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Kolmogorov complexity was originally defined for finitely-representable objects. Later,
the definition was extended to real numbers based on the asymptotic behaviour of the
sequence of the Kolmogorov complexities of the finitely-representable objects—such as
rational numbers—used to approximate them.
This idea will be taken further here by extending the definition to continuous functions over
real numbers, based on the fact that every continuous real function can be represented
as the limit of a sequence of finitely-representable enclosures, such as polynomials with
rational coefficients.
Based on this definition, we will prove that for any growth rate imaginable, there are
real functions whose Kolmogorov complexities have higher growth rates. In fact, using
the concept of prevalence, we will prove that ‘almost every’ continuous real function has
such a high-growth Kolmogorov complexity. An asymptotic bound on the Kolmogorov
complexities of total single-valued computable real functions will be presented as well.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In computer science, Kolmogorov complexity of an object provides a measure of the complexity of its description, hence
the alternative name descriptive complexity. Although commonly known as Kolmogorov complexity, Solomonoff [21,22] was
the first to develop the concept, for the purpose of studying the complexity of finite objects, such as the finite sequences of
binary digits.

This concept of complexity has indeed been extended and studied over non-finite objects such as real numbers, regarding
which, there are at least two main approaches in the literature: one based on the real Turing machine (RTM) of Blum, Shub,
and Smale [3]; and the other based on an effective setting, such as the Type-2 Theory of Effectivity (TTE) of Weihrauch [24].

A real Turing machine is conceptually very similar to an ordinary Turing machine, except that each of its registers is
capable of holding the exact value of a real number at any time, and the machine is capable of carrying out arithmetic
operations on real numbers in unit time. Montaña and Pardo [17] and Ziegler and Koolen [25] have studied Kolmogorov
complexity over sequences of real numbers based on the theory of real Turing machines. This approach is very elegant but
too abstract to address the issue of effective representation of real numbers.

Type-2 theory of effectivity is another framework for studying computability over real numbers, within which the issue
of effective representation is addressed. Hence, it provides a theoretical foundation for exact real computation [7–9,24]. In
this framework, each ideal object (such as a non-finitely-representable real number, function, manifold, etc.) is represented
as the limit of a sequence of finitely-representable approximations.
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As an example, consider the case of real numbers. Each real number can be represented as the limit of a sequence of
rational numbers. Another choice for a basis of representation of real numbers is the set of arbitrary precision floating point
numbers [10,16,19]. In fact, it is in this setting that the Kolmogorov complexity of real numbers has been studied by Cai
and Hartmanis [4] and Staiger [23].

In a sound and complete exact framework, the correct result of any computation must be obtainable to within any
accuracy that is demanded. For instance, in one viable protocol one could represent accuracy using integers, and interpret
an accuracy n as ‘being within the radius 2−n of the exact result’. In general, the concrete indicator of accuracy is arbitrary.
Nonetheless, the expectation is that with ‘higher’ accuracy demanded, one needs more computational resources to provide
a satisfying answer to the querying party.

The inspiration for the framework of this paper comes mainly from the work of Cai and Hartmanis [4]. Every real number
x ∈ [0,1] can be approximated by a sequence 〈xi〉i∈N of arbitrary precision binary floating point numbers in [0,1], in such a
way that:

1. Each xn has a binary representation of the form rxn = 0.dxn
1 dxn

2 . . .dxn
n where ∀i ∈ N: dxn

i ∈ {0,1}. In other words, each xn
has at least one representation of maximum length 2 + n. If we ignore the common leading “0.” prefix, then we can
say that each xn has a representation of maximum length n.

2. ∀n ∈N: |x − xn| < 2−n .

In a fixed language, for each n ∈ N, there may be a description of xn with a string of characters which is shorter than its
binary expansion. Therefore, for each real number x ∈ [0,1] and each n ∈ N, there exists a rational number xn ∈ [0,1] which
has a description of length at most n and satisfies |x − xn| < 2−n . If we let K (xn) denote the length of the shortest possible
description of any such xn then K (xn)� n. For the real number x, the Kolmogorov complexity KR(x) can be defined as:

KR(x) := 1

2

(
lim inf
n→∞

K (xn)

n
+ lim sup

n→∞
K (xn)

n

)
It should be clear that ∀x ∈ [0,1]: 0 � KR(x) � 1. Cai and Hartmanis [4] prove that:

(i) For Lebesgue-almost every x in [0,1]: KR(x) = 1.
(ii) For every t ∈ [0,1], the set K −1

R
(t) is uncountable and has Hausdorff dimension t .

(iii) The graph of KR is a fractal.

We try to address the cost of representation of functions by extending the definition of Kolmogorov complexity to the
set C[0,1] of continuous real functions from [0,1] to R. The main result of this paper states that no matter what rate of growth
one considers, ‘almost all’ functions in the Banach space C[0,1] have Kolmogorov complexities with higher growth rates. As such, this
result can be regarded as an extension of item (i) to the case of the function space C[0,1].

The extension of the concept of Kolmogorov complexity to the function spaces such as C[0,1] or C(2N) has already been
studied in contexts different to that of ours. Barmpalias et al. [2] have studied the concept over the function space C(2N) in
the context of descriptive set theory. Fouché [11,12] has extensively studied this subject in the context of Brownian motion.

2. Kolmogorov complexity of a continuous real function

In what follows, by representation of the functions in C[0,1] we mean the representation of each such element as
the limit of a (not necessarily computable) sequence of finitely-representable objects. Domain theory [1,6,8,13] provides
a suitable setting for this purpose. Of course, the actual structure that we introduce will not be a domain, but concepts
such as approximation will be developed in accordance with domain theory. To start, we use enclosures to approximate
functions:

Definition 1 ([ f , g]: function enclosure).

1. For f , g ∈ R[0,1] we define the function enclosure [ f , g] by

[ f , g] := {
h ∈R[0,1] ∣∣ ∀x ∈ [0,1]: f (x) � h(x) � g(x)

}
(Obviously if ∃x0 ∈ [0,1]: g(x0) < f (x0) then [ f , g] will be empty.)

2. The function f (respectively g) is called the lower boundary (respectively upper boundary) of the enclosure [ f , g].
3. Enclosures H1 and H2 are said to be consistent if H1 ∩ H2 
= ∅. Otherwise, they are said to be inconsistent.

Furthermore, tighter enclosures provide better approximations of a function. This is expressed using the width of an
enclosure:

Definition 2 (w: width operator). Consider f , g ∈ C[0,1]. For the enclosure [ f , g] the width is defined as w([ f , g]) :=
max{g(t) − f (t) | t ∈ [0,1]}.
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Fig. 1. FE is not a complete partial order: each gi is continuous, but the limit is not.

Note that w([ f , g]) is well defined as [0,1] is compact and both f and g are assumed to be continuous.

Definition 3 (Γ (h): graph of a function enclosure). Let h = [ f , g] be an enclosure. By the graph of h we mean the set of points
in [0,1] × R lying between the graphs of its lower and upper boundaries. Set theoretically, this is just the union of all
functions in the enclosure, i.e. Γ (h) := ⋃

h.

The set of continuous-function enclosures under the reverse inclusion forms a poset:

Definition 4 (FE). We denote the set of non-empty continuous-function enclosures by FE, i.e. FE := {[ f , g] | f , g ∈
C[0,1], ∀t ∈ [0,1]: f (t) � g(t)}. We define the order � over this set as follows: ∀h1,h2 ∈ FE : h1 � h2 ⇔ h2 ⊆ h1. The
pair (FE,�) is a partial order which we simply denote by FE.

An element h ∈ FE is maximal if and only if w(h) = 0, in which case h = [ f , f ], for some f ∈ C[0,1]. A sequence
〈[ f i, gi]〉i∈N of enclosures is called a chain if ∀i ∈ N: [ f i, gi] � [ f i+1, gi+1]. The enclosure [ f , g] is said to be the limit of
such a chain if f = limn→∞ fn and g = limn→∞ gn , where the limits are taken with respect to the supremum norm on
C[0,1].

Let 〈[ f i, gi]〉i∈N be an arbitrary chain of enclosures. Then, for each x ∈ [0,1], the sequence 〈 f i(x)〉i∈N is a non-decreasing
sequence which is bounded from above by g0(x). By a dual argument, 〈gi(x)〉i∈N is a non-increasing sequence which is
bounded from below by f0(x). Therefore, for each x ∈ [0,1] these sequences are convergent. This enables us to define the
pointwise limits of the sequences of functions 〈 f i〉i∈N and 〈gi〉i∈N , which we name φ and ψ , respectively, as follows:

∀x ∈ [0,1]:
{

φ(x) := limi→∞ f i(x)

ψ(x) := limi→∞ gi(x)
(1)

The functions φ,ψ : [0,1] → R are well-defined but not necessarily continuous. As an example, take the chain {[ f i, gi] |
i ∈N} defined (for all i ∈ N and x ∈ [0,1]) by f i(x) = 0 and

gi(x) =
{

x/(i + 1) if 0 � x � 1 − 1/(i + 2)

(i + 1)x − i if 1 − 1/(i + 2) � x � 1

Fig. 1 depicts this chain which is made up of piecewise linear enclosures.1 For an example with polynomial enclosures,
one can consider gi(x) = xi . It should be clear that in both cases ∀i ∈ N: [ f i, gi] � [ f i+1, gi+1], but the limit of 〈gi〉i∈N is the
non-continuous function

ψ(x) =
{

0 if x ∈ [0,1)

1 if x = 1

Nonetheless, if {hi | i ∈N} is a chain such that limi→∞ w(hi) = 0, then the chain has a limit in FE. To see this, let us
assume that for each i ∈N, hi = [ f i, gi] and define φ and ψ as in (1) above. The assumption limi→∞ w(hi) = 0 implies that
φ = ψ . Thus, we only need to show that (say) ψ is continuous, which we will prove by contradiction.

1 Strictly speaking, each boundary is a piecewise affine function consisting of affine segments. Nonetheless, to make the material more accessible, we will
keep using the terms ‘piecewise linear’ functions and ‘linear’ segments, as they are well-established terms in literature.
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Assume that ψ is discontinuous at some point z ∈ [0,1]. Without loss of generality, we assume that for some ε > 0,
there exists a sequence of points 〈zi〉i∈N such that2:(

lim
i→∞

zi = z
)

∧ (∀i ∈N: ψ(zi) − ψ(z) > ε
)

(2)

As ψ(z) = limi→∞ gi(z), we can find an n0 ∈ N such that ∀n � n0: |gn(z) − ψ(z)| < ε/4. Because 〈gi(z)〉i∈N is a non-
increasing sequence, we have ∀n � n0: gn(z) − ψ(z) < ε/4. Let us fix n at n0 for now and use the continuity of gn0 to
derive:

gn0(z) − ψ(z) < ε/4

(continuity of gn0 at z) ⇒ lim
i→∞

gn0(zi) − ψ(z) < ε/4

(property of limit) ⇒ ∃i0 ∈N: ∀i � i0: gn0(zi) < ψ(z) + ε/4(
by (2) and fixing i at i0

) ⇒ gn0(zi0) < ψ(zi0) − ε + ε/4 < ψ(zi0) − 3ε/4

(as ε > 0) ⇒ gn0(zi0) < ψ(zi0)

which is a contradiction as by definition, at every point x ∈ [0,1] the value of each gi must be greater than or equal to that
of ψ , i.e. gn0(zi0 )� ψ(zi0 ).

We summarise these results in the following proposition:

Proposition 5. The partial order FE is not complete, i.e. it is not closed under the limit operator over chains. However, if {hi | i ∈N} is
a chain such that limi→∞ w(hi) = 0, then the chain has a limit in FE.

The condition limi→∞ w(hi) = 0 is sufficient but not necessary for convergence in FE. For instance, the sequence
〈[ f i, gi]〉i∈N in which

∀i ∈N: ∀x ∈ [0,1]:
{

f i(x) = 0

gi(x) = x(i + 2)/(i + 1)

is a chain which converges to the enclosure [λx.0, λx.x] whose width is 1.
Basic concepts in function enclosure arithmetic [5,20] will be used in this paper. The intuition behind this arithmetic is

very simple as operators on functions mimic operators of ordinary interval arithmetic [18]. For instance, addition can be
easily overloaded with function enclosures as in [ f1, g1] + [ f2, g2] := [ f1 + f2, g1 + g2]. With other operations (such as ×,
etc.), a bit of tweaking is needed, similar to the case of ordinary interval arithmetic.

It is possible to be more practically minded and restrict oneself to a set of finitely-representable function enclosures, and
still be able to approximate every function in C[0,1]. For instance, one may consider the set of enclosures [ f , g] such that
f and g are polynomials with rational coefficients.

Of course objects are finitely-representable only relative to some specific language L ⊆ Σ∗ , for some alphabet Σ . To
make the presentation easier, we assume that our alphabet is rich enough to include:

• 0 and 1;
• some appropriate symbols for arithmetic operators;
• some appropriate symbols for forming lists, pairs and lambda expressions.

All of these can be encoded by appropriate Turing machines, and as we study asymptotic behaviour, the inclusion or exclu-
sion of these elements in Σ will not affect our results. Nonetheless, it is crucial that we keep the alphabet finite, as we will
see from the proof of Proposition 10.

We say that an enclosure h is approximated by another enclosure g if g is finitely-representable and g � h.3 A countable
set B of finitely-representable enclosures is called a basis for FE if each h ∈ FE is the limit of a chain 〈hi〉i∈N of elements
in B. Examples of bases are:

• the set of polynomials with rational coefficients;
• the set of continuous piecewise-linear functions, where the end-points of each linear segment have rational coordinates.

Now let B be a basis for FE. We call ρ :N →B a binary representation of f ∈ C[0,1] if ∀n ∈N: (ρ(n) � [ f , f ])∧(w(ρ(n)) <

2−n).

2 The case of (∀i ∈N: ψ(z) − ψ(zi) > ε) can be dealt with in a similar manner.
3 Note that our definition of approximation is different from the way-below relation used in domain theory [1, Definition 2.2.1]. In particular, in our

framework any finitely-representable enclosure g approximates itself.
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Remark 6. All of our results can be easily generalised to any base. Thus, to save space, we will refer to binary representations
simply as representations.

Notation 1. We reserve the notation K (x) to denote the Kolmogorov complexity of any finitely-representable object x. This
includes objects such as integer numbers, finite strings over a finite alphabet, arbitrary-precision floating-point numbers,
finitely-representable function enclosures, and the like.

Proposition 7. For every function f ∈ C[0,1] there exists a representation f̂ of f of minimal Kolmogorov complexity, i.e. for any other
representation of f such as ρ :N→ B:

∀n ∈N: K
(

f̂ (n)
)
� K

(
ρ(n)

)
Proof. Assume that B is enumerated as 〈hi〉i∈N . In order to define f̂ over a certain n ∈ N, first let Xn be those elements
of B that approximate f and have width smaller than 2−n , i.e. Xn := {h ∈ B | h � [ f , f ],w(h) < 2−n} and consider the set
K (Xn) = {K (h) | h ∈ Xn} which is the image of Xn under K . This is a subset of N, hence it has a least element n0. All
that remains is to assign to f̂ (n) one of the elements in K −1(n0), for instance, the one with the smallest index in the
enumeration 〈hi〉i∈N of B. �
Definition 8 (Optimal representation). The representation f̂ as in Proposition 7 is called an optimal representation of the
function f .

Definition 9 (KC ( f )). Let f̂ : N → B be an optimal representation of f ∈ C[0,1]. The Kolmogorov complexity function of f is
defined as:

KC ( f ) : N→N

n �→ K
(

f̂ (n)
)

We will consider the asymptotic growth of KC ( f ) for functions in C[0,1]. This way we can study the set of functions f
for which KC ( f ) is bounded in some way, e.g. by some polynomial, or some exponential function.

We will first prove in Proposition 10 that there are functions in C[0,1] with arbitrarily fast-growing Kolmogorov com-
plexity functions. In the proof we seem to go to some length to manufacture ‘one’ such function. But, then—as is usually
the case in mathematics—in Section 5 we will show that in fact ‘almost all’ functions in C[0,1] have this property.

Proposition 10. For any given θ :N →N, there exists a function f in C[0,1] whose Kolmogorov complexity is above θ over infinitely
many points. In other words:

∀m ∈N: ∃n � m: KC ( f )(n) � θ(n)

Proof. See Appendix A. �
For instance, in Proposition 10, by taking θ(n) to be:

1. 2n , one can show that there exists a real function f ∈ C[0,1] whose Kolmogorov complexity KC ( f ) is not dominated
by any polynomial.

2. n!, one can show that there exists a real function f ∈ C[0,1] whose Kolmogorov complexity KC ( f ) is not dominated by
any exponential function.

3. Invariant ideals

Consider the poset (NN,�) in which � is the pointwise ordering on functions: f � g ⇔ ∀n ∈ N: f (n) � g(n), and define
the operators ∨,∧ :NN ×NN → NN by ( f ∨ g)(n) = max( f (n), g(n)) and ( f ∧ g)(n) = min( f (n), g(n)). This way one obtains
a lattice, in which certain ideals (and their complements) are of interest to our discussion. For instance, the ideal of all
functions smaller than some polynomial (or some exponential) function. Remember that for each f ∈ NN the principal ideal
↓ f is defined as ↓ f := {g ∈NN | g � f }.

Definition 11 (Invariant ideal). We call a set U ⊆ NN a translation-invariant proper ideal—invariant ideal, to be brief—of NN

if

1. U contains the identity function: λn.n ∈U.
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2. U is a lower set: ∀ f ∈ U, g ∈ NN: g � f ⇒ g ∈ U.
3. U is closed under addition: ∀ f , g ∈U: λn. f (n) + g(n) ∈ U.
4. U is closed under translation: ∀ f ∈U, k ∈N: λn. f (n + k) ∈ U.
5. There exists a countable set of functions B such that U = ⋃{↓ f | f ∈ B}. Such a set B will be referred to as a basis

for U.

Examples of bases that ‘generate’ invariant ideals are the set of polynomials with integer coefficients, or the set of
exponential functions λn.a2n + b, where a,b ∈N.

Proposition 12. For any invariant ideal U, the following are true:

(i) U 
= ∅ ∧U 
= NN .
(ii) U includes every constant function λn.p and every affine function λn.pn + q, for every p,q ∈N.

Proof.

(i) U 
= ∅ because it contains the identity function. Now consider a countable basis B = { f0, f1, f2, . . .} for U and define
the function h :N→ N by h(n) = fn(n) + 1. Then h /∈ U.

(ii) Let p and q be natural numbers. The invariant ideal U contains the identity and is closed under translation, therefore
λn.n + p ∈U. Moreover, U is a lower set, thus λn.p ∈U.
As U is closed under addition, adding identity p times to itself would give λn.pn ∈ U, and by adding the constant
function λn.q, we obtain λn.pn + q ∈ U. �

From now on we reserve the symbol U to denote an invariant ideal. Note that for each invariant ideal U, the set K −1
C (U)

consists of those functions in C[0,1] whose Kolmogorov complexity functions are members of U, i.e.

K −1
C (U) = {

f ∈ C[0,1] ∣∣ KC ( f ) ∈ U
}

Proposition 13. For any invariant ideal U the following are true:

(a) The set K −1
C (U) is closed under arithmetic operations. (Note that for division h = f /g, we require that g be nowhere zero, i.e. we

do not allow division by zero.)
(b) The set K −1

C (U) is an Fσ set, i.e. it is the union of a countable family of closed sets.

(c) The set K −1
C (U) is Borel.

(d) Let Uc denote the complement of U, then:

∀ f ∈ K −1
C

(
Uc), g ∈ K −1

C (U), τ ∈R \ {0}: (τ f + g) ∈ K −1
C

(
Uc)

Proof. See Appendix B. �
4. Prevalence and shyness

Consider a topological real vector space V and let Φ be a predicate defined over V with support S ⊆ V , i.e. ∀s ∈ V :
(Φ(s) ⇔ s ∈ S). In the case dim(V ) = k < ∞, one may use the k-dimensional Lebesgue measure Λk in order to express
statements such as ‘Φ holds almost everywhere in V ’, which would mean Λk(V \ S) = 0.

Now let V be an infinite-dimensional, separable4 Banach space. Over such a space, we do not have any measure with
properties similar to that of the Lebesgue measure over Euclidean spaces. To be more precise: “any translation-invariant
measure μ over V which is not identically zero has the property that all open sets have infinite measure” [15, p. 2].

A translation-invariant alternative for ‘almost every’ in such infinite-dimensional spaces is ‘prevalence’, as introduced by
Hunt et al. [15]. In other words, when V is infinite-dimensional, the statement ‘S is a prevalent subset of V ’ gives us the same
quality of information as the statement ‘Φ holds almost everywhere in V ’ would give, were V finite-dimensional.

Here we do not need the full generality of the original definition of prevalence, for which the reader is referred to [15].
Instead, we use a simpler condition for prevalence which is based on the concept of a probe:

Definition 14 (Probe). Let S ⊆ C[0,1]. A finite-dimensional subspace P of C[0,1] is said to be a probe for S if for all
f ∈ C[0,1], Lebesgue-almost every point in the hyperplane f + P belongs to S .

For our purposes, prevalence of a set is implied by its having a Borel subset with a probe:

4 A topological space is called separable if it contains a countable dense subset.
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Proposition 15 (Prevalent set). Let S ⊆ C[0,1]:

1. If S is a Borel set, then S is prevalent if it has a probe.
2. If S is not a Borel set, then S is prevalent if it has a Borel subset S ′ ⊆ S that has a probe.

Proof. See [14,15]. �
Remark 16. The condition of having a probe is sufficient but not necessary for a Borel set to be prevalent. In fact, according
to the general definition given in [15], a Borel set may be prevalent without having a probe.

Definition 17 (Shy set). A set S ⊆ C[0,1] is said to be shy if its complement in C[0,1] is prevalent.

5. Main theorem

Consider an invariant ideal U, with B = {φi | i ∈ N} as its basis. Define the function θ :N →N over each n ∈ N as follows:

θ(n) :=
{

1 + φ0(0) if n = 0

1 + max({θ( j) | 0 � j � n − 1} ∪ {φk(n) | 0 � k � n}) if n � 1
(3)

This way we get:

∀m,n ∈N: n � m ⇒ φm(n) < θ(n) (4)

Now consider the function f obtained by applying Proposition 10 over this θ . The Kolmogorov complexity of f dom-
inates θ , and by implication—using (4)—is strictly greater than each φm , over infinitely many points. This means that f
belongs to K −1

C (Uc), and therefore:

Lemma 18. K −1
C (Uc) 
= ∅.

In fact, we will prove that for any invariant ideal U, ‘almost every’ function in C[0,1] belongs to K −1
C (Uc), where Uc is

the set complement of U in NN:

Theorem 1. For any invariant ideal U, the set K −1
C (Uc) is a prevalent subset of C[0,1].

Proof. Using Lemma 18, we can pick a function f ∈ K −1
C (Uc). The one-dimensional hyperplane P := {τ f | τ ∈R} is a probe

for K −1
C (Uc). To see this, let g be any function in C[0,1]. We show that for at most one τ ∈ R, the function τ f + g may

belong to K −1
C (U). Assume that this is not true. Then, there must be two different real numbers τ1 
= τ2 such that:{

h1 := τ1 f + g ∈ K −1
C (U)

h2 := τ2 f + g ∈ K −1
C (U)

But then by item (a) of Proposition 13, we must have:

f = h1 − h2

τ1 − τ2
∈ K −1

C (U)

which is a contradiction. In other words, for each g ∈ C[0,1], Lebesgue-almost every point in P+ g belongs to K −1
C (Uc).

In part (c) of Proposition 13, we proved that K −1
C (U) is Borel, which implies that K −1

C (Uc) is Borel too. This completes
the proof. �
6. An asymptotic bound on the Kolmogorov complexities of the computable functions

Let us denote the set of all computable functions in C[0,1] by C̃[0,1] and assume that this set is enumerated as a
sequence 〈 f i〉i∈N , with their respective Kolmogorov complexities enumerated as 〈φi〉i∈N . We define θ as in (3) and (using
Proposition 10) obtain a function f whose Kolmogorov complexity strictly dominates the Kolmogorov complexity of every
computable f i , over infinitely many points. In fact, we can go further: let Uθ be the smallest invariant ideal that includes θ .
It can be proved in the usual way that such an invariant ideal does exist. The set K −1

C (Uθ ) is a shy subset of C[0,1] which
includes C̃[0,1].

Just by using the closure properties as demanded by the definition of an invariant ideal, one can show that for every
f ∈ K −1(Uθ

c) and every f i ∈ C̃[0,1], there exists an infinite set J ⊆ N such that ∀ j ∈ J : φi( j) < KC ( f )( j), hence:
C
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Theorem 2. The Kolmogorov complexity function of every f ∈ K −1
C (Uθ

c) is an asymptotic upper bound for the Kolmogorov complexity

function of any computable function g in C̃[0,1], i.e. there exists an infinite set J ⊆ N such that ∀ j ∈ J : KC (g)( j) < KC ( f )( j).

7. Summary and discussion

We have defined a notion of Kolmogorov complexity for functions in C[0,1] by drawing inspiration from the work of Cai
and Hartmanis [4]. Essentially, we have taken into account the representation of an infinite object—in our case a continuous
real function—as the limit of a sequence of finite approximations, and then have based the definition of its Kolmogorov
complexity on the growth rate of the descriptive complexities of those finite approximations.

Even though the material is about a subject almost exclusive to computer science, the space C[0,1] over which we
studied the concept of Kolmogorov complexity includes both computable and non-computable functions. Therefore, it is not
possible to interpret this result in a purely Turing-computable framework. Yet, it touches upon the issue of representation,
and in this respect, Theorem 1 can be interpreted as stating that ‘almost all’ continuous real functions ‘are expensive to
represent via finitely-representable approximations’. In light of this interpretation, even if all of C[0,1] is supplied to us
by an oracle, computations that require information regarding the values of a function over all the points of its domain—
think of integration for example—are infeasible over ‘almost all’ continuous real functions, as long as we are restricted by
finitely-representable approximations.

We focused on some specific subsets of NN , which we called the invariant ideals, and demonstrated that their inverse
images under the Kolmogorov complexity function have got some certain closure, topological and measure-theoretic proper-
ties (Proposition 13). Through these invariant ideals we obtain a hierarchy within C[0,1], which we will be studying further
in our future research.

It should also be noted that whereas the Kolmogorov complexity of real functions has been studied in some other con-
texts, such as descriptive set theory [2], Brownian motion [11] and abstract recursion theory [12], we are mainly interested
in the broader abstract complexity theory over Banach spaces, of which C[0,1] is an instance. Therefore, we have presented
the results of this paper in order to shed some more light on the complexity theoretic properties of real function spaces, and
we will be taking this framework further and incorporating it into a more mainstream computational complexity framework
in our future research.
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Appendix A. Proof of Proposition 10

First fix a basis B for FE. We show that there are sequences 〈ni〉i∈N of natural numbers and 〈 f i〉i∈N of function enclosures
in B such that:

(i) ∀i ∈ N: ni < ni+1.
(ii) ∀i ∈ N: f i � f i+1.
(iii) ∀i ∈N: K ( f i) � θ(ni).
(iv) ∀i ∈ N: 0 < w( f i) < 2−ni . As a result there exists a unique function f ∈ C[0,1] which is enclosed by every f i . This will

be the function f as required in the statement of the proposition.
(v) For any g ∈B enclosing f : w(g)� 2−ni ⇒ K (g)� θ(ni).

This will prove the proposition. The sequences 〈ni〉i∈N and 〈 f i〉i∈N are both constructed inductively, and to ensure the crucial
item (v), we define a countable set P̃ of points in [0,1] ×R through which the function f has to pass.

Initially, we take P̃ to be the empty set and at each stage we add finitely many points P̃i to P̃ . Any function that passes
through these points avoids being enclosed by ‘low’ Kolmogorov complexity enclosures. Here is the inductive procedure:

The base case: Let n0 = 0 and enumerate all elements of B of width less than 1 (= 2−n0 ) in a sequence such as
〈g0, g1, . . . , gk, . . .〉 in non-descending Kolmogorov complexity order, that is ∀i ∈ N: K (gi) � K (gi+1). Note that
this is possible as the alphabet in our language is finite and therefore, for any natural number t ∈ N, there are
only finitely many enclosures g in B such that K (g) = t . Now, find the smallest i0 ∈ N such that K (gi0) � θ(0)

and w(gi0) 
= 0. Define f0 := gi0 and P̃0 := ∅.
The induction step: Assume that we have got finite sequences 〈ni〉0�i�m and 〈 f i〉0�i�m that satisfy the necessary condi-

tions. As fm is an enclosure we assume fm = [ f min
m , f max

m ], and as w( fm) > 0 then ∃z ∈ (0,1): f min
m (z) < f max

m (z).
Both f min

m and f max
m are continuous, therefore for some compact interval D = [�, r] of non-zero width (i.e. � < r)

and some ρ > 0 we get ∀x ∈ D: f max
m (x) − f min

m (x) � ρ . Choose nm+1 ∈N in such a way that:
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Fig. 2. (xi , yi) guarantees that f = ⊔
m∈N fm is not enclosed by the ‘low’ Kolmogorov complexity enclosure hi .

(nm+1 > nm) ∧
(

2−nm+1 <
ρ

2

)

Let 〈h0,h1, . . . ,hk, . . .〉 be an enumeration of all enclosures in B with widths smaller than 2−nm+1 arranged in non-
descending Kolmogorov complexity order. Initially, we assume that P̃m+1 = P̃m and search for the smallest i0 ∈ N
with the following properties:
(a) 0 < w(hi0) < 2−nm+1 .
(b) fm � hi0 .
(c) K (hi0) � θ(nm+1).
(d) P̃m+1 ⊆ Γ (hi0), and if h is any enclosure in B with K (h) < θ(nm+1), then P̃m+1 � Γ (h).
If i0 = 0 satisfies all these properties, then we are done. Otherwise, we go through an inductive process. On the
way, we modify P̃m+1 and make sure that condition (d) is guaranteed (see Fig. 2).

First let 〈h0,h1, . . . ,hq〉 be the initial segment of the sequence 〈hi〉i∈N such that:
1. ∀i � q: K (hi) < θ(nm+1).
2. ∀i > q: K (hi) � θ(nm+1).
As P̃m is a finite set, there exists a compact interval E = [a,b] of non-zero width (i.e. a < b) such that E ⊆
D \ π1( P̃m), where π1 is the projection over the first coordinate. In other words, E is a compact subinterval of D
that does not include the x-coordinate of any of the points in P̃m .

Let Pm+1 = {(x0, y0), (x1, y1), . . . , (xq, yq)} ⊆ E ×R be a set of points such that:
1. No two points have the same x-coordinate: ∀i < j � q: xi 
= x j . This is possible because the compact interval E

is not a singleton.
2. ∀i � q: (xi, yi) ∈ Γ ( fm) \ (Γ (hi) ∪ P̃m). This is possible because for each i ∈ N we have w(hi) � ρ/2.
The points in Pm+1 are added to P̃m to get the set P̃m+1. Thus P̃m+1 := P̃m ∪ Pm+1. Now we can start searching
from (q + 1) upwards and find the smallest i0 > q such that:
1. fm � hi0 .
2. P̃m+1 ⊆ Γ (hi0).
3. 0 < w(hi0 ).
It is straightforward to see that there exists such an i0. Properties (c) and (d) follow from the way we constructed
our sequences.

Now define fm+1 := hi0 and continue with the next iteration of the inductive process.

Finally, let P̃ = ⋃{ P̃m | m ∈ N}. It should be obvious that 〈ni〉i∈N and 〈 f i〉i∈N satisfy (i)–(iv) on page 573. To see how
condition (v) is satisfied, note that if g ∈ B is any enclosure of f of width less than 2−nm (for any m ∈N), then P̃m+1 ⊆ Γ (g).
This means that g cannot be any of the enclosures h0,h1, . . . ,hq of Kolmogorov complexities less than θ(nm). �
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Appendix B. Proof of Proposition 13

(a) Consider f , g ∈ K −1
C (U) with optimal representations f̂ and ĝ , respectively. Let us go through the proof for each of the

arithmetic operators one by one:

addition: let h := f + g . To obtain a function enclosure hn of h of width smaller than 2−n , all we need is to take hn to
be f̂ (n + 1) + ĝ(n + 1). Addition over finitely-representable approximations f̂ (n + 1) and ĝ(n + 1) adds only a
constant C+ to the Kolmogorov complexity, in other words:

K (hn) � K
(

f̂ (n + 1)
) + K

(
ĝ(n + 1)

) + C+

Remember that U is closed under addition and translation and it contains the constant function λn.C+ . Thus
KC (h) ∈ U.

subtraction: similar to the case of addition.
multiplication: let h := f × g . As g is continuous, it must be bounded by a constant M g , i.e. ∀x ∈ [0,1]: |g(x)| < Mg .

Take Ng to be a natural number such that 2Ng > Mg . To obtain a function enclosure hn of h of width smaller

than 2−n , all we need is to take hn to be f̂ (n + Ng) × ĝ(n + Ng). As × adds only a constant to the sum of the

Kolmogorov complexities of f̂ (n + Ng) and ĝ(n + Ng), the rest of the proof for this case is similar to the case
of addition.

division: similar to the case of multiplication: let h := f /g . Note that division by zero is ruled out. Hence, there exists
a natural number Mg such that

∀x ∈ [0,1]: ∣∣g(x)
∣∣ >

1

Mg

Thus, if we pick some Ng ∈ N large enough so that 2Ng > Mg , then ∀n � Ng : ∀x ∈ [0,1]: (x,0) /∈ Γ (ĝ(n)). In
other words, for n greater than Ng , no enclosure ĝ(n) crosses the x-axis. The rest of the proof is similar to the
case of multiplication.

(b) Let B = {θi | i ∈ N} be a basis for U, which means that U = ⋃{↓θi | i ∈N}. We write cl(A) to denote the closure of a set
A and we define:

UCL :=
⋃{

cl
(

K −1
C (↓θi)

) ∣∣ i ∈N
}

and prove that

K −1
C (U) = UCL

Obviously K −1
C (U) ⊆ UCL. So, it will suffice to prove that:

∀i ∈N: cl
(

K −1
C (↓θi)

) ⊆ K −1
C (U)

Fix a natural number p ∈ N and take an arbitrary function f ∈ cl(K −1
C (↓θp)). This means that there exists a sequence

〈h0,h1, . . . ,hn, . . .〉 of functions in K −1
C (↓θp) such that f = limi→∞ hi , where this limit is taken with regards to the

supremum norm. There exists a Cauchy subsequence 〈hi0 ,hi1 , . . . ,hin , . . .〉 of this sequence which converges to f , there-
fore:

∀ j ∈N: ‖ f − hi j ‖sup
< 2− j

Define the sequence 〈 f0, f1, . . . , fn, . . .〉 by letting f j := hi j for all j ∈ N. Each f i has an optimal representation f̂ i such

that K ( f̂ i) ∈ ↓θp .
Now define the sequence of function enclosures 〈φ0, φ1, . . . , φn〉 by:

∀n ∈N: φn = f̂n+1(n + 1) + λx.

[
− 1

2n+2
,

1

2n+2

]
(B.1)

In other words, the nth enclosure φn is obtained by taking the enclosure f̂n+1(n + 1) (which has width smaller than
2−(n+1)) and adding the strip λx.[− 1

2n+2 , 1
2n+2 ] (which has the constant width 2−(n+1)). It is not difficult to see that the

width of φn is smaller than 2−n and f ∈ φn , because:
(a) f̂n+1(n + 1) approximates fn+1 to within 2−(n+1) accuracy;
(b) fn+1 in turn approximates f to within 2−(n+1) accuracy;
(c) φn contains a neighbourhood of fn+1 of width 2−(n+1) .
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Thus, 〈φ0, φ1, . . . , φn, . . .〉 is a valid binary representation of f . On the other hand, the definition of φn as in (B.1) implies
that:

∃C1, C2 ∈ N: K (φn)� K
(

f̂n+1(n + 1)
) + C1n + C2 (B.2)

The constant C2 is added to account for the addition and the lambda term, and C1 is needed because the length of the
binary representation of 1/2n+2 is linearly proportional to n.
Remember that:
(i) ∀n ∈N: f̂n ∈↓θp .

(ii) U contains the linear function λn.C1n, the constant function λn.C2, and is closed under translation and addition.
Therefore, there exists a q ∈ N such that:

λn. θp(n) + C1n + C2 ∈↓θq(
by (B.2)

) ⇒ λn.K (φn) ∈↓θq

(θq ∈ B) ⇒ λn.K (φn) ∈U

(U is a lower set) ⇒ KC ( f ) ∈U

⇒ f ∈ K −1
C (U).

(c) Follows from (b).
(d) Let h = τ f + g and assume that h ∈ K −1

C (U). But then by (a)

f = (h − g)/τ ∈ K −1
C (U)

which is a contradiction. �
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