## On the reduction theory of binary formsCremona, John E and Stoll, Michael (2001)
## AbstractCremona developed a reduction theory for binary forms of degree 3 and 4 with integer coefficients, the motivation in the case of quartics being to improve 2-descent algorithms for elliptic curves over Q. In this paper we extend some of these results to forms of higher degree. One application of this is to the study of hyperelliptic curves.
Repository Staff Only: item control page |