Reversible, High-Affinity Surface Capturing of Proteins Directed by Supramolecular Assembly

Di Palma, Giuseppe, Kotowska, Anna, Hart, Lewis R., Scurr, David J., Rawson, Frankie J., Tommasone, Stefano and Mendes, Paula M. (2019) Reversible, High-Affinity Surface Capturing of Proteins Directed by Supramolecular Assembly. ACS Applied Materials and Interfaces, 11 . pp. 8937-8944. ISSN 1944-8252

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview
[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (766kB) | Preview

Abstract

The ability to design surfaces with reversible, high-affinity protein binding sites represents a significant step forward in the advancement of analytical methods for diverse biochemical and biomedical applications. Herein, we report a dynamic supramolecular strategy to directly assemble proteins on surfaces based on multivalent host–guest interactions. The host–guest interactions are achieved by one-step nanofabrication of a well-oriented β-cyclodextrin host-derived self-assembled monolayer on gold (β-CD-SAM) that forms specific inclusion complexes with hydrophobic amino acids located on the surface of the protein. Cytochrome c, insulin, α-chymotrypsin, and RNase A are used as model guest proteins. Surface plasmon resonance and static time-of-flight secondary ion mass spectrometry studies demonstrate that all four proteins interact with the β-CD-SAM in a specific manner via the hydrophobic amino acids on the surface of the protein. The β-CD-SAMs bind the proteins with high nanomolar to single-digit micromolar dissociation constants (KD). Importantly, while the proteins can be captured with high affinity, their release from the surface can be achieved under very mild conditions. Our results expose the great advantages of using a supramolecular approach for controlling protein immobilization, in which the strategy described herein provides unprecedented opportunities to create advanced bioanalytic and biosensor technologies.

Item Type: Article
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Pharmacy
Identification Number: https://doi.org/10.1021/acsami.9b00927
Depositing User: Kotowska, Anna
Date Deposited: 03 Apr 2019 09:27
Last Modified: 06 Feb 2020 04:30
URI: https://eprints.nottingham.ac.uk/id/eprint/56444

Actions (Archive Staff Only)

Edit View Edit View