0.47
3.0 0.40 0.36 0.42 0.39
3.5 0.34 0.38 0.40 0.50
4.0 0.29 0.40 0.42 0.43
4.5 0.38 0.40 0.39 0.38
5.0 0.43 0.43 0.42 0.43
5.5 0.39 0.34 0.42 0.46
6.0 0.34 0.44 0.40 0.38

Table 6.52 Percent (^phosphorus in the fourth metatarsal 

- treatment group means

- phytase +  phytase

female male female male
Phosphorus levelr % phosphorus in fat free MT4 (g)
2.0 5.38 3.30 7.68 5.29

2.5 9.20 4.29 5.23 6.07

3.0 8.34 5.31 6.58 8.74
3.5 3.76 6.18 5.39 7.89

4.0 3.55 9.79 7.09 5.04
4.5 5.51 5.39 6.43 6.34

5.0 7.25 4.01 7.35 7.03

5.5 4.99 3.97 3.98 5.67

6.0 5.28 6.00 5.85 5.46

non-phytate phosphorus g/kg freshweight diet



Table 6.53 Total calcium in the third metatarsal

- treatment group means

- phytase +  phytase

female male female male
Phosphorus levelT total calcium in fat-free MT3 (g)
2.0 0.34 0.63 0.59 1.09
2.5 1.05 0.41 0.86 0.95
3.0 0.96 1.01 0.69 1.16
3.5 1.19 0.63 0.80 0.89
4.0 0.82 0.74 0.76 1.03
4.5 0.79 0.75 0.67 0.68
5.0 0.78 1.02 1.27 1.25
5.5 0.65 0.63 0.72 0.95

6.0 1.27 1.24 0.97 1.14

Table 6.54 Percent calcium in the third metatarsal 

- treatment group means

- phytase +  phytase

female male female male
Phosphorus level’ % calcium in fat free MT3

2.0 6.13 8.66 6.92 13.59

2.5 17.01 5.85 11.23 11.51

3.0 13.29 9.42 13.27 12.97

3.5 9.98 10.53 12.21 9.01

4.0 11.70 9.60 11.72 12.21

4.5 10.25 9.10 8.53 9.00

5.0 10.38 11.32 15.85 14.14

5.5 8.55 6.96 13.39 13.39

6.0 13.21 15.18 15.70 15.70

r non-phytate phosphorus g/kg freshweight diet



Table 6.55 Total calcium in the fourth metatarsal

- treatment group means

- phytase +  phytase

female male female male
Phosphorus level1 total calcium in fat-free MT4 (g)
2.0 0.26 0.07 0.07 0.11
2.5 0.17 0.26 0.15 0.09
3.0 0.33 0.10 0.11 0.20
3.5 0.11 0.67 0.15 0.10
4.0 0.36 0.16 0.06 0.05
4.5 0.11 0.20 0.38 0.36
5.0 0.53 0.15 0.30 0.32

5.5 0.15 0.26 0.19 0.30
6.0 0.20 0.10 0.13 0.21

Table 6.56 Percent calcium in the fourth metatarsal 

- treatment group means

- phytase +  phytase

Phosphorus levelT
female

2.0 5.07

2.5 3.70

3.0 7.27

3.5 1.87

4.0 5.07

4.5 1.59

5.0 6.86

5.5 2.50

6.0 3.21

male female male
% calcium in fat free MT4
0.93 1.43 1.39
4.59 3.56 1.15
1.83 1.95 3.98

13.06 2.04 1.27
3.85 0.76 0.68
3.04 6.82 3.97
2.01 3.26 6.90
2.87 1.89 3.41
1.55 1.99 0.68

r non-phytate phosphorus g/kg freshweight diet



Figure 6.13 Response of phosphorus weight of the fourth metatarsal (y) 

to phosphorus intake (x)

non-phytate phosphorus intake (g /day)

Response equations
Linear y = 0.22 +  0.04x p = 0.002

Quadratic y =  -0.03 + 0.20x - 0.02xJ p <  0.001

% var = 24.4 

% var =  33.9
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Table 6.57 Regression of mineral content of the third metatarsal (y) against daily non-phytate phosphorus intake (x)

Linear Quadratic

Variate Equation of response P % vari Equation of response P % var'

Fat free weight (FFW) y =  6.26 +  0.52x 0.07 6.7 ns
Total ash in FFW y =  1.35 +  0.19x 0.089 5.6 - ns .

Percent ash in FFW - ns - - ns _

Total phosphorus in FFW - ns - - ns -

Percent phosphorus in FFW - ns - ns *
Total calcium in FFW - ns - - ns -

Percent calcium in FFW - ns - - ns _

percentage variance accounted for



Table 6.58 Regression of mineral content of the third metatarsal (y) against daily intake of total phosphorus (x)

Linear Quadratic

Variate Equation of response P % varT Equation of response P % varr

Fat free weight (FFW) y =  5.86 +  0.38x 0.083 5.9 ns

Total ash in FFW y = 1.15 +  0.15x 0.086 . 5.8 - ns -

Percent ash in FFW - ns - - ns -

Total phosphorus in FFW - ns - - ns -
Percent phosphorus in FFW - ns - - ns -
Total calcium in FFW - ns - • ns -

Percent calcium in FFW - ns - - ns

percentage variance accounted for



Table 6.59 Regression of mineral content of the fourth metatarsal (y) against daily intake of non-phytate phosphorus (x)

Linear Quadratic

Variate Equation of response P % vari Equation of response P % vari

Fat free weight (FFW) y = 4.76 +  0.51x 0.026 11.1 y = 4.33 + 0.79x - 0.04x2 0.087 8.5
Total ash in FFW y = 1.29 +  0.15x <0.001 35.9 y = 0.55 +  0.62x - 0.07x2 <0.001 44.6
Percent ash in FFW - ns - - ns -

Total phosphorus in FFW y = 0.22 + 0.04x 0.002 24.4 y = -0.03 +  0.20x - 0.02X2 <0.001 33.9
Percent phosphorus in FFW - ns - - ns -
Total calcium in FFW - ns - - ns -

Percent calcium in FFW - ns . ns

percentage variance accounted for



Table 6.60 Regression of mineral content of the fourth metatarsal (y) against daily intake of total phosphorus (x)

Linear Quadratic

Variate Equation of response P % varr Equation of response P % varT

Fat free weight (FFW) y = 4.3 +  10.70x 0.029 10.7 y =  4.03 +  0.48x - O.Olx2 0.095 8.0
Total ash in FFW y = 1.14 +  0.1 lx <0.001 36.3 y = -0.12 +  0.58x - 0.04x2 <0.001 50.3
Percent ash in FFW - ns - - ns -

Total phosphorus in FFW y = 0.18 + 0.03x 0.002 25.1 y = -0.25 +  0.19x-O.Olx2 <0.001 35.6
Percent phosphorus in FFW - ns - - ns -

Total calcium in FFW - ns - - ns -

Percent calcium in FFW - ns - . ns _

T percentage variance accounted for



6.3.6 Relationship between femur strength and femur mineral content

Relationships between femur strength and mineral content are described in table 6.61. 

Strong linear and curvilinear relationships between femur strength and phosphorus, 

calcium and ash content of the femur (p <  0.001) were destroyed by phytase addition.

6.3.7 Relationship between femur mineral and whole body mineral content

Relationships between bone mineral and whole body mineral content are given in 

table 6.62. Strong linear relationships existed between ash in the femur and ash in the 

body. Conversely, those between phosphorus in the femur and the body were weak.

6.3.8 Relationship between femur strength and whole body mineral content

Relationships between femur strength and phosphorus, calcium and ash in the body 

are presented in table 6.63. A strong quadratic response of percent of ash in the dry 

matter of the carcase to femur strength was observed (p=0.006). Relationships 

between femur strength and total ash, total phosphorus and percent phosphorus in the 

body were somewhat weaker (> 0 .01). Phytase addition destroyed all linear 

relationships except those between femur strength and percent ash in the carcase dry 

matter, and between femur strength and percent phosphorus in the carcase dry matter. 

Quadratic relationships were destroyed except for that between femur strength and 

percent phosphorus in the carcase dry matter.

6.3.9 Relationship between growth and whole body mineral content

Table 6.64 shows the total amount of phosphorus and ash required in the whole body 

to support growth, from which it could be seen that 4.28g o f phosphorus was 

necessary for each kg of liveweight gain. Addition of phytase weakened the 

relationships between growth and mineral content o f the body.
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Table 6.61 Regression of femur mineral content (y) against femur strength (x)

P % varT equation of response P % varT equation of response

Linear Quadratic

Total ash <0.001 45.5 y = 7.2 +  6.60x <0.001 55.1 y = -269.9 +  43.7x - 1.202x*

Ash % <0.001 42.1 y = - 8.6 +  6.18x <0.001 51.0 y = -365 +  42.6x - 0.914x2

Total Phosphorus <0.001 44.4 y = 38.9 +  23.57x <0.001 46.3 y =  -30.4 +  71.4x -7.81x2

Phosphorus % <0.001 35.6 y =  43.6 +  17.79x <0.001 35.0 y =  0.4 +  41.5x-3.06x2

Total calcium <0.001 32.6 y = 62.8 +  6.47x >0.10 - ns

Calcium % <0.001 28.0 y =  64.41 +  5.08x <0.001 55.1 y =  -269.9 +  43.7x - 1.202X2



Table 6.62 Regression of whole body mineral content (y) against femur mineral content (x)

P % var1 Equation of response P % var' Equation of response

Linear Quadratic

Total ash in femur vs 

total ash in body

<0.001 31.4 y =  297.6 +  20.54x >0.10 - ns

% ash in femur vs DMash% >0.10 - ns >0.10 - ns

% ash in femur vs FWash% 0.009 16.1 y =  1.498 +  0.050x >0.10 - ns

Total phosphorus in femur vs 

total phosphorus in body

0.023 11.7 y =  102.3 +  8.02x 0.061 10.5 y = -14.73 +  0.12x - 0.0004x2

% phosphorus in femur vs DMP% >0.10 - ns >0.10 - ns

% phosphorus in femur vs FWP% >0.10 - ns >0.10 - ns



Table 6.63 Regression of whole body mineral content (y) against femur strength (x)

P % varr Equation of response P % varr Equation of response

linear quadratic

Total ash 0.013 14.4 y =  43.4 +  O.llx 0.027 14.8 y =229 +  6. lx - 0.0222

DM ash% 0.011 14.9 y =  7.0 +  14.lx 0.006 22.4 y =  2.78 +  0.81x - 0.0003X2

FW ash% 0.022 12.0 y =  37.4 +  30.8x 0.067 10.0 y =  1.58 +  O.Olx - 0.0004x2

Total phosphorus 0.058 7.4 y =  47.7 +  0.52x ns - -

DMP% 0.058 7.5 y =  -30.4 +  93.2x 0.072 9.5 y =  1.15 +  O.Olx = 0.0003x2

FWP% ns - - ns - -

Total calcium ns - - ns - -

DMCa% ns - - ns - -

FWCa% ns - - ns -

percentage variance accounted for



Table 6.64 Regression of whole body mineral content (y) against daily liveweight gain (x)

P % varr 

phytase

equation of response P % varT equation of response 

+  phytase

Total ash 0.002 22.8 y =  205 +  25.5 lx 0.035 9.8 y =  316 +  20.76

Total phosphorus 0.002 22.8 y = 57.3 +  4.28x 0.066 6.9 y =  71.3 +  3.72x

percentage variance accounted for



6.4 Discussion

6.4.1 Growth performance

Linear and quadratic responses of growth and feed intake to daily phosphorus intake 

contrasted to those of Pond et al. (1975), Hines et al. (1979) and Nimmo et a l., 

(1980), where no effect of phosphorus intake on growth performance was observed. 

However, in these experiments, responses were measured at phosphorus levels 

above, rather than below requirement. In contrast, linear increases in digestibility and 

feed intake, and a quadratic response of feed conversion efficiency was found when 

available phosphorus was increased from 1.75 to 3.25g/kg (Combs et al., 1991). 

Other work using pigs of 18-5 7kg showed that daily gain and feed intake increased 

linearly, but feed conversion efficiency was unaffected when regressed against total 

phosphorus levels of 4-9 g/kg (Maxson and Mahan, 1983).

These differences in growth responses demonstrate the importance of standardising 

conditions under which growth experiments are performed, if results are to be 

comparable. In the present experiment, growth parameters were regressed against 

daily phosphorus intake rather than dietary phosphorus level, because animals were 

receiving ad libitum feed and thus two animals receiving the same dietary level of 

phosphorus may have consumed markedly different amounts. In many of the 

experiments cited, growth performance was regressed against phosphorus level, even 

though the animals were fed ad libitum, and this may account for some of the 

differences in results. While it is generally assumed that growth performance is not 

a sensitive indicator of phosphorus requirement or availability, present results 

suggested that if regressed against phosphorus intake, rather than dietary level, 

growth performance was closely correlated with dietary digestible phosphorus.

Based on the quadratic equations of the present experiment, maximum daily gain 

(625g) was achieved at a daily intake of 5.25g non-phytate phosphorus (y =  0.46 +  

0.063x - 0.006x2); however, maximum feed intake (957g) required 6.67g non-phytate 

phosphorus (y =  0.69 +  0.08x - 0.006x2). The ARC (1981) recommended 

requirements are somewhat lower than this, ranging from 2.7 g/day for 5kg pigs, to
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4.6 g/day for 25kg pigs. It was not possible from this experiment to calculate 

requirements at discreet liveweights, but it can be seen that the "average" requirement 

for 10-25kg pigs is somewhat greater than the "average" requirement that would be 

obtained using ARC recommendations.

Jongbloed and Everts (1992) recommended that 20kg pigs require 3.38g digestible 

phosphorus/day to achieve daily gains of 670g and daily feed intakes of 950g. From 

the present results, a daily intake of 3.38g digestible phosphorus would give a daily 

gain of only 604g, and a feed intake of 890 g/day (figure 6.14). In an experiment 

using pigs from 8-25kg liveweight, maximum daily gain was achieved at 0.3% 

phosphorus (Mori and Takada, 1990), which in light of present results seems 

extremely low. Based on the present mean daily feed intake of 1.48kg freshweight, 

a dietary concentration of 3.7 g digestible phosphorus would be required for pigs of 

10-25kg. This was in agreement Chatelier (1989) who suggested that pigs of this size 

require 3.8g/kg available phosphorus (equivalent to lOmg/kg liveweight).

Lowered feed intake of pigs receiving the basal diet (which was markedly deficient 

in phosphorus) suggested that it was the primary causative factor of lowered daily 

gain. Weaned pigs fed calcium to phosphorus ratios from 0.8:1 to 3.2:1 showed a 

decrease in average daily gain which was not fully attributed to decreased voluntary 

feed intake (Weingand et al., 1988), but in the present experiment feed conversion 

efficiency was largely unaffected.

Lowered average daily gains at the basal level of phosphorus were overcome by the 

addition of phytase. Again, this effect was largely due to increased feed intake, with 

little effect on feed conversion efficiency. Enzyme use is often associated with an 

increased voluntary feed intake, and this may have partially accounted for the 

increased feed intakes obtained, as slight increases were observed at most dietary 

phosphorus levels. However, the large response of pigs receiving the basal diet 

suggested that phytase stimulated appetite through increased phosphorus availability. 

Results were similar to those of Cromwell et al. (1993) where rate and efficiency of 

gain were decreased with phosphorus deficient diets, but these decreases were 

counteracted by addition of phytase.
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6.4.2 Carcase mineral content

Maximum amount of phosphorus in the whole body was achieved at a daily intake of 

5.5g non-phytate phosphorus (based on the quadratic response). Although this 

corresponded to the intake required for maximum daily gain, concentration of 

phosphorus in the dry matter of the body also reached a maximum at an intake of 

5.5g non-phytate phosphorus/day. Thus the greater amount of phosphorus in the body 

was not only due to increased body size.

Linear and curvilinear relationships between phosphorus intake and ash and 

phosphorus content of the body were similar in nature to results obtained by Ketaren 

et al. (1992) for growing pigs. These workers found that phosphorus and ash content 

of the whole body were the most responsive to phosphorus intake. In the present 

experiment, total phosphorus and total ash in the carcase appeared to be the most 

responsive to phosphorus intake, however, this may have been due simply to values 

of total mineral being much larger than values of percent mineral; thereby allowing 

greater sensitivity during the regression.

Variation in phosphorus content from 1.42 to 1.68 percent in the dry matter was 

observed (coefficient of variation =  5.5%). The mean fresh matter phosphorus 

content of 0.52% was similar to the value of 0.49% for pigs weighing 22kg obtained 

by Walz and Pallauf (1991). These workers found that phosphorus concentration 

declined with age; pigs weighing 5kg liveweight contained 0.54% phosphorus in the 

freshweight. Calcium content of the whole body, on the other hand, was extremely 

variable, ranging from 1.22 to 11.8 percent in the dry matter, and 0.41 to 3.48 

percent in the freshweight (coefficient of variation 80%). Mean calcium to phosphorus 

ratio in the body was 3.83. Mean ash content of the freshweight was 2.54%; which 

was a little lower than the 3% predicted by Close (1994), for pigs of more than 5kg 

liveweight. The latter author suggested that ash content per unit weight of the carcase 

may serve as an index of mineralization of the animal as a whole, and from the 

present work, where ash content correlated closely to phosphorus content, this 

appeared to be true.
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The maximum growth rate of 625g/day corresponded to 137g of phosphorus in the 

whole body. From the regression of growth against phosphorus in the whole body, 

it appeared that 4.28g of phosphorus was required for each kg of liveweight gain, 

which is lower than the estimate by Jongbloed (1987) of 5.4g P/kg liveweight gain 

in 10-20kg pigs. Interestingly, it appeared that in the presence of phytase only 3.72g 

of phosphorus was required for 1kg of liveweight gain, although whether this is valid 

given the weak relationship is unsure. Phytase would not be expected to give a lower 

requirement of available phosphorus for tissue growth.

Boars had a higher percentage of phosphorus and ash in the dry matter than gilts. 

This would be presumed to be due to a greater amount of bone, although other 

workers (Doomebal et al., 1975; Shields, 1983 and Rook and Ellis, 1987) found no 

difference in the amount of bone between boars and gilts. Thus the higher phosphorus 

content in boars may have been due to more intensive mineralization of the skeleton. 

Calcium in the carcase was not influenced by dietary phosphoms, phytase or gender. 

In contrast, Schanler et al. (1991), investigating the distribution of calcium and 

phosphorus during various degrees of mineral deficiency, found that at intakes of 

20% of the recommended phosphorus levels, both calcium and phosphorus content 

of the whole carcase was reduced.

Addition of phytase increased phosphoms content in the dry matter of the body at 

levels of up to 5.5g non-phytate phosphorus/kg, due to phosphoms liberated from 

phytate being assimilated into the skeleton and possibly also the soft tissues. 

Destmction of the strong linear and quadratic responses of mineral content in the 

body to phosphoms intake necessitated a re-evaluation of the methodology used. The 

experimental design was based on the assumption that at each level of dietary 

phosphoms, addition of phytase would release the same amount of phytate- 

phosphoms, so that a second regression could be fitted through the results of pigs 

receiving phytase. Response curves of pigs with and without the enzyme could then 

be compared. However, results suggested either that different amounts of phytate- 

phosphoms were being released at each level of dietary phosphoms, or that 

homeostatic regulation of phosphoms was influencing the amount of mineral in the 

carcase (or a combination of the two). The net effect of the latter would be a lesser
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effect o f phytase as dietary phosphorus neared requirement. In the case of the former, 

a differential effect of phytase according to phosphorus content of the diet may have 

been due to an inhibiting effect of inorganic phosphorus on phytase activity. One 

exception was the weak relationship between phosphorus percent in the dry matter of 

the carcase and phosphorus intake, which retained its significance upon addition of 

phytase (p=0.069 with phytase, p =0.056 without phytase).

Mineral partitioning between the skeleton and soft tissues was not measured, but it 

is probable that the observed effects were partly due to changes in phosphorus content 

of the soft tissues, and thus both dietary phosphorus level and phytase may have 

important implications for carcase quality. Any effect of dietary phosphorus on 

mineral composition of the soft tissues may influence sensory properties of the meat. 

Furthermore, alteration of growth rates by dietary phosphorus may influence carcase 

composition of the slaughtered pig.

6.4.3 Physical properties of bones

Bone strength has been used by nutritionists to assess mineralization, and was 

concluded to be was the best trait from which to estimate the availability of dietary 

phosphorus (Hayes, 1979). The Instron tester is suitable for this purpose as it 

provides a constant load. The ideal bone for assessing mineralization varies with age 

and sex. Phosphorus requirements for maximum development differ widely, 

depending upon the bone used (Crenshaw et al., 1981). Tanksley (1979) concluded 

that the femur was a better indicator of bone development than the metacarpal. 

Present results indicated that in young pigs the femur was more sensitive than either 

the metacarpal or the metatarsal.

The flexure test has been used extensively for determining mechanical properties of 

bones. The resultant curve corresponds to deformation of the bone. In the initial 

phase of the curve, force increased linearly and was proportional to deformation. 

During this phase elastic deformation occurred up to the inflection point, beyond
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which plastic deformation (permanent damage) took place (Evans, 1973). The test was 

stopped when the curve reached a peak, which corresponded to maximum force 

withstood by the bone before breaking.

Lack of standardisation during test procedures has resulted in variation in reported 

values for bone strength. Bones are irregular in shape, presenting problems for the 

determination of some physical properties. Although in many former experiments, 

stress, moment of inertia and modulus of elasticity have been calculated from bone 

breaking data (stress being defined as the force per unit area, moment of inertia as 

the area over which the force is being distributed, and modulus of elasticity as the 

rigidity of the bone), these calculations require measurement of the cross sectional 

area at the midshaft of the bone. As these bones were almost always splintered or 

broken after the break-strength measurements, it was impractical to measure the 

cross-sectional diameter, which would have required a "clean cut" surface at the 

midshaft. In this experiment, strength of the bone as a whole (ie the maximum force 

withstood before breaking), was the only trait used.

The bones used in this experiment were frozen in airtight bags immediately after 

being removed from the animal, and defrosted prior to testing. In this way they could 

be considered "fresh" or "wet", as opposed to "dry" bones which have undergone 

autoclaving and/or fat extraction. Differences exist in the properties of dry and wet 

bones. Wet bones tend to bend to a greater extent, but withstand less ultimate force 

than dried bones (Miller et al., 1965). Wet bones resemble more closely the bones 

as they exist in the animal.Even a short period of exposure to air can result in 

changes in mechanical properties (Sedlin and Hirsch, 1966). Thus, throughout 

preparation for testing, bones were kept moist with 0.9% saline solution.

Increases in femur strength in response to increasing phosphorus intake were in 

accordance with results of Nimmo et al. (1980), Batterham et al. (1993) and 

Cromwell et al. (1993) who observed linear increases in response to increasing 

phosphorus intake. In the present experiment, both linear and curvilinear relationships 

were obtained and it is proposed that the linearity observed was in fact due to the 

"linear" (ie ascending) part of the quadratic curve. A curvilinear model would be a
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more rational model for bone development as it is unlikely that bone strength 

increases limitlessly with increasing phosphorus intake.

Based on the quadratic response, an average of 0.6g non-phytate phosphorus was 

necessary for each 10 newton increase in break strength. Maximum strength of the 

femur was achieved with a daily intake of 4g non-phytate phosphorus. Any further 

intake decreased bone strength, probably due to an incorrect calcium to phosphorus 

ratio for bone accretion. Boars had heavier femurs than gilts. Although the former are 

generally faster growing, no growth differences due to gender were found in the 

present experiment; thus it seems unlikely than the increase in strength would be due 

to an increased overall size of the bones. On the other hand, no difference in femur 

strength was detected between boars and gilts and thus it also seems unlikely that 

weight differences were due solely to increased mineralization.

Addition of phytase resulted in an increased femur strength at all levels of dietary 

phosphorus, which, based on previous results, could be attributed to an increased 

digestibility of phytate-phosphorus, and subsequent accretion of the free phosphates 

into skeletal tissue. The increase in femur strength was greater than that achieved by 

inorganic phosphate addition. In agreement with results of the whole body mineral 

analysis, addition of the enzyme acted to mask the regression responses to phosphorus 

intake, suggesting that homeostasis and/or interactions with inorganic phosphate were 

influencing the response to phytase. Although the response to phytase diminished as 

dietary phosphorus level increased, based on a comparison of femur strength with and 

without the enzyme at the basal phosphoms level, it was calculated that addition of 

phytase to the basal diet enabled approximately 70% of the phytate-phosphorus to be 

utilised (table 6.66).

The weak linear relationships that existed between metatarsal strength and phosphoms 

intake were evidence that these bones were unsuitable as indicators of phosphoms 

availability, and consequently were not responsive to phytase. The femur seemed to 

be a better indicator of phosphoms availability for pigs of this age, perhaps because 

of their earlier development.
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6.4.4 Bone mineralization

Strong linear and quadratic relationships between total and percent ash in the femur, 

suggested that these were suitable as criteria for assessing mineralization. Strong 

quadratic relationships between percent of phosphorus in the femur and phosphorus 

intake also existed. Based on quadratic responses, maximum mineralization was 

achieved with a daily intake of 4-4.5g non-phytate phosphofus, which was lower than 

the requirement of 5.5g for growth.

The lack of response of femur calcium content was surprising in view of the changing 

calcium-to-phosphorus ratio in the experimental diets. The mean Ca:P ratio in the 

femur, at 2.44, was higher than the generally accepted value of just greater than 2:1 

(Whittemore, 1970). Lack of response of third metatarsal mineral content to either 

phosphorus level or to phytase confirmed the suggestion (Crenshaw et al, 1981) that 

these bones were unsuitable as indicators of phosphorus availability in very young 

pigs. In contrast, total ash and total phosphorus of the forth metatarsal responded to 

phosphorus intake, which was unexpected since strength of the bone did not show a 

concomitant increase. It may be that a dramatic increase in mineralization would be 

required in order for strength to be affected. Alternatively, perhaps the low Ca:P ratio 

at high levels of dietary phosphorus reduced the strength of the mineralized bone. 

Percent of ash in the metatarsals was somewhat lower than that found by Young et 

al., 1993 and Mahan (1982) who observed 53%-54% ash in pigs of 10-20kg 

liveweight fed a dietary phosphorus level of 0.68%. That this difference could be 

explained by the low phosphorus levels in some of the diets used seems questionable; 

in many treatments the use of phytase and increased levels of inorganic phosphorus 

should have been adequate for maximum ash accretion.

Although addition of phytase to the diets resulted in an increased total phosphorus in 

the femur at all levels of dietary phosphorus, percent of phosphorus in the femur was 

not affected. Similarly, total ash in the femur was strongly influenced by phytase 

addition, but percent of ash only weakly so. This suggested that changes in total 

phosphorus in the femur were due an increased size of the bones rather than solely 

to increased mineralization. In another trial using pigs of a similar size, phytase
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supplementation to a diet containing 0.5 % phosphorus resulted in an increased weight, 

ash content, and total phosphorus of bones; and responses to phytase were no 

different to those obtained by increasing dietary phosphorus (Young et al., 1993). It 

was suggested that the observed changes in bone traits may have been a result of 

increased growth rate of pigs fed inorganic phosphate or phytase.

Increase in size or mineralization enables a bone to withstand a greater force. Thus 

whether the pigs receiving phytase achieved an increased bone size or increased 

mineralization; the resultant increase in bone strength was the important outcome. It 

may have been that pigs receiving the enzyme were subjected to stimulated growth 

over and above that caused by increasing phosphorus intake alone, thus phosphorus 

was needed for the production of new bone mass rather than for more intensive 

mineralization of existing bone mass. On the other hand, one would expect that in 

pigs of this age, hormonal mechanisms would already be directed towards new bone 

growth, rather than intensive mineralization of existing bone.

At the ends (epiphyses) of the bones there is persistent and rapid growth until the 

bone reaches adult size. At the same time, bone resorption occurs from the inner 

surfaces. The long bones characteristically grow in length much faster than they do 

in width (Simkiss, 1975). Present results indicated no response of bone length either 

to phosphorus or phytase, however it is possible that some differences may have been 

detected had pigs been slaughtered at equal ages, rather than at equal weights.

From the regression analyses it was calculated that approximately one third of 

digested phosphorus contributed towards mineralization (table 6.65). Based on 

analysis of variance data it was calculated that addition of phytase to the basal diet 

made approximately 70% of the phytate-phosphorus available for bone accretion 

(Table 6.66). As seen with growth and bone strength, addition of phytase seemed to 

"mask" the regression responses of femur mineral against phosphorus intake.
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Table 6.65 Calculation of dietary phosphorus contributing to mineralization

0.21g P in femur required for 10 Newton increase in strength 

0.6g P in diet required for 10 Newton increase in strength

Therefore 0.6 g P in diet = > 0.21g P in femur

Amount of P in diet required for lg P in femur = 0.6 * 1/0.21

= 3.5g

Table 6.66 Calculation of phytate-phosphorus made available by phytase

Non-phytate P (N-P-P) in basal diet 

Total P in basal diet 

Phytate P

DLWG at 2.0 g/kg N-P-P (+  phytase)

Whole body DMP%

Femur strength " "

Femur P content " "

Assuming that all extra phosphorus has become 

Phosphorus made available through phytase:

As proportion of phytate phosphorus

= 2.0 g/kg

= 4.2 g/kg

= 2.2 g/kg

= DLWG at 3.5g/kg N-P-P (-phytase)

= carcase P at 3.5g/kg N-P-P (-phytase)

= strength at 3.5g/kg N-P-P (-phytase) 

ss P content at 3-3.5g/kg N-P-P (-phytase)

available through the use of phytase,

= 3.5 - 2.0 

= 1.5g/kg 

= (1.5/2.0)*100 

= 75%
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Table 6.67 Daily digestible phosphorus required to achieve maximum response

C riteria  o f  response D a ily  N -P -P  intake r

Daily gain 5.5
Daily feed intake 6.5

Total phosphorus in body 5.5
Percent phosphorus in body 5.5

Femur strength 4
Total phosphorus in femur 4

Ash content of femur 4.5
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A total dietary concentration of 0 .68%P to maximise bone ash, 0.58% to maximise 

performance traits, and an available phosphorus content of 0.35% was suggested by 

Mahan (1982). Based on present results of a daily requirement of 5.5g of digestible 

phosphorus, and a daily feed intake of 1.48kg freshweight, a dietary concentration of

3.7 g digestible phosphorus would be required for pigs of 10-25kg.

Recommendations o f phosphorus requirements by the National Research Council and 

the Agricultural Research Council are a compromise to achieve maximum growth and 

adequate bone development. However, having decided that growth responses are not 

sensitive to phosphorus intake, it seems probable that the requirement for maximum 

growth determined by the ARC is somewhat inaccurate.

In comparing responses against intake of non-phytate phosphorus to those against 

intake of total phosphorus, similar sensitivities were observed; indeed in some cases, 

response to daily total phosphorus was slightly more sensitive than that to daily non- 

phytate phosphorus intake (eg for the quadratic response of average daily, percentage 

variation accounted for was 21.7 when regressed against non-phytate phosphorus, vs

24.2 when regressed against total phosphorus intake). This was surprising since it was 

presumed that non-phytate phosphorus, in giving a more reliable indication of 

available dietary phosphorus, would show superior responses than total phosphorus. 

Sensitivity of the responses may have been due in part to those diets containing a high 

ratio of inorganicrorganic phosphorus, where the regressions against total phosphorus 

would have tended towards those against non-phytate-phosphorus.

6.4.6 Gender differences

Boars had a higher percentage of phosphorus and ash in their bodies. Their femurs 

were heavier and strength was more responsive to phosphorus than those of gilts. 

Conversely, femurs of gilts contained a greater concentration of ash. In an earlier 

experiment it was observed that bones from gilts withstood more stress than those 

from barrows and boars (Crenshaw 1986), although in the present experiment, no
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effects of gender on femur strength were apparent.

The combined evidence suggested that boars directed their phosphorus intake more 

towards growth; mineralization occurring in order to increase size, rather than 

density, of the bones, whereas gilts, in striving towards mineralization of the bones, 

tended to accumulate phosphorus in the bones, perhaps at the expense of using 

phosphorus for growth. On a biological basis this explanation would be justified in 

that gilts require a skeletal reserve of phosphorus for use during future pregnancy and 

lactation, and it would seem sensible to suggest that their hormonal mechanisms were 

tuned to target phosphorus towards the skeleton. This suggestion is made in spite of 

the lack of difference in growth rate between sexes; it may have been that differences 

in growth rate between the sexes did not come into effect at such small sizes.

Boars had a higher concentration of phosphorus and ash in their body than gilts, in 

contrast to previous work by Mudd etal. (1969) which showed no difference between 

sexes. It has been reported that maximum bone strength of boars requires levels above 

the current NRC recommended levels for optimum growth (Nimmo et a l ,  1980). 

Based on present observations it seems likely that boars which are growing at their 

optimum rate will be using dietary phosphorus to maintain growth rate, rather than 

bone mineralization. In contrast to the present results, work of Maxson and Mahan 

(1983) showed no differences in bone strength or bone ash of growing pigs.

The number of animals used (2 boars and 2 gilts) for each of the dietary treatments 

was a compromise between looking at responses with and without the enzyme, and 

looking at the requirement for phosphorus. The former was achieved through analysis 

o f variance, which required sufficient animals per treatment to detect statistical 

significance, whereas the response analysis by regression, depended on a large 

number of treatments (ie dietary phosphorus levels), with few animals per treatment. 

Differences due to gender that were apparent meant that the statistical power o f the 

experiment was lower than it would have been had the boars and gilts responded 

similarly, but on the other hand, also meant that the results were representative of a 

true population.
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6.4.8 Phosphorus/phytase equivalence

Although in designing the experiment, it was assumed that regression responses both 

with and without the enzyme could be established, addition of phytase destroyed the 

linear and curvilinear responses to phosphorus intake. This suggested some disruption 

of the homeostatic mechanism of pigs receiving phytase, or an interaction of inorganic 

phosphorus with phytase with the net result of different amounts of phosphorus being 

made digestible, which would subsequently be reflected in growth and bone 

development. Despite this, by comparing response criteria at the basal level of 

phosphorus with and without the enzyme, it could be seen that approximately 70% 

of the phytate-phosphorus was being made available for digestion, and this estimate 

was consistent whether based on growth, bone strength or mineral composition.

The amount of phytate-phosphorus made available by the use of phytase was greater 

than the 33% phytate-availability observed by Cromwell et al. (1993), and than 

results of Young et al. (1993) who observed that phytase addition to diets containing 

approximately 0.56% phosphorus was as effective as 0.75% phosphorus obtained with 

calcium phosphate. Present estimates were also higher than the 50% increase in ileal 

digestibility observed in the previous digestibility trial using cannulated pigs (Section 

3.3). Due to the very low basal level of phosphorus used in the present experiment 

it is probable that the effect of phytase was more pronounced. This should be taken 

into consideration when contemplating the use of phytase; the enzyme will be used 

more efficiently in diets which do not already contain a level of inorganic phosphorus.

6.5 Conclusions

A daily intake of 5.5g digestible phosphorus was necessary for maximum growth. 

However, 4g digestible phosphorus/day was sufficient for maximum bone strength of 

young pigs; any further intake interfering with mineralization to decrease bone 

strength. Adding phytase to a phytate-rich diet at low levels of digestible phosphorus 

made approximately 70% of the phytate-phosphorus available for bone accretion.
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C hapter 7 Experim ent 4 - E ffect o f phosphorus 

level and phytase on grow th and bone 

developm ent o f grow ing pigs

7.1 Introduction

Genetic improvement in recent years has produced a fast growing, lean, pig. 

However, appetite of the modem genotype has not increased to support the improved 

growth, and consequently diets must now be more concentrated, to match 

requirements for fast growth. Inconsistencies in estimated phosphorus requirements 

of growing pigs between the various research councils have been the cause of much 

debate, particularly in light of the environmental constraints imposed on the livestock 

production sector. Growing pigs contribute enormously to total phosphorus output 

from the farming sector; annual phosphate output from pigs is estimated at 47,000 

tonnes (Lee and Tucker, 1994). The livestock and associated feed industries, under 

increasing public and political pressure, have been compelled to give more 

consideration to the environment, and must now actively reduce phosphate output.

The 5-10% ‘safety margin’ of phosphorus allowance is no longer appropriate, instead 

the dietary phosphorus level must match more accurately the requirement. Values of 

a net requirement estimated by the ARC (1981) extend from 4.6 g/day for 25kg 

liveweight, to 5.2g/day from 45kg liveweight. In extreme contrast, the NRC (1988) 

recommend 2.3 g/kg available phosphorus in the diet of growing pigs. Values lying 

between these have also been recommended. Changes in requirements within the 

growth period and changes in requirements due to differences in growth rate should 

also be more fully investigated. Despite claims of reduced nitrogen excretion as a 

result of phase-feeding, which could apply also to phosphorus excretion, many pig 

producers still feed the same level of phosphorus throughout the growth period.
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In view of the inconsistencies in recommended dietary phosphorus intakes, and 

particularly because of the environmental pressure, a re-evaluation o f dietary 

phosphorus requirements seems appropriate.

Phosphorus already present in the diet should also be made available to the pig. The 

use of phytase to improve the availability of phytate-phosphorus in the diets of 

growing pigs is well documented. But the question "how much inorganic phosphorus 

can be replaced by phytase?" remains unsolved, having so far been addressed only 

as a secondary observation (eg Cromwell et al., 1993).

To date, effects of phytase on carcase traits are unknown. But if it is assumed that 

phytase influences growth rate, by effectively altering the availability of phosphorus, 

it seems reasonable to suggest that this may be reflected in an alteration of lean tissue 

growth. Animals growing faster due to phytase or a high level of dietary phosphorus 

would be expected to be leaner at a given slaughter weight than slower growing 

animals receiving low levels of dietary phosphorus.

In pigs reared for slaughter at 100kg or less, maximum bone strength is not 

necessary. It can, however be used as an indicator of phosphorus availability, and if 

measured concomitantly with growth performance would give an indication of 

phosphorus requirement. The objectives of this work were therefore to look at the 

phosphorus requirement of growing pigs (25-60kg), and to assess the effect of phytase 

on phosphorus availability using growth and bone development as criteria of response.

7.2 M aterials and Method

7.2.1 Experimental Design

A total of 72 animals was used, of single sex (boars) in order to avoid variation due 

to gender. 9 dietary levels of non-phytate phosphorus were fed either with or without 

phytase, totalling 18 diets. Each was fed ad libitum to 4 pigs.
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7.2.2 Diet

Formulation and nutrient specification of the diet are shown in tables 7.1 and 7.2 

respectively. The base level of phosphorus was 2.5g/kg, 0.85g/kg of which was non- 

phytate phosphorus. By incremental addition of mono-ammonium phosphate, levels 

of non-phytate phosphorus were increased by 0.4 g/kg as in table 7.3. The 18 

treatments consisted of 9 levels of phosphorus with phytase, and the same 9 levels 

without phytase. Activity of the enzyme was 300 units/g. The enzyme was premixed 

into the appropriate diets at an inclusion rate of 3.33 g/kg. This provided 

approximately 1000 units of activity per kg freshweight of feed.

7.2.3 Procedure

The procedure as described in section 3.5.3 of the General Materials and Methods 

was followed. During the experiment feed and water were available ad libitum. Each 

pig started the trial upon reaching 25kg liveweight and ended the trial at 60kg 

liveweight. At slaughter, the third and fourth metatarsals were removed from the left 

hind leg and stored at -18°C. Left side carcase measurements were taken 24 hours 

after slaughter.

Physical measurements of the left third and fourth metatarsals (freshweight, 

longitudinal length and breaking strength) were determined on the defrosted "fresh" 

bones. Thereafter, ash and phosphorus content of the fat free bone were determined.

7.2.4 Statistical analysis

Growth data were subjected to regression analysis to obtain average daily gains of the 

pigs. Mean daily feed intake, average daily liveweight gain and feed conversion data 

were analyzed using analysis of variance (Genstat 5, Lawes Agricultural Trust) to test 

for the effects of phosphorus level and phytase. Analysis of covariance using
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‘slaughterweight’ as the covariate was performed for carcase measurements, bone 

physical measurements and bone mineral data.

Regression analysis was performed for all parameters against daily non-phytate 

phosphorus intake and daily total phosphorus intake. Linear and curvilinear lines were 

fitted through the data to obtain the nature of the responses. Finally, relationships 

between the various response parameters (eg bone mineral content vs bone strength, 

growth rate vs carcase measurements) were tested using linear regression analysis.
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Table 7.1 Formulation and phosphorus/phytate content of experimental diet

Ingredient g/kg phosphorus (g/kg FW)

Maize 400 2.6
Oatfeed 282.5 -
Soya 50 220 6.8
Vegetable oil 69 -
Limestone 11 -
Betamix 314 12.5 -
Synthetic lysine 3.5 -
Threonine 0.7 -
Synthetic methionine 0.6 -
Synthetic tryptophan 0.2 -

Total 1000

total phosphorus phytate-phosphorus (%) phytate-phosphorus
contribution to diet contribution to diet

1.04 66 0.70

1.50 61 0.92

2.5

-

1.651.65



Table 7.2 Nutrient specification of basal diet

Nutrient g/kg Freshweight

Dry matter 888

Digestible energy (MJ/kg) 13.4

Crude protein 163.89

Oil 86.20

Crude fibre 94.17

Lysine 10.80

Methionine 2.86

Methionine + cystine 5.40

Threonine 6.50

Tryptophan 1.95

Phenylalanine +  tyrosine 13.18

Ash 29.88

Calcium 8.00

Phosphorus 2.50

Salt 2.76

Linoleic acid 43.4



2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Phosphorus and phytase content of experimental diets

g/kg non-phytate P g/kg total P + /- phytase

0.85 2.5
1.25 2.9 _

1.65 3.3 _

2.05 3.7 _

2.45 4.1 -

2.85 4.5 -

3.25 4.9 -

3.65 5.4 -

4.05 5.9 -

0.85 2.5 +
1.25 2.9 +
1.65 3.3 +
2.05 3.7 +
2.45 4.1 +
2.85 4.5 +
3.25 4.9 +
3.65 5.4 +
4.05 5.9 +
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7.3 Results

7.3.1 Health of the pigs

Throughout the trial there were some infectious scouring problems leading to a 

reduced feed intake. These were treated with the antibiotic depocillin. A full record 

is given in appendix IV. In all, 6 pigs were treated of which 5 recovered and 1 was 

removed from the experiment. There were no obvious locomotory problems except 

for one pig which developed a severe lameness with additional scouring problems. 

This pig did not respond to treatment with lincocin antibiotic and was removed from 

the trial. Two further pigs were taken off the trial, one of which developed a scouring 

problem towards the end of the trial, and the other because it refused feed with no 

indication of an infection. In total four pigs were removed from the experiment, 

leaving 68 out of a total of 72 pigs to finish the trial.

7.3.2 Growth performance

Effects of phosphorus level, phytase, and the interactions on feed intake, daily 

liveweight gain and feed conversion efficiency are summarised in table 7.4. 

Comparison of sed values with the treatment means showed an effect of phytase on 

growth at the lowest of dietary phosphorus, despite the non-significant probability 

value obtained. Further analysis of enzyme effects between diets 1 (basal diet) and 

10 (basal diet +  phytase) confirmed an effect of the enzyme at the lowest level of 

dietary phosphorus (table 7.5). A lowered daily liveweight gain of pigs receiving the 

basal diet (0.85 g/kg non-phytate phosphorus) was overcome by addition of phytase, 

and approached that of pigs receiving the 1.65 g/kg non-phytate phosphorus diet 

(figure 7.1). Responses of liveweight gain to phosphorus level and phytase appeared 

to be mainly due to differences in feed intake (figure 7.2), although feed intake 

differences were statistically non-significant. Pigs fed the basal diet with 

supplementary phytase used feed less efficiently than those without, but at other levels 

there were no differences except at 3.25-3.65 g/kg non-phytate-phosphorus, where
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phytase supplemented diets were again less efficient (figure 7.3). At very low (0.85 

g/kg) and very high (4.05 g/kg) levels of non-phytate phosphorus, poor conversion 

ratios were seen both with and without the enzyme.

Regression analysis revealed linear and quadratic responses of daily Iiveweight gain 

to daily intake of digestible phosphorus (figures 7.4 and 7.5 respectively), and a 

strong quadratic response of feed conversion efficiency to daily intake of digestible 

phosphorus. Responses to daily intake of total phosphorus were also apparent. The 

significant relationships are presented mathematically in table 7.6. Growth 

performances of individual animals are presented in appendix V.
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Figure 7.1 Effect of phosphorus level and phytase on daily liveweight gain

of growing pigs

0.85 1.65 2.05 2.45 2.85 ' 3.25
non-phytate phosphorus (g/kg)

3.65 4.05

■ phytase YvA + phytase
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Figure 7.2 Effect of phosphorus level and phytase on daily feed intake

of growing pigs

- phytase \/ /A  + phytase
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Figure 7.3 Effect of phosphorus level and phytase on feed conversion ratio

of growing pigs
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Table 7.4 Significance of effects of phosphorus level, phytase and the interactions on growth performance

daily feed intake daily liveweight gain feed conversion ratio

P sed P sed P sed

Phosphorus level ns 0.134 0.005 0.055 0.004 0.168

Phytase ns 0.063 ns 0.026 ns 0.079

Phosphorus level * phytase ns 0.189 ns 0.078 ns 0.238



Table 7.5 Effect of adding phytase to the basal diet on daily liveweight gain

daily liveweight gain 
phytase_____________ + phytase

P

0.501 0.669 0.015

sed

0.050
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Table 7.6 Regression of growth parameters (y) against phosphorus intake (x)

Linear Q uadratic

Equation of response P % Equation of response P % varT

D aily  non-phytate phosphorus intake (g) 

Daily feed intake (kg)
Daily liveweight gain (kg)
Feed conversion ratio

y = 0.518 +  0.04 lx 
y = 3.037 - 0.061x

ns
<0.001
0.029

52.0
11.3

y =  0.449 +  0.076x - 0.004x2 
y =  3.54 - 0.32x +  0.027x2

ns
<0.001
0.009

42.7
21.7

D a ily  to ta l phosphorus intake (g) 

Daily feed intake (kg)
Daily liveweight gain (kg)
Feed conversion ratio

y =  0.397 +  0.040x 
y = 3.175 -0.054x

ns
<0.001
0.029

52.0
11.3

y = 0.226 +  0.75x + 0.002x2 
y =  4.35 - 0.37x +  0.020x2

ns
<0.001
0.011

51.5
20.6

% variance accounted for



Figure 7.4 Response of daily liveweight gain (y) to daily phosphorus intake (x)

R esponse equations:

Linear y = 0.518 + 0.041x p < 0.001

Quadratic y = 0.449 + 0.076x - 0.004X2 p < 0.001

%var 52.0 

%var 42.7
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Figure 7.5 Response of feed conversion ratio (y) to daily phosphorus intake (x)

R esponse equations:

Linear y = 3.037 + 0.061x p = 0.029 %var 11.3

Quadratic y = 3.54 - 0.32x +  0.027x2 p =  0.009 %var 21.7
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7.3.3 Carcase measurements

Significant effects o f phosphorus level, phytase and the interactions on slaughter 

measurements are shown in table 7.7, and treatment means are presented in tables 

7.8- 7.21. Regression analysis performed on the data showed a linear relationship 

between daily intake of non-phytate/ total phosphorus and the cross-sectional width 

(A) of the Longissimus dorsi muscle. Carcase weight and fat depth (maximum 

shoulder, minimum midback, anterior gluteus medius, posterior gluteus medius, and 

minimum gluteus medius) were unaffected by the treatments.

While there were few relationships between daily phosphorus intake and 

measurements of carcase fat, when phytase was added relationships some weak 

relationships became apparent (ie P I, P2 and C). These are described in table 7.22 

and 7.23
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Table 7.7 Significance of effects of phosphorus level and phytase on 

carcase measurements

variate factor P sed

Carcase Length P level * phytase 0.088 12.67

Width of L. D o r s i  (A) P level 0.055 2.32

Breadth of L . D o r s i  (B) P level 0.036 1.72

Table 7.8 Mean slaughter weight (kg) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 60.75 63.25

1.25 61.17 64.50

1.65 63.12 63.75

2.05 62.00 63.37

2.45 61.37 62.75

2.85 62.87 62.12

3.25 62.12 65.12

3.65 62.50 62.00

4.05 64.00 62.00
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Table 7.9 Mean carcase weight (kg) of the treatment groups

Phosphorus level' - phytase +  phytase

0.85 44.60 43.92
1.25 42.86 43.31
1.65 44.45 44.35
2.05 43.75 44.93
2.45 44.32 43.75
2.85 44.48 44.58

3.25 43.93 44.57

3.65 42.83 43.85

4.05 43.36 44.33

Table 7.10 Mean carcase length (mm) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 696.4 695.1

1.25 684.5 715.5

1.65 693.2 686.5

2.05 715.5 686.5

2.45 685.9 702.2

2.85 696.7 689.9

3.25 686.6 694.3

3.65 683.0 698.6

4.05 692.3 697.7

non-phytate phosphorus g/kg feed



Table 7.11 Mean maximum shoulder (mm) of the treatment groups

Phosphorus (g/kg) - phytase +  phytase

0.85 26.66 26.88

1.25 28.14 27.33
1.65 25.51 26.96

2.05 27.26 25.32

2.45 25.51 27.31

2.85 23.64 24.63

3.25 24.45 24.21

3.65 25.12 26.11

4.05 24.26 26.13

Table 7.12 Mean minimum midback (mm) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 8.33 8.26

1.25 8.53 5.42

1.65 8.65 7.07

2.05 9.05 10.06

2.45 8.29 8.75

2.85 10.57 8.11

3.25 7.76 8.17

3.65 9.13 8.48

4.05 8.18 8.99

non-phytate phosphorus g/kg feed



Table 7.13 Mean anterior gluteus m edius (nun) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 12.50 10.95
1.25 10.00 10.59
1.65 11.53 12.39
2.05 12.49 10.93
2.45 12.79 10.52

2.85 12.02 12.11
3.25 9.34 8.45

3.65 9.75 11.73

4.05 9.94 9.39

Table 7.14 Mean minimum g lu teu s m edius (mm) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 5.34 3.71

1.25 6.78 5.81

1.65 6.79 7.62

2.05 7.50 6.15

2.45 6.79 4.87

2.85 6.05 6.84

3.25 4.98 4.14

3.65 6.83 8.79

4.05 4.50 6.44

non-phytate phosphorus g/kg feed



Table 7.15 Mean posterior gluteus m edius (mm) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 11.04 9.47
1.25 11.46 12.68
1.65 9.30 11.54
2.05 10.96 11.55
2.45 10.88 10.41
2.85 9.64 11.90
3.25 11.58 9.79

3.65 10.52 13.65

4.05 7.56 10.65

Table 7.16 Mean PI (mm) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 5.93 5.39

1.25 7.17 6.80

1.65 7.37 6.75

2.05 6.82 5.98

2.45 6.72 7.27

2.85 5.90 5.79

3.25 5.20 6.14

3.65 6.71 7.61

4.05 7.11 7.02

non-phytate phosphorus g/kg feed



Table 7.17 Mean P2 (mm) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 6.02 5.05
1.25 6.84 6.06
1.65 6.43 6.47
2.05 6.72 5.59
2.45 6.20 6.40
2.85 5.95 5.15
3.25 5.28 5.59
3.65 5.66 7.32
4.05 6.15 6.20

Table 7.18 Mean P3 (mm) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 5.90 5.25

1.25 7.45 6.49

1.65 6.36 7.30

2.05 6.97 6.82

2.45 7.03 7.47

2.85 6.40 5.83

3.25 5.08 5.78

3.65 6.16 7.86

4.05 6.38 7.13

non-phytate phosphorus g/kg feed



Table 7.19 Mean "A" measurement (mm) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 87.32 85.53

1.25 79.85 77.72

1.65 84.95 80.61

2.05 83.86 85.78

2.45 84.50 81.56

2.85 82.74 83.55

3.25 81.61 83.36

3.65 80.77 78.70

4.05 83.55 84.70

Table 7.20 Mean "B" measurement (mm) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 48.88 47.93

1.25 46.46 42.21

1.65 46.29 45.86

2.05 48.11 48.39

2.45 46.81 46.14

2.85 46.66 51.84

3.25 47.20 52.26

3.65 45.68 44.66

4.05 47.40 46.39

non-phytate phosphorus g/kg feed



Table 7.21 Mean "C" measurement (mm) of the treatment groups

Phosphorus (g/kg) - phytase + phytase

0.85 6.05 5.06
1.25 6.97 6.09
1.65 6.42 6.45
2.05 6.45 5.41
2.45 6.01 7.02
2.85 5.72 5.33
3.25 5.33 5.60
3.65 5.75 7.15
4.05 5.99 6.56

non-phytate phosphorus g/kg feed



Table 7.22 Linear regression of carcase measurements (y) against phosphorus intake (x)

without (-) or with (+ ) phytase

- phytase + phytase

Equation of response P % varr Equation of response P % var'

D aily  non-phytate phosphorus intake 

A y =  86.5 - 0.654x 0.057 8.1 ns
MM - ns - y = 6.71 + 0.322x 0.092 5.8
PI - ns - y = 5.26 +  0.261x 0.052 8.5
P2 - ns - y = 4.86 +  0.232 0.068 7.2
C - ns - y =  4.90 +  0.246x 0.042 9.5
D a ily  to ta l phosphorus intake 

A y = 88.42 - 0.636 0.036 10.30 ns
MM - ns - y =  5.41 +  0.354 0.045 9.2
PI - ns - y = 4.30 +  0.276 0.026 11.9
P2 - ns - y = 3.88 +  0.261 0.027 11.8
P3 - ns - y = 4.59 +  0.258 0.063 7.6
C - ns - y = 3.94 +  0.267 0.017 13.8

N)
LA
U i

7 percentage variance accounted for



Table 7.23 Non-linear regression of carcase measurements (y) against phosphorus intake (x)

without (-) or with (+ ) phytase

- p h y ta s e + p h y ta s e

Equation of response P %  varT Equation of response P %  varT

D a i ly  n o n -p h y ta te  p h o s p h o r u s  in ta k e

PI - ns - y = 7.89 - O.lOx +  0.124X2 0.015 18.8

P2 - ns - y = 7.10 - 0 .84x + 0.106X2 0.031 15.0

C
D a ily  to ta l ph osph a te intake

- ns - y = 7.06 - 0 .79x + 0.102X2 0.052 17.5

PI - ns - y = 1 2 .1 5 - 1.713x +  0 .1 1 7 ^ 0.004 25.6

P2 - ns - y = 1 0 .0 2 - 1.295x +  0.091X2 0.011 20.2

P3 - ns - y = 8.86 - 0.823x + 0.063x2 0.094 8.6

A y = 81.23 +  1 .3 lx - 0.12X2 0.068 10.5 - ns ns
C - ns - y = 9.98 - 1.263x + 0.090x2 0.007 23.0

T percentage variance accounted for



7 .3 .3 Physical properties of the metatarsal bones

Effects of phosphorus level, phytase and the interactions on the physical properties 

of the third and fourth metatarsals are presented in table 7.24. Both phosphorus level 

and enzyme influenced the freshweight and the breaking strength of the third and 

fourth metatarsals. In both the third and fourth metatarsals, increases in bone breaking 

strength with the enzyme were achieved at levels of up to 2.45 g/kg non-phytate 

phosphorus (figure 7.6 and 7.7). Length of the bones was unaffected either by dietary 

phosphorus level or phytase. Treatment group means are shown in tables 7.25-7.27.

Strong linear and quadratic responses of metatarsal strength to increasing daily intake 

of non-phytate/total phosphorus were observed; as presented in figures 7.8 and 7.9. 

Response equations are shown in table 7.28. The fourth metatarsal appeared to be 

more responsive to phosphorus level than the third, exhibiting a greater increase in 

strength per unit increase in dietary phosphorus. Addition of phytase destroyed all 

linear and quadratic relationships between strength and phosphorus intake.
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Figure 7.6 Effect of phosphorus level and phytase on breaking strength 

of the th ird  m etatarsal

m  - phytase ty //A  +  phytase

Figure 7.7 Effect of phosphorus level and phytase on breaking strength 

of the fourth m etatarsal

| - phytase V//A  + phytase



Table 7.24 Significance of effects of phosphorus level, phytase and the 

interactions on physical properties of the m etatarsals

Variate Factor P sed

3rd metatarsal

Freshweight enzyme 0.054 0.721

P level x enzyme 0.034 2.169

Length ns >0.10 -

Strength P level <0.001 100.7

enzyme 0.055 47.4

4th metatarsal

Freshweight enzyme 0.028 0.68

P level x enzyme 0.044 2.03

Length ns >0.10 -

Strength P level <0.001 91.2

enzyme 0.006 42.9

P level x enzyme 0.007 129.3
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Table 7.25 Mean metatarsal freshweight (g) of the treatment groups

P level' 3rd metatarsal 4th metatarsal

- phytase +  phytase - phytase +  phytase

0.85 23.61 28.57 24.04 28.29

1.25 24.58 24.29 27.00 23.58

1.65 26.29 25.12 25.59 24.26

2.05 24.71 30.28 25.11 28.63

2.45 22.82 28.28 22.61 28.18

2.85 25.00 22.22 24.12 24.53

3.25 24.11 27.20 25.88 27.09

3.65 26.58 26.62 24.77 28.77

4.05 27.12 25.00 26.94 26.47

Table 7.26 Mean metatarsal length (mm) of the treatm ent groups

p lever 3rd metatarsal 4th metatarsal

- phytase +  phytase - phytase +  phytase

0.85 71.17 72.29 73.32 75.21

1.25 70.91 73.29 74.88 72.75

1.65 71.69 73.29 74.63 71.75

2.05 69.75 72.74 72.40 72.12

2.45 71.23 74.00 72.66 73.68

2.85 72.35 70.51 72.15 73.53

3.25 72.00 74.60 75.10 74.16

3.65 75.05 71.48 72.44 75.71

4.05 72.68 69.33 72.55 72.36

non-phytate phosphorus g/kg feed
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Table 7.27 Mean metatarsal breaking strength (newtons) of the 

treatment groups

p  level' 3rd metatarsal 4th metatarsal

- phytase +  phytase - phytase +  phytase

0.85 491 855 427 744

1.25 612 850 569 944

1.65 799 1090 804 1185

2.05 860 1099 889 1073

2.45 1039 1043 909 1092

2.85 1213 1071 1154 901

3.25 1067 1067 975 1140

3.65 1109 1003 1053 957

4.05 927 878 1063 921

non-phytate phosphorus g/kg feed



Figure 7.8 Response of third metatarsal breaking strength (y)

to daily phosphorus intake (x)

R e s p o n s e  e q u a t io n s

Linear y = 559.6 +  73.5x p <0.001 % var =  33

Quadratic y = 13 +  353.8x - 28.7X2 p <0.001 % var = 57 4



Figure 7.9 Response of fourth metatarsal breaking strength (y)

to daily phosphorus intake (x)

Response equations

Linear y  = 468.8 +  83.6x p <0.001

Quadratic y =  y =  75 +  287.0x - 20.Sx2 p <0.001
% var = 50.2 

% var = 64



264

Table 7.28 Regression of metatarsal strength (y) against phosphorus intake (x)

L in e a r Q u a d r a t ic

equation of response P % var equation of response P % var

d a i ly  n o n -p h y ta te  p h o s p h o r u s  in ta k e

MT3 strength y =  559.6 +  73.5x <0.001 33.0 y =  13 +  353.8x - 28.7X2 <0.001 57.4

MT4 strength

d a i l y  to ta l  p h o s p h o r u s  in ta k e

y = 468.8 +  83.6x <0.001 50.2 y =  75 +  287.Ox - 20.8X2 <0.001 64.0

MT3 strength y = 431 +  60.5x <0.001 27.8 y =  -890 +  418.7x - 22.04X2 <0.001 52.0

MT4 strength y = 306 +  70.7x <0.001 45.2 y = -673 +  336.8x - 16.36x2 <0.001 59.6



7.3.4 Bone mineralization

Effects of phosphorus level, phytase and the interactions on fat free weight, total 

phosphorus, percent phosphorus, total ash and percent ash in the fat free third and 

fourth metatarsals are shown in table 7.29. Treatment means are given in tables 7.30- 

7.34. Fat free weight of the metatarsals increased with phytase addition; in the fourth 

metatarsal this increase was seen at all except the highest level of phosphorus, 

whereas in the third metatarsal the increase was seen at levels of up to 3.25 g/kg 

digestible phosphorus. Total phosphorus in the bones was affected both by dietary 

phosphorus level and phytase (figure 7.10 and 7.11). Percent phosphorus in the bones 

was not particularly responsive to dietary phosphorus level, although it did decrease 

markedly in pigs receiving the basal level of phosphorus. Addition of phytase to diets 

containing up to 2.05 g/kg non-phytate-phosphorus resulted in an increased percent 

phosphorus of both the third and the fourth metatarsals.

Total ash and percent ash in the fourth metatarsal were affected by both dietary 

phosphorus level and phytase. Percent ash of the third metatarsal was not responsive 

to phytase, although total ash increased with enzyme addition at levels of up to 

2.45g/kg digestible phosphorus.

Regression of bone mineral content against daily intake of non-phytate phosphorus 

yielded linear and quadratic relationships; these are presented in table 7.35. 

Relationships between bone mineral content and daily intake of total phosphorus are 

given in table 7.36. Increasing the intake of phosphorus yielded strongly significant 

(p <  0.005) increases in total phosphorus, total ash, and fat free weight of the third 

metatarsal, and in total phosphorus, total ash and percent ash of the fourth metatarsal.

265



Figure 7.10 Effect of phosphorus level and phytase on total phosphorus 

of the third metatarsal

¡ H i  '  phytase V //A  +  phytase

Figure 7.11 Effect of phosphorus level and phytase on total phosphorus 

of the fourth metatarsal

0 .8 5  1 .2 5  1 .6 5  2 .0 5  2 .6 5  3 .0 5  3 .6 5  4 .0 5
non-phytate phosphorus (g/kg)

4 .6 5

. phytase V//A  + phytase



Table 7.29 Significance of effects of phosphorus level, phytase

and the interactions on bone mineral content

factor P sed

third metatarsal

Fat free weight P level * phytase 0.035 1.692

Total phosphorus P level 0.003 0.110
phytase 0.007 0.152

P level * phytase 0.002 0.156

Percent phosphorus phytase 0.086 0.360

Total ash phytase 0.033 0.206

Percent ash ns >0.10 -

fourth metatarsal
Fat free weight phytase 0.061 0.435

Total phosphorus P level 0.029 0.061
phytase 0.001 0.029

P level * phytase 0.030 0.086

Percent phosphorus phytase 0.076 0.179

Total ash P level 0.001 0.353
phytase 0.001 0.166

Percent ash P level <0.001 1.251
phytase 0.003 0.589



- treatment group means

Table 7.30 Fat free weight of the metatarsals (g)

P lever 3 r d  m e ta ta r s a l  4 th  m e ta ta r s a l

- phytase +  phytase - phytase +  phytase

0.85 14.27 16.09 15.42 16.95

1.25 16.98 17.91 14.42 16.54

1.65 13.29 18.01 16.50 16.94

2.05 15.20 18.28 17.30 17.32

2.45 16.87 19.53 16.19 17.82

2.85 18.16 15.01 16.73 17.17

3.25 16.34 17.01 18.39 18.82

3.65 17.75 16.04 16.49 18.11

4.05 17.84 16.11 17.78 17.04

Table 7.31 Total phosphorus of the metatarsals (g) 

- treatment group means

P level' 3rd metatarsal 4th metatarsal

- phytase +  phytase - phytase +  phytase

0.85 0.373 0.810 0.592 0.893

1.25 0.757 1.166 0.723 0.902

1.65 0.564 1.065 0.811 0.980

2.05 0.870 1.076 0.836 0.896

2.45 0.930 1.160 0.952 0.838

2.85 1.218 0.932 0.963 0.954

3.25 0.805 1.075 0.831 1.032

3.65 1.074 0.876 0.817 0.964

4.05 1.092 0.842 0.955 0.904

non-phytate phosphorus g/kg feed
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Table 7.32 Percent phosphorus of the metatarsals - treatment group means

P lever 3rd metatarsal 4th metatarsal

- phytase +  phytase - phytase +  phytase

0.85 2.58 5.23 3.84 5.28

1.25 4.33 6.49 5.05 5.48

1.65 5.50 5.97 5.02 5.78

2.05 5.85 5.97 4.74 5.18

2.45 5.47 5.95 5.87 4.82

2.85 6.71 6.40 5.76 5.55

3.25 4.95 6.47 4.53 5.49

3.65 6.10 5.58 5.10 5.31

4.05 6.18 5.27 5.41 5.33

Table 7.33 Total ash of the metatarsals - treatment group means

p level' 3rd metatarsal 4th metatarsal

- phytase +  phytase - phytase + phytase

0.85 3.430 4.617 3.314 4.651

1.25 4.607 5.236 4.027 4.988

1.65 4.504 5.234 5.014 5.148

2.05 4.687 6.173 4.688 5.428

2.45 5.056 5.561 4.873 5.435

2.85 5.598 4.838 4.963 4.948

3.25 4.718 5.458 5.346 6.155

3.65 5.265 5.026 4.965 5.347

4.05 5.081 4.773 5.218 5.404

non-phytate phosphorus g/kg feed
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Table 7.34 Percent ash of the metatarsals - treatment group means

P level' 3rd metatarsal 4th metatarsal

- phytase +  phytase - phytase +  phytase

0.85 23.35 29.20 21.42 27.46
1.25 26.53 29.51 28.02 30.20
1.65 38.03 29.17 30.45 30.39
2.05 31.42 34.18 27.18 31.37
2.45 29.59 28.51 30.06 30.52
2.85 30.80 32.76 29.68 28.77
3.25 28.89 33.31 29.07 32.59
3.65 29.70 31.14 30.29 29.51
4.05 29.40 29.56 29.51 31.39

non-phytate phosphorus g/kg feed



Table 7.35 Regression of metatarsal mineral content (y) against daily intake of non-phytate phosphorus (x)

Linear Q u a d r a t ic

equation of response P % varT equation of response P % var’

Third metatarsal

Fat free weight (FFW) y =  13.22 +  0.628x 0.002 24.3 y =  13.21 +  8.63x - 0.0003x2 0.008 21.9

Total phosphorus in FFW y = 0.45 +  0.086x 0.001 28.3 y = 0.19 + 0.215x - 0.013x2 0.002 29.3

Percent phosphorus in FFW y = 3.85 +  0.312x 0.044 10.0 y = 1.90 +  1.28x - 0.982x2 0.048 13.3

Total ash in FFW y =  3.73 +  3.728x 0.004 20.8 y = 3.30 + 0.439x - 0.023x2 0.013 19.5

Percent ash in FFW - ns - - ns -

Fourth metatarsal

Fat free weight y =  17.76 +  0.387x 0.014 14.7 y =  14.13 +  0.712x - 0.033x2 0.047 12.6

Total phosphorus in FFW y = 0.68 +  0.031x 0.021 13.4 y = 0.40 +  0.178x - 0.015x2 0.002 29.5

Percent phosphorus in FFW - ns - y = 3.05 +  0.903x - 0.841x2 0.041 13.7

Total ash in FFW y = 3.61 +  0.231x <0.001 35.7 y =  2.76 +  0.667x - 0.045x2 <0.001 40.5

Percent ash in FFW y =  24.6 +  0.7732x 0.003 21.7 y = 20.14 +  3.1 lx - 0.239x2 0.001 30.7

r percentage variance accounted for



Table 7.36 Regression of metatarsal mineral content (y) against daily intake of total phosphorus (x)

Linear Quadratic

equation of response P % var equation of response P % var

T h ird  m e ta ta r s a l

Fat free weight (FFW) y = 11.74 + 0.565x 0.002 25.0 y = 11.67 + 0.58x - O.OOlx2 0.007 22.6
Total phosphorus in FFW y = 0.28 + 0.073x 0.002 25.6 y = -0.29 + 0.226x - 0.009X2 0.017 26.1
Percent phosphorus in FFW y = 3.31 + 0.256x 0.063 8.1 y = -1.05 + 1.419x - 0.071X2 0.075 10.6

Total ash in FFW y = 3.24 + 1.193x 0.004 20.6 y = 2.81 + 0.308x - 0.007X2 0.017 18.3
Percent ash in FFW - ns - - ns -

F o u r th  m e ta ta r s a l

Fat free weight y = 13.82 + 0.351x 0.012 15.5 y = 12.63 + 0.675x - 0.020X2 0.043 13.1

Total phosphorus in FFW y = 0.64 + 0.025x 0.037 10.4 y = -0.11 + 0.258x - 0.41X2 0.002 29.2

Percent phosphorus in FFW - ns - y = 0.32 + 1.216x - 0.071x2 0.028 16.0

Total ash in FFW y = 3.18 + 0.202x <0.001 34.2 y = 1.13 + 0.739x - 0.033X2 <0.001 38.5

Percent ash in FFW y = 23.23 + 0.649x 0.006 19.1 y = 12.04 + 3.68X-0.188X2 0.002 28.3

t percentage variance accounted for 
KJ
K>



7.3.6 Relationship between bone strength and bone mineral composition

Regression of strength against fat free weight and mineral content of the third 

metatarsal showed strong linear and quadratic relationships (p <  0.001) between third 

metatarsal strength and total ash, and between strength and total phosphorus. These 

were also apparent in the fourth metatarsal, which in addition showed a strong linear 

and quadratic relationship between strength and percent of ash in the fat free bone 

(p <  0.001). Addition of phytase weakened these relationships (table 7.37), except for 

the linear and curvilinear relationships between fourth metatarsal strength and total 

ash in the fat free bone, which were maintained. In addition, the original weak 

quadratic relationship between strength and fat free weight of the fourth metatarsal 

was strengthened by addition of phytase (p=0.008 vs p =  0.018).

7.3.7 Relationship between bone strength and growth

Regression of bone strength against daily liveweight gain showed linear relationships 

for both the third and the fourth metatarsals, although these were somewhat weak 

(MT3, p =  0.036; MT4, p = 0.011; table 7.38). Addition of phytase destroyed the 

relationship between third metatarsal strength and average daily gain, but maintained 

that between strength of the fourth metatarsal and average daily gain, although the 

relationship was not as strong as without the enzyme (p =  0.036).

7.3.8 Relationship between growth and carcase measurements

In the absence of phytase, there was a strong linear relationship between average 

daily gain and the width of the longissimus dorsi muscle (measurement "A"), which 

became non-significant when enzyme was added to the diet. However, a weaker 

relationship between average daily gain and the posterior gluteus medius, was 

strengthened by addition of phytase (p=  0.06 without phytase, p <0.001 with
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phytase). In addition, phytase inclusion resulted in strongly significant (p <  0.001) 

linear relationships between daily liveweight gain and P2, P3 and "C" measurements. 

Equations describing the responses are shown in table 7.39

7.3.9 Relationship between growth and bone mineral content

A strong linear relationship between total ash in the fourth metatarsal and average 

daily gain was revealed (p= 0.001) which was destroyed by phytase addition. Weaker 

responses of total ash in the third metatarsal, fat free weight and percent ash o f the 

fourth metatarsal (p <  0.01) were also destroyed by enzyme addition. Equations 

describing the responses are presented in table 7.40
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L in e a r  Q u a d r a t ic

Table 7.37 Significance of the responses of metatarsal strength (y) to

metatarsal mineral content (x)

- phytase +  phytase - phytase +  phytase

3rd metatarsal

Fat free weight 0.018 ns 0.063 0.084

Total ash <0.001 0.050 <0.001 ns

Percent ash ns 0.044 0.032 0.047

Total phosphorus <0.001 0.012 <0.001 0.036

Percent phosphorus 0.017 0.025 0.032 0.080

4th metatarsal

Fat free weight 0.004 0.002 0.018 0.008

Total ash <0.001 <0.001 <0.001 <0.001

Percent ash <0.001 0.011 <0.001 0.002

Total phosphorus <0.001 0.030 <0.001 0.012

Percent phosphorus 0.013 ns 0.034 ns

Table 7.38 Significance of the responses of metatarsal strength (y) to 

daily liveweight gain (x)

- phytase +  phytase

response equation p % varT response equation p

3rd metatarsal y =  389 +  730x 0.036 10 3' '  ns
4th metatarsal y  = 279 +  824x 0.011 16.3 y =  4 4 3 + 753* 0 Q39

% varT

9.9

7 percentage variance accounted for
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Table 7.39 Significance of the responses of carcase measurements (y)

to daily liveweight gain (x)

equation of response p % varT

- p h y ta s e

Posterior g lu te u s  m é d iu s y =  4.37 +  8.23x 0.054 8.6
PI y =  3.56 +  4.12x 0.06 7.8
Width of lo n g is s im u s  d o r s i  (a) y = 95.12- I6.46x 0.002 23.7
+  p h y ta s e

Maximum shoulder y = 19.72 +  8.81x 0.063 7.6
Minimum mid-back y = -0.02 +  11.36x 0.002 24

PI y = -0.84 + lO.lOx <0.001 39.6

P2 y = -0 .67 +  9.12x <0.001 35.8

P3 y = -0.15 +  9.36x <0.001 26.9

c y = 0.25 +  8.01x <0.001 29.5

Table 7.40 Significance of the responses of bone mineral content (y) 

to daily liveweight gain (x)

- phytase
response equation p %var'

+  phytase 
P %v

3 r d  m e ta ta r s a l  

Total ash y = 2.85 +  2.69x 0.034 10.6 ns

4 th  m e ta ta r s a l

Fat free weight y =  12.76 +  5.39x 0.039 9.9 ns

Total ash y =  2.39 +  3.26x 0.001 26 ns

Percent ash y =  20.53 +  10.99x 0.011 15.9 ns

T percentage variance accounted for



7.4 Discussion

7.4.1 Growth performance

Although at first it appeared that responses of growth parameters to phosphorus and 

phytase were non-significant, re-examination of the differences between pigs fed with 

and without phytase at discrete levels of phosphorus revealed significant effects. 

Analysis of variance calculates an average significance across treatments. In cases 

where differences are mostly non-significant, as in the present experiment, individual 

significant differences may be over-ridden by the average "p" value. The power of 

the analysis of variance design for the present experiment was therefore limited, but 

served to indicate the response to phytase at each level of dietary phosphorus.

Regression of daily liveweight gain against daily intake of phosphorus showed both 

linear and curvilinear responses. However, maximum daily gain was achieved only 

at the greatest phosphorus intake within the range used. Thus it was presumed that 

within the range of phosphorus intakes seen, the response was linear. Beyond this 

range, it would be expected that growth followed either a broken line or a quadratic 

model, as growth would not increase indefinitely in response to phosphorus intake.

The foremost question raised from the response of growth to phosphorus intake was 

whether the response seen was simply due to increasing feed intake, or whether it was 

a response to phosphorus intake per se. It may be speculated that by increasing feed 

intake, phosphorus intake increases, thus the response seen was mainly due to 

potentially larger pigs consuming more feed and growing at a faster rate. However, 

no significant relationships were seen from the regression of feed intake against 

phosphorus intake. Thus it may be proposed that phosphorus content of the feed was 

influencing growth. Examination of the feed intake data revealed depressed feed 

intake at the lowest levels of dietary phosphorus, which although non-significant, 

were nevertheless pronounced, and it can be reasonably assumed that phosphorus 

level was influencing feed intake which in turn influenced growth of the pigs.

Due to the linearity of the growth response, a phosphorus requirement for maximum
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growth could not be established. Pigs growing at the greatest rates consumed the most 

food, thus there may have been another limiting constraint besides phosphorus. Had 

the phosphorus level of the diet been raised an increased phosphorus intake may have 

resulted. Nonetheless, it could be seen that the maximum growth rate obtained (890 

g/day) required a daily intake of 9g digestible phosphorus. Based on the mean daily 

feed intake, a level of 4.65g/kg digestible phosphorus would be sufficient to support 

growth; this was somewhat higher than previous recommendations of the ARC (1981) 

and much higher than the recent estimates of Jongbloed (1992) who proposed that a 

level of 2.3g/kg digestible phosphorus for pigs of 30kg liveweight could be further 

reduced to 2g/kg at 50kg liveweight. Latter estimates were obtained using factorial 

data from slaughter experiments, and assume a growth rate of 780g/day, from 30- 

110kg. Based on the regression equation obtained from the present trial, a dietary 

allowance of 2.3g/kg phosphorus would support a daily growth of only 612g, whereas 

mean growth rate of pigs in the current trial was 720g/day. However, caution must 

be exercised when comparing the data, as a narrower band of growth was used in the 

present experiment. Table 7.41 compares present results with current recommended 

phosphorus levels for growing pigs. A comprehensive comparison of present with 

published data was precluded because many previous authors had used total, rather 

than digestible phosphorus when estimating requirements.

In comparing the linear response of growth (y =  0.548 +  0.041x) to that obtained 

in the previous trial (y = 0.518 +  0.22x) it could be seen that in order to support the 

same growth, more phosphorus was needed for growing pigs (25-60kg liveweight) 

than for young pigs (less than 25kg liveweight). Phosphorus absorption and retention, 

as a percentage of total phosphorus intake, has been found to decrease linearly with 

increasing liveweight (Kirchgessner et al., 1963; Morgan et al., 1969) although 

whether this is due to an effect of physiological age, or to a surplus in the amount of 

phosphorus offered in relation to requirement has been subject to debate. Since the 

present experiment used a range of phosphorus intakes, starting below requirement, 

the results suggest a physiological effect; ie older pigs may not be as efficient at 

absorbing and/or utilising phosphorus.
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Table 7.41 Comparison of results with current recommended phosphorus levels

for growing pigs

Source Liveweight (kg) DLWG (kg) Daily P (g)

Present results 25-60 0.89 9.0 digestible

ARC (1981) 25 0.55 6.1 total

45 7.4 total

NRC (1988) 20-50 0.70 9.5 total

Gueguen and Perez (1981) 35 0.60 9.5 total

50 0.75 11 total

Jongbloed et al., (1993) 30 0.57 3.12 total

50 0.82 4.40 total

279



While the depressive effect of low phosphorus on feed intake is recognised, and 

specific appetites have been demonstrated, particularly in cattle (Fishwick et al., 

1977; Bass et al., 1981) and in poultry (Holcombe et al., 1976), physiological 

mechanisms have not been elucidated. So far, few data relate to pigs, but present 

results indicated that very low intakes of phosphorus certainly depressed appetite. 

Reduced daily liveweight gains at low levels of phosphorus were overcome by 

addition of phytase to the diet. This could be attributed mainly to an increased feed 

intake. Dietary enzymes are generally associated with an increased feed intake, but 

in the present case it appeared that the increased feed intake occurred as a result of 

increased available phosphorus, rather than due to the enzyme preparation p e r  se, as 

increased feed intake with the enzyme was not seen at higher levels of phosphorus.

Feed conversion efficiency responded quadratically to increasing phosphorus intake. 

Optimum efficiency was achieved with a daily intake of 6g digestible phosphorus, 

thereafter growth became less efficient. At very low (0.85 g/kg) and very high (4.05 

g/kg) dietary levels of phosphorus, efficiency was poor, probably due to the calcium 

to phosphorus ratio being too high (at 3.2) and too low (at 1.4), respectively.

Phosphorus levels used in the present experiment were lower than those of the 

previous experiment as it was anticipated that the requirements for pigs of this size 

would be lower than that of very young pigs. However, in view of the daily gain 

response, it may have been appropriate to use a range that reached more than 

4.05g/kg digestible phosphorus. The amount of digestible phosphorus required for 

optimum feed conversion efficiency calculated from the present experiment, at 6g day 

was higher than the net requirement of the ARC proposed in 1981.

The suggestion that requirements for optimum feed efficiency are less than those for 

maximum growth is in accordance with results of Combs et al. (1991) which showed 

that while 100% of NRC (1979) requirements were necessary for maximum growth, 

83.5% was sufficient for optimum feed conversion efficiency. In another experiment, 

increased dietary calcium and phosphorus resulted in linear improvements in gain and 

feed intake, although feed conversion efficiency was unaffected (Maxson and Mahan, 

1983). Others have found no effect of phosphorus level on growth performance, but
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in many of these experiments (Brennan and Aheme, 1986; Nimmo et al., 1980; 

Donzele et al., 1988), diets were not formulated to be deficient in phosphorus, but 

remained above NRC requirements. Ketaren et al. (1993) observed a quadratic 

response of feed intake and growth rate to available phosphorus level in pigs growing 

from 20 to 90kg liveweight. Maximum growth rate (955 g/day) and feed intake (2118 

g/day) were achieved 3g/kg digestible phosphorus.

The quadratic response of feed conversion efficiency obtained suggested that 

efficiency of growth altered with phosphorus intake. The metabolic basis for this 

change in efficiency is not known. When genetically improved pigs were fed low 

calcium and phosphorus levels the amount of metabolisable energy required for 

liveweight gain was increased from 25.7 MJ/kg to 27.8 MJ/kg (K’nev et al., 1987). 

Ludke et al. (1989) observed that fat retention in soft tissues and the skeleton 

increased by 0.7kg when phosphorus was lowered from 5.47g/kg to 2.97, while 

protein retention decreased by 1.5kg, although these authors concluded that energy 

utilisation for growth was not influenced by phosphorus supply. In another experiment 

it was found that nitrogen balance was not affected by dietary calcium and phosphorus 

(Donzele et al., 1988).

7.4.2 Carcase measurements

Pigs were slaughtered at 60kg because it was anticipated that requirement for growth 

would start to change beyond approximately 60kg, as the pig approached the 

"finishing" stage of growth. While few relationships between daily phosphorus intake 

were seen in the absence of phytase, when the enzyme was added to the diet, some 

(weak) relationships became apparent (P I, P2, A, C). These were difficult to explain, 

particularly in light of the results of the previous experiment, where addition of 

phytase destroyed relationships between phosphorus intake and growth, carcase 

mineral content, bone breaking strength and bone mineral content.
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O f approximately 20% of total body phosphorus located in the soft tissues, most is 

present in muscle, thus the lack of response of lean tissue growth to phosphorus 

intake was surprising. Zivkovic et al. (1991) observed that daily gain improved in 

response to increasing phosphorus intake, but carcase yield was unaffected. In another 

trial (Lorek et al., 1995), physical and chemical properties of meat and fat from pigs 

fed either 0.4 or 0.6% phosphorus were unaffected, but the chemical composition of 

lean differed, with the lower phosphorus level yielding a lower crude protein and 

higher fat than the higher phosphorus level (23.2 vs 21.9% protein; 2.21 vs 3.24% 

fat). The genetic "type" of pig may also influence responses to phosphorus. Fat- type 

pigs retained more phosphorus than lean genotypes, although no differences in carcase 

yield were observed (Ivanchuk and Mal’tseva, 1986). Addition of phytase led to the 

establishment o f increased backfat (PI,P2) with increasing phosphorus intake, 

suggesting that perhaps growth was not as efficient in pigs receiving the enzyme.

While the mineral concentrations of pigs in the present experiment were not 

measured, it would be reasonable to suggest on the basis of the present experiment, 

that increases in whole body mineral in response to phosphorus seen in the previous 

experiment, were due to increases in bone mineralization rather than to higher 

concentrations of phosphorus in the soft tissue. On the other hand, concentrations of 

calcium and phosphorus are higher in the adult than in the newborn (Georgievskii, 

1981), and the relative proportion of protein to ash changes from 3:1 in the neonate 

to 5:1 in older pigs (Shields Jr, 1991), these may have been confounded with 

responses to phosphorus and phytase.

7.4.3 Physical properties of the metatarsals

A quadratic response of metatarsal strength to increasing phosphorus intake was 

assumed on the basis that as phosphorus intake increases above requirement, the 

changing Ca:P ratio becomes unfavourable for net bone deposition. Based on the 

surmise that bone strength increases linearly within the range of phosphorus levels 

used typically during a slope-ratio assay, it was inferred that the linear response seen
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was a manifestation of the ascending region of a quadratic curve. The model agreed 

with that obtained by Combs et a l  (1991) when 75-130% of NRC recommended 

phosphorus levels were fed. In contrast, Cromwell et a l  (1993) and Ketaren et a l  

(1992) found linear responses at up to 4g/kg and 3 g/kg phosphorus, respectively.

While a daily intake of 5.5g digestible phosphorus was sufficient for maximum 

strength of the third metatarsal, 6.5g was necessary for maximum strength of the 

fourth. The latter is the outer bone in the foot, and being larger than the inner third 

metatarsal, requires greater mineralization for maximum strength.

It was possible that the increased bone strength seen was due to increased size alone, 

with no effect of mineralization. Mudd et a l  (1969) found that calcium intakes above 

requirement induced larger bone mass, but not an increased mineralization, and it is 

possible that this may also hold true for phosphorus. Mineralization per se was not 

measured (for example using bone densitométrie x-ray techniques), although chemical 

analysis was carried out. In addition, the width and breadth of the bones was 

measured at the (approximate) mid-shaft, but these data were ignored as it was almost 

impossible to take consistent measurements exactly in the centre of the shaft, due to 

the bones’ very irregular nature. However, freshweight of the bones was recorded, 

and no direct effect of phosphorus level was seen.

The present experiment used metatarsals, rather than femurs, due to practical and 

economic constraints for pigs of this size. Despite the lack of response of these bones 

in the previous trial, it was assumed that pigs of this age, in having a more developed 

skeleton, would be more responsive to phosphorus level, and thus also to phytase.

Addition o f phytase resulted in an increased breaking strength of both the third and 

the fourth metatarsals, due to release o f phytate-phosphorus which was then utilised 

for bone accretion. At higher phosphorus levels this increased strength was not seen 

because there was already enough phosphorus present in the diet to support bone 

development. Responses to the enzyme obtained from the present trial were more 

pronounced than those of Cromwell et a l  (1993), where decreased bone strength of 

pigs receiving low-phosphorus diets was only partially restored by phytase.
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Based on the response of the metatarsals to phytase, it was calculated that 50-70% of 

phytate-phosphorus was converted to a digestible form by the addition of phytase 

(table 7.42), which was lower than that calculated from the previous experiment, 

although higher than the 30% conversion obtained by Cromwell et al. (1993).

7.4.4 Mineralization of the metatarsals

O f the criteria studied, total phosphorus and total ash appeared to be the most 

sensitive to phosphorus and phytase. Calcium content of the bones was not measured 

since no significant responses were seen in the previous method. Mineralization could 

similarly have been measured using alternative methodology such as photon 

absorptiometry or radio-isotope kinetics, but present results suggested that analysis 

o f mineral content, combined with mechanical measurement of break strength, were 

adequate descriptors.

Mineral deposition is the net result of accretion and bone resorption, the latter being 

particularly important for bone modelling. Fernandez (1995) found no difference in 

accretion with increasing dietary phosphorus, however, a decrease in bone resorption 

was observed. In fact, intestinal absorption accounted for 86% of the variation in 

bone resorption. Thus, it could be presumed that uptake of dietary phosphate was a 

major determinant of bone mineralization.

Although the metatarsals had been dismissed as unsuitable indicators of phosphorus 

availability in very young pigs, it was presumed that in older pigs, having a more 

mature skeletal systems, the bones would be sufficiently well-developed to show 

sensitivity to phosphorus intake. Whether or not these bones were indicative of the 

skeleton as a whole was questionable. Fernandez (1995) found that metacarpals and 

femurs had similar accretion rates. On the other hand, ash content of the coxae, tibia 

and fibula, and radius and ulna were more responsive to dietary phosphorus than 

other bones in pigs of 20-50kg (Ketaren et a l. , 1993). Furthermore, it has been 

established that during deficiency, withdrawal of phosphorus occurs first from the
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spongy bones (ribs, vertebrae and sternum). The shafts of the long bones and the 

small bones of the extremities affected last (Underwood, 1966). However, in the 

present experiment the metatarsals were sufficiently sensitive to availability and were 

useful as indicators of bone growth. Furthermore, they were relatively easy to obtain 

without devaluating the carcase. Metatarsals of the hind foot, rather than the 

metacarpals of the fore were used as the former were found to be more sensitive to 

phosphorus intake (Lepine et al., 1985).

The quadratic response of bone mineralization with increasing phosphorus was 

somewhat difficult to justify. It seemed more likely that mineralization would plateau 

and increase no further, rather than decline, in response to increasing phosphorus 

intake. Consideration of homeostatic mechanisms and the inter-relationship between 

calcium and phosphorus provided a possible explanation of the declining 

mineralization. As phosphorus intake exceeded requirement, calcium-to-phosphorus 

ratio of the blood decreased, stimulating parathyroid hormone, which promoted 

resorption of bone from the skeleton into the blood. Data of Ketaren et al. (1993) 

support this theory. Bone mineralization was found to increase linearly in response 

to dietary phosphorus level when the calcium-to- phosphorus ratio was kept constant, 

but when the ratio was variable, a quadratic response was obtained. Similar quadratic 

responses o f bone ash to dietary phosphorus of growing pigs were observed by 

Maxson and Mahan (1983).

Accepting a quadratic response for mineralization, it was calculated that maximum 

mineralization of the third metatarsal was achieved with a daily intake o f 8.5g 

digestible phosphorus, whereas maximum mineralization of the fourth metatarsal 

required only 6g/day. The latter result was surprising as maximum strength for this 

bone was achieved with an intake of 6.5g/day. It would be expected that maximum 

strength would be reached at the same point or in advance of maximum 

mineralization, since the latter is required to provide strength. The result was also 

unexpected in view of the presumption that the fourth metatarsal, being larger than 

the third, required more phosphorus for development. It has been established that 

mineral deposition continues even after maximum strength has been reached 

(Crenshaw, 1981) and although this was seen with the third metatarsals, results of the
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fourth metatarsals, could not be explained in light of current knowledge, except by 

inaccuracy of the regression equation. The latter explanation was confirmed by 

calculating the daily phosphorus requirement for maximum ash of the same bone, 

which, at 7.5g, was closer to the expected value for maximum mineralization. 

Results disagreed with the prediction of Crenshaw (1986) that breaking force of the 

third metatarsal could be reliably predicted by mineral content (r2 =  0.90). Using 

percent bone ash as the criterion of response, Ketaren etal. (1993) proposed a dietary 

level of 0.3% available phosphorus for bone development of growing pigs. However, 

current results suggested that bone ash, while giving a good indication of phosphorus 

availability, was not a suitable criterion on which to base requirement, as maximum 

mineralization did not correspond to maximum bone strength.

Increased fat-free weight of the metatarsals when phytase was added to the diet may 

have been partly due to increased growth of the pigs, resulting in larger bones. 

However, percent ash and phosphorus of the bones also increased in response to 

phytase, confirming that the increased bone weight was at least partially due to 

increased mineralization.

Factors other than dietary phosphorus intake are reflected in bone mineral content and 

mechanical properties, and must therefore be considered when comparing 

experimental data. Ad libitum, as opposed to restricted feeding resulted in larger, 

heavier, stronger bones in boars (Lepine et al., 1985). To avoid gender differences 

in response to phosphorus and phytase which had been noticed in the previous trial, 

all males were used in the present trial. This gave greater statistical power than in the 

previous trial; on the other hand the requirements estimated from responses of boars 

were not necessarily indicative of those of a mixed gender population.
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7.4.5 Comparison of response criteria

Probability values, percent of variance accounted for by the regression equations, and 

phosphorus intake required to obtain maximum response of the various criteria are 

compared in table 7.43. Results confirmed that growth, when regressed against 

phosphorus intake rather than dietary phosphorus level, was a sensitive criterion of 

response. In contrast, carcase traits were influenced little by phosphorus intake. Bone 

strength was more sensitive to phosphorus availability than bone mineral content, 

although the latter was extremely useful as an indicator of bone development. Present 

results confirmed those of the previous trial where requirements for bone strength 

were less than those for growth.

7.4.6 Phosphorus requirement of growing pigs

Based on the mean feed intake of 1936 g/day, dietary phosphorus levels needed to 

support maximum response of the various criteria were calculated. These are 

compared with published data in table 7.44. The requirement for growth, at 4.65g/kg 

digestible phosphorus, was somewhat higher than previous recommendations (ARC, 

1981; NRC, 1988; Jongbloed et al. , 1992). Maximum feed conversion efficiency was 

obtained with a lower phosphorus level of 3.1g/kg. Based on the mean requirement 

for strength of the third and fourth metatarsals, a level of 3. lg  was also calculated for 

maximum bone strength. This level was much nearer requirements for growth and 

bone development proposed by Ketaren et al. (1993) and the ARC (1981). The actual 

dietary requirement will depend on whether fast growth, or efficient growth is of 

primary importance. Early growth of the boar is critical and a sound mineral regime 

necessary to ensure maximum bone and muscle development because of rapid mineral 

deposition rates in early life (Nimmo et a l., 1980). In the case of breeding stock, 

maximum bone mineralization, rather than maximum bone strength, may be more 

critical, as a store of phosphorus during lactational demands, and in these cases the 

allowance would tend towards the higher requirement.
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7.4.7 Phosphorus/phytase equivalence

It was apparent from measurements of growth and bone strength that differences in 

performance achieved with phytase diminished as the dietary phosphorus level 

increased. Although establishment of regression responses both with and without 

phytase was intended, by using a constant level of phytate-phosphorus, addition of the 

enzyme destroyed all linear and curvilinear responses of bone strength to phosphorus 

intake. This was similar to results of the previous experiment, and again suggested 

either some disruption of the homeostatic control mechanism of pigs receiving 

phytase, or more possibly, an interaction of inorganic phosphorus with phytase. The 

net result would be that different amounts of phosphorus were made digestible, which 

would subsequently be reflected in bone development. Despite these anomalies, by 

comparing response criteria at the basal level of phosphorus with and without the 

enzyme, it could be seen that approximately 50% of phytate phosphorus was being 

made available for digestion (table 7.42), and this estimate of was consistent whether 

based on growth, bone strength or mineralization.

7.5 Conclusions

Daily requirement of digestible phosphorus were estimated at 6g for optimum feed 

conversion efficiency, 9g to support a growth rate of 0.89 kg/day, and between 5.5 

and 6.5g for maximum bone strength.

Addition of phytase enabled approximately 50% of the phytate-phosphorus to be 

utilised. This estimate of phosphorus/ phytase equivalence was consistent across 

criteria, although differences in performance achieved with phytase diminished as 

dietary phosphorus level increased.
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Table 7.42 Calculation of phytate-phosphorus made available by phytase

Non-phytate-P in basal diet 

Total P in basal diet 

Phytate P (N-P-P)

DLWG at 0.85g/kg N-P-P (+  phytase) 

MT3 strength * "

MT4 strength " "

MT3 P "

MT4 P "

=  0.85 g/kg 

=  2.5 g/kg 

=  1.65 g/kg

=  DLWG at 1.65g/kg N-P-P (-phytase) 

=  strength at 2.05g/kg N-P-P (-phytase) 

s  strength at 1.65g/kg N-P-P (-phytase) 

s  MT3 P at 1.65g/kg N-P-P (-phytase) 

s  MT4 P at 2.05g/kg N-P-P (-phytase)

Assuming that all extra phosphorus has become available through the use of phytase, 

Phosphorus made available through phytase (lower and upper limits):

=  1.65 -0.85 2.05 -0 .85

= 0.80g/kg =  1.20g/kg

As proportion of phytate phosphorus = (0.80/1.65) * 100

= 48%
(1.20/1.65)*100 

= 72%

289



Table 7.43 Goodness of fit of regressions, and phosphorus required for 

maximum response of various criteria

Criterion Shape of response P % var P required for max. response 

(g non-phytate P/day)

DLWG linear <0.001 52 > 9

FCE quadratic 0.009 21.7 6

MT3 strength quadratic <0.001 57.4 5.5

MT3 ash quadratic 0.002 29.3 7.0

MT3 phosphorus quadratic 0.002 29.3 8.5

MT4 strength quadratic <0.001 64 6.5

MT4 ash quadratic 0.013 19.5 7.5

MT4 phosphorus quadratic 0.002 29.5 6.0

290



Table 7.44 Comparison of phosphorus requirements for growing pigs 

with published data

Source of recommendation Liveweight (kg) P (g/kg FW)

Present results:

Maximum growth 

Optimum FCE 

Bone strength

ARC (1981) - growth and bone strength 

NRC (1988) - growth

Gueguen and Perez (1981) - growth

Jongbloed (1992) - growth

Ketaren et al. (1993) - growth and bone strength

25-60 4.65 digestible

25-60 3.10 digestible

25-60 3.10 digestible

25-45 5.1-3.7 totaT

20-50 2.5 digestible

30-50 6.0-5.6 totaT

30-50 2.3-2.0 digestible'

20-90 3.0 digestible
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Chapter 8 Concluding discussion

8.1 Phosphorus requirement and availability

Although the mechanism by which phosphorus influences appetite remains unknown, 

a definite association between phosphorus level in the feed and feed intake was 

demonstrated by the data of the growth trials (Sections 6.3 and 7.3), which showed 

that phosphorus deficiency reduces appetite. In young pigs (10-25kg liveweight) a 

gradual reduction in feed intake was observed as the digestible phosphorus content 

was lowered from 4 to 2g/kg, and in pigs growing from 25-60kg liveweight, feed 

intake decreased as digestible phosphorus was lowered from 2.45 to 0.85g/kg.

Increases in feed intake largely accounted for the increases in liveweight gain 

achieved as phosphorus intake was increased and suggested no effect of phosphorus 

on growth above that of stimulating appetite. Despite this, recent work (Whipp, 1994) 

demonstrated that phosphorus retention rate increases with growth rates (figure 8.1), 

thus faster growing pigs require more phosphorus which, if  not provided, will result 

in reduced feed intake and growth depression. This is particularly important when 

considering that modem breeding practises, while improving growth rates, have done 

little to increase appetite. Thus, correct phosphorus intake is particularly critical to 

prevent feed intake reduction in modem "fast growing" hybrids, which, by definition 

grow at rates of more than 1kg per day during the growing-finishing period.

The lack of response of carcase composition to phosphorus intake suggested no effect 

of phosphorus on the relative deposition rates of lean and fat tissue. This was 

somewhat surprising since phosphorus is an important component of both muscle and 

fat. While fat to lean ratio may not be affected, there may be an influence of 

phosphorus intake on chemical composition of the lean tissue. Analysis o f the 

chemical composition of lean showed an effect of increasing phosphorus from 4 to 

6g/kg in pigs of 20-110kg (Lorek et al., 1985). Higher levels of crude protein and 

lower levels of fat were observed, while carcase quality and physico-chemical 

properties of lean and fat were similar. In the present study, in view of the lack of
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response of carcase composition in the present study, it was presumed that the marked 

effect of phosphorus intake on phosphorus content of the whole body was probably 

mainly due to increased mineralization of the skeleton.

Although changes in phosphorus retention with growth were not studied, published 

data agreed that in the whole animal, phosphorus concentration of the body decreases 

with age, while per kg gain, phosphorus retention remains constant (estimated at 5.6g 

P/kg liveweight; Jongbloed, 1987). This apparent contradiction may be due to the 

decreasing proportion of bone dry matter to the total body dry matter with ageing 

(Maxson and Mahan, 1983), and suggests a declining requirement as the pig matures.

The growth trials showed an increased requirement per kg liveweight growth in older 

pigs (25-60kg) compared with younger pigs (10-25kg) which may have been due to 

less efficient retention as the pig matured. Factors which may have accounted for this 

(ie absorption or subsequent utilization of phosphorus) were not accounted for in the 

current study; it was assumed that all dietary inorganic phosphorus was absorbed and 

utilized if a requirement existed. These assumptions may have been over

simplifications. On the other hand, while the balance studies showed a decreasing 

dietary concentartion required with age, this was due to increased feed intake 

providing an increased total phosphorus intake, rather than a lower net requirement. 

The progression of phosphorus retention with growth is complex and may be a 

function of physiological age (ie nearness of the animal to maturity) rather than 

liveweight per se. While it has so far been accepted that efficiency of phosphorus 

absorption decreases with age, this assumption has been challenged by recent work 

(Fernandez, 1995). Most work so far has used a "piecemeal" approach using isolated 

components of phosphorus metabolism (eg absorption); which may not represent the 

situation in vivo. Further work using a modelling approach, is clearly needed.

The pig has a skeleton which supports a greater weight in relation to body size than 

any other farm animal. In accepting that the requirement for growth is less than that 

for maximum bone strength, assessment of the bone strength required to withstand 

the forces imposed upon the pig at various stages during growth could be argued as 

being a fundamental step in quantifying the phosphorus requirement. However, results
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of the growth trials {Sections 6.3 and 7.3) indicated that, in pigs growing up to 60kg 

liveweight, by feeding a level of phosphorus which allows maximum growth, bone 

strength may already be achieved. The marked discrepancy between this and most 

previous work may have been due to pigs in the present being in the early stages of 

growth. In later finishing stages, the current observation may not hold.

The third and fourth metatarsals were responsive to phosphorus intake in pigs 

growing from 25-60kg liveweight, while in younger pigs (10-25kg liveweight) the 

femurs showed a better response. Despite marked increases in metatarsal breaking 

force in pigs of 25-60kg in response to increased phosphorus, relatively small 

differences in ash content were observed, suggested that increased bone mass, rather 

than mineralization, caused the observed increases in strength. Breaking strength 

determination using the Instron tester may therefore be more useful than mineral 

analysis in calculating phosphorus requirements, as the present work showed that 

maximum mineralization did not necessarily indicate maximum bone strength 

Furthermore, Crenshaw (1986) proposed that effects of phosphorus deficiency may 

be detected by mechanical test before changes in mineral content are detectable.

Conflicting opinions existed as to whether empirical or factorial techniques were most 

suitable for assessing phosphorus requirements. While factorial assessment was 

claimed to be scientifically the most valid technique (Gueguen and Perez, 1981), 

being applicable to all metabolic states, the empirical approach allowed nutrient 

interactions to be considered, and was recommended for estimating phosphorus 

retention (Walz and Pallauf, 1991) as it indicated the course of retention during 

growth. Use of serial slaughter would have allowed a factorial approach to taken, but, 

by constraining the number of animals available per treatment, would have interfered 

with the original objectives of looking at the effect of phytase on phosphorus 

availability. Thus the empirical approach was adopted in this study, using balance 

trials, carcase analysis and bone parameters as criteria of response. Differences in 

estimates o f phosphorus requirement and availability were found, depending on the 

criterion o f response. In young pigs, phosphorus requirement for maximum growth 

performance and maximum mineral retention in the whole body was higher than that 

for maximum bone strength and mineralization. Published work showed similar
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discrepancies. For example, Ketaren et al. (1993) showed that calculations of 

phosphorus retention by balance were 11% higher than results by carcase analysis. 

Thus, a single criterion may not be sufficient to quantify mineral requirements, and 

an understanding of the partitioning and homeostasis of phosphorus may be more 

useful. While it has so far been assumed that growth and feed conversion efficiency 

were not sensitive to phosphorus intake, it was shown that if regressed against daily 

phosphorus intake, rather than dietary phosphorus level, these were suitable 

parameters from which to calculate phosphorus requirements (Sections 3.3  and 4.3) 

This was important, since growth and feed conversion efficiency are certainly the 

criteria with the most economic impact.

A retention of approximately 4g phosphorus/day for growing pigs was calculated from 

the balance experiments. However, growth of these pigs was slowed by their being 

confined in metabolism crates, and it was presumed that phosphorus requirements 

were lowered. Calculations based on growing pigs in the growth trial estimated 

digestible phosphorus requirements to be 6 g/day for optimum feed conversion 

efficiency and maximum bone strength, but at least 9g/day for maximum growth. In 

young animals (10-25kg liveweight), maximum growth required 5.5g/day of digestible 

phosphorus, while 4g/day was sufficient for maximum bone strength. A comparison 

between present calculated phosphorus requirements and those from other recent 

works is made in table 8.1. It was recognised that net phosphorus requirement altered 

as a function of feeding level, performance, housing, genotype and growth rate, and 

that a single "universal" recommendation was inappropriate.

Dietary phosphorus recommendations in the literature differed widely, due to 

variation in availability of phosphorus in feed ingredients. Recommendations were 

based on calculated availability values for individual ingredients, which, due to 

experimental techniques, were subject to error. It may be practical to assume that the 

non-phytate portion of dietary phosphorus is digestible, and to take into account the 

availability of phosphate contained in mineral supplements by solubility tests, rather 

than to ascribe availability values for each feed ingredient. Practical formulation of 

dietary phosphorus levels based on these values may be particularly appropriate if the 

use o f phytase is to be considered. In the present study, values of phytate-phosphorus
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were taken from published tables, but the use of near infra red reflection spectroscopy 

has also been used to determine phytate levels in feedstuffs (de Boever et al, 1994) 

and may be a useful tool for future formulation based on non-phytate phosphorus.

Formulation in this way obviates the need to determine phosphorus availability of 

individual ingredients. Instead, recommendations based directly on net phosphorus 

requirements become appropriate. However, differences in feed intake between pigs 

must not be ignored. While the "safety margin" could be lowered from the current 

10% to around 5% on the basis of increased accuracy of dietary recommendations, 

it should not be removed completely. Much of the recent published which suggests 

a lowering of dietary phosphorus is based on an intake "just sufficient" to maintain 

performance, which, under commercial conditions, is not acceptable.

Refinement of the calcium to phosphorus ratio to accommodate the recommendation 

of using digestible phosphorus, may be appropriate but it should be realised that if 

phytase is to be included into the diet, the final calcium to digestible phosphorus ratio 

in the intestine will be lowered. Furthermore, feed compounders currently tend to put 

too much calcium in diets, which may result in reduced phytate hydrolysis, due to the 

formation of insoluble calcium-phytate (Williams and Taylor, 1985).

While attention was given to the effects of dietary phosphorus on calcium availability 

because of the close physiological inter-relationship between calcium and phosphorus, 

the experimental diets were designed to keep levels of all nutrients except phosphorus 

constant and non-limiting. Thus the results yielded little information about the effects 

of phosphorus and phytase on calcium digestion and utilisation.

8.2 Efficacy of A sperg illu s n ig er  phytase

Data from the literature and the present experiments established a repeated effect of 

Aspergillus niger phytase on apparent phosphorus digestibility by hydrolysis of 

phytates to release inorganic phosphorus, which was then absorbed. The extent of 

phytate degradation was dependent on the level of phytase and the nature of the diet
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Using a high-phytate diet with little or no supplemental inorganic phosphate allowed 

up to 70% phytate-phosphorus to be utilised. Release and subsequent utilisation of 

phytate-phosphorus allowed animals receiving phosphorus-deficient diets to achieve 

similar growth performances to those receiving diets adequate in phosphorus.

Levels of 500-1500 units phytase activity/kg feed were typically used in published 

experiments, one unit being defined as the amount of enzyme that will liberate 1/xmol 

of orthophosphate from 1.5 mmol sodium phytate within 1 minute at 37°C and pH 

5.5. While maximum increases in phosphorus digestibility were achieved with a level 

of 1000 units/kg, a considerable response to 400-500 units/kg suggested that this level 

may be the economic optimum. A quadratic response of phosphorus digestibility to 

phytase level was seen, which suggested a cumulative limiting response. The 

literature verified competitive end-product inhibition of plant phytase, and the 

diminishing effect of phytase as dietary phosphorus increased in the growth trials 

suggested that this mechanism may be significant for Aspergillus phytase. Research 

into the interaction between phytase and inorganic phosphorus should be given 

priority as it affects the way in which phytase can be used. It may be inappropriate 

to use inorganic phosphate supplements concurrently with phytase.

The assay procedure for phytase was consistent across experiments, in contrast to that 

of other exogenous enzymes for which variation in assay procedures according to 

enzyme source is a contentious issues. No evidence was found to support the 

suggestions that HPLC analysis should be used to quantify the intermediate products 

of phytase degradation, although this may be useful as a tool to develop of a "potent" 

phytase, that is, one which hydrolyses phytate completely to inorganic phosphate.

While repeated effects of phytase on phytate digestibility has been shown in pigs, 

results using other exogenous enzymes show inconsistent responses. Thus it is often 

assumed that the nature of the gastrointestinal tract in pigs is unsuited to exogenous 

enzyme use. Based on the successful use of phytase it would be useful to study in 

more detail the action of other enzymes within the gastro-intestinal tract of the pig.

Effects of phytase on phosphorus availability were consistent, however effects on the
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digestibility of other nutrients associated with phytate were more difficult to clarify. 

The lack of effect of the enzyme on calcium digestibility was in contrast to published 

results, although the reasons for this discrepancy were unclear. Further work is 

needed in this area. In particular, the relationship between calcium level and phytate 

hydrolysis deserves attention, as recent studies (Mroz et al 1994) have demonstrated 

reduced hydrolysis of phytates by Aspergillus niger phytase in the presence of high 

calcium to phosphorus ratios.

It was expected that phytase would influence the digestibility of protein, since phytic 

acid forms insoluble protein-phytate - mineral complexes during processing and 

digestion (Knuckles et al, 1985), and also inhibits protease enzymes such as trypsin, 

tyrosinase and pepsin (Nair et al, 1991; Caldwell, 1992). However, effects of phytase 

on protein digestibility were inconsistent between trials; an increased protein 

digestibility was achieved with the barley-based diet used in the first experiment, but 

not with the corn-based diets of the subsequent trials. These discrepancies were 

similar to those found in the literature, and may have been due to the variable 

solubility of the phytate-protein complex, depending on the origin of the phytate.

Phytic acid is a precursor of many of the fibre components and possesses the 

antinutritional properties associated with fibre, such as formation of gels and reduced 

mineral absorption in the gut. The small intestine of pigs lacks the enzymes needed 

to cleave the bonds of non-starch polysaccharides. It was speculated that degradation 

of phytate should prevent some of the gel formation and mineral absorption associated 

with high-phytate diets. However, little effect of phytase on digestible energy content 

of the diet was observed, suggesting, in agreement with the literature, a lack of effect 

of the enzyme on fibre degradation. While it has been proposed that considerable 

fermentation may take place anterior to the hind-gut, suggesting that there may be an 

opportunity to increase fermentation and subsequent release of phosphorus, addition 

of yeast to the diet of growing pigs did not seem to be effective in achieving this.

Total hydrolysis of phytate was not observed, even when phytase was included at the 

level required for maximum response. This may have been due to incomplete 

hydrolysis of phytate intermediates. As indicated, the development of "potent"
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phytases which completely degrade intermediates, may be a challenge for the future. 

Addition of 1000 units of phytase to diets containing high levels of phytate- 

phosphorus allowed between 50 and 70% of the phytate-phosphorus to be utilised. 

Depending on the diet, this was equivalent to between 0.4 and 1.5g inorganic 

phosphorus (approximately). The equivalence was reduced at higher levels of 

inorganic phosphate, a factor which is not considered in commercial use of the 

enzyme. Current recommendations, which are based on titration results of 400 

phytase units equivalent to lg  of inorganic phosphorus (Gropp, 1995), are an 

oversimplification, and should be re-addressed in light of the present results.

8.3 Reduction of phosphorus excretion

The study focused on reducing the phosphorus output of growing pigs, as they are 

responsible for a large proportion of total phosphorus output, but the enzyme may 

also be appropriate for finishing pig and sows diets. Reductions of 37% in faecal 

phosphorus output were found, in agreement with the literature and it is feasible that 

the total phosphorus output of the pig sector could be reduced by this much.

Legislation against phosphorus pollution is currently being adopted in many countries. 

The Netherlands was the first to introduce obligatory manure book-keeping, and fines 

for surplus output of phosphorus. In many other European countries, farmers must 

operate within a legal limit for a set number of animals per unit of land, and within 

the next decade, legislation of the European Union will be imposed. Phosphorus 

pollution is not only a European problem, but exists in many countries with a high 

population density of livestock. In Korea, for example, the problem has been 

recognised, and run-off from pig units must now be decreased by 40% The net 

result of this legislation is a reduction of the number of animals that may be kept in 

an area, and while the cost of phytase is still a limiting factor, under these 

circumstances, use of the enzyme becomes a viable alternative to inorganic 

phosphates. Consensus over quantification of the increased digestibility of other 

nutrients associated with phytates may further increase the value o f phytase
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Table 8.1 Daily phosphorus requirements for growing pigs - comparison between results of present trials and published data

ARC (1981) NRC (1988 Gueguen and Perez, 1981 Jongbloed et al, 1993 Results of present trials

Liveweight 25 45 20-50 35

Daily gain (kg) 0.55 0.79 0.70 0.60

P required g/day 4.6 5.2 9.5r 9.0'

50 70 30 50 10-25 25-60

0.75 0.80 0.57 0.82 0.63 0.89

11.0' 12.0' 3.12 3.44 5.50 9.0

u>
o T Total phosphorus required, assuming 50% availability



8.4 Conclusions

While the forgoing discussion included inferences from published literature, the 

following conclusions were drawn only on the basis of experimental work undertaken 

during the course of this project:

- Addition of Aspergillus niger phytase resulted in hydrolysis of phytates and 

increased availability of phytate-phosphorus in the digestive tract.

- A level of 1000 units/kg accomplished the maximum increase in phosphorus 

digestibility, although the economic optimum was 400 - 500 units/kg.

- Pigs growing from 10-25kg liveweight required 5.5g/day of digestible 

phosphorus, while 4g/day was sufficient for maximum bone strength.

- At least 9g digestible phosphorus/day was needed for maximum growth of pigs 

growing from 25-60kg. 6g/day was sufficient for maximizing bone strength.

- Phytase overcame the growth constraints of a phosphorus- deficient diet.

- Use of phytase enabled 50 to 70% of phytate-phosphorus to be utilised.

- The response of pigs to phytase was diet - dependent and influenced by the 

inorganic phosphorus level of the diet.

- Use of phytase in pig feeds could enable a reduction of one third in the 

phosphorus output from the growing pig sector.
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Appendix I Procedure during metabolism trials

Experiment 1 Cannulation trial

day

l
8
11
12
13
14
15
16 
18 
20 
22 
23 
30
33
34
35
36
37
38 
40 
42
44
45 
52
55
56
57
58
59
60 
62 
64 
66 
67 
74
77
78
79
80 
81 
82 
84 
86 
88 
89

Pigs weighed and feeding allowances calculated on basis of liveweight 
Pigs transferred to metabolism crates 
Dye added to evening meal

collection 
period I

Dye added to evening meal J  
Ileal samples taken 
Ileal samples taken 
Ileal samples taken
Pigs removed from crates, weighed, and feed allowance adjusted 
Pigs transferred to metabolism crates 
Dye added to evening meal

collection 
period II

Dye added to evening meal 
Ileal samples taken 
Ileal samples taken 
Ileal samples taken
Pigs removed from crates, weighed and feeding allowances adjusted 
Pigs transferred to metabolism crates 
Dye added to evening meal"

collection 
period III

Dye added to evening meal 
Ileal samples taken 
Ileal samples taken 
Ileal samples taken
Pigs removed from crates, weighed, and feed allowance adjusted 
Pigs transferred to metabolism crates 
Dye added to evening meal -i

collection 
period IV

Dye added to evening mealJ  
Heal samples taken 
Ileal samples taken 
Ileal samples taken
Pigs removed from crates and trial ended



Appendix I contd. Procedure during metabolism trials

Experiment 2 Dose-response metabolism trial

Day

1
8
11
12
13
14
15
16 
18 
25 
28
29
30
31
32
33
34 
41
44
45
46
47
48
49
50

Pigs weighed and feeding allowances calculated on basis of liveweight 
Pigs transferred to metabolism crates 
Dye added to evening meal ~\

collection 
period 1

Dye added to evening meal
Pigs removed from crates, weighed, and feed allowance adjusted 
Pigs transferred to metabolism crates 
Dye added to evening meal ”|

collection 
period II

Dye added to evening meal
Pigs removed from crates, weighed, and feed allowance adjusted 
Pigs transferred to metabolism crates 
Dye added to evening meal 1

collection 
period III

Dye added to evening meal
Pigs removed from crates and trial ended



Appendix II Trial 1 Veterinary records

Date Pig no. Treatment

25/5/92
1/5/92

1-6 1 ml 48% Tribrissen, pre and post
operative umbrella cover

27/4/92 1-6 Genera] Anaesthetic prior to surgery

27/4/92 1-6 0.7ml Finadyne analgesic, post operative
29/4/92 1-6 * n

11/5/92 2,3,5,6 Local anaesthetic prior to draining abscess

12/5/92 2-6 Duplocillin penicillin for abscesses
13/5/92 1 3.5 ml Intramycetin

4/6/92 5 3.5 ml Intramycetin

5/6/92 5 3.5 ml Intramycetin

Animal losses

Pig no. 2

Sent to slaughterhouse on 2/7/92 as the cannula had come out overnight. No sign of discomfort or 
distress to the animal which was eating and drinking as normal

Pig no. 5

From 25/5/92 the pig started to refuse feed and showed general signs of ill health. At this stage, 
cannula leakage was not problematic, body temperature was normal and as there were no detectable 
signs of infection, pharmaceutics were not administered. By 4./6/92 there was no improvement and 
cannula leakage had increased. Intramycetin was administered, and a single injection of vitamin B12 
was given to stimulate the liver. The cannula was flushed and ileal contents showed traces of blood. 
Intramycetin treatment was repeated the following day. After 24 hours there was no improvement and 
as the animal was by now very weak, a lethal injection of pentobarbitone was administered.



Appendix III Growth data of animals in Experiment 3

Pig no. 1 2 3
diet 1 2 3
Sex G B G

Start date 06/02/93 06/03/93 06/03/93
Start weight 10 10.6 10.2

Finish date 07/05/93 06/28/93 07/05/93
Finish weight 26.2 25.8 28
Weight gain 16.2 15.2 17.8
Days on trial 33 25 32
DLWG 0.491 0.608 0.556

weights:
06/07/93 11.8 12.9 12
06/14/93 14.9 16.7 15.8
06/21/93 18.4 21.2 19.6
06/28/93 22 25.8 24
07/05/93 26.2 - 28
07/12/93 “ 28

Feed intake 26.15 22.14 30.00
Feed/day 0.79 0.89 0.94
FCE 1.61 1.46 1.69

Slaughter weight 25.60 24.20 26.40
Blood weight 1.28 1.18 1.28
Full gut weight 2.04 2.20 1.92
Empty gut weight 1.70 1.76 1.56
Carcase weight 21.06 19.92 22.52
Total carcase 24.38 23.30 25.72

4 5 6 7 8
B G B G B

06/12/93 06/02/93 05/31/93 06/05/93 06/07/93
10 11.2 10.2 10.2 10.4

07/12/93 06/28/93 06/28/93 07/05/93 07/05/93
28 26.2 26.2 26.4 30
18 15 16 16.2 19.6
30 26 28 30 28

0.600 0.577 0.571 0.540 0.700

7.9 13.2 12.4 11.6 10.4
11.1 16.8 16 14.4 15.1
14.8 21.6 21 18.6 20
19.2 26.2 26.2 22.2 24.5
23.6 - - 26.4 30

28.26 23.30 20.70 26.10 28.33
0.94 0.90 0.74 0.87 1.01
1.57 1.55 1.29 1.61 1.45

26.40 25.00 24.60 24.80 28.40
1.32 1.22 1.16 1.18 1.36
2.16 1.80 2.00 2.16 2.62
1.70 1.58 1.60 1.68 1.94

23.02 21.04 20.84 20.96 23.64
26.50 24.06 24.00 24.30 27.62



Appendix 111 contd

Pig no. 9 10 11
Diet 16 15 14
Sex B G B

Start date 06/10/93 06/10/93 06/07/93
Start weight 10.1 10 10

Finish date 07/05/93 07/05/93 07/05/93
Finish weight 28.6 25 27.8
Weight gain 18.5 15 17.8
Days on trial 25 25 28
DLWG 0.740 0.600 0.636

weights:
06/07/93 9.4 9 10
06/14/93 13.5 11.2 13.4
06/21/93 18.2 15.8 18
06/28/93 23.5 19 22.1
07/05/93 28.6 25 27.8

Feed intake 26.55 20.84 26.51
Feed/day 1.06 0.83 0.95
FCE 1.44 1.39 1.49

Slaughter weight 27.20 23.80 26.20
Blood weight 1.48 1.10 1.38
Full gut 2.26 2.00 2.30
Empty gut 1.74 1.44 1.80
Carcase weight 22.80 19.96 21.46
Total carcase 26.54 23.06 25.14

12
13
G

06/03/93
10.2

06/28/93
25.8
15.6

25
0.624

12.6
16.8
20.8
25.8

23.50
0.94
1.51

24.60
0.86
2.22
1.70

20.80
23.88

06/10/93
10

07/05/93
26.8
16.8

25
0.672

13
12
B

9.2
13.3
17.6
22.4
26.8

21.05
0.84
1.25

25.20
1.18
2.58
1.76

20.72
24.48

06/03/93
10.5

07/05/93
29

18.5
32

0.578

14
11
G

12.8
14.5
19.4
24.1
29

30.49
0.95
1.65

28.00
1.14
2.32
1.74

23.74
27.20

05/29/93
10

06/28/93
25.6
15.6 

30
0.520

15
10
B

12.4
17
21

25.6

24.00
0.80
1.54

24.40
1.20
1.78
1.52

19.90
22.88

06/02/93
10.8

06/28/93
29.8

19
26

0.731

16
9
G

13.4
18.3

23
29.8

21.67
0.83
1.14

28.30
1.50
2.48
1.92

22.46
26.44
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Pig no. 17 18 19
Diet 6 5 4
Sex G B G

Start date 06/02/93 06/07/93 06/05/93
Start weight 11.1 11.4 10

Finish date 06/28/93 06/28/93 07/05/93
Finish weight 27.2 25 28
Weight gain 16.1 13.6 18
Days on trial 26 21 30
DLWG 0.619 0.648 0.600

weights:
06/07/93 13.9 11.4 10.3
06/14/93 16 15.8 14
06/21/93 22 20.4 18.2
06/28/93 27.2 25 23
07/05/93 - - 28

Feed intake 23.46 19.94 27.09
Feed/day 0.90 0.95 0.90
FCE 1.46 1.47 1.51

Slaughter weight 26.00 23.80 26.00
Blood weight 1.16 1.32 1.44
Full gut weight 2.38 2.26 2.42
Empty gut 1.84 1.78 1.94
Carcase weight 21.50 19.40 20.90
Total carcase 25.04 22.98 24.76

20
3
B

05/31/93
10.2

07/05/93
29.6
19.4
35
0.554

9.6
13.2 
18
24.3
29.6

27.96
0.80
1.44

28.00
1.42
2.46
2.04

23.54
27.42

05/31/93
10

06/28/93
25
15
28
0.536

21
2
G

13.4
16.6
20
25

22.36
0.80
1.49

23.00
1.14
2.50
1.78

18.24
21.88

06/07/93
11

07/05/93
26.4
15.4 
28
0.550

22
1
B

11
14.4
17.8
22.6
26.4

23.05
0.82
1.50

25.40
1.32
2.62
1.78

20.40
24.34

06/02/93
11

06/28/93
26.4
15.4 
26
0.592

23
1
G

13.6
17.4 
21
26.4

22.85
0.88
1.48

24.50
1.18
2.10
1.78

20.52
23.80

06/03/93
10

07/05/93
29
19
32
0.594

24
17
B

11.9
16
20.2
24.6
29

28.55
0.89
1.50

28.00
1.44
2.46
1.94

23.54
27.44
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Pig no. 25 26 27 28
Diet 7 8 9 10
Sex B G B G

Start date 06/02/93 05/29/93 06/10/93 06/03/93
Start weight 11.4 10 10.1 10.8

Finish date 06/28/93 06/28/93 07/12/93 06/28/93
Finish weight 28.6 29.8 29.1 25.6
Weight gain 17.2 19.8 19 14.8
Days on trial 26 30 32 25
DLWG 0.662 0.660 0.594 0.592

weights:
06/07/93 14.5 14.4 8.8 13
06/14/93 18.4 18.8 11.8 16.9
06/21/93 23.1 24.2 15.4 21.1
06/28/93 28.6 29.8 20.8 25.6
07/05/93 - - 24.6 -

07/12/93 - - - 29.1

Feed intake 24.55 29.36 28.65 22.05
Feed/day 0.94 0.98 0.90 0.88
FCE 1.43 1.48 1.51 1.49

Slaughter weight 26.60 28.20 27.60 24.40
Blood weight 1.56 1.20 1.30 0.96
Full gut weight 2.86 2.66 2.88 2.68
Empty gut weight 2.04 2.00 1.98 1.80
Carcase weight 21.32 23.32 23.84 20.06
Total Carcase 25.74 27.18 28.02 23.70

05/31/93
10

06/28/93
25.4
15.4 

28
0.550

29
11
B

12.4
16.3
20.4
25.4

21.40
0.76
1.39

24.00
1.30
2.12
1.66

20.12
23.54

06/05/93
10.3

06/28/93
25.2
14.9

23
0.648

30
12
G

12.6
15.6
20.2
25.2

21.70
0.94
1.46

24.20
1.18
2.32
1.98

19.72
23.22

06/03/93
10.2

06/28/93
25.4
15.2

25
0.608

31
13
B

11.8
14.8

20
25.4

21.44
0.86
1.41

24.30
1.28
2.22
1.74

20.00
23.50

05/31/93
10

06/28/93
27.2
17.2 

28
0.614

32
14
G

13.9
18.2
22.5
27.2

24.94
0.89
1.45

26.00
1.16
2.28
1.76

21.40
24.84
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Pig no. 33 34 35
Diet 4 3 2
Sex G B G

Start date 06/12/93 06/03/93 06/10/93
Start weight 10 10.8 11

Finish date 07/12/93 07/05/93 07/05/93
Finish weight 29 29.7 28
Weight gain 19 18.9 17
Days on trial 30 32 25
DLWG 0.633 0.591 0.680

weights:
06/07/93 7.8 13 9.6
06/14/93 11 17 13.4
06/21/93 15 21 17.6
06/28/93 19.2 23.4 22.5
07/05/93 24.6 29.7 28
07/12/93 29 - -

Feed intake 29.40 30.64 24.90
Feed/day 0.98 0.96 1.00
FCE 1.55 1.62 1.46

Slaughter weight 28.10 28.80 26.50
Blood weight 1.24 1.64 1.40
Full gut 2.18 2.46 2.58
Empty gut 1.64 2.02 1.74
Carcase weight 24.42 23.54 23.38
Total carcase 27.84 27.64 27.36

36
1
B

06/03/93
10.8

07/05/93
26.2
15.4
32
0.481

12.6
15.2
18.9
22.8
26.2

24.10
0.75
1.56

25.50
1.14
2.18
1.58
21.92
25.24

06/03/93
10.2

07/05/93
28.5
18.3
32
0.572

37
18
G

12
15.3
19.2
24.4
28.5

28.59
0.89
1.56

27.00
1.16
2.00
1.60
21.64
24.80

06/03/93
11

06/28/93
28
17
25
0.680

38
17
B

13.2
18
22.5
28

22.85
0.91
1.34

26.40
1.32
2.20
1.68
22.64
26.16

06/03/93
10

07/05/93
28.3
18.3 
32
0.572

39
16
G

12.1
15.4
19.2
24.4
28.3

31.09
0.97
1.70

27.20
1.20
2.30 
1.84
23.18
26.68

06/03/93
12.8

06/28/93
27.8
15
25
0.600

40
15
B

14.5
19.6 
23 
27.8

24.17
0.97
1.61

27.20
1.36
2.32
1.82
22.70
26.38



Appendix III contd

Pig no. 
Diet

41 42 43

Sex B G B

Start date 05/31/93 06/10/93 06/03/93
Start weight 10.8 11 11.5

Finish date 06/28/93 07/05/93 06/28/93
Finish weight 27.8 28.2 26.2
Weight gain 17 17.2 -14.7
Days on trial 28 25 25
DLWG 0.607 0.688 0.588

weights:
06/07/93 15.2 9.8 13.5
06/14/93 18.2 13.8 17
06/21/93 23 18 21.8
06/28/93 27.8 23.2 26.2
07/05/93 - 28.2 -
07/12/93 - - -

Feed intake 23.74 25.36 22.77
Feed/day 0.85 1.01 0.91
FCE 1.40 1.41 1.55

Slaughter weight 25.80 26.20 25.40
Blood weight 1.50 1.28 1.10
Full gut 2.82 2.32 2.52
Empty gut 1.90 1.78 1.72
Carcase weight 21.74 22.24 20.72
Total carcase 26.06 25.84 24.34

44

G

06/14/93
11.2

07/12/93
28
16.8
28
0.600

8.2
11.2
14.8
19.4
24
28

26.60
0.95
1.58

27.00
1.42
2.30
1.80
22.96
26.68

45

B

06/03/93
10.9

06/28/93
25
14.1
25
0.564

13.8
17.2
20.8 
25

20.15
0.81
1.43

24.20
1.28
2.00
1.60
19.90
23.18

46

G

06/12/93
11.2

07/12/93
29.2
18
30
0.600

8.8
11.7
13.3 
19
23.7
29.2

28.16
0.94
1.56

28.40
1.36
2.30
1.76
23.96
27.62

47

B

06/03/93
11

06/28/93
28.4
17.4 
25
0.696

13.4
18.2
22.5
28.4

23.36
0.93
1.34

27.40
1.34
2.46
1.92
23.06
26.86

48

G

06/10/93
10.6

07/05/93
26.2
15.6
25
0.624

9.4
12.8
16.8
21.6
26.2

21.70
0.87
1.39

24.60
1.48
2.46
1.92
20.32
24.26
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Pig no. 49 50 51
Diet 13 14 15
Sex G B G

Start date 06/16/93 06/07/93 06/12/93
Start weight 10.8 11.1 10.8
Finish date 07/12/93 07/05/93 07/05/93
Finish weight 25.8 28.2 26
Weight gain 15 17.1 15.2
Days on trial 26 28 23
DLWG 0.577 0.611 0.661

weights:
06/07/93 1.1 8.3 11.4
06/14/93 9.4 14.6 11.6
06/21/93 12.2 19 16
06/28/93 16.4 24 21
07/05/93 21 28.2 26
07/12/93 25.8 - 24.7
07/19/93 - - 27.8

Feed intake 23.10 27.00 21.85
Feed/day 0.89 0.96 0.95
FCE 1.54 1.58 1.44

Slaughter weight 24.60 27.20 24.00
Blood weight 1.92 1.54 1.22
Full gut weight 2.16 2.56 2.20
Empty gut weight 1.58 1.88 1.72
Carcase weight 21.12 22.84 20.28
Total carcase 25.20 26.94 23.70

06/07/93
11.4
07/19/93
27.8
16.4 
43
0.390

52
16
B

11.1
13.7
16
19
23

28.93
0.69
1.76

27.20
1.24
2.60
1.80
22.50
26.34

06/07/93
11.1
07/05/93
26.8
15.7
42
0.561

53
17
G

14
13.3
17.5
22.6
26.8 
25

23.20
0.83
1.48

25.30
1.26
2.40
1.78
21.16
24.82

06/03/93
11.8
06/28/93
27.8
16
28
0.640

54
18
B

8.2
18.4
22.8
27.8

22.12
0.88
1.38

26.60
1.14
2.16
1.70
22.80
26.10

06/14/93
10.8
07/12/93
25
14.2
25
0.507

55
1
G

15
10.8
13.6
17
20.9

21.45
0.77
1.51

23.60
1.22
2.18
1.60
20.22
23.62

56
2
B

05/29/93
10.6
06/21/93
25
14.4
23
0.626

20.1
25

18.63
0.81
1.29

24.00
1.20
2.08
1.64
19.92
23.20
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Pig no. 57 58 59
Diet 18 17 15
Sex B G B

Start date 06/03/93 06/21/93 06/03/93
Start weight 10.2 10 11.2
Finish date 06/28/93 07/19/93 07/05/93
Finish weight 26.6 28.6 26.8
Weight gain 16.4 18.6 15.6
Days on trial 25 28 32
DLWG 0.656 0.664 0.488

weights:
06/07/93 13.4 - 13.9
06/14/93 17.6 7.4 16.7
06/21/93 22 10 20.6
06/28/93 26.6 14.6 24.6
07/05/93 - 18.8 26.8
07/12/93 - 23.6 -

07/19/93 28.6

Feed intake 25.18 27.35 26.20
Feed/day 1.01 0.98 0.82
FCE 1.54 1.47 1.68

Slaughter weight 26.20 27.60 26.00
Blood weight 1.16 1.38 1.36
Full gut 2.28 2.62 2.02
Empty gut 1.58 1.88 1.64
Carcase weight 21.58 22.92 21.94
Total carcase 25.02 26.92 25.32

60
16
G

06/21/93
10.6
07/19/93
28.2
17.6
28
0.629

8.1
10.6
15.2 
19
23.6
28.2

29.00
1.04
1.65

26.90
1.26
2.48
2.02
22.70
26.44

06/03/93
11.1
06/28/93
27.4
16.3
25
0.652

61
13
B

14.2
17.3 
22
27.4

21.98
0.88
1.35

26.00
1.30
2.54
1.70
21.80
25.64

06/21/93
11.8
07/12/93
27.2
15.4
21
0.733

62
14
G

9
11.8
16.5
21.4
27.2

24.29
1.16
1.58

26.30
1.20
2.58
1.98
22.38
26.16

06/03/93
10.110
06/28/93
26.2
16.1
25
0.644

63
12
B

13.2
17

21.2
26.2

21.83
0.87
1.36

26.20
1.28
2.28
1.68
21.58
25.14

06/14/93

07/12/93
28.8
18.8
28
0.671

64
11
G

10
12.6
17.5
22.8
28.8

27.52
0.98
1.46

26.70
1.40
2.58
2.02
22.20
26.18
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Pig no. 65 66 67
diet 3 4 5
Sex G B G

Start date 06/16/93 05/29/93 06/25/93
Startweight 10 10.8 10.8
FinishDate 07/12/93 06/21/93 07/26/93
Finish weight 26.5 25 28.4
Weight gain 16.5 14.2 17.6
Daysontrial 26 23 31
DLWG 0.635 0.617 0.568

weights:
06/07/93 - 15.5 -
06/14/93 9.5 19.6 8
06/21/93 11.8 25 9.4
06/28/93 16 - 11.8
07/05/93 20.4 - 15.2
07/12/93
07/19/93

26.5 18.6
23.2

Feed intake 19.72 18.15 31.04
Feed/day 0.76 0.79 1.00
FCE 1.20 1.28 1.76

Slaughter weight 25.40 24.20 27.20
Blood weight 1.42 0.94 1.20
Full gut weight 2.36 2.28 2.20
Empty gut weight 1.90 1.64 1.62
Carcase weight 20.66 19.82 23.60
Total carcase 24.44 23.04 27.00

05/31/93
10.6
06/28/93
26.4
15.8
28
0.564

68
6
B

13.6
16.8
21.1
26.4

21.50
0.77
1.36

25.20
1.34
2.38
1.98
20.46
24.18

06/21/93
10.8
07/19/93
28
17.2
28
0.614

69
7
G

8
10.8
14.4
19.2
23.2 
28

26.83
0.96
1.56

26.40
1.08
2.28
1.86
22.32
25.68

70
8
B

05/31/93
10.8
06/28/93
26.4
15.6
28
0.557

14.4
17.7 
22
26.4

19.81
0.71
1.27

25.60
1.08
2.46
1.88
21.12
24.66

06/16/93
10.9
07/12/93
25.4
14.5 
26
0.558

71
9
G

9.4
13.2
15.8
20.2
25.4

23.10
0.89
1.59

25.40
1.26
2.64
2.12
19.24
23.14

06/03/93
11.4
06/28/93
29
17.6
25
0.704

72
10
B

13.7
18.2
23.6
29

24.87
0.99
1.41

27.50
1.64
2.62
1.96
22.72
26.98



Appendix IV Trial 4 Veterinary Records

Scouring problems: the following were treated with 5ml Depocillin for up to 5 day

or until scouring ceased

date Pig
29/2/94 45 58 60

30/2/94 45 58 60 65

31/2/94 45 58 60 65

01/3/94 47 52 65

02/3/94 47 52 65

03/3/94 47 52 65

04/3/94 47

Pigs removed from trial:

Pig no. Date removed Reason for removal

29 24/3/94 Developed severe lameness with additional scouring problems.

Treated for five days (20/3/94-24/3/94) with 5ml Lincocin; 

no improvement.

45 31/3/94 Scouring; lost condition at a rapid rate and was therefore removed

from the trial.

48 19/3/94 Refused feed consistently although no signs of infection were

evident. Showed aversion to diet.

57 27/4/94 Began to scour and refuse feed towards the end of the experiment.



Appendix V Growth data of animals in experiment 4

Pig no. 1 2 3 4 5 6 7 8

Diet 1 2 3 4 5 6 7 8

start weight 26 25 25.5 25 26.5 27 25 27.5
Start date 02/15/94 02/15/94 02/13/94 02/11/94 02/11/94 02/13/94 02/11/94 02/11/94
Finish weight 61.5 60 67.5 62.5 60 63 60 60
Finish date 04/19/94 04/05/94 04/05/94 04/05/94 03/29/94 03/29/94 03/22/94 03/15/94
Days 63 49 51 53 46 44 39 32
Feed intake 103.122 90.008 96.566 90.005 91.469 89.394 87.128 75.528
Daily FI 1.637 1.837 1.893 1.698 1.988 2.032 2.234 2.360
Gain 35.5 35 42 37.5 33.5 36 35 32.5
FCE 2.90 2.57 2.30 2.40 2.73 2.48 2.49 2.32
DLWG 0.559 0.730 0.793 0.732 0.688 0.812 0.877 1.012
Starved wt 59 58.5 66 61 59 62.5 58.5 58.5
Carcase wt 43.5 41.5 47.5 43.75 41.5 45.5 41.8 40.5
Carcase length 689 663 711 749 707 686 671 679
Max. shoulder 24.7 30.6 30 24.4 22.3 22.6 21 25.4
Min. midback 11.3 11 10.8 7.3 7 7.7 7.3 8.5
Ant. glut. med. 12.7 13 13.6 8.6 11.6 12.5 9 8.7

Min. glut. med. 3.7 9.1 7.1 6.1 6.1 4.8 3.1 7.1

Post. glut, med 7.9 14 12.4 8.4 7.8 10.1 9.2 12.7

PI 5.5 8 8.8 5.8 8.1 6.4 5 6.8

P2 5.5 7.3 8.3 6.5 7.1 6.5 4.8 5.6

P3 5.2 8.1 8.3 8 7.7 6.8 5 6.2

A 86.7 79 87.7 80.2 81 82.7 82.2 73.6

B 54.1 46.2 45.9 48.1 42.6 48.6 45.1 39.1

C 5.5 7.5 8.2 6.5 6.3 6.3 5 5.6



Appendix V contd

Pig no. 9 10 11

Diet 9 10 11

Start weight 25.5 25 26.5
Start date 02/15/94 02/11/94 02/15/94

Finish wt 65 64.5 61

Finish date 04/05/94 04/05/94 03/29/94

Days 49 53 42

Feed intake 110.742 115.311 83.747

Daily FI 2.260 2.176 1.994

Gain 39.5 39.5 34.5

Fee 2.80 2.92 2.43

DLWG 0.814 0.728 0.811

Starved wt 62.5 63 58

Carcase wt 41.75 44.6 41

Carcase length 696 700 697

Max. shoulder 23.2 28 24.8

Min. midback 7.2 9.1 6.4

Ant. glut. med. 11 8.9 7.3

Min. glut. med. 5.7 3.9 4.7

Post. glut, med 7.7 10.6 9.8

PI 9.9 6.1 7.2

P2 8.5 5.6 6.3

P3 8.5 5.6 5.3

A 79.1 86.1 81.6

B 46.4 47 39.8

C 8.5 5.7 5.1

12

12

25
02/13/94

62.5
03/29/94

44
83.6 
1.900
37.5 
2.23 

0.821
59.5 
43 
683
26.2

9
12.6
9.1
11.1
6.2
6.7
8.6

80.6
45.4
6.7

13

13

27
02/15/94

64.5
04/05/94

49
103.618
2.115
37.5 
2.76 

0.796
63.5

46.25
699
26.6 
12

12.3
6.7
14.8
6.5
6.5
9.4

80.7
46.6
6.1

14

14

27
03/01/94

63.5
04/12/94

42
96.202
2.291
36.5
2.64 

0.709
60.5 
44 
681 
23 
8

8.4
4.6 
9

6.3
5.8
6.6

80.8
46.8
5.8

15

15

31
03/08/94

64
04/26/94

49
106.048
2.164

33
3.21
0.675

61
45.5 
688
20.5 

7
10.9
6

11.8
4.6
4.1
4.1 
89

53.1
5.2

16

16

26
02/15/94

71.5
04/05/94

49
121.041
2.470
45.5 
2.66 

0.971
70.5 

51.35
725
25.3
10.6
9.1 
5

11.2
7

6.2
6.6

83.6
51.6
6.4



Appendix V contd

Pig no. 17 18 19

Diet 17 18 10

Start weight 25 26 25

Start date 02/11/94 02/11/94 02/15/94
Finish weight 64.5 63.5 65.5
Finish date 03/29/94 03/29/94 04/19/94

Days 46 46 63
Feed intake 103.893 104.949 127.243

Daily FI 2.259 2.282 2.020

Gain 39.5 37.5 40.5

FCE 2.63 2.80 3.14

DLWG 0.877 0.831 0.631
Starved weight 62 61 63.5

Carcase weight 45.6 44.5 47

Carcase length 688 702 699

Max. shoulder 32.5 29.4 29.5

Min. midback 12.3 9.8 11

Ant. glut. med. 15.9 13 14.6

Min. glut. med. 13.4 8.7 2.4

Post. glut, med 17.9 16 9.7

PI 11.1 10.4 4.2

P2 10.8 9.3 4.2

P3 9.4 10.3 4.3

A 75.4 82.7 90.9

B 47 45 49.1

C 9.4 9.5 4.2

20
9

25
02/21/94

63.5
05/18/94

86
131.945

1.534
38.5 
3.43 

0.476

48
683
23.8
7.3 
9 
3 
8

4.4
3.6
4.3 
91

50.5
3.5

21
8
26

02/15/94
63

04/12/94
56

106.079
I . 894 

37
2.87

0.708
61
45
665
25

12.7
18.7
I I .  4 
14
8.2
6.9
8

82.1
52
7.3

22
7

26.5
02/11/94

63.5
03/29/94

46
88.308
1.920

37
2.39

0.805
61.5
45.75
694
22.2
3.5
3.5
2.3
7.8
2.4

3.1
3.8

85.5
48.5
3.4

23

6
25

02/11/94
60

03/29/94
46

83.594
1.817

35
2.39

0.761
58
43
680
20.2
17.6 
13

5.2
6.8
4.1

3.9
3.9

84.2

48.6
3.9

24 

5

25
02/25/94

63.5
04/12/94

46
115.273
2.506
38.5 
2.99 

0.848
62

45.75
676
26.7
9.3
15.1 
10

16.7 

8 
8

10.4

82.3
47 
8



Appendix V contd

Pig no. 25 26 27

Diet 4 3 2

Start weight 26 26.5 26

Start date 02/15/94 02/15/94 02/13/94

Finish weight 60.5 62 61
Finish date 04/05/94 04/12/94 04/05/94

Days 49 56 51
Feed intake 95.27 104.277 104.306

Daily FI 1.944 1.862 2.045

Gain 34.5 35.5 35

FCE 2.76 2.94 2.98

DLWG 0.730 0.638 0.716

Starved weight 59.5 60 59.5

Carcase weight 42.85 46 41.75

Carcase length 682 690 701

Max. shoulder 29.4 23.2 24.6

Min. midback 9 7.4 5.6

Ant. glut. med. 13 6.7 6.4

Min. glut. med. 5.9 5.5 4

Post. glut, med 11.5 5.6 7.7

PI 7.9 6.5 6

P2 8.2 5.2 6

P3 8.2 5.3 6.4

A 86.7 86.3 79.5

B 51.2 50.7 45.3

C 7.2 5.3 6

28 29 30 31 32

1 11 12 13 14

26 - 25 27.5 25.5
02/15/94 - 02/15/94 03/01/94 02/15/94

61.5 - 66 61.5 61.5
04/19/94 - 04/12/94 04/19/94 04/05/94

63 - 56 49 49
115.685 - 122.278 101.68 101.77

1.836 - 2.184 2.075 2.077
35.5 - 41 34 36
3.26 - 2.98 2.99 2.83

0.555 0.526 0.734 0.693 0.799

59 . 62.5 59.5 61.5
43.5 - 46 45 44.6
682 - 689 678 702
25.1 - 28.6 26.1 29.9
7.6 - 10.6 13.3 9.7
13.7 - 12.8 11.3 12.3
6.1 - 8.5 6.2 5.8
12.5 - 13.4 9.4 12.3
6.8 - 8 5.4 8
6.4 - 8 5.9 7.6
6.8 - 7.8 8.2 8

82.2 - 78.8 87.2 80.2
52.8 - 48.4 50.5 43.2
6.4 _ 8 5.9 7.6



Appendix V contd

Pig no. 33 34 35

Diet 15 16 17

Start weight 26 25 27.5
Start date 02/11/94 02/15/94 02/11/94
Finish weight 61.5 66.5 61.5
Finish date 03/29/94 04/12/94 03/29/94
Days 46 56 46
Feed intake 89.763 100.869 91.75
Daily FI 1.951 1.801 1.995
Gain 35.5 41.5 34
FCE 2.53 2.43 2.70
DLWG 0.764 0.759 0.783

Starved wt 59.5 63.5 58.5
Carcase wt 44 47 42.8
Carcase length 690 699 696
Max. shoulder 25.4 26.1 20.7

Min. midback 9.1 8 6.9
Ant. glut. med. 11.2 11.5 6

Min. glut. med. 5.7 4.8 3.5

Post. glut, med 9.4 10.6 7.7

PI 6 7.2 5 '

P2 6 6.4 5

P3 6.2 6.4 5.3

A 84.2 88.7 78.8

B 50.4 53 43.3

C 5.9 6.4 5.2

36 37 38 39 40

18 11 12 13 14

26 25 25.5 25 26.5
02/11/94 02/11/94 02/15/94 02/15/94 02/15/94

60.5 66 64.5 62.5 60.5
03/29/94 04/12/94 04/12/94 04/26/94 04/05/94

46 60 56 70 49
99.28 106.466 114.34 123.674 99.248
2.158 1.774 2.042 1.767 2.025
34.5 41 39 37.5 34
2.88 2.60 2.93 3.30 2.92

0.814 0.628 0.737 0.556 0.739

58 61 63 61 59
43 42.5 46 45.5 42.75

703 756 688 677 723
26 28.3 28.2 24.8 25.7
9.4 4.8 4.4 5.5 8
8.8 13.6 10.3 10.8 10
5.7 6.4 6.4 6.5 3.7
9 14.3 11.3 11.9 6.7

8.7 7.1 5.5 5.2 6.7
7.5 7.1 5.7 4.2 6.7
8.7 8.5 6.4 3.9 6.7

82.4 84.8 84.1 90.2 79.4
47 39.2 49 48.4 47
8.7 7.4 5.8 4.2 6.7



Appendix V contd

Pig no. 41 42 43

Diet 15 16 7

Start weight 25 27.5 28
Start date 02/13/94 02/15/94 02/11/94
Finish weight 61 60 63
Finish date 03/29/94 03/29/94 03/22/94

Days 44 42 39
Feed intake 90.155 78.63 91.411

Daily FI 2.049 1.872 2.344

Gain 36 32.5 35
FCE 2.50 2.42 2.61
DLWG 0.854 0.788 0.882

Starved weight 60.5 57 62

Carcase weight 44.5 42.8 43

Carcase length 688 669 694

Max. shoulder 28.4 23.4 27

Min. midback 10.6 6.6 9.9

Ant. glut. med. 15.3 6.5 11.3

Min. glut. med. 10.1 3.4 7.2

Post. glut, med 13.4 10.1 10.1

PI 8.6 5.3 5.8

P2 7 4.6 5.8

P3 9.3 4.6 5.8

A 72.5 82.1 76.8

B 50 55.4 50.2

C 6.4 4.6 5.8

44 45 46 47 48

8 9 10 1 2

25 - 25 27 -
02/11/94 - 02/15/94 02/25/94 -

67 - 60.5 60 -
04/05/94 - 04/05/94 05/18/94 -

53 - 49 82 -
103.109 - 93.778 131.135 -

1.945 0.000 1.914 1.599 0.000
42 - 35.5 33 -

2.45 - 2.64 3.97 -
0.789 0.194 0.724 0.400 0.266

66 _ 58.5 60 -

47.5 42.5 45
696 700 690
26.5 28.3 22
8.4 7.6 6.5
7.5 8.9 7.1
5.6 3.5 2.5
10.5 7.8 9.7
7.2 5.5 4.2
6.3 4.3 4.4

5.8 5 4.4
92.1 82.3 88.1
50 45.8 45.3

6.3 4.3 4.4



Appendix V contd

Pig no. 49 50 51

Diet 3 4 5

Start weight 25 26 25.5

Start date 02/15/94 02/11/94 02/11/94

Finish weight 60 63 61

Finish date 04/05/94 03/22/94 04/05/94

Days 49 39 53
Feed intake 87.263 95.692 90.727

Daily FI 1.781 2.454 1.712

Gain 35 37 35.5

FCE 2.49 2.59 2.56

DLWG 0.732 0.972 0.695

Starved weight 56.5 61.5 60.5

Carcase weight 40.2 44.75 44.7

Carcase length 688 681 663

Max. shoulder 25.5 29.3 23.9

Min. midback 8.7 11.3 8.2

Ant. glut. med. 13.3 18.1 9.1

Min. glut. med. 8.5 14.2 5

Post. glut. med. 11.6 16.6 10.9

PI 8.4 9.8 5.1

P2 7.1 8.5 3.8

P3 7.1 8.4 3.8

A 77.5 83.3 87.9

B 39.1 45.6 51.7

C 7.1 8.4 3.8

52

6

25.5
02/13/94

63
04/12/94

58
105.509

1.819
37.5 
2.81 

0.649

60.5
43.75
721
27.1
8.9
10.9
5.9
9.2
5.9 
7

7.1
80.3
43.7

6.3

53

7

27
02/11/94

62
03/29/94

46
100

2.174
35

2.86
0.786

59.5
44.5 
686
27.3
10.2
13.4
7.2
18.9
7.5
7.3
5.6
81.6
44.6

7

54

8

25
02/15/94

60
04/05/94

49
77.427
1.580

35
2.21

0.733

57.5
38.8 
693
23.8 

7
4.2
3.3
5.1
4.7
3.9
4.7

75.5
41.9
3.9

55

9

26
02/11/94

63.5
04/05/94

53
103.9
1.960
37.5 
2.77 

0.756

61
44.35
706
27.6
10.8

10.8

5.6 
9

7.6 
7 
7

82.5
47.6

6.7

56

10

27
02/25/94

62.5
04/26/94

60
116.354

1.939
35.5 
3.28 

0.594

60.5 
44 
686
22.8
5.8 
12

5.5 
11
6.1

6.5
6.5 
84

51.2

6.5



Appendix V contd

Pig no. 57 58 59

Diet 17 18 1

Start weight - 26 26
Start date - 03/01/94 02/19/94
Finish weight - 60.5 60
Finish date - 05/18/94 04/26/94
Days - 78 66
Feed intake - 129.497 110.927
Daily FI - 1.660 1.681
Gain - 34.5 34
FCE - 3.75 3.26

DLWG 0.587 0.477 0.491

Starved weight - 58

Carcase weight 44.75 41.5

Carcase length 708 715

Max. shoulder 21.2 32.6

Min. midback 7.6 7

Ant. glut. med. 4 15.3

Min. glut. med. 2 8.1

Post. glut, med 3.3 11.6

PI 4.2 6.5

P2 3.9 7

P3 4.2 6.4

A 82.2 89.9

B 49.9 40.5

C 3.9 7

60

2

27
02/19/94

62.5
04/26/94

66
104.269

I .  580
35.5 
2.94 

0.499

61
44.25
692
25.9
13.2
13.7
15.5 

*

7.3
8.4
I I . 2

83.6
49.4
8.7

61

3

27
02/25/94

63
04/19/94

53
99.127
1.870

36
2.75 

0.651

62
45.75 
687
24.1 

8

12.9
6.4
8.4 
6

5.4 
5

89.1
50.4
5.4

62

4

27.5
03/01/94

62
04/26/94

56
88.887
1.587
34.5 
2.58 
0.647

60.5
43.75
750
26
8.6

10.3
3.8
7.4

3.8
3.7
3.3

85.3
47.6
3.7

63

5

27
03/01/94

61
04/26/94

56
101.485

1.812
34

2.98
0.586

58.5
43.5 
694
28.3
8.3
14.9
5.7
7.2
5.4
5.6
5.9

85.9
44.9
5.6

64

6

27
02/19/94

65.5
04/12/94

52
99.887
I . 921
38.5 
2.59 

0.717

61.5
45.75
700
24.7
8.1
I I .  7
8.3
12.5
7.2
6.4
7.8

83.8
45.8
6.4



Appendix V contd

Pig no. 65 66 67

Diet 15 16 17

Start weight 25.5 25.5 25

Start date 02/25/94 02/19/94 02/25/94

Finish weight 62 62.5 60

Finish date 04/26/94 04/12/94 04/19/94

Days 60 52 53

Feed intake 91.936 81.689 99.127

Daily FI 1.532 1.571 1.870

Gain 36.5 37 35

FCE 2.52 2.21 2.83

DLWG 0.534 0.740 0.632

Starved weight 59 59 57.5

Carcase weight 42.5 43 40.25

Carcase length 690 696 706

Max. shoulder 23.4 24.7 23.8

Min. midback 5.4 8.6 5.7

Ant. glut. med. 10.6 8.1 12.6

Min. glut. med. 5.2 4.5 8.9

Post. glut, med 12.1 10.2 13.9

PI 3.7 5.9 6.3

P2 3.2 6.1 5.7

P3 3.4 6.5 8.4

A 87.6 81.9 80.5

B 52.8 52.4 42

C 3.5 6.1 6.3

68
18

26
02/15/94

63.5
04/19/94

63
99.22
1.575
37.5 
2.65 
0.610

60.5
43.25
674
27.1

8.8
11.3 

9
13.4
4.5
3.8 

5
90.6
42.6

3.8

69

11

25.5
02/25/94

66.5
04/26/94

60
132.496
2.208
.41
3.23

0.623

64.5
47.75

696
29.5
5.3
11.2
6.6
14.6
6.3
5

5.9
67.4
48.4

6

70

12

27

02/19/94
62

04/12/94
52

78.65
1.513

35
2.25
0.682

57.5
42.5 
686
24.9
4.3
13.9
6.5
10.4
7.3
5.5
6.4 
79

40.7
5.3

71

13

28
02/25/94

65
04/12/94

46
77.928
1.694

37
2.11

0.823

61
45
696
24.7

9.8
9.8
5.6
11.1
7.1
6.1
6.1
86

49.2

5.8

72

14

26.5
02/19/94

65.5
04/12/94

52
82.011
I . 577 

39
2.10
0.785

61.5
43.75
703
30.7
9.3
I I . 4
5.4
13.7
8.1
8

8.6
85.9
47.6 

8


