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Abstract

Mathematical modelling has become a useful and commonly-used tool in the

analysis of infectious disease dynamics. Understanding disease spread is of

considerable importance for public health planning and the prevention of fu-

ture outbreaks, and mathematical analysis of disease outbreaks offers insight

which may not be so easily obtained through direct biological study.

One key aspect, in mathematical analysis of infectious diseases specifically,

is that generally the epidemic process is only partially observed. We might be

able to identify the time at which infective individuals become symptomatic or

recover, but rarely are we able to observe when infection began, or from whom

it was transmitted. This leads to a number of complications with analysis,

which will be a focus of this work.

The first part of this thesis describes a full Bayesian analysis for such an out-

break with only partial observation of the disease process. We will perform

the first Bayesian analysis of the Abakaliki smallpox data, which have been

widely cited within the infectious disease modelling literature, to include the

full data. In order to do this, we use data augmented Markov Chain Monte

Carlo (DA-MCMC) techniques to perform parameter estimation. Analysis in-

volves interpretation of these parameter estimates as well as model assessment

with simulation-based methods. We also compare our results to a previous

analysis which used an approximate likelihood expression.

The second part of this thesis describes novel approximate likelihood methods,

motivated in part by the results of the Abakaliki study. Although DA-MCMC
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is generally considered the standard tool for analysis of partial epidemic data,

it often struggles for large population sizes and large amounts of missing data,

both through issues of highly correlated missing data and of potentially lim-

iting computation times. We suggest that likelihood approximation methods

are a useful tool for dealing with these issues. We develop a series of such

methods, which essentially assume some independence in the outbreak pop-

ulation in order to obtain likelihood expressions which do not depend on any

missing data. These methods will be motivated and developed, and then il-

lustrated both by simulation study and by application to real data.
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CHAPTER 1

Introduction

In this thesis, we will explore different aspects of Bayesian analysis for in-

fectious disease data. Bayesian methods are of particular use for epidemic

modelling since data are typically only partially observed. Data Augmented

Markov Chain Monte Carlo (DA-MCMC) is currently the standard computa-

tional Bayesian method employed, and this will be the focus of the first part

of this thesis in an application to a much-cited data set concerning a smallpox

outbreak. The second part of this thesis will then introduce novel approximate

likelihood methods for Bayesian inference. These are motivated by a number

of computational problems of DA-MCMC. A series of such likelihood meth-

ods will be described, as well as applied to various simulated and real data

sets.

First, this introduction will provide relevant background material. We begin

with a discussion of the history of infectious disease data analysis, and the

use of stochastic models for this. We define important aspects of the data and

models which are used, and describe current computational methods. We par-

ticularly consider methods which involve approximation, since this will be the

focus of much of this thesis.

1



CHAPTER 1: INTRODUCTION

1.1 Mathematical Infectious Disease Modelling

1.1.1 Background

Mathematical models have seen increasing popularity as tools for furthering

the understanding of infectious disease epidemiology. Often, experimental

study on the spread of disease in humans and animals is ethically difficult and

resource intensive, but mathematical models offer an alternative in seeking

to replicate the underlying factors driving disease dynamics, to allow estima-

tion of parameters which, for example, govern disease transmission. Models

aim to describe transmission of disease between hosts by incorporating con-

tact patterns and a realistic representation of the disease itself (e.g. lengths of

infectious periods, latent periods and so on). Predictions may then be made

about key parameters such as infection rates or vaccine efficacies. In fact, the

aims of analysis may largely be categorised into three main areas: furthering

understanding of the mechanisms by which diseases spread, predicting future

spread, and discovery of the methods which best control this (Daley and Gani,

2001). Development of vaccination strategies, health care interventions, and

public health initiatives may all be informed by this mathematical research.

The development of mathematical theories on the spread of infectious diseases

can be traced back to at least the ancient Greeks, although real progress was

arguably only made from the 19th century with the discovery of the connec-

tion of microorganisms to disease. This laid the foundations for the develop-

ment of more rigorous mathematical descriptions of disease outbreaks. Al-

though there had been previous studies such as the famed Broad Street Pump

study of 1854/5, in which a contaminated water pump was identified as the

source of a cholera outbreak in London (see e.g. Newsom, 2006), these had

been largely empirical rather than theoretical. In the last century, however, the

field has seen great advancement, driven both by development of mathemati-

cal theory and increasing computational resources. From the development of

individual-based, deterministic models where outbreak progression depends
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specifically on the numbers of susceptible and infectious individuals, to the

introduction of stochastic models which incorporate probabilities of events oc-

curring, development has been rapid. In Kermack and McKendrick (1927), the

first complete, deterministic mathematical model to receive attention was in-

troduced, named the general epidemic model, with its stochastic counterpart in

McKendrick (1926), though this received less attention. Previously, these kinds

of models were generally only used within mathematical theory, but since the

1990s or so there has been an increased interest in the field by more applied sci-

entists as well as public health officials and policy makers. Central texts which

further describe the history of the field as well as key methods and applica-

tions include Bailey (1975), Becker (1989), Anderson and May (1991) and An-

dersson and Britton (2000). Today, with increasing volumes of data driven by

increasing computational power, there is growing demand on mathematical

models which capture more complex populations, as well as methods which

can translate these into real-world conclusions.

1.1.2 Stochastic Models

The set of models for analysis of infectious disease is often split into determin-

istic and stochastic. Deterministic models are usually defined through a set

of ordinary (or partial) differential equations, which seek to describe the flow

of individuals between different disease stages over time. Stochastic models,

although often less straightforward to analyse, are generally considered more

realistic than their deterministic counterparts. In capturing the variability of

real-life events, they represent the natural stochasticity of disease outbreaks.

The use of stochastic models has allowed for considerable development in in-

fectious disease analysis. From the 1930s, when the idea of using binomial

distributions to represent successive crops of new cases was introduced (de-

scribed in Bailey, 1975), there has been an increase in their use. They are es-

pecially useful when the number of individuals in the population is small,

since in these cases the innate randomness of the processes involved is more
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pronounced and hence deterministic models less well describe the epidemic

spread. Models are generally constructed on an individual-based level, where

we consider individual units (humans, animals, or even groups of individu-

als) within some population. The total population might refer to a household,

a city, or a country, for example.

One model which has received significant attention (although it was never

published) was proposed by Reed and Frost. This is a discrete time chain-

binomial model, in which outbreaks are described as evolving in generations

where each infected individual infects each susceptible individual indepen-

dently, with a fixed probability p. The individuals infected by those in some

generation g then form generation g + 1, and those in g are assumed to re-

cover. The number of infectives in each generation is therefore binomially dis-

tributed, with probability dependent upon the number of infectives present in

the previous generation, and the entire outbreak is described by a chain of such

binomial random variables. A more detailed description of the Reed-Frost

model can be found in Andersson and Britton (2000), Section 1.2 or Abbey

(1952). The so-called general stochastic model for an epidemic process was then

formulated by Bartlett (1949). This was the first work to define a stochas-

tic model using Markovian processes, and most stochastic models since have

been defined as such, in either discrete or continuous time. From this point

on, we will restrict our attention to stochastic rather than deterministic mod-

els, since these are the focus of this work.

1.1.2.1 SIR and SEIR Stochastic Epidemic Models

Models used for analysis of infectious diseases generally include some kind of

state of health of the individuals concerned. These are commonly known as

compartmental models, since they categorise individuals into a discrete set of

disease states.

The standard terminology is to define all individuals who are currently able to

become infected by the disease as ‘susceptible’, all currently infectious (i.e. able
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to pass the disease on to others) individuals as ‘infective’ and all individuals

who are no longer infectious but are also not able to contract the disease again

as ‘removed’. This removed state might correspond to a number of causes:

death, removal from the population, recovery and immunity from reinfection,

or perhaps recovery with the timescale of the outbreak too short for reinfec-

tion to reasonably occur. These states may be combined to form what is called

an SIR (susceptible-infective-removed) model, though there are others which

may be considered and are often applied. For example, if we also introduce

a ‘latent’ or ‘exposed’ period before the infectious period, wherein individuals

are infected but not yet able to infect others, we may use an SEIR (susceptible-

exposed-infective-removed) model. If we do not wish to include a removal

period, but instead to allow all recovered individuals to become immediately

infected again, we may use an SIS (susceptible-infective-susceptible) model.

In this thesis, however, we will largely focus on SIR and SEIR models, and

extensions thereof.

Figure 1.1 depicts a typical timeline for the stages of a disease that an indi-

vidual might pass through. The model used here is an extension of the SEIR

model, which we will see more of in Chapter 2, where we have split the in-

fectious period into two parts according to whether the individual is symp-

tomatic or asymptomatic. These periods might be categorised by differing

infection rates. Of course, compartmental models may be defined with any

compartments desired, but we consider here those which are frequently seen

in practice.

We will discuss different types of infectious disease data further in Section 1.2,

but typically outbreak data contain the removal times only (or, say, case detec-

tion times treated as removal times). The length of each individual’s infectious

period, and the latent period if we include this, are then assumed random and

independent of other individuals. In general, these lengths of time are as-

sumed to be random samples from distributions with known parameters.

Transmission of the disease is modelled as being the result of infectious con-
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Figure 1.1: Typical disease timeline for an SEIR model with 2 stage infectious

period. Times "e", "i" and "r" refer to the start of the individual’s

exposed (infected, but not yet infectious), infective (able to infect

others) and removed (plays no further part in the outbreak) peri-

ods, respectively.

tacts. Infectious individuals in the population are assumed to have contacts

with others at some defined rate, where a contact is defined as an interaction

close enough for an infection to occur. In reality, this contact may refer to a

physical meeting of these individuals, but also a proxy for the infective dis-

persing pathogens in their environment and the contacted individual making

contact with this pathogenic material. Examples include using objects they

have encountered, breathing in the same air, or, in hospital settings, medical

staff being the intermediary link. An infectious contact with a susceptible is

normally assumed to result in the susceptible’s immediate infection.

We now more rigorously define the SIR model, which may be extended to any

compartmental model of choice. We first define a closed population of size

N, which does not include any demographic changes (i.e. births or deaths).

We assume, for now, that this population is homogeneously mixing (i.e. all

individuals mix uniformly), so that the chance that any two individuals meet

is independent of the choice of individuals. All individuals will at all times

t ≥ 0 be in one of the three states: susceptible, infective and removed. The

total numbers of individuals in these categories at any time t are given by

S(t), I(t) and R(t), respectively, where for all t, S(t) + I(t) + R(t) = N. We

assume external infection of the initial infective, so that initially S(0) = N− 1,
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I(0) = 1 and R(0) = 0.

Any given infective individual will contact any other given individual at times

given by the points in a homogeneous Poisson process of rate β, where all Pois-

son processes are mutually independent. Any contact between an infective

and a susceptible is assumed to result in immediate infection of the suscepti-

ble. The length of any infective’s infectious period x is assumed independent

of all others, and identically distributed with arbitrarily defined probability

density (or mass) function f I(x | θ), where θ includes the parameters control-

ling the length of the infectious periods. The outbreak ends when there are no

more infectives in the population.

The general stochastic epidemic model for infectious periods following an expo-

nential distribution with rate γ (so that f I(x | θ) = γe−γx, x > 0) may then be

defined as a continuous-time Markov chain {(S(t), I(t)) : t ≥ 0} with transi-

tion probabilities:

P
[
(S(t + h), I(t + h)) = (s− 1, i + 1) | (S(t), I(t)) = (s, i)

]
= βhsi + o(h)

P
[
(S(t + h), I(t + h)) = (s, i− 1) | (S(t), I(t)) = (s, i)

]
= γhi + o(h), as h→ 0

where the first equation corresponds to an infection and the second to a re-

moval. At time t, infections then occur at rate βS(t)I(t) and removals at rate

γI(t).

Under this model, the infectious periods are independent exponentially dis-

tributed lengths of time with mean 1
γ . In this standard form of the model there

are hence two parameters; the infection rate β and the removal rate γ. We

will also often employ gamma distributed infectious periods within this the-

sis, with mean m
γ for shape parameter m and rate parameter γ. Gamma (or

Erlang, for integer valued m) distributions are frequently used since exponen-

tially distributed infectious periods, although leading to convenient mathe-

matical results, may be unrealistic in practice (see e.g. Lloyd, 2001, Streftaris

and Gibson, 2004).
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1.1.2.2 Population Structures

Although in Section 1.1.2.1 we assumed that all individuals mixed homoge-

neously, in reality we often assume some heterogeneity in the mixing behaviour

of individuals. The structure for the populations within which outbreaks oc-

cur can have considerable impact on the behaviour of the model, and more

complex choices of population structure are becoming more commonly used

in practice to meet the demands of real data analyses. Models must be com-

plex enough to accurately represent the dynamics of the real population, but

simple enough to allow consideration of the impact of modelling assumptions

on the outcomes, as well as not being over-parameterised.

There are numerous options for population structures which have been ex-

plored (see e.g. Britton et al., 2015 or Mollison, 1995). Global contact structures

(or homogeneously mixing structures) as defined in Section 1.1.2.1 essentially

assume no structure at all, and individuals within the population do not differ

in their interactions, infectivity or in the average length of time spent infected.

Although simple and comparatively easy to implement, this assumption is

often unrealistic (especially in larger populations rather than smaller commu-

nities e.g. households), and so a more detailed description of the population

may be necessary.

For this we require a heterogeneously mixing population model, within which

we may define a number of structure subcategories. A multi-type model would

include a set of structured subgroups in the population, categorising for ex-

ample by age, sex, or social grouping. Ball et al. (1997) defined a two level

mixing household model, where individuals have local contacts within their

household and global contacts between households. This was extended to

three levels by Britton et al. (2011), who considered global, household and

school/workplace contacts in the context of a measles outbreak.

Network models, on the other hand, deal with a more complex structure of in-

teraction between individuals. Considering each individual in the population
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as a node, the contact rate between any two individuals is given by the weight

of the edge between them. These have become widely applied, see e.g. Keel-

ing and Eames (2005), Barthélemy et al. (2005) and Newman (2002), as well as

Britton and O’Neill (2002) who developed methods for inference. Definition

of network models is difficult since any individual-based model may be repre-

sented as a network of the individuals (for example, a homogeneously mixing

population structure is just a completely connected network where the weight

of all edges is equal). For simplicity, we will consider them here as any popula-

tion structure where members vary individually in their infectivity or mixing

behaviour, rather than by some structured grouping as in a multi-type model.

Danon et al. (2011) provide a detailed discussion of many forms of network

models for infectious diseases. One such example is a spatial model, whereby

individuals’ infectivity/mixing behaviour in some way depends on their ‘dis-

tance’ from others. This could be geographically (for example the distance

between individuals’ area of residence, as in Chowell et al., 2007), or other-

wise (for example the ‘genetic distance’ between individuals’ DNA samples,

as in Worby et al., 2016).

1.1.2.3 Reproduction Numbers

Reproduction numbers play an important role in infectious disease analysis.

Usually referred to as R, the exact definition of these varies but generally we

define, as in Becker (2015):

R = the average number of infections that a single infective will cause.

The name reproduction number comes from the fact that models for disease

transmission may essentially be considered as birth-death processes, where an

infection describes a ‘birth’ and a recovery describes a ‘death’. Then R is the

mean number of ‘offspring’ produced by an infective. Although we may ob-

tain an estimate of R for an entire outbreak, of course in reality R is constantly

changing with the number of susceptibles left in the population, and also po-
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tentially with the reaction of the population to the outbreak. We hence define

the more interpretable, and more commonly used, basic reproduction number

R0:

R0 = the average number of infections that a single infective will cause,

in a large and entirely susceptible population.

In the calculation of R0 we therefore require that none of the population is

immune, by vaccination or otherwise, and that all individuals are able to in-

teract. Although this requirement of complete susceptibility makes R0 less

interpretable in its meaning for any given outbreak where this is not the case,

it makes it much more comparable between different data sets and diseases. It

offers a general measure of the overall infectivity of a disease.

Other reproduction numbers may also be defined, and we will explore a num-

ber of these in Chapter 2. We may, for example, define a reproduction number

during a particular section of the infectious period, or within a particular sub-

group of the population.

The exact formula for any reproduction number will of course depend on the

model used for the infection and removal rates. In general, for stochastic mod-

els we may define

R0 = infection rate × number of susceptibles ×

mean length of the infectious period ,

and for the Markovian SIR model defined in Section 1.1.2.1 above,

R0 =
βN
γ

.

This is since each individual will be infectious for, on average, time 1
γ , and the

average number of susceptibles infected per unit time is βN.

A key interpretation of R0 is in its relation to the epidemic spread as a thresh-

old quantity. In an infinitely large population, it is possible to show with prob-

ability one that if R0 ≤ 1 then the epidemic will die out (only a finite number
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of individuals become infected). Correspondingly, a major outbreak in a large

population is possible if and only if R0 > 1, by the threshold limit theorem

(Andersson and Britton, 2000, Chapter 4). Estimating the value of R0 from the

model parameter estimates allows us to gain an understanding of how large a

future outbreak could be. This is particularly useful in informing vaccination

strategies, for example, since we can calculate the proportion of a population

that would need to be vaccinated to prevent a widespread outbreak.

For a more detailed discussion of this, and reproduction numbers in general,

we direct the reader to Andersson and Britton (2000) or Heesterbeek and Dietz

(1996), for example.

1.2 Data

So far in this chapter we have focused on defining models for the spread of

infectious disease, but of course in a statistical context we are also concerned

with inference about the model parameters. This requires data from disease

outbreaks, which we now discuss.

Disease outbreak data are most commonly mathematically collected in a tem-

poral form. These typically contain a time series of outbreak events, usually

case detection times or removal times. This is often aggregated e.g. into daily

or weekly data. Final size data are also common, consisting just of the initial

number of susceptibles and which of these were eventually infected. How-

ever, this thesis will not focus on final size data, and from this point all data

will be assumed temporal.

There is frequently some extra information available as well: for example age,

sex or location of residence of the individuals within the population. These

may inform the population structure aspects of the model. Information on

the vaccination of individuals may also be present, as will be particularly rel-

evant in Chapter 2. This may be incorporated into the model to, for example,

consider a proportion of the population effectively initially in the ‘removed’

11
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stage. Estimation of the efficacy of the vaccine given a particular outbreak may

then be performed. Daley and Gani (2001), Chapter 7 and Anderson and May

(1982) include a more detailed discussion of immunization, and particularly

its relation to R0.

Disease outbreak data are commonly only partially observed. This is since

the transmission process itself is generally unobserved, for example most in-

fectives are only identified at the moment they become symptomatic. Further

than this, if the system is only observed at discrete intervals (e.g. weekly hos-

pital tests or similar), then there will be a large amount of uncertainty as to

exactly when outbreak events occurred.

Missing data may also come in the form of unobserved cases, whether due to

asymptomatic individuals, misdiagnosis, or under-reporting of cases. Popu-

lation sizes may also include some element of uncertainty, either in the total

number of people living in some particular area or in the proportion of this

which is initially susceptible, due, for example, to prior immunity. We gen-

erally assume that the population is closed for the duration of the outbreak,

but this is course will not always be accurate (particularly for outbreaks which

occur over longer lengths of time).

Performing statistical analysis on only partially observed data often proves

complicated, even with simple models. Missing data may lead to likelihood

expressions which are analytically intractable. We will explore this further in

Section 1.3.2.

1.3 Methods for Analysis

The majority of methods for inference from stochastic models use likelihood

expressions. As we have discussed in Section 1.2, many of these likelihoods

will be intractable, due to a combination of partially observed data and the

model used to describe them.

12
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Tractable likelihoods do arise, usually as a result of simplifying assumptions

such as fixed length infectious periods. Inference is then possible using stan-

dard techniques such as maximum likelihood estimation through numerical opti-

mization of the likelihood function. Intractable likelihoods, on the other hand,

may occur when infection times (or indeed any event times, though we state

infection times for simplicity) are unobserved. The likelihood can then be con-

sidered as the integral over all possible infection times of the likelihood ex-

pression when augmented with the infection times. The high dimensional

and often complex region of integration, however, is what leads to intractabil-

ity, often analytically and numerically. There are a number of methods which

have been explored for working with these likelihoods.

Initial approaches for intractable likelihoods generally took a frequentist ap-

proach. Martingale methods, as described in Becker (1989), may be applied to

final size and temporal data for both parametric and nonparametric inference.

Martingales are random processes evolving over time, defined in part by the

martingale property which requires the expected change of a martingale over

time to be zero. A Martingale process hence must be unbiased, and will usu-

ally arise from a counting process in an epidemic context. These count the

occurrence of events happening randomly in time, where at each event the

process increases by size one. In the context of infectious disease data, this

could count the number of observed infections. From this representation of

the disease process, maximum likelihood estimators may be obtained, as well

as asymptotic results using properties of the Martingales. However, Martin-

gale methods for incomplete data involve reconstruction of the infection pro-

cess, which requires various approximations or simplifying assumptions (for

example, homogeneous mixing structures). Data augmentation and MCMC

offer an alternative in the same spirit, but avoiding the need for simplification

(Kypraios, 2007 Section 2.1.8, Becker and Britton, 1999).

Data augmentation techniques, as we will more rigorously define in Section

1.3.4, have become more common when working with partially observed data.

13
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These treat missing data as model parameters. The Expectation-Maximisation

(EM) algorithm is one such technique, in which we create an artificial ‘com-

plete’ data set in order to perform maximum likelihood estimation with the

EM algorithm (Becker, 1997, Dempster et al., 1977). Essentially, we define

some quantity Z which represents the complete data, i.e. a combination of

observed data X and unobserved event times Y. In an epidemic context, this

might involve combining the observed removal times with the unknown in-

fection times. The algorithm then uses iterative steps to move from an initial

estimate of the model parameters θ(0) to new estimate θ(1) and so on, where

each iteration increases the likelihood. An iteration is formed of two stages:

E and M. The E-step (expectation) involves calculating the expectation of the

log-likelihood function of the complete data, with respect to observed data

X and under current parameter estimates θ(t). The M-step then determines

θ(t+1) by maximising this expectation, and the two-step process is repeated

until convergence is achieved.

As demonstrated in Becker (1997), the EM algorithm has been successfully

used in applications including HIV/AIDS data. Here, transmissibility aspects

of the disease are often ignored since the disease has a considerable incuba-

tion period as well as multiple methods of transmission in practice. Simpler

models capturing part of the case generation process then fit well with the

EM algorithm, due to their natural partial observation. However, in other

epidemiological contexts where transmission models are required, the condi-

tional expectation in the E-step will often be difficult to calculate. This is due

to the interactions between infective and susceptible individuals, the number

of which of course change with time.

It has become more common to fit models within a Bayesian framework, using

for example MCMC methods, particularly combined with data augmentation.

We will explore this fully in Section 1.3.3, but first provide some necessary

background on Bayesian inference.
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1.3.1 Bayesian Inference

Bayesian inference (Bernardo and Smith, 1994, Lee, 2012, Gelman et al., 2013)

relies upon Bayes’ Theorem to derive parameter estimates from a model given

data. It is a widely-used statistical framework, with the benefit that it provides

a natural way of combining data with prior beliefs. The approach involves

deriving a posterior probability from the combination of a likelihood function,

which is the conditional distribution of the data given the parameters, and a

prior probability, which represents our beliefs about these parameters before

the data is taken into account. This posterior distribution π(θ | X) is therefore

the conditional distribution of the unknown parameters θ given data X. Bayes’

Theorem states that:

π(θ | X) = π(θ)π(X | θ)∫
θ π(θ)π(X | θ) dθ

∝ π(θ)π(X | θ), (1.3.1)

where the denominator in the first expression is a normalising constant, and

the integral is a sum if θ is discrete. This constant is typically analytically

intractable, especially in high dimensional problems as are usual in infectious

disease analysis.

In order to make inference about θ, we require this posterior distribution π(θ |X)

which is formed of the likelihood π(X | θ) and prior density π(θ). The likeli-

hood expression will depend on the choice of model, and the prior distribution

must be chosen in advance depending on our beliefs about the parameters.

Any choice of prior distribution may be used for Bayesian inference, but cer-

tain choices have proved most popular. Conjugate priors, for example, are se-

lected to be ‘conjugate’ to the likelihood, meaning the resulting posterior will

be of the same family of distributions as the prior. This often leads to easier

computation. If we have some existing knowledge about the parameters, we

might use an informative prior which captures that. However, this prior infor-

mation about the parameters may not always be available. In these cases we

use a non-informative prior, which aims to contain as little information about
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the parameters as possible. This results in the posterior being almost entirely

informed by the data. Choice of prior can greatly impact the analysis, and so

must be selected carefully.

The posterior distribution obtained in Bayesian inference then contains all the

information from the data, as well as our prior beliefs about the parameters.

Inference may be performed from the posterior, in order to obtain estimates of

the model parameters.

1.3.2 Inference with Missing Data

As we have discussed, infectious disease data are frequently only partially ob-

served. Event times are often unknown, and additionally there may be unre-

ported cases. There is hence considerable importance in methods for inference

which can handle missing data.

If we define the missing data as Y, then the pair (X, Y) form what is known as

the augmented data, which under any model will have a specified distribution

dependent upon parameters θ. In our Bayesian framework using Equation

(1.3.1), the conditional distribution of the parameters given the observed data

is given, up to proportionality, by:

π(θ | X) ∝ π(θ)
∫

Y
π(X, Y | θ) dY. (1.3.2)

This essentially applies what was discussed in Section 1.3, in that we integrate

over all possible values of missing data to obtain the posterior distribution.

This integral, however, is usually not analytically or even numerically feasi-

ble, particularly if the missing data is of high dimension. Sampling from this

therefore usually requires other techniques, such as data augmented MCMC

(see Section 1.3.4). First, however, we describe standard MCMC methods.
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1.3.3 Markov Chain Monte Carlo Methods

The last three decades have seen an increasing use of Monte Carlo methods

within infectious disease modelling, particularly Markov Chain Monte Carlo

(MCMC) algorithms. The use of more realistic stochastic models, as we have

discussed in Section 1.1.2, has led to challenges in inference from highly di-

mensional and analytically intractable expressions. MCMC methods have proved

a useful tool for dealing with these problems.

First introduced for use in particle physics by Metropolis et al. (1953) but

not utilised for Bayesian inference until Gelfand and Smith (1990), MCMC

for use with epidemic models was first introduced by O’Neill and Roberts

(1999) and Gibson and Renshaw (1998). Since, it has become arguably the

standard method for analysis. The literature on MCMC applied to epidemic

models is too numerous to list in full, but includes Demiris and O’Neill (2005),

who applied MCMC to a model with two levels of mixing, O’Neill and Becker

(2001), who first applied MCMC for non-Markovian infectious period models,

and Neal and Roberts (2004), who performed MCMC for a model incorporat-

ing a spatial component of the distance between households. MCMC, com-

bined with data augmentation as we will discuss in Section 1.3.4, allows for

inference of data where the epidemic has only been partially observed and as

such would be too complicated for standard statistical techniques. Specifically

when infection times are unknown and so likelihood functions cannot be eas-

ily computed, as is common, inference can be made about both the parameters

of interest and the missing data themselves.

More specifically, MCMC methods allow us to draw samples from a given

distribution π (which we call the target distribution), even if π cannot be

written down analytically. Using the notation we defined in Section 1.3.1,

the target distribution would be the posterior distribution π(θ | X), and re-

ferring back to Bayes’ Theorem in Equation (1.3.1) we recall that the denomi-

nator is the part which is typically intractable. However, this is simply a nor-

malising constant, which an MCMC approach does not require to be calcu-
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lated explicitly. Instead, samples are drawn from the posterior distribution

by constructing an ergodic Markov chain {Zn} which has stationary distri-

bution π(θ | X) ∝ π(θ)π(X | θ). So long as we can calculate the likelihood

and prior distribution, we can sample from the posterior distribution. After

an initial ‘burn-in’ period (the early iterations of the MCMC algorithm which

we discard), provided we have specified suitable mixing parameters, we can

be confident that the chain has reached equilibrium (regardless of the starting

location Z0). The steps of the Markov chain then approximate samples from

the target (posterior) distribution. We will now describe some well-known

algorithms for obtaining these samples from the posterior distribution.

1.3.3.1 The Gibbs Sampler

The Gibbs sampler (Geman and Geman, 1984) samples from high dimensional

distributions by breaking them down into lower dimensional sections. If θ =

(θ1, θ2, . . . , θd) so that the posterior distribution is of dimension d, then for all

i ∈ {1, . . . , d} a Gibbs sampler will simulate component θi from the condi-

tional distribution π(θi | θ1, . . . , θi−1, θi+1, . . . , θd, X). These are referred to as

the full conditional distributions. A summary of the Gibbs algorithm is given in

Algorithm 1.

Although we often update parameters individually as in Algorithm 1, it is

also possible to group related parameters together and perform block updates,

using the full conditional distribution given all remaining parameters and the

data. Blocking correlated parameters can improve convergence of the chain

since correlation can lead to high rejection rates for individual updates. The

sampler defined in Algorithm 1 is also known as a ’deterministic scan’ Gibbs

sampler, since we update all parameters deterministically in order. We can

alternately use a ’random scan’ Gibbs sampler which, at each iteration, picks

at random one (or more) parameter(s) to update.
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Algorithm 1 The Gibbs sampler, for obtaining I samples from a d-dimensional

posterior distribution

1. Choose initial θ(0) =
(

θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
d

)
;

2.

for i = 1 to I do

i. Draw θ
(i)
1 ∼ π

(
θ1 | θ

(i−1)
2 , . . . , θ

(i−1)
d , X

)
;

ii. Draw θ
(i)
2 ∼ π

(
θ2 | θ(i)1 , θ

(i−1)
3 , . . . , θ

(i−1)
d , X

)
;

iii. Draw θ
(i)
3 ∼ π

(
θ3 | θ(i)1 , θ

(i)
2 , θ

(i−1)
4 , . . . , θ

(i−1)
d , X

)
;

. . .

d. Draw θ
(i)
d ∼ π

(
θd | θ

(i)
1 , θ

(i)
2 , . . . , θ

(i)
d−1, X

)
;

end for.

1.3.3.2 The Metropolis-Hastings Algorithm

The Metropolis algorithm was introduced in Metropolis et al. (1953), and gen-

eralized to obtain the Metropolis-Hastings (MH) algorithm in Hastings (1970).

Whereas the Gibbs sampler requires full conditional distributions to compute,

the MH algorithm provides an alternative when this is not possible (as is

common). Most MCMC algorithms can be considered as a special case of

Metropolis-Hastings. Details of the procedure are given in Algorithm 2.

The MH algorithm requires a choice of proposal density q. For each proposed

value θ∗, we calculate the acceptance probability α(θ, θ∗), which is the ratio of

the likelihood multiplied by this proposal density, evaluated at the proposed

parameter value and the current parameter value. This describes how likely

the proposed value is compared to the current value, and we accept the pro-

posal with probability α. The acceptance probability is defined in this way to

ensure that the stationary distribution of the Markov chain is the target poste-

rior distribution as desired, and also that the chain strikes a balance between

tending to visit high probability areas but also satisfactorily exploring the pa-

rameter space.

The simplest choice of q is known as the independence sampler. In this, q is inde-
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Algorithm 2 The Metropolis-Hastings algorithm, for obtaining I samples from

a d-dimensional posterior distribution

1. Choose initial θ(0) =
(

θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
d

)
;

2.

for i = 1 to I do

i. Draw candidate value θ∗ from proposal density q
(
θ(i−1), ·

)
;

ii. Calculate α
(
θ(i−1), θ∗

)
= min

(
1,

π
(
θ∗ | X

)
q
(
θ∗,θ(i−1))

π
(
θ(i−1) | X

)
q
(
θ(i−1)

,θ∗
));

iii. Draw u ∼ Unif(0, 1);

if u ≤ α
(

θ(i−1), θ∗
)

then

Set θ(i) = θ∗

else

Set θ(i) = θ(i−1)

end if

end for.

pendent of the current value of the parameters, so that q
(
θ(i−1), θ∗

)
= q

(
θ∗
)
.

Alternatively, symmetric random walk Metropolis (as introduced in Metropolis

et al., 1953) sets q
(
θ(i−1), θ∗

)
= q

(
θ∗, θ(i−1)), which causes the proposal den-

sities in the acceptance ratio α
(
θ(i−1), θ∗

)
to cancel. This method has become

particularly popular since, in avoiding calculation of the proposal density in

the accept/reject ratio, many calculations are avoided.

The choice of proposal density is key for the MH algorithm. The unrestricted

choice of q(·, ·) is what allows the algorithm its wide generality, but these

different choices may have great impact on performance. A low acceptance

probability may lead to poor mixing of the Markov chain, whereas a high ac-

ceptance probability may lead to slow convergence. In reality, a balance must

be achieved. Notably, Roberts et al. (1997) identified an asymptotically opti-

mal acceptance rate of 0.234 for Gaussian random walk algorithms, so long

as the target density consists of a product of i.i.d. components for each pa-

rameter. Tuning of the parameters which control the proposal density can be
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performed manually, but the development of adaptive algorithms which au-

tomatically tune has also received much attention, for example Haario et al.

(2014) and Andrieu and Thoms (2008).

1.3.3.3 Convergence and Dependency of the Markov Chain

One important factor when using an MCMC algorithm is the speed at which

convergence to the equilibrium occurs, in practice determining the length of

the burn-in period. We would like to ensure that equilibrium has been reached

by the end of the burn-in period, to minimise the effect of the initial values

chosen on the samples obtained. However, with each calculation of the likeli-

hood expression being potentially costly, there is often great benefit in a shorter

burn-in, and hence in ensuring fast convergence to the equilibrium.

In addition to this, there will be some degree of dependence between succes-

sive simulated values, with high dependence causing slow convergence also.

The search for methods which allow for fast convergence and low sample de-

pendence has received considerable attention.

Non-centered parameterisations (NCPs) are one such technique which aims to

improve the efficiency of convergence. Full details and discussion can be

found in Kypraios (2007) and Papaspiliopoulos et al. (2003). In essence, rather

than the standard centered parameterisation (CP) of the unknown quantities θ, Y,

a non-centered parameterisation finds some alternative (θ, Y)→ (θ, Ỹ) where

new missing data Ỹ is a priori independent of θ.

There has been considerable discussion around the use of NCPs, and if their

use really provides benefit over standard CPs. Gelfand et al. (1996) argued

strongly for the use of CPs, which can often be applied with fast Gibbs sam-

plers when NCPs cannot, potentially undoing any computational advantage

of a non-centered approach. However, as Kypraios (2007) argues, NCPs may

offer considerable improvement in convergence in cases where the depen-

dence between missing data and model parameters is high. One major issue
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with the use of NCPs, however, is a requirement of orthogonality between θ

and Ỹ, which is often hard to achieve (Papaspiliopoulos et al., 2003). This has

limited their application in practice.

In reality, the standard methods for achieving convergence and low depen-

dence are somewhat crude. The length of the burn-in period is normally de-

termined using trace plots of the parameter values from sample runs of the

MCMC algorithm, either visually or using a diagnostic tool (e.g. Geweke,

1992). To minimise autocorrelation of MCMC samples (which is usually iden-

tified with ACF plots), the general solution is to only keep every nth draw from

the posterior. Known as thinning, this lowers sample dependence, but at the

cost of more (potentially expensive) computations of the likelihood to obtain

the same number of samples (see Gilks et al., 1995).

1.3.4 Data Augmented Markov Chain Monte Carlo

Data augmentation, as first seen in Tanner and Wong (1987) but also in Gelfand

and Smith (1990), involves sampling from the predictive distribution of the

missing data to obtain samples from the posterior. It has become probably

the most widely used technique for Bayesian inference in missing data prob-

lems. In short, we assume knowledge of the missing data Y to obtain sam-

ples of both it and the parameters of interest, rather than having to compute

the (usually intractable) integral in Equation (1.3.2). As we have discussed in

Section 1.3, methods such as the expectation-maximisation algorithm do ex-

ist for dealing with missing data, and may be preferable in simpler cases, but

data augmented MCMC (DA-MCMC) helps ensure identification of a global

rather than a local maximum, as well as providing improved computation

times when working in a high dimension.

When modelling with missing data, target density π(θ | X) is now the joint

posterior distribution of the parameters and the missing data, π(θ, Y | X). By

augmenting knowledge of the unknown data (usually event times for infec-
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tious disease data), simulation from the conditional distributions π(θ | Y, X)

and π(Y | θ, X) is tractable, and we do not require integration over the missing

data (as discussed previously in Section 1.3.2).

To obtain samples from the new posterior density π(θ, Y |X), we may therefore

use a two-component Gibbs sampler, as in Algorithm 1 but where we alternate

simulations from π(θ | Y, X) for parameters θ and from π(Y | θ, X) for missing

data Y.

In reality, the full conditional distributions required for a Gibbs sampler are

often not all available. In these cases, of particular use is the Metropolis within

Gibbs algorithm (as suggested in Tierney, 1994), a hybrid of the MH algorithm

and Gibbs sampler. In this, calculation of the full conditional distributions is

replaced with direct simulation through a Metropolis-Hastings step. Although

clearly useful when the conditional distributions are unavailable, the introduc-

tion of Metropolis steps can greatly decrease the speed of convergence. How-

ever, with augmented data we often have the case that π(θ | Y, X) is avail-

able in closed form (and hence a simple Gibbs sampler may be used) but that

π(Y | θ, X) is not, and an MH algorithm is required. In this case Metropolis

within Gibbs is very useful, since we may perform a combination of Gibbs

and Metropolis within Gibbs.

1.3.5 DA-MCMC for SIR models

Although we have discussed MCMC methods in general, in this section we

more specifically focus on MCMC for SIR epidemic models. We will define

the SIR likelihood expression which will be used throughout this thesis, as

well as the general DA-MCMC algorithm used for inference.

We define the likelihood for an SIR model with homogeneous mixing as in

Britton and O’Neill (2002), similar to e.g. O’Neill and Roberts (1999) and

Gibson and Renshaw (1998). We assume a closed population of fixed size

N within which occurs an outbreak of final size n ≤ N, that is to say n in-
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dividuals have been infected by the end of the outbreak. This version of the

likelihood requires infected individuals to be labelled 1, 2, . . . , n, and associ-

ated with their corresponding infection and removal times i.e. each infective

j has removal time rj and infection time ij. Individuals are ordered by re-

moval time, so that r1 ≤ r2 ≤ · · · ≤ rn. We define the set of removal times

as r = {rj : j = 1, 2, . . . , n, where r1 ≤ r2 ≤ · · · ≤ rn}, and the set of in-

fection times as i = {ij : j = 1, 2, . . . , κ − 1, κ + 1, . . . , n}. Individual κ is the

initial infective, who is assumed to have been infected by an external source.

The identity of individual κ is not usually known from the data. For ease of

exposition of the likelihood defined below, we also define ij = ∞ for all non-

infectives j = n + 1, . . . , N. The likelihood is then written as a product of the

contributions from each individual. A model with unlabelled cases (where

both removal times and infection times are ordered, so that rj and ij do not

necessarily correspond to the same individual) was proposed by Bailey and

Thomas (1971), but in this thesis we will only be concerned with labelled indi-

viduals.

The likelihood is built from three components which, as in Britton and O’Neill

(2002), we refer to as L1, L2 and L3. Firstly, the product term L1 contains the

contribution to the likelihood of the n − 1 infections which occur during the

outbreak (we ignore the contribution from the initial infective κ, since they are

assumed to have been externally infected).

To define this, we introduce the concept of infectious pressure, which suscep-

tible individuals receive from current infectives. For an individual j who is

susceptible at time t, we define β as the infectious pressure acting upon them

from infective k, so that

P
(
k infects j in (t, t + δt]

)
= βδt + o(δt).

Then, any susceptible j receives infectious pressure β at their time of infection

from infected individual k if and only if ik < ij < rk. That is, if and only if

k was infectious at j’s infection. L1 is therefore given by the total infectious
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pressure on each individual at their time of infection, so that:

L1 =
n

∏
j=1
j 6=κ

n

∑
k=1
k 6=j

β 1{ik<ij<rk}. (1.3.3)

The remainder of the infection part of the likelihood is given by L2, which con-

tains the total infectious pressure exerted over the course of the epidemic. For

each infective, this corresponds to them ‘failing’ to infect all other individuals,

both those who ultimately become infected and those who remain susceptible.

This is given by

L2 = exp
(
− β

n

∑
j=1

N

∑
k=1

(rj ∧ ik − ij ∧ ik)
)

, (1.3.4)

where a∧ b is the minimum of a and b. Here, rj ∧ ik− ij ∧ ik represents the time

period for which infective j places infectious pressure on any individual k.

The contribution of the removal process is contained in L3. This is given by

the probability density function (PDF) (or probability mass function, though

for simplicity we will usually refer to just PDFs) of the infectious period dis-

tribution, which in Section 1.1.2.1 we defined as f I(rj − ij | θ), for infectious

periods rj − ij of all infectives j. This construction of the likelihood allows for

any choice of infectious period distribution f I(·). The infectious periods are

assumed independent, and therefore,

L3 =
n

∏
j=1

f I(rj − ij | θ). (1.3.5)

Combining Equations (1.3.3), (1.3.4) and (1.3.5), the likelihood is given by

π(i, r | β, θ, κ, iκ) =

(
n

∏
j=1
j 6=κ

n

∑
k=1
k 6=j

β 1{ik<ij<rk}

)
exp

(
− β

n

∑
j=1

N

∑
k=1

(rj ∧ ik − ij ∧ ik)
)

×
n

∏
j=1

f I(rj − ij | θ). (1.3.6)

Without knowledge of the infection times i however, this likelihood is in-

tractable. Although theoretically possible, integrating out all of the unknown
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infection times is unfeasible in practice for any more than a handful of infec-

tives, since the region of integration becomes very complex. DA-MCMC is

therefore usually implemented for inference of parameters β and θ, where the

augmented data correspond to the unknown infection times.

Before we define the MCMC algorithm, prior distributions need to be defined

for the initial infective and their infection time, the infection rate β and the in-

fectious period parameters contained in θ. For simplicity, we assume here that

the infectious periods are exponentially distributed with rate γ, so that θ con-

tains this single parameter. As in O’Neill and Roberts (1999), we assume con-

jugate gamma distributed prior distributions for β and γ. If Γ(σ, ν) represents

a gamma distribution with shape σ and rate ν, we assume that β and γ have

conjugate gamma distributed prior distributions with parameters (σβ, νβ) and

(σγ, νγ), respectively.

For the initial infective κ, we may choose from a variety of potential prior

distributions. We may use some prior knowledge to determine their identity,

or we may place a uniform prior distribution over all infectives so that each is

equally likely to be the initial one. In practice, we often assume κ = 1 is known

for simplicity. For iκ, we define a uniform prior distribution on (−∞, r1).

We multiply the likelihood expression in Equation (1.3.6) by these prior distri-

butions to obtain the posterior distribution:

π(β, γ, iκ, i | r) ∝ π(r, i | β, γ, iκ)π(β)π(γ)π(κ)π(iκ) (1.3.7)

This is then the target density of the MCMC algorithm. In order to perform

Gibbs updates for β and γ, however, we also require their full conditional

distributions.

To obtain the full conditional distribution for β, we consider Equations (1.3.7)

and (1.3.6), and see that

π(β | γ, κ, iκ, i, r) ∝ βn−1e−βAπ(β), (1.3.8)

where A = ∑n
j=1 ∑N

k=1(rj ∧ ik − ij ∧ ik).

26



CHAPTER 1: INTRODUCTION

Similarly for γ:

π(γ | β, κ, iκ, i, r) ∝ γne−γBπ(γ), (1.3.9)

where B = ∑n
j=1(rj − ij), since the only terms in the likelihood with γ depen-

dence are the n exponential PDFs of the infectious periods in the removal part.

Combining Equations (1.3.8) and (1.3.9) with the gamma conjugate prior distri-

butions defined above, the full conditional distributions for β and γ are given

as follows:

β | γ, κ, iκ, i, r ∼ Γ(σβ + n− 1, νβ + A)

γ | β, κ, iκ, i, r ∼ Γ(σγ + n, νγ + B). (1.3.10)

Overall, the basic DA-MCMC algorithm for an SIR model given removal data

is given in Algorithm 3. Samples of the model parameters β and γ may be

obtained using Gibbs steps as the full conditional distributions are available,

but the infection times must be updated with Metropolis Hastings steps since

sampling directly from their posterior is not possible. For an individual j se-

lected uniformly at random from 1, . . . , n, we propose candidate value i∗j from

q(· | ij). This is accepted with probability:

min
(

1,
π(i∗, r | β, γ, κ∗, i∗κ)q(ij | i∗j )
π(i, r | β, γ, κ, iκ)q(i∗j | ij)

)
.

A common choice for the proposal density is f I(· | γ), which causes the pro-

posal densities in the acceptance probability to cancel. After the infection times

have been updated, we set κ accordingly, as the individual with the earliest

current infection time.

The likelihood and MCMC algorithm may be similarly extended to SEIR and

other compartmental models, as well as heterogeneous mixing models.

Although the technique has been widely adopted, there are a number of limi-

tations to data augmented MCMC techniques for epidemic data analyses. Es-

pecially with growing demand for fast (potentially real-time) analysis, com-

putationally efficient analysis is key. However, DA-MCMC methods for epi-

demic data often struggle with the issues of high dependence and slow chain
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Algorithm 3 DA-MCMC algorithm for obtaining J samples of the model pa-

rameters, for an SIR model with known removal times, unknown infection

times, infection rate β and infectious period parameter γ. Here, xj represents

the jth sample of parameter x.

1. Start the Markov chain from initial values β0, γ0, i0, κ0, i0
κ;

2.

for j = 1 to J do

i. Update β using a Gibbs step to draw from π(β | γj−1, κ j−1, ij−1
κ , ij−1, r)

and obtain sample βj;

i. Update γ using a Gibbs step to draw from π(γ | βj, κ j−1, ij−1
κ , ij−1, r) and

obtain sample γj;

iii. Choose uniformly at random one or more infection times ik, for k =

1, . . . , n (including the initial infective). Update each using a Metropolis

Hastings step to obtain ij/ij
κ. Update κ correspondingly as required;

end for.

convergence discussed in Section 1.3.3.3, particularly for large outbreaks or

complex model structures. This will be explored in more detail in Chapter

3, but essentially the unknown infection times and the parameters governing

the infectious period lengths often have a high posterior correlation, leading to

slow mixing of the Markov chain. This motivates the development of alternate

methods which either solve, or avoid, these problems.

1.4 Approximation Methods for Infectious Disease

Modelling

Without any restrictions, of course an ideal mathematical model would be a

complete virtual representation of the real world. However, due to limita-

tions in computational power this is of course not possible, and efforts must be

made to obtain the best possible partial description of reality. All mathematical
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models contain some degree of simplification and approximation, and when

introducing greater complexity we must consider the computational cost.

Current methods for infectious disease analysis such as DA-MCMC, as we

have discussed, are known to become computationally demanding for large

population sizes or complex mixing structures. When working with large

amounts of data it often becomes necessary to use very simplistic models due

to computational restraints, especially when performing time-sensitive analy-

ses. We suggest that likelihood approximation methods may be a useful tool

for dealing with this, and these will be the focus of chapters 3 and 4. If we

can obtain likelihood expressions which, although including extra levels of

approximation to the ‘true’ likelihoods used in data augmentation, result in

faster computation, this allows for more realistic models to be used in turn.

This is not an area in which there has been much previous work. As we will

explore more fully in Chapter 3, the likelihood approximation methods we

will define in this thesis bear some similarity to composite likelihood methods

(see Varin et al., 2011 and Cox and Read, 2004), in that we attempt to build our

understanding of the overall system dynamics by considering what are essen-

tially marginal densities, but in reality these methods are actually quite differ-

ent. Otherwise, attempts to tackle the challenges we have discussed largely

focus on ideas other than direct likelihood approximation.

1.4.1 Model Approximation

Model approximation is an area which has seen some focus. This involves

consideration of an approximation to the model, under which the likelihood

can be directly computed. One such simple approximation is the assumption

of fixed length infectious periods. Under this assumption, all of the unknown

infection times can be directly determined from the data, and the likelihood

expression becomes tractable. Inference may then be performed using stan-

dard techniques for a completely observed outbreak (see e.g. Andersson and
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Britton, 2000, Section 9).

Model approximation was also performed in Britton and Becker (2000), where

they defined a two-level mixing model incorporating within-household local

transmission and between-household global transmission. Non-independence

of individuals residing in different households results in an intractable likeli-

hood, but in replacing the global transmission dynamics with a fixed proba-

bility that each individual avoids infection from the global source (originally

seen in Addy et al., 1991), Britton and Becker (2000) obtain a model with a

tractable likelihood.

A further example is Filipe and Gibson (1998), who defined a spatio-temporal

stochastic model for disease transmission by modelling individuals as the ver-

tices of a square lattice (so that all individuals have four nearest neighbours

with whom to interact, except those on the boundary who have two or three).

They made the assumptions that the lattice was large enough that the bound-

ary effects could be ignored, and that the initial distribution of infected indi-

viduals was from a spatially stationary process. This allowed them to make

a deterministic approximation to the stochastic model, expressing the over-

all disease dynamics in terms of smaller cluster approximations. Cauchemez

and Ferguson (2008), on the other hand, approximated a continuous-time SIR

model by dividing the outbreak into a series of observation periods, and aug-

menting the data with the latent state of the system (i.e. the total number

of infectives and susceptibles) at the beginning of each period. They then

mimicked the SIR process with a diffusion process with known exact solution.

Becker (1989) also includes numerous examples of simplified models used in

practice.

As we have seen here, a variety of model approximation methods have been

suggested in the literature, but often these have been only applied to a specific

data set or model and hence lack general applicability. In contrast, we will ex-

plore likelihood approximation methods in this work. These will share similar

themes with some of these model approximations, in making assumptions to
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result in a tractable likelihood and especially in using small clusters to build

up overall disease dynamics, but they will not require any simplifications of

the actual models used.

1.4.2 Approximate Bayesian Computation (ABC)

One other considerable area of research has been Approximate Bayesian Com-

putation, or ABC. Rather than approximating either the likelihood or model,

ABC is what is known as a likelihood-free method. It was initially proposed

in Rubin (1984), and then grew in popularity within the population genetics

literature from Tavaré et al. (1997). It has since become much more widely ap-

plied within, for example, ecology, systems biology and evolutionary biology

(e.g. Toni et al., 2009 and Csilléry et al., 2010), as well as infectious disease

modelling (e.g. McKinley et al., 2009, Tanaka et al., 2006 and Blum and Tran,

2010). Its use in this field relies upon the fact that stochastic models for disease

outbreaks are generally straightforward to simulate, and that this can be done

very quickly for a given set of model parameters.

In its basic form, ABC is essentially a form of rejection algorithm. However, a

benefit is that it can easily be incorporated into MCMC and Sequential Monte

Carlo (SMC) algorithms. It is of particular use for likelihoods which are com-

putationally intractable or of a high cost to evaluate, since it replaces likelihood

calculations with comparisons between observed and simulated data. We re-

view ABC methods and their implementation here, but a more detailed discus-

sion on their use with stochastic epidemic models may be found in Kypraios

et al. (2017).

If θ contains the parameters to be estimated (for a disease outbreak we might

have θ = (β, γ) where β is the infection rate and γ the removal rate), as defined

in Section 1.3.1, we wish to approximate the posterior distribution π(θ |X), for

data X. Rather than explicitly calculating likelihood π(X | θ), ABC methods

take the general steps:
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1. Sample a candidate θ∗ from the prior distribution π(θ)

2. Simulate a data set (outbreak) X∗ from the model with parameters θ∗.

3. Compare simulated data set X∗ with observed data X using some dis-

tance measure d. If d(X∗, X) ≤ ε for tolerance ε, we accept θ∗.

(1.4.1)

This process repeats until we have accepted a pre-determined number of θ∗

values. The result is a sample of parameters drawn from π(θ | d(X∗, X) ≤ ε),

which for suitable d and sufficiently small ε should well approximate π(θ |X).

ABC then requires no calculations of the likelihood. We simply require a

choice of distance function d which measures the similarity between two out-

breaks, and a tolerance ε which defines how close this distance must be to be

accepted. In practice, this choice of d is by no means trivial, however. Of-

ten we instead measure the distance between some summary statistics of the

data, such that we require d(S(X∗), S(X)) ≤ ε. For infectious disease data, this

might measure the difference in the removal curves via a sum of squared dif-

ferences between the observed and simulated data, for example, as in McKin-

ley et al. (2009).

ABC is frequently combined with MCMC and SMC since the rejection algo-

rithm in (1.4.1) often suffers from very low acceptance rates. In ABC-MCMC, a

Markov chain is generated with stationary distribution π(θ | d(X∗, X) ≤ ε), so

that parameters are usually sampled from the vicinity of their current values.

This may suffer from similar problems to DA-MCMC however: that correlated

parameters may cause slow convergence of the Markov chain.

ABC with SMC, as initially introduced in Sisson et al. (2007), seeks to avoid

these convergence problems. Sequential Monte Carlo methods involve sam-

pling from a series of proxy distributions which converge to the posterior,

rather than the posterior itself. We define a set of N distributions π1, π2, . . . , πN,

where πN = π(θ | X) is the posterior of interest and π1 > π2 > · · · > πN. We
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then initially draw a large number of samples, called particles, from π1 (which

has been defined such that direct sampling is possible). The particles are then

passed through a series of sequential importance sampling steps i which in-

volve being weighted assuming they come from the corresponding sequen-

tial distribution πi. The general idea is that the intermediary distributions

πi tend gradually towards the target distribution, so the method proceeds

by moving and weighting the particles by how well they fit each successive

distribution πi. For ABC-SMC, these distributions πi are simply defined as

πi(θ | d(X∗, X) ≤ εi), for i = 1, . . . , N and tolerances ε1 > ε2 > · · · > εN. This

should, in principle, avoid the algorithm getting stuck in areas of low proba-

bility, decreasing the time to convergence. Certain choices of distance function

d and tolerance ε can cause particle degradation, however, wherein after the

particles have been passed through some of the intermediary distributions,

only a few remain with non-zero weight. To combat this, a resampling stage

is often introduced. In this, particles are resampled proportionately to their

weight when degradation becomes high.

Overall, ABC and ABC-SMC methods are useful for epidemic models since

they are widely applicable and may be used with models involving complex

populations (see e.g. Brooks-Pollock et al., 2014 who used a spatial stochastic

model for bovine tuberculosis, incorporating within-farm and between-farm

transmission). However, they can still result in algorithms which are ineffi-

cient or slow, especially when the number of parameters to estimate is large.

Choice of tolerance ε and distance function d can have considerable impact on

the results found, and use of a summary statistic S also introduces additional

bias into the method through loss of information. These must therefore be

carefully selected. For further reading, Sunnåker et al. (2013) discuss many of

the perceived drawbacks of ABC methods.
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1.5 Structure of the Thesis

The remainder of this thesis is divided into two distinct parts. The first part,

published in Stockdale et al. (2017), concerns a Bayesian analysis of the Abaka-

liki smallpox data. This data set has been much cited in the field of stochastic

epidemic modelling, but never analysed in its full form using a true likelihood

method. We seek to compare parameter estimates from our Bayesian analysis

to estimates from Eichner and Dietz (2003), who did analyse the full data set

but using an approximate likelihood. This will be presented as follows:

• Chapter 2. After introducing the Abakaliki smallpox data, we define the

model to be used in our analysis. This is a variant of an SEIR model, and

is the same as that used in Eichner and Dietz (2003) to ensure compara-

bility. We outline the process for simulating from this model, since model

assessment will be performed via simulation-based techniques. We also

describe the Bayesian inference to be performed, and define the likeli-

hood expression. We then detail the MCMC algorithm to be used, before

concluding with the results of the analysis, and a discussion of these.

The second part of this thesis will focus on the development of likelihood ap-

proximation methods for the analysis of infectious disease data. As we have

briefly discussed and will further explore in Chapter 3, current methods, such

as the data augmented MCMC performed in Chapter 2, become computation-

ally cumbersome for large populations or large amounts of missing data, as

well as being burdened by correlation problems of this missing data. We seek

to develop likelihood approximation methods which remove the need for data

augmentation, allowing simpler MCMC or maximum likelihood estimation to

be performed more easily.

• Chapter 3. This chapter will describe the development of two different

likelihood approximation methods. Firstly, we introduce a generalised

approximation based upon the method of Eichner and Dietz (2003) from
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Chapter 2. We will then proceed to construct a new approximation; the

Pair Based Likelihood Approximation (PBLA) method. We will define a

number of different versions of this, for example for offering increased

computational speed under more restrictive modelling assumptions.

• Chapter 4. The final chapter will involve a series of simulation studies,

which compare parameter estimation using the likelihood approxima-

tion methods to standard DA-MCMC, followed by application to vari-

ous real data sets. Specifically, we consider data from a respiratory dis-

ease outbreak on the Atlantic island of Tristan Da Cunha, from the West

African Ebola epidemic of 2013-2016 and from the 2001 UK Foot and

Mouth disease outbreak. These data sets will each have different require-

ments in terms of modelling, allowing us to analyse the performance of

the PBLA method in different settings.

We will finally summarize the work presented in this thesis, in addition to

possible areas of further research, in Chapter 5.
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CHAPTER 2

Modelling and Bayesian Inference

for the Abakaliki Smallpox Data

In this chapter we introduce the much-cited Abakaliki smallpox data set, and

perform its first full Bayesian analysis to include all aspects of the data. This

work is published in Stockdale et al. (2017).

We begin with an overview of the data and its relevance within the field of

mathematical disease modelling, before defining the model and performing

Bayesian inference to obtain estimates of model parameters. There exists one

previous analysis of the full data set, but this relies upon an approximate like-

lihood. We instead use Markov Chain Monte Carlo methods with the true

likelihood, which avoid the need for likelihood approximations. In addition

to the basic model parameters, which will be compared to the results of the

approximation method as well as interpreted in their real-world context, we

estimate the path of infection and perform model assessment with simulation

based methods.

2.1 Introduction

In 1967, an outbreak of Smallpox occurred in the Nigerian town of Abaka-

liki. The vast majority of cases were members of the Faith Tabernacle Church
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(FTC), a religious organisation whose members refused vaccination. The out-

break was recorded in detail in a World Health Organisation (WHO) report by

Thompson and Foege (1968), with information on not only the time series of

case detections but also their place of dwelling, vaccination status, and FTC

membership. The outbreak has inherent historical interest as it occurred dur-

ing the WHO Smallpox eradication programme initiated in 1959. Although

Smallpox was declared eradicated in 1979, it regained attention as a poten-

tial bioterrorism weapon in the early 2000s (see e.g. Gani and Leach, 2001,

Meltzer et al., 2001, Halloran et al., 2002) and continues to be of interest due to

concerns about its re-emergence or synthesis, (see e.g. Henderson and Arita,

2014, Eto et al., 2015, World Health Organisation, 2015 and references therein).

Estimates of the parameters governing disease transmission are of consider-

able importance for public health planning, and thus being able to accurately

obtain such quantities from available data is of considerable importance also.

Within the mathematical infectious disease modelling literature, the Abakaliki

smallpox data set has been frequently cited, the first appearance being Bailey

and Thomas (1971). The data set consists of a time series of symptom appear-

ance (rash) times for the 32 individuals who were infected, along with other

information on the composition of the population: FTC membership status,

vaccination status and compound number (the affected individuals lived in

a series of compounds; houses built around a central courtyard). Most anal-

yses of the Abakaliki data, however, have used only the rash times, such as

Shanmugan (2011) and Oh (2014), or indeed only the final size, as in Ball et al.

(2002). In fact, to our knowledge, in all but one case the data set has been

used as an example for new methodology; taking primarily the case detec-

tion times and not considering the other aspects of the data. Lau and Yip

(2008), Huggins et al. (2004) and Yip (1989) used the data set to demonstrate

Martingale-based methods for inference of the basic reproduction rate, the ini-

tial number of susceptibles and the infection rate, respectively. O’Neill and

Becker (2001), McKinley et al. (2014), Boys and Giles (2007) and Golightly et al.

(2014) introduced new MCMC techniques which the Abakaliki data rash times
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were used to illustrate. In addition to incomplete use of the data, the suitabil-

ity of the data to the method at hand is often not considered: in many cases,

such as Clancy and O’Neill (2008), Kypraios (2009), Xiang and Neal (2014) and

Becker (1976), an SIR (susceptible-infective-removed) model has been used for

this outbreak despite smallpox being known to have an incubation period (see

Ferguson et al., 2003). Ray and Marzouk (2008) used binomial random graphs

to model inter- and intra-compound contacts, thus including the compounds

feature of the data, though they did not consider the difference between FTC

and non-FTC individuals or make use of the vaccination data. In fact, all of the

aforementioned papers only considered a population of size 120, which is the

number of FTC individuals inside the compounds; disregarding all non-FTC

individuals and FTC individuals outside the affected compounds.

To our knowledge, the only paper which has analysed the full Abakaliki data

set is Eichner and Dietz (2003). The authors use an individual-based stochastic

transmission model which takes into account the natural disease progression

of smallpox, as well as the introduction of control measures, the population

structure and the vaccination statuses of individuals within it. Parameter es-

timation is then performed via maximum likelihood. However, one notable

feature of this analysis is that it relies on an approximate likelihood, which

in particular assumes that the likelihood contributions made by different in-

fected individuals are mutually independent. The true likelihood of the ob-

served data given the model parameters is practically intractable as it involves

integrating over all possible unobserved events, and so Eichner and Dietz per-

form a back-calculation. This involves reconstructing the outbreak backwards

(or forwards, in the case of removal times) from the data and assumed knowl-

edge of the disease stages, for example the latent period or infectious period.

This relies on approximation however, since calculations do not take into ac-

count that infectious pressure may vary during an individual’s disease stage

as other individuals are infected or recover. Particularly used for HIV analysis

in the 1990s, similar methods can be found in Becchetti et al. (1993) and Brook-

meyer (1991). The use of this approximation immediately raises the question
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of how well it performs, and in particular how different the parameter esti-

mates might be if the analysis was instead based on the true likelihood.

We seek to perform a full Bayesian analysis for the Abakaliki data, avoid-

ing approximations by using data-augmentation to produce an analytically

tractable (and correct) likelihood. In Section 2.2 we will introduce the data,

before defining the model in Section 2.3. Section 2.4 concerns a simulation

study, performed to confirm that the method is working as required. Sec-

tion 2.5 will describe the Bayesian inference and calculations to obtain a full

likelihood expression. Following this, Section 2.6 will describe the MCMC

performed. We use the true likelihood to estimate the parameters of interest,

using a Bayesian framework, data augmentation and MCMC. Section 2.7 then

includes the results of this analysis and Section 2.8 discussion of these. We

interpret the posterior estimates of the parameters in the model as well as a

variety of reproduction numbers; directly comparing them to those obtained

by Eichner and Dietz in their analysis. In addition we perform a sensitivity

analysis, model checking, and consider the results of the simulation study. We

also estimate quantities derived via data-augmentation, such as who-infected-

whom and the time of infection for each individual, which do not feature in

the analysis of Eichner and Dietz.

2.2 The Data

The data, as given in Thompson and Foege (1968), are structured as shown in

Table 2.1, which displays information on the 32 cases of smallpox: when the

infected individual’s rash became apparent, their compound identifier, FTC

membership status and vaccination status. We have defined our timescale by

setting day 0 as the date of the first rash onset.

All of the infected individuals lived in compounds; these are typically one-

storey dwellings housing several families and built around a central court-

yard. The composition of the affected compounds is provided in Table 2.2,
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where the total numbers of vaccinated and non-vaccinated FTC and non-FTC

members within each compound are displayed. FTC members were known

to mix frequently with one another, whilst remaining rather isolated from the

rest of the community. FTC members also refused vaccination, although many

of them were vaccinated prior to joining the organisation. For use in Table 2.2,

we define quantities nc,FTC and nc,non as the total number of FTC and non-FTC

individuals residing in compound c, respectively.

Note that on the 25th day after the rash of the initial infective became appar-

ent, four FTC individuals from compound 1 (three vaccinated and one non-

vaccinated) moved to compound 2. Table 2.1 and Table 2.2 show the composi-

tion of the compounds after the move. In addition, quarantine measures were

put in place in Abakaliki, but not until part way through the outbreak. The

exact time these measures were introduced was not recorded.

2.3 Model Structure

2.3.1 Population Structure

We wish to define a model for smallpox outbreaks in the town of Abakaliki,

using the information provided in the WHO report by Thompson and Foege

(1968). Beginning with notation, consider Abakaliki a closed population with

N = 31200 individuals, labelled 0, . . . , N − 1. The population is partitioned

by compound: either one of the nine listed in the WHO report or ‘outside’

meaning within the town but not the affected compounds, and by confession:

either belonging to the Faith Tabernacle Church (FTC) or not. Individuals

0, 1, . . . , ncom − 1 are those inside the compounds, where ncom = 251 is defined

as the number of people living within the affected compounds. Any individ-

ual k = 0, . . . , N − 1 may be categorised as type (ck, fk), where ck = 1, . . . , 9

is the compound of k, or ck = 0 indicates that k is outside the compounds.

Similarly, fk is k’s confession (faith); FTC or non-FTC. These types may lead to
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Table 2.1: Smallpox cases in Abakaliki during 1967, from Thompson and

Foege (1968). Compounds are listed after the move of cases 7 and

8 and two non-infectives, on day 25 from compound 1 to 2.

Case number Day of rash onset Compound Confession Vaccination

0 0 1 FTC No

1 13 1 FTC No

2 20 1 FTC No

3 22 1 FTC No

4 25 1 FTC No

5 25 1 FTC No

6 25 1 FTC No

7 26 2 FTC Yes

8 30 2 FTC Yes

9 35 1 FTC No

10 28 4 FTC No

11 40 5 FTC No

12 40 1 FTC No

13 42 1 FTC No

14 42 1 FTC No

15 47 1 FTC No

16 50 5 FTC No

17 51 2 FTC No

18 55 1 FTC No

19 55 2 FTC No

20 56 6 Non Yes

21 56 5 FTC Yes

22 57 2 FTC Yes

23 58 7 FTC No

24 60 4 FTC No

25 60 2 FTC No

26 61 2 FTC No

27 63 8 Non Yes

28 66 3 FTC No

29 66 9 FTC No

30 71 5 FTC No

31 76 2 FTC Yes
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Figure 2.1: The structure of the population of Abakaliki as used in this study.

FTC = member of the Faith Tabernacle Church, n-FTC = not a

member of the FTC. Numbers in brackets represent the number

of individuals within that category, after the move of four indi-

viduals on day 25 as detailed in Section 2.2.

differences in the mixing behaviour of individuals, though otherwise individ-

uals are considered to be identical in their susceptibility to smallpox and their

ability to infect others.

Figure 2.1 shows the population structure of the town of Abakaliki during the

epidemic. Within the population are the compounds as described in the WHO

report. There are nine of these compounds, and within any one may reside

individuals of confessions FTC and non-FTC.

2.3.2 Transmission Model

We now describe a stochastic disease-transmission model for the spread of

smallpox throughout the population of Abakaliki. This model is essentially the

same as that described in Eichner and Dietz (2003), and is a variant of an SEIR

(Susceptible-Exposed-Infective-Removed) model. Defining a time scale as in
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Table 2.1, where time zero is the initial infective’s rash time, at any given time

t, each individual in the population will be in any one of six states: susceptible,

exposed, with fever, with rash, quarantined or removed. Any susceptible may

become exposed, as described below, and enter the incubation (or latent) pe-

riod. During this stage individuals are not yet infectious. They will next enter

the fever stage of the disease, at which point they become able to infect others.

During the rash stage which follows, they will remain infectious but at a po-

tentially different rate. We define the infectious period as the combined time

spent in the fever and rash stages. Infectious individuals will either become

removed (namely recovery or death, which we do not distinguish between)

or isolated, this being the individual quarantined and henceforth unable to in-

fect others. Quarantine procedures involve the removal of the individual from

the population, these measures only being introduced part way through the

outbreak at unknown time tq.

Figure 2.2 is a visual representation of how any given individual may progress

through the stages of susceptible, exposed, infectious with fever, infectious

with rash (at the beginning of which their infectivity is changed) and finally

either removal or quarantine; whichever comes first. For j = 0, ..., N− 1, let ej,

ij, rj, qj, τj denote, respectively, the times of exposure, fever, rash, quarantine

and removal for individual j. If j never becomes infected, ej = ij = rj = qj =

τj = ∞. We assume that the epidemic is initiated by a single exposed individ-

ual, whom we label κ. We define the sets of these times as e (not including eκ),

i, r, q and τ.

The lengths of time spent in each disease progression stage for different in-

dividuals are assumed random with specified distributions, and mutually in-

dependent. The periods of time as identified in Figure 2.2 are distributed as

follows:

• ij − ej v Γ
(
(µI

σI
)2, µI

σ2
I

)
,

• rj − ij v Γ
(
(µF

σF
)2, µF

σ2
F

)
,
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Figure 2.2: Disease progression in the smallpox model. The top image rep-

resents the infection of an individual who is removed through re-

covery or death, and the bottom shows an infection of someone

who is quarantined. Isolation is only possible once quarantine

measures have been introduced at time tq.

• τj − rj v Γ
(
(µR

σR
)2, µR

σ2
R

)
,

• qj =

rj + Γ(1, 1
4) if rj ≥ tq,

tq + Γ(1, 1
4) if rj < tq,

where µA and σA represent the mean and standard deviation of the gamma

distributed disease stage A for A = I, F and R, all of which are assumed

known. Additionally, tq denotes the time at which quarantine measures are

introduced. The values of the means and standard deviations have been taken

from Eichner and Dietz (2003), as shown in Table 2.3. Once quarantine mea-

sures are introduced, an individual may be put into isolation after a random

delay following their rash onset date. Specifically, we define the quarantine

time of individual j as qj = max(rj, tq) + Γ(1, 1
4), as assumed by Eichner and
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Table 2.3: Durations of periods in the infection process for Abakaliki small-

pox outbreak. Time until quarantine determined by the maximum

of rash time and time quarantine measures were introduced, tq.

Mean (days) Standard deviation (days)

Period before fever µI = 11.6 σI = 1.9

From fever to rash µF = 2.49 σF = 0.88

From rash until recovery µR = 16.0 σR = 2.83

From rash to quarantine

or from tq to quarantine
µQ = 2.0 σQ = 2.00

Dietz (2003). This means that no quarantining occurs prior to time tq, after

which it takes an average of two days for a detected individual to be placed in

isolation, with standard deviation 2. Note also that an infected individual will

have both a removal time and a quarantine time, for computational ease. Both

quantities appear in the likelihood function, but in reality only the earlier of

the two events takes place.

The epidemic begins at time eκ with the exposure of the initial infective κ. Re-

call that the infectious period is defined in two parts: the fever period and

the rash period, during each of which an individual will be infectious, but

at potentially different rates. During their rash period, an individual j will

have contacts with other members of their compound who are of the same

confession at times given by a Poisson process of rate λh per day. Individuals

outside of the nine compounds do not have such contacts. In addition, FTC

individuals will have contacts at rate λ f per day with other FTC individuals

and contacts at rate λa per day with anybody in the population. Non-FTC in-

dividuals are assumed to have contacts with anybody in the population at rate

λa + λ f per day since no information on their close contacts is available. Dur-

ing the fever period, the infections occur in exactly the same manner except

that all rates are multiplied by factor b to account for the difference in infectiv-
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ity. Typically, b < 1. In each case, the individual actually contacted is chosen

uniformly at random from the pool of potential individuals in question. For

example, contacts made with the entire population are drawn from the N − 1

other individuals. Note that this means that the individual-to-individual con-

tact rate for such contacts is λa
N−1 . Any contact from an infective to a susceptible

results in immediate exposure of the susceptible. All of the Poisson processes

describing contacts are assumed to be mutually independent

In addition, a proportion of the population is vaccinated. Vaccination status

of all but a few individuals within the compounds is assumed known, and the

proportions of FTC/non-FTC vaccinated individuals outside the compounds

is assumed equivalent to inside. However, this vaccination is not necessarily

effective: each recipient of the vaccine is completely protected with probabil-

ity v, or remains completely susceptible with probability 1− v. Although the

total number of vaccinated individuals is known, we do not have complete in-

formation on the composition of individuals with respect to vaccination status

and FTC membership and so there are five potential configurations of twelve

individuals with unknown details to consider, as shown in Table 2.4. For each

individual in the population we have a vaccination status, assumed known for

most individuals, and a protection status, unknown.

All individuals within the population remain living in their compounds, with

the exception of four individuals who moved from compound 1 to compound

2 on the 25th day after the initial infection, two of whom later become infective.

The epidemic continues until there are no infectious or exposed individuals

remaining in the population, at which point each person will either still be

susceptible, or will have been quarantined/removed. We do not allow for

reinfection.
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2.3.3 Infectious Pressure

For an individual k who is susceptible at time t we define Λk(t) as the infec-

tious pressure acting upon them at time t, so that

P
(
k is infected in (t, t + δt] | k is susceptible at time t

)
= Λk(t)δt + o(δt).

From the model definition in Section 2.3, Λk(t) can be expressed as:

Λk(t) = ∑
j∈Nin f (t)

m(j, t)×


λa

N−1 +
λ f δ f (j,k)

n−1 + λhδc(j,k;t)
nc, f j

(t)−1 if f j = FTC,

λa+λ f
N−1 + λhδc(j,k;t)

nc, f j
(t)−1 otherwise,

(2.3.1)

where m is the fever/rash identifier:

m(j, t) =


b if ij ≤ t < rj,

1 if rj ≤ t < min(τj, qj),

0 otherwise,

and δ f (j, k) = 1 if both k and j are FTC and 0 otherwise, δc(j, k; t) = 1 if both

k and j live in the same compound at time t and are of the same confession,

equalling 0 otherwise. Recall that N = 31, 200 is the total population size,

n = 120 is the number of FTC individuals within the population, and nc, f j(t)

is the number of individuals in j’s compound of the same faith as j at time t,

including j themselves. Finally, Nin f (t) is the set of individuals infective at

time t.

From the population diagram in Figure 2.1, there are four different types of

susceptible when considering infectious pressure received: categorising over

confession (FTC or non) and location (within the compounds or outside). Table

2.5 summarises the contact rates of the different types of susceptible, from all

potential types of infector.
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Susceptible k Compound of

infective j

Confession of

infective j

Pressure from j to k

FTC, compound w

w FTC λa
N−1 +

λ f
n−1 + λh

nc, f j
(t)−1

w Non-FTC
λa+λ f
N−1

wc or outside FTC λa
N−1 +

λ f
n−1

wc or outside Non-FTC
λa+λ f
N−1

non-FTC, compound w

w FTC λa
N−1

w Non-FTC
λa+λ f
N−1 + λh

nc, f j
(t)−1

wc or outside FTC λa
N−1

wc or outside Non-FTC
λa+λ f
N−1

FTC, outside compounds

w FTC λa
N−1 +

λ f
n−1

w Non-FTC
λa+λ f
N−1

Outside FTC λa
N−1 +

λ f
n−1

Outside Non-FTC
λa+λ f
N−1

non-FTC, outside compounds

w FTC λa
N−1

w Non-FTC
λa+λ f
N−1

Outside FTC λa
N−1

Outside Non-FTC
λa+λ f
N−1

Table 2.5: Infectious pressure received by susceptible k from infective j. Here,

w ∈ {1, ..., 9} is any one of the affected compounds, and wc denotes

any affected compound other than w. In addition, N = size of the

population, n = number of FTC individuals in the population (note

this change in definition of n for this chapter alone) and nc, f j(t) =

number of individuals in the same compound and of the same faith

as individual j at time t. Note: If j is in the fever stage, pressure is

multiplied by the infectivity factor b.
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2.4 Simulation

2.4.1 Simulation Process

We wish to simulate data from our model for smallpox outbreaks within the

population of Abakaliki. This will allow us to perform a simulation study,

as well as posterior predictive checking to assess model fit. The method is

shown in Algorithm 4. Within this algorithm, the infectious pressure upon

each susceptible k at given time t is calculated using the expression for Λk(t)

in Equation (2.3.1).

Algorithm 4 Simulation code for smallpox outbreaks in Abakaliki

Input: λa, λ f , λh, v, b, tq

Output: e, i, r, q, τ

1. Randomly generate protection status for vaccinated individuals (vaccina-

tion status known from the data), given vaccine efficacy v ∈ (0, 1).

Inside compounds: generate statuses individually

for i = 0 to ncom − 1 do

Generate U ∼ U(0, 1)

if U < v and i is vaccinated then

Individual i is protected

end if

end for

Outside compounds: Generate the number of FTC/non-FTC protected indi-

viduals

Number FTC and protected ∼ Bin(number FTC and vaccinated, v)

Number non-FTC and protected ∼ Bin(number non-FTC and vaccinated, v)

2. Set initial infective: κ = 0.

Generate times for initial infective: eκ, iκ, rκ=0, tκ and qκ.

Set time t = iκ.
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3. Loop to simulate infections

while number infectives or exposed > 0 do

for i = 0 to N − 1 do

inf(i) = sum of pressure from all infectives to susceptible i,

Potential infection time tp(i) ∼ Exp( 1
inf(i)),

end for

Take minimum potential time tpm = min(tp(i) : i is the set of susceptible

individuals), recording index j of the chosen individual.

Take minimum tmin = min(tpm and other infection process events (infec-

tive moves to rash period, removal etc.)).

if tmin = tpm then

Infection takes place. Generate infection events ej = tpm(j), ij, rj, tj and

qj. Set t = ej.

else

Infection does not take place, infection process event does. Set t = time

of process event.

end if

end while

To give some more detail on how the calculation of potential exposure times

for those outside of the compounds is approached, only one time for FTC in-

dividuals outside and one time for non-FTC individuals outside is required to

be calculated, since all outside individuals of the same confession receive the

same infectious pressure. The mean of the exponentially distributed potential

exposure time must be multiplied by 1/(number of FTC individuals outside)

or 1/(number of non-FTC individuals outside) to include the required selec-

tion of which individual is to be infected. Since these outside individuals are

arbitrarily numbered, apart from being categorised by confession, we define

the first outside FTC individual to be infected as number j = ncom + Fp +

NFp + 1, the second j = ncom + Fp + NFp + 2 and so on, with Fp and NFp

defined as in Figure 2.3 as the numbers of FTC and non-FTC protected indi-

52



CHAPTER 2: MODELLING AND BAYESIAN INFERENCE FOR THE ABAKALIKI
SMALLPOX DATA

viduals, respectively. The case is similar for any non-FTC individuals outside

who become infected, with the first being numbered j = ncom + Fp + NFp +

Fnp + 1, for Fnp equal to the number of unprotected FTC individuals outside.

This is more computationally efficient since it does not require calculation of

thousands of identical infectious pressures.

This mechanism for outbreak simulation will be required in the later simula-

tion study and model checking, but now we proceed to define the Bayesian

inference and likelihood expressions to be used in our analysis.

Figure 2.3: Numbering of the N individuals within the population of Abaka-

liki

2.5 Inference and Likelihood Expressions

With the data introduced and the model defined, we may perform Bayesian

inference for the unknown model parameters, given the data and augmenting

the unknown event times for each infective as well as the unknown protec-

tion and vaccination statuses. This is, to the best of our knowledge, the first

Bayesian analysis of the Abakaliki data considering all aspects of the data.

2.5.1 Preliminaries

In order to derive an expression for the likelihood in our model, we first define

some notation.
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Recall that the vaccination statuses of individuals in Abakaliki are known,

with a small number of exceptions as detailed in Table 2.4. For those known

only, define s = {si | i ∈ 0, .., N − 1 and si known} as the set of vaccination

statuses of each individual, with si taking value 1 for vaccinated i and 0 for

unvaccinated i. Then, let

Φ = (κ, eκ, tq, b, v, λa, λ f , λh, θ, s)

where

θ = (µI , σI , µF, σF, µR, σR, µQ, σQ),

so that the components of θ, are parameters that are assumed known, and

Φ contains all of the model parameters, both those known and those to be

estimated.

Recall that we defined e, i, q and τ as the unknown sets of exposure (not

including eκ), infection, quarantine and removal times, respectively. The tem-

poral data r, as introduced in Section 2.2, consist of rash times for all infectives.

For those individuals with unknown vaccination status only, we define su =

{su
i | i ∈ 0, .., N − 1 and su

i unknown}. The unknown protection status of each

individual within the compounds is contained within p̃ = (p0, p1, ..., pncom−1);

where pi = 1 for successfully vaccinated (protected) or pi = 0 for unsuccess-

fully vaccinated (unprotected) or not vaccinated at all. For individuals outside

the compounds, define (pncom , ..., pN−1) in the same way as for those inside.

Finally, let p = (p̃, pncom , ..., pN−1). For computational purposes, instead of

separate protection statuses for each outside individual, we will in fact only

require quantities x and y, where

x = Number of FTC, vaccinated, unprotected but never infected

individuals outside of the compounds, (2.5.1)

y = Number of non-FTC, vaccinated, unprotected but never infected

individuals outside of the compounds, (2.5.2)

neither of which are known from the data. We separate over FTC membership

status since these individuals will have different mixing behaviours. Since the
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likelihood contribution from such outside individuals can be described using

x and y, this allows for storage of only these two numbers rather than a pro-

tection and a vaccination status for each of the 30,949 individuals in question.

Define

γ = (e, i, q, τ, su, p),

containing protection statuses for all N individuals, and

γ̃ = (e, i, q, τ, su, p̃),

containing only the protection statuses for individuals within the compounds.

Next, define sets N of individuals with sub/superscripts as follows:

in f = Becomes infected,

n− in f = Never infected,

sus = Initially susceptible, i.e. unvaccinated or vaccinated but not

protected,

FTC = Member of Faith Tabernacle Church,

n− FTC = Not a member of Faith Tabernacle Church,

oc = Outside the compounds,

c = Inside the compounds.

For example, N c
in f denotes the set of individuals within the compounds who

become infected.

Now, for t ≥ eκ and j = 0, ..., N − 1, define

Λj(t) = infectious pressure acting on individual j at time t,

Λ(t) = infectious pressure acting on all individuals who are susceptible

at time t

= ∑
j∈Nsus
j : ej>t

Λj(t),

where Λ(t) can be subdivided into Λ(t) = ΛOC(t) + ΛCN(t) + ΛCC(t) with

each term in the sum representing the overall infection pressure at time t
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to those outside the compounds, to those inside the compounds who never

become infected, and to those inside who do become infected, respectively.

These Λ terms can hence be defined as

ΛCN(t) = ∑
j∈N c

sus,n−in f
j : ej>t

Λj(t),

ΛCC(t) = ∑
j∈N c

sus,in f
j : ej>t

Λj(t),

ΛOC(t) = ∑
j∈N oc

sus
j : ej>t

Λj(t).

With this notation, we denote the likelihood of the data r given the model pa-

rameters Φ as π(r | Φ). This is practically intractable in all but trivial cases

however, as we do not observe the complete infection process and so it is in-

feasible to integrate over all possible infectious period parameters as the num-

ber of infectives increases. However augmenting the data r with γ we obtain

instead the tractable likelihood π(r, γ |Φ). An extension of the standard SIR

model likelihood defined in Section 1.3.5, this likelihood is given by

π(r, γ |Φ) =

 ∏
j∈Nin f

Λj(ej−)

× e−
∫ T

eκ
Λ(t)dt

× ∏
j∈Nin f

f I(ij − ej) fF(rj − ij) fR(τj − rj) fQ(qj −max(rj, tq))

× v
N−1
∑

r=0
pr1{sr=1 or su

r =1}
(1− v)

N−1
∑

r=0
(1−pr)1{sr=1 or su

r =1}
,

(2.5.3)

where T is the end of the epidemic, defined as the first time at which no infec-

tives or exposed individuals remain in the population. In addition, Λj(ej−) =

limt↑ej Λj(t), where ej− represents the time just before exposure of j. The first

product term Λj(ej−) defines the pressure on each infective just before their

exposure and the exponential term e−
∫ T

eκ
Λ(t)dt represents the pressure on sus-

ceptibles over the entirety of the epidemic. Next are the densities fA(·) of the

exposure, fever, rash and time-to-quarantine periods, where fA, for A = (I, F,
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R, Q), is defined as the pdf of a Γ(µA, σA) distribution. Lastly, the final term is

the likelihood of the protection status arrangement.

We wish to find π(Φ | r), but in order to make use of Equation (2.5.3), we use

the augmented posterior density π(Φ, γ | r). By Bayes’ theorem, see that

π(Φ, γ | r) =
π(r, γ |Φ)π(Φ)

π(r)
∝ π(r, γ |Φ)π(Φ),

so that the posterior density is the product of the tractable, augmented likeli-

hood and the prior density π(Φ), divided by a normalising constant.

Assuming independence a priori of the components of Φ,

π(Φ) = π(κ, eκ, tq, b, v, λa, λ f , λh, θ, s)

= π(κ)π(eκ)π(tq)π(b)π(v)π(λa)π(λ f )π(λh)π(θ)π(s).

We assume that λa, λ f and λh have gamma distributed priors, v has a uniform

prior on (0, 1) and b and tq have improper, uniform priors on (0, ∞). We set a

discrete uniform prior for κ over the number of infected individuals. In addi-

tion, eκ has an improper uniform prior on (−∞, iκ). Since θ and s are assumed

known, π(θ) and π(s) are just point masses.

Before continuing to the likelihood calculations, the notation required in this

chapter is summarized in Table 2.6.

2.5.2 Integrating out Parameters x and y

In its current form, our data augmentation scheme results in a likelihood in-

volving the protection status of each of N = 31, 200 individuals. It is possi-

ble, however, to integrate out these parameters for all individuals outside of

the compounds. This is essentially because the number of protected individ-

uals is Binomially distributed, and also arises from the fact that individuals

outside of the compounds do not contribute compound mixing terms to the

likelihood; they may only differ in their FTC membership. Since this removes
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Table 2.6: Principal notation.

Parameter Interpretation

N Population size

ncom Number of individuals within the compounds

n Number of FTC individuals

Nin f Set of ever infected individuals

N a
b Set of individuals with location a and status b

(such as within the compounds and ever infected)

λa Global infection rate

λ f FTC infection rate

λh Household infection rate

b Infectivity factor for fever period

v Vaccine efficacy

tq Time quarantine measures introduced

θ Fixed parameters for disease stage lengths

κ Identity of initial infective

eκ Exposure time of initial infective

s Vector of vaccination statuses (for all individuals)

su Vector of unknown vaccination statuses

p Vector of protection statuses (for all individuals)

p̃ Vector of protection statuses (compound individuals only)

Φ (κ, eκ, tq, b, v, λa, λ f , λh, θ, s)

e Vector of exposure times

i Vector of fever times

r Vector of rash times

τ Vector of removal times

q Vector of quarantine times

γ (e, i, τ, q, su, p)

γ̃ (e, i, τ, q, su, p̃)
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almost 31,000 parameters, this provides a likelihood which is much faster to

compute.

In this section we will show that

π(r, γ |Φ) = π(r, γ̃, x, y |Φ),

where x and y are defined as in Equations (2.5.1) and (2.5.2). This first step

shows that the separate protection statuses for individuals outside the com-

pounds can be summarised by just the total numbers of FTC and non-FTC

vaccinated, unprotected but never infected individuals. We will then integrate

out x and y as follows. We begin by expressing the likelihood as

π(r, γ̃, x, y |Φ) = π(r, γ̃ | x, y, Φ)π(x, y |Φ) (2.5.4)

and hence, by Bayes’ Theorem,

π(Φ, γ̃, x, y | r) = π(r, γ̃ | x, y, Φ)π(x, y |Φ)π(Φ)

π(r)
.

Integrating out x and y, equivalent to summing in this case since they take

discrete values, we find

∑
x,y

π(Φ, γ̃, x, y | r) = π(Φ)

π(r) ∑
x,y

π(r, γ̃ | x, y, Φ)π(x, y |Φ), (2.5.5)

implying that

π(Φ, γ̃ | r) = π(Φ)

π(r)
π(r, γ̃ |Φ).

This gives new target density π(Φ, γ̃ | r), independent of x and y as desired.

2.5.2.1 Removing protection statuses for individuals outside the compounds

We now must prove that

π(r, γ |Φ) = π(r, γ̃, x, y |Φ),

in order to perform the integration detailed above.
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Recall that

π(r, γ |Φ) = ∏
j∈Nin f

Λj(ej−)× e−
∫ T

eκ
Λ(t;x,y)dt

× ∏
j∈Nin f

f I(ij − ej) fF(rj − ij) fR(τj − rj) fQ(qj −max(rj, tq))

× v
N−1
∑

r=0
pr1{sr=1 or su

r =1}
(1− v)

N−1
∑

r=0
(1−pr)1{sr=1 or su

r =1}
,

(2.5.6)

where we may write Λ(t; x, y) = ΛOC(t; x, y) + ΛCN(t) + ΛCC(t) as defined

in Section 2.5.1 but now with dependence on x and y. Then the only terms in

Equation (2.5.6) involving x and y are ΛOC(t; x, y) and v
N−1
∑

r=0
(pr | {sr=1 or su

r =1})
(1−

v)
N−1
∑

r=0
(1−pr | {sr=1 or su

r =1})
, since x and y are determined by the protection status

of individuals outside of the compounds. It is possible to subdivide the like-

lihood of the protection status over whether the individual is inside/outside

and by whether they do or do not become infected as follows:

v
N−1
∑

r=0
pr1{sr=1 or su

r =1}
(1− v)

N−1
∑

r=0
(1−pr)1{sr=1 or su

r =1}

= v

ncom−1
∑

r=0
pr1{sr=1 or su

r =1}
(1− v)

ncom−1
∑

r=0
(1−pr)1{sr=1 or su

r =1}

× v
N−1
∑

r=ncom
pr1{sr=1 or su

r =1}
(1− v)

N−1
∑

r=ncom
(1−pr)1{sr=1 or su

r =1}

= v

ncom−1
∑

r=0
pr1{sr=1 or su

r =1}
(1− v)

ncom−1
∑

r=0
(1−pr)1{sr=1 or su

r =1}

× v
N−1
∑

r=ncom
pr1{sr=1 or su

r =1}
(1− v)

N−1
∑

r=ncom
r∈Nin f

(1−pr)1{sr=1 or su
r =1}

× (1− v)

N−1
∑

r=ncom
r∈Nn−in f

(1−pr)1{sr=1 or su
r =1}

.

The terms corresponding to individuals inside the compounds do not depend

on x and y, and neither does the term concerning outside infectives, since their

protection status is known. Also, there are only unknown vaccination statuses

for individuals inside of the compounds and so we may disregard the su
r terms.
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Let us then define the expression dependent on x and y as

Lxy = e−
∫ T

eκ
ΛOC(t;x,y)dtv

N−1
∑

r=ncom
prsr

(1− v)

N−1
∑

r=ncom
r∈Nn−in f

(1−pr)sr

, (2.5.7)

where, with su
r disregarded, the indicator functions collapse to just sr as it

is itself an indicator function, with value 1 for r vaccinated and 0 for r non-

vaccinated.

The integral of ΛOC is equal to the sum over all infectives j of the pressure

from j to any given FTC or non-FTC individual outside of the compounds

(throughout all time (eκ, T)), summed over all the initially susceptible FTC

and non-FTC individuals. Thus,

e−
∫ T

eκ
ΛOC(t;x,y)dt = exp

(
− ∑

j∈Nin f

∑
k∈N oc

sus

Ψjk

)
(2.5.8)

with Ψjk = total infectious pressure from j to susceptible k during the time

interval (eκ, T).

We wish to express Equation (2.5.8) in terms of x and y and so, partitioning

according to whether susceptibles become infected or not, see that

exp
(
− ∑

j∈Nin f

∑
k∈N oc

sus

Ψjk

)
= exp

(
− ∑

j∈Nin f

(
∑

k∈N oc
in f

Ψjk + ∑
k∈N oc

n−in f

Ψjk

))

= exp

(
− ∑

j∈Nin f

(
∑

k∈N oc
in f ,FTC

Ψjk + ∑
k∈N oc

in f ,n−FTC

Ψjk

+ ∑
k∈N oc

n−in f ,FTC

Ψjk + ∑
k∈N oc

n−in f ,n−FTC

Ψjk

))
, (2.5.9)

which has also been partitioned over the confession of the susceptibles: whether

FTC or not.

However, the data only indicate if individuals are vaccinated, not whether

they are protected, since the vaccine may not have been effective. Of the four

Ψjk values in Equation (2.5.9), the numbers of initially susceptible FTC and

non-FTC individuals outside that do become infective are known, but not the
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Figure 2.4: Tree diagram for protection status of individuals outside the com-

pounds. Here inf = infected, n-inf = non-infected and sus= sus-

ceptible.

number of initial susceptibles that are never infected. Figure 2.4 displays the

possible combinations of individuals in the latter two categories.

So, the total number of initially susceptible, never infected individuals outside

the compounds is given by

| N oc
n−in f | = aoc

n−in f + Bin(boc
n−in f , 1− v),

where aoc
n−in f is the known number of non-vaccinated, never infective individ-

uals outside the compounds and boc
n−in f is the known number of vaccinated,

never infective individuals outside, each one of whom is susceptible with

probability 1 − v. Bin(n, p) represents a binomial distribution with number

of trials n and success probability p. The number of boc
n−in f that are susceptible

is equal to x + y, specifically

x ∼ Bin(boc
n−in f ,FTC, 1− v),

y ∼ Bin(boc
n−in f ,n−FTC, 1− v),

given v, where boc
n−in f ,FTC is the number of FTC individuals outside who are

vaccinated but not infected and boc
n−in f ,n−FTC is the number of non-FTC indi-

viduals outside who are vaccinated but not infected.
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Therefore Equation (2.5.7) for Lxy becomes

Lxy = exp
(
− ∑

j∈Nin f

(
∑

k∈N oc
in f ,FTC

Ψjk + ∑
k∈N oc

in f ,n−FTC

Ψjk

+χF(j)(aoc
n−in f ,FTC + x) + χNF(j)(aoc

n−in f ,n−FTC + y)
))

×v
N−1
∑

r=ncom
prsr

(1− v)

N−1
∑

r=ncom
r∈Nn−in f

(1−pr)sr

, (2.5.10)

where

χF(j) =
(
b(rj − ij) + (min(qj, τj)− rj)

)
×


λa

N−1 +
λ f

n−1 if f j = FTC

λa+λ f
N−1 otherwise

and

χNF(j) =
(
b(rj − ij) + (min(qj, τj)− rj)

)
×


λa

N−1 if f j = FTC

λa+λ f
N−1 otherwise

represent the contribution from infective j to a never infected FTC/non-FTC

susceptible outside the compounds over all time (eκ, T). This contribution is

equal for all susceptibles k.

Considering the protection status likelihood parts of Equation (2.5.10), note

that

(1− v)

N−1
∑

r=ncom
r∈Nn−in f

(1−pr)sr

= (1− v)x+y,

since the sum is equal to the number of vaccinated but unprotected individuals

outside who do not become infected. Hence

v
N−1
∑

r=ncom
prsr

= vboc
n−in f−x−y,

as the sum is equal to the number of vaccinated and protected individuals

outside, which can be seen as equivalent to the number of vaccinated never

infected individuals outside minus those who are unprotected.
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Splitting up the terms involving x and y, Equation (2.5.10) can be written in

the form

Lxy = exp

(
− ∑

j∈Nin f

(
∑

k∈N oc
in f ,FTC

Ψjk + ∑
k∈N oc

in f ,n−FTC

Ψjk

+ aoc
n−in f ,FTCχF(j) + aoc

n−in f ,n−FTCχNF(j)
))

× exp

(
− ∑

j∈Nin f

χF(j)× x

)
× (1− v)xvboc

n−in f ,FTC−x

× exp

(
− ∑

j∈Nin f

χNF(j)× y

)
× (1− v)yvboc

n−in f ,n−FTC−y, (2.5.11)

which demonstrates that π(r, γ | Φ) = π(r, γ̃, x, y | Φ) as claimed. None of

the unknown protection statuses for outside individuals are now explicitly

required, resulting in improved computational speed, and we may now sum

this expression over x and y to obtain the overall likelihood π(r, γ̃ |Φ), which

is faster still to compute.

2.5.2.2 Sum over x and y

Considering Equation (2.5.11), the first exponential term does not depend upon

x or y and so we may disregard it for now. For the rest of the expression, recog-

nise that the sum takes the form of a moment generating function (MGF) for

the binomial distribution and hence use the fact that, for W ∼ Bin(n, p),

E(e−θW) = (pe−θ + (1− p))n, θ ≥ 0.

Setting ∑
j∈Nin f

χF(j) = χF and ∑
j∈Nin f

χNF(j) = χNF as θ, as well as boc
n−in f ,FTC

and boc
n−in f ,n−FTC as n and 1− v as p we obtain

L = exp
(
− ∑

j∈Nin f

(
∑

k∈N oc
in f ,FTC

Ψjk + ∑
k∈N oc

in f ,n−FTC

Ψjk
)

− aoc
n−in f ,FTCχF − aoc

n−in f ,n−FTCχNF

)
×
(
(1− v)e−χF + v

)boc
n−in f ,FTC

(
(1− v)e−χNF + v

)boc
n−in f ,n−FTC

,
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for which taking logs yields

log(L) =− ∑
j∈Nin f

(
∑

k∈N oc
in f

Ψjk

)
− aoc

n−in f ,FTCχF − aoc
n−in f ,n−FTCχNF

+ boc
n−in f ,FTC log

(
v + (1− v)e−χF

)
+ boc

n−in f ,n−FTC log
(

v + (1− v)e−χNF
)

. (2.5.12)

2.5.3 Likelihood

To obtain the full, tractable likelihood expression, combine the section from

Equation (2.5.12) with the remaining parts of the original likelihood from Equa-

tion (2.5.6), resulting in an overall log likelihood of

log(π(r, γ̃ |Φ)) =

log
(

∏
j∈Nin f

j 6=κ

Λj(ej−)
)
−
∫ T

eκ

ΛCN(t)−ΛCC(t)dt

− ∑
j∈Nin f

(
∑

k∈N oc
in f

Ψjk
)
− aoc

n−in f ,FTCχF − aoc
n−in f ,n−FTCχNF

+boc
n−in f ,FTC log

(
v + (1− v)e−χF

)
+boc

n−in f ,n−FTC log
(
v + (1− v)e−χNF

)
+ log

(
∏

j∈Nin f

f I(ij − ej) fF(rj − ij) fR(τj − rj) fQ(qj −max(rj, tq))
)

+
ncom−1

∑
r=0

pr1{sr=1 or su
r =1} log(v)

+
ncom−1

∑
r=0

(1− pr)1{sr=1 or su
r =1} log(1− v)

+
N−1

∑
r=ncom
r∈Nin f

(1− pr)sr log(1− v),
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where

∏
j∈Nin f

j 6=κ

Λj(ej−) = ∏
j∈Nin f

j 6=κ

∑
i∈Nin f

i 6=j

m(i, ej−)

×


λa

N−1 +
λ f δ f (i,j)

n−1 +
λhδc(i,j;ej−)
nc, fi

(ej−)−1 if fi = FTC,

λa+λ f
N−1 +

λhδc(i,j;ej−)
nc, fi

(ej−)−1 otherwise,

with

m(i, ej−) =


b if ii < ej− < ri

1 if ri < ej− < min(τi, qi)

0 otherwise.

The log posterior density of interest is thus

log(π(Φ, γ̃ | r, θ)) ∝ log(π(r, γ̃ |Φ)π(Φ))

= log(π(r, γ̃ |Φ)) + log(π(κ)) + log(π(eκ)) + log(π(tq))

+ log(π(b)) + log(π(v)) + log(π(λa))

+ log(π(λ f )) + log(π(λh)).

We have obtained a tractable likelihood expression which is sufficiently fast

to compute, and we may now perform MCMC; sampling from the posterior

density to obtain estimates of model parameters.

2.6 MCMC

In this section we will detail the MCMC algorithm used to update the model

parameters and the augmented data.

Within the MCMC algorithm, all of the 12 parameters are updated singly in

a systematic order using Metropolis-Hastings updates, with the exception of

the exposure, infection, quarantine and removal times which are updated in

pairs. More complex updates could be considered, but since these single up-

dates work well and lead to sufficient mixing, it does not appear necessary.
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Proposed values outside of the possible range for each parameter are imme-

diately rejected (for example, all the infection rates must be positive). The

acceptance probability is calculated using the full conditional distributions, as

fully detailed in Appendix A, since calculation of the full likelihood is compu-

tationally demanding.

We obtain 100,000 samples in all cases, taken after an initial burn-in of 10,000

iterations and thinning to record every 10th iteration for sufficient indepen-

dence in these samples. In each loop of the algorithm, first the λ values are

individually updated, followed by v (vaccine efficacy), b (infectivity factor of

fever infectious period) and tq (days until isolation procedures begin). For

a number of randomly selected individuals, the pair of exposure and fever

times, followed by the pair of quarantine and removal times, are then up-

dated. This is followed by the protection status of a small number of indi-

viduals within the compounds proposed to be changed. Finally, vaccination

statuses su must be updated. Whereas to update p̃ we randomly select any

element of p̃ and propose a change to it, with su we consider the limited pos-

sible number of unknown vaccination configurations for several individuals

within the compounds, as shown in Table 2.4. The total number of vaccinated

people in each compound is known, but not necessarily whether those vacci-

nated are FTC or non-FTC, and so to update su we randomly select one of the

five potential vaccination configurations from c = {ci | i = 1, ..., 5}.

The MCMC was coded in C, and takes on average 2.5 hours for 100,000 sam-

ples to be obtained. A summary of the MCMC process used is given in Al-

gorithm 5. The number of event times and protection statuses updated per

iteration in the algorithm (5 and 15, respectively) were tuned to provide good

mixing.

We now explain each of the MCMC updates in more detail. To update any pa-

rameter α, a candidate value is drawn from the proposal density. Any positive

candidate α̃ value is accepted with probability

π(α̃)q(α|α̃)
π(α)q(α̃|α) ∧ 1,
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Algorithm 5 MCMC process for obtaining samples of the Abakaliki outbreak

parameters.

Input: r, it = number of iterations, b = length of burn-in, th = degree of

thinning

Output: λa, λ f , λh, v, b, tq

1. Establish initial values of output parameters as well as event times, pro-

tection statuses and unknown vaccination statuses.

2.

for i = −b to it do

for inner = 0 to th do

a) Update λa

b) Update λh

c) Update λ f

d) Update v

e) Update b

f) Update tq

g)

for j = 1 to 5 do

Randomly select an infected individual

Update their exposure and infection times as a pair

Update their quarantine and removal times as a pair

end for

h)

for j = 1 to 15 do

Randomly select an individual within the compounds

Update their protection status

end for

i) Update the unknown vaccination status configuration, and corre-

sponding protection statuses

end for

Record current output parameter values

end for
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where q(·|·) denotes the proposal density/mass function and π(·) is the α-

dependent full conditional distribution, provided in Appendix A. Considering

each parameter individually:

λ values updated - infection rates: Candidate value

λ̃a = λa + x

is proposed, where x ∼ N(0, σ2
λa
), i.e. x is a Gaussian distributed random

variable with mean 0 and fixed variance σ2
λa

. In practice, σ2
λa

is tuned to provide

reasonable mixing of the Markov chain. The probability of acceptance is given

by:
π(λ̃a | r, θ, γ̃, κ, eκ, tq, v, b, λ f , λh, s)
π(λa | r, θ, γ̃, κ, eκ, tq, v, b, λ f , λh, s)

∧ 1,

with similar expressions for λ f and λh.

Using a randomly generated, uniform distributed number U between 0 and 1,

the proposed value is accepted or rejected under the given probability. Since

we operate on a log scale, the candidate is accepted if

log(U) < log(π(λ̃a | r, θ, γ̃, κ, eκ, tq, v, b, λ f , λh, s))

− log(π(λa | r, θ, γ̃, κ, eκ, tq, v, b, λ f , λh, s)).

This process is carried out for λa, λh and λ f in turn.

v value updated - vaccine efficacy: A very similar procedure is used to update v,

with a candidate value suggested as a random Gaussian distributed variable

added to the current v value. Provided this candidate lies between 0 and 1, it

is accepted with probability

π(ṽ | r, θ, γ̃, κ, eκ, tq, b, λa, λ f , λh, s)
π(v | r, θ, γ̃, κ, eκ, tq, b, λa, λ f , λh, s)

∧ 1.

b value updated - infectivity factor: Next, b is updated using the same candidate

selection process as for v. In this case, the probability of acceptance is

π(b̃ | r, θ, γ̃, κ, eκ, tq, v, λa, λ f , λh, s)
π(b | r, θ, γ̃, κ, eκ, tq, v, λa, λ f , λh, s)

∧ 1.
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tq value updated - time quarantine procedures introduced: In much the same way

as before, a new value for tq is proposed, based on a random Gaussian dis-

tributed amount added to its previous value, and accepted with probability

π(t̃q | r, θ, γ̃, κ, eκ, b, v, λa, λ f , λh, s)
π(tq | r, θ, γ̃, κ, eκ, b, v, λa, λ f , λh, s)

∧ 1.

e, i, q, t values updated - exposure, infection, quarantine and removal times: A num-

ber, typically in the range 5-10, of individuals per iteration of the algorithm are

randomly selected to have their exposure, infection, quarantine and removal

values updated. Candidate values are selected, with exposure and infection

being accepted/rejected as a unit followed, by the pair of quarantine and re-

moval since we expect these quantities to be correlated.

Candidates for the period of time between start of infectivity and known rash

start time, then exposure and start of infectivity are proposed as random gamma

distributed values. They are accepted/rejected as a unit, before candidate val-

ues for the time between rash and quarantine and also rash and removal are

proposed and similarly judged as a unit. The process for each individual is as

follows

1. Select an individual j uniformly at random from the set Nin f ,

2. Simulate F v Γ(µF, σF) and set ĩi = ri − F,

3. Simulate I v Γ(µI , σI) and set ẽi = ĩi − I,

4. Simulate R v Γ(µR, σR) and set τ̃i = ri + R,

5. Simulate X v Γ(µQ, σQ) and set q̃i = max(ri, tq) + X.

Making sure to keep track of the initial infective, the candidates for ei and ii

are accepted with probability

π(ẽi, ĩi | r, Φ, e−i, i−i, q, τ, p̃, su)

π(ei, ii | r, Φ, e−i, i−i, q, τ, p̃, su)
∧ 1.
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After this, and regardless of the acceptance of the exposure and infection times,

candidate times for τi and qi are considered similarly. The process is repeated

for each of the selected infective individuals.

Protection status updated: Similarly, a number of people in the compounds,

again typically 5-10, are randomly selected to have their protection status changed.

The change for each is accepted with probability

π( p̃i | r, Φ, e, i, q, τ, p−i, su)

π(pi | r, Φ, e, i, q, τ, p−i, su)
∧ 1.

Only those individuals who are vaccinated and not infected are eligible to have

their protection status changed. These updates are accepted/rejected sepa-

rately rather than as a unit.

Unknown vaccination status individuals updated: Finally, there are those people

within the compound whose vaccination statuses are unknown. A new combi-

nation of these is proposed, by selection of one of the aforementioned c values

from 1 through 5 which represent the five potential configurations of unknown

vaccination status. Protection statuses of those affected are then updated ac-

cordingly; set to 0 if an individual is proposed as non-vaccinated, and set to 1

independently with probability v if an individual is proposed vaccinated.

Selecting one of five possible configurations of unknown vaccination status

uniformly at random, any given one is accepted with probability

π(c̃i | r, Φ, e, i, q, τ, p̃)
π(ci | r, Φ, e, i, q, τ, p̃)

∧ 1.

2.7 Results

2.7.1 Abakaliki Data

With the full likelihood expressions obtained and MCMC scheme defined, we

may now analyse the Abakaliki data. We seek to compare the results from

our MCMC to those of Eichner and Dietz, and both can be found in Table 2.7.

The posterior means, medians and credible intervals from MCMC are given
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alongside the results of Eichner and Dietz. Figure 2.5 also contains density

plots for the parameters of interest as well as the basic reproduction number,

compared to Eichner and Dietz’ maximum likelihood estimates (MLEs). In

general, the results from MCMC appear very similar to Eichner and Dietz’,

particularly for the six model parameters. This is perhaps unexpected, and

indicates that Eichner and Dietz’s method may be fairly accurate despite its

approximations.

Our mean estimate of the basic reproduction number R0 = (µR + bµF)(λa +

λ f +λh) is 7.96 for the whole infectious period, which means that in an entirely

susceptible population an infected person will on average infect 7.96 others.

This is slightly higher than Eichner and Dietz’s estimate of 6.87. Similarly, our

estimate of the reproduction number for the fever period RF = bµF(λa + λ f +

λh) is 0.53 compared to Eichner and Dietz’s 0.164. In this case the difference

can be explained by our larger estimate for infectivity factor b, which has a

highly skewed posterior density.

Table 2.8 gives estimates of a selection of reproduction numbers. Figure 2.6

contains density plots for these reproduction numbers. Defining RQ as the re-

production number once quarantine measures are in place (i.e. R0 with µR =

µQ = 2.0) it is estimated at a mean of 1.459, interestingly meaning the epi-

demic is still super-critical. Defining pairs of pre- and post- quarantine mea-

sure reproduction numbers for spread only within compounds, for between

FTC individuals and for in the wider population (i.e. RQa = (µQ + bµF)λa and

so on), we can see the impact of these different types of transmission. As we

would expect, all reproduction numbers are greatly lowered post-quarantine

compared to their pre-quarantine counterparts. However, we also see that (i)

within compounds, the epidemic is super-critical both before and after tq; (ii)

within the FTC membership, the epidemic changes from super- to sub-critical

and (iii) in the wider population, the epidemic is always sub-critical. This

would imply that what stops the outbreak spreading further is a combination

of a depletion of susceptibles in the compounds and the fact that the global
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Posterior

mean

Posterior

median

Credible

interval

Eichner

and

Dietz MLE

Eichner and Dietz

confidence

interval

λa 0.041 0.035 (0, 0.093) 0.0281 (0.00447, 0.101)

λ f 0.063 0.059 (0.009, 0.010) 0.0562 (0.0187, 0.127)

λh 0.358 0.349 (0.150, 0.565) 0.335 (0.192, 0.527)

v 0.808 0.817 (0.668, 0.947) 0.816 (0.644, 0.922)

b 0.522 0.374 (0.0, 1.500) 0.157 (0, 1.89)

tq 50.4 50.2 (42.4, 58.3) 51.5 (44.7, 59.6)

R0 7.96 7.79 (4.33, 11.59) 6.87 (4.52, 10.1)

RF 0.531 0.431 (0.0, 1.364) 0.164 (0.0, 1.31)

Table 2.7: Parameter estimates and equal-tailed 95% credible intervals for the

Abakaliki smallpox outbreak from the true likelihood approach,

alongside the results of Eichner and Dietz (2003) for comparison.

100,000 MCMC samples were obtained. R0 = (µR + bµF)(λa +

λ f + λh) and RF = bµF(λa + λ f + λh).
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Figure 2.5: Posterior densities of the six parameters of interest and the basic

reproduction number, from the Abakaliki outbreak data. Red lines

represent Eichner and Dietz’ MLEs. Shown are 100,000 samples

from an MCMC run.

spread is sub-critical, rather than the quarantine procedure itself.

We also consider the correlation between the model parameters. Figure 2.7

displays this, with a scatter plot and Pearson’s correlation coefficient for each

pair of parameters. The lack of correlation seen in the plot suggests that the six

basic model parameters can indeed be individually estimated from the data,

and our model is not over-parameterised.

We lastly consider the posterior distribution of the exposure times for each in-

fected individual, by taking the estimated exposure time for each infective at
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Figure 2.6: Posterior densities of the reproduction numbers contained in Ta-

ble 2.8, from the Abakaliki outbreak data. Shown are 100,000 sam-

ples from an MCMC run.

each iteration of the MCMC algorithm. These are shown in a heat map in Fig-

ure 2.8. We see that generally there is small uncertainty in the exposure times,

most of them following the same ordering as the rash times. This is likely due

to the small variances assumed for the disease stage lengths. This plot also al-

lows us to consider temporal features of the outbreak, such as the generations

of infectives. We see two easily discernible generations at the start of the out-

break (largely corresponding to those the initial infective infects, and then that

generations’ cases), and then two less discernible generations from around day

30 onwards. Visible are some clustered groups of individuals with very sim-

ilar exposure times (and many estimated as infected by the same individual,
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Posterior

mean

Posterior

median

Credible

interval

RQ = (µQ + bµF)(λa + λ f + λh) 1.46 1.40 (0.62, 2.30)

Ra = (µR + bµF)(λa) 0.712 0.606 (0.0,1.63)

R f = (µR + bµF)(λ f ) 1.09 1.03 (0.192,1.99)

Rh = (µR + bµF)(λh) 6.15 6.00 (2.85,9.45)

RQa = (µQ + bµF)(λa) 0.132 0.109 (0.0,0.313)

RQ f = (µQ + bµF)(λ f ) 0.201 0.183 (0.014,0.388)

RQh = (µQ + bµF)(λh) 1.13 1.08 (0.411,1.84)

Table 2.8: Parameter estimates and equal-tailed 95% credible intervals for

various reproduction numbers, where 100,000 MCMC samples are

used. RQ is the reproduction number for once quarantine measures

are introduced. Rx is the reproduction number corresponding to

the infection rate λx, where x = a, f or h, and RQx is equivalent,

but once quarantine measures are in place.

as will be seen in Figure 2.9), which is more akin to a point-source outbreak

where individuals are exposed to a highly infectious source for a short time,

causing a sharp peak in cases. This highlights the high transmission potential

of smallpox.

2.7.2 Source of Infection

In addition to the results analysed so far, we are also able to estimate the most

likely path of smallpox transmission for the Abakaliki outbreak, i.e. who in-

fected whom. This is a novel analysis for the Abakaliki data, since Eichner and

Dietz’ maximum likelihood approach does not allow for it.

Using our MCMC algorithm, we obtain samples from the posterior distribu-

tion of the estimated infector of each infective. If an individual j receives in-

fectious pressure Λj(t) =
m
∑

k=1
ak(t) at the time of their exposure, where ak(t)

is the pressure from the kth of m infectives at time t, then the probability that
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Figure 2.7: Scatterplot matrix of the model parameters, including Pearson’s

correlation coefficient for each pair and, on the diagonal, the pos-

terior densities of the parameters.

individual k actually infected j is ak(t)
Λj(t)

. These samples can then be combined

to find the estimated probability that any given individual infected any other.

Taking the individual estimated to have infected each person with the highest

posterior probability, we obtain the estimated transmission pathway in Fig-

ure 2.9. We see that compound 1 acts very much as the root of the outbreak,

with initial infective 0 infecting many individuals within this compound. Later

generations of compound 1 infectives then lead to the spread of infection into

other areas; note that infective 8 was one of the individuals who moved from

compound 1 to 2, and is estimated to have been the one to introduce the dis-

ease into that compound. These findings agree with those in Thompson and

Foege (1968), who stated that all of the first cases identified in compounds 2

through 9 except one could be traced to personal contact with a compound 1

infective.

Figure 2.10 displays the uncertainty around the most likely infector of each

individual, by plotting the posterior probabilities of each infective having in-
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Figure 2.8: Heat map of the estimated exposure times of each infective, from

100,000 MCMC samples.

fected every other. We see that for some infectives, the earlier ones especially,

we can be far more certain of their source of infection, whereas in the mid-

dle of the outbreak when new infections were being more rapidly discovered,

the path of transmission is less easy to infer. This is as we might expect, and

matches the analysis of the uncertainty around the exposure times.

78



CHAPTER 2: MODELLING AND BAYESIAN INFERENCE FOR THE ABAKALIKI
SMALLPOX DATA

Estimated Transmission Pathway

0

1

2

3

4

8

9

11

10

14

15

16

22

5

6

7

12

13

17

18

1920

21

23

24

25

26

27

28

29

30

31

C1

C2

C3

C4

C5

C6

C7

C8

C9

Figure 2.9: The estimated transmission pathway for the Abakaliki outbreak.

Nodes represent infected individuals and the edge pointing to

them represents the highest posterior probability among all pos-

sible infectors. Individuals are clustered by compound. Note that

individuals 7 and 8 moved from compound 1 to compound 2 dur-

ing the outbreak.

2.7.3 Simulation Study

To assess the performance of the MCMC algorithm, we now perform a sim-

ulation study. Following the structure outlined in Section 2.4, we simulate a

number of outbreaks (discounting any of final size 1, which do occur with rel-

ative frequency) using both the Eichner and Dietz parameter estimates and

two alternatives. We then perform MCMC on this simulated data, to see how

well it is able to recover the true values. We simulate 30 data sets for each

set of parameter values, as simulating a larger number was found to have no
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Figure 2.10: Heat map showing the posterior probabilities of individuals hav-

ing infected others in the population of Abakaliki.

considerable impact on the results, and run the MCMC algorithm for each.

This results in 30 posterior means per set of parameter values, for which we

calculate the mean of these means as well as 95% probability intervals.

We compare the results from MCMC to the true values in Table 2.9. Density

plots for the posterior mean values are given in Figures 2.11, 2.12 and 2.13.

We see that the estimates are generally close to the true values, though with

some overestimation. As we would expect, the estimates when λa = 0.4 are

closer to the truth than for the Eichner and Dietz parameter values, since this

causes larger outbreaks leading to more available information on the parame-

ters. This is also the case, to some extent, when we increase tq to cause larger

outbreaks, as we might expect.

Table 2.10 shows the results of a single outbreak with much larger parameter

values, yielding a large final size. In this, we did not update the event times or

protection statuses, but fixed them to the values from the simulated data since

otherwise computation was very slow. With a large outbreak we would hope
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Figure 2.11: Density plots for means of the posterior estimates of 30 simu-

lations for the Eichner and Dietz parameter values. Red lines

represent the true values used in the simulations.

for estimates very close to the true values, which largely is the case except for

some overestimation of λh. We expect that this might be due to a limit on

the amount of information that can be gained about λh. Whereas for λa and

λ f we can learn more and more with larger outbreaks, since λh interactions

only occur between compound infectives we are limited on what we can learn.

For a number of large outbreaks simulated, only around 30 out of around 700

infectives resided inside the compounds, and it was found that as the number

of compound infectives increases, the estimation of λh does improve.

Overall, these simulations suggest that the MCMC algorithm is performing

well, as it is able to recover true parameter values from simulations with rela-

tive accuracy.

2.7.4 Sensitivity Analysis

We also perform a sensitivity analysis for model checking. This will assess

the susceptibility of the results to changes in the underlying model assump-
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Table 2.9: Simulation study results. 30 simulations per set of parameter val-

ues were created, and MCMC run on this simulated data. We pro-

vide the mean estimate of the 30 posterior mean values and a 95%

probability interval, where 100,000 MCMC samples were obtained.

Parameter
True

Value

Mean of

Posterior Means

95% Probability

Interval

Range of Final

Sizes Simulated

Eichner

and Dietz

15–42

(mean: 25)

λa 0.0281 0.073 (0.0, 0.178)

λ f 0.0562 0.074 (0.001, 0.146)

λh 0.335 0.417 (0.181, 0.652)

v 0.816 0.822 (0.651, 0.992)

b 0.157 0.792 (0.0, 2.00)

tq 51.5 52.1 (0.0, 105)

Modified

λa

65–109

(mean: 82)

λa 0.4 0.365 (0.188, 0.541)

λ f 0.0562 0.065 (0.016, 0.114)

λh 0.335 0.321 (0.081, 0.560)

v 0.816 0.787 (0.663, 0.910)

b 0.157 0.589 (0.0, 1.59)

tq 51.5 50.0 (43.0, 57.0)

Modified

tq and λ f

12–133

(mean: 56)

λa 0.0281 0.031 (0.0,0.070)

λ f 0.20 0.193 (0.114,0.271)

λh 0.335 0.305 (0.142,0.467)

v 0.816 0.816 (0.710,0.921)

b 0.157 0.735 (0.0,1.78)

tq 150 181 (70.4,291)

82



CHAPTER 2: MODELLING AND BAYESIAN INFERENCE FOR THE ABAKALIKI
SMALLPOX DATA

0.1 0.2 0.3 0.4 0.5 0.6

0
2

Global Infection Rate

la
0.0 0.2 0.4 0.6 0.8

0.
0

1.
5

Household Infection Rate

lh

0.00 0.05 0.10 0.15

0
10

20

FTC Infection Rate

lf
0.6 0.7 0.8 0.9

0
2

4
6

Vaccine Efficacy

v

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
8

Infectivity Factor

b
40 45 50 55 60

0.
00

0.
10

Time of Quarantine

tq

Figure 2.12: Density plots for means of the posterior estimates of 30 simula-

tions for modified λa = 0.4. Red lines represent the true values

used in the simulations.
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tions for modified tq = 150 and λ f = 0.2. Red lines represent the

true values used in the simulations.
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Table 2.10: Simulation study results for a single large outbreak of final size

734. We provide the mean estimate over a single MCMC run of

length 10,000, and the equal-tailed 95% credible interval.

Parameter True Value Posterior mean 95% Credible Interval

λa 0.85 0.868 (0.762, 0.973)

λ f 0.2562 0.265 (0.192, 0.337)

λh 0.535 0.711 (0.475, 0.946)

v 0.816 0.819 (0.648, 0.989)

b 0.157 0.132 (0, 1.335)

tq 51.5 52.049 (-0.582, 104.680)

tions; in this case the infectious period length parameters µI , µR and so on. We

will vary these parameters governing the length of time spent in the different

disease stages, and examine the impact on parameter estimation from MCMC.

Figure 2.14 displays posterior densities for our parameters of interest over a

range of infectious period mean durations. We vary µI , µF and µR and exam-

ine the effect on the shape of the posteriors. As would be expected, when µR,

the length of the rash period before removal, is reduced to make shorter aver-

age infectious periods, the estimates of the infection rates increase to compen-

sate. The estimates of the other three main parameters of interest are largely

unchanged. Note that the estimation of R0 is somewhat sensitive to the choice

of µR, likely an artefact of the relatively small number of cases, the quarantine

procedure and the population structure. In a large and uninterrupted outbreak

we would typically expect R0 to be determined by the outbreak size, but that

is not the case here due to these extra complexities of population structure and

control measures.

The values of µI , µF and µR have been informed by the literature, but we are

perhaps less certain about the values of µQ and σQ as these are data-specific

and not recorded in the Thompson and Foege (1968) report. We see the results

of varying µQ and σQ, affecting the time taken to quarantine an infective, in

84



CHAPTER 2: MODELLING AND BAYESIAN INFERENCE FOR THE ABAKALIKI
SMALLPOX DATA

Figure 2.15, and note that this change has very little impact on estimation.

This similarity is reassuring since these values are those we are least certain of,

and implies that even if the time taken to quarantine infectives is different to

that which we assume, the effect on our results is minimal.
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Figure 2.14: Posterior densities of the six parameters of interest and R0, when

different mean durations of the infectious periods are used.
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Figure 2.15: Posterior densities of the six parameters of interest and R0, when

the time taken to quarantine an infective, µQ, along with σQ is

varied.
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2.7.5 Posterior Predictive Checking

As a final piece of analysis, in order to assess how well our model fits the data

we will perform posterior predictive checking. This involves taking samples

of the basic model parameters from the posterior density, making sure to use

a well mixed and thinned chain, and using our model to simulate a smallpox

outbreak forwards in time from each. A well-performing model will lead to

simulations similar to the Abakaliki outbreak. We use a number of measures

to judge this similarity, namely comparing final size, epidemic duration and

incidence curves.

We begin with final size; the total number of infectives in each outbreak. Tak-

ing 5000 sets of posterior estimates from a well mixed MCMC chain, we simu-

late a smallpox outbreak from each and record the final size. Figure 2.16 shows

a histogram of these final sizes where we see that, in this respect, the simula-

tions are fairly similar to the true Abakaliki outbreak, but generally of slightly

smaller final size. The mean final size is 23.5 compared to the Abakaliki out-

break size of 32. This is somewhat surprising; since we allow for infections

outside of the compounds, which were not seen in the data, we might expect

the final size of simulations to be larger on average.

In the Abakaliki outbreak, however, it is important to note that two of the four

individuals who moved compound were infective at the time of the move, and

that these individuals were the first cases seen outside of compound 1. If we

consider only those simulations in which at least one of the moving individu-

als was infective, we see an increase in the mean final size to 29.27. Figure 2.17

compares this subset of the simulations to all of the simulations as a whole. We

see that when we only consider simulations similar to the data in this respect,

the final size is much closer to that observed. This also supports our previous

comment in Section 2.7.2 that the move of these two infected individuals was

key in transmitting the disease outside of compound 1.

We next consider epidemic duration, which we define as the length of time be-
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Figure 2.16: Using 5000 posterior samples of the parameter estimates to simu-

late outbreaks, a histogram displaying the final size of each, com-

pared to the observed Abakaliki data.

tween the first case detection (rash) time and the last. Figure 2.18 displays the

duration of 5000 simulated outbreaks, compared to the observed data dura-

tion. With a mean of 76.75 days, we see our simulated outbreaks are generally

very similar in duration to the Abakaliki outbreak (of length 76 days), most

likely due to the good estimation of tq. Note the slight peak for short outbreaks

of length 0-10, caused largely by those which immediately went extinct.

In the same manner as before, comparing the epidemic duration of the sub-

set of outbreaks where infected individuals moved compound, we see a small

increase in the mean. Figure 2.19 shows this, and it is interesting that in this

case the subset of simulations provides a worse estimate of the observed epi-

demic duration. However, we would indeed expect an increase in epidemic

duration from the increased final size of these simulations compared to all of

the simulations as a whole.

Figure 2.20 allows for examination of the correlation between final size and

epidemic duration for the simulated outbreaks. As would be expected, longer

durations tend to be seen when there are larger outbreaks, with the two having
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Figure 2.17: A comparison of final size between all 5000 simulations and

the subset of simulations where an individual who moves com-

pound is infected during their move. The dashed line represents

the mean final size of all simulations, the dotted line represents

the mean final size of only those outbreaks where an infected in-

dividual moves compound, and the solid black line represents

the observed data.

correlation of 0.57. The result for the true Abakaliki data does not appear

distinctly different to that of the simulations.

Table 2.11 provides a brief set of statistics for the simulated data sets compared

to the Abakaliki outbreak, summarising the plots discussed so far. Note the

difference in the percentage of outside infectives seen, which was not recorded

in the Abakaliki outbreak but invariably occurs in simulations. Although the

simulations do not appear similar to the data in this respect, it is noteworthy

that Thompson and Foege (1968) claimed that ’there must have been some

deaths which were very well concealed’ within Abakaliki, and so it is cer-

tainly not unquestionable that there were indeed infectives outside of the com-

pounds who were just not recorded.

Lastly, we wish to compare the cumulative number of cases at any given time

in simulations to the Abakaliki data. However, this is difficult to do with out-
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Figure 2.18: Using 5000 posterior samples of the parameter estimates to simu-

late outbreaks, a histogram displaying the duration from the first

rash time to the last of each, compared to the observed Abakaliki

data.

breaks of different sizes, and so we take instead only those simulations of the

same final size as the data (32). Figure 2.21 displays the incidence curves of

4000 simulations of size 32, which we see are generally similar in shape to

the data, perhaps with some right skew. This implies that the observed data

are reasonably well captured by the behaviour of the model. To quantify this

more exactly, we calculate a posterior predictive p-value for the discrepancy

between simulations and the data, defined as the probability that a simulation

Rrep is more extreme than the data Robs. Here, element Rj is equal to the jth

rash time (where rash times are chronologically ordered as usual). We would

wish for simulations to be more extreme around 50% of the time, so a p-value

of 0.5 is optimum. In order to calculate the p-value, we must select a discrep-

ancy measure D(R, Φ); a function of data R and model parameters Φ. We use

a chi-squared measure as detailed in Gelman et al. (1996), of the form

D(R, Φ) = ∑
j

(
Rj −E(Rj |Φ)

)2

Var(Rj |Φ)
.

Note that neither the mean nor the variance term are available analytically,
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Figure 2.19: A comparison of epidemic duration between all 5000 simula-

tions and only those simulations where an individual who moves

compound is infected before the move. The dashed line repre-

sents the mean duration of all simulations, the dotted line rep-

resents the mean duration of only those outbreaks where an in-

fected individual moved compound and the solid black line rep-

resents the observed data.

and so we obtain these via simulation. Given Φ, we simulate until we have a

suitably sized sample of outbreaks with 32 cases. The mean and variance of the

jth rash time is then estimated directly from this sample. Next suppose that

we have M samples from the posterior, labelled Φ(1), . . . , Φ(M). Repeatedly

simulating until we obtain an outbreak with 32 cases, we use the ith sample of

Φ to obtain a simulated epidemic with rash times Rrepi .

Then the posterior predictive p-value is defined as

ppp-value = P
(

D(Rrep, Φ) ≥ D(Robs, Φ) | Robs
)

≈ 1
M

M

∑
i=1

1D(Rrepi ,Φ(i))≥D(Robs,Φ(i)).

A p-value of 0.42 is obtained (for M = 100), which is sufficiently close to the

optimum value of 0.5 to be accepted. Hence we conclude that the simulated
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Table 2.11: Comparison of 4000 simulated outbreaks from posterior esti-

mates, and the Abakaliki data over a range of criteria. * This value

is calculated considering only outbreaks where at least one of the

individuals who moves compound is infected by the time of their

move

Mean of Simulations Abakaliki Data

Outbreak duration (days) 76.75 76

Final size 23.51 (29.27*) 32

Percentage of outside infectives 19.99% 0%

Percentage of FTC infectives 90.71% 93.8%

outbreaks of size 32 are similar in this respect to the data, indicative of a good

model fit. A more accurate value could be obtained with larger values of M,

but the procedure is highly time-consuming in practice due to the restriction

on the final size of simulations.

Overall, posterior predictive checking has shown a good model fit, indicating

that our MCMC results are reliable. It has also highlighted some important as-

pects of the data, such as further confirming the importance of the individuals

who moved compound to the spread of the outbreak, and showing the large

proportion of infectives outside the compounds in simulations, which may be

cause for further work.

2.8 Discussion

2.8.1 Parameter Estimates

Our estimates of the infection rates show clearly that the dominant mode

of transmission within Abakaliki was between individuals in the same com-

pound, in agreement with the findings of Eichner and Dietz (2003). This is sup-

ported by the estimated disease transmission pathway of Section 2.7.2 where
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Figure 2.20: For 1000 simulated outbreaks, a scatterplot of final size against

the duration of the epidemic. The black point provides the values

from the Abakaliki outbreak.

we see the majority of transmission events taking place within compounds.

This is also in agreement with the original WHO report by Thompson and

Foege (1968) who found that FTC membership did not appear to be the ma-

jor transmission mechanism but rather that compound links and particularly

family membership were dominant.

Again similarly to Eichner and Dietz, we found the vaccine to have had around

81% efficacy. Our estimate for b, the factor for the change in infectivity during

the fever period, was 0.5. Higher than that of Eichner of Dietz, this is likely

due to the skewed shape of the posterior density but shows evidence that the

modelling of smallpox with an SIR model that has been frequently seen in

those citing the Abakaliki data may not be appropriate.

The time quarantine measures were introduced was estimated to be between

day 50 and 51. From our investigation, it seems that the introduction of con-

trol procedures was somewhat important in preventing a much larger scale

outbreak. Under the model assumptions alone, the quarantine reduced the

average time spent in the rash period from 16 days to 2 days. However, inves-
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Figure 2.21: The cumulative number of smallpox cases observed by each day

is shown, for 4000 outbreaks of size 32 only. The black curve

shows the incidence curve for the true Abakaliki outbreak.

tigation of reproduction numbers for the outbreak led to further discoveries

about this.

2.8.2 Reproduction Numbers

We obtained a posterior mean estimate for R0 of 7.96, higher than that found

by Eichner and Dietz (2003) of 6.87 and even more so than other estimates

for an SIR model where just FTC individuals are considered (see O’Neill and

Roberts (1999), who estimate R0 around 1). This highlights the high infectivity

of smallpox as well as the importance of a detailed model taking population

structure into account.

Although R0 is interpreted as the average number of secondary cases any

given infective will cause in a fully susceptible population, in our case this

is hard to analogize since the majority of transmission was within-compound

and the pool of susceptible individuals in an infected compound depleted

rapidly.

To further consider the impact of control measures in a more relevant way,
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we considered the reproduction numbers both pre- and post-quarantine pro-

cedures being put in place. We obtained an RQ (reproduction number when

quarantine measures are in place) value of 1.46; far lower than pre-quarantine

but interestingly insufficient alone to stop large scale spread. We concluded

that important must also have been the depletion of susceptible individuals

within the affected compounds (which had a large proportion of FTC inhabi-

tants), and a sub-critical epidemic elsewhere in the population. With respect

to contacts between FTC individuals, it appears that the quarantine measures

were key in minimising the disease spread, but for compound contacts it was

the depletion of susceptible individuals which slowed the epidemic rather

than quarantine. Despite this, introducing quarantine procedures at a later

day in simulations was found to increase outbreak size somewhat, with av-

erage final sizes 24, 44 and 64 for tq = 50, 100 and 200 respectively. With

no quarantine procedures at all, we found the average final size to be 86, high-

lighting the sub-critical epidemic in the wider population and the considerable

impact of the depletion of susceptible individuals within the compounds. As

in Thompson and Foege (1968), we see that small pockets of poorly protected

individuals who mix frequently together can facilitate outbreaks of smallpox

even in a generally well-protected population.

2.8.3 Model Fit

The tests we have performed indicate that the model fits the data fairly well.

The model does invariably predict cases outside of the compounds, likely be-

cause of the rather unrealistic assumption of homogeneous mixing in the en-

tire population, and especially the assumption of homogeneous mixing of non-

FTC individuals which there was no data available to inform. Thompson and

Foege (1968) stated that the FTC community was largely isolated from the rest

of the population with the exception of a few traders, and so a model in which

just some fraction of FTC members had contact with the outside community

might be more applicable, although more complex and not directly informed
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by any data.

Something that might also be useful to consider, although again there is not

sufficient data to support this, is the inclusion of age categories. Thompson

and Foege (1968) state that there appeared to be a much larger proportion

of susceptibles among children, and consequently a higher attack rate. Pre-

school children in particular were largely susceptible, as many older children

had been vaccinated in school despite their parents’ beliefs. Even with avail-

able data, however, it seems probable that a model accounting for age of the

individual would be over-parameterised.

2.8.4 Accuracy of the Eichner and Dietz Likelihood Approxi-

mation

As we have seen, the results of our full Bayesian analysis are fairly similar to

those of Eichner and Dietz (2003), indicating that their approximation method

may be of use in other situations.

Investigation of the Eichner and Dietz method reveals that the likelihood func-

tion obtained is numerically but not analytically tractable, specifically since it

involves integrals which must be numerically evaluated. Although this suf-

fices for maximum likelihood methods, as used by Eichner and Dietz for the

Abakaliki outbreak, it is prohibitive for use within MCMC algorithms as the

likelihood must be repeatedly evaluated at large computational cost. We also

note that the distributions for the length of time in each disease stage used here

have relatively small variances, meaning that the model is closely comparable

to one in which the event times are assumed known. In this case, Eichner

and Dietz’s method provides the true likelihood since the distributions used

to approximate unknown event times collapse to point masses around the true

values. It is of interest, therefore, to develop approximate likelihood functions

which are both useful for non-constant infectious periods and which are ana-

lytically tractable.
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2.9 Conclusions

In this chapter we have completed a full Bayesian analysis of the Abakaliki

smallpox data, and compared the results of this to those of Eichner and Dietz

(2003). The parameter estimates found highlight the dominance of within-

compound smallpox transmission as well as the impact on the end of the out-

break of susceptible depletion within the compounds, rather than quarantine

procedures alone. Novel results include estimates of the transmission path-

way as well as analysis of the uncertainty around exposure times, and model

checking has confirmed that the model fits well. Overall, we have seen that

our parameter estimates are very similar to those of Eichner and Dietz. This

indicates that analytically tractable approximate likelihood functions are of in-

terest to investigate, in particular for situations where current methods strug-

gle such as large populations and multi-level mixing.
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CHAPTER 3

Likelihood Approximation

Methods

3.1 Introduction and Motivation

As our investigation in Chapter 2 has shown, inference for disease outbreak

data often deals with complex models and large amounts of missing data, re-

quiring problem-specific analysis and computation. Although MCMC meth-

ods have become considered somewhat the ’gold standard’ for analysis of this

kind of data, there are many problems associated with this (see e.g. De An-

gelis et al., 2015, O’Neill, 2010, and references therein). Specifically, there are

issues with data dependency as well as more realistic models leading to more

difficult analysis, especially in terms of computational burden. In this chap-

ter, we begin by exploring a number of these problems, and then suggest new

methodology which seeks to address them.

A primary problem with the analysis of infectious disease data is that these

data may be highly dependent. MCMC algorithms which require imputation

of large amounts of missing data then often mix very slowly. Details of this

are discussed in Kypraios (2007), where high posterior correlations between

the infection times and the infectious period parameter are shown. Specifi-

cally, as the outbreak size n increases, infectious period parameter γ (assum-
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ing exponential infectious periods for ease) and the sum of the infectious pe-

riods B = ∑n
j=1(rj − ij) become more highly correlated a posteriori. If γ and B

were our parameters of interest, a two-state Gibbs sampler may suffer mixing

problems due to this dependency (see e.g. Roberts and Sahu, 1997). It be-

comes increasingly difficult to update γ and B separately, since one essentially

determines the other. This is complicated even further by our DA-MCMC al-

gorithm, which may only update a subset of the infection times per iteration

rather than the whole sum B.

To understand why this high correlation occurs, we may consider the full con-

ditional distribution of γ, as defined in Equation (1.3.10). Assuming a low-rate

exponential prior, this full conditional distribution is roughly Γ(n + 1, B). This

therefore has variance n+1
B2 , which tends to zero as n goes to infinity, since B

is of order n. In other words, the larger n gets, the more γ is determined

by the value of B, and the correlation is stronger. Methods have been devel-

oped to combat this problem, such as partially (or completely) non-centered

parameterisations (see e.g. Neal and Roberts, 2005) which can lead to faster

convergence of the Markov chain by, for example, proposing new infection

times when updating γ rather than performing these independently. How-

ever, these are not easily applicable to all MCMC samplers with all models

(Papaspiliopoulos et al., 2003).

As well as the potential introduction of mixing challenges in the MCMC, large

amounts of missing data resulting from large populations/outbreaks require

many, possibly costly, evaluations of the likelihood. A large population size

also increases the time to calculate this likelihood since it includes a product

over individuals, and DA-MCMC hence becomes highly computationally in-

tensive. With the increasing ability to easily collect and store large data sets,

as well as the growing interconnectedness of communities, there is a rising

demand for realistic analyses of large scale outbreaks. Also, particularly in

cases of real-time forecasting as is becoming more commonplace, the ability

to perform estimation quickly and efficiently will be key. These problems are
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hence becoming more significant, and there is a real need for the development

of methodology which might solve them.

Options for improving the computational speed of MCMC algorithms do ex-

ist, such as the use of parallel computing, but since we require a record of

the states visited by the Markov chain this is not particularly straightforward.

Other methods (e.g. Rambaut et al., 2008) have partitioned the data and anal-

ysed each section independently, but of course this ignores any correlation

between the different sections. We hence propose that methods which include

the entirety of the data whilst avoiding the need for data augmentation, or

indeed MCMC entirely, could become useful tools for analysis.

In Chapter 2, one key finding was the relative accuracy of Eichner and Di-

etz’ approximation method compared to standard MCMC methods, despite

the lack of data augmentation. This indicates that the development of likeli-

hood approximation methods may be useful for addressing our computational

problems. DA-MCMC allows us to sample from the high dimensional proba-

bility densities often involved in the analysis of infectious disease data, even

though these may not be analytically written down. Conversely, these ap-

proximation methods will seek to reduce this dimensionality by eliminating

the artificial parameters that are the augmented data, so that we may sample

from the posterior directly.

In this chapter we will introduce a series of likelihood approximations which

attempt to tackle the problems we have discussed. The first will be a gen-

eralised version of Eichner and Dietz’ method from Chapter 2, and the re-

mainder will be a new series of approximation methods based on assuming

independence in interactions between pairs of individuals. We name these

Pair-Based Likelihood Approximations (PBLA). As we have seen in the pre-

vious chapter, the true likelihood in these analyses is equal to the integral

over all unknown event times of the augmented likelihood, which is itself a

product over all individuals. In assuming that all pairs of individuals make

independent contributions to the likelihood, we are essentially able to reduce
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this high dimensional integral to a product of two dimensional integrals, each

of which may be analytically calculated. The likelihood expression is then

entirely tractable and we may approximately sample from it using standard

MCMC, or even simply obtain parameter estimates with maximum likelihood

estimation methods. This is similar in spirit to composite likelihood methods

(see e.g. Varin et al., 2011 and particularly the pairwise likelihood in Cox and

Read, 2004) in that we write the likelihood as a product over constituent parts,

but as we will explain more thoroughly in Section 3.4.1, the similarity does not

extend much beyond this. These Eichner and Dietz and Pair-Based Likelihood

Approximation methods may then be used in situations requiring complex

models with many parameters, for large populations and for large amounts of

missing data, to combat the computational issues we have discussed.

The chapter will proceed as follows. We begin by defining the general model

and notation to be used for the likelihoods in this chapter in Section 3.2. The

first approximation, which will be introduced in Section 3.3, will be the gener-

alization of Eichner and Dietz’ approach from Chapter 2. This framework will

be applied to the special cases of exponentially distributed infectious periods

(Section 3.3.2) and gamma distributed infectious periods (with only positive

integer valued shape parameters) (Section 3.3.3). In Section 3.4 we will then

introduce and define the series of Pair-Based Likelihood Approximations. For

each approximation we include the general framework as well as specific cal-

culations for given infectious periods. We conclude the chapter with a discus-

sion of a numerical drawback of the PBLA method in Section 3.4.10, as well as

an extension of the method to SEIR models in Section 3.4.11.

3.2 Model and Likelihood

We begin by defining the stochastic epidemic model and basic approximate

likelihood structure to be used in this chapter.

For simplicity, we will at first restrict our attention to the SIR model. At
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any given time, every individual in a closed population of size N will be in

one of three states: susceptible, infected or removed, and individuals will

progress through the states in that order. Individuals in the population are

labelled 1, 2, . . . , N, and we label the cases as all individuals j = 1, 2, . . . , n

who become infected (where n is the final size of the outbreak). For these

individuals, ij denotes their infection time and rj their removal time. The in-

fection times i = {ij : j = 1, 2, . . . , κ − 1, κ + 1, . . . , n}, where κ is the un-

known initial infective, are unknown, and the data consist of removal times

r = {rj : j = 1, 2, . . . , n, where r1 < r2 < · · · < rn}. Individuals are therefore

ordered such that 1, 2, . . . , n are those who will eventually be infected (n ≤ N

necessarily). Then n, n + 1, . . . , N are the individuals who remain suscepti-

ble at the end of the outbreak. Note that we require rj < rj+1 strictly for all

j = 1, 2, . . . , n− 1, which will be discussed further in Section 3.4.10.

The outbreak begins with the infection of the initial infective κ, at time iκ, and

continues until no infectious individuals remain. The infectious periods of

different infectives are assumed independent and identically distributed, with

probability density (or mass) function f I(· | θ), where f I has parameter vector

θ. We do not allow for reinfection, so any individual who reaches the removed

stage will remain there for the duration of the outbreak. During any individ-

ual i’s infectious period, they will have contact with any other individual j at a

time given by the point of a Poisson process of rate βij, where all such Poisson

processes are assumed mutually independent. If a contact occurs with a sus-

ceptible individual, this results in their immediate infection. Then we define

β = {βij : i, j ∈ {1, 2, . . . N}} as a matrix of these contact rates. This allows for

a wide range of possibilities for population structure: homogeneous mixing,

multi-level mixing and network structures may all be incorporated. We may

then also define the concept of infectious pressure on any susceptible j, as the

sum over all current infectives i of βij. A higher infectious pressure essentially

represents an increased probability of individual j being infected, since more

infectives may have potential contacts with them.
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Augmenting the observed removal times with the unobserved infection times

and the identity of the initial infective, as in Chapter 2, we define the aug-

mented likelihood as a product over individuals, but with new notation, as

π(i, r | β, θ, κ, iκ) =

(
n

∏
j=1
j 6=κ

χjψjφj f I(rj − ij)

)
φκ f I(rκ − iκ)

where

χj = Infectious pressure acting on j at time of infection

=
n

∑
k=1
k 6=j

βkj1{k infective at ij},

ψj = P(j avoids infection until time ij)

= exp
(
−

n

∑
k=1
k 6=j

βkj(rk ∧ ij − ik ∧ ij)
)

φj = P(j fails to infect all non-infected individuals, labelled n + 1, . . . , N),

= exp
(
−

N

∑
k=n+1

β jk(rj − ij)
)

. (3.2.1)

We recall a ∧ b is the minimum of a and b, and hence rk ∧ ij − ik ∧ ij represents

the total length of time for which there is infectious pressure between individ-

uals j and k. This new notation will be of practical use for the introduction of

the likelihood approximation methods.

Since the infection times and κ are unobserved, we obtain the target likelihood

by integrating over the infection times and the identity of the initial infective

so that

π(r | β, θ) =
∫

π(i, r | β, θ, κ, iκ)π(iκ, κ) di diκ dκ,

where we have assumed that iκ and κ are independent of β and θ a priori. Next,
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see that

π(r | β, θ) =
∫ ( n

∏
j=1
j 6=κ

χjψjφj f I(rj − ij)

)
φκ f I(rκ − iκ)

×π(iκ, κ) di diκ dκ (3.2.2)

=
n

∑
κ=1

π(κ)
∫ ( n

∏
j=1
j 6=κ

χjψjφj

)
φκ f I(rκ − iκ)

×π(iκ | κ)
n

∏
j=1
j 6=κ

f I(rj − ij) di diκ

=
n

∑
κ=1

π(κ)E
i,iκ

[( n

∏
j=1
j 6=κ

χjψjφj

)
φκπ(iκ | κ)

]
, (3.2.3)

so that we take expectations over all of the infection times (including iκ), which

are independent and identically distributed from f I(rj − ij | θ). However, it is

difficult to evaluate the likelihood in this form using a Monte Carlo scheme,

since in order to avoid the likelihood being equal to zero we require χj > 0

for all individuals j except the initial infective. This means positive infectious

pressure on all individuals at the moment they become infective. In practice,

a large number of Monte Carlo simulations would lead to ’impossible’ out-

breaks, i.e. those which are inconsistent with the observed data since there is

not a potential infector for all infectees.

One way to proceed is to assume independence over j (our first approxima-

tion), so that

E
i,iκ

[( n

∏
j=1
j 6=κ

χjψjφj

)
φκπ(iκ | κ)

]
≈
(

n

∏
j=1
j 6=κ

E
i,iκ

[
χjψjφj

])
E
iκ

[
φκπ(iκ | κ)

]
. (3.2.4)

We are hence assuming that each individual’s contribution to the likelihood

is independent, for instance that the infectious pressure on some individual

j when they are infected is independent of the infectious pressure on k when

they are infected. This is not strictly true, since each quantity may be influ-

enced by, for example, whether a third individual l was able to place infec-

tious pressure upon each of them. We might expect this approximation to be
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most accurate when the infection times are relatively spread out compared to

the length of the infectious periods, since there will be less uncertainty as to

which individuals were able to infect others.

There are a number of possible ways to make further approximations to the

likelihood given in Equation (3.2.4), which we will explore in the remainder

of this chapter. The first will be a generalized version of Eichner and Dietz’

method from the Abakaliki data analysis of Chapter 2.

3.3 The Eichner and Dietz Approximation

3.3.1 General Framework

In the analysis of the Abakaliki smallpox data in Chapter 2, we compared our

results from DA-MCMC to those of Eichner and Dietz (2003), who used a like-

lihood approximation to perform maximum likelihood estimation. We found

that the results using the true likelihood were very similar to those from the

approximation, and this has motivated this chapter which aims to further de-

velop these kind of approaches. Here, we will provide a full derivation and

description of a generalized Eichner and Dietz (ED) likelihood, restricting our

attention to a homogeneously mixing population and SIR model. Under this

model, the contact rate between any pair of individuals is given by β
N . Al-

though Eichner and Dietz did not do this, we also assume that the initial in-

fective is the individual whose removal time is first (r1) for simplicity. We do

not include their infection process in the likelihood since they are assumed to

have been infected before the start of the outbreak, though of course they are

able to infect others.

Considering the likelihood in the format which Eichner and Dietz use, we be-

gin by considering the force of infection Λj(t) to which any individual j is

exposed at time t. In the SIR case this is equal to the infection rate β
N mul-

tiplied by the number of currently infective individuals. With the infection
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times unobserved, the number of infectives at any time is unknown also, and

so we incorporate the probability that each individual is infective at a given

time. The force of infection is then given by

Λj(t) =
n

∑
k=1
k 6=j

β

N
I(rk, t),

where I(rk, t) represents the probability that individual k, who is known to be

removed at time rk, was infective at time t, and may therefore be expressed as

I(rk, t) = 1−
∫ rk

t
f I(rk − u)du for t < rk,

and 0 otherwise. Recall that f I(· | θ) represents the probability density (mass)

function of the infectious period distribution.

Then, the likelihood for any given case j with removal time rj is given by

Lcase(rj) =
∫ rj

−∞
Λj(t) exp

(
−
∫ t

−∞
Λj(u)du

)
f I(rj − t)dt.

The first term Λj(t) represents this likelihood of infection events, the second

exp
(
−
∫ t
−∞ Λj(u)du

)
represents the likelihood of the avoidance of infection

and the terms f I(rj− t) provide the densities of the infectious periods, in much

the same way as the general likelihood format introduced in Section 1.3.5.

Similarly, the likelihood for any non-case j is given by

Lnon(j) = exp
(
−
∫ ∞

−∞
Λj(u)du

)
.

This is since all non-cases still received infectious pressure from infectives

throughout the outbreak, although they were never infected. If u > rn, this

integrand will be zero.

Recalling that we do not include the infection of the initial infective, the com-

bined ED likelihood of all observations is therefore given by

πED(r | β, θ) =

(
n

∏
j=2

Lcase(rj)

)(
N

∏
j=n+1

Lnon(j)

)
.

This may easily be converted to the notation introduced in Section 3.2. Re-

calling the quantity χj = ∑n
k=1
k 6=j

βkj1{k infective at ij} defined in Equation (3.2.1),
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we may also more generally define χj(t) = ∑n
k=1
k 6=j

βkj1{k infective at t}. (Note that

χj(ij) = χj). Then the quantity Λj(t) is equivalent to E[χj(t)]: the expected

infectious pressure acting on individual j at time t. Therefore,

πED(r | β, θ)

=

(
n

∏
j=2

∫ rj

−∞
E[χj(t)] exp

(
−
∫ t

−∞
E[χj(u)]du

)
f I(rj − t)dt

)(
N

∏
j=n+1

Lnon(j)

)

=

(
n

∏
j=2

∫ rj

−∞
E[χj] exp

(
−
∫ ij

−∞
E[χj(u)]du

)
f I(rj − ij)dij

)(
N

∏
j=n+1

Lnon(j)

)
.

Then, the term exp
(
−
∫ ij
−∞ E[χj(u)]du

)
can be approximated to the ψj term

from Equation (3.2.1). Eichner and Dietz have made the approximation that

E[ψj | ij] = E

[
exp

(
−

n

∑
k=1
k 6=j

β

N
(rk ∧ ij − ik ∧ ij)

)
| ij

]

≈ exp

(
−E

[ n

∑
k=1
k 6=j

β

N
(rk ∧ ij − ik ∧ ij) | ij

])

= exp

(
−E

[ ∫ ij

−∞

n

∑
k=1
k 6=j

β

N
1{k infective at u} du

])

= exp

(
−
∫ ij

−∞
E[χj(u)] du

)
,

where instead of considering the value of rk ∧ ij − ik ∧ ij (the amount of time

there was infectious pressure between k and j) conditional on the value of ij,

we integrate over all time u up to ij, considering if k is infective at each time.

This may be considered as different ways of building the same quantity.

The final point to note is that, in term Lnon, Eichner and Dietz consider the

likelihood contributions from the perspective of the non-infected individuals.

As in, the product over all individuals who do not become infected of the

infectious pressure that was placed upon them. Under the notation of Section

3.2, we used E[φj] where we considered the likelihood contribution from all

infectives failing to infect non-cases instead. However, this is again two ways

of expressing the same quantity.
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So rather than writing this expression in terms of φj or Lnon we define, for any

individual l who avoids infection,

ρl = P(l avoids infection)

= e−
β
N (P1+···+Pn)

= e−
β
N ∑n

j=1 Pj

where P1, . . . , Pn are the infectious periods ri − ii of infectives i = 1, . . . , n.

Eichner and Dietz have then used the approximation

E[ρl] = E[e−
β
N ∑n

j=1 Pj ] ≈ e−
β
N ∑n

j=1 E[Pj].

Then
n

∏
j=1

E[φj] =
N

∏
l=n+1

E[ρl] =
N

∏
l=n+1

Lnon(j).

Overall, we obtain the Eichner and Dietz approximate likelihood

πED(r | β, θ) =( n

∏
j=2

∫ rj

−∞
E[χj] exp

(
−
∫ ij

−∞
E[χj(u)] du

)
f I(rj − ij) dij

)( N

∏
l=n+1

E[ρl]

)
,

(3.3.1)

where the first product represents the likelihood contribution from infected in-

dividuals, and the second product represents the contribution from those who

were not infected. The two integrals contained in this likelihood might need

to be evaluated numerically, depending on the choice of infectious period. It

is important to note that this method is exact for constant infectious periods,

but for any other choice of infectious periods it is an approximation, despite

this not being explicitly mentioned in Eichner and Dietz (2003).

We will now explore the use of this method with both exponential and gamma

distributed infectious periods, deriving likelihood expressions in each case.

3.3.2 Exponential Infectious Periods

We consider the special case of exponentially distributed infectious periods

within the general Eichner and Dietz framework. As before, we use infection
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rate β
N between individuals, where now the infectious period is exponentially

distributed with rate γ, and so has probability density function f (x) = γe−γx,

x > 0. All other aspects of the model are as defined in Section 3.2.

We define lj as the contribution to the likelihood from any infected individual

j (note that lj = Lcase(rj)), so that

πED(r | β, θ) =

( n

∏
j=2

lj

)( N

∏
l=n+1

E[ρl]

)
.

Then lj is given by

lj =
∫ rj

−∞
E[χj]e

−
∫ ij
−∞ E[χj(u)] du f I(rj − ij) dij

=

∫ rj

−∞

β

N

n

∑
k=1
k 6=j

(e−γ(rk−t)
1t<rk) exp

(
−
∫ t

−∞

β

N

n

∑
i=1
i 6=j

e−γ(ri−u)
1u<ri du

)

× γe−γ(rj−t)
1{t<rj}dt.

Taking the central exponent alone, we may simplify to∫ t

−∞

β

N

n

∑
i=1
i 6=j

e−γ(ri−u)
1{u<ri}du =

β

N

n

∑
i=1
i 6=j

e−γri

∫ t

−∞
eγu

1{u<ri}du

=
β

N

n

∑
i=1
i 6=j

e−γri

∫ t∧ri

−∞
eγudu

=
β

γN

n

∑
i=1
i 6=j

e−γ(ri−t∧ri)

= Cj(t), say.

Then,

lj =
βγ

N

n

∑
k=1
k 6=j

∫ rj

−∞
e−γ(rk−t)

1{t<rk}e
−Cj(t)e−γ(rj−t)dt

=
βγ

N

n

∑
k=1
k 6=j

e−γ(rj+rk)
∫ rk∧rj

−∞
e2γt−Cj(t)dt.
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To avoid evaluation of a large number of integrals, we reverse the order of the

integral and summation for computational efficiency:

lj =
βγ

N

∫ T

−∞

n

∑
k=1
k 6=j

e−γ(rj+rk)+2γt−Cj(t)1{t<(rk∧rj)}dt, (3.3.2)

where T = rn is the end of the outbreak, after which no infectious pressure is

applied. This provides an expression for the likelihood contribution from an

infective j which requires only one integration, although this is not analytically

tractable and so must be calculated numerically.

Moving on to non-infectives, the probability that any non-infected individual

j avoids infection is given by

ρj = e−
β
N ∑n

k=1 Pk ,

where Pk = rk − ik defines the infectious period of infective k. Then the likeli-

hood contribution from uninfected j is given by

l̂j = E[ρj] = E
[
e−

β
N ∑n

k=1 Pk
]
≈ e−

β
N ∑n

k=1 E[Pk] = e−
βn
γN (3.3.3)

since Pk ∼ Exp(γ) results in a mean infectious period of length 1
γ for any

infective k, of which there are n.

Combining Equations (3.3.2) and (3.3.3), the overall likelihood expression us-

ing this approximation method is given by

πED(r | β, γ) =

(
n

∏
j=1

lj

)(
N

∏
j=n+1

l̂j

)

=

( n

∏
j=1

βγ

N

∫ T

−∞

n

∑
k=1
k 6=j

e−γ(rj+rk)+2γt−Cj(t)1{t<(rk∧rj)}dt

)

×
( N

∏
j=n+1

e−
βn
γN

)

=

( n

∏
j=1

βγ

N

∫ T

−∞

n

∑
k=1
k 6=j

e−γ(rj+rk)+2γt−Cj(t)1{t<(rk∧rj)}dt

)

×
(

e−
βn
γN (N−n)

)
(3.3.4)
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where

Cj(t) =
β

γN

n

∑
i=1
i 6=j

e−γ(ri−(t∧ri)).

As discussed, the integral in the likelihood expression must be computed nu-

merically, using a numerical integration technique of choice. In Chapter 4 we

will perform a simulation study to assess the accuracy of the Eichner and Di-

etz method, for which we will use a simple trapezium rule method since this

is found to provide sufficiently accurate results when compared with more

complex techniques.

3.3.3 Gamma Infectious Periods

As we will explore in Chapter 4, the ED method with exponential infectious

periods struggles for small outbreaks or those with large numbers of unin-

fected individuals, where the method does not appear to perform all that

well compared to standard DA-MCMC. Hence, we also consider gamma dis-

tributed infectious periods. As the shape parameter increases we would ex-

pect the approximation to perform better, since we recall the method is exact

for constant infectious periods.

We continue with infection rate β
N between individuals, but now the infectious

periods are gamma distributed with shape m and rate γ, and so have proba-

bility density function f (x) = γm

Γ(m)
xm−1e−γx, x > 0. We restrict our attention

to positive integer valued m, so that the distribution is in fact Erlang. Again,

the remainder of the model is defined as in Section 3.2.

We begin with the likelihood expression from Equation (3.3.1). Substituting in

the probability density function of the gamma distribution, the contribution to
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the likelihood from any infected individual j is given by

lj =
∫ rj

−∞
E[χj]e

−
∫ ij
−∞ E[χj(u)] du f I(rj − ij) dij

=

∫ rj

−∞

β

N

n

∑
k=1
k 6=j

(
e−γ(rk−t)

m−1

∑
p=0

(γ(rk − t))p

p!
1{t<rk}

)
(rj − t)m−1

Γ(m)
γme−γ(rj−t)

× exp
(
−
∫ t

−∞

β

N

n

∑
i=1
i 6=j

e−γ(ri−u)
m−1

∑
p=0

(γ(ri − t))p

p!
1{u<ri}du

)
dt. (3.3.5)

Taking the inner integral and changing the order of sums and integration, we

have

−
∫ t

−∞

β

N

n

∑
i=1
i 6=j

e−γ(ri−u)
m−1

∑
p=0

(γ(ri − u))p

p!
1{u<ri}du

= − β

N

n

∑
i=1
i 6=j

e−γri
m−1

∑
p=0

γp

p!

∫ t∧ri

−∞
eγu(ri − u)p du. (3.3.6)

A change of variable on the inner integral shows that∫ t∧ri

−∞
eγu(ri − u)p du =

eγri

γp+1

∫ ∞

γ(ri−(t∧ri))
e−yyp dy

=
eγri

γp+1

(
1−

∫ γ(ri−(t∧ri))

−∞
e−yyp dy

)
, (3.3.7)

where y = γ(ri − u). The integral is in the form of a gamma cumulative dis-

tribution function (CDF) Fa,b(y), where a = p + 1 and b = 1, evaluated at

t = γ(ri − (t ∧ ri)). For Y ∼ Γ(a, b) it is known that for integer a ≥ 1,

Fa,b(y) = 1− e−by
a−1

∑
q=0

1
q!
(by)q,

which may be applied here since p takes integer values only. Hence, Equation

(3.3.7) becomes

eγri

γp+1

(
1−

∫ γ(ri−(t∧ri))

−∞
e−yyp dy

)
=

eγri

γp+1 p! e−γ(ri−(t∧ri))
p

∑
q=0

(γ(ri − (t ∧ ri)))
q

q!
,
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and Equation (3.3.6) can be expressed as

− β

N

n

∑
i=1
i 6=j

e−γri
m−1

∑
p=0

γp

p!
eγri

γp+1 p! e−γ(ri−(t∧ri))
p

∑
q=0

(γ(ri − (t ∧ ri)))
q

q!

= − β

γN

n

∑
i=1
i 6=j

e−γ(ri−(t∧ri))
m−1

∑
p=0

p

∑
q=0

(γ(ri − (t ∧ ri)))
q

q!

= − β

γN

n

∑
i=1
i 6=j

e−γ(ri−(t∧ri))
m−1

∑
p=0

(γ(ri − (t ∧ ri)))
p

p!
(m− p)

= −Dj(t), say.

Overall, we obtain for Equation (3.3.5)

lj =
βγm

NΓ(m)

∫ rj

−∞

n

∑
i=1
i 6=j

(
e−γ(ri−t)

m−1

∑
p=0

(γ(ri − t))p

p!
1{t<ri}

)
e−Dj(t)(rj − t)m−1

×e−γ(rj−t) dt

=

∫ T

−∞

m−1

∑
p=0

βγm+p

NΓ(m)p!

n

∑
i=1
i 6=j

e−γ(rj+ri)+2γt−Dj(t)(ri − t)p(rj − t)m−1

×1{t<(rj∧ri)} dt,

where the integral and sums have been ordered for computational efficiency.

As in the exponential case, this integral cannot be analytically evaluated.

The likelihood contribution for uninfected individuals is given by

l̂j = E[ρj] = E[e−
β
N ∑n

k=1 Pk ]

≈ e
β
N ∑n

k=1 E[Pk] = e
β
N ∑n

k=1
m
γ

= e
−βnm

Nγ ,

since Pk ∼ Γ(m, γ) results in a mean infectious period of length m
γ for any

infective k, of which there are n .

The overall likelihood expression with the ED approximation method for gamma
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distributed infectious periods is given by

πED(r | β, γ) =

(
n

∏
j=1

lj

)(
N

∏
j=n+1

l̂j

)

=

( n

∏
j=1

∫ T

−∞

m−1

∑
p=0

βγm+p

NΓ(m)p!

n

∑
i=1
i 6=j

e−γ(rj+ri)+2γt−Dj(t)(ri − t)p(rj − t)m−1

× 1{t<(rj∧ri)} dt

)(
N

∏
j=n+1

e−
βnm
Nγ

)

=

( n

∏
j=1

∫ T

−∞

m−1

∑
p=0

βγm+p

NΓ(m)p!

n

∑
i=1
i 6=j

e−γ(rj+ri)+2γt−Dj(t)(ri − t)p(rj − t)m−1

× 1{t<(rj∧ri)} dt

)(
e−

βnm
Nγ (N−n)

)
,

where

Dj(t) =
β

γN

n

∑
i=1
i 6=j

e−γ(ri−(t∧ri))
m−1

∑
l=0

(γ(ri − (t ∧ ri)))
l

l!
(m− l).

As in the exponential case, the integral in the likelihood must be calculated

numerically. We again will use the trapezium rule for this, since more complex

methods were found to provide only very limited improvement in accuracy.

3.3.4 Heterogeneous mixing and non-identically distributed

infectious periods

So far we have focused on populations which are assumed to be homoge-

neously mixing and contain only individuals with identically distributed in-

fectious periods. However, the Eichner and Dietz approximation method may

be extended beyond this. In this section, we will provide likelihood expres-

sions for the Eichner and Dietz approximation which allow for a heteroge-

neously mixing population, as well as individuals with different infectious

period parameters.
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We assume now that the contact rate from any individual j to any individual

k is given by β jk. We define β = {β jk : j, k ∈ 1, . . . , N} as the complete set

of these contact rates. This allows for a heterogeneously mixing population

model with any structure desired. We assume that each infected individual

has the same infectious period distribution, but now allowing for different

parameters. For example, rj− ij ∼ Exp(γj) or rj− ij ∼ Γ(mj, γj) for all infected

individuals j.

We will not repeat the likelihood calculations here since they are very similar to

the homogeneous case, but the resulting likelihood expressions are as follows.

Exponential Infectious Periods

We assume that all infectious individuals j have infectious periods rj − ij ∼

Exp(γj), and define θ = {γj : j ∈ 1, . . . , n}. The ED likelihood is then given by

πED(r | β, θ) =

(
n

∏
j=1

lj

)(
N

∏
j=n+1

l̂j

)

=

( n

∏
j=1

∫ T

−∞

n

∑
k=1
k 6=j

βkjγje
−γk(rk−t)−γj(rj−t)−Cj(t)1{t<(rk∧rj)}dt

)

×
( N

∏
j=n+1

exp
(
−

n

∑
k=1

βkj

γk

))
,

where

Cj(t) =
n

∑
i=1
i 6=j

βij

γi
e−γi(ri−(t∧ri)).

Gamma Infectious Periods

For the Gamma case, we assume that all infectious individuals j have infec-

tious periods rj − ij ∼ Γ(mj, γj), and define θ = {γj, mj : j ∈ 1, . . . , n}. The ED

likelihood is given by
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πED(r | β, θ) =

(
n

∏
j=1

lj

)(
N

∏
j=n+1

l̂j

)

=

( n

∏
j=1

∫ T

−∞

n

∑
k=1
k 6=j

mk−1

∑
l=0

βkjγ
mj+l
j

Γ(mj)l!
e−γk(rk−t)−(γj(rj−t))−Dj(t)(rk − t)l(rj − t)mj−1

× 1{t<(rj∧rk)} dt

)( N

∏
j=n+1

exp
( n

∑
k=1

βkj
mk
γk

))
,

where

Dj(t) =
n

∑
i=1
i 6=j

βij

γi
e−γi(ri−(t∧ri))

mi−1

∑
l=0

(γi(ri − (t ∧ ri)))
l

l!
(mi − l).

Although we will not explore the computational implementation of this ex-

tension to the method, the integrals in these likelihoods may be numerically

integrated as before and then used, for example, for maximum likelihood esti-

mation.

3.3.5 Conclusions

We have defined the Eichner and Dietz likelihood approximation for both ex-

ponential and gamma infectious periods, with a particular focus on homoge-

neously mixing populations with identically distributed infectious periods but

also extending the theory to heterogeneously mixing populations with non-

identical infectious periods. Chapter 4 will include analysis of the method

through simulation studies, and we will find that the method performs fairly

well for gamma distributed infectious periods, though less well for exponen-

tial periods or outbreaks in large populations with only a very small or very

large proportion of infectives. The method also relies on numerical integra-

tion as the likelihood expressions cannot be analytically calculated, and this

can be relatively slow to compute. Although the ED method would be useful

in some situations, it would be beneficial to develop further approximation
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methods which are more widely applicable as well as offering an increase in

computational speed.

3.4 Pair-Based Likelihood Approximations

In this section we develop a series of new approximation methods which seek

to avoid numerical integration as well as offer increased performance in a

wider range of situations than the Eichner and Dietz method. We term these

Pair-Based Likelihood Approximations (PBLA) since they will essentially con-

sider the contribution to the likelihood from different pairs of individuals as

independent, resulting in an approximate (but tractable) likelihood. These

likelihoods will require no data augmentation or numerical integration to cal-

culate: MCMC or maximum likelihood estimation may be performed directly,

without the need for these further, potentially computationally costly, steps.

We will derive the first PBLA method in Section 3.4.1, which further versions

will extend upon. In Section 3.4.2 we will apply PBLA I to exponential infec-

tious periods and analytically derive the resulting likelihood expressions, and

then in Section 3.4.3 we will do the same for gamma infectious periods. Sec-

tion 3.4.4 similarly obtains these likelihood expressions, but using probabilistic

arguments which provide more insight to the calculations. We then proceed

to define and derive further PBLA methods which we number accordingly:

PBLA II in Section 3.4.5 and PBLA III in Section 3.4.6. Following this, we de-

fine two further PBLA versions which offer increased computational speed,

but may only be used in more specific situations. Section 3.4.8 describes a

PBLA method which uses a central limit theorem to make further approxi-

mations to the likelihood, but which requires homogeneous mixing and expo-

nentially distributed infectious periods. Section 3.4.9 then describes the PBLA

V method, which takes a further step in grouping the infectious pressure be-

tween individuals, but will require that the pressure from any individual j to

k is equal to the pressure from k to j. After describing a numerical limitation
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of the PBLA approach in Section 3.4.10, we then describe an extension of the

PBLA approach to the SEIR model in Section 3.4.11.

Since the PBLA methods as well as the ED approximation involve considerable

amounts of notation, refer to Table 3.1 for a summary of this. Some of these

quantities have already been defined, and some are to come in the following

sections.

3.4.1 PBLA I: General Framework

For the PBLA method, we will work again under the general model and like-

lihood format defined in Section 3.2. Recall that the population is of size

N with individuals labelled 1, 2, . . . , N, of which 1, 2, . . . , n become infected

where n ≤ N. The contact rate from individual i to individual j is given by

βij, contained in β and allowing for heterogeneous mixing, and the infectious

periods have length with distribution f I(· | θ). Infection times i = {ij : j =

1, 2, . . . , κ − 1, κ + 1, . . . , n} are unknown, and removal times r = {rj : j =

1, 2, . . . , n, where r1 < r2 < · · · < rn}, form the data. We work with labelled

cases, such that ij and rj are the infection and removal time for individual j,

respectively, for all infectives j.

We will now derive the PBLA I likelihood expression, beginning with the ap-

proximate likelihood expression from Equation (3.2.3);

π(r | β, θ) ≈
n

∑
κ=1

π(κ)

( n

∏
j=1
j 6=κ

E
i,iκ

[
χjψjφj

])
E
iκ

[
φκπ(iκ | κ)

]
,

where we recall that the expectations are with respect to infection times i and

iκ, with κ being the initial infective.

As in the ED method, we make approximations to this likelihood in order to

find a tractable expression. The first key assumption is that

E[χjψjφj] ≈ E[χjφj]E[ψj].
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Table 3.1: Table of commonly-used notation for the likelihood approximation

methods, as used in chapters 3 and 4.

Quantity Definition Description

χj ∑n
k=1
k 6=j

βkj1{k infective at ij}
Infectious pressure acting on

j at their time of infection

ψj exp
(
−∑n

k=1
k 6=j

βkj(rk ∧ ij − ik ∧ ij)
)

P(j avoids infection until ij)

φj exp
(
−∑N

k=n+1 β jk(rj − ij)
) P(j fails to infect all non-

infected individuals)

Bj ∑N
l=n+1 β jl

Sum of infection rates from

j to all non-infectives

δj γ + Bj
Change-of-variables

quantity for PBLA III

Fk,θ(x) 1−∑k−1
l=0

1
l! (θx)le−θx

E
[
(r + X)l | X ∼ Γ(m, γ)

]
∑l

p=0 (
l
p)r

l−p (m+p−1)p
γp

(x)p (x
p)p!

a(Bj, θ)


γ
δ if rj − ij ∼ Exp(γ)(

γ
δ

)m
if rj − ij ∼ Γ(m, γ),

MGF of the infectious

period of j, evaluated at Bj

τkj rk ∧ ij − ik ∧ ij

Time when there is

infectious pressure from

k to j

ωjk τjk + τkj

Time when there is

infectious pressure between

j and k, for rk < rj
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Recalling the definitions of these terms from Equation (3.2.1),

E[χjφj] =
n

∑
k=1
k 6=j

βkjE
[
1{k infective at ij}e

−∑N
l=n+1 β jl(rj−ij)

]
(3.4.1)

E[ψj] = E

[
exp

(
−

n

∑
k=1
k 6=j

βkj(rk ∧ ij − ik ∧ ij)
)]

≈
n

∏
k=1
k 6=j

E
[
e−βkj(rk∧ij−ik∧ij)

]
, (3.4.2)

where the final approximation describes our second key assumption.

These assumptions seem most reasonable for infectious periods with low vari-

ance, since if the infection times were known the expectations would reduce

to known values. As discussed in Section 3.2, we would also expect the ap-

proximations to perform better when the appearance of new infectives is rel-

atively slow compared the expected length of the infectious periods, since we

will have less uncertainty about which individuals placed infectious pressure

upon which others. Compared to the ED method, our motivation has been to

make additional approximations to the likelihood here, in order to find an ex-

pression which is not just tractable but also does not require numerical integra-

tion. In the following sections, we will calculate these likelihood expressions

for various models and infectious period distributions.

SIR model with homogeneous mixing

If we consider instead the simple case of an SIR model in a homogeneously

mixing population, we define contact rate βij =
β
N for all i, j ∈ {1, . . . , N}.

This simplifies the expressions for the components E[χjφj] (Equation (3.4.1))

120



CHAPTER 3: LIKELIHOOD APPROXIMATION METHODS

and E[ψj] (Equation (3.4.2)) to

E[χjφj] =
n

∑
k=1
k 6=j

βkjE
[
1{k infective at ij}e

−∑N
l=n+1 β jl(rj−ij)

]

=
β

N

n

∑
k=1
k 6=j

E
[
1{k infective at ij}e

−(N−n) β
N (rj−ij)

]

E[ψj] ≈
n

∏
k=1
k 6=j

E
[
e−

β
N (rk∧ij−ik∧ij)

]
.

Overall, with either homogeneous or heterogeneous mixing, we obtain the

PBLA I likelihood

πI(r | β, θ) =
n

∑
κ=1

π(κ)

( n

∏
j=1
j 6=κ

E[χjφj]E[ψj]

)
E[φκπ(iκ | κ)], (3.4.3)

which, for computational speed, we may calculate as

πI(r | β, θ) =
( n

∏
j=1

E[χjφj]E[ψj]
) n

∑
κ=1

π(κ)E[φκπ(iκ | κ)]
E[χκφκ]E[ψκ]

, (3.4.4)

since this expression no longer requires the calculation of the product term for

each possible κ, which is the most computationally demanding part. We see

that the likelihood is written as an independent product over infectives.

As was mentioned in Section 3.1, the PBLA approach is somewhat similar to

the method of composite likelihoods, as often used in geostatistics and genet-

ics (see e.g. Fronterrè et al., 2017 and Larribe and Fearnhead, 2011). This tech-

nique involves multiplying together a collection of component or marginal

likelihoods to act as an estimator of the true likelihood. Although similar in

spirit to PBLA, the methods are in practice quite different. To demonstrate

this, we take a simple example with n = 3 infectives. We assume knowledge

of the initial infective as κ = 1 (i.e. π(1) = 1, π(2) = π(3) = · · · = 0) for

simplicity, and set π(i1) = 1{i1<r1}; an improper uniform distribution over the
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region (−∞, r1). Then, the PBLA likelihood will be of the form:

πI(r | β, θ) =
3

∏
j=2

E[χjφj]E[ψj]Ei1 [φ1π(i1)]

=
3

∏
j=2

(
3

∑
k=1
k 6=j

βkjE
[
1{k infective at ij}e

−∑N
l=n+1 β jl(rj−ij)

])
E[ψj]

×Ei1

[
e−∑N

l=n+1 β1l(r1−i1)1{i1<r1}

]
=

(
E[ψ2]

(
β21E

[
1{1 infective at i2}e

−∑N
l=n+1 β2l(r2−i2)

]
+β23E

[
1{3 infective at i2}e

−∑N
l=n+1 β2l(r2−i2)

])
+E[ψ3]

(
β31E

[
1{1 infective at i3}e

−∑N
l=n+1 β3l(r3−i3)

]
+β32E

[
1{2 infective at i3}e

−∑N
l=n+1 β3l(r3−i3)

]))
×Ei1

[
e−∑N

l=n+1 β1l(r1−i1)1{i1<r1}

]
. (3.4.5)

Due to the pair-based structure of our approximation, the pairwise likelihood

of Cox and Read (2004) bears the most resemblance to it of the different com-

posite methods. The Cox and Read likelihood is written as a double prod-

uct over all pairs of observations. For example, for observations yj where

j = 1, 2, . . . , n with PDFs f (y; θ), the pairwise likelihood is given by

πpair(θ; y) =
n−1

∏
j=1

n

∏
k=j+1

f (yj, yk; θ).

Hence, for the PBLA likelihood with n = 3 to be equivalent to a pairwise

composite likelihood, we would need to be able to write it in the form

πpair(θ; y) =
2

∏
j=1

3

∏
k=2

f (yj, yk; θ),

where each f represents the contribution to the likelihood for a given pair j, k.

Returning to Equation (3.4.5), we see that, despite the outer product over j, the

PBLA likelihood involves a sum over different pairs of infectives, and cannot

be written as a double product as required. Although the idea of PBLA is
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similar to that of composite likelihoods in breaking down the likelihood into

contributions from individual pairs, in practice the two methods are certainly

distinct.

Returning to the PBLA likelihood calculations, for a given infectious period

distribution, we may now explicitly calculate the likelihood, via calculation of

E[χjφj] and E[ψj]. We will explore the use of exponential and gamma distri-

butions for the infectious periods, for which the likelihood expression will be

analytically tractable. In terms of the initial infective and their infection time

iκ, we may select any prior distribution, including the improper distribution

used in the previous example.

3.4.2 PBLA I: Likelihood Calculations for Exponential Infec-

tious Periods

We first consider the case of exponentially distributed infectious periods, so

that f I(rj − ij | γ) = γe−γ(rj−ij). The likelihood as given in Equation (3.4.3)

requires the calculation of two expressions; E[χjφj] and E[ψj], details of which

we will provide here.

3.4.2.1 Expression one: E[χjφj]

We recall that

E[χjφj] =
n

∑
k=1
k 6=j

βkjE
[
1{k infective at ij}e

−∑N
l=n+1 β jl(rj−ij)

]
,

so that for any given j and k we must calculate E[1{k infective at ij}e
−Bj(rj−ij)],

where

Bj =
N

∑
l=n+1

β jl. (3.4.6)

Now,

E
[
1{k infective at ij}e

−Bj(rj−ij)
]

=
∫ rk

−∞

∫ rj

−∞
1{ik<ij<rk}e

−Bj(rj−ij) f I(rj − ij) f I(rk − ik) dij dik,
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assuming that ij and ik are independent. Then for a given j and k, this expres-

sion will take one of two forms, determined by the values of rk and rj.

Case (i): rk ≥ rj

E
[
1{k infective at ij}e

−Bj(rj−ij)
]

=
∫ rj

−∞

∫ rj

ik
e−Bj(rj−ij)γe−γ(rj−ij)γe−γ(rk−ik) dij dik

=
∫ rj

−∞
γ2e−Bjrje−γ(rk−ik)e−γrj

( ∫ rj

ik
e(γ+Bj)ij dij

)
dik

=
∫ rj

−∞
γ2e−Bjrje−γ(rk−ik)e−γrj

(
e(γ+Bj)rj

γ + Bj
− e(γ+Bj)ik

γ + Bj

)
dik

=
γ

γ + Bj

∫ rj

−∞
e−Bjrje−γrke−γrj γeγik

(
e(γ+Bj)rj − e(γ+Bj)ik

)
dik

=
γ

γ + Bj
e−Bjrje−γ(rk+rj)

(
e(γ+Bj)rjeγrj − γ

2γ + Bj
e(2γ+Bj)rj

)
=

γ

γ + Bj
e−Bjrje−γ(rk+rj)e(2γ+Bj)rj

(
1− γ

2γ + Bj

)
=

γ

2γ + Bj
e−γ(rk−rj). (3.4.7)

Case (ii): rk < rj

E
[
1{k infective at ij}e

−Bj(rj−ij)
]

=
∫ rk

−∞

∫ rk

ik
e−Bj(rj−ij)γe−γ(rj−ij)γe−γ(rk−ik) dij dik

which proceeds as in the rk ≥ rj case to

E
[
1{k infective at ij}e

−Bj(rj−ij)
]

=
γ2

γ + Bj

∫ rk

−∞
e−Bjrje−γ(rk−ik)e−γrj

(
e(Bj+γ)rk − e(Bj+γ)ik

)
dik

=
γ

Bj + γ
e−Bjrje−γ(rk+rj)

∫ rk

−∞
γeγik

(
e(Bj+γ)rk − e(Bj+γ)ik

)
dik

=
γ

Bj + γ
e−Bjrje−γ(rk+rj)

(
e(Bj+γ)rkeγrk − γ

2γ + Bj
e(2γ+B)rk

)
=

γ

2γ + Bj
e−Bj(rj−rk)e−γ(rj−rk). (3.4.8)
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Then, combining the two cases rk ≥ rj and rk < rj,

E[χjφj] =
n

∑
k=1
k 6=j

βkj
γ

2γ + Bj
e−γ|rk−rj|−Bj((rj−rk)∨ 0),

where a ∨ b represents the maximum of a and b.

3.4.2.2 Expression two: E[ψj]

For this expression, recall that

E[ψj] =
n

∏
k=1
k 6=j

E
[
e−βkj(rk∧ij−ik∧ij)

]
.

Any given term in this product will take the form

E
[
e−βkj(rk∧ij−ik∧ij)

]
=

∫ rk

−∞

∫ rj

−∞
e−βkj(rk∧ij−ik∧ij) f I(rk − ik) f I(rj − ij) dij dik.

The integral must then again be split into sections, dependent upon the or-

dering of rj and rk. In the calculations that follow, we will write βkj = β for

simplicity.

Case (i): rk ≥ rj

In this case,

rk ∧ ij − ik ∧ ij =

ij − ik if ik < ij < rk,

0 otherwise,

and so

E
[
e−β(rk∧ij−ik∧ij) | rk ≥ rj

]
=

∫ rj

−∞

∫ rj

ik
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dij dik

+
∫ rk

rj

∫ rj

−∞
1 f I(rj − ij) f I(rk − ik) dij dik

+
∫ rj

−∞

∫ ik

−∞
1 f I(rj − ij) f I(rk − ik) dij dik,

where we have assumed ij and ik are independent, and will calculate each

integral separately.
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(i) To begin,∫ rj

−∞

∫ rj

ik
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dij dik

=
∫ rj

−∞

∫ rj

ik
e−β(ij−ik)γe−γ(rj−ij)γe−γ(rk−ik) dij dik

=
∫ rj

−∞
γ2e−γ(rk−ik)

[
e−β(ij−ik)−γ(rj−ij)

γ− β

]rj

ik

dik

=
∫ rj

−∞

γ2

γ− β
e−γ(rk−ik)

(
e−β(rj−ik) − e−γ(rj−ik)

)
dik

=
γ2

γ− β

[
e−γ(rk−ik)−β(rj−ik)

γ + β
− e−γ(rk+rj−2ik)

2γ

]rj

−∞

=
γ2

γ− β

(
e−γ(rk−rj)

γ + β
− e−γ(rk−rj)

2γ

)
=

γ

γ + β

1
2

e−γ(rk−rj).

(ii) The second integral is equal to∫ rk

rj

∫ rj

−∞
1 f I(rj − ij) f I(rk − ik) dij dik =

∫ rk

rj

∫ rj

−∞
γe−γ(rj−ij)γe−γ(rk−ik) dij dik

=
∫ rk

rj

γ2e−γ(rk−ik)
[

1
γ

e−γ(rj−ij)

]rj

−∞
dik

=
∫ rk

rj

γe−γ(rk−ik) dik

= γ

[
1
γ

e−γ(rk−ik)
]rk

rj

= 1− e−γ(rk−rj).

(iii) Finally,∫ rj

−∞

∫ ik

−∞
1 f I(rj − ij) f I(rk − ik) dij dik =

∫ rj

−∞

∫ ik

−∞
γe−γ(rj−ij)γe−γ(rk−ik) dij dik

=
∫ rj

−∞
γ2e−γ(rk−ik)

[
1
γ

e−γ(rj−ij)

]ik

−∞
dik

=
∫ rj

−∞
γe−γ(rk−ik)e−γ(rj−ik) dik

= γ

[
1

2γ
e−γ(rk+rj−2ik)

]rj

−∞

=
1
2

e−γ(rk−rj).
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Thus, for rk ≥ rj,

E
[
e−βkj(rk∧ij−ik∧ij)

]
= 1−

βkj

2(βkj + γ)
e−γ(rk−rj). (3.4.9)

Case (ii): rk < rj

If rk < rj,

rk ∧ ij − ik ∧ ij =


rk − ik if rk < ij,

ij − ik if ik < ij < rk,

0 otherwise,

and so

E[e−β(rk∧ij−ik∧ij) | rk ≥ rj] =
∫ rk

−∞

∫ rj

rk

e−β(rk−ik) f I(rj − ij) f I(rk − ik) dij dik

+
∫ rk

−∞

∫ rk

ik
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dij dik

+
∫ rk

−∞

∫ ik

−∞
1 f I(rj − ij) f I(rk − ik) dij dik,

where we have again assumed ij and ik are independent. We will again calcu-

late these three integrals individually.

(i) The first integral takes the form∫ rk

−∞

∫ rj

rk

e−β(rk−ik) f I(rj − ij) f I(rk − ik) dij dik

=
∫ rk

−∞

∫ rj

rk

e−β(rk−ik)γe−γ(rj−ij)γe−γ(rk−ik) dij dik

=
∫ rk

−∞
γ2e−β(rk−ik)e−γ(rk−ik)

[
1
γ

e−γ(rj−ij)

]rj

rk

dik

= (1− e−γ(rj−rk))
∫ rk

−∞
γe−(β+γ)(rk−ik) dik

= γ(1− e−γ(rj−rk))

[
1

β + γ
e−(β+γ)(rk−ik)

]rk

−∞

=
γ

β + γ
(1− e−γ(rj−rk)).
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(ii) Similarly,∫ rk

−∞

∫ rk

ik
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dij dik

=
∫ rk

−∞

∫ rk

ik
e−β(ij−ik)γe−γ(rj−ij)γe−γ(rk−ik) dij dik

=
∫ rk

−∞
γ2γe−γ(rk−ik)

[
1

γ− β
e−β(ij−ik)−γ(rj−ij)

]rk

ik

dik

=
∫ rk

−∞

γ2

γ− β

(
e−(β+γ)(rk−ik)−γ(rj−rk) − e−γ(rk+rj−2ik)

)
dik

=
γ2

γ− β

[
1

β + γ
e−(β+γ)(rk−ik)−γ(rj−rk) − 1

2γ
e−γ(rk+rj−2ik)

]rk

−∞

=
γ

β + γ

1
2

e−γ(rj−rk).

(iii) Finally,∫ rk

−∞

∫ ik

−∞
1 f I(rj − ij) f I(rk − ik) dij dik

=
∫ rk

−∞

∫ ik

−∞
γe−γ(rj−ij)γe−γ(rk−ik) dij dik

=
∫ rk

−∞
γ2e−γ(rk−ik)

[
1
γ

e−γ(rj−ij)

]ik

−∞
dik

=
∫ rk

−∞
γe−γ(rk+rj−2ik) dik

= γ

[
1

2γ
e−γ(rk+rj−2ik)

]rk

−∞

=
1
2

eγ(rj−rk).

Thus, for rk < rj,

E
[
e−βkj(rk∧ij−ik∧ij)

]
=

γ

βkj + γ
+

βkj

2(βkj + γ)
e−γ(rj−rk). (3.4.10)

Combining Equations (3.4.9) and (3.4.10), we obtain overall

E[ψj] =
n

∏
k=1
k 6=j


1− βkj

2(βkj+γ)
e−γ(rk−rj) if rk ≥ rj,

γ
βkj+γ +

βkj
2(βkj+γ)

e−γ(rj−rk) if rk < rj.

With the expressions for E[χjφj] and E[ψj] obtained, for any given choice

of prior probability mass function π(κ) and prior probability density func-

tion π(iκ | κ) it is possible to explicitly calculate the approximate likelihood
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π(r | β, θ), avoiding numerical integration. In summary,

πI(r | β, θ) =
( n

∏
j=1

E[χjφj]E[ψj]
) n

∑
κ=1

π(κ)E[φκπ(iκ | κ)]
E[χκφκ]E[ψκ]

,

where

E[χjφj] =
n

∑
k=1
k 6=j

βkj
γ

2γ + Bj
e−γ|rk−rj|−Bj((rj−rk)∨ 0)

E[ψj] =
n

∏
k=1
k 6=j


1− βkj

2(βkj+γ)
e−γ(rk−rj) if rk ≥ rj,

γ
βkj+γ +

βkj
2(βkj+γ)

e−γ(rj−rk) if rk < rj.
(3.4.11)

3.4.3 PBLA I: Likelihood Calculations for Gamma Infectious

Periods

In this section we provide the likelihood expression for the Pair-Based Like-

lihood Approximation (version I) with gamma distributed infectious periods.

Here, f I(rj − ij | m, γ) = γm

Γ(m)
(rj − ij)

m−1e−γ(rj−ij). We will restrict shape pa-

rameter m to integer values for all of the PBLA versions, so the distribution is

in fact Erlang. As in the exponential case, we require expressions for E[χjφj]

and E[ψj]. Integration arguments may be made in much the same manner

as the exponential case, and so we do not provide the full calculations here.

These may instead be found in Appendix B.

The resulting likelihood is given by:

πI(r | β, θ) =
( n

∏
j=1

E[χjφj]E[ψj]
) n

∑
κ=1

π(κ)E[φκπ(iκ | κ)]
E[χκφκ]E[ψκ]

,
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where

E[χjφj] =
n

∑
k=1
k 6=j

βkj



(
γ

γ+Bj

)m
(1− Fm,γ(rk − rj))

−∑m−1
l=0

γ2m

(2γ+Bj)l+1
e−γ(rk−rj)

(γ+Bj)m−lΓ(m)

×E
[
(rk − rj + Y)m−1 |Y ∼ Γ(l + 1, 2γ + Bj

)
] if rk ≥ rj,(

γ
γ+Bj

)m(
1− Fm,γ+Bj(rj − rk)

)
−
(

γ
γ+Bj

)m(
γ

2γ+Bj

)m
e−(γ+Bj)(rj−rk) ∑m−1

l=0
(γ+Bj)

l

l!

×E
[
(rj − rk + Y)l |Y ∼ Γ(m, 2γ + Bj)

]
if rk < rj,

E[ψj] =
n

∏
k=1
k 6=j



1 + ∑m−1
l=0

e−γ(rk−rj)

l!2m E
[
(rk − rj + Y)l |Y ∼ Γ(m, 2γ)

]
×
((

γ
γ+βkj

)m
(γ + βkj)

l − γl
)

if rk ≥ rj,

1− Fm,γ(rj − rk)
(

1−
( γ

γ+βkj

)m
)
+ ∑m−1

l=0
γm−1e−γ(rj−rk)

2l+1Γ(m)

×E
[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2γ)

]
×
(( γ

γ+βkj

)m(γ+βkj
γ

)l − 1
)

if rk < rj,

(3.4.12)

where Fk,θ is the CDF of a gamma distribution with shape k and rate θ, i.e.

Fk,θ(x) = 1−
k−1

∑
l=0

1
l!
(θx)le−θx.

The expectation terms, which define the expectation of a function of a gamma

distributed variable, are given by

E
[
(r + X)l | X ∼ Γ(m, γ)

]
=

l

∑
p=0

(
l
p

)
rl−p (m + p− 1)p

γp ,

with (x)p = (x
p)p!.

3.4.4 PBLA I: Probabilistic Arguments

The likelihood expressions obtained in the previous sections can also be ex-

plained via probabilistic arguments, which perhaps provide more of an in-

tuition as to how the results arise. We will illustrate this here for the case
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of exponentially distributed infectious periods, and similar arguments for the

gamma distribution may be found in Appendix B. First, we provide a propo-

sition which will be necessary for these arguments.

Proposition 3.4.1. Let (Ω,F , P) be a probability space, for any sample space Ω, set

of events F and probability function P. For a random variable X on (Ω,F , P) and

event A ∈ F ,

E[1{A}X] = E[X | A]P(A).

Proof. By definition,

E[1{A}X] =
∫

Ω
1{A} X dP

=
∫

A
X dP.

We define a σ-field D = {A, Ac, Ø, Ω}. Then D is a sub-σ-field of F and∫
D

E[X | D] dP =
∫

D
X dP ∀ D ∈ D.

Then,

E[1{A}X] =
∫

A
X dP

=
∫

A
E[X | D] dP.

Now, E[X | D] is D-measurable, and so by definition is constant on the atoms

of D, meaning

E[1{A}X] = E[X | A]
∫

A
dP

= E[X | A]P(A),

as required.

Now we may proceed to the probability arguments for the PBLA I method.

These arguments essentially work by moving backwards in time from individ-

ual j’s removal time rj, and considering all possible combinations of events.
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3.4.4.1 Exponential Infectious Periods

Expression one: E[χjφj]

We begin with the exponential case and consider the calculation of E[χjφj]. We

have found that if we set Bj = ∑N
l=n+1 β jl, as in Equation (3.4.6), then we must

calculate E
[
1{ik<ij<rk}e

−Bj(rj−ij)
]

for all pairs of infectives j and k,

We apply Proposition 3.4.1 so that

E
[
1{ik<ij<rk}e

−Bj(rj−ij)
]
= E

[
e−Bj(rj−ij) | ik < ij < rk

]
P(ik < ij < rk),

and begin with the case rk ≥ rj, which is shown in Figure 3.1.

Case (i): rk ≥ rj

Firstly, consider the term E
[
e−Bj(rj−ij) | ik < ij < rk

]
. The expression e−Bj(rj−ij)

is equal to the probability that there are no points in a Poisson process of rate Bj

which runs backwards from time rj to ij. Since ij > ik, ij is the minimum of two

independent exponentially distributed periods of rate γ running backwards

from rj, and hence is exponentially distributed with rate 2γ. (Recall that we

are working backwards in time, so the minimum corresponds to the closest

event to rj). The probability that this event takes place before a point in the

process of rate Bj is therefore simply 2γ
2γ+Bj

.

Figure 3.1: Order of events if rk ≥ rj.

Secondly, the probability that ik < ij < rk, with rk known, may be considered

in two parts. Firstly, moving backwards in time from rk, we require that rj is

the first event to occur or equivalently that rj occurs before ik. This is given
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by a Poisson process of rate γ running backwards in time from rk to rj with

no points, and hence is of probability e−γ(rj−rk). This is followed (still moving

backwards in time) by the event ij occurring before ik. Backwards from rj, the

processes governing events ij and ik occurring are given by two independent

Poisson processes of rate γ, and hence the probability of either occurring first

is simply 1
2 . Therefore P(ik < ij < rk) =

1
2e−γ(rk−rj).

Combining these expressions,

E
[
1{ik<ij<rk}e

−Bj(rj−ij) | rk ≥ rj
]
=

γ

2γ + Bj
e−γ(rk−rj), (3.4.13)

as was obtained in Equation (3.4.7).

Case (ii): rk < rj

The case rk < rj is similar, and shown in Figure 3.2. The calculation of

E
[
e−Bj(rj−ij) | ik < ij < rk

]
may be explained as in the case rk ≥ rj except that

the Poisson process runs backwards from rk rather than rj. The result is the

same as in the case rk ≥ rj: E
[
e−Bj(rj−ij) | ik < ij < rk

]
= 2γ

2γ+Bj
.

Figure 3.2: Order of events if rk < rj.

The term P(ik < ij < rk) follows much the same reasoning as before, but now

also requires no points in the Poisson process of rate Bj running backwards

between rj and rk. This will have probability e−Bj(rj−rk). Then backwards from

rk follows the same argument as before but with rj and rk reversed so that

P(ik < ij < rk) =
1
2e−γ(rj−rk)e−Bj(rj−rk), and

E
[
1{ik<ij<rk}e

−Bj(rj−ij) | rk < rj
]
=

2γ

2γ + Bj

1
2

e−γ(rj−rk)e−Bj(rj−rk), (3.4.14)
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equal to Equation (3.4.8).

Then overall, combining Equations (3.4.13) and (3.4.14),

E[χjφj] =
n

∑
k=1
k 6=j

βkj
γ

2γ + Bj
e−γ|rk−rj|−Bj((rj−rk)∨ 0)

as was found in the previous calculations in Equation (3.4.11).

Expression two: E[ψj]

Next we consider the calculation of E[ψj]. Recall that under PBLA,

E[ψj] =
n

∏
k=1
k 6=j

E
[
e−βkj(rk∧ij−ik∧ij)

]
,

and so for a given j and k we need to find E
[
e−βkj(rk∧ij−ik∧ij)

]
. For simplicity,

we define τkj = rk ∧ ij − ik ∧ ij as the length of time infectious pressure is

applied from k to j. For ease of exposition, we write βkj = β in the calculations

that follow.

We begin by conditioning on the values of rj and rk as before.

Case (i): rk ≥ rj

In this case,

τkj =

ij − ik if ik < ij < rj,

0 otherwise.

Then, conditioning on the possible values of ij and ik,

E
[
e−βτkj | rk ≥ rj

]
= E

[
e−βτkj1{ik<ij<rj}

]
+ E

[
e−βτkj1{ij<ik<rj}

]
+ E

[
e−βτkj1{ij<rj<ik}

]
,

where we may calculate each term in the sum individually, applying Proposi-

tion 3.4.1 in each case.

(i) First,

E
[
e−βτkj1{ik<ij<rj}

]
= E

[
e−β(ij−ik) | ik < ij < rj

]
P(ik < ij < rj)

=
γ

γ + β
× 1

2
e−γ(rk−rj),
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where this situation is as displayed in Figure 3.1, except without the Bj process.

Here, e−β(ij−ik) is equal to the probability of there being no points in a Poisson

process of rate β between ij and ik. Working backwards from ij, this concerns

the event that the Poisson process of rate γ leading to ik has a point before this

one of rate β. This is hence of probability γ
γ+β . The probability that ik < ij < rj

is given in part by the probability that there are no points in a Poisson process

of rate γ from rk back to rj, which is e−γ(rk−rj). This is multiplied by 1
2 , since

backwards from rj the infectious periods for j and k are both governed by

Poisson processes of rate γ, and so occur with equal probability.

Figure 3.3: Order of events if rk ≥ rj.

(ii) Similarly,

E
[
e−βτkj1{ij<ik<rj}

]
= E

[
e−β(0) | ij < ik < rj

]
P(ij < ik)

= P(ij < ik)

=
1
2

e−γ(rk−rj).

Shown in Figure 3.3, the probability here follows exactly the same reasoning

as in (i) and the expectation term collapses to 1.

Figure 3.4: Order of events if rk ≥ rj.
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(iii) Lastly,

E
[
e−βτkj1{ij<rj<ik}

]
= E

[
e−β(0) | ij < rj < ik

]
P(ij < rj < ik)

= P(ij < rj < ik)

= 1− e−γ(rk−rj).

Here again the expectation simplifies to 1. The probability that ij < rj < ik (this

ordering of events is shown in Figure 3.4) is equal to one minus the probability

of there being no points in a Poisson process of rate γ between rk and rj, since

ik can occur either before or after rj.

Combining the expressions from (i), (ii) and (iii), we obtain an expression equal

to that found in Equation (3.4.9),

E
[
e−βτkj | rk ≥ rj

]
= 1− β

2(β + γ)
e−γ(rk−rj). (3.4.15)

Case (ii): rk < rj

If rk < rj

rk ∧ ij − ik ∧ ij =


rk − ik if rk < ij,

ij − ik if ik < ij < rk,

0 otherwise.

Conditioning on the possible values of ij and ik, and setting βkj = β,

E
[
e−βτkj | rk < rj

]
= E

[
e−βτkj1{ij<ik}

]
+E

[
e−βτkj1{ik<ij<rk}

]
+E

[
e−βτkj1{rk<ij}

]
.

Applying Proposition 3.4.1, we may calculate each term in the sum individu-

ally.

Figure 3.5: Order of events if rk ≥ rj.
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(i) This case is shown in Figure 3.5.

E
[
e−βτkj1{ij<ik}

]
= E

[
e−β(0) | ij < ik

]
P(ij < ik)

= P(ij < ik)

=
1
2

e−γ(rj−rk),

using similar logic to the case rk ≥ rj. The expectation term reduces to 1, and

the probability is equal to the probability of no points in a Poisson process

of rate γ backwards from rj to rk, followed by the equal chance of ij and ik

occurring first before rk.

(ii) In this case, which is the same as shown in Figure 3.2 except without the Bj

process,

E
[
e−βτkj1{ik<ij<rk}

]
= E

[
e−β(ij−ik) | ik < ij < rk

]
P(ik < ij < rk)

=
γ

γ + β
× 1

2
e−γ(rj−rk).

This follows the same logic we have seen in previous cases; the expectation

equal to the probability that the Poisson process governing ik has a point before

the process of rate β, and the probability the same as in case (i).

Figure 3.6: Order of events if rk ≥ rj.

(iii) The final expectation, with timeline shown in Figure 3.6, is equal to

E
[
e−βτkj1{rk<ij}

]
= E

[
e−β(rk−ik) | rk < ij

]
P(rk < ij)

=
γ

γ + β
× (1− e−γ(rj−rk)),
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where the expectation term is as before, and the probability is equal to 1 mi-

nus the probability of there being no points in the Poisson process of rate γ

between rj and rk.

Combining these expressions,

E
[
e−βτkj | rk < rj

]
=

γ

β + γ
+

β

2(β + γ)
e−γ(rj−rk), (3.4.16)

equal to Equation(3.4.10).

Overall, combining Equations (3.4.15) and (3.4.16),

E
[
e−βkjτkj

]
=


1− βkj

2(βkj+γ)
e−γ(rk−rj) if rk ≥ rj,

γ
βkj+γ +

βkj
2(βkj+γ)

e−γ(rj−rk) if rk < rj,

as was found in the previous integral calculations, in Equation (3.4.11).

3.4.4.2 Gamma Infectious Periods

This same general method can be extended to the case of Gamma distributed

infectious periods. Since the arguments are very similar we do not include

them here, but they can be found in Appendix B. In the case of exponential

infectious periods, our arguments were based upon the fact that the probabil-

ity of an event occurring is independent of time. In the gamma case, we use

the method of stages to split a Γ(m, γ) time period into m exponentially dis-

tributed sections, so that similar arguments may be used. The likelihood ex-

pression obtained is equal to that found using integration arguments in Equa-

tion (3.4.12).

3.4.5 PBLA II: Improvements to the Approximation

Having derived the first approximation PBLA I in detail, it is possible to fur-

ther improve this method both in terms of computational speed and accuracy

of estimation. In this section, we provide an alternative format for the likeli-
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hood approximation to improve accuracy. Recall Equation (3.2.2) for the like-

lihood, where the infectious periods have distribution f I(· | θ),

π(r | β, θ) =
∫ ( n

∏
j=1
j 6=κ

χjψjφj f I(rj − ij)

)
φκ f I(rκ − iκ)π(iκ, κ) di diκ dκ

=
n

∑
κ=1

π(κ)
∫ ( n

∏
j=1
j 6=κ

χjψjφj

)
φκπ(iκ | κ)

n

∏
j=1

f I(rj − ij) di diκ,

since κ takes discrete values. Rather than separating out χjφj and ψj as previ-

ously, we rearrange for an approximate likelihood as follows:

πII(r | β, θ) =
n

∑
κ=1

π(κ)
∫ ( n

∏
j=1
j 6=κ

χjψj

)
π(iκ | κ)

n

∏
j=1

φj f I(rj − ij) di diκ.

Then, recalling the definition of φj in Equation (3.2.1), note that

φj f I(rj − ij) = e−(rj−ij)Bj f I(rj − ij | θ)

= a(Bj, θ)gj(rj − ij | θ, Bj)

where

gj(rj − ij | θ, Bj) =
e−(rj−ij)Bj f I(rj − ij | θ)∫
e−(rj−ij)Bj f I(rj − ij | θ) dij

=
e−(rj−ij)Bj f I(rj − ij | θ)

a(Bj, θ)
.

Thus a(Bj, θ) is the moment generating function of the infectious period of

individual j evaluated at Bj, and gj is a probability density function in the

sense that it integrates to 1. This amounts to a change of variable in the overall

likelihood, and means that it is not necessary to specifically calculate φj.
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The likelihood reduces to

πII(r | β, θ) =

(
n

∑
κ=1

π(κ)
∫ ( n

∏
j=1
j 6=κ

χjψj

)
π(iκ | κ)

n

∏
j=1

gj(rj − ij) di diκ

)

×
n

∏
j=1

a(Bj, θ)

=

(
n

∑
κ=1

π(κ)π(iκ | κ)Eg
i,iκ

[ n

∏
j=1
j 6=κ

χjψj

])( n

∏
j=1

a(Bj, θ)

)
,

where Eg[·] refers to expectation with respect to i, iκ with probability density

function ∏n
j=1 gj(rj− ij). Alongside defining the prior probability mass/density

functions, we need to evaluate Eg
[

∏n
j=1
j 6=κ

χjψj

]
. This may be approximated as

∏n
j=1
j 6=κ

Eg[χj]E
g[ψj], as before.

We would expect PBLA II to outperform PBLA I since the absorption of the

φj terms into the expectation means we do not need to evaluate or approxi-

mate them. As we will see in sections 3.4.5.1 and 3.4.5.2, the resulting forms

of the a(Bj, θ) terms are simple and inexpensive to calculate for both expo-

nential and gamma infectious periods, so this introduces only little additional

computational burden by comparison.

We may also again rearrange the likelihood for computational speed, yielding

πII(r | β, θ) =
( n

∏
j=1

Eg[χj]E
g[ψj]a(Bj, θ)

) n

∑
κ=1

π(κ)Eg[π(iκ | κ)]
Eg[χκ]Eg[ψκ]

. (3.4.17)

For the cases of exponential and gamma distributed infectious periods, we

now describe the functions gj(rj − ij) and a(Bj, θ).

3.4.5.1 Exponential Infectious Periods

For infectious periods exponentially distributed with rate γ and infection rate

βkj from individual k to individual j,

gj(rj − ij) ∼ Exp(γ + Bj),

a(Bj, θ) =
γ

γ + Bj
.
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A special case of this: for infectious periods exponentially distributed with

rate γ and infection rate β
N ,

gj(rj − ij) ∼ Exp
(

γ +
β

N
(N − n)

)
,

a(Bj, θ) =
γ

γ + β
N (N − n)

.

3.4.5.2 Gamma Infectious Periods

For infectious periods that are gamma distributed with shape m, rate γ, and

infection rate βkj from individual k to individual j,

gj(rj − ij) ∼ Γ(m, γ + Bj),

a(Bj, θ) =

(
γ

γ + Bj

)m

.

Again considering the special case of homogeneous mixing, for gamma dis-

tributed infectious periods with shape m and rate γ, and infection rate β
N , we

have

gj(rj − ij) ∼ Γ(m, γ +
β

N
(N − n)),

a(Bj, θ) =

(
γ

γ + β
N (N − n)

)m

.

3.4.6 PBLA III: Further Approximation

With regards to the approximation of Eg[∏j 6=κ χjψj] in PBLA II, an alternative

and improved method to assuming independence between the two terms is to

observe that

Eg[χjψj] =
n

∑
k=1
k 6=j

βkjE
g[
1{ik<ij<rk}ψj

]

=
n

∑
k=1
k 6=j

βkjE
g

[
1{ik<ij<rk}ψjk

n

∏
l=1
l 6=k
l 6=j

ψjl

]
,
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where ψj = ∏n
l=1
l 6=j

e−βl j(rl∧ij−il∧ij) = ∏n
l=1
l 6=j

ψjl, say.

If we define χjk(t) = βkj1{k infective at t} this method combines χjk with ψjk, es-

sentially minimising the number of ‘cases’ which must be considered in the

calculation. Recall that, in Section 3.4.2.2 for the calculation of E[ψj] with ex-

ponential infectious periods, we needed to calculate double integrals for all

possible values of rk ∧ ij− ik ∧ ij, dependent on the orderings of rk, rj, ik and ij.

In combining χjk with ψjk here, the indicator function reduces the number of

these orderings which are possible.

Then, for computational efficiency,

Eg[χjψj] =
n

∑
k=1
k 6=j

βkjE
g[
1{ik<ij<rk}ψjk

] n

∏
l=1
l 6=k

Eg[ψjl]

≈
n

∑
k=1
k 6=j

βkjE
g[
1{ik<ij<rk}ψjk

]∏n
l=1 Eg[ψjl]

Eg[ψjk]

≈ Eg[ψj]
n

∑
k=1
k 6=j

βkj
Eg[

1{ik<ij<rk}ψjk
]

Eg[ψjk]
.

PBLA III offers marginally less approximation than PBLA II, since the χj and ψj

terms do not need to be assumed independent. We expect the real advantage

of this approach will be the increase in computational speed, due to the re-

duction of ’cases’ to be considered as discussed. We will compare this method

to the previous PBLA versions in Section 4.1.3, which will show that PBLA

III offers considerable increased accuracy of estimation over PBLA I, but only

marginal gains of accuracy over PBLA II.

3.4.7 PBLA III: Full Likelihood Expressions

Before defining the next the PBLA method, we summarise this section by pro-

viding the full likelihood expressions in the cases of exponential and gamma

distributed infectious periods for PBLA III. We introduce a new variable to

simplify the expressions: δj = γ + ∑N
l=n+1 β jl, for j = 1, . . . , n. This reduces to
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δ = γ + β
N (N − n) for homogeneous mixing.

3.4.7.1 Homogeneous mixing

The likelihood expression for the PBLA III likelihood with a homogeneously

mixing population may be obtained simply from the PBLA I expressions by

replacing γ with δ in the relevant likelihood components. The resulting likeli-

hood is as follows:

πIII(r | β, θ) =

(
n

∏
j=1

Eg[ψj]
n

∑
k=1
k 6=j

β

N

Eg[1{ik<ij<rk}ψjk]

Eg[ψjk]
a(Bj, θ)

)

×
n

∑
κ=1

π(κ)Eg[π(iκ | κ)]

Eg[ψκ]∑n
l=1
l 6=κ

β
N

Eg[1{il<iκ<rl}
ψκl ]

Eg[ψκl ]

.

The expressions that form this likelihood depend upon the distribution of the

infectious periods as usual. These are given by:

Exponential Infectious Periods

Eg[ψjk] =


1−

β
N

2
(

β
N +δ
)e−δ(rk−rj) if rk ≥ rj,

δ
β
N +δ

+
β
N

2
(

β
N +δ
)e−δ(rj−rk)) if rk < rj,

Eg[ψj] =
n

∏
k=1
k 6=j

Eg[ψjk],

Eg[1{ik<ij<rk}ψjk] =
δ

δ + β
N

1
2

e−δ|rj−rk|,

a(Bj, θ) =
γ

δ
.
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Gamma Infectious Periods

Eg[ψjk] =



1 + ∑m−1
l=0

e−δ(rk−rj)

l!2m

((
δ

δ+
β
N

)m
(δ + β

N )l − δl
)

×E
[
(rk − rj + Y)l |Y ∼ Γ(m, 2δ)

]
if rk ≥ rj,

1− Fm,δ(rj − rk)

(
1−

(
δ

δ+
β
N

)m
)
+ ∑m−1

l=0
δm−1e−δ(rj−rk)

2l+1Γ(m)

×
((

δ

δ+
β
N

)m( δ+
β
N

δ

)l
− 1
)

×E
[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2δ)

]
if rk < rj,

Eg[ψj] =
n

∏
k=1
k 6=j

Eg[ψjk],

Eg[
1{ik<ij<rk}ψjk

]
=



∑m−1
l=0

e−δ(rk−rj)

l!2m

(
δ

δ+
β
N

)m(
δ + β

N
)l

×E
[
(rk − rj + Y)l |Y ∼ Γ(m, 2δ)

]
if rk ≥ rj,

∑m−1
l=0

e−δ(rj−rk)

2l+1

(
δ

δ+
β
N

)m( δ+
β
N

δ

)l
δm−1

Γ(m)

×E
[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2δ)

]
if rk < rj,

a(Bj, θ) =
(γ

δ

)m
.

3.4.7.2 Heterogeneous mixing

For the case of a heterogeneously mixing population, the likelihood expression

will be more complex. As defined in Section 3.2, the infection rate between in-

dividuals j and k is now given by β jk. Following from this, we note that each

expectation is with respect to a pair of infection times ij, ik, now with probabil-

ity density functions gj and gk which depend on Bj and Bk, respectively. Each

individual in the population is now effectively considered to have an infec-

tious period with a different distribution. In the exponential case for example,

for any pair ij, ik the density functions will be Exp(δj) and Exp(δk). Although

the required likelihood expressions may not be directly taken from the PBLA I

calculations, very similar integration arguments may be followed, incorporat-

ing these different density functions.
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These likelihoods may also be extended to individuals whose infectious pe-

riods have completely distinct parameters, for example rj − ij ∼ Exp(γj) or

rj − ij ∼ Γ(mj, γj) for all j in the population. This is of interest since we do

not require that all individuals in the population are modelled with the same

infectious period distribution. We may, for example, model different groups

(by age, gender, occupation etc.) with different infectious periods, according

to their behaviour or characteristics.

The overall likelihood expression remains in much the same format,

πIII(r | β, θ) =

(
n

∏
j=1

Eg[ψj]
n

∑
k=1
k 6=j

βkj
Eg[1{ik<ij<rk}ψjk]

Eg[ψjk]
a(Bj, θ)

)

×
n

∑
κ=1

π(κ)Eg[π(iκ | κ)]

Eg[ψκ]∑n
l=1
l 6=κ

βκ j
Eg[1{il<iκ<rl}

ψκl ]

Eg[ψκl ]

,

where the component expressions will now be given by:

Exponential Infectious Periods

Eg[ψjk] =


1− δjβkj

(δj+δk)(δk+βkj)
e−δk(rk−rj) if rk ≥ rj,

δk
δk+βkj

+
δkβkj

(δj+δk)(δk+βkj)
e−δj(rj−rk)) if rk < rj,

Eg[ψj] =
n

∏
k=1
k 6=j

Eg[ψjk],

Eg[1{ik<ij<rk}ψjk] =


δjδk

(δj+δk)(δk+βkj)
e−δk(rk−rj) if rk ≥ rj,

δjδk
(δj+δk)(δk+βkj)

e−δj(rj−rk) if rk < rj,

a(Bj, θ) =
γj

δj
.

145



CHAPTER 3: LIKELIHOOD APPROXIMATION METHODS

Gamma Infectious Periods

Eg[ψjk] =



1 + ∑mk−1
l=0

e−δk(rk−rj)

l!

(
δj

δj+δk

)mj

×
((

δk
δk+βkj

)mk

(δk + βkj)
l − δl

k

)
×E

[
(rk − rj + Y)l |Y ∼ Γ(mj, δj + δk)

]
if rk ≥ rj,

1− Fmj,δj(rj − rk)

(
1−

(
δk

δk+βkj

)mk
)

×+ ∑mk−1
l=0

δ
mj
j e−δj(rj−rk)

(δj+δk)l+1Γ(mj)

×
((

δ+k
δk+βkj

)mk
(

δk + βkj

)l
− δl

k

)
×E

[
(rj − rk + Y)mj−1 |Y ∼ Γ(l + 1, δj + δk)

]
if rk < rj,

Eg[ψj] =
n

∏
k=1
k 6=j

Eg[ψjk],

Eg[
1{ik<ij<rk}ψjk

]
=



∑mk−1
l=0

e−δk(rk−rj)

l!

(
δj

δj+δk

)mj
(

δk
δk+βkj

)mk
(δk + βkj)

l

×E
[
(rk − rj + Y)l |Y ∼ Γ(mj, δj + δk)

]
if rk ≥ rj,

∑mk−1
l=0 e−δj(rj−rk)

(
δk

δk+βkj

)mk
(

δk+βkj
δj+δk

)l δ
mj
j

(δj+δk)Γ(mj)

×E
[
(rj − rk + Y)mj−1 |Y ∼ Γ(l + 1, δj + δk)

]
if rk < rj,

a(Bj, θ) =
(γj

δj

)mj
.

3.4.8 PBLA IV: Central Limit Theorem Approximation

In this section we seek to make an approximation to the ψj term in the PBLA II

likelihood, using moment generating functions and a central limit theorem.

The motivation is to improve the speed of the method, making estimation

feasible for even larger population sizes. This approximation will only hold

for exponentially distributed infectious periods with homogeneous mixing, so

we assume in this section that rj − ij ∼ Exp(γ) for all individuals j, and set

infection rate β
N . However, since we will apply this central limit theorem ap-

proximation within the framework of PBLA II we apply the usual change of
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variables as explained in Section 3.4.5, so that all expectations are with respect

to g(rj − ij) ∼ Exp(δ). For simplicity, although all expectations are with re-

spect to g in this section, we will not explicitly state this.

To begin the derivation, we recall that in the definition of the true likelihood

in Equation (3.2.3), we required the calculation of

E

[( n

∏
j=1
j 6=κ

χjψjφj

)
φκπ(iκ | κ)

]
.

Rather than assuming independence over j for the ψj terms so that E
[

∏n
j=1
j 6=κ

ψj

]
= ∏n

j=1
j 6=κ

E[ψj], and removing the dependency upon κ as we will rearrange the

likelihood as usual for computational efficiency (see Equation (3.4.4)), we in-

stead note that:

E

[
n

∏
j=1

ψj

]
= E

[
n

∏
j=1

exp
(
−

n

∑
k=1
k 6=j

β

N
(rk ∧ ij − ik ∧ ij)

)]

= E

[
exp

(
−

n

∑
j,k=1
k 6=j

β

N
(rk ∧ ij − ik ∧ ij)

)]

= E

[
exp

(
−

n

∑
j,k=1
k 6=j

β

N
τkj

)]

= E

[
exp

(
−

n

∑
j,k=1
j<k

β

N
(τkj + τjk)

)]

= E

[
exp

(
−

n

∑
j,k=1
j<k

β

N
ωjk

)]
,

where we have paired τkj and τjk by symmetry, setting j < k without loss of

generality, and then defined

τkj + τjk = ωjk =


ij − ik if ik < ij,

ik − ij if ij < ik < rj,

rj − ij if ik > rj.
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Figure 3.7: Timeline of a disease outbreak, showing reverse timescale t for

PBLA IV.

Note that E
[

∏n
j=1 ψj

]
is then in the form of a moment generating function for

∑n
j,k=1
j<k

ωjk, evaluated at − β
N . Therefore, if we can find the distribution, or an

approximation to the distribution, of ∑n
j,k=1
j<k

ωjk we will be able to replace the

E
[

∏n
j=1 ψj

]
term with the corresponding expression for its moment generating

function.

In order to find this approximation to the distribution, we first require the

following result:

Theorem 3.4.2.
n

∑
j,k=1
j<k

ωjk ∼ Y1 + Y2 + · · ·+ Yn−1

where Yj ∼ Exp
(

δ
j
)
, and Y1, . . . , Yn−1 are independent.

Proof. To prove this result we work backwards in time, similarly to the proba-

bilistic arguments in Section 3.4.4. We define t as our reverse-timescale, where

t = 0 at r+n (the moment just before rn in reverse time, see Figure 3.7). Then

t increases as we move backwards in time to i1 (the ‘end’ of the outbreak, as

after this time no infectious pressure is applied). We consider the reverse in-

fectious process as a continuous time Markov process {(S(t), I(t)) : t > 0},
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starting at r+n where S(t = 0) = 0 and I(t = 0) = 0, such that

(S, I)→ (S + 1, I − 1) at rate δI(t)

(S, I)→ (S, I + 1) deterministically, when a known removal event occurs.

(3.4.18)

The first transition in Equation 3.4.18 then represents an infection event (since

in reverse time this involves an individual moving from infective to suscep-

tible), and the second a removal event (in reverse, corresponding to an indi-

vidual moving into their infectious period). For example, the first event which

will occur in reverse time is rn, when we move from zero current infectives

to one. Notably, we see that the number of susceptibles is not changed at any

removal times. We generate infections according to our Markov process at rate

δI(t), since δ determines the length of the infectious period (under the PBLA

II framework). We choose who gets ‘infected’ (i.e. who moves into their sus-

ceptible period) uniformly at random from those currently infective. The key

aspect here is that we want to count the total number of infectives and suscep-

tibles present in the population at all times, moving backwards from the end

of the outbreak.

The quantity we wish to focus on is ∑n
j,k=1
j<k

ωjk =
∫ ∞

0 S(t)I(t) dt, which is the

total amount of infectious pressure applied, over all individuals and over all

time. To construct this quantity in reverse time we define T(t) as the total in-

fectious pressure observed up to time t, so that T(t) =
∫ t

0 S(u)I(u) du, and

T increases at a deterministic rate S(t)I(t) at time t. Then T(E) = ∑n
j,k=1
j<k

ωjk,

where E = r+n − i1 represents the end of the outbreak under reverse timescale

t, after which there are no remaining infectives and hence no infectious pres-

sure. Quantity T is therefore a piecewise, linear, non-decreasing function of t,

whose gradient changes are determined by the transitions of the Markov pro-

cess {(S(t), I(t)) : t > 0}. The whole process will stop when S(t) = n at i1,

after which there will be no more increase in T.

Between any two events (whether infections or removals), the process T will

increase at constant rate S(t)I(t), since S(t) and I(t) remain constant between
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Figure 3.8: Timeline showing how total infectious pressure T is built up, un-

der scaled reverse timescale t∗.

events even as t changes. Noting that an increase of rate x, say, for y time

units, is equivalent to an increase of rate 1 for xy time units, we now perform

a time scaling for t. We instead consider the construction of T by running time

at rate 1
I(t) if I(t) ≥ 1, and at rate 0 if I(t) = 0. Under this new timescale, time

effectively stops if the number of infectives is 0. This is desired since no new

infections can occur, and we simply wait for the next deterministic removal

event to restart counting time. This scaling results in new timescale t∗ = t
I(t) .

Now T instead increases at rate S(t). Since we have already shown that the

number of susceptibles is unchanged by removal events, removals therefore

also have no effect on the rate of increase of T. In the t∗ timescale, the Markov

process is defined by:

(S, I)→ (S + 1, I − 1) at rate δ if I(t∗) ≥ 1.

Quantity T is then formed by a series of stages wherein T is increasing at rate

S(t), for S(t) increasing by one at rate δ. This occurs for n− 1 infection events

at times ij (when we get to n susceptibles at i1, no infectious pressure is being

placed, as previously discussed). T is then the sum of a series of independent

random exponential lengths of time, with rates δ, δ
2 and so on, up to δ

n−1 . Fig-

ure 3.8 shows this. Therefore, T(E) = ∑n
j,k=1
j<k

ωjk ∼ Y1 +Y2 + · · ·+Yn−1 where

Yj ∼ Exp
(

δ
j
)
, and Y1, . . . , Yn−1 are independent, as required.

Since these exponential distributions are independent but non-identically dis-

tributed, Theorem 3.4.2 may then be applied alongside the following central

limit theorem, in order to approximate the E
[

∏n
j=1 ψj

]
term with a moment

generating function.
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Theorem 3.4.3. Define µn as the expectation of ∑n
j,k=1
j<k

ωjk and σ2
n as its variance.

Then, as n → ∞, 1
σn

(
∑n

j,k=1
j<k

ωjk − µn

)
converges in distribution to a standard

normal random variable, i.e.

∑n
j,k=1
j<k

ωjk − µn

σn

d−→ N(0, 1),

where

µn =
1
δ

(
n
2

)
,

σ2
n =

1
δ2

(
n
2

)(2n− 1
3

)
.

Proof. To prove this we use the following result, Theorem 2.1 in Barbour and

Eagleson (1985):

Lemma 3.4.4. Define random variable Xjk with zero mean and finite variance, where

(j, k) is a 2-subset of {1, 2, ..., n} and n ≥ 1. Let s2 = ∑n
i,j,k,l=1
i<j,k<l

E[XijXkl]. Then

1
s ∑n

j,k=1
j<k

Xjk converges in distribution as n → ∞ to the standard normal distribution

if

1. E
[
|Xjk|3

]
< ∞ for all n and all pairs (j, k);

2.

ε′n =
1
s3

n

∑
i,j=1
i<j

E
[
|Xij|3

] 1
3
( n

∑
k,l=1

(k,l)∩(i,j) 6=Ø

E
[
|Xkl|3

] 1
3
)2
→ 0.

We therefore seek some Xjk = f (ωjk) which meets the requirements of this

lemma. For infectives j and k, pairs (j, k) are always 2-subsets of {1, 2, ..., n}.

Hence, if we are able to show that f (ωjk) has zero mean, finite variance s2 and

fulfills the two criteria, then 1
s ∑n

j,k=1
j<k

f (ωjk) can be approximated by a standard

normal distribution, and we may approximate E
[

∏n
j=1 ψj

]
with a normal mo-

ment generating function.
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By applying Theorem 3.4.2 with n = 2, we know that ωjk ∼ Exp(δ). Therefore,

using standard results,

E[ωjk] =
1
δ

Var(ωjk) =
1
δ2 .

Setting Xjk = ωjk −E
[
ωjk
]
= ωjk − 1

δ , we then obtain a random variable with

zero mean and finite variance. Let us next explore the necessary requirements

of lemma (3.4.4).

1. Firstly, E
[
|Xjk|3

]
= E

[
|ωjk − 1

δ |3
]
< ∞ since ωjk ∼ Exp(δ).

2. Using the formula for s2,

s2 =
n

∑
i,j,k,l=1
i<j,k<l

E[XijXkl]

=
n

∑
i,j,k,l=1
i<j,k<l

E

[(
ωij −

1
δ
)(ωkl −

1
δ

)]

=
n

∑
i,j,k,l=1
i<j,k<l

E

[(
ωijωkl −

1
δ

ωkl −
1
δ

ωij +
1
δ2

)]

=
n

∑
i,j,k,l=1
i<j,k<l

E[ωijωkl]−
2
δ

n

∑
i,j=1
i<j

E[ωij] +
1
δ2

(
n
2

)2

=
n

∑
i,j,k,l=1
i<j,k<l

E[ωijωkl]−
2
δ

1
δ

(
n
2

)
+

1
δ2

(
n
2

)2

, (3.4.19)

since ∑n
i,j=1
i<j

E[ωij] = ∑n
i,j=1
i<j

1
δ . We split the first term in Equation (3.4.19) into

three sections based on the number of indices in common, so that
n

∑
i,j,k,l=1
i<j,k<l

E[ωijωkl] =
n

∑
i,j=1
i<j

E[ω2
ij] +

n

∑
i,j,l=1
i 6=j,i 6=l

E[ωijωil] +
n

∑
i,j,k,l=1
i 6=j,k 6=l
i<j,k<l

E[ωijωkl].

(3.4.20)

Here, ∑n
i,j=1
i<j

E[ω2
ij] provides all terms in Equation (3.4.20) for which there are

two indices in common, i.e. i = k and j = l. There are (n
2) possibilities for
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this, where each term takes the form of a second moment of an exponentially

distributed variable with parameter δ. Hence, ∑n
i,j=1
i<j

E[ω2
ij] =

2
δ2 (

n
2).

Similarly, ∑n
i,j,k,l=1
i 6=j,k 6=l
i<j,k<l

E[ωijωkl] includes those terms in Equation (3.4.20) which

have no indices in common. There are 3(n
4) terms in this sum, where each rep-

resents the expectation of two independent exponentially distributed variables

with parameter δ. Hence, ∑n
i,j,k,l=1
i 6=j,k 6=l
i<j,k<l

E[ωijωkl] =
3
δ2 (

n
4).

Lastly, ∑n
i,j,l=1
i 6=j,i 6=l

E[ωijωil] provides the terms in Equation (3.4.20) which have

1 index in common. We find these slightly differently than the previous two

cases, by grouping together all triplets of expectations with the same indices

(i.e. E[ω12ω13], E[ω12ω23] and E[ω13ω23]). There will be (n
3) sets of such

triplets. For each, with i < j < k without loss of generality, we seek E[ωijωik] +

E[ωijωjk] + E[ωikωjk] = E[Ωijk], say. Then, the standard result

Var(ωjk + ωjl + ωkl) = Var(ωjk) + Var(ωjl) + Var(ωkl) +

2Cov(ωijωik + ωijωjk + ωikωjk)

= Var(ωjk) + Var(ωjl) + Var(ωkl) +

2(E[ωijωik]−E[ωij]E[ωik] + E[ωijωjk]

−E[ωij]E[ωjk] + E[ωikωjk]−E[ωik]E[ωjk]),

implies that

E[Ωijk] = E[ωijωik] + E[ωijωjk] + E[ωikωjk]

=
1
2

(
Var(ωjk + ωjl + ωkl)−Var(ωjk)−Var(ωjl)−Var(ωkl) +

2E[ωij]E[ωik] + 2E[ωij]E[ωjk] + 2E[ωik]E[ωjk]
)

=
1
2

(
Var(ωjk + ωjl + ωkl)−

3
δ2 + 2

( 3
δ2

))
,

since ωij ∼ Exp(δ) has mean 1
δ and variance 1

δ2 for all i, j, as stated previously

using Theorem 3.4.2 with n = 2. Applying Theorem 3.4.2 with n = 3, we also

find that

ωjk + ωjl + ωkl ∼ Exp(δ) + Exp
(δ

2

)
,
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and so

Var(ωjk + ωjl + ωkl) =
1
δ2 +

4
δ2 =

5
δ2 .

Therefore,

E[Ωijk] =
1
2
(
Var(ωjk + ωjl + ωkl) +

3
δ2

)
=

4
δ2 ,

and hence we obtain an expression for the second term of Equation (3.4.20),

∑n
i,j,l=1
i 6=j,i 6=l

E[ωijωil] =
4
δ2 (

n
3).

Combining these results, Equation (3.4.20) becomes,

n

∑
i,j,k,l=1
i<j,k<l

E[ωijωkl] =
2
δ2

(
n
2

)
+

3
δ2

(
n
4

)
+

4
δ2

(
n
3

)
. (3.4.21)

Recombining Equation (3.4.21) with Equation (3.4.19), the expression for s2 is

then given by

s2 =
2
δ2

(
n
2

)
+

3
δ2

(
n
4

)
+

4
δ2

(
n
3

)
− 2

δ2

(
n
2

)
+

1
δ2

(
n
2

)2

= O(n4). (3.4.22)

Therefore,

ε′n =
1
s3 ∑

i<j
E[|Xij|3]

1
3
(

∑
k,l

(k,l)∩(i,j) 6=Ø

E[|Xkl|3]
1
3
)2

=
1
s3 ∑

i<j
A×

(
A(2n− 3)

)2,

where A = E
[
|Xij|3

] 1
3 , and since 2n− 3 is the number of pairs (k, l) where at

least one of k and l is the same as i or j. Then, the terms inside the i, j sum are

independent of i and j and

ε′n =
1
s3

(
n
2

)
A3(2n− 3)2,
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since there are (n
2) choices for this pair (i, j). Now, s3 = O(n6) from Equation

(3.4.22), and (n
2)(2n− 3)2 = O(n4). A is independent of n, so overall,

ε′n = O(n−2)

−−−→
n→∞

0.

We have therefore met all of the requirements of lemma 3.4.4, which implies

that 1
s ∑n

j,k=1
j<k

Xjk
d−→ N(1, 0) as n → ∞, from which we may approximate the

distribution of ∑n
j,k=1
j<k

ωjk as n→ ∞.

In order to implement this result, we must specifically calculate the mean and

variance of ∑n
j,k=1
j<k

ωjk. These may be easily obtained from Theorem 3.4.2, since

we know that ∑n
j,k=1
j<k

ωjk ∼ Exp(δ) + Exp
(

δ
2

)
+ · · ·+ Exp

(
δ

n−1

)
, and so:

E

[
n

∑
j,k=1
j<k

ωjk

]
=

1
δ
+

2
δ
+ · · ·+ n− 1

δ

=
1
δ

(
n
2

)
,

Var

(
n

∑
j,k=1
j<k

ωjk

)
=

1
δ2 +

4
δ2 + · · ·+ (n− 1)2

δ2

=
1
δ2

(
n
2

)(
2n− 1

3

)
.

In summary, as n→ ∞

∑n
j,k=1
j<k

ωjk − µn

σn

d−→ N(0, 1),

where

µn =
1
δ

(
n
2

)
,

σ2
n =

1
δ2

(
n
2

)(2n− 1
3

)
,

as required.
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Therefore, to implement the PBLA IV method we must replace the expression

for E
[

∏n
j=1 ψj

]
with the moment generating function of a normal distribution,

so that

E

[
n

∏
j=1

ψj

]
= E

[
exp

(
− β

N

n

∑
j,k=1
j<k

ωjk

)]

≈ exp

(
− β

N
µ +

1
2

σ2
( β

N

)2
)

= exp

(
− β

δN

(
n
2

)
+

1
2δ2

(
n
2

)(2n− 1
3

)( β

N

)2
)

.

Since this method does not involve the calculation of many sums over infec-

tives, which are computationally intensive for large outbreaks, it provides a

useful approximation for use under large outbreak sizes. However, it is cer-

tainly more specific in its requirements, only having been derived for exponen-

tial infectious periods and requiring large n. There is potential for the method

to be extended to gamma distributed infectious periods, but the calculations

are far more complex and we do not pursue them here. We will compare this

central limit theorem approximation to the earlier PBLA versions in Chapter

4, but first we define our fifth and final PBLA method.

3.4.9 PBLA V

We now consider an alternative expression for E[∏j 6=k χjψj] within the PBLA II

framework. Under the previous PBLA methods, we would consider the infec-

tious pressure from any individual j to any individual k independently to the

pressure from k to j, despite one of these two quantities being necessarily zero

(as one individual must have been infected before the other). Here we derive

an expression which considers these two pairs together, hopefully resulting

in improved approximation. Again, all expectations in this section are with

respect to density function gj(rj − ij) since we are in the PBLA II framework.

This method will be applicable for both homogeneous and heterogeneous mix-

ing, though we will require that βkj = β jk for all k and j.
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To begin, as before we split the expectation into two parts so that

E

[ n

∏
j=1
j 6=κ

χjψj

]
≈ E

[ n

∏
j=1
j 6=κ

χj

]
E

[ n

∏
j=1
j 6=κ

ψj

]
.

We then calculate E

[
∏n

j=1
j 6=κ

χj

]
as previously. For the ψ term however:

E

[ n

∏
j=1
j 6=κ

ψj

]
= E

[
n

∏
j=1
j 6=κ

exp
(
−∑

k 6=j
βkjτkj

)]

= E

[
exp

(
−

n

∑
j=1
j 6=κ

n

∑
k=1
k 6=j

βkjτkj

)]
. (3.4.23)

We may split the inner sum into cases, depending on if k = κ, so that
n

∑
j=1
j 6=κ

n

∑
k=1
k 6=j

βkjτkj =
n

∑
j=1
j 6=κ

( n

∑
k=1

k 6=j,κ

βkjτkj + βκ jτκ j

)

=
n

∑
k,j=1

k 6=j,k,j 6=κ

βkjτkj +
n

∑
j=1
j 6=κ

βκ jτκ j

=
n

∑
j,k=1

k<j,k,j 6=κ

βkj(τkj + τjk) +
n

∑
j=1
j 6=κ

βκ jτκ j,

where we have paired up the pressure from j to k and from k to j, without loss

of generality setting k < j. Note that it is this last step which requires βkj = β jk.

Splitting up the exponential in Equation (3.4.23), our expression becomes

E

[ n

∏
j=1
j 6=κ

ψj

]
≈ E

[
exp

(
−

n

∑
j,k=1

k<j,k,j 6=κ

βkj(τkj + τjk)

)]

×E

[
exp

(
−

n

∑
j=1
j 6=κ

βκ jτκ j

)]

≈
n

∏
j,k=1

k<j,k,j 6=κ

E
[

exp
(
− βkj(τkj + τjk)

)] n

∏
j=1
j 6=κ

E
[

exp
(
− βκ jτκ j

)]
,

(3.4.24)

which may be specifically calculated, depending on the distribution of the in-

fectious periods as usual.
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3.4.9.1 Homogeneous mixing

Exponential Infectious Periods

If we assume that the infectious periods are exponentially distributed and the

population mixes homogeneously, the expectations in Equation (3.4.24) are

simple to calculate. Using Theorem 3.4.2 and recalling that τkj + τjk = ωjk

for exponential infectious periods, it is known that τkj + τjk ∼ Exp(δ) (since

we are working within the framework of PBLA II including the change of vari-

ables). It is also simple to show that τκ j ∼ Exp(δ), similarly. Therefore, both

of the expectations in the expressions for E
[

∏j 6=κ ψj
]

take the form of moment

generating functions for an exponentially distributed variable with mean δ.

E
[

exp
(
− β

N
(τkj + τjk)

)]
=

δ

δ + β
N

E
[

exp
(
− β

N
τκ j
)]

=
δ

δ + β
N

.

Then, under PBLA,

E
[ n

∏
j=1
j 6=κ

ψj
]

=
n

∏
j,k=1

k<j,k,j 6=κ

δ

δ + β
N

n

∏
j=1
j 6=κ

δ

δ + β
N

=

(
δ

δ + β
N

) (n−1)(n−2)
2 +n−1

=

(
δ

δ + β
N

) n(n−1)
2

,

since there are (n−1
2 ) terms in the product over k and j, and n− 1 terms in the

product over j 6= κ.

Gamma Infectious Periods

In the case of gamma distributed infectious periods and a homogeneously

mixing population, the previous arguments using moment generating func-

tions cannot be applied since we have no equivalent expression for the dis-

tribution of ωjk. However, we can still calculate the expectations in Equation
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(3.4.24) using the same method as in PBLA I. Recall that, since rk < rj,

τkj + τjk =


ik − ij if ij < ik,

ij − ik if ik < ij < rk,

rk − ik if rk < ij,

then

E[e−
β
N (τkj+τjk)] = E[e−

β
N (ik−ij)1ij<ik ]+E[e−

β
N (ij−ik)1ik<ij<rk ]+E[e−

β
N (rk−ik)1rk<ij ].

Each of these expectations may be explicitly calculated, either through direct

integration or probability type arguments as before. Recombining these, we

are able to obtain the expression

E[e−
β
N (τkj+τjk)] =

(
δ

δ + β
N

)m

+

(
δ

δ + β
N

)m m−1

∑
l=0

e−δ(rj−rk)

×

 1
2ml!

E[(rj − rk + Y)l |Y ∼ Γ(m, 2δ)]

(
δ +

β

N

)l

+
δm−1

2l+1Γ(m)
E[(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2δ)]

×
(

δ

δ + β
N

)−l

− δl

l!
(rj − rk)

l

.

The expression for the κ terms may be calculated similarly, and both substi-

tuted into Equation (3.4.24). Although this form is not as simple as in the

exponential case, it is still independent of the infection times and may be com-

puted with relative speed.

3.4.9.2 Heterogeneous mixing

As in the PBLA III calculations, these expressions may be extended to hetero-

geneously mixing populations. We will not include these calculations as they

follow much the same format as in previous sections, but the resulting expres-

sions are as follows:
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Exponential Infectious Periods

For exponentially distributed infectious periods such that rj − ij ∼ Exp(δj)

for j = 1, . . . , n:

E
[

exp
(
− βkj(τkj + τjk)

)]
=

δk
δk + βkj

+ e−δj(rj−rk)

×
( δkβkj(δj − δk)

(δk + βkj)(δj + δk)(δj + βkj)

)
.

Gamma Infectious Periods

For gamma distributed infectious periods such that rj − ij ∼ Γ(mj, δj) for j =

1, . . . , n:

E
[

exp
(
− βkj(τkj + τjk)

)]
=
( δk

δk + βkj

)mk
+

mk−1

∑
l=0

e−δj(rj−rk)
( δk

δk + βkj

)mk

×E[(rj − rk + Y)mj−1 |Y ∼ Γ(l + 1, δj + δk)]
(δk + βkj

δj + δk

)l δ
mj
j

Γ(mj)(δj + δk)

+

mj−1

∑
l=0

e−δj(rj−rk)
( δj

δj + βkj

)mj
E[(rj − rk + Y)l |Y ∼ Γ(mk, δj + δk)]

×
( δk

δj + δk

)mk
(δj + βkj)

l −
mj−1

∑
l=0

e−δj(rj−rk)
( δk

δk + βkj

)mk δl
j

l!
(rj − rk)

l.

Again, equivalent expressions may be obtained for the terms involving the

initial infective. However, it is worthwhile to note that, in reality, when we

calculate these quantities we make a small additional approximation in not

considering the contribution of the initial infective to be different than that of

any other infective.

3.4.9.3 Comparison with PBLA III

Since PBLA V calculates the pressure from individual j to individual k com-

bined with the pressure from individual k to individual j, rather than assum-

ing these are independent quantities, we would expect it to outperform the
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previous PBLA versions. In practice, however, numerical investigation in Sec-

tion 4.1.3 will reveal that the PBLA V method does not offer much improve-

ment over PBLA III. Considering the homogenous mixing case, the only dif-

ference is in the E[ψjk] term. We recall under PBLA III that this is given by

E[e−βτjk ]E[e−βτkj ] and under PBLA V is given by E[e−β(τjk+τkj)]. In the expo-

nential infectious periods case, for a given pair of individuals j, k, we set rj < rk

without loss of generality. Then,

E[e−
β
N τjk ]E[e−

β
N τkj ] =

(
1−

β
N

2( β
N + δ)

e−δ(rk−rj)
)( δ

β
N + δ

+
β
N

2( β
N + δ)

e−δ(rk−rj)
)

and

E[e−
β
N (τjk+τkj)] =

δ
β
N + δ

,

so the difference between these two quantities is given by

β
N

2( β
N + δ)

e−δ(rk−rj) −
β
N δ

2( β
N + δ)2

e−δ(rk−rj) −
β
N

2

4( β
N + δ)2

e−2δ(rk−rj).

This is a monotone decreasing function of rk − rj, and hence the maximum

occurs when rk = rj. The maximum difference in the expectation for any given

pair j, k is therefore 1
4

( β
N

β
N +δ

)2
. Under the kind of parameter values that we will

explore in this thesis and commonly see in practice, this equates to a maximum

difference of around 0.7% between the expectations under each method for

pair j, k, a difference so small that it is very unlikely to have any significant

impact on estimation.

3.4.10 Equal Removal Times

Recall that in our initial definition of the model in Section 3.2, we required that

all removal times are ordered such that r1 < r2 < · · · < rn; each much be

strictly greater than the previous. The exact likelihood will be 0 if any removal

times are equal, since in continuous time no two removal times will be the

same with probability 1 . In terms of PBLA, it can be found that the method

fails to work well when there are equal removal times within the data, i.e.
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there exist j, k ∈ (1, . . . , n) : rj = rk. In this section we demonstrate how this

issue arises.

Take a simple example with three infectives. We define r = (1, 2, x) and as-

sume a contact rate β between all pairs of individuals, with exponentially dis-

tributed infectious periods with mean γ. We will explore the effect on the

PBLA III likelihood as x varies from below, to equal to, to greater than r2 = 2.

First, Figure 3.9 displays the (β, γ) likelihood surface over a range of values

of x, for a population size of 10. We see that as x approaches r2 = 2 from

both above and below, the maximum point on the contour increases in both

the β and γ directions. If we plot the x = 2 surface for increasingly large (β, γ)

values, we see that the maximum tends off towards (∞, ∞).

To demonstrate the specifics of the likelihood calculation, we continue to focus

on PBLA III with exponentially distributed infectious periods (the arguments

being similar for other PBLA versions and for gamma infectious periods), as

well as homogeneous mixing. Recall that the likelihood under this method is

given by

πIII(r | β, θ) =
( n

∏
j=1

Eg[ψj]
n

∑
k=1
k 6=j

β

N

Eg[1{ik<ij<rk}ψjk]

Eg[ψjk]
a(Bj, θ)

)

×
n

∑
κ=1

π(κ)Eg[π(iκ | κ)]

Eg[ψκ]∑n
l=1
l 6=κ

β
N

Eg[1{il<iκ<rl}
ψκl ]

Eg[ψκl ]

.

Ignoring the initial infective here for simplicity, we must consider expressions

Eg[ψjk] and Eg[1{ik<ij<rk}ψjk], when rk = rj.

For a given pair of infectives j, k, recall that

E[ψjk] =


1−

β
N

2( β
N +δ)

e−δ(rk−rj) if rk ≥ rj,

δ
β
N +δ

+
β
N

2( β
N +δ)

e−δ(rj−rk)) if rk < rj,

where δ = γ + ∑N
l=n+1 β jl was obtained from the change of variables in PBLA

II.
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Figure 3.9: Likelihood surfaces for β and γ under the PBLA III approxima-

tion, where r = (1, 2, x) and x varies. This demonstrates the im-

pact on estimation of equal removal times. N = 10 in all cases.
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If we set equal removal times rk = rj, our expression reduces to

E[ψjk] = 1−
β
N

2( β
N + δ)

=
2δ + β

N

2(δ + β
N )

.

This is clearly bounded by 0 and 1, as we would expect for a probability. As γ

and β tend to infinity the expression tends to 0, as we would hope for in this

likelihood. Therefore, the E[ψj] section of the likelihood behaves appropriately

as rk − rj −→ 0.

Consider next the expression

E
[
1{ik<ij<rk}ψjk

]
=

δj

2(δ + β
N )

exp−δ|rj−rk| .

Hence, when rj = rk,

E
[
1{ik<ij<rk}ψjk

]
=

δ

2(δ + β
N )

.

The combined relevant likelihood term for pair j, k such that rk = rj, recalling

that a(Bj, θ) = γ
δ , is then given by

β

N

E
[
1{ik<ij<rk}ψjk

]
E[ψjk]

a(Bj, θ) =
β

N

δ

2(δ+ β
N )

2δ+
β
N

2(δ+ β
N )

γ

δ
=

β
N γ

2δ + β
N

.

Recall that δ = γ + β(N−n)
N . Then as β→ ∞ and γ→ ∞, so will δ→ ∞. Hence

our entire likelihood expression will tend to infinity as both β and γ do. This is

in agreement with what have seen in the three removal example in Figure 3.9,

and demonstrates why the PBLA method may not be used with equal removal

times. Fortunately, in practice it suffices to slightly jitter equal removal times

in order to perform the approximation. For any pair j, k such that rj = rk, we

simply set rk = rk + ε for some small ε of much lower order of magnitude than

the removal times. This avoids the problem of equal removal times without

changing the data any impactful amount, and may be extended to any larger

number of equal removals, for example for daily or weekly collected data.
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3.4.11 Extension to the SEIR model

So far in this chapter, our analysis has focused on application of approximation

methods to only the SIR model. However, it is possible to extend the PBLA

methods for use with an SEIR model. We conclude this chapter with a brief

exploration of this, and the next chapter will also include an application in

Section 4.3.

We define the SEIR model similarly to the SIR case: at any given time, every

individual in the closed population of size N will be in one of four states:

susceptible, exposed, infectious or removed. During an individual’s exposed

period, they are infected but not yet infectious. Then, for j = 1, 2, . . . , n, ej

denotes the time of exposure of individual j, ij denotes their infection time,

and rj their removal time. The exposure times e = {ej : j = 1, 2, . . . , κ − 1, κ +

1, . . . , n} (where κ is the initial infective), and infection times i = {ij : j =

1, 2, . . . , n} are unknown, and the data still consist of ordered removal times

r = {rj : j = 1, 2, . . . , n, where r1 < r2 < · · · < rn}.

The outbreak begins with the infection of the initial infective κ, at time iκ, and

continues until no infectious individuals remain. We do not allow for reinfec-

tion. During any individual i’s infectious stage, they will have contact with

any other individual j at times given by the points of a Poisson process of rate

βij, where all such Poisson processes are assumed mutually independent. Any

contact with a susceptible individual results in their immediate infection. Then

β = {βij : i, j ∈ {1, 2, . . . N}} provides a matrix of these contact rates, which

may again be defined to incorporate a wide range of population structures.

For a given outbreak of any disease, the infectious periods will have proba-

bility density (or mass) function f I(· | θI), where f I has parameter vector θI .

We must also now define the lengths of the exposed periods, which we state

as having probability density (or mass) function fE(· | θE). First, however, we

will restrict our attention to fixed length exposed periods.
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3.4.11.1 Fixed length exposed periods

For both exponential and gamma infectious periods, it is possible to revisit

all of the PBLA calculations using an SEIR model with fixed length exposed

periods. The integrals may all be similarly calculated to achieve expressions

for E[χj], E[ψj] etc. However, we may bypass these by noting some key facts

about the way the exposed period will affect our arguments.

Take, for example, E[ψj]. Recall that this represents the expected probability

that individual j avoids infection until the time they become infected, now ej.

Hence,

E[ψj] ≈
n

∏
k=1
k 6=j

E[exp
(
− βkj(rk ∧ ej − ik ∧ ej)

)
].

However, with fixed length infectious periods, say of length c, we may state

that ej = ij − c, for j ∈ 1, . . . , n. Hence,

E[ψj] ≈
n

∏
k=1
k 6=j

E[exp
(
− βkj(rk ∧ (ij − c)− ik ∧ (ij − c))

)
].

All of the integration arguments will therefore be the same as in the SIR case,

but with ij shifted by c time units. This will result in the same final expres-

sions as before, but with rj replaced with rj − c. Interpretively, the probability

arguments relating the time some infective k puts infectious pressure on j, for

instance, will still apply, but will be shifted c time units earlier to represent

the infection of j at ej rather than ij. We use this to write down the likelihood

expressions for both exponential and gamma distributed infectious periods

directly.

Likelihood expressions for fixed length exposed periods

As with the SIR model, for PBLA III the likelihood will be of the form

πIII(r | β, θ) =
( n

∏
j=1

Eg[ψj]
n

∑
k=1
k 6=j

βkj
Eg[1{ik<ij<rk}ψjk]

Eg[ψjk]
a(Bj, θ)

)

×
n

∑
κ=1

π(κ)Eg[π(iκ | κ)]

Eg[ψκ]∑n
l=1
l 6=κ

βlκ
Eg[1{il<iκ<rl}

ψκl ]

Eg[ψκl ]

.
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For exponential infectious periods, the required expressions are

Eg[ψjk] =


1− βkj

2(βkj+δj)
e−δj(rk−rj+c) if rk ≥ rj − c,

δj
βkj+δj

+
βkj

2(βkj+δj)
e−δj(rj−rk−c) if rk < rj − c,

Eg[ψj] =
n

∏
k=1
k 6=j

Eg[ψjk],

Eg[1{ik<ij<rk}ψjk] =


δj

δj+βkj
1
2e−δj(rk−rj+c) if rk ≥ rj − c,

δj
δj+βkj

1
2e−δj(rj−rk−c) if rk < rj − c,

a(Bj, θ) =
γ

δj
.
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Equivalently, for gamma distributed infectious periods we have

Eg[ψjk] =



1 + ∑m−1
l=0

e−δj(rk−rj+c)

l!2m

((
δj

δj+βkj

)m
(δj + βkj)

l − δl
j

)
×E

[
((rk − rj + c + Y)l) |Y ∼ Γ(m, 2δj)

]
if rk ≥ rj − c,

1− Fm,δj(rj − rk − c)
(

1−
( δj

δj+βkj

)m
)

+∑m−1
l=0

δm−1
j e−δj(rj−rk−c)

2l+1Γ(m)

(( δj
δj+βkj

)m( δj+βkj
δj

)l − 1
)

×E
[
(rj − rk − c + Y)m−1 |Y ∼ Γ(l + 1, 2δj)

]
if rk < rj − c,

Eg[ψj] =
n

∏
k=1
k 6=j

Eg[ψjk],

Eg[
1{ik<ej<rk}ψjk

]
=



∑m−1
l=0

e−δj(rk−rj+c)

l!2m

( δj
δj+βkj

)m
(δj + βkj)

l

×E
[
(rk − rj + c + Y)l |Y ∼ Γ(m, 2δj)

]
if rk ≥ rj − c,

∑m−1
l=0

e−δj(rj−rk−c)

2l+1

( δj
δj+βkj

)m( δj+βkj
δj

)l δm−1
j

Γ(m)

×E
[
(rj − rk − c + Y)m−1 |Y ∼ Γ(l + 1, 2δj)

]
if rk < rj − c,

a(Bj, θ) =
(γ

δj

)m
.

3.4.11.2 Random length exposed periods

We may wish to extend the SEIR case to random length exposed periods. We

now define cj as the exposed period of individual j, (cj = ij − ej). Then each cj

takes a random value from fE(· | θE), and for certain distributions fE it may be

possible to obtain a likelihood expression. By taking the expectation over all

cj of our likelihood expressions from Section 3.4.11.1, for example, we make

similar arguments by conditioning on cj’s value, for each individual j.
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For example, for the ψjk term with any pair j, k,

E[ψjk] = E
cj

[
E[ψjk | cj]

]
= E

cj


 f (cj) if rk ≥ rj − cj

g(cj) if rk < rj − cj

,

where f (·) and g(·) are functions defined by the choice of infectious period.

Then,

E[ψjk] =
∫

cj

E[ψjk | u] fE(u) du =

∫
cj


 f (u) if u ≥ rj − rk

g(u) if u < rj − rk

 fE(u) du.

If cj takes only a small number of fixed values, it may be possible to compute

this integral directly as a sum. Similarly, if we assume that cj ∼ Exp(ρ) (i.e.

fE(cj | ρ) = ρe−ρcj), as well as exponential infectious periods, for example, we

can also calculate the integral using the expression from Section 3.4.11.1 for

fixed cj:

E[ψjk] =
∫ rj−rk

0

(
δj

βkj + δj
+

βkj

2(βkj + δj)
e−δj(rj−rk−cj)

)
ρe−ρcj dcj +

∫ ∞

rj−rk

(
1−

βkj

2(βkj + δj)
e−δj(rk−rj+cj)

)
ρe−ρcj dcj

=
δj

βkj + δj
+

βkjρ

2(βkj + δj)(ρ− δj)

(
e−δj(rj−rk) − e−(ρ−2δj)(rj−rk)

)
+

βkj

2(βkj + δj)
e−ρ(rj−rk).

with similar calculations for the other likelihood terms required, depending

on the PBLA version used (E[χjφj] and so on).

We note that this resulting expression for E[ψjk] is not particularly simple how-

ever, and it will be similarly so for the other likelihood terms, unlike the SIR

or fixed exposed period cases. The expressions with gamma distributed in-

fectious and exposure periods prove even more complex. This approach also

certainly brings more approximation into the model, and an important ques-

tion would be whether this affects the accuracy of the method.
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In reality, however, we will usually choose to fix cj to the same value for all j,

as in Section 3.4.11.1. With random length exposure periods, we are trying to

estimate two quantities (ρ and γ) from one piece of data (the removal time),

which is problematic. Further exploration of the random exposure periods

approach is certainly possible, but this will be beyond the scope of this work.

3.5 Conclusions

In this chapter, we have explored two new likelihood approximation methods

for use in infectious disease modelling: the Eichner and Dietz method, as in-

troduced in Section 3.3 as a generalisation of that used in Eichner and Dietz

(2003), and a new series of PBLA methods, as introduced in Section 3.4. A

summary of the different PBLA methods can be found in Table 3.2. A general

theme of the approximations has been assuming independence between the

interactions of individuals in the population, particularly in the PBLA method

which assumes that all pairs of individuals make independent likelihood con-

tributions. The overall aim was to obtain approximate likelihood expressions

which do not require data augmentation, to avoid issues of correlation in miss-

ing data as well as computational issues which occur when using large data

sets with DA-MCMC. The ED and PBLA methods may all be used within stan-

dard MCMC without data augmentation, since the likelihood expressions are

independent of the infection times, or MLEs for the parameters of interest may

also be obtained through any choice of optimisation scheme.

Explicit likelihood expressions have been derived for all of the approximation

methods explored, for both exponential and gamma distributed infectious pe-

riods (in all cases where possible). We chose to focus on these distributions

since they are widely used within the infectious disease modelling commu-

nity and offer simple, interpretable likelihood expressions, but of course it

may also be possible to extend the methods to other infectious period distri-

butions of choice. As well as deriving the PBLA expressions analytically with
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full integration arguments, we have also provided probabilistic arguments for

these (for PBLA I at least, though other PBLA versions may be obtained sim-

ilarly). This has hopefully provided further understanding of how the likeli-

hood expressions are obtained, and the contextual meaning of the approxima-

tions made.

We have focused on the application of the approximation methods to the stan-

dard SIR model until Section 3.4.11, which discussed their use with SEIR meth-

ods. This has really been limited so far to exposure periods of fixed length, but

there is scope to extend this to random length exposure periods in the future.

We also explored another limitation of the PBLA method in Section 3.4.10; that

we require all non-equal removal times for the method to approximate well.

Although it is possible to avoid this problem by simply jittering removal times

slightly, this of course introduces some more approximation to the model in

terms of the order in which the removals are jittered. For data sets with large

numbers of equal removal times, it is possible that this might have a significant

impact, and so the amount of jittering applied must be carefully considered so

as not to impact analysis.

We have found that there are a large number of approximations which may be

made to the true likelihood to result in a tractable likelihood expression, and

a number of these have been explored with the different PBLA versions. We

next wish to compare these different versions to explore if any offer accuracy

or computational advantages. Although we have theoretically defined our

approximation methods, another key issue is of course their practical imple-

mentation and performance as compared to existing methods. We will explore

these points in Chapter 4, firstly with a series of simulation studies to compare

the different methods both with each other and with standard DA-MCMC,

and then with application to a number of real-life data sets.
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Table 3.2: Table summarising the PBLA methods and associated assumptions

explored in Chapter 3. All PBLA versions follow the initial approx-

imation of independence over individuals, as in Equation 3.2.4.

Method Description

PBLA I

The basic PBLA method. As well as the basic independence assumption (1)

E
i,iκ

[(
∏n

j=1
j 6=κ

χjψjφj
)
φκπ(iκ | κ)

]
≈
(

∏n
j=1
j 6=κ

E
i,iκ

[
χjψjφj

])
E
iκ

[
φκπ(iκ | κ)

]
,

PBLA I assumes (2) independence between χjφj and ψj, and sets (3)

E[ψj] ≈ ∏n
k=1
k 6=j

E
[
e−βkj(rk∧ij−ik∧ij)

]
.

PBLA II

Applies a change of variable to the expectations, so they are with respect to i, iκ

now with probability density function ∏n
j=1 gj(rj − ij). Essentially, all instances

of γ in the likelihood are replaced with δj for individual j. This removes the need

to calculate the φj terms, as well as the assumptions (in (1) and (2)) associated

with this calculation.

PBLA III

Builds upon PBLA II by combining the expectations of χj and ψj, rather than

assuming these are independent (2). This simplifies the calculations required, and

avoids the introduction of unnecessary approximation.

PBLA IV

Only applicable for exponential infectious periods and large outbreak sizes, this

method extends PBLA II by using a central limit theorem to form an approximation

to the ψj terms. Rather than making assumption (3), we instead assume that

E
[

∏n
j=1 ψj

]
≈ exp

(
− β

δN (n
2) +

1
2δ2 (

n
2)
( 2n−1

3
)( β

N
)2
)

, using the fact that the sum over

all pairs of individuals of the time infectious pressure is placed between them is

approximately normally distributed for large n.

PBLA V

Also extending PBLA II, this method considers the infectious pressure from any

individual j to any other individual k in combination with the pressure from k to

j, rather than assuming these are independent. Instead of making assumption

(3), this provides an alternative expression for the ψj term such that

E
[

∏n
j=1
j 6=κ

ψj

]
≈ ∏n

j,k=1
k<j,k,j 6=κ

E
[

exp
(
− βkj(τkj + τjk)

)]
∏n

j=1
j 6=κ

E
[

exp
(
− βκ jτκ j

)]
.
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CHAPTER 4

Likelihood Approximation Method

Simulation Studies and

Applications

In Chapter 3 we introduced the generalized Eichner and Dietz (ED) likelihood

approximation, as well as the Pair Based Likelihood Approximation (PBLA).

This chapter will involve application of these approximation methods, firstly

in a series of simulation studies to evaluate the performance of the methods,

and then to a variety of real data sets where we compare analysis using the

PBLA method to existing published analyses. For easy reference, Table 3.1

provides a summary of the notation used in the likelihood approximations,

and a summary of the different PBLA methods can be found in Table 3.2.

In Section 4.1 we will assess the likelihood approximation methods through

a series of simulation studies. We first seek to compare the accuracy of the

approximation methods, both with each other and with standard DA-MCMC

techniques. This will be explored in Section 4.1.1, for both exponential and

gamma infectious periods. Section 4.1.2 will then include a more detailed com-

parison of the ED and PBLA methods only, using a larger number of simula-

tions to more accurately assess their performance and which situations lead to

either outperforming the other. In Section 4.1.3 we then use an additional sim-
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ulation study to compare the different PBLA methods as defined in Chapter 3.

However, we wish to assess not just the approximation methods’ accuracy in

parameter estimation, but also their computational speed. This will therefore

be explored in Section 4.1.4.

Although we use simulated data to compare various versions of the approxi-

mation methods, of course it is also of interest to know how likelihood approx-

imations perform with real data, compared to existing techniques. In sections

4.2, 4.3 and 4.4 we apply the PBLA method to various real data sets, encom-

passing a range of population structures, sizes and models for the infection

process.

In Section 4.2 we analyse data concerning respiratory disease on the island

of Tristan Da Cunha. We investigate how the PBLA method performs with

a multi-type SIR model, comparing our estimates to a previous analysis by

Hayakawa et al. (2003). Section 4.3 describes analysis of the West African Ebola

virus outbreak of 2014. Here, we wish to compare the PBLA method to a previ-

ous analysis in Althaus (2014), who used a model featuring a time-dependent

infection rate. Although this is not possible in the PBLA framework, we ex-

plore a proxy-time-dependence in the form of a heterogeneously mixing pop-

ulation where the infection rate is a function of the removal time. We also

demonstrate the use of the PBLA method with an SEIR model, and highlight

the importance of having data on a completed outbreak for the PBLA approach

to approximate the true likelihood well. In Section 4.4 we consider data from

the 2001 UK Foot and Mouth livestock epidemic. Here we use a heterogeneous

mixing model with a spatial component, where the infection rate between any

two farms will depend on the geographical distance between them as well as

other covariates.

This range of analyses, both using simulated and real data, will highlight the

strengths and the weaknesses of the likelihood approximation methods, which

we summarise in Section 4.5.
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4.1 Simulation Studies

4.1.1 Comparing ED, PBLA and

DA-MCMC

To assess the Eichner and Dietz and PBLA methods, we first perform a simu-

lation study comparing both to DA-MCMC, as this represents a gold standard

for Bayesian analyses. We therefore compare the parameter estimates from

the ED and PBLA methods to those from DA-MCMC, rather than to the true

values the outbreaks were simulated from. For both exponential and gamma

distributed infectious periods, we simulate 12 outbreaks under a variety of

parameter values and population sizes, and perform parameter estimation for

each using DA-MCMC, and MCMC with the ED and PBLA likelihoods. We

compare the resulting parameter estimates to evaluate the likelihood approx-

imation methods, found in Section 4.1.1.1 for the exponential case and 4.1.1.2

for the gamma case.

4.1.1.1 Exponentially Distributed Infectious Periods

For the homogeneously mixing SIR model with exponentially distributed in-

fectious periods, we will now apply the ED and PBLA methods to 12 simu-

lated data sets of varying population and final sizes. We compare the ability

of the approximations to recover the true parameter values against standard

DA-MCMC.

Each data set is a simulated outbreak from the given parameters, where in

each simulation we start with one initial infective. For any simulations of final

size 1, we discard and re-simulate. For analysis, we use MCMC with both the

ED and PBLA likelihoods, as well as performing standard DA-MCMC.

For the ED likelihood, the integral involved in the calculation of the likelihood

(as given in Equation (3.3.4)) must be computed numerically. In this study we

use a simple trapezium rule method for this, which was found to provide suf-
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ficiently accurate results when compared with more complex techniques. We

set the lower limit of the integral to significantly less than the expected value

of the initial infection time. Since this time is when infectious pressure begins

to be applied, we can hence be confident that our numerical integration region

is capturing the entire epidemic process. We selected 1000 as the lowest num-

ber of trapezia for which increasing this number did not impact the likelihood

values at the degree of accuracy used in the analysis. All PBLA analysis is

performed with the PBLA III method, since this is applicable for both expo-

nential and gamma infectious periods and we expect it to perform better than

PBLA I or II (we will explore this further in Section 4.1.3). For all MCMC anal-

yses we take 10,000 samples after an initial burn-in period of 500. We perform

Gaussian random walk updates for ED and PBLA, where the variances of the

proposed parameter values have been tuned to result in a well-mixing chain.

We use independent low rate (10−4) exponential priors for the parameters β

and γ.

The results of the simulation study, ordered by population size, are given in

Table 4.1. These consist of posterior medians for infection rate β and removal

rate γ, under each method. Table 4.2 contains the corresponding results for the

estimation of R0.

As we can see from Table 4.1, prediction using ED and PBLA with exponential

infectious periods is much more similar to DA-MCMC for some data sets than

others. Generally, the ED approximation estimates are much less similar to

DA-MCMC than the PBLA estimates. This is especially true for smaller out-

breaks such as simulation 2, where the ED estimates are almost double those

from DA-MCMC. PBLA, however, has obtained relatively similar estimates to

DA-MCMC in this case. Both methods seem to consistently overestimate both

β and γ, but in almost all cases we see that PBLA offers estimates closer to

DA-MCMC than ED.

Both methods do seem to struggle when the proportion of infectives is high.

We will discuss this further in Section 4.1.2, but we see here that for simula-
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Table 4.1: Estimates of infection rate β and removal rate γ for 12 simulated

data sets using standard DA-MCMC, the ED approximation and

PBLA, for an SIR model with exponential infectious periods.

True (β, γ) n/N
ED MCMC

medians

PBLA MCMC

medians

DA-MCMC

medians

1 (1.3,1.3) 27/50 (6.600,4.867) (4.199,2.649) (2.672,1.833)

2 (2.5,3.6) 4/60 (9.196,10.642) (5.079,5.867) (4.933,5.940)

3 (3.0,1.0) 56/60 (4.159,2.141) (3.926,1.815) (2.837,0.963)

4 (1.5,1.4) 26/100 (4.001,3.554) (2.205,1.826) (1.997,1.737)

5 (1.3,1.0) 52/100 (2.280,1.695) (1.514,0.958) (1.001,0.702)

6 (2.3,1.4) 73/100 (2.631,1.641) (2.059,1.047) (1.954,1.029)

7 (3.0,2.0) 88/100 (0.257,0.140) (0.243,0.112) (0.119,0.049)

8 (1.6,1.0) 123/200 (3.940,2.716) (2.788,1.591) (2.326,1.489)

9 (1.9,1.2) 216/300 (4.131,2.659) (3.840,1.960) (2.062,1.167)

10 (4.0,1.0) 295/300 (7.177,3.527) (9.276,4.556) (4.419,1.112)

11 (2.0,1.3) 187/400 (3.629,2.797) (2.309,1.540) (2.374,1.759)

12 (0.2,0.1) 496/600 (0.867,0.506) (0.729,0.347) (0.207,0.099)

tions 3, 7, 10 and 12 (where the proportion of infectives is highest), the esti-

mates are most dissimilar to DA-MCMC. This is also true for ED with very

small outbreaks, though we see PBLA estimates well in these situations, such

as simulation 2. In practice, we will less often be concerned with very small

outbreaks, but further consideration why the methods struggle for larger out-

breaks would be of use and will follow in Section 4.1.2. We lastly note that the

population size does not appear to have a significant impact on estimation,

just the proportion of infectives within it.

In terms of R0, Table 4.2 shows that the ED and PBLA methods are both much

better able to estimate R0 than β and γ individually. Both no longer consis-

tently overestimate, with estimates generally very similar to those obtained

with standard MCMC. It seems that both approximation methods are unable

to estimate β and γ well in all cases for exponential infectious periods, but

are able to maintain their ratio to result in a reasonable R0 estimate. In cases
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Table 4.2: For the 12 simulated data sets in Table 4.1, this table includes the

estimates of R0 using standard DA-MCMC, the ED approximation

and PBLA with exponential infectious periods.

True R0 n/N
ED MCMC

R0 medians

PBLA MCMC

R0 medians

DA-MCMC

R0 medians

1 1.0 27/50 1.386 1.595 1.458

2 0.694 4/60 0.900 0.878 0.840

3 3.0 56/60 1.977 2.173 2.917

4 1.071 26/100 1.134 1.237 1.141

5 1.3 52/100 1.364 1.586 1.424

6 1.643 73/100 1.612 1.975 1.901

7 1.5 88/100 1.831 2.143 2.449

8 1.6 123/200 1.453 1.751 1.555

9 1.583 216/300 1.568 1.954 1.772

10 4.0 295/300 2.030 2.044 3.947

11 1.538 187/400 1.304 1.506 1.354

12 2.0 496/600 1.716 2.100 2.100

where only R0 is of interest rather than the individual infection and removal

rates, this highlights that the approximation methods might be especially of

use.

4.1.1.2 Gamma Distributed Infectious Periods

We test the approximation methods with gamma distributed infectious peri-

ods in the same way as the exponential case. To ensure the analysis is com-

parative across the two methods, we simulate 12 data sets with the same R0

values and population sizes as the exponential data sets. We set shape param-

eter m = 5, keeping β the same as the exponential outbreaks and setting γ to

keep R0 constant. As in the exponential case, we will use the trapezium rule

to compute the numerical integral in the ED likelihood (with the number of

trapezia set to 1000 and the lower limit of the integral significantly less than

the expected value of the initial infection time), and use version III of PBLA.
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Table 4.3: Estimates of infection rate β and removal rate γ for 12 simulated

data sets using standard DA-MCMC, the ED approximation and

PBLA, for an SIR model with exponential infectious periods. Shape

parameter m = 5 is fixed.

True (β, γ) n/N
ED MCMC

medians

PBLA MCMC

medians

DA-MCMC

medians

1 (1.3,6.5) 24/50 (1.493,5.576) (1.412,5.100) (1.359,4.914)

2 (2.5,18.0) 2/60 (0.834,4.908) (0.732,4.561) (0.675,4.263)

3 (3.0,5.0) 58/60 (2.635,4.925) (2.417,4.685) (2.953,3.979)

4 (3.0,10.0) 3/100 (69.390,392.570) (29.549,175.894) (29.806,173.416)

5 (1.3,5.0) 18/100 (1.221,5.596) (1.004,4.458) (1.023,4.663)

6 (1.5,7.0) 89/100 (1.332,3.044) (1.238,2.838) (1.393,2.773)

7 (2.3,7.0) 95/100 (2.359,4.686) (2.181,4.421) (2.515,3.850)

8 (1.6,5.0) 120/200 (1.344,4.551) (1.263,4.119) (1.249,4.146)

9 (1.9,6.0) 258/300 (1.693,4.106) (1.561,3.645) (1.694,3.685)

10 (4.0,5.0) 296/300 (3.558,6.426) (3.206,6.170) (4.161,4.744)

11 (2.0,6.5) 352/400 (1.611,3.685) (1.495,3.390) (1.786,3.700)

12 (0.2,0.5) 3/600 (10.415,60.049) (8.315,51.423) (8.354,50.496)

Again, for all MCMC algorithms, we take 10,000 samples after an initial burn-

in period of 500, and for ED and PBLA we perform Gaussian random walk

updates with low rate (10−4) exponential priors for β and γ.

The results of this are given in Table 4.3, again ordered by population size.

The posterior medians obtained from DA-MCMC may be compared to the

posterior medians from MCMC with the ED and PBLA likelihoods. We also

give the results of R0 estimation in Table 4.4.

Table 4.3 shows that, in the case of gamma distributed infectious periods, both

ED and PBLA generally estimate the parameters much more closely compared

to DA-MCMC than in the exponential case. PBLA, however, continues to of-

fer closer estimates to DA-MCMC than ED in almost all cases. Again, this

is especially true for smaller outbreaks such as simulations 4 and 12, where

the PBLA estimates are similar to DA-MCMC but the ED estimates are con-
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siderably larger. The results in Table 4.3 suggest, as in the exponential case,

that the total population size does not impact the accuracy of estimation of the

approximation methods, but rather the proportion of infectives.

In terms of cases where the proportion of infectives is high such as simula-

tions 3, 7 and 10, both PBLA and ED estimates are far closer to those from

DA-MCMC than in the exponential case. We also no longer see consistent

overestimation of the parameters, and again PBLA tends to provide better es-

timation than the ED method.

Considering Table 4.4 which includes the estimates of R0 for the gamma infec-

tious period simulations, we see that R0 estimation is generally similar when

using the approximation methods or DA-MCMC. Again, the ED and PBLA

methods are better able to estimate R0 than β and γ individually. Despite

the improvement in β and γ estimation as compared to the exponential case,

the estimation of R0 is interestingly very similar with gamma infectious peri-

ods and exponential. Even for very small or large outbreaks, the R0 estimates

using the approximation methods are very close to those from DA-MCMC,

without any consistent over- or under-estimation.

4.1.1.3 Conclusions

Overall, from this simulation study we have seen that the PBLA and ED meth-

ods perform much more similarly to DA-MCMC for gamma infectious periods

than exponential. For very small proportions of infectives, the ED method es-

pecially struggles, and for very large proportions of infectives both methods

struggle, to obtain similar estimates to DA-MCMC. However, generally for

gamma infectious periods with roughly 20− 80% of the population infected,

both methods (and particularly PBLA) estimate the parameters well. The ba-

sic reproduction number R0 is also generally estimated well by both methods,

under both exponential and gamma distributed infectious periods.

We have highlighted that, especially for large outbreaks where DA-MCMC is
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Table 4.4: For the 12 simulated data sets in Table 4.3, this table includes the

estimates of R0 using standard DA-MCMC, the ED approximation

and PBLA with exponential infectious periods. Shape parameter

m = 5 is fixed.

True R0 n/N
ED MCMC

R0 medians

PBLA MCMC

R0 medians

DA-MCMC

R0 medians

1 1.0 24/50 0.273 0.280 0.280

2 0.694 2/60 0.181 0.165 0.166

3 3.0 58/60 0.532 0.514 0.733

4 1.5 3/100 0.182 0.175 0.177

5 1.3 18/100 0.221 0.220 0.221

6 1.071 89/100 0.434 0.439 0.495

7 1.643 95/100 0.502 0.492 0.645

8 1.6 120/200 0.295 0.366 0.301

9 1.583 258/300 0.413 0.428 0.461

10 4.0 296/300 0.552 0.519 0.877

11 1.538 352/400 0.434 0.441 0.484

12 2.0 3/600 0.183 0.162 0.171
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particularly cumbersome in terms of both mixing and speed (we will further

explore this in Section 4.1.4), and even more so where inference about the re-

production number is key, either ED or PBLA may offer a useful alternative.

PBLA also seems to offer better estimation than ED overall, though we will

explore this further in the following section.

Although this section has sufficed as an introductory exploration of the per-

formance of the approximation methods, it is important to note that in this

study we have only simulated one outbreak from each set of parameter val-

ues. These outbreaks therefore might not necessarily represent what is typical.

In our second study, we will simulate a larger number of outbreaks per set of

parameter values, and look at the average performance of the ED and PBLA

methods.

4.1.2 A more in-depth study comparing PBLA and the Eichner

and Dietz approximation

We continue the simulation studies with a more in-depth comparison of the

Eichner and Dietz and PBLA III approximations, in order to more clearly demon-

strate the differences in performance between them. Although in Section 4.1.1

we compared PBLA and the ED method (to DA-MCMC) for a single simula-

tion under different sets of parameter values, here we simulate a large number

of outbreaks for each set of values. We present this first for exponentially dis-

tributed infectious periods, and then for gamma.

4.1.2.1 Exponential Infectious Periods

Here we describe a comparison of the Eichner and Dietz likelihood approxi-

mation and Pair-Based Likelihood Approximation (version III) for exponential

infectious periods. A selection of parameter values are chosen, varying the in-

fection rate β and the removal rate γ as well as the population size N, which in

turn influence the final size n and determine the reproduction number R0. We
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choose a wide range of parameter values, to best explore the accuracy of the

methods in different situations. For each set of parameter values to be tested

we simulate a large number of outbreaks, ranging from 200 to 1000 depend-

ing on the computational demands of the population/outbreak size. For each

simulation, we then maximise both the ED and PBLA likelihoods. We provide

density plots of the distribution of the MLEs obtained from each simulation

for comparison of the two methods, and investigate the impact of varying the

parameter values. Note that these are not true densities since the MLEs do not

exactly represent samples from a probability distribution, but the plots suffice

for visualisation purposes.
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Figure 4.1: To compare the impact of varying β and γ, these figures show

densities of MLEs from both the ED and PBLA III approximation

methods with exponential infectious periods. Data are from 1000

simulations with N = 100 and true values β = 3, γ = 2 in the first

plot and β = 0.3, γ = 0.2 in the second.

Varying parameters β and γ together
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To compare varying values of rates β and γ whilst keeping N and R0 constant,

we must vary β and γ whilst keeping their ratio equal. Figure 4.1 contains

density plots of the maximum likelihood estimates for 1000 simulations under

two sets of values of β and γ. There is no clear difference in estimation per-

formance between the two, despite a 10 times reduction in the true values of

both β and γ between the first and second plots. The accuracy of parameter

estimation is not considerably changed; at least as long as population size N

remains constant. We see that the PBLA method estimates both parameters

much more closely, in both cases.
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Figure 4.2: To compare the impact of varying N, these figures show densities

of MLEs from both the ED and PBLA III approximation methods

with exponential infectious periods. Data are from 500 simula-

tions with N = 500 and 1000 simulations with N = 40, respec-

tively, where in both the true values are β = 1.5, γ = 1.

Varying population size N

When we vary the value of N alone, we find that this also does not greatly
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affect the estimation of either method. Figure 4.2 shows no significant differ-

ence between the two plots, despite the fact that they use values N = 500 and

N = 40, respectively. The only difference seems to be that for larger N there

is slightly less variance in the distribution of the MLEs obtained. Again, we

see that the PBLA method better estimates both β and γ. A different number

of simulations has been used in each case due to computational restraints, but

this was not found to significantly impact the analysis.
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Figure 4.3: To compare the impact of varying R0, these figures show densities

of MLEs from both the ED and PBLA III approximation methods

with exponential infectious periods. Data are from 500 simula-

tions with N = 500, and true values β = 1.5, γ = 1 in the first plot

and β = 0.5, γ = 1 in the second. This leads to R0 values of 1.5

and 0.5, respectively.

Varying basic reproduction number R0

Recall that reproduction number R0 = β
γ represents the average number of

secondary cases a given infective causes in an entirely susceptible population.
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We see that varying this can have a considerable impact on the efficacy of our

approximation methods.

In the first plot in Figure 4.3, the true value of R0 is 1.5, leading to an average

proportion of 0.5 of the individuals in the population infected. The parameters

β and γ are set as 1.5 and 1, respectively. We see again that estimation of both

parameters is fairly good. The PBLA method performs better than ED.

We compare this to the second plot in Figure 4.3, which shows the density

of estimates when R0 is smaller, at 0.5. We see that estimation for β and γ is

similarly good to R0 = 1.5, and for the ED method is improved. It appears

that for up to at least half of the population infected, both methods are able to

estimate the true parameter values fairly well, with PBLA providing slightly

more accurate results.

On the other hand, the first plot in Figure 4.4 shows the density of estimates

when R0 = 3, resulting in an average proportion of 0.95 of individuals be-

coming infected. We see much less accuracy in estimation for both methods,

with the ED approximation now obtaining the closest results but generally

both methods failing to acquire an accurate estimate. This is also seen in the

second plot in Figure 4.4 where R0 = 2 (an average of 77% of individuals in-

fected), though here the ED method no longer performs significantly better.

Further testing indicates that the drop in accuracy for both methods occurs

gradually as the proportion of infectives increases, from around 0.6, and that

neither method is consistently better under these conditions for exponential

infectious periods. We will discuss this further with our concluding remarks.

Comparing accuracy of R0 prediction

As well as considering the methods’ accuracy in estimating β and γ, we may

consider the accuracy of R0 estimation. This is found to be similar for varying

β, γ and N in that there is little impact on accuracy, but again both meth-

ods struggle when the true value of R0 is large. Figure 4.5 shows densities

for the estimates of R0 across a large number of simulations when R0 = 1.5

and R0 = 3. We see that for R0 = 1.5, leading to approximately half of the
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Figure 4.4: To further compare the impact of varying R0, these figures show

densities of MLEs from both the ED and PBLA III approximation

methods with exponential infectious periods. Data are from 200

simulations with N = 500 and N = 1000, respectively, as well as

true values β = 3, γ = 1 in the first plot and β = 2, γ = 1 in the

second. This leads to R0 values of 3 and 2.

population infected, R0 is estimated fairly well by the mean of the MLEs, and

particularly by the ED method, though there is some interesting bimodality

observed. However when R0 is increased to 3, resulting in on average 0.95 of

the population infected, the estimation of both methods is considerably worse

(perhaps PBLA being slightly more robust to this, though arguably estimation

is so poor that this is meaningless). Overall, and despite this, in all cases where

estimation is generally good, the ED method is seen to offer slightly improved

estimation for R0.

Concluding remarks

We have found that for both the ED and PBLA methods with exponential in-
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Figure 4.5: To compare R0 estimation, these figures show densities of MLEs

from both the ED and PBLA III approximation methods with ex-

ponential infectious periods. Data are from, respectively, 1000

simulations with N = 100, β = 1.5 and γ = 1, and 200 simula-

tions with N = 500, β = 2.5, γ = 1. This leads to R0 values of 1.5

and 2.5.

fectious periods, varying β and γ whilst maintaining their ratio or varying N

does not have a significant effect on the accuracy of the methods. However,

the size of reproduction number R0, does have a big impact on their efficacy.

Around half of the population infected appears optimum for both methods,

with PBLA consistently outperforming ED. However, when the average pro-

portion of infectives increases to above around 0.6, both methods become lim-

ited in their efficacy, with estimates far further from their true value. The sit-

uation is similar when considering estimation of R0. Both methods seem to

perform well except in cases where the proportion of infectives in the popula-

tion is very high, in which case the accuracy of estimation rapidly deteriorates.
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In general, the ED approximation appears to estimate R0 more closely, though

perhaps less so for larger true R0 values. PBLA, on the other hand, estimates

both β and γ much more closely than the ED method, and so, for exponential

infectious periods at least, may be seen as a considerable improvement.

It seems feasible that the limited performance when a large proportion of the

population is infected is due to the ψ term in the likelihood (recall e.g. Equa-

tion (3.2.1) which defines the different likelihood terms), concerning the avoid-

ance of infection until an infective’s exposure. This term involves the most ap-

proximation under both ED and PBLA, and further analysis indicates that as

the proportion of infectives varies, E[ψj] varies greatly also. Returning to the

PBLA I structure for comparison of the different elements of the likelihood,

we find that for outbreaks where around half of the population is infected

(R0 = 1.5) the ψ term is of size roughly half of the φ term. As we increase R0,

leading to a larger proportion of infectives, ψ increases in relation to φ. For

example, R0 = 3 yields ψ four times larger than φ, and R0 = 5 yields ψ twenty

times larger than φ (for N = 100). This implies that as we increase R0, both

methods have a higher contribution from more highly approximated terms,

and hence poorer estimation would be expected.

4.1.2.2 Gamma Infectious Periods

Next we consider a comparison of the likelihood approximation methods for

gamma infectious periods, with shape parameter m and rate parameter γ. We

expect the methods to perform better in this case since as shape parameter m

increases, if the mean is fixed then the infectious periods become less variable.

There is hence less uncertainty in the expectations over pairs of infection times,

and so we would expect the approximations to be closer to the truth. Again a

range of parameter values are explored, and we simulate here at least 500 out-

breaks in each case. We compare the accuracy of the methods by considering

density plots of the MLEs obtained.

Varying parameters β and γ together
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First we vary β and γ together, whilst keeping R0 constant. Figure 4.6 displays

this for three decreasing sets of β and γ values, with m fixed at 2. We see that,

as in the exponential case, a ten and then a hundred times reduction in both β

and γ has little impact on the accuracy of estimation; there is almost no visible

difference between the densities. Both methods perform well here, with no

considerable difference between the two in terms of accuracy.

Varying population size N

Figures 4.7 and 4.8 explore varying N, with fixed shape m = 2. As in the

exponential case, we note that as the total population size increases, the mean

estimated values of β and γ do not change significantly, but the variance of

these estimates decreases. Even for small values of N, both methods are able

to estimate β and γ well (with slight overestimation of γ), and PBLA continues

to offer very similar estimation to the ED method.

We also investigate the impact of varying N on the bias and mean squared

error (MSE) of our β and γ estimates. Figures 4.9 and 4.10 show the bias and

mean squared error, respectively, where we test with shape parameter m equal

to 2 and 8. We see that an increase in population size leads to a reduction

in both bias and mean squared error. Since the mean squared error is equal

to the variance plus the squared bias of an estimate, this agrees with what

we noted when investigating the estimates of β and γ obtained. The PBLA

method generally seems to provide less biased estimates of the parameters,

with similar mean squared error to the ED method.
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Figure 4.6: To compare the impact of varying β and γ, these figures show

densities of MLEs from both the ED and PBLA III methods with

gamma infectious periods. Data are from 1000 simulations with

N = 50 and shape m = 2 in all cases, where the true values are

β = 12 and γ = 10, β = 1.2 and γ = 1, and β = 0.12 and γ = 0.1,

respectively.
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Figure 4.7: To compare the impact of varying N, these figures show densities

of MLEs from both the ED and PBLA III methods with gamma

infectious periods. Data are from 1000 simulations with shape

m = 2, β = 1.2 and γ = 1. In the upper plots N = 15 and in

the lower plots N = 100.
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Figure 4.8: To compare the impact of varying N, these figures show densities

of MLEs from both the ED and PBLA III methods with gamma

infectious periods. Data are from 500 simulations with shape m =

2, β = 1.2 and γ = 1. In the upper plots N = 250 and in the lower

plots N = 500.

193



CHAPTER 4: LIKELIHOOD APPROXIMATION METHOD SIMULATION STUDIES
AND APPLICATIONS

0 100 200 300 400 500

0.
05

0.
15

0.
25

β

N

B
ia

s
PBLA
ED

0 100 200 300 400 500

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

γ

N

B
ia

s

PBLA
ED

Estimated Bias for Beta and Gamma, for varying values of N where m=2

0 100 200 300 400 500

−
0.

10
0.

00
0.

10
0.

20

β

N

B
ia

s

PBLA
ED

0 100 200 300 400 500

0.
0

0.
5

1.
0

γ

N

B
ia

s

PBLA
ED

Estimated Bias for Beta and Gamma, for varying values of N where m=8

Figure 4.9: These figures show the bias in estimating parameters β and γ as N

varies, for both the PBLA and ED methods. Shown are estimated

values with shape parameter m equal to 2 and 8, where in all cases

1000 outbreaks were simulated.
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Figure 4.10: These figures show the mean squared error in estimating param-

eters β and γ as N varies, for both the PBLA and ED methods.

Shown are estimated values with shape parameter m equal to 2

and 8, where in all cases 1000 outbreaks were simulated.

195



CHAPTER 4: LIKELIHOOD APPROXIMATION METHOD SIMULATION STUDIES
AND APPLICATIONS

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

β

D
en

si
ty

PBLA
ED

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

D
en

si
ty

PBLA
ED

Beta and Gamma, for N=50 and 1000 simulations

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

β

D
en

si
ty

PBLA
ED

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

γ

D
en

si
ty

PBLA
ED

Beta and Gamma, for N=50 and 1000 simulations

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

β

D
en

si
ty

PBLA
ED

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

γ

D
en

si
ty

PBLA
ED

Beta and Gamma, for N=50 and 1000 simulations

Figure 4.11: To compare the impact of varying m, these figures show densities

of MLEs from both the ED and PBLA III methods with gamma

infectious periods. Data are from 1000 simulations with N = 50

and β = 2. In the upper plots the true values are m = γ = 1, in

the middle plots m = γ = 2 and in the lower plots m = γ = 3.

196



CHAPTER 4: LIKELIHOOD APPROXIMATION METHOD SIMULATION STUDIES
AND APPLICATIONS

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

β

D
en

si
ty

PBLA
ED

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

γ

D
en

si
ty

PBLA
ED

Beta and Gamma, for N=50 and 1000 simulations

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

β

D
en

si
ty

PBLA
ED

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

γ

D
en

si
ty

PBLA
ED

Beta and Gamma, for N=50 and 1000 simulations

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

β

D
en

si
ty

PBLA
ED

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

γ

D
en

si
ty

PBLA
ED

Beta and Gamma, for N=50 and 1000 simulations

Figure 4.12: To compare the impact of varying m, these figures show densities

of MLEs from both the ED and PBLA III methods with gamma

infectious periods. Data are from 1000 simulations with N = 50

and β = 2. In the upper plots the true values are m = γ = 5, in

the middle plots m = γ = 8 and in the lower plots m = γ = 10.
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Varying shape parameter m = γ

Figures 4.11 and 4.12 display the effect varying shape parameter m, whilst

maintaining γ = m to keep a constant mean infectious period. We would

expect both methods to improve for increased m since the infectious period

becomes closer to constant. We see that even for m = 2, both methods ap-

proximate β and γ well, and almost exactly for m ≥ 3. Though both methods

perform very similarly for larger values of shape m, PBLA offers considerably

improved estimation over the ED method for smaller m.

As with varying N, we investigate the impact of varying m, for a fixed R0, on

the bias and mean squared error of our estimates. Figures 4.13 and 4.14 show

the estimated bias and mean squared error, respectively, with R0 fixed to 1.6

and 4. We see that as we increase m (so the infectious periods tend closer to

constant), in consequence the bias and mean squared error greatly reduce for

both approximation methods. In agreement with what we have seen so far, it

seems that moving from m = 1 to m = 2 provides the largest improvement,

especially in the mean squared error, and then larger m values do not alter

this so greatly. The PBLA and ED methods have very similar bias and mean

squared error for larger m, though both are considerably lower with PBLA for

smaller values of the shape parameter.

Varying basic reproduction number R0

Figures 4.15 and 4.16 show the effect of varying R0 on estimation. This is

achieved by varying β whilst keeping all other parameters fixed, including

fixed mean and variance of the infectious period. We see that in the first plot

of Figure 4.15 where only on average 8 out of 80 individuals were infected,

both methods estimate β and γ well on average, but with a fairly large vari-

ance. In the second plot of Figure 4.15 where the proportion of infectives has

increased to almost half, the estimation is still good, but with much lower vari-

ance. There is no significant difference between the performance of the two

methods. Then, as we saw in the exponential case, in both plots in Figure 4.16

(where the average number of infectives has increased to 78 and 80 out of 80,
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respectively), the estimation of both β and γ has worsened, by both methods

fairly equally.

Concluding remarks

We see a marked improvement in the performance of both approximation

methods with gamma distributed infectious periods compared to exponential,

even for just shape m = 2. In almost all of the examples we have explored, both

β and γ are estimated very closely, and the PBLA and ED methods perform

very similarly. As for exponential infectious periods however, both methods

continue to struggle when the proportion of infectives is close to one.

Considering the error involved in estimation under both methods, we have

seen that larger values of shape parameter m and population size N lead to

lower bias and mean squared error. Since these methods are intended for large

populations, this should be beneficial. We have seen that the PBLA method

offers lower bias and mean squared error than the ED method, especially for

lower shape parameter values.

In terms of the time taken to run the analysis under both methods, the compu-

tational speed is of course affected by the computational parameters chosen.

For example, we must choose the number of trapezia to be used in the numer-

ical integration for the ED method. For k = 1000 trapezia (any larger num-

ber having been found not to significantly increase the accuracy), m = 8 and

N = 100, the PBLA method is roughly four times faster than the ED method.

As N increases up to 1000, PBLA is still faster though only now by a factor of

two. Indeed, for all N ≥ 1000 tested, the PBLA method remains approximately

twice as fast as the ED approach. This highlights the benefits of the PBLA

method: we have avoided numerical integration and provided an approxima-

tion method which is more computationally efficient than the ED method, at

no apparent cost of accuracy. We will analyse this more fully in Section 4.1.4.
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Figure 4.13: These figures show the bias in estimating parameters β and γ as

m = γ varies, for both the PBLA and ED methods. Shown are

estimated values with R0 fixed to 1.6 and 4, N = 80, and where

in all cases 1000 outbreaks were simulated.
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rameters β and γ as m = γ varies, for both the PBLA and ED

methods. Shown are estimated values with R0 fixed to 1.6 and 4,

N = 80, and where in all cases 1000 outbreaks were simulated.
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Figure 4.15: To compare the impact of varying R0, these figures show den-

sities of MLEs from both the ED and PBLA III methods with

gamma infectious periods. Data are from 1000 simulations with

N = 80 and shape m = 5. In the upper plots the true values are

β = 0.16 and γ = 1, and in the lower plots β = 0.31 and γ = 1.

This leads to R0 values of 0.8 and 1.55, respectively, with the av-

erage number of infectives in these simulations being 8 and 39.
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Figure 4.16: To compare the impact of varying R0, these figures show den-

sities of MLEs from both the ED and PBLA III methods with

gamma infectious periods. Data are from 1000 simulations with

N = 80 and shape m = 5. In the upper plots the true values are

β = 0.8 and γ = 1, and in the lower β = 1.5 and γ = 1. This leads

to R0 values of 4 and 7.5, respectively, with the average number

of infectives in these simulations being 78 and 80.
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4.1.3 A Comparison of PBLA versions

The simulation studies in sections 4.1.1 and 4.1.2 have compared the ED and

PBLA methods in terms of parameter estimation, and found that, in general,

PBLA offers more accurate estimates. However, so far we have only focused

on PBLA version III. In this section, we now perform a brief comparison of the

different PBLA versions, with both exponential and gamma infectious periods

as usual. Similar to the study in Section 4.1.2, we will simulate a large number

of outbreaks for a selection of sets of parameter values, and perform parameter

estimation using PBLA methods I through V (where applicable).

4.1.3.1 Exponential Infectious Periods

Considering exponential infectious periods first, we simulate 1000 outbreaks

for three sets of parameter values with increasing population size N. In all

cases, we use true values β = 1.5, γ = 1.0, with N = 15, 100 and 250. In each

simulation we begin with one initial infective, and we discard and resimulate

any simulations of final size one. Since in this study we are only comparing

different versions of PBLA, for which maximum likelihood estimation is ap-

plicable, we will perform parameter estimation using the ‘optim’ function in R

to obtain MLEs.

Figure 4.17 includes densities of the estimates of β and γ using PBLA versions

I through V, for these increasing values of the population size N. Most of

the methods perform similarly when N is small, but for larger N the later

PBLA versions offer considerable improvement over PBLA I. We see that a

population size of N = 15 is perhaps not large enough for the central limit

theorem approximation in PBLA IV to hold, since there is bimodality in the

density for γ.

In terms of computational speed, PBLA IV is the fastest version to run, and

seems to do so at little cost of accuracy in all but small population sizes. This

particularly highlights this method as a strong alternative to DA-MCMC with
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Figure 4.17: To compare the different PBLA versions, these figures show den-

sities of MLEs for 1000 simulations over a range of population

sizes with exponentially distributed infectious periods, where

β = 1.5 and γ = 1. Note: PBLA II curve is almost exactly be-

hind PBLA V.
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the true likelihood when computation times are slow, so long as the population

size is large enough for the CLT to hold. PBLA II and III, although slower

than IV, are more widely applicable since they have no requirement for a large

population size.

4.1.3.2 Gamma Infectious Periods

Moving on to gamma distributed infectious periods, we again simulate 1000

outbreaks for a series of different parameter values in order to perform param-

eter estimation using each of the PBLA versions. Simulation and estimation is

performed as in the exponential case. We do not include PBLA IV in this sec-

tion, since it is not suitable for gamma infectious periods.

For all sets of parameter values tested we find that PBLA II, III and V perform

very similarly, and all offer better estimation than PBLA I. Figures 4.18, 4.19

and 4.20 display densities from 1000 simulations over a range of values for β,

γ, m and N, under all of which we may make these same conclusions. Note

that in these figures, PBLA versions II, III and V are so similar that the curves

are almost indistinguishable.

As we have seen in the previous simulation studies, all of the PBLA versions

somewhat struggle when the proportion of infectives is very large, as in the γ

estimation in Figure 4.20 where R0 = 4. This strengthens the proposition in

Section 4.1.2.1 that the contribution from non-infective individuals (contained

in ψ term) is key to the accuracy of the PBLA method, especially since most of

the approximation is in the infective-to-infective pressure term.

PBLA V provides very similar estimation to PBLA II and III in all the cases

we have examined. We might have expected it to perform better since we

consider the infectious pressure from any individual j to individual k together

with the pressure from k to j, rather than looking at these independently. As

discussed in Section 3.4.9.3, it seems that this has little impact however. Re-

gardless, PBLA V is considerably faster than PBLA II or III, so similar perfor-
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Figure 4.18: To compare the different PBLA versions, these figures show den-

sities of MLEs for 1000 simulations with gamma distributed in-

fectious periods. Respectively, true β = 1.2, γ = 1 and N = 100,

and β = 1.2, γ = 1, N = 500. In both plots, m = 2. Note: PBLA

II, III and V are almost exactly aligned.
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Figure 4.19: To compare the different PBLA versions, these figures show den-

sities of MLEs for 1000 simulations with gamma distributed in-

fectious periods. Respectively, true β = 1, γ = 5, m = 8 and

N = 15, and β = 0.8, γ = 1, N = 100 and m = 2. Note: PBLA

II-V are almost exactly aligned.
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Figure 4.20: To compare the different PBLA versions, this figure shows den-

sities of MLEs for 1000 simulations with gamma distributed in-

fectious periods, where β = 2, γ = 1, m = 2 and N = 100. Note:

PBLA II-V are almost exactly aligned.

mance means it could still be beneficial to implement this version.

4.1.3.3 Conclusion

In summary, we have found that, for both exponential and gamma distributed

infectious periods, any of PBLA methods II through V offer similar perfor-

mance, and improvement over PBLA I. For exponential infectious periods,

PBLA IV may be considered a good choice since it offers comparable estima-

tion at the lowest computational cost, so long as the population size is not too

small. Otherwise, for gamma infectious periods, PBLA III and V provide the

fastest computation time and closest estimation. Under the range of parame-

ter values tested, each of methods II through V results in estimates close to the

true values, though we continue to see these struggle when the proportion of

infectives is very large. Future work could include the development of further

PBLA versions which work better under these circumstances.
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4.1.4 Computation time

So far we have compared the likelihood approximation methods to DA-MCMC

in terms of the accuracy of parameter estimation. Although this is of course

important, so is the computation time involved. If approximation methods do

not offer an improvement over standard DA-MCMC with the true likelihood,

then there will of course be less motivation to use them. In this section we

perform a comparison of the computation time required for the PBLA method

with MCMC, as compared to DA-MCMC. After our findings in sections 4.1.2

and 4.1.3, that PBLA generally outperforms the ED method and that PBLA III

offers a good balance of computation time and wide applicability compared to

the other PBLA versions, we will restrict our attention here to PBLA III.

4.1.4.1 Method

For this study, we will compare the time taken to obtain MCMC samples using

both PBLA III with MCMC and standard DA-MCMC. We simulate a number

of outbreaks with increasing population sizes N, using gamma distributed in-

fectious periods with shape parameter m = 1 (corresponding to exponential

infectious periods), m = 2 and m = 5. In all cases, we set infection rate pa-

rameter β = 1.5 and removal rate γ = m, to result in an R0 value of 1.5. We

simulate a single outbreak for each of N = 20, 50, 100, 200, 500, 1000 and

2000, for each set of (β, γ, m) values. We assume one initial infective for each

simulation, and re-simulate any outbreaks of final size one.

We then perform parameter estimation for β and γ using PBLA with MCMC

and standard DA-MCMC, assuming shape parameter m is fixed. We record the

time taken to obtain a fixed number of samples ns from the MCMC algorithms,

where all parameters are updated at each iteration of the algorithms. For PBLA

this is just β and γ, whereas for DA-MCMC we also update all infection times

at each iteration. For PBLA we perform random walk updates, with low rate

(10−4) exponential priors. All analysis is coded in C and performed on the
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same machine.

In reality, both methods would require a burn-in period for the Markov chain

to move into equilibrium. The choice of initial values of the parameters there-

fore impacts the samples obtained. However, since DA-MCMC requires impu-

tation of initial infection times but PBLA only requires initial β and γ values,

there is no fair way to compare this burn-in between the two methods. We

hence start all algorithms suitably tuned, with the chains already in equilib-

rium so that the comparison is fair regardless of the initial values selected.

We could perform a simple comparison of the time taken to obtain a fixed

number of MCMC samples, but as discussed in Section 3.1 a motivating factor

in using likelihood approximation methods is the high dependence between

the infection times and γ, when using DA-MCMC. This may cause slow mix-

ing of the Markov chain. We therefore seek some measure of computation time

which includes the computational burden involved in obtaining independent

samples.

Effective sample size (ESS) is one such measure which may be used, and is

popular as an MCMC diagnostic (see e.g. Brooks et al. (2011) and Kass et al.

(1998)). If we have obtained a number ns of dependent samples from our

MCMC, the ESS estimates the number of independent samples that this corre-

sponds to (so in a completely independent chain, the ESS is equal to ns ). The

ESS is defined as

ESS =
ns

1 + 2 ∑∞
k=1 ρ(k)

,

where ρ(k) is the autocorrelation at lag k. In practice, we truncate the infinite

sum to the first lag k where ρ(k + 1) < 0.05.

Therefore, as an overall measure of the speed at which independent samples

may be obtained, we compare the Effective sample size per second (ESS s−1)

of the PBLA MCMC and DA-MCMC algorithms, for both β and γ. This is

defined simply as the ESS divided by the time taken to obtain those samples.
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4.1.4.2 Results

Table 4.5 contains the results of this study, for m = 1, 2 and 5. For repro-

ducibility, we also include the number of samples obtained for each N, and

the values used for the tuning parameters σβ and σγ, which are the variances

of the Gaussian proposals for β and γ. The number of samples ns decreases

as N increases due to the greater computational burden of large populations,

but since all chains are well-mixed when samples begin being collected this

should not be impactful. Highlighted in the table are the lowest N values

tested for which PBLA offered a greater ESS s−1 than DA-MCMC. Plots of the

ESS s−1 against N are provided in Figures 4.21, 4.22 and 4.23, for m = 1, 2 and

5, respectively. These are plotted on a log scale for ease of exposition.

As we can see from Table 4.5 as well as Figures 4.21, 4.22 and 4.23, as the

population size N increases, eventually PBLA will result in a greater ESS per

second compared to DA-MCMC. In the case of exponential infectious periods

(m = 1), PBLA is faster the DA-MCMC even for N = 50. As m increases, only

after larger population sizes does it become computationally preferable. This

is since the structure of the PBLA III likelihood requires multiple loops over m,

and so the larger this is the longer the likelihood takes to compute, compara-

tively. The figures suggest that as the population size continues to increase, so

does the computational advantage of PBLA compared to DA-MCMC.

4.1.4.3 Discussion

As in Section 4.1.1, this computation time study uses only one simulation per

set of parameter values, so it may be that some simulations are not entirely

representative of the average. Although this is important to note, it is reason-

able to suppose that the results give a good overview of the difference in com-

putation time between DA-MCMC and PBLA MCMC. Interestingly, we have

seen overall in this chapter so far that for larger values of m, the PBLA method

offers increased performance in terms of estimation, but does require larger
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Table 4.5: Effective sample size per second obtained from DA-MCMC and

PBLA MCMC, for a range of population sizes N. Values σβ and σγ

are the variances of the Gaussian proposals used for β and γ.

Panel A: Shape parameter m=1

DA-MCMC PBLA MCMC

N n ns ESS s−1 for (β, γ) σβ σγ ESS s−1 for (β, γ)

20 16 10000 (783.56, 680.59) 1.0 0.6 (468.18, 507.41,)

50 42 3000 (66.35, 51.57) 1.0 0.6 (66.62, 75.50)

100 83 3000 (4.74, 4.46) 0.8 0.5 (9.46, 9.97,)

200 130 3000 (1.07, 1.03) 0.4 0.1 (3.99, 3.71,)

500 240 3000 (0.109, 0.108) 0.2 0.2 (1.00, 1.00)

1000 507 1000 (0.0167, 0.0169) 0.15 0.1 (0.219, 0.221)

2000 1077 1000 (0.00139, 0.00139) 0.15 0.1 (0.0432, 0.0433)

Panel B: Shape parameter m=2

DA-MCMC PBLA MCMC

N n ns ESS s−1 for (β, γ) σβ σγ ESS s−1 for (β, γ)

20 11 10000 (1210.83, 861.07) 1.0 1.0 (144.38, 156.07)

50 34 3000 (75.67, 58.25) 1.0 1.0 (5.88, 5.87)

100 75 3000 (7.11, 5.92) 1.0 1.0 (0.89, 0.87)

200 106 3000 (1.89, 1.70) 0.4 0.4 (0.86, 0.82)

500 193 1000 (0.26, 0.24) 0.1 0.1 (0.15, 0.14)

1000 587 1000 (0.0089, 0.0086) 0.1 0.1 (0.015, 0.015)

2000 1134 1000 (0.0010, 0.0010) 0.1 0.1 (0.0043, 0.0043)

Panel C: Shape parameter m=5

DA-MCMC PBLA MCMC

N n ns ESS s−1 for (β, γ) σβ σγ ESS s−1 for (β, γ)

20 16 10000 (257.91, 142.46) 1.0 1.0 (15.05, 12.77)

50 36 3000 (33.84, 24.34) 2.0 5.0 (1.77, 1.77)

100 70 3000 (5.87, 4.43) 0.5 1.0 (0.59, 0.57)

200 122 1000 (1.52, 1.17) 0.4 1.2 (0.13, 0.13)

500 194 1000 (0.23, 0.20) 0.1 0.5 (0.05, 0.05)

1000 565 1000 (0.00873, 0.00815) 0.1 0.1 (0.00518, 0.00485)

2000 1169 1000 (0.0098, 0.0093) 0.1 0.1 (0.0013, 0.0012)
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Figure 4.21: Plots of the log effective sample size per second of β and γ, ob-

tained from PBLA MCMC and DA-MCMC for increasing values

of population size N and fixed shape parameter m = 1. Note: the

lines are for visualisation purposes, only N values at the marked

points were tested.
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Figure 4.22: Plots of the log effective sample size per second of β and γ, ob-

tained from PBLA MCMC and DA-MCMC for increasing values

of population size N and fixed shape parameter m = 2. Note: the

lines are for visualisation purposes, only N values at the marked

points were tested.
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Figure 4.23: Plots of the log effective sample size per second of β and γ, ob-

tained from PBLA MCMC and DA-MCMC for increasing values

of population size N and fixed shape parameter m = 5. Note: the

lines are for visualisation purposes, only N values at the marked

points were tested.
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population sizes to be faster than DA-MCMC. However, since it is large out-

breaks which most motivate the use of likelihood approximations, this should

not be a problem in practice. We also recall that this comparison has only in-

cluded the speed of obtaining samples from an already well-mixed chain. This

ignores the time taken to reach equilibrium, for which PBLA should be faster

since it does not require updates of the infection times, though as discussed

this is difficult to compare.

There is potential to increase the speed of the PBLA MCMC algorithm even

further with future work. As well as being naturally parallelisable since the

likelihood involves computation of the contributions from different pairs of

individuals independently, the PBLA likelihood may also be used with max-

imum likelihood estimation, removing the need for MCMC altogether. For

more details, we will explore an application using maximum likelihood esti-

mation in Section 4.3. Even without these potential extensions, we have shown

that for the larger population sizes for which PBLA is intended, it offers an im-

provement in computational speed compared to DA-MCMC. Combined with

the comparable estimation which we have seen in sections 4.1.1 and 4.1.2, there

is evidence that PBLA is a useful tool for analysis.

4.2 Applications: Tristan Da Cunha respiratory dis-

ease data

With the simulation studies complete, we now explore the application of like-

lihood approximations to real data. In the three analyses which follow we will

use the PBLA III method for approximation, since it offers accurate estimation

at relatively low computational cost, as well as being applicable to the widest

range of models explored.

We begin with a data set from the remote South Atlantic island of Tristan Da

Cunha. Known as the most remote inhabited island in the world, and with
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almost zero immigration, Tristan Da Cunha is particularly of interest since

the population is actually approximately closed. Its remoteness means that

epidemics are almost always introduced from an external source such as the

arrival of ships (Shibli et al., 1971), with the population too small to reason-

ably allow for reinfection. From 1963 to 1968, medical officers continually

studied respiratory infections on the island in detail. These data have been

analysed several times, including Hammond and Tyrrell (1971), Shibli et al.

(1971), Becker and Hopper (1983), Hayakawa et al. (2003) and Xu et al. (2016).

There were seven major outbreaks during the study period, but we focus on

a particular outbreak from 1967, modelling the population with three types

of individuals as categorised by age, and comparing our results to Hayakawa

et al. (2003).

4.2.1 Data and Model

4.2.1.1 Data

Between October and November of 1967, 40 of the island’s 255 inhabitants

were infected with a respiratory disease. We consider the population segre-

gated into three groups: (1) infants, aged 0-4, (2) children, aged 5-14, and (3)

adults, aged 15 and above (at the time, children on Tristan Da Cunha attended

school between the ages of 5 and 15). One case was unidentified, so we reduce

the population size to 254.

To introduce the data, the population size is given by N = 254, of which n = 40

become infected. The initial population size of each group is N1 = 25, N2 = 36

and N3 = 193, with the total number of cases for each group given by n1 = 9,

n2 = 6 and n3 = 25. The data contain the total number of cases identified

each day, which we take to be equal to removal times. Table 4.6 displays this

as daily data for simplicity, though for the PBLA method we convert it into an

individual-based format. To do this (referring to Table 4.6), we set the removal

time of the first infective as 1.0, the removal time of the second infective as 8.0
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Table 4.6: Removal data from the 1967 respiratory disease outbreak on Tristan

Da Cunha (from Hayakawa et al. (2003), and originally Becker and

Hopper (1983)). Age groups defined as: infants aged 0-4, children

aged 5-14, and adults aged 15 and above.

Number of removals

Day Infants Children Adults

1 0 0 1

8 0 0 1

10 0 1 1

11 3 1 0

12 1 1 2

13 3 0 3

15 1 1 1

16 0 1 4

17 0 0 1

18 1 1 1

19 0 0 3

20 0 0 2

21 0 0 1

22 0 0 2

29 0 0 1

30 0 0 1

Total 9 6 25

and so on. To avoid the problems of equal removal times discussed in Section

3.4.10, we jitter all equal removals by increments of 0.1, which was found to

have minimal impact on the likelihood values.

4.2.1.2 Model

We may next define the model to be used, which is the same as that in Hayakawa

et al. (2003) for comparability. We assume that Tristan Da Cunha forms a closed

population of N individuals labelled 1, 2, . . . , N, of whom 1, 2, . . . , n become

infected (n ≤ N). All individuals are categorised by age into one of groups 1,
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2 and 3, as defined above in section 4.2.1.1. We also assume external infection

of the initial case. We will use a simple SIR stochastic transmission model for

the disease, defined along much the same lines as previous models we have

explored in this thesis. At any given time, each individual in the population

will be either in state S (susceptible), state I (infective), or state R (removed).

For all infectives j = 1, 2, . . . , n, let ij and rj denote, respectively, their time of

infection and removal. Any susceptible individual may become infected, as

will be described below, and enter the I stage at which point they are able to

infect others. They will later become removed (corresponding to detected) and

enter the R stage. At this point, they are unable to cause infections and, since

the length of the outbreak was too short to reasonably allow reinfection, are

considered removed from the population.

The outbreak begins with the infection of the initial case κ at time iκ, and ends

when there are no infectives remaining in the population. The infection times

i = {ij : j = 1, 2, . . . , κ − 1, κ + 1, . . . , n} are unknown, and the data consist of

removal times r = {rj : j = 1, 2, . . . , n, where r1 < r2 < · · · < rn}. During

their infectious period, any infective will have a contacts with an individual

from group i at times given by points of a Poisson process of rate βi, where

all Poisson processes are assumed mutually independent. That is to say, all in-

dividuals are equally infectious, but individuals in group i receive infectious

pressure βi to reflect their differing susceptibility to the disease. Any contact

between an infective and a susceptible is assumed to result in immediate infec-

tion. The lengths of the infectious periods of different individuals are assumed

mutually independent and exponentially distributed with parameter γ.

Hayakawa et al. (2003) used data augmentation and MCMC to estimate in-

fection rates, infectious period parameters and reproduction numbers for this

outbreak. We fit the same model but use the PBLA method with MCMC in

order to compare our results.
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Table 4.7: Gamma prior distributions for the infection parameters in the Tris-

tan Da Cunha outbreak, as in Hayakawa et al. (2003).

Mean Variance

β1 0.001 100

β2 0.001 100

β3 0.001 100

γ 0.1 100

4.2.2 Results

As in the simulation studies, we wish to compare PBLA to standard DA-

MCMC by considering the difference in estimation of the model parameters.

Under the Tristan Da Cunha model, these parameters are the infection rates for

each age group β1, β2 and β3, and infection rate γ. We will also consider es-

timation of the basic reproduction number R0 = β1N1+β2N2+β3N3
γ . We perform

MCMC with the PBLA III likelihood, and compare this to the DA-MCMC re-

sults from Hayakawa et al. (2003). The PBLA MCMC was coded in C and em-

ploys individual Gaussian random walk updates, with 100,000 samples taken

after a burn-in of length 10,000. To maintain comparability, we used the same

gamma distributed prior distributions as Hayakawa et al. (2003), with param-

eters given in Table 4.7.

The results of the analysis are shown in Figure 4.24. Plotted are histograms of

MCMC samples from the PBLA likelihood for the model parameters as well

as R0. These samples are compared with the dotted lines in the figures, which

represent the mean posterior estimates from Hayakawa et al. (2003). Table 4.8

contains the mean parameter estimates for both methods for comparison.

We see that the PBLA method provides estimates close to those of Hayakawa

et al. (2003), despite not requiring the data augmentation of their analysis. This

provides evidence that the PBLA method is an effective approximation, even

for a multi-type epidemic model.
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Figure 4.24: Histograms of parameter estimates for the Tristan Da Cunha data

using the PBLA III approximation method. Dotted lines repre-

sent the mean estimates using DA-MCMC from Hayakawa et al.

(2003).
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Table 4.8: Mean parameter estimates for the the Tristan Da Cunha data using

PBLA with MCMC and DA-MCMC (from Hayakawa et al. (2003)).

DA-MCMC Mean PBLA mean

β1 0.00451 0.00641

β2 0.00181 0.00239

β3 0.00131 0.00171

γ 0.371 0.499

R0 1.2 1.2

4.3 Applications: West African Ebola virus data

In our next analysis, we consider a data set from the 2014 Ebola virus epi-

demic in West Africa. The most widespread outbreak of the disease to date,

the epidemic saw a case fatality of above 70% (of laboratory confirmed cases,

see reference for Centers for Disease Control and Prevention (Accessed 2018-

03-11)). This was mainly centred on the nations Guinea, Sierra Leone and

Liberia, though minor outbreaks and isolated cases were also seen elsewhere

across West Africa as well as the USA, UK, Spain and Italy. The outbreak was

identified in Guinea in December of 2013, spreading to Liberia and then Sierra

Leone over the next few months. As the number of infected cases began to

rise, the Ebola outbreak gained much attention as the introduction of public

health interventions failed to stop the increase in both cases and deaths.

There were 28,652 officially recorded cases in the outbreak (from December

2013 to April 2016), though we will focus on a smaller data set across only

Guinea, Sierra Leone and Liberia, recorded from March 2014 to February 2016.

This data set was obtained from the Centers for Disease Control and Pre-

vention (Accessed 2018-03-11), though was originally collected by the World

Health Organisation. We wish to compare analysis using the PBLA method

to that from Althaus (2014), who used an ODE model with the Ebola data, to

estimate transmission parameters for the disease. We wish to follow Althaus’
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model as closely as possible to compare the results of their analysis with those

using PBLA. Althaus described SEIR transmission dynamics with a set of ordi-

nary differential equations; these were solved numerically and, assuming the

cumulative numbers of cases and deaths to be Poisson distributed, maximum

likelihood estimates for the parameters of interest were obtained. As we will

see, this model is very different to those we have considered so far for PBLA,

and so adjustments will need to be made to approximate it closely. It will be

interesting to see how PBLA performs under these different conditions.

An important note is that we will use Althaus’ model for comparison, but

with a different data set than in the original paper. Althaus’ data set was also

obtained from the World Health Organisation, but since the paper was pub-

lished in 2014 it does not contain data on the complete outbreak. Complete

data is not required for Althaus’ method, but is for the PBLA approach that

we have adopted (in the sense that the entire length of the outbreak must have

occurred, we may of course have unobserved event times). We will explore

this in Section 4.3.3, but first we perform analysis with both methods on the

same, larger data set.

4.3.1 Data and Models

4.3.1.1 Data

The Ebola outbreak data for Guinea, Sierra Leone and Liberia are given in Ta-

ble 4.9. These have been adapted from the Centers for Disease Control and Pre-

vention (Accessed 2018-03-11), though are originally from the World Health

Organisation (Accessed 2017-11-27). This data set covers a much longer time

frame than that used in the Althaus paper: from March 2014 to February 2016,

which is the entire length of the outbreak for which detailed data was col-

lected for these nations. We will consider both the Althaus method and PBLA

method with this larger data set, to explore whether the parameter estimates

are similar given a completed outbreak.

224



CHAPTER 4: LIKELIHOOD APPROXIMATION METHOD SIMULATION STUDIES
AND APPLICATIONS

Both the data available from the Centers for Disease Control and Prevention

(CDC) and the model used in Althaus’ original analysis are not directly ap-

plicable to the PBLA method. They require some adaptation, but in order to

make the most accurate assessment of PBLA we will adapt both, and re-run

Althaus’ analysis in its most comparable form. The original analysis was ob-

tained from Althaus’ Github repository (Accessed 2017-11-27)). The data as

given in Table 4.9 are in this modified form.

The data consist of the number of deaths per day (confirmed, probable and

suspected to be from Ebola), for each of the three countries. Although the data

are shown in daily format for brevity, the PBLA method of course requires

them as individual-based. The original Althaus data contain some days where

the total number of observed cases decreases (presumably due to identifica-

tion error), which our individual-based model cannot include. Hence we have

modified the data to ignore any decreases in the number of cases.

Althaus’ original analysis required imputation of both the cases identified per

day and the deaths per day, whereas PBLA requires removal data. Case iden-

tification, of course, does not equal removal unless quarantine is immediate.

We know from Althaus (2014) that control measures were put in place with the

appearance of the index case. The date of this was identified as 2nd December

2013 by Baize et al. (2014), with the initial death being a one year old boy who

lived in a village in Guinea and died December 6th 2013. However, details of

the control measures are not provided and so we cannot be sure that quaran-

tine was indeed immediate. On the other hand, taking the deaths data as the

removals ignores all non-fatal cases. To remedy this issue, we choose to use

the deaths data only in both analyses. Although this means we are discarding

some of the available data, this will ensure that the PBLA parameter estimates

remain comparable to those using Althaus’ method. Our motivation here is to

assess PBLA through comparison with Althaus’ method, rather than perform

a detailed data analysis. Our assumptions about, and adaptations of, the data

are therefore not critical for this exercise.
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The Althaus model takes longitudinal data as input, i.e. it considers the status

of the system (the cumulative number of observed deaths in this case) at a dis-

crete set of observed times. However, the PBLA method assumes that the time

provided is the exact removal time for each individual. For example, from

Table 4.9, that twelve individuals were infected on April 7th in Guinea, when

in fact they probably became gradually infected since the last observation five

days previous. To incorporate this into the data, for the PBLA method we

evenly distribute all observed cases over the time period since the last obser-

vation. For computational reasons, we also scale the removal times by a factor

of 1
1000 for the PBLA analysis. Without this, some exponential expressions in

the likelihood are too small to be calculated in R. Our parameter estimates in

Section 4.3.2 will be scaled back up to be comparable to those from the Althaus

method.

4.3.1.2 Model: Althaus analysis

Since we will be adapting the model used in Althaus (2014) for comparibility

with the PBLA method, we will briefly describe this modified model. Further

details can be found in the original paper.

The Ebola transmission will follow an SEIR model. As usual, susceptible in-

dividuals S enter the exposed class E upon infection, before moving to class I,

and becoming able to infect others, at rate σ. With the deaths data as removals,

individuals are moved to class R upon death at rate γ. This may be described

by the following set of ordinary differential equations:
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Table 4.9: WHO data concerning deaths in the West African Ebola epidemic

of 2014, adapted from the Centers for Disease Control and Preven-

tion (Accessed 2018-03-11). Details of the adaptation of the data are

given in Section 4.3.1.1.

Number of deaths

Day Guinea SL Liberia

25/03/14 59 0 0

26/03/14 60 0 0

27/03/14 66 0 6

31/03/14 70 0 6

01/04/14 80 0 6

02/04/14 83 0 6

07/04/14 95 0 7

10/04/14 101 0 14

17/04/14 122 0 14

21/04/14 129 0 14

23/04/14 136 0 14

30/04/14 146 0 14

05/05/14 155 0 14

14/05/14 157 0 14

23/05/14 174 0 14

27/05/14 174 4 14

28/05/14 186 5 14

02/06/14 193 6 14

05/06/14 215 7 14

10/06/14 236 7 14

11/06/14 241 19 14

18/06/14 264 49 24

24/06/14 270 49 34

02/07/14 303 99 65

07/07/14 305 101 75

08/07/14 307 127 84

14/07/14 309 142 88

16/07/14 309 192 105

21/07/14 310 206 116

Number of deaths

Day Guinea SL Liberia

24/07/14 314 219 127

28/07/14 319 224 129

31/07/14 339 233 156

03/08/14 346 252 227

04/08/14 358 273 255

08/08/14 367 298 294

12/08/14 373 315 323

13/08/14 377 334 355

15/08/14 380 348 355

19/08/14 394 365 466

21/08/14 396 374 576

22/08/14 406 392 624

28/08/14 430 422 694

06/09/14 517 491 1089

08/09/14 555 509 1224

12/09/14 557 524 1224

16/09/14 595 562 1296

18/09/14 601 562 1459

22/09/14 632 593 1578

24/09/14 635 597 1677

26/09/14 648 605 1830

01/10/14 710 622 1998

03/10/14 739 623 2069

08/10/14 768 879 2210

10/10/14 778 930 2316

15/10/14 843 1183 2458

17/10/14 862 1200 2484

22/10/14 904 1359 2705

25/10/14 926 1359 2705
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Number of deaths

Day Guinea SL Liberia

29/10/14 997 1500 2705

31/10/14 1018 1510 2705

05/11/14 1041 1510 2705

07/11/14 1054 1510 2766

12/11/14 1054 1510 2836

14/11/14 1166 1510 2836

19/11/14 1192 1510 2964

21/11/14 1214 1510 2964

26/11/14 1260 1510 3016

28/11/14 1312 1530 3145

03/12/14 1327 1583 3145

10/12/14 1428 1768 3177

17/12/14 1525 2085 3290

24/12/14 1607 2582 3384

31/12/14 1708 2758 3423

07/01/15 1781 2943 3496

14/01/15 1814 3062 3538

21/01/15 1876 3145 3605

28/01/15 1910 3199 3686

04/02/15 1944 3276 3746

11/02/15 1995 3341 3826

18/02/15 2057 3408 3900

25/02/15 2091 3461 4037

04/03/15 2129 3546 4117

11/03/15 2170 3629 4162

18/03/15 2224 3691 4264

25/03/15 2263 3747 4301

01/04/15 2314 3799 4332

08/04/15 2333 3831 4408

15/04/15 2346 3857 4486

Number of deaths

Day Guinea SL Liberia

22/04/15 2358 3877 4573

29/04/15 2377 3899 4608

06/05/15 2386 3903 4716

13/05/15 2392 3904 4769

20/05/15 2407 3907 4806

27/05/15 2420 3908 4806

03/06/15 2429 3912 4806

10/06/15 2437 3915 4806

17/06/15 2444 3919 4806

24/06/15 2473 3928 4806

01/07/15 2482 3932 4806

08/07/15 2499 3940 4807

15/07/15 2506 3947 4808

22/07/15 2512 3949 4808

29/07/15 2520 3951 4808

05/08/15 2522 3951 4808

12/08/15 2524 3951 4808

19/08/15 2524 3952 4808

26/08/15 2527 3952 4808

03/09/15 2529 3953 4808

10/09/15 2530 3953 4808

17/09/15 2530 3953 4808

24/09/15 2532 3955 4808

01/10/15 2533 3955 4808

08/10/15 2534 3955 4808

15/10/15 2534 3955 4808

22/10/15 2535 3955 4808

29/10/15 2535 3955 4808

05/11/15 2536 3955 4808

11/11/15 2536 3955 4808
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Number of deaths

Day Guinea SL Liberia

18/11/15 2536 3955 4808

25/11/15 2536 3955 4808

02/12/15 2536 3955 4809

09/12/15 2536 3955 4809

16/12/15 2536 3955 4809

23/12/15 2536 3955 4809

30/12/15 2536 3955 4809

06/01/16 2536 3955 4809

13/01/16 2536 3955 4809

20/01/16 2536 3956 4809

Total 2536 3956 4809

dS
dt

= −β(t)
SI
N

dE
dt

= β(t)
SI
N
− σE

dI
dt

= σE− γI

dR
dt

= γI.

The averages of the latent and infectious period lengths are fixed to estimates

from an outbreak of the same Ebola subtype in Congo in 1995 (Chowell et al.,

2004), that is exposed period average length 1
σ = 5.3 days and infectious pe-

riod average length 1
γ = 5.61 days. The infection rate β(t), a function of time t

which is normalised such that t = 0 corresponds to the first recorded death in

the data for each country, is given here by

β(t) = b0e−k(t+τ0),

for constants b0, k and τ0, to be estimated. We define parameter τ0 as the time of

infection of the initial infective in the given country. For Guinea, Althaus fixes

this to the known date of the start of the outbreak in the country: December

2nd 2013. For Sierra Leone and Liberia, this parameter is estimated.
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We set the total population size for each country to be 106, as in the origi-

nal analysis. Parameter estimates for b0, k and τ0 are obtained via maximum

likelihood estimation, assuming the cumulative number of deaths is Poisson

distributed.

4.3.1.3 Model: PBLA analysis

In order to ensure our analysis is comparable to that of Althaus, we use the

most equivalent model possible for the PBLA analysis. We fit an SEIR model

which is, so far as possible, the stochastic analogue of that described in Section

4.3.1.2 above.

We assume that each of the three countries form a closed population of N =

106 individuals labelled 1, 2, . . . , N, of whom 1, 2, . . . , n become infected, where

n = 2536, 3956 and 4809, respectively, in Guinea, Sierra Leone and Liberia. We

assume that the initial case in each country was externally infected.

The SEIR transmission model will be much the same as for Althaus’ analysis,

though defined stochastically. At any given time, each individual in the popu-

lation will be either in state S (susceptible), state E (exposed), state I (infective),

or state R (removed). For each individual j = 1, 2, . . . , n, ej, ij and rj denote,

respectively, their time of exposure (unknown), infectivity (unknown), and re-

moval (known). Any susceptible individual may become exposed and enter

the latent E stage during which they are infected, but not yet infectious. They

next enter the I stage at which point they become able to infect others. They

last become removed and enter the R stage, during which they are unable to

cause new infections and are considered removed from the population.

The outbreak begins with the initial case κ entering their infectious period at

time iκ, since this is the point at which infectious pressure begins to be applied,

and ends when there are no exposed or infective individuals remaining in the

population. The exposure times e = {ej : j = 1, 2, . . . , κ − 1, κ + 1, . . . , n} and

infection times i = {ij : j = 1, 2, . . . , n} are unknown, and the data consist
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of removal times r = {rj : j = 1, 2, . . . , n, where r1 < r2 < · · · < rn}. Dur-

ing their infectious period only, any infective j will have a contact with any

other individual k at a time given by the point of a Poisson process of rate

β jk, where all Poisson processes are assumed mutually independent. Any con-

tact between an infective and a susceptible is assumed to result in immediate

infection. We also assume that the infectious periods are mutually indepen-

dent and exponentially distributed with known parameter γ = 1
5.61 so that the

infectious periods are of mean length 5.61 days, as well as the latent periods

being of fixed length 1
σ = 5.3 days.

Since the PBLA framework does not allow for an infection rate dependent

upon time as in Althaus’ analysis, we define β jk as a proxy-time-dependent

infection rate:

β jk = b0e−k(Tjk+τ0).

Here, Tjk approximates the midpoint of the time period for which there is in-

fectious pressure between individuals j and k, which under the PBLA method

is the only time we consider quantity β jk. For infective j and individual k who

also eventually becomes infected, Tjk is therefore defined as:

Tjk =
1
2

(
E[rj ∧ ek] + E[ij ∧ ek]

)
=

rk − 1
γ −

1
σ −

1
4γe−γ(rj−rk+

1
σ ) if rj > rk − 1

σ ,

rj − 1
2γ + 3

4γe−γ(rk−rj− 1
σ ) if rj ≤ rk − 1

σ .

For all individuals k in the population who did not become infected, we define

Tjk = rj −
1

2γ
,

which again approximates the midpoint of the time period for which infec-

tive j put infectious pressure on k. There are many other possible versions of

Tjk that could be considered, representing different stages through the time at

which there is pressure between j and k, but a brief investigation of the most

extreme possibilities revealed that this choice did not significantly impact the

results.
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In β jk, we scale the infection rates by fixing τ0 to the corresponding estimates

from the Althaus analysis for the outbreak start date in each country. This

leads to a heterogeneously mixing population where we only need to estimate

quantities b0 and k.

Although we could use MCMC with the PBLA likelihood to find parameter

estimates, in this case we will optimise the likelihood, using the optim function

in R. This results in even faster computation, and is comparable to the MLEs

obtained with Althaus’ method.

4.3.2 Results

With both models defined, we may progress to comparing results from both

methods of analysis. Table 4.10 provides the MLEs of b0 and k obtained under

each method and for each of the three countries. We see that the estimates

obtained are, in general, very similar under both models/methods. In the

Althaus analysis we also estimate τ0, and then use the respective estimate for

each country in the PBLA likelihood. This corresponds to τ0 = 113, 58, and 0

in Guinea, Sierra Leone and Liberia, respectively.

Figure 4.25 contains profile likelihoods for parameters b0 and k using the PBLA

log-likelihood, where the red lines provide the corresponding MLE from the

Althaus method. Figure 4.26 then shows contour plots for these parameters,

with the Althaus MLEs shown by the black points. We see again that both

methods provide similar estimation, indicating that the PBLA approximation

is performing well. This also indicates that the proxy-time-dependent infec-

tion rate used with PBLA is a good approximation to the original rate used in

the Althaus analysis.

4.3.3 Original Althaus data analysis

As we have discussed, one fundamental difference between the Althaus method

and PBLA is that the Althaus method uses the data in a longitudinal format,
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Figure 4.25: Profile likelihoods for b0 and k under the PBLA log-likelihood,

using the full CDC data. Red lines display the corresponding

MLEs using the Althaus method.
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Figure 4.26: Contour plots for b0 and k under the PBLA log-likelihood, using

the full CDC data. Black points indicate the corresponding MLEs

using the Althaus method.
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Table 4.10: MLEs for the West African Ebola outbreak, using the full CDC

data with the Althaus and PBLA methods.

b0 k

Althaus

Guinea 0.2306 0.0007118

Sierra Leone 0.2766 0.001797

Liberia 0.3028 0.002509

PBLA

Guinea 0.2429 0.001054

Sierra Leone 0.3347 0.002890

Liberia 0.2659 0.002141

whereas PBLA takes individual-based observations and, as part of this, as-

sumes that we have observed all removals until the end of the outbreak. This

is not necessary for the Althaus method which simply checks the status of the

population at some discrete set of times, whether or not the last time repre-

sents the end of the outbreak. In order to avoid use of incomplete outbreak

data we have performed the analysis so far with the larger data set from the

CDC. Next, however, we will re-perform the analysis with the original Althaus

data to demonstrate what happens to the PBLA likelihood when it is applied

to an incomplete outbreak.

4.3.3.1 Data and models

The data are given in Table 4.11, adapted from Althaus (2014) though again

originally from the World Health Organisation (Accessed 2017-11-27). The

data consist of the number of deaths per day (confirmed, probable and sus-

pected to be from Ebola), for each of the three countries. We make the same

adaptations to the data as before. We ignore any decreases in the observed

number of deaths, with this modification already applied to the data set given

in Table 4.11. We also take only the deaths data, scaled by a factor of 1
1000 for

the PBLA analysis as before, and smooth out the deaths equally over the re-

gion during which they may have occurred. Again, for the PBLA analysis we
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convert these data to an individual based format.

Comparing the CDC data in Table 4.9 to the Althaus data in Table 4.11 over

the region which they both include, we see that the two data sets are generally

very similar, but with some small differences. Notably, we see that the dates

have been shifted by one or two days. This may be explained as the Althaus

data providing the date on which the death was predicted to have happened,

and the CDC data providing the date on which the WHO report was pub-

lished. Since the scale is equivalent in both cases (just shifted) and we will use

the same data set with both methods of analysis, we make no attempt to align

the two.

Using the same models as in Section 4.3.1 for both the Althaus and PBLA anal-

ysis, we may now obtain parameter estimates and investigate the impact of an

incomplete outbreak.

4.3.3.2 Results

To begin our investigation we plot the observed cumulative deaths in the Al-

thaus data over time, and seek to compare this to Althaus’ model simulation

for the same period. As discussed in Section 4.3.1.2, Althaus assumes the ob-

served number of deaths is Poisson distributed with parameter equal to the

expected number of deaths from the ODE model. As in, with mean and vari-

ance equal to this expected number of deaths. We therefore fit the correspond-

ing curve of Althaus’ ODE model estimates (for each day in the outbreak) over

the observed data, along with error bars to display this assumed variability.

These plots are given in Figure 4.27 for each of the affected countries. We

include two plots for Liberia, the first over a shorter time where we can com-

pare the behaviour of the Althaus simulation over the time frame of the out-

break, and the second where we consider the entire simulated outbreak. We

see that, in general, the behaviour of the simulations is very similar to that

observed during the course of the observed outbreak, but that for Guinea and
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Table 4.11: WHO data concerning deaths in the West African Ebola epidemic

of 2014, adapted from Althaus (2014) though originally from the

CDC. Details of the data adaptation are given in Section 4.3.3.1.

Number of deaths

Day Guinea Sierra Leone Liberia

22/03 29 0 0

24/03 30 0 0

25/03 1 0 0

26/03 2 0 0

27/03 4 0 0

28/03 4 0 0

31/03 10 0 0

01/04 3 0 0

04/04 3 0 0

07/04 9 0 0

09/04 6 0 0

11/04 5 0 0

14/04 2 0 0

16/04 14 0 0

17/04 7 0 0

20/04 7 0 0

23/04 5 0 0

01/05 8 0 0

03/05 6 0 0

05/05 2 0 0

07/05 1 0 0

10/05 0 0 0

12/05 13 0 0

18/05 5 0 0

23/05 0 0 0

27/05 10 5 0

28/05 7 0 0

29/05 0 1 0

01/06 15 0 0
...

...
...

...

Number of deaths

Day Guinea Sierra Leone Liberia
...

...
...

...

03/06 7 0 0

05/06 11 0 0

06/06 0 1 0

15/06 37 39 0

16/06 1 0 24

17/06 0 3 0

20/06 6 0 0

22/06 0 0 10

30/06 33 50 31

02/07 2 2 10

06/07 2 26 9

08/07 2 15 4

12/07 0 52 17

14/07 1 3 1

17/07 0 9 10

20/07 4 13 11

23/07 5 5 2

27/07 20 9 27

30/07 7 19 71

01/08 12 21 28

04/08 5 13 27

06/08 4 12 12

09/08 6 17 29

11/08 4 19 32

13/08 3 14 58

15/08 0 0 53

16/08 14 17 0

18/08 2 9 110

20/08 10 18 48

Total 406 392 624
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Figure 4.27: Cumulative observed deaths in each country overlaid with

equivalent estimations from the Althaus simulation method,

with error bars displaying the assumed variability. Dashed lines

show the end of the observed data.
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Liberia, there are many more future deaths predicted. This is particularly true

for Liberia where, under the parameter values as estimated, it is predicted that

all 106 individuals will eventually be infected in an outbreak spanning around

a year. This might indicate that the PBLA method will not result in similar pa-

rameter estimates to the Althaus method for this shorter dataset, since for that

to occur in Liberia, for example, under the PBLA assumption of a completed

outbreak we would expect to have seen a final size much closer to N.

Further investigating this, we proceed to our full analysis using both the PBLA

and Althaus methods with the original Althaus data. Table 4.12 contains pa-

rameter estimates for b0 and k. We again estimate τ0 in the Althaus analysis,

and then use these in the PBLA analysis. For this data, τ0 was estimated as 110,

15 and 57 for Guinea, Sierra Leone and Liberia, respectively. Figure 4.28 dis-

plays profile likelihoods for b0 and k for each country using the PBLA method,

and Figure 4.29 displays corresponding contour plots for these parameters,

comparing the results to the MLEs from the Althaus method in each case. As

we can see from the table as well as the plots, the parameter estimates from

PBLA are somewhat similar to the Althaus estimates, but certainly not as close

as when using the larger data set. Estimation is fairly similar for Sierra Leone,

but for Guinea and particularly Liberia (where we saw the least complete out-

break), we are not so able to accurately estimate the parameters. For Liberia

especially, we note that the k estimate is considerably different and that, from

Figure 4.29, the contour is very flat for b0.

We may conclude that the assumption of a complete outbreak is especially

important when using the PBLA method, since under an incomplete outbreak

the method is far less able to achieve accurate parameter estimation. However,

as we have seen, with the larger, complete data set PBLA offers very similar

performance to the Althaus method.
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Figure 4.28: Profile likelihoods for b0 and k under the PBLA log-likelihood,

using the Althaus data. Red lines display the corresponding

MLEs from the Althaus method.
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Figure 4.29: Contour plots for b0 and k under the PBLA log-likelihood, using

the Althaus data. Black points indicate the corresponding MLEs

using the Althaus method.
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Table 4.12: Parameter estimates for the West African Ebola outbreak. The τ0

estimates from the Althaus method were used in the PBLA analy-

sis.

b0 k

Althaus

Guinea 0.2554 0.001948

Sierra Leone 0.5711 0.01906

Liberia 0.2806 0.0000002079

PBLA

Guinea 0.3173 0.004224

Sierra Leone 0.6436 0.002434

Liberia 2.6555 0.02974

4.4 Applications: 2001 UK Foot and Mouth outbreak

data

The final application to be explored concerns data from the 2001 UK Foot-and-

Mouth disease (FMD) epidemic.

FMD is a viral infection which affects mainly hoofed livestock (cows, sheep,

pigs), but has also been known to affect animals such as antelope and hedge-

hogs as well as, occasionally, humans. Although FMD is rarely fatal, it causes

significant drops in the dairy production of cattle, as well as slow weight gain

and blisters which may cause lameness (Alexandersen et al., 2003). The disease

is highly infectious, and may be spread not just through animal-animal con-

tact but also contact with farming equipment, vehicles and feed. There is hence

considerable focus on containment of outbreaks, so as to avoid large economic

loss through trade restrictions and culling. This containment involves vaccina-

tion strategies and strict monitoring of farms (Grubman and Baxt, 2004). There

are difficulties in vaccination, however, due to large variation between differ-

ent serotypes of the disease, with no cross-protection between these (Brown,

1992).
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The 2001 UK outbreak of FMD had a significant impact on the country, see-

ing widespread culling as well as non-farming related impacts such as the

cancellation of sporting/leisure events and the postponement of the general

election. The entire outbreak saw more than 2000 identified cases, and around

10,000,000 cattle and sheep were eventually culled to stop the outbreak with a

total estimated cost of £8 billion to the economy.

The Department for Environment, Food and Rural Affairs (DEFRA) collected

detailed information on the FMD outbreak, which was released on their web-

site (www.defra.gov.uk) in 2003. There have been numerous mathematical

analyses of this data, including Morris et al. (2001), Ferguson et al. (2001) and

Diggle (2006). We will focus on the analysis of data from Cumbria and the sur-

rounding area, which was the county most severely affected by the outbreak.

We will compare our analysis with that of Kypraios (2007), who used a true

likelihood-based approach to infer infectivity and susceptibility parameters.

We will use the PBLA III method, with the same SIR and heterogeneous mix-

ing model as Kypraios (2007) for comparison. This will involve a spatial com-

ponent in the infection rate, so that the contact rate between farms depends on

the geographic distance between them.

We will first describe this data set, and then fully define the model to be used

in this analysis.

4.4.1 Data and Model

4.4.1.1 Data

The data we will use are the same as those used in Kypraios (2007). These

were made available by Kypraios who obtained them from the file "DataFor-

ModellersOct03.xls" which was previously available on the DEFRA website

but has since been removed. In our previous analyses, the individuals in the

population have all been humans, but in this analysis each individual repre-

sents a Cumbrian farm. The data include dates of culling of all infected farms,
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Figure 4.30: Geographical locations of Cumbrian and surrounding farms in-

cluded in the 2001 Foot and Mouth disease dataset. Red points

represents infected farms and green points represent those that

were not infected.

which we take to be equal to removal data in the same way as Kypraios (2007).

The infection times are then unknown.

As well as the removal data, DEFRA made available the geographic location

of all Cumbrian farms, given as x and y coordinates of each. Figure 4.30 shows

a plot of these. Some farms in the data are actually in the counties surrounding

Cumbria, but we include these in the analysis for consistency with Kypraios

(2007).

Information was also available on the total numbers of cows and sheep on

each farm, which we will incorporate. There was additional data on the num-

bers of pigs, goats and deer on each farm, but to maintain comparability with

244



CHAPTER 4: LIKELIHOOD APPROXIMATION METHOD SIMULATION STUDIES
AND APPLICATIONS

Kypraios (2007) we ignore these, and also exclude any farms with no cows or

sheep.

This results in a total of N = 5378 farms, of which n = 1021 were culled. Some

of these were culled without knowledge of their infection status, say if they

were considered to have had dangerous contacts. However, no information is

available as to which farms these were, and so we consider all cullings as the

removal of infected cases, as in Kypraios (2007).

4.4.1.2 Model

The model used for analysing the FMD data will be the same as in Kypraios

(2007) to allow for the best comparison of the PBLA method, and we briefly

describe this here. We assume a closed population of N farms labelled 1, . . . , N,

of which 1, . . . , n become infected and where the initial case is assumed to have

been infected externally. We use an SIR model as defined in Section 3.2, so that

at any time t, each farm will be either susceptible (S), infective (I) or removed

(R). For all infectives j = 1, . . . , n, ij and rj denote their time of infection and

removal, respectively.

The initial case κ (unknown) becomes infected at iκ, starting the outbreak. This

then ends when no infectives remain in the population. Infection times i =

{ij : j = 1, 2, . . . , κ− 1, κ + 1, . . . , n} are unknown as usual, and the data consist

of removal times r = {rj : j = 1, 2, . . . , n where r1 < r2 < · · · < rn}, in

addition to the geographical location and the number of cows and sheep of

each farm.

A heterogeneously mixing population structure is assumed, such that the in-

fection rate from farm i to farm j is given by βij. Therefore, during their in-

fectious period an infective i will have a contact with an individual j at a time

given by the point of a Poisson process of rate βij, where all such Poisson pro-

cesses are assumed mutually independent. Contacts between an infective and

a susceptible are assumed to result in immediate infection. We assume that
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the infectious periods are independent and gamma distributed, with shape

parameter m and rate parameter γ, so that rj − ij ∼ Γ(m, γ). We also assume

that the shape parameter is known and fixed to m = 4.

To incorporate the different aspects of the data, the infection rate βij is defined

as

βij = β0 × K(i, j)×
(

ε(nc
i )

ζ + (ns
i )

ζ
)
×
(

ξ(nc
j )

ζ + (ns
j)

ζ
)

,

where

K(i, j) =
v

ρ(i, j)2 + v2 .

Here, β0 is a constant representing the overall average infection rate. Param-

eters ε and ξ represent the relative infectiousness and susceptibility, respec-

tively, of cows to sheep, where nc
i and ns

i are the known numbers of cows

and sheep on farm i. The level of linearity (or sub-linearity) of the infectiv-

ity/susceptibility of each farm to the number of animals is given by ζ. Lastly,

K(i, j) is a Cauchy kernel determining the spatial aspect of the infection rate.

With ρ(i, j) defined as the Euclidean distance between farms i and j, v is then

the parameter defining this spatial component. Kypraios (2007) discusses the

use of other potential measures of distance than the Euclidean distance (for

example the minimum walking distance), but as usual we keep our model as

similar as possible to theirs for comparability.

We hence have a six parameter model, with parameters (β0, γ, v, ε, ξ, ζ) which

we wish to obtain estimates for. We will perform maximum likelihood estima-

tion and MCMC with the PBLA likelihood, and compare the results to those

obtained in Kypraios (2007) via DA-MCMC.

4.4.2 Results

We perform parameter estimation using the PBLA likelihood with both maxi-

mum likelihood estimation and MCMC, which we may compare with the re-

sults of a partially non-centered DA-MCMC algorithm from Kypraios (2007).

We use the same gamma-distributed prior distributions for the model param-
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Table 4.13: Prior distributions used for FMD data analysis. For each param-

eter, we use a gamma distributed prior with shape parameter m

and rate parameter λ.

m λ

β0 0.001 0.001

γ 0.001 0.001

v 1 0.1

ε 1 0.001

ξ 1 0.001

ζ 1 0.001

eters as Kypraios (2007), and these are given in Table 4.13. MCMC was coded

in C, and 50,000 samples were obtained for each parameter. We performed

Gaussian random walk updates for each of the six parameters separately. Max-

imum likelihood estimation was performed in R using the NLM (Non-Linear

Minimisation) optimisation package. The posterior distribution has many lo-

cal maxima and is of course six dimensional, leading to a challenging maximi-

sation problem, but upon testing of a variety of maximisation functions, NLM

was found to perform best.

Table 4.14 contains the MLEs and MCMC posterior means obtained using

the PBLA likelihood, in addition to the posterior means from Kypraios’ DA-

MCMC. Figure 4.31 contains profile likelihoods for each of these six model pa-

rameters, when the other parameters are fixed to their MLEs. These are com-

pared to the posterior means from Kypraios (2007). Lastly, Figure 4.32 shows

trace plots for the PBLA MCMC samples alongside the DA-MCMC samples

used in Kypraios (2007). We see that generally estimation is very similar be-

tween PBLA and DA-MCMC, the only parameter with potentially significant

underestimation being v. In the MCMC trace plots, both methods seem to

be exploring the same areas of the parameter space, except for v and γ. It is

interesting that the areas of high density for γ under each method appear so
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Table 4.14: MLEs and posterior means for FMD data model parameters using

the PBLA likelihood, compared with DA-MCMC posterior means

from Kypraios (2007). NOTE: the β0 estimate was not provided in

Kypraios (2007), but was obtained from the author.

PBLA MLE
PBLA MCMC

posterior mean

DA-MCMC

posterior mean

β0 7.02× 10−7 7.92× 10−7 6.07× 10−7

γ 0.445 0.448 0.52

v 0.00477 0.00474 0.0065

ε 1.576 1.652 1.45

ξ 2.389 2.383 2.32

ζ 0.318 0.315 0.32

distinct in Figure 4.32, when in Table 4.14 and Figure 4.31 the estimates appear

fairly similar. One other notable conclusion is the similarity in the MLEs and

MCMC means using the PBLA likelihood, highlighting that maximum like-

lihood estimation methods are able to obtain very similar estimates, but at a

much smaller computational cost.

With five of the model parameters (β, v, ε, ξ, ζ) involved in defining the overall

infection rate βij, we also consider how well the PBLA method estimates this

as a whole compared to DA-MCMC. Figure 4.33 includes histograms of βij

estimates, obtained from the MCMC samples. Since βij obviously depends

on the pair of farms (i, j), we have selected six such pairs at random. For

each pair, we then calculate βij using the set of parameter samples at each

iteration of the MCMC algorithm, for both PBLA MCMC and DA-MCMC. As

we can see from Figure 4.33, PBLA tends to underestimate βij slightly, though

in general is fairly similar to DA-MCMC. Combined with the underestimation

of gamma, this is similar to what we saw in Section 4.1; that although PBLA

often results in some underestimation of β and γ, estimation of their ratio (R0)

will usually still be good. For the pairs (i, j) in Figure 4.33, Figure 4.34 includes
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Figure 4.31: Profile likelihoods for the FMD model parameters. All parame-

ters not being profiled are fixed to their PBLA MLEs. Dotted lines

mark the MLE for the parameter in question, and green lines pro-

vide posterior mean estimates from Kypraios (2007).
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Figure 4.33: Histograms of estimates of βij for the FMD data using MCMC

samples, for six randomly selected pairs of farms (i, j). Red bars

are PBLA MCMC samples, and green are from DA-MCMC.

the corresponding estimates of Rij
0 =

βij
γ . As a reproduction number this is less

interpretable than R0 for a homogeneously mixing epidemic, since it depends

on the given pair (i, j) (and hence does not represent the overall infectivity of

the disease). However, for our purposes here we demonstrate that the ratio of

β and γ is estimated well. Overall, PBLA offers generally similar estimation to

DA-MCMC for the FMD data, despite the approximation involved.

4.5 Conclusions

In this chapter we have assessed the performance of the ED and, more thor-

oughly, the PBLA methods, using both simulated and real data.
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Figure 4.34: Histograms of estimates of Rij
0 =

βij
γ for the FMD data using

MCMC samples, for six randomly selected pairs of farms (i, j).

Red bars are PBLA MCMC samples, and green are from DA-

MCMC.
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The simulation studies of Section 4.1 highlighted where the likelihood approx-

imation methods provide similar estimation to DA-MCMC. We saw in Section

4.1.1 that generally the PBLA III method provides similar estimation to DA-

MCMC, and outperforms the ED method. Both methods perform better with

gamma distributed infectious periods than exponential, though they struggle

when very large or small proportions of the population are infected. This was

corroborated by our findings in Section 4.1.2, where we suggested that the

poor performance of PBLA when the proportion of infectives is large may be

due to the ψ term in the likelihood. This term involves the most approxima-

tion, and becomes much larger compared to the other terms when the propor-

tion of infectives is high. In this section, we also confirmed our findings that

the values of β, γ and N do not affect the accuracy of the approximation meth-

ods, as well as that both methods perform considerably better with gamma

infectious periods compared to exponential, even for shape parameter values

as low as m = 2.

In Section 4.1.3 we compared the performance of the different PBLA versions

as defined in Chapter 3. Under both exponential and gamma infectious pe-

riods as usual, we assessed the ability of each the PBLA versions I through

V to recover true parameter values from simulated data. We found that for

exponential periods where PBLA IV is applicable, this offers the fastest op-

tion at comparable accuracy to the other versions (so long as the outbreak is

large enough for the central limit theorem approximation to hold). Otherwise,

PBLA III offered consistently good estimation. For gamma infectious periods,

PBLA III and V were found to be preferable.

We concluded the simulation studies with an analysis of computation time

in Section 4.1.4. Here we found that for larger population sizes, PBLA offers

improved computation time, compared to DA-MCMC. The larger the value of

shape parameter m for gamma distributed infectious periods, the larger a pop-

ulation size is required for PBLA to be faster. As the population size increases,

PBLA offers greater and greater computational advantage over DA-MCMC,
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which is particularly useful in practice since there is most motivation for us-

ing likelihood approximations for larger populations.

Sections 4.2, 4.3 and 4.4 explored the application of the PBLA method to a va-

riety of real data sets. We began with a study of respiratory disease on the

island of Tristan Da Cunha. Data from this island have received considerable

attention from the epidemic modelling community, since Tristan Da Cunha

represents an (approximately) closed population on which detailed informa-

tion has been recorded on outbreaks and the structure of its population. We

compared analysis of an outbreak from 1967 using PBLA to that of Hayakawa

et al. (2003), who used DA-MCMC. This involved a model where the infec-

tion rate differed with age, with individuals categorised into one of three age

groups. We found that the PBLA method resulted in parameter estimates very

similar to DA-MCMC.

Section 4.3 concerned analysis of data from the 2014 Ebola virus outbreak in

West Africa, specifically in Guinea, Sierra Leone and Liberia. This outbreak re-

ceived much attention worldwide, especially due to Ebola’s high fatality and

lack of cure. We compared analysis using the PBLA method with maximum

likelihood estimation to that of Althaus (2014), who used an ODE model com-

bined with maximum likelihood estimation. Since these methods are innately

different (for instance, the ODE model requires daily data rather than individ-

ual based), some adjustments to the data were required. We also introduced

a proxy-time-dependent infection rate to best match the time dependent rate

used in Althaus (2014). This replaces time with an estimate of the mid-point

of the period during which there is infectious pressure between any individ-

uals j and k, since this is the only period in which we require the infection

rate to be defined. Analysis was performed on data concerning the entirety

of the outbreak in Guinea, Sierra Leone and Liberia obtained from the CDC,

though we compared this with analysis using Althaus’ original data set which

did not include the end of the outbreak. This demonstrated the need of com-

plete data for the PBLA method to perform well. When complete data was
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used however, PBLA offered very similar estimates to Althaus (2014), despite

the considerable approximations and adjustments to the model that were re-

quired.

The final application was explored in Section 4.4, and this involved analysis

of data from the 2001 UK Foot and Mouth disease epidemic. We compared

analysis using PBLA with both MCMC and maximum likelihood estimation

to analysis with DA-MCMC in Kypraios (2007). We used the same model

as Kypraios, which involved the use of PBLA with a spatial likelihood com-

ponent in which the infection rate depends on the geographical distance be-

tween each pair of farms. We found that both maximum likelihood estimation

and MCMC with the PBLA likelihood resulted in similar parameter estimates,

which also generally well agreed with those from DA-MCMC.
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Conclusions

5.1 Overview

Bayesian statistics has received much attention within the stochastic epidemic

modelling community over the past three decades. It allows incorporation

of data and prior knowledge into statistical models and, combined with data

augmentation techniques, allows for analysis of data which are only partially

observed. Although DA-MCMC has become a standard tool for computa-

tional analysis of partially observed disease outbreak data, it often suffers from

a number of problems.

High posterior correlation between unknown infection times and the infec-

tious period parameters, especially for larger outbreak sizes, can lead to slow

mixing of the Markov chain. Current methods for handling this issue have

limitations, for example non-centred parameterisations are limited in their ap-

plicability, and thinning of the Markov chain, although reducing the autocor-

relation between successive samples, increases the number of iterations of the

algorithm that need to be implemented to result in the same overall sample

size. This can be problematic for likelihoods which are computationally de-

manding to compute, particularly, for example, for large population sizes.

There is a growing demand for fast, often real-time, analyses, particularly with

the increasing use of mathematical modelling by more applied scientists and
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public health officials. There is hence considerable motivation to develop com-

putational methods for Bayesian analysis of stochastic epidemic data which

overcome these problems. In this thesis, we have explored existing methods

for analysis and introduced a series of novel likelihood approximation meth-

ods.

5.2 Abakaliki data analysis

Chapter 2 described an analysis of the Abakaliki smallpox data. Despite this

data set receiving much attention in the epidemic modelling literature, this is

the first Bayesian analysis of the full data to have been completed. We used

DA-MCMC to estimate key transmission parameters, which we compared to

a previous analysis by Eichner and Dietz (2003). We also performed model

assessment using simulation based methods, and our Bayesian approach al-

lowed us to perform novel estimation of the infection pathway. We found that

the parameter estimates using DA-MCMC were very similar to those in Eich-

ner and Dietz (2003), despite the fact that they used an approximate likelihood.

This motivated the rest of this thesis, in exploring the development of further

approximation methods.

The analysis of the Abakaliki data set was largely self-contained, but there are

some potential directions for future work. There could be benefit in the use

of model assessment tools other than the simulation-based approach taken in

Section 2.7, since we cannot be confident that the choice of summary statistics

is entirely appropriate. For example, when comparing the incidence curves of

simulated outbreaks to the true data, we chose to restrict our attention to only

simulations of the same final size as the data, despite the fact that the vast

majority of simulations were not of this size. Lau et al. (2014) suggest model

diagnostic tools for spatio-temporal transmission models, which apply classi-

cal techniques within a Bayesian framework. These use non-centred parame-

terizations to construct residuals for model assessment, and could potentially
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be applied within the Abakaliki model framework. Further work could also

involve adaptation of the model used for analysis. Whilst the disease progres-

sion model used was relatively representative of smallpox in reality, future

work could involve implementation of a more realistic mixing structure for

the 30,000 people outside of the affected compounds, rather than assuming

homogeneous mixing. Although for our analysis we wanted to use Eichner

and Dietz’ model to ensure comparability, such steps could be taken if further

analysis of the Abakaliki outbreak was performed.

5.3 Likelihood Approximation Methods

The second part of this thesis focused on likelihood approximation methods

for infectious disease data. Chapter 3 first explored a generalised version of

the Eichner and Dietz approximation method from Chapter 2, and then intro-

duced a series of new approximation methods called PBLA. These essentially

assumed independence between the likelihood contributions of different pairs

of individuals, in order to obtain a likelihood expression independent of the

unknown infection times. These expressions then do not require data augmen-

tation for use with MCMC algorithms, and may also be used for maximum

likelihood estimation. We explored various different versions of the PBLA

likelihood, aiming to offer e.g. improved accuracy (PBLA II/III) or improved

computational speed for certain infectious period distributions (PBLA IV).

After defining these approximation methods in Chapter 3, Chapter 4 gave ex-

amples of their application. We compared parameter estimation using the ED

approximation, the various PBLA methods and standard MCMC in a series of

simulation studies. Here we identified the situations, in terms of infectious pe-

riod distribution, population sizes and outbreak sizes, in which the methods

well approximate DA-MCMC with the true likelihood, as well as comparing

the computation time required. The second half of Chapter 4 then described

the application of the PBLA method to three real data sets. We compared pa-
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rameter estimation with PBLA to existing published analyses, each with spe-

cific modelling requirements. We found that, in general, PBLA offered very

similar parameter estimation to the previous analyses. This highlights the po-

tential of the method to be used successfully in practice, particularly by ap-

plied scientists for whom fast inference is key. Analysis of the computation

time required for PBLA compared to standard MCMC revealed that, particu-

larly for increasingly large population sizes, PBLA may offer comparable accu-

racy in estimation at a substantially lower computational cost. One key hurdle

to overcome in the adoption of PBLA by applied scientists might be its limited

accessibility compared to currently employed methods such as ABC, which

are perhaps easier to interpret. However, there is scope to create a package

for implementing PBLA which does not require such an in-depth knowledge

of the theory behind it, and we propose that this would help achieve wider

adoption of the method.

There is considerable potential for future development of the PBLA method. In

Chapter 3 we explored various versions of the PBLA likelihood, but it would

certainly be possible to find further versions offering improved estimation. Re-

calling the true likelihood defined in Section 1.3.5, a key aspect of the current

PBLA versions we have explored is that they separate the L1 term (Equation

(1.3.3)) from the L2 term (Equation (1.3.4)), despite the fact that they both de-

scribe the infection component of the likelihood. A future PBLA version might

try to combine these terms, in order to obtain a more accurate approximation.

Another aspect of the true likelihood is that the product term will be zero for

an ‘impossible’ outbreak, that is an outbreak for which each infectee does not

have a potential infector at their time of infection. The PBLA likelihood does

not have an explicit equivalent term. This can allow, for exponential infectious

periods for example, the estimate of the removal rate γ to become too large.

Future PBLA versions might seek to further constrain the infection times in

order to avoid this.

The PBLA method may also be extended in terms of its framework. So far
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we have focused on exponential and gamma infectious periods, but it may

also be possible to calculate the likelihood terms for other distributions. In

Section 3.4.11 we discussed the extension of the PBLA method to SEIR models,

but found that for non-fixed latent periods this did not result in particularly

simple expressions. It may be possible, however, to extend PBLA to SEIR or

other compartmental models using slightly different techniques. Lastly, there

is potential to extend PBLA for use with non-fixed population size models.

These arise in, for example, analysis of hospital infection data where the total

population of a ward varies over time (see e.g. Worby et al., 2016).

As discussed, we have compared PBLA to DA-MCMC in Section 4.1.4 and

found that for larger population sizes with both exponential and gamma dis-

tributed infectious periods, PBLA offers a larger effective sample size per sec-

ond than DA-MCMC. However, there is scope to improve the efficiency of the

PBLA method even further. For example, since PBLA calculates the contri-

bution from different pairs of individuals independently, it is naturally paral-

lelisable. This may increase the computational advantages of the method, at

no cost of accuracy. In turn, this could help establish PBLA as a serious alter-

native to existing approaches such as MCMC and ABC, for ensuring fast and

efficicient analysis.
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Appendix for Abakaliki data

analysis: full conditional

distributions

In order to implement the MCMC algorithm for analysis of the Abakaliki

smallpox data described in Chapter 2, the full conditional distribution (the

distribution of a single parameter conditional on all of the others) of each pa-

rameter is required. We use the full conditionals since sampling from the full

posterior is computationally demanding. The parameters to be updated are tq,

λa, λ f , λh, v, b, p̃, su and the exposure, fever, removal and quarantine times,

and we provide the log full conditionals for each here up to proportionality.

In the following, recall log(L) defined in Equation 2.5.12. We include an ad-

ditive constant c in the log full conditionals, since the full conditionals are

multiplicatively proportional to the expressions shown.

log(π(tq | r, θ, γ̃, κ, eκ, b, v, λa, λ f , λh, s)) =

log

 ∏
j∈Nin f

Λj(ej−)

− ∫ T

eκ

ΛCN(t) + ΛCC(t)dt− log(L) + log(π(tq)) + c.
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log(π(b | r, θ, γ̃, κ, eκ, tq, v, λa, λ f , λh, s)) =

log

 ∏
j∈Nin f

Λj(ej−)

− ∫ T

eκ

ΛCN(t) + ΛCC(t)dt− log(L) + log(π(b)) + c.

log(π(v | r, θ, γ̃, κ, eκ, tq, b, λa, λ f , λh, s)) =

− log(L) +
ncom−1

∑
r=0

pr1{sr=1 or su
r =1} log(v) +

ncom−1

∑
r=0

(1− pr)1{sr=1 or su
r =1} log(1− v) +

N−1

∑
r=ncom

r∈Nn−in f

(1− pr)sr log(1− v) + log(π(v)) + c.

log(π(λa | r, θ, γ̃, κ, eκ, tq, v, b, λ f , λh, s)) =

log

 ∏
j∈Nin f

Λj(ej−)

− ∫ T

eκ

ΛCN(t) + ΛCC(t)dt− log(L) + log(π(λa)) + c.

log(π(λ f | r, θ, γ̃, κ, eκ, tq, v, b, λa, λh, s)) =

log

 ∏
j∈Nin f

Λj(ej−)

− ∫ T

eκ

ΛCN(t) + ΛCC(t)dt− log(L) + log(π(λ f )) + c.

log(π(λh | r, θ, γ̃, κ, eκ, tq, v, b, λ f , λa, s)) =

log

 ∏
j∈Nin f

Λj(ej−)

− ∫ T

eκ

ΛCN(t) + ΛCC(t)dt + log(π(λh)) + c.

For any i = 0, 1, ..., ncom − 1, defining p̃−i = (p0, p1, ..., pi−1, pi+1, ..., pncom−1),

log(π( p̃i | r, Φ, e, i, q, τ, p̃−i, su)) =

−
∫ T

eκ

ΛCN(t)dt + pi log(v) + (1− pi) log(1− v) + c.
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For any element of su,

log(π(su
i | r, Φ, e, i, q, τ, p̃, su

−i)) =

−
∫ T

eκ

ΛCN(t)dt +
ncom−1

∑
r=0

pr1{sr=1 or su
r =1} log(v) +

ncom−1

∑
r=0

(1− pr)1{sr=1 or su
r =1} log(1− v) +

N−1

∑
r=ncom
r∈Nin f

(1− pr)sr log(1− v) + c,

where su
−i = (su

0 , su
1 , ..., su

i−1, su
i+1, ..., su

ncom−1).

We define e−i = (e0, e1, ..., ei−1, ei+1, ..., eN−1) for all infectives i = 0, 1, ..., N− 1,

and similarly for i−i, q−i and τ−i, then

log(π(ei | r, Φ, e−i, i, q, τ, p̃, su)) =

log

 ∏
j∈Nin f

Λj(ej−)

− ∫ T

eκ

ΛCN(t) + ΛCC(t)dt− log(L) + c.

log(π(ii | r, Φ, e, i−i, q, τ, p̃, su)) =

log

 ∏
j∈Nin f

Λj(ej−)

− ∫ T

eκ

ΛCN(t) + ΛCC(t)dt− log(L) + c.

log(π(qi | r, Φ̃, e, i, q−i, τ, p̃, su)) =

log

 ∏
j∈Nin f

Λj(ej−)

− ∫ T

eκ

ΛCN(t) + ΛCC(t)dt− log(L) + c.

log(π(τi | r, Φ, e, i, q, τ−i, p̃, su)) =

log

 ∏
j∈Nin f

Λj(ej−)

− ∫ T

eκ

ΛCN(t) + ΛCC(t)dt− log(L) + c.

We update the exposure times e as detailed above, but this may in turn alter

the exposure time of the initial infective eκ, or indeed κ itself if a different
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individual becomes the initial infective. We do not include the full conditional

distribution for this, but in practice we simply update κ and eκ as required by

the e update.
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APPENDIX B

Appendix for PBLA: likelihood

calculations for gamma infectious

periods

In this appendix we derive the likelihood expressions for the Pair Based Like-

lihood Approximation (version I) with Gamma distributed infectious periods,

using both integration and probabilistic arguments. We recall that we define

gamma distributed infectious periods such that f I(rj − ij | m, γ) = γm

Γ(m)
(rj −

ij)
m−1e−γ(rj−ij), and we restrict shape parameter m to integer values. As in the

exponential case, we will derive expressions for E[χjφj] and E[ψj], first using

the full integration method and then with probabilistic arguments.

B.1 Integration method

Expression one: E[χjφj]

Recall that

E[χjφj] =
n

∑
k=1,
k 6=j

βkjE
[
1{k infective at ij}e

−Bj(rj−ij)
]
,

so that we must calculate the expectation for all pairs j, k. As in the exponential
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case,

E
[
1{k infective at ij}e

−Bj(rj−ij)
]

=
∫ rk

−∞

∫ rj

−∞
1ik<ij<rke−Bj(rj−ij) f I(rj − ij) f I(rk − ik) dij dik, (B.1.1)

where it has been assumed that ij and ik are independent. For a given j and k,

this integral will take one of two forms, determined by the values of rk and rj.

Case (i): rk ≥ rj

E
[
1{k infective at ij}e

−Bj(rj−ij)
]

=
∫ rj

−∞

∫ rj

ik
e−Bj(rj−ij)

γm

Γ(m)
(rj − ij)

m−1e−γ(rj−ij)
γm

Γ(m)
(rk − ik)

m−1

× e−γ(rk−ik) dij dik

=
γ2m

Γ(m)2

∫ rj

−∞
(rk − ik)

m−1e−γ(rk−ik)
∫ rj

ik
e−Bj(rj−ij)(rj − ij)

m−1

× e−γ(rj−ij) dij dik

=
γ2m

Γ(m)2

∫ rj

−∞
(rk − ik)

m−1e−γ(rk−ik)
∫ rj−ik

0
e−y(γ+Bj)ym−1 dy dik,

where y = rj − ij. Then the inner integral is proportional to a gamma CDF,

which we denote as Fk,θ(x). Since we take only positive integer values for the

shape parameter, the distribution function can be expressed as

Fk,θ(x) = 1−
k−1

∑
l=0

1
l!
(θx)le−θx, (B.1.2)

for shape k and rate θ. Substituting this for the integral,

E
[
1{k infective at ij}e

−Bj(rj−ij)
]

=
γ2m

Γ(m)2

∫ rj

−∞
(rk − ik)

m−1e−γ(rk−ik)Fm,γ+Bj(rj − ik)
Γ(m)

(γ + Bj)m dik

=
γ2m

Γ(m)(γ + Bj)m

∫ rj

−∞
(rk − ik)

m−1e−γ(rk−ik)

×
(

1−
m−1

∑
l=0

1
l!
(γ + Bj)

l(rj − ik)
le−(γ+Bj)(rj−ik)

)
dik,

which we will split into two integrals.
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(i) The first integral is given by∫ rj

−∞
(rk − ik)

m−1e−γ(rk−ik) dik =
∫ ∞

rk−rj

ym−1e−γy dy

=(1− Fm,γ(rk − rj))
Γ(m)

γm . (B.1.3)

(ii) The second integral is then equal to

∫ rj

−∞
(rk − ik)

m−1e−γ(rk−ik)
m−1

∑
l=0

1
l!
(γ + Bj)

l(rj − ik)
le−(γ+Bj)(rj−ik) dik

=
m−1

∑
l=0

(γ + Bj)
l

l!

∫ rj

−∞
e−γ(rk−ik)e−(γ+Bj)(rj−ik)(rk − ik)

m−1(rj − ik)
l dik

=
m−1

∑
l=0

(γ + Bj)
l

l!
e−γ(rk−rj)

∫ ∞

0
(rk − rj + y)m−1yle−y(2γ+Bj) dy,

where y = rj − ik. Note that the integral takes the form of the expectation

of (rk − rj + Y)m−1, where Y is gamma distributed with shape l + 1 and rate

2γ + Bj. This expression is therefore equal to

m−1

∑
l=0

(γ + Bj)
l

l!
e−γ(rk−rj)

Γ(l + 1)
(2γ + Bj)l+1 E

[
(rk − rj + Y)m−1 |Y ∼ Γ(l + 1, 2γ + Bj)

]
.

(B.1.4)

Combining Equations (B.1.3) and (B.1.4) with the constant term γ2m

Γ(m)(γ+Bj)m ,

we obtain the result that, for rk ≥ rj,

E
[
1{k infective at ij}e

−Bj(rj−ij)
]
=( γ

γ + Bj

)m
(1− Fm,γ(rk − rj))−

m−1

∑
l=0

γ2m

(2γ + Bj)l+1
e−γ(rk−rj)

(γ + Bj)m−lΓ(m)

×E
[
(rk − rj + Y)m−1 |Y ∼ Γ(l + 1, 2γ + Bj)

]
, (B.1.5)

where

E
[
(r + X)l | X ∼ Γ(m, γ)

]
=

l

∑
p=0

(
l
p

)
rl−p (m + p− 1)p

γp ,

using the Pochhammer symbol, (x)p = (x
p)p!, also known as the falling facto-

rial.
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Case (ii): rk < rj

Taking now the case rk < rj,

E
[
1{k infective at ij}e

−Bj(rj−ij)
]

=
∫ rk

−∞

∫ rk

ik
e−Bj(rj−ij)

γm

Γ(m)
(rj − ij)

m−1e−γ(rj−ij)
γm

Γ(m)
(rk − ik)

m−1

× e−γ(rk−ik) dij dik

=
γ2m

Γ(m)2

∫ rk

−∞
(rk − ik)

m−1e−γ(rk−ik)
∫ rk

ik
e−(γ+Bj)(rj−ij)(rj − ij)

m−1 dij dik

=
γ2m

Γ(m)2

∫ rk

−∞
(rk − ik)

m−1e−γ(rk−ik)
∫ rj−ik

rj−rk

e−(γ+Bj)yym−1 dy dik,

where y = rj − ij. As in the case rk ≥ rj, this takes the form of a CDF for the

gamma distribution, and so using Equation (B.1.2) we obtain

E
[
1{k infective at ij}e

−Bj(rj−ij)
]

=
γ2m

Γ(m)2

∫ rk

−∞
(rk − ik)

m−1e−γ(rk−ik) Γ(m)

(γ + Bj)m

×
(

Fm,γ+Bj(rj − ik)− Fm,γ+Bj(rj − rk)
)

dik. (B.1.6)

Again, we will split this into two integrals.

(i) The first integral is equal to∫ rk

−∞
(rk − ik)

m−1e−γ(rk−ik)Fm,γ+Bj(rj − ik) dik

=
∫ rk

−∞
(rk − ik)

m−1e−γ(rk−ik)
(

1−
m−1

∑
l=0

(γ + Bj)
l

l!
(rj − ik)

le−(γ+Bj)(rj−ik)
)

dik

=
∫ rk

−∞
(rk − ik)

m−1e−γ(rk−ik)

− (rk − ik)
m−1e−γ(rk−ik)

m−1

∑
l=0

(γ + Bj)
l

l!
(rj − ik)

le−(γ+Bj)(rj−ik)) dik

=
∫ ∞

0
e−γyym−1 dy

−
m−1

∑
l=0

(γ + Bj)
l

l!

∫ ∞

0
e−γye−(γ+Bj)(rj−rk+y)ym−1(rj − rk + y)l dy,

where y = rk − ik. With the first term proportional to a gamma PDF and the
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second to an expectation as in the rk ≥ rj case, the equation reduces to

Γ(m)

γm −
m−1

∑
l=0

(γ + Bj)
l

l!
Γ(m)

(2γ + Bj)m

× e−(γ+Bj)(rj−rk)E
[
(rj − rk + Y)l |Y ∼ Γ(m, 2γ + Bj)

]
.

Combining this with the constant term γ2m

Γ(m)(γ+Bj)m from Equation (B.1.6), we

obtain for integral (i):( γ

γ + B

)m
− γ2m

(γ + Bj)m(2γ + Bj)m e−(γ+Bj)(rj−rk)

×
m−1

∑
l=0

(γ + Bj)
l

l!
E
[
(rj − rk + Y)l |Y ∼ Γ(m, 2γ + Bj)

]
.

(B.1.7)

(ii) Moving on to the second integral,∫ rk

−∞
(rk − ik)

m−1e−γ(rk−ik)Fm,γ+Bj(rj − rk) dik

=Fm,γ+Bj(rj − rk)
∫ ∞

0
e−γyym−1 dik

=
Γ(m)

γm Fm,γ+Bj(rj − rk).

Combined with the constant term γ2m

Γ(m)(γ+Bj)m from Equation (B.1.6), the sec-

ond integral is equal to

γm

(γ + Bj)m Fm,γ+Bj(rj − rk). (B.1.8)

Combining Equations (B.1.7) and (B.1.8), the entire expression in the case rk <

rj is

E
[
1{k infective at ij}e

−Bj(rj−ij)
]
=( γ

γ + Bj

)m(
1− Fm,γ+Bj(rj − rk)

)
−
( γ

γ + Bj

)m( γ

2γ + Bj

)m

× e−(γ+Bj)(rj−rk)
m−1

∑
l=0

(γ + Bj)
l

l!
E
[
(rj − rk + Y)l |Y ∼ Γ(m, 2γ + Bj)

]
.

(B.1.9)
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Then, combining Equations (B.1.5) and (B.1.9), we obtain the full expression

for E[χjφj] with gamma distributed infectious periods:

E[χjφj] =
n

∑
k=1,
k 6=j

βkj



(
γ

γ+Bj

)m
(1− Fm,γ(rk − rj))

−∑m−1
l=0

γ2m

(2γ+Bj)l+1
e−γ(rk−rj)

(γ+Bj)m−lΓ(m)

×E
[
(rk − rj + Y)m−1 |Y ∼ Γ(l + 1, 2γ + Bj

)
]

if rk ≥ rj,(
γ

γ+Bj

)m(
1− Fm,γ+Bj(rj − rk)

)
−
(

γ
γ+Bj

)m(
γ

2γ+Bj

)m
e−(γ+Bj)(rj−rk) ∑m−1

l=0
(γ+Bj)

l

l!

×E
[
(rj − rk + Y)l |Y ∼ Γ(m, 2γ + Bj)

]
if rk < rj,

where Bj = ∑N
l=n+1 β jl and

E
[
(r + X)l | X ∼ Γ(m, γ)

]
=

l

∑
p=0

(
l
p

)
rl−p (m + p− 1)p

γp ,

with (x)p = (x
p)p!.

Expression two: E[ψj]

As before, we begin with the definition

E[ψj] =
n

∏
k=1
k 6=j

E
[
e−βkj(rk∧ij−ik∧ij)

]
.

Each term in this product will take the form

E
[
e−βkj(rk∧ij−ik∧ij)

]
=

∫ ∫
e−β(rk∧ij−ik∧ij) f I(rj − ij) f I(rk − ik) dij dik,

where βkj = β, for simplicity. Again we split this integral into sections, condi-

tional upon the values of rj and rk.

Case (i): rk ≥ rj

As in the exponential case,

rk ∧ ij − ik ∧ ij =

ij − ik if ik < ij < rk,

0 otherwise.
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Then, similarly to before,

E
[
e−β(rk∧ij−ik∧ij) | rk ≥ rj

]
=

∫ rj

−∞

∫ ij

−∞
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dik dij

+
∫ rj

−∞

∫ rk

ij

1× f I(rj − ij) f I(rk − ik) dik dij,

where it has been assumed that ij and ik are independent. We have switched

the order of integration for the gamma case since it results in simpler calcula-

tion. We will calculate each integral individually.

(i) To begin,∫ rj

−∞

∫ ij

−∞
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dik dij

=
∫ rj

−∞

∫ ij

−∞
e−β(ij−ik) γm

Γ(m)
(rj − ij)

m−1e−γ(rj−ij)
γm

Γ(m)
(rk − ik)

m−1

× e−γ(rk−ik) dik dij

=
γ2m

Γ(m)2

∫ rj

−∞
(rj − ij)

m−1e−γ(rj−ij)
∫ ij

−∞
(rk − ik)

m−1e−γ(rk−ik)e−β(ij−ik) dik dij

=
γ2m

Γ(m)2

∫ rj

−∞
(rj − ij)

m−1e−γ(rj−ij)
∫ ∞

rk−ij

ym−1e−γye−β(ij−rk+y) dy dij,

where y = rk − ik. Then,∫ rj

−∞

∫ ij

−∞
e−B(ij−ik) f I(rj − ij) f I(rk − ik) dik dij

=
γ2m

Γ(m)2

∫ rj

−∞
(rj − ij)

m−1e−γ(rj−ij)e−β(ij−rk)(1− Fm,γ+β(rk − ij))
Γ(m)

(γ + β)m dij

=
γ2m

Γ(m)(γ + β)m

∫ rj

−∞
(rj − ij)

m−1e−γ(rj−ij)e−β(ij−rk)

×
( m−1

∑
l=0

1
l!

e−(γ+β)(rk−ij)(γ + β)l(rk − ij)
l
)

dij

=
γ2m

Γ(m)(γ + β)m

m−1

∑
l=0

(γ + β)l

l!

∫ rj

−∞
(rj − ij)

m−1(rk − ij)
l

× e−γ(rj−ij)e−β(ij−rk)e−(γ+β)(rk−ij) dij

=
γ2m

Γ(m)(γ + β)m

m−1

∑
l=0

(γ + β)l

l!

∫ ∞

0
ym−1(rk − rj + y)le−γy

× e−β(rj−rk−y)e−(γ+β)(rk−rj+y) dy,
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where y = rj − ij. Simplifying this integral,∫ rj

−∞

∫ ij

−∞
e−B(ij−ik) f I(rj − ij) f I(rk − ik) dik dij

=
m−1

∑
l=0

(γ + β)l

(γ + β)m
γ2m

Γ(m)l!

∫ ∞

0
(rk − rj + y)lym−1e−2γy dy

× e−β(rj−rk)e−(γ+β)(rk−rj)

=
m−1

∑
l=0

(γ + β)l

(γ + β)m
γ2m

Γ(m)l!
e−γ(rk−rj)E

[
(rk − rj + Y)l |Y ∼ Γ(m, 2γ)

] Γ(m)

(2γ)m ,

since the integral was proportional to the expectation of (rk − rj + y)l for a

Γ(m, 2γ) distributed random variable y. Overall, we find that∫ rj

−∞

∫ ij

−∞
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dik dij

=
m−1

∑
l=0

e−γ(rk−rj)

2ml!

( γ

γ + β

)m
(γ + β)lE

[
(rk − rj + Y)l |Y ∼ Γ(m, 2γ)

]
.

(B.1.10)

(ii) The second integral is equal to∫ rj

−∞

∫ rk

ij

1× f I(rj − ij) f I(rk − ik) dik dij

=
∫ rj

−∞

∫ rk

ij

γm

Γ(m)
(rj − ij)

m−1e−γ(rj−ij)
γm

Γ(m)
(rk − ik)

m−1e−γ(rk−ik) dik dij

=
γ2m

Γ(m)2

∫ rj

−∞
(rj − ij)

m−1e−γ(rj−ij)
∫ rk

ij

(rk − ik)
m−1e−γ(rk−ik) dik dij

=
γ2m

Γ(m)2

∫ rj

−∞
(rj − ij)

m−1e−γ(rj−ij)
∫ rk−ij

0
ym−1e−γy dy dij,

where y = rk − ik. Then,∫ rj

−∞

∫ rk

ij

1× f I(rj − ij) f I(rk − ik) dik dij

=
γ2m

Γ(m)2

∫ rj

−∞
(rj − ij)

m−1e−γ(rj−ij)
Γ(m)

γm Fm,γ(rk − ij) dij,

by the definition of a gamma CDF. Using Equation (B.1.2),∫ rj

−∞

∫ rk

ij

1× f I(rj − ij) f I(rk − ik) dik dij

=
γm

Γ(m)

∫ rj

−∞
(rj − ij)

m−1e−γ(rj−ij)
(

1−
m−1

∑
l=0

γl

l!
e−γ(rk−ij)(rk − ij)

l
)

dij.
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(ii.1) Splitting this into two integrals, we first take y = rj − ij, so that

γm

Γ(m)

∫ rj

−∞
(rj − ij)

m−1e−γ(rj−ij) dij

=
γm

Γ(m)

∫ ∞

0
ym−1e−γy dy

=
γm

Γ(m)

Γ(m)

γm

=1. (B.1.11)

(ii.2) Taking the second integral,

γm

Γ(m)

∫ rj

−∞
(rj − ij)

m−1e−γ(rj−ij)
m−1

∑
l=0

γl

l!
e−γ(rk−ij)(rk − ij)

l dij

=
γm

Γ(m)

m−1

∑
l=0

γl

l!

∫ rj

−∞
(rj − ij)

m−1(rk − ij)
le−γ(rj−ij)e−γ(rk−ij) dij

=
γm

Γ(m)

m−1

∑
l=0

γl

l!

∫ ∞

0
ym−1(rk − rj + y)le−γ(rk−rj+2y) dy

where y = rj − ij. Then note, as in the calculations for E[χjφj], that the in-

tegral is proportional to the expectation of (rk − rj + y)l, where y is gamma

distributed. Therefore,

γm

Γ(m)

m−1

∑
l=0

γl

l!

∫ ∞

0
ym−1(rk − rj + y)le−γ(rk−rj+2y) dy

=
γm

Γ(m)

m−1

∑
l=0

γl

l!
e−γ(rk−rj)E

[
((rk − rj + Y)l) |Y ∼ Γ(m, 2γ)

] Γ(m)

(2γ)m

=
m−1

∑
l=0

γl

l!2m e−γ(rk−rj)E
[
((rk − rj + Y)l) |Y ∼ Γ(m, 2γ)

]
. (B.1.12)

Combining Equations (B.1.11) and (B.1.12), the second part of E[e−βkj(rk∧ij−ik∧ij)]

is given by∫ rj

−∞

∫ rk

ij

1× f I(rj − ij) f I(rk − ik) dik dij

= 1−
m−1

∑
l=0

γl

l!2m e−γ(rk−rj)E
[
((rk − rj + Y)l) |Y ∼ Γ(m, 2γ)

]
. (B.1.13)
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Overall, adding together Equations (B.1.10) and (B.1.13) we obtain

E
[
e−βkj(rk∧ij−ik∧ij) | rk ≥ rj

]
= 1 +

m−1

∑
l=0

e−γ(rk−rj)

l!2m

×E
[
((rk − rj + Y)l) |Y ∼ Γ(m, 2γ)

](( γ

γ + βkj

)m
(γ + βkj)

l − γl
)

.

(B.1.14)

Case (ii): rk < rj

In this case,

rk ∧ ij − ik ∧ ij =


rk − ik if rk < ij,

ij − ik if ik < ij < rk,

0 otherwise.

Then as before,

E
[
e−β(rk∧ij−ik∧ij) | rk < rj

]
=

∫ rj

rk

∫ rk

−∞
e−β(rk−ik) f I(rj − ij) f I(rk − ik) dik dij

+
∫ rk

−∞

∫ ij

−∞
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dik dij

+
∫ rk

−∞

∫ ∞

ij

1× f I(rj − ij) f I(rk − ik) dik dij,

where ij and ik are assumed independent, and we will calculate each integral

individually.

(i) Firstly,∫ rj

rk

∫ rk

−∞
e−β(rk−ik) f I(rj − ij) f I(rk − ik) dik dij

=
∫ rj

rk

∫ rk

−∞
e−β(rk−ik) γm

Γ(m)
(rj − ij)

m−1e−γ(rj−ij)
γm

Γ(m)
(rk − ik)

m−1

× e−γ(rk−ik) dik dij

=
γ2m

Γ(m)2

∫ rj

rk

(rj − ij)
m−1e−γ(rj−ij)

∫ rk

−∞
(rk − ik)

m−1e−γ(rk−ik)

× e−β(rk−ik) dik dij

=
γ2m

Γ(m)2

∫ rj

rk

(rj − ij)
m−1e−γ(rj−ij)

∫ ∞

0
ym−1e−(γ+β)y dy dij,
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where y = rk − ik. Continuing,∫ rj

rk

∫ rk

−∞
e−β(rk−ik) f I(rj − ij) f I(rk − ik) dik dij

=
γ2m

Γ(m)2

∫ rj

rk

(rj − ij)
m−1e−γ(rj−ij)

Γ(m)

(γ + β)m dij,

since the integral is proportional to the PDF of a gamma distribution. Then∫ rj

rk

∫ rk

−∞
e−β(rk−ik) f I(rj − ij) f I(rk − ik) dik dij

=
γ2m

(γ + β)mΓ(m)

∫ rj

rk

(rj − ij)
m−1e−γ(rj−ij) dij

=
γ2m

(γ + β)mΓ(m)

∫ rj−rk

0
ym−1e−γy dy,

where y = rj − ij. Finally,∫ rj

rk

∫ rk

−∞
e−β(rk−ik) f I(rj − ij) f I(rk − ik) dik dij

=
γ2m

(γ + β)mΓ(m)
Fm,γ(rj − rk)

Γ(m)

γm

=
( γ

γ + β

)m
Fm,γ(rj − rk), (B.1.15)

where we have used the definition of the gamma CDF from Equation (B.1.2).

(ii) The second integral is equal to∫ rk

−∞

∫ ij

−∞
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dik dij

=
∫ rk

−∞

∫ ij

−∞
e−β(ij−ik) γm

Γ(m)
(rj − ij)

m−1e−γ(rj−ij)
γm

Γ(m)
(rk − ik)

m−1

× e−γ(rk−ik) dik dij

=
γ2m

Γ(m)2

∫ rk

−∞
(rj − ij)

m−1e−γ(rj−ij)
∫ ij

−∞
(rk − ik)

m−1e−γ(rk−ik)

× e−β(ij−ik) dik dij

=
γ2m

Γ(m)2

∫ rk

−∞
(rj − ij)

m−1e−γ(rj−ij)
∫ ∞

rk−ij

ym−1e−γye−β(ij−rk+y) dy dij,
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where y = rk − ik. Then,∫ rk

−∞

∫ ij

−∞
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dik dij

=
γ2m

Γ(m)2

∫ rk

−∞
(rj − ij)

m−1e−γ(rj−ij)e−β(ij−rk)(1− Fm,γ+β(rk − ij))

× Γ(m)

(γ + β)m dij

=
γ2m

(γ + β)mΓ(m)

∫ rk

−∞
(rj − ij)

m−1e−γ(rj−ij)e−β(ij−rk)

×
m−1

∑
l=0

1
l!

e−(γ+β)(rk−ij)(γ + β)l(rk − ij)
l dij

=
γ2m

(γ + β)mΓ(m)

m−1

∑
l=0

(γ + β)l

l!

∫ rk

−∞
(rj − ij)

m−1(rk − ij)
le−γ(rj+rk−2ij) dij

=
γ2m

(γ + β)mΓ(m)

m−1

∑
l=0

(γ + β)l

l!

∫ ∞

0
(rj − rk + y)m−1yle−γ(rj−rk+2y) dy,

where y = rk − ij. The integral is proportional to the expectation of (rj − rk +

y)m−1, where y is gamma distributed, and so we obtain∫ rk

−∞

∫ ij

−∞
e−β(ij−ik) f I(rj − ij) f I(rk − ik) dik dij

=
γ2m

(γ + β)mΓ(m)

m−1

∑
l=0

(γ + β)l

l!
e−γ(rj−rk)

×E
[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2γ)

]Γ(l + 1)
(2γ)l+1

=
m−1

∑
l=0

e−γ(rj−rk)

2l+1
γm−1

Γ(m)
E[(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2γ)]

×
( γ

γ + β

)m(γ + β

γ

)l
. (B.1.16)

(iii) Moving on to the third integral,∫ rk

−∞

∫ ∞

ij

1× f I(rj − ij) f I(rk − ik) dik dij

=
∫ rk

−∞

∫ ∞

ij

γm

Γ(m)
(rj − ij)

m−1e−γ(rj−ij)
γm

Γ(m)
(rk − ik)

m−1e−γ(rk−ik) dik dij

=
γ2m

Γ(m)2

∫ rk

−∞
(rj − ij)

m−1e−γ(rj−ij)
∫ ∞

ij

(rk − ik)
m−1e−γ(rk−ik) dik dij

=
γ2m

Γ(m)2

∫ rk

−∞
(rj − ij)

m−1e−γ(rj−ij)
∫ rk−ij

−∞
ym−1e−γy dy dij,
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where y = rk − ik. Then, using the fact the integral is proportional to a gamma

CDF and Equation (B.1.2),∫ rk

−∞

∫ ∞

ij

1× f I(rj − ij) f I(rk − ik) dik dij

=
γ2m

Γ(m)2

∫ rk

−∞
(rj − ij)

m−1e−γ(rj−ij)Fm,γ(rk − ij)
Γ(m)

γm dij

=
γm

Γ(m)

∫ rk

−∞
(rj − ij)

m−1e−γ(rj−ij)
(

1−
m−1

∑
l=0

1
l!

e−γ(rk−ij)γl(rk − ij)
l
)

dij.

We will divide this into two integrals.

(iii.1) Firstly, setting y = rj − ij,

γm

Γ(m)

∫ rk

−∞
(rj − ij)

m−1e−γ(rj−ij) dij =
γm

Γ(m)

∫ ∞

rj−rk

ym−1e−γy dy

= 1− Fm,γ(rj − rk).

(iii.2) Secondly,

γm

Γ(m)

∫ rk

−∞
(rj − ij)

m−1e−γ(rj−ij)
m−1

∑
l=0

1
l!

e−γ(rk−ij)γl(rk − ij)
l dij

=
γm

Γ(m)

m−1

∑
l=0

γl

l!

∫ rk

−∞
(rj − ij)

m−1(rk − ij)
le−γ(rj−ij)e−γ(rk−ij) dij

=
γm

Γ(m)

m−1

∑
l=0

γl

l!

∫ ∞

0
(rj − rk + y)m−1yle−γ(rj−rk+2y) dy,

where y = rk − ij. Noting that this integral is proportional to the expectation

of (rj − rk + y)m−1, where y is gamma distributed, the expression becomes

=
γm

Γ(m)

m−1

∑
l=0

γl

l!
e−γ(rj−rk)

∫ ∞

0
(rj − rk + y)m−1yle−2γy dy

=
γm

Γ(m)

m−1

∑
l=0

γl

l!
e−γ(rj−rk)E

[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2γ)

]
× Γ(l + 1)

(2γ)l+1

=
m−1

∑
l=0

γm−1e−γ(rj−rk)

2l+1Γ(m)
E
[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2γ)

]
.
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Recombining the two integrals, we obtain overall for integral (iii),∫ rk

−∞

∫ ∞

ij

1× f I(rj − ij) f I(rk − ik) dik dij

= 1− Fm,γ(rj − rk)−
m−1

∑
l=0

γm−1e−γ(rj−rk)

2l+1Γ(m)

×E
[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2γ)

]
. (B.1.17)

We combine Equations (B.1.15), (B.1.16) and (B.1.17) to obtain

E
[
e−βkj(rk∧ij−ik∧ij) | rk < rj

]
= 1− Fm,γ(rj − rk)

(
1−

( γ

γ + βkj

)m
)
+

m−1

∑
l=0

γm−1e−γ(rj−rk)

2l+1Γ(m)

×E
[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2γ)

](( γ

γ + βkj

)m(γ + βkj

γ

)l
− 1
)

.

(B.1.18)

Finally, combining Equations (B.1.14) and (B.1.18), we obtain the full expres-

sion for E[ψj] with gamma distributed infectious periods:

E[ψj] =
n

∏
k=1
k 6=j



1 + ∑m−1
l=0

e−γ(rk−rj)

l!2m E
[
(rk − rj + Y)l |Y ∼ Γ(m, 2γ)

]
×
((

γ
γ+βkj

)m
(γ + βkj)

l − γl
)

if rk ≥ rj,

1− Fm,γ(rj − rk)
(

1−
( γ

γ+βkj

)m
)
+ ∑m−1

l=0
γm−1e−γ(rj−rk)

2l+1Γ(m)

×E
[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2γ)

]
×
(( γ

γ+βkj

)m(γ+βkj
γ

)l − 1
)

if rk < rj,

(B.1.19)

with

E
[
(r + X)l | X ∼ Γ(m, γ)

]
=

l

∑
p=0

(
l
p

)
rl−p (m + p− 1)p

γp .

and (x)p = (x
p)p!.

Again, we may now calculate the likelihood for any given choice of prior

probability mass function for the initial infective and prior probability den-

sity/mass function for the initial infective’s infection time. In summary,
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π(r | β, θ) =
( n

∏
j=1

E[χjφj]E[ψj]
) n

∑
κ=1

π(κ)E[φκπ(iκ | κ)]
E[χκφκ]E[ψκ]

,

where

E[χjφj] =
n

∑
k=1,
k 6=j

βkj



(
γ

γ+Bj

)m
(1− Fm,γ(rk − rj))

−∑m−1
l=0

γ2m

(2γ+Bj)l+1
e−γ(rk−rj)

(γ+Bj)m−lΓ(m)

×E
[
(rk − rj + Y)m−1 |Y ∼ Γ(l + 1, 2γ + Bj

)
]

if rk ≥ rj,(
γ

γ+Bj

)m(
1− Fm,γ+Bj(rj − rk)

)
−
(

γ
γ+Bj

)m(
γ

2γ+Bj

)m
e−(γ+Bj)(rj−rk) ∑m−1

l=0
(γ+Bj)

l

l!

×E
[
(rj − rk + Y)l |Y ∼ Γ(m, 2γ + Bj)

]
if rk < rj,

E[ψj] =
n

∏
k=1
k 6=j



1 + ∑m−1
l=0

e−γ(rk−rj)

l!2m E
[
(rk − rj + Y)l |Y ∼ Γ(m, 2γ)

]
×
((

γ
γ+βkj

)m
(γ + βkj)

l − γl
)

if rk ≥ rj,

1− Fm,γ(rj − rk)
(

1−
( γ

γ+βkj

)m
)
+ ∑m−1

l=0
γm−1e−γ(rj−rk)

2l+1Γ(m)

×E
[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2γ)

]
×
(( γ

γ+βkj

)m(γ+βkj
γ

)l − 1
)

if rk < rj.

Recall that Bj = ∑N
l=n+1 β jl,

Fk,θ(x) = 1−
k−1

∑
l=0

1
l!
(θx)le−θx,

and

E
[
(r + X)l | X ∼ Γ(m, γ)

]
=

l

∑
p=0

(
l
p

)
rl−p (m + p− 1)p

γp ,

with (x)p = (x
p)p!.
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B.2 Probabilistic method

We are able to obtain the same likelihood expression using probabilistic argu-

ments. In the case of exponential infectious periods, we argued using the fact

that the probability of an event occurring is independent of time. Here we

use the method of stages to split a Γ(m, γ) time period into m exponentially

distributed sections, so that similar arguments may be used.

Expression one: E[χjφj]

Consider first E[χjφj]. We must, for any given infectives j and k, calculate

E
[
e−Bj(rj−ij)1{ik<ij<rk}

]
, where Bj = ∑N

l=n+1 β jl. We split this into cases de-

pending on which is greater, rk or rj.

Case (i): rk ≥ rj

We begin by noting that, given ij < rj < rk, there are 3 possible locations for ik

and hence

1{rj<ik<rk} + 1{ij<ik<rj} + 1{ik<ij<rk} = 1.

Therefore,

E
[
e−Bj(rj−ij)1{ik<ij<rk}

]
= E

[
e−Bj(rj−ij)(1− 1{rj<ik<rk} − 1{ij<ik<rj})

]
= E

[
e−Bj(rj−ij)

]
−E

[
e−Bj(rj−ij)1{rj<ik<rk}

]
−E

[
e−Bj(rj−ij)1{ij<ik<rj}

]
=

( γ

γ + Bj

)m
−
( γ

γ + Bj

)m
Fm,γ+Bj(rk − rj)

−E
[
e−Bj(rj−ij)1{ij<ik<rj}

]
. (B.2.1)

This is since the first term takes the form of a Gamma moment generating func-

tion. The second term represents the probability of there being no points in a

Poisson process of rate Bj between ij and rj as well as m exponential γ stages

for individual k in (rj, rk) (given by the indicator function). Fm,γ(·) represents

a gamma CDF with parameters m and γ. Although not written for simplicity,

all the terms here are of course conditional on rk ≥ rj

What remains is to calculate the final expectation term in the expression above,
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namely

E
[
e−Bj(rj−ij)1{ij<ik<rj} | rk ≥ rj

]
.

Figure B.1: For rk ≥ rj.

We proceed as in the exponential case by working backwards in time from the

final event rk. We condition on the number of Γ(m, γ) stages for individual k in

each time period. Specifically, we assume m− 1− p stages in the period (rj, rk),

p in the period (ik, rj) and one final stage exactly at ik. Clearly p ∈ (0, ..., m− 1).

This is shown in Figure B.1. Now,

P(m− 1− p stages in (rj, rk)) = e−γ(rk−rj)
γm−1−p

(m− 1− p)!
(rk − rj)

m−1−p,

since the number of stages that occur follows a Poisson distribution with pa-

rameter γ.

Next, moving in reverse time from rj, we must also consider Γ(m, γ) stages for

individual j. Since a total of m of these must occur between ij and rj, we split

them such that l occur in (ik, rj) and the remaining m− l occur in (ij, ik), where

l ∈ (0, ..., m− 1).

Therefore, for the time period (ik, rj) we must allocate p stages for individual

k and l stages for individual j. The number of ways to allocate the p stages

among a total of l + p is simply given by (l+p
p ). For time period (ij, ik), only

stages for j continue to occur and hence we do not need to order these.

The last part to consider is the e−Bj(rj−ij) term in the expectation. Note that

this is equal to the probability of there being no points in a Poisson process

of rate Bj in (ij, rj), and so we must condition on all stages of our infectious
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processes for j and k occurring before a point in this Bj process. We require

l + p + 1 stages in (ik, rj) (including the stage for k which occurs exactly at ik).

Since there is an infectious process for k occurring with rate γ and another for

j with rate γ, which are independent, we may sum them to a Poisson process

occurring with rate 2γ. Hence, the probability of l + p + 1 stages occurring

before a Poisson process of rate Bj is given by
(

γ
2γ+Bj

)l+p+1
. Similarly, in (ij, ik)

we require m− l stages for j before any events in the Poisson process of rate Bj

(events for k are no longer occurring), which is given by
(

γ
γ+Bj

)m−l
.

Combining these arguments, we find

E
[
e−Bj(rj−ij)1{ij<ik<rj} | rk ≥ rj

]
=

m−1

∑
l=0

m−1

∑
p=0

e−γ(rk−rj)
γm−1−p

(m− 1− p)!

×(rk − rj)
m−1−p

(
l + p

p

)( γ

2γ + Bj

)l+p+1

×
( γ

γ + Bj

)m−l
,

which can be rearranged to

E
[
e−Bj(rj−ij)1{ij<ik<rj} | rk ≥ rj

]
=

m−1

∑
l=0

γ2m

(2γ + Bj)l+1
e−γ(rk−rj)

(γ + Bj)m−lΓ(m)

×
m−1

∑
p=0

(
m− 1

p

)
(rk − rj)

m−1−p (l + p)p

(2γ + Bj)p .

Putting this back together with the rest of expression from Equation (B.2.1),

we obtain

E
[
e−Bj(rj−ij)1{ik<ij<rk} | rk ≥ rj

]
=

( γ

γ + Bj

)m
(1− Fm,γ+Bj(rk − rj))

−
m−1

∑
l=0

γ2m

(2γ + Bj)l+1
e−γ(rk−rj)

(γ + Bj)m−lΓ(m)

×
m−1

∑
p=0

(
m− 1

p

)
(rk − rj)

m−1−p

(l + p)p

(2γ + Bj)p , (B.2.2)

which is the same expression found via direct integration methods in Equation

(3.4.12).
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Case (ii): rk < rj

Moving on to the case rk < rj, we again calculate E
[
e−Bj(rj−ij)1{ik<ij<rk}

]
. The

arguments required are similar here, for example we now consider the possible

locations of ij rather than ik:

1{ik<ij<rk} + 1{ij<ik<rk} + 1{rk<ij<rj} = 1.

Then, as before with all terms conditional on rk < rj,

E
[
e−Bj(rj−ij)1{ik<ij<rk}

]
= E

[
e−Bj(rj−ij)(1− 1{rk<ij<rj} − 1{ij<ik<rk})

]
= E

[
e−Bj(rj−ij)

]
−E

[
e−Bj(rj−ij)1{rk<ij<rj}

]
−E

[
e−Bj(rj−ij)1{ij<ik<rk}

]
=

( γ

γ + Bj

)m
−
( γ

γ + Bj

)m
Fm,γ+Bj(rj − rk)

−E
[
e−Bj(rj−ij)1{ij<ik<rj}

]
. (B.2.3)

Again we must calculate E
[
e−Bj(rj−ij)1{ij<ik<rj} | rk < rj

]
, though now clearly

the conditioning argument is reversed for j and k. We condition again on the

number of stages of Γ(m, γ), this time for individual j. We set m− l stages in

(ij, ik), p stages in (ik, rk) and l − p stages in (rk, rj), totalling m stages overall

if l ∈ (0, ..., m− 1) and p ∈ (0, ..., l). This is shown in Figure B.2.

Figure B.2: For rk < rj.

As opposed to the previous case rk ≥ rj, here the term e−Bj(rj−ij) corresponds to

there being no points in a Poisson process over the whole time period. Hence,

through the aggregation of Poisson processes, the probability of l − p stages
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for individual j in (rk, rj) is equal to the probability of l− p stages of a Poisson

process of rate γ + Bj. This is given by e−(γ+Bj)(rj−rk) (γ+Bj)
l−p

(l−p)! (rj − rk)
l−p. In

addition, we require these l − p stages to occur before any points in the Bj

Poisson process, the probability of which is given by
(

γ
γ+Bj

)l−p
.

For the time period (ik, rk), we require p stages for j as well as m stages for

k. The number of ways to allocate j’s stages among m − 1 for k is therefore

(m+p−1
p ) (m− 1 since the final stage exactly at ik must clearly be for individual

k. The probability of all m + p stages occurring before any points in the Bj

Poisson process is
(

γ
2γ+Bj

)m+p
.

Lastly, for time period (ij, ik) we have the remaining m− l stages for individual

k. The probability that these all occur before any points in the Bj process is

similarly given by
(

γ
γ+Bj

)m−l
.

Combining these arguments:

E
[
e−Bj(rj−ij)1{ij<ik<rj} | rk < rj

]
=

m−1

∑
l=0

l

∑
p=0

e−(γ+Bj)(rj−rk)
(γ + Bj)

l−p

(l − p)!

×(rj − rk)
l−p
(

m + p− 1
p

)( γ

γ + Bj

)l−p

×
( γ

2γ + Bj

)m+p( γ

γ + Bj

)m−l
.

Substituting this into Equation (B.2.3) and rearranging then gives

E
[
e−Bj(rj−ij)1{ik<ij<rk} | rk < rj

]
=

( γ

γ + Bj

)m
(1− Fm,γ+Bj(rj − rk))

−
(( γ

(γ + Bj)

)m( γ

(2γ + Bj)

)m

×e−(γ+Bj)(rj−rk)
m−1

∑
l=0

(γ + Bj)
l

l!

×
l

∑
p=0

(
l
p

)
(rj − rk)

l−p

(m + p− 1)p

(2γ + Bj)p

)
, (B.2.4)

as was found previously in Equation (B.1.9).
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Overall, combining Equations (B.2.2) and (B.2.4),

E[χjφj] =
n

∑
k=1,
k 6=j

βkj



(
γ

γ+Bj

)m
(1− Fm,γ(rk − rj))

−∑m−1
l=0

γ2m

(2γ+Bj)l+1
e−γ(rk−rj)

(γ+Bj)m−lΓ(m)

×E
[
(rk − rj + Y)m−1 |Y ∼ Γ(l + 1, 2γ + Bj)

]
if rk ≥ rj,(

γ
γ+Bj

)m(
1− Fm,γ+Bj(rj − rk)

)
−
(

γ
γ+Bj

)m(
γ

2γ+Bj

)m
e−(γ+Bj)(rj−rk) ∑m−1

l=0
(γ+Bj)

l

l!

×E
[
(rj − rk + Y)l |Y ∼ Γ(m, 2γ + Bj)

]
if rk < rj,

where

E
[
(r + X)l | X ∼ Γ(m, γ)

]
=

l

∑
p=0

(
l
p

)
rl−p (m + p− 1)p

γp ,

in agreement with the result of Equation (3.4.12).

Expression two: E[ψj]

Secondly, we use probability arguments to obtain our expression for E[ψj].

Recall that

E[ψj] =
n

∏
k=1
k 6=j

E
[
e−βkj(rk∧ij−ik∧ij)

]
.

For each pair j, k we seek an expression for E
[
e−βkjτkj

]
, where τkj = rk ∧ ij− ik ∧

ij. Again, for ease of exposition we write βkj = β in this section. We condition

as usual on which of rk and rj is greater.

Case (i): rk ≥ rj

For rk ≥ rj,

τkj =

ij − ik if ik < ij,

0 otherwise,

therefore we require,

E
[
e−βkj(rk∧ij−ik∧ij)

]
= E

[
e−β(ij−ik)1ik<ij + e−β(0)1ij<ik

]
. (B.2.5)
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Taking the first case in Equation (B.2.5), we must calculate

E
[
e−β(ij−ik)1ik<ij

]
= E

[
e−β(ij−ik) | ik < ij

]
P[ik < ij]. (B.2.6)

This case is shown in Figure B.3.

Figure B.3: For rk ≥ rj, case 1.

Along similar lines to the calculation of E[χjφj], we start by working back-

wards from rk. We condition on the number of stages of Γ(m, γ) for individual

k which occur in each time period. Specifically, we assume l − p stages in

(rj, rk) and p stages in (ij, rj), where l ∈ (0, 1, . . . , m− 1) and p ∈ (0, 1, . . . , l).

The probability of l − p stages occurring in (rj, rk) is given by

P(l − p stages in (rj, rk)) = e−γ(rj−rk)
γl−p

(l − p)!
(rk − rj)

l−p,

since the number of stages in (rj, rk) is Poisson distributed with parameter γ.

Next, we must consider the period (ij, rj), where we must allocate the remain-

ing p stages of Γ(m, γ) for k as well as the total m stages of Γ(m, γ) for j. We

construct this as a Poisson process of rate 2γ, choosing an individual k or j

at each stage event with probability 1
2 . This occurs with overall probability

(1
2)

m+p.

In addition we require the number of ways to allocate the p stages among the

total m− 1 + p (since the last event in the total m for j must occur at ij). This is

given by (m−1+p
p ).

Finally we consider time period (ik, ij). We have m − l stages remaining for

k, which must all occur before a Poisson process of rate β (as given by the

expectation in Equation (B.2.6)), giving
( γ

γ+β

)m−l.
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Combining all of the constituent parts, we obtain

E
[
e−β(ij−ik)1ik<ij

]
=

m−1

∑
l=0

l

∑
p=0

e−γ(rj−rk)
γl−p

(l − p)!
(rk − rj)

l−p
(

m− 1 + p
p

)
×
( γ

γ + β

)m−l
(

1
2
)m+p

=
m−1

∑
l=0

e−γ(rj−rk)

2ml!

l

∑
p=0

(
l
p

)
(rk − rj)

l−p (m + p− 1)p

(2γ)p

×
( γ

γ + β

)m
(γ + β)l.

Taking now the second case in Equation (B.2.5), we calculate

E[1× 1ik>ij ] = P[ik > ij] = 1−P[ik < ij].

This probability is the same as that calculated in the first case of Equation

(B.2.5), and is given by

P[ik < ij] =
m−1

∑
l=0

l

∑
p=0

e−γ(rj−rk)
γl−p

(l − p)!
(rk − rj)

l−p
(

m− 1 + p
p

)
(

1
2
)m+p.

Hence,

E[1× 1ik>ij ] = 1−
m−1

∑
l=0

l

∑
p=0

e−γ(rj−rk)
γl−p

(l − p)!
(rk − rj)

l−p
(

m− 1 + p
p

)
(

1
2
)m+p

= 1−
m−1

∑
l=0

e−γ(rj−rk)

2ml!

l

∑
p=0

(
l
p

)
(rk − rj)

l−p (m + p− 1)p

(2γ)p γl.

Adding together these two cases, we obtain that, for rk ≥ rj,

E
[
e−βkj(rk∧ij−ik∧ij) | rk ≥ rj

]
=1 +

m−1

∑
l=0

e−γ(rj−rk)

2ml!

l

∑
p=0

(
l
p

)
(rk − rj)

l−p

×
(m + p− 1)p

(2γ)p

(( γ

γ + β

)m
(γ + β)l − γl

)
,

(B.2.7)

as was found previously in Equation (3.4.12).

Case (ii): rk < rj
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Now for rk < rj,

τkj =


rk − ik if rk < ij < rj,

ij − ik if ik < ij < rk,

0 if ij < ik,

therefore we require,

E
[
e−β(rk∧ij−ik∧ij)

]
=E

[
e−β(rk−ik)1rk<ij<rj

]
+ E

[
e−β(ij−ik)1ik<ij<rk

]
+ E

[
e−β(0)1ij<ik

]
, (B.2.8)

where again we write βkj = β for ease of exposition.

For the first of these three cases,

E
[
e−β(rk−ik)1rk<ij<rj

]
= E

[
e−β(rk−ik)]E[1rk<ij<rj

]
,

since time period rk − ik is independent of the event rk < ij < rj.

The first term is equal to the probability that m stages of a Poisson process of

rate γ occur before a Poisson process of rate β, given by
(

γ
γ+β

)m
. The second

term is equal to the probability that, working back in time from rj, ij occurs

before rk. This is given by Fm,γ(rj − rk).

Combining these arguments,

E
[
e−β(rk−ik)1rk<ij<rj

]
=
( γ

γ + β

)m
Fm,γ(rj − rk). (B.2.9)

Progressing to the second case,

E
[
e−β(ij−ik)1ik<ij<rk

]
= E

[
e−β(ij−ik) | ik < ij < rk

]
P[ik < ij < rk].

Figure B.4: For rk < rj, case 2.
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Figure B.4 shows the timeline for this case, and the calculations are similar

to those seen previously. We condition on there being m − 1 − p stages for

individual j in the period (rk, rj), with p + 1 further stages in (ij, rk) for a total

of m. Here p ∈ (0, 1, . . . , m). The probability of the m− 1− p stages in (rk, rj)

is equal to e−γ(rj−rk) γm−1−p

(m−1−p)! (rj − rk)
m−1−p.

Moving back to the previous time stage (ij, rk), we require p + 1 stages for

individual j as well as setting l stages for individual k, for l ∈ (0, 1, . . . , m− 1).

These form a Poisson process of rate 2γ, the probability of which occurring is

(1
2)

p+l+1. The number of ways to allocate p stages for j among the l for k (since

the last event must necessarily be for j at ij) is given by (l+p
p ).

Lastly we consider time period (ik, ij). Here we have m− l remaining stages

for k, to occur before a Poisson process of rate β. The probability of this is(
γ

γ+β

)m−l
.

Combining the constituent parts,

E
[
e−β(ij−ik)1ik<ij<rk

]
=

m−1

∑
l=0

m−1

∑
p=0

e−γ(rj−rk)
γm−1−p

(m− 1− p)!
(rj − rk)

m−1−p
(1

2

)p+l+1

(
l + p

p

)( γ

γ + β

)m−l

=
m−1

∑
l=0

γm−1

2l+1
e−γ(rj−rk)

Γ(m)

m−1

∑
p=0

(
m− 1

p

)
(rj − rk)

m−1−p

(l + p)p

(2γ)p

( γ

γ + β

)m−l. (B.2.10)

Lastly we consider the third case,

E
[
e−β(0)1ij<ik

]
= P[ij < ik]

= 1−P[ik < ij < rk]−P[rk < ij < rj]

= 1−E
[
e−01ik<ij<rk

]
− Fm,γ(rj − rk),

where the term E
[
e−01ik<ij<rk

]
is simply the second case above, given in Equa-

tion (B.2.10), with β = 0.
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Hence,

E
[
e−β(0)1ij<ik

]
=1− Fm,γ(rj − rk)−

m−1

∑
l=0

γm−1

2l+1
e−γ(rj−rk)

Γ(m)

m−1

∑
p=0

(
m− 1

p

)
× (rj − rk)

m−1−p (l + p)p

(2γ)p . (B.2.11)

Combining all three cases from Equations (B.2.9), (B.2.10) and (B.2.11), we ob-

tain the overall expression for rk < rj,

E
[
e−βkj(rk∧ij−ik∧ij) | rk < rj

]
=1− Fm,γ(rj − rk)

(
1−

( γ

γ + β

)m
)
+

m−1

∑
l=0

γm−1

2l+1

× e−γ(rj−rk)

Γ(m)

m−1

∑
p=0

(
m− 1

p

)
(rj − rk)

m−1−p

×
(l + p)p

(2γ)p

(( γ

γ + β

)m−l
− 1

)
, (B.2.12)

which is equal to Equation (B.1.18).

Overall, combining Equations (B.2.7) and (B.2.12),

E[ψj] =
n

∏
k=1
k 6=j



1 + ∑m−1
l=0

e−γ(rk−rj)

l!2m E
[
((rk − rj + Y)l) |Y ∼ Γ(m, 2γ)

]
×
((

γ
γ+βkj

)m
(γ + βkj)

l − γl
)

if rk ≥ rj,

1− Fm,γ(rj − rk)
(

1−
( γ

γ+βkj

)m
)
+ ∑m−1

l=0
γm−1e−γ(rj−rk)

2l+1Γ(m)

×E
[
(rj − rk + Y)m−1 |Y ∼ Γ(l + 1, 2γ)

]
×
(( γ

γ+βkj

)m(γ+βkj
γ

)l − 1
)

if rk < rj.

This is in agreement with Equation (3.4.12), and so overall the whole likelihood

expression agrees with that obtained via integration arguments.
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