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Fracture is one of the main failure mechanisms of materials and structural com-

ponents. During the past thirty years, various methods have been introduced

to simulate crack initiation and growth. These include the introduction of El-

ement Deletion Method and remeshing strategies within the standard Finite

Element Method (FEM), cohesion based Finite Element strategies and the ex-

tended Finite Element Method. Very recently, a new method for crack propa-

gation, namely the phase field method has been introduced; phase field models

have been proven very robust in accurately predicting complex crack behaviour

while at the same time avoiding standard re-meshing or enriching techniques.

To this point, phase field modelling has extensively been applied within a Fi-

nite Element framework while very little research and applications have been

demonstrated with particle methods. However, treating the crack propagation

problem using a grid based method is a challenging and computationally tax-

ing task. The reliability and robustness of the Finite Element Method and in

general mesh-based methods depends on the quality of the mesh itself. In this

work, the phase field method is re-formulated and treated using an attractive

Particle-In-Cell (PIC) scheme, namely the Material Point Method (MPM). In this

approach, the coupled continuum/phase field governing equations are defined

at a set of material points and interpolated at the nodal points of an Eulerian,

i.e. non-deforming, mesh. The accuracy of the simulated crack path is thus de-

coupled from the quality of the underlying Finite Element mesh and relieved

from corresponding mesh distortion errors.

This framework is then generalized for the case of anisotropic brittle fracture

by introducing an anisotropic crack density functional. The anisotropic crack

density functional gives rise to a family of phase field models, both second and

fourth order, able to address brittle fracture simulation in anisotropic media.

The proposed method is further extended into dynamic brittle fracture using

both isotropic and anisotropic phase field models. Frictional contact problems

involving phase field fracture are also examined and their post-fracture contact
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response is investigated. On the proposed model, the local contact features are

naturally handled using the Eulerian mesh and the damage evolution emerges

without the need to numerically track discontinuities in the displacement field

e.g. with jump and tip enrichment functions as well as complex crack paths can

be obtained without any additional ad hoc rules. These advantages make the

derived model a robust computational tool when arbitrary crack paths occur at

impact-fracture problems.

Following, the proposed model is used to efficiently simulate crack paths in-

duced from rocking response. The accuracy of the method is examined and

verified based on existing analytical rocking response models; the method is

then further extended into rocking system dynamics involving phase field frac-

ture. Merits and drawbacks of the proposed formulation are examined using a

set of benchmark tests. The influence of impact velocity, phase field and mate-

rial point parameters on induced crack path is also examined. Validation based

on experimental observations is also performed.
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Chapter 1

Introduction

1.1 Problem statement

Simulation of damage pertinent to crack initiation and crack growth is an in-

triguing and challenging aspect of computational mechanics. Damage mod-

elling has received considerable attention during the past 30 years, as it is rel-

evant to a number of natural and industrial processes, e.g., composite mate-

rial behaviour (Wu et al., 2016), concrete fracture (Ferté et al., 2016), and ice

mechanics (Konuk et al., 2009) amongst many. Within this setting, damage is

being treated either within a continuum (or smeared) phenomenological frame-

work (Murakami, 2012) or through discrete methods where the geometry of the

crack is explicitly approximated, see, e.g. Sukumar et al. (2015). Thus, discrete

methods can provide a better insight on the actual cracked configuration of a

deformable body and form the basis for the study of related phenomena, e.g.,

corrosion (Duddu, 2014).

Initial efforts in discrete crack approaches include the Element Deletion Method

(Song et al., 2008) and remeshing strategies (Azocar et al., 2010) whereas more

sophisticated techniques involve the eXtended Finite Element method (XFEM)

(Moës and Belytschko, 2002; Fries and Belytschko, 2006), cohesive element meth-

ods (Radovitzky et al., 2011; Snozzi and Molinari, 2013) and cohesive segments

methods (Remmers et al., 2003). Cohesive element methods also based on the

1
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notion of configurational force (Kaczmarczyk et al., 2014) are being used to ad-

dress the crack initiation and propagation problem with the accuracy of the

solution depending on the quality of the underlying Finite Element mesh.

In these methods, the evolution of complex crack paths, including merging

cracks, needs to be tracked algorithmically. This means that there is the need

to track the evolution of the discontinuities either with remeshing strategies so

that the crack paths align with the element interfaces or with by enriching the

displacement field approximation. Special discontinuous functions may also be

required to predict branched cracks and resolve crack intersections (Daux et al.,

2000). This increases the complexity of the underlying computational scheme

and also the required computational resources especially in three-dimensional

problems. Variational methods for fracture emerged in an effort to address such

computational issues. Within this set of methods, Bourdin et al. (2008) used the

mathematical framework of phase field theory (Fix, 1982) to provide a consis-

tent theoretical framework of the analysis of crack propagation problems.

Phase field models represent cracks by means of an additional continuous field

(termed the phase field) whose value depends on the state (cracked or un-

cracked) of the underlying geometrical domain (see, e.g. Borden et al. (2012)).

The evolution of the additional field is defined on the basis of additional gov-

erning equations pertaining to the mathematics of phase field theory (Franc-

fort and Marigo, 1998) linked however to a phenomenological framework such

as Griffith’s theory for brittle fracture (Griffith, 1921). The phase field evolu-

tion equations are weakly coupled to the standard governing equations (i.e.,

equilibrium, compatibility, and constitutive equations) of the continuum, effec-

tively introducing a coupled-field problem. This is solved using any standard

discretization procedure such as the Galerkin method (Bathe, 2007).

In this setting, the crack path emerges from the direct solution of the coupled-

field framework. This renders phase field methods a promising computational

tool to tackle fracture mechanics, at the cost however of introducing additional
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unknowns, i.e. the phase field. Phase field modelling has been successfully ap-

plied within grid based methods, i.e. the FEM (see, e.g., previous studies (Miehe

et al., 2010b; Verhoosel and Borst, 2013; Ambati et al., 2015a)) and its isogeomet-

ric variant (Borden et al., 2016) for the case of quasi-static fracture. Furthermore,

phase field fracture modelling has been effectively applied to treat dynamic

fracture propagation problems (Borden et al., 2012; Hofacker and Miehe, 2013;

Schlüter et al., 2014).

However, treating crack propagation using a grid-based method introduces fur-

ther challenges as robustness and accuracy directly depend on mesh quality

and corresponding mesh distortion errors. Avoiding numerical errors due to

mesh distortion is not a trivial task in grid-based Lagrangian methods (see, e.g.

Kaczmarczyk et al. (2014) and Rangarajan et al. (2015)). Failure to bound such

mesh-dependent errors may result in considerable loss of accuracy especially if

large displacements and/or large deformations are taken into account.

Discrete Element Methods (Scholtès and Donzé, 2012), Smooth Particle Hydro-

dynamics (Batra and Zhang, 2007) and Peridynamics (Bobaru and Hu, 2012)

can also efficiently deal with problems of fracture mechanics where large de-

formations take place. In the past, various meshless-based have been intro-

duced in the field of fracture mechanics with particle refinement techniques,

(Lee et al., 2003), enrichment strategies (Ventura et al., 2002; Amiri et al., 2014b)

and cohesive theories (Klein et al., 2001; Soparat and Nanakorn, 2008; Zhang,

2010). Recently, phase field modelling has been introduced within the context

of Local Maximum Entropy (LME) meshfree approximants to address the prob-

lem of fracture in thin shells (Amiri et al., 2014a). Although robust, especially

when dealing with complex geometrical domains, purely meshless methods are

computationally taxing, as a set of additional procedures is required to achieve

convergence, i.e. higher-order integration schemes and neighbour searching

(Nguyen et al., 2008).

To mitigate such issues, the Material Point Method (MPM) (Sulsky et al., 1994)
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has been introduced as an extension of Particle-In-Cell (PIC) methods that ef-

ficiently treats history-dependent variables. In MPM, the continuum is repre-

sented by a set of (Lagrangian) material points that are moving within a fixed

(Eulerian) computational grid where solution of the governing equations is per-

formed. The constitutive equations are history dependent so material points

are utilized to carry all the history dependent variables needed, such as plastic

strains and strain-hardening, to track the complete deformation history process

of a solid. Equally, the grid is used to evaluate the gradient and divergence

terms of each material point.

Combining concepts pertinent to both the Eulerian and Lagrangian descrip-

tion of classical mechanics (Bathe, 2007), MPM has been proven advantageous

in the analysis of large-scale, i.e. large-size three-dimensional problems in-

volving material and geometric non-linearities, especially within the context

of coupled-field problems, e.g. fluid-structure interaction (Li et al., 2014) and

poro-mechanics (Jassim et al., 2013), also within a large deformation hydrody-

namic setting (Abe et al., 2014; Bandara and Soga, 2015). The MPM has been

found to offer significant computational advantages when compared to purely

meshless methods since it does not require time-consuming neighbour search-

ing.

With regards to fracture, the fact that material behaviour is monitored at ma-

terial points that move within a fixed Eulerian grid implies that the transition

from continuous to discontinuous displacement field can be modelled without

the need for remeshing the computational grid and without the requirement to

account for and mitigate mesh distortion due to crack propagation. Despite this,

little research has been conducted to model the problem of damage modelling

and in particular crack growth using the MPM.

In Schreyer et al. (2002) decohesion was treated by introducing a cohesive ma-

terial constitutive framework at the material point level. Brittle fracture within
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a MPM setting was examined for the first time in Nairn (2003) although con-

sidering only the case of pre-existing, i.e. explicit, crack geometries by allowing

multiple velocity fields to be defined on the background grid. More recently, co-

hesive modelling approaches have been introduced in an effort to further gen-

eralize the applicability of the MPM for problems pertinent to arbitrary crack

paths (Daphalapurkar et al., 2007; Bardenhagen et al., 2011; Yang et al., 2014;

Sanchez et al., 2015). Continuum damage–based approaches have been intro-

duced in Homel and Herbold (2017) and Nairn et al. (2017) also demonstrating

the advantages of using domain decomposition methods to accelerate MPM.

1.2 Research Scope

Further to the current state of the art, this Ph.D. thesis introduces a Phase Field

Material Point Method (PF-MPM) implementation to resolve quasi-static and

dynamic brittle fracture in both isotropic and anisotropic materials. The re-

sulting computational method is further extended in the dynamic regime and

impact driven fracture problems are examined.

By introducing phase fields at the material point level rather than the nodal

points of a fixed Lagrangian grid, the proposed method succeeds in monitoring

crack initiation and growth in an efficient and robust manner.

Only the case of Linear Elastic Fracture Mechanics (LEFM) is examined in this

work. Hence, plastic deformations induced either before or after crack initiation

are neglected. Furthermore, the theory is formulated in the concept of small

strain approximation which is a reasonable assumption for fracture in brittle

materials. Finally, any strain rate dependence e.g. of the fracture toughness is

beyond the scope of this work.

Resolving dynamic crack propagation, especially within an impact dynamics

setting has to this point proven to be a challenging and arduous task. The MPM
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provides a robust framework for the analysis of contact mechanics, especially

within a large displacement setting.

The Phase field method has proven robust in tackling fracture propagation, es-

pecially in problems where fragmentation is involved. The overarching aim of

this Ph.D. thesis was to derive and introduce a PF-MPM that can efficiently treat

impact driven fracture. This is a direction not explored in the literature.

Numerical investigations demonstrate that compared to the standard phase

field Finite Element implementation, the proposed method is highly advanta-

geous in terms of accuracy. The dynamic impact fracture framework developed

as a part of this Ph.D. renders the study of the rocking response of flexible struc-

tures feasible; this is not the case for standard Finite Element Methods.

1.3 Aims & Objectives

To achieve this, the following Research Objectives (ROs) are identified:

• RO.1: Introduce a phase field driven fracture framework in the MPM for

quasi-static problems. Verification to be made against published results

in the literature and validation based on experimental observations. The

sensitivity of the resulting crack paths on the phase field and material

point parameters is examined. The numerical robustness of the derived

method is also examined.

• RO.2: Further extend this formulation to account for anisotropic brittle

fracture. Derive the fully anisotropic phase field governing equations and

quantify the effect of material anisotropy on the response of fracture me-

dia.
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• RO.3: To implement the proposed PF-MPM into dynamic crack propaga-

tion problems. Considering the case of both isotropic and anisotropic ma-

terials that are subjected to dynamic loads. Extend the developed frame-

work to solve frictional contact problems involving phase field fracture.

• RO.4: To study the appropriateness of the developed model to simulate

rocking system dynamics. This will further serve as verification against

existing models in the literature. Examination of crack paths induced by

rocking response.

1.4 Methodology

To accomplish the aforementioned Research Objectives in Section 1.3, this re-

search has been structured along seven work packages (WPs) (see also Fig. 1.1).

All source codes described in this work, were developed from scratch. In the

beginning of each WP, the Matlab programming language was utilized for the

development of algorithms enabling rapid development and benchmarking..

However, the Matlab source codes were finally converted into Fortran source

codes to accelerate the computing operations.

• WP.1: Development of the phase field damage models into an in-house

code. Modification of the derived scheme to account for fracture only

due to tension (the fracture due to compression is avoided). Derivation

and implementation of the second order phase field model and testing

it into isotropic materials. Extension to fourth order phase field models

for increasing the convergence rates. Derivation of the coupled governing

equations of the fourth order phase field model to simulate anisotropic

brittle fracture.
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• WP.2: Development of the standard MPM into an in-house code. For-

mulation of the method for quasi-static and dynamic problems. Both ex-

plicit and implicit time integration schemes are formulated in dynamic

problems. Extension of standard linear basis (interpolation) functions to

higher order B-Splines to overcome the grid crossing error, to increase the

convergence rates and to regularize higher-order phase field models. Fur-

ther development of the algorithm to simulate friction contact problems.

Verification of the contact algorithm with analytical solutions.

Coupling of phase field damage models with the MPM and implemen-

tation of a staggered solution procedure. Derivation of the proposed PF-

MPM scheme.

• WP.3: Evaluation of the proposed scheme for the case of quasi-static brit-

tle fracture problems. Investigation of key phase field (e.g. diffusion of

damage around the crack path, material orientation) and MPM parame-

ters (e.g. number of material points, cell spacing). Benchmark tests and

verification of the derived scheme in both isotropic and anisotropic mate-

rials.

• WP.4: Extension of the proposed scheme into dynamic brittle fracture

problems. Comparison of the results derived by the PF-MPM approach

against the FEM.

• WP.5: Further development of the proposed scheme into frictional contact

problems involving phase field fracture. Examination of key parameters

i.e. loading velocity, fracture toughness and material orientation on the

material response. Verification of the derived scheme with analytical so-

lutions.

• WP.6: Development of the derived scheme to simulate the response of

rocking systems and introduction of kinematical failure criteria. Stability
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analysis examination of rocking bodies and verification based on existing

models in the literature. Extension to deformable rocking bodies.

• WP.7: Implementation and evaluation of PF-MPM in simulating damage

evolution in rocking systems.

Figure 1.1: Methodology of the project.

1.5 Original contribution

As part of this work, the following contributions have been made:

• A MPM coupling with phase field models for brittle fracture is proposed

for the first time in this work. The accuracy and the efficiency of the
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method is demonstrated through a set of benchmark tests. The method

is verified against the standard Finite Element implementation and vali-

dated using experimental results.

• The PF-MPM is further extended to account for brittle fracture in mate-

rials that possess anisotropic surface energy. The fully anisotropic phase

field governing equations are derived herein, and an investigation of ma-

terial anisotropy on the results is made. A set of benchmark problems is

examined to verify the proposed formulation compared to the standard

Phase Field Finite Element implementation.

• The PF-MPM is further extended to dynamic brittle fracture with isotropic

and anisotropic surface energy. Impact-fracture problems are examined

with the proposed method. The numerical procedure is implemented

within a staggered solution approach and an explicit time integration scheme.

• The method is used to study fracture induced by rocking impact of de-

formable media further extending the current state of the art where only

the case of a rigid body is examined.

• The derived scheme is utilized to simulate the damage (brittle fracture)

induced by rocking systems with phase field models for the first time.

• MaPoMe is an open source code implementation of the derived scheme.

Currently accessible via MaPoMe :

http://www.nottingham.ac.uk/~ezzst1/downloads.html.

http://www.nottingham.ac.uk/~ezzst1/downloads.html
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1.6 Publications

1.6.1 Publications in International Scientific Journals

This research has already contributed to two journal publications in peer-reviewed

journal with one more currently under review.

[1] Kakouris E.G., Triantafyllou S.P. (2018), “Phase-field material point method

for dynamic brittle fracture with isotropic and anisotropic surface energy”,

Computer Methods in Applied Mechanics and Engineering (Submitted - under

review).

[2] Kakouris E.G., Triantafyllou S.P. (2018), “Material point method for crack

propagation in anisotropic media: a phase-field approach”, Archive of Ap-

plied Mechanics, 88(1) pp. 287-316.

[3] Kakouris E.G., Triantafyllou S.P. (2017), “Phase-Field Material Point Method

for Brittle Fracture”, International Journal for Numerical Methods in Engineer-

ing, 112(12), pp. 1750-1776.

1.6.2 Proceedings of International Conferences

Furthermore, parts of this research have been presented in the following inter-

national conferences.

[1] Kakouris E.G., Triantafyllou S.P., “Phase Field Material Point Method for

Impact Induced Fracture”, 13th World Congress on Computational Mechanics,

22 - 27 July 2018, NY, US.

[2] Kakouris E.G., Chatzis M.N., Triantafyllou S.P., “A Material Point Method

for Studying Rocking Systems”, 16th European Conference on Earthquake En-

gineering, 18 - 21 June 2018, Thessaloniki, Greece.



12 Chapter 1. Introduction

[3] Kakouris E.G., Triantafyllou S.P., “Dynamic brittle fracture via Material

Point Method - A phase field implementation”, UKACM Conference on

Computational Mechanics, 12 - 13 April 2017, Birmingham, UK.

[4] Kakouris E.G., Triantafyllou S.P., “Phase-Field Material Point Method for

Anisotropic Brittle Fracture”, EMI International Conference, 25 - 27 October

2016, Metz, UK.

[5] Kakouris E.G., Triantafyllou S.P., “Material Point Method for Nonlinear

Analysis of Hysteretic Processes”, 12th World Congress on Computational

Mechanics, 24 - 29 July 2016, Seoul, Korea.

[6] Kakouris E.G., Triantafyllou S.P., “Phase-Field Material Point Method for

Brittle Fracture”, 11th HSTAM International Congress on Mechanics, 27 - 30

May 2016, Athens, Greece.

1.7 Thesis layout

The present work is organized as follows. In Chapter 2, a critical assessment

of fracture propagation methods is presented. Next, the Material Point Method

is discussed in Chapter 3. The Phase Field Material Point Method (PF-MPM)

implementation for brittle fracture that constitutes the core contribution of this

work is presented in Chapter 4. The extension of PF-MPM into anisotropic brit-

tle fracture is described in Chapter 5 and a dynamic implementation of the

method is examined in Chapter 6. Finally, an introduction of PF-MPM for

studying rocking systems is described in Chapter 7 while the conclusion re-

marks and future work are presented in Chapter 8.



Chapter 2

Review of fracture propagation

methods

2.1 Introduction

Computation often plays a crucial role for modelling and understanding the

failure mechanism of materials. However, modelling the exact crack path, has

been one of the most challenging tasks mainly due to the challenges imposed

by the underlying physics and the computational complexity of the correspond-

ing numerical models that increases the demand for resources. During the past

thirty years, a wide variety of numerical methods have been introduced to accu-

rately and efficiently model complex failure mechanisms considering minimal

complexity and computational requirements.

Three main approaches exist in the literature to model fracture processes, namely:

• Continuum damage models

• Discrete fracture models

• Variational approaches

13
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2.2 Crack initiation and propagation

There are three fracture modes that enable a crack to propagate under the action

of external forces, namely mode I, II and III. In mode I (opening mode), the crack

tip is driven by a tensile stress normal to the crack surface while mode II crack

(sliding mode) emerges from a shear stress acting parallel to the plane of the

crack and perpendicular to the crack front. Mode III crack (tearing mode) is

driven by a shear stress acting out of the plane of the crack surface (Sun and Jin,

2012). The three fracture modes are shown in Fig. 2.1.

Figure 2.1: The three fracture modes.

In Linear Elastic Fracture Mechanics, there are three widely-used criteria to de-

termine the initiation, propagation and direction of a crack path. These are the

Maximum Tangential Stress (MTS) criterion (Erdogan and Sih, 1963), the Min-

imum Strain Energy Density (MSED) criterion (Sih, 1974) and the Maximum

Energy Release Rate (MERR) criterion (Nuismer, 1975). The aforementioned

crack growth criteria are briefly discussed in Sections 2.2.1, 2.2.2 and 2.2.3, re-

spectively. A detailed discussion on this criteria can be found in Bouchard et al.

(2003).

2.2.1 Maximum Tangential Stress (MTS) criterion

The stress field near the crack tip is shown in Fig. 2.2 where r and θ are the

polar coordinates. According to MTS criterion (Erdogan and Sih, 1963), a crack
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propagates in the direction for which the circumferential stress σθθ reaches a

critical value along a small radius r at the crack tip. The circumferential stress

σθθ is computed for mixed mode I/II crack propagation as

σθθ =
1√
2πr

cos
θ

2

(
KI cos2 θ

2
− 3

2
KII sin θ

)
(2.1)

where KI and KII are the Stress Intensity Factors (SIFs) (Sun and Jin, 2012) for

the fracture modes I and II, respectively. The MTS can be expressed mathemat-

ically as


∂σθθ
∂θ

= 0, (2.2a)

∂2σθθ
∂θ2

< 0, (2.2b)

Substituting Eq. (2.1) into (2.2a), the MTS leads to

σθθ = KI sin(θ) +KII (3 cos(θ)− 1) = 0 (2.3)

while Eq. (2.2b) is used to determine the limitation of crack direction as

θ < arctan

 KI

√
2
πdf

3KII

√
2
πdf

 (2.4)

where df is the fracture process zone length (see Matvienko (2012) for details).

As it is highlighted by Bouchard et al. (2003), the limit angle that corresponds

to pure shear is θ = 70.54o.

2.2.2 Minimum Strain Energy Density (MSED) criterion

The MSED was developed by Sih (1974) and considers that the crack emerges

along the direction in which the strain energy density is the minimum. The
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Figure 2.2: Stress fields near the crack tip.

MSED criterion can be expressed mathematically as


∂Sel
∂θ

= 0, (2.5a)

∂2Sel
∂θ2

> 0, (2.5b)

where Sel (θ) is the strain energy density factor defined as

Sel (θ) =
dψel (θ)

dΩ
r (2.6)

where dψel
dΩ is the strain energy density function per unit volume and r 6= 0 is

the distance from the crack tip to point of crack initiation (see Fig. 2.2). The

strain energy density factor Sel (θ) can be expressed for mixed-mode loading

conditions as (Sih, 1974)

Sel (θ) =
1

πr

(
α11K

2
I + 2α12KIKII + α22K

2
II

)
(2.7)
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where

α11 =
1

16µπ
[(Kel − cos(θ)) (1 + cos(θ))] , (2.8a)

α22 =
1

16µπ
[(Kel + 1) (1− cos(θ)) + (1 + cos(θ)) (3 cos(θ)− 1)] , (2.8b)

α12 =
1

16µπ
[sin(θ) (2 cos(θ)−Kel + 1)] , (2.8c)

and µ is the shear modulus of elasticity. The elastic parameter Kel is computed

as

Kel =


3− 4ν Plane strain

3−ν
1+ν Plane stress

(2.9)

where ν is the Poisson’s ratio. A crack propagates when the minimum strain

energy density factor reaches a critical value Sel,cr, i.e.

Sel,min = Sel,cr = α11K
2
I + 2α12KIKII + α22K

2
II (2.10)

The MSED criterion is simple and it can be applied to various mixed fracture

modes see e.g. (Lazzarin et al., 2008). An extension of the MSED criterion to

three-dimensional problems can be found in Sih (1991).

2.2.3 Maximum Energy Release Rate (MERR) criterion

The energy balance of Griffith’s theory states that the energy release per unit

advancement of an existing crack has to be equal to the energy consumption

for the creation of a new fracture surface. The MERR criterion (Nuismer, 1975)

is an extension of Griffith’s theory which states that a crack propagates in the

direction along which the maximum potential energy is released.

This can be mathematically expressed as


dG
dθ

= 0, (2.11a)

d2G
dθ2
≤ 0, (2.11b)
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where G represents the strain energy release rate and is the energy required to

create a unit of fracture surface. The strain energy release rate is defined as

G = −∂Ψs

∂Γ
(2.12)

where Ψs is the total potential energy and Γ is the crack surface. Based on this

criterion, a crack propagates when G reaches a critical value Gc, i.e.

G ≥ Gc (2.13)

where Gc is the critical energy release rate and it is considered as a material

parameter.

In pure fracture mode I, the strain energy release rate can be expressed in respect

to SIF as

G =
K2
I

E′
(2.14)

and the effective elastic modulus E′ as

E′ =


E Plane strain

E
1−ν2 Plane stress.

(2.15)

In mixed mode planar problems, the strain energy release rate is defined as

G =
1

E′
(
K2
I +K2

II

)
. (2.16)

2.3 Continuum Damage Models

Continuum Damage Models (CDMs) account for the degradation/failure of

materials through an internal damage variable which incorporates the micro

and macro cracking effects of the material (Murakami, 2012). The mechanical
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degradation of the materials is modelled through the following stress strain re-

lation

σ (u, dm) = (1− dm)D : ε (2.17)

where u is the displacement field and dm is a scalar damage parameter which

varies from 0 to 1 for the undamaged and completely damaged material, re-

spectively. Furthermore, D is the fourth-order elastic stiffness tensor and ε

is the strain tensor. In CDMs, the scalar damage parameter dm is a function

of a state variable J . That state variable depends on the strain tensor ε, i.e.

dm = dm(J (ε)). The CDMs are related to plasticity theories in a sense that the

stress field evolves though internal variables (see e.g. Souza Neto et al. (2008)).

According to the choice of state variable J , the CDMs can be further classified

into local, non-local and gradient-enhanced damage models.

2.3.1 Local damage models

In local damage models, the state variable J is the equivalent strain ε̃ (ε). In the

past, various definitions have been proposed for the equivalent strain, see e.g.

Simo and Ju (1987), Mazars (1986) and Vree et al. (1995). In Simo and Ju (1987),

the equivalent strain ε̃ (ε) is defined as

ε̃ =
√

2ψel (ε) (2.18)

where ψel is the local elastic strain energy density. However, that definition does

not distinguish between tensile and compressive strain components as a result

it leads to unrealistic mechanical behaviour of quasi brittle fracture materials

such as concrete, rock and ceramics.

To overcome that issue, Mazars (1986) proposed the following definition of ε̃ as

ε̃ =

√√√√ 3∑
i=1

(
〈εi〉+

)2 (2.19)
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where 〈εi〉+, i = 1, 2, 3 are the positive part of the principal strains. To this

extent, Vree et al. (1995) introduced a third definition for the ε̃ as

ε̃ =
kd − 1

2kd (1− 2ν)
I1(ε) +

1

2kd

[(
kd − 1

1− 2ν
I1(ε)

)2

+
12kd

(1 + ν)2
J2(ε)

] 1
2

(2.20)

In Eq. (2.20), ν is the Poisson’s ratio, I1(ε) is the first invariant of the strain ten-

sor and J2(ε) is the second invariant of the deviatoric strain tensorσ. The model

parameter kd is defined as the ratio of the compressive uniaxial strength and

the tensile uniaxial strength and it is introduced in Eq. (2.20) so that the com-

pressive uniaxial stress kdσ results the same effect as a uniaxial tensile stress.

Further information about the aforementioned damage models can be found in

Borst et al. (2012).

Local damage models are known to be highly mesh sensitive since the strain-

softening is introduced locally, i.e. at a particular point, which may lead into

locally ill-posed partial differential equation, i.e. loss of ellipticity in case of

quasi-static analyses, and loss of hyperbolicity for dynamic calculations (Mu-

rakami and Liu, 1995). Loss of ellipticity occur when the condition

det (nsd ·D · nsd) = 0 (2.21)

is locally met where det is the determinant and nsd is the normal vector to the

discontinuity Γ as presented in Fig. 2.3. Ellipticity is necessary condition for

the boundary value problems to ensure unique solution, otherwise an infinite

number of possible solutions emerges (Borst et al., 2012). The localisation issues

in local damage models can also be found in (Peerlings et al., 2002).

2.3.2 Non-local damage models

To overcome the previous discussed numerical issues, non-local damage mod-

els were introduced (Pijaudier-Cabot and Bazant, 1987). In non-local damage
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Figure 2.3: Decomposition of a solid body Ω into two continuous
displacement fiels with an internal discontinuity Γ.

models, the state variable depends on a spatially averaged quantity, e.g. the

non-local equivalent strain ε̄. This quantity is weighted over an area around

the point of interest. The weighting area is defined through a length scale pa-

rameter lc which is the radius of that area and acts as a localization limiter to

regularize the problem and avoid any loss of ellipticity locally. The introduc-

tion of a length scale parameter also allows to study size effects of materials

(Le Bellego et al., 2003).

In non-local damage models, the equivalent strain ε̄ is expressed as

ε̄ (x) =
1

|Ωv|

∫
Ωv

W (ξ)ε̃(x + ξ)dξ (2.22)

where x is the position vector, Ωv ⊂ Ω is an averaging volume, ξ ∈ Ωv, and

W is a weight function. A commonly used weight function is the bell-shape

Gaussian distribution which for the three-dimensional problem is evaluated as

W (ξ) =
1

2π3/2l3c
exp

(
−|ξ|)2

2l2c

)
. (2.23)

Although the non-local damage models overcome the loss of ellipticity issue as

well as they can be easily applied from the computational point of view, leads
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to an increased band width for the tangential stiffness matrix and its symmetry

can be lost (Borst et al., 2012; Pijaudier-Cabot and Huerta, 1991).

2.3.3 Gradient-enhanced damage models

In gradient-enhanced damage models, higher-order deformation gradients are

introduced in the constitutive model, i.e. the state variableJ . Gradient-enhanced

damage models can be directly derived from non-local theory (Peerlings et al.,

1996). In particular, if a Taylor expansion is used for the equivalent strain ε̃, i.e.

ε̃(x + ξ) = ε̃(x) +
∂ε̃

∂x1
ξ1 +

∂ε̃

∂x2
ξ2 +

∂ε̃

∂x3
ξ3+

1

2!

∂2ε̃

∂x1∂x2
ξ1ξ2 +

1

2!

∂2ε̃

∂x2∂x3
ξ2ξ3 +

1

2!

∂2ε̃

∂x1∂x3
ξ1ξ3

(2.24)

then the non-local equivalent strain of Eq. (2.22) can be written as

ε̄ = ε̃+ l̄∆ε̃ (2.25)

In Eqs. (2.24) and (2.25) any higher-order terms are neglected, l̄ is a gradient

parameter (l̄ = 0.5l2c ) and ∆ is the Laplace operator. However, Eq. (2.25) re-

quires higher-order basis functions for its numerical approximation. To avoid

this, Peerlings et al. (1996) proposed an alternative formulation so that Eq. (2.25)

can be considered as an additional partial differential equation as

ε̄− l̄∆ε̄ = ε̃. (2.26)

The non-local equivalent strain ε̄ is now an additional variable to be solved for

the system of Eqs. (2.17) and (2.26) and it can be approximated by linear basis

functions, i.e. C0. Eq. (2.26) is further supplemented by the following natural

boundary condition

∇ε̄ · nsd = 0 (2.27)
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where nsd is the outward unit vector normal to the crack path Γ.

An overview and a comparison of the material behaviour of both non-local and

gradient-enhanced damage models can be in found in Peerlings et al. (2001).

Furthermore, a comparison of gradient-enhanced damage and phase field dam-

age models can be found in Borst and Verhoosel (2016) where it was found that

their mathematical structure is almost identical. However, the derivation of

these two models is different. The gradient-enhanced models are smeared ap-

proaches derived from an effort to eliminate the ill-posedness of differential

equations by introducing the gradients of equivalent strain. In comparison,

phase field models are a variational approach to fracture where a crack density

functional is utilized to describe the discontinuities in the displacement field

and it is regularised by introducing a length scale parameter. Further details of

phase field interpretation can be found in Section 2.6.

2.4 Discrete fracture models (DFMs)

Within the continuum context, Discrete Fracture models (DFMs) consider cracks

as geometric discontinuities. Hence, the cracks are considered to be discrete and

they are modelled as strong discontinuities in the displacement field.

2.4.1 Remeshing and refinement strategies

In DFMs, cracks have been originally assumed to occur at the nodes of the Finite

Element mesh. In this, a crack propagates when the nodal force, normal to the

element boundaries, exceeds the maximum tensile force that the material can

sustain. Thus, when this failure criterion is satisfied, new degrees of freedom

are introduced at that node, creating a strong geometric discontinuity between

the ’old’ and the ’new’ node.
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Examples of remeshing strategies in the realm of LEFM can be found in Bit-

tencourt et al. (1996), Bouchard et al. (2003) and Azocar et al. (2010) amongst

many. Bittencourt et al. (1996) introduced a strategy for crack propagation mod-

elling of arbitrary cracks in two-dimensional problems. In this, the Finite Ele-

ment mesh is locally regenerated near the crack tip at each time step by using

a robust remeshing algorithm. Mixed-mode SIFs are calculated to simulate the

crack growth and their numerical results are compared against the experimen-

tally obtained paths leading to good agreement.

Bouchard et al. (2003) also examined crack propagation with an automatic remesh-

ing strategy and presented a comparison of different fracture criteria, i.e. MTS,

MSED and MERR (see Section 2.2). Similarly, Azocar et al. (2010) considered au-

tomatic LEFM crack propagation method based on local Lepp–Delaunay mesh

refinement. This technique allows for local mesh refinement near the crack tips

with triangular meshes. The MTS criterion is also used to predict the crack

path and their results are validated against the already published experimental

results with excellent agreement.

In contrast, meshless methods, which are not equipped with a predefined com-

putational mesh, do not require time consuming remeshing strategies. How-

ever, they may require particle refinement techniques close to crack tip to ac-

curately represent the stress field. Examples of adaptive refinement procedures

can be found in Lee et al. (2003) within the element-free Galerkin method but

more details are also presented in Chapter 3.

2.4.2 Cohesive Zone Method (CZM)

Alternative DFMs based on cohesive theories have been utilized to overcome

stress singularities in LEFM and to consider the nonlinear separation phenom-

ena (Anderson, 1995). Barenblatt (1962) originally introduced the CZM to model

fracture in brittle materials. Later, Dugdale (1960) extended the CZM to study
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yielding and plastic zone around the crack tips and Hillerborg et al. (1976) pro-

posed a linear decohesion relation between the fracture energy and the tensile

strength of concrete.

In cohesive fracture theory, the material is not considered perfectly brittle as

in Griffith’s theory. Rather, there is a small zone in front of the crack that can

exhibit some ductility. The fracture energy is gradually released at the crack

tip based on crack opening and equals the critical fracture energy at full crack

opening. If the cohesive zone is sufficiently small, the ductility zone becomes

unimportant and the theory of LEFM can be applied.

The fracture energy function depends on the jump of the displacement field ur

across the discontinuity Γ, i.e. G = G(u). Hence, the cohesive tractions are

obtained though the following relation

t =
∂G
∂ur

(2.28)

In Fig. 2.4, the traction-opening relations are shown for linear decohesion where

Gc is the critical fracture energy which corresponds to the fracture energy per

unit fracture surface at full crack opening and the fracture strength tu. A review

of other proposed traction-separation relationships across fracture surfaces can

be found in Park and Paulino (2011).

Figure 2.4: Cohesive Zone Method: Crack-opening relations.
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In Finite Element-based methods, the Cohesive Zone Method (CZM) introduces

cohesive elements at the Finite Element interfaces (see Fig. 2.5). These cohesive

elements do not have any physical meaning. Rather, cohesive traction forces

occur when the material interfaces are separated. The degradation along a dis-

crete crack is a function of these traction forces. The traction forces are based

on the relative displacements (crack opening) at the Finite Element interface.

Crack paths can only evolve along the element interfaces, hence limiting the

possible crack patterns that the method can account for or necessitating the use

of a very fine mesh discretization. The cohesive elements can either be defined

at the area of interest if the crack path is known a priori, e.g. from experimental

observations, or at all element interfaces. In the second case, the computational

costs are dramatically increased.

Figure 2.5: Cohesive Zone Method: Cohesive elements at the
Finite Element interfaces.

Examples of the CZM with FEM can be found in Xu and Needleman (1994) for

dynamic crack propagation problems where it was shown that crack branching

emerged normally without any ad hoc branching criteria. Furthermore, Chen et

al. (2009) introduced a Cohesive Zone Finite Element-based Method for mod-

elling of hydraulic fracture. Apart from these, cohesive theories has also been

applied to other mesh-based method e.g. the Boundary Element Method for the

crack growth analysis in concrete Salen and Aliabadi (1995).
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The main disadvantage of these procedures is that the crack paths always align

with the structure mesh, making the resulting solution mesh dependent. A

possible solution to overcome that issue is with remeshing techniques (Ingraffea

and Saouma, 1985; Camacho and Ortiz, 1996). Another way to overcome this

issue is with the Partition of Unity Methods (PUMs) introduced by Babuška and

Melenk (1997) and described later in Section 2.4.3.

A third and natural way to overcome the sensitivity of the mesh is with particle

methods. Cohesive theories with particle methods has been studies by Nguyen

et al. (2015) with Smooth Particle Hydrodynamics, Klein et al. (2001) with Re-

producing Kernel Particle Method and Soparat and Nanakorn (2008) with the

Element-Free Galerkin Method. A description of the aforementioned particle

method with their governing equations are presented later in Chapter 3. Co-

hesive fracture with MPM has also been studied and can be found in Schreyer

et al. (2002) and Daphalapurkar et al. (2007).

The ability of cohesive theories to model the nonlinear separation phenomena

in materials, attract many researchers to combine them with other numerical

methods apart from CZM. For instance, a phase field model for cohesive frac-

ture has been proposed by Verhoosel and Borst (2013) where the critical fracture

energy is a function of the crack opening.

2.4.3 Partition of Unity Methods (PUMs)

In PUMs, a crack is treated as a strong discontinuity in the displacement field

Babuška and Melenk (1997). This is implemented though local enrichment tech-

niques in the displacement field. In particular, the enhanced displacement field

can be interpolated, at point x, as

u (x) =
∑
∀I
NI (x) uI

∑
∀I
N̂I (x) (x) ûI (2.29)
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where NI (x) are the interpolation functions, uI is the standard displacement

field (uncracked), N̂I are the enriched basis functions and ûI the additional

degrees-of freedom due to the internal discontinuity.

In the past, various PU methods have been introduced in conjunction with

mesh-based and meshfree methods. The most popular mesh-based PU method

is the eXtended Finite Element Method (XFEM) introduced by Moës et al. (1999)

and it is analysed in Section 2.4.3.1. Another novel PU enrichment was in-

troduced by Simpson and Travelyan (2011) utilizing the Boundary Element

Method to study problems in fracture mechanics.

PU meshless methods were introduced by Ventura et al. (2002) where the El-

ement Free Galerkin Method is enriched in the framework of the XFEM. Fur-

thermore, Amiri et al. (2014b) introduced an enriched meshless method based

on LME approximation scheme for fracture. Very recently, Liang et al. (2017)

proposed a MPM with enriched shape function for crack propagation problems.

2.4.3.1 eXtended Finite Element Method (XFEM)

The most popular PU method in fracture modelling is the eXtended Finite El-

ement Method (XFEM) introduced by Moës et al. (1999). XFEM is an enrich-

ment of the standard FEM with the PU to handle cracks as discontinuities in the

displacement field and the evolution of the crack path can be treated without

remeshing. This can be implemented by enriching a subset of nodes around

the crack paths. In LEFM problems, there two types of enrichments to repre-

sent the discontinuities, namely the jump and tip enrichment. The enriched

elements along an arbitrary crack path are also shown in Fig. 2.6.

The jump enrichment functions are practically modified Heaviside step func-

tions which allows to represent the displacement jump along the crack path
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Figure 2.6: eXtended Finite Element Method.

and are defined as

HJump =


1 above the crack

−1 below the crack.
(2.30)

The previous definition of the jump functions was introduced by Moës et al.

(1999) and its objective is to locally enrich the support nodes along the crack to

split the Finite Element in two parts. Other types of jump enrichment were in-

troduced by Hansbo and Hansbo (2004) and higher order enrichment functions

by Cheng and Fries (2012). Apart from these, appropriate discontinuous func-

tions were also introduced by Daux et al. (2000) to deal with arbitrary branched

and intersecting cracks.

The second type of enrichment, i.e. the tip enrichment consists of asymptotic

functions which allows to represent the discontinuity at the two crack tips (see

also Fig. 2.6). In Belytschko and Black (1999), the tip enrichment is defined as

Fj (r, θ) =

{√
r sin

(
θ

2

)
,
√
r cos

(
θ

2

)
,
√
r sin

(
θ

2

)
sin(θ),

√
r cos

(
θ

2

)
sin(θ)

}
(2.31)
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where r, θ are polar coordinates with reference point at the crack tip.

In XFEM, some of the nodes are locally enriched with the previous type of en-

richment and some others are either not or partially enriched. In the last case,

there is blending in the Finite Element and its shape functions do not form a

partition of unity leading to numerical errors. These blending errors result in

some loss of accuracy. Blending errors have been extensively examined by the

research community and they can be minimized by e.g. enhanced strain for-

mulations (Chessa et al., 2003) and the use of weight functions (Agathos et al.,

2016) that provide a smooth blending within the split elements.

There is also problem pertinent to linear dependence between the enriched and

non-enriched part of the approximation. In jump enrichment, that issue can

be met for example when a crack merges or lies close to a node. In that case,

the enriched and standard shape functions are almost identical leading to linear

dependence problems. A solution to treat that issue is not to enrich nodes close

to crack paths (Daux et al., 2000).

In XFEM, the displacement field approximation can be obtained, using the en-

richment functions, as

u (x) =
∑
I∈N

NI (x) uI +
∑
J∈N j

NJ (x)HJump (x) ûJ +
∑
T∈N t

∑
j

NT (x)Fj (x) ũTj

(2.32)

where ûJ , ũTj are additional degrees of freedom due to the jump and tip en-

richment, respectively. The N is the set of all Finite Element nodes while N j

and N t are the set of jump and tip enrichment nodes (see also Fig. 2.6). Equa-

tion (2.32) introduced by (Moës et al., 1999) and it is considered as the standard

XFEM without any blending or conditioning issues.

In XFEM, the cracks can be explicitly represented as a series of linear segments

or triangles in two and three dimensional problems, respectively Duarte et al.

(2001). An implicit approach to represent the crack surfaces is with the so called
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level set method Stolarska et al. (2001). In this method, the crack surfaces are

represented by using two level set functions, i.e. the normal and the tangent

level set. The normal level set is defined as the signed distance from the crack

surface while the tangent as the signed distance from a surface that is normal to

the crack surface and intersects the crack surface at the crack tip/front. Then,

the crack surface can be defined as the set of points for which the normal level

set is equal to zero and the tangent level set assumes negative values.

To this point, it should be highlighted that the crack representation with level

sets has not only been applied to mesh-based method but it is also a powerful

technique to describe multiple crack surfaces in meshless methods. For exam-

ple, an Element Free Galerkin method has been introduced by Zhuang et al.

(2011) and Zhuang et al. (2012) in 2D and 3D problems, respectively where the

crack surfaces are described and modelled using the level sets.

The XFEM has been studied extensively by the research community the last two

decades and it has been successfully extended into three-dimensional problems

(Duarte et al., 2001), multiple crack paths (Budyn et al., 2004) and dynamic

crack propagation problems (Belytschko et al., 2003). However, more compli-

cated phenomena, such as nucleation, branching and merging of cracks requires

appropriate criteria to predict them (Daux et al., 2000), which might not always

be available. Further details and an overview of the XFEM can be found in Fries

and Belytschko (2010).

2.4.3.2 Cohesive Segments Method (CSM)

Another popular PUM and a reasonable extension of CZM is the CSM intro-

duced by Remmers et al. (2003), using the XFEM approach solution procedure.

As mentioned in Section 2.4.2, CZM uses cohesive interface elements aligned
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with the Finite Element mesh, leading to mesh dependences when crack prop-

agates. CSM overcomes this limitation by introducing arbitrary cohesive seg-

ments into the Finite Elements that act as discontinuities in the displacement

field with the PUM.

The cracks are modelled as a set of overlapping cohesive segments where their

support nodes are enriched with jump and tip enrichment functions similar

to XFEM (see Section 2.4.3.1). A combination of overlapping crack cohesive

segments results in a continuous crack as presented in Fig. 2.7.

Remmers et al. (2003) originally applied the CSM in quasi-static brittle fracture

problems mainly focused on mode I separation problems. Later, Remmers et al.

(2008) extended the CSM in simulating dynamic crack propagation problems

where they demonstrated that the method can efficiently deal with multiple

and branched cracks.

Following the concept of CSM, various PUM with cohesive theories have been

successfully introduced with meshless methods. For instance, Barbieri and Meo

(2011) introduced a meshless CSM for crack initiation and propagation in com-

posites, utilizing the Reproducing Kernel Particle Method. Similarly, a meshfree

method based on the local partition of unity for cohesive cracks was proposed

by Rabczuk and Zi (2007), using the Element Free Galerkin Method.

2.5 Variational approaches (VAs)

VAs to fracture have been introduced to bridge the gap between the CDMs and

DFMs where the fracture surfaces are described by an internal variable of the

total stored energy functional (Bulinga, 1998; Bourdin et al., 2008). That internal

variable can be obtained by minimizing of the stored energy where irreversibil-

ity constraints of the crack path and energy conservation hold.
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Figure 2.7: Cohesive Segments Method.

The numerical implementation of the variational approach to fracture requires

the introduction of a length scale parameter to regularize the crack paths. The

length scale parameter controls the diffusion of damage around the crack in

a similar way as in non-local gradient-enhanced models, analysed in Section

2.3.3. However, as it has already mentioned in Section 2.3.3, the regularized

crack paths converges to discrete cracks when the length scale parameter tends

to zero.

The two most notable variational approaches to fracture are the Thick Level Set

(TLS) (Moës et al., 2011) and Phase Field (PF) (Bourdin et al., 2008) models. A

brief introduction to TLS is described in Section 2.5.1 and a detailed overview

of PF models, that are proposed in this work, is presented in Section 2.6. A

comparison of these two models for brittle fracture can be found in Cazes and

Moës (2015).

2.5.1 Thick Level Set (TLS)

The TLS method was originally introduced by Moës et al. (2011) as a new

method to model crack growth in solids by using level sets (Allaire et al., 2007)
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to distinguish between the fully damaged and undamaged zones. This is im-

plemented by utilizing a damage variable dc in the computational domain that

is explicitly dependent of the level set, i.e. dc(φc). The level set φc is considered

as a continuous auxiliary field in the domain of interest that tracks the crack

growth.

In this, the crack front is considered as the zero level set (also called iso-zero)

and its value away from the crack front are defined as the minimum distance be-

tween any point x and the zero level set. Mathematically this can be expressed

as (Meer and Sluys, 2015)


|∇φc| = 1 on Ω

φc = 0 on Γ

(2.33)

where Γ is the crack front and Ω is the domain on which φc is defined (see also

Fig. 2.8).

Figure 2.8: Thick Level Set method.

In TLS, the damage variable dc is assumed to smoothly varies from one inside

the crack to zero outside the crack as φc goes from lc to 0, respectively. The

diffusion of damage around the crack is controlled by the distance lc. Hence,
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the damage variable is evaluated as

dc (φc) =


0 φc ≤ 0

fc (φc) 0 ≤ φc ≤ lc

1 φc > lc

(2.34)

where fc(φc) is a function that satisfies

fc (0) = 0, fc (lc) = 1, f
′
c ≥ 0 ∈ [0, lc] (2.35)

and it is considered as a material property. Bernard et al. (2012) suggested the

following formulation for that function as

fc (φc) = α2 arctan

[
α1

(
φc
lc
− α3

)]
(2.36)

where 

α1 = 10

α2 = [arctan (α1(1− α3))− arctan (−α1α3)]−1

α3 = 0.5

α4 = −α2 arctan(−α1α3).

(2.37)

Assuming ψs (ε, dc) be the stored energy density of a solid body Ω, then the

constitutive law and the configuration force, i.e. the the local driving forces for

damage growth are defined as


σ =

∂ψs (ε, dc)

∂ε
, Stress field (2.38a)

Y =
∂ψs (ε, dc)

∂d
, Configuration force . (2.38b)

Furthermore, the following local Kuhn-Tucker conditions are considered for

damage growth

Y ≤ Yc, ḋc ≥ 0, (Y − Yc) ḋc = 0 (2.39)
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where Yc is a threshold value that defines the critical local energy release and

ḋc is the time derivative of damage variable. the dissipated energy as the crack

front moves of a distance δφ at a location sc along the crack front can be ex-

pressed as

gc (sc) =

l∫
0

d
′
c (φc)Y (φc, sc)

(
1− φc

ζc(sc)

)
dφc (2.40)

where d
′
c is the spatial derivatives of damage variable as d

′
c = ∂dc/∂φc, ζc is the

curvature of the zero level set and l is the size of damage zone l ∈ [0, lc]. Further

details about the theoretical and numerical aspects of TLS can be found in Moës

et al. (2011) Bernard et al. (2012) and Meer and Sluys (2015).

The TLS has been successfully applied in quasi-static problems in Moës et al.

(2011) and Bernard et al. (2012) where in the latter work a dissymetric behaviour

was introduced to prevent unrealistic fracture in compressive areas. Further-

more, an extension of TLS in a dynamical context was proposed by Moreau et

al. (2015) where the ability of the method to treat branched cracks is demon-

strated. Finally, a 3D quasi-static crack implementation of TLS in quasi-brittle

material can be found in Salzman et al. (2016)

2.6 Phase field damage models

2.6.1 Brittle fracture

The purpose of this work is to introduce a phase field approximation for brittle

fracture within MPM. Thus, derivations presented herein pertain to Griffith’s

theory for brittle fracture (Griffith, 1921), although generalization to the case of

ductile fracture can be also considered (see, e.g., Borden et al. (2016), Ambati

et al. (2015b), and Miehe et al. (2016)). The phase field damage models utilize

the MERR criterion to predict crack initiation and propagation in a solid (see

Section 2.2.3).
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An arbitrary deformable medium is shown in Fig. 2.9. The initial configuration

(0)O ⊂ Rd of the body at time t = 0 has a volume (0)Ω. The superscript d

corresponds to the dimensionality of the problem, i.e., d ∈ 1, 2, 3. The boundary

of the initial configuration is denoted as (0)∂Ω. The medium is subjected to

body forces b = {b1, b2, b3} and tractions/ pressures t̄ applied on ∂Ωt̄ ⊂ ∂Ω.

Furthermore, (0)Γ corresponds to an initial crack within the medium at time

t = 0.

Under the action of the applied loads, the body undergoes a motion, that maps

the initial configuration to the current configuration (t)O ⊂ Rd at t > 0 with a

volume (t)Ω. Furthermore, the initial crack (0)Γ evolves to the crack path (t)Γ at

time t, where it must be that (0)Γ ⊆ (t)Γ.

Figure 2.9: Deformation process: Solid body Ω with a crack path
Γ.



38 Chapter 2. Review of fracture propagation methods

According to Griffith’s theory, the total stored energy Ψs of an elastic deformable

body with an evolving crack along the path Γ is defined as 1

Ψs = Ψel + Ψf =

∫
Ω

ψel (ε) dΩ +

∫
Γ

GcdΓ (2.41)

where Ψel is the elastic strain energy, Ψf is the fracture energy, ψel (ε) is the

elastic energy density whereas ε is the symmetric strain tensor which under the

small strain assumption is defined as

ε =
1

2

(
∇u +∇uT

)
(2.42)

where the (∇) is the gradient operator. The term Gc is the critical fracture energy

density. The critical fracture energy density is a material parameter correspond-

ing to the energy required to create a unit area of fracture surface (Sun and Jin,

2012).

The elastic energy density can be established in the following convenient form

where the total stored energy is additively decomposed in parts of purely ten-

sile and purely compressive origin, i.e.,

ψel = ψ+
el + ψ−el (2.43)

whereψ+
el is the elastic energy density due to tension andψ−el is the elastic energy

density due to compression, respectively. There are various methodologies to

address this energy split in the literature that are described later in Section 2.6.3.

Substituting equation (2.43) in relation (2.41), the expression for the brittle frac-

ture stored energy assumes the following form

Ψs =

∫
Ω

ψ+
eldΩ +

∫
Ω

ψ−eldΩ +

∫
Γ

GcdΓ. (2.44)

1The subscript of time (t) is omitted from all variables for brevity.



Chapter 2. Review of fracture propagation methods 39

Equation (2.44) effectively decomposes the total potential energy into purely

tensile, compressive and fracture energy parts, thus constituting an efficient

platform for the phase field derivations described in Section 2.6.2.

2.6.2 Phase field fracture

As evaluation of the fracture crack energy in equation (2.41) requires prior knowl-

edge of the crack path Γ, computational fracture mechanics revert to crack track-

ing algorithms in order to identify the crack path during the solution procedure

(Trädegard et al., 1998). To avoid such procedures, the phase field method ap-

proximates the path integral of the fracture energy with a volume integral de-

fined over the entire domain of the deformable medium according to the fol-

lowing expression (Bourdin et al., 2008)

∫
Γ

GcdΓ ≈
∫
Ω

GcZcdΩ (2.45)

where Zc is a crack density functional. Several expressions are provided in the

literature for the definition of Zc involving the case of second-order (Bourdin

et al., 2008; Miehe et al., 2010a) and fourth-order functionals. The latter have

been found to allow for increased regularity in the exact solution of the phase

field equation and hence, improves the convergence rates of the effective critical

energy release rate and the strain energy (Borden et al., 2014).

In this Chapter, the isotropic second order definition for crack density func-

tional Zc of Eq. (2.46) (Bourdin et al., 2008) is adopted to facilitate verification

of the proposed method as presented in Chapter 4. However, utilization of

higher-order functionals is also demonstrated in Chapters 5 and 6.

Zc =

[
(c− 1)2

4l0
+ l0|∇c|2

]
. (2.46)
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In equation (2.46), c(x, t) ∈ [0, 1] is a phase field defined over the domain Ω (see

Fig. 2.10). By considering minimization of the functional with respect to c it can

be shown that a value of c = 1 corresponds to uncracked regions of the domain

Ω, i.e., regions away from the crack Γ. Similarly, values of c = 0 are retrieved

on regions coinciding with the crack surface Γ. Involving the gradients of the

phase field on the functional definition (2.46) introduces a smooth variation of

the phase field from 0 to 1.

Figure 2.10: Deformation process: Phase field approximation of
the crack path Γ.

The width of the region over which this smooth transition takes place is con-

trolled by the length scale parameter l0 ∈ R+ (see Fig. 2.10). The length scale

parameter l0 can be considered to correspond to a domain of degrading mate-

rial parameters in the vicinity of the crack surface. From a purely mathematical

standpoint, l0 is a regularization parameter with values of l0 → 0 allowing for

the phase field theory to practically converge to Griffith’s theory. In practice,

convergence is achieved by using a finite value for l0. In view of relation (2.45),
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the stored energy introduced in equation (2.41) assumes the following form

Ψs =

∫
Ω

ψ+
eldΩ +

∫
Ω

ψ−eldΩ +

∫
Ω

GcZcdΩ. (2.47)

Having established through relation (2.45) that as a crack propagates within the

domain Ω the value of the crack surface energy integral will be increasing, the

corresponding decrease in the elastic energy due to the degradation of the ma-

terial properties needs also to be considered in the vicinity of the crack Γ. This

is achieved by introducing a degradation function g(c) that is superimposed

on the positive part of the elastic strain energy density. The degradation func-

tion should be continuously differentiable and monotonically decreasing with

properties g(0) = 0, g(1) = 1 and g′(0) = 0 (Kuhn et al., 2015).

To facilitate verification of the proposed procedure, the degradation function

introduced in Miehe et al. (2010a) is utilized herein, i.e.,

g = (1− kf )c2 + kf (2.48)

where 0 ≤ kf � 1 is a model parameter introduced in Ambrosio and Tortorelli

(1990) to avoid ill-posedness. According to the arguments provided in Braides

(1998) as well as the numerical investigations presented in Borden et al. (2012)

this parameter can be considered redundant. Results derived from our set of

numerical experiments also seem to agree with the aforementioned. Therefore

in this work also kf = 0. In view of the aforementioned, the expression for the

stored energy finally assumes the following form

Ψs =

∫
Ω

gψ+
eldΩ +

∫
Ω

ψ−eldΩ +

∫
Ω

GcZcdΩ. (2.49)
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The elastic stress field on the medium is readily derived from the elastic strain

energy density (Bathe, 2007) through the following relation

σ = g
∂ψ+

el

∂ε
+
∂ψ−el
∂ε

= gσ+ + σ− (2.50)

where σ+ and σ− are the stress fields due to tension and compression, respec-

tively. Finally, the damage elastic tangent constitutive matrix can be analytically

derived as

D =
∂σ

∂ε
. (2.51)

2.6.2.1 Derivation of the coupled strong form

The coupled strong form of the brittle-fracture phase field formulation is estab-

lished herein by employing the methodology introduced in Borden et al. (2014).

The energy balance equation of the problem is defined in Eq. (2.52) as

K̇ (u̇) + Ẇ int (u̇, ċ)− Ẇext (u̇) = 0 (2.52)

where ċ = dc/dt is the phase field time derivative and ∇ċ corresponds to the

rate of the phase field spatial derivative, i.e.,

∇ċ =
d

dt

(
∂c

∂xi

)
(2.53)

for i = 1, ..., d. The kinetic energy rate functional K̇ (u̇) is evaluated as

K̇ (u̇) =
d

dt

∫
Ω

1

2
ρ|u̇|2dΩ (2.54)

and Ẇext (u̇) is the rate of external work functional expressed as

Ẇext (u̇) =

∫
∂Ωt̄

(̄t · u̇) d∂Ωt̄ +

∫
Ω

(b · u̇) dΩ. (2.55)
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Finally, the rate of internal work functional Ẇ int (u̇, ċ) is evaluated as

Ẇ int (u̇, ċ) =
dΨs

dt
=

d

dt

∫
Ω

(ψel + GcZc) dΩ. (2.56)

Applying the divergence theorem and performing the necessary algebraic ma-

nipulation, the balance of energy equation (2.52) becomes

∫
∂Ωt̄

([σn− t̄] · u̇) d∂Ω +

∫
Ω

([ρü−∇ · σ − b] · u̇) dΩ+

∫
∂Ω

([Gcl02∇c] · nċ) d∂Ω +

∫
Ω

[
ψelc +

Gc (c− 1)

2l0
− Gcl02∆c

]
ċ dΩ = 0

(2.57)

where n is the outward unit normal vector of the boundary andψelc = ∂ψel/∂c =

2 (1− kf ) cψ+
el is the derivative of elastic strain energy density with respect to

the phase field c.

Since Eq. (2.57) must hold for arbitrary values of u̇ and ċ, the resulting strong

form is eventually derived as


∇ · σ + b = ρü, on [(0)Ω, (t)Ω](

4l0(1−kf)H
Gc + 1

)
c− 4l20∆c = 1, on [(0)Ω, (t)Ω]

(2.58)

whereH is the history field defined as the maximum ψ+
el obtained in time space

[0, t]. The history fieldH (see, e.g., Miehe et al. (2010a) ) essentially enforces the

necessary irreversibility condition pertinent to the crack propagation problem,

i.e., (t)Γ ⊆ (t+∆t)Γ and satisfies the following Kuhn-Tucker conditions for elastic

loading and unloading, i.e.,

ψ+
el −H ≤ 0 Ḣ ≥ 0 Ḣ

(
ψ+
el −H

)
= 0. (2.59)
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The coupled field equations (2.58) are subject to the following set of boundary

and initial conditions



σn = t̄, on [(0)∂Ω
t̄
, (t)∂Ω

t̄
]

u = ū, on [(0)∂Ωū,
(t)∂Ωū]

u = (0)u, on (0)Ω

u̇ = (0)u̇, on (0)Ω

ü = (0)ü, on (0)Ω

∇c · n = 0, on [(0)∂Ω, (t)∂Ω]

c = (0)c, on (0)Ω

(2.60)

where ū is the prescribed displacement field on ∂Ωū boundary, u̇ is the velocity

field, ü is the acceleration field and ρ is the mass density. Furthermore, (0)u, (0)u̇,

(0)ü and (0)c are the initial conditions for the displacement, velocity, acceleration

and phase field, respectively.

2.6.3 Elastic energy density decomposition

The decomposition of the elastic strain energy density into a positive (due to

tension) ψ+
el and negative (due to compression) ψ−el (see Eq. (2.43)) is an integral

aspect of phase field methodology employed to essentially couple the evolution

of phase field c to the evolution of tensile stresses within the domain Ω. During

the past few years, various methodologies have been introduced to address this

energy split; a detailed review of the existing models can be retrieved in Ambati

et al. (2015a).

The three most widely used elastic energy decompositions are:

• Isotropic (no strain decomposition)

• Anisotropic volumetric/ deviatoric split (Amor et al. (2009))
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• Split based on a spectral decomposition of the elastic strain (Miehe et al.

(2010b))

In the next Sections 2.6.3.1, 2.6.3.2 and 2.6.3.3 the aforementioned decomposi-

tions are described and discussed.

2.6.3.1 Isotropic (no strain decomposition)

The isotropic case, does not lead to a decomposition of the elastic energy density

however it is described within this context to help clarify further developments.

For an linear elastic isotropic medium, the elastic energy density is readily ex-

pressed as a function of the strain field ε according to equation (2.61) below

ψel
iso =

1

2
λ (Tr [ε])2 + µTr

[
ε2
]

(2.61)

where λ and µ are the Lamé constants and the symbol Tr denotes the trace of ε.

The isotropic model in Eq. (2.61) does not distinguish between fracture be-

haviour in tension and compression, i.e. in Eq. (2.43) the ψ+
el = ψel

iso and

ψ−el = 0. Adopting isotropic model into phase field brittle fracture model leads

to unrealistic crack patterns in compression (see e.g. Ambati et al. (2015a)). In

order to prevent fracture under compression, two modified formulations of Eq.

(2.61) were proposed from Amor et al. (2009) and Miehe et al. (2010b).

2.6.3.2 Anisotropic volumetric/ deviatoric split (Amor et al. (2009))

In Amor et al. (2009), the strain tensor ε is decomposed into a volumetric and a

deviatoric part as

ε = εvol + εdev (2.62)

where the volumetric strain tensor is defined as

εvol =
1

d
Tr [ε] I (2.63)
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whereas the deviatoric as

εdev = ε− 1

d
Tr [ε] I (2.64)

In the above relations, the symbol Tr is the trace whereas I denotes the dxd

identity matrix.

Similarly, the elastic energy density is decomposed into a volumetric and a de-

viatoric part as

ψel = ψvolel + ψdevel . (2.65)

The volumetric part ψvolel is computed as

ψvolel =
1

2
Kd Tr [ε]2 (2.66)

where Kd = λ+ 2µ/d, while the deviatoric part from Eq. (2.67) below

ψdevel = µTr
[
(εdev)

2
]
. (2.67)

In Eq. (2.66), the volumetric part ψvolel can further be distinguished into (volu-

metric) expansive ψvol
+

el and (volumetric) compressive ψvol
−

el parts as

ψvol
+

el =
1

2
Kd〈Tr [ε]〉+2

(2.68)

and

ψvol
−

el =
1

2
Kd〈Tr [ε]〉−2

, (2.69)

respectively. The symbols 〈.〉+ and 〈.〉− are defined as 〈X 〉+ = (X + |X |) /2 and

〈X 〉− = (X − |X |) /2, respectively.

Thus, the anisotropic Amor et al. (2009) decomposition, assumes that only the

strain energy associated to (volumetric) expansion and shear contribute to the
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positive part of strain energy, i.e.

ψ+
el = ψvol

+

el + ψdevel . (2.70)

The (volumetric) compressive part of strain energy is assumed to contribute to

the negative part of strain energy as

ψ−el = ψvol
−

el . (2.71)

The stress field can be readily computed from Eq. (2.50) where σ+ is defined as

σ+ = Kd〈Tr [ε]〉+ + 2µεdev (2.72)

and σ− as

σ− = Kd〈Tr [ε]〉−, (2.73)

respectively.

2.6.3.3 Split based on a spectral decomposition of the elastic strain (Miehe

et al. (2010b))

In Miehe et al. (2010b), a spectral decomposition is utilized for the strain ten-

sor. Hence, the positive part (due to tension) of the strain tensor ε+ is defined

through the following spectral decomposition

ε+ = PΛ+PT (2.74)

where P is a matrix whose columns comprise the eigen vectors of the strain

tensor ε and Λ+ is a diagonal matrix defined as

Λ+ = diag
(
〈λ1〉+, 〈λ2〉+, 〈λ3〉+

)
(2.75)
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where λi, i = 1, . . . , 3 are the eigen values of the strain tensor. The negative part

of the strain tensor in equation (2.78) is evaluated as

ε− = ε− ε+. (2.76)

Considering the previous spectral decomposition of the strain tensor, the elas-

tic energy can be additively decomposed in parts of purely tensile and purely

compressive origin, i.e.

ψ+
el =

1

2
λ〈Tr [ε]〉+

2

+ µTr
[(
ε+
)2] (2.77)

and

ψ−el =
1

2
λ〈Tr [ε]〉−

2

+ µTr
[(
ε−
)2]

, (2.78)

respectively.

Similarly, the positive and negative part of the stress field are defined as

σ+ = λ〈Tr [ε]〉+I + 2µε+ (2.79)

and

σ− = λ〈Tr [ε]〉−I + 2µε−, (2.80)

respectively

The objective of both anisotropic models, i.e. Amor et al. (2009) and Miehe

et al. (2010b) is similar, that is to avoid fracture in compression and especially

during crack closure. However, from Eq. (2.70) and the Amor et al. (2009)

model, it is noticed that when all three principal strains are negative the ψvol
+

el =

0 but ψdevel 6= 0. Hence, for that particular case the Amor et al. (2009) model

will still cause unrealistic degradation of the material. In contrast, the Miehe

et al. (2010b) decomposition model leads to a strongly non-linear stress-strain

relation that is more computational taxing than the Amor et al. (2009) model.



Chapter 2. Review of fracture propagation methods 49

In general, both anisotropic decomposition models produce similar numerical

results (see e.g. Ambati et al. (2015a) for a detailed comparison of these two

models). In this work, the model of Miehe et al. (2010b) is adopted to facilitate

verification of the proposed method.





Chapter 3

Review of particle methods

3.1 Introduction

Treating crack propagation using a grid-based method introduces further chal-

lenges as robustness and accuracy directly depend on mesh quality and corre-

sponding mesh distortion errors (Kaczmarczyk et al., 2014). Crack propagation

problems involve moving material discontinuities and in some cases also in-

volve large displacements and/or large deformations (see e.g. Raina and Miehe

(2016) for crack propagation in soft biological tissues at finite deformations).

Mesh distortion caused by large displacements/ deformations kinematics sig-

nificantly reduces the validity of results, especially in the case of dynamic im-

pact where the deformability of interfaces can significantly alter stress waves

both in terms of amplitude as well as directionality.

Particle methods have gained popularity over the past few years. They were

developed with the ultimate objective of minimizing the reliance on a mesh to

accurately approximate the governing equations. Some major advantages of

particle methods are:

• h-adaptivity can be easily incorporated by introducing additional cloud

of particles in the areas of interest. In contrast, in mesh-based methods,

51
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h-adaptivity and mesh refinement necessitate the reconstruction of the

mesh, hence increasing online computational costs.

• Problems with large displacement and/or large deformations are treated

in a more robust manner since a mesh is not required, hence mesh distor-

tion is by definition avoided.

• Problems with moving material discontinuities e.g. crack propagation

problems are handled with ease because there is no mesh alignment sen-

sitivity.

Although particle methods overcome some critical numerical issues over the

mesh-based methods, they have the following disadvantages:

• They utilize rational functions, i.e. polynomials, which require higher-

order integration scheme to be accurately computed.

• They require neighbour searching at each time step

• A large number of particles is required so that the true macroscopic re-

sponse depends on particle interaction.

• Taking the above three points into account, the particle methods are, in

general, more time consuming than mesh-based methods.

• The imposition of essential boundary conditions is not straightforward as

in mesh-based methods because their shape functions are approximants

and not interpolants (they do not necessary satisfy the Kronecker delta

property). The imposition of essential boundary conditions is not straight-

forward as in mesh-based methods because their shape functions are ap-

proximants and not interpolants (they do not necessary satisfy the Kro-

necker delta property). An approach to overcome that issue is with Lo-

cal Maximum Entropy approximation (Arroyo and Ortiz, 2006) where
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its shape functions have a weak Kronecker-delta property at the bound-

ary. However, the computational cost in computing the Maximum En-

tropy shape functions is expensive as a result it has been coupled with

other meshless methods, i.e. where imposition of boundary conditions is

needed (Ullah et al., 2013).

3.2 Discontinuities

In fracture mechanics, cracks are represented as a discontinuity in the displace-

ment field. In meshless methods, two methods exist for the mathematical de-

scription of discontinuities, namely the methods of extrinsic and intrinsic en-

richment. In extrinsic approaches, the displacement field is enriched with ad-

ditional terms as in the case of XFEM to account for discontinuity, i.e. crack.

However, as it is also discussed in Chapter 2, this leads to additional unknowns

in the final solution and hence to higher computational cost.

In contrast, intrinsic approaches do not require additional unknowns since the

displacement field discontinuities are modeled by modifying the support do-

main of weight functions at particles on or close to the crack paths. There are

generally two ways to implement that, namely the visibility (Belytschko et al.,

1994) and the diffraction (Organ et al., 1996) schemes (see also Fig. 3.1). In

the visibility scheme, the weight function support domain of a particle xI is

truncated by a line and hence discontinuities at the displacement field emerge.

However, visibility approaches can lead to suspicious oscillations for the dis-

placement field around the crack tip xc since the shape functions are suddenly

changed (Organ et al., 1996).

In comparison, the diffraction approach was introduced as an improvement to

the visibility scheme where an additional small zone around the crack tip is
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introduced to overcome the oscillations at the displacement field on it. How-

ever, the evaluation of the shape functions with the diffraction method is quite

complex making it computationally expensive (Nguyen et al., 2008).

Figure 3.1: Visibility (left) and diffraction (right) schemes.

In the following Sections 3.3 to 3.8, the most commonly used particle methods

are briefly described where their governing equations are presented to facilitate

compassion with the MPM.

3.3 Smooth particle hydrodynamics (SPH)

The Smoothed Particle Hydrodynamics (SPH) is considered one of the oldest

meshless methods. It was initially developed in 1977 by Lucy (1977) to study

astrophysical problems. The SPH is being increasingly used on various applica-

tions with a lot of attention in fluid motion problems. In the SPH, the continuum

is represented by a set of Lagrangian (see Section 3.9.2) particles which interact

with each other within a range controlled by a smooth Kernel weight function

(Liu, 2010).

In the SPH, the displacement field uSPH (x) is approximated by

uSPH (x) =
∑
I∈S

W (x− xI) uIΩI (3.1)

where W (x− xI) is the smoothing kernel function, ΩI is the volume of the do-

main surrounding the node I , and S is the set of nodes I for whichW (x− xI) 6=
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0. The SPH approximation is also illustrated in Fig. 3.2 where rIJ = ‖xI−xJ‖/rc

is the distance of particle xI to xJ and rc is the smooth length scale parameter

that controls the radius of the smoothing kernel (see Fig. Fig. 3.2).

Figure 3.2: Smooth particle hydrodynamics approximation: Par-
ticle I interacts with J within cut-off region rc.

A commonly used weight function, also called the Lucy kernel, is defined as

W (rIJ , rc) = WIJ = aSPH


(1 + 3rIJ)(1− rIJ)3, rIJ ≤ 1

0, rIJ > 1

(3.2)

where aSPH = 5/πrc
2 for the two-dimensional problem.

The mass and momentum governing equations which are defined based on Eq.

(3.3) below


Dρ
Dt = −ρ∇ · u̇, mass conservation

Du̇
Dt = 1

ρ∇ · σ + g, momentum conservation
(3.3)
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are discretized in the SPH as
DρI
Dt =

∑
J∈ΩI

mJ (u̇I − u̇J)∇IWIJ , mass conservation

Du̇I
Dt =

∑
J∈ΩI

mJ

(
σI
ρ2
I

+ σJ
ρ2
J
−ΠIJ

)
∇IWIJ + g, momentum conservation

(3.4)

where u̇ is the velocity, σ is the stress tensor, g is the external body force per unit

mass and D/Dt is material derivative following the motion. The mass density

ρ is computed as

ρI =
∑
J∈ΩI

MJWIJ (3.5)

where MJ is the mass associated with node I . The term ΠIJ is applied in Eq.

(3.4) to resolve the unphysical oscillation in the solution (Douillet-Grellier et al.,

2016).

Further details can be found in an overview of the SPH in Liu (2010). With

respect to fracture, the SPH has be studied by Douillet-Grellier et al. (2016)

and Batra and Zhang (2007) amongst many. Douillet-Grellier et al. (2016) em-

ployed classical constitutive models with SPH simulations to examine mixed-

mode fracture. Batra and Zhang (2007) utilized a modified smoothed particle

hydrodynamics method to analyse elastodynamic crack problems where the

discontinuity was treated by using the diffraction and visibility criteria.

3.4 Reproducing Kernel Particle Method (RKPM)

Reproducing Kernel Particle Method (RKPM) can be considered as an improve-

ment/ correction of SPH though the enforcement of the reproducing conditions

(Liu et al., 1995). In RKPM, the displacement field approximation is defined as

uRKPM (x) =
∑
I∈S

Φ (x,xI)W (x− xI) uIΩI (3.6)
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where Φ (x,xI) = ΦIJ is the correction function that enforces the reproducibil-

ity conditions and ΦIJWIJ is the reproducing kernel shape function referenced

to node I . The discretized equations, introduced in Eq. (3.4) are modified as


DρI
Dt =

∑
J∈ΩI

mJ (u̇I − u̇J)∇IΦIJ , mass conservation

Du̇I
Dt =

∑
J∈ΩI

mJ

(
σI
ρ2
I

+ σJ
ρ2
J
−ΠIJ

)
∇IΦIJ + g, momentum conservation

(3.7)

Further details for the RKPM and the expression of the correction function can

be found in Sherburn et al. (2015). Crack growth in the realm of RKPM has beed

studied by Zhang (2010) utilizing a cohesive crack method and by Sherburn et

al. (2015) for modelling the penetration and perforation of brittle geomaterials.

3.5 Moving least squares (MLS)

The Moving Least Squares (MLS) method was introduced by Shepard (1968) in

1968 for reconstructing continuous functions from a set of points and further ex-

tended by Lancaster and Salkauskas (1981) for surface generation problems. At

present, the MLS shape functions are highly within the Element Free Galerkin

(EFGM) (see Section 3.6.2.1).

In MLS, the displacement field is approximated by

uMLS (x) = pTMLS (x)αMLS (x) (3.8)

where p (x) is a polynomial of order m (e.g. m = 2 linear and m = 3 quadratic

basis) defined as

pTMLS (x) =

[
1 x x2 ... xm

]
(3.9)

and αMLS (x) are the unknown and non-constant coefficients (these depend on

x)

αTMLS (x) =

[
α0 (x) α1 (x) α2 (x) , ..., αm (x)

]
. (3.10)



58 Chapter 3. Review of particle methods

The MLS shape functions are determined by minimizing a weighted functional

JMLS

JMLS (x) =
∑
I∈S

W (x− xI)
[
pTMLS (xI)αMLS (x)− uI

]2
(3.11)

where W (x− xI) is the weight function for point x and uI is the displacement

field value at node I .

Eq. (3.11) leads to the following compact form

AMLS (x)α (x) = BMLS (x) uMLS. (3.12)

The matrices AMLS (x) and BMLS (x) are defined by

AMLS (x) =
n∑
I=1

W (x− xI) pMLS (xI) pTMLS (xI) (3.13)

and

BT
MLS (x) =

[
W (x− x1) pMLS (x1) , ..., W (x− xn) pMLS (xn)

]
, (3.14)

respectively where n is the number of point in the neighbourhood of x for which

W (x− xI) 6= 0. Solving Eq. (3.12) for α (x) and further substituting in Eq. (3.8),

the MLS approximants are eventually defined as

uMLS (x) =
∑
I∈S

ΦI (x)uI = ΦTuMLS (3.15)

where

ΦT = pTMLS (x) [AMLS (x)]−1 BMLS (x) (3.16)

and the shape function ΦI (x) of node I

ΦI (x) = pTMLS (x) [AMLS (x)]−1W (x− xI) pTMLS (xI) . (3.17)
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The weight functions W (x− xI) should be positive and ensure a unique so-

lution of the coefficient matrix α (x) Belytschko et al. (1994). Furthermore, the

computation of Eq. (3.17) requires extra computational cost since the inversion

of matrix AMLS (x) should be evaluated. The inverted matrix AMLS (x) may lead

to singularities (Nguyen et al., 2008).

The MLS was studied in crack propagation problems by Most and Bucher (2003)

where it was coupled with stochastic Finite Elements. They utilized a fictitious

crack model for the crack growth where the micro cracks emerge from maxi-

mum principal tensile strain exceedance criteria and the macro cracks from a

micro crack after a certain critical width is reached.

Arzani et al. (2017) also examined two-dimensional crack growth problems us-

ing the transparency method for the treatment of discontinuities. The trans-

parency method provides a smooth description of the shape function around

the crack tip by endowing the surface, or line, of discontinuity with a varying

degree of transparency. The crack tip is considered completely transparent and

vanishes away from it.

3.6 Weighted residual methods

A linear differential equation may be written in the following form

L (u) = f (3.18)

where L (u) is a linear differential operator, u is the unknown variable and f

is a forcing term. In weighted residual methods trial functions are utilized to

obtain an approximate solution of u (Bathe, 2007). In this, it is assumed that the

unknown function, herein the displacement field, and its corresponding test
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functions are approximated by

uWM (x) =
n∑
I

ΦI (x) uI (3.19)

and

w (x) =

n∑
I=1

ΨI (x) wI , (3.20)

respectively, where δuI are arbitrary coefficients, uI are unknowns of the prob-

lem and n is the number of nodes/ particles. The ΦI (x) and ΨI (x) are the

interpolation functions evaluated at node I of displacement field and trial solu-

tion, respectively.

Substituting the approximate solution Eq. (3.20) on the differential operator Eq.

(3.18) leads to

R = f − L

(
n∑
I=1

ΨIuI

)
(3.21)

where R is the residual that should be sufficient small to yield good agreement

with the exact solution. Collocation and Galerkin methods are the most widely

used weighted residual methods and they are analysed in Sections 3.6.1 and

3.6.2.1, respectively.

3.6.1 Collocation method

In Collocation method, the continuum is represented by a set of points xI ,

I = 1, ..., n, where the interpolation functions of the trial solution (Eq. (3.20))

are chosen to be the Dirac delta distributions δ (x− xI). A major advantage

of the Collocation method is that it does not require integration and its shape

functions are only computed at nodes, increasing its efficiency over Galerkin

method. However, the Collocation method requires the evaluation of high-

order derivatives and the resulting stiffness matrix is non-symmetric (Nguyen

et al., 2008).
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The strong form of the partial differential equations is discretized with the Col-

location method and hence, it requires high-order basis functions (at least sec-

ond order). This is also the main difference with Galerkin methods where a

weak form is used. Thus, the first of Eqs. (2.58) is expressed as

∫
∂Ωt̄

([σn− t̄] ·w) d∂Ω +

∫
Ω

([ρü−∇ · σ − b] ·w) dΩ (3.22)

and the weighted residual form requires the following function spaces

Su = {u ∈ C1 (Ω) | u (∂Ωū) = ū}

Vu = {w ∈ L1
loc| w (∂Ωū) = 0}

where C1 (Ω) are continuous and differential functions and L1
loc are locally in-

tegrable functions without any continuity requirement (Schillinger et al., 2015).

The t̄ are the traction/ pressure forces and ū is the prescribed displacement

applied on boundary Ωt̄ and Ωū, respectively.

Crack propagation with an Enriched Meshfree Collocation Method for elastic

fracture problems was studied by (Yoon et al., 2006) where the discontinuity

on the displacement field is modeled by using the visibility criterion. Recently,

a Phase Field Isogeometric Collocation method was introduced by Schillinger

et al. (2015) as an effort to alleviate the computational demands of phase field

fracture by reducing the number of point evaluations.

3.6.2 Galerkin method

In Galerkin method, the differential equation is satisfied by converting it into an

integral equation. The differential equation is multiplied by a test function and

then averaged over the domain. The unknown variables uI is then determined
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by solving the n equations below

∫
Ω

ΨIRdΩ = 0, I = 1 . . . , n (3.23)

where Ω is the solution domain.

3.6.2.1 Element Free Galerkin Method (EFGM)

One of the oldest meshless Galerkin methods that utilizes a weak form of equi-

librium equation (see first of Eqs. (2.58)) is the Element Free Galerkin Method

(EFGM) Belytschko et al. (1994). In EFGM, the trial and test functions are con-

structed using the MLS interoperation schemes for the weak form. Hence, the

shape functions are utilized to approximate the field variables, using their val-

ues at nodes/ particles of the solution domain.

In EFGM, the weak form of equilibrium equation is defined as

∫
Ω

(ρü ·w) dΩ +

∫
Ω

(σ : ∇w) dΩ =

∫
∂Ωt̄

(̄t ·w) d∂Ωt̄ +

∫
Ω

(b ·w) dΩ+∫
Ω

((u− ū) · q) dΩū +

∫
Ω

(λ · q) dΩū

(3.24)

where u (x) ∈ H1, Lagrange multipliers λ ∈ H0, test functions w ∈ H1 and

q ∈ H0. The symbols H1 and H0 denote the Sobolev spaces of degree one and

zero, respectively. It should be noticed that the trial functions do not satisfy

the essential boundary conditions. Hence, Lagrange multipliers are imposed to

invoke the essential boundary conditions.

To obtain a discrete solution of equation (3.24), the displacement field and the

Lagrange multipliers together with their test functions are expressed as

uEFGM (x) =
n∑
I=1

ΦI (x) uI (3.25)
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λEFGM (x) =

n∑
I=1

NI (s)λI , x ∈ Ωū (3.26)

wEFGM (x) =
n∑
I=1

ΦI (x) wI (3.27)

and

qEFGM (x) =
n∑
I=1

NI (s) δλI , x ∈ Ωū (3.28)

where NI (s) is the Lagrange interpolants and s is the arc length along the

boundary Belytschko et al. (1994). Substituting the approximation Eqs. (3.25) to

(3.28), Eq. (3.24) is rewritten in the following matrix form as

 K G

GT 0


 u

λT

 =

f

q

 (3.29)

where

[Ku] =

∫
Ω

[B(x)]T [D] [B(x)] dΩ, (3.30)

GIK = −
∫

Ωū

ΦINK dΩū, (3.31)

fI =

∫
Ωt̄

ΦI t̄ dΩt̄ +

∫
Ω

ΦIb dΩ (3.32)

and

qK = −
∫

Ωū

NK ū dΩū. (3.33)

In (3.30), [D] is the constitutive matrix in Voigt notation, defined as

[D] =


D1111 D1122 D1112

D2211 D2222 D2212

D1211 D1222 D1212

 . (3.34)
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and [B(x)] the strain-displacement matrix expressed as

[B(x)]I =


ΦI,1(x) 0

0 ΦI,2(x)

ΦI,2(x) ΦI,1(x)

 (3.35)

Finally, the shape function matrix [N(x)] in Eq. (3.33) is computed as

[N(x)]K =

NK(x) 0

0 NK(x)

 (3.36)

Crack propagation problems using the EFGM were examined by Ventura et

al. (2002) in the concept of XFEM. Recently, Rabczuk et al. (2010) introduced a

new method called Cracking Particle Method (CPM) without any enrichment

by utilizing the EFGM. In this, the crack paths are modelled by a set of cracked

segments that split the particles located on them into two particles lying on

opposite sides of the crack. Although CPM offers great advantages in crack path

modelling by adding or removing cracking particles on the domain, it requires

particle refinement along the crack path for accurate results to be derived. Ai

and Augarde (2018a) introduced an adaptivity scheme to overcome that issue as

well as to improve the accuracy of the method in dealing with branched cracks.

An extension of their proposed adaptive scheme in three-dimensional problems

can be found in Ai and Augarde (2018b).

3.7 Peridynamics (PD)

Continuum mechanics approaches face numerical difficulties when internal dis-

continuities exist, i.e. crack paths, since the spatial derivatives of their govern-

ing equations are undefined along these regions. Peridynamics (PD) was re-

cently introduced by Silling (2000) as a new continuum mechanics approach
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permits internal discontinuities since it does not require the evaluation of spa-

tial derivatives. Instead, the governing equations of the PD are integro-differential

equations where the divergence of the stress term (see the first of Eqs. (2.58)) of

the strong form is replaced by an integral function of a force on particle at x as

ρü =

∫
Ωx

f (u(x̂, t)− u(x, t), x̂− x) dΩx + b(x, t). (3.37)

The symbol is f the pairwise force function in the Peridynamics bond that con-

nects particle x̂ to x, u is the displacement field and b(x, t) is the body force.

In PD, the integral of Eq. (3.37) is defined over a region Ωx that is called the

’horizon’ of x (see also Fig. 3.3). For the case of a linear micro elastic potential,

the pairwise force is defined as

f(η, ξ) =


ξ+η
‖ξ+η‖A(ξ) (‖ξ+η‖−ξ)

ξ , ξ ≤ δ

0 ξ > δ

(3.38)

In Eq. (3.38), ξ = x̂ − x is the relative position of two particles x̂ and x while

η = û− u their relative displacement. where A(ξ) is called micro-modulus and

has the meaning of the bond elastic stiffness. A notable disadvantage of PD is

that requires neighbour particle searching at each time step.

Applications of PD in fracture mechanics can be found in the literature e.g. in

Ha and Bobaru (2010) for dynamic crack propagation crack branching problems

and in Yolum et al. (2016) for ductile fracture of moderately thick plates.

3.8 Discrete element method (DEM)

Discrete methods has gain popularity and last few years in the realm of fracture

mechanics since cracks can be naturally represented by breaking the particles’

bond. DEM is widely-used discrete meshless method that solves the dynamic
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Figure 3.3: Peridynamics: Particle x̂ interacts with x within
’horizon’ Ωx

evolution of solid body by studying the movement and interaction of material’s

grains (Luding, 2008). DEM can be considered as an extension of the Molecular

Dynamics (MD) simulation (Rapaport, 2004) where cluster of atoms are using

for the particle interaction.

In DEM, the Newton’s equations of motion for the translational and rotational

degrees of freedom are expressed as


mI üI = fI + bI ,

II ω̇I = tI ,

(3.39)

where fI all of the forces acting on particle I from all the other particles and the

boundaries and derive from a potential energy density.

The evaluation of acting force is usually limited to an area of influence around

particle I , rc as it is shown in Fig. 3.4. The mass of particle I is denoted as mI ,

the acceleration as üI and the body forces as bI . The II is the moment of inertia,

ωI the angular velocity and tI the total torque of particle I . The total torque is
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defined as

tI =

n∑
I=1

(lI × fI + qI) (3.40)

where n is the number of particles and qI are the torques at contact due to

rolling, torsion and friction. The branch vector lI connects the centre of particle

with the contact point.

In fracture mechanics problems, Scholtès and Donzé (2012) used DEM to model,

and further validate with experimental observations, fracture initiation and

propagation in soft and hard rocks. Furthermore, Tan et al. (2009) modeled frac-

ture and damage in machining process of polycrystalline SiC with the DEM. Al-

though, DEM is very efficient in crack propagation propagation problems, it is

usually limited to small scales, e.g. micro, due to lack of computational power.

Figure 3.4: Discrete Element Method: Particle I interacts with J
within cut-off region rc.



68 Chapter 3. Review of particle methods

3.9 The Material Point Method (MPM)

3.9.1 Introduction

The MPM is the latest variant of the so called Particle-In-Cell (PIC) methods

for history - dependent problems. The PIC family of methods was introduced

by Harlow (1964) in fluids. In Harlow (1964), the fluid is represented by La-

grangian mass points (particles) that are allowed to flow through a fixed com-

putational grid. It is considered partially a Lagrangian method because parti-

cles store only information about their mass and position. In Harlow (1964),

PIC was implemented to treat contact discontinuities and highly distorted fluid

flow. However, when modelling convection problems, the method was found

to suffer from energy dissipation when transferring the momentum from the

grid to the particles and back. Brackbill and Ruppel (1986) overcame this prob-

lem by formulating a full particle method, called FLIP, in which each particle

carries all the information including momentum and energy.

Later, Sulsky and Brackbill (1991) extended the FLIP method to handle fluid

- structure elastic contact problems with materials governed by history inde-

pendent constitutive equations applied at material points 1. The FLIP method

was modified by Sulsky et al. (1994) and Sulsky et al. (1995) to account for his-

tory dependent variables such as plastic strains and strain-hardening. Their

approach gave rise to a MPM that can fully describe material non-linearities for

solid mechanics.

3.9.2 Lagrangian - Eulerian formulation

Two formulations exist for the description of kinematics, i.e., (a) the Lagrangian

and (b) the Eulerian description of a body motion (Bathe, 2007). In the La-

grangian approach the observer follows an individual point as it moves through

1The terms particle and material point will be used interchangeably throughout this work.
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space and time. Conversely, in the Eulerian formulation the observer focuses on

a specific location in the space through which the points move as time passes.

To better illustrate the differences between the two formulations, the case of

an axially loaded bar is considered (see Fig. 3.5). Three points of the bar are

marked at three time steps, namely t1, t2 and t3. As illustrated in Fig. 3.5,

positions x1, x2 and x3 refer to the same point (c) but at different time instances

t1, t2 and t3, respectively (Lagrangian formulation). Conversely, different points

are referred to the same position of the bar in Eulerian formulation. E.g. in

position x1, point (c) is located at time step t1, point (b) at time step t2 and point

(a) at time step t3.

In the Lagrangian approach, the coordinates of the body, i.e., the mesh, move

with the material. This is particularly advantageous in solid mechanics for the

application of boundary conditions since the boundary nodes remain on the

boundary. Furthermore, treatment of history-dependent materials is straight-

forward because the same point is examined at different locations. However,

severe deformation of the Lagrangian mesh may give rise to inaccurate results

due to ill-conditioning of the corresponding Jacobian (see Section 3.9.3).

A fixed computational mesh is defined in the Eulerian approach. Thus, any

numerical issues pertinent to element distortion are minimized. In contrast,

the treatment of essential boundary conditions is not straightforward on a fixed

mesh since the boundary nodes of the material vary with the time. Furthermore,

history-dependent materials are are difficultly treated as different points are

examined at each time step.

Therefore, novel numerical methods that are able to adopt merits of both ap-

proaches are vital nowadays to address very challenging engineering prob-

lems, e.g. crack propagation where severe mesh distortion errors and history-

dependent materials are taken into account.
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Figure 3.5: Eulerian and Lagrangian formulation.

3.9.3 The effect of element distortion

Finite Elements are in general most accurate in the prediction of displacement

and stress field when they are undistorted. Fig. 3.6 illustrates the basic types of

distortions (Bathe, 2007).

However, in practice, elements may have distortions to mesh complex geome-

tries effectively. When the distortions are sufficiently small the solution error

is bounded. However, in the case of large displacement kinematics, significant

angular and curved edge distortions may arise as a result of the deformations.

Thus, element distortions affect the accuracy of the non-linear response of the

structure. In an analysis it is therefore necessary to monitor the changing shape

of each element, and if element distortions adversely affect the response of the

structure, a more suitable mesh may be required.

3.9.4 Material Point Method approximation

In the MPM, a deformable body is approximated with a set of material points

p = 1, 2, . . . , Np, where Np ∈ Z+ is the total number of material points (see Figs.

3.7 and 3.8). The material point discretization can be defined by any appropriate

tessellation of Ω. Under the action of (t)O, the initial position vector (0)xp of a

material point is mapped to the current position vector (t)xp at t > 0 (see Fig.
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Figure 3.6: Classification of element distortions.
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3.8). Consequently, the current position of a material point always depends on

the initial position and time t. The displacement vector of the material point is

defined as (t)up = (t)xp − (0)xp.

Through this discretization, the mass density distribution of the deformable

body is readily defined as

ρ (x, t) =

Np∑
p=1

ρpΩpδ
(
x− (t)xp

)
(3.41)

where ρp = Mp/Ωp is the mass density of the material point, Mp is the material

point mass, Ωp is the material point volume and δ is the Dirac function.

Similarly, the domain volume Ω is additively decomposed into the correspond-

ing material point domain contributions according to the following expression

Ω (x, t) =

Np∑
p=1

Ωpδ
(
x− (t)xp

)
. (3.42)

In this work, the tributary volumes Ωp of each material point are defined accord-

ing to the following methodology. An isoparametric discretization of the ma-

terial domain is first performed using quadrilateral elements. Material points

are then defined at the positions of the Gauss points of each individual ele-

ment at their natural coordinate system. The corresponding volumes are then

mapped back to the Cartesian system by means of the isoparametric transfor-

mation. Defining material points at the Gauss points of the corresponding finite

element mesh has been chosen to facilitate comparison against standard Finite

Element implementation.
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Figure 3.7: Deformation process: Continum solid body Ω.

Figure 3.8: Deformation process: Material point method approx-
imation.
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3.9.4.1 Eulerian mesh

Integral to the computational scheme of MPM is the definition of a compu-

tational grid where the solution of the governing equations of motion is per-

formed. This grid is termed the Eulerian mesh (or Eulerian grid). The Eule-

rian grid is a non-deforming mesh corresponding to the space that the material

points move through (see Figs. 3.9 and 3.10). Referring to Figs. 3.9 and 3.10, the

Eulerian Mesh is divided into active cells 2, i.e., cells where one or more material

points exist at a certain time t and inactive cells where no material point exists.

In this work, the Eulerian grid is constantly updated according to the topology

of the material points, thus reducing the solution space at any time instant.

Figure 3.9: Active part detection of the Eulerian grid: Initial con-
figuration.

2The terms cell and element will be used interchangeably throughout this work.
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Figure 3.10: Active part detection of the Eulerian grid: De-
formed configuration.

3.9.4.2 Equilibrium discrete equations

The discrete form of the MPM equilibrium equations is derived in a straight-

forward manner by means of the Galerkin approximation (Bathe, 2007). The

weak form of the equilibrium equations introduced in the first of Eqs. (2.58) is

expressed as

∫
Ω

(ρü ·w) dΩ +

∫
Ω

(σ : ∇w) dΩ =

∫
∂Ωt̄

(̄t ·w) d∂Ωt̄ +

∫
Ω

(b ·w) dΩ (3.43)

where the following trial solution and weighting function spaces are defined

V = {u ∈
(
H1 (Ω)

)d | u = ū on ∂Ωū}

and

U = {w ∈
(
H1 (Ω)

)d | w = 0 on ∂Ωū},
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respectively. The weighting functions w satisfy the essential boundary condi-

tions of the problem. Substituting Eqs. (3.41) and (3.42) into the weak form

(3.43), the following relation is established

Np∑
p=1

(ρpüp ·wp)Ωp+

Np∑
p=1

(σp : ∇wp)Ωp =

∫
∂Ωt̄

(̄t ·w) d∂Ωt̄ +

Np∑
p=1

(bp ·wp)Ωp (3.44)

where wp, σp and bp are the test function, stress field and body forces evaluated

at material point xp. Relation (3.44) which essentially collocates the weak equi-

librium of the continuum into the material points derived from the tessellation

of the deformable body.

Considering the following Galerkin interpolation scheme for the test functions

and their spatial derivatives

wp =

Nn∑
I=1

NI(xp)wI (3.45)

and

∇wp =

Nn∑
I=1

∇NI(xp)wI , (3.46)

respectively, where Nn ∈ Z+ is the number of grid nodes, NI(xp) are the inter-

polation functions evaluated at the material points and wI , I = 1, . . . , Nn are

the test function nodal values.

Both the interpolation functions and the test function nodal values are defined

with respect to the underlying Eulerian mesh as described in Section 3.9.4.1.

Thus, standard Finite Element interpolation functions can be utilized to inter-

polate material point defined quantities at the nodal points of the corresponding

parent cell. In this work, B-spline interpolation functions are used as described

later in Section 3.9.9.
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Similar expressions are established for the displacement, velocity, and accelera-

tion fields, i.e.,

up =

Nn∑
I=1

NI(xp)uI , (3.47)

u̇p =

Nn∑
I=1

NI(xp)u̇I , (3.48)

and

üp =

Nn∑
I=1

NI(xp)üI , (3.49)

respectively, where uI , u̇I , and üI are the components of the nodal displace-

ment, velocity and acceleration vectors, respectively, evaluated at node I .

Substituting (3.45) and (3.46) in relation (3.44) and performing the necessary

algebraic manipulation, the following expression is derived

Nn∑
I=1

wI ·
[
Firt
I + Fint

I − Fext
I

]
= 0 (3.50)

where

Firt
I =

Np∑
p=1

(ρpüp ·NI(xp))Ωp (3.51)

F intI,i =

Np∑
p=1

(σpjk ·B
ijk
I (xp))Ωp (3.52)

and

Fext
I =

∫
∂Ωt̄

(̄tNI(xp)) d∂Ωt̄ +

Np∑
p=1

bpNI(xp)Ωp. (3.53)

In relation (3.52), σpjk denotes the stress components σp = {σpjk} whereas

BI(xp) = {Bijk
I (xp)} is defined as

Bijk
I (xp) =

1

2

(
∂NI(xp)

∂xj
δik +

∂NI(xp)

∂xk
δij

)
(3.54)

where i, j, k = 1 . . . d. As the test functions in equation (3.44) are chosen arbi-

trarily, equation (3.50) should hold for every set of nodal values wI . Thus, the
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following equilibrium equation is finally established

Ru
I
(u) = Firt

I + Fint
I − Fext

I = 0, I = 1 . . . , Nn (3.55)

where Firt
I is the vector of inertia forces, Fint

I is the vector of corresponding in-

ternal forces and Fext
I corresponds for the equivalent vector of external forces

evaluated at grid node I . The residual nodal values for the displacement field

is denoted as Ru
I
(u). Eq. (3.55) corresponds to nodal force equilibrium estab-

lished at the nodes of the background mesh with the material point to back-

ground node mapping performed through relations (3.51), (3.52) and (3.53) for

the inertia, internal and external forces, respectively.

Further considering the strain-displacement relation defined in equation (2.42),

the strain components εp = {εpjk} in each material point can be expressed as

εpjk =

Nn∑
I=1

Bijk
I (xp)uI,i. (3.56)

Substituting the corresponding strain-stress relation (constitutive model) and

(3.56) into Eq. (3.52) and using Eq. (3.53) and (3.49), the following compact

form is eventually derived

Muü + Kuu = Fext (3.57)

where Mu is the global lumped mass matrix of the structure whose Mu
I compo-

nent is expressed as

Mu
I =

Np∑
p=1

(
ρpNI(xp)

)
Ωp. (3.58)

Similarly, Ku is the global stiffness matrix of the structure whose Ku
I,J,i,j com-

ponent is expressed as

Ku
I,J,i,j =

Np∑
p=1

((
DplkmnB

jmn
J (xp)

)
·Bilk

I (xp)

)
Ωp. (3.59)
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The term Dplkmn , accounts for the components of the constitutive matrix Dp

evaluated at pth material point, defined in equation (2.51).

To facilitate understanding of Eq. (3.59), the grid cell contributions can be writ-

ten as the summation of the material points’ stiffness contributions within each

cell, i.e

[Ku
cell] =

ncell
p∑
p=1

[
kup
]

(3.60)

where ncell
p is the number of material points located in the grid cell and

[
kup
]

is the nodal stiffness components of the pth material point within the grid cell.

The contribution of each material point within its parent cell is evaluated as

[
kup
]

= [B(xp)]
T [Dp] [B(xp)] Ωp. (3.61)

For two-dimensional plane strain/stress problems, examined in this work (d =

2), the constitutive matrix can be rewritten in Voigt notation as

[Dp] =


D1111 D1122 D1112

D2211 D2222 D2212

D1211 D1222 D1212

 . (3.62)

and the strain-displacement matrix associated with grid node I as

[B(xp)]I =


NI,1(xp) 0

0 NI,2(xp)

NI,2(xp) NI,1(xp)

 (3.63)

whereNI,1(xp) andNI,2(xp) are the derivatives of shape functions with respect

to x1 and x2, respectively. Finally, the global stiffness matrix (Eq. (3.59)) is

calculated by assembling the individual contribution of each grid cell where

any empty cells are ignored.
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3.9.5 Computational cycle

The computational cycle of the MPM consists of five steps, i.e., (a) to (e), illus-

trated in Fig. 3.11. In the first step all the material point quantities, e.g. mass

and momentum are projected onto the grid nodes. Then, the governing equa-

tions are solved at those grid nodes in an updated Lagrangian fashion. Next,

the updated solution is mapped back from grid nodes to the material points by

utilizing appropriate B-spline interpolation functions and all the material point

quantities are updated. Finally, the Eulerian grid is reset before proceeding into

next time step. The reset of the Eulerian grid is a crucial step within the MPM

since any distortion error is avoided.

Figure 3.11: Material point method computational cycle.
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3.9.6 Boundary conditions

To solve equation (3.57), a set of boundary conditions needs to be defined. Both

natural and essential boundary conditions can be treated in the MPM.

As shown on Fig. 3.12, loads can be applied either on material points or directly

on grid nodes. If a load is applied on a material point then the load is interpo-

lated at the grid nodes of the parent cell. Thus, this equivalent nodal load is

utilized to formulate the nodal vector of external forces.

Zero or non-zero kinematic boundary conditions can be applied at grid nodes

in a similar manner to the traditional Lagrangian FEM (see Fig. 3.12). How-

ever, zero or non-zero kinematic boundary conditions can also be applied on

material points. In this work, a penalty method is adopted to impose kinematic

constraints on material points with the methodology described in Appendix A.

Figure 3.12: External load in grid node (left) and material point
(right) (left).

3.9.7 Solution procedure

The MPM was initially implemented in an explicit time integration scheme to

numerically solve equation (3.57) (Sulsky et al., 1995). In that implementation,

a momentum formulation of the equations of motion was introduced within an

Euler forward time integration scheme.
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However, explicit integration algorithms are restricted by small time steps due

to the Courant - Friedrichs-Levy (CFL) condition (Dokainish and Subbaraj, 1989).

Therefore, during the past few years several implicit schemes were introduced

to address that issue in MPM. The most noticeable implicit methods were in-

troduced by Guilkey and Weiss (2003) and Sulsky and Kaul (2004). Guilkey

and Weiss (2003) developed an implicit time integration algorithm based on a

Newmark scheme. They explicitly formed the tangent stiffness matrix (see Eq.

(3.59)) similar to the standard FEM (Bathe, 2007).

In Sulsky and Kaul (2004), an implicit solver was developed based on the matrix-

free Newton-Krylov algorithm and Euler backward time integration scheme in

an effort to reduce computational costs by avoiding the construction of the tan-

gent stiffness matrix. That method is considered suitable when the stress-strain

relation is described by complicated constitutive models as there is no require-

ment for evaluating either numerically or analytically the tangent constitutive

matrix at the material level. Using an implicit solver larger time steps are al-

lowed as compared to aforementioned explicit solvers.

Guilkey et al. (2006) formulated a quasi-static MPM to account for slow rate

of loading. Their method is based on their previous work on implicit solution

(Guilkey and Weiss, 2003), where the tangent stiffness matrix is explicitly for-

mulated. Most recently, Sanchez et al. (2015) (based on Sulsky and Kaul (2004))

developed a quasi-static material point method based on matrix-free Krylov

method and GMRES algorithm.

In this work, the computation of tangent stiffness matrix is adopted in quasi-

static problems (see Sections 4 and 5) whereas an explicit time integration scheme

is employed in dynamic problems (see Sections 6 and 7).

It is of interest to note that whereas in the FEM, integration points are located

at optimal positions for Gauss integration, this is not the case for the MPM. In

the latter, the number and the position of the material points in a computational
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cell varies. This can be treated by increasing the number of material points, i.e.

the integration point to enhance the accuracy of the MPM (Guilkey and Weiss,

2003).

3.9.8 Grid crossing error

MPM has been proven to be sensitive to the so-called cell crossing error mani-

fested as an oscillation in the stress field when a material point moves from one

background cell to another (Steffen et al., 2008; Gan et al., 2018). This has been

treated in the literature by various methods, most notably by introducing the

Generalized Interpolation Material Point Method (GIMPM) (Bardenhagen and

Kober, 2004) or more recently with a Convected Particle Domain Interpolation

technique (CPDI) (Sadeghirad et al., 2011; Sadeghirad et al., 2013).

In this work, higher order B-spline shape functions are used as background

grid interpolation functions to treat this issue (Steffen et al. (2008) and Gan et

al. (2018), see also Section 3.9.9). Besides their implementational efficiency, the

extensive numerical investigations performed in this work demonstrate that

the use of B-splines further improves the convergence rate of the coupled phase

field formulation for crack propagation introduced (see Sections 5 and 6).

3.9.9 B-spline interpolation

B-Splines are defined through a non-decreasing sequence of real numbers (i.e.

ξI ≤ ξI+1), termed the knot vectors, and formally described as

Ξ = {ξ1, ξ2, ..., ξNnξ+qξ+1} (3.64)

where Nnξ and qξ are the number of basis functions and the polynomial order

in the ξ direction, respectively. The Ith B-spline basis function of qξ-degree is
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defined recursively as (Boor, 2001)

NI,qξ(ξ) =
ξ − ξI

ξI+qξ − ξI
NI,qξ−1(ξ) +

ξI+qξ+1 − ξ
ξI+qξ+1 − ξI+1

NI+1,qξ−1(ξ) (3.65)

where

NI,0(ξ) =


1 ξI ≤ ξ ≤ ξI+1

0 otherwise.
(3.66)

Furthermore, the derivative of a B-Spline basis function is expressed as

N
′
I,qξ

(ξ) =
qξ

ξi+qξ − ξi
NI,qξ−1(ξ)−

qξ
ξi+qξ+1 − ξi+1

NI+1,qξ−1(ξ). (3.67)

Higher-order derivatives are evaluated recursively from relation (3.67). A B-

Spline curve is evaluated as

C(ξ) =

Nnξ∑
I=1

NI,qξ(ξ)PI (3.68)

where PI ∈ Rd, I = 1, 2, .., Nnξ are the coordinates of control points and d is the

dimension of the problem.

Two-dimensional B-Splines basis functions and their derivatives can be evalu-

ated by means of a tensor product as (Hughes et al., 2005)

NI,J,qξ,qη(ξ, η) = NI,qξ(ξ)NJ,qη(η) (3.69)

and

N
′
I,J,qξ,qη

(ξ, η) = N
′
I,qξ

(ξ)N
′
J,qη(η), (3.70)

respectively. Three-dimensional B-Splines can also be defined in a similar man-

ner.

The one-dimensional and two-dimensional quadratic basis functions (qξ = qη =

2) together with their first derivatives are shown in Fig. 3.13, 3.14 and 3.15, 3.16,

respectively, for knot vectors Ξ = H = {0, 0, 0, 0.25, 0.50, 0.75, 1, 1, 1}.
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Figure 3.13: Higher-Order B-Splines (1D): Quadratic basis func-
tions (C1).

Figure 3.14: Higher-Order B-Splines (1D): First derivatives of
quadratic basis functions (C1).
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Figure 3.15: High-Order B-Splines (2D): Quadratic basis func-
tions (C1).

Figure 3.16: High-Order B-Splines (2D): First derivatives of
quadratic basis functions (C1).
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B-spline functions are core to the development of isogeometric analysis where

NURBS elements are utilized both to represent the exact geometry of a solid

body and to define field variables e.g. displacement and phase field. In FEM,

higher order B-spline functions are used to accurately represent complex ge-

ometries, e.g., curved surfaces with optimal convergence rate. In MPM, they

are used to formulate the computational grid as they provide smooth deriva-

tives that lead to more accurate strain and stress results. Further information

can be sought in Hughes et al. (2005).

3.9.10 Advantages/Disadvantages of MPM

3.9.10.1 Advantages

The MPM makes use of the benefits of either Lagrangian or Eulerian descrip-

tions, while avoiding the associated problems with each. Some advantages of

the MPM are the following:

• Mesh distortion is eliminated. The Lagrangian particles (i.e. material

points) are mapped onto a non-deforming Eulerian mesh (computational

grid) where solution of the governing equations is performed. Avoiding

numerical errors due to mesh distortion is not a trivial task in grid-based

Lagrangian methods (see Kaczmarczyk et al. (2014)). Failure to bound

such mesh-dependent errors may result in considerable loss of accuracy

especially if large displacements and/or large deformations are taken into

account (see Zhang et al. (2016), Charlton et al. (2017), and Sofianos and

Koumousis (2018)).

• Grid based shape functions and neighbour searching. The grid is used to

evaluate the gradient and divergence terms of each material point. There-

fore, the their computation is as trivial as in the FEM method. Further-

more, the method does not require time-consuming neighbour search-

ing if a structured background Eulerian grid is utilized. Therefore, MPM
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can offer significant computational advantages when compared to purely

meshless methods since they require extra computational time due to:

(a) higher-order integration schemes to be accurately evaluated (complex

shape functions) (b) neighbour searching (Nguyen et al., 2008).

• Contact problems can be solved in a consistent and robust manner. MPM

can efficiently tackle contact problems without introducing extra compu-

tational complexity and cost to the overall procedure. The interaction of

contact surfaces is implemented through materials points within a fixed

computational mesh. Thus, there is no need for searching, refining or

algorithmically tracking the contact areas. A benchmark example that

demonstrates the merits of MPM in contact problems is shown in Fig. 3.18

for the case of two elastic rings. The geometry, boundary conditions and

simulation parameters are shown in Fig. 3.17.

The standard algorithm of MPM can naturally handle non-slip contact

problems (Sulsky et al., 1994). However, extension into slip contact prob-

lems with MPM has also be introduced by many authors e.g. Barden-

hagen et al. (2000), Huang et al. (2011), and Chen et al. (2017). In this work,

a slip contact algorithm is adopted to address frictional contact problems

involving brittle fracture as described in Sections 6 and 7.

• Coupling with other methods easily. Due to its particle in cell formula-

tion, the method can be coupled with both mesh-based and particle-based

methods. For example, MPM can be coupled with FEM to eliminate mesh

distrortion at crucial regions, i.e., contact surfaces, see, e.g., (Lian et al.,

2011).

In addition, MPM can also be coupled with e.g. molecular dynamics sim-

ulation to accelerate the numerical procedure (Lu et al., 2006). Molecular

Dynamics simulations are limited to nano scales due to their extremely
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high computational demands. In contrast, the MPM which is a contin-

uum approach method can be used from nano to macro scales. Hence, a

potential coupling of continuum and atomistic approaches will assist the

research community to examine and link the nano with macro material

properties. The use of material points in the MPM provides a natural con-

nection with the atoms in molecular dynamics. Material points are scaled

down to the atomistic level so that they can be directly coupled with the

atoms.

Figure 3.17: Impact of two elastic rings (MPM): Geometry and
boundary conditions.

3.9.10.2 Disadvantages

The main disadvantages of MPM are summarized below:

• Mapping onto the Eulerian grid. The main disadvantage of MPM is the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Impact of two elastic rings (MPM): Snapshots at
time steps (a) t = 0 µs (b) t = 4.5 µs (c) t = 7.5 µs (d) t = 14.25

µs (e) t = 24 µs and (f) t = 28.5 µs.
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extra computational cost due to mapping from material points to com-

putational grid and vice versa. However, the computational cost can be

eliminated using a parallel implementation of MPM.

• Grid crossing error (see Section 3.9.8).

• Particle density. The migration of material points from cell to cell results in

solution procedure stability problems if inadequate particle density exists

in a cell (Guilkey and Weiss, 2003; Coombs et al., 2018). Material points

are not always located in optimal positions of their parent cell. Thus, an

increased particle density should be used for more accurate solutions.

3.9.11 MPM vs FEM

In this Section a comparison between MPM and the standard FEM is presented

to demonstrate the main similarities and differences of the two methods. The

geometry, boundary conditions and material parameters of the cantilever beam

are represented in Fig. 3.19(a). The cell spacing is chosen to be h = 0.02 m with

C0 linear basis functions whereas the initial cell density is 3x3 = 9 material

points per cell. A constant displacement increment ∆u = 0.001 m is applied on

the free edge of the beam for 80 time increments. The load history is shown in

Fig. 3.19(b).

The load displacement curve of the two methods is represented in 3.19(c) where

the two methods illustrate excellent agreement. A comparison is also performed

in MPM between the explicit computation of tangent stiffness matrix (see Eq.

(3.59)) and the GMRES algorithm minimizing the residual vector of Eq. (3.55).

The GMRES algorithm is implemented without preconditioning and zero initial

guess at each time step. The two solutions are identical. Yet, the computational

time is approximately less then 1 minute with the direct solver and approxi-

mately 20 minutes with the GMRES algorithm.
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As already mentioned in Section 3.9.7, GMRES algorithm can effectively deal

with extremely large problems and complex stress-strain relations because (a)

it requires less storage requirements than direct solvers and (b) complicated

constitutive matrices are never computed. However, the algorithm is compu-

tational taxing in comparison to direct solvers as illustrated in this benchmark

problem. Hence, for the problems examined in this work, a direct solver is

adopted to accelerate the numerical procedure.

The main differences between the FEM and the MPM are demonstrated in Fig.

3.20. Fig. 3.20(a), 3.20(c) and 3.20(e) correspond to the FEM results while 3.20(b),

3.20(d) and 3.20(f) are are referred to MPM simulation. In Fig. 3.20, it is obvi-

ous that the number of nodes, degree of freedom and elements are not constant

in MPM as a result of the fixed Eulerian grid. However, the number of (La-

grangian) material points, that are used as integration points of their parent

cell, are constant. This is in contrast to FEM where the number of nodes, de-

grees of freedom, elements and integration points remain constant throughout

the analysis. The Eulerian grid is also constantly updated according to the ma-

terial point footprints as described in Section 3.9.4.1 and Fig. 3.9 and 3.10.



Chapter 3. Review of particle methods 93

(a)

(b)

(c)

Figure 3.19: FEM vs MPM: (a) Geometry and boundary condi-
tions (b) applied vertical displacement (c) Load-Displacement
curve. Comparison between Finite Element Method and Mate-

rial Point Method (Direct Solver and GMRES algorithm).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: MPM vs FEM: FEM for (a) u = 0 m (c) u = 0.02 m
and (e) u = −0.02 m. MPM for (b) u = 0 m (d) u = 0.02 m and

(f) u = −0.02 m.



Chapter 4

Phase Field Material Point

Method for brittle fracture

Part of this chapter is published in the International Journal for Numerical

Method in Engineering (Kakouris and Triantafyllou, 2017).

4.1 Introduction

Employing a method where material behaviour is monitored at material points

that move within a fixed Eulerian grid renders itself appealing for fracture prop-

agation problems since in principle (a) the transition from continuous to discon-

tinuous displacement field can be modelled without the need for remeshing the

computational grid and (b) without special treatment of mesh distortion perti-

nent to an advancing crack. Despite this, little research has been conducted to

model the problem of damage modelling and in particular crack growth using

the MPM.

Nairn (2003), first, simulated simple types of fracture and cracking paths in the

MPM developing a method called CRAMP (CRAcks with Material Points). This

method introduces massless material points to transfer the information of the

95
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crack path into grid nodes as well as multiple velocity fields at grid nodes near

the crack to account for crack opening.

Variants of the MPM based on cohesive theories have also been introduced by

Daphalapurkar et al. (2007) and Bardenhagen et al. (2011) where however crack

propagation occurred in either a predefined weak plane or through dynamically

adding cohesive zones to the fracture path.

A MPM with enriched shape functions has been recently introduced by Liang

et al. (2017). Although this XFEM driven approach does not require the defini-

tion of multiple velocity fields, the background cell basis functions need to be

enriched hence introducing additional assumptions pertinent to the type of tip

enrichment utilized.

Continuum damage-based MPM approaches have been introduced by Nairn

et al. (2017) and Homel and Herbold (2017). The former work is implemented

in the realm of anisotropic damage mechanics whereas the latter demonstrates

the merits of MPM in dynamic fracture and frictional contact problems.

The aforementioned approaches demonstrated the merits of MPM in simulating

damage in terms of computational simplicity in particular when considering the

case of large deformations and contact-fracture related problems. Further to the

current state of the art, phase field modelling for brittle fracture is introduced in

this Section within a MPM setting to address the general problem of quasi-static

crack propagation in brittle materials using the MPM.

By introducing phase fields at the material point level rather than the nodal

points of a fixed Lagrangian grid, the proposed method succeeds in monitoring

crack initiation and growth in an efficient and robust manner. Numerical inves-

tigations demonstrate that compared to the standard Phase Field Finite Element

implementation, the proposed method is advantageous in terms of accuracy. A

staggered strategy is used for the solution of the governing coupled equations

of the problem.
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4.2 Discrete equations

PF-MPM approximation is based on the discretization of a deformable domain

Ω with a set of material points move through a fixed Eulerian grid where the

governing coupled phase field and equilibrium equation are solved. The PF-

MPM approximation of a deformable body Ω with a crack path Γ is shown in

Fig 4.1. According to this approximation, the governing equations of PF-MPM

are introduced in Sections 4.2.1 and 4.2.2.

Figure 4.1: Deformation process: Phase Field Material Point
Method approximation of the crack path Γ.

4.2.1 Equilibrium discrete equations

In this Chapter only quasi-static problems are considered. Therefore, the equi-

librium discrete equations introduced in Section 3.9.4.2 reduce to relation (4.1)

below

Ru
I
(u) = Fint

I − Fext
I = 0, I = 1 . . . , Nn (4.1)
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or in compact form as

Kuu = Fext (4.2)

where Ku is the global stiffness matrix of the structure whose Ku
I,J,i,j compo-

nent is expressed from relation (3.59). The constitutive matrix Dp, evaluated at

pth material point, is readily evaluated from Eq. (2.51).

4.2.2 Phase field discrete equations

The weak form of the phase field governing equation assumes the following

form

∫
Ω

(4l0(1− kf )H
Gc

+ 1
)
cq dΩ +

∫
Ω

4l20(∇c : ∇q) dΩ =

∫
Ω
q dΩ (4.3)

where c is the phase field and q are the corresponding weighting functions for

the phase field. The phase field c and the corresponding weighting functions q

are defined with respect to the following spaces, i.e.,

Y = {c ∈ H1 (Ω)}

and

Q = {q ∈ H1 (Ω)}.

The continuous phase field and the corresponding weighting functions intro-

duced in equation (4.3) are collocated at material points, resulting in the follow-

ing discrete form (4.4)

Np∑
p=1

FpcpqpΩp +

Np∑
p=1

4l20p(∇cp : ∇qp)Ωp =

Np∑
p=1

qpΩp (4.4)



Chapter 4. Phase Field Material Point Method for brittle fracture 99

where cp and qp are values of the the phase field and weighting functions, re-

spectively at the material point p. Fp is defined as

Fp =
4l0p(1− kfp)Hp

Gcp
+ 1 (4.5)

where l0p , kfp ,Hp and Gcp are the length scale parameter, model parameter, his-

tory field and critical fracture energy density of material point xp, respectively.

Next, both cp and qp and interpolated at the nodal points of the background

mesh. The value of the test function and its spatial derivatives at the pth material

point are expressed as

qp =

Nn∑
I=1

NI(xp)qI (4.6)

and

∇qp =

Nn∑
I=1

∇NI(xp)qI , (4.7)

respectively, where NI(xp) are the background mesh shape functions pertinent

to the phase field interpolation and qI are nodal values of the corresponding

test functions.

The value of the phase field at the pth material point is written as

cp =

Nn∑
I=1

NI(xp)cI (4.8)

where cI are the phase field nodal values. Attention is drawn to the fact that the

phase field is a scalar quantity. It follows from relation (4.8) that the gradients

of the the phase field at the pth material point are defined accordingly as

∇cp =

Nn∑
I=1

∇NI(xp)cI . (4.9)

Similar shape functions are considered for both the phase field and the corre-

sponding weighting functions according to the Galerkin approximation (Bathe,
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2007). In this work, the same family of interpolation functions is considered for

both the displacement and the phase field (see also Miehe et al. (2010a)).

Substituting equations (4.6) and (4.7) in relation (4.4) and re-arranging terms,

the following expression is derived

Nn∑
I=1

qI · [ScI − F cI ] = 0 (4.10)

where in equation (4.10) above

ScI =

Np∑
p=1

FpcpNI(xp)Ωp +

Np∑
p=1

4l20p(∇cp · ∇NI(xp))Ωp (4.11)

and

F cI =

Np∑
p=1

NI(xp)Ωp, (4.12)

respectively. Since the choice of the weighting functions is arbitrary, it must

hold that

RcI(c) = ScI − F cI = 0, I = 1 . . . , Nn (4.13)

where RcI(c) are the residual nodal values for the phase field. By substituting

relations (4.11) and (4.12) into equation (4.13) results in

Np∑
p=1

FpcpNI(xp)Ωp+

Np∑
p=1

4l20p(∇cp ·∇NI(xp))Ωp =

Np∑
p=1

NI(xp)Ωp, I = 1 . . . , Nn. (4.14)

Further considering the phase field interpolation schemes defined in equations
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(4.8) and (4.9), and substituting in equation (4.14), the following relation is es-

tablished

Np∑
p=1

Fp

(
Nn∑
J=1

NJ(xp)cJ

)
NI(xp)Ωp +

Np∑
p=1

4l20p

((
Nn∑
J=1

∇NJ(xp)cJ

)
· ∇NI(xp)

)
Ωp

=

Np∑
p=1

NI(xp)Ωp.

(4.15)

Re-arranging and collecting terms, equation (4.15) gives rise to the following

convenient form

Kcc = Fc (4.16)

where Kc is an (Nn ×Nn) coefficient matrix whose Kc
I,J component is defined

as

Kc
I,J =

Np∑
p=1

(
FpNJ(xp)NI(xp) + 4l20p

(
∇NJ(xp) · ∇NI(xp)

))
Ωp (4.17)

while c is the (Nn × 1) vector of unknown nodal phase fields and Fc is the

(Nn × 1) vector whose F cI component is defined from relation (4.12).

The vector quantity Fc will be termed herein as the phase field “forcing” term.

Similarly to the MPM displacement based equilibrium equations defined in Sec-

tion 4.2.1, equation (4.16) is established and solved at the nodal points of the

background mesh with the corresponding material point to background node

mapping performed in equations (4.11) and (4.12).

4.3 Phase field MPM solution scheme

The coupled equilibrium and phase field evolution equations can be solved in a

so called monolithic fashion, i.e., simultaneously within each incremental step.

However, it has been demonstrated that a staggered solution approach (see also,
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Simo and Miehe (1992) for the case of thermo-mechanical coupling) can be uti-

lized where the phase field equations are solved independently and the result-

ing phase field prediction is then used to iteratively solve for the equilibrium

equations (Miehe et al., 2010a). In this work, a staggered solution procedure has

been implemented and the corresponding computational scheme is presented

in Algorithm 1 (see page 104).

With regards to Algorithm 1, Ep, νp and gp refer to the Young’s modulus, Pois-

son’s ratio and degradation function of the pth material point. Pre-existing

cracks can be modelled by defining an initial history field (Hp0) in all material

points around the crack similar to Borden et al. (2012). Alternately, pre-existing

cracks can also be introduced as discrete cracks in the geometry of the structure.

A displacement control incremental analysis procedure is implemented in this

Section for the solution of the quasi-static brittle fracture problem, considering

a set ofNsteps incremental steps. In the beginning of each time stepm, the active

cells of the Eulerian grid are identified according to the material point positions

and the inactive cells are discarded (Fig. 3.9 and 3.10). Next, the total number

of grid nodes as well as grid degree of freedom are redefined according to total

active grid nodes (Nn) and total active unconstrained grid degree of freedom

(Ndofs). Furthermore, the basis functions (N(xp)) as well as their derivatives

(∇N(xp)) at all material points need to be evaluated at each time step m. This

is one of the main differences between FEM and MPM as in the former the

number of nodes, degree of freedom, cells (Ncells) as well as basis functions and

their derivatives remain constant during the analysis.

Following, the staggered iterative scheme (k = 1, 2, . . . , Nstaggs) initiates within

the current incremental step. The phase field equations are solved for the cur-

rent value of the history fieldH and the phase field nodal values cI are derived.

Using this phase field prediction, updated values for the degradation function

at each material point gp are derived and the displacement field equations are

iteratively solved in the inner iterative loop (j = 1, 2, . . . , Niters). From this, the
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incremental displacement field nodal values ∆uI are obtained.

The displacement field equations (4.1) are solved by incrementally applying

the external forces ∆Fext
I to obtain the increments of the displacement field

∆u. and the following equations are solved using a Newton-Raphson method

(inner iterations j = 1, .., Niters).

δRu
I
(∆u) = ∆Fint

I −∆Fext
I = 0, I = 1 . . . , Nn (4.18)

where the symbol ∆ denotes incremental quantities e.g. ∆X = (m)∆X −
(m−1)∆X, whereas the symbol δ denotes iterative quantities e.g. δX = X(j) −

X(j−1).

Convergence of the equilibrium equation iterative procedure is achieved when

the Euclidean norm of the residual force vector introduced in equation (4.18)

assumes a sufficiently small value, i.e., when ‖δRu(j)‖ ≤ tolu. Upon conver-

gence, updated values for the history field H are evaluated and the residual

of the phase field equation is established as the difference between the initial

phase field forcing term estimate and the updated one. Outer, phase field it-

erations terminate when ‖ (m)Rc(k) ≤ tolc‖ where tolc is a predefined toler-

ance. Although robust, the staggered until convergence scheme is prone to

low convergence rates and practically bounds the maximum allowable incre-

mental displacement step in a displacement controlled analysis. Very recently,

a line-search assisted iterative scheme has been developed to treat such issues

and further improve the convergence speed of the method (Gerasimov and De

Lorenzis, 2016).

4.4 Numerical examples

In this Section the proposed method is compared against the Finite Element

phase field implementation through a set of representative tests both in terms
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Data: Define computational grid, material point properties ((0)xp,
(0)Ωp, Ep,

νp, l0p , kfp ,Gcp , (0)Hp, (0)σp, (0)εp)
for each time step m = 1, 2, .., Nsteps do

Reset the computational grid: Find active part of Eulerian Grid, Nn,
Ndofs, Ncells;

Compute: N((m)xp), ∇N((m)xp) and B((m)xp), for all material points
(see Section 3.9.9 and Eq. (3.54)). ;

Define: δRu(1) = ∆Fext ;
for each staggered iteration k = 1, 2, .., Nstaggs do

Compute: (m)Fc(k) (see Eq. (4.12)). ;
Compute: Kc (see Eq. (4.17)). ;
Solve: Kc (m)c(k) = (m)Fc(k) ;
Map phase field ((m)c(k)) from grid nodes to material points.
Evaluate: (m)c

(k)
p , (m)∇c(k)

p , (m)g
(k)
p , for all material points (see Eq.

(4.8), (4.9) and (2.48)). ;
Initialize ∆u(0) = 0 ;
for each inner iteration j = 1, 2, .., Niters do

Compute: Ku (see Eq. (3.59), for constitutive matrix see Eq.
(2.51)) ;

Solve: Kuδu(j) = δRu(j), with displacement control. ;
Compute: ∆u(j) = ∆u(j−1) + δu(j) ;

Compute: ∆ε
(j)
p , for all material points (see Eq. (3.56)). ;

Compute: (m)ε
(j)
p = (m−1)ε

(j)
p + ∆ε

(j)
p , for all material points. ;

Compute: (m)σ
(j)
p , for all material points (see Eq. (2.50)) ;

Compute: ∆Fint(j) = {∆Fint
I },

∆Fint
I =

∑Np
p=1

(m)Ω
(j)
p

(m)σ
(j)
p − (m−1)σ

(j)
p ·BI(

(m)xp) ;
Compute Residual (Displacement-Field):
δRu(j) = ∆Fext −∆Fint(j) ;

Convergence Check (Displacement Field): If ‖δRu(j)‖ ≤ tolu or
j ≥ Niters then "exit" from loop else j = j + 1 go to next inner
iteration. ;

end
Compute: (m)ψ+

elp
, for all material points (see Eq. (2.77))

→ (m)Hp =

{
(m)ψ+

elp
, for (m)ψ+

elp
> (m−1)Hp

(m−1)Hp, otherwise
;

Compute Residual (Phase Field): (m)Rc(k) (see Eq. (4.13)) according
to (m)c

(k)
p , (m)∇c(k)

p , (m)Hp ;
Convergence Check (Phase Field): If ‖ (m)Rc(k)‖ ≤ tolc or k ≥ Nstaggs

then "exit" from loop else k = k + 1 go to next staggered iteration. ;
end
Compute: ∆up =

∑Nn
I=1NI(

(m)xp)∆u
(j)
I , for all material points. ;

Compute: (m)up = (m−1)up + ∆up, for all material points. ;
Compute: (m)xp = (m−1)xp + ∆up, for all material points. ;

end
Algorithm 1: Phase Field Material Point Method pseudo-code (Staggered
Solution Algorithm).
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of accuracy and computational efficiency. In all cases external loads are directly

applied at material points. Kinematical constraints are imposed by means of the

Penalty Method (Bathe, 2007). As these constraints are imposed on the material

points rather than the background grid, the corresponding numerical imple-

mentation is presented in Appendix A. This is contrary to the Finite Element

implementation where essential boundary conditions are imposed directly on

the domain boundary. However, as shown from the actual verification results

provided this does not affect the accuracy of the method. The density of mate-

rial points utilized as necessitated by the fracture propagation problem ensures

that material points are sufficiently close to the actual domain boundary where

displacement variations can be considered negligible.

For the purpose of verification both the Phase Field Material Point Method

(PF-MPM) and Phase Field Finite Element Method (PF-FEM) have been im-

plemented in Fortran code. In all examples considered herein, the staggered

until convergence solution strategy (Algorithm 1) was adopted. The phase field

residual tolerance was set at tolc = 1.0e−6. Simulation parameters, i.e., number

of incremental steps, convergence tolerance and maximum number of iterations

are similar for both schemes as defined in the corresponding Sections below. All

tests were performed on a PC fitted with an Intel Xeon E5-1620 CPU and 32 GB

of RAM.

4.4.1 Single edge-notched tension test

In this example a square plate under pure tension is examined and results are

compared to the standard PF-FEM. The purpose of this example is to examine

the accuracy of the proposed PF-MPM using as a reference the standard PF-

FEM and published results in the literature. A discussion of the corresponding

computational costs is also provided. The geometric configuration, boundary

conditions and material parameters considered are presented in Fig. 4.2.
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The square plate consists of 249000 material points. The Eulerian grid is for-

mulated by 67600 (260 x 260) 4-node isoparametric quadrilateral elements with

a uniform mesh size equal to h = 0.004 mm. Element size of the background

mesh is defined such that h < l0. The overall dimensions of the Eulerian grid

are 1.04 mm x 1.04 mm (xmin = ymin = −0.02 mm , xmax = ymax = 1.02 mm).

Material points are initially located at the Gauss point position of their corre-

sponding parent cells and plane strain conditions are assumed.

For the PF-FEM case, the corresponding Finite Element mesh comprises 62250

4-node quadrilateral plane strain elements with bi-linear basis functions. Full

integration is considered in each element with 4 Gauss points.

The material parameters considered are E = 210 kN/mm2, ν = 0.30, l0 =

0.0075 mm and Gc = 0.0027 kN/mm for the Young’s modulus, Poisson’s ratio

ratio, length scale and fracture energy density, respectively. Zero displacement

boundary conditions, i.e., upx = upy = 0, are imposed in all material points

(nodes in the PF-FEM case) on the bottom edge of the specimen.

Both in the PF-MPM and PF-FEM implementations, a displacement control

nonlinear static analysis scheme is utilized with a constant displacement incre-

ment ∆u = 10−6 mm. Displacement is monitored and controlled in the upper

edge of the specimen where the vertical displacements of all material points

(nodes in the PF-FEM cases) are kinematically constrained. The kinematic con-

straint penalty parameter (see Appendix A) was chosen to be α = 10000000.

The solution is implemented within a stagger solution algorithm with a single

prediction step (Nstaggs = 1) and tolu = 10−5.

The load paths derived from both PF-MPM and PF-FEM are presented in Fig.

4.3. The load paths are practically identical. Results obtained by both solu-

tion approaches also agree with the results provided in Miehe et al. (2010a). In

particular, the critical vertical displacement and critical load obtained by PF-

FEM are ucrPF−FEM = 0.005626 mm and FcrPF−FEM = 0.7051 kN, respectively.
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The critical vertical displacement and critical load obtained by PF-MPM are

ucrPF−MPM = 0.005627 mm and FcrPF−MPM = 0.7052 kN, respectively.

The results derived and the agreement between the two different approaches is

justified by the fact that due to small displacements (≈ 0.60% of the total length

of the plate), material points only marginally move from the Gauss points of the

corresponding Finite Element mesh. The phase field distribution over the plate

domain for both the FEM and MPM are presented in Fig. 4.4. The observed

crack paths derived from both methods are identical.

Analysis time for PF-FEM was approximately 98 hrs whereas for PF-MPM 111

hrs. The increase in computational time due to the MPM implementation was

of the order of 13% corresponding to the re-factorization of the stiffness matrix

when material points move across background cells.

Figure 4.2: Tension test: Geometry and boundary conditions.

4.4.2 Single edge-notched shear test

In this case, the response of the square plate considered in Section 4.4.1 is in-

vestigated under pure shear conditions. The purpose of this example is to ver-

ify the PF-MPM against the PF-FEM in simulating mode II fracture (in-plane

shear fracture). The same example has been previously examined in Miehe et al.
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Figure 4.3: Tension test: Load-Displacement curve. Compari-
son between Material Point Method and Finite Element Method
(FEM). Results obtained by Miehe et al. (2010a) are also pre-

sented.

(2010a) and Borden et al. (2012) considering a standard Finite Element scheme

and its isogeometric formulation respectively.

The geometry, boundary conditions and material properties are shown in Fig.

4.5. The discretization of the Eulerian grid as well as the number of material

points are the same as in the tension experiment of Section 4.4.1. Both in the PF-

MPM and PF-FEM implementation the simulation is performed with a constant

horizontal displacement increment ∆u = 10−5, mm monitored at the upper

edge of the plate.

The load displacement curve is presented in Fig. 4.6. The results obtained

by PF-MPM are compared to the results from PF-FEM. The latter have been

derived considering a 40658 constant strain triangle Finite Element mesh and

are in perfect agreement with the results reported in Miehe et al. (2010a). The

critical horizontal displacement and critical load obtained by Finite Element

Method are ucrPF−FEM = 0.0087 mm and FcrPF−FEM = 0.5310 kN, respectively;

whereas the critical vertical displacement and critical load obtained by Mate-

rial Point Method are ucrPF−MPM = 0.0089 mm and FcrPF−MPM = 0.5416 kN,

respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Phase Field in single-edge notched tension test with
Finite Element Method for (a) u = 0.0056 mm, (b) u = 0.0058
mm and (c) u = 0.0059 mm, respectively. Phase Field in single-
edge notched tension test with Material Point Method for (d)
u = 0.0056 mm, (e) u = 0.0058 mm and (f) u = 0.0059 mm,

respectively.
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Fig. 4.7 illustrates the phase field of both FEM and MPM. The two methods

illustrate good agreement in regards of the crack path with minor differences

observed in the post-peak regime. These are attributed to the severe distortion

of the triangular Finite Elements observed in the PF-FEM case which is however

by definition avoided in the PF-MPM solution.

In particular, the distortion of the elements along the crack path is presented

in Figs. 4.8(a)-(e). This is avoided in the MPM as shown in Fig. 4.8(b), 4.8(d)

and 4.8(f) as the material points naturally follow the geometry of the crack. The

evolution of the hydrostatic stress for the case of the Material Point implemen-

tation is shown in Fig. 4.9 for several time steps. Comparing Figs. 4.7(d)-(f) to

Fig. 4.9 one is able to verify that the crack propagates only due to tension as

a result of additive decomposition of the elastic energy introduced in equation

(2.49). In Fig. 4.9, the positive values of the hydrostatic stress field highlight

the areas under tension while the negative values the areas under compression.

The computational times for PF-FEM and PF-MPM were approximately 23 hrs

and 26 hrs, respectively resulting in an overhead of approximately 13%.

Figure 4.5: Shear test: Geometry and boundary conditions.
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Figure 4.6: Shear test: Load-Displacement curve. Compari-
son between Material Point Method and Finite Element Method
(FEM). Results obtained by Miehe et al. (2010a) are also pre-

sented.

4.4.3 L-Shaped panel test

In this example an L-Shaped concrete panel is examined under cyclic loading.

In this example, a series of simulations is carried out to investigate the effect of

the length scale parameter (l0), cell spacing of the underlying Eulerian grid (h)

and cell density on the accuracy of the PF-MPM scheme. Furthermore, the abil-

ity of the PF-MPM to model crack closure during uploading is demonstrated

and validation against experimental observations is made. The efficiency of the

PF-MPM to avoid any mesh distortion errors in crack propagation problems is

illustrated where a comparison with the corresponding PF-FEM is made.

The geometry, boundary conditions and material properties are presented in

Fig. 4.10. This example has also been considered in Ambati et al. (2015a)

utilizing the phase field Finite Element scheme. In all simulations (both in

the PF-MPM and PF-FEM implementation) a constant displacement increment

∆u = 10−3 mm is considered for 2000 time increments. The load history is

shown in Fig. 4.11. The solution is implemented within a staggered solution

algorithm for a single prediction step (Nstaggs = 1) and tolu = 10−4. In all cases,
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Phase Field in single-edge notched shear test with
Finite Element Method for (a) u = 0.009 mm, (b) u = 0.011 mm
and (c) u = 0.0134 mm, respectively. Phase Field in single-edge
notched shear test with Material Point Method for (d) u = 0.0092

mm, (e) u = 0.0117 mm and (f) u = 0.0136 mm, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Distorted Elements in Finite Element Method (a) u =
0.009 mm, (c) u = 0.011 mm and (e) u = 0.0134 mm, respectively.
No distortion in Material Point Method for (b) u = 0.0092 mm,

(d) u = 0.0117 mm and (f) u = 0.0136 mm, respectively.
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(a)

(b)

(c)

Figure 4.9: Hydrostatic Stress in single-edge notched shear test
for (a) u = 0.0092 mm, (b) u = 0.0177 mm and (c) u = 0.0136
mm, respectively. Material Points with cp < 0.08 have been re-

moved.
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the background grid is formulated using 4-node quadrilateral elements with

bilinear basis functions. Plane stress conditions are assumed with a thickness

th = 100 mm.

Figure 4.10: L-Shape panel test: Geometry and boundary condi-
tions.

Figure 4.11: L-Shape panel test: Load History.

Initially, the PF-MPM implementation is compared to a PF-FEM solution con-

sidering a length scale parameter l0 = 2.5 mm while the mesh size is h = 2.5

mm. Each background cell in the Material Point implementation is populated

with 2x2 material points while full integration (4 Gauss points per element) is
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considered for the FEM formulation . The corresponding load paths are shown

in Fig. 4.12 where the two methods demonstrate very good agreement.

The relative error of the two methods is defined by Eq. (4.19) below

Relative Error[%] =
PF −MPMsolution − PF − FEMsolution

PF − FEMsolution
· 100 (4.19)

and it is presented in Fig. 4.13. The relative error significantly increases in

the final stages of the loading scenario, i.e., on the softening regime of the

member response. As in the case of the single edge-notched shear test ex-

amined in Section 4.4.2, this pertains to the different kinematics between the

two solution procedures, with the PF-MPM implementation providing a more

accurate representation of the actual crack path. The L2 norm of the error is

εL2 = ‖Relative Error‖ = 0.3%. The crack path obtained by the the proposed

method demonstrate good agreement with the experimental crack observations

as presented in Figs. 4.14(a) and 4.14(b), respectively. The analysis times for the

PF-FEM was approximately 15 hrs whereas for PF-MPM it was 18 hrs resulting

in an increase of 20%.

Figure 4.12: L-Shape panel test: PF-MPM vs PF-FEM implemen-
tation comparison. Load-displacement u paths. The cell density
for the MPM method is 2x2, whereas in both cases l0 = 2.5 mm

and h = 2.5 mm.
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Figure 4.13: L-Shape panel test: PF-MPM vs PF-FEM implemen-
tation comparison. Relative Error vs applied vertical displace-
ment u. The cell density for the MPM method is 2x2, whereas in

both cases l0 = 2.5 mm and h = 2.5 mm.

(a) (b)

Figure 4.14: Comparison of crack path between experimental
(Winkler (2001), see also Ambati et al. (2015a)) (a) and simulation
data (b). The red line represents the crack path obtained from
simulation. Material Points with cp < 0.08 have been removed.
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Next, the sensitivity of the PF-MPM implementation to the cell density is in-

vestigated. Two cell densities are examined, namely 2x2 and 4x4. In the first

case, each active cell contains approximately 2x2 = 4 Material Points whereas

in the second approximately 4x4 = 16 Material Points are used to represent the

deformable domain. The total number of material points utilized in each case is

30204 and 120404, respectively. The grid comprises 110 x 110 = 12100 cells with

a cell spacing h = 5 mm for all runs. Four cases are considered for the length

scale, namely l0 = {10, 5, 2.5, 1}mm.

The corresponding load paths are summarized in Figs. 4.15 and 4.16. Indicative

results are presented in Table 4.1 where it can be seen that for the same length

scale parameter, the influence of the cell density on the both the peak load and

the corresponding critical displacement is marginal (less than 1%).

To further examine the robustness of the proposed scheme, the sensitivity of

the analysis results on the cell spacing (h) is also investigated. Four cases are

considered for the size h of the background grid, i.e., h = 10 mm, h = 5 mm,

h = 2.5 mm and h = 1 mm whereas the cell density is kept constant at 2x2. The

corresponding number of cells for cell spacing h = 10 mm, h = 5 mm, h = 2.5

mm and h = 1 mm are 55x55 = 3025, 110x110 = 12100, 220x220 = 48400 and

510x510 = 260100, respectively. The derived results are presented in Table 4.2

whereas the corresponding load paths are shown in Fig. 4.17 and 4.18

Opposite to the behaviour identified when varying the cell density, the cell spac-

ing seems to have a stronger impact on the structural response. Differences in

the measured peak load and corresponding displacement presented in Table

4.2 significantly increase with decreasing values of the length scale parameter

l0. This is expected as the smaller the value of the length scale parameter for a

given cell size, the less the diffusion of damage around the crack path due to the

phase field evolution, thus the more mesh-dependent the crack path is. When

h ≤ l0, the results derived from both the different cell spacings converge; this is

in accordance with the remarks presented in Miehe et al. (2010b) regarding the
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effect of the the length scale to mesh size ratio on the accuracy of results.

The crack paths corresponding to the different length scale parameters are shown

in Figs. 4.19(a)-(d) and 4.19(e)-(h) for cell spacing h = 5 mm and h = 2.5 mm,

respectively. The experimentally observed crack path (Winkler (2001), see also

Ambati et al. (2015a)), is shown in Fig. 4.14(a). The geometry of the crack path

is only marginally affected when h ≤ l0. However, when h > l0 (see. Figs.

4.19(c),(d) and (h)) the crack pattern diverges from the experimental observa-

tion.

In Fig. 4.20 the evolution of the phase field is shown for l0 = 2.5 mm and h = 2.5

mm. Fig. 4.20(a) represents the degradation of structure when the critical load is

observed. A degradation is also observed from time steps u = 0.30 mm to u = 1

mm in the region around of the load due to the cyclic load. In particularly, this

region is on tension for load steps 300 until 800.

Figure 4.15: Influence of cell density for length scale parameter
for l0 = 1 mm and l0 = 2.5 mm. The cell spacing is h = 5 mm.

4.4.3.1 Distortion error: PF-FEM vs PF-MPM

To assess the advantages of PF-MPM as compared to PF-FEM with regards to

mesh distortion errors, the L-shaped panel benchmark is re-run considering
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Figure 4.16: Influence of cell density for length scale parameter
for l0 = 5 mm and l0 = 10 mm. The cell spacing is h = 5 mm.

Cell spacing 5 mm
Critical vertical displacement [mm] Critical load [kN]

l0 [mm] Cell Density Diff Cell Density Diff
2x2 4x4 [%] 2x2 4x4 [%]

10 0.255 0.254 0.392 12.5692 12.6099 0.323
5 0.264 0.262 0.757 14.0292 14.0343 0.036

2.5 0.286 0.284 0.699 15.9206 15.8939 0.167
1 0.345 0.345 0.000 19.2705 19.2039 0.345

Table 4.1: L-Shape panel test for different cell density

Cell density 2x2
Critical vertical displacement [mm] Critical load [kN]

l0
[mm]

Cell spacing [mm] Cell spacing [mm]

10 5 2.5 1 10 5 2.5 1
10 0.255 0.254 0.252 0.252 13.323 12.617 12.569 12.455
5 0.270 0.264 0.256 0.256 15.213 14.029 13.783 13.631

2.5 0.310 0.286 0.271 0.266 18.046 15.921 15.216 14.816
1 0.424 0.345 0.320 0.286 25.156 19.271 17.933 16.915

Table 4.2: L-Shape panel test for different cell spacing
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Figure 4.17: Influence of cell spacing h for length scale parameter
for l0 = 1 mm and l0 = 2.5 mm. The cell density is 2x2.

Figure 4.18: Influence of cell spacing h for length scale parameter
for l0 = 5 mm and l0 = 10 mm. The cell density is 2x2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.19: Phase Field in L Panel Test for cell spacing h = 5
mm ((a)-(d)) and h = 2.5 mm ((e)-(h)), respectively. Figs. (a) and
(e) are for l0 = 10 mm, (b) and (f) are for l0 = 5 mm, (c) and (g)

are for l0 = 2.5 mm and (d) and (h) are for l0 = 1 mm.

(a) (b) (c) (d)

Figure 4.20: Phase Field in L-Panel test for l0 = 2.5 mm and
h = 2.5 mm. (a) u = 0.27 mm, (b) u = 0.30 mm, (c) u = 0.45 mm

and (d) u = 1.00 mm.
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a significantly larger critical fracture energy density Gc = 8.9 · 10−1 kN/mm.

All the other material parameters, boundary conditions and solution procedure

parameters remain unchanged. The cell spacing is chosen to be h = 10 mm with

cell density 3 x 3 while the length scale parameter is equal to l0 = 10 mm. The

same parameters and mesh size are also utilized for the PF-FEM simulation. A

constant displacement increment ∆u = 10−1 mm is considered until complete

failure.

The resulting load-displacement diagrams of both schemes are represented in

Fig. 4.21. The critical vertical displacement and critical load obtained by the

FEM are ucrPF−FEM = 25.6 mm and FcrPF−FEM = 1324.12 kN, respectively;

whereas the critical vertical displacement and critical load obtained by the MPM

are ucrPF−MPM = 25.6 mm and FcrPF−MPM = 1316.16 kN, respectively. The dif-

ferences in critical values are less than 0.60%. However, after the critical load

(crack initiation) the PF-FEM equilibrium path significantly diverges from the

corresponding PF-MPM solution.

Both the evolution of phase field and the deformed configuration of the spec-

imens are shown in Figs. 4.22 and 4.23 for the PF-FEM and PF-MPM, respec-

tively. From Fig. 4.22, it is obvious that in PF-FEM the elements are highly dis-

torted especially after the critical load (see Figs. 4.22(b) and 4.22(c)). PF-MPM

is free of mesh-distortion errors thus allowing for a better representation of the

actual crack path with the specimen being able to rotate until complete failure

(see Fig. 4.23(d)). However, PF-FEM fails to converge for displacements u > 278

mm. Fig. 4.23 also represent the active cells in the corresponding time-steps.

4.4.4 Notched plate with hole

In the final example, a notched plate with hole is examined and compared to the

experimental crack path obtained by Ambati et al. (2015a). In this examples, the

influence of staggered solution algorithm in the accuracy of the solution is also
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Figure 4.21: MPM vs FEM phase field implementation compari-
son for h = 10 mm, l0 = 10 mm and Gc = 8.9 · 10−1 kN/mm.

investigated. This involves both the number of the staggered iterations and the

displacement increment required to achieve convergence.

The geometry and material parameters are presented in Fig. 4.24. The rectangu-

lar plate consists of 178236 material points. The Eulerian grid is formulated by

73080 (203 x 360) cells with cell spacing hx ≈ 0.3497 mm and hy = 0.35 mm in x

and y direction, respectively. The dimensions of the grid are 71 mm x 126 mm

(xmin = ymin = −3.00 mm , xmax = 68 mm ymax = 123 mm). The cell spacing

is chosen in order to be less or equal than the length scale parameter l0. Four

node cells with bilinear basis functions are used for the grid. The active cells at

the beginning of the analysis are shown in Fig. 4.25. Plane stress conditions are

assumed. Material points are randomly distributed in cells with the cell density

varies from 1 to 4 material points per cell.

Zero displacement boundary conditions, i.e., upx = upy = 0, are imposed in all

material points in the boundary of the lower pin. Next, the vertical displace-

ments of all material points in the boundary of upper pin are kinematically

constrained to have the same vertical displacement. The penalty parameter was

chosen to be a = 1000000. Finally, the displacement is monitored and controlled

in the boundary of upper pin.
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(a)

(b)

(c)

Figure 4.22: Phase Field Finite Element Method in L-Panel test
for h = 10 mm, l0 = 10 mm and Gc = 8.9 · 10−1 kN/mm. (a)

u = 25.60 mm, (b) u = 90 mm, (c) u = 278 mm.
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(a) (b)

(c) (d)

Figure 4.23: Phase Field Material Point Method in L-Panel test
for h = 10 mm, l0 = 10 mm and Gc = 8.9 · 10−1 kN/mm. (a)
u = 25.60 mm, (b) u = 90 mm, (c) u = 278 mm and (d) u = 392

mm.
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To investigate the influence of staggered solution algorithm four cases are con-

sidered with constant displacement increment ∆u = 10−2, ∆u = 5 · 10−3 mm,

∆u = 10−3 mm and ∆u = 5 · 10−4 mm. Table 4.3 presents the influence of stag-

gered iterations Nstaggs and displacement increment ∆u on critical load and its

corresponding displacement. In all cases tolu = 10−5.

Increasing the number of staggered iterations, the fidelity of the solution is im-

proved. After the third staggered iteration the algorithm is converging to a

value and additional iterations marginally affect the results at the cost of in-

creased number of evaluation. As shown in Table 4.3, i.e., ∆u = 10−3 mm and

∆u = 5 · 10−4 mm, when the displacement increment ∆u is sufficiently small

then there is no need for additional staggered iterations.

Fig. 4.26 presents the influence of displacement increment ∆u, for Nstaggs =

1. For large values of displacement increment the results are overestimated.

However, as long as the displacement increment is decreased the results are

converging. Whereas, Fig. 4.27 represents the influence of staggered iterations

on the results for ∆u = 5 · 10−3 mm. The load-displacement curve is stabilized

in third staggered iteration.

Fig. 4.28 represent the evolution of phase field in four time steps u = 0.28 mm,

u = 0.35 mm, u = 0.96 mm and u = 1.20 mm, respectively. Whereas, Fig. 4.29

present the evolution of hydrostatic stress for the same time steps. Both Figs.

4.28 and 4.29 are referred to the solution obtained by staggered Nstaggs = 1

iteration with constant displacement increment ∆u = 10−3 mm. the analysis

time for this simulation was approximately 37hrs. The crack paths of both the

proposed method and the experimental data from Ambati et al. (2015a) have

good agreement and they are presented in Fig. 4.30.
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Figure 4.24: Notched Plate with Hole: Geometry and boundary
conditions.

Figure 4.25: Notched Plate with Hole: Active cells in the begin-
ning of the analysis.
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Critical vertical displacement [mm] Critical load [kN]
∆u

[mm]
Nstaggs =

1
Nstaggs =

2
Nstaggs =

3
Nstaggs =

1
Nstaggs =

2
Nstaggs =

3
10−2 0.400 0.350 0.330 10.233 9.421 9.103

5 · 10−3 0.355 0.325 0.315 9.501 9.006 8.823
10−3 0.309 0.301 0.298 8.722 8.585 8.534

5 · 10−4 0.302 0.297 0.296 8.595 8.516 8.487

Table 4.3: Influence of Staggered Solution Algorithm

Figure 4.26: Load displacement response dependence on dis-
placement increment size for 1 staggered iteration (Nstaggs = 1).

Figure 4.27: Load displacement response dependence on num-
ber of staggered iterations (∆u = 5 · 10−3 mm).
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(a) (b)

(c) (d)

Figure 4.28: Phase Field in Notched Plate with Hole test for (a)
u = 0.28 mm, (b) u = 0.35 mm, (c) u = 0.96 mm and (d) u =
1.20 mm, respectively. Displacement increment ∆u = 10−3 and

staggered with 1 iteration.
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(a) (b)

(c) (d)

Figure 4.29: Hydrostatic stress in Notched Plate with Hole test
for (a) u = 0.28 mm, (b) u = 0.35 mm, (c) u = 0.96 mm and (d)
u = 1.20 mm, respectively. Displacement increment ∆u = 10−3

and staggered with 1 iteration. Material Points with cp < 0.08
have been removed.



132 Chapter 4. Phase Field Material Point Method for brittle fracture

(a) (b)

Figure 4.30: Comparison of crack path between experimental
Ambati et al. (2015a) (a) and simulation data (b). Material Points

with cp < 0.08 have been removed.

4.5 Conclusions

In this Section, a MPM for the simulation of crack propagation pertinent to brit-

tle fracture is formulated. The crack geometry and underlying brittle fracture

mechanics have been considered on the basis of a phase field formulation, ap-

propriately adapted to be introduced within the MPM framework. Using this

approach, the need for algorithmically tracking the crack path is alleviated thus

reducing the underlying computational complexity. The deformable domain is

approximated using a set of material points that are allowed to move within a

fixed Eulerian mesh.

Fusing MPM with phase field modelling results in a coupled system of gov-

erning equations, namely the equilibrium and phase field evolution equations.

Coupling is achieved through the definition of a history field that tracks the

evolution of the tensile part of the elastic energy density. The latter is derived
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on the basis of a spectral decomposition of the elastic strain tensor.

The resulting coupled field equations is numerically treated using a staggered

solution scheme. In this, the phase field evolution equations are solved for con-

stant displacement fields and a prediction for the phase field distribution is de-

rived which is then used to iterate for the updated displacement field through

the equilibrium equations.

A set of benchmark applications is presented to verify the proposed scheme

whereas validation is also performed through experimental data available in

the literature. From these, the accuracy of the method is established both in

predicting the equilibrium paths as well as representing the actual geometry of

the crack paths. The method succeeds in providing realistic crack path geome-

tries as the background mesh is reused within each computational cycle, thus

avoiding mesh distortion errors pertinent to the standard FEM. However, this

comes at an increased computational cost for the MPM implementation con-

sidered in this Section, as re-factorization of the underlying stiffness matrix is

required in each computational cycle. In the proposed scheme discontinuities

are naturally created, since material points are naturally separated. This is not

the case in the classical Phase Field Finite Element Method where Gauss points

are always located in Gauss positions.





Chapter 5

Material Point Method for

anisotropic brittle fracture

Part of this chapter is published in the Archive of Applied Mechanics (Kakouris

and Triantafyllou, 2018a).

5.1 Introduction to anisotropic fracture

Anisotropy occurs naturally in several materials such as granitic rocks (Nasseri

and Mohanty, 2008; Chandler et al., 2016), biological tissues (Holzapfel et al.,

2000), single crystals (Ast et al., 2014) and composite sheets (Takei et al., 2013)

due to inherent heterogeneities, inclusions and/or constituent distribution that

in many cases are distributed in a random fashion. Industrial materials may

also exhibit anisotropy due to their controlled or partially controlled manufac-

turing process as in the case of laminated composites. Anisotropy significantly

affects crack formation. In cases of even weak anisotropy, stress concentrations

pertinent to crack initiation and propagation will preferentially develop along

the weak directions of the deformable medium. This intriguing mechanical re-

sponse is being often highlighted in experiments (Takei et al., 2013).

135
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Recently, phase field models have been extended to account for anisotropic frac-

ture. In anisotropic fracture, the fracture energy is oriented-dependent. Thus,

the propagation of cracks arise from the competition between the elastic energy

release rate maximization and the fracture energy minimization. In phase field

modelling, this is treated by introducing an anisotropic crack density functional.

The anisotropic crack density functional modifies the fracture energy to be ex-

plicitly oriented-dependent. Recent works that demonstrate the merits of phase

field models in anisotropic media are presented in Li et al. (2015), Teichtmeister

et al. (2017), Gültekin et al. (2018) and Nguyen et al. (2017).

Fracture modelling with anisotropic fracture energy in MPM does not exist in

the literature. In this chapter, the proposed PF-MPM (see chapter 4) is refor-

mulated to incorporate a general anisotropic phase field description for crack

propagation and its merits and bottlenecks are assessed as compared to a FEM

implementation.

5.2 Phase field model for anisotropic fracture

5.2.1 Anisotropic phase field modelling

In the following, the case of an arbitrary deformable domain Ω is considered

with external boundary ∂Ω and a crack path Γ as shown in Fig. 5.1(a). The

deformable domain Ω is subjected to body forces b = {b1, b2, b3}. Furthermore,

a set of traction/pressure loads t̄ is applied on the boundary ∂Ωt̄ ⊆ ∂Ω. Fi-

nally, a prescribed displacement field, denoted as ū, is imposed on the bound-

ary ∂Ωū ⊆ ∂Ω.

As described in Section 2.6.1, the stored energy of the body Ω, Ψs can be ex-

pressed as

Ψs = Ψel + Ψf =

∫
Ω

ψel (ε) dΩ +

∫
Γ

Gc (θ) dΓ. (5.1)
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The term Gc (θ) corresponds to the critical fracture energy density released (sur-

face energy density) over the crack path Γ. In the anisotropic case, this is con-

sidered to explicitly depend on the angle of orientation of the crack path θ (see

Fig. 5.1(a)). Thus, the integral expression representing the fracture energy in Eq.

(5.1) is defined on the assumption that both Γ and θ at the current configuration

are known.

In phase field approximation, the path dependent fracture energy surface in-

tegral is transformed onto a volume integral defined over the entire domain Ω

(Bourdin et al., 2008) - see also, Fig. 5.1(b). Hence, the phase field approxima-

tion gives rise to equation (5.2)

Ψf =

∫
Γ

Gc (θ) dΓ ≈
∫
Ω

ḠcZc,AnisdΩ (5.2)

where the functional Zc,Anis = Zc,Anis (c, θ) and c is the phase field. Parame-

ter Ḡc in Eq. (5.2) corresponds to the energy required to create a unit area of

fracture surface Ac (θ). This is assumed to be constant for all directions with

directionality of the fracture toughness being accounted for in the definition of

the functional.

In view of Eq. (5.2), the definition of the anisotropic phase field functional must

also satisfy the following condition

Ac (θ) =

∫
Ω

Zc,AnisdΩ

i.e., the first integral of the phase field functional should coincide with the frac-

ture surface Ac = Ac (θ).
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(a)

(b)

Figure 5.1: (a) Solid body Ω with a crack path Γ and (b) Phase
field approximation of the crack path Γ.
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5.2.2 Anisotropic crack density functional

To account for the general case of anisotropic material behaviour, Zc,Anis is de-

fined as the 4th order functional utilized in Li et al. (2015) according to Eq. (5.3)

Zc,Anis =

(c− 1)2

4l0
+ l0|∇c|2 + l30

∑
ijkl

γijkl
∂2c

∂xi∂xj

∂2c

∂xk∂xl

 (5.3)

where c(x, t) ∈ [0, 1] is the phase field defined over the domain Ω, l0 ∈ R+ is

the length scale parameter and γijkl, i, j, k, l = 1 . . . 3 are the components of the

4th order tensor corresponding to the anisotropic constitutive behaviour of the

material.

The tensor γ is dimensionless and conveniently defined in the three dimen-

sional space utilizing Voigt notation as

γ =



γ1111 γ1122 γ1133 γ1112 γ1123 γ1113

γ2211 γ2222 γ2233 γ2212 γ2223 γ2213

γ3311 γ3322 γ3333 γ3312 γ3323 γ3313

γ1211 γ1222 γ1233 γ1212 γ1223 γ1213

γ2311 γ2322 γ2333 γ2312 γ2323 γ2313

γ1311 γ1322 γ1333 γ1312 γ1323 γ1313


(5.4)

In the two-dimensional case γ reduces to

γ =


γ1111 γ1122 γ1112

γ2211 γ2222 γ2212

γ1211 γ1222 γ1212

 . (5.5)

The functional Zc,Anis in Eq. (5.3) is defined in the global Cartesian system x =

{x1, x2, x3}. The direction angle of the crack path θ can be explicitly introduced

in the expression of Zc,Anis through a coordinate transformation. In the 2D

case, the Cartesian coordinate system x = {x1, x2} is transformed into xθ =
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{x1θ , x2θ}where axis x1θ is defined along the crack path Γ and axis x2θ is normal

to the crack interface (see Fig. 5.1). Hence, the transformation relation (5.6)

holds

xθ = Rθx (5.6)

where θ is the counter-clockwise angle between x1-axis and x1θ , and the trans-

formation matrix Rθ is defined as

Rθ =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 . (5.7)

Substituting Eq. (5.6) in Eq. (5.3) and further assuming that ∂c (x (xθ)) /∂x ≈

∂c (x (x2θ)) /∂x, the crack density functional Zc,Anis is expressed as (see Ap-

pendix C for more details)

Zc,Anis =

(c− 1)2

4l0
+ l0|∇c|2 + l30

∑
ijkl

γijkl
∂2c

∂xi∂xj

∂2c

∂xk∂xl

 ≈
(c− 1)2

4l0
+ l0

(
∂c

∂x2θ

)2

+ l30γθ

(
∂2c

∂x2
2θ

)2
 (5.8)

where

γθ =γ1111 sin4(θ) + γ2222 cos4(θ) + γ1212 cos2(θ) sin2(θ)

+γ1122 cos2(θ) sin2(θ) + γ2211 cos2(θ) sin2(θ) + γ1112 cos(θ) sin3(θ)

+γ1211 cos(θ) sin3(θ) + γ2212 sin(θ) cos3(θ) + γ1222 sin(θ) cos3(θ).

(5.9)

Eq. (5.8) can be conveniently employed to highlight some interesting aspects of

the adopted phase field formulation for the case of anisotropic fracture. Taking

the Euler-Lagrange equation of Eq. (5.8), the state equation (5.10) is derived for
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the phase field

c− 1− 4l20∆c+ 4l40
∑
ijkl

γijkl
∂4c

∂xi∂xj∂xk∂xl
= 0⇒

c− 1− 4l20

(
∂2c

∂x2
2θ

)
+ 4l40γθ

(
∂4c

∂x4
2θ

)
= 0.

(5.10)

Eq. (5.10) can be numerically solved subject to the following boundary condi-

tions
c (0) = 0

∂c (0)

∂x2θ

= 0

∂c (±∞)

∂x2θ

(
≈ ∂c (±xlb)

∂x2θ

)
= 0

∂2c (±∞)

∂x2
2θ

(
≈ ∂2c (±xlb)

∂x2
2θ

)
= 0

(5.11)

where xlb is the distance from the crack Γ to the boundary; assuming a value

xlb = 50l0 yields a reasonable approximation. It is obvious from Eq. (5.9) that

if γijkl = 0 then γθ = 0; hence the fourth order anisotropic phase field model

introduced in Eqs. (5.10) reduces to the second order phase field model intro-

duced in Eq. (2.46). For that case, the boundary conditions introduced in Eq.

(5.11) reduce to

c (0) = 0

∂c (±∞)

∂x2θ

(
≈ ∂c (±xlb)

∂x2θ

)
= 0.

(5.12)

A fourth order isotropic phase field model can be derived if γθ = γs, where γs is

a constant (i.e. independent of angle θ). For instance, if the fourth order tensor

γ of Eq. (5.5) assumes the following form

γ =


γs 0.50γs 0

0.50γs γs 0

0 0 γs

 (5.13)
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then Eq. (5.9) becomes

γθ =γ1111 sin4(θ) + γ2222 cos4(θ) + γ1122 cos2(θ) sin2(θ)

+γ2211 cos2(θ) sin2(θ) + γ1212 cos2(θ) sin2(θ)

=γs
(
sin4(θ) + cos4(θ) + 2 cos2(θ) sin2(θ)

)
=γs.

(5.14)

5.2.3 Particular cases of the tensor γijkl

A comparison between the second and fourth order phase field model is pre-

sented in Fig. 5.2. In Fig. 5.2, the length scale parameter is chosen to be l0 = 0.01

m while γθ = 1.00 is selected to derive a fourth order isotropic phase field

model. Fourth order models offer a smooth representation of the phase field

(Fig. 5.2(a)) as well as its first derivative (Fig. 5.2(b)). However, this is not the

case for second order phase field models. Fourth order models also improve

the accuracy and the convergence rate of the resulting numerical scheme as has

been reported in Borden et al. (2014), Amiri et al. (2016), Hesch et al. (2016).

Some special cases are orthotropic and cubic symmetry of surface energy den-

sity Gc (θ). For orthotropic symmetry the tensor γ is rewritten in 2D as

γ =


γ1111 γ1122 0

γ1122 γ2222 0

0 0 γ1212

 (5.15)

whereas in cubic symmetry as

γ =


γ1111 γ1122 0

γ1122 γ1111 0

0 0 γ1212

 (5.16)

in material principal axes. Figs. 5.3(a), 5.3(b), and 5.3(c) demonstrate the phase



Chapter 5. Material Point Method for anisotropic brittle fracture 143

(a)

(b)

(c)

Figure 5.2: Second / Fourth order phase field model: (a) Phase
field approximation c (x2θ ) . (b) First derivative of phase field
∂c(x2θ )
∂x2θ

and (c) Crack density functional Zc,Anis (c(x2θ )). Γ rep-
resents the position of the crack (see also Fig. 5.1).
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field, its first derivative and crack density functional, respectively for several

angles θ considering the case of orthotropic symmetry. In contrast, Figs. 5.3(a),

5.3(b) and 5.3(c) represent the same variables for cubic symmetry. In Figs. 5.3

and 5.4, the length scale parameter is chosen to be l0 = 0.01 m. Furthermore,

the anisotropic parameters are chosen to be γ1111 = 20, γ2222 = 1, γ1122 = 0

and γ1212 = 74 for orthotropic symmetry and γ1111 = γ2222 = 1, γ1122 = 0 and

γ1212 = 74 for cubic symmetry. In Figs. 5.2, 5.3 and 5.4, Γ represents the position

of the crack.

The surface energy density Gc (θ) for each angle θ is numerically evaluated as

Gc (θ) =

∫
Γ

Gc (θ) dΓ ≈
∫ +∞

−∞
ḠcZc,Anisdx2θ ≈

∫ +xlb

−xlb
ḠcZc,Anisdx2θ . (5.17)

Figs. 5.5(a) and 5.5(b) illustrate the surface energy densities Gc (θ) and their re-

ciprocals 1/Gc (θ), respectively in polar coordinates for isotropic symmetry with

second and fourth order phase field model. The cases of cubic and orthotropic

symmetry are also shown in Fig. 5.5. To derive these polar plots, the parame-

ter Ḡc is chosen to be Ḡc = 0.70710 kN/m for the fourth order isotropic, cubic

and orthotropic symmetry whereas Ḡc = 1 kN/m for second order isotropic

symmetry. The parameter Ḡc is chosen so that all previously mentioned mod-

els have the same minimum value of surface energy density Gcmin = 1 kN/m.

Fig. 5.5 also represent the twofold and fourfold symmetry into orthotropic and

cubic symmetry (Ting, 1996), respectively.

5.2.4 Influence of tensor γijkl in surface energy density Gc (θ)

To further highlight the assumed anisotropic material behaviour with respect

to fracture, the form of the surface energy density Gc (θ) as a function of the

fracture orientation θ is investigated in this Section for characteristic cases of

anisotropy. Detailed derivations of the surface energy plots are provided in

Appendix C.
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(a)

(b)

(c)

Figure 5.3: Orthotropic symmetry: (a) Phase field approxima-

tion c (x2θ ) (b) First derivative of phase field
∂c(x2θ )
∂x2θ

and (c)
Crack density functional Zc,Anis (c(x2θ )). Γ represents the po-

sition of the crack (see also Fig. 5.1).
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(a)

(b)

(c)

Figure 5.4: Cubic symmetry: (a) Phase field approximation

c (x2θ ) (b) First derivative of phase field
∂c(x2θ )
∂x2θ

and (c) Crack
density functional Zc,Anis (c(x2θ )). Γ represents the position of

the crack (see also Fig. 5.1).
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(a)

(b)

Figure 5.5: Polar plots: (a) Surface energy densities Gc (θ) and
(b) their reciprocals 1/Gc (θ) in polar coordinates.
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In this work, the cases of both cubic and orthotropic symmetry are considered

for the surface energy density. Thus, in two-dimensional case, the tensor γ

reduces to Eq. (5.16) for cubic and Eq. (5.15) for orthotropic symmetry.

Examples of materials that possess cubic symmetry are single-crystals (Face

Centered Cubic-FCC and Body-Centered Cubic-BCC) e.g. nickel (Sung and

Chen, 2015), minerals e.g. oxides, sulphides, silicates and halides (Tromans and

Meech, 2002) and polycrystalline materials e.g. solar-grade polycrystalline sili-

con (Liu and Juhre, 2018). Anisotropic materials with orthotropic symmetry are

wood (Xu et al., 1996), sheet metals e.g. dual phase high strength CR340LA (Li

et al., 2016), uni-directional fibre-reinforced composite laminae e.g. unidirec-

tional carbon-fibre reinforced epoxy HTA/6376 (Cahill et al., 2014), biological

(Gültekin et al., 2018) and bone tissues (Doblaré et al., 2004).

In Fig. 5.6, the distribution of the surface energy density Gc (θ) and its recip-

rocal 1/Gc (θ) is shown for the case of increasing values of component γ1111

while all other components are kept constant. When γ1111 = γ2222 the case

of four-fold symmetry, i.e., cubic symmetry is manifested whereas in the case

of γ1111 6= γ2222 the case of two-fold symmetry, i.e., orthotropic symmetry is re-

vealed. Increasing values of component γ1111 result in increasing surface energy

density values along the 90 deg and 270 deg fracture directions.

Similarly, increasing values of component γ2222 when all other components of

the anisotropic fracture tensor are kept constant results in increasing values of

the surface energy density along the 0 deg and 180 deg directions of fracture as

shown in Fig. 5.7.

Thus, the values of the normal components of the tensor γ control the extreme

values of the corresponding surface energy density. The effect of the shear com-

ponents of the tensor, i.e., γ1122(= γ2211) and γ1212 is illustrated in Figs. 5.8 and

5.9, respectively. Both parameters control the extreme values of both the surface

energy density and its reciprocal at a rotated coordinate system with respect to
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(a)

(b)

Figure 5.6: Polar plots of (a) surface energy density Gc (θ) and
(b) reciprocal of surface energy density 1/Gc (θ) for increasing

values of component γ1111.
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(a)

(b)

Figure 5.7: Polar plots of (a) surface energy density Gc (θ) and (b)
reciprocal of surface energy density1/Gc (θ) for increasing val-

ues of component γ2222.
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the origin.

5.2.4.1 Convex and Non-convex reciprocals of surface energy density 1/Gc (θ)

According to the choice of anisotropic parameters γijkl the reciprocal of surface

energy density 1/Gc (θ) can be either convex or non-convex. This can be illus-

trated by plotting the reciprocal of surface energy density in polar coordinates.

Non-convex reciprocal plots of surface energy density lead to strong anisotropic

materials with forbidden directions for the crack paths. Convex reciprocal plots

results in weak anisotropic materials with no forbidden crack paths. A way to

identify the forbidden portions of a reciprocal plot was suggested by Li et al.

(2015) by introducing the surface stiffness of the surface energy, i.e.

Sr (θ) =
∂2Gc (θ)

∂θ
+ Gc (θ) . (5.18)

This can be justified by the fact that the energy change due to crack propagation

is a function of the surface stiffness, i.e. Ψ̇f v Sr (θ). Hence, the sign of Ψ̇f

depends upon the sign of the quantity in Eq. (5.18). Indeed if Sr (θ) > 0 then

Ψ̇f > 0 and the surface energy is stable against, whereas if Sr (θ) < 0 and Ψ̇f >

0 the surface energy is unstable. Further details can be found in Müller and

Métois (2008). In 3D, such an analytical criterion does not exist and geometrical

criteria are used for the forbidden orientation instead (Sekerka, 2005).

The forbidden directions are defined for all θ ∈ [0, 2π] where the surface stiff-

ness is negative Sr (θ) < 0. In the same manner a crack can propagate in direc-

tions where Sr (θ) > 0. The influence of non-convexity in the resulting crack

path is investigated in Section 5.3.3.1.

To better illustrate the influence of the convexity on the forbidden directions,

two examples for the surface energy densities are considered one non-convex
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(a)

(b)

Figure 5.8: Polar plots of (a) surface energy density Gc (θ) and
(b) reciprocal of surface energy density 1/Gc (θ) for increasing

values of component γ1122.
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(a)

(b)

Figure 5.9: Polar plots of (a) surface energy density Gc (θ) and
(b) reciprocal of surface energy density 1/Gc (θ) for increasing

values of component γ1212.
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and one with convex reciprocal. Figs. 5.10(a), 5.11(a), 5.12(a) and 5.13(a) are ref-

ereed to the non-convex case whereas Figs. 5.10(b), 5.11(b), 5.12(b) and 5.13(b)

to the convex one. The non-convex polar plots are reproduced with anisotropic

parameters γ1111 = γ2222 = 1, γ1122 = 0 and γ1212 = 74 while the convex polar

plots with γ1111 = γ2222 = 1, γ1122 = 0 and γ1212 = 0. The length scale parameter

is chosen to be l0 = 0.01 m and Ḡc = 0.50 kN/m.

Figs. 5.10(a), (b) and 5.11(a), (b) represent the surface energy densities Gc (θ) and

their reciprocals 1/Gc (θ), respectively. Similarly, their second derivatives ∂2Gc(θ)
∂θ

and their surface stiffness Sr (θ) are presented in Figs. 5.12(a), (b) and 5.13(a),

(b) for the non-convex and convex case, respectively. The positive (Sr (θ) > 0)

and negative (Sr (θ) < 0) surface stiffness is also marked in Figs. 5.10, 5.11 and

5.13 with blue and red colour, respectively. As it can be seen in Figs. 5.10(b),

5.11(b) and 5.13(b), in convex case there are only blue portions of the curves

since the surface stiffness is always positive.

5.2.5 Derivation of coupled strong form

The strong form of the anisotropic brittle fracture problem is established herein

by employing the same methodology introduced in Section 2.6.2.1 for the isotropic

second-order phase field model. Hence, the energy balance equation of the

anisotropic brittle fracture problem is defined as

K̇ (u̇) + Ẇ int (u̇, ċ,∇ċ)− Ẇext (u̇) = 0 (5.19)

where the rate of internal work functional Ẇ int (u̇, ċ,∇ċ) is evaluated as

Ẇ int (u̇, ċ,∇ċ) =
dΨs

dt
=

d

dt

∫
Ω

(
ψel + ḠcZc,Anis

)
dΩ. (5.20)
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(a)

(b)

Figure 5.10: Polar plots of (a) a non-convex and (b) a convex
surface energy density. In Subfigs. (a) and (b), the red portions of
the curves are refereed to Sr (θ) < 0 while the blue to Sr (θ) > 0.
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(a)

(b)

Figure 5.11: Polar plots of the reciprocals 1/Gc (θ) of (a) the non-
convex (see 5.10(a)) and (b) convex (see 5.10(b)) surface energy
densities. The red portions of the curves are refereed to Sr (θ) <

0 while the blue to Sr (θ) > 0.
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(a)

(b)

Figure 5.12: Polar plots of the second derivatives ∂2Gc(θ)
∂θ of (a)

the non-convex (see 5.10(a)) and (b) convex (see 5.10(b)) surface
energy densities.
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(a)

(b)

Figure 5.13: Polar plots of the surface stiffness Sr (θ) of (a) the
non-convex (see 5.10(a)) and (b) convex (see 5.10(b)) surface en-
ergy densities. The red portions of the curves are refereed to

Sr (θ) < 0 while the blue to Sr (θ) > 0.
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Applying the divergence theorem and performing the necessary algebraic ma-

nipulation, the balance of energy equation (5.19) becomes

∫
∂Ωt̄

([σn− t̄] · u̇) d∂Ω +

∫
Ω

([ρü−∇ · σ − b] · u̇) dΩ+

∫
∂Ω

Ḡcl02∇c− Ḡcl30
∑
ijkl

γijkl

(
∂3c

∂xj∂xk∂xl

)
− Ḡcl30

∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

) · nċ
 d∂Ω+

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂2c

∂xk∂xl

)
+ Ḡcl30

∑
ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂c

∂xl

)) · n
 d∂Ω+

∫
Ω

ψelc +
Ḡc (c− 1)

2l0
− Ḡcl02∆c+ 2Ḡcl30

∑
ijkl

γijkl

(
∂4c

∂xi∂xj∂xk∂xl

) ċ dΩ = 0

(5.21)

where σ is the stress field derived from relation (2.50) whereas n is the outward

unit normal vector of the boundary and ψelc = ∂ψel/∂c = 2 (1− kf ) cψ+
el is the

derivative of elastic strain energy density with respect to the phase field c. The

methodology employed for deriving Eq. (5.21) is presented in Appendix B.

Since Eq. (5.21) must hold for arbitrary values of u̇, ċ and ∇ċ · n the resulting

strong form is eventually derived as



∇ · σ + b = ρü on [(0)Ω, (t)Ω]

(
4l0 (1− kf )H

Ḡc
+ 1

)
c− 4l20∆c

+ 4l40
∑
ijkl

γijkl
∂4c

∂xi∂xj∂xk∂xl
= 1

on [(0)Ω, (t)Ω]

(5.22)

where H is the history field defined as the maximum value of the tensile part

of the elastic energy density ψ+
el obtained in the domain [0, t] that satisfies the

Kuhn-Tucker conditions (Eqs. (2.59)).



160 Chapter 5. Material Point Method for anisotropic brittle fracture

Finally, the coupled field equations (5.22) are subject to the set of boundary and

initial conditions presented in Eq. (5.23)



σn = t̄, on [(0)∂Ω
t̄
, (t)∂Ω

t̄
]

u = ū, on [(0)∂Ωū,
(t)∂Ωū]

u = (0)u, on (0)Ω

u̇ = (0)u̇, on (0)Ω

ü = (0)ü, on (0)Ω[
4l20∇c− 2l40

∑
ijkl

γijkl

(
∂3c

∂xj∂xk∂xl

)
−2l40

∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

)]
· n = 0

, on [(0)∂Ω, (t)∂Ω]

2l40
∑

ijkl γijkl

(
∂2c

∂xk∂xl

)
+ 2l40

∑
ijkl γijkl

(
∂2c

∂xi∂xj

)
= 0, on [(0)∂Ω, (t)∂Ω]

c = (0)c, on (0)Ω.

(5.23)

5.3 Material Point Method for anisotropic brittle fracture

5.3.1 Discrete equations

The governing coupled Eqs. (5.22) are approximated with the MPM following

the methodology introduced in Section 4.2. In this, the discrete equilibrium

equations remain the same, as described in Section 4.2.1. Phase field discrete

equation for anisotropic brittle fracture within a MPM setting are introduced in

Section 5.3.1.1.
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5.3.1.1 Anisotropic phase field discrete equations

The discrete form of the anisotropic phase field governing equations introduced

in the second of Eqs. (5.22) is derived with the methodology employed in Sec-

tion 4.2.2. In particular, the phase field strong form introduced in the second of

Eqs. (5.22) becomes

∫
Ω

(4l0(1− kf )H
Ḡc

+ 1
)
cq dΩ +

∫
Ω

4l20(∇c : ∇q) dΩ

+

∫
Ω

4l40
∑
ijkl

γijkl

(
∂2c

∂xi∂xj

∂2q

∂xk∂xl

)
dΩ

=

∫
Ω
q dΩ

(5.24)

where c is the phase field and q are the corresponding weighting functions.

The phase field c and the corresponding weighting functions q are defined with

respect to the following spaces, i.e.,

Y = {c ∈ H1 (Ω)}

and

Q = {q ∈ H1 (Ω)},

respectively. Introducing the MPM approximation (Eq. (3.42)) into Eq. (5.24),

the following expression is retrieved

Np∑
p=1

FpcpqpΩp +

Np∑
p=1

4l20p(∇cp : ∇qp)Ωp

+

Np∑
p=1

4l40p

∑
ijkl

γijklp

(
∂2cp
∂xi∂xj

∂2qp
∂xk∂xl

)
Ωp =

Np∑
p=1

qpΩp

(5.25)

where cp, qp and γijklp are the phase field, weighting functions and tensor com-

ponents evaluated at the material point p. Parameter Fp in Eq. (5.25) is ex-

pressed as

Fp =
4l0p(1− kfp)Hp

Ḡcp
+ 1 (5.26)
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where l0p , kp, Hp and Ḡcp are the length scale parameter, model parameter, his-

tory field and critical fracture energy density of material point xp.

Both cp and qp are interpolated at the nodal points of the background mesh,

using the higher-order B-spline interpolation functions as in the case of the dis-

placement field. Use of high-order B-spline functions is required in this case,

as second derivatives of the phase field appear on the variational expression

(5.24). Thus, the interpolation relations considered assume the following form

for the test functions and their first and second derivatives, i.e.,

qp =

Nn∑
I=1

NI(xp)qI (5.27)

∇qp =

Nn∑
I=1

∇NI(xp)qI (5.28)

and

∆qp =

Nn∑
I=1

∆NI(xp)qI , (5.29)

respectively. In Eqs. (5.27)-(5.29), NI(xp) are the background mesh shape func-

tions pertinent to the phase field interpolation, qI are nodal values of the corre-

sponding test functions and ∆ is the Laplace operator.

Similarly, the material point phase field is interpolated at the nodal values of its

parent cell cI according to Eq. (5.30)

cp =

Nn∑
I=1

NI(xp)cI (5.30)

whereas a similar interpolation scheme is assumed for its first

∇cp =

Nn∑
I=1

∇NI(xp)cI (5.31)

and second derivative

∆cp =

Nn∑
I=1

∆NI(xp)cI , (5.32)
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respectively. Substituting, Eqs. (5.27),(5.28) and (5.29) into the discrete expres-

sion (5.25), the following relation is established

Rc,AnisI (c) = Sc,AnisI − F cI = 0, I = 1 . . . , Nn (5.33)

where

Sc,AnisI =

Np∑
p=1

FpcpNI(xp)Ωp +

Np∑
p=1

4l20p(∇cp · ∇NI(xp))Ωp

+

Np∑
p=1

4l40p

∑
ijkl

γijklp

(
∂2cp
∂xi∂xj

∂2NI(xp)

∂xk∂xl

)
Ωp

(5.34)

and

F cI =

Np∑
p=1

NI(xp)Ωp, (5.35)

respectively whereas Rc,AnisI (c) denotes the residual nodal values for the phase

field.

Furthermore, introducing the phase field interpolation schemes (Eqs. (5.30) to

(5.32)) and performing the necessary algebraic manipulation, the material point

discrete phase field equations for the case of anisotropic fracture are cast in the

following convenient form

Kc,Anisc = Fc (5.36)

where Kc,Anis is an (Nn × Nn) coefficient matrix whose Kc,Anis
I,J component is

expressed as

Kc,Anis
I,J =

Np∑
p=1

(
FpNJ(xp)NI(xp) + 4l20p

(
∇NJ(xp) · ∇NI(xp)

)
+ 4l40p

∑
ijkl

γijklp

(
∂2NJ(xp)

∂xi∂xj

∂2NI(xp)

∂xk∂xl

))
Ωp.

(5.37)

Vector c is the (Nn × 1) vector of unknown nodal phase fields and Fc is the

(Nn × 1) vector whose F cI component is defined from relation (5.35).
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5.3.2 Anisotropic PF-MPM solution scheme

In this work, a staggered iterative scheme is adopted for the solution of the

system of coupled discrete equations (4.1) and (5.36), as described in Section

4.3. The anisotropic PF-MPM pseudo-code is provided in Algorithm 2.

To evaluate the anisotropic phase field coefficient matrix (see Eq. (5.37)), the

derivatives of basis functions are evaluated in the material principal axes. Thus,

if (∇N(xp)) and (∆N(xp)) are the first and second derivatives of basis func-

tions in global axes, then (∇Nφp(xp)) and (∆Nφp(xp)) are the corresponding

quantities in the material principal axes of the pth material point. In the two-

dimensional case, coordinate transformation from the global system x = {x1, x2}T

to the material principal system xφp = {x1φp
, x2φp

}T is achieved through rela-

tion (5.38) below

 x1φp

x2φp

 =

cos(φp) − sin(φp)

sin(φp) cos(φp)


 x1

x2

⇔ xφp = Rpx (5.38)

and

Rp =

cos(φp) − sin(φp)

sin(φp) cos(φp)

 (5.39)

where φp is the material orientation of the material point (counter clockwise).

5.3.3 Numerical examples

In this Section, a series of benchmark tests are examined with the proposed

anisotropic PF-MPM scheme. For verification purposes, both the PF-MPM as

well as its Finite Element counter part (PF-FEM) have been implemented in an

in-house Fortran code.
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Data: Define computational grid, material point properties ((0)xp,
(0)Ωp, νp,

l0p , kfp , Ḡcp , γijklp , φp, (0)Hp, (0)σp, (0)εp)
for each time step m = 1, 2, .., Nsteps do

Reset the computational grid: Find active part of Eulerian Grid, Nn,
Ndofs, Ncells;

Compute: N((m)xp), ∇N((m)xp), ∆N((m)xp) and B((m)xp), for all
material points (see Section 3.9.9 and Eq. (3.54)). ;

Compute: ∇N((m)xφp) and ∆N((m)xφp), for all material points. ;

Define: δRu(1) = ∆Fext ;
for each staggered iteration k = 1, 2, .., Nstaggs do

Compute: (m)Fc(k) (see Eq. (5.35)). ;
Compute: Kc,Anis (see Eq. (5.37)) according to N((m)xp),
∇N((m)xφp) and ∆N((m)xφp) . ;

Solve: Kc,Anis (m)c(k) = (m)Fc(k) ;
Map phase field ((m)c(k)) from grid nodes to material points.
Evaluate: (m)c

(k)
p , (m)∇c(k)

p , (m)∆c
(k)
p , (m)g

(k)
p , for all material points

(see Eq. (5.30), (5.31),(5.32) and (2.48)). ;
Initialize ∆u(0) = 0 ;
for each inner iteration j = 1, 2, .., Niters do

Compute: Ku (see Eq. (3.59), for constitutive matrix see Eq.
(2.51)) ;

Solve: Kuδu(j) = δRu(j), with displacement control. ;
Compute: ∆u(j) = ∆u(j−1) + δu(j) ;

Compute: ∆ε
(j)
p , for all material points (see Eq. (3.56)). ;

Compute: (m)ε
(j)
p = (m−1)ε

(j)
p + ∆ε

(j)
p , for all material points. ;

Compute: (m)σ
(j)
p , for all material points (see Eq. (2.50)) ;

Compute: ∆Fint(j) = {∆Fint
I },

∆Fint
I =

∑Np
p=1

(m)Ω
(j)
p

(m)σ
(j)
p − (m−1)σ

(j)
p ·BI(

(m)xp) ;
Compute Residual (Displacement-Field):
δRu(j) = ∆Fext −∆Fint(j) ;

Convergence Check (Displacement Field): If ‖δRu(j)‖ ≤ tolu or
j ≥ Niters then "exit" from loop else j = j + 1 go to next inner
iteration. ;

end
Compute: (m)ψ+

elp
, for all material points (see Eq. (2.77))

→ (m)Hp =

{
(m)ψ+

elp
, for (m)ψ+

elp
> (m−1)Hp

(m−1)Hp, otherwise
;

Compute Residual (Phase Field): (m)Rc,Anis(k) (see Eq. (5.33))
according to (m)c

(k)
p , (m)∇c(k)

p , (m)∆c
(k)
p , (m)Hp ;

Convergence Check (Phase Field): If ‖ (m)Rc,Anis(k)‖ ≤ tolc or
k ≥ Nstaggs then "exit" from loop else k = k+ 1 go to next staggered
iteration. ;

end
Compute: ∆up =

∑Nn
I=1NI(

(m)xp)∆u
(j)
I , for all material points. ;

Compute: (m)up = (m−1)up + ∆up, for all material points. ;
Compute: (m)xp = (m−1)xp + ∆up, for all material points. ;

end
Algorithm 2: Anisotropic Phase Field Material Point Method pseudo-code
(Staggered Solution Algorithm).
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5.3.3.1 Square plate under pure tension

In this example, the case of a square plate under pure tension is examined. This

example is used to examine the effect of the material orientation on the direc-

tion of the propagating crack. The geometry and boundary conditions of the

problem are shown in Fig. 5.14(a). Displacements in segment BC are restrained

along Y whereas a pin support is considered at point O restraining displace-

ment in both directions. A load is applied at point A along Y . All points in

segment AB - with the exception of B - are restrained so that their correspond-

ing displacement components along Y are equal. The restraint is achieved by

using a Penalty method with penalty parameter α = 1000000 (see Appendix

A for imposing kinematical constrains with Penalty method in MPM). Plane

strain conditions are assumed with the elastic isotropic properties of the mate-

rial, E = 1000000 kN/m2 and ν = 0.3 for the Young modulus and Poisson’s

ratio, respectively.

To gain insight into the influence of surface energy on the crack path, two cases

are considered, namely that of cubic and orthotropic symmetry. The corre-

sponding material properties are presented in Table 5.1. Furthermore, the polar

plots of their surface energy density Gc (θ) and their reciprocals 1/Gc (θ) for ma-

terial orientation φ = 0 are shown in Figs. 5.14(b) and 5.14(c), respectively.

For cubic symmetry the maximum and minimum surface energy density are

Gcmax = 1.1575 kN/m and Gcmin = 0.7071 kN/m, respectively. For the case

of orthotropic symmetry these are Gcmax = 1.2292 kN/m and Gcmin = 0.7071

kN/m, respectively.

A displacement control Newton Raphson scheme is utilized with the maximum

value of the monitored displacement u = 0.006 m. A force based convergence

criterion is employed with a corresponding tolerance tolu = 1e − 7. A stag-

gered solution procedure has been implemented with a single prediction step

(Nstaggs = 1)
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The problem is solved using both the PF-FEM method and the PF-MPM method.

Results obtained by both solution approaches also agree with the results pro-

vided in Li et al. (2015) where a purely meshless solution procedure was adopted.

The Finite Element mesh used here comprises 29929 quadratic C1-continuous

cells with a mesh size h = 0.00578 m. A 3x3 quadrature rule is used for the

quadratic basis functions as suggested in Hughes et al. (2010). The PF-MPM

mesh consists of 32041 background quadratic C1-continuous cells with a mesh

size h = 0.00578 m. The initial cell density utilized is 3x3 = 9 material points

per cell. All the simulation parameters are summarized in Table 5.1.

Eleven different material orientation angles are considered, namely

φ = {−50o,−40o,−30o,−20o,−10o, 0o,+10o,+20o,+30o,+40o,+50o} (5.40)

The resulting load displacement paths for the case of φ = 0o and φ = −50o are

shown in Figs. 5.15(a) and 5.16(a) for the case of cubic and orthotropic symme-

try, respectively. Results between the MPM and FEM are in perfect agreement,

as also shown by the corresponding relative error shown in Figs. 5.15(b) and

5.16(b). The relative error is defined by Eq. (4.19) and it is smaller than 1%

for both angles. However, as the imposed displacement increases the error in-

creases accordingly. This is attributed to the fact that in PF-MPM the position

of sampling points, i.e., the material points, is updated. Conversely, the crack

geometry is also updated. The variation of the ultimate limit load as a func-

tion of the material orientation angle is shown in Figs. 5.17(a) and 5.17(b) for

cubic and orthotropic symmetry, respectively. Results derived from the MPM

implementation agree with FEM.

Figs. 5.18(a)-(g) and 5.18(b)-(h) represent the phase field evolution for cubic

symmetry and different values of material orientation φ for both PF-FEM and

PF-MPM, respectively. Similarly, Figs. 5.19(a)-(g) and 5.19(b)-(h) represent the
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phase field for orthotropic symmetry of both PF-FEM and PF-MPM, respec-

tively.

The figures show that when φ < 45o, the crack path evolves in the lower half of

the plate for both the cases of cubic and orthotropic symmetry (see Figs. 5.18(a)-

(e), 5.18(b) -(f) and 5.19(a)-(e), 5.19(b)-(f)). However, when the material orien-

tation angle increases, i.e., when 45 < φ < 90o, then the crack path propagates

along the higher half of the plate for cubic symmetry (see Figs. 5.18(g), 5.18(h))

and in the lower half of the plate for orthotropic symmetry (see Figs. 5.19(g),

5.19(h)). This pattern is anticipated due to four-fold and two-fold symmetry

aspects of cubic symmetry and orthotropic materials, respectively.

Material Parameters
Elastic Material Properties Anisotropic Material Properties
E 1000000 [kN/m2]

γ1111
1.00 (Cubic symmetry)

20.00 (Orthotropic symmetry) [–]

ν 0.30 [–] γ2222 1.00 [–]
γ1122 0.00 [–]
γ1212 74.00 [–]
l0 0.01 [m]
Ḡc 0.50 [kN/m]

Gcmax
1.1575 (Cubic symmetry)

1.2292 (Orthotropic symmetry) [kN/m]

Gcmin
0.7071 (Cubic symmetry)

0.7071 (Orthotropic symmetry) [kN/m]

φ -50,-40,-30,-20,-
10,0,+10,+20,+30,+40,+50

[Deg]

Finite Element Method Model
Number Of Control Points 30625
Number Of Cells 173x173=29929
Cell spacing 0.00578 [m]
qξ = qη 2nd
Ξ = H {0, 0, 0, 0.00578, 0.01156, ..., 0.9884, 0.9942, 1, 1, 1}
Quadrature rule 3x3

Material Point Method Model
Number Of Control Points 32761
Number Of Cells 179x179=32041
Cell spacing 0.00578 [m]
qξ = qη 2nd
Ξ = H {0, 0, 0, 0.00559, 0.01117, ..., 0.9888, 0.9944, 1, 1, 1}
Initial Cell density 3x3

Solution Algorithm Parameters
∆u 0.006 [mm]
Nsteps 1000
tolu 1e-7
Nstaggs 1
Penalty parameter α 1000000

Table 5.1: Square plate under pure tension: Simulation parame-
ters.
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(a)

(b)

(c)

Figure 5.14: Square plate under pure tension: (a) Geometry and
boundary conditions. (b) Surface energy densities and (c) their
Reciprocals for material orientation φ = 0 in polar coordinates.
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(a)

(b)

Figure 5.15: Square plate under pure tension: (a) PF-FEM vs PF-
MPM comparison and (b) relative error for cubic symmetry.
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(a)

(b)

Figure 5.16: Square plate under pure tension: (a) PF-FEM vs PF-
MPM comparison and (b) relative error for orthotropic symme-

try.
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(a)

(b)

Figure 5.17: Square plate under pure tension: Critical Load vs
Material Orientation for (a) cubic symmetry and (b) orthotropic

symmetry.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.18: Square plate under pure tension: Phase field for
u = 0.006 m and cubic symmetry. Finite Element Method for
material orientation (a) 0o, (c) +20o, (e) +40o and (g) +50o. Ma-
terial Point Method for material orientation (b) 0o, (d) +20o, (f)

+40o and (h) +50.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.19: Square plate under pure tension: Phase field for
u = 0.006 m and orthotropic symmetry. Finite Element Method
for material orientation (a) 0o, (c) +20o, (e) +40o and (g) +50o.
Material Point Method for material orientation (b) 0o, (d) +20o,

(f) +40o and (h) +50.
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5.3.3.2 Three-point layered bending test

The case of a three point bending test on a composite beam is considered in this

example. This example demonstrates the ability of the PF-MPM in simulating

composite structures with different material anisotropic properties. The geom-

etry and boundary conditions of the specimen are shown in Fig. 5.20(a). Plane

strain conditions are assumed. The beam comprises two layers, namely A and

B. The two layers have similar material properties as shown in Table 5.2. The

elastic isotropic material properties are the same as in the previous example (see

Section 5.3.3.1).

Cubic symmetry is considered for the surface energy density in both layers.

The polar plots of the surface energy density and its reciprocal are shown in

Figs. 5.20(b) and 5.20(c), respectively. The anisotropic parameters considered

are presented in Table 5.2. Three different scenaria are examined for the material

orientation of the two layers. In cases 1 and 2 the material orientations of both

layers are φ = 0o (case 1) and φ = −15o (case 2), respectively. In case 3 the

material orientation of layer A is φ = −15o and layer B is φ = +15o.

A displacement control non-linear static analysis scheme is utilized with a con-

stant displacement increment ∆u ≈ 0.0033 mm at midspan for 1500 steps. Stag-

gered solution algorithm is utilized with a single prediction step (Nstaggs = 1).

A PF-FEM analysis is also made for verification purposes. The simulation pa-

rameters of both PF-MPM and PF-FEM are summarized into Table 5.2.

The corresponding load paths are shown in Fig. 5.21. The two methods demon-

strate very good agreement for all three cases. In Figs. 5.22(a), 5.22(c) and 5.22(e)

the phase field distribution retrieved from PF-FEM for case 1, case 2 and case 3,

respectively is shown. The corresponding results from the PF-MPM are shown

in Figs. 5.22(b), 5.22(d) and 5.22(f). All the results in Fig. 5.22 are retrieved at a

vertical displacement u = 5 mm.
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The crack paths derived from both methods are practically identical. In case

1 - with a material orientation angle - φ = 0o - (see Figs. 5.22(a) and 5.22(b)),

the crack propagates along the Y axis, exactly as in the case of isotropic surface

energy. However, in case 2 (see Figs. 5.22(c) and 5.22(d)) the anisotropic surface

energy forces the crack to diverge from the Y axis. Finally, in case 3 (see Figs.

5.22(e) and 5.22(f)) a crack ’kick’ is observed in the interface of two layers as a

result of their different material orientations φ. The evolution of the hydrostatic

stress for case 3 and PF-MPM implementation is shown in Fig. 5.23 for three

time steps, u = 4.6 mm, u = 4.7 mm and u = 5 mm, respectively. From these

figures it can be verified that the crack propagates only due to tension as a result

of the strain energy density ψel decomposition (see Eq. (2.43)).

Material Parameters
Elastic Material Properties Anisotropic Material Properties

Layer A Layer B Layer A Layer B
E 1000000 1000000 [kN/m2] γ1111 1.00 1.00 [–]
ν 0.30 0.30 [–] γ2222 1.00 1.00 [–]

γ1122 0.00 0.00 [–]
γ1212 74.00 74.00 [–]
l0 0.005 0.005 [m]
Ḡc 0.50 0.50 [kN/m]
Gcmax 1.1575 1.1575 [kN/m]
Gcmin 0.7071 0.7071 [kN/m]

Case 1 0 0
φ Case 2 -15 -15 [Deg]

Case 3 -15 +15
Finite Element Method Model

Number Of Control Points 41584
Number Of Cells 450x90=40500
Cell spacing 0.0022 [m]
qξ = qη 2nd
Ξ {0, 0, 0, 0.0022, 0.0044, ..., 0.9955, 0.9977, 1, 1, 1}
H {0, 0, 0, 0.0111, 0.0222, ..., 0.9777, 0.9888, 1, 1, 1}
Quadrature rule 3x3

Material Point Method Model
Number Of Control Points 44884
Number Of Cells 456x96=43776
Cell spacing 0.0022 [m]
qξ = qη 2nd
Ξ {0, 0, 0, 0.0021, 0.0043, ..., 0.9956, 0.9978, 1, 1, 1}
H {0, 0, 0, 0.0104, 0.0208, ..., 0.9791, 0.9895, 1, 1, 1}
Initial Cell density 3x3

Solution Algorithm Parameters
∆u 0.0033 [mm]
Nsteps 1500
tolu 1e-7
Nstaggs 1

Table 5.2: Three point layered bending test: Simulation parame-
ters.
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(a)

(b)

(c)

Figure 5.20: Three point layered bending test: (a) Geometry and
boundary conditions. (b) Surface energy density and (c) its Re-

ciprocal for material orientation φ = 0 in polar coordinates.
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(a)

(b)

(c)

Figure 5.21: Three point layered bending test: Load displace-
ment paths for (a) case 1 (b) case 2 (c) case 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.22: Three point layered bending test: Phase field for
u = 5 mm. Finite Element Method for (a) case 1, (c) case 2 and
(e) case 3, respectively. Material Point Method for (b) case 1, (d)

case 2 and (f) case 3, respectively.
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(a)

(b)

(c)

Figure 5.23: Three point layered bending test: Hydrostatic Stress
(case 3) for (a) u = 4.6 mm, (b) u = 4.7 mm and (c) u = 5.0 mm,
respectively. Material Points with cp < 0.02 have been removed.
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5.4 Conclusions

A robust framework for the resolution of evolving fractures in brittle anisotropic

materials is introduced in this chapter. The method employed is based on a

phase field approximation of the fracture energy defined on the basis of a fourth

order anisotropic functional. The phase field is subsequently coupled to the ma-

terial stress field by introducing the former as a degradation parameter on the

elastic energy density of the material. Through a purely variation framework,

the coupled partial differential equations of the problem are introduced.

A MPM approach is used to derive the discrete governing coupled equations

of the problem. The latter are then solved in a staggered fashion. In this work,

the specific cases of both cubic symmetry and orthotropy are examined in rep-

resentative examples. Based on these, the proposed methodology is verified

by means of comparison against the standard Phase Field Finite Element im-

plementation. Results demonstrate that the MPM performs extremely well in

resolving fracture propagation problems.

This chapter will thus form the basis for subsequent derivations pertaining

to large displacement dynamic problems where Material Point Methods have

proven advantageous as compared to Finite Element Methods (see chapter 6).





Chapter 6

Material Point Method for

dynamic brittle fracture

Part of this chapter is submitted for publication and is currently under review

(Kakouris and Triantafyllou, 2018b).

6.1 Introduction

Fracture of materials subjected to dynamic loading is commonly associated

with complex yet intriguing phenomena, i.e., crack merging, branching and ar-

rest (Ravi-Chandar and Knauss, 1984; Ravi-Chandar, 1998). These phenomena

become even more pronounced in the case of anisotropy and high-rate loading

conditions, e.g., impact. Anisotropy governs the fracture response of both nat-

ural and manufactured materials (see Chapter 5). Furthermore, the response

of such materials under impact loading is receiving considerable attention as

it pertains to numerous industrial applications particularly within the automo-

tive and aerospace sector, see, e.g., Turner et al. (2018), Chen et al. (2015), and

Lin et al. (2018).

183
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Numerical simulation of fracture propagation under such conditions can pro-

vide valuable insight on the underlying mechanical processes while also pro-

viding a framework for optimum design of materials considering their post-

fracture response under impact loading. However, robust and accurate sim-

ulation of impact driven dynamic fracture is a challenging task as it requires

the fusion of robust fracture propagation modelling with contact induced non-

linearities and large displacement kinematics.

Mesh based methods are prone to mesh distortion errors when large displace-

ment kinematics are involved. Furthermore, contact problems, and in partic-

ular, dynamic impact problems require a fine mesh resolution to adequately

account for the deformability of the contact surface, that in turn affects the

accuracy of the resulting crack path. However, due to their corresponding

kinematical assumptions, mesh based methods are computationally appealing

when compared to purely particle based methods such as the discrete element

method.

Very recently, Hesch et al. (2016) have developed a method to resolve contact

problems involving isotropic phase field fracture. In this formulation, a Finite

Element based mortar contact algorithm in conjunction with a hierarchical re-

finement scheme is employed that reduces computational costs although rely-

ing on the predefinition of contact areas. Therefore, an adaptive hierarchical

refinement is needed for arbitrary impact fracture problems to resolve the local

contact features.

The MPM has been introduced as a promising alternative to particle based

methods that can efficiently deal with contact and large displacement problems.

Taking advantage of the good qualities of phase field modelling in naturally re-

solving complex crack paths, a novel PF-MPM methodology is introduced in

this chapter for robust modelling of dynamic brittle fracture of both isotropic

and anisotropic materials in 2D problems only. The proposed method is further

extended to account for frictional contact fracture problems. In this work, the
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MPM contact algorithm utilized by Bardenhagen et al. (2000) and Huang et al.

(2011) is adopted.

More specifically, in this work, multiple fields, termed discrete fields, are intro-

duced in the non-deforming Eulerian mesh so that each contact body belongs to

a different field. The phase field governing equations are independently solved

for each contact body. Then, the solution of equations of motion is implemented

within a predictor-corrector algorithm. The equilibrium governing equations

are initially solved for each body separately and then the solution is corrected

according to their contact conditions.

This MPM contact algorithm is not computationally taxing in comparison to Fi-

nite Element based contact algorithms. Since the interaction of contact surfaces

is implemented through materials points within a fixed computational mesh.

As a result, tracking or refining of contact areas is not required. These evolve

naturally, according to corresponding material point displacements.

6.2 Governing equations for phase field fracture due to

impact

6.2.1 Problem Statement

In this Section, the governing equations for contact induced brittle fracture are

introduced. For brevity, the case of two bodies is presented herein. In Fig.

6.1(a), two deformable domains, namely Ω1 and Ω2 are considered such that

Ω1∪Ω2 = Ω. Their external boundaries are defined as ∂Ω1 and ∂Ω2, respectively.

At time t the two bodies are in contact along the surface ∂Ω1f̄ = ∂Ω2f̄ = ∂Ωf̄ ⊆

∂Ω. Furthermore, two crack paths are defined, i.e., Γ1 and Γ2 at Ω1 and Ω2,

respectively, under the action of a set of tractions/ pressures t̄ and body forces

b = {b1, b2, b3}T .
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When the two bodies are in contact, a contact force f̄ cont1 is applied to body Ω1

from body Ω2. This is defined in component form according to Eq. (6.1)

f̄ cont1 = f̄nor1 + f̄ tan1 = f̄nor1 · ncont1 + f̄ tan1 · scont1 (6.1)

where f̄nor1 and f̄ tan1 are the normal and tangential contact force vectors whereas

f̄nor1 and f̄ tan1 are their corresponding components. The normal and tangen-

tial surface unit vectors on contact surface ∂Ω1f̄ are denoted as ncont1 and scont1 ,

respectively. Similarly, a contact force f̄ cont2 is applied from Ω1 to Ω2 with com-

ponents f̄nor2 , f̄ tan2 and normal and tangential surface unit vectors ncont2 and scont2

being defined accordingly.

6.2.2 Derivation of coupled strong form for impact-fracture problems:

A discrete field formulation

In this work, a discrete field approach is adopted for the robust and efficient

numerical treatment of contact dynamics between deformable bodies whereby

each body is treated independently as discrete field. In the general case, it is

assumed that the entire domain consists of a set of independent discrete fields

{D | D = 1, 2, . . . , ND}, where ND ∈ Z+ is the total number of discrete fields

and D indexes the Dth discrete field. Furthermore, all corresponding quantities

that belong to discrete field D, i.e., body ΩD, are denoted with the subscript D.

Hence, in the two body case considered in this Section {D | D = 1, 2}.

Within the discrete field setting, the contact forces arising from the interaction

of the discrete fields are treated as additional external forces. Hence, the energy

balance equation (5.19), is re-defined for each discrete field D as

K̇D (u̇D) + Ẇ int
D (u̇D, ċD,∇ċD)− Ẇext

D (u̇D)− Ẇcont
D (u̇D) = 0 (6.2)
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(a)

(b)

(c)

Figure 6.1: (a) Two bodies (Ω1 ∪ Ω2 = Ω) into contact with two
crack paths Γ1 and Γ2 (b) Phase Field approximation of the crack
paths and (c) Phase Field Material Point Method approximation.
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where Ẇcont
D (u̇D) is the rate of work done by contact forces and is expressed as

Ẇcont
D (u̇D) =

∫
∂ΩDf̄

(f̄ contD · u̇D) d∂ΩDf̄ . (6.3)

Thus, the coupled strong form introduced in Eqs. (5.22) is now defined for the

discrete field D as



∇ · σD + bD = ρDüD on ΩD

(
4l0D (1− kfD)HD

ḠcD
+ 1

)
cD − 4l20D∆cD

+ 4l40D

∑
ijkl

γijklD
∂4cD

∂xi∂xj∂xk∂xl
= 1

on ΩD.

(6.4)

The set of boundary and initial conditions introduced in Eqs. (5.23) are modified

for each discrete field D accordingly as



σD · nD = t̄D, on ∂Ωt̄D

uD = ūD, on ∂ΩūD

uD = (0)uD, on (0)ΩD

u̇D = (0)u̇D, on (0)ΩD

üD = (0)üD, on (0)ΩD[
4l20D∇cD − 2l40D

∑
ijkl

γijklD

(
∂3c

∂xj∂xk∂xl

)
−2l40D

∑
ijkl

γijklD

(
∂3cD

∂xi∂xj∂xk

)]
· n = 0

, on ∂ΩD

2l40D
∑

ijkl γijklD

(
∂2cD
∂xk∂xl

)
+ 2l40D

∑
ijkl γijklD

(
∂2cD
∂xi∂xj

)
= 0, on ∂ΩD

cD = (0)cD, on (0)ΩD

σD · ncontD = f̄ contD , on ∂ΩDf̄

(6.5)

where the last boundary condition is due to the contact forces that in this im-

plementation are considered as forces applied externally to the discrete field
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D.

Furthermore, the coupled field equations (6.4) are subjected to the kinematic

constraints presented in Eqs. (6.6a) to (6.6e) and (6.7a) to (6.7e) at contact sur-

face ∂Ωf̄ (Yastrebov, 2013). The kinematic constraints of Eqs. (6.6a) to (6.6e)

correspond to the normal contact laws



ncont1 = −ncont2 , collinearity, on ∂Ωf̄ (6.6a)

f̄nor1 = −f̄nor2 , collinearity, on ∂Ωf̄ (6.6b)

f̄nor ≤ 0, non-tension, on ∂Ωf̄ (6.6c)

γn ≤ 0, impenetrability, on ∂Ωf̄ (6.6d)

γnf̄
nor = 0, complementarity, on ∂Ωf̄ (6.6e)

whereas Eq. (6.7a) to (6.7e) correspond to the tangential contact and friction

laws, where the Coulomb friction model is adopted.



scont1 = −scont2 , collinearity, on ∂Ωf̄ (6.7a)

f̄ tan1 = −f̄ tan2 , collinearity, on ∂Ωf̄ (6.7b)

|f̄ tan| ≤ µf |f̄nor|, coulomb friction, on ∂Ωf̄ (6.7c)

|γs| ≥ 0, slip/non-slip, on ∂Ωf̄ (6.7d)

|γs|
(
|f̄ tan| − µf |f̄nor|

)
= 0, complementarity, on ∂Ωf̄ . (6.7e)

Kinematic constraints (6.6a), (6.7a) and (6.6b) and (6.7b) are imposed to satisfy

Newton’s third law at contact surface ∂Ωf̄ . The condition (6.6c) is imposed on

the normal component of the contact force that is defined according to Eq. (6.8)

f̄nor = f̄ cont1 · ncont1 = f̄ cont2 · ncont2 (6.8)

and implies a non-tension, i.e., non-stick, condition at the contact surface ∂Ωf̄ .

Furthermore, the impenetrability condition (6.6d) is imposed to ensure no pen-

etration between the contact surfaces ∂Ω1f̄ and ∂Ω2f̄ when the two bodies are
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in contact. In condition (6.6d), γn is defined as

γn = u̇rel1 · ncont1 = u̇rel2 · ncont2 (6.9)

where u̇rel1 = (u̇1 − u̇2) = −u̇rel2 is the relative velocity of the two bodies Ω1 and

Ω2 (i.e. u̇rel1 is the velocity of body Ω1 relative to body Ω2).

Condition γn = 0 is satisfied when the relative velocity is zero, i.e. u̇rel1 =

−u̇rel2 = 0 (e.g. the two bodies are in contact and their contact surfaces move

together with the same velocity). Condition γn < 0 implies that the relative

velocity lays on a different semi plane from the normal contact vector. Thus,

the two bodies move in opposite directions, i.e. their contact surfaces ∂Ω1f̄ and

∂Ω2f̄ are separated. In this case f̄nor = 0, hence the complementarity condi-

tion (6.6e) is always satisfied. Conditions (6.6c), (6.6d) and (6.6e) as well as the

relation of variables f̄nor and γn are summarized in Fig. 6.2(a).

The kinematic constraint (6.7c) is imposed on the tangential component of con-

tact force that is defined by

f̄ tan = f̄ cont1 · scont1 = f̄ cont2 · scont2 (6.10)

to account for the friction law at contact surface. The Coulomb friction model is

utilized in this work where µf is the friction coefficient between the two bodies.

In this, the condition |f̄ tan| = µf |f̄nor| is satisfied when slip occurs at the contact

surface whereas |f̄ tan| < µf |f̄nor| when it does not. This means that the tan-

gential component of contact force should be reduced according to Coulomb’s

friction model to allow for sliding at the contact surface.

Condition (6.7d) holds when either slip or no slip occurs at contact surface. In

Eq. (6.7d), γs is defined as

γs = u̇rel1 · scont1 = u̇rel2 · scont2 . (6.11)
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In particular, |γs| = 0 holds when the relative velocity is zero, i.e. u̇rel1 = −u̇rel2 =

0 (e.g. the two bodies are in contact and their contact surfaces move together

with the same velocity). At that case there is no slip at the contact surface,

i.e. |f̄ tan| < µf |f̄nor|. When |γs| > 0, slip occurs. In this case, it holds that

|f̄ tan| = µf |f̄nor|.

According to the aforementioned, the complementarity condition (6.7e) is al-

ways satisfied. Conditions (6.7c), (6.7d) and (6.7e) are summarized in Figs.

6.2(b) and 6.2(c). The relation between the variables f̄ tan and γs (i.e. slip/no

slip conditions) is shown in Fig. 6.2(b) while the Coulomb’s cone for the two-

dimensional problem is presented in Fig. 6.2(c).

6.3 Material Point Method for impact fracture problems

Dynamic fracture under impact naturally involves large displacement kinemat-

ics especially in the pre- and post-fracture regime, e.g., in the case of high veloc-

ity projectile impact problems. To accurately resolve the pre and post fracture

kinematics, the Material Point Method is used in this work to solve the system

of coupled governing Eqs. (6.4).

In the Material Point Method framework employed herein, the entire domain

Ω = Ω1∪Ω2 is discretized into a set of material pointsP = {p | p = 1, 2, . . . , Np},

where Np ∈ Z+ is the total number of material points whereas p indexes the pth

material point. It is assumed herein that NDp material points belong to discrete

field D, i.e. body ΩD (see Fig. 6.1(c)).

According to the MPM approximation, the mass density ρD and domain vol-

ume ΩD corresponding to discrete field D are additively decomposed into the

corresponding material point contributions according to Eqs. (6.12) and (6.13),
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(a)

(b)

(c)

Figure 6.2: Kinematic contact constraints: (a) Normal contact
law (b) Tangential friction law (c) Coulomb’s cone for the two-

dimensional problem.
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respectively, i.e.,

ρD (xD, t) =

Np∑
p=1

ρDpΩDpδ (xD − xDp) (6.12)

and

ΩD (xD, t) =

Np∑
p=1

ΩDpδ (xD − xDp). (6.13)

6.3.1 Discrete equations

6.3.1.1 Equilibrium discrete equations

Defining appropriate trial solution and weighting function spaces for the dis-

placement field, i.e.,

V = {u ∈ H1 (Ω) | u = ū on ∂Ωū}

and

U = {w ∈ H1 (Ω) | w = 0 on ∂Ωū},

respectively, the discrete form of equilibrium equations introduced in the first

of Eqs. (6.4) is expressed for each discrete field D as

∫
ΩD

(ρDüD ·wD) dΩD +

∫
ΩD

(σD : ∇wD) dΩD =

∫
∂ΩDt̄

(̄tD ·wD) d∂ΩDt̄+∫
ΩD

(bD ·wD) dΩD +

∫
∂ΩDf̄

(f̄ contD ·wD) d∂ΩDf̄

(6.14)

where w are weighting functions that satisfy the homogeneous essential bound-

ary conditions of the problem.
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Substituting the material point approximation introduced in Eqs. (6.12) and

(6.13) into Eq. (6.14), Eq. (6.15) is established

Np∑
p=1

(ρDpüDp ·wDp)ΩDp +

Np∑
p=1

(σDp : ∇wDp)ΩDp =

∫
∂ΩDt̄

(̄tD ·wD) d∂ΩDt̄+

Np∑
p=1

(bDp ·wDp)ΩDp +

∫
∂ΩDf̄

(f̄ contD ·wD) d∂ΩDf̄ .

(6.15)

Next, making use of the interpolation schemes for the weighting functions wDp

and their spatial derivatives ∇wDp from Eq. (3.45) and Eq. (3.46), respectively

and further assuming that it should hold for every set of nodal values wDI the

following equilibrium equation is finally established

Ru
DI(uD) = Firt

DI + Fint
DI − Fext

DI − Fcont
DI = 0, I = 1 . . . , Nn (6.16)

In Eq. (6.16), Ru
DI is the nodal residual force vector at grid node I and Nn ∈ Z+

is the total number of grid nodes.

Similarly, Firt
DI , Fint

DI and Fext
DI correspond to the nodal inertia, internal and ex-

ternal force vectors evaluated at grid node I . These quantities are computed

by Eqs. (3.51), (3.52) and (3.53), respectively. Finally, Fcont
DI corresponds to the

contact force nodal vector defined as

Fcont
DI =

∫
∂ΩDf̄

(f̄ contD NI(x)) d∂ΩDf̄ . (6.17)

Substituting, the acceleration approximation, introduced in Eq. (3.49), in Eq.

(6.16) the following equation of motion is established for each discrete field D.

Mu
DüD + Fint

D = Fext
D + Fcont

D (6.18)

where Mu
D is the global lumped mass matrix of the structure whose Mu

DI com-

ponent is evaluated from relation (3.58).
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Eq. (6.18) lends itself conveniently into an explicit predictor-corrector time in-

tegration scheme as will be further discussed in Section 6.3.2 .

6.3.1.2 Anisotropic phase field discrete equations

The discrete form of the anisotropic phase field governing equations introduced

in the second of Eqs. (6.4) can also be derived with the same procedure as in

Section 5.3.1.1. Therefore, the nodal phase field residual vector, introduced in

Eq. (5.33), is re-written for the discrete field D as

Rc,AnisDI (cD) = Sc,AnisDI − F c,AnisDI = 0, I = 1 . . . , Nn. (6.19)

Similarly, the compact form, introduced in Eq. (5.36), is re-formulated as

Kc,Anis
D cD = Fc

D. (6.20)

6.3.2 Anisotropic PF-MPM solution scheme for impact fracture prob-

lems

In this work, a staggered solution procedure is employed to numerically solve

the coupled Eqs. (6.18) and (6.20). The two sets of equations are treated inde-

pendently, by allowing the equation of motion to be solved either implicitly or

explicitly (see also Sections 4.3 and 5.3.2). Although an explicit time integration

scheme is utilized herein to integrate Eqs. (6.18) in the time domain (Barden-

hagen et al., 2000; Huang et al., 2011), an implicit time integration scheme can

also be employed in a straightforward manner (Cummins and Brackbill, 2002;

Nezamabadi et al., 2015; Chen et al., 2017). The complete staggered solution

algorithm is described in Section 6.3.2.4 in detail.
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6.3.2.1 Explicit time integration scheme

The momentum formulation of MPM algorithm is employed herein to numeri-

cally solve the equation of motion (6.18) (Sulsky et al., 1995). Hence, the equa-

tion of motion (6.18) at time t is rewritten for the grid node I in the following

form

(t)Mu
DI

(t)üDI + (t)Fint
DI = (t)Fext

DI + (t)Fcont
DI . (6.21)

Considering, a forward Euler integration scheme, the acceleration field is ex-

pressed as

(t)üDI = ((t+∆t)u̇DI − (t)u̇DI)/∆t. (6.22)

where ∆t is the corresponding time step. In view of Eq. (6.22), Eq. (6.21) is

rewritten as

(t)Mu
DI

(t+∆t)u̇DI = (t)Mu
DI

(t)u̇DI + ∆t
(

(t)Fext
DI + (t)Fcont

DI − (t)Fint
DI

)
⇔

(t+∆t)pDI = (t)pDI + ∆t
(

(t)Fext
DI + (t)Fcont

DI − (t)Fint
DI

) (6.23)

where (t+∆t)pDI and (t)pDI are the nodal momentum at time t + ∆t and t, re-

spectively.

At time t the nodal momentums (t)pDI are unknown; hence, these are mapped

from material points to grid node I using Eq. (6.24)

(t)pDI = (t)Mu
DI

(t)u̇DI =

Np∑
p=1

NI(
(t)xp)MDp

(t)u̇Dp. (6.24)

Similarly, the nodal internal forces (t)Fint
DI are evaluated as

(t)Fint
DI =

Np∑
p=1

((t)σDp · ∇NI(
(t)xp))

(t)ΩDp. (6.25)

Eq. (6.23) is numerically solved using a predictor-corrector algorithm intro-

duced by Bardenhagen et al. (2000) and further improved by Huang et al. (2011).
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In this, the trial momentums are initially evaluated for each discrete fieldD, ne-

glecting the contact forces (t)Fcont
DI , as

(t+∆t)ptrlDI = (t)pDI + ∆t
(

(t)Fext
DI − (t)Fint

DI

)
. (6.26)

The corresponding trial nodal velocities (t+∆t)u̇trlDI are then computed accord-

ingly as

(t+∆t)u̇trlDI =
(t+∆t)ptrlDI

(t)Mu
DI

. (6.27)

The trial velocities correspond to the velocities of each discrete field D when no

contact force is exerted between them.

The predicted trial velocities (t+∆t)u̇trlDI (evaluated from Eq. (6.27)) are then cor-

rected according to Eq. (6.28)

(t+∆t)u̇DI = (t+∆t)u̇trlDI + ∆t
(t)Fcont

DI
(t)Mu

DI
(6.28)

where (t+∆t)u̇DI is the vector of corrected nodal velocities at time t+∆t. To eval-

uate the corrected nodal velocities using Eq. (6.28), the contact forces (t)Fcont
DI

must be evaluated first. The procedure for evaluating the contact forces be-

tween two discrete fields is presented in Section 6.3.2.2.

6.3.2.2 Contact force evaluation

The contact force vector (t)Fcont
DI is the sum of a normal (t)Fnor

DI and a tangential

(t)Ftan
DI force vector. Hence, the corresponding components of these vectors,

i.e. (t)FnorDI and (t)F tanDI , should be initially computed taking into account the

kinematic contact constraints presented in Eqs. (6.6a) to (6.6e) and (6.7a) to

(6.7e). Their evaluation is performed through the following procedure.
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The nodal centre of mass velocities are calculated using Eq. (6.29) below

(t+∆t)u̇cmI =

∑ND
D=1

(t+∆t)ptrlDI∑ND
D=1

(t)Mu
DI

=

∑ND
D=1

(t)Mu
DI

(t+∆t)u̇trlDI∑ND
D=1

(t)Mu
DI

. (6.29)

These correspond to the velocities that each discrete fieldD would have if these

were to move as a single field (non-slip contact). The normal component of

contact force (t)Fnor,sDI is evaluated considering the impenetrability condition Eq.

(6.6d) at the I th contact grid node as

(t+∆t)γnI =
(

(t+∆t)u̇1I − (t+∆t)u̇2I

)
· (t)ncont1I = 0. (6.30)

As aforementioned in Section 6.2.2, when two bodies come into contact at the

I th grid node, it holds that γnI = 0. Substituting relation (6.28) into (6.30),

considering the equilibrium of contact forces on the contact surface

(t)Fcont
1I = − (t)Fcont

2I (6.31)

and also Eq. (6.29), the normal component of contact force is expressed as

(t)Fnor,sDI =
(t)Mu

DI
∆t

(
(t+∆t)u̇cmI − (t+∆t)u̇trlDI

)
· (t)ncontDI . (6.32)

The surface unit normal vector is computed by using the mass gradients (Huang

et al., 2011; Nezamabadi et al., 2015; Homel and Herbold, 2017; Chen et al.,

2017) as

(t)n̂contDI =

∑Np
p=1∇NI(

(t)xp)MDp

‖
∑Np

p=1∇NI((t)xp)MDp‖
. (6.33)

However, as also mentioned in Huang et al. (2011), Eq. (6.33) should be modi-

fied to satisfy the collinearity conditions (6.6a) and (6.7a) at contact surface ∂Ωf̄

as

(t)ncont1I = − (t)ncont2I =
(t)n̂cont1I −

(t)n̂cont2I

‖ (t)n̂cont1I −
(t)n̂cont2I ‖

(6.34)

to insure momentum conservation.
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To satisfy the non-tensional constraint (Eq. (6.6c)) during contact, the normal

component should be modified as

(t)FnorDI = min(0, (t)Fnor,sDI ). (6.35)

Similarly, the tangential component of contact force is evaluated considering

the non-slip condition introduced in Eq. (6.7d) as

(t+∆t)γsI =
(

(t+∆t)u̇1I − (t+∆t)u̇2I

)
· (t)scont1I = 0. (6.36)

Substituting relation (6.28) into (6.36) and then making use of Eqs. (6.31) and

(6.29), the tangential component of contact force is expressed as

(t)F tan,sDI =
(t)Mu

DI
∆t

(
(t+∆t)u̇cmI − (t+∆t)u̇trlDI

)
· (t)scontDI (6.37)

where the surface unit tangential vector scontDI can be derived as the unit vector

that forms an orthogonal basis with ncontDI . The tangential component can be

further modified to account for sliding at the contact grid node I , considering

the Coulomb friction model, as

(t)F tanDI = min
(
µf | (t)FnorDI |, | (t)F

tan,s
DI |

)
sign

(
(t)F tan,sDI

)
. (6.38)

Therefore, the contact force is eventually evaluated as

(t)Fcont
DI = (t)FnorDI · (t)ncontDI + (t)F tanDI · (t)scontDI (6.39)

when the impenetrability condition

(
(t+∆t)u̇trlDI − (t+∆t)u̇cmDI

)
· (t)ncontDI > 0 (6.40)

is satisfied at contact grid node I .
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Finally, once the contact force vector is computed from Eq. (6.39), the initially

predicted nodal velocities (t+∆t)u̇trlDI should be corrected according to Eq. (6.28).

6.3.2.3 Material point properties update

The corrected nodal velocities (t+∆t)u̇DI are utilized to update the material point

properties. Hence, the total strains at pth material point are evaluated as

(t+∆t)εDp = (t)εDp +
1

2
∆t

Nn∑
I=1

(
∇NI(

(t)xp)
(t+∆t)u̇DI +

(
∇NI(

(t)xp)
(t+∆t)u̇DI

)T)
(6.41)

and the total stresses from Eq. (2.50). Finally, the displacement, velocity and

acceleration of all material points are updated as

(t+∆t)uDp = (t)uDp + ∆t

Nn∑
I=1

(
NI(

(t)xp)
(t+∆t)u̇DI

)
(6.42)

(t+∆t)u̇Dp = (t)u̇Dp + ∆t

Nn∑
I=1

(
NI(

(t)xp)
(t)Fext

DI + (t)Fcont
DI −

(t)Fint
DI

(t)Mu
DI

)
(6.43)

and

(t)üDp =

Nn∑
I=1

(
NI(

(t)xp)
(t)Fext

DI + (t)Fcont
DI −

(t)Fint
DI

(t)Mu
DI

)
, (6.44)

respectively. The material point positions are also updated as

(t+∆t)xDp = (t)xDp + ∆t

Nn∑
I=1

(
NI(

(t)xp)
(t+∆t)u̇DI

)
. (6.45)

6.3.2.4 Staggered solution algorithm

The solution procedure is implemented within a set of Nsteps incremental steps

(m = 0, ..., Nsteps − 1). At each increment m, the active part of Eulerian Grid is

detected according to the material point footprints. Therefore, the total number
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of grid nodesNn, unconstrained degrees of freedomNdofs and active cellsNcells

are obtained (see Figs. 3.9 and 3.10).

Next, the higher-order B-splines basis functions, i.e. N
(

(m)xp
)
, ∇N

(
(m)xp

)
and ∆N

(
(m)xp

)
, are evaluated at material points in global axes. To account for

the material orientation φDp at pth material point the first and second spatial

derivatives of basis functions should also be computed in material principal

axes, i.e. ∇Nφp

(
(m)xp

)
and ∆Nφp

(
(m)xp

)
(see Section 5.3.2 for details).

Then, the contact grid nodes are detected among the discrete fields according

to Remark 1.

Remark 1. Two discrete fields are in contact at grid node I when at least one material

point from both discrete fields is projected into grid node I . In particular, the pair of

discrete fields, D = 1 and D = 2 are in contact when the velocity of the p = 1 material

point, that belongs to discrete field D = 1, and the p = 2 material point, that belongs to

discrete field D = 2, are both interpolated at the grid node I. In this case, the grid node

I is a contact grid node for this pair of discrete fields.

Next, the outward normal (m)ncontDI and tangential (m)scontDI unit vectors are com-

puted at the contact grid nodes. Mass, momentum and internal forces are pro-

jected from material points to grid nodes; thus, the quantities (m)Mu
DI ,

(m)pDI

and (m)F int
DI are obtained. Finally, the solution of the coupled Eqs. (6.23) and

(6.20) is obtained within a set of Nstaggs staggered iterations (k = 1, ..., Nstaggs).

In the employed staggered scheme, the phase field Eq. (4.16) is initially solved

for a specific value of the history field (m)H(k)
Dp. The basis functions N

(
(m)xp

)
and their spatial derivatives evaluated with respect to the material principal

axes are utilized to compute the phase field coefficient matrixKc
D from relation

(4.17). Thus, the phase field nodal values (m)c
(k)
DI are obtained for each discrete

field D. Next, the phase field nodal values are mapped back onto the mate-

rial points and the degradation function (m)g
(k)
Dp is computed at each material

point. Next, the equation of motion (6.23) is integrated in time employing the
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predictor-corrector algorithm described in Section 6.3.2.1 and updated values

for the history field (m)H(k)
Dp are obtained.

Finally, the phase field nodal residual vector (m)R
c(k)
I is evaluated according

to the updated value of history field (m)H(k)
Dp and its convergence checked as

‖ (h)Rc(k)‖ ≤ tolc or k ≥ Nstaggs where tolc and ‖ · ‖ are the phase field toler-

ance value and the Euclidean norm, respectively. The staggered algorithm is

continued until convergence is achieved. After convergence, the material point

properties are updated and the algorithm proceeds to the next increment h.

The solution procedure is summarized into Algorithm 3 where EDp and νDp

are the Young’s modulus and Poisson ratio at material points. Four conditions,

namely C.1 to C.4, are also included in Algorithm 3. These are employed to

verify that the kinematic constraints introduced in Eqs. (6.6a)-(6.6e) and (6.7a)-

(6.7e) are satisfied at contact grid nodes.

6.4 Numerical examples

In this Section, a set of two-dimensional numerical examples is presented. The

numerical examples demonstrate the accuracy of the proposed PF-MPM against

the standard PF-FEM as well as its computational efficiency in impact-fracture

problems. Both the isotropic and anisotropic phase field models are examined

within both single and multi discrete-field examples.

Quadratic B-splines ( C1 ) are utilized for the background grid as described in

Section 3.9.9. The initial cell density is chosen to be at least 3x3 = 9 material

points per cell element. Higher-order B-splines are employed not only to com-

pute the anisotropic phase field matrix in Eq. (5.37), but also to improve the

accuracy of MPM from the so-called "cell-crossing error" (see Section 3.9.8).

In all cases examined in this work, stability of the explicit integration scheme

is established on the basis of the following upper bound for the time increment
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Data: Define dynamic parameters, computational grid, material point properties
(∆t, (0)xDp, (0)ΩDp, EDp, νDp, (0)ρDp, l0Dp , kfDp , ḠcDp , γijklDp , φDp, (0)HDp,
(0)εDp, (0)σDp, (0)uDp, (0)u̇Dp, (0)üDp, (0)xDp)

for each time step m = 0, .., Nsteps − 1 do
Reset the computational grid: Find active part of Eulerian Grid, Nn, Ndofs,
Ncells;

Compute: N((m)xp),∇N((m)xp) and ∆N((m)xp) , for all material points. ;
Compute: ∇Nφp((m)xp) and ∆Nφp((m)xp), for all material points. ;
Detect contact grid nodes (see Remark 1);
Compute: (m)ncontDI and (m)scontDI vectors (see Eqs. (6.34));
C.1: Check collinearity conditions for all contact nodes (see Eqs. (6.6a) and

(6.7a));
Map mass, momentum and internal forces from material points to grid nodes:
(m)Mu

DI , (m)pDI and (m)FintDI (see Eqs. (3.58), (6.24) and (6.25)) ;
for each staggered iteration k = 1, 2, .., Nstaggs do

Compute: (m)F
c(k)
D (see Eq. (5.35) according to N((m)xp). ;

Compute: (m)K
c,Anis(k)
D (see Eq. (5.37)) according to N((m)xp),

∇Nφp((m)xp), ∆Nφp((m)xp) and (m)H(k)
Dp. ;

Solve: (m)K
c,Anis(k)
D

(m)c
(k)
D = (m)F

c(k)
D ;

Map phase field ((m)c
(k)
D ) from grid nodes to material points. Evaluate:

(m)c
(k)
Dp, (m)∇c(k)Dp, (m)∆c

(k)
Dp, (m)g

(k)
Dp, for all material points (see Eqs. (5.30),

(5.31),(5.32) and (2.48)). ;
Update trial momentum: (m+1)p

trl(k)
DI (see Eq. (6.26));

Compute: (m+1)u̇
trl(k)
DI and (m+1)u̇

cm(k)
DI (see Eqs. (6.27) and (6.29) ). ;

if Eq. (6.40) is satisfied at contact grid node I then
Compute: (m)F

nor(k)
DI , (m)F

tan(k)
DI and (m)F

cont(k)
DI (see Eqs. (6.35), (6.38)

and (6.39)) ;
end
C.2: Check collinearity conditions for all contact nodes (see Eq. (6.6b) and

Eq. 6.7b);
Correct velocities: (m+1)u̇

(k)
DI (see Eq. (6.28));

C.3: Check impenetrability and complementarity (normal) conditions for
all contact nodes (see Eqs. (6.6d) and (6.6e)) ;

C.4: Check slip/non-slip and complementarity (tangential) conditions for
all contact nodes (see Eqs. (6.7d) and (6.7e)) ;

Compute: (m+1)ε
(k)
Dp and (m+1)σ

(k)
Dp, for all material points (see Eq. (6.41)

and (2.50) ) ;
Compute: (m+1)ψ

+(k)
elDp

, for all material points (see Eq. (2.77))

→ (m)H(k)
Dp =

{
(m+1)ψ

+(k)
elDp

, for (m+1)ψ
+(k)
elDp

> (m)H(k)
Dp

(m)H(k)
Dp, otherwise

;

Compute Residual (Phase Field): (h)Rc,Anis(k) (see Eq. (6.19)) according to
(m)c

(k)
Dp, (h)∇c(k)Dp, (m)∆c

(k)
Dp, (m)g

(k)
Dp ;

Convergence Check (Phase Field): If ‖ (m)Rc(k)‖ ≤ tolc or k ≥ Nstaggs then
"exit" from loop else k = k + 1 go to next staggered iteration. ;

end
Update material point properties: (m+1)u

c(k)
Dp , (m+1)u̇

c(k)
Dp and (m)ü

c(k)
Dp (see Eqs.

(6.42), (6.43), (6.44) and (6.45)). ;
Update material point history field: (m+1)HDp = (m)HDp ;

end
Algorithm 3: Anisotropic Phase Field Material Point Method pseudo-code
for impact-fracture problems (Staggered Solution Algorithm with Explicit
time integration).



204 Chapter 6. Material Point Method for dynamic brittle fracture

∆t

∆t ≤ ˜∆tcr (6.46)

where

˜∆tcr = αc ·∆tcr (6.47)

and ∆tcr corresponds to the critical time step prescribed by the Courant-Friedrichs-

Lewy (CFL) condition and it is defined by

∆tcr =
h

u̇c
. (6.48)

In Eq. (6.48), h is the cell spacing and u̇c is the sound of speed in linearly elastic

materials defined by

u̇c =
E(1− ν)

(1 + ν)(1− 2ν)ρ
. (6.49)

Parameter αc ∈ [0.8, 0.98] in Eq. (6.46) depends on the non-linearities of the

system (Zhang et al., 2016). In all the numerical experiments, we consider αc =

0.80.

In all numerical experiments presented the phase field residual tolerance was

set to tolc = 10−6 and a single staggered iteration was required for solution

convergence. This is due to the small time step, imposed by the stability re-

quirements (Eq. (6.46)).

6.4.1 Cylinder rolling - Verification of contact algorithm

In the first example, the MPM contact algorithm is verified against existing an-

alytical solutions in the literature. Herein, a cylinder rolling on a fixed plate is

examined. The geometry and boundary conditions of the problem are shown in

Fig. 6.3(a). At time t = 0 the cylinder is left to roll on the plate considering only

its self-weight. Three cases are considered, herein, for the friction coefficient,
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namely case (i): µf = 0.05, case (ii): µf = 0.30 and case (iii): µf = 0.90. The

angle of the plate is chosen to be θr = 60o.

The centre-of-mass displacement of the cylinder ucm (see Fig. 6.3(a)) is mea-

sured at each case and compared against the analytical solution (Chen et al.,

2017), computed from Eq. (6.50) below

ucm =



1
2gt2(sin θr − µf cos θr) tan θr > 3µf (roll and slip)

1
3gt2 sin θr tan θr ≤ 3µf (roll without slip)

(6.50)

where g is the gravitational acceleration, i.e. g = 9.81 m/secs. According to

the choice of the plate inclination and the friction coefficient, the cylinder can

be either roll without slip or roll and slip on the plate. All the material and

simulation parameters are presented in Table 6.1.

The centre-of-mass displacement over time is shown in Fig. 6.3(b). From Fig.

6.3(b), it is verified that the MPM contact algorithm agrees well with the ana-

lytical solutions for all cases. Furthermore, the cylinder rolling response over

time is shown in Fig. 6.4. Roll without slip is only noticed in case (iii) whereas

in cases (i) and (ii) both roll and slip is observed.

6.4.2 Plate under impact loading

A plate under impact loading is examined herein. The purpose of this example

is to verify the proposed PF-MPM against the standard PF-FEM in dynamic

brittle fracture problems. The ability of PF-MPM to simulate dynamic brittle

fracture in anisotropic media is also demonstrated. The same problem has been

previously analysed by Borden et al. (2012) with a Phase Field Finite Element

implementation, considering a second order isotropic phase field formulation.
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(a)

(b)

Figure 6.3: Cylinder rolling: (a) Geometry and boundary con-
ditions (b) centre-of-mass displacement ucm over time for MPM
simulation and its corresponding analytical solution for cases (i):

µ = 0.05, (ii): µ = 0.30 and (iii): µ = 0.90.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.4: Cylinder rolling: Rolling response for (a), (d) and (g)
case (i): µf = 0.05, (b), (e) and (h) case (ii): µf = 0.30 and (c),
(f) and (i) case (iii): µf = 0.90. The subfigs. (a)-(c) are refereed
to time step t = 0 sec, the (d)-(f) to t = 2.25 sec and (g)-(i) to

t = 2.79 sec.
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Elastic Material Parameters
Cylinder Plate

E 1000 1000 [MN/m2]
ν 0.30 0.30 [–]
ρ 1000 10000 [kg/m3]

Material Point Method Model
Number of Control Points 13668
Number of Cells 400x32=12800
Cell spacing 0.0625 [m]
qξ = qη 2nd
Ξ {0, 0, 0, 0.0025, 0.0050, ..., 0.9950, 0.9975, 1, 1, 1}
H {0, 0, 0, 0.03125, 0.0625, ..., 0.9375, 0.96875, 1, 1, 1}
Initial Cell density 3x3
Number of Material Points 16848

Discrete Fields
Number of Discrete Fields 2

0.05 Case (i)
µf 0.30 Case (ii)

0.90 Case (iii)
Solution Algorithm Parameters

Time Integrator Explicit
∆t 0.0000001 [sec]
∆tcr 0.000000861 [sec]

˜∆tcr 0.000000689 [sec]

Table 6.1: Cylinder rolling: Simulation parameters.

The geometry and boundary conditions are presented in Fig. 6.5(a). Herein,

three cases are considered, i.e., (i) isotropic symmetry, (ii) cubic symmetry, and

(iii) orthotropic symmetry. The material orientation is chosen to be φ = +30o

with respect to x axis (clockwise) as shown in Fig. 6.5(a).

The cell spacing is h = 0.125 mm and plane strain conditions are assumed. In

case (i), all the anisotropic material parameters are chosen such that γijkl = 0.

Hence, the anisotropic phase field model reduces to the second order isotropic

case. The maximum and minimum surface energy densities are equal to Gc (θ) =

Ḡc = Gcmax = Gcmin = 0.003 N/mm. In case (ii) cubic symmetry of the surface

energy density is considered with Ḡc = 0.002121 N/mm and anisotropic pa-

rameters γ1111 = γ2222 = 1.00, γ1122 = 0.00 and γ1212 = 74.00. These parameters

result into maximum and minimum surface energy densities Gcmax = 0.0049

N/mm and Gcmin = 0.003 N/mm, respectively. In case (iii) the anisotropic pa-

rameter γ2222 is increased to γ2222 = 80.00 giving rise to orthotropic symmetry

with maximum and minimum surface energy densities Gcmax = 0.0067 N/mm

and Gcmin = 0.003 N/mm, respectively.

The surface energy densities and their reciprocals for material orientation φ =
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+30o are shown in Fig. 6.5(b) and Fig. 6.5(c), respectively. In cases (ii) and

(iii), the parameter Ḡc is chosen so that Gcmin = 0.003 N/mm and to facilitate

comparisons between all cases (see also, Figs. 6.5(b) and 6.5(c)).

A single discrete field is considered in this example. The solution procedure

is implemented with a time step ∆t = 0.025 µs for Nsteps = 3200 steps. The

critical time step is ˜∆tcr = 0.026 µs. The pressure is considered to be constant

σ = 1 N/mm2 during the analysis. The initial crack is modelled by introducing

an initial history field at the corresponding material points as in Borden et al.

(2012). In this, the initial history field is defined by

Hp =


Bp
Ḡcp
4l0p

(
1− dp

l0p

)
dp ≤ l0p

0 dp > l0p

(6.51)

where Bp = 1000 and dp is the closest distance from the position of material

point xp to the line that represents the discrete crack. The Rayleigh wave speed

is u̇R = 2125 m/s for the material parameters of that specimen (Freund, 1998).

All simulation parameters are summarized in Table 6.2.

6.4.2.1 Case (i): Isotropy

Initially, the PF-MPM is compared against the PF-FEM with the results obtained

in Borden et al. (2012) for the same cell spacing h = 0.125 mm.

The total energy time-histories for the two solutions are shown in Figs. 6.6(a)

and 6.6(b) where the 2 methods demonstrate a very good agreement. The total

fracture energy results (see Fig. 6.6(b)) are in good agreement with the results

reported in Borden et al. (2012), although minor differences are observed, espe-

cially for time t > 50 µs. The total elastic strain energies (see Fig. 6.6(a)) also

demonstrate very good agreement with some differences after t > 30 µs.
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The evolution of the phase field is presented in Fig. 6.7 for specific time steps.

In these, the occurrence of a branched crack is observed at approximately t = 35

µs. The evolution of the hydrostatic stress for the same timesteps is shown in

Fig. 6.8. To demonstrate the influence of the surface energy density into the

resulting crack paths, the reciprocal of the surface energy density is also plotted

(black circle); the hydrostatic stresses are also shown in the same figure. Since

the surface energy density is isotropic, hence independent of the material orien-

tation, the crack naturally propagates along the vertical axis (see Figs. 6.7(b) and

6.8(b)) until branching occurs. Furthermore, crack branching is perfectly sym-

metrical due to structure, load symmetry and the isotropic phase field model.

The crack tip velocities for the two methods are presented in Fig. 6.6(c). As al-

ready mentioned in numerous works (see Borden et al. (2012), Hofacker and

Miehe (2013), Schlüter et al. (2014)), the crack tip and the exact location of

crack branching cannot be identified uniquely due to the smooth description

of the crack. Therefore, the crack tip velocity is measured with the methodol-

ogy employed in Borden et al. (2012) to facilitate verification. The results of

both methods illustrate very good agreement. The crack widening and branch-

ing regions are almost the same for the two solutions and they are also shown

in Fig. 6.6(c). Crack widening here refers to the broadening of the damage zone

prior to branching in accordance with the definition introduced in Borden et al.

(2012).

In Fig. 6.6(c), the crack tip velocity is clearly below the Rayleigh wave speed

which is the crack speed limit as elaborated by Freund (1998) and Ravi-Chandar

(1998). However, experimental studies have shown that cracks rarely propagate

at speeds close to the Rayleigh wave speed. In fact, they propagate at a fraction

of the Rayleigh wave speed, i.e. 60% u̇R (Ravi-Chandar and Knauss, 1984). As

shown in Fig. 6.6(c), the resulting crack tip velocities are below this limit.
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6.4.2.2 Case (ii): Cubic symmetry

The evolution of the phase field and the hydrostatic stress for specific time steps

is presented in Fig. 6.9 and 6.10, respectively. From Figs. 6.9(b) and 6.10(b), it

is observed that due to the anisotropic cubic model and the material orienta-

tion φ = +30o the crack does not initiate along the vertical axis. The crack

propagates until the crack branches at approximately t = 50 µs. In this case,

the branched crack is not symmetrical and it branches along its two preferen-

tial weak directions (see Figs. 6.10(c) and 6.10(d)). To further illustrate this, the

reciprocal of the surface energy density is also plotted in Fig. 6.10.

6.4.2.3 Case (iii): Orthotropic symmetry

The evolution of the phase field and the hydrostatic stresses for several time

steps in case (iii) are shown in Figs. 6.11 and 6.12, respectively. Opposite to

the isotropic case, crack initiation does not occur along the the vertical axis as

shown in Figs. 6.11(b) and 6.12(b). Indeed, the anisotropic orthotropic model

and the material orientation trigger the crack to propagate along a weak direc-

tion that is not aligned with vertical axis, similar to case (ii). However, opposite

to case (ii) no crack branching is observed in case (iii). This can be justified

by the fact that there is only one preferential weak direction. As a result, the

crack path continues to propagate at one half of the plate. To further illustrate

the effect of anisotropy on the resulting crack path, the reciprocal of the surface

energy density is also plotted in Fig. 6.12.

The energy time-histories for all cases are shown in Figs. 6.13(a) and 6.13(b).

In all cases the crack initiates when the total elastic energy becomes approxi-

mately equal to 0.12 J/m. It should be stressed that the total elastic strain energy

evolves in an almost identical fashion in cases (ii) and (iii) until approximately

t = 50 µs. After that, the two models diverge as a result of the crack branching

in the case of cubic symmetry only.
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The crack tip velocities for the three cases are shown in Fig. 6.13(c). The branched

regions of both case (i) (isotropic) and (ii) (cubic) are also highlighted in Fig.

6.13(c). The crack branching in isotropic symmetry is observed earlier than in

cubic symmetry with a corresponding decrease in crack speed. In all cases, the

crack initiates at approximately t = 10 µs; the resulting crack tip velocities in

all cases are comparable. This can be justified by the fact that the impact energy

imposed as well as Gcmin are identical in all cases. In the orthotropic case, all the

results are below the 60% u̇R limit.

6.4.2.4 Crack branching and merging

The efficiency of phase field models to deal with complex crack paths, i.e. in-

cluding crack branching and crack merging is demonstrated herein. The trac-

tion is increased to σ = 2.3 N/mm2. All other model parameters are kept con-

stant. The second order isotropic phase field model is used. The total duration

of the analysis is ttot = 130 µs within Nsteps = 5200 steps. The evolution of

the phase field for several time steps is presented in Fig. 6.14. In particular,

Fig. 6.14(b) illustrates 5 branched cracks, i.e., 1 main, 2 secondary and 2 ter-

tiary branches. More branched cracks are observed in Fig. 6.14(c) while in Fig.

6.14(d) 4 merged cracks are presented. The total strain energy together with

the total fracture energy is shown in Fig. 6.16 whereas The evolution of the

hydrostatic stress for that case is shown in Fig. 6.15 for several time steps

The crack tip velocity for that case is shown in Fig. 6.16(c). The crack tip ve-

locity is measured along the paths C3,1, C3,2, C3,3 and C3,4 that are marked in

Fig. 6.14(b). The increased impact loading, i.e. σ = 2.3 N/mm2, leads to a crack

initiation at approximately t = 5 µs. This occurs earlier than in case (i), where

the first crack initiates at approximately t = 10 µs. The crack tip rapidly accel-

erates to the 60% u̇R limit. Although, some points exceed the 60% u̇R limit, the

majority of measured points satisfy this condition while all points are clearly

below the Rayleigh wave speed. In particular, the crack tip propagates with an
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average speed close to the 60% u̇R limit. The three branched regions are also

illustrated in Fig. 6.16(c) where a decrease in crack speed is observed.

6.4.3 Collision of two rings

Herein, the collision of two rings is analysed with the geometry and boundary

conditions of the problem shown in Fig. 6.17(a). The aim of this example is to

demonstrate the robustness of the proposed method into resolving fragmenta-

tion problems and the interactions occurring between fragments.

The cell spacing is chosen to be h = 0.50 mm for the numerical implementation

and plane stress conditions are assumed with thickness 2 mm. Two discrete

fields are considered, i.e., field A (left ring) and B (right ring) with the friction

coefficient between them, µf = 0.65. The total number of material points is

325620. The elastic material parameters are chosen to be E = 190000 N/mm2,

ν = 0.30 and ρ = 8000 kg/m3 for both bodies. A time step ∆t = 0.0125 µs

for Nsteps = 50000 is considered. The initial distance between the two rings is

assumed to be 2h = 1.00 mm.

The critical time step is ˜∆tcr = 0.071 µs. The initial distance between the two

rings is assumed to be 2h = 1.00 mm. An initial velocity is applied to the

material points of the two rings as u̇Ap(0)
= u̇(0) and u̇Bp(0)

= −u̇(0). To exam-

ine the influence of the initial velocity on the resulting crack paths, two cases

are considered, namely (i) u̇(0) = 0.01 mm/µs and (ii) u̇(0) = 0.02 mm/µs,

respectively. The second order isotropic model is utilized for that problem,

therefore γijkl = 0 with length scale parameter l0 = 1.00 mm, kf = 0.00 and

Gc (θ) = Ḡc = Gcmax = Gcmin = 6.00 N/mm. All simulation parameters are

summarized in Table 6.3.
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Material Parameters
Elastic Material Properties Anisotropic Material Properties
E 32000 [N/mm2] 0.00 Isotropic symmetry

γ1111 1.00 Cubic symmetry [–]
ν 0.20 [–] 1.00 Orthotropic

symmetry

ρ 2450 [kg/m3] 0.00 Isotropic symmetry
γ2222 1.00 Cubic symmetry [–]

u̇R 2125 [m/s] 80.00 Orthotropic
symmetry

0.00 Isotropic symmetry
γ1122 0.00 Cubic symmetry [–]

0.00 Orthotropic
symmetry

0.00 Isotropic symmetry
γ1212 74.00 Cubic symmetry [–]

74.00 Orthotropic
symmetry

l0 0.25 [mm]

kf 0.00 [–]

0.003 Isotropic symmetry
Ḡc 0.002121 Cubic symmetry [N/mm]

0.002121 Orthotropic
symmetry

0.003 Isotropic symmetry
Gcmax 0.0049 Cubic symmetry [N/mm]

0.0067 Orthotropic
symmetry

0.003 Isotropic symmetry
Gcmin 0.003 Cubic symmetry [N/mm]

0.003 Orthotropic
symmetry

φ +30 [Deg]

Material Point Method Model
Number of Control Points 265024
Number of Cells 806x326=262756
Cell spacing 0.125 [mm]
qξ = qη 2nd
Ξ {0, 0, 0, 0.001240, 0.002481, ..., 0.997518, 0.998759, 1, 1, 1}
H {0, 0, 0, 0.003067, 0.006134, ..., 0.993865, 0.996932, 1, 1, 1}
Initial Cell density 3x3
Number of Material Points 2304000

Discrete Fields
Number of Discrete Fields 1

Solution Algorithm Parameters
Time Integrator Explicit
∆t 0.025 [µs]
Nsteps 3200
Nstaggs 1

Table 6.2: Plate under impact loading: Simulation parameters.
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(a)

(b)

(c)

Figure 6.5: Plate under impact loading: (a) Geometry and
boundary conditions. (b) Surface energy densities Gc (θ) and (c)
their reciprocals 1/Gc (θ) for material orientation φ = +30o (with

respect to x axis (clockwise)) in polar coordinates.
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(a)

(b)

(c)

Figure 6.6: Plate under impact loading: (a) Total elastic strain en-
ergies, (b) Total fracture energies and (c) Crack tip velocities over
time for Borden et al. (2012) and PF-MPM 2nd order isotropic
model (case (i)). The traction is considered to be σ = 1 N/mm2.
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(a) (b)

(c) (d)

Figure 6.7: Plate under impact loading: Phase field for time steps
(a) t=0 µs (b) t=50 µs (b) t=65 µs and (b) t=80 µs. Results for case

(i): 2nd order isotropic phase field model and σ = 1 N/mm2.
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(a) (b)

(c) (d)

Figure 6.8: Plate under impact loading: Hydrostatic stress for
time steps (a) t=0 µs (b) t=50 µs (c) t=65 µs and (d) t=80 µs. Re-
sults for case (i): 2nd order isotropic phase field model and σ = 1

N/mm2. Material points with cp < 0.10 have been removed.
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(a) (b)

(c) (d)

Figure 6.9: Plate under impact loading: Phase field for time steps
(a) t=0 µs (b) t=50 µs (c) t=65 µs and (d) t=80 µs. Results for case
(ii): 4th order anisotropic cubic phase field model and σ = 1

N/mm2.
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(a) (b)

(c) (d)

Figure 6.10: Plate under impact loading: Hydrostatic stress for
time steps (a) t=0 µs (b) t=50 µs (c) t=65 µs and (d) t=80 µs. Re-
sults for case (ii): 4th order anisotropic cubic phase field model
and σ = 1 N/mm2. Material points with cp < 0.10 have been

removed.
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(a) (b)

(c) (d)

Figure 6.11: Plate under impact loading: Phase field for time
steps (a) t=0 µs (b) t=50 µs (c) t=65 µs and (d) t=80 µs. Results
for case (iii): 4th order anisotropic orthotropic phase field model

and σ = 1 N/mm2.
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(a) (b)

(c) (d)

Figure 6.12: Plate under impact loading: Hydrostatic stress for
time steps (a) t=0 µs (b) t=50 µs (c) t=65 µs and (d) t=80 µs. Re-
sults for case (iii): 4th order anisotropic orthotropic phase field
model and σ = 1 N/mm2. Material points with cp < 0.10 have

been removed.
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(a)

(b)

(c)

Figure 6.13: Plate under impact loading: (a) Total elastic strain
energies, (b) Total fracture energies and (c) Crack tip velocities
over time for PF-MPM 2nd order isotropic model (case (i)), PF-
MPM 4th order cubic model (case (ii)) and PF-MPM 4th order
orthotropic model (case (iii)). The traction is considered to be

σ = 1 N/mm2.
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(a) (b)

(c) (d)

Figure 6.14: Plate under impact loading: Phase field for time
steps (a) t=0 µs (b) t=50 µs (c) t=110 µs and (d) t=130 µs. Results
for 2nd order isotropic phase field model and σ = 2.3 N/mm2.
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(a) (b)

(c) (d)

Figure 6.15: Plate under impact loading: Hydrostatic stress for
time steps (a) t=0 µs (b) t=50 µs (c) t=110 µs and (d) t=130 µs.
Results for 2nd order isotropic phase field model and σ = 2.3

N/mm2. Material points with cp < 0.10 have been removed.
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(a)

(b)

(c)

Figure 6.16: Plate under impact loading: (a) Total elastic strain
energy, (b) Total fracture energy and (c) Crack tip velocity over
time for PF-MPM 2nd order isotropic model. The traction is con-

sidered to be σ = 2.3 N/mm2.
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The total fracture energy time-history for both cases is shown in Fig. 6.17(b).

The evolution of the phase field and the hydrostatic stress for points ((1)-(6))

labelled in Fig. 6.17(b) is shown in Figs. 6.20 and 6.21 for case (i) and in Figs.

6.22 and 6.23 for case (ii), respectively.

6.4.3.1 Case (i): u̇(0) = 0.01 mm/µs

In case (i), a crack initiates at the contact surface of the two rings due to their

initial impact (see Fig. 6.20(b)) followed by a second crack that initiates and

fully propagates on the opposite side of each ring (see Fig. 6.20(c) and Fig.

6.20(d), respectively). Material degradation also occurs on the top and bottom

surfaces of each ring. Crack opening gradually increases (see Fig. 6.20(e)) and

eventually both rings are fully separated in two fragments (see Fig. 6.20(f)).

As also shown in Fig. 6.20(b) the fracture process has been fully developed by

point (4), hence the fracture energy remains constant along the path (4)-(6).

6.4.3.2 Case (ii): u̇(0) = 0.02 mm/µs

Similar to case (i), in case (ii) a crack initiates at the contact surface of the two

rings due to their initial impact (see Fig. 6.22(b)). Next, and opposite to case (i),

two additional cracks simultaneously propagate of the top right (left) and bot-

tom right (left) of each ring (see Fig. 6.22(c)). This is due to the increased impact

velocity compared to case (i) where the corresponding points underwent mate-

rial degradation only. Two more cracks are observed on the top left (right) and

bottom left (right) at each ring (see Fig. 6.22(d)). The complete crack paths are

presented in Fig. 6.22(e). After that point, the fracture energy remains constant;

existing cracks do not propagate and new cracks are not initiated.

The final deformed configuration of the problem is shown in Fig. 6.22(f) where

each ring is split into five fragments. The PF-MPM method naturally resolves
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the large displacement motion of the fragments, accounting also for the non-

stationarity of the contact surfaces (see, also, Figs. 6.23d, 6.22(e) and 6.22(f)).

Using a phase field driven fracture approximation allows both, the crack paths

and the contact surfaces to not be tracked algorithmically during the simulation

process. Furthermore, this is accomplished with no mesh distortion induced

errors, contrary to a FEM based approach.

6.4.3.3 Influence of time step ∆t and staggered iterations Nstaggs

A parametric study is conducted to investigate the sensitivity of the solution

procedure on the time step ∆t and the number of staggered iterations Nstaggs.

For this purpose, the fracture energy is chosen as a global index of the solution.

Two time-steps, namely ∆t = 0.00625 µs and ∆t = 0.003125 µs are considered

and both cases (i) and (ii) are examined. The resulting time-histories of the

fracture energy are shown in Fig. 6.18.

In Fig. 6.18, it is obvious that the initial time step ∆t = 0.0125 µs yields good

convergence on the results and further deduction of the time step has minor

influence. Similarly, the influence of staggered iterations on the fracture energy

is presented in Figs. 6.19(a) and 6.19(b) for case (i) and (ii), respectively. The

staggered iterations are increased from the initial Nstaggs = 1 to Nstaggs = 2 and

then again to Nstaggs = 4 with no influence on the results.

6.4.4 Disc-Beam impact fracture problem

In this case, a disc to beam impact fracture problem is examined. The aim of

this example is to examine the influence of the anisotropy of the surface energy
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Material Parameters
Elastic Material Properties Fracture Material Properties

A B A B
E 190000 190000 [N/mm2] γijkl 0.00 0.00 [–]
ν 0.30 0.30 [–] l0 1.00 1.00 [mm]
ρ 8000 8000 [kg/m3] kf 0.00 0.00 [–]

Gc (θ) = Ḡc 6.00 6.00 [N/mm]
Material Point Method Model

Number of Control Points 107724
Number of Cells 380x280=106400
Cell spacing 0.50 [mm]
qξ = qη 2nd
Ξ {0, 0, 0, 0.00263, 0.0052, ..., 0.9947, 0.9973, 1, 1, 1}
H {0, 0, 0, 0.00357, 0.0071, ..., 0.9928, 0.9964, 1, 1, 1}
Number of Material Points 325620

Discrete Fields
Number of Discrete Fields 2
µf 0.65

Solution Algorithm Parameters
Time Integrator Explicit
∆t 0.0125 [µs]
Nsteps 50000
Nstaggs 1

Table 6.3: Collision of two rings: Simulation parameters.

(a)

(b)

Figure 6.17: Collision of two rings: (a) Geometry and boundary
conditions (b) Total fracture energy over time for case (i) u̇(0) =

0.01 mm/µs and case (ii) u̇(0) = 0.02 mm/µs.
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(a)

(b)

Figure 6.18: Collision of two rings: Influence of time step (∆t) on
total fracture energy over time for (a) case (i) u̇(0) = 0.01 mm/µs

and (b) case (ii) u̇(0) = 0.02 mm/µs.
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(a)

(b)

Figure 6.19: Collision of two rings: Influence of staggered iter-
ation (Nstaggs) on total fracture energy over time for (a) case (i)

u̇(0) = 0.01 mm/µs and (b) case (ii) u̇(0) = 0.02 mm/µs.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.20: Collision of two rings - Case (i): Phase field for time
steps (a) t=0 µs (b) t=75 µs (c) t=95 µs (d) t=200 µs (e) t=400 µs

and (f) t=625 µs.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.21: Collision of two rings - Case(i): Hydrostatic stresses
for time steps (a) t=0 µs (b) t=75 µs (c) t=95 µs (d) t=200 µs (e)
t=400 µs and (f) t=625 µs. Material points with cp < 0.05 have

been removed.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: Collision of two rings - Case (ii): Phase field for time
steps (a) t=0 µs (b) t=30 µs (c) t=45 µs (d) t=60 µs (e) t=400 µs and

(f) t=625 µs.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.23: Collision of two rings - Case (ii): Hydrostatic
stresses for time steps (a) t=0 µs (b) t=30 µs (c) t=45 µs (d) t=60
µs (e) t=400 µs and (f) t=625 µs. Material points with cp < 0.05

have been removed.
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density on impact fracture problems using the PF-MPM. Verification of the PF-

MPM with analytical solutions is also made. Finally, a parametric study is pre-

sented where the influence of the material point and phase field parameters is

examined on the response of the beam under impact.

The geometry and boundary conditions of the problem are presented in Fig.

6.24. To examine the dependence of the resulting crack patterns and overall re-

sponse of the beam on the level of assumed material anisotropy, three cases are

examined, namely case (i), case (ii) and case (iii) with different surface energy

densities. The material orientation is considered to be φ = +45o with respect to

x axis (clockwise) for all cases.

The cell spacing is h = 0.125 mm and plane stress conditions are assumed with

thickness 2 mm. Two discrete fields are considered in this example, namely A

for the disc and B for the beam with the corresponding friction coefficient being

µf = 0.65. The total number of material points is 536796. An initial velocity is

applied to all material points in the disc u̇Ap(0)
= 0.02 mm/µs while the beam

is at rest at this stage. The initial distance between the disc and the beam is

considered to be h = 0.125 mm. The elastic material parameters are chosen

to be E = 190000 N/mm2, ν = 0.30 and ρ = 8000 kg/m3 for both bodies. The

solution procedure is implemented with a time step ∆t = 0.0125 µs. The critical

time step is ˜∆tcr = 0.018 µs.

In case (i), the second order isotropic phase field model (i.e. γijkl = 0) is chosen

with surface energy density Gc (θ) = Ḡc = Gcmax = Gcmin = 10.6066 N/mm for

the beam. In case (ii) , the second order isotropic phase field model is chosen

again, but with a reduced surface energy density Gc (θ) = Ḡc = Gcmax = Gcmin =

9.75 N/mm for the beam. Finally, in case (iii) the fourth order orthotropic model

is utilized with anisotropic parameters Ḡc = 7.50 N/mm, γ1111 = 80.00, γ2222 =

1.00, γ1122 = 0.00 and γ1212 = 74.00. These parameters result in maximum

and minimum surface energy densities Gcmax = 23.6892 N/mm and Gcmin =

10.6066 N/mm, respectively for the beam. The surface energy density of the
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disc is taken us sufficiently large (i.e. GcA (θ) = 100GcB (θ)) so that the disc

remains undamaged in all cases. The length scale parameter is l0 = 0.25 mm

and kf = 0.00 in all cases. In all cases reported in this Section, the projectile

does not penetrate the beam, rather it bounces back and the beam undergoes

free vibrations. All the simulation parameters are presented in Table 6.4.

6.4.4.1 Case (i): Isotropy - Gc (θ) = 10.6066 N/mm

The time history of the total fracture energy is shown in Fig. 6.25(a). In Fig.

6.25(a), the path points (1-7) are labelled to facilitate discussion on the material

response. Phase field and hydrostatic stress snapshots corresponding to points

(1-6) are shown in Figs. 6.26 and 6.27, respectively.

The disc initially comes into contact with the beam and fracture initiates at the

contact surface (see. Fig. 6.26(b) and point (2) in Fig. 6.25(a)). Next, the right

edge of the beam gradually degrades (see. 6.26(c) and point (3) in Fig. 6.25(a))

just before a crack initiates at the middle right-edge point. However, as the

beam vibrates, the degradation continues at the left edge of the beam (see Fig.

6.26(d) and point (4) in Fig. 6.25(a)) a median crack develops and propagates

just below the crack nucleation region (see Fig. 6.26(e) and point (5) in Fig.

6.25(a)). The complete crack path is shown in Fig. 6.26(f).

The results of Fig. 6.25(a) can be further examined in view of the total fracture

energy evolution. The evolution of the total fracture energy from point (1) to (2)

corresponds to damage initiating between the disc and the beam at their contact

surface. Degradation at the right edge of the beam results in a further increase

of the fracture energy corresponding to the path (2-3). Finally, the crack rapidly

propagates from point (4) to (6). Hence, the total fracture energy corresponding

to crack propagation is

(6)
(4)Ψf = 311.82− 94.29 = 217.53 mJ.
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This is in very good agreement with the analytical prediction (Sun and Jin, 2012)

as Af · Gc (θ) = 10 ·2 ·10.6066 = 212.13 mJ, where Af is the fracture surface. The

slight increase of the total fracture energy from point (6) to (7) corresponds to

the marginal degradation of the beam material during the free vibration regime

of its response.

6.4.4.2 Case (ii): Isotropy - Gc (θ) = 9.75 N/mm

Even though the variation in Gc is small compared to case (i), it results in a

significantly different material response. The total fracture energy time-history

for case (ii) is shown in Fig. 6.25(b). The evolution of the phase field and the

hydrostatic stress for points ((1)-(6)) labelled in Fig. 6.25(b) is shown in Figs.

6.28 and 6.29, respectively.

Similar to case (i), the disc initially comes into contact with the beam and causes

damage at their contact surface. As a result, material degradation is observed

at the right edge of the beam (see. Fig. 6.28(b) and point (2) in Fig. 6.25(b)) as

in case (i). Next, a flexural crack initiates at the middle right-edge point of the

beam due to maximum principal tensile stresses developing at the tensile fibre

of the beam.

As the beam oscillates the maximum tension region alternates between the two

edges and the crack arrests (see Fig. 6.28(c) and point (3) in Fig. 6.25(b)). A

second crack then initiates at the left edge (see Fig. 6.28(d) and point (4) in Fig.

6.25b) and propagates (see Fig. 6.28e and point (5) in Fig. 6.25(b)) until the two

cracks finally merge as shown in Fig. 6.28(f).

As in case (i), the evolution of the fracture energy (shown shown in Fig. 6.25(b))

is consistent with the observed response. The first crack (right crack) initiates

at point (2) and stops at point (3). The second crack (left crack) propagates from
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point (4) to (6). Therefore, the total fracture energy is

Ψf =
(3)
(2)Ψf +

(6)
(4)Ψf = (196.55− 87.37) + (306.81− 226.39) mJ.

This is again in very good agreement with the analytical prediction (Sun and

Jin, 2012) as in this case Af · Gc (θ) = 10 · 2 · 9.75 = 195 mJ.

6.4.4.3 Case (iii): Orthotropy

Orthotropic anisotropy with a material orientation φ = +45o results in two

cracks at each beam edge (right and left) that do not coincide with the horizontal

axis as in case (ii). The evolution of the phase field and the hydrostatic stress

are represented for several time steps in Figs. 6.30 and 6.31, respectively. The

characteristic points ((1)-(7)) of that analysis are shown in Fig. 6.25(c).

Similarly to the previous cases, damage initiation is observed at the contact

surface (see Fig. 6.30(b) and point (2) in Fig. 6.25(c)). Next, degradation occurs

at the left edge of the beam (see Fig. 6.30(c) and point (3) in Fig. 6.25(c)). The

first crack (right crack) initiates at middle right-edge point of the beam and

propagates along the material’s week direction until it arrests in the vicinity of

the beam’s neutral axis (see Fig. 6.30(d) and point (4) in Fig. 6.25(c)). After

impact, further degradation occurs due to the beam’s free vibration resulting

in degradation to its left edge (see Fig. 6.30(e) and point (5) in Fig. 6.25(c)).

Finally, a second crack (left crack) initiates at the middle left-edge of the beam

and propagates along the material’s weak direction (see Fig. 6.30(f) and point

(6) in Fig. 6.25(c)). Similar to the first crack, the second crack arrests in the

vicinity of the beam’s neutral axis. The final crack paths are shown in Fig. 6.31(f)

where the two cracks do not merge as in case (ii).
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6.4.4.4 Parametric study of case (i)

Case (i) is further investigated in terms of cell spacing h, time step ∆t, cell den-

sity CD and staggered iterations Nstaggs. Three cell spacings are examined,

namely, h = 0.50 mm, h = 0.25 mm and h = 0.125 mm in combination with

three length scale parameters l0 = 1.00 mm, l0 = 0.50 mm and l0 = 0.25 mm

(see Table 6.5). In all numerical simulations presented in Table 6.5, a cell density

3x3 material points per cell is used. Table 6.6 also presents the time step utilized

for each analysis.

The fracture energy results are shown in Fig. 6.32 while the phase field and the

final crack paths are shown in Fig. 6.35. In Figs. 6.35, all the results correspond

to time step ∆t = 0.0125 µs. Figs. 6.32(a), 6.32(b) and 6.32(c) investigate the

influence of length scale parameter and time step for cell spacing h = 0.50 mm,

h = 0.25 mm and h = 0.125 mm, respectively. The influence of time step size is

also demonstrated in Figs. 6.32(a), 6.32(b) and 6.32(c). As it can be seen, the time

step ∆t = 0.05 µs, ∆t = 0.025 µs and ∆t = 0.0125 µs yield good accuracy for

cell spacings h = 0.50 mm, h = 0.25 mm and h = 0.125 mm, respectively. These

time steps are less than 0.80 · ∆tcr (see Table 6.6) and further deduction of the

time step size has no influence on the results. However, in the extensive numer-

ical investigation conducted in this example, a time step greater than 0.80 ·∆tcr

causes instability problems and inaccurate results. The fracture energy tends to

unrealistically increase to infinity after a few time steps and the material points

are separated from the body. This numerical instability is treated by reducing

the time step of the time integrator (Dokainish and Subbaraj, 1989).

Figs. 6.33(a), 6.33(b) and 6.33(c) investigate the influence of cell spacing for the

length scale parameters l0 = 1.00 mm, l0 = 0.50 mm and l0 = 0.25 mm, respec-

tively. Figs. 6.33(a), 6.33(b) and 6.33(c) also verify that the numerical results

rapidly converge when the resolution condition l0/h ≥ 2 is satisfied. Similarly,

Fig. 6.33(c) illustrates that inaccurate results are produced when l0/h = 0.50
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(see Chapter 4 for more details in quasi-static examples). Furthermore, in Fig.

6.33(c) and for h = 0.50 mm cell spacing, the fracture energy reaches a plateau

in a considerably low value than the other cases. This can be justified by the fact

that crack initiation is never observed (see also Fig. 6.35(c)) due to insufficient

crack regularization.

Fig. 6.33(c) also indicates that the initial selected cell density, i.e. 3x3 material

points per cell, is enough and further refinement of the cell density has no influ-

ence on the results. Moreover, Fig. 6.34 shows the simulation results with more

staggered iterations with no influence on the results again. Hence, the stag-

gered approach adopted in the present PF-MPM scheme is suitable and yields

good convergence. The only numerical restriction/instability derives from the

time step size that should be less than 0.80 ·∆tcr.

In Fig. 6.32(c), the fracture energy results for l0 = 1.00 mm and l0 = 0.50 mm

illustrate good agreement. However, the ’pattern’ of fracture energy changes

when l0 = 0.25 mm. This can be explained by the fact that when the length

scale parameter is l0 = 1.00 mm and l0 = 0.50 mm, the crack path initiates at the

mid-right edge of the beam and propagates until its mid-left edge. However,

when l0 = 0.25 mm the mid-right edge is gradually degradated just before a

crack initiates at that point. Then, due to the vibrations of the beam the crack

finally initiates at its mid-left edge.

This demonstrates the dramatic influence of the length scale parameter on the

results (see also Miehe et al. (2010b) for the influence of length scale parameter

on crack paths for quasi-static FEM problems). An extremely small length-scale

parameter l0 in combination with a fine mesh is needed to recover the sharp

limit of the crack. Moreover, the influence of length scale parameter is also

demonstrated e.g. in Figs. 6.35(g), 6.35(h) and 6.35(i). The diffusion of damage

around the crack is reduced when the l0 is also reduced.
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6.4.4.5 Discussion on observed fracture patterns

In this Section, the ability of the proposed method to simulate the incidence of

Hertzian fracture as a function of the projectile velocity is demonstrated. As the

developed method is only limited to brittle fracture, an accurate resolution of

the process zone ahead of the crack tip is not feasible. Hence a numerical vali-

dation against experimental results is not attempted and is beyond the scope of

this work.

Fracture patterns emerging from static indentation of a practically rigid disc

against a deformable solid as well as from low and high speed impact tests

have been the focus of extensive experimental investigations, see, e.g., (Ball and

McKenzie, 1994; Jelagin and Larsson, 2008). The failure modes observed vary

considerably with the velocity of the projectile, the flexibility of the impacted

beam, and the interface properties Jelagin and Larsson (2008).

We focus here in case (i) with isotropic fracture energy equal to Gc (θ) = 10.6066

N/mm. The fracture patterns shown in Fig. 6.26 correspond to a median type

of crack, with the crack at the left end nucleating due to impact and then prop-

agating towards the right edge driven by the principal tensile stresses at the

mid-span. To investigate the effect of the projectile velocity on the induced frac-

ture pattern, a total of 33 analysis cases was performed keeping the geometry,

the elastic and the fracture properties of the beam similar to those reported in

Section 6.4.4.1. In each case the projectile velocity is varied from 0.02 mm/µs to

0.18 mm/µs at a step size of 0.005 mm/µs. All analysis parameters, the back-

ground cell size and the cell density are similar to Section 6.4.4.1.

We define the Hertzian cone index β with a value β = 0 corresponding to a

cone not developing and β = 1 when a cone develops. This is plotted versus

the projectile velocity in Fig. 6.36; a cone fracture pattern occurs for velocities

larger than 0.10 mm/µs. Conversely, for velocities smaller than 0.10 mm/µs the

crack pattern is consistent with the flexure failure mode described in Section
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6.4.4.1. In Fig. 6.37, phase field snapshots are shown for six particular cases of

projectile velocity. All snapshots correspond to time t = 16µs.

For the case of the lowest impact velocity considered in Fig. 6.37(a), the crack

pattern involves a median crack propagating from the left and towards the right

edge of the beam. Secondary, flexural cracks appear at the right edge of the

beam. Such a response is consistent with experimental observations on brittle

materials at low impact loads where a plastic band initiates at the impact zone

prior to crack formation, see, e.g., Hagan and Swain (1978). In the framework

presented herein, the material degradation prior to fracture assumes this role.

Increasing impact velocities result in a Hertz cone formation at the vicinity of

the impact zone. Secondary cracks also propagate from the left edge. Of interest

is also the evidently smooth transition from a median to a Hertz cone fracture

pattern from Fig. 6.37(c) to Fig. 6.37(d).

6.4.5 Anisotropic plate with centred crack

In the final example, the crack paths derived with the PF-MPM are validated

against experiments conducted in a composite material with anisotropic sur-

face energy density Cahill et al. (2014). The case of the anisotropic rectangular

plate shown in Fig. 6.38 is examined, made from a unidirectional HTA/ 6376

composite laminate and subjected to an initial velocity field u̇ (x)(0) = 0.0002y

mm/µs. The plate contains a pre-existing crack at its centre with length 25 mm.

In their experimental campaign, Cahill et al. (2014) have shown that cracks grow

parallel to the fibre direction hence indicating that the damage originates only

through matrix failure. We consider herein the case of fibre orientation at φ =

+45o as shown in Fig. 6.38. This allows us to use the same Young’s modulus

and Poisson’s ratio along x and y. The elastic material properties considered
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Material Parameters
Elastic Material Properties Fracture Material Properties

A B A B
E 190000 190000 [N/mm2] 0.00 0.00 Case (i)

γ1111 0.00 0.00 Case (ii) [–]
ν 0.30 0.30 [–] 80.00 80.00 Case (iii)

ρ 8000 8000 [kg/m3] 0.00 0.00 Case (i)
γ2222 0.00 0.00 Case (ii) [–]

1.00 1.00 Case (iii)

0.00 0.00 Case (i)
γ1122 0.00 0.00 Case (ii) [–]

1.00 1.00 Case (iii)

0.00 0.00 Case (i)
γ1212 0.00 0.00 Case (ii) [–]

74.00 74.00 Case (iii)

l0 0.25 0.25 [mm]
kf 0.00 0.00 [–]

1060.66 10.6066 Case (i)
Ḡc 975.00 9.75 Case (ii) [N/mm]

750.00 7.50 Case (iii)

1060.66 10.6066 Case (i)
Gcmax 975.00 9.75 Case (ii) [N/mm]

2368.92 23.6892 Case (iii)

1060.66 10.6066 Case (i)
Gcmin 975.00 9.75 Case (ii) [N/mm]

1060.66 10.6066 Case (iii)

φ +45 +45 [Deg]

Material Point Method Model
Number of Control Points 242004
Number of Cells (Patches) 400x600=240000
Cell (Patch) spacing 0.125 [mm]
qξ = qη 2nd
Ξ {0, 0, 0, 0.0025, 0.0050, ..., 0.9950, 0.9975, 1, 1, 1}
H {0, 0, 0, 0.00167, 0.00333, ..., 0.99667, 0.99833, 1, 1, 1}
Initial Cell density 3x3
Number of Material Points 536796

Discrete Fields
Number of Discrete Fields 2
µf 0.65

Solution Algorithm Parameters
Time Integrator Explicit
∆t 0.0125 [µs]
Nstaggs 1

Table 6.4: Disc-Beam impact fracture problem: Simulation pa-
rameters.

Cell density CD = 3x3
l0

[mm]
Cell spacing (h) [mm]

0.50 0.25 0.125
1.00
0.50 ∆t = 0.05, 0.025 ∆t = 0.025, 0.0125 ∆t = 0.0125, 0.00625
0.25

Table 6.5: Disc-Beam impact fracture problem: Input data for
each analysis and its corresponding time step size used.

Cell spacing (h) [mm]
0.50 0.25 0.125

∆tcr [µs] 0.088 0.044 0.022
0.80 ·∆tcr [µs] 0.070 0.035 0.017

Table 6.6: Disc-Beam impact fracture problem: Critical time step
size for each cell spacing h = 0.50, h = 0.25 and h = 0.125.
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Figure 6.24: Disc-Beam impact fracture problem: Geometry. The
sphere and the beam have all their boundaries free.

are E = 14980 N/mm2 and ν = 0.36.The mass density is ρ = 1586 kg/m3. The

length scale parameter is considered l0 = 1 mm and the anisotropic parameters

are taken to be γ1111 = 1.00, γ2222 = 2900, γ1122 = 0.00 and γ1222 = 74.00

and Ḡc = 4.175 N/mm. These parameters correspond to an orthotropic surface

energy with Gcmin = 5.9067 N/mm along the fibre orientation and Gcmax =

30.9044 N/mm normal to the fibre.

The cell spacing is h = 1.00 mm and plane strain conditions are assumed. The

total number of material points is 281250. The solution procedure is imple-

mented with a time step ∆t = 0.0125 µs for a total time of 25 µs. The critical

time step is ˜∆tcr = 0.201 µs. All simulation parameters are summarized in

Table 6.7.

The results for the numerical simulations together with the experimental ob-

servations are shown in Fig. 6.39. The reciprocal of the surface energy density
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(a)

(b)

(c)

Figure 6.25: Disc-Beam impact fracture problem: Total fracture
energy over time for (a) case (i): PF-MPM 2nd order isotropic
model and Gc (θ) = 10.6066 N/mm (b) case (ii): PF-MPM 2nd
order isotropic model and Gc (θ) = 9.75 N/mm and (c) case (iii):

PF-MPM 4th order orthotropic model for the beam.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.26: Disc-Beam impact fracture problem: Phase field for
time steps (a) t=0 µs (b) t=12 µs (c) t=40 µs (d) t=56 µs (e) t=70 µs
and (f) t=88 µs. Results for case (i): PF-MPM 2nd order isotropic

model and Gc (θ) = 10.6066 N/mm for the beam.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.27: Disc-Beam impact fracture problem: Hydrostatic
stresses for time steps (a) t=0 µs (b) t=12 µs (c) t=40 µs (d) t=56
µs (e) t=70 µs and (f) t=88 µs. Results for case (i): PF-MPM 2nd
order isotropic model and Gc (θ) = 10.6066 N/mm for the beam.

Material points with cp < 0.08 have been removed.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.28: Disc-Beam impact fracture problem: Phase field for
time steps (a) t=0 µs (b) t=30 µs (c) t=40 µs (d) t=68 µs (e) t=72 µs
and (f) t=78 µs. Results for case (ii): PF-MPM 2nd order isotropic

model and Gc (θ) = 9.75 N/mm for the beam.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.29: Disc-Beam impact fracture problem: Hydrostatic
stresses for time steps (a) t=0 µs (b) t=30 µs (c) t=40 µs (d) t=68
µs (e) t=72 µs and (f) t=78 µs. Results for case (ii): PF-MPM 2nd
order isotropic model and Gc (θ) = 9.75 N/mm for the beam.

Material points with cp < 0.08 have been removed.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.30: Disc-Beam impact fracture problem: Phase field for
time steps (a) t=0 µs (b) t=12 µs (c) t=28 µs (d) t=40 µs (e) t=70
µs and (f) t=80 µs. Results for case (iii): PF-MPM 4th order or-

thotropic model.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.31: Disc-Beam impact fracture problem: Hydrostatic
stresses for time steps (a) t=0 µs (b) t=12 µs (c) t=28 µs (d) t=40
µs (e) t=70 µs and (f) t=80 µs. Results for case (iii): PF-MPM 4th
order orthotropic model. Material points with cp < 0.08 have

been removed.
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(a)

(b)

(c)

Figure 6.32: Disc-Beam impact fracture problem (Parametric
study of case (i)): Total fracture energy over time. Sub-figs (a),
(b) and (c) investigate the influence of length scale parameter (l0)
and time step (∆t) for cell spacing h = 0.50 mm, h = 0.25 mm

and h = 0.125 mm, respectively.
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(a)

(b)

(c)

Figure 6.33: Disc-Beam impact fracture problem (Parametric
study of case (i)): Total fracture energy over time. Sub-figs (a),
(b) and (c) shown the influence of cell spacing for length scale
parameter l0 = 1.00 mm, l0 = 0.50 mm and l0 = 0.25 mm,
respectively. In sub-fig (c), the influence of cell density is also il-
lustrated for approximately 3x3 and 4x4 material points per cell.
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Figure 6.34: Disc-Beam impact fracture problem (Parametric
study of case (i)): Total fracture energy over time. Influence of

staggered iterations.

(black eclipse) is also plotted on these snapshots. In Figs. 6.39(b) and 6.39(c), the

phase field evolves along the material orientation φ = +45o. The crack paths

derived from our simulation agree well with the experimental crack paths pre-

sented in Fig. 6.39(d).

6.5 Conclusions

In this chapter, a novel numerical method is introduced for the treatment of

dynamic brittle fracture in both isotropic and anisotropic elastic media. The

evolution of crack paths is represented by means of phase field models within a

MPM setting. Anisotropy is explicitly introduced in the fracture energy through

a crack density functional. The method is further extended to account for fric-

tional contact problems involving phase field fracture adopting a discrete field

approach. A notable advantage of the proposed formulation is that both the

equilibrium and phase field governing equations are solved independently for

each discrete field rendering the method suitable for parallel implementation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.35: Disc-Beam impact fracture problem (Parametric
study): Phase field for cell spacing h = 0.50 mm ((a)-(c)), h =
0.25 mm ((d)-(f)) and h = 0.125 mm ((g)-(i)). Sub-figs (a), (d)
and (g) are for l0 = 1.00 mm, (b), (e) and (h) for l0 = 0.50 mm

and (c), (f) and (i) for l0 = 0.25 mm. Results for case (i).
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Figure 6.36: Hertzian cone crack index β versus projectile veloc-
ity.

Material Parameters
Elastic Material Properties Anisotropic Material Properties
E 14980 [N/mm2] γ1111 1.00 [–]

ν 0.36 [–] γ2222 2900 [–]

ρ 1586 [kg/m3] γ1122 0.00 [–]

γ1212 74.00

l0 1.00 [mm]

kf 0.00 [–]

Gcmax 30.9044 [N/mm]

Gcmin 5.9067 [N/mm]

φ +45 [Deg]

Material Point Method Model
Number of Control Points 45904
Number of Cells 150x300=45000
Cell spacing 1.00 [mm]
qξ = qη 2nd
Ξ {0, 0, 0, 0.006666, 0.013333, ..., 0.986666, 0.993333, 1, 1, 1}
H {0, 0, 0, 0.003333, 0.006666, ..., 0.993333, 0.996666, 1, 1, 1}
Initial Cell density 3x3
Number of Material Points 280800

Discrete Fields
Number of Discrete Fields 1

Solution Algorithm Parameters
Time Integrator Explicit
∆t 0.0125 [µs]
Nsteps 2000
Nstaggs 1

Table 6.7: Anisotropic plate with centre crack: Simulation pa-
rameters.



258 Chapter 6. Material Point Method for dynamic brittle fracture

(a) (b)

(c) (d)

(e) (f)

Figure 6.37: Fracture patterns for varying projectile velocities (a)
u̇Ap(0)

= 0.05 mm/µs (b) u̇Ap(0)
= 0.08 mm/µs (c) u̇Ap(0)

= 0.095
mm/µs (d) u̇Ap(0)

= 0.10 mm/µs (e) u̇Ap(0)
= 0.14 mm/µs (f)

u̇Ap(0)
= 0.18 mm/µs. All snapshots correspond to time t =

16µs.
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Figure 6.38: Anisotropic plate with centre crack: Geometry and
boundary conditions.

The method is rather appealing for the case of phase field modelling where

very fine meshes are commonly required due to the regularized crack topology.

Rather than employing a uniform background mesh and material point den-

sity, multiple small scale problems can be solved separately for each discrete

field at their corresponding background domain. In terms of contact driven

fracture, contrary to standard FEM implementations that necessitate the algo-

rithmic treatment of local contact features, these now naturally emerge from

the interaction of material points within a fixed Eulerian mesh. Indeed, the

fixed Eulerian grid is utilized to identify the contact surfaces using the material

points’ projection on the grid.

A set of representative numerical examples is presented where the compu-

tational advantages of PF-MPM are demonstrated. In the first example, the

method is verified against the standard Phase Field Finite Element Method; the

two methods are in good agreement. The influence of anisotropy is examined in

terms of crack path, time history energy results and crack tip velocities. Bench-

mark problems with complex crack path i.e. crack branching and merging are
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(a) (b)

(c) (d)

Figure 6.39: Anisotropic plate with centre crack: Phase field for
time steps (a) t=0 µs (b) t=22 µs and (c) t=25 µs. The experimental

observations are shown in (d) (Cahill et al. (2014)).
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considered and the robustness of the method is established. It is shown that dif-

ferent loading velocities and fracture material parameters strongly influence the

dynamic failure response of the structure and the resulting crack paths. Frac-

ture energies computed from the proposed method are compared and indeed

verified against the corresponding analytical predictions. Finally, crack paths

derived from the method are validated, when possible, against experimental

observations.





Chapter 7

An application of the PF-MPM to

the study of rocking system

dynamics

Part of this chapter is published in the 16th European Conference on Earthquake

Engineering (Thessaloniki, Greece) (Kakouris et al., 2018).

7.1 Introduction to rocking mechanics

Rocking dynamics occur in systems whose connection with their support medium

is achieved through a non-tensile interface where the shear forces are frictional.

Examples of rocking systems can be found in a wide range of applications: from

museum exhibits and hospital equipment to electrical devices and structural el-

ements. The response of such systems when subjected to ground excitations is

substantially different to the response of monolithic structures. A distinctive

feature is the appearance of rigid body rotations and displacements during the

motion. These are often dominant and hence the criteria of failure of such bod-

ies are mainly kinematic, rather than the usual stress exceedance criteria used

for typical structural systems.

263
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As a reasonable consequence, the majority of relevant literature examines rock-

ing systems under the assumptions of rigid support medium and body (Hous-

ner, 1963), or by assuming that the rocking body is flexible only in the lateral

direction (Acikgoz and DeJong, 2012). However, the decelerations of the rock-

ing body during the occurring impacts are often of the order of tenths of g.

These large forces may induce large local stresses at the points of application

that may deteriorate the contact surface or lead to local failures.

This mode of failure has often been ignored in the literature. This is mainly due

to the computational complexity of the problem between large displacement

kinematics and computational mechanics. The change of the contact surface

during the rocking motion in combination with an impact and sliding contact

problem pose substantial challenges for standard FE methods: they result in

the need for re-meshing techniques, or very dense initial meshes. The latter

solution in turn results in further increased demands from the time integration

method used so as to ensure stability. Such an approach could potentially lead

to the deceiving result that the underlying physical problem is chaotic, when

in reality the issue often lies in the robustness of the computational treatment.

Furthermore, mesh distortion errors that are inevitable in large kinematics Fi-

nite Element analyses hinder the fidelity of rocking body simulations where the

deformability of the contact surfaces significantly affects the resulting contact

forces.

To alleviate the previous problems and develop rocking models that allow the

study of the stresses induced in rocking systems, a Material Point Method for

simulating the rocking kinematics of deformable bodies is proposed. In this

chapter, the developed model is used to study the dynamics of a relatively stiff

body and support medium and the solutions obtained are compared versus

existing models in the literature. Next, the influence of rocking body deforma-

bility is examined under earthquake loads. Finally, the proposed PF-MPM is

utilized to examine the damage evolution in rocking systems.
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7.2 Rigid Rocking models

The Inverted Pendulum Model (IPM), developed by Housner (1963), is poten-

tially the most popular model for rocking bodies. The rocking body, the proper-

ties and the axes convention used in the following equations are defined in Fig.

7.1. The rigid body is defined by its massm, half-width and half-height b and h,

respectively. The occurring moment of inertia, about any of the bottom corners

0 and 0
′
, is denoted as I0 whereas R =

√
h2 + b2 is the distance from a corner

to the centre of mass and the angle α = tan−1 (b/h) describes the slenderness of

the block.

Figure 7.1: Inverted Pendulum Model (IPM defined by Housner
(1963) for a free-standing rocking block).

The body rocks with respect to one of the corners depending on the sign of θ.

Thus, it can be simulated by a pendulum whose pin is located at that corner as

shown in Fig. 7.1. This further implies that the body is assumed not to slide,

or experience free-flight, that the body and the ground are rigid, and that the

response of the body is strictly planar.

When θ transitions through zero an impact occurs between the body and the
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ground and as a result, the body may lose kinetic energy as it transitions, ac-

cordingly, from one pendulum pattern to the other. If it is further assumed that

the angular momentum with respect to the future rocking corner is conserved,

the reduction of energy factor, r, which relates the kinetic energy before and

after impact is expressed as

r =

(
θ̇+
)2

(
θ̇−
)2 =

1/2I0θ̇
2
2

1/2I0θ̇1
2

=

[
1− mR2

I0
(1− cos (2α))

]2

(7.1)

where θ̇+ and θ̇− are the angular velocity after and before impact, respectively.

Hence, the IPM results in a discontinuity of the velocity state before and after

the impact. It should further be noted that as discussed in Chatzis et al. (2017),

the reduction of energy factor could well be within the value defined in equa-

tion (7.1) and unity, i.e., no loss of energy during impacts. To be able to alleviate

that related uncertainty the contact interface mechanics have to be specified.

A means of achieving that while also introducing the deformability of the sup-

port medium is through the Winkler Model (WM) proposed in Chatzis and

Smyth (2012b) for rocking bodies with a flat base. The model is illustrated in

Fig. 7.2 below

Figure 7.2: WM for rocking bodies on deformable media
(Chatzis and Smyth, 2012b).

The support medium parameters used in the model are the distributed per
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unit length stiffness kl and damping coefficients cl , while nonlinear horizon-

tal springs are used for the frictional forces Ff . A Coulomb friction model is

used that is defined by the coefficient of friction µf . The motion of the rigid

body is described by the horizontal, vertical and rotational generalized coor-

dinates ( x,y and θ, respectively). As a result, the model allows for including

the effects of impact, sliding and free flight without discontinuities in the states.

Additionally, no assumption needs to be made regarding the impact duration

as the dissipated energy is a parameter of the WM properties.

7.3 Material Point Method for rocking mechanics

Considering the advantages of MPM in contact mechanics (see Chapter 6), the

overarching objective in this Section, is to, for the first time, simulate the rock-

ing body - ground interaction by considering the actual dynamics of the two de-

formable bodies (rocking body, ground) in contact. Their interaction is derived

from their contact and friction forces with minimal computational complexity

and without increasing the computational demands.

7.3.1 Governing discrete equations

A discrete field approach is adopted, herein, for studying rocking dynamics.

Therefore, the equilibrium discrete equations introduced in Section 6.3.1.1 are

utilized. Those equations are integrated using the explicit time integration

scheme described in Section 6.3.2.1.
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7.3.2 Numerical examples

7.3.2.1 Rocking body response subjected into horizontal single sinusoidal

ground acceleration

The rocking response of a body with dimensions 2b = 0.795 m and 2h = 3.113

m, shown in Fig. 7.3(a) resting on an elastic medium is simulated herein using

the proposed MPM scheme. The purpose of this example is to verify the ap-

propriateness of the MPM to simulate rocking system dynamics. The body is

subjected to a horizontal ground acceleration prescribed by a single sinusoidal

pulse defined in equation (7.2) as

üg =


α sin (ωt) 0 ≤ t < 2π

ω

0 t ≥ 2π
ω

(7.2)

where α and ω are the amplitude and the frequency of the excitation, respec-

tively. The Young’s modulus and Poisson ratio of the ground are E = 260 MPa

and ν = 0.30, respectively. The corresponding parameters for the body are cho-

sen as E = 5200 MPa and ν = 0.30. The parameters were chosen so that the

body is substantially more rigid than the support medium. This allows for com-

parison versus previous work in the literature as the dimensions of the specific

body under the assumption of it being rigid have been used in the works of

Zhang and Makris (2001), Chatzis and Smyth (2012b) and Chatzis and Smyth

(2012a). The mass density of the ground is ρ = 1300 kg/m3 whereas the mass

density of the rigid body is ρ = 606.101 kg/m3. The latter allows for valid

comparisons to be made against the mass per unit length used for this body in

Chatzis and Smyth (2012b), i.e 1.5 tonnes/m. The friction coefficient between

the rocking body and the ground is µf = 0.625.

According to the MPM formulation introduced in Section 6.3 two discrete fields
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are defined; one corresponding to the rigid body and one corresponding to the

elastic medium. The former is discretized into 8928 material points whereas

7200 material points are used for the latter. Quadratic B-splines are utilized

for the background grid with cell spacing 0.05 m and plane strain conditions

are assumed. Initially, the material points are positioned in the Gauss posi-

tions of each parent cell; the cell density is 3x3. A time step ∆t = 0.00001 sec

is employed. The ground excitation is applied to MPM model employing D’

Alembert’s principle.

As initially shown in Zhang and Makris (2001), utilizing the IPM, a stability

analysis on the body when subjected to single cycle acceleration pulses of vary-

ing frequency and amplitude (ω, α) offers useful information on the stability of

the system. By varying the values of ω and α in the horizontal and vertical axes,

respectively and by denoting for a given frequency the amplitudes at which a

transition between survival and failure is observed the stability diagram of Fig.

7.3(b) can be generated. Failure in this context pertains to the toppling of the

rocking body.

In such a diagram, three distinct regions can be observed: a region of survival, a

closed region (loop) where the body topples having experienced a single impact

with the ground, and an area of failure occurring for larger amplitudes where

the body fails without having experienced an impact. The boundaries between

those regions for the IPM are indicated in Fig. 7.3(b) with a magenta hexagram.

Using a deformable WM for the support medium, for the same body Chatzis

and Smyth (2012b) produced a stability diagram which also included the pres-

ence of the three regions. The WM predicted boundaries are also plotted in Fig.

7.3(b) with a golden square.

A set of 127 analyses is carried out with various pairs of (ω, α) to derive the

stability diagram of Fig. 7.3(b) using the MPM. The axes are normalized as ω/p

and α/αg, respectively, where p = 2.14 and αg = 2.5049. In this work green

dots, blue pentagrams, and red diamonds correspond to the result obtained
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from the proposed MPM model and account for safe, failure with impact and

failure without impact respectively. It should be noted the body is considered to

survive, after experiencing two impacts without failure during its free vibration

response. The body is considered to fail when |θ| ≥ 85o where θ is the angle be-

tween the rocking body and the ground. The obtained results are superimposed

on the boundaries predicted by the IPM and WM models.

(a)

(b)

Figure 7.3: (a) Geometry and boundary conditions (b) Failure-
safety analysis with the WM, IPM and MPM.

As shown in Fig. 7.3(b), the proposed MPM method demonstrates a very good

agreement with the WM approach. The two methods predict that the failure

with no impact regions extends to larger frequencies than those predicted by
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the IPM model under the assumption of conserving angular momentum with

respect to the future rocking corner. This phenomenon has been further ex-

plained in Chatzis et al. (2017) where it is argued that bodies with a flat base

would not necessarily satisfy this assumption. Similarly to the WM, MPM does

not need to adopt such an assumption, but rather relies on modelling the prop-

erties of the bodies in contact and accurately resolving the corresponding con-

tact interfaces. It is further expected that the MPM model would show a better

agreement to the results in Zhang and Makris (2001) if the same body had feet

on the two corners, similarly to what has been demonstrated in Chatzis and

Smyth (2012b) for the Concentrated Spring Model (CSMd).

It should further be stated that the stability diagram for the WM shown in

Chatzis and Smyth (2012b) and in Fig. 7.3(b) uses an estimate of the proper-

ties on the contact interface stiffness and damping based on the model of Wolf

(1994), which essentially simulates the support medium as an elastic half-space.

It further appears that this model is also reasonable for the case studied here.

However, the MPM does not need to make an assumption on the contact inter-

face properties which is a further advantage of the model presented herein.

In the following, three individual cases are presented for each failure-safety

condition. In the first case, the pair ω/p = 3 , α/αg = 1 results in survival for

the rocking body. A snapshot of the response of the rocking body is presented

in Fig. 7.4 at chosen time instances. The ground excitation and rocking body

angle time histories are presented in Fig. 7.5. In the second case, the frequency

is the same ratio ω/p = 3 while the amplitude is increased to α/αg = 2.5. That

pair leads the rocking body to toppling after having experience one impact with

the ground. The complete rocking response is represented in Fig. 7.6. Similarly,

the ground excitation and rocking angle time-histories are shown in Fig. 7.7.

In the third case, the amplitude is increased to α/αg = 3.5. This amplitude

seems to be adequate to overturn the rocking body without impact. The corre-

sponding rocking motion is presented in Fig. 7.8 whereas the ground excitation
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time-history and corresponding rocking angle are shown in Fig. 7.9.

7.3.2.2 Influence of rocking body deformability - Sensitivity analysis under

earthquake loads

The rocking body of Section 7.3.2.1 is now subjected into horizontal earthquake

loads. The 1999, Chi-Chi, Taiwan event, CHY101 recording is used herein (north

component) with a peak ground acceleration (PGA) 3.90 m/s2. It can be found

in the P.E.E.R. ground motion database as RSN1244_CHICHI_CHY101-N (Pacific-

Earthquake-Engineering-Research-Center (P.E.E.R. Ground Motion Database) 2018).

The ground excitation and its corresponding spectral acceleration diagram (for

damping 5%) are shown in Fig. 7.10(a) and Fig. 7.10(b), respectively. For

brevity, acceleration recordings from t = 20 sec onwards are used since acceler-

ation recorded prior to this cut-off point are negligible.

All the simulation parameters are kept constant as in the previous Section 7.3.2.1.

The sensitivity of the response on the deformability of the rocking body is ex-

amined herein. In particular, the four cases shown in Table 7.1 are considered

for the Young’s modulus of the rocking body, namely, case (i) Ea = E = 5200

MPa case (ii) Eb = E/10 = 520 MPa case (iii) Ec = E/100 = 52 MPa and case

(iv) Ed = E/1000 = 5.2 MPa. The rocking body angles with ground over time

for all cases are presented in Fig. 7.10(c).

From Fig. 7.10(c), it is noticed that the stiffer the rocking body, the faster it fails.

In particular, the rocking bodies fail at time 22.5360 sec, 20.6960 sec, 20.5840

sec and 18.0980 sec for the cases (i), (ii), (iii) and (d), respectively. The failure

criterion that is used is the same as in Section 7.3.2.1, i.e. |θ| ≥ 85o. The differ-

ence in its rocking response highlights the importance of accurately resolving

the deformability of the rocking body. The MPM provides us with a significant

advantage towards that goal.



Chapter 7. An application of the PF-MPM to the study of rocking system dynamics273

(a)

(b)

(c)

(d)

Figure 7.4: ω/p = 3 and α/αg = 1 (Safe): Rocking body response
for (a) 0 sec (b) 0.47 sec (c) 1.20 sec and (d) 2.10 sec.
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(a)

(b)

Figure 7.5: ω/p = 3 and α/αg = 1 (Safe): Plots over time for
(a) ground excitation (acceleration pulse) (b) rocking body angle
with ground - labels (1), (2), (3), (4) correspond to Fig. 7.4 sub-

captions (a), (b), (c), (d).
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(a)

(b)

(c)

(d)

Figure 7.6: ω/p = 3 and α/αg = 2.5 (Failure (impact)): Rocking
body response for (a) 0 sec (b) 0.73 sec (c) 2.51 sec and (d) 2.90

sec.
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(a)

(b)

Figure 7.7: ω/p = 3 and α/αg = 2.5 (Failure (impact)): Plots
over time for (a) ground excitation (acceleration pulse) (b) rock-
ing body angle with ground - labels (1), (2), (3), (4) correspond

to Fig. 7.6 sub-captions (a), (b), (c), (d).
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(a)

(b)

(c)

(d)

Figure 7.8: ω/p = 3 and α/αg = 3.5 (Failure (no impact)): Rock-
ing body response for (a) 0 sec (b) 1.50 sec (c) 2.20 sec and (d)

2.58 sec.
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(a)

(b)

Figure 7.9: ω/p = 3 and α/αg = 3.5 (Failure (no impact)): Plots
over time for (a) ground excitation (acceleration pulse) (b) rock-
ing body angle with ground - labels (1), (2), (3), (4) correspond

to Fig. 7.8 sub-captions (a), (b), (c), (d).
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Finally, snapshots of rocking body motion for all the four cases are presented in

Fig. 7.11 over time. In all cases, the rocking body rocks about its two bottom

corners. In cases (i) and (ii) the rocking body eventually overturns about its left

bottom corner whereas for the cases (ii) and (iii) about its right bottom corner.

Young’s modulus Case (i) Case (ii) Case (iii) Case (iv)
E 5200 E/10 = 520 E/100 = 52 E/1000 = 5.2 [MPa]

Table 7.1: Sensitivity analysis under earthquake loads: Young’s
modulus of the rocking body.

7.4 Material Point Method for studying crack propaga-

tion on rocking systems

In the previous Sections of this Chapter, the proposed MPM is verified against

existing models in the literature. Furthermore, the importance of accurately re-

solving the deformability of the rocking body is shown to significantly affect its

rocking response. In this Section, the proposed PF-MPM is utilized to simulate

crack propagation on deformable rocking systems.

7.4.1 Governing discrete equations

As mentioned in Section 7.3, the response of a rocking system is considered

as two deformable bodies in contact. Thus, the governing coupled equations

introduced in Section 6.2 are used for the crack propagation on rocking sys-

tems. Furthermore, the numerical implementation introduced in Section 6.3 is

adopted as summarized in pseudo-algorithm 3 on page 203.
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(a)

(b)

(c)

Figure 7.10: Chi-Chi ground motion record: (a) Acceleration
time histories (b) Spectral accelerations and (c) rocking body an-
gle with ground for Young’s modulus: case (i)E (blue solid line)
case (ii) E/10 (red dotted line) case (iii) E/100 (green dashed

line) and case (iv) E/1000 (magenta dash-dot line).
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(a)

(b)

(c)

(d)

Figure 7.11: Chi-Chi ground excitation: Snapshots of rocking
body motion for (a) case (i)E (b) case (ii)E/10 (c) case (iii)E/100

and (d) case (iv) E/1000.
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7.4.2 Numerical example

7.4.2.1 Damage evolution in rocking structures: Circular Arch with But-

tresses

In this example, a circular arch with two buttresses is examined. The aim of

this example is to assess the potential of the PF-MPM in simulating damage

evolution in rocking systems. The structure is subjected to the Chi-Chi, Taiwan

earthquake ground motion (see Fig. 7.10(a)). Two cases are examined. In case

(i), the buttresses can rock under the action of earthquake ground motion. In

case (ii), the two buttresses are fixed in the ground. Thus, they are unable to

experience rocking, uplift of sliding.

The geometry of the structure is shown in Fig. 7.12(a). The vault has circular

shape with radius R = 3.488 m while the span is 6.4 m. The width of the

buttresses is 0.80 m and the vault thickness is 0.20 m. The Young’s modulus,

Poisson ratio and the mass density of the ground areE = 260 MPa, ν = 0.30 and

ρ = 1300 kg/m3, respectively. The structure is considered to comprise natural

stone with corresponding parameters E = 300 MPa, ν = 0.25 and ρ = 1700

kg/m3. The fracture properties of both the ground and the structure are chosen

as l0 = 0.20 mm, kf = 0.00 and γijkl = 0. The surface energy density of the

structure is considered to be Gc (θ) = Ḡc = Gcmax = Gcmin = 2700 N/m whereas

the corresponding parameter for the ground and the buttresses is assumed to

be sufficiently large (i.e. Gcg (θ) = 1000Gcs (θ)), so that no damage can occur on

it.

Quadratic B-splines are utilized for the background grid with cell spacing 0.10

m and plane strain conditions are assumed. The circular arch with the two

buttresses consists of 5886 material points whereas the ground is formulated

by 12960 material points. To reduce the computational cost, the ground is in-

cluded in the analysis of case (i) only. In case (ii), the ground material points are
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removed for brevity and the fixed boundary conditions are directly applied on

the bottom of each buttress at their corresponding grid nodes. The initial cell

density of each parent cell is at least 3x3. The explicit time integration scheme is

employed with time step ∆t = 0.00005 sec and the ground excitation is applied

by using the D’ Alembert’s principle as in Section 7.3.2.

The time history of the rocking angle with the ground for the left buttress for

case (i) is presented in Fig. 7.12(b). From Fig. 7.12(b) and case (i), it is noticed

that the buttress initially rocks with the ground experiencing small angles (i.e.

less than 2o). Then, the arc gradually degrades until the appearance of the first

hinge on its left side at time t = 31.75 sec (see Fig. 7.13(b)). Next, two more

hinges are observed, one approximately on the top of the arc (see Fig. 7.13(c))

and another on its right side 7.13(d) at time t = 32 and t = 32.25 sec. Finally, the

collapse mechanism and the final state are presented in Figs. 7.13(e) and 7.13(f),

respectively.

Similarly, the evolution of the phase field for several time steps and case (ii) is

presented in Fig. 7.14. In this, none hinge is observed in the arc during the

whole earthquake excitation. Its left (see Fig. 7.14(b)) and right (see Fig. 7.14(c))

side are only degradated with a minimum observed degradation value at ap-

proximately 0.80. Therefore, the rocking boundary conditions on the buttresses

significantly affect the damage evolution of the structure as compared to the

corresponding fixed supports.

7.5 Conclusions

In this Chapter, a MPM is presented for the simulation of rocking body dynam-

ics. The method is rigorously established within a discrete field setting. In this,

solution of the governing equations of motion is performed for each field indi-

vidually while contact conditions between fields are explicitly introduced into
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(a)

(b)

Figure 7.12: Circular Arch with Buttresses: (a) Geometry and
boundary conditions (b) rocking body angle with ground for
case (i): Buttresses can experience rocking with ground [labels

(1) to (6) correspond to Fig. 7.13 sub-captions (a) to (f)].
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(a) (b)

(c) (d)

(e) (f)

Figure 7.13: Circular Arch with Buttresses: Phase field for time
step (a) t = 20 sec (initial state) (b) t = 31.75 sec (first hinge)
(c) t = 32 sec (second hinge) (d) t = 32.25 sec (third hinge) (e)
t = 32.63 sec (collapse) and (f) t = 33.53 sec (final state). Results

for case (i): Buttresses can experience rocking with ground.
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(a)

(b)

(c)

Figure 7.14: Circular Arch with Buttresses: Phase field for time
step (a) t = 0 sec (b) t = 31 sec and (c) t = 32 sec. Results for

case (ii): Buttresses are fixed on the ground.
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the strong form of the problem through appropriate boundary conditions. So-

lution of the resulting governing equations is performed in an explicit manner

using a predictor corrector algorithm.

Results obtained with the proposed numerical method for the case of a rigid

body over an elastic half-space are compared against the Inverted Pendulum

and Winkler rocking models. Results indicate that the numerical predictions

are in good agreement with the estimates of both the Inverted Pendulum Model

and the Winkler Model. As no assumption needs to be implied on either the

stiffness of the rocking body or the contact interface properties, the proposed

method provides an attractive alternative for the simulation of more complex

problems, e.g., rocking of deformable and non-elastic bodies.





Chapter 8

Conclusions and Future work

8.1 Conclusions

This thesis proposes a novel computational method to simulate crack propaga-

tion in brittle materials, namely the Phase Field Material Point Method. Phase

Field models have been shown to be extremely robust in resolving complex

crack paths involving crack merging and branching.

In this work, MPM is employed as an alternative to standard grid based or

meshless methods. In doing so, the proposed scheme can naturally treat large

displacement driven fracture problems while at the same time avoiding mesh

distortion errors. This is particularly important in impact driven fracture as well

as fragmentation analysis where the proposed method demonstrates excellent

performance.

To investigate the accuracy and the efficiency of the derived model over the

standard computational approaches, the results are verified with the standard

Phase Field Finite Element Method implementation and analytical solutions.

The method is validated against experimental observations and measurements

available in the literature.

The proposed model is initially developed for quasi-static brittle fracture. The

influence of the length scale parameter, i.e. the diffusion of damage around

289
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the crack is investigated on the material response. It is shown that the critical

displacement and load are strongly influenced by the choice of length scale pa-

rameter. Furthermore, the mesh/grid sensitivity and cell density (i.e. number

of material points per grid cell) are also examined. In this, the PF-MPM is found

to also require a sufficient grid spacing to regularize the phase field smooth de-

scription as in PF-FEM. However, the cell density slightly influences the result-

ing load-displacement response of the material. The number of staggered iter-

ation and the displacement increment are also examined in load-displacement

paths. Similar with length scale parameter, the critical displacement and load

are strongly dependent on these. Convergence in the material response is achieved

by either decreasing the displacement increment or increasing the number of

staggered iterations.

Following this, a fourth order phase field fracture model is employed. This al-

lows for simulating the response of materials with anisotropic fracture energy.

Within this setting, a family of both isotropic and anisotropic fourth order phase

field models is derived. Benchmark tests conducted considering the case of cu-

bic and orthotropic surface energy demonstrate that the resulting crack paths

significantly depend on the material orientation. The proposed framework pro-

duces complex anisotropic fracture in a robust fashion and paves the way for

the numerical investigation of such phenomena.

Finally, the proposed PF-MPM is originally upgraded within a dynamic set-

ting with the objective of simulating dynamic fracture and impact induced frac-

ture propagation problems. The resulting scheme is verified against a standard

Phase Field Finite Element implementation where the two methods illustrate

excellent agreement. The effect of anisotropy on the dynamic response of im-

pacting bodies is also examined for the first time.

In particular, it is demonstrated that the material orientation and the weak di-

rections of an anisotropic material strongly influence the resulting crack paths.

The crack paths emerge either on material’s weak directions or close to them.
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Through extensive numerical testing, it is shown that the proposed method nat-

urally treats complex crack geometries in a robust and efficient manner.

A significant advantage of the proposed method for the case of impact prob-

lems is that local contact features do not need to be tracked algorithmically.

Instead, contact surface detection is performed at the fixed Eulerian grid. Thus,

the derived computational tool can efficiently treat both arbitrary crack paths

and contact surfaces without extra computational cost. The influence of sur-

face energy anisotropy and loading conditions on the resulting crack paths is

assessed through a set of benchmark problems. In this, it is shown that an am-

plified value of initial loading velocity leads to more complex crack paths.

Furthermore, the length scale parameter, cell spacing, cell density and number

of staggered iterations are also examined on fracture energy time histories. It

is demonstrated that the ratio of length scale parameter/cell spacing strongly

influences the derived results as in quasi-static case. Similarly, the cell density

slightly modifies the results. The number of staggered iterations is not critical

in dynamic problems as it is to quasi-static case. Indeed, the simulations are

restricted by the critical time step (CFL) and it is the critical parameter to achieve

convergence on the results. The impact algorithms developed are also verified

against analytical solutions and the results are shown to agree well.

Finally, the appropriateness of PF-MPM to simulate the response of rocking sys-

tems is studied. The method is found to be able to treat the rocking response

of both rigid and deformable body in a robust and accurate manner. The pro-

posed scheme does not rely on any assumption pertinent to the properties of

the contact surfaces and the rocking bodies themselves.

Furthermore, deformable rocking bodies are also examined and the difference

in their rocking response is highlighted. The damage evolution induced by

rocking response is also examined, providing an appealing computational tool

for complex soil-structure interaction analyses.
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8.2 Future work

The following are research directions that could further improve the work pre-

sented in this thesis:

• Although Phase Field models offer advantages in simulating complex

crack paths, they increase the number of unknowns to be considered. The

accurate resolution of phase field evolution within its length scale effec-

tively poses an upper bound on grid mesh size, hindering its computa-

tional efficiency especially in 3D problems. This is a common issue for

both PF-MPM and PF-FEM. Hence, an adaptive mesh refinement strat-

egy can be applied to reduce the computational demands. Alternatively,

a multiscale formulation can also be applied to resolve the micro features

of the material.

• In this work, a staggered iterative approach is adopted for all the bench-

mark problems. Both single and multi predictor-corrector schemes are ex-

amined. However, a staggered strategy sometimes requires a small time

step to accurately solve the decoupled problem. Although the staggered

scheme yields good results in the benchmark problems examined herein,

a monolithic approach, i.e. solving the fully coupled problem, can be ap-

pealing when large time steps are permitted.

• The contact algorithm presented in this work is utilized within a staggered

iterative approach combined with an explicit time integration scheme. Al-

though this strategy is proven to be robust for parallel implementation, it

is restricted by small time steps due to the Courant-Friedrichs-Levy (CFL)

condition. Hence, the proposed PF-MPM can also be implemented within

an implicit time integration scheme to overcome the above issue. How-

ever, an implicit time integration scheme introduces iterations at each time

step. Thus, its efficiency in terms of computational costs should be further
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examined against the proposed explicit scheme.

• In this work, the objective is to examine how the material anisotropy in-

fluences the evolution of crack paths. The material anisotropy is only ex-

amined in terms of its surface energy. Thus, generalization of the method

can be made to also account for the anisotropic elastic material properties,

i.e. the elastic stiffness tensor D.

• The rocking bodies that are examined in this work, are assumed to rest-

ing on rigid support media. Yet, the proposed method can also simulate

rocking response on deformable support media. Thus, a detailed analysis

of how the deformability of support medium influences both its failure-

safety condition (stability analysis examination) and the resulting crack

paths at rocking body can be further exploited.

• The proposed PF-MPM presented in this work can be extended to account

for isotropic and anisotropic ductile fracture, yielding a unified approach

in fracture analysis of materials.

• The materials that are analysed in this work, are rate independent. How-

ever, the critical fracture energy density can be rate dependent in some

materials. Thus, another future direction of this work is the extension of

the proposed scheme to account for rate dependent materials.

• Finally, the proposed method can be extended to 3D problems.





Appendix A

Material Point penalty method

for imposing kinematic

constraints

In the following, we consider the case of the two dimensional problem shown in

Fig. A.1. This involves 2 active cells with 6 active grid nodes totalling 12 degrees

of freedom for the background Eulerian grid. Eight material points points are

considered. Kinematic constraints need to be imposed on both displacement

components of the material point p, namely up = {upx , upy}.

As described in Section 3.9.4.1, in the MPM the displacement components of

a material point are interpolated to the corresponding nodes of the active cell

Figure A.1: Imposition of constraints with Penalty Method.
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the material point resides. For the case of material point p shown in Fig. A.1,

the interpolation expressions for both the horizontal and vertical components

of the displacement vector are expressed in the following form


upx = N1(xp)u3 +N2(xp)u5 +N3(xp)u11 +N4(xp)u9

upy = N1(xp)u4 +N2(xp)u6 +N3(xp)u12 +N4(xp)u10

(A.1)

Following the standard procedure for the Penalty Method (Bathe, 2007), the

following matrices are formulated

A =

0 0 N1(xp) 0 N2(xp) 0 0 0 N4(xp) 0 N3(xp) 0

0 0 0 N1(xp) 0 N2(xp) 0 0 0 N4(xp) 0 N3(xp)


(A.2)

and

V = {upx , upy} (A.3)

where A is an (Nconstr ×Ndofs) coefficient matrix whereas V is an (1×Nconstr)

coefficient vector. Nconstr ∈ Z+ and Ndofs ∈ Z+ denotes to the total number of

imposed constraints and total number of active unconstrained degree of free-

dom of the whole structure. Therefore, the incremental external forces as well

as the incremental internal forces are modified according to equations (A.4) and

(A.5) below

∆Fext := ∆Fext + αATVT (A.4)

∆Fint := ∆Fint + αATA∆u (A.5)

where α is the Penalty Method parameter. If a direct solver is utilized then the

global stiffness matrix of the structure is redefined according to equation (A.6)

below

Ku := Ku + αATA (A.6)

This technique is extremely advantageous when the boundary conditions are

not align with the background grid. Another alternative technique to deal with
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boundary conditions that are not coincide with the background grid has re-

cently introduced by Cortis et al. (2018) utilizing an implicit boundary method.

Similar strategy is adapted to standard FEM when the essential boundary con-

ditions should be applied on surfaces/edges that are not aligned with element

edges.





Appendix B

Variational approach of the

anisotropic phase field model

In the energy balance equation (5.19) the rate of the kinetic energy is evaluated

as

K̇ (u̇) =
d

dt

∫
Ω

1

2
ρ|u̇|2dΩ =

∫
Ω

([ρü] · u̇) dΩ (B.1)

Similarly, the rate of the external work is expressed as

Ẇext (u̇) =

∫
∂Ωt̄

(̄t · u̇) d∂Ωt̄ +

∫
Ω

(b · u̇) dΩ (B.2)

and the rate of the internal work is defined accordingly as

Ẇ int (u̇, ċ,∇ċ) =
dΨs

dt
=

d

dt

∫
Ω

(
ψel + ḠcZc,Anis

)
dΩ (B.3)

Applying the divergence theorem in equation (B.3), the rate of the internal work

Ẇ int (u̇, ċ,∇ċ) assumes the following form

Ẇ int (u̇, ċ,∇ċ) = B1 + B2 + B3 + B4 (B.4)
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where the components Bi, i = 1 . . . 4 assume the following expressions

B1 =
d

dt

∫
Ω

ψeldΩ

=

∫
∂Ω

([σn] · u̇) d∂Ω−
∫
Ω

([∇ · σ] · u̇) dΩ +

∫
Ω

(ψelc ċ) dΩ

(B.5)

B2 =
d

dt

∫
Ω

(
Ḡc

[
(c− 1)2

4l0

])
dΩ =

∫
Ω

([
Ḡc

(c− 1)

2l0

]
ċ

)
dΩ (B.6)

B3 =
d

dt

∫
Ω

(
Ḡc
[
l0|∇c|2

])
dΩ

=

∫
∂Ω

([
Ḡcl02∇c

]
· nċ
)
d∂Ω−

∫
Ω

([
Ḡcl02∆c

]
ċ
)
dΩ

(B.7)

and

B4 =
d

dt

∫
Ω

Ḡc
l30∑

ijkl

γijkl
∂2c

∂xi∂xj

∂2c

∂xi∂xj

 dΩ

=

∫
Ω

Ḡc
l30∑

ijkl

γijkl
d

dt

(
∂2c

∂xi∂xj

∂2c

∂xk∂xl

) dΩ

=

∫
Ω

Ḡc
l30∑

ijkl

γijkl

(
d

dt

(
∂2c

∂xi∂xj

)
∂2c

∂xk∂xl
+

∂2c

∂xi∂xj

d

dt

(
∂2c

∂xk∂xl

)) dΩ

= T1 + T2,

(B.8)

respectively, where

T1 =

∫
Ω

Ḡc
l30∑

ijkl

γijkl

(
d

dt

(
∂2c

∂xi∂xj

)
∂2c

∂xk∂xl

) dΩ (B.9)

and

T2 =

∫
Ω

Ḡc
l30∑

ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂2c

∂xk∂xl

)) dΩ (B.10)
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Components T1 and T2 are further expanded employing the divergence theorem

into

T1 =

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂2c

∂xk∂xl

) · n
 d∂Ω−

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂3c

∂xj∂xk∂xl

) dΩ

=

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂2c

∂xk∂xl

) · n
 d∂Ω

−

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
dc

dt

∂3c

∂xj∂xk∂xl

) · n
 d∂Ω−

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
dc

dt

∂4c

∂xi∂xj∂xk∂xl

) dΩ


=

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂2c

∂xk∂xl

) · n
 d∂Ω

−

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂3c

∂xj∂xk∂xl

) · nċ
 d∂Ω−

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
∂4c

∂xi∂xj∂xk∂xl

) ċ
 dΩ


(B.11)

and

T2 =

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂c

∂xl

)) · n
 d∂Ω−

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

d

dt

(
∂c

∂xl

)) dΩ

=

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂c

∂xl

)) · n
 d∂Ω

−

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

dc

dt

) · n
 d∂Ω−

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
∂4c

∂xi∂xj∂xk∂xl

dc

dt

) dΩ


=

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂c

∂xl

)) · n
 d∂Ω

−

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

) · nċ
 d∂Ω−

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
∂4c

∂xi∂xj∂xk∂xl

) ċ
 dΩ

 ,

(B.12)

respectively.
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Substituting equations (B.11) and (B.12) in Eq. (B.8) the following expression is

derived for B4

B4 =

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂2c

∂xk∂xl

)
+ Ḡcl30

∑
ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂c

∂xl

)) · n
 d∂Ω

−
∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂3c

∂xj∂xk∂xl

)
+ Ḡcl30

∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

) · nċ
 d∂Ω

+ 2

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
∂4c

∂xi∂xj∂xk∂xl

) ċ
 dΩ

(B.13)

Substituting Eq. (B.13) in the energy balance equation (5.19) expression (5.21) is

finally established.



Appendix C

Transformation of surface energy

density to polar coordinates

The surface energy density and their corresponding reciprocal expression polar

plots are evaluated according to the methodology introduced in Li et al. (2015).

In this, the Cartesian coordinate system x (x1, x2) is transformed to xθ (x1θ , x2θ)

where the x1θ -axis is defined along the crack path Γ and x2θ -axis is the axis

normal to the crack interface as shown in Fig. 5.1. Angle θ is the counter-

clockwise angle between x1-axis and x1θ .

Thus, a coordinate transformation from x (x1, x2) to xθ (x1θ , x2θ) is performed

through the transformation equation (C.1)

 x1θ

x2θ

 =

cos(θ) − sin(θ)

sin(θ) cos(θ)


 x1

x2

 = xθ = Rθx (C.1)

with the inverse transformation defined as x1

x2

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)


 x1θ

x2θ

 = x = RT
θ xθ (C.2)

303



304 Appendix C. Transformation of surface energy density to polar coordinates

Assuming that ∂c (x (xθ)) /∂x ≈ ∂c (x (x2θ)) /∂x and applying the chain rule,

the phase field first spatial derivatives are expressed as

∂c

∂x1
=

∂c

∂x1θ

∂x1θ

∂x1
+

∂c

∂x2θ

∂x2θ

∂x1
≈ ∂c

∂x2θ

∂x2θ

∂x1
=

∂c

∂x2θ

sin(θ) (C.3)

and
∂c

∂x2
=

∂c

∂x1θ

∂x1θ

∂x2
+

∂c

∂x2θ

∂x2θ

∂x2
≈ ∂c

∂x2θ

∂x2θ

∂x2
=

∂c

∂x2θ

cos(θ), (C.4)

respectively. Similarly, the second spatial derivatives are expressed as

∂2c

∂x1
2

=
∂

∂x1

(
∂c

∂x1

)
=

∂

∂x1θ

(
∂c

∂x1

)
∂x1θ

∂x1
+

∂

∂x2θ

(
∂c

∂x1

)
∂x2θ

∂x1
≈

∂

∂x2θ

(
∂c

∂x1

)
∂x2θ

∂x1
=

∂2c

∂x2
2θ

sin2(θ)

(C.5)

∂2c

∂x2
2

=
∂

∂x2

(
∂c

∂x2

)
=

∂

∂x1θ

(
∂c

∂x2

)
∂x1θ

∂x2
+

∂

∂x2θ

(
∂c

∂x2

)
∂x2θ

∂x2
≈

∂

∂x2θ

(
∂c

∂x2

)
∂x2θ

∂x2
=

∂2c

∂x2
2θ

cos2(θ)

(C.6)

and

∂2c

∂x1∂x2
=

∂

∂x1

(
∂c

∂x2

)
=

∂

∂x1θ

(
∂c

∂x2

)
∂x1θ

∂x1
+

∂

∂x2θ

(
∂c

∂x2

)
∂x2θ

∂x1
≈

∂

∂x2θ

(
∂c

∂x2

)
∂x2θ

∂x1
=

∂2c

∂x2
2θ

cos(θ) sin(θ) ≈ ∂2c

∂x2∂x1
,

(C.7)

respectively. Higher-order spatial derivatives are defined accordingly as

∂3c

∂x1
3
≈ ∂3c

∂x3
2θ

sin3(θ) and
∂3c

∂x2
3
≈ ∂3c

∂x3
2θ

cos3(θ) (C.8)

and

∂4c

∂x1
4
≈ ∂4c

∂x4
2θ

sin4(θ) ,
∂4c

∂x2
4
≈ ∂4c

∂x4
2θ

cos4(θ) ,
∂4c

∂x1
2∂x2

2
≈ ∂4c

∂x4
2θ

cos2(θ) sin2(θ)

∂4c

∂x1∂x2
3
≈ ∂4c

∂x4
2θ

cos3(θ) sin(θ) ,
∂4c

∂x2∂x1
3
≈ ∂4c

∂x4
2θ

sin3(θ) cos(θ)

(C.9)
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Employing equations (C.3) to (C.9), the functional Zc,Anis of equation (5.3) is

expressed in polar coordinates as

Zc,Anis =

(c− 1)2

4l0
+ l0|∇c|2 + l30

∑
ijkl

γijkl
∂2c

∂xi∂xj

∂2c

∂xk∂xl

 ≈
(c− 1)2

4l0
+ l0

(
∂c

∂x2θ

)2

+ l30γθ

(
∂2c

∂x2
2θ

)2
 (C.10)

where γθ is defined from Eq. (5.9). Furthermore, the Euler-Lagrange equation

is rewritten in the form

c− 1− 4l20∆c+ 4l40
∑
ijkl

γijkl
∂4c

∂xi∂xj∂xk∂xl
= 0⇒

d

dx2θ

(
∂Zc,Anis
∂(∂c/∂x2θ)

)
−
∂Zc,Anis
∂c

= 0⇔

c− 1− 4l20

(
∂2c

∂x2
2θ

)
+ 4l40γθ

(
∂4c

∂x4
2θ

)
= 0

(C.11)

Equation (C.11) can then be numerically solved subject to the following bound-

ary conditions, introduced in Eqs. (5.11) for fourth-order or Eqs. (5.12) for sec-

ond order phase field models, respectively. Finally, the surface energy density

Gc (θ) is numerically evaluated from Eq. (5.17).

The maximum and minimum values of Gc (θ) for θ ∈ [0, 2π] are defined as Gcmax

and Gcmin respectively. The polar plot of surface energy density Gc (θ) can be

rotated by an arbitrary angle φ through the transformation equation (C.12)

γφ = QφγQ
T
φ (C.12)

where the rotation matrixQφ is defined as

Qφ =


c2 s2 −2cs

s2 c2 2cs

cs −cs c2 − s2

 (C.13)
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with c = cos (φ), s = sin (φ) the angle φ taken as positive in the clockwise direc-

tion. The pseudo-algorithm for the derivation of surface energy density Gc (θ)

and its reciprocal 1/Gc (θ) in polar coordinates is summarized in Algorithm 4.

Data: Define input material parameters (γijkl, l0, Ḡc, φ)
Define: xlb = 50l0 ;
for θ = 0, .., 2π do

Compute: Qφ (see Eq. (C.13)) ;
Compute: γφ (see Eq. (C.12)) ;
Compute: γθ (see Eq. (5.9)) ;
Define the boundary conditions: Use Eqs. (5.11) when γijkl 6= 0
(fourth-order) or Eqs. (5.12) when γijkl = 0 (second-order) ;
Solve the differential equation (C.11) (third relation) and get c (x2θ),
∂c(x2θ)
∂x2θ

,
∂2c(x2θ)
∂x2

2θ

;

Compute: Zc,Anis (x2θ) (see second of Eqs. (C.10)) ;
Compute: G (θ) (see last term of Eq. (5.17)) ;
Compute: 1/G (θ) ;

end
Compute: Gcmax = max∀θ∈[0,2π](G (θ)) and Gcmin = min∀θ∈[0,2π](G (θ)) ;

Algorithm 4: Derivation of surface energy density Gc (θ) and its reciprocal
1/Gc (θ) in polar coordinates.
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