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Abstract

Mathematical modelling has become a useful and commonly-used tool in the
analysis of infectious disease dynamics. Understanding disease spread is of
considerable importance for public health planning and the prevention of fu-
ture outbreaks, and mathematical analysis of disease outbreaks offers insight

which may not be so easily obtained through direct biological study.

One key aspect, in mathematical analysis of infectious diseases specifically,
is that generally the epidemic process is only partially observed. We might be
able to identify the time at which infective individuals become symptomatic or
recover, but rarely are we able to observe when infection began, or from whom
it was transmitted. This leads to a number of complications with analysis,

which will be a focus of this work.

The first part of this thesis describes a full Bayesian analysis for such an out-
break with only partial observation of the disease process. We will perform
the first Bayesian analysis of the Abakaliki smallpox data, which have been
widely cited within the infectious disease modelling literature, to include the
full data. In order to do this, we use data augmented Markov Chain Monte
Carlo (DA-MCMC) techniques to perform parameter estimation. Analysis in-
volves interpretation of these parameter estimates as well as model assessment
with simulation-based methods. We also compare our results to a previous

analysis which used an approximate likelihood expression.

The second part of this thesis describes novel approximate likelihood methods,

motivated in part by the results of the Abakaliki study. Although DA-MCMC



is generally considered the standard tool for analysis of partial epidemic data,
it often struggles for large population sizes and large amounts of missing data,
both through issues of highly correlated missing data and of potentially lim-
iting computation times. We suggest that likelihood approximation methods
are a useful tool for dealing with these issues. We develop a series of such
methods, which essentially assume some independence in the outbreak pop-
ulation in order to obtain likelihood expressions which do not depend on any
missing data. These methods will be motivated and developed, and then il-

lustrated both by simulation study and by application to real data.
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CHAPTER 1

Introduction

In this thesis, we will explore different aspects of Bayesian analysis for in-
fectious disease data. Bayesian methods are of particular use for epidemic
modelling since data are typically only partially observed. Data Augmented
Markov Chain Monte Carlo (DA-MCMC) is currently the standard computa-
tional Bayesian method employed, and this will be the focus of the first part
of this thesis in an application to a much-cited data set concerning a smallpox
outbreak. The second part of this thesis will then introduce novel approximate
likelihood methods for Bayesian inference. These are motivated by a number
of computational problems of DA-MCMC. A series of such likelihood meth-
ods will be described, as well as applied to various simulated and real data

sets.

First, this introduction will provide relevant background material. We begin
with a discussion of the history of infectious disease data analysis, and the
use of stochastic models for this. We define important aspects of the data and
models which are used, and describe current computational methods. We par-
ticularly consider methods which involve approximation, since this will be the

focus of much of this thesis.
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1.1 Mathematical Infectious Disease Modelling

1.1.1 Background

Mathematical models have seen increasing popularity as tools for furthering
the understanding of infectious disease epidemiology. Often, experimental
study on the spread of disease in humans and animals is ethically difficult and
resource intensive, but mathematical models offer an alternative in seeking
to replicate the underlying factors driving disease dynamics, to allow estima-
tion of parameters which, for example, govern disease transmission. Models
aim to describe transmission of disease between hosts by incorporating con-
tact patterns and a realistic representation of the disease itself (e.g. lengths of
infectious periods, latent periods and so on). Predictions may then be made
about key parameters such as infection rates or vaccine efficacies. In fact, the
aims of analysis may largely be categorised into three main areas: furthering
understanding of the mechanisms by which diseases spread, predicting future
spread, and discovery of the methods which best control this (Daley and Gani,
2001). Development of vaccination strategies, health care interventions, and

public health initiatives may all be informed by this mathematical research.

The development of mathematical theories on the spread of infectious diseases
can be traced back to at least the ancient Greeks, although real progress was
arguably only made from the 19th century with the discovery of the connec-
tion of microorganisms to disease. This laid the foundations for the develop-
ment of more rigorous mathematical descriptions of disease outbreaks. Al-
though there had been previous studies such as the famed Broad Street Pump
study of 1854/5, in which a contaminated water pump was identified as the
source of a cholera outbreak in London (see e.g. Newsom, 2006), these had
been largely empirical rather than theoretical. In the last century, however, the
field has seen great advancement, driven both by development of mathemati-
cal theory and increasing computational resources. From the development of

individual-based, deterministic models where outbreak progression depends
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specifically on the numbers of susceptible and infectious individuals, to the
introduction of stochastic models which incorporate probabilities of events oc-
curring, development has been rapid. In Kermack and McKendrick (1927), the
first complete, deterministic mathematical model to receive attention was in-
troduced, named the general epidemic model, with its stochastic counterpart in
McKendrick (1926), though this received less attention. Previously, these kinds
of models were generally only used within mathematical theory, but since the
1990s or so there has been an increased interest in the field by more applied sci-
entists as well as public health officials and policy makers. Central texts which
further describe the history of the field as well as key methods and applica-
tions include Bailey (1975), Becker (1989), Anderson and May (1991) and An-
dersson and Britton (2000). Today, with increasing volumes of data driven by
increasing computational power, there is growing demand on mathematical
models which capture more complex populations, as well as methods which

can translate these into real-world conclusions.

1.1.2 Stochastic Models

The set of models for analysis of infectious disease is often split into determin-
istic and stochastic. Deterministic models are usually defined through a set
of ordinary (or partial) differential equations, which seek to describe the flow
of individuals between different disease stages over time. Stochastic models,
although often less straightforward to analyse, are generally considered more
realistic than their deterministic counterparts. In capturing the variability of

real-life events, they represent the natural stochasticity of disease outbreaks.

The use of stochastic models has allowed for considerable development in in-
fectious disease analysis. From the 1930s, when the idea of using binomial
distributions to represent successive crops of new cases was introduced (de-
scribed in Bailey, 1975), there has been an increase in their use. They are es-
pecially useful when the number of individuals in the population is small,

since in these cases the innate randomness of the processes involved is more
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pronounced and hence deterministic models less well describe the epidemic
spread. Models are generally constructed on an individual-based level, where
we consider individual units (humans, animals, or even groups of individu-
als) within some population. The total population might refer to a household,

a city, or a country, for example.

One model which has received significant attention (although it was never
published) was proposed by Reed and Frost. This is a discrete time chain-
binomial model, in which outbreaks are described as evolving in generations
where each infected individual infects each susceptible individual indepen-
dently, with a fixed probability p. The individuals infected by those in some
generation ¢ then form generation ¢ + 1, and those in g are assumed to re-
cover. The number of infectives in each generation is therefore binomially dis-
tributed, with probability dependent upon the number of infectives present in
the previous generation, and the entire outbreak is described by a chain of such
binomial random variables. A more detailed description of the Reed-Frost
model can be found in Andersson and Britton (2000), Section 1.2 or Abbey
(1952). The so-called general stochastic model for an epidemic process was then
formulated by Bartlett (1949). This was the first work to define a stochas-
tic model using Markovian processes, and most stochastic models since have
been defined as such, in either discrete or continuous time. From this point
on, we will restrict our attention to stochastic rather than deterministic mod-

els, since these are the focus of this work.

1.1.2.1 SIR and SEIR Stochastic Epidemic Models

Models used for analysis of infectious diseases generally include some kind of
state of health of the individuals concerned. These are commonly known as
compartmental models, since they categorise individuals into a discrete set of

disease states.

The standard terminology is to define all individuals who are currently able to

become infected by the disease as “susceptible’, all currently infectious (i.e. able

4
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to pass the disease on to others) individuals as “infective’ and all individuals
who are no longer infectious but are also not able to contract the disease again
as ‘removed’. This removed state might correspond to a number of causes:
death, removal from the population, recovery and immunity from reinfection,
or perhaps recovery with the timescale of the outbreak too short for reinfec-
tion to reasonably occur. These states may be combined to form what is called
an SIR (susceptible-infective-removed) model, though there are others which
may be considered and are often applied. For example, if we also introduce
a ‘'latent” or ‘exposed’ period before the infectious period, wherein individuals
are infected but not yet able to infect others, we may use an SEIR (susceptible-
exposed-infective-removed) model. If we do not wish to include a removal
period, but instead to allow all recovered individuals to become immediately
infected again, we may use an SIS (susceptible-infective-susceptible) model.
In this thesis, however, we will largely focus on SIR and SEIR models, and

extensions thereof.

Figure 1.1 depicts a typical timeline for the stages of a disease that an indi-
vidual might pass through. The model used here is an extension of the SEIR
model, which we will see more of in Chapter 2, where we have split the in-
fectious period into two parts according to whether the individual is symp-
tomatic or asymptomatic. These periods might be categorised by differing
infection rates. Of course, compartmental models may be defined with any
compartments desired, but we consider here those which are frequently seen

in practice.

We will discuss different types of infectious disease data further in Section 1.2,
but typically outbreak data contain the removal times only (or, say, case detec-
tion times treated as removal times). The length of each individual’s infectious
period, and the latent period if we include this, are then assumed random and
independent of other individuals. In general, these lengths of time are as-

sumed to be random samples from distributions with known parameters.

Transmission of the disease is modelled as being the result of infectious con-
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susceptible  exposed infective removed
#
e 1 r

asymptomatic symptomatic

Figure 1.1: Typical disease timeline for an SEIR model with 2 stage infectious

"onoonen

period. Times "e", "i" and "r" refer to the start of the individual’s
exposed (infected, but not yet infectious), infective (able to infect
others) and removed (plays no further part in the outbreak) peri-

ods, respectively.

tacts. Infectious individuals in the population are assumed to have contacts
with others at some defined rate, where a contact is defined as an interaction
close enough for an infection to occur. In reality, this contact may refer to a
physical meeting of these individuals, but also a proxy for the infective dis-
persing pathogens in their environment and the contacted individual making
contact with this pathogenic material. Examples include using objects they
have encountered, breathing in the same air, or, in hospital settings, medical
staff being the intermediary link. An infectious contact with a susceptible is

normally assumed to result in the susceptible’s immediate infection.

We now more rigorously define the SIR model, which may be extended to any
compartmental model of choice. We first define a closed population of size
N, which does not include any demographic changes (i.e. births or deaths).
We assume, for now, that this population is homogeneously mixing (i.e. all
individuals mix uniformly), so that the chance that any two individuals meet
is independent of the choice of individuals. All individuals will at all times
t > 0 be in one of the three states: susceptible, infective and removed. The
total numbers of individuals in these categories at any time f are given by
S(t), I(t) and R(t), respectively, where for all t, S(¢) + I(t) + R(t) = N. We

assume external infection of the initial infective, so that initially S(0) = N — 1,

6
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1(0) = 1 and R(0) = 0.

Any given infective individual will contact any other given individual at times
given by the points in a homogeneous Poisson process of rate , where all Pois-
son processes are mutually independent. Any contact between an infective
and a susceptible is assumed to result in immediate infection of the suscepti-
ble. The length of any infective’s infectious period x is assumed independent
of all others, and identically distributed with arbitrarily defined probability
density (or mass) function fj(x | 8), where 6 includes the parameters control-
ling the length of the infectious periods. The outbreak ends when there are no

more infectives in the population.

The general stochastic epidemic model for infectious periods following an expo-
nential distribution with rate -y (so that f;(x | 8) = ye~7*, x > 0) may then be
defined as a continuous-time Markov chain {(S(t),I(t)) : t+ > 0} with transi-

tion probabilities:

P[(S(t+h), I(t+h)) = (s—1,i+1) | (S(t), I(t)) = (s,i)] = Bhsi+ o(h)
P[(S(t+h), I(t+h)) = (s,i — 1) | (S(t), 1(t)) = (5,4)] = vhi +o(h), ash — 0

where the first equation corresponds to an infection and the second to a re-
moval. At time ¢, infections then occur at rate BS(¢)I(t) and removals at rate
yI(t).

Under this model, the infectious periods are independent exponentially dis-
tributed lengths of time with mean % In this standard form of the model there
are hence two parameters; the infection rate p and the removal rate . We
will also often employ gamma distributed infectious periods within this the-
sis, with mean % for shape parameter m and rate parameter y. Gamma (or
Erlang, for integer valued m) distributions are frequently used since exponen-
tially distributed infectious periods, although leading to convenient mathe-
matical results, may be unrealistic in practice (see e.g. Lloyd, 2001, Streftaris

and Gibson, 2004).
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1.1.2.2 Population Structures

Although in Section 1.1.2.1 we assumed that all individuals mixed homoge-
neously, in reality we often assume some heterogeneity in the mixing behaviour
of individuals. The structure for the populations within which outbreaks oc-
cur can have considerable impact on the behaviour of the model, and more
complex choices of population structure are becoming more commonly used
in practice to meet the demands of real data analyses. Models must be com-
plex enough to accurately represent the dynamics of the real population, but
simple enough to allow consideration of the impact of modelling assumptions

on the outcomes, as well as not being over-parameterised.

There are numerous options for population structures which have been ex-
plored (see e.g. Britton et al., 2015 or Mollison, 1995). Global contact structures
(or homogeneously mixing structures) as defined in Section 1.1.2.1 essentially
assume no structure at all, and individuals within the population do not differ
in their interactions, infectivity or in the average length of time spent infected.
Although simple and comparatively easy to implement, this assumption is
often unrealistic (especially in larger populations rather than smaller commu-
nities e.g. households), and so a more detailed description of the population

may be necessary.

For this we require a heterogeneously mixing population model, within which
we may define a number of structure subcategories. A multi-type model would
include a set of structured subgroups in the population, categorising for ex-
ample by age, sex, or social grouping. Ball et al. (1997) defined a two level
mixing household model, where individuals have local contacts within their
household and global contacts between households. This was extended to
three levels by Britton et al. (2011), who considered global, household and

school/workplace contacts in the context of a measles outbreak.

Network models, on the other hand, deal with a more complex structure of in-

teraction between individuals. Considering each individual in the population
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as a node, the contact rate between any two individuals is given by the weight
of the edge between them. These have become widely applied, see e.g. Keel-
ing and Eames (2005), Barthélemy et al. (2005) and Newman (2002), as well as
Britton and O’Neill (2002) who developed methods for inference. Definition
of network models is difficult since any individual-based model may be repre-
sented as a network of the individuals (for example, a homogeneously mixing
population structure is just a completely connected network where the weight
of all edges is equal). For simplicity, we will consider them here as any popula-
tion structure where members vary individually in their infectivity or mixing
behaviour, rather than by some structured grouping as in a multi-type model.
Danon et al. (2011) provide a detailed discussion of many forms of network
models for infectious diseases. One such example is a spatial model, whereby
individuals’ infectivity /mixing behaviour in some way depends on their ‘dis-
tance” from others. This could be geographically (for example the distance
between individuals” area of residence, as in Chowell et al., 2007), or other-
wise (for example the ‘genetic distance” between individuals” DNA samples,

as in Worby et al., 2016).

1.1.2.3 Reproduction Numbers

Reproduction numbers play an important role in infectious disease analysis.
Usually referred to as R, the exact definition of these varies but generally we

define, as in Becker (2015):

R = the average number of infections that a single infective will cause.

The name reproduction number comes from the fact that models for disease
transmission may essentially be considered as birth-death processes, where an
infection describes a ‘birth” and a recovery describes a ‘death’. Then R is the
mean number of ‘offspring” produced by an infective. Although we may ob-
tain an estimate of R for an entire outbreak, of course in reality R is constantly

changing with the number of susceptibles left in the population, and also po-
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tentially with the reaction of the population to the outbreak. We hence define
the more interpretable, and more commonly used, basic reproduction number

R():

Rp = the average number of infections that a single infective will cause,

in a large and entirely susceptible population.

In the calculation of Ry we therefore require that none of the population is
immune, by vaccination or otherwise, and that all individuals are able to in-
teract. Although this requirement of complete susceptibility makes Ry less
interpretable in its meaning for any given outbreak where this is not the case,
it makes it much more comparable between different data sets and diseases. It

offers a general measure of the overall infectivity of a disease.

Other reproduction numbers may also be defined, and we will explore a num-
ber of these in Chapter 2. We may, for example, define a reproduction number
during a particular section of the infectious period, or within a particular sub-

group of the population.

The exact formula for any reproduction number will of course depend on the
model used for the infection and removal rates. In general, for stochastic mod-

els we may define

Rp = infection rate X number of susceptibles x

mean length of the infectious period ,

and for the Markovian SIR model defined in Section 1.1.2.1 above,

R = PN,
%

This is since each individual will be infectious for, on average, time %r’ and the

average number of susceptibles infected per unit time is SN.

A key interpretation of Ry is in its relation to the epidemic spread as a thresh-
old quantity. In an infinitely large population, it is possible to show with prob-

ability one that if Ry < 1 then the epidemic will die out (only a finite number

10
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of individuals become infected). Correspondingly, a major outbreak in a large
population is possible if and only if Ry > 1, by the threshold limit theorem
(Andersson and Britton, 2000, Chapter 4). Estimating the value of Ry from the
model parameter estimates allows us to gain an understanding of how large a
future outbreak could be. This is particularly useful in informing vaccination
strategies, for example, since we can calculate the proportion of a population

that would need to be vaccinated to prevent a widespread outbreak.

For a more detailed discussion of this, and reproduction numbers in general,
we direct the reader to Andersson and Britton (2000) or Heesterbeek and Dietz

(1996), for example.

1.2 Data

So far in this chapter we have focused on defining models for the spread of
infectious disease, but of course in a statistical context we are also concerned
with inference about the model parameters. This requires data from disease

outbreaks, which we now discuss.

Disease outbreak data are most commonly mathematically collected in a tem-
poral form. These typically contain a time series of outbreak events, usually
case detection times or removal times. This is often aggregated e.g. into daily
or weekly data. Final size data are also common, consisting just of the initial
number of susceptibles and which of these were eventually infected. How-
ever, this thesis will not focus on final size data, and from this point all data

will be assumed temporal.

There is frequently some extra information available as well: for example age,
sex or location of residence of the individuals within the population. These
may inform the population structure aspects of the model. Information on
the vaccination of individuals may also be present, as will be particularly rel-
evant in Chapter 2. This may be incorporated into the model to, for example,

consider a proportion of the population effectively initially in the ‘removed’

11
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stage. Estimation of the efficacy of the vaccine given a particular outbreak may
then be performed. Daley and Gani (2001), Chapter 7 and Anderson and May
(1982) include a more detailed discussion of immunization, and particularly

its relation to Ry.

Disease outbreak data are commonly only partially observed. This is since
the transmission process itself is generally unobserved, for example most in-
fectives are only identified at the moment they become symptomatic. Further
than this, if the system is only observed at discrete intervals (e.g. weekly hos-
pital tests or similar), then there will be a large amount of uncertainty as to

exactly when outbreak events occurred.

Missing data may also come in the form of unobserved cases, whether due to
asymptomatic individuals, misdiagnosis, or under-reporting of cases. Popu-
lation sizes may also include some element of uncertainty, either in the total
number of people living in some particular area or in the proportion of this
which is initially susceptible, due, for example, to prior immunity. We gen-
erally assume that the population is closed for the duration of the outbreak,
but this is course will not always be accurate (particularly for outbreaks which

occur over longer lengths of time).

Performing statistical analysis on only partially observed data often proves
complicated, even with simple models. Missing data may lead to likelihood
expressions which are analytically intractable. We will explore this further in

Section 1.3.2.

1.3 Methods for Analysis

The majority of methods for inference from stochastic models use likelihood
expressions. As we have discussed in Section 1.2, many of these likelihoods
will be intractable, due to a combination of partially observed data and the

model used to describe them.

12
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Tractable likelihoods do arise, usually as a result of simplifying assumptions
such as fixed length infectious periods. Inference is then possible using stan-
dard techniques such as maximum likelihood estimation through numerical opti-
mization of the likelihood function. Intractable likelihoods, on the other hand,
may occur when infection times (or indeed any event times, though we state
infection times for simplicity) are unobserved. The likelihood can then be con-
sidered as the integral over all possible infection times of the likelihood ex-
pression when augmented with the infection times. The high dimensional
and often complex region of integration, however, is what leads to intractabil-
ity, often analytically and numerically. There are a number of methods which

have been explored for working with these likelihoods.

Initial approaches for intractable likelihoods generally took a frequentist ap-
proach. Martingale methods, as described in Becker (1989), may be applied to
final size and temporal data for both parametric and nonparametric inference.
Martingales are random processes evolving over time, defined in part by the
martingale property which requires the expected change of a martingale over
time to be zero. A Martingale process hence must be unbiased, and will usu-
ally arise from a counting process in an epidemic context. These count the
occurrence of events happening randomly in time, where at each event the
process increases by size one. In the context of infectious disease data, this
could count the number of observed infections. From this representation of
the disease process, maximum likelihood estimators may be obtained, as well
as asymptotic results using properties of the Martingales. However, Martin-
gale methods for incomplete data involve reconstruction of the infection pro-
cess, which requires various approximations or simplifying assumptions (for
example, homogeneous mixing structures). Data augmentation and MCMC
offer an alternative in the same spirit, but avoiding the need for simplification

(Kypraios, 2007 Section 2.1.8, Becker and Britton, 1999).

Data augmentation techniques, as we will more rigorously define in Section

1.3.4, have become more common when working with partially observed data.

13
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These treat missing data as model parameters. The Expectation-Maximisation
(EM) algorithm is one such technique, in which we create an artificial ‘com-
plete” data set in order to perform maximum likelihood estimation with the
EM algorithm (Becker, 1997, Dempster et al., 1977). Essentially, we define
some quantity Z which represents the complete data, i.e. a combination of
observed data X and unobserved event times Y. In an epidemic context, this
might involve combining the observed removal times with the unknown in-
fection times. The algorithm then uses iterative steps to move from an initial
estimate of the model parameters 0%) to new estimate 8" and so on, where
each iteration increases the likelihood. An iteration is formed of two stages:
E and M. The E-step (expectation) involves calculating the expectation of the
log-likelihood function of the complete data, with respect to observed data
X and under current parameter estimates 8). The M-step then determines
6("+1) by maximising this expectation, and the two-step process is repeated

until convergence is achieved.

As demonstrated in Becker (1997), the EM algorithm has been successfully
used in applications including HIV /AIDS data. Here, transmissibility aspects
of the disease are often ignored since the disease has a considerable incuba-
tion period as well as multiple methods of transmission in practice. Simpler
models capturing part of the case generation process then fit well with the
EM algorithm, due to their natural partial observation. However, in other
epidemiological contexts where transmission models are required, the condi-
tional expectation in the E-step will often be difficult to calculate. This is due
to the interactions between infective and susceptible individuals, the number

of which of course change with time.

It has become more common to fit models within a Bayesian framework, using
for example MCMC methods, particularly combined with data augmentation.
We will explore this fully in Section 1.3.3, but first provide some necessary

background on Bayesian inference.

14
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1.3.1 Bayesian Inference

Bayesian inference (Bernardo and Smith, 1994, Lee, 2012, Gelman et al., 2013)
relies upon Bayes’ Theorem to derive parameter estimates from a model given
data. It is a widely-used statistical framework, with the benefit that it provides
a natural way of combining data with prior beliefs. The approach involves
deriving a posterior probability from the combination of a likelihood function,
which is the conditional distribution of the data given the parameters, and a
prior probability, which represents our beliefs about these parameters before
the data is taken into account. This posterior distribution 77(6 | X) is therefore
the conditional distribution of the unknown parameters 0 given data X. Bayes’

Theorem states that:

n(8)7(X]6)
Jom(8)T(X|6) db

« 1(0)t(X|0), (1.3.1)

(0| X) =

where the denominator in the first expression is a normalising constant, and
the integral is a sum if 6 is discrete. This constant is typically analytically
intractable, especially in high dimensional problems as are usual in infectious

disease analysis.

In order to make inference about 6, we require this posterior distribution 77(0 | X)
which is formed of the likelihood 71(X | 0) and prior density 77(0). The likeli-
hood expression will depend on the choice of model, and the prior distribution

must be chosen in advance depending on our beliefs about the parameters.

Any choice of prior distribution may be used for Bayesian inference, but cer-
tain choices have proved most popular. Conjugate priors, for example, are se-
lected to be ‘conjugate’ to the likelihood, meaning the resulting posterior will
be of the same family of distributions as the prior. This often leads to easier
computation. If we have some existing knowledge about the parameters, we
might use an informative prior which captures that. However, this prior infor-
mation about the parameters may not always be available. In these cases we

use a non-informative prior, which aims to contain as little information about
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the parameters as possible. This results in the posterior being almost entirely
informed by the data. Choice of prior can greatly impact the analysis, and so

must be selected carefully.

The posterior distribution obtained in Bayesian inference then contains all the
information from the data, as well as our prior beliefs about the parameters.
Inference may be performed from the posterior, in order to obtain estimates of

the model parameters.

1.3.2 Inference with Missing Data

As we have discussed, infectious disease data are frequently only partially ob-
served. Event times are often unknown, and additionally there may be unre-
ported cases. There is hence considerable importance in methods for inference

which can handle missing data.

If we define the missing data as Y, then the pair (X, Y) form what is known as
the augmented data, which under any model will have a specified distribution
dependent upon parameters 0. In our Bayesian framework using Equation
(1.3.1), the conditional distribution of the parameters given the observed data

is given, up to proportionality, by:

(8] X) o n(e)/Yn(x,yye) dy. (1.3.2)

This essentially applies what was discussed in Section 1.3, in that we integrate
over all possible values of missing data to obtain the posterior distribution.
This integral, however, is usually not analytically or even numerically feasi-
ble, particularly if the missing data is of high dimension. Sampling from this
therefore usually requires other techniques, such as data augmented MCMC

(see Section 1.3.4). First, however, we describe standard MCMC methods.
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1.3.3 Markov Chain Monte Carlo Methods

The last three decades have seen an increasing use of Monte Carlo methods
within infectious disease modelling, particularly Markov Chain Monte Carlo
(MCMC) algorithms. The use of more realistic stochastic models, as we have
discussed in Section 1.1.2, has led to challenges in inference from highly di-
mensional and analytically intractable expressions. MCMC methods have proved

a useful tool for dealing with these problems.

First introduced for use in particle physics by Metropolis et al. (1953) but
not utilised for Bayesian inference until Gelfand and Smith (1990), MCMC
for use with epidemic models was first introduced by O’Neill and Roberts
(1999) and Gibson and Renshaw (1998). Since, it has become arguably the
standard method for analysis. The literature on MCMC applied to epidemic
models is too numerous to list in full, but includes Demiris and O’Neill (2005),
who applied MCMC to a model with two levels of mixing, O’Neill and Becker
(2001), who first applied MCMC for non-Markovian infectious period models,
and Neal and Roberts (2004), who performed MCMC for a model incorporat-
ing a spatial component of the distance between households. MCMC, com-
bined with data augmentation as we will discuss in Section 1.3.4, allows for
inference of data where the epidemic has only been partially observed and as
such would be too complicated for standard statistical techniques. Specifically
when infection times are unknown and so likelihood functions cannot be eas-
ily computed, as is common, inference can be made about both the parameters

of interest and the missing data themselves.

More specifically, MCMC methods allow us to draw samples from a given
distribution 7t (which we call the target distribution), even if 7t cannot be
written down analytically. Using the notation we defined in Section 1.3.1,
the target distribution would be the posterior distribution 77(6 | X), and re-
ferring back to Bayes” Theorem in Equation (1.3.1) we recall that the denomi-
nator is the part which is typically intractable. However, this is simply a nor-

malising constant, which an MCMC approach does not require to be calcu-
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lated explicitly. Instead, samples are drawn from the posterior distribution
by constructing an ergodic Markov chain {Z,} which has stationary distri-
bution 77(0 | X) « 71(0)7(X | 6). So long as we can calculate the likelihood
and prior distribution, we can sample from the posterior distribution. After
an initial ‘burn-in” period (the early iterations of the MCMC algorithm which
we discard), provided we have specified suitable mixing parameters, we can
be confident that the chain has reached equilibrium (regardless of the starting
location Zp). The steps of the Markov chain then approximate samples from
the target (posterior) distribution. We will now describe some well-known

algorithms for obtaining these samples from the posterior distribution.

1.3.3.1 The Gibbs Sampler

The Gibbs sampler (Geman and Geman, 1984) samples from high dimensional
distributions by breaking them down into lower dimensional sections. If 6 =
(01,0, ...,60;) so that the posterior distribution is of dimension d, then for all
i € {1,...,d} a Gibbs sampler will simulate component 6; from the condi-
tional distribution 77(6; | 61,...,60;_1,6;11,...,084,X). These are referred to as
the full conditional distributions. A summary of the Gibbs algorithm is given in

Algorithm 1.

Although we often update parameters individually as in Algorithm 1, it is
also possible to group related parameters together and perform block updates,
using the full conditional distribution given all remaining parameters and the
data. Blocking correlated parameters can improve convergence of the chain
since correlation can lead to high rejection rates for individual updates. The
sampler defined in Algorithm 1 is also known as a "deterministic scan” Gibbs
sampler, since we update all parameters deterministically in order. We can
alternately use a ‘'random scan” Gibbs sampler which, at each iteration, picks

at random one (or more) parameter(s) to update.
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Algorithm 1 The Gibbs sampler, for obtaining I samples from a d-dimensional

posterior distribution

1. Choose initial 80 = (6%0),69)),. . .,Q‘EZO));
2.
fori=1toIdo
i. Draw 6\") ~ 7r<91 R .,eg‘”,x);
ii. Draw 63 ~ (6, |6y, 00,00V, X);
iii. Draw 65 ~ (65 0”05”60, 60"V, X);

d. Draw Qéi) ~ 7r<9d | 9§i),9£i), .. .,OL(iiZl,X);

end for.

1.3.3.2 The Metropolis-Hastings Algorithm

The Metropolis algorithm was introduced in Metropolis et al. (1953), and gen-
eralized to obtain the Metropolis-Hastings (MH) algorithm in Hastings (1970).
Whereas the Gibbs sampler requires full conditional distributions to compute,
the MH algorithm provides an alternative when this is not possible (as is
common). Most MCMC algorithms can be considered as a special case of

Metropolis-Hastings. Details of the procedure are given in Algorithm 2.

The MH algorithm requires a choice of proposal density 4. For each proposed
value 6%, we calculate the acceptance probability « (6, 8*), which is the ratio of
the likelihood multiplied by this proposal density, evaluated at the proposed
parameter value and the current parameter value. This describes how likely
the proposed value is compared to the current value, and we accept the pro-
posal with probability a. The acceptance probability is defined in this way to
ensure that the stationary distribution of the Markov chain is the target poste-
rior distribution as desired, and also that the chain strikes a balance between
tending to visit high probability areas but also satisfactorily exploring the pa-

rameter space.

The simplest choice of g is known as the independence sampler. In this, g is inde-
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Algorithm 2 The Metropolis-Hastings algorithm, for obtaining I samples from

a d-dimensional posterior distribution

1. Choose initial 8 = <6§0),9§0),_ _ _/95{0));
2.
fori =1toIdo

i. Draw candidate value 6" from proposal density g (B(ifl), H;

* * n(i—1)
. (i-1) g%\ — rpu; 7(671x)q (670" ") ).
ii. Calculate « (6 ’ 0 ) min (1/ 71'(6(171) | X)q (0(171),9*> /

iii. Draw u ~ Unif(0,1);
ifu < a(e“*”,e*) then

Set 1) = ¢
else
Set 91 = gli—1)
end if
end for.

pendent of the current value of the parameters, so that g(81~1),0%) = q(6%).
Alternatively, symmetric random walk Metropolis (as introduced in Metropolis
et al., 1953) sets q(B(i_l), 0*) = q(6%, G(i_l)), which causes the proposal den-
sities in the acceptance ratio w(ﬂ(i_l), 0*) to cancel. This method has become
particularly popular since, in avoiding calculation of the proposal density in

the accept/reject ratio, many calculations are avoided.

The choice of proposal density is key for the MH algorithm. The unrestricted
choice of g(-,-) is what allows the algorithm its wide generality, but these
different choices may have great impact on performance. A low acceptance
probability may lead to poor mixing of the Markov chain, whereas a high ac-
ceptance probability may lead to slow convergence. In reality, a balance must
be achieved. Notably, Roberts et al. (1997) identified an asymptotically opti-
mal acceptance rate of 0.234 for Gaussian random walk algorithms, so long
as the target density consists of a product of i.i.d. components for each pa-

rameter. Tuning of the parameters which control the proposal density can be
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performed manually, but the development of adaptive algorithms which au-
tomatically tune has also received much attention, for example Haario et al.

(2014) and Andrieu and Thoms (2008).

1.3.3.3 Convergence and Dependency of the Markov Chain

One important factor when using an MCMC algorithm is the speed at which
convergence to the equilibrium occurs, in practice determining the length of
the burn-in period. We would like to ensure that equilibrium has been reached
by the end of the burn-in period, to minimise the effect of the initial values
chosen on the samples obtained. However, with each calculation of the likeli-
hood expression being potentially costly, there is often great benefit in a shorter

burn-in, and hence in ensuring fast convergence to the equilibrium.

In addition to this, there will be some degree of dependence between succes-
sive simulated values, with high dependence causing slow convergence also.
The search for methods which allow for fast convergence and low sample de-

pendence has received considerable attention.

Non-centered parameterisations (NCPs) are one such technique which aims to
improve the efficiency of convergence. Full details and discussion can be
found in Kypraios (2007) and Papaspiliopoulos et al. (2003). In essence, rather
than the standard centered parameterisation (CP) of the unknown quantities 6, Y,
a non-centered parameterisation finds some alternative (6, Y) — (0, Y) where

new missing data Y is a priori independent of 6.

There has been considerable discussion around the use of NCPs, and if their
use really provides benefit over standard CPs. Gelfand et al. (1996) argued
strongly for the use of CPs, which can often be applied with fast Gibbs sam-
plers when NCPs cannot, potentially undoing any computational advantage
of a non-centered approach. However, as Kypraios (2007) argues, NCPs may
offer considerable improvement in convergence in cases where the depen-

dence between missing data and model parameters is high. One major issue
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with the use of NCPs, however, is a requirement of orthogonality between 0
and Y, which is often hard to achieve (Papaspiliopoulos et al., 2003). This has

limited their application in practice.

In reality, the standard methods for achieving convergence and low depen-
dence are somewhat crude. The length of the burn-in period is normally de-
termined using trace plots of the parameter values from sample runs of the
MCMC algorithm, either visually or using a diagnostic tool (e.g. Geweke,
1992). To minimise autocorrelation of MCMC samples (which is usually iden-
tified with ACF plots), the general solution is to only keep every n" draw from
the posterior. Known as thinning, this lowers sample dependence, but at the
cost of more (potentially expensive) computations of the likelihood to obtain

the same number of samples (see Gilks et al., 1995).

1.3.4 Data Augmented Markov Chain Monte Carlo

Data augmentation, as first seen in Tanner and Wong (1987) but also in Gelfand
and Smith (1990), involves sampling from the predictive distribution of the
missing data to obtain samples from the posterior. It has become probably
the most widely used technique for Bayesian inference in missing data prob-
lems. In short, we assume knowledge of the missing data Y to obtain sam-
ples of both it and the parameters of interest, rather than having to compute
the (usually intractable) integral in Equation (1.3.2). As we have discussed in
Section 1.3, methods such as the expectation-maximisation algorithm do ex-
ist for dealing with missing data, and may be preferable in simpler cases, but
data augmented MCMC (DA-MCMC) helps ensure identification of a global
rather than a local maximum, as well as providing improved computation

times when working in a high dimension.

When modelling with missing data, target density 77(0 | X) is now the joint
posterior distribution of the parameters and the missing data, 77(6,Y | X). By

augmenting knowledge of the unknown data (usually event times for infec-
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tious disease data), simulation from the conditional distributions 77(6 | Y, X)
and 7t(Y | 6, X) is tractable, and we do not require integration over the missing

data (as discussed previously in Section 1.3.2).

To obtain samples from the new posterior density 77(6, Y | X), we may therefore
use a two-component Gibbs sampler, as in Algorithm 1 but where we alternate
simulations from 77(6 | Y, X) for parameters 6 and from 77(Y | 8, X) for missing

data Y.

In reality, the full conditional distributions required for a Gibbs sampler are
often not all available. In these cases, of particular use is the Metropolis within
Gibbs algorithm (as suggested in Tierney, 1994), a hybrid of the MH algorithm
and Gibbs sampler. In this, calculation of the full conditional distributions is
replaced with direct simulation through a Metropolis-Hastings step. Although
clearly useful when the conditional distributions are unavailable, the introduc-
tion of Metropolis steps can greatly decrease the speed of convergence. How-
ever, with augmented data we often have the case that 77(0 | Y, X) is avail-
able in closed form (and hence a simple Gibbs sampler may be used) but that
(Y | 6,X) is not, and an MH algorithm is required. In this case Metropolis
within Gibbs is very useful, since we may perform a combination of Gibbs

and Metropolis within Gibbs.

1.3.5 DA-MCMC for SIR models

Although we have discussed MCMC methods in general, in this section we
more specifically focus on MCMC for SIR epidemic models. We will define
the SIR likelihood expression which will be used throughout this thesis, as
well as the general DA-MCMC algorithm used for inference.

We define the likelihood for an SIR model with homogeneous mixing as in
Britton and O’Neill (2002), similar to e.g. O’Neill and Roberts (1999) and
Gibson and Renshaw (1998). We assume a closed population of fixed size
N within which occurs an outbreak of final size n < N, that is to say n in-
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dividuals have been infected by the end of the outbreak. This version of the
likelihood requires infected individuals to be labelled 1,2,...,n, and associ-
ated with their corresponding infection and removal times i.e. each infective
j has removal time r; and infection time i;. Individuals are ordered by re-
moval time, so that r; < rp, < --- < r,. We define the set of removal times
asr = {r]- :j=12,...,n, wherer; < r, < --- < r,}, and the set of in-
fection times as i = {i]- 7 =12,...,k—1,x+1,...,n}. Individual « is the
initial infective, who is assumed to have been infected by an external source.
The identity of individual x is not usually known from the data. For ease of
exposition of the likelihood defined below, we also define i; = oo for all non-
infectives j = n +1,..., N. The likelihood is then written as a product of the
contributions from each individual. A model with unlabelled cases (where
both removal times and infection times are ordered, so that ri and i do not
necessarily correspond to the same individual) was proposed by Bailey and
Thomas (1971), but in this thesis we will only be concerned with labelled indi-

viduals.

The likelihood is built from three components which, as in Britton and O’Neill
(2002), we refer to as L1, Lp and L3. Firstly, the product term L; contains the
contribution to the likelihood of the n — 1 infections which occur during the
outbreak (we ignore the contribution from the initial infective «, since they are

assumed to have been externally infected).

To define this, we introduce the concept of infectious pressure, which suscep-
tible individuals receive from current infectives. For an individual j who is
susceptible at time ¢, we define 8 as the infectious pressure acting upon them

from infective k, so that

IP (k infects jin (t, ¢ + t]) = BSt + o(dt).

Then, any susceptible j receives infectious pressure § at their time of infection
from infected individual k if and only if iy < i; < 7. That is, if and only if

k was infectious at j’s infection. L; is therefore given by the total infectious
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pressure on each individual at their time of infection, so that:

n n
i=1k=1
(o
The remainder of the infection part of the likelihood is given by L,, which con-
tains the total infectious pressure exerted over the course of the epidemic. For
each infective, this corresponds to them ‘failing” to infect all other individuals,

both those who ultimately become infected and those who remain susceptible.

This is given by

n N
Ly = exp ( —BY Y (5 N — i A ik)>, (1.3.4)

j=1k=1
where a A b is the minimum of 2 and b. Here, rj A\ iy — ij /\ iy represents the time

period for which infective j places infectious pressure on any individual k.

The contribution of the removal process is contained in L3. This is given by
the probability density function (PDF) (or probability mass function, though
for simplicity we will usually refer to just PDFs) of the infectious period dis-
tribution, which in Section 1.1.2.1 we defined as fi(r; — i; | 8), for infectious
periods r; — i; of all infectives j. This construction of the likelihood allows for
any choice of infectious period distribution f;(-). The infectious periods are

assumed independent, and therefore,
n
Ly =[] fi(rj—i;|6). (1.3.5)
j=1
Combining Equations (1.3.3), (1.3.4) and (1.3.5), the likelihood is given by

n N
(i, 1| B0,k i) = <1‘[251{1k<1<rk}> exp(—ﬁZZ(rj/\ik—ij/\ik)>
i=1k=1 j=1k=1
]#Kk#]

x Hfl —i;|0). (1.3.6)

Without knowledge of the infection times i however, this likelihood is in-

tractable. Although theoretically possible, integrating out all of the unknown
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infection times is unfeasible in practice for any more than a handful of infec-
tives, since the region of integration becomes very complex. DA-MCMC is
therefore usually implemented for inference of parameters § and 6, where the

augmented data correspond to the unknown infection times.

Before we define the MCMC algorithm, prior distributions need to be defined
for the initial infective and their infection time, the infection rate § and the in-
fectious period parameters contained in 8. For simplicity, we assume here that
the infectious periods are exponentially distributed with rate <y, so that 6 con-
tains this single parameter. As in O’Neill and Roberts (1999), we assume con-
jugate gamma distributed prior distributions for p and «y. If I'(¢c, v) represents
a gamma distribution with shape ¢ and rate v, we assume that  and 7 have
conjugate gamma distributed prior distributions with parameters (o, v5) and

(0, vy ), respectively.

For the initial infective ¥, we may choose from a variety of potential prior
distributions. We may use some prior knowledge to determine their identity,
or we may place a uniform prior distribution over all infectives so that each is
equally likely to be the initial one. In practice, we often assume k¥ = 1 is known

for simplicity. For i,, we define a uniform prior distribution on (—oo,r7).

We multiply the likelihood expression in Equation (1.3.6) by these prior distri-

butions to obtain the posterior distribution:

(B, v e i 1) o (e i] B,y i) T (B)7e(y)7(x) (i) (13.7)

This is then the target density of the MCMC algorithm. In order to perform
Gibbs updates for B and <y, however, we also require their full conditional

distributions.

To obtain the full conditional distribution for 8, we consider Equations (1.3.7)

and (1.3.6), and see that
(B |7, %,ix i, x) o Bl PA(P), (1.3.8)
where A = 27:1 Z,I{\]:l(rj N —ij Nig).
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Similarly for 7:
(v | B &, ix i, 1) < y"e P (), (1.3.9)
where B = } ", (rj — ij), since the only terms in the likelihood with 7y depen-

dence are the n exponential PDFs of the infectious periods in the removal part.

Combining Equations (1.3.8) and (1.3.9) with the gamma conjugate prior distri-
butions defined above, the full conditional distributions for § and <y are given

as follows:

Blvy & i it ~ F(af,;—i—n—l,@—l—A)
Y| B %, ix,i,x ~ T(oy+n,v,+B). (1.3.10)

Overall, the basic DA-MCMC algorithm for an SIR model given removal data
is given in Algorithm 3. Samples of the model parameters f and 7 may be
obtained using Gibbs steps as the full conditional distributions are available,
but the infection times must be updated with Metropolis Hastings steps since
sampling directly from their posterior is not possible. For an individual j se-
lected uniformly at random from 1, . .., n, we propose candidate value i;.k from
q(- | ;). This is accepted with probability:

] o)
mm<l 7Gx | B, in)d (z|z>)

A common choice for the proposal density is fi(- | ), which causes the pro-

posal densities in the acceptance probability to cancel. After the infection times
have been updated, we set x accordingly, as the individual with the earliest

current infection time.

The likelihood and MCMC algorithm may be similarly extended to SEIR and

other compartmental models, as well as heterogeneous mixing models.

Although the technique has been widely adopted, there are a number of limi-
tations to data augmented MCMC techniques for epidemic data analyses. Es-
pecially with growing demand for fast (potentially real-time) analysis, com-
putationally efficient analysis is key. However, DA-MCMC methods for epi-

demic data often struggle with the issues of high dependence and slow chain
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Algorithm 3 DA-MCMC algorithm for obtaining | samples of the model pa-
rameters, for an SIR model with known removal times, unknown infection
times, infection rate 8 and infectious period parameter y. Here, x/ represents

the jth sample of parameter x.

0 ;0.

1. Start the Markov chain from initial values ﬁo, D iy

2.

forj=1to ] do
i. Update B using a Gibbs step to draw from 77(8 | ’yf’l,Kj’l,if;_l,if’l,r)
and obtain sample f/;
i. Update v using a Gibbs step to draw from 7t(«y | B/, %/, i r) and
obtain sample /;
iii. Choose uniformly at random one or more infection times i, for k =
1,...,n (including the initial infective). Update each using a Metropolis
Hastings step to obtain i// zfc Update x correspondingly as required;

end for.

convergence discussed in Section 1.3.3.3, particularly for large outbreaks or
complex model structures. This will be explored in more detail in Chapter
3, but essentially the unknown infection times and the parameters governing
the infectious period lengths often have a high posterior correlation, leading to
slow mixing of the Markov chain. This motivates the development of alternate

methods which either solve, or avoid, these problems.

1.4 Approximation Methods for Infectious Disease

Modelling

Without any restrictions, of course an ideal mathematical model would be a
complete virtual representation of the real world. However, due to limita-
tions in computational power this is of course not possible, and efforts must be

made to obtain the best possible partial description of reality. All mathematical
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models contain some degree of simplification and approximation, and when

introducing greater complexity we must consider the computational cost.

Current methods for infectious disease analysis such as DA-MCMC, as we
have discussed, are known to become computationally demanding for large
population sizes or complex mixing structures. When working with large
amounts of data it often becomes necessary to use very simplistic models due
to computational restraints, especially when performing time-sensitive analy-
ses. We suggest that likelihood approximation methods may be a useful tool
for dealing with this, and these will be the focus of chapters 3 and 4. If we
can obtain likelihood expressions which, although including extra levels of
approximation to the ‘true’ likelihoods used in data augmentation, result in

faster computation, this allows for more realistic models to be used in turn.

This is not an area in which there has been much previous work. As we will
explore more fully in Chapter 3, the likelihood approximation methods we
will define in this thesis bear some similarity to composite likelihood methods
(see Varin et al., 2011 and Cox and Read, 2004), in that we attempt to build our
understanding of the overall system dynamics by considering what are essen-
tially marginal densities, but in reality these methods are actually quite differ-
ent. Otherwise, attempts to tackle the challenges we have discussed largely

focus on ideas other than direct likelihood approximation.

1.4.1 Model Approximation

Model approximation is an area which has seen some focus. This involves
consideration of an approximation to the model, under which the likelihood
can be directly computed. One such simple approximation is the assumption
of fixed length infectious periods. Under this assumption, all of the unknown
infection times can be directly determined from the data, and the likelihood
expression becomes tractable. Inference may then be performed using stan-

dard techniques for a completely observed outbreak (see e.g. Andersson and
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Britton, 2000, Section 9).

Model approximation was also performed in Britton and Becker (2000), where
they defined a two-level mixing model incorporating within-household local
transmission and between-household global transmission. Non-independence
of individuals residing in different households results in an intractable likeli-
hood, but in replacing the global transmission dynamics with a fixed proba-
bility that each individual avoids infection from the global source (originally
seen in Addy et al., 1991), Britton and Becker (2000) obtain a model with a
tractable likelihood.

A further example is Filipe and Gibson (1998), who defined a spatio-temporal
stochastic model for disease transmission by modelling individuals as the ver-
tices of a square lattice (so that all individuals have four nearest neighbours
with whom to interact, except those on the boundary who have two or three).
They made the assumptions that the lattice was large enough that the bound-
ary effects could be ignored, and that the initial distribution of infected indi-
viduals was from a spatially stationary process. This allowed them to make
a deterministic approximation to the stochastic model, expressing the over-
all disease dynamics in terms of smaller cluster approximations. Cauchemez
and Ferguson (2008), on the other hand, approximated a continuous-time SIR
model by dividing the outbreak into a series of observation periods, and aug-
menting the data with the latent state of the system (i.e. the total number
of infectives and susceptibles) at the beginning of each period. They then
mimicked the SIR process with a diffusion process with known exact solution.
Becker (1989) also includes numerous examples of simplified models used in

practice.

As we have seen here, a variety of model approximation methods have been
suggested in the literature, but often these have been only applied to a specific
data set or model and hence lack general applicability. In contrast, we will ex-
plore likelihood approximation methods in this work. These will share similar

themes with some of these model approximations, in making assumptions to
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result in a tractable likelihood and especially in using small clusters to build
up overall disease dynamics, but they will not require any simplifications of

the actual models used.

1.4.2 Approximate Bayesian Computation (ABC)

One other considerable area of research has been Approximate Bayesian Com-
putation, or ABC. Rather than approximating either the likelihood or model,
ABC is what is known as a likelihood-free method. It was initially proposed
in Rubin (1984), and then grew in popularity within the population genetics
literature from Tavaré et al. (1997). It has since become much more widely ap-
plied within, for example, ecology, systems biology and evolutionary biology
(e.g. Toni et al., 2009 and Csilléry et al., 2010), as well as infectious disease
modelling (e.g. McKinley et al., 2009, Tanaka et al., 2006 and Blum and Tran,
2010). Its use in this field relies upon the fact that stochastic models for disease
outbreaks are generally straightforward to simulate, and that this can be done

very quickly for a given set of model parameters.

In its basic form, ABC is essentially a form of rejection algorithm. However, a
benefit is that it can easily be incorporated into MCMC and Sequential Monte
Carlo (SMC) algorithms. It is of particular use for likelihoods which are com-
putationally intractable or of a high cost to evaluate, since it replaces likelihood
calculations with comparisons between observed and simulated data. We re-
view ABC methods and their implementation here, but a more detailed discus-
sion on their use with stochastic epidemic models may be found in Kypraios

et al. (2017).

If 0 contains the parameters to be estimated (for a disease outbreak we might
have 0 = (B, ) where B is the infection rate and -y the removal rate), as defined
in Section 1.3.1, we wish to approximate the posterior distribution 7z (6 | X), for
data X. Rather than explicitly calculating likelihood 7(X | ), ABC methods
take the general steps:
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1. Sample a candidate 6" from the prior distribution 77(6)
2. Simulate a data set (outbreak) X* from the model with parameters 6™.

3. Compare simulated data set X* with observed data X using some dis-

tance measure d. If d(X*,X) < € for tolerance €, we accept 6™.

(1.4.1)

This process repeats until we have accepted a pre-determined number of 6*
values. The result is a sample of parameters drawn from 77(0 | d(X*,X) < €),
which for suitable d and sufficiently small e should well approximate (0 | X).
ABC then requires no calculations of the likelihood. We simply require a
choice of distance function d which measures the similarity between two out-
breaks, and a tolerance € which defines how close this distance must be to be
accepted. In practice, this choice of d is by no means trivial, however. Of-
ten we instead measure the distance between some summary statistics of the
data, such that we require d(S(X*), S(X)) < e. For infectious disease data, this
might measure the difference in the removal curves via a sum of squared dif-
ferences between the observed and simulated data, for example, as in McKin-

ley et al. (2009).

ABC is frequently combined with MCMC and SMC since the rejection algo-
rithm in (1.4.1) often suffers from very low acceptance rates. In ABC-MCMC, a
Markov chain is generated with stationary distribution 77(6 | d(X*, X) < €), so
that parameters are usually sampled from the vicinity of their current values.
This may suffer from similar problems to DA-MCMC however: that correlated

parameters may cause slow convergence of the Markov chain.

ABC with SMC, as initially introduced in Sisson et al. (2007), seeks to avoid
these convergence problems. Sequential Monte Carlo methods involve sam-
pling from a series of proxy distributions which converge to the posterior,
rather than the posterior itself. We define a set of N distributions 71y, 71y, . . ., 7Ty,

where 7ty = (0 | X) is the posterior of interest and 711 > 1o > -+ > 7y. We
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then initially draw a large number of samples, called particles, from 7r; (wWhich
has been defined such that direct sampling is possible). The particles are then
passed through a series of sequential importance sampling steps i which in-
volve being weighted assuming they come from the corresponding sequen-
tial distribution 77;. The general idea is that the intermediary distributions
r; tend gradually towards the target distribution, so the method proceeds
by moving and weighting the particles by how well they fit each successive
distribution 71;. For ABC-SMC, these distributions 7r; are simply defined as
(0] d(X*,X) <e¢),fori =1,...,N and tolerances € > €, > - -- > ey. This
should, in principle, avoid the algorithm getting stuck in areas of low proba-
bility, decreasing the time to convergence. Certain choices of distance function
d and tolerance € can cause particle degradation, however, wherein after the
particles have been passed through some of the intermediary distributions,
only a few remain with non-zero weight. To combat this, a resampling stage
is often introduced. In this, particles are resampled proportionately to their

weight when degradation becomes high.

Overall, ABC and ABC-SMC methods are useful for epidemic models since
they are widely applicable and may be used with models involving complex
populations (see e.g. Brooks-Pollock et al., 2014 who used a spatial stochastic
model for bovine tuberculosis, incorporating within-farm and between-farm
transmission). However, they can still result in algorithms which are ineffi-
cient or slow, especially when the number of parameters to estimate is large.
Choice of tolerance € and distance function d can have considerable impact on
the results found, and use of a summary statistic S also introduces additional
bias into the method through loss of information. These must therefore be
carefully selected. For further reading, Sunndker et al. (2013) discuss many of

the perceived drawbacks of ABC methods.
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1.5 Structure of the Thesis

The remainder of this thesis is divided into two distinct parts. The first part,
published in Stockdale et al. (2017), concerns a Bayesian analysis of the Abaka-
liki smallpox data. This data set has been much cited in the field of stochastic
epidemic modelling, but never analysed in its full form using a true likelihood
method. We seek to compare parameter estimates from our Bayesian analysis
to estimates from Eichner and Dietz (2003), who did analyse the full data set

but using an approximate likelihood. This will be presented as follows:

e Chapter 2. After introducing the Abakaliki smallpox data, we define the
model to be used in our analysis. This is a variant of an SEIR model, and
is the same as that used in Eichner and Dietz (2003) to ensure compara-
bility. We outline the process for simulating from this model, since model
assessment will be performed via simulation-based techniques. We also
describe the Bayesian inference to be performed, and define the likeli-
hood expression. We then detail the MCMC algorithm to be used, before

concluding with the results of the analysis, and a discussion of these.

The second part of this thesis will focus on the development of likelihood ap-
proximation methods for the analysis of infectious disease data. As we have
briefly discussed and will further explore in Chapter 3, current methods, such
as the data augmented MCMC performed in Chapter 2, become computation-
ally cumbersome for large populations or large amounts of missing data, as
well as being burdened by correlation problems of this missing data. We seek
to develop likelihood approximation methods which remove the need for data
augmentation, allowing simpler MCMC or maximum likelihood estimation to

be performed more easily.

e Chapter 3. This chapter will describe the development of two different
likelihood approximation methods. Firstly, we introduce a generalised

approximation based upon the method of Eichner and Dietz (2003) from
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Chapter 2. We will then proceed to construct a new approximation; the
Pair Based Likelihood Approximation (PBLA) method. We will define a
number of different versions of this, for example for offering increased

computational speed under more restrictive modelling assumptions.

o Chapter 4. The final chapter will involve a series of simulation studies,
which compare parameter estimation using the likelihood approxima-
tion methods to standard DA-MCMC, followed by application to vari-
ous real data sets. Specifically, we consider data from a respiratory dis-
ease outbreak on the Atlantic island of Tristan Da Cunha, from the West
African Ebola epidemic of 2013-2016 and from the 2001 UK Foot and
Mouth disease outbreak. These data sets will each have different require-
ments in terms of modelling, allowing us to analyse the performance of

the PBLA method in different settings.

We will finally summarize the work presented in this thesis, in addition to

possible areas of further research, in Chapter 5.
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CHAPTER 2

Modelling and Bayesian Inference

for the Abakaliki Smallpox Data

In this chapter we introduce the much-cited Abakaliki smallpox data set, and
perform its first full Bayesian analysis to include all aspects of the data. This

work is published in Stockdale et al. (2017).

We begin with an overview of the data and its relevance within the field of
mathematical disease modelling, before defining the model and performing
Bayesian inference to obtain estimates of model parameters. There exists one
previous analysis of the full data set, but this relies upon an approximate like-
lihood. We instead use Markov Chain Monte Carlo methods with the true
likelihood, which avoid the need for likelihood approximations. In addition
to the basic model parameters, which will be compared to the results of the
approximation method as well as interpreted in their real-world context, we
estimate the path of infection and perform model assessment with simulation

based methods.

2.1 Introduction

In 1967, an outbreak of Smallpox occurred in the Nigerian town of Abaka-

liki. The vast majority of cases were members of the Faith Tabernacle Church
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(FTC), a religious organisation whose members refused vaccination. The out-
break was recorded in detail in a World Health Organisation (WHO) report by
Thompson and Foege (1968), with information on not only the time series of
case detections but also their place of dwelling, vaccination status, and FTC
membership. The outbreak has inherent historical interest as it occurred dur-
ing the WHO Smallpox eradication programme initiated in 1959. Although
Smallpox was declared eradicated in 1979, it regained attention as a poten-
tial bioterrorism weapon in the early 2000s (see e.g. Gani and Leach, 2001,
Meltzer et al., 2001, Halloran et al., 2002) and continues to be of interest due to
concerns about its re-emergence or synthesis, (see e.g. Henderson and Arita,
2014, Eto et al., 2015, World Health Organisation, 2015 and references therein).
Estimates of the parameters governing disease transmission are of consider-
able importance for public health planning, and thus being able to accurately

obtain such quantities from available data is of considerable importance also.

Within the mathematical infectious disease modelling literature, the Abakaliki
smallpox data set has been frequently cited, the first appearance being Bailey
and Thomas (1971). The data set consists of a time series of symptom appear-
ance (rash) times for the 32 individuals who were infected, along with other
information on the composition of the population: FTC membership status,
vaccination status and compound number (the affected individuals lived in
a series of compounds; houses built around a central courtyard). Most anal-
yses of the Abakaliki data, however, have used only the rash times, such as
Shanmugan (2011) and Oh (2014), or indeed only the final size, as in Ball et al.
(2002). In fact, to our knowledge, in all but one case the data set has been
used as an example for new methodology; taking primarily the case detec-
tion times and not considering the other aspects of the data. Lau and Yip
(2008), Huggins et al. (2004) and Yip (1989) used the data set to demonstrate
Martingale-based methods for inference of the basic reproduction rate, the ini-
tial number of susceptibles and the infection rate, respectively. O’Neill and
Becker (2001), McKinley et al. (2014), Boys and Giles (2007) and Golightly et al.
(2014) introduced new MCMC techniques which the Abakaliki data rash times
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were used to illustrate. In addition to incomplete use of the data, the suitabil-
ity of the data to the method at hand is often not considered: in many cases,
such as Clancy and O’Neill (2008), Kypraios (2009), Xiang and Neal (2014) and
Becker (1976), an SIR (susceptible-infective-removed) model has been used for
this outbreak despite smallpox being known to have an incubation period (see
Ferguson et al., 2003). Ray and Marzouk (2008) used binomial random graphs
to model inter- and intra-compound contacts, thus including the compounds
feature of the data, though they did not consider the difference between FTC
and non-FTC individuals or make use of the vaccination data. In fact, all of the
aforementioned papers only considered a population of size 120, which is the
number of FTC individuals inside the compounds; disregarding all non-FTC

individuals and FTC individuals outside the affected compounds.

To our knowledge, the only paper which has analysed the full Abakaliki data
set is Eichner and Dietz (2003). The authors use an individual-based stochastic
transmission model which takes into account the natural disease progression
of smallpox, as well as the introduction of control measures, the population
structure and the vaccination statuses of individuals within it. Parameter es-
timation is then performed via maximum likelihood. However, one notable
feature of this analysis is that it relies on an approximate likelihood, which
in particular assumes that the likelihood contributions made by different in-
fected individuals are mutually independent. The true likelihood of the ob-
served data given the model parameters is practically intractable as it involves
integrating over all possible unobserved events, and so Eichner and Dietz per-
form a back-calculation. This involves reconstructing the outbreak backwards
(or forwards, in the case of removal times) from the data and assumed knowl-
edge of the disease stages, for example the latent period or infectious period.
This relies on approximation however, since calculations do not take into ac-
count that infectious pressure may vary during an individual’s disease stage
as other individuals are infected or recover. Particularly used for HIV analysis
in the 1990s, similar methods can be found in Becchetti et al. (1993) and Brook-

meyer (1991). The use of this approximation immediately raises the question

38



CHAPTER 2: MODELLING AND BAYESIAN INFERENCE FOR THE ABAKALIKI
SMALLPOX DATA

of how well it performs, and in particular how different the parameter esti-

mates might be if the analysis was instead based on the true likelihood.

We seek to perform a full Bayesian analysis for the Abakaliki data, avoid-
ing approximations by using data-augmentation to produce an analytically
tractable (and correct) likelihood. In Section 2.2 we will introduce the data,
before defining the model in Section 2.3. Section 2.4 concerns a simulation
study, performed to confirm that the method is working as required. Sec-
tion 2.5 will describe the Bayesian inference and calculations to obtain a full
likelihood expression. Following this, Section 2.6 will describe the MCMC
performed. We use the true likelihood to estimate the parameters of interest,
using a Bayesian framework, data augmentation and MCMC. Section 2.7 then
includes the results of this analysis and Section 2.8 discussion of these. We
interpret the posterior estimates of the parameters in the model as well as a
variety of reproduction numbers; directly comparing them to those obtained
by Eichner and Dietz in their analysis. In addition we perform a sensitivity
analysis, model checking, and consider the results of the simulation study. We
also estimate quantities derived via data-augmentation, such as who-infected-
whom and the time of infection for each individual, which do not feature in

the analysis of Eichner and Dietz.

2.2 The Data

The data, as given in Thompson and Foege (1968), are structured as shown in
Table 2.1, which displays information on the 32 cases of smallpox: when the
infected individual’s rash became apparent, their compound identifier, FTC
membership status and vaccination status. We have defined our timescale by

setting day O as the date of the first rash onset.

All of the infected individuals lived in compounds; these are typically one-
storey dwellings housing several families and built around a central court-

yard. The composition of the affected compounds is provided in Table 2.2,
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where the total numbers of vaccinated and non-vaccinated FTC and non-FTC
members within each compound are displayed. FTC members were known
to mix frequently with one another, whilst remaining rather isolated from the
rest of the community. FTC members also refused vaccination, although many
of them were vaccinated prior to joining the organisation. For use in Table 2.2,
we define quantities 1, prc and 7. 40, as the total number of FTC and non-FTC

individuals residing in compound c, respectively.

Note that on the 25th day after the rash of the initial infective became appar-
ent, four FTC individuals from compound 1 (three vaccinated and one non-
vaccinated) moved to compound 2. Table 2.1 and Table 2.2 show the composi-
tion of the compounds after the move. In addition, quarantine measures were
put in place in Abakaliki, but not until part way through the outbreak. The

exact time these measures were introduced was not recorded.

2.3 Model Structure

2.3.1 Population Structure

We wish to define a model for smallpox outbreaks in the town of Abakaliki,
using the information provided in the WHO report by Thompson and Foege
(1968). Beginning with notation, consider Abakaliki a closed population with
N = 31200 individuals, labelled 0, ..., N — 1. The population is partitioned
by compound: either one of the nine listed in the WHO report or ‘outside’
meaning within the town but not the affected compounds, and by confession:
either belonging to the Faith Tabernacle Church (FTC) or not. Individuals
0,1,...,1c0m — 1 are those inside the compounds, where 1.y, = 251 is defined
as the number of people living within the affected compounds. Any individ-
ual k = 0,...,N — 1 may be categorised as type (cx, fx), where ¢y = 1,...,9
is the compound of k, or ¢, = 0 indicates that k is outside the compounds.

Similarly, fi is k’s confession (faith); FTC or non-FTC. These types may lead to
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Table 2.1: Smallpox cases in Abakaliki during 1967, from Thompson and
Foege (1968). Compounds are listed after the move of cases 7 and

8 and two non-infectives, on day 25 from compound 1 to 2.

Case number | Day of rash onset | Compound | Confession | Vaccination
0 0 1 FTC No
1 13 1 FTC No
2 20 1 FTC No
3 22 1 FTC No
4 25 1 FTC No
5 25 1 FTC No
6 25 1 FTC No
7 26 2 FTC Yes
8 30 2 FTC Yes
9 35 1 FTC No
10 28 4 FTC No
11 40 5 FTC No
12 40 1 FTC No
13 42 1 FTC No
14 42 1 FTC No
15 47 1 FTC No
16 50 5 FTC No
17 51 2 FTC No
18 55 1 FTC No
19 55 2 FTC No

20 56 6 Non Yes
21 56 5 FTC Yes
22 57 2 FTC Yes
23 58 7 FTC No
24 60 4 FTC No
25 60 2 FTC No
26 61 2 FTC No
27 63 8 Non Yes
28 66 3 FTC No
29 66 9 FTC No
30 71 5 FTC No
31 76 2 FTC Yes
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Figure 2.1: The structure of the population of Abakaliki as used in this study.
FTC = member of the Faith Tabernacle Church, n-FTC = not a
member of the FTC. Numbers in brackets represent the number
of individuals within that category, after the move of four indi-

viduals on day 25 as detailed in Section 2.2.

differences in the mixing behaviour of individuals, though otherwise individ-
uals are considered to be identical in their susceptibility to smallpox and their

ability to infect others.

Figure 2.1 shows the population structure of the town of Abakaliki during the
epidemic. Within the population are the compounds as described in the WHO
report. There are nine of these compounds, and within any one may reside

individuals of confessions FTC and non-FTC.

2.3.2 Transmission Model

We now describe a stochastic disease-transmission model for the spread of
smallpox throughout the population of Abakaliki. This model is essentially the
same as that described in Eichner and Dietz (2003), and is a variant of an SEIR

(Susceptible-Exposed-Infective-Removed) model. Defining a time scale as in
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Table 2.1, where time zero is the initial infective’s rash time, at any given time
t, each individual in the population will be in any one of six states: susceptible,
exposed, with fever, with rash, quarantined or removed. Any susceptible may
become exposed, as described below, and enter the incubation (or latent) pe-
riod. During this stage individuals are not yet infectious. They will next enter
the fever stage of the disease, at which point they become able to infect others.
During the rash stage which follows, they will remain infectious but at a po-
tentially different rate. We define the infectious period as the combined time
spent in the fever and rash stages. Infectious individuals will either become
removed (namely recovery or death, which we do not distinguish between)
or isolated, this being the individual quarantined and henceforth unable to in-
fect others. Quarantine procedures involve the removal of the individual from
the population, these measures only being introduced part way through the

outbreak at unknown time tg.

Figure 2.2 is a visual representation of how any given individual may progress
through the stages of susceptible, exposed, infectious with fever, infectious
with rash (at the beginning of which their infectivity is changed) and finally
either removal or quarantine; whichever comes first. For j = 0,.., N — 1, let ej,
i, 1j, 4js Tj denote, respectively, the times of exposure, fever, rash, quarantine
and removal for individual j. If j never becomes infected, ¢; = i; = r; = q; =
Tj = co. We assume that the epidemic is initiated by a single exposed individ-
ual, whom we label x. We define the sets of these times as e (not including ey),

i,r,qand 7.

The lengths of time spent in each disease progression stage for different in-
dividuals are assumed random with specified distributions, and mutually in-
dependent. The periods of time as identified in Figure 2.2 are distributed as

follows:

; 2
o l]'—€]' ml“((%) ,

),
),

SE

o rj—ij ~T((5)?,

wqrul;s
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Figure 2.2: Disease progression in the smallpox model. The top image rep-
resents the infection of an individual who is removed through re-
covery or death, and the bottom shows an infection of someone
who is quarantined. Isolation is only possible once quarantine

measures have been introduced at time ty.
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where y 4 and o4 represent the mean and standard deviation of the gamma
distributed disease stage A for A = I, F and R, all of which are assumed

known. Additionally, ¢, denotes the time at which quarantine measures are

introduced. The values of the means and standard deviations have been taken

from Eichner and Dietz (2003), as shown in Table 2.3. Once quarantine mea-
sures are introduced, an individual may be put into isolation after a random
delay following their rash onset date. Specifically, we define the quarantine

time of individual j as q; = max(r;, t;) + I'(1, 1), as assumed by Eichner and
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Table 2.3: Durations of periods in the infection process for Abakaliki small-
pox outbreak. Time until quarantine determined by the maximum

of rash time and time quarantine measures were introduced, f;.

Mean (days) | Standard deviation (days)

Period before fever pur =116 o =19
From fever to rash ur = 2.49 or = 0.88
From rash until recovery | pur = 16.0 or = 2.83

From rash to quarantine

or from ¢, to quarantine

Dietz (2003). This means that no quarantining occurs prior to time t,, after
which it takes an average of two days for a detected individual to be placed in
isolation, with standard deviation 2. Note also that an infected individual will
have both a removal time and a quarantine time, for computational ease. Both
quantities appear in the likelihood function, but in reality only the earlier of

the two events takes place.

The epidemic begins at time e, with the exposure of the initial infective x. Re-
call that the infectious period is defined in two parts: the fever period and
the rash period, during each of which an individual will be infectious, but
at potentially different rates. During their rash period, an individual j will
have contacts with other members of their compound who are of the same
confession at times given by a Poisson process of rate Aj, per day. Individuals
outside of the nine compounds do not have such contacts. In addition, FTC
individuals will have contacts at rate A per day with other FTC individuals
and contacts at rate A, per day with anybody in the population. Non-FTC in-
dividuals are assumed to have contacts with anybody in the population at rate
Aq + Ay per day since no information on their close contacts is available. Dur-
ing the fever period, the infections occur in exactly the same manner except

that all rates are multiplied by factor b to account for the difference in infectiv-
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ity. Typically, b < 1. In each case, the individual actually contacted is chosen
uniformly at random from the pool of potential individuals in question. For
example, contacts made with the entire population are drawn from the N — 1

other individuals. Note that this means that the individual-to-individual con-

tact rate for such contacts is 5%;. Any contact from an infective to a susceptible
results in immediate exposure of the susceptible. All of the Poisson processes

describing contacts are assumed to be mutually independent

In addition, a proportion of the population is vaccinated. Vaccination status
of all but a few individuals within the compounds is assumed known, and the
proportions of FTC/non-FTC vaccinated individuals outside the compounds
is assumed equivalent to inside. However, this vaccination is not necessarily
effective: each recipient of the vaccine is completely protected with probabil-
ity v, or remains completely susceptible with probability 1 — v. Although the
total number of vaccinated individuals is known, we do not have complete in-
formation on the composition of individuals with respect to vaccination status
and FTC membership and so there are five potential configurations of twelve
individuals with unknown details to consider, as shown in Table 2.4. For each
individual in the population we have a vaccination status, assumed known for

most individuals, and a protection status, unknown.

All individuals within the population remain living in their compounds, with
the exception of four individuals who moved from compound 1 to compound

2 on the 25th day after the initial infection, two of whom later become infective.

The epidemic continues until there are no infectious or exposed individuals
remaining in the population, at which point each person will either still be
susceptible, or will have been quarantined/removed. We do not allow for

reinfection.
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2.3.3 Infectious Pressure

For an individual k who is susceptible at time t we define Ai(t) as the infec-

tious pressure acting upon them at time ¢, so that
IP (k is infected in (t,t 4 6t] | k is susceptible at time t) = Ay(t)6t + o(5t).
From the model definition in Section 2.3, A (t) can be expressed as:

Aoy AOrGR) | MSeGikt) g p
. L v L nf,f.(({)_l) if f; = FTC,
Aty =Y, m(jt) x J (2.3.1)

. Ag+A i k: .
JENms (1) Iﬁ,_lf + 2’1?8)’1? otherwise,
c, ]

where m is the fever/rash identifier:

(

b ifij§t<1’]',

m(j,t) =q1 if ri <t <min(7;,q;),

0 otherwise,
\

and d¢(j, k) = 1 if both k and j are FTC and 0 otherwise, J:(j, k;t) = 1 if both
k and j live in the same compound at time t and are of the same confession,
equalling 0 otherwise. Recall that N = 31,200 is the total population size,
n = 120 is the number of FTC individuals within the population, and nf(t)
is the number of individuals in j’s compound of the same faith as j at time ¢,
including j themselves. Finally, N,¢(t) is the set of individuals infective at

time ¢.

From the population diagram in Figure 2.1, there are four different types of
susceptible when considering infectious pressure received: categorising over
confession (FTC or non) and location (within the compounds or outside). Table
2.5 summarises the contact rates of the different types of susceptible, from all

potential types of infector.
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Susceptible k Compound of | Confession of | Pressure from j to k
infective j infective j
Ag A A
w FTC i f_(,;)fl
i
Aa+A
FTC, compound w w Non-FTC Nt
c ; Ag A
w® or outside FTC Nt
w° or outside Non-FTC A;,J:/;f
w FIC e
AatA A
non-FTC, compound w w Non-FTC N—lf + e, (?)—1
i
w* or outside FTC N)‘jl
w® or outside Non-FTC A;\:/;f
A
w FTC N+ 4
Aat+A
FTC, outside compounds w Non-FTC N—lf
Outside FTC o4 A
Outside Non-FTC Aﬁ,t/;f
w FTC e
AatA
non-FTC, outside compounds w Non-FTC N—lf
Outside FTC NAjl
Outside Non-FTC Aﬁ,t/;f

Table 2.5: Infectious pressure received by susceptible k from infective j. Here,

w € {1,...,,9} is any one of the affected compounds, and w® denotes

any affected compound other than w. In addition, N = size of the

population, n = number of FTC individuals in the population (note

this change in definition of n for this chapter alone) and 7, fj(t) =

number of individuals in the same compound and of the same faith

as individual j at time f. Note: If j is in the fever stage, pressure is

multiplied by the infectivity factor b.
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2.4 Simulation

2.4.1 Simulation Process

We wish to simulate data from our model for smallpox outbreaks within the
population of Abakaliki. This will allow us to perform a simulation study,
as well as posterior predictive checking to assess model fit. The method is
shown in Algorithm 4. Within this algorithm, the infectious pressure upon
each susceptible k at given time ¢ is calculated using the expression for Ay (t)

in Equation (2.3.1).

Algorithm 4 Simulation code for smallpox outbreaks in Abakaliki

Input: A,, Af, An, v, bty

Output: e,i, 1, q, T
1. Randomly generate protection status for vaccinated individuals (vaccina-
tion status known from the data), given vaccine efficacy v € (0,1).

Inside compounds: generate statuses individually

fori = 0to 1y, —1do
Generate U ~ U(0,1)
if U < v and i is vaccinated then
Individual i is protected
end if
end for

Outside compounds: Generate the number of FTC/non-FTC protected indi-

viduals
Number FTC and protected ~ Bin(number FTC and vaccinated, v)

Number non-FTC and protected ~ Bin(number non-FTC and vaccinated, v)

2. Set initial infective: k = 0.
Generate times for initial infective: ey, ix, r=0, t, and gx.

Set time t = iy.
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3. Loop to simulate infections
while number infectives or exposed > 0 do
fori=0to N —1do
inf(i) = sum of pressure from all infectives to susceptible i,
Potential infection time £, (i) ~ Exp(ﬁ),
end for
Take minimum potential time t,,m = min(f,(i) : i is the set of susceptible
individuals), recording index j of the chosen individual.
Take minimum fpj, = min(fpm and other infection process events (infec-
tive moves to rash period, removal etc.)).
if tmin = tpm then
Infection takes place. Generate infection events ej = tpm (j), ij, 1j, t and
q;- Sett = e;.
else
Infection does not take place, infection process event does. Set t = time
of process event.
end if

end while

To give some more detail on how the calculation of potential exposure times
for those outside of the compounds is approached, only one time for FTC in-
dividuals outside and one time for non-FTC individuals outside is required to
be calculated, since all outside individuals of the same confession receive the
same infectious pressure. The mean of the exponentially distributed potential
exposure time must be multiplied by 1/ (number of FTC individuals outside)
or 1/(number of non-FTC individuals outside) to include the required selec-
tion of which individual is to be infected. Since these outside individuals are
arbitrarily numbered, apart from being categorised by confession, we define
the first outside FTC individual to be infected as number j = n¢, + Fp +
NFp + 1, the second j = n¢o, + Fp + NFp + 2 and so on, with Fp and NFp
defined as in Figure 2.3 as the numbers of FTC and non-FTC protected indi-
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viduals, respectively. The case is similar for any non-FTC individuals outside
who become infected, with the first being numbered j = ¢, + Fp + NFp +
Fnp +1, for Fnp equal to the number of unprotected FTC individuals outside.
This is more computationally efficient since it does not require calculation of

thousands of identical infectious pressures.

This mechanism for outbreak simulation will be required in the later simula-
tion study and model checking, but now we proceed to define the Bayesian

inference and likelihood expressions to be used in our analysis.

— Outside compounds —

Within FTC, Non-FTC, FTC, Non-FTC,
compounds protected protected non protected hon protected

I n I Fp I NFp I Fnp I NFnp I

Com

Figure 2.3: Numbering of the N individuals within the population of Abaka-
liki

2.5 Inference and Likelihood Expressions

With the data introduced and the model defined, we may perform Bayesian
inference for the unknown model parameters, given the data and augmenting
the unknown event times for each infective as well as the unknown protec-
tion and vaccination statuses. This is, to the best of our knowledge, the first

Bayesian analysis of the Abakaliki data considering all aspects of the data.

2.5.1 Preliminaries

In order to derive an expression for the likelihood in our model, we first define

some notation.
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Recall that the vaccination statuses of individuals in Abakaliki are known,
with a small number of exceptions as detailed in Table 2.4. For those known
only, define s = {s;|i € 0,.., N —1and s; known} as the set of vaccination
statuses of each individual, with s; taking value 1 for vaccinated i and 0 for

unvaccinated i. Then, let
D = (KI €x, tq/ b/ o, /\{Z/ )Lf/ Ah/ 61 S)

where

0 = (M1, 01, 1, OF, KR, OR, HQ/0Q),
so that the components of 0, are parameters that are assumed known, and
® contains all of the model parameters, both those known and those to be

estimated.

Recall that we defined e, i, q and T as the unknown sets of exposure (not
including e,), infection, quarantine and removal times, respectively. The tem-

poral data r, as introduced in Section 2.2, consist of rash times for all infectives.

For those individuals with unknown vaccination status only, we define s =
{s¥]i€0,.,N —1and s} unknown}. The unknown protection status of each
individual within the compounds is contained within p = (po, p1, - Pryp—1);
where p; = 1 for successfully vaccinated (protected) or p; = 0 for unsuccess-
fully vaccinated (unprotected) or not vaccinated at all. For individuals outside
the compounds, define (py,,,, .- PN—1) in the same way as for those inside.
Finally, let p = (P, Pnoops --» PN—1). For computational purposes, instead of
separate protection statuses for each outside individual, we will in fact only

require quantities x and y, where

x = Number of FTC, vaccinated, unprotected but never infected
individuals outside of the compounds, (2.5.1)

y = Number of non-FTC, vaccinated, unprotected but never infected
individuals outside of the compounds, (2.5.2)

neither of which are known from the data. We separate over FTC membership

status since these individuals will have different mixing behaviours. Since the
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likelihood contribution from such outside individuals can be described using
x and y, this allows for storage of only these two numbers rather than a pro-

tection and a vaccination status for each of the 30,949 individuals in question.

Define
v =(ei,q,7,5%p),
containing protection statuses for all N individuals, and

¥ = (e,i,q,7,5"P),
containing only the protection statuses for individuals within the compounds.

Next, define sets N of individuals with sub/superscripts as follows:

inf = Becomes infected,
n—inf = Never infected,
sus = Initially susceptible, i.e. unvaccinated or vaccinated but not
protected,

FTC = Member of Faith Tabernacle Church,
n— FTC = Nota member of Faith Tabernacle Church,
oc = Outside the compounds,

¢ = Inside the compounds.

For example, N f denotes the set of individuals within the compounds who

become infected.

Now, fort > ¢, and j =0, ..., N — 1, define

A(t) = infectious pressure acting on individual j at time ¢,
A(t) = infectious pressure acting on all individuals who are susceptible

at time ¢

= ) A,
jeMus
j : €j>t

where A(t) can be subdivided into A(t) = Apc(t) + Acn(t) + Acc(t) with

each term in the sum representing the overall infection pressure at time ¢
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to those outside the compounds, to those inside the compounds who never
become infected, and to those inside who do become infected, respectively.
These A terms can hence be defined as

Acn(t) = Y. A1),

JENE

sus,n—inf

j:€j>t

Acc(t) = ), Ajt),

JENE

sus,inf

jrej>t
Aoc(t) = ), Ajb).

JENSIs

jrej>t
With this notation, we denote the likelihood of the data r given the model pa-
rameters ® as 77(r | ®). This is practically intractable in all but trivial cases
however, as we do not observe the complete infection process and so it is in-
feasible to integrate over all possible infectious period parameters as the num-
ber of infectives increases. However augmenting the data r with ¢ we obtain

instead the tractable likelihood 7(r,y | ®). An extension of the standard SIR
model likelihood defined in Section 1.3.5, this likelihood is given by

T

n(ry|®) = [T Ajlej-) | xe” JAPNQGLE

jeMnf
x [T filij—e)fr(ry —ij) fr(z — 1)) fo(q; — max(rj, tg))
jeMnf
¥ pa Ya-p
Prifs,= orsh= —Pr)lgs,= or st =
X pr=0 tor=1 1}(1—’())1':0 {sr=1 1}’

(2.5.3)

where T is the end of the epidemic, defined as the first time at which no infec-
tives or exposed individuals remain in the population. In addition, A;j(ej_) =
limyy,, A;(t), where e;_ represents the time just before exposure of j. The first
product term A;(e;_) defines the pressure on each infective just before their

T
exposure and the exponential term e Jox ()t

represents the pressure on sus-
ceptibles over the entirety of the epidemic. Next are the densities f4(+) of the

exposure, fever, rash and time-to-quarantine periods, where f4, for A = (I, F,
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R, Q), is defined as the pdf of a I'(y4,04) distribution. Lastly, the final term is

the likelihood of the protection status arrangement.

We wish to find 77(® | r), but in order to make use of Equation (2.5.3), we use
the augmented posterior density 77(®, v | r). By Bayes’ theorem, see that

ni(r,y | @)7(P)

rt(r)
o« 7(r,y | ®)(P),

(@, y[r) =

so that the posterior density is the product of the tractable, augmented likeli-

hood and the prior density 7r(®), divided by a normalising constant.

Assuming independence a priori of the components of ®,

7'[((1)) = N(Kr €x, tq/ b/ o, /\a, Af, )\h, 6, S)

= 7i(k)7(ex) 7t (tg) 7e(b) 7e(v) 7t (Aa) (A ) (Ay) 72(6) 72(s)-

We assume that A;, A f and Aj have gamma distributed priors, v has a uniform
prior on (0,1) and b and t; have improper, uniform priors on (0, c0). We set a
discrete uniform prior for x over the number of infected individuals. In addi-
tion, e, has an improper uniform prior on (—oo, i, ). Since 6 and s are assumed

known, 71(0) and 7t(s) are just point masses.

Before continuing to the likelihood calculations, the notation required in this

chapter is summarized in Table 2.6.

2.5.2 Integrating out Parameters x and y

In its current form, our data augmentation scheme results in a likelihood in-
volving the protection status of each of N = 31,200 individuals. It is possi-
ble, however, to integrate out these parameters for all individuals outside of
the compounds. This is essentially because the number of protected individ-
uals is Binomially distributed, and also arises from the fact that individuals
outside of the compounds do not contribute compound mixing terms to the

likelihood; they may only differ in their FTC membership. Since this removes
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Table 2.6: Principal notation.

Parameter | Interpretation

N Population size
Neom Number of individuals within the compounds
n Number of FTC individuals
Ny, 7 Set of ever infected individuals
b Set of individuals with location a and status b

(such as within the compounds and ever infected)

Aa Global infection rate
Af FTC infection rate
Ay Household infection rate

b Infectivity factor for fever period

v Vaccine efficacy

tg Time quarantine measures introduced

0 Fixed parameters for disease stage lengths

K Identity of initial infective

ex Exposure time of initial infective

s Vector of vaccination statuses (for all individuals)
s Vector of unknown vaccination statuses

p Vector of protection statuses (for all individuals)
p Vector of protection statuses (compound individuals only)
o (x,ex,tg,b,0, Aa, Mg, Ap, 0,s)

e Vector of exposure times

i Vector of fever times

r Vector of rash times

T Vector of removal times

q Vector of quarantine times

Y (e,i,7,q,8"p)

7 (e,i,7,q,8",p)
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almost 31,000 parameters, this provides a likelihood which is much faster to

compute.

In this section we will show that
n(r,y|®)=mn(r, 9 xy|P),

where x and y are defined as in Equations (2.5.1) and (2.5.2). This first step
shows that the separate protection statuses for individuals outside the com-
pounds can be summarised by just the total numbers of FTC and non-FTC
vaccinated, unprotected but never infected individuals. We will then integrate

out x and y as follows. We begin by expressing the likelihood as
n(t,g,xy|®)=mn(,g|xy ®)r(xy|P) (2.5.4)

and hence, by Bayes’ Theorem,

(r, 7| x,y@)ﬂ()x,y | @) (@)

. 7T
(@, ,x,y|1) =

Integrating out x and y, equivalent to summing in this case since they take

discrete values, we find

(@)

Y n(®,9,xy|r) = 2 Y n(r,y x5y ®@)n(x,y | ®), (2.5.5)
Xy r)
implying that
. (P .
(@70 = (e 5| @),

This gives new target density 77(®, 4 | r), independent of x and y as desired.

2.5.2.1 Removing protection statuses for individuals outside the compounds
We now must prove that
(e, y| @) =7n(r,,xy|®),

in order to perform the integration detailed above.
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Recall that

7'((1‘,7 | (I)) = H A](e]—) X e fei A(txy)dt

jEMnf

X H fI(i]‘ — ej)fF(T]' — i]‘)fR(’l']‘ — T’j)fQ(qj — max(r]-, tq))
jeMnf
Nil . Nil(l 1

% 1120 Prifsy=10rst=1} (1 o Z)) et Pr)lis =1 orsﬁ‘:l},

(2.5.6)

where we may write A(t;x,y) = Aoc(t;x,y) + Acn(t) + Acc(t) as defined
in Section 2.5.1 but now with dependence on x and y. Then the only terms in
T ([ {s=torsi=1))

Equation (2.5.6) involving x and y are Apc(#; x,y) and vr=° (1—
¥ (1= pr | s =T orst=1})
v) =0 , since x and y are determined by the protection status

of individuals outside of the compounds. It is possible to subdivide the like-
lihood of the protection status over whether the individual is inside/outside

and by whether they do or do not become infected as follows:

N-1 N-1
’U/EO pr]l{sr=l orsk=1} (1 B ’0) r);O (1—pr)]l{5r=1 orsli=1}
ncomn—1 neom —1
—0 rgo pr]]-{srzl orskt=1} (1 o ’(J) Vgo (1_p7)]‘{sr:1 orst=1}
N-1 N-1
< ’Z)”:”Zc:om pr]l{srzl orst=1} (1 _ v)r:%om(lip’)l{srzl orslt=1}
neom—1 ncom—1
— 1 =0 pr]l{srzlors},lzl}(l _ '()) rgo (1_p7)1{sr:10rs$’:1}
N—-1
N-1 L (1_p")]l{sr:1 orsi=1}
Y pel u r=Ncom
X pr=Mcom " {sr=lorsy=1} (1 _ U)reMﬂf
N-1
D (17;77)1{5;/:1 orsht=1}

r'=MNcom
x (1— U)YGN;me
The terms corresponding to individuals inside the compounds do not depend
on x and y, and neither does the term concerning outside infectives, since their
protection status is known. Also, there are only unknown vaccination statuses

for individuals inside of the compounds and so we may disregard the s terms.
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Let us then define the expression dependent on x and y as

N-1
B Y (I=pr)sr
T hoctiay B PR
ny —e ex 1XOC\Er Y ="com (1 — ’(]) n—inf P (257)

where, with s} disregarded, the indicator functions collapse to just s, as it
is itself an indicator function, with value 1 for r vaccinated and 0 for r non-

vaccinated.

The integral of Apc is equal to the sum over all infectives j of the pressure
from j to any given FTC or non-FTC individual outside of the compounds
(throughout all time (e, T)), summed over all the initially susceptible FTC
and non-FTC individuals. Thus,
T .
e Jo Rocltxdt — oy < - Y ) ‘I’]-k) (2.5.8)
je-/\/inf ke/\/'soucs

with ¥ = total infectious pressure from j to susceptible k during the time

interval (e, T).

We wish to express Equation (2.5.8) in terms of x and y and so, partitioning

according to whether susceptibles become infected or not, see that

exp(— Z Z ‘ij) = exp(— Z ( Z Y + Z Tjk))
jG./\/mf kej\/'soucs jeMnf kej\/'ii,cf kENr?C—inf

:exp<—z< Yo Yat+ ), VY

j€Ning ~KENG pre keNe n_Frc

+ Y ¥+ ¥ w)), (2.5.9)

oc oc
keaninf,PTC keaninf,anTC

which has also been partitioned over the confession of the susceptibles: whether

FTC or not.

However, the data only indicate if individuals are vaccinated, not whether
they are protected, since the vaccine may not have been effective. Of the four
¥jx values in Equation (2.5.9), the numbers of initially susceptible FTC and

non-FTC individuals outside that do become infective are known, but not the
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Sus, n-inf?

inf No
Vaccinated /
\ n-inf With probability 1-v
inf No
Non-vaccinated /
\ n-inf Yes

Figure 2.4: Tree diagram for protection status of individuals outside the com-
pounds. Here inf = infected, n-inf = non-infected and sus= sus-

ceptible.

number of initial susceptibles that are never infected. Figure 2.4 displays the

possible combinations of individuals in the latter two categories.

So, the total number of initially susceptible, never infected individuals outside

the compounds is given by
| Naing | = ay"inp +Bin(b3 0,1 = 0),

where a’° . f is the known number of non-vaccinated, never infective individ-
uals outside the compounds and bi‘;c_ inf is the known number of vaccinated,
never infective individuals outside, each one of whom is susceptible with
probability 1 — v. Bin(n, p) represents a binomial distribution with number
of trials 7 and success probability p. The number of b7° . f that are susceptible

is equal to x + y, specifically

X Bin(bZC,inf,pTc, 1- U)/

y~ Bin(bzc—inf,n—FTCr 1-0),
given v, where b° . f,FTC is the number of FTC individuals outside who are
vaccinated but not infected and b° F—FTC is the number of non-FTC indi-

viduals outside who are vaccinated but not infected.
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Therefore Equation (2.5.7) for Ly, becomes

Ly= ep(- L ( } ¥+ Y ¥

j€Nims  kENG pre keN —Frc

1

X (@ ingere + %) + XNEG) (@ infn—rrc + y)))

N-1

N-1 Z (1_p7)sr
r prSr = Feom
sor=ien’ | (1 — p) ENu-ing , (2.5.10)

where

A Ag . B
m N4+ if fj=FIC
xr(j) = (b(rj = i) + (min(g;, ) = 7)) > § 1 Ji

N=T otherwise

and

e if f; = FIC

Aa +)\f .
~—7 otherwise

xne(j) = (b(r; —ij) + (min(q;, ;) — 1)) ¥

represent the contribution from infective j to a never infected FTC/non-FTC
susceptible outside the compounds over all time (e, T). This contribution is

equal for all susceptibles k.

Considering the protection status likelihood parts of Equation (2.5.10), note
that

N-1

)y (1=pr)sy

Ir'=Mcom
(o) = (1o,
since the sum is equal to the number of vaccinated but unprotected individuals

outside who do not become infected. Hence

N-1

S
’UV=VlXc:om prer — ’()hzc*i”f_x_y

4

as the sum is equal to the number of vaccinated and protected individuals
outside, which can be seen as equivalent to the number of vaccinated never

infected individuals outside minus those who are unprotected.
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Splitting up the terms involving x and y, Equation (2.5.10) can be written in
the form

ny=exp<— Z( Y. Yit ) Y

jEMnf kEA/—i(;)ff,FTC ke'/\/—ioncf,anTC

+ 85 in g, rreXF() + 45 infn— FTCXNF (f)) >

X exp (_ Z xr(j) X x) x (1— U)vaZiinf,PTc*x

jeMnf

X exp (‘ Y ane(i) x y) x (1= o)Yolrnfa—r1e ™ (2511)
jE€Nin

which demonstrates that 77(r,y | ®) = 71(r, %, x, y | ®) as claimed. None of

the unknown protection statuses for outside individuals are now explicitly

required, resulting in improved computational speed, and we may now sum

this expression over x and y to obtain the overall likelihood 7(r, 4 | ®), which

is faster still to compute.

2.5.2.2 Sum over x and y

Considering Equation (2.5.11), the first exponential term does not depend upon
x or y and so we may disregard it for now. For the rest of the expression, recog-
nise that the sum takes the form of a moment generating function (MGF) for

the binomial distribution and hence use the fact that, for W ~ Bin(n, p),
E(e ™) = (pe ® +(1-p))", 6 >0.

Setting Y. xr(j) = xrand Y xnre(j) = xnr as 6, as well as biimf ETC
jeMnf jEMnf ’
and b;‘ic_mf,n_nc asnand 1 — v as p we obtain

L=exp(— Y (Y ¥+ Y ¥

j€Nmfs  keEN pre keNG u_Frc
oc oc
- an—inf,FTCXF - an—inf,n—FTCXNF>

—XF bchinf,FTC —XNF bziinf,anTC
X ((1—v)e +v) <(1—v)e +v> ,
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for which taking logs yields

log(L) =~ ), ( Y. 1ij) — @y i FTCXF — Ay inf n—FTCANF
JEN g~ kENES,
+ U5 ing,rrc 108 (U +(1- U)G_XF>
+ bn infn—FTC 10g (U + (1 - U)e_XNF> . (2.5.12)

2.5.3 Likelihood

To obtain the full, tractable likelihood expression, combine the section from
Equation (2.5.12) with the remaining parts of the original likelihood from Equa-

tion (2.5.6), resulting in an overall log likelihood of

log(7(r, 7| ®)) =

log ( / Acn(t) — Acc(t)dt
]e-/vmf
j7#x

oc oc
N Z ( Z T]'k)_an—inf,FTCXF_an—inf,n—FTCXNF
JE€Nmf  keNG

+bn inf,FTC lOg (U + (1 o U)e_XF)
+bn7inf n—FTC log (U + (1 - U)e_XNF)
+10g( [T fiGj—e)fe(ri—ij) fr(zj — 1)) fola; — max(r;, fq)))

]eMnf
Meom—1
+ Z pr]l{srzl orsy=1} log(v)
r=0
Meom—1
+ Z (1 - p?’)]l{srzl orst=1} log(l - U)
r=0

N-1
+ Z (1 —ps)sylog(l —0),

r=Ncom

re/vinf
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where

I A=) =TI 3, mlie—)
j7x jEK i

n—1 I’lC,fi(Ejf

Aa —‘r)\f /\h(SC(i,j;Ej—)
N1 T g, (o)1

otherwise,

with

(

b ifii<€]'—<1’i

m(i,ej—) =41 ifr; < ej— < min(Ti,qi)

0 otherwise.
\

The log posterior density of interest is thus

log(7(®,7|1,0)) log(ﬂ(rv|<1>) (®))
og(7t(r, 7 | ®)) +log(7(x)) + log(7t(ex)) + log(7(ty))
+log(7(b)) + log(7t(v)) + log(7(Aa))
+log(7(Af)) +log(7(Ay))-

We have obtained a tractable likelihood expression which is sufficiently fast
to compute, and we may now perform MCMC; sampling from the posterior

density to obtain estimates of model parameters.

2.6 MCMC

In this section we will detail the MCMC algorithm used to update the model

parameters and the augmented data.

Within the MCMC algorithm, all of the 12 parameters are updated singly in
a systematic order using Metropolis-Hastings updates, with the exception of
the exposure, infection, quarantine and removal times which are updated in
pairs. More complex updates could be considered, but since these single up-

dates work well and lead to sufficient mixing, it does not appear necessary.
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Proposed values outside of the possible range for each parameter are imme-
diately rejected (for example, all the infection rates must be positive). The
acceptance probability is calculated using the full conditional distributions, as
fully detailed in Appendix A, since calculation of the full likelihood is compu-

tationally demanding.

We obtain 100,000 samples in all cases, taken after an initial burn-in of 10,000
iterations and thinning to record every 10th iteration for sufficient indepen-
dence in these samples. In each loop of the algorithm, first the A values are
individually updated, followed by v (vaccine efficacy), b (infectivity factor of
fever infectious period) and t; (days until isolation procedures begin). For
a number of randomly selected individuals, the pair of exposure and fever
times, followed by the pair of quarantine and removal times, are then up-
dated. This is followed by the protection status of a small number of indi-
viduals within the compounds proposed to be changed. Finally, vaccination
statuses s” must be updated. Whereas to update p we randomly select any
element of p and propose a change to it, with s* we consider the limited pos-
sible number of unknown vaccination configurations for several individuals
within the compounds, as shown in Table 2.4. The total number of vaccinated
people in each compound is known, but not necessarily whether those vacci-
nated are FTC or non-FTC, and so to update s* we randomly select one of the

five potential vaccination configurations from ¢ = {¢;|i =1, ...,5}.

The MCMC was coded in C, and takes on average 2.5 hours for 100,000 sam-
ples to be obtained. A summary of the MCMC process used is given in Al-
gorithm 5. The number of event times and protection statuses updated per
iteration in the algorithm (5 and 15, respectively) were tuned to provide good
mixing.
We now explain each of the MCMC updates in more detail. To update any pa-
rameter «, a candidate value is drawn from the proposal density. Any positive
candidate & value is accepted with probability

mt(&)g(e|&

) "
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Algorithm 5 MCMC process for obtaining samples of the Abakaliki outbreak

parameters.

Input: r, it = number of iterations, b = length of burn-in, th = degree of
thinning
Output: Ay, Af, Ay, 0, bty
1. Establish initial values of output parameters as well as event times, pro-
tection statuses and unknown vaccination statuses.
2.
fori = —btoitdo
for inner = 0 to th do
a) Update A,
b) Update Ay,
c) Update A,
d) Update v
e) Update b
f) Update ¢,
8)
forj=1to5do
Randomly select an infected individual
Update their exposure and infection times as a pair
Update their quarantine and removal times as a pair
end for
h)
forj =1to15do
Randomly select an individual within the compounds
Update their protection status
end for
i) Update the unknown vaccination status configuration, and corre-
sponding protection statuses
end for
Record current output parameter values

end for
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where q(+|-) denotes the proposal density/mass function and 7(-) is the a-
dependent full conditional distribution, provided in Appendix A. Considering

each parameter individually:

A values updated - infection rates: Candidate value
Ag =M+ x

is proposed, where x ~ N(O, (T/%a), i.e. x is a Gaussian distributed random
variable with mean 0 and fixed variance O’)Z\u. In practice, 0’/%“ is tuned to provide

reasonable mixing of the Markov chain. The probability of acceptance is given

by:
(Ao |1,6,7,%, e, tg,0,b,Af, Ay, 8) AL

(Ao |1,6,7, %, ex,tq,0,b,Af, Ay, 8)

with similar expressions for A¢ and Aj,.

Using a randomly generated, uniform distributed number U between 0 and 1,
the proposed value is accepted or rejected under the given probability. Since

we operate on a log scale, the candidate is accepted if

log(U) < log(m(Aq|1,6,%,% ex tg,0,b, A, As))
—log(mt(Aa | 1,0,9,%,ex,t5,0,b, Af A, s)).

This process is carried out for A;, A and A £in turn.

v value updated - vaccine efficacy: A very similar procedure is used to update v,
with a candidate value suggested as a random Gaussian distributed variable
added to the current v value. Provided this candidate lies between 0 and 1, it

is accepted with probability

(0] 1,0,7,K e tg b, A, Af, A, s)

m(v|r, 0,9,k e ts b, A, Af, A, s)

b value updated - infectivity factor: Next, b is updated using the same candidate

selection process as for v. In this case, the probability of acceptance is

7'((13 |1,0,7,%,ex,t5,0, Ag, Af, A s)

m(b|r, 0,9, % exty0, A, Af, A s)
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t, value updated - time quarantine procedures introduced: In much the same way
as before, a new value for ¢, is proposed, based on a random Gaussian dis-

tributed amount added to its previous value, and accepted with probability

7-[({1] | r, 6/ ’7/ K, €x, b/ o, )La/ )\‘fl /\hl S)

ﬂ(tq | r, 6/ ’7/ K, €x, b/ 0, )\ar )Lfl /\hl S)

e,1,q,t values updated - exposure, infection, quarantine and removal times: A num-
ber, typically in the range 5-10, of individuals per iteration of the algorithm are
randomly selected to have their exposure, infection, quarantine and removal
values updated. Candidate values are selected, with exposure and infection
being accepted/rejected as a unit followed, by the pair of quarantine and re-

moval since we expect these quantities to be correlated.

Candidates for the period of time between start of infectivity and known rash
start time, then exposure and start of infectivity are proposed as random gamma
distributed values. They are accepted /rejected as a unit, before candidate val-
ues for the time between rash and quarantine and also rash and removal are
proposed and similarly judged as a unit. The process for each individual is as

follows

1. Select an individual j uniformly at random from the set N, ,
2. Simulate F «~ T'(ug, 0r) and set i; = r; — F,

3. Simulate I «~ I'(u,07) and set & = i; — I,

4. Simulate R «~~ T'(pg,0r) and set T, = r; + R,

5. Simulate X «~ I'(uq, 0g) and set §; = max(r;, t;) + X.

Making sure to keep track of the initial infective, the candidates for ¢; and i;

are accepted with probability

n(éi/ 171' | r, (I), €_j, i—i/ q, 7, f’; Su)
71'(61', ii | r, (I), €_j, i—i/ q, 7, 13/ Su)

A 1.
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After this, and regardless of the acceptance of the exposure and infection times,
candidate times for 7; and ¢; are considered similarly. The process is repeated

for each of the selected infective individuals.

Protection status updated: Similarly, a number of people in the compounds,
again typically 5-10, are randomly selected to have their protection status changed.

The change for each is accepted with probability

n(ﬁl | r, q)l e, i/ qQ T, P-i Su)

A 1.
N(Pz | r, q)l e, il qQ T, P-i su)

Only those individuals who are vaccinated and not infected are eligible to have
their protection status changed. These updates are accepted/rejected sepa-

rately rather than as a unit.

Unknown vaccination status individuals updated: Finally, there are those people
within the compound whose vaccination statuses are unknown. A new combi-
nation of these is proposed, by selection of one of the aforementioned c values
from 1 through 5 which represent the five potential configurations of unknown
vaccination status. Protection statuses of those affected are then updated ac-
cordingly; set to 0 if an individual is proposed as non-vaccinated, and set to 1

independently with probability v if an individual is proposed vaccinated.

Selecting one of five possible configurations of unknown vaccination status
uniformly at random, any given one is accepted with probability

7-((51 | 1‘/ (I)/ e/ i/ q/ T’ 13)

A 1.
7T(Ci | r, q>/ e, i/ qQ, T, f’)

2.7 Results

2.7.1 Abakaliki Data

With the full likelihood expressions obtained and MCMC scheme defined, we
may now analyse the Abakaliki data. We seek to compare the results from
our MCMC to those of Eichner and Dietz, and both can be found in Table 2.7.

The posterior means, medians and credible intervals from MCMC are given
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alongside the results of Eichner and Dietz. Figure 2.5 also contains density
plots for the parameters of interest as well as the basic reproduction number,
compared to Eichner and Dietz” maximum likelihood estimates (MLEs). In
general, the results from MCMC appear very similar to Eichner and Dietz’,
particularly for the six model parameters. This is perhaps unexpected, and
indicates that Eichner and Dietz’s method may be fairly accurate despite its

approximations.

Our mean estimate of the basic reproduction number Ry = (ug + bur)(As +
Af+Ay) is 7.96 for the whole infectious period, which means that in an entirely
susceptible population an infected person will on average infect 7.96 others.
This is slightly higher than Eichner and Dietz’s estimate of 6.87. Similarly, our
estimate of the reproduction number for the fever period Rr = bur(Aq, + Af +
Ap) is 0.53 compared to Eichner and Dietz’s 0.164. In this case the difference
can be explained by our larger estimate for infectivity factor b, which has a

highly skewed posterior density.

Table 2.8 gives estimates of a selection of reproduction numbers. Figure 2.6
contains density plots for these reproduction numbers. Defining R as the re-
production number once quarantine measures are in place (i.e. Rp with yr =
no = 2.0) it is estimated at a mean of 1.459, interestingly meaning the epi-
demic is still super-critical. Defining pairs of pre- and post- quarantine mea-
sure reproduction numbers for spread only within compounds, for between
FTC individuals and for in the wider population (i.e. Rg, = (pg + bur)As and
so on), we can see the impact of these different types of transmission. As we
would expect, all reproduction numbers are greatly lowered post-quarantine
compared to their pre-quarantine counterparts. However, we also see that (i)
within compounds, the epidemic is super-critical both before and after ¢,; (ii)
within the FTC membership, the epidemic changes from super- to sub-critical
and (iii) in the wider population, the epidemic is always sub-critical. This
would imply that what stops the outbreak spreading further is a combination

of a depletion of susceptibles in the compounds and the fact that the global
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Posterior | Posterior| Credible Eichner FEichner and Dietz
mean | median interval and confidence
Dietz MLE interval

Ay 0.041 0.035 (0, 0.093) 0.0281 (0.00447, 0.101)
Af | 0.063 0.059 | (0.009, 0.010) 0.0562 (0.0187, 0.127)
A 0.358 0.349 | (0.150, 0.565) 0.335 (0.192, 0.527)
v 0.808 0.817 | (0.668, 0.947) 0.816 (0.644, 0.922)
b 0.522 0.374 (0.0, 1.500) 0.157 (0,1.89)

tg 50.4 50.2 (42.4, 58.3) 51.5 (44.7, 59.6)
Ry 7.96 7.79 (4.33,11.59) 6.87 (4.52,10.1)
Rp | 0.531 0.431 (0.0, 1.364) 0.164 (0.0, 1.31)

Table 2.7: Parameter estimates and equal-tailed 95% credible intervals for the

Abakaliki smallpox outbreak from the true likelihood approach,

alongside the results of Fichner and Dietz (2003) for comparison.
100,000 MCMC samples were obtained. Ry
/\f + Ah) and Rf = byp()\u + /\f + )Lh).
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Figure 2.5: Posterior densities of the six parameters of interest and the basic
reproduction number, from the Abakaliki outbreak data. Red lines
represent Eichner and Dietz” MLEs. Shown are 100,000 samples
from an MCMC run.

spread is sub-critical, rather than the quarantine procedure itself.

We also consider the correlation between the model parameters. Figure 2.7
displays this, with a scatter plot and Pearson’s correlation coefficient for each
pair of parameters. The lack of correlation seen in the plot suggests that the six
basic model parameters can indeed be individually estimated from the data,

and our model is not over-parameterised.

We lastly consider the posterior distribution of the exposure times for each in-

fected individual, by taking the estimated exposure time for each infective at
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Figure 2.6: Posterior densities of the reproduction numbers contained in Ta-
ble 2.8, from the Abakaliki outbreak data. Shown are 100,000 sam-
ples from an MCMC run.

each iteration of the MCMC algorithm. These are shown in a heat map in Fig-
ure 2.8. We see that generally there is small uncertainty in the exposure times,
most of them following the same ordering as the rash times. This is likely due
to the small variances assumed for the disease stage lengths. This plot also al-
lows us to consider temporal features of the outbreak, such as the generations
of infectives. We see two easily discernible generations at the start of the out-
break (largely corresponding to those the initial infective infects, and then that
generations’ cases), and then two less discernible generations from around day
30 onwards. Visible are some clustered groups of individuals with very sim-

ilar exposure times (and many estimated as infected by the same individual,
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Posterior | Posterior| Credible
mean | median interval
Rg = (pg +bur)(Aa+As + Ap) 1.46 1.40 (0.62,2.30)
Ry = (pr + bur)(Aa) 0.712 0.606 (0.0,1.63)
Ry = (ur +bur)(Af) 1.09 1.03 (0.192,1.99)
Ry, = (pur +bur)(Ay) 6.15 6.00 (2.85,9.45)
Rga = (po + bur)(Aq) 0.132 0.109 (0.0,0.313)
Ror = (pg +bur)(Af) 0.201 0.183 | (0.014,0.388)
Ron = (po + bur)(Ay) 1.13 1.08 (0.411,1.84)

Table 2.8: Parameter estimates and equal-tailed 95% credible intervals for
various reproduction numbers, where 100,000 MCMC samples are
used. Rg is the reproduction number for once quarantine measures
are introduced. Ry is the reproduction number corresponding to
the infection rate A, where x = 4, f or h, and Rp, is equivalent,

but once quarantine measures are in place.

as will be seen in Figure 2.9), which is more akin to a point-source outbreak
where individuals are exposed to a highly infectious source for a short time,
causing a sharp peak in cases. This highlights the high transmission potential

of smallpox.

2.7.2 Source of Infection

In addition to the results analysed so far, we are also able to estimate the most
likely path of smallpox transmission for the Abakaliki outbreak, i.e. who in-
fected whom. This is a novel analysis for the Abakaliki data, since Eichner and

Dietz” maximum likelihood approach does not allow for it.

Using our MCMC algorithm, we obtain samples from the posterior distribu-

tion of the estimated infector of each infective. If an individual j receives in-
m

fectious pressure A;(t) = Y ar(t) at the time of their exposure, where ai(t)
k=1

is the pressure from the kth of m infectives at time f, then the probability that
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Scatterplot matrix for the model parameters
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Figure 2.7: Scatterplot matrix of the model parameters, including Pearson’s

correlation coefficient for each pair and, on the diagonal, the pos-

terior densities of the parameters.

individual k actually infected j is f\"((tt)) These samples can then be combined
]

to find the estimated probability that any given individual infected any other.

Taking the individual estimated to have infected each person with the highest
posterior probability, we obtain the estimated transmission pathway in Fig-
ure 2.9. We see that compound 1 acts very much as the root of the outbreak,
with initial infective 0 infecting many individuals within this compound. Later
generations of compound 1 infectives then lead to the spread of infection into
other areas; note that infective 8 was one of the individuals who moved from
compound 1 to 2, and is estimated to have been the one to introduce the dis-
ease into that compound. These findings agree with those in Thompson and
Foege (1968), who stated that all of the first cases identified in compounds 2
through 9 except one could be traced to personal contact with a compound 1

infective.

Figure 2.10 displays the uncertainty around the most likely infector of each

individual, by plotting the posterior probabilities of each infective having in-
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Figure 2.8: Heat map of the estimated exposure times of each infective, from

100,000 MCMC samples.

fected every other. We see that for some infectives, the earlier ones especially,
we can be far more certain of their source of infection, whereas in the mid-
dle of the outbreak when new infections were being more rapidly discovered,
the path of transmission is less easy to infer. This is as we might expect, and

matches the analysis of the uncertainty around the exposure times.
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Estimated Transmission Pathway

Figure 2.9: The estimated transmission pathway for the Abakaliki outbreak.
Nodes represent infected individuals and the edge pointing to
them represents the highest posterior probability among all pos-
sible infectors. Individuals are clustered by compound. Note that
individuals 7 and 8 moved from compound 1 to compound 2 dur-

ing the outbreak.

2.7.3 Simulation Study

To assess the performance of the MCMC algorithm, we now perform a sim-
ulation study. Following the structure outlined in Section 2.4, we simulate a
number of outbreaks (discounting any of final size 1, which do occur with rel-
ative frequency) using both the Eichner and Dietz parameter estimates and
two alternatives. We then perform MCMC on this simulated data, to see how
well it is able to recover the true values. We simulate 30 data sets for each

set of parameter values, as simulating a larger number was found to have no
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Figure 2.10: Heat map showing the posterior probabilities of individuals hav-

ing infected others in the population of Abakaliki.

considerable impact on the results, and run the MCMC algorithm for each.
This results in 30 posterior means per set of parameter values, for which we

calculate the mean of these means as well as 95% probability intervals.

We compare the results from MCMC to the true values in Table 2.9. Density
plots for the posterior mean values are given in Figures 2.11, 2.12 and 2.13.
We see that the estimates are generally close to the true values, though with
some overestimation. As we would expect, the estimates when A, = 0.4 are
closer to the truth than for the Eichner and Dietz parameter values, since this
causes larger outbreaks leading to more available information on the parame-
ters. This is also the case, to some extent, when we increase ¢, to cause larger

outbreaks, as we might expect.

Table 2.10 shows the results of a single outbreak with much larger parameter
values, yielding a large final size. In this, we did not update the event times or
protection statuses, but fixed them to the values from the simulated data since

otherwise computation was very slow. With a large outbreak we would hope
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Figure 2.11: Density plots for means of the posterior estimates of 30 simu-
lations for the Eichner and Dietz parameter values. Red lines

represent the true values used in the simulations.

for estimates very close to the true values, which largely is the case except for
some overestimation of A;. We expect that this might be due to a limit on
the amount of information that can be gained about A;,. Whereas for A, and
Ar we can learn more and more with larger outbreaks, since A interactions
only occur between compound infectives we are limited on what we can learn.
For a number of large outbreaks simulated, only around 30 out of around 700
infectives resided inside the compounds, and it was found that as the number

of compound infectives increases, the estimation of A;, does improve.

Overall, these simulations suggest that the MCMC algorithm is performing
well, as it is able to recover true parameter values from simulations with rela-
tive accuracy.

2.74 Sensitivity Analysis

We also perform a sensitivity analysis for model checking. This will assess

the susceptibility of the results to changes in the underlying model assump-
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Table 2.9: Simulation study results. 30 simulations per set of parameter val-

ues were created, and MCMC run on this simulated data. We pro-

vide the mean estimate of the 30 posterior mean values and a 95%

probability interval, where 100,000 MCMC samples were obtained.

Parameter True Mean of 95% Probability | Range of Final
Value | Posterior Means Interval Sizes Simulated
Aa 0.0281 0.073 (0.0,0.178)
Ag 0.0562 0.074 (0.001, 0.146)
Eichner An 0.335 0.417 (0.181, 0.652) 15-42
and Dietz v 0.816 0.822 (0.651, 0.992) (mean: 25)
b 0.157 0.792 (0.0, 2.00)
tg 51.5 52.1 (0.0, 105)
Ag 0.4 0.365 (0.188, 0.541)
Ay 0.0562 0.065 (0.016, 0.114)
Modified A 0.335 0.321 (0.081, 0.560) 65-109
Ag v 0.816 0.787 (0.663, 0.910) (mean: 82)
b 0.157 0.589 (0.0,1.59)
tg 51.5 50.0 (43.0,57.0)
Aa 0.0281 0.031 (0.0,0.070)
Ag 0.20 0.193 (0.114,0.271)
Modified Ap 0.335 0.305 (0.142,0.467) 12-133
tgand Af v 0.816 0.816 (0.710,0.921) (mean: 56)
b 0.157 0.735 (0.0,1.78)
tg 150 181 (70.4,291)
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Figure 2.12: Density plots for means of the posterior estimates of 30 simula-
tions for modified A, = 0.4. Red lines represent the true values

used in the simulations.
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Figure 2.13: Density plots for means of the posterior estimates of 30 simula-
tions for modified t; = 150 and Ay = 0.2. Red lines represent the

true values used in the simulations.
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Table 2.10: Simulation study results for a single large outbreak of final size
734. We provide the mean estimate over a single MCMC run of

length 10,000, and the equal-tailed 95% credible interval.

Parameter | True Value | Posterior mean | 95% Credible Interval
Aa 0.85 0.868 (0.762, 0.973)
Af 0.2562 0.265 (0.192, 0.337)
Ap 0.535 0.711 (0.475, 0.946)
v 0.816 0.819 (0.648, 0.989)
b 0.157 0.132 (0, 1.335)
tg 515 52.049 (-0.582, 104.680)

tions; in this case the infectious period length parameters yj, yg and so on. We
will vary these parameters governing the length of time spent in the different

disease stages, and examine the impact on parameter estimation from MCMC.

Figure 2.14 displays posterior densities for our parameters of interest over a
range of infectious period mean durations. We vary yj, yur and pug and exam-
ine the effect on the shape of the posteriors. As would be expected, when ug,
the length of the rash period before removal, is reduced to make shorter aver-
age infectious periods, the estimates of the infection rates increase to compen-
sate. The estimates of the other three main parameters of interest are largely
unchanged. Note that the estimation of Ry is somewhat sensitive to the choice
of ug, likely an artefact of the relatively small number of cases, the quarantine
procedure and the population structure. In a large and uninterrupted outbreak
we would typically expect Ry to be determined by the outbreak size, but that
is not the case here due to these extra complexities of population structure and

control measures.

The values of yj, ur and ur have been informed by the literature, but we are
perhaps less certain about the values of g and 0 as these are data-specific
and not recorded in the Thompson and Foege (1968) report. We see the results

of varying 1o and oy, affecting the time taken to quarantine an infective, in
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Figure 2.15, and note that this change has very little impact on estimation.
This similarity is reassuring since these values are those we are least certain of,
and implies that even if the time taken to quarantine infectives is different to

that which we assume, the effect on our results is minimal.
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Figure 2.14: Posterior densities of the six parameters of interest and Ry, when

different mean durations of the infectious periods are used.
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Figure 2.15: Posterior densities of the six parameters of interest and Ry, when
the time taken to quarantine an infective, jo, along with g is

varied.

86



CHAPTER 2: MODELLING AND BAYESIAN INFERENCE FOR THE ABAKALIKI
SMALLPOX DATA

2.7.5 Posterior Predictive Checking

As a final piece of analysis, in order to assess how well our model fits the data
we will perform posterior predictive checking. This involves taking samples
of the basic model parameters from the posterior density, making sure to use
a well mixed and thinned chain, and using our model to simulate a smallpox
outbreak forwards in time from each. A well-performing model will lead to
simulations similar to the Abakaliki outbreak. We use a number of measures
to judge this similarity, namely comparing final size, epidemic duration and

incidence curves.

We begin with final size; the total number of infectives in each outbreak. Tak-
ing 5000 sets of posterior estimates from a well mixed MCMC chain, we simu-
late a smallpox outbreak from each and record the final size. Figure 2.16 shows
a histogram of these final sizes where we see that, in this respect, the simula-
tions are fairly similar to the true Abakaliki outbreak, but generally of slightly
smaller final size. The mean final size is 23.5 compared to the Abakaliki out-
break size of 32. This is somewhat surprising; since we allow for infections
outside of the compounds, which were not seen in the data, we might expect

the final size of simulations to be larger on average.

In the Abakaliki outbreak, however, it is important to note that two of the four
individuals who moved compound were infective at the time of the move, and
that these individuals were the first cases seen outside of compound 1. If we
consider only those simulations in which at least one of the moving individu-
als was infective, we see an increase in the mean final size to 29.27. Figure 2.17
compares this subset of the simulations to all of the simulations as a whole. We
see that when we only consider simulations similar to the data in this respect,
the final size is much closer to that observed. This also supports our previous
comment in Section 2.7.2 that the move of these two infected individuals was

key in transmitting the disease outside of compound 1.

We next consider epidemic duration, which we define as the length of time be-
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Figure 2.16: Using 5000 posterior samples of the parameter estimates to simu-
late outbreaks, a histogram displaying the final size of each, com-

pared to the observed Abakaliki data.

tween the first case detection (rash) time and the last. Figure 2.18 displays the
duration of 5000 simulated outbreaks, compared to the observed data dura-
tion. With a mean of 76.75 days, we see our simulated outbreaks are generally
very similar in duration to the Abakaliki outbreak (of length 76 days), most
likely due to the good estimation of ;. Note the slight peak for short outbreaks
of length 0-10, caused largely by those which immediately went extinct.

In the same manner as before, comparing the epidemic duration of the sub-
set of outbreaks where infected individuals moved compound, we see a small
increase in the mean. Figure 2.19 shows this, and it is interesting that in this
case the subset of simulations provides a worse estimate of the observed epi-
demic duration. However, we would indeed expect an increase in epidemic
duration from the increased final size of these simulations compared to all of

the simulations as a whole.

Figure 2.20 allows for examination of the correlation between final size and
epidemic duration for the simulated outbreaks. As would be expected, longer

durations tend to be seen when there are larger outbreaks, with the two having
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Figure 2.17: A comparison of final size between all 5000 simulations and
the subset of simulations where an individual who moves com-
pound is infected during their move. The dashed line represents
the mean final size of all simulations, the dotted line represents
the mean final size of only those outbreaks where an infected in-
dividual moves compound, and the solid black line represents

the observed data.

correlation of 0.57. The result for the true Abakaliki data does not appear

distinctly different to that of the simulations.

Table 2.11 provides a brief set of statistics for the simulated data sets compared
to the Abakaliki outbreak, summarising the plots discussed so far. Note the
difference in the percentage of outside infectives seen, which was not recorded
in the Abakaliki outbreak but invariably occurs in simulations. Although the
simulations do not appear similar to the data in this respect, it is noteworthy
that Thompson and Foege (1968) claimed that ‘there must have been some
deaths which were very well concealed” within Abakaliki, and so it is cer-
tainly not unquestionable that there were indeed infectives outside of the com-

pounds who were just not recorded.

Lastly, we wish to compare the cumulative number of cases at any given time

in simulations to the Abakaliki data. However, this is difficult to do with out-
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Figure 2.18: Using 5000 posterior samples of the parameter estimates to simu-
late outbreaks, a histogram displaying the duration from the first
rash time to the last of each, compared to the observed Abakaliki

data.

breaks of different sizes, and so we take instead only those simulations of the
same final size as the data (32). Figure 2.21 displays the incidence curves of
4000 simulations of size 32, which we see are generally similar in shape to
the data, perhaps with some right skew. This implies that the observed data
are reasonably well captured by the behaviour of the model. To quantify this
more exactly, we calculate a posterior predictive p-value for the discrepancy
between simulations and the data, defined as the probability that a simulation
R™P is more extreme than the data R°. Here, element R; is equal to the jih
rash time (where rash times are chronologically ordered as usual). We would
wish for simulations to be more extreme around 50% of the time, so a p-value
of 0.5 is optimum. In order to calculate the p-value, we must select a discrep-
ancy measure D(R, ®); a function of data R and model parameters ®. We use

a chi-squared measure as detailed in Gelman et al. (1996), of the form

R: —E(R: | ® 2
D(R, ®) ZZ( JVar(z(zj]|LI>)))
]

Note that neither the mean nor the variance term are available analytically,
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Figure 2.19: A comparison of epidemic duration between all 5000 simula-
tions and only those simulations where an individual who moves
compound is infected before the move. The dashed line repre-
sents the mean duration of all simulations, the dotted line rep-
resents the mean duration of only those outbreaks where an in-
fected individual moved compound and the solid black line rep-

resents the observed data.

and so we obtain these via simulation. Given ®, we simulate until we have a
suitably sized sample of outbreaks with 32 cases. The mean and variance of the
jth rash time is then estimated directly from this sample. Next suppose that
we have M samples from the posterior, labelled o), .. M), Repeatedly
simulating until we obtain an outbreak with 32 cases, we use the ith sample of

® to obtain a simulated epidemic with rash times R™P:.

Then the posterior predictive p-value is defined as

ppp-value = ]P(D(Rrep,fb) > D(R°, ®) |R°b5>

1 M
M Z ILD(RrePi/(I)(i))ED(Robs’q)(i)).
i=1

Q

A p-value of 0.42 is obtained (for M = 100), which is sufficiently close to the

optimum value of 0.5 to be accepted. Hence we conclude that the simulated
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Table 2.11: Comparison of 4000 simulated outbreaks from posterior esti-
mates, and the Abakaliki data over a range of criteria. * This value
is calculated considering only outbreaks where at least one of the

individuals who moves compound is infected by the time of their

move
Mean of Simulations | Abakaliki Data
Outbreak duration (days) 76.75 76
Final size 23.51 (29.27%) 32
Percentage of outside infectives 19.99% 0%
Percentage of FTC infectives 90.71% 93.8%

outbreaks of size 32 are similar in this respect to the data, indicative of a good
model fit. A more accurate value could be obtained with larger values of M,
but the procedure is highly time-consuming in practice due to the restriction

on the final size of simulations.

Overall, posterior predictive checking has shown a good model fit, indicating
that our MCMC results are reliable. It has also highlighted some important as-
pects of the data, such as further confirming the importance of the individuals
who moved compound to the spread of the outbreak, and showing the large
proportion of infectives outside the compounds in simulations, which may be

cause for further work.

2.8 Discussion

2.8.1 Parameter Estimates

Our estimates of the infection rates show clearly that the dominant mode
of transmission within Abakaliki was between individuals in the same com-
pound, in agreement with the findings of Eichner and Dietz (2003). This is sup-

ported by the estimated disease transmission pathway of Section 2.7.2 where
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Figure 2.20: For 1000 simulated outbreaks, a scatterplot of final size against
the duration of the epidemic. The black point provides the values

from the Abakaliki outbreak.

we see the majority of transmission events taking place within compounds.
This is also in agreement with the original WHO report by Thompson and
Foege (1968) who found that FTC membership did not appear to be the ma-
jor transmission mechanism but rather that compound links and particularly

family membership were dominant.

Again similarly to Eichner and Dietz, we found the vaccine to have had around
81% efficacy. Our estimate for b, the factor for the change in infectivity during
the fever period, was 0.5. Higher than that of Eichner of Dietz, this is likely
due to the skewed shape of the posterior density but shows evidence that the
modelling of smallpox with an SIR model that has been frequently seen in

those citing the Abakaliki data may not be appropriate.

The time quarantine measures were introduced was estimated to be between
day 50 and 51. From our investigation, it seems that the introduction of con-
trol procedures was somewhat important in preventing a much larger scale
outbreak. Under the model assumptions alone, the quarantine reduced the

average time spent in the rash period from 16 days to 2 days. However, inves-
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Incidence curve for 4000 outbreaks of size 32
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Figure 2.21: The cumulative number of smallpox cases observed by each day
is shown, for 4000 outbreaks of size 32 only. The black curve

shows the incidence curve for the true Abakaliki outbreak.

tigation of reproduction numbers for the outbreak led to further discoveries

about this.

2.8.2 Reproduction Numbers

We obtained a posterior mean estimate for Ry of 7.96, higher than that found
by Eichner and Dietz (2003) of 6.87 and even more so than other estimates
for an SIR model where just FTC individuals are considered (see O’Neill and
Roberts (1999), who estimate Ry around 1). This highlights the high infectivity
of smallpox as well as the importance of a detailed model taking population

structure into account.

Although Ry is interpreted as the average number of secondary cases any
given infective will cause in a fully susceptible population, in our case this
is hard to analogize since the majority of transmission was within-compound
and the pool of susceptible individuals in an infected compound depleted

rapidly.

To further consider the impact of control measures in a more relevant way,
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we considered the reproduction numbers both pre- and post-quarantine pro-
cedures being put in place. We obtained an Rg (reproduction number when
quarantine measures are in place) value of 1.46; far lower than pre-quarantine
but interestingly insufficient alone to stop large scale spread. We concluded
that important must also have been the depletion of susceptible individuals
within the affected compounds (which had a large proportion of FTC inhabi-
tants), and a sub-critical epidemic elsewhere in the population. With respect
to contacts between FTC individuals, it appears that the quarantine measures
were key in minimising the disease spread, but for compound contacts it was
the depletion of susceptible individuals which slowed the epidemic rather
than quarantine. Despite this, introducing quarantine procedures at a later
day in simulations was found to increase outbreak size somewhat, with av-
erage final sizes 24, 44 and 64 for t; = 50, 100 and 200 respectively. With
no quarantine procedures at all, we found the average final size to be 86, high-
lighting the sub-critical epidemic in the wider population and the considerable
impact of the depletion of susceptible individuals within the compounds. As
in Thompson and Foege (1968), we see that small pockets of poorly protected
individuals who mix frequently together can facilitate outbreaks of smallpox

even in a generally well-protected population.

2.8.3 Model Fit

The tests we have performed indicate that the model fits the data fairly well.
The model does invariably predict cases outside of the compounds, likely be-
cause of the rather unrealistic assumption of homogeneous mixing in the en-
tire population, and especially the assumption of homogeneous mixing of non-
FTC individuals which there was no data available to inform. Thompson and
Foege (1968) stated that the FTC community was largely isolated from the rest
of the population with the exception of a few traders, and so a model in which
just some fraction of FTC members had contact with the outside community

might be more applicable, although more complex and not directly informed
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by any data.

Something that might also be useful to consider, although again there is not
sufficient data to support this, is the inclusion of age categories. Thompson
and Foege (1968) state that there appeared to be a much larger proportion
of susceptibles among children, and consequently a higher attack rate. Pre-
school children in particular were largely susceptible, as many older children
had been vaccinated in school despite their parents” beliefs. Even with avail-
able data, however, it seems probable that a model accounting for age of the

individual would be over-parameterised.

2.8.4 Accuracy of the Eichner and Dietz Likelihood Approxi-

mation

As we have seen, the results of our full Bayesian analysis are fairly similar to
those of Eichner and Dietz (2003), indicating that their approximation method

may be of use in other situations.

Investigation of the Eichner and Dietz method reveals that the likelihood func-
tion obtained is numerically but not analytically tractable, specifically since it
involves integrals which must be numerically evaluated. Although this suf-
fices for maximum likelihood methods, as used by Eichner and Dietz for the
Abakaliki outbreak, it is prohibitive for use within MCMC algorithms as the
likelihood must be repeatedly evaluated at large computational cost. We also
note that the distributions for the length of time in each disease stage used here
have relatively small variances, meaning that the model is closely comparable
to one in which the event times are assumed known. In this case, Eichner
and Dietz’s method provides the true likelihood since the distributions used
to approximate unknown event times collapse to point masses around the true
values. It is of interest, therefore, to develop approximate likelihood functions
which are both useful for non-constant infectious periods and which are ana-

lytically tractable.
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2.9 Conclusions

In this chapter we have completed a full Bayesian analysis of the Abakaliki
smallpox data, and compared the results of this to those of Eichner and Dietz
(2003). The parameter estimates found highlight the dominance of within-
compound smallpox transmission as well as the impact on the end of the out-
break of susceptible depletion within the compounds, rather than quarantine
procedures alone. Novel results include estimates of the transmission path-
way as well as analysis of the uncertainty around exposure times, and model
checking has confirmed that the model fits well. Overall, we have seen that
our parameter estimates are very similar to those of Eichner and Dietz. This
indicates that analytically tractable approximate likelihood functions are of in-
terest to investigate, in particular for situations where current methods strug-

gle such as large populations and multi-level mixing.
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CHAPTER 3

Likelihood Approximation
Methods

3.1 Introduction and Motivation

As our investigation in Chapter 2 has shown, inference for disease outbreak
data often deals with complex models and large amounts of missing data, re-
quiring problem-specific analysis and computation. Although MCMC meth-
ods have become considered somewhat the ‘gold standard’ for analysis of this
kind of data, there are many problems associated with this (see e.g. De An-
gelis et al., 2015, O’Neill, 2010, and references therein). Specifically, there are
issues with data dependency as well as more realistic models leading to more
difficult analysis, especially in terms of computational burden. In this chap-
ter, we begin by exploring a number of these problems, and then suggest new

methodology which seeks to address them.

A primary problem with the analysis of infectious disease data is that these
data may be highly dependent. MCMC algorithms which require imputation
of large amounts of missing data then often mix very slowly. Details of this
are discussed in Kypraios (2007), where high posterior correlations between
the infection times and the infectious period parameter are shown. Specifi-

cally, as the outbreak size n increases, infectious period parameter y (assum-
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ing exponential infectious periods for ease) and the sum of the infectious pe-
riods B =}/ ;(r; — i;) become more highly correlated a posteriori. If v and B
were our parameters of interest, a two-state Gibbs sampler may suffer mixing
problems due to this dependency (see e.g. Roberts and Sahu, 1997). It be-
comes increasingly difficult to update y and B separately, since one essentially
determines the other. This is complicated even further by our DA-MCMC al-
gorithm, which may only update a subset of the infection times per iteration

rather than the whole sum B.

To understand why this high correlation occurs, we may consider the full con-
ditional distribution of <y, as defined in Equation (1.3.10). Assuming a low-rate
exponential prior, this full conditional distribution is roughly I'(n + 1, B). This
therefore has variance ”B—*'zl, which tends to zero as n goes to infinity, since B
is of order n. In other words, the larger n gets, the more 7 is determined
by the value of B, and the correlation is stronger. Methods have been devel-
oped to combat this problem, such as partially (or completely) non-centered
parameterisations (see e.g. Neal and Roberts, 2005) which can lead to faster
convergence of the Markov chain by, for example, proposing new infection
times when updating -y rather than performing these independently. How-

ever, these are not easily applicable to all MCMC samplers with all models
(Papaspiliopoulos et al., 2003).

As well as the potential introduction of mixing challenges in the MCMC, large
amounts of missing data resulting from large populations/outbreaks require
many, possibly costly, evaluations of the likelihood. A large population size
also increases the time to calculate this likelihood since it includes a product
over individuals, and DA-MCMC hence becomes highly computationally in-
tensive. With the increasing ability to easily collect and store large data sets,
as well as the growing interconnectedness of communities, there is a rising
demand for realistic analyses of large scale outbreaks. Also, particularly in
cases of real-time forecasting as is becoming more commonplace, the ability

to perform estimation quickly and efficiently will be key. These problems are
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hence becoming more significant, and there is a real need for the development

of methodology which might solve them.

Options for improving the computational speed of MCMC algorithms do ex-
ist, such as the use of parallel computing, but since we require a record of
the states visited by the Markov chain this is not particularly straightforward.
Other methods (e.g. Rambaut et al., 2008) have partitioned the data and anal-
ysed each section independently, but of course this ignores any correlation
between the different sections. We hence propose that methods which include
the entirety of the data whilst avoiding the need for data augmentation, or

indeed MCMC entirely, could become useful tools for analysis.

In Chapter 2, one key finding was the relative accuracy of Eichner and Di-
etz’ approximation method compared to standard MCMC methods, despite
the lack of data augmentation. This indicates that the development of likeli-
hood approximation methods may be useful for addressing our computational
problems. DA-MCMC allows us to sample from the high dimensional proba-
bility densities often involved in the analysis of infectious disease data, even
though these may not be analytically written down. Conversely, these ap-
proximation methods will seek to reduce this dimensionality by eliminating
the artificial parameters that are the augmented data, so that we may sample

from the posterior directly.

In this chapter we will introduce a series of likelihood approximations which
attempt to tackle the problems we have discussed. The first will be a gen-
eralised version of Eichner and Dietz” method from Chapter 2, and the re-
mainder will be a new series of approximation methods based on assuming
independence in interactions between pairs of individuals. We name these
Pair-Based Likelihood Approximations (PBLA). As we have seen in the pre-
vious chapter, the true likelihood in these analyses is equal to the integral
over all unknown event times of the augmented likelihood, which is itself a
product over all individuals. In assuming that all pairs of individuals make

independent contributions to the likelihood, we are essentially able to reduce
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this high dimensional integral to a product of two dimensional integrals, each
of which may be analytically calculated. The likelihood expression is then
entirely tractable and we may approximately sample from it using standard
MCMC, or even simply obtain parameter estimates with maximum likelihood
estimation methods. This is similar in spirit to composite likelihood methods
(see e.g. Varin et al., 2011 and particularly the pairwise likelihood in Cox and
Read, 2004) in that we write the likelihood as a product over constituent parts,
but as we will explain more thoroughly in Section 3.4.1, the similarity does not
extend much beyond this. These Eichner and Dietz and Pair-Based Likelihood
Approximation methods may then be used in situations requiring complex
models with many parameters, for large populations and for large amounts of

missing data, to combat the computational issues we have discussed.

The chapter will proceed as follows. We begin by defining the general model
and notation to be used for the likelihoods in this chapter in Section 3.2. The
first approximation, which will be introduced in Section 3.3, will be the gener-
alization of Eichner and Dietz’ approach from Chapter 2. This framework will
be applied to the special cases of exponentially distributed infectious periods
(Section 3.3.2) and gamma distributed infectious periods (with only positive
integer valued shape parameters) (Section 3.3.3). In Section 3.4 we will then
introduce and define the series of Pair-Based Likelihood Approximations. For
each approximation we include the general framework as well as specific cal-
culations for given infectious periods. We conclude the chapter with a discus-
sion of a numerical drawback of the PBLA method in Section 3.4.10, as well as

an extension of the method to SEIR models in Section 3.4.11.

3.2 Model and Likelihood

We begin by defining the stochastic epidemic model and basic approximate

likelihood structure to be used in this chapter.

For simplicity, we will at first restrict our attention to the SIR model. At
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any given time, every individual in a closed population of size N will be in
one of three states: susceptible, infected or removed, and individuals will
progress through the states in that order. Individuals in the population are
labelled 1,2,...,N, and we label the cases as all individuals j = 1,2,...,n
who become infected (where n is the final size of the outbreak). For these
individuals, ij denotes their infection time and rj their removal time. The in-
fection times i = {ij cj=12,...,x—1,k+1,...,n}, where « is the un-
known initial infective, are unknown, and the data consist of removal times
r = {rj :j=1,2,...,n, wherer; < ry < --- < ry}. Individuals are therefore
ordered such that 1,2, ..., n are those who will eventually be infected (n < N
necessarily). Then n,n +1,..., N are the individuals who remain suscepti-
ble at the end of the outbreak. Note that we require r; < r;;1 strictly for all
j=1,2,...,n—1,which will be discussed further in Section 3.4.10.

The outbreak begins with the infection of the initial infective x, at time i,, and
continues until no infectious individuals remain. The infectious periods of
different infectives are assumed independent and identically distributed, with
probability density (or mass) function f;(- | 8), where f; has parameter vector
0. We do not allow for reinfection, so any individual who reaches the removed
stage will remain there for the duration of the outbreak. During any individ-
ual i’s infectious period, they will have contact with any other individual j at a
time given by the point of a Poisson process of rate ;;, where all such Poisson
processes are assumed mutually independent. If a contact occurs with a sus-
ceptible individual, this results in their immediate infection. Then we define
B ={Bij:i,j €{1,2,...N}} as a matrix of these contact rates. This allows for
a wide range of possibilities for population structure: homogeneous mixing,
multi-level mixing and network structures may all be incorporated. We may
then also define the concept of infectious pressure on any susceptible j, as the
sum over all current infectives i of f;;. A higher infectious pressure essentially
represents an increased probability of individual j being infected, since more

infectives may have potential contacts with them.
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Augmenting the observed removal times with the unobserved infection times
and the identity of the initial infective, as in Chapter 2, we define the aug-

mented likelihood as a product over individuals, but with new notation, as

n(i x| B 0,x ix) = (f{%ﬂ#ﬂl’jﬁ(ﬁ - ij))‘PKfI(”K — ix)
i

j7K
where
Xj = Infectious pressure acting on j at time of infection
n
= ) Biil{kinfective at i}
k=1
k#j
¢; = IP(javoids infection until time i;)
n
= exp ( — Y Bij(re Nij— i A i]-)>
k=1
k#j
¢ = IP(j fails to infect all non-infected individuals, labelled n + 1, ..., N),
N
= exp ( — Z ,B]k(r] — l])> (321)
k=n+1

We recall a A b is the minimum of a and b, and hence ry A i — iy A ij represents
the total length of time for which there is infectious pressure between individ-
uals j and k. This new notation will be of practical use for the introduction of

the likelihood approximation methods.

Since the infection times and x are unobserved, we obtain the target likelihood
by integrating over the infection times and the identity of the initial infective

so that
(x| B,0) = / (i, x| B, 0,5, ix) e (ix, ) di dix dx,

where we have assumed that i, and « are independent of § and 6 a priori. Next,
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see that

n(r|B,0) = / <1—{Xj¢j¢jfl(7”j - ij)) Prcf1(rc — ix)
x
X 70(ix, k) di diy dx (3.2.2)

n n
= ) 7(x) / (HXj%’%) P f1(rc — ix)
k=1 j=1
j#x
n
X 7T(iK | K) Hf[(?’] — Z]) di diK
j=1
j7x
n n
= LW |(TTawe Jentieln], 623
k=1 Vi L\ j=1
j7x
so that we take expectations over all of the infection times (including i,), which
are independent and identically distributed from fi(r; —i; | 8). However, it is
difficult to evaluate the likelihood in this form using a Monte Carlo scheme,
since in order to avoid the likelihood being equal to zero we require x; > 0
for all individuals j except the initial infective. This means positive infectious
pressure on all individuals at the moment they become infective. In practice,
a large number of Monte Carlo simulations would lead to “impossible” out-
breaks, i.e. those which are inconsistent with the observed data since there is

not a potential infector for all infectees.

One way to proceed is to assume independence over j (our first approxima-

tion), so that

E (Hleijl’j)%n(iK!K)] ~ (Hi]g [)(jlpjc;)j})]lli[qb,{n(i,{\x)}. (3.2.4)
sx ]‘:1 j=1 S K«
7 j#

We are hence assuming that each individual’s contribution to the likelihood
is independent, for instance that the infectious pressure on some individual
j when they are infected is independent of the infectious pressure on k when
they are infected. This is not strictly true, since each quantity may be influ-
enced by, for example, whether a third individual / was able to place infec-

tious pressure upon each of them. We might expect this approximation to be
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most accurate when the infection times are relatively spread out compared to
the length of the infectious periods, since there will be less uncertainty as to

which individuals were able to infect others.

There are a number of possible ways to make further approximations to the
likelihood given in Equation (3.2.4), which we will explore in the remainder
of this chapter. The first will be a generalized version of Eichner and Dietz’

method from the Abakaliki data analysis of Chapter 2.

3.3 The Eichner and Dietz Approximation

3.3.1 General Framework

In the analysis of the Abakaliki smallpox data in Chapter 2, we compared our
results from DA-MCMC to those of Eichner and Dietz (2003), who used a like-
lihood approximation to perform maximum likelihood estimation. We found
that the results using the true likelihood were very similar to those from the
approximation, and this has motivated this chapter which aims to further de-
velop these kind of approaches. Here, we will provide a full derivation and
description of a generalized Eichner and Dietz (ED) likelihood, restricting our
attention to a homogeneously mixing population and SIR model. Under this
model, the contact rate between any pair of individuals is given by % Al-
though Eichner and Dietz did not do this, we also assume that the initial in-
fective is the individual whose removal time is first (1) for simplicity. We do
not include their infection process in the likelihood since they are assumed to
have been infected before the start of the outbreak, though of course they are

able to infect others.

Considering the likelihood in the format which Eichner and Dietz use, we be-
gin by considering the force of infection A;(t) to which any individual j is
exposed at time t. In the SIR case this is equal to the infection rate % mul-

tiplied by the number of currently infective individuals. With the infection
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times unobserved, the number of infectives at any time is unknown also, and
so we incorporate the probability that each individual is infective at a given

time. The force of infection is then given by
- B
Aj(t) =) ﬁl(rk, t),
=
where I(ry, t) represents the probability that individual k, who is known to be

removed at time ry, was infective at time ¢, and may therefore be expressed as

r
I(re,t) =1— / kfl(rk —u)du for t < ry,
t

and 0 otherwise. Recall that f;(- | 8) represents the probability density (mass)

function of the infectious period distribution.

Then, the likelihood for any given case j with removal time 7; is given by
2 t
Lease(r)) = [ A0y exp (= [ A(u)du) filr; - t)at.
The first term A;(t) represents this likelihood of infection events, the second
exp ( — ioo Aj(u)du) represents the likelihood of the avoidance of infection
and the terms f1(r; — t) provide the densities of the infectious periods, in much

the same way as the general likelihood format introduced in Section 1.3.5.

Similarly, the likelihood for any non-case j is given by

Loon(j) = exp (= [ Ajw)du).
This is since all non-cases still received infectious pressure from infectives

throughout the outbreak, although they were never infected. If u > r,, this

integrand will be zero.

Recalling that we do not include the infection of the initial infective, the com-

bined ED likelihood of all observations is therefore given by

n N
7'CED(I‘ | 5, 9) = (HLcase(rj)> < H Lnon(j)) :
]:

j=n+1

This may easily be converted to the notation introduced in Section 3.2. Re-

calling the quantity x; = Y Byl {k infective at i} defined in Equation (3.2.1),
k#j
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we may also more generally define x;(t) = Yy_q BrjLl{k infective at ¢} (NOte that
k#j
Xj(i;) = x;)- Then the quantity A;(t) is equivalent to E[x;(t)]: the expected

infectious pressure acting on individual j at time t. Therefore,

mep(r | B, 6)
= (ﬁ/j;]E[Xj(t)]exp<—/_ E[x;(u )]du)fl F—t) dt) (]I;IALHOH >
= (g/_r;]E[Xj] exp<—/_iio1E[Xj(”)]d”)fl( dl]) <]111Ln0n )
Then, the term exp ( - i du) can be approximated to the ¥; term

from Equation (3.2.1). Eichner and Dietz have made the approximation that

IE[IP] | 1]] = E exp (— Z %(Vk /\i]' — I /\l])) | l]]
k=1
=
~ exp| —E Z%(T’k/\i]‘—ik/\ij) |Z]}>
Lk=1
=

i
= exXp _]E Z l{k infective at u} du] )
=R
k#j

— exp —/i;]E[Xj(u)] du),

where instead of considering the value of rx A i; — iy Aij (the amount of time

there was infectious pressure between k and j) conditional on the value of i},
we integrate over all time u up to i;, considering if k is infective at each time.

This may be considered as different ways of building the same quantity.

The final point to note is that, in term Lnon, Eichner and Dietz consider the
likelihood contributions from the perspective of the non-infected individuals.
As in, the product over all individuals who do not become infected of the
infectious pressure that was placed upon them. Under the notation of Section
3.2, we used E[¢;] where we considered the likelihood contribution from all
infectives failing to infect non-cases instead. However, this is again two ways

of expressing the same quantity.
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So rather than writing this expression in terms of ¢; or Lnon we define, for any

individual I who avoids infection,

p; = IP(l avoids infection)
— e_%(Pl+"'+P”)

B )
— e NLLDB

where Pj,..., P, are the infectious periods r; — i; of infectives i = 1,...,n.

Eichner and Dietz have then used the approximation
Elp] = Ele #5010 ~ e VIR

Then

1_[1E<P] [T Elo)= TT Luon()

I=n+1 I=n+1

Overall, we obtain the Eichner and Dietz approximate likelihood
mep(r| B,6) =
i
(H/ )(] exp /_OOIE[X]-(u)] du)fl(rj dzj) ( H Elp/] )

I=n+1

(3.3.1)
where the first product represents the likelihood contribution from infected in-
dividuals, and the second product represents the contribution from those who
were not infected. The two integrals contained in this likelihood might need
to be evaluated numerically, depending on the choice of infectious period. It
is important to note that this method is exact for constant infectious periods,
but for any other choice of infectious periods it is an approximation, despite

this not being explicitly mentioned in Eichner and Dietz (2003).

We will now explore the use of this method with both exponential and gamma

distributed infectious periods, deriving likelihood expressions in each case.

3.3.2 Exponential Infectious Periods

We consider the special case of exponentially distributed infectious periods

within the general Eichner and Dietz framework. As before, we use infection
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rate % between individuals, where now the infectious period is exponentially
distributed with rate 7, and so has probability density function f(x) = ye™ "%,
x > 0. All other aspects of the model are as defined in Section 3.2.

We define ! jas the contribution to the likelihood from any infected individual

j (note that /; = Lcase(r]')), so that

mep(r | B,0) = (]Ii )( IT EPZ)

I=n+1

Then Zj is given by
’
lj:/_] [X]ej ~EWl A gy () — iy) di

= E Z e ]lt<rk exp / NZe 7(ri— IL,Krldu)
-5 =

X ,),e—'y(rj—t) 1{t<rj}dt'

Taking the central exponent alone, we may simplify to

Then,

ﬁr)/ Z/ 7’k t IL{t<rk}efcj‘(t)ef’)/(1’jff)dt
k#]

:B’)/Ze v(ri+re) /k i e27t— Ci(t) g¢.

o0
k#]
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To avoid evaluation of a large number of integrals, we reverse the order of the
integral and summation for computational efficiency:
_ b / Z —y () + 20t Gt g fr<(renr) it (3.3.2)
"5
where T = r, is the end of the outbreak, after which no infectious pressure is
applied. This provides an expression for the likelihood contribution from an

infective j which requires only one integration, although this is not analytically

tractable and so must be calculated numerically.

Moving on to non-infectives, the probability that any non-infected individual
j avoids infection is given by
where P = 1 — iy defines the infectious period of infective k. Then the likeli-
hood contribution from uninfected j is given by

o B yn By _pn

[ = E[pj] = E[e 81 7] e N L B = 73w (3.3.3)
since Py ~ Exp(7y) results in a mean infectious period of length % for any

infective k, of which there are n.

Combining Equations (3.3.2) and (3.3.3), the overall likelihood expression us-

ing this approximation method is given by

men(r| B,7) <H1> <]~—nﬂ1ij>

(Hm/ y e 1 C()ﬂ{t<<rw>}df>

® k=1
k#j

UZL“N)
(Hﬁv / OOk 1
k#j

X (e SR (N- ”>> (3.3.4)

Y(rj+re)+29t=Cj(t )ﬂ{t<(rkAr )}dt>
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where

As discussed, the integral in the likelihood expression must be computed nu-
merically, using a numerical integration technique of choice. In Chapter 4 we
will perform a simulation study to assess the accuracy of the Eichner and Di-
etz method, for which we will use a simple trapezium rule method since this
is found to provide sufficiently accurate results when compared with more

complex techniques.

3.3.3 Gamma Infectious Periods

As we will explore in Chapter 4, the ED method with exponential infectious
periods struggles for small outbreaks or those with large numbers of unin-
fected individuals, where the method does not appear to perform all that
well compared to standard DA-MCMC. Hence, we also consider gamma dis-
tributed infectious periods. As the shape parameter increases we would ex-
pect the approximation to perform better, since we recall the method is exact

for constant infectious periods.

We continue with infection rate % between individuals, but now the infectious
periods are gamma distributed with shape m and rate -, and so have proba-
bility density function f(x) = %xm’le’w, x > 0. We restrict our attention
to positive integer valued m, so that the distribution is in fact Erlang. Again,

the remainder of the model is defined as in Section 3.2.

We begin with the likelihood expression from Equation (3.3.1). Substituting in

the probability density function of the gamma distribution, the contribution to
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the likelihood from any infected individual j is given by
’j (T Bl L
= /_oo Elxjle F-e Bl g (r — 1)) iy
! B v y(re—t) fk—f (y(re —t)¥ i =0" " it
- [ L (e B OO ) e
Tk

t n m —t))P

X exp (_ /_Oo % ge—’Y(n—u) Z Mﬂ{u<ri}du> dt. (3.3.5)
1=
i#]

Taking the inner integral and changing the order of sums and integration, we

have
t n B - m—1 r—u p
_/ %Ze y(ri—u) Z (r)’(z : )) 1{u<r,~}du
B! o P
n m=1 . p ptAr
= _% Ze*%‘ Z 7—' /_ e’ (r; —u)? du. (3.3.6)
l;l p=0 P *
i#]

A change of variable on the inner integral shows that

tAT; yu pd e’YVi [e) _y pd
/—oo il —wfdu = P /wz-—(w»)e s

NG v(ri—(tAr;))
= (1- / ey dy), (337)

—00

where y = y(r; — u). The integral is in the form of a gamma cumulative dis-
tribution function (CDF) F,;(y), where a = p+ 1 and b = 1, evaluated at
t =q(ri— (tArj)). For Y ~ T'(a,b) it is known that for integer a > 1,

a—1
_ 1
Fop(y) =1—e Y —(by)"
q:O q

which may be applied here since p takes integer values only. Hence, Equation

(3.3.7) becomes

el y(ri—(tAr)) e PP y(ri— (EAT)))
WO—/& e Yyf dy> = 7p+1p!e v(ri=(tAri)) y (7 ( ))) ’
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and Equation (3.3.6) can be expressed as

= par =
1
B v inr) e e (7 (tAT)))

= _fy_N.Z{e v(ri—(tAr;)) ZE) ZE) ;i

i e

, ") Ml (y(r; — (EAT)))P

_ Zey, (tA Z('Y(z (| i) (m — p)

Z#J p=0 a
= —D]( ), say.

Overall, we obtain for Equation (3.3.5)

— ri—t))P o i
y(ri— ; %ﬂ{t«i})e D](t)(i’]'—t)m 1

1#]
xe

m+p n
_ / Z ﬁ’)’ p' Ze Y(rj+r)+2yt=D;j(t )( r— t)p(r]' . t)m—l
i=1
i#]

Xirc(rinryy 4t

where the integral and sums have been ordered for computational efficiency.

As in the exponential case, this integral cannot be analytically evaluated.

The likelihood contribution for uninfected individuals is given by

~ _Lé n P
lj = Elpj]=E[e” N ]
~ N TILEA] _ oNEi %
—pnm
= e Ny ,

since Py ~ I'(m,7) results in a mean infectious period of length % for any

infective k, of which there are n .

The overall likelihood expression with the ED approximation method for gamma
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distributed infectious periods is given by

men(r| B,7) (Hl) (fL)

(H ,B’Ymﬂﬂ ie_7(7j+ri)+2yt—D]-(t)(ri — )P (rj — £ym=1
—1

75]'
N pum
“ecrnry dt )| T e
j=n+1
m 1 m n
(H :B’Y -&-)P Ze Y(rjtri)+29t— D()(rl_t)p(rj_t)m—l
75]

pnm
X ]1{['<(r]~/\ri)} dt) (e Ny (N— n))l

where

n — o r I
D]'(t):£z —(tAr;)) Z (t/\ 1))) (m—l).

As in the exponential case, the integral in the likelihood must be calculated
numerically. We again will use the trapezium rule for this, since more complex

methods were found to provide only very limited improvement in accuracy.

3.3.4 Heterogeneous mixing and non-identically distributed

infectious periods

So far we have focused on populations which are assumed to be homoge-
neously mixing and contain only individuals with identically distributed in-
fectious periods. However, the Eichner and Dietz approximation method may
be extended beyond this. In this section, we will provide likelihood expres-
sions for the Eichner and Dietz approximation which allow for a heteroge-
neously mixing population, as well as individuals with different infectious

period parameters.

114



CHAPTER 3: LIKELIHOOD APPROXIMATION METHODS

We assume now that the contact rate from any individual j to any individual
k is given by Bjx. We define B = {Bj : j,k € 1,...,N} as the complete set
of these contact rates. This allows for a heterogeneously mixing population
model with any structure desired. We assume that each infected individual
has the same infectious period distribution, but now allowing for different
parameters. For example, r; —i; ~ Exp(7;) or r; —i; ~ I'(mj, ;) for all infected
individuals j.

We will not repeat the likelihood calculations here since they are very similar to

the homogeneous case, but the resulting likelihood expressions are as follows.
Exponential Infectious Periods

We assume that all infectious individuals j have infectious periods r; —i; ~

Exp(7j), and define & = {;:j € 1,...,n}. The ED likelihood is then given by

mep(r | B, 6) = (ﬁl]) <Jﬁ ij)

where

Gamma Infectious Periods

For the Gamma case, we assume that all infectious individuals j have infec-
tious periods r; — i; ~ T'(m;,7;), and define 8 = {v;,m;:j € 1,...,n}. The ED
likelihood is given by
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n mk 1
(1—[ Prj ;Yn]]) - e~ M=) = (i (=) =Dj(t) (5 _ t)l(rj — "
N n
m
X Lit<(rinn)} dt) ( H P ( L ﬁkjry_:)),
j=n+1 =

where

Bii _ — (tAT)))
D;(t) = Z 71] 7i(ri—(tAr;)) Z l(' 1)) (m; —1).
i—1 Vi - :
i
Although we will not explore the computational implementation of this ex-
tension to the method, the integrals in these likelihoods may be numerically

integrated as before and then used, for example, for maximum likelihood esti-

mation.

3.3.5 Conclusions

We have defined the Eichner and Dietz likelihood approximation for both ex-
ponential and gamma infectious periods, with a particular focus on homoge-
neously mixing populations with identically distributed infectious periods but
also extending the theory to heterogeneously mixing populations with non-
identical infectious periods. Chapter 4 will include analysis of the method
through simulation studies, and we will find that the method performs fairly
well for gamma distributed infectious periods, though less well for exponen-
tial periods or outbreaks in large populations with only a very small or very
large proportion of infectives. The method also relies on numerical integra-
tion as the likelihood expressions cannot be analytically calculated, and this
can be relatively slow to compute. Although the ED method would be useful

in some situations, it would be beneficial to develop further approximation
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methods which are more widely applicable as well as offering an increase in

computational speed.

3.4 Pair-Based Likelihood Approximations

In this section we develop a series of new approximation methods which seek
to avoid numerical integration as well as offer increased performance in a
wider range of situations than the Eichner and Dietz method. We term these
Pair-Based Likelihood Approximations (PBLA) since they will essentially con-
sider the contribution to the likelihood from different pairs of individuals as
independent, resulting in an approximate (but tractable) likelihood. These
likelihoods will require no data augmentation or numerical integration to cal-
culate: MCMC or maximum likelihood estimation may be performed directly,

without the need for these further, potentially computationally costly, steps.

We will derive the first PBLA method in Section 3.4.1, which further versions
will extend upon. In Section 3.4.2 we will apply PBLA I to exponential infec-
tious periods and analytically derive the resulting likelihood expressions, and
then in Section 3.4.3 we will do the same for gamma infectious periods. Sec-
tion 3.4.4 similarly obtains these likelihood expressions, but using probabilistic
arguments which provide more insight to the calculations. We then proceed
to define and derive further PBLA methods which we number accordingly:
PBLA II in Section 3.4.5 and PBLA III in Section 3.4.6. Following this, we de-
fine two further PBLA versions which offer increased computational speed,
but may only be used in more specific situations. Section 3.4.8 describes a
PBLA method which uses a central limit theorem to make further approxi-
mations to the likelihood, but which requires homogeneous mixing and expo-
nentially distributed infectious periods. Section 3.4.9 then describes the PBLA
V method, which takes a further step in grouping the infectious pressure be-
tween individuals, but will require that the pressure from any individual j to

k is equal to the pressure from k to j. After describing a numerical limitation
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of the PBLA approach in Section 3.4.10, we then describe an extension of the

PBLA approach to the SEIR model in Section 3.4.11.

Since the PBLA methods as well as the ED approximation involve considerable
amounts of notation, refer to Table 3.1 for a summary of this. Some of these
quantities have already been defined, and some are to come in the following

sections.

3.4.1 PBLA I: General Framework

For the PBLA method, we will work again under the general model and like-
lihood format defined in Section 3.2. Recall that the population is of size
N with individuals labelled 1,2,...,N, of which 1,2,...,n become infected
where n < N. The contact rate from individual i to individual j is given by
Bij, contained in B and allowing for heterogeneous mixing, and the infectious
periods have length with distribution fi(- | 8). Infection timesi = {i; : j =
1,2,...,k =1,k +1,...,n} are unknown, and removal times r = {r]- o=
1,2,...,n, wherer; < ry < --- < ry}, form the data. We work with labelled
cases, such that i; and r; are the infection and removal time for individual j,

respectively, for all infectives j.

We will now derive the PBLA I likelihood expression, beginning with the ap-

proximate likelihood expression from Equation (3.2.3);

n n
(el B,0) ~ 3 06) (TTE L] | Eler(ic ],
k=1 j=1""* K
j#x
where we recall that the expectations are with respect to infection times i and

ix, with k being the initial infective.

As in the ED method, we make approximations to this likelihood in order to

find a tractable expression. The first key assumption is that

Exiy;¢;] =~ E[x;o; ] E[y;].
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Table 3.1: Table of commonly-used notation for the likelihood approximation

methods, as used in chapters 3 and 4.

Quantity Definition Description
. Infectious pressure acting on
Xj Zk:l ﬁkjl{k infective at i;}
k#j j at their time of infection
¥j exp ( = Y1 Brj(re A ij — ig A ij)) IP(j avoids infection until i)
k#j
N ‘ IP(j fails to infect all non-
Pj exp ( = D1 Pik(rj = lj))
infected individuals)
N Sum of infection rates from
B Litnt Bt
j to all non-infectives
Change-of-variables
(5]' v+ B i
quantity for PBLA III
Fiep(x) 1= X% fi(0x) e
Iy —p (mtp—1
E[(r+ X)X ~T(m)] Thoo(r-ptis e
() (!
3 if rj —i; ~ Exp(7) MGEF of the infectious
a ( B jir 9) m
(%) ifrj —ij ~T(m,7), period of j, evaluated at B;
Time when there is
Tkj g Nij— i A infectious pressure from
ktoj
Time when there is
Wik Tik + Tkj infectious pressure between

jand k, for 1 < rj
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Recalling the definitions of these terms from Equation (3.2.1),

Elxj¢j] = knzl BiE [Lik infective at i} Eisne B =1)] (3.4.1)
(=
Ely;] = {exp ( Zﬁk] re Nij— ik/\ij)ﬂ
=
& HE[ Pyl ienip | (34.2)
k#]

where the final approximation describes our second key assumption.

These assumptions seem most reasonable for infectious periods with low vari-
ance, since if the infection times were known the expectations would reduce
to known values. As discussed in Section 3.2, we would also expect the ap-
proximations to perform better when the appearance of new infectives is rel-
atively slow compared the expected length of the infectious periods, since we
will have less uncertainty about which individuals placed infectious pressure
upon which others. Compared to the ED method, our motivation has been to
make additional approximations to the likelihood here, in order to find an ex-
pression which is not just tractable but also does not require numerical integra-
tion. In the following sections, we will calculate these likelihood expressions

for various models and infectious period distributions.

SIR model with homogeneous mixing
If we consider instead the simple case of an SIR model in a homogeneously

mixing population, we define contact rate §;; = % forall i,j € {1,...,N}.

This simplifies the expressions for the components [E[x;¢;] (Equation (3.4.1))
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and E[y;] (Equation (3.4.2)) to

1 _yN o
]E[X](P]] = Z,Bkj]E[]l{kinfectiveatij}e Zl:nJrlﬁ]l(r] 1])}

k=1

k#]'

n

NN B

B Z 11{kinfectiveati]-}e (N—n)x(r; z])}
;

]E[lljj] . H rk/\z —zkm)}

75]

Overall, with either homogeneous or heterogeneous mixing, we obtain the

PBLA I likelihood

(r18,0) = 3 () TTEDGRIELD) JElgerntic [0, 643
j=
tx

which, for computational speed, we may calculate as

", () Bl (i )]
el 60) = (TTEbo i) & “Ep S 049

since this expression no longer requires the calculation of the product term for
each possible k, which is the most computationally demanding part. We see

that the likelihood is written as an independent product over infectives.

As was mentioned in Section 3.1, the PBLA approach is somewhat similar to
the method of composite likelihoods, as often used in geostatistics and genet-
ics (see e.g. Fronterre et al., 2017 and Larribe and Fearnhead, 2011). This tech-
nique involves multiplying together a collection of component or marginal
likelihoods to act as an estimator of the true likelihood. Although similar in
spirit to PBLA, the methods are in practice quite different. To demonstrate
this, we take a simple example with n = 3 infectives. We assume knowledge
of the initial infective as x = 1 (i.e. (1) =1, 7(2) = ©(3) = --- = 0) for

simplicity, and set 77(i1) = 1y <, }; an improper uniform distribution over the
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region (—oo,r1). Then, the PBLA likelihood will be of the form:

3
m(r|B,0) = [TEDGHIEWIE:[¢17(ir)]

2

~.
Il

I
:1w

Il
N}

j

3 N o (pi—i:
Z []l{k infective at i; }e ~Lizna B (r]_lj)] E [IP]]
(=

xE;, [e* T Bu(ri—in) Ly <r, }]

- <]E [lpz] (,321]]3 [ﬂ{l infective at i, } € Zl wi1 Par(ra=i)

+BE []l{3infective atip}€ = Eilni Palr 12 )

+IE[¢3] (1331]E [ﬂ{l infective at i3} € Dt Para= 13)}

+;B32]E []1{2 infective at i3} € Zl et Palrs 13 ))

xE;, [e_ WA ﬁll(rl_il)ﬂ{i1<r1}:|' (3.4.5)

Due to the pair-based structure of our approximation, the pairwise likelihood
of Cox and Read (2004) bears the most resemblance to it of the different com-
posite methods. The Cox and Read likelihood is written as a double prod-
uct over all pairs of observations. For example, for observations y; where

j=1,2,...,n with PDFs f(y; ), the pairwise likelihood is given by

7Tpa1r 9 ]/ H H f y]'yk'

j=1k=j+1
Hence, for the PBLA likelihood with n = 3 to be equivalent to a pairwise

composite likelihood, we would need to be able to write it in the form
2 3
7Tpa1r (6; v) HH y]r]/kz
where each f represents the contribution to the likelihood for a given pair j, k.
Returning to Equation (3.4.5), we see that, despite the outer product over j, the
PBLA likelihood involves a sum over different pairs of infectives, and cannot

be written as a double product as required. Although the idea of PBLA is
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similar to that of composite likelihoods in breaking down the likelihood into
contributions from individual pairs, in practice the two methods are certainly

distinct.

Returning to the PBLA likelihood calculations, for a given infectious period
distribution, we may now explicitly calculate the likelihood, via calculation of
E[x;¢;] and E[¢;]. We will explore the use of exponential and gamma distri-
butions for the infectious periods, for which the likelihood expression will be
analytically tractable. In terms of the initial infective and their infection time
ix, we may select any prior distribution, including the improper distribution

used in the previous example.

3.4.2 PBLA I: Likelihood Calculations for Exponential Infec-

tious Periods

We first consider the case of exponentially distributed infectious periods, so
that fi(rj —ij|v) = e~ "75) . The likelihood as given in Equation (3.4.3)
requires the calculation of two expressions; E[x;¢;] and [E[y;], details of which

we will provide here.

3.4.2.1 Expression one: E[x¢;]

We recall that

n
_yN (Fi—i:
]E[X](P]] = Z ,Bk]]E []l{kinfective at i]-}e i1 Bji (7 1])}/
k=1
k#]
so that for any given j and k we must calculate B[l infective at ij}e*Bf(rf*i/)],

where

N
Bi= Y. Bji (3.4.6)

I=n+1
Now,

E []l{k infective at i]-}e

T T o . . ' .
- /—oo _;, ]l{ik<ij<’k}e_8](r] Df(rj— i) fi(re —ix) di; diy,
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assuming that i; and iy are independent. Then for a given j and k, this expres-

sion will take one of two forms, determined by the values of rx and 7;.

Case (i): 7, > ri

E [ﬂ{k infective at i; }e_Bj(rj_ij)]

lk

:/ e ]e_'Y(rk_ik)e'Y”j(/ o(Y+B))ij dz) diy
ik

B:)r: B
:/] ’)/Ze Bjrja—(rc—ix) —vrj(e(w_ i) _ elrt J)’k) di,
- Y+ Bj v+ B]'

_ - —z - /I’]' —B: iTie ke~ 'yr],yefyzk ( (’)/+B]‘)i’j o e('YJrBj)ik) dlk
]‘ —00
— _ T o Birja—r(ntr)) (e(’HBj)Vjer _ e(27+Bj)Vj>
v+ B]' 29 + B]
_ —Birj =Y (rk+71;) o (27+Bj)r; i
= e Pilie ie i) (1 —
v+ B]' ( 27 + B]')

_ 24 =y (re—r;) 47
27+ Bje i, (3.4.7)

Case (ii): 7, <7;

E [ﬂ{k infective at i; }e B]( i )]

which proceeds as in the 7y > 7; case to

E [Il{k infective at i; }eiBj(rjiij)]

Bjitj o= (rk—ik) e =77 ( (BjJF'Y)rk_e(BjJF'Y)ik) diy

T + B;
= Le—Bﬂ’je—"}/ Vk“rl’j /rk /Ye'yik (e(Bj+'Y)”k - e(Bj—‘r"y)ik) dlk
__ T o-B i1k t7)) (e(Bj-i-“Y)rkeWk T e(27+B)rk)
Bj + r)/ 2y + B]'
T Bl (rn)
- e e T 3.4.8
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Then, combining the two cases r; > ri and r; < ri,

n

1 , Y —|rk—ril—B;((r;—r¢) VO)

IE[X(P] - :Bk e T J AN ’
g k:zl ]2’)/-I-Bj

Kz

where a V b represents the maximum of a and b.

3.4.2.2 Expression two: E[¢;]

For this expression, recall that

n

]Ehb]] — H E [e_.Bkj(rk/\ij_ik/\ij)} .
k=
=

Any given term in this product will take the form
E [efﬁkj(rk/\ijfik/\ij)} _ /I’k /7’]‘ efﬁkj(rk/\ijfik/\ij)fl(rk o ik)f[(rj _ l]) dl] dlk

The integral must then again be split into sections, dependent upon the or-
dering of r; and r¢. In the calculations that follow, we will write f; = f for
simplicity.
Case (i): 7, > 7;
In this case,
] ] ' i]'—ik ifik<ij<1’k,
T N1 — 1 N1j =
0 otherwise,

and so

E[e PO | 1 > 1] = / rj /irj e P fi(ry = i) fi(re — i) diy iy
—oo Jij
" / [ it =i e — i) di; iy
e[ [ Ah - i) di di

where we have assumed i; and i; are independent, and will calculate each

integral separately.
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(i) To begin,
r
/] / _lk f[ — ij)fl(rk — ik) dZ] dik
03
:‘/” /ngﬁujfmveﬂnmq@—vvw4w di; diy
o0 J1

7 —B(ij—ix) = (rj—ij) 77
_ [ A2a—v(re—ik) {e ! r } di
= e 1

—y(rk—ix) (e*ﬁ(fj*ik) _ e*“r(fj*ik)) diy

e "7 - B
{ ¥ (rk—ik) = B(rj—ix) e'Y(Vk+rj2ik):|r]'
T+ [5 2y oo
v(re=rj) o= (r— r))
( T+B 2y
— 1 —(re=rj)
r+p2°

(ii) The second integral is equal to

r .
/ / 1f1 fl(i’k—lk) dl] dlk = / k/ e ')’ )r),e—V(i’k—lk) d1] dik
— f)/ze_rY(rk_ik) |il
T]' r)/
Tk .
:/ I)/efly(rkfzk) dlk
’j

1 N
— r)/|: _e_'Y(rk_lk):|
Y .

]

7
e—Wf—lf)} diy

(o]

— 1 — e Y=ry).

(iii) Finally,
e ; ; i di o (=) na=r(re—ik) 4i. di
/_oo/_oo Lfi(rj — i) f1(re — ix) dij dig = /_Oo/_oofye i~ ye dij diy

. i

—0Q0

,
=7 lie_ﬂrk"'rf_%k)} ]
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Thus, for ry > ti,

E efﬁkj(rk/\ijfik/\l’]‘) =1— Le_’)/(rk_rj). 3.4.9
| ) 2(Bxi + ) (349)

Case (ii): r, < 7;

Ifr, < i, )
e — i ifre < i,
T’k/\ij—ik/\i]‘: ij—ik ifik<ij<1’k/
\0 otherwise,
and so

]E[e_ﬁ(rk/\ij_ik/\i) Vk > I’]] / / e —Br—ix) f[ - l})fl( ) dl] dlk
T,
Tk ¢
+/ / e_ﬁ i~ i) fl(rj _ij)fl(rk_ik) dl] diy
—00 JI
rk ik . . . .
+ / / 1f1(1’j — z]-)fl(rk — lk) dZ] di,
where we have again assumed i; and iy are independent. We will again calcu-

late these three integrals individually.

(i) The first integral takes the form

r T i
/k /]e_’g(rk—zk)fl(rj_i]')fl(rk_ik) dij dig
—o0 JT
— /rk /rj e_ﬁ(rk—ik)'Ye_'Y(rj_if)’)’e_V(rk_ik) dif dik
_ Vi

’
_ /_r:o ,)/Ze_ﬁ(rk—ik)e_')’(rk_ik) {%eﬂrli]‘)} ] diy

Tk
= (1 — ei')/(rjirk)) /rk r)/e_(IB—’—ry)(rk_ik) dlk

1 ]
— (1 —e =m0 [_e(,3+7)(7’k1k)}
7 ) Bt

_ [WrL’Y(l — e =)y,

— 00
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(ii) Similarly,
rk rk 7 . . . .
/ / eiﬁ(ll lk)fl(i’j — lj)f[(i’k — Zk) dl] dlk
—00 lk
— /rk /rk e Pli=i) e =70 =) e =7 (—ik) di; di
—0 Zk

"
_ /_r:o ,YZ,),e*’Y(rkfik) {Le_ﬁ(ij_ik)—’r(ﬂ_if)} k diy

Y—p ik
/ (s (e~ BN i) =1(1n) _ g=1(rtr =200 g
— e — e lk
0y — P
_ 7 { L+ —io—vlr-r0) _ Le—ﬂfww—%kq k
’Y_:B 13+r)/ 27 —00
i le_’Y(Tj_"k)
B+r2

(iii) Finally,
Tk ik ' . . ‘
/oo /oo Lfr(rj —ij) fi(re — i) di; di
:/rk /ik ,),ef’Y(Tj*ij)r),e—v(rk—ik) dij dik

I
— /rk r)/ze_')/(rk_ik) |:le’)/(l’]1]):| dlk
o 0% e
:/rk ,)/e—’y(rk-i-i’]'—Zik) dlk
1 Y(re+ri—2i) '
— ~ | o (et =20k
7[276 }m

1
— Eev(frfk)_

Thus, for ry < 71j,

E [eBy(mnij—ikni] — __ 7 4 Py e 1=, 3.4.10
[ ) B+  2(Bkj+7) ( )

Combining Equations (3.4.9) and (3.4.10), we obtain overall

n | 1= e ) iy >,

B = 2(Bki+)
Bod=lly 7 e e
k2 Bty ™ 2(Bg+7) Y

With the expressions for E[x;¢;] and E[y;] obtained, for any given choice
of prior probability mass function 71(x) and prior probability density func-

tion 7t(ix | k) it is possible to explicitly calculate the approximate likelihood
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n(r| B, 0), avoiding numerical integration. In summary,

k=1

where

n

Elx¢;] = kz Br;

e~ V=il =Bj((rj=r) V)

— 27 + B]'
k2
Bij (re—r;) :
n |1 —5-—L—=e TV if rp > 1,
Efy] =] 2B 1) (3.4.11)

k=1 v By o—y(rj-r) - |
k#j \ Brjt7 + 2(/3kj+7)e if rp < r;.

3.4.3 PBLA I: Likelihood Calculations for Gamma Infectious

Periods

In this section we provide the likelihood expression for the Pair-Based Like-
lihood Approximation (version I) with gamma distributed infectious periods.
Here, fi(r; —ij|m,v) = G(Ym) (rj — i])m_le_7(rf_if). We will restrict shape pa-
rameter m to integer values for all of the PBLA versions, so the distribution is
in fact Erlang. As in the exponential case, we require expressions for E[x;¢;]
and E[¢;]. Integration arguments may be made in much the same manner
as the exponential case, and so we do not provide the full calculations here.

These may instead be found in Appendix B.

The resulting likelihood is given by:

w0 = ([T G

k=1
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where
( m
(%) (1—Pm,7(rk—r,->)
2m vk j)
—X5 27+B ) ('yiB )m=IT (m)
XE[(rg —rj+Y)" 1| Y ~T(I 41,27 + Bj)] if rie 2 j,
X]‘P] Z,Bk] v\
(= (7731) <1_F’”’7+Bf(rj_rk>>
_(’YJZB;') (27131') e T
| XE[( -+ ) |Y ~T(m, 2y + B))] ifr <7,
( Y(re=})
1+ R (e — 7+ Y)Y~ T(m,29)]
<( () (r+p) = i1 >
Y+Brj ki 7 =
n
i 1)
Efi;] kljl 1—Fm,v(r]'_rk)<1 (7+ﬁk) >+Zm ' 21T (m)
k=1
7 XE([(rj = +Y)" 1Y ~T(1+1,29)]
m v +Prj\! i
\ <(7+7[3k,') ( ! ) _1> if rp <,

(3.4.12)

where Fy g is the CDF of a gamma distribution with shape k and rate 6, i.e.

k—1 1 | o
Feog(x) =1— IZ(;) E(Gx) e %

The expectation terms, which define the expectation of a function of a gamma

distributed variable, are given by

z _
E[(r+X) | X ~T(my)] =Y. (l)rl_pW—pl)p,

3.4.4 PBLA I: Probabilistic Arguments

The likelihood expressions obtained in the previous sections can also be ex-
plained via probabilistic arguments, which perhaps provide more of an in-

tuition as to how the results arise. We will illustrate this here for the case
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of exponentially distributed infectious periods, and similar arguments for the
gamma distribution may be found in Appendix B. First, we provide a propo-

sition which will be necessary for these arguments.

Proposition 3.4.1. Let (Q), F, P) be a probability space, for any sample space Q, set
of events F and probability function P. For a random variable X on (Q), F, P) and
event A € F,

E[1;4,X] = E[X| A]P(A).

Proof. By definition,

:/XdP.
A

We define a o-field D = {A, A%, D, Q}. Then D is a sub-o-field of F and
/IE[X\D] dP:/ X dP ¥V DeD.
D D
Then,

E[1{4X] :/AX dp

:/Anz[xw] dp.

Now, E[X | D] is D-measurable, and so by definition is constant on the atoms

of D, meaning

E[L4,X] = E[X | A] /A dp

=E[X | A|P(A),
as required. O

Now we may proceed to the probability arguments for the PBLA I method.
These arguments essentially work by moving backwards in time from individ-

ual j’s removal time rj, and considering all possible combinations of events.
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3.4.4.1 Exponential Infectious Periods

Expression one: E[x;®;]

We begin with the exponential case and consider the calculation of E[x;¢;]. We
have found that if we set B; = lein 11 Bji, as in Equation (3.4.6), then we must

calculate E[1 {ik<,-j<,k}e_3f(rf_ii ] for all pairs of infectives j and k,
We apply Proposition 3.4.1 so that

E[Lgj<ij<rge 0] = Ele™ P00 i < if < ] Plix < i < i),

and begin with the case ry > r;, which is shown in Figure 3.1.
Case (i): 7, > 7;

Firstly, consider the term E[e ™/ (=) | 4, < ij < r¢]. The expression e Bilri—1)
is equal to the probability that there are no points in a Poisson process of rate B;
which runs backwards from time r; to ;. Since i; > iy, i; is the minimum of two
independent exponentially distributed periods of rate o running backwards
from 7;, and hence is exponentially distributed with rate 2. (Recall that we
are working backwards in time, so the minimum corresponds to the closest

event to ;). The probability that this event takes place before a point in the

process of rate B; is therefore simply 5 szBj.
B;
< —
#
1y 1 I, I,

Figure 3.1: Order of events if r;, > r;.

Secondly, the probability that iy < i; < ry, with rx known, may be considered
in two parts. Firstly, moving backwards in time from ry, we require that r; is

the first event to occur or equivalently that r; occurs before i;. This is given
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by a Poisson process of rate y running backwards in time from ry to r; with
no points, and hence is of probability e =i =), This is followed (still moving
backwards in time) by the event i; occurring before iy. Backwards from r;, the
processes governing events i; and i, occurring are given by two independent
Poisson processes of rate -y, and hence the probability of either occurring first
is simply 1. Therefore P (i} < ij<ry)= %e_'ﬂrk_rf).

Combining these expressions,

B[1yienye 070 | 2 ] = 5 S ), (3.4.13)
]

as was obtained in Equation (3.4.7).
Case (ii): r, < 7;

The case ri < r; is similar, and shown in Figure 3.2. The calculation of
E [e_Bi(ri_if) i < ij < r¢] may be explained as in the case r; > rj except that

the Poisson process runs backwards from 7 rather than r;. The result is the

: e Biri—i) 2
same as in the case r; > 7;: E[e” Vi i < ij < r = 1B
B;
——
ik i_] rk r.]

Figure 3.2: Order of events if 7, < 7;.

The term P (i < i; < rx) follows much the same reasoning as before, but now
also requires no points in the Poisson process of rate B; running backwards
between 7; and ry. This will have probability e~Bi"7="), Then backwards from
ry follows the same argument as before but with r; and ry reversed so that
P <ij<rg) = %e*W(rf*rk)e*Bf(rf*rk), and

CBi(ri—i: 2 1 ) B
E[ﬂ{ik<ij<rk}e Bj(rj—ij) |rk < 7’]] = M%Ee (7 rk)e B;(r; rk), (3.4.14)
]
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equal to Equation (3.4.8).

Then overall, combining Equations (3.4.13) and (3.4.14),

n

] = Y e B VO)
Ely = 3. Bijo e 7B
=1 ]2’)/—1—3]'

k#j

as was found in the previous calculations in Equation (3.4.11).

Expression two: E[¢;]

Next we consider the calculation of E[1;]. Recall that under PBLA,
n . . .
]E[QU]] — H E [e—ﬁkj(rk/\lj—lk/\lj)} ,
k=1
k#j
and so for a given j and k we need to find E [e_ﬁ i (NG =i )}. For simplicity,
we define 7; = 1 Aij — ix A as the length of time infectious pressure is

applied from k to j. For ease of exposition, we write f; = f§ in the calculations

that follow.
We begin by conditioning on the values of r; and ry as before.
Case (i): 7, > ri
In this case,
i]'—ik if i < i]' <T1j
Tk]' =
0 otherwise.
Then, conditioning on the possible values of i; and i,
Ele P |re > 1] = E[e Pl 3] + E[e Py o oy]
+ E [ef.BTkj :H‘{i]‘<1’]'<ik}} s
where we may calculate each term in the sum individually, applying Proposi-
tion 3.4.1 in each case.
(i) First,
IE[e_'BTkjﬂ{ik<ij<rj}} = ]E[eiﬁ(if*ik) | I < Z] < Vj]]P(ik < Z] < 1’])

le*W(Vk*Vj)

0
—>< ,
Yy+p6 2
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where this situation is as displayed in Figure 3.1, except without the B; process.
Here, e Pli=H) jg equal to the probability of there being no points in a Poisson
process of rate p between i; and i;. Working backwards from i}, this concerns
the event that the Poisson process of rate 7y leading to i has a point before this
one of rate B. This is hence of probability WL% The probability that iy <i; <7;
is given in part by the probability that there are no points in a Poisson process
of rate -y from ry back to r;, which is e~ 7Uk=71) This is multiplied by %, since
backwards from r; the infectious periods for j and k are both governed by

Poisson processes of rate -y, and so occur with equal probability.

Figure 3.3: Order of events if r;, > ;.

(ii) Similarly,

E[eiﬁ%ﬂ{ijﬁk«j}] = ]E[e_ﬁ(o) |4 < ik < 1] P(ij < ix)

1
— Ee_’Y(Vk_”j).

Shown in Figure 3.3, the probability here follows exactly the same reasoning

as in (i) and the expectation term collapses to 1.

Figure 3.4: Order of events if 7y > ;.
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(iii) Lastly,
Ele PNl oy ciy] = E[e PO |i; <7 <it]P(ij < rj < i)
= ]P(i]' < i < ik)

—1— e 7—ry)

Here again the expectation simplifies to 1. The probability thati; < r; < i (this
ordering of events is shown in Figure 3.4) is equal to one minus the probability
of there being no points in a Poisson process of rate 'y between ry and r;, since

ix can occur either before or after 7;.

Combining the expressions from (i), (ii) and (iii), we obtain an expression equal

to that found in Equation (3.4.9),

Ele % | >r]=1- __PB_rtnm), (3.4.15)

Case (ii): 7, < ri

Ifre <r;

re— 1 ifre < Z],
T’k/\i]'—ik/\ij: 1]—Zk ifik<ij<7’k,

0 otherwise.

\

Conditioning on the possible values of i; and iy, and setting By; = f,
Ele P re <rj] = Ele Py ]+ Ele 1oy ] + B[ PHT ]

Applying Proposition 3.4.1, we may calculate each term in the sum individu-

ally.

Figure 3.5: Order of events if r;, > ;.
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(i) This case is shown in Figure 3.5.

Ele Pl o] = E[e PO i < i]P(ij < ir)

= ]P(ij < ik)
1
— Ee_r)/(r]'_rk)’

using similar logic to the case ry > r;. The expectation term reduces to 1, and
the probability is equal to the probability of no points in a Poisson process
of rate 7y backwards from 7; to ¢, followed by the equal chance of i; and i

occurring first before .

(ii) In this case, which is the same as shown in Figure 3.2 except without the B;

process,

e P ] = B[P i <y < i Pl < iy < )

— L X le_r)/(rj_rk).
Y+ 2

This follows the same logic we have seen in previous cases; the expectation

equal to the probability that the Poisson process governing iy has a point before

the process of rate §, and the probability the same as in case (i).

Figure 3.6: Order of events if 7, > ;.

(iii) The final expectation, with timeline shown in Figure 3.6, is equal to

E [e_ﬁTkjﬂ{rkdj}] =Ele P |n < ij]IP(ric < i)

i —y(ri—7k)
X (1 —e "iTl)),
P ( )
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where the expectation term is as before, and the probability is equal to 1 mi-
nus the probability of there being no points in the Poisson process of rate 7

between r; and .

Combining these expressions,

Ble % |ne<n] = g+ ﬁi ST, (e

equal to Equation(3.4.10).

Overall, combining Equations (3.4.15) and (3.4.16),

Brj —y(re—r;) :
1— ] YTk—7j f >,
IE[e_ﬁijkj] - 2(ﬁkj+7): BT
Y kj
Brj+7 + 2B+

)e_'Y(rf_rk) if e < i,

as was found in the previous integral calculations, in Equation (3.4.11).

3.4.4.2 Gamma Infectious Periods

This same general method can be extended to the case of Gamma distributed
infectious periods. Since the arguments are very similar we do not include
them here, but they can be found in Appendix B. In the case of exponential
infectious periods, our arguments were based upon the fact that the probabil-
ity of an event occurring is independent of time. In the gamma case, we use
the method of stages to split a I'(m, ) time period into m exponentially dis-
tributed sections, so that similar arguments may be used. The likelihood ex-
pression obtained is equal to that found using integration arguments in Equa-

tion (3.4.12).

3.4.5 PBLA II: Improvements to the Approximation

Having derived the first approximation PBLA I in detail, it is possible to fur-
ther improve this method both in terms of computational speed and accuracy

of estimation. In this section, we provide an alternative format for the likeli-
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hood approximation to improve accuracy. Recall Equation (3.2.2) for the like-

lihood, where the infectious periods have distribution f(- | 8),

n

7T(1‘ | ﬁ, 9) = / (ijll)](l)]fl(i’] — 1])> (PKfI(?’K — iK)ﬂ(iK, K) di dZK dx

j=1

j#x
= ) 7T(K)/ (HlePjsbj) pert(ic | 1) [] f1(rj — i) didi,

x=1 j=1 j=1
j#x

since « takes discrete values. Rather than separating out x;¢; and ¢; as previ-

ously, we rearrange for an approximate likelihood as follows:

(e[ B,0) = Y (o) | (ﬁxjwj)mmﬁ@ﬁ(m—m di diy.
j= j=

x=1
it

Then, recalling the definition of ¢; in Equation (3.2.1), note that

$ifi(rj—ip) = e ViTBifi(r;—i;|0)
= a(Bj,0)gj(rj —i;|6,B))

where
e B fi(rj — i | 6)
[e miBify(r; —i; | 0) di;
e Bifi(rj— i | 6)
El(B]', 9)

gi(ri—i;|8,B;) =

Thus a(B;, 0) is the moment generating function of the infectious period of
individual j evaluated at Bj, and g; is a probability density function in the
sense that it integrates to 1. This amounts to a change of variable in the overall

likelihood, and means that it is not necessary to specifically calculate ¢;.
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The likelihood reduces to

my(r| B,0) = ( i 7T(K)/ (ﬁ)(jlpj) i | © Hg] ) di d1K>
x=1 j=
j#x

X ﬁa(B 0)
j=1

=(Z7T 7e(ix | €)E {Hx;%D(Jlf{a(Bwf’))f

j7x
where [E$|-] refers to expectation with respect to i, i, with probability density
function [Ti_, g;(rj —1 ;). Alongside defining the prior probability mass/density
functions, we need to evaluate [E3 [H;;_él X j‘l’j} . This may be approximated as
JFK

i—1 E8[x;]E8[1;], as before.

j#x
We would expect PBLA II to outperform PBLA I since the absorption of the
¢; terms into the expectation means we do not need to evaluate or approxi-
mate them. As we will see in sections 3.4.5.1 and 3.4.5.2, the resulting forms
of the a(B;,8) terms are simple and inexpensive to calculate for both expo-

nential and gamma infectious periods, so this introduces only little additional

computational burden by comparison.

We may also again rearrange the likelihood for computational speed, yielding

— 7e(r)IBS [ (i | 1))
7TH( |.B 6 (H]Eg X]]]Eg 170]] ( )) 1;1 ]Eg[XK]]Eg[¢K] . (3417)

For the cases of exponential and gamma distributed infectious periods, we

now describe the functions g;(r; — i;) and a(B;, 0).

3.4.5.1 Exponential Infectious Periods

For infectious periods exponentially distributed with rate v and infection rate

Bij from individual k to individual j,

gi(rj —ij) ~ Exp(y + Bj),

2
EI(B]',B) = ’)/—I-B'.
)
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A special case of this: for infectious periods exponentially distributed with

rate v and infection rate %,

gj(rj —ij) ~ EXP(7+ %(N - n)),

EI(B]', 9) =

3.4.5.2 Gamma Infectious Periods

For infectious periods that are gamma distributed with shape m, rate v, and

infection rate f;; from individual k to individual j,

gj(rj —1;) ~T(m, v+ B)),

a(B;,0) = (vZB]) .

Again considering the special case of homogeneous mixing, for gamma dis-

tributed infectious periods with shape m and rate <, and infection rate %, we

have

0~ i) ~ Ty + £ (v =),

,)/ m
"= (w%m—n)) |

3.4.6 PBLA III: Further Approximation

With regards to the approximation of E¢[[];... x;¥;] in PBLA II, an alternative
and improved method to assuming independence between the two terms is to

observe that

ES (X)) = ) BKES [Lgici<ry¥)]
k=1

k7]
n n
- Z'Bk]']Eg ﬂ{ik<ij<rk}lpfk1—[l/)ﬂ ’
=2 Ik
I#]
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where 1/)] Hl 51] rz/\1] 11/\z] Hln:1 lel/ say.
1]

If we define Xjk( ) = BijL{kinfective at 1} this method combines xjx with ¥y, es-
sentially minimising the number of ‘cases” which must be considered in the
calculation. Recall that, in Section 3.4.2.2 for the calculation of E[y;] with ex-
ponential infectious periods, we needed to calculate double integrals for all
possible values of rx A i; — iy /i, dependent on the orderings of ry, 7, iy and i;.
In combining xx with ¥ here, the indicator function reduces the number of

these orderings which are possible.

Then, for computational efficiency,

IEg[lePj] = Z ﬁk] ﬂ{zk<z <rk}¢’]k H]Eg l/)]l

k;é] l#k

_ I B3 [l

~ Z ﬁk] ]l{zk<z]<rk}1p]k] ES [wjk]
k#]

n E$ [ﬂ{ik<i-<rk}¢fk}
E8[y; | ;
[¢;] k; Prj ES []
k#j

Q

PBLA IIT offers marginally less approximation than PBLA II, since the x; and ;
terms do not need to be assumed independent. We expect the real advantage
of this approach will be the increase in computational speed, due to the re-
duction of 'cases’ to be considered as discussed. We will compare this method
to the previous PBLA versions in Section 4.1.3, which will show that PBLA
III offers considerable increased accuracy of estimation over PBLA I, but only

marginal gains of accuracy over PBLA II.

3.4.7 PBLA III: Full Likelihood Expressions

Before defining the next the PBLA method, we summarise this section by pro-
viding the full likelihood expressions in the cases of exponential and gamma
distributed infectious periods for PBLA III. We introduce a new variable to

simplify the expressions: (5]~ =9+ ZZI\L — ﬁjl, forj =1,...,n. This reduces to
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0=7+ %(N — n) for homogeneous mixing.

3.4.7.1 Homogeneous mixing

The likelihood expression for the PBLA III likelihood with a homogeneously
mixing population may be obtained simply from the PBLA I expressions by
replacing 7y with ¢ in the relevant likelihood components. The resulting likeli-

hood is as follows:

Ef[1 <i:<re}¥Yj
mm(r | B, 6) (HEg il Z b = ] }%k]a(B]-,(-))>
k#}

E8 [

<y 7 (1) B8 [ (i | x)]
Eg []l i <ix<r 1PK]
K= 11Eg[¢x]21 : ﬁ%

The expressions that form this likelihood depend upon the distribution of the

infectious periods as usual. These are given by:

Exponential Infectious Periods

£ —0(rg—rj) :
1-— 5N e k= if rp > T,
2(£+o

ES [y =

)
%
ko + 2(£+0)

Bl = [T Bl

e—(S(r]-—rk)) if rp, < Lt

k=1
k#j
o0 1 _s,—
B i<y i) = 6+ %Ee oI,
i
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Gamma Infectious Periods

O(rg—ri) m
1_|_m1e m]( 5 5+£1_(5z)
Ly 12 <5+f,> (+x)
XE[(re —rj+Y)! | Y ~T(m,26)] if r > 1;,
m—1 5(7“—}’)
ES8 ] = 1—Fm,5(”j_7”k)<1_<5fﬁ> )+Zm 1%
o \"(erkY
()" (4) 1)
XE[(rj —re+Y)" 1Y ~ T(141,26)] if re <7,
\
Qb]]_H]Eg'nb]k

k#]

$(re=r)

m—1e J " B!
S v s 5_|__
(g o ()" 6+ §)
xlE[(rk—rj+Y)l | Y ~ T (m,26)] if rp > 1},
107 (5 N\ 6+f ) em
Zm e 2I+1 ((H_I/\%]) ( (5N) I'(m)
XE[(rj —re+ V)" 1Y ~T(1+1,26)] ifre <rj

)"

3.4.7.2 Heterogeneous mixing

]Eg []l{lk<l]<1"k}l/]]k:| =

\

a(B;j,0) = (

=2

For the case of a heterogeneously mixing population, the likelihood expression
will be more complex. As defined in Section 3.2, the infection rate between in-
dividuals j and k is now given by . Following from this, we note that each
expectation is with respect to a pair of infection times i;, iy, now with probabil-
ity density functions g; and gx which depend on B; and By, respectively. Each
individual in the population is now effectively considered to have an infec-
tious period with a different distribution. In the exponential case for example,
for any pair ij, iy the density functions will be Exp(4;) and Exp(Jx). Although
the required likelihood expressions may not be directly taken from the PBLA I
calculations, very similar integration arguments may be followed, incorporat-

ing these different density functions.
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These likelihoods may also be extended to individuals whose infectious pe-
riods have completely distinct parameters, for example r; —i; ~ Exp(7;) or
rj —ij ~ T'(mj, ;) for all j in the population. This is of interest since we do
not require that all individuals in the population are modelled with the same
infectious period distribution. We may, for example, model different groups
(by age, gender, occupation etc.) with different infectious periods, according

to their behaviour or characteristics.

The overall likelihood expression remains in much the same format,

E8 (k]

n ]Eg .K
Z ( ) [ (l 11|{1K<)11<r }%ﬂ
x=1 [lPK] Zl 1 .BK]W

ES [y <iicr Pik]
(x| B, 6) (HIEg il Zﬁk] Gi<iy<ry) Vi a(Bj,G))

where the component expressions will now be given by:

Exponential Infectious Periods

_ 9iPr =0k (rx—r)) : .
1 - e ® / if i > 7j,

5k (Skﬁkj —(5]‘(7‘]‘—1’]() . .
Ok+ B (5j+5k)(5k+ﬁkj)e ) ifr < Tjs

ES(y] = [ TES (o),

E=[pi] =

k=1
(=
6:0k ) -1 1
g Grateasge T ez
B i <ij<ry ¥l = 56 5(r—ry)
j —oj{rj— i '
GraEpe | ey
N

]
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Gamma Infectious Periods

m—1 o k%) (6 ™
1+ Li—o T =

X <<(5k_(|s_—kpk]> mk(5k + Bij) — 5;l(>

XE[(rg —rj +Y)' | Y ~ T(mj, 6+ )] if e > 1,
my
Eflgpd =1 - Foy (17 = 1) (1 N ((5kikl3kj> )

Ly ol W
X+ % G

()" (v ) )

XE[(rj—re + Y)Y ~T(1+1,6;+ )] ifre <rj,

\

n
H]Eg lp]k]
(=
1 (Sk(rk ]) S m] 5 my I
ka . I <(5]'+](5k> <(5k+k‘3kj> (5k + ’Bk])
" xlE[(rk—rj+Y)’|Y~F(mj,(5j+(5k)} ikaZVj,
E []l{lk<l]<l’k}l/]]k:| = i

I "
ka 1 o=0i(rj=re) (% "Mk [ ok +Brj o
1=0 (5k+ﬁkj 5'+5k ((5'+5k) (m )

XE[(rj—re+ )" Y ~T(1+1,6;+ )] ifre <rj,

\

a(B;,0) = (Z—]{)m’.

3.4.8 PBLA IV: Central Limit Theorem Approximation

In this section we seek to make an approximation to the i; term in the PBLA 11
likelihood, using moment generating functions and a central limit theorem.
The motivation is to improve the speed of the method, making estimation
feasible for even larger population sizes. This approximation will only hold
for exponentially distributed infectious periods with homogeneous mixing, so
we assume in this section that r; —i; ~ Exp(7) for all individuals j, and set
infection rate % However, since we will apply this central limit theorem ap-

proximation within the framework of PBLA II we apply the usual change of
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variables as explained in Section 3.4.5, so that all expectations are with respect
to g(r; —i;) ~ Exp(d). For simplicity, although all expectations are with re-

spect to ¢ in this section, we will not explicitly state this.

To begin the derivation, we recall that in the definition of the true likelihood

in Equation (3.2.3), we required the calculation of

E

n
(TTwity ) e x)] .
j=1
j#x
Rather than assuming independence over j for the i; terms so that [E [ 7:1 l[J]}
Lk

=II_, E [#;], and removing the dependency upon « as we will rearrange the
j#K
likelihood as usual for computational efficiency (see Equation (3.4.4)), we in-

stead note that:

E H¢]] = [E Hexp(—zﬁ(rk/\ij—ik/\ij))]
SRR
_ . g
= E exp(—Z—(rkAi]—zkA1])>
_ =
k#j
= E exp(—Z—Tk>]
i j,kle !
k#j
= E|lexp| — i E(T
= P N kj + T]k)
i jk=1
j<k
= E|exp (— i Ew]k>],
| jk=1 N
j<k

where we have paired 7;; and T by symmetry, setting j < k without loss of

generality, and then defined

p
Z] — 1 i < i]',

Tkj""Tjk:wjk: ik—i]' ifi]‘<ik<1’]',

\rj — i if i > ;.
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t:I‘n—il ———— t:o
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11 rl DK rn—l rn rn

Figure 3.7: Timeline of a disease outbreak, showing reverse timescale ¢ for

PBLA IV.

Note that E| i1 ;] is then in the form of a moment generating function for

Z?k:l wijk, evaluated at —%. Therefore, if we can find the distribution, or an

j<k
approximation to the distribution, of Z}qk:l wjr we will be able to replace the
j<k
E| 7:1 1] term with the corresponding expression for its moment generating

function.

In order to find this approximation to the distribution, we first require the

following result:

Theorem 3.4.2.
n
Y wp~Yi+ Yot o+ Y
k=1
j<k

where Yj ~ Exp(?), and Yy, ..., Y,—_1 are independent.

Proof. To prove this result we work backwards in time, similarly to the proba-
bilistic arguments in Section 3.4.4. We define t as our reverse-timescale, where
t = 0 at r; (the moment just before r,, in reverse time, see Figure 3.7). Then
t increases as we move backwards in time to i; (the ‘end” of the outbreak, as
after this time no infectious pressure is applied). We consider the reverse in-

fectious process as a continuous time Markov process {(S(¢),I(t)) : + > 0},
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starting at 7,y where S(t =0) = 0and I(t = 0) = 0, such that
(S,I) = (S+1,1—1) atrate 5I(¢)
(S,I) — (S,I+ 1) deterministically, when a known removal event occurs.
(3.4.18)
The first transition in Equation 3.4.18 then represents an infection event (since
in reverse time this involves an individual moving from infective to suscep-
tible), and the second a removal event (in reverse, corresponding to an indi-
vidual moving into their infectious period). For example, the first event which
will occur in reverse time is r,;, when we move from zero current infectives
to one. Notably, we see that the number of susceptibles is not changed at any
removal times. We generate infections according to our Markov process at rate
01(t), since 0 determines the length of the infectious period (under the PBLA
II framework). We choose who gets ‘infected’ (i.e. who moves into their sus-
ceptible period) uniformly at random from those currently infective. The key
aspect here is that we want to count the total number of infectives and suscep-
tibles present in the population at all times, moving backwards from the end
of the outbreak.
The quantity we wish to focus on is } /) ; wjx = fo" S(H)I(t) dt, which is the
total amount of infectious pressure ap};l<iked, over all individuals and over all
time. To construct this quantity in reverse time we define T(t) as the total in-
fectious pressure observed up to time f, so that T(t) = fot S(u)I(u) du, and
T increases at a deterministic rate S(¢)I(¢) at time t. Then T(E) = ¥ _; wjk,
where E = r;} — ij represents the end of the outbreak under reverse tiI];]eiscale
t, after which there are no remaining infectives and hence no infectious pres-
sure. Quantity T is therefore a piecewise, linear, non-decreasing function of ¢,
whose gradient changes are determined by the transitions of the Markov pro-
cess {(S(t),I(t)) : t > 0}. The whole process will stop when S(t) = n at 71,

after which there will be no more increase in T.

Between any two events (wWhether infections or removals), the process T will

increase at constant rate S(t)I(t), since S(t) and I(#) remain constant between
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exp(6/n-1) exp(6/2) exp(6)

VA s

1, 1, eee ina in

Figure 3.8: Timeline showing how total infectious pressure T is built up, un-

der scaled reverse timescale t*.

events even as t changes. Noting that an increase of rate x, say, for y time
units, is equivalent to an increase of rate 1 for xy time units, we now perform
a time scaling for t. We instead consider the construction of T by running time
at rate I(l—t) if I(f) > 1, and at rate 0 if I(t) = 0. Under this new timescale, time
effectively stops if the number of infectives is 0. This is desired since no new
infections can occur, and we simply wait for the next deterministic removal
event to restart counting time. This scaling results in new timescale t* = Ttt)
Now T instead increases at rate S(f). Since we have already shown that the
number of susceptibles is unchanged by removal events, removals therefore

also have no effect on the rate of increase of T. In the t* timescale, the Markov

process is defined by:

(S,I) = (S+1,I—1) atrate s if I(t*) > 1.

Quantity T is then formed by a series of stages wherein T is increasing at rate
S(t), for S(t) increasing by one at rate ¢. This occurs for n — 1 infection events
at times i; (when we get to n susceptibles at iy, no infectious pressure is being
placed, as previously discussed). T is then the sum of a series of independent
random exponential lengths of time, with rates J, g and so on, up to %. Fig-
ure 3.8 shows this. Therefore, T(E) = Zj”,kzl wix ~ Y1+ Yo+ + Y, 1 where
j<k
Y; ~ Exp (?), and Yy,...,Y,_1 are independent, as required. O
Since these exponential distributions are independent but non-identically dis-
tributed, Theorem 3.4.2 may then be applied alongside the following central
limit theorem, in order to approximate the E| ;7:1 ;] term with a moment

generating function.
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Theorem 3.4.3. Define u, as the expectation of E?,k:l Wik and 02 as its variance.
j<k
Then, as n — oo, 4 (Z?’kzl Wik — yn) converges in distribution to a standard

On
j<k
normal random variable, i.e.

n
Y k=1 Wik = Hn
j<k
On

_ 1
= 5\2)
1 (n\ /2n—-1
2 f— —
In = 52(2)< 3 )
Proof. To prove this we use the following result, Theorem 2.1 in Barbour and

Eagleson (1985):

2 N(0,1),

where

Lemma 3.4.4. Define random variable X with zero mean and finite variance, where

(j, k) is a 2-subset of {1,2,..,n} and n > 1. Let s> = iiki—1 E[XijXu]. Then
i<jk<l
% 27,k:1 Xk converges in distribution as n — oo to the standard normal distribution

j<k
if

1. B[|Xu|*] < co forall n and all pairs (j, k);

2.
1 n 1 n 1 2
6;1 = 8—321]E[|X1]|3}3< klzl ]E[|Xkl|3]3> — 0.
= 1=
i]<j (k,)N(i,j) £

We therefore seek some Xj; = f(wj) which meets the requirements of this

lemma. For infectives j and k, pairs (j, k) are always 2-subsets of {1,2,...,n}.

Hence, if we are able to show that f(wjx) has zero mean, finite variance s? and

fulfills the two criteria, then % Z;Z,k:1 f(wjr) can be approximated by a standard
j<k

normal distribution, and we may approximate IE [H}Ll lpj} with a normal mo-

ment generating function.
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By applying Theorem 3.4.2 with n = 2, we know that wj ~ Exp(é). Therefore,

using standard results,

Elwy] =

Var(wjx) =

| = Sl

Setting X = wj — E[wj] = wjx — 3, we then obtain a random variable with
zero mean and finite variance. Let us next explore the necessary requirements

of lemma (3.4.4).
1. Firstly, E[|X;[*] = E[|wj — [*] < oo since wjx ~ Exp(9).

2. Using the formula for s?,

n
= Y E[X;Xu
i,jk =1
i<jk<lI
1 [ 1 1
= Y E (wij——)(wkz——ﬂ
ijkl=1 L 0 0
i<jk<l
i IE—<w w 1w 1aJ + ! }
= ijWkl — Wk — < Wij —2>
ijki=1 L 0 0 0
i<jk<l

L 1 /n\?
= ), Elwjwy] - Z Elw;j] + (2>
i,jkl=1 z] 1
i<jk<l i<j

n 21 1 (n\?

= ) Elwjwy] - ( >+—( ) , (3.4.19)

T 56\2) " 62\2
i<jk<l

since ZZ]':; Elw;] = ¥ =1 (5 We split the first term in Equation (3.4.19) into
i<j i<j
three sections based on the number of indices in common, so that

n
2 lE[wi]wkl] = Z ]E 1] + 2 ]E wl]wll -+ Z ]E wl]wkl]
i,jkl=1 i,j=1 ijl=1 ijk,l=1
i<jk<l i<j i#],i#l i#jk#l
i<jk<l
(3.4.20)
Here, ) =1 Elw 12] provides all terms in Equation (3.4.20) for which there are
i<j

two indices in common, i.e. i = k and j = I. There are () possibilities for
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this, where each term takes the form of a second moment of an exponentially
distributed variable with parameter 4. Hence, } /', _; E [wlzj] = (% (3)-
i<j

Similarly, ZZj,k,lzl E[wjjwy] includes those terms in Equation (3.4.20) which

i#jk#l

i<jk<I
have no indices in common. There are 3(}) terms in this sum, where each rep-
resents the expectation of two independent exponentially distributed variables

with parameter J. Hence, Y/ | Elwjjwi] = %(Z)

ikl
i<jk<l
Lastly, 27},]',1:1 E[wjjw;] provides the terms in Equation (3.4.20) which have
i2i1

1 index in common. We find these slightly differently than the previous two
cases, by grouping together all triplets of expectations with the same indices
(ie. Elwpwiz], E[wipwss] and Elwizwys]). There will be (3) sets of such
triplets. For each, withi < j < k without loss of generality, we seek [E|w;jw;] +
Elwijwi] + Elwgwi] = E[Qyj], say. Then, the standard result
Var(wjx + wj +wy) = Var(wj) + Var(wj;) + Var(wy) +
2Cov(wjjwik + wijwijx + wikwix)
= Var(wj) + Var(wj;) + Var(wy) +
2(E[wjjwix] — Ew;j|E[wi] + Elwjjwi]

—E[wjj|E[wj] + Elwgwir] — Elwi]E[wi]),
implies that
E[Qii] = Elwijwi] + Elwijwi] + Elwjwi]
= % (Var(wjk + wj + wy) — Var(wj) — Var(wj) — Var(wy) +
2E[wjj]|Elwic] + 2E[w;]E[wj] + 2E [wik]]E[wjk]>

1 3 3
— E <Var(w]~k + wjp -|—wk1) — 5—2 +2(ﬁ)>,

since wj; ~ Exp(d) has mean % and variance % for all i, j, as stated previously

using Theorem 3.4.2 with n = 2. Applying Theorem 3.4.2 with n = 3, we also
find that

0
wjk + wj + wy ~ Exp(d) + EXP<§>I
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and so
1 4 5
Var(w]-k + wii + wkl) = 5—2 + 5—2 = 5—2

Therefore,

1 3

]E[Qijk] = 5 (Var(wjk +wj; + wy) + ﬁ>
4
— 5—2,

and hence we obtain an expression for the second term of Equation (3.4.20),

Y i1 Elwiwn] = 5(5).
il
Combining these results, Equation (3.4.20) becomes,

& 2 (n 3 (n 4 (n
Z IE[wi]-wkl] = ﬁ (2) + 5—2 (4) + ﬁ (3) . (3.4.21)
i,jkl=1
i<jk<l

Recombining Equation (3.4.21) with Equation (3.4.19), the expression for s% is
then given by

Therefore,

1 1 1\2
€ = S—gzlEUXiﬂS]?’( Yo E[Xul’]3)
i<j k,1
(k)N (i) 7D
1 2
= S Y Ax (An-3)),
i<j
1
where A = E[|X;;|*]?, and since 2n — 3 is the number of pairs (k, ) where at

least one of k and [ is the same as i or j. Then, the terms inside the i, j sum are

independent of i and j and

1 (n
/o 3 2
€ = 3 (2)A (2n —3)7,

154



CHAPTER 3: LIKELIHOOD APPROXIMATION METHODS

since there are (}) choices for this pair (i, 7). Now, s> = O(n°®) from Equation

(3.4.22), and (5)(2n — 3)? = O(n*). A is independent of 1, so overall,

e, = 0m?

We have therefore met all of the requirements of lemma 3.4.4, which implies
that 1 k=1 Xjk LN N(1,0) as n — oo, from which we may approximate the
j<k
distribution of Z?,k:l Wik as n — oo.
j<k
In order to implement this result, we must specifically calculate the mean and

variance of E?,k:l wjk. These may be easily obtained from Theorem 3.4.2, since

j<k
we know that 27,,(:1 wijx ~ Bxp(d) + Exp(%) +--- Exp(%), and so:
j<k
& 1 2 n—1
jk=1
j<k

L 1 4 (n—1)>?
Var(jkz_lek> = (5_2+(5_2++T
j<k

In summary, as n — oo

n
Zj,k:1 Wik — Mn
j<k d
On

where

as required. O
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Therefore, to implement the PBLA IV method we must replace the expression

for E[TT}_; ¢;] with the moment generating function of a normal distribution,

_ By
exp ( N ]kz_l w]k
i<k

- on( 3ol

— oo (- R(3) () E))

Since this method does not involve the calculation of many sums over infec-

so that

E

H%] = E
j=1

tives, which are computationally intensive for large outbreaks, it provides a
useful approximation for use under large outbreak sizes. However, it is cer-
tainly more specific in its requirements, only having been derived for exponen-
tial infectious periods and requiring large n. There is potential for the method
to be extended to gamma distributed infectious periods, but the calculations
are far more complex and we do not pursue them here. We will compare this
central limit theorem approximation to the earlier PBLA versions in Chapter

4, but first we define our fifth and final PBLA method.

349 PBLAV

We now consider an alternative expression for [E[[ T, x;i;] within the PBLA II
framework. Under the previous PBLA methods, we would consider the infec-
tious pressure from any individual j to any individual k independently to the
pressure from k to j, despite one of these two quantities being necessarily zero
(as one individual must have been infected before the other). Here we derive
an expression which considers these two pairs together, hopefully resulting
in improved approximation. Again, all expectations in this section are with
respect to density function g;(r; — i;) since we are in the PBLA II framework.
This method will be applicable for both homogeneous and heterogeneous mix-

ing, though we will require that f; = Bjx for all k and j.
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To begin, as before we split the expectation into two parts so that
n n n
L [HX;‘%‘] ~E {HX]} E [H%}-
j=1 j=1 =1
j#x j#x j#x

We then calculate E {H}?_l le as previously. For the i term however:
j#x

E Ll}lﬁ] = E _li[eXP (- Zﬁijkf)]

Lj=1 k#j
j#x j#x
= E|exp ( Z Z ﬁk]Tk])] (3.4.23)
j=1k=1
) ]#K k#j
We may split the inner sum into cases, depending on if k = x, so that
n n n
LY Pywg = ) ( X, Piji +5K]Tm>
j=1k=1 j=1
Ak k#j j#K k7é],
= Z BriTij + Z PrjTxi
k,j=1
k#jkj#x ]#K
n n
= ) B+ i)+ X BT
jk=1 j=1
k<jkj#x j#x

where we have paired up the pressure from j to k and from k to j, without loss

of generality setting k < j. Note that it is this last step which requires By; = B

Splitting up the exponential in Equation (3.4.23), our expression becomes

]E[j]itpj] ~ E exp(— i Bkj(Tkj-l-Tjk))]

jk=1
j#x k<jkjFx

n

xXIE | exp (— 2 ,BKjTKj)]
=1
jx

n
~ 1—[ ]E[exp( Bri(Tkj + Tk ]HIE[exp ,BK]'TK]-)},
k=1
k<]j,k,j7é1< J#K

(3.4.24)

which may be specifically calculated, depending on the distribution of the in-

fectious periods as usual.
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3.4.9.1 Homogeneous mixing

Exponential Infectious Periods

If we assume that the infectious periods are exponentially distributed and the
population mixes homogeneously, the expectations in Equation (3.4.24) are
simple to calculate. Using Theorem 3.4.2 and recalling that 7; + T = wj
for exponential infectious periods, it is known that 7; + Ty ~ Exp(d) (since
we are working within the framework of PBLA Il including the change of vari-
ables). It is also simple to show that 7,; ~ Exp(d), similarly. Therefore, both
of the expectations in the expressions for [E [H]-#K ;] take the form of moment

generating functions for an exponentially distributed variable with mean 9.

B )
Elexp(— =(%i+7Tk))| =
[ p( N\ KTk )} o+ b
O I
IE[exp( NTK])} = (5—1—%.
Then, under PBLA,
TIvl = 11 511
E[TTy)] =
=1 ] k=1 (5+%jz15+%
j#K k<jk,j#x j#x
(n—1)(n—-2) +n—1

5 2
i <5+%>

n(n—1)

5+ & '

since there are (”51) terms in the product over k and j, and n — 1 terms in the

product over j # k.

Gamma Infectious Periods

In the case of gamma distributed infectious periods and a homogeneously
mixing population, the previous arguments using moment generating func-
tions cannot be applied since we have no equivalent expression for the dis-

tribution of wj. However, we can still calculate the expectations in Equation
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(3.4.24) using the same method as in PBLA L. Recall that, since ry < 7},

(

i —i;  ifi; <,

Tkj‘i_Tjk: i]'—ik ifik<i]'<1’k,

e — i ifre < i]',
\
then

Bttt B (i _ B B i
]E[e_N(Tk]_‘—T]k)] = IE[e_N(lk_l])]li]‘<ik] +]E[e N(Z] lk)]lik<ij<1’k] +IE[e_N(rk_lk) ]17’k<ij]'

Each of these expectations may be explicitly calculated, either through direct
integration or probability type arguments as before. Recombining these, we

are able to obtain the expression

m m
B ) ) m_l
]E[e*N(TkﬁTjk)] — —/3 + —ﬁ Z e—é(r]-—rk)
5 —|' N 5 + N 1=0

X L]E[(rj — e+ Y)Y ~ T(m,26)] ((5 + E>l

2m]| N
(sm—l 1

—1
) 5! |

X| ——= — —(rj—r
<6+%> i

The expression for the x terms may be calculated similarly, and both substi-
tuted into Equation (3.4.24). Although this form is not as simple as in the
exponential case, it is still independent of the infection times and may be com-

puted with relative speed.

3.4.9.2 Heterogeneous mixing

As in the PBLA III calculations, these expressions may be extended to hetero-
geneously mixing populations. We will not include these calculations as they
follow much the same format as in previous sections, but the resulting expres-

sions are as follows:
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Exponential Infectious Periods

For exponentially distributed infectious periods such that r; —i; ~ Exp(4;)
forj=1,...,n:

Ok
O + Prj

y ( kB (6 — Jk) )
(0K + Brj) (6 + 0 (5 + Bj) /-

E [exp (— B + Tjk))] + e %(r—mi)

Gamma Infectious Periods

For gamma distributed infectious periods such that r; —i; ~ I'(m;,d;) for j =

1,...,n:

E [exp (= Brj(Tj + Tjk))} = (&(_(f_—kﬁk)mk + ":gl e i) ((5k —(is-kﬁkj)mk

O + PBr; 0;

!
XE[(ri —re + V)" LY ~ T(1 +1,6; + &)
+ Y e i) (L VVE[(r; — re + Y)' | Y ~ T(my, 6; + 6]

= <5]- +,Bkj) ] ]

m]‘fl 1y 51

Ok \™e e a N —5;(ri—re) (__Ok % (o

Again, equivalent expressions may be obtained for the terms involving the
initial infective. However, it is worthwhile to note that, in reality, when we
calculate these quantities we make a small additional approximation in not
considering the contribution of the initial infective to be different than that of

any other infective.

3.4.9.3 Comparison with PBLA III

Since PBLA V calculates the pressure from individual j to individual k com-
bined with the pressure from individual k to individual j, rather than assum-

ing these are independent quantities, we would expect it to outperform the
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previous PBLA versions. In practice, however, numerical investigation in Sec-
tion 4.1.3 will reveal that the PBLA V method does not offer much improve-
ment over PBLA III. Considering the homogenous mixing case, the only dif-
ference is in the E[¢;] term. We recall under PBLA III that this is given by
E[e PT]E[e %] and under PBLA V is given by E[e P(Tt*™)]. In the expo-
nential infectious periods case, for a given pair of individuals j, k, we set r; < ¢

without loss of generality. Then,

14 £
E[ef%’qk]ﬁ[ef%’(kj] — (1 . +e—(5(1’k—rj)> < 5 0 4 ﬁN e—(S(rk—T’]'))
2( +9) N +9 2(x+9)
and
E[e—%(fjﬁfkj)] =5 0 ,
Ny t+9
so the difference between these two quantities is given by
8 Bs 82
N  on=r) o N7 =) N =26(r=ry)
2(£ +6) 2(£ +6)2 4(L +6)2

This is a monotone decreasing function of 7, — 7, and hence the maximum
occurs when 7 = r;. The maximum difference in the expectation for any given

B \2
pair j, k is therefore (ﬁ) . Under the kind of parameter values that we will

N
explore in this thesis and commonly see in practice, this equates to a maximum

difference of around 0.7% between the expectations under each method for
pair j, k, a difference so small that it is very unlikely to have any significant

impact on estimation.

3.4.10 Equal Removal Times

Recall that in our initial definition of the model in Section 3.2, we required that
all removal times are ordered such that ry < rp, < --- < ry,; each much be
strictly greater than the previous. The exact likelihood will be 0 if any removal
times are equal, since in continuous time no two removal times will be the
same with probability 1. In terms of PBLA, it can be found that the method

fails to work well when there are equal removal times within the data, i.e.
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there exist j,k € (1,...,n) : rp = Tt In this section we demonstrate how this

issue arises.

Take a simple example with three infectives. We define r = (1,2,x) and as-
sume a contact rate 8 between all pairs of individuals, with exponentially dis-
tributed infectious periods with mean . We will explore the effect on the
PBLA III likelihood as x varies from below, to equal to, to greater than r, = 2.
First, Figure 3.9 displays the (B, y) likelihood surface over a range of values
of x, for a population size of 10. We see that as x approaches r; = 2 from
both above and below, the maximum point on the contour increases in both
the B and v directions. If we plot the x = 2 surface for increasingly large (B, v)

values, we see that the maximum tends off towards (oo, 00).

To demonstrate the specifics of the likelihood calculation, we continue to focus
on PBLA III with exponentially distributed infectious periods (the arguments
being similar for other PBLA versions and for gamma infectious periods), as

well as homogeneous mixing. Recall that the likelihood under this method is

given by
B n "B ]Eg[]l{ik<ij<rk}¢jk]
(x| B,6) = (ng[%] II{{_E N ES (] a(Bj, 9)>
]

n(K)]Eg[TC(iK | K)]
x ) 0 B Wi Pl
xk=1]ES [lpx] Z%;l NW

Ignoring the initial infective here for simplicity, we must consider expressions

E$[jx] and BE[L(;, o <y Yix], when 1 = 7;.

For a given pair of infectives j, k, recall that

£ —6(r—r;) :
1— L —e Uk ifrp >,
E[yy] = 2+
e Uiy if e < ri,

where 6 = 7 + lein 11 Bji was obtained from the change of variables in PBLA
1I.
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Beta-gamma likelihood surface, for x = 1.5 Beta-gamma likelihood surface, for x = 2.5
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Figure 3.9: Likelihood surfaces for § and < under the PBLA III approxima-
tion, where r = (1,2, x) and x varies. This demonstrates the im-

pact on estimation of equal removal times. N = 10 in all cases.
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If we set equal removal times ry = r;j, our expression reduces to

g 2+ £
]E[ll)jk] =1- 5N = I’[\;[ :
2(5+90) 200+ )

This is clearly bounded by 0 and 1, as we would expect for a probability. As
and B tend to infinity the expression tends to 0, as we would hope for in this
likelihood. Therefore, the IE[;] section of the likelihood behaves appropriately

asry —tj — 0.

Consider next the expression

]E[ﬂ{ik<ij<fk}¢]’k] = 2 _:_E) exp*5\7jfrk|
N
Hence, when r; = 7y,
E|1 . )
[ {ik<i]-<rk}l/)]k} m

The combined relevant likelihood term for pair j, k such that r; = r;, recalling

that a(B;j, 0) = 1, is then given by

N E[py] PN 2t 60 254 £
2(6+§)

Recall that 6 = y + w Then as B — oo and y — oo, so will § — co. Hence
our entire likelihood expression will tend to infinity as both g and y do. This is
in agreement with what have seen in the three removal example in Figure 3.9,
and demonstrates why the PBLA method may not be used with equal removal
times. Fortunately, in practice it suffices to slightly jitter equal removal times
in order to perform the approximation. For any pair j, k such that r; = r¢, we
simply set ry = r + € for some small € of much lower order of magnitude than
the removal times. This avoids the problem of equal removal times without
changing the data any impactful amount, and may be extended to any larger

number of equal removals, for example for daily or weekly collected data.
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3.4.11 Extension to the SEIR model

So far in this chapter, our analysis has focused on application of approximation
methods to only the SIR model. However, it is possible to extend the PBLA
methods for use with an SEIR model. We conclude this chapter with a brief
exploration of this, and the next chapter will also include an application in

Section 4.3.

We define the SEIR model similarly to the SIR case: at any given time, every
individual in the closed population of size N will be in one of four states:
susceptible, exposed, infectious or removed. During an individual’s exposed
period, they are infected but not yet infectious. Then, for j = 1,2,...,n, ej
denotes the time of exposure of individual j, i; denotes their infection time,
and rj their removal time. The exposure times e = {ej j=12,...,k—=1,k+
1,...,n} (where « is the initial infective), and infection times i = {i]- L=
1,2,...,n} are unknown, and the data still consist of ordered removal times

r:{r]-:jzl,z,...,n, wherer; <ry < --- <ry}.

The outbreak begins with the infection of the initial infective «, at time i, and
continues until no infectious individuals remain. We do not allow for reinfec-
tion. During any individual i’s infectious stage, they will have contact with
any other individual j at times given by the points of a Poisson process of rate
Bij, where all such Poisson processes are assumed mutually independent. Any
contact with a susceptible individual results in their immediate infection. Then
B = {Bij:i,j € {1,2,...N}} provides a matrix of these contact rates, which
may again be defined to incorporate a wide range of population structures.
For a given outbreak of any disease, the infectious periods will have proba-
bility density (or mass) function fi(- | 61), where f; has parameter vector ;.
We must also now define the lengths of the exposed periods, which we state
as having probability density (or mass) function f£(- | 0g). First, however, we

will restrict our attention to fixed length exposed periods.
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3.4.11.1 Fixed length exposed periods

For both exponential and gamma infectious periods, it is possible to revisit
all of the PBLA calculations using an SEIR model with fixed length exposed
periods. The integrals may all be similarly calculated to achieve expressions
for E[x;], E[¢;] etc. However, we may bypass these by noting some key facts

about the way the exposed period will affect our arguments.

Take, for example, E[i;]. Recall that this represents the expected probability
that individual j avoids infection until the time they become infected, now e;.
Hence,

H]E exp (— Brj(re Nej — ik Aej))].

k#]
However, with fixed length infectious periods, say of length c, we may state

that ej =1j—¢, forje1,...,n. Hence,

n
E[y;] ~ HIE[exp (= Brj(ri A (i — ) — ik A (i — ¢)))].
(=
All of the integration arguments will therefore be the same as in the SIR case,
but with i; shifted by ¢ time units. This will result in the same final expres-
sions as before, but with r; replaced with r; — c. Interpretively, the probability
arguments relating the time some infective k puts infectious pressure on j, for
instance, will still apply, but will be shifted c¢ time units earlier to represent
the infection of j at ¢; rather than i;. We use this to write down the likelihood
expressions for both exponential and gamma distributed infectious periods

directly.
Likelihood expressions for fixed length exposed periods

As with the SIR model, for PBLA III the likelihood will be of the form
E3[Ly;, <iicr Pik]
(x| B,6) (HlEg ) 2 By (5i0)
]
k#]
- 7t (1) I8 [t (i | )]

x )
E3 []ll Ix<r l’bkl]
x=1 TE8 [y ] Zl 1511«{1515—[,]1}
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For exponential infectious periods, the required expressions are

_ By —di(r—rito)
1 7—(/3kj+5j)e : :

9j B —6i(ri—rr—c)
B+ T aggrane

ES[y;] = [ [ ES (el
i)

if r, > ri—c,
E8[p] =

ifrp <rj—gc,

1e=di(-ro) | _

5‘+/3k‘2e SNk lfT’kZT’] c,

]Eg[]l o Vi ] = iTPki
{ik<ij<r} ¥jk

La=6i(ri=r—=c) _
5ipa2e ifry <rj—ec,

Y
]
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Equivalently, for gamma distributed infectious periods we have

1 ](rk r]+c) S m I I
1 + Zm g 1o <(5j+]ﬁkj> (5] + ﬁk]) - 5]
XE[((re—rj+c+ Y)Y ~ T'(m,25;)]

ﬁmzq—q
1

8w = — "
EE ] = Y 1= By (rj — 1 — ) (1 ~ (5%5;) )
=10~k =¢) s

m— o\ 0i+Brin
+ 5 e ()" () - 1)

]

XE[(rj—re—c+Y)" 1Y ~T(1+1,26)]

ifr ri—c,
. kT

"P]] - 1—[ Eg ’P]k
k#]

di(rg—ri+c)

—_— J;
Z le ]lvzm] (5+5k]) (‘5 +ﬁk])

XE[(re—rj+c+ Y)Y ~T(m,25)]

ﬁqu—a
]Eg [H{ik<ej<rk}¢jk} =

5i(ri=rk—) , 5, 5i+Brj 101"
m 1 e IV j m 95 TPki\tTj

)
x]E[(rj —re—c+Y)" Y ~T(1+1,26))]

ifrp <rj—gc,
\

a(B;,0) = (%)m

3.4.11.2 Random length exposed periods

We may wish to extend the SEIR case to random length exposed periods. We

now define ¢; as the exposed period of individual j, (¢; = i; — ¢;). Then each ¢;

takes a random value from fg(- | 6g), and for certain distributions fr it may be

possible to obtain a likelihood expression. By taking the expectation over all

Cj of our likelihood expressions from Section 3.4.11.1, for example, we make

similar arguments by conditioning on ¢;’s value, for each individual j.
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For example, for the ¢ term with any pair j, k,

) ifre > —c
]E[ll)jk] E[IE[IP]'HC]‘]}:]E f(C]) Tk 21— ¢ )

g / glc;) ifre <rj—c

where f(-) and g(-) are functions defined by the choice of infectious period.

Then,

u) ifu>ri—r
E[4pje] =/C.]E[1ij|u]fE(u) du = S 7 | fe) du

‘ glu) ifu<rj—mn

If ¢; takes only a small number of fixed values, it may be possible to compute
this integral directly as a sum. Similarly, if we assume that ¢; ~ Exp(p) (i.e.
fe(cj | p) = pe ), as well as exponential infectious periods, for example, we
can also calculate the integral using the expression from Section 3.4.11.1 for
fixed ¢;:

T T dj Bk (. . .
Elv; :/] ( 4+ J e_‘sl(r]_rk_cf)) e P dc; +
[ll]]k] 0 ,Bkj + (5]' 2(,3](]' + (5]') P ]

e :Bk] —5i(re—ri+c; ) P
1 P o=din ritei) e 0% dc-
/7"_7’k ( 2(Brj +95) 3 J

o Bkjp (_. _ (026 (71— )
__ Y ] 6j(ri—re) _ o= (p—=20;)(rj=r¢)
= + e IV e AN —+
Brj+9;  2(Bxj+ ;) (0 —6j)

—’Bkj e PUri=T)
2(Byj + 9j)
with similar calculations for the other likelihood terms required, depending

on the PBLA version used (E[x;¢;] and so on).

We note that this resulting expression for [E[¢;;] is not particularly simple how-
ever, and it will be similarly so for the other likelihood terms, unlike the SIR
or fixed exposed period cases. The expressions with gamma distributed in-
fectious and exposure periods prove even more complex. This approach also
certainly brings more approximation into the model, and an important ques-

tion would be whether this affects the accuracy of the method.
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In reality, however, we will usually choose to fix ¢j to the same value for all j,
as in Section 3.4.11.1. With random length exposure periods, we are trying to
estimate two quantities (0 and 7y) from one piece of data (the removal time),
which is problematic. Further exploration of the random exposure periods

approach is certainly possible, but this will be beyond the scope of this work.

3.5 Conclusions

In this chapter, we have explored two new likelihood approximation methods
for use in infectious disease modelling: the Eichner and Dietz method, as in-
troduced in Section 3.3 as a generalisation of that used in Eichner and Dietz
(2003), and a new series of PBLA methods, as introduced in Section 3.4. A
summary of the different PBLA methods can be found in Table 3.2. A general
theme of the approximations has been assuming independence between the
interactions of individuals in the population, particularly in the PBLA method
which assumes that all pairs of individuals make independent likelihood con-
tributions. The overall aim was to obtain approximate likelihood expressions
which do not require data augmentation, to avoid issues of correlation in miss-
ing data as well as computational issues which occur when using large data
sets with DA-MCMC. The ED and PBLA methods may all be used within stan-
dard MCMC without data augmentation, since the likelihood expressions are
independent of the infection times, or MLEs for the parameters of interest may

also be obtained through any choice of optimisation scheme.

Explicit likelihood expressions have been derived for all of the approximation
methods explored, for both exponential and gamma distributed infectious pe-
riods (in all cases where possible). We chose to focus on these distributions
since they are widely used within the infectious disease modelling commu-
nity and offer simple, interpretable likelihood expressions, but of course it
may also be possible to extend the methods to other infectious period distri-

butions of choice. As well as deriving the PBLA expressions analytically with
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full integration arguments, we have also provided probabilistic arguments for
these (for PBLA T at least, though other PBLA versions may be obtained sim-
ilarly). This has hopefully provided further understanding of how the likeli-
hood expressions are obtained, and the contextual meaning of the approxima-

tions made.

We have focused on the application of the approximation methods to the stan-
dard SIR model until Section 3.4.11, which discussed their use with SEIR meth-
ods. This has really been limited so far to exposure periods of fixed length, but
there is scope to extend this to random length exposure periods in the future.
We also explored another limitation of the PBLA method in Section 3.4.10; that
we require all non-equal removal times for the method to approximate well.
Although it is possible to avoid this problem by simply jittering removal times
slightly, this of course introduces some more approximation to the model in
terms of the order in which the removals are jittered. For data sets with large
numbers of equal removal times, it is possible that this might have a significant
impact, and so the amount of jittering applied must be carefully considered so

as not to impact analysis.

We have found that there are a large number of approximations which may be
made to the true likelihood to result in a tractable likelihood expression, and
a number of these have been explored with the different PBLA versions. We
next wish to compare these different versions to explore if any offer accuracy
or computational advantages. Although we have theoretically defined our
approximation methods, another key issue is of course their practical imple-
mentation and performance as compared to existing methods. We will explore
these points in Chapter 4, firstly with a series of simulation studies to compare
the different methods both with each other and with standard DA-MCMC,

and then with application to a number of real-life data sets.
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Table 3.2: Table summarising the PBLA methods and associated assumptions

explored in Chapter 3. All PBLA versions follow the initial approx-

imation of independence over individuals, as in Equation 3.2.4.

Method

Description

PBLATI

The basic PBLA method. As well as the basic independence assumption (1)

E [(IT x567) ¢u7e(ic [ 1] ~ (L1 E [x567] ) E[gu(ic [ 1)),
7tK x ]#K 7K K

#
PBLA I assumes (2) independence between x;¢; and 9, and sets (3)

IE[IP]] ~ Hil;lzl E [e_ﬁkj(rk/\ij_jk/\ij)] '
k#j

PBLAII

Applies a change of variable to the expectations, so they are with respect to i, ix
now with probability density function [Tj_, g;(r; — i;). Essentially, all instances
of 7 in the likelihood are replaced with §; for individual j. This removes the need
to calculate the ¢; terms, as well as the assumptions (in (1) and (2)) associated

with this calculation.

PBLA III

Builds upon PBLA II by combining the expectations of x; and ¢;, rather than
assuming these are independent (2). This simplifies the calculations required, and

avoids the introduction of unnecessary approximation.

PBLA IV

Only applicable for exponential infectious periods and large outbreak sizes, this
method extends PBLA II by using a central limit theorem to form an approximation

to the ¢; terms. Rather than making assumption (3), we instead assume that

E {H}’Zl 1/)4 ~ exp ( — B+ 752 (5) (252) (%)2>, using the fact that the sum over

all pairs of individuals of the time infectious pressure is placed between them is

approximately normally distributed for large .

PBLAV

Also extending PBLA I, this method considers the infectious pressure from any
individual j to any other individual k in combination with the pressure from k to
j, rather than assuming these are independent. Instead of making assumption

(3), this provides an alternative expression for the §; term such that

E[IT 1 )] ~ 11" iy E[exp (= By(my + 7)) | T B[ exp (— Boyriy) |-
i#x k<jk,j#K 7K
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CHAPTER 4

Likelihood Approximation Method
Simulation Studies and

Applications

In Chapter 3 we introduced the generalized Eichner and Dietz (ED) likelihood
approximation, as well as the Pair Based Likelihood Approximation (PBLA).
This chapter will involve application of these approximation methods, firstly
in a series of simulation studies to evaluate the performance of the methods,
and then to a variety of real data sets where we compare analysis using the
PBLA method to existing published analyses. For easy reference, Table 3.1
provides a summary of the notation used in the likelihood approximations,

and a summary of the different PBLA methods can be found in Table 3.2.

In Section 4.1 we will assess the likelihood approximation methods through
a series of simulation studies. We first seek to compare the accuracy of the
approximation methods, both with each other and with standard DA-MCMC
techniques. This will be explored in Section 4.1.1, for both exponential and
gamma infectious periods. Section 4.1.2 will then include a more detailed com-
parison of the ED and PBLA methods only, using a larger number of simula-
tions to more accurately assess their performance and which situations lead to

either outperforming the other. In Section 4.1.3 we then use an additional sim-
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ulation study to compare the different PBLA methods as defined in Chapter 3.
However, we wish to assess not just the approximation methods” accuracy in
parameter estimation, but also their computational speed. This will therefore

be explored in Section 4.1.4.

Although we use simulated data to compare various versions of the approxi-
mation methods, of course it is also of interest to know how likelihood approx-
imations perform with real data, compared to existing techniques. In sections
4.2, 4.3 and 4.4 we apply the PBLA method to various real data sets, encom-
passing a range of population structures, sizes and models for the infection

process.

In Section 4.2 we analyse data concerning respiratory disease on the island
of Tristan Da Cunha. We investigate how the PBLA method performs with
a multi-type SIR model, comparing our estimates to a previous analysis by
Hayakawa et al. (2003). Section 4.3 describes analysis of the West African Ebola
virus outbreak of 2014. Here, we wish to compare the PBLA method to a previ-
ous analysis in Althaus (2014), who used a model featuring a time-dependent
infection rate. Although this is not possible in the PBLA framework, we ex-
plore a proxy-time-dependence in the form of a heterogeneously mixing pop-
ulation where the infection rate is a function of the removal time. We also
demonstrate the use of the PBLA method with an SEIR model, and highlight
the importance of having data on a completed outbreak for the PBLA approach
to approximate the true likelihood well. In Section 4.4 we consider data from
the 2001 UK Foot and Mouth livestock epidemic. Here we use a heterogeneous
mixing model with a spatial component, where the infection rate between any
two farms will depend on the geographical distance between them as well as

other covariates.

This range of analyses, both using simulated and real data, will highlight the
strengths and the weaknesses of the likelihood approximation methods, which

we summarise in Section 4.5.
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4.1 Simulation Studies

411 Comparing ED, PBLA and
DA-MCMC

To assess the Eichner and Dietz and PBLA methods, we first perform a simu-
lation study comparing both to DA-MCMC, as this represents a gold standard
for Bayesian analyses. We therefore compare the parameter estimates from
the ED and PBLA methods to those from DA-MCMC, rather than to the true
values the outbreaks were simulated from. For both exponential and gamma
distributed infectious periods, we simulate 12 outbreaks under a variety of
parameter values and population sizes, and perform parameter estimation for
each using DA-MCMC, and MCMC with the ED and PBLA likelihoods. We
compare the resulting parameter estimates to evaluate the likelihood approx-
imation methods, found in Section 4.1.1.1 for the exponential case and 4.1.1.2

for the gamma case.

4.1.1.1 Exponentially Distributed Infectious Periods

For the homogeneously mixing SIR model with exponentially distributed in-
fectious periods, we will now apply the ED and PBLA methods to 12 simu-
lated data sets of varying population and final sizes. We compare the ability
of the approximations to recover the true parameter values against standard

DA-MCMC.

Each data set is a simulated outbreak from the given parameters, where in
each simulation we start with one initial infective. For any simulations of final
size 1, we discard and re-simulate. For analysis, we use MCMC with both the

ED and PBLA likelihoods, as well as performing standard DA-MCMC.

For the ED likelihood, the integral involved in the calculation of the likelihood
(as given in Equation (3.3.4)) must be computed numerically. In this study we

use a simple trapezium rule method for this, which was found to provide suf-
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ficiently accurate results when compared with more complex techniques. We
set the lower limit of the integral to significantly less than the expected value
of the initial infection time. Since this time is when infectious pressure begins
to be applied, we can hence be confident that our numerical integration region
is capturing the entire epidemic process. We selected 1000 as the lowest num-
ber of trapezia for which increasing this number did not impact the likelihood
values at the degree of accuracy used in the analysis. All PBLA analysis is
performed with the PBLA III method, since this is applicable for both expo-
nential and gamma infectious periods and we expect it to perform better than
PBLA T or II (we will explore this further in Section 4.1.3). For all MCMC anal-
yses we take 10,000 samples after an initial burn-in period of 500. We perform
Gaussian random walk updates for ED and PBLA, where the variances of the
proposed parameter values have been tuned to result in a well-mixing chain.
We use independent low rate (10~*) exponential priors for the parameters

and .

The results of the simulation study, ordered by population size, are given in
Table 4.1. These consist of posterior medians for infection rate § and removal
rate 7y, under each method. Table 4.2 contains the corresponding results for the

estimation of Ry.

As we can see from Table 4.1, prediction using ED and PBLA with exponential
infectious periods is much more similar to DA-MCMC for some data sets than
others. Generally, the ED approximation estimates are much less similar to
DA-MCMC than the PBLA estimates. This is especially true for smaller out-
breaks such as simulation 2, where the ED estimates are almost double those
from DA-MCMC. PBLA, however, has obtained relatively similar estimates to
DA-MCMC in this case. Both methods seem to consistently overestimate both
B and 7y, but in almost all cases we see that PBLA offers estimates closer to

DA-MCMC than ED.

Both methods do seem to struggle when the proportion of infectives is high.

We will discuss this further in Section 4.1.2, but we see here that for simula-
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Table 4.1: Estimates of infection rate f and removal rate 7 for 12 simulated

data sets using standard DA-MCMC, the ED approximation and

PBLA, for an SIR model with exponential infectious periods.

True (8,7) | n/N ED MCMC PBLA MCMC | DA-MCMC
medians medians medians

1 | (1.3,1.3) 27/50 (6.600,4.867) | (4.199,2.649) (2.672,1.833)
2 | (2.53.6) 4/60 (9.196,10.642) | (5.079,5.867) (4.933,5.940)
3 | (3.0,1.0) 56/60 (4.159,2.141) | (3.926,1.815) (2.837,0.963)
4 | (1514) 26/100 | (4.001,3.554) | (2.205,1.826) (1.997,1.737)
5 | (1.3,1.0) 52/100 (2.280,1.695) (1.514,0.958) (1.001,0.702)
6 | (2.3,14) 73/100 | (2.631,1.641) | (2.059,1.047) (1.954,1.029)
7 | (3.0,2.0) 88/100 | (0.257,0.140) | (0.243,0.112) (0.119,0.049)
8 | (1.6,1.0) 123/200 | (3.940,2.716) | (2.788,1.591) (2.326,1.489)
9 | (19,1.2) 216/300 | (4.131,2.659) | (3.840,1.960) (2.062,1.167)
10 | (4.0,1.0) 295/300 | (7.177,3.527) | (9.276,4.556) (4.419,1.112)
11 | (2.0,1.3) 187/400 | (3.629,2.797) | (2.309,1.540) (2.374,1.759)
12 | (0.2,0.1) 496/600 | (0.867,0.506) | (0.729,0.347) (0.207,0.099)

tions 3, 7, 10 and 12 (where the proportion of infectives is highest), the esti-
mates are most dissimilar to DA-MCMC. This is also true for ED with very
small outbreaks, though we see PBLA estimates well in these situations, such
as simulation 2. In practice, we will less often be concerned with very small
outbreaks, but further consideration why the methods struggle for larger out-
breaks would be of use and will follow in Section 4.1.2. We lastly note that the
population size does not appear to have a significant impact on estimation,

just the proportion of infectives within it.

In terms of Ry, Table 4.2 shows that the ED and PBLA methods are both much
better able to estimate Ry than B and 7 individually. Both no longer consis-
tently overestimate, with estimates generally very similar to those obtained
with standard MCMC. It seems that both approximation methods are unable
to estimate B and 7y well in all cases for exponential infectious periods, but

are able to maintain their ratio to result in a reasonable R, estimate. In cases
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Table 4.2: For the 12 simulated data sets in Table 4.1, this table includes the
estimates of Ry using standard DA-MCMC, the ED approximation

and PBLA with exponential infectious periods.

True Ry | n/N ED MCMC | PBLA MCMC | DA-MCMC

Rp medians | Ry medians | Ry medians
1|10 27/50 1.386 1.595 1.458
2 | 0.694 4/60 0.900 0.878 0.840
3130 56/60 1.977 2173 2917
4 | 1.071 26/100 | 1.134 1.237 1.141
5 |13 52/100 1.364 1.586 1.424
6 | 1.643 73/100 | 1.612 1.975 1.901
7 | 15 88/100 | 1.831 2.143 2.449
8 | 1.6 123/200 | 1.453 1.751 1.555
9 | 1.583 216/300 | 1.568 1.954 1.772
10 | 4.0 295/300 | 2.030 2.044 3.947
11 | 1.538 187/400 | 1.304 1.506 1.354
12 | 2.0 496/600 | 1.716 2.100 2.100

where only Ry is of interest rather than the individual infection and removal
rates, this highlights that the approximation methods might be especially of

use.

4.1.1.2 Gamma Distributed Infectious Periods

We test the approximation methods with gamma distributed infectious peri-
ods in the same way as the exponential case. To ensure the analysis is com-
parative across the two methods, we simulate 12 data sets with the same Ry
values and population sizes as the exponential data sets. We set shape param-
eter m = 5, keeping B the same as the exponential outbreaks and setting 7y to
keep R( constant. As in the exponential case, we will use the trapezium rule
to compute the numerical integral in the ED likelihood (with the number of
trapezia set to 1000 and the lower limit of the integral significantly less than

the expected value of the initial infection time), and use version III of PBLA.

178



CHAPTER 4: LIKELIHOOD APPROXIMATION METHOD SIMULATION STUDIES
AND APPLICATIONS

Table 4.3: Estimates of infection rate f and removal rate 7 for 12 simulated
data sets using standard DA-MCMC, the ED approximation and

PBLA, for an SIR model with exponential infectious periods. Shape

parameter m = 5 is fixed.

True (8,7) | n/N ED MCMC PBLA MCMC DA-MCMC
medians medians medians

1 | (1.3,6.5) 24/50 (1.493,5.576) (1.412,5.100) (1.359,4.914)
2 | (2518.0) | 2/60 (0.834,4.908) (0.732,4.561) (0.675,4.263)
3 | (3.05.0) 58/60 (2.635,4.925) (2.417,4.685) (2.953,3.979)
4 | (3.0,10.0) | 3/100 (69.390,392.570) | (29.549,175.894) | (29.806,173.416)
5 | (1.3,5.0) 18/100 | (1.221,5.596) (1.004,4.458) (1.023,4.663)
6 | (1.5,7.0) 89/100 | (1.332,3.044) (1.238,2.838) (1.393,2.773)
7 | (2.3,7.0) 95/100 | (2.359,4.686) (2.181,4.421) (2.515,3.850)
8 | (1.6,5.0) 120/200 | (1.344,4.551) (1.263,4.119) (1.249,4.146)
9 | (1.9,6.0) 258/300 | (1.693,4.106) (1.561,3.645) (1.694,3.685)
10 | (4.0,5.0) 296/300 | (3.558,6.426) (3.206,6.170) (4.161,4.744)
11 | (2.0,6.5) 352/400 | (1.611,3.685) (1.495,3.390) (1.786,3.700)
12 | (0.2,0.5) 3/600 (10.415,60.049) | (8.315,51.423) (8.354,50.496)

Again, for all MCMC algorithms, we take 10,000 samples after an initial burn-
in period of 500, and for ED and PBLA we perform Gaussian random walk

updates with low rate (10~%) exponential priors for 8 and .

The results of this are given in Table 4.3, again ordered by population size.
The posterior medians obtained from DA-MCMC may be compared to the
posterior medians from MCMC with the ED and PBLA likelihoods. We also

give the results of Ry estimation in Table 4.4.

Table 4.3 shows that, in the case of gamma distributed infectious periods, both
ED and PBLA generally estimate the parameters much more closely compared
to DA-MCMC than in the exponential case. PBLA, however, continues to of-
fer closer estimates to DA-MCMC than ED in almost all cases. Again, this
is especially true for smaller outbreaks such as simulations 4 and 12, where

the PBLA estimates are similar to DA-MCMC but the ED estimates are con-
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siderably larger. The results in Table 4.3 suggest, as in the exponential case,
that the total population size does not impact the accuracy of estimation of the

approximation methods, but rather the proportion of infectives.

In terms of cases where the proportion of infectives is high such as simula-
tions 3, 7 and 10, both PBLA and ED estimates are far closer to those from
DA-MCMC than in the exponential case. We also no longer see consistent
overestimation of the parameters, and again PBLA tends to provide better es-

timation than the ED method.

Considering Table 4.4 which includes the estimates of Ry for the gamma infec-
tious period simulations, we see that Ry estimation is generally similar when
using the approximation methods or DA-MCMC. Again, the ED and PBLA
methods are better able to estimate Ry than  and <y individually. Despite
the improvement in 8 and 7y estimation as compared to the exponential case,
the estimation of Ry is interestingly very similar with gamma infectious peri-
ods and exponential. Even for very small or large outbreaks, the R estimates
using the approximation methods are very close to those from DA-MCMC,

without any consistent over- or under-estimation.

41.1.3 Conclusions

Overall, from this simulation study we have seen that the PBLA and ED meth-
ods perform much more similarly to DA-MCMC for gamma infectious periods
than exponential. For very small proportions of infectives, the ED method es-
pecially struggles, and for very large proportions of infectives both methods
struggle, to obtain similar estimates to DA-MCMC. However, generally for
gamma infectious periods with roughly 20 — 80% of the population infected,
both methods (and particularly PBLA) estimate the parameters well. The ba-
sic reproduction number Ry is also generally estimated well by both methods,

under both exponential and gamma distributed infectious periods.

We have highlighted that, especially for large outbreaks where DA-MCMC is
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Table 4.4: For the 12 simulated data sets in Table 4.3, this table includes the
estimates of Ry using standard DA-MCMC, the ED approximation
and PBLA with exponential infectious periods. Shape parameter

m = 5 is fixed.

True Ry | n/N ED MCMC | PBLA MCMC | DA-MCMC

Romedians | Rpmedians | Ry medians
1 (1.0 24/50 0.273 0.280 0.280
2 | 0.694 2/60 0.181 0.165 0.166
3 130 58/60 0.532 0.514 0.733
4 |15 3/100 0.182 0.175 0.177
51|13 18/100 | 0.221 0.220 0.221
6 | 1.071 89/100 | 0.434 0.439 0.495
7 | 1.643 95/100 | 0.502 0.492 0.645
8 | 1.6 120/200 | 0.295 0.366 0.301
9 | 1.583 258/300 | 0.413 0.428 0.461
10 | 4.0 296/300 | 0.552 0.519 0.877
11 | 1.538 352/400 | 0.434 0.441 0.484
12 | 2.0 3/600 0.183 0.162 0.171
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particularly cumbersome in terms of both mixing and speed (we will further
explore this in Section 4.1.4), and even more so where inference about the re-
production number is key, either ED or PBLA may offer a useful alternative.
PBLA also seems to offer better estimation than ED overall, though we will

explore this further in the following section.

Although this section has sufficed as an introductory exploration of the per-
formance of the approximation methods, it is important to note that in this
study we have only simulated one outbreak from each set of parameter val-
ues. These outbreaks therefore might not necessarily represent what is typical.
In our second study, we will simulate a larger number of outbreaks per set of
parameter values, and look at the average performance of the ED and PBLA

methods.

4.1.2 A more in-depth study comparing PBLA and the Eichner

and Dietz approximation

We continue the simulation studies with a more in-depth comparison of the
Eichner and Dietz and PBLA Il approximations, in order to more clearly demon-
strate the differences in performance between them. Although in Section 4.1.1
we compared PBLA and the ED method (to DA-MCMC) for a single simula-
tion under different sets of parameter values, here we simulate a large number
of outbreaks for each set of values. We present this first for exponentially dis-

tributed infectious periods, and then for gamma.

4.1.2.1 Exponential Infectious Periods

Here we describe a comparison of the Eichner and Dietz likelihood approxi-
mation and Pair-Based Likelihood Approximation (version III) for exponential
infectious periods. A selection of parameter values are chosen, varying the in-
fection rate B and the removal rate 7y as well as the population size N, which in

turn influence the final size n and determine the reproduction number Ry. We
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choose a wide range of parameter values, to best explore the accuracy of the
methods in different situations. For each set of parameter values to be tested
we simulate a large number of outbreaks, ranging from 200 to 1000 depend-
ing on the computational demands of the population/outbreak size. For each
simulation, we then maximise both the ED and PBLA likelihoods. We provide
density plots of the distribution of the MLEs obtained from each simulation
for comparison of the two methods, and investigate the impact of varying the
parameter values. Note that these are not true densities since the MLEs do not
exactly represent samples from a probability distribution, but the plots suffice

for visualisation purposes.

Beta and Gamma estimation, for N=100 and 1000 simulations
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Figure 4.1: To compare the impact of varying B and 7, these figures show
densities of MLEs from both the ED and PBLA III approximation
methods with exponential infectious periods. Data are from 1000
simulations with N = 100 and true values = 3, ¢ = 2 in the first

plotand g = 0.3, v = 0.2 in the second.

Varying parameters 8 and <y together
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To compare varying values of rates § and -y whilst keeping N and R( constant,
we must vary B and 7y whilst keeping their ratio equal. Figure 4.1 contains
density plots of the maximum likelihood estimates for 1000 simulations under
two sets of values of § and <y. There is no clear difference in estimation per-
formance between the two, despite a 10 times reduction in the true values of
both B and <y between the first and second plots. The accuracy of parameter
estimation is not considerably changed; at least as long as population size N
remains constant. We see that the PBLA method estimates both parameters

much more closely, in both cases.

Beta and Gamma estimation, for N=500 and 500 simulations
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Figure 4.2: To compare the impact of varying N, these figures show densities
of MLEs from both the ED and PBLA III approximation methods
with exponential infectious periods. Data are from 500 simula-
tions with N = 500 and 1000 simulations with N = 40, respec-

tively, where in both the true values are § = 1.5, v = 1.

Varying population size N

When we vary the value of N alone, we find that this also does not greatly
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affect the estimation of either method. Figure 4.2 shows no significant differ-

ence between the two plots, despite the fact that they use values N = 500 and

N = 40, respectively. The only difference seems to be that for larger N there

is slightly less variance in the distribution of the MLEs obtained. Again, we

see that the PBLA method better estimates both B and «. A different number

of simulations has been used in each case due to computational restraints, but

this was not found to significantly impact the analysis.

Beta and Gamma estimation, for N=500 and 500 simulations
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Figure 4.3: To compare the impact of varying Ry, these figures show densities

of MLEs from both the ED and PBLA III approximation methods

with exponential infectious periods. Data are from 500 simula-

tions with N = 500, and true values p = 1.5, 7 = 1 in the first plot

and B = 0.5, v = 1 in the second. This leads to Ry values of 1.5

and 0.5, respectively.

Varying basic reproduction number Ry

Recall that reproduction number Ry

— 5
5

represents the average number of

secondary cases a given infective causes in an entirely susceptible population.
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We see that varying this can have a considerable impact on the efficacy of our

approximation methods.

In the first plot in Figure 4.3, the true value of Ry is 1.5, leading to an average
proportion of 0.5 of the individuals in the population infected. The parameters
B and 7y are set as 1.5 and 1, respectively. We see again that estimation of both

parameters is fairly good. The PBLA method performs better than ED.

We compare this to the second plot in Figure 4.3, which shows the density
of estimates when Ry is smaller, at 0.5. We see that estimation for § and 7 is
similarly good to Rg = 1.5, and for the ED method is improved. It appears
that for up to at least half of the population infected, both methods are able to
estimate the true parameter values fairly well, with PBLA providing slightly

more accurate results.

On the other hand, the first plot in Figure 4.4 shows the density of estimates
when Rg = 3, resulting in an average proportion of 0.95 of individuals be-
coming infected. We see much less accuracy in estimation for both methods,
with the ED approximation now obtaining the closest results but generally
both methods failing to acquire an accurate estimate. This is also seen in the
second plot in Figure 4.4 where Ry = 2 (an average of 77% of individuals in-
fected), though here the ED method no longer performs significantly better.
Further testing indicates that the drop in accuracy for both methods occurs
gradually as the proportion of infectives increases, from around 0.6, and that
neither method is consistently better under these conditions for exponential

infectious periods. We will discuss this further with our concluding remarks.

Comparing accuracy of Rg prediction

As well as considering the methods” accuracy in estimating 8 and -y, we may
consider the accuracy of Ry estimation. This is found to be similar for varying
B, v and N in that there is little impact on accuracy, but again both meth-
ods struggle when the true value of Ry is large. Figure 4.5 shows densities
for the estimates of Ry across a large number of simulations when Ry = 1.5

and Ryp = 3. We see that for Ry = 1.5, leading to approximately half of the
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Beta and Gamma estimation, for N=500 and 200 simulations
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Figure 4.4: To further compare the impact of varying Ry, these figures show
densities of MLEs from both the ED and PBLA III approximation
methods with exponential infectious periods. Data are from 200
simulations with N = 500 and N = 1000, respectively, as well as
true values § = 3, v = 1 in the first plot and § = 2, v = 1 in the

second. This leads to Ry values of 3 and 2.

population infected, Ry is estimated fairly well by the mean of the MLEs, and
particularly by the ED method, though there is some interesting bimodality
observed. However when Ry is increased to 3, resulting in on average 0.95 of
the population infected, the estimation of both methods is considerably worse
(perhaps PBLA being slightly more robust to this, though arguably estimation
is so poor that this is meaningless). Overall, and despite this, in all cases where
estimation is generally good, the ED method is seen to offer slightly improved

estimation for R.

Concluding remarks

We have found that for both the ED and PBLA methods with exponential in-
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RO, for N=100 and 1000 simulations

—— PBLA
e — E+D

1.5

e

Density
0.5 1.0
L L

0.5 1.0 15 2.0 25
Ro

RO, for N=500 and 200 simulations

—— PBLA
—— E+D

20
|
I

15
|

Density
10
Il

1.5 2.0 25 3.0 3.5
Ro

Figure 4.5: To compare R estimation, these figures show densities of MLEs
from both the ED and PBLA III approximation methods with ex-
ponential infectious periods. Data are from, respectively, 1000
simulations with N = 100, 8 = 1.5 and v = 1, and 200 simula-
tions with N = 500, B = 2.5, v = 1. This leads to Ry values of 1.5
and 2.5.

fectious periods, varying B and -y whilst maintaining their ratio or varying N
does not have a significant effect on the accuracy of the methods. However,
the size of reproduction number R, does have a big impact on their efficacy.
Around half of the population infected appears optimum for both methods,
with PBLA consistently outperforming ED. However, when the average pro-
portion of infectives increases to above around 0.6, both methods become lim-
ited in their efficacy, with estimates far further from their true value. The sit-
uation is similar when considering estimation of Ry. Both methods seem to
perform well except in cases where the proportion of infectives in the popula-

tion is very high, in which case the accuracy of estimation rapidly deteriorates.
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In general, the ED approximation appears to estimate Ry more closely, though
perhaps less so for larger true Ry values. PBLA, on the other hand, estimates
both B and y much more closely than the ED method, and so, for exponential

infectious periods at least, may be seen as a considerable improvement.

It seems feasible that the limited performance when a large proportion of the
population is infected is due to the i term in the likelihood (recall e.g. Equa-
tion (3.2.1) which defines the different likelihood terms), concerning the avoid-
ance of infection until an infective’s exposure. This term involves the most ap-
proximation under both ED and PBLA, and further analysis indicates that as
the proportion of infectives varies, [E[¢;] varies greatly also. Returning to the
PBLA I structure for comparison of the different elements of the likelihood,
we find that for outbreaks where around half of the population is infected
(Rg = 1.5) the ¢ term is of size roughly half of the ¢ term. As we increase Ry,
leading to a larger proportion of infectives, ¢ increases in relation to ¢. For
example, Ry = 3 yields ¢ four times larger than ¢, and Ry = 5 yields ¢ twenty
times larger than ¢ (for N = 100). This implies that as we increase Ry, both
methods have a higher contribution from more highly approximated terms,

and hence poorer estimation would be expected.

4.1.2.2 Gamma Infectious Periods

Next we consider a comparison of the likelihood approximation methods for
gamma infectious periods, with shape parameter m and rate parameter y. We
expect the methods to perform better in this case since as shape parameter m
increases, if the mean is fixed then the infectious periods become less variable.
There is hence less uncertainty in the expectations over pairs of infection times,
and so we would expect the approximations to be closer to the truth. Again a
range of parameter values are explored, and we simulate here at least 500 out-
breaks in each case. We compare the accuracy of the methods by considering

density plots of the MLEs obtained.

Varying parameters § and -y together
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First we vary B and <y together, whilst keeping Ry constant. Figure 4.6 displays
this for three decreasing sets of f and -y values, with m fixed at 2. We see that,
as in the exponential case, a ten and then a hundred times reduction in both
and 7 has little impact on the accuracy of estimation; there is almost no visible
difference between the densities. Both methods perform well here, with no

considerable difference between the two in terms of accuracy.

Varying population size N

Figures 4.7 and 4.8 explore varying N, with fixed shape m = 2. As in the
exponential case, we note that as the total population size increases, the mean
estimated values of B and 7 do not change significantly, but the variance of
these estimates decreases. Even for small values of N, both methods are able
to estimate  and v well (with slight overestimation of vy), and PBLA continues

to offer very similar estimation to the ED method.

We also investigate the impact of varying N on the bias and mean squared
error (MSE) of our B and 7 estimates. Figures 4.9 and 4.10 show the bias and
mean squared error, respectively, where we test with shape parameter m equal
to 2 and 8. We see that an increase in population size leads to a reduction
in both bias and mean squared error. Since the mean squared error is equal
to the variance plus the squared bias of an estimate, this agrees with what
we noted when investigating the estimates of f and -y obtained. The PBLA
method generally seems to provide less biased estimates of the parameters,

with similar mean squared error to the ED method.
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Beta and Gamma, for N=50 and 1000 simulations
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Figure 4.6: To compare the impact of varying B and v, these figures show
densities of MLEs from both the ED and PBLA III methods with
gamma infectious periods. Data are from 1000 simulations with
N = 50 and shape m = 2 in all cases, where the true values are
p=12andy =10, =12andy =1,and p = 0.12and y = 0.1,

respectively.
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Beta and Gamma, for N=15 and 1000 simulations
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Figure 4.7: To compare the impact of varying N, these figures show densities
of MLEs from both the ED and PBLA III methods with gamma
infectious periods. Data are from 1000 simulations with shape
m = 2,8 =12and v = 1. In the upper plots N = 15 and in
the lower plots N = 100.
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Beta and Gamma, for N=250 and 500 simulations
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Figure 4.8: To compare the impact of varying N, these figures show densities
of MLEs from both the ED and PBLA III methods with gamma
infectious periods. Data are from 500 simulations with shape m =
2, =12and y = 1. In the upper plots N = 250 and in the lower
plots N = 500.
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Estimated Bias for Beta and Gamma, for varying values of N where m=2
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Figure 4.9: These figures show the bias in estimating parameters f and y as N
varies, for both the PBLA and ED methods. Shown are estimated
values with shape parameter m equal to 2 and 8, where in all cases

1000 outbreaks were simulated.
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Figure 4.10: These figures show the mean squared error in estimating param-
eters B and <y as N varies, for both the PBLA and ED methods.
Shown are estimated values with shape parameter m equal to 2

and 8, where in all cases 1000 outbreaks were simulated.
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Beta and Gamma, for N=50 and 1000 simulations
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Figure 4.11: To compare the impact of varying m, these figures show densities
of MLEs from both the ED and PBLA III methods with gamma
infectious periods. Data are from 1000 simulations with N = 50
and § = 2. In the upper plots the true values are m = ¢y = 1, in

the middle plots m = o = 2 and in the lower plots m = = 3.
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Figure 4.12:

Beta and Gamma, for N=50 and 1000 simulations
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To compare the impact of varying m, these figures show densities

of MLEs from both the ED and PBLA III methods with gamma
infectious periods. Data are from 1000 simulations with N = 50
and § = 2. In the upper plots the true values are m = ¢y = 5, in

the middle plots m = o = 8 and in the lower plots m = ¢ = 10.
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Varying shape parameter m = vy

Figures 4.11 and 4.12 display the effect varying shape parameter m, whilst
maintaining v = m to keep a constant mean infectious period. We would
expect both methods to improve for increased m since the infectious period
becomes closer to constant. We see that even for m = 2, both methods ap-
proximate B and y well, and almost exactly for m > 3. Though both methods
perform very similarly for larger values of shape m, PBLA offers considerably

improved estimation over the ED method for smaller m.

As with varying N, we investigate the impact of varying m, for a fixed Rp, on
the bias and mean squared error of our estimates. Figures 4.13 and 4.14 show
the estimated bias and mean squared error, respectively, with R fixed to 1.6
and 4. We see that as we increase m (so the infectious periods tend closer to
constant), in consequence the bias and mean squared error greatly reduce for
both approximation methods. In agreement with what we have seen so far, it
seems that moving from m = 1 to m = 2 provides the largest improvement,
especially in the mean squared error, and then larger m values do not alter
this so greatly. The PBLA and ED methods have very similar bias and mean
squared error for larger m, though both are considerably lower with PBLA for

smaller values of the shape parameter.

Varying basic reproduction number Ry

Figures 4.15 and 4.16 show the effect of varying Ry on estimation. This is
achieved by varying B whilst keeping all other parameters fixed, including
fixed mean and variance of the infectious period. We see that in the first plot
of Figure 4.15 where only on average 8 out of 80 individuals were infected,
both methods estimate § and <y well on average, but with a fairly large vari-
ance. In the second plot of Figure 4.15 where the proportion of infectives has
increased to almost half, the estimation is still good, but with much lower vari-
ance. There is no significant difference between the performance of the two
methods. Then, as we saw in the exponential case, in both plots in Figure 4.16

(where the average number of infectives has increased to 78 and 80 out of 80,
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respectively), the estimation of both § and < has 