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ABSTRACT i

Abstract

Air pollution is currently one of the leading causes of mortality and morbidity world-

wide and forecasts predict that it will remain so until 2040. Exposures to ambient

fine particles (PM2.5) were responsible for 103.1 million disability–adjusted life–years

(DALYs) in 2015. However, indoor concentrations of pollutants, including PM2.5, can

be higher than those found outside, and so the indoor environment may have a sig-

nificant effect on personal exposures. Dwellings are particularly important because

people spend over 70% of their time in them.

The Chilean housing stock comprises 6.4 million dwellings of great diversity, be-

cause of the country’s variable geography. Dwellings change with the local climate,

occupants’ lifestyles and behaviours, and with the different materials they are con-

structed from. They evolve as technologies are used to save energy and improve oc-

cupants’ quality of life, and improve their performance in response to new policies

and standards.

This thesis explores the indoor air quality (IAQ) across the Chilean housing stock,

by developing a set of statistically representative archetypal dwellings and quantifying

uncertainty in their characteristics using available data sources, such as national cen-

suses. Eight archetypes, representing 35% of the stock, are modelled using CONTAM

and simulated using a probabilistic sampling approach to generate distributions of in-

door PM2.5 concentrations, ventilation rates, and associated heat losses. A sensitivity

analysis is used to identify the most influential inputs.

The results show that the variability in the physical and environmental parame-

ters and windows use influence PM2.5 exposures, ventilation rates, and energy losses.

Therefore, it is important to understand how much these results vary depending on

these parameters. This will help to establish effective national standards and guide-

lines for IAQ and energy demand reduction in order to avoid negative health impacts

at a population scale.

This work contributes to knowledge by (i) characterising the Chilean housing stock

and presenting a set of archetypal buildings to represent it; (ii) presenting a model

and modelling framework for evaluating the Chilean housing stock probabilistically;

(iii) predicting uncertainties in occupant exposures to PM2.5, and dwelling ventilation

rates and energy losses across the Chilean housing stock; (iv) identifying the most

important parameters that affect the predictions; (v) contextualizing and interpreting

the results; (vi) showing how the model and its predictions can be used to inform

and evaluate the impacts of policies, and improve the IAQ and environmental perfor-

mance of dwellings; and by (vii) identifying the need for future measuring, surveying,

and data gathering exercises.
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CHAPTER 1

Introduction

1.1 Energy and Green House Gas emissions in Chile

As countries try to reduce their Green House Gas (GHG) emissions to meet climate

change targets, governments tend to seek different ways to optimise efforts through

coordinate actions and resources required by every end–use sector. Chile, a South

American country with a population of 17.6 million people (INE, 2018a) and a popu-

lation growth rate of <1% (The World Bank, 2018), is reaching that state of develop-

ment. In January 2017, Chilean authorities ratified the Paris Agreement and set two

energy–related targets as part of its Nationally Determined Contribution: these are

(i) to reduce the carbon intensity of its economy to 30% below its 2007 level by 2030;

and (ii) to reduce all GHG emissions by 35–45%.

Between 2003 and 2013, the carbon intensity of its economy (tonnes of CO2 equiva-

lent per million US dollars of GDP) decreased from 198 tCO2e/mUSD to 81 tCO2e/mUSD

(Center), 2018), although latterly the decline has ceased in contrast to the decreas-

ing trends of many International Energy Agency (IEA) member countries (IEA, 2018).

This is attributed to the increasing carbon intensity of electricity generation, which

surpassed the IEA average in 2011. The largest consumer of electricity is the Industry

sector (62.6% of total consumption), followed by the Transport (17.6%), and Residen-

tial (17.4%) sectors. The same three sectors are responsible for the majority of the

nation’s Total Final Consumption (the aggregate of all of the energy used to provide

energy services): Industry (43.0%); Transport (33.6%); and Residential (15.4%). These

values are consistent with the world average. In IEA member countries, in contrast,

the residential sector contributes up to 28% of their total energy use and GHG emis-

sions, attributed to an increasing and more demanding population and an increase in

the time people spend indoors (Pérez-Lombard et al. , 2008). These tendencies have

also been seen in Chile and so the energy use in the residential sector is expected to

rise in the future, intensified by the economic growth.
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Whilst pragmatic policies designed to reduce national energy demand and GHG

emissions –and so to de–couple the energy demand from economic growth– might

first be directed at the Industry and Transport sectors, the IEA (2018) believes that

building energy codes and standards are ”essential for improving their energy perfor-

mance and comfort”, and for providing long term energy savings and health benefits

for householders.

1.2 The ambient air

The composition and concentration of contaminants in the ambient air vary tempo-

rally and spatially according to several factors, such as: topography, wind condition,

sources of emission in the area or nearby, time of day, season, among others. The air

can be considered contaminated ”when a substance is present where it should not be

or at concentrations above background” (Chapman, 2007). And pollution is ”contam-

ination that results in or can result in adverse biological effects to resident commu-

nities” (Chapman, 2007). Many countries have their own air quality standards and

indices. In Chile, five criteria pollutants are monitored in different cities: Particle Mat-

ter below 10 micrometers in diameter (PM10), Sulfur Dioxide (SO2), Nitrogen Oxides

(NOX, NO, NO2), Ozone (O3) and Carbon Monoxide (CO). These contaminants are

used for declaring states of ambient emergency when limits are exceeded. In those

cases, some actions take place for reducing their concentration, such as restricting ve-

hicle use and industry activities, or banning the use of household wood–stoves.

The effect of ambient air pollution in population health is well documented, and

is now considered one of the major causes of mortality and morbidity globally. One

example is the association of lung cancer, respiratory and cardiovascular diseases with

exposures to fine particles (particles below 2.5 microns in diameter, PM2.5). The health

effects of this exposure on the global population has been estimated at 103.1 million

disability–adjusted life–years DALYs in 2015 (Cohen et al. , 2017). PM2.5 is generally

emitted by the combustion of solid and liquid fuels. The main sources of PM2.5 in ur-

ban areas are industry, vehicles and buildings. When higher comfort requirements due

to higher household incomes are not accompanied by a more energy efficient building

stock or a shift to cleaner energy, there will inevitably be an increase in the energy

demand, which impacts on both air pollution and population’s health (Schueftan &

González, 2015).

Although much has been improved in Chile regarding the outdoor air quality dur-

ing the last decade, some dense cities in the centre and south still show high, and

for some of them increasing, levels of air pollution (Molina et al. , 2017). PM2.5 con-

centrations are especially high in winter and autumn where combustion of wood in
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household stoves for cooking and heating are still highly prevalent, whereas Ozone,

which is produced by chemical and photochemical reactions is higher in spring and

summer due to higher temperatures.

1.3 Housing policy in Chile

Chile is one of the most seismically active countries in the world. During the last

century, building codes have evolved in order to give new building structures greater

resistance to earthquakes and to reduce failures. The Chilean construction sector has

learned from experience, starting with the Chillán earthquake of 1928, since when,

new structural typologies and stricter structural calculations have been required by

law in order to reduce the earthquake vulnerability of structures.

The continental territory has a length of 4,300 km (from north to south) and an aver-

age width of 177 km. It is bounded on the West by the Pacific Ocean and on the East by

the Andes mountain range. All of which results in 15 different climates, ranging from

warm dessert in the north to Tundra in the south. Because of the different latitudes and

topographies, the main temperature gradients towards the four cardinal points can

range from 6◦C(E–W) up to more than 15◦C (N–S). The same applies to the relative

humidity, and so different design strategies are necessary to provide hygrothermal

comfort and to promote energy savings, and strategies that could affect the indoor air

quality. The country is geographically and administratively divided into 15 regions,

within which the Metropolitan region is the main and most populated one.

Figure 1.1 shows some important events in history of the Chilean housing stock.

Historically, Chilean housing policy has focused its efforts and public resources on

eradicating the quantitative deficit of low–income households (particularly on fami-

lies living in a house with irreparable damage and houses with more than one house-

hold). More recently, it has moved to eradicate the qualitative deficit, by providing

basic services, decreasing overcrowding, and improving the quality of building struc-

tures and elements. Included in the latter is the improvement of the energy perfor-

mance of the new stock. To tackle it, a national code governing thermal regulation

was implemented in 2000, which includes a minimum requirement for the thermal in-

sulation for the envelope of new dwellings, and a maximum of glazing area percent-

age (MINVU, 2007). Dwellings built before 2000 had no thermal requirements and are

generally considered to be as uninsulated, although some may have been insulated.

This requirement varies along the length and width of the country depending on lo-

cal climatic factors. And for houses built before the thermal regulation was issued,

a subsidised weatherisation program has been carried out since 2009 by the Chilean

government to insulate low–income residential buildings and to improve their air-
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Figure 1.1: Timeline of the Chilean housing development. Source: Image by Author,

GDP data from The World Bank (2018).
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tightness. These regulations solely concern the housing stock, and energy efficiency

standards now exist for social and private dwellings, applying to around 80% and 20%

of all newly constructed dwellings respectively (IEA, 2018).

Although those improvements might be beneficial to their occupants and the en-

vironment, a greater proportion of houses were built before these regulations were

adopted or are not eligible for the subsidised weatherisation program and so they

need to be part of any study that aims to predict or improve the air quality of the

Chilean housing stock.

1.4 Energy demand and heat loss in buildings

The main energy demand in buildings as end–use form is during their operational

phase, which accounts for 90–95% of the total energy used (Sartori & Hestnes, 2007)

and 70–90% of the total environmental impact during their life cycle.

In dwellings, the primary energy demand is for heating. A low–energy building

can be considered to have an operational energy demand below 70 kWh/m2 year for

heating and an overall demand of around 200 kWh/m2 year (Sartori & Hestnes, 2007).

The energy demand in Chilean houses is mainly for hot water (33%), heating (19%)

and cooking (15%) (CDT, 2010). The estimation for heating is at 37 kWh/m2/year,

which is approximately half of the heating demand in a low–energy building, and

197 kWh/m2 year for the overall energy demand. Moreover, this low energy demand

can be associated to low comfort levels. Recent data from 293 houses across the coun-

try (RENAM, 2018) shows that indoor air temperature in the heating season is com-

monly lower than the WHO (World Health Organization) recommendation of 18◦C. A

strong relationship of the indoor temperatures with the household income may sug-

gest that these houses suffer from fuel poverty. Income inequality is high in Chile

compared to other countries. Although it has decreased during the past three decades,

from a 56.2 Gini index in 1987 to a 47.7 in 2015, Chile is still ranked 23rd in inequality

of 158 measured countries (The World Bank, 2018).

Common interventions in the Chilean housing stock for reducing energy demand

are by limiting the heat loss through the envelope and increasing the efficiency of their

services. The heat lost through an element of the envelope due to conduction depends

on the conductivity of the material, its surface area and the temperature difference

between the indoor and outdoor. The Chilean building code, as presented above,

regulates this heat loss by limiting the thermal transmittance of the buildings elements

(MINVU, 2007).

Apart from losing heat through the building materials, buildings also suffer loses
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through ventilation and infiltration, defined as the controlled and uncontrolled ex-

change of air, respectively, between a building and its local environment. Ventilation

is required to maintain acceptable levels of indoor air quality by diluting air contami-

nants to improve occupant thermal comfort and satisfaction with respect to the indoor

air, and to provide oxygen for combustion. In Chile, ventilation is only included in the

design of rooms with gas appliances, by the regulation for the installation of gas ser-

vices and gas meters, DS N◦ 66 (SEC, 2007).

Preventing infiltration and reducing ventilation rates in buildings are also common

strategies to reduce energy demand and to reduce pollutants from outdoor sources

coming into a house, but it is also subject to high levels of uncertainty and unclear

effect on other parameters, such as on health (Hamilton et al. , 2015) and on air quality

(Derbez et al. , 2018; Milner et al. , 2014). Under–ventilated rooms may have a high

concentration of pollutants, which may lead to health issues. Ventilation and infiltra-

tion in naturally ventilated buildings is driven by two natural forces: wind pressure

and temperature differences. Both parameters are difficult to control and there is little

knowledge of airflow rates in houses at stock scale. Infiltration, however, can be a

primary source of outdoor air and sometimes the only form of ventilation, especially

in naturally ventilated houses during the heating season, when windows tend to be

closed to save energy. A knowledge of ventilation and infiltration in houses can be

used to estimate heat loses during the heating season, associated CO2e emissions, and

costs.

1.5 Indoor air quality in buildings

According to the USA standard ASHRAE 62.2 for ventilation and air quality, an ac-

ceptable indoor air quality is the ”air toward which a substantial majority of occu-

pants express no dissatisfaction with respect to odour and sensory irritation and in

which there are not likely to be contaminants at concentrations that are known to pose

a health risk”. Contaminants are defined as ”a constituent of air that may reduce the

acceptability of that air” (ASHRAE 62.2, 2016). Therefore, to know more about the

indoor air quality in an enclosed volume, the concentration of individual pollutants

must be known. However, the composition and toxicity of the indoor air change from

house to house and over time according to occupants’ lifestyles and habits, building

technologies and appliances (Prasauskas et al. , 2014). Therefore, housing and public

health interventions that aim to improve indoor air should account for the heterogene-

ity of occupants, houses and the air within them. So far, there is no general agreement

in Chile on either the levels considered to be acceptable or on criteria pollutants, and

international health–related guidelines and reference values are continuously varying
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as new scientific information becomes available.

The Commission of Social Determinants of Health, organization established by

the World Health Organization (WHO) to study health equity worldwide, states that

home and work conditions are two of many social determinants of health (Marmot

et al. , 2008). People spend around 70% of their time in their homes, where PM2.5 is

considered the most important pollutant (Borsboom et al. , 2016) because of the doses

and its potential damage to human health. However, evidence on the toxicity and

on health effects of exposures to indoor particles matter is still lacking and so far the

impacts have been estimated using methods and parameters for the outdoor air. The

most effective mitigation strategy against occupant exposure to indoor pollutants is

source control, but this is not always possible for a number of reasons, such as cultural

traditions or economic circumstances. Cooking is a predominant source for PM2.5, but

in Chile, it is common to heat houses using stoves (42%), gas heaters (24%) and paraf-

fin (10%). Many of them vent indoors, likely to reduce the indoor air acceptability ,

and so their contribution to the total exposure need to be quantified. Modern stoves

currently in use in Chile have a relatively tight smoke chamber to minimise emissions

into the house (Schueftan & González, 2015). Although the smoke is intended to be

completely emitted outside, it could enter the house through infiltration and ventila-

tion openings, contributing to most of the exposures to outdoor contaminants. More-

over, even if a heater vents to outdoors it still contributes to exposure when people are

outdoors. Here, low ventilation rates might benefit both energy demand and indoor

air quality.

Therefore, it is essential to quantify the contribution of known emitters to indoor

pollutant concentrations and to test remediation measures, such as trickle vents, cooker

hoods or windows opening. To do so, this work will ignore outdoor contaminants and

concentrate on the contribution of indoor sources only.

Changes made to a buildings’ structure to reduce its energy demand can produce

negative impacts on indoor air quality (see Figure 1.2). When considering the building

sector, dwellings are a focus of attention because people spend most of their lives in

them (McCurdy & Graham, 2003). Also, concentrations of some pollutants are found

to be higher indoor than outdoors (Chen & Zhao, 2011; Cometto-Muñiz & Abraham,

2015), and so there is likely to be a greater degree of exposure to them indoors (e.g.

Bruinen de Bruin et al. (2008); Guo et al. (2004)), such as PM2.5, formaldehyde, and

benzene. Those that could pose a public–health risk are known as contaminants of

concern. Air quality and energy demand in buildings depend on a range of factors

such as the building design, use, and environment. Indoor exposures and energy

demand are then affected by three systems, which makes the analysis a complex task

because they involve: (i) a heterogeneous, and sometimes peculiar, building stock;
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Figure 1.2: Indoor air quality and energy demand in relation with ventilation rates in

a building (Image based on Liddament & Air Infiltration, Agence internationale de

l’énergie (1996)).

(ii) a population with varied characteristics, composition and behaviours; and (iii) the

environmental parameters that influence the building and occupant behaviours which

are both difficult to identify and quantify. These three systems constantly interact with

each other, and their parameters and characteristics need to be considered in order to

analyse their relationships.

1.6 The Chilean housing stock

The Chilean housing stock comprises 6.4 million residential units of great diversity.

Its characteristics vary according to the local weather conditions and the availability

and the affordability of building materials. This variation is considerable because of

Chile’s geography. Furthermore, dwelling stocks change and evolve over time ac-

cording to multiple internal and external factors. The building design adapts to the

climate and to its occupants lifestyle and characteristics, it incorporates new materials

and technologies, and change its overall performance according to new standards and

demands.

Chilean new energy targets for the housing stock represent a great challenge (see

Section 1.1). The unintended impacts that those interventions could have on other

indoor variables and the population health require a deeper understanding of the cur-

rent status of the indoor air quality in the stock and the establishment of benchmarks
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for a set of indicators.

Therefore the research question raised by this study is what indoor concentrations

of PM2.5 are to be expected in the Chilean housing stock? A deeper understanding of

the behaviour of the indoor air quality in the current housing stock and a comparison

against international standards will enable us to know how likely the Chilean houses

are to reach unacceptable levels of pollutants and so to have an impact on occupant

health.

1.7 Aim and objectives

The aim of this thesis is to develop a tool capable of estimating uncertainty in pollutant

concentrations in the Chilean housing stock. In order to achieve this, the study has the

following objectives and steps:

The first objective is to characterise the housing stock of Chile by defining a set

of representative houses (i.e. archetypes). In order to achieve this objective, an under-

standing of the variability of housing types and properties is required. All available

information on Chilean houses will be gathered and combined and used to charac-

terise the stock, and to define archetypes that can be used to model it.

The second objective is to estimate uncertainty in pollutant concentrations in the

archetypes and, therefore, across the Chilean housing stock. This requires an appro-

priate model of pollutant transport, and a suitable statistical approach that captures

stock variability and parametric uncertainty. The estimated concentration can then be

compared against a suitable health metric for each pollutant.

The third objective explores the relationship between ventilation and infiltration

rates required to dilute pollutants and the energy demand required to condition in-

door air. If the Chilean housing stock is to develop sustainably, it must simultaneously

minimise its energy demand and its impact on occupant health.

The fourth objective is to analyse the relative importance of the model inputs,

such as building geometry, occupant behaviour, and local environmental conditions.

A sensitivity analysis is used to rank the inputs by their effect on predicted pollutant

concentrations, ventilation rates, and energy demand. The quality of data for the im-

portant inputs can be assessed and, where necessary, targeted by future data gathering

exercises.
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1.8 Thesis outline

The thesis outline will present the different stages that were planned for this research

in order to fulfil the aim and objectives presented above. This thesis is structured as

follows:

Chapter 1 Introduction: presents an overview of the field of study, the research

problem and objectives of the study.

Chapter 2 Literature review: presents the existing knowledge on indoor air quality

in dwellings and methods for assessing the indoor air quality in a stock of houses.

Chapter 3 Data and Methods: identifies existing sources of data that can be used

to describe elements of the Chilean housing stock and to form the archetypes. It

also highlights areas of data paucity, thus informing future surveys and research. It

presents the methods for data acquisition, for characterising the Chilean stock, for de-

veloping the archetypes and for simulating the mass transfer and heat loss in houses.

Chapter 4 Developing the Chilean national archetypes: presents the process to

development of the archetypal dwellings for the country, by categorising the informa-

tion on the houses according to relevant factors and weighted by type. The archetypes

are finally reported as a documented database containing the building archetypes with

statistically representative values of parameters related to indoor air quality (IAQ) and

energy demand that were used in the simulation process. It finishes by identifying and

describing the dwelling archetypes that were modelled in the current study.

Chapter 5 Modelling process: describes the stochastic modelling, the data pro-

cessing and the sensitivity analysis used to show those parameters that most influence

model outputs.

Chapter 6 Modelling and analysis outcomes: summarises the simulations and the

sensitivity analysis results. The main estimates and their statistics are shown for both

indoor air quality and heat loss.

Chapter 7 Discussion and Conclusions: Discusses the findings and how the archetypes

might then be used to predict and evaluate the impacts of this exposures on the energy

demand, GHG emissions, air quality, and occupant health for a stock of houses or the

whole country. It analyses the key drivers that were targeted for indoor air quality re-

mediation and the ones that can be the subject of future field surveys to better define

the uncertainties in their actual values.
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CHAPTER 2

Literature Review

2.1 Introduction

This chapter presents the existing knowledge relevant to indoor air quality in dwellings

and methods for assessing the indoor air in a stock of houses. It is organised into

four sections. Section 2.2 identifies the ambient air pollution as an environmental and

health hazard, and as an object of research. It also presents some criteria pollutants

used as indicators of its quality and for regulating related activities, their emissions

and concentrations. Section 2.3 describes the personal exposure approach to the air

pollution and its variability among different microenvironments. Section 2.4 The In-

door Air, describes relevant characteristics of the indoor air and factors that might

affect its quality. Section 2.5 Modelling the indoor air, presents different methods for

modelling the indoor air in a house. Particular focus is placed on multi–zone mod-

elling. Finally, Section 2.6 presents methods for modelling the indoor air for a housing

stock.

In this literature review, the focus was over the modelling approach for indoor air

quality studies rather than on the measuring techniques. Thus, current issues related

to the equipment and the way the data is interpreted are not considered neither as

part of this project nor in this review.

2.2 Ambient air pollution

The ambient air is composed of a complex mixture of compounds with different con-

centrations and toxicities. And it has been associated as one of the leading risk fac-

tor for mortality and morbidity in the world. Nearly 99% of the volume of the air

we breathe consists of nitrogen and oxygen. The remaining 1% corresponds to other

gases and particles. Some of them are common constituents (argon, carbon dioxide, or

neon) and harmless in normal concentrations, while others (called contaminants) may
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damage the environment and human health even in relatively low concentrations.

The ambient air quality is usually reported using a list of pollutants (also called

criteria pollutants due to their known effect on health and welfare): particulate matter,

also known as particles, ground-level Ozone (O3), carbon monoxide (CO), Sulphur

Dioxide (SO2) and nitrogen dioxide (NO2). Particles, a type of pollutant rather than

a single compound, are normally reported according to their mass concentration. For

example, using the mass fraction of particles with aerodynamic diameters smaller than

2.5 or 10 µm, as PM2.5 or PM10, respectively.

To simplify the information on the impacts of exposures to ambient contaminants

on the population, some integrated indices have been developed. They usually con-

vert time–series data on air pollutant concentrations into a common and single index

and their associated health outcomes. One example is the Air quality index (AQI)

developed by The U.S. Environmental Protection Agency (USEPA). The AQI is com-

puted for specific locations using the the EPA standard (EPA, 2018). Concentration of

five ambient air pollutants (PM2.5, PM10, O3, NO2 and CO) are converted into a com-

mon and dimensionless value that goes between 0 and 500. In Santiago, Chile, the

annual average AQI is 70 (interpreted by the standard as moderate) and varies annu-

ally from 10 (good) to 142 (Unhealthy for sensitive groups). Within the air components,

PM2.5 and O3 are the two main contributors to the air pollution. Although the AQI in-

dex might be useful for alerting the general population when the ambient air reaches

short–term unhealthy levels, it relies on the information and location of the station-

ary monitoring stations, which might not relate to personal exposures (Bravo-Linares

et al. , 2016). Additionally, reporting a single value by converting the known outcomes

of only five pollutants into a common index for short–term health impact does not

provide a comprehensive impact assessment, or information for chronic impacts.

Moreover, hundreds of different components can compose PMs. Among them, typ-

ical components of the ambient PM are: Sulphates, Nitrates, ammoniums, sodium and

chloride ions, elemental carbons EC, organic carbons OC, and a range of mineral ma-

terials and water-soluble components. Fractions of ambient particles vary according

to the sources, location, and meteorological conditions. They can be emitted from a

wide range of sources (primary sources) or formed in the atmosphere (secondary par-

ticles), so the strategies to control them may be diverse (Tucker, 2000). For instance,

most ambient particles in the fine fraction (PM with an aerodynamic diameter below

2.5µm) are emitted during high–temperature metallurgical and combustion processes

and formed within the atmosphere, whereas coarse particles (PM with a diameter be-

tween 2.5 – 10µm) generally come from windblown and road dust, pollen and spores,

and some industrial particles (Tucker, 2000). They can also change in size and shape

through physical and chemical processes, such as nucleation, coagulation or conden-
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sation. Ultrafine particles (PM with a diameter bellow 0.3µm) are more in number, but

fine and coarse particles are higher in mass (Heal et al. , 2012) and they are commonly

treated separately.

2.2.1 Health impacts of exposures to ambient air pollution

There is strong evidence supporting the impact of air pollution on people’s health (Co-

hen et al. , 2017; Landrigan, 2017). The diversity in size, composition and behaviour

make their health impact assessment through toxicology a complex task (Cassee et al.

, 2013). Epidemiology, normally associates time–series ambient concentrations of pol-

lutants (assumed as the population exposure) to daily health outcomes, sometimes

including a certain exposure time. This had led to greater attention to fine particles.

They are considered more harmful because they penetrate deeper into the lung sys-

tem and so legislation and policies are mainly focused on controlling and reduce their

emission. Results of epidemiological studies that give exposure–response coefficients

are analysed and summarised by the World Health Organization (WHO) (Gakidou et al.

, 2017).

Concentrations of criteria pollutants exceed the WHO annual threshold in some cities

in Chile, and show negative health impacts on both mortality and morbidity. Ci-

fuentes et al. (2000) show ambient concentrations of criteria pollutants were signifi-

cantly associated with daily mortality rates in the general population of Santiago. The

effect ranged from 4% to 11%, which depends on the pollutant, season and meteoro-

logical conditions. Ilabaca et al. (1999) show a positive relationship between ambient

concentrations of criteria pollutants and children respiratory–related emergency visits

in Santiago. The strongest relationship was with PM2.5 levels, which ranged from 10

to 156 µg/m3. An increase of 45 µg/m3 of PM2.5 daily mean was related to an increase

of 2.7–6.7% in emergency visits. Later, Pino et al. (2004) showed that an increase of

10 µg/m3 of ambient PM2.5 was related to a 5–9% increased risk of wheezing bronchi-

tis in young children.

Cakmak et al. (2007, 2009) estimated the effects of acute increases of PM10, Ozone,

Sulphur dioxide, CO, NO2, and PM2.5 components on mortality in Santiago’s popu-

lation. They found a positive and statistically significant relationship between pollu-

tant concentrations and related daily mortality, particularly in the elderly (>85 years).

Here, the strongest association was seen for elemental carbon EC, a PM2.5 component.

Leiva G et al. (2013) estimated that the risk of hospital admissions in Santiago for cere-

brovascular causes increased by 1.28% for 10 µg/m3 increase of PM2.5 using data be-

tween 2002 and 2006; risk in winter was found to be higher, with 48.0 µg/m3 increase

in PM2.5 associated with 6.34%. Conversely, international studies, found an increase
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of 1.78%, 1.04% and 1.56% in The USA, Finland and Denmark respectively. Finally,

Prieto-Parra et al. (2017) studied the prevalence of respiratory symptoms in children

and exposure to air pollution in the winters of 2011 and 2012. Ambient concentrations

of criteria pollutants and PM2.5 components were obtained from government moni-

toring stations. Here, PM2.5, NO2, and O3 were found to have a strong association

with exacerbation of respiratory symptoms in asthmatic and non–asthmatic children.

The mean and standard deviation of ambient concentration of PM2.5 and NO2 were

30 ± 12.5 µg/m3 and 40.2 ± 14.7 ppb (7 days averages) respectively, below the current

Chilean standard but above the WHO guidelines (see Table 2.1).

A well–known example of the impact of air pollution on population health is The

Global Burden of Disease (GBD) study. The 2018 up–date with data from 2016 showed

that ischemic heart disease, stroke, lower respiratory infection, COPD, and lung can-

cer were the 1st, 2nd, 3rd, 9th, and 13th leading causes of years of life lost YLL world-

wide. All of which have been linked to air pollution as a risk factor. Furthermore,

the first three are forecasted to remain in the same position by 2040, whereas COPD is

expected to rise to 4th position, and lung cancer to 9th. Cohen et al. (2017) used the

data on PM2.5 ambient concentrations gathered by this study and its association with

those four health outcomes given by the epidemiological cohort studies. Nevertheless,

these exposure–response relationships are estimated for low ambient concentrations

and short–term exposures that might be exceeded in many locations or during cer-

tain activities or events, such as cooking, cleaning, wood burning from chimneys, and

wildfires. Moreover, the composition of fine particles are not accounted for in the

assessment.

Burnett et al. (2014) developed an integrated relative risk (RR) model for long–term

higher concentrations (means ranging from 38 to 166 µg/m3). It included information

on RR of four combustion types (four known sources of PM2.5): Ambient air pollution,

second hand smoke, household air pollution and active smoking, with four associated

causes of mortality in adults: Ischaemic heart disease (IHD), stroke, chronic obstruc-

tive pulmonary disease (COPD), and lung cancer. The study also gave estimates of

population attributable fractions for every country included in the burden of disease

study. The Organisation for Economic Co–operation and Development (OECD) fore-

casted the economic consequences of outdoor air pollution (including PM2.5 and ozone

projections) on population health and agriculture by 2060 (OECD, 2016). The report

projected an increase of pollutant emissions if the current economic growth and en-

ergy demand continue to rise at the current pace. For the estimation, health impacts

in the form of health care and premature deaths, lost working days (reduction of pro-

ductivity), increase in GDP costs, and lower crop yields were included. Both PM2.5 as

black carbon (BC) and ozone emissions are estimated to increase, especially in South
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and East Asia. Indoor air pollution in dwellings was not included in the report but it

projects a reduction in organic carbon (OC) from a lower energy demand and the use

of cleaner and more efficient technologies for cooking and heating. This assumption

considered the use of LPG or ethanol for cooking and heating instead of open fires. In

Chile, the majority of the housing stock use LPG or gas for cooking (CASEN, 2015),

and so major improvements might be seen only from switching from wood–stoves for

heating.

2.2.2 Chilean regulation

Concentrations of criteria pollutants in Chile are regulated by the Ministry of Environ-

ment. Primary regulations are established for protecting public health. The current

primary standards and limits given in Table 2.1:

Table 2.1: Chilean standards and the WHO recommendations for ambient concentra-

tion of criteria pollutants. Time–series data on ambient concentrations from are pub-

licly available for each criteria pollutant and others pollutants

Contaminant National Limit National Standard / International recommendation

(mean) year of publication (WHO et al. , 2000, 2006) (mean)

CO 30 µg/m3 P99th 1 h ** DS 115/2002 100 mg/m3 15 min

10 µg/m3 8 h ** 60 mg/m3 30 min

30mg/m3 1 h

10mg/m3 8 h

Pb (Lead) 0.5 µg/m3 yearly * DS136/2001 0.5 µg/m3 yearly

NO2 100 µg/m3 yearly ** DS114/2003 40 µg/m3 yearly

400 µg/m3 1 h ** 200 µg/m3 1 h

O3 120 µg/m3 8 h ** DS112/2002 100 µg/m38 h

PM10 50 µg/m3 yearly ** DS59/1998 20 µg/m3 yearly

150 µg/m3 1 h ** 50 µg/m3 24 h

PM2.5 20 µg/m3 yearly ** DS12/2012 10 µg/m3 yearly

50 µg/m3 1 h ** 25 µg/m3 24 h

SO2 50 µg/m3 yearly ** DS 113/2002 20 µg/m3 24 h

250 µg/m3 24 h ** 500 µg/m3 10 min

* during the last 2 years.

** during the last 3 years.

The last standard to be incorporated was DS12/2012, that regulates concentrations

of PM2.5 in the ambient air. Supporting scientific evidence on chronic and acute health

impacts at national and international levels were used during its development. Addi-

tionally, a study on the economic impacts (benefit–cost analysis) of decreasing ambient

fine particles concentrations was requested by the authorities from a third party in or-

der to compare different scenarios based on 2009 values. Net benefits related to the

new limits were estimated to be $30.6 billion dollars a year (50th centile; CI(90): −M$5

− 61, 700) per year over a period of 30 years. Positive changes in premature deaths (es-
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timated in 11 months), number of hospitalisations, health care visits and working days

lost were contrasted against intervention and mitigation costs by type of source iden-

tified in a group of cities (Dictuc, 2009). The limits established in the current standard

are considered the first stage in providing a better quality of life, and will be reviewed

in the near future.

Source identification is a useful tool for policy–making and source control. Sax

et al. (2007) took daily samples of PM2.5 in Santiago during two monitoring cam-

paigns in 1998 and 2003. Annual means decreased over the two times period (from

41.8 to 35.4 µg/m3), yet concentrations during winter season remained high –three

times higher than in warmer seasons– and above recommended values. The compo-

sition of fine particles showed a significant change, associated to the implementation

of remediation policies, mostly related to transport. The authors advised stricter con-

trol of transport and industrial emissions in order to keep improving the ambient air

quality.

Toro et al. (2014) identified three factors that lead to high concentrations of parti-

cles in Santiago in winter: the meteorological conditions, combustion from heating,

and wood burning. Another study was carried out by Kavouras et al. (2001) in five

regional cities in Chile. They measured PM10and PM2.5 concentrations throughout

1998, in order to identify and quantify their sources and contaminant species. Copper

smelters and oil refineries were identified as the most important contributors to PM2.5,

followed by vehicles and wood burning. Annual mean PM2.5 and PM10 concentrations

exceeded the WHO recommendation in all cities.

Since then, more actions have been taken in order to reduce PM2.5 concentrations.

Tailored measures are taken after a city is declared ”saturated zone”, when concen-

trations of criteria pollutants surpass the established limits. Particularly, PM2.5 con-

centrations in Santiago have decreased over the last two decades (Toro et al. , 2014).

Koutrakis et al. (2005) analysed and measured fine and coarse PMs (PM2.5, PM2.5−−10

and PM10) daily sampling means in four locations in Santiago. They found that PM2.5

levels have decreased by half from 1989 and 2001. They also found seasonal and

weekly patterns –concentrations were higher during the colder seasons and from Tues-

day to Friday– mainly affected by traffic and industries. The change in the source also

meant that the composition of the particles also changed, and now particles are lower

in sulfur, lead and other anthropogenic elements.

Similar results were estimated by Jorquera et al. (2000). They showed that the

most considerable concentration drops were seen after the implementation of the new

transportation system in 1989, when the annual averaged PM2.5 concentrations started

to decrease between -5% and -7%.
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Jorquera & Barraza (2012) characterised and compared PM2.5 in Santiago between

1999 and 2004; 95 samples were taken in 1999 and 117 in 2004. The contribution of each

source to PM2.5 was assumed by identifying their key species. Important reductions in

the absolute PM2.5 concentrations were seen between the two samples. Stricter source

control might have helped this reduction. Results showed no statistically significant

change in the relative composition of the fine particles, and that the major contributor

continued to be vehicles (28% in 1999 to 31% in 2004) and wood burning (25% in

1999 to 29% in 2004). It also showed that sources surrounding Santiago are important,

such as wood burning and metallurgical smelters. Similar analysis was carried out

by Jorquera & Barraza (2013) in a northern industrial city, Antofagasta. Their analysis

showed that a cement plant and soil dust were the two greatest contributor to ambient

PM2.5. Because the city has desert climate, the collected soil dust carries multiple

species, such as heavy metals and marine aerosol elements.

2.3 Personal exposures

According to the Haber’s Law of total exposure, total cumulative exposures depend

on the concentration of the pollutant, or quantity of element present, at a specific lo-

cation i (also called a microenvironment) and the time spent in it ti, i.e. Ci · ti (Gaylor,

2000; McCurdy, 2015). Some type of contact between the pollutant and the person is

needed, so transmission of the element may occur. Because the concentration varies

with time, a more accurate expression is:

Et = ∑
i

Ei + ∑
j

Epact (2.3.1)

Et =
1
T
(∑

i

∫
Cidti + ∑

j

∫
Cpact,jdtj) (2.3.2)

where Et is the total personal exposure to any pollutant in all microenvironments,

Ei is the time-weighted personal exposure in each microenvironment i, and Epact is

the time-weighted personal exposure to the pollutant emitted by personal activities

j other than in the house. T is the total time spent in each microenvironment and in

each personal activity, and C are the concentrations of the pollutant recorded in each

location (Wilson et al. , 2000).

Normally, exposure models are defined for a specific age and gender due to their

relationship with the activity. McCurdy & Graham (2003) analysed US activity data

and identified cohort variables that showed a statistically significant effect of the time

spent indoors, outdoors and in vehicles for each cohort. They recommend that expo-

sure studies take into account: age and gender firstly, followed by one level of physical
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activity of individuals. The daily maximum temperature, months of the year, and the

day of the week are also important drivers.

Klepeis et al. (2001) analysed time activity data for US citizens (N = 5,678). They

classified the data into 10 locations. Figure 2.1 shows the variability of the location

given by the respondents. It also shows that most of the people spend most of their

time indoors (average 87%), commonly at home (average 69%) but that it can vary

from 34 to 98%. Koehler et al. (2018) also studied personal exposures to air pollutants,

and its variability by microenvironment or location (home, work, transit, eateries, and

others). 44 adults of different ages and gender were involved with a total of 373 sam-

pling days. Results showed great variability within-person, which depends on the

location. While the highest exposures to PM2.5 were in transit and in eateries due to

proximity to traffic and cooking sources, the higher total integrated exposure were at

home.

Figure 2.1: Stacked plot with the percentage of people at each location over the day.

The bigger area corresponds to ”Residence–Indoors”. It shows that the percentage

of the respondents in their residence varied from approximately 38% near midday to

95% around midnight (Klepeis et al. , 2001).

Some examples of how variable personal exposures can be are shown in Delgado-

Saborit (2012) and Steinle et al. (2015). They studied personal exposures to black car-

bon BC (markers of combustion–related PMs) and PM2.5, respectively, in different lo-

cations using non–expensive real–time sensors. Both associated the highest exposures

with cooking and commuting activities, and indoor/outdoor (I/O) ratios above one.

Figure 2.2 shows individual concentrations of PM2.5 during a) May and b)November,

of 2013 Steinle et al. (2015).

Both field and modelling studies might account for variability of pollutant concen-

tration according to the location, yet time–activity data is limited. Moreover, when



CHAPTER 2. LITERATURE REVIEW 19

Figure 2.2: Distribution of personal exposures to PM2.5 for different subjects during

a) Spring and b) Autumn. The higher concentration levels (averages and standard

deviations) were found in the residential buildings and the lowest at work. (Steinle

et al. , 2015).

analysing health impacts toxicologically, time–series data on personal exposures are

not the end point. These data are then used to calculate personal doses according

to several factors, such as age, health status, metabolic rate and breathing rate, and

follow the path from the exposure to the pollutant to the effect in the organism, un-

til the adverse effect on a specific or several organs are obtained (e.g. a non–linear

dose-effect curve). Finally, dose–response curves are obtained from this analysis at a

population scale. To date, a detailed time–activity analysis of the Chilean population

has not yet been undertaken. This lack of knowledge restrict the analysis of individual

and community exposures, and the impacts of such exposures on occupants’ health.

2.4 Indoor air quality in dwellings

Several studies state that we spend the majority of our time indoors, mostly in dwellings

(e.g. Burke et al. (2001); Klepeis et al. (2001); McCurdy & Graham (2003); Yang et al.

(2011)). This makes indoor air the main source of exposure to air pollution. The Com-
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mission of Social Determinants of Health, organisation established by the WHO to study

health equity worldwide, states that home and work conditions are two of many so-

cial determinants of health (Marmot et al. , 2008). Household air pollution has been an

important subject of interest because it can reach unhealthy levels, often higher than

outdoors. Besides, houses are where children, the elderly and those in poor health,

the most susceptible fraction of the population, spend most of their time. Neverthe-

less, indoor air pollution is generally not regulated beyond the chemical composition

of some household products. The United Nations’ Sustainable Development Goals

(SDGs) are a set of 17 international priorities to provide ”peace and prosperity for

people and the planet, now and into the future” (UN, 2019). Goal 8 aims to to en-

sure healthy life and wellbeing for people of all ages, which includes a health–related

indicator of air pollution mortality. The 2018 up–date of the indicators gave an esti-

mate of progress and the likelihood that each (195) country will achieve the goals by

2030. Chile shows a 71% and 94% of progress on air pollution mortality (PM2.5) and

on household air pollution, respectively, but only 14% on tobacco smoking. They es-

timated the probability of Chile attaining the target related to household air pollution

by 11% (Lozano et al. , 2018). It is worth noting that household air pollution in this

metric only accounts for exposures to solid fuels used for cooking, but in Chile 42% of

the stock uses wood–burner stoves for heating.

A mass balance equation has frequently been used to relate the indoor concentra-

tion of particles with certain parameters (Ott et al. , 2006). For a well-mixed single

zone:
dCin

dt
= P · a · Cout − (a + φ) · Cin + S/V (2.4.1)

where P is the particle penetration factor. It is assumed to be 1 when particles

are not lost by infiltration, or when windows are opened. a is the total air exchange

rate through the envelope, Cout the outdoor particle concentration in mass per unit

of volume, φ the total decay rate, Cin the indoor concentration, and S the source(s)

strength. Here, Cout, Cin, a and S variables are time dependant, whereas P and φ

depend on the particle fraction and normally considered constant over time. In this

equation, the ambient and non–ambient particles are considered to be equivalent, and

chemical reactions or re–suspension are not included.

Among all indoor pollutants, particulate matter PMs are considered the most im-

portant (Logue et al. , 2011a). Indoor particles differ from ambient particles in a num-

ber of important ways, such as in sources, composition, toxicity, and concentrations.

This has been shown through temporal patterns and spatial variability. Given these

varied properties and conditions, and until associations between ambient particles

and indoor–generated particles are better understood, a separate treatment in the anal-

ysis is advised (Wilson et al. , 2000). To do so, the first term of Equation 2.3.2 must
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account for both exposures to ambient pollution and exposures to non–ambient pollu-

tion, depending on whether the pollutants have outdoor or indoor origin. Exposures

to the ambient air occurs both outside and inside when pollutants of outdoor origin

are transported indoors via infiltration and ventilation (Wilson et al. , 2000). In order

to separate the analysis of indoor and outdoor sources, either the first or third term

of equation 2.4.1 must be omitted (no outdoor or indoor sources are included, and so

either Cout or S/V are cancelled, respectively). Thus, assuming steady state conditions

and no indoor sources, the fraction of the ambient PMs that passes through the en-

velope is known as the infiltration factor, FINF, which is, in some cases, equal to the

I/O ratio. I/O ratios give a simplify idea of the indoor and outdoor concentration

relationship:

FINF =
Cin

Cout
=

P · a
a + φ

(2.4.2)

Finally, using the third term of the equation 2.4.1, the contribution of an indoor

source to the indoor concentration is:

Cin =
S/V
a + φ

(2.4.3)

All these terms can be highly variable and uncertain, and so there is much uncer-

tainty in the relationship between the building’s characteristics, the environment and

the composition and interaction of a mixture of pollutants were various sources are

present.

2.4.1 International studies on indoor pollutant concentrations

Indoor contaminants can be classified according to their physical state (gaseous or par-

ticulate), their origin (primary or secondary), their known impact on health (criteria or

non–criteria pollutants), or their type of source (outdoor sources, such as infiltration or

underground soil, indoor sources, such as stoves or heaters, or re–suspended, such as by

occupant’s movements or cleaning activities). Sources are defined by ASHRAE 62.2

as "an indoor object, person, or activity from which indoor air contaminants are released, or

a route of entry of contaminants from outdoors or sub-building soil" (ASHRAE 62.2, 2016).

Similarly, indoor air can contain multiple contaminants emitted by different sources

(primary contaminants) or formed within the indoor atmosphere (secondary contam-

inants).

During the last 70 years, new materials and technologies have been incorporated

in the building industry in order to improve buildings’ performance. Some of these

changes, along with new lifestyles, have impacted the indoor air quality. Weschler



CHAPTER 2. LITERATURE REVIEW 22

(2009) presents an overview of contemporary indoor sources and building character-

istics that have affected the indoor air since the 1950s. He describes how the presence

of new chemicals emitted by new materials and consumer products, changes in per-

sonal habits and changes in building air–tightness have altered the composition of the

air and also occupants’ exposures. For instance, low infiltration in airtight buildings

can retain pollutants for longer and increase their concentrations if they are under–

ventilated. Air conditioning systems that recirculate air without filtration, increase

moisture problems and pollutants concentration. Conversely, restrictions on the use

of certain chemicals in building materials or consumer products and changes in occu-

pant activities (such as formaldehyde and indoor smoking) have showed a decrease

of some pollutants.

Among the pollutants identified as hazards in residential buildings, some gases,

particulate matter, and Volatile Organic Compounds (VOCs) are considered the most

common. VOCs are organic chemical compounds whose composition makes it possi-

ble for them to evaporate under normal indoor atmospheric conditions of temperature

and pressure. VOCs are normally emitted from sources such as construction materi-

als, tap water, household products and human breath. Most VOCs are present indoors

in low concentrations, often below the limit of detection of most sensors.

Taking measurement is difficult and so field studies often only report the concentra-

tion of a restricted number of contaminants and only for limited time. Meta–analysis

research, which examine the results of independent studies, has been useful to show

trends and the variability of the quality of indoor air in buildings. Dawson & McAlary

(2009) studied background indoor air quality. They compiled and gave summarised

statistics of 18 studies in North American dwellings reporting VOCs concentrations.

The age of the studies ranged from 1970 to 2005. They excluded studies of smok-

ers and personal exposures, and they did not differentiate between urban, suburban,

or rural locations, or sampling method. The data showed trends in the composition

and concentrations of pollutants over time. In general, newer studies reported lower

concentrations than older studies, implying some improvements in air quality, and

large variability between houses. Concentrations may be a function of the variation

in ventilation rates, changes to, and the ageing of, building materials, and occupant

preferences and habits. They identified commonly reported VOCs, such as BTEX com-

pounds (Benzene, Toluene, Ethyl-benzene and Xylene) with concentrations similar to

the USEPA health–based standard (NAAQS).

Wang et al. (2017) identified the concentration of some VOCs over five days of sam-

pling from 25 houses; 19 diverse houses in London, and 9 houses of similar age and

design in York, UK. They concluded that the two most abundant and common VOCs

are D-limonene and α-pinene. Both pollutants are related to occupant activities and
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consumer products, and are formaldehyde (HCHO) precursors. However, the study

does not report ventilation rates, so its ability to control air quality could not be as-

sessed. Huang et al. (2018) studied concentrations of HCHO, other VOCs, PM2.5 and

CO2 in 21 houses in northeast China. They also investigated the effects of window

opening, outdoor air temperature, furniture surface area, indoor temperature and in-

door humidity on pollutant concentrations. Results showed a stronger relationship of

HCHO with variations of temperature and relative humidity (plots (c) and (d) in Fig-

ure 2.3) than with window opening and furniture area (plots (a) and (b) in Figure 2.3).

Figure 2.3: Effect of indoor parameters and HCHO concentrations (Huang et al. ,

2018) in 6 houses in China.

Logue et al. (2011b) quantified concentrations of multiple indoor contaminants re-

ported in field studies between 1995–2010 that were carried out in US dwellings and

in other countries with similar lifestyles. Representative indoor concentrations for cri-

teria pollutants were compared to the WHO and the USEPA standards (NAAQS). Both

the PM2.5 median and NO2 95th percentile were above one or both of these limits.

The top three non-criteria hazardous volatile organic pollutants with the highest acute

and chronic impact were acrolein, formaldehyde, and benzene. Indoor PM2.5 is gen-

erally emitted by combustion of solid and liquid fuels, infiltrates from outside, or is
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re–suspended during cleaning activities; acrolein is frequently released during cook-

ing and smoking; and formaldehyde is emitted by smoking, released by composite–

wood products or formed by chemical reaction in the indoor air. These data came

from houses that in general were designed to have low emission events or sources.

Long et al. (2000) produced time–series data on particles concentration (see Fig-

ure 2.4) and size distributions (see Figure 2.5) in nine houses in Boston, USA, over

more than 7 days of measurements during different seasons. They found that in-

door PM2.5 emission events tend to be brief (5 min on average), intermittent, and

with highly variable peaks. Several sources of pollution were identified by linking

time–activity data with measurements. Cooking activities were linked to the highest

PM2.5 concentrations. Figure 2.4 shows the PM2.5 concentrations in one house over

two days; the dotted line represents the two–day average concentration. The size

distribution analysis, see Figure 2.5, showed that most of the indoor emissions (in

volume) are within the PM2.5 fraction, represented by the black, hatched and white

portions of the stack bars. Factors that could explain the variability of the results in-

clude the type of source and their condition, house condition, and the proximity of

the monitoring device to the source. Among house conditions, hourly air exchange

rates were highly variable according to the season and ventilation conditions (ranging

from 0.11 to 20.40 h−1). Window and door opening were the main determinant factors

of it, but the authors also highlighted the effect of the age of the buildings and the

indoor–outdoor temperature difference, especially in winter. Low correlations were

found between indoor and outdoor concentrations, noting the need to separate their

analyses; indoor and outdoor exposures cannot be assumed to be equivalent. I/O ra-

tios calculated by PM2.5 component were dissimilar; typically above one for Organic

Carbon OC and bellow one for elemental carbon EC. I/O ratios vary mainly according

to window opening and season.

Fazli & Stephens (2018) summarised I/O ratios, indoor concentrations of PM2.5,

and concentrations of other pollutants reported in 21 studies carried out in The USA

and Canada. Although their mean and medians are 1.07 and 0.99, respectively, they

ranged from 0.73 to 1.7 (not accounting for the sample size). For indoor concentra-

tions, the median of the reported means in these studies was 13.9 µg/m3, ranging

from 5.5 µg/m3 in Saskatchewan (Canada) in winter, to 20.9 µg/m3 in winter in New

York City. Infiltration factors, FINF, are reported in 15 buildings and range between

0.43 and 0.74 (Media = 0.58).

Jones et al. (2007) studied the spatial variability of particles inside of 78 Australian

houses occupied by young children. PMs were monitored at two heights in the liv-

ing rooms, bedrooms, and in cots. There was not a statistically significant difference

between the two heights, suggesting that occupant activities helps to mix the air well



CHAPTER 2. LITERATURE REVIEW 25

Figure 2.4: Inside and outside 20–min averaged PM2.5 time–series data for one house

monitored by Long et al. (2000).

Figure 2.5: Volumetric particle size distributions. PM2.5 accounted by black, hatched,

and white portions, are higher in volume (Long et al. , 2000).

in each of the rooms. To the best of my knowledge, there are no comparisons of sim-

ilarities and differences in Chilean, or other country’s, houses or lifestyles, so a direct

extrapolation cannot be made.

2.4.2 Chilean studies

Section 2.3 shows that exposures can be highly dependant on the cohort variables,

such as their living spaces and activities carried out. For example, cooking and clean-

ing activities, two of the most influential sources of fine particles, are more related to

adults than to children. Some studies on indoor air quality in the most populated cities

of Chile have been carried out, mostly in low-socioeconomic and young population.
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An example of this can be seen in Rojas-Bracho et al. (2002). They studied chil-

dren personal exposures to PM10, PM2.5 and NO2 in 18 houses in Santiago during

five winter days in 1999 and compared them to indoor and outdoor concentrations.

For this cohort (children between 10 and 12 years old), living in different locations in

Santiago and different type of houses, outdoor and indoor exposures were strongly

associated. NO2 concentrations were higher than similar studies from other countries.

For the PM2.5 fraction, personal exposures were more strongly related to indoor con-

centrations than outdoors (See figure 2.6). The lower ratios between concentrations

compared to other studies are likely to respond to the activities that the children car-

ried out during the study; although no information on time spent indoors, activities

and house characteristics were given.

Figure 2.6: Relationship between personal exposures, indoor and outdoor concentra-

tions for PM2.5. Based on Rojas-Bracho et al. (2002). * indicates the level of statistical

significance.

Cáceres et al. (2001), Ruiz et al. (2010) and Burgos et al. (2013) gave more informa-

tion about social gaps related to indoor air quality in Santiago. Cáceres et al. (2001)

measured pollutant concentrations, in 24 houses in a low socioeconomic area of San-

tiago, Chile. Most of cases had concentrations above the ambient limits, being the

type of heater the main factor. Ruiz et al. (2010) measured PM2.5, its components, and

other pollutants in 16 houses and flats located in a middle–class area and in a mid–to–

high area of Santiago in winter. Buildings had relatively the same construction period.

Cases were selected by the type of gas heater used (compressed natural gas (CNG), liq-

uefied petroleum gas (LPG), and kerosene), and were compared to houses using elec-

tric heaters or central heating, and to outdoor concentrations (see figure 2.8). Indoor

concentrations were higher than the outdoor air in 60% of the cases, with kerosene

heaters giving the highest concentrations for PM2.5 (86.3 µg/m3 on average), PM2.5

components and other pollutants. Figure 2.7 shows 24 h indoor and outdoor PM2.5
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concentrations in a house using a kerosene heater, and Figure 2.8 shows means and

standard deviations for the four types of heaters. Houses using electric heaters or cen-

tral heating (”control” group) had lower PM2.5 levels (42.1 µg/m3 average), yet above

the current WHO limit for ambient air. Two regression models were used to compare

the effect of the outdoor air and the type of heater on the overall concentrations, and

the type of house (either house or flat) and home activities (i.e. heating, cooking and

cleaning) on the hourly PM2.5 components concentration. Both cooking and cleaning

were statistically significant at p < 0.05. Outdoor air was statistically significant for in-

door concentrations in all of them at p < 0.001; PM2.5 levels were high (55.9 µg/m3 on

average).

Figure 2.7: PM2.5 concentrations for the outdoor and indoor air in a house using a

kerosene heater (Ruiz et al. , 2010).

Figure 2.8: PM2.5 concentrations for outdoor air, and for the four groups studied

(houses using electric or central heater as the control group, and three different fuel

types) (Ruiz et al. , 2010).
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Burgos et al. (2013) compared the indoor air quality between two groups of houses

with children <8 years; one group living in a slum and the other group in a social hous-

ing building. Indoor PM2.5 concentrations in children bedrooms and sources were

identified, along with information on house conditions and determinants. The median

indoor concentrations for the whole group were higher than outdoors in both groups,

and both above the WHO ambient recommendation. Slum families showed to be at

greater risk. Slum houses had significantly higher indoor and outdoor concentrations

than social houses, due to source differences. Outdoor air (R2=0.26; p <0.00; regres-

sion coefficient β= 0.5), type of heating fuel (R2=0.053; p <0.00), and indoor smoking

(R2=0.048; p= 0.01) were identified as the main factors. House type and condition

were not evaluated. A limitation of this type of study is the time constraint of mea-

surements (24 h). Other indoor activities, different lengths, or the influence of outdoor

environmental conditions might affect the variability of the results. Finally, there is no

information on how representative the houses were compared to other slums or social

buildings of the country.

A similar study was carried out by Barría et al. (2016). They studied PM2.5 con-

centrations in 207 houses of new–borns, in two cities of Chile, during 24 h in winter

2007 and 2008. Indoor levels were higher than in Santiago (median= 107.5 µg/m3;

range= 13.8 µg/m3 (bedroom) – 373.9 µg/m3 (living room)), but they did not measure

or mention any outdoor concentrations for comparison (see Figure 2.9). Variations

between and within groups were found. Statistically significant factors were: time of

use and type of heater, family history of asthma, indoor smoking, cleaning activities

(higher when using a broom than a wet cloth), ventilation time (higher when ventilat-

ing) and the monitored room (higher levels in the living room or in houses with only

one room). Ventilation was related to an increase of PM2.5 concentrations (p = 0.0039),

which may suggest greater contribution of outdoor pollution, total deposition rates or

physicochemical reactions.

A few studies with focus on PM2.5 particles have been carried out in Chile. Most

of the reviewed studies were carried out before the implementation of the decontam-

ination plans and before the PM2.5 regulation came into force. Since then, outdoor

pollutant concentrations have decreased in most cases (see Section 1b Ambient pollu-

tion), which led to a reduction of its contribution to the indoor pollution. The relative

importance of the indoor sources is then becoming even more relevant. The follow-

ing research were conducted specifically on PM2.5 particles within Chilean residences

from year 2000 onwards.

Jorquera et al. (2018) measured and characterised the indoor and outdoor PM2.5 of

64 households in a highly polluted city in Chile, Temuco, during 24 h in winter season.

They estimated that outdoor pollution contributed to indoor pollution by 68% – a
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Figure 2.9: PM2.5 concentrations for houses using four different fuel types (Barría

et al. , 2016).

strong effect size Ferguson (2009)– giving indoor and outdoor median concentrations

of 44.4 and 41.8 µg/m3, respectively. They exceeded the WHO annual recommendation

of 10 µg/m3. The analysis also shed light on the household characteristics and design

factors that most affect the indoor air quality in winter season: the type of cooker

and heater, whether the house was insulated or not, the presence of windows in the

tested room, and floor area, showed to have a statistically significant effect on PM2.5

concentrations. PM2.5 concentrations were found to be higher indoor than outdoor

during 7 hours of the day, which are likely to be the hours with maximum occupancy

and probably when cooking, cleaning and heating activities took place.

Bravo-Linares et al. (2016) measured PM2.5 concentrations in another polluted city,

Valdivia. They identified the main sources and indoor/outdoor ratios for 12 houses

in two consecutive years during winter and autumn season. Daily mean of ambient

concentrations (range = 5 – 367 µg/m3; mean= 85 µg/m3) were higher than indoors

(range = 6 – 194 µg/m3; mean = 72 µg/m3) for the majority of the houses, except for

the ones located in rural or semirural areas. Figure 2.10 shows the variability and

relationship of the indoor and outdoor concentrations. The outdoor concentrations

were measured at the sites using the same portable instrument used indoors.

A regression analysis (R2) showed that the outdoor concentrations accounted for

48% of the variation in the indoor concentrations, which is a moderate effect size (Fer-

guson, 2009). Data on the left hand side of the 1:1 agreement line indicate indoor

concentrations that are higher than those outdoors. In all cases, the mean of the in-

door concentrations exceeded the WHO daily threshold for ambient air, and some of

them also exceeded the Chilean national daily mean threshold of 50 µg/m3 daily mean

(WHO et al. , 2006). Interestingly, the indoor concentrations were above the national
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Figure 2.10: PM2.5 concentrations measured inside and outside the houses (N = 135).

(Bravo-Linares et al. , 2016). The 1:1 agreement line corresponds to a I/O ratio of 1

threshold for ambient air more often (∼70% of the time) than the outdoor (60%). Ad-

ditionally, outdoor concentrations measured outside each dwelling were compared

with values reported by the government monitoring station. A weak agreement was

found between the two values; see figure 2.11. Accordingly, outdoor concentrations of

houses located closer to the monitoring station showed a better agreement than houses

at more distant locations. And, some association with housing density was found and

so the use of the outdoor data to make assumptions about community exposures must

be used with care. The monitor was placed in the room the occupants reported that

they used the most, normally the living room or dining room. However, an analysis

of occupant exposures to pollutants in their house depends on their concentrations in

the other inhabited rooms as well.

In both Temuco and Valdivia, the outdoor air, cooking, smoking, and space heating,

were considered to have the greatest impact on indoor air pollution. Jorquera et al.

(2018) also identified cooking and heating as the two main indoor sources of PM2.5,

with some emission rates estimated to be up to about 100 µg/m3 during the evening.

This section emphasises the need for more information about indoor air quality,

which can differ enormously according to the location of the building, the building

design, occupant activities, and the type of indoor sources. For example, the relative

importance of indoor sources compared to outdoor sources are expected to vary in less

polluted or better ventilated locations, or in houses with lower emission rates. Further

work is required to investigate these areas of uncertainty at a larger scale, while also

accounting for the local characteristics of houses.



CHAPTER 2. LITERATURE REVIEW 31

Figure 2.11: PM2.5 concentrations measured outside of the house and in the nearest

monitoring station (Bravo-Linares et al. , 2016).

2.4.3 Health effects of exposure to indoor pollutants

Section 2.4 shows that fundamental dissimilarities may exist between pollutants found

outside and inside. Consequently, the health impacts of exposures to ambient pollu-

tants may be different from those to pollutants generated inside. Figure 2.12 shows

some health impacts of indoor and outdoor exposures to ambient PM2.5 and PM10

using time–activity data, field measurements, and infiltration factors from The USA,

Europe, and China. It shows that indoor exposures (in black) contribute the most to

the increased mortality risk. Here, the time spent outdoors was a more influential

parameter than the infiltration factor (Ji & Zhao, 2015).

Logue et al. (2011a) ranked the pollutants included in Logue et al. (2011b) ac-

cording to their potential chronic health risks. To calculate the contribution of indoor

exposures to the total exposure, a scaling factor of 0.7 was applied to the indoor con-

centration because people in the US spend around 70% of their day in their houses

(Klepeis et al. , 2001). Here, concentration–response functions were used instead of

dose–effect curves, and so they only report the risk to which the occupants are likely to

be exposed. Confidence intervals of population impacts of exposures were reported;

see Figure 2.13.

The impacts of both household features, such as those included in 2.4.1 and others,
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Figure 2.12: Increased mortality risk due to exposures to ambient particles in both

indoor (black portion) and outdoor (grey portion) (Ji & Zhao, 2015).

Figure 2.13: The impact of indoor pollutants on occupants’ health measured in

DALYs (Logue et al. , 2011a).
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and interventions on occupant exposures and on occupant health remain unclear. The

European project HEALTHVENT estimated the potential health benefits of control

policies for decreasing indoor exposures to six pollutants and home dampness in 26

European countries. They compared health effects, measured in disability–adjusted

life years (DALYs), between the current scenario in 2010, and three potential scenarios:

(i) a change in ventilation rates from 0.1 to 50 l s−1 per person, (ii) the use of mechanical

ventilation with filtration, and (iii) source control with a minimum ventilation rate.

The results showed that the first scenario (dilution) would reduce the burden of

disease by 20%, the second scenario (adding filtration) by 38%, and source control

by 44%. The reductions largely depended on the location of the houses because of

variable ambient pollution concentrations, and the type of source reduction. The min-

imum health impact was achieved with 4.4 l s−1 per person, which is low when com-

pared with the base scenario that estimated the ventilation rate for the housing stock to

be 17 l s−1 per person (Asikainen et al. , 2016), and higher than ASHRAE 62.2 guideline

recommendation of 3.5 l s−1 per person (ASHRAE 62.2, 2016).

Singleton et al. (2017) studied the relationship between reported incidences of

asthma in children, indoor pollutant concentrations (over four consecutive days) and

housing characteristics in 63 houses in Alaska, USA. Relevant indoor parameters were

identified as increasing the risk of asthma. Among them, the occupancy level (used

to indicate overcrowding), reduced ventilation, indoor sources of pollution, and occu-

pant behaviour were the most important. Chin et al. (2014) also studied the houses of

children with asthma symptoms in Michigan, USA. The concentrations of some VOCs

were measured for 7 day periods in 126 houses during at least 2 or 3 seasons. Results

were consistent with other studies carried out in the country and with Logue et al.

(2011b) meta–analysis. Figure 2.14 shows a variance component analysis. Nearly half

of the variance in the measured VOCs concentrations is explained by house param-

eters (49±11%), followed by seasonal variation (34±12%), room differences (10±6),

and replicated measurements (7±6%). Indoor temperature, the degree of mixing of

the indoor air within the house, the location of the VOC sources, and the air change

rates were also considered in a correlation analysis. The three most important sources

identified were solvents used in building materials, vehicle emissions, and household

products.

Sundell et al. (2011) reviewed the literature looking for associations between ven-

tilation rates and health effects in different building types. In this review, odour per-

ception was excluded, because it was argued that this variable was already included

in standard requirements and "it does not directly represent a heath outcome". Pa-

pers considering serious health impacts were excluded. The panel noted that some

reduced health issues, such as SBS–related symptoms, risk of allergies and asthma
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Figure 2.14: Variance in VOCs concentrations measured in Michigan houses (Chin

et al. , 2014).

symptoms, especially in children, were found in offices with higher ventilation rates

(up to 25 l s−1 per person) and in houses with ventilation rates above 0.5 h−1. The

reviewed studies did not give pollutant concentrations, some only reported CO2 con-

centrations, which was used as an indicator of ventilation rates or associated with

other compounds. The review only included four studies on indoor air quality in

residencies, and only from Scandinavian countries. One key conclusion was the lack

of information on outdoor air quality in the specific locations of the buildings and

on the indoor pollutants sources. They do not give a minimum ventilation rate or a

threshold, only giving recommendations to increase ventilation rates to improving the

indoor environmental quality and, consequently, human health.

In Chile, health outcomes from exposure to ambient and household air pollution

were estimated to be on the top ten leading causes of death and of premature deaths

(IHME, 2017): ischemic heart disease (1st), stroke (2nd), lung cancer (7th), three non–

communicable diseases, and lower respiratory infections (12th) a communicable dis-

ease. Moreover, air pollution is the 8th risk factor for most of those deaths and disabil-

ities combined. Siddharthan et al. (2018) analysed data on 13 low and mid–income

countries (according to the World Bank classification). Cities were chosen for their use

of biomass materials as a primary fuel source. In Chile, the data came from The Pul-

monary Risk in South America (PRISA) study. Results showed a strong association

between exposure to biomass fuel smoke by adults (a household air pollutant) and
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COPD; see Figure 2.15. In Chile, the prevalence was higher for women than men, in

contrast to the general tendency of the other 12 countries. No dose–response relation-

ship was given.

Figure 2.15: Prevalence of COPD and restrictive spirometric patterns among adults

of a rural location in Chile (Siddharthan et al. , 2018).

.

Rivas et al. (2008) surveyed 355 mothers from low–income families, with children

under 5 years old to identify associations between occupant habits (factors) and the

prevalence of respiratory diseases (episodes). Factors that showed a significant dif-

ference in the absolute frequency of respiratory episodes were drying laundry in the

kitchen (p=0.04), fuelwood use (p 0.05), and cleaning with wet cloth (p 0.79).

Chilean data on indoor exposures to household air pollutants is lacking and may be

skewed towards high–risk communities so the burden of disease estimates related to

this risk could also be segregated. The Prospective Urban Rural Epidemiology (PURE)

study is an ongoing multi–country cohort study that aims to increase information on

PM2.5 exposure–response relationship based on varying cooking fuel types and condi-

tions for more accurate estimates of global health impacts (Arku et al. , 2018). Within

the 18 participant countries, they selected 10 of them reporting >10% of households

using solid fuels for cooking and heating in a rural location. These findings may help

us to understand Chilean sources of emission and household characteristics.

Because the composition and toxicity of particles found in indoor and outdoor air

could differ, separate toxicological studies are needed for comparison and to establish

dose–response relationships. Furthermore, more information about the variability of

contaminants found in indoor air across the housing stock is required. An economic

and quicker way to address this lack of information is through using a modelling ap-
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proach. This method is capable of predicting indoor concentrations accounting for

information on pollutants, state–of-the-art building technologies, and occupant fac-

tors. Nevertheless, models are more reliable and accurate when that information is

regularly updated and is applicable to the community being studied. The following

two sections present modelling approaches for predicting indoor concentrations for

single or multi–zone buildings (Section 2.5), and for a larger proportion of the stock

(Section 2.6).

2.5 Modelling indoor air

Two approaches can be used to assess personal exposures, directly or indirectly. Di-

rect, or in–situ, methods use personal monitoring or biomonitoring to obtain data on

actual exposures to air pollution, either by using a personal monitor or biomarker

samples; see Section 2.3. In contrast, indirect methods use available monitoring data

and time–activity patterns to model the concentrations within a volume and predict

personal exposures. Direct methods are more accurate in reflecting individual ex-

posures and the studies can be simpler to design. They give a better description of

the magnitude and duration of events, and can give information on source emission

rates. Indirect methods allow individual and population exposures to be modelled,

and multiple exposure scenarios to be evaluated (Branco et al. , 2014).

However, direct methods are constrained by time and costs. Monitoring a large

sample requires a good description of the input variables and can be impractical,

and so they are limited for a specific cohort, or representative sample, for short pe-

riods. Moreover, there are still high uncertainties in the measurements and devices

that could mislead the readings (Jones et al. , 2018; O’Leary et al. , 2019a; Singer & Delp,

2018). The detection of individual sources of pollution and parameters under real con-

ditions requires complex analyses and identification of relevant pollutants from each

source. Conversely, indirect approaches rely on assumptions to simplify any model,

and must consider uncertainty in input parameters and model accuracy. Depending

on the method, assumptions can oversimplify temporal and spatial patterns, and ex-

posure distributions (such as statistical regression models) when predictions cannot be

extrapolated to the general population scale (such as micro–environmental modelling

or computational fluid dynamics (CFD) tools), so they need extra validation (Graham

& McCurdy, 2004).

Several approaches have been used to address these issues. For example, both

methods can complement one another so that the model inputs are better informed

by the measured data, and results can be validated and recalibrated. The accuracy

of the model will then depend on the availability and quality of the input data, and
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the ability of the model to predict indoor air pollutant concentrations. Another option

is to use representative scenarios, such as representative buildings, so that the results

can then be extrapolated to wider groups. When considering the degree to which the

indoor airspace is partitioned to give a required level of spatial detail, the modelling

approach can be classified into three methods. Going from the use of simple models

with (i) a single and well-mixed zone, continuing with (ii) multi–zone models, and

(iii) for more complex models, using a non–uniform distribution of the pollutants with

Computational Fluid Dynamics (CFD) simulation tools.

The definition of the method will define the level of complexity, resolution and

detail to represent the indoor air in a building. The three methods all have their own

advantages and disadvantages. Well–mixed single–zone models consider just one vol-

ume of air, normally with an homogeneous temperature, air pressure, and contami-

nant concentration. Multi–zone models consider more than one zone (or nodes), which

are connected by airflow paths. Using these two approaches, the average pollutant

concentrations of a whole building, or each zone, are predicted over time. Air flows

between each zone and the outdoor air are calculated using mass balance equations,

which are solved iteratively until the mass of air through the building is conserved at

each time-step. Finally, a CFD model can be used to analyse the distribution of a pollu-

tant within a room and identify flow directions, giving a greater level of spatial detail;

see Figure 2.16. Nevertheless, the time–cost of this type of simulation is higher, the

modelling is more complex and time-consuming, and it requires more computational

resources (Yang et al. , 2014).

Figure 2.16: Three different approaches to model the IAQ in a building. Left: Sin-

gle well-mixed models; Middle: multi–zone well-mixed models; Right: CFD model.

Each dot or node represents a well-mixed volume. Based on Axley (2007).

A single source can emit multiple pollutants (see S1 of Figure 2.17) and a pollutant

can be associated to multiple sources (see P2 of Figure 2.17).
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Figure 2.17: Source and species composition. Indoor sources, S, can account for one

or more pollutants emissions, P, also known as species.

An example of a simulation program capable of all this is CONTAM, a freely avail-

able multi–zone ventilation and pollutant transport model. The program is developed

by the National Institute of Standards and Technology (NIST) (Dols & Polidoro, 2015)

and has been validated by several studies of different building types and locations

(Ng et al. , 2012), and pollutants (Bastani et al. , 2012; Underhill et al. , 2018; Yu et al. ,

2015). A recent example of the use of CONTAM is provided by Underhill et al. (2018).

They modelled a low–income multi–family building using CONTAM to analyse the im-

pacts of retrofitting interventions on energy demand and indoor PM2.5 and NO2 con-

centrations. They designed multiple scenarios, using factorial design, by combining

different stages that the retrofit could undertake, different occupancy and indoor ac-

tivities, and seasons. Building elements were modelled using ASHRAE air leakage

data (ASHRAE 62.2, 2001). Pollutant sources included a gas stove, cooking activities,

infiltration, and indoor smoking for some scenarios. No heaters were included in the

models. Using this approach they found that the weatherisation programs alone do

not necessarily improve the quality of the indoor air, and when other elements are

added, such as ventilation improvements or filtration, occupant activities play an im-

portant role in the final outcome. Thus, to better understand the possible indoor air

quality in any occupied building, human behaviour must to be included in the mod-

els.

2.6 Modelling the housing stock

An understanding and evaluation of building performance at a large scale needs good

information and the definition of target indicators. The constant evolution in the num-

ber, composition, and characteristics of a building stock over time requires models

that allow the stock to be outlined and assessed according to certain indicators, and

the benefits, drawbacks and trade–offs of potential interventions to be tested before
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their implementation. This section presents the housing stock as an object of research,

the methods that are currently used to evaluate them, and some examples and appli-

cations.

Modelling a housing stock has many advantages. A robust model should be able

to estimate the baseline performance accurately so that it can be used to explore other

technical and economic outcomes, and to inform policymakers, the market, and aca-

demic researchers. It can also be used to estimate the impact of future climate change

on a stock of buildings and on occupants’ health and comfort.

Housing stock models (HSM) are generally categorised as top–down or bottom–

up, working at aggregated and disaggregated levels, respectively. Both methods can

be sub–categorised by their application of statistical (e.g. regression techniques) or

physical modelling methods (Kavgic et al. , 2010). For example, top–down models

might predict the changes in the energy demand or pollutant concentrations of houses

from changes in a number of factors, such as variations in energy price or weather

conditions, but they cannot explain those changes in detail. They are normally car-

ried out by fitting historical or time–series data at an aggregated level but are limited

to the given variables. New drivers, such as new technologies, require a new model.

Conversely, a bottom–up model might use empirical data from surveys, field mea-

surements and, in the absence of data, assumptions to describe each component of a

dwelling using a physical model. Thus, the model could be used to assess the impacts

of a new intervention policy on a metric from a change in the conditions of a compo-

nent, such as a U-value, or in a set of components by comparing building type A to

B.

Different techniques have been used to simplify the representation of stocks. The

UK has a 25 year history of building models to support policy development and so

it is used for comparison herein. Its models of dwelling energy and airflow systems

are summarised by Sousa et al. (2017). The majority of UK Housing stock energy

models (HSEMs) are bottom–up simplified steady–state models of physical phenom-

ena. Many suffer from over–simplification, a lack of model and data transparency, and

poor modularity Sousa et al. (2017). However, other recent models have applied ad-

vanced sampling methods that generate distributions of predictions and quantify the

uncertainty in both inputs and outputs, and use global sensitivity analyses to identify

key drivers that can be targeted for remediation or by future field surveys Das et al.

(2014); Jones et al. (2015).

Stock models have shown to be useful and informative, but uncertainties still exist

in their development process and the information used to inform the models, which

may limit their usefulness. Booth et al. (2012) identified three sources of uncertainties

in HSEMs and some options for handling them. The first relates to heterogeneity
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within the building population. The second is due to random variability, or first–order

uncertainty, meaning that different outcomes are possible to obtain within the same

building. The third is due to parameter, or epistemic, uncertainty over their values, or

second–order uncertainty. A wide range of inputs are required to accurately model

heat and mass transfer in houses. However, this information may not exist or may

only exist at an aggregated level. Furthermore, the collation and processing of data

can be time consuming and can introduce systematic errors when they are not tracked.

In order to obtain a proper representation of a stock, and to limit the first–order

uncertainty, normally a large sample of buildings is required. This can involve an in-

tense use of time and computational resources to collect and process the data. In order

to address these issues, some countries have developed and used a set of archetypal

buildings to represent their stock, which in turn requires and depends on an extended

database (Mata et al. , 2014) of information on that stock.

Relevant parameters that describe the performance of a building or building stock

can be gathered either by in–situ measurements or by using building physics mod-

els to predict it. Modelling an individual building, or a housing stock, is a quicker

and more economic method of assessment when compared to in–situ measurements.

Furthermore, modelling a set of individual buildings representing a proportion of the

stock and applying a probabilistic distributions is preferred due to its capabilities in as-

sessing multiple scenarios, re–diversifying the results, and so handling second–order

uncertainty. Finally, an up–date or calibration process can be carried out to minimise

the error between the expected and real values by using the model results along with

newly available data or in–situ measurements (Balaras et al. , 2016; Booth et al. , 2012;

Cerezo et al. , 2017; Sokol et al. , 2017).

Many countries have applied bottom–up techniques, based on building physics

modelling, to develop their national representative buildings, also called archetypes or

building typologies, and have used them to predict energy performance and to calibrate

the model; see Persily et al. (2006), Sokol et al. (2017) and Ghiassi & Mahdavi (2017) for

example. Available data is used to classify the stock into groups sharing the same or

similar attributes. Data entries sharing similar or equal category are grouped or clus-

tered, and are used to describe the archetypes. After the classification, the attributes

of each group are used to define the archetypes. Each archetype then represents a

proportion of the stock, and so the larger the number of archetypes used, the more

representative of the stock they are and the more widespread are the conclusions de-

rived from the results. The outputs for each archetype are then extrapolated to a whole

stock of dwellings.
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2.6.1 The use of representative buildings in the literature

Archetypes have been widely used, for instance, to model the energy demand of exist-

ing buildings, as tools to assist during the transition to a more energy efficient stock,

for Life Cycle Assessment (LCA), and for indoor air quality assessment. One exam-

ple is the TABULA project whose aim was to create a set of reference buildings for 21

European countries in order to study the energy demand of their stocks and to assess

potential energy savings. Three methods were available to researchers: the develop-

ment of a real example by a group of experts; the selection of an averaged building

using statistical analysis; or the creation of a set of archetypes (Ballarini et al. , 2014).

The number of buildings required to represent each stock ranged from 11 for Hungary

to 62 for Germany.

Novikova et al. (2018) present the archetypes for Albania (N = 20), Montenegro

(N = 15) and Serbia (N = 24) developed by The TABULA project. The performance

of these buildings was assessed by modelling a current scenario, and then moder-

ate and advanced low–carbon high–thermal–comfort scenarios. Several assumptions

about the evolution of the existing and future housing stock were made to estimate the

energy demand by end–use and rank priorities for stakeholders at a national level.

Filogamo et al. (2014) present the development of 12 archetypes to represent the

Sicilian housing stock. The archetypes were then used as an evaluation tool for en-

ergy planning. The characterisation process involved (i) a statistical analysis of the

stock by relevant variables, (ii) classification of the stock into clusters by geometrical

properties, (iii) a definition of the archetypes’ properties, (iv) a further subdivision

of the clusters by other variables of interest, and (v) an allocation of the archetypes

by defined locations. After the stock was characterised, the energy demand of the

archetypes was calculated and extrapolated to the whole stock by the frequency of

occurrence of each archetype. Finally, the results were compared against the actual

energy demand during a specific year. The difference was around 8%, showing that

the method is a reliable tool for predicting energy use or for evaluating different en-

ergy saving scenarios in a large stock.

Mata et al. (2014) represented the French, German, Spanish and the UK buildings

stocks (residential and non–residential) for similar purposes. The results are similar

to those reported by Filogamo et al. (2014). Differences between the predicted en-

ergy demand of the whole stocks, extrapolated from the archetypes, and nationally

available statistics, were between -6% to +2%. The study also included a sensitivity

analysis of the house-related input variables that most affected the outcome, which

were ranked by their relative importance. The minimum indoor air temperature, U-

value, mechanical ventilation rate, and envelope surface area were ranked among the
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top four.

Oikonomou et al. (2012) studied overheating of the London housing stock using

15 representative buildings representing 76% of the stock at two locations within the

city. They modelled indoor temperatures under different scenarios and conditions.

The results showed the effect of the urban heat island on the stock (ranging between

1◦C and 4.4◦C) and that the most important determining factors are those related to

the fabric design rather than to the location of the building.

Persily et al. (2006) developed a set of 209 houses that represent 80.2% of the US

housing stock. National databases on residential buildings were analysed statistically

and used to describe the stock using a number of variables, such as location, range

of floor area, household size, year built, and their categories. Using categorical data

clustering, 848 archetypes were formed by combining one category from each vari-

able. This is also called factorial design. Then, each building was classified into one

archetype, thus forming a cluster. The weighting factor of each archetype corresponds

to the number of buildings fraction of the stock that it represents and those with the

highest number are the most common. Finally, 209 cells or archetypes were retained

that accounted for 80% of the stock.

The 209 US archetypes were then modelled by Persily et al. (2010) in CONTAM to pre-

dict a distribution of infiltration rates for the entire US housing stock; see Figure 2.18.

Nineteen cities were chosen to represent the US climates and reflect its variability

across the country. The archetypes’ weighting factors were used to account for the

total representation of the stock. Modelled distributions generally agreed well with

previously measured data, especially studies with larger samples and larger repre-

sentation. Some deviations were found in studies that included window opening or

different sampling criteria. This comparison shows the importance of having a good

representative sample and a wide coverage of scenarios for both building types and

environmental conditions, and the usefulness of the study for understanding building

behaviour.

Fazli & Stephens (2018) also used the US archetypes to predict the annual energy

demand attributable to HVAC operation, and indoor concentrations of several pollu-

tants; see Figures 2.19 and 2.20. The archetypes were modified to fit a single–zone

fully–mixed model in Building Energy Optimization Tool (BEopt) software and then

co–simulated using EnergyPlus. Predicted concentrations agreed relatively well

with historical data and were within the measured ranges reported in other studies

of US houses. The total energy consumption estimated by the model was only 2%

lower than the annual national estimates for 2009, although they ranged between -

65% and 6% depending on the type of fuel. This discrepancy reflects one of the limi-

tations of the study, which was that the fuel was chosen using the most common type
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Figure 2.18: Predicted distribution of averaged annual air changes per hour in de-

tached US houses attributable to air infiltration and air handling systems (Persily

et al. , 2010)

used in each region, and did not account for its variability. The same criteria was used

for some emission rates and activity schedules. Nevertheless, the authors acknowl-

edge these limitations arguing that the decisions were made to reduce computational

time. Discrete and constant whole–house emission rates, normalised by house volume

rather than by source, were used for some aldehydes and VOCs. For PM2.5, NO2, and

ultra–fine particles (UFP), only fixed transient emissions from cook stoves and cook-

ing events were used. Secondary emissions were shown to contribute less than 1% to

the modelled indoor PM2.5 concentrations; international modelling studies estimated

them to be between 0.4 and 3% in China and up to 6% in the USA (Fazli & Stephens,

2018).

2.7 Summary

This chapter has highlighted similarities and differences between the composition of

the outdoor air and the indoor air found in a dwelling stock. Exposures to high levels

of contaminants have been linked to increased risks of negative health outcomes, both

at national and international levels. Much of the Chilean studies have focused on the

outdoor air in polluted cities. Only in the past decades has there an increased literature

on indoor air quality, but generally limited to houses with children and elderly people,
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Figure 2.19: Top: Simulated distributions of the annual hourly mean of pollutants in

houses before population weighting (grey), and average values using the number of

published field studies N (orange).

Bottom: Infiltration factor FINF and Indoor/Outdoor I/O ratios.

The box bounds the inter–quartile range and the whiskers represent minimum and

maximum values (Fazli & Stephens, 2018).

and in low–income households. Recently, attention has turned to the use of polluting

household appliances. And, while these field studies have been useful for reporting

and describing the conditions in which vulnerable people may be living, their partic-

ularities limit the strengths and generalisation of the findings in other populations,

settings, and locations.

The review of national and international literature has shown high spatial and tem-

poral variability of pollutant concentrations and personal exposures. This is the result

of a combination of factors, such as the local and surrounding environment, the build-

ing design and use, and occupant behaviour. Cross sectional and longitudinal studies

carried out around the world emphasise the importance of the indoor air quality in

the home, as it is the place where the majority of people spend most of the time, and

where most exposures occur.
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Figure 2.20: Population–weighted average concentrations of modelled pollutants

over a year (Fazli & Stephens, 2018).

Different methods can be used to study air in a single dwelling and those of a

stock. They can be classified into two groups, direct and indirect. Direct methods in-

clude monitoring or field measurements using personal or stationary equipment, and

biomonitoring using biomarkers. Indirect methods comprise modelling and simula-

tion techniques. Overall, simulations are preferred to field studies. Nevertheless, they

rely on developed models that replicate building physics and dynamics. Therefore,

their predictions then differ from measured data. When sufficient high quality in-

put data is available, probabilistic modelling and sensitivity analysis methods can use

that data to better inform about the inputs, validate and calibrate predictions. Their

outputs have been used as tools to inform interested parties about the status quo and

hypothetical scenarios. By modelling factors that contribute to indoor air pollution

following a bottom–up approach enables the modeller to evaluate each factor individ-

ually, and to carry out a sensitivity analysis of the outputs to each of the inputs. This

method has proven to be beneficial, particularly in countries where data is limited. In

the Chilean context, indoor air modelling studies for its building stocks are scarce.

Although the indoor air in a stock of houses can be modelled with a high level

of accuracy, there are inevitably uncertainties in the predictions. Some are related to

the model used to represent the phenomenon, some to the heterogeneity of all pos-

sible scenarios and cases under investigation, and some to the random variation of

the inputs value, either due to lack of knowledge (epistemic uncertainty), or due to

the natural randomness of the input (aleatory variability). Ways of handling these

uncertainties include the use of clustering techniques, which reflect the variability be-

tween groups, and Monte–Carlo sampling methods that account for variability in the

descriptive parameters within groups.
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Finally, the way predictions are analysed, presented, and interpreted is of critical

importance to stakeholders and policy–makers. Therefore, the delivery of either sim-

ulations predictions or field measurements must account for uncertainties involved in

each process. They should not hide the spectrum of possible results or measured val-

ues, but show which values are more likely to occur and those that are extreme and,

therefore, unlikely.
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CHAPTER 3

Data analysis of the Chilean

housing stock

In Chapter 2 the importance of providing a better description of the indoor air in

houses and its variability in different stocks was identified. High levels of pollutants

are considered as a risk to public health and to the environment. Exposures in build-

ings, especially in houses, are of greater concern due to the time people spend there,

in which they are exposed to a mixture of known and unknown pollutants. Those

which are of concern should be given priority, well supported by scientific evidence,

and so necessary actions can be taken to better inform and protect the public. They

are known as criteria pollutants and herein considered as such.

In order to advance knowledge in this area, firstly, the uncertainty in indoor air

quality exposures in the stock has to be identified and acknowledged. A diagnostic

tool capable of describing a scenarios and contexts of interest and delivering a prob-

abilistic assessment can be an advantageous and cost–effective way to better guiding

and informing decision–making and research.

A wide range of inputs are required to accurately simulate mass transfer in houses.

However, this information may not exist, or may only exist exist at an aggregated

level. Furthermore, the collation and processing of data can be time consuming and

can introduce systematic errors when they are not tracked. Any tool used to model

a stock must be informed by the most reliable sources of information. Accordingly,

this chapter addresses this need in Section 3.1 by examining all available data on the

Chilean housing stock that could be used to inform a model. Furthermore, areas of

paucity are highlighted, thus informing future surveys and research. Then, in Sec-

tion 3.2, the information is combined to characterise the stock considering parameters

such as building type and geometry, age, size, occupancy, and potential sources of

pollution.
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3.1 Sources of data

This section identifies sources of data held by the various Ministries and Institutions of

the Chilean government, or relevant non–governmental organisations. They include

population scale censuses carried out at large intervals, a tri–annual socioeconomic

survey of a sample of the population, information on all newly constructed houses,

a nationwide network of measurements of indoor environment parameters made in

houses, and weather data that represents national climate variations.

Table 3.1: A comparison of variables and categories given by databases.

VARIABLE DATABASES

(Number of Categories)

Source Census 2002 Census 2012 Building Permits CASEN Survey 2015

Frequency (size) 10 years (15million) Monthly (712k) 2–3 years (70k)

Geometry

Type of house or No. of shared walls 2 4 4 4

Number of storeys 7 7 3 7

Floor Area 7 7 3 6

Location (rural/urban) 3 3 3 3

Construction material

External walls 6 5 12 6

Roof 9 6 14 8

Flooring 9 7 13 6

Partitions 7 7 9 7

Zones

Number of rooms 3 3 3 7

Number of bedrooms 3 3 7 3

Main use of rooms 3 7 7 7

Number of showers or bathrooms 3 7 7 3

Occupants

Total 3 3 7 3

Men 3 3 7 3

Women 3 3 7 3

Energy sources

Cooking fuel 8 8 7 8

Heating fuel 7 8 7 8

Hot water 7 8 7 8

3, included; x, not included. Integers describe the number of categories for variables considered useful for modelling purposes.

3.1.1 National Census

A census aims to record information about an entire population rather than a sample

of it, and so it is an accurate and valuable source of data. The Chilean Population

and Housing Census has been conducted approximately every 10 years since 1952;

Table 3.2 gives the total entries for each. The data is summarised for public dissemi-

nation by the National Institute of Statistics (INE) and the raw data is available upon
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request. Both the summary documents and the raw data from the 2002 and 2012 cen-

suses (INE, 2003, 2013) were analysed in this study.

Table 3.2: A comparison of variables and categories given by databases.

Census Occupied Dwellings Households People Omissions (%)

1952 1,091,446 n/a 5,932,995 6.1

1960 1,365,577 n/a 7,374,115 4.5

1970 1,724,951 1,715,937 8,884,768 7.5

1982 2,320,246 2,466,653 11,329,736 1.5

1992 3,111,392 3,293,779 13,348,401 1.9

2002 3,915,963 4,141,427 15,116,435 3.8

2012 4,924,926 5,035,637 16, 634,603 9.6

2017 5,804,375 5,651,637 17,574,003 n/a

Table 3.2 shows that the 2002 census has higher coverage than the 2012 census and

the percentage of omissions increased from 3.8% to 9.6%. There are also significant

differences in the methods and questionnaires used by the two censuses. Therefore, a

technical audit (INE, 2014) was carried out immediately after the 2012 census to anal-

yse the data and evaluate whether it achieved its aim. Several inconsistencies were

identified, such as significant changes in the gender ratio that was inconsistent with

birth and death rates, which suggested that the fieldwork was deficient and the data

is of limited use (INE, 2014). A further audit found the 2012 census to be unhelpful

in developing new public policies or for estimating the demand on public services.

To understand the evolution of the housing stock, it is important to able to compare

censuses to identify changes. However, the two censuses cannot be merged because of

differences in the categorical data recorded and types of questions included for some

variables. For example, in the 2012 census the categories for the type of building variable

were flat/apartment with elevator, flat/apartment without elevator, detached, attached (semi–

detached or terraced), or other, whereas the 2002 census used categories of flat/apartment

or house. Herein, the term apartment is used. Furthermore, the 2012 census asks fewer

questions about the number of rooms in a dwelling and their use. Consequently, the

2002 census is considered to be the more robust of the two. 1

The censuses ask a number of questions that help to characterise types of dwellings

and household and are useful for understanding the stock (see Table 3.1 and Sec-

1A new census was conducted in 2017 to correct the problems with the 2012 census, although the raw

data is not yet publically available. This new census used categories and questions that were similar to

those used in 2002 but in a abbreviated version and so the analyses done with these data may not be

possible to be replicated until a full version is available.
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tions 3.2) or for modelling it (see Chapter 4).

For each dwelling the number of rooms and their use, the presence of bathrooms

(including the number of showers) and a kitchen, the dwelling type (house, apartmen-

t/flat or other), and services present (boiler, water supply, sewage, heating system (only

in the 2012 census), photo–voltaic solar panels, and appliances, such as a cooker (with

fuel type), washing machine, or fridge) are all recorded. All Chilean censuses use the

de facto definition of residency so that all occupants of a dwelling are interviewed at

the time of the census. Occupants identified as guests are counted in their own house-

hold rather than the surveyed household. If a dwelling is empty, it is considered as

occupied but absent. In addition to the number of people, their gender and age, em-

ployment status, general health (including disabilities), and social–economic status

(using a scale ranging from one for the first decile or most vulnerable houses to 10 cor-

responding to the most wealthy) are also recorded. Regional information is included

so that the distribution of the population around the country can be determined thus

helping to government to provide adequate utilities and public services.

However, there are a number of parameters and metrics that are not surveyed by

the census that would be useful to know in order to construct basic steady–state en-

ergy demand models, similar to the UK’s Cambridge Housing Model (see Sousa et al.

(2017) and Jones et al. (2015) for more details). These include dwelling properties,

such as geometries (floor area and volume), window area and glazing type, year of

construction, number of floors, insulation level, internal temperature (perhaps indi-

cated by a thermostat setting), orientation, and heating system fuel. It would also

be useful to understand some the type and frequency of occupant activities, such as

appliance use, cooking, or tobacco consumption, to improve estimations of energy de-

mand, GHG emissions, IAQ, and occupant health risks. However, these parameters

may not fall within the scope of the census, and so further data sources are required.

3.1.2 Building Permits

More detailed building information is contained within the Building Permits’ datasets

(INE, 2016a). This data has been collected since 1929 in Santiago and since the 1980s

for the rest of the country. The raw dataset obtained for this study covers the period

between 1990 and 2015 and provides information on 3.1 m houses, approximately 54%

of the current national housing stock. Information about a proposed building is sub-

mitted to the local government (municipality) when requesting a construction permit.

It is then forwarded to the INE, which compiles and publishes summary statistics an-

nually.

Although this dataset provides additional information, some values of physical
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dimensions suggest that either the data gathering or the transcription processes intro-

duced errors. Therefore, the modeller must decide whether to exclude these data from

the study or to clean the data set. In this study, all the questionable data was removed

and the variables were re–coded so that they can be used in conjunction with other

databases; see Section 4.1. Approximately 2% of records were removed so that the

number of dwellings in the Santiago Metropolitan region after cleaning was 1,278,328,

which corresponds to 57% of the current housing stock.

3.1.3 National Socioeconomic Characterisation Survey

The National Socioeconomic Characterisation Survey (CASEN) is a cross–sectional

survey of education, employment, income, and health status that has been conducted

by interview every two or three years since 1987 by the Ministry of Social Develop-

ment. In 2015, the sample size was 83,887 households and 266,968 people living in

15 regions of the country, and is considered nationally representative (CASEN, 2015;

GHDx, 2018). Of particular interest is its reporting of dwellings (housing materials

and conditions), the household (family size, number of children, education, employ-

ment, family composition, hours worked, income, living conditions, cooking fuels,

and household air pollution), utilities (electricity, household heat, and water supply),

and occupant health (general health status and mobility, and prevalence of asthma,

chronic obstructive pulmonary disorder, cancers, and ischemic heart disease).

3.1.4 Use of Time national survey

The way people behave in a dwelling is usually more significant in determining en-

ergy demand than either the size of the dwelling or the household size (Palmer &

Cooper, 2013). Accordingly, it is important to understand how people use their time.

The Use of Time National Survey (ENUT) database is a nationwide cross–sectional

study. The data comprises a randomly sampled group of 15,312 dwellings using a

self–reported questionnaire. A limited number of activities and their duration during

one normal week and weekend day are recorded (INE, 2016b). However, personal

location is not recorded and must be assumed by an activity. For example, the average

time working people in the capital region spend at home is 14.5 hours (58.77% of the

day), the time in–transit or outside is 5.9 hours (2.9%) and the time at work is 8.7 hours

(35.38%). The survey only focusses on an activity and so the duration does not add up

to 24 hours and the percentages to 100%.

Longitudinal data is required to understand how personal activities vary through-

out a year and the determinant or explanatory variables that affect decisions. If the

season, location, and weather conditions are given, it is possible to describe occupant
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profiles more accurately and thus estimate more realistic exposures to pollutants and

their impacts on health. Therefore, in the short term, the cross–sectional ENUT data

must be adapted to infer longitudinal activity patterns that can be used by modellers

(McCurdy & Graham, 2003).

3.1.5 National Housing Monitoring Network

The Ministry of Housing, known colloquially as the Ministerio de Vivienda y Urban-

ismo (MINVU), is running an ongoing program of in–situ indoor and outdoor environ-

ment monitoring in houses, which started in May 2017, known as the National Hous-

ing Monitoring Network or colloquially as the Red Nacional de Monitoreo de Vivien-

das (RENAM) (RENAM, 2018). RENAM has installed real–time sensors in 299 houses

(all concurrently) located in the north (N = 28), south (N = 60) and centre (N = 211) of

the country in five cities. Most (N = 150) are located in the metropolitan and capital

region of Santiago de Chile, which is inhabited by 41% of the population and whose

stock is estimated to comprise 2.4 million houses (INE, 2003). The monitoring is pre-

ceded by a survey that provides information about the location (region, city, and com-

mune), the dwelling (type, construction year, storeys, floor area, orientation, envelope

materials, number of windows, glazing properties, and heating system), the house-

holders (income, energy bills, health characteristics issues), and behaviours (heating

months, weekday and weekend occupancy, smoking). The platform is accessible on-

line (RENAM, 2018) to registered users and contains the location of each sensor and

all surveyed and measured data.

Three different devices are used. The first is the Netatmo weather station (Netatmo,

2018), which comprises indoor and outdoor modules. Both record air temperature

and relative humidity, but the indoor module also measures sound level, and CO2;

see Table 3.3. The majority of sensors are located in the living room, although some

have been placed in a bedroom, and measurements are time–averaged over 30 minute

periods. The second is a Plantower (Yong, 2016) which is capable of measuring the

concentration of particles in air with a diameter of 0.3–2.5 µm (known as PM2.5), and

the third is a Wenu Work smart meter that records the electricity demand in houses

that use electric heaters exclusively (N= 50).

There are known limitations of consumer–grade IAQ monitors; see Singer & Delp

(2018). All of the sensors require annual calibration. Most optical CO2 sensors are

prone to zero–drift and so the Netatmo periodically self–calibrates when the measured

concentration is both low and steady, and this assumes minimum to be predefined

ambient concentration. Therefore, its readings are imprecise and heavily dependent

on the differences between the actual ambient, defined calibration, and measured con-



CHAPTER 3. Data Sources 53

Table 3.3: Monitoring network: data and metrics.

Variable Measurement range Data unit Sensor accuracy

Indoor temperature 0 to 50 ◦C ±0.3

Outdoor temperature -40 to 50 ◦C ± 0.3

Indoor relative humidity 0 to 100 % ±3

Outdoor relative humidity 0 to 100 % ±3

Sound pressure level 35 to 120 dB -

Indoor CO2 0 to 5,000 ppm ±50

Indoor PM2.5 0 to 500 µg/m3 ±10

centrations. There are no studies quantifying the deterioration in accuracy of low–cost

PM2.5 sensors over time, but their precision depends on the difference between the size

fractions they are sensitive to and those emitted by a source. This is compounded by

differences in the refractive index of particles from varying sources, and so for accu-

rate measurements a source must be identified and a calibration factor applied, which

can range from 0.016 to 12 (Fischer & Koshland, 2007; O’Leary et al. , 2019a). Therefore,

the outputs of these devices can be considered indicative rather than exact (Jones et al.

, 2018).

The sample is randomly selected but cannot be said to be statistically representa-

tive of the wider housing stock, but statistical methods can be applied to generalise

findings. The data is expected to identify broad trends in indoor environment quality

and highlight areas worthy of more detailed investigations. Furthermore, a top–down

modelling approach could use the categorical survey data to identify trends in specific

groups of dwellings defined by their type, geography, or the socioeconomic status of

their occupants.

3.1.6 Airtightness

The permeability of a dwelling’s thermal envelope is conventionally assessed using

a blower–door, which artificially and systematically increases the difference between

the internal and external air pressures ∆P (Pa) and measures the airflow rate through

adventitious openings located in it V̇ (m3/h); see Jones et al. (2015). These parameters

are related by a power law:

V̇ = C{∆P}n (3.1.1)

where C (m3 h−1 Pa−b) is a flow coefficient and n is a flow exponent. It is common to

report V̇ at 50 Pa, interpolated from measurements, when it is known as an air leakage
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rate, V̇50 (m3/h). In order to compare the air leakage rates in different dwellings,

it is normalised by a common parameter, such as the thermal envelope area when

it becomes an Air Permeability, Q50 (m3 h−1 m−2), or the building’s volume to give

N50 (h−1). These values of airtightness are often used to infer an infiltration rate, the

rate unconditioned ambient air passes through adventitious openings located in the

thermal envelope of a dwelling.

Measurements of airtightness are not a legal requirement in Chile and there is no

a database equivalent to that compiled in the U.S. (Chan et al. , 2013), which contains

more than 160,000 measurements. The most significant number of measurements have

been made in 187 dwellings built in between 2007 and 2010 (Citec UBB & Decon UC,

2013), immediately after the implementation of national regulation of fabric thermal

performance (MINVU, 2007), and so this sample was selected to be statistically repre-

sentative of them. Dwellings were selected by common parameters, such as the year

of construction, the main structural material, and the dwelling type. For reference, the

frequency of Q50 values is presented in Figure 3.1, which shows that 20% of the tested

dwellings are over the UK limit of 10 m3 h−1 m−2.

Several studies (Murray & Burmaster, 1995; Persily et al. , 2010; Shi et al. , 2015),

find good correlations between N50 values measured in a housing stock and a loga-

rithmic function. Figure 3.1 shows a positively skewed frequency distribution (skew-

ness=2.62) with a log–normal probability density function PDF fitted to it with a mean

of µ =1.8 m3 h−1 m−2 and a standard deviation σ =0.653 m3 h−1 m−2 as estimated pa-

rameters; see Figure 3.1. Similar process is carried out with N50 values, giving a µ and

σ of 6.24 h−1 and 0.85 h−1 respectively.

This project has access to 65 measurements of air permeability made in Santiago,

where Q50 and n are reported with dwelling geometry and structural materials. Data

is aggregated by the construction materials and the building type in Figures 3.2b

and 3.2a, respectively.

Because Q50 values do not meet the normality assumption, a Kruskal–Wallis test

is carried out to test similarity in the means when data is grouped by categorical

variables. This is a non–parametric test similar to an ANOVA test for normal data,

which tests whether the difference between groups is statistically significant; see Sec-

tion 7.6 about the interpretation of p–values. According to the test, Q50s show sig-

nificant differences by the housing type (p = 2.54e− 06) and by the main structural

material of the envelope (p = 6.39e − 11). Multiple comparisons of the mean ranks

between groups (a post–hoc procedure after Kruskal–Wallis test, where difference cor-

responds to the difference between the mean ranks of two groups irrespective of the

measured values) showed that the mean rank of Q50 for terraced houses was signifi-

cantly lower than for both detached houses (mean ranks difference of 50.1) and semi–
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Figure 3.1: 187 Blower Door tests. The red line in the top–left and top–right plots

correspond to a lognormal distribution that best fit the data. Red dots in the plots at

the bottom correspond to the empirical data. P–P correlation coefficient value for the

lognormal distribution R2 is 0.973. Analysis and plots made by the author using data

retrieved from Citec UBB & Decon UC (2013).

detached houses (difference of 40.8). When considering the main structural material of

the envelope, masonry has a significantly higher Q50 than concrete (difference of 33.7)

but is lower than timber (difference of 67.3). Q50 was significantly higher in timber

houses than mixed structures (difference of 49.6) and concrete (difference of 101.0), and

mixed structures with concrete (difference of 51.4). Due to the inequality in the sample

sizes of the groups, the critical difference (α = 0.05) was calculated for each compar-

ison individually. This information provides some empirical data on the difference

in air leakage for new houses and some insights into its relationship with structural

materials and house types.

Infiltration cannot be assumed to be a constant regardless of time of year and age of

the building since it varies with pressure difference and ageing of the envelope (Chan
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(a) (b)

Figure 3.2: Q50 measured in 187 Chilean houses aggregated by (a) building type, and

(b) main structural material. The whiskers represent the 5th and 95th percentiles, and

the dots show outliers. The boxes bound the interquartile–range, and the bold lines

are the 50th percentiles or median (Citec UBB & Decon UC, 2013).

et al. , 2015; Liddament, 1986; Persily et al. , 2010), and so these models need to account

for this variation. To date, there has good agreement on the best distribution of the

airflow exponent n in Eq. 3.1.1. Flow exponents from measurements in 1,290 houses

located in North America, New Zealand, the UK and the Netherlands, are found to

be normally distributed with a mean of 0.65, although no standard deviation is given

(Liddament, 1986). In Sherman & Dickerhoff (1998) (N = 1,942), n values are normally

distributed, N(0.651, 0.077). Similarly, Chan et al. (2013) find N(0.646,0.057), but are

only for detached houses in the USA. Values close to 0.5 are associated with fully

developed turbulent flow and 1 with laminar flow.

Figure 3.3 shows the distribution of n for the 65 Chilean houses compared to those

of Chan et al. (2013) and Sherman & Dickerhoff (1998). Lower values of n might

indicate that infiltration in the Chilean houses is mainly through large sharp edged

openings that cause turbulent airflow.

A second dataset comprises 58 social houses located in the centre–south and ex-

treme south of the country where space heating is often required (Fissore A, 2013).

These houses are a statistically representative sample of 15,000 low–income and unin-

sulated houses that received insulation and improved airtightness interventions from

an ongoing weatherisation program that started in 2009 and is subsidised by the

Chilean Government. Only N50 values were reported and Figure 3.4 shows the changes

in each house and their variability. Most houses have a significantly reduced N50 after

the intervention, and the more substantial reductions are seen in the highest leak-

age homes (see data points below the line of Figure 3.4–right), Mdn=36.0h−1; mean
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Figure 3.3: Density distributions of airflow exponents, n, for Blower Door tests of

Chilean houses (N = 65), red line, and U.S. dwellings reported by Chan et al. (2013)

(N = 134, 000), green line, and Sherman & Dickerhoff (1998) (N = 1, 942), blue line.

µ̃=41.9 h−1; σ=23.9 h−1) than before it (Mdn=39.0h−1; µ̃=51.2h−1, σ=34.6h−1). When

performing a sign test, the results show that the difference between the medians of the

two groups is statistically significant: Z(58) = 3.2− 2.54; p ≤ 0.05; Cohen’s effect size

index, δ = 0.39 (small).

These are very small samples, which do not capture the variability of N50 across

the stock. Infiltration is responsible for a significant proportion of the energy demands

and GHG emissions of national housing stocks (Jones et al. , 2015). Therefore, future

field work is required to develop a database that can be used to identify construction

quality, and infiltration’s contribution to Chilean national energy demand and GHG

emissions.

3.1.7 Weather

Chile has a continental territory with a north to south length of 4,300Km and an aver-

age width of 177 km. It is bounded on the West by the Pacific Ocean and on the East

by the Andes mountain range, and so elevations range from sea level to 6.8 km. The

mean annual air temperature varies by up to 6◦C laterally and by more than 15◦C lon-

gitudinally, and differences in relative humidity are similarly well defined (Castillo,

2001).

Chile is divided into 15 regions located in 9 different climate zones (INN, 2016).

Weather data for Chile is available from three sources. The first is the American So-
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Figure 3.4: Changes in permeability after the weatherisation program (Fissore A,

2013). Left: Box plots showing the low values, first quartile, median, third quartile,

high values and outliers of N50 before and after the intervention. Right: Paired in-

formation. Dashed red line indicates no difference. Figures by Author using data

retrieved from Fissore A (2013).

ciety of Heating, Refrigerating and Air–Conditioning Engineers (ASHRAE) Interna-

tional Weather for Energy Calculation version 2.0 (IWEC2) database (ASHRAE, 2018),

which provides weather data for 14 locations in Chile. The data is averaged over 12 to

25 years giving wind speed and direction, sky cover, visibility, dry–bulb temperature,

dew–point temperature, atmospheric pressure, and liquid precipitation at hourly in-

tervals. A second database is provided by the Department of Meteorology of Chile

(DMC), which contains climate averaged data from 24 weather stations for a 30–year

period between 1970 and 2000, organised by month and year. A third source is the Me-

teonorm meteorological database that uses Meteonorm software (Meteonorm, 2017) to

stochastically generate time–series data for typical years. It does this by interpolating

from long term monthly means for a location by combining a database of ground sta-

tion measurements with those from five geostationary satellites. The root mean square

error for ambient air temperatures is 1.2◦C (Meteotest, 2017).

There are currently no weather files that can be used to predict future climate

change scenarios, although guidance could be sought elsewhere; for example, the fu-

ture weather files of the Chartered Institution of Building Services Engineers (CIBSE,

2014).
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3.2 Stock characterisation

This section draws on the data source described in Section 3.1 and uses it to charac-

terise the housing stock and its occupants.

3.2.1 Dwelling quantity, type, and geometry

The Chilean housing stock comprises 6.5 million residential units, where 79.5% are

houses and 17.5% are apartments (INE, 2018b). The remaining 3% includes mobile

homes, uninsulated timber Mediaguas used for temporary or emergency accommo-

dation, and self–constructed (using local materials) Ranchos. The characteristics of

the stock vary according to the local weather conditions and the availability and the

affordability of building materials. This variation is considerable because of Chile’s

varying geography (see Section 3.1.7).

The best level of detail on dwelling type is given by the Building Permit dataset; see

Table 3.1 and Figure 3.5. It registers the new houses as (i) detached, (ii) semi–detached

or (iii) terrace, and the apartments according to the number of building blocks (from

1 to 9 or more). As both semi–detached and end–terrace houses share one wall with

the adjacent, they can be considered as belonging to the same class. Therefore, us-

ing this data source, three categories can be considered according to the number of

attachments or shared walls: (i) detached, (ii) semi–detached and end-terrace, and

(iii) mid–terrace. None of the databases include information about the position of a

dwelling within a terraced block of houses (as end or mid-terrace) or the number of

houses in a block. Therefore, the proportions of end– and mid–terrace buildings are

estimated according to the probability of obtaining a given housing type. For exam-

ple, the maximum number of houses in a block is arbitrarily limited to 20, and when

a terrace contains 3 houses, 1 is classed as terraced whereas the other 2 houses are

classed as semi–detached.

3.2.2 Year of construction

In Chile, the age of buildings is currently undocumented. An estimation can be made

using a Building Permit date (see Table 3.4), which is the date when the building

was approved for construction, rather than the date of actual construction. This is

an area of epistemic uncertainty and future surveys should aim to estimate the age of

dwellings.

The envelope structure and design of a house affects its thermal performance and

airtightness.
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Figure 3.5: Categories of type of house given by three sources of data INE (2003, 2013,

2016a).

Major changes in the building code for new houses started in 2000. Dwellings

built before 2000 had no thermal requirements and are generally considered as non–

insulated, although some may have been. Dwellings designed and approved for con-

struction between 2000 and 2007 are required to meet a maximum thermal transmit-

tance for the roof, but not for the walls and windows. After 2007, building codes were

upgraded and all new dwellings must meet a maximum thermal transmittance for all

envelope components in contact with the ambient air. The requirement varies along

the length of the country depending on the number of heating degree days. New

changes to the building codes are about to be adopted, and so the database will need

to be updated in the near future to include this stock and new archetypes may be

required.

Accordingly, the housing stock here is divided into two age–related groups: those

constructed before 2008 when little or no insulation was required by law, and those

built thereafter with high levels of insulation; see Table 3.4. Houses constructed before

2008 that have been weatherised are not included. The Building Permits are used to

obtain the proportion of the stock belonging to each group because they contain the

total number of dwellings registered per year (INE, 2016a).

Table 3.4: Proportion of dwellings by construction period (INE, 2016a).

Construction period Number of Dwellings Percentage

Before 2008 2,057,142 66.2%

From 2008 1,052,429 33.7%

Total 3,122,950 100%
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3.2.3 Number of rooms and floor areas

Floor area is a key parameter and an independent variable with relevance to both en-

ergy and mass transfer models. Building Permits register the total floor area for every

new dwelling, and the CASEN survey categorises the useful floor area into six bands.

Buildings Permits (INE, 2016a) issued between 1990–2015 show that the average floor

area of new dwellings has increased by around 40% over the last 27 years from 57 m2

in 1990 to 82 m2 in 2015; see Figure 3.6. This is important because floor area is often

correlated with energy demand (Palmer & Cooper, 2013), and suggests an increase

in energy demand and carbon emissions attributable to the housing stock over the

same period. However, the national mean floor area of µ = 65.5 m2 (σ = 46.1 m2) is

modest when compared to those of many other nations; see Figure 3.7. The relation-

ship between house size and the number of rooms has remained relatively stable over

time, but has started to increase over the past decade; see Figure 3.8. Therefore, the

energy demand and carbon emissions of the housing stock are very likely to continue

to increase in the future if houses sizes approach international norms, unless steps are

taken to mitigate them.

Figure 3.6: Mean floor area of Chilean houses over time (INE, 2016a).

3.2.4 Occupancy

The number of occupants, their location and activities are required when modelling

IAQ and energy demands to correctly allocate pollutant sources and sinks, determine

occupant exposures, and to determine the demand of services. The mean number of

occupants per dwelling is 3.64 persons (INE, 2003), which is high when compared
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Figure 3.7: Mean floor area of houses by country. Chilean value for houses built

between 1990 and 2016 (INE (2016a); Eurostat, 2012; Moura et al., 2015).

*, median value.
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Figure 3.8: Average floor area of Chilean dwellings by number of rooms over time in

houses with up to 7 rooms, accounting for 98% of the dataset (INE, 2003, 2016a).

Figure 3.9: Average floor area of Chilean dwellings by number of rooms (top) and its

proportion of the dwelling stock (bottom), considering dwellings with up to 7 rooms

(accounts for 98% of the dataset). Data: (INE, 2003, 2016a)
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to the UK’s mean of 2.35 occupants per dwelling. The mean occupancy density in

Chilean dwellings is 18.2 m2 per person.

The total number of rooms in a dwelling is commonly used to determine over-

crowding. In Chile, overcrowding is defined as more than 2.4 persons per bedroom,

and occurs in 11% of dwellings surveyed by the 2015 CASEN, in 15% in 2002 census,

and 7% in 2017 census; see Table 3.5. The European Union, the UK Government, and

the American Crowding Index deem a house to be overcrowded when there is more

than 1 person per room, where a room is defined as any enclosed space with habitable

conditions (Eurostat, 2012), and thus excludes sanitary rooms and circulation spaces.

Using this metric, overcrowding occurs in 19.6% of Chilean dwellings that contain

only one household, which is high when compared to 3% in England, where English

households comprise approximately 80% of all UK households (Wilson and Barton,

2018).

Some dwellings are unoccupied, either temporarily (unfurnished and ready for

sale or rent or furnished but occupants are absent) or permanently (abandoned). It

is important to understand the type of occupancy of a dwelling because it affects its

energy demand and the health of its occupants. However, only the total number of

houses corresponding to each occupancy types is reported by the censuses (see Section

3.1.1) and so this information is not available for individual dwellings.

Table 3.5: Change in household size, bedrooms, and room density over time in Chile

reported by census data. n.i.: no information. *: see calculation criteria in Section 3.2.4

(page 61).

Census
Household size Bedrooms per dwelling Room density or crowding*

[People per dwelling] [People per bedroom]

1952 5.4 n.i. n.i.

1960 5.4 n.i. n.i.

1970 5.1 n.i. n.i.

1982 4.6 3.2 1.4

1992 4.3 2.5 1.7

2002 3.6 2.2 1.6
.

3.2.5 Cooking and heating

The combustion of fuels used for heating and cooking are significant contributors

to the total energy demand of houses and their carbon emissions. The most com-

mon heating systems are stoves, where 45% are fuelled by wood, 25% by bottled

LPG, propane, and butane gases, and 10% by kerosene and paraffin; see Figure 3.10
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(CASEN, 2015). This diversity is not found in the UK where 90% of dwellings have

a gas fired central heating system with a mean efficiency of 82.5% (Sousa et al., 2017;

Jones et al., 2015).

Heating and cooking systems, and the cooking of foods, are known sources of pol-

lutants associated with elevated incidences of asthma, wheeze, airway obstruction and

lung cancer (Borsboom et al. , 2016). The most common cooking fuels used in Chilean

houses are bottled gas (86%) and wood (13%).

Figure 3.10: Types of fuel used by activity (CASEN, 2015).

3.2.6 Construction and finishing materials

Information on predominant structural materials used in walls, roofs and flooring are

reported in the censuses. The prevalence, availability, and affordability of materials

varies by region; for example, concrete block construction is more common in the

north and centre of the country, brick work is most frequently used in the centre and

centre–south, and wood is most commonly used in the south and extreme south (INE,

2003). More recently, new construction typologies and technologies have been increas-

ingly incorporated into the stock, and traditional or vernacular architecture has given

way to light–weight and mixed systems. More detailed information is given in the

Building Permits, which describes up to three types of finishing materials per building

element and their percentage of use. This information can be used to inform energy

and mass transfer models.
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3.3 Summary

In this chapter, a range of data sources are identified that give an understanding of the

Chilean housing stock, especially about the parameters relevant to indoor air quality

and energy demand.

The analysis highlights a paucity of information about categorical descriptors, such

as dwelling ages and types, ownership, year of construction, and heating and cooking

fuels. There is also insufficient granularity in physical, such as dwelling floor area and

volume, window area and glazing type, air permeability, and number of floors, insu-

lation level, and orientation. Very little is known about occupant behaviours, such as

occupancy patterns, appliance use, cooking, indoor air temperatures and thermostat

settings, or tobacco consumption.

There is always uncertainty in data. Therefore, when using this for modelling, a

stochastic approach is required to capture both stock variability and parametric un-

certainty. To do so, this study followed the method of the archetypes, derived from

the data processing of the sources of information presented in this Chapter. The next

chapter illustrates the process to develop the national archetypes as a generic tool that

can be used for different studies, and Chapter 5 applies them to a physical model in

order to predict the air quality of the Chilean housing stock.

The implications of the use of this information on the models is discussed in detail

in Section 7.3.
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CHAPTER 4

Representative Archetypes

It is quicker and cheaper to model the performance of a stock of dwellings than it is to

measure it in situ. Furthermore, a model can be used to consider the consequences

of future changes to the stock. However, the size and diversity of large stocks of

dwellings often makes modelling individual buildings impractical, and so they can

be grouped together by common factors into archetypes to make the dataset and the

number of models more manageable. The unique properties of each dwelling are

replaced by representative values when they are allocated to an archetype, which in-

creases uncertainty in the stock model and makes tracking data sources important.

The performance of the whole stock is then considered by extrapolation (Sousa et al. ,

2017). The common factors used to create archetypes are determined by the model’s

outputs or performance indicators derived from them. The change in the size, com-

position, and characteristics of the stock over time requires archetypes that can be

updated quickly and easily.

The information given in Chapter 3 is used here to apply bottom–up techniques to

develop a set of nationally representative archetypal dwellings for Chile and to model

them using building physics models (see Chapter 5). These archetypes are commonly

developed using clustering techniques that group dwellings so that the houses in each

cell or cluster are more similar to each other than those in other groups. For example,

the English housing stock (a subset of the UK stock) of 22.3 million dwellings is rep-

resented by over 14,000 archetypes using a statistically representative cross sectional

survey of the stock and a clustering method. Each archetype is weighted where the

sum of all weights is the number of dwellings in the stock. It has been applied by

seven independent models (Sousa et al. , 2017) to investigate energy related research

questions, and recently reduced to just over 1000 archetypes by considering 8 parame-

ters of interest and used to investigate housing stock decarbonisation strategies (Sousa

et al. , 2018). Similarly, over 200 archetypes are used to represent 80% of the US housing

stock (Persily et al. , 2006) by considering 10 parameters of interest, and 593 archetypes
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have been developed for four European countries (Mata et al. , 2014). Further examples

are given in Chapter 2. However, the location data for surveyed houses is currently

too aggregated to apply geographic information system (GIS) techniques, such as those

employed by Ghiassi & Mahdavi (2017).

In this Chapter, current information about the Chilean housing stock is analysed

in order to develop and define a set of archetypal dwellings (see Sections 4.1 to 4.3)

and their attributes to inform simulations and estimate uncertainty in contaminant

exposures across the stock (see Section 4.4 onwards). Figure 4.1 shows how gathered

background information is synthesised to inform model inputs. Inputs are defined using

available data, and when data is either limited or non–existent, assumptions are defined

probabilistically so that uncertainty in them is explored by a model.

Figure 4.1: How the model used in this study combines the knowledge and estimates

of the stock to represent and simulate the status quo.

4.1 Method

This section uses the terminology of Persily et al. (2006) and broadly follows the meth-

ods of Persily et al. (2006), Mata et al. (2014) and Shi et al. (2015). The majority of the

data given in Chapter 3 are either discrete (number of rooms) or categorical (building

type), and so a set of archetypes are developed by the aggregation of relevant charac-

teristics, known as factors. Each factor may have a number of discrete levels (number

of rooms, storeys) or may be continuous (total floor area). By allowing some factors

to be vary within known limits, the uncertainty in the dataset can be assessed when

simulating the models using an appropriate sampling method, such as Monte Carlo;

see (Das et al. , 2014). Factors are chosen according to their influence on both indoor air

pollution concentrations and the energy demand of a dwelling, and by their availabil-

ity in the dataset. Predominant factor levels or values in the housing stock are selected

to aggregate the data entries into clusters, or cells, where houses share common charac-
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teristics. Some factor values occur more frequently than others in the dataset causing

the formation of larger cells.

When selecting data sources, those considered reliable in Chapter 3 are given prior-

ity. For the purpose of this study, the census entries are selected by occupancy (occu-

pied houses only), number of households per house (equal to 1), type of house (houses

and flats/apartments) and maximum number of occupants and enclosed areas, arbi-

trarily set to 7 and 8, respectively. By recoding the variables they are easier to control

and missing data can be removed, including houses with absent occupants, empty

houses and cases with more than 1 home per building.

Data entries from the 2002 census and Building Permits were aggregated and used

to develop the archetypes. Key descriptive data from the 2002 census data, dwelling

geometry (2 levels: apartment or house), number of zones (8 levels), and number of

bedrooms (levels 0–7 for houses and 0–6 for apartments, whereby 0 is a studio), were

used to create 120 cells in a factorial manner, comprising 8× 8 = 64 for houses and

8× 7 = 56 for apartments. The same method is applied to Building Permits to de-

termine their type (3 house levels: detached, semi–detached, terraced; 1 apartment level),

construction period (2 levels: ≤2007 and >2007), and building size (8 levels: number

of zones) were used to create a total of 4×2×8=64 cells.

Following the aggregation of both databases, the census data is given priority be-

cause it is a more comprehensive data source (see Section 3.1.1). This is done by

weighting the aggregated data by the dwelling type and construction period so that

(64× 3× 2) + (56× 1× 2) = 496 cells are defined; see Figure 4.2. The analysis is per-

formed using bespoke R Version 3.5.0 code (R Core Team, 2018) and the aggregate

and subset functions.

The building size parameter is contained in both datasets and, although they each

use different descriptive factors, it can be used to unify them. Here, the 2002 census

gives the number of rooms whereas the Buildings Permit gives the total floor area. The

number of rooms is used as an estimator of the building size; see Table 4.6 and Table A.2

in Appendix A for the values assigned to each number of rooms. Means and median

values found within each cell are used to define levels. The number of bedrooms, living

rooms, and kitchen were assigned according to the total number of rooms. The number

of floors, occupants (from 1 to 5), and bathrooms were selected from the mode. Table 4.2

presents the variables assigned to the first 29 archetypes.
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Figure 4.2: Hierarchy tree. The disaggregation of the Chilean stock into cells showing

factors considered (left column) and source of information (right column).
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The 496 cells can be used to classify the stock as dwelling archetypes and weighted

using the number of dwellings in each cell (see figure 4.2). However, this is a signif-

icant number of archetypes, which has limitations on computational runtime. Sousa

et al. (2018) use a high performance computer to simulate their 1,000 archetypes,

whereas Persily et al. (2010) and Mata et al. (2014) only use a few hundred archetypes

making simulation computationally less expensive. Therefore, it may be convenient

to use fewer archetypes and acknowledge that the loss of resolution.

To estimate proportion of the stock represented by each archetype, Null Hypoth-

esis Significance Testing is used. The differences in observed frequencies between

two archetypes were compared using the chi–square (χ2) test of statistical significance

(Field, 2013). Emphasis is placed on the magnitude of the differences to represent a

set of archetypes. This method allows each archetype to be removed from the whole

set, by comparing the largest –the archetype with the highest observed frequency– to

other archetypes in a descending order of frequency. When comparisons made against

the largest archetype frequency were of a practically relevant effect size (as denoted

by classified thresholds), all comparisons made prior were used to represent the over-

all stock. Hence, less importance was placed on the statistical significance. The effect

size, φ, is given by (Kim, 2017)

φ =

√
χ2

N
(4.1.1)

where N is the total number of observations considered for each statistical comparison.

Thresholds can be used to interpret the magnitude of the effect size and are given by

Ferguson (2009) as small (φ ≤ 0.2), moderate (φ ≤ 0.5), or strong (φ ≤ 0.8). Effect sizes

of φ < 0.2 are considered to be negligible (meaning no practically relevant difference),

and greater than 0.5 are considered to be relevant to this study. Each comparison with

the (χ2) test does not require the testing of the same hypothesis or data repeatedly,

and so Bonferroni corrections were not applied to control the Type I error rate across

multiple analyses (Cabin & Mitchell, 2000).

4.2 Definition and selection of the archetypes

Figure 4.3 shows the number of archetypes required to represent each centile of the

building stock and the number of required to meet each effect size classification. The

archetypes are ranked by their observed frequency in descending order, beginning

with the most common archetype, which is used as a reference for comparison. Fig-

ure 4.3 shows that a set of 496 archetypes can be used to represent the entire national

housing stock and 90 archetypes represent 95% of the stock (marked by the blue data
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point), indicating a large number of small outlier archetypes. A χ2 test is used to com-

pare the change in effect size between the most common archetype and each lower

ranked archetype. Figure 4.3 shows that sets of 2, 8, and 29 archetypes, represent

13%, 35% and 70% of the entire stock, respectively (data points in orange), and corre-

spond to the effect size classifications defined in Section 4.1 of small, moderate, and

strong; see Table 4.1. The gradient of the line shows a law of diminishing returns as

archetypes with ever decreasing weights are added because they do not significantly

increase the proportion of the building stock represented. Therefore, Figure 4.3 can

be used to choose a number of archetypes that balances the proportion of the stock

represented with the time taken to create and simulate models.

Figure 4.3: Cumulative frequency distribution of percentage of the housing stock

represented by archetypes. Orange points, effect size thresholds; Blue point, 90th

centile.

Table 4.1: Classification of archetype effect sizes. An effect size of moderate or greater

than 0.5 was considered relevant to this study.

Ferguson’s Effect Number of archetypes Percentage of the stock

Size thresholds retained represented

Small (φ ≤ 0.20) 2 12.80%

Moderate (φ ≤ 0.50) 8 35.20%

Strong (φ ≤ 0.80) 29 69.80%
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4.3 Description of archetypes

This section presents the model’s input parameters needed to inform the archetypes

for simulating the housing stock. Data inputs are classified into four sections: Sec-

tion 4.4 presents parameters related to the environment and the location of the houses.

Section 4.5 presents the physical parameters, such as the envelope air permeability

and airflow elements. Section 4.6 gives the parameters related to the occupancy of the

houses, and Section 4.7 those to the indoor pollutants.

Table 4.2 shows key factors and levels for the first 29 archetypes, which represent a

strong effect size. This group comprises 15 single–story detached houses and 14 semi–

detached houses (6 are two–story) with floor areas of 30–139m2. Further information

is given in Table A.1 in Appendix A. It also shows that the archetype with the highest

weighting represents a 6.8% of the stock. It is a detached single–storey uninsulated

house, constructed from clay bricks when located in central cities of the country, with

prefabricated panels in northern cities, and with wooden panels when in southern

cities. It has two bedrooms, two bathrooms and a separate kitchen. Its heating and

cooking fuel is generally gas. Its mean household is 3.4 persons whose average so-

cioeconomic status ranges from the 2nd decile (by population) in the centre–south of

Chile to the 7th decile in the capital region.

Each archetype is further described by the predominant structural materials used

in walls, roofs and flooring, cooking fuel and socioeconomic status, variables that

were assigned according to the observed frequency in each region, and so the re–

diversification of each of them over the stock can be used in the simulations. Data is

presented in Appendix A, Table A.1.

Tables 4.2 and A.1 show that there is considerable variability in the parameters that

describe each archetype. Accordingly, they should not be simulated deterministically

when each archetype is modelled, simulated once, and the output scaled by its weight.

Instead, the uncertainty in each parameter can be considered by varying them between

known limits and running multiple simulations to give a range of outputs, following

Das et al. (2014), Jones et al. (2015) and Sousa et al. (2018). Hence, the following

sections present the input data used for describing and modelling the archetypes, and

a method of obtaining the distributions is given. Inputs are presented depending on

whether they are related to the environment (in Section 4.4), to the physical proper-

ties of the houses (Section 4.5), to the occupancy of the houses (Section 4.6), or to the

pollutants (see Section 4.7).
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4.4 Environmental inputs

Chile is geographically and administratively divided into 15 regions. Given the di-

versity in the conditions and characteristics of their stocks, the use of the regional

classification of the country is a practical and simple way of dividing the country for

data analysis, as well as reducing simulation time and achieving some granularity in

the results. It should be noted that many of the data presented in Chapter 3 are pre-

sented in finer granularity, and so the archetypes could be developed using that data

in the future. However, other information, such as weather data, or the surrounding

conditions (shielding and terrain) of the houses are not available, and so major as-

sumptions are required now, or additional data gathering is be required in the future,

to achieve this additional granularity. Ways of handling these types of uncertainties

are presented when describing the inputs in the following sections or when modelling

the building in Chapter 5.

4.4.1 Geographic location and terrain type

Census data (INE, 2002) gives a location of each house. The observed frequency of

the archetypes by region, given in Chapter A and Table A.1, is used to scale up the

simulation results to a national level.

Coordinates (latitude and longitude), altitude, and the main climatic zone for each

regional capital city is obtained. For simplicity, the location of every house modelled

within each region is assumed to correspond to its capital city. The altitude of the

house is used to calculate the local atmospheric pressure, as described by Liddament

& Air Infiltration, Agence internationale de l’énergie (1996), and the air density used

for air mass flows.

By knowing the number of houses located in rural or urban areas (INE, 2003), the

discrete probability of each shielding condition, by region, is assumed to be:

• Country with scattered wind breaks: 20% of the rural stock of the region.

• Rural: 80% of the rural stock of the region.

• Suburban: 33% of the urban stock of the region.

• Urban: 33% of the urban stock of the region.

• City: 33% of the urban stock of the region.

The main assumption is made for rural areas (20:80), whereas for urban areas, ter-

rain types are considered as equally distributed (33:33:33). Table 4.3 shows the regional

distribution disaggregated by terrain type. This input data is deemed to be a source

of epistemic uncertainty and may need to be revised in case this parameter is shown
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to significantly affect the results by a sensitivity analysis; see Chapter 6.

Once a geographical location is assigned to each house, terrain data is used to scale

the local wind speed using a wind speed modifier, which is a function of roof height

and the local terrain type, following BS5925 (1991) and the LBL Infiltration Model,

described by Orme et al. (1994). The four BSI terrain types and the local wind pressure

shielding coefficients of Deru & Burns (2003) are mapped to the six BSI terrain types

with the format BSI{Deru & Burns} as shown in Table 4.4. The values of the terrain

and shielding coefficients (K and a, respectively) depend on the local environment of

the house following Equation 4.4.1, which is allocated to each model according to the

probability of it being located in each shielding type.

Table 4.3: Terrain types and their regional distributions. Based on INE (2002).

Terrain Type {Shielding type}

Region

Open flat

country

Country with scattered

wind breaks
Rural Suburban Urban City

{None} {Light} {Moderate} {Heavy} {Heavy} {Very heavy}

1 0 0.006 0.026 0.234 0.234 0.234

2 0 0.003 0.012 0.282 0.282 0.282

3 0 0.013 0.052 0.278 0.278 0.278

4 0 0.039 0.158 0.238 0.238 0.238

5 0 0.015 0.059 0.243 0.243 0.243

6 0 0.052 0.208 0.196 0.196 0.196

7 0 0.061 0.244 0.199 0.199 0.199

8 0 0.034 0.137 0.236 0.236 0.236

9 0 0.062 0.248 0.2 0.2 0.2

10 0 0.063 0.253 0.199 0.199 0.199

11 0 0.042 0.167 0.238 0.238 0.238

12 0 0.011 0.043 0.298 0.298 0.298

13 0 0.005 0.022 0.238 0.238 0.238

14 0 0.061 0.244 0.199 0.199 0.199

15 0 0.008 0.033 0.271 0.271 0.271

Table 4.4: Terrain types and the wind pressure coefficient scaling factors. Constants

K and a are assigned to each house to scale the wind speed following equation 4.4.1.

Sources: BS5925 (1991); Deru & Burns (2003)

Terrain Type {Shielding type}

Region

Open flat

country

Country with scattered

wind breaks
Rural Suburban Urban City

{None} {Light} {Moderate} {Heavy} {Heavy} {Very heavy}

Coefficient (K) 0.68 0.52 0.35 0.35 0.35 0.21

Exponent (a) 0.17 0.2 0.25 0.25 0.25 0.33
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4.4.2 Block aspect ratio and orientation

The block aspect ratio S is the quotient of the length L and width W of the house or

building block, assuming the houses have a rectangular shape. This value is required

for calculating the wind pressure profiles for each side of the building block; see Sec-

tion 4.4.3.

The orientation of Chilean houses is a source of epistemic uncertainty. While some

assumptions can be made from urban planning and block layouts, they are limited.

Therefore, the orientation of each archetype is a uniform distribution with values be-

tween 0◦ and 360◦, following (Das et al. , 2014; Jones et al. , 2015).

4.4.3 Wind speed and wind pressure profile

The wind speed is obtained from the nearest meteorological station, um, is normally

reported at 10 m height, and is scaled to the house roof height according as a function

of the terrain type using a the power law model (Liddament & Air Infiltration, Agence

internationale de l’énergie, 1996):

vr = um · K · ra (4.4.1)

Here, vr (m/s) is the wind speed at roof height, um (m/s) is the wind speed at the

meteorological station, r (m) is the roof height of the house, and K and a are terrain

coefficients; see Table 4.4.

The movement of the wind over and around a building is an important parameter

that can affect air infiltration and exfiltration rates. The wind pressure profile around

a building is a function of the geometry of the block, local shielding, and the wind’s

angle of incidence.

Two types of wall are considered; one for the long side and one for the short side

of the house. For calculating the wind pressures profiles of each wall, the Swami &

Chandra (1987) model is applied following Jones et al. (2015). The Swami & Chandra

(1987) wind pressure coefficients are a function of the block aspect ratio (S) and the

terrain constants given in Table 4.4. The model is used to calculate the wind pressure

coefficients CP for a set of wind angles over all walls. The application of this model is

described in more detail in Chapter 5, Section 5.2.2.

4.4.4 Weather inputs data

Hourly weather data were obtained for Chilean locations to run transient simulations.

35 weather files were extracted using Meteonorm software (see Section 3.1.7) (Me-

teonorm, 2017). For this study, data files from periods between 1961–1990 and 2000–
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2009 were processed. Finally, the nearest weather station to the location of each city

centre and a random period is used to allocate the corresponding weather file.

4.5 Physical properties of the dwellings

Elements presented in this section are selected to be used in simulating the Chilean

housing stock. They are based on the literature, on empirical data data, or from infor-

mation of elements available in the Chilean market.

4.5.1 Airflow elements

The indoor spaces in Chilean houses are predominantly naturally ventilated and so

the dominant drivers of ventilation are the wind and temperature differences between

zones and the ambient environment. Airflow elements include windows and doors,

air leakage paths, and mechanical extractor fans in some cases. These fans are located

in the kitchen and bathrooms, and assumed from information on the local market

to have a constant flow rate of 48 l/s (200 cfm) and 14 l/s (30 cfm), respectively, and

operate when cooking or showering. These are manufacturers claimed flows –not

what might actually happen in a real installation. Window and door geometries were

obtained from personal correspondence with Chilean suppliers. External doors are

0.9 m x 2 m (width by height), with a gap under the door of 9 mm x 900 mm. Internal

doors are 0.75 m x 2 m with a gap under the door of 2 mm x 750 mm. Windows are all

assumed to be of sash type with cross–sectional areas of 0.36 m2, 0.84 m2, or 2.4 m2, and

are placed in bathrooms, kitchens or bedrooms, and living rooms, respectively. This

dimensions meet the current construction code that governs the glazed proportion of

the envelope (MINVU, 2007). The only vent considered by the models is located in

the kitchen, an opening for combustion gases. The cross–sectional area of the opening

is 100 cm2, which complies with the current standard, DS No66 (SEC, 2007), for rooms

with a cooker range hood.

4.5.2 Envelope air permeability

This section describes the air permeability of the envelope in the Chilean housing stock

using several explanatory variables that have a significant impact on air leakage rates

(Chan et al. , 2013). There are important differences in construction practices in houses

built before and after 2008; see Section 3.1.6. Thus, both groups are expected to per-

form differently. Therefore, two different models were used to develop distributions

of air permeability; one for each construction period.
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The US multivariate regression model is used to predict a distribution of Nor-

malised Leakage (NL) for Chilean houses built either before or after 2008, using the

empirical data presented in Section 3.1.6 and following the procedure used by Chan

et al. (2013). Here, the natural log of NL is given by

ln(NL) = βarea · Area + βh · H + βyear · Iyear + βLI · ILI + βe · Ie + βcz · Icz + β f loor · I f loor

(4.5.1)

where Area is the house floor area (m2), H is the house height (m), Iyear is the house

construction year category, ILI , and Ie is the energy performance corresponding to

low–income (LI) and energy efficient houses respectively, Icz is the climate zone, and

I f loor is the air leakage of the house floor.

Chilean data is used when the distribution of the input in the stock is known, such

as floor area and climate zone. Coefficients are assumed to have the value that best

represent the stock, with a value of 1 if true or 0 if not. In order to find the βyear

coefficient that best fit the empirical data, all estimates of β shown in Eq. 4.5.1 are kept

unchanged except for βyear; see Table 4.5.

Data on floor area is only available for houses built after 1990 (INE, 2003). Thus,

distribution of floor areas for the Chilean stock is estimated using the number of rooms

and their floor areas shown in Table 4.6, and extrapolated to the whole stock using the

2002 census. The mean and median floor areas are 81 m2 and 79 m2. Here, only the

median is retained for the sampling process, as the best measure of central tendency.

Building height is assumed to be 3 m (2.5 m + 0.5 m for roof space), following Chan

et al. (2013).

Due to the differences in construction practices and standards between Chile and

the USA, and the lack of information on the number of energy efficient houses in the

stock, ILI and Ie are assumed to be 1 and 0, respectively, namely all considered to be

low–income USA houses. β f loor for all houses are assumed to have a concrete slab due

to the lack of reliable data.

Climate was one of the most influential parameter in the Chan model. To include

the climate factor here, the International Energy Conservation Code (IECC) classifica-

tion is used to match the Köppen classification for Chilean and the USA climate zones

and to associate a βcz with each region; see Table 4.7. The results of β (SE) for houses

built before and after 2008 are 3.480 (0.719) and 1.469 (0.845), respectively.

To obtain a national distribution, floor areas for each climate zone are sampled

according from their distributions across the stock using Monte Carlo sampling. Since

the accuracy of the prediction improves with the sample size, the sample is increased

until the absolute differences of the mean and standard deviation between one set of
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Table 4.5: Model coefficients used for predicting the air leakage distribution of the

Chilean dwelling stock. Climates follow the IECC classification.

Parameter Coefficient Estimate β β Std. Error

Floor Area -0.00208 0.0000179

Height 0.06380 0.00125

Year

<2008 3.4898366 0.7190268

≥2008 1.469268284 0.844718303

Energy performance

Low–income (LI) 0.42 0.00428

Energy efficient -0.3840 0.00453

Climatic zone

A_Humid_1_2 0.47300 0.01020

A_Humid_3 0.25300 0.00653

A_Humid_4 0.3260 0.00586

A_Humid_5 0.11200 0.00551

A_Humid_6_7 0.00 0.00

B_Dry_2_3 -0.03760 0.00759

B_Dry_4_5 -0.00877 0.00684

B_Dry_6 0.01940 0.00988

C_Marine_3 0.04830 0.01410

C_Marine_4 0.25800 0.01130

AK_7 0.02560 0.00589

AK_8 -0.51200 0.00938

Floor

Foundation Slab -0.036992 0.007092

Unvented crawlspace 0.108713 0.004923

Vented crawlspace 0.180352 0.005768

Duct – Conditioned Space -0.123810 0.025460

Duct – Attic or Basement

(Unconditioned)
0.07126 0.03387

Duct–Vented crawlspace 0.18072 0.03826
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Table 4.6: Distribution of floor areas by number of rooms. Only houses with up to 7

rooms were included, which represent 95% of the stock (INE, 2003).

Rooms Floor Area (m2) Proportion (%)

INE (2016a) INE (2003)

1 20 1.1

2 35 6.5

3 49 14.1

4 62 26.1

5 93 27.8

6 124 13.0

7 154 5.9

samples and the previous set is less than 1e−6. To compare two bands of construction

year, two different data sets are used; one for old houses and one for new. The model

predicts NL 95% CI [9.91− 106.59] for old houses and 95% CI [1.39− 15.90] for new

houses. Figure 4.4 shows both distributions.

To generate separate distributions of NL for each climate zone, the same method

is conducted by sampling random values from the normal distribution of each β co-

efficient shown in Table 4.5. Finally, the predicted regional cumulative probability

distributions are generated to be used in the models representing either the old (Fig-

ure 4.5a) or the new stock of houses (Figure 4.5b).

Figure 4.4: National cumulative density of NL for old (green line) and new houses

(blue line).

Finally, a comparison between the NL distributions predicted by the model and the

empirical data presented in Section 3.1.6 is carried out to evaluate the performance of

the model; see Figures 4.6a and 4.6b. For old houses, linear regression between the

measured and predicted indicates a strong or high correlation (coefficient of determi-



CHAPTER 4. REPRESENTATIVE ARCHETYPES 82

Ta
bl

e
4.

7:
C

hi
le

an
cl

im
at

ic
zo

ne
s

ac
co

rd
in

g
to

K
öp

pe
n

cl
as

si
fic

at
io

n
an

d
m

at
ch

in
g

U
S

IE
C

C
cl

im
at

ic
zo

ne
s.

So
ur

ce
s:

C
ha

n
et

al
.

(2
01

3)
;I

N
E

(2
00

3)
;

R
io

se
co

&
Te

ss
er

(2
01

4)
.

R
eg

io
n

R
eg

io
n

na
m

e
C

ap
it

al
ci

ty
K

öp
pe

n

no
m

en
cl

at
ur

e
K

öp
pe

n
C

la
ss

ifi
ca

ti
on

U
SA

cl
as

si
fic

at
io

n

IE
C

C

Pr
op

or
ti

on
in

th
e

na
ti

on
al

st
oc

k

1
Ta

ra
pa

cá
Iq

ui
qu

e
BW

n
A

ri
d/

D
es

er
t/

fo
gg

y
B5

1.
33

85
89

2
A

nt
of

ag
as

ta
A

nt
of

ag
as

ta
BW

n
A

ri
d/

D
es

er
t/

fo
gg

y
B5

3.
94

91
58

3
A

ta
ca

m
a

C
op

ia
pó

BW
k

A
ri

d/
D

es
er

t/
co

ld
B5

2.
41

44
91

4
C

oq
ui

m
bo

La
Se

re
na

BW
n

A
ri

d/
D

es
er

t/
fo

gg
y

B5
4.

17
66

39

5
V

al
pa

ra
ís

o
V

al
pa

ra
ís

o
C

sb
n

Te
m

pe
ra

te
/D

ry
Su

m
m

er
/W

ar
m

su
m

m
er

/
R

ai
n

in
w

in
te

r/
cl

ou
dy

B3
4.

96
95

34

6
O

’H
ig

gi
ns

R
an

ca
gu

a
C

sb
Te

m
pe

ra
te

/D
ry

Su
m

m
er

/W
ar

m
su

m
m

er
/

R
ai

n
in

w
in

te
r

B3
5.

15
85

49

7
M

au
le

Ta
lc

a
C

sb
Te

m
pe

ra
te

/D
ry

Su
m

m
er

/W
ar

m
su

m
m

er
/

R
ai

n
in

w
in

te
r

B3
6.

40
35

27

8
Bi

o–
Bí

o
C

on
ce

pc
io

n
C

sb
n’

s
Te

m
pe

ra
te

/D
ry

Su
m

m
er

/W
ar

m
su

m
m

er
/

R
ai

n
in

w
in

te
r

B3
11

.0
10

14

9
A

ra
uc

an
ía

Te
m

uc
o

C
fb

Te
m

pe
ra

te
/W

it
ho

ut
dr

y
se

as
on

/W
ar

m
su

m
m

er
/

R
ai

n
al

ly
ea

r

ar
ou

nd
B4

6.
31

03
51

10
Lo

s
La

go
s

Pu
er

to
M

on
tt

C
fb

s
Te

m
pe

ra
te

/D
ry

Su
m

m
er

/W
ar

m
su

m
m

er
B4

4.
93

01
99

11
A

ys
én

C
oy

ha
iq

ue
C

fc
Te

m
pe

ra
te

/D
ry

Su
m

m
er

/C
ol

d
su

m
m

er
/

C
ol

d
C

4
0.

83
29

92

12
M

ag
al

la
ne

s
Pu

nt
a

A
re

na
s

BS
k’

s
Se

m
i–

A
ri

d/
St

ep
pe

/V
er

y
C

ol
d/

R
ai

n
in

w
in

te
r

B6
1.

44
49

68

13
Sa

nt
ia

go
Sa

nt
ia

go
C

sb
Te

m
pe

ra
te

/D
ry

Su
m

m
er

/W
ar

m
su

m
m

er
/

R
ai

n
in

w
in

te
r

B3
33

.8
29

66

14
Lo

s
R

ío
s

V
al

di
vi

a
C

fb
Te

m
pe

ra
te

/W
it

ho
ut

dr
y

se
as

on
/W

ar
m

su
m

m
er

/
R

ai
n

al
ly

ea
r

ar
ou

nd
A

4
2.

52
95

08

15
A

ri
ca

y
Pa

ri
na

co
ta

A
ri

ca
BW

n
A

ri
d

an
d

cl
ou

dy
B5

1.
31

28
91



CHAPTER 4. REPRESENTATIVE ARCHETYPES 83

(a) (b)

Figure 4.5: Predicted normalised leakage (NL) (n.d.) distribution for (a) old and (b)

new Chilean houses by climate zone, and nationwide in black.

nation R2 of .62 and a correlation coefficient R of .79 (Taylor, 1990), 95% CI [.70− .85])

meaning that 62.0% of the variance in NL in the housing stock is described by the

model and its explanatory variables. Similarly NL predictions for new houses have

R2= of .57 and a R of .75, 95% CI [.66− .83], indicating that 57% of the variance in NL

values in the new stock can be described by the model.

(a) (b)

Figure 4.6: Predicted normalised leakage (NL) (n.d.) distribution versus empirical

data for (a) old and (b) new Chilean houses. Boxplots show the residuals, with a

µ̃ = −0.42 and σ = 6.54 for old houses, and µ̃ = −0.086 and σ = 1.14 for new

houses.
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4.6 Occupancy and activity data

Data from the 2015 ENUT survey (see Section 3.1.4) are used to inform the models

about the duration of the emissions and activities in Chilean houses. Special attention

is given to those related to heating and cooking activities that will influence the indoor

air quality and exposure analysis. For example, questions o_11_1_2 and o_11_2_2 ask

about the time spent preparing and heating meals. These questions are used to inform

the schedule of PM2.5 and moisture emissions in the kitchen. Nationwide, cooking

activities have a mean duration of 1 h 06 min in weekdays and 1 h 12 min in week-

ends. Sleeping duration are reported in questions q11_1_2 and q11_2_2 for weekdays

and weekends, respectively. Table 4.8 shows the average sleeping time aggregated by

region and for the entire country.

Table 4.8: Sleeping time by region number and nationwide. (INE, 2016b).

Region Number
Sleeping hours

Weekday

Sleeping hours

Weekend

Hours Minutes Hours Minutes

1 7 11 7 48

2 7 5 7 47

3 7 18 7 32

4 7 12 7 43

5 7 22 7 49

6 7 19 8 00

7 7 49 8 26

8 7 19 7 54

9 7 29 8 02

10 7 49 8 26

11 7 43 8 37

12 7 3 7 40

13 7 10 7 50

14 7 26 7 55

15 7 18 8 01

Nationwide 7 21 7 57

Associated schedule

Awake time weekdays 6 21

Sleeping start time weekdays 23 0

Awake time weekends 7 57

Sleeping start time weekends 24 0

Tables B.1 to B.3 in Appendix B gives the duration statistics for some other activ-

ities aggregated by region, and Table 4.9 summarises them for the country. Table 4.9
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Table 4.9: Average time corresponds to the mean time between the activity duration

in weekdays (WD) and in weekends (WE). The proportions are rounded so that their

sum is 100% (INE, 2016b).

Room Activity
WD WE Average Time Time in Percentage

H M H M (h) the Room (h) (%)

Bedroom Sleeping hours 7 21 7 57 7.65 9.26 38

Showering / getting dressed 0 36 0 37 0.61

Kitchen Preparing meals 1 6 1 12 1.15 2.33 10

Washing up 0 19 0 22 0.34

Cleaning the kitchen 0 28 0 31 0.49

Eating Breakfast 0 19 0 23 0.35

Family Eating Lunch 0 34 0 42 0.63 12.4 52

room Eating Tea 0 30 0 33 0.53

Eating Dinner 0 33 0 36 0.58

shows that some activities can be related to a room, such as cooking to the kitchen or

sleeping to the bedroom, so that the total time spent in each room can be calculated.

Using the activities presented in Table 4.9 the ratio of the time a family spends time

in the kitchen, bedroom, and family room is 10 : 38 : 52, respectively. This ratio can

be used to inform the method used to analyse modelling or measurement studies; see

Hamilton et al. (2015). A different approach is used in this study, by making further

assumptions about the occupancy pattern in rooms and, consequently, about the expo-

sure of occupants to indoor pollutants. Further details are presented in Section 5.5.2.

4.7 Pollutant inputs

This section describes the pollutants selected to be modelled, including the physical

parameters of each species, and their emissions sources and sinks.

4.7.1 Species

Nine species are included in the archetypes:

• Fine Particles, PM2.5

• Environmental Tobacco Smoke – Solanesol, ETS

• Formaldehyde, HCHO

• Acrolein, C3H4O

• Nitrogen dioxide, NO2

• Carbon monoxide, CO

• Nitrogen monoxide, NO

• Sulfur dioxide, SO2

• Moisture as water vapour, H2O
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The first five contaminants are identified by Logue et al. (2011a) within the top

seven most harmful air pollutants found in the US dwellings. Although Logue et al.

also include radon and ozone, they are excluded from this analysis.

Radon (222Ra) sources comprises the building substratum, tap water, and building

materials. According to the literature, see Chapter 2, the concentrations of radon in

Chilean dwellings are found to be below the WHO’s recommended threshold. A survey

carried out in winter 1992 and 1993 in 119 houses in Santiago (Stuardo, 1996) found

radon concentrations in the bedrooms that ranged between 4 to 86 Bq m−3 (µ̃=25 Bq m−3);

below the WHO’s current recommendation of a 100 Bq m−3 annual average. Further-

more, Zielinskia & Chambers (2008) published the concentrations of residential radon

concentrations in several countries around the world, showing that Chile has some of

the lowest indoor concentrations. Therefore, in this study, radon is not considered to

be a contaminant of concern and is not modelled.

In contrast, ozone is a criteria pollutant found in high concentrations in Chile. It is

emitted by many electric appliances in homes, enters from the outside, and reacts with

other indoor pollutants. However, there is no information on expected ambient con-

centrations in Chile and because this has been shown to be such as important source

in other countries, ozone is not modelled here. However, ozone emission could be

added to the model in the future if required and when data becomes available.

The physical properties of each species are needed so that the modelling tool can

simulate their transport between a building’s rooms and with the local environment.

Table 4.10 shows the main properties of each species considered in this study. Be-

cause different names can be used for the same chemical component, the CAS number

is given to identify each species. Also given are their chemical formula, molecular

weight, and the mean diameter for particles and ETS. ETS is a mixture of chemicals.

Solanesol is an alcohol present in the tobacco leaf and has been used as a tracer for the

particle phase of tobacco smoking emissions (Tang et al. , 1990), and acrolein is used

as a tracer of its volatile organic compounds emissions (Howard-Reed et al. , 2003).

4.7.2 Deposition rates

It is important to model the potential loss of indoor particles due to their deposition

onto, or their reaction with, indoor surfaces. Therefore, a probability distribution of

deposition rates reported in the literature is included. The product loading ratio is the

quotient between the surface area A and the air volume V, and may change according

to the dimensions of the rooms and the surface area of its furniture. Here, only one

loading ratio of A/V = 2 is included in accordance with the references. Table 4.11

shows the deposition rate and deposition velocity associated with each species used
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Table 4.10: Species properties. n/a: not–applicable (Klepeis et al. , 2001; Tang et al. ,

1990)

Name CAS Linear or Molecular_Weight Mean_Diameter

Number Empirical formula (g/mol) (µm)

Acrolein 107-02-8 C3H40 56.1 0.00E+00

Formaldehyde 50-00-0 HCHO 30.0 0.00E+00

Carbon monoxide 630-08-0 CO 28.0 0.00E+00

Dry Air n/a n/a 29.0 0.00E+00

ETS-Solanesol from tobacco 13190-97-1 C45H74O 631.0 2.00E-07

Water vapour 7732-18-5 H2O 18.0 0.00E+00

Nitric oxide 10102-43-9 NO 30.0 0.00E+00

Nitrous oxide 10024-97-2 N2O 44.0 0.00E+00

Fine particles PM2.5 n/a n/a 1.4 3.00E-07

in this study.

Table 4.11: Deposition rates for species used in this study.

Species Deposition velocity vd Deposition Rate vg vd · 4.10 Reference

NO 0.108 (m/h) 0.000–0.0123 (s−1) Miyazaki, T., 1984

NO2 0.0003–0.12 (cm · s−1) 0.00123–0.492 (s−1) Miyazaki, T., 1984

HCHO 0.005 ± 0.003 (cm · s−1) 0.0205±0.0123 (s−1) (Traynor et al. , 1982)

NO2 (0.6–3.6)e− 4 (cm · s−1) Not used (Nazaroff et al. , 1993)

PM2.5 Not used 0.39 ± 0.16 (h−1) (Oezkaynak et al. , 1996)

FA Not used 0.0205±0.123 (s−1) (Traynor et al. , 1982)

4.7.3 Emission rates from cooking

In order to model the uncertainty in the emission rates from cooking, a synthetic cu-

mulative distribution function of emission rates is developed. Data is collected from

four studies reporting PM2.5 emission rate means and standard deviations, or giving

the emission rate for an individual test (Dacunto et al. , 2013; He et al. , 2004; O’Leary,

2018; Olson & Burke, 2006).

To incorporate them into the occupants’ daily activities, meals are classified into

two groups: emissions from cooking activities other than toasting bread are classified

as main meals, and toasting bread emission rates as breakfast. Cumulative distributions

are inferred by bootstrap sampling until the mean and standard deviation converge.

Emission rates are sampled randomly with replacement from their own normal dis-

tributions, truncated to positive numbers, with µ and σ shown in Table 4.12 and Fig-

ure 4.7. Each type of meal is assumed to occur with equal probability, regardless the

sample size. The sample sizes were increased until the absolute change in its µ̃ and σ

was < 10−6 mg/min.
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Results for main meals (N = 15, 650) show that their emission rates have a µ̃ of

2.56 mg/min, a σ of 4.4 mg/min, and 90% CI [0.047− 15.2]mg/min; see Figure 4.8a.

Results for breakfast (N = 4, 165) show that their emission rates have a µ = 4.32 mg/min,

a σ = 7.42 mg/min, and 90 % CI [0.072− 21.77]mg/min; see Figure 4.8b.

Figure 4.7: PM2.5 emission rates from cooking activities. Based on data from Dacunto

et al. (2013); He et al. (2004)

4.7.4 Emission rates from heaters

In Chile, there are six common types of heaters that burn gas, paraffin, and wood,

whose pollutant emission rates to inside have been measured by CENMA (2011); see

Table 4.13. Emissions to outside were not measured and not included in this analysis.

Moreover, the prevalence of heating fuel varies across the country (see Section 3.2.5).

Therefore, the probability of presence of each heater type can be allocated by region,

whereby the emission rate is a constant determined from the fuel type and measure-

ments. Accordingly, the proportion of the stock using each heater type is assumed

from the heating fuel given in the CASEN survey, where the data is recorded as vari-

able v36b (CASEN, 2015); see Table 4.14.

The total number of heating hours per day corresponds to those required to main-

tain an indoor temperature of at least 16◦C. This is calculated using the Meteonorm

weather files. Following the assumption that the indoor temperature in unheated

houses is found to be approximately 3◦C above the external temperature (Jones et al.
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Table 4.12: PM2.5 Emission rates from cooking and other activities. Sources: (1) He

et al. (2004); (2) Dacunto et al. (2013); (3) O’Leary (2018).

Meal type N µ̃ (mg/min) σ (mg/min) Reference Statistics

Main meals

Cooking 24 0.11 0.99 1 Median

Cooking pizza 1 1.59 0 1 Median

Frying 4 2.68 2.18 1 Median

Grilling 6 2.78 17.8 1 Median

Kettle 25 0.03 0.31 1 Median

Microwave 18 0.03 0.11 1 Median

Oven 6 0.03 0.03 1 Median

Stove 4 0.24 1.29 1 Median

Frying chicken 6 2.5 0.9 2 Mean

Frying bacon 6 3.5 2.8 2 Mean

Frying burger 4 4.3 3 2 Mean

Frying pork chops 2 2.1 0.3 2 Mean

Chicken stir fry 2 0.4 0.2 2 Mean

Frying beef 2 0.17 0.05 2 Mean

Frying chicken 1 15.2 0 2 Mean

Frying Sausage links 1 5.4 0 2 Mean

Frying Salmon 1 1.6 0 2 Mean

Electric oven pizza 1 0.1 0 2 Mean

Meal 1 6 0.1554 0.04 3 Mean

Meal 2 6 0.1734 0.08 3 Mean

Meal 3 6 0.612 0.30 3 Mean

Meal 4 6 2.046 0.24 3 Mean

Meal 1 – Margarine 5 0.714 0.05 3 Mean

Meal 1 – Stainless Steel 5 1.656 0.62 3 Mean

Meal 1 – Salt 5 0.2292 0.10 3 Mean

Breakfast

Toasting 18 0.11 0.37 1 Median

Toasting 3 9.5 10.8 2 Mean

Toasting 40 0.22 0.06 3 Mean

Other sources

Smoking 6 0.99 0.81 1 Mean

Smoking cigarette 17 3.8 0.9 2 Mean

, 2015), the average time during the winter season when the indoor temperature is

below 16◦C is calculated and shown in Table 4.15.

4.7.5 Moisture emission

Moisture emitted from the preparation of meals is 4 g/min and shower moisture is

43.33 g/min following TenWolde & Pilon (2007).
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(a) (b)

Figure 4.8: Inferred cumulative distributions of PM2.5 emission rates from cooking

activities for modelling (a) main meals and (b) breakfast.

Table 4.13: Contaminants emission rate (mg/min) from Chilean heaters.ND: non–

detectable

Tecnology Commercial Brand PM10 PM2.5 NO NO2 NOx CO SO2

Gas radiant Fenza FEL 1430 ND ND ND 1.20 1.20 24.44 ND

Gas forced convection Rinnai Dynamo 15 ND ND 0.16 0.65 0.81 8.02 ND

Kerosene standard wick Mademsa Foguita 0.37 0.29 0.20 1.92 2.12 26.20 1.24

Kerosene special wick Toyotomi Omni 230 0.19 0.14 5.47 1.61 7.08 5.32 2.52

Kerosene laser Toyotomi LC–43 0.15 0.15 3.74 1.80 5.54 8.00 2.29

Wood double chamber Amesti Doble Cámara 0.05 0.05 0.24 0.11 0.35 2.55 ND
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Table 4.14: Heater types distribution factor across the country.

Regions are numbered from north to south, except for regions 13th (capital region),

14th, and 15th.

Region Heater type and name

1 2 3 4 5 6 7

Gas 1 Gas 2 Kerosene 1 Kerosene 2 Kerosene 3 Wood None

1 0.054 0.054 0.012 0.012 0.012 0.010 0.842

2 0.076 0.076 0.003 0.003 0.003 0.011 0.827

3 0.094 0.094 0.005 0.005 0.005 0.016 0.780

4 0.109 0.109 0.006 0.006 0.006 0.053 0.711

5 0.212 0.212 0.017 0.017 0.017 0.239 0.279

6 0.091 0.091 0.049 0.049 0.049 0.600 0.057

7 0.074 0.074 0.029 0.029 0.029 0.717 0.038

8 0.053 0.053 0.020 0.020 0.020 0.784 0.043

9 0.025 0.025 0.007 0.007 0.007 0.908 0.017

10 0.014 0.014 0.006 0.006 0.006 0.945 0.009

11 0.011 0.011 0.004 0.004 0.004 0.961 0.003

12 0.469 0.469 0.001 0.001 0.001 0.059 0.001

13 0.279 0.279 0.083 0.083 0.083 0.049 0.116

14 0.015 0.015 0.006 0.006 0.006 0.940 0.011

15 0.023 0.023 0.001 0.001 0.001 0.007 0.944

Table 4.15: Estimated use of heaters during winter season in hours and minutes by

region number.

Region Hours Minutes

1 3 24

2 9 48

3 11 54

4 14 54

5 15 6

6 15 48

7 16 18

8 16 24

9 17 0

10 17 0

11 17 0

12 17 0

13 15 36

14 17 0

15 2 18
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4.8 Summary

The robustness of key data related to the Chilean housing stock is analysed and the

most reliable sources chosen to develop the Chilean archetypes. There is a sufficient

level of detail to allow the archetypes to be developed by applying a bottom–up tech-

nique and to model them using a physical model. In order to limit the computational

time and to allow the assessment of the variability of the stock, sets of 2, 8, and 29

archetypes are selected to represent 13%, 35%, and 70% of the entire stock. Data entries

are aggregated to create 496 archetypes. Archetypes are sorted by their observed fre-

quency and compared using the chi–square (χ2) test of statistical significance. Groups

are chosen by their change in the effect size of χ2 and using Cohen’s φ thresholds of

0.2, 0.5, and 0.8, respectively.

In addition, some parameters needed for modelling the archetypes are described

using the data presented in Chapter 3, while others must be assumed by using expert

judgement, the literature, or observation. Inputs are classified according to their rela-

tionships with the house environment, to the house design, to the pollutants, or to the

occupants.

Houses are allocated across the country and inputs about their physical surround-

ings are given. Properties of the building elements, such as window sizes and vents

comply with the current national building code (MINVU, 2007). National data was

applied to predict the air permeability of the envelope for the Chilean housing stock

following the procedure by Chan et al. (2013). Two distributions are presented, one

for each construction period. The model predicts a NL 90% CI [9.91− 106.59] for old

houses and a NL 90% CI [1.39− 15.90] for new houses. 62.0% and 57% of the variance

in NL of old and new houses, respectively, is described by the model and its explana-

tory variables.

Information on nine contaminants, some of their indoor sources, and deposition

rates are presented so they can be applied in the models. The total mean time ratio the

cook family member spends in the kitchen, bedroom, and family room is found to be

10 : 38 : 52, respectively. Activity durations are given to model the occupancy of the

rooms.

The archetypes developed here can also inform field studies by describing build-

ings that are predicted to represent a large proportion of the stock.

A detailed discussion about the development of this archetypes is presented in

Section 7.2.
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CHAPTER 5

Model Development

In Chapter 4 the most common archetypes in the Chilean housing stock were iden-

tified. In this chapter a validated IAQ and ventilation analysis tool, CONTAM, is ap-

plied to model the first 8 archetypes, which represent 35% of the national stock; see

Figure 4.3. The models include the input data as presented in Chapter 4. The di-

versity of the parameters most directly related to house design are accounted for in

the archetypes, and so they can be used to reduce the primary uncertainty in them.

Others, which have primary (aleatory) or secondary (epistemic) uncertainty, must be

determined differently.

Specific aspects of CONTAM, such as restrictions or boundaries, and modelling as-

sumptions are presented here. Simulations are made under these conditions to enable

the analysis of some aspects of indoor air quality across the Chilean housing stock,

to compare housing characteristics, and to evaluate their the relative importance of

model inputs. In the future, the models can be used, for example, to assess remedia-

tion actions or to evaluate impacts of human behaviour, clothing, and habits that are

typical of the Chilean people in their houses.

5.1 CONTAM modelling and analysis tool

CONTAM (Dols & Polidoro, 2015) is a freely available multi–zone indoor ventilation and

pollutant transport tool that models airflows between multiple indoor zones, and be-

tween the external environment. It has been validated by comparing its performance

against other modelling tools (Dols et al. , 2016), against measurements in controlled

environments (Chang & Guo, 1992), and against field studies (Das et al. , 2014). CON-

TAM has been used to model different types of building (Ng et al. , 2012) and for eval-

uating input parameters (Chen et al. , 2014) and pollutant concentrations (Bastani et al.

, 2012; Underhill et al. , 2018; Yu et al. , 2015).

CONTAM comprises ContamW, a graphical user interface (GUI), and ContamX, a
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numerical solver (Lorenzetti et al. , 2013). The GUI allows a user to sketch building

elements and store them in a project file, which ContamX simulates. Any necessary

changes to a modelled archetype and to its environment is carried out by modifying

the project file. To do so, R code is used to modify a generic archetype project file,

create a new file, and overwrite its information with a new sets of inputs before a

model is simulated.

CONTAM is selected over other simulation tools because it can include multiple pol-

lutants, multiple sources and sinks, and multiple emission and removal models. This

enables the modeller to have a more accurate and detailed representation of the indoor

air. In contrast, EnergyPlus only models a single and generic pollutant, which it sel-

dom occurs in reality. CONTAM has 12 different emission and deposition models, and

the possibility of adding an almost infinite number of species, which can all be used

simultaneously. Furthermore, emission parameters provided by public databases, or

by the literature, can be incorporated. Finally, CONTAM has the ability to couple its

numeric solver to a CDF modelling method in one zone of the building. However,

CONTAM lacks the capability of modelling building thermal dynamics, and so internal

air temperatures can either be included in the models as input data or CONTAM must

be coupled with a dynamic thermal model, such as EnergyPlus or TRANSYS (Dols

et al. , 2016).

5.2 Modelling the archetype

A generic model is developed for each archetype accounting for their characteristics

using ContamX. Figure 5.1a shows the first archetype, as an example. It is a detached

single storey house with 6 rooms, two bedrooms and two bathrooms, a self–contained

kitchen, and a living–dining room. All rooms are connected to a common family room

so that the living room, dining room, and corridor can be considered a single volume,

to which all other rooms are connected via doors. Rooms and doors are then rep-

resented in ContamW models by well–mixed zones (seen as rectangles) and airflow

paths (seen as diamond–shaped dots); see Figure 5.1b.

ContamX calculates the rate of air pollutant transport through airflow paths using

information entered for each one. Thus, it uses information about the actual layout of

the house (Figure 5.1a) rather than the highly approximate CONTAM sketch. CONTAM

models require that each external element is designated an orientation, or azimuth

angle, so the wind pressures at its location can be determined. These are assigned

for each generic archetype. For instance, a 0◦ azimuth angle is assigned to all airflow

paths located in north facing walls. For an identical archetype that does not face north,

these azimuth values can then overwritten by creating a new project file, and adding
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the new orientation to the azimuth angle of each external airflow element.

(a) (b)

Figure 5.1: First archetype (a) layout and (b) CONTAM model.

Total floor areas are given by Building Permits; see Section 4.3. However, they are

not given by room and so they are allocated to each rooms by the modeller, making

them a source of uncertainty. Room volumes and wall surface areas are then calculated

by assuming that the rooms have a square floor plan and a room height of 2.4 m, which

is a standard height given in the Chilean Building Code (MINVU, 2007). External

walls from each room are then used to determine the total envelope area following the

layout.

5.2.1 Airflow paths

For simplicity, each archetype has fixed room volumes and floor areas, but the prop-

erties of each airflow path are variables. Figure 5.2 shows the CONTAM model used to

simulate one of the archetypes; Archetype ID27. Airflow paths (in red) and sources/sinks

(in green) are arranged following the same order in every room. From the top–left of

the diagram, airleakage paths are modelled using a single element to represent those

in a room’s ceiling and another to represent the floor (Jones et al. , 2015), followed by

a window element, and three airflow paths are used to model airleakage paths in a

wall, assumed to be uniformly porous, by locating at its top, mid–point, and bottom

following Jones et al. (2013). In bathrooms, an exhaust fan is incorporated next to

the window element. When a room is located in a corner, like the first bathroom in

Figure 5.2, six airleakage paths are modelled; three for each wall.

The flow elements are adjusted so they account for the corresponding surface area

of the element they represent. CONTAM allows this by adding a multiplier to the ele-

ment. Airflow through floors is not accounted for in any of the archetypes modelled

for this study, and so their airleakage paths are ignored by giving them a multiplier

with a value of zero. However, they remain in the model so that they can be applied
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Figure 5.2: CONTAM elements for archetype ID27.

in the future, if required. Wall area (multipliers) are equally distributed into the three

paths. Paths are modelled using the power law model given in Equation 3.1.1. To

calculate the airleakage rate normalised by the thermal envelope Q̇50, NL values are

sampled from the corresponding NL distribution, which depends on the region num-

ber and climatic zone, and converted to Q̇50 values using

NL = 1000 · ELA4Pa

Area
· ( H

2.5m
)0.3 (5.2.1)

ELA4Pa =

√
ρ

2(4Pa)
·Q50 · (

4Pa
50Pa

)n (5.2.2)

where, ELA4Pa is the effective leakage area at 4 Pa (m2), Area is the house floor area

(m2), H is the house height assumed to be 3 m, n is the non–dimensional flow ex-

ponent, and ρ is the air density (kg/m3). The flow exponents n are sampled from a

normal distribution truncated between 0.5 and 1, with N(0.651, 0.077) following Sher-

man & Dickerhoff (1998). The corresponding Q̇50 values for each geographic region

are shown in Figures 5.3a and 5.3b. This value is then entered into CONTAM with a

coefficient equivalent to the corresponding section of the envelope area (for each third

of a wall, and for ceilings and floors). Party walls and floors are assumed to be imper-

meable.

Windows are all modelled as sash types, with a rectangular section and a fixed

cross–sectional area. They are modelled using the one–way orifice equation

Q = Cd · A f

√
2∆Pa

ρ
(5.2.3)

where Q (m3 s−1) is the airflow rate through the opening, Cd is the discharge coeffi-

cient, A f (m2) is the opening free area, and ∆Pa (Pa) is the pressure drop across the
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(a) (b)

Figure 5.3: Predicted air permeability normalised by envelope area Q̇50 to model (a)

old and (b) new Chilean houses by climate zone, and nationwide in black.

opening. Their discharge coefficient Cd is 0.6 and their relative elevation is at the mid–

point of the window opening (Das et al. , 2014).

Open internal doors are modelled using the two–way flow two–opening model

suggested in Dols & Polidoro (2015), with a discharge coefficient of 0.78 and its relative

elevation is at the bottom of the door. When closed, doors are modelled by one–way

flow power law as rectangular sections with a discharge coefficient of 0.68.

Simulations of a blower door test at 50 Pa were run in CONTAM for each archetype

in order to ensure that the model’s external airleakage rate was correct.

5.2.2 Weather data

To include the local weather conditions in the models, winter data is extracted from

the Meteonorm files and converted into CONTAM’s format (*.wth files) using R soft-

ware following Dols & Polidoro (2015). Data is reported hourly giving the date and

time, ground temperature, atmospheric pressure, wind velocity, and absolute humid-

ity. Atmospheric pressure (Pa) is calculated as a function of the altitude of the nearest

capital city, following Liddament & Air Infiltration, Agence internationale de l’énergie

(1996). The same weather file is used in the simulations for an entire region. Data is

selected so that only the winter season, between June 21st and September 21st, are

retained.

The wind speed modifier specific to the location of each house is calculated fol-

lowing Liddament & Air Infiltration, Agence internationale de l’énergie (1996). The

terrain type is randomly sampled using the procedure described in Section 5.4, which

gives a coefficient K and an exponent a that are applied to Equation 4.4.1. The wind
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pressure coefficients CP (see Section 4.4.1) are then calculated using the Swami &

Chandra (1987) model. Wind pressure profiles for each house are a function of a sam-

pled block aspect ratio S (see Section 4.4.2) and a sampled sheltering coefficient. CP at

different angles are assumed to be between 0◦ to 360◦ and specified for each side of a

house. The corresponding wall type is assigned to each airflow path when required.

Figure 5.4 shows the wind pressure profile for the longest wall of one house.

Figure 5.4: Example of a wind pressure profile for the long wall of a house to be used

in the CONTAM simulations.

5.2.3 Indoor temperatures

CONTAM is not a thermal model and so the internal air temperatures must be specified.

Indoor temperatures are chosen from a normal distribution of N(21.1◦C, 2.5◦C), fol-

lowing the empirical data analysis of Shipworth et al. (2010), which is used elsewhere

(Jones et al. , 2015). Temperatures are considered constant and equal to each room, and

so they are not included in daily and weekly schedules. This temperature is different

from the temperatures used to calculate the use of heaters in Section 4.7.4..

5.2.4 Species, sources and sinks

CONTAM requires an emission rate and a deposition rate for pollutants, and because the

sources are not used constantly, an emission rate schedule is also required. CONTAM

only accounts for the dynamic processes of aerosols and gases associated to emissions
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Figure 5.5: Cumulative density function of breakfast PM2.5 emission rates.

from primary sources and their deposition onto indoor surfaces. Losses are also pos-

sible through purpose provided openings, exfiltration, and mechanical extract fans

without recirculation (see Section 4.5.1). Although two highly reactive gases are mod-

elled, NO and NO2, their chemical reaction are not considered. Only Water Vapour and

Dry Air are considered as non–trace contaminants, or constituents of the air, following

Dols & Polidoro (2015).

PM2.5 emission rates from cooking meals follows the synthetic probability distribu-

tion given in Section 4.7.3. Table 4.12 can be populated as more data become available,

and so the probability distribution may be subject to change in the future. Table 4.12

shows that the first and second studies of the toasting of bread are subject of higher

uncertainty in their results (having both coefficient of variance above 1), whereas the

third study has a higher sample size, a lower variability, and coefficient of variance

below 1. Thus, a normal distribution of N(0.218, 0.0648) is selected to model break-

fast preparation in the archetypes. Emission rates are all assumed to be constant, S(t),

during all cooking events (O’Leary et al. , 2019a).

CONTAM allows the definition of Super sources and sinks, SS, where a set of species

are assigned to a single source element, as shown in Figure 2.17, and so only one

icon and schedule is needed. Eight sources and sinks are designated, three of them in

the form of super sources (SS): one to model the emissions from heaters, one for the

emissions from cigarette smoking, and one for all deposition rates. Table 5.1 shows
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the sources and sinks included.

Table 5.1: Sources and sinks included in the archetypes. SS: super source or Super

sink; ccf: constant coefficient model; brs: burst source model; drs: deposition rate

model.

Source Species Model Name

Construction materials HCHO ccf Ceiling_FA

Construction materials HCHO ccf Flooring_FA

Construction materials HCHO ccf Paint_Wall_FA

Cigarette SS

C3H40 brs Cigarette_Acr

ETS drs Cigarette_ETS_Deposition

ETS ccf Cigarette_ETS_Emission

PM2.5 brs Cigarette_PM2.5

Cooking Main Meals PM2.5 ccf Cooking_PM2.5

H2O ccf Moisture_1meal

Heater SS

CO ccf Heater_CO

NO ccf Heater_NO

NO2 ccf Heater_NO2

PM2.5 ccf Heater_PM2.5

Deposition rates SS

PM2.5 drs DepPM2.5

HCHO drs Dep_FA

NO drs Dep_NO

NO2 drs Dep_NO2

Respiration – Adult H2O ccf RespAd_moisture

Respiration – Infant H2O ccf RespIn_moisture

Showering H2O ccf Shower_moisture

Cooking breakfast PM2.5 ccf WeeklyBF_PM2.5

This study aims to estimate the contribution of indoor sources to the total expo-

sure, and so it assumes that both the background and internal initial concentrations

are zero. There are additional reasons for this decision, which are further discussed in

Section 7.4. Firstly, indoor and outdoor air composition may differ and so the expo-

sure analysis is carried out separately (see Chapter2). Secondly, infiltration factors are

also subject of high uncertainty, which must be incorporated stochastically, followed

by the definition of its probability distribution. Thirdly, large differences can occur

between ambient concentrations in different locations due to, for instance, their prox-

imity to the sources, or local sheltering. Finally, high resolution data about outdoor

concentrations in Chile is very limited, significantly affecting their value, but they can

be applied in the future.
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Deposition rates play an important role in determining the removal rates and in-

door concentrations of pollutants, especially when ventilation is limited. In these

models, deposition rates are sampled from a normal distribution truncated at the

origin and with whose values of µ̃ and σ given in Table 4.11. They are modelled

using constant deposition rate models φ(t). Nevertheless, these values are uncertain

(Nazaroff et al. , 1993), for instance, due to room dimensions, furniture area, and air

velocity. Although all these parameters change by house, this model simplifies the

deposition process and input values by following the literature and using a surface to

volume ratio S/V = 2 (Thatcher et al. , 2002).

5.2.5 Activity schedules

The occupants of the archetypes generally consist of 2 adults and 0–3 children; see Sec-

tion 4.6. In the example shown in this chapter, the house considers a family of 2 adults

and 2 infants. Both adults and both children occupy bedrooms 1 and 2, respectively.

To account for the use of the rooms and to calculate occupant exposures, a fixed daily

schedule is developed using the data presented in Section 4.6. Activities of interest

(cooking, heating etc.) were selected from the 2015 ENUT survey and their statistics

were computed for each region and nationwide and are given in Appendix B. The use

of the rooms is assumed to be the same for all houses, since the effect of human be-

haviour are not accounted. Further analysis of activity patterns are required in order

to test this factor in a manner that is appropriate to answer social research questions.

Daily schedules account for the total time that the 2015 ENUT interviewees (con-

sidered here to be the Chilean population) reported as their average sleeping hours;

see Section 4.6. The sleeping time is considered to be the core activity and the national

average is selected to represent the entire Chilean population; see Table 4.8. Conse-

quently, sleeping is scheduled from 11:00 pm to 6:21 am for weekdays and from 12 am

to 7:57 am for weekends; see Figure 5.6.

Meals are used to inform the time when the kitchen door is opened and the cooking

periods. During a normal working day, breakfast is eaten at 7:20 am, and has a dura-

tion of 1 h 15 min. Lunch time is scheduled from 12 pm to 1 pm, tea time from 5 pm

to 6 pm, and dinner from 8 pm to 9 pm; see Figure 5.7. At weekends breakfast starts

at 9am and has a duration of 1h 20min. Lunch is scheduled from 12:30 pm to 3 pm,

and a type of meal that joins tea time and dinner (known colloquially as once–comida) is

scheduled from from 8 pm to 10 pm. Breakfasts are assumed to be eaten in the kitchen,

whereas the other meals are eaten in the family room.

Meal preparation is assumed to have a duration of 1 h on normal week days and 1 h

during the weekends. Times and durations are included within the time the kitchen
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door is opened (see Table B.4).

The emission rate of moisture from occupants’ respiration and transpiration (see

Section 4.7.5) follows the bedroom door schedules. Occupants emit water vapour in

the bedroom during sleeping hours when the door is closed, and are considered to

be out of the room when the door is open. During the rest of the day, one adult and

one infant are assumed to remain at home, and so they are modelled as sources of

moisture in the living rooms.

Figure 5.6: Example of the schedule followed by the bedroom doors during a normal

working day. A value of 1 is used when the door is opened and a value of 0 when

closed.

Bathroom mechanical extractor fans are modelled ON from the wake–up time and

when showering and getting dressed; both activities reported in the 2015 ENUT (INE,

2016b). Kitchen range hoods are considered ON when cooking a meal (from the time

a meal starts) and remain in operation for one hour. The capture efficiency of the range

hood is not considered by CONTAM. Moreover, there is no information about the use

of range hoods in Chile or about their capture efficiency. To be included in the study,

a known or assumed probability distribution in the stock would be required in order

to test the effect of this factor in the results. This implies that the contaminants are

perfectly and instantaneously mixed at each time–step, concentrations that are used to

calculate the mass removed by the exhaust fan and by the rest of the airflow elements.

A capture efficiency could be added in the future as a work–around by amending the

emission rate.

The heater is considered to be ON from 7 am, and to remain ON for the same num-
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Figure 5.7: Example of the schedule followed by the kitchen door during a normal

working day. A value of 1 is used when the door is opened and a value of 0 when

closed.

ber of hours every day during the winter season, which depends on the location of the

house; see Section 4.7.4 and Table 4.15.

Bedroom doors are always open except at night, and the kitchen door is closed

except when cooking (Milner et al. , 2014); see Section 5.2.5. Doors are never par-

tially opened, so that their schedules are modelled with rectangular shapes rather than

trapezoidal; see Figure 5.7.

5.3 Case scenarios

There are no reported measurements in the literature of windows opening behaviour

in Chilean houses at the stock scale. In the absence of knowledge, the models consider

a multiplier for every window where 1 is fully open and 0 is fully closed. These two

extremes are used to test extremes: a fully open and a fully closed scenario.

5.4 Sampling method

The present model has input parameters that are specified deterministically, or de-

scribed by discrete or continuous probability distributions. A set of input values are

applied to CONTAM to predict pollutant concentrations over time during the winter

season. By systematically varying each set of CONTAM inputs and running multiple
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simulations, distributions of output variables are generated that quantify uncertainty

in them; see Chapter 6.

The values of probabilistic input parameters are obtained using Latin Hypercube

Sampling (LHS), using bespoke R Version 3.5.0 code (R Core Team, 2018) and the op-

timumLHS function. LHS is chosen over the random sampling because it has the ad-

vantage of improving the stratification of the samples within a hyper–grid (Helton &

Davis, 2003), and so it reduces the number of simulation iterations required for the

predictions to converge; see Figures 5.8a and 5.8b.

(a) (b)

Figure 5.8: A sample of 40 values for 2 different parameters, requiring 2 dimensions,

using (a) a random sampling with uniform distribution and (b) a LHS.

There are 11 direct probabilistic inputs:

1. Block aspect ratio (Section 4.4.2),

2. ∆ temperature (Section 4.5.2),

3. Relative north (Section 4.4.2),

4. Air permeability (Section 4.5.2),

5. n exponent (Section 5.2.1),

6. PM2.5 deposition rate (Section 4.7.2),

7. Formaldehyde deposition rate (Section 4.7.2),

8. NO deposition rate (Section 4.7.2),

9. NO2 deposition rate (Section 4.7.2), and

10. Breakfast emission rate (Section 4.7.3),

11. Cooking meal emission rate (Section 4.7.3).

The LHS generates a value for each sample between 0 and 1 that is assigned to

an input and considered to be the probability of it occurring. When applied to an
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inverse cumulative distribution function (CDF) of the input, a value is generated; see

Figure 5.9 for an example of a single variable. Here, the LHS chooses 40 samples, one

of which is a value of 0.7 assigned to variable 2, the PM2.5 emission rate. When it is

applied to the y–axis of a CDF for PM2.5 emissions, reading from the x–axis gives an

emission rate of 2.1 mg/min. Ten sets of these inputs are chosen at a time, following

Das et al. (2014).

Figure 5.9: Example of how an input parameter (right plot) is obtained using the LHS

sampling procedure (left plot).

After each set of samples is simulated, the total sample size increases by the set size

and its PM2.5 mean (µ̃) and standard deviation (σ) is calculated. The total number of

samples is deemed to have converged, and the stopping criteria met, if the change in µ̃

and σ from one set of 10 samples to the next is less than 0.5%. This stopping criterion is

chosen to reflect the lower limit of accuracy of a good Indoor Air Quality (IAQ) sensor

following Jones et al. (2015).

Simulations are run individually and converged for each region number (15 geo-

graphic regions). The process was repeated using the 8 archetypes and the 2 scenar-

ios. Therefore, 8x15x2 = 240 different processes are carried out. The 240 processes

described herein are carried out in batch mode and run by R until the stopping criteria

is met.

5.5 Processing model predictions

Criteria pollutants for the Chilean houses follow Logue et al. (2011a) and are listed in

Section 4.7.1. They used DALYs as the metric of health impact, which allows the health

outcomes caused by different pollutants to be compared using a single unit. Fig-
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ure 2.13 shows that PM2.5 are predicted to be the most harmful pollutant in dwellings

by one order of magnitude. Thus in this study the stopping criterion for the simula-

tion process, the post–analysis of the results, and the discussion will be focused only

on the first–ranked pollutant, PM2.5. This choice also reduces computational and pro-

cessing time. However, other outputs, such as other pollutant sources, could be used

in the future.

From each set of outputs, the room–weighted pollutant concentration (PM2.5) is

calculated. The average PM2.5 concentration over the simulation period is calculated

for each room. Then, the average concentrations in the kitchen, bedrooms, and in the

family room are weighted by the daily time the cook family member spend in them.

Here, a ratio of 10 : 38 : 52 is used for the kitchen : bedroom : family room, respectively;

see Section 4.6.

Then, the time–series data of the ventilation rates (ACH) for each building, the

PM2.5 concentrations for each of the rooms, and the indoor–outdoor temperature dif-

ference (∆T) are obtained. ACH and PM2.5 data are extracted from the simulation

output files, and ∆T is computed using the indoor temperature input value and the

weather data.

From this data, the median ACH, the total PM2.5 exposure levels, and total heat loss

due to infiltration (HI) are computed for each simulation. These metrics are recorded

and compiled into a single file labelled with the simulation file ID and region number.

5.5.1 Predictions at national level

To identify the uncertainty of the three outcomes at a national level, the 15 cumula-

tive distributions of the simulations produced at regional level are used. Values are

chosen by randomly sampling from the CDFs according to the corresponding regional

weighting factor, and so giving a stock–weighted national curve. To compare both ex-

treme scenarios, two curves are produced, which are seen in Figures 6.13 and 6.15 of

Chapter 6.2, and discussed in Section 7.5.2.

5.5.2 Exposure analysis

There are two main approaches for quantifying exposures, direct and indirect; see

Section 2.5. This study uses an indirect approach by predicting the indoor pollutant

concentration over time and making assumptions about occupant behaviour.

Hourly average particle concentration profiles are predicted over the winter time

and used for the exposure assessment, following the Oezkaynak et al. (1996) method

of calculating the population–weighted exposure.
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In order to calculate the magnitude of the exposures, the predicted PM2.5 concen-

tration in each room over time, and the contact times of one family member are used.

Table 4.9 is used to set the activity pattern followed by the cook family member; the

time of the day the occupant is in each room. Pollutant concentrations are selected

from CONTAM’s contaminant files (.ncr) using simread3.exe, data analysis soft-

ware developed by NIST.

Time–weighted PM2.5 average exposure concentrations are then calculated using

the first term of Equation 2.3.1, where Ei is the exposure concentration in each of the

rooms (units of concentration) at the times presented in Tables 5.2 and 5.3 for houses

with and without a separate kitchen, respectively.

Table 5.2: Time schedule followed by the cook family member, used to calculate the

PM2.5 exposure levels.

Room Time

Bedroom 23:00 - 06:00

Kitchen 07:00 - 09:00

12:00 - 13:00

17:00 - 18:00

20:00 - 21:00

Living room 06:00 - 07:00

09:00 - 12:00

13:00 - 17:00

18:00 - 20:00

21:00 - 23:00

Table 5.3: Time schedule followed by the cook family member, used to calculate the

PM2.5 exposure levels in houses with no separate kitchen.

Room Time

Bedroom 23:00 - 06:00

Kitchen & Living room 06:00 - 23:00

5.5.3 Ventilation rates

CONTAM’s Whole Building Air Change Rate files (.ach) are processed by reading them

as text files using R and selecting the columns containing the time date and ventilation

rates. Hourly averaged, and median values, over the winter time were obtained for

each project file.
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5.5.4 Heat loss

Heat loss due to exfiltration (HI) is calculated using the transient predictions where

HI =
∫

V̇I(t) · ρ(t) · c · ∆T(t) · dt (5.5.1)

Here, VI (m3/s) is the infiltration or airleakage rate, ρ (kg/m3) is the mean air density

between the indoor and outdoor air densities, c (J/kg/K) is the specific heat capacity

of air, and ∆T (K) is the absolute difference between the indoor and outdoor tempera-

tures. The air density is a function of the air pressure ph and temperature, which are

obtained the relevant weather file, and calculated using Equation 5.5.2.

ρ = ph/(RT) (5.5.2)

where R is the specific gas constant for dry air (J/(kg K))(Dols & Polidoro, 2015).

5.5.5 Statistical analyses

To analyse the data, three statistical tests are used. As the three model outputs are

expected to follow a non–normal distribution, the tests are chosen to account for this.

To test the occurrence of an effect, and to find its location, in categorical variables,

a Kruskal–Wallis H test and post–hoc pairwise multiple comparison tests are carried

out for all archetypes and regions, following Field et al. (2012). The H test determines

whether differences between the medians of two samples are significant, based on the

null hypothesis that all medians are equal. The post–hoc tests identify which pairs of

samples are significantly different of each other, testing the null hypothesis that each

pair of medians are equal. These tests are carried out using R’s kruskal.test and

kruskalmc functions. Additionally, Levene’s tests is executed with R’s leveneTest

function to test the homogeneity of variance. Chapter 6 shows that the results are

non–normal and so the median was used for comparison. Finally, effect sizes are used

to identify the size of the difference between two samples, following Ferguson (2009)

and using the group difference index, also known as Cohen’s d

d =
Med1 −Med2

σpop
(5.5.3)

Here, Med1 and Med2 are the outcome median for the two groups compared, σpop is the

standard deviation for the entire population, in this case, calculated by sampling from

the national distribution given in in Table 6.3. The following thresholds have been

used for labelling the effects:
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Table 5.4: Effect sizes thresholds (Ferguson, 2009; Sullivan & Feinn, 2012)

Magnitude d, threshold

Small 0.2

Medium (Cohen’s benchmark) 0.5

Large 0.8

Very large 1.3

5.6 Sensitivity analyses of the input and output data

Twelve inputs and three outputs are retained for the sensitivity analysis. A fundamen-

tal assumption of the sensitivity analysis is that all the tested inputs are independent

of each other, and so any that are themselves correlated are combined. Therefore,

nine inputs are used directly and three are scaled using house characteristics to avoid

multicollinearity.

All inputs and outputs are unique for each house, except for the heater emission rate

and envelope area : volume ratio because they relate to a specific household appliance

and archetype, respectively; see sections 4.7.4 and 4.1. To compute representative val-

ues for the wind speed, the median wind speed at the meteo stations is taken from the

winter weather files and scaled at the house site as described in Section 4.4.1. ∆ T uses

the sampled indoor temperature and median outdoor temperature from the weather

files. Finally, the total permeable area is calculated from the sum of the individual air-

leakage areas and window areas, when they are modelled open. Table 5.5 summarises

the 12 inputs used for the sensitivity analyses.

The sensitivity analyses are used to test the dependence of each output on the

inputs. Here, the method of Jones et al. (2015) and Das et al. (2014) is followed,

which tests for linear, monotonic, and non-monotonic relationships between the in-

puts and outputs. Their MATLAB code is accessed via Research Gate 1. The tests for

linear relationship are: (i) Kendall’s τ rank, (ii) Pearson’s r product moment correla-

tion coefficient, and (iii) linear regression. Monotonic relationships are tested using:

(iv) Spearman’s ρ rank correlation coefficient, (v) rank-transformed standardised vari-

ables. Non–monotonic relationships are tested using: (vi) Kolmogorov–Smirnov and

(vii) Kruskal–Wallis quantile tests.

The input and output data are not transformed, and all outliers are included. Out-

puts and inputs for both scenarios are merged and tested together. Coefficients and

p–values are obtained for each test, and the inputs are ranked according to the magni-

tude of the coefficient.
1DOI: 10.13140/RG.2.2.30311.39844
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Table 5.5: Inputs retained and outputs computed for the sensitivity analysis.

Inputs
Output

House Design Pollutant Species and Source Environment

1. Block aspect ratio 7. PM2.5 Deposition rate 11. Ws 1. PM2.5 exposures

2. Orientation 8. ER from breakfasts 12. Tint− Text 2. ACH

3. Permeability 9. ER from main meals 3. HI

4. n exponent 10. ER from the heater

5. Envelope : Vol ratio

6. Total permeable area

5.7 Summary

This chapter describes the modelling process used to predict pollutant concentrations

and ventilation rates in houses of the Chilean housing stock and the sensitivity analy-

sis is used to test the relative importance of model inputs using a sensitivity analysis.

Indoor sources are modelled in eight archetypal houses that represent a 35% of the

stock using the multi–zone indoor air quality and ventilation analysis tool CONTAM.

The models account for the effects of the Chilean environment, local house design,

different airflow elements, and occupancy patterns.

A probabilistic approach is applied to investigate uncertainty in model predictions.

Inputs are created using a Latin Hypercube sampling (LHS) method. Their values are

chosen so that they follow a cumulative density function when their distribution is

known. When data is unavailable assumptions are made about their distribution by

assigning a fixed value, a value within a range, or a known distribution reported in

the literature.

Key pollutant sources are defined as criteria pollutants coming from cooking, com-

bustion heaters, building materials, and some occupant activities. Ambient pollutants

are excluded.

The models do not account for all possible pollutant behaviours, and so the con-

taminants species are modelled as inert gases, so that the chemical interactions with

each other, or with other gases, are not considered. Other processes such as adsorp-

tion, resuspension, and filtration are also excluded from the models. Pollutant re-

moval and dilution methods include ventilation through mechanical extractor fans,

infiltration, and deposition onto indoor surfaces. To assess the effect of natural venti-

lation through windows, two extreme scenarios are considered; one in which all the

windows remain closed over the entire winter season, and one in which the windows

are fully opened.
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Model outputs are limited to fine particle concentrations, ventilation rate, and heat

loss due to infiltration over time. However, they can be updated in the future as new

information and data becomes available. The models are now be simulated to give

distributions of outputs that can be used to understand the behaviour of the model

and to determine indoor air quality in Chilean houses. These results are presented in

Chapter 6.
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CHAPTER 6

Model Predictions

Predicted pollutant concentrations and sensitivity analysis

Chapter 4 described how 8 archetypes can be defined which cover 35% of the Chilean

housing stock. Here, therefore these archetypes are used to investigate the effects of

altering key parameters which might influence exposure to indoor PM2.5 using the

modelling approach described in Chapter 5. Two extreme scenarios were applied to

model each archetype separately; with all windows closed (scenario 1) and with all

windows open (scenario 2). The exposure analysis was limited to fine particle concen-

trations, and so the number of simulations increased until the time–weighted PM2.5

concentrations converged into a steady mean and standard deviation.

In this chapter, the results of the predictions are presented. They are divided into

four sections. Section 6.1 describes the predicted time–series data of the simulations;

Section 6.2 gives the hourly results, and Section 6.3 aggregated over the winter season.

Section 6.4 shows the relationship between PM2.5 concentrations, heat loss, and venti-

lation rates, and presents the ventilation rates required to achieve acceptable long–term

exposures to PM2.5 in at least 95% of the national stock; and Section 6.5 presents the

sensitivity analysis to show those inputs that most influenced the model predictions.

Following the second objective of this study ( Section 1.7), the predictions are used

to describe the uncertainty in the indoor air quality of the Chilean housing stock.

Thus, the results are presented using probability distributions in addition to descrip-

tive statistics. Moreover, to better understand the relationship between the indoor air

quality and the energy demand in the Chilean stock, and some of the implications that

intervention measures could lead to, ventilation rates and heat loss by exfiltration are

also obtained from each house. Hence, the three modelling outcomes are presented

in each section: (i) the exposure to fine particles, (ii) the ventilation rates, and (iii) the

heat loss due to exfiltration.

Figures 6.1a and 6.1b show an example of the values of PM2.5 used for testing
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convergence, and to determine the end of the simulation process; see Section 5.4. As

the sample size increases by adding new sets of simulations, µ̃ and σ of PM2.5 become

more stable; see Section 5.4 for a detail description of the method and Section 7.2 for

a discussion of this stopping criteria. Table 6.1 presents the number of simulations

per archetype required to achieve convergence; approximately 2, 100 project files per

archetype and scenario.

(a) (b)
Figure 6.1: Changes in (a) ∆µ̃ and (b) ∆σ of PM2.5 as sample size increases. The x–axis

indicates the number of sets of samples in dozens.

Table 6.1: Final number of simulations per archetype using a stopping criteria of 0.5%

change in both ∆µ̃ and ∆σ of PM2.5.

Archetype ID Number of simulations

Windows closed Windows open

27 2,390 2,390

36 2,440 2,320

91 2,050 1,880

100 1,930 2,120

275 1,510 2,150

35 2,870 1,970

284 2,050 2,480

19 1,990 2,080

TOTAL 17,230 17,390

6.1 Time – series data

The hourly data is obtained from each CONTAM’s simulation file (.sim) and read us-

ing simread3.exe; see Section 5.5.2. Each simulation file records hourly averaged

data (24 h) over the wintertime (93 days), giving a total of 2,232 data points. Figure 6.2

shows a snapshot of the airflow transient data through some airflow paths operat-
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ing in a kitchen for one day. Three types of air path are shown: the kitchen vent,

the kitchen fan, and the three airleakage paths located in one of the walls. This ex-

ample corresponds to a house simulated with all windows closed (scenario 1). CON-

TAM draws lines from the transient airflow data with one–hour resolution; thus, the

airflows for the kitchen fan are visually misrepresented. It shows triangular shapes

rather than their corresponding rectangular shape. Nevertheless, this is only a visual

misrepresentation, not an error in the models, and so this does not affect the results.

Furthermore, the area under the curve, which gives the total airflow, is unaffected.

Figure 6.3 shows a house of the same archetype simulated in the second scenario,

namely all windows open, and so the plot includes the airflow through one of the

kitchen windows.



CHAPTER 6. MODEL PREDICTIONS 115

Figure 6.2: Windows closed scenario. 24 h airflows through the flow paths located

in the kitchen of a simulated house in the capital region: (Red and green) windows;

(Pink) vent; (light green) fan; (blue) kitchen door, (blue, brown, and red) envelope

airleakages at 2.4 m, 1.2 m, and 0 m height of the walls. The Q50 of this house is

26 m3 h−1 m−2, −31% of the average Q50 of the archetype.

Figure 6.3: Windows open scenario. 24 h airflows through the flow paths located in

the kitchen of a simulated house in the capital region: (Red and light blue) windows;

(light green) fan; (blue) kitchen door. Here, Q50 =48 m3 h−1 m−2 , +30% higher than

the average Q50 of the archetype.

Figures 6.4 and 6.5 show the transient PM2.5 concentrations in the three rooms used

for the exposure analysis: (i) the kitchen, (ii) the bedroom, and (iii) the living–room,

for windows closed and windows open scenarios, respectively. Section 5.5.2 described

the method and how the data is used, and Section 7.4 discusses the use of the CONTAM

model for the predictions.
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Figure 6.4: Windows closed scenario. 24 h PM2.5 exposure profiles in a simulated

house located in the capital region. The red line corresponds to the kitchen, the brown

line to the bedroom, and green to the family–room.

Figure 6.5: Windows open scenario. 24 h PM2.5 exposure profiles in a simulated

house located in the capital region. The red line corresponds to the kitchen, the brown

line to the bedroom, and green to the family–room.
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6.2 Hourly data over the winter season

Data over the wintertime (24 h, 93 days) is read using R, and summary statistics for

PM2.5 exposures, ventilation rates, and heat loss due to infiltration are computed.

A cumulative distribution function (CDF) shows the probability of a variable x

being less or equal to a certain value of a predictor, Y, or P(x ≤ Y), and so they are

used to represent the uncertainty in the predictions. Figures 6.10a to 6.10o show the

cumulative distributions of hourly PM2.5 exposures for one archetype aggregated by

region. The x–axes are kept fixed to make the visual comparison between regions

easier. Figures 6.6 and 6.7 show the aggregated probability distribution of hourly

exposures to PM2.5 and hourly ventilation rates for windows closed scenario. This is

discussed in Section 7.5.4. The heat loss is not shown because this metric is computed

for the entire simulation time, and so the hourly data are not included.

6.2.1 Results by archetype

Tables 6.2a and 6.2b present the simulation results aggregated by archetype. Median

hourly exposures for windows closed scenario are generally higher in archetypes 275

and 284, which represent the newer and more airtight houses. In contrast, windows

open scenario shows that there are negligible differences between archetypes, and

exposures are close to background levels. Pollutant removal by natural ventilation,

here the consequence of window opening, is discussed in Section 7.5.2.

(a) Statistics computed for the median

hourly PM2.5 exposures ( µg/m3) of win-

dows closed scenario, aggregated by

archetype ID.

ID Median Mean SD

27 2.75 9.94 9.14

36 2.22 6.12 5.90

91 2.81 12.68 11.88

100 1.09 4.24 4.32

275 17.52 25.46 18.45

35 0.99 5.44 5.31

19 4.10 11.76 11.02

284 7.61 16.20 12.68

(b) Statistics computed for the median

hourly ventilation rates (h−1) of windows

closed scenario, aggregated by archetype

ID.

ID Median Mean SD

27 0.8 0.9 0.3

36 1.1 1.0 0.3

91 0.7 0.7 0.2

100 1.0 1.0 0.3

275 0.1 0.1 0.0

35 1.0 1.1 0.3

19 0.8 0.8 0.2

284 0.2 0.2 0.1
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Figure 6.6: Windows closed scenario. Distribution of the hourly exposures of an

occupant to PM2.5 over the wintertime. The upper limit of the graph corresponds to

the 95th quantile (449 µg/m3) and the median, or 50th quantile, is 5.8 µg/m3. The

blue area shows the proportion of winter hours that the stock is below the WHO 24 h

recommendation of 25 µg/m3.

Figure 6.7: Windows closed scenario. Distribution of hourly airchange rates in simu-

lated houses during the winter, as the portion of air volume of a room that is removed

or added in each hour (h−1). The blue area shows the proportion of the winter hours

that the stock is below the international recommendation of 0.5 h−1.
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Figure 6.8: Windows closed scenario. Distribution of the medians of hourly PM2.5

exposures of all simulated houses by archetype. The green dashed line shows the

WHO’s 24 h recommendation of 25 µg/m3.

Figure 6.9: Windows closed scenario. Distribution of the medians of hourly ventila-

tion rates (h−1) of all simulated houses.
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(a) Region 1 (b) Region 2 (c) Region 3

(d) Region 4 (e) Region 5
(f) Region 6

(g) Region 7 (h) Region 8 (i) Region 9

(j) Region 10 (k) Region 11 (l) Region 12

(m) Region 13 (n) Region 14 (o) Region 15

Figure 6.10: Windows closed scenario. Predicted distribution of hourly PM2.5 expo-

sures for archetype ID27, for each region.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6.11: Windows open scenario. Predicted distribution of hourly PM2.5 expo-

sures for archetype ID27, for each region.
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(a) Windows closed scenario: Archetype

ID 27, by region.

(b) Windows open scenario: Archetype ID 27,

by region.

(c) Windows closed scenario: Archetype

ID 27, nationwide, regional stock–weighted.

(d) Windows open scenario: Archetype ID 27,

nationwide, regional stock–weighted.

Figure 6.12: Example of one archetype, ID 27. Stock–weighted distributions of the

predicted hourly exposures to PM2.5.

6.2.2 Regional and nationwide outcome distributions for one of the archetypes

For each archetype, the national distribution was obtained by sampling values from

the regional distributions and using their weighting factors; method presented in Sec-

tion 5.5.1. Here, one example is shown. Figures 6.12a and 6.12b show the 15 regional

cumulative distributions of PM2.5 exposure for the first archetype. Figures 6.12c and

6.12d show the simulation results scaled up to the national stock.
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6.2.3 Nationwide distributions

Similarly, the national distributions for windows closed and open scenarios were ob-

tained using the eight archetypes. Figure 6.13 shows the national CDFs of the pre-

dicted hourly PM2.5 concentrations for the two extreme scenarios. Given that neither

of these two assumptions is likely to represent the actual scenario, the real line is ex-

pected to be somewhere between these two. This graph can be used to visualise the

boundaries of the problem in the Chilean context, and to see the impact of the window

opening behaviour on hourly exposures.

Figure 6.13: Nationwide hourly exposures to PM2.5 during the winter season. Win-

dows closed scenario in red line and Windows open scenario in blue. The dashed

line shows the WHO’s 24 h recommendation of 25 µg/m3.

6.3 Winter data

To have a single value for each of the projects’ outcomes, the total exposure to PM2.5,

the median ventilation rate, and the total heat loss over the wintertime were calculated

for each house. Figures 6.14a, 6.14b, and 6.14c show the distribution of the results, in-

cluding windows closed and windows open scenarios, before being stock–weighted.

Figures 6.15a, to 6.15f show the distribution of the outcomes after they were weighted

according to their frequency in the stock, and Table 6.3 presents some descriptive

statistics. 90% intervals are presented to show the lower and upper limits of the pre-
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(a) Distribution of total winter exposures to

PM2.5.

(b) Distribution of median ventilation rates

over the winter

(c) Heat loss.

Figure 6.14: Distribution of the simulations for the three outcomes analysed in this

study before weighting them. The x–axis were trimmed to display up to the 95%

quantile.

dicted exposure levels, ventilation rates, and heat loss, and exclude those that are less

likely to find. The coefficient of variation, CV , is a descriptive statistic that measures

the variability of any value and, due to its independence of the unit of measurement,

can be used to compare different distributions. It is computed by dividing the stan-

dard deviation by the mean, or σ
µ . For example, results for winter exposures are shown

to be more variable than those for ventilation rates or heat loss, and the difference in

variation between windows closed and open scenarios is similar across all outcomes.

Interestingly, the lowest variability is seen in ventilation rates in the second scenario,

with a CV of 0.50, whereas the largest is in exposures, also of the second scenario, with

a CV of 1.85. The skewness and kurtosis describe the shape of the distributions, where

0 correspond to a normal distribution. The positive skewness and kurtosis for the

three outcomes indicate that their distributions are all positively skewed and heavily–
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tailed. This suggests that the use of the mean, instead of the median, as an indicator

in policy–making or benchmarking could be problematic. This is further discussed in

Section 7.5.2.

Table 6.3: Descriptive statistics for winter PM2.5 exposures, ventilation rates, and heat

loss, nationwide. Outcomes of the eight archetypes were scaled up to the national

level using their regional and archetypal weighting factors. Scenario 1: Windows

closed. Scenario 2: Windows open. CV : coefficient of variation. P: percentile.

Exposures ( µg/m3) Ventilation rates (h−1) Heat loss (kWh)

Statistic Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2

Mean, µ 134.47 6.64 0.89 15.80 1283.85 19526.08

Median, Med 58.65 2.30 0.75 13.57 947.44 16681.37

Standard deviation, σ 210.28 12.26 0.79 7.91 1190.02 12556.3

90% CI [2.58; 548.72] [0.08; 29.81] [0.08; 2.40] [8.20, 29.75] [252.6; 3471.2] [5736; 42342]

P10 5.20 0.22 0.13 8.85 319.3 7614

P25 19.06 0.77 0.31 10.42 508.8 11053

P75 154.20 6.77 1.16 19.14 1624.5 24686

P90 367.06 16.94 1.84 24.75 2585.7 34295

CV 1.56 1.85 0.89 0.50 0.93 0.64

Skewness 4.12 4.26 2.17 2.47 3.00 2.18

Kurtosis 34.62 26.36 9.19 11.31 16.07 9.48

6.3.1 Winter results by region and by archetype

Simulation results were aggregated by region number, archetype ID, and heater type

to show and test the variability between groups. Descriptive statistics for each out-

come are shown in Tables 6.4 to 6.6, aggregated by region number, and in Tables 6.7 to

6.9 by archetype ID. Group comparison test statistics are reported in Section 6.3.3. A

large difference between the averages and the medians of winter exposures is seen in

the results of the archetypes and regions, indicating that their distributions are asym-

metric and right–skewed. This difference is less pronounced in the results of heat loss,

and not seen in the results of ventilation rates or heat loss. Figure 6.18 shows the

distribution of the results by type of heater.

6.3.2 Mean values of the sampling distribution

The uncertainty in the means of the three outcomes across the stock was identified

by sampling multiple values from the national distribution. The samples size cor-

responds to the total housing stock. Due to the central limit theorem, the sampling

distribution of the sample mean is expected to follow a normal distribution (Hughes

& Hase, 2010). The number of samples is then increased until the test statistics of the

Shapiro Test for normality become W > 0.995 and p > 0.05.
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(a) PM2.5, Windows closed scenario. (b) PM2.5, Windows open scenario

(c) Median ventilation rates, windows closed

scenario.

(d) Median ventilation rates, windows open

scenario.

(e) Total heat loss over the winter, windows

closed scenario.

(f) Total heat loss over the winter, windows

open scenario.

Figure 6.15: Nationwide cumulative distribution of the simulations for the three out-

comes analysed in this study after weighting them.
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(a) Windows closed scenario. (b) Windows open scenario.

Figure 6.16: Hourly exposures to PM2.5 by region.

(a) Windows closed scenario. (b) Windows open scenario.

Figure 6.17: Exposures to PM2.5 by archetype ID. ID 27 shown in red, the most com-

mon house; ID36 in blue; ID 91 in light blue; ID 100 in pink; ID 275 in yellow; ID 35

in green, ID19 in black; ID 284 in grey. Extreme values: In yellow and grey are ID 275

and ID284, the only two simulated archetypes from the second construction period

and so air tighter; ID 275 is the smallest archetype of those two. In blue and green are

the two of the largest houses by volume, from the first construction period.
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Figure 6.18: Windows closed scenario. Distribution of the medians of winter PM2.5

exposures for all simulated houses by heater type. y–axis in log–scale. G: gas; W-

DCh: wood double chamber; K-SW: kerosene special wick; K-L: kerosene laser; K-

S: kerosene standard. The dashed line shows the WHO’s 24 h recommendation of

25 µg/m3.

Figures 6.19a to 6.19f show the distribution of the sampling means from which

the population mean for the outcomes are estimated. The mean PM2.5 concentra-

tion in a Chilean house is estimated to be µ = 134.6 µg/m3 (SE = 0.08 µg/m3) with

all windows closed and µ = 6.65 µg/m3 (SE = 0.0049 µg/m3) with all windows

open. The mean ventilation rate of a Chilean house is estimated to be µ = 0.885 h−1

(SE = 3.12e− 04 h−1) with all windows closed and µ = 15.8 h−1 (SE = 3.14e− 03 h−1)

with all windows open. The mean heat loss (by exfiltration) per house is estimated

to be µ = 1, 284 kWh (SE = kWh) and 19,510 kWh (SE = 5.36 kWh) for windows

closed and open scenarios, respectively. Finally, the total heat loss due to exfiltration

in the Chilean stock is estimated to be 8.16 TWh for windows closed scenario, and

124 TWh for windows open scenario. Some negative values were obtained in some

houses showing heat gains. Negative values were set to zero to account only for the

heat loss.These figures are compared against those from other studies in Section 7.7,

and against the international guidelines and benchmarks in Section 7.5.3.
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(a) Average PM2.5 concentration per house

across the stock. Windows closed scenario.

(b) Average PM2.5 concentration per house

across the stock. Windows open scenario.

(c) Average ventilation rate per house across

the stock. Windows closed scenario.

(d) Average ventilation rate per house across

the stock. Windows open scenario.

(e) Average heat loss per house across the

stock. Windows closed scenario.

(f) Average heat loss per house across the

stock. Windows open scenario.

Figure 6.19: Distribution of the sampling mean for the three outcomes and the two

extreme scenarios.



CHAPTER 6. MODEL PREDICTIONS 132

6.3.3 Statistical tests for group comparison

A series of statistical tests are performed to compare PM2.5 exposures, ventilation

rates, and heat loss when analysed by archetype ID and region, and when compared

against each other. Kruskal–Wallis tests by ranks H showed that there is a significant

difference in the distributions between the groups, and the Levene’s tests showed that

there is a significant difference in the variances in the groups. The LHS sampling

method has the advantage of testing the inputs in all the archetypes equally, and so

similar variability in the outcomes could be expected. Thus, these results of the Lev-

ene’s tests for the three outcomes mean that the model inputs affect the archetypes

differently, giving different inter–group variability.

To give a better interpretation of the statistical significance of these results, the ef-

fect sizes are quantified using the medians. The results show varied magnitudes for

the three outcomes. Negligible to small effect sizes are seen between pairs of archetypes

and regions for the PM2.5 exposures, and negligible to large effect sizes for the ventila-

tion rates and heat loss. When negligible effect size is seen between two groups and in

the three outcomes, the analysis and interventions could be carried out at both groups

together with equal effect.

See Section 5.5.5 for a brief description of the method, and Sections 7.2 and 7.6.3

for the discussion of the tests and these results. The results of the statistical tests for

the three outcomes are presented in greater detail in the following sections.

Exposures to PM2.5 ( µg/m3):

The results of the Kruskal–Wallis test by ranks were highly significant for both archetypes

and regions (p < 2.2e− 16). When results were pairwise compared by region, 57 and

16 out of 105 combinations were non–significant for windows closed and open sce-

narios, respectively. When comparing windows closed scenario by pairs of archetype

IDs, 20 out of 28 combinations were significant at 0.05 level. 16 were significant when

comparing windows open scenario.

Levene’s F test shows that the variances of the median winter exposures to PM2.5

for windows closed and open scenarios were different in the archetypes, F(7, 17222) =

38.79, p < 2.2e− 16 and F(7, 17382) = 10.21, p = 7.868e− 13, respectively. Variances

were also significantly different in the regions for windows closed and open scenarios,

F(14, 17215) = 5.60, p = 6.113e− 11 and F(14, 17375) = 65.82, p < 2.2e− 16.

The magnitude of the effects of median PM2.5 exposures between regions is negli-

gible for all combinations for windows closed scenario, and for 85 out of 105 combi-

nations for windows open scenario. The remaining 20 combinations showed a small
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effect size, especially between the 13th (capital) region versus northern and southern

regions (1–4, and 8–12). The largest effect size for each scenario is seen between the 6th

and 12th region for windows closed scenario, and for the 12th and 13th for windows

open scenario. For each scenario the effect sizes of PM2.5 between pairs of archetypes

are generally of negligible in magnitude, and small only when archetype ID 275 is com-

pared against ID 35 and 36 for windows closed scenario.

Ventilation rates (h−1) during winter:

The Kruskal–Wallis test by ranks H was highly significant (p < 2.2e − 16) for both

scenarios when compared by IDs and region (p < 2.2e− 16), meaning that there is a

difference between the groups. The Post–hoc test for multiple comparisons between

pairs of regions showed that 75 out of 105 combinations were significantly different

from each other, and 92 out of 105 combinations in windows open scenario. Between

archetype IDs, ventilation rates in windows closed scenario are significantly different

for all combinations except for three of them: ID 35 versus ID 36 and ID 100, and be-

tween ID 36 and ID 100. In windows open scenario, the only three combinations with

non–significant difference are ID 35 versus ID 91 and ID 284, and between ID 91 and

ID 284.

Levene’s F test shows that the variances of ventilation rates for windows closed

scenario were significantly different when grouping the results by either archetype ID

and region, F(7, 17222) = 428.61 (p < 2.2e− 16) and F(14, 17215) = 53.942 (p < 2.2e−
16), respectively. Similarly for windows open scenario, variances of ventilation rates

showed significant differences between archetypes and regions, F(7, 17382) = 102.6

(p < 2.2e− 16) and F(14, 17375) = 273.12 (p < 2.2e− 16), respectively.

The magnitude of the effects of ventilation rates between regions is between negligi-

ble to medium for combinations in windows closed scenario, and to large for windows

open scenario. Effects of large magnitude are seen in 13 combinations, only in win-

dows open scenario. Medium effects are shown in 8 and 18 out of 105 combinations in

windows closed and open scenario, respectively.

Effect sizes of ventilation rates between pairs of archetypes are between negligible

and large for windows closed scenario and all of negligible magnitude for windows

open scenario. In windows closed scenario, 9 out of 28 combinations are small, 5

are medium, and 6 are large. Large effect is shown for archetypes 275 and 284 versus

archetypes 35, 36, and 100.
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Heat loss (kWh) by ventilation:

The Kruskal–Wallis test by ranks H was found to be highly significant (p < 2.2e− 16)

for both scenarios when comparing the distributions of the heat loss with archetypes

and regions. Post–hoc test for multiple comparisons for windows closed scenario

showed that 76 out of 105 pairs of regions were significantly different from each other,

and 88 out of 105 for windows open scenario. For pairs of archetypes in windows

closed scenario, only ID 35 versus ID 36 and 100, and ID 36 versus ID 100 were non–

significant, and between ID 27 and ID 36, and between ID 100 and ID 285 for windows

open scenario.

Levene’s F test of homoscedasticity showed that the variances in heat loss for win-

dows closed scenario were significantly different when grouping the results by ei-

ther archetype or region; F(7, 17222) = 468.34 (p < 2.2e − 16) and F(14, 17215) =

38.11 (p < 2.2e − 16), respectively. Similarly for windows open scenario, variances

of ventilation rates showed significant differences between archetypes and regions,

F(7, 17382) = 124.09 (p < 2.2e− 16) and F(14, 17375) = 157.22 (p < 2.2e− 16), respec-

tively. This means that the groups show significantly different medians and variances.

In windows closed scenario, effect sizes between pairs of regions ranged from neg-

ligible to medium. Medium effects were seen in region 11 versus regions 1, 2, 4, and

15. In windows open scenario, the magnitudes of the effect were between negligible to

large; 45 cases had small magnitude, 18 medium, and 12 large. Large effects were seen in

some combinations of regions 1–7 and 10–13 versus region 15. Effect sizes of heat loss

between archetypes were more variable, ranging from negligible to large for windows

closed and open scenarios.

6.4 Relationship between outcomes

The third objective of this study (Section 1.7) was to explore the relationship between

ventilation rates, pollutant concentration, and energy loss in Chilean houses. The lit-

erature review (Section 1.5) presented the argument for and against an increase in ven-

tilation rates. The two conflicting aims are illustrated in Figure 1.2 on page 8, which

shows the monotonic relationship between ventilation rate and pollutant concentra-

tion and the linear relationship between ventilation rate and energy loss. The figure is

replicated here for the Chilean stock to contextualise the results and to identify the na-

ture of the relationships. Figure 6.20 shows the interaction between the three predicted

outcomes in a scatter plot, where all predicted outputs are included.

Figure 6.21 uses the same data to show the P95 of both PM2.5 and heat loss, versus

the associated ventilation rate. To ensure that 95% of the stock is below 25 µg/m3, the

ventilation rates must be increased up to 13 h−1, which can be cost–prohibitive. This
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ventilation rate corresponds roughly to the median of windows open scenario and out

of the range of windows closed scenario. These results show the range of scattering of

the predictions for different conditions, and also the uncertainty in data so that it can

be accounted for in any decision–making process. This is discussed in Section 7.5.2.

Figure 6.20: Scatter plot of the ventilation rates and the predicted winter exposures to

PM2.5 (in green) and total energy loss (in blue) for both scenarios. The green dashed

line shows the WHO’s 24 h recommendation of 25 µg/m3.

Figure 6.21: P95 of the predicted winter exposures to PM2.5 (in green) and the total

energy loss (in blue) versus the ventilation rates. Windows closed and open com-

bined. The dashed lines show the WHO’s annual recommendation of 25 µg/m3 and

the related heat loss.
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6.5 Sensitivity Analyses

In this section the sensitivity of the model’s three outputs to its inputs are evaluated;

see Section 5.6 for a description of the method. The three output metrics computed for

each house were: (i) the total exposure of one occupant to fine particles, (ii) the median

ventilation rates, and (iii) the total heat loss over the winter. These metrics are used

to measure the strength of the relationships. This analysis enabled the identification

of the inputs that are most influential so that they can be targeted for attention when

designing new dwellings or by future data gathering exercises when there is epistemic

uncertainty in influential model inputs.

Figures 6.22, 6.23, and 6.24 show the relationships between the sampled inputs and

the three outcomes, including scenarios 1 and 2. No clear relationship is shown be-

tween the three outputs and the aspect ratio or orientation of the building, whereas

relationships between the three outputs and the total leakage area and Q50 look ex-

ponentially related. An approximately linear relationship is seen between the winter

exposures and the cooking emission rates. The relationships between the winter ex-

posures and the deposition rate, breakfast emission rates, and ∆T look parabolic, and

more scattered for smaller values. No pattern is observed between winter exposures

and wind speed, the S:V ratio, or the heater emission rates. A linear relationship is

seen between ∆T and both the ventilation rate and heat loss. A random relationship is

seen between the n exponent and the heat loss, whereas the relationship between the

n exponent and the ventilation rate may be parabolic.

Tables 6.10—6.12 present the rankings of the inputs by sensitivity test, where 1 is

the most sensitive. The test statistics used to compute the ranking along with their

p–values are presented in Appendix D. Results of the tests show that PM2.5 winter

exposures are most strongly correlated with the cooking emission rates, followed by

the envelope permeable area, and the heater emission rates. Ventilation rates are most

strongly correlated with the permeable envelope area, Q50, and ∆T. Finally, heat loss

is also most sensitive to the permeable envelope area, but ∆T is the second–ranked

input, and Q50 is the third.

The consequences of these results are discussed further in Section 7.6.
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Figure 6.22: Scatter plot of the inputs and the predicted winter exposures to PM2.5

(N = 34, 620).
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Figure 6.23: Scatter plot of the inputs and the predicted median ventilation rates over

the winter.
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Figure 6.24: Scatter plot of the inputs and the predicted total heat loss over the winter

season.



CHAPTER 6. MODEL PREDICTIONS 140

Ta
bl

e
6.

10
:S

en
si

ti
vi

ty
an

al
ys

es
of

th
e

in
pu

tp
ar

am
et

er
s

on
th

e
ex

po
su

re
to

PM
2.

5
ov

er
th

e
w

in
te

r.

In
pu

t—
Te

st
ra

nk
K

en
da

ll
τ

Pe
ar

so
n

Sp
ea

rm
an

R
eg

re
ss

io
n

R
an

k
R

eg
re

ss
io

n
K

–S
K

–W
P 2

K
–W

P 5
K

–W
P 1

0
K

–W
P 2

0

L
:W

10
9

10
9

10
11

11
11

10
12

O
ri

en
ta

ti
on

11
12

11
12

11
10

10
10

12
10

Pe
rm

ea
bi

lit
y

Q
50

5
3

5
3

5
6

5
5

6
6

n
ex

po
ne

nt
6

5
6

5
6

9
6

7
8

8

D
ep

os
it

io
n

R
at

e
of

PM
2.

5
7

4
7

4
7

8
7

9
7

9

Br
ea

kf
as

tP
M

2.
5

12
11

12
11

12
12

12
12

11
11

C
oo

ki
ng

PM
2.

5
1

1
1

1
1

1
1

1
1

1

∆
T

8
7

8
7

8
7

9
6

5
5

W
in

d
at

H
ou

se
4

10
4

10
4

5
3

4
4

4

H
ea

te
r

PM
2.

5E
R

3
6

3
6

3
4

4
3

3
3

S
:V

9
8

9
8

9
3

8
8

9
7

To
ta

lp
er

m
ea

bl
e

ar
ea

2
2

2
2

2
2

2
2

2
2

Ta
bl

e
6.

11
:S

en
si

ti
vi

ty
an

al
ys

es
of

th
e

in
pu

tp
ar

am
et

er
s

on
ve

nt
ila

ti
on

ra
te

.

In
pu

t—
Te

st
ra

nk
K

en
da

ll
τ

Pe
ar

so
n

Sp
ea

rm
an

R
eg

re
ss

io
n

R
an

k
R

eg
re

ss
io

n
K

–S
K

–W
P 2

K
–W

P 5
K

–W
P 1

0
K

–W
P 2

0

L
:W

7
5

7
5

7
7

8
7

7
7

O
ri

en
ta

ti
on

8
8

8
8

8
8

7
8

8
8

Pe
rm

ea
bi

lit
y

Q
50

2
7

2
7

2
2

2
2

2
2

n
ex

po
ne

nt
6

6
6

6
6

6
4

6
6

6

∆
T

3
4

3
4

3
5

3
5

5
5

W
in

d
at

H
ou

se
4

2
5

2
5

4
6

3
3

3

S
:V

5
3

4
3

4
3

5
4

4
4

To
ta

lp
er

m
ea

bl
e

ar
ea

1
1

1
1

1
1

1
1

1
1

Ta
bl

e
6.

12
:S

en
si

ti
vi

ty
an

al
ys

es
of

th
e

in
pu

tp
ar

am
et

er
s

on
he

at
lo

ss
.

In
pu

t—
Te

st
ra

nk
K

en
da

ll
τ

Pe
ar

so
n

Sp
ea

rm
an

R
eg

re
ss

io
n

R
an

k
R

eg
re

ss
io

n
K

–S
K

–W
P 2

K
–W

P 5
K

–W
P 1

0
K

–W
P 2

0

L
:W

7
6

7
6

7
7

8
8

7
8

O
ri

en
ta

ti
on

8
8

8
8

8
8

7
7

8
7

Pe
rm

ea
bi

lit
y

Q
50

3
5

3
5

3
3

2
2

2
2

n
ex

po
ne

nt
6

7
5

7
5

6
5

6
6

6

∆
T

2
2

2
2

2
5

3
3

3
3

W
in

d
at

H
ou

se
4

3
4

3
4

4
4

4
4

4

S
:V

5
4

6
4

6
2

6
5

5
5

To
ta

lp
er

m
ea

bl
e

ar
ea

1
1

1
1

1
1

1
1

1
1



CHAPTER 7. DISCUSSION OF RESULTS 141

CHAPTER 7

Discussion

This chapter discusses the sources of information and archetypes presented in Chap-

ters 3 and 4, and of the simulation model and the model inputs given in Chapter 5. It

interprets the predictions of the Chilean housing stock model described in Chapter 6,

and compares them with international recommendations and benchmarks.

7.1 Sources of information

The accuracy of the predictions of any model is a function of the quality of the input

data. Chapter 3 shows that there are a number of data sources that describe Chilean

houses and their occupants, and that the quality of the data is good enough to derive

archetypes. However, there are some areas where the data can be improved. There

is currently inconsistency between questionnaires, and so a collaborative approach

between surveying organisations would make linking their outputs easier. Moreover,

surveys can be improved to reduce uncertainty in some parameters.

There are also a number of parameters and metrics that are not surveyed by the

census that would be useful to know to construct basic steady–state energy demand

models, similar to the UK’s Cambridge Housing Model (Jones et al. , 2015; Sousa et al.

, 2018). These include dwelling properties, such as geometries (floor area and vol-

ume), window area and glazing type, year of construction, insulation level, internal

air temperature (for instance, indicated by a thermostat setting), orientation, and heat-

ing system fuel. It would also be useful to understand some of the type and frequency

of occupant activities, such as appliance use, cooking, or tobacco consumption, to im-

prove estimations of energy demand, GHG emissions, IAQ, and occupant health risks.

Finally, future fieldwork is needed to develop a database that can be used to iden-

tify construction quality, and the contribution of infiltration to the Chilean national

energy demand and GHG emissions.
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7.2 Archetypes

The current Chilean housing stock is defined using archetypes in Chapter 4. The

method used to develop them used all available sources of information that describe

the houses.

The results show that 496 archetypes can be used to represent the entire stock. The

number of archetypes reflects the level of resolution provided by the datasets and the

characteristics of the chosen parameters. As the key parameters change or the avail-

able information about them improves, the number of cells, and so the number of

archetypes, are expected to change accordingly. The identification of the key parame-

ters is then relevant for the classification of the stock. In this study, indoor air quality

and energy demand are taken into account in the selection process and so if they are

to be used to assess other criteria this must be accounted for.

Because there was variability expected in some archetype parameters, and its im-

pact varies according to the model used to make predictions, a stochastic approach

is chosen to quantify the extent of this variability. The results are then valid for the

entire stock the archetypes, but cannot be transferred to other stocks unless they share

similar input values and distributions.

The uncertainty in each parameter is explored by varying them between known

limits, and running multiple simulations to give a range of outputs. The Latin Hyper-

cube Sampling method has the advantage of optimising the choice of samples, and so

ensures that the full variance in each parameter is accounted for and also reduces the

number of simulations required for solution convergence; see Section 5.4. The simu-

lation process was stopped when the output of interest, PM2.5, converged so that its

mean and standard deviation did not change as new data was added; see Section 5.4.

Here, each region was tested separately. While this criteria is arguable, there is no

established method in the literature. Consequently, other criteria could have been ap-

plied; for instance, to the whole country rather than to each region, or it could have

used a different metric or threshold. The criteria regarding the metric and thresholds

used in this study have been subject to peer–review, and were used by Jones et al.

(2015), and because their approach has similarity to this study, it is considered ade-

quate.

An inter–group and between group comparison analysis was carried out for each

outcome using the medians, distributions, and variances. When comparing the model

predictions by archetype ID and region, and being cautious about the interpretation

of p–values for significance (see Section 7.6), the Levene’s and Kruskal–Wallis statis-

tical tests are all significant at p � .001 and p � .05 respectively (see Section 6.3.3),

meaning that there is a significant difference in the variances within the groups and in
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the distributions of groups. When calculating the effect sizes using the medians and

Cohen’s d thresholds, the indices are highly variable between pairs of IDs and regions,

and for the scenarios. Thus, the statistical significance of the tests, in addition to the

magnitude of the effects, generate confidence in the use of the archetypes as a tool for

analysing different types of house. It would not be acceptable to aggregate the entire

Chilean housing stock into a single archetype. Some negligible effects sizes are seen

between some neighbouring regions for the three outcomes, see Section E (page 207)

for a detailed list, suggesting that they could be joined by proximity and analysed to-

gether. This reduction may save time and computational resources. This also means

that interventions can be targeted at all those houses and similar effects should be

expected.

7.2.1 Comparison with MINVU’s archetypes

The Ministry of Housing (MINVU) is currently developing its own housing archetypes.

Information about the method and categorisation process was obtained by private

communication and is used to compare them against the sets of archetypes presented

(PUCV, 2019) in Chapter 4. MINVU found that 13 archetypes can represent the en-

tire Chilean housing stock; 5 detached and 4 semi–detached/terrace houses, and 4

apartments. This represents a significant reduction in the number of archetypes pro-

posed here. However, both studies share similar classification, categorisation, data

manipulation, and data analysis methods. They also both found issues concerning

the datasets, and similar typographical and coding errors, although the criterion for

data cleaning and choosing the representative values differ. The geometry of the first 7

archetypes are similar for both studies, with some differences in the number of storeys.

Areas with important differences include the sources of information analysed and

the categories used for aggregating the data. MINVU included two more datasets, the

first from the council tax department (SII), and the second from houses that went

through a voluntary qualification process to obtain an energy label according to their

design (CEV). The first source did not provide any additional information, whereas

the second gave information about windows (namely window : wall ratios and sun-

light condition1) from 37,724 houses built after 2009, which corresponds to 0.7% of the

current stock. The authors did not provide an analysis of the quality of this data set;

however, some bias may be expected against older and less energy–efficient houses,

and other locations and economic sectors where this qualification is in low demand.

The use of this data may be problematic, and therefore an uncertainty analysis should

be added.
1Sunlight condition is a metric based on the direct solar gain through windows. The method used to

calculate it is unknown.
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Section 4.1 outlines the classification process and shows that six categories or key

parameters were used, whereas MINVU’s process used nine; those that were only rel-

evant to the energy use for heating. Finally, neither a literature review nor an expla-

nation for selecting the key variables were given. The proposed hierarchy trees of the

key parameters between the two studies are different; Figure 4.2 on page 70 shows the

one used here. The impact of this is a change in the number of cells, as the categories

and resolution of the variables vary. For instance, in the classification process MINVU

used the geometry variable before the year of construction; so new houses gained greater

prominence in comparison with those developed here.

This study gives a weighting factor to each archetype ID and geographical region,

whereas MINVU’s method used the thermal zone classification as the main key factor,

and assigned the percentage of representation to each zone. The use of thermal zones2

may be advantageous due to its influence in energy use but not for indoor air quality.

Moreover, the lack of weighting factor by region may be problematic for carrying out

a separate (regional) analysis. Chile is divided administratively and politically into

geographical regions, and so public policies could be more easily applied and checked

by employing them. At present, the simulations run with the archetypes include the

environmental parameters using the local weather data, but future work might add

the thermal zones in the regional database.

Another difference is that MINVU used three periods of construction instead of two.

They added an age band for houses partly insulated, those built between 2001 and

2007 that comprises 8.5% of the current stock, although the distribution of the bands

are not given explicitly for each archetype.

Conversely, the archetypes presented here include information about the number

and type of rooms, number and socioeconomic status of occupants, and type of cook-

ing and heating fuel, whereas MINVU’s archetypes do not. Their lack of these variables

may be because they used the problematic 2017 census (see Section 3.2), which did not

record this data. Nevertheless, both sets of archetypes could be joined to complement

one–another and represent information that is unique to each study.

7.3 Model inputs

This section discusses the limitations in the selection and use of model the input data

and their effects on the results. CONTAM is a deterministic model that uses a single

set of input values to calculate a single prediction. However, by systematically vary-

ing the inputs between known limits and making many calculations it is possible to

2Thermal zones are classified according to the number of heating degree days and local wind condi-

tions.
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explore the uncertainty in outputs, such as pollutant concentrations. Thus, to deter-

mine uncertainty in the outputs a knowledge of the uncertainty in the inputs is also

required. However, a lack of knowledge has made necessary to make some assump-

tions about inputs.

7.3.1 Weather data and local environment

Given the limited locations with weather data, the simulations were run using the

weather from the capital city of each regions, where most of the population is concen-

trated. Therefore, the ability to represent the diverse conditions in each region may

be compromised by this simplification. Nevertheless, characterising a wider climatic

context will require a higher number of simulations to meet the convergence criterion,

which in turn means increased computational time and resources.

Major assumptions are made about the local environment of the dwellings, particu-

larly their local environmental sheltering and terrain types, which need to be validated

with empirical data. The parameters are applied to the Swami & Chandra’s wind pres-

sure coefficient models to define wind pressure profiles for each walls of a dwelling.

The location is also used to scale the wind speed at dwelling height. This study uses

the location of each dwelling, such as urban or rural, and then assumed that they are

equally distributed into the sub–levels; see Section 4.4.1. Moreover, none of the ref-

erences provide an exact description of each terrain type that can be used to classify

site locations. In future studies, a description could be linked to measured data, such

as to the spatial density and height of the buildings. The sensitivity analyses show

wind speed as an important input parameter, ranked second for ventilation rates and

heat loss, and fifth for exposures, and so these assumptions need to be verified with

fieldwork to reduce uncertainty in the parameter and the predictions.

7.3.2 Envelope air permeability

The predicted air permeability of the envelope for Chilean houses follows Chan’s

model, a method for predicting the air permeability of USA houses (Chan et al. , 2013).

These predictions are considered an approximate model that applies solely to the cur-

rent dwelling stock rather than to individual houses, but it can be updated as new

dwellings are added to the stock.

The results of the linear regression between the measured and predicted values

gave the coefficients of determination, R2, of 0.62 and 0.57 for old and new houses,

which indicate a strong and modest correlation, respectively. Nevertheless, the error

analysis shows that the model is less accurate for those houses at the extremes; see

Figures 4.6a and 4.6b. It underestimates extremely large values for old houses and
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overestimates values for leaky new houses. The error analysis also suggests that new

coefficients are required, especially for the new stock, because additional explanatory

variables could reduce errors in the models’ predictions. For instance, Chan’s model

does not include the construction material as an explanatory variable, and it is not

expected to have a significant effect on the permeability of USA dwellings. However,

Section 3.1.6 shows that Blower Door pressurisation tests carried out in Chile show

that structural materials of the envelope of the sampled houses have a significant ef-

fect on the total airtightness. Furthermore, finishing materials such as the use of air

barriers may also influence the envelope air permeability, parameter that, to date, has

not been explored in detail and data quality is poor. Finally, houses built after 2016

must be included as the stock evolves and the model is updated.

To fill this knowledge gap, more data gathering is required. Pressurisation tests us-

ing the Blower Door technique have been extensively used in other countries, such as

France, USA, and UK. To do so, regulations, guidelines, and protocols are available;

some of them are already in use in Chile. The establishment of an open–source na-

tional platform is also necessary to synthesise this data, the test results, and additional

physical parameters of the housing stock.

7.3.3 Internal air temperatures

There are no large–scale measurements of indoor air temperature in Chilean houses

reported in the literature. Indoor temperatures are assumed to follow the same dis-

tribution of temperatures found in English houses (Shipworth et al. , 2010). Although

the study of Shipworth et al. (2010) considered a big sample size (N=195), the majority

of the measured houses used gas or oil–fired central heating systems, which are only

found in a small proportion of the Chilean stock. Houses using other heating systems,

such as heater stoves, are likely to have different thermal comfort temperatures. An-

other limitation of the Shipworth study is that it included data for both summer and

winter seasons, whereas this study only considers winter. Similarities between the

English and Chilean weather and occupant behaviour has not been a subject of study,

and so the difference between indoor air temperatures in the two countries cannot be

considered with any accuracy.

Another important consideration is temporal temperature fluctuations during the

simulation period. Here, due to the lack of reliable information, indoor temperatures

are modelled as constant for the entire simulation time, which rarely occurs under

reality. Since naturally ventilated houses tend to have greater temperature changes

than those that are mechanically ventilated, indoor–outdoor temperature differences

are also expected to be lower and so reduce the effect of buoyancy on the ventilation
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rates. The magnitude of this uncertainty on the results in unknown, but it is likely to

overestimate ventilation rates and heat losses, and to underestimate pollutant concen-

trations.

A data analysis of a sample of 297 Chilean houses located across the country was

recently completed (Molina et al. , 2019). It showed that indoor temperatures are gen-

erally cold, following a normal distribution with µ = 19.4◦C and σ = 4.1◦C when

considered both seasons, and µ = 17.1◦C and σ = 3.1◦C for winter days (Molina et al.

, 2019). These temperatures are cold when compared against international standards

and guidelines, including the European adaptive model of thermal comfort, EN 15251

(BSI, 2007), and the WHO’s recommended boundaries of 18◦C and 21◦C for clothed

sedentary occupants to avoid potential health risks (WHO et al. , 2007).

The sensitivity analysis presented in Chapter 6 (page 112) shows that temperature

difference is the second most sensitive parameter to the winter exposures and highly

significant in all statistical tests, which justifies the need for a better and more accurate

representation, see Section 7.6 for a detailed discussion.

7.3.4 Floor areas

Although the variability of the houses floor area used to develop the archetypes are

known (see Table A.2 on page 191), for simplicity and to reduce the number of simu-

lations, this variable is fixed, and discrete values are assigned to the archetypes. Nev-

ertheless, Equation 2.4.1 (page 20) shows that room volume is an important parameter

used by indoor air quality models and so merits inclusion in future surveys.

7.3.5 Window model

Windows are modelled using the orifice equation; see Section 5.2.1 (page 95). Ongo-

ing work at the University of Nottingham3 suggests that the values used here for Cd

and A f may overestimate the actual effective area of the openings, which could lead

to an inaccurate estimations of airflow rates. To reduce this epistemic uncertainty,

the use of the effective area as the product of the first and second term of the Equa-

tion 5.2.3 (page 96) should be used instead, following Jones et al. (2016). Windows

were modelled using one–way orifice equation. CONTAM has the capability to do two–

way window flow, which could provide a better estimate of the airflow through these

elements and tend to significantly reduce the flow.

3Jones B. Iddon C. 2016. Window Effective Area Calculator DOI: 10.13140/RG.2.2.10748.08323
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7.3.6 Pollutant species

The nine species included in the CONTAM models are selected according to their health

effects on occupants —ranks given by Logue et al. (2011a)— and due to their preva-

lence in Chilean houses; see Section 4.7 (page 85). Although there is no large–scale

study about hazardous pollutants in the Chilean stock similar to that of Logue et al.

(2011a), it is assumed that all the pollutants included here are of concern and could

negatively affect public health.

Estimating exposures to all the pollutants included in the model was beyond the

scope of this study. Due to time constraints, this thesis could not provide a comprehen-

sive prediction of the overall acceptability of indoor air quality in the Chilean stock and

so using the first criteria pollutant, fine particles. Nevertheless, the emission profiles

of the other species may differ, and so they would need to be analysed individually.

7.3.7 Pollutant emission and deposition rates

Pollutant types and emission rates (ERs) associated with heating and cooking depend

on the type of fuel, the condition and design of the heater or cooking stove, food types

and cooking methods, and the frequency and durations of heating and cooking events

(O’Leary et al. , 2019a). These factors are not all recorded by the national censuses or

the ENUT, and so it would be advantageous if they were considered in future surveys.

The heaters modelled here account only for a subset of those available in the Chilean

market. The measurement study of CENMA (2011) applied here chose the heaters

most commonly bought and ignored the rest, such as the old and less efficient. These

are expected to have different ERs, and so they should be measured. Moreover, wood–

burning stoves are known to emit particles when their doors are opened to add fuel.

To develop better guidelines on heaters, more devices must be tested. Furthermore,

the method used for the measurements only reports the average ERs, and there is no

error analysis with which to estimate uncertainty in them.

There is also uncertainty in ERs from cooking. One of the studies used to produce

the distribution of ERs from the cooking of meals (O’Leary, 2018) was included before

data was published, and ERs have changed since then; see O’Leary et al. (2019a) for

further information. The way the data were re–processed lead to different values that

increased by up to 100%, and so these results will underestimate the concentrations of

cooking PM2.5 for some of the meals. Moreover, there is no convention on protocols or

standards for designing an experiment to measure PM2.5 emission rates, for defining

appropriate equipment and for using data to estimate ERs from this type of source.

ERs associated with construction and finishing materials in Chilean houses are not



CHAPTER 7. DISCUSSION OF RESULTS 149

be available from public sources, and so a national database would be beneficial. It

would be of particular interest to know how materials age and how their ERs change

over time. These effects are not included in well–known international databases, such

has as CONTAM–Link, the EPA, or NRC ER databases. Moreover, ERs from building

materials are measured under controlled environment conditions that could differ

from the actual conditions. Studies have shown that ERs under indoor conditions vary

according to the temperature, humidity of the air, the water content of the substrate,

and the air velocity in the room (Haghighat & De Bellis, 1998). Thus emission rates

from building materials are not analysed in this thesis, and more experimental studies

are required to provide a deeper understanding of these complex phenomenons so

that they can be modelled in old and new houses.

Deposition rates used here, N(0.39, 0.16), may underestimate those found in Chilean

dwellings. The PTEAM study by Oezkaynak et al. (1996) recorded mean exchange

rates of around 1 h−1, which is similar to the median ACH of windows closed sce-

nario but well below those for windows open scenario. Field and chamber studies

use smaller samples but have shown the effects of the ventilation rate on particles de-

position. The results are currently inconsistent and so a better model that accounts

for more factors, such as the origin of particles, the surface–to–volume ratio, surface

roughness, and air turbulence is needed. This phenomenon is not currently accounted

for in the CONTAM model, but it is possible to incorporate it manually by varying the

deposition rate parameters during the simulations according to indoor environmental

parameters. Consequently, this variable may be found to be more important than it

currently is in the future.

7.4 The modelling tool

CONTAM model treats each room as a single node with well–mixed conditions, with a

uniform air temperature, air pressure, and pollutant concentration. In kitchens, this

assumption may not reflect the actual pollutant dispersion around the room. Emis-

sion rates are simulated using a constant emission rate over time while accounting

for the total mass (known as the source strength) added to a zone over a period of

time. However, exposure to pollutants in the kitchen depend on several other factors,

such as the proximity of the cook to the source, the location of the range hood and

its capture efficiency, and the time the cook spends at each position (O’Leary et al. ,

2019a). Moreover, pollutant concentrations in the kitchen are not uniform, but rather

have three–dimensional gradients, which may be affected by the use of the range hood

over a cooker.

Kitchen range hoods with a capture efficiency of less than 1 were not modelled
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here. Only standard exhaust fans were considered. This omission is likely to have

overestimated exposures. Further data collection is required to determine with more

accuracy how range hoods affect the (average or gradient) concentrations and about

their use in Chile. This is a limitation that was not addressed in this study and so may

need to be considered in future studies. A possible alternative could be the application

of CFD methods to determine the spatial variation in concentrations . However, this

type of analysis would be confined to a 2D analysis single room when using CONTAM,

although repeated tests would indicate uncertainty in the predictions and their sensi-

tivity to inputs. Finally, the capture efficiency of the range hood can be accounted for

using multiplying the emission rates by 1 minus its value; see O’Leary et al. (2019b).

Although this would enable the adjustment of the average concentration of particles

in a room, it would not necessarily simulate the actual exposures of the cook, due to

their position relative to the source and the range hood.

The models do not account for all the dynamic processes that could affect the in-

door concentrations. Chemical reactions such as ozone interactions, adsorption and

absorption, re–suspension, gas–to–particle conversion (such as condensation or ag-

glomeration) can be incorporated in the models when data becomes available and the

need arises.

Presently, background concentrations are assumed to be zero. However, ambient

particles can be an important contributor to indoor concentrations, especially in pol-

luted areas; see Section 2 (page 11). They can enter the house through adventitious

and purpose provided openings located in the envelope of a dwelling. These parti-

cles from outdoor sources are excluded from this study due to the significant uncer-

tainty in their concentrations, and a lack of knowledge in the composition and effects

that a mixture of particles from different sources may pose to human health; see Sec-

tion 2.4 (page 19) for further arguments. Moreover, data on pollutant concentrations

from centrally located monitoring stations have poor agreement with those measured

at in–situ; see Section 2.4.2 (page 25). Future work should attempt to quantify the

harm of exposure to indoor sources of PM2.5 at a population scale. Here, it is appro-

priate to exclude outdoor concentrations. However, there may be situations when it

is necessary to include them, if new knowledge becomes available or a hypothetical

concentration needs to be assessed. Then, it is possible to simply add outdoor con-

centrations using Equation 2.4.1 given on page 20. The ambient concentrations can be

used in the exposure analysis by adding them directly to the indoor concentrations.

When a penetration factor is used account for filtering as PM2.5 pass through open-

ings, the ambient concentration must multiplied by both the air change rate and the

penetration factor, and then divided by the sum of the air change and deposition rate

before being added to the indoor concentration. The levels of exposures presented
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in Figure 6.21 (page 135) will then be modified by an increase to the exposure line in

parallel with the y–axis. Finally, a separate analysis of each source is also possible,

to differentiate between their contributions to the overall concentration, by adding an

outdoor species of PM2.5 to each model.

7.5 Predicted outcomes

The model outputs are analysed to identify those that are the most common and those

that are extreme and therefore unlikely to occur. This data processing enables policy

decisions to be made that affect an acceptable proportion of the stock so that an inter-

vention can be made that works and is also financially and logistically achievable.

7.5.1 Daily average PM2.5 concentrations

To generate a single value of concentration for each house, the concentrations in the

kitchen, bedroom, and living room are weighted by the time spent in each zone using

the Chilean data, a 10 : 38 : 52 ratio for the kitchen : bedroom : family room, instead

of using the ratio suggested by Hamilton et al. (2015); see Section 4.6 (page 84). This

estimate gives a room weighted indoor PM2.5 concentration averaged over the winter

season, PM2.5. In this study, the predictions of the total mass of pollutants at which

the occupants are exposed do not account for the mass that is inhaled, which would

require knowledge of the age and metabolic rate of each occupant, among other vari-

ables. Therefore, these values of PM2.5indicates a potential level of risk to which oc-

cupants may be exposed.

7.5.2 Predicted exposures to PM2.5

Temporal data can be used to show when peak concentrations occur, and the magni-

tude and duration of events. Concentrations that occurred during occupied periods

can be used to develop an exposure profile. The same data can also be used to de-

rive information about occupants behaviour, habits, and patterns. Aggregated con-

centrations can be compared against exposure recommendations, and cross–compare

against measurement made in–situ (e.g. for a meta–analysis), and used to predict

health effects when an exposure–response relationship is known.

To obtain a better estimation of the exposures, concentrations were selected accord-

ing to the occupancy pattern (by time and location) rather than using room averages.

Figures 6.4 and 6.5 (page 116) show PM2.5 concentration profiles for the three rooms

used in the exposure analysis. Concentrations are shown to be generally high, espe-
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cially during cooking periods, and not only in the kitchen but also in the living room

and bedroom. Doors are assumed to be open when cooking activities are taking place,

see Section 5.2.5 (page 101), which may contribute to the spread of pollutants. This is

an important issue for future research. The impact of door opening and the variation

of this behaviour on indoor air quality can be used for informing the occupants about

these features.

Table 6.2a (page 117) and Figure 6.8 (page 119) show the statistics and distributions

of the medians of hourly exposures to PM2.5; namely, the upper limit concentrations

at which the occupants are exposed for 50% of the hours. Archetypes IDs 275 and 284

have the highest values. These correspond to dwellings built after year 2008, which

required a tighter envelope than those built before 2008. This indicates that interven-

tions are necessary in newer houses to lower concentrations.

Figure 6.6 (page 118) shows the distribution of the hourly winter concentrations in

the simulated houses when all the windows are closed. The CDF shows the percentage

of the hours indoor concentrations are likely to be below or equal to particular values.

Figure 6.13 (page 123) shows the effect of window opening on the hourly exposure

concentrations, and Figures 6.15a and 6.15b (page 126) show their effect on the winter

exposures. These curves can be used to communicate the magnitude of the impact

of one type of intervention, in this case increasing the ventilation rates by opening

windows. Although it is evident that the actual scenario will be somewhere between

these two limits, it is more likely that occupants will keep the windows closed most of

the time to conserve energy and maintain thermal comfort. However, a combination

of the two scenarios can be complicated, but to model their effect, occupant behaviour

data is needed.

Results show that both cases have different consequences. Figure 6.21 (page 135)

shows that a low ventilation rate can lead to high PM2.5 concentrations, which may

impact occupants’ health. Conversely, an increased ventilation rate leads to higher

energy losses and the entry of ambient pollutants at a higher rate. These results reflect

the understanding presented in Chapter 1 and Figure 1.2 (page 8), contextualising

theory to the Chilean situation. The shape of the line of the ventilation rates versus the

heat loss do not follow a linear relationship, as shown by Liddament & Air Infiltration,

Agence internationale de l’énergie (1996), but appear exponential. This is explained

by the use of the logarithmic scale due to significant range of predicted values.

Two important tools are used to assess exposure and when monitoring data: (i) ref-

erence values and (ii) exposure limits. They are useful for evaluating the degree of

exposures of a population to PM2.5, and to evaluate changes, such as interventions or

remedial actions (Ewers et al. , 1999). A reference value for indoor air is the concen-

tration at which the general population is exposed in a given location and time (EPA,
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2018). They are normally calculated to characterise the upper margin of the current

scenario using either the 90th or 95th percentiles of a representative sample. The pre-

dictions presented here can be used to set reference values for the general population;

for example, those in Table 6.3 (page 125).

The winter season is used to represent a worst case scenario when occupants tend

to keep their windows closed to maintain thermal comfort and save energy. How-

ever, information about some inputs is limited and so assumptions are required, see

Chapter 3 and Sections 7.2–7.3 (pages 142–144). Given the uncertainty in occupants’

behaviours, two extreme scenarios were proposed for evaluating the indoor exposures

and used to characterise them. At one extreme is a scenario where dwellings keep their

windows closed for the entire season, and at the other, occupants keep the windows

fully open.

Values presented in Tables 6.6 and 6.7 (pages 128 to 129) can also be used as ref-

erence values if they are needed for subgroups of the stock; for example, to identify

dwellings of a certain archetype or region with unexpectedly high levels of pollution.

These values can also be revised periodically in order to evaluate changes and define

new values.

Field studies presented in Section 2.4.2 (page 25) showed that PM2.5 concentrations

in Chilean dwellings are roughly 5–374 µg/m3. Comparable results are shown for the

90th percentile of 367 µg/m3 (only accounting for indoor sources of PM2.5, outdoor

PM2.5 would increase this). Although these field studies are useful for comparative

purposes, they represent minority subgroups of the Chilean stock or a vulnerable pop-

ulation. Ideally, housing data should be informed by large–scale fieldwork. Represen-

tative buildings, like those shown here, can guide future data gathering exercises.

Nationwide, the mean (µ) exposures for the two scenarios are predicted to be be-

tween 6.6–134.5 µg/m3, and the meadian (Med) exposures are 2.3–58.65 µg/m3, ranges

that fall within representative values estimated by Logue et al. (2011b) for USA houses

(µ = 15.9 µg/m3; Med = 15.7 µg/m3). The 95th percentile of 86 µg/m3 in USA houses

corresponds to the 60th percentile of the Chilean stock, and so the health impacts of

indoor exposures for the Chilean population are expected to be higher than those pre-

dicted by Logue et al. (2011b). The 95th percentile for the Chilean stock is estimated

to be 549 µg/m3.

Examining the central tendency of the results, the Med winter exposure for win-

dows open scenario is 26 times lower than the Med for windows closed scenario and

less variable, approaching background levels.
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7.5.3 International guidelines and health impacts

The previous section presented the advantages of using a reference value for the stock

and proposed a reference value for PM2.5 exposures in Chilean houses. These values

are especially useful when health effects are related to a mass concentration, taken as

the integrated exposure over a certain time. Normally the average of these values is

also used for an analysis of lifetime exposure. However, using a reference value has

two main disadvantages: (i) it does not follow any criteria related to health, and so it is

only useful for comparison, for meta–analyses, or when a healthy limit is known, and

(ii) it is calculated from values that reflect concentrations at a specific time and loca-

tion. Conversely, exposure limits are usually selected according to the health effects of

exposures by the general population; for example, when a dose–response or exposure–

response relationship is known. The CDFs presented in Chapter 6 (page 112) predict

the uncertainty in reaching certain values indoors. Similarly, statistics can be used

for benchmarking, monitoring, and for comparisons against international thresholds

and exposure limits. In Chile and the rest of the world, indoor air quality is not reg-

ulated and guidelines are not enforced. Particles are only legislated for the ambient

air; see Section 2.2.2 (page 15). Because there is limited information about the com-

position PM2.5 from indoor sources, risk assessments can only be carried out using

international recommendations at the present time. They must assume that particles

of indoor origin are equally as harmful as those from outdoor sources, or they must

identify the individual components of the indoor air and their toxicities.

Using the guidelines presented in Chapter 2 (page 11), the proportion of the stock

with winter exposures above the international benchmarks are:

• EPA, NAAQS guidelines: 24h mean above 35 µg/m3: 63%

• Chilean standard DS12/2012: hourly mean above 50 µg/m3: 55% of the winter

hours across the stock.

• EPACal, AAQS: 24h mean above 35 µg/m3: 63% of the winter hours across the

stock.

• WHO: 24h mean over above 25 µg/m3: 70% of the stock.

The top graph in Figure 7.1 shows a CDF of predicted stock–weighted concen-

trations in the Chilean houses (windows closed scenario) in red, and population–

weighted exposures in other countries in black. The lines of the bottom graph show
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the association of integrated exposure to ambient PM2.5 with outcomes including tra-

cheal, broncheal, and lung cancers (LC in light blue), Chronic Obstructive Pulmonary

Disease (COPD in green), ischemic heart disease (IHD in red), cardiovascular disease

(CVD in black), and lower respiratory infections (LRI in blue). These include both

mortality and morbidity risk estimates. As a limitation, the risks plotted in this figure

were those assigned to a population between 25 and 29 years old, of both sex, and

related to ambient pollution (Gakidou et al. , 2017).

Figure 7.1: Top: Stock–weighted exposures to PM2.5 in Chile (windows closed sce-

nario), in red, and population–weighted exposures in other countries, in black. Bot-

tom: relative risks associated to ambient PM2.5. Tracheal, bronchus, and lung cancers

(LC in light blue), Chronic Obstructive Pulmonary Disease (COPD in green), ischemic

heart disease (IHD in red), cardiovascular disease (CVD in black), and lower respira-

tory infections (LRI in blue) (Gakidou et al. , 2017).

The relationships in Figure 7.1 show that the relative risk (RR) of developing IHD

and LRI doubles when PM2.5 concentrations are above 150 µg/m3, and above 200 µg/m3

for LC, CVD, and COPD. The proportion of the Chilean stock under these conditions,

with time–weighted average concentrations above 150 and 200 µg/m3, are 26% and

20%, respectively; see Figure 7.1 top. These percentages do not consider the time the

occupants are outside of the house, and only the activities modelled here contribute
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to these exposures.

7.5.4 Ventilation rates

Median (Med) ventilation rates for the Chilean stock during the wintertime are shown

to be high. Table 6.8 presents the distribution of the median ventilation rates aggre-

gated by archetype ID. Summary statistics in Table 6.2b indicate that new houses, rep-

resented by IDs 275 and 284, have ventilation rates between 7 to 11 times lower than

those built before 2008.

Hourly data distributions and the median over the winter can be used to inform

about the variability and uncertainty of this parameter. The predicted median is be-

tween 0.75 and 13.57 h−1 using windows closed and open scenarios, respectively. Win-

dows closed scenario accounts only for air leakage through the envelope and extractor

fans in bathrooms and kitchens. This scenario is predicted to have a µ of 0.89 h−1, Med

of 0.75 h−1 and σ of 0.79 h−1.

Applying the international ventilation standard ASHRAE 62.2, equation 4.1b (ASHRAE

62.2, 2016), the minimum ventilation rate required for a Chilean house of average size

and two bedrooms is 20 l s−1, equivalent to 0.46 h−1, which is comparable to the rule

of thumb of 0.5 h−1. Accordingly, the results show that ventilation rates are below

0.5 h−1 the 39% of the time, with a µ and σ of 0.95 h−1 and 0.90 h−1, respectively.

Taking the median ventilation rate over the winter, 62.8% of the stock is predicted

to meet the requirement. In contrast, the minimum (median) ventilation rate in the

second scenario is 4.4 h−1; see Figures 6.15c and 6.15d. If the actual scenario is ex-

pected to be between those two, Chilean houses are likely to be over–ventilated from

the energy point of view and not considering the indoor air quality. The predicted me-

dian ventilation rate for an average house would provide 33 l s−1 for windows closed

scenario and 593 l s−1 for windows open scenario.

Figure 6.21 shows that to ensure that 95% of the stock is below the WHO’s recom-

mendation of 25 µg/m3, the ventilation rates must be up to 13 h−1, which can be cost–

prohibitive. This corresponds roughly to the median of windows open scenario and

out of the range of windows closed scenario.

7.5.5 Ventilation heat losses

CDT (2010) estimated the total energy consumption of the housing stock to be 53.8 TWh

per year, measuring a sample of 3,220 houses. This study estimates that the total heat

loss for the entire country during winter, only by exfiltration and the use of extrac-

tor fans in kitchen and bathrooms is 8.2 TWh (windows closed scenario), and opening
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the windows 124 TWh (windows open scenario), which accounts for 15%–230% of the

estimated total. These values seem plausible, and given that both scenarios consider

extreme conditions, the actual scenario is expected to be in that range. Comparing

against the same study of CDT (2010), the average energy use for heating a single

house in Chile is approximately 5,761 kWh/year (no uncertainties are given). This

study, using the mean of the sampling means, estimates the stock averaged heat loss

due to ventilation by 1,284 kWh/season. If it is considered that the house is heated

only in wintertime, the energy demand required to condition indoor air predicted by

this study accounts for 22.35% of the total energy use of a house. Comparing these

figures against Sartori & Hestnes (2007) energy use reference for low–energy build-

ings located usually in cold climates, a Chilean average–size house should demand

4,585 kWh year for heating (20% less energy than the estimation made by CDT (2010)

for the current stock) and should have an overall demand of 16,400 kWh year (-43%).

This study predicts that an average house would consume at least 28% of that only

for indoor air heating during winter, not considering the heat loss due to conduction.

And if the windows are fully opened, a mean use could reach up to 19,510 kWh, 4.3

times the benchmark, only to condition indoor air.

7.6 Sensitivity analysis

The sensitivity analysis determine the relationships between each of the inputs and

the outputs.

Scatter plot of inputs versus outputs illustrate the relationships between the in-

dividual inputs and the output for visual inspection. They are shown to be highly

variable, especially when including both scenarios, and so the type of correlation be-

comes more difficult to interpret; see figures C.1 to C.6 in Appendix C for each separate

scenario, and figures 6.22 to 6.24 in Chapter 6 for both scenarios plotted together. Nev-

ertheless, the results are yet useful for identifying the inputs that are more important,

more related, and contribute the most to the outputs.

p–values can be interpreted for significance, and so testing the relationship between

the two sets. Given the large sample size, this interpretation can be meaningless, since

the chances of finding significance increases with the sample size (Gigerenzer, 2004).

Furthermore, the statistical significance of p–values is arbitrary, and so in this study

the focus is on the nature and the magnitude of the effects (Fenton & Neil, 2012). In

consequence, for reporting p–values the exact level of significance are given rather

than their interpretation. For brevity, Chapter 6 only reported the resulted ranks; p–

values and coefficients are found in Appendix D.

Linear, monotonic, and non–monotonic tests were applied to the inputs and the
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three outcomes using correlation, regression, and sample comparison methods.

7.6.1 Correlations

The three tests chosen for determining the strength of linear and monotonic associ-

ation are: (i) Kendall’s τ rank, (ii) Pearson’s r, and (iii) Spearman rank. These three

statistical tests measure the strength of the linear correlation between the two vari-

ables and its direction, giving a correlation coefficient between -1 and 1; weakening

the strengths as approaching to zero. The correlation coefficient tells about nature and

size effect of the correlation, or how strongly related are the two datasets.

Pearson’s r is recommended for parametric data of both inputs and outputs, and

continuous inputs. Nevertheless, not all the inputs and any of the outputs meet this

requirement, and so their meaning is limited. Kendall τ rank and Spearman rank

analyses do not require the data to be normally distributed. Moreover, Spearman can

also be applied to ordinal data and because it is based on ranking the variables, is less

sensitive to outliers. Thus, given the characteristics of the input and output data, the

statistical test that is particularly meaningful for the correlation analyses regarding

linear and monotonic relationship is the Spearman rank correlation test.

Results of Spearman’s rank correlation coefficients show that exposures are most

strongly correlated to cooking emission rates, followed by envelope permeable area

and heater emission rates. The only input that indicates the wrong tendency to de-

crease the exposures is emissions from toasts, although it shows very weak correlation

and p–values are non–significant at the 5% level.

For ventilation rates, the total permeable area of the envelope was the first–ranked

input, followed by the Q50 and ∆T. Figures 7.2a and 7.2b show the positive relationship

between the air permeability of the envelope and the ventilation rates for windows

closed and open scenarios, respectively. Figure 7.2b shows more clearly the relation-

ship between the two variables and that both have shifted distributions, meaning that

for a single permeability value (taking any vertical slice), the possible ventilation rates

have a non–normal, right–skewed and bimodal distributions. Similarly, for a specific

ventilation rate, a broad range of Q50 values are possible. Nevertheless, the objective

of this sensitivity analysis was to identify the relative importance of the inputs within

the range of possible values by analysing both sets of results together. Thus the inter-

pretation is made here as a whole.

Finally, heat loss and ventilation rates share similar sensitive inputs. The total per-

meable area is the input most strongly correlated and so first–ranked, followed by ∆T

and Q50.
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(a) Windows closed scenario. (b) Windows open scenario.

Figure 7.2: Scatter plots of the envelope air permeability for (a) windows closed sce-

nario and (b) windows open scenario, and the predicted median ventilation rates

over the winter.

7.6.2 Regressions

For testing the contribution of each independent variable to the model outcomes, two

regression methods were applied: (i) the standardised regression coefficients (SRC)

that tests the linear relationship between the two sets using the raw values, and (ii) the

ranked regression coefficients (RRC) that tests the monotonic relationship using the

variables ranked.

The magnitude of the regression coefficients, R, are used to rank the inputs and

to show which have the greatest effect on the output. Furthermore, coefficients of

determination, or R2, are computed from them to show the input’s contribution to

the variability of the outputs (Taylor, 1990). Low R2 indicates poor regression model,

namely the input’s variance is poorly reproduced by the (linear) regression model.

The highest regression coefficients in the total exposure is seen for emission rates

from cooking, a modest 0.58, followed by a low -0.21 for the total permeable area. For

the other two outputs the regression coefficients are generally low, with a maximum

contribution of 0.31 and 0.20 for the total permeable area to the ventilation rates and

heat loss, respectively.

Finally, all the coefficient of determinations are low (below 0.36) and many of them

unimportant (below 0.1) for a linear relationship. The highest coefficient of determina-

tion, R2, is seen for emission rates from cooking to the exposures, with a value of 0.34,

meaning that a 34% of the variability of the exposures to PM2.5 could be accounted for

by the emission rates from cooking.
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7.6.3 Sample comparison tests

Two non–parametric sample comparison tests were used, (i) the two–sample Kolmogorov–

Smirnov (KS) and (ii) the many–sample Kruskal–Wallis (KW) with 2, 5, 10 and 20

sub–samples. Special attention is given to these studies due to their ability to detect

non–monotonic relationships. The KS test calculates the maximum distance between

the two empirical CDFs by partitioning the input’s distributions, in this case, based

on the median. It is a variance–based sensitivity index between 0 and 1, used to deter-

mine the influential inputs, or the parameter sensitivity rankings; the lower the value

of the KS index the less influential or sensible is the input to the output. The sensitiv-

ity index can be used to cross–compare the sensitivity analyses results across different

studies.

This test identifies that the most important variable for exposures is again the emis-

sion rates from cooking, followed by the total permeable area, and the S:V ratio; for

ventilation: the total permeable area, the envelope air permeability, and S:V ratio; and

for heat loss: the total permeable area, the S:V ratio, and the envelope air permeability.

In contrast, the KW test compares the variance of the data using the medians, sim-

ilar to the ANOVA test, which is used as the parametric method. Here, not all the

distribution parameters are known for the inputs, and the output data does not meet

the distributional assumptions. Thus, the non–parametric method is applied. The out-

puts distribution is divided into 2, 5, 10 and 20 sub–samples using their quantiles, and

their corresponding inputs are tested (Jones et al. , 2015). The test statistics or H–value

is the horizontal distance between the sub–sample’s inputs medians, and so the values

are greater than 0; the higher the H value, the more dissimilar they are and so the more

influential to the output. One disadvantage of this test is that it does not consider the

entire probability distribution of the outputs, and so it cannot fully characterise their

uncertainties. Although they inform that at least one section of the distribution of

the outputs is influenced due to a difference in the inputs, it does not tell where the

difference is, and so a post–hoc test is required for further analysis.

For exposure to PM2.5, all the KW tests show equal ranks for the first two inputs,

cooking emission rates and total permeable area, followed by the emission rates of

heaters and wind speed at the house height in the 3rd or 4th position. For ventilation

rates, all KW tests show the same two highest ranks: total permeable area and Q50. Af-

ter these two, wind speed, ∆T, and S:V ratio follow in importance at different number

of sub–samples. Finally, heat loss is more variable due to changes in total permeable

area, Q50, and ∆T.

Table 7.1 presents the top five–ranked inputs accounting for monotonic and linear

relationship tested, and classifies them according to their relationship with the house
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design, the environment, or the sources.

Table 7.1: Inputs ranked according to their sensitivity to the outputs and classified

according to the type of input.

Input
Output

House Design Environment Sources

2. Total permeable area 4. Ws 1. Cooking ER PM2.5 exposures

5. Permeability Q50 3. Heater ER

1. Total permeable area 3. Tint− Text ACH

2. Permeability Q50 4. - 5. Ws

4. - 5. S:V ratio

1. Total permeable area 2. Tint− Text HI

3. Permeability Q50 4. Ws

5. n exponent

5. S:V ratio

On the lowest ranks, block aspect ratio and orientation of the house show little or

no importance on any of the three outcomes.

7.7 Comparisons with other studies

In this section the predictions are compared against three studies on housing stocks

that used a similar method, a probabilistic sampling. Winter hourly ventilation rates

for windows closed scenario are predicted to be below 0.5 h−1 in 39% of the time, see

Figure 6.6, lower than that of Persily et al. (2010) for US houses, which is estimated to

be 57% of the time below this benchmark, see Figure 2.18. The reasons for this, apart

from the disparities in infiltration properties between the US and Chilean houses, see

Section 3.1.6, is that ventilation rates in this study are increased by the use of the ex-

tractor fans in kitchens and bathrooms during cooking and showering times.

The median ventilation rates over the winter are predicted to be between 0.08 h−1

and 2.40 h−1 (90%CI). Considering the use of fans, the upper value is roughly twice

the USA predicted infiltration rates (90%CI: 0.10 − 1.21 h−1) (Persily et al. , 2010),

England’s (96%CI: 0.02− 1.24 h−1) (Jones et al. , 2015), and also higher than Beijing’s

(0.01− 1.60 h−1) (Shi et al. , 2015).

Jones et al. (2015) estimated that infiltration in the UK housing stock (similar to

windows closed scenario) is responsible for 11–15% of the energy demand during

heating hours. Compared against the UK total heat loss (Jones et al. , 2015), the Chilean

heat loss is between 0.19 and 2.74 times the UK’s, although some of the criteria differ

between both studies.
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Table 6.3 (page 125) shows that the predicted PM2.5 exposure µ (σ) for the Chilean

stock ranges between 6.64 and 134.47 µg/m3 (12.26 – 210.28 µg/m3) and the Med be-

tween 2.30 and 58.65 µg/m3, considering windows open and closed, respectively. These

ranges include the values predicted by Das et al. (2014) for the English stock. Das et al.

considered kitchen windows opened between 0.01–10 times the duration of cooking,

giving a µ of 12.7 µg/m3, σ of 12.6 µg/m3, and Med of 8.0 µg/m3.

7.7.1 Other sensitivity analyses

The three most important variables for PM2.5 exposures are the emissions from cook-

ing, the total permeable area, and the emission rates of heaters. These are broadly

consistent with that of Das et al. (2014): the opening area of the kitchen window, and

the emission rate of internal PM2.5. Jones et al. (2015) found that Q50, n exponent,

and S:V ratio were the three most sensitive inputs to the predicted infiltration in the

UK houses. Here, infiltration is included in the total ventilation rate. For ventilation

rates and heat loss, the three most important parameters are the total permeable area,

indoor–outdoor temperature difference, and Q50.

Finally, the negligible and non–significant sensitivity of the orientation of the house

to the model outcomes is consistent with Shi et al. (2015), Das et al. (2014), and Jones

et al. (2015).

Table 7.1 presents the first five inputs by considering both monotonic and linear

relationships, classified by type of input. The two parameters related to the sources or

the properties of the species that showed to be both influential and sensitive to expo-

sures are the emission rates from cooking and from the heaters, which were first and

second–ranked. This highlights the importance of source control strategies, which can

have an immediate effect on the exposures to PM2.5, and the need to provide informa-

tion to the public on the risks factors associated with the house and on the behaviour

to adopt in them. Concerning to house design, this rank can also inform about the

design of future housing, public policies, and research. Total permeable area is the

first–ranked input, and relates mainly to windows design, windows use, and the en-

velope’s properties. Additionally, the envelope air permeability also plays an impor-

tant role in the three outputs, along with the S:V ratio, and the n exponent. The S:V

ratio shows a negative correlation, which shows that a building with a larger envelope

surface relative to its volume will have better indoor air quality.
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7.8 Applications of outcomes and future work

The characterisation of the Chilean housing stock is essential for an understanding of

the diversity of the dwellings, which can be used to improve housing design, planning

and, in turn, living conditions and public health.

Carrer et al. (2015) argue that epidemiological studies have shown that increased

ventilation rates can avoid some indoor issues and health outcomes. Nevertheless,

they have so far not succeeded in establishing a direct link between increased ventila-

tion rates and health, mainly due to the lack of protocols on both data recording and

exposure assessment. Field studies are subject to high uncertainty, given the diversity

and variability of all of the factors involved. This makes it difficult to keep records of

data, and so exposure–response and dose–response relationships are more difficult to

specify or extrapolate to other populations. These limitations make modelling studies

and intervention experiments more valuable. Modelling studies like this one, enable

the testing of multiple scenarios quickly and at a lower cost than many other meth-

ods of research; see Chapter 2 Section 2.5 (page 36) for further information on those

methods.

The data analysis of the national data sources highlights knowledge gaps in cate-

gorical descriptors and occupant behaviours, and poor granularity of physical data.

These gaps should be filled by augmenting national surveys and complemented by

fieldwork. The archetypes presented are used here as a tool of research, and can be

applied to other modelling and field studies, such as the prediction and evaluation

of the impacts of policies on indoor air quality and on energy demand, or to guide

future data gathering exercises. This study has applied the CONTAM model to a set

of archetypes to explore the indoor air quality in the stock. It has captured the vari-

ability of the entire stock using parameter distributions, deepening the understanding

of the uncertainties involved in concentrations of fine particles, ventilation rates, and

associated heat losses.

Uncertainty in the outcomes was explored using a probabilistic sampling method,

and so a sensitivity analyses can be used to identify the key parameters that most affect

the predictions of the model. Previous sections in this Chapter have used the results

of these analyses to better judge the relative importance and the impact of epistemic

uncertainty in some of the inputs.

Results of the simulations and sensitivity analysis can be used for direction and

planning future research. In the following sections, areas for research are given in

two–time horizons; short and medium term goals.
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7.8.1 Short term

Field studies have identified subsets of the stock with poor indoor air quality; see

Chapter 2 (page 11). This study took a step further by analysing the entire stock. It

evaluated the uncertainty in this issue, examined the conditions that are likely to cause

unacceptable outcomes, and identified the key parameters so the most important can

be targeted objectively.

Suggested areas for immediate research based on these results are:

1. windows opening areas and schedules,

2. emission rates from cooking and heaters,

3. envelope air permeability, especially for houses built before 2007, and

4. indoor temperatures.

Information on window opening behaviour is most important, as it directly affects

the three outputs studied here. Data could be gathered at low cost by installing sensors

in windows to identify operation patters, and to compare them against measurements

of environmental parameters, such as air temperatures. This is an area of research that

should involve more than one discipline. For instance, sociology or anthropology may

help to describe occupants more accurately, because human behaviour can be difficult

to predict and categorise. These new insights would help to identify groups of the

population that are more susceptible to living in dwellings with unacceptable indoor

air quality.

A knowledge of the determinants of indoor activities can help to simulate the most

probable scenarios. For example, natural ventilation through window openings, to

amend the airflow rate or to improve air quality, have been associated with time of

day and outdoor temperatures (Dubrul, 1988; Persily et al. , 2010). Moreover, it may

also be an activity established in the daily routine of the occupants, that relates to

their cultural behaviours, the local landscape around their house, and seasonal en-

vironmental conditions. Hence, the modelling of window opening using schedules

and opening areas could help to account for these factors, which would give a more

accurate spectrum of predictions.

Engineers can also help to provide a better description of a window’s effective area;

see Section 7.3.5. Schedules and window areas are clearly defined in the model code,

meaning that any changes to them can be traced.

The prevalence of heating stoves varies widely across the country. Some studies

suggest that this is a factor that can exacerbate socio–economic differences in indoor
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air quality and thermal comfort (Ruiz et al. , 2010). The burden of disease study only

includes the ”use of solid fuels for cooking” as a risk factor in their calculations of

health impacts due to exposures to household air pollution (HAP). This is mainly be-

cause nationally representative surveys or censuses do not include the presence of

stoves for heating (Smith et al. , 2014). This excludes cooking stoves that use other fu-

els (88% of the Chilean stock), such as natural gas (10%) or LPG (77%), and exposures

from other household uses, such as heating stoves. In Chile, two national surveys, the

2015 CASEN and the 2012 census, recorded heating fuel, but it was removed from the

2017 census (INE, 2018b). Thus, to facilitate a more comprehensive exposure assess-

ment and evaluation of this risk factor, it is advisable to include this variable in the

next census, which will be in 2027.

The implementation of a study to measure air leakage rates on a large scale is ur-

gently required to obtain better descriptors of the relationship between leakage area

and building characteristics, such as building materials and age of the building. This

information would improve the model presented in Section 4.5.2 (page 78). It is par-

ticularly important to record the airflow exponent of the test, n, which was found to

be of middle–ranked importance by the sensitivity analyses for all three outcomes.

Finally, air temperatures difference play an important role in the results, especially

on ventilation rates (ranked 3rd), and on heat loss (ranked 2nd). This may be partially

explained by the large variability in climates countrywide.

7.8.2 Medium term

In order to progress work in this field, it is necessary for academics, government min-

istries, and the private sector to work together. Academics must provide answers to

research questions using multidisciplinary approaches and in an holistic manner, in-

cluding perspectives from medicine, physics, chemistry, sociology, anthropology, ar-

chitecture, and engineering. The public sector must provide the tools to enforce poli-

cies that benefit the population, by engaging with the Ministry of Health, the Ministry

of Housing, the Ministry of Energy, and the Ministry of Environment. For instance,

one important policy area to consider is the promotion of improved cooking and heat-

ing appliances, along with the use of cleaner fuels. It is necessary to involve industry

because they are involved housing at every stage of a project, and they should be en-

gaged to implement the precautions identified here when they design and construct

dwellings to optimise performance.

Figure 6.21 (page 135) combines the three outcomes (PM2.5 concentration, ventila-

tion rates, and heat losses) to show their relationship with each other. It was produced

using the 95th percentiles of each simulation. Furthermore, Section 6.5 (page 136)
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presented relationships between the inputs and the three outputs. Several questions

remain unanswered; for example, the post–analysis carried out here can be extended

to each of the inputs to answer research questions such as: How large does a window

or the purpose provided opening need to be so that the ventilation rate in the kitchen

during/after the cooking time is enough to keep acceptable levels at a 95% level of

confidence? Or, what is the nature and extent of the relationship between temperature

difference, wind speed, and air permeability in Chilean houses?

Efforts should be made to implement source control strategies in housing in the

first instance. This could be done by raising public awareness about IAQ and its im-

pacts on health and well–being, by promoting and subsidising the use of cleaner fuels

and more efficient stoves, and informing occupants about good cooking and house-

keeping practices to reduce pollutant concentrations. The impact of source reduction

strategies on population exposures to pollutants of concern can be estimated using

this model. Secondly, house design and use should aim to optimise ventilation rates

and heat loss in such a way that exposures to pollutants, in this case PM2.5, are as

low as possible. This study could then be expanded to include mechanical ventilation,

particle filtration, and outdoor air quality.

This chapter discusses issues raised during this research and how they can be con-

sidered. Special attention was given to limitations of the work and how future studies

are needed to understand the uncertainties in the parameters that are used to describe

and model the stock in more detail.

This knowledge will have a positive impact by

• Characterising the Chilean housing stock and presenting a set of archetypal

buildings to represent it (see Chapters 3 and 4);

• Presenting a model and modelling framework for evaluating the Chilean hous-

ing stock (see Chapter 5);

• Predicting uncertainties in occupant exposures to PM2.5, and dwelling ventila-

tion rates and energy losses across the Chilean housing stock (see Chapter 6);

• Identifying the most important parameters that affect the predictions (see Chap-

ter 6);

• Contextualising and interpreting the results (see Chapter 7);

• Showing how the model its predictions can be used to inform and evaluate the

impacts of new policies and improve the IAQ and environmental performance

of dwellings (see Chapter 7), which will lead to improved performance;
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• Identifying the need for future measuring, surveying, and data gathering exer-

cises. (see Chapter 7).
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CHAPTER 8

Conclusions

This thesis presents an exploratory and comparative study of the Chilean housing

stock, and an estimation of uncertainty in predicted pollutant concentrations from in-

door sources, ventilation rates, and heat loss in its dwellings. This new understanding

creates a framework that can be used to evaluate and develop regulations for Chilean

dwellings.

These conclusions are made by comparing outcomes, where applicable, against the

objectives of this thesis defined in Section 1.7. The first objective was to define a set of

buildings to represent the Chilean dwelling stock. This is achieved by developing a

series of archetypal dwellings that are grouped together according to key parameters

whose values are defined.

It is shown that 496 archetypes can be used to represent the entire stock and 90

can represent 95% of the stock. A selection of the first 2, 8, and 29 archetypes are

statistically meaningful for academic and policy–making purposes. They represent

13%, 35%, and 70% of the stock, respectively, corresponding to small, moderate, and

strong effect sizes.

The first 29 archetypes comprise 15 single–storey detached dwellings and 14 semi–

detached dwellings (6 are two–storey) with floor areas of 30–139m2. Archetypes are

described by their construction period, dwelling type, number of rooms, bedrooms

and bathrooms, mean, standard deviation, and median floor areas, number of storeys,

and number of occupants. The predominant structural materials, cooking fuel, and

socioeconomic status of the occupants are assigned to each archetype by geographi-

cal region. Distributions of the normalised leakage (NL) are developed for old and

new dwellings. The NL for old dwellings is 95% CI [9.91− 106.59], and 95% CI [1.39−
15.90] for new dwellings. These distributions can be used to inform models of air

infiltration and associated heating or cooling energy demand losses.

Important issues were raised during the data processing. Some parameters of in-

terest are not included in public surveys, or they are not at a desirable resolution
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and accuracy. The data analysis highlights a paucity of information about categor-

ical descriptors, such as dwelling ages and types, year of construction, and heating

fuels. There is also insufficient granularity in physical properties, such as dwelling

floor area and volume (especially for dwellings built before 1990), window area and

glazing type, air permeability (especially for dwellings built before 2007), insulation

level, and local environmental conditions, such as sheltering and dwelling density.

Very little is known about occupant behaviours, such as window opening, occupancy

patterns, appliance use, cooking, indoor air temperatures and thermostat settings, or

tobacco consumption. Future data gathering is required to fill these knowledge gaps

and improve epistemic uncertainties.

From these factors, a good understanding of window areas and opening times,

emission rates of internal sources, and indoor temperatures are the most important

because they are required to improve the reliability of modelling predictions. There-

fore, data gathering should focus on them first. It was also identified that a common

platform for data gathering is required, especially for data on infiltration parameters,

which could help improve analyses of its contribution to air exchange rates, dwelling

energy demand, and indoor air quality. A better knowledge of infiltration factors

would help to regulate dwelling energy demand and ventilation rates.

The absence of occupant activity data limits the ability of a model to quantify

its effect on predicted outputs. In particular, it is not known when occupants open

windows, and so two extreme scenarios were considered. Windows closed scenario ac-

counted only for air leakage through the envelope and the periodic operation of ex-

tractor fans in bathrooms and kitchens, whereas windows open scenario also assumed

that windows were fully opened all of the time. Time–use data used for assessing

occupants’ behaviours show that the time spent in the kitchen : bedroom : family room

followed a 10 : 38 : 52 ratio and a schedule was derived from it. The impact of these

and other activities can be evaluated in more detail when more data becomes avail-

able. There is a definite need for activity start times and durations by region. This

information can be used to develop customised information about Chilean occupants

according to their location or demography. It could also be used to moderate occupant

behaviour to improving the indoor air quality and preventing negative health effects.

The second objective was to estimate uncertainty in pollutant concentrations in the

stock. The generic models of dwelling archetypes were developed using CONTAM and

manipulated using an R code. They include nine contaminants emitted by construc-

tion materials, cigarettes, food preparation, heating stoves, human respiration, and

showering, because they are directly or indirectly expected to lead to harm at a popu-

lation scale. However, only PM2.5 emissions from heater stoves located in living rooms

and from the preparation of food in the kitchens are considered here. The remaining
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sources can be included in future analyses. Dwelling and pollutant properties, such as

windows opening area and schedules, or room volumes, are considered to be variable

and can be manipulated by the code. They can also be updated in the future when

new data becomes available.

The models were simulated probabilistically to estimate uncertainty in predictions.

A total of 17,230 and 17,390 simulations were required to achieve consistent results

for windows closed and open scenarios, respectively. The model estimates hourly

and total exposures of one occupant to PM2.5 during the winter season. Hourly and

median ventilation rates are used to estimate winter heat loss due to exfiltration.

Air exchange rates and energy demand are higher for windows open scenario than

for windows closed scenario, and consequently indoor pollutant concentrations are

lower for windows open scenario.

The predicted Med ventilation rate of the stock is between 0.75 and 13.57 h−1, the µ

between 0.89 and 15.8 h−1, the σ between 0.79 and 7.91 h−1, and P95 between 2.4 and

29.75 h−1 using the two extreme scenarios. However, dwellings built after 2008 that

are fully insulated are likely to be under–ventilated and more polluted when com-

pared against the other archetypes, and so may require stricter source control mea-

sures and extra ventilation to lower health risks. The energy required to heat infil-

trated air is predicted to be 22.35% of the total energy demand of an average Chilean

dwelling.

Nationwide, the median (Med) exposures to PM2.5 during winter is expected to be

between 2.3 and 58.65 µg/m3, the mean (µ) between 6.6 and 134.5 µg/m3, and the P95

between 39.8 and 548.7 µg/m3 using the two extreme scenarios.

Exposures, ventilation rates, and heat loss are significantly different when com-

pared by archetype ID and region. The effects of ventilation rates and heat loss are

substantive when the windows are open, but smaller when closed. The effect is also

less noticeable on exposures for both scenarios.

When predicted concentrations are compared against international guidelines and

the national ambient standard, Chilean dwellings are shown to be have unacceptable

PM2.5 concentrations >32% of the time, and so their occupants have an elevated risk

of experiencing negative health outcomes, such as tracheal, bronchial, and lung can-

cers, Chronic Obstructive Pulmonary Disease, ischemic heart and cardiovascular dis-

eases, and lower respiratory infections. Median ventilation rates for windows closed

scenario are shown to be below 0.5 h−1 during 39% of the time, which is more than

estimated times for dwellings in the USA, England, and Beijing.

The third objective was to determine the relationship between ventilation rates, the

indoor exposures, and energy demand in the Chilean stock, taking into account the
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diversity of dwellings and climates. To ensure that a 95% of the stock is below the

WHO’s guideline daily mean value of 25 µg/m3, the ventilation rate should >13 h−1.

However, the associated energy cost to a maximum of 33.4 MWh for the winter season,

which can be cost–prohibitive and so using a single ventilation rate in this way for all

houses is sub–optimal. This ventilation rate can never be achieved by infiltration alone

and so some window opening is always required. When opening windows (second 2)

the WHO guideline value is achieved in around 50% of dwellings.

The fourth and final objective was to analyse the relative importance of the model

inputs. The sensitivity analyses have shown that exposures to PM2.5 are depend

mostly on the emission rate of the internal sources and the total permeable enve-

lope area (the sum of the normalised leakage area of the envelope and the total win-

dow area). Ventilation rates and heat losses are most affected by the total permeable

area, the indoor–outdoor temperature difference, and the permeability of the envelope

(Q50).

These outcomes highlight the importance of, and urgency for, measures to achieve

acceptable indoor air quality in Chilean dwellings, primarily by source control, but

when this is not possible, by ventilation and dwelling design.
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APPENDIX A

Additional information

about the housing stock

This appendix presents additional information obtained from the data sources de-

scribed in Chapter 3, and expanded material used in the classification and description

of the archetypes presented in Chapter 4.
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A.1 Regional archetypes

Table A.1: Regional archetypes

Parameter

No:
1 2 3 4 5 6 7 8 9 10 11 12 13

Parameter ID Region Frequency P(type)
Waighting

factor

Proportion

of total
Accum. Prop Cum. Freq. Walls Roof Floor

Cooking

fuel

Predominant

SDI

Raw database:
Geometric

archetype

2002

census

2002

census
NA

2002

census

2002

census

2002

census

2002

census

2002

census

Variable name:
15 Regions

2017
f (Parameter2) Type of Houses

(Parameter3) x

(Parameter4)
f (Parameter3) f (Parameter6) f (Parameter7) V4A V4B V4C H12 CSE Decil

27 1 5550 0.1954 4069 0.070% 0.1% 1084 3 5 6 2 6

27 2 12209 0.1954 8952 0.154% 0.2% 3470 3 5 6 2 6

27 3 9759 0.1954 7156 0.123% 0.3% 5377 3 5 6 2 5

27 4 25697 0.1954 18842 0.325% 0.7% 10398 3 5 6 2 4

27 5 61713 0.1954 45250 0.780% 1.5% 22457 3 5 3 2 5

27 6 29827 0.1954 21870 0.377% 1.8% 28285 2 5 3 2 4

27 7 42351 0.1954 31053 0.535% 2.4% 36561 2 5 3 2 3

27 8 77261 0.1954 56651 0.976% 3.3% 51657 4 5 3 2 3

27 9 34741 0.1954 25473 0.439% 3.8% 58446 4 4 3 4 2

27 10 28062 0.1954 20576 0.354% 4.1% 63929 4 4 3 4 2

27 11 3814 0.1954 2797 0.048% 4.2% 64674 4 4 3 4 3

27 12 7289 0.1954 5345 0.092% 4.3% 66099 4 4 4 1 6

27 13 180744 0.1954 132528 2.283% 6.6% 101416 2 5 3 2 7

27 14 15481 0.1954 11351 0.196% 6.8% 104441 4 4 3 4 2

27 15 5513 0.1954 4042 0.070% 6.8% 105518 3 5 6 2 5

36 1 4712 0.1954 3455 0.060% 6.9% 921 3 5 5 2 7

36 2 12549 0.1954 9201 0.159% 7.0% 3373 3 4 6 2 8

36 3 8648 0.1954 6341 0.109% 7.1% 5063 3 5 6 2 6

36 4 21188 0.1954 15536 0.268% 7.4% 9203 2 5 5 2 6

36 5 52727 0.1954 38661 0.666% 8.1% 19506 2 5 3 2 6

36 6 26412 0.1954 19366 0.334% 8.4% 24667 2 5 3 2 5

36 7 26491 0.1954 19424 0.335% 8.8% 29843 2 5 3 2 4

36 8 63963 0.1954 46900 0.808% 9.6% 42341 4 5 3 2 4

36 9 30001 0.1954 21998 0.379% 9.9% 48203 4 4 3 4 3

36 10 22710 0.1954 16652 0.287% 10.2% 52641 4 4 3 4 3

36 11 2664 0.1954 1953 0.034% 10.3% 53162 4 4 3 4 4

36 12 5694 0.1954 4175 0.072% 10.3% 54274 4 4 4 1 7

36 13 174977 0.1954 128300 2.210% 12.5% 88465 2 5 3 2 8

36 14 12967 0.1954 9508 0.164% 12.7% 90998 4 4 3 4 2

36 15 4839 0.1954 3548 0.061% 12.8% 91944 3 5 6 2 6

91 1 5550 0.1434 2986 0.051% 12.8% 796 3 5 6 2 6

91 2 12209 0.1434 6569 0.113% 12.9% 2547 3 5 6 2 6

91 3 9759 0.1434 5251 0.090% 13.0% 3946 3 5 6 2 5

91 4 25697 0.1434 13827 0.238% 13.3% 7631 3 5 6 2 4

91 5 61713 0.1434 33207 0.572% 13.8% 16480 3 5 3 2 5

91 6 29827 0.1434 16049 0.277% 14.1% 20757 2 5 3 2 4

91 7 42351 0.1434 22788 0.393% 14.5% 26830 2 5 3 2 3

91 8 77261 0.1434 41573 0.716% 15.2% 37908 4 5 3 2 3

91 9 34741 0.1434 18693 0.322% 15.5% 42890 4 4 3 4 2

91 10 28062 0.1434 15100 0.260% 15.8% 46914 4 4 3 4 2

91 11 3814 0.1434 2052 0.035% 15.8% 47461 4 4 3 4 3

91 12 7289 0.1434 3922 0.068% 15.9% 48506 4 4 4 1 6

91 13 180744 0.1434 97255 1.676% 17.6% 74423 2 5 3 2 7

91 14 15481 0.1434 8330 0.144% 17.7% 76643 4 4 3 4 2

91 15 5513 0.1434 2966 0.051% 17.8% 77434 3 5 6 2 5

100 1 4712 0.1434 2535 0.044% 17.8% 676 3 5 5 2 7

100 2 12549 0.1434 6752 0.116% 17.9% 2475 3 4 6 2 8

100 3 8648 0.1434 4653 0.080% 18.0% 3715 3 5 6 2 6

100 4 21188 0.1434 11401 0.196% 18.2% 6753 2 5 5 2 6

100 5 52727 0.1434 28371 0.489% 18.7% 14314 2 5 3 2 6

100 6 26412 0.1434 14212 0.245% 18.9% 18101 2 5 3 2 5

100 7 26491 0.1434 14254 0.246% 19.2% 21900 2 5 3 2 4

100 8 63963 0.1434 34417 0.593% 19.8% 31072 4 5 3 2 4

100 9 30001 0.1434 16143 0.278% 20.1% 35374 4 4 3 4 3

100 10 22710 0.1434 12220 0.211% 20.3% 38630 4 4 3 4 3

100 11 2664 0.1434 1433 0.025% 20.3% 39012 4 4 3 4 4

100 12 5694 0.1434 3064 0.053% 20.3% 39829 4 4 4 1 7

100 13 174977 0.1434 94152 1.622% 22.0% 64919 2 5 3 2 8

100 14 12967 0.1434 6977 0.120% 22.1% 66778 4 4 3 4 2
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100 15 4839 0.1434 2604 0.045% 22.1% 67472 3 5 6 2 6

275 1 5550 0.0995 2072 0.036% 22.2% 552 3 5 6 2 6

275 2 12209 0.0995 4557 0.079% 22.2% 1767 3 5 6 2 6

275 3 9759 0.0995 3643 0.063% 22.3% 2737 3 5 6 2 5

275 4 25697 0.0995 9592 0.165% 22.5% 5293 3 5 6 2 4

275 5 61713 0.0995 23035 0.397% 22.9% 11432 3 5 3 2 5

275 6 29827 0.0995 11133 0.192% 23.1% 14399 2 5 3 2 4

275 7 42351 0.0995 15808 0.272% 23.3% 18612 2 5 3 2 3

275 8 77261 0.0995 28839 0.497% 23.8% 26297 4 5 3 2 3

275 9 34741 0.0995 12968 0.223% 24.1% 29753 4 4 3 4 2

275 10 28062 0.0995 10475 0.180% 24.2% 32544 4 4 3 4 2

275 11 3814 0.0995 1424 0.025% 24.3% 32923 4 4 3 4 3

275 12 7289 0.0995 2721 0.047% 24.3% 33648 4 4 4 1 6

275 13 180744 0.0995 67465 1.162% 25.5% 51627 2 5 3 2 7

275 14 15481 0.0995 5779 0.100% 25.6% 53167 4 4 3 4 2

275 15 5513 0.0995 2058 0.035% 25.6% 53715 3 5 6 2 5

35 1 2366 0.1954 1735 0.030% 25.6% 462 3 5 5 2 7

35 2 6503 0.1954 4768 0.082% 25.7% 1733 3 4 6 2 7

35 3 4707 0.1954 3451 0.059% 25.8% 2653 3 5 6 2 6

35 4 11077 0.1954 8122 0.140% 25.9% 4817 2 5 5 2 5

35 5 29860 0.1954 21894 0.377% 26.3% 10652 2 5 3 2 6

35 6 15053 0.1954 11037 0.190% 26.5% 13593 2 5 3 2 5

35 7 16338 0.1954 11980 0.206% 26.7% 16786 2 5 3 2 4

35 8 33794 0.1954 24779 0.427% 27.1% 23389 4 5 3 2 4

35 9 13331 0.1954 9775 0.168% 27.3% 25994 4 4 3 2 3

35 10 10972 0.1954 8045 0.139% 27.4% 28138 4 4 3 4 3

35 11 1155 0.1954 847 0.015% 27.4% 28364 4 4 3 4 4

35 12 3418 0.1954 2506 0.043% 27.5% 29031 4 4 4 1 6

35 13 101965 0.1954 74765 1.288% 28.8% 48955 2 5 3 2 8

35 14 5921 0.1954 4342 0.075% 28.8% 50112 4 4 3 4 3

35 15 2438 0.1954 1788 0.031% 28.9% 50589 3 5 6 2 6

19 1 4194 0.1954 3075 0.053% 28.9% 820 3 5 6 2 5

19 2 8969 0.1954 6576 0.113% 29.0% 2572 3 5 6 2 6

19 3 6096 0.1954 4470 0.077% 29.1% 3763 3 5 6 2 4

19 4 16575 0.1954 12153 0.209% 29.3% 7002 2 5 6 2 4

19 5 23395 0.1954 17154 0.296% 29.6% 11573 4 5 3 2 5

19 6 11814 0.1954 8662 0.149% 29.8% 13882 2 5 5 2 3

19 7 18172 0.1954 13324 0.230% 30.0% 17433 2 5 3 2 2

19 8 31947 0.1954 23425 0.404% 30.4% 23675 4 4 3 2 3

19 9 23638 0.1954 17332 0.299% 30.7% 28294 4 4 3 4 2

19 10 18501 0.1954 13566 0.234% 30.9% 31909 4 4 3 4 2

19 11 3843 0.1954 2818 0.049% 31.0% 32660 4 4 3 4 2

19 12 2491 0.1954 1826 0.031% 31.0% 33147 4 4 4 1 5

19 13 75443 0.1954 55318 0.953% 32.0% 47888 2 5 3 2 6

19 14 8819 0.1954 6466 0.111% 32.1% 49612 4 4 3 4 2

19 15 3909 0.1954 2866 0.049% 32.1% 50375 3 5 6 2 5

284 1 4712 0.0995 1759 0.030% 32.2% 469 3 5 5 2 7

284 2 12549 0.0995 4684 0.081% 32.2% 1717 3 4 6 2 8

284 3 8648 0.0995 3228 0.056% 32.3% 2577 3 5 6 2 6

284 4 21188 0.0995 7909 0.136% 32.4% 4685 2 5 5 2 6

284 5 52727 0.0995 19681 0.339% 32.8% 9930 2 5 3 2 6

284 6 26412 0.0995 9859 0.170% 32.9% 12557 2 5 3 2 5

284 7 26491 0.0995 9888 0.170% 33.1% 15192 2 5 3 2 4

284 8 63963 0.0995 23875 0.411% 33.5% 21554 4 5 3 2 4

284 9 30001 0.0995 11198 0.193% 33.7% 24539 4 4 3 4 3

284 10 22710 0.0995 8477 0.146% 33.9% 26798 4 4 3 4 3

284 11 2664 0.0995 994 0.017% 33.9% 27063 4 4 3 4 4

284 12 5694 0.0995 2125 0.037% 33.9% 27629 4 4 4 1 7

284 13 174977 0.0995 65313 1.125% 35.0% 45034 2 5 3 2 8

284 14 12967 0.0995 4840 0.083% 35.1% 46324 4 4 3 4 2

284 15 4839 0.0995 1806 0.031% 35.2% 46805 3 5 6 2 6
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A.2 Size of houses
Table A.2: Floor area by type of house. Values assigned to each house according to the number

of rooms. Type A: Detached house, age band 1. Type B: Semidetached or End–terrace house, age

band 1. Type C: Mid-terrace house, age band 1. Type D: Flat, age band 1. Type E: Detached house,

age band 2. Type F: Semidetached or End–terrace house, age band 2. Type G: Mid-terrace house,

age band 2. Type H: Flat, age band 2.

Floor Areas

House Type N. of zones Average SD Median

Type A

1 20.45 17.95 18

2 27.36 15.57 25

3 37.74 16.54 36

4 44.39 24.20 41

5 49.39 30.36 42

6 53.68 35.99 43

7 57.00 41.32 44

8 60.10 47.67 45

Type B

1 16.97 6.82 15

2 23.72 11.16 21

3 35.86 12.78 39

4 42.14 15.01 43

5 43.83 16.83 44

6 44.60 18.08 44

7 44.71 18.45 44

8 44.82 18.81 44

Type C

1 17.65 4.03 15

2 27.17 10.90 27

3 38.67 46.94 38

4 41.46 40.99 40

5 42.82 41.01 40

6 43.44 41.36 40

7 44.04 41.74 41

8 44.16 41.92 41

Type D

1 96.98 178.90 50

2 51.25 31.68 43

3 60.87 28.61 49

4 68.57 35.52 55

5 75.54 43.89 60

6 79.64 49.74 63

7 81.02 51.98 64

8 82.13 54.32 64

Type E

1 35.14 30.97 29

2 39.64 25.16 38

3 52.99 17.70 50

4 59.77 20.09 56

5 68.76 33.93 58

6 72.04 38.55 59

7 74.44 42.93 60

8 76.66 47.61 60

Type F

1 25.52 24.45 15

2 43.06 21.61 41

3 53.20 11.98 55

4 57.45 12.48 56

5 60.02 17.27 56

6 60.67 19.79 56

7 61.04 21.10 56

8 61.30 21.82 56

Type G

1 51.21 49.03 45

2 45.54 26.18 45

3 56.45 25.97 52

4 60.91 23.11 56

5 66.63 34.00 57

6 68.72 37.21 58

7 70.09 39.86 58

8 71.02 41.73 58
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A.3 Heating hours by geographic region

Table A.3: Heating hours for winter days by weather station.

Weather file name Mean indoor temperature SD of indoor temperature Daily Heating hours

Antofagasta 16.91 1.83 12.91

Antofagasta city 17.80 1.86 9.83

Arica, Chacalluta 18.00 1.40 3.99

Arica city 19.81 1.57 2.3

Atacama 16.30 4.16 11.88

Calama El Loa 16.52 3.40 12.04

Chillán city 12.58 3.50 17.09

Chillán-Gral ohiggi 12.53 3.54 17.02

Concepción city 12.56 3.33 16.94

Concepción 12.71 3.38 17.34

Copiapo Chamonate 16.23 4.10 11.82

Coyhaique Teniente V. 9.03 4.42 18.01

Curico-General Fr 12.98 4.90 15.25

Iquique city 19.42 1.58 3.43

Iquique Diego Aracen 18.53 1.48 6.65

La Serena city 15.37 2.78 14.89

La Serena, La Florida 14.43 2.96 15.84

Osorno-Canal Bajo 10.25 3.62 17.93

Osorno city 10.22 3.73 17.98

Puerto Aysen Airport 9.56 4.38 17.96

Puerto Montt El Tepu 10.26 3.39 18.11

Puerto Montt city 10.27 3.49 18.02

Puerto Williams 5.90 2.91 18.3

Punta Arenas 5.82 3.00 18.3

Punta Arenas city 6.67 2.80 18.3

Rancagua city 12.42 4.98 15.77

Santiago 12.72 4.70 15.61

Talca city 12.66 4.21 16.31

Talcahuano city 13.52 3.39 16.39

Temuco Maquehue 11.08 4.13 17.3

Temuco city 11.06 4.10 17.3

Valdivia Pichoy 10.94 4.07 17.5

Valdivia city 10.77 3.87 17.34

Vallenar Airport 12.55 3.41 17.16

Valparaíso (USM) 13.50 4.81 15.09
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APPENDIX B

Additional information

on the occupant activities

B.1 Use of time data

Table B.1: Activity duration in hours by geographic region (INE, 2016b).

Region Working hours In-Transit Sleeping hours WD Sleeping hours WE

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

1 8.29 8.00 2.55 1.52 0.58 8.33 7.19 7.00 2.14 7.81 8.00 2.27

2 8.44 8.00 2.79 4.35 0.83 24.88 7.10 7.00 1.73 7.79 8.00 1.99

3 8.83 9.00 2.51 0.99 0.67 1.59 7.31 7.00 1.99 7.54 8.00 2.04

4 8.04 8.00 2.86 5.07 0.67 27.74 7.21 7.00 1.80 7.72 8.00 1.95

5 8.19 8.00 2.69 3.12 0.67 19.73 7.37 7.00 1.81 7.83 8.00 2.10

6 8.31 8.00 2.64 3.60 0.67 20.03 7.33 7.00 1.95 8.01 8.00 2.18

7 8.20 8.00 2.25 1.65 0.67 10.45 7.83 8.00 1.60 8.44 9.00 1.86

8 7.87 8.00 2.65 1.19 0.67 5.46 7.33 7.00 1.78 7.91 8.00 1.98

9 7.91 8.00 2.47 2.09 0.67 14.99 7.49 8.00 1.73 8.04 8.00 1.94

10 7.96 8.00 2.61 2.06 0.58 14.85 7.82 8.00 1.79 8.45 8.00 1.95

11 8.13 8.00 2.15 0.64 0.50 0.85 7.72 8.00 1.62 8.63 9.00 2.11

12 8.30 8.00 2.34 1.84 0.50 14.32 7.06 7.00 1.56 7.67 8.00 1.87

13 8.31 9.00 2.45 2.34 1.17 12.89 7.18 7.00 1.81 7.84 8.00 2.02

14 7.64 8.00 2.55 0.78 0.58 0.94 7.44 7.75 1.85 7.93 8.00 1.96

15 8.24 9.00 2.95 12.76 0.67 44.19 7.31 7.00 1.54 8.03 8.00 1.73
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Table B.2: Activity duration in hours by geographic region (INE, 2016b).

Region Shower/dressed - WD Shower/dressed - WE Breakfast - WD Breakfast - WE Lunch - WD Lunch - WE

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

1 0.62 0.50 0.66 0.50 0.35 0.25 0.43 0.33 0.59 0.50 0.75 0.50

2 0.66 0.50 0.67 0.50 0.34 0.25 0.40 0.33 0.54 0.50 0.65 0.50

3 0.65 0.50 0.68 0.50 0.37 0.33 0.45 0.33 0.57 0.50 0.72 0.50

4 0.65 0.50 0.67 0.50 0.33 0.25 0.39 0.33 0.55 0.50 0.67 0.50

5 0.64 0.50 0.65 0.50 0.33 0.25 0.39 0.33 0.59 0.50 0.73 0.50

6 0.62 0.50 0.64 0.50 0.30 0.25 0.34 0.25 0.51 0.50 0.62 0.50

7 0.45 0.33 0.48 0.42 0.30 0.25 0.37 0.33 0.55 0.50 0.71 0.67

8 0.62 0.50 0.64 0.50 0.34 0.25 0.40 0.33 0.52 0.50 0.65 0.50

9 0.58 0.50 0.59 0.50 0.34 0.25 0.40 0.33 0.56 0.50 0.68 0.50

10 0.60 0.50 0.61 0.50 0.33 0.25 0.40 0.33 0.56 0.50 0.71 0.50

11 0.52 0.50 0.53 0.50 0.35 0.25 0.42 0.33 0.51 0.50 0.62 0.50

12 0.54 0.50 0.56 0.50 0.31 0.25 0.35 0.33 0.55 0.50 0.60 0.50

13 0.61 0.50 0.63 0.50 0.33 0.25 0.40 0.33 0.61 0.50 0.78 0.67

14 0.68 0.50 0.67 0.50 0.34 0.25 0.41 0.33 0.54 0.50 0.68 0.50

15 0.54 0.50 0.59 0.50 0.32 0.25 0.39 0.33 0.64 0.50 0.77 0.75

Table B.3: Activity duration in hours by geographic region (INE, 2016b).

Region Tea - WD Tea - WE Dinner - WD Dinner - WE

Mean Median Mean Median Mean Median Mean Median

1 0.52 0.50 0.55 0.50 0.55 0.50 0.58 0.50

2 0.51 0.50 0.54 0.50 0.54 0.50 0.57 0.50

3 0.56 0.50 0.54 0.50 0.56 0.50 0.61 0.50

4 0.46 0.33 0.50 0.50 0.48 0.50 0.50 0.50

5 0.51 0.50 0.57 0.50 0.55 0.50 0.61 0.50

6 0.45 0.33 0.49 0.50 0.48 0.33 0.51 0.42

7 0.57 0.50 0.65 0.50 0.52 0.35 0.54 0.42

8 0.49 0.50 0.55 0.50 0.51 0.50 0.62 0.50

9 0.49 0.50 0.54 0.50 0.56 0.50 0.59 0.50

10 0.52 0.50 0.57 0.50 0.57 0.50 0.64 0.50

11 0.51 0.50 0.56 0.50 0.52 0.50 0.60 0.50

12 0.43 0.50 0.45 0.50 0.57 0.50 0.63 0.50

13 0.50 0.50 0.55 0.50 0.60 0.50 0.65 0.50

14 0.57 0.50 0.59 0.50 0.54 0.50 0.62 0.50

15 0.47 0.50 0.51 0.50 0.58 0.50 0.62 0.50
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B.2 Doors and fans daily schedules

Table B.4: Daily schedules for doors and use of fans. WD: Weekday; WE: Weekend; D: door; F:

Fan; 1: on; 0: off.

Meals Time Kitchen D Kitchen F Bedroom D Bathroom D Bathroom F

WE WD WD WE WD WE WD WE WD WE

0:00:00 0 0 0 0 0 0 0 0 0 0

Meal 1 WD 7:00:00 0 1 0 0 1 0 1 0 1 0

7:05:00 0 1 0 0 1 0 0 0 1 0

7:20:00 0 1 1 0 1 0 0 0 1 0

7:30:00 0 1 0 0 1 0 1 0 1 0

7:35:00 0 1 0 0 1 0 0 0 1 0

8:00:00 0 1 0 0 1 0 0 0 0 0

8:30:00 0 1 0 0 1 0 0 1 0 1

8:35:00 0 1 0 0 1 0 0 0 0 1

Meal 1 WE 9:00:00 1 0 0 1 1 0 0 1 0 1

9:05:00 1 0 0 1 1 0 0 0 0 1

9:20:00 1 0 0 0 1 0 0 0 0 1

9:30:00 1 0 0 0 1 1 0 0 0 0

10:00:00 0 0 0 0 1 1 0 0 0 0

11:00:00 0 0 0 0 1 1 0 1 0 0

11:05:00 0 0 0 0 1 1 0 0 0 0

Meal 2 WD & WE 12:00:00 1 1 1 0 1 1 0 1 0 0

12:05:00 1 1 1 0 1 1 0 0 0 0

12:30:00 1 1 1 1 1 1 0 0 0 0

13:00:00 1 1 0 1 1 1 0 0 0 0

13:30:00 1 1 0 0 1 1 0 0 0 0

14:00:00 0 0 0 0 1 1 0 1 0 0

14:05:00 0 0 0 0 1 1 0 0 0 0

Meal 3 WD 17:00:00 0 1 0 0 1 1 0 1 0 0

17:05:00 0 1 0 0 1 1 0 0 0 0

Meal 3 WE 18:00:00 0 0 0 0 1 1 0 0 0 0

19:30:00 0 0 1 0 1 1 0 0 0 0

19:50:00 0 0 0 0 1 1 0 0 0 0

20:00:00 1 0 0 1 1 1 0 0 0 0

Meal WD & WE 20:30:00 1 1 1 0 1 1 0 0 0 0

21:00:00 1 0 0 0 1 1 0 1 1 0

21:05:00 1 0 0 0 1 1 0 0 1 0

21:30:00 1 0 0 0 1 1 1 0 0 0

21:35:00 1 0 0 0 1 1 0 0 0 0

22:00:00 0 0 0 0 0 1 1 1 0 1

22:05:00 0 0 0 0 0 1 0 0 0 1

22:30:00 0 0 0 0 0 1 0 0 0 0

23:00:00 0 0 0 0 0 0 0 0 0 0

24:00:00 0 0 0 0 0 0 0 1 0 0
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APPENDIX C

Sensitivity Analyses

Scatter plots

This appendix presents additional plots of the sensitivity analyses presented in chapter 6. The scatter plots

of each input versus the three outputs are shown for both scenario 1 and 2 separately.
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C.1 Scatter plots, scenario 1

Figure C.1: Scenario 1. Inputs versus PM2.5 exposures.
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Figure C.2: Scenario 1. Inputs versus ventilation rates.
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Figure C.3: Scenario 1. Inputs versus heat loss.
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C.2 Scatter plots, scenario 2

Figure C.4: Scenario 2. Inputs versus PM2.5 exposures.
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Figure C.5: Scenario 2. Inputs versus ventilation rates.
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Figure C.6: Scenario 2. Inputs versus heat loss.
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APPENDIX D

Sensitivity Analyses

Results

Appendix D provides the full tables of results of the sensitivity analyses for the three outcomes, including

the tests statistics p–values, ranking coefficients and ranks. For further details on the implementation of

this tests and its discussion see Chapters 5 and 7, respectively.
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D.1 Exposure

Table D.1: Test statistics for correlation.

Input Kendall p-value Rank Pearson p-value Rank Spearman p-value Rank

Length: width ratio -0.00496 0.168418416 10 -0.00805 0.13426465 9 -0.00735 0.171317695 10

Orientation 0.00273 0.446234667 11 -0.00149 0.78137068 12 0.00414 0.441072388 11

Permeability -0.05190 1.49951E-47 5 -0.10566 1.62093E-86 3 -0.07701 1.06774E-46 5

n exponent 0.02862 4.3866E-15 6 0.04577 1.58988E-17 5 0.04228 3.54264E-15 6

PM25 Dep. rate -0.02366 4.07441E-11 7 -0.05745 1.03809E-26 4 -0.03556 3.64765E-11 7

Breakfast PM2.5 -0.00037 0.917887846 12 0.00315 0.557707582 11 -0.00058 0.913882897 12

Cooking PM2.5 0.38542 0 1 0.58379 0 1 0.53207 0 1

Delta T 0.01976 3.83606E-08 8 -0.03069 1.11527E-08 7 0.03099 8.07816E-09 8

Wind speed -0.08765 2.3719E-126 4 -0.00518 0.334758995 10 -0.12551 1.503E-121 4

Heater PM2.5 0.13252 3.5903E-209 3 0.04008 8.60825E-14 6 0.16396 3.65E-207 3

SurfaceArea : Volume ratio 0.00914 0.017758492 9 -0.01894 0.000424256 8 0.01241 0.020928894 9

Total Permeable area -0.23311 0 2 -0.21239 0 2 -0.34662 0 2

Table D.2: Test statistics for regression.

Input Regression Rank R2 Rank Regression Rank

L:W ratio -0.00805 9 0.00006 -0.00735 10

Orientation -0.00149 12 0.00000 0.00414 11

Permeability -0.10566 3 0.01116 -0.07701 5

n exponent 0.04577 5 0.00209 0.04228 6

PM25 Dep. rate -0.05745 4 0.00330 -0.03556 7

Breakfast PM2.5 0.00315 11 0.00001 -0.00058 12

Cooking PM2.5 0.58379 1 0.34081 0.53207 1

Delta T -0.03069 7 0.00094 0.03099 8

Wind speed -0.00518 10 0.00003 -0.12551 4

Heater PM2.5 0.04008 6 0.00161 0.16396 3

SurfaceArea : Volume ratio -0.01894 8 0.00036 0.01241 9

Total perm. area -0.21239 2 0.04511 -0.34662 2

Table D.3: Test statistics for group comparison

Input KW2 p-value Rank KW5 p-value Rank KW10 p-value Rank KW20 p-value Rank KS p-value Rank

L:W ratio 1.10 0.293453 11 1.85 0.76421274 11 15.78 0.071557663 10 17.16 0.578709363 12 0.01009 0.339531057 11

Orientation 1.96 0.161099 10 6.02 0.197665535 10 12.51 0.186129964 12 22.48 0.261247211 10 0.01024 0.322734561 10

Permeability 50.98 9.308E-13 5 329.21 5.39957E-70 5 534.19 2.7323E-109 6 565.50 9.4721E-108 6 0.07234 7.18587E-40 6

n exponent 17.86 2.3774E-05 6 75.10 1.89596E-15 7 93.08 3.90857E-16 8 111.11 4.96928E-15 8 0.01853 0.005166754 9

PM25 Dep. rate 16.94 3.8670E-05 7 46.59 1.85545E-09 9 94.79 1.77381E-16 7 105.62 5.09013E-14 9 0.03109 1.03422E-07 8

Breakfast PM2.5 0.10 0.74654 12 0.93 0.920904946 12 12.92 0.166322218 11 18.78 0.470912661 11 0.00737 0.733125267 12

Cooking PM2.5 5730.57 0 1 8533.80 0 1 11579.88 0 1 12672.53 0 1 0.35283 0 1

Delta T 5.43 0.01982 9 260.20 4.13783E-55 6 806.82 7.2234E-168 5 821.46 5.8791E-162 5 0.06869 5.43255E-36 7

Wind speed 773.67 2.8656E-170 3 1249.84 2.4981E-269 4 1384.27 1.9356E-292 4 1469.42 1.6209E-300 4 0.14735 4.3682E-164 5

Heater PM2.5 548.05 3.3479E-121 4 1929.56 0 3 3311.81 0 3 3380.31 0 3 0.16609 2.3519E-208 4

S:V ratio 9.84 0.00170 8 58.17 7.02223E-12 8 77.27 5.61818E-13 9 116.07 5.98815E-16 7 0.17692 2.4052E-236 3

Total perm. area 2232.24 0 2 4090.40 0 2 4436.93 0 2 4453.08 0 2 0.23017 0 2
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D.2 Ventilation rates

Table D.4: Test statistics for correlation.

Input Kendall p-value Rank Pearson p-value Rank Spearman p-value Rank

Length: width ratio 0.009608308 0.007664459 7 0.026513268 8.06173E-07 5 0.014300292 0.007795136 7

Orientation -0.00162402 0.650852475 8 -0.004281721 0.425653615 8 -0.002454146 0.647948694 8

Permeability 0.156455981 0 2 0.019546349 0.000275727 7 0.192639284 1.1933E-286 2

n exponent -0.046778575 1.29915E-37 6 -0.020236882 0.00016614 6 -0.068167787 6.0723E-37 6

Delta T 0.08309111 2.6249E-118 3 0.127131987 1.0904E-124 4 0.121481561 6.0681E-114 3

Wind speed 0.06919405 1.80102E-79 4 0.181326779 1.1422E-253 2 0.092352119 1.89164E-66 5

SurfaceArea : Volume ratio 0.06812354 8.33197E-70 5 0.143492513 1.2001E-158 3 0.098350875 3.7253E-75 4

Total Permeable area 0.386898496 0 1 0.313008908 0 1 0.536300648 0 1

Table D.5: Test statistics for regression.

Input Regression Rank R2 Rank Regression Rank

Length: width ratio 0.026513268 5 0.00070295 0.014300292 7

Orientation -0.004281721 8 1.8333E-05 -0.002454146 8

Permeability 0.019546349 7 0.00038206 0.192639284 2

n exponent -0.020236882 6 0.00040953 -0.068167787 6

Delta T 0.127131987 4 0.01616254 0.121481561 3

Wind speed 0.181326779 2 0.0328794 0.092352119 5

SurfaceArea : Volume ratio 0.143492513 3 0.0205901 0.098350875 4

Total Permeable area 0.313008908 1 0.09797458 0.536300648 1

Table D.6: Test statistics for group comparison

Input KW2 p-value Rank KW5 p-value Rank KW10 p-value Rank KW20 p-value Rank KS p-value Rank

Length: width ratio 0.14 0.711040825 8 31.27 2.69972E-06 7 60.14 1.2583E-09 7 62.82 1.37251E-06 7 0.025400926 2.74039E-05 7

Orientation 0.27 0.602294151 7 1.66 0.798498116 8 3.28 0.952146008 8 18.53 0.487207489 8 0.005808627 0.931471432 8

Permeability 2700.76 0 2 11149.07 0 2 10194.09 0 2 11568.63 0 2 0.326693309 0 2

n exponent 409.50 4.70789E-91 4 848.30 2.6407E-182 6 754.83 1.1193E-156 6 928.82 8.1208E-185 6 0.054460298 8.82102E-23 6

Delta T 535.13 2.161E-118 3 1712.92 0 5 1938.97 0 5 2834.69 0 5 0.114054123 1.78346E-98 5

Wind speed 46.15 1.09743E-11 6 3138.12 0 3 3475.05 0 3 4204.09 0 3 0.173230183 1.2939E-226 4

SurfaceArea : Volume ratio 115.97 4.8181E-27 5 2239.91 0 4 2450.66 0 4 3087.77 0 4 0.221281667 0 3

Total Permeable area 10879.00 0 1 14887.32 0 1 15068.06 0 1 15714.28 0 1 0.423171156 0 1
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D.3 Heat loss

Table D.7: Test statistics for correlation.

Input Kendall p-value Rank Pearson p-value Rank Spearman p-value Rank

Length: width ratio 0.001200887 0.738915526 7 0.0045271 0.399616399 6 0.001766343 0.742426135 7

Orientation -0.000636156 0.859278784 8 -0.000713372 0.894408124 8 -0.00097369 0.856239937 8

Permeability 0.043843387 2.00063E-34 3 -0.023834386 9.19855E-06 5 0.060201258 3.59771E-29 3

n exponent -0.012525911 0.00059806 6 -0.003832688 0.475781339 7 -0.018398525 0.000618251 5

Delta T 0.076395032 2.5422E-100 2 0.143286037 3.422E-158 2 0.112811537 1.98491E-98 2

Wind speed 0.03126401 1.47366E-17 4 0.127945754 2.8097E-126 3 0.042304384 3.41876E-15 4

SurfaceArea : Volume ratio -0.015995261 3.36755E-05 5 0.064209961 5.81859E-33 4 -0.018108111 0.000753235 6

Total Permeable area 0.247284271 0 1 0.200521035 0 1 0.366575983 0 1

Table D.8: Test statistics for regression.

Input Regression Rank R2 Rank Regression Rank

Length: width ratio 0.0045271 6 2.0495E-05 0.001766343 7

Orientation -0.000713372 8 5.089E-07 -0.00097369 8

Permeability -0.023834386 5 0.00056808 0.060201258 3

n exponent -0.003832688 7 1.4689E-05 -0.018398525 5

Delta T 0.143286037 2 0.02053089 0.112811537 2

Wind speed 0.127945754 3 0.01637012 0.042304384 4

SurfaceArea : Volume ratio 0.064209961 4 0.00412292 -0.018108111 6

Total Permeable area 0.200521035 1 0.04020869 0.366575983 1

Table D.9: Test statistics for group comparison

Input KW2 p-value Rank KW5 p-value Rank KW10 p-value Rank KW20 p-value Rank KS p-value Rank

Length: width ratio 0.00 0.962431365 8 1.88 0.758194243 8 8.45 0.489098981 7 13.59 0.807236812 8 0.006004917 0.913080391 7

Orientation 0.00 0.945083559 7 1.89 0.756784427 7 3.02 0.963376175 8 14.11 0.777374204 7 0.005414999 0.961038785 8

Permeability 659.35 2.0698E-145 2 2623.84 0 2 2693.03 0 2 2924.03 0 2 0.142469869 2.034E-153 3

n exponent 18.36 1.83269E-05 5 37.68 1.30272E-07 6 57.45 4.13859E-09 6 74.49 1.62631E-08 6 0.03798407 2.6673E-11 6

Delta T 361.47 1.3484E-80 3 1074.17 3.0082E-231 3 1460.36 0 3 1984.28 0 3 0.091869654 4.83817E-64 5

Wind speed 48.41 3.44922E-12 4 838.94 2.8158E-180 4 1238.51 5.8698E-261 4 1428.71 8.8411E-292 4 0.099579768 3.61969E-75 4

SurfaceArea : Volume ratio 8.68 0.003217368 6 495.84 5.3165E-106 5 595.54 1.8997E-122 5 631.06 1.392E-121 5 0.18633223 4.0082E-262 2

Total Permeable area 5121.11 0 1 5921.85 0 1 6129.70 0 1 6208.35 0 1 0.260963121 0 1
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APPENDIX E

Effect sizes

Group difference index used:

Cohen’s d = d = (Med1 −Med2) / σpop Where σ = σpop

Thresholds: (Sullivan & Feinn, 2012)

• Small = 0.2

• Medium = 0.5

• Large = 0.8

• Very large = 1.3

Using the PM2.5 σ of the populations:

• PM2.5 Scenario 1: 210.28 µg/m3

• PM2.5 Scenario 2: 12.26 µg/m3

• ACH Scenario 1: 0.8854 h−1

• ACH Scenario 2: 15.8−1

• Heat loss Scenario 1: 1,283 kWh

• Heat loss Scenario 2: 19,526 kWh

E.1 Winter exposures

Table E.1: Effect sizes using Cohen’s d index for pairwise comparison of PM2.5 exposures between

regions. d < 0.2 = negligible; 0.2≤ d <0.5 = small; 0.5 ≤ d < 0.8 = medium; 0.8 ≤ d < 1.3 = large; d ≥
1.3 = very large.

SCENARIO 1 SCENARIO 2

Regions d Level d Level

1 vs. 2 -0.01 Negligible 0.02 Negligible

1 vs. 3 -0.01 Negligible -0.04 Negligible

1 vs. 4 0.00 Negligible 0.01 Negligible

1 vs. 5 -0.01 Negligible -0.22 Small

1 vs. 6 -0.05 Negligible -0.21 Small

1 vs. 7 -0.04 Negligible -0.13 Negligible
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Table E.1: Effect sizes. (continued)

1 vs. 8 -0.03 Negligible -0.07 Negligible

1 vs. 9 -0.02 Negligible -0.07 Negligible

1 vs. 10 0.00 Negligible -0.03 Negligible

1 vs. 11 0.03 Negligible -0.02 Negligible

1 vs. 12 0.08 Negligible 0.04 Negligible

1 vs. 13 -0.04 Negligible -0.29 Small

1 vs. 14 0.02 Negligible -0.06 Negligible

1 vs. 15 -0.01 Negligible -0.01 Negligible

2 vs. 3 0.00 Negligible -0.06 Negligible

2 vs. 4 0.01 Negligible -0.01 Negligible

2 vs. 5 0.00 Negligible -0.24 Small

2 vs. 6 -0.04 Negligible -0.23 Small

2 vs. 7 -0.03 Negligible -0.15 Negligible

2 vs. 8 -0.03 Negligible -0.09 Negligible

2 vs. 9 -0.01 Negligible -0.10 Negligible

2 vs. 10 0.00 Negligible -0.05 Negligible

2 vs. 11 0.04 Negligible -0.04 Negligible

2 vs. 12 0.09 Negligible 0.02 Negligible

2 vs. 13 -0.04 Negligible -0.31 Small

2 vs. 14 0.02 Negligible -0.08 Negligible

2 vs. 15 -0.01 Negligible -0.04 Negligible

3 vs. 4 0.01 Negligible 0.05 Negligible

3 vs. 5 0.00 Negligible -0.18 Negligible

3 vs. 6 -0.04 Negligible -0.17 Negligible

3 vs. 7 -0.03 Negligible -0.09 Negligible

3 vs. 8 -0.03 Negligible -0.03 Negligible

3 vs. 9 -0.01 Negligible -0.04 Negligible

3 vs. 10 0.00 Negligible 0.01 Negligible

3 vs. 11 0.04 Negligible 0.02 Negligible

3 vs. 12 0.09 Negligible 0.08 Negligible

3 vs. 13 -0.04 Negligible -0.25 Small

3 vs. 14 0.02 Negligible -0.02 Negligible

3 vs. 15 0.00 Negligible 0.02 Negligible

4 vs. 5 -0.01 Negligible -0.23 Small

4 vs. 6 -0.05 Negligible -0.22 Small

4 vs. 7 -0.05 Negligible -0.14 Negligible

4 vs. 8 -0.04 Negligible -0.08 Negligible

4 vs. 9 -0.03 Negligible -0.09 Negligible

4 vs. 10 -0.01 Negligible -0.04 Negligible

4 vs. 11 0.03 Negligible -0.03 Negligible

4 vs. 12 0.08 Negligible 0.03 Negligible

4 vs. 13 -0.05 Negligible -0.30 Small

4 vs. 14 0.01 Negligible -0.07 Negligible

4 vs. 15 -0.02 Negligible -0.03 Negligible

5 vs. 6 -0.04 Negligible 0.01 Negligible

5 vs. 7 -0.03 Negligible 0.09 Negligible

5 vs. 8 -0.03 Negligible 0.15 Negligible

5 vs. 9 -0.01 Negligible 0.14 Negligible

5 vs. 10 0.00 Negligible 0.19 Negligible

5 vs. 11 0.04 Negligible 0.20 Negligible

5 vs. 12 0.09 Negligible 0.26 Small

5 vs. 13 -0.04 Negligible -0.07 Negligible

5 vs. 14 0.02 Negligible 0.16 Negligible

5 vs. 15 -0.01 Negligible 0.21 Small

6 vs. 7 0.01 Negligible 0.08 Negligible

6 vs. 8 0.01 Negligible 0.14 Negligible

6 vs. 9 0.03 Negligible 0.13 Negligible

6 vs. 10 0.04 Negligible 0.18 Negligible

6 vs. 11 0.08 Negligible 0.19 Negligible

6 vs. 12 0.13 Negligible 0.25 Small

6 vs. 13 0.00 Negligible -0.08 Negligible

6 vs. 14 0.06 Negligible 0.15 Negligible

6 vs. 15 0.04 Negligible 0.19 Negligible

7 vs. 8 0.01 Negligible 0.06 Negligible

7 vs. 9 0.02 Negligible 0.05 Negligible

7 vs. 10 0.04 Negligible 0.10 Negligible

7 vs. 11 0.07 Negligible 0.11 Negligible

7 vs. 12 0.12 Negligible 0.17 Negligible

7 vs. 13 0.00 Negligible -0.16 Negligible

7 vs. 14 0.06 Negligible 0.07 Negligible

7 vs. 15 0.03 Negligible 0.11 Negligible

8 vs. 9 0.01 Negligible -0.01 Negligible

8 vs. 10 0.03 Negligible 0.04 Negligible
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Table E.1: Effect sizes. (continued)

8 vs. 11 0.07 Negligible 0.05 Negligible

8 vs. 12 0.12 Negligible 0.11 Negligible

8 vs. 13 -0.01 Negligible -0.22 Small

8 vs. 14 0.05 Negligible 0.01 Negligible

8 vs. 15 0.02 Negligible 0.05 Negligible

9 vs. 10 0.02 Negligible 0.05 Negligible

9 vs. 11 0.05 Negligible 0.06 Negligible

9 vs. 12 0.10 Negligible 0.11 Negligible

9 vs. 13 -0.02 Negligible -0.21 Small

9 vs. 14 0.04 Negligible 0.02 Negligible

9 vs. 15 0.01 Negligible 0.06 Negligible

10 vs. 11 0.04 Negligible 0.01 Negligible

10 vs. 12 0.09 Negligible 0.07 Negligible

10 vs. 13 -0.04 Negligible -0.26 Small

10 vs. 14 0.02 Negligible -0.03 Negligible

10 vs. 15 -0.01 Negligible 0.01 Negligible

11 vs. 12 0.05 Negligible 0.06 Negligible

11 vs. 13 -0.07 Negligible -0.27 Small

11 vs. 14 -0.01 Negligible -0.04 Negligible

11 vs. 15 -0.04 Negligible 0.01 Negligible

12 vs. 13 -0.12 Negligible -0.33 Small

12 vs. 14 -0.06 Negligible -0.10 Negligible

12 vs. 15 -0.09 Negligible -0.05 Negligible

13 vs. 14 0.06 Negligible 0.23 Small

13 vs. 15 0.03 Negligible 0.28 Small

14 vs. 15 -0.03 Negligible 0.04 Negligible

Table E.2: Effect sizes using Cohen’s d index for pairwise comparison of PM2.5 exposures between

archetypes. d < 0.2 = negligible; 0.2≤ d <0.5 = small; 0.5 ≤ d < 0.8 = medium; 0.8 ≤ d < 1.3 = large;

d ≥ 1.3 = very large.

SCENARIO 1 SCENARIO 2

Archetypes d Level d Level

19 vs. 27 0.01 Negligible 0.07 Negligible

19 vs. 35 0.09 Negligible 0.07 Negligible

19 vs. 36 0.10 Negligible 0.07 Negligible

19 vs. 91 -0.03 Negligible 0.06 Negligible

19 vs. 100 -0.01 Negligible 0.05 Negligible

19 vs. 275 -0.17 Negligible 0.04 Negligible

19 vs. 284 -0.06 Negligible 0.04 Negligible

27 vs. 35 0.08 Negligible 0.00 Negligible

27 vs. 36 0.09 Negligible 0.01 Negligible

27 vs. 91 -0.05 Negligible -0.01 Negligible

27 vs. 100 -0.02 Negligible -0.01 Negligible

27 vs. 275 -0.19 Negligible -0.02 Negligible

27 vs. 284 -0.07 Negligible -0.03 Negligible

35 vs. 36 0.01 Negligible 0.00 Negligible

35 vs. 91 -0.12 Negligible -0.01 Negligible

35 vs. 100 -0.10 Negligible -0.02 Negligible

35 vs. 275 -0.26 Small -0.03 Negligible

35 vs. 284 -0.15 Negligible -0.03 Negligible

36 vs. 91 -0.13 Negligible -0.02 Negligible

36 vs. 100 -0.11 Negligible -0.02 Negligible

36 vs. 275 -0.27 Small -0.03 Negligible

36 vs. 284 -0.16 Negligible -0.04 Negligible

91 vs. 100 0.02 Negligible 0.00 Negligible

91 vs. 275 -0.14 Negligible -0.01 Negligible

91 vs. 284 -0.03 Negligible -0.02 Negligible

100 vs. 275 -0.16 Negligible -0.01 Negligible

100 vs. 284 -0.05 Negligible -0.01 Negligible

275 vs. 284 0.11 Negligible 0.00 Negligible

E.2 Ventilation rates
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Table E.3: Effect sizes using Cohen’s d index for pairwise comparison of median ventilation rates

between regions. d < 0.2 = negligible; 0.2≤ d <0.5 = small; 0.5 ≤ d < 0.8 = medium; 0.8 ≤ d < 1.3 =

large; d ≥ 1.3 = very large.

SCENARIO 1 SCENARIO 2

Regions d Level d Level

1 vs. 2 -0.12 Negligible -0.07 Negligible

1 vs. 3 -0.31 Small 0.38 Small

1 vs. 4 -0.14 Negligible 0.04 Negligible

1 vs. 5 -0.27 Small 0.33 Small

1 vs. 6 -0.48 Small 0.35 Small

1 vs. 7 -0.27 Small 0.15 Negligible

1 vs. 8 -0.27 Small -0.09 Negligible

1 vs. 9 -0.32 Small -0.12 Negligible

1 vs. 10 -0.33 Small -0.51 Medium

1 vs. 11 -0.69 Medium -0.42 Small

1 vs. 12 -0.49 Small -0.83 Large

1 vs. 13 -0.34 Small 0.38 Small

1 vs. 14 -0.59 Medium -0.23 Small

1 vs. 15 0.06 Negligible 0.15 Negligible

2 vs. 3 -0.19 Negligible 0.44 Small

2 vs. 4 -0.02 Negligible 0.11 Negligible

2 vs. 5 -0.15 Negligible 0.40 Small

2 vs. 6 -0.37 Small 0.42 Small

2 vs. 7 -0.15 Negligible 0.22 Small

2 vs. 8 -0.15 Negligible -0.02 Negligible

2 vs. 9 -0.21 Small -0.06 Negligible

2 vs. 10 -0.21 Small -0.44 Small

2 vs. 11 -0.57 Medium -0.35 Small

2 vs. 12 -0.37 Small -0.76 Medium

2 vs. 13 -0.22 Small 0.45 Small

2 vs. 14 -0.48 Small -0.16 Negligible

2 vs. 15 0.18 Negligible 0.22 Small

3 vs. 4 0.17 Negligible -0.33 Small

3 vs. 5 0.04 Negligible -0.04 Negligible

3 vs. 6 -0.17 Negligible -0.02 Negligible

3 vs. 7 0.04 Negligible -0.22 Small

3 vs. 8 0.04 Negligible -0.46 Small

3 vs. 9 -0.02 Negligible -0.50 Small

3 vs. 10 -0.02 Negligible -0.88 Large

3 vs. 11 -0.38 Small -0.79 Medium

3 vs. 12 -0.18 Negligible -1.20 Large

3 vs. 13 -0.03 Negligible 0.01 Negligible

3 vs. 14 -0.29 Small -0.60 Medium

3 vs. 15 0.37 Small -0.22 Small

4 vs. 5 -0.13 Negligible 0.29 Small

4 vs. 6 -0.35 Small 0.31 Small

4 vs. 7 -0.13 Negligible 0.11 Negligible

4 vs. 8 -0.13 Negligible -0.13 Negligible

4 vs. 9 -0.19 Negligible -0.17 Negligible

4 vs. 10 -0.19 Negligible -0.55 Medium

4 vs. 11 -0.55 Medium -0.46 Small

4 vs. 12 -0.35 Small -0.87 Large

4 vs. 13 -0.20 Small 0.34 Small

4 vs. 14 -0.46 Small -0.27 Small

4 vs. 15 0.20 Small 0.11 Negligible

5 vs. 6 -0.22 Small 0.02 Negligible

5 vs. 7 0.00 Negligible -0.18 Negligible

5 vs. 8 0.00 Negligible -0.42 Small

5 vs. 9 -0.06 Negligible -0.45 Small

5 vs. 10 -0.06 Negligible -0.84 Large

5 vs. 11 -0.42 Small -0.75 Medium

5 vs. 12 -0.22 Small -1.16 Large

5 vs. 13 -0.07 Negligible 0.05 Negligible

5 vs. 14 -0.33 Small -0.56 Medium

5 vs. 15 0.33 Small -0.18 Negligible

6 vs. 7 0.22 Small -0.20 Negligible

6 vs. 8 0.22 Small -0.44 Small

6 vs. 9 0.16 Negligible -0.47 Small

6 vs. 10 0.15 Negligible -0.86 Large

6 vs. 11 -0.21 Small -0.77 Medium

6 vs. 12 0.00 Negligible -1.18 Large
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Table E.3: Effect sizes. (continued)

6 vs. 13 0.15 Negligible 0.03 Negligible

6 vs. 14 -0.11 Negligible -0.58 Medium

6 vs. 15 0.55 Medium -0.20 Negligible

7 vs. 8 0.00 Negligible -0.24 Small

7 vs. 9 -0.06 Negligible -0.28 Small

7 vs. 10 -0.06 Negligible -0.66 Medium

7 vs. 11 -0.42 Small -0.57 Medium

7 vs. 12 -0.22 Small -0.98 Large

7 vs. 13 -0.07 Negligible 0.23 Small

7 vs. 14 -0.33 Small -0.38 Small

7 vs. 15 0.33 Small 0.00 Negligible

8 vs. 9 -0.06 Negligible -0.03 Negligible

8 vs. 10 -0.06 Negligible -0.42 Small

8 vs. 11 -0.42 Small -0.33 Small

8 vs. 12 -0.22 Small -0.74 Medium

8 vs. 13 -0.07 Negligible 0.47 Small

8 vs. 14 -0.33 Small -0.14 Negligible

8 vs. 15 0.33 Small 0.24 Small

9 vs. 10 0.00 Negligible -0.38 Small

9 vs. 11 -0.36 Small -0.29 Small

9 vs. 12 -0.16 Negligible -0.70 Medium

9 vs. 13 -0.01 Negligible 0.51 Medium

9 vs. 14 -0.27 Small -0.10 Negligible

9 vs. 15 0.39 Small 0.27 Small

10 vs. 11 -0.36 Small 0.09 Negligible

10 vs. 12 -0.16 Negligible -0.32 Small

10 vs. 13 -0.01 Negligible 0.89 Large

10 vs. 14 -0.27 Small 0.28 Small

10 vs. 15 0.39 Small 0.66 Medium

11 vs. 12 0.20 Small -0.41 Small

11 vs. 13 0.35 Small 0.80 Large

11 vs. 14 0.09 Negligible 0.19 Negligible

11 vs. 15 0.75 Medium 0.57 Medium

12 vs. 13 0.15 Negligible 1.21 Large

12 vs. 14 -0.11 Negligible 0.60 Medium

12 vs. 15 0.55 Medium 0.98 Large

13 vs. 14 -0.26 Small -0.61 Medium

13 vs. 15 0.40 Small -0.23 Small

14 vs. 15 0.66 Medium 0.38 Small

Table E.4: Effect sizes using Cohen’s d index for pairwise comparison of median ventilation rates

between archetypes. d < 0.2 = negligible; 0.2≤ d <0.5 = small; 0.5 ≤ d < 0.8 = medium; 0.8 ≤ d < 1.3

= large; d ≥ 1.3 = very large.

SCENARIO 1 SCENARIO 2

Archetypes d Level d Level

19 vs. 27 -0.11 Negligible -0.01 Negligible

19 vs. 35 -0.37 Small -0.02 Negligible

19 vs. 36 -0.29 Small -0.01 Negligible

19 vs. 91 0.10 Negligible -0.01 Negligible

19 vs. 100 -0.27 Small -0.03 Negligible

19 vs. 275 0.66 Medium -0.01 Negligible

19 vs. 284 0.57 Medium -0.01 Negligible

27 vs. 35 -0.26 Small -0.01 Negligible

27 vs. 36 -0.18 Negligible 0.00 Negligible

27 vs. 91 0.21 Small -0.01 Negligible

27 vs. 100 -0.15 Negligible -0.02 Negligible

27 vs. 275 0.77 Medium -0.01 Negligible

27 vs. 284 0.68 Medium -0.01 Negligible

35 vs. 36 0.08 Negligible 0.01 Negligible

35 vs. 91 0.47 Small 0.00 Negligible

35 vs. 100 0.10 Negligible -0.01 Negligible

35 vs. 275 1.03 Large 0.00 Negligible

35 vs. 284 0.94 Large 0.00 Negligible

36 vs. 91 0.40 Small -0.01 Negligible

36 vs. 100 0.03 Negligible -0.02 Negligible

36 vs. 275 0.95 Large -0.01 Negligible

36 vs. 284 0.86 Large -0.01 Negligible

91 vs. 100 -0.37 Small -0.01 Negligible
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Table E.3: Effect sizes. (continued)

91 vs. 275 0.56 Medium 0.00 Negligible

91 vs. 284 0.46 Small 0.00 Negligible

100 vs. 275 0.92 Large 0.01 Negligible

100 vs. 284 0.83 Large 0.01 Negligible

275 vs. 284 -0.09 Negligible 0.00 Negligible

E.3 Heat loss

Table E.5: Effect sizes using Cohen’s d index for pairwise comparison of total heat loss between

regions. d < 0.2 = negligible; 0.2≤ d <0.5 = small; 0.5 ≤ d < 0.8 = medium; 0.8 ≤ d < 1.3 = large; d ≥
1.3 = very large.

SCENARIO 1 SCENARIO 2

Regions d Level d Level

1 vs. 2 -0.03 Negligible 0.09 Negligible

1 vs. 3 -0.09 Negligible 0.30 Small

1 vs. 4 -0.07 Negligible 0.11 Negligible

1 vs. 5 -0.17 Negligible 0.34 Small

1 vs. 6 -0.38 Small 0.32 Small

1 vs. 7 -0.20 Small 0.03 Negligible

1 vs. 8 -0.21 Small -0.25 Small

1 vs. 9 -0.24 Small -0.04 Negligible

1 vs. 10 -0.20 Negligible -0.46 Small

1 vs. 11 -0.59 Medium -0.45 Small

1 vs. 12 -0.31 Small -0.84 Large

1 vs. 13 -0.24 Small 0.37 Small

1 vs. 14 -0.40 Small -0.12 Negligible

1 vs. 15 0.07 Negligible 0.15 Negligible

2 vs. 3 -0.06 Negligible 0.21 Small

2 vs. 4 -0.04 Negligible 0.02 Negligible

2 vs. 5 -0.14 Negligible 0.25 Small

2 vs. 6 -0.35 Small 0.23 Small

2 vs. 7 -0.18 Negligible -0.06 Negligible

2 vs. 8 -0.18 Negligible -0.34 Small

2 vs. 9 -0.22 Small -0.13 Negligible

2 vs. 10 -0.17 Negligible -0.55 Medium

2 vs. 11 -0.56 Medium -0.54 Medium

2 vs. 12 -0.28 Small -0.93 Large

2 vs. 13 -0.21 Small 0.28 Small

2 vs. 14 -0.37 Small -0.20 Small

2 vs. 15 0.10 Negligible 0.06 Negligible

3 vs. 4 0.02 Negligible -0.19 Negligible

3 vs. 5 -0.08 Negligible 0.04 Negligible

3 vs. 6 -0.29 Small 0.02 Negligible

3 vs. 7 -0.11 Negligible -0.27 Small

3 vs. 8 -0.12 Negligible -0.55 Medium

3 vs. 9 -0.15 Negligible -0.34 Small

3 vs. 10 -0.10 Negligible -0.76 Medium

3 vs. 11 -0.49 Small -0.75 Medium

3 vs. 12 -0.21 Small -1.13 Large

3 vs. 13 -0.15 Negligible 0.07 Negligible

3 vs. 14 -0.31 Small -0.41 Small

3 vs. 15 0.16 Negligible -0.15 Negligible

4 vs. 5 -0.10 Negligible 0.23 Small

4 vs. 6 -0.31 Small 0.21 Small

4 vs. 7 -0.13 Negligible -0.08 Negligible

4 vs. 8 -0.14 Negligible -0.36 Small

4 vs. 9 -0.17 Negligible -0.16 Negligible

4 vs. 10 -0.12 Negligible -0.57 Medium

4 vs. 11 -0.51 Medium -0.56 Medium

4 vs. 12 -0.23 Small -0.95 Large

4 vs. 13 -0.17 Negligible 0.26 Small

4 vs. 14 -0.33 Small -0.23 Small

4 vs. 15 0.14 Negligible 0.04 Negligible

5 vs. 6 -0.21 Small -0.02 Negligible

5 vs. 7 -0.04 Negligible -0.31 Small

5 vs. 8 -0.04 Negligible -0.59 Medium
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Table E.5: Effect sizes. (continued)

5 vs. 9 -0.08 Negligible -0.38 Small

5 vs. 10 -0.03 Negligible -0.80 Large

5 vs. 11 -0.42 Small -0.79 Medium

5 vs. 12 -0.14 Negligible -1.18 Large

5 vs. 13 -0.07 Negligible 0.03 Negligible

5 vs. 14 -0.23 Small -0.45 Small

5 vs. 15 0.24 Small -0.19 Negligible

6 vs. 7 0.17 Negligible -0.29 Small

6 vs. 8 0.17 Negligible -0.57 Medium

6 vs. 9 0.13 Negligible -0.36 Small

6 vs. 10 0.18 Negligible -0.78 Medium

6 vs. 11 -0.21 Small -0.77 Medium

6 vs. 12 0.07 Negligible -1.15 Large

6 vs. 13 0.14 Negligible 0.05 Negligible

6 vs. 14 -0.02 Negligible -0.43 Small

6 vs. 15 0.45 Small -0.17 Negligible

7 vs. 8 -0.01 Negligible -0.28 Small

7 vs. 9 -0.04 Negligible -0.08 Negligible

7 vs. 10 0.01 Negligible -0.49 Small

7 vs. 11 -0.38 Small -0.48 Small

7 vs. 12 -0.10 Negligible -0.87 Large

7 vs. 13 -0.03 Negligible 0.34 Small

7 vs. 14 -0.19 Negligible -0.15 Negligible

7 vs. 15 0.27 Small 0.12 Negligible

8 vs. 9 -0.03 Negligible 0.21 Small

8 vs. 10 0.01 Negligible -0.21 Small

8 vs. 11 -0.38 Small -0.20 Small

8 vs. 12 -0.10 Negligible -0.59 Medium

8 vs. 13 -0.03 Negligible 0.62 Medium

8 vs. 14 -0.19 Negligible 0.13 Negligible

8 vs. 15 0.28 Small 0.40 Small

9 vs. 10 0.05 Negligible -0.42 Small

9 vs. 11 -0.34 Small -0.41 Small

9 vs. 12 -0.06 Negligible -0.79 Medium

9 vs. 13 0.01 Negligible 0.41 Small

9 vs. 14 -0.15 Negligible -0.07 Negligible

9 vs. 15 0.31 Small 0.19 Negligible

10 vs. 11 -0.39 Small 0.01 Negligible

10 vs. 12 -0.11 Negligible -0.38 Small

10 vs. 13 -0.04 Negligible 0.83 Large

10 vs. 14 -0.20 Small 0.35 Small

10 vs. 15 0.27 Small 0.61 Medium

11 vs. 12 0.28 Small -0.38 Small

11 vs. 13 0.35 Small 0.82 Large

11 vs. 14 0.19 Negligible 0.34 Small

11 vs. 15 0.66 Medium 0.60 Medium

12 vs. 13 0.07 Negligible 1.21 Large

12 vs. 14 -0.09 Negligible 0.72 Medium

12 vs. 15 0.38 Small 0.99 Large

13 vs. 14 -0.16 Negligible -0.49 Small

13 vs. 15 0.31 Small -0.22 Small

14 vs. 15 0.47 Small 0.27 Small

Table E.6: Effect sizes using Cohen’s d index for pairwise comparison of total heat loss between

archetypes. d < 0.2 = negligible; 0.2≤ d <0.5 = small; 0.5 ≤ d < 0.8 = medium; 0.8 ≤ d < 1.3 = large;

d ≥ 1.3 = very large.

SCENARIO 1 SCENARIO 2

Archetypes d Level d Level

19 vs. 27 0.17 Negligible 0.71 Medium

19 vs. 35 -0.37 Small 0.55 Medium

19 vs. 36 -0.27 Small 0.68 Medium

19 vs. 91 0.52 Medium 1.14 Large

19 vs. 100 -0.16 Negligible 0.34 Small

19 vs. 275 0.62 Medium 0.76 Medium

19 vs. 284 0.35 Small 0.28 Small

27 vs. 35 -0.54 Medium -0.16 Negligible

27 vs. 36 -0.43 Small -0.03 Negligible

27 vs. 91 0.36 Small 0.43 Small
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Table E.6: Effect sizes. (continued)

27 vs. 100 -0.32 Small -0.37 Small

27 vs. 275 0.46 Small 0.04 Negligible

27 vs. 284 0.19 Negligible -0.44 Small

35 vs. 36 0.10 Negligible 0.13 Negligible

35 vs. 91 0.89 Large 0.59 Medium

35 vs. 100 0.21 Small -0.21 Small

35 vs. 275 0.99 Large 0.21 Small

35 vs. 284 0.72 Medium -0.27 Small

36 vs. 91 0.79 Medium 0.46 Small

36 vs. 100 0.11 Negligible -0.34 Small

36 vs. 275 0.89 Large 0.07 Negligible

36 vs. 284 0.62 Medium -0.41 Small

91 vs. 100 -0.68 Medium -0.80 Large

91 vs. 275 0.10 Negligible -0.39 Small

91 vs. 284 -0.17 Negligible -0.87 Large

100 vs. 275 0.78 Medium 0.42 Small

100 vs. 284 0.51 Medium -0.06 Negligible

275 vs. 284 -0.27 Small -0.48 Small


	Abstract
	Acknowledgements
	Publications
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Energy and Green House Gas emissions in Chile
	1.2 The ambient air
	1.3 Housing policy in Chile
	1.4 Energy demand and heat loss in buildings
	1.5 Indoor air quality in buildings
	1.6 The Chilean housing stock
	1.7 Aim and objectives
	1.8 Thesis outline

	2 Literature Review
	2.1 Introduction
	2.2 Ambient air pollution
	2.2.1 Health impacts of exposures to ambient air pollution
	2.2.2 Chilean regulation

	2.3 Personal exposures
	2.4 Indoor air quality in dwellings
	2.4.1 International studies on indoor pollutant concentrations
	2.4.2 Chilean studies
	2.4.3 Health effects of exposure to indoor pollutants

	2.5 Modelling indoor air
	2.6 Modelling the housing stock
	2.6.1 The use of representative buildings in the literature

	2.7 Summary

	3 Data analysis of the Chilean housing stock
	3.1 Sources of data
	3.1.1 National Census
	3.1.2 Building Permits
	3.1.3 National Socioeconomic Characterisation Survey
	3.1.4 Use of Time national survey
	3.1.5 National Housing Monitoring Network
	3.1.6 Airtightness
	3.1.7 Weather

	3.2 Stock characterisation
	3.2.1 Dwelling quantity, type, and geometry
	3.2.2 Year of construction
	3.2.3 Number of rooms and floor areas
	3.2.4 Occupancy
	3.2.5 Cooking and heating
	3.2.6 Construction and finishing materials

	3.3 Summary

	4 Representative Archetypes
	4.1 Method
	4.2 Definition and selection of the archetypes
	4.3 Description of archetypes
	4.4 Environmental inputs
	4.4.1 Geographic location and terrain type
	4.4.2 Block aspect ratio and orientation
	4.4.3 Wind speed and wind pressure profile
	4.4.4 Weather inputs data

	4.5 Physical properties of the dwellings
	4.5.1 Airflow elements
	4.5.2 Envelope air permeability

	4.6 Occupancy and activity data
	4.7 Pollutant inputs
	4.7.1 Species
	4.7.2 Deposition rates
	4.7.3 Emission rates from cooking
	4.7.4 Emission rates from heaters
	4.7.5 Moisture emission

	4.8 Summary

	5 Model Development
	5.1 CONTAM modelling and analysis tool
	5.2 Modelling the archetype
	5.2.1 Airflow paths
	5.2.2 Weather data
	5.2.3 Indoor temperatures
	5.2.4 Species, sources and sinks
	5.2.5 Activity schedules

	5.3 Case scenarios
	5.4 Sampling method
	5.5 Processing model predictions
	5.5.1 Predictions at national level
	5.5.2 Exposure analysis
	5.5.3 Ventilation rates
	5.5.4 Heat loss
	5.5.5 Statistical analyses

	5.6 Sensitivity analyses of the input and output data
	5.7 Summary

	6 Model Predictions
	6.1 Time – series data
	6.2 Hourly data over the winter season
	6.2.1 Results by archetype
	6.2.2 Regional and nationwide outcome distributions for one of the archetypes
	6.2.3 Nationwide distributions

	6.3 Winter data
	6.3.1 Winter results by region and by archetype
	6.3.2 Mean values of the sampling distribution
	6.3.3 Statistical tests for group comparison

	6.4 Relationship between outcomes
	6.5 Sensitivity Analyses

	7 Discussion
	7.1 Sources of information
	7.2 Archetypes
	7.2.1 Comparison with MINVU's archetypes

	7.3 Model inputs
	7.3.1 Weather data and local environment
	7.3.2 Envelope air permeability
	7.3.3 Internal air temperatures
	7.3.4 Floor areas
	7.3.5 Window model
	7.3.6 Pollutant species
	7.3.7 Pollutant emission and deposition rates

	7.4 The modelling tool
	7.5 Predicted outcomes
	7.5.1 Daily average PM2.5 concentrations
	7.5.2 Predicted exposures to PM2.5
	7.5.3 International guidelines and health impacts
	7.5.4 Ventilation rates
	7.5.5 Ventilation heat losses

	7.6 Sensitivity analysis
	7.6.1 Correlations
	7.6.2 Regressions
	7.6.3 Sample comparison tests

	7.7 Comparisons with other studies
	7.7.1 Other sensitivity analyses

	7.8 Applications of outcomes and future work
	7.8.1 Short term
	7.8.2 Medium term


	8 Conclusions
	References
	Appendices
	A Additional information about the housing stock
	A.1 Regional archetypes
	A.2 Size of houses
	A.3 Heating hours by geographic region

	B  Additional information on the occupant activities 
	B.1 Use of time data
	B.2 Doors and fans daily schedules

	C Sensitivity analyses I
	C.1 Scatter plots, scenario 1
	C.2 Scatter plots, scenario 2

	D Sensitivity analyses II
	D.1 Exposure
	D.2 Ventilation rates
	D.3 Heat loss

	E Effect sizes
	E.1 Winter exposures
	E.2 Ventilation rates
	E.3 Heat loss


